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Abstract 

Landslides erode large amounts of particulate organic carbon (POC) over short 

periods of time and therefore are thought to play an important role in local carbon 

cycles. However, the onward fate of POC is poorly constrained, particularly with 

respect to storage on hillslopes in landslide deposits, which may protect 

biospheric organic carbon (OCbio) from oxidation and act as short-term stores of 

CO2. It is also crucial to constrain the source of the eroded organic carbon, with 

only OCbio able to sequester CO2 from the atmosphere. Understanding the fate 

of eroded OCbio will help to better infer the consequences of landsliding on the 

carbon cycle.  

This thesis contributes to this research gap by quantifying the mass of OCbio 

eroded by 10 individual landslides in the Southern Alps, New Zealand, and then 

determining the carbon storage potential for each landslide deposit. I collected 

191 samples from landslide deposits, riverbeds, and undisturbed soil profiles, and 

quantified total organic carbon content and stable isotope ratios (δ13C and δ15N) 

using an elemental analyser coupled to isotope ratio mass spectrometer. The 

mass of OCbio mobilised by each landslide, calculated using soil organic carbon 

stocks and mapped landslide areas, ranged from 0.32 ± 0.1 tC to 360 ± 100 tC. 

To find the deposit storage potential, these values were compared to estimates 

of the mass of OCbio stored in each landslide deposit (0 tC to 3900 ± 3000 tC). 

This was derived using a binary mixing model, deposit volume, bulk density and 

organic carbon content. This study found that deposit carbon storage potential 

was variable across the ten landslides, possibly as a result of landslide type and 

the processes occurring during and following the initial erosion. Future research 

should better constrain the factors controlling landslide deposit carbon storage 

potential, such as bulk density, vegetation and post-landslide erosion.  

300 words. 
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Calculated by carbon/nitrogen. Also referred to as 

C/N in the literature. (-) 

Stable carbon isotope ratio (‰) 

Stable nitrogen isotope ratio (‰) 

 

Additional terminology used in this thesis 
 

Location 

 

 

Site 

 

 

Subsite 

Refers to the 19 different locations studied in this thesis. When 

discussing the 10 locations from which landslide deposits were 

sampled, the phrase Landslide X has also been used.  

Refers to the different areas within each location where samples 

were collected, for example Location 5 was divided into 7 sites, 

which were defined by changes in elevation. 

Refers to the exact place soil profiles were recorded and/or soil 

samples were collected from within a site. 
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Chapter 1: Introduction. 

Landslides are an important geomorphic process that shape hillslopes by 

mobilising large volumes of sediment over very short time periods (Sidle and 

Ochiai, 2006; Restrepo et al., 2009). A landslide can be defined as the downward 

displacement of rock, soil and debris under the influence of gravity in one or 

multiple subsidiary units (Sharpe, 1960; Cruden, 1991; Restrepo et al., 2009; 

Walker and Shiels, 2013a). Landslides are common in mountainous 

environments due to processes of tectonic uplift and river incision which act to 

increase the slope gradients within a catchment, allowing the hillslope to reach 

the threshold angle for failure by mass wasting (Burbank et al., 1996; Hilton et 

al., 2011a; Clark et al., 2016).  

The importance of landslides in mountainous regions has been relatively well-

researched, with landslides known to mobilise large volumes of sediment (Hovius 

et al., 1997; Dadson et al., 2004; Larsen et al., 2010), block river channels (e.g. 

Hancox et al., 2005; Croissant et al., 2017) and cycle nutrients (Walker and 

Shiels, 2013a). The high erosion rates and large sediment yields associated with 

landslides have also resulted in widespread environmental impacts (Hovius et al., 

1997; Hilton et al., 2011a). For example, in the years that follow the initial 

landslide, the delayed evacuation of sediment stores can lead to a range of 

consequences, such as reduced ecosystem productivity, increased flood risk by 

the aggradation and scouring of channels and changing the pathways of 

pollutants (Macfarlane and Wohl, 2003; Walker and Shiels, 2013a). By mobilising 

large volumes of bedrock, soil and vegetation, landslides can also have important 

implications for biogeochemical cycles (Hovius et al., 1997; Stallard, 1998; Hilton 

et al., 2008a; 2011a). 

More specifically, landslides play a role in the carbon cycle of river catchments 

by eroding large volumes of soil (Table 1.1). For instance, Clark et al., (2016), 

reported an erosional carbon yield by landsliding of 20 ± 3 tC km-2 yr-1, which 

exceeds suspended load river exports of organic carbon in the same catchment 

of ~12 tC km-2 yr-1 (Clark et al., 2017). Globally, soil accounts for the largest store 

of organic carbon in the biosphere (Schlesinger, 1997), storing ~1500 – 2000 

PgC (Lorenz and Lal, 2005). Therefore, soil erosion by landslides is an important 
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vector to consider in local and regional carbon cycles (Lal, 2003; 2005; Hilton et 

al., 2011a).  

 

Location 
Key 

trigger 

Area 
studied 

(km2) 

Time 
period 

(yr) 

Soil organic 
carbon 
eroded  

(tC km-2 yr-1) 

Soil organic 
carbon 

stored in 
deposits (tC 

km-2 yr-1) 

 
Clark et 

al. (2016)  

Kosñipata 
Valley, Peru 

Storms 185 25 20 ± 32 - 

 
Madej 
(2010)  

Redwood 
Creek, 

United States 

Storm 
(1997) 

0.454 1 2.8¹3 - 

 
Hilton et 

al. 
(2011a)  

Southern 
Alps, New 
Zealand 

Storms 2434 40 7.6 ± 2.9¹² 5.4 ± 3.0 

 
Ramos-
Scharrón 

et al. 
(2012) 

  

Sierra de Las 
Minas, 

Guatemala 

Storm 
(Hurricane 

Mitch) 
657 20³ 33¹² (4.62) 

¹ Study does not differentiate between soil and vegetation, ² Biospheric organic carbon 
only, ³ Based on hurricane/storm return period, (Brackets) indicate that the values 
shown have been quantified based on data within the paper 

Table 1.1. A table displaying the findings from recent publications estimating the mass 
of organic carbon removed by landslides in four different locations.  

1.1. Organic carbon erosion by landslides  

A growing body of work has focused on constraining the amount of organic 

carbon eroded by landslides at the scale of river catchments (Madej, 2010; 

Ramos Scharrón et al., 2012; Clark et al., 2016; Wang et al., 2016). These studies 

have started to establish the widespread implications of landsliding on the carbon 

cycle as well as identify key feedbacks between climate, tectonics and 

biogeochemical cycles (West et al., 2005; Hilton et al., 2008a; 2008b). However, 

to assess the consequences of landslides on the carbon cycle, it is essential to 

not only quantify the amount of organic carbon eroded but also determine the fate 

of the organic carbon post-landsliding (Stallard, 1998; Scott et al., 2006; Hilton et 

al., 2011a; Ramos-Sharron et al., 2012). Typically eroded organic carbon has two 

main fates. The first fate is that the organic carbon may remain stored in the 

landscapes, for example within a landslide deposit, where it will be protected over 

the lifetime of the deposit (tens to thousands of years) (Hilton et al., 2011a; 

Ramos Scharrón et al., 2012). Alternatively, the organic carbon may be exported 

from the catchment through post-landslide erosion. This can be divided into two 



3 
 

parts. Firstly, the organic carbon may be delivered into the river channel, where 

it is oxidised in transit and releases CO2 back into the atmosphere. Thus, acting 

as a net source of carbon to the atmosphere (Scott et al., 2006; Ramos Scharrón 

et al., 2012; Bouchez et al., 2014). Secondly, the organic carbon may be 

transported by rivers to sedimentary or oceanic basins where the material can be 

deposited in long-term geologic storage. This leads to a longer-term method of 

carbon sequestration (Galy et al., 2007a; Hilton et al., 2008a). 

Despite this recognition, only a few studies have addressed the fate of organic 

carbon post-landsliding. For example, studies by Hovius et al. (1997) and 

Emberson et al. (2016) have mapped the location of landslides in the western 

Southern Alps over several decades. Hilton et al. (2011a) then used the landslide 

inventory from Hovius et al. (1997) to provide a constraint on the mass of organic 

carbon eroded by landslides in the region. Table 1.1 summarises the results from 

Hilton et al. (2011a) and other studies, conducted in Peru, the USA and 

Guatemala, which have also quantified the mass of organic carbon eroded by 

landslides. A large number of studies have also focused on quantifying mountain 

river particulate organic carbon fluxes, particularly following disturbance events, 

such as storms and earthquakes (Galy et al., 2007a; West et al., 2011; Bouchez 

et al., 2014; Wang et al., 2015; 2016). A study by Hilton et al. (2008a) 

demonstrated the importance of river particulate organic carbon fluxes in the 

western Southern Alps and concluded that if >10% of the particulate organic 

carbon transported by rivers was preserved in long-term geologic storage, 

riverine carbon fluxes would be one of the most significant processes in the 

region.  

However, the importance of landslide deposits as carbon stores has been widely 

overlooked and there remains a gap in the research with respect to constraining 

the fate of the eroded organic carbon stored in landslide deposits. This study will 

begin to address this research gap by attempting to quantify the proportion of 

eroded biospheric organic carbon (OCbio) retained in individual landslide deposits 

in the western Southern Alps, New Zealand. This will contribute to the 

overarching aim; to better understand the importance of landslide deposits as 

transient carbon stores within river catchments. The geochemically diverse and 

distinguishable isotopic composition of landslide deposits will also allow for the 

sources of organic carbon eroded by landslides to be identified using stable 
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carbon isotope ratios and a binary mixing model (Hilton et al., 2008a). The source 

of the organic carbon is crucial to constrain because only OCbio, as opposed to 

petrogenic organic carbon (OCpetro), has the ability to sequester CO2 from the 

modern-day atmosphere.  

1.2. Landslides as a link between tectonics and the 

carbon cycle 

Earthquakes are an important landslide trigger due to co-seismic shaking 

inducing failures across the entire hillslope on ridges, crests and hillslope toes 

(Densmore and Hovius, 2000). Subsequently, in the years to decades following 

an earthquake both the sediment yield and concentration of OCbio in rivers have 

been shown to increase (Dadson et al., 2004; Wang et al., 2016; Li et al., 2017).  

Similar observations have been made from lake palaeorecords in the Southern 

Alps, with Howarth et al (2012) stating that sediment yields increased for a period 

of ~50 years following the last three major ruptures along the Alpine Fault. This 

sediment also contained large volumes of organic matter, as shown by high C:N 

ratios, indicating that large amounts of organic matter were mobilised from 

hillslopes into the channel, possibly by landslides (Howarth et al., 2012). 

Furthermore, research by Frith et al., (2018) suggested that 40% of the organic 

carbon accumulated in a lake record over a thousand years was delivered after 

four large earthquakes. The study also stated that it was likely that the organic 

carbon found in lake sediments was soil-derived and probably eroded by deep-

seated landslides. This contributes to previous studies demonstrating the 

importance of the region for landslide-based carbon fluxes. However, by focusing 

on the sink of the eroded organic carbon, the study does not establish the 

importance of the transient carbon stores earlier in the system. 

The importance of landslides in mobilising sediment and organic carbon from 

hillslopes in the Southern Alps has received prior attention due to the high riverine 

carbon fluxes, rates of landsliding and tectonic nature of the location (Hovius et 

al., 1997; Korup, 2005a; Scott et al., 2006; Hilton et al., 2008a; 2011a; Clark and 

Burbank, 2010; Howarth et al., 2012; Frith et al., 2018). There is also a relatively 

high probability (~30%) of a Mw ~ 8.0 earthquake occurring along the Alpine Fault 

in the next 50 years (Berryman and Cochran, 2012). Therefore, it is crucial to 
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further determine the implications of landsliding on the regional carbon cycle by 

assessing the role of landslide deposits as transient carbon stores.  

1.3. Research aim and objectives 

The research presented in this thesis aims to assess the role of landslide deposits 

as transient stores of organic carbon in mountain river catchments. By studying 

10 individual landslides located across 4 different catchments, this research will 

build on current understandings of landslide carbon dynamics by comparing the 

geochemical composition of undisturbed soil profiles to that of landslide deposits. 

To do this, soil organic carbon stocks need to be better constrained, in addition 

to developing and applying tools which can assess the provenance of organic 

carbon in landslide deposits. By doing this, the effectiveness of individual 

landslides in routing particulate organic carbon from the biosphere will be 

determined. These values will then be upscaled, bearing in mind the caveats of 

upscaling empirical data from 10 landslide deposits and 25 soil profile sites, using 

spatially-averaged assumptions about carbon content and landslide sediment 

delivery to estimate regional implications of a Mw ~ 8.0 earthquake along the 

Alpine Fault. This will also contribute to current assessments evaluating 

feedbacks between tectonics and the regional carbon cycle. The aim of this thesis 

will be achieved using the following three objectives:   

1. Estimate the mass of biospheric organic carbon mobilised by landslides 

from hillslopes in the Southern Alps New Zealand. 

• To better quantify soil organic carbon stocks for the western Southern 

Alps, New Zealand. 

• To assess the spatial heterogeneity in soil carbon stocks, and potential 

links to geomorphic variables.  

• To map landslide area using field observations and remote sensing. 

• To determine the mass of biospheric organic carbon mobilised by ten 

individual landslides. 

2. Constrain the provenance of the organic carbon stored in landslide 

deposits.  

• To characterise the geochemical composition of organic carbon in soils 

using %OC, %TN, δ13C, δ15N and C:N ratios. 
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• To trace the origin of the organic carbon stored in individual landslide 

deposits using %OC, %TN, δ13C, δ15N, C:N ratios and a mixing analysis. 

• To estimate landslide deposit volume and mass using fieldwork, remote 

sensing and laboratory analysis.  

• To constrain the mass of biospheric organic carbon stored in landslide 

deposits.  

3. Determine the erosive potential of landslides and the importance of 

landslide deposits as transient stores of organic carbon in the Southern 

Alps, New Zealand. 

• To compare estimates of the mass of biospheric organic carbon mobilised 

by landslides (Objective 1) to the mass of biospheric organic carbon 

stored in ten landslide deposits (Objective 2).  

• To upscale the implications of these findings using a landslide inventory 

for the Southern Alps, New Zealand, dating between 1940 and 2014 

(Emberson et al., 2016). 

• To estimate the mass of biospheric organic carbon mobilised following a 

Mw~8.0 earthquake along the Alpine Fault 

1.4. Thesis structure 

In this thesis, I build on previous research investigating the role of landslides in 

mobilising organic carbon from the biosphere in the Southern Alps, New Zealand, 

by better constraining the proportion of eroded OCbio stored in landslide deposits 

and therefore the importance of deposits as transient carbon stores. This study 

will be conducted on an individual landslide scale to provide a more detailed 

insight into the fate of OCbio post-landsliding. This thesis is comprised of seven 

chapters, which are summarised below.  

Chapter 2: Literature Review. This chapter outlines the relevant literature with 

regards to the importance of landslides in delivering organic carbon from 

hillslopes into river channels. The chapter briefly discusses the importance of 

SOC stocks with respect to global biogeochemical cycles. Then, the chapter 

outlines the process of soil erosion and provides an overview of the associated 

impacts on SOC stocks. Finally, the chapter discusses the role of landslides in 

mobilising organic carbon from hillslopes and the importance in constraining the 

source and fate of the eroded organic carbon. The chapter concludes by stating 
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the urgency to better constrain the role of landslide deposits as possible stores 

of OCbio using stable isotope ratios. 

Chapter 3: The Southern Alps, New Zealand. This chapter provides a 

background of the Southern Alps, New Zealand, giving an overview of the key 

tectonic, climatic and geological features within the mountain range. The chapter 

also introduces the locations studied throughout this thesis. Chapter 3 concludes 

by highlighting how the western Southern Alps provides an excellent setting to 

conduct this research. 

Chapter 4: Methodology. This chapter details the methods employed during 

fieldwork, laboratory analysis and remote sensing, in the context of relevant 

literature, to determine the mass of OCbio mobilised by landslides and stored in 

landslide deposits.  

Chapter 5: Results. This chapter presents the results from this thesis. 

Chapter 6: Discussion. This chapter discusses the results in the framework of 

the research objectives. The chapter begins by estimating SOC stocks for the 

western Southern Alps, New Zealand and considers the relevance of soil depth, 

slope angle and elevation as possible constraints. The chapter then compares 

the geochemical composition of landslide deposits to those from undisturbed soil 

profiles in order to develop a binary mixing model. This binary mixing model 

identifies the sources of organic carbon stored in the landslide deposit and is 

used to determine the mass, and relative proportion, of OCbio stored in each 

deposit. These findings are then placed in the context of previous literature and 

upscaled to determine the possible implications of a Mw~8.0 earthquake. 

Chapter 7: Conclusion. This chapter summarises the key findings from this work 

and outlines possible areas for further research.  

 

 

 

 

 

 



8 
 

Chapter 2: Landslides and the carbon cycle. 

2.1. The global carbon cycle: An overview 

The carbon cycle is the transfer of carbon compounds between four main 

reservoirs: the geosphere, atmosphere, hydrosphere and biosphere (Schimel, 

1995; Mackenzie and Lerman, 2006; Figure 2.1.). The carbon cycle is made up 

of fluxes, which refer to the movement of carbon between different reservoirs. 

The direction of each flux determines whether each reservoir acts as a carbon 

source or sink. The terms net carbon source and net carbon sink are typically 

used in reference to changes in atmospheric carbon stocks. This is due to the 

fact that the atmospheric carbon reservoir is primarily in the form of CO2, a 

greenhouse gas, which is a major player in the radiative energy balance, and 

therefore climate. For example, if more carbon is being added to the biospheric 

reservoir than released into the atmosphere, the reservoir with a net increase in 

carbon, in this instance the biosphere, is called the carbon sink or store. The 

importance of carbon cycling is demonstrated throughout the earth’s history with 

organic carbon burial in oceans, vegetation and other reservoirs and the release 

of CO2 by volcanic eruptions all known to control climate and the composition of 

the atmosphere (Bolin, 1970; Stallard, 1998).  

The size of each reservoir varies greatly (Figure 2.1.) with the geosphere storing 

the most carbon, >60 000 000 PgC (Sundquist, 1993; Falkowski et al., 2000; 

Mackenzie and Lerman, 2006). The geosphere consists of sedimentary rocks 

such as limestone and dolomites, which can be exposed by mountain building 

(Mackenzie and Lerman, 2006; Hilton et al., 2011a). Fluxes of carbon from the 

geosphere to the atmosphere primarily involve the oxidation of exposed rocks to 

release CO2 into the atmosphere (Hilton et al., 2011b). The second largest 

reservoir is the hydrosphere, which includes oceanic and continental surface and 

ground waters and contains ~38 000 PgC (Mackenzie and Lerman, 2006; Ciais 

et al., 2013). This is followed by the biosphere, which consists of terrestrial and 

marine vegetation, animals and soil organic matter and is controlled by processes 

of respiration and photosynthesis (Mackenzie and Lerman, 2006). 

Photosynthesis involves the reaction of H2O and CO2 fixated from the 

atmosphere to form carbohydrates and produce O2 (g). The smallest reservoir is 
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the atmosphere, ~700 PgC, which consists of CO2, carbon monoxide, methane 

and volatile hydrocarbons (Bolin, 1970).  

Figure 2.1. A schematic diagram providing an overview of the reservoirs within the 
global carbon cycle, including the combined mass of organic and inorganic carbon 
within each store. Values shown are in Petagrams of carbon.  

Figure has been adapted from Taylor (2015)  with values taken from Falkowski et al. 
(2000) and Ciais et al. (2013). 

2.2. The biosphere: Soil organic carbon stocks 

The terrestrial biosphere consists predominantly of soils and vegetation, with 

soils storing ~1500 – 2000 PgC, which is more than the atmosphere and 

vegetation combined (Schimel, 1995; Batjes, 1996; Schlesinger, 1997). At least 

two thirds of the carbon stored in this reservoir is organic carbon (Lal, 2008). In 

global models of the carbon cycle the biosphere acts in relative equilibrium with 

the atmosphere to remove CO2 from the atmosphere through the process of 

photosynthesis and releases CO2 back into the atmosphere through respiration 

and decomposition (Ciais et al., 2013). Decomposition is thought to emit ~50 – 

60 PgC of CO2 each year (McGuire et al., 1995). Therefore, even slight changes 

to this large carbon store may have substantial impacts on the atmospheric 

carbon reservoir (Lal et al., 1998; Perruchoud et al., 2000).  
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Organic carbon stocks in the biosphere are also a strong indicator of soil health 

and productivity (Franzluebbers, 2002) and therefore can largely influence the 

stability of forest ecosystems (Bangroo et al., 2013; Bangroo et al., 2017).  

Soil organic carbon is formed by the decomposition of plant and animal litter 

(Juma, 1998; Lorenz and Lal, 2005; Hagon et al., 2013) and is degraded through 

mineralisation (Figure 2.2.; Bot and Benites, 2005). The organic carbon pool 

within soils is often divided into two layers or horizons; the organic (O) horizons 

and the mineral, or organomineral, horizons (Figure 2.2; Garten et al., 1999). The 

organic horizon of the soil profile is closest to the surface and often darker in 

colour. This horizon is also more responsive to changes in land use and climate 

due to the combination of aggregated, decomposing and unprotected organic 

matter (Harrison et al., 1993; Garten et al., 1999). Conversely, mineral horizons 

in the soil profile are more stable and protected from oxidation and decomposition 

due to the fact the organic carbon is often associated with physically or chemically 

stabilised soil particles, such as silt and clay (Garten et al., 1999).  

Figure 2.2. The processes occurring within soils to form and degrade soil organic 
matter.  

Figure has been adapted from Steiner (2009).  
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Soil formation and SOC stocks are controlled by factors such as climate, 

vegetation, topography, parent material and time (Jenny, 1941; 1980). Therefore, 

patterns of SOC have a high spatial variability which can explain the large 

uncertainties associated with SOC stock estimates (Lal, 2003; Ritchie et al., 

2005). Subsequently, it is important to identify the factors controlling SOC stocks 

on a local scale to determine the most important constraints when estimating 

location-specific SOC stocks (Table 2.1).  

The large spatial variability associated with SOC stocks is reflected by soils in 

New Zealand, which are thought to have higher concentrations of organic carbon 

relative to other temperate regions (Metson et al., 1979; Tate et al., 1997). 

National SOC stock estimates of 4192 MtC (Scott et al., 2002) and 4260 ± 190 

MtC (Tate et al., 1997) have been derived. The above average SOC stocks can 

be attributed to the diverse climatic, geological and biological conditions in New 

Zealand. Therefore, changes to the SOC stocks in New Zealand may have 

significant implications for the global carbon cycle (Tate et al., 1997).  

There are a range of factors renowned for influencing SOC content (Table 2.1), 

including soil depth (Jobbagy and Jackson, 2000; Garten et al., 2007), bulk 

density (Chaudhari et al., 2013), nitrogen availability (Garten et al., 2007), 

elevation (Griffiths et al., 2009; Bangroo et al., 2017), slope (Perruchoud et al., 

2000) and soil type, texture and grain size (Krull et al., 2001; Walker and Shiels, 

2008; Ding et al., 2014). Climate is also a key factor in controlling SOC stocks, 

particularly in topsoils (Blair et al., 2004; Heiderer, 2009). The large 

environmental variability associated with temperate mountain ranges (Hoffman 

et al., 2014; Bangroo et al., 2017) suggests that geomorphic controls will be of 

particular importance for SOC stocks in the Southern Alps, New Zealand.  

In summary, it is important to develop accurate models to estimate SOC stocks 

to provide a better insight into soil health and the importance of the location for 

regional and global carbon cycles. This can be achieved by considering local 

controls on SOC stocks, such as soil depth.  
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Table 2.1. A table stating the factors known to control soil organic carbon content and 
the expected trends.  

Control 
Impact on Soil 

Organic Carbon 
Concentration (%) 

Impact on SOC Stocks (tC km-2 yr-1) 

Soil Depth 

 
If depth increases, 

SOC content 
decreases. 

 

SOC stocks decrease with increased soil depth due 
to the transition from biotic to abiotic controlling 
factors, such as reduced plant availability (Mulder et 
al., 2015). This results in a lower rate of 
decomposition, and subsequently less SOC is 
produced. This relationship has been widely 
accepted (see Jobbagy and Jackson, 2000; Wang 
et al., 2010; Heiderer, 2009).  
 

Nitrogen 
Availability  

If nitrogen availability 
increases, SOC 

content increases.  

 

Nitrogen availability is often referred to as a key 
limiting factor for net terrestrial primary productivity 
due to the photosynthetic requirement of nitrogen 
and the low levels of accessible nitrogen. 
Therefore, soil organic matter and soil organic 
carbon stocks are often tightly regulated by nitrogen 
availability with changes in nitrogen stocks often 
leading to the same change in carbon stocks 
(Vitousek and Howarth, 1991; McGuire et al., 1992; 
LeBauer and Treseder, 2008; Goñi et al., 1998).  
 

Elevation 

If elevation 
increases, SOC is 

likely to also 
increase. 

 

A positive relationship between elevation, 
particularly >1000 m, and the amount of SOM 
produced has been reported by multiple studies 
(Jenny, 1980, Sims and Nielson, 1986; Garten et 
al., 1999; Griffiths et al., 2009;  Lozano-García et 
al., 2016). This relationship occurs due to lower air 
temperatures and increased soil moisture content at 
higher elevations resulting in lower rates of 
decomposition and subsequently increased SOM 
and SOC accumulation (Kane et al., 2005; Griffiths 
et al., 2009; Viera et al., 2011; Bangroo et al., 
2017). However, studies also state that elevation is 
unlikely to directly influence total SOC stocks and is 
generally considered the response to multiple 
environmental variables (Garten et al., 1999; 
Bangaroo et al., 2017).    
 

Slope 
If slope gradient 
increases, SOC 

content decreases. 

 

Studies have identified a negative relationship 
between slope gradient and SOC stocks 
(Perruchoud et al., 2000; Simegn and Soromessa, 
2015). This is primarily due to reduced vegetation 
cover and biomass on steeper slopes (Simegn and 
Soromessa, 2015).  
 

Soil 
Texture/Type 

and Grain Size 

 
 

If clay content 
increases, SOC 

content increases. 

 

Whilst this relationship has been explored in 
numerous studies (e.g. Jobbagy and Jackson, 
2000; Krull et al., 2001), the explanation of the 
relationship is highly debated within the literature. 
One explanation suggests the changes in SOC 
stocks are related to pore size impacting the rate of 
mineralisation (see Krull et al., 2001). The second 
explanation focuses on the ability of clay to stabilise 
and protect organic matter due to the larger surface 
area (see Ding et al., 2014). 
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2.2.1. Elemental and isotopic composition of terrestrial organic 

matter 

2.2.1.1. Carbon:Nitrogen ratios 

Carbon and nitrogen ratios (C:N ratios) are used to refer to the amount of carbon 

and nitrogen in plants and soils. In plants and soils, C:N are primarily controlled 

by the factors governing the nitrogen and carbon content of soils, which includes 

rates of decomposition and soil depth (Berg et al., 2000; Garten et al., 2007; 

Craine et al., 2015), climate and seasonal trends (Brady, 1990; Cloern et al., 

2002; Finlay and Kendall, 2007). C:N ratios have been widely used to study 

ecosystems, food chains (Finlay and Kendall, 2007) and identify environmental 

sources (Kendall et al., 2001), particularly in combination with stable isotope 

ratios (Section 2.2.1.2.; Vitousek, 1982).  

C:N ratios in plants can distinguish between aquatic and terrestrial sources.  

Aquatic sources generally have a C:N value between 3 and 9 and terrestrial 

ecosystems have a C:N value >20 respectively (Prahl et al., 1994; Howarth et al., 

2012). A mix between aquatic and terrestrial sources commonly has a C:N value 

between 10 and 20 (Howarth et al., 2012). The difference in C:N ratios for 

terrestrial and aquatic sources can largely be attributed to the relative amounts 

of protein, carbohydrate and lignin within a sample, with aquatic sources known 

to consist of more protein relative to carbohydrates and lignin in comparison to 

terrestrial sources. Sources within terrestrial ecosystems can also be identified 

using C:N ratios due to the varying biomolecular compositions of different types 

of organic matter. For example, topsoils or organic layers have a C:N ratio 

between 8 and 25 and mineral layers have a lower ratio of 4 to 9 (Rostad et al., 

1997; Brady, 1990; Aikenhead and McDowell, 2000; Finlay and Kendall, 2007). 

The lower value for soils as opposed to plants (C:N >20) can be attributed to the 

cycling of plant matter during decomposition (Finlay and Kendall, 2007).  

2.2.1.2. Stable isotope ratios 

Stable isotopes are naturally-occurring forms of an element with a different 

molecular mass that do not decay (Sulzman, 2007). The use of stable isotopic 

ratios is advantageous because they provide a quantitative measure of both the 

origin of the sample as well as the biogeochemical processes occurring (Peterson 
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and Fry, 1987). This is because stable isotopes fractionate differently depending 

on different physical and chemical reactions that take place (Peterson and Fry, 

1987; Fry, 2006; Tiunov, 2007). As a result, the use of isotopes in ecology greatly 

advanced in the last decades of the 20th century, with isotopes now used in 

numerous biological and ecological studies (Sulzman, 2007; Tiunov, 2007). 

Common examples include the use of carbon and nitrogen isotopes to trace 

matter and energy flows in food webs (Finlay et al., 1999), to differentiate 

between different terrestrial and marine sources (Weijers et al., 2009) and 

between terrestrial sources in streams and river beds (Hilton et al., 2008a; Clark 

et al., 2013). The notations used for stable carbon and nitrogen isotopic ratios are 

displayed in Equation 2.1 and Equation 2.2.  

𝛿 𝐶 (‰) =

(

 
 
(
𝐶13

𝐶12
)
𝑆𝑎𝑚𝑝𝑙𝑒

(
𝐶13

𝐶12
)
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1

)

 
 
 × 100013  

Equation 2.1.  

𝛿 𝑁 (‰) =

(

 
 
(
𝑁15

𝑁14
)
𝑆𝑎𝑚𝑝𝑙𝑒

(
𝑁15

𝑁14
)
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1

)

 
 
 × 100015  

Equation 2.2.  

From Equations 2.1 and 2.2, it can be inferred that a positive value for δ13C or 

δ15N indicates that the sample contains more of the heavier isotope (13C or 15N) 

in comparison to the standard and is therefore enriched in the heavier isotope 

(Sulzman, 2007). If δ13C or δ15N is negative, the sample is more depleted in the 

heavier isotopes relative to the standard. Stable isotope ratios are generally 

measured using an isotope ratio mass spectrometer (IRMS), which separates 

atoms or molecules based on their mass-to-charge ratio (see Section 4.2.6.).  

Stable carbon isotope ratios 

Carbon is made up of two stable isotopes, carbon-12 (12C) and carbon-13 (13C). 

Carbon-12 is the most abundant isotope, accounting for 98.93%.  
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Control 

Relationship 
between the 
control and 

δ13C 

Explanation and Evidence 

Soil Depth 
 

If depth increases, 
δ13C increases. 

 

• Increase in the δ13C value of soils by ~1 to 3‰ 

with depth. 

• Occurs due to the preferential decomposition of 
soil organic matter by microorganisms that utilize 
the lighter components of SOC, 12C, in preference 
to 13C (Dzurec et al., 1985; Peterson and Fry, 
1987; Garten et al., 2007).  

• An alternative explanation for the enrichment of 
δ13C with depth is differential preservation, 
whereby the preservation of certain plant 
biochemical fractions can alter the soil isotope 
composition (Park and Epstein, 1960; Dzurec et 
al., 1985; Melilo et al., 1989).  

 

Elevation 
If elevation 

increases, δ13C 
increases. 

 

• Increase in the δ13C value of plant organic matter 
with increased elevation (Körner et al., 1988; 
1991).  

• For example, an increase from -28.80‰ at 
lowlands to -26.15‰ between 2500 and 5600 m 
was observed for plant organic matter in Körner et 
al., 1988.  

• This was explained by the changes in temperature 
and atmospheric pressure with altitude, which 
resulted in reduced isotope fractionation in 
response to lower internal to external partial 
pressure of CO2 in leaves at higher elevations 
(Körner et al., 1988; 1991).     

 

Photosynthetic 
Pathways 

 
 

C3 Plants δ13C 
values: -12.4‰ to  

-37‰  
(Median: -27‰) 

 
C4 Plants δ13C 

values: -12‰ to -
16‰ (Median: -

14‰) 

 

• In C3 fractionation, the CO2 is diffused from the 
atmosphere and enters the leaves via the stomata, 
where there is a fractionation of approximately -
4.4‰ as a result of the heavier molecules, 13CO2, 
moving through the system (Marshall et al., 2007).  

• Thus, C3 plants tend to discriminate more strongly 
against 13C.  

• The pathway is controlled by the balance between 
the supply of CO2 and enzymatic demand, which 
explains the wider range of possible δ13C values 
(Marshall et al., 2007).  

 

• C4 plants follow the same method of diffusion from 
the atmosphere as C3 plants (Marshall et al., 
2007). However, C4 fractionation uses a different 
enzyme to catalyse photosynthesis, which has a 
higher absorption capacity and therefore does not 
discriminate against 13C as strongly (Tiunov, 
2007).  

• Therefore, the median δ13C value for C4 plants is -
14‰ (Finlay and Kendall, 2007; Marshall et al., 
2007; Tiunov, 2007).  

• The use of the C4 photosynthetic pathways is 
more common in semi-arid regions, where limited 
water supply enhances the use of C4 pathways to 
increase water use efficiency. 

 

Table 2.2. A table outlining the factors controlling δ13C values in soils and plants. 
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Multiple factors control the isotope ratio of a given sample in the biosphere, with 

photosynthetic pathways particularly important in controlling the δ13C value of 

plants. Generally, plants are depleted in 13C relative to the atmosphere due to a 

combination of physical and enzymatic process that discriminate against 13C 

(Boutton, 1996; Mackenzie and Lerman, 2006; Finlay and Kendall, 2007; 

Marshall et al., 2007). However, the amount of fractionation varies between plant 

species as a result of different photosynthetic pathways (Marshall et al., 2007). 

The two key pathways are C3 and C4 plants. The difference between each 

pathway has been summarised in Table 2.2.  

Soil depth and changes in elevation have also been shown to control stable 

carbon isotope ratios in the biosphere, with previous studies identifying an 

increase in the δ13C value of soil organic matter of ~1 to 3‰ with depth (see Stout 

et al., 1975; Stout et al., 1981; Dzurec et al., 1985; Melillo et al., 1989; Garten et 

al., 2007; Tiunov, 2007), indicating that the carbon isotopes fractionate slightly 

with depth. Furthermore, an increase in elevation has also been shown to 

increase δ13C values for plant organic matter (Table 2.2; Körner et al., 1988). 

Water-use efficiency, seasonal patterns and climate can also influence the 

fractionation of carbon isotopes (Smedley et al., 1991; Marshall et al., 2007).  

Whilst the patterns observed for elevation and photosynthetic pathways in Table 

2.2 are most common in plant organic matter, it has been stated that the δ13C 

values for underlying soil organic matter should be identical to the existing site 

vegetation, if the vegetation has remained unchanged, there is no decomposition 

or differential preservation and atmospheric δ13C values have remained constant 

through time (Dzurec et al., 1985).  

Stable nitrogen isotope ratios 

There are two stable isotopes of nitrogen; nitrogen-14 (14N) and nitrogen-15 (15N). 

Stable nitrogen isotope ratios have been highly beneficial in environmental and 

ecological studies, with both the average δ15N and individual values of δ15N useful 

indicators of the nitrogen cycle within soils (Hobbie and Ouimette, 2009). This is 

due to the fact nitrogen isotopes are fractionated differently during each process 

of the nitrogen cycle (Hobbie and Ouimette, 2009). The mobility of nitrogen 

across the earth also allows δ15N to be used to measure processes that occur on 

very small spatial scales (Craine et al., 2009; 2015). Therefore, there is a large 
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spatial variation in δ15N values in mountain regions. The importance of elevation 

and soil depth will be assessed in particular in this study. Previously observed 

relationships for both variables are discussed in Table 2.3.   

Table 2.3. A table displaying the relationships between δ15N values in soils and 
changes in soil depth and elevation.  

2.3. Soil erosion and the carbon cycle 

2.3.1. Soil erosion 

The term erosion describes the destruction of the pedosphere and lithosphere by 

external geomorphic factors, organisms and humans (Zachar, 1982). Morgan 

(2005) divides the process of soil erosion into two stages. Firstly, soils are 

disaggregated into individual particles (silt, sand and clay) during pedogenesis 

by physical, chemical and biological processes. Then the particles are 

transported, predominantly by water or wind. In this definition, deposition is a third 

stage that follows the process of erosion. The main factors controlling soil erosion 

include climate, the geomorphic setting, tectonic activity, hydrological processes 

and organisms (Zachar, 1982; Owens and Collins, 2006a).  

Control 
Relationship 
between the 

control and δ13C 
Explanation and Evidence 

Soil 
Depth 

 
If depth increases, 
δ15N increases. 

 

• Increase in the δ15N values of soils with increased soil 
depth due to the processes occurring during 
decomposition (Nadelhoffer and Fry, 1988; Piccolo et 
al., 1996; Martinelli et al., 1998; Hobbie and Ouimette, 
2009).  

• Laboratory studies show that denitrification 
discriminates against 15N by up to 30% during 
fractionation (Pérez et al., 2000; Hobbie and 
Ouimette, 2009). Thus, the products of denitrification 
have a lower δ15N value and the residual, 
decomposing organic matter has a higher δ15N value 
(Nadelhoffer and Fry, 1988; Piccolo et al., 1996).  

• Nitrification and ammonification during decomposition 
are also thought to fractionate against 15N (Hobbie 
and Ouimette, 2009).  

 

Elevation 
If elevation increases, 

δ15N decreases. 

 

• Whilst the relationship between δ15N and elevation is 
less well understood, studies in France (Mariotti et al., 
1980) and Nepal (Sah and Brumme, 2003) have both 
found a decrease in δ15N values with increasing 
elevations between 1100 – 1800 m and 1200 – 2200 
m respectively.  

• This relationship is likely to occur due to the lower 
rates of decomposition at higher elevations resulting in 
lower net nitrification and mineralisation (Sah and 
Brumme, 2003).      
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The process of soil erosion in human-modified settings, in particular agricultural 

soils, has been relatively well established in the literature (Zachar, 1982; Lal, 

2003; 2005; Ritchie et al., 2005). However less attention has focused on the 

individual processes occurring at the sites of erosion and deposition (Figure 2.3; 

Lal, 2005). More process-specific research will help to identify the main factors 

controlling soil erosion as well as provide insight into the implication erosion can 

have on a local scale (Stallard, 1998; Owens and Collins, 2006b). An improved 

understanding of these processes can also result in more accurate estimates of 

soil erosion, deposition and sediment transport yields (Figure 2.3; Owens and 

Collins, 2006b).  

The quantity of sediment removed by erosion is often determined by the type of 

erosional process, with many surficial processes such as; landslides, fires, flood 

events and windstorms able to erode large volumes of material over short periods 

of time (Stallard, 1998; Morgan, 2005). Many different definitions have been 

developed to distinguish between different types of soil erosion. Zachar (1982) 

developed a wide, comprehensive range of definitions for numerous types of 

erosion and therefore  these definitions, which are briefly summarised below, will 

be used in this thesis. Water erosion refers to the destruction of surfaces by 

pluvial, fluvial and non-fluvial (such as sea water) water and is one of the most 

severe forms of erosion, particularly for agricultural land where processes such 

as rill and sheet erosion occur (Baur, 1952; Zachar, 1982). Sheet erosion involves 

the removal of a surface soil layer by rainfall and runoff, whereas rill erosion is a 

more severe form that involves the formation of shallow channels (Baur, 1952). 

An even more extensive type of water erosion is gully erosion, which occurs when 

flows are large enough to remove underlying soils and form deep channels along 

drainage lines (Gilley, 2005).  

Another term used in Zachar (1982) is earth erosion, this describes the 

destruction of soil and rock by debris flows and mud flows and is characterised 

by the flowing of water-logged earth. Soil flow erosion is another type of erosion 

discussed in Zachar (1982) and refers to the flow of soil under the influence of 

gravity. This can include a wide range of erosive processes from soil creep, which 

involves the gradual downslope movement of soil particles, to mudflows. Many 

mass movements can be seen as a combination of these two types, for example 

landslides are triggered by rainfall events but also occur under the influence of 
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gravity (Cruden, 1991). Landslides differ from gullies due to the fact landslides 

remove large volumes of surface and subsurface sediment in one or multiple 

subsidiary units. Despite removing large quantities of sediment, commonly 

exceeding the contribution from gullies, rills and overland flow, landslides are 

often overlooked with respect to soil erosion research (Morgan, 2005; Basher et 

al., 2018). Landsliding is particularly pronounced in mountain regions due to 

tectonic uplift resulting in high fluvial erosion rates, steep slopes, tectonic activity 

and weaker, more fractured rocks (Korup et al., 2010). Recent research has 

demonstrated the importance of landslides as a main control on shaping 

mountain ranges, acting as the primary erosional agent in many mountain belts 

such as those in the Pacific Rim (Hovius et al., 1997; Korup, 2005a; Gao an Maro, 

2010). 

Figure 2.3. A breakdown of the individual processes that occur at sites of erosion, 
redistribution and deposition. The processes shaded in blue relate soil erosion to the 
carbon cycle (Section 2.3.3.).  

Adapted from Lal (2005). 
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2.3.2. Measuring soil erosion 

Despite large concern regarding the impacts of soil erosion, it remains a 

challenging process to quantify as soil erosion is an intermittent process and 

difficult to observe, for example mass wasting results in high erosion rates over 

a short period of time (Zachar, 1982; Hovius et al., 1997). It is also difficult to 

implement findings from other locations to new locations due to a lack of data and 

high spatial variability (Owens and Collins, 2006b).  

To accurately measure soil erosion a combination of measurement and modelling 

tools are necessary. Measurement tools quantify the rate, scale and severity of 

erosion and modelling tools use conceptual, statistical and stochastic models to 

identify spatial patterns of erosion (Owens and Collins, 2006a). To validate these 

models, spatial and temporal data from the field is required, demonstrating the 

importance of utilising both techniques.  

Another challenge when measuring soil erosion is selecting the correct scale. A 

larger scale provides information on the overall state of the system. Whereas, a 

smaller scale can identify the processes and types of erosion working within the 

catchment, which is particularly useful when researching landscape evolution and 

implementing management techniques (Figure 2.3; Owens and Collins, 2006b).  

2.3.3. Implications of soil erosion and the carbon cycle 

Erosion is an important component in shaping mountain landscapes (Zachar, 

1982) and therefore locations with high erosion rates are often subject to many 

on-site and off-site impacts. On-site problems include damage to agricultural land 

and lower agricultural productivity (Lal, 2001; 2003; Walling, 2006) as well as 

reduced plant stabilisation and colonisation (Walker and Shiels, 2008) and 

implications for the rates and patterns of crustal deformation (Molnar and 

England, 1990; Steer et al., 2014; Li et al., 2017). The redistribution and 

transportation of this sediment elsewhere in the catchment can also lead to off-

site impacts such as; polluted water courses, increased turbidity and damaged 

ecosystems (Sundborg, 1982; Walling, 2006). 

Soil erosion can also lower the SOC stock at the site of erosion. This is partially 

due to the fact that the organic component of soils is lighter and therefore more 

easily broken down and displaced compared to rock masses (Lal, 2005; Ritchie 



21 
 

et al., 2005). The amount of organic carbon eroded and the impact of this on local 

and regional carbon cycles is largely controlled by the scale and rates of the 

erosion. Previously, studies have focused on quantifying the amount of organic 

carbon eroded and the net carbon loss from the site of erosion (Lal, 2003; Lal, 

2005; Ritchie et al., 2005). A large proportion of this research has been conducted 

in agricultural landscapes and has involved quantifying the mass of organic 

carbon eroded by sheet and rill erosion (Lal, 2003; 2005; Berhe et al., 2007; Van 

Oost et al., 2007; Sanderman and Berhe, 2017; Wang et al., 2017). 

More recently, these studies have started to acknowledge the importance of the 

fate of the eroded material (Sanderman and Berhe, 2017; Wang et al., 2017). For 

example, a study by Wang et al. (2017) not only quantified the amount of organic 

carbon eroded by agricultural processes, but also considered the fate of this 

carbon. They demonstrated the importance of fluvial transport processes and 

concluded that human-induced erosion may lead to a carbon sink that can offset 

carbon emissions by 37%. This highlights the importance of better constraining 

the fate of the eroded organic carbon in order to determine the impact of soil 

erosion on the net atmospheric CO2 budget. For instance, during erosion the 

organic carbon in soils can be oxidised into the atmosphere, which may result in 

a net increase in atmospheric CO2 from the biosphere (Clark et al., 2017). 

However, erosion can also facilitate the burial of organic carbon by delivering 

SOC to river channels and subsequently to long-term storage locations in lake or 

ocean basins (Stallard, 1998; Wang et al., 2017). It is therefore important to also 

assess the fate of organic carbon post-erosion, with the burial of terrestrial 

organic carbon in marine and terrestrial basins (Galy et al., 2007a; Hilton et al., 

2008a; 2008b) thought to impact the carbon cycle on a similar scale to carbon 

consumption by silicate weathering (Gaillardet et al., 1999; Bouchez et al., 2014; 

Galy et al., 2015). An understanding of how erosion impacted soil carbon stocks 

in the past can also provide insight into how carbon stocks may change in 

response to erosive events in the future (Basher et al., 2018).  

Research has predominantly focused on the implications of rill and sheet erosion 

on SOC stocks on agricultural land, however studies have also highlighted the 

importance of mass wasting in eroding SOC stocks in mountainous settings 

(Hilton et al., 2008a; 2011a; Restrepo et al., 2009; Madej, 2010; Ramos Scharrón 

et al., 2012; Clark et al., 2016; Basher et al., 2018). Basher et al. (2018) recently 
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assessed the importance of gulling in eroding SOC stocks. The study found that 

even 70 years after the gullies eroded the soil, the SOC stocks were still lower 

than the SOC stocks for uneroded locations. Basher et al. (2018) concluded that 

whilst gullies did have a lasting impact on SOC stocks, this was only on a local 

scale. In contrast, the relationship between landslides and SOC stocks has 

received attention (Hilton et al., 2008a; 2011a; Restrepo et al., 2009; Madej, 

2010; Ramos Scharrón et al., 2012; Clark et al., 2016) due to the widespread and 

erosive nature of the process (Walker and Shiels, 2013b), which may lead to 

regional consequences. In addition, the eroded material can be stored further 

down the hillslope in landslide deposits as well as fluvially transported out of the 

system. This allows for landslides to be studied as both sites of soil organic 

carbon erosion and deposition. Previous studies exploring the importance of 

landslides in relation to SOC stocks are explored in Section 2.4.   

