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Abstract 

 

Biological membranes rarely exist as free-floating structures but are often confined 

and supported by various cellular assemblies such as the cytoskeleton and the 

extracellular matrix.  It has already been shown that biological and polymeric 

substrates can modulate the morphology and response to various stimuli of 

supported lipid bilayers significantly. The interaction between such structures and 

the membrane are obviously important yet remain poorly understood even in 

minimal or synthetic systems.   

The work of this thesis utilises a variety of fluorescence microscopy and atomic force 

microscopy (AFM) techniques to investigate the behaviour and structure of 

supported lipid bilayers, in particular how interfacial features of their support 

substrate influence and modulate their morphology and biophysical properties.  

First, surface modification of polydimethylsiloxane is systematically explored, in 

particular how the interfacial properties of such a polymer substrate can be modified 

to create fully and partially plasma-treated interfaces that stably support lipid 

bilayers.  Lipid patch formation on such substrates is then investigated, revealing 

that the membrane undergoes significant morphological reorganisation after vesicle 

fusion has completed forming a lipid patch. The underlying mechanisms can be 

altered by substrate interactions following different pathways for fully and partially 

plasma-treated PDMS substrates.  Furthermore, partially plasma-treated substrates 

are demonstrated to be capable of specifically depleting cholesterol from supported 

lipid membranes, while stably supporting the other remaining phospholipid species.  

Studies of cholesterol depletion of lipid patches possessing liquid-ordered and 

disordered domains reveal a disruption in domains structure, with the partitioning of 

fluorescent dyes into regions from which they were previously excluded.  This 

structure perturbation was found to be reversible upon the reinsertion of cholesterol 

into the bilayer. 

Many of the discussed mechanisms are only observed in the presence of a 

substrate, emphasising the importance of substrate interactions in both functional 

biomembranes and the development of supported membrane technologies.
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Chapter 1: Introduction 

 

One of the primary building blocks of cellular life is a class of molecules called lipids.  

These molecules are integral to forming the cellular membrane and can be utilised 

to create minimal model systems in the form of synthetic lipid membranes.  Artificial 

lipid membrane systems are a popularly utilised tool for research and technological 

innovations 1.  When adhered to a support substrate, these lipid membranes have 

a favourable geometry for many experimental techniques and improved stability 

compared to other synthetic lipid systems such as vesicles and black lipid 

membranes 1.  They have been widely exploited in biological investigations to 

elucidate various aspects of the cell membrane behaviour, and more specifically 

how lipids play an integral role in membrane function.  However, such systems are 

often considered restrictive, with substrate interactions being seen as a drawback 

due to the fact that they influence the membrane properties such as fluidity, 

morphology and chemical activity 2.  This distortion of membrane properties is 

sometimes thought to produce behaviours that are not representative of native 

biological membranes.  In fact, substrate interactions are often thought to reduce 

the biological relevance of such systems.  This is a common miscomprehension; 

instead, biological membranes rarely exist as free-floating structures in vivo and are 

adhered support structures such as the cytoskeleton and extracellular matrix, with 

substrate interactions being important for successful membrane morphology and 

function.  Even for technological applications, supported lipid membrane interfaces 

are exploited, for example in healthcare, drug discovery, food safety and 

environmental monitoring 3.   

At the present time, a full understanding of the membrane-substrate interactions and 

their impact remains elusive and often marginalised, partly due to the inherent 

complexity of lipid systems and difficult length/time scales of measurement required 

to help decipher their behaviours. 

In this chapter, a review of the role of the lipid in the cell membrane is presented, 

along with discussions on how the lipids’ chemical structure imparts functional 

properties such as membrane fluidity, phase behaviour, and barrier function even in 

minimal model supported lipid systems.  The influence of a supporting surface on 
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membrane properties and behaviour are discussed, in both model and biological 

systems, detailing how substrate surfaces can passively and dynamically alter 

membrane structure and function. 

1.1 Lipid membrane: Origin and biology 

Cell membranes are highly complex in composition, containing a precise content of 

lipids, carbohydrates and proteins that elegantly accomplish a broad range of tasks, 

most importantly forming the cellular barriers that separate the inside of a living cell 

from its inanimate surroundings 4,5.  Lipids satisfy three main functions within the 

cell: energy storage 6,7, signal transduction 8, and the formation of membranes 9.  In 

the latter role, lipids were initially thought to act as passive two-dimensional 

structures serving for the encapsulation of the cell content and hosting membrane 

proteins 10.  Recently, this picture has evolved with the lipids now accepted to be 

much more active players in the membrane, forming a dynamic and heterogeneous 

matrix of laterally organised lipids, in which protein species can transiently 

reorganise.  The complexity of the lipid membrane is partly attributed to the diverse 

array of lipid species present in the membrane, with informatics and computational 

studies predicting over 100,000 different lipids in the cellular lipidome 11,12.  Over 

21,000 biologically relevant lipid structures have already been catalogued in the 

LIPIDS MAPS Structure Database using experimental techniques such as; nuclear 

magnetic resonance, liquid chromatography and mass spectrometry 13.  This 

prompts the question as to why is the cell membrane lipid composition so complex.  

One reason is that various lipids can be intricately involved in membrane protein 

assembly and enzyme function.  A typical example can be found in the loss of 

function of the membrane protein lactose permease when reconstituted in the 

absence of phosphatidylethanolamines 14,15.  Another possible reason is to facilitate 

the dynamical adjustment of membrane behaviour near critical miscibility points.  

Near criticality, small changes in composition can dramatically alter the membrane’s 

chemical and mechanical properties, a behaviour that requires fine-tuning through 

a complex composition of lipids 16–18.  The lipid composition also aids controlling the 

spatial biomolecular organisation within the membrane by the formation of distinct 

phase-separated domains of a specific composition.  Several studies suggest that 
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criticality in plasma membranes can explain many of the observations typically 

connected to the formation of microdomains of lipid and protein 16,17,19, the so-called 

lipid rafts.  The study of lipid delivery to apical and basolateral surfaces in polarised 

epithelial cells inspired the idea that lipid rafts are used for biological functions.  

Studies showed that the delivery of selected lipids to regions of the cell membrane 

led to the lateral and asymmetric separation of sphingolipids and glycerolipids, 

which in turn coincided with the localisation of membrane proteins through specific 

lipid-protein interactions 20.  This was then proposed as a method for laterally 

organising cellular membranes and facilitating cell functions. 

The presence of distinct sub-compartments in biological membranes is also relevant 

for detergent resistance.  Experiments demonstrated that cell membranes were not 

fully solubilised in the detergent Triton X-100 at low temperatures 21.  Instead, the 

membrane was left with detergent-resistant domains, which were concentrated in 

cholesterol/sphingolipid 21.  Indications of these microdomains have also been 

obtained in live cells using multiphoton microscopy approaches, most notably the 

observation of changes in lipid membrane ordering of whole, live zebrafish embryos 

22, and identification of clustered lipid microdomains in the filopodia of macrophages 

23,24.   

However, the presence of lipid rafts in-vivo remains controversial; individual rafts 

are small and highly dynamic, rendering their direct visualisation difficult and elusive 

23,25,26.  Despite these controversies, the intriguing biological implications of the “lipid 

rafts” concept stimulated a surge in fundamental research about the principles 

driving local lipid lateral organisation in cellular membranes 11.  The local lipid 

composition not only impacts lateral membrane organisation 27,28 but also influences 

phase separation and protein aggregation, membrane signal transduction 8, 

membrane nanomechanics 29,30 and various biomolecule interactions 31–34.  Studies 

have shown membrane composition to even play a role in host-pathogen 

interactions, especially in the case of viral capsid lipid coatings 35–37   

Defective replication of the correct lipid composition in membranes has also been 

linked with various pathologies 38.  Bullous disease, an ailment that leads to 

symptoms such as blistering of the skin, is linked to a disruption of plasma 

membrane composition in keratinocyte cells.  A dysfunction in cellular cholesterol 
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content disrupts lipid membrane lateral structure, proposedly impacting membrane 

barrier function and contributing to the pathogenesis of the disease 39.  

Atherosclerosis is another example of pathology with links to dysfunctional 

membrane composition leading to plaque development on the inside of arteries.  

One particular study suggested that membrane microdomains in macrophages 

could help colocalisation of the platelet-activating factor and CD36 proteins.  In 

doing so, the lipid domains facilitate the complexation of these two proteins, 

increasing oxidised low-density lipoprotein interaction with macrophages, leading to 

the development of atherosclerosis 40.  Even neurological disorders such as 

Alzheimer's disease have proposed origins in disrupted membrane composition.  

The “seeds” for the amyloid fibril formation central to the pathogenesis 41 are 

suggested to have origins in intracellular membrane microdomains 42.   

All these examples make it obvious that lipids play a deciding role in plasma 

membrane structure, and consequently, the fate and function of the overall cell.   

 

Figure 1.1: Basic schematic of the cellular membrane.  The plasma membrane is a complex 
structure made up of various lipid species as well as different membrane proteins, supported by the 
cytoskeleton and extracellular matrix.  The two lipid leaflets composing the membranes tend to exhibit 
different lipid composition (so-called leaflet asymmetry).  
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However, the plasma membrane is not an isolated structure; it is impacted and 

modulated by surrounding cellular structures such as the cytoskeleton and 

extracellular matrix (Figure 1.1).  For example, condensation of lipid domains in the 

plasma membrane of T-lymphocytes occurs above actin-rich structures in the 

cytoskeleton 43.  The reorganisation of these domains could be connected to 

cytoskeletal restructuring, underpinning a molecular mechanism for cross-talk 

between the cytoskeleton and plasma membrane.  While still hypothetical, this 

further highlights the complexity of the cell membrane, with countless factors 

influencing its structure and function.  In light of this complexity, a minimal model 

system can prove useful for studying fundamental aspects of the properties and 

functions of the lipid species in the cell membrane, as well as the impact of the 

structures supporting the membrane.  The first step, when developing such minimal 

models, is to understand how different lipid assemblies and chemical structures 

relate to their role in membrane function.  

1.2 Lipid membranes: A model system 

Lipids can be loosely defined as a group of hydrophobic or amphiphilic small organic 

molecules that do not readily dissolve in polar solvents such as water.  Such a broad 

definition reflects the fact that lipids form a broad and complex class of molecules 

with a substantial structural diversity that encompasses numerous combinations of 

fatty acid chain lengths and possible headgroups linked together by a glycerol 

backbone 12.  Lipids are essential constituents for the membrane’s function, defining 

mechanical, biophysical, and functional properties.  The investigation of lipid 

systems has flourished, along with an appreciation of their complexity.  The lipid 

composition of the plasma membrane continually evolves, affecting the membrane 

local molecular organisation, mechanical properties and lipid-protein interactions in 

order to support cell structure and function 20.  Lipids can be produced synthetically 

44, allowing for full compositional control in the development of minimal model 

systems.  This strategy is invaluable for a “bottom-up” approach: building complex 

systems through the controlled combination of fundamental elements.  This 

approach can aid the identification and interpretation of the fundamental biophysical 
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principles underpinning complex biological processes, and is used extensively in the 

present thesis.   

1.2.1 Self-assembly of lipid molecules 

Phospholipids are one of the most common classes of lipids and constitute a major 

building block of the plasma membrane structure.  Phospholipids are made of a 

hydrophilic polar “headgroup” and typically two hydrophobic fatty acid acyl chains 

known as a “tail-group”.  When placed in water, the hydrocarbon tails of the 

phospholipids disrupt the network of hydrogen bonds formed by water molecules, 

forcing them to re-order and hence decreasing the system's overall entropy.  These 

hydrophobic interactions drive the tails to group together and reorient to expose only 

the hydrophilic headgroups which remain in contact with the aqueous phase.  This 

drives the spontaneous self-assembly of lipid structures in water: as phospholipid 

molecules are progressively added to the aqueous solution, they first self-assemble 

into micelles once the so-called critical micelle concentration is reached.  

Phospholipids tend to have extremely low critical micelle concentrations, with 

examples ranging from 0.01 – 1 mM for several phosphatidylglycerol (PG) lipid 

species, and as low as 0.5 – 100 nM for several phosphatidylcholine (PC) lipid 

species 45.  Such low critical micelle concentrations ensure the stability of self-

assembled lipid structures even when their bathing medium becomes depleted of 

lipids 46.  The low critical micelle concentration of phospholipids has been exploited 

in the design of artificial cells or protocells 4,47–51.  Protocells can encapsulate, 

compartmentalise and replicate genetic material, such as RNA, and the formation 

of a semi-permeable membrane could be one of the first evolutionary steps taken 

by life, likely forming the progenitor of the cell membrane as we know it 5,52.  

Various factors influence the structure of the lipid micelles (or aggregates) including 

temperature, pH, electrolyte concentrations and the molecular structure of the lipids 

themselves.  This plasticity of lipid assemblies is often described as lipid 

polymorphism: the ability of chemically identical structures to have two or more 

distinct organisational forms.  The packing properties of lipid molecules play a 

significant role in the favoured structures into which lipids assemble.  In its most 

basic form, the features controlling lipid organisation can be summarised by three 
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parameters: the optimal molecule area 𝑎0, the volume occupied by the hydrocarbon 

chain 𝑣, and the maximum effective length the chain can assume or the critical chain 

length 𝑙𝑐.  These three parameters can be related by the following equation in order 

to predict a packing parameter, 𝑃: 

𝑃 =
𝑣

𝑎0 𝑙𝑐 
         Equation 1.2 

The packing parameter characterises the molecular arrangement yielding a zero 

bending stress depending on the intrinsic geometry of the lipids 53 (Figure 1.2).  This 

predicted “spontaneous curvature”, is an important parameter that can vary 

significantly between lipid molecules, impacting morphology, bending rigidity, lipid 

packing and phase behaviour 54.   

 

Figure 1.2: Diagram of lipid polymorphism.  Example lipid molecules with cone (a), cylinder (b) 
and wedge shapes(c).  When such structures self-assemble in aqueous solution, they have a 
preference for forming certain structures, with micellar (d), lamellar (e) and inverted micellar (f) 
structures being given as corresponding example structures  

Lipids can exhibit positive or negative spontaneous curvature.  For example, such 

as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol being 

negative (with spontaneous curvature values of -0.091 ± 0.008 nm-1 and -0.494 ± 
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0.013 nm-1 respectively), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 

being positive (with a spontaneous curvature value of 0.068 ± 0.032 nm-1) 55.  A 

great variety of structures can be formed, from common micelles (Figure 1.2d) and 

lamellar structures (Figure 1.2e) to more exotic inverted structures such as the 

inverted micellar phase (Figure 1.2f).  The contribution of molecular-level structure 

on large scale lipid assemblies demonstrates the influence lipids can play across 

multiple length scales.  The fact the self-assembly of lipid structures does not require 

strong covalent bonding but are instead held together by weaker interactions such 

as hydrophobic interactions, hydrogen bonding, weak electrostatic interactions and 

van der Waals interactions allows lipid structures to be soft and fluid-like 46.  This 

soft, fluid-like nature allows the lipids in biomembrane to be dynamic and adapt their 

geometry 56, mechanical properties 57,58 and composition 18,59 to transiently 

reorganise membrane structure and function.  Cells utilise this ability to dynamically 

remodel lipid structures into different conformations for different uses, from 

micellular structures to facilitate material transport 60, to membranes going through 

transformations reminiscent of topologies in inverted phases during budding, fission 

61, and endocytosis 62.  Of particular interest to the studies discussed in this thesis 

are the lamellar structures such as monolayer, bilayer and multilayer membrane 

structures.  Lamellar structures are the conformation utilised by cells to create 

barriers, having tuneable permeability, bespoke mechanical properties and 

structural stability 53.  Similarly, lamellar structures provide accessible tools for 

encapsulation, making them useful in methods of drug delivery63, cosmetic 

formulation 64 and flavour encapsulation 65.  Notable examples of lamellar structures 

are small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs) and giant 

unilamellar vesicles (GUVs), which are commonly used in research and industry due 

to their facile formation (which is discussed in further detail in Chapter 2.4).  The 

transformation of all these structures is linked to membrane composition and fluidity; 

both intrinsically linked to the overall phase behaviour of the lipid membrane. 

Aside from influencing the value of the packing factor, the tail-groups also have a 

strong influence on overall membrane physiology.  The hydrocarbon chains of the 

tail-groups are attracted to each other via van der Waals interactions and longer tail-

groups typically increase the membrane cohesion.  Additionally, lipids with fully 

saturated tail-groups can pack tightly together, further reinforcing attractive van der 
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Waals interactions between the tails, decreasing the lipids mobility and increasing 

the melting temperature of the membrane.  For example, DPPC bilayers exhibit a 

melting temperature of 41 – 43 oC 66,67, compared to DMPC (24 oC) and 1,2-

dilauroyl-sn-glycero-3-phosphocholine (DLPC) (-2 oC) 66.  Partly unsaturated tail-

groups’ chains have more conformational freedom, with the associate bonds in the 

acyl chain able to freely rotate.  This tends to disrupt close-packing and lowers the 

melting temperature for the membrane: DOPC and DPPC have very similar length 

alkyl tails, but DOPC has a significantly lower melting of -17 oC 66.  As a result, 

DOPC bilayers are completely fluid at room temperature. 

Cells can alter the amount of saturated and unsaturated lipid tails in their 

membranes to control the membrane’s state at physiological temperatures, for 

example, to allow protein molecules to diffuse along the membrane 46.  Studies on 

zebrafish embryos found that the membrane could tune its composition depending 

on the environmental temperature during the embryo’s development.  At lower 

temperatures, cells produced less monounsaturated fatty acid chains and a broader 

distribution of lipid chain lengths 68.  Such adaptive changes in composition can help 

maintain the membrane fluidity and ion permeability even at lower temperatures. 

1.2.2 Membrane phase and fluidity 

The capability of lipid structures to dynamically remodel is intrinsically related to their 

ability to move within the plane of the membrane.  This fluidity allows an inextensible 

surface such as the lipid membrane 69 to dynamically reorganise and adapt to 

mechanical stresses and accommodate rapid changes in membrane area 70,71.  

Membrane fluidity also enables protein/lipid organisation to be dynamically altered, 

allowing the formation of distinct phases within a continuous membrane.  Lipid 

phases are commonly categorised as liquid-disordered (Ld), solid gel (Lß), and 

liquid-ordered (Lo), illustrations of which are shown in Figure 1.3a-c respectively.  

Solid gel phases have high acyl chain order and low diffusivity; liquid-ordered shows 

high acyl chain order and high diffusivity while liquid-disordered is characterised by 

low acyl chain order and high diffusivity.  Phase diagrams help illustrate the possible 

phase states of a membrane in thermodynamic equilibrium, many of which can 

coexist 72.  Such diagrams, similar to Figure 1.3d, are often deciphered by mapping 
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extensive experimental results, can be used to highlight compositional regions of 

criticality and coexistence, aiding researchers to appropriately selected model 

compositions for their study 18,59,73,74. 

The various phases accessible to lipid membranes help create a complex array of 

behaviours directly linked to the lipid miscibility, segregation and coarsening within 

and between, the phases.  This behaviour can occur at a variety of time and length 

scales in membranes with domains of a distinct composition having been imaged at 

the nanoscale 75 and microscopically 59,72.  These domains possess dynamical 

features and are heavily dependent on temperature and composition 18.  Phase 

transitions between gel and liquid phases can be induced by heating/cooling lipid 

systems 76, with possible coexistence of both phases depending on lipid composition 

in binary systems 59.  The addition of cholesterol adds complexity to this behaviour, 

being able to induce the coexistence of Lo and Ld phases in ternary lipid 

compositions.  Cholesterol is able to interact with saturated and unsaturated lipids, 

which possess relatively high and low melting temperatures, respectively.  This 

allows it to disorder the Lß phase by disrupting the acyl chains, and order the Ld 

phase by condensing and ordering chain packing 59,77; overall this enables a Lo 

phase to coexist with an Ld phase.  It should be noted that cholesterol’s ability to 

promote ordering and rigidity of fluid lipid membranes occurs even in single phase 

liquid-disordered systems, for example in 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) and cholesterol mixtures as reported from nuclear 

magnetic resonance and differential scanning calorimetry measurements 78,79.  

Although the presence of distinct coexisting microdomains has not been directly 

visualised in cell membranes 23,25,26, macroscopic phase separation of Lo and Ld 

phases has been commonly observed in model lipid vesicle systems 19,59,72,80–82.  

The coexisting Lo and Ld domains coarsen up to sizes of tens of microns, and even 

larger, in diameters with smooth circular edges, as shown in Figure 1.3ii, 1.3iii.  Lipid 

domain structure tends to be in registry between the proximal and distal leaflets, 

with experimental results showing a strong coupling exists between Lo and Ld 

domains of the inner and outer leaflet for liposomes 83.  Similarly, Lo and Ld domains 

in supported lipid patches tend to remain in registry at equilibrium 84–86, but 

deregistration is possible in high shear flows 87.   
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Figure 1.3: Membrane phases in ternary lipid bilayer mixture. Illustration of the lipid bilayer phases 
liquid-disordered (a), gel phase (b) and liquid-disordered (c) formed from mixtures of unsaturated, 
saturated lipids and cholesterol. Sketch of existing phases at different compositions of DOPC 
(unsaturated lipid), DPPC (saturated lipid) and cholesterol (d). Regions of each existing phase are 
adapted from 59, with permissions from Elsevier.  Each point represents the position of compositions 
tested in the experimental section,  with example fluorescent images of giant unilamellar vesicles of 
composition (i) Pure DOPC (ii) DOPC:DPPC:Cholesterol (40:40:20 molar ratio) and (iii) 
DOPC:DPPC:Cholesterol (16:64:20 molar ratio).  Scale bars are 20 µm.   

The main phase transition temperature can be different between proximal and distal 

leaflets with some decoupling 76,88.  However, this tends not to be the case with 

domain structure between leaflets, which usually remains in registry despite 

theoretical studies suggesting that may not be the case for lipid membranes 

containing cholesterol 89. 

The observation of coexisting liquid phases in ternary lipid systems inspired ideas 

of lateral heterogeneity being present in the cell membrane.  The fact lipid 

membranes can possess coexisting liquid phases allows for the formation of regions 
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with distinct compositions, melting temperatures and mechanical properties, while 

maintaining overall membrane fluidity and integrity.  This provides a potential 

mechanism for biological membranes to control the lateral organisation of 

membrane proteins, initiate membrane signalling and tune various membrane 

biophysical properties.  The proposed microdomains (or lipid rafts) are expected to 

be in the order of tens of nanometres in cells, based on Förster resonance energy 

transfer (FRET) and multiphoton measurements 23–26, with diffusivities theorised to 

be on the order of ~ 0.1 - 1 µm2s-1 90.  Unfortunately, although widely studied, the 

various interactions present in between Lß/Lo/Ld phases is not fully understood, even 

in the model lipid systems.  The corroboration of such investigations is often 

hindered by several factors, including miscibility interactions being strongly 

dependent on the lipids used 72, the complexities added by the effects of changing 

specific lipid components 59 and the overall sensitivity of morphologies to lipid ratio 

and impurities16.   

All of these factors hamper the derivation of a complete and consistent phase 

diagram for many ternary lipid systems.  This complexity is likely key for many 

biological systems to remain highly adaptable and robust to internal and external 

changes.   

Aside from lipid composition, another vital component is missing from the picture 

when trying to model cell membranes.  The cell membrane is not an isolated 

structure but is connected to supporting cellular structures like the cytoskeleton and 

extracellular matrix.  These supporting structures are built up of various proteins 

with the cytoskeleton being composed of actin filaments, microtubules and 

intermediate filaments 91.  The extracellular matrix includes a combination of 

proteins and carbohydrates, such as proteoglycans complexes, fibronectin and 

collagen fibres 92.  Transmembrane proteins such as integrins mediate a dynamic, 

two-way link between the cytoskeleton and extracellular matrix, aiding the 

synchronisation of the two structures 8,93.  These supporting structures, and their 

synchronisation, play an important role in membrane locomotion, structural stability, 

and likely their lateral organisation.  Supported lipid membranes provide an ideal 

tool to decipher such elusive yet influential interactions between the substrate and 

supported lipid membrane. 
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1.3 Supported lipid membrane: Relevance for biological 

models 

It is well-known that the growth of cells and tissues necessitates a substrate, a 

supporting surface without which most tissue cells are non-viable in solution 94.  

Supporting substrates are therefore vital for tissue development 94, with cells 

responding differently depending on their environment, whether it is the surrounding 

tissue matrix, adjacent cells or synthetic substrates.  Synthetic substrates are 

commonly used for in in-vitro models, with a compelling example found in the 

directed differentiation of stem cells via gel matrix elasticity 95.  This necessity of a 

support is clear when put into the biological context, with structures like the 

cytoskeleton and extracellular matrix being ubiquitous inside and between tissues 

91,92, (Figure 1.4).  

The cytoskeleton provides the internal link to the cell’s external environment.  

Through its dynamic assembly, the cytoskeleton also spatially organises cellular 

content and help the cell move and change shape 91.  Signalling between the 

extracellular matrix and the cytoskeleton occurs through the lipid membrane.  This 

indicates that the interactions between the membrane and its substrate are crucial 

to understanding how the cell “feels” and responds to its environment, as well as 

how it integrates and coordinates these responses between cells and tissues.  

Although the cytoskeleton is a dynamically assembling and dissembling structure 

that remodels the cell through coordinated forces, it must remain bound within the 

plasma membrane.  The membrane and the supporting cytoskeleton must therefore 

be coupled efficiently.  One mechanism enabling modulation of the actin cortex by 

the plasma membrane is the phosphoinositides and GTPases that can modify the 

actin monomer pool and actin assembly respectively 96,97.   
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Figure 1.4: Schematic of cellular interfaces supporting the plasma membrane.   The 
extracellular matrix, containing components such as collagen fibres and proteoglycan complexes is 
anchored by points of focal adhesion structures (e.g. fibronectin and integrin).  The plasma membrane 
is also scaffolded by the cytoskeleton, containing various filaments, e.g. actin filaments, providing 
support and a means to generate forces to aid cell movement and shape changes.  The figure was 
created based on images publicly available at http://en.wikipedia.org/wiki/Cell_membrane. 

Actin networks have also been shown to have an impact on the lateral fluidity of 

adhered membranes.  A study based on fluorescence correlation spectroscopy 

(FCS) showed that egg-PC lipid membranes displaying a significant decrease in 

membrane lateral diffusivity when adhered to a minimal actin cortex, dropping from 

9.9 ± 0.6 µm2s-1 to 4.8 ± 0.4 µm2s-1, and with a clear correlation between reduced 

membrane mobility and actin density 98.  Other studies found that the presence of 

an actin meshwork underneath the lipid membrane had consequences on the 

membrane phase behaviour, with the suppression of large-scale phase separation 

below the transition temperature 99, and in some cases an altogether absence of 

phase transition 100.  Interestingly, super-resolution observations indicate that the 

actin network does not destroy all lateral organisation in the membrane, with Ld 

domains appearing to align along actin fibres 100.  In fact, actin structures can be 

utilised to impart lateral membrane organisation:  the actin cortex can self-organise 

into a variety of patterns including bundles, asters and stars 101.  Order in the plasma 

membrane is increased over asters, but not altered near stars or actin bundles.  This 

behaviour shows how interactions between the actin cortex can be used to modulate 
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the local membrane environment without perturbing the macroscopic mechanical 

properties of the cell.  Generally, the consequences of an underlying actin network 

are not limited to the in-plane organisation of the membrane and a model 

actomyosin cortex has been shown to induce geometrical membrane 

transformations such as membrane wrinkling when the adhered actomyosin cortex 

is contracted 102. 

Taken together, these studies clearly demonstrate the importance of the role played 

by the cytoskeleton in the membrane’s molecular organisation and behaviour.  It is, 

therefore, necessary to carefully consider the substrate’s surface properties when 

attempting to replicate the fundamental behaviours of biomembranes with minimal 

model systems.  Hereafter, the focus is placed on the influence of the substrate on 

membrane organisation in model lipid systems.  

1.4 Supported lipid bilayers: Substrate impact 

Supported lipid bilayers are bidimensional lipid structures formed by two lipid 

monolayers (leaflets) assembled in a sandwich so as to expose only the 

headgroups, and existing at the surface of an immersed solid.  Although lipid 

monolayers are also viable supported lipid structures 1, lipid bilayers are preferable 

to study biologically relevant systems, which they reflect more accurately.  They 

spontaneously self-assemble on hydrophilic surfaces with the ~ 5 nm thick double 

leaflet structure not directly adhered to the substrate surface but separated by a few 

molecular layers of water (typically 1 – 2 nm thick) 2.  This nanoconfined layer of 

water has peculiar properties, such as an increased heat capacity 103 and a viscosity 

proposed to be 102 - 106 times higher when compared to bulk water  104,105.  These 

changes are consistent with the water confined between the bilayer and the 

substrate adopting a more ordered molecular arrangement that results in a glassy 

behaviour.  This is a consequence of two combined effects: a reduced 

conformational entropy and a strong interaction between the water molecules and 

the two confining surfaces.  It is important to keep in mind that the water is not 

“frozen” but allows the lipid bilayer to maintain lateral diffusivity even while adhered 
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to the substrate surface.  This property alone already makes supported lipid bilayers 

a powerful tool in the exploration of membrane biophysics. 

Another advantage of supported lipid bilayers is their easy fabrication.  Several 

methods exist for the formation of supported lipid bilayers, most notably Langmuir-

Schaefer/Blodgett 106 and vesicle deposition 107–109.  A schematic representation of 

both methods shown in Figure 1.5.  The vesicle fusion method holds many 

advantages including easy application to a variety of different surfaces (of varying 

size and geometry), organic solvent free bilayers, and fabrication of lipid bilayers on 

substrates with complex topographies.  Moreover, vesicle deposition also allows for 

the continuous measurement of a variety of membrane properties during the 

transition from free-floating liposomes to adhered bilayer 85,108; making this method 

ideal for studying the influence of substrate interactions on membrane properties.  It 

will be used extensively throughout this thesis and in particular in Chapter 4. 

Although conceptually relatively simple, the transformation process of colloidally 

suspended lipid vesicles into supported bilayers is complex.  Factors such as the 

vesicle composition, size, surface charge, coupled with substrate roughness, 

hydrophobicity and finally the solution pH, ionic strength and the osmotic pressure 

on vesicles all contribute to the pathway and success of the supported lipid bilayer 

formation.  This renders the vesicle deposition methods slightly esoteric with 

identical conditions often difficult to reproduce 1.  Even when a supported lipid 

membrane is successfully formed, a given type of membrane can possess different 

morphologies depending on the formation history.  The importance of the formation 

history has been evidenced in coarse-grain simulations modelling deposited 

vesicles forming lipid patches in a “partially” or “fully” disintegrate state, depending 

on the strength of membrane adhesion to the hydrophilic surface 107.  Other coarse-

grain simulations revealed two vesicle fusion pathways, each tuned by the substrate 

roughness and hydrophilicity 110.  These simulations did not only corroborate 

previous experimental studies 108,111 but also showed that different fusion pathways 

result in different redistributions of lipids between the membrane proximal and distal 

leaflets after fusion.  The membrane then undergoes a variety of conformation 

changes to become a flat, stably supported bilayer, each influenced by the 

surroundings and hence the interfacial properties of the substrate 107.  
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Figure 1.5: Langmuir-Blodgett and vesicle deposition methods.  In the Langmuir-Blodgett 
method (a-d), a hydrophilic substrate surface immersed in a Langmuir trough (a), is pulled through a 
lipid monolayer at the air-water interface (b), transferring the lipid to the substrate surface (c).  Upon 
re-submerging the substrate, a supported lipid bilayer is formed (d).  In vesicle deposition (e-f), lipid 
vesicles are deposited on a hydrophilic substrate immersed in aqueous solution (e).  These vesicles 
adsorb to the substrate surface (f) and spontaneously rupture and spread (g) in a process of vesicle 
fusion, subsequently forming a supported lipid bilayer (h). 

1.4.1 Substrate impact on the lateral diffusivity in lipid bilayers 

One of the most obvious effects of the substrate on the supported bilayers’ 

properties is the impact on lipid diffusivity.  The lateral diffusivity is reduced on 

substrates such as mica and glass when compared to free GUVs 2,112,113 with reports 

of a reduction of up to 50% 114.  Yet, despite the reduced lateral diffusivity, supported 
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lipid bilayers exhibit an increased flip-flop rate compared to free liposomes: single 

particle tracking experiments demonstrated a flip-flop half-time of the order of hours 

for vesicles but only seconds for supported lipid bilayer 105.  The increased flip-flop 

rates were attributed primarily to the increased density of packing defects that form 

when the membrane is cooled down through its main transition temperature 114. 

Transient structure defects may also play a role, but they are present in both free-

standing and supported membranes 115. 

Surface roughness plays a significant role in modulating the membrane diffusivity.  

Using glass slides that were polished and etched to create controlled surface 

roughness, Blachon et al. 116 showed that the diffusivity of 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) and DMPC membrane decreased from ~1 µm2s-

1 to 0.2 µm2s-1 when the substrate roughness was increased from ~0.1 nm to 2 nm 

root mean square roughness 116.  This drastic loss of fluidity was attributed to local, 

highly curved regions on nanorough surfaces, causing pinning centres, an increased 

number of defects and increased local membrane order and packing.  Results 

combining epifluorescence microscopy and fluorescence recovery after 

photobleaching (FRAP) demonstrated that nano-corrugated surfaces hindered 

macroscopic Lo domain coarsening when compared to smooth regions on the same 

substrate 117.  Recently, similar results have also been shown with high-resolution 

techniques such as atomic force microscopy (AFM) where a defined roughness 

introduced on mica surfaces could arrest domain coalescence and limit phase 

separation to molecular accretion 118.  The roughened mica reduced the correlation 

length of domains to 57 nm, down from 2-3 µm observed on smooth mica surface 

118.   

Roughness is not the only contributing factor though, with smooth hydrophilic 

substrates such as mica, still demonstrating reduced lateral diffusivities of 0.49 

µm2s-1 for egg-PC supported lipid membrane despite a root mean square roughness 

of only 0.03 nm 104.  It is also worth noting that many of the diffusive properties 

observed in lipid bilayers do not follow simple Brownian motion 119.  Anomalous 

diffusive behaviours can be found in the decoupling upper and lower leaflet 

diffusivities, as measured with single particle tracking 104 on egg-PC membranes 

supported on aluminium oxide.   
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Some of these differences may be linked to the increased order 120–123  and viscosity 

104,105 of the interstitial water layer, which in turns leads to a disparity in the friction 

experienced by the two leaflets, one facing the bulk water and the other the confined 

water layer 105.  Issues related to diffusivity are further complicated by the 

introduction of ionic species to the solution, in particular with respect to the confined 

water layer 124.  The addition of chloride salts of monovalent metal ions 

demonstrated a significant improvement in the lubricating properties of confined 

water.  This was explained by the ions disrupting the ordered hydrogen bond 

network of the confined water with an effectiveness following a direct Hofmeister 

series 124.  Ions present in the confined water layer can also modulate the local 

membrane stiffness and global lipid diffusivity 125, as revealed by a recent study 

combining AFM and FRAP.  The results suggested that the confined ions can 

modulate the interaction between lipids which in turn affected the lateral diffusivity 

in the membrane.  It is not difficult to see how such effects could extend to natural 

biomembranes in aqueous environments when supported.   

1.4.2 Miscibility, criticality and phase transition effects 

The presence of a substrate also has consequences on other vital biophysical 

properties of the membrane, including its thermodynamic state and stability.  The 

phase behaviour of the lipid membrane is of particular importance because local 

composition differences in membranes are thought to be responsible for much of 

lateral organisation, and the precept of the controversial lipid rafts.   

Supported lipid membranes have a markedly increased main phase transition 

temperature when supported on mica and glass substrates 76,87,88.  This change in 

the main transition temperature is not always uniform across both leaflets, with a 

decoupling observed for bilayers formed on mica 76.  Parameters such as incubation 

temperature, the type and concentration of the ionic species present also modulate 

this substrate effect 76.  These parameters influence the membrane-substrate 

interactions which in turn create an asymmetry in the phase transition of the upper 

and lower leaflets. 

Membrane-substrate interactions are thought to stabilise phase separated lipid 

domains.  The presence of a substrate effectively fixes the lateral organisation 85, 
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hence inhibiting domain coarsening and restricting macroscopic phase separation 

118.  Cellular substrates such as the cytoskeleton and extracellular matrix may fulfil 

similar functions for the plasma membrane, although this remains to be clearly 

demonstrated. 

Substrates have been shown to maintain the diffusion coefficients of individual 

molecules within the Lo/Ld domains, but the diffusion of these domains themselves 

is drastically altered 19. Studies have shown that when fused to a substrate surface, 

Lo domains previously capable of traversing the Ld phase become fixed in position 

and large-scale domain coarsening is inhibited 85.  Interestingly, recent studies have 

demonstrated that previously Lo/Ld domains macroscopically separated (Figure 

1.3d) no longer coarsen and segregated once the supported bilayers is heated and 

cooled through its main phase transition 86.  This has been linked to substrate 

interactions such as drag force of the underlying water layer, impeding large scale 

coarsening to below a resolvable length scale.  These results could explain why 

large-scale coarsening is never seen in vivo, where the membrane is adhered to a 

cytoskeleton, possibly obstructing large scale phase separation close to critical 

temperatures.  Questions surrounding these behaviours are further discussed in the 

investigations presented in Chapter 6. 

At the molecular level, the consequences of the altered of Lo/Ld domains dynamical 

behaviour can be seen near criticality.  Critical points occur at particular 

combinations of composition and temperature in the phase diagram, where tie-lines 

merge into a single point and multiple compositions can coexist19.  Critical 

compositions are often considered as prime candidates for the formation of raft-like 

structures, with model GUV systems exhibiting transient fluctuations in domain size 

and structure.  This behaviour can be replicated with giant plasma membrane 

vesicles (GPMVs) that have the exact lipid compositions of native membranes 126.  

The presence of a substrate surface increases the main transition temperature of 

the membrane and shifts its point of criticality, and also alters the dynamics of 

domain formation at these regions in the phase diagram 18.  Studies with supported 

lipid membranes have revealed that several behaviours of lipid bilayer systems are 

only observable once the bilayer adheres to a supporting substrate.   
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1.4.3 Mitigating the substrate influence 

In all the cases discussed so far, the model membrane is closely adhered to the 

substrate surface, only separated by a ~0.5 - 2 nm water layer from the substrate 2.  

While the separation is large enough to allow for membrane self-healing and lateral 

diffusion, it is not sufficient to fully mitigate the influence of the substrate.  In the 

presence of transmembrane proteins, such a small interstitial space may result in 

proteins being denatured due to direct contact with the substrate 127.  Denaturing of 

proteins can be avoided using a hydrophilic polymer interlayer which sufficiently 

increases the space between the membrane and the substrate to negate many of 

the substrate effects, maintain lateral diffusivity, and allow for membrane proteins to 

be incorporated into the bilayer.  The two most common strategies utilising polymer 

interlayers are polymer cushions, and polymer tethers 128.  Polymer cushions rely 

on depositing polymeric materials at the interface between the bilayer and 

underlying hard substrate.  Direct contact of proteins can be avoided by using 

“cushions” made from various materials such as polyacrylamide brushes 129 and 

Polyethylene glycol (PEG) 130 hydrogels 131 or biological materials such as cellulose 

132 (Figure 1.6a).  These cushions are thought to mimic the extracellular matrix and 

the cell-surface glycocalyx 128, and can be as thin as ~ 10 nm while successfully 

supporting the membrane 132.  Alternatively, polymer tethers and spacers can be 

utilised to distance the membrane and reduce substrate interactions, as shown in 

Figure 1.6b below.  Lipopolymers are commonly utilised as they can be heavily 

tailored to have different surface couplings groups, lengths and side functionalities 

133.  Lipopolymers offers advantages in tuning membrane-substrate distance as well 

as viscosity, both of which are polymer layer dependent.  A caveat of these spacers 

is that the mismatch between the lipid anchor and polymer tethers can render such 

systems unsuitable for preparations involving direct self-assembly of the lipid bilayer 

128.  Polymers can also become untethered, bind to the membrane and hence distort 

the membrane behaviour, for example causing anomalous diffusion134.  For both 

polymer cushions and tethers, balancing the attractive and repulsive interactions 

must be tuned precisely to ensure the lipid system does not collapse and remains a 

continuous bilayer with mobile lipids 128. 
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Soft, flexible, polymeric substrates can not only be utilised as cushions and tether 

but can act as a robust surface for direct lipid bilayer self-assembly 135,136.  Polymeric 

substrates have the advantage of being much more deformable, and easier to 

mould.  Also, being a filamentous network makes them a better mimic in terms of 

simulating the mechanical properties found in the natural support structures of the 

cell, especially when compared to hard substrates such as glass.   

 
Figure 1.6: Schematic of polymeric spacer techniques to mitigate substrate influence.  Images 
depict a polymeric cushion (a), and polymeric tether (b) used as spacers for supported lipid bilayer on 
substrate. 

While often desirable, negating the influence of the substrate leaves a wealth of 

membrane behaviours that depend on interactions with a support unexploited.  This 

is to be taken in conjunction with the development of nanomaterials, where the 

control of a substrates interfacial properties can be tuned on a nanoscale level.  

Designer nanomaterials are already being employed in a variety of technologies, 

but there is still a lack of understanding of their toxicity 137 and how they enter, 

interact, and penetrate the cellular interface 138.  In this respect, supported lipid 

bilayers provide an ideal system for investigating the influence of nano-interfacial 

effects on the membrane structure, morphology, and composition. 

1.5 Passively remodelling of supported lipid membranes 

Understanding membrane-substrate interactions facilitates the development of 

predictive associations between interfacial properties and the resultant membrane 

behaviour.  This exploration will not only help unravel the mysteries of the cellular 
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interface but can also be exploited for future biomimetic surfaces and devices.  

Technologies in advanced drug delivery and targeting 139, lab-on chip140 and organ-

on-chip devices 141 would all significantly benefit from such knowledge.   

1.5.1 Chemical surface patterning 

Surface patterning has long been used to modify and control lipid bilayer 

organisation on substrate surfaces.  The first designs used simple mechanical 

barriers to inhibit membrane spreading, creating 2D corrals of fluid, but distinct 

membrane patches 142,143.  Micro-contact blotting has also been heavily utilised to 

create surface patterning 135 and has more recently been extended to create phase 

segregated supported lipid bilayers of bespoke composition through stencilling 144.  

More interestingly, chemical patterning of a substrate surface can be used to 

promote the spontaneous self-assembly of lipids into designed patterns across a 

substrate.  Grid-like diffusive barriers can be created via chemical patterning of the 

substrate’s surface 145.  These techniques can be used to create both hydrophilic 

and hydrophobic regions on the substrate, causing the adhered lipids to self-

assemble into spatially controlled arrays of lipid monolayers and bilayers 

respectively 146.  Although initially limited in resolution, many patterning techniques 

are approaching nanometre resolutions.  For example, Dip-pen nanolithography has 

been utilised with lipids as ink, to create nanoscale features on self-assembled 

monolayer (SAM) surfaces 147.  Such a control over the lipid organisation represents 

an extraordinary opportunity for biotechnological devices, that could be exploited to 

create systems analogous to the surface patterning used by biological interfaces to 

modify the shape and function of membranes. 

1.5.2 Topographical surface patterning 

Micron-scale scale mechanical barriers have also been effectively used for surface 

patterning to inhibit lateral lipid diffusion 142.  Although manually made surface 

scratches may seem an obvious tool to prohibit lipid spreading, the impact of such 

topographical features becomes more nuanced when shrunk to the nanoscale.  

Nanotextured surfaces can control the sorting and partitioning of Lo/Ld domains, 

using topographic features to create and disrupt domain structure in supported 
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model membranes 117.  Individual molecular species can also be affected differently, 

with fluorescently labelled lipids showing curvature induced slowing and 

aggregation with a magnitude dependent on the fluorescent label attached to the 

lipid 148,149.  

Here, nanoroughness is to be understood as a root mean square roughness on the 

order of nanometres.  Nanorough surfaces can significantly impact membrane 

diffusion, without damaging membrane integrity 116.  Nanoroughness tends to 

decrease the lateral diffusivity of lipids, in some case up to 5-fold 116.  Such changes 

in diffusivity originate from increased lipid trajectories, lipid confinement, hidden 

areas, increased number of defects, altered surface adhesion, and local curvature.  

When all these factors are disentangled, it is high local curvatures (radius of 

curvature between 10 and 40 nm) that most significantly lowers the membrane 

diffusivity 116.  This is likely due to a curvature-induced increase in lipid order, 

packing, and bending rigidity, acting together to reduce the membrane fluidity150.  

Curvature effects are further discussed in Chapter 6.5.2. 

