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ABSTRACT 

The use of lead was ubiquitous throughout the Roman Empire, including as material for 

water pipes, eating vessels and as a sweetener for wine. Children are particularly 

susceptible to the effects of lead and it is likely that the widespread use of this deadly 

metal amongst Roman populations led to a range of adverse health effects. Indeed, lead 

poisoning has even been implicated in the downfall of the Roman Empire. This research 

examines the direct effect of lead poisoning on the inhabitants of the Empire, and for 

the first time introduces a bioarchaeological perspective to how lead exposure affected 

health during the Roman period. The results provide strong evidence that Roman lead 

pollution contributed to the high prevalence of metabolic diseases during childhood and 

implicates elevated lead burdens in the high prevalence of infant remains in Roman 

skeletal assemblages. 

This study has also shown the effectiveness of lead isotope analysis as a tool in 

archaeological migration studies. The successful establishment of baseline lead isotope 

ranges in previously unstudied regions of the Roman Empire has greatly enhanced our 

ability to identify the potential origins of isotopic outliers. Although this study has 

shown that anthropogenic lead isotope ratios are not country specific, the results have 

demonstrated that lead isotope ratios can differentiate between populations based on the 

orogenic age of the region in which an individual spent their childhood. This has 

improved our understanding of how anthropogenic lead isotope ratios in Roman 

individuals varies across a continent, and has demonstrated that lead isotope ratios are 

capable of discriminating between geographical regions of origin when other isotope 

system are not.  
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CHAPTER ONE 

Introduction 

1.1 Research context 

1.1.1 Using lead isotopes to explore migration. 

Lead is ubiquitous within the environment, found within most rocks, soils, and water 

systems. It has both common (204Pb) and radiogenic (206Pb, 207Pb and 208Pb) sources that 

combine to create specific isotope characteristics, the variability of which reflects the 

underlying geology of the local area (Faure, 1986). Humans incorporate lead into their 

body through dietary consumption and inhalation, where it is predominantly stored 

within the mineral matrices of teeth and bones (Gulson et al., 1997a; Waldron, 1983). 

The interpretation of lead isotope ratios in archaeological skeletal remains for the 

purpose of investigating mobility and migration has been developed predominantly 

from research carried out on British populations (Montgomery, 2002; Montgomery et 

al., 2014, 2010, 2005; Shaw et al., 2016). Although the use of lead isotope ratios to 

answer questions surrounding geographic origins is beginning to gain momentum in 

European and North American studies (Keller et al., 2016; Price et al., 2017a, 2017b, 

2017c; Sharpe et al., 2016).  

One of the first applications of lead isotope ratios in archaeological human remains was 

carried out using four bone samples from the Roman site of Poundbury Camp, Dorset 

(Molleson et al., 1986). However, it was not until the work of Montgomery (2002) that 

real strides in the advancement of lead isotope analysis of archaeological human 
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remains were made. Montgomery (2002) developed a methodology that minimised the 

risk of contamination from the burial environment, providing a means of confidently 

assessing in vivo lead characteristics. Through diachronic analysis of tooth enamel 

samples spanning from the Neolithic to the Medieval period, Montgomery (2002) 

established the baseline for human lead isotope ratios in England and Wales. This 

research also demonstrated for the first time how local lead isotope ratios altered 

depending upon the type of exposure (geogenic or anthropogenic) dominating an 

individual’s environment. In prehistoric societies lead incorporated into bodily tissues 

tends to reflect natural, geogenic lead concentrations, allowing for regionally specific 

signatures to be used as tracers in archaeological migration studies (Montgomery, 2002; 

Montgomery et al., 2000). However, with the advent of metallurgical technologies 

(mining, smelting etc.) and the subsequent increases in environmental pollution and use 

of lead compounds, human lead isotope ratios alter to reflect exploited lead ore sources 

(Montgomery, 2002; Montgomery et al., 2010).  

It has been shown that lead ore isotope ratios vary throughout the world because they 

are formed at different times (McCrady, 1952; Sangster et al., 2000). As Roman human 

lead isotope ratios are dominated by lead ore isotope ratios it is probable that human 

lead isotope ratios also differ by geographic region. Montgomery et al., (2002, 2010) 

deomonstrated that archaeological British populations have lead isotope ratios 

consistent with British lead ore, and collated data from archaeological populations from 

across the world deomonstrate that human lead isotope ratios differ on a continental 

scale (Åberg et al., 1998; Montgomery, 2005; Turner, 2009; Bower et al., 2007; 

Valentine, 2008). However, little has been done to assess how, or if lead isotope ratios 

differ significantly within a single continent. 
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Research focusing on the Roman period has demonstrated that these anthropogenic lead 

isotope ratios can be used to successfully identify migrants in culturally mixed 

populations (Montgomery, 2002; Montgomery et al., 2010; Shaw et al., 2016). However, 

despite being a population well-known for the extensive movement of people and a 

popular target for migration studies, there is a notable lack of comparable human lead 

isotope data from regions of the Empire outside of Britain. As a result, studies have had 

to use lead ore datasets as proxies for human isotope ratios when attempting to establish 

local ranges and identify migrants in Roman populations (Montgomery, 2002; 

Montgomery et al., 2010; Shaw et al., 2016). This research aims to address this issue by 

establishing the lead isotope ratios in skeletal material excavated from sites across 

Europe to ascertain how they differ with socio-cultural and geographic variation and 

provide an initial baseline in human lead isotope ratios for different regions of the 

Roman Empire.  

1.1.2 Investigating lead poisoning within the Roman Empire 

Few theories evoke more fervent debate than what might have brought about the fall of 

the Roman Empire. For centuries scholars have put forth arguments for a plethora of 

singular causes for its decline, positing everything from the conversion to Christianity 

to overexpansion (Gilfillan, 1990). It is, however, the notion that lead poisoning was a 

key contributing factor behind its decline that has captured the interest of scholars and 

general enthusiasts alike. The urban myth-like quality that this theory has taken on has 

ensured its endurance. Historical texts describe a range of maladies associated with lead 

poisoning, affirming that Roman populations did indeed suffer the deleterious effects of 

lead toxicity (Lessler, 1988; Needleman, 2009; Retief and Cilliers, 2006; Waldron, 

1973). It was Nriagu’s (1983a) use of this historical literature to demonstrate the 
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endemic nature of lead poisoning and its consequences that gave support to the role that 

lead played in the downfall of the Empire. Despite how mainstream the theory of 

endemic lead poisoning became, many scholars refuted the claims. Some openly 

questioned the validity of the translations of the ancient texts and suggested that lead 

pollution during the Roman period was not significant enough to have resulted in the 

Empire’s decline (Cilliers and Retief, 2014; Drasch, 1982; Gaebel, 1983; Needleman 

and Needleman, 1985; Scarborough, 1984). Although it may never be possible to truly 

ascertain the role, if any, that lead poisoning played in the fall of Rome, the effect it had 

on childhood health and mortality throughout the Empire can be explored directly via 

skeletal analysis.  

Studies that have analysed lead concentrations in Roman skeletal material reveal lead 

burdens up to three times higher than what is today considered ‘severely toxic’ 

(Montgomery et al., 2010). Therefore, it could be surmised that lead was deleterious to 

Roman health, especially in children, who are more susceptible to lead poisoning than 

adults (Needleman, 2004). The demographic profiles of Romano-British skeletal 

populations attest to the fragility of childhood health during this period, especially 

within the first year of life (Carroll, 2014). It is therefore surprising that so little 

research exists on childhood lead burdens and their effects on Roman non-adult health 

and mortality. This research will explore whether the extensive use of lead in the 

Roman Empire contributed to the high infant mortalitiy rates evident in Roman skeletal 

populations. Offering new insights into the impact of anthropogenic lead exploitation on 

child health within the Roman Empire and how this may have differed according to 

geographic and socio-cultural variations.  
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1.2 Research aims 

The overarching aim of this project is to explore how exposure to anthropogenic lead 

pollution during the Roman period impacted upon childhood health, and what this 

exposure can tell us about geographic mobility within the Empire. It focuses upon the 

use of lead isotopes as a discriminant in migration studies and attempts to determine the 

extent of variation in lead isotope ratios between modern countries via a highly polluted 

archaeological population. This study also aims to determine how lead pollution 

impacted upon the health and mortality of children within the Roman Empire, and 

examine which, if any, skeletal markers of disease can be used to help identify 

individuals suffering from lead poisoning. 

1.2.1 Objectives 

 Investigate the impact lead burdens had upon the health of Roman children 

throughout the Empire via paired analysis of tooth enamel lead concentrations 

and osteological data from non-adult skeletal remains. 

 Determine whether variations in socio-cultural and geographic origins influence 

childhood lead burdens by interpreting contextual information alongside lead 

concentration data.  

 Ascertain whether anthropogenic lead pollution could have contributed to the 

high infant mortality rates observed in Roman skeletal populations through the 

comparison of lead concentrations and age-at-death.  
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 Establish how skeletal lead isotope ratios vary between different regions of the 

Roman Empire by analysing tooth enamel lead isotope ratios in Roman skeletal 

populations from different regions of the empire.  

 Explore the usefulness of lead isotope ratios in human tooth enamel in 

identifying migrants in culturally mixed Roman skeletal populations by 

combining lead isotope data with contextual information. 

1.3 Period of study 

In order to determine how anthropogenic lead isotope ratios can be used to establish 

geographic origins from archaeological skeletal material, a population known for its use 

of lead and lead products is essential. In this respect the Romans provide a perfect study 

population. The use of lead was ubiquitous throughout the Roman Empire. This 

versatile metal was included in everything from water pipes, building materials and 

eating vessels, to medicine, make-up and food sweeteners (Gilfillan, 1990). The 

significant increase in the bioavailability of lead throughout this period resulted in 

widespread exposure to unprecedented levels of the toxic metal (Needleman, 1991; 

Nriagu, 1983). The in vivo anthropogenic lead isotope ratios this type of exposure 

creates, makes Roman skeletal assemblages ideal study populations. Not only for 

determining the efficacy of anthropogenic lead isotope ratios in archaeological 

migration studies but also for assessing how leads exposure impacted upon health.   

The Roman Empire (27 BC – 476 AD) was amongst the most powerful economic, 

cultural, political and military forces in the world at this time. At the peak of its power it 

covered 5 million square kilometres, ruling over an estimated 60 - 70 million people 

across parts of Europe, North Africa and Western Asia (Taagepera, 1979; Turchin et al., 
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2006). Approximately 21% of the world's population during this period, lived within the 

Empire’s borders, ensuring its place as one of the largest empires in world history 

(Potter, 2004, p. 17). An integral part of the development, expansion and maintenance 

of this vast territory was the movement of people to and from all regions of the Roman 

Empire (Hin, 2013; Killgrove, 2013; Scheidel, 2001). Migration was not limited to 

those of a low socioeconomic status looking to improve their livelihoods elsewhere. But 

included people from all levels of society hoping to better their life station or take on 

administrative or entrepreneurial roles in newly acquired lands (Sweetman, 2011; 

Tacoma, 2016; Woolf, 2013). Whatever the reason for migration within the empire, it is 

clear that levels of migration were both high and multidirectional (Killgrove, 2014). 

With their inclination for migration and unprecedented levels of lead exposure, Roman 

skeletal populations offer the chance to assess whether variations in human lead isotope 

ratios are sensitive enough to identify outliers in what are assumed to be culturally 

mixed skeletal populations.  

1.4 Sample population 

The analysis of lead isotope ratios from different regions of the Roman Empire provides 

a means of assessing how well lead isotope ratios can discriminate between 

contemporaneous individuals from different countries. An approach that is, to date, 

unique in bioarchaeological studies. This study incorporates eight Roman populations 

(1st to 4th centuries AD), from seven different regions of the Roman Empire (see Fig. 

1.1). Sites were chosen based on their location within the Empire. Different regions that 

encompassed a large proportion of the Roman Empire were needed to allow 

visualisation of how lead isotopes within a highly polluted and mobile population varied 

according to geographic region. To that end, skeletal assemblages from Scotland, 
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England, Spain, France, Slovenia, Romania and Lebanon were included in this study. In 

doing so, an expanse of the Roman Empire spanning from its most north-westerly 

outpost to its most easterly province was covered.   

The dispersed locations of sites provided the opportunity to assess the discriminant 

resolution offered by human lead isotope ratios in contemporaneous populations across 

a continent, plus Lebanon. The widespread geographical locations of samples 

incorporated into this study also facilitated a means of acquiring and establishing human 

lead isotope ranges from regions of the Roman Empire where there is currently no 

comparative data. Although the anthropogenic lead isotope range for humans exposed 

to English and Welsh lead ore has been well established (Budd et al., 2004; 

Montgomery, 2002; Montgomery et al., 2010), eight Roman individuals from Britain 

were also analysed in this current study. This small group of individuals were included 

due to their unusual burial rites. Six of these individuals were excavated in Musselburgh, 

Scotland near a fort on the Antonine wall, all six individuals exhibited skeletal evidence 

for decapitation and trauma. The remaining two individuals were from lead coffin 

burials excavated in York and Ilchester, England. Both are uncommon burial rites in 

Roman Britain, and have previously been shown to be associated with migrants 

(Montgomery et al., 2010; Müldner et al., 2011). These two case studies (Musselburgh 

and Lead coffin burials) also provide a means of testing the usefulness of lead isotope 

ratios in discerning an individual’s geographic origins using the data obtained in this 

study. 
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Figure 1.1 – Map showing the location of the nine sites used in this study. 

Musselburgh, Scotland (n = 6), York, England (n = 1), Ilchester, England (n = 1), 

Tarragona, Spain (n = 27), Barcelona, Spain (n = 34), Caen, France (n = 37), Ljubljana, 

Slovenia (n = 8), Alba Iulia, Romania (n = 37) and Beirut, Lebanon (n = 40). 

1.5 Structure of the thesis 

The following four chapters discuss the relevant background literature that forms the 

basis for the current study. Chapter Two introduces lead and the premise behind using 

lead isotope analysis to investigate the geographical origins of people from 

archaeological populations. Chapter Three discusses current isotope systems used to 

identify migrants in archaeological populations and focuses on the type of populations 

suited to anthropogenic lead isotope studies. This chapter also summarises how the 

Romans, a population well-known for their extensive exploitation of lead and 

propensity for migration, make an ideal study population. Chapter Four explores the 

biochemical interactions of lead poisoning within the human body to inform our 

understanding of the way in which lead poisoning may manifest in skeletal remains, 

how lead burdens can be quantified, and how this can be used to inform our 
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interpretations of lead poisoning in archaeological populations. Chapter Five reviews 

literature relating to health and mortality during the Roman period, outlining current 

reasoning for the poor health and high infant mortality rates during this time and 

positing the role that lead poisoning may have contributed to this.  

Chapter Six focuses on the methodology employed in this study. It presents the 

archaeological sites and the sample population included in this study, and details the 

sampling strategy, sample preparation method and analytical techniques used to obtain 

and interpret the data collected. The results are presented and discussed in Chapters 

Seven and Eight. Chapter Seven draws together the results of the trace element analysis 

and palaeopathological data obtained from osteological analysis to offer a 

comprehensive overview of how lead burdens impacted upon health and mortality in the 

past. While Chapter Eight presents the results of the lead isotope analysis, with 

discussions focusing on determining the resolution at which geographical origins can be 

determined within the Roman Empire. The efficacy of lead isotope ratios in identifying 

migrants from culturally mixed, polluted populations is also discussed here. The 

concluding chapter provides a brief synopsis of the thesis followed by the overarching 

findings of the research and suggestions for further work. All of the isotope and trace 

element data is tabulated in the appendices.  
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CHAPTER TWO 

Lead Analysis in Bioarchaeology 

2.1 Introduction 

One of the fundamental questions often posed in bioarchaeology pertains to human 

migration and mobility. Do the individuals within a given skeletal population represent 

individuals from the same or varied biological and socio-cultural groups? Traditionally, 

anthroposcopic and anthropometric analysis techniques were the predominant 

methodological approaches used to investigate migration within a skeletal population. 

However, with advancements in chemical analyses, isotopic studies are coming to the 

forefront in addressing questions pertaining to cultural affiliation (Bentley, 2006; 

Katzenberg, 2008; Nehlich, 2015; Montgomery et al., 2010). It has been well 

documented that various isotope systems (e.g. C, N, O, Sr, S, H, Pb), have the potential 

to be powerful discriminants in origin studies, and are therefore increasingly used to 

investigate the mobility of archaeological populations (Åberg et al., 1998; Beard and 

Johnson, 2000; Bentley, 2006; Chenery et al., 2012; Sealy et al., 1995). However, lead 

(Pb) despite its potential, has received comparatively less attention than other isotope 

systems such as strontium (Sr) and oxygen (O).  

Lead is widely dispersed within the environment from both common and radiogenic 

sources, which combine to create geologically specific isotope characteristics. When 

viewed as isotope ratios these characteristics can be used as isotopic signatures or 

fingerprints for identifying geogenic and anthropogenic lead sources in provenance 

studies, whether they be human, artefact or otherwise (Wilson et al., 2006). A wealth of 
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provenance studies, especially those focusing on archaeological artefacts, has proven 

lead to be an effective discriminatory tool. However, from a bioarchaeological 

perspective lead, despite its potential to discriminate between exposures to different ore 

sources, has been under utilised when compared to the use of other isotope systems in 

mobility studies. This is somewhat surprising as lead offers several advantages over 

lighter isotopes, and those with only one radiogenic parent, such as strontium (Gulson, 

1986). Due to its high atomic weight, lead does not fractionate in the low temperature 

processes that alter the composition of lighter elements, and its relative rarity compared 

to elements such as carbon, nitrogen or hydrogen mean that there is less scope for 

mixing from innumerable source (Gulson, 1986). 

The interpretation of lead isotopes in archaeological skeletal remains for the purpose of 

investigating mobility and migration has been developed predominantly from research 

carried out on British populations (Montgomery, 2002; Montgomery et al., 2010, 2014, 

2005; Shaw et al., 2016). There appears to be an increasing use of lead isotope ratios in 

Roman migration studies. Focus on this period derives mainly from the extensive 

exploitation of lead throughout this time, and the resultant environmental pollution that 

created elevated human lead burdens, coupled with homogenised lead isotope ratios. 

These isotope ratios are thought to represent the dominant anthropogenic ore source 

utilised by a particular population. As such, migrant individuals who spent their 

childhood in a different country or region to that in which they were interred would 

have been exposed to different anthropogenic ore sources to those considered local to 

their interment area. Therefore, they would exhibit lead isotope ratios that are distinct 

from those of the local population, making the identification of migrants in a culturally 

mixed skeletal population relatively easy. A number of bioarchaeological studies have 

shown that the lead isotope ratios in the majority of Romano-British skeletal remains 
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are congruent with the isotopic range expected from exposure to British lead ore sources, 

and that those with isotope ratios inconsistent with this British range are easily 

identified (Millard et al., 2014; Montgomery et al., 2010; Shaw et al., 2016). However, 

there is a notable lack of comparative data for human skeletal material excavated from 

Roman period sites throughout the rest of Europe. This limits any possible 

interpretation of non-British human lead isotope ratios identified in British populations, 

as there is little to no reference data available for direct comparison. Instead lead isotope 

ratios obtained from artefacts of known provenance have to be used as a proxy. This 

research will address this by determining the lead isotope ratios in Roman individuals 

from several countries from within what was the Roman Empire, establishing if and 

how human lead isotope ratios vary in Roman individuals from different geographical 

regions across Europe and to what extent they can be used to investigate mobility within 

the Roman Empire. This chapter introduces lead and the premise behind the use of lead 

isotope analysis to investigate the geographical origins of people from archaeological 

skeletal populations. 

2.2 Geochemistry 

2.2.1 Lead 

Lead is a dense, yet soft, ductile metal with a low melting point (327°C) and high 

resistance to corrosion. Because of these properties it has been utilised in the 

manufacture of a wide range of products for millennia (Settle and Patterson, 1980; 

Sherwood Lollar, 2005, p. 71). It is classified as a post-transitional heavy metal with 

chalcophile tendencies, meaning that it has a higher affinity for sulphur than oxygen and 

therefore forms dense sulphides that remain predominantly within the upper levels of 



 14 

the Earth’s crust. Naturally occurring sources of lead are most commonly found in 

minerals such as galena (PbS), anglesite (PbSO4), Cerussite (PbCO3) and minium 

(Pb3O4). However, trace amounts also occur in numerous other minerals such as K-

feldspar, zircon, micas and magnetite. Due to the intermediate size of Pb2+ ions (1.19 Å) 

it can readily replace Ca2+ (1.14 Å) and K+ (1.52 Å) ions in several minerals, which is 

why lead is enriched in felsic rocks such as granite (Mielke, 1979). The distribution of 

lead within sedimentary rocks is governed by the lead content of the detrital minerals 

and organic matter present at the time of its formation (Heinrichs et al., 1980). Due to 

lead’s affinity for organic material, sedimentary rocks such as shale and greywackes 

contain the highest concentrations of the metal. As soils are a major contributor to 

human lead burdens details such as these are important because soil lead composition 

and concentrations are largely dependent upon the lead within the underlying rocks that 

formed it.  

Lead ions within soils are relatively immobile as they readily form secondary minerals 

with low solubility or ion complexes with manganese or iron. However, soils with low 

calcium concentrations or high pH values exhibit increased lead solubility that 

facilitates the aqueous movement of lead in the environment (Hem, 1976; Martínez and 

Motto, 2000; Zimdahl and Skogerboe, 1977). Natural levels of lead within soil have 

been estimated to be no more than 25 mg/kg-1 unless anthropogenic contributions have 

polluted it (Kabata-Pendias, 2010, pp. 338–349). As mentioned above, anthropogenic 

activities such as metalliferous mining and the manufacture and use of lead or lead 

containing products (e.g. pipes, paints, glazes, petrol etc.) causes a significant increase 

in environmental lead concentrations (Patterson, 1965). These increased lead 

concentrations are deleterious to health as lead is highly toxic to all living organisms.  
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2.2.2 Lead isotopes 

There are four naturally occurring lead isotopes, three of which are radiogenic daughters 

of thorium and uranium decay (206Pb, 207Pb and 208Pb), and one primeval non-radiogenic 

isotope (204Pb). 204Pb is considered a stable reference isotope, the abundance (1.4%) of 

which has remained constant since the formation of Earth. 

238U     8α      206Pb   (t1/2 = 4.467x109) [abundance 24.1%] 

                                   6β 

235U      7α      207Pb   (t1/2 = 0.704x109) [abundance 22.1%] 

                                   6β 

232Th      6α      208Pb   (t1/2 = 14.010x109) [abundance 52.4%] 

                                   4β 

(Baskaran, 2011; McSween et al., 2003) 

There is extensive natural variation in the isotopic composition of lead in geological 

bodies, ranging from highly radiogenic lead in old uranium/thorium rich minerals such 

as granite, to minerals low in uranium/thorium lead but high in common lead such as K-

feldspar. These differences in isotopic composition reflect the different chemical 

environments in which the lead originated (e.g. crustal rock, mantle rock, ore bodies 

etc.). Additionally, the mixing of one or more lead sources with disparate compositions 

may further modify the isotopic composition of any given sample. This complex 

aggregation of multiple lead sources results in divergent isotope compositions that are 

specific to their geological environment, making them useful provenance tools (Evans 

et al., 2015; Faure, 1986). As different geological regions across the world are 

composed of varying types of rocks of different ages, each geographical region 

produces lead isotope ratios uniquely characteristic of its underlying geology.  
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Lead isotopes are determined as ratios of one isotope to another rather than a direct 

measurement of abundance (e.g. 206Pb/204Pb, 207Pb/204Pb etc.). Conventional plots used 

to present lead data include 207Pb or 208Pb as ratios with the invariant 204Pb plotted 

against 206Pb/204Pb.  A bivariate plot using 207Pb/204Pb against 206Pb/204Pb allows 

visualisation of any changes in the uranium-lead systematics of the samples as it only 

compares the isotope ratios of uranium derived lead (uranogenic lead). When 

208Pb/204Pb is plotted against 206Pb/204Pb, any changes in both thorium-lead (thorogenic) 

and uranogenic lead processes can be visualised. However, due to its naturally low 

abundance (~1.4%) accurate measurement of 204Pb has, until recently, been problematic 

(Baskaran, 2011). To avoid the higher uncertainties surrounding 204Pb measurements 

208Pb/206Pb against 207Pb/208Pb plots are often used. These plots benefit from higher 

precision, but compress the data fields. Therefore, the subtler variations that frequently 

differentiate one lead field from another may, unlike in conventional bivariate plots 

using 204Pb, be lost. 

2.3 Lead in the environment 

2.3.1 Geographical variation of lead isotopes 

Geogenic lead isotope ratios within soils tend to be a homogenous representation of the 

isotopic composition of the underlying local geology. Therefore, any geographical 

variations within geogenic lead isotope ratios stem from the mixing of lead sources with 

disparate isotope compositions. These can either be from inter-ore spatial variations or 

preferential weathering and mechanical degradation of heterogeneous rocks (Erel et al., 

1994, p. 5565; Giacalone et al., 2005). Lead within soils is largely immobile, staying 

predominantly within the organic fraction due to its affinity for forming complex 
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sulphide species (Adriano, 1986; Giacalone et al., 2005; Sheppard and Thibault, 1992). 

As such, anthropogenic lead contributions to soil composition also stay within the 

organic fraction, altering the isotopic composition of the upper soil fractions to reflect 

that of the dominant pollutant source rather than local geology. Lead isotope ratios do, 

however, gradually conform to those exhibited by the underlying geology as they 

approach the bedrock (Bacon et al., 1996, p. 2516).  

As with most geochemical processes, the mobility of lead within the organic fraction 

can be increased when subject to decreases in soil pH or environments rich in soluble 

organic matter (Giacalone et al., 2005; MacKenzie et al., 1998; Stewart and Fergusson, 

1994). Although metallurgical activities such as mining increases the lead concentration 

of soil, its low solubility ensures that it is not a major contributor to human lead burdens 

(Cotter-Howells and Thornton, 1991). It is the use of lead artefacts and lead compounds 

rather than lead in soils that dominates human lead burdens in metallurgical societies, as 

the direct ingestion of lead and its products circumvents normal biopurification of the 

toxic metal (Elias et al., 1982; Katzenberg and Grauer, 2018, p. 508). Therefore, it is the 

isotope ratios of potential sources of anthropogenic lead pollution (e.g. lead ores) that 

will provide the most useful comparisons for human migration studies involving 

societies with metallurgical capabilities, such as the Romans (McBride et al., 2014; 

Weiss et al., 1999; Wuana and Okieimen, 2011). 

It has been shown that lead ore isotope ratios vary throughout the world as they were 

formed at different geological times (McCrady, 1952; Sangster et al., 2000). Data such 

as that published by Sangster et al., (2000), demonstrate how the world’s most 

important lead ore deposits exhibit varying 206Pb/207Pb isotope ratios, ranging from 0.98 

to 1.41. For example, one of the world’s major producers of lead is the Broken Hill ore 
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deposit in Australia which has characteristically low 206Pb/207Pb isotope ratio of 1.04, 

starkly contrasts with the world’s largest lead ore deposit, the Mississippi Valley Type 

deposit in North America which is younger than the Broken Hill deposit and has a 

higher 206Pb/207Pb isotope ratio of 1.40. Yet, despite the multidisciplinary applications 

of lead isotope analysis for source tracing in both modern and archaeological contexts, 

large-scale isoscapes representing the distribution of lead and lead isotope ratios are 

scarce.  

2.3.2 Lead isoscapes 

A European study conducted by Reimann et al. (2012), was one of the first to address 

the need for lead isoscapes on a continental scale. Their analysis of European lead 

concentrations in agricultural soils revealed a distinct boundary in concentration levels 

between North East and South West Europe; with Northern Europe exhibiting lower 

lead concentrations than Southern Europe (see Fig. 2.1). This boundary coincides with 

one of Europe’s major tectonic borders (the Trans-European Suture Zone) and extends 

from the agricultural (A-horizon) soils down into the deep C-horizon soils. These 

regions of high lead concentrations, especially in Britain, appear to correlate with major 

lead mining zones and industrial areas. This North/South divide in lead concentrations 

is also echoed in the 206Pb/207Pb isotope ratios presented in Reimann et al.’s (2012) 

study.  
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Figure 2.1 – Map of lead concentrations in European agricultural soils. Black line 

represents the approximate location of the Trans-European Suture Zone (adapted 

from Reimann et al., 2012, p.234) 

 

Figure 2.2 – Map of lead isotope ratios in European agricultural soils. Black line 

represents the approximate location of the Trans-European Suture Zone (adapted 

from Reimann et al., 2012, p237-238) 
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The spatial distribution of 206Pb/207Pb and 207Pb/208Pb isotope ratios can be seen in 

Figures 2.2a and 2.2b respectively. Generally, Northern and Eastern European soils 

(Sweden, Finland Ukraine etc.), predominantly developed on Precambrian igneous 

rocks have low 207Pb/208Pb and high 206Pb/207Pb isotope ratios, while the inverse is seen 

in South Western Europe. There are, however a few localised exceptions with high 

207Pb/208Pb values that correlate with significant lead deposits in the area (Reimann et 

al., 2012). A common geological feature, the Trans-European Suture Zone (TESZ), 

dominates all three maps. This region represents the geological border between the old 

Precambrian craton in the North-East of Europe and the younger Palaeozoic platform in 

Western Europe (McCann, 2008, p. 358). The fact that geological and isotope systems 

share a common border of change stands to further highlight the intrinsic relationship 

between a region’s lead concentrations and geogenic lead isotope ratios with the 

underlying geology and prevailing soils. However, these isoscapes are modelled using 

modern agricultural soil samples. While this type of data is clearly a valid and useful 

tool for the tracing of modern human origins in continental-wide, forensic contexts 

(Boyd, Jr. and Boyd, 2017; Kamenov et al., 2014; Kamenov and Curtis, 2017; Keller et 

al., 2016), both modern and historical anthropogenic lead pollution has resulted in their 

efficacy for tracing mobility in archaeological populations being questioned.  

Studies have shown that environmental lead isotope ratios are significantly altered by 

anthropogenic contributions to the atmospheric deposition of lead (Farmer et al., 2002, 

1999, 1997). Through the analysis of historical peat bogs, lake sediments and archival 

herbage, spatiotemporal changes in 206Pb/207Pb isotope ratios have been identified, and 

these changes have been linked to human activities such as the burning of fossil fuels 

and the introduction of leaded petrol (Boutron et al., 1994; Mil-Homens et al., 2013; 

Renberg et al., 2000; Shotyk et al., 1996). Therefore, if lead isotope ratios in organic 
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materials are to be used as indicators of geographical location there is a real need to 

ensure that the samples are contemporaneous with those of the skeletal population being 

analysed. Keller et al., (2016) is one of the first studies to explore this with their 

production and application of spatiotemporal lead isoscapes using 19th and 20th century 

North American samples. This study found that lead isotope ratios from a combination 

of dated sediment, peat bog, coral, tree ring and lichen samples provided isotope ratios 

sufficiently similar to those in contemporaneous human remains for the purpose of 

origin identification. Keller et al., (2016) conclude that spatiotemporal isoscapes 

correlate more closely to human tooth enamel values than isoscapes produced using 

non-contemporaneous soil samples. Despite the apparent success of this study, very few 

others have attempted to make spatiotemporally specific lead isoscapes. Instead, it has 

remained more common practice to use lead isotope datasets produced from the analysis 

of artefacts of known provenance as proxies for the palaeo-pollution that would have 

contributed to anthropogenic archaeological human lead isotope ratios.  

2.3.3 Anthropogenic environmental lead pollution  

Human activities have always had an impact upon the environment, and the mining and 

smelting of lead is no exception. Before the advent of metallurgical activities 

atmospheric lead levels remained consistently low (Bindler et al., 2008). However, 

palaeo-pollution studies have shown how human activities have caused significant 

fluctuations in these natural background concentrations (Bränvall et al., 2001). 

Numerous studies have used Icelandic salt marshes, Greenland ice cores, Scandinavian 

lake sediments, European peat bogs and historical herbage to characterise palaeo-

pollution over time (Brännvall et al., 1997; Hong et al., 1994; Komárek et al., 2008; 

Marshall et al., 2009; Rosman et al., 1997). These studies show a low natural baseline 
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level of atmospheric lead concentration in pre-history that steadily rises during the onset 

of metallurgical technologies around 500 BC. During the Roman period these levels 

dramatically rise, yet after the decline of the Roman Empire, during the 5th – 11th 

centuries AD, palaeo-pollution records demonstrate a drop in atmospheric lead levels. 

However, a second surge in lead production during the industrial revolution in the 18th 

century induced a second increase in atmospheric lead concentrations, bringing about 

unprecedentedly high lead levels within the environmental record.  Interestingly, the 

same temporal fluctuations in atmospheric lead pollution can be seen in the lead 

burdens of archaeological human remains.  

This is best visualised by comparing the archaeological human data presented by 

Montgomery et al., (2010) with the atmospheric pollution data published by Settle and 

Patterson (1980) (see Fig. 2.3 and 2.4 respectively). Montgomery et al.’s (2010) data 

demonstrates how the median lead concentrations in human tooth enamel from British 

skeletal populations spanning from the Neolithic to the Late Medieval period have 

concentration fluctuations congruent with the fluctuations seen in historic lead 

production. As metallurgical activities increased, so did the lead concentrations in 

human tooth enamel. From as early as the Iron Age, tooth enamel has shown elevated 

lead concentrations (0.02 – 30.1 mg kg-1) compared to those seen in pre-historic 

samples (0.003 – 0.68 mg kg-1). This correlation between anthropogenic lead production 

and human lead burden illustrates how anthropogenic lead pollution is linked to human 

lead burdens, thus, providing a unique tool for assessing how technological 

advancements affected the health and environments of past populations.  
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Figure 2.3 – Median lead concentrations from human skeletal material dating 

from the Neolithic to the late Medieval period (Source: Montgomery et al., 2010) 

 

Figure 2.4 – Diachronic atmospheric lead pollution data (Source: Settle and 

Pattterson, 1980) 
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2.4 Uses in bioarchaeology 

The use of lead isotope analysis in archaeology has primarily been developed as a 

discriminatory tool in artefact provenance studies, addressing questions about trade, 

movement of goods and the geological and geographical origins of manufacturing 

materials (Boni et al., 2000; Durali-Mueller et al., 2007; Henderson et al., 2005; Renson 

et al., 2013; Stos-Gale et al., 1997). Its development was founded on the premise that 

different lead ore sources have isotopic compositions sufficiently different from one 

another to allow differentiation between ores mined in different countries (Brill and 

Wampler, 1967). Comparison of lead isotope ratios from archaeological artefacts with 

the isotopic signature from ore deposits has been shown to successfully facilitate the 

identification of possible geographic origins of the metals used to make the artefacts 

(Albarède et al., 2012; Balliana et al., 2013; Delile et al., 2014; Desaulty et al., 2011; 

Niederschlag et al., 2003).  The use of lead isotope analysis in bioarchaeology is based 

upon a similar assumption, mainly that the lead sequestered in skeletal material reflects 

the lead source a person was exposed to at the time of tissue mineralisation. Although 

this technique is not as widely used as other isotope systems in bioarchaeology, mostly 

due to cost and complexity of interpretation, a growing number of studies are 

demonstrating the efficacy of the technique in identifying migrants, especially in British 

and North American populations (Dudás et al., 2016; Keller et al., 2016; Millard et al., 

2014; Montgomery et al., 2010; Shaw et al., 2016).  

2.4.1 Lead in skeletal tissues 

The weathering and dissolution of rocks facilitates the movement of lead into the 

surrounding soils. From here it can enter the food chain via incorporation into local 

water systems, plants and animals. With regards to humans, this means that the lead 
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sequestered within skeletal material represents an average of the isotopic composition of 

the food and water ingested during life (see Chapter 4 for more details). Due to their 

high mass, lead isotopes do not fractionate during the low temperature reactions 

associated with geological and biological processes, therefore lead isotope ratios in 

skeletal tissues tend to reflect those of the local geology or at least an integrated 

homogenous representation of the underlying geology (Erel et al., 1994; Komárek et al., 

2008). This is particularly true for people from pre-metallurgical societies where lead 

burdens are consistently low (<1 ppm), and acquired almost entirely from naturally 

occurring, geogenic lead in the environment (Millard et al., 2014; Montgomery et al., 

2010; Shaw et al., 2016). Subsequent societies exhibit increased lead burdens as a result 

of widespread environmental lead pollution created through the use of mining and 

metallurgical technologies. This anthropogenic lead pollution swamps the natural 

geogenic lead in an individual’s local environment, resulting in lead isotope ratios 

reflecting those of the lead ore sources utilised by that particular society (Montgomery, 

2002; Montgomery et al., 2010, 2014). Of course, in reality a society is likely to be 

exposed to more than one ore source, in which case human lead isotope ratios would 

reflect an average of the isotope ratios from all sources, essentially a mixed or 

homogenised isotope ratio. These homogenised isotope ratios are likely to show slight 

variations between individuals within a single population, but the variation will 

inevitably be smaller than the variation between the different ore sources (end 

members) contributing to the exposure (Wilson and Pollard, 2001). No matter what type 

of exposure (natural or polluted) the strong environmental links for both geogenic and 

anthropogenic lead burdens enables the interpretation of lead isotope ratios in 

conjunction with lead concentration data to be a powerful tool in human mobility 

studies. 
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2.4.2 Variations in human lead isotope ratios 

Human teeth and bones accumulate trace amounts of lead from the local environment as 

they grow and remodel. As lead isotopes do not fractionate as they move through the 

biogeosphere, the incorporation of these potentially geologically unique lead isotope 

compositions into mineral matrices provide isotopic compositions that are indicative of 

the geographical region resided in at the time of incorporation. Numerous studies have 

found that well preserved skeletal remains, especially teeth, are excellent archives for 

biogenic lead and have proven that lead isotope analysis of skeletal remains can be a 

useful tracer for sources of lead to which a population was exposed (Budd et al., 2004; 

Gulson et al., 1997; Kowal et al., 1991; Molleson et al., 1986; Montgomery et al., 2010, 

2005). 

The potential for using lead isotope ratios to discriminate between different cultural 

groups is demonstrated in Figure 2.5. Here, previously published lead isotope ratios 

from archaeological human samples are grouped by continent. It is evident that although 

each continent contains values that overlap with each other, the data points cluster in 

four distinct groups based on geographic location. The European samples show the 

tightest grouping, which is most likely due to the cultural focusing induced by the 

extensive mining, diverse use and reuse of lead throughout the Roman Empire and to 

some extent the Medieval period. These European values cluster around 206Pb/204Pb = 

18.44, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 38.40 which are congruent with the lead 

isotope ratios found in British lead ores. The samples from North America and South 

America plot much higher than the European samples, especially those from North 

America which exhibit the highest lead isotope ratios with averages of 206Pb/204Pb = 

19.3, 207Pb/204Pb = 15.70 and 208Pb/204Pb = 39.20, thereby making them easily 

distinguishable from the European, South American and Asian samples.  
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Although some of the South American samples overlap with the European field, the 

majority of the South American isotope ratios are higher than those from Europe and 

plot above 206Pb/204Pb = 18.60. The samples from Asia show the greatest degree of 

overlap with the other continents. However, when all of the lead isotope ratios are 

considered, the Asian samples can be distinguished on the basis of their 208Pb/204Pb 

isotope ratios. The average 208Pb/204Pb isotope ratio for the Asian sample was 38.48, 

which is higher than the average for the European and South American samples (38.40 

and 38.38 respectively) but considerably lower than the North American average of 

39.20. This highlights the importance of analysing all four lead isotopes when using 

lead as a source-tracer in mobility studies, as it is not always a single value that proves 

to be sufficiently discriminant but rather a combination of the isotope ratio possibilities. 

From this it is evident that the lead isotope ratios incorporated into archaeological 

human teeth and to a lesser extent bones (see section 2.4.4), can reflect the local 

environment of the individual and can be a useful discriminant in mobility studies. 

While it is clear that archaeological individuals from different regions of the world are 

relatively easily distinguishable from one-another, especially North Americans from 

Europeans, there is still a lack of comparable data for countries within the same 

continent. Therefore, the resolution at which mobility can be identified via lead isotope 

analysis has yet to be determined. 
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Figure 2.5 – Continental variation in lead isotope ratios from archaeological 

human remains (Source: Author). Data published by Europe:(Åberg et al., 1998; 

Budd et al., 2004, 2000; Millard et al., 2014; Montgomery et al., 2005; Montgomery et 

al., 2010; Shaw et al., 2016). South America: ( Turner et al., 2009). North America: 

(Bower et al., 2007). Asia: (Valentine et al., 2008). 

It is also important to consider lead concentrations in conjunction with lead isotope 

ratios as they can often inform the interpretation of results. Low lead concentrations are 

usually accompanied by variable lead isotope ratios, which represent the natural lead 

acquired through diet and therefore reflects geographical origins. This trend is typical of 

prehistoric populations before the advent of metallurgical technologies (Montgomery et 

al., 2010). Therefore, source-tracing applications of prehistoric human remains can 

utilise lead isotope ratios in the same way as strontium isotopes to ascertain geological 

origins. However, anthropogenic activities such as mining and smelting have resulted in 

widespread lead pollution that has altered the natural lead isotope background of the 

environment, and this change in both isotope ratio and concentration is reflected in 

historical teeth (Kamenov and Gulson, 2014). Thus, samples with high lead 
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concentrations consistently exhibit narrow lead isotope ranges centred round the isotope 

ratios of the dominant lead ore source utilised by the population. High lead 

concentrations are predominantly found in societies with the technology to exploit 

mineral ore sources (Carlson, 1996; Montgomery et al., 2005). As a result, lead isotope 

ratios in metallurgical societies become less affiliated with natural baseline levels 

characteristic of geological origin and more indicative of exposure to pollutants (i.e. 

access to lead and its products). This clustering of lead isotope ratios as a result of 

anthropogenic lead exposure has been termed ‘cultural focusing’ (Montgomery, 2002). 

2.4.3 Cultural focusing 

The term ‘cultural focusing’ refers to the homogenisation of lead isotope ratios within 

an archaeological population, and usually occurs in conjunction with elevated lead 

concentrations (Millard et al., 2014; Montgomery, 2002; Montgomery et al., 2005). As 

these homogenised isotope ratios tend to have ranges congruent with those from local 

lead ore bodies, elevated lead concentrations and their resultant homogenised isotope 

ratios are thought to be induced by anthropogenic environmental lead pollution. This 

‘cultural focusing’ alters the type of information that can be obtained from lead isotope 

analysis of skeletal remains. Shifting the lead isotope ratios in skeletal remains away 

from isotope ratios congruent with geographical provenance, towards isotope ratios 

much more indicative of a socio-cultural provenance (Carlson, 1996; Montgomery et al., 

2005). This means that the metallurgically induced influx of anthropogenic lead into the 

environment effectively severs the link between skeletal lead isotope ratios and 

geographic origin and replaces it with isotope ratios converging around the predominant 

ore sources utilised in a particular cultural sphere.  
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Despite the fact that cultural focusing potentially reduces the resolution of geographic 

variability of lead isotopes, these homogenised anthropogenic skeletal lead isotope 

ratios can still be effective in differentiating between cultural groups within skeletal 

populations. They are still capable of discriminating between individuals exposed to 

different sources of lead. Therefore, while the identification of movement within a 

specific country may not be possible, individuals exposed to foreign lead sources should 

stand out from those exposed to local lead, making migrants from other countries 

relatively easily identifiable in culturally mixed skeletal populations. The data published 

by Montgomery et al., (2010), and presented in Figure 2.6 best demonstrates this. As 

can be seen, when lead concentrations remain below 0.5 mg kg-1 a divergent spread of 

lead isotope ratios is exhibited. However, when lead concentrations rise above this 

divergent threshold (dotted line on the graph) isotope ratio begin to cluster around a 

narrow range, in this case 207Pb/206Pb isotope ratios of 0.845 to 0.849, which is in line 

with British lead ore isotope signatures. The outlier in this dataset (Spitalfields 4th 

century AD) exhibits a high lead concentration with isotope ratios inconsistent with 

British lead ore, suggesting that this individual had access to foreign sources of 

anthropogenic lead during childhood and therefore originates from somewhere outside 

of Britain. In fact, after comparison with the lead and strontium isotope ratios of three 

individuals from Rome, Montgomery et al. (2010) conclude that the Spitalfields outlier 

has isotope ratios consistent with a childhood origins in the Mediterranean.  
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Figure 2.6 – Data from archaeological human remains demonstrating cultural 

focusing of isotope ratios wit increased lead concentrations (Source: Montgomery 

et al., 2010) 

A more recent study by Millard et al., (2014) also found that increased lead 

concentrations resulted in a decreased spread of lead isotope ratios. Examining British 

post-medieval populations from London, Millard et al., (2014) found that the majority 

of individuals with high lead concentrations clustered within the expected lead isotope 

fields for British lead ores. However, this study determined the point at which human 

lead isotope ratios become dominated by anthropogenic contributions (culturally 

focused) to be 0.87 ppm, slightly higher than that suggested in the initial study by 

Montgomery et al., (2010). As yet, the current literature offers no explanations as to 

why different populations have different thresholds for the onset of cultural focused 

lead isotope ratios. Although, as environmental lead concentrations have shown to vary 

geographically (Reimann et al., 2012), it may simply be that the threshold for cultural 

focusing is also population/geographically specific. 
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2.4.4 Contamination from the burial environment 

As with all chemical analyses involving archaeological remains, the question of 

contamination from the burial environment is a major concern, especially in migration 

studies. The success of isotope analysis as a means of reconstructing residency and 

migration hinges upon the assumption that the analytically targeted elements represent 

those incorporated during life, not those acquired after death (Montgomery et al., 2000). 

The majority of archaeological remains are buried and therefore contact with possible 

contaminants is largely unavoidable. However, the extent to which diagenetic 

alterations impact upon chemical analyses can be controlled for by careful consideration 

of the sample material.  

Certain intrinsic features of bone, such as porosity, density and surface area render bone 

highly reactive with its surroundings, readily exchanging mineral and organic elements 

with its burial environment (Hedges et al., 1995; Nielsen-Marsh and Hedges, 2000). 

Tooth enamel on the other hand is almost completely composed of mineral, effectively 

fossilised before burial. Therefore, enamel is far more kinetically stable than bone or 

dentine. Its dense structure and low porosity leaves limited opportunities for mineral 

infiltration and ion exchange between the enamel and its burial environment 

(Montgomery et al., 2000; Neuman and Neuman, 1953). Therefore, enamel is 

considered relatively stable and resistant to the diagenetic structural and chemical 

changes common in other skeletal tissues (Budd et al., 2000; Hoppe et al., 2003; 

Montgomery et al., 2007). As such, tooth enamel offers the best sample medium for 

chemical analyses as it greatly reduces the risk of post-mortem contamination, giving 

the highest likelihood of obtaining in vivo isotope ratios incorporated into the tissues 

(Ericson, 1993; Montgomery, 2002; Montgomery et al., 2010). 
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2.4.5 Lead concentrations 

Lead concentrations in tooth enamel provide a measure of childhood exposure to 

environmental lead pollution, and can offer information beyond simply the extent of an 

individual’s lead burden. As briefly discussed in section 2.4.3, when combined with 

lead isotope ratios, lead concentration analysis can facilitate differentiation between 

geogenic and anthropogenic lead exposure. Being able to distinguish between geogenic 

and anthropogenic lead exposure in this way offers insights into the technological 

capabilities and/or technologies actively utilised by a particular population. It is likely 

that populations exhibiting predominantly geogenic lead isotope ratios do not use lead 

or lead products to the extent necessary for the acquisition of high, anthropogenic lead 

concentrations. This is touched upon in the works by Montgomery et al. (2010), who 

demonstrated that prehistoric populations with limited metallurgical technologies have 

the lowest mean lead concentrations while retaining their divergent geogenic lead 

isotope ratios. Yet with the introduction of large-scale lead use, human lead 

concentrations increase, producing anthropogenic lead isotope ratios in technologically 

advanced societies. While little work has been done to thoroughly explore the extent to 

which this ‘rule of thumb’ holds true, to date studies utilising lead isotopes have shown 

that human lead burdens below 1 ppm in conjunction with non-ore lead isotope ratios 

appear to represent geogenic lead exposure and values over this are considered 

anthropogenic (Millard et al., 2014; Montgomery et al., 2010; Shaw et al., 2016).  