2.4. Landslides and the erosion of organic carbon  

A landslide can be defined as the rapid downslope displacement of rock, debris, 

vegetation or soil under the influence of gravity (Sharpe, 1960; Cruden, 1991, 

Sidle and Ochiai, 2006; Walker and Shiels, 2013a). Landsliding is a complex 

process and can often include a combination of falls, slumps, flows and slides 

(Cruden and Varnes, 1996; Sidle and Ochiai, 2006; Walker and Shiels, 2013a). 

Throughout this report I will use the definition by Coates (1977), which uses the 

term landslide to refer to all sudden forms of mass movement. However 

numerous studies (e.g. Cruden and Varnes, 1996; Restrepo et al., 2009; Walker 

and Shiels, 2013a) have differentiated between types of mass movements using 

the degree and rate of the failure, the external triggers and the type of material 

mobilised.  

The erosive nature of landslides is attributed to the fact both above and below 

ground biomass (OCbio) as well as substrates (OCpetro) are often removed (Walker 

and Shiels, 2013a). By eroding both OCpetro and OCbio, landslides can have 

significant impacts on regional carbon cycles. To better determine these impacts, 

it is essential to constrain not only the magnitude of organic carbon eroded by 

landslides but also the fate of the eroded organic carbon.  
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2.4.1. Landslide anatomy 

Despite the heterogeneity of landslides, most landslides are divided into three 

zones (Figure 2.4). The initial failure zone is commonly termed the landslide scar 

or zone of depletion (Cruden, 1991; Restrepo et al., 2009; Walker and Shiels, 

2013b). The scar typically forms on the steepest slope, or occasionally on a 

vertical headwall, and refers to the area from which vegetation, soil and bedrock 

has been removed (Restrepo et al., 2009; Walkers and Shiels, 2013b).  

Figure 2.4. A photograph of a landslide in Hare Mare Creek (Landslide 1) with the 
three key zones identified. The blue line outlines the landslide deposit and the green 
line outlines the landslide scar.   

The transport zone or landslide chute is the central zone and the barrier between 

the landslide scar and deposit (Martin et al., 2002; Restrepo et al., 2009). The 

chute can often be distinguished by its narrow width (Walker and Shiels, 2013b).  

The third zone is the deposition zone, which forms on shallower gradients and is 

where eroded material can accumulate (Cruden, 1991; Restrepo et al., 2009). 
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The zone can be identified by lobes of material and an increase in ground 

elevation compared to the surrounding surfaces (Walker and Shiels, 2013b). In 

mountainous regions, the landslide deposit can often be conical in shape as a 

result of the steep and narrow valley limiting the flow (Crosta et al., 2007). The 

end of the landslide is commonly referred to as the landslide toe, however, this 

zone can be eroded by rivers, wave action or human interference (Walker and 

Shiels, 2013b). Due to the rich mix of vegetation and soil that has been mobilised 

downslope and retained in the deposit, landslide deposits typically have a higher 

organic matter content in comparison to the scar and chute as well as relatively 

high fertility (Restrepo et al., 2009; Walker and Shiels, 2013b).  

When comparing landslides, typical measurements include landslide width, 

length and depth as well as the total area and perimeter (IAEG Commission on 

Landslides, 1990). The area of terrestrial landslides spans from 10 to 20 m2 up 

to valley-scale slides with areas of 500 000 km2 (Keefer, 1984; Walker and Shiels, 

2013b).  

However, landslide volume is much more difficult to quantify compared to 

landslide area and is impractical to measure in the field when looking at large 

landslides and study areas (Hovius et al., 1997; Guzzetti et al., 2009; Larsen et 

al., 2010).  A well-established relationship used to estimate landslide volume is 

the power-law relationship displayed between landslide area and volume (See 

Hovius et al., 1997; Larsen et al., 2010). The scaling relationship is shown in 

Equation 2.3, whereby α and γ are constants and V and A represent landslide 

scar volume and scar area respectively. Based on a database of 677 landslide, 

α typically falls within 0.070 and 0.087 and γ between 1.429 and 1.452 (Malamud 

et al., 2004). The landslide areas sampled ranged from 2.1 x 100 m2 to 7.0 x 107 

m2 and landslide scar volume ranged from 3.4 x 10-1 m3 to 2.9 x 1010 m3 (Malamud 

et al., 2004) 

𝑉 =  𝛼 ×  𝐴𝛾 

Equation 2.3. 

Estimates of landslide volume are extremely useful when quantifying sediment 

budgets and understanding the importance of landslides in local erosion rates 

(Hovius et al., 1997; Malamud et al., 2004; Larsen et al., 2010). However, the 
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power law relationship is known to alter considerably depending on landslide 

type, depth and location (see Guzzetti et al., 2009; Larsen et al., 2010).  

Landslide type and depth were found to be particularly important in the area-

volume scaling relationship. Previously the relationship estimated landslide 

volume based on mean depth. However, Larsen et al. (2010) demonstrated the 

difference in the scaling relationship for shallower, soil-based landslides and 

deeper, bedrock landslides with bedrock landslides, which often have a larger 

scar area and depth, generally having a higher exponent, between 1.3 and 1.6. 

Whereas soil-based landslides typically had exponents between 1.1 and 1.3, 

unlike previous more general estimates of 1.45 (Malamud et al., 2004). Despite 

this, both landslide types were found to be important in terms of hillslope erosion 

and offsetting mountain belt uplift (Larsen et al., 2010) and the power-law scaling 

relationship remains the most common method for measuring landslide volume.  

2.4.2. Proximal triggers and preconditioning factors 

A landslide occurs when the driving forces, which mobilise material downslope, 

exceed the resisting forces, which work to oppose this movement, along a slip 

plane (Keller, 1996; Walker and Shiels, 2013c). This can be referred to as the 

Factor of Safety equation (Fs). The Fs equation (Equation 2.4) refers to the ratio 

between soil shear strength (𝜎, 𝑝𝑎𝑠𝑐𝑎𝑙) and the total stress (𝜏, 𝑝𝑎𝑠𝑐𝑎𝑙) along the 

sliding surface (Selby, 1993; Morgan, 2005; Sidle and Ochiai, 2006).  

𝐹𝑠 = 
𝜎

𝜏
 

Equation 2.4.  

When Fs ≥ 1, the resisting forces are greater than the driving forces and therefore 

the slope is stable (Selby; 1993; Sidle and Ochiai, 2006). When Fs < 1, a landslide 

is not imminent, but one is more likely to occur.  

Landslides occur in response to numerous factors and therefore it is difficult to 

develop a standard classification system (Hansen, 1984; Walker and Shiels, 

2013a). Most studies have divided the main reasons for the occurrence of 

landslides into; proximal triggers and preconditioning factors (Meunier et al., 

2008; Densmore and Hovius, 2000; Sidle and Ochiai, 2006). Proximal triggers 

are external stimuli such as earthquakes (Dadson et al., 2004; Li et al., 2014), 

storms (Lin et al., 2008; Meunier et al., 2008; Guzzetti et al., 2009), fluvial incision 
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and human disturbance (Glade, 2003), which periodically excite a landscape and 

result in a clustering of landslides (Densmore and Hovius, 2000; Sidle and Ochiai, 

2006). In contrast, preconditioning factors are not fixed but tend to constitute 

dynamic interactions that fluctuate through time (Sidle and Ochiai, 2006). These 

factors include geomorphic factors (slope shape and gradient), geological factors 

(rock type and faulting), hydrological factors (climate, pore pressure and 

saturation) and biological factors (vegetation cover) (Sidle and Ochiai, 2006; Gao 

and Maro, 2010; Walker and Shiels, 2013c). The external triggers and 

preconditioning factors known to initiate landslides are all know to impact the 

stress conditions in the infinite slope model and lead to slope failure (Sidle and 

Ochiai, 2006) and largely determine the spatial distribution of landslides (Walker 

and Shiels, 2013b). However due to the array of potential triggers it is very difficult 

to predict the location, timing and severity of landslides (Walker and Shiels, 

2013c). Therefore, to better predict landslides, location specific studies must be 

conducted to identify key controls at each site.  

2.4.2.1. Proximal triggers 

Landslides are triggered predominantly by rainfall and earthquakes, however 

volcanic activity and human disturbances can also lead to hillslope failure (Sidle 

and Ochiai, 2006). Rainfall-induced landslides will be studied in this thesis, 

however earthquake-induced landslides still play an important role in the location.  

Hillslope saturation from intense or prolonged precipitation changes the effective 

stresses by increasing the weight on the hillslope and driving failures (Sidle and 

Swanston, 1982; Iverson and Reid, 1992; Keller; 1996; Densmore and Hovius, 

2000; Sidle and Ochiai, 2006). Rainfall can also mobilise loose rock from 

previously earthquake-weakened slopes (Dadson et al., 2004; Wang et al., 

2015).  

Earthquakes are less frequent in comparison to rainfall, but still play an active 

role in shaping mountainous landscapes by producing relief during co-seismic 

uplift and diminishing this relief by inducing landslides and stripping hillslopes of 

soil, vegetation and bedrock (Sidle and Ochiai, 2006; Howarth et al., 2012; Li et 

al., 2014; Wang et al., 2015; 2016; Li et al., 2017). Following an earthquake, the 

resisting forces acting on a slope are weaker as local substrates become 
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fractured and unable to support the same amount of weight (Walker and Shiels, 

2013c).  

2.4.2.2. Preconditioning factors 

Slope gradient, shape, aspect and elevation are the main factors controlling slope 

stability (Korup, 2005a; Sidle and Ochiai, 2006; Gao and Maro, 2010; Walker and 

Shiels, 2013c). Larsen and Montgommery (2012) found that for slopes >30° in 

the Himalayas there was a significant increase in the size and frequency of 

landsliding. This has been supported by the concept of a landslide threshold 

angle (Carson and Petley, 1970; Sidle and Ochiai, 2006). However, many studies 

have found that this is not a simple relationship, with slopes >45° having a low 

landslide frequency due to less substrate being retained on the hillslope 

(O’Loughlin and Pearce, 1976). Thus, slope gradient is unlikely to be a single 

driving force. Slope shape can also influence slope stability with convex slopes 

the most stable (Sidle and Ochiai, 2006). Previous research has also identified 

links between slope aspect and elevation with landslide frequency and 

distribution, these relationships are most likely to be controlled by underlying 

factors associated with altitude and aspect such as lithology, hydrological 

processes, precipitation, soil thickness and land use (Sidle and Ochiai, 2006). As 

seen for aspect with north-facing slopes in the northern hemisphere, which are 

often associated with both higher moisture contents and higher rates of rainfall-

triggered landslides (Churchill, 1982; Sidle and Ochiai, 2006). 

Rock and soil strength, cohesion and pore pressure are also important to 

consider when studying the stability of a hillslope (Sidle and Ochiai, 2006). 

However, these factors are beyond the scope of this study. 

2.4.3. Landslide impacts 

The impacts of landslides are commonly categorised into social, economic and 

environmental impacts. Social impacts include fatalities and human suffering 

(Sidle and Ochiai, 2006). Economic impacts often include a range of direct and 

indirect economic losses. Direct impacts include infrastructural damage, 

deforestation and damaged reservoirs by siltation or blockages. Indirect effects 

can often exceed the damage from direct impacts and include loss of industrial 

and agricultural productivity, impacts on insurance and real estate values and 
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secondary effects of landslides such as flooding (Schuster and Highland, 2001; 

Burke et al., 2002).  

However this study will focus on the environmental impacts associated with 

landslides, which commonly occur due to the large volumes of sediment eroded 

during each event. These large volumes of sediment aggrade channels and 

floodplains, which can lead to channel avulsions (Korup, 2004; Yanites et al., 

2010; 2018) and increased flood risk (Sidle and Ochiai, 2006; Walker and Shiels, 

2013a; Wang et al., 2015). The rapid deposition of this sediment can also dam 

rivers and lakes, impacting riverine ecosystems (Costa and Schuster, 1988; Gao 

and Maro, 2010). The removal of sediment from the landslide scar also leaves 

highly fragmented rock and low rates of percolation. These conditions can 

promote weathering within the scar surface, which can lead to further degradation 

and environmental impacts (Emberson et al., 2016). In the years to decades 

following a landslide, post-landslide erosion can account for up to 33% of the total 

sediment eroded. Post-landslide erosion can therefore slow rates of recovery and 

lead to further impacts downstream (Walker and Shiels, 2013c; Li et al., 2017).  

Landslides can also have positive environmental impacts, with landslide scars 

providing ideal habitats for colonising species and encouraging the cycling of 

nutrients in the soil (Walker and Shiels, 2013a). Landslides may positively and 

negatively impact communities for long periods of time following the initial 

landslide and therefore it is essential that the potential implications are well-

monitored and predicted. 

2.4.3.1. Biogeochemical impacts 

More specifically the mass removal of soil, vegetation and bedrock by landsides 

can impact biogeochemical cycles through the erosion of soil organic matter, 

such as soil organic carbon and nitrogen (Stallard, 1998; Hilton et al., 2011a; 

West et al., 2011; Ramos Scharrón et al., 2012; Clark et al., 2016). Soil organic 

carbon plays a large role in regulating biogeochemical cycles as well as for soil 

fertility and fauna (Walker et al., 1996; Shiels et al., 2006).  

Following a landslide, studies have noticed a change in the geochemical 

properties of a landslides. For example, soils in Puerto Rico were found to contain 

two times the amount of total nitrogen (TN) in comparison to the adjacent 

landslides (Guariguata, 1990). In addition, the geochemical properties also vary 
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within individual landslides, with landslide edges and deposits relatively fertile in 

comparison to the landslide scar and chute (Walker et al., 1996; Restrepo et al., 

2009; Walker and Shiels, 2013c). These changes are thought to leave a long-

lasting impression on for the hillslope, taking ~55 years to recover in warm and 

tropical locations and far longer in temperate climates (Walker and Shiels, 

2013c). By studying landslides at a variety of scales, it is hoped the ecological 

implications of landslides can be better understood (Restrepo et al., 2009). 

2.4.4. Soil organic carbon erosion by landsliding  

By eroding SOM, landslides harvest large amounts of SOC from the biosphere 

and geosphere over short periods of time (Madej, 2010; Hilton et al., 2011a; West 

et al., 2011; Ramos Scharrón et al., 2012; Clark et al., 2016). Landslides often 

remove both bedrock and topsoils, resulting in the mobilisation and geochemical 

homogenisation of OCpetro and OCbio from the hillslope (Hilton et al., 2008a; Kao 

et al., 2014; Wang et al., 2016).  

Many studies have attempted to quantify the amount of organic carbon removed 

by landslides in active mountain belts on a catchment-wide scale using mapped 

landslide areas obtained from aerial imagery and estimates of soil organic carbon 

stocks. Key findings are shown in Table 1.1 (Madej, 2010; Hilton et al., 2011a; 

Ramos Scharrón et al., 2012; Clark et al., 2016). The values in Table 1.1 assume 

that the areas covered by the landslide scar and deposit have the same soil 

organic carbon stock and were therefore inhabited by the same vegetation and 

soil as the surrounding area (Clark et al., 2016). Thus, an understanding of the 

spatial distribution of soil organic carbon across a landscape is essential. 

However, few studies have assessed the role individual landslides as erosion 

mechanisms (Walker and Shiels, 2008). Despite the fact that these studies can 

provide a more detailed insight into how the organic carbon is distributed within 

the landslide and landscape, which is likely to be highly heterogenous. Walker 

and Shiels (2008) illustrate the importance of studying individual landslides in a 

study of 30 landslides conducted in Puerto Rico. The study identified the change 

in SOC stocks through time as landslides revegetated. They found that organic 

carbon stocks were lowest in the failure and transport zones (Walker and Shiels, 

2008). The movement of woody debris can also be studied at a landslide scale. 

West et al (2011) demonstrated the importance of woody debris in landslide 
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deposits, concluding that coarse woody debris in Typhoon Morakot, Taiwan, 

accounted for 1.8 to 4.0 TgC, ~10-26% of the yearly POC flux from the Amazon 

River to the ocean. Woody debris is likely to be important due to the fact it takes 

longer to decompose because of the higher C:N ratios compared to leaves and 

soils as a result of the more resilient biomolecules in woody debris, such as lignin 

(West et al., 2011). 

Korup (2005b) further discussed the importance of studying landslide 

geomorphology at a variety of different scales, suggesting that studies can be 

divided into three scales; local scale, catchment scale and mountain-belt scale. 

Most commonly, sediment and organic carbon budgets are quantified on a 

catchment scale (Hilton et al., 2011a; Wang et al., 2015; 2016). These studies 

focus on assessing spatial distributions based on different environmental 

conditions (Walker and Shiels, 2013b). However, to better understand small scale 

patterns, such as microhabitat heterogeneity, as well as on-site and off-site 

impacts related to erosion and slope failure (Figure 3.1) it is recommended that 

studies use both regional and local scale investigations (Korup, 2005b; Walker 

and Shiels, 2013b).  

The amount of organic carbon eroded by landslides is predominantly regulated 

by the factors controlling both hillslope erosion (Section 2.3.; Walker and Shiels, 

2013c) and the production of soil organic matter (Section 2.2.). Hilton et al. 

(2011a) provide an example of this in the western Southern Alps, New Zealand 

with factors controlling hillslope failure, such as rock strength, hillslope saturation 

and slope angle found to govern the landslide organic carbon yield in each 

catchment (Densmore and Hovius, 2000; Sidle and Ochiai, 2006; Meunier et al., 

2008). The amount of organic carbon eroded by landslides in the Peruvian Andes 

was also largely controlled by factors known to trigger landslides with 26% of the 

total organic carbon removed during a single storm in March 2010 (Clark et al., 

2016).  

2.4.5. Sources of eroded organic carbon  

Landslides are also of interest due to their ability to remove soil, bedrock and 

vegetation, and subsequently OCbio and OCpetro, as shown by their relationship 

with landslide depth, in a very short period of time (Figure 2.5). Stallard (1998) 

demonstrated the importance of differentiating between OCbio and OCpetro due to 
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the different consequences the erosion of each source can have on the global 

carbon cycle (Berner, 1982; France-Lanord and Derry, 1997; Galy et al., 2007a; 

Hilton et al., 2008a; 2011a; Bouchez et al., 2014).  

Petrogenic organic carbon, also known as fossil organic carbon, (OCpetro) is 

predominantly rock-derived and can be found in sedimentary rocks exposed by 

mountain building (Hilton et al., 2008a; Bouchez et al., 2014). In contrast, 

biospheric organic carbon is derived from partially decomposed material, 

containing CO2 recently retained from photosynthesis (Hilton et al., 2008a; Galy 

and Eglington, 2011). Therefore, the long-term burial of OCbio will sequester CO2 

from the atmosphere, acting as a net carbon sink within the global carbon cycle 

(France-Lanord and Derry, 1997). In contrast, the reburial of OCpetro does not 

contribute to the drawdown of CO2 (Bouchez et al., 2014). Yet, OCpetro can 

contribute to increased atmospheric CO2 concentrations when oxidised and 

therefore acts as a carbon source (Hilton et al., 2008a).  

Whilst some studies have developed an overall organic carbon yield comprised 

of both OCpetro and OCbio (Madej, 2010), other studies are beginning to 

acknowledge the importance of examining the role of OCbio, the burial of which 

can lead to long-term carbon sequestration (Hilton et al., 2011a; Ramos Scharrón 

et al., 2012; Clark et al., 2016).  

Thus, a growing body of literature has used geochemical properties to constrain 

sources of organic carbon in different environments, such as organic carbon 

content (Hilton et al., 2008a; 2011a; Howarth et al., 2012; Clark et al., 2016) and 

C:N ratios (Gomez et al., 2003; Hilton et al., 2008a; Howarth et al., 2012). 

However, the use of stable carbon isotope ratios to develop binary mixing models 

to distinguish between sources of organic carbon is perhaps the most accurate 

and commonly available technique to date (Section 4.4.; e.g. Gomez et al., 2003; 

Blair et al., 2004; Hilton et al., 2008a; Clark et al., 2013; Bouchez et al., 2014; 

Kao et al., 2014). This can be evidenced in a study by Hilton et al. (2008a) which 

used the difference between the stable carbon isotope compositions of OCbio and 

OCpetro to determine the relative proportion of each source in suspended river 

sediments in the Southern Alps, New Zealand. Furthermore, studies by Kao et 

al. (2008; 2014) have used radioactive carbon isotopes, Δ14C, to distinguish 

between OCbio and OCpetro because OCpetro has no radiocarbon content (Δ14C = 

-1000‰) due to its age and the rate of depletion. 
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2.5. The fate of organic carbon post-landsliding 

It is also crucial to determine the fate of the organic carbon eroded by landslides 

to infer the relative importance of the different sources and sinks, and 

subsequently understand how landslides will impact local carbon cycles (Figures 

2.5; 2.6). The fate of organic carbon is particularly important in active mountain 

belts where organic matter is eroded in large amounts by landslides (Figures 2.5; 

2.6; Hilton et al., 2008a; Hovius et al., 2011a).  

Figure 2.5. A schematic diagram displaying the possible fates of organic carbon and 
sediment following a landslide. Biospheric organic carbon is illustrated by the green dots 
within the deposit. 2.5a. Displays the hillslope prior to landslide occurrence, with the soil 
and vegetation cover highlighted by the green upper layer. 2.5b. Shows the erosion of 
sediment and organic carbon (green) following a landslide. 2.6c. The organic carbon 
may be stored downslope of the landslide scar in the deposit, where it is protected from 
oxidation and acts as a short-term carbon store. 2.5d. The organic carbon is also 
delivered downslope to the river channel during a landslide. Here it may be oxidised in 
transit or delivered to the ocean for burial.  

2.5.1. Short-term carbon stores: Landslide deposits 

The amount of bedrock, soil and vegetation delivered to channels is linked to the 

type of erosion taking place (Section 2.3.3.; Blair et al., 2004; Hilton et al., 2012). 

In areas of high erosion rates this is often the factors controlling the occurrence 

of landslides and debris flows (Gomez et al., 2003), such as lithology (Hilton et 

al., 2008b; 2012), hydrology (Turowski et al., 2014), relief (Ramos Scharrón et 

al., 2012; Clark et al., 2016), climate (Hilton et al., 2008a; 2012) and storm events 

(Dadson et al., 2004; Kao et al., 2014). Climate, storm events and hydrology are 

key controls due to the fact increased precipitation not only triggers landslides but 

can also deliver the large volumes of sediment to the river channels and onwards 
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through the system (Figure 2.6; Dadson et al., 2004; Hilton et al., 2008a; 2008b; 

2012; Clark et al., 20016; Turowski et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. This flow diagram displays the possible transport pathways for the organic 
carbon eroded by landslides. Processes within the system are shown in italics and 
sources and sinks/stores are in boxes. 

Adapted from Blair et al. (2004) 

Firstly, the eroded material may be deposited further downslope in the landslide 

deposit (Figures 2.5c; 2.6). The conditions of the landslide deposit relative to the 

hillslope, such as increased wetness and reduced aeration, can protect the 

organic carbon stored in the deposit from oxidation (Stallard, 1998; Gomez et al., 

2003; Ramos Scharrón et al., 2012). Subsequently, the storage of OCbio in 

landslide deposits can lead to a short-term carbon stores from the atmosphere. 

Therefore, to determine the effectiveness of landslide deposits as transient 

carbon stores, the mass of OCbio stored in the deposit should be compared to the 
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mass of OCbio mobilised by landslides overall (Objective 2 and 3). Ramos 

Scharrón et al. (2012) found that ~14% of the organic carbon eroded by 

landslides in Guatemala was retained in landslide deposits as opposed to the 

~71% thought to have been retained on hillslopes in the Southern Alps, New 

Zealand (Hilton et al., 2011a).  

2.5.2. Oxidation, short-term carbon burial and transport by river 

systems 

Alternatively, the organic carbon may be delivered directly into the river channel 

as a mix of OCpetro and OCbio (Figures 2.5d; 2.6; Blair et al., 2004; Hilton et al., 

2008a; Ramos Scharrón et al., 2012). Despite rivers only transferring small 

amounts of organic carbon in comparison to fluxes between the atmosphere and 

biosphere and atmosphere and oceans (Figure 2.1), the riverine carbon flux has 

been shown to play a vital role in transporting sediments and organic matter 

between the terrestrial biosphere and marine sediments (see Sarmiento and 

Sundquist, 1992; Ludwig et al., 1996; Blair et al., 2004; Bouchez et al., 2014).  

Organic carbon can evolve during transit by fluvial systems, primarily through 

oxidation (Richey et al., 1990; Blair et al., 2004). However, in short, steep river 

systems the loss of organic carbon through oxidation is limited due to the rapid 

transit time (Blair et al., 2004; Hilton et al., 2011b; Hovius et al., 2011a; Bouchez 

et al., 2014).  

Another factor thought to control the fate of organic carbon is the connectivity of 

hillslopes and channels (Ramos Scharrón et al., 2012). First-order streams and 

high-yielding rivers often promote the storage and burial of organic carbon, 

whereas the fate of organic carbon delivered to higher order steams is much more 

uncertain (Madej, 2010; Ramos Scharrón et al., 2012). This is because high-

yielding and short rivers have a shorter residence time and therefore the organic 

carbon is buried more rapidly (Sommerfield et al., 1999; Hilton et al., 2011b). In 

contrast, landslides occurring on hillslopes next to low-order streams are more 

likely to be decoupled from the stream and therefore more sediment will remain 

in landslide deposits (Madej, 2010; Clark et al., 2016). Furthermore, studies by 

Hilton et al. (2011a) and Clark et al. (2016) in the Southern Alps and Peruvian 

Andes respectively have used hillslope-channel connectivity to infer the amount 

of OCbio that would be delivered to river channels and potentially further through 
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the system. In the Southern Alps, Hilton et al. (2011a) suggested that ~2.2 tC km-

2 yr-1 of the eroded OCbio may be delivered to channels based on a connectivity 

between hillslopes and channels of 26 ± 3% (or 29 ± 3% when considering 

altitude). Conversely, connectivity in the Peruvian Andes was much higher at 

~90% (Clark et al., 2016). However, these estimates do not consider additional 

processes such as post-landslide erosion and overland flow as well as the fact 

not all the sediment eroded by connected landslides is delivered to the channel.  

The fate of organic carbon is also controlled by the type of organic matter eroded, 

with different sources of organic matter (soil organic matter, tree trunks, course 

woody debris) known to have different transport potentials (Ramos Scharrón et 

al., 2012). Clark et al. (2016) found that 80% of the organic matter eroded by 

landslides in the Peruvian Andes was fine-grained soil organic matter, which is 

readily entrained and transported. Whereas coarse woody debris has a higher 

transport potential and therefore a high degree of connectivity is essential for its 

burial (West et al., 2011). However, coarse woody debris can contribute to the 

long-term burial of organic carbon with Turowski et al. (2016) stating that once 

waterlogged, the coarse woody debris was denser than water and therefore had 

a higher burial efficiency.  

The material transported by rivers can also be deposited in intermediate storage 

locations, such as floodplains and channel infill (Figure 2.6; Page et al., 1994; 

Blair et al., 2004). Floodplains can both sequester organic carbon from river 

systems as well as expose organic carbon to oxidation (Richey et al., 2002; 

Madej, 2010; Bouchez et al., 2014). Floodplains and intermediate storage 

locations are primarily found in long, wide river systems as opposed to the short, 

steep catchments found in mountain environments (Hovius et al., 2011a).  

2.5.3. Mineralisation or long-term carbon sink: Oceans and 

sedimentary basins 

Finally, organic carbon may be delivered to the ocean or lake basins where it can 

be stored or mineralised (Figure 2.6; Meybeck, 1993; Hedges et al., 1997; Galy 

et al., 2008; Hilton et al., 2008a; 2008b; 2011a; Bouchez et al., 2014; Turowski 

et al., 2016). In the erosional source area, the mix of soils and clastic material 

removed by landslides can increase the density of the flow and subsequently the 

occurrence of hyperpycnal flows if the river basin drains directly into a water body, 
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such as the small mountain island of Taiwan (Berner, 1982; Dadson et al., 2004; 

Hicks et al., 2004; Hilton et al., 2008b; Kao et al., 2014; Galy et al., 2015). 

Hyperpycnal flows are denser than seawater and can directly transfer sediment 

to poorly oxygenated regions of marine basins, which increases burial efficiency 

(Hilton et al., 2008a). Hyperpycnal flows are controlled primarily by climate, 

earthquakes and lithology (Dadson et al., 2005; Hilton et al., 2008b).  

The burial of OCbio in marine sediments accounts for the second largest CO2 sink 

in the geological carbon cycle (Berner, 1990). Hovius et al. (2011a) demonstrated 

the importance of sedimentary basins as carbon sinks in mountainous regions in 

particular by using radioactive and stable isotope compositions to show that that 

eroded OCbio was buried in oceans in north-eastern Taiwan without significant 

loss. Once the organic carbon reaches the ocean, burial efficiency is controlled 

by marine processes, such as oxygen levels, productivity, sediment accumulation 

and organic matter composition (see Hedges and Keil, 1995).  

It is evident that there are multiple fates for organic carbon post-erosion, which 

have very different impacts on the global carbon cycle (Dadson et al., 2004; Hilton 

et al., 2008a; Kao et al., 2014). In spite of this, the transfer of organic carbon from 

the biosphere to oceans is not considered in the current model of the carbon cycle 

(Berner, 2006) and therefore further research is essential to better constrain this 

link. Ramos Scharrón et al (2012) began to address the factors controlling the 

fate of organic carbon in regional and catchment-scale carbon budgets in 

Guatemala, however the importance of landslide deposits is, to our knowledge, 

yet to be constrained.   

2.5.4. Earthquakes and the carbon cycle 

Earthquakes trigger an abundance of landslides and erode large amounts of 

sediment and subsequently organic carbon (Dadson et al., 2004; Meunier et al., 

2008; Hovius et al., 2011b; West et al., 2011; Wang et al., 2015; 2016). Over the 

last 20 years, the occurrence of two major earthquakes, 1999 Chi Chi earthquake 

and 2008 Wenchuan earthquake, has resulted in rapid advancements in the 

current understanding of earthquake induced landslides and their subsequent 

impacts (e.g. Dadson et al., 2004; Hovius et al., 2011b; Parker et al., 2011; West 

et al., 2011; Li et al., 2014; Wang et al., 2015; 2016). For example, a study by 

Wang et al. (2016) quantified river organic carbon fluxes before and after the 
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2008 Wenchuan earthquake. Using this data, Wang et al. (2016) developed a 

model to predict the fate of the earthquake-mobilised organic carbon, finding that 

~60% of the OCbio eroded escaped oxidation.  

Studies by Howarth et al. (2012) and Frith et al. (2018) have focused on the role 

of sedimentary lake basins as long-term sinks of the organic carbon eroded 

during Mw~8.0 earthquakes along the Alpine Fault. Howarth et al. (2012) used 

elemental concentrations and stable isotope ratios to identify the presence of 

terrestrial sediment fluxes in lake cores in New Zealand. Over the ~1100 years 

studied, earthquakes were responsible for 27 ± 5% of the total sediment flux and 

impacted the sediment flux for over five decades following the main shock. Frith 

et al. (2018) contributed further to this research by suggesting that the four 

earthquakes studied accounted for ~43 ± 5% of the total biospheric organic 

carbon eroded in the past 1100 years. The study also used carbon isotope ratios 

to infer that the large quantity of biospheric organic carbon eroded during the 

earthquakes is likely to originate from deep-seated landslides.  

Whilst research on earthquake-triggered landslides has begun to demonstrate 

the importance of riverine organic carbon fluxes and lake basins as transfers and 

sinks of organic carbon, a gap in the research remains with respect to the 

importance of landslide deposits as transient stores of eroded organic carbon.  

2.4. Chapter summary 

In summary, Chapter 2 demonstrates the active role landslides play in shaping 

regional and local organic carbon budgets in mountainous locations.  

The erosion of SOC through mass wasting has drawn considerable attention due 

to the rapid erosion that takes place over a short period of time. The role of 

landslides is discussed, with research typically demonstrating the large 

importance of landslides on SOC stocks on a catchment-wide scale. However, 

this literature review found that there is also need for local and individual landslide 

scale assessments in order to better infer the onsite and offsite implications of 

landslide erosion and the large spatial variability associated with SOC stocks. 

This is particularly important with respect to SOC stocks, whereby it is essential 

to constrain the source and fate of the organic carbon eroded in order to 

understand the further implications for local and regional carbon cycles. Whilst 
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studies are beginning to estimate the proportion of eroded OCbio buried over 

geological time periods in sedimentary basins, no studies, to my best knowledge, 

have investigated the importance of landslide deposits as short-term carbon 

stores using stable carbon isotope ratios.   

Therefore, this study will, for the first time, use geochemical characteristics to 

constrain the provenance of the organic carbon stored in landslide deposits. The 

mass of OCbio stored in landslide deposits will then be compared to the total mass 

of OCbio removed by landslides in order to determine the storage efficiency of 

individual landslide deposits in the western Southern Alps. This study also hopes 

to develop an improved estimate for the mass of OCbio estimated to be eroded in 

an earthquake along the Alpine Fault by deriving a location-specific SOC stock 

for the region based on field sampling at a comparably high spatial resolution. 

The importance of the Southern Alps as a field site will be discussed in Chapter 

3.  
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Chapter 3: The Southern Alps, New Zealand. 

The Southern Alps is a highly active mountain range located in New Zealand. The 

combination of steep slopes, high precipitation rates, tectonic activity and 

fractured bedrock make the location highly susceptible to landsliding. In addition, 

the dense forest cover and relatively thick soils store large amounts of OCbio. 

Hence, the Southern Alps constitutes the ideal setting to assess the importance 

of landslides in mobilising and storing OCbio. Chapter 3 provides a general 

background for the Southern Alps before introducing the individual field locations 

used in this study.    

3.1. Background 

The Southern Alps is an actively rising mountain range located on the South 

Island of New Zealand bordering the Tasman Sea (Figure 3.1.; Chamberlain et 

al., 1999). The mountain range was formed ~5 Ma (Norris and Cooper, 1997) as 

a result of an oblique collision between two continental plates, the Pacific Plate 

and the Australian Plate (Chamberlain et al., 1999).  The Southern Alps is ~50 

km wide and covers elevations from sea level to 3754 m a.s.l., with a catchment 

average of 900 to 1000 m (Emberson et al., 2016). The landscape consists of 

steep bedrock rivers and dissected, rectilinear hillslopes, which have an average 

slope angle of 35° (Hovius et al., 1997; Korup et al., 2005; Hilton et al., 2008a). 

Dense, temperate montane rainforests also cover the hillslopes (Korup et al., 

2005; Clarke and Burbank, 2010; Hilton et al., 2011a). The Southern Alps are 

relatively undisturbed by anthropogenic influences (Scott et al., 2006; Bellingham 

and Richardson, 2006; Hilton et al., 2008a; 2011a).  

The mountain range has been modified by erosional processes, such as 

landsliding, including falls, slumps and slides, and fluvial dissection (Hovius et al., 

1997; Korup, 2005a). These processes displace bedrock, soils and vegetation, 

which has resulted in high sediment yields across the western flank of the 

mountain belt (Figure 3.2b; Hovius et al., 1997; Hilton et al., 2008a). The spatial 

and temporal patterns of landsliding in the region are relatively well recorded, with 

decadal landslide maps available for the last ~70 years (Hovius et al., 1997; Hilton 

et al., 2011a; Emberson et al., 2016). 
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Figure 3.1. The 
topography of 
the Southern 
Alps, New 
Zealand. 3.1a. 
This map 
displays an 8 m 
x 8 m DEM with 
the hillshade 
effect. The 
elevations 
shown range 
from 0 m to 
3740 m. 3.1b. 
Aerial imagery 
from the 
Sentinel-2 
satellite 
collected on 6th 
February 2018. 
The Alpine Fault 
is also shown 
and runs 
through the 
mountain range. 
The inset shows 
were the 
mountain range 
is located 
relative to the 
rest of New 
Zealand. 
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Figure 3.2. Two 
maps of the 
South Island of 
New Zealand. 
3.2a. A map 
displaying the 
Alpine Fault as 
well as the 
change in 
elevation across 
the South Island, 
New Zealand. 
3.2b. A map 
displaying 
suspended 
sediment yield 
and annual 
rainfall for the 
South Island. 
Both rainfall and 
suspended 
sediment are 
significantly 
higher in the 
western Southern 
Alps in 
comparison to the 
rest of the island.  

Figure from 
Robinson et al. 
(2016).  
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3.1.1. The Alpine Fault 

The Alpine Fault (Figure 3.1b; 3.2a.), which lies parallel to the Southern Alps, is 

one of the most well-studied faults in the world (Chamberlain et al., 1995). The 

fault is 650 km long and is one of the main tectonic features on the Pacific-

Australian plate boundary, accounting for over 70% of the total interpolate motion 

(Norris and Cooper, 2000; Korup, 2004; Norris and Cooper, 2007; Howarth et al., 

2012). The surface trace of the Alpine Fault is characterised by an obliquely 

convergent boundary between the Pacific and Australian plates striking at  

ca. 055° (Walcott, 1978; Chamberlain et al., 1999; Norris and Cooper, 2007). This 

oblique motion results in dextural transpression along the fault and thus strike-

slip and dip-slip deformation (Harland, 1971; Norris and Cooper, 1997; 

Chamberlain et al., 1999). The most complex region of the fault line lies between 

the Whataroa and Haast rivers, whereby the fault is more segmented and has 

broken into a zig zag pattern of easterly and northerly strike-slip faults (Norris et 

al., 1990; Norris and Cooper, 2007). The upwards thrusting of the Pacific Plate 

over the Australian plate along the Alpine Fault has resulted in rapid uplift rates 

with the eastern side of the fault rising by ~8 – 10 mm yr-1 (Bull and Cooper, 1986; 

Simpson et al., 1994). The rapid uplift along the plate boundary has resulted in 

the formation of a hanging wall running parallel to the fault, which consists of 

schists from the Haast group (Chamberlain et al., 1999; Korup et al., 2005).  

Not only is the Alpine Fault one of the most accessible, active transpressional 

plate boundaries in the world (Walcott, 1978; Norris and Cooper, 1997), there is 

also an abundance of palaeoseismic records and reconstructions within the area 

(Howarth et al., 2012). Therefore, the Southern Alps is the ideal location to 

address the relationship between tectonics, topography and the carbon cycle. 

Despite no earthquakes occurring along the fault since European settlement in 

the mid-1800s, recent palaeoseismic reconstructions (Wells et al., 1999; Well and 

Goff, 2007) and lake records (Howarth et al., 2012; Frith et al., 2018) have 

identified three Mw > 7.6 earthquakes in the last 1000 years (AD 1717, ca. AD 

1620, ca. AD 1430) (Sutherland et al., 2007; Howarth et al., 2012). Based on 

previous ruptures, a Mw ~ 8.0 earthquake has a high probability (~30%) of 

occurring within the next 50 years (Berryman and Cochran, 2012) with the current 

return period of 260 ± 70 years imminent (Howarth et al., 2012). Therefore, this 

highly active mountain range is an important location to assess the role of 



43 
 

landslides in mobilising organic carbon from the biosphere in the anticipation of 

a large earthquake.  

3.1.2. Climate 

The climate in the Southern Alps is temperate with extreme orographically 

enhanced precipitation, demonstrated by the large difference in annual rainfall 

with 12 m yr-1 falling on the west coast and 1 m yr-1 in basins located to the east 

(Figure 3.2b.; Chamberlain et al., 1999; Korup et al., 2005). The semiarid 

conditions east of the mountain range can be explained by a pronounced 

rainshadow effect caused by the Southern Alps (Griffiths and McSaveney, 1983; 

Chamberlain et al., 1999). The high relief associated with the mountain range 

results in adiabatic cooling of the prevailing westerly airstreams on the western 

coast of the South Island. This cooling then leads to the condensation of moist 

air from the prevailing winds and subsequently high levels of precipitation on the 

western side of the mountain range.  

The highest precipitation rates are found ~5 – 10 km from the Alpine Fault, 

resembling a pattern similar to rates of rock exhumation (Hilton et al., 2011a). 

The high levels of precipitation in the western Southern Alps have resulted in 

dense forest growth, despite the steep slopes and significantly high erosion rates 

(Norris and Cooper, 1997).  

3.1.3. Geology 

The Alpine Fault has also resulted in a sharp metamorphic gradient across the 

mountain range over a distance of only 15 km (Roser and Cooper, 1990; Herman 

et al., 2015). The highest metamorphic grade is found adjacent to the Alpine 

Fault, where conditions reach 650°C and 10 kbar. Here, metasedimentary rocks 

of Mesozoic age, which consist of amphibolite grade mineral assemblages, have 

been exhumed from depths of 20 – 25 km over the last 2 – 3 Ma (Gunn, 1960; 

Cooper, 1980; Norris and Cooper, 1997; Hilton et al., 2008a). These schists, 

commonly referred to as Alpine Schist, make up the hanging wall (Korup et al., 

2005). Eastward into the mountain range (~15 km), there is a decrease in 

metamorphic grade, with rocks only experiencing conditions between 300 and 

450 °C and 6 – 8 kbar, to greenschist facies (Gunn, 1960; Mortimer, 2000; Hilton 

et al., 2008a). The OCpetro stored within the rocks (Hilton et al., 2008a) can be 
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used to quantify metamorphic temperature (Beyssac et al., 2002; Herman et al., 

2015) and provide evidence for long-term organic carbon stores within the 

mountain range. Hilton et al. (2008a) found bedrock in the Southern Alps had an 

average carbon isotope composition of δ13C = -21.1 ± 1.1‰.  

In addition, rocks in the Southern Alps are highly fractured as a result of tectonic 

weakening (Korup, 2004; Herman et al., 2015), therefore the bedrock is more 

susceptible to slope failures. Thus, it is anticipated landslides in the region will 

erode both OCbio and OCpetro. 

3.1.4. Soils and vegetation 

The high rates of precipitation across the western Southern Alps have resulted in 

dense rain- and mountain forests across the hillslopes. The treeline is at ~1200 

m, with thick forest cover present to an elevation of ~800 m and shrubland and 

alpine herbfields dominant between 800 and 1200 m (Bellingham and 

Richardson, 2006; Wardle, 2008; Hilton et al., 2011a). Above an elevation of 1250 

m bare rock, snow and ice are found (Hilton et al., 2011a). Soils are best 

developed beneath forest cover and in hillslope hollows, where acid brown soils, 

orthic podzols and perch-glay podzols are found. Elsewhere, thin, discontinuous 

regolith (< 1 m) is typical, such as fluvial raw soils and fluvial recent soils (Tonkin 

and Basher, 2001; Hilton et al., 2008a; 2011a). In terms of vegetation, the 

temperate rainforest is dominated by C3 species (Section 2.2.1.2), such as 

evergreen angiosperms (Metrosideros umbellata, Weinmannia racemosa, 

Quintinia acutifolia, Griselinia littoralis), conifers (Podocarpus hallii) and 

Dacrydium cupressinum and Dacrycarpus dacrydioides (Reif and Allen, 1988; 

Hilton et al., 2008a; 2011a). 

Johnston (2014) studied the stable carbon and nitrogen isotope composition for 

some of the aforementioned species in an undisturbed westland forest, Okarito 

Forest. The study found that the average stable carbon isotope ratios for four 

different species ranged between -30.6‰ and -32.3‰. The average stable 

nitrogen isotope ratios fell between 0.83‰ and -12.1‰ and C:N values between 

40.4 and 125.8 respectively. The total carbon and nitrogen contents were 

between 49.5% and 53.8% and 0.41% and 1.4% respectively. The individual 

species averages are shown in Table 3.1.  
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Table 3.1. A table displaying the geochemical characteristics for different types of 
vegetation found in the Southern Alps, New Zealand. 

Data has been taken from Johnson (2014).  

In addition, the C:N ratios for an indigenous C3 forest, such as in the Southern 

Alps, are likely to be as follows; leaf composition (15 – 40), twigs and small 

branches (78 – 157), bark (~250) and for stem wood (>600) (Hart et al., 2003; 

Hilton et al., 2008a). 

Soils in the region are thought to have a relatively high organic carbon content in 

the upper soil horizons with organic carbon contents of 5 – 27% up to a depth of 

15 cm (Basher, 1986; Hilton et al., 2008a; 2011a). This is because the main input 

of organic matter to soils originates from above ground biomass, which leads to 

high concentrations of organic carbon in the upper soil horizons (Basher, 1986). 

In 2011, Hilton et al. estimated that soils in the Southern Alps stored 18 000 ± 9 

000 tC km-2 and that the dense vegetation across the mountain range also stored 

a similar amount of OCbio. 

Soils and vegetation have been frequently cleared from the valley due to 

landsliding, which has led to the development of a patchwork of forest segments 

with different ages and biomass across the landscape (Hilton et al., 2008a).  

3.2. Study site characteristics 

Soil profiles were collected from six different locations, including four elevation 

tracks (Callery Gorge, Alex Knob Track, Roberts Point Track and Mount Fox Trail) 

and two revegetated landslide deposits (Hare Mare Creek and Gaunt Creek; 

Figure 3.3). These sites were chosen as they allowed for the accessible collection 

of samples from a range of vegetation types (see Section 3.2.1), elevations  

(182 m to 1303 m) and slope angles (0° (flat surface) to 41°). All samples sites 

were also selected based on their proximity to landslide locations (Section 3.2.3.) 