The effects of surface curvature are not just limited to changes in lipid mobility but 

can also induce morphological changes.  Topographic features in the order of 1 - 22 

nm can cause a loss of membrane integrity and the formation of pores 151, as shown 

in Figure 1.7.  Outside of this range, the membrane can flow over the features, 

following the underlying topography.  This can be exploited in technology to create 

nanopores that host single molecules 152. 

 

Figure 1.7: Impact of nanotopography on supported lipid bilayers. Nanoparticles below 1.2nm 
allow the bilayer to form on top (a), features above 1.2 nm cause the formation of pores in the 
membrane (b) until a size of 22 nm where membrane follows contours of particles once again.  Figure 
adapted from reference 151, with permission from Langmuir. Copyright 2009 American Chemical 
Society. 
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While curved surfaces pose an increased difficulty for self-assembly of continuous 

lipid bilayers on the micron-scale, these difficulties are often overcome by 

modulating the lipid charge or the ionic composition of the aqueous solution 153.  

Hence, such curved substrates have been used to model biological processes in 

membranes such as membrane budding and exocytosis 61.  Patterned substrates 

can also help reproduce molecular mechanisms that involve curvature-associated 

proteins and raft activity in membranes 154.  This is the case for endocytic vesicle 

scission and the self-assembly of dynamin 61.  Many of these mechanisms can also 

be applied to the partitioning and purification of active membrane species 155.  This 

has already been demonstrated with lipid migration and sorting in curved 

architectures 156, enabling liquid-ordered domains to preferentially distribute in 

regions of lower curvature.  Similarly, in the work of Steinem et al. 157–159, pore-

spanning lipid membranes were utilised to control lipid species segregation, 

showing that the domain formation in pore-spanning membranes depends on the 

geometric properties of the porous array: the rims of curved pore are unfavourable 

regions for Lo domains formation due to their larger bending modulus 158.  The size 

of the pores could hence be used to tune the size of the Lo domains confined in the 

pore-spanning membrane. 

1.6 Dynamically remodelling of supported lipid membranes 

Many of the previously described behaviours involve the passive manipulation of 

membrane properties by static substrate features.  However, cells are dynamical 

structures, changing their shape and composition in response to a variety of 

mechanical 94,160–162 and chemical stimuli 58,163,164.  During these transformations, 

the membrane often remains coupled to the underlying cytoskeleton, which also 

must respond to these changing stimulations.  Indeed, studies have demonstrated 

that the cytoskeleton plays a key role in actively manipulating and maintaining 

plasma membranes in response to internal and external stimuli 58,91,93,96,165.  The 

interplay between the plasma membranes’ dynamical response to external stimuli 

and the coupling to their support is not yet fully understood.  Extending this 

understanding would aid the development of novel methods to actively control and 

manipulate the membrane’s behaviour. 
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1.6.1 Supported membranes modulated by fluid shear 

The active remodelling of the cytoskeleton requires the membrane to maintain its 

integrity under varying stress and strain rates.  One of the main aspects to consider 

is the frictional force experienced by the membrane when its support evolves.  

Studies have shown that when using a hydrodynamic driving force, the frictional 

resistance experienced by the membrane under shear flow is not always uniform 

amongst membrane-bound species 166.  Both the sliding friction of the species within 

the membrane and the membrane-substrate lateral friction plays a significant role in 

modulating the species mobility 166.  Other studies have shown that under high 

enough shear rates, supported lipid bilayers can deregister their upper and lower 

leaflets, causing novel effects such as the formation of asymmetric membranes and 

the disappearance of previously phase-separated domains 87.  In all cases, the 

influence of the substrate is key to the observed behaviours, highlighting the intricate 

links between the apparent membrane behaviour and the substrate’s interfacial 

properties. 

1.6.2 Supported membranes modulated by electric fields 

Electric fields can be used to control cell membranes and alter the membrane’s 

properties.  Exposure to high electric fields can cause a rapid and substantial 

increase in the conductivity and permeability of biological membranes.  This change 

can be reversible or irreversible and has been demonstrated on cells and planar 

lipid bilayers 167,168.  Recent studies have shown that exotic lipid morphologies can 

be formed during the electroformation of lipids using external electric fields.  

Electroformation is traditionally used in the formation of GUVs.  In GUV 

electroformation, alternating current (AC) electric fields are used to induce gentle 

hydrodynamic flows in a fluid cell containing an electrode coated with dried lipids 

(see Chapter 2: Materials and Methods for further details).  These gentle 

hydrodynamic flows rehydrate and agitate the dried lipid layers in a fashion which 

creates unilamellar vesicles 169,170.  Although commonly done with flat plates or a 

cylindrical needle, exotic electrode geometries such as co-planer interdigitated 

electrodes can result in the formation of lipid nanotubes 171.  Lipid nanotubes can 
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then be used as a template for silica mineralisation, and the basis of new 

nanomaterials.  

The use of electric fields is not only limited to controlling the membrane morphology; 

they can be used to the modulate the membrane’s composition and lateral 

organisation.  Lower voltages have been utilised to perform electrophoresis of 

molecular species tethered to solid-supported lipid membranes, controllably altering 

the local composition of lipids.  This has been demonstrated with the separation and 

purification of charged fluorescent dyes 172, and the dynamical reorganisation of 

more complex lipid compositions that are capable of raft formation 173. 

1.6.3 Supported membranes modulated by mechanical stress 

The cell must respond to mechanical stimulation through various life processes, 

including cytosis, growth, replication and locomotion.  Many of the forces 

experienced, induced, and interpreted by the cell are operated through the 

cytoskeletal network to which the membrane adheres.  Various techniques have 

been employed to investigate the behaviour of membranes under mechanical stress 

including micropipette aspiration, magnetic/optical tweezers, cytoindenters, atomic 

force microscopy and microplate manipulation 174.  A caveat of this broad toolset is 

that each technique tends to elicit a different mechanical response from the system 

investigated.   

Recently, flexible substrates have been used to study the response of adhered 

membranes to mechanical stretching.  Studies have shown that bilayers confined to 

a substrate can passively regulate their shape and stress by adopting different 

conformations such as creating tubes, adsorbing adhered vesicles, and generating 

or resealing pores 56.  This behaviour illustrates some of the innate mechanisms 

available to lipid membranes in order to control their area while remaining attached 

to the supporting substrate.  Most interestingly, membrane-substrate interactions 

are key to controlling many of these behaviours 175.  Depending on the substrate 

properties, different membrane behaviour such as sliding across hydrophilic 

surfaces, or sticking and tubulating on more hydrophobic interfaces 175 can occur 

under mechanical strain.  Even on the nanoscopic length scales, differences in the 

membrane-substrate interactions can change the membrane mechanical response: 
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AFM results revealed that ions can modulate the membrane response at the 

nanometre level, leading to the nanotexturing of fluid supported lipid bilayers when 

placed under stress by the AFM tip 125.  This localised gel-like solidification of the 

membrane strongly depends on the ion species present in the solution 125.   

This overview of recent results emphasises the ability and importance of local 

membrane-substrate interactions to modulate the biophysical response of 

supported lipid membranes. While still underexplored, the underlying mechanisms 

could be vital to the proper function of the cellular interface. 
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1.7 Conclusion 

The ability of membrane-substrate interactions to induce specific cell responses is 

becoming well recognised in the scientific community, already gaining ground in 

organ-on-chip research 176.  This suggests that the development of future 

biotechnological interfaces may lie with solid-supported membranes first because 

of their easy fabrication, lower cost, robustness and second due to the many 

behaviours and mechanism that they can elicit from their interaction with the 

substrate.  While the field is arguably still in its infancy, further research will not only 

allow for substrate-induced membrane responses to be predictable, but also 

controllable, opening the door to a variety of biotechnological innovations.  With that 

in mind, this thesis will detail investigations into the influence of the substrates’ 

properties on the behaviour of supported membranes.  This includes the question 

as to how such effects can be controlled and exploited.   

Chapter 2 will discuss the materials and methods utilised to measure the structure 

and properties of lipid bilayers across a variety of length scales and investigate the 

effect of the substrate on the behaviour of the system.  

Chapter 3 discusses the mechanisms allowing functionalised substrates such as 

polydimethylsiloxane (PDMS) substrates to achieve the desired surface chemistries 

and topographies for later investigations.   

Chapter 4 examines the deposition and fusion of vesicles onto a substrate, in 

particular, the mechanics of membrane reorganisation during vesicle fusion and its 

dependence on interfacial properties.   

Chapter 5 discusses novel membrane-substrate interactions that enable the specific 

extraction of cholesterol from membranes supported on partially hydrophilic 

substrates.   

Chapter 6 investigates the effect cholesterol depletion on the structure of phase 

domains and the disruption of fluorophores partitioning in ternary lipid compositions 

that exhibit Lo/Ld coexistence.   

Finally, chapter 7 provides a brief summary and future outlooks regarding the work 

presented in this thesis.
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Chapter 2: Materials and methods 

With supported lipid bilayers as a minimal model system, investigations were 

conducted mainly using microscopy techniques to image the changes in membrane 

morphology and properties under the influence of substrate interactions.  To study 

the membrane behaviour on a wide range of length scales multiple microscopy 

techniques were utilised.  The macroscopic morphological changes (both in and out 

of the plane to the bilayer) are captured with fluorescence microscopy techniques 

which offer a global, non-invasive view.  Many changes in the lipid organisation, 

composition and local structure such as lipid diffusivity and inferences to lipid 

packing changes can be also characterised with fluorescence techniques.  The 

nanoscale properties of the membrane, supporting substrate and membrane-

substrate interactions can be characterised with atomic force microscopy.  These 

techniques can be further complemented by reflectance interference contrast 

microscopy and simple contact angle measurements to allow a full investigation of 

the substrate’s influence on the membrane behaviour, including the possible 

exploitation of these effects to manipulate membrane processes, morphology, and 

composition.   

In this chapter, each of the techniques utilised in the thesis is described, starting 

with a review of the protocols used for lipid preparation and supported bilayer 

formation. 

2.1 Lipid preparation 

The lipid species used in this thesis are 1,2-dioleoyl-sn-glycero-3-phosphocholine 

(DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and cholesterol. 

All the lipids were obtained from Avanti Polar Lipids (Alabaster, AL).  The saturated 

lipid (DPPC) and sterol (cholesterol) were obtained in powder form.  Unsaturated 

lipids are susceptible to air oxidation during preparation 72,177,178, and hence DOPC 

was purchased in chloroform solution so as to limit oxidation due to air exposure 

during the sample preparation. 
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DOPC is a naturally occurring phospholipid that is used in many investigations; it is 

proven to successfully create supported lipid bilayers that can be probed by a variety 

of methods.  Due to its low melting transition temperature of -17 oC 66, DOPC 

bilayers remain fluid and stable in an Ld phase at room temperature.  Thus, DOPC 

lipid bilayers usually maintain a high degree of lateral diffusivity, facilitating 

membrane reorganisation due to substrate influences.  DPPC is also naturally 

occurring and commonly used, but unlike DOPC, it has a relatively high main 

transition temperature of 41 – 43 oC 66,67, making DPPC predominantly gel-phase at 

room temperature.  DPPC possesses the unusual feature of being able to exist in a 

so-called ripple phase.  Unlike with the well-known fluid and gel phase membranes, 

ripple phase membranes present an asymmetric, saw-toothed rippled surface that 

can be identified with multiple techniques such as scanning differential calorimetry 

88,179, X-ray diffraction 180 and AFM 181.  The ripple phase typically occurs at a 

temperature slightly above the main phase transition.  It can exist in a stable or 

metastable state, depending upon whether the system is being heated up from the 

gel phase or cooled down from the liquid crystalline phase 180. 

Combinations of these three lipids allow access to a wide range of phase 

behaviours, with different, lateral diffusivity, mechanical properties, miscibility and 

transition temperature (to name a few properties).  This is true for a myriad of lipid 

combinations, but the wealth of literature available for DOPC/DPPC/Cholesterol 

mixtures makes them a reference system with foundational studies mapping the full 

phase diagram (work of Veatch and Keller) 59,72,81,82.  This phase diagram (see 

Figure 1.3) can be split into several distinct regions: a single liquid phase, a phase 

with coexisting liquid-liquid, coexisting solid-liquid phase and a single solid phase.  

Additionally, there is an inaccessible region above 66 mol% cholesterol, the 

solubility limit for cholesterol in phosphocholine bilayers 182,183. 

2.1.1 Fluorescent label 

The fluorophore or fluorescently labelled agent is a key component to many of the 

lipid mixtures being measured with fluorescence microscopy.  These fluorescent 

labels allow the investigation of the formed lipid membranes using, in the present 

case, epifluorescence imaging and fluorescence recovery after photo-bleaching 
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(see Chapter 2.5.2 for further details).  There is a wide library of fluorophores 

available, covering most of the visible range of excitation/emission wavelengths. 

However, choosing a suitable fluorophore is not straightforward because differences 

in their chemical structure can have a significant impact on their position within the 

lipid membrane, as well as the molecular organisation of the surrounding 

membrane.  For the work presented in this thesis, three different fluorescent labels 

were used: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (ammonium salt) (Rh-DPPE) obtained from Avanti Polar 

Lipids (Alabaster, AL), 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine 

Perchlorate (DilC18(5)) obtained from Invitrogen® (ThermoFisher) and Naptho[2,3-

a]pyrene (NaP) obtained from Santa Cruz Biotechnology (Heidelberg, Germany).   

Many fluorescent probes have been demonstrated to alter membrane behaviour 

including mechanical properties 184, fusion pathways108, lipid diffusivity 185 and 

miscibility temperature 81.  Repeating measurements using fluorescent probes with 

different structures and partitioning properties helped distinguish observed effects 

from specific fluorophore related artefacts.  Rh-DPPE is a lipophilic fluorophore with 

the rhodamine molecule being attached to the phosphoethanolamine head group. 

Rh-DPPE was used as the primary fluorescent label in most experiments; mainly 

due to its availability, widespread use and facile incorporation into the lipid 

membrane.  Its strong fluorescent signal and resistance to bleaching allow for 

measurements over long timescales (order of hours) without the worry of a total loss 

of signal.  In the present work, Rh-DPPE samples maintained strong fluorescent 

signals over hours, whereas NaP samples lost significant fluorescence over imaging 

periods of minutes. 

DilC18(5), another popularly used fluorescent label, resides amongst the acyl chains 

unlike Rhodamine and is known to impact membrane behaviour differently 148, 

making it a useful control.  Both molecules still have a strong preference for the 

liquid-disordered phase and have similar excitation/emission spectra. This is known 

to cause signal crosstalk or “bleed-through”, where the emission from one 

fluorophore is detected across filter combinations dedicated for a different 

fluorophore 186.  Hence the simultaneous use of Rh-DPPE and DilC18(5) in a single 

membrane is often counterproductive.   
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NaP is a fluorescent probe with dissimilar excitation/emission wavelengths to Rh-

DPPE and has a strong preference for the Lo phase 187–189.  Simultaneous labelling 

of lipid patches with Rh-DPPE and NaP allows the Lo and Ld domains to be easily 

and complementarily distinguished.  This property is used for the investigations 

carried out in Chapter 6 where the partitioning behaviour of fluorophores between 

Lo/Ld domains is examined under external constraints. 

 

Table 2:1: Name and chemical structure of the fluorophores Rh-DPPE and DilC18(5) and NaP. 
The nomenclature also states wavelengths corresponding to the maximum of absorption/emission for 
each fluorophore.  The full absorption/emission spectra are also given for the fluorophores in aqueous 
solution (taken from reference 188,190 and adapted from ThermoFisher scientific © SpectraViewer, link 
https://www.thermofisher.com/uk/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-
spectraviewer.html).  

In all cases, even minimal amounts of fluorescent probes still have an impact on the 

membrane behaviour 81,185.  To mitigate this issue, concentrations of 0.1, 0.5 and 3 

mol% were utilised when doping membranes with Rh-DPPE, DilC18(5) and NaP 

respectively.  This achieves a reasonable signal-to-noise ratio for the fluorescence 
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measurements while minimising the concentration of fluorophores used to label the 

membranes. 

2.2 Buffer solution:   

All experiments were performed in aqueous solution, using ultrapure water (18.2 

M, 0.5 ppm organics) obtained from a Merck Direct-Q® 3UV-R dispensing unit 

(Merck Millipore, Watford, UK).  Sodium chloride and calcium chloride salts as well 

as the buffering agent tris(hydroxymethyl)aminomethane (TRIS) were purchased 

from Sigma-Aldrich (UK).  The buffer solution composition used was 10 mM TRIS, 

150 mM sodium chloride and 2 mM calcium chloride.  The buffer was adjusted to 

pH 7.5 with the addition of concentrated hydrochloric acid.  The addition of the salts 

facilitated the successful formation of supported lipid bilayer via vesicle deposition 

method,85,191–193 screening long-range electrostatics by reducing the Debye length 

to < 1 nm.  Sodium chloride also bolstered buffer salinity to a similar level as 

physiological saline but allowed the buffer to be a more biologically relevant medium 

than ultrapure water.  Ions and buffer salts have a subtle but significant impact on 

the membrane-substrate, and lipid-lipid interactions; they affect the local hydration 

structure enough to modify the membrane behaviour 194.  The same buffer solution 

was used in all experiments, thus standardising the impact of the electrolyte solution 

on the membrane properties and enabling comparative studies disentangling the 

changes due to ions from substrate effects. 

The osmolarity of all aqueous solutions was tested using an Osmomat 3000, 

freezing point osmometer (Gonotec®, Berling, Germany).  Firstly, the osmometer 

was calibrated with ultrapure water (50 µL in an Eppendorf tube) followed by 50 µL 

measurement of the aqueous solution of interest in a clean Eppendorf tube.  This 

process was repeated five times per solution to acquire a statistically meaningful 

value of the solution’s osmolarity, resulting in an error of less than ± 5 mOsmol/L. 
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2.3 Substrate preparation 

Correct and consistent preparation of the substrates is vital for all investigations.  

Each substrate was kept as clean as possible to ensure that generic contamination 

did not impact subsequent surface functionalisation or adhered sample properties. 

2.3.1 Glass 

All glassware (cover glasses, cover slides) were purchased from VWR 

(Leicestershire, UK).  All glassware was first sonicated for 10 minutes in isopropanol 

followed by 10 minutes in ultrapure water in order to remove residual organics and 

contaminants.  The clean glass was then dried with a gentle nitrogen flow.  Glass 

substrates were subsequently exposed to low-pressure air plasma-treatment (also 

referred to as plasma oxidation) at a pressure of 1 mbar and power of 300 Watts 

(VacuLAB Plasma Treater, Tantec) for 30 seconds, pyrolysing any remaining 

contaminants.  The cleanliness of the glass substrates after the protocol was 

completed, was controlled by placing a 1 µL droplet of water on the edge of the 

glass slides and observing full wetting (contact angle ~0 degrees). 

As glass is transparent, relatively flat, and smooth 195, it is routinely used to support 

fluid lipid bilayers.  Here, glass was used as a control substrate to offer a comparison 

point with other substrates of interest, in particular with how they modulated the 

bilayer behaviour.  

2.3.2 Mica 

Muscovite mica (SPI supplies, West Chester, USA) was used as a hydrophilic and 

atomically flat substrate, ideal for AFM investigations on lipid bilayers.  Mica is 

partially transparent and can be used in both AFM and fluorescence measurements.  

The low roughness of the mica surface can be exploited as a control substrate to 

disentangle the effects of surface topography on the behaviour of fusing bilayer 

(results and discussions of chapter 4).  To prepare mica substrates, a single mica 

disc was affixed to a clean glass slide using epoxy glue (SPI supplies, West Chester, 

USA).  After the epoxy was fully cured the mica disc was cleaved by firmly pressing 
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adhesive tape onto the substrate, and then smoothly peeling it off 2 – 3 times.  This 

left the exposed mica substrate mirror-smooth to the eye and ready for sample 

application. 

2.3.3 Polydimethylsiloxane 

Polydimethylsiloxane (PDMS) was used as a polymeric substrate to investigate the 

effects of nanoscale surface chemistry and topography on the properties of 

supported lipid membranes.  PDMS is widely used in biotechnology due to its 

transparency, low cost, inertness, biocompatibility and easy mouldability.  Such 

properties have popularised its use in the field of microfluidics and biomedical 

devices and its application continues to grow 196.  Another advantage of PDMS 

substrates is that their surface topography can be easily modified, both 

topographically and chemically, using plasma oxidation.  This makes PDMS an ideal 

substrate to investigate the impact of substrate properties on that of the supported 

lipid bilayer.  PDMS is extensively used in later investigations.  

A detailed discussion of the PDMS surface modification and characterisation is left 

to chapter 3; here only the PDMS preparation is given.  A 10:1 ratio of elastomer to 

curing agent from the Sylgard 184 Silicone Elastomer Kit (Dow Corning Corp., 

Michigan, USA) was thoroughly mixed and degassed for 30 minutes in a vacuum 

chamber.  Then, ~2 mL of the degassed PDMS was then spin-coated onto cleaned 

glass slides at 500 rotations per minute (RPM) for 10 seconds, followed by 1000 

RPM for 5 minutes.  This produced a uniform ∼100 µm thick coating of PDMS, 

comparable to reports found in the literature for similar protocols 197.  The thickness 

of the PDMS substrate was verified using optical microscopy by varying the focus 

height between the object plane of the glass surface and the PDMS surface. The 

slides were then baked at 60 °C overnight to ensure full curing.  

In various cases, the PDMS substrate was bonded to a glass substrate.  To achieve 

this, both the PDMS and the glass were plasma-oxidised for 30 seconds while 

exposing their adhering surface and then held together for several minutes.  This 

induced non-reversible covalent adhesion of the PDMS to the glass 198.  
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2.4 Forming supported lipid membranes 

Supported lipid bilayers were created using the vesicle fusion method, as briefly 

described in Chapter 1.4.  The interfacial properties of the substrate surface are of 

importance to ensure successful vesicle fusion (more details in chapter 4).  The 

following protocols describe the strategy used to form continuous supported lipid 

membranes using a LUV suspension, or distinct lipid patches using a GUV 

suspension. 

2.4.1 Continuous SLBs using large unilamellar vesicle fusion 

A suspension of LUVs was first made by decanting 2 mg of desired lipid mixture 

dissolved in chloroform into a cleaned glass vial.  The chloroform was then removed 

by blow drying with nitrogen followed by desiccation under vacuum for several hours 

to remove any residual chloroform.  This resulted in a dried lipid film which was then 

rehydrated with 2 mL of buffer solution (see Chapter 2.2) while gently agitating to 

produce a turbid suspension of multilamellar vesicles (MLVs).  The MLV suspension 

was then sonicated with a tip sonicator (130-Watt Ultrasonic processor 44347, Cole-

Parmer, UK) for 5 minutes at 40% amplitude, resulting in a cloudy suspension of 

unilamellar vesicles.  The size distribution of these vesicles was measured with 

dynamic light scattering (zetasizer Nano ZS, Malvern Instruments, UK) to confirm 

the presence of LUVs (normal size distribution of with 170 ± 50 nm diameter).   

Continuous and uniform SLBs were then created from the LUV suspension using 

the following protocol: an acrylic ring, with a thickness of 20 mm and diameter of 30 

mm, was attached to the substrate’s supporting plate using vacuum grease, and 

filled with 1 mL of buffer, thus creating a small well to which 200 µL of 0.1 mg/mL 

LUV suspension was added.  The sample was then incubated for 30 minutes. This 

allowed sufficient time for spontaneous absorption, rupture and fusion of the LUVs 

on the solid interface.  The sample was then gently washed 5 times with 1 mL of 

buffer to remove any excess vesicles and fluorescent aggregates from the 

suspension and reduce background fluorescent signal during imaging.  
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2.4.2 Distinct SLB patches using giant unilamellar vesicle fusion 

Giant unilamellar vesicles (GUVs) were created using a protocol adapted from the 

electroformation procedure pioneered by Dimitrov 169.  Desired lipid mixtures were 

dissolved in chloroform to create 2 mg/mL lipid stock solutions.  40 µL of this stock 

solution was then evenly spread on the conductive side of an indium tin oxide (ITO) 

plate, dried with nitrogen and subsequently desiccated for several hours to remove 

any residual chloroform.  A Teflon spacer (30 mm by 20 mm by 2 mm) was then 

placed on the sample and capped with an additional ITO plate so as to create an 

electroformation chamber (see Figure 2.1). The chamber was filled with a 300 mM 

sucrose solution using a disposable syringe, sealed with vacuum grease, and 

secured with bull clips.  The sucrose solution was made from sucrose powder (grade 

of 99.5% sucrose, Sigma-Aldrich, UK), and deionised water.  The sucrose solution 

helps increase contrast over GUV in optical microscopy imaging and reduces 

osmotic imbalances between the inside of the GUVs and the surrounding buffer 

solutions in subsequent experiments.  

 

Figure 2.1: Experimental set up for GUV electroformation. 

The electroformation chamber was then connected to a signal generator, and a 

sinusoidal voltage signal with a frequency of 3 Hz and an amplitude of 1.5 volts peak 

to peak (Vpp) was applied overnight between the ITO electrodes.  During 

electroformation the samples were placed in an oven at 60 oC to ensure that lipids 

were fully fluidised.  The rehydration of the dried lipid film, coupled with the gentle 

hydrodynamic oscillations set up by the external electric field stimulates 

electroformation of a colloidal suspension of GUVs with sizes ranging from 10-100 

µm.  This GUV suspension was left at room temperature for 30 minutes, allowing it 
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to thermally equilibrate.  To quench GUV samples with coexisting Lo/Ld domains, the 

GUVs were placed in the fridge at 4 oC for 30 minutes.  This procedure effectively 

reduced domain ripening, favouring the formation of a segregated domain structure 

over larger, more coarsened domains, as shown in Figure 2.2. 

 
Figure 2.2: Example of segregated and coarsened domain structure in lipid patches 
Fluorescence micrographs of lipid bilayer patches composed of DOPC:DPPC:Cholesterol (40:40:20 
mol%) doped with 0.1mol% Rh-DPPE (purple) and 3 mol% NaP (green) on a hydrophilic glass 
substrate. Scale bars 50 µm. 

SLBs were formed from the GUV suspensions using the following protocol: an 

acrylic ring, with a thickness of 20 mm and diameter of 30 mm, was attached to the 

substrate using vacuum grease and filled with 1 mL of buffer followed by 0.5-2 µL 

of the GUV suspension (Figure 2.3).  This allowed the vesicle fusion process to be 

imaged.  Samples were washed gently five times with 1 mL of buffer within 2 minutes 

to remove any excess vesicle. 

 

Figure 2.3: Schematic of the experimental set up for GUV deposition. 

This method forms distinct lipid patches which are useful for imaging of changes in 

patch area, fluorescence properties, and even out of plane morphologies such as 



Chapter 2: Materials and methods 

 

40 
 

tubes formation during vesicle fusion.  The protocol also enables continued imaging 

of the samples during the infusion of chemical agents.  This is utilised in Chapter 6 

to quantify the effect of methyl-β-cyclodextrin (MβCD) on cholesterol depletion from 

lipid patches.   

The following protocols for these measurements were adapted from the literature 

60,199. For cholesterol depletion experiments, lipid patches were formed on 

substrates using protocols described earlier.  Then 500 mL of buffer solution was 

removed from the acrylic well, depicted in Figure 2.3, and replaced with 500mL of 2 

mM MβCD dissolved in buffer.  This resulted in the dilution of the in the MβCD 

solution, leaving lipid patches being exposed to a roughly uniform concentration ~1 

mM MβCD solution.  The convection flows caused by adding an equal volume of 

MβCD solution to the buffer solution in the acrylic well was assumed to fully mix with 

the liquids present in the well over a short time.  For cholesterol infusion, a solution 

of 8 mg/mL soluble cholesterol (Chol- MβCD) dissolved in buffer was added to the 

well instead, leaving the lipid patches exposed to a 4 mg/mL Chol-MβCD solution. 

2.5 Fluorescence microscopy 

Optical microscopy is a heavily utilised tool in the biological sciences.  It is a non-

invasive, yet highly informative, technique for understanding biochemical and 

biophysical processes on a wide range of length scales.  Although in bright field 

microscopy, differences in material optical properties create sample contrast 59, 

fluorescence microscopy requires the sample to be labelled with fluorescent 

molecules or fluorophores.  Fluorophores absorb light at a particular wavelength, 

resulting in one of its electrons being transferred into an excited state.  After a short 

period, the electron relaxes back into its ground state by emitting a photon with a 

characteristic fluorescence wavelength.  Some of the excited electrons energy is 

dissipated through non-radiative processes, making the fluorescent photon less 

energetic than the excitation photon, and hence characterised by a longer 

wavelength.  The difference between the adsorption (excitation) and emission 

(fluorescence) wavelengths is called the Stokes Shift.  The time needed for an 
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excited fluorophore to relax and fluoresce is called the decay lifetime and is a 

characteristic of a given fluorophore 200,201. 

Labelling biological samples with fluorophores allows for tracking of specific 

components or features both temporally and spatially.  This technique is often 

utilised with unilamellar SLBs systems which are only ~ 5 nm thick and would hence 

not provide any contrast in standard optical microscopy.  In contrast, fluorescently 

labelled bilayers (usually chemically attached to lipid, fatty acid or sterol derivatives 

that can incorporate into the membrane) can easily be observed with fluorescence 

microscopy.   

High-resolution techniques such as stochastic optical reconstruction microscopy 

(STORM) and photo-activated localisation microscopy (PALM) can surpass the 

diffraction limit of light, enabling spatial resolutions below tens of nanometres 202.  

This renders possible the direct imaging of nanoscale structures and processes 

such as the dynamic clustering of membrane proteins like hemagglutinin 203 and GPI 

proteins 204 in living cell membranes despite these structures being only ~ 40 nm 

and ~ 20 nm in size respectively.   

Epifluorescence microscopy does not offer such high resolution but this is 

counterbalanced by its wide availability and ease of use. 

2.5.1 Epifluorescence microscopy 

In epifluorescence microscopy, the wavelength of the illumination light is selected 

to match the absorption wavelength of the fluorophore.  The optical set-up reduces 

the amount of illumination light arriving at the detector, resulting in it being more 

selective to the emission signal.  The high ratio of emission light to illumination light 

means small amounts of fluorescent molecules can be imaged clearly.  The set-up 

utilised in this thesis (data presented in Chapters 4,5, and 6) comprises an inverted 

Nikon Ti microscope coupled with an arc discharge lamp used to provide a source 

of white light.  The desired illumination wavelength is then selected by passing the 

white light through a filter cube (details in Table 2.2).  The light is then focused onto 

the sample by the objective lens, resulting in a cone of light exciting the fluorophores 

present in the sample, as depicted in Figure 2.4.  The resulting fluorescent emission 

of light is collected by the objective lens and redirected on a Complementary Metal-
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oxide Semiconductor (CMOS) camera via the filter cube.  Although both the 

excitation and emission light pass through the same objective, they are separated 

using a dichroic mirror in the filter cube to allow accurate measurement of the 

emission photon intensity. 

 

Figure 2.4: Schematic representation of the epifluorescence microscopy and fluorescence 
recovery after photobleaching set-up.  Inverted epifluorescence microscope (a) and fluorescence 
recovery after photobleaching (FRAP), with depiction of a recovery curve (c).  The initial supported 
lipid membrane with a uniform distribution of fluorescently labelled lipids (bi), until exposed to intense 
excitation light photobleaches a spot of fluorescent molecules (bii), creating a bleachspot which then 
recovers by diffusion of unbleached lipid molecules (biii) until full recovery of the fluorescence (biv).  A 
typical shape fluorescence recovery curve for a lipid bilayer (c), can be then used to extract values for 
lateral diffusivity by fitting simulated recovery curve to experimental data. Data and curves in Figure 
2.4c are purely for illustrative purposes and do not represent real data.  

Epifluorescence facilitates the imaging of specific components of a system, allowing 

easy distinction from other system components.  When applied to model SLBs, 

epifluorescence can quantify changes in membrane morphology, including out of 

plane structures.  Figure 2.5b gives an example of out of plane structures with 

tubular protrusions emerging from an SLB.  Indeed, such epifluorescence 

measurements were used to investigate the response of SLBs to mechanical stress 

56,70,175, where changes in patch area and the nucleation of protrusions were linked 

to the membrane passively regulating its shape under stress.  Information about 
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Fluorophore Excitation, nm Dichroic Mirror, nm Emission, nm 

Rh-DPPE 540/25 565 605/55 

DilC18(5) 535/40 565 590/40 

NaP 375/28 415 460/60 

 

Table 2:2 Filter cube used with in the epifluorescence microscope setup 

 

Figure 2.5: Formation of out of plane tubular projections.  A fluorescence image of a uniformly 
flat supported DOPC lipid membrane with 0.1 mol% Rh-DPPE (a), and a similar membrane with out 
of plane tubular projections (b).  The scale bar in both images is 20 µm.  

fluctuations in the local lipid composition and density can also be inferred 205.  

Chapter 5 relies extensively on such observations to investigate the substrate-

induced modification of membrane composition. 

2.5.2 Fluorescence recovery after photobleaching 

The technique of fluorescence recovery after photobleaching (FRAP) is widely 

utilised in the biophysical community to characterise the fluidity of membranes and 

quantify the local molecular diffusivity (see also chapter 1.2.2).  The technique can 

be applied to a wide range of membranes species including membrane proteins 206, 

and the lipids themselves 207,208.  The basic principle of the technique relies on 

photobleaching fluorescent molecules in a well-defined region by exposing them to 

a short period of intense illumination, as depicted in Figure 2.4b.  The 

photobleaching causes a photochemical alteration in the fluorophore molecules, 

permanently preventing them to fluoresce and reducing the fluorescence intensity 

over the bleached area to the background noise.  However, the bleached molecules 

can still diffuse normally within the membrane.  As unbleached molecules 
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progressively diffuse into the bleached area, the fluorescence intensity recovers.  

Measurements of this recovery over time (fluorescence recovery curve, see Figure 

2.4c) are used to extrapolate a quantitative value for the average lateral diffusivity 

of lipid molecules within the membrane.  Practically, this task was performed using 

the image processing freeware FIJI 209, a package of the ImageJ analysis platform.  

A specific plugin called SIMFRAP 210 was used to quantitatively track the evolution 

of the fluorescence intensity across the bleaching area, a user-defined square 

region.  The experimental data were then fitted with equation 2.1 to extract a lateral 

diffusion coefficient, 𝐷𝑐.  Equation 2.1 models the fluorescence recovery on the 

assumption of an unbiased diffusion of the fluorescent probes (2D random walk), 

using the first post-bleach image from the FRAP dataset as a starting point (further 

details about the model used are presented in reference 210):   

 𝐼𝑡 =  𝐼∞(1 − √(𝑤2(𝑤2 + 4𝜋𝐷𝑐𝑡))
−1

     Equation 2.1 

In Equation 2.1, 𝐼𝑡  is the fluorescence intensity as a function of time, 𝐼∞ is the 

intensity as time goes to infinity (equilibrated fluorescence), 𝑤 is the width of the 

bleach spot and 𝑡 is time.  

The main source of error comes from the stochastic character of the diffusion 

process with each set of data producing slightly different recovery curves, as well 

as deviations in data fitting due to equation 2.1 ignoring measurement noise 210.  To 

mitigate these issues, FRAP measurements were typically taken from at least 3 

different samples, and 3 different regions on each sample to obtain an averaged 

and representative measure of lateral diffusivity from the lipid samples. 

Another practical problem came from the setup used for acquiring most of the 

fluorescence images, the Nikon Ti microscope.  The Nikon Ti cannot achieve an 

illumination intense enough to bleach SLBs in less than minutes, rendering recovery 

measurement imprecise.  FRAP measurements were therefore taken using an EZ-

C1 Nikon Confocal Microscope (Nikon UK Limited, Kingston, UK) capable of 

bleaching micron-sized regions supported lipid membrane in 10.4 seconds.   

The technique of confocal microscopy utilises a pinhole to block any fluorescence 

light emitted by fluorophores located out-of-plane of the focal region.  The light 

captured through the pinhole behaves as a point illumination, enabling rasterising 
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the light across the sample to achieve optical sections of different depth with high 

spatial resolution.  These sections are then assembled into a two-dimensional, or 

three-dimensional image as the whole sample is scanned.  This approach is 

commonly utilised to image thin sections of thick samples, such as cells and tissues.   

For FRAP experiments conducted in this thesis, the bleached area was formed by 

ten consecutive raster scanning of a point illumination.  Each scan lasted 1.040 

seconds.  The recovery of the 10 by 10 µm bleach area was subsequently imaged 

by tracking a larger a 500 by 500 µm region with the bleached area in the centre.  

The specific protocols for FRAP measurements described in chapters 4, 5 and 6 

were modified from references 125 and 210.   

It should be noted that the EZ-C1 Nikon Confocal Microscope does not have an 

acoustic optical modulator (AOM), hence the laser intensity cannot be modulated 

on a sub-millisecond timescale 211.  This limits the temporal resolution of FRAP 

measurements with the bleaching period and the timescale of lipid diffusion being 

comparable for the measurements on liquid-disordered membranes in Chapters 4, 

5 and 6.  This issue is directly visible in the fluorescence images where the edges 

of the bleached area appear blurred already in the first post-bleach image.  This is 

a clear indication that significant amounts of diffusion have occurred before the 

recovery imaging could start.  The diffusion coefficients provided are hence to be 

understood as estimates of an average lateral diffusivity. The diffusion coefficients 

are not quantitatively correct, but still accurate enough to identify differences in 

lateral diffusivity between gel, liquid-ordered, and liquid disordered phases.  

Qualitatively, FRAP measurements also aided in verifying that continuous SLBs 

have been formed (rather than a discontinuous layer of adhered vesicles).  

2.5.3 Reflection interference microscopy 

Reflection interference contrast microscopy (RICM) is a widely used technique 

extensively applied in the field of biomembrane and cell imaging 212.  RICM allows 

measuring the distances between a planar transparent substrate and the sample its 

support, without requiring any sample labelling to generate a contrast image.  

The set-up for RICM utilises a light source and an inverted microscope coupled with 

a CCD camera.  A pre-filter (here green 436 ± 17 nm) is placed within the optical 
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pathway, together with a field diaphragm, aperture diaphragm, and a polariser.  The 

pre-filter and the polariser produce linearly polarised monochromatic light, and the 

diaphragms allow for control of the incident illumination.  The incident light passes 

through a quarter-wave plate, resulting in the light being circularly polarised.  When 

shone onto the sample, the reflected light beam passes once again through the 

quarter wave plate, resulting in a 90o change in polarisation when compared to the 

incident light.  This offset in orientation allows incident and reflected light to be 

distinguishable.  The interaction between the incident and transmitted light beams 

induces constructive and destructive interference (Figure 2.6).  This is due to the 

substrate, the surrounding medium, and the sample itself having different refractive 

indexes which all lead to the transmitted light experiencing an altered light path.  The 

intensity of the resulting interference image is hence strongly dependent on the 

separation of the substrate and the sample.   

Here, an inverted optical microscope (Axio Observer, Zeiss Germany) was used 

with a standard antiflex oil objective x63; 1.25NA (Zeiss, Germany) that included a 

built-in quarter wave plate located in front of the lens.  A metal Halide lamp (X-cite 

120, Excelitas Technologies, USA) acted as a light source.  Images were recorded 

with an EM-CCD camera (iXon, Andor, Belfast).   

 

Figure 2.6: Schematic of reflectance interference microscopy.  Incident light is reflected off the 
sample, creating interference patterns related to the sample distance, h, from the substrate surface.  
The figure was created based on images publicly available at 
(https://en.wikipedia.org/wiki/Interference_reflection_microscopy). 
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RICM is used in chapter 4 to investigate the equilibration of SLB patches formed 

from vesicle fusion.  The change in membrane height immediately after the fusion 

process could be measured. 

2.5.4 Image acquisition, processing and analysis 

Image acquisition, processing and analysis is a central part of most microscopy, 

including fluorescence microscopy.  Intuitively, images allow rapid “visual” 

inspection and interpretation of the data, but significant processing is still necessary 

both to produce a rendered image and quantitatively analyse it.   

In fluorescence microscopy, the image reflects the spatial distribution of the 

fluorescence intensity: after having passed through the microscope set-up, the 

fluorescence signal reaches the detector.  The detector is typically a CCD or CMOS 

device composed of a two-dimensional array of equally sized pixel detectors.  Each 

pixel detector has a surface area of typically a few square micrometres and can 

detect incident photons with a high quantum efficiency.  The fluorescence intensity 

measured by a given pixel detector is correlated to the number of photons detected 

by that pixel 186, and the position of the pixel in the array is correlated to the area of 

the sample emitting the light.  A spatially resolved image of the fluorescence 

intensity emitted by the sample can then be obtained by measuring simultaneously 

the light intensity on each pixel detector: in fluorescence microscopy the pixel 

intensity is related to the number of emitting fluorophores present in the 

corresponding area on the sample.  

For non-super resolution techniques, the size of the pixel detectors is a limiting 

factor for spatial resolution.  However, even modest image acquisitions systems can 

achieve sub-second temporal resolution due to a high detector efficiency.  This 

makes fluorescence microscopy well suited to measuring macroscale changes in 

supported lipid membrane morphology, as described in the subsequent chapters.   

After the images are captured, great care must be taken to conduct image 

processing and analysis; small errors can easily skew the data and lead to 

misrepresentations or erroneous information.  Part of the problem comes for the fact 

that the range of pixel intensity values accessible to the detector extends far beyond 

information that can be visually displayed: the levels of 65536 grey accessible to a 
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standard 16-bit camera become only 256 levels on a typical computer monitor, with 

only ~100 levels perceivable by the human eye 213.  To overcome this issue, a 

technique called “contrast stretching” is almost ubiquitously employed: only a set 

range of the possible 16-bit values is displayed to help identify important features.  

Colour-coded contrast is also often employed, where grey values are displayed 

according to a set map of colours in order to highlight small variations in intensity 

213.  Both contrast stretching and colour-coded contrast have been extensively used 

in this thesis, to enhance the presentation of fluorescence images and emphasise 

the visual features of importance.  In doing so there are always associated risks, 

with the human eye being more sensitive to particular colours and contrasts, 

possibly creating a bias in the interpretation 213.  However, by using such 

modifications appropriately and presenting them together with quantitative analysis, 

a clear and honest representation of the results can be achieved. 

Importantly all the quantitative measurements performed on image data use 16-bit 

TIFF images, a format that preserves the linear relationship between photons and 

image intensity values 186.  Various methods enable and facilitate the acquisition of 

such quantitative information from visual data, most notably the approach of image 

segmentation via thresholding where pixels can be classified into groups.  Doing so 

allows the easy identification of particular image features and properties such as 

size, shape, and average intensity.  It should be noted that although the human eye 

has evolved to instinctively make such classifications, doing so with an automated 

image analysis process is more complex. 

Automated thresholding of images can be conducted through various methods.  A 

given method typically run an algorithm to convert a distribution of grey values within 

a raw data image into a binary image.  One popular algorithm is the so-called Otsu 

method: from a histogram of light intensity over the whole image, the algorithm splits 

the data into two classes, background and foreground.  The foreground is generally 

associated with the class of pixels exhibiting a higher intensity.  The algorithm then 

defines the “optimal” threshold value as the value which minimises the variance of 

the two classes 214.  This allows a binary image to be formed where black pixels 

represent features of the samples, and white pixels become the background of the 

image (see example in Figure 2.7b).  Otsu’s method is fast, requires little 

computational cost, and can often find an effective threshold in a few iterations.  Like 
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many other segmentation methods, the Otsu’s method relies on some basic 

assumptions, such as uniform illumination and bimodal images.  These are 

reasonable assumptions for fluorescence images of SLBs and the method was 

hence deemed suitable for automated thresholding of images.  From the binary 

images, the area of lipid patches could be readily quantifies using the “Analyze 

particles” feature of ImageJ.  This routine counts the pixels of a binary image and is 

able to function with a defined region of interest occupied by the thresholded objects, 

as shown by the yellow line in Figure 2.7b.  This region of interest can then be 

applied back to unmanipulated images, as shown in Figure 2.7c, allowing the 

accurate extraction of pixel intensity values and information.   

 

Figure 2.7: Example of the Otsu thresholding method.  The original image (a), becomes binarised 
using the Otsu thresholding (b).  A region of interested generated using thresholded image can be 
overlaid back onto the original image (c). Scale bars in (a-c) are 20 µm. 

In typical experiments with SLBs (Chapters 4, 5 and 6), out of focus free floating 

vesicles can disrupt the automated thresholding.  A visual inspection of the final 

region interest obtained via automated thresholding is hence necessary.  Visual 

representations and quantifiable data are also presented together wherever 

possible to present an honest and reliable description of data. 

