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Abstract

Based on a Clebsch-like velocity representation and a combination of classical variational
principles for the special cases of ideal and Stokes flow a novel discontinuous Lagrangian
is constructed; it bypasses the known problems associated with non-physical solutions
and recovers the classical Navier-Stokes equations together with the balance of inner en-
ergy in the limit when an emerging characteristic frequency parameter tends to infinity.
Additionally, a generalized Clebsch transformation for viscous flow is established for the
first time. Next, an exact first integral of the unsteady, three-dimensional, incompressible
Navier-Stokes equations is derived; following which gauge freedoms are explored leading
to favourable reductions in the complexity of the equation set and number of unknowns,
enabling a self-adjoint variational principle for steady viscous flow to be constructed. Con-
currently, appropriate commonly occurring physical and auxiliary boundary conditions are
prescribed, including establishment of a first integral for the dynamic boundary condition
at a free surface. Starting from this new formulation, three classical flow problems are
considered, the results obtained being in total agreement with solutions in the open liter-
ature.
A new least-squares finite element method based on the first integral of the steady

two-dimensional, incompressible, Navier-Stokes equations is developed, with optimal con-
vergence rates established theoretically. The method is analysed comprehensively, thor-
oughly validated and shown to be competitive when compared to a corresponding, stan-
dard, primitive-variable, finite element formulation. Implementation details are provided,
and the well-known problem of mass conservation addressed and resolved via selective
weighting. The attractive positive definiteness of the resulting linear systems enables em-
ployment of a customized scalable algebraic multigrid method for efficient error reduction.
The solution of several engineering related problems from the fields of lubrication and film
flow demonstrate the flexibility and efficiency of the proposed method, including the case
of unsteady flow, while revealing new physical insights of interest in their own right.
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1 Introduction

For many systems of differential equations arising in science and engineering the intro-
duction of auxiliary potential fields has proved beneficial in several respects. Maxwell’s
equations serve as a prominent example, in which the electric field and the magnetic flux
density can be favourably replaced by a scalar and a vector potential, respectively. They
enable a reduction in the number of variables and hence equations, while appropriate us-
age of the gauge freedoms facilitates their reformulation as two decoupled wave equations
leading to a self-adjoint system with an associated Lagrangian [133]. Apart from the obvi-
ous formulaic advantages, the potentials allow for the treatment of electrodynamics in the
framework of Hamilton’s principle. In this context it is arguable that the historical debate
surrounding the Maxwell potentials, dating back to the 19th century [134, 283], can be
considered formative for the usage of potential fields in modern theoretical physics and
ground-breaking with respect to the later development of gauge theory [141], suggesting
Maxwell theory as a significant reference point for other field theories.
The present work explores and contributes to the utilisation of potentials in the field of

fluid mechanics with Maxwell theory guiding the objectives. The use of potentials that are
simply defined as those fields which lead to certain degrees of gauge freedom and therefore
are physically non-measurable, represents a vast area dating back to the work of Lagrange
[82] and Clebsch [64] at the end of the 18th and middle of the 19th centuries, respectively.
The review provided subsequently places the present work in context, showing why the
introduction of potentials in the case of viscous fluid flow in particular has remained rather
limited and what can be done to (partly) resolve this issue.
In fluid mechanics in general auxiliary potentials are frequently used either to reduce

the number of unknowns, as in the case of defining a streamfunction [154], or to express
physical quantities in terms of more tractable functions. The latter is achieved for in-
stance by the Papkovich-Neuber representation of velocity or the complex-valued Goursat
representation of the streamfunction, depending only on harmonic and analytic functions,
respectively [111, 154]. Most of these theoretically useful representations are limited ei-
ther with respect to the spatial dimension, symmetry requirements or the generality of
the physics involved.
As a usefully important application, potential fields have been employed to enable the

integration of the governing equations of fluid motion. Most notably, Bernoulli’s equation

1



1 Introduction

is obtained as a first integral of Euler’s equations in the absence of vorticity and viscosity,
if the velocity vector is taken to be the gradient of a scalar potential. The so-called Clebsch
transformation [154, 191] and related approaches allow for further extension to flows with
non-vanishing vorticity, resulting in a generalised Bernoulli equation complemented with
transport equations for the Clebsch potentials [236]. The term “first integral” in this
specific context was, amongst others, shaped by Helmholtz [123] in his treatise on vortex
motion, where he also introduced what is today called Helmholtz-Hodge decomposition
of vector fields into an irrotational and a solenoidal part. Most generally, the task is to
reformulate the equations as a gradient of a scalar quantity or the divergence of a tensorial
quantity set to zero allowing for integration in a further step; this may be achieved using
auxiliary potential fields and does not necessarily imply a reduction of the total differential
order.

While the above examples refer to inviscid flow in particular, progress involving the
full incompressible Navier-Stokes (NS) equations has been far less fruitful and restricted
in the main to the limiting case of steady two-dimensional (2D) flow, the most recent
contribution prior to the work reported in this thesis being that of Scholle et al. [230].
Along similar lines to Legendre [159], Coleman [70] and Ranger [199], they constructed
an exact complex-valued first integral, based on the introduction of an auxiliary complex
field; the formulation embodies the classical complex-valued Goursat representation for
steady Stokes flow [8, 111], allowing the streamfunction to be expressed in terms of two
analytic functions [171].

Closely related to the integration of field equations is the establishment of variational
principles. For physical systems formulated within the framework of Lagrange’s formalism
the dynamics are completely defined by one function only: the Lagrangian. This method-
ical concept successfully applies, for example, to the conservative branch of Newtonian
mechanics. Contrary to this, in continuum theories many open problems remain unsolved
to this day, especially when considering dissipative processes [216]; the viscous flow of a
fluid, described by the NS equations, is a typical example where a Lagrangian formulation
is missing [99]. However, several approaches exist for the cases of ideal [99, 183, 213, 236]
and Stokes flow [124] which can serve as a starting point.

Certainly, much of the work in this thesis is influenced by the idea of integrating the
viscous flow equations encapsulating at least some of the advantages gained in the case
of pure Eulerian flow. Closely related to the investigation of potential-based velocity
representations is the search for a variational principle of viscous flow. Prior to addressing
the specific content of the thesis, the following section provides a comprehensive overview of
the important literature that informed the direction of travel and underpins the outcomes.
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1.1 Maxwell’s vector potential and the advent of gauge theories

1.1 Maxwell’s vector potential and the advent of gauge theories

Any review of the significance of potential representations in modern physics would be
diminished considerably without reference to Maxwell’s theory of classical electrodynamics
and its immense impact on nearly all major 20th century theoretical developments such
as field theory in general, special relativity, wave mechanics and even gauge theory in the
modern description of interactions via the standard model of particle physics. Certainly,
the influence of Maxwell’s ideas on subsequent developments with all their subtleties is one
of the great narratives of science, told by numerous authors [134, 283, 284], culminating
in the famous words of Richard Feynman [96]:

“From a long view of the history of mankind — seen from, say, ten thousand
years from now — there can be little doubt that the most significant event of
the nineteenth century will be judged as Maxwell’s discovery of the laws of elec-
trodynamics. The American Civil War will pale into provincial insignificance
in comparison with this important scientific event of the same decade.”

However, there is one aspect in the history of classical electrodynamics which is particularly
fruitful in the context of the present work, namely the treatment of so-called potential
fields, associated with which is the question of the most adequate representation of a
theory.
Between 1855 and 1865, in a series of three papers, cf. [283] and references therein, James

Clerk Maxwell integrated the apparently disparate laws and phenomena of electricity
and magnetism, as observed by his contemporaries Charles-Augustin de Coulomb, Carl
Friedrich Gauss, André-Marie Ampère, Michael Faraday and others, into a unified theory
by modifying Ampère’s circuital law and introducing a displacement current term. He had
thus distilled an entire body of work on electricity and magnetism into a few equations
only and showed, as a consequence, that light propagates as electromagnetic waves; thus,
electricity, magnetism and light — three phenomena that seem so vastly different in their
manifestation — appeared as different aspects of one and the same phenomenon.
The form of the classical Maxwell equations in terms of the observables, the electric

field ~E and the magnetic field ~B, which has been taught in universities through most of
the 20th century and stated in most standard textbooks is due to Oliver Heaviside (1885)
and Heinrich Hertz (between 1884 and 1892); Maxwell’s preference was for one in terms
of potential fields [283]. There has been a long-standing debate on the use and physicality
of those potential fields which can be considered ground-breaking and which turned out
to be essential in the later description of gauge theory. In the following, a closer look is
taken at the different descriptions of classical electrodynamics.
In a vacuum the partial differential equations (PDEs) for the electric field Ei and the

3



1 Introduction

magnetic flux density Bi in the Heaviside-Hertz form are1:

∂iBi = 0 , (1.1a)

∂tBi + εijk∂jEk = 0 , (1.1b)

ε0∂iEi = ρ , (1.1c)

εijk∂jBk − ε0µ0∂tEi = µ0ji , (1.1d)

for a given charge density ρ and current density ji. The above set of equations is reduced
by introducing a vector potential ~A according to:

Bi =εijk∂jAk . (1.2)

Inserting this into (1.1b) leads to εijk∂j [∂tAk +Ek] = 0, which on the introduction of the
scalar potential ϕ, such that ∂tAk + Ek = −∂kϕ, leads to the expression:

Ei =− ∂iϕ− ∂tAi , (1.3)

for the electric field. Hence, by making use of the scalar potential ϕ and the vector
potential Ai, the homogeneous Maxwell equations (1.1a), (1.1b) are fulfilled identically
whereas the inhomogeneous ones (1.1c), (1.1d) become PDEs of second order in terms of
ϕ and Ai which are endowed with certain beneficial features:

(i) Written in terms of ϕ and Ai, equations (1.1c), (1.1d) become self-adjoint [133], that
is they can be derived from a variational principle based on the Lagrangian:

` = 1
2µ0

(εijk∂jAk)2 − ε0
2 (∂iϕ+ ∂tAi)2 + ρϕ+ jiAi ; (1.4)

whereas the original Maxwell equations are not self-adjoint.

(ii) If χ is an arbitrary scalar field, then by means of the gauge transformations:

Ai → A′i = Ai + ∂iχ , (1.5)

ϕ→ ϕ′ = ϕ− ∂tχ , (1.6)

Ai and ϕ can be redefined such that the observables Bi and Ei in (1.2), (1.3) remain
invariant. Thus a gauge of the potentials, by the fixing of χ, can be employed in
such a way as to achieve a convenient form of the remaining field equations.

One of the most common gauge transformations is the Lorenz gauge; by a proper choice
1Throughout the thesis both tensor calculus and the more classical “nabla calculus” are employed as con-
venient. Usually the Einstein summation convention is assumed for repeated indices in a mathematical
expression.

4



1.1 Maxwell’s vector potential and the advent of gauge theories

of χ the identity:
ε0µ0∂tϕ+ ∂iAi = 0 , (1.7)

is fulfilled, leading to the equations (1.1c), (1.1d) having the following decoupled form:
{
− 1
c2∂

2
t + ∂2

k

}
ϕ = − ρ

ε0
, (1.8a)

{
− 1
c2∂

2
t + ∂2

k

}
Ai = − ji

ε0
, (1.8b)

of a known type, namely two d’Alembert equations, where c = 1/√ε0µ0 is the speed of
light. For completeness it is noted that all of the above outcomes can similarly be arrived
at via the Coulomb gauge [133]:

∂iAi = 0 , (1.9)

in place of (1.7) resulting in a Poisson equation for ϕ in place of the inhomogeneous
d’Alembert equation (1.8a).
Furthermore, Maxwell’s equations can be expressed in a covariant form [133], that is

the laws of classical electromagnetism written in a form that is manifestly invariant under
Lorentz transformations, in the formalism of special relativity using rectilinear inertial co-
ordinate systems. These expressions make it both simple to prove that the laws of classical
electromagnetism take the same form in any inertial coordinate system and provide a way
to translate the fields and forces from one frame to another. Combining Ak with ϕ leads
to the 4-potential Aµ while combining Ei with Bi yields an electromagnetic field tensor
Fµν , the forms of which are:

(Aµ) =




ϕ/c,

A1

A2

A3



, (Fµν) =




0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0



, (1.10)

with µ, ν = 0, . . . , 3. In this way, the two potential relationships (1.2), (1.3) can be replaced
by:

Fµν = ∂µAν − ∂νAµ, (1.11)

with the contra-variant gradient (∂µ) = (c−1∂t,−∂1,−∂2,−∂3). The remaining two equa-
tions, (1.1c), (1.1d), can consequently be written in the elegant form ∂µF

µν = µ0jν , where
(jν) =

(
cρ,~j

)
denotes the 4-vector of the current density.

Obviously, the above potential representation, together with proper gauging, is associ-
ated with several advantages. First of all, compared to (1.1a)–(1.1c), the set of equations
(1.8a), (1.8b) is reduced, removing the redundancy associated with need of having four
equations for four unknown fields. The latter form, comprising two wave equations, is
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also more convenient in the sense that it is decoupled, self-adjoint and thus admits a
least-action principle which was hitherto unavailable.
The representation of electromagnetism via potential quantities which are determined

only up to a certain transformation (1.5), (1.6) left Maxwell’s contemporaries uncomfort-
able initiating debates which were not free of polemics. Heaviside (1850-1925) seemed
to have derived great satisfaction in 1885 in eliminating the vector potential ~A from the
Maxwell equations. Disagreeing with Maxwell’s elevation of ~A to the rank of a fundamental
quantity, Heaviside ([121], Vol. 2, p. 482) regarded:

“ ~A and its scalar potential parasite ϕ sometimes causing great mathematical
complexity and indistinctiveness; and it is, for practical reasons, best to murder
the whole lot, or, at any rate, merely employ them as subsidiary functions. [...]
Thus ϕ and ~A are murdered, so to speak, with a great gain in definiteness and
conciseness.”

In a similar vein, Heaviside ([122], p. 383) had this to say:

“The reader who is acquainted with the (at present) more ‘classical’ method of
treating the electromagnetic field in terms of the vector and scalar potentials
cannot fail to be impressed by the difference of procedure and of ideas involved.
In the present method we are, from first to last, in contact with those quantities
which are believed to have physical significance (instead of with mathematical
functions of an essentially indeterminate nature), and with the laws connecting
them in simplest form.”

Heaviside and Hertz correctly realised that Maxwell’s theory could be completely described
using the relevant observables, ~E and ~B, and the potentials indeed allow for an elegant,
possibly computationally useful, description which in their opinion, however, caused an
undesirable “obscuring” [283] of the underlying physical laws. While their perception of
the potentials spread in the scientific community, it was only with the advent of modern
quantum field theory starting with Schrödinger’s paper in 1926 that the deep significance
of gauge invariance and correspondingly a different view on the electrodynamic potentials
emerged, as outlined below.
In a non-relativistic quantum mechanics context consider the Schrödinger Lagrange

density of a free particle in the absence of electromagnetic fields [141]:

`0 (ψ,ψ∗, ∂αψ, ∂αψ∗) = ~
2i [ψ∂tψ∗ − ψ∗∂tψ]− ~2

2m∇ψ · ∇ψ
∗ , (1.12)

where ~ = h/2π, as usual, denotes the reduced Planck constant and ψ(xi, t) the complex-
valued wave function of the particle at position x and time t; according to Born’s in-
terpretation [141] ψ∗ψ, with ψ∗ referring to the adjoint of ψ, delivers the probability
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1.1 Maxwell’s vector potential and the advent of gauge theories

density of the particle. When variations of (1.12) are taken with respect to ψ∗ and ψ the
time-dependent Schrödinger equation and its adjoint are obtained:

i~∂tψ + ~2

2m∆ψ = 0 ,

−i~∂tψ∗ + ~2

2m∆ψ∗ = 0 .

Obviously, gauge symmetries of the form ψ → ψ′ = ψeiχ lead to the transformation
behaviour:

∂αψ → ∂α
[
ψeiχ

]
= [∂αψ + iψ∂αχ] eiχ ,

and thus turn out to be symmetries of the Lagrange density (1.12) if and only if χ = const,
i.e. if the phase gauge is global. Now, the introduction of further physical effects, for
instance due to the presence of electromagnetic fields, is intimately connected with the
requirement of local gauge symmetry according to the formalism of minimal coupling
[141, 142], which is seen as follows. If invariance with respect to a local symmetry with
arbitrary gauge field χ = χ (xα) is required, an extension of the Lagrangian density (1.12)
is unavoidable. One possibility is a formal substitution of the contra-variant gradient:

∂α −→ ∂α − iq
c
Aα ,

involving an electric charge q, the speed of light c, and new so-called compensating fields
Aα, cf. (1.10), leading to the transformation rule:

{
∂α − iq

c
Aα

}
ψ →

{
∂α − iq

c
A′α

}[
ψeiχ

]
=
[
∂αψ − i

(
q

c
A′α − ∂αχ

)
ψ

]
eiχ .

This delivers the desired form
{
∂α − i qcAα

}
ψ → {

∂α − i qcAα
}
ψeiχ if and only if the com-

pensating fields obey the transformation rule:

Aα → A′α = Aα + c

q
∂αχ ,

which is exactly the, already known, gauge transformation for the electrodynamic Maxwell
potentials (1.5), (1.6). The extended Lagrangian density can furthermore depend on invari-
ants which can be formed from the compensating fields and their derivatives, particularly
∂αAβ − ∂βAα, which in the simplest case (when squared) leads to the Lagrangian density
`M (∂αAβ − ∂βAα) of Maxwell’s theory, i.e. equation (1.4).

In summary the Lagrangian density:

` (ψ,ψ∗, Aβ, ∂αψ, ∂αψ∗, ∂αAβ) = `0

(
ψ,ψ∗,

{
∂α − iq

c
Aα

}
ψ,

{
∂α + iq

c
Aα

}
ψ∗
)

+ `M (∂αAβ − ∂βAα) , (1.13)
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of Schrödinger-Maxwell theory for the motion of charged particles in electromagnetic fields
is obtained which, by variation with respect to ψ, ψ∗, results in the following equation
[142]:

i~∂tψ + ~qφψ + ~2

2m

{
∂k + iq

c
Ak

}2
ψ = 0 , (1.14)

and its adjoint, and by variation with respect toAα in the Maxwell equations ∂µFµν = µ0jν

(as shown earlier). Interestingly, in the above formalism the Maxwell potentials occur
naturally as “compensating fields” in order to allow for a local gauge symmetry and these
compensating fields introduce the desired electromagnetic effects; here and also in the
standard model of particle physics the, formerly objected to, gauge freedoms are elevated
to a principle for the construction of theories. For further background to the development
of gauge theory, Yang-Mills theory and the standard model, the reader is referred to [141].

Although with the above development physicists became aware of the conceptual sig-
nificance of potential fields, in electrodynamics it remained an accepted standard that
the electromagnetic field resides in the observables ~E and ~B, i.e. where both of them
vanish there cannot be any electromagnetic effects on a charged particle. This perception
was attacked in 1959 in the article by Aharonov and Bohm [5] demonstrating an effect
which, according to their explanation, is only comprehensible in the context of quantum
electrodynamics when the vector potential is present. Their interpretation amounts to
attributing a physically fundamental role to the potentials, which seems in contradiction
to their gauge freedoms and implies that a representation of electrodynamics in terms
of the potentials is somewhat physically more complete while, in the words of Wu and
Yang [283], “[. . . ] the field strengths underdescribe electromagnetism”. However, while
the Aharanov-Bohm effect itself has been experimentally verified several times, cf. [283],
the explanation remains a source of debates: typical contrary positions are described by
Aharonov et al. [6], Wu and Yang [283] in favour of a quantum topological explanation
and Boyer [42] preferring an explanation by classical electrodynamic effects.

While the Aharonov-Bohm effect is well described by quantum electrodynamics a fre-
quent misleading argument attributes significance to the potentials because they cannot be
eliminated from quantum electrodynamics in contrast to classical electrodynamics [283];
however, in 1927 Madelung [168, 201] demonstrated a gauge invariant hydrodynamic form
of the equations which is reviewed briefly below as it leads to the focus of the present
work: fluid mechanics.

By employing the substitution:

% = mψ∗ψ , φ = ~
m

argψ , ψ =
√
%

m
exp

(
im
~
φ

)
,
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in (1.13), it follows that:
{
∂α − iq

c
Aα

}
ψ =

{
∂α − iq

c
Aα

}[√
%

m
exp

(
im
~
φ

)]

=
[
∂α%

2% + im
~
∂αφ− iq

c
Aα

]
ψ ,

giving an alternative form for the Lagrange density (1.13):

` = −%
[
∂φ

∂t
− ~q
m
A0 + 1

2

(
∇φ− ~q

mc
~A

)2]
− ~2(∇%)2

8m2%
+ `M (· · · ) .

Variation of the corresponding action functional with respect to φ leads to a continuity
equation of the form:

∂%

∂t
+∇ ·

(
%

[
∇φ− ~q

mc
~A

])
= 0 , (1.15)

and therefore allows identification of the quantity in square brackets as a flow (velocity)
field:

~u := ∇φ− ~q
mc

~A , (1.16)

while variation with respect to % delivers a generalised Bernoulli equation:

−
[
∂φ

∂t
− ~q
m
A0 + 1

2

(
∇φ− ~q

mc
~A

)2]
+ ~2(∇%)2

8m2%2 +∇ ·
[
~2∇%
4m2%

]

︸ ︷︷ ︸
~2∆√%
2m2√% =: −P

= 0 .

The above can be written compactly as:

∂φ

∂t
− ~q
m
A0 + 1

2~u
2 + P = 0 , (1.17)

and can be formally interpreted as a first integral of a “kind of Euler equation”. This can
be seen by forming the gradient of (1.17) upon using (1.16):

∂

∂t

[
~u+ ~q

mc
~A

]
− ~q
m
∇A0 + 1

2∇~u
2 +∇P = 0 ,

which, via consideration of the vector identity 1
2∇~u2 = (~u · ∇)~u + ~u × (∇ × ~u) together

with the Maxwell relationships:

∇× ~u = − ~q
mc
∇× ~A = − q

m
~B , (1.18)

−~q
m

[
∇A0 − c−1∂t ~A

]
= − q

m
~E , (1.19)
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leads to:
Dt~u = −∇P + q

m

[
~E + ~u× ~B

]
. (1.20)

Obviously, the Euler-like equations (1.20), (1.15) with the substitution (1.16) and comple-
mented by the classical Maxwell equations (1.1a)-(1.1d) provide a representation purely
in terms of the gauge invariant quantities ~u, P , ~E and ~B.
As a concluding remark one can state that, independent of the long-standing debate on

the physical significance of potentials, a direct comparison between the gauge invariant
equations (1.20), (1.15) and the original gauge variant Schrödinger equations (1.14) reveals
beyond doubt a greater elegance and simplicity of the latter, not least due to its linearity
and self-adjointness. This perception is also the origin of Anthony’s work [9] employing
a generalised Schrödinger representation of fluid mechanics, an idea which in contrast to
the Madelung representation is far less familiar in the literature.

1.2 Potentials in fluid dynamics and the limits of Lagrange
formalism

1.2.1 Potentials and first integrals of the equations of motion

Similar to electrodynamics2 the use of auxiliary potential fields for different purposes has
a long-standing history [99]. Consider, as a basis, the motion of a viscous, incompressible
fluid governed by the Navier-Stokes and continuity equations [154]:

%

(
∂~u

∂t
+ (~u · ∇) ~u

)
= −∇p+ η∇2~u+ ~f , (1.21a)

∇ · ~u = 0 , (1.21b)

in which ~u denotes the velocity field, p the pressure and η, ρ and ~f the dynamic viscosity,
density and external forces, respectively. Equations (1.21a) and (1.21b) represent momen-
tum and mass balance in which the former is a version of Newton’s second law with the
inertial terms (per volume) stated on the left-hand side and the forces per volume, i.e.
pressure, viscous and external forces, on the right-hand side. Two important special cases
arise for flows which are either dominated by viscosity or by convection; in the former case
the inertial terms can be neglected in favour of the viscous ones resulting in the Stokes
equations, while in the latter case the viscous term η∇2~u is neglected resulting in the Euler
equations, mentioned earlier.

