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Abstract

We begin with an n-qubit quantum search algorithm and formulate it in terms of

quantum walk and adiabatic quantum computation. We then represent and trans-

form the n-qubit search algorithm into a two-level system and hence the single

avoided crossing model. We perform and present the analytical calculations and

numerical simulations of the dynamics of quantum walk search algorithm and AQC

search algorithm in a thermal bath. We use the master equations formulation to

represent the open quantum system. We find out that while generally the perfor-

mance of algorithms worsen with increase in temperature and the system size, there

are interesting features in quantum walk search where there is an optimal low tem-

perature for the best performance for other specified parameters. Similarly for AQC

search, the performance generally worsens with increase in temperature, but for

specified parameter ranges, the system is more robust against temperature effects.
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Chapter 1

Introduction

With the decline of Moore’s law and the advent of quantum supremacy, a lot of

research is being to done to make use of quantum effects to build quantum computers

which provide speedup over the current classical limits. To make use of quantum

computers, we need quantum algorithms to run and support their functionality.

While the standard gate model quantum computing has been very popular to this

effect, in the past two decades a lot of research has also been done in continuous time

quantum computing, leading to the development of quantum walk [1] [2], quantum

annealing [3] and adiabatic quantum computation(AQC) [4] formulations.

The structure of mathematical formulation describing quantum annealing and

AQC is the same. However, depending on the instantaneous speed of change over

time of the Hamiltonian, quantum annealing can have two forms: adiabatic compu-

tation (very slow speed) or diabatic computation. AQC describes a class of quantum

computation where instantaneous speed of change over time of the Hamiltonian is

very slow. While quantum annealing has the added requirement that the initial state

is an equal superposition of all possible basis states, AQC has no such requirement.

Quantum walks, quantum annealing and AQC have contributed a lot for the

1



Chapter 1. Introduction 2

development of an alternative representation of gate model quantum algorithms

[5] [6] [7] suitable for real world applications e.g., searching unsorted databases,

optimization problems, sampling problems, etc. However, we have been limited in

our quest to build true quantum computers, due to the quantum effects being easily

decohered by noise due to the environment, in spite of applying quantum error

correction codes [8] [9] [10]. For this work, we are going to focus on quantum walk

and AQC.

Open quantum system formulation plays a major role in describing the perfor-

mance of quantum systems in real world dynamics. One of the key factors in real

world dynamics is the effects on the system due to the temperature of the environ-

ment the system is working in. Although we aim to build systems where system

is highly isolated from such disturbances, but for realistic systems we are always

affected with a certain amount of noise. Some of the noise is generated by the

engineering components of system itself and is unavoidable.

In chapter 2, we provide an outline of what quantum walk and adiabatic quan-

tum computation entails. Then, we give a brief introduction about how they are

used to solve the quantum search problem. We also provide background details

about the single avoided crossing model which allows us to simplify our model for

a large number of qubits to a two-level system. Then we provide the outline of the

open quantum system formulation we will be using to describe our problem.

In chapter 3, we solve analytically the performance for quantum walk algorithm

for solving the quantum search problem in the single avoided crossing model setting

in presence of temperature effects. With varying coupling strengths of the quantum

system with the environment, we observe the different finite temperature effects in

the weak coupling limit and the quasi-intermediate coupling regime. We also plot

the numerical simulations to give us a better understanding of the performance of

the quantum walk.
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In chapter 4, we solve analytically the performance for adiabatic quantum com-

putation algorithm for solving the quantum search problem in the single avoided

crossing model setting in presence of temperature effects. With varying coupling

strengths of the quantum system with the environment, we observe the different

finite temperature effects in the weak coupling limit and the quasi-intermediate cou-

pling regime. We plot the numerical simulations to give us a better understanding

of the performance of the adiabatic quantum computation.

In chapter 5, we conclude our observations and analysis. While generally the

performance of algorithms worsen with increase in temperature and the system size

for both quantum walk and AQC, there are interesting features to be explored like

the existence of optimal temperature in quantum walk and increased robustness

against temperature in AQC for certain parameter ranges.



Chapter 2

Background

In this chapter we provide the detailed information about the theoretical ideas and

formulation we use to describe our problem and the tools we use to solve it.

2.1 Quantum walk

While there are two basic types of quantum walks- discrete and continuous time [2],

we focus our work on the continuous time quantum walks. Continuous-time quantum

walks on a discrete lattice have their origins back as far as Feynman et al. [11].

Their use for quantum algorithms was first suggested by Farhi and Gutmann [12],

who showed numerically they can reach the ends of certain network configurations

more efficiently than classical random walks. A proven exponential speed up in a

quantum algorithm using a continuous-time quantum walk came a few years later

from Childs et al. [13]. Our motivation to use quantum walks comes from the fact

that quantum walks have been shown to be universal in defining algorithms for

quantum computation [14].

A continuous-time quantum walk can be defined by considering the labels j of

4



2.1. Quantum walk 5

the n-qubit basis states {|j〉} to be the labels of vertices of an undirected graph

G. The edges of G can be defined through its adjacency matrix A, whose elements

satisfy Ajk = 1 if an edge in G connects vertices j and k and Ajk = 0 otherwise.

Since G is undirected, A is symmetric, hence it can be used to define a Hamiltonian.

Although we can use the adjacency matrix A directly, it is in general more convenient

mathematically to define the Hamiltonian of the quantum walk using the Laplacian

L = D − A, where D is a diagonal matrix with entries Djj = dj the degree of

vertex j in the graph. We follow this convention here, but note that in this work we

use regular graphs for which the degree dj = d is the same for all vertices, so that

D = d1, where 1 is the identity matrix (ones on the diagonal) of the same dimension

as A. Terms proportional to the identity in the Hamiltonian shift the zero point of

the energy scale and contribute an unobservable global phase, but otherwise don’t

affect the dynamics. The quantum walk Hamiltonian is then defined as ĤQW = γL̂,

where L̂ is the Laplacian operator, and the prefactor γ is the hopping rate of the

quantum walk. For any regular graph of degree d we thus have

ĤQW = γ

(
d1̂−

∑
jk

Ajk |j〉 〈k|

)
≡ γ(d1̂− Â), (2.1)

where the adjacency operator Â has matrix elements in the vertex basis {|j〉} given

by the adjacency matrix A. The action of ĤQW is to move amplitude between

connected vertices, as specified by the non-zero entries in A. During a quantum

walk, a pure state |ψ(0)〉 evolves according to the Schrödinger equation to give

|ψ(t)〉 = e−iĤQW t |ψ(0)〉 (2.2)

after a time t, where we have used the units in which ~ = 1.

The pure state evolution of the continuous-time quantum walk can be expressed
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in density matrix form as

dρ(t)

dt
= −i[ĤQW , ρ], (2.3)

where [a, b] ≡ ab − ba denotes the commutator. Using open quantum system dy-

namics, we can add a non-unitary decoherence to this in the form

dρ(t)

dt
= −i[ĤQW , ρ] + L[ρ(t)], (2.4)

where L is the superoperator describing the effective decoherence dynamics. Elab-

orate description of L been provided in section 2.5 .