Although powerful, the fluorescence microscopy techniques employed in this thesis 

are subject to the standard diffraction limit and hence not capable of broaching the 

nanometre spatial resolutions required to characterise the nanoscale properties of 

the substrate investigated.  This can in principle be overcome by the many super-

resolution fluorescence microscopy techniques that already exist.  Alternatively, 

here AFM was chosen as a complementary technique due to its practical availability 

and its ability to also measure molecular forces.  This becomes particularly 
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beneficial when investigating the influence of the substrate on the properties of 

SLBs. 

2.6 Atomic force microscopy 

Since its development, more than three decades ago 215, AFM has become a 

technique of choice for nanoscale science in numerous fields including 

electrochemistry 216–218, polymeric materials 219, and biological molecules and 

interfaces 220–224.  Part of this success comes from the fact that AFM can operate in 

various environmental conditions, such as gas 225,226, vacuum 227 and liquid 228,229 

environments with no specific requirements for the sample.  In particular, the ability 

to operate in liquid environments has opened up the possibility of biological studies 

under more representative aqueous conditions 220–224 when compared to, for 

example, electron microscopy.   

The technique of AFM is based on the local sensing of a surface or an interface with 

a nano-sharp tip mounted on a flexible cantilever.  The attractive or repulsive 

interactions experienced by the tip induce a vertical deflection of the cantilever which 

can be accurately measured using a reflected laser.   

To function, AFM requires the precise control of the tip position and distance from 

the sample’s surface.  This is achieved with a piezoelectric actuator, providing 

Ångstrom-level positioning precision of the tip holder in the lateral (X and Y) and 

vertical (Z) directions.  A laser beam reflected on the back end of the cantilever 

amplifies its deflection on a distant photodetector, enabling accurate measurement 

of the cantilever’s deflection down to the sub-Ångstrom level.  The photodetector is 

typically composed of four independent quadrants so that differential signal between 

the top and bottom directly quantifies the cantilever deflection, after suitable 

calibration.  By knowing the spring constant of the cantilevers, the deflection can be 

converted into a force between the tip and the sample substrate.  This is done on 

the assumption of a linear deformation (Hooke’s law) valid for small deflections 

(typically < 100 nm).  The spring constant of the cantilever must be selected 

appropriately to ensure a suitable sensitivity 230,231, and minimise tip-wear and 

sample damage.  
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2.6.1 Modes of AFM operation 

AFM is a high versatility technique with many possible operational modes.  

Depending on the sample and the investigation, the technique can acquire 

topographical information through a range of different feedback mechanism and 

derive further information about the sample, often simultaneously to the topographic 

measurement.  

2.6.2 Amplitude modulation mode 

When the AFM is operated dynamically, the cantilever is driven to oscillate at a 

certain frequency using an external drive.  As the vibrating tip approaches the 

surface of the sample its oscillation characteristics such as amplitude, phase and 

frequency change due to tip-sample interactions.  It is possible to use the amplitude 

of the cantilever as a feedback channel while the tip raster scans the surface of the 

sample.  This mode of operation is called amplitude modulation AFM (AM-AFM), or 

“tapping mode”.  The cantilever is typically driven to vibrate near its fundamental 

flexural resonance frequency to enhance the oscillation amplitude and the 

measurement sensitivity.  Changes in the cantilever’s amplitude and phase are 

quantified with a lock-in amplifier locked on the driving signal.  The feedback keeps 

the working amplitude constant while scanning across the sample.  The working 

amplitude is smaller than the amplitude of the tip far away from the surface due to 

tip-surface interactions 225,232.  In its simplest form, the motion of the tip can be 

approximated by a driven-damped simple harmonic oscillator 233.  The harmonic 

oscillator also quantifies the damping experienced by the vibrating mass, suggesting 

that AM-AFM can provide more than only topographic information.  Practically, this 

information is available in the phase of the tip vibration which is allowed to vary 

freely.  From images of the phase it is possible to quantify changes in the sample’s 

viscoelastic properties including quantities such the local adhesion, stiffness and 

frictional forces 225. 
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Figure 2.8: Schematic representation of amplitude modulation-AFM (AM-AFM).  The cantilever 
is externally driven to oscillate at frequency ω, close to cantilever resonance. A laser reflected on the 
back of the cantilever (shown in orange) is directed onto a photodiode which detects changes in the 
cantilever deflection. In AM-AFM these changes are periodic and can be accurately quantified with a 
lock-in amplifier. A feedback loop constantly adjusts the distance between the base of the cantilever 
and the sample so as to maintain a set amplitude of vibration.  Adapted from reference  234 

Generally, dynamic AFM modes such as AM-AFM have the advantage of reducing 

large frictional forces between the tip and substrate, hence preserving both the tip 

and sample by reducing damage and wear during imaging.  Soft AFM cantilevers 

must also be used to preserve soft biological samples.  Although more susceptible 

to perturbation by thermal noise, a low spring constant makes the cantilever easily 

deformable, hence less destructive of soft samples such as adhered lipid 

membranes.  In this work, imaging in AFM tapping mode was achieved a silicon 

nitride RC800PSA (Olympus, Tokyo, Japan).  The RC800PSA chips come with a 

set of 4 different AFM cantilevers, each exhibiting a different nominal spring 

constant.  For all the experiments described in later chapters, the 3rd cantilever of 

the set, with a nominal cantilever spring constant 0.76 N/m, was used.  

In work presented in this thesis, AFM is operated in liquid, allowing measurement 

and characterisation of membrane-substrate interactions in an aqueous 

environment.  Water plays an influential role in the bilayer’s properties at the 

interface with a substrate.  The ability to image in such liquid environments is hence 

advantageous to derive meaningful results.  Operating AFM in liquid environments 

is, however, challenging due to the liquid environments altering the cantilever 

dynamics 235 and the tip-substrate interactions 236,237.  When AM-AFM is used 
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appropriately, these phenomena can be exploited to enhance imaging resolution 

237,238 compared to similar measurements in ambient conditions 239.  Details of 

effective protocols for using AM-AFM in liquid are detailed in earlier published work 

240. 

2.6.3 Lateral force microscopy and mapping friction 

In the most basic AFM operation mode (contact mode), the feedback mechanism is 

based on keeping constant the vertical deflection of the cantilever.  If the sample is 

scanned perpendicularly to the axis of the cantilever, the frictional force between the 

tip and the sample can cause the cantilever to twist.  This twisting or lateral torsion 

of the cantilever can also be measured by comparing the difference in the intensity 

recorded by the left and right sides of the AFM four quadrant photodetector.  This 

mode of operation, often called lateral force microscopy (LFM), simultaneously 

measure the sample’s topography (Figure 2.9a-b) and variations in the tip-sample 

friction as the tip travels across the sample’s surface (Figure 2.9c-f).  This friction 

itself depends on the local surface and tip topographies, physical and chemical 

properties, and the direction of the travelling tip.   

The respective contributions to friction from topography and variations in tip-sample 

interactions can be distinguished, as visible in Figure 2.9d-f: topographic features 

produce only a transient signal change when the tip travels over an edge.  

Additionally, variations in tip-sample interactions induce LFM measurements that 

are inverted between the forward and backward scan direction (section 1-4 of Figure 

2.9e,f).  This is in contrast to topographic LFM measurements which are relatively 

independent of the scan direction.  

Here LFM can be used to reveal changes in tip-substrate friction across 

DOPC:DPPC (40:60 mol% ratio) multi-phase SLBs (Figure 2.9g-h).  LFM images of 

the SLBs on PDMS substrate show lateral friction variations between the more solid-

like DPPC rich gel domains (green arrows) and the fluid DOPC regions.  The 

coexistence of gel and fluid domains is expected for such bilayers at room 

temperature 73.  Interestingly, no significant differences between the domains are 

visible in topographic images, highlighting the power of the technique where 

nanoscale interfacial properties cannot easily be detected in topographic alone 241.  
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LFM is further discussed in Chapter 6.5.2 where it is used to investigate the impact 

of curved substrates on the molecular organisation of SLBs.  

 

 

Figure 2.9: Schematic description of lateral force microscopy.  Illustration representing of the 
AFM cantilever scanning across a surface (a) with topographic features (steps) and a region of higher 
friction represented in green.  Topographic information is obtained as AFM tip scans across the 
surface (b).  When the tip moves forward (c), the lateral or LFM measurement senses changes in 
topography and friction (d).  The process is reversed when the tip moves backward (e-f).  Example 
LFM imaging of a 40:60 DOPC:DPPC SLB on a PDMS substrate (g-i): topographic (g) forward LFM 
(h) and backward LFM (i) information is obtained simultaneously.  The scale bars in (g-h) are 200 nm.  
Images (a-f) adapted from images available online 242. 

2.6.4 Tip-substrate interaction forces 

AFM is sensitive to the tip-sample interaction forces which play a central role in any 

type of AFM-based measurement.  In most applications, knowledge of the nature 

and origin of these interactions is not essential.  However, understanding the 

properties of the interactions at play can considerably help with both optimising the 

measurement, resolution and the interpretation of the data.  There are always 
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multiple types of interactions simultaneously acting between the tip and the sample, 

but it is often sufficient to understand which is the dominating contribution to improve 

data acquisition and interpretation.  

Hereafter is a short review of some of the main interactions present between the tip 

and the sample for the measurements conducted in this thesis.  

2.6.4.1 van der Waals forces 

The van der Waals forces are ubiquitous but usually short-ranged and relatively 

weak.  They are induced by the interactions between the electric dipoles of the 

interacting molecules.  These can be permanent or transient dipoles induced by 

thermal or quantum mechanical fluctuations.  The resulting interaction energy is the 

product of the two dipoles multiplied by parameters related to the specific nature of 

the system and temperature.  These parameters are usually addressed by the so-

called Hamaker constant which depends on a materials atomic polarisability and 

density 46.  Summing each pair interaction between the macroscopic objects 

involved (the AFM tip and local sample), the total van der Waals interaction energy 

can be calculated and hence the total force at work.  Van der Waals interactions are 

always attractive between like surfaces in a medium, but different materials can 

induce attractive or repulsive interactions depending on both the material properties 

and properties of the media they are immersed in reference 46.  The relatively short 

range of the interactions, ~ 0.5 nm, means such forces only become significant once 

surfaces come into very close contact. 

2.6.4.2 Electrostatic double layer 

When operating in aqueous environments most solid interfaces can become 

charged.  The ionic species dissolved in the aqueous phase accumulate close to 

the surface of the immersed solids to ensure electro-neutrality resulting in an 

electrical double layer (EDL) of counterions.  The precise spatial organisation of 

these charged species at the interface is non-trivial but is often described by the 

average density of counterions at a given distance from the surface of the solid.  The 

EDL comprises of a Stern layer of tightly bound counterions at the solid-liquid 

interface and a more loosely bound diffuse layer of ions vanishing exponentially in 

the solution.  When the EDL of two solids overlaps, the density of ions in the 

overlapping region increases considerably, resulting in a net repulsive force of 
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entropic origin: the double layer force.  The distance at which two such layers begin 

to interact as two solid surfaces approach each other in a solvent can be 

characterised by the so-called Debye length.  Notably, the Debye length depends 

solely on the properties of the solution.  The type and concentration of electrolytes 

present in the solution, the solution’s dielectric constant and temperature determine 

the interaction range.  Adding salt to the solution reduces the Debye length.  Here, 

the standard buffer solution used results in a Debye length < 1 nm, effectively 

screening all long-range electrostatic interactions between the tip and the substrate: 

2 mM CaCl2 creates a Debye screening length of ~ 4 nm, and 150 mM NaCl a length 

of ~ 0.8 nm 46, with both types of ions working together in the present imaging buffer.  

In practice, screening long-range interactions experienced by the tip can allow local 

interactions at the sample-liquid-tip interface to be better measured.  Additionally, 

the salts added aids SLB formation via vesicle deposition for the same reasons, 

reducing long-range electrostatic interactions effectively achieving attractive 

vesicle-substrate interactions 243.   

2.6.4.3 Solvation forces 

Solvation forces arise from the confinement of a solvent by two surfaces.  The 

confinement induces more order in the solvent molecules adjacent to the surface by 

local solid-liquid interactions and by restricting the configurational entropy.  This 

often has the net effect of increasing the local liquid density to create a semi-ordered 

liquid medium near the surfaces.  This “interfacial liquid” has dissimilar properties to 

the disordered bulk liquid, with typically increased density and order, and reduced 

mobility 46,238.  When the confined interfacial liquid is progressively squeezed out, 

the configurational entropy and increased pressure and result in solvation forces.  

Solvation forces can be repulsive or oscillatory due to the layering of the confined 

liquid parallel to the confining surfaces.  Changes in the liquid ordering as the 

approaching surface squeezes out each layer results in alternating repulsive and 

attractive interaction depending on the separation distance between the surfaces.   

Importantly, the onset of solvation forces from confined liquids do not require 

specific liquid-solid interactions, or even liquid-liquid interactions, given the entropic 

origin 46.  Partly for this reason solvation forces in water remain poorly understood, 

with many unusual interactions existing between hydrated surfaces.  To aid 

distinguishing these interactions, solvation forces are often be categorised as either 
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primary or secondary hydration forces.  Primary hydration results from the enthalpic 

adsorption or “binding” of water layers to the solid, effectively reducing the adhered 

layers entropy.  This hydrated layer at the interface is typically ~0.2 to 0.4 nm thick, 

making such interactions relatively short range 244.  Secondary hydration forces are 

associated with weaker interactions, often with larger decay lengths on the order of 

up to ~ 10 nm 244.  The decay length is related to the solute distribution in the solution 

and the solute’s ability to perturb the local hydration.  If the solute acts as a 

counterion in an aqueous solution, the Debye length describes the decay length of 

secondary hydration forces 244.  Changing the liquid-liquid and liquid-surface 

interaction has an impact on the nature of the hydration force, with hydrophilic or 

hydrophobic surfaces often inducing repulsive or attractive solvation forces 

respectively: the liquid-surface attraction characterising hydrophilic surfaces leads 

to a denser packing of water molecules to the interface.  This in turn increases local 

density and produces a repulsive short-range oscillatory force.  Conversely, 

hydrophobic surfaces create a weaker liquid-surface interaction than the liquid-liquid 

interaction, resulting in an oscillatory force that tends to be more attractive 46.  The 

exact origin of these attractive hydrophobic interactions remains controversial, but 

ideas such as local water structure creating pockets of reduced density provide a 

possible explanation 46. 

In general, the hydrophilicity or hydrophobicity of a surface can significantly impact 

the local structuring of water which, in turn, affects the forces experienced by two 

approaching surfaces in aqueous solution.  While of short range, such interactions 

are important for the investigations conducted in Chapter 5 where they locally 

modulate the adhesion forces between chemically modified surfaces and the AFM 

tip.   

2.6.5 Force spectroscopy and force mapping 

The various interactions described in the previous section all contribute in some way 

to the tip-sample forces underpinning AFM measurement.  Changes in the overall 

tip-sample force can be directly described as function of the separation between the 

two at any location of the sample’s surface.  This is called force mapping.  

Practically, this is achieved by monitoring the deflection of the cantilever as it 
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performs a controlled descent over a given location of the sample.  Plotting the 

deflection and hence the force experienced by the cantilever as a function of the 

distance travelled towards the sample produces a so-called force-distance curve.  

An example of a typical force curve as depicted in detail in Figure 2.10.   

 

Figure 2.10: Illustration representing a force spectroscopy measurement on a point location 
of a sample.  When the tip is far from the surface (step 1) no deflection is measured.  As the tip 
approaches the surface (step 2), it starts interacting with the sample and experience a vertical force 
(here attractive) translated by a deflection of the cantilever.  If the gradient of the force is larger than 
the cantilever stiffness, this triggers a sudden “snap-in” deflection.  The base of the cantilever can be 
moved further down with the actuating piezo, compressing the tip on the surface (step 3).  If the surface 
is much stiffer than the cantilever, all the deformation occurs in the cantilever which experiences a 
linear deflection as the piezo moves down.  Upon retraction, the cantilever needs to overcome any 
adhesion force, creating a hysteresis in the deflection (step 4).  When the bending force of the 
cantilever overcomes the adhesion force, the tip snaps out of contact (step 5), and the cantilever 
returns to its original null deflection (step 6).  This figure was adapted from 245, with permissions from 
Elsevier. 

In a typical force curve, the base of the cantilever is moved down towards the 

surface of the sample using the AFM piezo actuator.  When the tip is beyond the 

range of the tip-sample interactions, the cantilever deflection is zero (Figure 2.10, 

step 1).  As the tip approaches the surface, the tip-sample interactions become 

significant, resulting in a cantilever deflection.  If the gradient of the interaction force 

is larger than the cantilever’s stiffness, the tip will uncontrollably jump into contact 

with the surface in the case of an attractive interaction (step 2).  Attractive forces 
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such as the capillary or depletion forces tend to become significant at short range 

causing the tip to jump to the surface in air.  If the base of the cantilever is moved 

further down towards the surface, the cantilever starts to bend in order to 

compensate for the fact that the tip cannot move down freely.  If the sample is much 

stiffer than the cantilever, almost all the deformation is carried by the cantilever, 

resulting in a linear, relationship between the vertical displacement of the piezo and 

the cantilever deflection (step 3).  This is often used to calibrate the magnitude of 

the deflection.  Upon withdrawal of the piezo, the cantilever reduces its bending 

(step 4) to subsequently jump out of contact from the surface.  This occurs when the 

adhesion force experienced by the tip is exactly balanced by the negative bending 

of the withdrawing cantilever (step 5).  Eventually, the cantilever returns to its initial 

state with no deflection (step 6).  By scanning across the sample surface, a map of 

measured forces can be acquired, the process commonly termed “force mapping”. 

This technique is not limited to the study of tip-substrate interactions but is routinely 

applied in biological systems to characterise the mechanical properties of lipid 

membranes 246–249, and the forces required to break protein-ligand complexes 250.   

Here, all force mapping measurements were performed in buffer solution, with each 

force map representing an array of 32 by 32 (1024 force curves) over a 1 µm2 area.  

A constant ramp rate of 0.25 Hz , a cantilever extension speed of 0.1 µms-1, and a 

dwell time of 1 second to allow for tip-sample interactions to equilibrate.  The 

influence of the solvent’s viscosity on the measurement was assumed minimal with 

only minor effects observed for trials in fluids ~ 40 times more viscosity than water 

251. 

2.6.5.1 Chemical force mapping 

Chemical force mapping is effectively an extension of force mapping, conducted in 

conditions where the nature of the chemical interactions is more defined.  This 

makes it possible to characterise the chemical signatures of an interface.  The idea 

is to conduct a force mapping of a sample using a tip functionalised with specific 

chemical groups.  By measuring changes in local adhesion forces between the 

functionalised tip and the sample, the local chemical properties of the substrate can 

be inferred if the chemically targeted interaction is responsible for the tip adhesion.  

This technique has successfully been used to map changes in surface 
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hydrophobicity on crystalline 252,253 and polymeric 254 substrates by coating the probe 

with hydrophobic chemical groups: when conducted in aqueous solution, a stronger 

adhesion is expected between the tip and hydrophobic regions of the sample due 

to hydrophobic forces.  This approach is utilised in Chapter 3 to characterise the 

local hydrophobicity surface of plasma-oxidised PDMS.  Obviously, the methods 

rely heavily on a suitable functionalisation of the AFM tip, a topic covered in the next 

section.  

2.6.6 Tip functionalisation 

There are two popular methods for functionalisation of AFM tips: the first methods 

uses silane chemistry and the second thiol chemistry to form a self-assembled 

monolayer (SAM) on the tip’s surface.  Each method differs by its ease of 

implementation and its compatibility with the tip material.  For silicon nitride or oxide 

tips, silane chemistry is generally used, whereas thiol chemistry tends to be 

favoured when gold-coated tips are available.  In the case of silane chemistry, the 

terminated group reacts with the tip’s surface silanol groups to create a covalent Si-

O-Si bond.  For thiol chemistry, covalent bonds are made between the gold surface 

and the terminated thiol group.   

In the present work gold AFM tips have been used (experiments in Chapter 3). The 

functionalisation protocol is detailed below: 

Gold coated tips (TR400PB, nominal spring constant of 0.09 N/m, Olympus, Tokyo) 

were used. The tips are fully coated with a ~40 nm thick gold layer and hence 

suitable for functionalisation using thiol chemistry.  The tips were first bathed in 

acetone for 20 minutes and placed in a glass petri dish to allow residual acetone to 

dry off.  The tips were then placed in a custom-made UV light box with two Wemlite 

18W UV lamps or ozone cleaning:  the UV light decomposes the air oxygen into 

ozone, which pyrolyses residual organic contaminants from the AFM tip.  After 20 

minutes of treatment, the tips were immersed into an ethanol solution containing 5 

mM of either hexanethiol (C6H14S) or thiocholesterol (C27H46S).  After 24 hours in 

the thiol solution, the tips were removed, washed with ethanol and then briefly with 

water (Milli-Q) before measurement.  A new functionalised tip was used for each 
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experiment.  The hexanethiol, thiocholesterol, and ethanol were purchased from 

Sigma-Aldrich (UK).   

By forming SAMs with different chemical groups, different surface interactions can 

be investigated.  Here, hexanethiol exposes a hydrophobic hexane group and was 

used to investigate the nanoscale distribution of hydrophobic regions at the surface 

of plasma-treated PDMS substrates (see Chapter 3).  Thiocholesterol was used to 

probe surface interactions between cholesterol and partially plasma-treated PDMS 

substrates (see Chapter 5). 

2.7 Wetting measurements 

The nanoscale hydrophobic properties of a substrate surface can have macroscopic 

consequences on the wetting behaviour of the material.  The macroscopic wetting 

properties of a material are easily accessible and can provide useful information 

about the behaviour of water at its surface.  Measurements on samples previously 

nano-characterised with AFM or chemical mapping also provide a link between the 

molecular-level and macroscopic properties.  

 

Figure 2.11: Schematic representation of a contact angle measurement. Illustration of a liquid 
sessile drop on a solid substrate illustrating the contact angle formed by the liquid, solid and gas triple 
interface (a). Example measurement on a water droplet placed on PDMS substrate (b), with the 
contact angle, measured using the ImageJ plug-in Dropsnake. 
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Practically the macroscopic wetting properties of a surface are characterised with 

the contact angle, 𝜃𝐶, formed by a small sessile droplet of liquid deposited on the 

surface (Figure 2.11).  From this droplet, the balance of forces at the three phase 

lines can be used to derive the Young-Dupré equation: 255: 

𝛾𝑙𝑔 cos 𝜃𝐶 = 𝛾𝑠𝑔 − 𝛾𝑠𝑙           Equation 2.3 

Where 𝛾𝑙𝑔, 𝛾𝑠𝑔 and 𝛾𝑠𝑙 are the surface tensions of liquid gas, solid-gas and solid-

liquid interfaces respectively.  Generally, surface with contact angles < 90o are 

classified as hydrophilic, and those above 90o classified as hydrophobic 46.  

Equation 2.3 assumes an idealised interface with a perfectly smooth, chemically 

homogenous solid surface, similar to the cartoon depiction in Figure 2.11a.  

Contributions from the surface chemistry and topography can create a convoluted 

impact on the apparent contact angle 255.  The impact of geometrical roughness on 

the measurement can be compensated by applying the Wenzel equation that 

characterises the apparent contact angle rough surfaces 255:  

 cos 𝜃𝐶 = 𝑟 cos 𝜃𝑊        Equation 2.4 

where 𝑟, is the roughness parameter defined by the ratio of the actual and projected 

area of the substrate surface, and 𝜃𝑊 is the contact angle corrected for roughness.  

Similarly, the Cassie equation can be applied characterise the apparent contact 

angle on chemically patterned surfaces with two different materials 255:. 

cos 𝜃𝐶 =  λ cos 𝜃𝑌1 + (1 − λ) cos 𝜃𝑌2     Equation 2.5 

where 𝜃𝑌1 and 𝜃𝑌2 are the contact angles of two materials, and λ is the area fraction 

of material 1 on the surface. 

Based on these concepts, measurements of the wetting properties (static contact 

angle) of a sample were carried out by depositing a 5 µL droplets of water (Milli-Q) 

on the sample and subsequently and imaging it with an SLR camera (Canon 

1000D).  The images were analysed using the ImageJ plug-in DropSnake 256 (Figure 

2.11b) that can automatically and objectively identify the contact angles of the 
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droplet.  Roughness was taken into account based on values measured from AFM 

images of the sample’s surface (1 µm2 areas, average of 5 areas). 

The Cassie equation was not needed here due to the fact that the samples were 

either chemically homogenous or the area fraction of mixed materials was 

impossible to obtain (see Chapter 3). 

2.8 Stretching flexible substrates and surface cracking 

The fact that SLBs adhere to a substrate makes it possible to impose and 

manipulate the mechanical stress experienced by the membranes simply by 

stretching or compressing the substrate.  This requires a flexible substrate material 

such as PDMS which has been successfully used in numerous studies to infer a 

controlled mechanical stress on lipid membranes 56,70.  Previous work, most notably 

in the experiments presented in reference 175, have shown that the substrate 

properties play a significant role in modulating the response of the membrane to 

mechanical stress. 

In this thesis (Chapter 5), the flexibility of PDMS substrates is exploited to induce a 

biaxial extension of a substrate supporting an SLB and investigate the effect on the 

membrane’s behaviour.  When sufficiently extended, PDMS substrates can undergo 

surface cracks that modify the substrate’s interfacial properties (Chapter 3). The 

mechanical measurements are achieved with biaxial strain device described in 

detail elsewhere 70,175 and summarised here:  

A microfluidic channel sealed on a glass microscope slide was connected to a ~ 1 

mm diameter circular inlet and outlet (Figure 2.12a).  A thin, flexible sheet of PDMS, 

~ 25 µm thick, was formed from spin coating 2 mL of uncured PDMS in a petri dish, 

at 500 RPM for 10 seconds, and 2000 RPM for 2 minutes.  The sheet was then 

sealed onto the outlet using the same protocols for bonding PDMS to glass (see 

Chapter 2.3).  The inlet was connected to a Standard Infuse/Withdraw PHD ULTRA 

syringe pump (Harvard PhD apparatus).  Positive air pressures were applied to the 

microfluidic channel via the syringe resulting in the PDMS sheets expansion from a 

flat to hemispherical cap geometry.  Membranes adhered to the bulging PDMS 

sheet were then subjected to biaxial area stress (Figure 2.12c). 
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Figure 2.12: Schematic of a biaxial stretching device and PFS system. Schematic of PDMS 
biaxial stretch device (a), with an illustration of the supported lipid bilayer on a flexible PDMS sheet (b) 
and the sheet being stretched by air pressure through the microfluidic device, inducing biaxial stress 
on the supported lipid membrane (c).  The resulting bright field image of the flexible PDMS substrate 
(d), with an area defined by four defects shown by a dotted line.  The same substrate under strain (e), 
and the new position of 4 defects, with the original area highlighted in yellow.  Graph showing an 
example substrate strain cycle with the stretching device (f).  Schematic of the PFS system for the 
Nikon Ti utilised to track z-translation (g), adapted from reference  257.  Scale bars in (d,e) represent 50 
µm. 

Changes in the position of defects present in the flexible PDMS sheet allows the 

quantification of the substrate’s deformation during stretching (Figure 2.12d-e) and 

hence the quantification of applied strains for each imaging experiment (Figure 

2.12f).  By tracking these defects, it was found that an infusion and withdrawal rate 

of 3 µL/s typically corresponded to a strain rate of ~0.0005% s-1 in the biaxial strain 

devices.  Due to the “inflating-bubble” geometry of the stretching device, the biaxial 
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straining of the substrate is accompanied by a significant z-translation, as the PDMS 

sheet deforms into a hemispherical cap (Figure 2.12c).  These z-translations were 

tracked and the focus adjusted during the experiments using the Nikon Ti Perfect 

Focus Systems (PFS), shown schematically in Figure 2.12g.  This system offers a 

feedback on the focus position using a near-infrared LED reflected off a reference 

surface, such as the bottom of coverslip on which the sample is mounted.  The 

reflected signal is then passed through an offset lens onto an interferometer that 

quantifies any variation in the distance between the reference sample’s surface.  

This strategy effectively corrects for vibrations, thermal drift and z-translations.   

Aside from the stretching device described above, a flexible PDMS sheet identical 

to that used in the device could be used to cover a ~1 mm diameter hole in a block 

of PDMS with a length and width of 10 mm and thickness of 5 mm.  This simple 

device created a flexible PDMS sheet over an air pocket, which could be used to 

form wrinkled substrate topographies (Chapter 3.3). 

AFM was used to characterise the topography of surface cracked PDMS after 

exposure to mechanical stress (later discussed in chapter 3.4).  Substrate 

measurements under tensile strains were conducted with the MFP-3D Infinity AFM 

using the NanoRack sample stretching stage (Asylum Research, Santa Barbara, 

USA).  The imaging was carried out using standard protocols (described in Chapter 

2.4). 
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Chapter 3: Surface modification of 

polydimethylsiloxane substrates using air 

plasma treatment 

 

Polydimethylsiloxane (PDMS) is a widely utilised polymeric support due to its many 

useful properties such as: transparency, biocompatibility, flexibility, easily modified 

shape, mechanical properties, surface chemistry and low cost 258.  Such 

characteristics have made it a popular substrate for the development of lab-on-chip 

140, organ-on-chip 141,176, and flexible bio-electronic devices 259.  The biocompatibility 

of PDMS has led to it being prevalently used as a synthetic substrate to stably 

support live support cells 260.  The versatility of PDMS has been utilised in various 

studies to investigate the role of substrate stiffness 261, topography 262 and surface 

chemistry 263 on cell adhesion and proliferation.  For example, a study using Caco-

2 cells observed that cell adhesion to physisorbed fibronectin on PDMS substrate 

could be tuned by altering the PDMS’s surface chemistry and topography via oxygen 

plasma treatment 263.  It was proposed that the synergistic effect of increased 

surface hydrophilicity and altered topography may facilitate the exposure of 

physisorbed fibronectin towards Caco-2 cell integrins and consequently enhancing 

cell adhesion and proliferation on the functionalised surfaces 263. 

However, there are limitations to the use of PDMS; one being its innate 

hydrophobicity.  Moreover, even after the PDMS surface has been modified to be 

more hydrophilic, the material can often recover its hydrophobicity 264.  The literature 

reports the loss of small hydrophobic molecules from the incubation solutions into 

the connected PDMS matrix 265.  In addition, the literature describes the absorption 

of small biomolecules by silicone polymers 266, and even the permeation of 

oligomers from PDMS bulk into surrounding tissues 267,268.  Although few, there have 

been documented cases where the transfer of small biomolecules into the PDMS 

substrate have a significant impact on the materials’ mechanical properties 268,269.  

Such caveats not only have negative implications for PDMS’s application to new 

biomedical devices but highlight the particular issue for its application to current lab-
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on-chip and biomimetic devices where changes in ambient solution composition 

could possibly impact the outcome of experimental investigations.  Regardless, the 

application of PDMS substrates in this field steadily grows 270–274, due to its ease of 

use and familiarity within the biotechnology community.  To overcome its 

disadvantages, surface passivation techniques are being actively developed and 

improved 275.  Popular techniques such as plasma oxidation treatment not only 

passivate the surface, but can be applied to induce different membrane responses 

to external stress 175.  Such developments present the first steps towards novel 

functional synthetic biointerfaces to modify adhered membrane properties 

controllably.  However, a deeper understanding of the interplay between nanoscale 

interfacial properties and macroscale membrane responses is required to push such 

technologies further.  

The discussions in this chapter set out to explore how controlled air plasma 

treatment can be used to modify PDMS substrates chemical, topographical, and 

mechanical properties.  This is useful to investigate the interplay between surface 

modification techniques and controlled alteration of the membrane.  For example, it 

is possible to modify the strength of a membrane’s coupling to a flexible PDMS 

substrate by altering the PDMS surface hydrophilicity 175.  In a recent study, longer 

plasma treatments lead to a more hydrophilic PDMS surface, inducing a weaker 

coupling of the adhered lipid patches.  This allowed them to “slide” across the 

substrates interface when subjected to strain deformations rather than stick and 

form pore defects, as was the case with a more hydrophobic PDMS surface 175.  

Further examples of how PDMS surface modifications can be used to alter 

membrane behaviour during vesicle fusion, and even induce changes in adhered 

membrane composition are demonstrated and discussed in Chapters 4 and 5, 

respectively.  These investigations offer insights into how such PDMS surface 

modifications can be utilised as simple and useful techniques to manipulate the 

behaviour of adhered membranes and can be readily exploited in the field of 

functional biointerfaces.  
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3.1 Modifying surface chemistry with plasma treatment  

As PDMS is natively hydrophobic, its surface requires chemical modification to 

become sufficiently hydrophilic to favour the formation of lipid bilayers.  This can be 

achieved through a variety of techniques including the incorporation of amphiphilic 

molecules to the PDMS bulk 276, deposition of hydrophilic coatings 277, or adhering 

polyanions and polycations 278.  A well-established approach is plasma treatment; 

an effective technique used to modify the substrate’s surface chemistry and make it 

hydrophilic 198,258,279,280 with the added advantages of being low cost, simple to 

apply, and requiring no additional reagents 198.  As described in the protocols of 

Chapter 2.3, the technique can be used to modify PDMS surface hydrophobicity.  

Initially, native PDMS substrates have an RMS roughness of 0.309 ± 0.008 nm and 

a contact angle of 97 ± 4 o.  The exposure of PDMS substrates to air plasma alters 

their chemical structure by removing the hydrophobic methyl side chains (-CH3) 

present on the PDMS polymeric chains and promoting the formation of polar 

hydroxyl groups (-OH) at the substrate surface 281.  

 

Figure 3.1: Schematic of plasma oxidation treatment of PDMS.  The native bulk PDMS in air (a) 
which is then exposed to air plasma treatment (b), generating a thin silica-like layer on the substrate 
surface (c), which after some time experiences hydrophobic recovery (d). 

This significantly alters the chemical structure of the PDMS surface, making it 

smoother and more hydrophilic, with a final RMS roughness of 0.203 ± 0.010 nm 

(measured using AFM), and a contact angle of 0 ± 2 o.  These experimental results 

agree with ideas presented in the literature, whereby the PDMS surface is depicted 
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as being converted to a thin, brittle silica-like surface layer when exposed to plasma 

treatment (Figure 3.1c).  Studies using techniques such as neutron reflectometry, 

scanning electron microscopy and X-ray photoelectron spectroscopy, have verified 

that plasma treatment converts the polymer structures at the PDMS surface into an 

inorganic SiOx-rich layer that is thin and smooth 282–285.  Because this layer is so thin 

(~ 10 - 100 nm thick according to literature 254,282,286), the underlying bulk PDMS (> 

100 µm in thickness), retains its innate hydrophobicity 286–288.  The underlying PDMS 

bulk also retains its flexibility even after plasma treatment and hence remains a 

useful deformable substrate for imposing strains on adhered membranes 56,175 and 

building cell stretching devices 141,161,176.  

This modification of surface properties can be demonstrated by changes to the 

PDMS’s macroscale wettability, as well as the alteration to its nanoscale 

topography, as shown in Figure 3.2.  Although subtle, textural differences in the 

substrate surface are visible in topographic images (Figure 3.2a-c).  Shorter plasma 

oxidation exposure times (3 seconds) resulted in a rougher surface, whereas longer 

plasma oxidations (30 seconds) created a smoother surface (Figure 3.2d).  

Conversely, the surface wettability only decreased with increasing plasma treatment 

exposure, with 3-second plasma treatment creating a partially wetting PDMS 

surface, and the 30-second treatment resulting in PDMS becoming completely 

wetting to water.  Seeing that all PDMS samples exhibit a roughness comparable to 

that of cleaned silica glass substrates (< 0.5 nm 195), the drastic differences in 

wettability were used to classify PDMS samples.  A PDMS sample exposed to 30 

second plasma treatment was defined as “fully plasma-treated PDMS”, while a 

PDMS exposed to the shorter 3 second treatment defined as “partially plasma-

treated PDMS”.  Such fully plasma-treated PDMS substrates induced bilayer 

responses similar to those observed on a glass substrate (both being smooth 

hydrophilic silica-based interfaces) and will be further discussed in Chapter 4.  

Partially plasma-treated PDMS substrates, although capable of stably supporting 

lipid bilayers, induced different membrane-substrate interactions, as discussed in 

Chapter 5.  Although the exposure parameters described above are unique to the 

experimental setup and plasma generator, they reproducibly produced the 

substrates with the characteristics described above, making the technique a viable 

means of substrate modification for later experiments. 
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Figure 3.2: Change in physical and chemical surface properties of PDMS after plasma 
oxidation treatment.  AFM topographic images of (a) native PDMS (0 seconds exposure), and (b) 
partially (3 seconds exposure) and (c) fully (30 seconds exposure) plasma-oxidised PDMS. Graph 
showing a change in wettability, in terms of apparent contact angle, and root mean square (RMS) 
roughness of native, partially and fully plasma-oxidised PDMS samples (d).  Scale bars and colour 
bars in (a-c) represent 200 nm and a range of 2 nm, respectively; and error bars in (d) represent the 
standard error. 

The thin silica-like surface layer of fully plasma-oxidised PDMS substrates has 

similar interfacial properties to glass; both contain inorganic SiOx species, both are 

hydrophilic, and both possess a low RMS roughness of ~ 0.2 nm (with reported 

values from literature ranging from 0.1 - 0.3 nm 2,118,195,289).  Partially plasma-

oxidised PDMS, on the other hand, has an RMS roughness of 0.435 ± 0.006 nm.  

Partial plasma treatment appeared to create a slightly rougher surface with “partial” 

hydrophilicity, demonstrating a contact angle of 52 ± 9 o.  
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One possible explanation for this partial hydrophilicity and increased roughness 

could be that the partial plasma treatment creates an incomplete silica-like layer on 

the PDMS surface, resulting in an interface of hydrophilic and hydrophobic domains 

of nanoscale size.  Such nanoscale textured surfaces of oxidised and unoxidised 

PDMS could produce lower contact angles (Cassie equation, Chapter 2), and 

increased surface roughness (Figure 3.2d).  This interpretation is supported by 

similar studies using advancing and receding contact angles on partially plasma-

treated PDMS, that reveal an adhesion hysteresis of up to ~ 15 o, suggesting a 

degree of chemical or topographical heterogeneity on partially plasma-treated 

PDMS’s surfaces 290.  

To verify experimentally the presence of nanoscale hydrophobic and hydrophilic 

domains on the surface of partially plasma-oxidised PDMS, chemical force mapping 

was employed.  Chemical force mapping can provide molecular-level insights into 

the interfacial behaviour of samples and allows characterisation of the differences 

in hydrophilic/hydrophobic structures present on fully and partially oxidised PDMS 

substrates when immersed in aqueous solutions.  By systematically measuring the 

adhesion force between a hydrophobised hexanethiol-coated AFM tip and the 

substrate immersed in an aqueous solution, the lateral distribution of hydrophobic 

regions on the PDMS surface could be analysed (see Chapter 2.6.4 for further 

details).  The results are presented in Figure 3.3a-b.  Each pixel represents a domain 

of ~ 30 nm by 30 nm, resulting in a 32 by 32 pixels force map.  This resolution offered 

a reasonable compromise between acquisition time (~2 hours for each force map) 

and experimental limitations such as the radius of the AFM tip (~ 30 nm according 

to manufacturer specifications).  Using such adhesion maps, the lateral distributions 

of hydrophobic domains on the surface of fully and partially plasma-treated PDMS 

can be compared.  The adhesion map of Figure 3.3a shows that uniformly low 

adhesion forces are obtained across the fully plasma-oxidised sample.  However, 

the data appears positively skewed compared to the Gaussian distribution (with a 

mean value of 0.05 nN and a median value of 0.04 nN), likely due to the presence 

of adhesion values at the lower end of the AFM’s force detection limit.  Regardless, 

the measurements corroborate the data shown in Figure 3.2, in which full air plasma 

oxidation of the PDMS generated a uniformly smooth hydrophilic surface, attributed 

to the formation of a thin silica-like layer.   
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Figure 3.3: Force spectroscopy measurements of PDMS-cholesterol interactions.  Adhesion 
force maps using hydrophobic AFM tips on fully (a) and partially (b) plasma-oxidised PDMS reveal 
differences in hydrophobicity at the nanoscale.  The image is 32 x 32 pixels, and each pixel represents 
31.25 nm by 31.25 nm. A histogram of the measured adhesion forces (c) taken over n = 1024 force 
curves (for each population) indicates means and standard deviation of 0.05 ± 0.04 nN for fully 
plasma-oxidised PDMS, 0.63 ± 0.23 nN for partially plasma-oxidised PDMS, and 2.00 ± 0.11 nN for 
native PDMS.  Gaussian fitting applied using OriginPro 2017 fitting tool, with two fitting parameters 
and a bin size of 0.025 nN.  Scale bar and colour bars in (a-b) represent 250 nm and a range from 0 
- 1 nN, respectively. 

The adhesion force map acquired over partially oxidised PDMS (Figure 3.3b) 

indicates a high degree of lateral heterogeneity across the surface when compared 

to the result on fully oxidised PDMS.  However, no clear domain structure is visible 

in the adhesion force map, suggesting that either discrete hydrophobic/hydrophilic 

domains are of a scale smaller than the 30 nm pixel resolution of the force map or 

that the hypothesis of small domains is incorrect. 

Histograms of the measured adhesion forces (Figure 3.3c) showed that partially 

oxidised PDMS has a higher average and a wider distribution of adhesion forces 

than for fully oxidised PDMS.  This shows partially oxidised PDMS to be distinctly 
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more hydrophobic and heterogeneous, with small regions that possessed adhesion 

forces as low as ≤ 0.1 nN, corresponding to strongly hydrophilic areas.  The latter 

appear absent from native PDMS.  Notably, the adhesion force histogram for the 

partially plasma-treated PDMS in Figure 3.3c did not appear bimodal, as would be 

expected for adhesion forces measured on a surface with discrete hydrophobic and 

hydrophilic domains.  Although it is possible that the domains are less than 30 nm 

in size and hence not resolved in the force maps, it is also possible that rather than 

discrete domains, the plasma treatment could result in a gradual conversion of the 

polymer structure into a glass-like silica-layer; creating a gradual chemical variation 

rather than a discrete, patchy surface.   

The present results do not allow for a definitive conclusion about the existence of 

small heterogenous hydrophilic/hydrophobic domains, but regardless of the correct 

interpretation, the partially plasma-treated PDMS substrates exhibit an 

“intermediate” state of hydrophilicity compared to native, and fully plasma-treated 

PDMS.  Surface functionalisation techniques have long demonstrated that 

chemically distinct regions on a single surface can be used to organise the lipid 

membrane.  Such patterning is often employed on the micron scale to create 2D 

structures of lipid bilayers and monolayers 142,144.  The effects of such 

hydrophilic/hydrophobic regions when shrunk down to the nanoscale or molecular-

scale are less explored and can have novel effects, as later discussed in detail in 

Chapter 5. 

3.2 Hydrophobic recovery after plasma treatment 

Although plasma oxidation is facile and effective, there is an ongoing struggle to 

make such modifications permanent, mainly due to the innate property of PDMS 

hydrophilicity reverting over time, (Figure 3.1d).  Several mechanisms are reported 

to be responsible for PDMS’s hydrophobic recovery, including the reorientation of 

polar chemical groups into the bulk due to conformational changes of the polymer 

chains, degradation of the polar groups, and diffusion of low molecular weight 

species (LMWS) from the bulk to the surface layer after treatment 264,267,281,291,292. 
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Figure 3.4: Hydrophobic recovery of PDMS. Contact angle measurements conducted over several 
days on PDMS samples change in wettability due to hydrophobic recovery under different storage 
conditions. 

The migration of LMWS not only induces hydrophobic recovery but could propagate 

from the PDMS into surrounding adhered samples 267,268.  These LMWS can be 

formed from scission fragments created during oxidation or from uncured oligomers 

present after curing 264,281.  Although the Young’s modulus of PDMS can be easily 

modulated by altering the elastomer:curing ratio, this can lead to excess uncured 

oligomers in the PDMS matrix, and such oligomers may contribute to hydrophobic 

recovery 293.  The fact that oxidation techniques are widely exploited to modify 

PDMS stiffness for cell-substrate studies is noteworthy 294, and the presence of such 

LMWS interfering with measurements is not widely discussed.  Although the 

contribution to uncured oligomers can be reduced by correct fabrication and thermal 

ageing 293, LMWS formed from scission fragment and polymer reorientation can still 

significantly contribute to hydrophobic recovery, and loss of surface hydrophilicity 

after treatment 264,282,288.   