Certainly equations (1.21a), (1.21b) differ significantly from Maxwell’s equation (1.1a)-

2Consider also the work of Kambe [142, 143] for a comparison between electrodynamics and fluid dynamics
and the role of gauge principles.
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(1.1d), not only in formal issues such as the non-linearity involved but also in their theoret-
ical foundation: the former equations are Galilean-invariant while the latter are Lorentz-
invariant. Nevertheless the expectation is that potential fields in fluid mechanics can be
utilised to a similar promising effect as in electrodynamics, both with respect to analytical
and computational simplification, and to the development of a Hamiltonian formulation.
However, the historical development has been tardy and disparate, mostly covering special
cases; it is important to consider this in more detail in order to understand the context of
this thesis.
While the governing equations of fluid mechanics in their modern form (1.21a), (1.21b)

were derived by Euler (1752), Navier (1823) and Stokes (1845) [77] spanning a century,
already Euler himself and most notably Lagrange (1781), cf. [140], introduced the notion
of potential flow which is certainly the most familiar use historically of a potential field
in fluid mechanics. According to the Helmholtz decomposition introduced in 1858 [123]
any vector field can be resolved into the sum of an irrotational (curl-free) and a solenoidal
(divergence-free) part, i.e. ~u = ∇φ+∇× ~ψ, which when applied to the velocity field gives
rise to Lagrange’s potential formulation if ~ψ = 0 and to the streamfunction formulation
for incompressible flow if φ = 0. Obviously both approaches allow for the reduction of
unknown fields at the expense of a higher differential order leading to further analytical
and numerical methods of solution; particularly the scalar streamfunction approach in two
dimensions established as one of the most useful standard representations in this respect
[154].

(a) Clebsch-like approach

It is illuminating to interpret the above potentials as tools to enable the integration of the
equations of motion; the most familiar example is Bernoulli’s equation which is obtained as
a first integral of Euler’s equations in the absence of vorticity and viscosity if the velocity
vector ~u = ∇φ is perceived as the gradient of a scalar potential. Application of the velocity
gradient representation to Euler’s equation yields:

~0 = D~u
Dt +∇[P + U ] = ∇

[
∂φ

∂t
+ ~u2

2 + P + U

]
, (1.22)

with P =
´
%−1dp denoting the so-called pressure function, U the potential energy of the

external force, i.e. ~f = −∇U is assumed, and the operator D/Dt = ∂/∂t+ ~u · ∇ denotes
the material time derivative. In 1856 Clebsch [64, 154] proposed a non-standard potential
representation for the velocity field for the case of inviscid and rotational flow:

~u = ∇φ+ α∇β , (1.23)
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in terms of three scalar potentials φ, α and β, the so-called Clebsch variables; the re-
sulting set of equations together with the continuity equation turn out to be self-adjoint,
permitting a variational formulation [154]. From a mathematical viewpoint, the poten-
tial representation (1.23) is a decomposition of the velocity field into a curl-free part ∇φ
and a helicity-free part α∇β. This decomposition is not unique; by applying the gauge
transformation:

φ −→ φ′ = φ+ f(α, β, t) ,

α −→ α′ = g(α, β, t) , (1.24)

β −→ β′ = h(α, β, t) ,

an equivalent set of Clebsch variables φ′, α′, β′ is given if and only if the functions f, g, h
fulfill the two PDEs [233]:

∂f

∂β
+ g

∂h

∂β
= α , (1.25)

∂f

∂α
+ g

∂h

∂α
= 0 . (1.26)

The benefit of the Clebsch transformation becomes apparent, again by application to
Euler’s equations for inviscid flows:

~0 = D~u
Dt +∇[P + U ] = ∇

[
∂φ

∂t
+ α

∂β

∂t
+ ~u2

2 + P + U

]
+ Dα

Dt ∇β −
Dβ
Dt∇α . (1.27)

Being basically of the form:

∇ [· · · ] + [· · · ]∇α+ [· · · ]∇β = ~0 , (1.28)

this vector equation can be decomposed according to:

∂φ

∂t
+ α

∂β

∂t
+ ~u2

2 + P + U = F (α, β, t) , (1.29)
Dα
Dt = −∂F

∂β
, (1.30)

Dβ
Dt = ∂F

∂α
, (1.31)

with an unknown function F (α, β, t). By making use of the gauge transformation (1.24),
F → 0 is achieved and (1.29) takes the form of a generalised Bernoulli equation. The
above three scalar field equations are a first integral of Euler’s equations and self-adjoint,
their most intriguing feature is that the vorticity:

~ω = 1
2∇× ~u = 1

2∇α×∇β , (1.32)
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is given by the two scalar fields α, β, only. Hence, the vortex dynamics is reduced to two
transport equations (1.30), (1.31).
It should be noted that for an arbitrary velocity field ~u the existence of the Clebsch vari-

ables φ, α, β is guaranteed only locally. Their global existence depends on the topological
features of the flow: in the case of a non-vanishing integral of helicity, for example for flows
with closed vortex lines that form linked rings or with isolated points of zero vorticity,
global existence is not given. For further details the reader is referred to [20, 286]. In the
case of global non-existence, completeness of the Clebsch representation may be reached
by additional pairs of variables, like: ~u = ∇φ+α1∇β1 +α2∇β2. The Clebsch transforma-
tion has also been applied to different physical problems, for instance to baroclinic flow
[236], Maxwell’s equations in classical electrodynamics [271], to Magnetohydrodynamics
[58] and even quantum theory within the context of a quantization of vortex tubes [168].
Viscous flow in terms of Clebsch variables is considered in this thesis for the first time.

(b) Goursat-like approach

A range of potential field methods for viscous flow based on the biharmonic streamfunc-
tion representation of the Stokes equations has arisen from the fruitful exchange of ideas
between linear elasticity and fluid mechanics. These methods aim at expressing physical
quantities in terms of more tractable functions, examples being the Papkovich-Neuber rep-
resentation of velocity or the complex Goursat representation of the streamfunction which
only depend on harmonic and analytic functions, respectively [111, 154]; as a consequence
this reduction allows the employment of the whole of holomorphic function theory and
their solution tools. However, there is also a deep relation to the above idea of integrating
the equations of motion, as will become clear below.
In the first half of the 20th century the complex variable method was developed for the

solution of biharmonic problems in plane linear elasticity, which nowadays is considered
a classical [177, 184] approach. By combining the two Cartesian coordinates x and y to
form the complex expression ξ = x+ iy, all solutions of the biharmonic equation ∆2Ψ = 0
take the form:

Ψ = Re
[
g0(ξ) + ξ̄g1(ξ)

]
, (1.33)

with arbitrary holomorphic functions g0 and g1, the so-called Goursat functions; Re de-
notes the real part of the subsequent complex expression and ξ̄ = x − iy the complex
conjugate of ξ. The problem is thus effectively reduced to one of finding two holomorphic
functions in a domain Ω, with boundary ∂Ω, satisfying conditions which are typically of
the form [184]:

g1(ξ) + ξg′1(ξ) + g′0(ξ) = f(ξ) , ξ ∈ ∂Ω . (1.34)
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One such approach is to represent g0 and g1 as Cauchy-type integrals of an unknown den-
sity function on the boundary, thus leading to the well-known Sherman-Lauricella equation
[84], a Fredholm integral equation for the density which can be solved efficiently via a Nys-
tröm discretization in combination with fast multipole methods [111]. Other approaches
are based on a direct expansion of the holomorphic functions as a Fourier series or in
meromorphic functions with singularities outside of the domain, in which (1.34) is approx-
imated via boundary element or collocation methods [70, 144, 194, 217]. Although the
biharmonic equation is not preserved under conformal transformation, diverse examples
exist where a mapping of the Goursat representation to computationally more convenient
regions has proved useful [60, 184].

Beyond linear elasticity, complex variable methods have emerged as a wide-ranging and
powerful tool in fluid mechanics [187, 194], where a variety of analytical solutions and
computational methods have materialised, particularly for Stokes flow problems with free
boundaries [131, 202, 227, 228, 247]. The benefits thereof stem from the mathematically
important notion of the analyticity of the underlying holomorphic functions g0 and g1

which can be exploited for certain problems [70, 194]; free surface boundary conditions, a
notorious complicating feature, can be handled in the framework of the Goursat represen-
tation naturally, due in the main to the complementary character of the streamfunction
and Airy stressfunction3 [8, 171, 190, 251]. Unfortunately, the method in its classical
form is restricted to zero Reynolds number scenarios, i.e. to Stokes flow, in which the
streamfunction remains biharmonic.

More recently, an approach to integrate the steady 2D-NS equations has been established
by Ranger [199] and Scholle et al. [230]. There it is shown that a complex variable
transformation ξ := x+iy, ξ := x−iy of the field equations, together with the introduction
of a complex velocity field u := ux + iuy, yields the equivalent formulation4:

∂

∂ξ

[
p+ %

ūu

2 + U

]
+ %

∂

∂ξ

(
u2

2

)
= 2η ∂

2u

∂ξ∂ξ
, (1.35a)

Re
(
∂u

∂ξ

)
= 0 , (1.35b)

where Re denotes the real part of the subsequent complex expression. The introduction
of a scalar real-valued potential Φ(ξ, ξ) satisfying:

p+ %
ūu

2 + U = 4 ∂
2Φ

∂ξ∂ξ
, (1.36)

3This is explained in more detail in Sec. 3.1 of Chapter 3.
4Note, that in contrast to [230] the standard complex variable transformation is used here leading to
slightly different equations.
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1.2 Potentials in fluid dynamics and the limits of Lagrange formalism

allows (1.35a), in the first place, to be recast in an integrable fashion:

∂

∂ξ

[
%
u2

4 − η
∂u

∂ξ
+ 2∂

2Φ

∂ξ
2

]
= 0 , (1.37)

and in the second place to be integrated with respect to ξ, delivering a result dependent
on an undetermined integration function g(ξ):

%
u2

4 − η
∂u

∂ξ
+ 2∂

2Φ

∂ξ
2 = g(ξ) . (1.38)

At this point the close relationship between the terms on the left-hand side of equation
(1.36) and the steady version of Bernoulli’s equation is observed, indicating that those
terms will vanish in the case of irrotational and inviscid flow. In the general case of a
viscous flow with non-vanishing vorticity, (1.36) can be interpreted as a potential repre-
sentation of the deviation from Bernoulli’s equation.

Further simplification follows by observing that the potential field Φ itself is not uniquely
determined by (1.36) but only up to the sum of an arbitrary holomorphic function f(ξ)
and its complex conjugate:

Φ→ Φ+ f(ξ) + f(ξ) , (1.39)

which facilitates the elimination of g by fixing the gauge freedom (1.39) according to
f ′′(ξ) = g(ξ). Finally an alternative to the classical representation (1.21a), (1.21b) of the
NS equations is given by the integrated set of equations:

%
u2

4 − η
∂u

∂ξ
+ 2∂

2Φ

∂ξ
2 = 0 , (1.40a)

Re
(
∂u

∂ξ

)
= 0 . (1.40b)

Note, the resulting equations contain first order derivatives only of velocity in contrast to
the original NS equation (1.21a)-(1.21b) and the corresponding 2D streamfunction version
in general contains second order derivatives only, whereas the classical streamfunction
formulation results in a fourth order equation5.

A real-valued representation of the complex system (1.40a)-(1.40b) in tensor notation
reads:

η

[
∂ui
∂xj

+ ∂uj
∂xi
− ∂uk
∂xk

δij

]
− %

[
uiuj − ukuk

δij
2

]
= 2

[
∂2Φ

∂xi∂xj
− ∂2Φ

∂xk∂xk

δij
2

]
, (1.41)

5Here the case applies that is mentioned at the beginning of the introduction: eq. (1.37) facilitates a first
integral of (1.35a) while, due to the introduction of Φ, the total differential order in (1.40a) remains
two.
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together with:
∂uk
∂xk

= 0 , p+ %

2ukuk + U = ∂2Φ

∂xk∂xk
. (1.42)

The second equation in (1.42) is only relevant in applications where the recovery of pressure
is of interest; the pressure can easily be computed subsequently.

In a recent paper Marner et al. [171] revealed the close relationship between the first
integral representation and the complex variable method: if a streamfunction Ψ is intro-
duced according to:

u = −2i∂Ψ
∂ξ

, (1.43)

it can be beneficially combined with the potential Φ to form the complex potential, χ =
Φ+ iηΨ , in terms of which the first integral (1.40a) reads:

∂2χ

∂ξ
2 = −%u

2

8 . (1.44)

In the case of Stokes flow equation (1.44) reduces to the elegant form:

∂2χ

∂ξ
2 = 0 , (1.45)

which is a simple bianalytic equation; the solution of which is given by the combination
χ = g0(ξ) + ξ̄g1(ξ) of two holomorphic functions, as in (1.33).

A key feature of the above is it can be construed that the first integral (1.44) is a
generalisation of the complex-valued potential formulation (1.45) towards viscous flows
with inertia, with the difference that (1.44) no longer allows for a direct integration to the
Goursat representation (1.33). Based on this first integral of the equations of motion, a
non-conventional variational formulation has been established in order to solve for plane
creeping flow by a semi-analytical direct Ritz method, Scholle et al. [230]; further con-
tributions are a contour integral method developed by Coleman [70] and a least-squares
approach by Bolton and Thatcher [38]. Most notably, a similar set of equations was used
by Ranger [199] to achieve a parametrized general solution of the NS equations; he later
demonstrated a generalisation to three-dimensional (3D) flow [198], additionally see his
other papers and references therein.

Similar to electrodynamics the representation of physical quantities in terms of potential
fields is closely related to the construction of variational principles. This is best known
for ideal fluids as shown below.
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1.2 Potentials in fluid dynamics and the limits of Lagrange formalism

1.2.2 Potentials and variational principles

The goal of describing processes in terms of maximum and minimum principles is an allur-
ing one which has occupied scientists for centuries. The first such principles were Fermat’s
principle of least time in optics and Hamilton’s principle of least action in mechanics [213].
In 1744 the mathematician Euler expressed the hope, cf. [99]:

“As the construction of the universe is the most perfect possible, being the
handiwork of an all-wise Maker, nothing can be met with in the world in which
some maximal or minimal property is not displayed. There is, consequently,
no doubt but that all the effects of the world can be derived by the method
of maxima and minima from their final causes as well as from their efficient
ones.”

A concise mathematical manifestation of the above statement is provided by the Lagrange
formalism [216] of field theory which also comprises the least action principle of classical
mechanics as a special case. Consider a dynamical physical system described by a set
of fields ψ = (ψ1, . . . , ψn) depending on generalised coordinates qk and time t, i.e. ψi =
ψi(qk, t), then Hamilton’s principle for fields states that among all possible virtual processes
in a fixed domain Ω with fixed endpoints ψi(q, t0) = g0(qk), ψi(q, t1) = g1(qk) the effective
process taking place in the time interval [t0, t1] is distinguished by enforcing the stationarity
(not necessarily the extremum) of a corresponding action functional:

L[ψi] =
ˆ t1

t0

ˆ
Ω
`(ψi, ∂kψi, ∂tψ, qk, t) dΩ dt . (1.46)

Here, the functional L is also called the Lagrangian and the corresponding integrand ` the
Lagrangian density. Setting the functional derivatives to zero, i.e.:

δL[ψ]
δψi

= 0 ,

implies for i = 1, . . . , n the Euler-Lagrange equations [108]:

∂`

∂ψi
− ∂

∂t

(
∂`

∂ψ̇i

)
−∇ ·

(
∂`

∂∇ψi

)
= 0 . (1.47)

The classical Hamilton’s principle of particle mechanics results if the fields ψi are simply
replaced by the Cartesian coordinates xi of n particles. For these particles, usually the
kinetic and potential energy are obtained as T = 1

2
∑
imiẋ

2
i and U = U(xi) and the action

functional (1.46) is replaced by:

L[xi] =
ˆ t1

t0

T (ẋ)− U(x) dt , (1.48)
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leading to Newton’s second law for a conservative force as Euler-Lagrange equations:

miẍi = −∂U
∂xi

, i = 1, . . . , n .

Since Euler’s famous statement and the advent of Hamilton’s principle, variational laws
in nature have attracted the attention of many scientists and this attraction is certainly
not only from a philosophical or aesthetic point of view. It is insightful to distinguish how
the interest in such principles varies from the standpoint of different scientific communities
and how this determines the assessment of the usefulness of them, see [254]. First of all, the
main interest of the applied mathematician in the variational formulation lies in the fact
that it offers a method of proving information about the existence of the solution of a given
problem; here one speaks of “energy arguments”, not necessarily referring to the physical
energy [92]. Similar methods are also useful when establishing stability bounds in the field
of hydrodynamics, as in the case of two superposed fluids with different densities [61] or
water waves [167]. Contrastingly, the main interest of the engineer in variational formu-
lations lies in the possibility of utilising numerical methods of solution and thus his/her
aim is the finding of the solution. The so-called direct Ritz method of the calculus of vari-
ations, both in a semi-analytic or finite element like fashion, generally leads to favourably
structured linear systems allowing for efficient solution strategies; the relationship between
variational principles and Galerkin methods is well described by Finlayson and Scriven [97]
in the unifying framework of the method of weighted residuals. Moreover, in the case of
Hamiltonian systems symplectic integration schemes become available which numerically
preserve physical conservation quantities [161] and are particularly suitable for long-term
simulations of evolution equations; more than standard Runge-Kutta schemes. The main
interest of the physicist is different still. S/he is fascinated by the synthetic statement
and by the physical meaning of the functional (it may be a time, an energy, an action, a
transition probability, etc.). But what seems to to be the crucial impetus of the physicist,
is the axiom that equations obtained from a variational principle constitute a privileged
class among all conceivable equations. This is probably due to the fact that many of the
field equations are derived from a variational principle [254] and, more importantly, that
the Lagrange formalism elegantly allows the establishment of an immediate connection
between symmetry principles and physical conservation laws via the unified framework of
Noether’s theorem [155, 218, 235].
The wide and manifold interest in variational principles has initiated the so-called “in-

verse problem of the calculus of variations” [150, 214, 218] which is concerned with the
question whether a system of differential equations is variational, i.e., if it can be expressed
in the form of Euler–Lagrange equations for some Lagrangian, and how this Lagrangian
can be found. The original (restricted) form of the problem given for instance by Hirsch
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1.2 Potentials in fluid dynamics and the limits of Lagrange formalism

[128] and cited from Tonti [254] is:

Definition 1.1. Given a (non-linear) problem N(u) = 0 with N : D(N) ⊂ U → R(N) ⊂
V = U∗, find a functional L[u], if any, such that the operator N is the gradient of L, i.e.
such that:

L′uϕ := lim
ε→0

L(u+ εϕ)− L(u)
ε

= (N(u), ϕ) .

This implies that the solutions of problem N(u) = 0 are the critical points of the functional
L[u] and vice versa.

In order that an operator N be the gradient of a functional L it is necessary that the
circulation of the element v = N(u) along any reducible closed line contained in D(N)
vanishes which requires the equations N(u) = 0 to be self-adjoint or the operator N ′u to
be symmetric, respectively, expressed by:

(N ′uϕ,ψ) = (N ′uψ,ϕ) . (1.49)

The necessary symmetry condition (1.49) becomes sufficient if the domain D(N) is simply
connected, a classical result by Volterra [270] and rigorously proved by Vainberg [261].
An alternative form of (1.49) in terms of differential conditions dating, at least, back to
Helmholtz, cf. [150], has been widely used to test differential equations for self-adjointness
as for instance demonstrated by Finlayson [98].
However, there are physical systems, mostly of a dissipative nature, that have remained

resistant for a long time to a variational formulation and apparently do not admit a La-
grangian according to Def. 1.1; this is the case for the NS equations of fluid dynamics,
Fourier’s equations of heat conduction and others. Though still optimistic Helmholtz re-
stricted Euler’s original statement when commenting in his classical paper on the principle
of minimal action [125]:

“Already now one can consider highly probable that such a principle of minimal
action represents the general law of all reversible processes in nature.”

But irrespective of the persistent belief that the Lagrange formalism is confined to the
above mentioned reversible processes, propagated for example by a theorem of Bauer [26],
already Bateman [23, 24] presented a counter example in 1929 demonstrating that in some
cases dissipative systems are amenable also, at least when altering them in a suitable way.
The existence of equations which well describe physical phenomena although they are not
deducible from a variational principle have stimulated physicists and engineers to extend
the classical calculations of variations. In this vein Davis [80], in 1928, formulated an
extended version of the inverse problem, namely to find a functional whose critical points
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are solutions of the problem and vice versa; this statement is more general compared to
the former because it requires only the coincidence of the critical points with the solution,
without the supplementary requirement that N be the gradient of the functional L.
The extension of the classical variational calculus has led to a confusing variety of

approaches which is difficult to classify; however, such a classification would be desirable
in order to position a new potential-based variational formulation of the Navier-Stokes
equations as provided in this thesis. Certainly one of the oldest methods is that of Lagrange
multipliers: if a Lagrangian is known which reproduces parts of the desired system of
equations a typical approach is to add further equations via so-called Lagrange multipliers
[214]; these multipliers appear as new unknown-fields which by variation produce the
desired equations. However, this extends the number of fields and variation with respect
to the original physical fields delivers further adjoint equations which in total amounts to
adding the complete adjoint problem; then one talks of the adjoint method [99] offering
quite generally stationary principles for non-linear equations. So why is this not the
solution of the inverse problem of variational calculus? Certainly such methods have their
eligibility in optimisation theory [244], but normally the engineer is concerned by the
increased number of unknown fields and equations preferring any other kind of Galerkin
method while, certainly, the physicist is unsatisfied with the lack of physical meaning
of the multipliers and, even more, with the frequently occurring non-causality of adjoint
equations. At least sometimes a few of the multipliers can be eliminated or a physical
meaning can be attached to these otherwise artificial fields as is the case for ideal flow,
see Subsec. 1.2.2(c). In this vein Salmon [213] came to the conclusion:

“While the beauty of Hamiltonian theory may reside in its formal mathemati-
cal structure, its real importance depends very much on the physical meaning
attached to the mathematical symbols.”

Instead of adding further equations, equivalently the corresponding least-squares prob-
lem may be solved which is of higher differential order; this amounts to minimising the
(physically artificial) residual in some suitable Hilbert norm and is in principle also ap-
plicable to general non-linear systems. Although the latter approach might be attractive
from a numerical point of view and many of the essential advantages of a variational prin-
ciple are present, the higher order in the variational formulation has confined it mostly to
first order systems or first order reformulations allowing for the employment of standard
continuous and piece-wise smooth finite elements [36].
An outstanding and one of the most extensive and general approaches to the inverse

problem has been derived by functional analytic tools. Here, a fundamental observation is
that the necessary symmetry condition (1.49) involves the use of a bilinear form and that
symmetry of an operator as well as conservativeness of a vector field are properties with
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respect to a bilinear form. This implies that if an operator does not satisfy the symmetry
criterion, one may change the canonical bilinear form in order to ensure that the given
non-linear operator does. Gurtin [116], Magri [169] and Tonti [253] show that for general
linear initial value problems the employment of a convolution bilinear form allows for the
construction of infinitely many variational formulations giving the desired equations in
equivalent integro-differential form. Later Tonti [255] demonstrated that this approach
is closely related to the method of integrating factors, known for its application to the
damped harmonic oscillator [255], and later generalised it in the method of integrating
operators [254, 255] which continues to be explored today [87]: actually a change of bilinear
form can always be associated with an operator multiplication of the original equations.
In [254] it is shown that, given a non-linear equation N(u) = 0 under certain conditions
a suitable linear, symmetric and invertible integral operator K can be found such that
the critical points of the functional L[u] := 1

2(N(u),KN(u))0, the gradient of which gives
N̄(u) = N ′∗u KN(u), coincide with the solutions of Nu = 06.
Other approaches to the inverse problem of variational calculus include the generalised

bracket formalism [113, 145, 183], the complex-valued field approach mainly promoted by
Anthony [9, 10, 11]7, fractional derivatives [76, 204] and others. From a more physical
point of view Scholle [216, 218] investigates the role of symmetries for the construction
of Lagrangians. Also “quasi” variational formulations and “restricted” formulations have
been suggested which frequently loose most or all of the advantages mentioned at the
outset, cf. [99]. While a thoroughly researched historical treatise on the inverse problem
of variation containing all the relevant older literature is presented by Kotulek [150] two
nice reviews by Santilli [214], and from a differential geometric point of view Morandi
et al. [182] cover the more modern development. Excellent sources for the development of
variational principles in fluid mechanics are the book of Finlayson [99] and, particularly
for the Hamiltonian description of ideal flow, Salmon [213] and well summarised in a more
modern description by Morrison et al. [183].
The following focuses on the field of fluid mechanics with emphasis on variational prin-

ciples which appear physically meaningful, following a path pursued by Anthony [9] and
particularly Scholle [216, 218]. Finlayson [99] collects problems in fluid mechanics and heat
transfer for which variational principles exist; in special cases the variational integral is a
minimum or maximum, often the variational integral is only stationary, and in the general
case no variational principle exists at all, except after inclusion of the adjoint problem or
modifications according to other rules as outlined above.