2.2 Adiabatic quantum computation

Adiabatic quantum computation (AQC), first introduced by Farhi et al. [4], works

as follows. The problem of interest is encoded into an n-qubit Hamiltonian Ĥp in

such a way that the solution can be derived from the ground state of Ĥp. The

system is initialized in the ground state of a different Hamiltonian Ĥ0, for which

this initialization is easy. The computation then proceeds by implementing a time-

dependent Hamiltonian that is transformed slowly from Ĥ0 to Ĥp. In general, this

adiabatic ‘sweep’ Hamiltonian can be parametrized in terms of a time-dependent

schedule function s(t) ∈ [0, 1] as

ĤAQC(t) = (1− s(t))Ĥ0 + s(t)Ĥp, (2.5)

such that s(t = 0) = 0 and at the final time tf we have s(t = tf ) = 1. It is useful

to define a reduced time τ = t/tf , with 0 ≤ τ ≤ 1. Whereas τ is linear in t,

the schedule function s(τ) - written as a function of t or τ - allows for non-linear
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transformation. Non-linear schedules are essential to obtain a quantum speed up in

the search problem [15], this fact has been elaborated upon in Section 2.3 and 2.4.

The adiabatic theorem of quantum mechanics [16] says that the system will

stay in the instantaneous ground state of the time-dependent Hamiltonian ĤAQC(t)

provided the following two conditions are satisfied: (i) there is at all times an energy

gap g(t) > 0 between the instantaneous ground and first excited states, and (ii) the

Hamiltonian is changed sufficiently slowly. Provided these are both true the system

will be in the desired ground state of Ĥp at the end of the computation, thus solving

the problem encoded in Ĥp. In practice, the duration of this adiabatic sweep would

be prohibitively long, so a feasible sweep will incur some probability of error. The

runtime for the algorithm can be bounded by

Truntime = O
( 1

g2
min

)
, (2.6)

where gmin is the minimum spectral gap of ĤAQC(s).

AQC is a possible method to get around the problem of energy relaxation.

Since the quantum system is in the ground state, interference with the outside

world cannot make it move to a lower state. If the energy of the outside world

(i.e., the “temperature of the bath”) is kept lower than the energy gap between

the ground state and the next higher energy state, the system has a proportionally

lower probability of going to a higher energy state. Thus the system can stay in a

single system eigenstate as long as needed. For a comprehensive overview of AQC,

see Albash and Lidar [17]. Adiabatic quantum computation has been shown to be

equivalent to the standard quantum computation [18].
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2.3 Quantum search problem

The quantum search problem, first introduced by Grover [19] can be framed in

terms of the N = 2n basis states of an n-qubit system {|j〉} = {|0〉 , |1〉}⊗n, where

{|0〉 , |1〉} is the basis of a single qubit. We are given that one of the basis states

behaves differently to the others and denote this ‘marked’ state as |m〉, where m is

an n-digit bit-string identifying one of the basis states. Because of the difference

in behaviour, we can easily verify whether a given state is the marked state. We

represent an ignorance of the marked state by starting with the system in a uniform

superposition over the basis states,

|ψinit〉 =
1√
N

N−1∑
j=0

|j〉 . (2.7)

2.3.1 Quantum walk search

Quantum walk dynamics can be used to solve the search problem by modifying the

energy of the marked state |m〉 to give a quantum walk search Hamiltonian

ĤQWS = γ(d1̂− Â)− |m〉 〈m| . (2.8)

In the units we are using, this amounts to giving state |m〉 an energy of -1 while

all other states have zero energy. This also makes γ a dimensionless parameter

controlling the ratio of the strengths of the two parts of the quantum walk search

Hamiltonian. Applying ĤQWS to the search initial state |ψinit〉 produces a periodic

evolution such that the overlap with the marked state oscillates. The frequency of

these oscillations depends on the hopping rate γ, which must be chosen correctly,

along with the measurement time tf to maximize the final success probability P =

| 〈ψ(tf )|m〉 |2, where |ψ(tf )〉 = e−iĤQWStf |ψinit〉 is the state at time tf .
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The adjacency matrix of an n-dimensional hypercube graph has elements Ajk =

1 if and only if the vertex labels j and k have a Hamming distance of one. That

is, when written as n-digit bit-strings, they differ in exactly one bit position. The

corresponding adjacency operator can be conveniently expressed as

Â(h) =
n∑
j=1

σ̂(j)
x , (2.9)

where the sum is over all n qubits and σ̂
(j)
x is the Pauli-X operator applied to the

jth qubit with the identity operator on the other qubits. That is,

σ̂(j)
x =

(
j−1
⊗
r=1

1̂2

)
⊗ σ̂x ⊗

(
n
⊗

r=j+1
1̂2

)
, (2.10)

where⊗ denotes the tensor product, and 1̂2 is the identity operator of dimension two.

To construct the quantum walk search Hamiltonian on the hypercube, we include

two trivial adjustments for later mathematical convenience. If we make the energy

of the marked state lower by adding 1̂− |m〉 〈m| to the quantum walk Hamiltonian,

this gives the marked state an energy of zero while all other states have an energy

of one for this part of the Hamiltonian. The factor of half has been included in Ĥ0

to match Refs. [20] [4] [21] and facilitate the mapping to the symmetric subspace

for solving the eigensystem of the search Hamiltonian and calculation of hypercube

schedules for AQC as analysed in Appendix A of [22]. The Laplacian operator for

a hypercube can thus be represented as

Ĥ0 =
1

2

(
n1̂−

n∑
j=1

σ̂(j)
x

)
. (2.11)

The problem Hamiltonian describing the marked state is

ĤP = 1̂− |m〉 〈m| . (2.12)
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Quantum walk search Hamiltonian can thus be represented as

ĤQWS = γĤ0 + ĤP . (2.13)

The notation of Ĥ0 and ĤP used for the Laplacian operator and the problem Hamil-

tonian describing the marked state respectively is for the convinience in further

calculations during the rest of the work.

Childs and Goldstone [20] analyze the quantum walk search algorithm for both

the complete and hypercube graphs. For each graph, they find optimal values of

γ for which the performance of the search matches the quadratic quantum speed

up achieved by Grover’s search algorithm. Childs and Goldstone [20] tune γ until

both the initial state |ψinit〉 and the marked state |m〉 have significant overlap with

both the ground state |ε0〉 and the first excited state |ε1〉 of the search Hamiltonian.

Intuitively, we want the search Hamiltonian to drive transitions between |ψinit〉 and

|m〉 as efficiently as possible. This occurs when the overlaps are evenly balanced,

which in turn occurs when the energy gap, g = ε1− ε0 between the ground and first

excited state is smallest: gmin. With this optimally chosen value of γ, the time it

takes for the transition to occur turns out to be proportional to 1/gmin. For the

hypercube graph, optimal hopping rate γo is

γo =
1

N

n∑
r=1

(
n

r

)
1

r
. (2.14)

For the optimal γo, the time to reach the first maximum overlap with the marked

state is

th ' (π/2)
√
N ∝ (1/gmin), (2.15)

providing a quadratic speed up equivalent to Grover’s original search algorithm.

The energy gap is analyzed in Section 4.2 of [4], and the energy eigenstates are
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analyzed in Appendix B of [21]. At optimal γo, the ground and first excited states

are 1√
2
(|ψinit〉 ± |m〉). Since states of higher energy than the first excited state play

very little role in the QW search dynamics for larger systems, we can approximate

the probability that the marked state can be reached by considering only the ground

and first excited states, essentially a two-level system. In Section 2.4, we provide

the single avoided crossing model for describing such a two-level system.

2.3.2 Adiabatic quantum computation search

In order to make a direct comparison between AQC search and QW search, the Ĥ0

and Ĥp are chosen to be the same. Thus,

ĤAQC =
1

2
(1− s(t))

(
n1̂−

n∑
j=1

σ̂(j)
x

)
+ s(t)

(
1̂− |m〉 〈m|

)
. (2.16)

Roland and Cerf [15] demonstrate that a linear schedule function s(l)(τ) = τ = t/tf

does not produce a quantum speed up and it is necessary to use a more efficient non-

linear s(τ), whose rate of change is in proportion to the size of the gap g(t) at that

point in the schedule, in order to produce the quadratic speed up of Grover’s search

algorithm. It remains to specify the function s(τ) for the optimal performance of

this Hamiltonian for searching. In the regime of limited running time, the schedule

s(τ) may be optimized to minimize the error.