Species δ13C (‰) δ15N (‰) 
Total 

Nitrogen (%) 
Total 

Carbon (%) 
C:N 

Metrosideros 
umbellata 

-30.6 -7.1 0.4 51.4 125.8 

Weinmannia 
racemosa 

-32.9 -12.1 0.7 49.5 71.8 

Dacrydium 
cupressinum  

-34.3 -5.9 0.7 51.5 73.6 

Dacrycarpus 
dacrydioide 

-32.7 0.8 1.4 53.8 40.4 
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and the Alpine Fault and therefore may provide insight into how a Mw ~8.0 

earthquake could impact the regional carbon budget.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. A map of the Southern Alps with the landslide (square) and soil profile 
(circle) sample locations labelled as well as the different drainage basins sampled. 
Catchment 2: Waikukupa River, Catchment 3: Waitangitonoa River, Catchment 4: 
Waiho River, Catchment 5: Cook River-Waheka. The acronyms used are as follows; 
Landslide Locations, HMC – Hare Mare Creek, SC – Stony Creek, GC – Gaunt Creek, 
FG – Fox Glacier Car Park. Soil profile Locations, CG – Callery Gorge, AKT – Alex 
Knob Track, RPT – Roberts Point Track, MFT – Mount Fox Trail.  

In addition, 10 landslide deposits were also sampled. These deposits were 

selected based on a combination of accessibility, landslide area, slope angle and 

proximity to elevation tracks. The number of landslide deposits and elevation 

tracks samples were limited by time and logistical constraints. 

3.2.1. Elevation tracks 

Different sites within each location were selected based on elevation change. The 

Alex Knob track encompassed the largest elevation range and therefore samples 

were collected at intervals of 150 m elevation change. To also gain information 

at a high spatial resolution, samples were collected with every ~50 m and ~30 m 

change in elevation for the Roberts Point Track and Mount Fox Trail respectively. 

A more comprehensive list of locations and subsites can be found in Appendix A. 
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The GPS coordinates and elevations sampled for each location can be seen in 

Table 3.2. 

ID Location GPS Coordinates  
Elevations 

Sampled (m) 

Elevation 
between 

Samples (m) 

4 Callery Gorge -43.3988 170.1870 217 - 223 5 

5 
Alex Knob 

Track 
-43.4270 170.1515 298 - 1303 150 

6 
Hare Mare 

Creek 
-43.4423 170.0785 264 - 

13 Gaunt Creek -43.31667 170.3253 182 - 205 - 

17 
Roberts Point 

Track 
-43.44588 170.1781 214 - 613 50 

18 
Mount Fox 

Trail 
-43.48378 169.9962 168 - 299 30 

Table 3.2. The location and elevations for the elevation tracks and revegetated 
landslide deposits.  

Callery Gorge (Location 4) 

The Callery Gorge track is a 5.2 km 

return route to Callery Gorge through 

dense, indigenous forest behind the town 

of Franz Josef. During fieldwork, the 

forest was wet, with a thick litter layer 

covering the ground (Figure 3.4.). The 

track covered a lower range of elevations 

in comparison to the other three tracks 

sampled.  

Alex Knob Track (Location 5)  

The Alex Knob Track is a 17.2 km return 

track, which covers an elevation range 

from ~200 m to a summit of 1303 m. 

The large elevation range allowed for 

samples to be collected from a variety 

of different vegetation types (Figures 

3.5a; 3.5b.). At lower elevations the track consisted of lowland forest and sub-

alpine scrub, such as Metrosideros umbellata, Weinmannia racemose and 

Dacrydium cupressinum, before gradually changing to sub-alpine New Zealand 

cedar and tree daisies. Beyond the treeline, the track was dominated by snow 

tussock and mountain daisies. In September 2017, the snowline was ~950 – 1000 

Figure 3.4. A photograph of the Callery 

Gorge track. A: Dense forest with a 

thick litter layer covering the forest floor. 

B: Samples were collected ~2 m 

upslope of the paths where possible to 

ensure minimal sample disturbance. 
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m. Samples were collected with every ~150 m change in elevation. Some 

locations (5.7 and 5.9) were unable to be sampled due to manmade paths making 

it difficult to insert the soil auger.  

Figure 3.5. Photographs taken along the Alex Knob Track, September 2017. 3.5a. 
Lower elevations of the Alex Knob Track were covered in dense rata forest with limited 
light reaching the forest floor and relatively low moss and litter cover. 3.5b. The 
distribution of vegetation with varied with elevation. A: Displays the stark contrast in 
vegetation with elevation, changing from dense forest to grasslands and bare rock and 
ice. B: Shows the hillslope plateau at the higher elevations along the trail, which are 
primarily covered by snow tussock and sporadic snow cover.  

Roberts Point Track (Location 17) 

 

 

 

 

 

 

 

 

Figure 3.6. Photographs taken along the 
Roberts Point Track, September 2017. 3.6a. 
Photograph displaying the dense forest cover 
and moss along the track. 3.6b. Displays the 
dense rainforest covering the entire hillslope 
as shown by the hillslope opposite. 
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The Roberts Point Track, a 12.3 km return track, begins at Douglas Bridge and 
follows the Waiho Valley to a viewpoint of the Franz Josef Glacier. The route was 
dominated primarily by thick indigenous rata forest, with some areas exposed as 
a result of the steep, glacially smoothed bedrock (Figure 3.6.). There is also well-
established moss, fern and grass cover either side of the path. The path reached 
a maximum elevation of 613 m and samples were collected with every ~50 m 
change in elevation.  

Mount Fox Trail (Location 18) 

The Mount Fox Trail reached a maximum elevation of 1345 m, however due to 

the adverse weather conditions samples were only collected from the first 300 m. 

The track consisted of dense rata forest on very steep inclines (Figure 3.7.). The 

location was also highly undisturbed, with very little modification. Samples were 

collected at ~30 m intervals based on elevation.  

Figure 3.7. Photographs taken along the Mount Fox Trail, September 2017. 3.7a. A 
photograph displaying the dense forest and moss cover along the Mount Fox Trail. 
3.7b. A photo highlighting the undisturbed nature of the location. 

 

3.2.2. Revegetated landslide deposits 

I also chose to collect samples from revegetated landslide deposits to investigate 

how landslide deposit organic carbon content may change temporally during 

revegetation (Section 6.3.). Samples were selected based on proximity to fresh 

landslide deposit locations in order to make comparisons as reliable as possible.  

 



50 
 

Hare Mare Revegetated Landslide (Location 6) 

Soil profiles were collected upstream of Landslide 1 (Location 1; Figure 3.8.), in 

an area of new vegetation. The vegetation consisted of thin moss cover and the 

early development of indigenous rata forest. It is anticipated that this area was 

eroded prior to 1948 based on previous literature (Hovius et al., 1997; Hilton et 

al., 2008a).  

Figure 3.8. A revegetated 
landslide deposit (A) 
located in Hare Mare 
Creek upstream of 
Landslide 1 (Location 1). 
The younger, lighter 
forest cover contrasts to 
the bare exposed rock 
from the more recent 
landslide and the dense 
forest cover on the 
surrounding hillslope. 

 

 

 

 

Gaunt Creek Revegetated Landslide (Location 13 (Sites 13.5 to 13.10)) 

Figure 3.9. A 
revegetated landslide 
deposit located upstream 
of Landslide 13 (Location 
13). The forest cover is 
sparse in comparison to 
the surrounding 
vegetation and is more 
vegetated than the 
adjacent landslide scar 
and deposit. 
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Soil profiles were also collected from the revegetated hillslope upstream of 

Landslide 13 (Sites 13.1 to 13.4; Figure 3.9.). This failure is also expected to have 

occurred prior to 1948 (Hovius et al., 1997) or between the years 1918 to 1970 

when bedload concentrations peaked in the area (Korup, 2004).  

3.2.3. Landslide and river deposits 

Samples were also collected from landslide deposits (Figure 3.3.) and the 

adjacent riverbeds. The following landslides were chosen in order to cover a 

range of slope angles (20° to 40°), elevations (146 m to 349 m) and landslide 

areas (total areas varied from 30 m2 to 100 000 m2). All locations were also 

selected based on proximity to the Alpine Fault and accessibility. The elevation, 

slope angle and GPS coordinates of these locations are shown in Table 3.3.  

ID Location GPS Coordinates Elevation (m) 
Slope 

Angle (°) 

1 Hare Mare -43.44226 170.0785 264 38 

2 Hare Mare -43.44272 170.0775 267 28 

3 R Hare Mare -43.44252 170.0776 258 13 

7 Stony Creek -43.37041 170.2121 243 20 

8 Stony Creek -43.36975 170.2115 226 31 

9 Stony Creek -43.37147 170.2119 267 38 

10 Stony Creek -43.37177 170.2123 271 33 

11 R Stony Creek -43.3716 170.2122 233 - 

13 Gaunt Creek -43.31667 170.3253 169 29 

14 Gaunt Creek -43.31702 170.325 168 40 

15 Gaunt Creek -43.31604 170.3235 174 32 

16 R Gaunt Creek -43.31604 170.3235 174 - 

19 Fox Glacier -43.49337 170.0430 146 35 

Table 3.3. A table displaying the location, elevation and slope angle for the landslide 
deposits studied. The symbol R following the location ID indicates the samples 
collected are from the river bedload and therefore do not constitute a landslide deposit. 

A more detailed table showing the GPS coordinates and sample depth for 

individual sites within each location can be found in Appendix B. 

Hare Mare Creek (Locations 1, 2 and 3) 

Hare Mare Creek is a tributary of the Waikukupa River and is one of the most 

actively studied locations along the Alpine Fault (Norris and Cooper, 1997) due 

to the clarity of the fault along the surface (Section 3.1.1). This demonstrates the 

importance of this location with regards to slope instability along the fault. Hilton 

et al. (2008a) studied this catchment and collected samples from the valley floor 
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of a landslide, which occurred after 1985. This landslide occurred on the surface 

of a previous larger landslide triggered prior to 1948 (Hilton et al., 2008). The 

samples had an average organic carbon content of 0.7 ± 0.06% for clay and silt 

and 0.38 ± 0.08% for sand as well as C:N ratios for clay/silt and sand of  

11.5 ± 0.5 and 13.4 ± 0.8 respectively.  

Figure 3.10. The landslides in Hare Mare Creek. 3.10a. A labelled photograph of 
Landslide 1, Hare Mare Creek. A: Area of revegetation. B: Landslide scar exposing 
bedrock. C: Conical deposit consisting of large angular boulders with some woody 
debris. D: Active gullies in the deposit. E: Steep landslide toe with evidence of fluvial 
erosion. 3.10b. Landslide 2 also located in Hare Mare Creek. A:.Landslide scar exposing 
bedrock. B: Narrow, steep landslide chute with active gullying taking place. C: Evidence 
of erosion within the deposit. D: Landslide 1 has cross-cut the deposit. 

The two accessible landslides in the catchment were sampled. The first landslide 

(Location/Landslide 1) was a large landslide scar likely to have occurred after 

1985. Features of this landslide scar and deposit are shown in Figure 3.10a. The 

second landslide (Location 2) was located downstream of Landslide 1 and was 

smaller in size. Landslide 2 had been cross-cut by Landslide 1, suggesting this 

deposit was older. There is also some revegetation on the deposit (Figure 3.10b). 

Both landslide deposits connected to Hare Mare creek.  

Seven bedload samples were collected at different sites along Hare Mare creek. 

Horan et al. (2017) previously obtained values for the organic carbon content and 

stable carbon isotope ratio for the Waikukupa River of 0.16% and -20.2‰ 
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respectively. Large woody debris was also deposited on inactive regions of the 

riverbed.  

Stony Creek (Locations 7, 8, 9, 10 and 11) 

Stony Creek is a tributary to the Waiho River, however less research has been 

collected on landslides within this catchment. These landslides are likely to be 

younger than those sampled in different creeks based on the abundance of fallen, 

fresh vegetation. Locations 7 and 8 were landslides on the east-facing hillslope. 

Location/Landslide 7 was characterised by three landslide scars, which had 

carved a small gorge into the landscape. The failure exposed bedrock and 

mobilised a large amount of woody debris downslope (Figure 3.11). Location 8 

was downstream of Location 7 and similar in size. The landslide was shallower 

and consisted of a conical deposit with patches of woody debris and fresh trees 

further downslope. There was also some revegetation on the right-hand side of 

the deposit (Figure 3.12).  

 

Figure 3.11. Two photographs showing the extent of Landslide 7. 3.11a. View of 
Landslide 7 taken looking up the hillslope A: Shows two of the landslide scars on 
opposing sides of the valley. Both scars have exposed bedrock. B: A range of different 
sized angular clasts and coarse woody debris form the deposit. C: Active streams flow 
through the deposit. 3.11b. A photograph of the opposite hillslope. From the opposite 
hillslope, it can be inferred that dense vegetation covered the hillslope prior to 
landsliding. 
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Figure 3.12. Photographs of Landslide 8. 3.12a. Landslide/Location 8 A: Landslide 
scar with two active gullies cutting into the bedrock. B: Conical Deposit. C: Woody 
debris and fallen trees litter the deposit surface. 3.12b. Displays the post-landslide 
erosion taking place within the landslide scar (A). 3.12c. A range of fresh woody debris 
and boulders make up the deposit. 3.12d. The landslide deposit is abruptly cut off by 
the access path. 

 

In contrast, Locations 9 and 10 were deposits collected from the bottom of a steep 

bedrock cliff (Figure 3.13). The fresh deposits still contained vegetation and 

showed no evidence of erosion from gullying (Figure 5.13). Landslides 7, 9 and 

10 were all connected to Stony Creek, however Landslide 8 occurred above a 

footpath and therefore the deposit had been moved to clear the path. 

Four river bedload samples were collected between the four landslides along 

Stony Creek. A previous study by Horan et al. (2017) found an organic carbon 

content of 0.105% and a stable carbon isotope composition of -23.05‰ along the 

Waiho River. 

 

 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Annotated photographs of Landslide 9 and Landslide 10. The labels on 

both landslides represent the same characteristics. A: Steep, landslide scar and 

crowns (blue dotted line) exposing bedrock. Vegetation can be seen upslope of both 

scars. B: Conical deposits formed at the base of the hillslope consisting primarily of 

fine-grained material with some woody debris. C: Soil has been retained in the roots of 

the fallen trees in the deposit of Landslide 10 indicative of recent erosion. 3.13a. 

Landslide 9. 3.13b. Landslide 10.  

Gaunt Creek (Locations 13, 14, 15 and 16) 

Similarly to Hare Mare Creek, Gaunt Creek is one of the most extensively studied 

areas of the fault (Cooper and Norris, 1994). The catchment has often been used 

to demonstrate the implications of the ongoing slope instability along the Alpine 

Fault particularly due to the complex gully/slip system. Korup (2004) stated that 

the excessive sediment generation resulted in a build-up in sediment along the 

Waitangitaona River, of which Gaunt Creek is a tributary. The active nature of the 

fault can also be demonstrated by the 7.7 x 106 m3 of sediment that was produced 

in the catchment as a result of the gully/slip system between 1918 and 1965 

(Korup, 2004). Hilton et al. (2008a) also collected samples from a large slope-

clearing landslide in this catchment to find that the clay/silt and sand deposits had 

average organic carbon contents of 0.31 ± 0.01% and 0.15 ± 0.01% respectively 

and C:N values of 20.5 ± 2.4 and 18.6 ± 5.8. Location 13 was the largest landslide 

in Gaunt Creek and is likely to be the landslide sampled by Hilton et al. (2008a). 
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The landslide has eroded to bedrock, leaving a steep backwall. There is very little 

revegetation on the main deposit, however revegetation has taken place 

upstream of the deposit (Sites 13.5 to 13.10; Figure 3.14). In contrast, Location 

14 was a very small failure, ~3 m downstream of Location 13. The deposit was 

conical with fresh woody debris, however no soil was found on the tree roots 

(Figure 3.15). A small, shallower failure (Location 15) was located downstream 

of these two landslides (Figure 3.16). This landslide likely occurred on the surface 

of a larger failure. Landslides 13 and 15 were connected to the creek.  

Riverbed deposits were collected downstream of Gaunt Creek from three 

different sites. A previous study found the organic carbon content and stable 

carbon isotope composition of the Waitangitaona River to be 0.18% and -20.8‰ 

respectively (Horan et al., 2017).  

Fox Glacier Car Park Landslide (Location 19) 

This landslide deposit was located on the right-hand side of Fox River, behind 

the access road to Fox Glacier. The deposit was largely revegetated with at least 

two streams flowing through the deposit. The deposit flowed into a small pond 

before meeting the access road (Figure 3.17). Four depth profiles were collected 

from vegetated and non-vegetated areas of the deposit. The deposit did not 

connect to the channel and is likely to have been disturbed in order to ensure the 

road was accessible.  
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Figure 3.14. A photograph displaying Landslide 13, the largest landslide in Gaunt Creek. A: Scar Crown. B: Landslide scar exposing 

bedrock. C: Revegetated area of the landslide deposit (Sites 13.5 to 13.10). D: Active gullies in the deposit. E: Conical deposit consisting 

of fine-grained material. 
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 Figure 3.15. A photograph of the landslide deposit from 

Landslide 14. A: Landslide scar and scar crown exposing 

bedrock. B: Woody debris deposited on top of the conical 

fine-grained deposit. 

Figure 3.16. A photograph of Landslide 15, a shallow 

landslide. A: Landslide scar. No bedrock has been 

exposed. B: Some revegetation on the landslide scar 

in the form of bushes. C: Subangular boulders on the 

surface of the deposit as well as young trees. 
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Figure 3.17. A photograph of the deposit for Landslide 19 taken from the Fox Glacier 
Car Park. A: Dense forest cover on adjacent hillslopes. B and C: Areas of revegetation 
on the deposit.  

3.3. Chapter summary 

In summary, the western Southern Alps provide an ideal setting to better 

understand the implications landsliding may have on regional and local carbon 

cycles as well as the unique opportunity to also add to current literature assessing 

the relationship between the carbon cycle, tectonics, climate and topography 

(Chamberlain et al., 1999; Burbank and Anderson, 2001; Korup, 2005c). As one 

of the best studied faults and mountain ranges in the world with an abundance of 

landslide inventories, this location also presents an excellent opportunity to place 

our findings within the context of previous literature using state-of-the-art 

techniques to better constrain the importance of landslide deposits in the region. 

Furthermore, with a Mw~8.0 earthquake along the Alpine Fault imminent, the 

study will also help to develop improved estimates for the potential effects 

earthquake-triggered landslides may have on the catchment and the regional 

carbon cycle. Subsequently, this pristine location provides an excellent setting to 

better constrain how efficient landslides are in eroding OCbio as well as the 

importance of landslide deposits as stores of OCbio.  
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Chapter 4: Methodology. 

4.1. Field methods 

Soil organic carbon stocks are quantified using estimates of soil organic carbon 

content, soil bulk density, soil depths and in some instances the rock fragment 

content (Poeplau et al., 2017). This section details the field methods undertaken 

in order to better constrain an average regional soil organic carbon stock for the 

western Southern Alps, New Zealand using four different locations (Figure 4.1). 

4.1.1 Soil depth measurements and soil samples 

In order to obtain an estimate of soil organic carbon content, soil samples were 

collected from multiple field sites in six different locations across the western 

Southern Alps (Table 4.1; Figure 4.1). Each location was divided into sites based 

on the elevation of the track, see Section 3.2.1.. Each site consisted of several 

subsites, which were arranged in a transect (Figure 4.2.). This allowed for 

comparison between soil samples to ensure that the samples collected were 

representative of each site.  

Table 4.1. A table displaying the number of soil profiles measured and samples collected 
at each of the six locations as well as the maximum and average profile depth. Locations 
6 and 13 are revegetated landslide deposits and were not used to estimate the average 
hillslope SOC stock. Standard error was calculated based on the multiple depth profiles 
collected from each subsite. Standard error was not derived for revegetated landslide 
deposits as each site was comprised of only one subsite.  

Soil samples were collected from each subsite using a soil auger (Figure 4.2.). A 

soil auger is a device used to extract undisturbed soil from below the surface. The 

soil auger used in this study sampled soil at 16 cm increments and was deployed 

until it could not be pushed into the soil any further. It was assumed that this was 

ID Location 
No. of 
Sites  

Soil 
Profiles 

Measured 

Soil 
Samples 
Collected 

Max. 
Profile 
Depth 

(m) 

Average 
Profile 
Depth 

(m) 

Standard 
Error (m) 

4 
Callery 
Gorge 

2 7 6 0.43 0.29 0.04 

5 
Alex Knob 

Track 
7 9 24 1.02 0.57 0.01 

6 
Hare Mare 

Creek 
3 3 6 0.25 0.23 - 

13 
Gaunt 
Creek 

6 6 9 0.20 0.15 - 

17 
Roberts 

Point Track 
11 26 18 0.46 0.18 0.01 

18 
Mount Fox 

Trail 
5 10 19 1.12 0.62 0.08 
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the maximum depth of the soil profile (Sucre et al., 2011). This is a limitation of 

our study due to the fact the auger may not have reached the substrate and 

alternatively had encountered coarse particles, rock clasts or an obstacle, such 

as tree roots.   

Figure 4.1. Three maps displaying the sites where soil profiles were collected along 

the four different elevation tracks. 4.1a. Locations 4 (Callery Gorge), 5 (Alex Knob 

Track) and 17 (Roberts Point Track). 4.1b. Location 18 (Mount Fox Trail) is to the 

southwest of the other three locations and is defined by the blue frame in the inset 

map. 4.1c. An inset map showing the four different locations.  

 

 

 

 

 

 

 

Figure 4.2. Where possible 

multiple soil profiles (black 

crosses) were collected at each 

site at ~1 m intervals. These are 

referred to as subsites. A soil 

profile collected from the Alex 

Knob Track using the soil auger is 

shown by the inset. The different 

horizons are defined by a blue 

dotted line. A is the organic 

horizon. B is a lighter horizon 

containing some silt. C is a lighter 

more clay-based mineral horizon. 
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However, it is widely accepted that soil organic carbon content and soil bulk 

density changes with soil depth (see Table 2.1; Franzluebbers, 2002). Therefore, 

it was essential to collect samples from numerous depth increments using the 

soil auger. A common technique used to differentiate between soils with different 

properties, and subsequently organic matter contents, is to classify soils by 

horizons. Horizons are parallel to the surface and are identified by changes in soil 

colour, texture, structure, permeability and biological activity (Figure 4.3; Huang 

et al., 2009; Tan, 1996a). Classification based on soil horizons is often referred 

to as the agricultural classification of soils and is one of the more feasible field-

based approaches to study changes in soil with depth (Huang et al., 2009). A 

summary in Huang et al. (2009) stated that horizons are commonly divided into 

O-, A-, B- and C-horizons (Figure 4.3). The O-horizon is used to describe the soil 

surface layer, which commonly has a high concentration of organic matter often 

in the form of plant litter (Huang et al., 2009; Schoenenburger et al., 2012). This 

is then followed by the A-horizon, which still contains predominantly dark 

decomposed organic matter (humus) as well as a mineral fraction commonly in 

the form of clay (National Committee on Soil and Terrain, 2009). Below this 

horizon, is the B-horizon, which is often referred to as subsoil. This horizon is 

generally lighter in colour than the overlying horizons and contains a greater 

proportion of clay (National Committee on Soil and Terrain, 2009; 

Schoenenburger et al., 2012). The final main horizon is the C-horizon. This 

horizon is commonly defined as unconsolidated material with little pedogenic 

alteration (Huang et al., 2009; Schoenenburger et al., 2012).  

 

 

 

 

Figure 4.3. A schematic showing the different 

horizons commonly found in a soil profile. The 

horizons are commonly defined by 

morphological changes in the soil as well as 

changes in soil colour. Horizon thickness is 

shown as d. 

Figure adapted from USDA (n.d.) 
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For simplicity in the field and later calculations, we identified soil horizons within 

the field and grouped the horizons into organic horizons (O- and A-horizons) and 

mineral horizons (B- and C-horizons) using the criteria stated in Huang et al. 

(2009), National Committee on Soil and Terrain (2009) and Schoenenburger et 

al. (2012). The change in soil colour observed between the horizons (Figure 4.2) 

supports previous studies that found it was possible to relate soil colour to soil 

organic carbon content, and in some instances, bulk density (Shields et al., 1968; 

Tremblay et al., 2002; Aïchi et al., 2009). By loosely identifying soil horizons, I 

hope to obtain a more accurate soil organic carbon stock for the region. At each 

subsite the soil profiles were divided into organic and mineral horizons and the 

upper and lower depth of each horizon was recorded using a ruler (Figure 4.2). 

Typically soil samples were only collected from the ‘master’ soil core in the centre 

of the transect (Sample X.1.1. in Figure 4.2.). To assess the heterogeneity in the 

geochemical properties of soils at individual sites along each elevation track, in 

some cases additional soil samples were collected from neighbouring subsites 

(Figure 4.2). Appendix C displays the soil horizons identified and measured in the 

field. 

The location (elevation, latitude, longitude) of each site was recorded using a 

handheld GPS. Across the four key locations (ID 4, 5, 17 and 18; Table 4.1) a 

total of 73 soil samples were collected from 25 soil profiles. This exceeded the 

number of samples collected in previously published local estimates and the 

relative number of samples with respect to national estimates of SOC stock (Scott 

et al., 2002; Hilton et al., 2011). Thus, the values presented in this thesis build on 

previous research and provide a reasonable SOC stock estimate for the region. 

The samples collected from the revegetated landslide deposits (Locations 6 and 

13) were not used to estimate SOC content for the region.  

4.1.2. Landslide deposit and river bedload samples  

Samples were also collected from landslide deposits in order later to determine 

the deposit organic carbon content. Ten landslide deposits, located in four 

different creeks, were sampled (Figure 4.4). The term location and landslide, with 

respect to the landslide sampled, are used interchangeably throughout this 

thesis. River bedload deposits were also collected from the inactive channels in 

three of the four creeks studied. Samples were collected from the landslide and 

riverbed deposits using a clean trowel as opposed to a soil auger due to the 
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extremely coarse nature of the deposits. The location of samples collected from 

the deposits/riverbeds will be referred to as the sample site. Sample sites 

(longitude, latitude, elevation) were recorded using a Garmin GPS. 

Due to the heterogeneous nature of the deposit, ~125 cm3 of soil was collected 

from each site at 10 cm intervals up to maximum depth of 30 cm and placed into 

a sterile sample bag (Hilton et al., 2008a; Sanderman et al., 2011). In total 96 

samples were collected from the 10 landslide deposits (Figure 4.4). In addition, 

17 bedload samples were collected from the exposed riverbeds. The number of 

samples collected from each location and the maximum depth sampled at each 

deposit are shown in Table 4.2. The number of landslides sampled exceeded the 

number of landslides sampled in previous studies in this location (Hilton et al., 

2008; 2011) and therefore was deemed reasonable. In order to accurately 

estimate deposit organic carbon content, samples were also collected from 

different parts of each landslide deposit and at varying depths to account for the 

heterogeneous nature of the deposits (Figure 4.4.).  

 

Location/ 
Landslide 

ID 

Number of 
Sample Sites 

Number of Soil 
Samples Collected 

Maximum Soil Depth 
Sampled (m) 

1 6 18 0.48 

2 6 18 0.30 

3R 7 10 0.10 

7 5 10 0.30 

8 4 8 0.33 

9 4 8 0.30 

10 4 6 0.20 

11R 4 4 0.05 

13 4 5 0.20 

14 1 2 0.10 

15 2 3 0.30 

16R 3 3 0.05 

19 4 8 0.20 

Table 4.2. Table showing the number of sample sites and soil samples collected from 
each landslide deposit and inactive river channel. River bedload samples are identified 
by the letter R. Maximum error for the depth measurements listed is 0.01 m based on 
the intervals on the ruler used to collect these measurements.  
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Figure 4.4. A series of 
Sentinel-2 images (resolution: 
10 m x 10 m) displaying the 
ten landslide deposits. The 
different sites from which 
samples were collected are 
also shown. 4.4a. Landslide 
19 (Fox Glacier Car Park). 
4.4b. The location of each 
creek relative to the Alpine 
Fault. 4.4c. The landslides 
sampled in Gaunt Creek 
(Landslides 13, 14, 15) as 
well as the riverbed samples 
collected (Location 16). 4.4d. 
Hare Mare Creek (Landslides 
1 and 2 and Location 3).  
4.4e. Landslides 7 and 8 from 
Stony Creek. 4.4f. Landslides 
9 and 10, upstream of Figure 
4.4e.
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4.1.3. Bulk density samples  

Another estimate required to quantify soil organic carbon stocks is bulk density. 

Bulk density is defined as the mass of soil per unit volume (Brady, 1990). In total, 

16 bulk density samples were collected from inactive river channels, landslide 

deposits and undisturbed soil profiles using a bulk density cylinder of known 

volume, 162.9 cm3 (Table 4.3). Bulk density cylinders are the most robust and 

accurate method for calculating the density of shallow soils (Walter et al., 2016). 

The cylinders were pushed into soil profiles horizontally using a rubber mallet. 

Where this was not possible, the bulk density samples were collected by pushing 

the cylinder vertically into the soil profile. It was important to avoid soil compaction 

and ensure that the volume of the cylinder was full when removed (Rodeghiero 

et al., 2009). The cylinder was removed by excavating the surrounding soil using 

a small trowel and a flat bladed knife to trim the edges (Wood, 2006). The 

samples were taken from different soil horizons (Section 4.1.1) in order to account 

for changes in soil composition and bulk density with depth (Clark et al., 2016). 

Samples were transferred into sterile samples bags and stored in a cool box prior 

to laboratory analysis at the University of Otago. 

Sample 
Number 

Location 
ID 

Maximum Sample 
Depth (m) 

Corresponding 
Soil Sample 

Sample Type 

1 1 0.30 1.1c LS 

2 1 0.10 1.3a LS 

3 1 0.10 1.6a LS 

4 2 0.15 2.2b LS 

5 2 0.15 2.6b LS 

6 3 0.10 3.1 RB 

7 5 0.065 5.1.1a SH 

8 5 0.32 5.1.1b SH 

9 5 0.10 5.5.1b SH 

10 5 0.10 5.6.1b SH 

11 5 0.25 5.6.1c SH 

12 13 0.10 13.1 RV 

13 17 0.10 17.1a SH 

14 17 0.070 17.3a SH 

15 17 0.11 17.8.1b SH 

16 18 0.10 18.1.1a SH 

Table 4.3. A table showing the sixteen bulk density samples, the location where the 
samples were collected from and the corresponding soil sample. The following 
abbreviations are used for each sample type; LS – Landslide Deposit, RB – River 
Bedload, SH – Soil Horizon, RV – Revegetated Deposit. 
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4.1.4. Additional field measurements  

Whilst in the field, slope, landslide deposit geometry and woody debris were also 

measured. 

Slope: Slope was measured using two ranging poles approximately 15 m apart 

and a clinometer.  

Landslide Geometry: The width and height of each individual landslide deposit 

were recorded using a 30 m tape measure. Only Landslides 14 and 15 were 

successfully measured in this way (Figure 4.5a). Where landslides were too large 

or difficult to measure, scale photographs were taken, and estimates made in the 

field were compared to remote sensing imagery (Figure 4.5b). 

 

 

 

 

 

 

 

Figure 4.5. Width and height measurements for landslide deposits 4.5a. A field 
photograph displaying the technique used to measure landslide deposit height and 
width. The width recorded was the maximum deposit width found at the base, however 
this could not be displayed in this photograph. The deposit shown is Landslide 14. 
4.5b. A larger deposit, whereby field observations and scaled photographs were used 
to estimate deposit height and width. 

Woody Debris: Woody debris was defined as any organic material, irrespective 

of size, stored in the landslide deposit. This included twigs, tree branches and 

trunks. The sampling method involved measuring a cross section across the 

landslide deposit between 10 m and 15 m and then measuring the diameter and 
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length of pieces of woody debris at ten equal intervals. This technique is similar 

to the approach in Bilby and Ward (1991), who sampled woody debris along a 

river reach. If the end of the woody debris was buried within the deposit, such as 

for tree trunks, this was noted and the maximum visible length was recorded. 

Only woody debris at the surface was measured due to the finding in West et al. 

(2011) claiming that the surface values of woody debris reflect the total coarse 

woody debris storage through the landslide deposit.  

4.2. Laboratory methods 

Samples were transported back to the UK in a cool box and placed in a 4ºC fridge 

in order to reduce microbial degradation (Schumacher, 2002). The samples were 

tightly sealed and placed into an airtight cool box to avoid contamination or 

damage during transit. 

4.2.1. Bulk density  

The bulk density samples were placed into trays of a known mass and then 

weighed to find the wet sample mass. Next, the soils were placed in a 105ºC oven 

for 24 hours until all moisture had been removed (Tan, 1996b). The samples were 

then reweighed to determine the dry mass. The following calculations were used 

to determine the wet (Equation 4.1) and dry bulk densities (Equation 4.2).  

𝑊𝑒𝑡 𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) =
𝑊𝑒𝑡 𝑀𝑎𝑠𝑠 (𝑔)

𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑐𝑚3)
 

Equation 4.1.  

𝐷𝑟𝑦 𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) =
𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 (𝑔)

𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑐𝑚3)
 

Equation 4.2.  

4.2.2. Sample preparation: Freeze drying  

Furnaced pipettes were placed into the sealed sample bags and the samples 

were placed in a -81ºC freezer for 48 hours. The samples were then freeze dried 

for 48 hours to remove water prior to further analysis (Figure 4.6a; Schumacher, 

2002). This also ensured that the sample was not subject to further contamination 

as a result of remaining moist for long periods of time (Tan, 1996c).  
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4.2.3. Sample preparation: Sample homogenisation  

Following freeze drying, ~5 g of each sample was homogenised to increase the 

surface area of the sample and subsequently its reaction time (Tan, 1996c; Bisutti 

et al., 2004). However, grinding the sample using a ball mill can contaminate the 

sample (Tan, 1996c), therefore each sample was ground by hand using a pestle 

and mortar (Figure 4.6b). The pestle and mortar were cleaned thoroughly 

between samples using acetone.  

Numerous studies suggest removing the woody debris from the sample prior to 

homogenisation (Schumacher, 2002). However, in order to obtain a 

representation of all the matter eroded by the landslide, this study included the 

roots in further analysis.   

4.2.4. Sample preparation: Inorganic carbon removal  

Total organic carbon can be measured directly or indirectly. Indirect 

measurements involve subtracting total inorganic carbon from total carbon to 

obtain total organic carbon (Neal and Younglove, 1993). This thesis used the 

direct method, which is regarded as more accurate when analysing samples poor 

in organic carbon and rich in inorganic carbon (Bisutti et al., 2004). An Elemental 

Analyser coupled to Isotope Ratio Mass Spectrometer (EA-IRMS) was used to 

determine the organic carbon content of the samples and measure the isotopic 

composition at the same time (Figure 4.7.; Section 4.2.6.). An IRMS can be 

defined as a specialised technique used to quantify the relative abundance of 

isotopes in a given sample.  

The accurate separation of inorganic and organic carbon is a major issue in 

carbon analysis and therefore there has been much literature discussing the most 

appropriate method. Firstly, samples must be acidified to remove inorganic 

carbon from the sample. Sample acidification can be performed using three key 

techniques; the rinse method, aqueous acidification or vaporous acidification 

(Komada et al., 2008). I used aqueous acidification to remove carbonates from 

the samples collected, a short explanation for this choice is given below. For 

further reading regarding the different types of acid treatment see Bisutti et al. 

(2004), Galy et al. (2007b) and Komada et al. (2008).  



70 
 

Whilst vaporous acidification obtained the most accurate measurements of 

organic carbon and stable carbon isotopes (Komada et al., 2008), the technique 

was much less efficient at digesting carbonate minerals in detrital sediments, 

such as dolomite (Galy et al., 2007b). In addition, the rinsing method has been 

found to result in the loss of organic carbon during carbonate removal (Froelich, 

1980; Schumacher, 2002; Bisutti et al., 2004; Komada et al., 2008). Therefore, 

due to the nature of our landslide samples, liquid acid leaching was performed. 

Despite supporting the use of vaporous acidification, Komada et al. (2008) found 

that aqueous acidification encouraged full contact between the sample and the 

acid and promoted a more rapid reaction. 

Samples were acidified using colour as a proxy for organic carbon (Rossel et al., 

2008). To ensure that there was sufficient organic carbon within the sample to be 

detected by the EA-IRMS different samples weights were required. 

Approximately 1 to 5 mg of sample was weighed for soil profiles using a six-figure 

balance and ~20 mg of sample for landslide deposits and river bedloads 

respectively. Samples were weighed into silver capsules, which did not react with 

the acid (Gandhi et al., 2004). The silver capsules were furnaced at 450°C prior 

to analysis to remove any carbon residue.  

Figure 4.6. The steps 

undertaken to prepare 

samples for geochemical 

analysis. 

Figure 4.6a. Soil samples 

in the freeze dryer. 

Department of 

Geography, Durham 

University.  

 

Figure 4.6b. Sample 

homogenisation. The 

pestle and mortar were 

placed on furnaced foil 

and cleaned with acetone.  

Figure 4.6c. Samples 

were acidified in a fume 

cupboard. Samples were 

placed into silver capsules 

and acid was added using 

a furnaced glass pipette. 
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The weighed samples were then placed into a Teflon tray and into a fume hood 

where five drops of 5M hydrochloric acid was added using a furnaced glass 

pipette (Figure 4.6c). Hydrochloric acid was used to remove inorganic carbon due 

to its ability to react quantitatively with all carbonate compounds present, except 

siderite (Bisutti et al., 2004; Galy et al., 2007b; Komada et al., 2008). Conversely, 

sulphurous acid cannot remove siderite and dolomite (Gibbs, 1977), and can 

result in organic carbon loss and contamination (Caughey et al., 1995; Heron et 

al., 1997). 

In each tray, 12 of the samples were blank to account for errors in the 

methodology. Six of the blanks contained hydrochloric acid and six remained 

empty. No significant differences were observed between blank and acid 

capsules. Following addition of the acid, the samples were placed into a 60 °C 

oven for ~4 hours until the samples were completely dry. It was important that 

the temperature was not too hot to ensure that no volatile organic compounds 

(VOCs) were lost, which is often an issue with this technique (Bisutti et al., 

2004). 

The above steps were repeated three to five times until all the inorganic carbon 

had been removed. There are often uncertainties associated with the end point 

of this process (Heron et al., 1997; Mitchell et al, 1977; Bisutti et al., 2004; 

Komada et al., 2008). This was mitigated by fizz testing, which assumed all 

inorganic carbon had been removed when effervescence was no longer 

observed (Nieuwenhuize et al., 1994; Sanderman et al., 2011). Komada et al. 

(2008) stress the importance of this further, stating that if not all inorganic 

carbon is removed, the δ13C value for each sample will be compromised due to 

the very different isotopic signatures associated with inorganic carbon.  

4.2.5. Nitrogen  

The samples used to quantify total nitrogen did not require aqueous acidification 

and therefore were weighed into tin capsules. Similar to the process described 

above, the weight of each sample was determined based on colour, with soils 

weighing ~2 to 40 mg and landslide deposits between ~70 and 90 mg. Once the 

sample had been added, the capsules were closed and placed into a desiccator 

prior to analysis.  
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4.2.6. Elemental analyser coupled to isotope ratio mass 

spectrometer 

Stable carbon and nitrogen isotope ratios were obtained using a CosTech 

Elemental Analyzer (EA) and Delta V Isotope Ratio Mass Spectrometer (IRMS) 

in the Stable Isotope Biogeochemistry Laboratory, Durham University. Once 

prepared, the capsules were placed into the carousel, which was a 0-blank 

autosampler and typically used for isotopes because it ensured all the air has 

been removed. EA-IRMS analysis can be divided into four steps; combustion, the 

interface, the mass spectrometer and the evaluation of the raw data (Figure 4.7; 

Carter and Barwick, 2011). The combustion step is a two-reactor system, the 

combustor reactor and the reduction reactor. The combustion reactor for the 

CosTech Elemental Analyzer (EA) had a temporarily enriched oxygen 

atmosphere at ~1010°C, which was within the range specified in Carter and 

Barwick (2011). Once the capsule entered the columns, flash combustion took 

place and heated the sample to between ~1500 and 1700°C (Iso-Analytical, n.d.). 

This converted the samples into gaseous forms of CO2, H2O and NOx. Chromium 

oxide and silvered cobaltous oxide were also in the combustion column to clean 

the gases produced by removing the fluorides, chlorides and sulphur generated 

in the reaction. The sample then entered the reduction column (Figure 4.7), which 

was ~675°C and filled with reduced pure copper. This stage removed the excess 

oxygen and reduced NOx to N2. The reactors were then followed by a water-

separation device (Figure 4.7), which was set at room temperature and contained 

magnesium perchlorate to remove water from the analysis. When measuring 

nitrogen, the sample also passed through a chemical trap containing Carbosorb, 

which absorbed acidic gases, such as CO2 and SO2, to remove carbon from the 

analysis (Figure 4.7; Carter and Barwick, 2011; Iso-Analytical, n.d.). The N2 and 

CO2 then entered the gas chromatography oven, a 2 m stainless steel column 

packed with 5 Angstroms of zeolite. The oven was set to 80°C for nitrogen 

analysis and 60°C for organic carbon.  

The gases then travelled through the interface, a Conflo III, and into the mass 

spectrometer (Figure 4.7). The interface controlled the volume of gas that 

travelled into the spectrometer. During this stage the carbon samples were diluted 

due to the large concentrations of carbon in the samples, with only 1/10th of the 

gas produced required to attain an appropriate signal. The nitrogen samples were 
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not diluted due to the extremely low concentrations found in the samples. In fact, 

smaller standards were also tested in order to validate the extremely low nitrogen 

concentrations found.  

 

 

 

Figure 4.7. A schematic diagram showing the steps taken to determine δ13C and δ15N 
using an EA-IRMS. Carbon and nitrogen were run separately but are shown together 
on this figure. Working gases can also be referred to as reference gases. 

Figure adapted from Carter and Barwick (2011).  

The mass spectrometer used was a Thermoscientific Delta V Advantage (Figure 

4.7). In the mass spectrometer the gases were ionised and accelerated by an 

electron beam (Carter and Barwick, 2011; Iso-Analytical, n.d.). The ions then 

passed through a magnetic field to reach the faraday cup detectors. The 

trajectory of the ions and subsequently which ions entered the cups was 

controlled by the strength of the magnetic field and the acceleration of the ions 

(Carter and Barwick, 2011; Iso-Analytical, n.d.). The ions were identified by their 

mass to charge ratio (m/z ratios). When detecting carbon isotopes, the following 

m/z values were anticipated for carbon; 44, 45 and 46. This is due to the fact the 

compound CO2 can be made up of the following isotopes; 12C, 13C, 18O, 17O and 

16O. For N2, the two stable isotopes of nitrogen resulted in m/z ratios of 29 and 

28. Each cup was connected to an amplifier and the signals from each amplifier 

were then recorded using the IRMS system (Carter and Barwick, 2011). This 

produced a chromatogram with the area of each peak indicative of the relative 

abundance of each isotope (Carter and Barwick, 2011).  

To determine the organic carbon content of each sample, standards of a known 

organic carbon content were run within each batch of samples. The measured 

areas for the standards were then plotted against the known organic carbon 

contents to constrain the organic carbon content of the samples. These values 

were then subtracted by the blank values for organic carbon (Gandhi et al., 2004). 

Repeats were run on ~10% of the samples analysed to determine the variability 

in organic carbon content within the sample and to assess the machine accuracy. 
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It was important to run standards of known organic carbon content to ensure that 

samples could be replicated in other machines and laboratories.  

Isotope measurements must also be consistent with the Vienna PeeDee 

Belemnite (VPDB) standard and therefore it is essential international and internal 

standards with known isotope compositions are run alongside the samples 

(Carter and Barwick, 2011). The average δ13C value obtained using the EA-IRMS 

was plotted against the δ13C value expected for each standard when using VPDB 

conditions (Figure 4.8; Gandhi et al., 2004). The equation derived from this was 

then applied to the δ13C value obtained for each sample. The same process was 

conducted for total nitrogen values and δ15N values.  

 

Appendix D displays the corrected data obtained using the EA-IRMS. 

4.3. Quantifying soil organic carbon stocks 

Estimates of organic carbon content, bulk density and soil depth were used to 

determine SOC stocks for four locations in the western Southern Alps, New 

Zealand (Poeplau et al., 2017). Whilst this method did not estimate or quantify 

the proportion of rock within the soil profile, unlike other more accurate techniques 

(Poeplau et al., 2017), by homogenising the entire sample collected from the 

profile, I have still included the organic carbon content of all materials. I also 

differentiated between the organic and mineral horizons throughout these 

calculations to account for changes in the organic carbon content and bulk 

density with depth (Heiderer, 2009; Clark et al., 2016).   

Of the six locations sampled, the four undisturbed elevation tracks (Section 3.2.1) 

were used to estimate the regional SOC stock for the western Southern Alps. For 
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each subsite/soil profile, the mean, standard deviation and standard error were 

calculated for the total soil depth, the thickness of the organic horizon and the 

thickness of the mineral horizon. To obtain the volume of each soil horizon I first 

assumed that the area sampled represented an area of 1 m2 (Figure 4.3). Profile 

area was then multiplied by the average horizon thickness of the profile (Equation 

4.3). When assuming a profile area of 1 m2, the volume of the soil is dependent 

on horizon thickness. 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚3) = 𝐴𝑟𝑒𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 (𝑚2)  × 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑚) 

Equation 4.3. 

The volume of each horizon was then multiplied by the dry bulk density to obtain 

the mass of each horizon. To account for changes in bulk density with depth 

(Table 2.1), the average dry bulk density was quantified for both the organic and 

mineral horizons. Then, the mass of organic carbon stored in each horizon was 

calculated by multiplying the average horizon organic carbon content by the 

average horizon mass (Equation 4.4).  

𝐻𝑜𝑟𝑖𝑧𝑜𝑛 𝑆𝑂𝐶 𝑆𝑡𝑜𝑐𝑘(𝑡𝐶) =  𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚3)  × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑡 𝑚−3) ×  𝑆𝑂𝐶 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%) 

Equation 4.4. 

Error was propagated throughout these calculations using Equation 4.5, where Y 

and Z are the two variables used to quantify X. Xerr, Yerr and Zerr are the errors 

associated with each variable.  

𝑋𝑒𝑟𝑟  =  𝑋 × √ (
𝑌𝑒𝑟𝑟
𝑌
)
2

+ (
𝑍𝑒𝑟𝑟
𝑍
)
2

 

Equation 4.5.  

The masses of organic carbon in the organic and mineral horizons were then 

combined to estimate the total mass of OCbio at each subsite. Equation 4.6 shows 

the equation used to propagate error when summing two values to obtain another 

value, such as the total soil organic carbon stock (mineral and organic) for each 

subsite, where values B and C are summed to derive value A and Aerr, Berr and 

Cerr are the errors associated with each value. 

