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Abstract 

The aims of this study were to investigate the various methods of measuring training 

load in female hockey athletes and to quantify the physical and physiological demands of 

female British university hockey.  Monitoring athlete load and adjusting training dose 

accordingly has been shown to increase fitness, minimize injuries, and improve performance 

during competition in various sports; however, no research had previously been performed on 

effectively measuring training load in female hockey. An observational approach and 

repeated measures design were utilized, with ten outfield players from Durham University 

Hockey Club’s Women’s First Team monitored for the first half of the hockey season.  

Participants wore Minimax S4, 10 Hz GPS units (Catapult Sports, Melbourne, Australia) and 

Polar Team2 heart rate monitors (Polar Electro, Kempele, Finland), and completed a 

submaximal lactate threshold treadmill test and maximal on-field fitness test at the beginning 

and end of the study. Following Stagno’s training impulse (TRIMP) procedure, a new female 

TRIMP algorithm (fTRIMP) was developed.  The training load measures recorded were 

differential session rating of perceived exertion, average percentage of maximum heart rate, 

Stagno’s TRIMP, fTRIMP, individualized TRIMP, total distance, workrate (m·min-1), 

distance in speed zones, and efficiency index. Female TRIMP was extremely strongly 

correlated with Stagno TRIMP (r=0.998), with a consistent multiplicative factor of 1.3.  

Fitness test scores were most strongly correlated with average weekly distance covered at 

15.1-19.0 km·hr-1 (r=0.639) and >19.0 km·hr-1 (r=0.842) and efficiency index (r=0.785). On 

the pitch during competition, participants averaged 88.3 ± 3.1% of their maximum heart rate 

and covered 5419 ± 886 m, 228 ± 134 m of which was at speeds >19.0 km·hr-1.  The 

demands of training were significantly lower than the demands of competition (p<0.01) for 

all training load measures. The results of this study provide evidence in support of effective, 

individualized athlete monitoring in female hockey.  
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Chapter 1: Introduction 

 

1.1 Background 

 Hockey is a field-based team sport in which teams of eleven athletes attempt to 

outscore opponents, using a curved stick to move the ball up the pitch and into the opponent’s 

goal.  With origins several thousand years before the first Olympic games, hockey is the 

world’s oldest stick-and-ball game and an Olympic sport for both men and women (Lythe, 

2008; Olympic.org, 2019). Similar to other field-based team sports, the demands of hockey 

are intermittent, with high speed running and sprinting interspersed with periods of stationary 

and active recovery (Gabbett, 2010; Polley et al., 2015; McGuinness et al., 2017). Because of 

this similarity, the majority of current practices for athlete monitoring in hockey have been 

based on other field-based team sports, such as football and rugby (Podgórski and Pawlak, 

2011; Abbott, 2016). However, notwithstanding these parallels, hockey has several key 

characteristics that make it unique from other sports, demonstrating the need for hockey-

specific research.   

 Unlike football and rugby, hockey has unlimited rolling substitutions, meaning that 

athletes on the pitch can freely substitute with athletes on the bench at almost any time 

(Abbott, 2016).  As a result, hockey is played at a higher intensity than other field-based team 

sports, with athletes routinely averaging 85-89% of their maximum heart rate while on the 

pitch (Lythe, 2008; Sell and Ledesma, 2016; Vescovi, 2016; McGuinness et al., 2017). In 

addition to the elevated intensity, rolling substitutions provide an increased challenge for data 

analysis, as time spent on the bench can confound time-dependent measures such as average 

speed (White and MacFarlane, 2013). Hockey also has no offsides or restraining lines, 

causing players’ movement patterns to be stochastic in nature (McGuinness et al., 2017).  

Finally, hockey athletes must assume a semi-crouched position while passing and dribbling, 

which has been shown to increase exertion and energy expenditure (Reilly and Seaton, 1990).   

 As a result of these differences, it is almost impossible to accurately apply research 

performed on other field-based team sports to hockey.  Despite this fact, research on hockey 

has been extremely limited, with very few peer-reviewed studies published on hockey 

populations (Podgórski and Pawlak, 2011). Where there has been research on hockey, the 

majority of it has been performed on male hockey athletes.  However, due to physical 

differences in male and female athletes, the strategies, skill sets and physical output of 

players differ greatly between the male and female game.   
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As personal tracking devices, such as heart rate monitors and global positioning 

system (GPS) trackers, have become more accurate and accessible, there has been a 

substantial increase in athlete monitoring during hockey (Podgórski and Pawlak, 2011). 

Monitoring training load and adjusting training dose accordingly has been shown to increase 

fitness, minimize injuries, and improve performance during competition in various sports, 

including football, handball, rugby, and hockey (Foster et al., 2001; Liu et al., 2013; Kevin 

and James, 2015; Mara et al., 2015; Bourdon, 2017). However, there are several gaps in the 

literature for female hockey which this study aims to address. 

 

1.2 Project Summary/Rationale 

Training load is a measurement of an athlete’s work during a session, expressed as a 

numerical score. Specifically, internal training load measures consider the physiological 

demand of exercise on the body, whereas external training load measures focus solely on 

physical output, regardless of the physiological response (Scanlan et al., 2014).  This study 

examined differential session rating of perceived exertion (sRPE), heart rate, and global 

positioning system (GPS) parameters measured in Durham University Hockey Club’s 

(DUHC) Women’s 1st Team.  

This study considered if differential sRPE is a valid method of monitoring internal 

training load in hockey training and competition. Validity was determined by the strength of 

the correlations between sRPE and other training load measures. Although relatively strong 

correlations have been found (r=0.70-0.83) between sRPE and heart rate and distance based 

training load measures in football, futsal, and youth hockey, differential sRPE had yet to be 

studied in hockey (Impellizzeri et al., 2004; Scott et al., 2013b; Wilke et al., 2016; 

Scantlebury et al., 2017b). From a practical perspective, sRPE is a beneficial measure as it 

may be used when athlete tracking devices are not available, as is the case in many hockey 

clubs.  

Training impulse (TRIMP) is a heart-rate based measure of internal training load that 

summarizes an individual’s heart rate over the course of a session into a single numerical 

score. The TRIMP algorithm has been modified specifically for teams of hockey athletes; 

however, only male athletes were studied (Stagno, Thatcher and Van Someren, 2007). A 

method of calculating individualized TRIMP (iTRIMP) based on an individual’s blood 

lactate curve has also been developed, but it had not been tested in hockey athletes (Manzi et 

al., 2009). This study developed a new algorithm for calculating TRIMP (fTRIMP) in female 

hockey athletes following the procedure described by Stagno, Thatcher and Van Someren 
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(2007), as well as determining iTRIMP scores for each athlete as outlined by Manzi et al. 

(2009).  

The index of performance efficiency (effindex) is a ratio of external training load 

(total distance or average speed) to internal training load (TRIMP or average heart rate) that 

provides information on how efficiently the body is working during exercise (Torreno et al., 

2016). Effindex is a relatively new measure that has only been studied in football (Akubat, 

Barrett and Abt, 2014; Arrones et al., 2014; Torreno et al., 2016).  However, effindex is well 

suited for use in hockey as the rolling substitutions naturally break the game into sections, 

and effindex can determine if a team’s substitution patterns allow athletes to maintain similar 

levels of efficiency throughout a match. This study was the first to measure effindex in 

hockey and investigate how efficiency changed over the course of a competition.  

Several studies have compared the intensity of hockey training and competition with 

mixed results (Gabbett, 2010; Polglaze et al., 2015; White and Macfarlane, 2015a). This 

study used both internal and external training load measures, including TRIMP, average heart 

rate, sRPE, total distance, distance in speed zones, and workrate (m·min-1) to compare the 

intensity of training drills and competition. As the most effective form of training has been 

shown to be that which best mirrors the movement patterns and intensity of competition 

(Abbott, 2016; Liu et al., 2013), the objective was to determine if the demands of training 

drills were adequately preparing British university hockey athletes for competition.  

Finally, this study compared the demands of hockey competition in this population to 

previously published results. Specifically, the measures compared include total distance, 

distance in speed zones, and average heart rate.  Although studies have been performed on 

hockey at many levels, including the university level in the United States, this study was the 

first to measure these variables in British university hockey, which is unique in terms of 

season length, game frequency and training schedule (Vescovi and Frayne, 2015; Sell and 

Ledesma, 2016). A goal of this study was to determine if the results validate previous 

research or demonstrate that the demands of British university hockey differ from those of 

other hockey populations. 

 

1.3 Research Questions 

Overall, this study had two main aims: (1) investigating methods of measuring 

training load in female hockey athletes and (2) summarizing the demands of female British 

university hockey. The research questions associated with these aims are as follows.  
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Measuring Training Load in Female Hockey Athletes: 

1) Are there associations between different methods of measuring training load in 

female hockey athletes? 

2) Which training load measure(s) best predicts fitness and fitness change? 

 

Physical and Physiological Demands of Female British University Hockey: 

3) What are the physical and physiological demands of female British university 

hockey and how do these demands compare to other previously studied female 

hockey populations? 

4) How do the demands of training compare to the demands of competition? 

 

1.4 Significance 

 From a practical perspective, the results of this study have significant implications for 

female hockey training and athlete monitoring.  Firstly, by determining which training load 

measure(s) best predicts fitness and fitness change, this study provides evidence on the most 

effective methods of monitoring training load in female hockey athletes.  Coaches and sports 

scientists can use these results to ensure that athletes are being appropriately monitored, with 

training load measures linked to fitness outcomes, and are reaching target training load 

thresholds.  As individualized monitoring has been shown to improve fitness, minimize 

injuries, and improve performance during competition, determining how to effectively 

monitor female hockey players can improve athletes’ safety and performance (Foster et al., 

2001; Liu et al., 2013; Kevin and James, 2015; Mara et al., 2015; Bourdon, 2017).  

Furthermore, the associations between different training load measures provide information 

on the validity of easily computed training load measures, such as differential sRPE and 

average percentage of maximum heart rate, as well as on the need for both internal and 

external training load monitoring.  As many hockey teams have limited resources, this 

information may simplify athlete monitoring protocols, making individualized monitoring 

more accessible to hockey clubs.  

 This study was the first to summarize the demands of British university hockey 

training and competition.  As monitoring took place over several months, results included 

details on the demands of competition and training sessions, as well as on the demands of the 

hockey season as a whole.  Comparisons with previously published results provide 

information on how the demands of British university hockey compare with other national 

and international level competition.  Finally, in order for training to be most effective, it must 
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be performed at the same intensity as competition (Liu et al., 2013; Abbott, 2016).  By 

comparing the demands of training and matches, the results of this study include evidence on 

whether small-sided games used in a training environment adequately prepare athletes for 

competition. Thus, this study provides information to coaches on whether commonly used 

small-sided games are an adequate training drill to prepare athletes for the demands and 

intensity of match play. 
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Chapter 2: Literature Review 

2.1 Introduction 

This literature review will critically examine the current empirical research on and 

history of internal and external training load measurement. Although the emphasis will be on 

hockey, other sports will be discussed, particularly when considering training load measures 

that have not yet been studied in hockey athletes.  This review will begin with a general 

introduction to the sport of hockey and the concept of training load and then will go into 

detail on specific training load measures.  First to be examined is session rating of perceived 

exertion (sRPE), which has been extensively researched in other sports, but has yet to be 

investigated in adult hockey, despite its potential as an easily calculated metric. The next 

measure is training impulse (TRIMP), which involves using one of several published 

algorithms to summarize heart rate data from an entire session into a single numerical score. 

The TRIMP algorithms have evolved over time from general equations to more specific 

hockey-based formulas and even individualized calculations; however, none of these 

algorithms have been studied in female hockey athletes.  In addition to the internal measures 

of sRPE and TRIMP, this literature review will examine external training load measures, 

such as distance, workrate, and distance in speed zones, derived from GPS data.  Although 

these measures have been extensively researched in hockey, there is little consensus across 

various hockey populations, and no study has examined British university hockey. Finally, 

this literature review will conclude by investigating what can be learned by examining 

internal and external training load measures simultaneously.  Specifically, the potential 

benefits of measuring efficiency index (effindex), the ratio of external and internal training 

load, will be considered.  In summary, the goal of this literature review is to provide a 

thorough outline of the existing literature surrounding training load in female hockey athletes 

and to identify the gaps in the literature that this study intends to address. 

 

2.1.1 Demands of Hockey 

 Hockey is a stick-and-ball based, goal-scoring, field sport.  It originated several 

thousand years before the first ancient Olympics and evolved over time, with the first official 

international hockey matches taking place in the late 19th century (Lythe, 2008).  During 

matches, there are 11 athletes on the pitch, typically 10 field players and a goalkeeper, and 

teams work to win and maintain possession, move the ball up the pitch, and outscore their 

opponents.  Elite hockey is played on a synthetic, water-based turf, sized at 100 by 60 yards 

(91.4 by 55.0 m) and is an Olympic sport for both men and women (Abbott, 2016).  Although 
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there are many different playing structures, outfield players are typically grouped into three 

main positions, defense, midfield, and forwards (also known as strikers). Games of hockey 

traditionally consist of two 35-minute halves with a continuous game clock, only stopped for 

injuries and egregious fouls (Abbott, 2016).  However, at the international level, hockey is 

now played in 15-minute quarters with pauses in the game clock for goals and certain 

penalties.  As a result, there has been a decrease in the amount of low-intensity movements, 

such as walking, that athletes perform during the game, but no recorded difference in average 

heart rate (Abbott, 2016; McGuinness et al., 2017).  This change in game timing is not 

unprecedented, as the game of hockey is continually developing, with new rules being 

introduced over time, such as unlimited substitutions (1992), the removal of offsides (1998), 

and the self-pass (2009) (Macutkiewicz and Sunderland, 2011). 

Like other field-based team sports, including football and lacrosse, the physical 

demands of hockey are intermittent in nature, as high-speed running is intermixed with 

accelerations, decelerations, and periods of stationary and active recovery (Gabbett, 2010; 

Polley et al., 2015; McGuinness et al., 2017).  The intensity of hockey competition is high, 

with male athletes covering upwards of 7.3 km on average (Liu et al., 2013), and athletes’ 

average heart rate on pitch ranging from 85-89% of their maximum heart rate  (Lythe, 2008; 

Sell and Ledesma, 2016; Vescovi, 2016; McGuinness et al., 2017). Hockey athletes must also 

adopt a semi-crouched position when passing, receiving, and dribbling, which has been 

shown to increase heart rate, energy expenditure, and perceived exertion when compared to 

normal running (Reilly and Seaton, 1990). With possession of the ball frequently changing 

and there being no offsides or restraining lines, the movement patterns of hockey players are 

stochastic, or random,  in nature (McGuinness et al., 2017).  As a result of the random 

movement, without appropriate tracking devices or video technology, hockey can be a 

challenging sport to analyze and quantify.  In addition, a key difference between hockey and 

sports such as rugby and football is the rule allowing for unlimited, rolling substitutions 

(Abbott, 2016).  Except during penalty corners (a set play that occurs when there is a foul in 

the scoring area), players may substitute at any time.  Depending on the tournament or 

league, typically five to seven players are available and recovering on the bench, allowing 

teams to maintain a high-intensity on the field for the duration of the match (Abbott, 2016).  

In terms of research, there are a very limited number of peer-reviewed studies focused 

on hockey, and even fewer on female hockey. A systematic review of scientific journal 

articles on hockey between 1960 and 2010 found only 208 studies (Podgórski and Pawlak, 

2011). However, a search for field hockey studies published after 2010 yielded 101 results, 
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suggesting that although research into hockey is still very limited in comparison to other 

sports, there has been a recent upswing in hockey research. As a comparison, the academic 

database EBSCOhost returned 7,459 results when searching for ‘field hockey’ compared to 

1,024,038 for football, 570,309 for basketball, and 22,700 for lacrosse (Podgórski and 

Pawlak, 2011).  The majority of studies were published by authors in the United States 

(21.15%), the United Kingdom (20.67%), and Australia (13.94%) (Podgórski and Pawlak, 

2011). Specifically considering articles on monitoring load in athletes, there have been a 

range of studies performed on both international and national level athletes. Although 

published data on international teams are often limited as teams prefer to keep their findings 

from potential competition, there are published studies on the women’s national teams from 

the United States (Abbott, 2016) and Canada (Vescovi, 2014; 2016) and the men’s national 

teams from Australia (Spencer et al., 2004; Polglaze et al., 2015; Jennings et al., 2012a; 

2012b), Scotland (White and MacFarlane, 2013; 2015a), and New Zealand (Lythe, 2008).  

Additionally, in terms of national level competition, there have been studies on the Chinese 

Men’s National Games (Liu et al., 2013), the Australian Hockey League, both male (Jennings 

et al., 2012b) and female (Gabbett, 2010), US Women’s Division I University Hockey (Sell 

and Ledesma, 2016; Vescovi and Frayne, 2015), the English Women’s Premier League 

(Vinson, Gerrett and James, 2017; Sunderland and Edwards, 2017), and the Scottish 

Women’s National League (White and Macfarlane, 2015b); however, there have yet to be 

any studies performed on British university hockey. Unlike athletes in other national-level 

leagues, elite British university athletes compete in two games per week instead of one.  

Additionally, the season structure and schedule of British university hockey differ greatly 

from university hockey in the US, as the season is much longer, running from October-April 

rather than September-November, and training sessions are less frequent, with US athletes 

typically training 4 times per week in season compared to 2 times per week for British 

athletes (Sell and Ledesma, 2016). Therefore, British university hockey represents a unique 

hockey population that has yet to be studied. 

 

2.1.2 Measuring Training Load 

 As the object of hockey is to win games by outscoring opponents, a main goal of 

coaches is to prepare and peak athletes for competition (Banister, 1991).  Thus, coaches seek 

to design training and preparation to maximize the potential of their athletes on match-day. 

However, determining the necessary training dose and measuring physical outputs is 

incredibly difficult, requiring professional expertise and intelligent planning, as without 
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tracking equipment, it is impossible to know the exact physiological and physical work 

performed (Bompa, 1999). As a result, many coaches often erroneous rely on intuition when 

making training decisions (Bompa, 1999).  The concept of training load resolves this issue by 

measuring and quantifying the work of athletes, in both training and competition 

environments.  Training load was first tracked in endurance sports through logs of training 

volume (kilometers per week) (Foster et al., 2001).  However, monitoring total distance 

provides no information on the intensity at which the training was performed.  Additionally, 

unlike individual sports, such as running, swimming, and cycling, it is not feasible to plan 

and record the volume of training in team sports without sophisticated tracking devices.  

Even as tracking devices, such as heart rate and GPS monitors, have become available, the 

intermittent nature of field sports makes accurately quantifying the demands of training 

sessions and competitions far more challenging (Stagno, Thatcher and Van Someren, 2007).  

As a result, many different techniques have been developed to monitor training load in team-

sport athletes.  

 Measures of training load can be grouped into two categories, internal and external.  

Internal training load is the physiological stress imposed on the body during training or 

competition (Scanlan et al., 2014). Thus, internal training load measures include rating of 

perceived exertion (RPE), heart rate (often measured as TRIMP), oxygen consumption, and 

lactate accumulation (Scanlan et al., 2014; Bourdon, 2017; Macleod et al., 2009).  Although 

varied, these measures all examine the physiological demands of exercise on the body.  On 

the other hand, external training load is an objective measure that focuses solely on physical 

output, regardless of the internal physiological response (Bourdon, 2017).  External training 

load is movement-based and, as such, is often measured through time-motion analysis, GPS 

parameters, power output, or accelerations (Bourdon, 2017; Scott et al., 2013a).  Although 

different constructs, both internal and external measures have been successfully used to 

monitor training load across a large range of sports (Scott et al., 2013a).  

 Measuring training load has been shown to be incredibly beneficial, despite the 

additional effort, knowledge, and hardware required (Bourdon, 2017).  There have been 

numerous studies on the benefit of training programs that combine periods of lower and 

higher intensity work through periodization (Morton, Fitz-Clarke and Banister, 1990; Busso 

et al., 1997; Mujika, 1998; Bompa, 1999; Foster et al., 2001; Kevin and James, 2015; Mara et 

al., 2015). However, without effective measures of monitoring training load, it can be 

impossible to determine if a training prescription is being met (White and Macfarlane, 

2015a).  Furthermore, it has been shown that for field-based team sports, including football, 
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handball, basketball, rugby, and hockey, the most effective type of training is that which best 

mirrors the intensity of competition (Gabbett, 2010; Liu et al., 2013).  For this reason, it is 

important to determine the demands of competition and measure load during training to 

ensure that training intensity is appropriately planned and executed.  Finally, monitoring 

training load is crucial to minimizing both overtraining and undertraining (Bompa, 1999; 

Stagno, Thatcher and Van Someren, 2007; Cummins et al., 2013). Individuals respond to 

training stimuli differently, and it has been repeatedly shown that there are different physical 

demands across hockey positions – forwards, midfield, and defense – with the average 

distance covered during a game varying by as much as 2.3 km between positions (Gabbett, 

2010; Sunderland and Edwards, 2017; Vescovi, 2016; McGuinness et al., 2017; Boran, 

2012). Therefore, monitoring training load allows coaches to individualize training programs 

to ensure that each athlete receives the appropriate training dose.  Both too high and too low a 

training load have been shown to increase the risk of injury, so monitoring load can reduce 

injuries (Bourdon, 2017). In conclusion, when implemented correctly, monitoring training 

load can help to improve performance, avoid over and under training, and decrease injuries.   

In the subsequent sections, RPE, TRIMP and GPS tracking will be considered as methods of 

measuring training load in hockey. 

 

2.2 Rating of Perceived Exertion (RPE) 

Rating of perceived exertion (RPE) is a subjective, perceptual method of monitoring 

internal training load. Specifically, RPE is the athlete’s perceived level of exertion at any 

specific time, or range of times, during exercise (Martin, 2012). Collecting RPEs involves 

asking athletes to report how difficult or exerting they found an activity or session, as 

increases in physiological fatigue have been shown to be associated with increased exertion 

levels (Davis and Walsh, 2010).  

 There are several different scales and methods that can be used to measure RPE.  

Traditionally, RPE values were determined using the 15-point Borg Rating of Perceived 

Exertion Scale (Martin, 2012).  This scale, which was first introduced in the 1960s, goes from 

six to twenty, with higher numbers indicating increased exertion levels (Chen, Fan and Moe, 

2002). Borg reported a strong correlation (r=0.83) between perceived exertion and heart rate 

on a cycle ergometer, and, in the following decades, Borg’s scale became very popular (Borg, 

1962; Chen, Fan and Moe, 2002).   However, as more studies were performed, the validity of 

Borg’s RPE scale came into question (Kolkhorst, Mittelstadt and Dolgener, 1996; Travlos 

and Marisi, 1996; Zeni, Hoffman and Clifford, 1996; Chen, Fan and Moe, 2002; Faulkner 
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and Eston, 2007). Specifically, a meta-analysis of 437 studies found the weighted mean 

validity coefficients for the Borg RPE scale to be only r=0.62 for heart rate, r=0.57 for blood 

lactate, and r=0.64 for maximal oxygen intake (Chen, Fan and Moe, 2002). These weaker 

correlations suggest that Borg’s RPE scale is not nearly as strongly related to the body’s 

physiological response to exercise as was initially reported, and, therefore, is not a very 

accurate measure of internal training load (Chen, Fan and Moe, 2002).  

 

2.2.1 Session RPE 

In contrast to Borg’s RPE rating, session RPE takes into consideration the duration of 

exercise sessions. Initially, RPE was collected by asking, using precise instructions, how 

exerting an athlete found an activity at a given moment (Foster et al., 2001). Although useful 

in assessing the level of exertion at a fixed point in time, this provides little information on a 

training session as a whole, particularly during intermittent exercise.  In order to resolve this 

problem, Foster et al. created a session rating of perceived exertion (sRPE) method in which 

athletes are asked for a “global rating” of training session intensity, using a 0-10 scale with 

set descriptors (CR10 scale) (Foster et al., 2001). To account for variation in the length of 

training sessions, the reported value is multiplied by total session time (in minutes) to 

determine sRPE .  

A variety of studies have investigated the validity of sRPE as a method of monitoring 

training load in intermittent field-based team sports.  A study of 19 football players across 27 

training sessions found a moderate correlation (r=0.70) between mean team sRPE and 

TRIMP (Impellizzeri et al., 2004).  Similarly, a study of 21 male Australian football players 

monitored across 38 training sessions compared sRPE to measures of both internal and 

external training load (Scott et al., 2013b). The results showed relatively strong correlations 

between sRPE and TRIMP (r=0.83) and between sRPE and total distance (r=0.78) (Scott et 

al., 2013b). Furthermore, a 2016 study compared sRPE with TRIMP across 37 training 

session in 12 elite futsal athletes and found a moderate correlation (r=0.70) (Wilke et al., 

2016).  However, the strength of the correlation varied significantly between individuals 

(r=0.11 - 0.70), (Wilke et al., 2016). As the study took place during technical-tactical training 

sessions, the researchers hypothesized that this range of correlations was due to differing 

mental, not physiological, strain experienced by the individuals (Wilke et al., 2016). 

However, regardless of the cause, these findings suggest that some individuals’ perceptions 

of exertion are more accurate reflections of the body’s physiological response to exercise 

than others, and, thus, extreme caution should be taken when considering an individuals’ 
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sRPE data in isolation.  Overall, these studies suggest that there is a moderate to strong 

correlation between team average sRPE and other measures of training load.  Thus, sRPE 

may be a useful measure of internal training load, particularly when other more sophisticated 

measures are not available.  However, the correlation coefficients ranging from r=0.70 to 

r=0.83 indicate that there are other factors, such as emotional or psychological strain, 

affecting sRPE values, and one should be cautious when drawing conclusions from sRPE.  

 

2.2.2 Differential RPE 

An expansion of sRPE, called differential rating of perceived exertion (dRPE), has 

been developed to provide additional information and explain some of the factors influencing 

sRPE (McLaren et al., 2017).  Differential RPE involves athletes reporting separate RPE 

scores for various elements of exertion, such as breathlessness, lower body muscular 

exertion, and upper body muscular exertion (Arcos et al., 2014). As respiratory and muscular 

fatigue both contribute to overall feelings of exertion, the concept behind dRPE is to isolate 

these different types of effort to provide more detailed and specific information on the 

various demands of a training session (Weston et al., 2015; McLaren et al., 2017). In a study 

of professional rugby-union players, dRPE scores for breathlessness, leg muscle exertion, 

upper body exertion, and cognitive/technical demands combined to explain 84% of the 

variance in overall sRPE during small-sided training games and 91% during repeated high-

intensity effort conditioning (McLaren et al., 2017).  Thus, dRPE scores give a more detailed 

representation of internal load by explaining much of the variability in sRPE which is 

impossible to determine when considering sRPE alone (McLaren et al., 2017). 

Several studies have investigated the relationship between dRPE and various other 

methods of measuring training load and fitness in male populations. (Arcos et al., 2014; 

2015; Gil-Rey, Lezaun and Los Arcos, 2015; Weston et al., 2015). Firstly, a study of dRPE in 

professional football players found that TRIMP was strongly correlated with both muscular 

(r=0.84) and respiratory (r=0.87) dRPE, suggesting that dRPE is a valid measure of internal 

training load (Arcos et al., 2014). However, the relationship between dRPE and external 

training load measures may be much weaker, with a study on Australian football players 

finding extremely weak correlations between high speed running distance (>14.4 km·h-1 ) and 

dRPE for leg exertion (r=0.31) and breathlessness (r=0.17) (Weston et al., 2015).  However, 

this study removed the time component of sRPE, considering a 1-10 score rather than 

multiplying that score by session time, which likely contributed to the lower correlations 

(Weston et al., 2015). Additionally, studies assessing the relationship between dRPE and 
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fitness changes have found mixed results.  Specifically, a nine-week study of 19 male 

professional football players found the sum of an individual’s dRPE scores to be weakly 

negatively correlated (r=-0.57) with fitness improvements, as measured by lactate 

concentration at 13 km·h-1 during fitness tests performed at the start and end of the study 

(Arcos et al., 2015).  This suggests that athletes may have reached a point of overtraining and 

fatigue, which would explain why increased exertion levels during training were associated 

with decreased fitness (Bompa, 1999).  However, another study, also on male professional 

football players over a nine-week period, found both respiratory and muscular dRPE to be 

positively correlated with fitness improvement (r=0.71 and r=0.69, respectively), as measured 

by time to exhaustion in a continuous, maximal multistage fitness test (Gil-Rey, Lezaun and 

Los Arcos, 2015). Thus, in this case, higher cumulative dRPE ratings were associated with 

fitness improvements, perhaps suggesting that the participants in the study were not 

overtrained, so a training effect took place with an elevated training stimulus resulting in 

fitness improvements (Bompa, 1999).  Overall, although it is clear that measuring dRPE can 

provide additional information compared to sRPE, these studies indicate the need for further 

research on the relationship between dRPE and fitness changes, particularly in female 

populations. 

 

2.2.3 Advantages and Disadvantages of RPE 

  When considering collecting RPE scores, whether sRPE or dRPE, there are several 

benefits and limitations that should be noted.  Firstly, the notion of RPE is based on the idea 

that athletes can monitor their own exertion levels during exercise and accurately report them 

at the end of a session or competition (Halson, 2014).  Essentially, the theory is that the 

simplest way to gain information on how physiologically taxing a session was for a group of 

athletes is to ask them.  Furthermore, by using a numerical scale, researchers and sports 

scientists can obtain quantitative information that can be used in analysis, rather than 

qualitative responses which can be difficult to quantify.   Unlike methods for monitoring 

heart rate and distance travelled, which require sophisticated hardware and software, 

collecting RPEs requires no additional expense, set-up, or equipment.  Because of this, RPEs 

can be easily collected from large groups of athletes and are particularly useful for teams with 

limited resources. Furthermore, even for teams that do use other monitoring methods, 

particularly of external training load, collecting sRPE data can help coaches and trainers 

understand individual athletes’ responses to a training stimulus (Gallo et al., 2014).  Since 

athletes will have varied physiological responses to identical external stimuli, and some 
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athletes will require longer for recovery, the additional information provided by RPE scores 

can be used to personalize training prescriptions to help prevent undertraining and 

overtraining (Impellizzeri, Rampinini and Marcora, 2005; Gallo et al., 2014). Additionally, 

many outside factors, such as sleep, anxiety, hydration, and ambient temperature, can impact 

the body’s response to an external training stimulus, thereby affecting RPE (Martin, 2012).  

Thus, monitoring RPE can provide insight on outside factors affecting performance.   

 Although there are clearly many advantages of collecting RPE, there are also several 

limitations that should be considered.  Firstly, it can be easy to think that monitoring RPE 

does not require technical expertise, especially when compared to heart rate and GPS 

measures. However, outside factors affect RPE, so careful and experienced interpretation of 

these values is critical (Gallo et al., 2014).  For example, an athlete’s psychological state, 

including factors such as mood and mental fatigue, have been shown to impact sRPE scores 

(Marcora, Staiano and Manning, 2009; Blanchfield et al., 2014; Gallo et al., 2014).  For 

example, a study of 16 individuals found that subjects reported significantly higher RPE 

scores (p=0.007) during physical activity after completing a 90-minute cognitively 

exhausting computer test compared with a non-stimulating control activity, despite there 

being no significant difference in heart rate or blood lactate prior to exhaustion (Marcora, 

Staiano and Manning, 2009).  Furthermore, self-talk training and self-efficacy scores prior to 

exercise have also been shown to significantly affect RPE scores (p<0.05, p<0.001) (Rudolph 

and McAuley, 1996; Blanchfield et al., 2014).  In competition settings, opponent and 

outcome can also impact RPE (Gabbett, 2013). Specifically, a study of 22 elite male rugby 

players found that RPEs scores were highest in games against top-ranked teams as well as 

games won by small margins or lost by large margins (Gabbett, 2013).  Thus, the perception 

of the opponent as well as the final score, which influences psychological state after a game, 

will impact the reporting of perceived exertion. Finally, it is important to consider that 

athletes may alter their RPE scores to attempt to elicit a change in future training sessions, or 

because they wish for a coach to think that they were exerting maximal effort, particularly in 

competition settings. Therefore, it is critical for coaches to be aware of these influencing 

factors when making decisions based on RPE scores.  

 Focusing specifically on hockey, there has only been one study to date assessing the 

validity of sRPE in hockey athletes.  Although this study claimed to have demonstrated that 

sRPE was a valid measure of monitoring internal training load in hockey athletes, the 

correlation between sRPE and TRIMP was only moderate (r=0.6) (Scantlebury et al., 2017a). 

Furthermore, the population was small (nine participants), was made up of youth athletes, and 
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only training sessions were considered, rather than both training and competition 

(Scantlebury et al., 2017a).  Thus, there is still a significant gap in the literature on the 

validity and reliability of sRPE and dRPE in hockey populations.  Many hockey clubs do not 

have access to monitoring equipment such as GPS and heart rate monitors; therefore, if sRPE 

and dRPE are found to be valid measures, they could be used to monitor training load in 

hockey athletes on whom monitoring would otherwise not be possible.  

 

2.3 Training Impulse (TRIMP) 

 Like RPE, training impulse (TRIMP) is a method of measuring internal training load. 

However, instead of being a subjective measure based on perceptions of exertion, it is 

objective and derived from an individual’s heart rate.  As with all internal training load 

measures, TRIMP is based solely on the physiological response to an exercise session with 

no regard to the actual physical output produced.  TRIMP is designed to express and 

summarize the total work of an individual across an entire training session in a single 

numerical value in arbitrary units (Needham, 2011).  Originally intended to be “a unit 

measure of training that can quantify physical effort,” it incorporates both duration and 

training intensity (determined by heart rate) as well as a weighting factor based on the body’s 

physiological response to exercise (Banister, 1991). Over time a variety of different methods 

for calculating TRIMP have been developed; however, regardless of formula, the goal is to 

use heart rate data to create a numerical score for the physiological load of an exercise 

session.   

 Heart rate is a well-established method of monitoring exercise intensity that has been 

in use since the late 1960s (Conway, 2016).  Exercising heart rate has been shown to be a 

good candidate for monitoring internal training load as it is relatively consistent when 

repeating the same training regimen, and heart rate increases as intensity elevates (Banister, 

1991).  Additionally, technological improvements and the increased availability of heart rate 

monitors have led to a rise in team heart rate monitoring, both in training and competition 

(Conway, 2016). However, just considering average heart rate or maximum heart rate 

provides little information on a training session as a whole, as duration is ignored and the 

intermittent nature of activities can be obscured.  Therefore, TRIMP has been established as a 

method of synthesizing and summarizing heart rate data across an entire training session. 
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2.3.1 History of TRIMP 

 The concept of TRIMP was first introduced by Banister in 1991 to quantify training 

activities where heart rate reaches steady-state (levels out and remains consistent). The 

equation for calculating Banister’s TRIMP is as follows.  

Equation 2.1: Banister's TRIMP Equation (Banister, 1991) 

𝑇𝑅𝐼𝑀𝑃 = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)  ×
𝐻𝑅𝑒𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡

𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡
× 𝑦 

where 

Equation 2.2: Banister's TRIMP Sex Weightings (Banister, 1991) 

𝑦 = 0.64𝑒
1.92(

𝐻𝑅𝑒𝑥−𝐻𝑅𝑟𝑒𝑠𝑡
𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑟𝑒𝑠𝑡

)
  (male) 

𝑦 = 0.86𝑒
1.67(

𝐻𝑅𝑒𝑥−𝐻𝑅𝑟𝑒𝑠𝑡
𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑟𝑒𝑠𝑡

)
  (female). 