Hydrophobic recovery can be sufficiently retarded when the PDMS is stored under 

proper conditions.  Storing the PDMS in polar liquids, like water, can effectively 

suppress, and even inhibit complete hydrophobic recovery back to wetting 
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behaviour of native PDMS 295.  Figure 3.4 demonstrates the hydrophobic recovery 

of fully oxidised PDMS samples, prepared following the protocols described in 

Chapter 2.3, when stored in air or water.  The native PDMS displayed a contact 

angle of 83 ± 3o, representative of hydrophobic surfaces.  Initially, fully oxidised 

PDMS displayed contact angles of 0 ± 2o, being fully wetting and representative of 

a perfectly hydrophilic surface.  This property degraded with time, with the plasma-

treated PDMS regaining a degree of hydrophobicity and contact angles of 74 ± 2o 

when stored in air.  More importantly, although both samples recovered, this 

behaviour was significantly hindered for plasma-treated PDMS samples stored in 

water, and seemingly halted after 2 days.  With contact angles measuring 53 ± 3o 

after 5 days, these samples remained significantly wetting and reasonably 

hydrophilic.  As all experiments were conducted in aqueous buffer, this reduction of 

hydrophobic recovery was also present in all further investigations.  Additionally, by 

freshly preparing PDMS samples for each experiment, hydrophobic recovery could 

be limited enough to be considered stable for the timescales measured in the 

experiments described in later chapters. 

3.3 Creating wrinkled topographies 

Although plasma oxidation only marginally altered surface topography for the bulk 

PDMS by creating a thin silica layer, it can be used to create more complex 

topographies under certain conditions.  This relies on the fact that the thin silica layer 

created by plasma oxidation has different mechanical properties than the bulk 

PDMS with an elastic modulus of 1.5 GPa compared to 0.3 GPa of bulk PDMS 

286,287.  As the two directly adhere, this can result in mechanical buckling 296, and 

therefore has been effectively applied to PDMS substrates to create wrinkled and 

folded topographies 297–301, even on length scales < 100 nm 300.  Such methods 

provide a useful and straightforward technique for the study of nanoscale curvature 

of membrane systems 149,153,302–304.  Although often relying on the precise and 

controlled application of strains to the substrate through bespoke tensile devices, 

such structures can be reproduced with thin films of PDMS adhered over a small air 

pocket, as described in Chapter 2.8.  In such devices, a thin film of PDMS is sealed 

over a 1 mm diameter hole in a 10 by 10 by 5 mm block of PDMS using plasma 
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treatment.  This creates a flexible PDMS sheet suspended above a pocket of air 

(Figure 3.5a).  Such a set-up, when exposed to the low pressures required for air-

plasma treatment, induces biaxial stress on the PDMS film as the air pocket 

expands, imposing a positive air pressure on the flexible PDMS film (Figure 3.5b).  

During plasma treatment, a thin, brittle silica layer is formed (Figure 3.5c).  After 

ambient pressure is restored, the air pocket is deflated, putting the PDMS film under 

compressive stress.  Unlike the bulk PDMS, the silica layer has reduced elasticity, 

so the build-up of in-plane compressive stress results in a buckling failure, where 

out of plane projections such as wrinkles are formed (Figure 3.5d).  Such wrinkled 

topographies reduce in-plane compressive stresses without delaminating the 

adhered stiff layer from the thicker underlying soft elastic substrate, thereby 

releasing elastic energy 301.  The formation of such structures has been extensively 

investigated 299–301, with the iconic chevron pattern (Figure 3.5f) being linked to the 

presence of circular biaxial stresses.  In this case, the geometry was generated by 

the suspension of the PDMS film across a circular shape.  When looking at the 

resulting wrinkling pattern, folded regions also appear on the substrate surface, 

indicated by white arrows in Figure 3.5f.  Folded features are commonly developed 

in buckling systems, acting as an additional mechanism for releasing in-plane 

compressive stresses due to the coupling of the brittle silica to the flexible bulk 

PDMS 301,305.  These differences in local curvatures can be effectively exploited to 

see how membranes organise differently in response to substrate curvature.  This 

is utilised and briefly discussed further in Chapter 6.5.2, to show how such local 

curvature influences the behaviour of supported lipid bilayers with coexisting liquid 

phases.  Although the wrinkled substrate presented in Figure 3.5 data is not novel, 

the approach to their formation provides a quick, easy and simple method for 

forming nanoscale curved topography, using limited techniques and materials.  

Such topographies are highly useful in deciphering the role of local curvature on 

supported biomembrane function and organisation  149,153,302–304, and publishing of 

such protocols will aid their broader use in membrane substrate investigations.   



Chapter 3: Surface modification of polydimethylsiloxane substrates using air 
plasma treatment 

 

77 
 

 

Figure 3.5: A PDMS topography modified by plasma treatment and example topographies. A 
suspended flexible PDMS film above a trapped air pocket (a), which when exposed to low pressure 
expands due to trapped air (b) and exerts biaxial stress on the PDMS film.  The strained film is exposed 
to air plasma oxidation, creating a thin, brittle silica layer on the surface (c), and then upon returning to 
ambient room pressure buckles (d) due to differences in stiffness with the underlying bulk PDMS.  
AFM images of flat bulk PDMS (e) and wrinkled PDMS film (f), both exposed to 5 seconds of plasma 
oxidation.  The location of folded regions in (f) are shown by white arrows.  Scale bars in (e-f) represent 
500 nm.   

3.4 Surface cracking under mechanical stress 

One of the major advantages of PDMS is its flexibility.  The elastomeric properties 

of PDMS have been extensively put to use to investigate the influences of external 

mechanical properties on adhered biomembranes 56,71,175, and cellular samples 306.  

As shown in Figure 2.10 of the previous chapter, the flexibility of a plasma-oxidised 

PDMS film allows it to be elastically stretched to over 30% strain.  These strains 

could be held static on the timescale of minutes, making such measurements useful 
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for the controlled application of tensile strains to adhered membranes.  Although the 

PDMS bulk is flexible, the silica-like layer generated during plasma treatment is less 

so, being relatively brittle and prone to cracking under mechanical stress 288.  To 

evaluate the surface cracking of PDMS substrate after plasma oxidation, controlled 

tensile stresses were applied to fully plasma-oxidised PDMS samples and imaged 

with AFM (see Chapter 2.8 for further details on protocols).  In these experiments, 

fully-oxidised PDMS was used, as this was the most prolonged plasma treatment 

exposure used to make samples for subsequent measurements presented in this 

thesis, and samples formed with this treatment would have the thickest and most 

brittle silica-layer present, and therefore most likely prone to cracking.   

 

Figure 3.6: Surface cracking in plasma-treated PDMS due to tensile strains.  AFM scans of fully 
plasma-treated PDMS substrate exposed to a tensile strain cycle from 0% (a), 2.5% (b), 5% (c), 15% 
(d), 25% (e) and returned back to 0.2% (f).  Corresponding line profiles from the dotted white line are 
shown below the scans.  

The application of small strains deformed the uniformly flat PDMS surface (Figure 

3.6a) to form minor, but visible texturing in Figure 3.6b.  At 5% strains, evidence of 

surface cracking was revealed (Figure 3.6c) with a clear fissure in the substrate 



Chapter 3: Surface modification of polydimethylsiloxane substrates using air 
plasma treatment 

 

79 
 

surface.  When larger strains were applied (Figure 3.6d-e), the surface cracks 

widened, revealing what was assumed to be the underlying untreated bulk PDMS 

substrate, with the silica-like layer being ~ 40 nm thick.  This cracking process 

formed a lip due to stress relaxation processes as the brittle silica snaps 307, which 

upon the removal of the applied strain left a fissure in the cracks’ previous location 

(Figure 3.6f).  The thinness of the silica-layer likely reduced its tendency to form 

cracks without the application of stress, aiding the formation of uniformly smooth 

hydrophilic surfaces using such protocols, as seen in examples of Figure 3.2a and 

Figure 3.6a.  Such cracks aid hydrophobic recovery, as they create openings in the 

diffusive barrier formed by the silica-like layer, allowing LMWS to more easily 

propagate to the substrate surface 288,295.  However, in static measurements, the 

PDMS was often bonded to a glass substrate, using protocols described in Chapter 

2.3, to provide structural support and aid handling.  With this additional support, the 

PDMS could not easily warp and undergo large enough strains to induce cracking.  

Hence, it can be satisfactorily concluded that the fully plasma oxidised samples in 

subsequent investigations were mostly uniform, smooth and devoid of major defects 

such as cracks, except when undergoing tensile strain measurements.  Although 

often seen as a nuisance, such nanoscale cracking can be a useful modification of 

the PDMS surface.  With the controlled application of tensile stress, the surface of 

plasma oxidised PDMS samples can be patterned with nanocracks to functionalise 

interfaces 307–310.  An example of this is demonstrated in Chapter 5, where PDMS 

nanocracks are used to alter the composition of adhered lipid membranes.   

3.5 Conclusion 

This chapter describes how PDMS surface hydrophilicity, topography and chemistry 

can be altered using air plasma oxidation.  Furthermore, using described protocols, 

it was demonstrated that nanoscale features such as surface wrinkles and cracks 

could be generated on PDMS substrates using air plasma oxidation in conjunction 

with the application of strain.  These more exotic nanoscale surface features could 

be utilised for investigations into the impact of local curvature and substrate 

composition on adhered membrane behaviour.  Overall, the various means of 

modifying the PDMS substrate with air plasma oxidation alone demonstrates the 
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versatility of the system.  Such versatility is highly useful in the investigation of the 

influence of a substrate on adhered bilayers, with plasma oxidation being used to 

controllably modify membrane properties.  These surface modifications are 

employed in the preliminary investigations of Chapters 6 and exemplify how such 

techniques can be further exploited to favour the formation of gel domains in specific 

regions on the substrate.  Next, in Chapter 4, the process of supported bilayer 

formation on PDMS substrates is discussed, including how some of the substrate 

properties such as hydrophobicity can significantly perturb membrane behaviour, 

even in the first moments after fusion. 
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Chapter 4: Morphological changes in lipid 

bilayers induced by vesicle fusion to 

substrates 

In this chapter, lipid vesicles are fused to glass and PDMS substrates to investigate 

the after-effects of the fusion process on membrane morphology.  Lipid patches are 

isolated regions of supported lipid bilayer with mostly smooth, rounded edges, and 

are formed by fusing giant lipid vesicles to a supporting substrate 311.  Even though 

isolated, lipid patches still represent a large area of continuous supported bilayer, 

so can be easily scrutinised by high-resolution techniques such as TIRF and AFM 

311.  Moreover, lipid patches are large enough to allow simultaneous assessment of 

changes in their surface area and in/out of plane morphological organisation (tubes, 

buds, pores) using epifluorescence microscopy.  In a study by Bhatia et al. it was 

demonstrated that macroscale Lo and Ld domains in lipid membranes could be 

fixated by the fusion of phase separated GUVs to glass 85.  Interestingly, although 

lateral diffusivity was maintained in the bilayer, Lo and Ld domains were immobile.  

Using lipid patches, the presence of sub-optical domain structures in Lo/Ld domains 

were identified with AFM; detailing nanoscale artefacts difficult to observe in free 

GUVs.   

Another benefit of lipid patches is that they represent a supported lipid bilayer 

system with a stable edge.  Persistent free edges are rarely observed in bilayer 

systems at equilibrium, with edges often eliminated by the self-assembly of lamellar 

sheets or formation of closed-shell vesicles 312.  In the case of a lipid patch, it is still 

unfavourable for the hydrophobic core to be exposed to the surrounding aqueous 

solution at the edge of the membrane.  To reduce this hydrophobic penalty the 

bilayer edge forms a hemi-micellar arrangement 313.  Hence, lipid patches provide a 

unique SLB system for studying lipid behaviour at the membrane boundary.  Indeed, 

the presence of a persistent bilayer edge is a fascinating property of lipid patches 

that can be exploited.  AFM studies on smaller lipid patches have shown a 

preference for antimicrobial peptides (AMPs) to adsorb at the patches edge 314–316.  

Their adsorption to the edge reduces membrane line tension and increases patch 
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area and perimeter, as similarly observed with detergent molecules 317.  With 

increasing AMPs concentration the bilayer is eventually destabilised by the peptide’s 

insertion, transforming the membrane into worm-like micelles and creating more 

edges, facilitating further peptide insertion and membrane disruption.  This 

mechanism likely facilitates the peptides antimicrobial function. 

Lipid patches represent a useful alternative membrane model system, combining 

the advantages of GUVs and continuous SLB systems 318,319.  The formation of lipid 

patches by coupling lipid membranes to substrates suppresses membrane 

fluctuations and equalises membrane tension, making lipid patches a useful system 

for quantitative analysis of the membrane surface changes 311.  Membrane fusion is 

a vital cellular function, but remains poorly understood due to its high degree of 

complexity. GUVs are particularly useful for understanding fusion processes due to 

them being easily observable with optical microscopy 108,111.  For example, it has 

been shown that the fusion of GUVs is preceded by the formation of a pore in the 

adherent vesicle 108,110,111.  This pore quickly expands, initiating the expulsion of the 

vesicles inner contents, causing the vesicle to rupture and spread across the 

substrate surface.  These processes occur at sub-second timescales, completing in 

~ 10 - 20 ms 108.  The majority of current studies focus on capturing these drastic 

morphological changes of vesicle rupture with high-speed imaging, ignoring the first 

few seconds following vesicle fusion.  It is in these subsequent seconds that the 

after effects of the fusion process are demonstrated.  As the membrane rapidly 

transitions to a planar geometry, it spreads and confines a newly formed interstitial 

water layer during vesicle rupture.  This process likely imposes hydrodynamic 87, 

mechanical 175, and osmotic 319–321 stresses on the membrane, all of which can 

significantly reorganise membrane structure, often within the timescale of seconds 

to minutes.  The literature is lacking in observations of the effects of the vesicle 

fusion process on resultant lipid patch structure, and how such membranes 

reorganise due to mechanical stresses of vesicle rupture.  

The aim of this chapter is to identify the reorganisation of the lipid bilayer resulting 

from vesicle fusion, and to observe changes in the lipid patch area and fluorescence 

homogeneity.  The lipid patch area was measured to characterise behaviours such 

as membrane contraction and spreading across the substrate surface after vesicle 
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rupture.  Additionally, variations in fluorescence intensity were used as an indicator 

of changes in lipid packing and aggregation of fluorescent molecules in the 

membrane.  By observing the fusion process in cholesterol-containing vesicles, the 

formation of transient lipid protrusions after vesicle rupture was identified.  Lastly, 

observations between fully and partially hydrophilic substrates were compared to 

investigate the impact of substrate hydrophobicity on such relaxation processes. 

4.1 Morphological changes in supported lipid bilayers 

induced by vesicle fusion 

In the following investigations, lipid patches of DOPC were fused onto different 

smooth hydrophilic surfaces, namely: mica, glass, and fully plasma-treated PDMS.  

The lipid patches retained their lateral diffusivities, as shown in Figure 4.1, with 

magnitudes similar to those found in literature 125.   

Although all patches were fluid, the magnitude of diffusivity between the substrates 

was measurably different, suggesting the kinetics of supported lipid bilayers are 

substrate dependent, even between materials possessing smooth hydrophilic 

interfaces.  The literature on other PC lipid systems has demonstrated that the 

diffusion coefficient on mica is significantly lower than on silicon oxide due to micas 

being atomically flat and having a higher zeta potential than glass, which favours a 

stronger bilayer-substrate interaction reducing membrane lateral diffusivity 112,113.  

This corroborates with the data presented in Figure 4.1, where mica shows the 

lowest diffusivities, while glass and plasma-treated PDMS samples show slightly 

higher lateral diffusivities. 
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Figure 4.1: Formation of supported lipid patches on hydrophilic surfaces. Changes in the fluidity 
of liquid disordered membranes on hydrophilic substrates.  Fluorescence micrographs of lipid bilayer 
patches composed of DOPC doped with 0.1 mol% Rh-DPPE supported on mica (a), glass (b), fully 
plasma-treated PDMS (c), and partially plasma-treated PDMS (d) substrates, 2 minutes after initial 
fusion.  Graph showing average lateral diffusivity of DOPC membranes (e), doped with 0.1 mol% Rh-
DPPE, on each of the substrates.  The scale bars in (a-d) represent 50 μm. 

The lateral diffusivities were calculated from FRAP measurements on fused GUV 

patches, as it was difficult to form continuous lipid bilayers with LUVs on partially 

plasma-treated PDMS and gain a comparison for all mica, glass, and fully/partially 

plasma-treated PDMS substrates.  Although this approach is not ideal for FRAP, 

which requires a relatively infinite reservoir of unbleached fluorophores (as is the 

case with continuously supported lipid bilayers), reasonable estimations of relative 

lateral diffusivities could be acquired using lipid patches.  Additionally, this benefitted 

the comparison of the lateral diffusivities’ impact on GUV patch formation and 

homogenisation, as diffusivities were acquired directly from patch systems. 
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Although in all cases lipid patches spontaneously fused to create supported lipid 

bilayers as shown in Figure 4.1a-d, visual inhomogeneities within the lipid patch 

could be detected in the first few seconds after fusion. 

 

Figure 4.2: Fusion induced membrane reorganisation on a hydrophilic substrate.  
Fluorescence micrographs of lipid bilayer patches composed of DOPC doped with 0.1 mol% Rh-
DPPE fused on a glass substrate (a-d).  The red arrow indicates the transient adhesion spot present 
after vesicle rupture.  The scale bars in (a-d) represent 20 μm. 

An example of such inhomogeneities is given in Figure 4.2a-d.  A deposited vesicle 

adheres to the substrate surface (Figure 4.2a), ruptures and spreads into a 

supported lipid patch (Figure 4.2b).  The resultant lipid patch shows evidence of the 

initial adhesion region, where the vesicle initially forms contact with the substrate.  

This is indicated by a red arrow within the circular area in Figure 4.2b.  The adhesion 

spot quickly dissipates, confirming the lipid patch has retained a significant degree 

of lateral diffusivity, thereby allowing the bilayer to reorganise.  Although the 

rupturing process itself had completed, evidence of further membrane 

reorganisation can be seen in Figure 4.2c.  Inhomogeneities in the patch 

fluorescence intensity become visible within a few seconds after the vesicles rupture 

(Figure 4.2c), before coarsening and disappearing to leave a visually homogenous 

lipid patch (Figure 4.2d).  

The transient mottling of the lipid patches after fusion (Figure 4.2c) indicates 

macroscale fluctuations in the bilayer structure.  These changes in bilayer structure 

could be related to fluctuations in local fluorophore surface density within the 

membrane.  This could possibly be in response to variations in local membrane 

tension and lipid packing density, set up by the rapid transition from a spherical 

membrane geometry to a flat geometry during vesicle fusion.  Alternatively, the 

mottling pattern could be due to the coarsening of wrinkles in the lipid patch, as the 

bilayer “flattens out” after vesicle fusion.  To better quantify this behaviour, changes 
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in the fused lipid patch area and standard deviation in fluorescence intensity across 

the patch were measured as a function of time. Changes in patch area indicate how 

lipid bilayer morphology changes in time, while deviation in fluorescence intensity 

provides a means of quantifying changes in the mottling pattern and tracking 

homogenisation of the lipid structure across the patch.  

 

Figure 4.3: Fusion induced membrane spreading and homogenisation on hydrophilic 
substrates. Relative changes in the patch area (a) and standard deviation between pixels as a 
function of time (b) for lipid patches fused on mica, glass and hydrophilised PDMS substrates. Data 
from n = 6, 10, and 7 independent lipid patch samples for mica, glass and hydrophilised PDMS, 
respectively. Fluorescence micrographs of lipid bilayer patches composed of DOPC doped with 0.1 
mol% Rh-DPPE fused on hydrophilic PDMS (c-e).  The scale bars in (c-e) represent 20 μm. 

Figure 4.3a quantifies the change in patch area immediately after fusion has 

completed.  On hydrophilic substrates, an initial decrease in patch area of 1 - 2% 

was detected in the first few seconds after vesicle rupture.  This was followed by 

spreading of the patch to recover its initial area.  The standard deviation of 

fluorescence across the patch peaks in the first few seconds, before decreasing 

over a timescale of the order of 10 s (Figure 4.3b).  This initial increase in the 

standard deviation of fluorescence intensity indicates that the fluorescence of the 
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patch is inhomogeneous in the few seconds following the fusion process, before 

becoming more uniform across the patch at around 90 seconds.  Notably, the 

standard deviation of fluorescence intensity within the patch goes below unity, 

suggesting that the fluorescence signal of the patch is more homogenous after 

several minutes than immediately after the fusion.  Furthermore, the changes in 

patch area and fluorescence intensity appear to coincide, both being simultaneously 

observed in ~ 30 % of analysed lipid patches.  The fluctuation from unity in both, 

being maximal around the 10 - 30 second timescale, suggests a correlation between 

the two processes. 

It is here proposed that the observed membrane instabilities may be caused by 

some membrane tension remaining in the lipid patch after its formation; due to the 

rapid nature of the vesicle fusion.  The relaxation of this remaining membrane 

tension could possibly induce fluctuations in local lipid density (observed as the 

mottling pattern), before dissipating as the membrane homogenises and spreads 

across the substrate to leave a more uniform supported lipid.  But, as the membrane 

tension was never directly measured in the investigations of this thesis, this 

explanation remains conjectural, and the causes for the lipid patches area and 

fluorescence instabilities after fusion remains currently unresolved. 

To further verify that the observed mottling pattern was not an artefact resulting from 

the type of fluorescent label used (Rh-DPPE), but was indeed due to fluctuations in 

the lipid density, similar experiments were conducted using an alternative dye, 

DilC18(5).  Unlike Rh-DPPE, which is tethered to a lipid molecule that is integral to 

the membrane, DilC18(5) is sequestered in between the lipid tails, thus is more 

shielded from substrate interactions such as frictional and hydrodynamic forces.  

Comparable effects were also seen when DilC18(5) was used, albeit at a smaller 

magnitude (Figure 4.4) .  



Chapter 4: Morphological changes in lipid bilayers induced by vesicle fusion to 
substrates 

 

88 
 

 

Figure 4.4: Fusion induced membrane spreading and homogenisation on hydrophilic 
substrates. Relative changes in the patch area (a) and standard deviation between pixels (b) for lipid 
patches fused on a glass substrate. Fluorescence micrographs of lipid bilayer patches composed of 
DOPC doped with 0.5 mol% DilC18(5) (c-e) fused on hydrophilic PDMS. The scale bars in (c-e) 
represent 20 μm. 

The difference in magnitude of the behaviours was likely related to DilC18(5)’s 

differing diffusive behaviour.  DilC18(5) was found to induce much slower lateral 

diffusivities in lipid membranes (~ six times lower than Rh-DPPE in a POPC 

membrane), in addition to possessing anomalous diffusivity behaviour; such as the 

two populations of diffusers when measured in single-lipid tracking experiments 148.  

This suggests that the behaviours of transient fluorescent inhomogeneities are not 

an artefact caused by the presence of the bulky Rh-DPPE label, but are related to 

the innate membrane properties; such as lateral diffusivity. 
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Although mica, glass and fully plasma-treated PDMS are all hydrophilic and smooth, 

they induce slight differences in lateral diffusivity of adhered membranes 

112,113(Figure 4.1e).  The lipid patches formed on mica produced the smallest area 

contraction (Figure 4.3a) and showed longer timescale of fluorescence 

homogenisation (Figure 4.3b).  The lipid patches supported on mica also exhibited 

the lowest measured lateral diffusivities, with values of 1.05 ± 0.03 µm2s-1 (Figure 

4.1e).  The opposite was observed for fully plasma-treated PDMS and glass, which 

had higher lateral diffusivities of 1.20 ± 0.03 µm2s-1 and 1.12 ± 0.01 µm2s-1 

respectively.  Such magnitudes of lateral diffusivities could possibly explain why the 

effects in area change and fluorescence were subtle and short-lived, with the tested 

DOPC membranes possessing a high degree of lateral fluidity.  These results, 

although subtle, demonstrate that the membrane undergoes significant 

reorganisation even after vesicle fusion has completed.  Even if the impact appears 

minimal in DOPC fluid systems, the effect is likely to be more prominent in less 

diffusive systems; such as those containing cholesterol.  

4.2 Morphological changes in cholesterol-containing bilayers 

induced by vesicle fusion  

Cholesterol is a crucial component in the animal cell membrane and is popularly 

used in model membranes to modify lateral diffusivity 322,323.  The addition of 

cholesterol to DOPC systems leads to a significant decrease in lateral diffusivity 

(Figure 4.5f).  This reduction in the fluidity of the lipid membrane hinders lipid 

movement and often lengthens the timescale over which lipid reorganisation occurs, 

suggesting the effects described in the previous Chapter 4.1 to be more distinct and 

easier to detect. 

Indeed, the addition of 60 mol% cholesterol drastically lowered the lateral diffusivity 

in the membrane patches by an order of magnitude, extenuating the timescale over 

which the lipid patches spread and homogenise (Figure 4.5a-c).  The mottled pattern 

is easily observable in the cholesterol doped DOPC patches supported on 

hydrophilic glass and remained visible up to five minutes after the fusion (Figure 

4.5b).  Furthermore, the time over which the mottled features disappear and leave 
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a homogenous lipid patch was significantly longer. (Figure 4.5c).  Separately, the 

addition of cholesterol to the membrane induced an increase in the final area 

measured for the lipid patch following vesicle rupture.  Subsequent membrane 

spreading after fusion resulted in a ~ 1% increase in lipid patch area after it fully 

homogenised.   

 

Figure 4.5: Cholesterol containing membrane reorganisation after vesicle fusion.  
Fluorescence micrographs of lipid bilayer patches composed of DOPC:Cholesterol (40:60 mol%) 
doped with 0.1mol% Rh-DPPE fused on glass (a-c).  Outline of the original patch area shown by the 
yellow dotted line in c).  Relative changes in the patch area and standard deviation between pixels as 
a function of time for lipid patches fused on glass (d-e).  Comparison of membrane lateral diffusivity (f) 
and time for lipid patch to fluorescently homogenise (g) for lipid patches composed of DOPC and 
DOPC:Cholesterol (40:60 mol%) fused on a glass substrate. The scale bars in (a-c) represent 50 μm. 

As the bilayer is capable of elastically stretching by several percent 324, it is plausible 

that this slight expansion in patch area after fusion is due to the lipid patch spreading 

and stretching across the interface as it wets the substrate surface.  Overall these 

morphological changes relatively match the trends shown in Figure 4.3.  As 

demonstrated earlier, samples with a lower membrane fluidity (patches formed on 

mica substrates), exhibit a smaller patch area contraction and a greater degree of 

membrane spreading at later times.  Compared to pure DOPC membranes, the 

inclusion of cholesterol significantly decreased the lateral diffusivity, increased patch 

spreading (Figure 4.5f), and concurrently extended the time for fluorescence 

homogenisation by 250 times (Figure 4.5g).  The doping of the membrane with 

cholesterol did indeed make the morphological changes present in lipid patches, 
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immediately after fusion, more distinct and easier to detect.  An additional benefit 

was the extended timescale over which the process completed; with this, more 

observations could be conducted to validate the hypothesis that these behaviours 

were induced by membrane wrinkling, which in turn form the mottled pattern. 

4.3 Transient formation of lipid protrusion after vesicle fusion  

The membrane possesses many mechanisms to passively regulate its area while 

remaining confined to the substrate surface 56.  Many of these mechanisms rely on 

the formation of out of plane projections to release in-plane compressive stresses, 

such as the formation of tubes 56,71,175, vacuole-like dilations 319–321 and 

buckles/wrinkles 325.  Here, in Chapter 4.3, it is shown that membrane compression 

following vesicle fusion may also lead to the formation of fluorescence 

inhomogeneities, as observed on lipid patches that shrink immediately after the 

fusion process.  In the following section, examinations are conducted to determine 

whether the observed fluorescent inhomogeneities are caused by out of plane 

membrane texturing.  Small out-of-plane texturing would be often difficult to detect 

and analyse with conventional epifluorescence microscopy, therefore reflection 

interference contrast microscopy (RICM), previously described in Chapter 2.5.3, has 

been used.   

Measurements from RICM rely on the interference of light reflected from different 

interfaces.  The intensity at a given position depends on the separation between the 

different interfaces; in this case, the substrate and supported lipid bilayer.  This 

particular set up could achieve z-resolutions of ~ 5 - 10 nm, which should be more 

than adequate to further characterise the micron-scale mottling behaviour seen with 

epifluorescence microscopy. 

Due to the poor contrast of the fused lipid patches, they had to be located using 

epifluorescence microscopy, before switching to RICM.  Therefore, the fusion 

process itself could not be imaged.  Furthermore, to collect more images of the 

instabilities following vesicle fusion, DOPC:Cholesterol (40:60 mol%) vesicles were 

used, in which the mottling effect lasted longer.  The RICM images of lipid patches 

showed a weak contrast, with little observable macroscale variation in intensity 
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across the patch (Figure 4.6).  The intensity variations were correlated to the relative 

difference in height between the substrate and adhered bilayer using Equation 4.1 

167: 

2𝐼−(𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛)

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
=  cos (

4𝜋𝑛ℎ

𝜆
)      Equation 4.1 

where 𝐼 represents the intensity of the interfered light, 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 represents the 

maximum and minimum sample intensity respectively, 𝑛 represents the refractive 

index of the buffer solution, 𝜆 the wavelength of incident light, and ℎ the distance 

between the sample and the substrate.  With this equation, the measured intensity 

could be converted into a height map, representing the distance of the supported 

lipid membrane relative to the substrate surface (Figure 4.6i-l) (see Chapter 2.5.3 

for further details). 

 

Figure 4.6: Fluctuations in membrane distance from the substrate immediately after fusion. 
Reflection interference contrast images from DOPC:Cholesterol (40:60 mol%) membrane doped with 
0.1 mol% Rh-DPPE after fusion onto glass substrate (a-d).  Heightmaps of the same lipid patches (e-
h). Regions indicated by red arrows in (a-d) and white arrows in (i-l) suggest the presence of transient 
lipid protrusion.  Histograms of pixel intensity corresponding to the reflection interference contrast 
images above (e-h).  The red line trace indicates the outline of the initial histogram in (e) for 
comparison.  The scale bars in (a-d, i-l) represent 10 μm.  
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The height maps confirmed that there were no apparent membrane wrinkles greater 

than 10 nm in height across the patch.  It could, therefore, be concluded that the 

fluorescence inhomogeneities were not due to macroscopic wrinkles.  Instead, it is 

proposed that they are caused by perturbations of local lipid density, causing a 

change in local fluorophore concentration within the membrane, while the overall 

membrane remains relatively flat.  A possible reason for this might be the uneven 

interaction of the membrane with the substrate during vesicle fusion, which could 

cause variations in the lipid flow across the lipid patch during its formation. 

While macroscopic wrinkles were absent, other out of plane projections were 

identified in contrast imaging; specifically, the presence of membrane protrusion, 

seen as dark spots in the raw contrast images, indicated by red arrows in Figure 

4.6a-d.   

 

Figure 4.7: Formation of lipid protrusions during vesicle fusion.  Fluorescence micrographs of 
lipid bilayer patches composed of DOPC:Cholesterol (40:60 mol%) doped with 0.1 mol% Rh-DPPE 
(a-d) fused on a glass substrate.  The accompanying cartoons demonstrate the possible mechanisms 
resultant from initial vesicle fusion (e), leading to the patches area contraction, formation of small 
protrusions and fluorescence inhomogeneities (f), which relax and homogenise (g), leaving a uniform, 
stably supported lipid patch (h).  The scale bars in (a-d) represent 20 μm. 
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These spots developed shortly after the initial fusion of the lipid patch and increased 

in height to ~20 nm (Figure 4.6i-l, white arrows).  The majority of protrusions 

dissipated as the patch homogenises, seemingly being reabsorbed into the 

membrane; but some persisted even after the homogenisation of the patch 

fluorescence.   

Such persisting protrusions explain the small positive shift in the pixel intensity 

distribution, as seen in Figure 4.6f-h.  The coarsening and homogenisation of the 

protrusions could also be resolved with high magnification (60x lens) 

epifluorescence microscopy (Figure 4.7a-d). 

The appearance of these protrusions corroborates with the hypothesis; some 

membrane tension remains in the bilayer after vesicle fusion causing initial lipid 

patch contraction, lipid density inhomogeneities detected by the fluorescence 

inhomogeneity and the formation of lipid protrusions, as depicted in Figure 4.6e-h.  

Indeed, the release of compressive stress in the adhered membrane through 

tubulation has already been demonstrated experimentally 56 and theoretically 326.  

The protrusions reabsorb as the patch equilibrates and spreads (Figure 4.7d) 

simultaneously with the homogenisation of the fluorescence signal, leaving a 

uniformly supported lipid bilayer (Figure 4.7h), with a few remnant protrusions.  

It should be noted that these protrusions are most prevalent and identifiable in 

cholesterol-containing patches.  One reason for this might be the short period over 

which protrusions in pure DOPC patches likely exist, making imaging them difficult.  

However, cholesterol also changes the mechanical and structural properties of the 

lipid membrane, such as bilayer thickness 77,327, bending modulus 57,328, and 

interfacial elasticity 329 and therefore may favour the formation of stable protrusions. 

4.4 Impact of osmotically induced membrane tension on lipid 

patch morphology after vesicle fusion 

Although the transient mottling pattern in lipid patches formed by vesicle fusion was 

clearly observable (Figure 4.2c), the cause of this effect remained unclear.  To check 

whether the initial tension in the lipid vesicles had an effect on the instabilities 
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following vesicle fusion, the vesicles were subject to varying osmotic shocks (Figure 

4.8) 243,330,331.  DOPC vesicles were subjected to osmotic stress by using fusion 

buffer solutions with osmolarities between ~ 200 - 400 mOsmol/L (see Chapter 2.2 

for further details).  The osmolarities of the fusion buffer were altered by varying the 

amount of NaCl added to the buffer composition to achieve the desired osmolarities, 

as it was already present in excess in the fusion buffer solution; compared to the 

other salts such as TRIS and CaCl2.  Additionally, the ion permeability coefficients 

of Na+ and Cl- are in the order of 10-10 µms-1 and 10-7 µms-1 respectively, so their 

concentrations across the vesicle membrane could be assumed constant over the 

experimental time period 330,332. 

Figure 4.8b shows a graph of the relative change in patch area as a function of the 

osmolarity of the fusion buffer.  As expected, lipid patches formed in isotonic fusion 

buffer of 297 ± 1 mOsmol/L demonstrated the same trends in the changes to the 

patch area observed previously in Figure 4.3a; with an initial decrease in patch area 

of 1.66 ± 0.31%, before the original patch area was recovered.  Interestingly the 

minimum patch area for lipid patches formed in hypoosmotic fusion had a lower 

magnitude, with a decrease of 0.51 ± 0.23% for patches formed in 201 ± 4 mOsmol/L 

fusion buffers.  Conversely, lipid patches formed in hyperosmotic solutions such as 

333 ± 1 mOsmol/L showed minimal patch areas, with the largest magnitude being 

2.60 ± 0.52%.   

In Figure 4.8c, a plot of minimum patch area against relative osmolarity is presented, 

with a high range of hyperosmotic fusion buffers.  Relative osmolarity is defined as 

the difference in osmolarity of the internal vesicle solution (~300 mOsmol/L) and the 

fusion buffer.  Although initially there appears to be an increase in magnitude of the 

minimum area of fused lipid patches from hypoosmotic to hyperosmotic fusion 

buffers, this seems to break down for tests using fusion buffers 340 ± 1 mOsmol/L 

and 402 ± 2 mOsmol/L.  The reason for this remains unclear. 
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Figure 4.8: Impact of osmotic stress in vesicles on the contraction of the resultant lipid patch 
area.  Illustration depicting the effects of hypoosmotic, iso-osmotic and hyperosmotic stress on 
membrane tension in liposomes (a), causing them to lyse, exist stably or rupture.  Relative changes 
in the patch area (b) for DOPC lipid patches fused on glass in a buffer solution with osmolarities of 201 
± 4, 263 ± 1, 297 ± 1 and 333 ± 1 mOsmol/L.  Changes in minimum patch area with relative osmolarity 
(c), for DOPC lipid patches formed by vesicle fusion on a glass substrate.  Relative osmolarity defines 
the difference in osmolarity between the solution encapsulated by the vesicles and surrounding buffer 
solution. 

Although these results indicated that there might be a link to changing membrane 

tension (manipulated through osmotic stressing) and fluctuations in the lipid patch 

area after fusion, the trend appeared weak and only existed over a limited range of 

values.  Additionally, the impact of varying ionic strength was not accounted for in 

the described experiments, although it likely plays a role in observed mechanisms.  

For example, altering the NaCl concentration influences the Debye screening length 

(as discussed in Chapter 2.6.4.2), and possibly impacts the overall membrane-

substrate interaction and resulting strength of vesicle adhesion to the substrate.  As 

demonstrated using optical microscopy, quartz crystal microbalance and surface 

force apparatus; ionic strength conditions can have significant impacts on the 

adhesion of zwitterionic vesicles to substrates, even over ranges with a difference 

in magnitude of only 0 – 80 mM of NaCl 142,243,333.  The results in this chapter are 
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preliminary and further experiments are required before more detailed conclusions 

can be drawn. 

4.5 Impact of partially plasma-treated PDMS on supported 

lipid bilayers formed by vesicle fusion 

To further investigate the morphological changes in lipid patches immediately after 

vesicle fusion, the measurements described in Chapter 4.1 were repeated using 

partially plasma-treated PDMS substrates.  As described in Chapter 3.1, these 

substrates possess a partially hydrophilic interface, but remain capable of stably 

supporting phospholipid bilayers.  Experimental literature suggests that the 

presence of hydrophobic regions on partially plasma-treated PDMS hinders 

membrane spreading due to substrate pinning, even when placed under external 

mechanical strains 175.  Upon fusing DOPC vesicles to the partially hydrophilic 

PDMS surfaces, differences in the fusion process were notable.  An immediately 

apparent difference between the fully and partially hydrophilic substrates is the 

persistence of the GUV in its adhered state.  This has also been observed on 

substrates modified with SAMs, where GUVs achieved stable contact angles from 

~ 28o to 54o 334.   

Lipid vesicles in contact with partially plasma-treated PDMS (Figure 4.9a) 

experienced interactions only just sufficient to promote vesicle fusion (Figure 4.9b).  

Indeed, compared to other substrates whereby the membrane-interaction is weak, 

such as titanium oxide 335, spontaneous vesicle fusion is much less likely, and often 

requires tuning of other experimental factors such as pH to acquire similar levels of 

patch formation 290.  When successfully formed, lipid patches on partially plasma-

oxidised PDMS retained a significant degree of lateral diffusivity (Figure 4.1e).  

Interestingly, the patches on partially hydrophilic PDMS exhibit a darker circular 

region in the first ~ 10 - 20 seconds following GUV fusion, which coincides with the 

vesicle adhesion contact prior to fusion.  As the adhered region of the membrane 

was in the focal plane of illumination for a more extended time than the surrounding 

membrane, it is likely that partial bleaching occurred during fusion; explaining why 

it can be seen long after the GUV rupture event (Figure 4.9b, c).  This bleaching 
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mechanism was also suggested by Hamai et al. 108, where similar effects were seen 

using epifluorescence microscopy of GUVs fusing to glass.  Adhesion spots can 

also be seen on hydrophilic substrates (Figure 4.2b); however their average lifetime 

is significantly shorter; completely dissipating after ~ 1 second.  The exact cause of 

this difference in membrane response remains currently unresolved.   

In addition, the subtle mottling effect observed on hydrophilic substrates is absent 

in patches on partially hydrophilic PDMS.  One possibility is that it is washed out by 

the diffusion of bleached molecules.  This is also demonstrated in Figure 4.9f, where 

no characteristic increase in standard deviation is detected, as previously seen in 

Figure 4.3b.  In terms of area changes, the partially hydrophilic PDMS still 

undergoes the initial 1% decrease in patch area after fusion (Figure 4.9e), but the 

subsequent spreading process observed on hydrophilic substrates appears 

inhibited.   

 

Figure 4.9: Impact of the partially hydrophilic substrate on lipid patch spreading and 
homogenisation.  Fluorescence micrographs of lipid bilayer patches composed of DOPC doped with 
0.1mol% Rh-DPPE (a-d) fused on partially hydrophilic PDMS.  Relative changes in the average patch 
area (e) and standard deviation between pixels for lipid patches fused on hydrophilic PDMS (f).  The 
scale bars in (a-d) represent 20 μm. 

Membrane pinning by nanoscale hydrophobic regions can be used to explain the 

reduction in membrane spreading to increase its area, but conflicts with the bilayers 

retaining the ability to contract across the surface to reduce its area.  It is possible 
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that patch contraction is still viable due to disconnected lipid islands being left behind 

as the membrane periphery recedes.  

4.6 Conclusion 

The results in this section, although preliminary, show that supported lipid patches 

formed from vesicle fusion are not immediately stable or equilibrated.  Instead, they 

undergo significant morphological changes that can exist for extended periods 

depending on lipid composition and substrate properties.   

The most striking observation of vesicles fused on hydrophilic substrates, is the 

initial patch area shrinking followed by relaxation.  The reasons for this area 

fluctuation remain unknown.  However, the accompanying morphological changes 

in the bilayer can be related to previous observations in the literature.  For example, 

the fluorescence mottling may arise from differences in lipid-substrate friction during 

patch formation inducing inhomogeneities in lipid density 336,337, whereas the 

formation of lipid protrusions follows from the incompressibility of the lipid bilayer 56.  

Although preliminary, the experiments in this chapter exemplify how substrate 

properties can be used to modulate membrane behaviours.  This is further explored 

in the next, in Chapter 5, whereby partially plasma treated PDMS is utilised to induce 

the selective depletion of cholesterol molecules from an adhered lipid bilayer. 
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Chapter 5: Cholesterol extraction from 

supported lipid bilayers via substrate 

interactions 

 

The substrate’s influence on biomembranes can be broadly understood to induce 

physical alterations in the membrane; changing membrane fluidity, tension, shape 

and morphology 113,134,338,339.  These physical changes activate subsequent 

biochemical cascades in cells that determine the resultant response and adaptation.  

Although an active field of study, many of these interactions remain poorly 

understood.  The following chapter uses partially plasma-treated PDMS to 

demonstrate that substrate interactions can modify not only the physical properties 

of the adhered membrane, but the chemical composition through passive 

interactions.  Most interestingly, there are no specific chemical interactions at play, 

meaning the physical criteria required to induce the effect could reasonably exist in 

other systems.   

5.1 Substrate-induced cholesterol extraction 

As detailed in Chapter 4.1, lipid patches formed via vesicle deposition on fully 

hydrophilic PDMS substrates eventually equilibrate to leave uniform stably 

supported lipid patches for at least ~ 60 hours, as recently demonstrated in 

reference by Faysal et al. 340.  After 30 minutes, lipid patches formed on fully plasma-

treated PDMS are visually homogenous and undergo little subsequent 

morphological changes, even with cholesterol-containing compositions (Figure 

5.1a-b).  In contrast, the same lipid membranes behave very differently when 

coupled to partially plasma-treated PDMS substrates, with the effects seemingly 

linked to the cholesterol content.  Although partially hydrophilic PDMS substrates 

stably support pure DOPC membranes (Figure 5.1c), cholesterol-containing lipid 

patches undergo drastic morphological changes, with considerable patch shrinkage, 
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the formation of microscopic pores, and an increase in patch fluorescence intensity 

(Figure 5.1e). 

 

Figure 5.1: Substrate-induced changes in PDMS-supported lipid bilayers.  Fluorescence 
images of lipid bilayer patches composed of pure DOPC (a) and DOPC:Cholesterol (40:60 mol%) (b), 
supported on fully hydrophilic PDMS.  The patches are stably supported.  On partially hydrophilic 
PDMS, DOPC patches remain stable (c), but DOPC:Cholesterol (40:60 mol%) patches undergo 
changes (b, d).  This is due to the extraction of cholesterol by the substrate, as demonstrated in below 
schematic where cholesterol-containing bilayer (e), undergoes morphological changes due to 
cholesterol extraction (f).  All patches were labelled with 0.1 mol% Rh-DPPE.  The scale bar in (a-d) 
are 50 µm for both inset (taken at 0 min), and main image (taken 30 min after formation).  The colour 
scale represents the fluorescence intensity (arbitrary units). 

As this effect was only observed with cholesterol-containing lipid membranes on 

partially plasma-treated PDMS substrates, it was hypothesised that the 

phenomenon was due to the substrate interactions inducing cholesterol depletion 

from the adhered lipid patch.  This hypothesis would explain the changes in the 

area, as a significant loss of cholesterol content from cholesterol-rich lipid patches 

is known to create defects such as pores and area shrinkage 199.  The specificity of 

the extraction (only leaching cholesterol) was assumed based on the observed 

change in fluorescence intensity.  If cholesterol were preferentially extracted, the 

remaining DOPC and fluorescent label Rh-DPPE would concentrate (that is the 

molar ratio of Rh-DPPE to DOPC would increase as cholesterol is lost), increasing 

the fluorophores’ surface density in the bilayer, and causing an increase in mean 

fluorescence intensity.  Such an effect can be seen in Figure 5.1d, with the patch 
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becoming relatively brighter compared to its initial state and to other stably 

supported lipid patches with the same level of fluorescent doping (Figure 5.1a-c).   