Within polluted populations lead concentrations can also offer a means of 

differentiating between broad settlement types, such as rural or urban environments. 

The premise behind this is that rural environments are generally less polluted than urban 

environments, therefore individuals from rural settlements are likely to have had lower 
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lead exposure and as a result, lower lead burdens than their urban counterparts (Lepow 

et al., 1975). Bioarchaeological investigations exploring how lead exposure differed 

between rural and urban environments are scarce. However, studies that have assessed 

lead concentrations between different environments have found that people from urban 

environments tended to have higher lead conceetrations than people who lived in rural 

environments (Drasch, 1982; Millard et al., 2014). The same trend has been seen in 

Roman and pre-Roman societies, with individuals from Roman societies having higer 

lead concentrations than individuals from pre-Roman societies (Montgomery, 2002; 

Montgomey et al., 2010; Beherec et al., 2015). 

The toxic nature of lead also means that lead concentration analysis can be used to 

explore the effects of lead exposure on the health of people from past populations. 

However, because tooth enamel is the only skeletal material to provide reliable in vivo 

lead concentrations, research focused on lead poisoning is limited to studies on 

childhood health. As teeth mineralise during childhood, the lead concentrations 

obtained from tooth enamel pertain to that period in life. Therefore, to accurately assess 

how these concentrations impacted upon health they can only be used in conjunction 

with palaeopathological alterations on non-adult skeletal material as both datasets are 

most likely to overlap with the time of lead exposure.  

2.5 Summary 

Natural geographic variations in lead isotope ratios make them an ideal tool for 

investigating the geographic origins of people in the past. The availability of three 

isotope ratios rather than the single isotope ratio available in other commonly used 

isotope systems (e.g. strontium), allows greater scope for differentiation in migration 
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studies. Previous studies have demonstrated the potential for lead isotope ratios in 

bioarchaeological research and highlighted the need for contemporary comparative data 

for source identification. The paltry amount of published lead isotope data from 

archaeological human remains not only from the Roman period but from all time 

periods is a major limiting factor in the use of lead isotopes in human migration studies. 

Without datasets from archaeological populations from different countries there is no 

way to directly compare isotope ratios with human baselines in other countries. This 

forces the use of proxies such as artefacts or lead ores in their stead. While these have 

shown to be useful in the identification of approximate geographical origins of 

individuals with isotope ratios that do not conform to the expected isotope ratios of their 

interment region, their accuracy should be questioned, as the method does not account 

for the mixing of numerous lead sources. This is an inevitable component of human lead 

isotope ratios, especially in populations that exploited the use of the metal in all aspects 

of daily life. Therefore, human lead isotope ratios are not likely to reflect the isotope 

ratios of a single source such as local lead ore or artefacts of known provenance.  Thus, 

the first steps in advancing the efficacy of lead isotope ratios in Roman migration 

studies would be the compilation of human lead isotope ratio datasets for various 

regions of the Roman Empire. This is an objective that this study will contribute to by 

analysing the lead isotope ratios in Roman skeletal remains from four countries from 

different regions of the Roman Empire. 
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CHAPTER THREE 

Isotope Analysis of Roman Populations 

3.1 Introduction  

In order to explore how environmental lead pollution impacted upon the health of past 

populations, as well as how anthropogenically induced changes to environmental 

isotopic ratios influence how these ratios can be used in mobility research the study 

population is required to fulfil two criteria. Firstly, the population must have engaged in 

metallurgical activities to elicit such a change in their environment, or have inhabited a 

previously polluted environment. Secondly, the population would ideally have been 

prone to migratory events as to allow for any potential differences between the isotopic 

composition of an individual’s tooth enamel, which would reflect their former place of 

residence and the isotopic composition of the region in which they died. 

This chapter discusses migration in the Roman Empire, highlighting the extent of 

movement underway during this time, and touching upon the motivations for such 

large-scale mobility. The ubiquitous use of lead during the Roman period will also be 

explored, with focus on how lead was used and how this may have impacted upon 

health. In doing so this chapter sets out to demonstrate how the Romans, who were 

somewhat characterised by their proclivity for widespread migration and large-scale 

lead mining throughout the Empire, provide the perfect target population for this study. 
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3.2 People on the move 

The Roman Empire was a vast suzerainty with large territorial holdings in Europe, 

Western-Asia and Northern-Africa, a contiguous expanse encompassing the entire 

Mediterranean Sea (Garnsey and Saller, 2014). It was one of the largest empires in 

history, spanning approximately 5 million km2 (Taagepera, 1979), the limits of which 

are summarised rather poetically by historian Christopher Kelly: 

“The Empire stretched from Hadrian’s Wall in drizzle-soaked northern 

England to the sun-baked banks of the Euphrates in Syria; from the 

great Rhine-Danube river system, which snaked across the fertile, flat 

lands of Europe from the low country to the Black Sea, to the rich 

plains of the North African coast and the luxuriant gash of the Nile 

Valley in Egypt. The Empire completely circled the Mediterranean.” 

(Kelly, 2006, p. 1)  

The Roman Empire was renowned for the widespread movement of people both within 

and between the varied geographic and cultural spheres it controlled (Killgrove, 2010). 

The movement of people both voluntary and forced via migration, military invasions, 

slavery or trade was a defining characteristic of the Roman Empire (Braudel, 1995; 

Horden and Purcell, 2000; Scheidel, 2004) and integral to its development and 

expansion (Birley, 1979; Hin, 2013; Scheidel, 2001a).  

The relatively peaceful period during the period of the Roman Empire known as the Pax 

Romana, facilitated the movement of people across large expanses of the Empire with 

comparative ease (Moatti, 2006). People with the financial means to move could do so 

freely as a result of the contiguous geopolitical expanse and the well-established road 

and seafaring infrastructures the Empire provided (Killgrove, 2010, p. 27). 

Documentary evidence demonstrates that slaves, soldiers and civilians were migrating 
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from all regions of the Empire, with examples of migrants from France, Germany, 

Hungary, Spain, Syria and Egypt among others, commemorated on funerary 

monuments within Rome (Noy, 2000; Stark, 2017).  It was not only those with the 

financial means to travel who moved freely throughout the Empire, migration is known 

to have been a part of all social strata with people of lower social status also migrating 

in search of better lives, (Sweetman, 2011; Tacoma, 2016, 2014; Woolf, 2013). The 

movement of people within this culturally, ethnically and geographically diverse 

population has been broadly separated into two categories, voluntary migration (e.g. 

free citizens) and compulsory/forced migration (e.g. military service or slavery).  

3.2.1 Voluntary migration 

Voluntary migration refers to people who have made a conscious decision to move, 

either short distances within their home province or long distances to a different region 

of the Empire. Although most likely biased towards wealthy, literate individuals from 

higher social classes, epigraphical evidence suggests that motivations for voluntary 

migration were overwhelmingly driven by either push or pull factors (Noy, 2000). Push 

factors relate to the region of origin and usually compel people to leave their homes in 

search of a better life in a different region of the Empire, a problem pushing them to 

move. Pull factors on the other hand are factors connected to the destination, something 

that entices an individual to make it their new home; a benefit pulling them to move 

(Killgrove, 2010; Noy, 2000; Stark, 2017). The motivations behind voluntary migration 

during the Roman period are poorly recorded, but it is unlikely that the decision to 

move was made on account of a singular reason. Undoubtedly a multitude of reasons 

played a part in compelling a person or family to uproot their lives and start afresh in a 

new region of the Empire of their own volition (Noy, 2000). 
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3.2.2 Compulsory migration 

Compulsory migration refers to people who were forced to move, with no choice as to 

when or where they were sent. It is widely accepted that compulsory migration 

accounted for a large proportion of the movement of people within the Roman Empire, 

with members of the Roman army, slaves and their families relocated involuntarily 

through expulsion from their conquered homeland, enslavement or military deployment 

(Jongman, 2003; Scheidel, 2005; Tacoma, 2014). Slaves were integral to both the social 

and economic structure of the Empire, performing a diverse range of jobs encompassing 

everything from domestic services to highly skilled professions such as accountant or 

physician (Bradley, 1994, p. 2; Scheidel, 2010a). It has been estimated that from 50 BC 

to AD 150 the Roman Empire required over 500,000 new slaves every year (Bradley, 

1994, p. 32). The sheer volume of slaves existing within its provinces has led to the 

Empire being termed a slave society or slave economy (Scheidel, 2010a). As Roman 

slaves were often captives of war they represent a population with vastly diverse origins. 

Historical evidence at Rome for example documents that the Parthian war supplied 

approximately 100,000 slaves to Rome from Iran, while the Punic wars provided the 

Empire’s capital with upwards of 75,000 slaves from North Africa (Bradley, 1994, pp. 

33–40). Not all slaves were captive prisoners of war, slaves were also acquired through 

piracy in the Mediterranean or traded or bought from other slave societies such as Sub-

Saharan Africa or Egypt (Bradley, 1994, pp. 33–39). Infants were also often enslaved, 

either by being born to a slave mother (verna) in which case the infant belonged to the 

mothers’ master, or infants turned out through exposure could be taken and raised in a 

life of slavery. However, the number of slaves acquired through exposure diminished 

during the 4th century AD after the sale of infants was authorised by Constantine (Harris, 

1994).  
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Soldiers and their families also make up a large proportion of people considered as 

compulsory migrants. Recruitment of Roman military forces occasionally occurred en 

masse from a particular region of the Empire where soldiers would find themselves 

serving with people of a similar cultural background (Haynes, 1999). However, a 

multitude of conscripts and volunteers were often taken from the nearest convenient 

source, both within and beyond the Empires frontiers (James, 1999). As such, the ranks 

of the Roman army were rarely culturally homogenous. Evidence for the cosmopolitan 

nature of the Roman army is demonstrated on various military monuments such as the 

Tropaeum Traiani in Civitas Tropaensium, Dacia (Adamclisi, Romania) and the Birrens 

altars in Scotland, which attest to the diverse ethnic groups within individual regiments 

(Haynes, 1999; “RIB Online,” 2014). The Roman army created large groups of highly 

mobile, multicultural people, and although military forces were largely concentrated at 

frontiers or regions of the Empire within which peace was not always guaranteed, they 

could be sent anywhere within the Empire at anytime (Noy, 2000). 

3.3 Finding the foreigners 

In the 1990s David Anthony (1990) pointed out the value of mobility studies in fully 

understanding the movement of people in the past and urged archaeologists to utilise all 

available sources of evidence (material culture, historical records, skeletal remains etc.) 

to reconstruct patterns of human mobility. In the decades that followed, much of the 

work on migration had been predominantly theoretical, focusing on the large-scale 

movements of people from either prehistoric or post-Roman periods (Anthony, 1990; 

Burmeister et al., 2000; Champion, 1990; Härke, 1998). Advancements in 

bioarchaeological and biogeoarchaeological methods have facilitated a robust scientific 

approach that has rejuvenated interest in mobility studies (Bentley, 2006; Eckardt, 
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2010). Through the analysis of the physical, chemical and molecular features of skeletal 

remains, archaeologists can now provide empirical evidence for migration rather than 

simply offering theoretical arguments for the movements of people in the past (van 

Dommelen, 2014).  

The analysis of the funerary practices (material culture, monuments, epitaphs, grave 

type, skeletal remains etc.) of archaeological civilisations is the most accessible way of 

assessing migration and mobility within past populations. Historical documents have 

recorded many migratory events in tomes such as Bede’s Ecclesiastical History of the 

English People and the Anglo-Saxon Chronicles (Colgrave and Mynors, 1993; Points, 

2013). These types of sources are often written decades if not centuries after the initial 

event and are therefore not always entirely accurate. As a result of this, current 

archaeological studies tend to focus more on where and how individuals were buried, 

piecing together biographical information gleaned from the evidence of funerary 

practices surviving in the archaeological record (Pearce, 2000). 

3.3.1 Burial rites 

Many archaeological studies on migration within the Roman world have attempted to 

differentiate between migrant new comers and the native population from a given site 

by interpreting changes in local burial practices as manifestations of Romanisation. 

However, such deductions from these so-called ‘intrusive’ burial practices have been 

criticised for assuming a direct link between burial practice and individual ethnicity 

(Halsall, 2011, 2010; Willems, 1978). Burial rituals throughout the Roman Empire have 

been shown to vary spatially and temporally at both local and provincial levels (Pearce, 

2010, 2000). For example, during the early Roman period furnished cremations were 

the predominant rite in western provinces, while inhumation dominated in the east and 
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as the Empire transitioned into the late Roman period the frequency in the deposition of 

grave goods decreased significantly (Pearce, 2010, 2000). While there is clearly value in 

considering this type of evidence when assessing human mobility in order to 

successfully characterise a burial as indicative of a migrant a secure understanding of 

the predominant preceding burial rite is crucial, and as the evidence for late Iron Age 

funerary practices is sporadic (e.g. plentiful in Moselle, yet scarce in Bavaria) current 

knowledge of the ‘indigenous’ burial rites for much of the Empire is limited (Fasold, 

2000; Fitzpatrick, 2000).  

Additionally, recent diaspora studies have highlighted that an individuals’ culture is not 

static, rather it has an intrinsic fluidity, and can be altered by interactions with other 

cultures. This creolisation results in a ‘blending’ of cultures creating societies with a 

new culture distinct from both the host population and their original homeland, where 

identities are formed around commonalities such as profession or status rather than 

ethnicity (Eckardt, 2010). Essentially, the diasporic nature of the Roman Empire has 

blurred the lines between what has traditionally been seen in the archaeological record 

as indicative of foreign in origin and what is actually an expression of a complex 

integrated identity. Therefore, areas of study that exploit more direct links between what 

survives in the archaeological record and an individual’s geographic origin are coming 

to the forefront in mobility studies (Fitzhugh, et al., 2019).  

3.3.2 Isotope analyses 

For decades non-destructive methods of osteological analysis have been the standard 

way of identifying groups of affiliated individuals, working on the premise that 

populations displaying the most similarity are the most closely related (White and 

Folkens, 2005). However, with advancements in analytical techniques a new wave of 
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bioarchaeological studies of migration are harnessing the discriminatory powers of 

stable and radiogenic isotope systems extracted from archaeological teeth and bones to 

answer questions about geographic origins at an individual and population level.  It has 

been well established that the isotopic composition of archaeological teeth and bone 

reflects the isotopic composition of the food and drink consumed at the time of new 

bone formation, which in turn reflect the region in which they were sourced 

(Katzenberg, 2008; Kohn, 1999; Richards et al., 2006; Van der Merwe and Vogel, 

1978). Therefore the isotopic characteristics of an individual represent a weighted 

average of the isotope compositions they have ingested from their local environment. 

Advancements in stable and radiogenic isotope analysis methods have exploited this 

concept and taken it beyond the reconstruction of palaeo-diets, significantly 

transforming the way in which mobility studies can establish patterns of migration in 

the past.  

To date, the isotopic systems of several elements, most notably carbon, nitrogen, 

oxygen, sulphur, strontium and lead, have been developed as possible indicators of 

movement in past populations (Lightfoot and O’Connell, 2016; Montgomery et al., 

2010; Nehlich, 2015; Slovak and Paytan, 2012). Mobility studies using these isotope 

systems are reliant upon regionally distinct isotopic compositions that allow 

differentiations to be made between childhoods spent in local or foreign locations 

(Katzenberg, 2008). One of the major constraints of using isotope systems in mobility 

studies is no one region produces a unique signature. Often a number of geographical 

areas with similar geology and climate overlap in their isotopic characteristics, 

rendering the inference of geographical origins difficult. As such, isotope characteristics 

can be more suited to excluding regions of origin, rather than definitively assigning a 
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specific geographical origin (Bruun, 2010; Knudson and Price, 2007; Prowse et al., 

2007). 

3.3.2.1 Stable light isotope systems 

Stable light isotope analysis of carbon (δ13C) and nitrogen (δ15N) is a well-established 

technique for the reconstruction of palaeo-diets using archaeological teeth and bones. 

Within these two tissue types, collagen is the predominant protein present and provides 

a rich source of averaged δ13C and δ15N values. The composition of these δ13C and δ15N 

values reflect the isotopic composition of the foods consumed during the tissues 

formation (Kohn, 1999; Richards et al., 2006; Schoeninger et al., 1983; Van der Merwe 

and Vogel, 1978). This is due to the metabolism and reuse of dietary proteins acquired 

from the plant and animal products consumed during life in collagen synthesis. 

Therefore, once metabolic fractionation has been accounted for, these carbon and 

nitrogen isotope ratios can be used to garner insights into not only the types and 

quantities of food resources utilised by a population, but also the socioeconomic and 

cultural influences surrounding the dietary practices of groups as well as individuals 

(Dietler, 2007). 

The variations that arise in δ13C values result from differences in ecosystems (marine vs. 

terrestrial) and the photosynthetic pathways (C3 and C4) used by plants in their 

manufacture of carbohydrates. As such, variations in carbon values allows 

differentiation between the relative contribution of C3 or C4 plants and the animal 

products based on these plants, to diet (Ambrose et al., 1997; Beaumont et al., 2013; 

Camin et al., 2008). In temperate regions, such as Britain, plants tend to use the C3 

pathway. Therefore, isotopic evidence of dietary proteins based on C4 plants (e.g. maize 

or millet) not native to Britain, would suggest a foreign influence on diet within a 
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British population. Variability in nitrogen isotope values reflects the balance between 

biological nitrogen fixation, biosphere recycling and nitrogen release (Robinson, 2001). 

This variability facilitates the visualisation of terrestrial and marine food source input 

into diet as marine-based food sources tend to be more enriched in 15N than land based 

food sources (Liu and Kaplan, 1989). In addition to this, nitrogen levels also vary with 

trophic level, as a result of metabolic fractionation, creating a 2–6 ‰ enrichment with 

every trophic level shift (Schoeninger and DeNiro, 1984). This shift is most noticeable 

in marine food consumers as aquatic food sources have high δ15N values owing to the 

relatively long food chains compared to those observed in terrestrial food sources 

(Tykot, 2004). As such, combining the analysis of δ13C and δ15N values can facilitate 

the interpretation of plant, animal and marine protein contributions to palaeo-diets, 

allowing for distinctions to be made between broad categories of food groups, such as 

herbivore vs. carnivore or marine vs. terrestrial input and any potentially non-local 

influence on diet (Ambrose and Katzenberg, 2006), and published studies of Roman 

populations have demonstrated this (Chenery et al., 2011; Müldner et al., 2011; Pollard 

et al., 2011a) 

Oxygen incorporated into hydroxyapatite is predominantly derived from ingested fluids, 

the isotopic composition of which fluctuates due to climatic and environmental 

variables such as temperature, rainfall, altitude and latitude (Darling and Talbot, 2003). 

Therefore, oxygen isotopes (δ18O) measured in human tissues are an indirect reflection 

of the local meteoric water composition (Kohn, 1996). As with carbon and nitrogen, 

oxygen also undergoes metabolic fractionation once ingested. Therefore, regression 

formulae must be applied to allow comparison with modern drinking water values. 

These calculated δ18Odw values reflect the composition of the local meteoric water 

(Kohn, 1996). Thus, analysis of δ18O from tooth enamel can provide information 
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pertaining to childhood origin and palaeo-climate ( Chenery et al., 2012; Fricke et al., 

1995). However, δ18O values can be influenced by culturally mediated behaviour. If a 

significant proportion of the individual’s drinking water was processed before ingestion 

(boiled, brewed etc.) a higher δ18O value than expected for the geographical region in 

question would be obtained (Brettell et al., 2012).  One of the first studies to apply 

oxygen isotopes in human mobility studies was carried out on archaeological 

populations in Mexico (White et al., 1998). Following this, the use of oxygen isotope 

analysis became popular means of assessing geographic origins. It has been widely used 

in archaeological populations from all periods and diverse geographical locations (Budd 

et al., 2003; Buzon and Bowen, 2010; Dupras and Schwarcz, 2001a; Emery et al., 2017; 

Hoogewerff et al., 2001; Keenleyside et al., 2011; Mitchell and Millard, 2009; Pearson 

et al., 2016; Prowse et al., 2007; Schroeder et al., 2009; Turner et al., 2009).  

3.3.2.2 Radiogenic isotope systems  

A more direct link between migrant and geographic origin can be obtained through the 

analysis of strontium (Bentley, 2006; Montgomery, 2010; Montgomery et al., 2007; 

Price et al., 2002, 1994) and lead (Carlson, 1996; Gulson et al., 1997; Montgomery, 

2002; Montgomery et al., 2010). Strontium has four stable isotopes, 88Sr, 87Sr, 86Sr and 

84Sr, all of which occur naturally in a large variety of rocks and mineral deposits 

(Dickin, 2005; Faure, 1986; Nakano, 2016). The amount of 88Sr, 86Sr and 84Sr within a 

geological deposit remains constant from the time of its formation. However, as 87Sr is 

the daughter isotope of rubidium (87Rb) the abundance of 87Sr increases over time 

(Bentley, 2006; Capo et al., 1998; Faure, 1986). Therefore, the strontium isotope ratio 

obtained from any given geological deposit will vary depending on the age of the 

deposit and the relative abundance of Rb/Sr it contained at the time of its formation 
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(Bentley, 2006). For example old, silica-rich granites provide higher 87Sr/86Sr isotope 

ratios than younger, low Rb/Sr basalts (Faure and Powell, 2012; Rogers and 

Hawkesworth, 1989). As different geographical regions are composed of varying types 

of rocks of differing ages, each geographical region produces elemental isotope ratios 

characteristic of its underlying geology. This in effect creates an isotopic fingerprint that 

allows strontium to be used as source tracer in mobility studies.  

Erosion of rocks and minerals facilitates the movement of strontium into the 

surrounding soils where they can be incorporated into local water systems, food chains 

and ultimately human skeletal tissues. Assuming that the majority of a populations food 

and drink is sourced locally, the strontium isotope composition in human skeletal 

material should then reflect the bioavailable strontium isotopes in their region of origin 

(Ericson, 1985; Price et al., 1994b; Sealy et al., 1991; Sealy et al., 1995). The first 

applications of strontium isotope analysis to assess human childhood origins was 

carried out by Ericson (1985, 1989) and subsequently by Sealy (1989) on prehistoric 

Californian and South African populations respectively to identify individuals with 

coastal versus inland childhood origins respectively. This work was subsequently built 

upon with a number of studies investigating migration within prehistoric populations in 

both North and South America (Ezzo et al., 1997; Price et al., 1994b, 2000), Britain 

(Montgomery et al. 2000) and Germany (Grupe et al., 1997; Price et al., 1998, 1994a; 

Schweissing and Grupe, 2000). This extensive body of work has affirmed that strontium 

isotope analysis is an effective tool for investigating human migration within 

archaeological populations, especially when used in conjunction with contextual 

information. The advancements made in strontium isotope analysis by Price et al., 

(2002) and Montgomery (2002) has led to its continued use in a large number of 

mobility studies ranging from pre-Hispanic populations in the Andes (Knudson et 
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al. 2005, 2004), and Norse settlements in Scotland (Montgomery et al. 2003) to 

Viking Iceland (Price and Gestsdóttir, 2006) and various Mediterranean settlements 

(Nafplioti 2008, 2012; Haverkort et al. 2008; Lê 2006). The efficacy of strontium 

isotope analysis alongside contextual information has led to its use as one of the 

primary methods to explore human mobility in archaeological studies (Knudson and 

Price, 2007b, p. 25).  

As with strontium, lead isotope ratios also vary with respect to regional geology, and 

are incorporated into human tissues via diet in preindustrial societies. However, 

populations that exploited lead, such as the Romans, tend to have anthropogenic lead 

isotope ratios that reflect the ore sources being utilised in their cultural sphere 

(Montgomery 2002; Montgomery et al., 2005). As discussed in chapter 2, 

anthropogenic lead exposure tends to be accompanied by a homogenisation of a given 

societies lead isotope ratios. Therefore, any discordant isotope ratios standout from what 

would be considered the norm for the population, allowing for relatively easy 

identification of migrants in polluted populations. As such, lead isotope ratios in metal-

using societies are well suited for exploring questions of long-distance migration, 

whereas the efficicy of strontium isotope ratios entirely depends upon local geology, but 

can be especially useful when assessing short-distance migration in geologically 

heterogeneous area. Despite their usefulness in identifying migrants in culturally mixed 

skeletal populations (Montgomery et al., 2005, 2010; Montgomery, 2002; Shaw 2016), 

lead isotopes have not been widely used in archaeological mobility studies. 

3.3.2.3 Multi-isotope approach 

The progression of isotope analyses in migration studies has led to an emphasis on 

employing multiple isotope systems in attempts to obtain a higher resolution in the 
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possible geographical origins of the individuals analysed. Over the past decade the 

growing number of studies applying a multi-isotope approach has demonstrated its 

improved ability for identify non-locals in archaeological populations (Jay et al., 2013; 

Laffoon et al., 2017; Lamb et al., 2012; Müldner et al., 2011, 2009; Oelze et al., 2012; 

Sehrawat and Kaur, 2017). Typically these studies have used various combinations of 

δ13C, δ15N, δ18O and 87Sr/86Sr analyses. However, the incorporation of lead isotope 

analysis in mobility studies is becoming increasingly popular (Montgomery, 2002; 

Montgomery et al., 2010, 2005, 2000; Shaw et al., 2016). What all of these studies have 

demonstrated is that where one isotope system tends to identify multiple geographic 

areas of possible origin, the utilisation of additional isotopes systems can greatly narrow 

down the possibilities. This is because each isotope system reflects a particular variable, 

whether that be dietary, climatic or geological, and the combined geographical 

differences in these variables can facilitate greater regional discrimination (Knudson 

and Price, 2007). While there are many examples of where a multi-isotope approach has 

been advantageous in refining the geographic origins of archaeological populations 

(White et al., 2007), it does not provide a perfect means of alleviating the difficulties in 

isolating geographic origins. Some studies have shown that despite employing a 

multitude of isotope systems the geographic origins of some individuals can still remain 

ambiguous, especially where migration was taking place between regions with similar 

environments and cultural practices (Knudson and Price, 2007). 

3.3.3 Isotopic evidence for Roman migration 

Isotope studies have provided strong evidence for high levels of migration within the 

Roman Empire (Millett et al., 2016, p. 209; Prowse et al., 2007; Schweissing and Grupe, 

2003). The introduction of isotopic analyses to this area of research has broadened the 
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scope of mobility studies, and facilitated the answering of more nuanced questions. No 

longer limited by the innate biases associated with historical texts and epigraphical 

evidence, which favour society’s elite, a more inclusive understanding of migration 

during this period can be obtained. A good example of this is the age-related migration 

study by Prowse et al (2007), demonstrating through the use of oxygen isotopes that 

entire families were on the move rather than the assumed theory that migration was 

predominantly undertaken by adult males.  

A large proportion of multi-isotope studies exploring migration during the Roman 

period have been carried out on Romano-British populations (Chenery et al., 2010, 

2011; Eckardt et al., 2009; Evans et al., 2006; Hughes et al., 2014; Leach et al., 2010, 

2009; Montgomery et al., 2011; Müldner et al., 2011; Pollard et al., 2011). The majority 

of these studies have been carried out at major urban or military settlements, such as 

York and London, and many of them have identified migrants with diverse and far-

reaching origins, demonstrating the diverse nature of the Roman Empire. Leach et al., 

(2009) used FORDISC alongside strontium and oxygen isotope analysis to verify the 

previous craniometric identification of North African and Middle Eastern individuals at 

Trentholme Drive and The Railway, York (Warwick, 1968). This multi-analytical 

technique was unable to identify any Middle Eastern origins but did find craniometric 

evidence for individuals consistent with North African origins. From their isotope data 

Leach et al., (2009) also identified four outliers with isotope characteristics indicative of 

origins in North Africa, Western Europe or the Mediterranean, but could not narrow 

down the geographic origins any further. A more recent study, building on earlier work 

at Driffield Terrace (Montgomery et al., 2011, 2010; Müldner et al., 2011), combining 

genome and multi-isotope data provided compelling evidence for an individual buried at 

Driffield Terrace, York (3DRIF-26) with childhood origins in the Middle East 
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(Martiniano et al., 2016). A multi-isotope study into population diversity of a Roman 

Gloucester population usitilising δ13C, δ15N, δ18O and 87Sr/86Sr was carried out by 

Chenery et al. (2010). The authors found the carbon, nitrogen and strontium results to 

be inconclusive with regards to identifying possible migrants. However, the oxygen 

values obtained from the population indicated that at least six individuals were non-

locals with possible origins in regions of the empire with a warmer climate than Britain 

(Chenery et al., 2010). Redfern et al., (2016) conducted a study on 22 individuals from 

Lant Street, London to investigate the geographic origins of the group using 

macromorphoscopics, carbon, nitrogen and oxygen isotopes. From this small population 

skeletal morphometrics identified four individuals with possible African ancestry and 

two with possible origins in Asia, while the isotope results suggest a further five 

individuals with origins within the circum-Mediterranean (Redfern et al., 2016). The 

authors conclude that their study adds to the growing wealth of isotopic evidence for 

Roman migration but that the addition of strontium and lead isotopes would help refine 

the identification of places of origin and strengthen their conclusions. Of course, Britain 

was not the only region of the Empire home to a diverse, multi-cultural population. 

Multi-isotope studies have also identified non-locals within Roman populations in Italy 

(Killgrove, 2013; Killgrove and Montgomery, 2016; Montgomery et al., 2010; Prowse 

et al., 2007, 2004), Egypt (Dupras and Schwarcz, 2001) and Bavaria (Schweissing and 

Grupe, 2003).  

What is clear from these examples of Roman migration studies is that the majority of 

them use the conventional combination of oxygen and strontium analyses to identify 

possible migrants. Very few studies use lead as a discriminant despite its potential for 

refining regions of geographic origin. Those that have included lead in their 

interpretations have found it useful in further constraining possible places of origin 
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(Montgomery et al., 2010; Shaw et al., 2016). The first application of lead isotopes to 

answer question of Roman migration was carried out by Molleson et al., (1986) on bone 

samples from individuals from Poundbury Camp, Dorset. From the four individuals 

analysed a child was identified as a possible non-local with lead isotope ratios 

inconsistent with British lead ore, from which it was concluded that the child was a 

migrant to England from the Laurion region of Greece (Molleson et al., 1986). However, 

Montgomery (2002), in the first lead isotope study on enamel from Roman-period 

individuals, points out that this ‘Greek’ isotope ratio actually sits on a mixing line 

between the local Cretaceous chalk in Dorset and English lead ore. As such it is likely 

that the highly porous nature of the non-adult bones facilitated diagenetic ion 

incorporation directly from the burial environment that resulted in a natural geological 

isotope ratio rather than one deriving from anthropogenic exposure to English ore lead 

(Montgomery, 2002). 

Tooth enamel has shown to be largely resistant to diagenetic alteration and has therefore 

been the target sample material for more recent lead isotope studies. One such study by 

Shaw et al., (2016), analysed strontium and lead isotope ratios to assess geographic 

origins in a Roman London population. This study identified three non-locals, one child 

with possible origins in the Rhine Valley and two adults with isotope characteristics 

consistent with Mediterranean origins. Shaw et al., (2016) conclude that lead isotopes 

were valuable in terms of refining potential areas of childhood residency and 

significantly aided in the interpretation of geographic origins where homogenous 

strontium isotope ratios was inconclusive. Another example of the efficacy of lead 

isotopes is the study of an elaborate lead coffin burial from Spitalfields, London 

(Montgomery et al., 2010). Again, the strontium isotope result was relatively 

undiagnostic due to the widespread occurrence of the Mesozoic terrains with which the 
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isotope ratio is associated. However, the lead isotopes obtained from the individual fell 

within the field of silver dienarii from Roman mints as well as contemporaneous 

individuals from Rome and suggests that the female originated from Italy, possibly even 

Rome (Montgomery et al., 2010).  

3.4 Lead as a commodity 

Despite there being evidence for the use of lead in the form of lead glazed pottery and 

lead figurines from as early as 4000 BC (Rich, 2014, p. 4), it is the Romans over 3000 

years later that come to the forefront of any discussions pertaining to the ancient 

exploitation of the metal. This is likely due to the magnitude of lead mining underway 

during this period. Unlike during earlier periods, the Romans engaged in large-scale 

lead mining for the extraction of the metal in its own right, rather than acquiring it as a 

by-product from the mining of more precious metals such as silver (Bayley, 1992; 

Tylecote, 1992).  

Lead was used heavily in the municipal water systems throughout the Roman Empire. 

Water storage and distribution systems such as cisterns and aqueducts were lined with 

vast numbers of lead sheets. For example, it is reported that 12 tonnes of lead was used 

in the construction of just one of the pumps at an aqueduct in Lyons (Waldron et al., 

1979). Lead pipes and lead seals were also extensively used in plumbing systems 

distributing water to a range of buildings, including public baths, fountains, stadiums, 

theatres, temples, and private housing (Ortloff and Crouch, 2001). Drinking water was 

not the only potential source of lead contamination for Romans, tableware and 

cookware also contained a high proportion of lead (Hornborg et al., 2007, p. 37). Pewter, 

a lead and tin alloy, was often used to make dining and kitchen utensils (Needleman and 

Needleman, 1985; Waldron, 1973). It was also popular to line pots and pans made of 
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bronze or copper with lead to prevent food taking on an undesirable metallic taste from 

the cookware (Retief and Cilliers, 2006). 

Besides its use in Roman water systems, the lead content of wine is possibly one of the 

most well documented ways in which the Romans utilised lead. Wine was often 

sweetened with sapa, defrutum or caroenum, which were preservative syrups made by 

boiling down grape must in lead-lined kettles (Eisinger, 1982). Wine was not the only 

consumable regularly tainted with the toxic metal, sugar of lead (lead acetate) was a 

popular additive in many recipes to add sweetness to the dishes. Translations of the only 

surviving recipe book from the period demonstrate how commonplace sweetening 

foodstuffs with lead was, with one fifth of Apicius’ 450 recipes calling for the inclusion 

of sugar of lead (Vehling, 2012).  

The Romans also made use of lead in cosmetics and medicines. Lead compounds such 

as white lead (lead carbonate) and red lead (lead tetraoxide) were commonly used in 

face powders to lighten the skin and as rouge respectively. Kohl, made from finely 

ground galena (lead sulphide), was also a popular eye makeup during the period 

(Bergman, 2017; Needleman and Needleman, 1985; Retief and Cilliers, 2006). With 

regards to medicines, there is documentary evidence describing the use of white lead in 

salves and eye ointments (Needleman and Needleman, 1985; Westhrop, 2011) and the 

inclusion of yellow lead (lead oxide) as an ingredient in many topical treatments for 

dermatological diseases and anti–wrinkle creams (Bergman, 2017; Gilfillan, 1965; 

Retief and Cilliers, 2006). White, yellow and red lead were also used to make pigments 

and paints (Gooch, 2014, p. 15). Finally, children’s toys such as dolls, figurines and 

crepundia (necklaces incorporating rattles or trinkets designed to keep children quiet, 

especially during teething) were often made from pewter or lead (Gilfillan, 1965, p. 58; 
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Roberts, 2009, p. 49). Hand to mouth activity is a common route of lead acquisition, 

especially in children (Baghurst et al., 1992; Bellinger et al., 1986; Bornschein et al., 

1985; Freeman et al., 2001; Lanphear et al., 1996; Muller et al., 2018). Therefore, the 

use of lead in toys, especially those made purposefully for teething infants who are the 

most susceptible to lead poisoning was a particularly hazardous use of the metal. While 

lead was by no means limited to these uses, the above examples demonstrate the 

multifarious ways in which Roman individuals of all ages could come into contact with 

lead in a manner that would have resulted in bioaccumulation of the toxic metal. 

3.5 Unwittingly poisoned 

As outlined above (section 3.4), the Romans used lead for a multitude of social and 

industrial practices. Consequently, the Romans were the first to significantly contribute 

to widespread environmental lead pollution and as a result also unintentionally 

increased human lead burdens (Montgomery, 2002; Montgomery et al., 2010; Settle and 

Patterson, 1980). It is this previously unprecedented accessibility to the metal in all 

social strata that makes the idea of widespread lead poisoning throughout the Empire a 

popular topic of debate. Scholars have argued both for and against lead playing a 

significant role in the fall of the Roman Empire (Cilliers and Retief, 2014; Gilfillan, 

1965; Nriagu, 1983b; Retief and Cilliers, 2006; Scarborough, 1984). A more recent 

approach to this issue does not set out to prove or disprove the role of lead in the 

downfall of Rome, but rather attempts to quantify the extent of lead exposure in Roman 

provinces and assess the impact it may have had on health within these regions (Delile 

et al., 2014; Le Roux et al., 2005; Mackie et al., 1975; Molleson et al., 1986; Véron et 

al., 2006; Waldron et al., 1976; Whittaker and Stack, 1984).  
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The preference for making wine in lead vessels is well documented, with Roman writers 

such as Pliny the Elder, Columella and Cato all advocating for its use (Columella, 1989; 

Eisinger, 1982; Mould, 1996; Waldron, 1973). Putting these ancient methods into 

practice, a study by Hofmann (1883) found that boiling grape must in lead lined kettles 

produced a sapa with a lead concentration of 237 μg/L. A further study in which 

Hofmann (1918, p. 638) followed the preparation instructions for two types of wine and 

grape must by the Roman writer Columella, produced liquids that contained between 

390 – 788 μg/L of lead (Mould, 1996, p. 67). From these results it is clear that the 

Roman methods for fermenting, sweetening and preserving wines created products 

containing harmful concentrations of lead. Boeckx (1986) has estimated that drinking 

wine prepared in this way could have led to the average Roman ingesting between 35 – 

320 μg/Pb per day, and members of the aristocracy ingesting as much as 160 – 1520 

μg/Pb per day. This toxic preparation technique seems to have been the norm as Pliny 

the Elder wrote that wine contained lead more often than not (Westhrop, 2011). Adults 

were not the only people effected by the lead in wine, there is documentary evidence 

that children were also consuming the beverage (Laes, 2011, p. 81). The physician 

Soranus advocated for the use of breadcrumbs soaked in wine as a weaning food 

(Soranus: Translated by Temkin, 1956), and the wirings of Galen, Aristotle and 

Hippocrates suggest that allowing children to drink wine was commonplace (Garnsey, 

1999, p. 107; Laes, 2011, p. 81). As it was commonly consumed daily and accessible to 

everyone, wine is likely to have been a major route of lead exposure throughout the 

Empire, especially if the concentrations above are to be believed. This provides 

compelling evidence for the possibility that varying degrees of lead poisoning were 

being suffered throughout the Empire, especially when considering that wine was not 

the only route of exposure. 
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The extensive use of lead pipes in the Roman Empire is often suggested as a significant 

source of lead exposure throughout the period (Gilfillan, 1990; Hodge, 1981; Nriagu, 

1983b; Retief and Cilliers, 2006). It appears that the Romans were also aware of the 

hazards of its use in water systems. Vitruvius, a prominent Roman architect and 

engineer was critical of the use of lead in water systems, and explicitly warned against 

its use (Eisinger, 1982; Hodge, 1981). Instead he advocated for the use of clay or 

terracotta pipes to distribute water (Eisinger, 1982; Hodge, 1981).  

‘Water is much more wholesome from earthenware than from lead 

pipes. For it seems to be made injurious by lead because ceruse is 

produced by it; and this is said to be harmful to the human body … 

Therefore, it seems that water should not be brought in lead pipes if we 

desire to have it wholesome.’ 

(Vitruvius in Hodge, 1981) 

Despite these warnings lead piping was used to distribute water over long distances, 

from aqueducts and castellum aquae into people’s homes and other municipal buildings 

(Waldron, 1973). Kobert (1909) reasoned that evidence of poisoning from 18th-century 

lead pipes, which ran from inside the home to the main cast iron pipes in the street was 

proof enough that Romans using lead piping over much longer distances would have 

also suffered its ill effects. Aside from Koberts (1909) bold declaration, there is little 

other research that explicitly states that lead pipes caused widespread lead poisoning. 

Rather it appears that until recently it was simply accepted that lead poisoning was 

widespread and that drinking water could be attributable to the cause (Gilfillan, 1990; 

Waldron, 1973).   

A more recent study employing lead isotope analysis attempts to quantify the level of 

lead exposure from Roman water systems. A study of sediment core samples from the 



 58 

Tiber River and Trajanic Harbour by Delile et al., (2014) suggests that drinking water 

distributed using Roman leaded water systems would have contained up to 100 times 

more lead than water sourced from local springs. Even lead seals on clay and terracotta 

pipes have been shown to release between 210 – 390 μg/L of lead into the water passing 

through them (Cosgrove et al., 1989). Modern guidelines for water quality recommend 

that lead concentrations do not exceed 5 μg/L in drinking water (WHO, 2011). 

Therefore these studies certainly suggest that Roman populations were exposed to 

harmful levels of lead in their drinking water. Arguments against Roman leaded water 

systems posing a significant risk to health propose that the build-up of sinter (calcium 

carbonate) deposits inside water pipes, cisterns and aqueducts, especially in areas of 

hard water, would have created a protective lining separating drinking water from the 

toxic metal (DWI, 2013). In fact, historical documents show that sinter build-up was so 

prevalent that its removal was a fulltime occupation, carried out predominantly by 

slaves (Hughes, 2011), with build-up rates estimated to be up to six inches per year if 

left to accumulate naturally (Hodge, 2013, p. 290, 2002, p. 8). Together with the 

biologically antagonistic nature that exists between lead and calcium, sinter would have 

presumably provided a buffer against the bioaccumulation of lead from drinking water 

(Rosborg, 2016, p. 126). However, studies by the World Health Organisation have 

shown that the flaking of sinter into a water supply can contaminate the water, 

significantly increasing its lead concentration even when the water is no longer 

plumbosolvent (WHO, 2011).  

It is evident that lead, whether ingested intentionally (e.g. wine) or unwittingly (e.g. 

water), was highly accessible to everyone within the Roman Empire, and exceeded lead 

concentrations that are considered safe today. However, it is uncertain to what extent 

these sources of lead impacted upon health. There is no doubt that the Romans knew of 
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leads toxicity, with many of the authors of the time writing of its poisonous nature. 

Pliny the Elder noted that both red lead and lead acetate were deadly poisons and should 

not be used medicinally, while Celsus, a 2nd century philosopher, wrote of an antidote 

for white lead poisoning (Celsus, 1989, p. 125; Hodge, 1981). However, there appears 

to have been a cognitive dissonance between the acknowledgment of lead’s toxic nature 

and its use in food and drink. The most compelling evidence for lead poisoning in the 

Roman Empire comes from Paulus Ægineta, a Greek physician who is credited as 

describing the first account of a lead poisoning pandemic (Ægineta, 1847; Waldron, 

1973).  

‘… the colic affliction which now prevails is occasioned by such 

humours; having taken its rise in the country of Italy, but raging also in 

many other regions of the Roman Empire, like a pestilential contagion, 

which in many cases terminates in epilepsy, but in others in paralysis of 

the extremities.’ 

(Ægineta, 1847, p. 534) 

Roman texts often mention the symptoms of lead poisoning, especially colic and 

constipation, both of which are concomitant with the affliction, but do not attribute their 

causes to lead (Lessler, 1988; Needleman, 2009; Waldron, 1973). Therefore, it is 

modern interpretations of Roman texts that form the basis of any speculations on the 

clinical effects of lead poisoning experienced by Roman populations. For example, the 

madness of Emperors Caligula and Nero may be attributable to the central nervous 

system effects of lead poisoning (Gilfillan, 1965; Nriagu, 1983b); gout among the 

aristocracy could have been caused by lead-induced kidney damage (Gaebel, 1983; 

Nriagu, 1983b) and lead poisoning could even be implicated in the supposed decrease in 

the aristocratic class due to its infertility effects (Gilfillan, 1990). As specific accounts 
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of lead poisoning are scare in Roman texts it is becoming increasingly popular to search 

for more direct evidence of lead poisoning through lead concentration analysis of 

human remains from the period.  

Some of the first studies to analyse lead concentrations in Roman skeletal material were 

carried out on Romano-British populations using atomic absorption spectroscopy. The 

Romano-British sites at Poundbury Camp, Dorset, Henley Wood, Somerset and 

Trentholme Drive, York recorded unprecedentedly high bone lead concentrations in the 

skeletal material recovered there (Mackie et al., 1975; Molleson et al., 1986; Waldron et 

al., 1976; Whittaker and Stack, 1984). While little attempt was made to link these high 

concentrations with lead poisoning, the exceptionally high lead concentrations in the 

foetal remains were suggested as possible cause of death for the infants as high lead 

levels can induce spontaneous abortion and stillbirth (Waldron et al., 1979).  In these 

studies all lead concentrations were obtained from bone samples, and while there were 

no correlations in lead concentrations between the bone and soil samples collected at the 

sites, the authors acknowledged that the porous nature of the samples used may have 

facilitated some degree of ion exchange in the burial environment (Molleson et al., 

1986; Waldron et al., 1976; Waldron et al., 1979).  

It was not until the work of Montgomery (2002) that real strides in the advancement of 

lead isotope analysis of archaeological human remains were made. Montgomery (2002) 

developed a methodology that minimised the risk of contamination from the burial 

environment, providing a means of confidently assessing in vivo lead characteristics 

(see Chapter 2). This method utilised tooth enamel instead of bone, and although this 

limited investigations to childhood lead burdens, Montgomery et al. (2002, 2010) found 

that Roman childhood lead burdens were up to three times higher than what is 
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considered severely toxic today (Montgomery et al., 2010). Despite Montgomery’s 

ground-breaking research, until recently there have been very few bioarchaeological 

studies assessing the impact of environmental lead pollution on Roman populations. A 

joint study by McMaster University and the University of Sheffield, entitled Deadly 

Lead: How lead poisoning affected the Roman Empire (Prowse and Carroll, 2017), is 

one of the first studies since the work of Montgomery et al. (2010) to explore lead 

concentrations and health in a Roman population. In a similar vein to this current study, 

Prowse and Carroll (2017) hope to garner new insights into the physiological effects of 

lead pollution on a Roman population. 

3.6 Summary 

It is widely accepted that there was extensive movement of people throughout the 

Roman Empire (Braudel, 1995; Horden and Purcell, 2000; Scheidel, 2004). In fact the 

term cosmopolitan has become quite a popular adjective when describing Roman 

populations (Chenery et al., 2011; Gray, 1958; Leach et al., 2010; Martiniano et al., 

2016; Montgomery et al., 2011; Turner, 2002; Wright, 2002, p. 98), which is testament 

to the cultural diversity thought to characterise Roman societies. This propensity for 

migration together with the substantial environmental lead pollution of the period makes 

the Romans an ideal study population for the further development of lead isotope ratios 

as a discriminatory tool in mobility studies. 

It has been shown that difficulties often arise when attempting to identify non-locals 

using traditional methods such as epigraphy, grave goods or burial rites, which are 

largely dependent upon what has been consciously chosen to be recorded or included 

(Pearce, 2000). The relatively new application of multi-isotope techniques to assess 

geographic origins overcomes some of these issues by facilitating a more inclusive 
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analysis of all individuals irrespective of their funerary rite. The majority of mobility 

studies have used various combinations of carbon, nitrogen, oxygen, and strontium 

isotope analyses in attempts to identify migrants. However, over the last 20 years there 

has been an increase in the number of studies employing lead isotope ratios to address 

archaeological questions of geographic origins (Budd et al., 2004; Montgomery, 2002; 

Montgomery et al., 2014, 2010, 2005; Shaw et al., 2016). The majority of Roman lead 

isotope studies have been done using British populations, and while they are beginning 

to further our understanding of how lead isotope systems can benefit mobility studies, 

they are limited in their geographical scope. The lack of human lead isotope ratio 

baselines for different regions of the Roman Empire means that when individuals 

inconsistent with the local population are identified it is difficult to place their actual 

childhood origins. Therefore it is clear that more human reference datasets are needed 

from all areas of the Roman Empire to establish the normal variation expected in 

Roman populations as well as to assess temporal-spatial isotope variation throughout 

the Empire. 