A more quantitative statement of the adiabatic theorem [4] [15] proceeds as

follows: Consider a time-dependent Hamiltonian of the form in equation (2.16),

with initial and final Hamiltonians Ĥ0, Ĥp respectively, and parametrized by the

schedule function s(τ) that sweeps from s(0) = 0 to s(1) = 1 over a time tf , the

runtime of the sweep. Denote by |εj(t)〉 the jth energy eigenstate of the Hamiltonian

at time t and its energy by εj(t), where j = 0, 1 denotes the ground and first excited

states respectively. Provided that ε2(t) > ε1(t) for t ∈ [0, tf ] and transitions to
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higher energy eigenstates can be ignored, the final state obeys

| 〈ε0(tf )|ψ(tf )〉 |2 ≥ 1− ε2 (2.17)

for small parameter ε� 1, provided that at all times

|〈dĤ
dt
〉0,1|

g2(t)
≤ ε� 1 (2.18)

where the matrix element 〈dĤ
dt
〉0,1 is given by

〈
dĤ

dt

〉
0,1

=

〈
ε0(t)

∣∣∣∣∣dĤdt
∣∣∣∣∣ε1(t)

〉
(2.19)

and the gap g(t) is given by

g(t) = ε1(t)− ε0(t). (2.20)

The equation (2.18) is a condition on the instantaneous rate at which proba-

bility amplitude will leave the ground state for the first excited state, assuming the

first excited state is not populated. We can therefore describe equation (2.18) as

a two-level approximation. In the context of the search algorithms studied here,

such an approximation turns out to good for all but the smallest values of n, and

becomes more accurate for larger search spaces. However, the adiabatic schedules,

s(τ) derived from equation (2.18) are not always optimal. The optimality is lost

where transfer from the ground state directly to a higher excited state dominates

over, or is competitive with, transfer to the first excited state, as such transitions

are not taken into account in equation (2.18).
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2.4 Single avoided crossing model

Morley et al. [22] have shown that a single avoided crossing dominates for large N

for both QW and AQC search algorithms on the hypercube. Dominance of a single

avoided crossing is the method used to solve analytically for all Hamiltonian-based

quantum search algorithms treated to date, including the complete graph [15] and

Cartesian lattices (which provide a quantum speed up for d ≥ 4 dimensions) [20]. It

is also the typical behavior for a broad class of random search graphs [23]. Morley

et al. [22] introduce a simple, two state, single avoided crossing model for quantum

search which proves the quadratic quantum speed up across quantum walk to AQC

through hybrid intermediate algorithms.

There are several ways to parametrize a two-state single avoided crossing model.

If we designate the marked state to be |0〉, this will be the end point of the schedule.

The initial state needs to be orthogonal to |0〉, i.e., it has to be |1〉. These two states

are the lowest energy eigenstates of 1
2
(1̂− σ̂z) and 1

2
(1̂ + σ̂z) respectively, where the

factor of 1
2

makes the eigenenergies zero and one in our units. We also need a hopping

Hamiltonian term σ̂x, to drive transitions between |1〉 and |0〉. The relative strength

of the hopping Hamiltonian is gmin, the minimum gap at the avoided crossing. The

single avoided crossing AQC search Hamiltonian is

ĤAC(t) = (1− s(t))Ĥ0 + s(t)Ĥp, (2.21)

Ĥ0 =
1

2
(1̂ + σ̂z)− gminσ̂x, (2.22)

Ĥp =
1

2
(1̂− σ̂z). (2.23)

The initial state |1〉 is only an approximate eigenstate of Ĥ0, but the approx-

imation improves as gmin decreases. Solving the eigensystem for this Hamiltonian
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gives

gAC(t) = {[1− 2s(t)]2 + 4g2
min[1− s(t)]2}

1
2 (2.24)

for the gap between the two energy levels. The minimum gap occurs for s(t =
tf
2

) = 1
2

. Morley et al. [22] then apply the method of [15] to find the optimal schedule s(t)

for this system.

s(t) ' 1

2
{1− gmin cot[gmin(2εt+ 1)]}. (2.25)

The runtime tf is given by

εtf =
π
2
− arctan(gmin)

gmin
. (2.26)

The quantum walk form of the single avoided crossing search Hamiltonian is also

simple to analyse. We deduce the optimal value of γo = 1 from the value of s(t =

tf
2

) = 1
2

at the avoided crossing, which gives us

ĤQWS =
1

2
(1̂− gminσ̂x). (2.27)

The σ̂x term causes deterministic transitions between the two states regardless

of their energies, at a rate determined by gmin. By solving for the dynamics, the

time for the input state |1〉 to evolve to the marked state |0〉 can be shown to be

tf = π/gmin.
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2.5 Open quantum system

Following the work of Albash and Lidar [24] [25] we analyse a quantum system evolv-

ing in the presence of a thermal bath that is described in terms of an adiabatic mas-

ter equation with time-dependent Lindblad operators. Consider a time-dependent

system Hamiltonian

ĤS(t)|εa(t)〉 = εa(t)|εa(t)〉, (2.28)

where the states {εa(t)〉} are the instantaneous energy eigenstates and the gap is

gmin ≡ min
a,t

(εa(t)− ε0(t)) > 0, (2.29)

where |ε0(t)〉 is the instantaneous ground state and |εa(t)〉 (a ≥ 1) are the excited

states. The condition gmin > 0 ensures that only excited states that do not eventu-

ally become part of the ground subspace are considered. The generic system-bath

Hamiltonian is

Ĥ(t) = ĤS(t)⊗ 1̂B + 1̂S ⊗ ĤB + ĤI (2.30a)

ĤI = g
∑
a

Âα ⊗ B̂α (2.30b)

where Âα and B̂α in the interaction Hamiltonian are, respectively, dimensionless

Hermitian system and bath operators and g is the system-bath coupling strength. An

adiabatic master equation in Lindblad form for the system’s evolution can be derived

in the weak coupling limit in the sense of equation (2.33a) below by invoking the

standard Born-Markov and rotating wave approximations, along with an adiabatic

approximation. Consider the bath correlation functions:

Bαβ(t) ≡ eiĤBtBαe
−iĤBtB̂β, (2.31)
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The characteristic decay time τB is then defined via

|〈Bαβ(t)〉| ≡ |Tr[ρBBαβ(t)]| ∼ e−t/τB (2.32)

where ρB is the initial state of the bath. Note that this exponential decay is not

guaranteed but simply assumed here in order to extract the timescale τB. Now

assume:

g2τB � gmin (weak coupling) (2.33a)

gτB � 1 (Markov approximation) (2.33b)

h

tf
� min{g2

min, τ
−2
B } (2.33c)

where h ≡ maxt∈[0,tf ];a,b |〈εa(t)|∂tH(t)|εb(t)〉| estimates the rate of change of the

Hamiltonian. Inequality (2.33c) combines the heuristic adiabatic approximation

with the condition that the instantaneous energy eigenbasis should be slowly varying

on the timescale of the bath. Inequality (2.33c) variant of adiabatic theorm is derived

in Section III of [25] and can be compared to equations (2.18) and (2.19). Provided

these conditions are satisfied, the quantum adiabatic master equation takes the

generic form:

d

dt
ρS(t) = −i[ĤS(t) + ĤLS(t), ρ(t)] + L[ρ(t)] (2.34a)