𝐴𝑒𝑟𝑟  =  √ (𝐵𝑒𝑟𝑟)2 + (𝐶𝑒𝑟𝑟)2 

Equation 4.6.  
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To estimate the SOC for each of the locations, the SOC stocks collected from 

each transect were averaged for each location. The four location-based averages 

were then used to determine the total OCbio stock for the Southern Alps, New 

Zealand. Error was calculated based on the standard error for the four different 

locations. I assume that this SOC stock is biospheric organic carbon, however it 

is likely petrogenic organic carbon from fractured bedrock in the mineral layers 

has been included. 

4.4. Source of organic carbon quantified using mixing 

models 

Organic carbon stocks can be divided into stocks of OCbio and stocks of OCpetro. 

Mixing models have commonly been used to distinguish between these two 

sources of organic carbon (Hilton et al., 2008a). 

Binary mixing models can be used to estimate the relative contribution of two 

sources (or end members) using distinguished geochemical properties to define 

the two end members (Phillips and Gregg, 2003). An understanding of the 

proportion of each end member can provide insight into the most dominant 

processes occurring in the respective location. The governing equations used to 

solve a binary mixing model are reliant on a mass balance equation (Equation 

4.7). The mass balance equation assumes that the sample is comprised of a 

relative proportion of each of the two end members only, represented as ƒa and 

ƒb. Whilst this is unlikely, it is an important concept that has been carried forward 

through most practice of the technique (Perdue and Koprivnjak, 2007). 

1 =  ƒ𝑎 + ƒ𝑏 

Equation 4.7.   

The following equations (Equations 4.7; 4.8; 4.9; 4.10; 4.11; 4.12) demonstrate 

the steps taken to solve the binary mixing model. Equation 4.8 shows that the 

isotopic composition of the mixture (δx) consists of a relative contribution from the 

isotopic composition of both end members (δa and δb). ƒa is the proportion of the 

sample made up of end member A, ƒb is the proportion of the sample made up 

of end member B. 
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𝛿𝑋 = ƒ𝑏𝛿𝑏 + ƒ𝑎𝛿𝑎 

Equation 4.8.  

The following substitutions were made using a form of Equation 4.6 to solve 

Equation 4.8. 

 

𝛿𝑥 = (1 − ƒ𝑎)𝛿𝑏 + ƒ𝑎𝛿𝑎 

Equation 4.9.  

𝛿𝑥 = 𝛿𝑏 − ƒ𝑎𝛿𝑏 + ƒ𝑎𝛿𝑎 

Equation 4.10.  

𝛿𝑥 − 𝛿𝑏 = ƒ𝑎(𝛿𝑎 − 𝛿𝑏) 

Equation 4.11.  

ƒ𝑎 = 
(𝛿𝑥 − 𝛿𝑏)

(𝛿𝑎 − 𝛿𝑏)
 

Equation 4.12.  

Equation 4.12 determines the proportion of end member A in the sample based 

on the isotopic composition of the sample. The proportion of the second end 

member, for example end member B, can be quantified using the output from 

Equation 4.12 and the original mass balance equation (Equation 4.7). 

4.4.1. Binary mixing models in the literature 

In previous studies, C:N ratios have been used to develop linear mixing models 

to constrain the importance of different sources in a variety of locations (Perdue 

and Koprivnjak, 2007). However, attention has recently been shifting from C:N 

ratios to stable carbon and nitrogen isotope ratios (Phillips and Gregg, 2003; 

Perdue and Koprivnjak, 2007; Moore and Semmens, 2008). This is because plant 

and soil C:N ratios are highly heterogenous within each source due to the variable 

rates of decomposition dependent on numerous different organisms (Hedges and 

Oades, 1997; Moore and Semmens, 2008; Weijers et al., 2009). Therefore, the 

stable isotopic composition of organic matter provides an additional degree of 

freedom.  
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In particular, many studies have used stable carbon isotopes to derive binary 

mixing models (see Thornton and McManus, 1994; Schubert and Calvert, 2001; 

Hilton et al., 2008a; 2010; Weijers et al., 2009; Emberson et al., 2016). Hilton et 

al. (2008a) used the stable carbon isotope ratio of bedrock (δa), petrogenic 

organic carbon, and the stable carbon isotope ratio of vegetation (δb), biospheric 

organic carbon, to determine the relative importance of two end members, OCbio 

and OCpetro, in suspended sediment in the Southern Alps (δx). The study found 

that suspended sediment consisted primarily of OCpetro with some biomass from 

soil and vegetation. The importance of differentiating between OCpetro and OCbio 

has been discussed in Section 2.4.5. 

However, even when using stable isotope ratios, models are limited to studying 

the relative contribution of only two to three sources due to the fact different 

sources can have similar isotope ratios. This can underestimate the complexity 

associated with natural systems (Phillips and Gregg, 2003; Moore and Semmens, 

2008; Weijers et al., 2009). Most studies have mitigated this limitation by 

assuming that the sources with the isotopic signature closest to the mixture 

account for the greatest proportion (Phillips and Gregg, 2003). Subsequently, 

signal overlap and the need for multiple tracers suggest that mixing models are 

best used in combination with other methods and datasets to validate their 

findings (Finlay and Kendall, 2007).  

4.5. Remote sensing methods  

4.5.1. Landslide identification  

Satellite imagery was used to identify the landslides sampled in the field and 

estimate landslide area. The Copernicus Sentinel-2 satellite provided recent 10 

m x 10 m aerial images collected every five to six days. The images were 

downloaded from Copernicus (2018) and displayed in ArcMaps 10.3 using the 

Composite Bands tool under Data Management and the Mosaic to New Raster 

tool. The symbology was as follows; Red – Band 4, Green – Band 3, Blue – Band 

2 and Alpha – Band 1. Images taken on 6th February 2018 (Figure 4.4) had the 

lowest cloud cover and covered all field locations. Despite the six month time lag 

between field sampling and these remote sensing images, the clearer imagery 

allowed for better estimates of landslide area.  
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For temporal comparisons, Landsat imagery from 1990 (Landsat 4) was also 

downloaded. However, the spatial resolution of Landsat was much lower (30 m x 

30 m) and the smaller landslides were not visible. Therefore, I was unable to 

assess the temporal variability for over half of the landslides studied using 

Landsat alone. 

4.5.2. Landslide mapping and area 

Waypoints collected in the field were uploaded into ArcMap to identify the location 

of each landslide and sample site. Each landslide was then mapped as a polygon 

using the Create Features tool. The small size of this dataset allowed for the 

manual mapping of each individual landslide, which was more accurate than 

automated landslide classification (Joyce et al., 2009). Multispectral images were 

also used to map the landslides. These images displayed high surface reflectivity 

and therefore emphasised the contrast between vegetated and bare areas on the 

hillslopes to assist with landslide identification (Hovius et al., 1997; Burton and 

Bathurst, 1998).  

For larger landslides, the scar and runout were both visible and could be mapped 

separately using the collected waypoints, field photographs and geomorphic 

features (Warburton et al., 2008). From this, total landslide area as well as the 

scar and deposit area could be calculated (Figure 4.9).  

 

Figure 4.9. Landslide 1 mapped using Sentinel-2 imagery compared to Landslide 1 in 
the field. From the field photography, it can be assumed that the scar is narrower and 
exposes bare bedrock, and therefore can be identified by A in the figure. B shows the 
landslide deposit for Landslide 1. C identifies Landslide 2, which is located downstream 
of Landslide 1. 
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Where landslides were too small to be identified, a polygon was created based 

on the location of waypoints, nearby landslides, streams and other significant 

features as well as field observations. Due to the size of the smaller landslides 

relative to the spatial resolution of the aerial images, I assumed that the total area 

and deposit area were equal. Small landslides are also thought to account for 

only negligible amounts of the total sediment yield (Clark et al., 2016). Despite a 

higher frequency (Densmore et al., 1998), smaller landslides are often excluded 

from studies using aerial imagery to identify landslides due to constraints on cell 

size (Hovius et al., 1997).  

The relative uncertainty for landslide area was found by multiplying the landslide 

perimeter by half of the cell size. This is because it was decided that landslides 

could be clearly identified from half of a cell (Figure 4.10). However, this approach 

was not applicable for the smallest landslides, area ~25 m2, which were 

significantly smaller than the area of a single cell (100 m2). Once the two 

landslides with an area smaller than cell area were excluded, the relative 

uncertainty was 45%.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. This figure shows the importance of considering cell area as a potential 
source of error when calculating mapped landslide area.  
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4.5.3. Site characteristics  

An 8 m x 8 m DEM was obtained from Land Information New Zealand (2012). 

Using the DEM as the input raster, slope angles within the catchment were 

quantified using the Slope tool. The Extract Multi Values to Points tool was then 

used to obtain the elevation and slope angle for each of the subsites.  

Individual catchments were also defined using the 8 m x 8 m DEM and the Flow 

Direction tool. This tool determined the direction of flow in each cell of the raster. 

The raster output was then input into the Basin tool in Spatial Analyst to produce 

a raster file, which grouped connected cells into drainage basins. Finally, the 

raster file was converted to polygons using the Raster to Polygon tool and clipped 

to the study site (Figure 4.4).  

4.6. Landslide volume calculations 

4.6.1. Estimating landslide deposit volume 

The technique used to constrain landslide deposit volume was based on the 

conical shape of the landslide deposits (Figure 4.9a; Brideau et al., 2009). This 

assumed that landslide deposits represented a proportion of the volume of a 

cone. This is reasonable considering that landslide deposits typically develop a 

conical shape due to the granular flow of material into an accommodation space, 

such as a river valley, which allows the material to spread rapidly with a relatively 

constant angle of repose. This can be supported by field observations and 

photographs (Figure 4.11). In order to quantify the volume of a cone, an estimate 

of the cone radius (r) and height (h) is required (Equation 4.13). 

𝑉 =  𝜋𝑟2
ℎ

3
 

Equation 4.13. 

Using a circle polygon in ArcGIS 10.3 as a guide, a 2D-cone polygon was drawn 

to represent each landslide deposit (Figure 4.11b). The 2D distance from the 

landslide toe to the top of the deposit represented the deposit radius and the 

distance in elevation from the deposit toe to the top of the deposit, measured 

using a DEM, represented the deposit height (Figure 4.11c). To find the 

proportion of the cone which equated to landslide deposit volume, the area of the 
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reference circle polygon was divided by the area of the 2D cone. This value was 

then divided by cone volume to quantify landslide deposit volume. 

Where landslide deposits were too small to be mapped, field measurements and 

photographs were used. The length of the cone was recorded in the field (Figure 

4.11d) and the deposit height was estimated using the waypoints for individual 

sample sites in ArcGIS 10.3, elevation data from the DEM and field observations. 

From this the radius of the deposit was calculated using trigonometry. These 

values, and field observations determining the proportion of the cone that 

resembled the deposit, were then used to estimate deposit volume.  

Figure 4.11. Figures showing the technique used to estimate deposit volume. The low 
resolution of 4.11b is a result of the lack of high-resolution imagery freely available. 
4.11a. Shows the values required to quantify cone volume, r is the radius and h is the 
cone height. 4.11b. An aerial photograph of Landslide 1 with the deposit cone volume 
shown in orange. The radius is also labelled. 4.11c. The height of the landslide deposit 
is shown on the photograph of Landslide 1. 4.11d. The technique used to calculate the 
volume of smaller landslide deposits. Landslide 9 is shown. 

The relative uncertainty for landslide deposit volume was calculated as the 

difference between our volume estimate and the maximum estimate for landslide 

volume when considering errors associated with DEM elevation (z value) and the 
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spatial resolution of the aerial imagery. Therefore, error could only be quantified 

for the larger landslide volumes, which were estimated entirely using remote 

sensing as opposed to field measurements. 

The individual deposit volumes were then multiplied by the deposit average dry 

bulk density to give deposit mass. In this instance the average bulk density of 

landslide deposits was calculated using the seven dry bulk density samples 

collected from landslide deposits, a revegetated landslide deposit and a river 

bedload sample (Table 4.3).  

4.7. Published landslide maps and scenarios 

4.7.1. Landslide inventories for the western Southern Alps 

Previous datasets estimating the area effected by landslides in the western 

Southern Alps over recent decades (Hovius et al., 1997; Emberson et al., 2016) 

have been used to demonstrate the importance of landsliding regionally. Most 

recently, Emberson et al. (2016) mapped the areas of landslides across the 

western Southern Alps over a 74-year period (1940 to 2014). The study found an 

uncertainty of 20% for landslide area, which was based on mapping errors. Once 

landslide scar area had been derived using a size ratio from Larsen et al. (2010), 

the study calculated estimates of landslide scar volume using a published scaling 

relationship (Larsen et al., 2010). They found a large uncertainty on landslide 

volume as a result of the size distribution of the mapped landslides. The study 

found that over the 74-year period, an area of 36 km2 was affected by landsliding 

and 0.13 km3 of sediment was mobilised over a catchment area of 2153 km2.  

4.7.2. Post-earthquake landslide scenarios 

Recent publications have found that there is a ~30% probability of a Mw~8.0 

earthquake occurring along the Alpine Fault in the next 50 years (Berryman and 

Cochran, 2012). Therefore, attention has focused on estimating the area that will 

be impacted by co-seismic landslides during an earthquake (Frith et al., 2018). 

Frith et al. (2018) derived the density of earthquake-triggered landslides across 

the surface area (PLS) as a function of distance from the earthquake epicentre 

using the following equation (Figure 4.12; Equation 4.14). Where PLS (R) is the 

percentage of the surface area eroded by landslides, α is a constant reflecting a 
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seismogenic source term and sensitivity to ground motion (10), χ is a damping 

factor (4 km) and R0 is the focal depth (10 km). 

From Equation 4.14, the PLS was determined for each location depending on its 

distance from the epicentre. Each cell was assigned a PLS value (Figure 4.12). 

This value was multiplied by the cell area and summed to obtain the total area 

eroded by landslides along the Alpine Fault. The study also used the reliable 

assumption that between 6% and 10% of the surface area is likely to be impacted 

by a major earthquake along the Alpine Fault (Meunier et al., 2007; Hilton et al., 

2011a; Hovius et al., 2011b; Robinson et al., 2016; Frith et al., 2018).  

 

𝑃𝐿𝑆 (𝑅) =  
𝛼𝑅0exp (

𝑅0
𝑋 )

𝑅
 exp (−

𝑅

𝑋
) 

Equation taken from Meunier et al. (2007) 

Equation 4.14.  

Figure 4.12. Figure showing the decreasing landslide density, PLS, with increased 
distance from the Alpine Fault. Figure taken from Croissant, T. (personal 
communication, 2018). The colour bar has units %. 
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4.7.3. Monte Carlo simulation for landslide estimates on a 
regional scale 

The published scenarios outlined above were calculated using a Monte Carlo 

Simulation (Robinson et al., 2016; Frith et al., 2018). The Monte Carlo Simulation 

method can be used to address widespread mathematical problems that are too 

complex, time/resource intensive and/or need to explicitly account for parameter 

uncertainty (Ratick and Schwarz, 2009; Göransson et al. 2014). The method can 

therefore account for the regional scale and large array of possible outcomes 

associated with this study. This is achieved by using a stochastic model to 

generate a probability distribution based on the error parameter for each variable, 

as opposed to directly calculating the mathematical problem and obtaining a 

single value (Ratick and Schwarz, 2009; Göransson et al. 2014; Peres and 

Cancelliere, 2016). However, the results of each simulation are largely dependent 

on the values and error parameters input into the simulation and therefore any 

sampling errors are easily carried forward (Ratick and Schwarz, 2009). Despite 

this, further advantages of this method include the low-cost and simple nature of 

the technique (Ratick and Schwarz, 2009).  
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Chapter 5: Results.   

5.1. Soil organic carbon stocks 

This section outlines the results that were used to quantify soil organic carbon 

stocks. Soil organic carbon stocks for each location are then plotted against 

geomorphic characteristics (slope angle and elevation). 

5.1.1. Soil thickness measurements  

The maximum soil depth for subsites across the four locations sampled (Callery 

Gorge, Alex Knob Track, Roberts Point Track, Mount Fox Trail) varied from 0.10 

m (Roberts Point Track) to 1.12 m (Mount Fox Trail), with an average profile depth 

across the four locations of 0.42 ± 0.09 m (standard error, n = 4, Figure 5.1). The 

average organic horizon thickness was 0.10 ± 0.01 m and the average mineral 

horizon thickness was 0.34 ± 0.08 m.   

The lowest soil depths were recorded along the Roberts Point Track, ranging 

from 0.08 m to 0.46 m, with an average of 0.18 ± 0.02 m (n = 20). Six of the 

twenty profiles collected from the Roberts Point Track did not contain any mineral 

horizons (Figure 5.1). The average organic horizon thickness was 0.09 ± 0.01 m 

(n = 20) and the average mineral horizon thickness was 0.12 ± 0.02 m (n = 14) 

for the track. Callery Gorge had the second lowest average soil depth of 0.30 ± 

0.03 m (n = 7), ranging from 0.16 m to 0.43 m. Soil profiles along the track 

generally consisted of one or two organic horizons with an average total thickness 

of 0.07 ± 0.02 m (n = 7) followed by one or two mineral horizons with an average 

thickness of 0.22 ± 0.04 (n = 7) (Figure 5.1). Soil profile depth along the Alex 

Knob Track ranged from 0.30 m to 1.02 m, with an average profile depth of 0.58 

± 0.07 m (n = 9) (Figure 5.1). The average total thicknesses of the organic and 

mineral horizons along the Alex Knob Track were 0.09 ± 0.01 m and 0.51 ± 0.08 

m respectively. The deepest average soil depth was recorded for profiles along 

the Mount Fox Trail with an average profile depth of 0.62 ± 0.07 m (n = 10). Profile 

depth along the trail varied from 0.32 m to 1.12 m. Profiles collected from Sites 

18.1, 18.2 and 18.3 all consisted of two organic horizons and two to three different 

mineral horizons (Figure 5.1). The average thicknesses of the organic and 

mineral horizons along the Mount Fox Trail were 0.14 ± 0.03 (n = 9) and 0.50 ± 

0.07 m (n = 10) respectively.  
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Figure 5.1. A visual representation of the average soil depth for each of the soil profiles recorded along Callery Gorge, the Alex Knob 
Track, Roberts Point Track and Mount Fox Trail. Each profile is divided into separate horizons based on changes in soil colour, texture, 
composition and the presence of organic matter. As defined in Section 5.1.1, organic horizons refer to both O-horizons and A-horizons 
and mineral horizons refer to B-horizons and C-horizons.  Appendix B gives a description of each of the horizons identified. 
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5.1.2. Soil organic carbon concentrations 

Across the four undisturbed locations, the average soil organic carbon contents 

for organic horizons and mineral horizons were 15 ± 2.5% (n = 24) and 2.4 ± 0.3% 

(n = 36) respectively (Figure 5.2). All four locations displayed an overall decrease 

in the organic carbon (OC) content of soils with depth, with a significant 

relationship (p = 0.005, n = 23) observed between soil depth and SOC content 

along the Alex Knob Track (Figure 5.2.). Soils along the Alex Knob Track showed 

a decrease in OC content from 21% to 1.1% over a depth of 0.9 m. The pattern 

observed between OC content and depth along the Alex Knob Track fitted well 

with the regional averages generated in this study (Figure 5.2). Soils in Callery 

Gorge showed a decrease in SOC content from 6.8% to 0.74% over a depth of 

0.3 m (n = 6). The OC contents for soils sampled in Callery Gorge were below 

the regional averages calculated for organic and mineral horizons in this study 

(Figure 5.2). Along the Roberts Point Track, a decrease in SOC content from 29% 

to 0.99% was observed over a depth of 0.18 m (n = 14, Figure 5.2). The highest 

SOC content was found along the Mount Fox Trail, with OC content ranging from 

1.2% to 53.3% (n = 17). Both the maximum and minimum OC contents along the 

trail were recorded in the top 0.11 m of the sampled soil profiles.  

5.1.3. Soil bulk density measurements 

Table 5.1. Sample wet and dry bulk density values. Soil profile samples (SH) are 
distinguished by horizon (OH – organic, MH – mineral). Landslide R. – Revegetated. 

Sample 
Number 

Corresponding 
Soil Sample 

Sample 
Type 

Wet Bulk 
Density (g cm-3) 

Dry Bulk 
Density (g cm-3) 

1 1.1c Landslide 1.7 1.6 

2 1.3a Landslide 1.5 1.2 

3 1.6a Landslide 1.3 1.1 

4 2.2b Landslide 1.7 1.6 

5 2.6b Landslide 1.8 1.7 

6 3.1 Riverbed 1.6 1.5 

7 5.1.1a SH - OH 0.95 0.35 

8 5.1.1b SH - MH 1.3 0.87 

9 5.5.1b SH - OH 1.4 0.95 

10 5.6.1b SH - MH 1.5 1.0 

11 5.6.1c SH - MH 1.1 0.78 

12 13.1 Landslide R. 1.0 0.86 

13 17.1a SH - OH 1.2 0.79 

14 17.3a SH - OH 0.54 0.12 

15 17.8.1b SH - OH 0.51 0.11 

16 18.1.1a SH - OH 0.67 0.13 
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Figure 5.2. This figure displays the relationship between organic carbon (OC) content and depth for soils collected from Callery Gorge 
(orange), Alex Knob Track (green), Roberts Point Track (yellow) and Mount Fox Trail (blue). Averages were calculated using soil sample 
organic carbon values from all four locations and are shown for both organic and mineral horizons. Error bars display the standard error. 
The data plotted in this figure can be found in Appendix D. The significance is shown in italics for each plot, significant relationships are in 
bold.  
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Dry bulk density measurements ranged from 0.11 g cm-3 (organic horizon soil 

sample) to 1.7 g cm-3 (landslide deposit sample) (Table 5.1). The average dry 

bulk density for soil organic horizons was 0.41 ± 0.14 g cm-3 based on six 

samples. Mineral horizons had an average dry bulk density of 0.89 ± 0.056 g  

cm-3 based on three samples. The average dry bulk density for landslide deposits, 

1.36 ± 0.1 g cm-3, was calculated based on five landslide deposit samples, one 

sample from a revegetated landslide deposit and one sample from river bedload 

(Table 5.1). 

5.1.4. Soil organic carbon stocks 

Figure 5.3. Estimates of soil organic carbon stock for the four locations studied as well 
as the overall average for the region, which was derived from the four location 
averages. Error bars display the standard error for the averages shown. The data 
plotted in this figure can be found in Appendix E. 

Using the horizon OC content, horizon bulk density and horizon thickness for 52 

subsites (Equation 4.4.), the average SOC stock across the four locations was 

calculated as 13030 ± 4337 tC km-2 to one standard error (n = 4, the four location-

based averages). According to the four location-based averages, 6166 ± 2282 tC 

km-2 of organic carbon was stored in the organic horizons of the soil profile and 

6384 ± 2105 tC km-2 was stored in the mineral horizons (Figure 5.3).   

Across the four locations, Callery Gorge had the lowest average SOC stock, 4315 

± 1126 tC km-2 (n = 2) (Figure 5.3). The location with the second lowest average 
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SOC stock was the Roberts Point Track (7641 ± 1056 tC km-2, n = 7), with ~80% 

of the total SOC stock for the location stored in organic horizons (5944 ± 1242 tC 

km-2). The Alex Knob Track had an average SOC stock of 13130 ± 1734 tC km-2 

(n = 7), which was consistent with the regional SOC stock estimate in this study. 

9504 ± 1874 tC km-2 of the SOC stored in soils along the Alex Knob Track was 

stored in the mineral horizons. The Mount Fox Trail had the highest SOC stock 

of 27030 ± 7881 tC km-2 (n = 5), which was double the regional average with 

11530 ± 1384 tC km-2 stored in the organic horizons and 13590 ± 7042 tC km-2 

stored in the mineral horizons.  

5.1.5. Links to site characteristics 

No significant relationships (p<0.05) were observed between the average SOC 

stock and the geomorphic characteristics studied (elevation and slope angle) 

across all four locations (Table 5.2). For the three individual locations containing 

more than two sample sites (Alex Knob Track, Roberts Point Track, Mount Fox 

Trail), there was only one significant relationship with a geomorphic variable for 

each location (Table 5.2; Figure 5.4). The SOC stock for soil mineral horizons 

along the Roberts Point Track displayed a significant positive relationship with 

elevation (214 m to 613 m) (Figure 5.4b). There was also a statistically significant 

positive correlation between the SOC stock in mineral horizons and elevation for 

the Mount Fox Trail, although the elevation range sampled was rather narrow 

(168 to 299 m) and the sample points are clustered (Figure 5.4c). The SOC stock 

for mineral horizons collected along the Alex Knob Track displayed a significant 

negative relationship between slope angle (from 16° to 45°) and SOC stock 

(Figure 5.4a). The SOC stock for mineral horizons along the Mount Fox Trail also 

showed a positive, but statistically insignificant, relationship between SOC 

content and slope angle (7° to 32°) (Table 5.2).  

No clear statistically significant relationships were observed between the two 

different geomorphic variables and soil organic carbon stocks, despite the fact 

samples were collected from a range of different slope angles and elevations 

(Section 3.2). Therefore, for this study I chose to assume that the location-wide 

soil organic carbon stock was primarily a function of depth, as opposed to 

elevation and slope angle. As a result, soil organic carbon stock was calculated 

as a function of my soil depths and soil organic carbon contents.  
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Table 5.2. The correlation and statistical significance for each soil organic carbon stock 
and slope and elevation calculated using the Regression function in Microsoft Excel. 
Red is indicative of a statistically significant correlation (p ≤ 0.05). Bold shows a 90% 
significance (p < 0.1). The first table includes all undisturbed sites, including the 
samples collected from Callery Gorge. Only two different sites were sampled along 
Callery Gorge and therefore the trends have not been calculated for this location.   
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Figure 5.4.  The three statistically significant relationships observed between mineral horizon SOC stocks and slope and elevation in 

Table 5.2. 5.4a.  Slope angle is plotted against the mineral horizon SOC stock for the Alex Knob Track. 5.4b. Elevation is plotted against 

the mineral horizon organic carbon stock for the Roberts Point Track. 5.4c. The relationship observed between elevation and the SOC 

stock in mineral horizons along the Mount Fox Trail. 
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5.2. Mass of organic carbon eroded by landslides 

5.2.1. Landslide areas 

The total mapped landslide area ranged from 25 m2 to 100 000 m2 for the ten 

landslides studied (Table 5.3). The anatomy of the five smaller landslides was 

unclear based on aerial images and therefore landslide scar and deposit area 

were assumed equal to the total landslide area (Section 4.5). Calculations to 

derive relative uncertainty for landslide area are outlined in Section 4.5. The 

relative uncertainty associated with area calculations was higher for smaller 

landslides where the image resolution was of greater importance.  

Table 5.3. A table showing the mapped landslide areas for the landslides studied in the 
field. Area uncertainty has been quantified based on the limitations associated with the 
aerial imagery used.  

5.2.2. Mass of biospheric organic carbon eroded by landslides 

Based on our average SOC stock for the region and the mapped landslide scar 

areas, the mass of organic carbon eroded from soils by the ten individual 

landslides was quantified using Equation 5.1. By only considering the mass of 

organic carbon removed from soils on the hillslope by landslides, Equation 5.1 

predominantly quantifies the mass OCbio removed from the hillslope by 

landslides, with only a fraction of OCpetro remaining in the deeper mineral 

horizons. 

𝑂𝐶𝑏𝑖𝑜 𝑅𝑒𝑚𝑜𝑣𝑒𝑑 (𝑡𝐶) = 𝑆𝑂𝐶 𝑆𝑡𝑜𝑐𝑘 (𝑡𝐶 𝑚
−2) × 𝑆𝑐𝑎𝑟 𝐴𝑟𝑒𝑎 (𝑚2) 

Equation 5.1.  

ID 
Total Landslide 

Area (m²) 
Area: Relative 

Uncertainty (%) 
Landslide Deposit 

Area (m²) 
Landslide Scar 

Area (m²) 

1 22000 17 13000 9300 

2 5100 40 1500 3500 

7 1400 65 980 470 

8 410 94 410 410 

9 1700 52 1700 1700 

10 1200 61 1200 1200 

13 16000 18 8900 7300 

14 25 - 25 25 

15 30 - 30 30 

19 100000 9 77000 28000 

Mean   44     
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It was estimated that the ten individual landslides studied mobilised between 0.32 

± 0.1 and 360 ± 100 tonnes of OCbio (tC) each (Table 5.4). This calculation 

assumes that the landslide removed all the material within the landslide scar, that 

the soil mobilised had not been eroded previously and that the pre-event hillslope 

can be represented by our regional SOC stock estimate. Despite having a smaller 

overall area than Landslide 7, Landslides 9 and 10 were thought to have eroded 

more material due to the fact that the landslide scar area could not be identified 

using aerial imagery (Tables 5.3; 5.4).  

 

 

 

 

 

 

 

 

Table 5.4. A table showing the mass of OCbio mobilised by each landslide. Error was 
derived from the uncertainties associated with landslide area and the regional SOC 
stock estimate.  

5.3. Geochemical properties of soils 

To determine the provenance of the organic carbon stored in landslide deposits, 

the geochemical composition of the organic matter mixed during erosion must be 

constrained (Section 4.4). As outlined in the literature review, landslide deposits 

are often a mix of OCpetro from bedrock and OCbio from soils and vegetation. This 

report has characterised the geochemical composition of soils in the western 

Southern Alps to determine the relative importance of OCbio in landslide deposits. 

Here, the total nitrogen (TN) content, C:N ratio and stable isotopic composition 

(δ13C and δ15N) of the soil organic matter is considered. 

The average soil TN content for organic horizons was 0.71 ± 0.09% (n = 24) and 

0.14 ± 0.01% (n = 36) for mineral horizons (Figure 5.5). Soil TN content displayed 

a negative trend with depth for all four locations (Figure 5.5). In particular, soils 

collected from the Alex Knob Track displayed a significant negative correlation 

Landslide ID 
OC

bio
 Mobilised by 

Landslide (tC) 
Uncertainty (tC) 

1 120 50 

2 46 20 

7 6.1 4 

8 5.4 5 

9 22 10 

10 15 10 

13 95 40 

14 0.32 0.1 

15 0.39 0.1 

19 360 100 
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with TN content decreasing from 0.85% to 0.23% over a depth 0.55 m. In Callery 

Gorge, soils also showed a decrease in TN content with depth with values 

decreasing from 0.59% to 0.049%. Similarly, the soils collected along the Roberts 

Point Track displayed a decrease in soil TN content from 1.5% to 0.13% over a 

depth of 0.18 m. The Mount Fox Trail also showed a decrease in soil TN content 

with depth ranging from 1.49% to 0.042%. No significant relationship was 

observed between soil C:N values and depth (Figure 5.6). The range of C:N 

values did vary with depth for soils collected from the Alex Knob Track and Mount 

Fox Trail, with the highest variability in the upper 0.3 m.   

All three sample types (organic horizons, mineral horizons and revegetated 

deposits) displayed a significant positive relationship between soil OC and TN 

content (Figure 5.7). Soil organic horizons had the highest OC and TN contents, 

with 75% of soils sampled having an OC content >5% and 92% of soils sampled 

with a TN content >0.2%. In soil mineral horizons, only 11% of the soils sampled 

had an OC content >5% and 25% had a TN content >0.2%. Revegetated 

landslide deposits had the lowest OC and TN contents, with one sample (6%) 

having an OC content >5% and 13% of the revegetated landslide deposits 

samples having a TN content >0.2%. The line of best fit for mineral and organic 

horizons crossed the y-axis at 0.11%.   

In terms of changes in the stable isotopic composition of soil organic matter with 

depth, there was an overall increase in soil δ13C with depth for all four locations, 

with the relationships for the Alex Knob Track, Roberts Point Track and Mount 

Fox Trail all statistically significant (Figure 5.8). The average δ13C value for the 

soil organic horizons across the four locations was -28.6 ± 0.21‰ (n = 24). 

Deeper mineral soil horizons had a higher average δ13C value of -27.0 ± 0.15‰ 

(n = 36). 

The δ15N value for soil organic matter also increased with soil depth across the 

four locations (Figure 5.9). A significant relationship was observed for soils 

collected from Callery Gorge, Alex Knob Track and Roberts Point Track. Mineral 

soil horizons were more enriched in N15, with an average δ15N value of 3.65 ± 

0.41‰ (n = 36). Organic soil horizons had an average δ15N value of -0.01 ± 

0.32‰ across the four locations (n = 24).  



97 
 

The δ13C values and δ15N values for soil organic matter across the four locations 

displayed a scattered relationship (Figure 5.10). From Figure 5.10 it could be 

inferred that soil mineral horizons typically had higher δ13C and δ15N values in 

comparison to soil organic horizons. 

No correlations were observed between slope and soil TN content, soil δ13C 

values and soil δ15N values (Figure 5.11).  No significant relationships were also 

observed between elevation and the three geochemical properties assessed 

(Figure 5.12). A positive increase in soil δ13C values from -30 to -26‰ was noted 

in the soil organic layer along the Alex Knob Track at elevations > 1000 m. 

However, this trend was not evident for the soil mineral horizon (Figure 5.12).
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Figure 5.5. The relationship between soil total nitrogen content and depth for each of the four undisturbed locations; Callery Gorge 

(orange), Alex Knob Track (green), Roberts Point Track (yellow) and Mount Fox Trail (blue). The average total nitrogen contents for both 

organic and mineral horizons are shown. Error bars display the standard error. The data plotted in this figure can be found in Appendix D. 

The significance is shown in italics for each plot, significant relationships are in bold.   
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Figure 5.6. The relationship between soil C:N values and soil depth for all four locations; Callery Gorge (orange), Alex Knob Track 

(green), Roberts Point Track (yellow) and Mount Fox Trail (blue). The average C:N value for organic horizons and mineral horizons based 

on samples from all four locations are shown. Error bars display the standard error. The data plotted in this figure can be found in 

Appendix D. The significance is shown in italics for each plot, significant relationships are in bold.   
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Figure 5.7. The significant positive relationship observed between organic carbon content and total nitrogen content for soil mineral and 
organic horizons as well as the soils collected from revegetated landslide deposits. The organic carbon contents and total nitrogen 
contents observed for the organic horizons had an r2 = 0.64 and a statistically significant relationship (p < 0.05). The organic carbon 
contents and total nitrogen contents observed for organic horizons had an r2 = 0.73 and a statistically significant positive relationship (p < 
0.05).  
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Figure 5.8. Four graphs displaying the relationship between the stable carbon isotopic composition of soils and soil depth for each of the 
four undisturbed locations; Callery Gorge (orange), Alex Knob Track (green), Roberts Point Track (yellow) and Mount Fox Trail (blue). The 
averages shown are based on δ13C values from all four locations and error bars display the standard error of these averages. The 
statistical significance is shown, with significant correlations (p < 0.05) in bold. The data plotted in this figure can be found in Appendix D. 
The significance is shown in italics for each plot, significant relationships are in bold.   
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Figure 5.9. Four graphs presenting the stable nitrogen isotopic composition of soils along all four tracks with soil depth; Callery Gorge 
(orange), Alex Knob Track (green), Roberts Point Track (yellow) and Mount Fox Trail (blue). The averages shown are for mineral and 
organic horizons and are calculated based on data from all four locations. Error bars show the standard error. The statistical significance 
of each relationship is shown for individual locations, with significant correlations (p < 0.05) in bold. The data plotted in this figure can be 
found in Appendix D. The significance is shown in italics for each plot, significant relationships are in bold.   
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Figure 5.10. A figure showing the relationship between soil stable carbon isotopic composition and soil stable nitrogen isotopic 
composition. The dotted line denotes δ15N = 0.0. The difference in the isotopic composition of mineral horizons (closed circle) and organic 
horizons (open circle) is shown.  The regional averages are also plotted with error bars showing the standard error. 
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Figure 5.11. The 
trends observed 
between the slope 
and soil 
geochemical 
characteristics 
(δ13C, TN content, 
δ15N) of soils in the 
four undisturbed 
locations. Open 
circles are indicative 
of organic horizons 
and closed circles 
are indicative of 
mineral horizons. 
Note the changing y-
axis values for 
mineral and organic 
horizons.  
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Figure 5.12. The 

trends observed 

between elevation 

and soil 

geochemical 

characteristics 

(δ13C, TN content, 

δ15N) in the four 

undisturbed 

locations. Open 

circles are indicative 

of organic horizons 

and closed circles 

are indicative of 

mineral horizons. 

Note the changing y-

axis values for 

mineral and organic 

horizons.
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5.4. Geochemical properties of landslide deposits 

No clear, significant relationships were found between landslide deposit depth 

and the deposit geochemical properties analysed (OC, TN, C:N, δ15N and δ13C) 

(Figure 5.13). Figure 5.13a shows the lack of relationship between landslide 

deposit depth and the deposit OC content, with values fluctuating between 0.1% 

and 0.5% OC at all depths. The average deposit OC content was 1.1 ± 0.4 % (n 

= 10) based on ten different landslide deposits.  Landslide deposit TN content did 

not correlate with depth (Figure 5.13b). The average TN content for the ten 

deposits was 0.05 ± 0.02 % (n = 10). The C:N values for landslide deposit 

samples also did not correlate with depth, with values ranging from 3.2 to 28.3 

(Figure 5.14).  

A significant positive relationship was observed between average OC content 

and TN content for the ten landslide deposits studied (Figure 5.15). Landslide 

deposits had average OC contents and TN contents ranging from 0.17 ± 0.02 % 

(n = 9, Landslide 2) to 3.4 ± 1.7% (n = 8, Landslide 8) and 0.0072 ± 0.0006% (n 

= 4, Landslide 2) to 0.16 ± 0.08% (n = 8, Landslide 8) respectively. The standard 

errors associated with these averages were found to increase with increasing 

deposit OC and TN content (Figure 5.15), indicating that the deposit OC and TN 

contents were more variable in these deposits. When compared to the 

relationship between OC and TN contents in soils, all landslide deposits had a 

below average OC content and TN content. The line of best fit for landslide 

deposits crossed the y axis at 0.0024% (Figure 5.15).   

No relationships were observed between the δ13C value of landslide deposits and 

sample depth, with δ13C values ranging from -29 to -19‰ across all depths. No 

significant correlation was observed between depth and the δ15N composition of 

landslide deposits, with δ15N ranging from -2.3 and 5.2‰ (Figure 5.13d). A 

significant positive relationship was observed between deposit δ13C and δ15N 

values (p=0.05). The average δ13C value for landslide deposits ranged from -20.9 

± 0.11‰ (n = 5; Landslide 13) to -26.7 ± 1.1‰ (n = 4, Landslide 10), with all 

deposits more enriched in 13C than the average soil organic horizon and soil 

mineral horizon δ13C value (Figure 5.16). The landslide deposits all had an 

average δ15N value in between the average δ15N value for organic and mineral 

horizons. Landslides 2, 7 and 13 all had δ15N and δ13C values within the range 

observed for alpine schist bedrock (Pitcairn et al., 2005; Hilton et al., 2008a).
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Figure 5.13. The geochemical properties of samples collected from landslide deposits against deposit depth. 5.13a. The relationship 

between the organic carbon content of landslide deposit samples and depth. 5.13b. The total nitrogen content of landslide deposit 

samples against depth. 5.13c. The stable carbon isotopic composition of landslide deposit samples against depth. 5.13d. The stable 

nitrogen composition of landslide deposits samples against depth. Samples are also distinguished by river catchment; Hare Mare Creek 

(yellow), Stony Creek (orange), Gaunt Creek (blue), Fox Glacier (green). The data plotted in this figure can be found in Appendix D.
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Figure 5.14. The relationship observed between landslide deposit C:N values and 

deposit depth. Samples are also distinguished by river catchment; Hare Mare Creek 

(yellow), Stony Creek (orange), Gaunt Creek (blue), Fox Glacier (green). The data 

plotted in this figure can be found in Appendix D. 

Figure 5.15. The relationship observed for the average organic carbon content and 

average total nitrogen content for each landslide deposit. The error bars shown are the 

standard error for the averages given. The line of best fit shown is from Figure 5.7. and 

is based on the relationship observed between SOC content and soil TN content for the 

four undisturbed elevation tracks in this study.
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Figure 5.16. The average stable carbon and nitrogen isotopic compositions for each 
landslide deposit. The average stable carbon and nitrogen isotopic composition for soil 
mineral and organic horizons are also shown for reference. The blue shaded box 
provides an indication of the isotopic composition of alpine schist bedrock in the 
Southern Alps using values from Hilton et al. (2008a) and Pitcairn et al. (2015). The 
error bars for landslide deposits and the average soil organic horizon and mineral 
horizon show standard error. 

It was also found that landslides with a smaller area (10 to 1000 m2) had deposits 

with a higher average OC content (between 1.9 ± 1.4% and 3.3 ± 1.7%; Figure 

5.17). Landslide 14 was an exception to this trend with a very small area (25 m2) 

and low average OC content (0.23 ± 0.04 %). A similar relationship was observed 

between landslide area and TN content (Figure 5.17). 

Landslide deposits located in Hare Mare Creek had the lowest OC content and a 

more enriched δ13C composition in comparison to the deposits in the other three 

locations (δ13C = -26.8 to -20.7‰) (Figure 5.18). Landslide deposits sampled in 

Stony Creek had the largest range of δ13C values (range = 10.3), with some 

samples having a very similar δ13C composition to soil profiles (δ13C = -27.0 ± 

0.15‰) and other samples having a very similar composition to bedrock (δ13C = 

-21.1 ± 1.1‰). Landslide deposits in Gaunt Creek displayed a similar pattern to 

those in Stony Creek, showing high variability (range = 8.9). The landslide deposit 
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at Fox Glacier had the smallest range of δ13C values (range = 4.7) and a lower 

1/OC content relative to the δ13C composition of samples when compared to the 

deposits located in Hare Mare Creek and Gaunt Creek (Figure 5.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. The relationship between landslide area and the average organic carbon 
content and total nitrogen content for each landslide deposit. Error bars show the 
relative uncertainty associated with landslide area and the standard error associated 
with the average deposit organic carbon content and total nitrogen content. 
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Figure 5.18. The relationship between δ13C and one over the organic carbon content 
for landslide deposits. Samples are distinguished by location; Hare Mare Creek 
(yellow), Stony Creek (orange), Gaunt Creek (blue), Fox Glacier (green). 

When placed in the context of the stable carbon isotope composition of soils and 

bedrock, both of which are known to be eroded by landsliding in the western 

Southern Alps (Hilton et al., 2008a; 2011a), the isotopic composition of landslide 

deposits generally fell within those measured for the two environments (Figures 

5.18; 5.19). This is consistent with a binary mixing model approach (Section 4.4). 

From this, the proportion of OCpetro and OCbio in landslide deposits may be 

determined using a stable carbon isotopic ratio binary mixing model, with the 

isotopic composition of bedrock (δ13C = -21.1 ± 1.1‰) as the OCpetro end member 

and the isotopic composition of soil mineral horizons (δ13C = -27.0 ± 0.15‰) as 

the OCbio end member. There was some signal overlap between the δ13C values 

found for samples from landslide deposits and the two environments, with 14 

landslide deposit samples more enriched in 13C than the regional average δ13C 

value for bedrock. 



112 
 

 
Figure 5.19. The different 

δ13C values for river 

bedload, landslide 

deposits, soil organic 

horizons, soil mineral 

horizons and bedrock 

based on the samples 

collected in the study and 

data from Hilton et al., 

(2008a). The δ13C values 

are plotted against 1/OC of 

the samples. This provides 

an indication of the sample 

organic carbon content. All 

error bars show the 

standard error for the 

average values plotted. 

Error bars have been 

plotted for the soil organic 

and mineral horizons; 

however the errors were 

smaller than the markers 

used. The values for 

bedrock are taken from 

Hilton et al. (2008a).
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5.5. Mass of biospheric organic carbon stored in 

landslide deposits 

5.5.1. Landslide deposit volume 

In order to accurately 

estimate the mass of 

landslide deposits as well 

as the storage potential of 

landslide deposits, the 

volume of each landslide 

deposit was quantified. 

The volume of the ten 

landslide deposits ranged 

from 9 m3 to 5 800 000 ± 

40 600 m3 and displayed 

the anticipated significant 

positive relationship with 

landslide scar area (Figure 

5.20; Table 5.5). The 

relationship had a power law equation of 𝑦 = 0.017𝑥1.77 (Figure 5.20; Table 5.5).   

Table 5.5. A table showing landslide deposit volume estimates alongside the total area 
estimates and the mass of sediment stored in the deposit. Deposit volume error was 
not calculated for the five smallest landslides, as discussed in Section 4.6.  

ID 
Total 

Landslide 
Area (m²) 

Area: Relative 
Uncertainty 

(%) 

Landslide 
Deposit 

Volume (m³) 

Volume: 
Relative 

Uncertainty (%) 

Deposit 
Mass 

(tonnes) 
± 

1 22000 17 410000 15 560000 93000 

2 5100 40 19000 69 26000 18000 

7 1400 65 4900 140 6600 9300 

8 410 94 600 - 820 - 

9 1700 52 530 - 720 - 

10 1200 61 150 - 200 - 

13 16000 18 300000 23 410000 98000 

14 25 - 16 - 21 - 

15 30 - 9 - 13 - 

19 100000 9 580000 7 7800000 810000 

Mean   44   51     

Figure 5.20. The significant (p < 0.05) power-law 
relationship observed between landslide scar area 
and deposit volume. These values were derived 
independently. Error bars show the relative 
uncertainty for both landslide area and volume 
estimates. The techniques used to calculate these 
values are discussed in Sections 4.5 and 4.6. 
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For landslide volume, the greatest uncertainty was found for the smaller of the 

five volumes quantified. This uncertainty was calculated based on the maximum 

uncertainty of the mapping technique used (Section 4.6). 

5.5.2. Estimating landslide deposit mass 

The volume estimate for each landslide deposit was multiplied by the average dry 

bulk density for landslide deposits in the western Southern Alps (1.36 ± 0.10 g 

cm-3, Table 5.1) to quantify the mass of sediment stored in each landslide deposit. 

The mass of sediment stored in each deposit ranged from 13 tonnes to 7 800 000 

± 810 000 tonnes (Table 5.5). The errors shown in Table 5.5 were quantified 

using the standard error for average landslide deposit dry bulk density and the 

relative uncertainty associated with deposit volume. The associated errors for the 

five smallest landslides could not be quantified (Section 4.6). 