As previously discussed, there is a correlation between increased environmental lead 

concentrations and increased human lead concentrations during the Roman period (see 

Chapter 2). Studies have also shown that during this period there was an increased 

prevalence of metabolic diseases that can be associated with lead poisoning; this is 

especially well documented within Romano-British populations (Roberts and Cox, 

2003). Historical literature also describes maladies consistent with lead poisoning, and 

acknowledges the toxic nature of the metal (Lessler, 1988; Needleman, 2009; Waldron, 

1973). This will be discussed further in Chapters Four and Five, but what is important 

to note here is that there are both literary and bioarchaeological evidence to support the 

notion that people experienced both environmental and physical consequences of lead 
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pollution during this period (Jonasson and Afshari, 2017). These increased lead burdens 

make the Romans an ideal population for investigating how anthropogenically induced 

environmental changes impacted upon heath and mortality. 
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CHAPTER FOUR 

The Impact of Lead on Human Health 

4.1 Introduction 

Human exploitation of the versatile physical and chemical properties of lead has an 

enduring history that stretches into antiquity, a history that is intimately intertwined 

with the insidious nature of the prized metal. For as long as people have utilised lead 

they have suffered the deleterious effects of lead poisoning (plumbism) on their health. 

These effects are usually systemic and manifest as metabolic diseases, neurological 

deficits and a failure to thrive in infants (Needleman 2004). Due to the widespread 

accessibility of lead to Roman populations it is likely that they too suffered the ill 

effects of lead toxicity. Historical literature describes maladies that, under modern 

interpretation, strongly suggest that lead poisoning was a cause for concern. However, 

despite bioarchaeological evidence for high lead concentrations in technologically 

advanced past populations, and historical documentation describing the negative impact 

lead had on health, very little research has been done to assess this impact 

archaeologically. This chapter explores the biochemical interactions of lead poisoning 

within the human body to inform our understanding of how lead poisoning may 

manifest in skeletal remains, how lead burdens can be quantified and how this can be 

used to inform our interpretations of lead poisoning in past populations.  
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4.2 Metabolism and toxicokinetics of lead 

4.2.1 Exposure, absorption and storage 

Lead is a non-essential trace element that is ubiquitous within the environment. It acts 

as a cumulative poison when incorporated into biological systems, causing a myriad of 

biological, physiological and behavioural dysfunctions (Casas and Sordo, 2011). The 

predominant route for human acquisition of lead is usually via inhalation or ingestion of 

inorganic lead salts, which then slowly accumulate in soft tissues and bone. Organic 

lead compounds are generally more toxic than their inorganic counterparts due to their 

lipid solubility, facilitating a greater adsorption rate especially through direct contact 

with skin. Therefore a more rapid bioaccumulation of lead is seen in soft tissues with 

organic lead exposure than inorganic lead exposure (Hathcock, 2012; Mahaffey, 1978).  

Airborne lead can either be in the form of aerosols (dust, smoke, fog etc.) or vapours 

(free molecules/gas). Inhaled lead vapours can quickly infiltrate the entire pulmonary 

system and have an exceedingly high absorption rate of approximately 99% with only 

1% being exhaled during normal respiratory function (Booker et al., 1969). However, 

lead vapours have an extremely short lifespan as they are rapidly condensed into smoke, 

incorporated onto the surface of dust particles or readily react with oxygen to form 

clusters of lead oxide particles (Castellino and Castellino, 1995). The extent to which 

aerosolised lead is absorbed into the bloodstream is dependent upon the size of the 

particulates inhaled, airborne concentrations and the individuals’ ventilation rate 

(Chamberlain, 1983). Approximately 40 – 50% of inhaled lead with a particulate 

diameter of <1 μm can penetrate deep into the respiratory tract and be absorbed through 

the alveoli into the bloodstream. The remaining fraction of inhaled lead is confined 
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within the upper respiratory tract where it is removed by mucociliary mechanisms, 

enabling it to be either swallowed or exhaled (Needleman, 1991). The absorption 

percentage of ingested lead differs considerably to that of inhaled lead. Adults tend to 

absorb approximately 5 – 15% of ingested lead into the bloodstream (Alexander et al., 

1974; Ziegler et al., 1978), while in children, absorption rates can be as high as 50% 

(Hursh and Suomela, 1968; Rabinowitz et al., 1976). Although the reasons behind this 

age related decrease in absorption are still unclear, studies have shown that dietary 

deficiencies and excesses can significantly alter the efficiency of lead absorption 

(Mahaffey, 1981). A low dietary intake of iron (Fe), zinc (Zn), and calcium (Ca), for 

example, have all been associated with an increased absorption of lead. Conversely 

diets high in fibre and phytate tend to reduce the amount of lead absorbed through the 

gastrointestinal tract (Ahamed and Siddiqui, 2007; Needleman, 1991). 

Once absorbed, lead circulates around the body in the bloodstream. Up to 99% of 

absorbed lead is bound to erythrocytes (red blood cells), with the remaining 1% 

associated with the plasma fraction of blood. As lead circulates it is either deposited in 

soft tissues and bone or excreted with other waste products. The lead stored in the body 

is known as the lead body burden and levels depend on the level and duration of 

exposure, bone metabolism rates and rate of excretion. Approximately 90-95% of the 

body’s lead burden is stored in the skeletal tissues (Berman, 1966; Raj, 2010), with the 

remaining 5% distributed in the soft tissues (predominantly the liver, kidney and brain). 

The preferential storage in skeletal tissues, alongside the supposed substitution of Ca2+ 

for Pb2+ in bone mineral matrices has prompted lead to be termed a ‘bone-seeking’ 

element. However, there is little evidence to indicate that the mechanism behind the 

incorporation of lead into bone is a simple substitution of Ca2+ for Pb2+ (Lockitch, 1993; 

Neuman and Neuman, 1953). Lead stored in the body is not homogenously distributed 
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throughout the skeleton; there are considerable variations in the concentration of lead 

between different skeletal elements (rib, femur etc.) as well as between different types 

of bone (cortical, cancellous) (Aufderheide, 1989; Barry, 1978; Drasch, 1982; Erkkilä et 

al., 1992).  

4.2.2 Mechanisms of toxicity 

The basic principle behind lead toxicity is its ability to impair the normal function of 

metabolic pathways. Due to their electropositive state, lead ions have an affinity for 

sulfhydryl and amide groups, which are ubiquitous in biological molecules. When 

bound to these groups, lead weakens the structural and functional integrity of 

innumerable biologically important molecules (Flora et al., 2012). The various cellular, 

intracellular and molecular interactions that underpin the toxicological effects of lead to 

biological systems are complex, but are predominantly the result of ionic and oxidative 

stress mechanisms.  

Lead toxicity induces oxidative stress in cells by stimulating the generation of reactive 

oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2
). ROS are 

reactive molecules and free radicals that derive from molecular oxygen. Despite their 

ability to cause numerous deleterious events, when closely regulated these molecules 

act as inter- and intracellular messengers that stimulate metabolic pathways that regulate 

gene expression, cell signalling cascades and apoptosis (Hancock et al., 2001). The 

disruption to ROS regulation by lead toxicity is twofold, as in addition to catalysing the 

increased production of ROS it also diminishes the availability and activity of important 

antioxidant molecules responsible for neutralising damaging ROS molecules (Flora et 

al., 2012; Flora, 2002).  
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Lead also disrupts normal cellular processes by substituting for biologically important 

cations, such as Na+, Ca2+, Fe2+ and Mg2+ (Lidsky and Schneider, 2003). The 

substitution of Pb2+ for these cations interferes with numerous cellular processes 

including apoptosis, protein folding, ionic transportation and the regulation of 

neurotransmitters and enzyme activity (Garza et al., 2006). The consequences of these 

ionic substitution are primarily responsible for the neurotoxicity associated with lead 

poisoning, especially its substitution for Ca2+ and Na+ cations (Bressler et al., 1999). 

4.3 Clinical manifestations of lead poisoning   

4.3.1 Acute poisoning 

Acute lead poisoning is usually related to occupational exposure, during which an 

individual absorbs a high concentration of lead within a short period of time, and is an 

uncommon occurrence in modern societies. The effects of acute lead toxicity are found 

at blood lead (B-Pb) levels above 80 μg/dL, and the most likely route of intoxication is 

accidental ingestion of a large quantity of lead salts or inhalation of lead vapours 

(Tsuchiya, 1986). The most common clinical symptoms that accompany acute expose 

include intestinal colic, anorexia, nausea, polydipsia, hypertension, bradycardia and 

constipation. If the concentration of absorbed lead is high enough, peripheral 

paraesthesia, muscle pain and weakness, severe anaemia, renal failure and 

encephalopathy may ensue, with death following within days (Cilliers and Retief, 2014). 

4.3.2 Chronic poisoning 

Chronic lead poisoning is much more insidious than its acute counterpart. Long-term 

exposure to small amounts of lead facilitates the gradual accumulation of the toxin in 
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bodily tissues. Due to the systemic nature of lead toxicity the clinical manifestations of 

chronic poisoning are varied and complex. With its propensity to disrupt metabolic 

pathways, it is unsurprising that chronic lead poisoning has been associated with a 

number of metabolic diseases (Landrigan, 1989). Of these, anaemia is one of the most 

common presentations, resulting from lead’s ability to inhibit haem synthesis and 

induce haemolysis of red blood cells (Gossel and Bricker, 2001, p. 192; Papanikolaou et 

al., 2005; Piomelli, 2002). Rickets is another metabolic disorder often seen in 

conjunction with chronic lead poisoning and is likely due to the metal’s inhibition of 

25-hydroxyvitimin-D-1α-hydroxylase, the enzyme responsible for converting vitamin D 

into its active form (Alasia, 2010; Logham-Adham, 1997). Renal failure is a common 

complication of lead poisoning and the resultant hyperuricemia is the main cause of 

gout (Alasia, 2010; Lin et al., 2002, 1999). Saturnine gout is a secondary rheumatic 

arthropathy and this excruciatingly painful condition has been associated with lead 

poisoning since antiquity (Bennett, 1985). While hyperuricemia is the same cause of 

primary gout, saturnine gout is somewhat distinct in its predilection for manifesting in 

the knee rather than the toe (Dalvi and Pillinger, 2013; Taylor and Grainger, 2011, pp. 

105–120).  

The neurological symptoms associated with lead toxicity are particularly devastating, 

especially in children (Bellinger, 2004), causing disruptions to neuromuscular and 

neurobehavioural functions, inducing encephalopathies. The manifestations of these 

encephalopathies are diverse in their severity, ranging from headaches and delirium, to 

seizures and cerebral oedema (Holtzman et al., 1984). The neuromuscular dysfunctions 

associated with lead poisoning are characterised by paralysis, particularly intestinal 

smooth muscle causing intestinal colic and peripheral paralysis in the extremities. The 

radial nerve is most commonly affected, resulting in the classic wrist drop manifestation 
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of chronic poisoning (Geraldine and Venkatesh, 2007; Needleman, 2004; Pearce, 2007). 

The neurobehavioural effects of lead poisoning are also numerous and well documented. 

Correlations between lead levels and reduced IQ are particularly well established, with 

an estimated half an IQ point lost with every 1 μg/dL increase in blood lead levels 

(Lanphear et al., 2005; Pocock et al., 1994; Schwartz, 1994). Other neurobehavioural 

impairments include memory loss, attention deficit disorder (ADD), reduced impulse 

control and delinquent behaviour, of which increased aggression is particularly common 

(Dietrich et al., 2001; Pabello and Bolivar, 2005; Wright et al., 2008).   

4.4 Skeletal manifestations of lead poisoning 

With the exception of metaphyseal lead lines visible on radiographs (Gandhi et al., 

2003; Needleman, 2004), no specific skeletal lesions have been associated with lead 

poisoning. This is most likely due to the toxicodynamics of absorbed lead culminating 

in clinical manifestations common to many other disease processes. However, using 

modern clinical literature and the known biochemical pathogenesis of lead toxicity it is 

possible to postulate the types of skeletal pathological alterations that may be common 

among individuals exhibiting high lead concentrations. 

4.4.1 Carious lesions 

Dental caries, or tooth decay, is a disease characterised by the localised 

demineralisation of tooth enamel (see Fig. 4.1). It is a chronic disease that can be seen 

in the crown (coronal caries) and root (root caries) portions of both the deciduous and 

permanent teeth (Irish and Scott, 2015). It is a multifactorial disease catalysed by a 

microbiological shift within the complex biofilm on the tooth surface, and can be 

affected by salivary flow and composition, diet and exposure to heavy metals (Selwitz 
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et al., 2007). There was an increase in prevalence rates of carious lesions in European 

populations during the Roman period, likely as a result of changes to diet and increased 

exposure to environmental heavy metal pollution (Touger-Decker and Van Loveren, 

2003). Although Touger-Decker and Van Loveren (2003) suggest that increased heavy 

metal burdens may have contributed to the increase in carious lesions during the Roman 

period, it is likely that multiple factors contributed to this observed increase in 

prevalence rates. 

The negative effects of lead poisoning on dental health has been studied since the mid-

19th century (Des Planches, 1839), and corroborated by modern epidemiological studies 

(Bartsiokas and Day, 1993; Brudevold et al., 1977; Gil et al., 1996; Moss et al., 1999; 

Nriagu et al., 2006). However, some studies have found that there is only a weak 

association between elevated lead burdens and the presence of carious lesions and that 

the development of these lesions is probably population specific (Campbell et al., 2000; 

Gemmel et al., 2002). In all studies, children of a lower socioeconomic status and those 

living in urban environments have been identified as being the most at risk of 

developing carious lesions and acquiring high lead burdens. To date the biochemical 

mechanisms behind the cariogenic effects of lead are unknown (Nriagu et al., 2006). 

However, theories include lead damage to acinar cells in the parotid gland, which alters 

the secretion of proteins, lysosomal enzymes and calcium  (Abdollahi et al., 1997). 

Impaired salivary secretion causing dry mouth (xerostomia), a common symptom of 

lead poisoning (Watson et al., 1997), and an overall reduced quality of saliva impeding 

its natural disease preventative functions (Mandel, 1993) have also been suggested as 

causes. As previous studies have shown, the relationship between lead levels and 

carious lesions is clearly a complex one and likely multifactorial. However, despite the 
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uncertainties there is clearly a correlation between increased lead levels and prevalence 

of carious lesions.   

 

Figure 4.1 – Carious lesion on the mesial surface of a mandibular first molar 

(Source Klingner, 2013) 

4.4.2 Enamel hypoplasia 

Enamel hypoplasia results from a break in the continuity of enamel synthesis, which 

reduces the number of layers of enamel, creating grooves or depressions on the surface 

of the tooth crown (see Fig. 4.2) (Umapathy et al., 2013). The most common causes of 

disruption to the genetic and environmental factors that tightly regulate the synthesis of 

enamel are vitamin deficiency, systemic illness, and environmental pollution (Fagrell et 

al., 2011). While no studies have actively sought to verify a link between lead burdens 

and the presence of enamel hypoplasia, the general stress induced by the systemic 

disruption to metabolic pathways caused by lead poisoning may be sufficiently 

deleterious to health as to result in hypoplastic change. 
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Figure 4.2 – Linear enamel hypoplasia in both the mandibular and maxillary 

dentition (Source Henderson, 2012)  

4.4.3 Anaemia 

Anaemia results from the inability of erythrocytes to transport sufficient amounts of 

oxygen around the body, and can either be congenital (e.g. sickle cell anaemia) or 

acquired (e.g. deficiencies in iron or vitamin B12) in its aetiology (Ortner, 2003). 

Elevated lead burdens can result in an acquired anaemia. At very low levels (≥5 μg/dL) 

lead has been shown to inhibit the activity of key enzymes in the haemopoietic pathway 

(δ-aminolevulinic acid dehyratase (ALA-D) and ferrochelatase), which decreases the 

formation of haem in erythrocyte precursor cells (normoblasts) (Gossel and Bricker, 

2001, p. 192; Papanikolaou et al., 2005; Piomelli, 2002). Lead also weakens the cell 

membrane of erythrocytes, making them prone to haemolysis and thereby shortening 

their normal lifespan.  The overall effect of lead poisoning on the haem synthesis 

pathway is microcytic hypochromic anaemia, which is characterised by immature 

erythrocytes with low levels of haemoglobin and basophilic stippling (Bain, 2014). 
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The most common skeletal lesions associated with anaemia are porotic hyperostosis and 

cribra orbitalia (see Fig. 4.3). Both are descriptive terms used to describe abnormal 

pitting and porosity on the external surface of the cranial vault and orbital roofs 

respectively (Stuart-Macadam, 1987, 1989, 1992; Walker et al., 2009). Anaemia is so 

pervasive in clinical literature associated with lead poisoning that the skeletal 

manifestations of the disorder are a popular target in bioarchaeological studies exploring 

lead exposure in past populations. A review of recent literature shows that cribra 

orbitalia is the most commonly used pathological alteration in bioarchaeological studies 

attempting to correlate high lead burdens with skeletal evidence of lead poisoning 

(Facchini et al., 2004; Gleń-Haduch et al., 1997; Millard et al., 2014; Zariſa et al., 2016).  

However, while cribra orbitalia is undoubtedly an indication of stress and has strong 

clinical links to haemopoietic stress, not all types of anaemia are thought to cause this 

particular osseous response. Until relatively recently, iron-deficiency anaemia was 

thought to be the predominant cause of cribra orbitalia (Ponka, 1997; Stodder, 2006), 

and so popular was the theory that the presence of the lesion became synonymous with 

the presence of the disorder. However, recent research suggests that iron-deficiency 

anaemia does not elicit the marrow hypertrophy necessary to induce the bony changes 

of cribra orbitalia (Wapler et al., 2004). The recent works of Walker et al. (2009)  puts 

forward a strong argument for megaloblastic and haemolytic anaemias being a more 

likely cause for the lesion.  However, Oxenham and Cavill (2010) contest Walker et 

al’s., (2009) claims that iron-deficient anaemia cannot cause cribra orbitalia, stating that 

although there is a reduction in the production of fully matured erythrocytes there is a 

large increase in intramedullary erythropoiesis, which would cause marrow hyperplasia 

(Oxenham and Cavill, 2010). Although like iron-deficiency anaemia, lead poisoning 

causes microcytic hypochromic anaemia, lead inhibits rather than stimulates 
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erythropoiesis (Kwong et al., 2004), and as such is unlikely to induce the physiological 

responses necessary to produce cribrous changes (Lewis, 2017, p. 200). This study will 

compare the presence of cribra orbitalia and lead concentrations to test the hypothesis 

that cribra orbitalia cannot be used as a skeletal marker suggestive of lead poisoning. 

  

 

 

 

Figure 4.3 – Cribra orbitalia in the orbital roof and porotic hyperostosis on the 

cranial vault (Source: Krenz-Niedbała, 2017) 

4.4.4 Rickets 

Rickets is caused by a deficiency in the pro-hormone vitamin D (1,25-

dihydroxyvitimin-D), which plays an important role in the regulation of calcium and 

phosphorous levels in the body. It is synthesised in the kidneys and is involved in the 

stimulation of alkaline phosphatase, osteocalcin and osteopontin synthesis, all of which 

are important for the normal mineralisation of newly formed bone osteoid (Brickley and 

Ives 2009; Favis 1999; Pitt 1988; Heaney 1997; Holick and Adams 1998). A deficiency 

in vitamin D results in a shortage of these essential ions and proteins, preventing osteoid 

mineralisation and ultimately weakening bone mineral matrices (Arnaud and Glorieux 

1997; Holick 2003). Chronic exposure to lead often leads to nephropathy (renal 

damage), and if allowed to persist, renal failure ensues (Alasia, 2010; Lin et al., 2002, 
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1999). Prolonged lead toxicity can inhibit the activity of 25-hydroxyvitimin-D-1α-

hydroxylase, which is the enzyme responsible for converting 25-hydroxyvitimin-D into 

its active form 1,25-dihydroxyvitimin-D (Rosen et al., 1980). The inhibition of this 

enzyme has been recorded with blood lead levels as low as 10 μg/dL, and results in 

increased demineralisation of osseous tissues that can manifest as rickets or 

osteomalacia in children and adults respectively (Alasia, 2010; Chisholm Jr. et al., 

1955; Logham-Adham, 1997). 

The most characteristic skeletal manifestations of rickets are pathological bowing of 

long bones (see Fig. 4.4). Porosity, fraying and flaring of metaphyses, especially of the 

long bones and sternal rib-ends are common pathological alterations associated with 

rickets (Lewis, 2017, p. 210; Waldron, 2009, p. 129). Abnormal porosity on the cranium 

(cribra orbitalia and porotic hyperostosis) and mandibular ramus deformities are also 

commonly seen in rachitic skeletons (Brickley et al., 2005, 2018; Mays et al., 2006; 

Ortner and Mays, 1998; Swinson et al., 2010; Watts and Valme, 2018) Although the 

skeletal manifestations of rickets are varied and can have numerous causes, the co-

occurrence of multiple pathological alterations provides strong support for a diagnosis 

of rickets. 
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Figure 4.4 – Abnormal bowing and metaphyseal flaring of the lower limbs 

associated with rickets (Source: Watts and Valme, 2018) 

4.4.5 Scurvy 

Scurvy is a nutritional deficiency disease resulting from a lack of dietary vitamin C 

(ascorbic acid). This deficiency impedes the activity of proline hydroxylase (a vitamin 

C dependent enzyme), an enzyme important to the hydroxylation process involved in 

collagen synthesis. This results in the production of weakened collagen structures that 

culminates in defective, reduced or arrested osteoid formation and fragile blood vessels 

prone to haemorrhage (Ortner et al., 2001). Like proline hydroxylase, lysyl oxidase (a 

copper dependent enzyme) is responsible for creating stabilising cross-links between 

lysine and hydroxyproline amino acids in collagen fibrils (Dollwet and Sorenson, 1988). 

Reduced activity of this enzyme results in the synthesis of weakened collagen. The 

manifestations of copper deficiency has been termed pseudo scurvy due to its 

similarities with the scorbutic disease (Hoyle et al., 1999; Hurwitz et al., 2004; Nguyen 
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and Kerner, Jr., 2007). Lead is a copper antagonist, and therefore inhibits the activity of 

copper dependent enzymes, mimicking a copper deficiency in individuals suffering 

from lead poisoning. Cases of lead-induced scurvy or pseudo scurvy are documented in 

the clinical literature (Ramel and Schenk, 1942).  

The pathological skeletal alterations associated with a copper deficiency are the same as 

those associated with scurvy, as both disorders result in weakened collagen prone to 

tearing (Allen et al., 1982). The skeletal manifestations of scurvy are subtle and 

common to many other disease processes, added to this the often fragmentary nature of 

archaeological remains makes assigning a definitive diagnosis of the disease difficult 

(Armelagos et al., 2014; Geber and Murphy, 2012). Thus, it is distinctive lesions 

described in works such as the ‘Ortner Criteria’ that prove vital to the successful 

identification of scorbutic skeletal remains (Crandall and Klaus, 2014; Zuckerman et al., 

2014). These lesions primarily consist of porotic hyperostosis, cribra orbitalia and 

abnormal porosity (often with periosteal new bone formation) on the scapulae, long 

bone metaphyses, and mandible (see Fig. 4.5) (Brickley and Ives, 2006; Klaus, 2017; 

Moore and Koon, 2017; Ortner, 2003; Resnick and Niwayama, 1988; Stark, 2014). 

These lesions also tend to manifest bilaterally and are thought to be caused by chronic, 

low-grade haemorrhage of weakened blood vessels, predominantly at muscle 

attachment sites, which stimulates an inflammatory response (Ortner et al., 2001, 1999; 

Ortner and Ericksen, 1997). 
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Figure 4.5 – Abnormal porosity and new bone formation associated with scurvy 

(Source Bourbou, 2014) 

4.4.6 Gout 

Gout is a type of inflammatory arthritis characterised by the deposition of monosodium 

urate crystals in joints and soft tissues. Although any joint can be affected, the first 

metatarsophalangeal joint (big toe) is usually the primary site of inflammation (Dalbeth 

et al., 2016).  Lead toxicity can cause secondary gout known as saturnine gout, due to 

lead-induced hyperuricemia, which is the primary cause of gout (Aşkin et al., 2015; 

Baki et al., 2016; Brewster and Perazella, 2004; Dalvi and Pillinger, 2013). The Romans 

were notorious for their consumption of wine sweetened with defrutum and sapa (lead 

acetate), which likely led to the development of gout amongst those who drank 

considerable amounts of wine. It has been estimated that members of the Roman 

aristocracy drank upwards of 2 litres of wine a day, containing lead concentrations in 

the region of 90 μg/L (Nriagu, 1983b). However, there was a preference to drink the 

wine diluted (Guy, 1981), which would have likely reduced the amount of lead ingested 
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via wine consumption. In their bioarchaeological review of health in prehistoric and 

historic Britain, Roberts and Cox, (2003, p. 389) note that gout first appeared in Britain 

during the Roman period. Although the change in diet that came with the Roman 

occupation of Britain likely influenced the prevalence of the disease, the consumption 

of lead-sweetened wine may have also been a contributing factor to the emergence of 

gout during this time. 

Lead poisoning was first linked to gout in the 18th century with the import of Portuguese 

Port and Madeira wine sweetened with lead acetate (Green, 1985). Chemical analysis of 

these wines revealed their high lead content, with concentrations ranging between 320 – 

1900 μg/L (Halla and Ball, 1982). By the 19th century a firm link had been established 

between lead poisoning and gout, with fortified wines implicated as the primary source 

of intoxication (Healey, 1975; Porter and Rousseau, 2000; Storey, 2001). 

“… no truth in medicine is better established than the fact that the use of 

fermented … liquors is the most powerful of all the predisposing causes 

of gout.”   

– Alfred Baring Garrod, (1859)  

 

The skeletal manifestations of gout are primarily those of an erosive arthropathy, and 

tend to involve the head of the first metatarsal (see Fig. 4.6). Features that support a 

diagnosis of gout is a punched out and undercut appearance to the lesion, manifestation 

in a para-articular position and extension onto the bone diaphysis (Resnick and 

Niwayama, 1988). Unfortunately, the reliance upon the presence of para-articular lesions 

to diagnose gout means that only cases severe enough to cause erosive tophaceous 

deposits can be identified palaeopathologocally (Swinson et al., 2010).  
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Figure 4.6 – Tophaceous, punched out lesion with Martel’s hook on the distal 

para-articular surface of the first metatarsal, indicative of gout (Source: BARC) 

4.4.7 Lead lines 

Lead lines are the only skeletal lesion specifically associated with lead poisoning. They 

are visible on radiographs and present as dense transverse bands in the metaphyses of 

long bones and along the margins of flat bones, such as the iliac crest (see Fig. 4.7). A 

common misconception is that these lead lines represent areas of lead deposition in the 

cancellous bone (Papanikolaou et al., 2005). However, studies have demonstrated that 

there are no significant increases in lead concentrations in these areas (Papanikolaou et 

al., 2005; Patrick, 2006). The increased density is actually attributable to an increase in 

calcium deposition in these areas. Lead inhibits osteoclastic activity in zones of 

provisional calcification, causing increased calcium deposition in the areas which 

present as dense bands in radiographs (Chew, 2012). These dense bands of bone are 

best visualised in bone where areas of rapid growth occur, such as the proximal tibia or 

distal radius (Chew, 2012, p. 293; Woolf et al., 1990). 
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Figure 4.7 – Radiograph showing bilateral lead lines (opaque bands) in the femora, 

tibiae and fibulae metaphyses at the knee (Source: LearningRadiology.com 

accessed 2017). 

4.5 Lead body burden   

The term lead burden refers to the total amount or concentration of lead contained 

within the human body, and represents the difference between absolute lifetime 

cumulative absorption and aggregated excretion (Landrigan and Todd, 1994). However, 

as lead is heterogeneously distributed in various bodily tissues that differ in both their 

capacity and accessibility for lead accumulation, the assessment of total lead burden is 

not straightforward. 

4.5.1 Estimating lead body burden 

Clinical studies dominate the literature on lead burdens and health. Studies into the 

effectiveness of different tissues for estimating lead body burdens focus on living 

patients. Therefore methods tend to use minimally invasive and easily collectable 

sample types such as blood, urine, saliva, hair, and nails (Barbosa Jr et al., 2005). 
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Although occasionally hair and nails can survive in the burial environment, especially if 

the remains are mummified, in archaeological contexts the majority of surviving 

material is the mineralized tissues. Therefore, this section will focus on the use of bones 

and teeth in the estimation of lead body burdens.  

4.5.1.1 Bones 

One of the most striking aspects of lead in the human body is its predilection for 

bioaccumulation in osseous tissues, with approximately 90-95% of the bodies lead 

burden stored in the skeleton (Berman, 1966; Raj, 2010). Within the skeleton, lead is 

not homogenously distributed. There are considerable variations in the concentration of 

lead between different skeletal elements and even between different types of bone 

(Aufderheide, 1989; Barry, 1978; Drasch, 1982; Erkkilä et al., 1992). Cortical bone has 

a slower turnover rate than cancellous bone. Therefore, skeletal elements comprised 

predominantly of cancellous bone (e.g. patellae and calcanei) contain a higher amount 

of biologically available lead than skeletal elements comprised predominantly of 

cortical bone (e.g. tibiae and phalanges) (Ambrose et al., 2000; Fleming et al., 1999; 

O’Flaherty, 1995; Roy et al., 1997; Tsaih et al., 1999). This non-uniform distribution of 

lead within bones appears to be governed by the volume of blood delivered to the bone. 

A study by Todd et al., (2001) reported that regions of lower lead concentration 

contained a lower percentage of cancellous bone and a higher percentage of cortical 

bone than regions exhibiting high lead concentrations. It is suggested that the larger 

surface area, higher volume of blood flow to Haversian canals and a higher 

concentration of active osteons in cancellous bone facilitates a higher rate of lead 

incorporation into the bone matrix than cortical bone (Todd et al., 2001). Although the 

residency time of lead in bone is estimated to be between 15-30 years (Rabinowitz et al., 
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1991), the dynamic nature of bone results in the release of previously incorporated lead 

and the incorporation of new lead. This results in lead isotope ratios and lead 

concentrations that gradually alter over time as bone turnover proceeds (Priest and Van 

de Vyver, 1990).  

4.5.1.2 Teeth 

The proclivity lead exhibits for mineralised tissues means that in addition to bone, lead 

also accumulates in the dentition. However, the way in which lead is acquired and 

retained in different tooth portions (e.g. enamel, dentine etc.) means that teeth provide a 

means of reconstructing an individual’s exposure history (Budd et al., 1998). Lead is 

incorporated into enamel matrices during the mineralisation of the tissue. As enamel 

does not remodel or have an active blood supply, its lead composition is considered a 

reliable indicator of lead exposure at the time of enamel mineralisation (Brudevold et al., 

1977; Gulson, 1996; Gulson and Wilson, 1994; Veis, 1989; Wieser et al., 1996). 

Conversely, lead in dentine is known to be more dynamic, continuously accumulating 

lead from its blood supply (Gulson, 2008; Shapiro et al., 1975). This is corroborated by 

a study carried out by Gulson et al. (1997a) in which lead concentrations and lead 

isotope ratios in paired dentine and enamel samples from European immigrants to 

Australia were analysed. The results showed that there was no change to the lead in 

enamel, while lead in the dentine samples taken from the apical section of permanent 

tooth roots slowly altered to reflect the isotopic composition of the new environment, 

with an exchange rate of approximately 1 ± 0.3 % per year (Gulson et al., 1997a; 

Gulson, 2008). As such, the lead contained within dentine can be considered an 

averaged representation of lifetime accumulation (Budd et al., 1998). This temporal 
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difference in lead acquisition between enamel and dentine potentially facilitates the 

comparison of lifetime changes in lead exposure (e.g. childhood vs. adulthood). 

4.5.2 Dynamic lead burdens 

Lead burdens are far from static; they are influenced by both exogenous and 

endogenous factors and thus are prone to fluctuation. Living and working in less 

polluted, usually rural environments with little industrial activity will result in lower 

lead burdens. Conversely, living in more heavily polluted environment such as urban, 

industrial areas poses a much greater exposure risk. As expected, exposure to higher 

concentrations of lead in an individual’s home or occupational environment will 

increase lead burdens. Exogenous factors such as these are the most obvious variables 

that directly influence individuals lead burdens. However, even remaining in the same 

environment with a consistent level of pollution does not ensure a stable lead burden, as 

endogenous factors also play a significant role in lead burden fluctuations.  

Factors that influence an individual’s physiological equilibrium, such as disease, 

pregnancy, lactation and menopause, have all been shown to alter lead burdens (Cory-

Slechta, 1996; Gulson et al., 2003a; Silbergeld, 1991; Silbergeld et al., 1988; Symanski 

and Hertz-Picciotto, 1995). This is, in the most part, due to the remobilisation of lead 

that has been sequestered in mineralised tissues. While it was thought that this lead was 

stored indefinitely within mineral matrices, subsequent studies have shown that 

physiological stress, which can influence bone turnover rates, results in the release or 

remobilisation of this stored lead (Gulson et al., 2004, 2003, 1999, 1997; Spivey, 2007). 

The repercussions of this remobilisation of endogenous lead is particularly significant 

for pregnant and breastfeeding women as the toxic effects of lead are most potent in 

developing foetuses and young children.  
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Some types of physiological stress can create a higher demand for calcium (Clarke, 

2008; Kovacs, 2015; Ross et al., 2011), and this increased demand has been shown to 

have a significant effect on blood lead levels. It has been suggested that this is because 

the resorption rate of skeletal tissues increases to release the needed calcium in 

individuals with an inadequate dietary intake (Gulson et al., 1997; 2004, 2003). Bone 

turnover of this nature has been shown to be most prolific in pregnant and breastfeeding 

women (Gulson et al., 2016), and is likely due to calcium requirements increasing from 

1000 mg to 1300 mg/day during gestation and lactation (Prentice, 2000). A study by 

Gulson et al., (2004) demonstrated that the isotopic composition of maternal blood lead 

was identical to foetal cord blood, thereby confirming that there is placental transfer of 

lead during pregnancy. Numerous studies have also shown a strong correlation between 

maternal and foetal blood lead concentrations (Furman and Laleli, 2001; Klein et al., 

1994; Moura and Valente, 2002; Navarrete-Espinosa et al., 2000; Wan et al., 1996), 

with an estimated 79% of maternal blood lead transferred to the foetus (Gulson et al., 

2003). Other studies have also demonstrated that lead is transferred through breast milk 

(Rabinowitz et al., 1985; Ettinges et al., 2004), with this sourcecontributing to between 

36 – 80% of an infant’s blood lead level (Gulson et al., 1998). 

Using the same mixing relationship as applied in isotopic geochemistry, Gulson et al., 

(2003) showed that this increase in blood lead concentration is derived predominantly 

from bone lead stores. By determining the isotopic composition of blood lead before, 

during and after pregnancy in migrants to Australia, Gulson et al. demonstrated that 

between 41% – 73% (mean 31%) of the lead responsible for this increase was 

remobilised bone lead (Gulson et al., 1997b; Gulson et al., 1998, 1995). Supporting 

evidence for the remobilisation of lead from bone during pregnancy has also been 

demonstrated in studies examining pregnant women from different populations across 
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the world (Gulson et al., 1997b, 1999; Klein et al., 1994; Lagerkvist et al., 1996; 

Rothenberg et al., 1994, 2000). These studies all reported that blood lead concentrations 

increased on average by ~20% during pregnancy. Gulson et al., (1998) also showed that 

these concentrations were even higher in postnatal mothers. Lactation has been posited 

as the cause for this post pregnancy increase, as it increases the bodies’ calcium 

requirements. As such, if the mothers’ calcium intake and absorption rates fall short of 

the physiological need, bone resorption and the subsequent release of calcium is the 

likely mechanism responsible, in an attempt to correct the deficit (Gulson et al., 1998). 

The breastfeeding and dietary intake histories collected during Gulson et al’s., (1998) 

study seems to corroborate this hypothesis. Their findings showed that women that 

breastfed for longer, and therefore experienced prolonged physiological stress relative 

to the other participants, had the highest blood lead concentrations. While women 

taking calcium supplements, and therefore ensured the recommended daily requirement 

intake, exhibited the lowest blood lead concentrations. This has been corroborated in 

other studies that have also reported the protective qualities of calcium against increased 

lead levels during pregnancy (Farias et al., 1996; Hernandez-Avila et al., 1996; Johnson, 

2001; Moura and Valente, 2002). 

This predisposition of pregnant women and new mothers to higher than normal lead 

burdens, may offer insights into the high infant mortality rates or failure to thrive seen 

in past populations. Especially those that have been shown to have high levels of 

environmental pollution, as lead levels as low as 5 μg/dL have been shown to increase 

the risk of spontaneous abortion, premature delivery, low birth weight and stillbirths  

(Borja-Aburto et al., 1999; Edwards, 2013; Flora et al., 2012; Gilfillan, 1965; Hamilton 

and Hardy, 1974; Troesken, 2008; Zhu et al., 2010). Further implications of these 

dynamic lead burdens, in an archaeological context, are the uncertainties it creates 
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surrounding the type (chronic vs. acute) and duration of exposure. Especially when 

attempting to infer the impact of lead on health from a single bone or dentine 

measurement. Enamel lead concentrations may provide a way forward in this respect, as 

enamel lead concentrations do not alter once mineralisation of the tissue is complete and 

therefore reflect an averaged exposure for a fixed period of time.  

4.5.3 Estimating blood to mineral lead ratios  

The nature of archaeological remains limits the assessment of lead burdens to the 

measurement of lead concentrations in mineralised (skeletal and dental) tissues. Lead 

sequestered within these mineralised tissues can be considered inert because of its 

inability to interfere with biochemical processes in soft tissues. As such, lead within 

mineralised tissues does not directly reflect the lead burden responsible for causing the 

disease processes associated with lead toxicity. It is therefore important to understand 

how the lead levels observed in mineralised tissues reflect the amount of lead that 

would have been circulating within blood and soft tissues. 

Clinical literature pertaining to lead poisoning is centred on measurements of blood lead 

concentrations, with few studies exploring how blood lead concentrations relate to lead 

concentrations within teeth or bones. Thus, archaeological inferences about lead 

poisoning are difficult, as the accuracy of the extrapolated effects of blood lead 

concentrations to those in mineralised tissues is poorly understood. Studies that have 

explored this relationship have done so using different portions of exfoliated deciduous 

teeth, and blood collected at different periods in the individual’s life, making results 

difficult to interpret as the samples used (blood, dentine, enamel etc.) relate to different 

periods of life. As lead stored in tooth enamel represents the lead sequestered during a 

definable period of time (during mineralisation), only studies that include blood samples 
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collected during this period of mineralisation offer any insight into the blood lead to 

enamel lead relationship. Determining this in bone samples is much harder as lead in 

bone does not simply accumulate over time, becoming stored within the mineral matrix 

indefinitely. Instead bone lead concentrations fluctuate; sequestering and releasing lead 

at different rates depending on an individual’s age and physiological status (see section 

4.5). As lead from enamel samples is used in this study only the relationship between 

blood lead concentrations and teeth will be considered further. 

Few studies have examined how childhood tooth lead concentrations correlate with the 

lead concentrations in blood, and those that have, reveal a complex and poorly 

understood relationship (Rabinowitz et al., 1993).  Despite this, a small number of 

studies on modern populations have reported a correlation between enamel lead 

concentrations (taken using acid etch biopsies) and blood lead concentrations that were 

collected during the period of tooth mineralisation (Brudevold et al., 1977; Cleymaet et 

al., 1991; Robbins et al., 2010). However, the lead concentrations within tooth enamel 

are not homogenously distributed. Polido Kaneshiro Olympoi et al., (2010) 

demonstrated that lead concentration in two samples taken from the same tooth, but at 

depths that differed by 0.5 μm, showed a 50% decrease in lead concentration in the 

deeper layer of enamel. Several studies have demonstrated that lead concentrations 

decrease sharply as sampling moves away from surface enamel towards core enamel 

samples (Budd et al., 1998; Fergusson and Purchase, 1987; Purchase and Fergusson, 

1986; Robbins et al., 2010). This is important to consider when interpreting lead 

burdens in archaeological remains as it is unclear whether this concentration gradient 

within tooth enamel is derived from endogenous processes (during mineralisation), 

exogenous interactions with surface enamel, or indeed a mixture of both. As such, core 

enamel is the preferential sample type when assessing lead concentrations in 
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archaeological human remains, as it not only ensures contamination from the burial 

environment is minimal but also removes the surface enamel variable and ensures all 

measurements represent lead burdens derived from blood lead.  

One of the few studies that goes further than simply reporting a correlation between 

blood lead and enamel lead levels was conducted by Grobler et al., (2000). In this study 

lead concentrations in enamel, dentine, circumpulpal dentine and blood samples from 

48 South African children were determined. Median concentrations were then expressed 

as ratios to blood lead. The results show that mineralised tissues all contained higher 

lead concentrations than blood, with an enamel to blood lead ratio of 10:1. If this is an 

accurate representation of the concentration difference between tooth enamel and 

contemporary blood samples then reducing the lead concentrations recorded in 

archaeological enamel samples by a factor of 10 should provide approximate blood lead 

levels and allow comparison with clinical literature pertaining to lead poisoning. 

4.6 Evidence of lead poisoning in the Roman Empire  

4.6.1 Lead poisoning in antiquity 

The earliest known documentation alluding to the toxicity of lead is found in ancient 

Egyptian papyrus scrolls, in which the potential use of lead as a murderous toxin is 

referenced (Hernberg, 2000; Lessler, 1988). It is therefore apparent that humans have 

been aware of lead and its diverse applications, as well as its inherent toxicity for 

millennia.  With the large quantities of lead mined and utilised throughout the Roman 

Empire it is unsurprising that there is historical evidence for lead poisoning in Roman 

populations and bioarchaeological evidence of toxically high lead body burdens. 

Although the Romans were generally unaware of the exact aetiology that underpinned 
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many of the afflictions they described, today we recognise the symptoms outlined in 

these ancient texts as indicative of lead poisoning. 

The Greek physician Hippocrates may well have been the first to describe the effects of 

lead poisoning in his 3rd century BC account of intestinal colic and recognition of the 

relationship between gout and wine consumption. However, it is the 2nd century BC 

poet and physician Nicander of Colophon who is widely credited as being the first 

scholar to describe lead poisoning through his description of lead-induced palsy and 

anaemia (Lessler, 1988; Needleman, 2009; Waldron, 1973). Indeed, even authors such 

as Dioscordes (De Materia Metica), Vitruvius (De Architectura viii.6.10 and 11) and 

Pliny the Elder (Historia Naturalis xxxiv.50.167) recognised the risks associated with 

ingesting lead (F. P. Retief and Cilliers, 2006). The following translation from Pliny the 

Elder’s work Historia Naturalis demonstrates the known dangers of drinking wine 

adulterated with lead sweeteners and the commonality with which it was done. The 

description, ‘dangling, paralytic wrists’ is clearly a reference to what is today known as 

‘wrist drop’ or radial nerve palsy, in which paralysis of the extensor muscles in the 

upper limbs inhibits the extension of the arm and wrist.  

“… genuine, unadulterated wine is not to be had now, not even by 

nobility … From the excessive use of such wines arise dangling, paralytic 

hands.” 

 – Pliny the Elder 

It is evident that lead, whether ingested intentionally (e.g. sapa) or unwittingly (e.g. 

contamination from water pipes), was highly accessible to everyone within the Roman 

Empire. Scholars have therefore claimed that lead poisoning must have been a common, 

even endemic affliction throughout the Empire. Despite this, lead poisoning is poorly 
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documented in Roman texts (Hernberg, 2000). However, this has not deterred some 

scholars from suggesting that lead poisoning was responsible for the preponderance of 

stillbirths, deformities and cases of brain damage in Roman infants (Gilfillan, 1965; 

Nriagu, 1983; Woolley, 1984); some even go as far as to hypothesise that lead 

poisoning played an important role in the eventual downfall of the Roman Empire 

(Gilfillan, 1990; Nriagu, 1983). This viewpoint has been vehemently opposed by a 

number of authors, who see the impact of anthropogenic lead pollution during the 

Roman period as much less significant (Drasch, 1982; Gaebel, 1983; Needleman and 

Needleman, 1985; Scarborough, 1984).  

4.6.2 Assessing lead poisoning in archaeological remains 

With a shortage of surviving literary evidence to support or indeed refute the degree to 

which lead impacted upon the morbidity and mortality of Roman populations, attention 

must be directed to the skeletal remains from the period. Human skeletal remains offer a 

direct link to the past, providing a rich source of information pertaining to the lives and 

living conditions of past populations (Scott, 2013). However, a shortage of literature 

exists here too. Despite the known toxic effects of lead, and the unprecedentedly high 

lead concentrations seen in Roman skeletal material, little bioarchaeological research 

has been conducted to investigate how lead burdens may have impacted upon health 

throughout the empire. This makes it difficult to establish how the Romans profuse use 

of lead impacted upon the lives of people within the Roman Empire, and how this may 

have differed according to geographic and socio-cultural variations. In fact, there are 

very few examples of bioarchaeological investigations that explore lead poisoning in 

skeletal populations from any time period. Those that have, simply compared skeletal 

lead concentrations with the lead concentrations reported in clinical literature (Griffin, 
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2015; Facchini et al., 2004; Waldron et al., 1982). This is problematic as the majority of 

clinical studies use blood to calculate lead burdens, forcing comparisons between 

different sample types. Therefore, while identifying exposure to high lead 

concentrations is relatively simple within bioarchaeological contexts, determining how 

these high concentrations relate to morbidity and mortality has proven to be much more 

challenging. 

Some of the first bioarchaeological investigations into the lead burdens of past 

populations were conducted in the late 1970s. The Romano-British sites at Poundbury 

Camp, Dorset and Trentholme Drive, York recorded, unprecedentedly high bone lead 

concentrations in the skeletal material recovered there (Mackie et al., 1975; Waldron et 

al., 1976; Whittaker and Stack, 1984). While little attempt was made to link these high 

concentrations with lead poisoning, the exceptionally high lead concentrations in the 

foetal remains were suggested as possible cause of death for the infants as high lead 

levels can induce spontaneous abortion and stillbirth (Waldron et al., 1979b).  In these 

studies all lead concentrations were obtained from bone samples, and while there were 

no correlations in lead concentrations between the bone soil samples collected at the 

sites, the authors acknowledged that the porous nature of the samples (particularly the 

higher porosity of the foetal remains) used may have facilitated some degree of ion 

exchange in the burial environment (Molleson et al., 1986; Waldron et al., 1976; 

Waldron et al., 1979b).  

The Franklin expedition is probably one of the most recognised examples of 

bioarchaeological investigations into lead poisoning to date. Bioarchaeological analysis 

of the frozen remains of known crew members, William Braine, John Hartnell and John 

Torrington, discovered on Bleechey Island (Amy et al., 1986; Beattie and Geiger, 2017; 



 94 

Notman et al., 1987) and the disarticulated remains of at least 20 individuals on King 

William Island (Beattie, 1983; Beattie and Savelle, 1983; Keenleyside et al., 1997) were 

conducted in the 1980s and 1990s. Using bone and hair samples these studies found 

lead concentrations ranging from 49 ppm to 204 ppm (mean 103 ppm). These results 

were interpreted as evidence for lead poisoning among the crew as they were equal to or 

greater than those recorded in modern clinical literature documenting lead poisoning 

(Keenleyside et al., 1996; Kowal et al., 1991). From the analysis of these remains it was 

posited that lead poisoning was a major contributing factor to the 19th-century disaster, 

with improperly soldered canned goods suggested as a significant contributor to the 

toxic lead burdens observed (Beattie, 1985; Kowal et al., 1991, 1989). Several scholars 

have challenged this hypothesis, suggesting that contamination of food from solder 

occurs at such low concentrations that it would not be significantly detrimental to health 

(Farrer, 1993, 1989; Trafton, 1989). These studies conclude that while the observed lead 

concentrations were undoubtedly high, the long residency time of lead in bone together 

with the high 19th-century baseline lead burdens, instil significant uncertainty 

surrounding how long the lead had been in the bone and how much of it was acquired 

during the expedition (Farrer, 1993, 1989; Trafton, 1989). 