L[ρ(t)] ≡
∑
ω

γαβ(ω)
(
L̂β,ω(t)ρ(t)L̂†α,ω −

1

2
{L̂†α,ω(t)L̂β,ω(t), ρ(t)}

)
, (2.34b)

where the sum over ω is over the Bohr frequencies of HS, and where the time-

dependent Lindblad operators are

L̂α,ω(t) =
∑

ω=εb(t)−εa(t)

〈εa(t)|Âα|εb(t)〉|εa(t)〉〈εb(t)|. (2.35)
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The derivation of these master equations is provided in Section IV(C) and

Appendix G of [25]. The decay rates

γαβ(ω) = g2

∫ −∞
∞

dt eiωt〈Bαβ(t)〉 (2.36)

are Fourier transforms of the bath correlation function forming a positive matrix

γ(ω) whose elements satisfy the KMS condition

γαβ(−ω) = e−βωγβα(ω) (2.37)

where β is the inverse temperature, and

ĤLS =
∑
αβ

∑
ω

Sαβ(ω)L̂†α,ω(t)L̂β,ω(t), (2.38)

is a Lamb shift term, where

Sαβ(ω) =

∫ −∞
∞

dω′ γαβ(ω′)P
( 1

ω − ω′
)

(2.39)

with P denoting the Cauchy principal value.



Chapter 3

Open quantum system for

quantum walk search

3.1 Analytics

We consider the weak coupling limit as follows from equation (2.33a) and the quasi-

intermediate coupling regime where g is comparable to gmin. This approach works

under the approximation that the characteristic bath decay time τB is very small

and hence satisfies the equation (2.33b) and thus equation (2.33a). Using the master

equation formalism, we have traced out the bath and only consider the system

dynamics. Specifically consider

ĤS =
1

2
(1̂− ωxσ̂x), ĤI = gσ̂z ⊗ B̂, ωx = gmin, (3.1)

where g is the coupling strength between the system and the bath. The interac-

tion Hamiltonian, ĤI is so chosen for three basic reasons, (i) [ĤS, ĤI ] 6= 0 has to be

followed to observe decoherence effects; (ii) the eigenvectors of σ̂z form the computa-

tional basis and hence provides mathematical convenience; (iii) collective dephasing

18
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is experimentally achievable. We change the minimum energy gap, gmin to ωx for

convenience in analytical calculations.

The energy eigenstates of ĤS are |ε0〉 = |+〉 and |ε1〉 = |−〉 with respective

eigenvalues −1
2
ωx and 1

2
ωx, where |±〉 = 1√

2
(|0〉 ± |1〉). Since σ̂z|±〉 = |∓〉 ,using

equation (2.35) the non-zero Lindblad operators are:

L̂z,ωx = |+〉〈−|, L̂z,−ωx = |−〉〈+|. (3.2)

Note that now we have a non-trivial Lamb shift term:

ĤLS = S(ωx)|−〉〈−|+ S(−ωx)|+〉〈+|. (3.3)

We consider the decay rates :

γ(ω) =
g2ω

ω2 + 1
. (3.4)

The decay rates chosen are the ohmic bath spectral density using the Druid-

Lorentz cutoff to avoid divergent integrals for the Lamb shift term. The simplicity

of the decay rates is to ensure mathematical convenience for analytical and nu-

merical calculations. Using equations (3.4),(2.37) and (2.39), we can get all the

corresponding needed values for decay rates and Lamb shift terms. For solving this

in the energy eigenbasis, the matrix form of Lamb shift term, Lindblad operators

and system Hamiltonian is:

ĤLS =

(
S(−ωx) 0

0 S(ωx)

)
, (3.5)

L̂z,ωx =

(
0 1

0 0

)
, (3.6)
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L̂z,−ωx =

(
0 0

1 0

)
, (3.7)

ĤS =

(
−ωx

2
0

0 ωx

2

)
, (3.8)

Substituting equations (3.1)-(3.4) in equation (2.34), we get

[ĤS(t) + ĤLS, ρ(t)] ≡

(
0 ρ+−(S(−ωx)− S(ωx)− ωx)

ρ−+(S(ωx)− S(−ωx) + ωx) 0

)
(3.9)

L[ρ(t)] ≡ γ(ωx)

(
ρ−− −ρ+−/2

−ρ−+/2 −ρ−−

)
+ γ(−ωx)

(
−ρ++ −ρ+−/2

−ρ−+/2 ρ++

)
(3.10)

We find that the master equations for the density matrix components are:

d

dt
ρ−−(t) = −γ(ωx)ρ−−(t) + γ(−ωx)ρ++(t), (3.11a)

d

dt
ρ++(t) = γ(ωx)ρ−−(t)− γ(−ωx)ρ++(t), (3.11b)

d

dt
ρ−+(t) =

d

dt
ρ∗+−(t) =

[
− i(S(ωx)− S(−ωx) + ωx)−

1

2
γ(ωx)(1 + e−βωx)

]
ρ−+(t),

(3.11c)

where we have used the KMS condition to simplify the expressions. These equations

can be solved analytically to give:

ρ−+(t) = ρ−+(0)e−i(S(ωx)−S(−ωx)+ωx)te−t/T
(e)
2 (3.12a)

ρ−−(t) = pGibbs(−) + [ρ−−(0)− pGibbs(−)]e−t/T
(e)
1 (3.12b)

ρ++(t) = 1− ρ−−(t), ρ+−(t) = ρ∗−+(t), (3.12c)

where

pGibbs(±) =
e±βωx/2

Z
,Z = eβωx/2 + e−βωx/2, (3.13)
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and

T
(e)
1 =

1

γ(ωx)(1 + e−βωx)
, T

(e)
2 = 2T

(e)
1 . (3.14)

We observe three important facts about the result in equation (3.12). First, the

decoherence occurs in the energy eigenbasis, i.e., the off-diagonal components in the

energy eigenbasis (hence the ‘e’ superscripts on T1 and T2) decay exponentially to

zero with a timescale determined by T
(e)
2 , and this includes the entire contribution

of the Lamb shift. Second, the populations (ρ++; ρ−−) approach the Gibbs state

associated with the Hamiltonian HS within a timescale determined by T
(e)
1 . Third,

the two timescales (T
(e)
1 ;T

(e)
2 ) have a non-trivial dependence on the energy gap ωx,

coupling strength, g and the inverse temperature, β.

Using equation (3.12), in the computational basis, we get the probability to be

in the ground state of the system to be

ρ00(t) = P (t) =
1

2
(1− e

−t
T2 cos(St)) (3.15)

where,

S = S(ωx)− S(−ωx) + ωx (3.16)

Now for,

dρ00

dt
= 0 (3.17)

gives us the maximas and minimas of the equation, and,

d2ρ00

dt2
< 0 (3.18)

makes sure that the value found is the maxima. Solving the above equations, we
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get the time to reach the peak probability for the first time, tp1,

tp1 =
1

S

[
kπ − arctan

[
−1

T2S

]]
(3.19)

tp1 >
1

S
arctan

[
1

2

[
T2S −

1

T2S

]]
(3.20)

where, S = S(ωx) − S(−ωx) + ωx and k is the smallest whole number for which

equation (3.19) and (3.20) hold true.

Please check Appendix A for the full expansion of S(ωx) and S(−ωx).

3.2 Numerical Analysis

Following the analytical calculations, we want to observe numerically, the dynamics

of a quantum walk search algorithm for a two level system in a thermal bath. We

use Python3 to perform the calculations and the numerical integration for the Lamb

shift terms provided in Appendix A to get the results and generate the plots. Built-

in functions from the Numpy and Scipy libraries are used and the accuracy of

the results depend on the accuracy of the integral functions. We see in equation

(3.15) that the probability to reach the ground state of the system depends upon

the runtime, the coupling strength, the temperature and the minimum energy gap.