5.5.3. Implementing a binary mixing model  

Table 5.6. The relative proportion of OCbio (ƒb) and OCpetro (ƒp) in landslide deposits. 
Standard error was calculated for the average proportion of OCbio and OCpetro within 
each deposit. Values are given to the nearest 0.05. 

Following the quantification of landslide volume and mass, it was important to 

determine the relative proportion of OCbio and OCpetro stored within each landslide 

deposit using a mixing model analysis (Table 5.6). Using the stable carbon 

isotope composition of the two end members identified in Section 5.4 (Figure 

5.19), the stable carbon isotope composition of the landslide deposits and the 

equations outlined in Section 4.4 (Equations 4.7 to 4.12), the proportion of OCbio 

and OCpetro in each deposit was calculated. Based on the uncertainties of the 

values used in the model, results are reported to the nearest 0.05 or 5%. The 

Landslide ID ƒp Standard Error ƒb Standard Error 

1 0.55 0.10 0.45 0.10 

2 0.85 0.05 0.15 0.05 

7 0.90 0.15 0.10 0.15 

8 0.20 0.15 0.80 0.15 

9 0.45 0.15 0.55 0.15 

10 0.05 0.20 0.95 0.20 

13 1.00 0.02 0.00 0.02 

14 0.90 0.25 0.10 0.25 

15 0.25 0.25 0.75 0.25 

19 0.85 0.10 0.15 0.10 

Mean 0.60   0.40   
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output from this binary mixing model showed that the average proportion of the 

OCbio in each deposit ranged from 0 ± 2% (n = 5, Landslide 13) to 95 ± 20% (n = 

4, Landslide 10) (Table 5.6), with Landslide deposits 8, 10 and 15 made up of 

≥75% OCbio. In contrast, Landslide deposits 2, 7, 14 and 19 all contained ≤15% 

OCbio and Landslide deposit 13 contained no OCbio at all. Landslides 2 and 19 as 

well as Landslides 14 and 7 had very similar compositions despite being located 

in different creeks. In terms of location, landslide deposits in Hare Mare Creek 

were generally dominated by OCpetro, whereas in Stony Creek three of the four 

landslide deposits were primarily made up of OCbio. Landslide deposits located in 

Gaunt Creek displayed the largest variability, with deposits containing between 0 

± 2% and 75 ± 25% OCbio (Table 5.6).  

The proportion of OCbio stored in each deposit displayed a significant positive 

relationship (p < 0.05, r2 = 0.76) with the average OC content for each deposit 

(Figure 5.21). The relationship between the two variables was defined by the 

equation; 𝑦 = 24.8𝑥 + 12.3. Landslide 1 was an exception to this trend, which 

despite containing an average OC content similar to Landslides 2, 7, 13, 14 and 

19, was thought to be made up of 45 ±10% OCbio (Figure 5.21).  

 

 

 

 

 

Figure 5.21. The average 
organic carbon content for 
each landslide deposit 
plotted against the relative 
proportion of OCbio stored 
in the deposit. Error bars 
show the standard error.  

5.5.4. Estimating the mass of biospheric organic carbon in each 

landslide deposit 

Using landslide deposit volume, deposit dry bulk density and the outputs of the 

mixing analysis, the mass of OCbio stored in each landslide deposit was calculated 

(Equation 5.2).  
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𝑂𝐶𝑏𝑖𝑜𝑖𝑛 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 (𝑡𝐶) =  (𝐷𝑒𝑝𝑜𝑠𝑖𝑡 𝑀𝑎𝑠𝑠 (𝑡) ×
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 𝑂𝐶 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%)

100
) × ϝ𝑏 

Equation 5.2.  

The mass of OCbio stored in each deposit ranged from 0 to 3900 ± 3000 tC, with 

errors of a similar magnitude to the values obtained (Table 5.7). The observed 

relationships between landslide scar area and the total mass and mass of organic 

carbon stored in the deposit were relatively consistent with the relationship 

between landslide scar area and the mass of OCbio stored, except for Landslide 

13 which contained no OCbio (Table 5.7; Figure 5.22). 

ID 
Deposit Mass 

(tonnes) ± 
OC Stored in 
Deposit (tC) ± 

OCbio Stored in 
Deposit (tC) ± 

1 560000 93000 1000 200 470 100 

2 26000 18000 44 30 6.60 5 

7 6600 9300 15 20 1.5 3 

8* 820 - 28 14 22 10 

9* 720 - 14 10 7.7 6 

10* 200 - 4 2 3.9 2 

13 410000 98000 720 200 0 - 

14* 21 - 0.049 0.009 0.0049 0.01 

15* 13 - 0.32 0.2 0.24 0.2 

19 7800000 810000 26000 4000 3900 3000 

* Landslides do not have an error associated with landslide mass due to the fact a 
relative uncertainty on landslide volume could not be derived. 

Table 5.7. A table showing the mass of each landslide deposit as well as the mass of 
organic carbon (biospheric and petrogenic) and mass of OCbio stored in each deposit. 
The errors stated were derived from the uncertainties associated with bulk density, 
volume, where possible, and the standard error for the average deposit organic carbon 
content and the outputs from the mixing analysis.  

5.5.5. Links with site and landslide characteristics 

Landslide scar area also displayed a significant positive relationship with the total 

amount of organic carbon (biospheric and petrogenic) stored in landslide deposits 

(p < 0.05, r2 = 0.88, n = 10) and the mass of OCbio retained in each deposit (p < 

0.05, r2 = 0.90, n = 9) (Figure 5.22). However, the relationship was skewed by the 

large size of Landslide 19. Landslides were also grouped in some cases by 

catchment, particularly when considering the mass of OCbio only as opposed to 

total OC stored (Figure 5.22).  Landslide 13 did not contain any OCbio and thus is 

not shown on Figure 5.22b. No significant relationships were found between the 

mass of OCbio stored in deposits and elevation or slope (Figure 5.23). 
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Figure 5.22. The relationship between landslide scar area and the mass of organic carbon in the landslide deposit, in particular OCbio. 

Both variables were calculated independently of one another. 5.22a. The relationship between the mass of organic carbon (petrogenic 

and biospheric) stored in each landslide deposit and the landslide scar area. 5.22b. The mass of OCbio stored in each landslide deposit 

plotted against landslide scar area. The uncertainties plotted are shown in Tables 5.3 and 5.7. 
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Figure 5.23. The relationship between the mass of OCbio stored in landslide deposits and the slope angle and elevation. Error bars show 
the uncertainties for the mass of OCbio stored in each landslide deposit as well as the error associated with the DEM used.  
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Chapter 6: Discussion. 

6.1. Objective 1 

Objective 1 determines the mass of OCbio eroded by landslides from hillslopes in 

the western Southern Alps, New Zealand using regional SOC stock estimates 

and the mapped areas of ten individual landslides.  

6.1.1. Soil organic carbon stocks 

SOC stocks in the Southern Alps based on depth were estimated to be 13030 ± 

4337 tC km-2 (Figure 5.3). This value is consistent with current estimates within 

the literature ranging from 5000 to 18000 ± 9000 tC km-2 (Scott et al., 2002; 

Coomes et al., 2003; Hilton et al., 2011a). These prior estimates were derived 

using a range of techniques. For example, Coomes et al. (2003) estimated a 

montane SOC stock of 6500 – 13000 tC km-2 based on 12 different soil-climate 

types defined using soil type, climate and land cover. Whereas the SOC stock 

estimate from Hilton et al. (2011a) was derived using a generalised model of 

organic carbon stocks for the region based on 22 forest plots measuring above 

ground-biomass within nearby catchments. In contrast, estimates from Scott et 

al. (2002) used a national soil carbon database consisting of 389 profiles to derive 

a depth-weighted mean SOC stock and found an average SOC stock between 

5000 tC km-2 and 15000 tC km-2 for the Southern Alps. Our estimate builds on all 

three approaches by using 25 soil profiles collected from four different 

catchments and a range of slopes and elevations to derive a more accurate, local 

mean SOC content for the western Southern Alps (Table 2.1).  

The importance of sampling from different catchments is demonstrated by the 

variation in average SOC stocks for our four locations (Figure 5.3). The average 

SOC stock for the Mount Fox Trail is particularly high in comparison to the other 

three locations. This may be attributed to the lower rates of disturbance along the 

track, which encouraged the greater preservation of soil organic matter and SOC 

(Scott et al., 2002). Alternatively, the large organic carbon stock may be attributed 

to the thicker organic layers (Figure 5.3) and dense forest cover. Coomes et al. 

(2002) found that compared to mineral horizons, organic horizons in forests 

accounted for a larger proportion of total soil organic carbon stocks. Whereas in 

shrublands the mineral horizon SOC stocks were most important. This supports 
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the catchment wide variability observed in Figure 5.3, with the samples collected 

from organic horizons along completely forested tracks, such as the Roberts 

Point Track and Mount Fox Trail, estimated to contain more organic carbon than 

the mineral horizons. Whereas, the Alex Knob Track, which covered an array of 

different vegetation types from forests to shrublands, contained more organic 

carbon in mineral horizons as opposed to organic horizons. Finally, the lower 

average SOC stock estimated for the Callery Gorge track may be explained by 

the smaller sampling range or the relatively shallow soil profile depths in 

comparison to other locations. The importance of depth is also reflected by the 

below average SOC stock estimated for the Roberts Point Track, which was 

distinctive due to its shallower soil profiles (Figure 5.3). 

Soils in all four locations displayed an exponential decrease in SOC content with 

depth (Figure 5.2). This observation supports the widely-accepted relationship 

between soil depth and OC content, with organic carbon content known to 

decrease with depth in response to lower plant availability and less 

decomposition as well as a shift from predominantly biotic controls to abiotic 

controls (Table 2.1; Jobbagy and Jackson, 2000; Heiderer, 2009; Wang et al., 

2010). The percent soil OC recorded for samples across these four locations are 

also consistent with previous studies in the Southern Alps (Basher, 1986; Hilton 

et al., 2008a), with 55% of samples in the top 0.15 m containing 5 – 27% OC, and 

12% containing >27% OC (Section 3.1.4). The largest range in percent OC was 

found for soils collected along the Mount Fox Trail, where a decrease of 52% OC 

was observed in the top 0.11 m (Figure 5.2). The percent OC found in soils along 

the trail are also thought to be above-average for the region. This may be 

attributed partly to the thick organic horizons above an elevation of 200 m (Figure 

7.2). The large variability in organic horizon thickness along the track may also 

explain the large range observed for the percent OC of soils in the top 0.11 m, 

whereby sites with deeper organic horizons had higher percent OC (Mulder et al., 

2015).  

In summary, depth and horizon thickness are the key factors controlling the 

organic carbon content of soils in all four locations in the western Southern Alps, 

New Zealand. Therefore, soil depth, SOC content and horizon thickness were all 

considered when modelling SOC stocks for the region.  
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6.1.2. Soil organic carbon stocks and geomorphic controls 

Few statistically significant relationships were observed between SOC stock 

estimates and slope angle and elevation (Tables 2.1; 5.2). The only statistically 

significant relationship found between SOC stocks and slope was a negative 

correlation between the mineral horizon SOC stock estimates along the Alex 

Knob Track (Figure 5.4a). The decrease in SOC stock with slope agrees with 

previous literature, which found that decreasing vegetation and soil cover on 

steep slopes limits soil organic matter and SOC formation (Section 2.2; 

Perruchoud et al., 2000; Simegn and Sorromessa, 2015). It is thought that this 

trend was only observed for soils along the Alex Knob Track because the track 

covered the largest range of slope angles and was the only site to sample on 

slopes >32°, which is the average threshold angle for slopes in the Southern Alps 

(Clark and Burbank, 2010). Larsen and Montgommery (2012) also stated that 

erosion rates, particularly those dominated by mass wasting, increase on slopes 

>30°, and thus result in a lower soil thickness and organic carbon stock as shown 

in Figure 5.4a.  

The Mount Fox Trail and Roberts Point Track both displayed significant positive 

correlations with mineral horizon SOC stocks and elevation (Figure 5.4b; 5.4c). 

An increasing in SOC stock with elevation is expected based on the lower 

temperatures and rates of decomposition at higher elevations, which 

subsequently leads to a decrease in the rate of soil organic matter accumulation 

(Table 2.1; Griffiths et al., 2009; Clark et al., 2016; Bangaroo et al., 2017). The 

significant relationships observed between elevation and mineral horizon SOC 

stocks along the Roberts Point Track and Mount Fox Trail may be explained by 

the fact vegetation cover did not vary greatly between the subsites in these 

locations. Whereas tracks consisting of an array of different vegetation types, 

which are likely to decompose at variable rates, may not display this trend as 

clearly. For example samples collected from the Alex Knob Track (Section 3.2.1; 

Coomes et al., 2002). However, the fact that the elevation ranges sampled for 

the Roberts Point Track and Mount Fox Trail were relatively small, and clustered 

around lower elevations, is likely to have also impacted the correlations observed. 

The majority of sites displayed a more complex relationship between soil profile 

SOC stock estimates and slope and elevation (Table 5.2). This was shown by the 
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positive relationship within a 90% significance between mineral horizon SOC 

stocks and slope angle for subsites along the Mount Fox Trail. This trend 

contrasts to the positive relationship with slope found for soil profiles along the 

Alex Knob Track and those found in previous studies (Table 2.1).  In addition, the 

only significant relationships observed between soil profile organic carbon stocks 

and geomorphic variables occur in the mineral horizons (Table 5.2). This may be 

explained by the increased stability of organic carbon stocks in the mineral 

horizon as a result of the absorption of OC to soil particles (Garten et al., 1999) 

as well as a shift from predominantly biotic controlling factors to abiotic controlling 

factors with depth (Mulder et al., 2015).  

Therefore, whilst recent literature has discussed the importance of including 

geomorphic variables when estimating regional SOC stocks, the data in this study 

did not find any consistently significant relationships across the four locations. 

Consequently, only soil depth, horizon thickness and SOC content were 

considered when estimating the regional average SOC stock.  

6.1.3. Mass of biospheric organic carbon eroded by individual 

landslides 

To estimate the amount of organic carbon eroded by landslides it was important 

to map the landslide scar area for each landslide studied. Based on field 

observations, I found that generally the largest landslide areas could be attributed 

to bedrock landslides (Landslides 1, 2, 7, 13, 14 and 19). Bedrock landslides 

remove a combination of bedrock, soil and vegetation and therefore result in 

larger scars in the hillslope and deposit more material (Figure 6.1b). Bedrock 

landslides in the Southern Alps are particularly large due to the active tectonic 

nature of the location that leads to highly fractured bedrock, which is more 

susceptible to failure (Clark and Burbank, 2010). Based on field observations, two 

of the smaller landslides sampled (Landslides 8 and 15) were thought to be 

shallow landslides, which typically only remove soils. Landslide 14 was therefore 

an anomaly to this trend with the deposit consisting of predominantly bedrock 

despite being very small in size.  

The estimated mass of OCbio removed by each landslide was calculated as a 

function of the average SOC stocks for the region and the individual landslide 

scar area. On average, each landslide removed ~67 ± 26 tC, with estimates for 
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the mass of OCbio removed by each individual landslide ranging from 0.32 ± 0.1 

tC to 360 ± 100 tC (Table 5.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. A schematic diagram highlighting the differences between shallow 
landslides and bedrock landslides. The annotations are as follows; A – Bedrock, B – 
Soil Mineral Horizons, C – Soil Organic Horizons, D – Landslide Scar, E – Landslide 
Deposit. The presence of green in the landslide deposit is indicative of OCbio. 6.1a. 
Shallow landslide. 6.1b. Bedrock landslide. 

Geomorphic variables that control hillslope erosion and the production of soil 

organic matter are thought to also control the amount of organic carbon eroded 

by landslides (Section 2.4.; Hilton et al., 2011a; Ramos Scharrón et al., 2012; 

Walker and Shiels, 2013b). However, when the mass of OCbio mobilised by each 

landslide is plotted against slope angle and elevation no correlations are 

observed (Figure 6.2). Landslides do, however, appear to be grouped by location, 

particularly for Stony Creek. This is thought to be due to the landslides in Stony 

Creek all having a similar total area, despite the range of different slope angles 

and elevations across the catchment (Figure 5.5). It should be noted that this 

trend is expected due to the fact our local SOC stock estimate remained constant 

with elevation change. Therefore, the trends established in Figure 6.2 are 

predominantly dependent on landslide area. To better understand the 

relationship between the mass of OCbio removed by individual landslides and 
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geomorphic variables, a more in depth estimate of the mass of OCbio mobilised 

is required as well as a greater range of slope angles.  

Figure 6.2. The relationship between the mass of OCbio mobilised from each landslide 
scar and the maximum elevation and slope angle for each landslide. Error bars for the 
mass of OCbio mobilised are calculated as a function of the relative uncertainty for 
landslide area and the standard error for the average regional SOC stock. The error 
bars for elevation show the uncertainty in DEM z values. 

Consequently, I note that due to our methodology, landslide size and SOC 

content were the most important factors when estimating the mass of OCbio 

eroded by the ten landslides studied.  I will later use the value for landslide deposit 

organic carbon content in order to estimate the amount of OCbio stored within 

each deposit and infer the proportion of this eroded OCbio that has been retained 

(Section 6.3).  

6.2. Objective 2 

Objective 2 characterises the geochemical composition of soil organic matter in 

the western Southern Alps in order to better constrain the provenance of the 

organic carbon stored in landslide deposits.  

6.2.1. Geochemical properties of soils  

In summary, the organic carbon (OC) contents, total nitrogen (TN) contents, 

stable carbon isotopic compositions and stable nitrogen isotopic compositions of 

the soil samples all displayed the anticipated relationships with depth (Table 2.1). 

TN content was found to decrease with increasing soil depth for all four locations 

(Figure 5.5), similarly to OC content. This relationship is controlled by the lower 

rate of decomposition with depth, whereby less soil organic matter is produced, 

and the amount of available organic nitrogen decreases. In addition, the 
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processes of denitrification and nitrate leaching are also thought to decrease the 

concentration of nitrogen with depth (Post et al., 1985; Melilo et al., 1989).  

Further evidence for the process of denitrification in these soil profiles is 

demonstrated by the significant increase in δ15N values with depth across the 

four locations (Figure 5.9). This relationship can be explained by processes of 

denitrification, nitrification and ammonification as well as the differential 

preservation of 15N rich compounds (Table 2.3; Mariotti et al., 1980; Melilo et al., 

1989; Höberg, 1997; Hobbie and Ouimette, 2009). These processes are 

concentrated primarily in surface soils and therefore 15N-enrichment has typically 

been constrained to topsoils. A study by Mariotti et al. (1980) showed an increase 

in δ15N composition of 8.7‰ for topsoils in France. This is also evident for 

samples collected from Callery Gorge, the Alex Knob Track and Roberts Point 

Track, whereby there was an increase in the δ15N values of soils in the top 0.3 

m. The absence of a significant correlation between soil δ15N composition and 

soil depth along the Mount Fox Trail may be in response to the process of 

denitrification in deeper soils (Figure 5.7). For example, Rige et al. (1971) found 

in a study of Belgian soils that the process of denitrification also led to a decrease 

in the soil δ15N composition over a profile depth of 0.4 m (Hobbie and Ouimette, 

2009).   

The stable carbon isotope ratios of soils also showed a positive relationship with 

soil depth at all four locations, with three locations showing a significant 

relationship (Figure 5.8). It is likely that the insignificant relationship observed for 

soils sampled from Callery Gorge can be attributed to the small sample size 

because a positive relationship with depth was still found. This relationship is 

supported by published literature and can be explained by microbial activity or 

differential preservation (Table 2.2; Dzurec et al., 1985; Melilo et al., 1989). It is 

most likely that the trend occurred due to microbial degradation as opposed to 

differential preservation, with Dzurec et al. (1985) stating that the process of 

differential preservation is rare in well-drained soils. Microbial decomposition is 

more likely due to the fact that lipids, which have the greatest influence of δ13C 

values, generally decompose over annual timescales. Previous studies in Utah 

and Massachusetts (Dzurec et al., 1985; Melilo et al., 1989) have generally found 

an increase of ~1-3‰ in soil δ13C values within the top 0.45 m of the soil profile. 

A similar increase was observed for soils along the Roberts Point Track and the 
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Mount Fox Trail up to a depth of 0.45 m. However, soils along Callery Gorge and 

the Alex Knob Track displayed much larger increases in δ13C composition of up 

to 5‰ over a depth of 0.30 and 0.45 m respectively. This may be attributed to the 

profile depth, higher rates of decomposition or dilution from bedrock, with Alpine 

Schist in the area known to have an average stable carbon isotope composition 

of -21.1 ± 1.1‰ (Hilton et al., 2008a). 

In contrast no relationship was found between soil C:N ratios and depth across 

all four locations (Figure 5.6). This differs to previous studies which have found a 

negative relationship between soil C:N ratios and depth, with C:N ratios 

increasing deeper down in the profile as nitrogen is preserved longer than carbon 

(Melilo et al., 1989; Garten et al., 2007). Despite this, the average C:N ratio 

observed for topsoils (20.2) is in the range expected for topsoils in the Southern 

Alps, New Zealand. However, the average C:N ratio for the soil mineral horizon 

(17.8) exceeds the anticipated values (Section 2.2.1.). Despite this, Figure 5.6 

shows that for soils in the western Southern Alps, both OC and TN decomposed 

at similar rates with increasing depth.  

The expected strong relationship between OC and TN contents in soils in the 

western Southern Alps is further supported by Figure 5.7, which can partly be 

explained by the importance of nitrogen availability in controlling soil OC content 

(Table 2.1; McGuire et al., 1992; LeBauer and Treseder, 2008; Goñi et al., 1998). 

As anticipated following Figures 5.2 and 5.5, soil organic horizons contained the 

highest OC and TN contents (Heiderer, 2009). It can be inferred from the 

relationship observed between soil OC and TN contents in Figure 5.7, that soils 

contained ~0.11% inorganic nitrogen, using the relationship identified in Goñi et 

al. (1998). This relationship assumes that an OC content of 0% indicates that 

there is no organic nitrogen within a sample. Therefore the percent total nitrogen 

would be equal to percent total inorganic nitrogen.  

The relationship between soil δ13C and δ15N values in the region was relatively 

scattered, however it can be inferred that soils from mineral horizons are more 

enriched in 13C and 15N than those from organic horizons (Figure 5.10). This 

supports the process of preferential decomposition, whereby microbes selectively 

decompose isotopically lighter compounds first, leaving behind isotopically 

heavier soils (Tables 2.2 and 2.3). The presence of bedrock has also been found 

to increase the stable carbon and nitrogen isotope compositions in deep soils, 
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with alpine schist in the Southern Alps known to have stable carbon and nitrogen 

isotopic compositions of δ13C = -21.1 ± 1.1‰ and δ15N = 3.48 ± 1.76‰ 

respectively (Pitcairn et al., 2005; Hilton et al., 2008a). The stark difference 

between the stable carbon isotope composition of soil organic horizons and soil 

mineral horizons highlights the applicability of stable carbon isotope ratios to 

effectively constrain the provenance of the organic matter found in soil profiles in 

the region.  

In contrast, no relationships were observed between soil TN content and stable 

nitrogen isotope composition with elevation, despite an anticipated decrease in 

δ15N values based on findings from previous studies (Figure 5.12; Table 2.3; 

Mariotti et al., 1980; Sah and Brumme, 2003). However, both of these studies 

assessed the relationship between soil stable nitrogen isotope compositions and 

elevation in locations of >1000 m elevation.  Therefore, the absence of this 

relationship in the four catchments in this study may be attributed to the fact that 

most samples were collected <1000 m. For the few samples over an elevation of 

1000 m, there was a slight increase in the δ13C value of soils along the soil organic 

layer of the Alex Knob Track (Figure 5.12). Körner et al. (1988; 1991) support this 

relationship, stating that increasing elevation reduces the partial pressure and 

fractionation of carbon isotopes and therefore increases δ13C values. Yet, the 

relationship observed for the Alex Knob Track is not significant and further 

samples are required to justify the presence of this relationship in the western 

Southern Alps.  

No correlations were observed between the geochemical characteristics of the 

soils sampled and site slope (Figure 5.11), despite a possible decrease in the soil 

organic matter content on steeper hillslopes as a result of reduced vegetation 

cover and increased erosion (Figure 5.4; Perruchoud et al., 2000; Simegn and 

Soromessa, 2015).  

In summary, soil geochemical properties were not significantly correlated with 

any geomorphic variables but did display significant correlations with soil depth. 

Therefore, our results suggest that depth is a key control on the geochemical 

properties of soils in the western Southern Alps, New Zealand, and can be used 

to constrain the origin of soil organic matter in landslide deposits across the 

region.  



128 
 

6.2.2. Geochemical properties of landslide deposits 

In contrast to the significant relationships observed between the geochemical 

composition of soils and depth, there was an absence of statistically significant 

relationships between the geochemical composition of landslide deposits and 

deposit depth (Figure 5.13). In a study conducted by Hilton et al. (2008a), 

assessing the relationship between OC content and depth for five landslide 

deposits, no significant relationships were also found. They explained the 

absence of these relationships using two key processes.  

Firstly, when a landslide occurs, biomass, soil and bedrock is all mobilised in 

unison, which leads to the mixing of different materials (Figures 5.13; 5.16; 5.19). 

This subsequently destroys any depth trends previously found in undisturbed soil 

profiles (see Figures 5.2; 5.5; 5.8; 5.9; Cruden, 1991; Hilton et al., 2008a; 2011a; 

Wang et al., 2016). The importance of this process for our ten landslide deposits 

can be seen by Figure 5.13, whereby the OC contents, TN contents and stable 

carbon and nitrogen isotope compositions of landslide deposit samples all show 

no correlation with depth. Evidence of mixing is further shown by Figure 5.13c, 

which demonstrated the large range of δ13C values from -29 to -19‰ for landslide 

deposit samples. These values are indicative of mixing from both OCbio, from soil 

and vegetation (~ -27‰), and OCpetro, from bedrock (-21.1 ± 1.1‰). The 

occurrence of mixing in active mountain ranges is common and therefore likely 

to explain the above observations (Hilton et al., 2008a; Clark et al., 2016). Whilst 

the average δ15N values for landslide deposits displayed a less clear mixing 

relationship between soil horizons and bedrock in comparison to δ13C values, 

there was a significant positive relationship between the average δ13C 

composition and δ15N composition of each landslide deposit (Figure 5.16).  

The second process thought to diminish vertical trends in landslide deposits is 

the dilution of soil OC content through the addition of fragmented bedrock or 

OCpetro, which has a much lower OC content (Hilton et al., 2008a). The presence 

of bedrock in landslide deposits can first be evidenced by the lower average OC 

content and average TN content in landslide deposits as opposed to soil organic 

and mineral horizons (Figure 5.15). The low OC contents in each deposit are 

consistent with the OC contents found for the five landslide deposits studied in 

Hilton et al. (2008a). The fact that the isotopic composition of each deposit 
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typically falls between the isotopic signatures for soil and bedrock also suggests 

the presence of bedrock in the deposit. For example, three bedrock landslides, 

Landslides 2, 7 and 13, all had a similar carbon isotope composition to alpine 

schist bedrock (Figure 5.16; Peterson and Fry, 1987; Hilton et al., 2008a; Clark 

et al., 2016). In addition, the stable nitrogen isotopic composition of deposits may 

also be affected by the presence of bedrock. For example, the most frequent δ15N 

values across the landslide deposits were between 2 and 3‰, which is within the 

error range found for Alpine Schist bedrock (δ15N = 3.48 ± 1.76‰) as quantified 

by Pitcairn et al. (2005) (Figures 5.13 and 5.16).  

The relationship between OC content and TN content was also clear for landslide 

deposits (Figure 5.15). From this relationship, I infer that 0.0024% of the TN was 

made up of inorganic nitrogen, which is 45 times lower than the inorganic nitrogen 

found in soil profiles (Figure 5.6; Goñi et al., 1998). The lower nitrogen contents 

found in landslide deposits in comparison to undisturbed soil profiles can also be 

attributed to the process of landslide erosion, with Guariguata (1990) finding that 

landslides had a lower nitrogen content than adjacent soils by approximately a 

factor of two. In addition, despite deposit C:N values also showing no trend with 

depth (Figure 5.14), the values found for each landslide deposit are also 

consistent with those previously observed in landslide deposits in the region of 

11.0 to 37.8 (Hilton et al., 2008a).  

The ten landslide deposits studied all had different average carbon and nitrogen 

isotope compositions (Figures 5.15; 5.16). This difference can partly be explained 

by Figure 5.17, which showed that smaller landslides by area contained a higher 

average OC content across the deposit. This may relate to landslide type, 

whereby smaller landslide areas are often indicative of shallower landslides, such 

as Landslides 8 and 15 (Clark and Burbank, 2010). Shallow landslides primarily 

remove topsoils and mineral horizons as opposed to bedrock (Figure 6.1; Clark 

and Burbank, 2010; Larsen et al., 2010). Therefore, shallow landslides are 

expected to result in less organic carbon dilution in the deposit, leading to a higher 

average OC content and lower stable carbon isotope composition (Figures 5.16; 

5.17). Hilton et al. (2008a) also observed this relationship for a shallow landslide 

deposit in the Whataroa catchment in August 2003.  

The difference in the isotopic composition of landslide deposits may also relate 

to location, with landslides in Stony Creek displaying lower rates of OC dilution 
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and 13C-depleted isotope compositions in comparison to the other three 

catchments (Figure 5.18). This compares to Hare Mare Creek, where landslide 

deposits had a lower average OC content but were more enriched in 13C. From 

this, it may be inferred that the landslides found in Hare Mare Creek are primarily 

bedrock landslides. This is supported by our field observations (Section 3.2.3) as 

well as the low OC contents found for landslide deposits in Hare Mare Creek and 

Gaunt Creek in Hilton et al. (2008a). However, it should be noted that only a 

select few accessible landslides were studied in each location and therefore 

location-wide variability cannot be inferred from the scale of this investigation.  

Overall, our results show that the stable carbon isotope compositions of landslide 

deposits in the Southern Alps, New Zealand provide a clear indication that both 

OCbio and OCpetro has been mobilised from the landslide scar and deposited 

downslope (Figure 5.19). When studying the relationship in Figure 5.19, I suggest 

that the landslide deposits lie on a mixing line between soil mineral horizons and 

bedrock. Therefore, using the isotopic composition of soil mineral horizons 

(OCbio) and bedrock (OCpetro) as the two end members, a binary mixing model 

was developed to constrain the provenance of the organic matter stored in these 

deposits and identify the relative proportions of OCpetro and OCbio in each deposit 

(Section 5.5).  

6.2.3. Landslide deposit volume 

A significant positive relationship was observed between landslide deposit 

volume and landslide scar area for our ten individual landslides (Figure 5.20). The 

two independently derived variables display the expected power-law relationship 

based on previous studies of landslide scar area and scar volume and 

subsequently validate the methods used in this report (Section 2.4.1; Malamud 

et al., 2004; Guzzetti et al., 2009; Larsen et al., 2010). Despite the fact that I have 

quantified deposit volume as opposed to scar volume, the relationship observed 

between area and volume for the ten landslides in this study is consistent with a 

previous study in the Southern Alps, which quantified landslide scar area and 

scar volume (Figure 6.3; Korup 2005c). However, when compared to the trendline 

in this study, the trendline in Korup (2005c) is shifted (Figure 6.3). This suggests 

that the landslides in our study removed, and subsequently stored, more material 

than expected. This contrasts the expected view that landslide deposit volume 
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would be lower than the volume of material initially eroded from the landslide scar 

due to a combination of post-landslide erosion and deposit weathering. The 

observed relationship can be attributed to the fact that the landslides studied in 

this report all had areas below the minimum landslide area sampled in Korup 

(2005c) (Table 6.1). Therefore, it is possible that this research has provided a 

better constraint on area-volume estimates for smaller landslides, with previous 

studies using larger landslides alone underestimating the volume of sediment 

removed, and stored, by small landslides. This demonstrates the importance of 

an individual landslide approach in order to develop detailed and accurate volume 

estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. The relationship observed between landslide deposit volume and landslide 
scar area for this study (black line). The relationship observed between landslide scar 
area and scar volume quantified by Korup (2005c) is also shown (dotted orange line). 
Table 6.1 shows the respective equations, sample sizes and locations for the two 
studies shown. Note the secondary y-axis. 

 

Table 6.1. The trendlines observed in Figure 6.3. as well as the study location and 
landslide sizes. 

ID Study Equation n Location 
Minimum 

Area (m
2
) 

Maximum 

Area (m
2
) 

1 
This Study 

(2018) V = 0.017A
1.77

 10 
Southern Alps, 

NZ 2.4 x 10
1
 1.1 x 10

5
  

2 
Korup 

(2005c) V = 0.00004A
1.95

 23 
Southern Alps, 

NZ >1 x 10
6
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6.2.4. Relative proportion of biospheric organic carbon in 

landslide deposits 

The relative proportion of OCbio and OCpetro stored in landslide deposits illustrates 

the heterogeneity in the geochemical composition of landslide deposits across 

the four catchments (Table 5.6). Some landslide deposits, such as Landslides 10, 

8 and 15, had a higher proportion of OCbio relative to OCpetro. Whereas Landslides 

2, 19, 14, 7 and 13 contained more OCpetro relative to OCbio. The findings shown 

in Table 5.6 also support the previous comments with regards to landslide type 

and bedrock dilution, with shallower landslides (8 and 15) containing more OCbio 

than OCpetro. The significant relationship observed between the proportion of 

OCbio stored in each deposit and the average deposit OC content (Figure 5.21) 

also provides further justification for the processes occurring within the deposit, 

such as mixing and dilution as well as the importance of landslide type (Section 

6.2.2.; Figure 5.19). Whilst a significant relationship was evident between the two 

variables, Landslide 1 did not appear to follow the observed relationship and 

contained a greater proportion of OCbio than expected (Figure 5.21). This may be 

in response to other processes occurring in the landslide deposit that change 

over time, such as oxidation and weathering (Emberson et al., 2016; Hemingway 

et al., 2018). For example, Hemingway et al. (2018) found that in Taiwan, 

microbially-mediated oxidation was removing OCpetro from soils. This may lead to 

a lower relative proportion of OCpetro than anticipated.  Therefore, the oxidation of 

OCpetro in landslide deposits may explain the lower relative proportion of OCpetro 

on the deposit surface of Landslide 1. A recent study of landslide deposits in Hare 

Mare Creek by Emberson et al. (2016) found evidence of microbial activity in 

landslide deposits and provides further justification for the process of microbially 

mediated oxidation in the landslide deposits, particularly for Landslide 1 which is 

located in Hare Mare Creek.  

6.2.5. Mass of biospheric organic carbon stored in landslide 

deposits  

Whilst previous literature has shown that geomorphic and geochemical factors 

may play an important role in controlling the mass of organic carbon removed by 

landslides (Hilton et al., 2011a; Ramos Scharrón et al., 2012; Walker and Shiels, 

2013c), less attention has focused on the factors controlling the mass of OCbio 
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stored in individual landslide deposits, despite their possible importance as a 

short-term transient carbon store (Section 2.5.). In total I found that between 

0.049 ± 0.009 tC (Landslide 14) and 26000 ± 4000 tC (Landslide 19) was stored 

in individual landslide deposits in the Southern Alps, with the mass of organic 

carbon from biospheric origin in deposits ranging from 0 tC (Landslide 13) to 3900 

± 3000 tC (Landslide 19) (Table 5.7). Interestingly, despite being calculated 

independent of one another, landslide area exerted significant positive 

relationships with both the total amount of organic carbon stored in each landslide 

deposit as well as the mass of OCbio retained in each deposit (Figure 5.22). This 

fits with the expectation that larger landslides erode more material and 

subsequently organic carbon. Similarly, landslide type was also thought to play 

an important role in estimating the mass of OCbio stored in landslide deposits 

(Figure 5.22b), with shallow landslides, such as Landslides 8 and 15, storing 

more OCbio than expected based on the relationship observed with area (Figure 

5.22). In contrast, bedrock landslides, such as Landslides 1, 2, 7, 14 and 19, 

stored a lower mass of OCbio than anticipated based on scar area. This is likely 

to be as a result of dilution and mixing (Figure 5.22b).  

Landslide 13 was of particular interest because despite storing 410000 ± 98000 

tonnes of sediment in the deposit, the deposit was estimated to contain no OCbio 

based on our binary mixing model. This suggests that Landslide 13 is dominated 

by OCpetro. I attribute this to multiple possible scenarios. Firstly, Landslide 13 may 

be a reactivated landslide scar and therefore have occurred on a bare hillslope 

and only removed bedrock (OCpetro). This is plausible based on the highly active 

nature of Gaunt Creek (Section 3.2.3.; Korup, 2004). Alternatively, little mixing 

could have occurred within the deposit and the soil organic matter and coarse 

woody debris may have been deposited on the surface of the deposit where it is 

more susceptible to post-landslide erosion. In addition, a variety of different soil 

profile depths and SOC stocks were recorded across the four undisturbed 

catchments. This suggests the lack of OCbio within the deposit may be due to the 

absence of an organic layer in the soils in this location, as observed in two of our 

soil profiles in Figure 5.1. However, further research is essential in order to better 

understand the mobility of the eroded OCbio following landslide failure. Additional 

explanations for the OCpetro dominated deposit are that; the bedrock in Gaunt 

Creek had a higher isotopic composition than the regional average (-21.1 ± 
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1.1‰), the samples collected were not representative of the deposit and other 

processes, such as microbial activity, weathering and oxidation, may have 

occurred within the deposit and altered the geochemical and isotopic composition 

of the deposit through time.  

In summary, landslide type and size were the most important factors controlling 

the mass of OCbio stored in landslide deposits on an individual landslide scale. In 

contrast to catchment-scale approaches (Hilton et al., 2011a; Ramos Scharrón 

et al., 2012; Clark et al., 2016), geomorphic variables were of less importance. 

However, the geochemical composition of the landslide deposit, particularly the 

average amount of organic carbon, is an important factor to consider in future 

studies, as is the role of microbial activity, weathering and oxidation that may alter 

the geochemical and isotopic composition of landslide deposits over time.  

6.3. Objective 3 

Objective 3 compares the findings from the previous two objectives; the mass of 

OCbio eroded from hillslopes by landslides (derived from the average regional 

SOC stock and mapped landslide areas) and the mass of OCbio stored in 

landslide deposits (estimated using landslide deposit volume and the proportion 

of OCbio stored in each deposit). This will determine how effective landslide 

deposits are at sequestering OCbio on a short timescale. Figure 6.4 shows the 

statistically significant positive relationship between the two independently 

derived variables (p <0.05).   

 

 
Figure 6.4. The 
significant relationship 
observed between the 
mass of OCbio 
removed by individual 
landslides and the 
mass of OCbio stored 
in each deposit (p < 
0.05, r2 = 0.89). 
Unattainable 
estimates, where 
more biospheric 
organic was stored 
than eroded initially, 
are shown by red 
labels.  
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Landslide 
ID 

OCbio Mobilised 
by Landslide 

(tC) 
± 

OC Stored in 
Deposit (tC) 

± 
OCbio Stored 
in Deposit 

(tC) 
± 

OCbio Stored 
in Deposit 

(%) 

1 120 50 1000 200 470 100 400 

2 46 20 44 30 6.60 5 10 

7 6.1 4 15 20 1.5 3 30 

8 5.4 5 28 14 22 10 400 

9 22 10 14 10 7.7 6 40 

10 15 10 4 2 3.9 2 30 

13 95 40 720 200 0 - 0 

14 0.32 0.1 0.049 0.009 0.0049 0.01 2 

15 0.39 0.1 0.32 0.2 0.24 0.2 60 

19 360 100 26000 4000 3900 3000 1000 

Table 6.2. The storage potential of landslide deposits in the western Southern Alps, 
New Zealand. The proportion of OCbio stored in each deposit has been derived from the 
estimated mass of OCbio mobilised initially from the landslide scar and the proportion of 
OCbio that has been retained. The percent of OCbio stored (deposit storage potential) is 
given to one significant figure. 

However, for three of the ten landslides studied (Landslides 1, 8 and 19), it 

appeared that more OCbio had been stored in the deposit than eroded initially. 

This highlights a model limitation and implies that the mass of OCbio stored in the 

deposit was overestimated or the mass of OCbio eroded was underestimated. The 

landslides that removed the greatest masses of organic carbon and had large 

landslide areas and volumes appeared most susceptible to this error. For 

example, the mass of OCbio stored in the deposit of Landslide 19 was 

overestimated by a factor of 10 (Figure 6.4; Table 6.2). It must be noted that the 

mass of OCbio mobilised by the landslide is dependent on our previous 

assumption that the average SOC stock is representative of the pre-failure 

hillslope. Based on the location-wide variability in SOC stocks (Section 6.1) and 

the possibility of reactivated landslide scars (Section 6.2.5.), it is unlikely that this 

assumption holds for all ten of our landslide deposits 

6.3.1. Limitations of our binary mixing model 

Initially the negative balance for Landslides 1, 8 and 19, with respect to the mass 

of OCbio eroded by the landslide and the mass of OCbio stored in the landslide 

deposit, was thought to be attributed to the variation in SOC stocks and landslide 

frequency between catchments (Hilton et al., 2011a; Ramos Scharrón et al., 

2012). However, these three landslide deposits were from three different 

catchments. In order to account for the possibility of a higher SOC stock on the 



136 
 

hillslope, I have calculated the mass of OCbio eroded by each landslide using the 

upper SOC estimate for the catchment. Whilst it is unlikely that the mass of OCbio 

eroded was underestimated, due to the fact our SOC stock estimate for the 

location was within the range found in previous studies, it is an interesting 

exercise (Section 6.1.2.). I found that even when considering the upper bound of 

our SOC stock for the region (13030 + 4337 tC km-2), Landslides 1, 8 and 19 

were still estimated to have stored more biospheric organic carbon than was 

eroded from the scar initially.  

Further errors may relate back to the mixing model analysis. The landslides that 

removed and stored the most material were found to be particularly susceptible 

to this error (Figure 6.4). The equation used to derive the mass of OCbio stored in 

deposits (Equation 5.2) included values for landslide bulk density, deposit 

volume, the average deposit OC content and the output from the mixing analysis. 

The uncertainties most likely to be responsible for the overestimates in this study 

are outlined below.  

Firstly, the average deposit dry bulk density was derived from seven samples that 

were collected from two different landslide deposits and a third revegetated 

deposit (Table 5.1). The two landslide deposits sampled were bedrock landslides. 

Bulk density values ranged from 0.86 to 1.7 g cm-3, with the dry bulk density for 

the revegetated deposit almost two times smaller than the average deposit dry 

bulk density. By only calculating the dry bulk density for deposits from bedrock 

landslides, it is thought that the deposit mass for shallow landslides was 

overestimated due to the lower proportion of dense bedrock within the deposit 

(Clark and Burbank, 2010; Larsen et al., 2010).  A prime example of this is 

Landslide 8. Landslide 8 was a relatively shallow failure in comparison to the two 

landslides sampled for bulk density (Table 4.3; Section 3.2.3), and thus the 

deposit was formed primarily of less dense soil. The deposit would therefore have 

a lower bulk density and store a lower mass of sediment and OCbio than 

estimated. Hence, future studies should consider deposit dry bulk density on an 

individual landslide basis to account for the different proportions of bedrock and 

soils in landslide deposits. 

Similarly, by not removing any coarse woody debris from the deposit samples, 

the stable carbon isotope compositions were likely to have been influenced by 

signals from above ground biomass, which has been shown to have a large 
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impact on fluvial carbon transfers (West et al., 2011; Turowski et al., 2016). It is 

likely that coarse woody debris is broken down during a landslide and therefore 

may play an important role in the OCbio content of a deposit. The erosion of above 

ground biomass in the Southern Alps was illustrated in previous estimates of 

landslide-driven carbon yields (Hilton et al., 2011a; Firth et al., 2018). The 

importance of CWD is of particular concern for samples collected from Landslides 

1, 8 and 19 due to the high proportion of CWD and vegetation mounds found on 

these deposits (Section 3.2.3). Thus, the inclusion of CWD in samples is likely to 

increase the average deposit OC content and decrease the respective δ13C 

composition. This impacts our findings because it suggests that the deposit mass 

is underestimated due to the fact the eroded biomass is included in our isotopic 

analysis but not our estimates for deposit volume or mass. It is also important to 

note that above ground biomass is not accounted for when estimating the mass 

of OCbio eroded by each landslide.    

Human interference may also explain the substantially large mass of OCbio stored 

by Landslides 8 and 19. Both landslide deposits previously blocked access paths 

and roads and therefore it is likely that the deposit had been altered since the 

landslide occurred. This may have changed the deposit shape and geochemical 

characteristics of the deposit, which would impact the outcome of the model. 

However, this requires further investigation.  

Additionally, the revegetation of landslide deposits may impact our estimates of 

the mass of OCbio stored in individual deposits. For example, the three landslide 

deposits that overestimated OCbio storage were the only landslide deposits to 

contain vegetation mounds or evidence of revegetation on the surface (Section 

3.2.3). Based on our understanding of the relationship between SOC content and 

depth in the Southern Alps (Figure 5.2), it is likely that vegetation mounds and 

revegetation increases the organic carbon content of the deposit, particularly at 

the surface. Therefore, by only sampling to a depth of ~0.3 m, it may be assumed 

that the samples collected from Landslides 1, 8 and 19 overestimated the 

proportion of OCbio stored throughout the deposit and subsequently the total mass 

of OCbio stored. Further justification can be provided by the fact the samples 

collected from the revegetated deposits in this investigation also showed a higher 

organic carbon content in surface soils, however this relationship was not 

significant (Figure 6.5). 
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Figure 6.5. The relationship 
observed between the organic 
carbon content of revegetated 
landslide deposits and the 
midpoint depth of the sample.  

 

 

 

 

 

Furthermore, the surface of landslide deposits is also most susceptible to 

oxidation (Stallard, 1998; Walker and Shiels, 2008; Walker and Shiels, 2013b; 

2013c). At the surface, fragmented rocks are more likely to be oxidised, which 

will lower the proportion of OCpetro relative to OCbio across the deposit surface 

(Emberson et al., 2016). The oxidation of OCpetro may also lead to an 

overestimation of the proportion of OCbio across the deposit. However, only 

relatively minor differences were found between the average organic carbon 

content of the landslide deposits studied in this investigation (Figure 5.13a; 5.15). 