A more recent study by Millard et al. (2014) analysed the lead concentrations in 18th – 

19th century London populations in an attempt to correlate the high lead burdens 

associated with post-medieval populations with evidence of disease and infertility. This 

study found tooth enamel lead concentrations ranging from 0.47 ppm to 99.2 ppm 

(mean 22.22 ppm). These results demonstrate high levels of pollutant exposure, with 

lead concentrations peaking at values three times higher than those recorded in Roman 

skeletal material (Millard et al., 2014; Montgomery et al., 2010). Using the Stuart-

Macadam (1991) scoring system, the presence and severity of cribra orbitalia was used 
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as an indicator of anaemia. Surprisingly, despite the plethora of clinical literature 

discussing the almost diagnostic quality of anaemia in relation to lead poisoning, 

Millard et al. (2014) found no significant correlation between cribra orbitalia score and 

lead concentrations. However, this may be related more to the uncertainty surrounding 

the exact aetiology of cribra orbitalia than the possibility of successfully correlating 

skeletal lesions with elevated lead concentrations. In addition to this, Millard et al., 

(2014) also compared childhood lead concentrations accumulated between the ages of 

2.5 to 6.5 years, with pathological lesions on adult skeletal remains. This may have 

contributed to the difficulty in establishing how lead impacted upon health as, while a 

specific period of accumulation can be assigned to the lead concentrations used, the 

same cannot be done for the pathological lesions, which could have developed during 

any time prior to death. 

What these studies demonstrate is the difficultly with single lead concentration 

measurements for determining the presence of lead poisoning. Thus, other evidence 

should be sought in conjunction with lead concentrations. A logical starting point here 

would be the inclusion of skeletal evidence of disease, specifically those known to be 

associated with lead poisoning, (see section 4.4). As such, this research will combine 

trace element analysis with palaeopathological data from Roman skeletal remains to 

contribute to our understanding of the impact anthropogenic lead pollution on the health 

of populations throughout the Roman Empire. This process is not without its own 

obstacles, the majority of which stem from the dynamic nature of living bone and the 

elements stored within it. As a living tissue, bone undergoes modelling (new bone 

formation) and remodelling (replacement of weakened bone) throughout life, and this 

continuous turnover alters the lead profile of skeletal tissues. Consequently, a single 

bone lead measurement does not provide an accurate representation of the lead burden 
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experienced by an individual. Due to this dynamic relationship, the analysis of bone 

lead cannot currently differentiate between a period of acute high-level lead exposure 

that would have resulted in lead-induced pathologies or an extended period of low-level 

exposure resulting in a high, cumulative lead burden that is likely to have remained 

asymptomatic (Montgomery et al., 2010). This makes the assessment of lead poisoning 

in archaeological populations problematic, as discerning the type of exposure bone lead 

concentrations represent, and how they relate to observable palaeopathological lesions 

is problematic.  

An alternative indicator of lead burdens, that would eliminate a number of variables that 

make bone lead concentrations so dynamic, is tooth enamel. However, this would limit 

bioarchaeological investigations to non-adult exposure. As previously discussed in 

section 4.5, lead is incorporated into core tooth enamel as the tissue mineralises during 

childhood and it does not accumulate lead thereafter. This effectively provides a 

snapshot of an individual’s lead exposure within a definable period of time during an 

individual’s life, and allows the comparison of lead exposure at specific ages between 

individuals that died at different ages. Additionally tooth enamel lead concentrations are 

generally unaffected by many of the age and health related factors that influence the 

incorporation of lead into bone mineral. Therefore, the paired analysis of tooth enamel 

lead concentrations with the palaeopathological lesions on non-adult skeletal remains 

facilitates the comparison of childhood lead burdens with disease processes that 

occurred at a similar time to lead acquisition. This gives the best chronological 

correlation between lead concentrations and their contribution to the manifestation of 

certain pathological lesions. 
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4.7 Summary   

The World Health Organisation recently reported that there is no known ‘safe’ blood 

lead concentration (WHO, 2011), stating that lead is toxic even at sub-clinical levels 

under 5 μg/L and it would appear that for as long as people have been utilising lead, 

they have been aware of its pernicious qualities. The Romans were no exception, with 

historical documents clearly detailing maladies associated with lead poisoning and 

references to the dangers of its ubiquitous use. The bone seeking quality of lead lends 

itself to archaeological studies into how environmental pollution impacted upon health. 

However, the small numbers of bioarchaeological studies that have attempted to 

identify lead poisoning in archaeological remains have had some difficulty in 

determining what constitutes in vivo lead concentrations and what has been acquired 

from the burial environment. The limitations identified by these early studies can help 

shape the way future works approach the problem. It is clear that the use of bone, an 

innately porous material, is unlikely to yield accurate results as it readily exchanges ions 

with its burial environment. Therefore tooth enamel, which is a much more 

diagenetically stable tissue, would provide a better sample medium.  

While all of the mechanisms behind lead’s biochemical interactions are not fully 

understood it is clear that lead poisoning can result in the manifestation of numerous 

metabolic disorders. As some metabolic diseases are identifiable on skeletal remains 

there is a real potential for the identification of individuals suffering from lead 

poisoning in archaeological populations. The paired analysis of palaeopathological and 

tooth enamel lead concentration data provides the most robust strategy when attempting 

to identify individuals that suffered from lead poisoning. This does however, restrict 
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bioarchaeological studies of lead poisoning to childhood as this is when both datasets 

are most likely to overlap with the time of lead exposure.  
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CHAPTER FIVE 

Roman Health and Mortality 

5.1 Introduction  

Due to the continuous movement of people and conquest of new lands, living in the 

Roman Empire meant living in a world of change and diversity, and this included 

changes to the health and mortality of the population (Redfern et al., 2018). Numerous 

studies have shown how changes to living environments (urbanisation), diet and 

population diversity can negatively impact upon health (Larsen and Milner, 1994). The 

high infant mortality rates and increased prevalence of infectious and metabolic diseases 

evident in skeletal material demonstrates how the Roman Empire was no exception. 

This chapter provides a brief overview of health and childhood mortality within 

the Roman world. Important parallels are drawn between the emergence of 

diseases known to be associated with lead poisoning and the dramatic increase in 

lead pollution seen during this period, and the concept that lead poisoning may 

have contributed to the high infant mortality rates evident throughout the Roman 

Empire is also introduced. 

5.2 Roman health 

Historical evidence for health and disease within the Roman Empire is relatively scarce, 

and is largely anecdotal, focusing predominantly on Mediterranean provinces such as 

Italy (Pitts and Griffin, 2012). However, there appears to be a general consensus that 

urbanisation, ethnicity and inequalities in wealth and social status were important 
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factors influencing the health of populations throughout the Empire (LaVeist and Isaac, 

2012). Although some studies have shown that living in rural environments came with 

its own negative effects on health (Lewis, 2010; Rohnbogner, 2017; Rohnbogner and 

Lewis, 2017), it was urban living that proved more deleterious to health (Redfern et al., 

2015). The development of road networks and overcrowding that came with Roman 

urbanisation likely facilitated the easy transmission of disease within and between 

communities (Roberts and Cox, 2003, p. 389). Urban centres had close living quarters, 

inadequate waste disposal infrastructures, increased exposure to migrants and higher 

levels of smoke and lead pollution (Morley, 2004; Roberts and Cox, 2003, p. 389; 

Scobie, 1986). These characteristics of urban living likely influenced the high 

prevalence of infectious diseases such as malaria and tuberculosis in towns and cities 

compared with life in the Empire’s rural settlements (Griffin et al., 2011; Morley, 2002; 

Redfern and Roberts, 2005; Redfern et al., 2015; Sallares, 2002; Scheidel, 2003). Even 

Roman culture often promoted the benefits of rural living, suggesting that people at the 

time were aware of the disparity in health associated with urban versus rural living 

(Baker, 2018; Eaton, 2014, p. 89). However, the impact of these variables on health 

cannot be fully understood solely from documentary evidence, which tends to be biased 

towards those of high status and social influence. Here osteological evidence of disease 

provides useful insights into the wellbeing of wider Roman populations (Gowland, 

2017).  

A number of studies have explored the health of Roman populations through the 

analysis of skeletal remains. The majority of these studies have been conducted on 

British and Italian populations (Bonfiglioli et al., 2003; Bonsall, 2013; Cucina et al., 

2006; FitzGerald et al., 2006; Gowland and Redfern, 2010; Minozzi et al., 2012; 

Redfern, 2008; Redfern et al., 2015; Rohnbogner, 2017; Rohnbogner and Lewis, 2017), 
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and very few of these have directly compared urban and rural populations with 

contemporaneous sites from other regions of the Empire. Although relatively few in 

number, these bioarchaeological studies concur with textual sources, demonstrating that 

there are higher levels of disease and childhood mortality at urban locations (Jongman 

et al., 2019; Redfern and Roberts, 2005). Despite the increasing wealth of evidence 

supporting the notion of poorer health in urban environments not all studies have 

observed the same pattern. In their analysis of four 4th century AD sites in Croatia, 

Šlaus et al. (2004) found no difference in health between settlement types, indicating 

that there is local variability in the impact that socioeconomic factors have upon health 

throughout the Roman Empire. In Romano-British contexts, a comparison of the urban 

site of Poundbury Camp, Dorset with contemporaneous rural sites also found that rural 

poverty affected the health of those growing up in the countryside to a similar extent as 

living in urban environments affected city dwellers (Rohnbogner and Lewis, 2017). 

From their analysis of British and Italian populations, Gowland and Redfern (2010) 

point out that Roman health patterns are complex, not simply a function of toxic 

environments, and that local variability in weaning practices, migration levels and living 

environments play an important role in the health of a population.  

Using the presence or absence of grave goods to infer the socioeconomic status of 

individuals a number of studies have also attempted to correlate poor health with 

socioeconomic status. Jenny (2011) found more non-adults buried with grave goods had 

skeletal markers of stress than non-adults buried in unfurnished graves, Griffin et al 

(2011) found the same correlation at Baldock, Hertfordshire. Conversely, Redfern and 

DeWitte (2011) found that higher status individuals had lower mortality risks than 

lower status groups. However, as Gowland (2016) states, the interpretation of an 

individual’s or population’s health status is not straightforward and it is important not to 
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over simplify any correlations made between osteological evidence of poor health and 

perceived indicators of status from the burial environment.   

It is clear that the factors affecting Roman health across the Empire were multifarious, 

and the extent of local variations in health and their relationship with socioeconomic 

inequality in this period requires further investigation. However, an avenue of research 

that has been relatively overlooked in Roman health studies is the impact that 

environmental lead pollution had upon populations adapting to Roman rule. From 

studies examining differences in health during the late Iron Age and Roman period in 

Britain it is apparent that the changes that came with Roman occupation had a generally 

negative impact upon health (Redfern, 2008; Roberts and Cox, 2003). The majority of 

these changes have interesting parallels with pathological alterations consistent with 

lead poisoning (see Chapter 4). As environmental lead pollution increased during the 

Roman period compared with the Iron Age, there was a concurrent increase in 

prevalence rates of dental disease and osteoporosis (Roberts and Cox, 2003; Touger-

Decker and Van Loveren, 2003b), it was also the first time that metabolic diseases such 

as gout, rickets, osteomalacia and scurvy were seen in British populations (Roberts and 

Cox, 2003). Skeletal evidence from Britain, Italy and Gaul also reveals that there was a 

reduction in average adult stature compared to Iron Age populations (Giannecchini and 

Moggi‐Cecchi, 2008; Gowland, 2017; Gowland and Walther, 2018; Redfern and 

DeWitte, 2011; Roberts and Cox, 2003; Scheidel, 2010b). Significantly, during the 

Anglo-Saxon period, a time when environmental lead pollution and human lead burdens 

decreased (Montgomery, 2002; Montgomery et al., 2010; Settle and Patterson, 1980), 

the average stature of British populations increases alongside a reduction in skeletal 

evidence of these diseases (Gowland, 2017; Roberts and Cox, 2003).  
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With regards to childhood health much of attention has been paid to the Romano-British 

site Poundbury Camp, Dorset (Farwell and Molleson, 1993; Lewis, 2010; Molleson, 

1992, 1989; Molleson and Cox, 1988; Redfern, 2007; Redfern et al., 2012; Rohnbogner 

and Lewis, 2017). This site offers a unique opportunity to explore childhood health as 

the site contained an unusually large proportion of non-adult individuals (n = 364, <18 

years of age), 75 of which have been categorised as perinatal infants (Molleson, 1989), 

the age group most susceptible to the deleterious effects of lead. In the initial evaluation 

of the skeletal remains from this site, Molleson (1989) noted that a high proportion of 

the infants exhibited evidence of metabolic disease. A re-evaluation of the site two 

decades later by Lewis’s (2010) corroborates these findings, with results indicating that 

over 30% of infants exhibited pathological alterations consistent with rickets (vitamin D 

deficiency) and scurvy (vitamin C deficiency). Although both Molleson (1989) and 

Lewis (2010) suggest that the high prevalence of metabolic disease is a result of early 

weaning, Molleson also goes on to posit that lead contamination of weaning foods and 

water may have contributed to the poor health of this vulnerable group of individuals. 

High rates of infant mortality and metabolic disease is not unique to Poundbury Camp, 

analyses of other Romano-British sites such as Butt Road, Colchester (Crummy and 

Crossan, 1993), Cannington, Somerset (Rahtz et al., 2000), Winchester (Ottaway et al., 

2012) and Mays et al’s (2018) study of 15 Mediterranean Roman 1st to 6th century sites 

have revealed high numbers of non-adults with evidence of poor health. 

The overarching observation that can be made here is that Roman health was generally 

poor across the Empire, with individuals from all site types affected by metabolic 

diseases and infections (Rohnbogner and Lewis, 2017). Of course no singular cause can 

be ascribed to the decline of Roman health compared with that of previous populations, 

as socioeconomic inequalities, population growth and the implementation of Roman 
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hierarchical systems will have all impacted upon a populations health (Gowland, 2017). 

However, there appears to be compelling evidence for the inclusion of environmental 

lead pollution as a contributing factor in the contextualisation of a population’s health 

within their sociocultural sphere. 

5.3 Childhood mortality 

Life expectancy during the Roman period has long been an area of interest within 

Roman research, and the basis of much of this interest stems from the wealth of age-at-

death data surviving in the form of inscriptions, census records and skeletal evidence 

(Hope, 2009, p. 42). However, this data is not always reliable or representative of the 

population as a whole. For example, ages inscribed on funerary monuments were not 

always precise and appear to have been either rounded up or down (Hope, 2009, p. 42). 

Additionally infants, children and women tend to be underrepresented epigraphically, 

with a distinct bias towards the commemoration of males in funerary monuments 

(Carroll, 2011). To compensate for the uncertainty surrounding this method, estimating 

life expectancy at birth and infant mortality rates has also been attempted via the 

comparison of Roman populations with modern life tables. These calculations suggest 

that the average life expectancy was 40 – 50 years of age if adulthood was reached, but 

that the chances of surviving past childhood were low (Hope, 2009, p. 43). However, 

critics of this method argue that life tables overlook important spatial and temporal 

variances in climatic and epidemiological conditions and likely provide an inaccurate 

proxy of Roman demographics (Pilkington, 2013; Scheidel, 2001b).  

Whichever way the demography of Roman populations is assessed, it is clear that child 

mortality was high, with a large proportion of children failing to survive into adulthood 
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(Carroll, 2006, p. 176; Garnsey, 1991, p. 51). As mortality is influenced by the living 

environment (urban versus rural) and the socioeconomic status into which a child is 

born, child mortality rates are likely to have varied considerably throughout the Empire 

(Gowland et al., 2014). However, there tends to be a general consensus that up to 50% 

of children died before the age of 10 years, with 20 – 40% of these dying in their first 

year of life (Carroll, 2014; Harlow and Laurence, 2002, p. 8; Parkin, 1992, p. 92; 

Rawson, 2003, p. 104; Saller, 1997, p. 12). Childbirth was extremely risky for both the 

mother and the infant, resulting in the frequent deaths of both (Jackson, 1988, p. 86), 

and although it will never be possible to determine exactly what percentage Roman 

children died in infancy or early childhood, there is a significant amount of textual 

evidence indicating that a large number died within the first few days of life (Bradley, 

2005, p. 92; Dasen and Späth, 2010; Garnsey, 1991, p. 57; Shaw, 2001, p. 97). For 

example, it is reported that Cornelia, the mother of politicians Tiberius and Gaius 

Gracchus, gave birth to a total of 12 children, of which only three survived into 

adulthood (Hope, 2007, p. 10). Furthermore, texts by Hippocrates and Celsus both note 

that the first and seventh months were the times when an infant was most at risk of 

dying (Adams, 1849), while Plutarch identified the first week as the time in which 

infants were most vulnerable (Rose, 1974). Plutarch’s identification of the seventh day 

as the most dangerous for newborns coincides with the deadline for fathers to decide 

whether they were going to rear their child, before the naming day on either the eighth 

(for girls) or ninth day (for boys) after birth (Harlow and Laurence, 2002, p. 39; Rawson, 

2003, p. 105). 

There is no doubt that childhood was a perilous stage of life during the Roman period, 

with higher risk of mortality evidenced by high numbers of infant remains (Gilfillan, 

1965). Some of the reasons put forward for the high infant mortality rates seen 
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throughout the Roman Empire include malnutrition, disease, poor medical knowledge 

and infanticide (Gowland et al., 2014; Mays, 1993; Pilkington, 2013). However, it is 

unlikely that there is a singular underlying reason for the high number of infant deaths, 

and rather it is a combination of sociocultural and epidemiological factors (Molleson, 

1989). Nonetheless the high levels of environmental lead pollution seen throughout the 

Empire may have exacerbated the problem (Aneni, 2007). Infants and young children 

are more susceptible to lead poisoning than adults as their developing bodies are prone 

to absorbing higher quantities of ingested lead (see Chapter 4). It has also long been 

known that a mother’s lead burden can cross the placental barrier as well as collate in 

breast milk, therefore not only is the developing foetus at risk to succumbing to the 

toxic effects of lead poisoning but so too are breastfeeding infants (Gulson et al., 2003). 

Despite this, and modern documentary evidence of lead poisoning being responsible for 

stillbirths, spontaneous abortion, congenital deformities and metabolic disease in infants 

(Hertz‐Picciotto, 2000; Nriagu, 1983; Wibberley et al., 1977; Woolley, 1984), little 

has been done to explore any link between childhood lead exposure and high infant 

mortality rates within the Roman world.  

5.4 Infanticide and exposure 

Infanticide is defined as the intentional killing of children under the age of 12 months 

(Garner, 2001, p. 442), and historical and ethnographical evidence demonstrates that 

past and present populations have had a long history of this practice (Bonsall, 2013; 

Langer, 1974; Scrimshaw, 1984). In past societies, the practice of infanticide appears to 

have been relatively common, with a multitude of societies on every continent and from 

all levels of cultural complexity openly accepting it with little to no moral stigma (Mays, 

2000; Montague, 1989; Warren, 1985; Williamson, 1978). Although there are a 
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multitude of socioeconomic, cultural and religious pressures that can result in increased 

levels of infanticide (Kelly, 1992; Kilday and Watson, 2008; Leboutte, 1991), a 

detachment towards the killing of new-borns is predominantly prevalent in societies that 

do not consider children as fully-fledged social beings (Harlow and Laurence, 2002). 

This view was held by Roman societies who considered childhood to constitute a 

separate stage of a person’s life course before transitioning into adulthood (Harlow and 

Laurence, 2002; Hrdy, 1992).  

In part due to the abundance of textual evidence documenting its practice during this 

period, infanticide has received a lot of scholarly attention (Bennett, 1923; Engels, 

1980; Harris, 1994). Infanticide was thought to have been permitted by Roman law, 

however, the interpretation of this textual evidence has been questioned, with some 

scholars highlighting that these texts refer to exposure or abandonment of infants, 

particularly those that appear to have a physical disability, not the direct killing of new-

borns (Gowland et al., 2014).  There is no certainty surrounding the understanding of 

the motives behind abandonment or exposure (Grubbs, 2013; Harris, 1994), however, it 

is thought that a father could dispose of a child on the basis of disability, illegitimacy, 

poverty and sex (Scott, 2001). This abandonment of infants was carried out with the 

assumption that the child would be recovered and cared for by another, even if as a 

slave (Amundsen, 1987, p. 6; Hope, 2007, p. 13; Patterson, 1985, p. 105). Therefore, 

the legality of abandonment cannot be equated with infanticide, as there was no direct 

intent to kill the child (Krause, 2011, p. 636). Infanticide was only condoned in cases of 

severe physical deformity (Laes, 2008, p. 95; Southwell-Wright, 2013, p. 80; Stahl, 

2011, p. 721). 
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Archaeologically, infanticide was initially inferred from the widespread exclusion of 

infants from formal cemeteries and their high occurrence in excavated villa and 

settlement sites (Gowland et al., 2014). This burial practice has been interpreted as an 

indication of unequivocal emotional detachment to infant mortality, resulting in 

unceremonious deposition of infant remains (Cocks, 1921, p. 150; Frere, 1987; 

Molleson, 1999). However, this interpretation is conjectural, as ethnographic evidence 

has shown that many societies afforded infants different burial rites to their adult 

counterparts (Craig-Atkins, 2012; Millett and Gowland, 2015). As such, the 

preponderance of Roman infant burials in domestic sites may simply be an indication of 

different burial rites for infants, not necessarily infanticide (Harris, 1982; Moore, 2009; 

Pearce, 2000; Scott, 2001; Ucko, 1969).  

More recently, archaeological infanticide studies have focused on the age-at-death 

distribution of perinatal deaths, particularly within Romano-British populations. The 

pronounced peak observed around the age of 38 - 41 gestational weeks has often being 

interpreted as evidence of widespread infanticide (Mays, 2000, 1993; Mays and Eyers, 

2011; Mays and Faerman, 2001). This view has generated considerable debate from a 

number of authors who question both the validity of the scientific methods employed 

and the interpretation of the textual evidence used (Gowland, 2001; Gowland et al., 

2014; Gowland and Chamberlain, 2002; Millett and Gowland, 2015). Rather it is 

suggested that the age distribution of infants is consistent with natural mortality rates, 

and that the ‘unusual’ burial locations within domestic environments is a specific 

funerary rite associated with this age group, a careful choice with links to ritual and 

beliefs, not a random disposal of unwanted children (Moore, 2009). Therefore, although 

the archaeological record leaves no doubt that Roman populations endured high infant 
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mortality rates, there appears to be little evidence that infanticide significantly 

contributed to them. 

5.5 Summary 

Life was fragile in the Roman world and death, especially of the very young, was a 

frequent occurrence. In an ever-expanding Empire it was a time of socioeconomic and 

sociocultural change, and this change appears to have brought about an increase in 

disease prevalence and high infant mortality rates. Although it has been established that 

poor health often has multifaceted aetiologies, the correlation between the emergence of 

metabolic diseases and shortened stature, both of which can be caused by lead 

poisoning, in a time when lead pollution peaked opens up intriguing questions as to the 

role lead played in the health and mortality of Roman children.  

The high lead burdens that have been observed in Roman populations indicates that 

foetuses and new-borns would have been at risk of acquiring lead from both placental 

transfer and breast milk, the effects of which could result in full-term still births, 

spontaneous abortion and infant death. Thus, there is compelling evidence that lead 

poisoning may have been a contributing factor to the high infant mortality rates seen in 

Roman skeletal populations. As such, it is surprising that so little bioarchaeological 

research has been done to establish whether lead could have contributed to the high 

mortality rates seen in so many Roman populations. However, this research aims to help 

fill this void by exploring whether lead exposure contributed to the high infant mortality 

rates evident in Roman populations. 
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CHAPTER SIX 

Materials and Methods 

6.1 Introduction 

This chapter provides synopses of the sites and skeletal samples used in this study. It 

also describes the skeletal analyses and data collection methods employed, alongside 

the sampling strategy, processing and analysis methods used. The statistical analyses 

applied to the data are also presented at the end of the chapter. 

6.2 Methodology outline 

The methodological process followed during this study is briefly outlined below: 

1. Secure access to Roman skeletal material in a number of European countries. 

2. Create a sampling strategy, skeletal recording forms and database to record the 

osteological and contextual information from each site. 

3. Carry out osteological analysis of skeletal material to determine age, sex (where 

possible) and presence of disease. 

4. Collect tooth samples from 12 adults (six females and six males) and 20 non-

adults (10 with skeletal evidence of metabolic disease and 10 without) from each 

site.  

5. Where information is available, collect, translate and record contextual data 

(grave goods, grave type etc.).  

6. Remove and clean tooth enamel samples from all collected teeth at Durham 

University Isotope Laboratory. 
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7. Process and analyse enamel samples using MC-ICP-MS and ICP-MS for lead 

isotope and trace element analysis respectively at NERC Isotope Geoscience 

Laboratory (NIGL), Keyworth.  

8. Combine isotope data with osteological and contextual information. 

9. Compare results with previously published lead isotope data.  

10. Run statistical analyses to determine the significance of the results. 

6.3 Sites 

As this study aimed to go some way to bridging the gap in human lead isotope data 

from Roman provinces outside of Britain, the majority of sites were spread across 

mainland Europe (see Fig. 6.1). Samples from Lebanon were included as it represents 

the most easterly border of the Empire. Additionally, although human lead isotope 

ratios are well established in Britain, a small number of individuals excavated in 

Scotland and England were included due to their unusual burial rites. This section 

introduces the sites included in this study, using both published articles and unpublished 

reports provided by the curating institutions. Any documents not written in English 

were translated using Google Translate. All Spanish and Arabic translations were 

provided by Laura Castells-Navarro (University of Bradford) and Vana Kalendrian 

(University of Groningen) respectively. 
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Figure 6.1 – Map showing the location of the nine sites used in this study. 

Musselburgh, Scotland; York, England; Ilchester, England; Tarragona, Spain; 

Barcelona, Spain; Caen, France; Ljubljana, Slovenia; Alba Iulia, Romania; Beirut, 

Lebanon. 

 

6.3.1 Dealul Furcilor - Alba Iulia, Romania 

Dealul Furcilor (Pitchfork Hill) is a large Roman hill necropolis located next to the 

urban centre Apulum in Alba Iulia, and was excavated by D. Protase in 1956-58, 1970-

71 and again in 2006 by G. Bounegru and R. Ota. From artefactual (most notably 

bronze coins) and stratigraphic evidence, the site is thought to have been in use during 

the 2nd to 4th centuries AD. The necropolis was a mixed rite cemetery with cremations 

and inhumations present, which was a normal practice for Dacia and other Northern 

provinces of the Roman Empire at the time. A total of 227 burials were excavated, and 

although variation in burial orientation was displayed the majority of inhumations were 

aligned east-west or west-east. Both simple oval ‘boat’ pits and more elaborate stone 

sarcophagi were used for inhumation burials and coins, textiles, ceramics, jewellery and 
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animal bone were recovered from both types of inhumation (Gligor et al., 2010; Ota, 

2009).  

 

Figure 6.2 – Plan of the Dealul Furcilor excavation site (Source: Ota, 2009) 

6.3.2 Beirut, Lebanon 

ASH 002 – A team led by Dr. Assaad Seif (DGA) excavated this site in 2007, and 

dating based on stratigraphy, grave goods, and pottery sherds suggest the site was in use 

during the 1st to 4th centuries AD. Inhumation was the only burial rite practised at ASH 

002 and the 122 individuals recovered were buried in north-south and east-west 

orientations. Grave types consisted of simple pits, wooden coffins, terracotta sarcophagi, 

stone sarcophagi, stone cists, and one masonry tomb with multiple cells. Grave goods 

found at the site include jewellery, glass vessels, coins, metal objects, gold leaves and 

shells. 
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ASH 163 – Recent rescue excavations led by Dr. Georges Abou Diwan (Lebanese 

University) in 2015 at the ASH 163 site revealed 20 graves, all of which contained 

inhumation burials. Dating based on stratigraphy; grave goods and pottery sherds 

determined that the site was in use between the 1st century BC and the 2nd century AD. 

The type of graves included simple pits, pits with stone capping, wooden coffins, and 

terracotta sarcophagi. The majority of individuals were interred in an east-west 

orientation, with only two individuals placed on the north-south axis. Grave goods were 

plentiful at the site, with many graves containing items such as ceramic unguentaria, 

glass vessels, coins, jewellery, bone objects, metal objects. 

BCH 740 – Site BCH 740 is currently being excavated by Dr. Georges Abou Diwan 

(Lebanese University). To date approximately 200 individuals have been recovered and 

while inhumation is the dominant burial rite practised at the site cremation rites are also 

represented. Types of graves included masonry tombs, simple pits, terracotta sarcophagi 

and wooden coffins, and preliminary dating using grave goods suggest that the site was 

in use during the 1st – 4th centuries AD. 

MDWR 466 and MDWR 468 – Assaid Seif undertook excavations of sites MDWR 466 

and MDWR 268 in 2009 and 2011 and using stratigraphic evidence and artefacts 

determined that the site was in use during the 1st – 4th century AD. The sites were 

located adjacent to one another and are thought to constitute part of the same cemetery. 

A total of 41 individuals were recovered from the excavations and at both sites 

inhumation was the only burial rite present. Single burials representing the majority of 

inhumations, however five graves did containe multiple burials. The inhumation rite 

showed some variation across both sites with a combination of simple pit burials, 

simple pits with stone cappings, stone cists, wooden coffins, terracotta and stone 
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sarcophagi being used. The MDWR sites were rich in grave goods with items such as 

glass vessels, spindles and spindle whorls, jewellery, coins, gold leaves, hobnails and 

shells included in many of the burials. 

MDWR 02 – The recent rescue excavation at MDWR 02 in 2011 by Assaad Seif 

resulted in the recovery of 89 individuals, all but one of which were inhumations 

interred in north–south and east–west orientations. The only cremation was interred in a 

lead urn. Grave types at the site varied considerably, and included simple pits, wooden 

coffins, terracotta sarcophagi, burial jars, a masonry tomb and a masonry tomb with 

multiple cells. Grave goods such coins, pottery vessels, glass vessels, jewellery, spindle 

whorls and metal objects were included in many of the burials. From these artefacts, 

pottery sherds and stratigraphy, the site was thought to be in use during the 1st century 

AD. 

RML 2385 – Dr. Assaad Seif (DGA) excavated Site RML 2385 in 2009. Dating of the 

site based on stratigraphic evidence, grave goods and pottery sherds suggest the site was 

in use from early 1st century BC to the 1st century AD. The human remains at RML 

2385 consisted of 25 inhumations interred in an east-west orientation, one cremation 

and 8 disarticulated contexts, truncated by later activity at the site. The majority of 

burials consist of simple pits, but there were also a small number of wooden coffins, a 

single lead urn, one hypogeum and four masonry tombs. Grave goods from the site 

include pottery and glass vessels, jewellery, coins, gold leaves and bone objects 

6.3.3 Michelet - Caen, France 

Michelet was a necropolis in Northern France and was excavated in 1990-93 as a result 

of building works commissioned by the municipality of Lisieux. Stratigraphic, 

artefactual and documentary evidence indicate that the cemetery was in use from the 
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late 3rd to 9th centuries AD. Inhumation was the predominant burial rite and 970 

individuals were recovered, of these 575 were in wooden coffins while eight, 3rd to 4th 

century AD individuals were interred in lead coffins, an uncommon occurrence for the 

region. Wooden underground burial chambers were also found during the excavations 

as well as a singular limestone sarcophagus used in an infant burial. Grave goods such 

as jewellery, hobnails, belt buckles, ceramics, glassware, wooden chests and leather 

bags were plentiful in the necropolis despite evidence for looting in some of the Roman 

graves (Paillard and Alduc-Le Bagousse, 2012). 

 

Figure 6.3 – Plan of the Michelet excavation site (Source: Paillard and Alduc-Le 

Bagousse, 2012). 

6.3.4 Santa Caterina - Barcelona, Spain 

The Santa Caterina necropolis was located just outside the city walls of the urban centre 

Barcino (Barcelona). Miró, Oliver and Grandos carried out initial rescue excavations in 

1984 and 1986, but it was in 1999 – 2002 that full excavation of the site was undertaken 

by Bordas and Torres to understand the evolution of the sites continuous occupation 
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from the Bronze Age through to the mid 13th century AD. From stratigraphic evidence 

the Roman necropolis is thought to have been in use during the 4th to 6th centuries AD, 

and was delineated by walls made with stone, mortar and ceramics. A total of 130 

individuals were recovered during the excavations, all of which were inhumation burials 

interred in southwest– northeast or northwest–southeast orientations. Despite the varied 

types of burials present (simple pits, coffins, amphorae, mausolea and tile burials), there 

was conformity in the position of the body. All adults were interred in extended and 

supine positions with their arms crossed over the pelvis or waist, and all of the infants 

were placed in a flexed position within amphorae (Aguelo et al., 2001; Arroyo et al., 

2005). 

 

Figure 6.4 – Plan of the Santa Caterina excavation site (Source: Arroyo et al., 

2005). 
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6.3.5 PERI 2 - Tarragona, Spain 

The PERI 2 Roman necropolis was located just outside the city walls of Tarraco 

(Tarragona), a major port city on the northeast coast of Spain, and was excavated in 

1979, 1994-96, and 2001 by the Museu Nacional Arqueològia de Tarragona (MNAT). 

Through the use of artefacts (pottery, coins etc.) and stratigraphic evidence the site is 

thought to have been in use during the 3rd to 4th centuries AD. A small number of 

cremations were recovered at the site, though inhumation was the predominant burial 

rite practiced at the PERI 2 necropolis, with a total of 431 individuals recovered during 

the excavations. The inhumation rite showed some variation across the site with a 

combination of amphora, wooden coffin, sarcophagi, double sloped tile and flat roof tile 

burials present. Despite this variability the majority of individuals were interred in a 

supine position with an east-west orientation. The PERI 2 necropolis was rich in grave 

goods, with items such as jewellery, ceramics, hobnails, buckles, coins and small 

mirrors included in many of the inhumation burials (i Prast, 2011). 

 

Figure 6.5 – Plan of the PERI 2 excavation site (Source: i Prast, 2011) 
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6.3.6 Western Emonske Necropolis - Ljubljana, Slovenia  

The Western Emonske Necropolis was uncovered during excavations by B. Hofman at 

the site of a 19th century tobacco factory in 2009. The 1st – 4th century necropolis was 

located outside the city walls of Emona (Ljubljana), alongside the Trieste road leading 

from the western side of the city. The necropolis was a mixed rite cemetery with 

cremations and inhumations present. The majority of cremation burials were in amphora 

or glass urns, with only a small number deposited directly into the ground. All 

inhumation burials were in rectangular tile graves and bone preservation was poor. 

Grave goods at the site included ceramic oil lamps and table vessels (Hofman, 2011; 

Hvalec et al., 2011). 

6.3.7 Primary Health Care Centre - Musselburgh, Scotland  

Excavations carried out by CFA Archaeology Ltd at Musselburgh in 2010 revealed 

archaeological features indicative of multi-phase activity. Four burial pits were 

identified as Iron Age, one of which was a stone-lined cist. All of the Iron Age pits 

contained fragmentary human remains, amounting to a minimum of six individuals (two 

pits contained double inhumations). A small number of grave goods were also 

recovered, including a brooch from one of the single burials. A further six inhumation 

burials, all without grave goods, were identified and radiocarbon dates suggest that they 

date from the Roman Period. Two skeletons displayed sharp force trauma to their 

cervical vertebrae and their skulls were displaced. Although the vertebrae of two other 

individuals were too fragmentary to observe any evidence of trauma, their skulls were 

also displaced indicating that these four individuals had been decapitated. The custom 

of decapitated burials is known from a number of Roman sites in England, most notably 
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York (Tucker et al., 2014), but this site would appear to be the first time that this 

custom has been identified in Scotland (Kirby, 2016, 2011).  

Figure 6.6 – Plan of the Musselburgh excavation site (Source: Kirby, 2016 in press. 

© CFA Archaeology Ltd) 

 

6.3.8 Lead coffin burials - York and Ilchester, England  

After accidental discovery by a local farmer while ploughing his land, a single Roman 

lead coffin burial was unearthed in York, England (Wilson, pers. comm.). The burial 

was subsequently excavated by Yorkshire Archaeological Trust in 2008, and analysed 

at the University of York. Osteological analysis suggests that the individual was an 

adult male over 45 years old (Wilson, pers. comm.). More recently a Roman 3rd – 4th 

century lead coffin burial was unearthed by a metal detectorist in Ilchester, England and 

excavated by South West Heritage in 2013 (Hopkinson, 2013). Analyses of the remains 

were carried out at the Biological Anthropology Research Centre (BARC), University 

of Bradford. Osteological analysis indicated that the human remains were those of a 
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young adult female, approximately 1.55m tall, with a well-healed rib fracture. Carbon 

and nitrogen isotope analysis revealed the individual to have had a terrestrial C3 based 

diet typical of Roman Britain (Hopkinson, 2013).  

Lead coffin burials are an uncommon burial rite in Roman-Britain and have previously 

been shown to be associated with migrants (Montgomery et al., 2010; Müldner et al., 

2011). These two burials provide a rare opportunity to explore the geographic origins of 

individuals with intrusive burial rites. Naturally, with any lead coffin burial there is 

always a concern regarding contamination of the human remains from the burial 

environment. However, a study using a Roman lead coffin burial from Spitalfields, 

London has shown that human tooth enamel samples can be successfully analysed from 

these types of burials without contamination masking in vivo isotope ratios 

(Montgomery et al., 2010). However, to ensure the validity of the results a small sample 

from both lead coffins were also analysed for comparison.  

6.4 Osteological analyses  

Biological identity typically refers to the age and sex of an individual. To establish the 

biological identity of the individuals used in this study, standard osteological methods 

of assessment were used (Brickley and McKinley, 2004; Buikstra and Ubelaker, 

1994). The level of preservation and completeness of the skeletal remains often dictates 

which methods can be applied during analysis. The burial environment (soil type, pH, 

moisture levels etc.) and subsequent post depositional activity (animal activity, land 

reuse etc.) can significantly influence the level of taphonomic damage to the bones 

(Walker, 1995, pp. 35–36), affecting which osteological methods can be applied to the 

skeletal remains. Therefore, not every osteological method was applied to every 

individual studied, instead the analysis was adapted to incorporate the methods most 



 122 

appropriate for the individual being analysed. The methods used in this study are 

separated according to their purpose (i.e. assessing sex or estimating age-at-death) and 

are discussed below.  

6.4.1 Sex assessment 

Observations of the morphological differences in the ossa coxae offer the highest 

accuracy levels for sex assessment, with reported confidence levels of 90–95% (Işcan 

and Derrick, 1984; Phenice, 1969). Morphological observations of the skull have also 

demonstrated high levels of accuracy for sex assessment; Walker’s (1995) method 

provides accuracy of ≥90% (Buikstra and Ubelaker, 1994; Loth and Henneberg, 1996). 

Other studies do not corroborate these results, reporting accuracy levels via skull 

morphology of 62-68% (Donnelly et al., 1998; Haun, 2000; Hill, 2000). However, 

removing subjectivity with metric analysis proved to be less reliable than the objective 

methods, yielding accuracy levels of 80-88% (Bongiovanni and Spradley, 2012; Giles 

and Elliot, 1963; Kocak et al., 2003; Meindl et al., 1985). Therefore, morphological 

differences were used for the purpose of this study. However, it is important to note that 

these morphological changes are most accurate once the individual reaches puberty, 

when skeletal material differentiates sufficiently for reliable sex assessment (White and 

Folkens, 2005). 

6.4.1.1 Adult sex assessment 

6.4.1.1.1 Sexually dimorphic pelvic traits 

The pelvis exhibits the highest level of sexual dimorphism in the human skeleton, due 

to the tight genetic controls surrounding its development. This makes it the most 

accurate and reliable indicator of adult skeletal sex. Generally, the male pelvis is larger 
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and more robust than the female pelvis. However, the female pelvis tends to be wider, 

with larger superior and inferior apertures to facilitate childbirth. As the morphological 

features of the pelvis used to assess sex are exhibited on a sliding scale between males 

and females, methods that provide a scale to assess sex allow for the natural variations 

seen between individuals of both sexes. One such method is Walker's (2005) five-point 

scale for assessing the sexual dimorphism of the greater sciatic notch (1 = female, 5 = 

male), which tends to be wider in females than males. The most reliable features of the 

pelvis for sex assessment are thought to be the Phenice traits on the pubic bone, which 

assesses the morphology of the ischio-pubic ramus, presence or absence of the ventral 

arc and the level of sub-pubic concavity (Phenice, 1969). As sexually dimorphic traits 

of the pelvis are thought to be more accurate than those of the skull, where possible 

pelvic traits (see Table 6.1) were used to assess the sex of each skeleton.  

Table 6.1 - Sexually dimorphic pelvic traits used for sex assessment 

Pelvic traits Male Female 

Acetabulum Large Small 

Auricular surface Large / Flat Small / Elevated 

Greater sciatic notch Narrow Wide 

Ilium Z shaped crest / High S shaped crest / Low 

Ischial tuberosity Large Small 

Obiturator foramen Large / Ovoid Small / Triangular 

Pelvic inlet Heart shaped Eliptical  

Pelvic outlet Narrow Wide  

Pre-auricular sulcus Absent Present  

Pubic bone length Short Long  

Sacrum Long / Narrow / Curved Short / Broad 

Ventral arc Absent Present  

(after Ferembach et al., 1979; Phenice, 1969; Walker, 2005) 

6.4.1.1.2 Sexually dimorphic cranial traits 

Although not as accurate as the pelvis due to the higher variability between individuals 

and populations (Mays and Cox, 2000; Meindl and Lovejoy, 1985), skull morphology 

can be useful in assessing the sex of an individual. As with the pelvis, differences in 

the morphological features of the skull are exhibited on a sliding scale between males 
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and females, although male skulls tend to be larger and more robust than female skulls. 

Again, Walker (2005) took into account this natural variation in male and female sexual 

dimorphism and developed a five-point scale for sex assessment using select features of 

the cranium and mandible. Other cranial traits such as the size of the orbits and mastoid 

processes or the prominence of muscle attachment sites have been suggested as sexually 

dimorphic (Buikstra and Ubelaker, 1994; Mays and Cox, 2000; Meindl and Lovejoy, 

1985; Rogers, 2005).  Where possible all sexually dimorphic traits of the skull (see 

Table 6.2) were used to assess sex. 

Table 6.2 - Sexually dimorphic traits of the skull used for sex assessment 

Skull traits Male Female 

Dental arcade Large / U-shaped Small / Parabolic 

Frontal eminence Small Pronounced 

Glabella Pronounced Faint 

Gonial angle Approx. 90o > 90o 

Gonial flaring Pronounced Slight 

Mastoid process Large Small 

Mental eminence Pronounced Indistinct 

Nuchal crest Pronounced Smooth 

Occipital area Robust Gracile 

Occipital condyles Large Small 

Orbits Rounded margins Sharpe margins 

Parietal eminence Small Pronounced 

Supra orbital margin Rounded Sharp 

Supra orbital ridge Pronounced Faint 

Zygomatic bone Large / Arched Small / Compressed 

Zygomatic arch Extends past E.A.M Short 

(after Walker, 2005) 

6.4.1.1.3 Metric sex assessment 

Metric analysis removes the innate subjectivity associated with macroscopic methods, 

and therefore has lower inter- and intra-observer errors than the macroscopic sex 

assessment methods described above (Adams and Byrd, 2002; Moore et al., 2016; 

Spradley and Jantz, 2011). Despite this, sex assessment using the morphology of the 

pelvis or skull is more accurate than metrical analysis. However, it does rely upon the 

skeletal elements being relatively well preserved. Therefore, postcranial metrics can 
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offer a useful additional method for the sex assessment of incomplete of fragmentary 

remains (Acsádi and Nemeskéri, 1970; Rogers, 1999). The measurements used for sex 

assessment are summarised in Table 6.3. 

Table 6.3 - Skeletal elements used for metric sex assessment 

Skeletal element Measurement Male (mm) Female (mm) 

Clavicle Maximum length >150  < 138  

Scapula Glenoid cavity width > 29  < 26  

Humerus Epicondylar breadth > 60.1  < 60.1  

 Vertical head diameter > 47  < 44.9  

Femur Maximum head diameter > 48  < 43  

 Epicondylar breadth > 76  < 74  

(after Bass, 2005) 

6.4.1.2 Non-adult sex assessment 

Many studies have attempted to develop techniques for juvenile sex assessment, 

yielding promising accuracy levels that ranged between 70-92% (Fazekas and KÓsa, 

1978; Loth and Henneberg, 2001; Schutkowski, 1993; Weaver, 1980).  Tests of these 

methods have not been able to reproduce these results, achieving accuracy levels below 

70% (Loth and Henneberg, 1996; Scheuer, 2002; Schutkowski, 1987). It is evident that 

population variation is a major limiting factor for non-adult sex assessment. Until 

geographically diverse studies are conducted to provide population specific standards, 

that are accurate and reliable (>90% confidence level), non-adult sex assessment is not 

possible (Veroni et al., 2010). While differences obviously exist they are as yet, not 

measurable; therefore non-adult sex assessment was not carried out during this study.  

6.4.1.3 Application of sex assessment methods 

Sex assessment was only carried out on adult (18+ years) individuals, using the methods 

outlined above (section 6.3.1). As certain skeletal elements provide higher accuracy 

when assessing sex those with stronger morphological associations with sexual 
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dimorphism were considered most indicative of sex. The results of the assessments were 

combined and used to place each individual into one of five categories (see Table 6.4), 

allowing for a degree of uncertainty that is often encountered when assessing 

fragmentary and incomplete remains. All non-adult individuals were categorised as 

indeterminate. 

Table 6.4 - Sex categories used 

Sex categories 

Male 

Female 

Probable male 

Probable female 

Indeterminate 

 

6.4.2 Age-at-death estimation 

An individual has two ages, a chronological age that refers to the time an individual has 

been alive, and a biological age, which refers to how old an individual looks 

physically. Although it is always desirable that biological age is consistent with 

chronological age, the biological age of an individual is often influenced by factors such 

as environment, genetics, disease and activity. Age estimations within adult skeletal 

remains (>18 years) are based upon age related degenerative changes observable in the 

joint surfaces and dentition; however some epiphyses do fuse during early adulthood (c. 

18-29 years). Within adult remains, various skeletal elements exhibit age related 

changes at differing rates in different individuals. Adding observer error to this creates 

substantial differences in estimates from actual chronological age. Therefore, current 

methods used to obtain age-at-death estimations tend to produce large age 

ranges (Buckberry, 2015; Buikstra and Konigsberg, 1985; Meindl et al., 1985). A 
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multifactorial approach to age-at-death estimation allows the comparison of average 

ages, providing estimates that correlate more accurately with chronological age than any 

singular ageing method (Mays, 2010). 

With regards to non-adults, skeletal maturation can significantly vary between 

individuals in response to environment, genetics, disease and secular changes. However, 

dental development is thought to continue in its regimented developmental patterns 

regardless of most external stressors (Lewis, 2007). As the remains of non-adults in 

archaeological contexts are usually, by definition, not healthy individuals it is 

reasonable to suggest that age-at-death estimation via skeletal maturation is likely to be 

inaccurate. Therefore, dental age-at-death estimation methods, which provide well-

documented and consistent stages of development, should be the primary method for 

non-adult age-at-death estimation (AlQahtani et al., 2010; Hillson, 1996). Long bone 

length and epiphyseal fusion can also provide accurate non-adult age-at-death estimates 

(Krogman and Işcan, 1986; Stewart, 1976; Ubelaker, 1987) and as with adults, a 

multifactorial approach is preferred, therefore they are also described below. 

6.4.2.1 Adult age-at-death estimation 

6.4.2.1.1 Dental attrition 

Dental attrition refers to wear patterns on teeth and can be used to estimate age-at-death 

by assessing the degree of attrition on the occlusal surface of the permanent molars 

(Brothwell, 1981; Brothwell and Powers, 1967; Mays, 2002). Studies have shown 

dental attrition to offer accurate age-at-death estimates that correlate well with ages 

obtained using the pubic symphysis (Buikstra and Ubelaker, 1994; Hillson, 1996; 

Lovejoy, 1985; Miles, 1962). As dentition is frequently recovered from the burial 

environment and resilient to diagenetic alteration it is a useful age-at-death estimation 
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method, although it is population specific. In this study Brothwell’s (1981) attrition 

method was used to estimate age-at-death of adult individuals.  