According to equations (3.19) and (3.20), the time needed to reach the peak of

the probability function for the first time, depends on the coupling strength, the

temperature and the minimum energy gap. Next, we vary these three parameters

along with appropriate runtime to observe the dynamics of the system under different

operating conditions.

Firstly, we want to know in what range of coupling strengths is our model going

to be valid. This valid range of coupling strength is dependent on the temperature
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and the value of gmin. We fix the inverse temperature, β and gmin in different regimes

and observe. In figure 3.1(a), at very low temperatures and relatively higher gmin

(a) β = 10000, gmin = 0.1 (b) β = 0.0001, gmin = 0.1

(c) β = 1, gmin = 0.1 (d) β = 1, gmin = 0.0001

Figure 3.1: Plotting probability, P of being in ground state of quantum walk
search Hamiltonian in computational basis in an ohmic bath while varying cou-
pling strength, g2 vs runtime, t for specified values of inverse temperature, β and
minimum energy gap, gmin. The single avoided crossing model describing a two-
level approximation of multi-qubit quantum walk search in presence of an ohmic
bath is being analysed. The plots provide an outlook on the valid ranges of coupling
strength under different values of the parameters.

we can observe that the weak coupling approximation for the model starts breaking

down close to g2 = 10−0.75. For high temperature and similar gmin, in figure 3.1(b),

we observe the validity regime of coupling strength shifts to lower values as the

decoherence due to temperature effects takes effect. In figure 3.1(c) and 3.1(d), we

are at intermediate temperature and we observe that for smaller energy gap (larger

number of qubits) the validity regime of coupling strength shifts to lower values, this

follows according to the weak coupling and the Markov approximation of the open

quantum systems, equations (2.33a) and (2.33b). For the following plots, we aim
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(a) g2 = 0.1, gmin = 0.1 (b) g2 = 0.01, gmin = 0.01

(c) g2 = 0.001, gmin = 0.001 (d) g2 = 0.001, gmin = 0.001, long time

Figure 3.2: Plotting probability, P of being in ground state of quantum walk search
Hamiltonian in computational basis in an ohmic bath while varying inverse temper-
ature, β vs runtime, t for specified values of coupling strength, g2 and minimum
energy gap, gmin. The single avoided crossing model describing a two-level approx-
imation of multi-qubit quantum walk search in presence of an ohmic bath is being
analysed. The plots provide an outlook on the performance of search algorithm at
different temperatures for specified values of other parameters.

to stay in the validity regime to observe proper dynamics according to our single

avoided crossing model. In figure 3.2, we aim to observe dynamics of the probability

of the ground state, P (t), for fixed values of gmin and coupling strength within the

range of validity, while varying the inverse temperature and runtime. We observe in

figure 3.2(a), at high coupling strength and relatively high gmin, the decoherence has

a large impact at higher temperatures and the search does no better than guessing

(P = 0.5), while at lower temperatures, even at such high coupling with the bath,

we can gain solution for the search problem with moderately good probability for

the first few peaks. For the search problem, we normally aim to get our solution on

the first peak.
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(a) gmin = 0.1, g2 vs β

(b) gmin = 0.01, g2 vs β (c) gmin = 0.001, g2 vs β

(d) gmin = 0.1, T vs g2 (e) gmin = 0.1, T vs β

Figure 3.3: Plotting cost factor, T while varying coupling strength, g2 vs inverse
temperature, β for the first peak of probability, P of being in ground state of quan-
tum search Hamiltonian in computational basis and specified minimum energy gap,
gmin to describe how worse off the search algorithm is performing in the presence of
an ohmic bath, compared to the best theoretical time to get the solution predicted
by the two-level approximation in absence of the bath. The 2-d slice plots (d) and
(e) provide a clearer picture of the cost factor variation at different values of the
parameters. The single avoided crossing model describing a two-level approximation
of multi-qubit quantum walk search in presence of an ohmic bath is being analysed.
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For the following plots, we aim to stay in the validity regime to observe proper

dynamics according to our single avoided crossing model. In figure 3.2, we aim to

observe dynamics of the probability of the ground state, P (t), for fixed values of

gmin and coupling strength within the range of validity, while varying the inverse

temperature and runtime. We observe in figure 3.2(a), at high coupling strength and

relatively high gmin, the decoherence has a large impact at higher temperatures and

the search does no better than guessing (P = 0.5), while at lower temperatures, even

at such high coupling with the bath, we can gain solution for the search problem

with moderately good probability for the first few peaks. For the search problem, we

normally aim to get our solution on the first peak. In figure 3.2(b) and 3.2(c), while

the temperature effects are there, they become less prevalent on short time scales at

increasingly lower coupling strengths. While on long time scales, as in figure 3.2(d),

we can see the temperature effects are strongly present, where at lower temperature,

the algorithm can still provide solution with moderately good probability.

An important factor we consider while examining the performance of an algorithm is

the cost factor. The cost factor is used to describe how worse off are we performing

from the best theoretical predicted time to get the solution. Here, we define the cost

factor, T as

T =
tmgmin
πPm

(3.21)

where, tm refers to the runtime taken to reach the first peak of the quantum walk

and Pm refers to the maximum probability at that peak. We scale this with gmin

π
,

inverse of the best theoretical predicted time for the walk.

In figure 3.3, we color plot the cost factor, T for coupling strength, g2 vs inverse

temperature, β for fixed values of minimum energy gap gmin. Recalling equation

(2.15), the minimum energy gap gmin is inversely proportional to square root of the

number of basis states which depend upon the number of qubits. We observe the

worsening of the performance of with increasing coupling strength with the bath

and increasing temperature.
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(a) g2 = 0.01, gmin vs β

(b) g2 = 0.0225, gmin vs β (c) g2 = 0.005, gmin vs β

(d) g2 = 0.01, T vsN (e) g2 = 0.01, T vs β

Figure 3.4: Plotting cost factor, T while varying inverse temperature, β vs number
of basis states, N for the first peak of probability, P of being in ground state of
quantum search Hamiltonian in computational basis for specified values of coupling
strength, g2 to describe how worse off the search algorithm is performing in the
presence of an ohmic bath, compared to the best theoretical time to get the solution
predicted by the two-level approximation in absence of the bath. Note the colour
scales for T are different in each sub-figure. The 2-d slice plots (d) and (e) provide a
clearer picture of the cost factor variation at different values of the parameters. The
single avoided crossing model describing a two-level approximation of multi-qubit
quantum walk search in presence of an ohmic bath is being analysed.
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We also see that for similar coupling strength and temperature, the perfor-

mance seems to be worse with increasing qubits. This fact will be demonstrated

better in the next figure. We plot vertical and horizontal slices from figure 3.3(a)

as figure 3.3(d) and 3.3(e). They emphasise our analysis much better. This follows

directly from equation (3.19) and (3.20), with lower coupling strength, the Lamb

shift becomes more trivial and the T
(e)
2 time scale becomes increasingly larger, with

the term T2S becoming larger. Thus the cost factor becomes smaller and very close

to 1.

In figure 3.4, we address the final point of our problem, how does cost factor vary

due to the changes in temperature and the number of qubits. As in figure 3.4(b), we

observe that at relatively higher coupling strengths, the model easily starts breaking

down with increasing number of qubits and the cost factor being high. This is due

to the Lamb shift Hamiltonian starting to compete and even dominating over the

system Hamiltonian where the model breaks down. We can observe that, at the

same temperature, with increasing number of qubits, the performance of the system

worsens, and the system is affected by the environment much more easily. And as

we observed earlier, for a particular size of the system, with increase in temperature,

the performance worsens.