Therefore, it is difficult to determine if the process of oxidation is influencing the 

outcome of our model in this location.  

6.3.2. Factors controlling the storage potential of landslide 

deposits 

The term deposit storage potential is used to refer to how effective landslide 

deposits are at storing the OCbio mobilised by landslides. Plausible estimates of 

deposit storage potential were found for the remaining seven landslide deposits 

(Figure 6.4; Table 6.2). These landslides ranked in order of deposit storage 

potential were as follows; Landslide 15 (60%), 9 (40%), 10 (30%), 7 (30%), 2 

(10%), 14 (2%), 13 (0%). Whilst constraining the factors that control the mass of 

OCbio stored in landslide deposits is primarily beyond the scope of this study due 

to the fact only ten deposits were sampled, some possible explanations have 

been provided below.  

Landslide 15 was the only deposit to store over 50% of the OCbio eroded by the 

landslide. Landslide 15 stood out in particular due to the fact it was a shallow 
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landslide, and therefore the deposit was primarily made up of OCbio from soils. 

However, shallow landslides are not renowned for storing more eroded OCbio than 

bedrock landslide deposits. Subsequently, the higher proportion of OCbio retained 

in the deposit may be in response to the model uncertainties associated with 

shallow landslides, as addressed for Landslide 8 previously. This highlights the 

importance in considering landslide type in future investigations. Alternatively, the 

higher proportion of OCbio retained in Landslide 15 may be attributed to the similar 

transport potential for all the material within the deposit (Ramos Scharrón et al., 

2012). Whereas in bedrock landslides, deposits have a higher bedrock 

component and therefore more of the lighter OCbio component is mobilised by 

wind and rain due to its comparatively lower transport potential (Lal, 2005). This 

is supported by the lower proportion of OCbio in bedrock landslides (See 

Landslides 2, 7, 13 and 14; Figure 6.4). It is important to consider that only three 

samples were collected from Landslide 15 and therefore these statements simply 

provide areas to focus on in the future. 

Previous studies have used hillslope-channel connectivity to infer the proportion 

of OCbio stored within landslide deposits and the proportion of OCbio delivered into 

river channels (Hilton et al., 2011a; Ramos Scharrón et al., 2012; Clark et al., 

2016). However, our findings suggest that hillslope-channel connectivity was of 

low importance on an individual landslide scale, with Landslides 8, 14 and 19 all 

disconnected from the channel but showing a range of storage potentials. This 

highlights the importance of better understanding the role of hillslope-channel 

connectivity when estimating the mass of OCbio delivered from hillslopes into 

channels. This also suggests that there may not be a simple, direct link between 

organic carbon mobility and hillslope-channel connectivity. 

In summary, this study has provided insight into the role of landslide deposits in 

dictating carbon dynamics on an individual scale. The study has also outlined 

possible explanations for the variable storage potential of landslide deposits 

across the western Southern Alps. Key factors to consider in future research 

conducted on an individual landslide scale are deposit bulk density, post-

landslide erosion, the oxidation of OCpetro and the role of vegetation.  
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6.3.3. Applying a landslide inventory to obtain regional scale 

estimates 

These findings are then used alongside a published landslide inventory by 

Emberson et al. (2016) (Section 4.7.1.) to assess the long-term implications of 

landslides and earthquake-triggered landslides on the regional carbon cycle in 

the western Southern Alps, New Zealand. A Monte Carlo Simulation method with 

a repetition setting of 10 000 was used to perform this analysis in order to account 

for the complexity associated with regional scale investigations (Section 4.7.3; 

Robinson et al., 2016). Previous studies (Robinson et al., 2016) have supported 

the use of 10 000 repetitions, with a study by Göransson et al. (2014) finding that 

the difference when using repetitions of 50 000 and 10 000 was only 0 to 0.6%. 

Therefore, to maximise time efficiency and accuracy, the repetitions were set at 

10 000. Once run, the raw data from the model was ordered from the smallest 

value to the largest value to find the median (5000th value) and the values one 

standard deviation below (1590th value) and above (8410th value).   

The mapped landslide areas were summed for the time period studied and 

multiplied by the biospheric soil organic carbon stock for the region, calculated in 

Objective 1, to estimate the average mass of OCbio mobilised from soils in the 

past 74 years. To compare this value to the mass of OCbio expected to be stored 

in landslide deposits over the time period studied, a weight-averaged OCbio 

content was derived from the ten landslide deposits analysed in this study. This 

allowed for the larger landslides, which stored more OCbio, to have a greater 

influence on the average. It is important to note that whilst I base these 

assumptions on an empirical dataset of 10 landslides and 25 soil profiles, the 

landslide sampled included a range of different landslide sizes and the soil 

profiles were collected from a range of elevations and slope angles (Section 3.2). 

The weight-averaged OCbio content for landslide deposits in the region was 

calculated by dividing the total mass of OCbio in the ten landslide deposits by the 

total mass of the landslide deposits.  The total landslide volume (Emberson et al., 

2016) was then multiplied by the average landslide dry bulk density and the 

fraction of OCbio stored in the deposit to find the maximum mass of OCbio stored 

in landslide deposits in the western Southern Alps. The findings from this analysis 

are shown in Table 6.3. This can be divided by the total OCbio eroded by 

landslides to provide a first-order estimate of the proportion of landslide mobilised 
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OCbio that may have been retained on hillslopes in the Southern Alps over the 

last 74 years. 

 tC + - tC km
-2 

 tC yr
-1

 tC km
-2 

 yr
-1

 + - 
OCbio 

Mobilised by 
Landslides 

460000 120000 100000 210 6200 2.8 0.8 0.6 

OCbio Stored 
in Landslide 

Deposits 
85000 65000 46000 39 1100 0.53 0.4 0.3 

Percentage of OCbio Retained in Landslide Deposits (%) 18 

Table 6.3. The outputs of a Monte Carlo Simulation estimating the mass of OCbio 
mobilised and stored by landslides over a period of 74 years. The deposit storage 
potential is also shown as the percentage of eroded OCbio retained in landslide 
deposits.  

6.3.4. Mass of biospheric organic carbon eroded by landslides 

(regional) 

Over a 74-year period, the analysis here estimates that landslides mobilised 2.8 

+ 0.75/-0.63 tC km-2 yr-1 of soil OCbio from the western Southern Alps, New 

Zealand (Table 6.3). This estimate is consistent with an earlier study by Hilton et 

al. (2011a), which estimated the mass of soil and biomass eroded by landslides 

in the region over a 40-year period to be 7.6 ± 2.9 tC km-2 yr-1. Despite both 

studies using different time scales to quantify the landslide-driven OCbio erosion 

yields, both estimates were comparable. From the yield derived in this thesis and 

the estimate from Hilton et al. (2011a) considering both biomass and soil organic 

carbon, it can be inferred that the removal of soil accounted for over one-third of 

the total OCbio removed by landslides in the region. This largely agrees with 

estimates of above ground organic carbon stocks for the location (Bellingham 

and Richardson, 2006; Hilton et al., 2008a; Hilton et al., 2011a).  

Furthermore, a storm in Redwood Creek, USA, in 1997 had a similar annual 

landslide-driven organic carbon yield as this study (2.8 tC km-2 yr-1) when 

averaged over the storm return period (Madej, 2010). However, the yield 

calculated in Madej (2010) included both above and below ground biomass. 

Thus, landslides in the Southern Alps were able to mobilise more OCbio from soils 

alone on a yearly basis than a 1 in 10-year storm in Redwood Creek, USA. This 

stresses the important role landslides play in driving fluxes of organic carbon from 
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hillslopes in the Southern Alps, supporting findings from previous studies by 

Hilton et al. (2011a), Howarth et al. (2012) and Frith et al. (2018). 

6.3.5. Mass of biospheric organic carbon stored in landslide 

deposits (regional) 

Hilton et al. (2011a) inferred that ~71 ± 3% of eroded OCbio would be retained in 

landslide deposits based on hillslope-channel connectivity. In contrast, this study 

found that only 18% of the eroded OCbio is likely to be retained on hillslopes based 

on samples collected from ten landslide deposits in four different catchments 

(Table 6.3). This figure assumes that the estimated mass of OCbio and average 

regional SOC stock are valid as well as that the volume eroded by landslides will 

be equal to the deposit volume, which is unlikely when factors such as post-

landslide erosion and human disturbance are considered (Walker and Shiels, 

2013c).  

Whilst landslide deposits may be less effective at storing OCbio than previously 

inferred (Hilton et al., 2011a), the deposits still provided short term storage for 

0.53 +0.4/-0.3 tC km-2 yr-1 of soil OCbio. Future investigations should now address 

what happens to the remaining 82% of the OCbio, which is missing. At first, this 

may indicate that the OCbio has been readily eroded from the deposit prior to 

sampling in September 2017 and may contribute to the 39 tC km-2 of OCbio 

transported by rivers in the Southern Alps (Hilton et al., 2008a). If so, landslides 

may account for up to 6% of the OCbio transported by rivers in the region each 

year. However, this comparison should be considered with caution (see Hilton et 

al., 2011a), because other factors may also explain the missing OCbio. For 

example, the deposit volumes may have been underestimated as a result of not 

being directly measured or landslide areas may have been overestimated. Based 

on the extensive field observations and the relatively high-resolution aerial 

imagery used, landslide volume is the most likely source of error.  

6.3.6. Post-earthquake landslide scenarios (regional) 

The increased likelihood of a Mw~8.0 earthquake along the Alpine Fault has 

received considerable attention (e.g. Robinson et al., 2016; Frith et al., 2018). 

Therefore, following a similar approach to Frith et al. (2018), whereby the density 

of earthquake-triggered landslides across the surface area (PLS) is derived as a 
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function of distance from the earthquake epicentre (Section 4.7.2.), I estimate the 

mass of OCbio that would be eroded during a major earthquake. This analysis 

builds on the work undertaken by Frith et al. (2018) by using a refined estimate 

of landslide area density, undertaken by Croissant (personal comm., 2018) to 

only include catchments on the west coast. This study will use the more accurate 

regional SOC stock derived in this study to develop previous estimates of the 

mass of OCbio mobilised by landslides in Frith et al. (2018) (Tables 6.4; 6.5).  

Max P
LS

 

(%) 

Area Eroded 
(km²) 

Mass of Oc
bio

 

Mobilised (tC) 

+ 
(tC) 

- 
(tC) 

1 43 560000 120000 130000 

2 85 1100000 250000 250000 

3 130 1700000 380000 370000 

4 170 2200000 510000 500000 

5 210 2800000 640000 620000 

6 260 3300000 740000 760000 

7 300 3900000 890000 890000 

8 340 4500000 1000000 1000000 

9 380 5000000 1100000 1200000 

10 430 5500000 1300000 1300000 

Table 6.4. The area of the catchment eroded by landslides during an earthquake along 
the Alpine Fault as well as the mass of OCbio removed with respect to the landslide 
density. Errors have been calculated using a Monte Carlo simulation and have the units 
tC. 

 

  MtC + - tC km
-2 

 tC yr
-1

 tC km
-2 

 yr
-1

 + - 
OC

bio
 Removed by 

Landslides  
(if P

LS 
= 6%) 

3.3 0.74 0.76 790 13000 3 1 1 

OC
bio

 Removed by 

Landslides  
(if P

LS 
= 10%) 

5.5 1.3 1.3 1300 21000 5 1 1 

Table 6.5. This table shows estimates for the mass of OCbio removed by co-seismic 
landslides in a Mw~8.0 earthquake along the Alpine Fault. The proportion of OCbio 
stored in deposits has been calculated for two scenarios, both assuming a different co-
seismic landslide density. The catchment area used to calculate landslide area was 
4254.5 km2 and the return period was 260 years (Howarth et al., 2012).  

This thesis estimates that between 7 and 12 times more SOC would be eroded 

by co-seismic landslides than has been eroded by landslides in the last 74 years 

(Table 6.3; 6.5) based on the reliable assumption that between 6% and 10% of 

the (4254.5 km2) surface area will be impacted by a major earthquake along the 

Alpine Fault (Meunier et al., 2007; Hilton et al., 2011a; Hovius et al., 2011b; 
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Robinson et al., 2016; Frith et al., 2018). I infer that an area between 255 km2 

and 430 km2 and between 3.3 +0.74/-0.76 and 5.5 ± 1.3 Mt of OCbio will be eroded 

by landslides (Tables 6.4; 6.5). This equates to an annual yield between 3 ± 1 to 

5 ± 1 tC km-2 yr-1, which would account for 100% to 180% of the modern-day yield 

of landslide-driven SOC erosion (Table 6.3). Hence, even when averaged over 

the earthquake return period, the earthquake would still have a profound impact 

on the carbon cycle on a catchment scale (Hilton et al., 2011a). It is likely that the 

OCbio eroded from soils will account for approximately half of the total OCbio 

removed by co-seismic landslides (Frith et al., 2018). The yield of soil OCbio 

eroded by co-seismic landslides may also equate to ~10% of the annual OCbio 

yield for rivers in the Southern Alps (Hilton et al., 2008a; Frith et al., 2018) as well 

as up to 3.5% of the global flux of particulate OCbio transported by rivers (157 

+74/-50 MtC yr-1) (Galy et al., 2015). Furthermore, the mass of OCbio eroded from 

soils by earthquake-triggered landslides may equate to between one third and 

one half of annual CO2 emissions across the country in 2016 in one single event 

(New Zealand Government, 2018). An earthquake along the Alpine Fault is 

therefore likely to be of both regional and global importance in terms of terrestrial 

carbon fluxes.   

Thus, this single event is likely to be of importance not only for regional carbon 

fluxes in the Southern Alps but also globally. This research compliments previous 

findings in Howarth et al. (2012) and Frith et al. (2018) and further highlights the 

importance of an earthquake along the Alpine Fault and the subsequent co-

seismic landslides.   
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Chapter 7: Conclusions. 

In the study of terrestrial carbon erosion, it is important to constrain both the 

destination of the eroded material and the source of the organic carbon eroded 

in order to better understand the implications on the carbon cycle. This study 

contributes to this active area of research by determining the organic carbon 

storage potential of landslide deposits in the western Southern Alps by 

quantifying the mass of landslide mobilised biospheric organic carbon and the 

mass of biospheric organic carbon stored in landslide deposits. In particular, this 

thesis aimed to further current understanding surrounding the role of landslide 

deposits as short terms stores of organic carbon in the region.  

This has been achieved using a combination of fieldwork, laboratory analysis, 

remote sensing and modelling. Firstly, I developed a more accurate estimate of 

the soil organic carbon stock for the western Southern Alps, New Zealand based 

on 60 soil samples collected from four different catchments at a range of 

elevations. This estimate allowed us to better determine the mass of biospheric 

organic carbon mobilised by landslides based on scar area. Next, ten landslide 

deposits, from four different catchments, were sampled and analysed to 

determine the geochemical composition of landslide deposits in the region. Using 

the stable carbon isotope composition of each landslide deposit, in addition to the 

stable carbon isotope composition of bedrock and soils in the western Southern 

Alps, a binary mixing model was developed. This mixing model determined the 

relative proportion of organic carbon in each landslide deposit that was of 

biospheric origin. From this, as well as the mass of the landslide deposits and the 

average organic carbon content of each deposit, the mass of biospheric organic 

carbon retained in each deposit was estimated. This was then compared to the 

mass of biospheric organic carbon mobilised initially by each landslide to infer the 

relative importance of landslide deposits as short-term carbon stores.  

Overall, this study has demonstrated the value of modern-day landslide deposits 

as possible short-term stores of biospheric organic carbon, with some deposits 

estimated to store up to 60% of the landslide mobilised biospheric organic carbon. 

However, landslide deposits were of variable importance individually in terms of 

the short-term storage of biospheric organic carbon, with the deposit storage 

potential ranging from 0% to 60%. These observations are thought to relate to 
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landslide type and the processes occurring during erosion (e.g. mixing and 

dilution) and following deposition (e.g. post-landslide erosion and oxidation).  

By conducting this analysis on an individual-landslide scale, I have a developed 

a detailed account of the carbon dynamics associated with these ten landslide 

deposits. For example, this study found that the average mass of OCbio mobilised 

by landslides in the western Southern Alps was ~67 ± 26 tC based on ten 

landslides, which removed between 0.32 ± 0.1 tC to 360 ± 100 tC each. Our 

independent estimates of the mass of OCbio stored in landslide deposits based 

on landslide volume, bulk density and organic carbon content found that between 

0 tC to 3900 ± 3000 tC of OCbio was stored in individual landslide deposits. From 

this detailed analysis, I found that landslide bulk density, the surface vegetation 

cover and landslide type are all important factors to consider when estimating the 

mass of OCbio stored in landslide deposits. Further research is now required on 

a broader scale to identify the key factors controlling the storage of biospheric 

organic carbon within these landslide deposits.  

This study also derived a more accurate SOC stock for the western Southern 

Alps of 13030 ± 4337 tC km-2. From this, and a landslide inventory from Emberson 

et al. (2016), it was estimated that over a 74-year period, 2.8 +0.8/-0.6 tC km-2  

yr-1 of biospheric organic carbon was eroded from hillslopes by landslides. When 

compared to other estimates of carbon-landslide yields for the region (Hilton et 

al., 2011a), I could infer that soil organic carbon stocks accounted for ~1/3 of the 

biospheric organic carbon eroded by landslides. Using the SOC stock estimate 

calculated in this thesis, I also estimated that in the event of a Mw~8.0 earthquake 

between 3.3 +0.74/-0.76 MtC and 5 ± 1.3 MtC will be eroded by landslides. When 

averaged over the earthquake return period of ~270 years, this equates to an 

annual landslide derived carbon yield between 3 ± 1 tC km-2 yr-1 and 5 ± 1 tC km-

2 yr-1. This value assumes that landslides mobilised all material in the landslide 

scar and that the soil organic carbon stock estimated in this thesis is applicable 

to the entire region. Nonetheless, this highlights how an earthquake along the 

Alpine Fault is likely to have large implications for the regional, and even global, 

carbon cycle. Both the modern-day landslide-derived carbon yield and 

earthquake-induced landslide-derived carbon yield demonstrate the importance 

of soil organic carbon erosion as well as the need to accurately constrain both 
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above and below ground biomass stocks to better predict the implications of 

terrestrial carbon erosion.  

Our estimates of deposit OCbio storage potential were also upscaled to assess 

whether the large volumes of OCbio eroded by landslides in recent years remains 

stored on the hillslope in landslide deposits. Using our OCbio storage estimates 

from our ten modern-day landslide deposits, I estimate that up to ~18% of the 

OCbio eroded by landslides in the western Southern Alps in the last 74 years has 

been stored in landslide deposits as short-term carbon sinks. This is much 

smaller than previous estimates using hillslope-channel connectivity to infer the 

mass of OCbio stored in landslide deposits. Whilst, it should be noted that the 

deposit storage potential was highly variable across our sampling range, I 

conclude that the onward transport of OCbio from hillslopes into channels is more 

complex than previously inferred. Conducting this study at a higher temporal 

resolution is likely to provide greater insight into the fate of the eroded organic 

carbon post-landsliding 

However, the model developed in this study to estimate the mass of biospheric 

organic carbon stored in each deposit, did overestimate the mass of biospheric 

organic carbon stored in deposits for three of the ten deposits studied. Possible 

limitations to this model include but are not exclusive to: 

• Assuming a constant SOC stock across all hillslopes. 

• Using an average dry bulk density for all ten landslide deposits. 

• Using a single model to estimate the mass of biospheric organic carbon 

stored, irrespective of landslide type. 

• Not considering the importance of coarse woody debris or revegetation 

on the deposit surface, which may result in an overestimate of the 

biospheric organic carbon stored in the deposit relative to the petrogenic 

organic carbon stored. 

• The role of post-landslide erosion and oxidation over time. 

• The area-volume scaling relationship used. 
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7.1. Future research areas 

The findings presented here provide some of the first quantitative estimates of 

the relative mass of landslide-derived biospheric organic carbon stored within 

landslide deposits based on stable carbon isotope measurements. This study has 

therefore provided a basis for further investigating the importance of landslide 

deposits as terrestrial carbon stores in the western Southern Alps, New Zealand. 

However, as mentioned above, the model derived here needs to be refined to 

account for internal landslide variability, such as material transport potential, as 

well as external influences, such as oxidation, revegetation and post-landslide 

erosion. To this end, I suggest the following areas for future research: 

1. Refine the mixing model used to derive the proportion of OCbio stored in 

an individual landslide deposit. 

Future research should build on the individual-landslide scale binary mixing 

model developed within this report by collecting further field data for the landslide 

deposits sampled, particularly with respect to quantifying dry bulk density for each 

deposit individually. In addition, future models should elucidate the relative 

importance of the other limitations mentioned above, such as the role of 

vegetation and coarse woody debris with regards to overestimating the proportion 

of biospheric organic carbon stored within each landslide deposit. This can be 

tested by sampling to the base of the landslide deposit and comparing the relative 

proportion of biospheric and petrogenic organic carbon at deeper depths than 

sampled here.  

2. Develop a more accurate technique for quantifying landslide area-

volume relationships. 

Accurately obtaining information on landslide scar area and deposit volume is 

vital with respect to estimating sediment and carbon budgets, however it is 

extremely challenging. Therefore, research focused on accurately quantifying 

landslide volume remains widely debated decades after the initial area-volume 

scaling relationship was introduced. The importance of accurately obtaining 

deposit volume in this study is reflected by the need to consider the role of post-

landslide erosion and deposit sediment reworking over time, which is likely to 

alter the geochemical composition of the landslide deposit. Whilst time 
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consuming and often expensive, field volume estimates are likely to be one of the 

more accurate methods to date, with photogrammetry, drones and LiDAR 

surveys providing the possibility to more accurate quantify landslide deposit 

volume (Schwab et al., 2008; Stumpf et al., 2014). This knowledge would vastly 

improve the accuracy of sediment budgets across mountain ranges. 

3. Constrain the factors controlling the relative mass of eroded biospheric 

organic carbon stored in landslide deposits. 

Future research should now identify the key geomorphological and 

biogeochemical controls on the biospheric organic carbon storage potential of 

landslide deposits. This can be achieved by conducting catchment-wide sampling 

of landslide deposits and different geomorphological (e.g. slope, elevation, 

aspect) and biogeochemical (e.g. oxidation, microbial activity) controls. Whilst 

this study found no relationship between slope and elevation and the mass of 

OCbio stored by landslide deposits, this is likely to be related to the small sample 

size. An understanding of the key factors controlling the storage potential of 

landslide deposits in the region will allow for more widespread use of the model 

developed to quantify deposit storage potential in this report. This knowledge will 

also make the model used to estimate the mass of biospheric organic carbon 

stored in deposits more applicable to other locations. Assessing the storage 

efficiency of deposits on a temporal scale would also provide insight into the 

changing storage efficiency through time and the possible effects of post-

landslide erosion.  

4. Determine what happens to the remaining organic carbon eroded by 

landslides.   

Despite recent research demonstrating the importance of quantifying the source 

and fate of the organic carbon eroded by geomorphic processes, the accurate 

quantification of these fluxes remains challenging. Evidently, it is essential that 

the fate of the biospheric organic carbon eroded by landslides is accurately 

constrained in order to determine whether landslides can act as a long-term 

carbon sink. This study suggested that landslide deposits in the western Southern 

Alps are likely to account for ~18% of the biospheric organic carbon initially 

eroded by landslides. Therefore, studies should now continue building on this 

research area by determining the mass of eroded biospheric organic carbon that 
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is deposited in sedimentary basins and floodplains to develop a biospheric 

organic carbon budget. It is also important to constrain the fate of the eroded 

petrogenic organic carbon in order to determine whether landsliding can also lead 

to a net source of organic carbon from the biosphere to the atmosphere. This will 

contribute to the ultimate aim; to definitively understand the importance of 

landslides, and large-scale erosive events, on regional carbon cycles.  
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Appendices. 

Appendix A: Soil sample locations 

The sample ID, GPS coordinates, slope angle, sample depth and horizon type 

are shown for the 73 analysed soil horizons recorded along the four elevation 

profiles. Longitude, latitude and elevation were determined using a handheld 

GPS. Slope angle and sample depth were measured in the field using the 

techniques described in Section 4.1. Horizon type was inferred using the 

information in Appendix C and Section 4.1.1. Additional samples, which were not 

analysed, were collected from the Roberts Point Track. To avoid confusion, these 

have not been included in the table below. 

Sample 
ID 

Location 
ID 

Longitude Latitude 
Elevation 

(m) 

Slope 
Angle 

(degrees) 

Sample 
Depth 

(m) 

Horizon 
Type* 

4.1.1a 4 -43.39879 170.1870 217 13 0.010 L 

4.1.1b 4 -43.39879 170.1870 217 13 0.040 O 

4.1.1c 4 -43.39879 170.1870 217 13 0.280 M 

4.1.1d 4 -43.39879 170.1870 217 13 0.320 M 

4.2.1a 4 -43.3924 170.1872 223 8 0.015 L 

4.2.1b 4 -43.3924 170.1872 223 8 0.055 O 

4.2.1c 4 -43.3924 170.1872 223 8 0.130 O 

4.2.1d 4 -43.3924 170.1872 223 8 0.160 M 

5.1.1a 5 -43.42701 170.1515 1303 0 0.065 O 

5.1.1b* 5 -43.42701 170.1515 1303 0 0.160 M 

5.1.1b* 5 -43.42701 170.1515 1303 0 0.320 M 

5.1.1c 5 -43.42701 170.1515 1303 0 0.640 M 

5.2.1a 5 -43.42701 170.1515 1150 38 0.065 O 

5.2.1b 5 -43.42701 170.1515 1150 38 0.260 O 

5.2.1c 5 -43.42701 170.1515 1150 38 0.320 M 

5.3.1a 5 -43.42061 170.1519 1000 27 0.010 L 

5.3.1b 5 -43.42061 170.1519 1000 27 0.080 O 

5.3.1c 5 -43.42061 170.1519 1000 27 0.160 M 

5.3.1d 5 -43.42061 170.1519 1000 27 0.590 M 

5.4.1a 5 -43.41757 170.1544 905 35 0.020 L 

5.4.1b 5 -43.41757 170.1544 905 35 0.130 O 

5.4.1c 5 -43.41757 170.1544 905 35 0.250 M 

5.4.1d 5 -43.41757 170.1544 905 35 0.650 M 

5.5.1a 5 -43.40939 170.1632 694 28 0.045 O 

5.5.1b 5 -43.40939 170.1632 694 28 0.105 M 

5.5.1c 5 -43.40939 170.1632 694 28 0.360 M 

5.5.1d 5 -43.40939 170.1632 694 28 0.800 M 

5.5.1e 5 -43.40939 170.1632 694 28 1.020 M 
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5.6.1a 5 -43.40627 170.1625 541 32 0.030 O 

5.6.1b 5 -43.40627 170.1625 541 32 0.270 M 

5.6.1c 5 -43.40627 170.1625 541 32 0.300 M 

5.8.1a 5 -43.40718 170.1692 298 0 0.020 M 

5.8.1b 5 -43.40718 170.1692 298 0 0.065 O 

5.8.1c 5 -43.40718 170.1692 298 0 0.300 M 

5.8.1d 5 -43.40718 170.1692 298 0 0.480 M 

17.1.1a 17 -43.44511 170.1786 613 41 0.100 O 

17.1.1b 17 -43.44511 170.1786 613 41 0.260 M 

17.1.2c 17 -43.44511 170.1786 613 41 0.320  

17.3.1a 17 -43.43821 170.1792 475 13 0.025 L 

17.3.1b 17 -43.43821 170.1792 475 13 0.080 O 

17.5.1a 17 -43.43443 170.1775 396 29 0.115 O 

17.5.2a 17 -43.43443 170.1775 396 29 0.120 O 

17.5.3a 17 -43.43443 170.1775 396 29 0.115 O 

17.6.1a 17 -43.42844 170.1779 320 31 0.070 O 

17.6.1b 17 -43.42844 170.1779 320 31 0.180 M 

17.7.1a 17 -43.42707 170.1763 280 29 0.085 O 

17.7.1b 17 -43.42707 170.1763 280 29 0.120 M 

17.8.1a 17 -43.42316 170.1774 249 28 0.010 L 

17.8.1b 17 -43.42316 170.1774 249 28 0.110 O 

17.9.1a 17 -43.41697 170.1805 214 0 0.045 O 

17.9.1b 17 -43.41697 170.1805 214 0 0.075 M 

18.1.1a 18 -43.48379 169.9962 299 15 0.020 L 

18.1.1b 18 -43.48379 169.9962 299 15 0.200 O 

18.1.1c 18 -43.48379 169.9962 299 15 0.305 M 

18.1.1d 18 -43.48379 169.9962 299 15 0.320 M 

18.1.2d 18 -43.48379 169.9962 299 15 1.120  

18.2.1a 18 -43.48323 169.9962 273 26 0.180 O 

18.2.1b 18 -43.48323 169.9962 273 26 0.260 M 

18.2.1c 18 -43.48323 169.9962 273 26 0.640 M 

18.2.1d 18 -43.48323 169.9962 273 26 0.700 M 

18.3.1a 18 -43.48243 169.9963 230 40 0.070 L 

18.3.1b 18 -43.48243 169.9963 230 40 0.210 O 

18.3.1c 18 -43.48243 169.9963 230 40 0.270 M 

18.3.1d 18 -43.48243 169.9963 230 40 0.450 M 

18.3.1e 18 -43.48243 169.9963 230 40 0.590 M 

18.4.1a 18 -43.48188 169.9960 195 15 0.060 M 

18.4.1b 18 -43.48188 169.9960 195 15 0.610 M 

18.5.1a 18 -43.48059 169.9944 168 0 0.030 O 

18.5.1b 18 -43.48059 169.9944 168 0 0.095 M 

18.5.1c 18 -43.48059 169.9944 168 0 0.320 M 

18.5.1d 18 -43.48059 169.9944 168 0 0.480 M 

18.5.1e 18 -43.48059 169.9944 168 0 0.680 M 

18.5.1f 18 -43.48059 169.9944 168 0 0.820 M 

* Different horizon types: L = litter horizon (assumed to be organic in further analysis), 

O = organic horizon, M = mineral horizon. 
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Appendix B: Landslide and river bedload samples 

The sample ID, GPS coordinates, elevation, slope angle and sample depth for 

the 68 analysed landslide deposit samples (of a possible 98 samples) and 11 

river bedload samples (of a possible 17 samples). The field data was collected 

from ten different locations within four different creeks. It is important to note that 

only the data for the analysed samples are given in the tables below. Additional 

samples which were not analysed were also collected.  

Landslide Deposit Samples 

Sample 
ID 

Location 
ID 

Longitude Latitude 
Elevation 

(m) 

Slope 
Angle 

(degrees) 

Sample 
Depth 

(m) 

1.1a 1 -43.4424 170.0786 263 38 0.1 

1.1b 1 -43.4424 170.0786 263 38 0.2 

1.1c 1 -43.4424 170.0786 263 38 0.3 

1.3a 1 -43.443 170.0794 349 38 0.16 

1.3b 1 -43.443 170.0794 349 38 0.32 

1.3c 1 -43.443 170.0794 349 38 0.48 

1.5a 1 -43.4428 170.078 267 38 0.1 

1.5b 1 -43.4428 170.078 267 38 0.2 

1.5c 1 -43.4428 170.078 267 38 0.3 

1.6a 1 -43.4428 170.0782 275 38 0.1 

1.6b 1 -43.4428 170.0782 275 38 0.2 

1.6c 1 -43.4428 170.0782 275 38 0.3 

2.2a 2 -43.4429 170.0778 265 28 0.1 

2.2b 2 -43.4429 170.0778 265 28 0.2 

2.2c 2 -43.4429 170.0778 265 28 0.3 

2.3a 2 -43.4428 170.0776 220 28 0.1 

2.3b 2 -43.4428 170.0776 220 28 0.2 

2.3c 2 -43.4428 170.0776 220 28 0.3 

2.6a 2 -43.4427 170.0777 272 28 0.1 

2.6b 2 -43.4427 170.0777 272 28 0.2 

2.6c 2 -43.4427 170.0777 272 28 0.3 

7.1a 7 -43.3703 170.2117 333 20 0.1 

7.1b 7 -43.3703 170.2117 333 20 0.2 

7.2a 7 -43.3705 170.2126 258 20 0.1 

7.2b 7 -43.3705 170.2126 258 20 0.2 

7.3a 7 -43.3703 170.2125 254 20 0.1 

7.3b 7 -43.3703 170.2125 254 20 0.2 

7.4a 7 -43.3704 170.2123 234 20 0.1 

7.5a 7 -43.3703 170.2121 249 20 0.1 

7.5b 7 -43.3703 170.2121 249 20 0.2 

7.5c 7 -43.3703 170.2121 249 20 0.3 
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8.1a 8 -43.3698 170.2117 227 31 0.1 

8.1b 8 -43.3698 170.2117 227 31 0.2 

8.2a 8 -43.3697 170.2116 225 31 0.15 

8.2b 8 -43.3697 170.2116 225 31 0.3 

8.3a 8 -43.3697 170.2115 232 31 0.15 

8.3b 8 -43.3697 170.2115 232 31 0.3 

8.4a 8 -43.3698 170.2116 233 31 0.09 

8.4b 8 -43.3698 170.2116 233 31 0.33 

9.1a 9 -43.3715 170.2119 252 38 0.12 

9.1b 9 -43.3715 170.2119 252 38 0.3 

9.2a 9 -43.3715 170.2121 253 38 0.1 

9.2b 9 -43.3715 170.2121 253 38 0.3 

9.3a 9 -43.3715 170.2121 253 38 0.13 

9.3b 9 -43.3715 170.2121 253 38 0.2 

9.4b 9 -43.3715 170.2121 253 38 0.3 

10.1a 10 -43.3716 170.2123 282 33 0.1 

10.1b 10 -43.3716 170.2123 282 33 0.2 

10.2a 10 -43.3715 170.2124 291 33 0.1 

10.4a 10 -43.3716 170.2122 282 33 0.1 

13.1a 13 -43.3168 170.3253 177 29 0.2 

13.2a 13 -43.317 170.3256 184 29 0.1 

13.3a 13 -43.3169 170.3258 188 29 0.1 

13.3b 13 -43.3169 170.3258 188 29 0.2 

13.4a 13 -43.317 170.3259 191 29 0.1 

14.1a 14 -43.317 170.325 169 40 0.05 

14.1b 14 -43.317 170.325 169 40 0.1 

15.1a 15 -43.3161 170.3234 178 32 0.1 

15.2a 15 -43.316 170.3234 176 32 0.15 

15.2b 15 -43.316 170.3234 176 32 0.3 

19.1A 19 -43.4934 170.043 146 35 0.05 

19.1B 19 -43.4934 170.043 146 35 0.1 

19.2A 19 -43.4949 170.0419 316 35 0.1 

19.2b 19 -43.4949 170.0419 316 35 0.15 

19.3a 19 -43.494 170.0422 257 35 0.1 

19.3b 19 -43.494 170.0422 257 35 0.15 

19.4a 19 -43.4937 170.0414 246 35 0.1 

19.4b 19 -43.4937 170.0414 246 35 0.2 
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Inactive Riverbed Samples 

Sample 
ID 

Location 
ID 

Longitude Latitude 
Elevation 

(m) 

Slope 
Angle 

(degrees) 

Sample 
Depth 

(m) 

3.1a 3 -43.4423 170.0786 270 13 0.05 

3.2a 3 -43.4423 170.0786 265 13 0.05 

3.2b 3 -43.4423 170.0786 265 13 0.10 

3.4b 3 -43.4423 170.0768 245 13 0.10 

3.6a 3 -43.4418 170.0755 228 13 0.05 

3.7a 3 -43.4411 170.0741 205 13 0.05 

11.1a 11 -43.3703 170.2121 233 - 0.05 

11.2a 11 -43.3717 170.2121 235 - 0.05 

16.1a 16 -43.316 170.3234 176 - 0.05 

16.2a 16 -43.3161 170.3238 175 - 0.05 

16.3a 16 -43.3167 170.3253 179 - 0.05 
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Appendix C: Soil horizon measurements 

A table displaying the maximum soil depth, soil colour, horizon type and a brief 

description for the 147 soil horizons identified and measured in the field. This 

equates to 52 soil profiles/subsites. The maximum soil depth refers to the deepest 

part of the horizon. The soil colour described is based on a Munsell colour chart. 

This was often conducted at the end of each day and therefore only the samples 

from which soil was collected for further analysis have been assigned a Munsell 

colour chart description. The horizon types were determined in the field based on 

observations, which included changes in colour, composition and organic matter 

content. Additional notes recorded in the field have been added to the table for 

the readers interest. Unlike in the tables above, field data for every soil profile is 

included in the table below. 

Location 
ID 

Sample 
ID 

Maximum 
soil 

depth (m) 

Munsell 
Colour 

Description 
(Hue/Chroma) 

Horizon* Notes 

4 4.1.1a 0.01 - L  

 4.1.1b 0.04 3/2 7.5YR O  

 4.1.1c 0.28 4/3 10YR M 
Orange-brown coloured 
layer with no schist 

 4.1.1d 0.32 3/4 10YR M Layer of schist rock 

 4.1.2a 0.01 - L  

 4.1.2b 0.235 - M 
Orange-brown coloured 
layer with no schist 

 4.1.3a 0.02 - L  

 4.1.3b 0.12 - O  

 4.1.3c 0.29 - M 
Orange-brown coloured 
layer with no schist 

 4.1.4a 0.025 - L  

 4.1.4b 0.06 - O  

 4.1.4c 0.32 - M 
Orange-brown coloured 
layer with some schist rock 

 4.1.4d 0.43 - M Predominantly clay soil 

 4.2.1a 0.015 - L  

 4.2.1b 0.055 2.5/2 5YR O Darkest layer, some roots 

 4.2.1c 0.13 3/2 5YR O 
Still organic rich but lighter 
in colour 

 4.2.1d 0.16 3/2 10YR M 
Orange-brown coloured 
layer with some schist rock 

 4.2.2a 0.005 - L  

 4.2.2b 0.065 - O  

 4.2.2c 0.16 - M Orange layer with no schist 

 4.2.2d 0.32 - M 
Orange-brown coloured 
layer with some schist rock 

 4.2.3a 0.03 - O  
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 4.2.3b 0.09 - O 
Still organic rich but lighter 
in colour (very similar to 
4.2.1c) 

 4.2.3c 0.32 - M 
Orange-brown coloured 
layer with some schist rock 

5 5.1.1a 0.065  O  

 5.1.1b 1 0.16 2/2 10YR M 
Light brown clay containing 
some organic matter and 
some schist rock 

 5.1.1b 2 0.32 3/2 10YR M 
Light brown clay containing 
some organic matter and 
some schist rock 

 5.1.1c 0.64 3/1 10YR M Layer of schist rock 

 5.1.2.a 0.03 - O  

 5.1.2b 0.37 - M 
Orange-brown coloured 
layer (mix of clay and sand) 

 5.1.2c 0.64 - M Light yellow colour 

 5.2.1a 0.065 3/1 5YR O Darkest organic layer 

 5.2.1b 0.26 3/2 10YR O 
Still organic rich but lighter 
in colour 

 5.2.1c 0.32 3/1 10YR M Schist Layer 

 5.3.1a 0.01 - L  

 5.3.1b 0.08 2.5/2 10YR O  

 5.3.1c 0.16 2/1 10YR M 
orange-brown layer, small 
amount of schist 

 5.3.1d 0.59 2.5/1 7.5YR M Schist Layer 

 5.3.2a 0.025 - L  

 5.3.2b 0.09 - O  

 5.3.2c 0.32 - M 
Orange-brown coloured 
layer with some schist rock 

 5.3.2d 0.56 - M 
Lighter orange-brown 
coloured layer with a higher 
schist content 

 5.4.1a 0.02 2.5/2 7.5YR L  

 5.4.1b 0.13 3/1 7.5YR O  

 5.4.1c 0.25 3/4 10YR M 
Light brown clay with no 
schist rock 

 5.4.1d 0.65 3/3 7.5YR M 
Light brown clay with some 
schist rock 

 5.5.1a 0.045 2/1 10YR O 
A very small litter horizon 
was included in this organic 
horizon 

 5.5.1b 0.105 3/1 7.5YR M 
Light brown coloured silty 
soil 

 5.5.1c 0.36 4/3 10YR M Orange-yellow colour 

 5.5.1d 0.8 3/1 10YR M 
Grey coloured layer with a 
high schist content (mix of 
silt and sand) 

 5.5.1e 1.02 3/1 10YR M 
Clay layer with high schist 
content 

 5.6.1a 0.03 3/1 5YR O  

 5.6.1b 0.27 3/4 10YR M 
Orange-brown coloured 
layer with no schist 

 5.6.1c 0.3 3/3 10YR M 
Orange-brown coloured 
layer with some schist rock 

 5.7.1 No Samples collected 

 5.8.1a 0.02 2.5/2 5YR M Light brown clay layer 
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 5.8.1b 0.065 2.5/2 7.5YR O O layer below a clay topsoil 

 5.8.1c 0.3 3/2 5YR M Light brown fine silty soil 

 5.8.1d 0.48  M Layer of schist rock 

 5.9.1 No Samples collected 

17 17.1.1a 0.1 2.5/1 5YR O  

 17.1.1b 0.26 2.5/1 7.5YR M 
Light brown-grey coloured 
with some schist rock 

 17.1.2a 0.12 - O  

 17.1.2b 0.235 - M 
Light brown-grey coloured 
with some schist rock 

 17.1.2c 0.32 4/2 5YR M 
Light grey clay-based schist 
Layer 

 17.1.3a 0.07 - O  

 17.1.3b 0.46 - M 
Light brown-grey coloured 
with some schist rock 

 17.2.1a 0.04 2/1 10YR L  

 17.2.1b 0.26 2.5/1 7.5YR O Very dense roots in sample 

 17.2.2a 0.05 - L  

 17.2.2b 0.21 - O  

 17.2.2c 0.25 - M Layer of schist rock 

 17.2.3a 0.04 - L  

 17.2.3b 0.16 - O  

 17.3.1a 0.025 2/1 10YR L  

 17.3.1b 0.08 2.5/2 7.5YR O 
Darkly coloured soil, 
organic rich 

 17.3.1c 0.26  M 
Lighter brown schist layer 
with some organic matter 

 17.3.2a 0.16 - O 
Darkly coloured soil, 
organic rich 

 17.3.2b 0.25 - M Layer of schist rock 

 17.4.1a 0.11 2.5/2 5YR O 
Straight to bedrock after O 
layer 

 17.4.2a 0.09 - O 
Straight to bedrock after O 
layer 

 17.4.3a 0.025 - O 
Straight to bedrock after O 
layer 

 17.5.1a 0.115 2.5/1 7.5YR O 
Straight to bedrock after O 
layer 

 17.5.2a 0.12 2.5/1 7.5YR O 
Straight to bedrock after O 
layer 

 17.5.3a 0.115 2.5/1 7.5YR O 
Straight to bedrock after O 
layer 

 17.6.1a 0.07 2.5/2 7.5YR O  

 17.6.1b 0.18 3/1 5YR M 
Lighter grey coloured 
material 

 17.6.2a 0.08 - O  

 17.6.2b 0.22 - M 
Lighter grey coloured 
material 

 17.6.3a 0.06 - O  

 17.6.3b 0.16 - M 
Light brown-grey coloured 
with some schist rock 

 17.7.1a 0.085 2.5/1 7.5YR O  

 17.7.1b 0.12 2.5/2 7.5YR M 
Light brown-grey coloured 
with some schist rock 

 17.7.2a 0.07 - O  
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 17.7.2b 0.13 - M 
Light brown-grey coloured 
with some schist rock 

 17.7.3a 0.05 - O  

 17.7.3b 0.16 - M 
Light brown-grey coloured 
with some schist rock 

 17.8.1a 0.01 - L  

 17.8.1b 0.11 2.5/1 7.5YR O 
Straight to bedrock after O 
layer 

 17.8.2a 0.1 - O 
Straight to bedrock after O 
layer 

 17.8.3a 0.125 - O 
Straight to bedrock after O 
layer 

 17.9.1a 0.045 2/1 10YR O  

 17.9.1b 0.075 3/2 7.5YR M 
Light brown-grey coloured 
with some schist rock 

 17.9.2a 0.07 - O  

 17.9.2b 0.115 - M 
Light brown-grey coloured 
with some schist rock 

 17.9.3a 0.1 - O  

 17.9.3b 0.12 - M 
Lighter grey coloured with 
some schist rock 

18 18.1.1a 0.02 - L  

 18.1.1b 0.2 2/1 10YR O High root content 

 18.1.1c 0.305 3/2 5YR M 
Light brown-grey coloured 
with some schist rock 

 18.1.1d 0.32 4/4 5YR M Sandy orange bottom layer 

 18.1.2a 0.02 2.5/2 5YR L  

 18.1.2b 0.16 - O  

 18.1.2c 0.26 - M 
Lighter clay-based grey 
coloured with some schist 
rock 

 18.1.2d 1.12 3/2 5YR M Sandy orange bottom layer 

 18.1.3a 0.015 - L  

 18.1.3b 0.21 - O  

 18.1.3c 0.64 - M Orange sandy schist layer 

 18.2.1a 0.18 2.5/3 7.5YR O  

 18.2.1b 0.26 2.5/2 5YR M 
Light brown-grey coloured 
with some schist rock 

 18.2.1c 0.64 3/3 5YR M Sandy orange bottom layer 

 18.2.1d 0.7 4/4 7.5YR M Some bedrock in sample 

 18.3.1a 0.07 - L  

 18.3.1b 0.21 2.5/2 5YR O 
High proportion of semi 
decomposed litter 

 18.3.1c 0.27 3/2 5YR M 
Light brown-grey coloured 
with some schist rock 

 18.3.1d 0.45 3/4 10YR M 
Light orange clay with less 
organic matter 

 18.3.1e 0.59 3/1 7.5YR M  

 18.3.2a 0.07 - L  

 18.3.2b 0.2 - O  

 18.3.2c 0.42 - M 
Light brown-grey coloured 
with some schist rock 

 18.4.1a 0.06 3/2 7.5YR M 
Light brown-grey coloured 
with some organic matter 
but no O layer 
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 18.4.1b 0.61 3/2 7.5YR M 
Light brown clay containing 
schist 

 18.4.2a 0.015 - O  

 18.4.2b 0.115 - M 
Light brown-grey coloured 
with some organic matter 

 18.4.2c 0.16 - M Sandy orange bottom layer 

 18.4.2d 0.48 - M 
Sandy orange bottom layer 
with high schist content 

 18.5.1a 0.03 2.5/2 7.5YR O  

 18.5.1b 0.095 3/2 5YR M 
Light brown-grey coloured, 
predominantly clay-based 
with some schist rock 

 18.5.1c 0.32 4/1 5YR M 
Grey in colour (mix of sand 
and silt) 

 18.5.1d 0.48 3/2 7.5YR M 
Light brown-grey coloured, 
with less silt and more clay 

 18.5.1e 0.68 3/2 7.5YR M Brown fine sediment 

 18.5.1f 0.82 - M 
Light brown-grey coloured, 
with less silt and more clay 
(similar to 18.5.1b) 

 18.5.2a 0.04 - O  

 18.5.2b 0.11 - M 
Light brown-grey coloured, 
predominantly clay-based 
with some schist rock 

 18.5.2c 0.22 - M 
Grey in colour (mix of sand 
and silt) 

 18.5.2d 0.44 - M 
Light brown-grey coloured, 
with less silt and more clay 

 18.5.2e 0.5 - M Brown fine sediment 

* Different horizon types: L = litter horizon (assumed to be organic in further analysis), 

O = organic horizon, M = mineral horizon.
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Appendix D: Results from EA-IRMS geochemical analysis 

Values for the total nitrogen content, total organic carbon content, stable carbon isotopic composition and stable nitrogen isotopic 

composition of soil samples, landslide deposit samples and river bedload samples determined using an EA-IRMS. Repeats are 

also shown. Dashes indicate no data whereby the samples were not analysed. The techniques used to prepare samples for 

analysis using an EA-IRMS and the stages of EA-IRMS analysis are detailed in Section 4.2.  