6.4.2.1.2 Pubic symphysis 

Todd (1920) pioneered the use of the pubic symphysis for age estimation, recording 

changes to the symphyseal surface (the anterior joint between the pubic bones of the 

pelvis). Tests of this method found it to significantly overestimate age after 40 years 

(Brooks, 1955), yet attempts to improve the method were unsuccessful (Gilbert and 

McKern, 1973; Katz and Suchey, 1986; McKern and Stewart, 1957; Meindl et al., 

1985). However, Brooks and Suchey (1990) devised the Suchey-Brooks 6 phase 

method, which built upon Todd’s (1920) work, improving the accuracy to a 95% 

confidence level. Although this method is sex specific, the phases can be combined to 

produce wide age ranges for those of indeterminate sex (Brooks and Suchey, 1990). The 

pubic bones are often absent or poorly preserved in archaeological remains, however 

due to the perceived high level of accuracy provided by the method it was applied when 

preservation and completeness allowed. 

6.4.2.1.3 Auricular surface 

The auricular surface is the joint between the ilia and sacrum, and is a popular target for 

age-at-death estimation methods because its robusticity results in high levels of 

preservation in the burial environment. Lovejoy et al. (1985) originally developed the 

use of the auricular surface (the joint between the ilia and sacrum) for age estimation. 

However, tests of this method have demonstrated inconsistent ageing accuracies and 

high levels of intra-observer error (Murray and Murray, 1991; Saunders et al., 1992). 

Buckberry and Chamberlain (2002) revised this method, proposing a technique that 

used a more objective scoring system, reduced inter- and intra-observer errors, was 
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independent of sex and had a better correlation with age than the Suchey-Brooks pubic 

symphysis method. Due to these improvements and the relative ease of its application, 

the Buckberry and Chamberlain (2002) method was used. 

6.4.2.1.4 Cranial suture closure 

At birth the bones of the skull are unfused and as individuals age the sutures (joints) 

between these bones gradually begin to fuse together, becoming less defined with 

increasing age. Cranial suture closure had been considered unreliable and inaccurate for 

decades (Brooks, 1955; McKern and Stewart, 1957), until Meindl and Lovejoy (1985) 

proposed a new method for observing the progression of suture closure at designated 

points on each of the cranial sutures. This new method reduced standard deviations and 

improved accuracy. Although they are not as reliable as other skeletal elements for 

ageing, they can contribute valuable information when used in conjunction with other 

methods (White and Folkens, 2005). 

6.4.2.1.5 Late fusing epiphyses 

Epiphyses are the articular ends of bones, at birth these are separated from the main 

body of the bone by cartilage and through gradual ossification with increasing age they 

eventually unite (fuse) with the rest of the bone. Observing the level of ossification at 

the epiphyses is generally used to estimate non-adult age-at-death. However, a small 

number of epiphyses, such as the sternal end of the clavicle, vertebral annular rings, S1 

to S2 in the sacrum, the iliac crest and the rib heads (Black and Scheuer, 1996; Scheuer 

and Black, 2000; Webb and Suchey, 1985) do not fully fuse until early adulthood. 

These provide an additional method of age-at-death estimation that is particularly useful 

in the assessment of incomplete or poorly preserved skeletons.  
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6.4.2.2 Non-adult age-at-death estimation 

6.4.2.2.1 Dental development and eruption 

It has been well established that endogenous and exogenous stress can have significant 

effects on skeletal maturation, with the exception of dental development, which remains 

consistent in its regimented development. To take advantage of this age related constant, 

multiple methods have been developed in an attempt to accurately assess tooth 

formation, root resorption and eruption patterns in non-adults as a method of age 

estimation (AlQahtani et al., 2010; Demirjain et al., 1973; Moorrees et al., 1963; Schour 

and Massler, 1941). However, Ubelaker (1987) highlights that different methods can 

often produce varying results from the same material due to population specific 

standards. As AlQahtani et al.’s (2010) dental atlas is not sex specific and visually easy 

to use, it was the method used to estimate non-adult age-at-death. 

6.4.2.2.2 Long bone length 

Long bone length as an indicator of age-at-death becomes less accurate with increasing 

age due to individual and population variation and sex differences (Ubelaker, 2005). 

Therefore, this method is most accurate in foetal and infant (under 1 year) remains 

(Ubelaker, 1987; Ubelaker, 1988). Both foetal long bone length (Scheuer et al., 1980) 

and non-adult diaphyseal length (Scheuer and Black, 2000) were used to estimate age-

at-death were preservation allowed. 

6.4.2.2.3 Epiphyseal fusion 

The gradual fusion of skeletal epiphyses predominantly occurs during early childhood 

and puberty. The first to ossify are the bones of the skull and vertebrae, usually fusing 

during early childhood, while long bone epiphyses and those of the pelvis tend to 
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continue fusing throughout adolescence (Scheuer and Black, 2000). Although the age 

ranges associated with epiphyseal fusion is sex specific, they can be combined to 

produce wider age ranges that can be applied to individuals of indeterminate sex. As sex 

assessment of non-adults is currently difficult to conduct with an acceptable level of 

accuracy, a combined age range is the most appropriate range to be applied. As with late 

fusing epiphyses in young adults, observing the level of fusion in non-adults is a useful 

method for age-at-death estimates in incomplete or poorly reserved immature skeletons. 

6.4.2.3 Application of age-at-death estimation methods 

A multifactorial approach to estimating age-at-death was carried out using the methods 

outlined above. Using multiple methods on each individual produced a number of age 

ranges, which were combined to provide a single, overall age range for each 

individual. To facilitate the collation and comparison of age related data, ordinal age 

groups were used to create broad age categories (see Table 6.5). The ranges at which the 

age-at-death estimation methods overlapped were used to determine which age category 

an individual was placed into. Obtaining an age range for any given individual is 

dependent upon the level of preservation and completeness of the skeleton. In instances 

where only a minimum age could be estimated the individual was categorised as either 

adult or non-adult, and in those where estimating age-at-death was not possible an 

indeterminate category was included.  
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Table 6.5 - Age categories used 

Age category Age range 

Foetal <40 weeks in utero 

Infant 0 - 1 year 

Young juvenile 2 - 6 years 

Older juvenile 7 - 12 years 

Adolescent 13 - 18 years 

Young adult 19 - 25 years 

Middle adult 26 - 44 years 

Mature adult 45+ years 

Adult 18+ years 

Non-adult <18 years 

Indeterminate - 

 

6.4.3 Palaeopathological analysis 

In skeletal populations, disease is identified through the observation of pathological 

alterations on the skeleton (Siek, 2013). However, those that die shortly after 

contracting an illness will show no skeletal indicators of disease, while those that 

survive longer with an illness will develop observable pathological lesions (Siek, 2013). 

This osteological paradox is well documented (DeWitte and Stojanowski, 2015; Wood 

et al., 1992), and although non-adult individuals in skeletal populations are not healthy 

irrespective of the presence or absence of skleletal lesions, for the purpose of this study 

the category ‘without disease’ has been used where no visible skeletal alterations are 

present. However, it is acknowledged that these individuals do not represent healthy 

children.  

Due to the clinical manifestations of lead poisoning (see Chapter 4), palaeopathological 

analysis of the non-adult individuals focused on the identification of metabolic diseases. 

Although all pathological alterations present were recorded (i.e. non-specific infection, 

congenital abnormalities) their inclusion was outside the scope of this thesis. Therefore, 

the following section only outlines the palaeopathological features of the metabolic 

diseases often associated with lead poisoning and the parameters used to diagnose these 

diseases within the skeletal assemblages. No radiographs were available for any of the 
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study sites; therefore diagnoses were made solely from macroscopic examination of the 

skeletal material.  

6.4.3.1 Carious lesions 

Carious lesions were macroscopically identified as the localised destruction of dental 

tissues (Hillson, 1996; Waldron, 2009, pp. 237–8), and were recorded as present or 

absent and by tooth position.  Lesion size was estimated as small, medium, large, or 

total destruction (complete loss of the crown).  The position on the tooth (crown, 

cemento-enamel junction, mesial, buccal etc) was also recorded.  

6.4.3.2 Enamel hypoplasia 

Enamel hypoplasia was identified as linear furrows, pitting, or grooves in the enamel 

surface of teeth (Ortner, 2003; Waldron, 2009, p. 244). The presence and tooth position 

of the defect was recorded and categorised in accordance with the guidelines outlined 

by Ogden et al., (2007) (see Fig. 6.7).  

 

Figure 6.7 – Categories of enamel hypoplasia (Source: Ogden et al., 2007). 
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6.4.3.3 Cribra orbitalia and porotic hyperostosis 

Cribra orbitalia was identified as abnormal pitting or porosity of the orbital roofs and 

recorded for each orbit using the Stuart-Macadam (1991) grading system (see Table 6.6). 

Distinctions were made between headed/inactive and active cribra orbitalia based on the 

appearance of the lesions. Inactive cribra orbitalia was identified from the presence of 

smooth-edged lesions, while active lesions were identified from the presence of sharp 

edges (Mensforth et al., 1978, p. 23).  Porotic hyperostosis was identified as pitting 

and/or porosity on the ectocranial surfaces of the skull and recorded as either present or 

absent (Mann and Hunt, 2013, p. 28; Waldron, 2009, p. 137). The presence or absence 

of marrow hyperplasia (thickening) of the cranial vault bones was also recorded. 

Table 6.6 – Codes and pathological descriptions for presence and severity of cribra 

orbitalia 

Score Description 

0 No change to the bone surface 

1 Capillary like impressions on the bone 

2 Scattered foramina 

3 Large and small isolated foramina 

4 Foramina have linked into a trabecular structure 

5 Outgrowth in trabecular form from the outer table surface 

 (after Stuart-Macadam 1991: 109) 

6.4.3.4 Rickets 

A multitude of developmental and pathological processes can cause osseous changes 

similar to those seen in vitamin D deficient non-adults. However, rickets is generally 

identified by the presence of the bowing of the long bones and/or the presence of 

widened, cupped and porous/frayed (‘brush end’) epiphyses, sternal rib-end flaring 

(‘rachitic rosary’) and cranial vault thinning (Waldron, 2009, p. 129). Additional 
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manifestations of the disease in non-adults can also include orbital roof porosity, 

deformation of the mandibular ramus, porosity of the sternal rib-ends and deformation 

of the ribs (Brickley et al., 2005; Brickley and Ives, 2010; Mays et al., 2006; Ortner, 

2003; Ortner and Mays, 1998). Using the published diagnostic criteria outlined in Table 

6.7, macroscopic lesions were recorded as either present or absent. A diagnosis of 

rickets was only recorded if three or more probable rachitic features were present, or if 

there were bending deformities of the long bones plus one other feature. Individuals 

exhibiting no probable features but three or more possible features alongside any non-

diagnostic features were considered as possibly rachitic. Using Ortner and Mays (1998) 

definition, a distinction was also made between healed and active rickets.  

Table 6.7 – Rachitic lesions used in the identification of rickets and their diagnostic 

category. 

Diagnostic category Probable Possible Non diagnostic 

Cranial Deformed mandibular 

ramus 

Cranial vault porosity Delayed Closure of 

frontanelles 

  Orbital roof porosity Cranial bone thinning 

  Layers of spiculated, 

irregular porous bone 

can occur during 

healing when osteiod is 

mineralised 

Frontal and parietal 

bossing 

   Craniotabes (softening 

of bone behind ears 

over occipital region & 

adjacent to lambdoid 

suture) 

   Formation of large, 

square-shaped head 

Post-cranial Deformed arm bones Flaring of sternal rib-

ends 

Superior flattening of 

the femora 

 Deformed leg bones Porosity of sternal rib-

ends 

 

 Ilium concavity Long-bone 

metaphyseal flaring 

 

 Altered rib angle Long-bone thickening  

  Porous roughening of 

long-bone metaphyses 

 

  Long-bone concave 

curvature porosity 

 

(after Brickley and Ives, 2010; Hess, 1930; Mays et al., 2006; Ortner and Mays, 1998; Pettifor, 2011) 

 

https://www.sciencedirect.com/science/article/pii/S187998171730044X#tbl0005
https://www.sciencedirect.com/science/article/pii/S187998171730044X#tbl0005
https://www.sciencedirect.com/topics/medicine-and-dentistry/lesion
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6.4.3.5 Scurvy 

Pathological alterations indicative of scurvy primarily consist of porotic hyperostosis, 

cribra orbitalia and abnormal porosity (often with periosteal new bone formation) in the 

scapulae, long bone metaphyses, and mandible (Waldron, 2009, p. 132). These lesions 

tend to manifest bilaterally and are thought to be caused by chronic, low-grade 

haemorrhage of weakened blood vessels, predominantly at muscle attachment sites, 

which stimulates an inflammatory response (Ortner et al., 2001, 1999; Ortner and 

Ericksen, 1997). Although abnormal porosity is the primary lesion associated with 

scurvy, it is also common to many other disease processes such as specific and non-

specific infection, haemoglobinopathies, anaemias, and other metabolic disorders 

(Brown and Ortner, 2011; Lagia et al., 2007). It is therefore important to analyse the 

porosity in relation to its distribution across the entire skeleton. Using the published 

diagnostic criteria outlined in Table 6.8, macroscopic lesions were recorded as either 

present or absent. If three or more probable scorbutic features were present, the 

individual was recorded as scorbutic, while individuals exhibiting no probable features 

but three or more possible features alongside any non-diagnostic features were 

considered as possibly scorbutic.  

 

 

 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/lesion
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Table 6.8 – Scorbutic lesions used in the identification of scurvy and their 

diagnostic category. 

Diagnostic category Probable Possible Non diagnostic 

Cranial Porosity and/or new 

bone formation on the 

greater wing of the 

sphenoid 

Porosity in the 

mandibular coronoid 

fossae 

Porosity on the palate 

of the maxilla 

 Porosity on the 

posterior aspect of the 

mandible 

Porosity and/or new 

bone formation on the 

lesser wing of the 

sphenoid 

Porosity on the 

maxillary and/or 

mandibular alveola 

processes 

 Porosity in the 

temporal bone 

Porosity at the 

infraorbital foramen on 

the maxilla 

Porosity and/or new 

bone formation on the 

endocranium 

  Porosity and/or new 

bone formation on the 

orbital roof 

 

  Porosity and/or new 

bone formation on the 

pars basilaris 

 

Post-cranial Porosity and/or new 

bone formation in the 

supraspinous and/or 

infraspinous fossae 

Metaphyseal flaring of 

long bones 

Porosity and/or new 

bone formation on the 

long bones 

  Flaring of sternal rib-

ends 

Metaphyseal porosity 

 

 

6.5 Data recording 

Osteological and palaeopathological data were recorded on recording forms adapted 

from Buikstra and Ubelaker (1994) and Brickley and McKinley (2004). A Microsoft 

Excel database was created to collate osteological, contextual and isotope data. 

Dropdown options were inserted into the database where applicable to standardise and 

reduce errors in data entry. 

(after Brickley and Ives, 2010, 2006; Geber and Murphy, 2012; Moore and Koon, 2017; Ortner, 

2003; Ortner et al., 2001, 1999; Ortner and Ericksen, 1997) 
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6.6 Sampling strategy 

Due to its high resistance to diagenetic alteration and retention of in vivo elemental 

concentrations, dental enamel was targeted for trace element and isotope ratio analyses. 

All of the teeth selected for analysis were, where possible, free from pathological 

alterations (e.g. enamel hypoplasia etc.) and dental modifications, and where 

preservation allowed the selected tooth’s antimere was present. Depending on 

availability, samples from 12 adults (six females and six males) and 20 non-adults (10 

with skeletal evidence of metabolic disease and 10 without) were to be collected from 

each site. 

6.7 Tooth selection 

As different teeth form and mineralise at different times during childhood, the lead 

contained within different teeth reflects the lead acquired at different times of life. To 

ensure the tooth enamel analysed for lead isotope ratios did not contain any lead from 

the mother (acquired in utero and during breastfeeding), who may have had a different 

geographical origin to her child, the 2nd molar or 2nd premolar were selected from adult 

individuals. Both of these teeth begin forming at around three years of age and should 

provide isotope ratios congruent with the geographical region in which the individual 

spent their childhood. Trace element and isotope ratio analyses of the adult individuals 

was also carried out on permanent 2nd molars or 2nd premolars, the mineralisation times 

of these teeth overlap with those of deciduous teeth allowing comparisons of childhood 

lead exposure. In non-adult individuals, deciduous incisors were preferentially selected 

for sampling as they are the earliest forming teeth and therefore facilitate the analysis of 

children as young as 30 weeks in utero. If these preferred teeth were unavailable, either 
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due to insufficient skeletal preservation or incompleteness, the earliest forming tooth 

available was selected in non-adults while the 3rd molar was used as a substitute in adult 

individuals. Tables 6.9 and 6.10 summarise the samples collected during the course of 

this study. 

 

Table 6.9 – Summary of permanent teeth from adults sampled for lead isotope and 

trace element analyses. 

Site 
Adult 

male 

Adult 

female 

Adult 

Indet. 

Tooth Type 

Mandibular Maxillary 

PM2 M2 M3 PM2 M2 M3 

Alba Iulia, 

Romania 5 5 1 2 2 2 2 3 - 

Barcelona, Spain 5 7 1 1 4 1 4 2 1 

Beirut, Lebanon 6 6 4 7 4 - 5 - - 

Caen,  

France 7 7 - 3 4 - 3 2 2 

Ljubljana, 

Slovenia - - 5 2 - - 1 2 - 

Musselburgh, 

Scotland 6 - - 2 4 - - - - 

Tarragona, Spain 7 5 - - 3 - 2 6 1 

Lead coffins, 

England 1 1 - - 2 - - - - 

Total 37 31 11 17 23 3 17 15 4 

Key: Indet. = Indeterminate; PM2 = Permanent 2nd premolar; M2 = Permanent 2nd molar; M3 = 

Permanent 3rd molar. 
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Table 6.10 – Summary of deciduous teeth from non-adults sampled for trace 

element analyses. 

Site 
No.  

Individuals 

Tooth Type 

Mandibular Maxillary 

I(d) C(d) M1(d) M2(d) I(d) C(d) M1(d) M2(d) 

Alba Iulia,  

Romania 22 6 - 4 2 9 1 - - 

Barcelona,  

Spain 21 5 - 1 1 9 2 - 3 

Beirut,  

Lebanon 20 3 2 4 - 6 4 - 1 

Caen,  

France 22 3 - - 1 11 1 3 3 

Ljubljana,  

Slovenia 3 - - 1 - - - - 2 

Tarragona,  

Spain 15 - - - 2 12 - - 1 

Total 103 17 2 10 6 47 8 3 10 

Key: I(d) = Deciduous incisor; C(d)  = Deciduous canine; M1(d)  = Deciduous 1st molar; M2(d)  = 

Deciduous 2nd molar 

 

6.8 Isotope analysis 

Two of the main aims of this study are to explore how exposure to anthropogenic lead 

affected childhood health and investigate the variability of lead isotope ratios within the 

Roman Empire. In order to assess how lead burdens affected childhood health in Roman 

populations trace element analysis was carried out on all permanent and deciduous teeth 

collected during this study to determine their lead concentrations (ppm).  To explore the 

variability of lead isotopes within the Roman Empire lead isotope analysis was carried 

out, and although not a main focus of this research, strontium was also analysed. 

Strontium isotope ratios are a well-established method for exploring mobility in 

bioarchaeological studies (see Chapter 3). However, as similar terrains are found across 

large expanses of northern Europe and Britain, strontium isotope ratios are often 

insufficiently unique enough to differentiate between people from different regions that 
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have similar geology. As lead in Roman individuals is thought to derive mostly from 

anthropogenic ore exposure not solely local geology, it is possible that lead may show 

more cultural variability across Europe than strontium. To explore the variability of lead 

in comparison to strontium within the Roman Empire and to assess whether the 

combination of lead and strontium can improve not only our ability to identify migrants 

within skeletal populations but also narrow down possible regions of origin, both 

strontium and lead isotope ratios were analysed in all permanent teeth collected from 

adult individuals.  

6.8.1 Sample preparation 

Initial sample preparation was carried out at Durham University Isotope Laboratory, 

following procedures outlined by Montgomery (2002). The enamel surface was abraded 

using a tungsten carbide dental bur to remove surface contamination. Following this, a 

chip of core enamel approximately 20–30 mg in weight was removed using a flexible 

diamond edged rotary saw, all exposed surfaces of the chip were abraded to remove any 

adhering dentine and potential sources of contamination. All dental tools were cleaned 

between samples via ultrasonication in Decon for 5 minutes and rinsed three times with 

ultra-pure deionised water. Clean core enamel chips were sealed in microcentrifuge 

tubes and transferred to the Class 100, HEPA filtered laboratory facilities at the Natural 

Environment Research Council Isotope and Geoscience Laboratory (NIGL) in 

Keyworth, Nottingham.  

At NIGL all enamel samples were rinsed three times with high purity water (Millipore 

Alpha Q), and then soaked at 60 °C for one hour. The samples were then rinsed again 

before being leached with 0.2M HCl for five minutes. After a final rinse, the samples 

were dried and transferred into pre-cleaned Teflon beakers and dissolved in 8M HNO3. 
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Samples were converted to chloride using 6 M HCl, taken up in titrated 2.5 M HCl and 

pipetted onto ion-exchange chromatography columns. The strontium was separated 

using a Dowex® resin. The washes from the chloride samples were collected, dried 

down and converted to a bromide form using HBr to facilitate the separation of lead 

using conventional anion exchange methods. In preparation for lead concentration 

analysis, which was carried out separately to lead isotope ratio determination, all 

samples were diluted with 1% v/v HNO3. 0.5% v/v HCl before ICP-MS analysis was 

carried out. 

6.8.2 Mass spectrometry 

6.8.2.1 Strontium isotope analysis 

Strontium isotope ratios were determined by thermal ionisation mass spectrometry 

(TIMS) using a ThermoTriton automated multi-collector mass spectrometer. Using a 

method adapted from Birck (1986), samples were loaded onto single Rhenium (Re) 

filaments with TaF activator to enhance stability and sensitivity. The reproducibility of 

the international standard reference material (NBS987) was 0.710255 ± 0.000010 (n=54, 

2 sd), and all data was normalised to the NBS987 accepted value 0.710250.  

6.8.2.2 Lead isotope analysis 

Lead isotope ratios were determined by multi-collector inductively coupled plasma 

mass spectrometry (MC-ICP-MS) using a Nu Plasma HR with an average 

reproducibility (2 sd) of 206Pb/204Pb = 0.009%; 207Pb/204Pb = 0.008%; 208Pb/204Pb 

= 0.01%; 207Pb/206Pb = 0.003%; 208Pb/206Pb = 0.005%. Before analysis all samples were 

spiked with a thallium (Tl) solution and normalised to NBS981. When lead 

concentration yields were low, MC-ICP-MS using a Thermo Fisher Scientific 
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NEPTUNE Plus with an X-Skimmer cone was used with average reproducibility (2 sd) 

of 206Pb/204Pb = 0.010%; 207Pb/204Pb = 0.014%; 208Pb/204Pb = 0.019%’ 207Pb/206Pb = 

0.006%; 208Pb/206Pb = 0.012%.  

6.8.2.3 Trace element analysis 

Trace element analysis to determine lead concentration results was conducted using 

inductively coupled plasma mass spectrometry (ICP-MS) using an Agilent 7500cx ICP-

MS fitted with a CETAC ASX-520 autosampler with an average reproducibility (2 sd) 

of 0.01%. The transfer of samples to the ICP-MS from the autosampler was controlled 

by a CETAC ASXpress + vacuum pump. Multi-element quality control check standards 

were analysed at the start and end of each run and after no more than every 20 samples. 

To overcome polyatomic interferences the ICP-MS collision cell was operated in He 

mode at a flow rate of 5.5 ml min-1 for all analytes except Se, for which H2 gas was used 

at 4.5ml min-1. Quantitative data analysis was carried out using MassHunter 

Workstation software (Agilent). 

6.9 Data comparisons 

When comparing lead concentrations between non-adults with evidence of disease and 

those without it was imperative to be certain that those in the category ‘without disease’ 

showed no evidence of metabolic stress. Therefore, only non-adult individuals that 

could be identified with certainty as not having any skeletal manifestations of metabolic 

disease were included in the comparison of palaeopathological data and lead 

concentrations. Any non-adult individual with low preservation and/or completeness 

levels that inhibited the assessment of pathological alterations to the entire skeleton 
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were excluded from this phase of the analysis. Although this reduced sample sizes it did 

ensure that individuals were not assigned to incorrect categories. 

Open access databases such as the Oxford Archaeological Lead Isotope Database 

(OXALID) were used to gather comparative lead isotope datasets to determine whether 

the data from the human samples reflected local lead isotope characteristics. Isotope 

ratios from contemporaneous human samples were also included in comparisons where 

published data was available. 

6.10 Statistical analyses 

Due to the non-parametric nature of the data, box and whisker plots were produced to 

graphically display the range and skewness of the data. To better visualise the 

differences between certain groups some y-axis ranges were reduced to enlarge the plots. 

Where this resulted in the exclusion of some extreme outliers from the plots, the 

outlying data points were described in the figure captions. For the statistical analysis of 

two independent groups the Mann-Whitney U test was applied, and when comparing 

more than two independent groups the Kruskal-Wallace test was used. Both statistical 

tests were run using the IBM SPSS programme version 0.2 for Microsoft Windows and 

a p-value of 0.05 was set as the level of significance to best correct for type one and 

type two errors (Madrigal, 2012, p. 94).  
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CHAPTER SEVEN 

Lead Concentrations and Health 

7.1 Introduction  

By their very nature human skeletal remains offer a direct link to people in the past, 

providing a rich source of information pertaining to the lives and living conditions of 

past populations (Scott, 2013). Paired osteological evidence of disease and tooth enamel 

lead concentration (ppm) analyses allows exploitation of this link, facilitating a better 

understanding of how lead exposure affected the health and mortality of children within 

the Roman Empire. This chapter will discuss the results of the lead concentration 

analysis and how it relates to Roman childhood health and mortality from different 

regions of the empire. The results are separated into two sections. The first section 

assesses inter-dental variations and population differences in lead concentrations, while 

the second section focuses on how lead exposure impacted upon childhood health and 

mortality. The results are then discussed together (section 7.6) to present a 

comprehensive review of how trace element analysis of polluted populations can inform 

our understanding of the lives of people in the past. 

The study population includes 176 individuals (66 adults and 110 non-adults) from five, 

1st to 4th century AD sites located in different regions of the Roman Empire. Skeletal 

material was assessed to determine age-at-death, sex (of adults only) and the presence 

of disease (see Table 7.1). A detailed summary of the results from the lead and 

osteological analyses of each individual included in this study is tabulated in Appendix 

A1.  
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Table 7.1 –Summary of the number of individuals in the sample populations. 

Site Location 
Total 

Adults 
Male Female 

Total 

Non-

adults 

Metabolic 

disease 

Dealul 

Furcilor 
Alba Iulia, 

Romania 
10 5 5 27 7 

Michelet 
Caen, 

France 14 7 7 23 9 

Multiple 
Beirut, 

Lebanon 17 6 10 23 0 

PERI 2 
Tarragona, 

Spain 12 7 5 15 7 

Santa 

Caterina 

Barcelona, 

Spain 13 5 7 23 10 

 Total 66 30 34 110 33 

 

7.2 Inter-dental variations  

Within archaeological contexts teeth tend to have the highest level of preservation of 

any surviving skeletal material, and are highly resistant to diagenetic alteration. Thus, 

making them prime sampling material for trace element analysis. Understanding how 

heavy metals such as lead are incorporated into and distributed between different tooth 

types is important not only for the interpretation of such data, but also in how data 

between studies can be compared (Rabinowitz et al., 1991). The majority of published 

research on dental lead concentrations has been conducted on modern populations as a 

means of assessing the usefulness of teeth as an indicator of environmental lead 

exposure (Amr et al., 2010; Arora et al., 2006; Bayo et al., 2001; Kamberi et al., 2011; 

Karahalil et al., 2007; Negrea et al., 2008; Olympio et al., 2010). Due to their natural 

exfoliation, and therefore easy collection, deciduous teeth are often used as an indicator 

of childhood lead exposure and consequently, body lead burdens (Barbosa et al., 2005; 

Fergusson et al., 1988; Malara et al., 2006; Needleman et al., 1972).  



 147 

Comparison of tooth enamel lead concentrations from the permanent (n = 92) and 

deciduous (n = 84) teeth analysed in this study showed that deciduous teeth had higher 

lead concentrations (median = 5.8 ppm) than permanent teeth (median = 2.4 ppm) (see 

Fig. 7.1). This is consistent with previous studies that found that deciduous teeth had 

statistically significantly higher lead concentrations than permanent teeth (Shapiro et al., 

1972). It is thought that this difference in lead concentrations is due to age related 

differences in lead absorption rates from the gastrointestinal tract. Although enamel lead 

concentrations in both deciduous and permanent teeth represent childhood lead 

exposure, different teeth form at different ages. As absorption rates from ingested lead 

decrease with increasing age, the disparity between permanent and deciduous tooth 

enamel lead concentrations could represent higher lead absorption rates during the 

development of earlier forming teeth (Paterson et al., 1988; Purchase and Fergusson, 

1986; Rabinowitz et al., 1991; Selypes et al., 1997). Diet could also be linked to this. 

Studies have demonstrated that diet and nutrition can have significant effects on the 

absorption rates of lead from the gastrointestinal tract (Barltrop and Khoo, 1975). For 

example, diets low in iron or high in vitamin D and fats tend to increase the amount of 

lead absorbed, while diets high in fibre decrease lead absorption (Baernstein and Grand, 

1942; Barltrop and Khoo, 1975; Sobel et al., 1940). Additionally, liquid diets such as 

the predominantly milk-based diet fed to infants and young children, also increase the 

amount of lead absorbed through the gastrointestinal tract (Kello and Kostial, 1973). 

Although a diet high in mineral content has proven to reduce lead absorption, the high 

calcium content of milk does not appear to be able to completely counteract the 

increased absorption rates associated with a liquid diet (Barltrop and Khoo, 1975). This 

may be due to the high fat and protein content of milk, both of which have been shown 

to increase the uptake of dietary lead. As such, the different types of diets given to 
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children during different stages of childhood, and therefore while different teeth are 

mineralising, may also influence the amount of lead incorporated into deciduous and 

permanent teeth. 

 

Figure 7.1 – Comparison of lead concentrations by tooth type. 

Permanent: median = 2.4 ppm (n = 92), Deciduous: median = 5.8 ppm (n = 84). An 

outlier in the deciduous group with a lead concentration of 187 ppm is not shown on the 

plot due to reduced y-axis scale. 

A number of studies have demonstrated that factors such as tooth type, tooth location 

(mandibular or maxillary), and dental material analysed (dentine, enamel etc.), may 

significantly influence the lead concentrations obtained from teeth (Kamberi et al., 

2012). If, as suggested above, higher lead concentrations in deciduous teeth were a 

result of higher absorption rates in young children, a negative correlation between lead 

concentration and age of tooth formation would be expected. However, this is not the 

case. Some studies have shown that deciduous incisors have higher lead concentrations 

than deciduous molars (Mackie et al., 1977; Pinchin et al., 1978), while others have 
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reported contrasting patterns in lead concentrations between deciduous incisors and 

deciduous canines (Paterson et al., 1988; Shapiro et al., 1975).  

When lead concentrations between tooth types were compared in this study, no 

significant differences were observed between the permanent tooth types (see Fig. 7.2). 

Comparison of the deciduous teeth showed that canines had higher lead concentrations 

(median = 12.2 ppm) than the deciduous incisors (median = 5.8 ppm), first molars 

(median = 5.2 ppm) and second molars (median = 3.3 ppm) (see Fig. 7.3). Although the 

canines had more than double the lead concentrations seen in the other deciduous tooth 

types, only the second molars showed a significant difference (Kruskal-Wallis X2 = 

3.841, p = 0.0256). Canines begin development approximately one month after incisors 

(Gustafson and Koch, 1974). Therefore, if lead levels were simply a function of age, 

incisors (the earliest forming tooth) would be expected to have the highest lead 

concentrations. An important consideration here is also the length of time it takes for 

each tooth type to reach complete mineralisation of the crown enamel. It is reasonable 

to suggest that the longer tooth enamel takes to mineralise the more opportunity there is 

for the accumulation of lead within the mineral matrices. If this were a limiting factor to 

lead acquisition in tooth enamel the teeth that take the longest to mineralise, such as the 

deciduous canines and second molars (approximately 13 months), would have 

consistently higher lead concentrations than deciduous incisors and first molars which 

take approximately 9 – 10 months to complete mineralisation (Gustafson and Koch, 

1974). While the median lead concentration obtained for the deciduous incisors, canines 

and first molars in this study do fit with this hypothesis, the second molars do not. As 

such, these results support the presupposition that physiological factors such as age and 

enamel mineralisation time are unlikely to be the dominant mechanism behind lead 

accumulation in teeth. However, other physiological facors such as periods of rapid 
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growth (growth spurts) and changes to diet must be considered. It is well documented 

that children have growth spurts during the first year of life, again between the ages of 

six to eight years (mid-growth spurt), and then finally during adolescence between the 

ages of 13 to 18 years (pubertal growth spurt) (Tanner, 1988). If these growth spurts and 

changes in diet such as weaning, which tends to occur around the age of two to three 

years (Dupras, 2001) affected natural accumulation of lead in tooth enamel then 

increases in lead concentrations would be expected to be seen in teeth mineralising 

during these times. Again, this is not the case, and studies have shown that after the 

removal of the very outer surface of enamel to eliminate environmental contamination, 

lead concentrations do not significantly vary spatially within deciduous teeth, 

suggesting that tooth enamel matures homogenously before eruption (Tacail et al., 

2017). Therefore, although the mechanisms behind the incorporation of lead in to tooth 

enamel is highly complex and poorly understood, changes in levels of exposure during 

the formation of different tooth types is the most likely cause for these disparate 

concentrations.   
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Figure 7.2 – Comparison of lead concentrations by permanent tooth type. 

Incisor: median = 3.8 ppm (n = 14), 2nd Premolars: median = 2.2 ppm (n = 36), 2nd 

Molars: median = 2.8 ppm (n = 39) and 3rd Molars: median = 2.23 ppm (n = 7). An 

outlier in the incisor group with a lead concentration of 59.62 ppm is not shown on the 

plot due to reduced y-axis scale. 

 

 

Figure 7.3 – Comparison of lead concentrations by deciduous tooth type. 

Incisors: median = 5.8 ppm (n = 49), Canines: median = 12.2 ppm (n = 10), 1st 

Molars: median = 5.2 ppm (n = 11) and 2nd Molars: median = 3.3 ppm (n = 14). An 

outlier in the incisor group with a lead concentration of 187 ppm is not shown on the 

plot due to reduced y-axis scale. 
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 As with tooth type, comparisons of lead concentrations in mandibular and maxillary 

teeth have demonstrated great variability between studies. Some indicating maxillary 

teeth have higher lead concentrations than mandibular teeth (Pinchin et al., 1978), and 

others demonstrating the opposite (Smith et al., 1983). Although mandibular teeth begin 

developing slightly earlier (approximately 1 month) than maxillary teeth (Gustafson and 

Koch, 1974) a comparison of the two in this study showed that maxillary teeth had 

higher lead concentrations than mandibular teeth in both the permanent and deciduous 

dentition (see Fig. 7.4). However, these differences were not statistically significant 

(Kruskal-Wallis, X2 = 3.841, p = 0.0903). When the median lead concentrations for the 

samples were compared by country, the same trend was seen across all four sites (see 

Fig. 7.5). However, the mandibular teeth from Lebanon and Romania showed greater 

range in lead concentrations than their maxillary counterparts. This consistency in 

elevated maxillary teeth lead concentrations across countries is surprising considering 

the divergent results seen between mandibular and maxillary teeth in other studies 

(Pinchin et al., 1978; Smith et al., 1983).  
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Figure 7.4 – Comparison of lead concentrations in maxillary and mandibular 

dentition. Deciduous maxillary: median = 6.8 ppm (n = 57), Deciduous mandibular: 

median = 5.2 ppm (n = 27), Permanent maxillary: median = 3.8 ppm (n = 53) and 

Permanent mandibular: median = 2.4 ppm (n = 39). An outlier in the deciduous 

maxillary group with a lead concentration of 187 ppm is not shown on the plot due to 

reduced y-axis scale. 

 

Figure 7.5 – Comparison of lead concentrations in maxillary and mandibular 

dentition by country. Romania maxillary: median = 2.9 ppm (n = 22), Romania 

mandibular: median = 1.7 ppm (n = 15), France maxillary: median = 4.5 ppm (n = 26), 

France mandibular: median = 1.9 ppm (n = 11), Lebanon maxillary: median = 6.7 ppm 

(n = 19), Lebanon mandibular: median = 5.0 ppm (n = 21), Spain maxillary: median = 

6.5 ppm (n = 44) and Spain mandibular: median = 3.9 ppm (n = 19). An outlier in the 

Spain maxillary group (187 ppm) and Spain mandibular group (59.63 ppm) are not 

shown on the plot due to reduced y-axis scale. 
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The results of this study, alongside previously published research (Pinchin et al., 1978; 

Smith et al., 1983) demonstrate the non-uniform distribution of lead within teeth. There 

is no consensus on which dental arcade (maxillary or mandibular) provides the highest 

concentrations, or whether there are any patterns to which type of tooth will yield the 

highest amount of lead. The significant discrepancies between studies suggest that these 

variations in lead concentrations are probably not due to physiological factors (blood 

supply, time of formation etc.), but rather a product of fluctuations in environmental 

exposure. It is doubtful that anyone experiences a continuous and consistent level of 

lead exposure for any prolonged period of time. In fact, modern studies have shown that 

children’s levels of lead exposure have a tendency to fluctuate seasonally (Kemp et al., 

2007; Laidlaw et al., 2005; Yiin et al., 2000; Zahran et al., 2013). As different tooth 

types develop at different times throughout an individual’s childhood (Schour and 

Massler, 1941), it is likely that inter-dental variations in lead concentration are 

population specific and reflect an individual’s level of lead exposure at the time of tooth 

formation.  

Modern studies do not have the same contamination risks to consider as archaeological 

studies, and as a result often obtain data from the analysis of the whole tooth or dentine 

samples. Such variations in sampling techniques, as well as analytical methodology 

make comparison between studies problematic (Rabinowitz et al., 1991), especially if 

attempting to relate archaeological lead concentrations to those obtained from modern 

studies when assessing how the data reflects exposure. Irrespective of the type of 

sample used there are undoubtedly significant inconsistencies in inter-dental lead 

concentrations. Therefore, it would be optimal to compare lead concentrations from 

teeth of the same type and tooth position (Bercovitz and Laufer, 1990). However, this 

has the potential to be extremely limiting, especially in archaeological studies where 
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skeletal preservation and completeness dictates which teeth can be sampled. If 

standardisation of tooth type were to be implemented, sample sizes would be greatly 

reduced (Tvinnereim et al., 2000). 

7.3 Geographical variations  

From the limited number of studies that have published lead concentration data from 

Romano-British skeletal material, it is clear that there is great variability in the range of 

lead concentrations (Montgomery, 2002; Montgomery et al., 2010; Shaw et al., 2016). 

The results of this study were no different (see Fig 7.6), with statistically significant 

variations in median lead concentrations between all four countries (Kruskal-Wallis, X2 

(3) = 7.815, p = 0.0002). The Romanian population had the lowest lead concentrations 

with values ranging from 0.03 ppm to 10.67 ppm (median = 2.4 ppm), while the 

Spanish individuals had the highest concentrations that ranged from 0.7 ppm to 187 

ppm (median = 7.3 ppm). 
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Figure 7.6 – Comparison of lead concentrations by country.  
Romania: median = 2.4 ppm (n = 37), France: median = 3.6 ppm (n = 37), Lebanon: 

median = 6.3 ppm (n = 40) and Spain: median = 7.3 ppm (n = 63). An outlier in the 

Spain group with a lead concentration of 187 ppm is not shown on the plot due to 

reduced y-axis scale. 

 

 

Differences in average lead concentrations are not only seen between countries, but also 

between sites within the same country. Although geographically only approximately 96 

kilometres apart, the Spanish sites at Tarragona and Barcelona exhibited statistically 

significant differences in median lead concentrations (see Fig 7.7). As geogenic 

environmental lead concentrations have been shown to vary geographically (Reimann et 

al., 2012), it stands to reason that human lead concentrations could also vary 

geographically. Added to this, is the variability in anthropogenic lead exposure between 

Roman populations both within and between countries. Therefore, it is likely that 

Roman human lead concentrations are population specific and reflect local levels of 

anthropogenic lead exposure.  The geology of the local areas surrounding populations is 

also an important factor to consider when exploring what may influence the absorption 

of lead between different populations. Studies have shown that the mineral content of 
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drinking water can affect the absorption of lead, with hard water (high mineral content) 

acting as a natural buffer against the absorption of the heavy metal (Levander, 1979). 

Therefore if a population’s drinking water was running off calcium carbonate rich 

terrains they might absorb lower concentrations of lead than a population whose 

drinking water originated from granitic terrains, for example. To this end it is interesting 

to note that the geologies surrounding Barcelona and Tarragona and the river that 

supply their respective drinking water differ quite substantially despite their close 

proximity to each other. The Río Francolí which supplies water to Tarragona traverses 

calcium carbonate rich terrains such as limestone, sandstone and marls, while 

Barcelona’s water supply from the Río Besós flows through a terrain composed of 

granites and gravel (Llamas, 1969). Despite the likelihood that Tarragona’s water had 

higher calcium content than Barcelona, the Tarragona population still accumulated 

higher levels of lead. Thus it may be that the significant difference seen between the 

two Spanish populations has a more anthropological than geological cause, such as 

mining pollution. Unlike Barcelona which was predominantly mined for the green 

minerals calaite and variscite for jewellery, Tarragona was a major source of lead rich 

galena and extensively mined throughout the Roman period (UNESCO, 2007). The 

increased pollution in the local area that would have been created during the processes 

involved in lead mining and metalworking may account for the variability seen between 

these two Spanish sites. 
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Figure 7.7 – Comparison of lead concentrations from the Tarragona and 

Barcelona individuals. Tarragona, Spain: median = 11.2 ppm (n = 27), Barcelona, 

Spain: median = 3.3 ppm (n = 35). An outlier in the Tarragona group (187 ppm) and 

Barcelona group (59.62 ppm) are not shown on the plot due to reduced y-axis scale. 

 

7.4 Comparing males and females   

Lead exposure can fluctuate depending on a number of variables, including occupation, 

status, availability of certain foodstuffs and lead containing products. Assessing the 

difference in lead concentrations between certain groups (males and females, rural and 

urban inhabitants etc.) can provide a wealth of information pertaining to a population’s 

socioeconomic status. To further understand how exposure patterns may have varied 

within the Roman Empire, differences between male and female lead concentrations 

were assessed. Archaeological studies investigating childhood lead burdens are scarce 

and modern studies have reported conflicting results. Some studies stating that there is 

no significant difference between male and female lead concentrations (Baghurst et al., 
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1992; Strömberg et al., 2008, 2003), while others show evidence for higher lead 

concentrations in male children (Claymaet et al., 1991; Costa de Almeida et al., 2010; 

Meyer et al., 1998; Paoliello et al., 2002; Roels et al., 1980; Trepka et al., 1997). 

Analysis of the tooth enamel lead concentrations from the 64 sexed adult individuals in 

this study allowed exploration of any differences in Roman childhood lead 

concentrations between males and females. Collectively, males (median = 3.8 ppm) had 

higher lead concentrations than females (median = 2.4 ppm) (see Fig. 7.8). When 

compared by country, again males tended to have higher lead concentrations than 

females (see Fig. 7.9). The only exceptions to this were the Spanish samples, where 

females (median = 4.2 ppm) exhibited higher lead concentrations than males (median = 

3.8 ppm). Although these differences were not statistically significant, they raise 

interesting questions about why Spanish individuals go against the trend seen in the 

majority of both archaeological and modern lead concentration studies. 

 

Figure 7.8 – Comparison of male and female lead concentrations. 

Male: median = 3.8 ppm (n = 30) and Female: median = 2.4 ppm (n = 34). 
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Figure 7.9 – Comparison of male and female lead concentrations by country. 
Romania male: median = 2.9 ppm (n = 5), Romania female: median = 1.5 ppm (n = 5), 

France male: median = 1.9 ppm (n = 7), France female: median = 1.8 ppm (n = 7), 

Lebanon male: median = 4.7 ppm (n = 6), Lebanon female: median = 2.5 ppm (n = 10), 

Spain male: median = 3.8 ppm (n = 12) and Spain female: median = 4.2 ppm (n = 12). 

 

Recent studies into sex differences in body lead burdens have mainly focused on 

differences in adults. These studies found that males tend to have higher lead 

concentrations than females (Barry, 1975; Brown and Margolis, 2012; Theppeang et al., 

2008). It is thought that the increased haematocrit levels and higher exposure patterns 

seen in males are the main reasons for the difference between the sexes (Becker et al., 

2002; Pirkle et al., 1998). However, other studies have proposed that sex dependent 

differences in metabolism and genetic regulation are responsible for higher lead 

concentrations in males (Björkman et al., 2000; Vahter et al., 2007). The majority of 

lead within the body is stored within the skeletal tissues (Gulson et al., 1997, 1995), and 

premenopausal females have been shown to release this stored lead at slower rates than 

males (Popovic et al., 2005; Roberts and Cox, 2003).  This is in part due to oestrogen 

levels. The hormone reduces osteoclast activity, decreasing the rate of bone resorption 
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and therefore the subsequent release of lead stored within the skeleton (Goldberg et al., 

2016; Kameda et al., 1997; Oursler et al., 1991; Parikka et al., 2001).  

Hereditary factors are also thought to contribute to the elevated lead concentrations seen 

in males. Genetic studies have proposed that up to 40% of female lead burdens are 

influenced by genetic factors, while almost 95% of male lead burdens result from 

environmental exposure (Björkman et al., 2000). Hormonal regulation of the three 

polymorphic genes known to influence the toxicodynamics of lead (ALAD, Vitamin D 

Receptor and HFE protein) are thought to account for this genetic variation in sex 

specific absorption, retention and excretion of lead (Onalaja and Claudio, 2000; Vahter 

et al., 2007). Unfortunately, these explanations for the higher lead concentrations in 

males are not applicable to archaeological lead concentration data obtained from tooth 

enamel. The data obtained from tooth enamel represents the lead acquired during the 

time of tooth enamel mineralisation. In deciduous dentition, permanent 2nd molars and 

premolars, as used in this study, enamel mineralisation is complete before adolescence. 

During this prepubescent phase girls and boys have very similar hormone levels 

(Bidlingmaier et al., 1975, 1973). However, modern studies have shown that there tend 

to be small surges in sex hormones during the early development of infants. In boys 

testosterone levels have been shown to increase during four to six weeks gestation and 

again between one to six months after birth (Forest et al., 1976; Raivio et al., 2003; 

Alexander, 2014), and in girls oestrogen levels have been shown to increase during the 

first six months of life (Bidlingmaier et al., 1987; Kuiri-Hanninen et al., 2013). After 

these postnatal endocrine surges sex hormone levels fall and remains stable until 

puberty (Ostanikova et al., 2002). Although both boys and girls experience short 

periods of increased sex hormones early in life, multiple studies have demonstrated that 

there is no difference in prenatal or postnatal lead concentrations between males and 
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females (Vahter et al., 2007; Baghurst et al., 1992; Stromberg et al., 2003; Dietrich et al., 

2001; Yabe et al., 2015; Taylor et al., 2017). Therefore, it is likely that hormonal 

regulation of gene expression or endocrine function would not be a major influential 

factor in early childhood lead acquisition.  

It is therefore likely that the differences between Roman male and female lead 

concentrations seen in this study are due to differences in levels of exposure. During 

childhood, the predominant method of lead ingestion is through hand to mouth activity 

(Raymond, 2017; Sahmel et al., 2015; Sayre et al., 1974; Schnur and John, 2014; Watt 

et al., 1993). Boys may have been engaging in a wider range of activities that facilitated 

this type of exposure. The higher lead concentrations seen in the Spanish female 

populations also suggests that environmental exposure has a more significant effect on 

childhood lead burdens than genetic influences. If metabolic and genetic mechanism 

were influencing childhood lead concentrations, males would be expected to have the 

highest lead concentrations irrespective of the population they came from. However, at 

both the Tarragona and Barcelona sites, females had marginally higher lead 

concentrations than males (see Fig. 7.10).  
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Figure 7.10 – Comparison of the male and female lead concentrations from the 

Tarragona and Barcelona sites in Spain. Tarragona males: median 8.9 ppm (n = 7), 

Tarragona females: median = 10.2 ppm (n = 5), Barcelona males: median = 1.7 ppm (n 

= 5) and Barcelona females: median = 2.6 (n = 7). 