There is a particular feature we have observed in our plots which can be issue for

further research. There is a peaking behaviour of the cost factor, where we ob-

serve that its not the case, lower the temperature, the better the performance. The

performance seems to be optimal at a particular optimal temperature for a given

system size and coupling strength, higher or lower temperature gives worse results.

Figure 3.4(c) shows this especially clearly, with the optimal temperature decreasing

for increasing system size (lower gmin). We are not sure whether this is a nuance

of the numerics of this particular model, or a general feature in performance of this

class of algorithms.



Chapter 4

Open quantum system for

adiabatic quantum computation

4.1 Analytics

We consider the weak coupling limit as follows from equation (2.33a) and the quasi-

intermediate coupling regime where g is comparable to gmin. This approach works

under the approximation that the characteristic bath decay time τB is very small

and hence satisfies the equation (2.33b) and thus equation (2.33a). Using the master

equation formalism, we have traced out the bath and only consider the system

dynamics. Specifically consider

ĤS(t) = (1− s(t))Ĥ0 + s(t)Ĥp, (4.1)

Ĥ0 =
1

2
(1̂ + σ̂z)− gminσ̂x, (4.2)

Ĥp =
1

2
(1̂− σ̂z), (4.3)

29
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where Ĥ0 is the driver Hamiltonian and Ĥp is the problem Hamiltonian, non-linear

s(t) for optimal performance is

s(t) ' 1

2
{1− gmin cot[gmin(2εt+ 1)]}. (4.4)

The runtime tf is given by

εtf =
π
2
− arctan(gmin)

gmin
. (4.5)

The system-bath interaction Hamiltonian is defined as

ĤI = gσ̂z ⊗ B̂, (4.6)

where g is the coupling strength between the system and the bath. The interac-

tion Hamiltonian, ĤI is so chosen for three basic reasons, (i) [ĤS, ĤI ] 6= 0 has to be

followed to observe decoherence effects; (ii) the eigenvectors of σ̂z form the computa-

tional basis and hence provides mathematical convenience; (iii) collective dephasing

is experimentally achievable.

Let’s redefine the time dependent energy gap, equation (2.24), as

∆(t) = {(1− 2s(t))2 + 4g2
min(1− s(t))2}

1
2 . (4.7)

This redefinition is done to avoid confusion with coupling strength, g by having an

energy gap of form g(t) as in equation (2.24). The energy eigenstates of HS are

|ε0(t)〉 =
1√
2

[
1
2
− s(t)− ∆(t)

2

gmin(−1 + s(t))
|0〉+ |1〉

]
(4.8)
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and

|ε1(t)〉 =
1√
2

[
1
2
− s(t) + ∆(t)

2

gmin(−1 + s(t))
|0〉+ |1〉

]
(4.9)

with respective eigenvalues 1
2
[1−∆(t)] and 1

2
[1 + ∆(t)]. Using equation (2.35), the

non-zero Lindblad operators are

L̂z,∆(t) = |ε0(t)〉 〈ε1(t)| , L̂z,−∆(t) = |ε1(t)〉 〈ε0(t)| . (4.10)

We have a non-trivial Lamb shift term:

ĤLS = S(∆(t)) |ε1(t)〉 〈ε1(t)|+ S(−∆(t)) |ε0(t)〉 〈ε0(t)| . (4.11)

We consider the decay rates :

γ(ω) =
g2ω

ω2 + 1
. (4.12)

The decay rates chosen are the ohmic bath spectral density using the Druid-Lorentz

cutoff to avoid divergent integrals for the Lamb shift term. The simplicity of the

decay rates is to ensure mathematical convenience for analytical and numerical cal-

culations. Let’s define,

λ± =
±(1− 2s(t)) + ∆(t)

gmin(−1 + s(t))
. (4.13)

Using equations (4.12),(2.37) and (2.39), we can get all the corresponding

needed values for decay rates and Lamb shift terms. For solving this in the en-

ergy or computational eigenbasis, the matrix form of Lamb shift term, Lindblad
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operators and system Hamiltonian is:

Ĥ
(e)
LS =

(
S(−∆(t)) 0

0 S(∆(t))

)
, (4.14)

Ĥ
(c)
LS =

(
[1 +

λ2+
4

]S(∆(t)) + [1 +
λ2−
4

]S(−∆(t)) λ++λ−
2

(S(∆(t))− S(−∆(t)))

λ++λ−
2

(S(∆(t))− S(−∆(t))) [1 +
λ2−
4

]S(∆(t)) + [1 +
λ2+
4

]S(−∆(t))

)

(4.15)

L̂
(e)
z,∆(t) =

(
0 1

0 0

)
, L̂

(c)
z,∆(t) =

1

2

(
2 −1+2s(t)+∆(t)

gmin(−1+s(t))

1−2s(t)+∆(t)
gmin(−1+s(t))

−2

)
(4.16)

L̂
(e)
z,−∆(t) =

(
0 0

1 0

)
, L̂

(c)
z,−∆(t) =

1

2

(
2 1−2s(t)+∆(t)

gmin(−1+s(t))

−1+2s(t)+∆(t)
gmin(−1+s(t))

−2

)
(4.17)

Ĥ
(e)
S =

(
1
2

+ gmin(−1 + s(t)) 1
2
− s(t)

1
2
− s(t) 1

2
− gmin(−1 + s(t))

)
, (4.18)

Ĥ
(c)
S =

(
1− s(t) −gmin(1− s(t))

−gmin(1− s(t)) s(t)

)
. (4.19)

In equations (4.14)-(4.19), the superscript (e) denotes representation in energy

eigenbasis and the superscript (c) denotes the computational basis. Solving in the

energy eigenbasis, we find that the master equations for the density matrix compo-
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nents are:

d

dt
ρ

(e)
00 (t) = γ(∆(t))ρ

(e)
11 (t)− γ(−∆(t))ρ

(e)
00 (t) + i[ρ

(e)
01 (t)− ρ(e)

10 (t)](−1

2
+ s(t)),

(4.20)

d

dt
ρ

(e)
11 (t) = −γ(∆(t))ρ

(e)
11 (t) + γ(−∆(t))ρ

(e)
00 (t) + i[ρ

(e)
10 (t)− ρ(e)

01 (t)](−1

2
+ s(t)),

(4.21)

d

dt
ρ

(e)
10 (t) =

d

dt
ρ

(e)∗
01 (t) =

[
− i(S(∆(t))− S(−∆(t)) + 2gmin)− 1

2
(γ(∆(t)) + γ(−∆(t)))

]
ρ

(e)
10 (t)

(4.22)

+i(−1

2
+ s(t))[ρ

(e)
11 (t)− ρ(e)

00 (t)].

Equations (4.20)-(4.22) at s(t) = 1
2

are equivalent to equation (3.11) describing

the quantum walk in energy eigenbasis. Transforming equations (4.20)-(4.22) to the

computational basis, the master equation describing the ground state |0〉 is

d

dt
ρ

(c)
00 (t) = i[ρ

(c)
01 (t)− ρ(c)

10 (t)][
1

2
[λ+ + λ−][S(−∆(t))− S(∆(t))] + gmin[1− s(t)]]

(4.23)

+
1

4
γ(∆(t))[−λ2

+ρ
(c)
00 (t) + (λ+ + λ−)[ρ

(c)
01 (t) + ρ

(c)
10 (t)] + λ2

−ρ
(c)
11 (t)]

+
1

4
γ(−∆(t))[−λ2

−ρ
(c)
00 (t) + (λ+ + λ−)[ρ

(c)
01 (t) + ρ

(c)
10 (t)] + λ2

+ρ
(c)
11 (t)]

The master equations for other terms in computational basis are provided in Ap-

pendix B.