HRex is average heart rate during exercise, HRrest is resting heart rate, HRmax is maximum 

heart rate, and e is the Naperian logarithm, 2.712 (Banister, 1991). The weighting factor, y, is 

incorporated to prevent giving disproportionate weight to low-intensity activites performed 

for a long duration and is based on classic curves modeling the blood lactate response to 

exercise in trained individuals (Banister, 1991). As an example, consider a female with a 

resting heart rate of 50 bpm and a maximum heart rate of 200 bpm who exercised for 60 

minutes at an average heart rate of 150. Using Banister’s (1991) algorithm, her TRIMP score 

is calculated as follows.  

Equation 2.3: Banister's TRIMP Example 

𝑇𝑅𝐼𝑀𝑃 = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)  × 
𝐻𝑅𝑒𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡

𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡
 ×  0.86𝑒

1.67(
𝐻𝑅𝑒𝑥−𝐻𝑅𝑟𝑒𝑠𝑡

𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑟𝑒𝑠𝑡
)
 

𝑇𝑅𝐼𝑀𝑃 = 60 ×
150 − 50

200 − 50
× 0.86𝑒1.67(

150−50
200−50

) 

𝑇𝑅𝐼𝑀𝑃 = 60 ×
2

3
× 2.618 

𝑇𝑅𝐼𝑀𝑃 = 104.73   (arbitrary units) 

Although useful in measuring training load in steady-state activities, the use of mean 

heart rate in this equation fails to properly reflect the demands of intermittent team sports 

(Stagno, Thatcher and Van Someren, 2007). Specifically, when averaging heart rate data 

from an entire match, short bouts of very high intensity will have little influence on the mean 

due to their duration, despite having significant physiological effect. In order to overcome 

this limitation, Edwards (1993) proposed a summated heart rate zone approach to calculating 

TRIMP. This method involves grouping heart rate measures into five zones: zone 1= 50-60% 
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HRmax, zone 2 = 60-70% HRmax, zone 3= 70-80% HRmax, zone 4= 80-90% HRmax, and zone 5= 

90-100% HRmax (William et al., 2015).  TRIMP is then calculated as follows (William et al., 

2015).  

Equation 2.4: Edward's TRIMP Equation (Edwards, 1993) 

𝑇𝑅𝐼𝑀𝑃 = 1 ×  (𝑡𝑖𝑚𝑒 𝑖𝑛 𝑧𝑜𝑛𝑒 1) + 2 × (𝑡𝑖𝑚𝑒 𝑖𝑛 𝑧𝑜𝑛𝑒 2) + 3 × (𝑡𝑖𝑚𝑒 𝑖𝑛 𝑧𝑜𝑛𝑒 3)

+ 4 × (𝑡𝑖𝑚𝑒 𝑖𝑛 𝑧𝑜𝑛𝑒 4 ) + 5 × (𝑡𝑖𝑚𝑒 𝑖𝑛 𝑧𝑜𝑛𝑒 5)               

The use of summated zones better models the intermittent nature of team sports, as times 

spent at differing intensities are incorporated and weighted in the overall TRIMP score 

(Stagno, Thatcher and Van Someren, 2007).  However, this model is still limited by the fact 

that the zones and weightings are arbitrary, rather than based on the body’s physiological 

response to exercise (Stagno, Thatcher and Van Someren, 2007).  In addition, it has been 

shown that metabolic stress is not the same across individuals exercising at the same 

percentage of maximum heart rate, as anaerobic thresholds vary between individuals (Stagno, 

Thatcher and Van Someren, 2007). Furthermore, individuals have unique blood lactate 

curves, so they will have varied accumulations of blood lactate at the same percentage of 

maximum heart rate.  As a result, more individualized methods of measuring TRIMP have 

been developed.  

 

2.3.2 Current TRIMP Models 

 Although Banister’s and Edward’s TRIMP models are often still used in research 

(Scott et al., 2013b; Luke, Brendan and Mark, 2015; Marques et al., 2017; Silva et al., 2017; 

Slimani et al., 2017; Turner et al., 2017), new methods have been developed to more 

accurately model TRIMP based on the body’s physiological response to exercise.  The first 

method, which is particularly of note as it was developed in hockey athletes, is a modified 

TRIMP using summated heart rate zones. To develop the algorithm, Stagno, Thatcher, and 

Van Someren (2007) studied 8 male hockey players from the English Premier Division over 

the course of a hockey season. Subjects performed a submaximal treadmill test, which 

consisted of four 4-minute intervals starting at a speed of 10 km∙hr-1 and increasing by 2 

km∙hr-1 each stage, with a 1-minute rest between stages.  During the rest time, capillary blood 

samples were taken and analyzed for lactate, and these measurements were used to 

extrapolate heart rate at blood lactate levels of 1.5 mmol·L-1 (HRlac) and 4 mmol·L-1 

(HROBLA) as well as velocity at blood lactate levels of 1.5 mmol·L-1  (vlac) and 4 mmol·L-1 

(vOBLA) (Stagno, Thatcher and Van Someren, 2007). Similar to Edwards TRIMP model, 5 

heart rate zones were used; however, in this model, they were based around the findings for 
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HRlac and HROBLA. Specifically, zones 2 and 4 were centered around HRlac and HROBLA, 

respectively, and the remaining zones were fit around these, with similar widths (Stagno, 

Thatcher and Van Someren, 2007).  In addition, as opposed to using arbitrary weights of 1-5 

for the zones, an exponential line of best fit was calculated from the data collected on blood 

lactate and fractional elevation of exercising heart rate, and this curve was used to determine 

zone weights (Stagno, Thatcher and Van Someren, 2007).  The zones and their weighting 

factors are as follows.  

Table 2.1: Modified Team TRIMP Zones and Weightings 

Zone % Max HR Weighting 

1 65-71 1.25 

2 72-78 1.71 

3 79-85 2.54 

4 86-92 3.61 

5 93-100 5.16 

 

The researchers in this study found that the mean weekly modified TRIMP score for 

the athletes was 826±123, and the average modified TRIMP values for matches and training 

were 355±60 and 236±41, respectively (Stagno, Thatcher and Van Someren, 2007).  

Furthermore, mean weekly training load was correlated with changes in maximum volume of 

oxygen consumption (VO2 max) (r=0.80) and vOBLA, the velocity at a blood lactate 

concentration of 4 mmol·L-1 during the submaximal fitness test described above (r=0.71).  

These results suggest that Stagno et al.’s (2007) modified TRIMP is a valid and useful 

method of monitoring internal training load, as it is predictive of fitness changes. However, 

despite these findings, there are still several limitations to be considered.  Firstly, the sample 

size was small (8 participants) and only included male athletes, so the heart rate zones and 

weightings may not be appropriate for female athletes, or even for other groups of male 

athletes. In addition, the zones and weightings were based on averages across the 8 

individuals as opposed to being calculated for each individual separately, so this model may 

be more accurate for some athletes than others.  

In order to combat the limitations of the modified TRIMP method, a new, fully 

individualized method of monitoring TRIMP, called iTRIMP, has been introduced.  

Calculating iTRIMP follows much of the same procedure as the Stagno et. al study (2007), 

except, instead of using averages, each individual’s data are analyzed separately to create a 

fully individualized equation for training load (Malone and Collins, 2016). Manzi et al. 
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originally described and tested this procedure in recreational distance runners (2009). In the 

study, each athlete performed a submaximal treadmill test which consisted of 4-5 four-minute 

stages with a one-minute rest between stages. The beginning speed was 10 km·h-1 and speed 

increased by 2 km·h-1 for each subsequent stage.  Heart rate was continually monitored 

throughout the test and earlobe capillary blood lactate samples were taken at the end of each 

stage. Heart rate reserve (
𝐻𝑅𝑒𝑥−𝐻𝑅𝑟𝑒𝑠𝑡

𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑟𝑒𝑠𝑡
)  was then plotted against blood lactate to produce 

individualized blood lactate curves (Manzi et al., 2009).  As opposed to designing zones and 

weights from the curve as Stagno et al. did, this equation was then used to determine the 

weighting for each individual heart rate measurement and TRIMP was calculated by 

summing the weighted score for each heart rate data point recorded during a session (Manzi 

et al., 2009).  Athletes were monitored for an 8-week period and results indicated that 

iTRIMP was strongly correlated with 5000 m running time (r=-0.77) and 10000 m running 

time (r=-0.82) (Manzi et al., 2009).  However, the implications of these results for team-sport 

athletes are limited, as endurance running lacks the intermittent nature of team-sports. 

In addition to Manzi et al.’s study (2009) on distance runners, iTRIMP has also been 

used to monitor internal training load in intermittent team-sport athletes with similar results.  

In 20 hurling players, iTRIMP, monitored over 8 weeks, was shown to be strongly correlated 

with VO2 max (r=0.77) (Malone and Collins, 2016).  Similarly, in 14 professional youth 

football players, iTRIMP monitored over an 8-week preseason was strongly correlated with 

improvements in VO2 max (r=0.77) (Manzi et al., 2013). On the other hand, a different study 

on professional youth football players found only a moderate correlation (r=0.67) between 

mean weekly iTRIMP and percent change in velocity at blood lactate concentrations of 2 

mmol·L-1 during a submaximal treadmill test (Akubat et al., 2012).  However, the sample 

size was small (nine participants) and the study only lasted six weeks, both of which could 

have contributed to the weaker correlation (Akubat et al., 2012). Overall, these studies 

suggest that iTRIMP is an effective method of monitoring internal training load and 

predicting fitness changes in team-sport athletes.  However, no study to date has investigated 

iTRIMP in hockey athletes.  

 

2.3.3 Heart Rate Monitoring in Hockey 

As in many other team sports, monitoring heart rate has become fairly common in 

hockey, particularly when research is being conducted. Heart rate has been measured across a 
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variety of different populations of hockey athletes and findings have mostly been reported in 

terms of average heart rate during competition.  Table 2.2 summarizes these findings.  

Table 2.2: Average Heart Rate in Hockey Competition 

Author(s) Date # 

Subj 

M/F Level Average Heart Rate (either %HRmax or bpm) 

Team Defense Midfield Forward 

Lythe 2008 18 M International 85.5±2.9 84.4±2.5 86.5±2.6 85.6±3.7 

Sell & 

Ledesma 

2016 10 F University 87.4±3.5 86.9±7.4 90.0±3.8 84.7±5.0 

Vescovi 2016 44 F International 89 90±4 88±5 90±3 

McGuinness 

et al. 

2017 38 F International 85±5 86±2 87±2 85±12 

Macutkiewicz 

& Sunderland 

2011 25 F International 172±8 172±7 168±9 175±7 

Boran 2012 36 F Amateur 165±13 165±17 169±8 162±15 

 

Although these studies are somewhat varied in their results, together they provide an 

overview of average heart rate during competition.  It is important to note that due to the use 

of rolling substitutions in hockey, these averages are calculated from time on the pitch rather 

than a full game analysis.  From the table, it is clear that, in some cases, there are differences 

between the average heart rate profiles across positions, indicating that playing in different 

positions may vary the physiological stress of hockey.  However, there is no one position that 

consistently had the highest or lowest average heart rate across the studies.  This lack of 

consistency is likely caused by tactical differences and varied playing styles between teams.  

Furthermore, mean percent of maximum heart rate is highest in the Sell & Ledesma and 

Vescovi studies.  Interestingly, these studies were both performed on younger populations, 

specifically university athletes (age 18-22) and junior international athletes (age ~16-21).  

This finding suggest that average heart rate may be slightly higher in elite young adult 

populations, perhaps due to decreased technical proficiency and physical fitness.  

 Although considering average heart rate can be useful in understanding the physical 

demands of hockey competition, the potential interpretations of these findings are limited due 

to the intermittent nature of hockey.  As a result, some studies have further broken up heart 

rate data into time spent in heart rate zones; however, the cutoffs between the zones vary 

making these findings difficult to compare (Lythe, 2008; Sell and Ledesma, 2016; 

McGuinness et al., 2017).  To date, there have only been two studies published that evaluate 
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TRIMP in hockey.  The first of these studies was the Stagno study discussed above (Stagno, 

Thatcher and Van Someren, 2007). The only other study that has evaluated TRIMP in hockey 

was Vescovi’s study (2016) of the Canadian U17 and U21 national teams. This study used 

the weightings established in Stagno et al.’s model, but the zones were slightly different 

(60%-70%, 70-80%, 80-85%, 85-90%, 90-100%), making a true comparison between the 

studies nearly impossible (Vescovi, 2016). However, this study did find a statistically 

significant difference in TRIMP values between forwards (242±64) and defenders (446±100) 

(p<0.001) and between midfielders (291±109) and defenders (p=0.011) during competition 

(Vescovi, 2016). However, these differences may be explained by the fact that defenders 

spent more time on the field (51.0±10.3 min) compared to midfielders (42.1±11.8 minutes) 

and forwards (29.8±7.8 minutes). Overall, the lack of studies on TRIMP in hockey players 

indicates that this is an area where further research is needed.  As TRIMP and iTRIMP have 

been shown to be very effective measures of monitoring internal training load and predicting 

fitness changes in other sports, it is likely that these measures could be applied to hockey and 

used to inform coaching decisions.  However, more research is needed to determine the 

effectiveness of Stagno et al.’s modified team TRIMP in female hockey populations as well 

as iTRIMP in both male and female hockey populations.  

 

2.4 Global Positioning System (GPS) Data 

 Unlike RPE and TRIMP, which are both measures of internal training load, GPS data 

provide information on the overall physical work output, or external training load, of athletes. 

Monitoring external training load, which is now almost exclusively performed using GPS 

trackers and accelerometers, began before these devices were invented.  Early studies on 

football date back into the 1970s and relied on time-consuming video analysis techniques of 

charting athlete movement (Spencer et al., 2004).  This method of athlete tracking, often 

referred to as time-motion analysis, requires cameras that have been set up either to film the 

entire playing surface or to follow an individual player (Spencer et al., 2004).  Experienced 

operators then analyze the film, watching individual players and coding their movements 

(Spencer et al., 2004). Software such as SIMI Scout, in which the playing surface is 

calibrated to a two-dimensional coordinate plane, has been developed to assist with the 

notational process, and studies have been performed using time motion analysis in hockey as 

recently as 2013 (Liu et al., 2013).  However, as GPS technology has developed, it has 

mostly replaced time-motion analysis since GPS can instantly produce variables that take up 

to 8 hours to determine using video analysis, multiple athletes can be tracked simultaneous, 
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and no camera set-up is required (Scott, Scott and Kelly, 2016). As hockey is not frequently 

played indoors or in very large stadiums where extremely advanced automated video analysis 

systems are more commonly utilized, GPS tracking is the primary method of monitoring 

external training load in hockey athletes.  

 GPS is a navigational system that was first created by the United States Department of 

Defense for military applications (Scott, Scott and Kelly, 2016). It is based around 27 

satellites each equipped with an atomic clock that sends information, at the speed of light, to 

GPS receivers (Macleod et al., 2009). GPS receivers determine the lag time of the satellite’s 

clock signal and use this to determine distance (Scott, Scott and Kelly, 2016).  With a 

minimum of four satellite signals, a GPS receiver can calculate exact location and altitude 

(Scott, Scott and Kelly, 2016). Originally restricted to military use, the US military removed 

restrictions on civilian GPS use in the 1980s, but introduced a deliberate error which 

significantly reduced its accuracy (Macleod et al., 2009).  It was not until 2000 that the 

deliberate error was reduced, greatly increasing non-military GPS applications (Macleod et 

al., 2009).  GPS was first used to track athletes in 1997, and, since the error has been 

removed and portable, reasonably priced monitors have been developed, GPS tracking has 

become a key component of many athlete monitoring systems (Cummins et al., 2013). In 

sport, GPS units are categorized by the number of times they collect data each second (Scott, 

Scott and Kelly, 2016). The first units were 1 Hz (one data point per second), but now 5Hz, 

10 Hz, and, very recently, even 15 Hz devices have been developed (Scott, Scott and Kelly, 

2016).  In addition, many GPS units also contain a triaxial accelerometer which can measure 

acceleration in all three planes (Scott, Scott and Kelly, 2016).  

 

2.4.1 Validity of GPS Data 

 Although GPS is now accepted and commonly used for monitoring team sport 

athletes, the validity of GPS technology has been continually questioned throughout its 

development.  One Hz GPS units were the first to be used in team sports, and, as they only 

collect data once per second and team sports involve lots of rapid movements and changes of 

direction, people were unsure if these units could capture enough information to be accurate 

(Scott, Scott and Kelly, 2016). For example, if an individual were to move a meter to the 

right and then return to their initial position within one second, the unit would record no 

movement.  Over the course of a game, particularly when individuals are moving at high 

speeds, these small errors could add up significantly. A 2009 study investigated the validity 

of a 1 Hz GPS unit for measuring speed and total distance in a circuit designed, based on 
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time-motion analysis, to stimulate player movement during a hockey match (Macleod et al., 

2009). The exact length of the circuit, which included various shuttles, turns, and pace 

changes, was measured using a trundle wheel and timing gates were set up to determine 

speed (Macleod et al., 2009).   The results of the nine participants indicated that 1 Hz devices 

are valid methods of measuring total distance and mean speed, as the GPS data recorded, on 

average, a total distance of 6820.5 m compared with an actual distance of 6218.0 m and 

correctly recorded a mean speed of 7.0 km·h-1 (Macleod et al., 2009). However, the 

limitations lay within some of the shuttles, which required high speed running accompanied 

by changes of direction.  In each of the four shuttles, the mean distance measured by the GPS 

was significantly different than the actual distance (p<0.01), and there was a significant 

difference in the GPS reported and actual speed during the straight-line sprint shuttle 

(Macleod et al., 2009). Overall, a review study found that although accurate for measuring 

total distance, when used to monitor movements at higher speeds, particularly over shorter 

distances (< 40 m), 1 Hz monitors fail to achieve an acceptable (<10% error) level of validity 

(Scott, Scott and Kelly, 2016). As team sports involve many short, high-intensity movements, 

this calls into question the validity 1 Hz GPS devices for monitoring team sports.  

 Overall, studies suggest that 10 Hz GPS units are the most accurate and can 

consistently provide data with good levels of validity and reliability (<5% error) in team sport 

athletes (Johnston et al., 2014; Scott, Scott and Kelly, 2016). Although 5 Hz GPS units are an 

improvement on the 1 Hz GPS models, they have similar limitations (Scott, Scott and Kelly, 

2016).  Studies on 5 Hz models reported a high level of accuracy for total distance; however, 

accuracy fell off dramatically during very high speed running and running that involved rapid 

acceleration from standing (Scott, Scott and Kelly, 2016).  In contrast with the 1 Hz and 5 Hz 

model, 10 Hz GPS units were found to provide accurate measurements at varying speeds and 

distances, including short sprints (Scott, Scott and Kelly, 2016). In fact, a 2012 study that 

involved athletes wearing both 5 Hz and 10 Hz GPS units simultaneously found that the 10 

Hz model was 2-3 time more accurate than the 5 Hz model at measuring instantaneous 

velocity (Varley, Fairweather and Aughey, 2012). Specifically, when comparing 

instantaneous velocity for speeds within ranges of 1-3, 3-5, and 5-8 km∙hr-1, for over 250 

samples per speed range, the average percent bias ranged from -0.5% to 2.4% for 5 Hz 

models and -0.2% to 0.6% for 10 Hz models (Varley, Fairweather and Aughey, 2012).  

Considering these findings, one might expect that a 15 Hz GPS would provide further 

significant improvements in monitoring athlete movement, but this has not been shown to be 

the case (Scott, Scott and Kelly, 2016). In fact, studies have found that 15 Hz units have no 
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additional benefit and, in some cases, are worse than 10 Hz models at measuring athlete 

movement (Scott, Scott and Kelly, 2016).  Specifically, a study in which athletes wore both 

10 Hz and 15 Hz monitors simultaneously found the 15 Hz monitors to be less accurate at 

measuring total distance (Johnston et al., 2014). It is has been suggested that this decrease in 

accuracy may be due to the methods used to increase the sampling rate in 15 Hz units, 

indicating that the technology for 15 Hz units has yet to be perfected (Johnston et al., 2014). 

However, due to their recent development, the amount of research on these models is very 

limited. Thus, the current findings suggest that 10 Hz GPS units be used to provide the most 

valid and reliable information on external training load in team-sport athletes. 

 

2.4.2 Measuring Total Distance in Hockey Competition 

 Over the past decade there has been a large influx of research focusing on external 

training load in hockey competition.  This research has been performed on a wide range of 

populations, both male and female, national level and international, with the aim of 

characterizing the physiological demands of hockey competition. The most commonly 

reported measure of external training load across all the studies is distance travelled, often 

separated out by position.  This metric is limited in that it provides no information on speed 

or time, which are both key to understanding the demands of hockey due to its intermittent 

nature and rolling substitutions.  However, examining total distance is a good starting point 

for understanding the external training load of hockey and how load varies across positions.  

Table 2.3: Total Distance in Hockey Competition 

Author(s) Date # 

subj 

Games M/F Level Distance 

(m) 

Defense Midfield Forward 

Gabbett 2010 14 32 F N 6600 6643±1618 6931±1882 6154±271 

Macutkiewicz 

& Sunderland 

2011 25 13 F I 5541±1144 6170±977 5626±787 4700±918 

Boran 2012 36 1 F N  6188±781 5896±801 6660±542 6009±796 

Vescovi & 

Frayne 

2015 68 1 F N   6493 6556±1120 6765±1392 6062±1371 

Abbott 2016 16 13 F I 8823±1776* 8056±972* 7534±954* 11965±314* 

Vescovi 2016 44 4 F I 4351 5143±759 4735±1305 3283±842 

McGuinness 

et al. 

2017 38 19 F I 5540±521 5696±530 5555±456 5369±578 

Lythe 2008 18 5 M I 6798±2009 - - - 
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Jennings et 

al. (b) 

2012 15 6 M I 9776±720* 9453±579* 10160±215* 9819±720* 

Jennings et 

al. (a) 

2012 16 8 M N 8589±623* - - - 

Liu et al. 2013 38 1 M N 7334±877 6671±745 7733±729 7709±720 

White & 

MacFarlane 

2013 16 8 M I 5819 - - - 

White & 

MacFarlane 

2015 16 8 M I 5868 - - - 

Polglaze et al. 2015 24 7 M I 6095±938 6257±909 6156±1055 5409±689 

Sunderland & 

Edwards 

2017 20 17 M I 6594±1074 8223±456 6811±778 5881±774 

All distances in meters.      I: International, N: National 

*Data collected by position, not by individual 

 

Table 2.3 summarizes the findings of total distance covered in hockey competition, 

separated by the three primary outfield positions.  The games column lists how many 

competitions were analyzed for each of the subjects, thus providing additional information on 

the sample size. Furthermore, it is important to note that the distances reported in the Abbott 

and Jennings et al. studies were calculated according to position, as opposed to individual, 

meaning that the distance values were summed across all athletes who played on the field in a 

specific position (for example left defender) (Abbott, 2016; Jennings et al., 2012a; 2012b). 

Although this measurement technique does provide useful information into position-specific 

distance, it gives little information on the distances covered by individuals since athletes 

generally do not play for the full duration of a match.  Therefore, as distances across 

individuals are summed, it follows that the distance values by position will be higher than 

those reported for individuals.  Another potential consideration when comparing distance 

measures across the studies above is whether just time on the pitch or the full game was used 

to calculate distances (White and MacFarlane, 2013). However, a study comparing time on 

pitch and full game analyses for distance measures showed that there was little difference (5 

m) between the two methods (White and MacFarlane, 2013).  This is likely due to the fact 

that the bench is generally very close in proximity to the field, and players usually remain 

relatively stationary until they return to the game.  Therefore, there is little need to distinguish 

time on pitch and full games analyses when considering total distance.  
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 Overall, from the data presented above, one can conclude that the average distance 

travelled by an adult hockey athlete during competition ranges from 5.8-7.3 km for males and 

5.5-6.6 km for females. Note that the Vescovi 2016 study has been excluded from these 

ranges as it incorporated data on youth field hockey athletes, which may be the reason for the 

lower total distance findings. From these ranges it appears that female hockey athletes may 

cover, on average, slightly less distance per game than male athletes; however, it is unclear 

whether this difference is significant.  Furthermore, from these studies it appears that there is 

no clear relationship between the level of hockey competition and the total distance covered.  

This is in contrast with the findings of Jennings et al., which compared distance travelled by 

players in the Australian hockey league and players on the Australian national team and 

found that the international athletes covered greater total distances than national level athletes 

(Jennings et al., 2012b). Finally, it is challenging to draw any conclusions on the differences 

between total distance across the three positions, as the findings vary across the studies.  This 

is likely due to different playing and substitutions styles across various teams.  

 

2.4.3 Measuring Distance across Speed Zones in Hockey Competition 

In addition to measuring total distance, many of the studies on external training load 

during hockey competition have examined the distance travelled or percent of time spent in 

distinct speed zones.  As hockey is intermittent, this type of analysis provides more 

information on the intensity at which athletes are working and is often more valuable for 

coaches (Abbott, 2016). In most cases, the speed zones used for analysis are based around 

locomotor categories, such as walking, jogging, striding, and sprinting (Dwyer and Gabbett, 

2012). However, the definitions for these actions vary dramatically, causing cutoffs to differ 

and making comparison almost impossible. In response to this problem, Dwyer and Gabbett 

suggested that velocity zones be standardized and that these standardized categories be based 

on sport-specific movement profiles (Dwyer and Gabbett, 2012). After analyzing data from 5 

male and female national-level hockey players across 5 games, the following cutoffs (km·h-1) 

were recommended for use in hockey (Dwyer and Gabbett, 2012).  

Table 2.4: Gabbett's Recommended Speed Zones 

(km·h-1) Stand Walk Jog Run Sprint 

Male 0-0.4 0.5-6.1 6.2-11.5 11.6-20.2 >20.2 

Female 0-0.4 0.5-6.1 6.2-13.0 13.1-19.1 >19.1 
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Although the idea of standardizing zone cutoffs is certainly an important one, there is 

insufficient evidence to suggest that these zones should be adopted as the standard for 

hockey.  Specifically, the sample size was very small, with only five games from five athletes 

of each sex included in the analysis (Dwyer and Gabbett, 2012).  All athletes participated in 

the same league and no international matches were included, suggesting that this convenience 

sample may not be representative of the larger hockey community (Dwyer and Gabbett, 

2012). Finally, the GPS units used during this study were 1 Hz models, which, as discussed 

above, have been shown to be inaccurate when measuring high speed running over short 

distances (Dwyer and Gabbett, 2012; Scott, Scott and Kelly, 2016).  Another method of 

determining velocity zones is using individualized cutoffs based on an athlete’s maximum 

speed (Gabbett, 2015).  As may be expected, using individualized zones has been shown to 

increase the amount of work classified as high speed running in slow players and decrease it 

in fast players (Gabbett, 2015).  However, individualized speed zones are limited by the fact 

that an athlete’s maximum speed may change over time.  

 A table summarizing distance across speed zones in hockey athletes is included in 

Appendix A. Before drawing conclusions from this table, some limitations should be noted.  

Specifically, the Liu et al. (2013) study was performed using video analysis as opposed to 

GPS, and the Jennings et al. (2012b) study was performed over the course of a tournament 

involving 6 games played within 9 days. Additionally, some studies grouped players in 

different positional categories (for example distinguishing halfbacks and screens), so some 

adjustments have been made to best group the data into the three primary outfield positions.  

From these studies it is clear that the majority of distance covered in hockey is at a low to 

moderate intensity, and less distance is covered at very high intensities. This conclusion may 

seem in contrast to the results on heart rate during hockey competition which indicate that 

team average heart rate ranges from 85-89% of maximum heart rate, suggesting that hockey 

is performed at a very high intensity (Lythe, 2008; Sell and Ledesma, 2016; Vescovi, 2016; 

McGuinness et al., 2017).  However, when considered together these results indicate that 

although hockey athletes cover a large percent of their total distance at relatively low 

intensities, the pattern of high intensity actions interspersed among low intensity movements 

is challenging from a physiological perspective, thus resulting in a relatively high average 

heart rate. Despite the different speed zones, it appears that forwards generally tend to cover 

greater distances at very high speeds than defenders or midfields.  This suggests that position-

specific training may be appropriate to best prepare athletes for the physiological demands of 

competition. Finally, the inability to easily compare the findings of these studies due to the 
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varying speed zones provides further evidence on the need for standardized velocity 

definitions.  

 

2.4.4 Other Methods of Measuring External Load 

 In addition to measuring total distance and distance in speed zones, other methods, 

such as player load and workrate, have been used to quantify external training load in hockey 

athletes.  Unlike GPS measures that track movement in the x-y plane, player load is derived 

from triaxial accelerometers and represents the total accelerations of the body in all three 

planes (Boyd, Ball and Aughey, 2013). Player load is usually calculated by taking the square 

root of the sum of the squared accelerations in the x, y, and z directions, all over 100; 

however, various companies that sell GPS monitors have slightly different proprietary 

algorithms used to calculate this value (Boyd, Ball and Aughey, 2013; Abbott, 2016). In all 

cases though, player load is a numerical score, in arbitrary units, that represents acceleration 

and deceleration in all dimensions (Abbott, 2016). Some of the benefits of player load include 

that it can be used as an expression of external training load when GPS data are not available, 

particularly in indoor sports (Boyd, Ball and Aughey, 2013).  Furthermore, player load has 

been shown to have a strong relationship with  Edward’s TRIMP (r=0.80) and sRPE 

(r=0.84)(Scott et al., 2013a) .   

 Studies on player load in hockey are very limited, as GPS-based measures are more 

commonly used to determine external training load. However, two studies have reported 

average player load during competition with similar results.  The first study, performed on 16 

male international hockey players, reported an average player load of 631±30 (White and 

Macfarlane, 2015a). Similarly, the other study, also on male international hockey players, 

found the average player load to be 617±106 (Polglaze et al., 2015).  Player load was found 

to be higher in defenders, 649±114, than forwards, 577±67, but this difference was not 

significant (Polglaze et al., 2015).  No study has analyzed the relationship between player 

load and fitness changes or measures of internal training load in hockey athletes. The lack of 

data available in this area indicates that player load may require further investigation; 

however, the benefit of calculating player load in addition to other GPS measures such as 

total distance has been questioned (Polglaze et al., 2015).  Specifically, player load has been 

shown to be very highly correlated (r=0.868) with total distance in hockey (Polglaze et al., 

2015). As hockey is a non-contact sport, most of player load is accumulated through 

locomotor activities such as running, rather than from contact with other players (Polglaze et 

al., 2015). Therefore, it has been suggested that little additional information is gained from 
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player load when total distance is already being reported, as player load mostly expresses 

duplicate information (Polglaze et al., 2015).   

 Workrate, expressed in meters per minute, is another method of analyzing total 

distance that takes into consideration individual players’ time on the pitch. Due to the rolling 

substitutions in hockey, players rarely play for the full seventy minutes.  In fact, several 

studies have reported average player minutes during competition, as shown in Table 2.5 

below.  

Table 2.5: Minutes per Match in Competition  

Author(s) Date M/F Team  Defense Midfield Forward 

Macutkiewicz & 

Sunderland 

2011 F 48±4 56±11 50±10 38±7 

Abbott 2016 F 47.6 57.5±11.4 41.4±8.3 38.3±1.3 

Vescovi 2016 F 40.3 51.0±10.3 42.1±11.8 29.8±7.8 

McGuinness et al. 2017 F 44±7 50±8 43±5 41±6 

Lythe 2008 M 51.9±17.8 
   

White & 

MacFarlane 

2013 M 48 
   

Polgaze et al. 2015 M 46.8±7.3 52.1±7.2 45.2±7.2 42.0±5.4 

Sunderland & 

Edwards 

2016 M 48.6±10.9 
   

All times are expressed in minutes, and all competition was at the international level. 

 

From these studies, one can see that the average playing time on a team is generally between 

46 and 48 minutes or 65.7-68.5% of total match time; however, average playing time ranges 

from 40.3 to 51.9 minutes (57.6% - 74.1%).  Furthermore, playing time is noticeably different 

between the positions with forwards generally playing the fewest minutes and defenders the 

most.  Additionally, the relatively large standard deviations values, as high as 17.8 minutes in 

the Lythe study, indicate that playing time varies greatly between individuals, sometimes 

even within the same position. This variation in playing time highlights the importance of 

using relative measures such as workrate, in addition to absolute measures of total distance, 

as some players will accumulate additional distance as a result of an increased time on the 

pitch, rather than an increased intensity level.  Therefore, workrate takes the quotient of total 

distance and minutes played to determine an average speed value that can be compared across 

players, regardless of minutes playered (White and MacFarlane, 2013). 
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 Several studies have reported findings on athlete workrate during hockey competition.   

Table 2.6: Workrate in Competition 

All workrates are expressed in meters per minute on the field.   I: International, N: National 

From these studies it appears that workrate is higher in international hockey competition than 

in national or junior international (Vescovi, 2016) competition.  Furthermore, workrate is 

higher in midfielders and forwards than in defenders, and this difference has been shown to 

be significant (p<0.05) in several studies (McGuinness et al., 2017; Abbott, 2016; Boyd, Ball 

and Aughey, 2013). This result is linked to the previous finding that defenders generally play 

more minutes than midfielders and forwards, suggesting that with longer rotations and less 

rest, defenders are unable to maintain the same workrate as players in other positions.   This 

information can be used to design appropriate training and conditioning programs for each 

position (Abbott, 2016). It can also be beneficial to compare workrates across a team’s games 

to monitor when individuals or the team as a whole varies from their normal profile, perhaps 

due to motivation, opposition, or fatigue (White and Macfarlane, 2015b). 

 

2.4.5 Comparisons Across Halves of Hockey Competition 

 As discussed above, there are many different ways to monitor external training load in 

hockey competition.  Total distance, distance in various speed zones, and workrate all 

provide important information about an athlete’s physical performance. However, in all the 

previously discussed examples, these metrics were considered over a game as a whole rather 

Author(s) Date # 

subj 

Games M/F Leve

l 

Team Defens

e 

Midfiel

d 

Forwar

d 

Vescovi & 

Frayne 

201

5 

68 1 F N 106 98±11 109±11 110±11 

Abbott 201

6 

16 13 F I 120±6 107±6 125±11 126±4 

Vescovi 201

6 

44 4 F I 110 103±9 113±6 111±6 

McGuinness et 

al 

201

7 

38 19 F I 126±23 114±7 129±5 131±10 

White & 

MacFarlane 

201

3 

16 8 M I 124 
   

Polgaze et al 201

5 

24 7 M I 131±11 120±8 136±10 129±9 
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than within a single game.  As opposed to examining entire matches, comparing external 

training load across the two halves of a match provides information on whether performance 

is being maintained, increasing or dropping off (Abbott, 2016).  Ideally, coaches aim to use 

rolling substitutions as well as appropriate conditioning in training to ensure that athletes are 

able to maintain the same level of high intensity during both halves of competition (Abbott,  

2016).  However, some studies have found that athletes’ total distance and workrate are 

significantly different (p<0.05) in the first half versus the second half of competition, with the 

second half always being the less intense of the two (Boran, 2012; Liu et al., 2013; Vescovi 

and Frayne, 2015). This suggests that accumulated fatigue in the second half, perhaps due to 

poor conditioning or substitution strategies, may be resulting in decreased performance in 

some hockey populations (Vescovi and Frayne, 2015).  