Fully plasma-treated PDMS is passivated against such a depletion effect by the 

formation of a thin silica-like layer (Figure 5.1e) as discussed in Chapter 3.1.  This 

allows the formation of stably supported lipid membranes, similarly to when lipid 

patches are formed on glass substrates.  In line with these results, fluorescently-

labelled DOPC bilayers; either pure or cholesterol-containing, remain unaffected on 

fully plasma-treated PDMS, showing no apparent change in fluorescence intensity 

and no change in patch area or morphology (Figure 5.2).  The only minor change 

observed was a slight, albeit not significant, increase in the patch area due to 

spreading of the lipid membrane after fusion, similar to results discussed in Chapter 

4.2 with cholesterol-containing membranes fused on a glass. 

 

Figure 5.2: Relative changes in surface area of lipid patches supported on fully plasma-treated 
PDMS substrate Area plotted against time, for selected cholesterol mole fractions, χchol = 0.6, 0.5, 0.4, 
0.3 and 0.0. The data was statistical averaged from n = 20, 15, 15, 16, 26 different patches for 
cholesterol mole fractions, χchol = 0.6, 0.5, 0.4, 0.3, and 0.0 respectively, and the error boundaries made 
from standard errors. 

On the other hand, partially plasma-treated PDMS induced the specific depletion of 

cholesterol (Figure 5.1f).  This is likely due to interactions with the partially 

hydrophilic substrate surface and incomplete/partial formation of a silica-like layer 

during plasma treatment, as described in Chapter 3.1.  As cholesterol is a small, 

hydrophobic molecule, it is possible that it will interact with the more hydrophobic 
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regions on the substrate surface, become extracted from the membrane and deplete 

into the PDMS matrix.  Indeed, PDMS is known to absorb small hydrophobic 

molecules from solution 265, but upon reviewing the existing literature, this appears 

to be the first documented case of such membrane-substrate interactions altering 

the composition of adhered biomembranes.  This has significant consequences on 

the impact and influence of PDMS materials on bioassays and cell culture studies, 

as not only the incubation fluid, but the composition of adhered biomembranes could 

be directly altered by the PDMS interface. 

To further characterise and quantify these effects, the measurements of changes in 

lipid patch area and fluorescence intensity were repeated with DOPC lipid patches 

of increasing cholesterol content.  As shown in Figure 5.3, the extent of cholesterol 

depletion determines the degree of the morphological changes observed in the lipid 

patch.  Patches containing a 0.3 cholesterol mole fraction retain more than 90% of 

their lipids and experience only minor shrinking (Figure 5.3a).  Patches with larger 

initial a cholesterol mole fraction, such as a 0.6 cholesterol mole fraction (Figure 

5.3c), lose a greater portion of their lipids, and as a result, typically shrink and form 

large pores simultaneously.  Figure 5.3d shows a graph of relative area loss for lipid 

patches supported on partially plasma-treated PDMS at different cholesterol mole 

fractions.  Lipid patches containing a 0.6 cholesterol mole fraction lost ~ 25% of their 

surface area after about 1 minute, whereas lipid patches containing a 0.3 cholesterol 

mole fraction only lost ~ 3% of their surface area over the same period. 

Lipid patches containing no cholesterol showed no significant change in area or 

fluorescence intensity.  As hypothesised, the changes in the membrane lipid 

composition induced by the substrate can be independently verified by monitoring 

the relative increase in fluorescence intensity of the shrinking bilayers (Figure 5.3c).  

This is consistent with the idea that membrane shrinking on partially plasma-treated 

PDMS is induced by specific depletion of the non-fluorescent cholesterol (Figure 

5.3e), thereby concentrating both the DOPC and the Rh-DPPE fluorescent label 

within the remaining bilayer.   



Chapter 5: Cholesterol extraction from supported lipid bilayers via substrate 
interactions 

104 
 

 

Figure 5.3: Quantifying cholesterol extraction from supported lipid bilayers on PDMS.  
Fluorescence images of DOPC:Cholesterol lipid patches containing 0.3 (a), 0.4 (b) and 0.6 (c) mole 
fraction of cholesterol; 150 seconds after deposition on partially plasma-oxidised PDMS. The original 
patch perimeter is shown as a dotted white line on each image to mark the extent of patch shrinking. 
Relative changes in (d) the surface area and (e) the fluorescence intensity of the lipid patches 
supported on partially oxidised PDMS substrate as a function of time, for selected cholesterol mole 
fractions, χchol = 0.6, 0.5, 0.4, 0.3 and 0.0.  The data was statistical averaged from n = 20, 15, 15, 16, 
26 different patches for cholesterol mole fractions, χchol = 0.6, 0.5, 0.4, 0.3, and 0.0 respectively, and 
the error boundaries made from standard errors. The scale bars in (a-c) represent 50 µm, and the 
colour scale of the fluorescence intensity is in arbitrary units. 

It should be noted that self-quenching fluorescence has been documented to exist 

in Rhodamine labelled PC lipid membranes; following a linear relationship with 

probe concentration between 0 and 10 mol% 341–343.  For example, cholesterol free 

Egg-PC vesicles show a ~10% decrease in residual fluorescence when containing 

2 mol% Rhodamine.  If the majority of cholesterol is depleted from 

DOPC:Cholesterol membranes with a 0.6 cholesterol mole fraction (Figure 5.1c), 

then the Rh-DPPE concentration could increase from 0.1 mol% to 0.25 mol%, in 

turn increasing rhodamine self-quenching.  However, the change in cholesterol 

content in the lipid patch has additional effects on rhodamine self-quenching.  A 

previous study using spectrofluorometry has shown that cholesterol enhances self-

quenching in PC lipid membranes.  Egg-PC vesicles containing a cholesterol mole 
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fraction of 0.5 demonstrated an exponential decrease in residual fluorescence with 

increasing rhodamine concentration, compared to a linear one in the absence of 

cholesterol 341.  Hence the loss of cholesterol from adhered lipid bilayers could 

facilitate a reduction in self-quenching.  These findings suggest that it would be 

difficult to obtain quantitative information regarding the extent of cholesterol 

depletion from the changes in the fluorescence intensity of the patches, where a 

combination of cholesterol depletion and a reduction in rhodamine self-quenching 

due to a decrease in cholesterol mole fraction may be present.   

In the above-described experiments, it is likely that cholesterol is being pulled from 

only the lower leaflet of the lipid patch, which is in closest proximity to the substrate 

interface.  The transbilayer motion of cholesterol between the proximal and distal 

leaflets, termed cholesterol flip-flop, occurs in the order of ~ 0.001 - 1 milliseconds 

in fluid PC lipid membranes 344–346.  This period is at least an order of magnitude 

faster than the timescale of the substrate-induced cholesterol depletion described 

here.  If unhindered, this facilitates cholesterol’s redistribution between the leaflets 

during the timescale of the depletion experiments.  If cholesterol flip-flop was 

hindered, then the depletion of cholesterol between the two leaflets would have to 

proceed by edge diffusion, and would vary with lipid patch size.  As seen in Figure 

5.4, there was no clear visual evidence of asymmetric distribution of cholesterol 

between leaflets; hence cholesterol depletion was assumed to occur 

homogeneously across the patch during the depletion process. 

 

Figure 5.4: No correlation between lipid patch size and cholesterol depletion rate. Change in 
the fractional area remaining, AR(t), against initial patch area for n = 20 independent DOPC:Cholesterol 
(40:60mol%) patches supported on partially plasma-oxidised PDMS for 5 seconds (a), 30 seconds 
(b) and 120 seconds (c).   
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5.2 Nanoscale characterisation of PDMS substrates and 

PDMS-membrane interactions 

While the quantitative measurements of changes in lipid patch area and 

fluorescence intensity unequivocally indicate that partially hydrophilic PDMS 

specifically depletes cholesterol from the adhered lipid membrane, the molecular 

mechanisms behind the depletion process was not obvious.  For substrate induced 

extraction to be verified, it must be shown that cholesterol-substrate interactions are 

at least equally as strong as the cohesive interactions between a cholesterol 

molecule and its surrounding lipids within the membrane.  To do this, chemical force 

mapping techniques were employed (see chapter 2.6.5 for further details) to 

measure the extraction forces required to remove cholesterol molecules from DOPC 

membranes. 

The specific removal of single cholesterol-like molecules from lipid bilayers was 

enabled by the use of thiocholesterol.  This cholesterol analogue possesses an 

exposed thiol group at one extremity, which can bind covalently to Au-coated AFM 

tips 347.  Upon the retraction of the AFM tip from the membrane, any tethered 

cholesterol molecules are extracted and the associated forces simultaneously 

recorded (Figure 5.5a).  In general, multiple step-like events were present in the 

extraction curves (red arrows, Figure 5.5b) due to multiple binding events and 

extraction of more than one cholesterol molecule from the bilayer.  

A semi-automated procedure for extracting quantitative values from force curves 

(Figure 5.6) was conducted with the help of Dr Kislon Voïtchovsky, who encoded 

the described algorithm.  To objectively analyse a curve exhibiting steps (Figure 

5.6a), a smoothing derivation is first applied by sliding a rod along the whole curve 

and plotting its slope (Figure 5.6b).  Practically, the length of the rod is taken to be 

insensitive to the force fluctuations of the curve’s baseline (in this case, 8 points 

long) and a linear fit of the curve is done for a sliding interval corresponding to the 

rod’s length.  A thresholding procedure is then applied to the derivative whereby 

only parts of the curve above a threshold of two standard deviations of its average 

value are retained (Figure 5.6c). 
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Figure 5.5: Force spectroscopy measurements of PDMS–cholesterol interactions.  Au-coated 
AFM tips bind specifically to the thiocholesterol in DOPC:Thiocholesterol (40:60 mol%) bilayers 
supported on a glass substrate (a).  A typical extraction curve with multiple adhesion events (red 
arrows) (b).  The resulting statistical histogram of measured extraction forces (c) which reveals distinct 
peaks (labelled 1-6), located at: F1 = 9 ± 6 pN, F2 = 30 ± 12 pN, F3 = 65 ± 8 pN, F4 = 87 ± 8 pN, F5 = 
127 ± 17 pN, and F6 = 172 ± 17 pN (Gaussian fitting).  Au-coated AFM tips on DOPC:Cholesterol 
(40:60 mol%) bilayers supported on glass (d).  Force curve reveals far fewer extraction events due to 
a lack of specific tip-cholesterol binding (e).  The histogram analysis of the data (f), shown in grey, 
shows a similar distribution to (c), replicated by the black curve for comparison.  Force spectroscopy 
on partially plasma-oxidised PDMS with thiocholesterol directly tethered to Au-coated AFM tip (g).  
The extraction curves exhibit multiple steps (blue arrows) (h).  The statistical histogram of 
thiocholesterol extraction forces on PDMS (i) shown in blue with (c) superimposed as a solid curve for 
comparison. Histograms (c, f, i) have been normalised so that their total area equals 1.  The extraction 
probability (fraction of curves exhibiting steps) is ~ 0.3 for (a-c), and 0.03 for (d-f), each evaluated from 
n = 1000 curves selected randomly. 

The results of the step identification process can be visualised in Figure 5.6d.  While 

the above parameters were used for the vast majority of curves, the outcome of 

each analysis was controlled visually, and the parameters finely adjusted if 

necessary.  With each step (in this case, 11 steps) the associated force change is 

calculated by comparing the force at both extremes of the step interval.  Taking 

relatively large intervals (Figure 5.6c,d) allows minimisation of potentially erroneous 

force measurements at the step itself due to force spikes or instabilities.  The results 

are then compiled into a histogram (Figure 5.6e) where the bin width represents two 

standard deviations of the force detection baseline in the absence of any step (15 

pN). 



Chapter 5: Cholesterol extraction from supported lipid bilayers via substrate 
interactions 

108 
 

 

Figure 5.6: Illustration of the semi-automated procedure used to analyse the AFM 
spectroscopy extraction curves 

The histogram may hence give a non-zero probability to negative forces if the step 

reported is within 15 pN of zero.  The histograms for each curve analysed are 

subsequently combined in a complete histogram, such as those presented in Figure 

5.5 c, f, i. 

With this procedure, a statistical analysis could be conducted over a large number 

(>1000) of extraction curves, revealing distinct extraction force populations, as 

illustrated in a histogram (Figure 5.5c).  A clear interpretation of the different force 

maxima is not immediately apparent, however complementary information can be 
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obtained by repeating the experiment in different configurations.  By measuring the 

non-specific extraction of lipids from the membrane (Figure 5.5d-f) and the direct 

adhesion between cholesterol molecules and partially plasma-treated PDMS 

(Figure 5.5g-i), an interpretation of the molecular interactions could be deciphered.  

By comparing the results from the initial thiocholesterol force spectroscopy 

experiments with those from the complementary experiments, similarities and 

differences between the prevalent extraction forces were revealed. 

The first force maximum (F1 = 9 ± 6 pN) and the third maximum (F3 = 65 ± 8 pN) are 

only observed in extraction measurements carried out on fully formed DOPC 

bilayers (Figure 5.5a-f).  These maxima are thus characterised as the extraction 

forces required to remove cholesterol molecules from the DOPC membrane.  

Notably, these values are also in agreement with previous reports using similar 

techniques 348.   

The F1 peak is the dominant event in the DOPC/thiocholesterol system (Figure 5.5d-

f) where the bond between the present thiol groups and gold-coated AFM tip creates 

a specific preference for the extraction of the cholesterol analogue.  Coupled with 

the comparatively small magnitude force at F1, this peak is identified as the force 

required to extract single cholesterol molecules.  The F1 peak is also visible in the 

DOPC:Cholesterol system (Figure 5.5d-f) where non-specific binding occurs.  

However, the uncoated AFM tip is likely to be capable of removing both cholesterol 

and DOPC molecules, and hence the F3 maximum becomes the most common 

event observed; albeit with a much lower probability than when specific binding is 

present.  A similar interpretation can be made for peak F6, but the relatively large 

force suggests that more lipid molecules are involved.  Most interestingly, the 

second maximum at F2 is present in all three situations (Figure 5.4g-i), where the 

tethered thiocholesterol molecules directly adhere to the partially plasma-treated 

PDMS.  This demonstrates a significant interaction force between cholesterol and 

silica-like substrates, such as the plasma-oxidised components of the partially 

plasma-treated PDMS surface.  Cholesterol is known to form hydrogen bonds, 

which can couple with silanol groups 79,349.  Single hydrogen bonds are documented 

to have bond strengths ranging between ~ 5 – 950 pN (assuming a bond length of 

~ 0.3 nm) 350; hence, the presence of hydrogen bonding could explain the origin of 

the attractive interactions indicated in Figure 5.4I, with the measured extraction 



Chapter 5: Cholesterol extraction from supported lipid bilayers via substrate 
interactions 

110 
 

forces being of the order ~ 10 – 100 pN.  These forces are sufficiently high enough 

to compete with membrane interactions between cholesterol molecules and the 

surrounding lipid bilayer.  The discovery of the F2 type maxima present when the 

bilayer is formed on glass (also a silica-based substrate) suggests substrate-

cholesterol interactions are present in all cases measured.  These spectroscopy 

measurements demonstrate that the forces measured between single cholesterol 

molecules and silica (present on both glass and plasma-oxidised PDMS) are 

comparable to the cholesterol-lipid interactions within the bilayer.  Indeed, this points 

to the presence of surface interactions providing a molecular mechanism for 

substrate-induced cholesterol extraction.  Unlike the dense silica layer formed on 

fully plasma-treated PDMS, the partially plasma-treated PDMS interface appears 

susceptible to penetration by small molecules.  Hence, species like cholesterol could 

be depleted into the porous interior of the bulk PDMS which could act as a sink for 

hydrophobic molecules.   

Similar effects have been exhibited when PDMS substrates are bathed in solutions 

containing hydrophobic molecules 265 and even with bioimplants exposed to 

interstitial fluid 266,268.  Thus, once cholesterol molecules are in close proximity to 

hydrophobic regions, they can be extracted from the lipid membrane and partitioned 

into the PDMS matrix.  The existence of different peaks in the measured extraction 

forces and the dependence of the extraction force on the cholesterols’ environment 

indicate the importance of the surrounding lipids in the overall membrane stability, 

and possibly the efficiency at which cholesterol can be extracted.  To investigate 

this further, the exact mole fraction of cholesterol extracted from DOPC bilayers 

during the depletion process was quantified, and explicitly related to how total 

cholesterol loss influenced lipid patch area. 

5.3 Quantifying the change in cholesterol mole fraction 

Provided that cholesterol is being specifically extracted from the bilayer in systems 

described above (Figure 5.5), it is possible to directly correlate the relative changes 

in the lipid patch area to the changes in the membrane cholesterol mole fraction.  

Such calculations have been previously utilised in the study of cyclodextrin-
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mediated cholesterol extraction 199, and enrichment 60.  Both studies utilised a model 

for the change in the average area per molecule, aavg,  with cholesterol mole 

fraction, χChol, for DOPC:Cholesterol membranes, shown in Equation 5.1.  This 

was devised by Litz et al. 199 through the aggregation of published data on average 

area per molecule from x-ray diffraction and neutron scattering experiments.  Using 

this data, an analytical expression for average area per molecule as a function of 

mole fraction was developed:  

aavg(χChol) ≈ 𝑝1 + 𝑝2𝑒−𝑝3χc       Equation 5.1 

where 𝑝1 = 36.5 Å, 𝑝2 = 31.1 Å, 𝑝3 = 2.2 for DOPC bilayers.  Although the 

parameters nor the relationship are assigned any physical meaning, this analytical 

form provides an approximation of average area per molecule, which facilitates 

further analysis.  Importantly the well-known effects of cholesterol condensing 

77,327,351 are accounted for in Equation 5.1.  

 

Figure 5.7: Cholesterol condensing effect.  Graph showing change in average area per molecule 
in a DOPC:Cholesterol bilayer, aavg(χChol), and change in average area per molecule of the DOPC 
molecules, aDOPC(χChol), up to mole fraction of cholesterol saturation.  This figure was adapted from 
reference 60, with permission from Elsevier. 

As shown in Figure 5.7 (adapted from the supplementary information of reference 

60), increasing the cholesterol mole fraction results in a reduction in the average area 
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per lipid  (red line in Figure 5.7, plotted using Equation 5.1).  This is not solely due 

to the decrease in the area caused by the relatively smaller cholesterol molecules 

taking up a more significant proportion of the bilayer composition.  A reduction in the 

average area per molecule with increasing cholesterol content of the DOPC 

molecule themselves can also be predicted (blue line in Figure 5.7).  The blue curve 

of Figure 5.7 was formed by combining Equation 5.1 with Equation 5.2, shown 

below, as described by Rahimi et al. in the supplementary information of reference 

60: 

aavg(χChol) = (1 − χChol)aDOPC(χChol) +  aChol(χChol) Equation 5.2 

Where aDOPC(χChol) and aChol(χChol) are the average area per DOPC and cholesterol 

molecules, respectively, at cholesterol mole fraction χChol.  Cholesterol is heavily 

involved in membrane behaviour and has been postulated to form molecular 

complexes between sterols and phospholipids, with condensation being one of 

many effects on the membrane properties 323.  Using Equation 5.1, the relationship 

between the relative patch area, Ar(t), and the time-dependent cholesterol mole 

fraction χChol(t) can be evaluated.  The following equations are based on similar 

formulations devised by Litz et al.199, and could appropriately be applied to the 

system of substrate-induced cholesterol as described below.  Firstly, a change in 

the relative patch area is related to changes in the average area per molecule: 

Ar(t) =
A(t)

A(t0)
        Equation 5.3 

Ar(t) = (
𝑛𝑃+𝑛𝐶(𝑡)

𝑛𝑃+𝑛𝐶(t0)
)

aavg(χChol(t))

aavg(χChol(t0))
    Equation 5.4 

Where 𝑛𝑃 and 𝑛𝐶  are the number of DOPC lipids and cholesterol lipids respectively.  

These quantities can be related to the cholesterol mole fraction with the following 

equation: 

χChol(t0) =
𝑛𝐶(𝑡)

𝑛𝑃+𝑛𝐶(t0)
       Equation 5.5 

And thus 

Ar(t) = (1 − χChol(t0) +
𝑛𝐶(𝑡)

𝑛𝑃+𝑛𝐶(t0)
)

aavg(χChol(t))

aavg(χChol(t0))
  Equation 5.6 
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where 1 − χChol(t0)  represents the constant DOPC mole fraction.  To determine the 

variation in χChol(t) with time, two assumptions are made.  Firstly, it is assumed that 

the PDMS substrate acts as an infinitely large cholesterol sink, so the kinetics of 

cholesterol extraction can be modelled as a first-order rate equation.  Secondly, it is 

assumed that there are two populations of membrane cholesterol; one more 

accessible for removal than the other, in line with previous studies on cholesterol 

extraction 199,352. Based on these assumptions, we can write: 

𝑛𝐶(𝑡) = 𝑛𝑎𝑐𝑐(0)𝑒−𝑘𝑓𝑡 + 𝑛𝑖𝑛𝑎𝑐𝑐(0)𝑒−𝑘𝑠𝑡    Equation 5.7 

Where 𝑛𝑎𝑐𝑐(0) and 𝑛𝑖𝑛𝑎𝑐𝑐(0) represent the number of accessible and inaccessible 

cholesterol molecules at t0, respectively; and 𝑘𝑓 and 𝑘𝑠 represent the associated 

depletion constants.  Hence:  

Ar(t) = (1 − χChol(t0) +
𝑛𝑎𝑐𝑐(t0)𝑒

−𝑘𝑓𝑡

𝑛𝑃+𝑛𝐶(t00)
+

𝑛𝑖𝑛𝑎𝑐𝑐(t0)𝑒−𝑘𝑠𝑡

𝑛𝑃+𝑛𝐶(t0)
)

aavg(χChol(t))

aavg(χChol(t0))
  

         Equation 5.8 

Using the relation described by Equation 5.5, this can be simplified to: 

Ar(t) = (1 − χChol(t0) + χacc(t0)𝑒−𝑘𝑓𝑡 + χinacc(t0)𝑒−𝑘𝑠𝑡)
aavg(χChol(t))

aavg(χChol(t0))
   

         Equation 5.9 

where χacc(t0) is the mole fraction of cholesterol accessible to substrate extraction, 

 χinacc is the mole fraction of cholesterol inaccessible to substrate extraction.  

Assuming the levels of inaccessible cholesterol remain stable on the timescales of 

the measurement, (as values of 𝑘𝑠 were documented as two orders of magnitude 

slower than values for 𝑘𝑓 in DOPC membranes by Litz et al. 199 ) then: 

χinacc(t0)𝑒−𝑘𝑠𝑡 ≈ χinacc(t0)     Equation 5.10 

χChol(𝑡) = χacc(t0) + χinacc     Equation 5.11 

Substituting into Equation 5.9: 

Ar(t) = (1 − χChol(t0) + χacc(t0)𝑒−𝑘𝑓𝑡 + χChol(t0) − χacc(t0))
aavg(χChol(t))

aavg(χChol(t0))
  

         Equation 5.12 
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Ar(t) = (1 − χacc(t0) + χacc(t0)𝑒−𝑘𝑓𝑡)
aavg(χChol(t))

aavg(χChol(t0))
 Equation 5.13 

Here, similarly to studies with cyclodextrin,60,199 we neglect any asymmetry of 

cholesterol distribution between the bilayer leaflets, due to reasons discussed in 

Chapter 5.1.   

 

Figure 5.8: Fitting of cholesterol depletion model to experimental data.  Curve fitting of 
experimental data for relative change in area for 0.6 (a), 0.5 (b), 0.4 (b) and 0.3 (d) cholesterol mole 
fractions, with 95% confidence bounds.  The experimental mean of these data sets was fitted to the 
model presented in Equation 5.13, and weights used to fit the model were derived from the standard 
deviation within each cholesterol mole fraction data sets. Adjacent graphs show the measured 
residuals for each model fitting to 0.6 (e), 0.5 (f), 0.4 (g) and 0.3 (h) cholesterol mole fraction data set. 



Chapter 5: Cholesterol extraction from supported lipid bilayers via substrate 
interactions 

115 
 

From these equations, a model relating relative patch changes to changes in 

cholesterol mole fraction was fitted to the data with MATLABs curve fitting tool, using 

a weighted least-square fitting with two fitting parameters.  Equation 5.13 fits the 

experimental data monitoring the changes of patch area remarkably well (Figure 

5.8a-d), producing reasonable residuals (Figure 5.8e-h).  This also confirmed the 

assumption that inaccessible cholesterol remained stable on the timescales was 

reasonably appropriate for this system. 

The 95% prediction bounds became much broader at lower cholesterol mole 

fractions of 0.3, as seen in Figure 5.8d.  This is concurrent with the experimental 

difficulties encountered at lower mole fractions, as the low cholesterol regime (< 0.3 

mol fraction) had weak signal-to-noise in measured results.  Due to the exponential 

changes in the average area per molecule with cholesterol mole fraction, relatively 

large changes in χc at the low cholesterol regime resulted in minimal observable 

changes in the overall lipid patch area.  In other words, the loss of area due to 

cholesterol depletion was likely counteracted by the reversal of the condensation 

effect. 

Mole Fraction,𝜒𝐶ℎ𝑜𝑙 
Accessible cholesterol 

mole fraction, 𝜒𝑎𝑐𝑐 

Depletion rate 

constant, 𝑘𝑓  (s-1) 

0.3 0.099 ± 0.005 0.0360 ± 0.0006 

0.4 0.350 ± 0.012 0.0191 ± 0.0001 

0.5 0.387 ± 0.007 0.0314 ± 0.0002 

0.6 0.429 ± 0.004 0.0292 ± 0.0001 

 

Table 5.1: Extracted values for accessible cholesterol mole fraction and cholesterol depletion 
rate constant.  The weights used to fit the model were derived from the standard deviations of data 
sets.  Initial cholesterol mole fractions were extracted using the model fits for the accessible cholesterol 
mole fraction,  𝝌𝒂𝒄𝒄, at t=0, and the depletion rate constant 𝒌 for DOPC:Cholesterol lipid patches with 
0.3, 0.4, 0.5 and 0.6. 

This could explain the wider prediction bounds for 0.3 cholesterol mole fractions, as 

the depletion model begins to break down.  Using other suitably fit data; values for 

χacc, and 𝑘 could be extracted for each cholesterol mole fractions, with comparable 

error values to those acquired in investigations by Litz et al 199, from which used 

models were devised (Table 5.1).  Cholesterol extraction occurred very quickly, with 

a characteristic time varying between 25 - 30 seconds for the various membrane 
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preparations (Figure 5.9a).  Interestingly the amount of extracted cholesterol does 

not increase monotonically with the initial mole fraction (Figure 5.9b).  The relative 

cholesterol loss is significantly lower for membranes with an initial 30% cholesterol 

content.  This is consistent with current ideas in the literature regarding critical 

cholesterol mole fractions, at which cholesterol molecules are distributed differently 

among the surrounding lipids, consequently becoming less accessible for depletion 

351,353,354.  There is significant research available that shows that the physical 

properties of membranes deviate at specific mole fractions such as 0.33 355.  Bilayer 

thickness of DOPC membranes initially increases with the addition of cholesterol up 

to 0.35 mol%, but begins to decrease at 0.4 mol% according to molecular dynamics 

simulations 77, and is confirmed by X-ray diffraction studies measuring changes in 

the headgroup spacing of DOPC:Cholesterol compositions 327.  Other X-ray 

diffraction studies have also demonstrated that the bending modulus of DOPC 

membranes remains constant with increasing cholesterol mole fraction up until a 0.4 

mol%, after which it begins increasing 57.  

 

Figure 5.9: Analysis of cholesterol extraction as a function of cholesterol concentration. Time-
dependent cholesterol loss defined as (χchol(t0) − χchol(t)), in DOPC:Cholesterol lipid bilayers 
supported on partially plasma-oxidised PDMS (a).  Total percentage of cholesterol loss, (1 −
 χchol(tend)/χchol(t0)),  as a function of the initial cholesterol mole fraction (b).  Errors in (a-b) are 
estimated using the 95% confidence bounds from the fits.  

Conversely, the change in the chain ordering parameter, 𝑆𝑋𝑟𝑎𝑦, of DOPC 

membranes rapidly increased with cholesterol mole fraction until 0.4 mol% at which 

it reaches a plateau until saturation at 0.66 mol% 57.  This could indicate that above 

a 0.4 cholesterol mole fraction the membrane “switches”, having drastically altered 

behaviours in a high cholesterol regime. 
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These changes in membrane properties at specific cholesterol mole fractions have 

been hypothesised to be due to the non-random organisation of cholesterol in 

membranes.  At specific stoichiometries, molecular complexes between sterols and 

phospholipids are formed and become regularly distributed throughout the 

membrane, altering the chemical activity of sterols such as cholesterol 351,356.  Sharp 

jumps in cholesterols ability to escape the membrane have been identified as 

thermodynamic signatures for changes in the regular distribution of cholesterol 

within membranes 351.  Thus, the jump in extractable cholesterol identified in Figure 

5.9b, could indicate that the complexation and distribution of cholesterol changes 

between 0.3 and 0.4 cholesterol mole fraction to make membrane cholesterol more 

accessible to extraction.  The idea of complexed cholesterol existing within the 

membrane is becoming more commonly accepted, with experimental studies 

57,327,351 and computer simulations 77 correlating such critical mole fractions to 

observed “switches” in membrane thickness, cholesterol solubility, bending rigidity 

and chemical potential 57,323,351.  The identification of such results in systems utilising 

substrate-induced cholesterol depletion has interesting implications on how 

biological membrane modulate their cholesterol content.  Such passive mechanisms 

could be utilised to tune and modulate membrane behaviour, utilising the non-

monotonic influence of cholesterol on membrane properties.   

Interestingly, the stronger interaction of cholesterol with saturated lipids compared 

to unsaturated lipids renders bilayers more resistant to typical means of cholesterol 

extraction 323,348,357.  To extend these studies the investigations were expanded to 

test systems with saturated lipids, which are known to have a higher affinity with 

cholesterol than the unsaturated counterparts, as described in various experimental 

studies 329,358–363, and summarised in a review by Ohvo-Rekilä et al. 323. 

5.4 Cholesterol extraction can induce phase changes 

To examine whether the partially plasma-oxidised PDMS substrates are capable of 

extracting cholesterol from saturated lipid bilayers, lipid patches composed of 

DPPC:Cholesterol (60:40 mol%) were used (Figure 5.10).  Pure DPPC membranes 

exist in a gel phase at room temperature, possessing little to no lateral fluidity. 
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Figure 5.10: Saturated lipid membranes on PDMS substrates.  Fluorescence images of 
DPPC:Cholesterol lipid bilayers (60:40 mol%) on fully (a) and partially (b) plasma-oxidised PDMS 
substrates 125 min after deposition on the substrate. Lipid bilayers were labelled with 0.1 mol% Rh-
DPPE.  The scale bars represent 50 µm, and the colour scale of the fluorescence intensity is in 
arbitrary units.  Typical FRAP recovery curves for DPPC:Cholesterol (60:40 mol%) lipid bilayers 
supported on fully and partially plasma-oxidised PDMS (c).  Simulated FRAP curve (see Methods) 
fitted to our data (red curve) returns the lateral lipid diffusivity. 

Upon the addition of cholesterol, the tightly packed acyl chains of the DPPC bilayer 

are disrupted, reducing chain packing and fluidising the membrane.  This is the case 

for the composition of  DPPC:Cholesterol (60:40 mol%), which has sufficient 

cholesterol present to exist in a fully stable liquid-ordered phase, free of solid 

domains at room temperature 59,364,365. 

As shown in Figure 5.10a, DPPC:Cholesterol (60:40 mol%) membrane patches 

showed little change in morphology when formed on fully plasma-treated PDMS, 

and remained stable for at least two hours, similarly to the results described in Figure 

5.1a,b.  However, when in contact with a partially plasma-treated PDMS surface, 
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the patches lost a significant portion of their area, while simultaneously increasing 

their fluorescence intensity (Figure 5.10b).  These observations confirm that PDMS 

can extract cholesterol from saturated lipid membranes, undergoing similar changes 

described for DOPC:Cholesterol systems (Figure 5.1c,d), albeit at a rate 180 times 

slower compared to unsaturated lipid membranes.   

A notable difference in the cholesterol extraction from the DPPC membranes was 

that it appeared to induce cracks at the patch’s edges (Figure 5.10b), contrasting 

with the round pores and the smooth edges characteristic of shrinking fluid DOPC 

membranes 175 (Figure 5.1d).  Cracks have been previously observed in supported 

lipid bilayers and have been suggested to indicate that lipid bilayers have undergone 

a phase transition from a liquid-ordered phase to a more gel-like phase 325,366.  Using 

FRAP measurements, the initial fluidity of DPPC:Cholesterol (60:40 mol%) patches 

on hydrophilic PDMS was found to be 0.060 ± 0.004 µm2s-1, which is in good 

agreement with the literature 365 (see Chapter 2.5 for further experimental details of 

FRAP measurements).  In contrast, after cholesterol extraction on a partially 

plasma-treated PDMS substrate, the saturated membranes exhibit little to no 

recovery after bleaching, as depicted in Figure 5.10c.  The drastic reduction in the 

lipid mobility confirms that the DPPC:Cholesterol patches had indeed solidified due 

to substrate-induced depletion of cholesterol.  These results demonstrate that 

partially plasma-treated PDMS can induce physical changes via compositional 

alteration in adhered lipid membranes, manifested here by lipid phase change. 

5.5 Mechanically triggering cholesterol extraction 

In all of the preceding experiments, the extraction of cholesterol starts as soon as 

the lipid patch fuses to the substrate.  Admittedly, this limits the degree of control 

over the extraction process and hence its potential for practical applications.  

Interestingly, the substrate induced cholesterol extraction from adhered lipid 

bilayers can be controllably initiated using flexible fully plasma-treated PDMS 

substrates.  Previous studies show that when plasma-treated PDMS substrates are 

subject to tensile strains, the brittle silica-like surface layer forms nanoscale cracks, 
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partially exposing the underlying hydrophobic bulk PDMS 308,310, as detailed in 

Chapter 3.4. 

To test whether the extraction of cholesterol can be mechanically triggered, a 

stretching device was used to apply a biaxial strain on the substrate (see Chapter 

2.8 for further details).  During the initial stretching phase, the lipid patches exhibit 

negligible changes in their surface area (Figure 5.9a).  The applied strain can reach 

values of up to 15%; an order of magnitude larger than the critical rupture strain for 

lipid bilayers 69.  Lipid patches can maintain their integrity during such strains via 

several mechanisms of area regulation, including the formation of tubes, pores and 

absorbing adhered lipid aggregates 70,71,175. 

 

Figure 5.11: Mechanically triggered the extraction of cholesterol from supported lipid bilayers.  
Fluorescence images of a DOPC:Cholesterol (40:60 mol%) lipid patch, adhered to fully plasma-
oxidised PDMS: before expansion (a), while stretched (b), and after compression (c).  To highlight the 
surface area changes in the patch, the initial patch perimeter is highlighted with a dashed white line. 
The normalised average surface area of n = 7 independent lipid patches with respective standard 
errors as a function of the substrate strain (d).  The location of the images (a-c) within the strain cycle 
is indicated by labels in (d).  The red data points correspond to the stretch phase from 0 to 15%, the 
grey ones are taken while the substrate is held stretched, and the blue indicates compression from 
15% to 0%.  Lipid patches were labelled with 0.1 mol% Rh-DPPE.  Scale bars represent 20 µm, and 
colour scale is in arbitrary fluorescence units (a-c). 

As described in the work of Stubbington et al. 175, supported lipid bilayers are also 

able to decouple and slide over sufficiently hydrophilic surfaces, such as fully 
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plasma-treated PDMS substrates.  The sliding allows the membrane to preserve its 

area and alleviate the elastic stress imposed by the substrate.  This behaviour was 

demonstrated using flexible sheets of fully plasma-treated PDMS that were strained 

to ~10% at a rate of 0.05% s-1 175.  The results shown in Figure 5.11 are similar to 

that of Stubbington et al., albeit performed at a significantly smaller strain rate of 

0.0005% s-1.  For substrate strains up to 10% the lipid patches showed minimal 

variation in their area (Figure 5.11d) due to their ability to slide over the expanding 

substrate. 

However, once the substrate is sufficiently stretched and held in position, a rapid 

area loss in the patch can be observed, with an associated increase in the 

fluorescence intensity (Figure 5.11b); both indicative of cholesterol loss.  AFM scans 

of a PDMS substrate subject to 15% tensile strain verify the existence of surface 

nano-cracks in the otherwise hydrophilic silica layer, as shown earlier in Figure 3.7.  

Upon relaxing the substrate to its original dimensions, the patches appear stable 

again, but much smaller and brighter than they initially were (Figure 5.11c).  This 

simple experiment demonstrates that it is possible to initiate cholesterol extraction 

in a controlled manner from otherwise stably supported membranes.  By subjecting 

the PDMS substrate to tensile strain, the hydrophilic silica layer is sufficiently 

cracked to induce substrate-led cholesterol extraction which continues until all the 

accessible cholesterol has been depleted from the membrane.  

 

Figure 5.12: Change in supported DOPC lipid bilayer area during expansion/compression 
cycles.   Graph showing typical area changes in DOPC lipid patch during a single substrate strain 
cycle, ε, (a).  A bar chart of percentage loss of patch for DOPC lipid patches after the first and second 
applications of substrate strain cycles (b). 
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During the strain cycle shown in Figure 5.11d, the lipid patches lose on average 2 - 

5% more area than when statically supported on partially plasma-oxidised PDMS 

(Figure 5.3d).  The reason for this is not entirely clear.  Control experiments show 

that pure DOPC bilayers also lose 5.2 ± 0.8% of their surface area during a strain 

cycle of similar amplitude (Figure 5.12a).  This indicates that the stretching may not 

only affect the cholesterol population in the bilayer, but further, the depletion of other 

membrane components cannot be fully excluded.  Indeed, when larger micron-scale 

cracks were formed in the PDMS substrate following mechanical stretching, such 

non-specific depletion of lipid species was witnessed, as shown in Figure 5.13.  

These larger cracks were able to extract Rh-DPPE fluorophores, and likely the 

smaller DOPC and cholesterol molecules.  Non-specific lipid extraction is likely to 

play a role at very large strain magnitudes (> 35%) where the formation of micron-

scale fissures in the PDMS surface were occasionally observed.   

 

Figure 5.13:  Evidence of microscale surface cracking on PDMS substrates.  Fluorescent 
images (a,b) of DOPC:Chol lipid patches (40:60 mol% doped with 0.1mol% Rh-DPPE) on PDMS 
stretching device.  Images show substrate before (a) and after (b) a 35% tensile is applied, and micron-
scale surface cracking is evident.  The cracks become fluorescent as Rh-DPPE can invade the fissure.  
A line profile (c) taken from image (b) shows cracks have a diameter of ~ 5 µm.  Scale bars represent 
20µm and colour scale in arbitrary units for (a,b). 

Fortunately, such features could be distinguished as they rapidly fill up with 

fluorescent membrane and significantly disrupted lipid patches on contact (Figure 

5.13b).  Such disruptions allowed for the cracks to be quickly visualised and verified 

to be ~ 5 µm size (Figure 5.13c).  Although such results provided a reasonable 

explanation for discrepancies between the static and dynamic cases for substrate-

led cholesterol extractions, there remains slight indications for other possible 

mechanisms to contribute to the difference.  Cholesterol free DOPC membranes 

exhibited a ~ 2 – 5 % area loss during the initial strain cycle; but upon subsequent 
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strain cycles, the area of the same DOPC patches remained reasonably unaffected 

(Figure 5.12b).  It is here speculated that the mechanical stress imposed on the lipid 

patches during the initial strain cycle caused them to decouple and slide across the 

substrate surface, slightly contracting as they released membrane tension present 

in lipid patches after vesicle fusion (previously discussed in Chapter 4) and leaving 

the lipid patch in a more relaxed state.  Due to restrictions in time this speculation 

could not be further investigated.  Regardless, even if loss of patch area was due to 

the minor loss of PC-lipids, although undesired, this is not uncommon even when 

using conventional cholesterol extraction agents such as cyclodextrin; also known 

to leach PC lipids from membranes 367,368.  In summary, this technique of cholesterol 

depletion has comparable flaws to current methods, but does not require the 

addition of chemical agents to the system. 

5.6 Conclusion 

Cholesterol is a highly dynamic membrane constituent, often contributing up to 50% 

of the lipid content in mammalian plasma membranes 354.  Not only is it an essential 

regulator of membrane fluidity 369, lateral phase organisation 177,370, and bending 

rigidity 57, but it also influences membrane interactions with the cytoskeleton 371,372.  

Cholesterol levels need to be finely controlled both in living cells and in artificial 

membrane systems; a task previously thought only to be controlled by molecular 

transporters, such as biological lipoproteins or artificial cyclodextrins 367.  In this 

chapter, it is shown that plasma-treated PDMS substrates can specifically extract 

cholesterol directly from the adjacent supported lipid bilayer through simple physical 

contact.  From reviewing the available literature, it is believed that this is the first 

documented case of a substrate-induced change in the molecular composition of 

the membrane.  The partially hydrophilic surface at PDMS interface plays an 

important role in the specific extraction of cholesterol, while leaving the remaining 

bilayer components stably supported.  Although the presented results do not provide 

a definitive answer regarding the detailed extraction mechanism, it is likely driven 

by direct interactions of cholesterol with the hydrophobic regions at the PDMS 

substrate surface, with the hydrophilic regions stabilising the support of the 

remaining bilayer.  An interesting parallel can be drawn with the well-known MβCD 
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extraction method, in which MβCD exhibits a hydrophilic surface and a sub-

nanoscale hydrophobic cavity can selectively remove cholesterol from bilayers to 

the solution 373.  It should be pointed out that the exact mechanism of cholesterol 

extraction via cyclodextrin is also unclear 367, and these results suggest that the 

presence of nanoscale hydrophobic and hydrophilic regions on the molecule may 

be of crucial importance.  Still, while the presence and close proximity of nanoscale 

hydrophobic and hydrophilic regions on the same surface is possibly key to specific 

cholesterol extraction, the exact features mediating the effect remain unknown.   

Although the detailed mechanisms behind substrate-induced cholesterol depletion 

remain elusive, the results presented in Chapter 5 corroborate with the work of Litz 

et al. 199, albeit using totally different methods for cholesterol depletion.  The 

observed impacts of cholesterol depletion on lipid patch morphology could be 

adequately explained by the model derived in the work of Litz et al. 199, in which the 

complexation of membrane cholesterol leads to two populations of cholesterol in the 

membrane; one being more accessible to cholesterol depletion than the other.  

Additionally, a jump in extractable cholesterol was identified for samples with a 

cholesterol mole fraction higher than 0.4 mol% (Figure 5.9b).  Sharp changes in the 

physical properties of lipid membranes at critical cholesterol mole fraction have often 

been thought to indicate the formation of specific cholesterol-phospholipid 

complexes at key cholesterol mole fractions such as 0.2, 0.33 and 0.5 355.  Thus, 

the identification of a sharp jump in extractable cholesterol at ~ 0.4 mol% (discussed 

in Chapter 5.3) further supports the growing body of literature proposing the 

presence of critical cholesterol mole fractions, and that cholesterol exists in an 

organised, complexed state within lipid membranes. 

Overall, the observations presented in Chapter 5 exemplify how substrate 

interaction can be utilised to controllably modify the biophysical properties of a 

simple bilayer system.  To further investigate such biological implications, the next 

chapter will discuss the impact of such substrates on the domain structure of 

membrane possessing liquid coexistence.  The chapter will continue to discuss how 

the described Lo/Ld systems respond differently to cholesterol depletion when 

adhered to the substrate surface; most interestingly, impacting the partitioning 

behaviour of fluorophores.
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Chapter 6: Disruption of phase domains by 

cholesterol modulation of supported lipid 

bilayer patches 

Ternary lipid compositions that combine high and low melting temperature lipids with 

sterols are widely used as model biomembrane systems as they have the ability to 

display coexisting liquid phases.  Such liquid-liquid coexistence is absent in binary 

lipid mixtures; for example, DOPC:DPPC liposomes only demonstrate a coexistence 

of liquid and gel phases at room temperature when experimentally observed with 

fluorescence depolarisation measurements 374 and theoretically investigated 375.  

The addition of sterols, such as cholesterol, facilitates interactions between the lipids 

with disparate melting temperatures (like DOPC and DPPC), preventing an abrupt 

gel-fluid transition and allowing the formation of a liquid phase with more ordered 

hydrocarbon chains; the Lo phase.  This change in the system behaviour relies on 

the nature of many sterols being able to act as both a homogeniser and solvent, 

when present in sufficient amounts.  Hence, sterol addition to lipid mixtures 

generates a more complex phase diagram with Ld, Lo and Lß often being able to 

coexist simultaneously, dependent on the lipid composition.  Indeed, the 

coexistence and segregation of immiscible fluid lipid phases has been proposed as 

a means to control dynamic lateral organisation in the plasma membrane 376 and 

membrane signalling 377, respectively.  Other studies have even suggested that Lß 

phases coexisting with fluid phases could also play a role in organising lateral 

membrane structure, by forming solid nanoclusters that can stably “dock” membrane 

proteins 378. 