4.2 Simulations

Following the analytical calculations, we want to observe numerically, the dynamics

of an adiabatic quantum computation search algorithm for a two level system in

a thermal bath. We solve equation (4.23) and the density matrix components in

Appendix B describing the quantum state using the superoperator approach and
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solving individual terms using numerical integration. We write the code for this in

Python3 using built-in functions provided in the Numpy and the Scipy libraries for

performing matrix calculations and numerical integration. The accuracy is limited

by the performance of the Numpy and Scipy libraries with integrals diverging easily

for large or really small values of the parameters. Using more robust calculation

methods to increase the range of study is in plan for the future work. The plots

were generated using the available results in Python3.

The equation (4.23) describes the instantaneous probability, P (t) of the ground

state |0〉. The probability to reach the instantaneous ground state of the system

depends upon the final runtime, the coupling strength, the temperature and the

minimum energy gap. For the all our simulations, we plot for P (tf ), the probability

of the ground state |0〉 at the end of designated AQC scheduled runtime, tf . Next,

we vary these four parameters to observe the dynamics of the system under different

operating conditions. Unlike the quantum walk case, the choice of length of final

runtime affects the dynamics of AQC significantly.

Firstly, we want to know in which coupling regime our model is going to be valid.

The valid range of coupling strength is dependent on the choice of final runtime,

the temperature and the gmin. We fix the inverse temperature, β and the minimum

energy gap, gmin and vary the final runtime in different regimes and observe.

In figure 4.1(c), we can observe that, at really low temperatures while the sys-

tem remains largely unaffected even at relatively stronger coupling strengths, with

decrease in gmin or conversely increase in the number of qubits, the weak coupling

approximation for the system starts breaking down at stronger coupling strengths

for shorter runtimes and for larger system size, even at longer runtimes.

In figure 4.1(a) and 4.1(b), we can observe the breakdown of the weak coupling ap-

proximation for the system at relatively stronger coupling strength for intermediate

temperatures.
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(a) β = 1, gmin = 0.1, g2 vs tf

(b) β = 1, gmin = 0.0001, g2 vs tf (c) β = 10000, gmin = 0.01, g2 vs tf

(d) β = 1, gmin = 0.1, g2 vsP (e) β = 1, gmin = 0.1, tf vsP

Figure 4.1: Plotting probability, P (tf ) of being in instantaneous ground state of the
AQC search Hamiltonian in computational basis while varying coupling strength,
g2 vs final runtime, tf for specified values of inverse temperature, β and minimum
energy gap, gmin. The 2-d slice plots (d) and (e) provide a clearer picture of the
variation of P (tf ) at different values of the parameters. The single avoided crossing
model describing a two-level approximation of multi-qubit AQC search in presence of
an ohmic bath is being analysed. The plots provide an outlook on the valid ranges of
coupling strength under different values of other parameters and show that having
longer runtimes to achieve higher success probability may not be suitable in the
presence of an ohmic bath.
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At this point two factors come into work, the decoherence of the system becomes

strong enough to overwhelm the coherent AQC dynamics leading to the system

getting thermalized and the Lamb shift Hamiltonian term starts to compete and even

overwhelm the system Hamiltonian. Thus, the valid range of the system reduces to

lower coupling strengths, with increase in the temperature and the system size. We

also observe that for certain range of coupling strengths for a specified temperature

and system size, the probability of being in the ground state after the schedule

runtime is higher at shorter runtimes, unlike the advocated longer runtimes are

better in AQC. The figures 4.1(d) and 4.1(e) are horizontal and vertical slices at

specified values of final runtime, tf and coupling strength, g2 in figure 4.1(a). They

aim to better exhibit the discussed observations.

For the following plots, we aim to stay in the validity regime to observe proper

dynamics according to our single avoided crossing model. In figure 4.2, we aim to

observe dynamics of the probability of the ground state, P (tf ), for specified values

of gmin and coupling strength, g2 within the range of validity, while varying the

inverse temperature, β and final runtime, tf . As follows from figure 4.1 and figure

4.2(c), we can see that at really low coupling strengths, the probability of ground

state at the end of runtime, tf is largely unaffected due to temperature effects in

the given simple decay model equation (4.12). However, with increase in coupling

strength within the validity regime, figure 4.2(a) and figure 4.2(b), we can observe

the temperature effects clearly. While for lower temperatures, the system continues

to provide high P (tf ), with higher temperatures and longer runtimes, the value of

P (tf ) starts decreasing. For higher temperatures, the shorter runtime provide better

P (tf ). The temperature effects become stronger with decrease in gmin or conversely,

the increase in system size. Recalling [15], the minimum energy gap gmin is inversely

proportional to square root of the number of basis states which depend upon the

number of qubits.
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(a) g2 = 0.01, gmin = 0.1, β vs tf

(b) g2 = 0.01, gmin = 0.0001, β vs tf (c) g2 = 0.0001, gmin = 0.1, β vs tf

(d) g2 = 0.01, gmin = 0.1, β vs P (e) g2 = 0.01, gmin = 0.1, tf vsP

Figure 4.2: Plotting probability, P (tf ) of being in instantaneous ground state of the
AQC search Hamiltonian in computational basis while varying inverse temperature,
β vs final runtime, tf for specified values of coupling strength, g2 and minimum
energy gap, gmin. Note the colour scales for T are different in each sub-figure. The
2-d slice plots (d) and (e) provide a clearer picture of the variation of P (tf ) at
different values of the parameters. The single avoided crossing model describing a
two-level approximation of multi-qubit AQC search in presence of an ohmic bath
is being analysed. The plots provide an outlook on the variation of P (tf ) with
temperature under specified values of other parameters.
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These effects are exhibited better in figures 4.2(d) and 4.2(e), which are horizon-

tal and vertical slices for specified values of final runtime, tf and inverse temperature,

β in figure 4.2(a). Finally, we will be observing the dynamics of probability of the

ground state at the end of runtime, P (tf ) while varying the minimum energy gap,

gmin or conversely the system size and the inverse temperature, β to observe their

correlations for specified values of coupling strength, g2 and the appropriately chosen

tf for the associated gmin values.

A common feature observed in all the plots of figure 4.3 is the loss in value of

probability of ground state at the end of runtime, P (tf ) with increase in temperature

no matter what the system size may be. While we observe for smaller system size

that, P (tf ) is close to 1 low temperatures and loss in value occurs at approaching

intermediate and high temperatures, for larger system size, we observe that the loss

in value of probability occurs even at low temperatures. The point where the loss

in value of P (tf ) starts occurring seems to be linearly decreasing with decrease in

gmin and increase in β or decrease in temperature. These effects are better exhibited

in figures 4.3(d) and 4.3(e), which are horizontal and vertical slices of figure 4.3(a)

for specified values of inverse temperature, β and minimum energy gap, gmin. We

observe in figure 4.3(c) that, while with lower coupling strength the loss of value

in P (tf ) is much lower, the point where loss of value in P (tf ) occurs seems to be

linearly related in the same manner. Similarly, in figure 4.3(b), we observe that

while the region of high probability is more spread out with relatively lower P (tf ),

the point where loss of value in P (tf ) occurs is still linearly correlated. Another

peculiar feature to be observed is that, figure 4.3(a) and 4.3(c),while there is a dip

in P (tf ) at higher temperatures for a particular range of relatively higher coupling

strengths for longer runtime chosen, in figure 4.3(b) with shorter runtimes, there

is peaking behaviour in P (tf ) instead of a dip. We are not sure whether this is a

nuance of the numerics of this particular model, or a general feature in performance

of this class of algorithms.
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(a) g2 = 0.01, tf = 10
gmin