 

 Comparative archaeological studies that have explored sex differences in lead 

concentrations are few. Millard et al., (2014) found no significant difference in the lead 

concentrations of males and females from a 19th century London population. However, 

Japanese studies of 17th – 19th century AD samurai, merchant and farmer populations 

found significantly higher lead concentrations in the females from the samurai class, but 

no difference between the sexes in the merchant and farmer classes (Nakashima et al., 

2007, 1998). Explanations for this centre on status and its accompanying exposure 

levels. The samurai class were considered a high-status population, while the merchants 

and farmers were considered low status. It is therefore posited that the higher status 

females would have had greater exposure to lead containing products (e.g. cosmetics) 

and foodstuffs (e.g. wine) than lower status females (Nakashima et al., 2007, 1998). 
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Therefore, a difference in status may also account for the high lead concentrations seen 

in the Spanish individuals analysed here.  

The type and quantity of grave goods included in burials have been shown to vary by 

age, ethnicity and status and are often used to determine the status of an individual 

(Philpott, 1991). Data pertaining to grave goods and burial type were not available for 

the Tarragona individuals, therefore the effect that status may have had upon these lead 

concentrations could not be determined. However, at the Barcelona site, records show 

that two of the sampled females were buried in mausolea, while the remaining 

individuals were buried in tile-capped graves (tegula). These ‘a cappuccina’ burials are 

common in Roman Spain and thought to be representative of lower status individuals 

(Bruun and Edmondson, 2015). Burials in mausolea, however, are thought to represent 

high status individuals. Although any conclusions drawn from the comparison of these 

twelve Barcelona individuals is limited due to the small sample size, results show that 

the individuals buried in mausolea had markedly higher lead concentrations than the 

individuals buried in tegula graves (see Fig. 7.11). These results show that higher status 

in these Barcelona individuals is accompanied by elevated lead concentrations, 

suggesting that status may have influenced female lead exposure in Spain during the 

Roman period. Although this pilot study has generated promising results, it is limited by 

the small sample size and therefore the differences in lead concentration in relation to 

status cannot be generalised to encompass the entire Roman Empire. 
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Figure 7.11 – Comparison of the lead concentrations from Barcelona individuals 

buried in tegula (low status) and mausolea (high status) graves. 

Tegula graves: median = 2.0 ppm (n = 10) and Mausolea: median = 8.4 ppm (n = 2). 

 

 

 

7.5 Health and mortality  

7.5.1 Lead and mortality 

Lead is a cumulative poison, and one to which children are particularly susceptible 

(Hursh and Suomela, 1968; Rabinowitz et al., 1976). The increased bioavailability of 

lead during the Roman period, due to high environmental lead pollution and the use of 

lead compounds rendered the empire’s children at greater risk than ever before (Mackie 

et al., 1975; Montgomery et al., 2010). There is no doubt that childhood was a perilous 

time throughout the Roman period, with failure to thrive being an all too common 

occurrence, to which the high prevalence of infant and juvenile remains in Roman 
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skeletal populations stands testament (Carroll, 2014). Despite this, and the documentary 

evidence of lead poisoning being responsible for stillbirths, spontaneous abortion, and 

deformities in Roman infants (Gilfillan, 1965; Nriagu, 1983; Waldron et al., 1979; 

Woolley, 1984), little has been done to explore any link between childhood lead 

exposure and high infant mortality rates. With this shortage of evidence to support or 

indeed refute the degree to which lead impacted upon the health and mortality of 

Roman populations, attention must be directed to the skeletal remains from the period. 

To address this, lead concentrations in tooth enamel from deciduous teeth and 

permanent teeth were compared to explore any differences in childhood lead 

concentrations between individuals that died during childhood and those that survived 

into adulthood. However, when comparing deciduous and permanent tooth enamel 

samples it is important to consider total enamel thickness. As discussed above (section 

4.5.3), enamel lead concentrations have been shown to be higher on the outer surface of 

the crown as well as next to the enamel dentine junction  (Budd et al., 1998; Robbins et 

al., 2010). Therefore, core enamel samples are commonly used to avoid these areas of 

variability (Montgomery, 2002; Budd et al., 2004). Although deciduous tooth enamel is 

thin, making core enamel samples more difficult to obtain, recent studies have 

demonstrated that deciduous tooth enamel composition remains virtually unchanged 

throughout the tooth (Müller et al., 2019). Therefore, once surface enamel has been 

removed deciduous enamel samples should be comparable with core enamel samples 

from permanent teeth. 

A comparison of the lead concentration data from the adult and non-adult individuals 

shows that those who survived into adulthood had lower childhood lead burdens 

(median = 2.6 ppm) than those that died during childhood (median = 7.2 ppm) (see Fig. 

7.12). The results of a Kruskal-Wallis test showed that the median lead concentrations 
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in these two groups were statistically significantly different (X2 = 12.181, p = 0.0005). 

Children have more than double the lead concentrations observed in adults, suggesting 

that higher lead burdens are accompanied by lower life expectancies. Although 

unsurprising given the toxic nature of lead, these results suggest that lead poisoning was 

an issue for citizens of the Roman Empire, and offer the first bioarchaeological 

evidence for such a claim.  

Figure 7.12 – Comparison of adult and non-adult lead concentrations. 

Adults: median = 2.6 ppm (n = 66) and Non-adults: median = 7.2 ppm (n = 110). 

 

 

It is evident from the archaeological record that there is a real failure to thrive in 

children throughout the Roman period. It is estimated that up to 50% of children died 

before the age of 10 years old, with 20–40% of these not reaching one year of age 

(Carroll, 2018, 2014). It is also widely accepted that children are more susceptible to 

lead poisoning than adults as their developing bodies are prone to absorbing higher 
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quantities of ingested lead (Alexander et al., 1974; Hursh and Suomela, 1968; 

Rabinowitz et al., 1976; Ziegler et al., 1978). To explore whether the high lead burdens 

characteristic of Roman individuals contributed to the high childhood mortality rates in 

the Roman Empire, lead concentrations were further compared to age-at-death (see Fig. 

7.13). A negative correlation between lead concentration and age is clearly evident, 

again indicating that individuals with lower lead burdens lived longer than those with 

higher lead burdens.  

This is particularly notable with regards to children under the age of one year. Known to 

be a prevalent demographic within Roman cemetery populations, explanations for their 

high mortality rates have ranged from malnutrition and disease to infanticide and 

exposure (Gowland et al., 2014; Mays, 1993; Pilkington, 2013). As infants under one 

year of age are the most at risk group in terms of the lethality of lead poisoning these 

results offer new insights into the previously overlooked role lead may have had in 

these high infant mortality rates. Unfortunately, little research has been done to 

understand how lead concentrations in tooth enamel reflect in vivo lead burdens, or how 

they correlate to manifestations of lead poisoning during life (Grobler et al., 2000; 

Rabinowitz et al., 1993). As such, identifying high lead concentrations in archaeological 

remains alone is unlikely to be sufficient to determine those who may have succumbed 

to lead poisoning. However, using modern clinical literature and the known biochemical 

pathogenesis of lead toxicity it may be possible to further elucidate the effect of lead 

poisoning on the health of archaeological populations. 
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Figure 7.13 – Comparison of lead concentrations by age-at-death. 

Foetal: median = 7.5 ppm (n = 10), 0-1 year: median = 7.4 ppm (n = 24), 2-6 years: 

median = 5.9 ppm (n = 35), 7-12 years: median = 3.3 ppm (n = 29), 13-18 years: 

median = 3.2 ppm (n = 12) and Adults: median = 2.6 ppm (n = 66). 

 

 

7.5.2 Lead and disease 

 Lead is an insidious poison and the gradual accumulation of the metal in bodily tissues 

becomes increasingly toxic. Due to the systemic nature of lead poisoning, the clinical 

manifestations of toxicity are varied and complex. With the exception of growth plate 

lead lines visible on radiographs, no specific skeletal lesions have been associated with 

lead poisoning (Smith et al., 2015). This is most likely due to the toxicodynamics of 

absorbed lead culminating in clinical manifestations that are common to many other 

disease processes. However, with its propensity to disrupt metabolic pathways, it is 

unsurprising that both modern and historical clinical literature associate lead poisoning 

with a number of metabolic diseases, such as rickets, scurvy and anaemia (Caffey, 

1938; Waldron, 1966). Therefore, it is probable that individuals who died suffering the 
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ill effects of chronic lead poisoning would exhibit pathological skeletal alterations 

consistent with these metabolic diseases. 

The presence of metabolic disease in the non-adult population was diagnosed according 

to published criteria (see Chapter 6), and examples of the pathological alterations 

consistent with metabolic disease observed in the sample population are presented in 

Figure 7.14. When compared with lead concentration data, the non-adult individuals 

exhibiting pathological alterations consistent with metabolic disease had significantly 

higher lead concentrations (median = 8.1 ppm) than those without (median = 4.9 ppm) 

(see Fig. 7.15). When compared using a Kruskal-Wallis test the difference in median 

lead concentrations between these two groups were shown to be statistically significant 

(X2 = 4.007, p = 0.0453). This supports the presupposition that skeletal markers of 

metabolic disease will manifest in conjunction with high lead concentrations, and that 

lead poisoning can be tentatively identified in archaeological human remains through 

the combination of palaeopathological and trace element analyses.  
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 Figure 7.14 – Examples of the pathological lesions observed in some of the non- 

adult individuals  

 

A) New bone formation on 

the roof of the orbits 

(Michelet S853) 

 

 

B) New bone and porosity 

on the pars basilaris 

(Michelet S613) 

 

 

 

 

C) Porosity on the 

temporal bone 

(Michelet S347) 

 

 

 

D) Porosity on the greater 

wing of the sphenoid 

(Alba Iulia M163) 

 

 

 

 

 

 

E) Bilateral new bone 

formation and porosity 

in the maxilla 

(Michelet S123) 

 

 

 

 

 

 

F) Porosity on the 

supraspinous fossa 

(Michelet S7) 

 

 

G) New bone formation 

and porosity on the 

mandibular ramus 

(Alba Iulia M7) 

B 

 

A B 

C D 

E 
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Figure 7.15 – Comparison of lead concentrations from non-adults with skeletal 

evidence of metabolic disease (excluding individuals with cribra orbitalia) and 

non-adults without pathological alterations. Non-adults with lesions: median = 8.1 

ppm (n = 25) and Non-adults without lesions: median = 4.9 ppm (n = 35) 

 

To investigate any patterns regarding the types of metabolic diseases likely to be 

concurrent with high lead burdens, lead concentrations were further compared by type 

of disease (see Fig. 7.16). Both rickets (median = 10.7 ppm) and scurvy (median = 8.1 

ppm) are accompanied by higher median lead concentrations than individuals with no 

evidence of disease (median = 4.9 ppm). However, when compared using a Kruskal-

Wallis test only the rachitic group have statistically significantly different lead 

concentrations to individuals without disease (X2 = 3.841, p = 0.0209). These results 

indicate that the elevated levels of environmental lead pollution characteristic of the 

Roman period did have a negative impact upon childhood health. Lending support to 

the hypothesis that anthropogenically induced increases in lead exposure throughout the 
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Roman Empire was deleterious to health, especially in those exhibiting high lead 

burdens coupled with palaeopathological evidence of metabolic disease. As such, it is 

likely that lead exposure was a contributing factor to the ill health and failure to thrive 

seen in many non-adult Roman skeletal populations. 

 

 

Figure 7.16 – Comparison of lead concentrations from individuals with metabolic 

disease. Rickets: median = 10.7 ppm (n = 6), Scurvy: median = 8.1 ppm (n = 11), 

Rickets and scurvy: median = 5.7 ppm (n = 8), Cribra orbitalia: median = 3.0 ppm (n = 

19) and No disease: median = 4.9 ppm (n = 35) 

 
 
 

7.5.3 Cribra orbitalia 

Cribra orbitalia is a descriptive term used to describe abnormal pitting and porosity on 

the external surface of the orbital roofs. Presence of this rather distinctive pathological 

lesion has been observed in skeletal remains from multiple time periods across the 

world, and is typically used as a marker of general health and nutritional status (Steyn et 
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al., 2002, 2016; Walker et al., 2009). Since the early 1960s bioarchaeologists have 

theorised that the pathological alteration was a result of hypertrophy of the red bone 

marrow, and therefore provided unequivocal proof that an individual suffered from 

anaemia (Carlson et al., 1974; Stuart-Macadam, 1987). Active cribra orbitalia is only 

seen in non-adult individuals due to a shift in the body’s centres for haemopoiesis away 

from the cranial vault and long bone medullary cavities to vertebral bodies and sterno-

costal regions after adolescence. As a result, adult individuals usually only ever exhibit 

an inactive form of the lesion in various stages of healing (Lewis, 2007; Stuart-

Macadam, 1992; Walker, 1986).   

The sensitivity of the haem system to extremely low lead concentrations (see Chapter 4) 

makes lead-induced anaemia a common symptom in those afflicted by lead poisoning. It 

is the omnipresence of anaemia in the clinical literature associated with lead poisoning 

that makes the skeletal manifestations of the disorder a popular target in 

bioarchaeological studies exploring lead exposure in past populations. Indeed, for 

decades studies have tried to identify lead poisoning in archaeological human remains 

by attempting to correlate lead concentrations with the presence of cribra orbitalia 

(Facchini et al., 2004; Gleń-Haduch et al., 1997; Millard et al., 2014; Zariſa et al., 2016). 

Despite the commonality of anaemia in those suffering from lead poisoning, the 

majority of bioarchaeological studies have found no correlation between the presence of 

cribra orbitalia and high lead concentrations. The results of this study were no different. 

In fact, individuals with cribra orbitalia exhibited lower median lead concentrations 

(median = 3.0 ppm) than individuals without the lesion (median = 4.9 ppm) (see Fig. 

7.17). Statistical comparison using the Mann-Whitney U test confirmed that there was 

no significant difference in lead concentrations between individuals with cribra orbitalia 

and those without (U = 241, p = 0.09894). This is likely due to the aetiology of the 
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lesion itself. Therefore, it can be concluded that cribra orbitalia should not be included 

as an indicator of lead toxicity in bioarchaeological studies attempting to identify 

individuals that suffered from lead poisoning. Furthermore, these results highlight the 

importance of understanding not only the biochemical pathogenesis of lead poisoning, 

but also the often-complex aetiologies of the pathological skeletal alterations used to 

assess the impact of lead exposure on the health of past populations. 

 

 

Figure 7.17 – Comparison of lead concentrations from non-adults with cribra 

orbitalia and non-adults without pathological alterations. Cribra orbitalia: median = 

3.0 ppm (n = 19) and No lesions: median = 4.9 ppm (n = 35). 
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7.5.4 Poison or paucity? 

Rickets and osteomalacia is caused by a deficiency in vitamin D (Brickley et al., 2018; 

Mays and Brickley, 2018; Pilz et al., 2019). Vitamin D is important for the 

gastrointestinal absorption of calcium and phosphorous, both of which are integral to 

the development of healthy bone mineral (Ortner, 2003; Resnick, 2002). A deficiency in 

this vitamin disrupts the metabolic homeostasis of these minerals, resulting poorly 

mineralised bones. The skeletal manifestations of which include diffuse pitting, flaring 

of metaphyses and softened bones prone to pathological bowing if weight bearing 

(Mays et al., 2006; Ortner and Mays, 1998; Resnick, 2002). Although vitamin D can be 

acquired through diet (mainly oily fish and some animal fats), the majority of the pro-

hormone is synthesised during exposure of the skin to sunlight (Pearce and Cheetham, 

2010). More often than not, poor nutrition or socio-cultural practices such as swaddling 

or restricted outdoor activities are proposed as explanations for the presence of rickets 

in non-adult individuals from past populations throughout Europe (Brickley et al., 2014; 

Giuffra et al., 2015). While the cause of rickets may well be limited to these socio-

cultural and nutritional aetiologies, it appears that environmental pollution may have 

been overlooked. It seems unlikely that a lack of UVB exposure or access to sufficiently 

nutritious foods could be the sole cause of high prevalence rates throughout the Roman 

Empire, especially in Mediterranean regions where sunlight and vitamin D-rich 

foodstuffs such as fish were plentiful (Marzano, 2013). Despite this, environmental 

factors such as pollution are rarely considered, and when they are it is usually only in 

reference to the smog that frequently plagued 19th-century urban populations (Hardy, 

2003; O’Riordan and Bijvoet, 2014; Wallach, 2014). However, it is notable that the 

historical literature and bioarchaeological evidence from the Roman period and 19th 

century demonstrate high prevalence rates for rickets, and are also the two periods that 
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created significant peaks in environmental lead pollution (Patterson, 1965; Roberts and 

Cox, 2003). 

Roberts and Cox's (2003) diachronic study of disease prevalence in Britain 

demonstrates how the developments in industry, agriculture, trade and cultural practices 

that came with the Roman occupation of Britain also brought about the first instances of 

scurvy, rickets and osteomalacia. Like most archaeological studies of metabolic disease 

the authors go on to describe how these maladies were most likely a result of increased 

urbanisation and reduced crop quality (Roberts and Cox, 2003). However, they do 

briefly mention evidence for lead pollution but do not elaborate on any consequence this 

might have had upon health (Roberts and Cox, 2003, p. 389). That work goes on to 

demonstrate a decrease in the prevalence of metabolic diseases in the early medieval 

period, as societies moved away from the socio-economic practices characteristic of 

Roman populations and back towards a simpler, rural way of life (Higham, 2004; 

Roberts and Cox, 2003). During the 19th century, which brought about a second surge 

in industrial development and widespread urbanisation as the industrial revolution took 

a hold of Britain, prevalence rates of metabolic diseases, especially in children, 

significantly increase from those seen in previous periods (Newman and Gowland, 

2017; Ortner, 2003, p. 393; Pettifor, 2003, p. 543; Pinhasi and Mays, 2008, p. 220). The 

parallels that can be drawn between the prevalence rates of rickets and levels of 

environmental lead pollution during both the Roman period and the 19th century are 

striking. Bringing about the question, could anthropogenic lead pollution have been a 

contributing factor to these disease prevalence rates? Whilst it must be acknowledged 

that disease prevalence is often multi-factorial and correlation does not mean causation, 

lead poisoning should be included in the differentials when the aetiology of rickets is 

being considered during these periods. 
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The clinical literature is filled with case studies detailing individuals that presented with 

rickets induced by lead poisoning (Caffey, 1938; Chisolm et al., 1955; Holt, 1923; 

Hunter, 1977), and so it is unsurprising to find that rachitic children had the highest 

median lead concentrations (median = 10.7 ppm) of any subgroup in this study. 

However, what was unexpected were the low lead concentrations observed in the adult 

individuals exhibiting skeletal evidence of healed rickets (median = 1.2 ppm). This 

group of individuals had the lowest lead concentrations observed in this study; with 

median concentrations half that of those observed in adults with no evidence of disease 

and almost six times lower than the median lead concentrations of those with active 

rickets (see Fig. 7.18). Comparing these medians using the Kruskal-Wallis test showed 

that there was a statistically significant difference in lead concentrations of those with 

rickets and those with healed rickets, as well as individuals showing no skeletal 

evidence of metabolic disease (X2 (2) = 5.991, p = 0.0052). 

 

Figure 7.18 – Comparison of lead concentrations from rachitic individuals and 

individuals with no pathological alterations. Rickets: median = 10.7 ppm (n = 6), 

Healed rickets: median = 1.2 ppm (n = 5) and No lesions: median = 4.9 ppm (n = 35). 
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While there is no doubt that living conditions, status and the quality of foodstuffs play a 

significant role in the prevalence of these diseases; the results of this study clearly show 

a correlation between increased lead burdens and the presence of rickets in Roman 

period children. This indicates that the exploitation of lead and its products during this 

period contributed to the high prevalence rates of the disease throughout the Empire. 

These results, alongside the analogous fluctuations in rickets prevalence rates and levels 

of environmental lead pollution through time strengthen the argument for the inclusion 

of lead exposure when considering the cause of rickets in populations with known high 

levels of exposure. It is interesting that adult individuals with skeletal alterations 

consistent with healed rickets have the lowest childhood lead concentrations of any 

subgroup included in this study. As vitamin D promotes the absorption of lead in the 

gastrointestinal tract, these individuals may represent those with a nutritional deficiency, 

which acted as a buffer against the acquisition of lead. Conversely, the rachitic 

individuals with high lead concentrations may have exceeded the blood lead threshold 

at which the enzymatic conversion of vitamin D into is active form is disrupted, thereby 

initiating a lead-induced deficiency in the vitamin. If this could be verified through 

further research it would provide the potential to differentiate between rickets induced 

by lead poisoning and rickets caused by nutritional paucity. This would allow 

archaeologists to more precisely assess how peoples' interactions with their environment 

impacted upon their health, as well as gain a more accurate representation of 

populations’ nutritional statuses. Of course, there will inevitably be overlaps in rachitic 

children with low lead concentrations or adults with high childhood lead concentrations 

as the toxicodynamics of lead poisoning and how it relates to lead concentrations in 

archaeological remains is complex and poorly understood. So while these results in no 

way suggest that all rachitic children in Roman cemetery populations are exhibiting 
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lead-induced manifestations of the disease and all those with healed rickets were 

protected against lead poisoning, it does indicate that lead exposure is likely 

contributing to the high number of individuals with the disease during this period. 

7.6 Summary 

It is clear from the results discussed above that the pairing of osteological and lead 

concentration analyses provide a wealth of information pertaining to the socioeconomic 

status and general wellbeing of archaeological populations. This study offers the first 

international comparisons of childhood lead concentrations from Roman period 

individuals. The results show that lead concentrations vary both between and within 

countries. The wide ranges in concentration values exhibited in these populations’ 

highlights the unpredictability of lead burdens even in environments shown to be highly 

polluted with the toxic metal.  The factors influencing lead exposure levels and 

absorption rates are clearly multifarious and complex, lead burdens are not just simply 

linked to how polluted an individual’s environment is. This fact is highlighted by the 

results of this study, which demonstrates how variable lead burdens were within an 

empire notorious for high levels of lead pollution.  The only consistency across all sites 

was that individuals who died during childhood had higher lead concentrations than 

individuals that survived into adulthood. 

With regards to health and mortality, these results provide the first bioarchaeological 

evidence that lead poisoning may have been deleterious to childhood health. There is 

strong evidence to suggest that anthropogenic lead pollution contributed to the high 

prevalence rates of metabolic diseases, especially rickets, seen during the Roman period. 

Analysis of lead concentrations in rachitic individuals also revealed that nuances in the 

aetiology of the disease (caused by nutritional paucity or pollution) could be elucidated. 
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Comparisons with age-at-death also implicate elevated lead concentrations in the high 

infant mortality rates seen in Roman skeletal populations. The introduction of a 

bioarchaeological perspective to the decades-old debate surrounding how lead affected 

health during the Roman period offers new insights into the impact of environmental 

lead pollution on the fragility of childhood health throughout the empire.  

The proposed increased availability of lead-containing products (e.g. wine, cosmetics, 

and medicines) to wealthier, higher status individuals has led to the suggestion that 

status is an influential factor in the bioaccumulation of lead. The results of this study 

support this presupposition, with higher lead concentrations seen in Spanish individuals 

interred in mausolea as opposed to tegula graves. Making inferences about certain 

aspects of identity, such as status, are often difficult in archaeological contexts. The 

addition of an objective method such as lead concentration analysis to the current means 

of assessing status, which are often biased by our expectations (wealthier individuals are 

likely to have more elaborate burials than those of a lower socioeconomic standing), can 

only serve to enhance our interpretive capabilities.  
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CHAPTER EIGHT 

Lead Isotope Ratios and Migration 

8.1 Introduction 

A main focus of this study is the use of lead isotope ratios as an additional 

discriminatory tool to further discern places of origin in archaeological migration 

studies. When using any isotope system as a tracer in human mobility studies it is 

imperative that there is a high level of confidence that the measured isotopes represent 

entirely in vivo acquisition. Unlike bone, tooth enamel has shown to be extremely 

diagenetically stable due to its dense structure and low porosity, leaving limited 

opportunities for mineral infiltration and ion exchange between the enamel and its 

burial environment.  Therefore, to ensure the integrity of the isotopic data collected only 

tooth enamel samples are analysed in this study. As isotopes are incorporated into tooth 

enamel as the tissue mineralises, this sampling strategy has restricted assessment to 

childhood movements within the Roman Empire. 

Until recently lead isotopes have received little attention in bioarchaeological studies 

(Harris et al., 2017; Jones et al., 2017; Lamb et al., 2014; Millard et al., 2014; 

Montgomery, 2002; Montgomery et al., 2005, 2010, 2014, Price et al., 2017a, 2017b, 

2017c; Shaw et al., 2016). The majority of these studies were not conducted on Roman 

populations and, with the exception of Montgomery et al., (2010), none of the studies 

included more than one skeletal population from the same time period. The analysis of 

lead isotope ratios from six Roman populations from different regions of the Roman 

Empire in this current study provides a means of assessing how well lead isotope ratios 
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can discriminate between contemporaneous individuals from different countries. This 

approach is, to date, unique in bioarchaeological studies.  

This chapter presents and discusses the results of the lead isotope analysis, and has been 

separated into two sections. The first section assesses the differences in human lead 

isotope ratios between countries, working towards developing an understanding of what 

constitutes a local isotope range in different regions of the Roman Empire. The second 

section focuses on combining lead isotope data with other isotope systems and 

contextual information to determine if there is enough intercontinental variation in lead 

isotope ratios to facilitate the identification of migrants within the Roman Empire. The 

results are then discussed together (section 8.7) to present a comprehensive review of 

how lead isotope analysis of polluted populations can inform our understanding of 

migration in a population known for its movement of peoples. A detailed summary of 

the results from the isotope and osteological analyses of each individual included in this 

study is tabulated in Appendix A2.  

8.2 Cultural focusing  

The cultural focusing of lead isotope ratios in humans is a phenomenon associated with 

anthropogenic lead pollution (see Chapter 2). Bioarchaeological studies have 

demonstrated how prehistoric populations and those with limited technological 

advancements have low lead burdens accompanied by divergent isotope ratios (Budd et 

al., 2004; Montgomery, 2002; Montgomery et al., 2010). However, later populations 

with metallurgical technologies tend to have higher lead burdens accompanied by 

homogenous isotope ratios. The Romans are one such population, with studies showing 

that individuals from the same site tend to exhibit high lead concentrations and similar 

lead isotope compositions (Montgomery et al., 2010; Shaw et al., 2016).  
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Figures 8.1a and 8.1b present 208Pb/204Pb verses 206Pb/204Pb isotope ratios grouped by 

lead concentration for each country included in this study. These plots allow 

visualisation of how patterns in thorogenic and uranogenic lead isotope ratios in human 

tooth enamel alter with increasing lead concentrations. The ovals highlighting trends in 

the data on all plots have no statistical significance and are merely to guide the reader. 

As expected for populations in anthropogenically-polluted regions, the majority of data 

points from all five countries produce linear arrays characteristic of lead ore field 

isotope ranges. Within these constrained fields (delineated by red ovals on each plot), 

lead concentration groups cluster with increasing closeness as lead concentrations 

increase. With the exception of Spain, all data points that plot outside the ovals are 

individuals with lead concentrations under 1 ppm. The individual in the Barcelona 

dataset (UF748) that plots below the rest of the Spain assemblage had a lead 

concentration of 2.37 ppm, indicating anthropogenic exposure. As individual UF748’s 

207Pb/204Pb and 208Pb/204Pb isotope ratios are lower than those seen in the rest of the 

Spanish assemblage it is likely that this individual was exposed to a different lead ore 

source during their childhood (discussed further in section 8.6).  

It is clear that with increasing lead concentration there is a reduction in isotope 

variability. As seen in previous studies, low lead concentrations, particularly those 

under 1 ppm are thought to represent geogenic exposure and have been shown to exhibit 

a higher degree of variability in their isotopic ranges than lead acquired through 

anthropogenic exposure (Budd et al., 2004; Montgomery, 2002; Montgomery et al., 

2010). This is best visualised in Figure 8.2, which shows 207Pb/206Pb against lead 

concentration (ppm). The lead isotope ratios that are accompanied by low lead 

concentrations spread out across the bottom of the plot. Those plotting below the 

geogenic threshold of 1 ppm (dashed line) (Montgomery et al., 2010), show the highest 



 185 

variability, and likely represent individuals who were not exposed to significant 

amounts of anthropogenic lead during their childhood. As lead concentrations increase 

the 207Pb/206Pb isotope ratios shift to the left of the plot and cluster with increasing 

closeness. The coloured lines in Figure 8.2 have no statistical significance but are 

included to enable the reader to easily visualise this trend, which appear to show the 

transition from geogenic exposure to anthropogenic exposure within a population. 

Although all individuals in this study are from 1st to 6th century AD populations within 

the Roman Empire, each location contains at least one individual with lead 

concentrations below 1 ppm. This indicates that simply living within the Roman Empire 

did not guarantee high levels of exposure despite the vast quantities of lead being mined, 

utilised and traded within its borders. Previously, lead concentrations above 1 ppm have 

been used to demonstrate that an individual is from a metallurgical population, with 

those exhibiting concentrations less than 1 ppm thought to be predominantly prehistoric 

(Budd et al., 2004; Montgomery et al., 2010). The majority of the individuals in this 

study come from multi-period cemeteries; therefore, radiocarbon dating would be useful 

here because the low-concentration individuals may actually be pre-Roman in date, or 

may reflect a temporal change in lead use throughout the Roman period. It is also 

possible that these low lead concentrations indicate a childhood spent in a rural location 

where exposure to pollution was minimal. More work on rural cemeteries is needed to 

establish an expected range of lead concentrations from low exposure regions of the 

Roman Empire. Without these clarifications the fact that 19.8% (19 of 96 samples) of 

the individuals in this study have lead concentrations below 1 ppm suggests that lead 

concentration cannot be used in isolation to separate Roman from pre-Roman 

populations.  
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  Figure 8.1a – Bivariate plots showing 208Pb/204Pb against 206Pb/204Pb. Individuals are grouped according to the lead concentrations 

present in their tooth enamel. Red ovals highlight the linear groupings of individuals.  
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Figure 8.1b – Bivariate plots showing 208Pb/204Pb against 206Pb/204Pb. Individuals are grouped according to the lead concentrations 

present in their tooth enamel. Red ovals highlight the linear groupings of individuals.  
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Figure 8.2 – Bivariate plot showing 207Pb/206Pb against lead concentrations (ppm) in human tooth enamel. The dashed 

horizontal line indicates maximum level of lead (1 ppm) that can be acquired in unpolluted individuals and the grey box 

delineates the British anthropogenic range identified by Montgomery et al. (2010). Analytical error is within the symbols    
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8.3 Establishing local ranges 

To facilitate the identification of migrants (outliers) within a population it is necessary 

to establish what constitutes the local isotopic range. Usually, environmental samples 

(plants, soils, water etc.) are used to define local ranges for isotope systems such as 

strontium and oxygen (Slovak and Paytan, 2012). These can either be site specific, 

taken from samples in and around the excavated area, or regional/country specific 

topographic maps (isoscapes) created by systematic sampling of large geographic areas. 

However, anthropogenic pollution makes this method difficult when creating lead 

isoscapes intended for archaeological comparisons. Lead isoscapes must not only be 

spatially specific but also temporally specific. Neither the modern isoscapes of lead in 

European agricultural soils by Reimann et al., (2012) nor the 19th century European 

isoscape by Keller et al., (2016) would reflect the human lead isotope ratios measured in 

Roman individuals. A viable alternative to this would be to use published lead isotope 

datasets from contemporary human tooth enamel of geographically constrained origins. 

This would provide the most accurate comparative dataset, as it would most closely 

reflect the combination of bioavailable sources that a population was exposed to. 

However, there is a notable lack of comparable human lead isotope data from regions of 

the Empire outside of Britain. It is therefore common practice to use published datasets 

from lead ore and lead artefacts of known provenance (coins etc.) to define the local 

ranges expected for any given country (Millard et al., 2014; Montgomery et al., 2010; 

Shaw et al., 2016).  

The human lead isotope data generated in this study has been plotted alongside lead ore 

isotope ratios from OXALID, an open access lead ore database, and, where available, 

data from Roman coins (Butcher and Ponting, 2014). These datasets give broad ranges 
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of mineralisation (ore deposit) values for a region and have been used as proxies for the 

expected local anthropogenic lead isotope ranges in each country. The current study 

uses lead isotope ratio data for lead ores defined within specific modern national 

borders. While it is acknowledged that these borders differ from those of Roman 

provinces, and that a comprehensive review of contiguous national datasets may 

identity a fuller isotope baseline, the approach adopted here is in line with previous 

bioarchaeological studies exploring mobility using lead isotope ratios, and has proved 

effective in establishing the local anthropogenic lead isotope ratio ranges for the region 

(Montgomery 2002; Montgomery et al., 2010; Millard et al., 2014; Shaw et al., 2016). 

The graphical representation of lead data is best plotted in a way that highlights the 

spread and separation of the data points. Therefore, all data is presented in the 

conventional bivariate plots using the 204Pb isotope ratios (206Pb/204Pb, 207Pb/204Pb and 

208Pb/204Pb), with the inclusion of the Stacey and Kramer (1975) growth curve for 

reference. To avoid the higher uncertainties surrounding 204Pb measurements, 

208Pb/206Pb against 207Pb/208Pb plots have often been used in archaeological literature. 

These plots benefit from higher precision, but compress the data fields. Therefore, the 

subtle variations that frequently differentiate one lead field from another may be lost. 

As these plots are commonly used in archaeological literature they have also been 

included here. Any outliers within the datasets have been described but will be further 

discussed in section 8.5.  

8.3.1 Romania 

A comparison of the Romania individuals with data from Romanian lead ore (Baron et 

al., 2011; Marcoux et al., 2002) shows how the human data forms a linear array that 

spreads to the left of the ore field (Fig. 8.3). When the data is presented using a 
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207Pb/206Pb vs. 208Pb/206Pb bivariate plot the Romania individuals appear to split into 

two groups (Group A and Group B), and the shift away from the Romanian lead ore 

field becomes clearer (Fig 8.4). This plot inverts the lead isotope ratios; therefore the 

Romania individuals now plot above and to the right of the Romanian ore field.  

Group A plots closely with the upper end of the Romania lead ore field indicating that 

the individuals in this cluster provide a good baseline for expected human lead isotope 

ratios in individuals with childhood origins in Romania. The individuals in Group B 

cluster loosely together, away from the Romania ore field. As all of Group A plot at the 

very edge of the Romanian ore field and Group B remains in-line with the linear array 

produced by Group A and the Romania ore field, the difference in Group B’s isotope 

ratios may be due to exposure to an additional, older Romanian lead source more 

depleted in 206Pb/204Pb than the comparative ore data plotted here. As it is currently 

unclear whether the four individuals in Group B represent migrants to Romania or 

Romanians exposed to an additional ore source, their isotope ratios should be used with 

caution when defining the local lead isotope range expected in ancient Romanian 

individuals. There is one individual that plots away from the rest of the Romanian 

assemblage; individual M160b sits in the upper right of the plot (Fig. 8.4), away from 

Group A and B. The lead isotope ratios exhibited by M160b are sufficiently different 

from the rest of the Romania individuals and Romanian lead ore as to suggest that they 

spent their childhood in a different geographic location that has older lead sources, for 

example, somewhere with Precambrian orogeny. 
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Figure 8.3 – Plots of 208Pb/204Pb versus 206Pb/204Pb (a) and 207Pb/204Pb versus 
206Pb/204Pb (b) showing the relationship between Romania tooth enamel samples 

and the Romanian lead ore field. Ore data taken from Marcoux et al., (2002), 

and Baron et al., (2011). Analytical error shown to 2 sd. 
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Figure 8.4 –Plot of 208Pb/206Pb versus 206Pb/206Pb showing the relationship between Romania tooth enamel samples and the 

Romanian lead ore field. Ore data taken from Marcoux et al., (2002), and Baron et al., (2011). Analytical error is within 

the symbols 
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8.3.2 France 

A comparison of the individuals from the France assemblage with data from French 

lead ore (OXALID, 2018) and Roman coins from Gaul (Butcher and Ponting, 2014) 

demonstrates how the individuals group within the isotope field created by the French 

lead ore and coin data (Fig. 8.5). It is interesting that the lead isotope ratios from the 

France individuals plot more closely with the Roman coin data than the French lead ore 

data, both of which cluster in the centre of the French lead ore field. As outlined in 

Chapter 2, human anthropogenic lead isotope ratios are culturally focussed, clustering 

together in a narrow range reflecting the lead ore sources used by the population 

(Montgomery, 2002; Montgomery et al., 2010). To some extent metals used in artefacts 

(in this case coins), are also culturally focussed due to the reworking of ores and metals 

(Montgomery et al., 2010; Shaw et al., 2016), this is particularly true of Roman coins, 

which were recycled every few years (Harl, 1996). Therefore, data from artefacts of 

known provenances are likely to provide more realistic representations of the expected 

human isotope composition in anthropogenically-polluted regions. 

As with the Romania individuals, the France individuals also split into two groups. 

Group A all have lead concentrations above 1 ppm and cluster tightly together in the 

centre of the French lead ore and Gaul coin data. However, three individuals have lead 

concentrations below 1 ppm (Group B). These individuals plot close together on the 

upper edge of the French ore field (see Fig. 8.6). Their low lead burdens suggest natural, 

geogenic exposure rather than anthropogenic exposure and this probably accounts for 

lower 206Pb/204Pb isotope ratios than those observed in Group A. The Michelet cemetery 

is also a multi-phase cemetery; therefore it is possible that the difference in isotope 

ratios between Group A and B represent a temporal shift in the lead source used by the 
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population. The congruency of Group A’s tooth enamel isotope ratios with the French 

lead ore field suggests that these human samples provide a good baseline for the 

expected lead isotope ratios in Roman individuals with childhood origins in Northern 

France. The remaining two individuals that plot away from the majority of the 

population (S394 and S854) also have lead concentrations below 1 ppm and plot outside 

the French lead ore field but within the spread of isotope ratios provided by the coins 

from Gaul. This suggests that individuals S394 and S854 were exposed to low levels of 

anthropogenic lead pollution during their childhoods, and that this was likely from an 

ore source in the Gaul region of the Roman Empire. 
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Figure 8.5 –Plots of 208Pb/204Pb versus 206Pb/204Pb (a) and 207Pb/204Pb versus 
206Pb/204Pb (b) showing the relationship between France tooth enamel samples 

and the France lead ore field. Ore data taken from Butcher and Ponting, (2014) 

and OXALID. Analytical error shown to 2 sd. 



 197 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 –Plot of 208Pb/206Pb versus 207Pb/206Pb showing the relationship between France tooth enamel 

samples and the France lead ore field. Ore data taken from Butcher and Ponting, (2014) and OXALID. 

Analytical error is within the symbols 
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8.3.3 Lebanon 

There is currently no lead ore data available from Lebanon; therefore, comparative data 

from Israeli and Syrian lead ores have been used (OXALID, 2018). As these two 

countries border Lebanon to the north, south and east they are likely to have similar 

anthropogenic lead isotope characteristics. When the human samples from Lebanon 

were compared to these datasets, the majority of individuals from Lebanon plot within 

the isotope field created by the Israeli lead ore (Fig. 8.7). However, on the uranium-

derived plot, all of the Lebanese individuals plot above the Syrian lead ore (Fig. 8.7b), 

indicating that the Lebanese individuals were exposed to lead sources that had higher 

207Pb/204Pb isotope ratios relative to Syrian lead ore. This suggests that lead ore from 

Israel can be used as a proxy for the local lead isotope range for Lebanon but Syrian 

lead ore cannot.  

The majority of the Lebanon individuals plot close together within the Israeli lead ore 

field. However, two individuals (SK431 and SK1004) plot below and to the left of the 

main cluster (Fig. 8.7). How different these two individuals are compared to the rest of 

the Lebanon assemblage is best visualised using the 207Pb/206Pb vs. 208Pb/206Pb bivariate 

plot (Fig. 8.8). It is clear in Figure 8.8 that SK431 and SK1004 are sufficiently different 

from the Lebanon assemblage and the Israeli lead ore as to suggest that they originate 

from a different population. With the exception of these two outliers the lead isotope 

ratios from the Lebanon individuals appears to provide a good baseline for the expected 

lead isotope characteristics of Roman individuals with childhood origins in Lebanon or 

Israel. 
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Figure 8.7 – Plots of 208Pb/204Pb versus 206Pb/204Pb (a) and 207Pb/204Pb versus 
206Pb/204Pb (b) showing the relationship between Lebanon tooth enamel 

samples and the Israeli and Syrian lead ore fields. Ore data taken from 

OXALID. Analytical error shown to 2 sd. 
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Figure 8.8 –Plot of 208Pb/206Pb versus 207Pb/206Pb showing the relationship between Lebanon tooth enamel 

samples and the Israeli and Syrian lead ore fields. Ore data taken from OXALID. Analytical error is within 

the symbols 
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8.3.4 Spain 

A comparison of the Tarragona and Barcelona individuals with data from Spanish lead 

ore (OXALID, 2018) and Roman coins (Butcher and Ponting, 2014) of known 

provenance shows how the Spain individuals group within the isotope field created by 

the Spanish lead ore and coin data (Fig. 8.9). The Tarragona individuals show tighter 

clustering than the Barcelona individuals, which might be due to the significantly higher 

lead concentrations exhibited by the assemblage (see Chapter 7).  As seen with the 

individuals from France, the Spain individuals also plot more closely with the Roman 

coin data than the Spanish lead ore data, again indicating that Roman artefacts of known 

provenance provide the most accurate source of proxy data for Roman population origin 

studies.  

When the Spain data is presented using a 207Pb/206Pb vs. 208Pb/206Pb bivariate plot it 

becomes apparent that there are five outliers within the assemblage (Fig 8.10). 

Individuals UF217 and UF748 from the Barcelona site plot below and to the left of the 

main Spain cluster, while Barcelona individual T3 and Tarragona individuals UF2 and 

UF14 plot above and to the right of the main group. The close correlation of the Spain 

individuals with the Spanish coin data, both of which plot in the centre of the Spanish 

lead ore field, suggests that the range of lead isotope ratios exhibited by the Barcelona 

and Tarragona individuals provides a good baseline for the expected lead isotope 

characteristics of Roman individuals with childhood origins in Spain. 

  



 202 

        a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9 –Plots of 208Pb/204Pb versus 206Pb/204Pb (a) and 207Pb/204Pb versus 
206Pb/204Pb (b) showing the relationship between Spain tooth enamel samples 

and the Spain lead ore field. Ore data taken from Butcher and Ponting (2014) 

and OXALID. Analytical error shown to 2 sd. 
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Figure 8.10 –Plot of 208Pb/206Pb versus 207Pb/206Pb showing the relationship between Spain tooth enamel samples and the Spanish lead 

ore field. Ore data taken from Butcher and Ponting, (2014) and OXALID. Analytical error is within the symbols 
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8.3.5 Slovenia 

The Slovenia individuals do not have lead isotope ratios consistent with Slovenian lead 

ore (Henjes-Kunst et al., 2017). Instead the Slovenia individuals have higher 206Pb/204Pb 

and 208Pb/204Pb isotope ratios relative to Slovenian ore and therefore plot above and to 

the right of the Slovenian ore field (see Fig. 8.11 and 8.12). Although small in number 

these Slovenia individuals are an interesting assemblage. From the five individuals 

analysed, three have very low lead concentrations ranging from 0.22 ppm to 0.40 ppm, 

indicating predominantly geogenic exposure. It is possible that living in rural locations 

could account for the low lead concentrations due to the reduced exposure to pollutants. 

However, if this did account for their low lead burdens it would suggest that these three 

individuals were not local to the area as Emona (now Ljubljana) was a prosperous 

Roman city with strong links to Italy (Zupanek and Mlekuz, 2001) and therefore lead 

burdens reflecting urban living would be expected. 

With regards to the two remaining individuals labelled in Figure 8.12, JM03 had a high 

lead concentration of 509 ppm. This exceedingly high concentration is unlikely to 

represent in vivo acquisition as it would equate to a blood lead level of 509 μg/dL 

(Grobler et al., 2000), and as death occurs with blood lead levels of ≥150 μg/dL this 

value is incompatible with life (Bellinger and Bellinger, 2006). It was noted during 

sample processing that the enamel from JM03 was soft and slightly discoloured, 

therefore, individual JM03’s lead composition is most likely contaminated from the 

burial environment and must be excluded from further analysis. The final Slovenia 

individual (JM04) had an anthropogenic lead burden of 6.43 ppm and plots between 

contaminated individual JM03 and the other three individuals (see Fig. 8.12). The lead 

isotope ratios observed in this individual indicate that they were exposed to a younger 
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lead source than the comparative Slovenian lead ore data plotted in figures 8.11 and 

8.12. However, as JM04 plots closely with JM03, who has diagenetic lead isotope ratios 

that reflect the local lead in the soils, it is also possible that JM04 is local. 
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Figure 8.11 –Plots of 208Pb/204Pb versus 206Pb/204Pb (a) and 207Pb/204Pb versus 
206Pb/204Pb (b) showing the relationship between Slovenia tooth enamel samples 

and the Slovenian lead ore field. Ore data taken from Henjes-Kunst, (2017). 

Analytical error shown to 2 sd. 
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Figure 8.12 –Plot of 208Pb/206Pb versus 207Pb/206Pb showing the relationship between Slovenia tooth enamel samples 

and the Slovenian lead ore field. Ore data taken from Henjes-Kunst, (2017). Analytical error is within the symbols 
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8.4 Geographic variation 

This study has already demonstrated that Roman tooth enamel contains in vivo lead 

isotope ratios consistent with the lead ore field of the country in which the individuals 

were recovered (see section 8.3). This overlap between the isotopic composition of a 

country’s lead ore and the corresponding human data suggests that these enamel isotope 

ratios provide accurate baselines for the lead isotope ratios expected in Roman 

populations from these regions. However, it is the variations in lead isotope ratios 

between countries that will determine how useful they are in identifying the origins of 

Roman migrants. To assess the usefulness of lead isotopes in this regard, the 

relationship between tooth enamel compositions from each country is illustrated in 

Figure 8.13a and 8.13b. In both plots the data spread creates a linear array, with the 

individuals from countries with younger geology (e.g. Lebanon and Romania) plotting 

to the top right of the plot and those from countries with older geology plotting further 

down towards the left (e.g. France). Although there is some degree of overlap between 

the countries, there are also subtle separations between populations. The plot displaying 

only uranium-derived lead (Fig. 8.13b) provides the clearest visualisation of these 

differences. 
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Figure 8.13 – Plots of 208Pb/204Pb versus 206Pb/204Pb (a) and 207Pb/204Pb versus 
206Pb/204Pb (b) showing the relationship between all tooth enamel samples. 

Analytical error shown to 2 sd. 
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Statistical methods to identify outliers have not been applied to the lead isotope ratio 

datasets generated in this study. Sayre et al., (1992) state that any data plot that shows 

significant separation between data points or groups of data points provides sufficient 

evidence that there is a difference between them. This is supported by other authors who 

propose that if lead isotope ratio data point separations are graphically obvious there is 

no need to resort to statistical methods (Baxter, 1999, p.123; Scaife et al., 1996, p.306). 

Furthermore, Pernicka (1993, p.259) goes on to suggest that applying any statistical 

methods would likely lead to an overinterpretation of the data. As such, statistical 

methods to identify outliers within bioarchaeological lead isotope ratio datasets are not 

used. Instead individuals that fall outside known country sources (e.g. ore data, artefacts 

of known provenance), or plot visually far away from the majority of the group have 

been identified as outliers (Montgomery 2002; Montgomery et al., 2010; Shaw et al., 

2016). The same method has been applied in this study, and once the visually different 

outliers (see section 8.3) from each population have been removed it becomes clear that 

the data separates into three distinct groups (see Fig. 8.14). The lead isotope ratios from 

the Slovenia, Romania and Lebanon individuals make up the first group, plotting 

closely together in the top right of the plot (red oval, Fig. 8.14). These individuals 

exhibit higher 206Pb/204Pb and 207Pb/204Pb isotope ratios than the Spain and France 

individuals. The Tarragona and Barcelona individuals exhibit lower 206Pb/204Pb isotope 

ratios than the Slovenia, Romania and Lebanon individuals, plotting closely together to 

the left of group one (blue oval, Fig. 8.14). The third group contains the France 

individuals (orange oval, Fig. 8.14); these individuals have similar 206Pb/204Pb isotope 

ratios to the Spain individuals but lower 207Pb/204Pb isotope ratios than the other 

populations. The four France and three Romania individuals that do not conform to this 
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trend are the Group B, low lead burden individuals described above in section 8.3 and 

are not expected to plot closely with lead ore isotope ratios. 