Table 2.7: Differences in External Training Load Between Halves 

I: International, N: National 

 

Table 2.7 summarizes the results of studies comparing the external load of athletes 

across halves of a game. In all cases where significant differences were found, the second 

half had the lower workload of the two, likely due to fatigue (Boran, 2012; Liu et al., 2013; 

Vescovi and Frayne, 2015). As can be seen, the results are mixed, with some studies finding 

significant differences in total distance and workload and others finding no significance. 

However, on closer inspection, one can see that significant differences in external load 

between halves were only found in studies on athletes below the international level, with no 

significant differences being observed in studies taking place on international athletes.  The 

Authors Date # subj Games M/F Level Results 

Spencer et 

al. 

2004 14 1 M I No significant difference in motion categories 

(p>0.05) 

Lythe 2008 18 5 M I Substantial difference in total distance (p=0.06) 

Boran 2012 36 1 F N  Significant difference in total distance (p=0.042) 

Liu et al. 2013 38 1 M N Significant difference in workrate (m·min-1) 

(p<0.001)  

Vescovi & 

Frayne  

2015 68 1 F N Significant 7-9% difference in total distance 

(p<0.001) 

Abbott 2016 16 13 F I No significant difference in the percent of 

distance travelled in various speed zones (p>0.10) 

McGuinness 

et al. 

2017 38 19 F I No significant difference in total distance (p=0.6) 

or workrate (m·min-1) (p=0.5) 
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only slight exception to this is the Lythe study, which took place on international male 

hockey players and found a substantial, but technically not significant difference (p=0.06), in 

total distance across the two halves of the game (Lythe, 2008).  However, care should be 

taken when interpreting Lythe’s findings, as the five games that were examined during this 

study took place within 8 days, as part of a tournament (Lythe, 2008).  Thus, particularly by 

the final games of the tournament, athletes may have been experiencing accumulated fatigue, 

causing a greater reduction in total distance during the second half of matches than may have 

normally occurred if there was to be more rest between matches.  Overall, these findings 

indicate that international athletes, unlike lower level athletes, are able to maintain their 

external workload over the course of a match, perhaps due to better physical conditioning or 

substitution strategies.  However, these studies are not representative of all hockey 

populations, so more research is needed to determine if external training load is only 

maintained over both halves of a match in international hockey athletes and to determine if 

training intensity or other factors are contributing to this.  

 

2.4.6 Measuring External Load in Hockey Training 

 In addition to the research performed on GPS data in hockey competition, several 

studies have investigated external training load in training environments (Polglaze et al., 

2015; Gabbett, 2010; White and Macfarlane, 2015b). In team sports, the most effective form 

of training has been shown to be that which best mirrors the movement patterns and intensity 

of competition (Abbott, 2016; Liu et al., 2013). Therefore, the goal of these research studies 

has been to determine if training drills are appropriately mirroring the physiological stresses 

that athletes face in games scenarios.  When comparing the demands of training and games, it 

is important to focus on the portions of training designed to mirror game environments. 

Specifically, technical skill-based training such as hitting practice or repeated set-play 

rehearsals such as penalty corners should not be included, as these are relatively stationary in 

nature.  Unlike skill-based training, small-sided games are designed to mirror game 

situations. Although there are countless variations, small sided games are always played in a 

smaller space with a reduced number of players, often under unique rules and constraints 

(Polglaze et al., 2015). These types of training drills have become very common, as they can 

be used for conditioning, they focus on a specific concept from match-play, and the reduced 

numbers allow players to spend more time on the ball (Polglaze et al., 2015).  

 Several studies have compared the intensity of small sided games and matches with 

mixed results. A 2010 study of 14 elite female hockey players examined the amount of time 
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spent at low (0-1 m·s-1), moderate (1-3 and 3-5 m·s-1), and high intensity ( 5-7 and >7 m·s-1) 

in both training and competition (Gabbett, 2010).  The findings suggested that game-based 

training sessions may not accurately mirror the demands of competition as players spent 

significantly more time at low intensities and significantly less time at moderate and high 

intensities in training than in games (p<0.05) (Gabbett, 2010). Similarly, a study on 24 

international male hockey players found that workrate (meters per minute) and player load 

were both significantly lower in training, p=0.001 and p=0.043, respectively (Polglaze et al., 

2015).  However, a 2015 study on sixteen international male hockey players found that 

workrate was not significantly different between competition (78±2 m·min-1) and small side 

games (74±3 m·min-1) (p>0.05) (White and Macfarlane, 2015a).  This study also examined 

the percentage of total time spent sprinting and running at a high intensity and found these to 

be the same in both training and small sided games (White and Macfarlane, 2015a).  From 

these mixed findings, it appears that small sided games can appropriately mirror the physical 

demands of competition, but that this is not always the case.  Therefore, it is important to 

monitor training load during small sided games to ensure that they are being performed at an 

appropriate intensity.   

 

2.5 Combining Internal and External Training Load Measures  

 As tracking devices have become more accessible, many teams have begun collecting 

data on both internal and external training load measures.  Several studies have compared 

internal and external load by examining the correlations between them, and a summary of the 

correlation coefficients is included in Table 2.8 below.  Specifically, a study of fifteen male 

professional football players found that total distance (TD) and player load (PL) were very 

significantly correlated with Banister’s TRIMP (TD: r=0.73, PL: r=0.73), Edward’s TRIMP 

(TD: r=0.78, PL: r=0.80), and sRPE (TD: r=0.80, PL: r=0.84) (Scott et al., 2013a).  

Additionally, a study of fourteen international wheelchair rugby players found a very large 

correlation of both Banister’s TRIMP and Edward’s TRIMP with total distance (r>0.80) 

(William et al., 2015).  However, the relationship between sRPE and total distance was 

weaker (r=0.59) (William et al., 2015).  In contrast with these findings, a study of 8 semi-

professional male basketball players found weaker correlations between internal and external 

training load measures (Scanlan et al., 2014).  Specifically, there was only a weak moderate 

correlation between player load and Banister’s TRIMP (r=0.38) and sRPE (r=0.49), and only 

a slightly larger correlation was found when using Edward’s TRIMP (r=0.61) (Scanlan et al., 
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2014). However, the sample size of 8 individuals was small, so further studies would be 

needed to confirm these findings (Scanlan et al., 2014).  

 

Table 2.8: Correlation Coefficients between Internal and External Training Load Measures 
 

Total 

Distance  

Player Load 

Banister's TRIMP 0.739(1), 

0.81(2) 

0.73(1), 0.38(3) 

Edward's TRIMP 0.78(1), 

0.84(2) 

0.80(1), 0.61(3) 

sRPE 0.81(1), 

0.59(2) 

0.84(1), 0.49(3) 

(1) – Scott et al., 2013a   (2) - William et al., 2015  (3) – Scanlan et al. 2014 

 

Shifting the focus to hockey, although some studies have reported findings on both 

internal and external training load measures, no study has investigated the relationship 

between the two. Analyzing the correlations between internal and external training load 

provides useful information because the technology and expertise required to measure both 

internal and external load may not be available to all teams.  Therefore, understanding the 

relationship between these measures can be useful in cases where it is only possible to make 

one measurement.  However, it is important to remember that external and internal training 

load measures are distinct constructs, and, as such, it is important not to assume a linear dose-

response relationship between the two (Scanlan et al., 2014).  

Instead of only examining correlations between internal and external training load, 

recent research has gone further to investigate what can be learned from the relationship 

between the two.  As individuals can perform an identical external load but have very 

different internal responses due to fitness and fatigue, among other factors, it has been 

suggested that the relationship between internal and external load may be useful in tracking 

fatigue, fitness status, and player performance (Halson, 2014; Torreno et al., 2016).  In order 

to track the relationship between internal and external load, several recent studies have 

examined the ratio between internal and external measures.  This ratio has been termed the 

index of performance efficiency, or effindex, as it measures how efficiently the body is 

working to produce a given output (Torreno et al., 2016).  Effindex is most commonly 
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calculated by taking the quotient of workrate in meters per minute and mean percent of 

maximum heart rate, thus incorporating mean speed and cardiovascular stress into a single 

variable.  A 2014 study of 30 male professional football players found effindex to be 1.4 in 

competition, with significant differences (p<0.05) between defenders and other playing 

positions (Arrones et al., 2014).  Similarly, a study of 26 professional male football athletes 

found effindex to be 1.3 with substantial differences between positions (Torreno et al., 2016).  

Furthermore, in all positions except strikers, effindex substantially decreased from the first 

half to the second, suggesting increasing levels of fatigue affecting efficiency in the second 

half (Torreno et al., 2016).  The consistency of effindex in strikers over the course of the 

match suggests that these athletes were able to recover enough during the match to maintain 

their level of efficiency. Finally, another study, again on male football players, evaluated 

effindex by taking the ratio of total distance (TD) to iTRIMP in a controlled training 

environment (Akubat, Barrett and Abt, 2014).  The goal of this study was to evaluate if the 

distance to iTRIMP ratio could indicate fitness, but the findings showed that TD:iTRIMP had 

only a moderate correlation with the velocity at lactate threshold (r=0.69) and a weak 

correlation with velocity at the onset of blood lactate accumulation (r=0.58)  (Akubat, Barrett 

and Abt, 2014).  Thus, even when used in a highly controlled training environment, such as 

the circuits performed in the study, the results indicated that TD: iTRIMP  was not a very 

accurate indicator of fitness (Akubat, Barrett and Abt, 2014).  

No study to date has investigated effindex in hockey.  Due to the intermittent nature 

of hockey, the range of styles and opposition, and the rolling substitutions, effindex could be 

a very useful measure of athlete performance in hockey competition. A 2015 study of elite 

domestic hockey competition in Scotland found that total distance was significantly 

correlated with opponent ranking (r=0.71) (White and Macfarlane, 2015b). Therefore, 

opposition can significantly affect external training load, which may confound findings when 

simply comparing external load across matches (White and Macfarlane, 2015b).  

Additionally, several stylistic choices, such as variations in pressing style or attacking tactics, 

as well as the frequency of penalty corners, which interrupt the flow of the game, can affect 

the work required of athletes in a competition.  Thus, effindex could be a very useful measure 

in hockey, as it should not be as affected by exterior factors, since a decrease in external 

workload would likely correspond to a decrease in internal load. Therefore, effindex could 

decrease the impact of outside factors on training load and provide a more normalized 

measured for comparison across competitions and for tracking fatigue.  In addition, the 

rolling substitutions in hockey provides natural segments within a game for examining 
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effindex.  Specifically, effindex could be calculated for each stint that an athlete is on the 

pitch to evaluate if players are becoming significantly more fatigued and less efficient over 

the course of a match.  This information can be used to adjust substitution patterns and rest 

times to ensure that athletes are able to maintain a high level of intensity.  However, effindex 

is limited in that environmental conditions may influence scores (Sunderland and Nevill, 

2005).  Specifically, heart rate has been shown to be significantly higher (p<0.05) when 

athletes performed hockey skills in the heat (30°C) as opposed to moderate conditions 

(19°C), and factors such as high winds may influence external output (Sunderland and Nevill, 

2005; Moinat, Fabius and Emanuel, 2018).  Thus, when analyzing effindex scores it is 

important to consider any weather conditions that may have influenced the scores.   

Overall, although there has been a great deal of research on hockey in the past decade, 

several areas have yet to be investigated.  Specifically, differential sRPE has yet to be studied 

in hockey training and competition to determine if this simple, perceptual measure provides 

accurate information on internal training load.  If so, differential sRPE would be a useful 

starting point for monitoring athletes when other more sophisticated methods are not 

available.  Additionally, although Stagno et al. provided a useful formula for calculating 

modified TRIMP scores specific to hockey, this procedure has yet to be replicated in female 

athletes (Stagno, Thatcher and Van Someren, 2007).  Even more individualized than Stagno 

et al.’s modified TRIMP, iTRIMP has been used in other sports to fully personalize training 

load calculation, but has not been studied in hockey athletes.  Furthermore, the results on the 

effectiveness of small-sided games at mirroring the demands of competition have been 

contradictory, suggesting that more studies are required. Finally, although there has been a 

large amount of research examining the external demands of hockey competition, no study 

has yet linked these findings with internal measures to create effindex scores.  This study 

hopes to investigate these gaps in the literature to provide a more complete picture of internal 

and external training load measures in hockey training and competition and the relationship 

between the two. 
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Chapter 3: Methodology 

3.1 Methodological Approach 

When conducting research, there are several methodological approaches that can be 

taken, based on one’s epistemological assumptions.  Although these assumptions are often 

implicit, one cannot perform research without adopting ontological and epistemological 

positions (Scotland, 2012).  Epistemology is a branch of philosophy concerned with obtaining 

and evaluating the status of knowledge (Thomas, 2011).  Essentially, epistemologists 

examine how knowledge is created and what it means for something to be known (Scotland, 

2012).  Closely linked with epistemology is ontology, which is concerned with the nature of 

reality and what constitutes it (Scotland, 2012).  Together one’s ontological and 

epistemological assumptions inform the methodology utilized in research. Therefore, this 

section will discuss various philosophical approaches and justify the research paradigm 

adopted in this study.   

There are two primary philosophical approaches: positivism and interpretivism. 

Interpretivism is based on the ontological perspective of relativism and the epistemological 

perspective of subjectivism (Scotland, 2012).  In other words, interpretivists believe that 

reality is inherently subjective and varies based on the individual, and, as such, knowledge 

depends on the perspective of the person experiencing it (Scotland, 2012).  Therefore, 

interpretivist research involves investigating phenomena from individuals’ perspectives and 

seeking to understand the participants’ reality, taking into consideration intangibles, such as 

feelings and emotions (David and Sutton, 2011).  In terms of sport, interpretivists argue that 

sport is a social activity involving free will and, therefore, cannot be understood in terms of 

numerical or causal relationships (Gratton, 2010).  Interpretivism is associated with inductive 

reasoning and qualitative data, as open-ended approaches, such as interviews and focus 

groups, are often used to seek understanding from the viewpoint of the participants (Gratton, 

2010; Scotland, 2012).   An advantage of the interpretivism is that its flexible and fluid 

approach allows the researcher to delve deeper into the experience of the participants to 

discover explanations and investigate potential unexpected findings, rather than just taking 

measurements (Bryman, 1984). However, the subjective nature of the information gathered 

often results in limited generalizability and leads to questions on the credibility and reliability 

of conclusions.   

In contrast to the interpretivist approach, positivism is based on the ontological 

perspective of realism, which assumes that existence is not related to the knower, and the 

epistemological perspective of objectivism, which assumes that researchers can objectively 
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gain absolute knowledge (Scotland, 2012). Positivists trust in the power of human objectivity 

and reasoning, so they believe that a logical, scientific approach can lead to accurate, 

generalizable findings (Thomas, 2011).  As such, positivists use precise measurements and 

scientific experiments to develop generalizable theories and laws (Gratton, 2010).  During 

positivist research, research is generally performed from the outside, with little emphasis 

placed on the beliefs and feelings of individual subjects (Bryman, 1984). From a sports 

perspective, the positivist approach assumes that the sporting environment is relatively stable, 

allowing for careful measurement and analysis to result in conclusions that are repeatable and 

not influenced by the researcher’s emotions, beliefs, or biases (Gratton, 2010). Due to the 

precise nature of the positivist approach, the data collected are usually quantitative, allowing 

for statistical analysis (Gratton, 2010).  Furthermore, as the goal is to test theories and create 

generalizable conclusions, a deductive approach is taken (David and Sutton, 2011). Some 

benefits of the positivist approach include its objectivity and ability to draw precise, 

statistically-validated conclusions.  However, positivist research can be limited in its 

application to real-world settings, as outside factors such as emotions and lived experiences 

often influence human behavior.   

For this study, an objective, positivist approach was taken and qualitative data were 

collected.  As the aim was to investigate methods of measuring training load, and training 

load is a numerical summary of an athlete’s work, a quantitative approach naturally fits with 

this design.  A scientific, positivist approach allowed for precise measurement and 

quantification of athletes’ physical and physiological performance in both training and 

games, as well as athletes’ fitness levels.  Furthermore, this precise measurement allowed for 

detailed statistical analysis to determine the correlation between various measures of training 

load, as well as which measures best predicted fitness outcomes.  Although the data collected 

were still quantitative in nature, differential RPEs provided training load information from 

the athletes’ perspective, allowing this study to overcome a limitation of the positivist 

approach without utilizing a mixed-model design. Overall, as this research was inherently 

quantitative in nature and based upon objective measurement, the epistemological perspective 

of objectivity was adopted and used to inform the methods.  

 

3.2 Study Design 

This research study was conducted to investigate the relationship between various 

methods of measuring internal and external training load in university hockey athletes and to 

summarize the demands of training and competition. An observational approach and repeated 
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measures design were utilized in which data were collected during participants’ normal 

hockey training and competition, and training load was measured via differential sRPE, heart 

rate, and GPS parameters. Additionally, participants performed a submaximal lactate 

threshold treadmill test at the beginning and end of the study to assess fitness, as measured by 

velocity at set blood lactate levels.  

Four primary training load measures were calculated and compared during this 

analysis: differential sRPE, training impulse, GPS parameters, and efficiency index. Firstly, a 

team TRIMP algorithm for female hockey athletes (fTRIMP) was established following the 

procedure of Stagno, Thatcher, and Van Someren (2007), as well as an individualized TRIMP 

algorithm for each athlete, as outlined by Manzi et al. (2009). The original team TRIMP, the 

newly calculated models, and external training load measures were compared with fitness 

markers, specifically fitness test scores and blood lactate concentration at set velocities, to 

determine which measure, if any, best predicted fitness changes over the course of the season.  

Additionally, the correlations between differential sRPE, and heart rate and GPS based 

measures were investigated to determine if differential sRPE is a valid method of monitoring 

training load in hockey.  Two variations of efficiency index (effindex) were also measured, 

and changes in efficiency within matches were analyzed. Furthermore, both internal and 

external training load measures were used to compare the intensity of training drills and 

competition. Finally, comparisons were made between the demands of hockey competition in 

this population and previously published results to determine if these results validate previous 

research or suggest that the demands of British university hockey differ from the demands of 

other hockey populations.  

 

3.3 Participants 

Seventeen female hockey athletes from Durham University Hockey Club’s women’s 

first team participated in this study.  Goalkeepers were excluded due to the relatively 

stationary nature of their position compared with outfield players.  As all participants in this 

study were university students, participants were young adults. Just prior to the start of data 

collection, participants completed a six-week preseason training period to ensure proper 

physical conditioning after returning from a summer holiday during which training was 

suggested but unsupervised.  

Although seventeen participants were included in the study, some participants were 

not able to complete all aspects of the research.  Specifically, due to one participants’ 

trypanophobia, sixteen participants completed the lab-based pretesting protocol used to 
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determine the new fTRIMP algorithm.  Furthermore, several players were dropped to the 

women’s second team meaning that heart rate and GPS data could not be collected due to 

differences in training schedules, and some athletes missed much of the season due to 

unforeseeable circumstances, such as injury.  Therefore, ten athletes were included in the 

analysis of the demands of British university hockey and the investigations on the 

relationship between of various measures training load and fitness outcomes over the course 

of the season. 

 

Table 3.1: Participant Characteristics (Mean ± Standard Deviation) (Range) 

 Number Age (y) Height (cm) Mass (kg) BMI (kg/m2) 

Overall Study 17 20.7 ± 1.2 

(18.1-23.5) 

165.8 ± 3.7 

(157.6-171.8) 

60.6 ±5.4 

(51.7-70.6) 

22.0±1.6 

(18.7-25.3) 

New Team TRIMP 

Calculations 

16 20.3 ± 1.4 

(18.1-23.5) 

165.9 ± 3.9 

(157.6-171.8) 

60.8 ± 5.4 

(51.7-70.6) 

22.1±1.6 

(18.7-25.3) 

Effect of Fitness 

Changes 

10 20.6 ± 1.2 

(18.6-23.5) 

164.7 ± 3.1 

(157.6-168.6) 

59.6 ± 5.2 

(51.7-70.6) 

21.9 ± 1.4 

(19.8-25.3) 

 

Details of the study were explained to participants during a team meeting, and 

participants were given the opportunity to ask questions.  A participant information sheet 

(Appendix B) was also provided which outlined all study details, the risks and benefits of 

participating, and the protocol for withdrawing.  Written informed consent (Appendix C) was 

obtained from interested athletes. The Durham University School of Applied Social Sciences 

Ethics Committee approved all protocols and procedures for this study. 

 

3.4 Participant testing  

Participants in this study performed a submaximal treadmill test (H/P/Cosmos Sports 

and Medical GmbH, Quasar, Nussdorf-Traunstein, Germany) as well as a maximal on-field 

fitness test, both described below.  Data were collected and analyzed using Minimax S4, 10 

Hz GPS units (Catapult Sports, Melbourne, Australia) and Polar Team2 heart rate monitors 

(Polar Electro, Kempele, Finland) during participants’ regular hockey training and 

competition.  
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3.4.1 Pre-testing  

Before testing, participants were required to complete a pre-screening questionnaire 

(Appendix C) on current health and existing injuries in order to minimize the risk of 

cardiovascular complications and musculoskeletal injuries.  This questionnaire was adapted 

from the Physical Activity Readiness Questionnaire (Humphrey and Lakomy, 2003).  

Participant age, height, and weight were also recorded, and all participants were familiar with 

treadmill running. 

Participants’ resting heart rates were measured, as resting heart rate values were 

needed for TRIMP calculations. Participants were instructed to sit quietly for at least 5 

minutes in a quiet location while wearing a heart rate monitor, and the lowest recorded heart 

rate during this time was taken as resting heart rate (Manzi et al., 2009).  

 

3.4.2 Submaximal Treadmill Test 

The participants performed a submaximal treadmill test twice, once at the beginning 

and once at the conclusion of the study. This test was adapted from published test protocols 

for calculating team and iTRIMP (Stagno, Thatcher and Van Someren, 2007; Manzi et al., 

2009; Malone and Collins, 2016; Akubat et al., 2012; Weaving et al., 2014). To control for 

extraneous variables, participants were asked to abstain from alcohol and strenuous activity 

for 24 hours prior to the test.  To control for the effects of circadian variation (Weipeng, 

Michael and Michael, 2011), the two tests for each individual were scheduled to take place at 

approximately the same time of day. Following the work of Weaving et al. (2014), the test 

consisted of five four-minute running stages with a one-minute rest between stages.  The first 

stage was commenced at a speed of 7 km·hr-1 and was increased by 2 km·hr-1 for each 

subsequent stage, resulting in a maximum speed of 15 km·hr-1. The treadmill was set to a 

gradient of 1% to best replicate outdoor running (Jones and Doust, 1996). Heart rate was 

monitored using Polar Team2, and fingertip capillary blood samples were taken and tested for 

blood lactate using a handheld lactate analyzer immediately upon the completion of each 

stage.   

 

3.4.3 30-15 Fitness test 

Participants performed an on-field, 30-15 intermittent fitness test to determine 

maximal heart rate and evaluate fitness levels. This test was previously part of the hockey 

team’s normal fitness assessment program, so participants were familiar with the protocol.  
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The 30-15 test is a valid and reliable test in which athletes run for 30 seconds followed by 15 

seconds of active recovery, at increasing speeds until voluntary exhaustion (Buchheit, 2010). 

During the test, participants run shuttles across a 40 meter length and speed is regulated by an 

audio file that beeps when athletes are required to reach certain locations (Buchheit, 2010). A 

double beep occurs at the end of each 30 second stage, at which point athletes walked to the 

closest line, where the next stage commences following the 15 second rest.  The test began at 

8 km·hr-1 with the speed increasing by 0.5 km·hr-1 each stage until participants reached 

exhaustion or were no longer able to maintain the speed dictated by the beeps (Buchheit, 

2010). The test setup and example stages are illustrated in Figure 3.1. The highest heart rate 

recorded during the test was taken as HRmax for each individual.  

 

3.4.4 Training and Competition Monitoring 

Athletes were monitored during training and competition using GPS and heart rate 

monitors.  GPS monitors were worn between the scapulae in the pocket of a specially 

formulated vest or in the athlete’s sports bra, and heart rate monitors were worn across the 

chest.  Monitoring took place during the team’s normally scheduled trainings and 

competitions during the first half of the hockey season (September-December). Although 

some variations occurred, a typical week consisted of training sessions on Monday from 

20:30-22:00 and Friday from 7:30-9:00 as well as matches on Wednesday afternoon and 

Saturday lunchtime.  All data were downloaded to the Catapult Sprint and Polar Team2 

software packages after each session and then converted to excel files.  Heart rate and GPS 

excel files were then analyzed simultaneously along with RPE scores using code written in 

Python 3.6 (Appendices E and F).  The output for each session was a single excel file 

detailing all training load measures for each individual with and without phasing for active 

time on the pitch.    

Figure 3.1: 30-15 Intermittent Fitness Test Setup and Example Stages (Buchheit, 2010) 
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3.4.5 Session Rating of Perceived Exertion 

Athletes were asked to report ratings of 

perceived exertion on a modified 100-point Borg 

scale after each training session and competition, as 

described by Foster et al. (2001).  A 100-point scale 

was chosen in favor of a 10-point scale to allow for 

more precise responses.  Four separate RPE scores, 

respiratory, lower body, upper body, and whole 

body, were collected from each athlete (McLaren et 

al., 2017).  The scale and anchors were explained to 

the athletes, as well as the importance of providing a 

global ranking for the entire session.  An online 

google form was used to collect RPEs for each participant, with athletes being asked to report 

‘how exerting you found this session’ in each of the four categories. Athletes were asked not 

to discuss RPE values with others to reduce the influence of peer pressure.  Furthermore, 

participants were told that there is no ‘correct’ response and that they should avoid changing 

their behavior just because data are being collected, in order to decrease the influence of the 

Hawthorne effect (Buckworth, 2002).  To calculate sRPE the product of session duration, 

incorporating only active time, and reported RPE was determined, as outlined by Foster et al. 

(2001). 

 

3.5 Analysis 

 

3.5.1 TRIMP calculations 

TRIMP was calculated for each participant during all training sessions and matches 

according to three different algorithms. Two of the algorithms were the same for all athletes, 

and, as such, are termed team TRIMPs, while the final algorithm involves constants that were 

distinct for each individual and, as such, is termed individualized TRIMP (iTRIMP).  

Regardless of the algorithm and terminology, TRIMP for a given session was always 

calculated for each individual participant based on their unique heart rate data, rather than 

using average heart rate values from the team as a whole. 

RATING DESCRIPTOR 

0 Rest 

10 Very, Very, Easy 

20 Easy 

30 Moderate 

40 Somewhat Hard 

50 Hard 

60 . 

70 Very Hard 

80 . 

90 . 

100 Maximal 
 

 

Table 3.2: Rating of Perceived Exertion 

Scale (Foster et al., 2001, p.111). 
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The first method used to calculated TRIMP was the modified team TRIMP for hockey 

described by Stagno, Thatcher, and Van Someren (2007).  In this method, five predetermined 

heart zones were utilized, and the amount of time (in minutes) in each zone was multiplied by 

the zone’s weighting (Stagno, Thatcher and Van Someren, 2007). The sum of the weighted 

scores across the zones was taken as an individual’s score for the session (Stagno, Thatcher 

and Van Someren, 2007).  The zones and weightings were derived from the physiological 

response of individuals to submaximal exercise; however, only male hockey players were 

considered in the study (Stagno, Thatcher and Van Someren, 2007).  

 

Table 3.3: Modified Team TRIMP Zones and Weighting (Stagno, Thatcher, and Van 

Someren, 2007, p. 632) 

Zone % Max HR Weighting 

1 65-71 1.25 

2 72-78 1.71 

3 79-85 2.54 

4 86-92 3.61 

5 93-100 5.16 

  

In addition to calculating team TRIMP using the predetermined zones and weights 

described above, Stagno’s protocol was replicated for the athletes in this study to produce a 

new algorithm for team TRIMP in female hockey athletes, termed fTRIMP (Stagno, Thatcher 

and Van Someren, 2007).  Specifically, the concept of five weighted heart rate zones was 

maintained, but the zones and weightings were altered based on the blood lactate curve 

produced after the female participants’ submaximal fitness testing.  Firstly, exercising heart 

rate was calculated for each participant at each of the five stages of the submaximal treadmill 

test by determining the average heart rate during the final minute of the stage.  Heart rate 

reserve (HRR), also known as fractional elevation, was then calculated from exercising heart 

rate as follows.  

 

Equation 3.5: Heart Rate Reserve (Stagno, Thatcher and Van Someren, 2007) 

𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 (𝐻𝑅𝑅) =
𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑖𝑛𝑔 𝐻𝑅 − 𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝐻𝑅

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐻𝑅 − 𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝐻𝑅
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Next, HRR was plotted against blood lactate for each participant at each stage to produce a 

team scatterplot.  An exponential line of best fit was calculated based on the scatterplot, and 

this team blood lactate curve was used to set the five heart rate zones and weighting, as 

performed by Stagno, Thatcher, and Van Someren (2007). Using the curve of best fit, heart 

rate was determined at blood lactate concentrations of 2 mmol·L-1 and 4 mmol·L-1.  These 

values were used as anchor valuse for the heart rate zones 2 and 4, and the remaining zones 

were fit around these anchors so that the zones were of approximately equal width.  The 

weightings for each zone were then determined by taking the value of the blood lactate curve 

at the median heart rate for each zone.  

 The final algorithm used to measure TRIMP was the individualized TRIMP method, 

first described by Manzi et al. (2009). To calculate individualized TRIMP, HRR and blood 

lactate data points were calculated as described above. However, instead of combining all 

participants’ data to produce a single curve, blood lactate scatterplots were produced 

separately for each individual. (Individualized TRIMP was not calculated for the one 

participant with trypanophobia, as it was not possible to determine her HRR versus blood 

lactate curve.) An exponential model was used to produce equations of the form 𝑦 = 𝑎𝑒𝑏𝑥  

where a and b were set constants, distinct for each individual. Instead of using five heart rate 

zones, the weighting for each recorded heart rate value was calculated separately.  

Specifically, the weighting for each heart rate measurement was given by the exponential 

equation derived from an individual’s blood lactate curve. This is summarized in the 

following equation in which a and b are the individualized constants described above, and e is 

the base of the natural logarithm.  

 

Equation 3.6: Individualized TRIMP Weightings (Manzi et al., 2009) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝐻𝑅𝑅 × 𝑎𝑒𝑏×𝐻𝑅𝑅 

 

These weighted values were then summed for all recorded heart rate data points over the 

course of the session and divided by the number of heart rate data points measured per 

second.  In summary, the Equation 3.3 was used to calculate individualized TRIMP. In this 

equation HR is the recorded heart rate, n is the number of heart rate readings recorded per 

minute, HRrest is resting heart rate and HRmax is maximum heart rate, and a and b are 

constants determined by an individual’s blood lactate curve.  
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Equation 3.7: Individualized TRIMP  

𝑖𝑇𝑅𝐼𝑀𝑃 =  
1

𝑛
∑ (

𝐻𝑅 − 𝐻𝑅𝑟𝑒𝑠𝑡

𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡
)

𝐻𝑅

× 𝑎𝑒
𝑏 (

𝐻𝑅−𝐻𝑅𝑟𝑒𝑠𝑡
𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑟𝑒𝑠𝑡

)
 

 

3.5.2 Demands of Hockey Competition and Training 

In addition to TRIMP, several other training load measures were calculated for participants 

during competition and training. Specifically, total distance, distance in speed zones, 

workrate, minutes played, average heart rate, and effindex were measured.  The six speed 

zones used were 1) 0-0.6, 2) 0.7-6.0, 3) 6.1-11.0, 4) 11.1-15.0, 5) 15.1-19, 6) >19.0 km·hr-1 

(Macutkiewicz and Sunderland, 2011; Abbott, 2016).  

During competition, bench time was excluded, leaving only time on the pitch to be 

considered, as was suggested by White and MacFarlane for time-dependent measures (2013). 

During training, technical drills focused on skill acquisition were excluded due to their 

stationary nature, designed for learning and not intended to mirror match play.  Thus, the 

training drills considered were various small-sided games in which reduced numbers played 

modified games on a small pitch, often to focus on a particular team concept.  Time between 

drills (talking, water breaks, etc.) was phased out of the data in order to measure relative 

training volume, as described by Bompa (1999). Unphased data sets were also calculated and 

recorded for all sessions in order to determine cumulative loads.  

 

3.5.3 Measurement of Fitness Outcomes 

The relationships between various training load measures and fitness and fitness 

changes over the course of the season were also investigated to determine which measure, if 

any, best predicted fitness outcomes. Fitness changes were measured via the submaximal 

fitness test that participants completed at the beginning and end of the study, as submaximal 

parameters have been shown to be more sensitive to training-induced changes than maximal 

volume of oxygen consumption (VO2 max) (Impellizzeri, Rampinini and Marcora, 2005). 

Specifically, as described by Manzi et al. (2009), heart rate and velocity were plotted against 

blood lactate. Blood lactate concentrations of 2 mmol·L-1 and 4 mmol·L-1  were taken as 

benchmarks for the lactate threshold (LT) and the onset of blood lactate accumulation 

(OBLA), respectively (Manzi et al., 2009). By method of exponential interpolation, velocities 

at blood lactate concentrations of 2 mmol·L-1 (vLT) and 4 mmol·L-1 (vOBLA) were determined 

for each individual.  Differences in the these values at the beginning and end of the study 
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were used to assess fitness improvement or loss, with increased velocities indicating 

increased fitness, as was performed in previous training load studies (Akubat et al., 2012; 

2014; Malone and Collins, 2016; Manzi et al., 2009; 2013).  Lab-based fitness test scores 

were calculated by taking the mean of predicted velocity at blood lactate concentrations of 2 

mmol∙L-1 and 4 mmol∙L-1, thereby combining the two thresholds measured during testing. 

Specifically, fitness change was defined as percent change in lab-based fitness test scores 

from the start to the end of the study, where overall fitness was defined by both mean 30:15 

scores and mean lab-based fitness test scores at the start and end of the study. All training 

load measures were compared to overall fitness as well as fitness changes.  For this analysis, 

all unphased data over the entire study, including both trainings and competitions (with bench 

time and technical drills included), was incorporated into average weekly values for each 

training load variable to provide the most complete picture of each athlete’s hockey training. 

The strength of the correlations between fitness and fitness changes and average weekly 

training loads were used to determine which training load measures best predict fitness 

outcomes. 

 

3.5.4 Effindex 

Effindex was calculated during all sessions, and effindex scores were compared 

across halves in competition to provide information on how efficiency changed over the 

course of a match. To calculate effindex, ratios of distance measures were taken with heart 

rate measures, as described in research on football athletes (Torreno et al., 2016; Arrones et 

al., 2014; Akubat and Abt, 2011). Specifically, effindex1 was defined to be total distance: 

iTRIMP and effindex2 to be meters per minute: average heart rate.  