6One has to be careful when replacing a problem Nu = f by N ′∗u Nu = N ′∗u f because generally the domain
of the operator N ′∗u Nu is a restriction of the domain of N ; then the restriction of the domain necessary
for the application of the operator N ′∗u would exclude elements f , that is possible source distributions.
Thus the role of K is to modify the range of N making it “digestible” to the operator N ′∗u [255].

7Cf. the correspondence between the Schrödinger and Euler equations in Sec. 1.1.
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(a) Simple principles in fluid mechanics

Initially, consider some simple examples of fluid dynamics which indeed allow for extremal
principles and for a physically meaningful Lagrangian. Take (1.21a) and (1.21b) in their
steady form with viscosity neglected, then among all incompressible velocity fields ~u in
the domain Ω with, say, boundary conditions %~u · ~n = g on ∂Ω the irrotational motion of
the form ~u = ∇φ has the least kinetic energy:

L1[~u] = 1
2%
ˆ

Ω
~u2 dΩ ;

the so-called Kelvin’s principle. On the other hand, among all irrotational fields ~u = ∇φ
an incompressible flow with %~u · ~n = g maximises the functional:

L2[φ] = −1
2%
ˆ

Ω
∇φ · ∇φ dΩ +

ˆ
∂Ω
φg d∂Ω .

Together there exists a reciprocal relationship L2(φ) ≤ kin. energy ≤ L1[~u]. Although
these principles are “useful” they are related to rather specific cases and rarely applicable.
At least there exist extensions to steady compressible flow according to Bateman [23] with
the variational integral being the kinetic energy plus one-half the pressure, but they are
not examined in detail here.
If now the viscous terms are present but the inertial terms are absent, equations (1.21a),

(1.21b) reduce to the Stokes equations, say with velocity boundary conditions:

η∆~u−∇p = f in Ω , (1.50a)

∇ · ~u = 0 in Ω , (1.50b)

~u = ~g auf ∂Ω , (1.50c)

and the Helmholtz-Korteweg principle from 1868 [124] applies, stating that among all
incompressible flows ~u with boundary conditions (1.50c) the one fulfilling the Stokes equa-
tions (1.50a) has the least viscous dissipation. As an alternative to incorporating the
incompressibility constraint via a restriction of the admissible space of vector fields, it can
be appended to the functional via the method of Lagrange multipliers. This leads to the
following Lagrangian density:

`(ui, ∂jui, p) = 2ηDijDij − p
∂ui
∂xi

, (1.51)

involving the strain rate tensor:

Dij = 1
2

[
∂ui
∂xj

+ ∂uj
∂xi

]
.
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In (1.51), the pressure p acts as a Lagrange multiplier for the incompressibility constraint
(1.50b), i.e. (1.50b) results from variation with respect to p and (1.50a) from variation
with respect to ~u. However, as a drawback the original minimisation principle is converted
to a stationary principle requiring much more advanced (saddle point) methods [28] to
solve the corresponding linear systems. Variational principles for Stokes flow in terms
of other variables, i.e. in terms of the streamfunction only or the streamfunction and
vorticity, are analysed in detail by De Coster et al. [81] based on an investigation of the
biharmonic problem.
There exist also a variety of variational principles for general unsteady ideal flow which

is an essential ingredient for the subsequent treatment of the full Navier-Stokes equations
and for this reason considered in the following paragraphs in more detail. Further generali-
sations to magnetohydrodynamics and non-Newtonian fluids are summarised by Finlayson
[99], which are of no further relevance in the present context, while an analysis of general
thermodynamic principles like the least entropy concept of Onsager [189] or related con-
cepts [196, 208] are not universally valid. Although Finlayson [99] and others come to the
conclusion that none of these physically meaningful principles are capable of incorporating
both inertial and viscous effects at the same time, there remains the option to modify the
theory of fluid mechanics itself to make it fit into the framework of Lagrange formalism.
A relatively close form of modification is considered in the following, subsequent to an
analysis of the ideal flow case.

(b) Fluid flow from two view points

Often, fluid mechanics is treated entirely in terms of Eulerian variables as in the description
(1.21a), (1.21b), but the simplest form of Hamilton’s principle for a perfect fluid is obtained
by a straightforward generalization of (1.48) to the case of infinitely many marked particles
distributed continuously in space [183, 213]. Thus before proceeding to discuss variational
principles it is useful to clarify these two different views on fluid mechnics.
In the Lagrangian variable description, also called material description, one picks out a

particular particle, labelled by ~a, and keeps track of where it goes in time t. Suppose the
position of a fluid element with a specified label ~a at a time t, referred to a fixed rectangular
coordinate system, is given by Lagrangian coordinates ~q = (q1, q2, q3), ~q = q(~a, t). The
label ~a = (a1, a2, a3) should uniquely identify the fluid element and is often taken to be
the element’s position at time t = 0, but obviously exhibits a gauge freedom. Assume that
~a varies over a fixed domain Ω ⊂ R3 which is completely filled with fluid, and that for a
fixed t the function q : Ω → Ω is one-to-one and onto. Moreover, assume that as many
derivatives of q with respect to a as needed exist. Often in the Hamiltonian context the
functions ~q = q(~a, t) are assumed to be diffeomorphisms and their collection is referred
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to as the diffeomorphism group [183]. Viewing the map ~a 7→ ~q at fixed t as a coordinate
change, the Jacobian matrix Jij = ∂qi/∂aj has an inverse given by:

∂qk
∂aj

Aki
det J = δij ,

where A is the cofactor matrix of J , being conveniently defined through:

Aki = 1
2εkjlεimn

∂qj
∂am

∂ql
∂an

. (1.52)

Alternatively, in the so-called Eulerian field description, one stays at a spatial observa-
tion point ~x = (x1, x2, x3) ∈ Ω and monitors the nature of the fluid at ~x at time t. The
most important Eulerian variable is the Eulerian velocity field ~u(~x, t). This quantity is
the velocity of the particular fluid element that is located at the spatial point ~x at time t.
The label of that particular fluid element is given by ~a = q−1(~x, t), and so:

~u(~x, t) = q̇(~a, t)
∣∣
~a=q−1(~x,t) := q̇ ◦ q−1(~x, t) , (1.53)

where q̇ denotes differentiation with respect to time at fixed label ~a. Attached to a fluid
element is a certain amount of mass described by a density function %0(~a). As the fluid
moves so that ~a 7→ ~q, the volume of an infinitesimal region will change, but its mass must
remain fixed. The statement of local mass conservation is %d3x = %0d3a, where d3a is an
initial infinitesimal volume element that maps to d3q at time t, and d3x = det(J)d3a8,
giving:

%(~x, t) = %0(~a)
det J(~a, t)

∣∣∣∣
~a=q−1(~x,t)

= %0
det J ◦ q

−1(~x, t) . (1.54)

Besides the density, for an ideal fluid, one attaches an entropy per unit mass, s = s0(~a),
to a fluid element, and this quantity remains fixed in time. In the Eulerian description
this gives rise to the entropy field:

s(~x, t) = s0(~a)
∣∣∣
~a=q−1(~x,t)

= s0 ◦ q−1(~x, t) . (1.55)

Equations (1.53)-(1.55) express the Euler–Lagrange map.

(c) Ideal flow action principle in Lagrangian coordinates

Construction of the Lagrangian requires identification of the potential energy, and this
requires thermodynamics, because potential energy is stored in terms of pressure and
temperature. A basic assumption of the fluid approximation is that of local thermody-

8When integrating over Ω, d3q is replaced by d3x.
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namic equilibrium. In the energy representation of thermodynamics, the extensive energy
is treated as a function of the entropy and the volume. For a fluid, it is convenient to
consider the energy per unit mass, denoted by e, to be a function of s and the mass density
% a measure of the volume. The intensive quantities, temperature and pressure, are given
by:

T = ∂e

∂s
and p = %2 ∂e

∂%
. (1.56)

Special choices for e produce specific fluid flows like barotropic or adiabatic flow. Conven-
tional thermodynamic variables can be viewed as Eulerian variables with a static velocity
field. Writing e(%, s), where % and s are spatially independent or, if the system has only
locally relaxed, these variables can be functions of ~x. For an ideal fluid, each fluid element
can be viewed as a self-contained isentropic thermodynamic system that moves with the
fluid. The total fluid potential energy functional and the kinetic energy functional are
given by:

U(q) =
ˆ

Ω
%0e

(
%0

det J , s0

)
d3a and T (q, q̇) =

ˆ
Ω
%0
q̇2

2 d3a ,

respectively, in which the former is a functional of q that depends only upon det J and
hence only upon ∂qi/∂aj . The action functional analogous to (1.48) is then:

L =
ˆ t1

t0

ˆ
Ω

[1
2%0q̇

2 − %0e

(
%0

det J , s0

)]
d3adt . (1.57)

The end conditions for Hamilton’s principle for the fluid are the same as those of mecha-
nics, that is, δq(a, t0) = δq(a, t1) = 0. The non-penetration condition, δq · n = 0 on δΩ,
where n is a unit normal vector is also assumed. Other boundary conditions, such as pe-
riodic and free boundary conditions, are also possibilities. Hamilton’s principle amounts
to δL/δq(a, t) = 0, which, together with the end and boundary conditions, implies the
following equations of motion:

%0q̈i +Aij
∂

∂aj

(
%2

0
(det J)2

∂e

∂%

)
= 0 . (1.58)

Here, the identity ∂Aij/∂aj = 0 has been used, which can be seen using (1.52). Equation
(1.58) amounts to Newton’s second law for an ideal fluid, which is made clearer by using
the following useful identity:

∂

∂qi
= 1

det J Aij
∂

∂aj
. (1.59)
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The Eulerian variable force law follows from (1.58) upon using (1.59):

%

(
∂~u

∂t
+ ~u · ∇~u

)
= −∇p , (1.60)

where ~u = ~u(x, t). The remaining Eulerian equations of mass conservation and entropy
advection follow from the constraints that s0 and %0 are constant for fluid elements. Time
differentiation and the transformations of (1.54) and (1.55) yield:

∂%

∂t
+∇ · (%~u) = 0 , (1.61)
∂s

∂t
+ ~u · ∇s = 0 . (1.62)

Equations (1.60)–(1.62) together with a given function e(%, s) and the relation p = %2∂e/∂% =
0 constitute the Eulerian description.

(d) Ideal flow action principle in Eulerian coordinates

Early attempts to formulate an Eulerian version of Hamilton’s principle (e.g. Clebsch [64]
1859, Bateman [23] 1929, Eckart [88] 1960) were ad hoc and only partly successful in that
they yielded dynamical equations whose solutions are only a subset of the solutions to
the ideal-fluid equations. The first general Eulerian versions of Hamilton’s principle were
those of Lin [162] (1963) and Seliger and Witham [236] (1968). For a thorough review of
the early literature, see Finlayson [99] (1972). Lin’s key contribution was the introduction
of new constraints, which, as explained by Bretherton [49] (1970), force an equivalence
between the Eulerian and particle-mechanics versions of Hamilton’s principle. When the
Eulerian version is derived from the particle-mechanics version, then Lin’s constraints
appear as automatic requirements, see Salmon [213].
Via (1.57) and the reasoning given above, the action functional must be equivalent to:

L =
ˆ t1

t0

ˆ
Ω

[
~u2

2 − e
(

%0(~a)
det J(~a, t) , s0(~a)

)]
%0(~a)

det J(~a, t) d3x dt , (1.63)

for arbitrary variations δ~a. To carry out this variation the entire integrand of (1.63) must
be expressed in terms of ~a(~x, t) and its derivatives. To express the velocity ~u as derivatives
of ~a, the identity:

∂t~a+ (~u · ∇)~a = 0 , (1.64)

is solved for ~u and the result substituted back into (1.63); equivalently, the vector equation
(1.64) can be appended as constraints on (1.63) to allow for independent variations δ~u and
δ~a. If furthermore equation (1.61) is appended as a constraint on (1.63), then %0/ det J
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can be replaced by % and the following action functional:

L =
ˆ t1

t0

ˆ
Ω

(
~u2

2 − e(%, s)− ζiDtai

)
%+ φ

(
∂%

∂t
+∇ · (%~u)

)
d3x dt , (1.65)

is obtained for independent variations δ%, δ~u, δ~a, δ~ζ and δφ. Here ~ζ = (ζ1, ζ2, ζ3) and φ
are the Lagrange multipliers corresponding to (1.64) and (1.61). The velocity variation of
(1.65) yields:

δ~u : ~u = ζi∇ai +∇φ , (1.66)

which can be used to eliminate ~u entirely. After integration by parts, (1.65) becomes:

L =
ˆ t1

t0

ˆ
Ω
%

(
ζi
∂ai
∂t

+ ∂φ

∂t
+ ~u2

2 + e(%, s)
)

d3x dt , (1.67)

for variations δ~a, δ~ζ, δ% and δφ, in which ~u is simply an abbreviation for (1.66). The
variational principle (1.67) is one of many obtained by Seliger and Witham [236] using a
rather different approach; however, the above derivation emphasizes the close connection
between (1.67) and the particle-mechanics form of Hamilton’s principle, and it puts a clear
physical interpretation on the “potentials” ai as particle labels.

Variation of the Lagrangian (1.67) constitutes eight evolution equations for eight inde-
pendent variables, while (1.63) suggests that the number of variables can be reduced with
no loss in generality. Indeed, Boozer [41] gives a transparent proof that in the velocity
representation (1.66) φ and ζ3 can always be set to zero while for general non-homentropic
flow, for instance, ζ2 can be identified with the entropy s according to Salmon [213]. If
the variable replacement ~a = (β,−ϑ, ζ), ~ζ = (α, s, 1) and φ = 0 is employed, the more
familiar version of the Lagrangian9:

L =
ˆ t1

t0

ˆ
Ω
`(ζ, α, β, s, ϑ, %) d3x dt , (1.68)

` = −%
[
∂ζ

∂t
+ α

∂β

∂t
− s∂ϑ

∂t
+ ~u2

2 + e(%, s)
]
, (1.69)

is obtained for variations δζ, δα, δβ, δs, δϑ and δ%, where:

~u = ∇ζ + α∇β − s∇ϑ . (1.70)

9The variable replacement is employed to keep in line with [236]; correspondingly the minus sign in (1.69)
is added without effect.
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Variation of (1.68) yields the following Euler-Lagrange equations according to (1.47):

δα : Dtβ = 0 , δβ : Dtα = 0 , (1.71a)

δs : Dtϑ = T , δϑ : Dts = 0 , (1.71b)

δζ : ∂t%+∇ · (%~u) = 0 , (1.71c)

δ% : ∂tζ + α∂tβ − s∂tϑ+ ~u2/2 + e+ P/% = 0 . (1.71d)

where temperature T is defined by (1.56). The Lagrangian (1.69) depends on the spe-
cific inner energy e(%, s), given in terms of %, s, the three Clebsch potentials ζ, α, β and
an additional potential field ϑ. The meaning of the latter becomes apparent by calcu-
lating the Euler Lagrange equation with respect to s, see (1.71b), giving the “potential
representation”:

{
∂

∂t
+ ~u · ∇

}
ϑ = Dtϑ = ∂e

∂s
= T , (1.72)

for the temperature T , used three decades previously by Van Dantzig [262], who termed
the field ϑ as the thermasy. Although still restricted to adiabatic and therefore reversible
processes, the Lagrangian (1.69) represents a momentous step forward because of the
rudimentary embedding of thermodynamics.
The statement (1.68), and slight modifications thereof, is the best-known Eulerian ver-

sion of Hamilton’s principle and it is straightforward to show that (1.70), (1.71) are equiv-
alent to the ideal-fluid equations. However, (1.68), unlike (1.63), becomes generally invalid
if the entropy is constant over even infinitesimally small volumes of the fluid. This failure
occurs not for deep physical reasons, but because a locally constant entropy cannot serve
as a particle label. The primary reason why (1.68) has achieved such popularity seems
to be that it involves a minimal number of “non-physical” dependent variables (α, β, ϑ).
However, Salmon [213] argues that the “non-physical” variables are all either particle labels
or closely related thereto and:

“[...] these labels would acquire an indisputable physical significance if only
the internal energy were allowed to depend on solute concentrations that are
conserved following the fluid particles. This is true whether or not the solute
concentrations have topological properties that make them suitable themselves
as particle-labelling variables.”

(e) Variational principles for viscous flow

As a result of the above considerations the interesting situation arises that variational
principles exist when inertial terms are important and viscous terms are not and vice
versa. Attempts to derive variational principles when both inertial and viscous terms
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are included having so far failed. Rayleigh [200] noticed that the Helmholtz-Korteweg
prinicple could be generalised to include the inertial term ∇(~u2/2) in the equations, but
not the full inertial term:

~u · ∇~u = ∇(~u2/2)− ~u× (∇× ~u) .

Millikan [178] gave the definitive treatment of the existence of a variational principle for
the steady-state NS equations for an incompressible fluid by assuming a Lagrangian of the
form:

` = ` (~u, p, ∂~u/∂t,∇⊗ ~u) ,

in terms of the velocity ~u, the pressure p and their first order derivatives. By means of a
detailed, lengthy argument he concluded that a variational principle could not be found
unless ~u · ∇~u = 0 or ~u × (∇ × ~u) = 0. Later, Finlayson [98] derived the same result in
a shorter and more concise form by the use of Fréchet differentials demonstrating that
a variational principle for the NS equations cannot be obtained in the classical sense of
Def. 1.1. In the same paper he also proposes an adjoint variational principle for the NS
equations as an approach to the extended inverse problem according to Davis [80]. Other
approaches in this direction following the developments described at the beginning of Sec.
1.2.2 are manifold [102, 146, 179, 264, 285] and not discussed further.
A general approach is clearly required based on the representation of the observable

fields by potentials, i.e. by auxiliary fields representing the observables, similar to elec-
trodynamics. A convincing explanation is given by Scholle [218] as to why in continuum
theories the use of potentials is absolutely necessary for the construction of a Lagrangian:
in order to fulfil the invariance with respect to the full Galilean group, at least one field
must be non-measurable and therefore be a potential. In the same paper a general scheme
for Lagrangians is constructed. Using Noether’s theorem, canonical formulae give rise for
identification of the relevant observable fields like mass density and flux density, momen-
tum density, stress tensor, energy density and Poynting vector.
A combination of the variational principles of Seliger and Witham [236] and Helmholtz-

Korteweg [124] is suggested by Scholle [216, 223] which involves the inertial terms and
both shear and volume viscosity. The corresponding Lagrangian is shown to fulfil all the
methodical requirements given in [218], however, by calculating the Euler-Lagrange equa-
tions a set of PDEs is induced which are, in the case of an incompressible flow, different
from the original Navier-Stokes equations. The differences become manifest in a different
form of the viscous terms, including their order (third order instead of second order terms),
but also in an additional field, the thermasy, appearing explicitly. For compressible flow
involving volume viscosity but with the shear viscosity neglected Zuckerwar and Ash [288]
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obtained a similar potential-based Lagrangian. It is further noted that the mentioned ap-
proach is deeply related to a stochastic variational formulation by Arnaudon and Cruzeiro
[13, 14], see also [148]. Furthermore, a comparison to Constantin et al. [71] (formula 2.12)
– see also the work of Feireisl and Vasseur [94] related to a fluid mechanics model proposed
by Brenner [47] – would be illuminating though not considered here.

1.3 Objectives and thesis structure

Approaches to the utilisation of potential fields in fluid mechanics are investigated linked
to and building on the historical survey and literature review of the preceding section. An
important feature being to demonstrate that the beneficial utilisation of auxiliary potential
fields, which in the past has essentially been limited to ideal and Stokes-like flow cases,
can be extended even to inertial and viscous flow, thus recovering parts of the advantages
highlighted for classical electrodynamics in Sec. 1.1. In particular, the genesis of the two
major strands followed is contained in Sec. 1.2.1 and 1.2.2: firstly the extension of the
Eulerian flow action principles to the case of full NS flow, thus continuing the work of
Clebsch [64], Helmholtz [124], Lin [162], Seliger and Witham [236], Finlayson [99] and
others; secondly, generalisation of the idea to integrate the equations of motion along the
lines of Clebsch [64] on the one hand, Sec. 1.2.1(a), and the lines of Legendre [159], Ranger
[199], Coleman [68], Antanovskii [8] and more recently Scholle et al. [230] on the other
hand, Sec. 1.2.1(b).
The thesis is comprised of two parts. Part I covers the underpinning theoretical foun-

dations, at the end of which the options as to how to implement the ideas numerically are
crystallised; their embodiment and application forming the foundation of Part II.

1.3.1 Part I

Part I builds on the historical theoretical underpinning described in Chapter 1 and en-
compasses the three different novel ideas reported in Chapters 2 - 3.
Chapter 2 is devoted to the problem of describing viscous flow in the framework of

the Lagrange formalism. By comparing the potential representation (1.70) with the one
proposed by Clebsch (1.23) for the isothermal case, it becomes apparent that any kind of
extension of the system, by additional degrees of freedom as well as by additional physical
effects, requires an adjustment of the potential representation, see e.g. Wagner [271].
Based on these preliminary findings, Scholle [222, 223] suggested a Lagrangian for viscous
flow by suitably supplementing the Lagrangian (1.68) of [236] with additional terms from
the Helmholtz principle (1.51), leading to partial success: the phenomenon “viscosity”
occurs in a qualitatively correct manner but the equations of motion resulting from the
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variation of Hamilton’s principle differ from the NS equations significantly including their
differential order and the occurrence of a further physical degree of freedom, the thermasy.

Following the ideas of [11, 288] it is proposed that the additional terms might be linked
to effects beyond thermodynamical equilibrium, a hypothesis which is tested by means
of several “benchmark problems”; these, however, reveal the occurrence of partly non-
physical behaviour. As a remedy, a discontinuous Lagrangian is proposed which requires
an abstract extension of the Lagrange formalism to discontinuities. Application of the
latter leads to field equations which are discussed and interpreted in detail.
Closely related to the above new Lagrangian, which involves the Clebsch variables from

the principle of ideal flow [236], is the question as to whether the Clebsch transformation
itself can be extended beyond its classical inviscid flow context. The essential problem
inhibiting the application of the Clebsch transformation to viscous flow is due to the
friction force density −ν∆~u in the NS equations which does not seem to fit into the
scheme (1.28). The problem of finding a decomposition of the form (1.28) with prescribed
Clebsch variables α, β is handled for an arbitrary vector field ~a using a new approach. In
consequence, a generalized Clebsch transformation is developed which also covers the case
of incompressible viscous flow.
As discussed in Sec. 1.2.1 the integration approach to steady 2D-NS equations by Scholle

et al. [230] is a promising continuation of the classical potential and Clebsch integration,
and is also closely related to the complex variable method and Goursat approach originally
known from linear elasticity. A major focus of Chapter 3 is the extension of the above
integration procedure to both the unsteady and 3D NS equations.
Initially, it is shown that the first integral formulation of steady 2D-NS flow can be

extended to transient flow if the real-valued potential field Φ is replaced by an appropriately
defined complex-valued one, i.e. an extension of the formulation necessarily goes together
with the introduction of new auxiliary fields. Furthermore a similar first integral of the
dynamic boundary condition, which is present in free surface applications, is established;
the reformulated form, in the steady case, reduces to a pure Dirichlet-Neumann condition
on the potential variable Φ constituting a key feature for the construction of efficient
numerical solutions.
Based on the 2D tensor representation and analogy to Maxwell’s equations the intro-

duction of a tensor potential facilitates the NS equations being recast as the divergence
of a tensor quantity set to zero. Integration leads to a tensor equation that splits conve-
niently into symmetric and skew-symmetric parts. Via the astute use of gauge freedoms,
a decrease in the number of equations and unknowns is achieved as well as their trans-
formation to a known, more tractable, equation set in which the differential order of the
non-linear terms is reduced. Although consideration is focused on specific gauging of the

31



1 Introduction

tensor potential, in order to ensure the equation set has a favourable structure, the the-
ory itself is amenable to alternative development. Some of which offer the prospect of
a promising continuation of the research field; for example, it is shown that the gauge
freedoms can be utilised intelligently to establish a variational principle for steady viscous
flow.