, gmin vs β

(b) g2 = 0.01, tf = 5
gmin

, gmin vs β (c) g2 = 0.001, tf = 10
gmin

, gmin vs β

(d) g2 = 0.01, tf = 10
gmin

, gmin vsP (e) g2 = 0.01, tf = 10
gmin

, β vs P

Figure 4.3: Plotting probability, P (tf ) of being in instantaneous ground state of
AQC search Hamiltonian in computational basis while varying minimum energy
gap, gmin vs inverse temperature, β for specified values of coupling strength, g2

and final runtime, tf . Note the colour scales for P are different in each sub-figure.
The 2-d slice plots (d) and (e) provide a clearer picture of the variation of P (tf )
at different values of the parameters. The single avoided crossing model describing
a two-level approximation of multi-qubit AQC search in presence of an ohmic bath
is being analysed. The plots provide an outlook on the variation of P (tf ) under
different temperatures and system sizes with specified values of other parameters.
They show that under specific operating ranges of parameters, the values of P (tf )
is more robust under temperature effects.
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Conclusions

We used a single avoided crossing model to describe a two-level approximation of

the quantum walk and AQC search algorithm. The two-level approximation can be

used for number of qubits, n > 7 since the minimum energy gap min(ε1(t)− ε0(t))

decreases exponentially faster with system size compared to min(ε2(t)− ε0(t)) and

after n > 7 the approximation becomes more and more accurate with increasing

system size [22]. The minimum energy gap used in this work range from 10−1 to

10−4, which approximately describes the range of number of qubits from n = 7 to

n = 27. The inverse temperature, β is equivalent to 1
kbT

. We consider β < 1 to

be high temperature, 1 < β < 10 is considered intermediate temperature, β > 10

is considered low temperature. While coupling strength controls the strength of

decoherence and hence affects the success probability of the algorithm, the general

behaviour of the model is dependent on β and the minimum gap, gmin. It is to be

noted that this particular dependence is for the performance of search algorithm in

presence of an ohmic bath, the performance of other quantum algorithms in presence

of other bath systems could be different with different relevant operating ranges.

For a single avoided crossing model describing a two-level approximation of

multi-qubit quantum walk search algorithm in presence of an ohmic bath, we observe

within the validity regime of the model that performance of the algorithm worsens

40
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with increase in coupling strength and the size of the system (decreasing gmin) due to

decoherence and Lamb shift effects. While the best performance is observed at low

temperatures with performance being significantly worse at high temperature, there

are peculiar effects observed at low temperature where an optimal low temperature

for the performance was observed for a specific system size and coupling strength. I

believe there will be more interesting features to be observed where temperature can

be used for advantage in multi-level models and more realistic thermal bath models.

For a single avoided crossing model describing a two-level approximation of

multi-qubit adiabatic quantum computation search algorithm in presence of an

ohmic bath, we observe within the validity regime of the model that performance of

the algorithm generally worsens with increase in temperature at relatively stronger

coupling strengths. For higher temperatures, shorter runtimes provided better per-

formance. Peculiar effects have been observed for correlated ranges of system sizes

and coupling strength that at particular range of runtimes, the system performance

is less affected by the increase in temperature. There can be valuable further research

in this effect, it will be useful to find out operating parameters for a computing sys-

tem where temperature effects can be reduced even at relatively stronger coupling.

Given a fixed temperature and system bath-coupling, what method is more

suitable AQC or quantum walk for performing a search algorithm? The answer to

this question is tricky, since they describe different types of system and involves many

other factors affecting this choice. The quantum walk in this work describes a time

independent process which can be run repeatedly and continuously for long time

whereas the AQC describes a time dependent slow changing process with a finite

runtime. Considering that the process a system is made to undergo is matter of

choice. Quantum walk is more feasible to be used at relatively stronger system-bath

coupling and higher temperature since they can provide solutions even in presence

of decoherence whereas AQC doesn’t provide a reliable solution. However at lower
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temperatures AQC is more reliable even for relatively stronger coupling strengths

and provide a stable solution. At intermediate temperature, a combination of system

size, coupling strength and performance requirements have to be considered to make

an informed choice. It is to be noted that with increasing system size, the system

bath coupling strength has to still follow the weak coupling approximation for the

given model to be valid.

The justification for using a single bath for the single avoided crossing model

to draw conclusions about many qubits coupled to identical local baths is beyond

the scope of the project but will appear in the paper in preparation.
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Appendix A

Analytical expansion of Lamb shift

terms for QW search

The analytical calculations for Lamb shift terms, involves solving for integrals con-

taining Cauchy principal value, this makes the calculations fairly complicated. We

used the contour integral approach to gain these results in Mathematica software,

S(ωx) =
1

1 + ω2
x

e−βωxg2

[
− πiωx −

π

2
(1 + cos(β)) cosh(βωx) + ωxexpintegralei(βωx)

−π
2

(1 + cos(β)) sinh(βωx) + eβωx [ωxlog(ωx)− cosintegral(β)[ωx cos(β) + sin(β)]

+
π

2
ωx sin(β) + (cos(β)− ωx sin(β))sinintegral(β)]

]
,

S(−ωx) =
1

1 + ω2
x

e−iβg2

[
eβ(i+ωx)ωxΓ[0, βωx]+[cos(β)+i sin(β)][−π

2
(1+cos(β))−ωxlog(ωx)

+cosintegral(β)[ωx cos(β)−sin(β)]−π
2
ωx sin(β)+(cos(β)+ωx sin(ωx))sinintegral(β)]

]
.
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Appendix B

Components of density matrix in

solution of AQC search

The rest of the equations for the computational basis density matrix components

are:

d

dt
ρ

(c)
11 (t) = i

[
ρ

(c)
10 (t)− ρ(c)

01 (t)][
1

2
(λ+ + λ−)[S(−∆(t))− S(∆(t))] + gmin[1− s(t)]

]

+
1

4
γ(∆(t))

[
λ2

+ρ
(c)
00 (t)− (λ+ + λ−)[ρ

(c)
01 (t) + ρ

(c)
10 (t)]− λ2

−ρ
(c)
11 (t)

]
+

1

4
γ(−∆(t))

[
λ2
−ρ

(c)
00 (t)− (λ+ + λ−)[ρ

(c)
01 (t) + ρ

(c)
10 (t)]− λ2

+ρ
(c)
11 (t)

]
,

d

dt
ρ

(c)
01 (t) =

d

dt
ρ
∗(c)
10 (t) = i

[
ρ

(c)
01 (t)(1−2s(t))+gmin[ρ

(c)
00 (t)−ρ(c)

11 (t)](1−s(t))+1

2
(λ++λ−)ρ

(c)
00 (t)

−1

2
(λ+ + λ−)ρ

(c)
11 (t) + (

1

4
λ2
− −

3

4
λ2

+)ρ
(c)
01 (t)

]
+γ(∆(t))

[
(−1

4
λ− +

3

4
λ+)ρ

(c)
00 (t) + (

1

4
λ− −

3

4
λ+)ρ

(c)
11 (t)− (2 +

1

8
λ2
− +

1

8
λ2

+)ρ
(c)
01 (t)

]
+γ(−∆(t))

[
(
3

4
λ− −

1

4
λ+)ρ

(c)
00 (t) + (−3

4
λ− +

1

4
λ+)ρ

(c)
11 (t)− (2 +

1

8
λ2
− +

1

8
λ2

+)ρ
(c)
01 (t)

]
.

48