 

3.5.5 Statistical Analysis 

Data are presented as means ± standard deviations. Training and competition training 

loads were compared using paired sample t-tests with Cohen’s effect size statistic.  

Correlation analyses between training load measures, and between training load measures and 

fitness changes were performed using Pearson’s product-moment coefficient. Statistical 

significance was set at p<0.01, to favor minimizing type 1 errors. Data were analyzed using 

SPSS for Windows (IBM SPSS, Version 22, Armonk, New York) and Microsoft Excel 

(Microsoft Corporation 2016, Version 1902, Redmond, Washington). 
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Chapter 4: Results 

 

4.1 Measuring Training Load in Female Hockey Athletes 

  

 

Figure 4.1: Blood Lactate versus Heart Rate Reserve 

 

There was an exponential relationship between blood lactate and heart rate reserve 

(HRR), well modelled (r=0.918) by the exponential curve y = 0.1102e4.3913x (Figure 4.1).  

 

Table 4.1: Stagno TRIMP & fTRIMP Algorithms (Stagno, Thatcher and Van Someren, 2007 

p. 632) 

Stagno’s TRIMP  fTRIMP 

%MaxHR Weight  %MaxHR Weight 

65-71 1.25  59-66.9 0.91 

72-78 1.71  67-74.9 1.49 

79-85 2.54  75-82.9 2.44 

86-92 3.61  83-90.9 3.99 

93-100 5.16  91-100 6.74 

 

The fTRIMP algorithm, based on this curve, had different weights and zone cutoffs than 

Stagno’s TRIMP algorithm (Table 4.1). 
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Figure 4.2: Relationship between Team TRIMP Algorithms 

 

Despite these differences, fTRIMP scores were still extremely strongly correlated (r=0.998) 

with Stagno’s TRIMP scores across all unphased data (Figure 4.2).  

 

Figure 4.3: Individualized TRIMP vs. fTRIMP (Phased) 
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Figure 4.4: Individualized TRIMP vs. fTRIMP (Unphased) 

 

There was also a strong relationship between fTRIMP and iTRIMP.  When phased data, 

including only small-sided games in training and on the pitch in competition, were analyzed, 

this relationship was stronger (Figure 4.3) than when unphased data were analyzed (Figure 

4.4). 

 
Table 4.2: Correlation of Heart-Rate Based Training Load Measures 

Correlation of Heart-Rate Based Training Load Measures 

  Stagno TRIMP fTRIMP iTRIMP %MaxHR 

Stagno TRIMP 1 0.998 0.906 0.926 

fTRIMP 0.999* 1 0.908 0.921 

iTRIMP 0.950* 0.952* 1 0.838 

%MaxHR 0.523* 0.540* 0.538* 1 

*: Phased Data      No *: Unphased Data 

 

Average percentage of maximum heart rate (%MaxHR) was strongly correlated with TRIMP 

scores when unphased data were considered but only moderately correlated when phased data 

were considered (Table 4.2). 

 

 

 

y = 0.8962x - 14.018

R² = 0.8249

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

In
iv

id
iu

al
iz

ed
 T

R
IM

P
 (

A
U

)

fTRIMP (AU)

Individualized TRIMP vs. fTRIMP (Unphased)



 

55 
 

Table 4.3: Correlation of sRPE to Other Training Load Measures 

Correlation (r) of Session RPE to Other Training Load Measures 

  Overall sRPE fTRIMP Total Distance 

Overall sRPE 1 0.927 0.926 

Respiratory sRPE 0.984 0.916 0.904 

Lower body sRPE 0.958 0.884 0.890 

Upper Body sRPE 0.573 0.527 0.668 

 

Overall session RPE was very strongly correlated with fTRIMP (r=0.927) and total 

distance (r=0.926).  Respiratory and lower body differential sRPE were also strongly 

correlated with overall sRPE (respiratory: r=0.984; lower body: r=0.958), fTRIMP 

(respiratory: r=0.916; lower body: r=0.884), and total distance (respiratory: r=0.904; lower 

body: r=0.890), while upper body sRPE was only moderately correlated with other measures 

of training load (Table 4.3). All sRPE scores were calculated for phased data, as only active 

time was counted towards athletes’ minute totals.   

 

Table 4.4: Correlation of Internal and External Training Load Measures 

Correlation of Internal and External Training Load Measures 

  Stagno TRIMP fTRIMP iTRIMP %MaxHR 

Total Distance 0.957 0.949 0.882 0.430 

Workrate 0.286 0.300 0.283 0.689 

Zone 1 0.475 0.469 0.379 0.062 

Zone 2 0.857 0.841 0.804 0.184 

Zone 3 0.917 0.910 0.901 0.425 

Zone 4 0.898 0.898 0.823 0.556 

Zone 5 0.824 0.821 0.707 0.479 

Zone 6 0.549 0.542 0.379 0.260 

  

The correlations of internal and external training load measures were considered over 

all phased data (Table 4.4). TRIMP scores were most strongly correlated with total distance 

followed by distance covered in zones 3 and 4. Average percentage of maximum heart rate 

was most strongly correlated with workrate (r=0.689) but only weakly and moderately 
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correlated with other measures of external training load.  Distances covered in zones 5 and 6 

were only moderately correlated with team TRIMP scores.  

 

Table 4.5: Fitness Test Scores 

 

 

 

 

 

 

Lab-based fitness test scores were given by mean predicted velocity at blood lactate 

concentrations of 2 and 4 mmol·L-1 during the submaximal treadmill test.  There was a 

notable improvement in lab-based fitness test scores from pre-testing to post-testing and a 

slight decrease in standard deviation (Table 4.5). There was no notable change in average 

30:15 scores.   

 

Table 4.6: Correlation of Training Load Measures to Fitness 

Correlation of Training Load Measures to Fitness 

  

Lab-Based 

Fitness Score 

Average 

30:15 Scores 

Percent Fitness 

Change 

Respiratory sRPE -0.033 0.349 -0.103 

Upper Body sRPE -0.014 -0.058 0.030 

Lower Body sRPE 0.215 0.464 -0.017 

Overall sRPE 0.109 0.469 0.160 

Stagno TRIMP -0.732 -0.164 0.134 

fTRIMP -0.740 -0.162 0.150 

iTRIMP -0.662 -0.190 0.597 

%MaxHR -0.832 -0.310 0.249 

Total Distance 0.358 0.431 -0.441 

Workrate 0.222 -0.036 0.079 

Zone 1 -0.141 0.271 -0.026 

Zone 2 0.153 0.000 -0.509 

Zone 3 -0.020 -0.095 0.239 

Fitness Test Scores (Mean ± SD) 

  Pre-test Post-test 

Lab-based (km·hr-1) 10.67 ± 1.10 11.31 ± 0.92 

30:15 19.50 ± 0.63 19.45 ± 0.57 
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Zone 4 0.062 0.138 -0.155 

Zone 5 0.639 0.801 -0.622 

Zone 6 0.842 0.881 -0.663 

Effindex1 0.769 0.305 -0.477 

 

Stagno TRIMP, fTRIMP, iTRIMP, %MaxHR, distance covered in zones 5 and 6, and 

effindex1 were moderately correlated with lab-based fitness test scores (Table 4.6). The 

moderate relationships between lab-based fitness test scores and external training load were 

positive, while the relationships with internal training load were negative.  Average 30:15 

scores were strongly correlated with distance covered in zones 5 (r=0.801) and 6 (r=0.881). 

Percent change in fitness was calculated from mean predicted blood lactate concentrations at 

2 and 4 mmol·L-1 measured before and after the study. Individualized TRIMP was the only 

training load measure moderately positively correlated with percent fitness change (r=0.597).  

Distance covered in zones 5 (r=-0.622) and 6 (r=-0.663) were moderately negatively 

correlated with percent fitness change. Percent fitness change was also negatively correlated 

with fitness scores measured at the start of the study (r=-0.655), indicating that fitter athletes 

improved their fitness less over the course of the study. 

 

4.2 Physical and Physiological Demands of British University Hockey 

 

Table 4.7: Match Descriptives 

Match Descriptives 

  Mean ± SD Minimum Maximum 

Minutes 46.95 ± 10.20 25.57 74.90 

Respiratory sRPE 301 ± 93 102 511 

Upper Body sRPE 140 ± 73 0 370 

Lower Body sRPE 293 ± 92 100 517 

Overall sRPE 300 ± 87 102 501 

Stagno TRIMP 172 ± 36 99 268 

fTRIMP 223 ± 48 121 343 

Individualized TRIMP 199 ± 62 84 381 

%MaxHR 0.883 ± 0.031 .792 .944 
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 Athletes in this study covered, on average, 5419m during competition and recorded an 

average fTRIMP score of 223 (AU) (Table 4.7).  Physical and physiological demands during 

competition varied largely, as evidenced by the large range and standard deviation values. 

For example, distance covered in zone 6 ranged from 59m to 780m and %MaxHR ranged 

from 79.2% to 94.4%. Additionally, average effindex1 was considered separately decreased 

from 1.35 in the first half to 1.31 in the second half.  All match data were phased to only 

include time on the pitch.   

 

Table 4.8: Average Weekly Load (Phased) 

Average Weekly Load (Phased) 

  Mean ± SD 

Minutes 134.46 ± 18.37 

Respiratory sRPE 818 ± 154 

Upper Body sRPE 400 ± 158 

Lower Body sRPE 797 ± 149 

Overall sRPE 813 ± 143 

Stagno TRIMP 463 ± 61 

fTRIMP 597 ± 80 

Individualized TRIMP 523 ± 98 

%MaxHR 0.867 ± 0.022 

Total Distance (m) 14888 ± 1590 

Workrate (m·min-1) 113.1 ± 7.0 

Total Distance (m) 5419 ± 886 3177 7676 

Workrate (m·min-1) 117.1 ± 10.6 89.2 142.1 

Zone 1 (m) 54 ± 44 1 229 

Zone 2 (m) 1415 ± 415 649 2435 

Zone 3 (m) 1772 ± 402 910 3002 

Zone 4 (m) 1306 ± 218 814 1774 

Zone 5 (m) 642 ± 154 299 1098 

Zone 6 (m) 228 ± 134 59 780 

Effindex1 29.0 ± 7.2 17.3 55.5 

Effindex2 1.33 ± 1.07 1.05 1.61 
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Zone 1 (m) 151 ± 70 

Zone 2 (m) 4134 ± 731 

Zone 3 (m) 4892 ± 685 

Zone 4 (m) 3430 ± 407 

Zone 5 (m) 1669 ± 253 

Zone 6 (m) 612 ± 219 

Effindex1 31.7 ± 4.8 

Effindex2 130.4 ± 7.0 

 

In an average week, athletes covered 14.8 km during active time in training and 

matches, with a mean %MaxHR of 86.7% (Table 4.8).  Of the 14.8km, only 612m were 

covered at speeds of 19 km·hr-1 or higher, and average weekly cumulative fTRIMP was 597 

(AU) (Table 4.8). 

 

Table 4.9: Average Weekly Load (Unphased) 

Average Weekly Load (Unphased) 

  Mean ± SD 

Minutes 396.63 ± 15.85 

Stagno TRIMP 695 ± 86 

fTRIMP 902 ± 110 

Individualized TRIMP 734 ± 130 

Total Distance (m) 23441 ± 1794 

Zone 1 (m) 678 ± 223 

Zone 2 (m) 9039 ± 996 

Zone 3 (m) 6911 ± 749 

Zone 4 (m) 4171 ± 422 

Zone 5 (m) 1924 ± 298 

Zone 6 (m) 715 ± 2389 

  

When unphased data were considered for cumulative training load measures, total distance 

increased to 23.4 km, with 714m above 19 km·hr-1, and weekly average fTRIMP increased to 

902 (AU) (Table 4.9). 
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Table 4.10: Range in Individual Average Weekly Load 

Range in Individual Average Weekly Load  

  Minimum Maximum 

Minutes 390.84 400.85 

Respiratory sRPE* 573.6766 1008.274 

Upper Body sRPE* 129.8001 701.6914 

Lower Body sRPE* 560.7156 1015.598 

Overall sRPE* 601.0925 977.3004 

Stagno TRIMP 472.8939 809.4588 

fTRIMP 614.415 1057.809 

Individualized TRIMP 447.7877 1104.583 

%MaxHR* 0.815375 0.905479 

Total Distance (m) 21609.95 24978.32 

Workrate (m·min-1)* 96.23863 119.8507 

Zone 1 (m) 71.73333 1109.617 

Zone 2 (m) 7293.5 9908.55 

Zone 3 (m) 5766.086 8118.131 

Zone 4 (m) 3444.633 4723.667 

Zone 5 (m) 1462.15 2361.705 

Zone 6 (m) 456.1143 1209.448 

Effindex1* 20.58188 44.79038 

Effindex2* 112.5933 142.0711 

*: Phased Data      No *: Unphased Data 

 

Average weekly load greatly varied by participant, as evidenced by the large range in 

individual average weekly training loads (Table 4.10).    

  

Table 4.11: Competition vs. Training Data 

Competition vs. Training Data (Phased) 

  Competition Training Cohens D p-value 

Minutes 46.95 21.15 2.31 0 

Respiratory sRPE 301 118 2.04 0 
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Upper Body sRPE 140 66 0.86 0.001 

Lower Body sRPE 293 116 2.05 0 

Overall sRPE 300 118 2.14 0 

Stagno TRIMP 172 62 2.92 0 

fTRIMP 223 79 2.92 0 

Individualized TRIMP 199 66 2.40 0 

%MaxHR 0.883 0.823 1.11 0 

Total Distance (m) 5419 2122 3.13 0 

Workrate (m·min-1) 117.1 102.8 0.86 0 

Zone 1 (m) 54 22 0.89 0.005 

Zone 2 (m) 1415 679 1.79 0 

Zone 3 (m) 1772 705 2.63 0 

Zone 4 (m) 1306 429 3.44 0 

Zone 5 (m) 642 204 2.78 0 

Zone 6 (m) 229 83 1.22 0.002 

 

The physical and physiological demands of training were significantly different than 

the demands of competition for all training load measures (Table 4.11).  Based on a paired 

sample t-test, p < 0.01 and effect sizes, given by Cohen’s D, were very large for all measures.   

 

Table 4.12: Competition TRIMP Scores Based on Phasing 

Competition TRIMP Scores based on Phasing 

  
Time-on-pitch  

Entire game 

(including bench time) 

Entire session (including 

bench time and warmup) 

Stagno TRIMP 172 ± 36 198 ± 41 237 ± 49 

fTRIMP 223 ± 48 261 ± 53 309 ± 63 

iTRIMP 199 ± 63 222 ± 68 256 ± 79 

 

In competition, phasing made a notable difference in TRIMP scores (Table 4.12). As TRIMP 

is cumulative, entire session scores (including time on bench and warmup) were greater than 

entire game scores (including time on the bench), both of which were greater than scores 

from just time on the pitch.  
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Chapter 5: Discussion – Measuring Training Load in Female Hockey Athletes 

 

5.1 Developing a New Female Team TRIMP Algorithm 

This study is the first to modify Stagno’s team TRIMP algorithm for female athletes 

and, therefore, provides novel insight on the importance of using gender-specific team 

TRIMP algorithms.  Stagno’s algorithm summarizes heart rate over the course of a hockey 

training session or match; however, as the study was performed only on men, there is no 

evidence to support the use of Stagno’s algorithm on female athletes (Stagno, Thatcher and 

Van Someren, 2007).  This study found that replicating Stagno’s protocol on female hockey 

athletes resulted in a new, distinct algorithm for team TRIMP.  Although the same procedure 

was followed, using exponential interpolation to assess the relationship between blood lactate 

and HRR and then fitting zones around the anchors of 1.5 and 4 mmol·L-1, the new algorithm 

differed from the original in both the zone cutoffs and weights (Table 4.1) (Stagno, Thatcher 

and Van Someren, 2007).   

 The main difference between the male athletes in Stagno’s study and the female 

athletes in the current study was the rate of increase of the blood lactate concentration versus 

HRR curve (Stagno, Thatcher and Van Someren, 2007).  Specifically, when blood lactate 

concentration was plotted against HRR, as measured during a submaximal lactate threshold 

treadmill test, the relationship was best described by y = 0.1102e4.3913x, as demonstrated in 

Figure 4.1.  Furthermore, the strength of the correlation was very strong (r = 0.918), 

indicating that the exponential curve used was a very good fit for the data.  As a comparison, 

for the eight male athletes in the Stagno study, blood lactate versus HRR was best modeled 

by the curve y = 0.1225e3.9434x (Stagno, Thatcher and Van Someren, 2007).  Although the 

intercepts of these models are very similar, the difference in the exponential term indicates 

that as HRR increases, blood lactate increases at a higher rate in female athletes than in male 

athletes.  Thus, as HRR approaches one, the blood lactate corresponding to a set HRR will be 

much higher for the females in this study than was reported previously for male athletes 

(Stagno, Thatcher and Van Someren, 2007).  For example, at a HRR of 0.9, the predicted 

blood lactate concentration is 4.3 mmol·L-1 for male athletes and 5.7 mmol·L-1 for female 

athletes, a difference of 33%. When working at maximum heart rate, the predicted 

concentrations increase to 6.3 mmol·L-1 for males and 8.9 mmol·L-1 for females, a difference 

of 41%.  These results suggest that the physiological demands of working at higher values of 

HRR are greater in female athletes than in male athletes.  
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 To date, no study has directly investigated sex differences in the blood lactate versus 

HRR curve.  As with the Stagno study, the majority of studies investigating the relationship 

between heart rate and blood lactate have been performed on male athletes (Akubat et al., 

2012; Akubat and Abt, 2011; Banister, 1991; Malone and Collins, 2016; Manzi et al., 2009; 

Manzi et al., 2013; Stagno, Thatcher and Van Someren, 2007).  Studies that have considered 

the relationship between sex and blood lactate have focused on peak blood lactate 

concentration and lactate removal and have found no significant differences in these 

measures between sexes (Froberg and Pedersen, 1984; Lehmann, Berg and Keul, 1986; 

Zhang and Ji, 2016). However, as the treadmill test used to calculate team TRIMP is 

submaximal, athletes are not likely to have reached peak blood lactate concentrations.  

Although the relationship between heart rate and blood lactate concentration was not 

considered, an early study measuring sex differences in catecholamines during graded 

treadmill running examined sex differences in blood lactate levels (Lehmann, Berg and Keul, 

1986).  As part of the study, 15 trained adults, 9 females and 6 males, completed a treadmill 

test commencing at 6 km∙hr-1 and consisting of stages of 3 minutes of running followed by 30 

seconds of recovery and increasing by 2 km∙hr-1 each stage until exhaustion (Lehmann, Berg 

and Keul, 1986).  The results showed that at identical running intensities, female participants 

had higher blood lactate concentrations than males, with the difference increasing as running 

speed increased (Lehmann, Berg and Keul, 1986).  While it is not possible to know if there 

was a corresponding increase in heart rate, these findings are in alignment with the results of 

this study, indicating that blood lactate levels increase more quickly in females than in males 

as HRR rises during submaximal exercise (Lehmann, Berg and Keul, 1986).  Similarly, a 

2014 study on sex differences in lactate threshold among football players reported that 

velocities at blood lactate concentrations of 4 mmol·L-1 were significantly lower (p=0.003) in 

females than in males, while at 2 mmol·L-1, the velocities for females were lower, but not 

significantly (p=0.138) (Baumgart, Hoppe and Freiwald, 2014).  Although the relationship 

with heart rate was not considered, these findings also support the results of this study, 

suggesting that as intensity rises, blood lactate levels increase more rapidly in females than in 

males (Baumgart, Hoppe and Freiwald, 2014).  

 As a result of the different blood lactate curves for males and females, both the zone 

cutoffs and weights varied between Stango’s TRIMP algorithm and the fTRIMP algorithm.  

The elevated rate of increase of blood lactate versus HRR in female athletes led to higher 

weightings for the top zones and lower weightings for the lower zones in the fTRIMP 

algorithm.  Specifically, in the new algorithm the weighting for the top zone was 21.8% 
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higher than in the Stagno algorithm and the weighting for the lowest zone was 27.2% lower 

than in the Stagno algorithm.  As described by Stagno et al., to determine zone widths and 

cutoffs, zones 2 and 4 were anchored around blood lactate concentrations of 1.5 mmol·L-1 

and 4 mmol·L-1, respectively, and the remaining zones were fit around these two, with 

approximately equal widths  (Stagno, Thatcher and Van Someren, 2007).  Since the female 

athletes in this study reached blood lactate concentrations of 1.5 mmol·L-1 and 4 mmol·L-1 at 

lower values of HRR than the males in the Stagno study, the cutoffs for the zones were lower.  

As all HRR values up to 1.0 still needed to be included in the algorithm, the lower cutoffs led 

to increased zone widths, especially for the top zone. Overall, as can be seen in Table 4.1, the 

zone cutoffs, widths, and weights are notably different in the fTRIMP algorithm, compared to 

Stagno’s TRIMP algorithm.  

 The differences between these two algorithms suggest that using the Stango TRIMP 

algorithm for the female hockey athletes in the current study will result in an underestimation 

of training load. Specifically, work near maximum heart rate will be underweighted 

compared to its physiological impact, in terms of blood lactate concentration. Additionally, 

the findings of this study suggest that if the Stagno algorithm is used for female athletes, 

work at 59-64.9% of maximum heart rate will not be accounted for, even though the evidence 

suggests that blood lactate accumulates at lower heart rate values in females than in males.  

Despite the very notable differences in the two algorithms, fTRIMP and Stagno TRIMP 

scores, considered across all data in the study, were still extremely strongly correlated 

(r=0.998), as demonstrated in Figure 4.2. A correlation of moderate strength is to be expected 

as the two team TRIMP measures were based on the exact same heart rate data and used a 

similar method of five weighted zones to process that data.  However, the correlation between 

the two TRIMP algorithms is extremely strong (r=0.998), not just moderate, and, as the 

models are both exponential, the linearity of this correlation is not intuitive.  Since the data 

are correlated, not equivalent, using Stagno’s algorithm on female athletes will consistently 

and systematically underestimate training load.  As the units of TRIMP are arbitrary, this 

underestimation is irrelevant in the case where only one sex is being considered since the 

extreme linearity of the correlation means that the underestimation will be consistent.  

However, when both sexes are analyzed or when team TRIMP is being used to set thresholds 

for training loads, the underestimation will result in discrepancies between male and female 

data.   

The linearity of the relationship between Stagno’s TRIMP and fTRIMP allows for a 

simple resolution of the inconsistencies between male and female team TRIMP data.  
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Specifically, the extreme strength of the linear correlation (r=0.998) indicates that instead of 

using two distinct algorithms to analyze male and female heart rate data, a single algorithm 

can be used, if followed by a simple linear transformation based on gender.  In practice, this 

result greatly simplifies matters for analysists working with both male and female athletes, as 

existing software programs, such as Catapult Sprint, often only allow for one team TRIMP 

algorithm to be inputted at any given time.  Thus, instead of needing to analyze heart rate 

data for male and female athletes separately using distinct algorithms, all data can be 

analyzed together, using the same algorithm, if a transformation is performed to correct for 

the differences in male and female data. The relationship between the male and female 

algorithms is further simplified by the fact that there is insufficient evidence to suggest that 

the constant in the equation is non-zero.  Specifically, the value of the constant is 0.064 and 

the standard error is 1.141, so there is not adequate evidence to conclude that the value is 

significant.  Additionally, TRIMP is usually rounded to the closest integer value, so adding 

0.064 is irrelevant. Ignoring the constant, the transformation simplifies to a multiplicative 

factor of 1.299 (standard error 0.006).  Therefore, in order to adjust for sex differences in the 

physiological response to exercise, female team TRIMP scores calculated using the Stagno 

algorithm should be multiplied by 1.3.  Alternatively, if scores are not adjusted, training load 

targets for male athletes should be reduced by a factor 1.3 when applied to females.  For 

example, if the target load for males is 130, the corresponding target load for females should 

be 100.  Regardless of what method of adjustment is used, the results of this study 

demonstrate the importance of not simply applying male team TRIMP protocols to female 

athletes, and, with a multiplicative factor of 1.3, provide a simple method for doing so.  

 

5.2 Correlations of Training Load Measures 

 

5.2.1 Relationship between Heart-Rate Measures 

In addition to developing a new method of measuring team TRIMP in female athletes, 

this study also investigated iTRIMP and average percentage of maximum heart rate 

(%MaxHR) as training load measures.  Specifically, iTRIMP was strongly correlated with 

both Stagno TRIMP (r=0.906) and fTRIMP (r=0.908) across all unphased data. Although 

strong, these correlations were not as large as the correlation between Stagno TRIMP and 

fTRIMP (r=0.998).  This result suggests that there was more than a simple linear 

transformation of the data occurring when the iTRIMP algorithm was used instead of the 
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fTRIMP algorithm.  In fact, examining the relationship between iTRIMP and fTRIMP, as 

shown in Figure 4.4, demonstrates that for larger fTRIMP scores, iTRIMP values diverged 

farther from the linear model.  Furthermore, most of the values cluster just below the line of 

best fit indicating that in most cases there was a very strong linear relationship between 

iTRIMP and fTRIMP; however, the data points that fall above the line of best fit are farther 

spread, generally in a linear fashion but with a slightly larger slope. Overall, the spread 

around the linear model suggests that using individualized TRIMP scores provides different 

information on training load than that which can be obtained from team TRIMP algorithms.  

Since iTRIMP algorithms are individualized, it has been suggested that iTRIMP data will be 

more accurate, and, as such, should be used instead of team TRIMP algorithms (Manzi et al., 

2009; Malone and Collins, 2016).   

When data are phased and just active time is considered, the strength of the 

correlation between iTRIMP and fTRIMP increases (r=0.952), as shown in Figure 4.3.  In 

this case, the data are much more closely and consistently clustered around the regression 

line, demonstrating that very little distinct information is obtained from iTRIMP compared to 

fTRIMP.  Therefore, although the data obtained from the iTRIMP algorithm may be 

considered to be more accurate since it is individualized, the strength of the correlation shows 

that scores obtained using the iTRIMP algorithm will be very close to a simple linear 

transformation of fTRIMP scores.  As the units of TRIMP are arbitrary, the linearity of the 

relationship between fTRIMP and iTRIMP means that as long as one algorithm is 

consistently used, the training load information obtained from monitoring active training will 

be very similar, albeit on slightly different linear scales.   

As iTRIMP and fTRIMP are so closely related for active data, the question that then 

arises is, from a practical standpoint, whether using iTRIMP is worth the additional effort 

required.  Calculating iTRIMP requires lab-based fitness testing, including blood lactate 

measurement, on all athletes to determine their HRR versus blood lactate curve. This testing 

should be repeated regularly, perhaps once per season, to account for physiological changes 

that may occur and to ensure that the algorithms are still accurate for each individual.  On the 

other hand, using a team TRIMP algorithm requires no testing, as zone cutoffs and weights 

are predetermined by either the Stagno algorithm for male athletes or the fTRIMP algorithm 

for female athletes. Since the resources required for lab-based testing will be unavailable to 

the vast majority of hockey teams, team TRIMP algorithms provide a more accessible 

method of monitoring athletes.  Furthermore, if only active time is considered, the results of 

this study suggest that very similar training load scores can be obtained by completely 
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forgoing individualized testing and simply using the team TRIMP algorithms.  However, as 

the correlation between iTRIMP and fTRIMP is strong, but not perfect, there will still be 

some different information provided by iTRIMP versus fTRIMP training load scores, so 

teams with the resources, such as top international programs, may benefit from using iTRIMP 

if they wish to have the most accurate individualized monitoring.  

The results of this study demonstrate that %MaxHR is also an accurate method of 

monitoring internal training load in hockey training and competition, as long as complete, 

unphased data sets are analyzed.  Considering only phased data (active time during training 

or time on the pitch during competition), the results of this study suggest that %MaxHR is not 

an accurate method of monitoring internal training load since there is only a weak moderate 

correlation with fTRIMP (r=0.540).  However, when the phasing is removed and sessions are 

considered in their entirety, the strength of the correlation between %MaxHR and fTRIMP 

drastically increases to r=0.921.  This result is very interesting as one might expect that 

considering time between drills in training and off the pitch during competition would skew 

%MaxHR scores.  In fact, the majority of studies measuring %MaxHR have phased data to 

only include time on the pitch during competition (Lythe, 2008; Macutkiewicz and 

Sunderland, 2011; Boran, 2012; Sell and Ledesma, 2016; Vescovi, 2016; McGuinness et al., 

2017).  Furthermore, it has been suggested that only considering average heart rate 

oversimplifies the varied and intermittent demands of team sports such as hockey (Stagno, 

Thatcher and Van Someren, 2007). However, the strong correlation between %MaxHR and 

fTRIMP across all unphased data in this study (r=0.952) clearly suggests that %MaxHR is a 

valid method of measuring internal training load and will provide very similar information to 

team TRIMP scores.   

From a practical perspective, the simplicity of %MaxHR increases its potential as a 

training load measure.  No algorithms need to be used, and even the least sophisticated heart 

rate monitoring equipment will include average heart rate in the output. As heart rate 

monitors are becoming increasingly more popular and less cost-prohibitive, it is not 

unreasonable for hockey clubs to have a set of heart rate monitors for athletes to wear. 

Furthermore, since no data analysis is needed, %MaxHR monitoring could be performed by 

coaches rather than sports scientists.  Thus, using %MaxHR as a training load measure 

greatly simplifies the monitoring process, making it more accessible to a large range of 

hockey clubs.  In addition, the fact that unphased %MaxHR data should be used to ensure a 

strong relationship with team TRIMP is fortuitous, as phasing data is one of the most time-

consuming aspects of data analysis.  Also, less sophisticated (and oftentimes less expensive) 
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heart-rate monitored equipment will not allow for data phasing and will only include whole 

session reports in the output. From a scientific perspective, the need for unphased data is also 

beneficial, as it is preferable to measure internal load over entire sessions to ensure that the 

full physiological load is recorded.  Athletes still have elevated heart rates as they recover 

either in-between training drills or off the pitch during competition, so using only phased data 

can skew training load scores. Therefore, %MaxHR is a very useful method for monitoring 

internal training load both scientifically and practically.  

Overall, the results of this study indicate that there are many difference options for 

monitoring internal training load using heart-rate based measures in female hockey athletes. 

Previous studies have suggested that iTRIMP is the gold standard for measuring internal 

training load, as it is fully individualized based on each athlete’s physiological response to 

exercise (Manzi et al., 2009; Malone and Collins, 2016).  Therefore, for teams that have the 

resources and interest in having the most accurate monitoring system for each athlete, 

iTRIMP can provide the detailed internal training load information desired.  However, in the 

vast majority of cases, teams will not have the resources required for individual athlete lab-

based testing.  Thus, team TRIMP algorithms are preferable because the algorithms are 

preestablished and no lab-based testing is required.  When data are phased to only include 

active data, there is a very strong correlation between iTRIMP and fTRIMP scores (r=0.952), 

and, as the multiplicative factor of 1.3 between fTRIMP and Stagno’s TRIMP has been 

established, it is possible to easily compare male and female team TRIMP data. Therefore, 

for teams that have the resources to calculate team TRIMP but not iTRIMP, the results of this 

study indicate that, if active data are used, little information is lost by using team TRIMP 

instead of iTRIMP.  Finally, if calculating team TRIMP is not possible, %MaxHR can be 

used to monitor internal training load.  Specifically, when unphased data are analyzed, 

%MaxHR is strongly linearly correlated with fTRIMP (r=0.921), suggesting that %MaxHR 

can be used to provide accurate internal training load information without the complication of 

TRIMP algorithms.  Therefore, depending on the resources available and level of accuracy 

required, teams can choose between iTRIMP, team TRIMP, or %MaxHR as valid methods of 

monitoring internal training load. 

 

5.2.2 Validity of Session Rating of Perceived Exertion 

 This study was the first to measure sRPE in adult hockey, and the results indicate that 

sRPE is a valid method of measuring training load in female hockey training and 

competition.  As sRPE is a perceptual measure, it has several practical advantages over other 
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methods of monitoring training load.  No tracking devices or analytical support is required, 

and the only equipment needed is a stopwatch to track time. Instead of performing 

complicated analyses on massive datasets, a simple multiplication of RPE by time is all that 

is required to calculate sRPE scores.  As RPE is a fully perceptual measure, questions have 

been raised as to the accuracy of the training load information obtained (Kolkhorst, 

Mittelstadt and Dolgener, 1996; Travlos and Marisi, 1996; Zeni, Hoffman and Clifford, 1996; 

Chen, Fan and Moe, 2002; Faulkner and Eston, 2007).  However, in terms of sRPE in team 

sports, moderate to strong correlations have been found between sRPE and TRIMP in 

football (r=0.70), Australian football (r=0.83), and futsal (r=0.70) (Impellizzeri et al., 2004; 

Scott et al., 2013b; Wilke et al., 2016). Furthermore, sRPE was also shown to be moderately 

correlated with total distance (r=0.78) in Australian football (Scott et al., 2013b).   

 In terms of hockey training and competition, the results of this study indicate that 

overall sRPE is very strongly correlated with both team TRIMP and total distance.  

Specifically, across active data measured in all sessions, there was a very strong correlation 

between overall sRPE and fTRIMP (r=0.927) and total distance (r=0.926).  Since these 

correlation coefficients are notably higher than what has been previously reported in other 

team-sport populations, this study is the first to show a very strong correlation between sRPE 

and internal and external training load measures in team sports (Impellizzeri et al., 2004; 

Scott et al., 2013b; Wilke et al., 2016). These results provide strong evidence in support of 

sRPE as a valid method of measuring internal and external training load in female hockey 

training and competition.  From a practical perspective, this result is very beneficial because, 

as mentioned above, sRPE scores are much easier to collect and calculate than other training 

load measures.  In fact, as only a stopwatch is required, it is reasonable to assume that all 

hockey teams have the resources to collect individual sRPE scores if they chose to do so.  

Since the results of this study demonstrate that sRPE is a valid method of monitoring internal 

and external training load, the accessibility of sRPE means that all hockey teams have the 

ability to individually monitor their athletes.   

 In addition to overall sRPE, differential sRPE scores for respiratory, lower body, and 

upper body exertion were also measured as part of this study. Respiratory sRPE was 

extremely strongly correlated with overall sRPE (r=0.984), indicating that respiratory fatigue 

greatly contributes to and is an accurate measure of overall exertion in hockey training and 

competition.  Similarly, the very strong correlation between lower body sRPE and overall 

sRPE (r=0.958) suggests that lower body exertion is also indicative of overall exertion.  On 

the other hand, the much weaker correlation between upper body sRPE and overall sRPE 
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(r=0.573) shows that upper body exertion does not largely relate to overall exertion. This 

lower correlation is likely due to the fact that hockey primarily consists of sprinting, running, 

and walking which are far more taxing on the respiratory system and lower body than on the 

upper body.   

As the relationships between overall sRPE and TRIMP and total distance were 

considered, the question naturally follows if respiratory sRPE and lower body sRPE are more 

closely related to other measures of internal and external training load than overall sRPE.  