1.3.2 Part II

As an outcome of Chapter 3, amongst others, a major advantage of the first integral of the
NS equations is the reduction of the associated non-linearity and the elegant treatment
of the dynamic boundary condition when free surfaces are present, the latter applying
essentially to steady flow. The construction of an efficient and competitive 2D-solver
which in contrast to existing approaches [230] provides a general generic applicability and
offers a convenient handling of free surfaces, reflects a first reasonable step to test the first
integral approach and to identify numerical generalisations which are more suitable than
the one utilised for demonstration purposes in Ch. 3. The development and application
of such a solver forms the basis of Part II.
In Chapter 4 the theoretical description of a new finite element method (FEM) based

on the first integral of the NS equations is given, which is centred on a least-squares fi-
nite element (FE) framework requiring the set of equations to be of first order to allow
for practical function spaces. Firstly, considerations are confined to the Stokes flow case.
As a basis for a corresponding convergence analysis, a priori estimates for the analytic
solution of the problem are necessary which, for a rather general class of elliptic boundary
value problems, the present one included, can be obtained from the theory of Agmon,
Douglis and Nirenberg (ADN) [2, 3]. The first integral system is classified as an elliptic
system of Petrovskii type which proves to be particularly useful as it allows for an effi-
cient least-squares minimisation with respect to the L2(Ω)-norm. The ellipticity of the
corresponding bilinear form is demonstrated and the existence of a unique weak solution
derived via the theorem of Lax-Milgram. The subsequent verification of optimal H1(Ω)-
convergence mainly relies on the ADN-estimate and a standard interpolation argument
for the associated FE spaces. Optimal L2(Ω)-convergence is technically more involved
and utilises convergence and regularity results from the Galerkin discretisation of a sec-
ond order auxiliary PDE system. Possible problems and an extension of the convergence
analysis to non-smooth domains with corners are discussed and finally the fully non-linear
problem is considered.
In Chapter 5 implementation details for the fully non-linear problem involving an

isoparametric concept of simplicial and quadrilateral elements of first and second order
are provided. The method is thoroughly validated by checking the convergence rate of
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different element and grid types for several test cases, and any potential problems with
mass conservation and conditioning are addressed and resolved. The convergence of the
non-linear iteration is compared to a standard formulation in primitive variables. One of
the significant advantages of the new method is the beneficial structure of the resulting
symmetric and positive definite systems thus avoiding the complication of having to solve
saddle point problems. The solution of these systems is achieved in an efficient and
scalable way using multigrid techniques: the adoption of a tailored algebraic multigrid
(AMG) approach allows for fast and accurate solution of the linear systems resulting from
large, sparse and unstructured grids.

Subsequent to deriving the above FEM including implementation details, the method
is applied to several engineering problems of topical interest, from the fields of lubrication
and film flow, in Chapter 6. These include the investigation and minimisation of friction
between parallelly translating corrugated surfaces, material exchange between entrapped
vortex regions and the bulk flow in a similar lubrication setting, and the case of gravity-
driven film flow over corrugated surfaces. These applications not only demonstrate the
flexibility and efficiency of the proposed method but also reveal new insights into these
fields which are of interest in their own right.
Conclusions concerning the total body of work, together with recommendations repre-

senting potentially fruitful future avenues of research, are provided in Chapter 7.
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of the Navier-Stokes Equations





2 Approaches based on Clebsch-like
representation

Since viscosity leads to dissipation and therefore to the irreversible transfer of mechanical
energy to heat, a variational principle for viscous flow has to consider thermal degrees of
freedom in order to remain consistent with Noether’s theorem which implies conservation
of energy for systems with time-translation invariance; otherwise the latter would have to
be violated by an explicit time-dependence [216]. As recapitulated in Sec. 1.2.2(d), Seliger
and Whitham [236] suggested how to embed thermal degrees of freedom in a variational
formulation of fluid flow, via the Lagrangian (1.69) with the Clebsch-like velocity repre-
sentation (1.70). By comparing the potential representation (1.70) with the one proposed
by Clebsch (1.23) for the isothermal case, it is apparent that any kind of extension of the
system, by additional degrees of freedom as well as by additional physical effects, requires
an adjustment of the potential representation, see e.g. Wagner [271]. Scholle [218] pro-
vides a general explanation for the necessary use of different potential representations of
the observables for different physical systems along the lines of a rigorous analysis of the
fundamental symmetries the Lagrangian has to fulfil, with particular regard to Galilean
invariance.

Based on these preliminary findings, Scholle [222, 223], along similar lines to Zuckerwar
and Ash [288], suggested a Lagrangian for viscous flow by supplementing the Lagrangian
given by (1.69) with additional terms leading to partial success: the phenomenon “viscos-
ity” is captured in a qualitatively correct manner while the equations of motion resulting
from the variation of Hamilton’s principle differ from the NS equations noticeably; this is
reviewed in detail below. Despite this progress, the need to improve the existing approach
is obvious in order to obtain solutions from Hamilton’s principle suitable for relevant flow
problems. This is achieved based on an innovative idea by Anthony [11] involving a refor-
mulation of the Lagrangian in terms of complex fields, which can also be understood as
the inversion of Madelung’s idea [168] of reformulating the complex Schrödinger’s equation
into a hydrodynamic form, and draws heavily on the work of Scholle [216].
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2.1 Construction of the Lagrangian

First, as demonstrated in the prior work of [162, 222, 223, 271], Seliger and Whitham’s
Lagrangian (1.69) can be re-written alternatively as:

` = −%
[
Dtζ + αDtβ − sDtϑ−

~u 2

2 + e (%, s)
]
, (2.1)

in terms of the extended set of independent fields ψ = (~u, ζ, α, β, %, s, ϑ) and their material
time derivatives,

Dt = ∂

∂t
+ ~u · ∇ . (2.2)

The above form of the Lagrangian yields two benefits: first, the potential representation
(1.70) of the velocity field results from a variation with respect to ~u and hence does not
need to be prescribed; second, by adding terms to the Lagrangian depending on first
order derivatives of ~u in order to consider friction, the extended Lagrangian remains of
first order. The latter is a useful feature because otherwise, i.e. in case of a Lagrangian
containing second order derivatives of the fields, the computation of (i) the corresponding
Euler-Lagrange equations and (ii) the canonical densities and flux densities resulting from
Noether’s theorem become more complicated. It is also very useful to avoid derivatives
of order higher than one when applying Ritz’s direct method to problems formulated in
curvilinear coordinates.

2.1.1 Conventional approach and examples

Here the basic ideas and relevant findings of [216, 222, 223] are revisited in a concise
form in order to capture the present state of the theory and identify the associated open
problems.

In order to extend the Lagrangian (2.1) to incorporate viscosity it is reasonable to simply
add further terms so as to modify the entropy balance:

− ∂

∂t
(%s)−∇ · (%s~u) = 0 , (2.3)

which is obtained from (2.1) by variation with respect to the thermasy θ. The homogeneity
of (2.3) indicates that only adiabatic processes are considered in (2.1). Note that the above
balance alternatively results from Noether’s theorem with respect to the transformation
ϑ→ ϑ+ε with ε = const, which is a symmetry transformation of the Lagrangian (2.1). In
order to account for the production of entropy, this symmetry has to be broken which is
easily achieved by adding a term linearly dependant on ϑ, i.e. ϑφd/T , to the Lagrangian,
where the dissipation heat, φd, should be positive and depend on the spatial derivatives
of the velocity as the primary cause for the physical phenomenon “viscosity”. Both are
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satisfied by assuming φd has a quadratic dependence on ∂jui, according to the classic
literature on viscous flow [156, 241]. Finally, via the factor 1/T the character of the
entropy as “weighted heat”, according to δQ = TdS, is accounted for.

The above considerations provided the motivation leading to the following extended
Lagrangian [222, 223]:

` = −%
[
Dtζ + αDtβ − sDtϑ−

~u 2

2 + e (%, s)
]

+ ϑ

T

[
ηtrD2 + η′

2 (∇ · ~u)2
]
, (2.4)

in the absence of an external force and heat conduction; where η is the shear viscosity, η′

the volume viscosity of the fluid and

D := 1
2
[
∇⊗ ~u+ (∇⊗ ~u)t

]
, (2.5)

is the shear rate tensor; tr denotes the trace of a tensor. The temperature T , according
to classical thermodynamics, is given by (1.56). Now, by variation with respect to the
thermasy ϑ, the following equation:

∂

∂t
(%s) +∇ · (%s~u) = η

T
trD2 + η′

2T (∇ · ~u)2 , (2.6)

results as an entropy balance with an entropy production rate on the right-hand side
due to dissipation, as expected. Furthermore, the above Lagrangian fulfils the necessary
symmetry requirements for Galilean invariance, as analysed in detail in Sec. A.1.1 of
Appendix A. However, an unexpected feature arises: the momentum density ~p, resulting
as a canonical Noether observable, does not equal the mass flux density %~u. The difference
between both,

~p ∗ := ~p− %~u = −2η∇ ·
(
ϑ

T
D

)
− η′∇

(
ϑ

T
∇ · ~u

)
, (2.7)

termed quasi-momentum density, needs to be explained physically. According to [218],
~p ∗ could be due to contributions to the system’s momentum balance beyond the scope of
the continuum hypothesis on a molecular scale, e.g. Brownian motion. This question is
discussed in more detail in Sec. 2.4. Regardless, the dynamics induced by the Lagrangian
(2.4) goes beyond the scope of classical theory: the resulting equations of motion differ
significantly from the NS equations; in the case of incompressible flow and negligible
buoyancy they read [216, 222, 223]1:

Dt~u = −∇p
%0

+ ν {Dt +∇⊗ ~u}
[
2D∇

(
ϑ

T

)
+ ϑ

T
∆~u
]
− νtrD2∇

(
ϑ

T

)
, (2.8)

1To allow a shorter notation in (2.8) and elsewhere, cf. (2.11) and (2.45), the material time derivative Dt[.]
and the tensor ∇⊗ ~u[.] are both interpreted as operators R3 → R3 and enclosed in curly parentheses;
on the understanding that {∇ ⊗ ~u} · [.] is interpreted as a matrix vector product.
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∇ · ~u = 0 , (2.9)

Dt

(
ϑ

T

)
= 1 , (2.10)

with constant mass density % = %0 and kinematic viscosity ν := η/%0. Looking at the set
of PDEs (2.8)-(2.10), two striking features immediately become apparent, namely:

• the resulting field equations are third order PDEs, not second order ones like the NS
equations;

• the thermasy ϑ appears explicitly in the field equations as an additional degree of
freedom.

The above qualitative features have also been found in the case of compressible flow with
pure volume viscosity by Zuckerwar and Ash [288], and the appearance of an additional
physically relevant degree of freedom, in particular, appears also in the variational formu-
lation of heat conduction proposed by Anthony [11], interpreted by him as a measure for
the deviation from the thermodynamical local equilibrium. Similar assumptions are made
in [288].
The temperature-weighted thermasy expression ϑ/T , which is a time quantity, together

with its governing evolution equation (2.10) needs further elaboration. Firstly, note that
a general solution of the linear equation (2.10) can be split into a particular and a ho-
mogeneous solution according to ϑ/T = t + τ(~x, t) with Dtτ = 0 [216]; the particular
solution indicating that in (2.8) may appear unusual terms which increase linearly with
time. In order to guarantee a unique solution of the system (2.8)-(2.10) an initial condition
for (2.10) is needed the prescription of which is not obvious at first sight and requires a
physical interpretation.
However, since the thermasy is a potential (i.e. an auxiliary quantity giving the tem-

perature as its material time derivative), a compelling physical meaning of the quantity
itself as well as its evolution equation (2.10) is not obvious. Nevertheless, there are two
speculative physical interpretations coming from van Dantzig [262] and Anthony [11]:

• In his classical paper, van Dantzig calls the quotient ϑ/T a “thermal time” indicating
the time measured by a local observer moving in the fluid flow. Within this inter-
pretation, the solution ϑ/T = t, τ = 0, is a distinguished candidate implying that
all local “clocks” run synchronously, while other solutions with τ(~x, t) 6= 0 imply
asynchronous local clocks.

• Within the context of Anthony’s approach −ωϑ/T is the phase of the complex field
of thermal excitation. Therefore, its evolution equation describes the propagation of
a kind of thermal wave. Also, according to Anthony, prescribing the initial condition
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θ/T (~x, 0) = 0 would imply that the system is in thermodynamic equilibrium at t = 0
which would not be the case for location-dependant initial conditions.

Although speculative, the above offer a plausible means of interpreting the additional
terms and degrees of freedom in the evolution equations (2.6), (2.8)-(2.10) as an extension
of the classical theory towards non-equilibrium thermodynamics. In order to test this
hypothesis, the ‘benchmark tests’ (i)-(iii) are performed [222, 223], taking ϑ/T = t as a
particular solution of the evolution equation (2.10), leading to the simplified form:

Dt~u = − 1
%0
∇p+ ν {Dt +∇⊗ ~u} [t∆~u] , (2.11)

of the equations (2.8). Thus only equations (2.9) and (2.11) remain to be considered:

(i) Plane Couette flow, i.e. shear flow between two parallel plates, the upper one of
which is moving with a constant speed U , representing one of the most often encoun-
tered examples in fluid dynamics. Considering the unidirectional flow ~u = u(y)~ex
with boundary conditions u(0) = 0 and u(h) = U , the solution of (2.9), (2.11) is
given by the linear velocity profile u(y) = Uy/h and a constant pressure p in full
accordance with the NS equations.

(ii) As an example of a transient flow, the sudden movement of a flat plate is considered:
a horizontal plate of infinite extent is covered by a fluid at rest at t = 0, see Fig.
2.1a. At t = 0 the plate suddenly starts moving from rest (u(0) = 0) with constant
velocity U in the horizontal direction, invoking a flow within the fluid. Since no
characteristic length is contained in this problem, a representation of the velocity
profile in terms of a similarity variable, ~u = Uf(ξ) with ξ = y/

√
νt (boundary

conditions f(0) = 1, f(∞) = 0) [241], is used leading to the solution f(ξ) = exp (−ξ)
of the field equations (2.9), (2.11), whereas the classical solution of the NS equations
reads f(ξ) = 1 − erf (ξ/2) [241] involving the error function erf. In Fig. 2.1a both
resulting profiles are compared to each other, revealing qualitatively concordant
profiles with quantitative differences.

(iii) The Lamb-Oseen vortex [154], the flow geometry of which is shown in Fig. 2.1b, is
another example of a transient flow: using cylindrical coordinates r, ϕ, z, a similarity
variable ξ := r/

√
νt is available allowing for a representation of the velocity as

~u = u(r, t)~eϕ with the time-dependant profile u(r, t) = Γf (ξ) /(2πr) for a given
circulation Γ. Using boundary conditions f(∞) = 1, f(0) = 0, from (2.9), (2.11) the
analytical form f(ξ) = 1 − ξK1(ξ) is obtained with the modified Bessel function of
first order, K1 [216, 222, 223]. In contrast, f(ξ) = 1− exp(−ξ2/4) is obtained in the
classical solution [154]. Both solutions are compared in Fig. 2.1b, revealing again
qualitative accordance with quantitative differences.
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Figure 2.1: Resulting velocity profiles for (a) the flow generated by a plate that is sud-
denly moved and (b) the Lamb-Oseen vortex (at time t = π%r2

0/25η). For both examples
the solution resulting from the field equations (2.9), (2.11) (red) are compared to the
respective profile resulting from the original NS equations (blue).

In summary, it can be ascertained from the above examples that the phenomenon of
viscosity is at least captured qualitatively by Hamilton’s principle. Hence, the Lagrangian
(2.4) reflects a relevant step forward to a satisfying description of viscous flow within the
framework of Lagrange formalism. On the one hand, the differences between the classical
theory and the results obtained by variation are quite pronounced for the transient flow
examples (ii) and (iii); it is open to dispute if they can be explained as non-equilibrium
effects. On the other hand, alternative equations of motion containing additional terms
related to thermal relaxation are discussed in the literature; for instance in the work
of Ash and Zardadkhan [16, 17] who make use of the NS equations supplemented with
a ’pressure relaxation term’, implying a vortex solution considerably different from the
classical Lamb-Oseen vortex, in order to resolve discrepancies between existing models
and observations for dust devils and tornados.
Three new additional examples are explored in order to further address the question

of whether the non-classical form of the field equations (2.8)-(2.10) can consistently be
explained due to non-equilibrium thermodynamics. Note that in these examples additional
solutions to that of (2.10) (namely, ϑ/T 6= t) are considered:

(iv) Taylor-Couette flow between two cylinders of radius ri and ra, see Fig. 2.2a, invoked
by rotation of the inner cylinder with angular velocity ω0, is characterised by a
velocity profile ~u = u(r)~eϕ. By applying this to equations (2.9), (2.11) with boundary
conditions u(ri) = ω0ri and u(ra) = 0, the following solution is obtained:

u(r) = ω0r2
i ra

r2
a − r2

i

[
ra
r
− r

ra

]
,
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p(r) = %

ˆ
u(r)2

r
dr ,

in perfect agreement with classical theory.

(v) Plane Poiseuille flow between two parallel plates a distance h apart, driven according
to Fig. 2.2b by a pressure gradient (p1 − p2)/l, for which a unidirectional velocity
field ~u = u(y)~ex is assumed. Considering no-slip conditions u(0) = u(h) = 0 at the
lower and upper plate, the solution of (2.9), (2.11) is given by:

u(y) = Ky(h− y)/2 , (2.12)

p(x, y, t) = p1 + ηK [x+ u(y)t] . (2.13)

By identifying K to be (p1− p2)/(ηl), the above velocity profile, (2.12), is in perfect
agreement with the classical solution [241]. However, the associated pressure, (2.13),
contains an additional term ηKu(y)t, by which the adherence of the boundary con-
ditions for the pressure p at the inflow and the outflow is inhibited. Moreover, the
pressure is unsteady and, as a non-physical feature, it tends to infinity with increas-
ing time. The reason for the latter problem stems from the choice of the particular
thermasy solution ϑ/T = t of the evolution equation (2.10) which increases with
time; a fact that seems to be problematic not only for this specific flow problem but
for problems in fluid mechanics in general, as stated in [220]. In their response [287]
to the comment [220], Zuckerwar and Ash suggested constructing a time-independent
solution of the evolution equation (2.10), fulfilling ~u · ∇(ϑ/T ) = 1. Following their
suggestion, as a steady solution for the weighted thermasy the expression:

ϑ

T
= x

u(y) + f1(y) , (2.14)

is obtained with arbitrary integration function f1(y), see Appendix A.1.2. The
associated solution of (2.8), (2.9) reads, accordingly, in implicit form as:

y =
√

2u
K

2F1

(1
6 ,

1
2; 7

6;u3/u3
max

)
, (2.15)

umax =
9Γ(2

3)2Γ(5
6)2

8π3 Kh2 , (2.16)

p = p0 − ηKx+ η
ϑ

T

u′(y)2

2 , (2.17)

with the Gaussian hypergeometric function 2F1 and a constant of integration p0.
The velocity profile given by (2.15), (2.16) is visualised in Fig. 2.2b (right) and
differs markedly from the classical parabolic profile (2.12) (left), due to the fact that
its first order derivative vanishes at the walls, u′(0) = u′(h) = 0, thus indicating
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Figure 2.2: Flow geometry and velocity profiles of problems (iv)-(vi): (a) Taylor-Couette
flow, (b) plane Poiseuille flow and (c) Poiseuille flow in a curved channel.

a zero wall shear stress. As another conspicuous feature, the y-dependence of the
pressure inhibits again fulfilment of the boundary conditions for the pressure p at
the inflow and the outflow.

The above shows, it is not possible to recover the classical steady solution for plane
Poisseuille flow, based on the system (2.8)-(2.10). By setting ϑ/T = t the correct
velocity profile is recovered but a non-physical, time-growing pressure is obtained;
by writing ~u · ∇(ϑ/T ) = 1 as suggested by [287], the problem of the explicit time-
dependency is removed but the velocity profile is non-physical. In both cases a
y-dependant pressure inhibits the fulfilment of the pressure boundary conditions.
Although not proven, it is unlikely that any solution of (2.10) can be expected
which overcomes both the explicit time and spatial dependency.

(vi) Poiseuille flow in a curved channel, see Fig. 2.2c, was investigated by Richter [203]
who discovered qualitatively the same problems associated with plane Poiseuille flow.
In particular, the resulting pressure solution,

p = 2p2 − p1
π

[
ϕ+ u(r)t

r

]
+ %

ˆ
u(r)2

r
dr , (2.18)

again contains a non-physical term increasing with time. Other attempts to find
a time-independent solution matching the boundary conditions have remained un-
successful as in the case of the previous example.
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Summarising the above benchmark tests, for only two of the six examples, namely (i)
and (iv), is the classical solution recovered. For the two transient flows, (ii) and (iii),
“reasonable” solutions are obtained, exhibiting quantitatively different velocity profiles
compared to the classical ones. For the two pressure-driven flows (v) and (vi) no adequate
solutions of the field equations can be constructed which simultaneously fulfil the pressure
boundary conditions. Hence, the variational principle based on the Lagrangian (2.4) does
not recover the dynamics of viscous flow in a proper way, since its applicability seems
restricted to special flow problems only.
Moreover, four of the six benchmark solutions contradict the hypothesis that the dif-

ferences compared to classical theory can be explained by effects beyond the scope of
thermodynamic equilibrium: apart from the non-physical features discovered above, one
would expect that the non-equilibrium solution tends towards the classical equilibrium
solution if a special relaxation parameter in the problem, physically related to the devi-
ation from equilibrium, tends to infinity. This is not the case here since no additional
parameters exist but mass density, viscosity and specific heat.
Analysing the above examples in more detail, the explicit appearance of the weighted

thermasy ϑ/T in the equations of motion (2.8) seems to be the crucial issue leading to
non-physical solutions, since ϑ/T turns out to have unlimited growth, either spatially
or temporally, which also prohibits its interpretation in connection with non-equilibrium
thermodynamics. Moreover, the anomalous relation (2.7) between mass flux density and
momentum density implies that the discrepancy between mass flux and momentum also
tends to increase spatially or temporally due to the ϑ/T -dependence.
In line with the aims of this Chapter, a modified form of the Lagrangian (2.4) is devel-

oped below, as published in Scholle and Marner [226], which overcomes these anomalies.