By grouping the data in this way it becomes apparent that there are two major trends in 

the dataset, and these trends also extend to previously published data from Roman 

populations (see Fig. 8.15). Two lines have been added to Figure 8.15 to visually help 

the reader see these trends. These lines have been placed where the majority of the data 

from Atlantic European and Mediterranean regions (red line) or Eastern and Western 

regions seperate (blue line). Firstly, the data produces two parallel linear arrays, 

separated by the red line (y = 1.6296x + 0.7053) on the plot. All of the data points 

below this red line are individuals buried in Atlantic European regions such as Britain, 

Northern France and Germany, while all of the data points above the red line are 

individuals from central European and circum-Mediterranean regions. This trend 

appears to relate to major European orogenic events (see Fig. 8.16), during which lead 

ores are often formed (Blichert‐Toft et al., 2016; Evans et al., 2018). The human data 

from European regions formed during the Hercynian (c. 280 – 380 Ma) and Caledonian 

(c. 390 – 490 Ma) events plot below the red line, while the data from regions formed 

during the Alpine event (c. 60 – 2.5 Ma) plot above the red line. This demonstrates that 

Roman tooth enamel lead isotope composition relates to the geological age of the ore 

bodies being exploited in their cultural sphere, and can be useful in determining the 

provenance of outliers within a skeletal population.  

The blue line (y = -7.25x + 8.216) in Figure 8.15 highlights the second trend in the data. 

Here the data separates into two groups, with the individuals from eastern European 

countries (Lebanon, Romania and Slovenia) plotting to the left of the blue line and the 

western European countries (Britain, France, Spain and Italy) plotting to the right. Both 
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of these trends are also reflected in the lead ore data from the corresponding countries. 

The tendency of lead ore fields to spread over a wide range of values means that there is 

often overlap between lead ore fields from different countries. Due to this overlap, 

which is evident in both tooth enamel and lead ore data, it is clear that lead isotope 

ratios are not country specific. Nevertheless, this data does demonstrate that lead 

isotope ratios can be useful in distinguishing between broad regions of Europe, such as 

Eastern vs. Western Europe or Atlantic vs. circum-Mediterranean Europe. However, it 

is important to note that neither of the lines annotating Figure 8.15 represents an 

absolute separation between regions, but rather provide an indication of an individual’s 

likely origin. These four suggested ‘lead provinces’ illustrated in Figure 8.15 provide a 

preliminary classification system for Roman lead isotope data and will need to be 

further tested and refined as more data becomes available in the future.
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Figure 8.14 – Red oval (Group 1) comprising the central and eastern-European countries (Slovenia, Romania, Lebanon). Blue oval 

(Group 2) containing the circum-Mediterranean countries (Spain). Orange oval (Group 3) containing the Atlantic countries (France). 

Analytical error shown to 2 sd. 
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Hercynian/Cambrian/Precambrian orogeny 

Central and circum-Mediterranean Europe 

Alpine orogeny 

Figure 8.15 – Plot of 208Pb/206Pb verses 207Pb/206Pb showing how the tooth enamel samples and lead ore data group according to 

orogenic age and region of Europe (east vs. west). Analytical error is within the symbols 
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8.16 – Simplified map showing the major orogenic events of Europe.  Purple 

represents Hercynian regions, green represents Alpine regions and yellow 

represents Precambrian and Caledonian regions. (Adapted from Muchez et al., 

(2005). 

 

 

8.5 Comparing lead and strontium  

Strontium isotope analysis is a well-established method for investigating mobility and 

has been extensively used to identify non-locals in archaeological studies (Budd et al., 

2001; Chenery et al., 2010; Evans et al., 2006; Montgomery et al., 2011, 2010; 

Valentine et al., 2015). However, similar terrains are found throughout Europe, which 

often renders strontium isotope ratios insufficiently unique enough to differentiate 

between countries (Evans et al., 2012). In Roman populations, however, lead exposure 

is dominated by anthropogenic not geogenic sources, therefore lead isotope ratios in 
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tooth enamel may show different patterns of variability across Europe than strontium 

isotope ratios. A difference is likely to be seen as strontium isotope ratios have been 

proven to be a useful discriminant in short-distance migration studies, especially in 

regions with heterogeneous geology, while lead isotope ratios are much more adept at 

identifying outliers in long-distance migration studies. Although no strontium isotope 

ratio data for the Slovenia individuals was obtained, strontium isotope ratios from the 

remaining four sites has been analysed to assess its variability across the Roman Empire 

and compare its effectiveness at identifying migrants with that of lead isotope ratios. 

To explore the variability of lead isotope ratios between countries and in comparison to 

strontium isotope ratios, box and whisker plots have been used to illustrate the 

differences between sites. These plots provide an easy way to visualise the variation in 

ranges and central tendencies of the lead and strontium isotope measurements taken 

from each site. As can be seen in Figure 8.17, each country exhibits a smaller range in 

strontium isotope ratios than lead isotope ratios. The central tendencies of strontium 

(Fig. 17a) also exhibit less variability between countries (range = 0.00114) than the lead 

isotope ratios. The smaller variability in strontium isotope ratios between countries is 

likely to be due to the similar geology found across large expanses of Europe, and 

influenced by the bias in the dataset as a large proportion of the individuals analysed 

were from regions with carbonate geology (limestone, chalk etc.). Of the lead isotope 

ratios measured, the central tendencies of 208Pb/204Pb (Fig. 17b) show the most 

variability between countries with a range of 0.3703, while 207Pb/204Pb (Fig. 17c) show 

the least variability (range = 0.04102). This pattern of variability suggests that lead 

isotopes may provide a better means of differentiating between countries than strontium. 
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Figure 8.17 – Box and whisker plots showing the variances and central tendencies of the strontium and lead isotope ratios from 

each site.  
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Analysis of the strontium isotope ratios revealed that the Romania, France and 

Barcelona individuals have 87Sr/86Sr isotope ratios that cover a broad range (see Fig. 

8.18). The relatively wide spread of strontium isotope ratios in all three of these sites 

reflects the complex geology in these regions.  With the exception of Barcelona, which 

also has areas of Cretaceous limestone, each of these regions have predominantly 

Palaeozoic (Cambrian and Devonian) and pre-Cambrian sediments with granitic 

intrusions (see Figs. 8.19 - 21), these types of terrains typically produce high 87Sr/86Sr 

isotope ratios between 0.71101 – 0.78000 (Voerkelius et al., 2010). Conversely, the 

Tarragona and Lebanon individuals exhibit a narrower range of lower 87Sr/86Sr isotope 

ratios (see Figs. 8.18) consistent with the Quaternary and Mesozoic limestone terrains 

that dominate these regions (see Figs. 21 and 8.22). This split in the types of terrain at 

each site is clearly evident in Figure 8.18 with the inclusion of the seawater value 

(dashed black line), here there is a clear separation of the individuals from regions with 

a predominantly limestone geology and those from predominately silicate regions. 

The majority of individuals have strontium concentrations (ppm) below 160 ppm 

(median value = 111 ppm), however, 16 individuals have higher concentrations of up to 

261 ppm (see Fig. 8.18). A notable feature of those with strontium concentrations above 

160 ppm is that they are all from coastal cities. The high strontium concentrations found 

in seawater may have contributed to these high enamel concentrations as the close 

proximity of Tarragona, Barcelona and Beirut to the coast will have resulted in the 

regions being subject to sea-spray, marine-derived rainwater and even the use of 

marine-derived fertilisers (kelp, seaweed etc.) to grow crops, all of which would 

increase the concentration of bioavailable strontium (Montgomery et al., 2003).  
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Figure 8.18 – Bivariate plot showing the 87Sr/86Sr ratios against Sr 

concentration (ppm) from the tooth enamel. Analytical error is within the 

symbols. 

Figure 8.19 – Simplified geology map of Romania (Derry, 1980)  
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  Figure 8.20 – Simplified geology map of France (Derry, 1980) 

Figure 8.21 – Simplified geology map of Spain (Derry, 1980) 
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To explore mobility within this sample group the data from each site has been plotted 

separately, on conventional 87Sr/86Sr vs. Sr ppm plots (see Figs. 8.23 – 8.26). In the 

absence of regionally specific bioavailable strontium ranges for each site, the estimated 

local ranges have been defined by ±2 sd from the mean of the combined enamel 

87Sr/86Sr isotope ratios (Bentley et al., 2004; Price et al., 2002). The majority of 

individuals plot within the estimated local ranges for their respective assemblage, 

however there are three outliers, one from each of the Barcelona, France and Lebanon 

populations.  

Both the Barcelona outlier (individual T8, see Fig. 8.26) and the France outlier 

(individual S745, see Fig. 8.24) have higher 87Sr/86Sr isotope ratios (0.71157 and 

Figure 8.22 – Simplified geology map of Lebanon (Derry, 1980) 
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0.71294 respectively) than the rest of their respective populations. Although T8’s 

strontium isotope ratio remains within the bioavailable range suggested by Voekelius et 

al., (2010) for north-eastern Spain, T8 is sufficiently different from the rest of the 

assemblage as to suggest that they had childhood origins in a different region with 

upper Palaeozoic sediments and Mesozoic metamorphic rocks. Areas such as this could 

include Andorra or the border between France and Spain. The high strontium isotope 

ratio exhibited by the France outlier is within the bioavailable range for France 

identified by Goude et al., (2012), aand is indicative of older Palaeozoic terrains and can 

be produced in very few locations in France (Voerkelius et al., 2010), most of which are 

located along the borders with Spain and Italy in the Pyrenees and Alpine mountain 

ranges. The outlier in the Lebanon assemblage (individual SK1004, see Fig. 8.25) has a 

lower strontium isotope ratio (0.70764) than the rest of the group. Although this 

strontium isotope ratio is still consistent with the bioavailable range for Israel identified 

by Hartman and Richards, (2016), as well as the Mesozoic limestone of the region, this 

geology is also common across large expanses of Europe. Therefore, although SK1004 

has a strontium isotope ratio consistent with the geology found in Beirut it is 

sufficiently different from the rest of the Lebanon population to suggest that they 

originate from a different population.  

It is notable to note that the strontium isotope ratios from this dataset identified fewer 

outliers than the lead isotope ratios, and that two of the three strontium outliers were not 

identified as outliers within the lead isotope dataset (see Table 8.1). This suggests that 

applying the combination of lead and strontium analyses can improve our ability to 

assess mobility within Roman populations.  
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Table 8.1 – Summary of outliers identified in the lead (Pb) and strontium (Sr) 

datasets. 

Country Pb outliers Sr outliers 

Romania M160b - 

France S394 

S854 

S745 

Lebanon SK431 

SK1004 

 

SK1004 

Barcelona, Spain T3 

UF217 

UF748 

T8 

Tarragona, Spain UF3 

UF14 

- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8.23 – Bivariate plot showing the 87Sr/86Sr isotope ratios against Sr 

concentration (ppm) from the tooth enamel of the Romania individuals. The 

shaded area represents a comparative bioavailable strontium isotope range from 

Romania and Serbia (Borić and Price, 2012). Analytical error is within the 

symbols. 
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Figure 8.24 – Bivariate plot showing the 87Sr/86Sr isotope ratios against Sr 

concentration (ppm) from the tooth enamel of the France individuals. The shaded 

area represents a comparative bioavailable strontium isotope range from France 

(Goude et al., 2012). Analytical error is within the symbols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.25 – Bivariate plot showing the 87Sr/86Sr isotope ratios against Sr 

concentration (ppm) from the tooth enamel of the Lebanon individuals. The 

shaded area represents a comparative bioavailable strontium isotope range from 

Israel (Hartman and Richards, 2014). Analytical error is within the symbols. 
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Figure 8.26 – Bivariate plot showing the 87Sr/86Sr isotope ratios against Sr 

concentration (ppm) from the tooth enamel of the Spain individuals. The shaded 

area represents a comparative bioavailable strontium isotope range from Spain 

(Valenzuela-Lamas et al., 2016). Analytical error is within the symbols. 

 

 

 

8.6 Identifying migrants across a continent 

Of the 96 individuals in this study, 11 exhibit strontium or lead isotope ratios that 

suggest that they did not originate from the same geographical region as the other 

individuals in their respective populations. These 11 individuals are discussed below. 

8.6.1 Romania  

There was only one outlier within the Romania population, a middle adult male 

(M160b) with a low lead burden of 0.23 ppm. This low lead concentration suggests 
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exposure to geogenic sources of lead and therefore should not be expected to conform 

to the isotopic signature of the Romanian ore field. Geogenic lead isotope ratios do not 

relate to anthropogenic lead isotope ratios as they derive from the local underlying 

geology, whereas anthropogenic lead isotope ratios reflect the geological age and 

composition of the lead ore body that has been exploited (Faure, 1986). Therefore, 

interpreting these geogenic lead isotope ratios in archaeological populations is difficult 

due to widespread environmental lead pollution (Evans et al., 2015). The extensive lead 

mining and metalworking throughout history has caused contamination of soils, 

swamping any local geogenic lead isotope ratios and replacing them with lead isotope 

ratios consistent with exploited lead ore bodies (Montgomery 2002; Montgomery et al., 

2010; Gulson, 1986). Although some studies have shown that burial soil leaches can 

provide a guide to the expected geogenic lead isotope ratios for the local area (Budd et 

al., 2000; Montgomery 2002; Montgomery et al., 2010), soil samples from each of the 

sites within this study were not available, therefore soil leaches could not be carried out 

to assess the local geogenic lead isotope composition for the local region. 

As can be seen in Figure 8.28, M160b has lead isotope ratios much lower than the rest 

of the Romania population, and plots away from almost all of the comparative human 

lead isotope data from Roman populations across the Empire. The only other individual 

to plot close to M160b is France outlier S394, who also has a lead burden less than 1 

ppm. There is currently no method for comparing the isotopic composition of 

archaeological human remains with a country’s geogenic lead signature due to 

anthropogenic environmental pollution not only during the Roman period, but also the 

19th century industrial revolution and again in the 20th century with the introduction of 

leaded petrol (Brännvall et al., 1997; Lee and Tallis, 1973; Renberg et al., 2002, 2001). 

As this individual has a strontium isotope ratio consistent with the rest of the Romania 
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population (see Fig. 8.27), it is difficult to ascertain whether the lead composition of 

this individual represents a migrant to Romania or the expected isotope ratios for 

Romanian ‘locals’ with predominantly natural lead exposure. 

8.6.2 France 

There are three isotopic outliers within the France population. Two of these individuals 

(S394 and S854) stood out due to their low lead isotope ratios, which were not 

obviously consistent with the rest of the France population and the French ore field. 

Individual S394 was an old adult female with a lead burden of 0.78 ppm and individual 

S854 was a middle adult probable female with a lead burden of 0.70 ppm. As with the 

Romania outlier, these low lead concentrations suggest exposure to predominantly 

geogenic lead sources and are unlikely to conform to the isotopic signature of the 

French ore field. Therefore, it is difficult to ascertain whether these individuals are 

migrants to France or French individuals from rural areas of France with minimal 

exposure to anthropogenic lead sources. The strontium isotope ratio for individual S394 

could not be obtained, however S854’s strontium isotope ratio (0.70935) is consistent 

with the majority of the France population and the expected values for the region. 

Although the lead isotope ratios of these two individuals appeared to suggest migrants 

to France, their low lead burdens indicate minimal exposure to anthropogenic lead 

sources and therefore may in fact be locals from a rural location where exposure to lead 

would be limited 

The third outlier, individual S745 was an old adult probable male with an elevated 

strontium isotope ratio relative to the rest of the France population. The high strontium 

isotope ratio of 0.71294 constrains possible origins to older Cambrian and Precambrian 

terrains found in predominantly mountainous regions of Europe. Lead analysis 
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demonstrated that S745 had an anthropogenic lead burden of 1.78 ppm and plotted with 

Group A of the France population, within the centre of the French ore field. Although 

S745 has lead isotope ratios consistent with French ore, when compared to 

contemporaneous individuals from other regions of the Roman Empire, S745 also plots 

with Romano-British individuals at the upper end of the Mendips ore field (see Fig. 

8.28). There is overlap between the upper end of the British ore field and the lower end 

of the French ore field, making it difficult to determine a region of origin solely on 

S745’s lead isotope ratios. However, the isotopic composition of this individual does 

suggest childhood origins in areas of Western Europe with older Hercynian or 

Cambrian ores, such as Britain, France or northwest Spain. Adding S745’s strontium 

isotope ratio to this interpretation narrows down possible childhood origins to the 

Pyrenees and Alpine regions in France or areas of Palaeozoic sediments in north and 

western Britain (Derry, 1980). 

8.6.3 Lebanon 

Individual SK1004 was a young adult male, dated to the early 1st century AD (pers. 

comms. V. Kalendrian). This individual has a low lead burden of 0.50 ppm, which 

suggests geogenic lead exposure rather than anthropogenic exposure. Lebanon did not 

become part of the Roman Empire until Pompey the Great’s conquest in BC 64 (Doyle, 

2012, p. 12). It is plausible that the early date of SK1004 could account for his low lead 

burden as Lebanon was still a relatively new region of the Empire and may not yet have 

developed the high environmental lead pollution seen in other countries under Roman 

rule. Previous research examining an Iron Age population from Lebanon has 

demonstrated that pre-Roman mining and metallurgy did not result in people from this 

region acquiring high anthropogenic lead burdens (Beherec et al., 2015). Therefore, the 
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early data could explain the low lead concentrations seen in SK1004, which as seen in 

British populations, are more consistent with pre-Roman populations exposed to 

predominantly natural lead as well as the lower lead isotope ratios exhibited by this 

individual in comparison to the rest of the Lebanon population.  

The second outlier within the Lebanon population is SK431, an old adult female dating 

from the 2nd – 3rd century AD (pers. comms. V. Kalendrian). SK431 has a higher lead 

burden of 2.62 ppm, which is indicative of anthropogenic exposure. This individual’s 

lead isotope ratios are lower than the rest of the Lebanon population and plot outside the 

Israeli lead ore field used as a proxy for the expected Lebanese lead isotope range. 

When compared with contemporaneous human isotope ratios from other regions of the 

Roman Empire, SK431 plots closer to the lead isotope ratios obtained from 

Mediterranean individuals from Spain and Italy (see Fig. 8.28). Although SK431’s 

strontium isotope ratio (0.70839) is consistent with the Lebanon population, it is also 

similar to the strontium isotope ratios obtained from regions such as Spain, Greece and 

Italy. 

8.6.4 Spain 

Lead isotope analysis of the Spain population highlights five possible migrants 

(Barcelona individuals UF217, UF748, T3 and Tarragona individuals UF2, UF14). 

These five individuals have anthropogenic lead burdens ranging between 2.37 ppm and 

20.3 ppm, and plot away from the main group of Spanish individuals (see Fig. 8.28). 

Barcelona individual UF748, a middle adult of indeterminate sex, plots below the other 

Spain individuals, with lead isotope ratios more consistent with regions of older 

Hercynian, Cambrian or Precambrian geology rather than the Alpine orogeny found in 

eastern Spain. Comparisons with human data from other regions of the Roman Empire 
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show how individual UF748 plots with contemporaneous humans from England and 

France. The second possible migrant, Barcelona individual UF217, was a middle adult 

female interred within a mausoleum. Like the majority of the Spain individuals, UF217 

had lead isotope ratios consistent with contemporaneous individuals from regions of the 

Empire with Alpine orogeny. However, UF217 had higher lead isotope ratios than the 

Spain assemblage and therefore plots to the left of the Spanish field, and with the 

individuals from Eastern Europe (see Fig. 8.28). Although UF217 has a strontium 

isotope ratio (0.70806) consistent with the Spain assemblage it is also characteristic of 

large areas of northern Europe. The isotopic composition of this individual suggests that 

they are a migrant to Spain and likely spent their childhood in Eastern Europe. 

The three other possible migrants, Tarragona UF2, UF14 and Barcelona T3, all exhibit 

low lead isotope ratios that plot close together, above and to the right of the Spain 

assemblage, close to France outlier S854 (see Fig 8.28). As these individuals plot a 

considerable way from the rest of the Spain assemblage they appear to be migrants to 

Spain. However, their lead compositions are consistent with Alpine orogeny, which is 

found in eastern Spain, and have lead isotope ratios that plot within the upper end of the 

Spanish ore field. The strontium isotope ratios for these three individuals are also 

consistent with other Spanish individuals and Spain’s geology. The dates through which 

the Barcelona and Tarragona necropolises were in use (3rd – 6th centuries AD) affords 

the possibility that these individuals may highlight a temporal shift in the predominant 

source of lead used by these Spanish populations. Therefore, it is possible that these 

three individuals although different to the majority of the Spain population may not be 

migrants to Spain from another region of the Roman Empire but rather migrants to the 

Catalonia region of Spain from another area within the country. Radiocarbon dating 

these three individuals could potentially provide additional information about how 
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Roman lead use changed within a country and inform our understanding of how 

temporally specific local baselines of lead isotopes may be. Finally, individual T8, a 

middle adult female from the Barcelona assemblage had lead isotope ratios consistent 

with the anthropogenic Spanish range; however she has a higher strontium isotope ratio 

than the rest of the Spanish assemblage (see Fig 8.27). Although this individual still 

plots within the suggested bioavailable strontium range for Barcelona by Voerkelius et 

al., (2010), T8’s isotope ratio is sufficiently different from the rest of the Spanish 

population as to suggest that they come from a different population. Taking into account 

this individual’s lead isotope ratios, it is likely that individual T8 had childhood origins 

in another region of Spain with Middle Upper Palaeozoic sediments and Mesozoic 

metamorphic rocks. This could include mountainous regions such as northern Spain 

near the border with France or possibly Andorra. 
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Figure 8.27 – Bivariate plot showing the 87Sr/86Sr isotope ratios against Sr 

concentration (ppm) from all individuals. Analytical error is within the symbols. 
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Figure 8.28 – Bivariate pot showing 208Pb/206Pb verses 207Pb/206Pb isotope ratios of all individuals from this study alongside 

comparative lead ore data and contemporary individuals from previously published studies  
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8.7 Isotopic investigations of intrusive burial rites 

Variations in burial practices have informed archaeological interpretations of past 

societies for centuries, and have been used to reconstruct almost every aspect of life 

from ethnicity and status to religion and gender (Ekengren, 2013). While any direct 

relationship between burial practices and geographic origins have long been disputed 

(Pearce, 2000), the unusual nature of such Roman burials raises questions about their 

identities and whether they share any commonalities with each other. This section 

presents the results of the multi-isotopic analysis of six Roman skeletons recovered in 

Musselburgh, Scotland, and two lead coffin burials excavated in Ilchester and York, 

England. It aims to ascertain the geographical origins of these individuals, which have 

been afforded unusual burial rites within an Empire known for the widespread 

movements of people, and to test the four suggested ‘lead provinces’ identified in this 

study (see Fig 8.15). 

8.7.1 Lead coffin burials 

Social status has often been interpreted using archaeological evidence such as funerary 

and epigraphic data (Buzon and Judd, 2008), and it has been shown that burial type can 

often be a good indicator of social status  (Hope, 2009). It is thought that cheaper 

burials, those that simply place the body in the ground or use plain wooden coffins, 

represent people with limited economic resources and are therefore, by extension, low 

status, while more elaborate burials using coffins made of lead or stone represent higher 

status individuals with the means to pay for more elaborate burials (Hope, 2009; 

Redfern and DeWitte, 2011; Toynbee, 1996). Lead coffin burials from Romano-British 

contexts have predominantly been found in urban locations, which follows the 
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distribution of wealth within the province at the time and therefore lends support to the 

assumption that individuals afforded a lead coffin burial are of higher status (Toller, 

1977). However, the rarity of lead coffin burials from Romano-British contexts raises 

questions about the identity of the individuals afforded such an elaborate and 

presumably expensive burial rite.   

Here the isotopic compositions of four Roman coffin burials from different locations in 

England (see Fig. 8.29) have been compared. Two of the individuals, a 4th century 

female from Ilchester and a 4th century male from York were analysed during this study, 

while previously published (Montgomery 2002; Montgomery et al. 2010) strontium 

and lead isotope ratio data from a 4th century female from Spitalfields, London, and a 

4th century male from Eagle Hotel, Winchester, have been included for comparison. In 

the case of the York individual, oxygen isotope data was also available (provided by N. 

Wilson, pers. comm.) and has been included to help constrain possible regions of origin. 

Although published work using the same techniques employed in this study have 

demonstrated that disparate lead isotope ratios can be obtained from a lead coffin and 

the individual interred within it (Montgomery, 2002; Montgomery et al., 2010), 

contamination from the burial environment is always a concern. Therefore, lead 

samples from the Ilchester and York lead coffins were also analysed to assuage any 

doubt about the origins of the lead measured in the tooth enamel. The isotope ratios 

obtained from the two lead coffin individuals and their corresponding coffin samples 

are presented in Table 8.2. No isotope data is available for the lead coffin from 

Winchester, therefore the lead isotope ratios obtained from a dentine sample from this 

individual has been used as a proxy for the coffin composition. Previous analysis of 

this sample demonstrated a lead concentration of 1540 ppm, which has been interpreted 

as contamination from the burial environment and likely representative of the isotopic 



 236 

composition of the lead coffin within which the individual was interred (Montgomery, 

2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.29 – Map of Britain showing the location of the lead coffin burials 

Table 8.2 – Tooth enamel and lead coffin isotope ratios from the Ilchester and 

York lead coffin burials (Spitalfields and Winchester data from Montgomery, 

2002. Oxygen isotope data from N.Wilson, pers. comm.). 

Sample Element Sex Age 
δ18O 

(VSMOW) 
87Sr/86Sr 

Pb 

ppm 
206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

Ilchester M2 F YA - 0.7089 63.3 18.4174 15.6370 38.4137 

Ilchester Pb coffin - - - - - 18.4131 15.6351 38.4167 

York M2 M MA 20.0 0.7109 93.8 18.5862 15.6633 38.6931 

York Pb coffin - - - - - 18.4141 15.6414 38.4184 

Spitalfields PM2 F YA - 0.7099 30.1 18.4600 15.7000 38.6200 

Spitalfields Pb coffin - - - - - 18.4001 15.6291 38.3686 

Winchester M3 M YA - 0.7092 41.8 18.3700 15.5700 38.2200 

Winchester Dentine - - - - 1540.0 18.4300 15.6000 38.3600 

York 

Ilchester 

Winchester 

London 
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8.7.1.1 The lead coffins 

With the exception of the Winchester dentine sample, all of the lead coffin samples 

plot within a tight cluster of points located within the expected ranges for British lead 

ore, at the upper end of the Mendips ore field data. The Winchester dentine sample 

plots further down, but still within the Mendips ore field (see Fig. 8.30). All four coffin 

samples plot within the bottom right ‘lead province’ (see Fig. 8.30) indicating lead 

isotope ratios consistent with a region of Atlantic Europe with 

Hercynian/Cambrian/Precambrain orogeny. This is congruent with British lead ore. 

Thus, indicating that the lead used to construct all four coffins was sourced from 

southern Britain. Previous studies that have analysed Romano-British lead coffin 

burials at Poundbury Camp, Dorset (Molleson et al., 1986) and Spitalfields, London 

(Montgomery 2002) have also demonstrated that the lead used to construct the coffins 

originated from English ore sources. Importing lead would have been an expensive and 

unnecessary endeavour considering the vast quantities of lead mined in Britain during 

this period (Toller, 1977). Therefore, it is unsurprising that people were utilising the 

readily available resources in southern Britain.  

Comparisons of the tooth enamel lead isotope ratios with those from the lead coffin 

samples confirms that the lead measured in the tooth enamel represents in vivo lead 

acquisition (see Fig. 8.30). Although the Ilchester female has lead isotope ratios similar 

to those of her lead coffin, the fact that the other three individuals exhibit in vivo 

isotope ratios markedly different from their respective coffins leaves little reason to 

suspect that the Ilchester individuals does not do the same. All four individuals 

underwent identical sampling and processing procedures therefore it is likely that the 
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isotope ratios obtained from the Ilchester female represent a childhood spend in Britain 

rather than post-mortem contamination from the burial environment. 



 239 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.30 – Bivariate plot showing 208Pb/206Pb against 207Pb/206Pb ratios for the coffin burials in relation to comparative 

datasets. All coffin samples cluster tightly within the British ore field, while the tooth enamel samples exhibit diverse 

characteristics. Mendips ore field data taken from Haggerty et al. (1996) and circum-Mediterranean data from Butcher and 

Ponting (2014) 
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8.7.1.2 Investigating origins 

The individual from York had a high δ18OVSMOW(p) value (20.0‰), which falls  outside 

the expected range for Britain (see Fig. 8.31) and thus indicates origins in a region with 

a warmer climate or lower altitude than Britain. There have been very few Romano-

British individuals reported with values as high as this, with only three individuals from 

London exhibiting higher values (Redfern et al., 2016). Three individuals from York, 

Driffield Terrace (6Drif- 21: 19.8‰ and 3Drif-26: 22.9‰) and Trentholme Drive 

(TDC710: 19.7‰), have similarly high δ18OVSMOW(p) values and have been interpreted 

as migrants to Britain from either a southern Mediterranean region of Europe or North 

Africa (Leach et al., 2009; Müldner et al., 2011). The isotopic and aDNA results from 

individual 3Drif-26 offer compelling evidence for origins in the Middle East 

(Martiniano et al., 2016). The corresponding drinking water value (δ18O(dw)) for this 

York lead coffin individual is calculated as -3.0 +/- 1.0‰, which also suggests a 

childhood spent in a southern Mediterranean or North African region of the Empire 

(Longinelli and Selmo, 2003; Lykoudis and Argiriou, 2007). While the high value 

obtained for this York individual does suggest origins in a warm, arid environment, 

previous migration studies in the Nile Valley and Nubia have demonstrated δ18OSMOW(p) 

values significantly higher than that seen in this Roman individual (Dupras and 

Schwarcz, 2001; Iacumin et al., 1996; White et al., 2004). This does appear to rule out 

areas of North Africa such as Egypt and Sudan, however with large expanses of the 

continent without available comparative data, other provinces of the Roman Empire in 

Northern Africa may still be viable locations.  
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Figure 8.31 – Bivariate plot showing 87Sr/86Sr against δ18OVSMOW(p). The black box 

represents the UK range for δ18OVSMOW(p) (± 2 sd) and the shaded area represents 

the UK range for 87Sr/86Sr (Evans et al., 2012). Comparative Roman York data 

from: Driffield Terrace (Müldner et al., 2011); Trentholme Drive and The Railway 

(Leach et al., 2009); Catterick (Chenery et al., 2011).  

 

 

The strontium isotope ratio (0.71094) obtained from this York individual is common in 

many areas of the Roman Empire but does exclude limestone and basalt terrains found 

in large regions of North Africa and the Middle East. Although the strontium isotope 

ratio obtained from the York male sits within the expected range for Britain (see Fig. 

8.31) it is slightly more radiogenic than the smaller strontium isotope range suggested 

for the Vale of York (between 0.7084 and 0.7102) (Chenery et al., 2011; Leach et al., 

2009). However, this value is also associated with a range of Cenozoic terrains found 

extensively throughout Europe (Chenery et al., 2010; Evans et al., 2010). Therefore, 
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despite being consistent with the British range, in combination with the high δ18O value 

obtained for this individual, a childhood spent outside of Britain is most likely.  

The use of lead isotopes to investigate the origins of this individual does help constrain 

possible areas of origin further. In Figure 8.32 the York individual has been plotted 

alongside lead ore data from broad regions of the Roman Empire, previously published 

Romano-British human tooth enamel results and the human data generated in this study. 

As with the oxygen isotope values, the lead isotope ratios appear to rule out a childhood 

spent in Britain, with isotope ratios plotting away from the main cluster of 

contemporaneous British individuals in the lower end of the circum-Mediterranean lead 

ore range established by Butcher and Ponting (2014) and within the Israeli and 

Romanian lead ore fields. This York individual has higher 207Pb/206Pb lead isotope 

ratios than those seen in North African lead ores, which plot lower than the York 

individual (see Fig. 8.32), indicating exposure lead sources older than those observed in 

North African lead ores. The lead isotope ratios obtained from this York individual plot 

within the upper left ‘lead province’ (see Fig. 8.30), indicating exposure to 

anthropogenic lead ore in a region of central or circum-Mediterranean Europe with 

Alpine orogeny. 

The York individuals’ isotope characteristics are inconsistent with origins in North 

Africa and the Levant as archaeological individuals from these areas are reported to 

have much higher oxygen and lead isotope values than those seen here (Dupras and 

Schwarcz, 2001; Iacumin et al., 1996; Martiniano et al., 2016; White et al., 2004).  The 

female lead coffin burial recovered from Spitalfields, London, has a similar strontium 

isotope ratio to this York individual, and, after comparison with isotope data from three 

individuals from Rome, has been interpreted as having possible origins in Italy 
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(Montgomery, 2002; Montgomery et al., 2010). However, the isotope characteristics of 

the York individual seem inconsistent with origins in Italy. The oxygen value obtained 

from this individual is higher than those expected for mainland Italy (“IAEA/WMO,” 

2006 in Evans et al., 2012; Longinelli and Selmo, 2003), and although both the 

Spitalfields female and the York male have lead isotope ratios indicative of origins in a 

region with Alpine orogeny, the lead isotope ratios exhibited by the York individual are 

higher than those seen in individuals from Rome. The isotope characteristics obtained 

from the York lead coffin burial indicate that this male is a migrant to Roman Britain, 

likely from a region of the Empire with a warmer, drier climate. Although the strontium 

isotope ratio obtain from the tooth enamel is relatively common across Europe, the 

addition of lead and oxygen isotope results suggest that a childhood spent in areas of 

Eastern Europe (Crowder et al., (in press). 

The isotopic composition of the Ilchester individual is much less varied. This individual 

has a similar strontium isotope ratio (0.7089) to the Winchester lead coffin individual 

(0.7092), both of which are consistent with the Mesozoic terrains found in England and 

large expanses of Europe. The lead isotope ratios for both of these individuals are also 

consistent with childhood origins in Britain, as both individuals plot within the expected 

ranges for British lead ore (Fig. 8.32). 

8.7.1.3 Conclusions 

It is evident from the disparate isotopic characteristics obtained from the tooth enamel 

of these intriguing burials that they spent their childhoods in very different locations. 

The Ilchester female and the Winchester male appear to have British origins, however, 

the possibility that they are second-generation migrants cannot be ruled out. Conversely, 

the Spitalfields female and York male are likely migrants to Britain with isotopic 
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compositions indicative of a childhood spent in warmer regions of the Roman Empire. 

These results suggest that lead coffin burials in Britain were not a rite reserved 

exclusively for migrants. A few individuals from dispersed regions of the Empire as 

well as locals appear to have been interred in this way. What these results do reinforce 

are the multicultural nature of societies within the Roman Empire and the tenuous link 

between burial rites and birthplace origin. 
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Figure 8.32 – Bivariate plot showing Pb isotope results for the lead coffin individuals in relation to comparative datasets. 

Mendips ore field data taken from Haggerty et al. (1996) and circum-Mediterranean data from Butcher and Ponting (2014).  
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8.7.2 Decapitation burials 

Musselburgh is home to one of the largest known Roman settlements outside of a fort in 

Scotland (Jones, 2012), consisting of both military and civilian settlement types 

(Thomas, 1988). Given its coastal location and prominent position on Dere Street 

(Hanson and Breeze, 1991; Shotter, 1996), Musselburgh was likely a key part of the 

supply network providing provisions to the military sites built along the Forth-Clyde 

isthmus (Breeze, 2006; Jones, 2012; Whittaker, 2002). In an area thought to be a prime 

location for the convergence of people from diverse locations, intrusive burial rites here 

raise questions about the geographic origins of the unusual individuals. This is 

especially true, considering the site’s close proximity to the Antonine Wall, a large 

military presence in a location with no history of previous occupation on such a scale 

(Tipping and Tisdale, 2005). 

Several of the Roman skeletons excavated from Musselburgh display evidence of 

trauma, with at least four of the skeletons exhibiting trauma patterns consistent with 

decapitation (Anderson, 2011). Although not a common burial rite in Scotland, 

decapitation burials have been identified in other Roman period contexts (Philpott, 

1991; Tucker et al., 2014). Decapitation burial is a common minority rite in Roman-

Britain (Tucker et al., 2014, p.213), and at sites where it has been identified, the crude 

prevalence rate is approximately 5–10% (Müldner et al., 2011; Philpott, 1991; Roberts 

and Cox, 2003) with the majority of examples dating to the 4th century AD (Philpott, 

1991). However, at the late Roman (2nd – 4th century AD) cemetery at Driffield Terrace, 

York, close to 80% of the predominantly male skeletons exhibited evidence for 

decapitation. However, there is currently no consensus as to why this is the case 

(Martiniano et al., 2016; Montgomery et al., 2011; Müldner et al., 2011). It has been 
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theorised that decapitation was a form of post-mortem burial ritual (Mattingly 2006, 

p.478; Timberlake, 2007, p.57; McKinley and Egging-Dinwiddy, 2009, p.58; Taylor 

2008; Jones, 2003). However, a review of the osteological evidence has demonstrated 

that a large number of individuals was decapitated as a mechanism of death either as a 

live sacrifice or judicial execution (Tucker et al., 2014, p230). 

The isotope ratios obtained from these six Roman Musselburgh individuals are 

presented in Table 8.3; one Iron Age individual from the same site is also included to 

establish the local human isotope range. Figure 8.33 shows the Musselburgh individuals 

plotted against datasets from Roman coins of known provenance (Butcher and Ponting, 

2014) and the Mendips ore field data (Haggerty et al., 1996), which provide 

comparative ranges for Mediterranean and English lead isotope ratios respectively. 

Additional Roman migration studies (Montgomery et al., 2010; Shaw et al., 2016) and 

data collected in this study offer further comparative human data and are also included 

here.  

Table 8.3 – Multi-isotope results from the Musselburgh Roman and Iron Age 

individuals tooth enamel samples (Strontium and oxygen data from Moore et al., 

in prep) 

 

The Iron Age individual (PPCM864) exhibited a 87Sr/86Sr isotope ratio and δ18Odw value 

that was consistent with local origins in the East Lothian area (see Fig. 8.34) (Moore et 

Sample Element Period Sex Age Decap 
δ18

Oc
 

87Sr/86Sr 
Pb 

ppm 
206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

PPCM235 PM2 Roman M 
MA-

OA 
Yes 25.3 0.71411 1.82 18.3372 15.6376 38.4341 

PPCM316 PM2 Roman M 
MA-

OA 
Yes 25.5 0.71403 0.61 18.4663 15.6367 38.5100 

PPCM323 PM2 Roman M YA - 25.3 0.70896 0.35 18.5377 15.6528 38.4793 

PPCM420 M2 Roman M A Yes 25.3 0.71245 2.17 18.3821 15.6296 38.3994 

PPCM451 M2 Roman M 
MA-

OA 
- 26.5 0.71397 2.20 18.3783 15.6313 38.3900 

PPCM630 PM2 Roman M 
MA-

OA 
Yes 27.3 0.70980 6.57 18.4395 15.6321 38.4515 

PPCM864 PM2 
Iron 

Age 
? YA - 26.3 0.70973 0.13 18.3396 15.5947 38.3280 
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al., in prep). This individual also had a very low lead burden which is inconsistent with 

exposure to the anthropogenic lead pollution of the Roman Empire and in line with 

prehistoric lead levels (Montgomery, 2002; Montgomery et al., 2010). The lead isotope 

ratios from this Iron Age individual are also comparable with other prehistoric 

individuals from Scotland, indicating exposure to low level geogenic lead sources 

(Montgomery et al., 2005, 2010). Therefore, this individual provides a good baseline 

against which to compare the intrusive Roman burials at Musselburgh. 
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Figure 8.33 – Bivariate plot showing the 208Pb/206 against 207Pb/206Pb ratios from the Musselburgh individuals tooth enamel in relation to 

comparative datasets. Data for comparative contemporary human tooth enamel samples were taken from: England Shaw et al., (2016) 

and Montgomery et al., (2010); Scotland and Italy samples from Montgomery et al., (2010). Mendips ore field data from Haggerty et al., 

(1996) and circum-Mediterranean data from Butcher and Ponting (2014). 
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Figure 8.34 – 87Sr/86Sr and δ18Odw values for enamel samples from the 

Musselburgh Roman (n = 6) and Iron Age (n = 1) individuals. Also showing the 

estimated range of UK δ18Odw (mean -7.4 ± 1.7‰, 2σ) and 87Sr/86Sr (0.7078 - 

0.7165) values (dashed box) obtained from previous archaeological studies (Evans 

et al., 2012b) as well as the estimated 87Sr/86Sr  and δ18Odw range for the Lothian 

area (dotted box) according to (Darling and Talbot, 2003). 87Sr/86Sr 2σ errors are 

within the symbol 

 

Considering the local isotope ratios provided by the Iron Age individual, it is clear that 

the Roman individuals at Musselburgh exhibit extremely variable tooth enamel isotope 

characteristics and do not appear to have originated from the Lothian area. When 

compared to other Romano-British sites, few Roman Period individuals have strontium 

isotope ratios as high as those found at Musselburgh. In fact, British values above 0.714 

are rare in all periods (Evans et al., 2012). The only individual that displays higher 

strontium isotope ratios was recorded at Driffield Terrace, York, and when considered 
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in conjunction with a high δ18O value, it was concluded that this individual was likely to 

have originated from an area with more radiogenic geology, such as Sardinia, Corsica, 

northern Italy or northern Africa (Montgomery et al., 2011). Four of the Musselburgh 

individuals have low δ18Odw values (c. –9.1‰) and high 87Sr/86Sr values above 0.7120, 

which are not common within British burials. Decapitated individual PCM316 had a 

low δ18Odw value consistent with origins in eastern Britain or northern Europe together 

with the high 87Sr/86Sr isotope ratio indicative of a childhood spent in a region with a 

granitic terrain. However, PPCM316’s lead burden was low and accompanied by lead 

isotope ratios inconsistent with Scottish ore sources (Rohl, 1996). This data suggests 

exposure to natural lead sources from younger rocks such as those found in England 

(Rohl, 1996).  Very similar lead isotope ratios have been obtained from a male burial at 

Driffield Terrace whose δ18Odw value and aDNA indicate that origins in the Levant are 

extremely likely (Martiniano et al., 2016). However the high 87Sr/86Sr isotope ratio and 

low δ18Odw value make such origins for PPCM316 unlikely.  

The remaining three individuals (PPCM235, PPCM420 and PPCM451) with high 

87Sr/86Sr isotope ratios are also linked through their lead isotope characteristics. Their 

low lead burdens indicate low level childhood exposure to anthropogenic lead pollution 

from ore sources inconsistent with those found in England. The lead isotope ratios that 

accompany these low lead burdens are more indicative of older lead ores such as those 

found in Scotland (Rohl, 1996). High 207Pb/206Pb isotope ratios, similar to those of 

PPCM235, have been observed in a small number of individuals from the Scottish Isles 

(Montgomery et al., 2010). However, PPCM235 has a higher 208Pb/206Pb isotope ratio 

than these Scottish individuals, indicating childhood origins in a geographical region 

with Alpine orogeny rather than the Cambrian orogeny found in Scotland.  
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Skeletal preservation is often poor in northern Scotland and there are very few 

comparative sites with which to compare the Musselburgh individuals. Nonetheless, a 

small Beaker Period assemblage from northern Scotland exhibits the same high 

strontium and low oxygen isotope characteristics seen in PPCM235, PPCM316 and 

PPCM420 (Pearson et al., 2016).  Similar lead and strontium isotope characteristics 

have been obtained from a child excavated in Roman London. This individual is 

thought to originate from Germany (Shaw et al., 2016), and while origins in western 

Europe are certainly possible for these individuals origins within the Scottish Highlands 

cannot be ruled out.  

In contrast to the rest of the Musselburgh assemblage, individuals PPCM323 and 

PPCM630 exhibit low strontium isotope ratios more typical of Mesozoic and Cenozoic 

sediments (Evans et al., 2010). This limits the efficacy of their strontium isotope ratios 

in constraining their area of geographical origin, as these sediment types are prevalent 

throughout Europe and most of Britain. It is clear that decapitated male PPCM630 does 

not originate from the local area. Despite the rather common and therefore undiagnostic 

87Sr/86Sr isotope ratio, PPCM630’s δ18Odw value is too high for origins in the Lothian 

area and most of eastern Britain, with a value more consistent with areas of western or 

southern Britain. PPCM630 also has the highest lead burden amongst the Musselburgh 

group, with an enamel concentration of 6.57 ppm. When interpreted in conjunction with 

the lead isotope ratios, PPCM630 plots tightly with contemporary burials from England 

(see Fig. 8.33) and within the English ore field (Haggerty et al., 1996). These results 

indicate anthropogenic exposure to English lead ore (Montgomery, 2002; Montgomery 

et al., 2010) and suggests that this individual spent his childhood within the Roman 

Empire, with likely origins in southern Britain. Conversely the low δ18Odw value seen in 

PPCM323 is not common in Romano-British individuals and when considered in 
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conjunction with the individuals’ low lead isotope ratios, it is likely that PPCM323 

originated from overseas. Indeed, PPCM323 has low δ18Odw values common in central 

and Eastern Europe (Crowder et al., in press; Hakenbeck et al., 2017; “IAEA/WMO,” 

2006 in Evans et al., 2012), and while the low lead isotope ratios for this individual 

appear to exclude the Mediterranean as a region of origin, it is possible that PPCM323 

originates from another region of the Roman Empire. 

Using a multi-isotope approach, this study has explored the link between intrusive 

burial rites and geographic origins at the Antonine Wall frontier, and like the majority 

of human provenance studies, the results have affirmed the current understanding that a 

multifarious relationship exists between the two. The isotopic data does suggest that the 

decapitation burials at Musselburgh do not represent the continuation of a native Iron 

Age population. Furthermore, while their commonality as possible migrants to southern 

Scotland links the burials, the individuals do not appear to share a common 

geographical origin, suggesting that something more complex than a shared ethnicity 

unites the individuals. However, it is apparent that a more comprehensive understanding 

of the isotopic variation amongst archaeological populations with childhoods spent in 

Scotland is needed before non-British origins for these Musselburgh individuals can be 

confidently established. Finally it should be noted that the Musselburgh decapitation 

burials represent the earliest known examples of Roman inhumation and decapitation in 

Britain (Kirby, 2016), and their apparent ethnic diversity coupled with a shared burial 

rite reflects the cosmopolitan nature of the Roman army.  

8.8 Summary 

One of the main aims of this study was to establish what constitutes the local lead 

isotope range for Roman populations from five regions within the Roman Empire. This 
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was achieved for four of the five regions included in the study, with the results 

demonstrating that Roman tooth enamel exhibits lead isotope ratios consistent with lead 

ore from their corresponding country. This has resulted in successfully establishing 

expected ‘local’ lead isotope ranges for Roman individuals with childhood origins in 

Spain, France, Romania and Lebanon. These ranges provide a good baseline against 

which other isotope studies can compare their data, and should aid in the identification 

of possible geographic origins of any outliers in future Roman mobility studies.  

In each of these four countries, individuals with lead burdens above 1 ppm exhibit the 

characteristic cultural focusing and linear spread associated with in vivo isotope ratios 

dominated by lead ore signatures. This indicates that the cultural shift from 

predominantly geogenic lead to predominantly anthropogenic lead is not limited to the 

British populations in which this trend has initially been reported. Although there is an 

overlap in these anthropogenic isotope ratios between countries, the results of this study 

have shown that lead isotope ratios appear to differentiate the population on the basis of 

two features.  Firstly, lead isotope ratios can distinguish between individuals from either 

Eastern or Western European countries as individuals and lead ores provide higher 

206Pb/204Pb isotope ratios relative to samples from western European countries. The 

second feature is differentiation based on the orogenic age of the region in which an 

individual spent their childhood. Individuals from older Hercynian or Cambrian regions 

such as Britain, France and Germany have lower 208Pb/206Pb ratios than younger Alpine 

regions such as Romania, Spain or Italy. 