One might hypothesize that, due to the nature of the exertion, respiratory sRPE would be 

more strongly correlated with TRIMP than overall sRPE and lower body sRPE would be 

more strongly correlated with total distance than overall sRPE.  However, this is not the case, 

as overall exertion is better correlated with both TRIMP (r=0.927) and total distance 

(r=0.926) than either respiratory sRPE (TRIMP: r=0.916; total distance: r=0.904) or lower 

body sRPE (TRIMP: r=0.884; total distance: r=0.890).  Therefore, these results suggest that 

overall sRPE is more effective than differential sRPE for monitoring internal and external 

training load.   

 As sRPE is a perceptual measure that can be easily influenced by how data are 

collected, it is important to consider exactly how sRPE scores were calculated in this study to 

ensure that teams using sRPE scores can accurately replicate important elements of the 

procedure. Firstly, as RPE scores are multiplied by time to produce sRPE scores, it is crucial 

that time is accurately measured.  During this study, only active time either on the pitch 

during competition or in small-sided games during training was counted in athletes’ minute 

totals for a session.  Therefore, determining time is more complicated than measuring the 

entire length of a training session or competition.  In practice, this can make calculating sRPE 

somewhat complicated, as it may be difficult to accurately monitor time for each athlete 

without the aid of GPS data sets, which allow analysts to retroactively determine exactly 

when players were active.  However, during competition, team managers or technical 

directors often keep track of substitutions and the exact number of minutes played by each 

athlete. Additionally, during training, if coaches make precise plans regarding the length of 

small-sided game segments and follow those plans strictly without allowing teams to make 

substitutions, it is possible to easily determine the number of minutes that athletes were active 

during training.  In addition to accurate timing, it is also important to note that overall RPE 

scores collected during this study were obtained as part of a questionnaire including 

respiratory, lower body, and upper body differential RPE.  Without future research, it is 

impossible to determine if asking athletes to consider and report differential RPE scores prior 
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to an overall score influenced overall scores. Therefore, including differential scores in RPE 

questionnaires would be recommended, even if the overall score is the only one considered 

for analysis.  Finally, RPE scores should be collected individually and athletes should be 

instructed not to discuss their scores with other athletes to reduce the influence of peer 

pressure.   

Although, as previously discussed, there are many benefits of using sRPE as a 

measure of internal and external training load, it is also important to consider the limitations 

of sRPE.  During this study, athletes’ RPE scores were provided directly to the researcher, 

not to the coaching staff. Therefore, athletes knew that there would be no repercussions for 

their RPE scores and that coaches would not be able to use their RPE scores to judge their 

level of exertion or to determine the intensity of future sessions.  As soon as RPE scores are 

provided to coaches and used to monitor training load, athletes may, subconsciously or not, 

change their behavior and reporting as a result of being monitored, an example of the 

Hawthorne effect (Buckworth, 2002). For instance, athletes may want to appear as if they are 

working hard and fully exerting themselves, particularly in competition settings, and, as a 

result, may inflate RPE scores.  Additionally, if sRPE is used to monitor overall training load, 

athletes may overreport their exertion in an attempt to appear that they have already reached 

training load targets and to decrease the intensity of future training sessions.  In summary, 

although sRPE is a valid method of measuring training load in hockey and can make 

individualized monitoring more accessible to hockey teams, there are several key limitations 

of sRPE, particularly when used without other monitoring methods. Coaches may 

overinterpret the results and athletes may inaccurately report scores, so, despite its validity, 

extreme care must be taken when using sRPE as a method of monitoring training load.   

 

5.2.3 Correlations between Internal and External Training Load Measures 

 Although many published articles have reported both internal and external training 

load in hockey, this study is the first to examine the relationship between internal and 

external training load measures (Lythe, 2008; Boran, 2012; Abbott, 2016; Vescovi, 2016; 

McGuinness et al., 2017).  Previously, the correlation between TRIMP and total distance has 

been shown to be relatively strong in both men’s professional football (r=0.78) and 

international wheelchair rugby (r=0.84) (Scott et al., 2013a; William et al., 2015).  However, 

an even stronger relationship was found in this study, with fTRIMP scores being very 

strongly correlated with total distance (r=0.949).  Internal and external training load are 

distinct constructs, with no linear dose-response relationship expected between the two, as 
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one reports physiological load and the other physical output (Scanlan et al., 2014).  However, 

in this study, internal and external training load were very strongly correlated, indicating that 

90% of the variation in total distance was explained by variation in fTRIMP scores.  

Therefore, although internal and external training load are separate measures, the extremely 

strong correlation (r=0.949) demonstrates that, in female hockey, internal training load, 

measured by fTRIMP, is a very good indicator of external training load, measured by total 

distance.   

 Although not as strong as the relationship between fTRIMP and total distance, there 

were also strong correlations between other measures of internal and external training load.  

Beginning with distances in speed zones, fTRIMP was most strongly correlated with distance 

covered in zone 3 (6.1-11.0 km∙hr-1, r=0.910) and zone 4 (11.1-15.0 km∙hr-1, r=0.898).  

Female TRIMP was not as strongly correlated with zone 5 (15.1-19.0 km∙hr-1, r=0.821), and 

much less so with zone 6 (>19.0 km∙hr-1, r=0.542). From one perspective, the fact that 

fTRIMP was best correlated with zones 3 and 4, rather than zones 5 and 6 may seem to 

indicate that distance covered at moderate speeds has the greatest impact on internal training 

load, rather than distance covered at high speeds.  However, this result is confounded by the 

fact that the majority of total distance was covered in zones 3 and 4, and, as a result, these 

two zones were most closely related to total distance.  Therefore, the increased correlations 

between fTRIMP and zones 3 and 4 were likely due to correlations between zones 3 and 4 

and total distance, so it is important not to overinterpret this result.  In addition to measures of 

distance, the relationship between internal training load and workrate was also considered.  

As workrate is a time-dependent measure and fTRIMP is a cumulative, non-time-dependent 

measure, it follows that the correlation between workrate and fTRIMP was low (r=0.300).  

Similarly, one would expect to find that %MaxHR, another time-dependent measure, was 

more strongly correlated than fTRIMP with workrate (r=0.689), and less strongly correlated 

than fTRIMP with total distance (r=0.430). Therefore, when considering the relationship 

between internal and external training load measures, these results demonstrate the 

importance of comparing like-measurements, either both time-dependent or cumulative. 

Finally, in this study, team TRIMP was slightly more strongly correlated with all measures of 

external training load than iTRIMP.  At first, this result may be counterintuitive since 

iTRIMP is fully individualized, and, as such, is often considered to be a more accurate 

measure of internal training load (Manzi et al., 2009; Malone and Collins, 2016).  However, 

since the external training load measures used were not individualized (speed zones were the 

same for all individuals), it follows that a non-individualized method of measuring internal 
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training load was more strongly correlated with external training load.  Therefore, even 

though iTRIMP may be a more accurate measure of an individual’s physiological response to 

exercise, team TRIMP is a better predictor of external training load.   

 From a practical perspective, the strong correlation between internal and external 

training load measures suggests that little information is lost when using only one form of 

athlete monitoring.  Although heart rate and GPS monitors are becoming more integrated as 

the technology improves, in many cases, monitoring internal and external training load 

requires two distinct devices and software setups.  For example, the Catapult 10 Hz GPS 

units and the Polar Team2 heart rate monitors used in this study operated in isolation, 

requiring completely different equipment to be worn and software to be used.  In fact, the 

internal and external training load data could only be analyzed simultaneous after they were 

separately downloaded into excel files and a Python 3.6 program, written by the researcher, 

was run on those files (Appendices E and F).  Although just an anecdotal example, this 

demonstrates the difficulty of monitoring both internal and external training load.  The 

extremely strong correlation between fTRIMP and total distance (r=0.949) in this study 

suggests that little information will be lost by only using GPS monitoring.  Specifically, for 

teams without the resources or patience to collect both internal and external training load, if 

external training load is collected using GPS, total distance can be used as an accurate 

predictor of internal training load.  Therefore, coaches and analysts could forgo measuring 

internal training load and instead use the linearity of the relationship between total distance 

and fTRIMP to predict internal training load scores.  However, as the somewhat weaker 

correlation between total distance and iTRIMP (r=0.882) demonstrates, total distance is not a 

perfect predictor of internal training load, particularly when considering individual 

differences in the physiological response to exercise. Therefore, although the very strong 

correlation suggests that total distance is a good predictor of fTRIMP scores, it is important to 

remember that physical output and physiological load are distinct and no method of 

measuring external training load will perfectly substitute for measuring internal training load.   

 Overall, the interconnectedness of the various training load measures indicates that 

there are many valid methods of measuring internal and external training load in hockey, 

depending on the resources available and level of accuracy required.   Firstly, the correlations 

between heart-rate based measures indicate that fTRIMP is an accurate predictor of iTRIMP 

and %MaxHR is closely related to fTRIMP.  Therefore, although iTRIMP is the most 

individualized method of measuring internal training load, little information is lost by using 

the fTRIMP algorithm when lab-based fitness testing is not possible.  Additionally, %MaxHR 



 

74 
 

measured over entire sessions is also highly correlated with team TRIMP and can be used as 

an accurate measure of internal training load, particularly if phasing and calculating TRIMP 

scores is not feasible. Furthermore, if measuring both internal and external training load is 

beyond the capabilities of a team, the strong linear correlation between total distance and 

fTRIMP suggests that total distance is an accurate predictor of internal training load.  Finally, 

if no tracking equipment is available, the results of this study suggest that overall sRPE is a 

valid method of measuring training load, as it is very strongly correlated with both internal 

and external training load.  Therefore, the correlations of the various training load measures 

indicate that regardless of the resources of a team, there are valid methods of individual 

athlete monitoring. 

 

5.3 Training Load Measures and Fitness Outcomes 

 

5.3.1 Overall Fitness 

Although there are many valid methods of measuring training load in hockey, not all 

methods are equal when it comes to predicting fitness.  Specifically, unlike other measures of 

training load, team TRIMP, iTRIMP, %MaxHR, distance in zone 5 (15.1-19.0 km∙hr-1), 

distance in zone 6 (15.1-19.0 km∙hr-1), and effindex1 (total distance: iTRIMP) were all 

relatively strongly correlated with fitness, as measured by individual average scores during 

lab-based fitness tests.  It has been suggested that only measures that have an association with 

fitness or performance variables should be used as training load variables (Manzi et al., 2009; 

Thomas, 2011). Therefore, the results of this study would suggest that of all the variables 

considered, team TRIMP, iTRIMP, %MaxHR, distances in zones 5 and 6, and effindex1 are 

the only ones that should be used to monitor training load.  Beginning with external training 

load, the moderate and strong positive correlations between fitness and distance covered in 

zones 5 (r=0.639) and 6 (r=0.842) indicate that the fittest athletes covered the greatest 

distances at high speeds.  Notably, the correlation between fitness and total distance is not 

nearly as strong (r=0.358), suggesting that the amount of high-speed running, particularly 

sprinting (>19 km∙hr-1), matters more than the total distance covered. Similarly, when 

considering individual average 30:15 scores as a measure of fitness, the results were similar, 

with even stronger correlations between fitness and distances covered in zones 5 (r=0.802) 

and 6 (r=0.881), yet still a much smaller correlation with total distance (r=0.431). Therefore, 

although total distance may be a convenient measure of external training load, these 

correlations suggest that high speed running and sprinting distance are far better methods of 
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measuring external load.  This result is likely due to the fact that, within reason, regardless of 

the distance covered, walking and slow running are not demanding enough to substantially 

affect fitness in elite athletes. As this study was observational, rather than experimental, it is 

impossible to determine if increased fitness led to more high speed running or if increased 

high speed running caused improved fitness.  However, regardless of the mechanism, the 

very strong correlation, particularly between zone 6 and 30:15 fitness test scores (r=0.881), 

demonstrates the strong relationship between sprinting and fitness and the importance of 

using this metric, rather than total distance, as a measure of external training load.  

Moving on to internal training load, fTRIMP, iTRIMP, and %MaxHR were 

moderately to strongly correlated with lab-based fitness test scores.  Specifically, the 

correlation of fitness to iTRIMP was the least strong (r=-0.662), followed by fTRIMP (r=-

0.740), and %MaxHR (r=-0.832). One may expect iTRIMP to have been more strongly 

correlated with fitness than team TRIMP or %MaxHR, as iTRIMP is more individualized; 

however, the results showed that just the opposite was the case.  In fact, the least specific and 

sophisticated measure, %MaxHR, was the most strongly correlated with fitness scores, 

providing further evidence in support of %MaxHR as a valid measure of internal training 

load in hockey.  Interestingly, when considering the results from the 30:15 fitness tests, the 

correlations between internal training load and fitness were extremely small (iTRIMP: r=-

0.190; fTRIMP: r=- 0.162; %Max HR: r=-0.310).  However, this may have been due to the 

fact that the 30:15 test is not as sensitive to small differences in fitness, with no credit being 

given for completing part of a level; therefore, less differentiation among athletes’ fitness test 

scores may have led to lower correlations.  Future research on the relationship between heart-

rate based training load measures and fitness will be needed to verify these conclusions.  

In addition to the strength of the correlations, it is important to note that the 

correlations between internal training load and fitness were negative.  Therefore, these 

results, somewhat counterintuitively, indicate that the fittest athletes had the lowest internal 

training loads.  One might expect the fittest athletes to have the highest physiological loads, 

as having increased physiological loads and exercising in higher heart rate zones generally 

increases fitness. However, the relatively strong negative correlations between internal 

training load and fitness shows that the fitter athletes had the lowest physiological loads. It is 

clear from the correlations between fitness and high speed running that even though the fittest 

athletes had lower internal training loads, they were still experiencing the highest physical 

loads.  Therefore, the fitter athletes in this study had lower physiological loads not because of 

a decreased physical output but instead because their fitness level allowed them to sustain 
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higher physical loads than other athletes with lower physiological demands.  In fact, the 

strong positive correlation of effindex1 and fitness (r=0.785) provides clear evidence for this 

conclusion, demonstrating that the fitter athletes were able to work more efficiently, 

performing a greater physical output with lower physiological demands than less fit athletes. 

Overall, fitness test scores were positively correlated with high speed running and sprinting 

distances, as fitter athletes performed a larger high-speed physical output than less fit 

athletes, while negatively correlated with measures of internal training load, as the increased 

efficiency of the fitter athletes meant that they were able to perform their elevated physical 

output with a lower physiological response.    

 

5.3.1 Fitness Changes 

When percent change in fitness is considered instead of absolute fitness test scores, 

there were only moderate correlations with three measures of training load, iTRIMP and 

distances covered in zones 5 and 6.  Lab-based fitness test scores, rather than 30:15 scores, 

were used to determine percent fitness change, as the lack of sensitivity in 30:15 scores meant 

that many athletes demonstrated no change in 30:15 scores, despite there being notable 

differences in lab-based scores.  Specifically, submaximal parameters, as measured during the 

lab test, have been shown to be more sensitive to training-induced changes than maximal 

measures (Impellizzeri, Rampinini and Marcora, 2005). Although not as strong as the 

correlations with absolute fitness test scores, iTRIMP (r=0.597) and distance covered in 

zones 5 (r=-0.622) and 6 (r=-0.663) were moderately correlated with percent change in 

fitness. Examining just the strength of these correlations would suggest that these three 

measures of training load are the best for predicting fitness change.  However, the 

correlations between fitness changes and distances covered in zones 5 and 6 were negative. 

This negative correlation is somewhat counterintuitive, as it suggests that athletes who do 

more high speed running and sprinting will have smaller fitness improvements over the 

course of the season than athletes who do less high speed running and sprinting.  However, 

this result is confounded by the aforementioned correlations indicating that the fittest athletes 

performed the most high-speed running and sprinting (zone 5: r=0.639; zone 6: r=0.842).  In 

fact, the fittest athletes had the smallest improvements in fitness over the course of the study, 

and there was a moderately strong negative correlation between lab-based fitness test scores 

at the start of the study and percent fitness change (r=-0.655).  Thus, athletes’ fitness 

improvements were related to their fitness level at the start of the study, with fitter athletes 
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having smaller fitness improvements than less fit athletes, and this contributed to the negative 

correlations between fitness change and distances covered in zones 5 and 6. 

Examining all the correlations together, it becomes apparent that the hockey season 

was not physiologically demanding enough for the fitter athletes to allow them to improve 

their fitness at the same rate as the less fit athletes.  Although performing a larger physical 

output in terms of high speed running and sprinting than less fit athletes, fitter athletes also 

had lower physiological loads, demonstrated by the strong negative correlation between 

internal training load and fitness (iTRIMP: r=-0.662; fTRIMP: r=-0.740 %Max HR: r=-

0.832).  As iTRIMP was moderately strongly correlated with fitness improvements (r=0.597), 

the results of this study suggest that the lower internal training load in fitter athletes was 

associated with their smaller fitness changes over the courses of the study. Therefore, through 

the exact same matches and training which elicited large physiological loads and fitness 

improvements in the less fit athletes, the fitter athletes were not receiving high enough 

physiological loads to result in fitness improvements, despite their large physical outputs.  

Overall, this meant that fitness levels became more similar among the team as the season 

progressed, with a 16.5% decrease in the standard deviation of lab-based fitness test scores 

from pre-testing to post-testing.  From a practical perspective, this result can be viewed as a 

success, as the goal of most coaches is to improve the fitness of their least-fit players to 

ensure that all athletes are adequately prepared for competition.  However, on the other hand, 

these results also suggest that the physiological demands of training and competition were not 

high enough for the fittest athletes, and additional training would be required to ensure that 

these athletes were able to continue to improve their fitness rather than maintaining or 

dropping in fitness as the season progresses.  This result provides further evidence in support 

of individualized athlete monitoring, since, despite completing an identical training and 

match protocol, athletes responded very differently from a fitness perspective.  

In terms of individualized monitoring, the results of this study suggest that iTRIMP is 

the most effective method of monitoring training load to predict fitness change.  Beginning 

with differential sRPE, there was almost no correlation between any of the sRPE scores and 

percent fitness changes (respiratory sRPE: r=0.103; upper body sRPE: r=0.030; lower body 

sRPE: r=0.017; overall sRPE: r=0.160).  Although overall sRPE was relatively strongly 

correlated with measures of internal (fTRIMP: r=0.927) and external training load (total 

distance: r=0.926), when considered on its own, it provides little to no information on fitness 

change.  Therefore, care should be taken when using sRPE, and results should be interpreted 

solely from a training load perspective, not as a predictor of fitness change.  Moving on to 
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external training load, although there were relatively strong correlations between percent 

fitness change and distance covered in zones 5 (r=-0.622) and 6 (r=-0.663), these correlations 

were negative and confounded by the strong correlation between athlete fitness and distance 

covered in zones 5 (r=0.639) and 6 (r=0.842).  Thus, future research will be needed on the 

relationship between high speed running and fitness changes.  Finally, as the only training 

load measure that was moderately positively correlated with percent change in fitness 

(r=0.597), iTRIMP was the best training load measure for predicting fitness change. In terms 

of fitness change, it is physiological load, not physical output that matters.  For example, 

despite the physical output being the same, jogging one kilometer per day will have very 

different impacts on the fitness of a previously inactive individual compared to an elite 

athlete.  Therefore, it follows that an internal training load measure will be the best predictor 

of fitness change.   Additionally, as iTRIMP is the most individualized, it is the best suited 

internal training load measure to predict fitness change.  The correlation between iTRIMP 

and fitness change is only moderate (r=0.597); however, a strong correlation cannot be 

expected as many outside factors, such as nutrition, lifestyle, and sleep, will also impact 

fitness changes.  Athletes are only monitored for a few hours each week, and actions taken 

outside of this time can have a large impact on percent fitness change.  Thus, given the 

potential impact of outside factors, the moderate correlation (r=0.597) indicates that iTRIMP 

is a very good training load measure for predicting fitness change.   

Overall, the results of this study demonstrate the interconnectedness of the various 

training load measures, but also the distinct differences in the measures when it comes to 

predicting fitness and fitness change.  Therefore, although there are multiple valid methods of 

measuring training load, it is important to select an appropriate measure, particularly if the 

aim is to predict fitness or fitness changes.  Specifically, if one is interested in the relationship 

with overall fitness, all measures of internal training load as well as distances covered in 

zones 5 and 6 are good training load measures.  However, if the aim is specifically to predict 

fitness changes, the results of this study suggest that iTRIMP should be used to measure 

internal training load.  Although still valid methods of measuring load, other measures such 

as differential sRPE, total distance, workrate, and distance covered in lower speed zones were 

very weakly correlated with fitness outcomes, so care should be taken not to overinterpret 

these results as predictors of fitness or fitness change.  Therefore, even though there were 

strong correlations between the various methods of measuring training load, there were 

notable differences in the relationships between training load measures and fitness.    
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Chapter 6: Discussion – Physical and Physiological Demands of Female British 

University Hockey 

 

6.1 Demands of Female British University Hockey Competition 

 This study was the first to summarize the demands of female British university 

hockey competition. The results, detailed in Table 4.7, demonstrate that although there are 

some similarities with other women’s hockey populations previously studied, the demands of 

female British university hockey are unique.  

 

6.1.1 Playing Minutes 

 The average number of minutes played by participants in this study closely mirrors 

the minutes reported in other hockey populations.  This is largely due to the fact that the 

game length and roster size in hockey is predetermined by the rules of hockey, as well as the 

regulations of the league or competition.  For example, in the two leagues in which the 

participants of this study compete, England Hockey’s National League North and British 

Universities & Colleges Sport’s North A, competition consists of two 35-minute halves with 

roster limits of 16 athletes per match.  Therefore, excluding the goalkeeper, there are 700 

minutes of outfield play (10 athletes on the pitch at a time for 70 minutes) split among 15 

athletes, resulting in a predicted average of 46.67 minutes.  This predicted average is very 

close to the actual average of 46.95 minutes, with the slight difference likely due to the fact 

that not all fifteen outfield athletes were monitored during each game.   

 Four other studies have reported average minutes played during competition, with the 

results of this study falling in the middle of those previously published. The 47-minute 

average playing time in this study was notably higher than the 40.3 minutes previously 

published by Vescovi and 44 ± 7 minutes reported by McGuinness et al. (Vescovi, 2016; 

McGuinness et al., 2017).  However, the Vescovi study considered U21 athletes, and most 

young adult tournaments permit squads of at least 18 rather than 16 (Vescovi, 2016).  

Similarly, the McGuinness et al. study included data from international test series, which 

usually have roster sizes of 18, so the larger roster size likely resulted in decreased minutes 

(McGuinness et al., 2017).  On the other hand, the results of this study are comparable to the 

previously published results of 46.7 minutes (Abbott, 2016) and 48±4 minutes (Macutkiewicz 

and Sunderland, 2011).  These studies were both performed during international competition 

and included matches just before and during the 2014 World Cup and matches in the buildup 
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to the 2008 Olympics (Macutkiewicz and Sunderland, 2011; Abbott, 2016).  As the roster 

limits for both the World Cup and the Olympics are 16 athletes, the squad size used during 

these matches was most likely 16 (Abbott, 2016).  Therefore, in terms of average playing 

minutes, the results of this study are comparable to other hockey populations with roster sizes 

of 16 but not those with rosters of 18 athletes.  

As average minutes is largely determined by game length and roster size, the standard 

deviation of playing minutes provides more information on the distribution of minutes across 

athletes.  Specifically, the standard deviation of 10.2 minutes in this study was notably higher 

than the standard deviations of 4 minutes (Macutkiewicz and Sunderland, 2011) and 7 

minutes (McGuinness et al., 2017) previously reported in international hockey.  This 

indicates that although the average number of minutes played was comparable to other 

female hockey populations with roster sizes of 16, those minutes were more unequally 

distributed across the athletes.  In other words, rather than all athletes playing for a similar 

number of minutes, there was a greater disparity in the number of minutes played.  

Specifically, the minimum number of minutes played by an athlete in this study was 25.6 

minutes and the maximum playing time was the entire match, a range of 36.6%-100% of total 

minutes. This large spread of playing minutes is likely due to the nature of university hockey, 

which involves a high rate of athlete turnover from season to season as athletes join or 

graduate from the university.  One would expect a larger range of skill and fitness levels in a 

university side than an international team, where athletes are carefully selected and are often 

on the team for far longer than the 3 years that students usually play for their university.  

Therefore, the larger standard deviation of playing minutes may be caused by the fact that 

there is a larger disparity in skill and fitness levels among athletes, leading coaches to give 

more minutes to the strongest players and fewer to those not as far along in their 

development.  Regardless of the cause, in terms of average minutes played, female British 

university hockey is similar to other hockey populations involving 16 athlete rosters; 

however, there is a larger standard deviation in minutes played, perhaps due to a greater 

disparity in skill level compared to international teams.  

 

6.1.2 Rating of Perceived Exertion (RPE) 

 The results of this study provide novel insight on RPE scores in hockey, as this study 

is the first to report RPE scores, more specifically differential sRPE, for hockey competition.  

To date, the only study that has considered sRPE in hockey investigated the correlation 

between heart rate and sRPE in youth hockey, with all measurements taking place during 



 

81 
 

training, not competition, and only correlations, not absolute results, being reported 

(Scantlebury et al., 2017a).  Therefore, there are no other hockey populations with which to 

compare the sRPE results of this study.  However, considering just this study, it is clear that 

mean respiratory and overall sRPE scores are almost identical, 301±93 and 300±87, with the 

mean lower body sRPE score being just slightly lower at 293±92. This result indicates that 

athletes perceive overall exertion during competition to be very similar to respiratory and 

lower body exertion, suggesting that these mechanisms most contribute to fatigue.  Similarly, 

the much lower score for upper body exertion, 140±73, indicates that hockey competition is 

less than half as exerting on the upper body than on the lower body or respiratory systems.  

Although hockey athletes do use their upper body to control the movement of their stick, 

smaller upper body sRPE scores are to be expected as hockey primarily consists of running, 

with individual athletes spending little time with the ball in their possession.   

 In addition to considering the average values for sRPE, noting the very large standard 

deviations indicates that there was a large spread and little consensus on sRPE values in 

competition.  There are several possible explanations for this occurrence.  Firstly, since sRPE 

is calculated by multiplying the reported RPE score by time, and since, as discussed in the 

previous section, there was a large range of minutes played during matches, the variance in 

sRPE scores may have been due to variance in playing time.  Additionally, RPE scores were 

collected from 10 participants, and, although all athletes were provided with the same rating 

scale, “hard” or “very hard” may have had a different meaning to each athlete.  Therefore, 

some of the variation may have been caused by individual differences in the interpretation of 

the rating scale. Overall, the results of this study suggest that lower body and respiratory 

exertion levels are similar and comparable to the level of overall exertion experienced during 

hockey competition, but perceived exertion levels vary greatly.  

 

6.1.3 Heart Rate 

 Average percentage of maximum heart rate (%MaxHR) values for female British 

university athletes were comparable to those of other athletes similar in age to the participants 

in this study, but higher than those in slightly older, adult hockey populations.  Specifically, 

the average on-field %MaxHR of 88.3% ± 3.1% was only slightly higher than the published 

values of 87.4% ± 3.5%  and 87% ± 4%,  measured in US university hockey athletes and 

Canadian U21 athletes, respectively (Sell and Ledesma, 2016; Vescovi, 2016).  Thus, the 

average %MaxHR of athletes during female British university hockey competition appears to 

be comparable in both magnitude and spread (given the similar standard deviations) to other 
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populations of university-aged athletes (18-22).  On the other hand, athletes in international 

hockey competition, where average age was 24 ± 5 years, have been reported to have lower 

average heart rates of 85% ± 5% and 85.5% ± 2.9% in female and male populations, 

respectively (Lythe, 2008; McGuinness et al., 2017). These results are somewhat 

counterintuitive as one might expect the intensity, and subsequently the average heart rates, 

to be higher in international hockey than in younger hockey populations.  However, the 

increased heart rates could be caused by lower levels of physical fitness and decreased 

tactical expertise in younger athletes. Regardless of the reason, the results of this study 

provide further evidence in support of slightly higher mean %MaxHR in university-aged 

hockey competition compared to adult international hockey.  

 In terms of TRIMP, no other study has reported Stagno’s team TRIMP in a female 

hockey population, nor iTRIMP in any hockey population. As the units of TRIMP are 

arbitrary, the TRIMP scores themselves have little meaning unless there are benchmarks for 

comparison.  Therefore, although the results of this study indicate an average iTRIMP score 

of 199 ± 63 and an average fTRIMP score of 223 ± 28, more studies will be needed to 

provide context to these findings.  To date, the only study considering TRIMP in a female 

hockey competition was the Vescovi study on Canadian junior international athletes 

(Vescovi, 2016).  However, in this study, the weights from the Stagno study were utilized, 

but the zones cutoffs were modified, making an accurate comparison impossible (Vescovi, 

2016).  Considering men’s hockey, as part of the study outlining the Stagno TRIMP 

algorithm, Stagno et al. reported an average TRIMP score of 355 ± 60 during competition 

(Stagno, Thatcher and Van Someren, 2007). Clearly this value is much higher than any of the 

TRIMP scores reported in this study.  However, it is important to consider that the 355 ± 60  

was calculated from an entire match, whereas the data presented in Table 4.7 represent only 

the time that athletes were on the pitch (Stagno, Thatcher and Van Someren, 2007).  

Removing the phasing from the data in this study and instead considering competition 

sessions as a whole, including warm-ups and time on the bench, gives much higher TRIMP 

scores, as presented in Table 4.12. However, even using the fTRIMP algorithm to adjust for 

the different physiological response in female athletes and measuring over entire competition 

sessions, the male athletes in Stagno et al.’s study still had a notably higher (355 ± 60) 

TRIMP score than the female athletes in this study (309 ± 63) (Stagno, Thatcher and Van 

Someren, 2007).  These results indicate that the physiological demands of men’s hockey may 

be greater than those of female hockey; although, more research measuring TRIMP in both 

male and female hockey populations will be needed to verify this conclusion. 
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 In addition to comparing the TRIMP results of this study with other hockey 

populations, it is important to consider comparisons of the TRIMP scores recorded within this 

study.  Firstly, in alignment with the results discussed in the previous chapter on the 

relationship between the fTRIMP algorithm and Stagno’s algorithm, the ratio between the 

fTRIMP and Stagno’s TRIMP scores is approximately 1.3, regardless of what segment of the 

game is considered.  Furthermore, comparing the TRIMP scores for time-on-pitch only 

versus the entire game, including bench time, indicates that there is a significant load 

accumulated while athletes are on the bench.  This result is in contrast with findings for non-

time-dependent measures of external training load, such as total distance, which have been 

shown to not be significantly different (less than 5 m) when a full game versus a time-on-

pitch analysis is utilized (White and MacFarlane, 2013). However, given that the body’s 

physiological response to exercise does not cease as soon as the physical demand is over, it 

would follow that including time on the bench would lead to higher scores for cumulative 

internal training load variables.  In other words, since an athlete’s heart rates will still be 

elevated when the athlete comes off the pitch, it follows that including the entire match rather 

than just time-on-pitch will lead to higher TRIMP scores.  Thus, although looking at only 

time-on-pitch is important for time-dependent measures such as average heart rate which 

could be skewed by resting time on the bench, in order to obtain a representative TRIMP 

score for the entire cumulative load of a game, it is important to include time on the bench in 

the analysis.   

 

6.1.4 Global Positioning System Parameters 

 Moving on to external training load, the demands of female British university hockey 

were similar to the demands of other female international hockey populations in terms of 

volume, but not workrate.  Considering total distance covered, the average distance of 5418 ± 

888m recorded in this study was comparable to the 5540±521m and 5541±1144m reported in 

previous studies measured across 39 and 13 international matches, respectively 

(Macutkiewicz and Sunderland, 2011; McGuinness et al., 2017). Thus, these results suggest 

that the total distance covered in female British university hockey is similar to the distance 

covered in female international competition.  Interestingly, although comparable to 

international competition, the average distance recorded in this study was notably lower than 

distances in other national level female competitions.  Specifically, mean distances of 6188 ± 

781m, 6600m, and 6493m were measured in national level hockey in Ireland, Australia, and 

the US, respectively  (Gabbett, 2010; Boran, 2012; Vescovi and Frayne, 2015). From one 
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perspective, this result is counterintuitive, as one might expect intensity and total distance to 

be greatest in international hockey competition.  However, international hockey is more 

tactically advanced, so international teams’ ability to maintain possession for longer periods 

may result in shorter total running distances, with the running that is occurring taking place at 

higher intensities. However, without considering the distances covered in various speed 

zones, it is not possible to know the paces at which distance is covered.  

 Breaking down total distance into distance covered in speed zones further suggests 

that the external demands of female British university hockey mirror those of female 

international competition.  Specifically, as demonstrated in Table 6.1 below, the distance 

covered by participants in this study very closely mirrors the distances measured during a 

2010 study of 25 female hockey athletes over the course of 13 international matches 

(Macutkiewicz and Sunderland, 2011).  Specifically, the similarity of distances across all 

speed zones (apart from zone 1 which was not reported) demonstrates that not only were the 

athletes in this study covering a similar total distance to international athletes, but also that 

athletes were covering that distance at similar paces to those measured during international 

play (Macutkiewicz and Sunderland, 2011).  Unfortunately, further comparison with other 

hockey populations is stymied by the lack of consistency in the speed zones used, 

demonstrating the need for a consensus on speed zone definitions in future research.   

 
Table 6.1: Distances in Speed Zones in British University and International Female Hockey (m) 

 0-0.6 .7-6.0 6.1-11.0 11.1-15.0 15.1-19.0 >19.0 

British 

University 54 ± 44 1415 ± 416 1772 ± 403 1306 ± 218 642 ± 154 229 ± 134 

International  -- 1653 ± 547 1780 ± 420 1226 ± 249 620 ± 172 232 ± 96 

 

  In addition to considering the similarities with other hockey populations, it is also 

important to examine the relationships between the individual speed zones within this study.  

Although, like most field-based team sports, the demands of hockey are intermittent, hockey 

is considered to be a high intensity game (Gabbett, 2010; Polley et al., 2015; McGuinness et 

al., 2017). With participants in this study averaging 88% of their maximum heart rate during 

competition, one might expect athletes to cover the majority of their total distance at 

relatively high speeds.  However, athletes, on average, covered 59.8% of their total distance 

at speeds less than 11 km∙hr-1, which is essentially walking or jogging.  In fact, only 4.2% of 

total distance was covered at speeds greater than 19 km∙hr-1 (sprinting) and only 11.8% at 15-
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19 km∙hr-1 (fast running).  Thus, for a physiologically demanding game, the physical output 

of players, strictly in terms of speed, is relatively low.  However, the semi-crouched position 

required for most hockey skills has been shown to increase heart rate and energy expenditure 

(Reilly and Seaton, 1990).  Additionally, the need for explosive dynamic movement and the 

quick changes of speed and direction required are more physiological taxing than measures of 

speed or distance may suggest.  

Also notable when considering the distance covered in speed zones are the relatively 

large standard deviation values, particularly for distance covered at speeds above 19 km∙hr-1.  

This indicates that the actual distance covered at top speeds varied greatly among athletes.  

Specifically, distance covered over 19 km∙hr-1 during competition ranged from 58-780m, 

showing that some athletes sprinted far more than others.  This disparity in sprinting distance 

is likely due in part to the differing demands of the various playing positions, which has been 

shown to significantly affect high speed running distance in national and international hockey 

populations (Gabbett, 2010; McGuinness et al., 2017).  However, more research will be 

needed to assess the positional impact on running speeds in female British university hockey.   