2.1.2 Constructing a non-conventional Lagrangian based on complex fields

In 1927 Madelung [168] discovered a remarkable analogy between quantum mechanics and
fluid mechanics by reformulating the complex Schrödinger’s equation into a hydrodynamic
form: by decomposing the quantum mechanical state function ψ into modulus and phase
according to:

ψ =
√
%

m
exp

(
im
~
φ

)
, (2.19)

Schrödinger’s equation is transformed to a set of PDEs2:

∂%

∂t
+∇ · (%∇φ) = 0 , (2.20)

2Cf. the considerations in the introduction, Sec. 1.1: equations (2.20), (2.21) are special cases of the
more general equations (1.15), (1.17) which additionally include the vector potential and thus imply a
velocity field (1.16) which admits non-zero vorticity.
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2 Approaches based on Clebsch-like representation

∂φ

∂t
+ 1

2 (∇φ)2 − ~2∆√%
2m2√% + U

m
= 0 . (2.21)

These are obviously the equations of motion for a kind of fluid, the so-called Madelung
fluid: equation (2.20) is the continuity equation and (2.21) is Bernoulli’s equation for a
fluid with the “unusual” pressure function P = −~2∆√%/(2m2√%) and with vorticity-
free velocity field ~u = ∇φ. Based on these substitutions, Madelung established a fluid
mechanics picture of Schrödinger’s theory.
Many years later Anthony [11] suggested the inversion of this idea, i.e. a “Schrödinger-

picture” of fluid mechanics and thermodynamics by combining the density % and the Cleb-
sch variable ζ in (1.69) to form a complex matter field ψ according to (2.19). Moreover, he
introduced two more complex fields, namely a complex vortex potential Ω by combining
the two remaining Clebsch variables α, β and the complex field of thermal excitation χ,
giving the temperature as its absolute square: T = χ̄χ. The motivation for this transfor-
mation is originally given by Anthony’s entropy concept: the entropy balance results from
a canonical procedure related to the phase translation invariance of the complex fields as
a balance of second kind within the framework of second variation and related stability
criteria, see [216] for further details. Additionally, Anthony states that by the complex
representation a basic concept is given for an accurate formulation of thermodynamics of
irreversible processes within the framework of Lagrange formalism.
For convenience only a partial transformation to complex fields is applied in a slightly

modified form to the Lagrangian (2.4): by introducing T0 as a constant reference temper-
ature and c0 as a reference constant for the specific heat and considering the identity:

−sDtϑ = Dt [(c0 − s)ϑ]− c0T0 exp
(
s

c0

)
Dt

[
exp

(
− s

c0

)
ϑ

T0

]
,

motivation is provided for a generalised definition of the field of thermal excitation as:

χ :=
√
c0T0 exp

(
s

2c0
− iω0 exp

(
− s

c0

)
ϑ

T0

)
, (2.22)

supplemented by the substitution:

φ := ζ + (c0 − s)ϑ , (2.23)

for the Clebsch variable ζ. Note that in (2.22) another constant, ω0, is introduced due
to dimensional reasons, like T0 and c0 before. Although there is no general rule as to
how the three constants T0, c0 and ω0 have to be chosen, it is reasonable to choose the
reference temperature T0 as a “typical” temperature and c0 as a “typical” specific heat.
In the case of an incompressible flow with constant specific heat discussed subsequently,
Subsec. 2.1.3, the choice of c0 is obvious and the choice of T0 arbitrary since the resulting
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τ

S(τ)
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Figure 2.3: The sawtooth function.

Lagrangian (2.32) does not depend on it any more. In contrast, the choice of ω0 is not
obvious or how the physics is affected by it. This is analysed and discussed carefully in
the following.

From the above substitutions (2.22), (2.23), it follows that:

Dtζ − sDtϑ = Dtφ+ 1
ω0

Im (χ̄Dtχ) , (2.24)

S

(
ω0 exp

(
− s

c0

)
ϑ

T0

)
= − argχ = −i ln

√
χ̄

χ
, (2.25)

with the sawtooth function (see also Fig. 2.3):

S(x) := x− 2π
⌊
x+ π

2π

⌋
. (2.26)

While the first equation (2.24) allows for a unique transformation of the respective real-
valued terms in the Lagrangian (2.4) in terms of the complex thermal excitation field, the
second equation (2.25) reveals that no equivalent for the thermasy ϑ explicitly appearing
in the friction term of (2.4) can be constructed in terms of the complex field χ. The reason
for this is the non-uniqueness of the argument of a complex number. The obvious and
most feasible way to resolve this issue is the use of:

T0
iω0

exp
(
s

c0

)
ln
√
χ̄

χ
= χ̄χ

iω0c0
ln
√
χ̄

χ
, (2.27)

as a substitute for ϑ, leading to the modified Lagrangian:

` = −%
[
Dtφ+ αDtβ + 1

ω0
Im (χ̄Dtχ)− ~u 2

2 + e

]
+
χ̄χ ln

√
χ̄
χ

iω0c0T

[
ηtrD2 + η′

2 (∇ · ~u)2
]
.

(2.28)

Comparing this Lagrangian with (2.4), two obvious differences are discernible: first, (2.28)
is discontinuous due to the logarithmic term; second, the angular frequency ω0, which
has primarily been introduced for dimensional reasons, becomes a relevant parameter,
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the physical meaning of which will be clarified subsequently. The most striking feature,
however, is that the unlimited weighted thermasy ϑ/T appearing in (2.4) has been replaced
by an expression with limited values between −π and π.

2.1.3 Incompressible flow with constant specific heat and external force

Consider a fluid flow with constant mass density, constant specific heat and without ther-
mal expansion:

% = %0 , (2.29)

s = c0 ln
(
T

T0

)
, (2.30)

e = c0T . (2.31)

Note that (2.30) implies χ̄χ = c0T for the field of thermal excitation (2.22) in accordance
with Anthony [11]. Furthermore, since for the incompressible case volume viscosity is
excluded from the very beginning, the term involving η′ in (2.28) is absent. Finally,
adding the specific potential energy V = V (~x, t) of an external force, leads to the simplified
Lagrangian:

` = −%0

[
Dtφ+ αDtβ + 1

ω0
Im (χ̄Dtχ)− ~u 2

2 + χ̄χ+ V − ν

iω0
ln
√
χ̄

χ
trD2

]
. (2.32)

In conventional variational calculus, Euler-Lagrange equations can be computed if the
Lagrangian is two times continuously differentiable [108]. If this basic requirement is not
fulfilled, as in (2.32), a non-standard approach is required for variation, which is developed
in the following section.

2.2 Variation of the discontinuous Lagrangian: general
formalism

Consider a variational principle δI = 0 where I is given by:

I =
t2ˆ

t1

˚

V

`
(
ψi, ψ̇i,∇ψi

)
dV dt , (2.33)

depending on independent fields ψi with i = 1, · · · , N and ψN = ϕ. The Lagrangian
` is assumed to be discontinuous with respect to ϕ at fixed values ϕn, n = 1, · · · , NS ,
but continuously differentiable with respect to all other fields, ψi with i < N , and also
continuously differentiable with respect to all derivatives of any field, including ϕ̇ and ∇ϕ.
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Figure 2.4: Surface Sn, along which a discontinuity becomes manifest.

In 3D space, the discontinuities with respect to ϕ become manifest along surfaces Sn(t)
defined by:

Sn := {~x |ϕ(~x, t) = ϕn} , n = 1, · · · , NS , (2.34)

intersecting the system’s volume V into a finite number, NS +1, of sub-volumes according
to:

V =
NS∑

n=0
Vn . (2.35)

The sub-volume Vn denotes the region between Sn and Sn+1 other than V0 and VNS which
denote the region between the system’s boundary ∂V and S1 or SNS , respectively.

From a physical viewpoint, these time-dependent interfaces, Sn, can be related to any
kind of discontinuous phenomena such as phase boundaries between non-mixable fluids,
propagating shock fronts in gaseous media or flame fronts. Their local propagation velocity
is denoted by ~vs and ~n is the normal vector of the interface, see Fig. 2.4. The orientation
of ~n is defined by the convention ~n · ~vs > 0.

2.2.1 Euler-Lagrange equations

First, only the subset of variations δψi = 0 is considered with δψi = 0 at the interfaces Sn
and at the system’s boundary ∂V . Free variation is assumed inside the sub-volumes Vn.
Note, that this kind of variation does not cause any shift of the interfaces Sn. Under these
assumptions, the usual derivation procedure leading to the Euler-Lagrange equations can
be performed separately inside each sub-volume and hence, the wellknown Euler-Lagrange
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equations [108]:

ELi := ∂`

∂ψi
− ∂

∂t

(
∂`

∂ψ̇i

)
−∇ ·

(
∂`

∂∇ψi

)
= 0 , (2.36)

remain valid piecewise at each sub-volume Vn.

2.2.2 Matching conditions

Next, a larger set of variations with δψi 6= 0 at the interfaces Sn is considered for i =
1, · · · , N − 1, but the variation of ψN = ϕ is again restricted to δϕ = 0 in order to
exclude any shift of the interfaces themselves. As before, δψi = 0 is again prescribed at
the system’s boundary. Now, variation with respect to ψ1, · · · , ψN−1 leads to:

δI =
t2ˆ

t1

NS∑

n=0

˚

Vn

[
∂`

∂ψi
δψi + ∂`

∂ψ̇i
δψ̇i + ∂`

∂∇ψi
∇δψi

]
dV dt ,

=
t2ˆ

t1

NS∑

n=0

˚

Vn

[
ELi δψi + ∂

∂t

(
∂`

∂ψ̇i
δψi

)
+∇ ·

(
∂`

∂∇ψi
δψi

)]
dV dt , (2.37)

using the abbreviation (2.36) for the Euler-Lagrange expressions. By means of Gauss’s
theorem:

˚

Vn

∇ ·
(

∂`

∂∇ψi
δψi

)
dV =

‹

∂Vn

~n · ∂`

∂∇ψi
δψi dS ,

and Reynolds’ transport theorem well-known from fluid dynamics [241]:
˚

Vn

∂

∂t

(
∂`

∂ψ̇i
δψi

)
dV = d

dt

˚

Vn

∂`

∂ψ̇i
δψi dV −

‹

∂Vn

~n · ~vs
∂`

∂ψ̇i
δψi dS ,

with ~vs being the velocity of the propagating interface Sn, see Fig. 2.4, the variation takes
the form:

δI =
t2ˆ

t1

NS∑

n=0

˚

Vn

ELi δψi dV dt+
NS∑

n=0

˚

Vn

∂`

∂ψ̇i
δψi dV

∣∣∣∣∣∣∣

t2

t1

+
t2ˆ

t1

NS∑

n=0

‹

∂Vn

~n ·
[
∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]
δψi dSdt . (2.38)
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Since δψi = 0 at the initial and final time t1,2, the above identity simplifies, in line with
the Euler-Lagrange equations (2.36), to:

δI =
t2ˆ

t1

NS∑

n=0

‹

∂Vn

~n ·
[
∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]
δψi dSdt .

In the following the limit of the respective discontinuous expression by approaching it from
the front side (subscript +) or the rear side (subscript −) of the interface Sn is indicated
by [· · · ]±. The front and rear side are defined by the orientation of the normal vector ~n
as in Fig. 2.4. Then, by decomposing each surface integral over ∂Vn in one integral along
the front side of Sn and another one along the rear side of Sn+1, in general:

NS∑

n=0

‹

∂Vn

~n · [· · · ] δψi dS =
NS−1∑

n=1



¨

Sn+1

~n · [· · · ]− δψi dS −
¨

Sn

~n · [· · · ]+ δψi dS




+
¨

S1

~n · [· · · ]− δψi dS −
¨

SNS

~n · [· · · ]+ δψi dS

=
NS∑

n=1

¨

Sn

~n ·
(
[· · · ]− − [· · · ]+

)
δψi dS , (2.39)

and, in particular:

δI =
t2ˆ

t1

NS∑

n=1

¨

Sn

~n ·
[[

∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]]
δψi dSdt ,

where the double square bracket indicates the jump at the interface: [[. . . ]] := [· · · ]− −
[· · · ]+. Thus, variation δI = 0 leads to:

~n ·
[[

∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]]
= 0 , (2.40)

as matching conditions for the generalized fluxes, i = 1, · · · , N − 1 at each interface.
Independent of the formal proof given above the matching conditions can also be un-

derstood as natural boundary conditions at the phase boundaries in a multiphase flow
when assuming that all phases of the flow consist of the same liquid, leading to the same
equation (2.40).

2.2.3 Production condition

At the system’s boundary δψi = 0 is prescribed; apart from this, free variation of all fields
is allowed everywhere inside V , including free variation of ψN = ϕ. As a consequence
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δ~x

Figure 2.5: Variation of an interface caused by variation of ϕ.

of the latter, the position of the interfaces Sn is varied, too: an arbitrary point ~x of Sn
defined by (2.34) is shifted to a different position ~x+ δ~x according to:

ϕn = ϕ (~x+ δ~x, t) + δϕ (~x+ δ~x, t) = ϕ (~x, t) + δ~x · ∇ϕ (~x, t) + δϕ (~x, t) +O
(
δ~x2

)

= ϕn + δ~x · ∇ϕ (~x, t) + δϕ(x, t) +O
(
δ~x2

)
,

leading to the identity:

δ~x · ∇ϕ = −δϕ , (2.41)

for the local shift δ~x of the discontinuity interface Sn. In the case that Sn is shifted in the
forward direction, ~n·δ~x > 0, in a thin layer of thickness ~n·δ~x the value of ` is changed from
[`]+ to [`]−; hence the integral (2.37) has to be supplemented by the following correction
term:

t2ˆ

t1

NS∑

n=1

¨

Sn

[[`]]~n · δ~xdSdt .

Since ∇ϕ ‖ ~n, the identity ~nδϕ = −(δ~x · ∇ϕ)~n = −(δ~x · ~n)∇ϕ results, leading to:

δI =
t2ˆ

t1

NS∑

n=1

¨

Sn

(
−∇ϕ ·

[[
∂`

∂∇ϕ − ~vs
∂`

∂ϕ̇

]]
+ [[`]]

)
~n · δ~xdSdt .

Variation with respect to ϕ leads to the jump condition:

∇ϕ ·
[[

∂`

∂∇ϕ − ~vs
∂`

∂ϕ̇

]]
= [[`]] , (2.42)

for the flux related to ϕ at the interface Sn. From a physical viewpoint this is related to
the production of the associated integral quantity. Therefore, (2.42) is referred to as the
production condition.
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There is an alternative way to derive the above production condition, (2.42), along the
lines of distribution theory as sketched out in Sect. A.1.5 of Appendix A.1, showing that
the generalized form of the formalism can be understood in terms of standard Lagrange
formalism.

2.3 Resulting equations of motion and matching conditions

The above ideas are now applied to the discontinuous Lagrangian (2.32).

2.3.1 Equations of motion

In Appendix A.1.3 the Euler-Lagrange equations of (2.32) resulting from variation with
respect to the elementary fields are calculated, based on which the corresponding equations
of motion are derived. The equations of motion for the observable fields, (A.14), (A.19),
are:

∇ · ~u = 0 , (2.43)

Dt~u = −∇p
%0

+ ν∆~u−∇V + ~fn.e. , (2.44)

where ~fn.e. is used as an abbreviation for:

~fn.e. := − ν

ω0

{
i ln

√
χ̄

χ

[
∇trD2 + {Dt +∇⊗ ~u}∆~u

]
+ {Dt +∇⊗ ~u}

[
2DIm∇χ

χ

]}
. (2.45)

Equation (2.43) shows that the continuity equation is unchanged, whereas the equations
of motion (2.44) differ from the original NS equations since they contain additional forces
~fn.e.. According to (2.45) the latter contain the complex field of thermal excitation, χ,
and therefore the corresponding evolution equation, (A.18):

Dtχ+ iω0χ = ν

2χ̄trD2 , (2.46)

has to be considered additionally in order to complete the equation set. Note that the
implicit velocity representation (A.17), obtained by variation with respect to ~u, remains
“Clebsch-like” but involves additional terms dependant on χ and ~u.
Reconsidering the aforementioned hypothesis of Anthony [11] as well as Zuckerwar and

Ash [288] in order to identify the additional forces occurring in the equations of motion
as contributions due to a deviation from the thermodynamic local equilibrium, one would
expect a limit case leading to the classical dynamics, as already discussed at the end of
Subsec. 2.1.1. Indeed, according to (2.45) the extra forces are diminished when increasing
the parameter ω0 and the physical dimension of ω0 is a reciprocal of time, suggesting
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2 Approaches based on Clebsch-like representation

its interpretation as a relaxation rate. This interpretation is underpinned by considering
the limit ω0 → ∞, leading to vanishing of the extra forces, ~fn.e. → 0 and therefore to a
full reproduction of the NS equations by means of (2.44). In this equilibrium limit, the
evolution equation (2.46) becomes meaningless, since the field of thermal excitation does
not appear in the equations of motion any more.

It is noteworthy that the limit ω0 →∞ can be applied successfully to equations (2.44),
reproducing the NS equations, but cannot be applied directly to the Lagrangian (2.32);
most likely because the mechanical equations (2.43), (2.44) are decoupled from thermody-
namics, whereas in the viscosity term of the Lagrangian (2.32) the occurring mechanical
and thermodynamical degrees of freedom are strictly coupled.

For finite but sufficiently large values of ω0, the additional forces ~fn.e. due to thermody-
namic non-equilibrium remain small, compared to viscous, external and pressure forces.
According to (2.45) they consist of a factor i ln

√
χ̄/χ fluctuating between −π and π, of

quadratic terms with respect to velocity gradients and of third order derivatives of the
velocity.

2.3.2 Matching conditions

As shown in Subsec. 2.2.2, variation with respect to the elementary fields, except for χ,
induces matching conditions (2.40) at each interface. These are:

δφ : 0 = −~n · [[%0(~u− ~vs)]] , (2.47)

δα : 0 = 0 , (2.48)

δβ : 0 = −~n · [[%0α(~u− ~vs)]] , (2.49)

δ~u : 0 = %0
ν

iω0
~n

[[
ln
√
χ̄

χ
D

]]
. (2.50)

According to the first condition, (2.47), the normal component of mass flux density has
to be continuous, which physically corresponds to the conservation of the mass passing
the interface. By inserting (2.47) into condition (2.49) it reduces to [[α]] = 0, implying
continuity of the Clebsch variable α. In order to understand the physics behind condition
(2.50), it has to be taken into account that at each discontinuity the phase of the thermal
excitation jumps from ±π to ∓π. In any case, the sign of i ln

√
χ̄/χ changes when turning

from the rear side to the front side of an interface. As a consequence, condition (2.50)
entails:

~n [D]− + ~n [D]+ = ~0 , (2.51)
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2.3 Resulting equations of motion and matching conditions

which implies a reversal of the direction of the shear rate vectorD~n along the discontinuous
interface. Physically this is associated with slip occurring at the interface resulting from
the absence of shear tangential to it, thus allowing fluid to migrate between neighbouring
layers without friction as discussed in Sec. 2.4; the movement of the discontinuities giving
rise to “slip waves”. Once again this can be interpreted as a phenomenon due to a deviation
from thermodynamic equilibrium.

2.3.3 Production condition and thermodynamic aspects

In order to apply formula (2.42) for the production condition, the complex field of thermal
excitation has to be decomposed into modulus and phase according to χ =

√
c0T exp(−iϕ),

leading to the real-valued form:

` = −%0

[
Dtφ+ αDtβ −

c0T

ω0
Dtϕ−

~u 2

2 + c0T + V − ν

ω0
S(ϕ)trD2

]
, (2.52)

of the Lagrangian (2.32), where S again denotes the sawtooth function. The production
condition then reads as:

%0
ω0
∇ϕ · [[c0T (~u− ~vs)]] = %0

ν

ω0

[[
S(ϕ)trD2

]]
. (2.53)

Despite the reversal of the shear rate tensor at the interfaces according to (2.51), its square,
D2, remains continuous. Hence it follows that

[[
S(ϕ)trD2

]]
= [[S(ϕ)]] trD2 = 2πtrD2,

leading to:

1
2π∇ϕ · [[c0T (~u− ~vs)]] = νtrD2 . (2.54)

The above condition reveals a discontinuity in the flux of the inner energy and therefore the
production of inner energy due to dissipation at the interfaces. The latter can alternatively
be related to the volume by estimating the gradient of the thermal phase as∇ϕ ≈ (2π/d)~n,
where d denotes the distance between two interfaces. As a consequence, the inhomogeneity
at the right-hand side of the balance (2.54) can, according to νtrD2 ≈ [[c0T (~u− ~vs)]] /d,
be re-interpreted as the mean production of inner energy related to the volume, at least
in the sense of a statistical treatment.
Another source of inner energy production is given by equation (A.20), namely:

c0DtT = νtrD2 , (2.55)

which takes the form of a classical balance equation in continuum mechanics with a pro-
duction rate νtrD2 related directly to the volume. Compared with the classical theory of
viscous flow [156, 241], the production of inner energy due to dissipation is twice the value
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2 Approaches based on Clebsch-like representation

occurring in equation (2.55). Since, however, by (2.54) an additional production of inner
energy at the inner boundaries is revealed, giving a contribution of the same amount as
(2.55), the total production of inner energy is in accordance with classical theory.
The question arises as to whether the occurrence of discontinuous interfaces inside the

fluid flow is an artefact of the model or if such phenomena really exist on a microscopic
scale. Although a final answer to this question cannot be provided since knowledge about
the processes occurring in a fluid flow on the micro-scale remains limited at the present
time, it can be conjectured what kind of effect slight changes of the model may cause. At
least the model established here accurately recovers the physics on a macroscopic scale,
and there are dissipative phenomena with entropy production at discontinuous surfaces
that have been known for a long time: with reference in particular to the classical the-
ory of shock waves [241] where entropy production at discontinuous surfaces is provoked
by a rapid compression of gas. Here, as explained earlier in the context of (2.51), the
discontinuous phenomena take the form of slip waves.
Within this context it is also of particular interest how the physics would be affected

by a change of branch cut for the complex logarithm: in Sec. 2.1.2 the standard branch
cut along the negative real axis was used, leading to values of ln

√
χ̄/χ between −iπ and

iπ. One consequence of this is that over time the fluctuating forces (2.45) occurring in
the equations of motion statistically result in zero by averaging. If an alternative branch
cut for the complex logarithm is considered, say e.g. a cut at arguments of the complex
number if a − π, the positions of the discontinuous surfaces are shifted and the values
of the complex logarithm go from ia − iπ to ia + iπ. The first effect, the shift of the
discontinuous surfaces, could be compensated for by applying the gauge transformation
χ → χ exp (−ia) to the field of thermal excitation, whereas the second effect causes a
change of the fluctuating forces (2.45) according to:

~fn.e. −→ ~fn.e. + νa

ω0

[
∇trD2 + {Dt +∇⊗ ~u}∆~u

]
.

The extra term on the right side vanishes in the limit ω0 →∞; however, for finite values of
ω0 it provides an additional contribution to the equations of motion. By averaging again,
this additional term does not tend to zero which is a valid physical argument for the use
of the standard branch cut along the negative real axis (i.e. a = 0).

2.4 Discussion

It has been demonstrated that the dynamics resulting from the Lagrangian (2.32) can self-
consistently be interpreted as an extension of the classical theory towards processes beyond
thermodynamic local equilibrium. A reproduction of the classical theory is reached by
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~u1

~u2

~u3

Figure 2.6: A simple microscopic model for viscosity, based on migration of particles
between neighbored fluid layers by Brownian motion.

applying the limit ω0 →∞ for the relaxation rate to the equations of motion, a procedure
that was not possible for the earlier suggested Lagrangian (2.4). In the following further
indications are given in order to confirm the non-equilibrium assumption.
In the context of the Lagrangian (2.4), a striking non-classical feature is the difference

between the momentum density and the mass flux density, namely the quasi momentum
density ~p ∗ = ~p−%~u. In the context of the Lagrangian (2.32), the mass flux density is given
via (A.17), whereas the momentum density is obtained as a canonical Noether observable
[218], giving: ~p = %0

[
∇φ+ α∇β + 1

ω0
Im (χ̄∇χ)

]
. Hence, there is again a non-vanishing

quasi momentum density,

~p ∗ = %0
ν

ω0
∇ ·

[
i ln

√
χ̄

χ
2D
]
, (2.56)

which in contrast to the quasi momentum density (2.7) resulting from the Lagrangian (2.4)
tends to zero for the limiting case ω0 → ∞. This is again in accordance with classical
continuum theory.
Following the suggestion in [218, 222, 223] that the quasi-momentum takes into ac-

count contributions to the momentum beyond the scope of the continuum hypothesis on
a molecular scale, e.g. Brownian motion, a possible physical interpretation of the quasi
momentum density (2.7) is based on the elementary mechanism of viscosity, namely the
transport of momentum by Brownian motion crosswise to the flow direction, see Fig. 2.6.
The viscosity of a fluid is usually explained on a molecular scale by an exchange of

particles between neighboring fluid layers by Brownian motion of the molecules, by which
a diffusion of momentum is induced. From the continuum viewpoint the migrating parti-
cles responsible for the diffusive momentum flux are “quasi-particles”, associated with an
additional contribution to the momentum density. Hence, the quasi-momentum density
can also be considered as a measure for the deviation from thermodynamic equilibrium.
Note that the interpretation of the additional terms in the equations of motion as

physical non-equilibrium effects on a microscopic scale is also consistent with the weak
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2 Approaches based on Clebsch-like representation

violation of the continuum hypothesis imposed by the discontinuous Lagrangian (2.32).
Regardless, the violation of the continuum hypothesis vanishes in the limit ω0 → ∞ for
the relaxation rate: for increasing ω0, the discontinuities are decreasing and for very large
ω0 they are physically reduced to fluctuations on a micro-scale in accordance with classical
theory.