The average total nitrogen content, total organic carbon content, stable carbon isotopic composition and stable nitrogen isotopic 

composition for each landslide deposit is also detailed below. Standard error has been calculated for each value using the 

standardised equation: 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 =  
𝜎

√𝑛
 

Soil Samples 

Sample 
ID 

Location 
ID 

Horizon 
Type1 TN (%) 

TN 
Repeats 

(%) 
δ¹⁵N (‰) 

δ¹⁵N 
Repeats 

(‰) 
OC (%) 

OC 
Repeats 

(%) 
δ¹³C (‰) 

δ¹³C 
Repeats 

(‰) 

C:N 
(C/N) 

1/OC 
(%⁻¹) 

4.1.1a 4 L - - - - - - - - - - 

4.1.1b 4 O 0.5853 - 0.0336 - 6.7856 7.7408 -28.0970 -28.1200 11.5937 0.1474 

4.1.1c 4 M 0.2569 - 3.4809 - 3.0355 - -27.7886 - 11.8164 0.3294 

4.1.1d 4 M 0.0491 - 4.6247 - 0.7396 - -25.9988 - 15.0603 1.3521 

4.2.1a 4 L - - - - - - - - - - 

4.2.1b 4 O 0.3069 - 0.3418 - 6.5262 8.1176 -31.3889 -29.9315 21.2669 0.1532 

4.2.1c 4 O 0.0918 - 2.2081 - 1.1945 - -28.3750 - 13.0138 0.8372 

4.2.1d 4 M 0.0584 - 2.9366 - 0.8055 0.6203 -27.0752 -26.8910 13.7824 1.2414 

5.1.1a 5 O 0.8519 - -0.1886 - 21.1867 19.1348 -26.1442 -26.1131 24.8703 0.0472 

5.1.1b* 5 M 0.3562 - 2.2341 - 5.8105 4.3574 -25.9297 -25.8354 16.3119 0.1721 
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5.1.1b* 5 M 0.2351 - 2.9626 - 3.4476 - -26.1736 - 14.6669 0.2901 

5.1.1c 5 M 0.0399 0.0378 3.0597 3.6431 0.6282 0.5271 -24.9538 -24.8127 15.7574 1.5917 

5.2.1a 5 O 0.4229 - -0.5962 - 12.8075 7.8386 -28.5267 -28.6263 30.2814 0.0781 

5.2.1b 5 O 0.1598 - 3.2760 - 3.1313 - -27.2137 - 19.5959 0.3194 

5.2.1c 5 M 0.0307 - 4.8484 - 0.7049 - -25.9370 - 22.9526 1.4186 

5.3.1a 5 L - - - - - - - - - - 

5.3.1b 5 O 0.3840 - -2.5993 - 7.7097 - -29.7691 - 20.0786 0.1297 

5.3.1c 5 M 0.2367 0.2471 -1.2903 -1.3354 3.3532 3.2350 -29.8089 -30.0000 14.1658 0.2982 

5.3.1d 5 M 0.0820 - 1.6167 - 1.2661 1.3621 -27.4434 -27.2172 15.4432 0.7898 

5.4.1a 5 L 0.6849 - 0.9995 - 11.9790 - -28.2368 - 17.4897 0.0835 

5.4.1b 5 O 0.3245 0.3713 3.4600 3.4764 7.8859 - -27.7798 - 24.3011 0.1268 

5.4.1c 5 M 0.1487 0.1494 6.2209 6.0800 3.3169 - -26.9129 - 22.3061 0.3015 

5.4.1d 5 M 0.0441 - 5.3440 - 1.0282 - -26.6338 - 23.2987 0.9726 

5.5.1a 5 O - - - - - - - - - - 

5.5.1b 5 M 0.1073 - 3.1257 - 2.0336 - -28.2659 - 18.9476 0.4917 

5.5.1c 5 M 0.1332 - 5.3152 - 2.6563 - -27.7166 - 19.9407 0.3765 

5.5.1d 5 M 0.0227 - 4.4866 - 0.4448 - -25.6443 - 19.6137 2.2482 

5.5.1e 5 M 0.0529 - 6.5921 - 1.0799 - -25.8976 - 20.3977 0.9260 

5.6.1a 5 O 0.2446 - 0.9612 - 3.6432 3.4053 -28.4700 -28.8563 14.8937 0.2745 

5.6.1b 5 M 0.1809 - 3.3749 - 2.7579 - -26.8168 - 15.2464 0.3626 

5.6.1c 5 M 0.1062 - 3.9613 - 2.6045 - -26.8570 - 24.5191 0.3840 

5.8.1a 5 M - - - - - - - - - - 

5.8.1b 5 O 0.3953 - 0.5339 - 7.2342 - -28.0148 - 18.2999 0.1382 

5.8.1c 5 M 0.2065 0.2056 2.9686 3.0266 2.3506 - -26.8570 - 11.3837 0.4254 

5.8.1d 5 M - - - - - - - - - - 

17.1.1a 17 O 1.0152 - 0.1046 - 11.7793 - -28.7102 - 11.6035 0.0849 

17.1.1b 17 M 0.1664 - 0.4929 - 2.1341 - -27.9637 - 12.8263 0.4686 
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17.1.2c 17 M 0.0533 - 0.9772 - 0.4689 - -27.1222 - 8.7907 2.1324 

17.3.1a 17 L 1.2294 - -0.5278 - 15.9821 - -29.4867 - 13.0004 0.0626 

17.3.1b 17 O 0.3608 - 1.0603 - 2.1173 4.3588 -28.7952 -27.5266 5.8684 0.4723 

17.5.1a 17 O 1.0115 - 0.1516 - 16.8172 - -28.5601 - 16.6259 0.0595 

17.5.2a 17 O 1.5758 1.5902 -0.0715 -0.2396 27.7521 32.2020 -29.2095 -27.9366 17.6116 0.0360 

17.5.3a 17 O 1.4013 - -0.1366 - 28.5122 28.4123 -28.7612 -28.9864 20.3477 0.0351 

17.6.1a 17 O 0.4771 - -0.9837 - 7.9273 - -29.1525 - 16.6154 0.1261 

17.6.1b 17 M 0.1258 - 1.6486 - 0.9941 - -27.0281 - 7.9012 1.0059 

17.7.1a 17 O 1.0044 - -1.6926 - 15.6325 - -28.7837 - 15.5637 0.0640 

17.7.1b 17 M 0.1696 - 2.3842 - 1.8068 - -27.1382 - 10.6523 0.5535 

17.8.1a 17 L - - - - - - - - - - 

17.8.1b 17 O 0.9578 - -2.8354 - 22.9980 - -29.4106 - 24.0106 0.0435 

17.9.1a 17 O 0.4321 - -1.7257 - 13.7118 13.1286 -29.1567 -29.4457 31.7295 0.0729 

17.9.1b 17 M 0.2766 0.2536 -1.1155 -1.1012 5.2948 - -28.8363 - 19.1429 0.1889 

18.1.1a 18 L - - - - - - - - - - 

18.1.1b 18 O 1.1693 - -2.1531 - 53.3246 - -28.2201 - 45.6024 0.0188 

18.1.1c 18 M 0.1180 - 7.2470 - 3.8487 - -27.6569 - 32.6267 0.2598 

18.1.1d 18 M 0.0797 - 7.5880 - 2.3854 - -27.0525 - 29.9296 0.4192 

18.1.2d 18 M 0.2048 - 6.3159 - 4.4890 - -27.3924 - 21.9213 0.2228 

18.2.1a 18 O - - - - - - - - - - 

18.2.1b 18 M - - - - - - - - - - 

18.2.1c 18 M 0.1837 - 6.6121 - 4.1395 - -27.7676 - 22.5339 0.2416 

18.2.1d 18 M 0.1241 - 6.8943 - 2.5149 - -26.5098 - 20.2681 0.3976 

18.3.1a 18 L - - - - - - - - - - 

18.3.1b 18 O 1.4929 - 0.3790 - 42.2949 43.6552 -27.2628 -27.3070 28.3298 0.0236 

18.3.1c 18 M 0.3594 0.3939 5.9318 5.9400 8.4599 - -27.4240 - 23.5400 0.1182 

18.3.1d 18 M 0.2306 - 7.8117 - 5.2231 5.0803 -27.4201 -27.2648 22.6507 0.1915 
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18.3.1e 18 M 0.1060 0.1077 8.3821 8.5181 2.1281 - -26.3488 - 20.0765 0.4699 

18.4.1a 18 M 0.2155 - 1.4575 - 1.4873 - -27.1982 - 6.9025 0.6723 

18.4.1b 18 M 0.1221 - 2.0800 - 1.5350 - -26.7009 - 12.5735 0.6515 

18.5.1a 18 O 0.3639 0.3581 -0.1838 0.1244 7.7904 - -29.9390 - 21.4072 0.1284 

18.5.1b** 18 M 0.0811 - 1.6466 - 1.2076 1.1397 -27.6373 -27.1852 14.8967 0.8281 

18.5.1c 18 M 0.0418 - 1.5455 - 1.3023 - -27.0643 - 31.1349 0.7679 

18.5.1d 18 M 0.1054 - 1.6629 - 1.1589 - -26.4638 - 10.9909 0.8629 

18.5.1e 18 M 0.1137 - 1.5321 - 1.3581 1.2323 -26.9385 -26.8884 11.9471 0.7363 

18.5.1f** 18 M 0.0811 - 1.6466 - 1.2076 - -27.6373 - 14.8967 0.8281 

* One horizon was divided into two samples mid-way through the horizon. 

** 18.5.1f was not sampled due to the fact field observations were identical to 18.5.1b. 
1 Different horizon types: L = litter horizon (assumed to be organic in further analysis), O = organic horizon, M = mineral horizon. 

Landslide Deposit Samples 

Sample 
ID 

Location 
ID 

TN (%) 
TN 

Repeats 
(%) 

δ¹⁵N (‰) 
δ¹⁵N 

Repeats 
(‰) 

OC (%) 
OC 

Repeats 
(%) 

δ¹³C (‰) 
δ¹³C 

Repeats 
(‰) 

C:N 
(C/N) 

1/OC 
(%⁻¹) 

1.1a 1 0.0098 - 3.0482 - 0.1170 - -22.6141 - 11.9546 8.5456 

1.1b 1 0.0126 - 2.2667 - 0.1642 - -24.4323 - 13.0095 6.0895 

1.1c 1 0.0145 - 2.1692 - 0.1754 - -24.6426 - 12.0779 5.7016 

1.3a 1 0.0246 - 1.2014 - 0.3937 - -25.8944 - 15.9733 2.5401 

1.3b 1 0.0143 - 2.4350 - 0.1921 0.2197 -25.2090 -25.6132 13.4578 5.2066 

1.3c 1 - - - - 0.2450 - -26.8050 - - 4.0819 

1.5a 1 0.0090 0.0088 2.8989 2.8756 0.1442 - -22.0480 - 15.9398 6.9326 

1.5b 1 0.0155 - 2.2981 - 0.1228 - -20.7141 - 7.9492 8.1405 

1.5c 1 - - - - 0.1518 - -21.9359 - - 6.5858 

1.6a 1 0.0179 - 1.4894 - 0.2558 - -24.9758 - 14.2636 3.9095 

1.6b 1 0.0148 - 2.1090 - 0.1713 0.1673 -23.0756 -22.8085 11.5516 5.8394 
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1.6c 1 0.0105 - 2.5863 - 0.1231 - -22.9433 - 11.7692 8.1238 

2.2a 2 0.0057 - 3.0683 - 0.3526 - -23.5586 - 61.6757 2.8357 

2.2b 2 0.0066 - 3.0005 - 0.1503 - -22.0578 - 22.7648 6.6529 

2.2c 2 - - - - 0.1401 - -22.5053 - - 7.1358 

2.3a 2 0.0092 - 2.8523 - 0.1610 - -21.3413 - 17.5705 6.2129 

2.3b 2 - - - - 0.1239 0.1376 -22.1290 -22.1450 - 8.0690 

2.3c 2 - - - - 0.1446  -21.1369 - - 6.9159 

2.6a 2 0.0075 - 3.5046 - 0.1490 0.1769 -21.6377 -21.3574 19.8736 6.7109 

2.6b 2 - - - - 0.1580 - -22.0470 - - 6.3280 

2.6c 2 - - - - 0.1706 - -22.5933 - - 5.8627 

7.1a 7 0.0101 - 3.8604 - 0.2419 - -19.9162 - 23.8776 4.1344 

7.1b 7 - - - - 0.2671 - -19.0531 - - 3.7435 

7.2a 7 0.0090 - 5.1831 - 0.2288 - -19.4032 - 25.3984 4.3710 

7.2b 7 0.0076 - 4.1135 - 0.2178 0.2190 -18.9030 -18.8607 28.5149 4.5907 

7.3a 7 0.0179 - 1.1483 - 0.2040 0.2427 -24.7437 -24.7658 11.3933 4.9012 

7.3b 7 0.0202 - -0.0045 - 0.3043  -25.9517 - 15.0537 3.2863 

7.4a 7 0.0123 - 2.6299 - 0.1466  -23.1837 - 11.9361 6.8197 

7.5a 7 - - - - 0.1786  -19.8256 - - 5.5993 

7.5b 7 0.0103 - 1.8698 - 0.2367 0.2308 -23.1197 -21.8869 23.0515 4.2240 

7.5c 7 0.0133 - 1.8098 - 0.2729 - -21.9669 - 20.5363 3.6643 

8.1a 8 0.0263 - 1.1643 - 0.3136 - -24.3714 - 11.9108 3.1889 

8.1b 8 0.0112 - 1.7848 - 0.1820 - -22.3238 - 16.1929 5.4946 

8.2a 8 0.5174 - -1.4294 - 11.7658 - -29.2197 - 22.7423 0.0850 

8.2b 8 0.0248 0.0249 0.9842 0.6700 0.5119 - -25.4886 - 20.6484 1.9537 

8.3a 8 0.0210 - 0.6780 - 0.4902 0.5242 -24.4570 -25.5177 23.3501 2.0401 

8.3b 8 0.0163 - 2.3211 - 0.4594 - -26.4189 - 28.2528 2.1769 

8.4a 8 0.1182 - 1.3985 - 2.1207 - -27.5346 - 17.9347 0.4715 
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8.4b 8 0.5271 - -2.3141 - 11.1675 - -28.0499 - 21.1876 0.0895 

9.1a 9 0.0501 - 1.9909 - 1.3995 - -27.1507 - 27.9439 0.7146 

9.1b 9 0.4277 - -0.2847 - 11.2321 - -28.5130 - 26.2607 0.0890 

9.2a 9 0.0207 - 1.3705 - 0.1948 0.2078 -25.6282 -25.2450 9.4119 5.1322 

9.2b 9 0.0254 - 3.0717 - 0.2180 - -22.3172 - 8.5751 4.5865 

9.3a 9 0.0459 - 1.5996 - 0.1479 - -22.3222 - 3.2238 6.7634 

9.3b 9 0.0117 - 3.1327 - 0.1708 - -21.3395 - 14.6087 5.8563 

9.4b 9 0.0126 0.0101 2.4512 2.0490 0.1611 - -22.4702 - 12.7855 6.2090 

10.1a 10 0.0146 - 2.1710 - 0.2263 - -24.3744 - 15.5318 4.4192 

10.1b 10 0.0154 - 1.8238 - 0.3050 - -24.6686 - 19.7764 3.2790 

10.2a 10 0.1614 - 0.1056 - 3.4919 - -28.3646 - 21.6311 0.2864 

10.4a 10 0.1590 - -1.8938 - 4.1004 - -29.2228 - 25.7893 0.2439 

13.1a 13 0.0140 - 3.3829 - 0.1824 - -20.5941 - 12.9901 5.4817 

13.2a 13 - - - - 0.1698 - -20.9943 - - 5.8894 

13.3a 13 0.0086 - 3.5650 - 0.1303 - -21.0082 - 15.1416 7.6775 

13.3b 13 0.0100 - 3.4516 - 0.1771 0.2054 -20.9923 -20.2417 17.7655 5.6455 

13.4a 13 0.0106 - 2.0813 - 0.2046 0.2304 -21.3630 -21.7620 19.3774 4.8883 

14.1a 14 - - - - 0.1747 - -19.7255 - - 5.7228 

14.1b 14 0.0153 - 0.2517 - 0.2864 - -23.5089 - 18.7358 3.4913 

15.1a 15 0.0103 - 2.7144 - 0.2088 - -22.0340 - 20.2406 4.7897 

15.2a 15 0.3580 - -0.5628 - 6.9117 6.5794 -28.6684 -28.5280 19.3049 0.1447 

15.2b 15 0.0293 - 0.1657 - 0.3684 0.4699 -26.1476 -25.9688 12.5637 2.7146 

19.1a 19 - - - - 0.2356 - -21.3425 - - 4.2446 

19.1B 19 - - - - 0.2493 - -21.0884 - - 4.0119 

19.2A 19 0.0124 - 3.0186 - 0.3365 - -20.5936 - 27.0799 2.9720 

19.2b 19 0.0112 - 2.7404 - 0.3023 0.2897 -20.8352 -21.0844 26.9571 3.3083 

19.3a 19 0.0168 - 1.5206 - 0.3365 - -23.1597 - 20.0435 2.9713 
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19.3b 19 0.0144 - 1.8678 - 0.2774 - -22.2165 - 19.2712 3.6052 

19.4a 19 0.0410 - -0.7930 - 0.6391 0.7552 -25.2590 -24.3658 15.5884 1.5648 

19.4b 19 0.0168 - 2.2011 - 0.2963 - -22.1621 - 17.6511 3.3748 

 

 

 

Inactive Riverbed Samples 

Sample 
ID 

Location 
ID 

TN (%) 
TN 

Repeats 
(%) 

δ¹⁵N (‰) 
δ¹⁵N 

Repeats 
(‰) 

OC (%) 
OC 

Repeats 
(%) 

δ¹³C (‰) 
δ¹³C 

Repeats 
(‰) 

C:N 
(C/N) 

1/OC 
(%⁻¹) 

3.1a 3 0.0094 0.0098 3.0503 3.2981 0.1791 0.1678 -20.9128 -20.9639 18.9710 5.5829 

3.2a 3 - - - - 0.1452 - -21.0644 - - 6.8853 

3.2b 3 0.0110 - 2.6284 - 0.1553 - -21.4486 - 14.0847 6.4399 

3.4b 3 - - - - 0.1588 - -21.1274 - - 6.2988 

3.6a 3 0.0079 0.0084 2.8099 2.6691 0.2159 0.1739 -21.1064 -20.7912 27.4374 4.6317 

3.7a 3 0.0100 - 2.5483 - 0.1561 - -21.6873 - 15.6300 6.4065 

11.1a 11 0.0163 - 1.7552 - 0.4132 - -23.4161 - 25.4213 2.4204 

11.2a 11 0.0106 - 3.1997 - 0.1885 - -21.2885 - 17.7848 5.3054 

16.1a 16 0.0106 - 3.2113 - 0.2493 - -21.8406 - 23.5863 4.0111 

16.2a 16 0.0101 - 3.3309 - 0.2462 0.1939 -21.8416 -21.7504 24.3127 4.0614 

16.3a 16 0.0103 0.0110 3.8519 3.5226 0.2440 0.2158 -22.3452 -21.0146 23.6566 4.0975 
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Landslide Averages 

Landslide 
Average 
TN (%) 

Standar
d Error 

(%) 

Average 
δ¹⁵N (‰) 

Standar
d Error 

(‰) 

Averag
e OC 
(%) 

Standard 
Error (%) 

Average 
δ¹³C (‰) 

Standar
d Error 

(‰) 

Maximum 
Elevation 

(m)1 

Slope 
Angle 

(degree
s) 

Average 
Aspect 

(degrees)
1 

C:N 
(C/N

) 

Standar
d Error 

1 0.014 0.001 2.250 0.171 0.188 0.022 -23.774 0.504 349 38 329 13 1 

2 0.007 0.001 3.106 0.121 0.172 0.022 -22.112 0.229 272 28 321 30 9 

7 0.013 0.001 2.576 0.567 0.230 0.014 -21.607 0.764 333 20 247 20 2 

8 0.158 0.075 0.573 0.532 3.376 1.664 -25.983 0.749 233 31 243 20 2 

9 0.085 0.053 1.905 0.413 1.932 1.444 -24.249 0.985 253 38 169 15 3 

10 0.088 0.036 0.552 0.807 2.031 0.889 -26.658 1.080 291 33 250 21 2 

13 0.011 0.001 3.120 0.302 0.173 0.011 -20.990 0.109 191 29 149 16 1 

14 0.015 - 0.252 - 0.231 0.039 -21.617 1.338 169 40 175 19 - 

15 0.133 0.092 0.772 0.811 2.496 1.803 -25.617 1.579 178 32 27 17 2 

19 0.019 0.004 1.759 0.509 0.334 0.042 -22.082 0.509 316 35 216 21 2 

1  Data was collected using an 8 m x 8 m DEM from LINZ (2012). 
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Appendix E: Soil organic carbon stocks 

The individual steps taken to derive an average regional soil organic carbon stock for the western Southern Alps. The steps 

taken are outlined in Section 4.3.. The first table divides the values into organic and mineral horizons showing average thickness, 

organic carbon content and an estimate for the soil organic carbon stock for each soil profile. Samples were collected from one 

soil profile at each site and the data displayed in Appendix A, B and D was used to calculate these values. The errors shown 

were derived using Equation 4. 5.. 

The second table shows the average soil organic carbon content for each subsite/soil profile as well as the error, derived using 

Equation 4.6. Elevation, aspect and slope were all calculated using an 8 m x 8 m DEM of the region. The final table shows the 

location-based and regional averages displayed in a graph-format in Figure 5.3. Standard error for each location was calculated 

using the individual soil profile organic carbon stocks estimates. The standard error for the regional average was based on the 

location-based averages also shown in the Table.  

Soil organic carbon stocks for organic and mineral horizons 

Site 

Average 
Total 
Depth 

(m) 

Standard 
Error  

Organic Horizons Mineral Horizons 

Average 
Thickness 

(m) 

Standard 
Error 

Average 
Organic 
Carbon 
Content 

(%) 

Soil 
Organic 
Carbon 
Stock  

(tC 
km⁻²) 

Error  
(tC 

km⁻²) 

Average 
Thickness 

(m) 

Standard 
Error 

Average 
Organic 
Carbon 
Content 

(%) 

Soil 
Organic 
Carbon 
Stock 
 (tC 

km⁻²) 

Error 
 (tC 

km⁻²) 

4.1 0.32 0.036 0.06 0.022 6.79 1516 1068 0.26 0.037 1.89 4391 1264 

4.2 0.27 0.046 0.10 0.015 3.86 1490 904 0.17 0.058 0.81 1231 519 

5.1 0.64 - 0.05 0.012 21.19 4089 2616 0.59 0.012 3.30 17388 4376 



170 
 

5.2 0.32 - 0.26 - 7.97 8419 4919 0.06 - 0.70 377 94 

5.3 0.58 0.011 0.09 0.004 7.71 2663 1560 0.49 0.014 2.31 10078 2544 

5.4 0.65 - 0.13 - 9.93 5247 3065 0.52 - 2.17 10060 2523 

5.5 1.02 - 0.05 - 14.19 2595 1516 0.98 - 1.55 13490 3383 

5.6 0.30 - 0.03 - 3.64 444 259 0.27 - 2.68 6447 1617 

5.8 0.48 - 0.07 - 7.23 1911 1116 0.42 - 2.35 8687 2179 

17.1 0.35 0.048 0.10 0.012 11.78 4627 2762 0.25 0.058 2.13 4751 1622 

17.3 0.26 0.004 0.12 0.028 9.05 4413 2780 0.14 0.032 2.91 3498 1204 

17.5 0.12 0.001 0.12 0.001 24.36 11548 6748 - - - - - 

17.6 0.19 0.014 0.07 0.005 7.93 2255 1326 0.12 0.010 0.99 1033 273 

17.7 0.14 0.010 0.07 0.008 15.63 4341 2590 0.07 0.018 1.81 1099 400 

17.8 0.11 0.006 0.11 0.006 23.00 10435 6121 - - - - - 

17.9 0.10 0.012 0.07 0.013 13.71 3993 2442 0.03 0.006 5.29 1493 467 

18.1 0.69 0.190 0.19 0.012 53.32 41168 24202 0.50 0.200 3.12 13971 6570 

18.2 0.70 - 0.18 - - - - 0.52 - 3.33 15407 3864 

18.3 0.51 0.060 0.21 0.004 42.29 35231 20591 0.30 0.057 5.27 14080 4418 

18.4 0.55 0.046 0.01 0.005 - - - 0.54 0.051 1.51 7233 1941 

18.5 0.66 0.113 0.04 0.004 7.79 1108 657 0.63 0.117 1.25 6940 2170 

Bold and italics – This sample was not analysed using the EA-IRMS but instead was analysed using a different technique, which used 

phosphoric acid and combustion in order to measure total inorganic carbon. Total inorganic carbon was then subtracted from total carbon 

in order to estimate total organic carbon for the sample. This was due to the samples also being used for an MSci thesis.  
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Soil profile organic carbon stocks and geomorphic variables 

Site 
Elevation 

(m)¹ 
Aspect 

(degrees)¹ 
Slope 

(degrees)¹ 

Profile 
Average 
Organic 
Carbon 

Content (%) 

Total Profile 
Soil Organic 

Carbon Stock 
(tC km⁻²) 

Error  
(tC km⁻²) 

4.1 217 219 29 4.3 5908 1655 

4.2 223 279 11 2.3 2722 1042 

5.1 1303 29 16 12.2 21477 5098 

5.2 1150 111 45 4.3 8796 4920 

5.3 1000 48 31 5.0 12741 2984 

5.4 905 100 31 6.1 15307 3970 

5.5 694 116 22 7.9 16084 3707 

5.6 541 13 30 3.2 6891 1637 

5.8 298 11 28 4.8 10597 2448 

17.1 613 307 30 7.0 9378 3203 

17.3 475 289 28 6.0 7911 3029 

17.5 396 327 31 12.2 11548 6748 

17.6 320 310 29 4.5 3288 1354 

17.7 280 309 30 8.7 5440 2620 

17.8 249 304 27 11.5 10435 6121 

17.9 214 52 2 9.5 5486 2487 

18.1 299 14 14 28.2 55140 25078 

18.2 273 8 29 1.7 15407 3864 

18.3 230 7 32 23.8 49311 21060 

18.4 195 340 11 0.8 7233 1941 

18.5 168 315 7 4.5 8048 2267 

1 Quantified using 8 m x 8 m DEM from LINZ (2012). 

 

Location-based and regional soil organic carbon stock estimates 

  Soil Organic Carbon Stock (tC km⁻²) 

Location 
Location 
Average 

Standard 
Error 

Average 
for 

Organic 
Horizons 

Standard 
Error 

Average 
for 

Mineral 
Horizons 

Standard 
Error 

Callery Gorge 4315 1126 1503 9* 2811 1117 

Alex Knob Track 13128 1734 3624 913 9504 1874 

Roberts Point 
Track 

7641 1056 5944 1242 1696 625 

Mount Fox Trail 27028 7881 13591 7042 11526 1384 

Regional 13028 4337 6166 2283 6384 2105 

* Small standard error because of small sample size. 

 



172 
 

References 

Aïchi, H., Fouad, Y., Walter, C., Rossel, R.V., Chabaane, Z.L. and Sanaa, M. (2009). 

Regional predictions of soil organic carbon content from spectral reflectance 

measurements. Biosystems Engineering, 104(3), pp.442-446. 

Aitkenhead, J.A. and McDowell, W.H. (2000). Soil C: N ratio as a predictor of annual 

riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14(1), 

pp.127-138. 

Bangroo, S.A., Ali, T., Mahdi, S.S., Najar, G.R. and Sofi, J.A. (2013). Carbon and 

greenhouse gas mitigation through soil carbon sequestration potential of adaptive 

agriculture and agroforestry systems. Range Management and Agroforestry, 34(1), 

pp.1-11. 

Bangroo, S.A., Najar, G.R. and Rasool, A. (2017). Effect of altitude and aspect on 

soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. 

Catena, 158, pp.63-68. 

Basher L. (1986). Pedogenesis and erosion history in a high rainfall mountainous 

drainage basin: Cropp River, New Zealand. PhD thesis, Lincoln University, Lincoln: 

New Zealand. 

Basher, L., Betts, H., Lynn, I., Marden, M., McNeill, S., Page, M. and Rosser, B. 

(2018). A preliminary assessment of the impact of landslide, earthflow, and gully 

erosion on soil carbon stocks in New Zealand. Geomorphology, 307(1), pp.93-106. 

Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the world. European 

Journal of Soil Science, 47(2), pp.151-163. 

Baur, A.J. (1952). Soil and water conservation glossary. Journal of Soil and Water 

Conservation, 7, pp.41-52. 

Bellingham, P.J. and Richardson, S.J. (2006). Tree seedling growth and survival 

over 6 years across different microsites in a temperate rain forest. Canadian Journal of 

Forest Research, 36(4), pp.910-918. 

Bemer, R.A. (2006). A combined model for Phanerozoic atmospheric 02 and CO2. 

Geochemica et Cosmochimiea Acta, 70, pp.5653-5664. 

Berg, B. (2000). Litter decomposition and organic matter turnover in northern forest 

soils. Forest ecology and Management, 133(1-2), pp.13-22. 

Berhe, A.A., Harte, J., Harden, J.W. and Torn, M.S. (2007). The significance of the 

erosion-induced terrestrial carbon sink. BioScience, 57(4), pp.337-346. 

Berner, R.A. (1982). Burial of organic carbon and pyrite sulfur in the modern ocean: its 

geochemical and environmental significance. American Journal of Science, 282(1), 

pp.451-473. 



173 
 

Berner, R.A. (1990). Atmospheric carbon dioxide levels over Phanerozoic time. 

Science, 249(4975), pp.1382-1386. 

Berryman, K. and Cochran, U. (2012). A geological study of the southern section of 

the Alpine Fault spanning the past 8000 years has given scientists an improved 

understanding of the behaviour of this major plate boundary fault. Available: 

https://www.gns.cri.nz/Home/News-and-Events/Media-Releases/improved-

understanding-of-alpine-fault. Last accessed 15/02/2019. 

Beyssac, O., Goffé, B., Chopin, C. and Rouzaud, J.N. (2002). Raman spectra of 

carbonaceous material in metasediments: a new geothermometer. Journal of 

Metamorphic Geology, 20(9), pp.859-871. 

Bilby, R.E. and Ward, J.W. (1991). Characteristics and function of large woody debris 

in streams draining old-growth, clear-cut, and second-growth forests in southwestern 

Washington. Canadian Journal of Fisheries and Aquatic Sciences, 48(12), pp.2499-

2508. 

Bisutti, I., Hilke, I. and Raessler, M. (2004). Determination of total organic carbon–an 

overview of current methods. TrAC Trends in Analytical Chemistry, 23(10-11), pp.716-

726. 

Blair, N.E., Leithold, E.L. and Aller, R.C. (2004). From bedrock to burial: the evolution 

of particulate organic carbon across coupled watershed-continental margin systems. 

Marine Chemistry, 92(1-4), pp.141-156. 

Bolin, B. (1970). The carbon cycle. Scientific American, 223(3), pp.124-135. 

Bot, A. and Benites, J. (2005). The importance of soil organic matter: Key to drought-

resistant soil and sustained food production (No. 80). Food & Agriculture Organisation 

of the United Nations. Rome: FAO. 

Bouchez, J., Galy, V., Hilton, R.G., Gaillardet, J., Moreira-Turcq, P., Pérez, M.A., 

France-Lanord, C. and Maurice, L. (2014). Source, transport and fluxes of Amazon 

River particulate organic carbon: insights from river sediment depth-profiles. 

Geochimica et Cosmochimica Acta, 133, pp.280-298. 

Boutton, R.W. (1996). Stable carbon isotope ratios of soil organic matter and their use 

as indicators of vegetation and climate change. In: Botton, T., W. and Yamasaki, S. 

Mass Spectrometry of Soils. New York: Marcel Dekker. pp.47–82.  

Brady, N.C (1990). The Nature and Properties of Soils. 10th ed. New York: Macmillan. 

621pp. 

Brideau, M.A., Stead, D., Lipovsky, P., Jaboyedoff, M., Hopkinson, C., Demuth, 

M., Barlow, J., Evans, S. and Delaney, K. (2009). Preliminary description and slope 

stability analyses of the 2008 Little Salmon Lake and 2007 Mt. Steele landslides, 

Yukon. Yukon Exploration and Geology, pp.119-134. 



174 
 

Bull, W.B. and Cooper, A.F. (1986). Uplifted marine terraces along the Alpine fault, 

New Zealand. Science, 234(4781), pp.1225-1228. 

Burbank, D.W. and Anderson, R.S (2001). Tectonic Geomorphology. Malden, MA: 

Blackwell Science. 273pp. 

Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R. 

and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the 

northwestern Himalayas. Nature, 379(6565), pp.505-510. 

Burke, T.J., Sattler, D.N. and Terich, T. (2002). The socioeconomic effects of a 

landslide in Western Washington. Global Environmental Change Part B: Environmental 

Hazards, 4(4), pp.129-136. 

Burton, A. and Bathurst, J.C. (1998). Physically based modelling of shallow landslide 

sediment yield at a catchment scale. Environmental Geology, 35(2-3), pp.89-99. 

Carson, M.A. and Petley, D.J. (1970). The existence of threshold hillslopes in the 

denudation of the landscape. Transactions of the Institute of British Geographers, 

pp.71-95. 

Carter, J. and Barwick, V (2011). Good Practice Guide for Isotope Ratio Mass 

Spectrometry. United Kingdom: FIRMS. 48pp. 

Caughey, M.E., Barcelona, M.J., Powell, R.M., Cahill, R.A., Grøn, C., Lawrenz, D. 

and Meschi, P.L. (1995). Interlaboratory study of a method for determining nonvolatile 

organic carbon in aquifer materials. Environmental Geology, 26(4), pp.211-219. 

Chamberlain, C.P., Poage, M.A., Craw, D. and Reynolds, R.C. (1999). Topographic 

development of the Southern Alps recorded by the isotopic composition of authigenic 

clay minerals, South Island, New Zealand. Chemical Geology, 155(3-4), pp.279-294. 

Chamberlain, C.P., Zeitler, P.K. and Cooper, A.F. (1995). Geochronologic 

constraints of the uplift and metamorphism along the Alpine Fault, South Island, New 

Zealand. New Zealand Journal of Geology and Geophysics, 38(4), pp.515-523. 

Churchill, R.R. (1982). Aspect‐induced differences in hillslope processes. Earth 

Surface Processes and Landforms, 7(2), pp.171-182. 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., 

DeFries, R., Galloway, J., Heimann, M. and Jones, C. (2013). Carbon and other 

biogeochemical cycles. In Climate change 2013: the physical science basis. 

Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press. 

pp. 465-570. 

Clark, K.E., Hilton, R.G., West, A.J., Caceres, A.R., Gröcke, D.R., Marthews, T.R., 

Ferguson, R.I., Asner, G.P., New, M. and Malhi, Y. (2017). Erosion of organic carbon 

from the Andes and its effects on ecosystem carbon dioxide balance. Journal of 

Geophysical Research: Biogeosciences, 122(3), pp.449-469. 



175 
 

Clark, K.E., Hilton, R.G., West, A.J., Malhi, Y., Gröcke, D.R., Bryant, C.L., 

Ascough, P.L., Caceres, A.R. and New, M. (2013). New views on “old” carbon in the 

Amazon River: Insight from the source of organic carbon eroded from the Peruvian 

Andes. Geochemistry, Geophysics, Geosystems, 14(5), pp.1644-1659. 

Clark, K.E., West, A.J., Hilton, R.G., Asner, G.P., Quesada, C.A., Silman, M.L., 

Saatchi, S.S., Farfan-Rios, W., Martin, R.E., Horwath, A.B. and Halladay, K. (2016). 

Storm-triggered landslides in the Peruvian Andes and implications for topography, 

carbon cycles, and biodiversity. Earth Surface Dynamics., 4(1), pp.47-70. 

Clarke, B.A. and Burbank, D.W. (2010). Bedrock fracturing, threshold hillslopes, and 

limits to the magnitude of bedrock landslides. Earth and Planetary Science Letters, 

297(3-4), pp.577-586. 

Cloern, J.E., Canuel, E.A. and Harris, D. (2002). Stable carbon and nitrogen isotope 

composition of aquatic and terrestrial plants of the San Francisco Bay estuarine 

system. Limnology and Oceanography, 47(3), pp.713-729. 

Coates, D.R. (1977). Landslide perspectives. In: Coates, D.R Landslides. Washington 

D.C.: Geological Society of America. pp.3-28. 

Coomes, D.A., Allen, R.B., Scott, N.A., Goulding, C. and Beets, P. (2002). 

Designing systems to monitor carbon stocks in forests and shrublands. Forest Ecology 

and Management, 164(1-3), pp.89-108. 

Cooper, A.F. (1980). Retrograde alteration of chromian kyanite in metachert and 

amphibolite whiteschist from the Southern Alps, New Zealand, with implications for 

uplift on the Alpine Fault. Contributions to Mineralogy and Petrology, 75(2), pp.153-

164. 

Cooper, A.F. and Norris, R.J. (1994). Anatomy, structural evolution, and slip rate of a 

plate-boundary thrust: The Alpine fault at Gaunt Creek, Westland, New Zealand. 

Geological Society of America Bulletin, 106(5), pp.627-633. 

Copernicus. (2018). Sentinel 2 Imagery. Available: https://www.copernicus.eu/en. Last 

accessed 15/06/2018. 

Costa, J.E. and Schuster, R.L. (1988). The formation and failure of natural dams. 

Geological Society of America bulletin, 100(7), pp.1054-1068. 

Craine, J.M., Brookshire, E.N.J., Cramer, M.D., Hasselquist, N.J., Koba, K., Marin-

Spiotta, E. and Wang, L. (2015). Ecological interpretations of nitrogen isotope ratios of 

terrestrial plants and soils. Plant and Soil, 396(1-2), pp.1-26. 

Craine, J.M., Elmore, A.J., Aidar, M.P., Bustamante, M., Dawson, T.E., Hobbie, 

E.A., Kahmen, A., Mack, M.C., McLauchlan, K.K., Michelsen, A. and Nardoto, G.B. 

(2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, 

mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New 

Phytologist, 183(4), pp.980-992. 



176 
 

Croissant, T., Lague, D., Steer, P. and Davy, P. (2017). Rapid post-seismic landslide 

evacuation boosted by dynamic river width. Nature Geoscience, 10(9), pp.680-684. 

Crosta, G.B., Frattini, P. and Fusi, N. (2007). Fragmentation in the Val Pola rock 

avalanche, Italian alps. Journal of Geophysical Research: Earth Surface, 112(F1), 

pp.1-23. 

Cruden, D. (1991). A simple definition of a landslide. Bulletin of the International 

Association of Engineering Geology. 43 (1), pp.27-29. 

Cruden, D. and Varnes, D.J. (1996). Landslide types and processes. In: Turner, A.K. 

and Schuster, R.L Landslides Investigation and Mitigation, Special Report, 247, 

Transportation Research Board,. Washington D.C: National Academy of Sciences. 

pp.36-75. 

Dadson, S., Hovius, N., Pegg, S., Dade, W.B., Horng, M.J. and Chen, H. (2005). 

Hyperpycnal river flows from an active mountain belt. Journal of Geophysical 

Research: Earth Surface, 110(F4), pp.1-14. 

Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., 

Horng, M.J., Chen, T.C., Milliman, J. and Stark, C.P. (2004). Earthquake-triggered 

increase in sediment delivery from an active mountain belt. Geology, 32(8), pp.733-

736. 

Densmore, A.L. and Hovius, N. (2000). Topographic fingerprints of bedrock 

landslides. Geology, 28(4), pp.371-374. 

Densmore, A.L., Ellis, M.A. and Anderson, R.S. (1998). Landsliding and the 

evolution of normal‐fault‐bounded mountains. Journal of Geophysical Research: Solid 

Earth, 103(B7), pp.15203-15219. 

Ding, F., Huang, Y., Sun, W., Jiang, G. and Chen, Y. (2014). Decomposition of 

organic carbon in fine soil particles is likely more sensitive to warming than in coarse 

particles: an incubation study with temperate grassland and forest soils in northern 

China. PloS one, 9(4), p.e95348. 

Dzurec, R.S., Boutton, T.W., Caldwell, M.M. and Smith, B.N. (1985). Carbon isotope 

ratios of soil organic matter and their use in assessing community composition changes 

in Curlew Valley, Utah. Oecologia, 66(1), pp.17-24. 

Emberson, R., Hovius, N., Galy, A. and Marc, O. (2016). Chemical weathering in 

active mountain belts controlled by stochastic bedrock landsliding. Nature Geoscience, 

9(1), pp.42-45. 

Falkowski, P., Scholes, R.J., Boyle, E.E.A., Canadell, J., Canfield, D., Elser, J., 

Gruber, N., Hibbard, K., Högberg, P., Linder, S. and Mackenzie, F.T. (2000). The 

global carbon cycle: a test of our knowledge of earth as a system. Science, 290(5490), 

pp.291-296. 



177 
 

Finlay, J.C. and Kendall, C. (2007). Stable isotope tracing of temporal and spatial 

variability in organic matter sources to freshwater ecosystems. In: Michener, R. and 

Lajtha, K. Stable Isotopes in Ecology and Environmental Science.. 2nd ed. Oxford: 

Blackwell Publishing Ltd. pp.283-333. 

Finlay, J.C., Power, M.E. and Cabana, G. (1999). Effects of water velocity on algal 

carbon isotope ratios: implications for river food web studies. Limnology and 

Oceanography, 44(5), pp.1198-1203. 

France-Lanord, C. and Derry, L.A. (1997). Organic carbon burial forcing of the carbon 

cycle from Himalayan erosion. Nature, 390(6655), pp.65-67. 

Franzluebbers, A.J. (2002). Water infiltration and soil structure related to organic 

matter and its stratification with depth. Soil and Tillage Research, 66(2), pp.197-205. 

Frith, N.V., Hilton, R.G., Howarth, J.D., Gröcke, D.R., Fitzsimons, S.J., Croissant, 

T., Wang, J., McClymont, E.L., Dahl, J. and Densmore, A.L. (2018). Carbon export 

from mountain forests enhanced by earthquake-triggered landslides over millennia. 

Nature Geoscience, 11(10), pp.772-776. 

Froelich, P.N. (1980). Analysis of organic carbon in marine sediments1. Limnology 

and Oceanography, 25(3), pp.564-572. 

Fry, B. (2006). Stable Isotope Ecology. USA: Springer Publishers. 308 pp. 

Gaillardet, J., Dupré, B., Louvat, P. and Allegre, C.J. (1999). Global silicate weathering 

and CO2 consumption rates deduced from the chemistry of large rivers. Chemical 

Geology, 159(1-4), pp.3-30. 

Galy, V. and Eglinton, T. (2011). Protracted storage of biospheric carbon in the 

Ganges–Brahmaputra basin. Nature Geoscience, 4(12), pp.843-847. 

Galy, V., Beyssac, O., France-Lanord, C. and Eglinton, T. (2008). Recycling of 

graphite during Himalayan erosion: A geological stabilization of carbon in the crust. 

Science, 322(5903), pp.943-945. 

Galy, V., Bouchez, J. and France‐Lanord, C. (2007b). Determination of total organic 

carbon content and δ13C in carbonate‐rich detrital sediments. Geostandards and 

Geoanalytical Research, 31(3), pp.199-207. 

Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H. and Palhol, F. 

(2007a). Efficient organic carbon burial in the Bengal fan sustained by the Himalayan 

erosional system. Nature, 450(7168), pp.407-410. 

Galy, V., Peucker-Ehrenbrink, B. and Eglinton, T. (2015). Global carbon export from 

the terrestrial biosphere controlled by erosion. Nature, 521(7551), pp.204-207. 

Gandhi, H., Wiegner, T.N., Ostrom, P.H., Kaplan, L.A. and Ostrom, N.E. (2004). 

Isotopic (13C) analysis of dissolved organic carbon in stream water using an elemental 

analyzer coupled to a stable isotope ratio mass spectrometer. Rapid Communications 

in Mass Spectrometry, 18(8), pp.903-906. 



178 
 

Gao, J. and Maro, J. (2010). Topographic controls on evolution of shallow landslides 

in pastoral Wairarapa, New Zealand, 1979–2003. Geomorphology, 114(3), pp.373-381. 

Garten, C.F., Post, W.M., Hanson, P.J. and Cooper, L.W. (1999). Forest soil carbon 

inventories and dynamics along an elevation gradient in the southern Appalachian 

Mountains. Biogeochemistry, 45(2), pp.115-145. 