 As the amount of time that a hockey athlete spends on the pitch during competition 

varies, it is important to consider a relative, time-dependent measure of external training load 

in addition to the absolute measures.  Considering workrate in meters per minute allows for 

comparisons across athletes who may have played for different minutes in a match.  In terms 

of workrate, the results of this study suggest that the demands of female British university 

hockey are greater than those of similar-aged female hockey populations, but not as high as 

women’s international competition.  Specifically, studies on U21 Canadian and US university 

hockey athletes (age 18-22), reported workrates of 112 ± 6 m∙min-1 and 106 m∙min-1, notably 

lower than the 117±10 m∙min-1 measured in this study (Vescovi and Frayne, 2015; Vescovi, 

2016).  However, studies on female international hockey populations have reported average 

workrates of 120 ± 6 m∙min-1 and 125 ± 23 m∙min-1  (Abbott, 2016; McGuinness et al., 2017).  

At first this lower workrate in British university hockey may seem contradictory to the 

aforementioned results on the similarly of total distance and distance in speed zones to 

international hockey. However, the variation in workrate is due to differences in average 

minutes played rather than differences in cumulative external training load (McGuinness et 

al., 2017).  For example, in the McGuinness et al. study, total distance covered over the entire 

match was only 122m higher than in this study, a difference of 2%; however, players in the 

McGuinness study averaged three minutes less playing time, resulting in their notably higher 

workrates (McGuinness et al., 2017).  As discussed in above, this difference in minutes 
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played was likely due to larger roster sizes.  Overall, these results indicate that although the 

absolute external training load of female British university hockey mirrors that of female 

international hockey, both in terms of total distance and distance in speed zones, this work 

was performed over a longer average playing time, resulting in a lower average workrate.  

 

6.1.6 Efficiency Index (Effindex) 

This study was the first to investigate efficiency index in hockey and to monitor 

changes in efficiency over the course of competition.  The average value for effindex2, the 

ratio of workrate to %MaxHR, was 1.33.  This value is consistent with findings in men’s 

football, where two studies have reported effindex2 to be 1.3 and 1.4 (Arrones et al., 2014; 

Torreno et al., 2016). Therefore, these results indicate that in competition, the efficiency of 

male football players is comparable to that of female hockey athletes; however more studies 

will be needed to confirm these findings.  Values for effindex1, the ratio of total distance to 

iTRIMP, have never been measured and reported in a competition setting so, in the absence 

of other data, the mean value of 29.0 found in this study has little meaning.   

 While considering average effindex provides information on overall efficiency during 

competition, comparing effindex across halves provides more information on how efficiency 

changes throughout a match.  Specifically, average effindex1 decreased from 1.35 in the first 

half to 1.31 in the second half, a difference of about 3%, suggesting that athletes became less 

efficient over the course of competition. Although this is a relatively small difference, it does 

still suggest that athletes were not able to provide the same external output for a given 

physiological load as the game progressed. There are several possible causes for this 

decreased efficiency.  The first and most obvious cause is that athletes became fatigued over 

the course of a match, and this increasing fatigue resulted in decreased efficiency. Increased 

fatigue may have been due to inappropriate substitution strategies that either had athletes on 

the pitch for too long during each individual stint, causing decreasing efficiency over the 

course of each stint, or provided athletes with inadequate recovery time between stints, 

causing efficiency to decrease from stint to stint.  It is also possible that substitution strategies 

were not the problem and that the demands of hockey in this population are such that athletes 

will always become more fatigued and lose efficiency over the course of a match.  In addition 

to fatigue, another possible cause of the decreased efficiency in the second half is that athletes 

were not adequately primed and physically prepared after halftime.  In contrast to the first 

half, where athletes completed warm-up exercises up to about 2 minutes before the start of 

play, athletes were often stationary for most of the 7-10 minutes during halftime.  As a result, 
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athletes began the second half after a period of inactivity and, therefore, may have been less 

efficient, particularly in the beginning of the second half when they were not appropriately 

warmed up and primed for competition.  Re-warmup and activation techniques at the end of 

halftime may help to alleviate this issue.  Finally, the decrease in efficiency in the second half 

of matches may be unrelated to fatigue or halftime activation and could instead be caused by 

increased psychological pressure and stress influencing physiology as the match progresses.  

Particularly in close games, as the game nears completion, there is increased pressure on 

athletes either to secure their lead or push ahead to win. This increased stress may cause 

athletes to have elevated heart rates, thus decreasing their efficiency.  Overall, without more 

research, it is not possible to know the exact cause of the decreased efficiency in the second 

half; however, fatigue, inadequate halftime activation, and psychological stress may all be 

contributing factors.  

 In summary, the results of this study indicate that although there are some similarities 

with other hockey populations, the demands of female British university hockey competition 

are unique.  Specifically, average %MaxHR was found to be comparable to that measured in 

other young adult hockey populations but higher than heart rates recorded in international 

hockey.  In terms of external training load, total distance and distance in speed zones were 

very similar to distances measured in international hockey populations. However, athletes in 

this study played more minutes per match, resulting in lower workrates.  In addition, 

differential sRPEs indicated that lower body exertion and respiratory exertion during match 

play were comparable and contributed most to overall exertion.  Finally, effindex scores 

suggests that player efficiency in women’s hockey is comparable to player efficiency in 

men’s football, and efficiency decreases from the first half to the second half during 

competition.   

 

6.2 Overall Season Demands 

 Considering training in addition to competition provides information on the overall 

physical and physiological demands of a hockey season.  In the female British university 

population studied, each week consisted of two training sessions as well as two matches, and 

the season was made up of two halves, each eight weeks long. Athletes also participated in a 

six-week preseason prior to the first half of the season and a one-week preseason prior to the 

second half of the season; however, these pre-season periods were not fully monitored and 

were not included in this analysis.  Although many studies have examined the demands of 

hockey competition, only one other study has considered the demands of a hockey season as 
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a whole (Stagno, Thatcher and Van Someren, 2007).  In fact, almost all of the studies that 

have monitored both training and competition have been performed on international athletes, 

who have no regular in-season and out-of-season periods (Gabbett, 2010; Polglaze et al., 

2015; White and Macfarlane, 2015a; White and Macfarlane, 2015b).  The one study that did 

consider season loads reported a mean weekly TRIMP score of 826 ± 123 for male athletes 

competing in the English Premier League (Stagno, Thatcher and Van Someren, 2007). This 

result is slightly higher than the average weekly Stagno TRIMP score of 695 ± 86 recorded 

for the athletes in this study.  However, as discussed in the previous chapter, the Stagno 

TRIMP algorithm underestimates training load in female populations, so the fTRIMP score 

of 902 ± 110 provides a more accurate value for comparison to Stagno TRIMP in male 

populations.  Therefore, these results suggest that the average weekly physiological demands 

of female British university hockey are somewhat greater than those of the men’s English 

premier league.  Although one might expect the weekly training load associated with playing 

in the premier league to be greater than that of university athletes playing in the national 

league (one level below the premier league), university athletes play an additional match per 

week (Stagno, Thatcher and Van Someren, 2007).  As Stagno et al. showed that TRIMP 

scores were significantly higher in competition than in training (p<0.001), it follows that by 

playing an additional match per week, university athletes will accumulate a higher weekly 

internal training load (Stagno, Thatcher and Van Someren, 2007).  Unfortunately, season 

external training load was not considered during the Stagno et al. study, nor in any other 

study to date, so it is not possible to determine how the average weekly external training load 

measured in this study compares to loads in other hockey populations (Stagno, Thatcher and 

Van Someren, 2007).   

 

6.2.1 Mean Weekly Training Load 

 Although comparison with other hockey populations is not possible, considering 

external training load measures in this study provides insights on the intensity and demands 

of the British university hockey season.  Beginning with total distance, athletes covered, on 

average, 23.44 km per week which, over the 16-week season, is a total of 375 km.  However, 

very little of this running was performed at top speeds, with only 0.71 km (3%) covered each 

week at speeds over 19 km∙hr-1 and 2.64 km (11%) at speeds greater than 15 km∙hr-1. The 

majority of the total distance, 16.63 km (71%), was covered at speeds of 11 km∙hr-1 or less, 

with 9.72 km (41%) covered at speeds of 6 km∙hr-1 or less, which is essentially walking.  

Therefore, although hockey is considered to be a high intensity sport, much of the athletes’ 
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overall season load was actually performed at relatively low speeds.  However, given that the 

data here represent cumulative loads over the course of entire training sessions and matches, 

these values include walking and jogging performed while warming up, collecting balls, in-

between drills, on the sideline of a match, or during half-time.  When this in-between time is 

phased-out and only active time either on the pitch or in a training drill is considered, the 

average weekly distance covered at 6 km∙hr-1 or less drops from 9.72 km down to 4.28 km, 

while, as a comparison, total distance covered at speeds greater than 19 km∙hr-1 only drops 

0.10 km. Therefore, although there is still a reasonably large distance covered at low speeds, 

when only active time is included, this distance is much lower than the unphased cumulative 

season loads would suggest.   

 In addition to external training load, considering minutes played and sRPE also 

provides information on the overall demands of a hockey season.  In terms of timing, athletes 

spent 396.6 ± 15.8 minutes, just over six and a half hours, in training and competition each 

week.  However, of these 396.6±15.8 minutes only 134.5 ± 18.4 minutes were spent either on 

the pitch during competition or in active, small-sided-game type drills in training.  Therefore, 

although athletes spent over six and a half hours on the pitch each week, only one-third of 

this time was active.  This result suggests that if athletes or coaches would like to save time 

and decrease the amount of time that athletes are on the pitch, it is possible to do so without 

decreasing active minutes.  However, it is also important to note that although there is a lot of 

non-active time, this time includes warm-ups, halftime, tactical instruction between drills, 

and time spent in stationary drills, such as penalty corner practice. Finally, moving on to 

sRPE, the trend of sRPE scores for an average week mirrors that of sRPEs on match days.  

Specifically, lower body, respiratory, and overall sRPE scores are all very similar, 796 ± 149, 

817 ± 154, and 813 ± 143, respectively, indicating that the level of respiratory and lower 

body exertion over the course of a hockey season are comparable to overall levels of exertion.  

Furthermore, the mean upper body sRPE score, 400 ± 158, is about half that of lower body, 

respiratory, and overall scores, indicating that athletes find a hockey season to be about half 

as exerting on the upper body than on the lower body or respiratory system.  

 

6.2.2 Variation in Individual Weekly Load 

 Up to this point, season load has only been discussed in terms of mean values across 

all athletes in the study; however, it is also important to consider the variation of average 

weekly load in individual participants.  Specifically, the relatively large standard deviation 

values and ranges for many of the training load measures indicate that although all 
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participants in this study were members of the same team and were monitored during the 

same matches and training sessions, the actual load performed varied significantly between 

athletes.  For example, average weekly fTRIMP score calculated using the new female 

algorithm ranged from 614-1057.  Therefore, the participant with the highest fTRIMP value 

averaged a score 172% higher than the individual with the lowest fTRIMP score.  Over the 

course of the 16-week season, this weekly variation in TRIMP results in a massive difference 

in the physiological load on athletes.  As the heart rate versus blood lactate curve varies in 

individuals, this large range of TRIMP scores may appear to be due to individual variation in 

the physiological response to exercise.  However, considering iTRIMP scores, which 

completely control for the individual differences in heart rate versus blood lactate curves, the 

range of scores is even larger, 448-1105.  Additionally, average percent of maximum heart 

rate during time-on-pitch or time spent in active training drills varies from 81.5% to 90.5%, 

further suggesting that the actually physiological workload differs greatly in individual 

athletes. Finally, sRPE scores are also notably varied with average weekly lower body, upper 

body, and respiratory sRPE ranging from 561-1016, 130-702, and 573-1008, respectively.  

However, as individuals may have had different interpretations of the RPE scale that was 

provided, it is difficult to determine if this range is due to variation in actual physiological 

load or in individual interpretations of the exertion scale rankings.  

In addition to the range in physiological load, there is also a large variation in the 

intensity of the physical output performed by athletes in this study. The average weekly total 

distance covered was relatively similar across all athletes with a range of only 21.61-

24.98km.  However, weekly average distance covered at speeds greater than 19 km∙hr-1, 

essentially sprinting, varied from 456m to 1209m.  Therefore, the athlete who sprinted the 

most sprinted over two and a half times as much as the athlete who sprinted the least.  Over 

the course of the 16-week season this amounts to a difference of 12.0 km covered at speeds 

greater than 19 km∙hr-1.  In addition, average workrate while on the pitch in matches or in 

active drills ranges from 96.2 m∙min-1 to 119.9 m∙min-1. Although some of this variation will 

be related to the number of minutes played, the average difference of 23.7m covered every 

minute further demonstrates the variation in the intensity of physical output among athletes.  

Finally, average effindex1, the ratio of total distance to iTRIMP, ranges from 20.6 to 44.8 for 

athletes in this study.  This large range could be due to differences in the intensity of physical 

output, as previously discussed, with some athletes covering distances at much lower speeds 

so not eliciting the same physiological response as other athletes, or could be linked to 

differences in fitness, with fitter athletes able to perform the same external load while 
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eliciting a lower physiological response. Overall, these results demonstrate that athletes on 

the same team, participating in the same trainings and matches, do not necessarily receive a 

similar physical or physiological training load.  

There are several factors that likely contributed to the variation in individual training 

load over the course of the season.  Firstly, several studies have shown that playing position 

results in significant differences in internal and external training load during hockey 

competition (Gabbett, 2010; Jennings et al., 2012a; Boyd, Ball and Aughey, 2013; Vescovi 

and Frayne, 2015; Abbott, 2016; McGuinness et al., 2017).  For example, workrate has been 

shown to be significantly higher in midfielders and forwards than in defenders (p<0.05) 

(Boyd, Ball and Aughey, 2013; Abbott, 2016; McGuinness et al., 2017), and time spent 

above 85% of maximum heart rate was found to be significantly higher in defenders than in 

midfielders or forwards (p<0.001) (McGuinness et al., 2017). Additionally, midfielders have 

been repeatedly shown to cover greater distances at high speeds than either defenders or 

forwards (Gabbett, 2010; Jennings et al., 2012a; Vescovi and Frayne, 2015; McGuinness et 

al., 2017).  Therefore, the variable demands of playing positions likely contributed to the 

large range of average weekly loads.  In addition to playing position, another possible 

explanation for the large range of training load values is a disparity in effort levels.  As the 

large range of sRPE scores would suggest, some athletes may have exerted themselves more 

in training and matches, working harder to attack and defend on the field and, as such, 

covered greater distances at high intensities and had higher internal training load scores. 

Finally, the variance in athlete fitness levels likely contributed to the large range of training 

load scores. As discussed in the previous chapter, fitness scores were strongly correlated with 

distances covered in zones 5 (r=0.639) and 6 (r=0.842) and effindex1 (r=0.769) suggesting 

that the range of fitness levels contributed to the spread of training load scores.   

Regardless of the cause, the large range of training load scores indicates that hockey 

athletes who participate in the same trainings and matches do not always receive comparable 

training loads.  This result provides clear evidence in support of individualized monitoring to 

ensure proper training doses are met.  Without individualized monitoring, it would be 

impossible to determine the quantity of work each athlete performed, causing some athletes 

to overtrain and others to undertrain, all while completing the exact same sessions.  

Individualized monitoring, whether of internal or external training load, allows coaches and 

sports scientists to develop individualized training protocols, providing rest to some athletes 

while prescribing extra sessions to others, and this has been shown to improve fitness, 

prevent injuries, and improve competition performance in team-sport athletes (Foster et al., 
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2001; Liu et al., 2013; Kevin and James, 2015; Mara et al., 2015; Bourdon, 2017).  As the 

sixteen-week hockey season that British university athletes complete is relatively long, even 

small variations in average weekly load results in sizable differences in overall load by the 

end of the season.  As previously discussed, distances covered in zones 5 (r=0.639) and 6 

(r=0.842) were correlated with fitness test scores, and iTRIMP was moderately correlated 

with percent fitness change (r=0.597).  Therefore, careful individualized monitoring over the 

course of the season is important to control for variation in training load as it occurs to help 

ensure that athletes reach target fitness levels.   

 

6.3 Demands of Training vs. Competition 

 The results of this study indicate that the physical and physiological demands of 

training are not comparable to the demands of competition in female British university 

hockey.  Specifically, all measures of training load were found to be significantly higher in 

competition than in training (p<0.01) with a large effect size (d>0.8), indicating that training 

is not as demanding as competition. These findings are in alignment with the results of 

previous studies on the differences between hockey training and competition, which have 

reported significantly lower workrates and less high speed and moderate speed running in 

training than in competition (p<0.05) (Gabbett, 2010; Polglaze et al., 2015). Therefore, the 

results of this study provide further evidence on the physical differences between training and 

competition and demonstrate that there is a corresponding physiological difference as well.   

As training sessions often consist of many different elements, it is important to 

consider the makeup of the training sessions included in this analysis.  Training sessions in 

this study generally consisted of three main elements: technical skill warmup, small-sided 

games, and penalty corner practice, most often performed in that order. After a physical 

warm-up, the athletes would perform a technical skill warmup which consisted of various 

passing patterns, ball-carrying skills, and, on some occasions, a shooting drill. Following this 

warm-up, athletes would perform one or more small-sided games that would last for most of 

the training session. Specifically, small-sided games are any type of training drill in which a 

reduced number of athletes play a game in a designated area with various rules and 

constraints (Polglaze et al., 2015). Finally, training sessions would conclude with relatively 

stationary penalty corner practice.  In this analysis, only small-sided games were included in 

order to control for and exclude the stationary aspects of training. As small-sided games are 

designed to mirror aspects of competition and are frequently used for conditioning, these 

types of drills are most appropriate for comparison to gameplay (Polglaze et al., 2015).  
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Although removing the other aspects of training does remove a large portion of training data, 

the aim of technical drills and penalty corners is skill acquisition.  As such, these drills are 

not intended to mirror the demands of match play, and a comparison would be inappropriate.  

Additionally, games data were edited to include only time-on-pitch, so a large portion of 

match data, such as warmup prior to the game, time on the bench, and halftime, was also 

excluded. Therefore, by phasing the data, extraneous information was removed so that only 

the elements of training and matches that were designed to be similar could be compared.  

Despite the fact that only small-sided games were included in the analysis, the results 

of this study still showed that the demands of training were significantly different than the 

demands of competition.  One of the most notable differences between training and 

competition is time, with athletes spending, on average, 47.0 minutes active in competition, 

while only 21.2 minutes active in training.  This result suggests that although training 

sessions typically lasted between one and one and a half hours, only a small amount of this 

time was actually spent active in small-sided games, and, as such, the volume of training was 

less than that of match play.  Since athletes spent more than twice as long active in 

competition than in training, it would follow that absolute, non-time-dependent measures, 

such as distance and TRIMP would be significantly lower in training, as the results indicate.  

The amount of time spent active in training was simply not long enough for athletes to 

achieve the load reached during matches.  However, in some cases, the lower number of 

active minutes in training may have been intentional and appropriate.  For example, the 

athletes in this study trained on Friday mornings prior to matches on Saturdays.  In this 

instance, coaches did not intend for athletes to perform the same volume of work that they 

would on a matchday, but, for the small amount of time that they were active in drills, the 

aim was still to mirror the intensity of competition.   

Comparing relative training load measures indicates that not only was the overall 

volume lower in training than in competition, but the intensity of the work performed was 

also lower.  Considering time-dependent measures, such as %MaxHR and workrate controls 

for differences in time between training and competition and provides an indication as to the 

physical and physiological intensity of the work taking place.  The p-values of less than 

0.0001 and large Cohen’s d values for these measures (.86 and 1.1) demonstrate that not only 

were athletes not working for as long during training, they were also not working as hard, 

physically or physiologically.  Additionally, dividing other training load measures by time, so 

that they can be considered as relative measures, provides further evidence that the intensity 

of training does not match the intensity of competition.  For example, dividing fTRIMP 
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scores by time yields values of 4.75 AU∙min-1 for competition and 3.76 AU∙min-1 for training, 

a difference of 26%.  Furthermore, considering high speed running (>15 km∙hr-1) per minute, 

athletes covered 18.6 m∙min-1 during competition and 13.6 m∙min-1 in training, a difference of 

36.9%. Overall these results indicate that in terms of both total volume and intensity, the 

demands of hockey training are not comparable to the demands of hockey competition in this 

population.  

 As the most effective form of training in team sports has been shown to be that which 

best mirrors the movement patterns and intensity of competition, these results suggest that for 

the female British university hockey athletes in this study, training may not be adequately 

preparing them for competition (Liu et al., 2013; Abbott, 2016).  Since the intensity of 

training is significantly lower than that of competition, athletes will face greater physical and 

physiological demands during matches than in training.  Athletes may struggle to play and 

make smart decisions under the level of strain and fatigue in competition, as it is not 

something that they regularly experience in a training environment.  For the athletes 

participating in this study, the lack of intensity in training may not be a large issue, as athletes 

play two matches per week and, as a result, will have plenty of experience playing at high 

intensities during matches. However, as training was still used to practice various tactics, 

skills, and scenarios, the lack of intensity in this environment meant that training was less 

effective, and athletes were not fully prepared to execute what they had learned in training at 

the intensity required for competition.  Thus, the results of this study suggest that coaches and 

athletes should increase the intensity of training sessions.  There are countless ways to 

increase intensity, including everything from verbal encouragement or adding punishments 

for the losing team to modifying the rules of small-sided games.  Making the playing area 

larger or reducing the number of players involved in a drill will likely increase intensity. 

Additionally, if training sessions are scheduled close to competition, using very short, high-

intensity periods for small-sided games could control for overall volume while still ensuring 

athletes are adequately prepared for competition. Regardless of the method used to increase 

intensity, the results of this study show that unless intensity is increased in training, training 

will not be most effectively preparing the athletes in this study for the physiological and 

physical demands of competition.  
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6.4 Study Limitations 

 

6.4.1 Sample Size 

 As is often the case in team sports research, a major limitation of this study was the 

small sample size.  It has been suggested that the ratio of subjects to dependent variables 

should be, at minimum, no less than 3 to 1 (Vincent, 1999).  With 18 dependent variables and 

only 10 subjects for most of the study, this ratio was clearly not upheld.  Although, data for 

these individuals were collected across 24 sessions, resulting in 235 sessions monitored (5 

sessions missing due to injury absence), the statistical power was still limited by the number 

of subjects.  As a British university hockey team never consists of more than 15 outfield 

players, it would be impossible to obtain the recommended subject to dependent variable 

ratio within a single hockey team. Although a cross-sectional study of a league or region 

would provide a broader perspective and much greater statistical power, it was simply not 

feasible with the time and resources available to the researcher. Since all athletes were from 

one team, not a representative sample of all elite female British university hockey teams, 

these results cannot be fully generalized to all British university hockey populations.  

The original intent of this study was to include as close to 15 outfield members of the 

Durham University Hockey Club’s Women’s First Team as possible.  The study commenced 

with 17 participants with the goal of including all participants who would regularly train and 

play for the first team, as selections vary from week to week.  However, due to a variety of 

uncontrollable factors, not enough data were able to be collected from all participants for 

them to be included in the final analysis.  For example, several athletes had international 

playing commitments requiring them to miss large sections of the season.  Furthermore, other 

players were alternatingly dropped to play in the second team, as experienced players 

returned from injury and outside commitments. These athletes with mostly incomplete data 

sets were excluded from the final analysis to prevent their data skewing the results, as it was 

impossible to accurately determine average loads given the extent of their absences. In the 

end, participants were included in the final analysis if they had over 80% complete data sets, 

including RPE, heart rate, and GPS data measured across all sessions.   

 

6.4.2 Missing Data  

 As touched on in the previous section, missing data was another challenge faced 

during this study. Even among the participants who were included in the final analysis and 
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had over 80% complete data sets, there were still whole sessions or aspects of sessions, be 

that RPE, heart rate, or GPS, that were missing. A variety of reasons contributed to missing 

data.  Device malfunction and operator error caused the greatest number of missing data sets.  

Although participants were provided with full instructions and demonstrations on how to turn 

on and wear their monitoring equipment, there were several cases where individuals forgot to 

turn on their GPS device or wore their heart rate monitor incorrectly.  Prior to the study, all 

heart rate monitors and GPS units were fully tested to ensure their proper functioning; 

however, throughout the study, several of the heart rate monitors stopped holding a charge 

and downloading properly.  These monitors were swapped out for new devices, but accurate 

data were unable to be retroactively obtained from the sessions during which the 

malfunctioning monitors were worn.  Finally, other missing data resulted from players 

missing a training session due to injury, which occurred 4 times, or not reporting RPE, 

despite receiving two reminders from the researcher.  To control for missing data, training 

loads were averaged across all sessions of similar type (for example Monday night training or 

Wednesday matches), and these averages were then summed or averaged, depending on the 

metric, to provide an average weekly load.  Although it would have been preferable to have 

complete data sets for all individuals, this method of analysis minimized the effect of missing 

data, making this only a minor limitation.  

In addition to missing data from training sessions or matches, the study was unable to 

completely control for training performed by athletes outside of scheduled team sessions. 

Ideally, all participants would have worn their heart rate and GPS monitors during any 

outside training performed.  However, as devices had to be collected following each training 

session for charging, data download, and secure storage, participants were not able to keep 

their monitors and wear them during any extra sessions they may have chosen to perform.  To 

alleviate this issue, all participants were asked to fill out a separate survey including a 

description, the length, and RPEs for any outside training sessions performed. Although 

participants were repeatedly reminded of this survey and the importance of recording outside 

sessions, there were only two sessions recorded in this manner by athletes included in the 

final analysis, and the researcher was later made aware that some outside training occurred 

but was not recorded.  At that point it was too late for participants to go back and accurately 

recall RPEs and length of the sessions, so, unfortunately, these data were not able to be 

collected.  
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6.4.3 Testing Errors  

 Although many efforts were taken to minimize testing errors, it was not possible to 

control for all confounding factors that may have influenced athletes’ fitness test scores.  

Firstly, athletes were not monitored prior to the start of testing, so they were on their honor to 

complete the pre-testing protocols.  Specifically, athletes were asked to abstain from alcohol 

and strenuous physical activity for 24 hours prior to fitness testing and were given reminders 

of this requirement in the days leading up to testing; however, without constant monitoring, it 

was not possible for the researcher to ensure that these requirements had been met.  

Additionally, some athletes mentioned to the researcher that they had been ill and were not 

feeling well during post-testing.  Post-testing was pushed back several days for these 

individuals to allow for recovery; however, due to participants’ scheduling constraints 

approaching the holidays, there were limited options for post-testing dates.  

Another possible confounding factor during the 30:15 fitness test was athletes’ 

motivation level.  As athletes can drop out at any time, it is not possible for the researcher to 

ensure that athletes truly gave a maximal effort instead of dropping out early due to building 

fatigue and a lack of motivation. Additionally, as no partial scores are given and athletes must 

compete an entire level to receive credit for it, the test is not very sensitive to small changes 

in fitness.  Knowing this, despite verbal encouragement, during the post-test some athletes 

did not even attempt to start the level higher than that which they completed in the pre-test, 

believing that they would not make it through the full 30 seconds.  As a result, only 50% of 

the athletes in the study changed their 30:15 score from pre to post-testing.  Of those athletes 

who did receive a different score, no one differed by more than one level, despite athletes’ 

lab-based fitness test scores indicating larger fitness changes. Thus, these results suggest that 

motivation and athletes’ self-belief may have influenced their 30:15 scores.  

 

6.4.4 Other Considerations 

 Another limitation of this study on female athletes was that the effect of participants’ 

menstrual cycles was not considered.  The exact effects of the menstrual cycle on exercise 

performance is unclear, with several reviews highlighting the mixed results of previous 

research studies (Jonge, 2003; Oosthuyse and Bosch, 2010; Tsampoukos et al., 2010).  The 

hormonal fluctuations over the course of the menstrual cycle have been shown to impact fat 

metabolism, carbohydrate utilization, and body temperature, all of which can impact athletic 

performance (Jonge, 2003; Oosthuyse and Bosch, 2010).  Furthermore, more outright 

symptoms, such as cramping, headaches, bloating, or iron deficiency from heavy blood loss 
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also influence athletes (Bossi et al., 2013).  Lactate threshold, as was measured during lab-

based fitness testing in this study, has been shown to not be significantly different during 

various stages of the menstrual cycle in university athletes (p>0.05) (Bossi et al., 2013; Ross 

et al., 2017).  However, a 2017 study on female university football found that performance 

during the Yo-Yo intermittent endurance test, a maximal on-field fitness test similar to the 

30:15 fitness test, was considerably lower (p=0.07) during the mid-luteal phase compared to 

the early follicular phase (Ross et al., 2017). These results suggest that athletes’ 30:15 scores 

may have been impacted by the phase of their menstrual cycle.  Nevertheless, with 55% of 

British women ages 18-19 and 52% of British women ages 20-24 using oral contraceptives, it 

is likely that many of the study participants would have been taking oral contraceptives, 

which reduce hormonal variations over the course of the menstrual cycle (NHS Digital, 

2017). 

 Weather and time of day are other factors that may have influenced athlete 

performance over the course of the study.  Circadian rhythm has been shown to influence 

exercise performance, with daily fluctuations in body temperature and hormone levels 

affecting performance levels throughout the day (Weipeng, Michael and Michael, 2011).  

Training sessions and matches took place at approximately the same time each week, thus 

minimizing the effects of circadian rhythm on training load data collected during the sessions.  

However, despite efforts being taken to ensure that athletes’ pre-study and post-study fitness 

testing took place at the same time, due to scheduling constraints, performing testing at 

precisely the same time was not always possible.  Additionally, as hockey is an outdoor sport, 

and all activities, except for the lab-based fitness test, took place outside, weather may have 

impacted athlete performance and training load.  For example, when performing hockey skills 

in high temperatures (30°C) heart rate has been shown to be significantly higher (p<0.05) 

than when performing those same skills at moderate temperatures (19°C) (Sunderland and 

Nevill, 2005).  As this study took place in Northern England, athletes did not experience high 

temperatures but rather low temperatures (about 3°C) and high winds during some training 

sessions.  No study has considered the impact of cold temperatures on hockey performance; 

however, research in football suggested that cold temperatures (<5°C) did not impact match-

action profiles (Carling, 2011).  On the other hand, wind resistance has been shown to 

significantly impact sprinting performance (p<0.001) (Moinat, Fabius and Emanuel, 2018).  

Therefore, weather conditions, particularly wind, may have been a confounding factor in this 

study.  Overall, the limitations of this study provide areas for improvement in future studies 

on female hockey athletes.  
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Chapter 7: Conclusion 

 The aims of this research study were (1) to investigate the various methods of 

measuring training load in female hockey athletes and (2) to quantify the demands of female 

British university hockey.  With relevance to these aims, the conclusions to the four research 

questions are given below.   

 

1) Are there associations between different methods of measuring of training load in female 

hockey athletes? 

 Yes, there were strong linear relationships between many of the various methods of 

measuring training load in the female hockey athletes monitored in this study. Overall sRPE 

was very strongly positively correlated with other measures of internal and external training 

load, suggesting that overall sRPE is a valid perceptual measure for monitoring training load. 

Stagno TRIMP and fTRIMP scores were very closely related, summarized by a multiplicative 

factor of 1.3, demonstrating the importance of not applying male monitoring protocols to 

female athletes without adjusting for sex differences. In addition, total distance and fTRIMP 

were strongly correlated indicating that total distance could be used to predict internal 

training load if only external training load is measured.  The interconnectedness of the 

various training load measures suggests that there are multiple valid methods of measuring 

training load in female hockey, including easily obtained measures such as sRPE and 

%MaxHR, as well as more complicated measures such as iTRIMP and GPS metrics.  Overall, 

these results demonstrate that regardless of the resources of a team, there is a valid method of 

monitoring training load that can be used to individualize training protocols.  

 

2) Which training load measure(s) best predicts fitness and fitness change? 

  Distance covered in zones 5 and 6 and effindex1 were the best predictors of athlete 

fitness and iTRIMP was the best predictor of fitness change.  The fitter athletes in this study 

were able to complete training and matches with lower physiological loads, despite their 

increased high speed running and sprinting outputs and showed smaller increases in fitness.  

Thus, despite the elevated physical outputs of the fitter athletes, their increased efficiency 

meant that training and matches were not physiologically demanding enough for them to 

improve their fitness at the same rate as less fit athletes.  These results reinforce the need for 

individualized athlete monitoring as all athletes were performing the exact same training 

sessions and matches, and, without individualized monitoring, it would have been impossible 

to determine the variations in load that impacted athlete fitness levels in this study.  
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Furthermore, the results of this study demonstrate that if the goal is to predict fitness change 

or overall fitness, iTRIMP, distances covered in zones 5 and 6, or effindex1 should be used to 

measure training load, instead of other measures less associated with fitness outcomes.  

 

3) What are the physical and physiological demands of female British university hockey and 

how do these demands compare to other previously studied female hockey populations? 

 Comparisons of competition demands with other previously studied female hockey 

populations demonstrate that despite some similarities, the demands of female British 

university hockey are unique.  In terms of internal training load, %MaxHR measured in this 

study was comparable to that measured in other young adult hockey populations, but higher 

than values reported during international competition. Considering external training load, 

total distance and distance in speed zones were comparable to values previously reported in 

female international hockey, but athletes in this study averaged more playing minutes per 

match than international athletes, resulting in lower workrates.   In addition to the average 

values, the results of this study showed that there were large variations in athlete loads both 

in competition and over the season as a whole.  These results demonstrate that athletes who 

participate in the same training and matches will often receive noncomparable loads.  

Overall, the uniqueness of and variation in the demands of female British university hockey 

demonstrate the need for individualized athlete monitoring in this population. 

   

4) How do the demands of training compare to the demands of competition? 

 The physical and physiological demands of training were significantly lower than the 

demands of competition for all training load measures.  As the most effective form of training 

for team sports has been shown to be that which mirrors the intensity and demands of 

competition, these results suggest that the small-sided games used in training were not 

adequately preparing the athletes in this study for competition (Liu et al., 2013; Abbott, 

2016).  Therefore, modifications to training need to be made and more individualized 

monitoring will be needed to ensure that future training exercises mirror the demands of 

competition in female hockey.  

 

In conclusion, the results of this study demonstrate the need for individualized 

monitoring in hockey and provide detailed information on the various methods of measuring 

training load. The demands of training were shown to be significantly lower than the 

demands of competition, demonstrating the need for athlete monitoring during training to 



 

101 
 

ensure that athletes are working at adequately high intensities to prepare them for the 

demands of competition.  Additionally, the very large ranges and standard deviations both in 

individual match load and average weekly load show that hockey athletes participating in the 

exact same training and competition sessions often have vastly different training loads.  As 

high speed running and sprinting distances have been shown to be closely associated with 

athlete fitness, and iTRIMP scores to be a predictor of fitness change over the course of the 

season, the results suggest that the variation in athlete training load will be associated with 

changes in athlete fitness outcomes. Therefore, individualized monitoring is needed to ensure 

that all athletes are receiving appropriate training doses to achieve target fitness and 

performance outcomes.  Fortunately, the results of this study have shown that there are many 

valid methods of measuring training load, depending on the resources of a team and the level 

of accuracy required.  Additionally, a factor of 1.3 was established between male and female 

team TRIMP scores to allow for comparisons across sexes. Future experimental studies will 

be needed to determine training load thresholds for target fitness and performance levels; 

however, correlations with fitness outcomes in this study suggest that iTRIMP, effindex, and 

distance covered in zones 5 and 6 are the training load measures best suited for developing 

these thresholds.  Overall, this study provides clear evidence in support of individualized 

athlete monitoring in female hockey to ensure that athletes achieve appropriate training doses 

and suggests the training load measures most appropriate for this monitoring. As 

individualized monitoring can improve fitness as well as increase performance and reduce 

overuse and fatigue-based injuries, the results of this study can be used to improve female 

hockey overall, reducing the risk of athlete injury while simultaneously increasing the level 

of athlete performance.   