In research, model phase separated systems are often formed on substrates to 

facilitate the investigation.  However, substrate interaction can significantly impact 

the domain’s behaviour within the membrane.  The liquid-liquid phase transition 

temperature has been demonstrated to increase when lipid bilayers are supported 

on substrates such as glass 86.  Furthermore, although lipids maintain their local 

lateral diffusivity when supported on substrates, coexisting Lo and Ld domains (that 

are mobile in free-floating membranes) become fixated and lose the ability to 
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coalesce 85.  The interaction between the supported lipids and the substrate likely 

introduces a drag effect on the usually mobile Lo/Ld domains, arising from frictional 

and pinning effects between the lipid species and the substrate.  A recent high-

resolution AFM study on SLBs containing Lo/Ld domains demonstrated that Lo 

domain growth could be limited down to tens of nanometres on roughened mica 

substrates compared to the typical domain sizes of several microns observed on 

smooth mica substrates 118.  This behaviour was related to the altered substrate 

roughness creating more pinning points and inhibiting domain growth.  Other studies 

using fluorescence microscopy have similarly shown macroscopic Lo domain 

coarsening for supported lipid bilayers is inhibited on artificially roughened surfaces 

117.  This behaviour of impeded domain movement has been demonstrated to be 

strong enough to induce leaflet decoupling in supported lipid membranes subjected 

to shear flows 87.  In the context of this thesis, these effects pose an obvious 

question: How will such domain fixation impact membrane restructuring during 

cholesterol addition and depletion?  Cholesterol is well-known to play a key role in 

stabilising the Lo and Ld domains.  Various studies using different phase 

characterisation techniques have demonstrated that Lo and Ld domains only coexist 

in compositions containing more than ~ 8% cholesterol for  

DOPC:DPPC:Cholesterol lipid mixtures at room temperature 59,378,379.  With domain 

coalescence inhibited, can the membrane form a coexisting gel and liquid-

disordered phase upon the depletion of cholesterol below this threshold, as 

observed in vesicle systems 59? 

In Chapter 5, experiments were focused on single phase systems, with no lateral 

organisation, and the effect cholesterol depletion had on membrane structure and 

morphology.  The work in this chapter seeks to understand how supported lipid 

membranes possessing micron-scale Lo/Ld domain structures reorganise under 

cholesterol addition and depletion.  To gain a more comprehensive picture, the 

reversibility of cholesterol addition and depletion was investigated.  Cholesterol 

content is restored in depleted membranes using a previously established approach 

of exposing the lipid patches to cholesterol-loaded cyclodextrin (Chol-MβCD), 

commonly known as soluble cholesterol 60.  Such investigations will aid in 

understanding how substrate structures play a role in membrane lateral 
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organisation; whether stabilising or disrupting membrane structures during 

compositional changes. 

6.1 Disruption of lipid bilayer domain behaviour by 

cholesterol addition and depletion 

The substrates’ presence significantly impacts the phase properties of supported 

lipid bilayers, and has been shown to increase their main phase transition 

temperature 112, miscibility temperature 86 and lower lateral diffusion 113.  Notably, 

the presence of the substrate has been demonstrated to hinder movement and 

coalescence of Lo/Ld 
85,380.  Phase behaviour in lipid membranes is also altered by 

compositional changes, such as the depletion of cholesterol, which can be used to 

cross miscibility boundaries even at constant temperatures.  As shown in Figure 6.1, 

GUVs that possess Lo/Ld domains and are able to freely move and coalesce (Figure 

6.1a-c).  This leads to the formation of aggregated dark regions in a continuous 

(presumably Ld) phase upon the extraction of membrane cholesterol through 

exposure to MβCD.  These aggregated domains exclude Rh-DPPE (which has a 

strong preference for the Ld phase), are no longer able to coalesce, have limited 

movement, and they are presented with rough non-circular edges, indicating that 

they are Lβ domains.  Indeed, previous studies have shown that a depletion of 

cholesterol from GUVs possessing coexisting Lo/Ld domains causes a disruption of 

the liquid-liquid coexistence and eventual formation of an a Lβ phase in a continuous 

Ld phase 85,380; showing similar properties to those seen in Figure 6.1e,f.  It should 

be noted that the bright spots and over exposed regions in Figure 6.1a-f are 

fluorescent aggregates that adhered to the sessile vesicles and should not to be 

mistaken for budding vesicle domains.  When looking at the phase diagram for 

DOPC:DPPC:Cholesterol (Figure 6.1g) these changes in phase behaviour can be 

expected.  The composition in Figure 6.1a (represented by the yellow dot) falls from 

a region of coexisting Lo/Ld phases to a region of coexisting Ld/Lβ, with sufficient 

cholesterol depletion. Notably, the formation of an aggregated gel phase in a 

continuous Ld phase appears to often rely on domain mobility, as demonstrated in 

several fluorescence microscopy studies using phase separated GUVs 59,72,80.  

Therefore, to investigate how the substrate presence impacts the spatial distribution 
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of Lo/Ld domains during cholesterol addition and extraction, phase separated lipid 

patches were exposed to cyclodextrin. 

 

Figure 6.1: Depletion of cholesterol from sessile phase separated GUV. Fluorescence 
micrographs of lipid bilayer patches composed of DOPC:DPPC:Cholesterol (40:40:20 mol%) doped 
with 0.1 mol% Rh-DPPE, sessile on a BSA passivated glass slide (a-f).  A sessile GUV (a) 
demonstrates liquid-liquid coalescences, and circular domains can be seen coalescing (b,c) in the 
yellow dotted region.  A similar GUV with fully ripened domains is shown in (d).  After 25 minutes 
incubation with 8 mM methyl-β-cyclodextrin, (e,f), the GUV is depleted of cholesterol forming gel 
domains, indicated by red arrows.  The bright spots in (a-f) are fluorescent aggregates that adhered 
to the vesicle.  Sketch of existing phases at different compositions of DOPC, DPPC and cholesterol 
(g), with regions of each existing phase adapted from references 59,378,379, with permission from 
Elsevier.  The yellow dot indicates a transition in composition likely occurring in (d-f) as cholesterol is 
depleted.  Scale bars in (a-f) represent 20 µm. 
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Lipid patches with coexisting Lo/Ld domains were successfully formed using GUV 

fusion of vesicles with a composition of DOPC:DPPC:Cholesterol (40:40:20 mol%) 

(Figure 6.2a).  This composition is known to produce micron scale domains of Lo/Ld 

phases, easily observable with fluorescence microscopy 82.  Also, this ternary 

mixture possessed a relatively high miscibility temperature of ~ 32 oC 59, making the 

resultant phase-separated lipid patches formed from vesicle fusion stable to minor 

thermal fluctuations of room temperature.  The thermal stability of the supported 

lipid patches was also increased by their fusion onto a glass substrate; with an 

increased miscibility temperature of ~ 5 oC compared to vesicles of the same 

composition86.  This meant that the resultant patch’s miscibility temperature was 

significantly above room temperature and could be considered robust against minor 

fluctuations in ambient temperature. 

Two fluorophores were utilised to distinguish the Lo/Ld phases in lipid patches: Rh-

DPPE for the Ld phase (Figure 6.2a-d), and NaP for the Lo phase (Figure 6.1e-h).  

Rh-DPPE has a strong preference for Ld phases; commonly reported to be strongly 

excluded from coexisting Lo and gel domains, making it useful for distinguishing the 

two 126,188,381.  The exclusion of Rh-DPPE from the Lo phase has been previously 

attributed to the bulky nature of the fluorophore, causing unfavourable steric 

interactions that hinder its partitioning into the Lo phase 187.  However, more recently 

the fluorophore hydrophilicity has been implicated in driving phase selectivity.  

According to Bordovsky et al., strongly hydrophobic molecules (rhodamine) prefer 

interacting with the membrane rather than the bulk aqueous solution, thus driving 

them and their attached lipid into the Ld phases 381.  Indeed, it was demonstrated 

that a hydrophilic PEG spacer between the fluorescent label and lipid headgroup 

could “mute” the hydrophobic interactions between the fluorophore and lipid 

membrane, allowing it to enter the Lo phase from which it was previously excluded 

381. 

With a single fluorophore, the Lo phase can be identified by the absence of Rh-

DPPE signal, as seen by the dark domains within the lipid patch boundary of Figure 

6.2a.  These regions were round in shape with smooth edges, which is typical of 

coexisting Lo/Ld phases, as the line tension acts to minimise the domain boundary 

between the two liquid phases, resulting in circular domains.  To ensure that the Lo 

domains could be easily distinguished from pores and defects in the membrane, the 
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complementary fluorescent dye NaP was utilised.  Although it produced a weak 

signal-to-noise ratio compared to Rh-DPPE, it still proved highly useful.  NaP 

preferentially partitions into the Lo phase and has a distinctly different fluorescence 

emission and absorption to Rh-DPPE, allowing them to be used together.  In doing 

so, a more robust interpretation of varying membrane behaviour could be acquired, 

with the evolution of membrane organisation clearly observable in both phases 

through the use of different labels.  NaP is an accepted fluorescent label primarily 

used with ordered domains in DOPC/DPPC/Cholesterol systems, as only minor 

impacts on membrane miscibility of supported lipid systems are observed 85,187,189.  

When the labelled GUVs fused to substrates, the resultant lipid patches 

demonstrated clear Lo/Ld domains (Figure 6.2a,e).  Similarly to previous reports 85, 

the domain structure remained unchanged, with no lateral reorganisation over a time 

period of hours; indicating an inhibition of domain coalescence. 

6.1.1 Cholesterol addition through the solution (soluble cholesterol) 

Upon the addition of soluble cholesterol, the lipid patches begin to increase in area 

and spread across the substrate, as indicated by yellow arrows in Figure 6.2b.  As 

the lipid patches continue to spread, the boundary between Lo and Ld domains 

becomes notably diffuse (Figure 6.2c) and eventually dissipates, leaving a uniform 

fluorescence signal across the patch (Figure 6.2d).   

The observed loss of lipid domain structure is indicative of the composition crossing 

the phase boundary into a single miscible liquid phase.  Looking at the 

DOPC:DPPC:Cholesterol phase diagram (Figure 6.1g), an infusion of > 20 mol% 

cholesterol would cause lipid patches of DOPC:DPPC:Cholesterol (40:40:20 mol%) 

to traverse from a phase region of coexisting Lo/Ld phase, into a single miscible liquid 

phase.  Indeed, previous studies with equimolar DOPC:DPPC composition, 

containing a high cholesterol concentration (> 45 mol%) form single liquid phases 

with miscibility temperatures below 10 oC 59.  Although the addition of ~ 20 mol% 

cholesterol is a significant increase in cholesterol content, previous studies have 

shown the cholesterol content in lipid patches can be increased by ~ 60 mol%, 

indicating it is feasible 60. 
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Consistently, the fluorescence signal shows a drop in intensity concurrent with patch 

area increase.  As Rh-DPPE is unaffected by the presence of soluble cholesterol 60, 

this indicates a decrease in intensity due to a drop in Rh-DPPE surface density, as 

it is redistributed across all areas of the patch. 

 

Figure 6.2: Doping of cholesterol into phase separated supported lipid bilayers.  Fluorescence 
micrographs of lipid bilayer patches composed of DOPC:DPPC:Cholesterol (40:40:20 mol%) doped 
with 0.1 mol% Rh-DPPE and with 3 mol% NaP on a hydrophilic glass substrate at different time 
intervals after the exposure to 4.0 mg/mL soluble cholesterol (Chol-MβCD).  The Rh-DPPE signal (a-
d) identifies the Ld regions of the lipid patch, whereas the NaP signal (e-h) identifies the Lo regions. 
Cartoon schematic (i-l) demonstrating the transition to a single miscible liquid phase as cholesterol is 
infused into the phase separated lipid membrane.  Yellow arrows indicate regions of initial spreading 
as cholesterol absorbs into the membrane.  The dotted yellow outline indicates the initial patch area.  
Scale bars in (a-h) represent 50 µm. 
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A similar process is seen to occur in the Lo domains, with the regions increasing in 

area and becoming homogenously labelled (Figure 6.2e-h).  Overall, this behaviour 

closely matches those described for free-floating vesicles systems undergoing 

cholesterol addition 59,82.  These results, although expected, demonstrate that at 

least some supported lipid bilayer behaviours remain consistent to those found in 

free-floating vesicle systems, but it is not the case for cholesterol depletion in this 

system. 

6.1.2 Depletion of cholesterol through the solution (cyclodextrin) 

To deplete the lipid bilayers of cholesterol, 1 mM methyl-β-cyclodextrin (MβCD) was 

injected into the buffer solution (see Chapter 2.4.2 for details on protocols).  This 

induced an overall reduction in the patch area of ~15 - 20%, predominantly through 

the formation of pores in Ld regions, as indicated by the yellow arrows in Figure 6.3b-

c.  Although MβCD has been shown to extract PC lipids from membranes, this tends 

to occur over longer timescales 60,367,368,382, hence the large decrease in the patch 

area was attributed to a loss of cholesterol from lipid patches.  Previous studies 

using MβCD to extract cholesterol from DOPC:Cholesterol lipid patches 

demonstrated no visible changes in lipid patch areas for low-cholesterol regimes (< 

0.3 mole fraction) 199.  Therefore, the large decrease in patch area due to cholesterol 

loss was unexpected.   

The preference for pore formation in the Ld regions could be related to their lower 

rigidity 156 and higher fluidity 383 compared to Lo regions, facilitating membrane 

reorganisation into pores after cholesterol extraction.  Lateral diffusivity of the Lo 

phase is measured to be ~2 - 10 times smaller than the Ld phase in various studies 

36,383–385.  This is expected, considering that pure DOPC bilayers have lateral 

diffusivities on the order of 1 µm2s-1 114,386, and pure DPPC bilayers have lateral 

diffusivities ~ 0.01 - 0.1 µm2s-1 113,386; each being the predominant lipid species in Ld 

and Lo domains present in DOPC:DPPC:Cholesterol mixtures, respectively.   

As DOPC and DPPC cannot easily redistribute between the Lo/Ld domains of lipid 

patches fixated to a substrate 85, cholesterol depletion of the Lo domains would likely 

leave the region with a high ratio of DPPC:DOPC.  For this reason, depletion of 

cholesterol in the lipid patches was expected to form Lβ phases in the regions that 



Chapter 6: Disruption of phase domains by cholesterol modulation of supported lipid 
bilayer patches 

133 
 

were previously Lo regions.  Simultaneously the surrounding fluid Ld regions would 

be depleted and left enriched in DOPC, hence remain fluid.  This would leave the 

system in a coexisting Lβ/Ld phase, if an equimolar composition of DOPC:DPPC was 

sufficiently depleted of cholesterol (Figure 6.1g), as expected from the phase 

diagram.  Such behaviours are observed in the free GUV systems where cholesterol 

depletion promotes coexisting Ld and Lβ domains; the latter characterised by their 

rough fractal edges, (as seen in Figure 6.1e, f).   

 

Figure 6.3: Depletion of cholesterol disrupting fluorophore partitioning for supported lipid 
membranes. Fluorescence micrographs of lipid bilayer patches composed of 
DOPC:DPPC:Cholesterol (40:40:20 mol%) doped with 0.1 mol% Rh-DPPE and with 3 mol% NaP on 
a hydrophilic glass substrate at different time intervals after the exposure to 1 mM methyl-β-
cyclodextrin (MβCD).  The Rh-DPPE signal (a-e) identifies the Ld regions of the lipid patch, whereas 
the NaP signal (f-j) identifies the regions the Lo region, with the merged (k-o) depicting both.  Yellow 
arrows indicate regions where pores have formed due to cholesterol depletion, and dotted yellow 
outline indicates regions where Rh-DPPE has entered the Lo phase, from which it was previously 
excluded.  Scale bars in (a-o) represent 50 µm.  
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The depletion of cholesterol from systems containing DOPC:DPPC:Cholesterol 

(40:40:20 mol%) would cause the system to cross the phase boundary into a three-

phase coexistence of Lβ/Lo/Ld, before arriving in a binary Lβ/Ld phase.  Other studies 

utilising AFM imaging on supported bilayer systems of 

DOPC:Sphingomyelin:Cholesterol, probed the nucleation of Lβ domains in 

compositions possessing three-phase coexistence 74.  It was found that the 

formation of Lβ domains could occur via both spinodal decomposition and 

nucleation, possibly forming a “disordered” or surface kinetically-trapped gel state 

within previous Lo regions of the supported lipid bilayer 74.  Although dark areas 

appear in the lipid patch during the initial stages of cholesterol depletion, the merged 

Rh-DPPE/NaP images reveal that these are most likely pore defects due to patch 

shrinkage (Figure 6.3k-o), and not the formation of small gel regions.  The Lo 

domains themselves appear to retain their shape and structure initially, but after 

several minutes of MβCD exposure, Rh-DPPE begins to penetrate the regions 

(Figure 6.3d,e).  The partitioning of Rh-DPPE into these regions is highly unusual 

due to it being sterically bulky and highly hydrophobic, making it unfavourable to sit 

within the more ordered regions 188,189,381.   

Similarly, the NaP appears to dissipate into the surrounding Ld phase, as seen in 

Figure 6.3j.  Unfortunately, such effects were harder to appreciate in the NaP 

channel, due to a diminishing fluorescence signal.  It was concluded that loss of 

NaP intensity was partly due to its extraction from the bilayer by MβCD (Figure 6.4).  
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Figure 6.4: Homogenisation and loss of NaP signal during cholesterol depletion. Fluorescence 
micrographs of lipid bilayer patches composed of DOPC:DPPC:Cholesterol (40:40:20 mol%) doped 
with 0.1mol% Rh-DPPE and 3 mol% NaP.  Micrographs show a lipid patch exposed to 1 mM methyl-
β-cyclodextrin after 0 minutes (a), 20 minutes (b) and 40 minutes (c), with corresponding line profiles 
of fluorescence intensity from the NaP channel below (d-f). Scale bars represent 50 µm. 

The diminishing fluorescence signal of the NaP can be attributed to three factors.  

Firstly, the reduced surface density of NaP as it penetrated the Ld regions of the lipid 

patch caused a drop in fluorescence intensity.  This is best demonstrated in Figure 

6.4b,e, where these regions are only just detectable above ambient noise.  

Secondly, the susceptibility of NaP to bleaching; causing a reduction in fluorescence 

intensity throughout imaging.  Finally, it is here speculated that MβCD is depleting 

NaP from the lipid patch along with cholesterol, resulting in an almost complete loss 

of NaP fluorescence signal (Figure 6.4c,f).  The first two factors are present in the 

cholesterol-addition experiments (Figure 6.2), but a complete loss in NaP signal is 

not observed.  The ability of MβCD to deplete NaP from lipid bilayers is likely due to 

NaP sharing similar structural qualities to cholesterol; being a small hydrophobic 

molecule, made up of cyclic carbon compounds with attached functional groups.  

The shared chemical characteristics may make it similarly vulnerable to extraction 

via MβCD.  For this reason, Rh-DPPE is predominantly used to quantify the 

redistribution of the fluorescent probe, as its signal was more resistant to bleaching 

and depletion.   



Chapter 6: Disruption of phase domains by cholesterol modulation of supported lipid 
bilayer patches 

136 
 

Further measurements were required to characterise membrane phase behaviour 

after cholesterol depletion, as the drastic change in the composition clearly altered 

portioning properties of membrane species such as Rh-DPPE, likely disrupting the 

phase behaviour of initial Lo and Ld regions.  To better characterise the effects 

observed in Figure 6.3, measurements were carried out to determine both the 

homogenisation of the Rh-DPPE between the initial Lo and Ld domains, and how 

domain lateral fluidity was altered after the redistributions of the fluorescent label.  

6.2 Impact of cholesterol depletion on domain structure and 

membrane properties  

As cholesterol is depleted, the bilayer structure is altered to allow Rh-DPPE to 

penetrate the initial Lo phase (Figure 6.5a-d).  Although some of the Lo regions 

become homogenised (yellow dotted regions in Figure 6.5d) many domains are only 

partially infused with Rh-DPPE (green arrows in Figure 6.5a-d).  Using the change 

in fluorescence intensity of the Rh-DPPE signal in each phase (Figure 6.5e), 

redistribution of the Rh-DPPE could be monitored.  Here average fluorescence 

intensity is defined as the mean pixel intensity recorded within the Lo or Ld domains, 

normalised to the initial average fluorescence intensity measured in the Ld domains.  

When looking at the average change in Rh-DPPE signal of Ld and Lo domains, the 

increase in the intensity of Lo domains corresponds to a decrease in fluorescence 

intensity of the Ld domains (Figure 6.4e).  This indicated that the Rh-DPPE is 

transferring from the Ld phase into the Lo phase.  Interestingly, the ~60% increase in 

intensity in the Lo domains is much higher in magnitude than the ~5% decrease in 

intensity of the Ld phase from which the Rh-DPPE is migrating.  This discrepancy in 

intensity changes between the two phases is likely due to alterations in the surface 

density of the Rh-DPPE.  
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Figure 6.5: Depletion of cholesterol allows Rh-DPPE to penetrate the liquid-ordered phase. 
Fluorescence micrographs of lipid bilayer patches composed of DOPC:DPPC:Cholesterol (40:40:20 
mol%) doped with 0.1 mol% Rh-DPPE on a hydrophilic glass substrate at different time intervals after 
the exposure to 1 mM methyl-β-cyclodextrin (MβCD) (a-d).  The initial Rh-DPPE signal (a) identifies 
the Ld regions of the lipid patch, which begins to partition into the Lo phase (b-d), where it was 
previously excluded.  Graph (e) shows the change in fluorescence intensity of the Rh-DPPE signal in 
the Ld and Lo regions during the cholesterol depletion of the lipid patch, normalised to their respective 
areas, with a graph (f) depicting the lateral diffusivities of the two phases after cholesterol has been 
depleted from the samples.  Scale bars in (a-d) represent 20 µm.  

As described in Figure 5.2e, the specific depletion of cholesterol from membranes 

causes an increase in fluorescence intensity for Ld regions, as the bilayer shrinks in 

area and the Rh-DPPE surface density increases.   

Upon closer inspection, this effect is demonstrated by a slight increase in 

fluorescence intensity seen in the Ld domain curve of Figure 6.4e.  As the Ld domains 

are depleted of cholesterol, the migration of Rh-DPPE into the Lo domains phase 

offsets a further increase in the fluorescence intensity of the Ld phase.  The 

observation that Rh-DPPE diffuses into the Lo phase suggests, counter-intuitively, 

that Lo regions retain some degree of membrane fluidity after cholesterol depletion, 

despite the expectation that they will gel.  The latter occurs in free vesicles following 

depletion of cholesterol (Figure 6.1d-f), with the fractal rough domain boundaries 

indicating a gel phase.  As Lo domains possess a significant proportion of the 
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membrane’s saturated lipids, they most likely transition into a more gel-like phase 

under depletion of cholesterol, hence causing a significant loss of lateral diffusivity.  

It has even been suggested that such regions already contain small gel domains 

within them 387, making Lo regions particularly favourable for further nucleation of gel 

domains.  In Figure 6.4f, the average lateral diffusivity for Ld
 and Lo domains after 

cholesterol depletion is quantified using FRAP (see Chapter 2.5.2 for further details 

of protocols).  The influx of Rh-DPPE into the initial Lo regions enables FRAP 

measurements to be conducted, and the lateral diffusivity of the region after 

cholesterol depletion to be measured.  This was not possible with the original Lo/Ld 

domain structure as the Rh-DPPE was excluded from Lo regions, and the NaP was 

too susceptible to bleaching to acquire useful recovery curves.  Surprisingly, FRAP 

results indicate that the Lo regions retain a significant degree of lateral diffusivity, 

with the magnitude of lateral diffusivity being similar to that of the Ld region, although 

literature suggests it should be appreciably lower 36,383–385.  It should be noted that 

these results only indicate Rh-DPPE’s diffusivity within the bilayer, and thus cannot 

be used as a direct measure of overall membrane fluidity. 

Even though the domains lateral diffusivity is preserved, the change in fluorophore 

partitioning suggests a drastic change in the membrane structure that allows the 

bulky Rh-DPPE to penetrate the liquid-ordered regions.  Notably, this behaviour is 

distinctly different from the response of GUVs to cholesterol depletion, suggesting 

the substrate interactions are inducing this perturbation in the phase-separated 

bilayer in response to cholesterol extraction.  Although partially infused with Rh-

DPPE, the Lo domains appear to retain their general shape and location, suggesting 

that the regions had not been wholly disrupted, as was expected from previous 

studies 387–389.  This behaviour demonstrates that some lipid structures from the 

initial Lo domain persist even after cholesterol depletion had completed.   

An assumption of the above discussions is that the domains remain in registry, with 

the observed effects occurring in both leaflets.  This is not necessarily true, as no 

measurements were taken to confirm this assumption; although, previous literature 

indicates lipid domains to be rarely observed out of registry in free-floating GUVs 

82,387,390.  This is in line with the predictions from theoretical models that indicate that 

fluctuations of Ld
 and Lo domains out of registry are on the nanometre length scale, 

explaining why they have not been observed by optical microscopy 89.  Other studies 
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have reported similar behaviours in supported lipid bilayers formed from vesicle 

fusion of GUVs, with domain structure being registered between leaflets after fusion 

84,85 and remain so unless perturbed externally; for example, by significant shear 

flows of around ~ 20 Pa 87.  However, a study investigating non-equilibrium 

behaviour of supported lipid bilayers containing cholesterol did demonstrate that 

coexisting liquid-liquid domains could exist out of registry in between lipid leaflets 

177.  Using Langmuir-Schafer and Langmuir-Blodgett deposition, phase-separated 

lipid monolayers of DOPC/DPPC/Cholesterol (40:40:20) were transferred onto a 

supported lipid monolayer of similar composition, adhered onto a glass substrate.  It 

was found that domains of each monolayer were not in registration, and remained 

static over several hours 177.  With this in mind, the results presented in this chapter 

cannot conclusively confirm that domains remain in registry during cholesterol 

depletion by MβCD. 

To further investigate the impact of Lo/Ld domains structure on membrane response 

to cholesterol depletion, the changes in the area of segregated and coalesced 

domain patterns were compared.  Phase-separated GUVs used in vesicle fusion 

were heated to above the miscibility temperature during formation.  See Chapter 

2.4.2 for further details of protocols.  The equilibration of such samples over several 

minutes lead to ripened, coalesced domains (Figure 6.6e), whereas the rapid 

cooling of such samples led to the formation of smaller Lo domains distributed in a 

continuous bulk Ld phase.  The fusion of these GUVS formed lipid patches with a 

“segregated” Lo/Ld domain pattern, as seen in Figure 6.6a.  
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Figure 6.6: Change in patch morphology, pore formation, area shrinkage due to cholesterol 
depletion of phase separated supported bilayers.  Fluorescence micrographs of lipid bilayer 
patches composed of DOPC:DPPC:Cholesterol (40:40:20 mol%) doped with 0.1mol% Rh-DPPE on 
a hydrophilic glass substrate at different time intervals after the exposure to 1 mM methyl-β-
cyclodextrin (MβCD).  The change in patch area during cholesterol depletion of lipid patches with 
smaller segregated domains (a-d) and larger coalesced domains (e-h).  Graph (i) compares the 
change in patch area during cholesterol depletion for patches with segregated and coalesced 
domains.  Graph (j) depicts the change in average circularity of pores formed preferentially in the Ld 
domain during cholesterol depletion.  Scale bars in (a-h) represent 50 µm.   

Comparing the effect of cholesterol depletion between segregated and coalesced 

domain patterns (Figure 6.6i), it can be seen that patches with multiple small 

domains had a slower reduction in the area, compared to patches with a few large 

domains.   

A possible explanation is that the segregated systems obtained by temperature 

quenching exist far from equilibrium 82.  This may result in a higher degree of 
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saturated lipid remaining within the Ld phase, making such regions less prone to 

pore formation during cholesterol extraction.  The latter could be verified by 

comparing the Lo:Ld domain area ratio, 𝐴𝐿𝑜
/𝐴, of coalesced and segregated lipid 

patches, to gain an indication of any difference in the lipid compositions between 

the two systems.  The results show that both coalesced and segregated lipid 

patches displayed similar Lo:Ld domain area ratios, with coalesced and segregated 

patches having 𝐴𝐿𝑜
/𝐴  values of 38.1 ± 2.5% and 37.8 ± 0.8% respectively.  These 

Lo: Ld domain area ratios for DOPC:DPPC:Cholesterol (40:40:20 mol%) bilayers are 

consistent with previous studies, in which tie-line measurements were conducted on 

DOPC/DPPC/Cholesterol systems of similar composition to estimate Lo domain 

area fractions 384.  Thus, it is unlikely that Lo and Ld domains have much variation in 

composition between coalesced and segregated lipid patch systems, with a 

reasonable explanation for the difference in the rate of diffusion between coalesced 

and segregated lipid patches remaining elusive. 

Interestingly, when observing the behaviour of pore formation in segregated and 

coalesced lipid patches, the pores once again had a strong preference for forming 

in the Ld phase, regardless of the confining geometry of the segregated patches (as 

indicated by yellow arrows in Figure 6.6b,f).  When looking at the evolution of pores 

in the Ld regions, the average pore circularity decreases as the defect expands over 

time (Figure 6.6j).  Circularity is defined by the following equation: 

Circularity = 4π (
𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2)      Equation 6.1 

As the area and perimeter can be easily tracked using techniques described in 

Chapter 2.5.4, a change in pore circularity provides a simple and effective descriptor 

to characterise the evolution of pore morphology during cholesterol depletion.  

Initially, the pores are circular to minimise line tension in the membrane due to the 

opening of the defect.  As depletion continues, the periphery of the pore is 

destabilised by drag forces, leading to rougher edges 290,391.  The origin of these 

drag forces is likely due to substrate interactions, with substrate adhesion and 

roughness known to impact lipid mobility 112,113,116.  Indeed, these same interactions 

are possibly the cause of the inhibited domain movement, with similar drag forces 

impeding large scale lateral reorganisation of Lo/Ld domains 87. 
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In both coalesced and segregated domain patterns, the Lo regions maintained their 

initial geometry, with few observable pores being formed during depletion.  This can 

be rationalised by the Lo phase having an increased rigidity and low deformability, 

making such regions unfavourable to deformation compared to the Ld phase.   

6.3 Increased resistance to cholesterol modulation conferred 

by saturated lipids 

The previous sections evidence a significant substrate-induced impact on the 

behaviour of a model ternary membrane upon cholesterol depletion, but not 

cholesterol infusion.  To verify that these effects are general and not unique to the 

specific composition of DOPC/DPPC/Cholesterol investigated so far, another 

composition of DOPC/DPPC/Cholesterol (64:16:20) was tested.  This ternary 

mixture forms a predominant Lo phase, creating GUVs with an area fraction of 1:4 

that favour the Lo domains 59.  This composition exists within a three-phase 

coexistence region on the phase diagram (Figure 6.1g), although the presence of 

Lβ domains would be hard to distinguish due to their small size and thinness 59,392.  

Using GUVs of this composition, lipid patches with a significantly higher content of 

saturated lipid were successfully made (Figure 6.7a) by comparison with those 

discussed earlier in the chapter.  This alternative composition contained the same 

0.2 cholesterol mole fraction, allowing the comparison between 

DOPC:DPPC:Cholesterol (40:40:20 mol%) systems, and provide an insight into how 

saturated lipid content impacted the response of the membrane to cholesterol 

depletion.   

The addition of soluble cholesterol to the system induces a similar response to that 

described in Chapter 6.2, with cholesterol addition promoting the formation of a 

single miscible liquid phase (Figure 6.7a-e).  Similarly, the higher but feasible 

infusion of ~ 30 mol% cholesterol into lipid patches of DOPC:DPPC:Cholesterol 

(16:64:20 mol%) would cause a movement across the phase diagram from a region 

of coexisting Lβ/Lo/Ld phases into a single miscible liquid phase.  The patch 

displayed a significant increase in area and disruption of domain structure in 

accordance with crossing a phase boundary into a single miscible phase. 
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Figure 6.7: Effects of cholesterol depletion of supported lipid bilayers with a predominantly 
liquid-ordered phase. Fluorescence micrographs of lipid bilayer patches composed of 
DOPC:DPPC:Cholesterol (16:64:20 mol%) doped with 0.1 mol% Rh-DPPE and 3 mol% NaP on a 
hydrophilic glass substrate at different time intervals after the exposure to 4 mg/mL soluble cholesterol 
(Chol MβCD) (a-e) and 1 mM methyl-β-cyclodextrin (MβCD) (f-j), with graphs for average change in 
patch area during cholesterol depletion (k) and addition (l).  Scale bars in (a-j) represent 50 µm.   

Similarly, upon cholesterol depletion via the addition of MCD, the patches shrank 

in area, formed pores and exhibited a redistribution of the fluorescence signal, with 

the Rh-DPPE visibly spreading and entering the Lo domains, and NaP into the Ld 

domains (Figure 6.7f-j).  Depending on the level of cholesterol depletion, this could 

result in the final patch compositions passing through the three-phase coexistence 

region into a region of Lβ/Ld coexistence, providing cholesterol levels are depleted 

below ~ 8 mol% cholesterol 59,378,379.   
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Although pores initially form in the Ld phase, pores can eventually be observed in 

the Lo phase.  However, these pores are smaller in size, indicating that Lo regions 

are still less favourable to pore formation than the Ld domains.  Notably, the samples 

enriched with saturated lipid show a slower rate of cholesterol addition and depletion 

compared to the samples enriched in unsaturated lipids (Figure 6.7k). 

It should be noted that the composition containing more saturated lipid did have a 

smaller area fraction of Ld phase, with DOPC:DPPC:Cholesterol at 16:64:20 mol% 

having a value of 𝐴𝐿𝑜
/𝐴  of ~ 85% 384, compared to DOPC:DPPC:Cholesterol at 

40:40:20 mol% having a value of 𝐴𝐿𝑜
/𝐴  of ~ 38%.  It could be proposed that 

cholesterol extraction occurs solely from the Ld phase, and its reduced area fraction 

in the DOPC:DPPC:Cholesterol (16:64:20 mol%) composition led to slower 

depletion/absorption rates.  But, even if the 20 mol% cholesterol present in the 

membrane was evenly distributed between the Lo and Ld domains, a complete 

depletion of cholesterol from solely Ld domains would only result in a crude 

estimation of a ~ 3 mol% loss of cholesterol (seeing as Ld only represented 15% of 

total patch area).  Such a small change in composition would not shift the 

composition out of the three-phase coexistence region on the phase diagram 

(Figure 6.1g) and further, be unlikely to cause such drastic changes in the lipid patch 

morphology as demonstrated in Figure 6.7f-j.  Considering that diffusion studies of 

isotopically labelled lipids in DOPC/DPPC/Cholesterol mixtures have identified that 

the cholesterol concentrations in the Ld are smaller than in the Lo phase 385 , it is 

unlikely that cholesterol is solely depleted from Ld domains, but also from the Lo 

domains, albeit at a slower rate.  

Interestingly the same behaviour is demonstrated for cholesterol addition, with the 

saturated composition showing slower adsorption timescales (Figure 6.7l).  This 

suggests that not only is it more difficult to deplete heavily saturated mixtures of 

cholesterol, but also that it is more difficult to infuse them with cholesterol when 

compared to unsaturated compositions.  The ability of saturated lipids to stabilise 

model membranes against cholesterol addition and depletion makes them a useful 

addition to model membrane systems, shedding light on their roles in fortifying 

biological compositions.  
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6.4 Substrate-induced cholesterol depletion disrupts domain 

behaviour 

Many of the effects described in the previous sections have been linked to the 

depletion of cholesterol from the system, by the addition of a chemical agent to the 

system, MβCD, which could, in principle, also be affecting the membrane’s 

behaviour.  To verify that MβCD plays no significant role on the redistribution of Rh-

DPPE into the Lo phase, and that cholesterol extraction is responsible for the 

observed effect, control experiments using another means of cholesterol extraction 

were conducted.  As discussed in Chapter 5, partially plasma-treated PDMS 

substrates can stably support phospholipid membranes while specifically extracting 

cholesterol, providing an alternative method of cholesterol extraction to MβCD.  The 

results presented in Figure 6.8a-h show that the ternary mixture of 

DOPC/DPPC/Cholesterol (40:40:20 mol%) behaves similarly, with a comparable 

change in area and fluorescence partitioning to that reported in Chapter 6.1.  

Several minutes after the initial lipid patch formation (Figure 6.8a) the pores appear 

(yellow arrows in Figure 6.8c), followed by the penetration of Rh-DPPE into the 

previous liquid-ordered phase (Figure 6.8d-h).  Interestingly, the NaP signal quickly 

diminishes in the first few minutes, likely diffusing into the PDMS substrate.  This is 

further validated by the presence of a diffuse NaP signal around the liquid-ordered 

regions, shortly after fusion (yellow dotted ring in Figure 6.8b).  Indeed, the 

background signal for NaP notably increases after several minutes, as the 

fluorescent label penetrates the surrounding substrate (Figure 6.8c). This falls in line 

with current reports of PDMS being able to absorb small hydrophobic molecules 

from solution 265 and supported lipid bilayers 393 (as detailed in Chapter 5). 

Another notable difference is that many of the liquid-ordered domains are not 

completely permeated by Rh-DPPE, with regions seemingly devoid of Rh-DPPE 

signal even after 120 minutes (Figure 6.8h).  The regions exhibiting no Rh-DPPE 

penetration are located furthest from the domain boundary, and so have the longest 

diffusion pathway for the Rh-DPPE molecules.   
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Figure 6.8: Disruption of fluorophore partitioning initiated by substrate-induced cholesterol 
depletion.  Fluorescence micrographs of lipid bilayer patches composed of DOPC:DPPC:Cholesterol 
(40:40:20 mol%) doped with 0.1 mol% Rh-DPPE and with 3 mol% NaP at different time intervals after 
fusion to partially plasma-treated PDMS substrates.  The combined Rh-DPPE and NaP signal (a-h) 
show changes in patch morphology and fluorescence partitioning.  Yellow dotted ring indicates 
regions of NaP signal, which indicate the fluorophore dissipating into the PDMS substrate, accounting 
for the increased background signal in (c-h). Scale bars in (a-h) represent 50 µm. 

The exact reason for this difference between substrate-induced and MβCD-induced 

cholesterol extraction remains unclear; but a possible explanation could be due to 

the increased roughness of the partially plasma-treated PDMS, which in turn would 

induce a greater drag effect on the Lo/Ld domains.  Although local lipid diffusivity is 

maintained when lipid patches are formed on partially plasma-treated substrates 

(see Figure 4.1), the increased roughness likely induces more pinning and drag 

forces between the membrane and the substrate.  This may hinder the migration of 

Rh-DPPE from the Ld phase into the Lo domain during cholesterol depletion, slowing 

the process down enough that Rh-DPPE can be kinetically trapped in the later 

stages of depletion.   

Overall, it can be concluded that PDMS-led and MβCD-led cholesterol depletion 

both induced similar effects on the phase separate lipid patches, causing membrane 

pores to form, patch shrinkage to occur, and promote penetration of Rh-DPPE into 

initial Lo regions.  These experiments also suggest the persistence of some domain 

structures after the majority of cholesterol has been depleted, as the Rh-DPPE 

distribution never fully homogenised across the patch, even after extended time 
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periods.  In such a case, the reintroduction of cholesterol into a depleted membrane 

should restore initial domain structure and fluorophore partitioning. 

6.5 Reversibility of lipid domain restructuring by cholesterol 

modulation 

To test if the domain structure of the phase-separated lipid patches could be 

restored after cholesterol extraction, depleted lipid patches were exposed to soluble 

cholesterol.  Such restoration of domains has been previously demonstrated with 

supported lipid monolayers and free GUVs 59,388,389, but little data is available when 

utilising supported lipid bilayers with micron-scale liquid-liquid coexisting domains.  

As seen in Figure 6.9a-e, the initial depletion of cholesterol from lipid membranes 

induces the expected area shrinkage and pore formation, with an example pore 

defect highlighted by a yellow arrow.  The depleted membrane can be stabilised by 

washing the patch with TRIS buffer (Figure 6.9f), diluting the MßCD solution 

sufficiently to inhibit further depletion of cholesterol from the lipid patches.  The 

patches are subsequently exposed to a buffer solution containing 4 mg/mL of 

soluble cholesterol, which reinfuses the membrane with cholesterol.  Upon the 

reinsertion of cholesterol into the bilayer, patch areas increase, pore defects heal, 

and the initial fluorescent partitioning is regained, with Rh-DPPE being once again 

excluded from the Lo domains.  The restoration of micron-scale domain structure 

with the addition of cholesterol further validates the hypothesis that cholesterol 

depletion does not fully destroy the lipid patch Lo/Ld domain structure.  The 

continued exposure of the restored patches causes a slight increase in patch area 

and reduced contrast between Lo/Ld domains, as described in Figure 6.2.  This once 

again can be halted by washing the membrane with TRIS buffer to dilute the soluble 

cholesterol concentration, and slow down the cholesterol addition (Figure 6.9k).   
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Figure 6.9: Cycling cholesterol extraction and addition to disrupt and heal phase-separated 
lipid patches.  A sequence of fluorescence micrographs of lipid bilayer patches composed of 
DOPC:DPPC:Cholesterol (40:40:20 mol%) doped with 0.1 mol% Rh-DPPE and 3 mol% NaP on 
hydrophilic glass substrate being exposed to 1 mM methyl-β-cyclodextrin (MβCD) (a-e) , followed by 
4 mg/mL soluble cholesterol (Chol MβCD) (f-j), and then once again with 1 mM methyl-β-cyclodextrin 
(MβCD) (k-o) depleting the patch of cholesterol.  Yellow arrows indicate the position of pores formed 
during depletion, which heal and then reopen during the cycling of cholesterol extraction and doping 
into the membrane.  Scale bars in (a-h) represent 50 µm. 

Subsequent depletion of the healed lipid patch causes shrinkage in the patch area, 

characterised by the appearance of rough patch edges and the reappearance of 

pore defects,  notably in the same regions where they initially appeared during the 

first depletion cycle (yellow arrow in Figure 6.9n).  The reopening of previous pores 

suggests some form of scarring where initial pore defects existed, making such 

regions susceptible to future defect formation.  A plausible explanation could be a 

preference for cholesterol to enrich specific areas.  Pore edges are regions of high 

membrane curvature, and expose many local defects in the local lipid packing 394.  

These defects are likely to make it easier for cholesterol to penetrate the membrane, 

hence becoming quickly enriched.  The enrichment of these defect regions during 
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the period when cholesterol is being replenished would also render these areas 

more susceptible to subsequent depletion, as the increased local cholesterol mole 

fraction in these areas would also increase the ratio of cholesterol accessible to 

extraction 351,353,354. 

Although the lipid patch integrity appeared to be fully restored (with pores and 

defects completely disappearing), some residual Rh-DPPE fluorophore remains in 

the Lo region.  This suggests that the domain structure is only partially healed, with 

the overall process exhibiting some degree of residual Rh-DPPE remaining in the 

Lo phase.  This effect seems accentuated when the domains are infused with 

cholesterol, as seen in Figure 6.9k.   

This partial restoration of domain structure could have been due to shifts in lipid 

patch composition, due to the loss of DOPC and DPPC during exposure the to 

MβCD, which is able to extract PC lipids from membranes 60,367,368,382.  Unlike 

cholesterol, PC lipid loss would not be restored upon exposure to Chol-MβCD, 

permanently changing the initial DOPC/DPPC ratio and shifting the lipid composition 

left or right on the phase diagram (Figure 6.1g).  A study using FRET and light 

scattering measurements to analyse lipid exchange and extraction via MβCD 

exposure demonstrated that DPPC had a greater resistance to solubilisation than 

DOPC 382.  This suggests that the lipid composition would tend to shift to the right 

with repeated MβCD exposure and could even shift the composition into the three-

phase coexistence region.   

To better investigate this hysteretic effect, a single miscible fluid phase was 

promoted by the addition of cholesterol (Figure 6.10a-f) and subsequently depleted 

of cholesterol (Figure 6.10g-i).  Upon cholesterol depletion by MβCD, the initial 

domain structures and fluorescent partitioning is no longer restored.  Instead, pores 

are formed uniformly across the patch with no apparent preference for regions that 

were initially in the Lo or Ld phase, as seen in Figure 6.2.  Interestingly, area loss 

appears focused around the periphery of the lipid patch with the original patch 

perimeter remaining easily discernable after depletion (Figure 6.10i).  According to 

Rahimi et al. this peripheral extraction is due to the lower adhesion of the newly 

spread regions of the lipid bilayer to the substrate 60.  
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As soluble cholesterol is added into the solution,  it adheres to the glass substrate, 

mildly passivating the substrate surface.  Hence, as the lipid bilayer is infused with 

cholesterol, the newly formed membrane spreads onto a layer of cholesterol water 

soluble, instead of on glass. 