With regards to the Slovenian human samples which were not consistent with Slovenian 

ore isotope ratios, the small sample size of both human samples and lead ore make it 

difficult to determine whether the disparity in isotopic composition between the two is 
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due to an as yet unknown end member in the lead ore field or whether the one 

individual with an anthropogenic lead burden is a migrant to Slovenia. However, as 

more enamel lead isotope data is obtained from Roman burials throughout Europe, the 

geographic origins of individuals with different lead isotope ratios will become 

identifiable with increasing confidence. 

A second aim of this study was to assess whether combining lead and strontium 

analyses could improve not only our ability to identify migrants within skeletal 

populations but also narrow down possible regions of origin. Lead and strontium 

isotopes provide different information regarding an individual’s residential history. 

Strontium represents the geology of the land on which an individuals food and water 

sources originated, while lead represents the dominant ore sources exploited by a 

particular population. Therefore, both isotopic systems have the potential to identify 

different outliers within the same assemblage and when combined, increase the 

resolution at which possible origins can be suggested. The results of this study support 

this as, although the majority of outliers were identified due to their different lead 

isotopes ratios, two individuals were highlighted as outliers due to their disparate 

strontium isotope ratios. This study has found that lead isotope analysis is an asset to 

migration studies on Roman populations and that not only are more outliers found if 

more than one isotope system is analysed together, but a better resolution on possible 

childhood origins can be obtained. Therefore where possible, it is best to apply a multi 

isotopic approach when assessing migration within skeletal populations. 
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CHAPTER NINE 

Conclusion and Future Directions 

9.1 Introduction 

The overarching aim of this study was to explore how exposure to anthropogenic lead 

pollution impacted upon childhood health and mortality during the Roman period, and 

what this type of exposure could tell us about geographic mobility within the Empire. It 

focused upon the use of lead isotopes as a discriminant in migration studies in an 

attempt to determine the extent of variation in lead isotope ratios between countries in a 

highly polluted archaeological population, as well as the paired analysis of lead 

concentration and palaeopathological data to explore the impact of lead exposure on 

childhood health and mortality. In this final chapter the findings of this study are 

summarised and suggestions for future work, which could be undertaken to further our 

understanding of lead concentrations and lead isotope ratios in relation to Roman health 

and mobility are given. 

9.2 Lead concentration analysis 

9.2.1 Sample variation 
 

An understanding of how lead is incorporated into and distributed between different 

tooth types is important not only for the interpretation of trace elemental data from tooth 

enamel, but also in how data between studies can be compared. To address this, this 

study explored the differences in lead concentrations between tooth types and tooth 

positions. The results produced here mirror those of previously published work 
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(Kamberi et al., 2012; Mackie et al., 1977; Pinchin et al., 1978), demonstrating that the 

distribution of lead within teeth is non-uniform. There are undoubtedly significant 

inconsistencies in inter-dental lead concentrations with no consensus on which dental 

arcade provides the highest concentrations, or if there are any patterns to which type of 

tooth will yield the highest amount of lead. It is likely that these inter-dental variations 

in lead concentrations are population specific and reflect not only the innate 

physiological factors related to lead absorption but also an individual’s level of lead 

exposure at the time of tooth formation. As an individual’s exposure cannot be 

controlled for, standardising the type and position of the tooth sampled would be the 

first step towards reducing any variability driven by physiological factors and would 

therefore improve comparability between studies. However, this has the potential to be 

extremely limiting, especially in archaeological studies where skeletal preservation and 

completeness dictates which teeth can be sampled. If standardisation of tooth type were 

to be implemented, sample sizes would likely be greatly reduced. 

9.2.2 Comparing males and females   

To further understand how exposure patterns may have varied within the Roman 

Empire, differences between male and female lead concentrations were assessed. In this 

study the majority of males had higher lead concentrations than females, which was 

consistent with modern studies examining sex differences in lead burdens (Claymaet et 

al., 1991; Costa de Almeida et al., 2010; Paoliello et al., 2002). Although intrinsic 

factors such as gene expression and hormone levels have been suggested as the cause of 

these differences (Björkman et al., 2000; Vahter et al., 2007), studies have shown that 

the short periods of postnatal endocrine surges do not result in any differences in lead 

concentrations between the sexes. As the values obtained in this study represent 
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prepubescent childhood, a time of life when the biochemistry of boys and girls is very 

similar (Bidlingmaier et al., 1975, 1973), any sex differences observed in archaeological 

lead burdens are most likely the result of differences in levels of environmental 

exposure. Thus, these results suggest that during the Roman period boys were engaging 

in a wider range of activities that facilitated higher levels of lead exposure than girls.  

A notable finding in this study was that higher lead concentrations were observed in the 

female individuals from Barcelona and Tarragona than the male individuals from the 

same sites. Although these differences were not statistically significant, they raise 

interesting questions about why Spanish individuals go against the trend seen in the 

majority of research into human lead concentrations. Archaeological studies that have 

identified this trend have attributed it to the status of the individuals (Nakashima et al., 

2007, 1998), with wealthier, higher status females thought to have increased access to 

lead containing products than lower status females. A comparison of burial rites in the 

Barcelona population (mausolea verses tegula graves) supports the presupposition that 

wealthier females have higher lead burdens than lower status females. Inferences about 

certain aspects of identity, such as status, are often difficult in archaeological contexts 

as assessments are often biased by our own expectations (i.e. grave goods). The use of 

lead concentration analysis to address questions surrounding status may provide an 

additional, objective method to the current means of assessment.  

9.2.3 Health and mortality  

This study has provided the first bioarchaeological evidence that lead poisoning may 

have been an influential factor in the poor childhood health observed throughout the 

Roman Empire. The elevated lead concentrations seen in non-adults with metabolic 

disease in comparison to non-adults without skeletal markers for disease offers strong 
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evidence to suggest that anthropogenic lead pollution contributed to the high prevalence 

rates of metabolic diseases, especially rickets, in Roman populations. Analysis of lead 

concentrations in rachitic individuals also revealed that nuances in the aetiology of the 

disease (caused by nutritional paucity or pollution) could also be tentatively established. 

The negative correlation observed between lead concentrations and age-at-death also 

implicates elevated lead burdens in the preponderance of Roman infant remains present 

in skeletal assemblages, suggesting that lead exposure contributed to the high infant 

mortality rates seen in Roman populations. The introduction of a bioarchaeological 

perspective to the decades-old debate surrounding how lead affected health during the 

Roman period has provided new insights into the impact of environmental lead 

pollution on the fragility of childhood health throughout the Empire. 

9.3 Lead isotope analysis 

9.3.1 Cultural focusing 

As demonstrated in previous studies, lead concentrations under 1 ppm are thought to 

represent geogenic exposure and have been shown to exhibit a higher degree of 

variability in their isotopic ranges than lead acquired through anthropogenic exposure 

(Montgomery, 2002; Montgomery et al., 2010; Shaw et al., 2016). While individuals 

with lead burdens above 1 ppm exhibit the characteristic cultural focusing and linear 

spread associated with in vivo isotope ratios dominated by lead ore signatures. As 

expected for populations in anthropogenically-polluted regions, the majority of data 

points from all five countries in this study produced linear arrays characteristic of lead 

ore field isotope ranges. Within these isotope fields there was a reduction in isotope 

variability with increasing lead concentration. This indicates that the cultural shift from 
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predominantly geogenic lead to predominantly anthropogenic lead is not limited to the 

British populations in which this trend has initially been reported, and that cultural 

focusing is universal phenomenon associated with anthropogenic lead use. 

9.3.2 Establishing local ranges 

One of the main aims of this study was to establish what constitutes the local lead 

isotope range for Roman populations from five countries within the Roman Empire. 

This was achieved for four of the five countries included in the study, with the results 

demonstrating that Roman tooth enamel exhibits lead isotope ratios consistent with lead 

ore from their corresponding country. This has resulted in successfully establishing 

expected ‘local’ lead isotope ranges for Roman individuals with childhood origins in 

Spain, France, Romania and Lebanon. However, it must be noted that the tendency of 

lead ore fields to spread over a wide range of values means that there is often overlap 

between lead ore fields from different countries. Due to this overlap, which is evident in 

both tooth enamel and lead ore data, it is clear that lead isotope ratios are not country 

specific. Nevertheless, this data does demonstrate that lead isotope ratios can be useful 

in distinguishing between broad regions of Europe, such as Eastern vs. Western Europe. 

Thus, the data produced in this study provides a good baseline to which other isotope 

studies can compare their data, and should aid in the identification of possible 

geographic origins of any outliers in future Roman mobility studies.  

9.3.3 Geographic variation 

Although there is an overlap in the anthropogenic lead isotope ratios between countries, 

the results of this study have demonstrated that lead isotope ratios can differentiate 

between populations on the basis of two broad features.  Firstly, lead isotope ratios can 
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distinguish between individuals from either Eastern or Western European countries. The 

results of this study have demonstrated that individuals and lead ores from eastern 

European countries exhibit lead isotope ratios enriched in 206Pb/204Pb relative to samples 

from western European countries. The second feature is differentiation based on the 

orogenic age of the region in which an individual spent their childhood. Individuals 

from older Hercynian or Cambrian regions such as Britain, France and Germany have 

lower 208Pb/206Pb isotope ratios than younger Alpine regions such as Romania, Spain or 

Italy. Although lead isotope ratios are not country specific this study has demonstrated 

that they are capable of discriminating between geographical regions when other isotope 

system are not.   

9.3.4 Identifying migrants 

Different isotope systems provide information pertaining to specific environmental 

features be that geological (Sr and Pb), climate (O) or food source (C and N). With the 

overlapping of environmental parameters across significant expanses of land the 

analysis of a singular isotope system is unlikely to ever be sufficient to identify all 

migrants within a population. In this study the combined use of strontium and lead 

isotope analysis has demonstrated that not only are more outliers found if more than one 

isotope system is analysed together, but a better resolution on possible childhood 

origins can also be obtained. Therefore where possible, applying a multi-isotopic 

approach is the most effective means of assessing migration within skeletal populations. 

9.4 Limitations 

Although this research has greatly contributed to our understanding of lead isotope 

analysis in Roman populations this section discusses some of the limitations identified 
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during the study, the majority of which can be addressed with future research. The 

necessarily small samples sizes due to cost, are the major limiting factor for this study. 

Firstly, the patterns observed in the lead isotope ratio data from previously studies 

regions of the Roman Empire has highlighted four ‘lead provinces’ that can be used to 

constrain possible regions of origin in mobility studies. However, the sample sizes 

analysed from each region were small (n = 12), and therefore the data should be used as 

a guide for the expected lead isotope ratios for a particular region. As more data 

becomes available in the future the expected lead isotope ratio ranges for regions within 

the Roman Empire will become increasingly accurate and the four ‘lead provinces’ 

suggested in this study will need to be refined. Secondly, the sample sizes available for 

comparisons between lead concetrations and status are also extremely small (n = 12). 

Althought the correlation seen in this study between lead concetrations and status are 

interesting, the small sample size is limiting. Therefore, the results cannot be used to 

infer that there are general differences in lead concetrations according to status 

throughout the Roman Empire.  

Finally, the physiological factors that underpin the acquisition of lead in deciduous and 

permanent tooth enamel need to be better understood.  This study has demonstrated that 

the inconsistencies in tooth enamel lead concentrations suggest that physiological 

factors are only partially responsible for the acquisition of lead in tooth enamel during 

life, and that cultural factors can significantly influence lead concentrations. However, 

the extent to which physiological factors influence lead concentrations in people of 

different ages and between males and females is important for the interpretation of any 

lead concentration data. Currently these processes are poorly understood and therefore 

current interpretations are limited.  
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9.5 Future research 

This study has greatly enhanced our understanding of how anthropogenic lead isotope 

ratios vary geographically and how lead exposure impacted upon health. However, it is 

evident that there is much more that can be done to further our understanding of 

geographic variation in lead isotope ratios and concentrations in Roman populations. In 

the following section future directions are suggested. 

Firstly, comparison of lead concentration from rural and urban sites would be useful. In 

this study only urban sites were utilised and within these there was a wide range of lead 

concentrations. This demonstrates that not all inhabitants of the Roman Empire acquired 

lead burdens above the currently accepted anthropogenic threshold (1 ppm). By 

comparing individuals from rural environments with those from urban locations it may 

be possible to establish what the normal range of lead burdens is to be expected in 

individuals living in locations with low exposure risks. This would improve our 

interpretation of lead concentrations in Roman populations and potentially allow the 

identification of individuals who have moved from highly polluted, urban environments 

to low pollution areas such as rural settlements. From the small sample size, this study 

has provided promising results that suggest higher status is accompanied by higher lead 

concentrations. Targeted sampling of individuals of perceived high status (burials rich 

in grave goods) alongside contemporaneous individuals from supposedly lower status 

burials would help to further our understanding of how lead exposure varied with 

socioeconomic status, which would in turn provide information pertaining to any 

differences in health and wellbeing between social classes. 

Secondly, although this study has successfully established baseline human lead isotope 

ranges for four countries within the Roman Empire, more could be done to further our 
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understanding of geographic variations in human lead isotope ratios. Expanding this 

work to include more countries within the Roman Empire as well as multiple sites 

within the same country would help refine the expected lead isotope range for 

individual countries and improve our understanding of regional variation across Europe. 

As more enamel lead isotope data is obtained from Roman burials throughout Europe, 

the geographic origins of individuals with non-local lead isotope ratios will become 

identifiable with increasing confidence.  

Finally, the methodology employed in this study limited the investigations into mobility 

to childhood movements. By applying lead isotope analysis to cremated remains 

investigations could be expanded to include movements during adulthood. This is 

currently untested using lead isotopes but has been successfully applied using strontium 

isotope analysis (Snoeck et al., 2016, 2015). Due to the high atomic weight of strontium, 

it does not fractionate during the cremation process and become resistant to post-

mortem alteration when the bone becomes fully calcined (Snoeck et al., 2016, 2015). As 

lead isotopes are heavier than strontium is it plausible that in vivo lead isotope ratios 

would also be preserved in fully calcined bone.  

9.6 Final conclusions 

This study has shown the effectiveness of lead isotope analysis as a tool in 

archaeological migration studies. The successful establishment of baseline ranges in 

previously unstudied regions of the Roman Empire has greatly enhanced our ability to 

identify the potential origins of isotopic outliers and has improved our understanding of 

how anthropogenic lead isotope ratios in Roman individuals varies across a continent. 

For the first time this study has also introduced a bioarchaeological perspective to how 

lead exposure affected health during the Roman period. In addition to providing strong 
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evidence that Roman lead pollution contributed to the high prevalence of metabolic 

diseases during childhood, especially rickets. These results also provide the first 

bioarchaeological evidence implicating elevated lead burdens in the high prevalence of 

infant remains in Roman skeletal assemblages. Thus, offering a new narrative to 

existing debates over the cause of high infant mortality rates seen in Roman populations.  
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Table A1 - Osteological and lead concentration data (obtained from tooth enamel 

using ICP-MS) 

Country Site 
Skeleton 

ID 

Age 

category 
Pathology 

Pb 

ppm 

Romania Dealul Furcilor M171 Adult   0.03 

Romania Dealul Furcilor  M72 Adult   4.06 

Romania Dealul Furcilor  M160b Adult   0.23 

Romania Dealul Furcilor  M172 Adult   0.80 

Romania Dealul Furcilor  M141 Adult   2.41 

Romania Dealul Furcilor  M160 Adult   4.69 

Romania Dealul Furcilor  M42 Adult   2.87 

Romania Dealul Furcilor  M59 Adult   0.25 

Romania Dealul Furcilor  M86 Adult   1.15 

Romania Dealul Furcilor  M178 Adult   8.29 

Romania Dealul Furcilor  M111 Adult   0.28 

Romania Dealul Furcilor  M103 Foetal Scurvy 0.92 

Romania Dealul Furcilor  M115 Foetal   9.33 

Romania Dealul Furcilor  M116 Foetal   5.44 

Romania Dealul Furcilor  M124 Foetal   4.62 

Romania Dealul Furcilor  M163 Foetal Scurvy 10.67 

Romania Dealul Furcilor  M8 Foetal   3.83 

Romania Dealul Furcilor  M19 Foetal   5.46 

Romania Dealul Furcilor  M71 0-1yr   7.87 

Romania Dealul Furcilor  M75 0-1yr   2.39 

Romania Dealul Furcilor  M109 0-1yr   6.98 

Romania Dealul Furcilor  M137 0-1yr Scurvy 5.12 

Romania Dealul Furcilor  M158 0-1yr   4.57 

Romania Dealul Furcilor  M52? 2-6yrs   5.81 

Romania Dealul Furcilor  M161 2-6yrs   6.70 

Romania Dealul Furcilor  M2 2-6yrs   3.88 

Romania Dealul Furcilor  M12 7-12yrs Rickets 0.37 

Romania Dealul Furcilor  M170 7-12yrs   2.37 

Romania Dealul Furcilor  M26 7-12yrs   1.19 

Romania Dealul Furcilor  M26b 7-12yrs   0.85 

Romania Dealul Furcilor  M10 7-12yrs   0.31 

Romania Dealul Furcilor  M10b 7-12yrs   0.15 

Romania Dealul Furcilor  M125 7-12yrs   1.90 

Romania Dealul Furcilor  M125b 7-12yrs   1.61 

Romania Dealul Furcilor  M165 13-18yrs   1.94 

Romania Dealul Furcilor  M7 13-18yrs   0.66 

Romania Dealul Furcilor  M7b 13-18yrs   3.34 

Spain Santa Caterina  T3 Adult   3.90 

Spain Santa Caterina  T9 Adult   0.69 

Spain Santa Caterina  T12 Adult   3.75 

Spain Santa Caterina  T15 (T4) Adult   1.73 
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Country Site 
Skeleton 

ID 

Age 

category 
Pathology 

Pb 

ppm 

Spain Santa Caterina  T3 Adult   1.37 

Spain Santa Caterina  UF371 Adult   4.79 

Spain Santa Caterina  UF755 Adult   1.98 

Spain Santa Caterina  UF758 Adult   2.60 

Spain Santa Caterina  UF217 Adult   12.07 

Spain Santa Caterina  UF708 Adult   1.95 

Spain Santa Caterina  UF729 Adult   7.28 

Spain Santa Caterina  T8 Adult   1.57 

Spain Santa Caterina  UF748 Adult   2.37 

Spain Santa Caterina  UF1 Foetal Rickets & Scurvy 59.62 

Spain Santa Caterina  UF382 0-1yr   7.09 

Spain Santa Caterina  Q3.40 0-1yr   1.96 

Spain Santa Caterina  UF5 0-1yr Rickets & Scurvy 4.92 

Spain Santa Caterina  UF712 2-6yrs Rickets & Scurvy 4.03 

Spain Santa Caterina  UF722 2-6yrs Scurvy 8.07 

Spain Santa Caterina  T10 2-6yrs   3.75 

Spain Santa Caterina  Q4.81 2-6yrs   6.17 

Spain Santa Caterina  Q4.103 2-6yrs   10.00 

Spain Santa Caterina  B1.110 2-6yrs   1.80 

Spain Santa Caterina  B1.126 2-6yrs Rickets 2.65 

Spain Santa Caterina  B1.141 2-6yrs   5.43 

Spain Santa Caterina  UF730 7-12yrs   1.26 

Spain Santa Caterina  UF726 7-12yrs Rickets & Scurvy 5.84 

Spain Santa Caterina  UF730 7-12yrs   3.25 

Spain Santa Caterina  A1.189 7-12yrs Scurvy 8.81 

Spain Santa Caterina  A2.106 7-12yrs   4.94 

Spain Santa Caterina  B3.099 7-12yrs   1.77 

Spain Santa Caterina  UF720 13-18yrs   1.91 

Spain Santa Caterina  UF720 13-18yrs   3.01 

Spain Santa Caterina  UF718 13-18yrs   1.97 

Spain Santa Caterina  UF747 13-18yrs   2.48 

Lebanon ASH 002 SK431 Adult   2.62 

Lebanon ASH 002 SK456 Adult   9.71 

Lebanon ASH 002 SK335 0-1yr   41.73 

Lebanon ASH 002 SK110 2-6yrs   44.13 

Lebanon ASH 002 SK341 13-18yrs   11.58 

Lebanon ASH 163 SK506 Adult   2.41 

Lebanon ASH 163 SK1004 Adult   0.50 

Lebanon ASH 163 SK428 2-6yrs   2.88 

Lebanon ASH 163 SK476 2-6yrs   38.26 

Lebanon ASH 163 SK100 7-12yrs   28.44 

Lebanon ASH 163 SK489 13-18yrs   4.98 

Lebanon ASH 163 SK83 13-18yrs   3.51 

Lebanon BCH 740 SK350 Adult   7.21 



 

 327 

Country Site 
Skeleton 

ID 

Age 

category 
Pathology 

Pb 

ppm 

Lebanon BCH 740 SK611 Adult   1.29 

Lebanon BCH 740 SK489 Adult   9.83 

Lebanon BCH 740 SK188 Non-adult   10.46 

Lebanon BCH 740 SK445 Non-adult   6.66 

Lebanon MDWR 02 SK2769 Adult   1.90 

Lebanon MDWR 02 SK2615 Adult   3.75 

Lebanon MDWR 02 SK2840 Adult   1.47 

Lebanon MDWR 02 SK2195 0-1yr   5.81 

Lebanon MDWR 02 SK1846 0-1yr   13.93 

Lebanon MDWR 02 SK2280 0-1yr   3.24 

Lebanon MDWR 02 SK1062 2-6yrs   33.37 

Lebanon MDWR 02 SK2143 2-6yrs   3.50 

Lebanon MDWR 02 SK2226 7-12yrs   27.19 

Lebanon MDWR 468 SK193 Adult   1.85 

Lebanon MDWR 468 SK145 Adult   0.56 

Lebanon MDWR 468 SK144 2-6yrs   14.10 

Lebanon MDWR 468 SK31 2-6yrs   1.64 

Lebanon MDWR 468 SK79 7-12yrs   4.68 

Lebanon RML 2385 SK1818 Adult   6.68 

Lebanon RML 2385 SK2318 Adult   5.72 

Lebanon RML 2385 SK1606 Adult   2.96 

Lebanon RML 2385 SK2442 Adult   22.60 

Lebanon RML 2385 SK1607 2-6yrs   22.49 

Lebanon RML 2385 SK2408 2-6yrs   21.80 

Lebanon RML 2385 SK2186 2-6yrs   5.89 

Lebanon RML 2385 SK1635 7-12yrs   24.40 

France Michelet S359 Adult   0.39 

France Michelet S690 Adult   24.30 

France Michelet S48 Adult   16.90 

France Michelet S365 Adult   2.16 

France Michelet S132 Adult   8.02 

France Michelet S376 Adult   1.88 

France Michelet S854 Adult   0.70 

France Michelet S405 Adult   0.93 

France Michelet S762 Adult   2.55 

France Michelet S394 Adult   0.78 

France Michelet S142 Adult   0.28 

France Michelet S831 Adult   7.86 

France Michelet S335 Adult   1.06 

France Michelet S745 Adult   1.78 

France Michelet S7 Foetal Scurvy 25.51 

France Michelet S283 0-1yr   9.53 

France Michelet S291 0-1yr Scurvy 5.34 

France Michelet S134 0-1yr   1.06 
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Country Site 
Skeleton 

ID 

Age 

category 
Pathology 

Pb 

ppm 

France Michelet S788 0-1yr   6.39 

France Michelet S542 0-1yr Rickets & Scurvy 8.07 

France Michelet S123 2-6yrs Rickets & Scurvy 5.48 

France Michelet S318 2-6yrs   1.88 

France Michelet S347 2-6yrs Rickets & Scurvy  9.24 

France Michelet S423 2-6yrs Rickets & Scurvy 3.61 

France Michelet S485a 2-6yrs   3.23 

France Michelet S613 2-6yrs Scurvy 4.78 

France Michelet S800 2-6yrs Scurvy 9.66 

France Michelet S853 2-6yrs   1.28 

France Michelet S143 7-12yrs   1.11 

France Michelet S150 7-12yrs   3.67 

France Michelet S433 7-12yrs   4.22 

France Michelet S540 7-12yrs   0.89 

France Michelet S830 7-12yrs   3.28 

France Michelet S830 7-12yrs   1.27 

France Michelet S511 13-18yrs   5.69 

France Michelet S164 13-18yrs   12.60 

Spain PERI 2 1104(UF11) Adult   18.9 

Spain PERI 2 2129 Adult   2.77 

Spain PERI 2 2413(UF29) Adult   6.48 

Spain PERI 2 1442(UF11) Adult   11.20 

Spain PERI 2 1069(UF7) Adult   3.55 

Spain PERI 2 2209(UF8) Adult   13.90 

Spain PERI 2 5552(UF19) Adult   8.86 

Spain PERI 2 1215(UF2) Adult   1.85 

Spain PERI 2 1035(UF2) Adult   10.20 

Spain PERI 2 1125/2(UF14) Adult   20.30 

Spain PERI 2 5400(UF8) Adult   15.30 

Spain PERI 2 2226(UF17) Adult   2.46 

Spain PERI 2 1035 Foetal Scurvy 187.00 

Spain PERI 2 1092 0-1yr   12.00 

Spain PERI 2 1098 0-1yr Rickets 13.20 

Spain PERI 2 2024 0-1yr   19.80 

Spain PERI 2 UF1 0-1yr   15.50 

Spain PERI 2 545(UF37) 0-1yr Rickets 90.40 

Spain PERI 2 5230 2-6yrs Rickets 76.10 

Spain PERI 2 2012 2-6yrs   99.90 

Spain PERI 2 2430 2-6yrs Rickets 10.70 

Spain PERI 2 2490a 2-6yrs   7.18 

Spain PERI 2 5319 7-12yrs   5.55 

Spain PERI 2 1233(UF3) 7-12yrs   8.85 

Spain PERI 2 2490b 7-12yrs   6.78 

Spain PERI 2 2604 13-18yrs   5.14 
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Table A2 – Lead and strontium isotope ratios and elemental concentrations from human tooth enamel samples using ICP-MS 

Country Region Site 
Skeleton 

ID 
Tooth 

Age 

Categor

y 

Sex 
Pb 

ppm 

206Pb/ 
204Pb 

2σ 

% 

207Pb/ 
204Pb 

2σ % 
208Pb/ 
204Pb 

2σ % 
207Pb/ 
206Pb 

2σ % 
208Pb/ 
206Pb 

2σ % 
Sr 

ppm 
87Sr/86Sr 

England Ilchester 
 

Lady in 

lead 
M2 YA Female 

 
18.4100 0.004 15.6365 0.005 38.4008 0.006 0.8494 0.002 2.0859 0.003 - 0.7089 

England York 
 

- M2 MA Male 
 

18.5862 0.005 15.6633 0.006 38.6931 0.007 0.8427 0.002 2.0818 0.003 - 0.7109 

France Caen Michelet S359 U.L.M2 YA Male 0.39 18.2769 0.011 15.6245 0.012 38.3335 0.013 0.8549 0.003 2.0974 0.006 46 0.7095 

France Caen Michelet S690 L.R.M2 YA Male 24.30 18.4254 0.005 15.6369 0.005 38.4180 0.006 0.8487 0.001 2.0851 0.006 57 0.7092 

France Caen Michelet S132 U.L.M3 MA Male 8.02 18.4091 0.004 15.6350 0.006 38.3987 0.006 0.8493 0.002 2.0859 0.006 157 0.7108 

France Caen Michelet S142 L.R.M2 OA Male 0.28 18.2705 0.017 15.6445 0.020 38.3524 0.024 0.8563 0.007 2.0992 0.011 246 0.7086 

France Caen Michelet S831 U.L.PM2 OA Male 7.86 18.4315 0.004 15.6394 0.006 38.4375 0.006 0.8485 0.002 2.0854 0.006 104 0.7091 

France Caen Michelet S335 L.L.M2 OA Male 1.06 18.3655 0.005 15.6322 0.006 38.3711 0.007 0.8512 0.002 2.0893 0.006 98 0.7096 

France Caen Michelet S745 L.R.PM2 OA Male 1.78 18.4516 0.013 15.6592 0.012 38.5122 0.014 0.8487 0.005 2.0873 0.007 110 0.7129 

France Caen Michelet S48 U.L.M2 YA Female 16.90 18.4115 0.004 15.6302 0.006 38.4014 0.007 0.8489 0.002 2.0858 0.006 109 0.7086 

France Caen Michelet S365 U.R.M3 YA Female 2.16 18.3872 0.007 15.6319 0.008 38.3816 0.008 0.8502 0.002 2.0875 0.006 69 - 

France Caen Michelet S376 L.R.PM2 MA Female 1.88 18.3854 0.008 15.6311 0.009 38.3779 0.009 0.8502 0.002 2.0874 0.006 74 - 

France Caen Michelet S854 U.L.PM2 MA Female 0.70 18.2373 0.007 15.6300 0.007 38.3946 0.008 0.8570 0.002 2.1053 0.006 49 0.7094 

France Caen Michelet S405 U.L.PM2 MA Female 0.93 18.2933 0.019 15.6422 0.016 38.3564 0.021 0.8551 0.015 2.0968 0.020 130 0.7116 

France Caen Michelet S762 L.L.PM2 OA Female 2.55 18.4220 0.005 15.6375 0.006 38.4198 0.006 0.8488 0.002 2.0856 0.006 97 0.7094 

France Caen Michelet S394 L.LM2 OA Female 0.78 18.1295 0.008 15.6151 0.008 38.4067 0.009 0.8613 0.002 2.1186 0.005 65 - 

France Caen Michelet S830 U.L.M2 (d) 7-12yrs I 3.28 18.4301 0.005 15.6408 0.006 38.4500 0.007 0.8487 0.002 2.0863 0.006 76 - 

France Caen Michelet S830 U.L.PM2 7-12yrs I 1.27 18.4205 0.012 15.6395 0.012 38.4353 0.013 0.8490 0.003 2.0866 0.006 76 0.7092 

Lebanon Beirut MDWR 02 SK2615 L.L.PM2 MA Male 3.75 18.6080 0.006 15.6793 0.011 38.7796 0.017 0.8426 0.005 2.0841 0.011 62 0.7084 

Lebanon Beirut SFI 645 SK1004 L.R.PM2 YA Male 0.50 18.3056 0.014 15.6484 0.018 38.4231 0.022 0.8548 0.007 2.0990 0.011 139 0.7076 

Lebanon Beirut RML 2385 SK1818 U.RPM2 OA Male 6.68 18.7487 0.005 15.6845 0.007 38.8463 0.007 0.8366 0.002 2.0720 0.006 210 0.7086 

Lebanon Beirut RML 2385 SK2318 L.R.PM2 OA Male 5.72 18.6640 0.004 15.6777 0.005 38.8121 0.006 0.8400 0.002 2.0795 0.006 177 0.7088 

Lebanon Beirut MDWR 02 SK2840 L.L.M2 OA Male 1.47 18.5963 0.010 15.6690 0.011 38.7243 0.012 0.8426 0.002 2.0824 0.005 110 0.7084 
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Country Region Site Skeleton ID Tooth 

Age 

Category 
Sex 

Pb 

ppm 

206Pb/ 
204Pb 

2σ 

% 

207Pb/ 
204Pb 

2σ % 
208Pb/ 
204Pb 

2σ % 
207Pb/ 
206Pb 

2σ % 
208Pb/ 
206Pb 

2σ % 
Sr 

ppm 
87Sr/86Sr 

Lebanon Beirut MDWR 02 SK2769 L.R.M2 YA Female 1.90 18.5087 0.010 15.6740 0.014 38.6680 0.020 0.8468 0.005 2.0892 0.011 76 0.7086 

Lebanon Beirut MDWR 468 SK193 L.R.M2 YA Female 1.85 18.5140 0.009 15.6575 0.009 38.6215 0.010 0.8457 0.003 2.0862 0.006 121 0.7086 

Lebanon Beirut SFI 655 SK506 U.R.PM2 MA Female 2.41 18.7031 0.008 15.6788 0.008 38.7486 0.008 0.8383 0.002 2.0718 0.006 136 0.7087 

Lebanon Beirut ASH 002 SK431 U.L.PM2 OA Female 2.62 18.3963 0.006 15.6494 0.007 38.5837 0.008 0.8507 0.002 2.0974 0.006 86 0.7084 

Lebanon Beirut ASH 002 SK456 L.L.M2 OA Female 9.71 18.5000 0.010 15.6573 0.011 38.6288 0.012 0.8463 0.002 2.0881 0.005 122 0.7085 

Lebanon Beirut RML 2385 SK1606 U.L.PM2 YA Female 2.96 18.6425 0.005 15.6800 0.006 38.7773 0.007 0.8411 0.002 2.0801 0.006 109 0.7087 

Lebanon Beirut RML 2385 SK2442 L.R.PM2 YA Male 22.60 18.7129 0.004 15.6789 0.005 38.8857 0.006 0.8379 0.002 2.0780 0.005 156 - 

Lebanon Beirut MDWR 468 SK145 L.?.PM2 MA I 0.56 18.5618 0.011 15.6760 0.015 38.6997 0.020 0.8445 0.006 2.0849 0.011 42 0.7084 

Lebanon Beirut BCH 740 SK350 U.R.PM2 A I 7.21 18.5749 0.009 15.6693 0.010 38.7160 0.011 0.8436 0.002 2.0844 0.005 55 0.7084 

Lebanon Beirut BCH 740 SK611 L.R.PM2 A I 1.29 18.4819 0.006 15.6688 0.011 38.6228 0.017 0.8478 0.005 2.0898 0.011 64 0.7085 

Lebanon Beirut BCH 740 SK489 L.L.PM2 A I 9.83 18.6821 0.009 15.6812 0.010 38.8027 0.011 0.8394 0.002 2.0771 0.004 118 0.7088 

Lebanon Beirut MDWR 468 SK144 U.L.C (d) 3-5yrs I 14.10 18.6378 0.004 15.6717 0.005 38.7744 0.006 0.8408 0.002 2.0804 0.006 103 0.7087 

Lebanon Beirut ASH 002 SK341 U.L.PM2 11-14yrs I 11.58 18.7110 0.009 15.6817 0.010 38.8492 0.011 0.8381 0.002 2.0763 0.004 192 0.7087 

Lebanon Beirut BCH 740 SK489 L.L.PM2 12yrs I 4.98 18.6782 0.005 15.6772 0.006 38.7691 0.006 0.8393 0.002 2.0756 0.005 128 0.7086 

Lebanon Beirut ASH 163 SK83 U.R.M2 YA Female 3.51 18.6522 0.009 15.6720 0.010 38.8070 0.011 0.8402 0.002 2.0806 0.004 135 0.7086 

Lebanon Beirut BCH 740 SK445 U.L.M2 Adoles. I 6.66 18.6869 0.004 15.6781 0.005 38.8600 0.006 0.8390 0.001 2.0795 0.006 116 0.7087 

Romania Alba Iulia 
Dealul 

Furcilor 
M72 L.R.PM2 MA Male 4.06 18.5574 0.009 15.6572 0.010 38.6648 0.011 0.8437 0.002 2.0836 0.004 99 0.7094 

Romania Alba Iulia 
Dealul 

Furcilor 
M160b U.L.M2 MA Male 0.23 18.1533 0.011 15.6228 0.014 38.4201 0.019 0.8606 0.006 2.1165 0.011 54 0.7098 

Romania Alba Iulia 
Dealul 
Furcilor 

M172 L.R.M3 MA Male 0.80 18.5535 0.006 15.6622 0.011 38.6517 0.017 0.8442 0.005 2.0833 0.011 73 0.7106 

Romania Alba Iulia 
Dealul 

Furcilor 
M178 L.L.M2 I Male 8.29 18.6531 0.007 15.6652 0.005 38.7748 0.006 0.8398 0.002 2.0788 0.004 103 0.7091 

Romania Alba Iulia 
Dealul 

Furcilor 
M42 U.L.M2 OA Male 2.87 18.6003 0.006 15.6516 0.006 38.6549 0.007 0.8415 0.002 2.0782 0.004 84 0.7097 

Romania Alba Iulia 
Dealul 

Furcilor 
M141 L.R.PM2 MA Female 2.41 18.5758 0.006 15.6520 0.005 38.6594 0.005 0.8426 0.001 2.0812 0.004 95 0.7109 

Romania Alba Iulia 
Dealul 

Furcilor 
M160 U.L.M2 MA Female 4.69 18.6091 0.007 15.6593 0.006 38.7111 0.006 0.8415 0.002 2.0802 0.004 133 0.7098 
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Country Region Site Skeleton ID Tooth 

Age 

Category 
Sex 

Pb 

ppm 

206Pb/ 
204Pb 

2σ 

% 

207Pb/ 
204Pb 

2σ % 
208Pb/ 
204Pb 

2σ % 
207Pb/ 
206Pb 

2σ % 
208Pb/ 
206Pb 

2σ % 
Sr 

ppm 
87Sr/86Sr 

Romania Alba Iulia 
Dealul 

Furcilor 
M86 U.R.PM2 OA Female 1.15 18.3408 0.017 15.6520 0.018 38.4601 0.023 0.8534 0.010 2.0970 0.015 93 0.7098 

Romania Alba Iulia 
Dealul 

Furcilor 
M111 U.L.PM2 I Female 0.28 18.5571 0.011 15.6695 0.015 38.6615 0.020 0.8444 0.005 2.0834 0.011 78 0.7097 

Romania Alba Iulia 
Dealul 
Furcilor 

M59 L.R.M3 OA I 0.25 18.5308 0.023 15.6651 0.024 38.6311 0.024 0.8454 0.004 2.0847 0.005 108 0.7094 

Romania Alba Iulia 
Dealul 

Furcilor 
M26 U.R.I1 7-12yrs I 1.19 18.4373 0.008 15.6534 0.012 38.6178 0.018 0.8490 0.005 2.0946 0.011 96 0.7092 

Romania Alba Iulia 
Dealul 

Furcilor 
M26 L.R.PM2 7-12yrs I 0.85 18.5427 0.007 15.6640 0.012 38.6744 0.018 0.8448 0.005 2.0857 0.011 114 0.7091 

Romania Alba Iulia 
Dealul 

Furcilor 
M10 

L.R.M2 

(d) 
7-12yrs I 0.31 18.5102 0.012 15.6638 0.015 38.6222 0.020 0.8462 0.005 2.0866 0.011 74 0.7113 

Romania Alba Iulia 
Dealul 
Furcilor 

M10 L.R.PM2 7-12yrs I 0.15 18.3879 0.009 15.6438 0.013 38.6045 0.018 0.8508 0.005 2.0995 0.010 151 0.7114 

Romania Alba Iulia 
Dealul 

Furcilor 
M125? 

U.L.M2 

(d) 
7-12yrs I 1.90 18.5585 0.005 15.6664 0.011 38.7037 0.017 0.8442 0.005 2.0855 0.011 101 0.7097 

Romania Alba Iulia 
Dealul 

Furcilor 
M125? U.L.PM2 7-12yrs I 1.61 18.6465 0.006 15.6642 0.005 38.7497 0.005 0.8401 0.002 2.0782 0.004 121 0.7093 

Romania Alba Iulia 
Dealul 
Furcilor 

M7 U.L.M2 13-18yrs I 0.66 18.4202 0.009 15.6572 0.012 38.5038 0.018 0.8500 0.006 2.0903 0.011 130 0.7105 

Scotland Musselburgh PHCC PPCM235 PM2 MA Male 1.82 18.3372 0.005 15.6376 0.005 38.4341 0.006 0.8528 0.002 2.0961 0.003 124 0.71411 

Scotland Musselburgh PHCC PPCM316 PM2 MA Male 0.61 18.4663 0.011 15.6367 0.006 38.5100 0.007 0.8468 0.002 2.0855 0.003 125 0.71403 

Scotland Musselburgh PHCC PPCM323 PM2 YA Male 0.35 18.5377 0.005 15.6528 0.012 38.4793 0.013 0.8443 0.003 2.0757 0.006 220 0.70896 

Scotland Musselburgh PHCC PPCM630 PM2 MA Male 6.57 18.4395 0.004 15.6321 0.005 38.4515 0.006 0.8478 0.001 2.0854 0.006 160 0.70980 

Scotland Musselburgh PHCC PPCM420 M2 YA Male 2.17 18.3821 0.017 15.6296 0.006 38.3994 0.006 0.8503 0.002 2.0891 0.006 45 0.71245 

Scotland Musselburgh PHCC PPCM451 M2 MA Male 2.20 18.3783 0.004 15.6313 0.020 38.3900 0.024 0.8505 0.007 2.0890 0.011 79 0.71397 

Slovenia Ljubljana Emonske JM02 (8) L.L.M3 - I 0.40 18.5349 0.010 15.6721 0.014 38.632 0.019 0.84555 0.005 2.0843 0.011 - - 

Slovenia Ljubljana Emonske JM03 (57) L.L.M3 - I 509.0 18.5704 0.004 15.6800 0.005 38.799 0.006 0.84436 0.002 2.0893 0.003 - - 

Slovenia Ljubljana Emonske JM04  L.L.M2 - I 6.43 18.5465 0.008 15.6671 0.007 38.730 0.009 0.84477 0.002 2.0882 0.005 - - 

Slovenia Ljubljana Emonske JM06 (4) U.R.M2 - I 0.23 18.4976 0.010 15.6669 0.013 38.627 0.019 0.84697 0.005 2.0882 0.011 - - 

Slovenia Ljubljana Emonske JM07  (9) L.L.M3 - I 0.22 18.4636 0.014 15.6627 0.017 38.568 0.021 0.84831 0.006 2.0889 0.011 - - 

Spain Barcelona 
Santa 

Caterina 
T3 L.R.M2 I Male 3.90 18.2457 0.006 15.6265 0.005 38.4548 0.006 0.8565 0.002 2.1076 0.004 98 0.7088 
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Country Region Site Skeleton ID Tooth 
Age 

Category 
Sex 

Pb 

ppm 

206Pb/ 
204Pb 

2σ 

% 

207Pb/ 
204Pb 

2σ % 
208Pb/ 
204Pb 

2σ % 
207Pb/ 
206Pb 

2σ % 
208Pb/ 
206Pb 

2σ % 
Sr 

ppm 
87Sr/86Sr 

Spain Barcelona 
Santa 

Caterina 
T9 U.R.PM2    I Male 0.69 18.3692 0.011 15.6697 0.014 38.5091 0.019 0.8530 0.005 2.0964 0.011 111 0.7096 

Spain Barcelona 
Santa 
Caterina 

T12 U.L.M3 I Male 3.75 18.4781 0.009 15.6648 0.010 38.6225 0.010 0.8477 0.002 2.0902 0.004 179 - 

Spain Barcelona 
Santa 

Caterina 
T15 (T4?) L.R.M3 I Male 1.73 18.4277 0.009 15.6547 0.010 38.5433 0.010 0.8495 0.003 2.0917 0.004 75 0.7099 

Spain Barcelona 
Santa 

Caterina 
T3 U.L.PM2 I Male 1.37 18.4421 0.008 15.6628 0.007 38.5758 0.007 0.8493 0.002 2.0918 0.005 206 0.7082 

Spain Barcelona 
Santa 
Caterina 

UF371 U.L.M2 I Female 4.79 18.3715 0.008 15.6620 0.007 38.5321 0.007 0.8525 0.002 2.0974 0.004 111 0.7097 

Spain Barcelona 
Santa 

Caterina 
UF755 U.L.PM2 I Female 1.98 18.3906 0.007 15.6534 0.006 38.5296 0.007 0.8511 0.002 2.0951 0.004 147 0.7106 

Spain Barcelona 
Santa 

Caterina 
UF758 L.R.M2 I Female 2.60 18.4065 0.008 15.6600 0.007 38.5446 0.009 0.8508 0.002 2.0942 0.005 102 0.7090 

Spain Barcelona 
Santa 
Caterina 

UF217 L.L.M2 I Female 12.1 18.5962 0.006 15.6658 0.005 38.7397 0.006 0.8424 0.002 2.0832 0.004 240 0.7081 

Spain Barcelona 
Santa 

Caterina 
UF708 L.R.M2 I Female 1.95 18.3977 0.008 15.6582 0.006 38.5330 0.007 0.8511 0.002 2.0945 0.004 230 0.7083 

Spain Barcelona 
Santa 

Caterina 
UF729 L.L.PM2 I Female 7.28 18.4115 0.007 15.6647 0.006 38.5862 0.008 0.8508 0.002 2.0958 0.005 128 0.7094 

Spain Barcelona 
Santa 
Caterina 

T8 U.L.PM2 I Female 1.57 18.4138 0.013 15.6597 0.014 38.5409 0.014 0.8504 0.003 2.0932 0.005 96 0.7116 

Spain Barcelona 
Santa 
Caterina 

UF748 U.R.M2 I I 2.37 18.4222 0.007 15.6368 0.006 38.4283 0.007 0.8488 0.002 2.0860 0.005 123 0.7104 

Spain Barcelona 
Santa 

Caterina 
UF730 U.R.M2 7-12yrs I 1.26 18.3449 0.011 15.6545 0.010 38.4875 0.010 0.8533 0.003 2.0980 0.005 79 0.7104 

Spain Barcelona 
Santa 

Caterina 
UF720 U.L.PM2 13-18yrs I 1.91 18.4137 0.007 15.6753 0.012 38.5895 0.018 0.8513 0.006 2.0957 0.011 132 0.7084 

Spain Tarragona PERI 2 1104 U.R.M2 YA Male 18.9 18.4480 0.015 15.6670 0.010 38.6240 0.014 0.8493 0.008 2.0937 0.004 251 0.7086 

Spain Tarragona PERI 2 2129 U.L.M2 YA Male 2.77 18.4940 0.016 15.6750 0.011 38.6830 0.015 0.8476 0.008 2.0917 0.004 114 0.7096 

Spain Tarragona PERI 2 2209 U.R.PM2 MA Male 13.9 18.4920 0.014 15.6625 0.009 38.6335 0.014 0.8470 0.008 2.0892 0.004 179 0.7085 

Spain Tarragona PERI 2 2226 U.R.PM2 I Male 2.46 18.4610 0.015 15.6670 0.010 38.6290 0.015 0.8487 0.008 2.0925 0.004 166 0.7085 

Spain Tarragona PERI 2 2413 U.R.M2 YA Male 6.48 18.4690 0.015 15.6660 0.010 38.6320 0.015 0.8482 0.008 2.0917 0.004 207 0.7085 

Spain Tarragona PERI 2 1442 L.R.M2 YA Male 11.2 18.4690 0.015 15.6670 0.009 38.6430 0.014 0.8483 0.008 2.0923 0.004 261 0.7088 

Spain Tarragona PERI 2 5552 U.R.M2 MA Male 8.86 18.4560 0.015 15.6700 0.010 38.6410 0.015 0.8490 0.008 2.0937 0.004 170 0.7091 

Spain Tarragona PERI 2 1215 L.L.M2 MA Female 1.85 18.4740 0.015 15.6700 0.010 38.6590 0.015 0.8482 0.008 2.0926 0.004 - 0.7090 
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Country Region Site 
Skeleton 

ID 
Tooth 

Age 

Category 
Sex 

Pb 

ppm 

206Pb/ 
204Pb 

2σ % 
207Pb/ 

204Pb 
2σ % 

208Pb/ 
204Pb 

2σ % 
207Pb/ 

206Pb 
2σ % 

208Pb/ 
206Pb 

2σ % 
Sr 

ppm 
87Sr/86Sr 

Spain Tarragona PERI 2 1035 U.L.M2 MA Female 10.2 18.2850 0.015 15.6330 0.010 38.4390 0.015 0.8550 0.008 2.1022 0.004 162 0.7091 

Spain Tarragona PERI 2 1069 L.R.M2 YA Female 3.55 18.4700 0.015 15.6670 0.009 38.6320 0.015 0.8482 0.008 2.0916 0.004 121 0.7091 

Spain Tarragona PERI 2 1125/2 U.R.M2 MA Female 20.3 18.2495 0.015 15.6205 0.009 38.3935 0.014 0.8559 0.008 2.1038 0.004 191 0.7090 

Spain Tarragona PERI 2 5400 U.L.M3 MA Female 15.3 18.4500 0.015 15.6670 0.009 38.6240 0.015 0.8492 0.008 2.0934 0.004 222 0.7088 
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