 

Future Directions 

   The four research questions addressed in this study bring to light several areas for 

future research in this field.  Firstly, since this study was the first to measure differential 

sRPE, fTRIMP, iTRIMP and effindex in hockey, more studies will be needed to further 

validate these methods of monitoring training load in various hockey populations. 

Additionally, as there was a clear multiplicative relationship measured between the male-

based Stagno and female-based fTRIMP scores, there may be value in investigating this 

relationship in other populations to determine if this factor is consistent across sports.  

Furthermore, the demands of training were significantly lower than the demands of 
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competition, so more research will be needed to assess what modifications to training 

increase intensity to the levels experienced in competition.  

 Since this study only measured the demands of female British university hockey, 

future studies will be required to quantify the demands of male British university hockey, 

allowing for comparisons between male and female hockey at this level.  Finally, as this 

study was only performed on one hockey team, more studies will be needed to validate these 

results in other female British university hockey populations.  

 From a broader perspective, this research sets the foundation for future experimental 

studies to determine target training load threshold for hockey athletes. The relationships 

between training load and fitness outcomes examined in this study demonstrate which 

training load measures are most closely associated with fitness and fitness changes and are 

therefore best suited for developing target training loads.  Future research studies will be 

needed to develop weekly training load thresholds to ensure that athletes are receiving the 

loads required to reach target fitness and performance outcomes, without risking overtraining.  

By adopting an experimental approach in which training load is monitored and individualized 

adjustments are made to ensure that athletes reach prescribed training doses, future studies 

could draw a causal relationship between training load and fitness measures, and target 

training load thresholds could be determined. Furthermore, in order to account for variation 

in the demands of the different playing positions, training dose could be individualized based 

on athletes’ playing position, thereby ensuring that each athlete is best prepared for the 

demands that they will face in competition.   
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Appendix A: Distance Covered in Speed Zones  

I: International, N: National, A: Amateur

Author(s) Date 

# 

subj M/F Level Distance (m) in Speed Zones (km·h-1) 

Macutkiewicz 

& Sunderland 2011 25 F I 

  0-0.6 .7-6.0 6.1-11.0 11.1-15.0 

15.1-

19.0 >19.0 

Team -- 1653±547 1780±420 1226±249 620±172 232±96 

Vescovi & 

Frayne 2015 68 F N 

  0-8.0 8.1-16 16.1-20 20.1-32 

  

Defense 2958±635 2926±696 551±188 113±83 

Midfield 2657±777 3281±839 680±189 136±72 

Forward 2379±637 2858±774 661±142 153±77 

Jennings et al 

(b) 2012 15 M I 

  0.4-17.0 >17.0 

  

Defense 7686±400 1734±177 

Midfield 7363±290 2554±134 

Forward 7405±472 2189±456 

Team 7441±511 2294±433 

Liu et al 2013 38 M N 

  <7.6 7.6-11.1 11.2-15.5 15.6-20.1 

20.1-

29.1 >29.1 

Team 2580±261 1693±243 1434±321 1013±241 560±126 53±26 

Jennings et al 

(a) 2012b 16 M N 

  0.4-17.0 >17.0 

  Team 6905±447 1652±416 

Sunderland & 

Edwards 2016 20 M I 

  15.5-20 >20 

  

Defense 1364±82 438±59 

Midfield 1589±212 443±52 

Forward 1635±314 535±137 

Lythe 2008 18 M I 

  0-6.0 6.1-11.0 11.1-14.0 14.1-19.0 

19.1-

23.0 >23.0 

Team 2410±95 2585±258 1424±124 1232±263 355±110 124±69 

Gabbett 2010 14 F N 

  0-3.6 3.7-10.8 10.9-18 18-25.2 >25.2 

  

Defense 841±229 3618±821 1763±566 369±178 52±62 

Midfield 681±243 3422±989 2181±558 571±244 77±69 

Forward 728±231 3017±247 1941±198 423±195 46±57 

Vescovi 2016 44 F I 

  0-8.0 8.1-16.0 16.1-20 20.1-32.0 

  

Defense 2342±542 2287±440 405±81 101±35 

Midfield 1799±542 2339±682 496±163 91±56 

Forward 1241±355 1538±376 389±142 106±52 

Boran 2012 36 F A 

  0-13.0 13.1-15.1 15.2-19.4 19.5-20.5 

20.5-

21.6 >21.6 

Defense 825±242 2519±619 1138±308 852±343 478±164 50±41 

Midfield 736±134 2565±389 1358±215 1251±185 671±187 69±61 

Forward 789±118 2445±199 1077±530 893±311 645±159 141±84 

McGuinness 

et al 2017 38 F I 

  0-7.9 8.0-15.9 16.0-19.9 >20.0 

  

Defense 2432±400 2791±450 473±110 99±23 

Midfield 1936±353 2944±378 675±105 135±21 

Forward 1936±430 2792±456 612±170 141±39 

Team 1982±394 2842±428 587±128 125±28 
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Appendix B: Participant Information Sheet 

Participant Information Sheet 
A Comparison and Analysis of Internal and External Training Load Measures in Hockey 
Athletes 
Principal Investigator: Natalie Konerth 
Email: Natalie.m.konerth@durham.ac.uk   Phone: 07568653764 
Supervisors: Dr. Caroline Dodd-Reynolds, Mr. Robert Cramb 
Supervisors’ Emails: caroline.dodd-reynolds@durham.ac.uk; r.k.cramb@durham.ac.uk 
 
Thank you for your interest in this research study. This information sheet will describe exactly 
what participation in the study will require, the potential risks and benefits, how data will be 
used, and how to withdraw from the study. If you have any questions or would like further 
clarification, please do not hesitate to contact the principal investigator.  
 
Goals of this Study 
The goal of this study is to analyze various methods of measuring training load (ie how hard you 
are working) during hockey training and matches.  Several different methods of measurement 
will be used:  heart rate monitoring, global positioning system (GPS) monitoring, as well as a 
perceptual measure of how tired you feel, called rating of perceived exertion (RPE).  Various 
equations for calculating training load from these measurements will be compared to help 
sports scientists better understand the relationships between these measures and which ones 
are most closely linked to changes in fitness.  Training data will also be compared with match 
data to determine if training drills are performed at the same intensity as matches. Finally, 
match data from this study will be compared to other published hockey studies to examine how 
Durham University Hockey Club (DUHC) Women’s 1st Team compares to other groups of hockey 
players.  
 
Participants 
This study will focus on outfield members of DUHC Women’s 1st Team. You have been invited to 
participate in this study as you are a member of this group. No incentives will be provided for 
participation in this study.  
 
Study Details 
As a participant, you will be asked to take part in several testing procedures as well as to wear 
monitoring equipment during normal training and games.  To be included in the study, 
interested participants will be required to give informed consent and complete a pre-screening 
questionnaire which will ask questions on current health status and existing injuries. Your height 
and weight will be measured and recorded so average height and weight of the study group can 
be determined.  
 
Measuring Resting Heart Rate  
As part of this study, your resting heart rate will be measured. You will be asked to lay face up in 
a quiet room for five minutes while wearing a heart rate strap across your chest. 
 
Treadmill Testing 
You will be asked to complete a treadmill test in the sports science laboratory twice, once at the 
beginning and once at the end of the study.  You will likely find the treadmill test to be 
challenging; however, it is a submaximal test, meaning that it is designed to be completed 

mailto:Natalie.m.konerth@durham.ac.uk
mailto:r.k.cramb@durham.ac.uk
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without you reaching exhaustion or working at maximum effort.  Each session should be less 
than 45 minutes, and you will be asked to abstain from alcohol or any strenuous physical activity 
for 24 hours prior to testing.  You will be required to complete a warmup before and cooldown 
after exercise.  The test itself will consist of up to five sets of 4-minutes of running.  The speed 
will start at 7 km·h-1 and will increase by 2 km·h-1 each stage up to a final speed of 15 km·h-1.  
There will be a 1-minute rest between each stage. You will wear a heart rate monitor across 
your chest for the duration of the test.  Additionally, a small blood sample will be taken from 
your finger at the completion of each stage.  Specifically, a sterilized needle will puncture your 
skin causing it to bleed slightly and a droplet of blood will be placed on a testing strip. This 
testing strip will then be placed in a device that will measure lactate (a substance which builds 
up in the blood during exercise).   
 
30-15 Testing 
As part of this study, you will complete the 30-15 intermittent fitness test to help determine 
your maximum heart rate and fitness level.  You will be required to warm up before testing and 
cooldown afterwards. The procedure for this test will be exactly the same as when you have 
completed it during normal fitness testing in the past; however, you will be asked to wear a 
heart rate strap during testing.  Please note that this test will take place during a running session 
for the entire team – you will not need to do any additional 30-15 testing outside of normal 
training.  
 
Training and Competition Monitoring 
Throughout the season, you will be asked to wear a heart rate monitor and GPS tracker during 
regularly scheduled training and competition. The heart rate monitor will be worn tightly across 
the chest, directly touching your skin, and the GPS unit will be placed in the pocket of a specially 
designed vest that can be worn under normal training attire or game kit.  In addition to wearing 
the tracking devices, you will be asked to provide ratings from 0-10 on your perceived exertion 
during each session.  These ratings will be collected via a google form which can be completed 
on your mobile phone or computer.  
 
Risks and Benefits 
There are some risks of participating in the study that you should be aware of.  Specifically, 
there is a risk of musculoskeletal injury; although proper warmup and cooldown techniques will 
be used to reduce the chance of injury.  You are also at risk for cardiovascular complications due 
to the extra stress placed on this system during exercise; however, pre-screening will be 
undertaken prior to testing to help minimize the risk.  Fainting, feeling nauseous, and/or 
vomiting is also possible, but if you ever begin to feel faint, the test will stop immediately.  
During the treadmill test, you will be at risk of falling off the treadmill, so a safety harness 
connected to an emergency stop will be used.  Finally, as blood samples will be taken, there is a 
risk of cross contamination of blood or blood spillage; however, the proper university biohazard 
techniques and procedures will be followed to minimize these risks.  Risk levels and steps taken 
to minimize risks can be found in the sports physiology lab risk assessment RA05. 
 
Potential benefits of this study include the improvement of future hockey training at DUHC. 
Specifically, the training load measures being tested are designed to allow coaches to maximize 
performance and minimize overtraining and injury.  Thus, measurements taken during the study 
can help DUHC, and other hockey programs who may read the results, improve training to 
better prepare their athletes for competition and decrease the risk of injury.     
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Anonymity/Confidentiality 
As a participant in this study, your data will be kept anonymous in any written reports of results.  
Specifically, if individual data is presented, you will be referred to by a number rather than by 
name (ie. participant 3). All data will be kept on a password protected computer. Additionally, 
anonymized, non-individualized data that has been averaged across participants that play 
similar positions (defense, midfield, forward), may be shared with DUHC coaching and strength 
and conditioning staff to enhance future training.  When shared, the data will be sent in 
password protected files.  
 
Data Use 
The data from this study will be used for the researcher’s Masters by Research Thesis.  It is 
possible that results may also be included in academic publications.  
 
Withdrawing  
As a participant in this study, you are free to withdraw at any time, without providing a reason.  
If you chose to withdraw during the course of the study, you will have the choice as to whether 
the data previously collected from you can be included in study findings or should be destroyed.  
After the study is complete, you will have one week from the end of data collection to contact 
the principal investigator if you do not wish to have your data included in the results of the 
study.  However, please note that even if you chose to withdraw, data collected up to that point 
may have already been shared with DUHC coaching staff as part of group averages for your 
playing position.  If at any point you wish to withdraw from the study, please contact the 
principal investigator.  
 
All protocols in this study are in accordance with the British Association of Sport and Exercise 
Sciences guidelines. 1 
 
Thank you for taking the time to read through this Participant Information Sheet.  Please do not 

hesitate to contact the principal investigator if you have any questions or would like clarification. 

Contact information has been provided at the beginning of this document.  If you wish to discuss 

the study with the researcher’s supervisors, their contact information has been provided at the 

beginning of this document.  If you wish to discuss the study with the researcher’s supervisors, 

their contact information has been provided as well. 

 
1 WINTER, E. M., JONES, A. M., DAVIDSON, R. C. R., BROMLEY, P. D. & MERCER, T. H. 2007. Sport and 

Exercise Physiology Testing Guidelines: The British Association of Sport and Exercise Sciences 
Guide, London ; New York, Routledge. 
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Appendix C: Consent Form 

Consent Form 
A Comparison and Analysis of Internal and External Training Load Measures in Hockey 

Athletes 
Please circle YES or NO for each statement listed below:  

1. I have read and fully understood the Participant Information Sheet and have been 
given the opportunity to ask any questions I may have about this study. 

YES  NO 
 

2. I am aware that this study follows the British Association of Sport and Exercise 
Science guidelines.  

YES  NO 
 

3. I consent to participate in the testing protocols – both the treadmill tests and the 30-
15 fitness test. 

YES  NO 
 

4. I give my permission for my heart rate and location to be tracked in hockey trainings 
and competition. 

YES  NO 
 

5. I am aware that my participation in this study is completely voluntary and that I may 
withdraw from this study at any time, without giving a reason.  

YES  NO 
 

6. I consent to my personal data being stored on a password protected computer and 
in password protected documents. 

YES  NO 
 

7. I consent that my anonymized data may be shared with the Durham University 
Hockey Club’s Strength and Conditioning and Hockey Coaches. 

YES  NO 
 

8. I consent to my anonymized data from this study being published as part of a 
Master’s thesis and potentially in other academic publications. 

YES  NO 
 

After reading the participant information sheet and consent form, I confirm that my consent 
is freely given, and I agree to take part in this study.  
 
Signature: ___________________________________________________ (Participant)     

Signature: ___________________________________________________ (Researcher) 

Date: _________________
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Appendix D: Prescreening Questionnaire 

Prescreening Questionnaire  
Adapted Physical Activities Readiness Questionnaire (PAR-Q)2 

 
Name:__________________________________________ Date:___________________ 

 

Please circle YES or NO for each question below 

 

1. Has your doctor ever said that you have heart trouble? 

YES  NO 

2. Do you frequently have pains in your heart and chest? 

YES  NO 

3. Do you often feel faint or have spells of severe dizziness? 

YES  NO 

4. Has your doctor said that your blood pressure is too high? 

YES  NO 

5. Has your doctor ever told you that you have a chronic bone or joint condition and 

should avoid high levels of activity?  

YES  NO 

6. Do you have any existing injuries? 

YES  NO 

If so, have you been cleared for regular activity by a physiotherapist or 

doctor? 

YES  NO 

7. Do you know of any good reason why you should not perform intense physical 

activity? 

YES  NO 

If you answered yes to any of the questions above, please explain below. 
_________________________________________________________________________ 
___________________________________________________________________________
_______________________________________________________________________  

 
2 Adapted from the Physical Fitness Readiness Questionnaire as outlined by Humphrey and Lakomy (2003).  
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Appendix E: Python Code for Training Sessions  

 

input_wb="File_name.xlsx" 

output='File_name.xlsx' 

 

PM="Yes" 

########################################################################### 

 

import openpyxl 

import math 

import datetime 

 

 

wb = openpyxl.load_workbook(input_wb)  

wbvalues=openpyxl.load_workbook('Mastervalues.xlsx') 

wboutput=openpyxl.Workbook() 

soutput=wboutput.active 

s1=wb["P"] 

svalues=wbvalues.active 

speriods=wb["C"] 

sRPEs=wb["R"] 

 

def blankrow(col, sheet, st): 

 for i in range (st, sheet.max_row+2): 

  if sheet.cell(row=i, column=col).value==None: 

   return i 

   break 

 

 

def minutes(t): 

 h=t.hour 

 m=t.minute 

 s=t.second 

 return h*60+m+s/60 

 

def add12(t): 

 h=t.hour 

 m=t.minute 

 s=t.second 

 return datetime.time(h+12, m, s) 

 

def addnone(t): 

 h=t.hour 

 m=t.minute 

 s=t.second 

 return datetime.time(h, m, s) 

 

MaxHR=(Sell and Ledesma, 2016) 

for i in range(2, blankrow(2,svalues,2)): 

 MaxHR[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=2).value 

 

MinHR={} 

for i in range(2, blankrow(2,svalues,2)): 

 MinHR[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=3).value 

 

aValue={} 

for i in range(2, blankrow(2,svalues,2)): 

 aValue[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=4).value 
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bValue={} 

for i in range(2, blankrow(2,svalues,2)): 

 bValue[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=5).value 

 

kValue={} 

for i in range(2, blankrow(2,svalues,2)): 

 kValue[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=6).value 

 

if PM=="Yes": 

 for i in range (1, s1.max_column+1, 3): 

  for u in range (4, blankrow(i, s1, 4)): 

   s1.cell(row=u, column=i).value=add12(s1.cell(row=u, column=i).value) 

else: 

 for i in range (1, s1.max_column+1, 3): 

  for u in range (4, blankrow(i, s1, 4)): 

   s1.cell(row=u, column=i).value=addnone(s1.cell(row=u, column=i).value) 

 

 

p={} 

for i in range (1, s1.max_column, 3): 

 n=s1.cell(row=2, column=i).value 

 l=[] 

 for u in range (2, blankrow(1, speriods, 2)): 

  if speriods.cell(row=u, column=1).value==n: 

   if speriods.cell(row=u, column=2).value!="Session": 

    if speriods.cell(row=u, column=2).value[-1]==kValue[n]: 

     l.append(datetime.datetime.strptime(speriods.cell(row=u, 

column=5).value, "%I:%M:%S %p").time()) 

     l.append(datetime.datetime.strptime(speriods.cell(row=u, 

column=6).value, "%I:%M:%S %p").time()) 

 p[n]=l 

 

############################################################################## 

 

session_period=[] 

for u in range (4, blankrow(1, speriods,2)): 

 if speriods.cell(row=u, column=2).value=="Sx": 

  session_period.append(datetime.datetime.strptime(speriods.cell(row=u, column=5).value, 

"%I:%M:%S %p").time()) 

  session_period.append(datetime.datetime.strptime(speriods.cell(row=u, column=6).value, 

"%I:%M:%S %p").time()) 

  break 

 

wboutput.create_sheet('Sx') 

sSx=wboutput['Sx'] 

 

headings=["Name", "Minutes", "Position", "sTRIMP", "nTRIMP", "iTRIMP", "% Max HR", "TD", "Workrate", 

"Zone 1", "Zone 2", "Zone 3", "Zone 4", "Zone 5", "Zone 6", "Zone 7", "Effindex 1", "Effindex 2"] 

for u in range(0,18): 

 sSx.cell(row=1, column=u+1).value=headings[u] 

 

for i in range (1, s1.max_column+1, 3): 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i).value<session_period[0]  or s1.cell(row=u, column=i).value> 

session_period[1]: 

   s1.cell(row=u, column=i+1).value=0 

 

y6=2 

for i in range (2, s1.max_column+1, 3): 

 x24=0 
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 Max=MaxHR[s1.cell(row=2, column=i-1).value] 

 Min=MinHR[s1.cell(row=2, column=i-1).value] 

 a=aValue[s1.cell(row=2, column=i-1).value] 

 b=bValue[s1.cell(row=2, column=i-1).value] 

 sSx.cell(row=y6, column=1).value= s1.cell(row=2, column=i-1).value 

 if a!="--": 

  for u in range (4, blankrow(i,s1,4)): 

   HRR=(s1.cell(row=u, column=i).value-Min)/(Max-Min) 

   if 1.02>HRR>0: 

    x24+=HRR*a*math.exp(b*HRR) 

  sSx.cell(row=y6, column=6).value=x24/60 

 else: 

  sSx.cell(row=y6, column=6).value="--" 

 y6+=1 

 

for i in range (2, s1.max_column+1, 3): 

 HR=MaxHR[s1.cell(row=2, column=i-1).value] 

 for u in range (4, blankrow(i,s1,4)): 

  s1.cell(row=u, column=i+1).value= s1.cell(row=u, column=i).value/HR 

 

y5=2 

for i in range (2, s1.max_column+1, 3): 

 x50=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.715>s1.cell(row=u, column=i+1).value>=0.645: 

   x50+=1.25 

  elif 0.785>s1.cell(row=u, column=i+1).value>=0.715: 

   x50+=1.71 

  elif .855>s1.cell(row=u, column=i+1).value>=0.785: 

   x50+=2.54 

  elif .925>s1.cell(row=u, column=i+1).value>=.855: 

   x50+=3.61 

  elif 1.02>s1.cell(row=u, column=i+1).value>=.925: 

   x50+=5.16 

 sSx.cell(row=y5, column=4).value=x50/60 

 y5+=1 

 

y7=2 

for i in range (2, s1.max_column+1, 3): 

 x70=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.67>s1.cell(row=u, column=i+1).value>=0.59: 

   x70+=0.91 

  elif 0.75>s1.cell(row=u, column=i+1).value>=0.67: 

   x70+=1.49 

  elif .83>s1.cell(row=u, column=i+1).value>=0.75: 

   x70+=2.44 

  elif .91>s1.cell(row=u, column=i+1).value>=.83: 

   x70+=3.99 

  elif 1.02>s1.cell(row=u, column=i+1).value>=.91: 

   x70+=6.74 

 sSx.cell(row=y7, column=5).value=x70/60 

 y7+=1 

 

g1=2 

for i in range (2, s1.max_column+1, 3): 

 m2=c2=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i+1).value!=0: 

   m2+=s1.cell(row=u, column=i+1).value 
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   c2+=1 

 if c2==0: 

  sSx.cell(row=g1, column=7).value="--" 

 else: 

  sSx.cell(row=g1, column=7).value=m2/c2 

 g1+=1 

 

for u in range (2, blankrow(1,sSx,2)): 

 for i in range (2, blankrow(1, speriods,2)): 

  if speriods.cell(row=i, column=2).value=="Sx": 

   if sSx.cell(row=u, column=1).value==speriods.cell(row=i, column=1).value: 

    sSx.cell(row=u, 

column=2).value=minutes(datetime.datetime.strptime("0"+speriods.cell(row=i, column=8).value, 

"%H:%M:%S").time()) 

    sSx.cell(row=u, column=8).value=speriods.cell(row=i, column=10).value 

    sSx.cell(row=u, column=10).value=speriods.cell(row=i, column=12).value 

    sSx.cell(row=u, column=11).value=speriods.cell(row=i, column=13).value 

    sSx.cell(row=u, column=12).value=speriods.cell(row=i, column=14).value 

    sSx.cell(row=u, column=13).value=speriods.cell(row=i, column=15).value 

    sSx.cell(row=u, column=14).value=speriods.cell(row=i, column=16).value 

    sSx.cell(row=u, column=15).value=speriods.cell(row=i, column=17).value 

 

for u in range (2, blankrow(1,sSx,2)): 

 if sSx.cell(row=u, column=2).value!=0 and sSx.cell(row=u, column=2).value!=None: 

  sSx.cell(row=u, column=9).value=sSx.cell(row=u, column=8).value/sSx.cell(row=u, 

column=2).value 

 else: 

  sSx.cell(row=u, column=9).value="--" 

 if sSx.cell(row=u, column=14).value!=None and sSx.cell(row=u, column=15).value!=None: 

  sSx.cell(row=u, column=16).value=sSx.cell(row=u, column=14).value+sSx.cell(row=u, 

column=15).value 

 else: 

  sSx.cell(row=u, column=16).value="--"  

 if sSx.cell(row=u, column=7).value!=0 and sSx.cell(row=u, column=7).value!=None and 

sSx.cell(row=u, column=7).value!="--" and sSx.cell(row=u, column=9).value!=0 and sSx.cell(row=u, 

column=9).value!=None and sSx.cell(row=u, column=9).value!="--": 

  sSx.cell(row=u, column=18).value=sSx.cell(row=u, column=9).value/sSx.cell(row=u, 

column=7).value 

 else: 

  sSx.cell(row=u, column=18).value="--" 

 if sSx.cell(row=u, column=8).value!=0 and sSx.cell(row=u, column=8).value!=None and 

sSx.cell(row=u, column=6).value!=0 and sSx.cell(row=u, column=6).value!=None and sSx.cell(row=u, 

column=6).value!="--" and sSx.cell(row=u, column=8).value!="--": 

  sSx.cell(row=u, column=17).value=sSx.cell(row=u, column=8).value/sSx.cell(row=u, 

column=6).value 

 else: 

  sSx.cell(row=u, column=17).value="--" 

 

############################################################################## 

 

for i in range (1, s1.max_column, 3): 

 n=s1.cell(row=2, column=i).value 

 if p[n]==[]: 

  print(n+ " no phases") 

 else: 

  for u in range (4, blankrow(i, s1, 4)): 

   x=p[n] 

   if s1.cell(row=u, column=i).value< x[0] or s1.cell(row=u, column=i).value> x[len(x)-

1]: 

    #len(x)-1 because its starts counting at 0 
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    s1.cell(row=u, column=i+1).value=0 

   else: 

    for o in range (1, len(x),2): 

     if x[o]<s1.cell(row=u, column=i).value<x[o+1]: 

      s1.cell(row=u, column=i+1).value=0 

 

#iTRIMP (before change to %maxHR) 

y2=2 

for i in range (2, s1.max_column+1, 3): 

 x2=0 

 Max=MaxHR[s1.cell(row=2, column=i-1).value] 

 Min=MinHR[s1.cell(row=2, column=i-1).value] 

 a=aValue[s1.cell(row=2, column=i-1).value] 

 b=bValue[s1.cell(row=2, column=i-1).value] 

 if a!="--": 

  for u in range (4, blankrow(i,s1,4)): 

   HRR=(s1.cell(row=u, column=i).value-Min)/(Max-Min) 

   if 1.02>HRR>0: 

    x2=x2+HRR*a*math.exp(b*HRR) 

  soutput.cell(row=y2, column=9).value=x2/60 

 else: 

  soutput.cell(row=y2, column=9).value="--" 

 y2+=1 

 

 

#Changes to %max HR 

for i in range (2, s1.max_column+1, 3): 

 HR=MaxHR[s1.cell(row=2, column=i-1).value] 

 for u in range (4, blankrow(i,s1,4)): 

  s1.cell(row=u, column=i).value= s1.cell(row=u, column=i).value/HR 

 

 

#Stagno TRIMP 

y1=2 

for i in range (2, s1.max_column+1, 3): 

 x1=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.715>s1.cell(row=u, column=i).value>=0.645: 

   x1=x1+1.25 

  elif 0.785>s1.cell(row=u, column=i).value>=0.715: 

   x1=x1+1.71 

  elif .855>s1.cell(row=u, column=i).value>=0.785: 

   x1=x1+2.54 

  elif .925>s1.cell(row=u, column=i).value>=.855: 

   x1=x1+3.61 

  elif 1.02>s1.cell(row=u, column=i).value>=.925: 

   x1=x1+5.16 

 soutput.cell(row=y1, column=1).value= s1.cell(row=2, column=i-1).value 

 soutput.cell(row=y1, column=7).value=x1/60 

 y1+=1 

 

#FTRIMP 

y3=2 

for i in range (2, s1.max_column+1, 3): 

 x3=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.67>s1.cell(row=u, column=i).value>=0.59: 

   x3=x3+0.91 

  elif 0.75>s1.cell(row=u, column=i).value>=0.67: 

   x3=x3+1.49 
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  elif .83>s1.cell(row=u, column=i).value>=0.75: 

   x3=x3+2.44 

  elif .91>s1.cell(row=u, column=i).value>=.83: 

   x3=x3+3.99 

  elif 1.02>s1.cell(row=u, column=i).value>=.91: 

   x3=x3+6.74 

 soutput.cell(row=y3, column=8).value=x3/60 

 y3+=1 

 

#Percent Max HR 

y4=2 

for i in range (2, s1.max_column+1, 3): 

 m=0 

 c=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i).value!=0: 

   m+=s1.cell(row=u, column=i).value 

   c+=1 

 if c==0: 

  soutput.cell(row=y4, column=10).value="--" 

 else: 

  soutput.cell(row=y4, column=10).value=m/c 

 y4+=1 

 

#Importing GPS 

TD={} 

M={} 

Z1={} 

Z2={} 

Z3={} 

Z4={} 

Z5={} 

Z6={} 

 

for u in range (1, blankrow(1,soutput,2)): 

 TD[soutput.cell(row=u, column=1).value]=M[soutput.cell(row=u, 

column=1).value]=Z1[soutput.cell(row=u, column=1).value]=Z2[soutput.cell(row=u, 

column=1).value]=Z3[soutput.cell(row=u, column=1).value]=Z4[soutput.cell(row=u, 

column=1).value]=Z5[soutput.cell(row=u, column=1).value]=Z6[soutput.cell(row=u, column=1).value]=0 

 for i in range (2, blankrow(1, speriods,2)): 

  if soutput.cell(row=u, column=1).value==speriods.cell(row=i, column=1).value: 

   if speriods.cell(row=i, column=2).value!="Session": 

    if speriods.cell(row=i, column=2).value[-1]==kValue[speriods.cell(row=i, 

column=1).value]: 

     TD[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=10).value 

     M[soutput.cell(row=u, 

column=1).value]+=minutes(datetime.datetime.strptime("0"+speriods.cell(row=i, column=8).value, 

"%H:%M:%S").time()) 

     Z1[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=12).value 

     Z2[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=13).value 

     Z3[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=14).value 

     Z4[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=15).value 

     Z5[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=16).value 



 

115 
 

     Z6[soutput.cell(row=u, column=1).value]+=speriods.cell(row=i, 

column=17).value 

 soutput.cell(row=u, column=2).value=M[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=11).value=TD[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=13).value=Z1[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=14).value=Z2[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=15).value=Z3[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=16).value=Z4[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=17).value=Z5[soutput.cell(row=u, column=1).value] 

 soutput.cell(row=u, column=18).value=Z6[soutput.cell(row=u, column=1).value] 

 if M[soutput.cell(row=u, column=1).value]!=0: 

  soutput.cell(row=u, column=12).value=TD[soutput.cell(row=u, 

column=1).value]/M[soutput.cell(row=u, column=1).value] 

 else: 

  soutput.cell(row=u, column=12).value="--" 

  ''' 

for u in range(2, blankrow(2, speriods, 2)): 

 if speriods.cell(row=u, column=2).value=="Session": 

  for i in range (1, blankrow(1, soutput, 2)): 

   if speriods.cell(row=u, column=1).value==soutput.cell(row=i, column=1).value: 

    soutput.cell(row=i, 

column=2).value=minutes(datetime.strptime("0"+speriods.cell(row=u, column=8).value, 

"%H:%M:%S").time()) 

    soutput.cell(row=i, column=11).value=speriods.cell(row=u, 

column=10).value 

    soutput.cell(row=i, column=12).value=speriods.cell(row=u, 

column=11).value 

    soutput.cell(row=i, column=13).value=speriods.cell(row=u, 

column=12).value 

    soutput.cell(row=i, column=14).value=speriods.cell(row=u, 

column=13).value 

    soutput.cell(row=i, column=15).value=speriods.cell(row=u, 

column=14).value 

    soutput.cell(row=i, column=16).value=speriods.cell(row=u, 

column=15).value 

    soutput.cell(row=i, column=17).value=speriods.cell(row=u, 

column=16).value 

    soutput.cell(row=i, column=18).value=speriods.cell(row=u, 

column=17).value 

''' 

#RPE 

for u in range(1, blankrow(2, sRPEs, 1)): 

  for i in range (1, blankrow(1, soutput, 2)): 

   if sRPEs.cell(row=u, column=1).value==soutput.cell(row=i, column=1).value: 

    if soutput.cell(row=i, column=2).value==None or soutput.cell(row=i, 

column=2).value==0: 

     soutput.cell(row=i, column =3).value=soutput.cell(row=i, 

column=4).value = soutput.cell(row=i, column=5).value= soutput.cell(row=i, column=6).value="--" 

    else: 

     soutput.cell(row=i, column=3).value=sRPEs.cell(row=u, 

column=2).value * soutput.cell(row=i, column=2).value/10 

     soutput.cell(row=i, column=4).value=sRPEs.cell(row=u, 

column=3).value * soutput.cell(row=i, column=2).value/10 

     soutput.cell(row=i, column=5).value=sRPEs.cell(row=u, 

column=4).value * soutput.cell(row=i, column=2).value/10 

     soutput.cell(row=i, column=6).value=sRPEs.cell(row=u, 

column=5).value * soutput.cell(row=i, column=2).value/10 

 

#Zone 7 and effindex 

for u in range (2, blankrow(1, soutput, 2)): 
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 if soutput.cell(row=u, column=17).value==None or soutput.cell(row=u, column=18).value==None: 

  soutput.cell(row=u, column=19).value="--" 

 else: 

  soutput.cell(row=u, column=19).value=soutput.cell(row=u, 

column=17).value+soutput.cell(row=u, column=18).value 

 if soutput.cell(row=u, column=11).value==None or soutput.cell(row=u, column=9).value==None or 

soutput.cell(row=u, column=9).value==0 or soutput.cell(row=u, column=9).value=="--": 

  soutput.cell(row=u, column=20).value="--" 

 else: 

  soutput.cell(row=u, column=20).value=soutput.cell(row=u, 

column=11).value/soutput.cell(row=u, column=9).value 

 if soutput.cell(row=u, column=12).value==None or soutput.cell(row=u, column=10).value==None or 

soutput.cell(row=u, column=10).value==0 or soutput.cell(row=u, column=10).value=="--" or 

soutput.cell(row=u, column=12).value=="--": 

  soutput.cell(row=u, column=21).value="--" 

 else: 

  soutput.cell(row=u, column=21).value=soutput.cell(row=u, 

column=12).value/soutput.cell(row=u, column=10).value 

  

 

headings=["Name", "Minutes", "rRPE","uRPE", "lRPE", "oRPE" , "sTRIMP", "nTRIMP", "iTRIMP", "% Max 

HR", "TD", "Workrate", "Zone 1", "Zone 2", "Zone 3", "Zone 4", "Zone 5", "Zone 6", "Zone 7", "Effindex 1", 

"Effindex 2"] 

for u in range(0,21): 

 soutput.cell(row=1, column=u+1).value=headings[u] 

 

wboutput.save(output) 
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Appendix F: Python Code for Matches 

 

input_wb="File_name.xlsx" 

output='File_name.xlsx' 

 

import datetime 

halftime=datetime.time(00, 00, 00) 

PM="Yes" 

 

########################################################################## 

 

import openpyxl 

import math 

 

 

wb = openpyxl.load_workbook(input_wb)  

wbvalues=openpyxl.load_workbook('Mastervalues.xlsx') 

wboutput=openpyxl.Workbook() 

soutput=wboutput.active 

s1=wb["P"] 

svalues=wbvalues.active 

speriods=wb["C"] 

sRPEs=wb["R"] 