Garten, C.T., Hanson, P.J., Todd, D.E., Lu, B.B. and Brice, D.J.. (2007). Natural 

15N-and 13C-abundance as indicators of forest nitrogen status and soil carbon 

dynamics. In: Michener, R. and Lajtha, K. Stable Isotopes in Ecology and 

Environmental Science. 2nd ed. Oxford: Blackwell Publishing Ltd. pp.61-82. 

Gibbs, R.J. (1977). Effect of combustion temperature and time, and of the oxidation 

agent used in organic carbon and nitrogen analyses of sediments and dissolved 

organic material. Journal of Sedimentary Research, 47(2), pp.547-550. 

Gilley, J.E. (2005). Water-Induced Erosion. In: Hillel, D Encyclopedia of Soils in the 

Environment. New York: Elsevier. pp.463-469. 

Glade, T. (2003). Landslide occurrence as a response to land use change: a review of 

evidence from New Zealand. Catena, 51(3-4), pp.297-314. 

Gomez, B., Trustrum, N.A., Hicks, D.M., Rogers, K.M., Page, M.J. and Tate, K.R. 

(2003). Production, storage, and output of particulate organic carbon: Waipaoa River 

basin, New Zealand. Water Resources Research, 39(6), pp.1-8. 

Goñi, M.A., Ruttenberg, K.C. and Eglinton, T.I. (1998). A reassessment of the 

sources and importance of land-derived organic matter in surface sediments from the 

Gulf of Mexico. Geochimica et Cosmochimica Acta, 62(18), pp.3055-3075. 

Göransson, G., Norrman, J., Larson, M., Alén, C. and Rosén, L. (2014). A 

methodology for estimating risks associated with landslides of contaminated soil into 

rivers. Science of the Total Environment, 472(1), pp.481-495. 

Griffiths, G. and McSaveney, M. (1983). Distribution of mean annual precipitation 

across some steepland regions of New Zealand. New Zealand Journal of Science, 

26(2), pp.197-209. 

Griffiths, R.P., Madritch, M.D. and Swanson, A.K. (2009). The effects of topography 

on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for 

the effects of climate change on soil properties. Forest Ecology and Management, 

257(1), pp.1-7. 

Guariguata, M.R. (1990). Landslide disturbance and forest regeneration in the upper 

Luquillo Mountains of Puerto Rico. The Journal of Ecology, 78(3), pp.814-832. 

Gunn, B.M. (1960). Structural features of the Alpine Schists of the Franz Josef—Fox 

Glacier Region. New Zealand Journal of Geology and Geophysics, 3(2), pp.287-308. 



179 
 

Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M. and Valigi, D. (2009). Landslide 

volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary 

Science Letters, 279(3-4), pp.222-229. 

Hancox, G.T., McSaveney, M.J., Manville, V.R. and Davies, T.R. (2005). The 

October 1999 Mt Adams rock avalanche and subsequent landslide dam‐break flood 

and effects in Poerua River, Westland, New Zealand. New Zealand Journal of Geology 

and Geophysics, 48(4), pp.683-705. 

Hansen, M.J. (1984). Strategies for classification of landslides. In: Brunsden, D. and 

Prior, D.B. Slope Instability. New York: Wiley. pp.1-25. 

Harland, W.B. (1971). Tectonic transpression in caledonian Spitsbergen. Geological 

Magazine, 108(1), pp.27-41. 

Harrison, K.G., Broecker, W.S. and Bonani, G. (1993). The effect of changing land 

use on soil radiocarbon. Science, 262(5134), pp.725-726. 

Hart, P.B.S., Clinton, P.W., Allen, R.B., Nordmeyer, A.H. and Evans, G. (2003). 

Biomass and macro-nutrients (above-and below-ground) in a New Zealand beech 

(Nothofagus) forest ecosystem: implications for carbon storage and sustainable forest 

management. Forest Ecology and Management, 174(1-3), pp.281-294. 

Hedges, J.I. and Keil, R.G. (1995). Sedimentary organic matter preservation: an 

assessment and speculative synthesis. Marine Chemistry, 49(2-3), pp.81-115. 

Hedges, J.I. and Oades, J.M. (1997). Comparative organic geochemistries of soils 

and marine sediments. Organic geochemistry, 27(7-8), pp.319-361. 

Hedges, J.I., Keil, R.G. and Benner, R. (1997). What happens to terrestrial organic 

matter in the ocean?. Organic Geochemistry, 27(5-6), pp.195-212. 

Hemingway, J.D., Hilton, R.G., Hovius, N., Eglinton, T.I., Haghipour, N., Wacker, 

L., Chen, M.C. and Galy, V. (2018). Microbial oxidation of lithospheric organic carbon 

in rapidly eroding tropical mountain soils. Science, 360(6385), pp.209-212. 

Herman, F., Beyssac, O., Brughelli, M., Lane, S.N., Leprince, S., Adatte, T., Lin, 

J.Y., Avouac, J.P. and Cox, S.C. (2015). Erosion by an Alpine glacier. Science, 

350(6257), pp.193-195. 

Heron, G., Barcelona, M.J., Andersen, M.L. and Christensen, T.H. (1997). 

Determination of nonvolatile organic carbon in aquifer solids after carbonate removal 

by sulfurous acid. Groundwater, 35(1), pp.6-11. 

Hicks, D.M., Gomez, B. and Trustrum, N.A. (2004). Event suspended sediment 

characteristics and the generation of hyperpycnal plumes at river mouths: East Coast 

Continental Margin, North Island, New Zealand. The Journal of Geology, 112(4), 

pp.471-485. 

Hiederer, R. (2009) Distribution of Organic Carbon in Soil Profile Data. EUR 23980 

EN. Luxembourg: Office for Official Publications of the European Communities. 126pp. 



180 
 

Hilton, R.G., Galy, A. and Hovius, N. (2008a). Riverine particulate organic carbon 

from an active mountain belt: Importance of landslides. Global Biogeochemical Cycles, 

22(1), pp.1-12 

Hilton, R.G., Galy, A., Hovius, N., Chen, M.C., Horng, M.J. and Chen, H. (2008b). 

Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature 

Geoscience, 1(11), pp.759-762. 

Hilton, R.G., Galy, A., Hovius, N., Horng, M.J. and Chen, H. (2011b). Efficient 

transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic 

carbon sequestration mechanism. Geology, 39(1), pp.71-74. 

Hilton, R.G., Galy, A., Hovius, N., Horng, M.J. and Chen, H., (2010). The isotopic 

composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et 

Cosmochimica Acta, 74(11), pp.3164-3181. 

Hilton, R.G., Galy, A., Hovius, N., Kao, S.J., Horng, M.J. and Chen, H. (2012). 

Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical 

mountain forest. Global Biogeochemical Cycles, 26(3), pp.1-12. 

Hilton, R.G., Meunier, P., Hovius, N., Bellingham, P.J. and Galy, A. (2011a). 

Landslide impact on organic carbon cycling in a temperate montane forest. Earth 

Surface Processes and Landforms, 36(12), pp.1670-1679. 

Hobbie, E.A. and Ouimette, A.P. (2009). Controls of nitrogen isotope patterns in soil 

profiles. Biogeochemistry, 95(2-3), pp.355-371. 

Hoffmann, U., Hoffmann, T., Jurasinski, G., Glatzel, S. and Kuhn, N.J. (2014). 

Assessing the spatial variability of soil organic carbon stocks in an alpine setting 

(Grindelwald, Swiss Alps). Geoderma, 232(1), pp.270-283. 

Högberg, P. (1997). 15N natural abundance in soil-plant systems. New Phytologist, 

137(2), pp.179-204. 

Horan, K., Hilton, R.G., Selby, D., Ottley, C.J., Gröcke, D.R., Hicks, M. and Burton, 

K.W. (2017). Mountain glaciation drives rapid oxidation of rock-bound organic carbon. 

Science Advances, 3(10), e1701107, pp.1-9. 

Hovius, N., Galy, A., Hilton, R.G., Sparkes, R., Smith, J., Shuh-Ji, K., Hongey, C., 

In-Tian, L. and West, A.J. (2011a). Erosion-driven drawdown of atmospheric carbon 

dioxide: The organic pathway. Applied Geochemistry, 26(1), pp.S285-S287. 

Hovius, N., Meunier, P., Lin, C.W., Chen, H., Chen, Y.G., Dadson, S., Horng, M.J. 

and Lines, M. (2011b). Prolonged seismically induced erosion and the mass balance 

of a large earthquake. Earth and Planetary Science Letters, 304(3-4), pp.347-355. 

Hovius, N., Stark, C.P. and Allen, P.A. (1997). Sediment flux from a mountain belt 

derived by landslide mapping. Geology, 25(3), pp.231-234. 



181 
 

Howarth, J.D., Fitzsimons, S.J., Norris, R.J. and Jacobsen, G.E. (2012). Lake 

sediments record cycles of sediment flux driven by large earthquakes on the Alpine 

fault, New Zealand. Geology, 40(12), pp.1091-1094. 

Huang, P.T., Patel, M., Santagata, M.C. and Bobet, A. (2009). Classification of 

organic soils. FHWA/IN/JTRP-2008/2. 195pp. 

IAEG Commission of Landslides (1990). Suggested nomenclature for landslides. 

Bulletin of the International Associated of Engineering Geology, 41(1), pp.13-16.  

Iso-Analytical. (n.d.). STABLE ISOTOPE ANALYSIS TECHNIQUES. Available: 

http://www.iso-analytical.co.uk/ea-irms.html. Last accessed 15/02/2019.  

Iverson, R.M. and Reid, M.E. (1992). Gravity‐driven groundwater flow and slope 

failure potential: 1. Elastic effective‐stress model. Water Resources Research, 28(3), 

pp.925-938. 

Jenny, H. (1941), Factors of soil formation. New York: McGraw-Hill. 281pp. 

Jenny, H. (1980). The Soil Resource. New York: Springer-Verlag. 377pp. 

Jobbagy, E. and Jackson, R. (2000). The vertical distribution of soil organic carbon 

and its relation to climate and vegetation. Ecological Applications. 10(2), pp.423-436. 

Johnston, O.R. (2014). A comparison of the stable isotopic ecology of eastern, 

western, and pre-human forest ecosystems in the South Island of New Zealand. 

Masters thesis, University of Canterbury, Canterbury: New Zealand.  

Joyce, K.E., Belliss, S.E., Samsonov, S.V., McNeill, S.J. and Glassey, P.J. (2009). 

A review of the status of satellite remote sensing and image processing techniques for 

mapping natural hazards and disasters. Progress in Physical Geography, 33(2), 

pp.183-207. 

Juma, N.G. (1998). The pedosphere and its dynamics. A systems approach to soil 

science. Volume 1: introduction to soil science and soil resources. Canada: Salman 

productions. 

Kane, E.S., Valentine, D.W., Schuur, E.A. and Dutta, K. (2005). Soil carbon 

stabilization along climate and stand productivity gradients in black spruce forests of 

interior Alaska. Canadian Journal of Forest Research, 35(9), pp.2118-2129. 

Kao, S.J., Dai, M.H., Wei, K.Y., Blair, N.E. and Lyons, W.B. (2008). Enhanced supply 

of fossil organic carbon to the Okinawa Trough since the last deglaciation. 

Paleoceanography and Paleoclimatology, 23(2), pp.1-10. 

Kao, S.J., Hilton, R.G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.C., Hsu, S.C., 

Sparkes, R., Liu, J.T., Lee, T.Y. and Yang, J.Y.T. (2014). Preservation of terrestrial 

organic carbon in marine sediments offshore Taiwan: mountain building and 

atmospheric carbon dioxide sequestration. Earth Surface Dynamics., 2(1), pp.127-139. 

Keefer, D.K. (1984). Landslides caused by earthquakes. Geological Society of 

America Bulletin, 95(4), pp.406-421. 



182 
 

Keller, E. A (1996). Environmental Geology. 7th ed. Upper Saddle River, New Jersey: 

Prentice Hall. 592pp. 

Kendall, C., Silva, S.R. and Kelly, V.J. (2001). Carbon and nitrogen isotopic 

compositions of particulate organic matter in four large river systems across the United 

States. Hydrological Processes, 15(7), pp.1301-1346. 

Komada, T., Anderson, M.R. and Dorfmeier, C.L. (2008). Carbonate removal from 

coastal sediments for the determination of organic carbon and its isotopic signatures, 

δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. 

Limnology and Oceanography: Methods, 6(6), pp.254-262. 

Körner, C., Farquhar, G.D. and Roksandic, Z. (1988). A global survey of carbon 

isotope discrimination in plants from high altitude. Oecologia, 74(4), pp.623-632. 

Körner, C., Farquhar, G.D. and Wong, S.C. (1991). Carbon isotope discrimination by 

plants follows latitudinal and altitudinal trends. Oecologia, 88(1), pp.30-40. 

Korup, O. (2004). Geomorphic implications of fault zone weakening: slope instability 

along the Alpine Fault, South Westland to Fiordland. New Zealand Journal of Geology 

and Geophysics, 47(2), pp.257-267. 

Korup, O. (2005a). Large landslides and their effect on sediment flux in South 

Westland, New Zealand. Earth Surface Processes and Landforms: The Journal of the 

British Geomorphological Research Group, 30(3), pp.305-323. 

Korup, O. (2005b). Geomorphic imprint of landslides on alpine river systems, 

southwest New Zealand. Earth Surface Processes and Landforms, 30(7), pp.783-800. 

Korup, O. (2005c). Distribution of landslides in southwest New Zealand. Landslides, 

2(1), pp.43-51. 

Korup, O., Densmore, A.L. and Schlunegger, F. (2010). The role of landslides in 

mountain range evolution. Geomorphology, 120(1-2), pp.77-90. 

Korup, O., Schmidt, J. and McSaveney, M.J. (2005). Regional relief characteristics 

and denudation pattern of the western Southern Alps, New Zealand. Geomorphology, 

71(3-4), pp.402-423. 

Krull, E., Baldock, J. and Skjemstad, J. (2001). Soil texture effects on decomposition 

and soil carbon storage. In Net Ecosystem Exchange CRC Workshop Proceedings. 

pp.103-110. 

Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 

pp.519-539. 

Lal, R. (2003). Soil erosion and the global carbon budget. Environnent International, 

29(4), pp.437-450. 

Lal, R. (2005). Soil erosion and carbon dynamics. Soil and Tillage Research, 81(2), 

pp.137-142. 



183 
 

Lal, R. and Pimentel, D. (2008). Soil erosion: a carbon sink or source?. Science, 

319(5866), pp.1040-1042. 

Land Information New Zealand . (2012). Topo50 maps. Available: 

https://www.linz.govt.nz/land/maps/topographic-maps/topo50-maps. Last accessed 

15/06/2018. 

Larsen, I.J. and Montgomery, D.R. (2012). Landslide erosion coupled to tectonics 

and river incision. Nature Geoscience, 5(7), pp.468-473. 

Larsen, I.J., Montgomery, D.R. and Korup, O. (2010). Landslide erosion controlled 

by hillslope material. Nature Geoscience, 3(4), pp.247-251. 

LeBauer, D.S. and Treseder, K.K. (2008). Nitrogen limitation of net primary 

productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), pp.371-379. 

Li, G., West, A.J., Densmore, A.L., Jin, Z., Parker, R.N. and Hilton, R.G. (2014). 

Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake 

in the context of a generalized model for earthquake volume balance. Geochemistry, 

Geophysics, Geosystems, 15(4), pp.833-844. 

Li, G., West, A.J., Densmore, A.L., Jin, Z., Zhang, F., Wang, J., Clark, M. and 

Hilton, R.G. (2017). Earthquakes drive focused denudation along a tectonically active 

mountain front. Earth and Planetary Science Letters, 472(1), pp.253-265. 

Lin, G.W., Chen, H., Hovius, N., Horng, M.J., Dadson, S., Meunier, P. and Lines, M. 

(2008). Effects of earthquake and cyclone sequencing on landsliding and fluvial 

sediment transfer in a mountain catchment. Earth Surface Processes and Landforms, 

33(9), pp.1354-1373. 

Lorenz, K. and Lal, R. (2005). The depth distribution of soil organic carbon in relation 

to land use and management and the potential of carbon sequestration in subsoil 

horizons. Advances in Agronomy, 88(1), pp.35-66. 

Lozano-García, B., Parras-Alcántara, L. and Brevik, E.C. (2016). Impact of 

topographic aspect and vegetation (native and reforested areas) on soil organic carbon 

and nitrogen budgets in Mediterranean natural areas. Science of the Total 

Environment, 544(1), pp.963-970. 

Ludwig, W., Probst, J.L. and Kempe, S. (1996). Predicting the oceanic input of 

organic carbon by continental erosion. Global Biogeochemical Cycles, 10(1), pp.23-41. 

MacFarlane, W.A. and Wohl, E. (2003). Influence of step composition on step 

geometry and flow resistance in step‐pool streams of the Washington Cascades. Water 

Resources Research, 39(2), pp.1-13 

Mackenzie, F.T. and Lerman, A. (2006). Carbon in the Geobiosphere:-Earth's Outer 

Shell (Vol. 25). Dordrecht: Springer Science & Business Media, 402pp. 

Madej, M.A. (2010). Redwoods, restoration, and implications for carbon budgets. 

Geomorphology, 116(3-4), pp.264-273. 



184 
 

Malamud, B.D., Turcotte, D.L., Guzzetti, F. and Reichenbach, P. (2004). Landslides, 

earthquakes, and erosion. Earth and Planetary Science Letters, 229(1-2), pp.45-59. 

Mariotti, A., Pierre, D., Vedy, J.C., Bruckert, S. and Guillemot, J. (1980). The 

abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal 

gradient (Chablais, Haute Savoie, France). Catena, 7(4), pp.293-300. 

Marshall, J.D., Brooks, J.R. and Lajtha, K.. (2007). Sources of variation in the stable 

isotopic composition of plants. In: Michener, R. and Lajtha, K. Stable Isotopes in 

Ecology and Environmental Science. 2nd ed. Oxford: Blackwell Publishing Ltd. pp.22-

60. 

Martin, Y., Rood, K., Schwab, J.W. and Church, M. (2002). Sediment transfer by 

shallow landsliding in the Queen Charlotte Islands, British Columbia. Canadian Journal 

of Earth Sciences, 39(2), pp.189-205. 

Martinelli, L.A., Piccolo, M.C., Townsend, A.R., Vitousek, P.M., Cuevas, E., 

McDowell, W., Robertson, G.P., Santos, O.C. and Treseder, K. (1999). Nitrogen 

stable isotopic composition of leaves and soil: tropical versus temperate forests. 

Biogeochemistry, 46(1-3), pp.45-65. 

McGuire, A.D., Melillo, J.M., Joyce, L.A., Kicklighter, D.W., Grace, A.L., Moore III, 

B. and Vorosmarty, C.J. (1992). Interactions between carbon and nitrogen dynamics 

in estimating net primary productivity for potential vegetation in North America. Global 

Biogeochemical Cycles, 6(2), pp.101-124. 

McGuire, A.D., Melillo, J.M., Kicklighter, D.W. and Joyce, L.A. (1995). Equilibrium 

responses of soil carbon to climate change: Empirical and process-based estimates. 

Journal of Biogeography, 22(4-5), pp.785-796. 

Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B. and Nadelhoffer, K.J. 

(1989). Carbon and nitrogen dynamics along the decay continuum: plant litter to soil 

organic matter. Plant and Soil, 115(2), pp.189-198. 

Metson, A.J., Blakemore, L.C. and Rhoades, D.A. (1979). Methods for the 

determination of soil organic carbon: a review, and application to New Zealand soils. 

New Zealand Journal of Science. 22(1), pp.205-228. 

Meunier, P., Hovius, N. and Haines, A.J. (2007). Regional patterns of earthquake‐

triggered landslides and their relation to ground motion. Geophysical Research Letters, 

34(20), p.1-5. 

Meunier, P., Hovius, N. and Haines, J.A. (2008). Topographic site effects and the 

location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3-

4), pp.221-232. 

Meybeck, M. (1993). C, N, P and S in Rivers: From Sources to Global Inputs. In: 

Wollast R., Mackenzie F.T. and Chou L. Interactions of C, N, P and S Biogeochemical 



185 
 

Cycles and Global Change. NATO ASI Series (Series I: Global Environmental 

Change), Vol 4. Berlin: Springer. pp.163-193. 

Mitchell, D.G., Aldous, K.M. and Canelli, E. (1977). Determination of organic carbon 

by thermal volatilization plasma emission spectrometry. Analytical Chemistry, 49(8), 

pp.1235-1238. 

Molnar, P. and England, P. (1990). Late Cenozoic uplift of mountain ranges and 

global climate change: chicken or egg?. Nature, 346(6279), pp.29-34. 

Moore, J.W. and Semmens, B.X. (2008). Incorporating uncertainty and prior 

information into stable isotope mixing models. Ecology Letters, 11(5), pp.470-480. 

Morgan, R. P. C (2005). Soil Erosion and Conservation. 3rd ed. Oxford: Blackwell 

Publishing. 320pp. 

Mortimer, N. (2000). Metamorphic discontinuities in orogenic belts: example of the 

garnet–biotite–albite zone in the Otago Schist, New Zealand. International Journal of 

Earth Sciences, 89(2), pp.295-306. 

Mulder, V.L., Lacoste, M., Martin, M.P., Richer‐de‐Forges, A. and Arrouays, D. 

(2015). Understanding large‐extent controls of soil organic carbon storage in relation to 

soil depth and soil‐landscape systems. Global Biogeochemical Cycles, 29(8), pp.1210-

1229. 

Natelhoffer, K.J. and Fry, B. (1988). Controls on natural nitrogen-15 and carbon-13 

abundances in forest soil organic matter. Soil Science Society of America Journal, 

52(6), pp.1633-1640. 

National Committee on Soil and Terrain (2009). Australian Soil and Land Survey 

Field Handbook. 3rd ed. Collingwood, Victoria: CSIRO. 246pp. 

Neal, R.H. and Younglove, T. (1993). The use of a dry combustion infrared 

instrumental technique to determine total and organic carbon in California soils. 

Communications in Soil Science and Plant Analysis, 24(19-20), pp.2733-2746. 

New Zealand Government (2018). New Zealand's Greenhouse Gas Inventory. 

Wellington: Ministry for the Environment.  

Nieuwenhuize, J., Maas, Y.E. and Middelburg, J.J. (1994). Rapid analysis of organic 

carbon and nitrogen in particulate materials. Marine Chemistry, 45(3), pp.217-224. 

Norris, R.J. and Cooper, A.F. (1997). Erosional control on the structural evolution of a 

transpressional thrust complex on the Alpine Fault, New Zealand. Journal of Structural 

Geology, 19(10), pp.1323-1342. 

Norris, R.J. and Cooper, A.F. (2000). Late Quaternary slip rates and slip partitioning 

on the Alpine Fault, New Zealand. Journal of Structural Geology, 23(2-3), pp.507-520. 

Norris, R.J. and Cooper, A.F. (2007). The Alpine Fault, New Zealand: surface 

geology and field relationships. A Continental Plate Boundary: Tectonics at South 

Island, New Zealand, 175(1), pp.157-175. 



186 
 

Norris, R.J., Koons, P.O. and Cooper, A.F. (1990). The obliquely-convergent plate 

boundary in the South Island of New Zealand: implications for ancient collision zones. 

Journal of Structural Geology, 12(5-6), pp.715-725. 

O’Loughlin, C.L. and Pearce, A.J. (1976). Influence of Cenozoic geology on mass 

movement and sediment yield response to forest removal, North Westland, New 

Zealand. Bulletin of the International Association of Engineering Geology-Bulletin de 

l'Association Internationale de Géologie de l'Ingénieur, 13(1), pp.41-46. 

Owens, P.N. and Collins, A.J.. (2006a). Introduction to Soil Erosion and Sediment 

Redistribution in River Catchments: Measurement, Modelling and Management in the 

21st Century. In: Owens, P.N. and Collins, A.J. Soil erosion and sediment redistribution 

in river catchments: measurement, modelling and management. Oxford: CAB 

International. pp.3-13. 

Owens, P.N. and Collins, A.J.. (2006b). Soil Erosion and Sediment Redistribution in 

River Catchments: Summary, Outlook and Future Requirements. In: Owens, P.N. and 

Collins, A.J. Soil erosion and sediment redistribution in river catchments: 

measurement, modelling and management. Oxford: CAB International. pp.297-319. 

Page, M.J., Trustrum, N.A. and Dymond, J.R. (1994). Sediment budget to assess the 

geomorphic effect of a cyclonic storm, New Zealand. Geomorphology, 9(3), pp.169-

188. 

Park, R. and Epstein, S. (1961). Metabolic fractionation of 13C and 12C in plants. 

Plant Physiology, 36(1), pp.133–138. 

Parker, R.N., Densmore, A.L., Rosser, N.J., De Michele, M., Li, Y., Huang, R., 

Whadcoat, S. and Petley, D.N. (2011). Mass wasting triggered by the 2008 

Wenchuan earthquake is greater than orogenic growth. Nature Geoscience, 4(7), 

pp.449-452. 

Perdue, E.M. and Koprivnjak, J.F. (2007). Using the C/N ratio to estimate terrigenous 

inputs of organic matter to aquatic environments. Estuarine, Coastal and Shelf 

Science, 73(1-2), pp.65-72. 

Peres, D.J. and Cancelliere, A. (2014). Derivation and evaluation of landslide-

triggering thresholds by a Monte Carlo approach. Hydrology and Earth System 

Sciences, 18(12), pp.4913-4931. 

Pérez, T., Trumbore, S.E., Tyler, S.C., Davidson, E.A., Keller, M. and Camargo, 

P.D. (2000). Isotopic variability of N2O emissions from tropical forest soils. Global 

Biogeochemical Cycles, 14(2), pp.525-535. 

Perruchoud, D., Walthert, L., Zimmermann, S. and Lüscher, P. (2000). 

Contemporary carbon stocks of mineral forest soils in the Swiss Alps. Biogeochemistry, 

50(2), pp.111-136. 



187 
 

Peterson, B.J. and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual 

Review of Ecology and Systematics, 18(1), pp.293-320. 

Phillips, D.L. and Gregg, J.W. (2003). Source partitioning using stable isotopes: 

coping with too many sources. Oecologia, 136(2), pp.261-269. 

Piccolo, M.C., Neill, C., Melillo, J.M., Cerri, C.C. and Steudler, P.A. (1996). 15 N 

natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant and 

Soil, 182(2), pp.249-258. 

Pitcairn, I.K., Teagle, D.A., Kerrich, R., Craw, D. and Brewer, T.S. (2005). The 

behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: 

evidence from the Otago and Alpine Schists, New Zealand. Earth and Planetary 

Science Letters, 233(1-2), pp.229-246. 

Poeplau, C., Vos, C. and Don, A. (2017). Soil organic carbon stocks are 

systematically overestimated by misuse of the parameters bulk density and rock 

fragment content. Soil, 3(1), pp.61-66. 

Post, W.M., Pastor, J., Zinke, P.J. and Stangenberger, A.G. (1985). Global patterns 

of soil nitrogen storage. Nature, 317(6038), pp.613-616. 

Prahl, F.G., Ertel, J.R., Goñi, M.A., Sparrow, M.A. and Eversmeyer, B. (1994). 

Terrestrial organic carbon contributions to sediments on the Washington margin. 

Geochimica et Cosmochimica Acta, 58(14), pp.3035-3048. 

Ramos Scharrón, C.E., Castellanos, E.J. and Restrepo, C. (2012). The transfer of 

modern organic carbon by landslide activity in tropical montane ecosystems. Journal of 

Geophysical Research: Biogeosciences, 117(G3), pp.1-18. 

Ratick, S. and Schwarz, G. (2009). Monte Carlo Simulation. In: Kitchin, R. and Thrift, 

N. International Encyclopedia of Human Geography. United Kingdom: Elsevier. pp.175-

184. 

Reif, A. and Allen, R.B. (1988). Plant communities of the steep land conifer-

broadleaved hardwood forests of central Westland, South Island, New Zealand. 

Phytocoenologia, 16(2), pp.145-224. 

Restrepo, C., Walker, L.R., Shiels, A.B., Bussmann, R., Claessens, L., Fisch, S., 

Lozano, P., Negi, G., Paolini, L., Poveda, G. and Ramos-Scharrón, C. (2009). 

Landsliding and its multiscale influence on mountainscapes. BioScience, 59(8), pp.685-

698. 

Richey, J.E., Hedges, J.I., Devol, A.H., Quay, P.D., Victoria, R., Martinelli, L. and 

Forsberg, B.R. (1990). Biogeochemistry of carbon in the Amazon River. Limnology 

and Oceanography, 35(2), pp.352-371. 

Ritchie, J.C., McCarty, G.W., Venteris, E.R. and Kaspar, T.C. (2005). Using soil 

redistribution to understand soil organic carbon redistribution and budgets. Sediment 

Budgets, 2(S1), pp.3-8. 



188 
 

Robinson, T.R., Davies, T.R.H., Wilson, T.M. and Orchiston, C. (2016). Coseismic 

landsliding estimates for an Alpine Fault earthquake and the consequences for erosion 

of the Southern Alps, New Zealand. Geomorphology, 263(1), pp.71-86. 

Rodeghiero, M., Heinemeyer, A., Schrumpf, M. and Bellamy, P. (2009). 

Determination of soil carbon stocks and changes. In: Kutsch, W.L., Bahn, M. and 

Heinemeyer, A. Soil Carbon Dynamics-an Integrated Methodology . Cambridge: 

Cambridge University Press. pp.49-75. 

Roser, B.P. and Cooper, A.F. (1990). Geochemistry and terrane affiliation of Haast 

Schist from the western Southern Alps, New Zealand. New Zealand Journal of Geology 

and Geophysics, 33(1), pp.1-10.  

Rossel, R.V., Fouad, Y. and Walter, C. (2008). Using a digital camera to measure soil 

organic carbon and iron contents. Biosystems Engineering, 100(2), pp.149-159. 

Rostad, C.E., Leenheer, J.A. and Daniel, S.R. (1997). Organic carbon and nitrogen 

content associated with colloids and suspended particulates from the Mississippi River 

and some of its tributaries. Environmental Science & Technology, 31(11), pp.3218-

3225. 

Sah, S.P. and Brumme, R. (2003). Altitudinal gradients of natural abundance of stable 

isotopes of nitrogen and carbon in the needles and soil of a pine forest in Nepal. 

Journal Forest Science, 49, pp.19-26. 

Sanderman, J. and Berhe, A.A. (2017). Biogeochemistry: The soil carbon erosion 

paradox. Nature Climate Change, 7(5), pp.317-319. 

Sanderman, J., Baldock, J., Hawke, B., Macdonald, L., Puccini, A. and Szarvas, S. 

(2011). National soil carbon research programme: field and laboratory methodologies. 

Australia: CSIRO. 19pp.  

Sarmiento, J.L. and Sundquist, E.T. (1992). Revised budget for the oceanic uptake 

of anthropogenic carbon dioxide. Nature, 356(6370), pp.589-593. 

Schimel, D.S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change 

Biology, 1(1), pp.77-91. 

Schleisinger, W. (1997). Biogeochemistry. An Analysis of Global Change. 2nd ed. 

New York: Academic Press, 588pp. 

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. (2012). 

Field book for describing and sampling soils, Version 3.0. Natural Resources 

Conservation Service, Lincoln, NE: National Soil Survey Center. 300pp. 

Schubert, C.J. and Calvert, S.E. (2001). Nitrogen and carbon isotopic composition of 

marine and terrestrial organic matter in Arctic Ocean sediments: implications for 

nutrient utilization and organic matter composition. Deep Sea Research Part I: 

Oceanographic Research Papers, 48(3), pp.789-810. 



189 
 

Schumacher, B.A. (2002). Methods for the determination of total organic carbon 

(TOC) in soils and sediments. Ecological Risk Assessment Support Center, pp.1-23. 

Schuster, R.L. and Highland, L.M (2001). Socioeconomic and Environmental Impacts 

of Landslides in the Western Hemisphere. Colorado: US Geological Survey. 47pp. 

Schwab, M., Rieke-Zapp, D., Schneider, H., Liniger, M. and Schlunegger, F. 

(2008). Landsliding and sediment flux in the Central Swiss Alps: A photogrammetric 

study of the Schimbrig landslide, Entlebuch. Geomorphology, 97(3-4), pp.392-406. 

Scott, D.T., Baisden, W.T., Davies‐Colley, R., Gomez, B., Hicks, D.M., Page, M.J., 

Preston, N.J., Trustrum, N.A., Tate, K.R. and Woods, R.A. (2006). Localized erosion 

affects national carbon budget. Geophysical Research Letters, 33(1), pp.1-4. 

Scott, N.A., Tate, K.R., Giltrap, D.J., Smith, C.T., Wilde, H.R., Newsome, P.J.F. and 

Davis, M.R. (2002). Monitoring land-use change effects on soil carbon in New Zealand: 

quantifying baseline soil carbon stocks. Environmental Pollution, 116(1), pp.S167-

S186. 

Selby, M.J (1993). Hillslope Materials and Process. 2nd ed. New York: Oxford 

University Press. 468pp. 

Sharpe, C.F.S. (1960). Landslides and related phenomena: a study of mass-

movements of soil and rock. New York: Columbia University Press, 137pp. 

Shields, J.A., Paul, E.A., St. Arnaud, R.J. and Head, W.K. (1968). 

Spectrophotometry measurement of soil color and its relationship to moisture and 

organic matter. Canadian Journal of Soil Science, 48(3), pp.271-280. 

Shiels, A.B., Walker, L.R. and Thompson, D.B. (2006). Organic matter inputs create 

variable resource patches on Puerto Rican landslides. Plant Ecology, 184(2), pp.223-

236. 

Sidle, R.C. and Ochiai, H. (2006). Landslides: processes, prediction, and land use 

(Volume 18). Water resources monograph series. Washington, D.C.: American 

Geophysical Union. 

Sidle, R.C. and Swanston, D.N. (1982). Analysis of a small debris slide in coastal 

Alaska. Canadian Geotechnical Journal, 19(2), pp.167-174. 

Simegn, T.Y. and Soromessa, T. (2015). Carbon stock variations along altitudinal and 

slope gradient in the Forest Belt of Simen Mountains National Park, Ethiopia. American 

Journal of Environmental Protection, 4(4), pp.199-201. 

Simpson, G.D., Cooper, A.F. and Norris, R.J. (1994). Late quaternary evolution of 

the Alpine fault zone at Paringa, South Westland, New Zealand. New Zealand Journal 

of Geology and Geophysics, 37(1), pp.49-58. 

Sims, Z.R. and Nielsen, G.A. (1986). Organic Carbon in Montana Soils as Related to 

Clay Content and Climate 1. Soil Science Society of America Journal, 50(5), pp.1269-

1271. 



190 
 

Smedley, M.P., Dawson, T.E., Comstock, J.P., Donovan, L.A., Sherrill, D.E., Cook, 

C.S. and Ehleringer, J.R. (1991). Seasonal carbon isotope discrimination in a 

grassland community. Oecologia, 85(3), pp.314-320. 

Sommerfield, C.K., Nittrouer, C.A. and Alexander, C.R. (1999). 7Be as a tracer of 

flood sedimentation on the northern California continental margin. Continental Shelf 

Research, 19(3), pp.335-361. 

Stallard, R.F. (1998). Terrestrial sedimentation and the carbon cycle: coupling 

weathering and erosion to carbon burial. Global Biogeochemical Cycles, 12(2), pp.231-

257. 

Steer, P., Simoes, M., Cattin, R. and Shyu, J.B.H. (2014). Erosion influences the 

seismicity of active thrust faults. Nature communications, 5(5564), pp.1-7. 

Steiner, C. (2008). Biochar carbon sequestration - Figure. University of Georgia, 

Biorefining and Carbon Cycling Program, Athens, GA, 30602. 

Stout J.D., Goh, K.M. and Rafter, T.A. (1981). Chemistry and turnover of naturally 

occurring resistant organic compounds in soil. In: Paul E.A. and Ladd J.N. Soil 

biochemistry, Vol 5. New York: Marcel Dekker, pp 1–73. 

Stout, J.D., Rafter, T.A and Troughton, J.H. (1975). Possible significance of isotopic 

ratios in paleoecology. In: Suggate, R.P. and Cresswell, M.M. Quaternary Studies. 

Christchurch: The Royal Society of New Zealand, pp 279–286. 

Stumpf, A., Malet, J.P., Allemand, P., Pierrot-Deseilligny, M. and Skupinski, G. 

(2015). Ground-based multi-view photogrammetry for the monitoring of landslide 

deformation and erosion. Geomorphology, 231(1), pp.130-145. 

Sucre, E.B., Tuttle, J.W. and Fox, T.R., (2011). The use of ground-penetrating radar 

to accurately estimate soil depth in rocky forest soils. Forest Science, 57(1), pp.59-66. 

Sulzman, E.W. (2007). Stable isotope chemistry and measurement: a primer. In: 

Michener, R. and Lajtha, K. Stable Isotopes in Ecology and Environmental Science. 

2nd ed. Oxford: Blackwell Publishing Ltd, pp.1-21. 

Sundborg, A. (1982). Sediment Problems in River Basins. UNESCO Studies and 

Reports in Hyrdology No. 35. UNESCO Division of Water Sciences, Paris. 

Sundquist, E.T. (1993). The global carbon dioxide budget. Science, 259(5097), 

pp.934-941. 

Sutherland, R., Eberhart-Phillips, D., Harris, R.A., Stern, T., Beavan, J., Ellis, S., 

Henrys, S., Cox, S., Norris, R.J., Berryman, K.R. and Townend, J. (2007). Do great 

earthquakes occur on the Alpine fault in central South Island, New Zealand?. 

Geophysical Monograph: American Geophysical Union, 175, pp.237-251. 

Tan, K. (1996a). Principles of Soil Sampling. In: Tan, K. Soil Sampling, Preparation 

and Analysis. New York: CRC Press. pp.1-16. 



191 
 

Tan, K. (1996b). Sample Preparation. In: Tan, K. Soil Sampling, Preparation and 

Analysis. New York: CRC Press. pp.17-27. 

Tan, K. (1996c). Determination of Soil Water. In: Tan, K. Soil Sampling, Preparation 

and Analysis. New York: CRC Press. pp.56-72. 

Tate, K.R., Giltrap, D.J., Claydon, J.J., Newsome, P.F., Atkinson, I.A.E., Taylor, 

M.D. and Lee, R. (1997). Organic carbon stocks in New Zealand's terrestrial 

ecosystems. Journal of the Royal Society of New Zealand, 27(3), pp.315-335. 

Taylor, E. S. (2015). Earth's Riverine Bloodstream (Figure). Available: Ciais, P., 

Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., 

Galloway, J., Heimann, M. and Jones, C., 2014. Carbon and other biogeochemical 

cycles. In Climate change. Last accessed 15/02/2019. 

Thornton, S.F. and McManus, J. (1994). Application of organic carbon and nitrogen 

stable isotope and C/N ratios as source indicators of organic matter provenance in 

estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and 

Shelf Science, 38(3), pp.219-233. 

Tiunov, A.V. (2007). Stable isotopes of carbon and nitrogen in soil ecological studies. 

Biology Bulletin, 34(4), pp.395-407. 

Tonkin, P.J. and Basher, L.R. (2001). Soil chronosequences in subalpine superhumid 

Cropp Basin, western Southern Alps, New Zealand. New Zealand Journal of Geology 

and Geophysics, 44(1), pp.37-45. 

Tremblay, S., Ouimet, R. and Houle, D. (2002). Prediction of organic carbon content 

in upland forest soils of Quebec, Canada. Canadian Journal of Forest Research, 32(5), 

pp.903-914. 

Turowski, J.M., Hilton, R.G. and Sparkes, R. (2016). Decadal carbon discharge by a 

mountain stream is dominated by coarse organic matter. Geology, 44(1), pp.27-30. 

USDA. (n.d.). Soil Profile Gallery. Available: 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr7/profile/?cid=nr

cs142p2_047970. Last accessed 15/02/2019. 

Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, 

J.C., McCarty, G.W., Heckrath, G., Kosmas, C. and Giraldez, J.V. (2007). The 

impact of agricultural soil erosion on the global carbon cycle. Science, 318(5850), 

pp.626-629. 

Vieira, S.A., Alves, L.F., Duarte‐Neto, P.J., Martins, S.C., Veiga, L.G., Scaranello, 

M.A., Picollo, M.C., Camargo, P.B., do Carmo, J.B., Neto, E.S. and Santos, F.A. 

(2011). Stocks of carbon and nitrogen and partitioning between above‐and 

belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecology and 

Evolution, 1(3), pp.421-434. 



192 
 

Vitousek, P. (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 

119(1), pp.553–572. 

Vitousek, P.M. and Howarth, R.W, (1991). Nitrogen limitation on land and in the sea: 

how can it occur?. Biogeochemistry, 13(2), pp.87-115. 

Walcott, R.I. (1978). Present tectonics and late Cenozoic evolution of New Zealand. 

Geophysical Journal International, 52(1), pp.137-164. 

Walker, L., R. and Shiels, A., B. (2013a). Introduction. In: Walker, L., R. and Shiels, 

A., B. Landslide Ecology (Ecology, Biodiversity and Conservation). Cambridge: 

Cambridge University Press. pp.1-16. 

Walker, L., R. and Shiels, A., B. (2013b). Spatial Patterns. In: Walker, L., R. and 

Shiels, A., B. Landslide Ecology (Ecology, Biodiversity and Conservation). Cambridge: 

Cambridge University Press. pp.18-45. 

Walker, L., R. and Shiels, A., B. (2013c). Physical Causes and Consequences. In: 

Walker, L., R. and Shiels, A., B. Landslide Ecology (Ecology, Biodiversity and 

Conservation). Cambridge: Cambridge University Press. pp.46-81. 

Walker, L.R. and Shiels, A.B. (2008). Post-disturbance erosion impacts carbon fluxes 

and plant succession on recent tropical landslides. Plant and Soil, 313(1-2), pp.205-

216. 

Walker, L.R., Zarin, D.J., Fetcher, N., Myster, R.W. and Johnson, A.H. (1996). 

Ecosystem development and plant succession on landslides in the Caribbean. 

Biotropica, 28(4), pp.566-576. 

Walling, D.E. (2006). Tracing versus Monitoring: New Challenges and Opportunities in 

Erosion and Sediment Delivery Research. In: Owens, P.N. and Collins, A.J. Soil 

erosion and sediment redistribution in river catchments: measurement, modelling and 

management. Oxford: CAB International. pp.13-27. 

Walter, K., Don, A., Tiemeyer, B. and Freibauer, A. (2016). Determining soil bulk 

density for carbon stock calculations: a systematic method comparison. Soil Science 

Society of America Journal, 80(3), pp.579-591. 

Wang, D., Shi, X., Wang, H., Weindorf, D.C., Yu, D., Sun, W., Ren, H. and Zhao, Y. 

(2010). Scale effect of climate and soil texture on soil organic carbon in the uplands of 

Northeast China. Pedosphere, 20(4), pp.525-535. 

Wang, J., Jin, Z., Hilton, R.G., Zhang, F., Densmore, A.L., Li, G. and West, A.J. 

(2015). Controls on fluvial evacuation of sediment from earthquake-triggered 

landslides. Geology, 43(2), pp.115-118. 

Wang, J., Jin, Z., Hilton, R.G., Zhang, F., Li, G., Densmore, A.L., Gröcke, D.R., Xu, 

X. and West, A.J. (2016). Earthquake-triggered increase in biospheric carbon export 

from a mountain belt. Geology, 44(6), pp.471-474. 



193 
 

Wang, Z., Hoffmann, T., Six, J., Kaplan, J.O., Govers, G., Doetterl, S. and Van 

Oost, K. (2017). Human-induced erosion has offset one-third of carbon emissions from 

land cover change. Nature Climate Change, 7(5), pp.345-349. 

Warburton, J., Milledge, D. G. and Johnson, R. (2008). Assessment of shallow 

landslide activity following the January 2005 storm, Northern Cumbria. Cumberland 

Geological Society proceedings. 7(1), pp.263-283. 

Wardle, P. (2008). New Zealand forest to alpine transitions in global context. Arctic, 

Antarctic, and Alpine Research, 40(1), pp.240-249. 

Weijers, J.W., Schouten, S., Schefuß, E., Schneider, R.R. and Damste, J.S.S. 

(2009). Disentangling marine, soil and plant organic carbon contributions to continental 

margin sediments: a multi-proxy approach in a 20,000 year sediment record from the 

Congo deep-sea fan. Geochimica et Cosmochimica Acta, 73(1), pp.119-132. 

Wells, A. and Goff, J. (2007). Coastal dunes in Westland, New Zealand, provide a 

record of paleoseismic activity on the Alpine fault. Geology, 35(8), pp.731-734. 

Wells, A., Yetton, M.D., Duncan, R.P. and Stewart, G.H. (1999). Prehistoric dates of 

the most recent Alpine fault earthquakes, New Zealand. Geology, 27(11), pp.995-998. 

West, A.J., Galy, A. and Bickle, M. (2005). Tectonic and climatic controls on silicate 

weathering. Earth and Planetary Science Letters, 235(1-2), pp.211-228. 

West, A.J., Lin, C.W., Lin, T.C., Hilton, R.G., Liu, S.H., Chang, C.T., Lin, K.C., Galy, 

A., Sparkes, R.B. and Hovius, N. (2011). Mobilization and transport of coarse woody 

debris to the oceans triggered by an extreme tropical storm. Limnology and 

Oceanography, 56(1), pp.77-85. 

Wood, C. (2006) Countryside Survey 2007 (Soils) Preparatory Phase II: Soil bulk 

density sampling. CEH Lancaster: NERC/Centre for Ecology & Hydrology, 21pp. 

(Unpublished) 

Yanites, B.J., Mitchell, N.A., Bregy, J.C., Carlson, G.A., Cataldo, K., Holahan, M., 

Johnston, G.H., Nelson, A., Valenza, J. and Wanker, M. (2018). Landslides control 

the spatial and temporal variation of channel width in southern Taiwan: Implications for 

landscape evolution and cascading hazards in steep, tectonically active landscapes. 

Earth Surface Processes and Landforms, 43(9), pp.1782-1797. 

Yanites, B.J., Tucker, G.E., Mueller, K.J. and Chen, Y.G. (2010). How rivers react to 

large earthquakes: Evidence from central Taiwan. Geology, 38(7), pp.639-642. 

Zachar, D (1982). Soil Erosion. Amsterdam: Elsevier. 548pp. 