Taken together, these results provide insights into the depletion and healing of 

liquid-liquid coexisting membrane systems, and show how micron scale domain 

structures persist after cholesterol depletion and addition.  Importantly, such 

behaviours hinge on the presence of substrate interactions, confirming that the 

substrate does not only locally modulate the movement of domains and 

coalescence, but also partially stabilises the domain structure when the cholesterol 

content is removed.  From these experiments, a molecular mechanism can be 

proposed to explain the observed behaviour of supported phase-separated lipid 

patches.  Initially, the lipid patch is stably supported on the substrate surface (Figure 

6.11a).  Once exposed to MβCD, cholesterol is depleted from the membrane 

causing area shrinkage and pore formation (Figure 6.11b).  The depletion of 

cholesterol from the Lo regions could induce the formation of a gel mesh, perforated 

with local voids due to cholesterol depletion and the tight packing of the remaining 

saturated lipids.  If present, the formation of small voids and pockets in the Lo region 

would cause a significant decrease in the lateral pressure at the phase boundary 

and provide space for the influx of species from the Ld phase to invaginate the 

remaining gel-mesh.  It should be noted that this is likely concurrent with cholesterol 

depletion in the Ld phase.  Although, in the Ld phase the effects of cholesterol 

depletion are more visible through the development of microscopic pores; the 

formation of which is likely facilitated by the phase’s higher fluidity and deformability.  

The change in the structure of the cholesterol-depleted Lo regions leads to a 

redistribution of fluorescent probes (Figure 6.11c), most notably causing the 

migration of Rh-DPPE into Lo regions.  This not only explains the penetration of Rh-

DPPE into the previously Lo phase, but also the persisting fluidity of these regions 

after cholesterol depletion.  Indeed, the idea of a gel mesh resonates with previously 

reported disordered solid states 395; being a disrupted gel with a broken packing, 

unlike the regular tight packing commonly associated with gel phase.  Such a state 

has been identified using techniques such as NMR spectroscopy 395 and AFM 74, 

with the resultant region displaying intermediate properties of the expected gel or 
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liquid-ordered phase.  Alternatively, the depletion of cholesterol could result in the 

Lβ phase being driven into a non-equilibrium state due to the reasonably rapid 

extraction of cholesterol not providing enough time for phase separation to fully 

advance, due to lipids eventually becoming kinetically trapped without previously Lo 

regions.  This alternative was proposed by Aufderhorst-Roberts et al. 74, as it did not 

contradict their observations and those of broader literature, in that Lβ phases are 

significantly disrupted by small alterations in cholesterol content.  The formation of 

a non-equilibrium composition could also disrupt membrane packing interactions 

and hydrophobic interactions between rhodamine and the membrane; both of these 

factors have been demonstrated to strongly influence fluorophore phase selectivity 

381. 

 

Figure 6.10: Effects of cholesterol depletion after phase separated lipid patches promoted into 
a single phase.  Fluorescence micrographs of lipid bilayer patches composed of 
DOPC:DPPC:Cholesterol (40:40:20 mol%) doped with 0.1 mol% Rh-DPPE and 3 mol% NaP on 
hydrophilic glass substrate at different time intervals after the exposure to 4 mg/mL soluble cholesterol 
(Chol-MβCD) (a-d) promoting the patch into a single liquid phase.  This is followed by subsequent 
exposure to 1 mM methyl-β-cyclodextrin (MβCD) (f-i), depleting the patch of cholesterol.  Yellow 
arrows indicate the position of a liquid-ordered region (a) that has dissipated upon the addition of 
cholesterol (f) and does not return upon cholesterol extraction (i).  Scale bars in (a-i) represent 50 µm. 

The micron-scale size of the Lo domains formed by the fusion of phase separated 

lipid membranes is likely key to generating the disruption and recovery of the Lo/Ld 
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domain morphology upon cholesterol depletion, as the membrane cannot fully 

equilibrate across such macroscopic length scales due to local surface pinning 85.  

The disruption of Lo/Ld domains by cholesterol depletion not only provides an insight 

into the behaviour of membranes under cholesterol modulation and how it impacts 

macroscale membrane responses, but also provides an insight into how the 

perturbation of substrate presence can have knock-on consequences and induce 

exotic membrane behaviours not accessible to free membranes.   

 

Figure 6.11: Change in patch morphology during cholesterol depletion.  Illustrations of lipid 
bilayer patches composed of DOPC:DPPC:Cholesterol and doped with Rh-DPPE on a hydrophilic 
glass substrate at different time intervals after the exposure to methyl-β-cyclodextrin (MβCD).  The 
change in patch area during cholesterol depletion of lipid patches with smaller segregated domains 
(a-d) and larger coalesced domains (e-g). 

The stability of domain structures in lipid patches can be effectively disrupted by the 

promotion of a single miscible liquid phase through the addition of cholesterol into 

the lipid patches.  The miscibility of different lipid phases can also increase by 

heating the lipid patches above the miscibility temperature.  Such experiments, 

discussed in the following section, provide an alternative pathway to disrupting 

domain structure. 
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6.5.1 Preliminary investigations:  Identifying sub-optical Lo/Ld domains 

formed by melting micron scale domain structure in lipid patches 

The disruption of the lipid bilayer domain structure can also be induced by altering 

the temperature.  The heating and cooling of the lipid membrane beyond the 

miscibility temperature causes significant lateral reorganisation in membrane 

structures.  Substrate interactions are known to increase the miscibility temperature 

of supported lipid membranes in comparison to free-floating lipid systems 18,76,247.  

The work of Gunderson et al. 86 demonstrated that phase-separated lipid patches 

formed on a glass substrate had a 5 o C increase in miscibility temperature 

compared to free-floating GUVs.  Notably, if the lipid patches were not heated to 

sufficiently high temperatures, although domains lost contrast, the original domain 

patterns would reform on cooling.  Patches that seemingly mixed thoroughly only 

partially regained the original domain structure upon cooling.  This behaviour was 

postulated to be due to incomplete mixing of lipids in the leaflets and pinning of 

fractions of the lipid structure to the glass surface 86.  Such pinning was 

hypothesised to inhibit domain growth beyond the sub-optical length scale, causing 

them to effectively vanish in fluorescence microscopy images.  To verify this 

hypothesis, lipid patches of DOPC/DPPC/Cholesterol (40:40:20 mol%), possessing 

micron scale Lo/Ld domains were imaged with both fluorescence microscopy and 

atomic force microscopy, before and after heat treatment.  By raising the 

temperature of the samples to 40 oC, it was possible to go above the composition 

miscibility temperature (32 oC), whilst cooling back to 20 oC over 2 hours allowing 

the reformation of Lo/Ld domains. 

The fusion of the phase separated lipid patches formed stable and distinct Lo/Ld 

domains, which could be easily visualised with fluorescence microscopy (Figure 

6.12a) and atomic force microscopy (Figure 6.12b), exhibiting micron-scale domains 

in both.  Similarly to the studies of Gunderson et al. 86, after heat treatment, much 

of the domain structure only partially recovered upon cooling, with many of the 

distinct domain structures no longer being resolvable with fluorescence microscopy 

(Figure 6.12c).  When imaged with atomic force microscopy, it can be seen that 

liquid-ordered domains still exist within the lipid bilayer, even after heat treatment; 

although they are seemingly limited to a diameter of ~ 250 nm.  The size of these 
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nanoscale domains approaches the diffraction limit of light, explaining why such 

domains appear to disappear with non-super resolution techniques. 

The results depicted in Figure 6.12a-c are in line with reports found in the literature 

85,118, which suggests that the substrate significantly inhibits coarsening beyond the 

nanometre scale, due to substrate roughness increasing membrane-substrate 

friction, local curvature and surface pinning.  The measurements of Figure 6.12d-f 

confirm the proposed hypothesis of Gunderson et al. 86, that substrate interaction 

indeed inhibits the reformation of the original domain structure by impeding domain 

coarsening to sub-optical resolutions.  The effects of passing through a miscibility 

phase transition on Lo/Ld domain structures are not completely reversible in 

supported lipid bilayers, in contrast to vesicles. 

 

Figure 6.12: Disruption of liquid-ordered and disordered domain structure by heat treatment.   
Fluorescence micrographs and AFM scans of lipid bilayer patches composed of 
DOPC:DPPC:Cholesterol (40:40:20 mol%) doped with 0.1 mol% Rh-DPPE and with 3 mol% NaP on 
a hydrophilic glass substrate.  Images (a,b) depict a phase-separated lipid patch before heat 
treatment, with accompanying line graph (c) from the line segment in AFM image, (b).  Dotted white 
line in (b) shows outline of micron scale domain. Lipid patches from the same area imaged with 
fluorescence and AFM respectively (d,e) after heat treatment, with accompanying line graph (f) from 
the line segment in AFM image (e).  White arrows in (e) indicate regions possessing nanoscale Lo 
domains.  Scale bars in (a,d) represent 50 µm. Scale bars in (b,e) represent 500 nm, with a colour bar 
representing a range of 0 - 4 nm. 
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Interestingly, similarities can be drawn between the effects that miscibility phase 

transition and cholesterol modulation have on domain structure in supported lipid 

membranes.  In both cases the substrate hinders domain movement, stabilising the 

shape and lateral distribution of micron scale domains, enabling them to be restored 

after cholesterol depletion, as shown above in Figure 6.9a-j, with the partial 

restoration of domain structure after a temperature cycle 86 . 

 

Figure 6.13: Image showing the relative positions of scans from Figure 6.12 (b,e).  Scans most 
likely coincided within the 20 x 20 µm scan depicted here, indicating that previously large-scale phase 
separation of Figure 6.12b, shown in blue, has been replaced by non-optically resolvable domains of 
Figure 6.12e, shown in green.  This figure simply shows the positions of the scans and that they are 
indeed from the same 20 µm2 area that was previously inhabited by micron-sized Lo /Ld domain 
structures.  Scale bar in the top right corner represents 5 µm and the colour bar represents a range of 
0 - 2 nm. 

Such reversible restructuring of un-coarsened domain patterns is absent in vesicle 

systems, in which liquid domains can freely move and coalesce to minimise their 

line tension.  In both cases it seems that only the complete disruption of such 

structures by entering a single, miscible, fully homogenised liquid phase causes the 

utter disruption of Lo domains across micron length scales, thus prohibiting their 
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reformation and return to original domain patterns.  These results indicate the 

persistence of a fraction of lipid structure, which can be exploited to reform domain 

structures after their partial disintegration.  

6.5.2 Preliminary investigations: Using wrinkled substrates to investigate 

the influence of curvature on phase separation 

An important factor in the lateral organisation of Lo/Ld domains of supported lipid 

bilayers is the local curvature of the substrate.  The impact of substrate curvature 

on bilayer structure has been extensively investigated and characterised but tends 

to require bespoke substrate materials, which are often complex to synthesise.  

Many of the current experimental investigations utilise adhered nanoparticles 

148,396,397, high-resolution surface etching 116,117,156 or preformed moulds; but such 

surface functionalisation techniques can be tricky to master and require various 

reagents.  As eluded to earlier in Chapter 3.3, the wrinkled substrate surface can be 

easily made by controllably buckling the surface of PDMS, utilising the simple, 

cheap and effective protocols described in Chapter 2.4.1. 

Additionally, wrinkled PDMS substrates can stably support lipid bilayers formed by 

vesicle fusion.  Wrinkled PDMS substrates therefore offer a perfect support 

substrate for investigating the impact of curvature on the membrane structure.  As 

part of a preliminary proof of concept, an example experiment using such wrinkled 

surfaces to supported phase separated lipid bilayers is discussed; demonstrating a 

facile method of creating curved surfaces to investigate their impact on membrane 

structure.  

Figure 6.15 depicts a DOPC/DPPC (50:50 mol%) continuously supported lipid 

bilayer formed on a reasonably flat (Figure 6.14a) and wrinkled (Figure 6.14b) 

PDMS substrate.  By heating the membranes to 60 oC, the bilayers were placed well 

above the composition miscibility temperature 398 and allowed to fully mix into a 

single miscible phase, before cooling to 20 oC over 4 hours; leaving a fully 

equilibrated  supported lipid bilayer 
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Figure 6.14: Impact of local curvature on gel domain formation.  AFM images of continuously 
supported lipid bilayers composed of DOPC:DPPC (50:50 mol%) on PDMS substrate with a flat (a) 
and wrinkled (b) geometry.  Below are accompanying lateral force microscopy images of the above 
lipid bilayers, emphasising the contrast between gel domains (bright regions) and liquid-disordered 
domains (dark region).  Dotted white regions in (c,d) highlight the absence of liquid-ordered domains 
on folded regions.  Scale bars in (a-d) represent 500 nm. 

As the temperature is reduced, gel domains nucleate in the bilayer and can be easily 

distinguished as regions of increased height (~ 1.6 nm higher than the surrounding 

Ld phase) on the topographic images (Figure 6.14a).  Although similar regions 

existed on the wrinkled substrate, they were obscured by the large height 

differences of the wrinkles.  The poor imaging of these areas can be effectively 

corrected by processing AFM images with line flattening 399; but alternatively, using 

the lateral force signal channel during imaging reveals the position of the Lβ 

domains.  As described in Chapter 2.6.3, this method of imaging is called lateral 

force microscopy and highlights differences in frictional interactions between the tip 

and the membrane.  The stiffer gel domains cause more tip drag and create a 

contrast between the gel and liquid domains, allowing for their easy identification, 

as seen in Figure 6.14c with the brighter domains.  Using this imaging method, lipid 
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domains could be easily located on the wrinkled topographies, and their noted 

absences from folded regions on the substrate surface (circled with white dotted 

lines of Figure 6.14b,d).  These folds in the wrinkled substrate are regions of extreme 

curvature 301, hence are unfavourable regions for gel domain formation, due to them 

preferring flatter regions as a result of the higher bending rigidity of Lβ domains 

156,158.   

Although preliminary, these results provide the initial steps to demonstrating how 

local substrate curvature of wrinkled PDMS substrates can be used to control the 

local membrane structure, favouring the formation of Lβ domains in specified 

regions, effectively ordering membranes on the nanoscale. 

6.6 Conclusion 

The substrate’s impact on supported lipid bilayers possessing Lo/Ld domains 

appears to go beyond increasing miscibility temperature and fixing domain 

movement.  Cholesterol depletion of lipid patches containing Lo/Ld domains disrupts 

the partitioning behaviour of fluorescent dyes, while partially retaining domain 

structure.  The addition of cholesterol into these systems can restore the original 

patch composition and distribution of lipid species.   

The unexpected diffusion of Rh-DPPE from the Ld phase into the coexisting Lo 

phase after cholesterol depletion could have potential consequences for 

fluorescence microscopy studies utilising phase-separated supported lipid bilayers; 

especially considering that the interpretation of many fluorescence microscopy 

measurements relies on the preferential partitioning of fluorophores to identify lipid 

phases.  Additionally, the observed effects were suggested to be due to the 

depletion of cholesterol, and not specific interactions with MβCD.  However, lipid 

patches containing a high proportion of saturated lipids appeared to possess an 

increased resistance to cholesterol depletion (corroborating with previous literature), 

leading to the process occurring over longer timescales compared to unsaturated 

systems.   

Phase separated supported lipid patches provide a unique model system that 

facilitates the investigation into how membrane species partitioning can dynamically 
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modulate with composition; all within a system affixed to a planar surface accessible 

to a variety of techniques.  Also, such properties may be utilised by supporting 

structures in biology, with supporting substrates stabilising the lateral organisation 

of biomembranes without removing local fluidity.   
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Chapter 7: Conclusions and Future Outlook 

This thesis explores the interplay between substrate surface properties and the 

behaviour of SLBs, and in particular, how surface properties such as roughness and 

hydrophilicity can be used to control and modified the SLB’s behaviour.  Commonly 

utilised substrates such as mica, glass and PDMS were demonstrated to impact the 

morphology, dynamics and composition of supported lipid bilayers formed by vesicle 

fusion, depending on the substrate’s innate interfacial properties or its surface 

modification.  The techniques of surface modification used in this thesis relied on 

simple and straightforward protocols, ensuring they could be easily applied to future 

studies that build on the presented work.  Several distinct studies are presented in 

this thesis, detailing the impacts of the substrates interfacial properties on SLB 

behaviour, including changes in membrane formation, dynamics, morphology and 

composition.  All of these results build on the same overarching strategy and 

highlight that appropriate consideration of substrate interactions is needed to 

understand and exploit SLB behaviour for biophysical investigations and to develop 

novel biointerfaces.  To further expand on this global vision, the main results of the 

thesis and their implications are discussed together in the next section. 

7.1 Thesis Summary 

The ability to control and utilise membrane-substrate interactions is becoming 

prevalent in multiple fields of research and development.  As briefly reviewed and 

discussed in Chapter 1, membrane-substrate interactions not only have important 

implications in developing our understanding of membrane behaviour in biological 

systems (for example the roles interfaces such as the cytoskeleton and extracellular 

matrix play in cellular response), but also in the future development of 

biotechnological interfaces; vital for technologies such as organ-on-chip devices. 

Probing the impacts that substrate interactions have on the behaviour and 

morphology of supported biomembranes is difficult due to the wide range of length 

and time scales of the interactions at play.  To help tackle this issue, Chapter 2 

introduces a convenient minimal model system, SLBs, to explore the impact that 
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substrates have on the adhered membrane behaviour.  Several techniques, namely 

AFM and epifluorescence microscopy, are used to investigate the extensive range 

of length and time scales required to characterise the substrates interfacial 

properties and their influence on SLB behaviour. 

In Chapter 3, various means of PDMS substrate modification based on air plasma-

treatment are demonstrated to control surface hydrophobicity, topography and 

response to mechanical stresses.  Each described system can readily support lipid 

bilayers and was exploited in the investigations of later chapters; exemplifying the 

versatility of PDMS materials in the formation of functional biointerfaces, while 

exploring the consequences of described interfacial properties of functionalised 

PDMS on model membrane systems.  Additionally, the outcomes of the studies 

presented in Chapter 3 highlighted the importance of full plasma-oxidation treatment 

of PDMS.  A partial plasma-oxidation treatment of PDMS is shown to lead to 

significant differences in substrate hydrophilicity and roughness, compared to a fully 

plasma-treated PDMS substrate.  SLBs readily form on both types of PDMS 

substrate when using GUV fusion, but their subsequent behaviour is very different, 

with partially plasma-treated PDMS later shown to induce the specific depletion of 

cholesterol from the SLBs.  Without proper consideration, surface treatment can 

have unexpected effects with drastic consequences on the properties and behaviour 

of adhered membranes, such as those detailed in Chapters 4, 5 and 6 utilising 

partially plasma-treated PDMS.   

Discussions in Chapter 3 also detailed techniques that are readily exploitable for 

future investigations exploring the effect of more exotic topographies on membrane 

behaviour; notably the impact of nanoscale wrinkles formed with PDMS.  Although 

these techniques have been previously documented and discussed in the literature 

(especially in the work of Cabral et al. 299,300), Chapter 3 highlights the chemical 

changes to the PDMS surface that accompany better understood topographical 

ones; these effects should not be overlooked.  Additionally, the identification of 

nano-cracks on the surface of plasma-treated PDMS after stretching could have 

important implications for the use of these materials in flexible electronics and cell 

stretching devices; especially in conjunction with the work on specific cholesterol 

depletion effects covered in Chapter 5.  PDMS substrates can be easily modified 

and adapted using simple techniques, with issues often considered caveats (such 
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as surface wrinkling, nanoscale cracking, and hydrophobic recovery) that can be 

beneficially employed in the development of new biotechnologies when applied with 

appropriate consideration.  

The PDMS substrates developed in Chapter 3 are put to use in the investigations of 

subsequent chapters.  In Chapter 4, it is shown that lipid patches formed by vesicle 

fusion on common substrates such as mica, glass and PDMS are not stable 

immediately after fusion.  Clear changes in membrane structure, such as a “mottled” 

pattern in lipid patch fluorescence and the formation of lipid protrusions indicate 

significant membrane reorganisation after vesicle fusion has completed.  The 

reorganisation of the membrane can even exist for extended periods of time, 

depending on lipid composition and interfacial properties such as substrate 

hydrophilicity.  Interestingly, the mottling pattern observed immediately after vesicle 

fusion could be employed as a crude indicator of substrate hydrophilicity, with the 

effect visibly absent for lipid patches formed on partially hydrophilic surfaces.  The 

mottling patterns and the formation of lipid protrusions discussed in Chapter 4 are 

still not fully understood.  The most likely possibility is that they originate from a 

combination of membrane-substrate friction experienced during vesicle fusion 

inducing inhomogeneities in lipid density 336,337, and the incompressibility of the lipid 

bilayer during the rapid fusion process 56.  However, a definite answer as to the 

reasons behind these morphological changes, especially the fluctuation in patch 

area after vesicle fusion, remains to be obtained.  The results of Chapter 4 clearly 

indicate that lipid patches are not fully equilibrated after vesicle fusion and, 

consequently, could impact on the subsequent membrane behaviour.  These 

studies are relevant to the formation and use of lipid patches in biophysical 

investigation, especially considering the fact that lipid patches are an experimental 

tool that is growing in popularity 311.  This could have important consequence on 

how lipid patches are utilised, for example in bilayer-protein interaction studies.  

Indeed, although the current literature has already demonstrated that changes in 

substrate roughness, membrane tension and surface interactions during lipid patch 

formation can alter the pathways of SLB formation 108,110,111 and lipid distribution 

within the leaflets 110, the impact such differences have on subsequent protein-

bilayer interactions remains unclear.  For example, a recent study utilised lipid 

patches formed on flexible PDMS substrates to investigate the role of membrane 
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tension on the efficiency of incorporated fusion proteins syntaxin 1, synaptobrevin 

and SNAP 25 318; but the study made scarce mention of the substrate’s impact on 

observed behaviours.  In light of the results of Chapter 4, knowledge of the 

substrate’s influence could alter how the results of this work are interpreted, as 

tension in lipid patches, and subsequently imposed on the proteins, is possibly not 

fully equilibrated after membrane fusion.  Although the investigations of Chapter 4 

are preliminary, the results presented provide novel insights into lipid membrane 

reorganisation after vesicle fusion by addressing a time frame overlooked by most 

experimental studies.  

In Chapter 5, it is shown that plasma-modified PDMS substrates can specifically 

extract cholesterol directly from the adjacent supported lipid bilayer through simple 

physical contact.  Importantly, PDMS substrates can leach small hydrophobic 

molecules directly out of an adhered lipid membrane, while leaving other membrane 

components stably supported; thereby significantly altering the supported 

biomembrane’s composition and biophysical properties.  A comprehensive review 

of the literature indicates this to be the first reported case where the composition of 

an adhered biomembrane is altered through membrane-substrate interactions.  

Previous reports have detailed the loss of small hydrophobic molecules from the 

surrounding solution, but not specifically at the membrane-substrate interface 265.  

This finding has significant consequences for our understanding of the impact that 

PDMS materials have on bioassays and cell culture studies, as not only the 

incubation fluid but the biomembrane composition could be directly altered by the 

PDMS interface.  A model describing the depletion of cholesterol from supported 

membranes derived by Litz et al. 199 was appropriately adapted to the present 

experimental data, relating the changes in lipid patch area fraction to the changing 

cholesterol mole fraction in lipid patches.  It should be noted that the experimental 

observations of Litz et al. 199 were obtained with DOPC lipid patches exposed to the 

well-known MβCD cholesterol extraction method.  In this thesis, the results of Litz 

et al. could be reasonably reproduced using the PDMS substrate-based cholesterol 

extraction method.  The successful application of this model in Chapter 5 

corroborates the growing evidence that two populations of cholesterol exist within 

lipid membranes, one being more accessible to depletion than the other.  It is worth 

mentioning that an interesting parallel can be drawn between the MβCD and PDMS 
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cholesterol extraction methods: the MβCD molecules possess a hydrophilic surface 

and a sub-nanoscale hydrophobic cavity that can selectively remove cholesterol 

from bilayers.  In this thesis, the experimental results suggest that similar features 

may exist on partially plasma-treated PDMS substrates with nanoscale hydrophobic 

and hydrophilic regions at the substrate interfaces potentially causing the depletion 

of cholesterol from adhered SLBs.  Such combination of surface properties may go 

some way to explaining the poorly understood mechanisms utilised by nanoparticles 

and designed nanomaterials 138,400, HIV 36,37,401, and the surface of peptides 402,403 

to disrupt and penetrate membranes with ease.  The findings of Chapter 5 have 

hence significant implications not only for biotechnological developments relying on 

polymeric materials, but also to further our understanding of the impact supporting 

substrates have on biological materials; cells might utilise such mechanisms to 

modify biomembrane composition and behaviour.   

Finally, Chapter 6 builds on the findings of Chapter 5 and exploits the unique 

properties of partially plasma-treated PDMS to investigate the effect of substrate-

led cholesterol depletion on the phase behaviour of SLBs.  Supported phase 

separated lipid bilayers were depleted of cholesterol, revealing how being adhered 

to a substrate influences transformations in Lo/Ld domain structure and morphology 

as the system’s composition is altered.  This unexpectedly resulted in the disruption 

of the partitioning behaviour of fluorescent dyes, while partially retaining domain 

structure.  Upon cholesterol depletion, Rh-DPPE was able to penetrate the Lo region 

from which the fluorophore is usually strongly excluded.  Upon the reinsertion of 

cholesterol into these systems, fluorescence partitioning was restored, and pore 

defects healed.  This demonstrated that lipid patch composition, domain structure 

and lateral organisation could be recovered after cholesterol’s extraction.  Such 

effects are not clearly present in vesicle systems due to the domains being freely 

able to coarsen and coalesce over micron length scales.  The results described in 

Chapter 6 hence also have wider implications regarding how the preferential 

partitioning of membrane species can be disrupted in supported lipid bilayer 

systems.  The work demonstrates that shifts in membrane composition can 

drastically redistribute membrane species between domain structures, and likely 

facilitate the formation of non-equilibrium structures in supported lipid bilayers.   
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The development of micro/nanoengineered functional biomaterials facilitates the 

characterisation, manipulation and recreation of dynamical cell-microenvironments 

at cellular (micrometre) and subcellular (nanometre) length scales 404.  However, 

such development requires a great deal of consideration for the interfacial properties 

of the substrate materials, as they can significantly perturb the system's behaviour.  

The work of this thesis contributes to the development of such functional 

biomaterials by furthering current understanding of the substrate influence on SLB 

behaviour and presenting methods by which the interfacial properties of substrates 

can be used to manipulate model SLBs’ morphology and behaviour.  Notably, 

materials like PDMS are emerging as a popular platform for developing 3D tissue 

models and organ-on-chip devices.  Indeed, many recent organ-on-chip studies 

have utilised PDMS as a base substrate to create, for example, patterned substrates 

that promote differentiation of stem cells 405, mechanically active “lung-on-a-chip” 

devices that simulate the stresses of breathing motions on supported lung cells and 

tissues 176, and the construction of complex multi-shaped, flexible scaffolding to host 

3D tissue models 406.  The results presented in this thesis therefore add novel 

insights that will help guide the functionalisation of PDMS substrates and 

interpretation of results from SLB systems using PDMS as a substrate.  The 

understanding of the nanoscale properties of substrate materials will also likely be 

key to the development of other novel biotechnological interfaces, by acting as a 

well-understood reference point.  Overall, the work of this thesis contributes to these 

efforts by detailing and characterising simple and effective methods for manipulating 

substrate interactions to better exploit biological interfaces for scientific 

investigations utilising SLBs, as well as for developing new functional biointerfaces. 

7.2 Outlook and Further Work 

The work conducted in this thesis opens many possibilities for further studies, 

developments and novel research avenues.  Some of the preliminary results in the 

thesis also merit further investigation.  Presented here are several unresolved 

questions and proposed investigations, the exploration of which would complement 

the discussions of this thesis. 
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Further characterisation of partially plasma-treated PDMS 

The partial plasma-treatment of PDMS substrates described in this thesis could be 

obtained and reproduced consistently (along with its influence on adhered 

membrane behaviour).  However, the exact changes it induced in the PDMS surface 

chemistry was not accurately measured.  Detailed knowledge of the silica-like 

surface layer’s composition and distribution across the surface remains unclear, but 

likely key to achieving a full understanding of the impact of the functionalised 

substrate on the SLBs behaviour.  This could be achieved using techniques such as 

X-ray photoelectron spectroscopy (XPS) which would provide more detailed 

information about changes in the chemical composition of PDMS during plasma-

treatment.  Current instruments can reach a lateral resolution below 10 nm 407, highly 

relevant here to identify the presence of a gradual chemical variation or discrete, 

patchy surface of hydrophilic/hydrophobic domains on the partially plasma-treated 

PDMS surface.   

Alternatives to partially plasma-treated PDMS 

Given the difficulty in fully controlling and understanding the chemical details of 

partially plasma-treated PDMS, it would be highly beneficial to recreate the effects 

demonstrated in Chapter 5 using materials other than PDMS.  This would be useful 

both to expand research possibilities and to provide a point of comparison for PDMS 

experiments, thereby furthering our understanding of the PDMS ability to modulate 

the SLB’s properties and behaviour.  Hence, further investigations to recreate a 

partially hydrophilic surface using a more controlled means of surface 

functionalisation would be of significant interest.  One example could be the 

deposition of thin, nanoscale hydrophobic features onto a porous hydrophilic 

surface, in an attempt to recreate the effects demonstrated with partially plasma-

treated PDMS.  Practically this could be achieved using hydrophobic flakes of 

graphene deposited onto a hydrophilic film of polyacrylamide (PAA) supported on 

glass.  Such investigations would also help verify if there is a generality to behaviour 

described in Chapter 5, with polymeric substrates exhibiting partially hydrophilic 

interfaces being able to specifically deplete lipid species while leaving other 

membrane components stably supported.  If successful, such measurements would 

stimulate and help guide further studies relying on surface hydrophilicity and 
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patterning in the specific extraction of molecules from lipid membranes without loss 

of overall membrane integrity. 

Impact of osmotic stresses on lipid patch reorganisation in the absence of 

ionic effects 

The preliminary experiments detailed in Chapter 4.4 rely on osmotic shocks to test 

whether the initial tension in the lipid vesicles has had an effect on the area 

instabilities observed following vesicle fusion.  Although the results show a possible 

relationship between the two factors, a definitive conclusion could not be drawn 

because the influence of ionic effects was not accounted for.  Changes in the NaCl 

concentration of the buffer solutions for osmotic shocking affected the ionic strength 

conditions between experiments, which could have an impact on vesicle adhesion, 

and subsequent rupture mechanics 142,243,333.  Further experiments using non-ionic 

sucrose to effectively modify osmotic stress in vesicles 108 could help clarify the 

issue and verify the link between the osmotic tension in vesicles and the area 

instabilities observed in lipid patches after fusion.   

Precise identification of critical cholesterol mole fractions  

The observation of a marked increase in cholesterol depletion above a 0.4 

cholesterol mole fraction supports the current idea of a non-random organisation of 

cholesterol within the membrane and the presence of critical cholesterol mole 

fractions, at which sharp changes in membrane behaviour occur.  Confirmation of 

such non-random organisation of cholesterol within membranes would be a 

significant step forward in our understanding of membrane structure and the role it 

plays in overall membrane dynamics and function.  Indeed, cholesterol’s 

organisation within bilayers not only facilitates lateral organisation of the membrane, 

but dictates its chemical activity 408,409, cholesterol solubility 351,410 and various 

membrane properties including thickness, bending rigidity and tail chain ordering 

57,77,323,327,351.  A better understanding of cholesterol organisation within membranes 

would improve characterisation and predictions of the membrane behaviour.  It 

would also help clarify the role of cholesterol in the formation and stabilisation of the 

more contentious lipid rafts.  Experiments discussed in Chapter 5 provided a small 

contribution to this work, with indications of critical cholesterol mole fractions being 
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present in lipid patches losing cholesterol.  This was achieved using a novel 

experimental approach for cholesterol depletion from SLBs. 

Further investigation using a more extensive range of cholesterol mole fractions to 

precisely identify critical mole fractions would complement this work and provide a 

more comprehensive picture of the hypothesised two cholesterol populations.  

Additionally, investigations using a wider variety of sterols and lipids species to 

characterise the specificity of substrate-induced sterol depletion may be conducted.  

Such investigations could reveal whether the specificity regarding cholesterols 

depletion in lipid membranes is linked to the molecule’s hydrophobicity, steric 

properties, presence of specific chemical groups, as well as the chemical structure 

of the surrounding lipid species. 

Temperature controlled measurements of ternary lipid mixtures 

Chapter 6 focuses on the effects relating changes in the lipid patch composition to 

the membrane phase behaviour.  Quantitative measurements relating these two 

properties are however still sparse, with much room for additional data points.  An 

obvious way forward would be a systematic approach to gather a more 

comprehensive analysis of the changes in the lipid patch phases behaviour during 

cholesterol depletion, hence allowing a more detailed and complete understanding 

of the link.  One possibility would be to extend the investigations by using a 

temperature-controlled stage during epifluorescence measurements.  This would 

allow the measurement of lipid patch miscibility temperature, including how this 

temperature is altered during cholesterol depletion.  Importantly, it would help 

quantify the impact the Rh-DPPE redistribution can have on the membrane phase 

behaviour, particularly if the infusion of Rh-DPPE significantly changes the 

miscibility temperature of Lo regions due to its bulky steric groups disrupting tail 

chain packing and local lipid order.   

Impact of substrate interactions on fluorophore and biomolecule partitioning 

in membranes 

In general, the work of Chapter 6 while still open for improvement, provides thought-

provoking results with respect to our current understanding of the changes in the 

partitioning properties of fluorophores (and possibly other membrane species) in 

SLBs undergoing compositional changes.  An extension to these investigations 
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would expand on the selection of fluorophores used to label lipid patches.  Utilising 

a range of fluorophores with various chemical structures and properties, a more 

comprehensive understanding and characterisation of the impact of substrate 

interactions influence fluorophore partitioning behaviour during a disruption in 

composition could be acquired.  For example, more hydrophilic fluorophores such 

as fluorescein would provide a comparison of how fluorophore hydrophilicity impact 

the behaviour observed in Chapter 6.  Such studies would complement the work of 

Bordovsky et al. 381, where hydrophobic interactions between fluorophores and the 

membrane were demonstrated to strongly influence partitioning selectivity. 

There are numerous membranes biomolecules that are known to be excluded from 

the Lo phase in liquid-liquid coexisting systems; for example, human caveolin-3 and 

peripheral myelin protein-22 are known to preferentially partition into more ordered 

regions of lipid membranes 411.  Both of these proteins are directly related to several 

disorders including Alzheimer’s disease 412 and Charcot-Marie-Tooth disease 413.  

Therefore understanding why they have a preference for locating in more ordered 

regions of the membrane may illuminate the role of these proteins in the disease 

mechanisms and pathology.  As highlighted in Chapter 6, the presence of a 

substrate can modify the partitioning behaviour of membrane-bound species.  A 

PDMS substrate could provide a minimal model system for investigation on how 

protein-cytoskeletal interactions influence the partitioning of human caveolin-3 and 

peripheral myelin protein-22, and its implications on the development of subsequent 

pathologies.  Although preliminary, repeating the investigations of Chapter 6 with 

these proteins could help elucidate how the segregation of these species can be 

manipulated through substrate interactions.  More importantly, further 

understanding of how to disrupt the localisation of these proteins into more ordered 

regions of the membrane may inform the development of novel therapeutics. 



Bibliography 

170 
 

Bibliography 

1. Castellana, E. T. & Cremer, P. S. Solid supported lipid bilayers: From 
biophysical studies to sensor design. Surf. Sci. Rep. 61, 429–444 (2006). 

2. Tero, R. Substrate effects on the formation process, structure and 
physicochemical properties of supported lipid bilayers. Materials (Basel). 5, 
2658–2680 (2012). 

3. Mazur, F., Bally, M., Städler, B. & Chandrawati, R. Liposomes and lipid 
bilayers in biosensors. Adv. Colloid Interface Sci. 249, 88–99 (2017). 

4. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–
90 (2001). 

5. Deamer, D. W. Origins of life: How leaky were primitive cells? Nature 454, 37–
8 (2008). 

6. Thiam, A. R., Farese Jr, R. V. & Walther, T. C. The biophysics and cell biology 
of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013). 

7. Welte, M. A. Expanding Roles for Lipid Droplets. Curr. Biol. 25, 470–481 
(2015). 

8. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. 
Cell Biol. 1, 31–39 (2000). 

9. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they 
are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008). 

10. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell 
membranes. Science 175, 720–31 (1972). 

11. Lingwood, D. & Simons, K. Lipid Rafts As a Membrane-Organizing Principle. 
Science 327, 46–50 (2010). 

12. Yetukuri, L., Ekroos, K., Vidal-Puig, A. & Orešič, M. Informatics and 
computational strategies for the study of lipids. Biochim. Biophys. Acta - Mol. 
Cell Biol. Lipids 1811, 991–999 (2011). 

13. Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, 
D527-32 (2007). 

14. Bogdanov, M., Sun, J., Kaback, H. R. & Dowhan, W. A phospholipid acts as 
a chaperone in assembly of a membrane transport protein. J. Biol. Chem. 271, 
11615–8 (1996). 

15. Dowhan, W. MOLECULAR BASIS FOR MEMBRANE PHOSPHOLIPID 
DIVERSITY:Why Are There So Many Lipids? Annu. Rev. Biochem. 66, 199–
232 (1997). 

16. Honerkamp-Smith, A. R., Veatch, S. L. & Keller, S. L. An introduction to critical 
points for biophysicists; observations of compositional heterogeneity in lipid 
membranes. Biochim. Biophys. Acta 1788, 53–63 (2009). 



Bibliography 

171 
 

17. Machta, B. B., Papanikolaou, S., Sethna, J. P. & Veatch, S. L. Minimal Model 
of Plasma Membrane Heterogeneity Requires Coupling Cortical Actin to 
Criticality. Biophys. J. 100, 1668–1677 (2011). 

18. Connell, S. D., Heath, G., Olmsted, P. D. & Kisil, A. Critical point fluctuations 
in supported lipid membranes. Faraday Discuss. 161, 91–111; discussion 
113-150 (2013). 

19. Veatch, S. L. et al. Critical Fluctuations in Plasma Membrane Vesicles. ACS 
Chem. Biol. 3, 287–293 (2008). 

20. Simons, K. & Van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 
6197–6202 (1988). 

21. Brown, D. A. Lipid Rafts, Detergent-Resistant Membranes, and Raft Targeting 
Signals. Physiology 21, 430–439 (2006). 

22. Owen, D. M., Magenau, A., Majumdar, A. & Gaus, K. Imaging Membrane Lipid 
Order in Whole, Living Vertebrate Organisms. Biophys. J. 99, L7–L9 (2010). 

23. Gaus, K., Zech, T. & Harder, T. Visualizing membrane microdomains by 
Laurdan 2-photon microscopy (Review). Mol. Membr. Biol. 23, 41–48 (2006). 

24. Gaus, K. et al. Visualizing lipid structure and raft domains in living cells with 
two-photon microscopy. Proc. Natl. Acad. Sci. 100, 15554–15559 (2003). 

25. Edidin, M. The State of Lipid Rafts: From Model Membranes to Cells. Annu. 
Rev. Biophys. Biomol. Struct. 32, 257–283 (2003). 

26. Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-
anchored protein at the apical surface of MDCK cells examined at a resolution 
of. J. Cell Biol. 142, 69–84 (1998). 

27. Carquin, M. et al. Recent progress on lipid lateral heterogeneity in plasma 
membranes: from rafts to submicrometric domains. Prog. Lipid Res. 62, 1–24 
(2015). 

28. Mayor, S. & Rao, M. Rafts: Scale-Dependent, Active Lipid Organization at the 
Cell Surface. Traffic 5, 231–240 (2004). 

29. Gumí-Audenis, B. et al. Structure and Nanomechanics of Model Membranes 
by Atomic Force Microscopy and Spectroscopy: Insights into the Role of 
Cholesterol and Sphingolipids. Membranes (Basel). 6, (2016). 

30. Chiantia, S., Kahya, N. & Schwille, P. Raft Domain Reorganization Driven by 
Short- and Long-Chain Ceramide: A Combined AFM and FCS Study. 
Langmuir 23, 7659–7665 (2007). 

31. Brender, J. R., McHenry, A. J. & Ramamoorthy, A. Does cholesterol play a 
role in the bacterial selectivity of antimicrobial peptides? Front. Immunol. 3, 
195 (2012). 

32. Losada-Pérez, P. et al. Melittin disruption of raft and non-raft-forming 
biomimetic membranes: A study by quartz crystal microbalance with 
dissipation monitoring. Colloids Surfaces B Biointerfaces 123, 938–944 
(2014). 



Bibliography 

172 
 

33. Tsukamoto, M., Kuroda, K., Ramamoorthy, A. & Yasuhara, K. Modulation of 
raft domains in a lipid bilayer by boundary-active curcumin. Chem. Commun. 
50, 3427 (2014). 

34. Kato, A. et al. Phase Separation on a Phospholipid Membrane Inducing a 
Characteristic Localization of DNA Accompanied by Its Structural Transition. 
J. Phys. Chem. Lett. 1, 3391–3395 (2010). 

35. Itzhaki, R. & Wozniak, M. Herpes simplex virus type 1, apolipoprotein E, and 
cholesterol: A dangerous liaison in Alzheimer’s disease and other disorders. 
Prog. Lipid Res. 45, 73–90 (2006). 

36. Hardy, G. J. et al. HIV-1 antibodies and vaccine antigen selectively interact 
with lipid domains. Biochim. Biophys. Acta - Biomembr. 1838, 2662–2669 
(2014). 

37. Schwarzer, R. et al. The cholesterol‐binding motif of the HIV‐1 glycoprotein 
gp41 regulates lateral sorting and oligomerization. Cell. Microbiol. 16, 1565–
1581 (2014). 

38. Simons, K. & Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 
110, 597–603 (2002). 

39. Zimina, E. & Bruckner-Tuderman, L. Lipid Rafts and Bullous Diseases. Open 
Dermatol. J. 3, 173–177 (2009). 

40. Rios, F. J. O. et al. Uptake of oxLDL and IL-10 Production by Macrophages 
Requires PAFR and CD36 Recruitment into the Same Lipid Rafts. PLoS One 
8, e76893 (2013). 

41. Allan Butterfield, D. Amyloid β-peptide (1-42)-induced Oxidative Stress and 
Neurotoxicity: Implications for Neurodegeneration in Alzheimer’s Disease 
Brain. A Review. Free Radic. Res. 36, 1307–1313 (2002). 

42. Mizuno, T. et al. Cholesterol-dependent generation of a seeding amyloid beta-
protein in cell culture. J. Biol. Chem. 274, 15110–15114 (1999). 

43. Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W. & Harder, T. 
Condensation of the plasma membrane at the site of T lymphocyte activation. 
J. Cell Biol. 171, 121–31 (2005). 

44. Schörken, U. & Kempers, P. Lipid biotechnology: Industrially relevant 
production processes. Eur. J. Lipid Sci. Technol. 111, 627–645 (2009). 

45. Marsh, D. Handbook of Lipid Bilayers. (CRC Press, 2013). 

46. Israelachvili, J. N. Intermolecular and Surface Forces. in Intermolecular and 
Surface Forces (Elsevier, 2011). 

47. Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. 
Chem. Soc. Rev. 41, 79–85 (2012). 

48. Chen, I. A. & Walde, P. From self-assembled vesicles to protocells. Cold 
Spring Harb. Perspect. Biol. 2, a002170 (2010). 

49. Armstrong, R. Designing with protocells: applications of a novel technical 
platform. Life (Basel, Switzerland) 4, 457–90 (2014). 



Bibliography 

173 
 

50. Ma, W. & Feng, Y. Protocells: at the interface of life and non-life. Life (Basel, 
Switzerland) 5, 447–58 (2015). 

51. Sakuma, Y. & Imai, M. From vesicles to protocells: the roles of amphiphilic 
molecules. Life (Basel, Switzerland) 5, 651–75 (2015). 

52. Deamer, D., Dworkin, J. P., Sandford, S. A., Bernstein, M. P. & Allamandola, 
L. J. The first cell membranes. Astrobiology 2, 371–381 (2002). 

53. Frolov, V. A., Shnyrova, A. V & Zimmerberg, J. Lipid polymorphisms and 
membrane shape. Cold Spring Harb. Perspect. Biol. 3, a004747 (2011). 