 

def blankrow(col, sheet, st): 

 for i in range (st, sheet.max_row+2): 

  if sheet.cell(row=i, column=col).value==None: 

   return i 

   break 

 

def minutes(t): 

 h=t.hour 

 m=t.minute 

 s=t.second 

 return h*60+m+s/60 

 

def add12(t): 

 h=t.hour 

 m=t.minute 

 s=t.second 

 if h<11: 

  return datetime.time(h+12, m, s) 

 else: 

  return datetime.time(h,m,s) 

 

def addnone(t): 

 h=t.hour 

 m=t.minute 

 s=t.second 

 return datetime.time(h, m, s) 

 

MaxHR={} 

for i in range(2, blankrow(2,svalues,2)): 

 MaxHR[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=2).value 

 

MinHR={} 

for i in range(2, blankrow(2,svalues,2)): 

 MinHR[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=3).value 

 



 

118 
 

aValue={} 

for i in range(2, blankrow(2,svalues,2)): 

 aValue[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=4).value 

 

bValue={} 

for i in range(2, blankrow(2,svalues,2)): 

 bValue[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=5).value 

 

kValue={} 

for i in range(2, blankrow(2,svalues,2)): 

 kValue[svalues.cell(row=i, column=1).value]=svalues.cell(row=i, column=6).value 

 

if PM=="Yes": 

 for i in range (1, s1.max_column+1, 3): 

  for u in range (4, blankrow(i, s1, 4)): 

   s1.cell(row=u, column=i).value=add12(s1.cell(row=u, column=i).value) 

else: 

 for i in range (1, s1.max_column+1, 3): 

  for u in range (4, blankrow(i, s1, 4)): 

   s1.cell(row=u, column=i).value=addnone(s1.cell(row=u, column=i).value) 

 

p={} 

for i in range (1, s1.max_column, 3): 

 n=s1.cell(row=2, column=i).value 

 l=[] 

 for u in range (2, blankrow(1, speriods, 2)): 

  if speriods.cell(row=u, column=1).value==n: 

   if speriods.cell(row=u, column=2).value!="Session": 

    if speriods.cell(row=u, column=2).value[-1]==kValue[n]: 

     l.append(datetime.datetime.strptime(speriods.cell(row=u, 

column=5).value, "%I:%M:%S %p").time()) 

     l.append(datetime.datetime.strptime(speriods.cell(row=u, 

column=6).value, "%I:%M:%S %p").time()) 

 p[n]=l 

##################################################################### 

game_period=[] 

for u in range (4, blankrow(1, speriods,2)): 

 if speriods.cell(row=u, column=2).value=="Gx": 

  game_period.append(datetime.datetime.strptime(speriods.cell(row=u, column=5).value, 

"%I:%M:%S %p").time()) 

  game_period.append(datetime.datetime.strptime(speriods.cell(row=u, column=6).value, 

"%I:%M:%S %p").time()) 

  break 

 

session_period=[] 

for u in range (4, blankrow(1, speriods,2)): 

 if speriods.cell(row=u, column=2).value=="Sx": 

  session_period.append(datetime.datetime.strptime(speriods.cell(row=u, column=5).value, 

"%I:%M:%S %p").time()) 

  session_period.append(datetime.datetime.strptime(speriods.cell(row=u, column=6).value, 

"%I:%M:%S %p").time()) 

  break 

 

wboutput.create_sheet('Gx') 

sGx=wboutput['Gx'] 

wboutput.create_sheet('Sx') 

sSx=wboutput['Sx'] 

 

headings=["Name", "Minutes", "Position", "sTRIMP", "nTRIMP", "iTRIMP", "% Max HR", "TD", "Workrate", 

"Zone 1", "Zone 2", "Zone 3", "Zone 4", "Zone 5", "Zone 6", "Zone 7", "Effindex 1", "Effindex 2"] 
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for u in range(0,18): 

 sGx.cell(row=1, column=u+1).value=headings[u] 

 sSx.cell(row=1, column=u+1).value=headings[u] 

 

for i in range (1, s1.max_column+1, 3): 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i).value<session_period[0]  or s1.cell(row=u, column=i).value> 

session_period[1]: 

   s1.cell(row=u, column=i+1).value=0 

 

y6=2 

for i in range (2, s1.max_column+1, 3): 

 x24=0 

 Max=MaxHR[s1.cell(row=2, column=i-1).value] 

 Min=MinHR[s1.cell(row=2, column=i-1).value] 

 a=aValue[s1.cell(row=2, column=i-1).value] 

 b=bValue[s1.cell(row=2, column=i-1).value] 

 sSx.cell(row=y6, column=1).value= s1.cell(row=2, column=i-1).value 

 if a!="--": 

  for u in range (4, blankrow(i,s1,4)): 

   HRR=(s1.cell(row=u, column=i).value-Min)/(Max-Min) 

   if 1.02>HRR>0: 

    x24+=HRR*a*math.exp(b*HRR) 

  sSx.cell(row=y6, column=6).value=x24/60 

 else: 

  sSx.cell(row=y6, column=6).value="--" 

 y6+=1 

 

for i in range (2, s1.max_column+1, 3): 

 HR=MaxHR[s1.cell(row=2, column=i-1).value] 

 for u in range (4, blankrow(i,s1,4)): 

  s1.cell(row=u, column=i+1).value= s1.cell(row=u, column=i).value/HR 

 

y5=2 

for i in range (2, s1.max_column+1, 3): 

 x50=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.715>s1.cell(row=u, column=i+1).value>=0.645: 

   x50+=1.25 

  elif 0.785>s1.cell(row=u, column=i+1).value>=0.715: 

   x50+=1.71 

  elif .855>s1.cell(row=u, column=i+1).value>=0.785: 

   x50+=2.54 

  elif .925>s1.cell(row=u, column=i+1).value>=.855: 

   x50+=3.61 

  elif 1.02>s1.cell(row=u, column=i+1).value>=.925: 

   x50+=5.16 

 sSx.cell(row=y5, column=4).value=x50/60 

 y5+=1 

 

y7=2 

for i in range (2, s1.max_column+1, 3): 

 x70=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.67>s1.cell(row=u, column=i+1).value>=0.59: 

   x70+=0.91 

  elif 0.75>s1.cell(row=u, column=i+1).value>=0.67: 

   x70+=1.49 

  elif .83>s1.cell(row=u, column=i+1).value>=0.75: 

   x70+=2.44 
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  elif .91>s1.cell(row=u, column=i+1).value>=.83: 

   x70+=3.99 

  elif 1.02>s1.cell(row=u, column=i+1).value>=.91: 

   x70+=6.74 

 sSx.cell(row=y7, column=5).value=x70/60 

 y7+=1 

 

g1=2 

for i in range (2, s1.max_column+1, 3): 

 m2=c2=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i+1).value!=0: 

   m2+=s1.cell(row=u, column=i+1).value 

   c2+=1 

 if c2==0: 

  sSx.cell(row=g1, column=7).value="--" 

 else: 

  sSx.cell(row=g1, column=7).value=m2/c2 

 g1+=1 

 

for u in range (2, blankrow(1,sSx,2)): 

 for i in range (2, blankrow(1, speriods,2)): 

  if speriods.cell(row=i, column=2).value=="Sx": 

   if sSx.cell(row=u, column=1).value==speriods.cell(row=i, column=1).value: 

    sSx.cell(row=u, 

column=2).value=minutes(datetime.datetime.strptime("0"+speriods.cell(row=i, column=8).value, 

"%H:%M:%S").time()) 

    sSx.cell(row=u, column=8).value=speriods.cell(row=i, column=10).value 

    sSx.cell(row=u, column=10).value=speriods.cell(row=i, column=12).value 

    sSx.cell(row=u, column=11).value=speriods.cell(row=i, column=13).value 

    sSx.cell(row=u, column=12).value=speriods.cell(row=i, column=14).value 

    sSx.cell(row=u, column=13).value=speriods.cell(row=i, column=15).value 

    sSx.cell(row=u, column=14).value=speriods.cell(row=i, column=16).value 

    sSx.cell(row=u, column=15).value=speriods.cell(row=i, column=17).value 

 

for u in range (2, blankrow(1,sSx,2)): 

 if sSx.cell(row=u, column=2).value!=0 and sSx.cell(row=u, column=2).value!=None: 

  sSx.cell(row=u, column=9).value=sSx.cell(row=u, column=8).value/sSx.cell(row=u, 

column=2).value 

 else: 

  sSx.cell(row=u, column=9).value="--" 

 if sSx.cell(row=u, column=14).value!=None and sSx.cell(row=u, column=15).value!=None: 

  sSx.cell(row=u, column=16).value=sSx.cell(row=u, column=14).value+sSx.cell(row=u, 

column=15).value 

 else: 

  sSx.cell(row=u, column=16).value="--"  

 if sSx.cell(row=u, column=7).value!=0 and sSx.cell(row=u, column=7).value!=None and 

sSx.cell(row=u, column=7).value!="--" and sSx.cell(row=u, column=9).value!=0 and sSx.cell(row=u, 

column=9).value!=None and sSx.cell(row=u, column=9).value!="--": 

  sSx.cell(row=u, column=18).value=sSx.cell(row=u, column=9).value/sSx.cell(row=u, 

column=7).value 

 else: 

  sSx.cell(row=u, column=18).value="--" 

 if sSx.cell(row=u, column=8).value!=0 and sSx.cell(row=u, column=8).value!=None and 

sSx.cell(row=u, column=6).value!=0 and sSx.cell(row=u, column=6).value!=None and sSx.cell(row=u, 

column=6).value!="--" and sSx.cell(row=u, column=8).value!="--": 

  sSx.cell(row=u, column=17).value=sSx.cell(row=u, column=8).value/sSx.cell(row=u, 

column=6).value 

 else: 

  sSx.cell(row=u, column=17).value="--" 
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### 

 

 

for i in range (1, s1.max_column+1, 3): 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i).value<game_period[0]  or s1.cell(row=u, column=i).value> 

game_period[1]: 

   s1.cell(row=u, column=i+1).value=0 

   s1.cell(row=u, column=i+2).value=0 

 

y4=2 

for i in range (2, s1.max_column+1, 3): 

 x25=0 

 Max=MaxHR[s1.cell(row=2, column=i-1).value] 

 Min=MinHR[s1.cell(row=2, column=i-1).value] 

 a=aValue[s1.cell(row=2, column=i-1).value] 

 b=bValue[s1.cell(row=2, column=i-1).value] 

 sGx.cell(row=y4, column=1).value= s1.cell(row=2, column=i-1).value 

 if a!="--": 

  for u in range (4, blankrow(i,s1,4)): 

   HRR=(s1.cell(row=u, column=i).value-Min)/(Max-Min) 

   if 1.02>HRR>0: 

    x25+=HRR*a*math.exp(b*HRR) 

  sGx.cell(row=y4, column=6).value=x25/60 

 else: 

  sGx.cell(row=y4, column=6).value="--" 

 y4+=1 

 

 

y8=2 

for i in range (2, s1.max_column+1, 3): 

 x80=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.715>s1.cell(row=u, column=i+1).value>=0.645: 

   x80+=1.25 

  elif 0.785>s1.cell(row=u, column=i+1).value>=0.715: 

   x80+=1.71 

  elif .855>s1.cell(row=u, column=i+1).value>=0.785: 

   x80+=2.54 

  elif .925>s1.cell(row=u, column=i+1).value>=.855: 

   x80+=3.61 

  elif 1.02>s1.cell(row=u, column=i+1).value>=.925: 

   x80+=5.16 

 sGx.cell(row=y8, column=4).value=x80/60 

 y8+=1 

 

y9=2 

for i in range (2, s1.max_column+1, 3): 

 x90=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if 0.67>s1.cell(row=u, column=i+1).value>=0.59: 

   x90+=0.91 

  elif 0.75>s1.cell(row=u, column=i+1).value>=0.67: 

   x90+=1.49 

  elif .83>s1.cell(row=u, column=i+1).value>=0.75: 

   x90+=2.44 

  elif .91>s1.cell(row=u, column=i+1).value>=.83: 

   x90+=3.99 

  elif 1.02>s1.cell(row=u, column=i+1).value>=.91: 

   x90+=6.74 
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 sGx.cell(row=y9, column=5).value=x90/60 

 y9+=1 

 

g2=2 

for i in range (2, s1.max_column+1, 3): 

 m3=c3=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i+1).value!=0: 

   m3+=s1.cell(row=u, column=i+1).value 

   c3+=1 

 if c3==0: 

  sGx.cell(row=g2, column=7).value="--" 

 else: 

  sGx.cell(row=g2, column=7).value=m3/c3 

 g2+=1 

 

for u in range (2, blankrow(1,sGx,2)): 

 for i in range (2, blankrow(1, speriods,2)): 

  if speriods.cell(row=i, column=2).value=="Gx": 

   if sGx.cell(row=u, column=1).value==speriods.cell(row=i, column=1).value: 

    sGx.cell(row=u, 

column=2).value=minutes(datetime.datetime.strptime("0"+speriods.cell(row=i, column=8).value, 

"%H:%M:%S").time()) 

    sGx.cell(row=u, column=8).value=speriods.cell(row=i, column=10).value 

    sGx.cell(row=u, column=10).value=speriods.cell(row=i, column=12).value 

    sGx.cell(row=u, column=11).value=speriods.cell(row=i, column=13).value 

    sGx.cell(row=u, column=12).value=speriods.cell(row=i, column=14).value 

    sGx.cell(row=u, column=13).value=speriods.cell(row=i, column=15).value 

    sGx.cell(row=u, column=14).value=speriods.cell(row=i, column=16).value 

    sGx.cell(row=u, column=15).value=speriods.cell(row=i, column=17).value 

 

for u in range (2, blankrow(1,sGx,2)): 

 if sGx.cell(row=u, column=2).value!=0 and sGx.cell(row=u, column=2).value!=None: 

  sGx.cell(row=u, column=9).value=sGx.cell(row=u, column=8).value/sGx.cell(row=u, 

column=2).value 

 else: 

  sGx.cell(row=u, column=9).value="--" 

 if sGx.cell(row=u, column=14).value!=None and sGx.cell(row=u, column=15).value!=None: 

  sGx.cell(row=u, column=16).value=sGx.cell(row=u, column=14).value+sGx.cell(row=u, 

column=15).value 

 else: 

  sGx.cell(row=u, column=16).value="--"  

 if sSx.cell(row=u, column=7).value!=0 and sGx.cell(row=u, column=7).value!=None and 

sGx.cell(row=u, column=7).value!="--" and sGx.cell(row=u, column=9).value!=0 and sGx.cell(row=u, 

column=9).value!=None and sSx.cell(row=u, column=9).value!="--": 

  sGx.cell(row=u, column=18).value=sGx.cell(row=u, column=9).value/sGx.cell(row=u, 

column=7).value 

 else: 

  sGx.cell(row=u, column=18).value="--" 

 if sGx.cell(row=u, column=8).value!=0 and sGx.cell(row=u, column=8).value!=None and 

sGx.cell(row=u, column=6).value!=0 and sGx.cell(row=u, column=6).value!=None and sGx.cell(row=u, 

column=6).value!="--" and sSx.cell(row=u, column=8).value!="--": 

  sGx.cell(row=u, column=17).value=sGx.cell(row=u, column=8).value/sGx.cell(row=u, 

column=6).value 

 else: 

  sGx.cell(row=u, column=17).value="--" 

 

######################################################################## 

for i in range (1, s1.max_column, 3): 

 n=s1.cell(row=2, column=i).value 
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 if p[n]==[]: 

  print(n+ " no phases") 

 else: 

  for u in range (4, blankrow(i, s1, 4)): 

   x=p[n] 

   if s1.cell(row=u, column=i).value< x[0] or s1.cell(row=u, column=i).value> x[len(x)-

1]: 

    #len(x)-1 because its starts counting at 0 

    s1.cell(row=u, column=i+1).value=0 

   else: 

    for o in range (1, len(x),2): 

     if x[o]<s1.cell(row=u, column=i).value<x[o+1]: 

      s1.cell(row=u, column=i+1).value=0 

 

#iTRIMP (before change to %maxHR) 

soutput.merge_cells(start_row=1, start_column=8, end_row=1, end_column=10) 

soutput.cell(row=1, column=8).value='iTRIMP' 

soutput.cell(row=2, column=8).value='1st Half' 

soutput.cell(row=2, column=9).value='2nd Half' 

soutput.cell(row=2, column=10).value="Game" 

y2=3 

for i in range (2, s1.max_column+1, 3): 

 x21=0 

 x22=0 

 x23=0 

 Max=MaxHR[s1.cell(row=2, column=i-1).value] 

 Min=MinHR[s1.cell(row=2, column=i-1).value] 

 a=aValue[s1.cell(row=2, column=i-1).value] 

 b=bValue[s1.cell(row=2, column=i-1).value] 

 if a!="--": 

  for u in range (4, blankrow(i,s1,4)): 

   HRR=(s1.cell(row=u, column=i).value-Min)/(Max-Min) 

   if 1.02>HRR>0: 

    if type(halftime)!=datetime.time: 

     x23+=HRR*a*math.exp(b*HRR) 

    else: 

     if s1.cell(row=u, column=i-1).value<halftime: 

      x21+=HRR*a*math.exp(b*HRR) 

     elif s1.cell(row=u, column=i-1).value>=halftime: 

      x22+=HRR*a*math.exp(b*HRR) 

     x23=x21+x22 

  soutput.cell(row=y2, column=10).value=x23/60 

  soutput.cell(row=y2, column=8).value=x21/60 

  soutput.cell(row=y2, column=9).value=x22/60 

 else: 

  soutput.cell(row=y2, column=10).value="--" 

  soutput.cell(row=y2, column=8).value="--" 

  soutput.cell(row=y2, column=9).value="--" 

 y2+=1 

 

 

#Changes to %max HR 

for i in range (2, s1.max_column+1, 3): 

 HR=MaxHR[s1.cell(row=2, column=i-1).value] 

 for u in range (4, blankrow(i,s1,4)): 

  s1.cell(row=u, column=i).value= s1.cell(row=u, column=i).value/HR 

 

 

#Stagno TRIMP 

soutput.merge_cells(start_row=1, start_column=2, end_row=1, end_column=4) 
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soutput.cell(row=1, column=2).value='sTRIMP' 

soutput.cell(row=2, column=2).value='1st Half' 

soutput.cell(row=2, column=3).value='2nd Half' 

soutput.cell(row=2, column=4).value="Game" 

 

 

y1=3 

for i in range (2, s1.max_column+1, 3): 

 x11=0 

 x12=0 

 x13=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if type(halftime)!=datetime.time: 

   if 0.715>s1.cell(row=u, column=i).value>=0.645: 

    x13+=1.25 

   elif 0.785>s1.cell(row=u, column=i).value>=0.715: 

    x13+=1.71 

   elif .855>s1.cell(row=u, column=i).value>=0.785: 

    x13+=2.54 

   elif .925>s1.cell(row=u, column=i).value>=.855: 

    x13+=3.61 

   elif 1.02>s1.cell(row=u, column=i).value>=.925: 

    x13+=5.16 

  else: 

   if s1.cell(row=u, column=i-1).value<halftime: 

    if 0.715>s1.cell(row=u, column=i).value>=0.645: 

     x11+=1.25 

    elif 0.785>s1.cell(row=u, column=i).value>=0.715: 

     x11+=1.71 

    elif .855>s1.cell(row=u, column=i).value>=0.785: 

     x11+=2.54 

    elif .925>s1.cell(row=u, column=i).value>=.855: 

     x11+=3.61 

    elif 1.02>s1.cell(row=u, column=i).value>=.925: 

     x11+=5.16 

   elif s1.cell(row=u, column=i-1).value>=halftime: 

    if 0.715>s1.cell(row=u, column=i).value>=0.645: 

     x12+=1.25 

    elif 0.785>s1.cell(row=u, column=i).value>=0.715: 

     x12+=1.71 

    elif .855>s1.cell(row=u, column=i).value>=0.785: 

     x12+=2.54 

    elif .925>s1.cell(row=u, column=i).value>=.855: 

     x12+=3.61 

    elif 1.02>s1.cell(row=u, column=i).value>=.925: 

     x12+=5.16 

    x13=x11+x12 

 soutput.cell(row=y1, column=1).value= s1.cell(row=2, column=i-1).value 

 soutput.cell(row=y1, column=4).value=x13/60 

 soutput.cell(row=y1, column=3).value=x12/60 

 soutput.cell(row=y1, column=2).value=x11/60  

 soutput.cell(row=y1, column=2) 

 y1+=1 

 

#FTRIMP 

soutput.merge_cells(start_row=1, start_column=5, end_row=1, end_column=7) 

soutput.cell(row=1, column=5).value='nTRIMP' 

soutput.cell(row=2, column=5).value='1st Half' 

soutput.cell(row=2, column=6).value='2nd Half' 

soutput.cell(row=2, column=7).value="Game" 
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y3=3 

for i in range (2, s1.max_column+1, 3): 

 x31=0 

 x32=0 

 x33=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if type(halftime)!=datetime.time: 

   if 0.67>s1.cell(row=u, column=i).value>=0.59: 

    x33+=0.91 

   elif 0.75>s1.cell(row=u, column=i).value>=0.67: 

    x33+=1.49 

   elif .83>s1.cell(row=u, column=i).value>=0.75: 

    x33+=2.44 

   elif .91>s1.cell(row=u, column=i).value>=.83: 

    x33+=3.99 

   elif 1.02>s1.cell(row=u, column=i).value>=.91: 

    x33+=6.74 

  else: 

   if s1.cell(row=u, column=i-1).value<halftime: 

    if 0.67>s1.cell(row=u, column=i).value>=0.59: 

     x31+=0.91 

    elif 0.75>s1.cell(row=u, column=i).value>=0.67: 

     x31+=1.49 

    elif .83>s1.cell(row=u, column=i).value>=0.75: 

     x31+=2.44 

    elif .91>s1.cell(row=u, column=i).value>=.83: 

     x31+=3.99 

    elif 1.02>s1.cell(row=u, column=i).value>=.91: 

     x31+=6.74 

   elif s1.cell(row=u, column=i-1).value>=halftime: 

    if 0.67>s1.cell(row=u, column=i).value>=0.59: 

     x32+=0.91 

    elif 0.75>s1.cell(row=u, column=i).value>=0.67: 

     x32+=1.49 

    elif .83>s1.cell(row=u, column=i).value>=0.75: 

     x32+=2.44 

    elif .91>s1.cell(row=u, column=i).value>=.83: 

     x32+=3.99 

    elif 1.02>s1.cell(row=u, column=i).value>=.91: 

     x32+=6.74 

    x33=x31+x32 

 soutput.cell(row=y3, column=5).value=x31/60 

 soutput.cell(row=y3, column=6).value=x32/60 

 soutput.cell(row=y3, column=7).value=x33/60 

 y3+=1 

 

wboutput.create_sheet('1st Half') 

s1sthalf=wboutput['1st Half'] 

wboutput.create_sheet('2nd Half') 

s2ndhalf=wboutput['2nd Half'] 

wboutput.create_sheet('Game') 

sgame=wboutput['Game'] 

 

headings=["Name", "Minutes", "Position", "sTRIMP", "nTRIMP", "iTRIMP", "% Max HR", "TD", "Workrate", 

"Zone 1", "Zone 2", "Zone 3", "Zone 4", "Zone 5", "Zone 6", "Zone 7", "Effindex 1", "Effindex 2"] 

for u in range(0,18): 

 s1sthalf.cell(row=1, column=u+1).value=headings[u] 

 s2ndhalf.cell(row=1, column=u+1).value=headings[u] 
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headings2=["Name", "Minutes", "Position", "rRPE","uRPE", "lRPE", "oRPE" , "sTRIMP", "nTRIMP", 

"iTRIMP", "% Max HR", "TD", "Workrate", "Zone 1", "Zone 2", "Zone 3", "Zone 4", "Zone 5", "Zone 6", 

"Zone 7", "Effindex 1", "Effindex 2"] 

for u in range(0,22): 

 sgame.cell(row=1, column=u+1).value=headings2[u] 

 

for u in range(3, blankrow(1,soutput, 3)): 

 s1sthalf.cell(row=u-1, column=1).value=soutput.cell(row=u, column=1).value 

 s1sthalf.cell(row=u-1, column=4).value=soutput.cell(row=u, column=2).value 

 s1sthalf.cell(row=u-1, column=5).value=soutput.cell(row=u, column=5).value 

 s1sthalf.cell(row=u-1, column=6).value=soutput.cell(row=u, column=8).value 

 s2ndhalf.cell(row=u-1, column=1).value=soutput.cell(row=u, column=1).value 

 s2ndhalf.cell(row=u-1, column=4).value=soutput.cell(row=u, column=3).value 

 s2ndhalf.cell(row=u-1, column=5).value=soutput.cell(row=u, column=6).value 

 s2ndhalf.cell(row=u-1, column=6).value=soutput.cell(row=u, column=9).value 

 sgame.cell(row=u-1, column=1).value=soutput.cell(row=u, column=1).value 

 sgame.cell(row=u-1, column=8).value=soutput.cell(row=u, column=4).value 

 sgame.cell(row=u-1, column=9).value=soutput.cell(row=u, column=7).value 

 sgame.cell(row=u-1, column=10).value=soutput.cell(row=u, column=10).value 

 

 

 

TD1={} 

TD2={} 

M1={} 

M2={} 

Z11={} 

Z12={} 

Z21={} 

Z22={} 

Z31={} 

Z32={} 

Z41={} 

Z42={} 

Z51={} 

Z52={} 

Z61={} 

Z62={} 

for u in range (2, blankrow(1,s1sthalf,2)): 

 TD1[s1sthalf.cell(row=u, column=1).value]=TD2[s1sthalf.cell(row=u, 

column=1).value]=M1[s1sthalf.cell(row=u, column=1).value]=M2[s1sthalf.cell(row=u, 

column=1).value]=Z11[s1sthalf.cell(row=u, column=1).value]=Z12[s1sthalf.cell(row=u, 

column=1).value]=Z21[s1sthalf.cell(row=u, column=1).value]=Z22[s1sthalf.cell(row=u, 

column=1).value]=Z31[s1sthalf.cell(row=u, column=1).value]=Z32[s1sthalf.cell(row=u, 

column=1).value]=Z41[s1sthalf.cell(row=u, column=1).value]=Z42[s1sthalf.cell(row=u, 

column=1).value]=Z51[s1sthalf.cell(row=u, column=1).value]=Z52[s1sthalf.cell(row=u, 

column=1).value]=Z61[s1sthalf.cell(row=u, column=1).value]=Z62[s1sthalf.cell(row=u, column=1).value]=0 

 for i in range (2, blankrow(1, speriods,2)): 

  if s1sthalf.cell(row=u, column=1).value==speriods.cell(row=i, column=1).value: 

   if speriods.cell(row=i, column=2).value!="Session": 

    if speriods.cell(row=i, column=2).value[-1]==kValue[speriods.cell(row=i, 

column=1).value]: 

     if speriods.cell(row=i, column=2).value[0]=="1": 

      TD1[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=10).value 

      M1[s1sthalf.cell(row=u, 

column=1).value]+=minutes(datetime.datetime.strptime("0"+speriods.cell(row=i, column=8).value, 

"%H:%M:%S").time()) 

      Z11[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=12).value 
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      Z21[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=13).value 

      Z31[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=14).value 

      Z41[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=15).value 

      Z51[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=16).value 

      Z61[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=17).value 

     if speriods.cell(row=i, column=2).value[0]=="2": 

      TD2[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=10).value 

      M2[s1sthalf.cell(row=u, 

column=1).value]+=minutes(datetime.datetime.strptime("0"+speriods.cell(row=i, column=8).value, 

"%H:%M:%S").time()) 

      Z12[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=12).value 

      Z22[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=13).value 

      Z32[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=14).value 

      Z42[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=15).value 

      Z52[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=16).value 

      Z62[s1sthalf.cell(row=u, 

column=1).value]+=speriods.cell(row=i, column=17).value 

 s1sthalf.cell(row=u, column=2).value=M1[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=8).value=TD1[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=10).value=Z11[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=11).value=Z21[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=12).value=Z31[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=13).value=Z41[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=14).value=Z51[s1sthalf.cell(row=u, column=1).value] 

 s1sthalf.cell(row=u, column=15).value=Z61[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=2).value=M2[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=8).value=TD2[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=10).value=Z12[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=11).value=Z22[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=12).value=Z32[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=13).value=Z42[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=14).value=Z52[s1sthalf.cell(row=u, column=1).value] 

 s2ndhalf.cell(row=u, column=15).value=Z62[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=2).value=M1[s1sthalf.cell(row=u, 

column=1).value]+M2[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=12).value=TD1[s1sthalf.cell(row=u, 

column=1).value]+TD2[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=14).value=Z11[s1sthalf.cell(row=u, 

column=1).value]+Z12[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=15).value=Z21[s1sthalf.cell(row=u, 

column=1).value]+Z22[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=16).value=Z31[s1sthalf.cell(row=u, 

column=1).value]+Z32[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=17).value=Z41[s1sthalf.cell(row=u, 

column=1).value]+Z42[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=18).value=Z51[s1sthalf.cell(row=u, 

column=1).value]+Z52[s1sthalf.cell(row=u, column=1).value] 

 sgame.cell(row=u, column=19).value=Z61[s1sthalf.cell(row=u, 

column=1).value]+Z62[s1sthalf.cell(row=u, column=1).value] 



 

128 
 

 if M1[s1sthalf.cell(row=u, column=1).value]!=0: 

  s1sthalf.cell(row=u, column=9).value=TD1[s1sthalf.cell(row=u, 

column=1).value]/M1[s1sthalf.cell(row=u, column=1).value] 

 else: 

  s1sthalf.cell(row=u, column=9).value="--" 

 if M2[s1sthalf.cell(row=u, column=1).value]!=0: 

  s2ndhalf.cell(row=u, column=9).value=TD2[s2ndhalf.cell(row=u, 

column=1).value]/M2[s2ndhalf.cell(row=u, column=1).value] 

 else: 

  s2ndhalf.cell(row=u, column=9).value="--" 

 if sgame.cell(row=u, column=2).value!=0: 

  sgame.cell(row=u, column=13).value=sgame.cell(row=u, 

column=12).value/sgame.cell(row=u, column=2).value 

 else: 

  sgame.cell(row=u, column=13).value="--" 

 

y4=2 

for i in range (2, s1.max_column+1, 3): 

 m=m1=m2=c=c1=c2=0 

 for u in range (4, blankrow(i, s1, 4)): 

  if s1.cell(row=u, column=i).value!=0: 

   m+=s1.cell(row=u, column=i).value 

   c+=1 

   if s1.cell(row=u, column=i-1).value<halftime: 

    m1+=s1.cell(row=u, column=i).value 

    c1+=1 

   elif s1.cell(row=u, column=i-1).value>=halftime: 

    m2+=s1.cell(row=u, column=i).value 

    c2+=1 

 if c==0: 

  sgame.cell(row=y4, column=11).value="--" 

 else: 

  sgame.cell(row=y4, column=11).value=m/c 

 if c1==0: 

  s1sthalf.cell(row=y4, column=7).value="--" 

 else: 

  s1sthalf.cell(row=y4, column=7).value=m1/c1 

 if c2==0: 

  s2ndhalf.cell(row=y4, column=7).value="--" 

 else: 

  s2ndhalf.cell(row=y4, column=7).value=m2/c2 

 y4+=1 

 

 

for u in range(1, blankrow(2, sRPEs, 1)): 

  for i in range (1, blankrow(1, sgame, 2)): 

   if sRPEs.cell(row=u, column=1).value==sgame.cell(row=i, column=1).value: 

    if sgame.cell(row=i, column=2).value==None or sgame.cell(row=i, 

column=2).value==0: 

     sgame.cell(row=i, column =7).value=sgame.cell(row=i, 

column=4).value = sgame.cell(row=i, column=5).value= sgame.cell(row=i, column=6).value="--" 

    else: 

     sgame.cell(row=i, column=4).value=sRPEs.cell(row=u, 

column=2).value * sgame.cell(row=i, column=2).value/10 

     sgame.cell(row=i, column=5).value=sRPEs.cell(row=u, 

column=3).value * sgame.cell(row=i, column=2).value/10 

     sgame.cell(row=i, column=6).value=sRPEs.cell(row=u, 

column=4).value * sgame.cell(row=i, column=2).value/10 

     sgame.cell(row=i, column=7).value=sRPEs.cell(row=u, 

column=5).value * sgame.cell(row=i, column=2).value/10 
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for u in range (2, blankrow(1, sgame, 2)): 

 if sgame.cell(row=u, column=18).value==None or sgame.cell(row=u, column=19).value==None: 

  sgame.cell(row=u, column=20).value="--" 

 else: 

  sgame.cell(row=u, column=20).value=sgame.cell(row=u, 

column=18).value+sgame.cell(row=u, column=19).value 

 if sgame.cell(row=u, column=12).value==None or sgame.cell(row=u, column=10).value==None or 

sgame.cell(row=u, column=10).value==0 or sgame.cell(row=u, column=10).value=="--": 

  sgame.cell(row=u, column=21).value="--" 

 else: 

  sgame.cell(row=u, column=21).value=sgame.cell(row=u, 

column=12).value/sgame.cell(row=u, column=10).value 

 if sgame.cell(row=u, column=13).value==None or sgame.cell(row=u, column=11).value==None or 

sgame.cell(row=u, column=11).value==0 or sgame.cell(row=u, column=13).value=="--" or sgame.cell(row=u, 

column=11).value=="--": 

  sgame.cell(row=u, column=22).value="--" 

 else: 

  sgame.cell(row=u, column=22).value=sgame.cell(row=u, 

column=13).value/sgame.cell(row=u, column=11).value 

 

 

halves=[s1sthalf,s2ndhalf] 

for i in range(0,2): 

 for u in range (2, blankrow(1, halves[i], 2)): 

  if halves[i].cell(row=u, column=14).value==None or halves[i].cell(row=u, 

column=15).value==None: 

   halves[i].cell(row=u, column=16).value="--" 

  else: 

   halves[i].cell(row=u, column=16).value=halves[i].cell(row=u, 

column=14).value+halves[i].cell(row=u, column=15).value 

  if halves[i].cell(row=u, column=8).value==None or halves[i].cell(row=u, 

column=6).value==None or halves[i].cell(row=u, column=6).value==0 or halves[i].cell(row=u, 

column=6).value=="--": 

   halves[i].cell(row=u, column=17).value="--" 

  else: 

   halves[i].cell(row=u, column=17).value=halves[i].cell(row=u, 

column=8).value/halves[i].cell(row=u, column=6).value 

  if halves[i].cell(row=u, column=7).value==None or halves[i].cell(row=u, 

column=9).value==None or halves[i].cell(row=u, column=7).value==0 or halves[i].cell(row=u, 

column=9).value=="--" or halves[i].cell(row=u, column=7).value=="--": 

   halves[i].cell(row=u, column=18).value="--" 

  else: 

   halves[i].cell(row=u, column=18).value=halves[i].cell(row=u, 

column=9).value/halves[i].cell(row=u, column=7).value 

 

wboutput.save(output) 
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