Finally, the reader is referred to the recent article by Marner et al. [173] comparing the
above proposed variational principle with stochastic variational descriptions of dissipative
systems, underpinning its physical basis from a different viewpoint. It is shown that addi-
tional non-classical contributions to the friction force occurring in the momentum balance
vanish by time averaging. Accordingly, the discontinuous Lagrangian can alternatively
be understood from the standpoint of an analogous deterministic model for irreversible
processes of stochastic character. A comparison is made with established stochastic vari-
ational descriptions and an alternative deterministic approach based on a first integral
of the NS equations is undertaken. The applicability of the discontinuous Lagrangian
approach for different Reynolds number regimes is discussed considering the Kolmogorov
time scale. A generalisation for compressible flow is elaborated and its use demonstrated
for damped sound waves.

2.5 A generalized Clebsch transformation

Despite useful applications in fluid dynamics and other disciplines, the classical Clebsch
transformation (1.23) has remained restricted to inviscid flow problems only. Although a
digression from the main theme of this chapter, for completeness a generalisation of the
transformation is developed allowing for the derivation of a generalised Bernoulli equation
for viscous flow as published in Scholle and Marner [225].

Historically, the essential problem inhibiting the formulation of a Clebsch transformation
for viscous flow is due to the friction force density −ν∆~u in the NS equations which does
not, as mentioned in Chapter 1, fit into the scheme (1.28). Below the problem of finding
a decomposition of the form (1.28) with prescribed Clebsch variables α, β is achieved for
an arbitrary vector field ~a using a new approach. Consequently, a generalized Clebsch
transformation is developed which encompasses the case of incompressible viscous flow.
The resulting field equations are discussed briefly and solved for a representative flow
problem.
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2.5 A generalized Clebsch transformation

2.5.1 Extension to viscous flow

(a) Non-applicability of classical Clebsch transformation to viscous flow

Assuming incompressible flow and constant kinematic viscosity the NS and continuity
equations are:

D~u
Dt − ν∆~u+∇

[
p

%
+ U

]
= ~0 , (2.57a)

∇ · ~u = 0 , (2.57b)

respectively [154]. In the more general case of compressible flow the continuity equation
reads %∇ · ~u = −D%/Dt and equations (2.57a) have to be replaced likewise by their more
general form, frequently called the Navier-Stokes-Duhem equations, see e.g. [188].

The essential problem inhibiting the application of the Clebsch transformation to viscous
flow is due to the friction force density −ν∆~u in the NS equations. Written in terms of
the Clebsch variables, it reads:

− ν∆~u = ν∆β∇α− ν∆α∇β − ν (∇α · ∇)∇β + ν (∇β · ∇)∇α . (2.58)

Obviously, only two of the above four terms fit into the scheme (1.28), whereas the other
two, subsumed to a vector field:

~a := ν (∇β · ∇)∇α− ν (∇α · ∇)∇β , (2.59)

are of a mathematical form incompatible with (1.28). More generally, the problem of
finding a decomposition of the form (1.28) with prescribed Clebsch variables α, β can be
addressed via an arbitrary vector field ~a as shown below.

(b) Solution procedure

Introduce an auxiliary field ξ, fulfilling the following first order PDE:

~ω · ∇ξ = ~ω · ~a , (2.60)

with the vorticity ω given according to (1.32). This implies the identity:

~ω × (~ω × [~a−∇ξ]) = ~ω (~ω · [~a−∇ξ])− [~a−∇ξ] ~ω2 = −~ω2 [~a−∇ξ] , (2.61)

and therefore the decomposition of the difference ~a−∇ξ as:

~a−∇ξ = (~ω × [~a−∇ξ])× ~ω
~ω2 = (~ω × [~a−∇ξ])× (∇α×∇β)

2~ω2 ,
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2 Approaches based on Clebsch-like representation

= (~ω × [~a−∇ξ]) · ∇β
2~ω2 ∇α− (~ω × [~a−∇ξ]) · ∇α

2~ω2 ∇β ; (2.62)

i.e. as a linear combination of ∇α and ∇β. The decomposition (2.62) can be applied to
any arbitrary vector field ~a in order to reach the form (1.28).

Like the Clebsch variables φ, α, β, the auxiliary field ξ is not given uniquely, since
any particular solution ξp of the inhomogeneous linear first order PDE (2.60) can be
superposed with any solution ξh of the respective homogeneous PDE ~ω · ∇ξh = 0. Since
three independent solutions are given by α, β and t, the mathematical theory of linear
first order PDEs implies ξh = F (α, β, t) for an arbitrary function F . As a consequence;

ξ −→ ξ′ = ξ + F (α, β, t) , (2.63)

is a gauge transformation for the auxiliary field which is used subsequently giving a
favourable form of the resulting equations.

(c) First integral of the Navier-Stokes equations

The NS equations (2.57a) contain identical mathematical terms as Euler’s equations (1.27),
apart from the pressure function taking the form P = p/% for incompressible flow, plus the
friction term −ν∆~u. Therefore, the Clebsch transformation leads to the three equations
(1.29)-(1.31), supplemented with terms resulting from the decomposition of the friction
term according to (2.58) and (2.60), (2.62). Using (2.63), the function F appearing in
(1.29)-(1.31) is set to zero by gauging, leading finally to the set of the three scalar field
equations:

∂φ

∂t
+ α

∂β

∂t
+ ~u2

2 + p

%
+ U + ξ = 0 , (2.64)

Dα
Dt − ν∆α− ~ω × [~a−∇ξ]

2~ω2 · ∇α = 0 , (2.65)

Dβ
Dt − ν∆β − ~ω × [~a−∇ξ]

2~ω2 · ∇β = 0 , (2.66)

where again ~ω and ~a have been used as abbreviations according to (1.32), (2.59). Thus, a
first integral of the NS equations has been constructed, based on the generalized Clebsch
transformation: Eq. (2.64) is a generalization of Bernoulli’s equation, whereas the two
evolution equations (2.65), (2.66) for the vortex potentials α, β reveal the generic type
of convection-diffusion equations with additional nonlinear coupling terms. The set of
equations is completed by the PDE (2.60) for the auxiliary field ξ and the continuity
equation (2.57b). The latter written in terms of Clebsch variables [195] is ∆φ + α∆β +
2∇α · ∇β = 0.
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y

z

x

Figure 2.7: Schematic of an axisymmetric stagnation flow in the vicinity of a solid wall.

2.5.2 Axisymmetric stagnation flow as an example

Axisymmetric stagnation flow against a solid wall, see Fig. 2.7, is an example of prototypic
character in fluid mechanics allowing for an analytical treatment of NS equations. In the
inviscid case, the velocity field, written in cylindrical coordinates r, ϕ, z [175], reads:

~uinvis = ar~er − 2az~ez . (2.67)

Although (2.67) is a solution to the NS equations, it does not satisfy the no-slip condition
~er · ~u = 0 at the wall and is therefore only a good approximation far from the wall. In
the vicinity of the wall a boundary layer becomes manifest and the velocity is assumed to
take a slightly different form, namely:

~u = rg(z)~er − 2f(z)~ez ,

with functions f, g that have to be determined. Associated boundary conditions are (i) the
no-slip/no-penetration condition ~u = ~0 at z = 0 and (ii) the matching condition ~u→ ~uinvis

for z →∞, leading to:

f(0) = 0 , g(0) = 0 , lim
z→∞ f

′(z) = a . (2.68)

The field equations (2.57b), (2.60), (2.64)-(2.66) are solved as follows. First, the continu-
ity equation (2.57b) implies: g(z) = f ′(z). Then, by reformulating the velocity according
to

~u = f ′(z)∇r
2

2 − 2f(z)∇z = ∇
[
r2

2 f
′(z)− 2

ˆ
f(z)dz

]
− r2

2 f
′′(z)∇z ,

motivation is given for a Clebsch representation (1.23) with:

φ = r2

2 f
′(z)− 2

ˆ
f(z)dz , α = −r

2

2 f
′′(z) , β = z . (2.69)
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Based on the latter the vector ~a is, according to (2.59), calculated as:

~a = ν
∂

∂z
∇α− 0 = ν∇∂α

∂z
= −ν2∇

[
r2f ′′′(z)

]
.

The next step is determination of the auxiliary field ξ: as already discussed at the end of
Sec. 2.5.1(b), the general solution of (2.60) is the sum of an arbitrary particular solution
and the general solution, giving:

ξ = −ν2 r
2f ′′′(z) + F (α, β, t) . (2.70)

Hence, it follows that ~a−∇ξ = −∇F (α, β, t) and, considering (1.32), that:

(~ω × [~a−∇ξ]) · ∇β = −
([
∂F

∂α
∇α+ ∂F

∂β
∇β

]
×∇β

)
· ~ω = −2~ω2∂F

∂α
,

(~ω × [~a−∇ξ]) · ∇α = −
([
∂F

∂α
∇α+ ∂F

∂β
∇β

]
×∇α

)
· ~ω = 2~ω2∂F

∂β
.

Finally, the two field equations (2.65), (2.66) lead to:

2νf ′′(z) + r2

2
[
νf ′′′′(z)− 2f ′(z)f ′′(z) + 2f(z)f ′′′(z)

]− ∂F

∂β
= 0 , (2.71)

−2f(z) + ∂F

∂α
= 0 . (2.72)

Since z = β, equation (2.72) can be integrated to give:

F (α, β, t) = 2αf(β) + F1(β, t) ,

with integration function F1; which when inserted into (2.71), together with (2.69), leads
to:

2νf ′′(z)− ∂F1
∂β

+ r2

2
[
νf ′′′′(z) + 2f(z)f ′′′(z)

]
= 0 .

By sorting terms with respect to powers of r, the above equation splits into two equations:
∂F1/∂β = 2νf ′′(z) and νf ′′′′(z) + 2f(z)f ′′′(z) = 0. The latter equation can alternatively
be written in integrable form as:

d
dz
[
νf ′′′(z) + 2f(z)f ′′(z)− f ′(z)2

]
= 0 , (2.73)

which following integration becomes: νf ′′′(z) + 2f(z)f ′′(z) − f ′(z)2 = C, where the in-
tegration constant C from the matching condition (2.68) is C = −a2. Finally, via the
substitution f(z) =

√
νaf̄(z̄) with z̄ =

√
a/νz, the whole problem is reduced to an ordi-
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nary differential equation (ODE) of the form:

f̄ ′′′(z̄) + 2f̄(z̄)f̄ ′′(z̄)− f̄ ′(z̄)2 + 1 = 0 , (2.74)

in accordance with the classical result. For more details and the solutions of (2.74) the
reader is referred to [175]. Having solved the ODE (2.74), the generalized Bernoulli’s
equation (2.64) delivers the pressure p.
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representation

In Chapter 1, Sec. 1.2.1(b), it is described how, by use of complex variables, a first integral
of the 2D incompressible and steady NS equations can be established, the differential order
of the former being lower. The procedure results in either a single complex valued equation
of second order depending on a potential and the streamfunction (1.40a) or a system of
two equations in the case when velocities are used; alternatively in terms of Cartesian
coordinates a tensor formulation (1.41) can be found. While essentially a rediscovery of
the result of Legendre [159], along similar lines to the work of Coleman [70] and Ranger
[199], a hallmark of Scholle et al.’s [230] particular derivation is it provides a clear hint
apropos generalisation to unsteady, 3D viscous flow: the attainment of which having
hitherto remained out of reach, such a generalisation is the major focus of the present
chapter.

3.1 Overview

It is important to appreciate the close relationship that exists between the above estab-
lished first integral and the classical complex variable method (Goursat formulation) which
is revealed when the streamfunction Ψ and the auxiliary potential field Φ are combined
to form a complex field χ = Φ+ iηΨ ; in the Stokes flow case a simple bianalytic equation
(1.45) for χ results, the solution of which is given by the combination χ = g0(ξ) + ξ̄g1(ξ)
of two holomorphic functions, as in (1.33). It is justifiable to take the first integral (1.44)
to be a generalisation of the complex variable representation (1.45) towards viscous flows
with inertia, with the difference that (1.44) no longer allows for a direct integration to the
Goursat representation (1.33), Marner et al. [171].
Note, the potential field Φ is formally introduced as an auxiliary variable to make

the field equations integrable, while posing the question as to its physical interpretation.
Looking at the integrated equations in the Stokes flow case and the analogy between
plane Stokes flow and plane linear elasticity based on a complex formulation, see [171],
reveals that the first integral formulation reproduces the well-known complex Kolosov-
Muskhelishvili formulas of linear elasticity, with the potential equivalent to an Airy stress
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function except for a constant scaling; this is seen as follows. Using Φ = Re(χ) the
representation of the potential derivatives in terms of the Goursat functions reproduce the
Muskhelishvili-Kolosov formula [177, 184]:

∂Φ

∂x
+ i∂Φ

∂y
= w0(ξ) + ξw′1(ξ) + w′2(ξ) , (3.1)

for the integrated components of stress in plane linear elasticity theory, revealing the
potential to be closely connected with the Airy stress function.
At first glance, the analogy to linear elasticity theory provides an interpretation for the

potential Φ in the linear Stokes case only, but rewriting the full NS equations (1.21a) in
terms of the streamfunction and Airy stress function actually reproduces equation (1.41).
Accordingly, the constitutive law of a Newtonian fluid involving the convective momentum
flux density Rij = uiuj

1 is adopted to account for inertial effects:

σij = −pδij + η

(
∂ui
∂xj

+ ∂uj
∂xi

)
− %Rij , (3.2)

with σij being a symmetric stress tensor, p the pressure and ui the velocity components.
Now introducing an Airy stress function such that:

σ11 = ∂2Φ

∂y2 , σ22 = ∂2Φ

∂x2 , σ12 = − ∂2Φ

∂x∂y
, (3.3)

leads to:

−%uxuy + η

[
∂ux
∂y

+ ∂uy
∂x

]
+ ∂2Φ

∂x∂y
= 0 , (3.4a)

%

2
[
u2
x − u2

y

]
+ η

[
∂uy
∂y
− ∂ux

∂x

]
+ 1

2

[
∂2Φ

∂y2 −
∂2Φ

∂x2

]
= 0 , (3.4b)

which agrees with equation (1.41) except for a constant scaling of Φ. The above interpre-
tation can be useful when considering more general flow problems.
In what follows, a first integral is constructed for the more general cases of unsteady

and 3D flows. Firstly, in Sec. 3.2 it is shown that the first integral formulation of steady
2D-NS flow can be extended to transient flow if the real-valued potential field Φ is re-
placed by an appropriately defined complex potential, i.e. an extension of the formulation
necessarily goes together with the introduction of new auxiliary fields. As a verification,
the formulation is demonstrated to reproduce well-known velocity profiles of some stan-
dard test configurations – i.e. Couette flow, vortex decay and stagnation point flow. The
steady case of Sec. 1.2.1 is recovered as a special case. It is shown how commonly en-

1By averaging, the Reynolds stress tensor is obtained from Rij .
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3.2 Two-dimensional unsteady and incompressible flow

countered boundary conditions can be formulated in an elegant and useful form, with
special attention paid to prescribing those occurring at a free surface. Motivated by the
above integration procedure a representation of the dynamic boundary condition as a pure
Dirichlet-Neumann condition on the potential is derived being a key feature of the new
formulation.
Second, beginning with the transformation of existing 2D theory from a complex for-

mulation to a real-valued one, resulting in the required tensor form (Sec. 3.3), the key
aspect leading to the determination of an unsteady 3D first integral is recognition that
it can be derived using a potential formulation similar to that employed in the reduction
of Maxwell’s equations. Via the astute use of gauge freedoms (Sec. 3.4), a decrease in
the number of equations and unknowns is achieved as well as their transformation to a
known, more tractable, equation set in which the differential order of the non-linear terms
is reduced. Although consideration is focused on specific gauging of the tensor potential,
in order to ensure the equation set has a favourable structure; the theory itself is amenable
to alternative development. Some of which offer the prospect of a promising continuation
of the research field; for example, it is shown that the gauge freedoms can be utilised
intelligently to establish a variational principle for steady viscous flow. The limit case
of inviscid flow is also addressed. Since the equations are derived in their most general
form, restrictions to special cases such as steady or Stokes flow follows naturally, leading
to further simplifications.
Boundary conditions, physical and auxiliary, in the framework of the above are provided,

with the condition essential to the investigation of 3D free-surface flow problems derived
in the form of a first integral of the usual dynamic boundary condition [171, 230]. As
a whole the approach followed together with the established first integral, represents an
important step forward; demonstrated via the solution of three classical, yet diverse, fluid
flow problems of differing complexity, two of which are approached analytically, the other
numerically (Sec. 3.5). In all three cases it is found that starting from the first integral, in
deference to the NS equations, corresponding established solutions appearing in the open
literature are recovered exactly; in one case it provides new theoretical insight. Last but
not least, the time-evolution of periodically constrained unsteady flow is addressed as a
standard scenario often encountered in relation to the direct numerical simulation (DNS)
of viscous flow; using Fourier decomposition, the first integral formulation proves to be a
very elegant approach leading to a reduced set of ODEs.

3.2 Two-dimensional unsteady and incompressible flow

The bulk of the work contained in this section stems from the following articles: Marner
et al. [171] and Marner et al. [172].
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3 Approaches based on Goursat-like representation

3.2.1 Formulation of the field equations

Employing the complex variables ξ, ξ and the complex velocity field u, together with the
streamfunction via (1.43), the unsteady NS equations (1.21a) can be transformed into the
following scalar complex PDE:

∂

∂ξ

[
−i%∂Ψ

∂t
+ p+ %

ūu

2 + U

]
+ %

∂

∂ξ

(
u2

2

)
= 2η ∂

2u

∂ξ∂ξ
; (3.5)

the continuity equation (1.21b) is fulfilled identically by (1.43).

(a) First integral using a complex potential of first order

By the introduction of a new complex potential M according to:

− i%∂Ψ
∂t

+ p+ %
ūu

2 + U = 2∂M
∂ξ

, (3.6)

an integrable form of Eq. (3.5) is obtained:

∂

∂ξ

[
2∂M
∂ξ

+ %
u2

2 − 2η∂u
∂ξ

]
= 0 , (3.7)

which, following integration with respect to ξ, gives:

2∂M
∂ξ

+ %
u2

2 − 2η∂u
∂ξ

= f(ξ) . (3.8)

The function f(ξ) on the right-hand side of equation (3.8) can conveniently be set to zero
by re-gauging the potential M according to:

M −→M + 1
2F (ξ), F ′(ξ) = f(ξ) , (3.9)

since expression (3.6) allows M to be augmented by an arbitrary ξ-dependent complex
function. Utilising the streamfunction (1.43), equation (3.8) simplifies to:

2 ∂
∂ξ

[
M + 2iη∂Ψ

∂ξ

]
+ %

u2

2 = 0 . (3.10)

(b) Representation by a potential of second order

From a pure technical viewpoint, a first integral has been successfully constructed in
the form (3.10), since following differentiation with respect to ξ the NS equations are
recovered. A comparison with the first integral (1.44) for steady flow, however, does
not reveal an obvious relationship between both equations. In order to illustrate the
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3.2 Two-dimensional unsteady and incompressible flow

relationship, another complex potential χ is introduced fulfilling:

M + 2iη∂Ψ
∂ξ

= 2∂χ
∂ξ

, (3.11)

leading directly to the compact form of the first integral equation (3.10):

4∂
2χ

∂ξ
2 + %

u2

2 = 0 , (3.12)

which matches the first integral (1.44) for steady flow perfectly. Surprisingly, there is no
difference between the complex field equations whether the flow is steady or unsteady.
Indeed, the unsteady character of the flow is captured by the PDE (3.6) for the potential
M , which after considering (3.11) reads as:

− i
[
%
∂Ψ

∂t
− 4η ∂

2Ψ

∂ξ∂ξ

]
+ p+ %

ūu

2 + U = 4 ∂
2χ

∂ξ∂ξ
. (3.13)

Via (3.12), (3.13), two complex equations for one complex potential χ, the real-valued
streamfunction Ψ and the pressure p arise.

3.2.2 Formulation of boundary conditions

Consider a simply connected domain with a boundary xi = fi(s, t), parametrized with
respect to the arc length s of the boundary. Furthermore, normal and tangential unit
vectors along the boundary appear as:

ti(s, t) = f ′i(s, t) , (3.14)

ni(s, t) = εjitj(s, t) , (3.15)

where εij denotes the Levi-Civita symbol. In complex notation, the tangential vector is
given as f ′(s, t) with f(s, t) = f1(s, t) + if2(s, t) and n = if ′(s, t); note that n̄n = t̄t =
f̄ ′f ′ = 1.

(a) No-slip and no-penetration condition at solid walls

In terms of the streamfunction Ψ , the no-slip and no-penetration condition along a solid
wall ξ = f(s) at rest take the usual form:

Im
(
f ′
∂Ψ

∂ξ

)
= 0 , (3.16)

Ψ = const , (3.17)

of Dirichlet/Neumann boundary conditions.
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3 Approaches based on Goursat-like representation

(b) Kinematic and dynamic boundary conditions at a free surface

In the case of a free surface ξ = f(s, t) movement of the surface, given by ḟ , has to be
considered. In general, the movement ḟ and the flow velocity u at the surface are not
identical, but their normal components are. Hence, their difference is strictly directed
tangential to the surface, i.e. u− ḟ = u1f ′ with u1 ∈ R, implying after multiplication with
f̄ ′ and taking the imaginary part that:

uf̄ ′ − ūf ′ = ḟ f̄ ′ − ḟf ′ . (3.18)

Equation (3.18) constitutes a kinematic boundary condition taking into account the cou-
pling between the movement of the free surface and the flow velocity in the normal direc-
tion. Making use of relationship (1.43), this results in the following relationship:

∂Ψ

∂s
= i

2
[
ḟ f̄ ′ − ḟf ′

]
=: i

2
{
f, f̄

}
, (3.19)

where {·, ·} denotes the Poisson bracket of two functions [108].
The dynamic boundary condition in its original form reads:

[
(p0 − p)δij + η

(
∂ui
∂xj

+ ∂uj
∂xi

)]

xk=fk(s)
nj = σ

∂ti
∂s

, (3.20)

with σ on the right-hand side denoting the surface tension and p0 the ambient pressure.
Transformation of (3.20) into a complex representation provides the condition:

(p0 − p)n− 2ηi∂u
∂ξ
f̄ ′ = σf ′′ , (3.21)

at ξ = f(s, t). Next, by multiplying equation (3.6) with n, equation (3.10) with n̄ and
evaluating them at ξ = f(s, t), their sum together with (3.21), after some manipulation,
gives:

%
∂Ψ

∂t
f ′ − %u∂Ψ

∂s
+ Un = ∂

∂s

[
σf ′ + 2iM − ip0f

]− σ′f ′ , (3.22)

as the boundary condition for the complex potential M . The term ip0f can be eliminated
by re-gauging the potential energy according to U → U−p0. By considering the kinematic
boundary condition (3.19), the first two terms in equation (3.22) can be re-arranged as
follows:

∂Ψ

∂t
f ′ − u∂Ψ

∂s
= ∂Ψ

∂t
f ′ − ∂Ψ

∂ξ̄

{
f, f̄

}
=
[
∂Ψ

∂t
+ ∂Ψ

∂ξ
f ′ + ∂Ψ

∂ξ̄
ḟ

]
f ′ − ∂Ψ

∂s
ḟ

= ∂

∂t
Ψ
(
f, f̄ , t

) ∂f
∂s
− ∂

∂s
Ψ
(
f, f̄ , t

) ∂f
∂t

=
{
Ψ(f, f̄ , t), f

}
.