54. Berg, J. M., Tymoczko, J. L. & Stryer, L. Fatty Acids Are Key Constituents of 
Lipids. (2002). 

55. Kollmitzer, B., Heftberger, P., Rappolt, M. & Pabst, G. Monolayer 
spontaneous curvature of raft-forming membrane lipids. Soft Matter 9, 10877 
(2013). 

56. Staykova, M., Arroyo, M., Rahimi, M. & Stone, H. A. Confined Bilayers 
Passively Regulate Shape and Stress. Phys. Rev. Lett. 110, 028101 (2013). 

57. Pan, J., Tristram-Nagle, S. & Nagle, J. F. Effect of cholesterol on structural 
and mechanical properties of membranes depends on lipid chain saturation. 
Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 80, 021931 (2009). 

58. Byfield, F. J., Aranda-Espinoza, H., Romanenko, V. G., Rothblat, G. H. & 
Levitan, I. Cholesterol Depletion Increases Membrane Stiffness of Aortic 
Endothelial Cells. Biophys. J. 87, 3336–3343 (2004). 

59. Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of 
ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 
(2003). 

60. Rahimi, M. et al. Shape Transformations of Lipid Bilayers Following Rapid 
Cholesterol Uptake. Biophys. J. 111, 2651–2657 (2016). 

61. Ryu, Y.-S. et al. Reconstituting ring-rafts in bud-mimicking topography of 
model membranes. Nat. Commun. 5, 4507 (2014). 

62. Hafez, I. M. & Cullis, P. R. Roles of lipid polymorphism in intracellular delivery. 
Adv. Drug Deliv. Rev. 47, 139–148 (2001). 

63. Müller, R. H., Mäder, K. & Gohla, S. Solid lipid nanoparticles (SLN) for 
controlled drug delivery – a review of the state of the art. Eur. J. Pharm. 
Biopharm. 50, 161–177 (2000). 

64. Bender, J. et al. Lipid cubic phases for improved topical drug delivery in 
photodynamic therapy. J. Control. Release 106, 350–360 (2005). 

65. Madene, A., Jacquot, M., Scher, J. & Desobry, S. Flavour encapsulation and 
controlled release - a review. Int. J. Food Sci. Technol. 41, 1–21 (2006). 

66. Silvius, J. R. Thermotropic phase transitions of pure lipids in model 
membranes and their modifications by membrane proteins. Lipid-protein 
Interact. 2, 239–281 (1982). 



Bibliography 

174 
 

67. Jacobson, K. & Papahadjopoulos, D. Phase transitions and phase 
separations in phospholipid membranes induced by changes in temperature, 
pH, and concentration of bivalent cations. Biochemistry 14, 152–161 (1975). 

68. Burns, M., Wisser, K., Wu, J., Levental, I. & Veatch, S. L. Miscibility Transition 
Temperature Scales with Growth Temperature in a Zebrafish Cell Line. 
Biophys. J. 113, 1212–1222 (2017). 

69. Needham, D. & Nunn, R. S. Elastic deformation and failure of lipid bilayer 
membranes containing cholesterol. Biophys. J. 58, 997–1009 (1990). 

70. Staykova, M., Holmes, D. P., Read, C. & Stone, H. A. Mechanics of surface 
area regulation in cells examined with confined lipid membranes. Proc. Natl. 
Acad. Sci. U. S. A. 108, 9084–9088 (2011). 

71. Staykova, M. & Stone, H. a. The role of the membrane confinement in the 
surface area regulation of cells. Commun. Integr. Biol. 4, 616–618 (2011). 

72. Veatch, S. L. & Keller, S. L. Seeing spots: Complex phase behavior in simple 
membranes. Biochim. Biophys. Acta - Mol. Cell Res. 1746, 172–185 (2005). 

73. Connell, S. D. & Smith, D. A. The atomic force microscope as a tool for 
studying phase separation in lipid membranes (Review). Mol. Membr. Biol. 
23, 17–28 (2009). 

74. Aufderhorst-Roberts, A., Chandra, U. & Connell, S. D. Three-Phase 
Coexistence in Lipid Membranes. Biophys. J. 112, 313–324 (2017). 

75. Johnston, L. J. Nanoscale Imaging of Domains in Supported Lipid 
Membranes. Langmuir 23, 5886–5895 (2007). 

76. Seeger, H. M., Marino, G., Alessandrini, A. & Facci, P. Effect of physical 
parameters on the main phase transition of supported lipid bilayers. Biophys. 
J. 97, 1067–76 (2009). 

77. Alwarawrah, M., Dai, J. & Huang, J. A Molecular View of the Cholesterol 
Condensing Effect in DOPC Lipid Bilayers. J. Phys. Chem. B 114, 7516–23 
(2010). 

78. Vist, M. R. & Davis, J. H. Phase equilibria of 
cholesterol/dipalmitoylphosphatidylcholine mixtures: deuterium nuclear 
magnetic resonance and differential scanning calorimetry. Biochemistry 29, 
451–464 (1990). 

79. Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I. & Karttunen, M. Ordering 
effects of cholesterol and its analogues. Biochim. Biophys. Acta - Biomembr. 
1788, 97–121 (2009). 

80. Cicuta, P., Keller, S. L. & Veatch, S. L. Diffusion of Liquid Domains in Lipid 
Bilayer Membranes. J. Phys. Chem. B 111, 3328–3331 (2007). 

81. Veatch, S. L., Leung, S. S. W., Hancock, R. E. W. & Thewalt, J. L. Fluorescent 
Probes Alter Miscibility Phase Boundaries in Ternary Vesicles. J. Phys. Chem. 
B 111, 502–504 (2007). 

82. Veatch, S. L. & Keller, S. L. Organization in Lipid Membranes Containing 



Bibliography 

175 
 

Cholesterol. Phys. Rev. Lett. 89, 268101 (2002). 

83. Bagatolli, L. A. & Gratton, E. A correlation between lipid domain shape and 
binary phospholipid mixture composition in free standing bilayers: A two-
photon fluorescence microscopy study. Biophys. J. 79, 434–47 (2000). 

84. Bhatia, T., Cornelius, F. & Ipsen, J. H. Capturing suboptical dynamic 
structures in lipid bilayer patches formed from free-standing giant unilamellar 
vesicles. Nat. Protoc. 12, 1563–1575 (2017). 

85. Bhatia, T., Husen, P., Ipsen, J. H., Bagatolli, L. A. & Simonsen, A. C. Fluid 
domain patterns in free-standing membranes captured on a solid support. 
Biochim. Biophys. Acta - Biomembr. 1838, 2503–2510 (2014). 

86. Gunderson, R. S. & Honerkamp-Smith, A. R. Liquid-liquid phase transition 
temperatures increase when lipid bilayers are supported on glass. Biochim. 
Biophys. Acta - Biomembr. 1860, 1965–1971 (2018). 

87. Blosser, M. C. et al. Transbilayer Colocalization of Lipid Domains Explained 
via Measurement of Strong Coupling Parameters. Biophys. J. 109, 2317–
2327 (2015). 

88. Appleyard, J.Y. & Yang, J.  The Main Phase Transition of Mica-Supported 
Phosphatidylcholine Membranes. J. Phys. Chem. B 104, 8097–8100 (2000). 

89. Putzel, G. G., Uline, M. J., Szleifer, I. & Schick, M. Interleaflet Coupling and 
Domain Registry in Phase-Separated Lipid Bilayers. Biophys. J. 100, 996–
1004 (2011). 

90. Fan, J., Sammalkorpi, M. & Haataja, M. Formation and regulation of lipid 
microdomains in cell membranes: Theory, modeling, and speculation. FEBS 
Lett. 584, 1678–1684 (2010). 

91. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 
463, 485–492 (2010). 

92. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 
1216–9 (2009). 

93. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane 
crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. 
Mol. Cell Biol. 2, 793–805 (2001). 

94. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the 
stiffness of their substrate. Science 310, 1139–43 (2005). 

95. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs 
stem cell lineage specification. Cell 126, 677–89 (2006). 

96. Bezanilla, M., Gladfelter, A. S., Kovar, D. R. & Lee, W.-L. Cytoskeletal 
dynamics: a view from the membrane. J. Cell Biol. 209, 329–37 (2015). 

97. Suetsugu, S., Kurisu, S. & Takenawa, T. Dynamic Shaping of Cellular 
Membranes by Phospholipids and Membrane-Deforming Proteins. Physiol. 
Rev. 94, 1219–1248 (2014). 

98. Heinemann, F., Vogel, S. K. & Schwille, P. Lateral Membrane Diffusion 



Bibliography 

176 
 

Modulated by a Minimal Actin Cortex. Biophys. J. 104, 1465–1475 (2013). 

99. Arumugam, S., Petrov, E. P. & Schwille, P. Cytoskeletal pinning controls 
phase separation in multicomponent lipid membranes. Biophys. J. 108, 1104–
13 (2015). 

100. Honigmann, A. et al. A lipid bound actin meshwork organizes liquid phase 
separation in model membranes. Elife 3, 1–16 (2014). 

101. Fritzsche, M. et al. Self-organizing actin patterns shape membrane 
architecture but not cell mechanics. Nat. Commun. 8, 14347 (2017). 

102. Mulla, Y., Aufderhorst-Roberts, A. & Koenderink, G. H. Shaping up synthetic 
cells. Phys. Biol. 15, 041001 (2018). 

103. Tombari, E., Salvetti, G., Ferrari, C. & Johari, G. P. Thermodynamic functions 
of water and ice confined to 2nm radius pores. J. Chem. Phys. 122, 104712 
(2005). 

104. Motegi, T., Yamazaki, K., Ogino, T. & Tero, R. Substrate-Induced Structure 
and Molecular Dynamics in a Lipid Bilayer Membrane. Langmuir 33, 14748–
14755 (2017). 

105. Schoch, R. L., Barel, I., Brown, F. L. H. & Haran, G. Lipid diffusion in the distal 
and proximal leaflets of supported lipid bilayer membranes studied by single 
particle tracking. J. Chem. Phys. 148, 123333 (2018). 

106. Reichert, W. M., Bruckner, C. J. & Joseph, J. Langmuir-Blodgett films and 
black lipid membranes in biospecific surface-selective sensors. Thin Solid 
Films 152, 345–376 (1987). 

107. Wu, H.-L., Chen, P.-Y., Chi, C.-L., Tsao, H.-K. & Sheng, Y.-J. Vesicle 
deposition on hydrophilic solid surfaces. Soft Matter 9, 1908–1919 (2013). 

108. Hamai, C., Cremer, P. S. & Musser, S. M. Single Giant Vesicle Rupture Events 
Reveal Multiple Mechanisms of Glass-Supported Bilayer Formation. Biophys. 
J. 92, 1988–1999 (2007). 

109. Orozco-Alcaraz, R. & Kuhl, T. L. Interaction forces between DPPC bilayers on 
glass. Langmuir 29, 337–343 (2013). 

110. Fuhrmans, M. & Müller, M. Mechanisms of Vesicle Spreading on Surfaces: 
Coarse-Grained Simulations. Langmuir 29, 4335–4349 (2013). 

111. Kataoka-Hamai, C. & Yamazaki, T. Induced Rupture of Vesicles Adsorbed on 
Glass by Pore Formation at the Surface–Bilayer Interface. Langmuir 31, 
1312–1319 (2015). 

112. Seeger, H. M., Cerbo, A. D. Di, Alessandrini, A. & Facci, P. Supported lipid 
bilayers on mica and silicon oxide: Comparison of the main phase transition 
behavior. J. Phys. Chem. B 114, 8926–8933 (2010). 

113. Scomparin, C., Lecuyer, S., Ferreira, M., Charitat, T. & Tinland, B. Diffusion 
in supported lipid bilayers: influence of substrate and preparation technique 
on the internal dynamics. Eur. Phys. J. E. Soft Matter 28, 211–20 (2009). 

114. Przybylo, M. et al. Lipid Diffusion in Giant Unilamellar Vesicles Is More than 2 



Bibliography 

177 
 

Times Faster than in Supported Phospholipid Bilayers under Identical 
Conditions. Langmuir 22, 9096–9099 (2006). 

115. Contreras, F. X., Sánchez-Magraner, L., Alonso, A. & Goñi, F. M. Transbilayer 
( flip-flop ) lipid motion and lipid scrambling in membranes. FEBS Lett. 584, 
1779–1786 (2010). 

116. Blachon, F. et al. Nanoroughness Strongly Impacts Lipid Mobility in Supported 
Membranes. Langmuir 33, 2444–2453 (2017). 

117. Yoon, T.-Y. et al. Topographic control of lipid-raft reconstitution in model 
membranes. Nat. Mater. 5, 281–285 (2006). 

118. Goodchild, J. A., Walsh, D. L. & Connell, S. D. Substrate Roughness 
Significantly Affects Bilayer Phase Separation. (2019). 

119. Krapf, D. Mechanisms Underlying Anomalous Diffusion in the Plasma 
Membrane. Curr. Top. Membr. 75, 167–207 (2015). 

120. Merkel, R., Sackmann, E. & Evans, E. Molecular friction and epitactic coupling 
between monolayers in supported bilayers. J. Phys. 50, 1535–1555 (1989). 

121. Israelachvili, J. & Wennerström, H. Role of hydration and water structure in 
biological and colloidal interactions. Nature 379, 219–225 (1996). 

122. Major, R. C., Houston, J. E., McGrath, M. J., Siepmann, J. I. & Zhu, X.-Y. 
Viscous Water Meniscus under Nanoconfinement. Phys. Rev. Lett. 96, 
177803 (2006). 

123. Alba-Simionesco, C. et al. Effects of confinement on freezing and melting. J. 
Phys. Condens. Matter 18, R15–R68 (2006). 

124. Cafolla, C. & Voïtchovsky, K. Lubricating properties of single metal ions at 
interfaces. Nanoscale 10, 11831–11840 (2018). 

125. Piantanida, L., Bolt, H. L., Rozatian, N., Cobb, S. L. & Voïtchovsky, K. Ions 
Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers. 
Biophys. J. 113, 426–439 (2017). 

126. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and 
lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. U. S. A. 104, 
3165–70 (2007). 

127. Purrucker, O., Förtig, A., Jordan, R. & Tanaka, M. Supported Membranes with 
Well-Defined Polymer Tethers—Incorporation of Cell Receptors. 
ChemPhysChem 5, 327–335 (2004). 

128. Tanaka, M. & Sackmann, E. Polymer-supported membranes as models of the 
cell surface. Nature 437, 656–663 (2005). 

129. Smith, E. A. et al. Lipid bilayers on polyacrylamide brushes for inclusion of 
membrane proteins. Langmuir 21, 9644–50 (2005). 

130. Du, H., Chandaroy, P. & Hui, S. W. Grafted poly-(ethylene glycol) on lipid 
surfaces inhibits protein adsorption and cell adhesion. Biochim. Biophys. Acta 
- Biomembr. 1326, 236–248 (1997). 



Bibliography 

178 
 

131. Sterling, S. M. et al. Phospholipid diffusion coefficients of cushioned model 
membranes determined via z-scan fluorescence correlation spectroscopy. 
Langmuir 29, 7966–74 (2013). 

132. Tanaka, M., Kaufmann, S., Nissen, J. & Hochrein, M. Orientation selective 
immobilization of human erythrocyte membranes on ultrathin cellulose films. 
Phys. Chem. Chem. Phys. 3, 4091–4095 (2001). 

133. Wagner, M. L. & Tamm, L. K. Tethered polymer-supported planar lipid bilayers 
for reconstitution of integral membrane proteins: silane-polyethyleneglycol-
lipid as a cushion and covalent linker. Biophys. J. 79, 1400–14 (2000). 

134. Zhang, L. & Granick, S. Slaved diffusion in phospholipid bilayers. Proc. Natl. 
Acad. Sci. U. S. A. 102, 9118–21 (2005). 

135. Hovis, J. S. & Boxer, S. G. Patterning and Composition Arrays of Supported 
Lipid Bilayers by Microcontact Printing. Langmuir 17, 3400–3405 (2001). 

136. Shahal, T., Melzak, K. A., Lowe, C. R. & Gizeli, E. Poly(dimethylsiloxane)-
coated sensor devices for the formation of supported lipid bilayers and the 
subsequent study of membrane interactions. Langmuir 24, 11268–75 (2008). 

137. Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: 
Sources and toxicity. Biointerphases 2, MR17–MR71 (2007). 

138. Beddoes, C. M., Case, C. P. & Briscoe, W. H. Understanding nanoparticle 
cellular entry: A physicochemical perspective. Adv. Colloid Interface Sci. 218, 
48–68 (2015). 

139. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–4 
(2000). 

140. Neužil, P., Giselbrecht, S., Länge, K., Huang, T. J. & Manz, A. Revisiting lab-
on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11, 620–632 
(2012). 

141. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-
chips. Trends Cell Biol. 21, 745–754 (2011). 

142. Cremer, P. S. & Boxer, S. G. Formation and Spreading of Lipid Bilayers on 
Planar Glass Supports. J. Phys. Chem. B 103, 2554–2559 (1999). 

143. Groves, J. T., Ulman, N. & Boxer, S. G. Micropatterning fluid lipid bilayers on 
solid supports. Science 275, 651–3 (1997). 

144. Zhu, Y. & Moran-Mirabal, J. Micropatterning of Phase-Segregated Supported 
Lipid Bilayers and Binary Lipid Phases through Polymer Stencil Lift-Off. 
Langmuir 32, 11021–11028 (2016). 

145. Hovis, J. S. & Boxer, S. G. Patterning Barriers to Lateral Diffusion in 
Supported Lipid Bilayer Membranes by Blotting and Stamping. Langmuir 16, 
894–897 (2000). 

146. Lenz, P., Ajo-Franklin, C. M. & Boxer, S. G. Patterned supported lipid bilayers 
and monolayers on poly(dimethylsiloxane). Langmuir 20, 11092–9 (2004). 

147. Gavutis, M., Navikas, V., Rakickas, T., Vaitekonis, Š. & Valiokas, R. Lipid dip-



Bibliography 

179 
 

pen nanolithography on self-assembled monolayers. J. Micromechanics 
Microengineering 26, 025016 (2016). 

148. Woodward, X., Stimpson, E. E. & Kelly, C. V. Single-lipid tracking on 
nanoscale membrane buds: The effects of curvature on lipid diffusion and 
sorting. Biochim. Biophys. Acta - Biomembr. 1860, 2064–2075 (2018). 

149. Kabbani, A. M., Woodward, X. & Kelly, C. V. Resolving the effects of 
nanoscale membrane curvature on lipid mobility. (2017). 

150. Sanii, B., Smith, A. M., Butti, R., Brozell, A. M. & Parikh, A. N. Bending 
membranes on demand: fluid phospholipid bilayers on topographically 
deformable substrates. Nano Lett. 8, 866–871 (2008). 

151. Roiter, Y. et al. Interaction of nanoparticles with lipid membrane. Nano Lett. 
8, 941–4 (2008). 

152. Roiter, Y. et al. Interaction of lipid membrane with nanostructured surfaces. 
Langmuir 25, 6287–99 (2009). 

153. Sundh, M., Svedhem, S. & Sutherland, D. S. Formation of Supported Lipid 
Bilayers at Surfaces with Controlled Curvatures: Influence of Lipid Charge. J. 
Phys. Chem. B 115, 7838–7848 (2011). 

154. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of 
dynamic cell membrane remodelling. Nature 438, 590–596 (2005). 

155. Parthasarathy, R. & Groves, J. T. Curvature and spatial organization in 
biological membranes. Soft Matter 3, 24–33 (2007). 

156. Parthasarathy, R., Yu, C. & Groves, J. T. Curvature-Modulated Phase 
Separation in Lipid Bilayer Membranes. Langmuir 22, 5095–5099 (2006). 

157. Schütte, O. M. et al. Size and mobility of lipid domains tuned by geometrical 
constraints. Proc. Natl. Acad. Sci. U. S. A. 114, E6064–E6071 (2017). 

158. Orth, A., Johannes, L., Römer, W. & Steinem, C. Creating and Modulating 
Microdomains in Pore-Spanning Membranes. ChemPhysChem 13, 108–114 
(2012). 

159. Steltenkamp, S. et al. Mechanical Properties of Pore-Spanning Lipid Bilayers 
Probed by Atomic Force Microscopy. Biophys. J. 91, 217–226 (2006). 

160. Quaglino, A., Salierno, M., Pellegrotti, J., Rubinstein, N. & Kordon, E. C. 
Mechanical strain induces involution-associated events in mammary epithelial 
cells. BMC Cell Biol. 10, 55 (2009). 

161. Tremblay, D., Chagnon-Lessard, S., Mirzaei, M., Pelling, A. E. & Godin, M. A 
microscale anisotropic biaxial cell stretching device for applications in 
mechanobiology. Biotechnol. Lett. 36, 657–65 (2014). 

162. Janmey, P. A. & McCulloch, C. A. Cell Mechanics: Integrating Cell Responses 
to Mechanical Stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007). 

163. Rodal, S. K. et al. Extraction of cholesterol with methyl-beta-cyclodextrin 
perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 
961–74 (1999). 



Bibliography 

180 
 

164. Ren, B. et al. HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and 
toxicity. Phys. Chem. Chem. Phys. 18, 20476–20485 (2016). 

165. Tsai, F.-C. & Koenderink, G. H. Shape control of lipid bilayer membranes by 
confined actin bundles. Soft Matter 11, 8834–8847 (2015). 

166. Hu, S.-K., Huang, L.-T. & Chao, L. Membrane species mobility under in-lipid-
membrane forced convection. Soft Matter 12, 6954–6963 (2016). 

167. Benz, R., Beckers, F. & Zimmermann, U. Reversible electrical breakdown of 
lipid bilayer membranes: A charge-pulse relaxation study. J. Membr. Biol. 48, 
181–204 (1979). 

168. Kotnik, T. et al. Electroporation-based applications in biotechnology. Trends 
Biotechnol. 33, 480–488 (2015). 

169. Dimitrov, D. S. & Angelova, M. I. Lipid swelling and liposome formation 
mediated by electric fields. Bioelectrochemistry Bioenerg. 19, 323–336 
(1988). 

170. Moscho, A., Orwar, O., Chiu, D. T., Modi, B. P. & Zare, R. N. Rapid 
preparation of giant unilamellar vesicles. Proc. Natl. Acad. Sci. U. S. A. 93, 
11443–7 (1996). 

171. Bi, H., Fu, D., Wang, L. & Han, X. Lipid Nanotube Formation Using Space-
Regulated Electric Field above Interdigitated Electrodes. ACS Nano 8, 3961–
3969 (2014). 

172. Daniel, S. et al. Separation of Membrane-Bound Compounds by Solid-
Supported Bilayer Electrophoresis. J. Am. Chem. Soc. 129, 8072–8073 
(2007). 

173. Lozano, M. M., Hovis, J. S., Moss, F. R. & Boxer, S. G. Dynamic 
Reorganization and Correlation among Lipid Raft Components. J. Am. Chem. 
Soc. 138, 9996–10001 (2016). 

174. Lim, C. T., Zhou, E. H. & Quek, S. T. Mechanical models for living cells—a 
review. J. Biomech. 39, 195–216 (2006). 

175. Stubbington, L., Arroyo, M. & Staykova, M. Sticking and sliding of lipid bilayers 
on deformable substrates. Soft Matter 13, 181–186 (2017). 

176. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 
328, 1662–8 (2010). 

177. Stottrup, B. L., Veatch, S. L. & Keller, S. L. Nonequilibrium behavior in 
supported lipid membranes containing cholesterol. Biophys. J. 86, 2942–50 
(2004). 

178. Stottrup, B. L., Stevens, D. S. & Keller, S. L. Miscibility of ternary mixtures of 
phospholipids and cholesterol in monolayers, and application to bilayer 
systems. Biophys. J. 88, 269–76 (2005). 

179. Koynova, R., Koumanov, A. & Tenchov, B. Metastable rippled gel phase in 
saturated phosphatidylcholines: calorimetric and densitometric 
characterization. Biochim. Biophys. Acta - Biomembr. 1285, 101–108 (1996). 



Bibliography 

181 
 

180. Rappolt, M. & Rapp, G. Structure of the stable and metastable ripple phase 
of dipalmitoylphosphatidylcholine. Eur. Biophys. J. 24, 381–386 (1996). 

181. Kaasgaard, T., Leidy, C., Crowe, J. H., Mouritsen, O. G. & Jørgensen, K. 
Temperature-controlled structure and kinetics of ripple phases in one- and 
two-component supported lipid bilayers. Biophys. J. 85, 350–360 (2003). 

182. Stevens, M. M., Honerkamp-Smith, A. R. & Keller, S. L. Solubility limits of 
cholesterol, lanosterol, ergosterol, stigmasterol, and β-sitosterol in 
electroformed lipid vesicles. Soft Matter 6, 5882 (2010). 

183. Huang, J., Buboltz, J. T. & Feigenson, G. W. Maximum solubility of cholesterol 
in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. 
Biophys. Acta - Biomembr. 1417, 89–100 (1999). 

184. Bouvrais, H., Pott, T., Bagatolli, L. A., Ipsen, J. H. & Méléard, P. Impact of 
membrane-anchored fluorescent probes on the mechanical properties of lipid 
bilayers. Biochim. Biophys. Acta - Biomembr. 1798, 1333–1337 (2010). 

185. Skaug, M. J., Longo, M. L. & Faller, R. The Impact of Texas Red on Lipid 
Bilayer Properties. J. Phys. Chem. B 115, 8500–8505 (2011). 

186. Waters, J. C. Accuracy and precision in quantitative fluorescence microscopy. 
J. Cell Biol. 185, 1135–48 (2009). 

187. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. 
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. 
Biochim. Biophys. Acta - Biomembr. 1768, 2182–2194 (2007). 

188. Klymchenko, A. S. & Kreder, R. Fluorescent Probes for Lipid Rafts: From 
Model Membranes to Living Cells. Chem. Biol. 21, 97–113 (2014). 

189. Leung, S. S. W. & Thewalt, J. Link between Fluorescent Probe Partitioning 
and Molecular Order of Liquid Ordered-Liquid Disordered Membranes. J. 
Phys. Chem. B 121, 1176–1185 (2017). 

190. Wen, Y., Dick, R. A., Feigenson, G. W. & Vogt, V. M. Effects of Membrane 
Charge and Order on Membrane Binding of the Retroviral Structural Protein 
Gag. J. Virol. 90, 9518–32 (2016). 

191. Beneš, M. et al. Surface-Dependent Transitions during Self-Assembly of 
Phospholipid Membranes on Mica, Silica, and Glass. Langmuir 20, 10129–
10137 (2004). 

192. Lobovkina, T. et al. Protrusive growth and periodic contractile motion in 
surface-adhered vesicles induced by Ca2+-gradients. Soft Matter 6, 268–272 
(2010). 

193. Richter, R., Mukhopadhyay, A. & Brisson, A. Pathways of lipid vesicle 
deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 
85, 3035–47 (2003). 

194. Trewby, W., Livesey, D. & Voïtchovsky, K. Buffering agents modify the 
hydration landscape at charged interfaces. Soft Matter 12, 2642–51 (2016). 

195. Henke, L., Nagy, N. & Krull, U. J. An AFM determination of the effects on 



Bibliography 

182 
 

surface roughness caused by cleaning of fused silica and glass substrates in 
the process of optical biosensor preparation. Biosens. Bioelectron. 17, 547–
555 (2002). 

196. Fujii, T. PDMS-based microfluidic devices for biomedical applications. 
Microelectron. Eng. 61–62, 907–914 (2002). 

197. Koschwanez, J. H., Carlson, R. H. & Meldrum, D. R. Thin PDMS Films Using 
Long Spin Times or Tert-Butyl Alcohol as a Solvent. PLoS One 4, e4572 
(2009). 

198. Chau, K. et al. Dependence of the quality of adhesion between 
poly(dimethylsiloxane) and glass surfaces on the composition of the oxidizing 
plasma. Microfluid. Nanofluidics 10, 907–917 (2011). 

199. Litz, J. P., Thakkar, N., Portet, T. & Keller, S. L. Depletion with Cyclodextrin 
Reveals Two Populations of Cholesterol in Model Lipid Membranes. Biophys. 
J. 110, 635–645 (2016). 

200. Groves, J. T., Parthasarathy, R. & Forstner, M. B. Fluorescence imaging of 
membrane dynamics. Annu. Rev. Biomed. Eng. 10, 311–338 (2008). 

201. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. (Springer Science 
& Business Media, 2007). 

202. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic 
optical reconstruction microscopy (STORM). Nat. Methods 3, 793–5 (2006). 

203. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane 
lipids in a living cell. Nature 457, 1159–62 (2009). 

204. Hess, S. T. et al. Dynamic clustered distribution of hemagglutinin resolved at 
40 nm in living cell membranes discriminates between raft theories. Proc. Natl. 
Acad. Sci. U. S. A. 104, 17370–5 (2007). 

205. Galush, W. J., Nye, J. A. & Groves, J. T. Quantitative fluorescence microscopy 
using supported lipid bilayer standards. Biophys. J. 95, 2512–9 (2008). 

206. Reits, E. A. J. & Neefjes, J. J. From fixed to FRAP: measuring protein mobility 
and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001). 

207. Pincet, F. et al. FRAP to characterize molecular diffusion and interaction in 
various membrane environments. PLoS One 11, 1–19 (2016). 

208. Tero, R., Sazaki, G., Ujihara, T. & Urisu, T. Anomalous Diffusion in Supported 
Lipid Bilayers Induced by Oxide Surface Nanostructures. Langmuir 27, 9662–
9665 (2011). 

209. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. 
Nat. Methods 9, 676–682 (2012). 

210. Blumenthal, D., Goldstien, L., Edidin, M. & Gheber, L. A. Universal Approach 
to FRAP Analysis of Arbitrary Bleaching Patterns. Sci. Rep. 5, 11655 (2015). 

211. Sullivan, K. D., Majewska, A. K. & Brown, E. B. Single and Multiphoton 
Fluorescence Recovery after Photobleaching. Cold Spring Harb. Protoc. 
2015, pdb.top083519 (2015). 



Bibliography 

183 
 

212. Limozin, L. & Sengupta, K. Quantitative Reflection Interference Contrast 
Microscopy (RICM) in Soft Matter and Cell Adhesion. ChemPhysChem 10, 
2752–2768 (2009). 

213. Johnson, J. Not seeing is not believing: improving the visibility of your 
fluorescence images. Mol. Biol. Cell 23, 754–7 (2012). 

214. N. Holambe, P. S. & G. Kumbhar, P. Comparison between Otsu’s Image 
Thresholding Technique and Iterative Triclass. Int. J. Comput. Trends 
Technol. 33, 80–82 (2016). 

215. Binnig, G. & Quate, C. F. Atomic Force Microscope. Phys. Rev. Lett. 56, 930–
933 (1986). 

216. Voïtchovsky, K. et al. In Situ Mapping of the Molecular Arrangement of 
Amphiphilic Dye Molecules at the TiO₂ Surface of Dye-Sensitized Solar Cells. 
ACS Appl. Mater. Interfaces 7, 10834–42 (2015). 

217. Segura, J. J. et al. Adsorbed and near surface structure of ionic liquids at a 
solid interface. Phys. Chem. Chem. Phys. 15, 3320–3328 (2013). 

218. Hayes, R., Warr, G. G. & Atkin, R. Structure and Nanostructure in Ionic 
Liquids. Chem. Rev. 115, 150601082109009 (2015). 

219. Kumaki, J. Observation of polymer chain structures in two-dimensional films 
by atomic force microscopy. Polym. J. 48, 3–14 (2015). 

220. Schmidt, S., Biegel, E. & Müller, V. The ins and outs of Na(+) bioenergetics in 
Acetobacterium woodii. Biochim. Biophys. Acta 1787, 691–696 (2009). 

221. Bippes, C. A. & Muller, D. J. High-resolution atomic force microscopy and 
spectroscopy of native membrane proteins. Reports Prog. Phys. 74, 086601 
(2011). 

222. Chada, N. et al. Glass is a Viable Substrate for Precision Force Microscopy 
of Membrane Proteins. Sci. Rep. 5, 12550 (2015). 

223. Möller, C., Allen, M., Elings, V., Engel, A. & Müller, D. J. Tapping-mode atomic 
force microscopy produces faithful high-resolution images of protein surfaces. 
Biophys. J. 77, 1150–1158 (1999). 

224. Antoranz Contera, S., Voïtchovsky, K. & Ryan, J. F. Controlled ionic 
condensation at the surface of a native extremophile membrane. Nanoscale 
2, 222–9 (2010). 

225. Haugstad, G. Atomic Force Microscopy. (John Wiley & Sons, Inc., 2012). 

226. Oliver, R. A. Advances in AFM for the electrical characterization of 
semiconductors. Reports Prog. Phys. 71, 076501 (2008). 

227. Giessibl, F. J. Subatomic Features on the Silicon (111)-(7x7) Surface 
Observed by Atomic Force Microscopy. Science (80-. ). 289, 422–425 (2000). 

228. Moreno-Herrero, F., Colchero, J., Gómez-Herrero, J. & Baró, A. M. Atomic 
force microscopy contact, tapping, and jumping modes for imaging biological 
samples in liquids. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 69, 031915 
(2004). 



Bibliography 

184 
 

229. Gan, Y. Atomic and subnanometer resolution in ambient conditions by atomic 
force microscopy. Surf. Sci. Rep. 64, 99–121 (2009). 

230. Patil, S. V. & Hoffmann, P. M. Small-Amplitude Atomic Force Microscopy. 
Adv. Eng. Mater. 7, 707–712 (2005). 

231. Fukuma, T. & Jarvis, S. P. Development of liquid-environment frequency 
modulation atomic force microscope with low noise deflection sensor for 
cantilevers of various dimensions. Rev. Sci. Instrum. 77, 043701 (2006). 

232. García, R. & San Paulo, A. Attractive and repulsive tip-sample interaction 
regimes in tapping-mode atomic force microscopy. Phys. Rev. B 60, 4961–
4967 (1999). 

233. García, R. Amplitude Modulation Atomic Force Microscopy. (Wiley-VCH 
Verlag GmbH & Co. KGaA, 2010). 

234. Bharat, B. Encyclopedia of Nanotechnology. (Springer Netherlands, 2012). 

235. Kiracofe, D. & Raman, A. On eigenmodes, stiffness, and sensitivity of atomic 
force microscope cantilevers in air versus liquids. J. Appl. Phys. 107, 033506 
(2010). 

236. Voïtchovsky, K., Kuna, J. J., Contera, S. A., Tosatti, E. & Stellacci, F. Direct 
mapping of the solid-liquid adhesion energy with subnanometre resolution. 
Nat. Nanotechnol. 5, 401–405 (2010). 

237. Voïtchovsky, K. Anharmonicity, solvation forces, and resolution in atomic 
force microscopy at the solid-liquid interface. Phys. Rev. E. Stat. Nonlin. Soft 
Matter Phys. 88, 022407 (2013). 

238. Fukuma, T., Higgins, M. J. & Jarvis, S. P. Direct imaging of individual intrinsic 
hydration layers on lipid bilayers at Angstrom resolution. Biophys. J. 92, 3603–
3609 (2007). 

239. San Paulo, A. & García, R. High-resolution imaging of antibodies by tapping-
mode atomic force microscopy: attractive and repulsive tip-sample interaction 
regimes. Biophys. J. 78, 1599–1605 (2000). 

240. Miller, E. J. et al. Sub-nanometer Resolution Imaging with Amplitude-
modulation Atomic Force Microscopy in Liquid. J. Vis. Exp. e54924 (2016). 

241. Gnecco, E., Bennewitz, R., Gyalog, T. & Meyer, E. Friction experiments on 
the nanometre scale. J. Phys. Condens. Matter 13, 202 (2001). 

242. Nanosurf. AFM Theory — Contact Modes - Nanosurf. 1 Available at: 
https://www.nanosurf.com/en/how-afm-works/contact-modes. (Accessed: 1st 
October 2018) 

243. Jackman, J. A., Choi, J.-H., Zhdanov, V. P. & Cho, N.-J. Influence of Osmotic 
Pressure on Adhesion of Lipid Vesicles to Solid Supports. Langmuir 29, 
11375–11384 (2013). 

244. Parsegian, V. A. & Zemb, T. Hydration forces: Observations, explanations, 
expectations, questions. Curr. Opin. Colloid Interface Sci. 16, 618–624 
(2011). 



Bibliography 

185 
 

245. Garcia-Manyes, S. & Sanz, F. Nanomechanics of lipid bilayers by force 
spectroscopy with AFM: a perspective. Biochim. Biophys. Acta 1798, 741–9 
(2010). 

246. Chiantia, S., Ries, J., Kahya, N. & Schwille, P. Combined AFM and Two-
Focus SFCS Study of Raft-Exhibiting Model Membranes. ChemPhysChem 7, 
2409–2418 (2006). 

247. Facci, P. & Alessandrini, A. Phase transitions in Supported Lipid Bilayers 
studied by AFM. Soft Matter 10, 7145-7164 (2014). 

248. Alessandrini, A., Seeger, H. M., Caramaschi, T. & Facci, P. Dynamic Force 
Spectroscopy on Supported Lipid Bilayers: Effect of Temperature and Sample 
Preparation. Biophys. J. 103, 38–47 (2012). 

249. Alessandrini, A., Seeger, H. M., Di Cerbo, A., Caramaschi, T. & Facci, P. What 
do we really measure in AFM punch-through experiments on supported lipid 
bilayers? Soft Matter 7, 7054 (2011). 

250. Lee, C.-K., Wang, Y.-M., Huang, L.-S. & Lin, S. Atomic force microscopy: 
Determination of unbinding force, off rate and energy barrier for protein–ligand 
interaction. Micron 38, 446–461 (2007). 

251. Craig, V. S. J. & Neto, C. In Situ Calibration of Colloid Probe Cantilevers in 
Force Microscopy: Hydrodynamic Drag on a Sphere Approaching a Wall. 
Langmuir 17, 6018–6022 (2001). 

252. Hilner, E. et al. The effect of ionic strength on oil adhesion in sandstone--the 
search for the low salinity mechanism. Sci. Rep. 5, 9933 (2015). 

253. Xie, L. et al. Mapping the Nanoscale Heterogeneity of Surface Hydrophobicity 
on the Sphalerite Mineral. J. Phys. Chem. C 121, 5620–5628 (2017). 

254. Henrik Hillborg, Nikodem Tomczak, Attila Olàh, Holger Schönherr, A. & 
Vancso, G. J. Nanoscale Hydrophobic Recovery: A Chemical Force 
Microscopy Study of UV/Ozone-Treated Cross-Linked 
Poly(dimethylsiloxane). Langmuir 20, 785–794 (2003). 

255. Xu, X. Modified Wenzel and Cassie Equations for Wetting on Rough Surfaces. 
SIAM J. Appl. Math. 76, 2353–2374 (2016). 

256. A. F. Stalder, G. Kulik, D. Sage, L. Barbieri,  and P. H. A snake-based 
approach to accurate determination of both contact points and contact angles. 
Colloids Surfaces A Physicochem. Eng. Asp. 286, 92–103 (2006). 

257. Schwartz, J. et al. The Nikon Perfect Focus System (PFS). Available at: 
https://www.microscopyu.com/tutorials/the-nikon-perfect-focus-system-pfs. 
(Accessed: 27th November 2018) 

258. Tsao, C.-W. & Chia-Wen. Polymer Microfluidics: Simple, Low-Cost 
Fabrication Process Bridging Academic Lab Research to Commercialized 
Production. Micromachines 7, 225 (2016). 

259. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for 
stretchable electronics. Science 327, 1603–7 (2010). 



Bibliography 

186 
 

260. Pennisi, C. P., Zachar, V., Gurevich, L., Patriciu, A. & Struijk, J. J. The 
influence of surface properties of plasma-etched polydimethylsiloxane 
(PDMS) on cell growth and morphology. Conf. Proc.  ... Annu. Int. Conf. IEEE 
Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2010, 3804–7 
(2010). 

261. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for 
cellular adaptation to substrate stiffness. Proc. Natl. Acad. Sci. U. S. A. 109, 
6933–8 (2012). 

262. Hardelauf, H. et al. Micropatterning neuronal networks. Analyst 139, 3256–
3264 (2014). 

263. Wang, L., Sun, B., Ziemer, K. S., Barabino, G. A. & Carrier, R. L. Chemical 
and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion 
of Caco-2 cells. J. Biomed. Mater. Res. A 93, 1260–71 (2010). 

264. Kim, J., Chaudhury, M. K. & Owen, M. J. Hydrophobic Recovery of 
Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge. J. 
Colloid Interface Sci. 226, 231–236 (2000). 

265. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and 
consequences in microfluidic applications. Lab Chip 6, 1484 (2006). 

266. Swanson, J. W. & Lebeau, J. E. The effect of implantation on the physical 
properties of silicone rubber. J. Biomed. Mater. Res. 8, 357–367 (1974). 

267. Kala, S. V, Lykissa, E. D., Neely, M. W. & Lieberman, M. W. Low molecular 
weight silicones are widely distributed after a single subcutaneous injection in 
mice. Am. J. Pathol. 152, 645–9 (1998). 

268. Carmen, R. & Mutha, S. C. Lipid absorption by silicone heart valve poppets: 
in-vivo and in-vitro results. J. Biomed. Mater. Res. 6, 327–346 (1972). 

269. Vondráček, P. & Doležel, B. Biostability of medical elastomers: a review. 
Biomaterials 5, 209–214 (1984). 

270. Deshpande, S. & Dekker, C. On-chip microfluidic production of cell-sized 
liposomes. Nat. Protoc. 13, 856–874 (2018). 

271. Liu, C.-F., Wang, M.-H. & Jang, L.-S. Microfluidics-based hairpin resonator 
biosensor for biological cell detection. Sensors Actuators B Chem. 263, 129–
136 (2018). 

272. Li, G. & Lee, D.-W. An advanced selective liquid-metal plating technique for 
stretchable biosensor applications. Lab Chip 17, 3415–3421 (2017). 

273. Alberti, M. et al. Multi-chamber microfluidic platform for high-precision skin 
permeation testing. Lab Chip 17, 1625–1634 (2017). 

274. Zeng, S. et al. Bio-inspired sensitive and reversible mechanochromisms via 
strain-dependent cracks and folds. Nat. Commun. 7, 11802 (2016). 

275. van Meer, B. J. et al. Small molecule absorption by PDMS in the context of 
drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 
(2017). 



Bibliography 

187 
 

276. Trantidou, T., Elani, Y., Parsons, E. & Ces, O. Hydrophilic surface modification 
of PDMS for droplet microfluidics using a simple, quick, and robust method 
via PVA deposition. Microsystems Nanoeng. 3, 16091 (2017). 

277. Abate, A. R., Lee, D., Do, T., Holtze, C. & Weitz, D. A. Glass coating for PDMS 
microfluidic channels by sol–gel methods. Lab Chip 8, 516 (2008). 

278. Bauer, W.-A. C., Fischlechner, M., Abell, C. & Huck, W. T. S. Hydrophilic 
PDMS microchannels for high-throughput formation of oil-in-water 
microdroplets and water-in-oil-in-water double emulsions. Lab Chip 10, 1814 
(2010). 

279. Séguin, C., McLachlan, J. M., Norton, P. R. & Lagugné-Labarthet, F. Surface 
modification of poly(dimethylsiloxane) for microfluidic assay applications. 
Appl. Surf. Sci. 256, 2524–2531 (2010). 

280. van Midwoud, P. M., Janse, A., Merema, M. T., Groothuis, G. M. M. & 
Verpoorte, E. Comparison of biocompatibility and adsorption properties of 
different plastics for advanced microfluidic cell and tissue culture models. 
Anal. Chem. 84, 3938–44 (2012). 

281. Mortazavi, M. & Nosonovsky, M. A model for diffusion-driven hydrophobic 
recovery in plasma treated polymers. Appl. Surf. Sci. 258, 6876–6883 (2012). 

282. Hillborg, H. et al. Crosslinked polydimethylsiloxane exposed to oxygen 
plasma studied by neutron reflectometry and other surface specific 
techniques. Polymer (Guildf). 41, 6851–6863 (2000). 

283. Tóth, A. et al. Oxidative damage and recovery of silicone rubber surfaces. I. 
X-ray photoelectron spectroscopic study. J. Appl. Polym. Sci. 52, 1293–1307 
(1994). 

284. Owen, M. J. & Smith, P. J. Plasma treatment of polydimethylsiloxane. J. 
Adhes. Sci. Technol. 8, 1063–1075 (1994). 

285. Bodas, D. & Khan-Malek, C. Hydrophilization and hydrophobic recovery of 
PDMS by oxygen plasma and chemical treatment-An SEM investigation. 
Sensors Actuators, B Chem. 123, 368–373 (2007). 

286. Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on 
polydimethylsiloxane elastic modulus measured by custom-built compression 
instrument. J. Appl. Polym. Sci. 131, n/a-n/a (2014). 
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