Finally, by choosing the representation (3.11) in terms of the complex potential χ, the
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3.2 Two-dimensional unsteady and incompressible flow

dynamic boundary condition (3.22) can be re-written elegantly as:

%
{
Ψ(f, f̄ , t), f

}
+ Un = ∂

∂s

[
σf ′ + 4i ∂

∂ξ
(χ− iηΨ)

]
− σ′f ′ . (3.23)

For flow conditions, for which the Poisson bracket in (3.23) vanishes (e.g. in the case
of a steady flow) and the external force is time-independent, equation (3.23) becomes
integrable; the associated first integral reads:

σf ′ + 4i ∂
∂ξ

(χ− iηΨ) =
ˆ s

s0

[
U(s̃)n(s̃) + σ′(s̃)f ′(s̃)

]
ds̃ . (3.24)

The real-valued form of (3.24) reads:

2εij∂jΦ(s) = σ(s)ti(s)−
ˆ s

s0

[
U(s̃)ni(s̃) + σ′(s̃)ti(s̃)

]
ds̃ , (3.25)

where the ε-symbol denotes ε11 = ε22 = 0, ε12 = 1, ε21 = −1, and reproduces the result of
[230]. Note that in (3.25) the dynamic boundary condition, which is essentially a condition
on the stresses, takes the form of a pure gradient condition on the potential field Φ which
is not surprising when the close relationship between Φ and an Airy stress function, Sec.
3.1, is considered.
Knowledge of the potential gradient at the free surface allows the derivation of Dirichlet

and Neumann boundary conditions for the potential variable as shown in [171]. By taking
the inner product of (3.25) with ti, its tangential component takes the form:

2ni(s)∂iΦ(s) = σ(s)− ti(s)
ˆ s

s0

[
U(s̃)ni(s̃) + σ′(s̃)ti(s̃)

]
ds̃ , (3.26)

which is a Neumann boundary condition for the potential Φ. Alternatively, the inner
product of (3.25) with ni leads to the corresponding normal component:

2ti(s)∂iΦ(s) = ni(s)
ˆ s

s0

[
U(s̃)ni(s̃) + σ′(s̃)ti(s̃)

]
ds̃ . (3.27)

Thus, using (3.27), (3.14)-(3.15) and partial integration, an integrated form of a Dirichlet
boundary condition for the potential Φ can be constructed using the abbreviation γi(s) =
U(s)ni(s) + σ′(s)ti(s):

Φ(s) = Φ(s0)− 1
2

ˆ s

s0

εijf
′
j(ŝ)
ˆ ŝ

s0

γi(s̃) ds̃ dŝ ,

= Φ(s0)− 1
2

[
εijfj(ŝ)

ˆ ŝ

s0

γ(s̃) ds̃
]ŝ=s

ŝ=s0
+ 1

2

ˆ s

s0

εijfj(s̃)γi(s̃) ds̃ ,

= Φ(s0) + 1
2

ˆ s

s0

[
U(s̃)tj(s̃) + σ′(s̃)ti(s̃)εij

]
[fj(s)− fj(s̃)] ds̃ . (3.28)
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3 Approaches based on Goursat-like representation

By gauging, the term Φ(s0) can be set to zero without loss of generality and moreover,
in the case of σ′(s) = 0, that is neglecting Marangoni effects, further simplification is
possible.
Derivation of the field equations (3.12), (3.13) in combination with boundary conditions

of the form described in Sec. 3.2.2, represents a consistent extension of prior work con-
cerning the integration of the incompressible NS equations [171, 230]. Here, the reduction
of the dynamic boundary condition from its original form (3.20) to a standard Dirichlet-
Neumann form (3.26), (3.28) is a key feature of the reformulation of the equations of
motion in terms of the first integral of the NS equations allowing for the construction of
efficient methods of analytical and numerical solution later on. In order to demonstrate the
capabilities of this new approach and to focus on the distinguishing key feature, namely
its ability to handle challenging transient flows, the non-trivial problem of Couette flow
generated within an irregular flow geometry is considered in Sec. 6.4.

3.2.3 Application of the method to simple flows

In order to familiarise the reader with the methodology two well-known flow problems are
considered, the solutions of which agree exactly with the standard ones existing in the
literature.

(a) Uni-axial flow

For the simple case of a 2D uni-axial flow, uy = 0, or equivalently in complex formulation
u− ū = 0, the following PDE, cf. the streamfunction definition (1.43), has to be fulfilled:

∂Ψ

∂ξ
+ ∂Ψ

∂ξ
= 0 ,

implying the explicit form:

Ψ = Ψ

(
ξ + ξ

2i , t

)
= Ψ (y, t) ,

u = −2i∂Ψ
∂ξ

= Ψ ′ (y, t) ,

for the streamfunction and the velocity, respectively; where the prime denotes differenti-
ation with respect to y. Next, the general solution of (3.12) reads:

χ = ξw0(ξ, t) + w1(ξ, t) + %

2

ˆ [ˆ
Ψ ′ (y, t)2 dy

]
dy , (3.29)

with two analytic functions w0(ξ, t), w1(ξ, t) being a generalization of the so-called Gour-
sat functions [171]. By inserting (3.29) into equation (3.13) results in the following
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3.2 Two-dimensional unsteady and incompressible flow

simplification:
− i
[
%Ψ̇ − ηΨ ′′

]
+ p+ U = 4w′0(ξ, t) , (3.30)

where a dot over a symbol denotes its time-derivative.
As an example involving the use of the above equation consider the problem of a hor-

izontal plate of infinite extent covered by a fluid with flow invoked by an oscillatory
movement, see Fig. 3.1. The no-penetration condition Ψ(0, t) = 0 and the no-slip con-
dition Ψ ′(0, t) = U cos(ωt) close the problem while in addition the asymptotic condition
Ψ ′(y, t)→ 0 has to be fulfilled. Assuming vanishing pressure p = 0 and a wave-like solution
of the form:

Ψ = U Im
{

exp(−iωt)exp(iky)− 1
k

}
,

satisfying the no-slip and no-penetration conditions, equation (3.30) leads to the identity:

−iU Im
{
−i%ω + ηk2

k
exp(i[ky − ωt]) + i%ω

k
exp(−iωt)

}
= 4w′0(ξ, t) ,

which is fulfilled if k and ω satisfy the dispersion relation:

iω = η

%
k2 ,

for damped transversal waves and the Goursat function w0 takes the form:

w0 = − i
4ξηU Im [k exp(−iωt)] .

Hence, the classical result given in [241] is reproduced.

-
u(y, t)

6
y

-x

-�

U cos(ωt)
Figure 3.1: Geometry for the flow over an oszillating plate.

(b) Axisymmetric flow

Consider now a class of flows given by the following form:

Ψ = Ψ(r, t) , (3.31)

u = −2i∂Ψ
∂ξ

= − iξ
r
Ψ ′ (r, t) , (3.32)
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3 Approaches based on Goursat-like representation

r :=
√
ξξ (3.33)

of the streamfunction; where the prime denotes derivation with respect to r, i.e. flows for
which the streamlines of which are concentric circles, see Fig. 3.2a. Assuming a particular
solution χp = χp(r, t) of (3.12), leads to:

r
∂

∂r

(
χ′p
r

)
= %

2Ψ
′ (r, t)2 ,

which, following integration, gives:

χ′p
r

= %

2

ˆ
Ψ ′ (r, t)2

r
dr .

By inserting this expression into equation (3.13), the following simplified PDE is obtained:

− i
[
%Ψ̇ − η

r

∂

∂r

(
rΨ ′

)]
+ p+ U − %

ˆ
Ψ ′ (r, t)2

r
dr = 0 . (3.34)

The introduction of the following similarity variable:

z = r

√
%

ηt
,

enables one to search for solutions of the form Ψ = f(z); in which case the imaginary part
of equation (3.34) takes the form:

%

t

[
z

2f
′(z) + 1

z

d
dz
(
zf ′(z)

)]
= 0 ,

which after the substitution g(z) = zf ′(z) can be conveniently rewritten as:

g′(z) + z

2g(z) = 0 ,

that has solutions of the form:

g(z) = g0 exp
(
−z

2

4

)
,

leading to:

f(z) = g0

ˆ 1
z

exp
(
−z

2

4

)
dz = g0

2 Ei
(
−z

2

4

)
, (3.35)

where Ei denotes the integral exponential function. This solution contains a singularity;
however, by considering the superposition of (3.35) with the well-known potential vortex
Γ
2π ln r as a different solution to (3.34), giving:

Ψ = g0
2 Ei

(
−z

2

4

)
− Γ

2π ln r ,
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(a) �
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t = 10t1
t = 27t1

(b)

Figure 3.2: Vortex flow: (a) geometry; (b) time evolution of the velocity profile.

the singularity is removed as follows. The complex velocity field resulting from (3.32)
reads:

u = − iξ
r
Ψ ′ (r, t) = i

r

[
Γ
2π + g0 exp

(
−%r

2

4ηt

)]
exp (iϕ)

which is convergent in the limit r → 0 if and only if 2πg0 = Γ. The final solution reads:

u = iΓ
2πr

[
1− exp

(
−%r

2

4ηt

)]
exp (iϕ) , (3.36)

which is a reproduction of the classical Lamb-Oseen vortex [154]. The velocity profile |u|
is shown in Fig. 3.2b.
The above complex potential variant of the first integral does not lend itself readily to

the solution of unsteady problems nor can it be extended to 3D problems. Accordingly, a
different formulation is required which is the topic of the following section.

3.3 General three-dimensional unsteady and incompressible flow

With reference to the above work concerning the derivation and use of an exact complex-
valued first integral for 2D incompressible flow [171, 172] a real-valued one for the full
unsteady, incompressible NS equations is now formulated, as published in Scholle et al.
[231]. Tensor calculus is employed, where vector fields are denoted by their Cartesian
components, e.g. the velocity field ~u by ui, i = 1, · · · , 3, and tensors such as that for
stress T by Tij . The Einstein summation convention is used throughout: ∂i denotes a
spatial derivative with respect to xi, i.e. ∂i = ∂/∂xi, and ∂t the time derivative; δij is the
Kronecker delta function and εijk the 3D Levi-Civita symbol.
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3 Approaches based on Goursat-like representation

The beneficial use of potential fields, synonymous with Maxwell’s theory [133], under-
pins the present approach: in that important and essential insight is gained for a similar
treatment of the NS equations.

3.3.1 Preliminaries and introduction of a streamfunction vector

Prior to deriving the 3D form of the first integral, consideration is given to equation
(1.21b), which is fulfilled identically by introducing a vector potential Ψk for the velocity
according to:

ui = εijk∂jΨk , (3.37)

known in the literature as a 3D generalisation of the 2D streamfunction [22] that can be
gauged by an arbitrary gradient field, that is:

Ψk −→ Ψk + ∂kχ ; (3.38)

leading, according to (3.37), to the same velocity field ui.

Within the present context, the above allows reformulation of the time derivative in
equation (1.21a) as the divergence of a tensor field, namely: ∂tui = εijk∂t∂jΨk = ∂j (εijk∂tΨk).
In this way equations (1.21a) can be re-written as:

∂j [%εijk∂tΨk + %ujui − Tji + Uδji] = 0 , (3.39)

with the stress tensor given by:

Tij = −pδij + η [∂jui + ∂iuj ] . (3.40)

3.3.2 First integral of the field equations

With reference to the above it is clear that the momentum balance (3.39)) is a PDE of
the same type as equation (1.21b) but for a tensor rather than a vector field. Hence, by
introducing the tensor Mlj as a new potential, in accordance with:

%εijk∂tΨk + %uiuj − Tij + Uδij = εjlk∂lMki , (3.41)

equation (3.39) is fulfilled identically; the analogy with (3.37) being obvious. Since Tij is
a symmetric tensor, it is convenient to split the above equation into symmetric:

%uiuj − Tij + Uδij = 1
2 [εjlk∂lMki + εilk∂lMkj ] , (3.42)
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and skew-symmetric parts; the latter, by multiplying (3.41) with εijn, is conveniently
represented as a vector equation:

2%∂tΨn = ∂nMll − ∂lMnl . (3.43)

Though not immediately obvious, the above rudimentary form of the first integral corre-
sponds to that of the 2D first integral in Sec. 3.2; a more conveniently recognisable form
is arrived at via the following reformulation.

First, using the streamfunction (3.37) the stress tensor (3.40) can be written as:

Tij = −pδij + η [εilk∂l (∂jΨk) + εjlk∂l (∂iΨk)] ,

and, hence, equation (3.42) as:

%uiuj + (p+ U)δij = 1
2 [εjlk∂l (Mki + 2η∂iΨk) + εilk∂l (Mkj + 2η∂jΨk)] .

The first order potential Mki enters the equations in combination with terms of the form
2η∂iΨk only. Recognising this and following the procedure adopted earlier for 2D flow the
combination Mki + 2η∂iΨk can be rewritten as:

Mki + 2η∂iΨk = εipq∂pakq + 2∂iϕk , (3.44)

which for vector fields is the well-known Maxwell decomposition into a divergence-free and
a curl-free part; the form of which is a generalisation towards tensors of second rank with
vector and tensor potential ϕk and akq, respectively. Inserting (3.44) into equations (3.42)
and (3.43), yields the following relationships:

%uiuj + (p+ U)δij = 1
2εilkεjpq∂l∂p (akq + aqk) + ∂i (εjlk∂lϕk) + ∂j (εilk∂lϕk) , (3.45)

2%∂tΨn = ∂n∂k [εkqpapq + 2ϕk − 2ηΨk]− ∂k∂k [2ϕn − 2ηΨn] , (3.46)

which can be simplified by making use of the gauge transformation (3.38). The latter has
no effect on equation (3.45) but equation (3.46) becomes:

2%∂tΨn = ∂n {∂k [εkqpapq + 2ϕk − 2ηΨk]− 2%∂tχ} − ∂k∂k [2ϕn − 2ηΨn] . (3.47)

Since the gauge field χ can be chosen arbitrarily, the term εkqp∂kapq − 2%∂tχ may be set
to any value; in particular, by choosing:

χ = 1
2%

ˆ
εkqp∂kapqdt+ χ0(xi) , (3.48)

leads to:
%∂tΨn = ∂n∂k [ϕk − ηΨk]− ∂k∂k [ϕn − ηΨn] ; (3.49)
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showing that the skew-symmetric part of the tensor potential can be eliminated and there-
fore apq assumed symmetric from the very outset, leading ultimately to the following
simplified form of equation (3.45):

%uiuj + (p+ U)δij = εilkεjpq∂l∂pakq + ∂i (εjlk∂lϕk) + ∂j (εilk∂lϕk) . (3.50)

Second, the divergence ∂n(· · · ) of equation (3.49) leads to 2%∂t (∂nΨn) = 0, implying
that ∂nΨn is independent of time. Since χ0 in (3.48) is arbitrary, it can be chosen such
that:

∂nΨn = 0 , (3.51)

analogous to the Coulomb gauge in Maxwell’s theory [133]. This, together with the identity
∂n∂kϕk − ∂k∂kϕn = εnij∂i (εjlk∂lϕk), enables equation (3.49) to be written in the form of
an inhomogeneous diffusion equation:

%∂tΨn − η∂k∂kΨn = εnij∂i (εjlk∂lϕk) ; (3.52)

leading simultaneously to a reduction in the numbers of potentials due to the elimination
of the skew-symmetric part of apq.

Thus far, a first integral of the unsteady incompressible Navier-Stokes equations has
been obtained in the form of a tensor-valued field equation (3.50) and a vector-valued field
equation (3.52) constrained by (3.51), involving various unknown fields apq, Ψn, un, p and
ϕn. Although these remain to be closed mathematically, even at this stage they serve as
an insightful starting point for fixing the remaining degrees of freedom in beneficial ways,
that is tuning the form of the equations. This is explored in detail below.

3.4 Closure via selective gauge criteria

In general, a gauge transformation of a given set of potentials replaces them by an equiv-
alent set of potentials leading to identical observables. Accordingly, such transformations
can be used to simplify corresponding field equations, for the potentials, with respect to
their mathematical structure as well as to the number of potentials. In the following,
the gauge freedoms of apq and ϕn are analysed in detail. Obviously, by performing the
operations:

apq −→ apq + ∂pαq + ∂qαp , (3.53)

ϕn −→ ϕn + ∂nζ , (3.54)

for an arbitrary vector field αq and an arbitrary scalar field ζ, the field equations (3.50),
(3.52) remain invariant. The above rules are utilised subsequently to establish bona fide
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gauging scenarios, ones that lead favourably to a reduction of the order of the established
first integral, equations (3.50) to (3.52); in this context Scholle et al. [230] showed, by
applying a particular gauge, that a special form of the first integral of NS equations for
steady 3D flow can be obtained based on a minimum number of three potential fields only.

3.4.1 Convenient re-ordering of the first integral

Mixed derivatives of the form ∂k∂l(· · · ) are an inconvenience which can be avoided via a
specific gauge transformation. This is achieved as follows, beginning with the re-ordering
of the first the second order derivatives within the double curl operation εiklεjpq∂k∂palq of
equation (3.50). Since the product of two Levi-Civita symbols can be expressed as:

εiklεjpq = δijδkpδlq + δipδkqδlj + δiqδkjδlp − δipδkjδlq − δijδkqδlp − δiqδkpδlj ,

the identity:

εiklεjpq∂k∂palq = −∂k∂k [aij − allδij ] + ∂i∂kakj + ∂j∂kaki − ∂i∂jakk − ∂l∂kaklδij

= −∂k∂k
[
aij −

all
2 δij

]
+ ∂i∂k

[
akj −

all
2 δkj

]
+ ∂j∂k

[
aki −

all
2 δki

]
− ∂l∂k

[
akl −

ann
2 δkl

]
δij ,

results, giving rise to the following reformulation of equation (3.50):

%uiuj + (p+ U)δij = −∂k∂kãij + ∂iAj + ∂jAi − ∂kAkδij , (3.55)

in terms of the modified tensor potential ãij and an auxiliary vector field Aj defined as:

ãij := aij −
akk
2 δij , (3.56)

Aj := ∂kãkj + εjlk∂lϕk . (3.57)

Note that from the form (3.55) of the tensor equation, the mathematical structure of
the first integral for 2D flows demonstrated in Sec. 3.1 and 3.2 is recovered, see Ap-
pendix A.2.1.
Compared to its original form (3.50), equation (3.55) provides a partition of terms: in

particular, all mathematical expressions with mixed derivatives of the form ∂k∂l(· · · ) occur
exclusively as derivatives of the auxiliary vector field Aj . Now, via a gauge transformation
of the form (3.53), the vector field Aj can be manipulated according to:

Aj → Aj + ∂k∂kαj , (3.58)

which can be set to any arbitrary value by means of the proper choice of the gauge field
αj . The choice:

Aj = 0 , (3.59)
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leads to the elimination of all mixed derivatives in (3.55), and to the simplified form:

%uiuj + (p+ U)δij = −∂k∂kãij . (3.60)

The gauge condition (3.59) is reminiscent of the Lorenz gauge or Coulomb gauge in
Maxwell’s theory [133] which similarly leads to the elimination of mixed terms in the
associated field equations. Moreover, via (3.59) the additional vector potential ϕj is elim-
inated from equation (3.60). By writing (3.59) explicitly as εjlk∂lϕk = −∂kãkj , ϕj can
also be eliminated from equation (3.52), which accordingly takes the form:

%∂tΨn − η∂k∂kΨn = −εnkl∂k∂mãml , (3.61)

of an inhomogeneous diffusion equation; c.f. equation (3.52). Total elimination of ϕj from
the entire set of equations requires the divergence of the gauge condition (3.59), implying:

∂j∂kãkj = 0 . (3.62)

The outcome is a favourably reduced equation set comprised of one each of a symmetric
tensor equation (3.60), a vector equation (3.61) and a scalar equation (3.62), in terms of
the symmetric modified tensor potential ãij = aij − akkδij/2, the streamfunction vector
Ψn and the pressure p.

The key features associated with equations (3.60)) to (3.62) are: (i) though the number
of unknown fields (one symmetric tensor, one vector, one scalar) exceeds that of a com-
parable formulation in primitive variables (one vector and one scalar), their favourably
different structure off-sets this; (ii) in contrast to the original NS equations (2.57a) which
include the material time derivative, a non-linear term involving first order velocity deriva-
tives, equation (3.60) consists of a non-linear term which depends directly on the velocities
– equation (3.61) is simply a linear inhomogeneous diffusion equation, not a nonlinear
diffusion-convection equation – resulting in a reduction of the differential order of the
non-linearity.

(a) Zero-viscosity limit

Since the zero-viscosity limit leads to a change of problem type, namely from second order
PDEs (NS equations) to ones of first order (Euler’s equations), it is apposite to explore
this special case: applying the limit η → 0 to equations (3.60)-(3.62), the following set of
PDEs:

∂k∂kãij = −%uiuj − (p+ U)δij , (3.63)

%∂tΨn = −εnkl∂k∂mãml , (3.64)

∂j∂kãkj = 0 , (3.65)
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is obtained; still containing second order derivatives of the tensor potential but only first
order derivatives of the streamfunction vector. Taking now the curl εpqn∂q of (3.64), in
combination with (3.63), (3.65) and (3.37), it follows that:

%∂t (εpqn∂qΨn)︸ ︷︷ ︸
up

= − [δpkδql − δplδqk] ∂q∂k∂mãml = ∂m∂k∂kãmp − ∂p ∂l∂mãml︸ ︷︷ ︸
0

= −∂m [%umup + (p+ U)δmp] = −%
0︷ ︸︸ ︷

∂mum up − %um∂mup − ∂pp− ∂pU ,

which is a full reproduction of Euler’s equations, proving that the PDE set (3.63)-(3.65)
is a first integral of Euler’s equations, as it should be. Also in this case conservation of
energy, momentum (in the absence of external forces, U = 0), angular momentum and
helicity is fulfilled [22].

(b) Steady flow case

By employing the two gauge conditions (3.51), (3.62), together with the well known iden-
tity ∂k∂kΨn = ∂n∂kΨk − εnkl∂k (εlpq∂pΨq) and the definition of the streamfunction vector
(3.37), equation (3.61) takes the form: %∂tΨn+εnkl∂k [ηul + ∂mãml] = 0. Hence, for steady
flow, ∂tΨn = 0, the term in square brackets can be written as the gradient of a scalar field,
that is:

ηul + ∂mãml = ∂lΦ ;

by proper gauging of the tensor potential ãml, Φ can be set equal to zero, resulting in the
identity:

ul = −1
η
∂mãml , (3.66)

via which the streamfunction vector is eliminated. The remaining fields are the symmetric
tensor potential ãml and the pressure p; the field equations for steady flow being simply
(3.60) and (3.62).

3.4.2 Traceless form

Two of the scalar fields, namely the pressure p and the trace of the tensor potential, can
be eliminated as follows. The trace of equation (3.60):

∂k∂kãii = −%uiui − 3(p+ U) , (3.67)

enables direct calculation of the pressure from the other fields, c.f. Bernoulli’s equation in
potential theory. Equation (3.67) can be used to express p + U in terms of the square of
the velocity and second order derivatives of the tensor potential; this allows elimination
of the pressure from equation (3.60), resulting in the following traceless symmetric tensor

81



3 Approaches based on Goursat-like representation

equation:
∂k∂kāij = −%

[
uiuj −

ukuk
3 δij

]
, (3.68)

in terms of the traceless tensor potential:

āij = ãij −
ãkk
3 δij . (3.69)

Equation (3.68) is supplemented by equation (3.61) which in terms of the traceless tensor
potential reads:

%∂tΨn − η∂k∂kΨn = −εnkl∂k∂māml . (3.70)

Together, expressions (3.68) and (3.70) comprise eight independent equations for the eight
independent components of āij and Ψn, which is the minimum number in the case of
unsteady flow.

Steady flow case: As above, a traceless and therefore reduced version of the field equa-
tions is achieved by inserting the identity (3.66) into (3.68) and taking (3.62) as the second
equation, leading to six independent PDEs for six unknown fields.

3.4.3 Self-adjoint form

Finding variational formulations for physical systems is beneficial with respect to a deeper
understanding of the system and for establishing new solution methods, both analytical
and numerical. In fluid mechanics two major routes have emerged: (i) the stochastic
variational description corresponding to the Lagrangian equations of motion in terms
of material path lines, making use of a statistical treatment of kinetic models, see e.g.
[13, 15, 63] and [14]; (ii) in the framework of a field description involving the recovery of
the NS equations by variation of an action integral in the classical deterministic sense. In
terms of the latter, it was Millikan [178] who showed the non-existence of a Lagrangian, in
terms of the velocity ui, the pressure p and their first order derivatives, that would enable
the NS equations to be written as Euler-Lagrange equations. An analogue situation is
found in Maxwell’s theory, where it is not possible to establish a Lagrangian in terms of
an electric field Ei and magnetic flux density Bi; however, a Lagrangian can be found in
terms of a scalar potential ϕ and vector potential Ai. It is the latter that has prompted
the search for a variational description for viscous flow in terms of potentials rather than
velocity and pressure.
A variety of suggestions from different authors have appeared based on different poten-

tial formulations: Zuckerwar and Ash [288] used the Clebsch transformation [154, 191] to
establish a Lagrangian for flows with volume viscosity, while latterly Scholle and Marner
[226] consider shear viscosity in a similar manner. A variational description based on a
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vector potential for the velocity was proposed by Bendali et al. [27]. In the present work
the field equations are comprised of vector and tensor potentials, posing the question as
to whether they are self-adjoint. As demonstrated below for the particular case of steady
flow, a special gauge criteria is required to achieve a self-adjoint first integral of the NS
equations.

When the flow is steady, ∂tΨn = 0, equation (3.49) is fulfilled identically by writing:

ϕn = ηΨn , (3.71)

the insertion of which in equation (3.45) and making use of the relationship akq + aqk =
2ākq + 2annδkq/3 from equation (3.69), leads to the following tensor equation:

%uiuj + (p+ U)δij = εilkεjpq∂l∂pākq + 1
3 [∂l∂lannδij − ∂i∂jann] + η [∂iuj + ∂jui] , (3.72)

as the most general form of the first integral for steady flow; valid for any gauging of the
tensor potential. On elimination of the isotropic part and hence the pressure, its associated
traceless form results:

%

[
uiuj −

ukuk
3 δij

]
− η [∂iuj + ∂jui] =

[
εilkεjpq − εnlkεnpq

δij
3

]
∂l∂pākq

+ 1
3 [∂l∂lannδij − ∂i∂jann] , (3.73)

in terms of the traceless symmetric tensor potential ākq, the trace ann of the tensor po-
tential and the velocity field ui = εinm∂nΨm. Suggesting a Lagrangian of the form:

` = %āijuiuj +
[
2ηuj −

1
3∂jann

]
∂iāij + 1

2εilkεjpq∂lāij∂pākq + f (ui, ann, ∂iann) , (3.74)

which, because ui = εinm∂nΨm, is a function of the fields ākq, ann, Ψm and their associated
first order derivatives, i.e. ` = ` (ākq, ann, ∂nΨm, ∂pākq, ∂iann). f remains to be specified,
its significance being discussed below.

Variation of the action integral:

δ

˚
V
` (ākq, ann, ∂nΨm, ∂pākq, ∂iann) dV = 0 , (3.75)

with respect to āij results in the required Euler-Lagrange equations (3.73); whereas vari-
ation with respect to Ψm and ann lead to:

−2εmni∂n
[
%āijuj + η∂j āji + 1

2
∂f

∂ui

]
= 0 , (3.76)

1
3∂i∂j āij + ∂f

∂ann
− ∂i

(
∂f

∂(∂iann)

)
= 0 . (3.77)
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The meaning of equations (3.76) and (3.77) becomes much clearer after a substitution
and rearrangement of terms: use of the definitions (3.56), (3.57) and (3.69) together with
εjlk∂lϕk = ηuj following from (3.37) and (3.71), leads to the identity:

∂j āji = Ai − ηui + 1
6∂iann ,

which, when substituted into (3.76), (3.77), yields:

εmni∂nAi = εmni∂n

[
ηui −

1
2η

∂f

∂ui
− %

η
āijuj

]
, (3.78)

∂iAi = ∂i

[
3 ∂f

∂(∂iann) −
1
2∂iann

]
− 3 ∂f

∂ann
. (3.79)

Since any vector field Ai can be reconstructed from its divergence ∂iAi and its curl
εmni∂nAi, the reformulated Euler-Lagrange equations (3.78) and (3.79) is identifiable as
an alternative gauge to that given by (3.59), the latter leading to the favourable formu-
lation developed at the end of Section 3.4.1 for steady flow having a reduced number of
unknown fields.

Hence, for steady flow a choice is available between the use of gauge (3.59) leading
to a reduced set of fields and a favourable mathematical form of the field equations or
gauge (3.76), (3.77) supplementing equations (3.73) to form a self-adjoint set of equations.
The availability of a self-adjoint form can be useful for particular problems, e.g. when
trying to compute normal forms around singular bifurcation points since it is necessary
to make projections onto the eigenfunction of an adjoint problem, see Dijkstra et al. [85]
and references therein.

Via a proper choice of the yet unknown function f in (3.74) the gauge conditions (3.78)
and (3.79) are tuneable to some extent. For example, by choosing:

f (ui, ∂iann) = η2u2
i + 1

12 (∂iann)2 ,

they simplify to:

εmni∂nAi = −%
η
εmni∂n (āijuj) ,

∂iAi = 0 .

In principle any arbitrary choice of f is possible. The variational principle above recovers,
for η → 0, the traceless version of the first integral of Euler’s equations for steady flow.
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3.5 Application of the Methodology

Having derived the first integral and explored its versatility in detail and on different levels,
its use as a starting point to solve viscous fluid flow problems is now demonstrated. Not all
of the gauge variants described in Sec. 3.4 are analysed further; rather the focus is those
formulated in Sec. 3.4.1 and the solution of three different classical, benchmark viscous
flows, which exhibit a hierarchy of sufficient complexity for such purposes – geometry,
unsteadiness, non-linearity, inertia – and are solved analytically where analysis permits,
otherwise numerically. The necessary, and related, boundary conditions required to do so
are outlined below.

3.5.1 Boundary conditions

Depending on the problem of interest, the physical boundary conditions involved have
to be formulated appropriately; a good example of this is the kinematic and dynamic
boundary conditions required to solve 3D free surface flow problems which, although not
utilised here, are included for completeness.

(a) Boundary conditions at solid walls, inlets and outlets

Along solid walls, for the velocity field the no-slip condition:

ui = UBi , (3.80)

has to be fulfilled, where UBi is the velocity of the boundary; inlet and outlet boundary
conditions with fixed velocity profile have the same mathematical form as does the speci-
fication and advantageous use of symmetry and periodic boundary conditions. The latter
type is discussed in more detail in Section 3.5.3(b).

(b) Boundary conditions at a free surface

Although a free surface condition does not appear in the problems solved below, the
required attendant boundary conditions are provided. Their full derivation is given in
Appendix A.2.2 but in summary two conditions must be fulfilled at a free surface: (i) the
kinematic boundary condition, uini = 0, related to mass conservation; (ii) the dynamic
boundary condition related to stress equilibrium at the surface. The latter can be described
by the vector equation:

Tijnj = σsκni , (3.81)

involving the stress tensor Tij , the normal vector ni, the surface tension σs and the curva-
ture κ. Using the potential representation for the respective physical quantities, equation
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(3.81) can be reformulated into a more convenient form – see Appendix A.2.2, where it
is also shown that for steady flow a first integral of the dynamic boundary itself can be
constructed leading to a first order condition for the tensor potential entries only:

εikl

[
∂kalmdxm +

(
σsnk −

Uk
2

)
dxl
]

= 0 , (3.82)

with the auxiliary functions Uk implicitly defined by (A.38).

(c) Auxiliary boundary conditions

Irrespective of the physical boundary conditions present, e.g. walls or free surfaces, an
insufficient number can be prescribed to ensure a uniquely solvable system. An example
of this is flow problems in which wall boundary conditions are prescribed on all parts
of the boundary, as in the case of the lid-driven cavity flow explored below. Exactly
three velocity conditions exist, which is less than the number of unknown fields. Even in
the case of steady flow, where according to (3.66) the velocity can be expressed via the
divergence of the tensor potential, 6 independent fields have to be considered – with at
least three additional boundary conditions having to be formulated although there are no
more physical conditions to be fulfilled; these necessary additional boundary conditions
are subsequently termed auxiliary boundary conditions since they exert no influence on
the physics.
While the options available for specifying these auxiliary boundary conditions appears

wide, the two provided below are the only possible auxiliary Dirichlet conditions which
appear reasonable:

1. Let nj be the normal vector of the respective boundary. Then, three Dirichtlet
boundary conditions are given by:

ãijnj = 0 . (3.83)

2. Let t(1)
i and t(2)

i be two orthogonal tangential vectors at the boundary. Then, three
independent Dirichlet boundary conditions are given by:

t
(1)
i ãijt

(1)
j = 0 , (3.84)

t
(1)
i ãijt

(2)
j = 0 , (3.85)

t
(2)
i ãijt

(2)
j = 0 . (3.86)

The decisive criterion for the choice of auxiliary boundary conditions is that they must not
contradict the physically prescribed boundary conditions. For example, consider boundary
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conditions (3.83) for a steady flow; by integration over the entire boundary ∂V of the
system’s volume V and making use of Gauss’s theorem, the following identities:

0 =
‹
∂V
ãijnjdS =

˚
V
∂j ãijdV = −η

˚
V
uidV (3.87)

are obtained, where relationship (3.66) has been utilised. Equation (3.87) implies the
vanishing of the global momentum, which is clearly an inadmissible physical restriction.
While the above example demonstrates the choice of auxiliary boundary conditions to

be neither arbitrary nor intuitive, heuristic considerations lead to conditions (3.84)-(3.86)
which do not conflict with the physics; although no proof is given, the comparatively
accurate numerical results obtained below for the lid-driven cavity problem suggest the
postulated conditions to be both admissible and sufficient to mathematically close the
boundary value problem, at least in the steady case.

3.5.2 Unsteady stagnation flow

Consider the unsteady non-axisymmetric stagnation flow, depicted in to Figure 3.3, as a
prototype example embodying both inertia and time dependence2. It is assumed that:

~u = xf ′(z, t)~ex + yg′(z, t)~ey − [f(z, t) + g(z, t)]~ez = ∇× [yg(z, t)~ex − xf(z, t)~ey] ,

where the prime denotes differentiation with respect to z. Accordingly, the continuity
equation (1.21b) is fulfilled identically and in which case the velocity can be obtained
from a streamfunction vector, according to equation (3.37), with:

~Ψ = yg(z, t)~ex − xf(z, t)~ey ; (3.88)

note too, that the streamfunction vector fulfils the Coulomb gauge (3.51). The traceless
form of the first integral is utilised, equations (3.68) and (3.70); written in component
form equation (3.68) reads:

−%−1∆ā11 = 2
3x

2f ′2 − 1
3y

2g′2 − 1
3(f + g)2 , (3.89)

−%−1∆ā22 = 2
3y

2g′2 − 1
3x

2f ′2 − 1
3(f + g)2 , (3.90)

−%−1∆ā12 = xyf ′g′ , (3.91)

−%−1∆ā13 = −x(f + g)f ′ , (3.92)

−%−1∆ā23 = −y(f + g)g′ , (3.93)

2The example is similar to that considered in Sec. 2.5.2 but in contrast to the latter exhibits increased
complexity because unsteady and non-axisymmetric flow is assumed; also the solution approach is
completely different here.
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y

z

x

Figure 3.3: Schematic of a non-axisymmetric, unsteady stagnation flow problem close to
a solid wall.

while equation (3.70) gives:

−y% [ġ − νg′′] = ∂1∂2ā13 − ∂1∂3ā12 + {∂2∂2 − ∂3∂3}ā23 + ∂2∂3[ā33 − ā22] , (3.94)

x%
[
ḟ − νf ′′

]
= ∂1∂3[ā11 − ā33] + ∂3∂2ā12 − ∂1∂2ā23 + {∂3∂3 − ∂1∂1}ā13 , (3.95)

0 = {∂1∂1 − ∂2∂2}ā12 + ∂1∂2[ā22 − ā11] + ∂1∂3ā23 − ∂2∂3ā13 , (3.96)

the dot above a symbol, here and subsequently, denoting differentiation with respect to
time.
The boundary conditions at z = 0 are the usual no-slip/no-penetration conditions

f ′(0, t) = g′(0, t) = 0 and f(0, t) = g(0, t) = 0. The characteristic nature of above
viscous stagnation point flow is boundary layer like [175], with the requirement that it
matches the associated potential flow as z →∞. Accordingly, the tensor potential for an
inviscid boundary layer flow has to be constructed a priori.

(a) Associated potential flow

In the case of 3D stagnation flow, the corresponding potential flow is given [175] by:
f(z) = a1z, g(z) = a2z, fulfilling the no-penetration condition f(0) = g(0) = 0, but not
so the no-slip condition. For the construction of the associated traceless tensor potential,
equations (3.89)-(3.93) have to be solved. One such particular solution is given by:

āp
11 = −%6

[
2a2

1x
2z2 − a2

2y
2z2 − 1

6(3a2
1 + 2a1a2)z4

]
, (3.97)

āp
22 = −%6

[
2a2

2y
2z2 − a2

1x
2z2 − 1

6(3a2
2 + 2a1a2)z4

]
, (3.98)

āp
12 = −%2a1a2xyz

2 , āp
13 = %

6a1(a1 + a2)xz3 , āp
23 = %

6a2(a1 + a2)yz3 ; (3.99)
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which fulfils equation (3.96), but not equations (3.94), (3.95); a superposition of the form
āij = āh

ij + āp
ij with ∆āh

ij = 0 is required in order to fulfil all of the equations. By choosing
āh

12 = āh
13 = āh

23 = 0 and:

āh
11 = A1

[
x4 + z4 − 6x2z2

]
, āh

22 = A2
[
y4 + z4 − 6y2z2

]
,

equations (3.94), (3.95) results in: 0 = [48A2 + %a2
2]yz , 0 = −[48A1 + %a2

1]xz , implying
A1 = −%a2

1/48 and A2 = −%a2
2/48; the other equations are not affected. Hence, the

resulting solutions of the homogeneous equations read:

āh
11 = −%a

2
1

48
[
x4 + z4 − 6y2z2

]
, (3.100)

āh
22 = −%a

2
2

48
[
y4 + z4 − 6y2z2

]
. (3.101)

(b) General case

Assume the following analogous form of the traceless tensor potential:

āp
11 = −%

[
F110(z, t) + x2F111(z, t) + y2F112(z, t)

]
,

āp
22 = −%

[
F220(z, t) + x2F221(z, t) + y2F222(z, t)

]
,

āp
12 = −%xyF12(z, t) , āp

13 = %xF13(z, t) , āp
23 = %yF23(z, t) ,

for the particular solution of (3.89)-(3.93); while remembering that as above the flow is of
a boundary-layer type. In order to fulfil the matching condition, this particular solution
has to be supplemented by equations (3.100), (3.101). In this way, equations (3.89)-(3.93)
are reduced as follows:

3F ′′110 + 2F111 + 2F112 = −1
3(f + g)2 , F ′′111 = 2

3f
′2 , F ′′112 = −1

3g
′2 , (3.102)

F ′′220 + 2F221 + 2F222 = −1
3(f + g)2 , F ′′221 = −1

3f
′2 , F ′′222 = 2

3g
′2 , (3.103)

F ′′12 = f ′g′ , F ′′13 = (f + g)f ′ , F ′′23 = (f + g)g′ , (3.104)

written in terms of functions F110, F111, F112, F220, F221, F222, F12, F13, F23. By inserting
the above solution into equations (3.94) to (3.96), it is found that equation (3.96) is fulfilled
identically whereas equations (3.94) and (3.95) yield:

ġ − νg′′ = a2
2z + F ′′23 − F ′12 − 4F ′222 − 2F ′112 = a2

2z + gg′ +
ˆ [

fg′′ − 2g′2
]
dz, (3.105)

ḟ − νf ′′ = a2
1z + F ′′13 − F ′12 − 4F ′111 − 2F ′221 = a2

1z + ff ′ +
ˆ [

gf ′′ − 2f ′2
]
dz, (3.106)
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3 Approaches based on Goursat-like representation

which, upon taking their derivative with respect to z, leads to a coupled set of third order
equations for the functions f(z, t) and g(z, t), namely:

ġ′ − νg′′′ = a2
2 − g′2 + (f + g)g′′ , (3.107)

ḟ ′ − νf ′′′ = a2
1 − f ′2 + (f + g)f ′′ . (3.108)

These have to be solved numerically; the special case of a steady flow, ḟ = ġ = 0, results
in a set of ODEs as reported and solved by Howarth [130].

3.5.3 Flow within a cubic domain

(a) Steady flow within a lid-driven cavity

The case of stationary viscous flow in a square-sided 3D lid-driven cavity of equal edge
length, L, and a constant upper lid velocity of U0 [86], is explored through the numerical
solution of the primitive variable form of the first integral for steady flow tuned as per
the corresponding gauge criterion of Section 3.4.1 – a key feature being that the essential
equation (3.60) is devoid of mixed derivatives, with the consequent benefit it simplifies
and accelerates the use of iterative solvers. The equations to be solved, namely (3.60),
(3.62) and (3.66), when non-dimensionalised in terms of L and U0, read:

∂k∂kãij + Reuiuj + (p+ U)δij = 0 in Ω , (3.109)

∂l∂kãkl = 0 in Ω , (3.110)

−∂kãkl = ul in Ω , (3.111)

where Re = %U0L
η is the Reynolds number. Ω in equation (3.111) denotes the closed set of

the solution domain Ω = [0, 1]3 with boundary ∂Ω (the moving lid lying in the plane z = 1)
and indicates that (3.111) is valid both in the inner domain defining the velocities from
the known tensor potential entries and at the boundary where the velocities are prescribed
in the form of Dirichlet conditions, that is by ul = gl on ∂Ω for appropriate gl. Equations
(3.109)-(3.111) are complemented by the three auxiliary Dirichlet boundary conditions
(3.84)-(3.86) for the tensor potential entries in order to obtain a uniquely solvable equation
set: although this remains to be proven formally, the numerical results indicate the above
system to be mathematically closed.

Newton’s method is employed to generate a sequence of n ∈ N0 linearised systems based
on the following steps:
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Step 1:

∂k∂kã
(n+1)
ij − Re

[
u

(n)
i ∂kã

(n+1)
kj + u

(n)
j ∂kã

(n+1)
ki

]
+ (p(n+1) + U)δij = Reu(n)

i u
(n)
j , (3.112)

∂l∂kã
(n+1)
kl = 0 in Ω , (3.113)

−∂kã(n+1)
kl = gl on ∂Ω , (3.114)

Step 2:

u
(n+1)
l := −∂kã(n+1)

kl in Ω , (3.115)

in which (3.111) has been used to replace the velocities in (3.112) as primary unknowns
with index (n + 1); the velocities u(n)

i in (3.112) are assumed known from the previous
iterative step having been calculated from the tensor potential via (3.115). As such, the
above equations only involve the six tensor potential entries and the pressure as inde-
pendent primary variables, with the velocities appearing as secondary variables. Iteration
starts from n = 0 where the unknown fields are initialised with respect to the linear Stokes
flow solution.
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Figure 3.4: 3D lid-driven cavity flow. Centre-line velocity profiles for ux and uz in the
plane intersections x = y = 0.5 and y = z = 0.5, respectively, for Reynolds numbers of
(a) 100, (b) 400 and (c) 1000; the results from the present work are shown as solid red
curves and compared to those of Ding et al. [86] shown as black crosses. (d) Shows selected
stream tubes for the case Re = 400, the arrow indicating the direction of motion of the
upper moving lid.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Visualisation of the six tensor potential entries for the 3D lid-driven cavity
flow problem, for the case Re = 400: (a) a11; (b) a22; (c) a33; (d) a12; (e) a13; (f) a23. The
arrow indicates the direction of motion of the upper moving lid.

For demonstration purposes the cubic nature of the flow field is well suited to solution via
a finite difference methodology and structured Cartesian grid system which is the approach
adopted. In doing so the well-known oscillatory pressure instability problem linked with
the discretisation of flow problems in terms of primitive variables is avoided by employing
a velocity-pressure staggered grid arrangement [95] which is extended to encompass the
remaining unknowns, namely the tensor potential entries, in a consistent way. Accordingly,
central difference stencils and therefore the discrete equations are well defined everywhere.

92



3.5 Application of the Methodology

Although the numerical scheme itself is not the focus of the present work, as it is the first
such implementation of the same in the present context the details are summarised in
Appendix A.2.4. The above equations are similarly amenable to solution utilising, for
example, a more complex irregular grid structure and finite element methodology that
satisfies a compatibility condition between solution spaces when employing mixed finite
elements [107]. Solutions are presented for three different Reynolds numbers up to and
including Re = 1000.
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Figure 3.6: Streamline projections onto fixed planes for flow in a 3D lid-driven cavity at
different Reynolds numbers. The planes y = 0.5, x = 0.5 and z = 0.5 are displayed from
left to right; the Reynolds numbers concerned are Re = 100 (top), 400 (middle) and 1000
(bottom). The arrow indicates the associated direction of motion of the upper moving lid.

Figure 3.4 shows the results obtained with a grid containing 30× 30× 30 points for Re
= 100, 400 and 1000 which prove to be in very good agreement with those of Ding et al.
[86], Jiang et al. [135], Ku et al. [153]. Figure 3.4d shows selected stream tubes for Re =
400 while Figure 3.5 visualises the corresponding tensor potential entries. Identification
of the diagonal tensor entries as volume quantities and the off-diagonal entries as edge
quantities (see Appendix A.2.4), when compared with the stress discretisation by Graves
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3 Approaches based on Goursat-like representation

[110], suggests a close relationship between the tensor entries and the stresses which opens
up the opportunity to calculate the stresses from aij , an option that would justify the
additional effort in calculating the tensor entries; this is left as a topic for future inves-
tigation. Finally Figure 3.6 displays the projected streamlines on the three mid-planar
cross-sections for Re = 100, 400 and 1000; the results are consistent with, for example,
those of Wang et al. [272].

(b) Unsteady flow and periodic boundary conditions

In relation to the DNS of viscous flow problems using a primitive variable formulation
of the governing NS and continuity equations, the use of periodic geometries/domains -
ones with boundaries that are periodic in each and every coordinate direction - can prove
particularly advantageous. The pressure can be readily eliminated from the NS equations
leading to a Poisson equation for the pressure which lends itself well to solution using
pseudospectral methods since the pressure at the boundaries is easily specified. It results
in the NS equations preserving the divergence free nature of the velocity field; as shown
theoretically by Frisch [101] for what he equivalently terms a 3D periodicity cube.
Within the framework of the first integral the problem of having to solve a Poisson equa-

tion for the pressure can be avoided elegantly beginning with its traceless form, equations
(3.68) and (3.70), from which the pressure field is completely absent.
Consider periodic boundary conditions for the streamfunction vector written as:

Ψ (x1 + L, x2, x3, t) = Ψ (x1, x2 + L, x3, t) = Ψ (x1, x2, x3 + L, t) = Ψ (x1, x2, x3, t) ,

together with multi-index notation for Greek letters, e.g. λ = (λ1, λ2, λ3) ∈ Z3 with
λ2 = λpλp = λ2

1 + λ2
2 + λ2

3, followed by adopting a Fourier representation for both the
stream function vector and the traceless tensor potential, namely:

Ψi(xj , t) =
∑

λ

Ψλi (t) exp (ik0λjxj) ,

āpq(xj , t) =
∑

λ

ālpq(t) exp (ik0λjxj) + ā0
pq(t)xmxm ,

with k0 = 2π/L, fulfilling periodic boundary conditions for the streamfunction vector
automatically. The velocity field (3.37) then takes the form:

ui =
∑

λ

ik0εijnλjΨ
λ
n︸ ︷︷ ︸

uλi

exp (ik0λjxj) .

Note that, the summation convention adopted for multi-indices is that summation is in-
voked only if the entire index, e.g. λ, occurs twice in a product; a single component of it,
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3.5 Application of the Methodology

e.g. λi, acts as a factor only and therefore does not affect summation.

Next, from equations (3.68), (3.70) the following set of equations result:

6ā0
ij = −%

[
u−µi uµj −

u−µp uµp
3 δij

]
, (3.116)

−k2
0λ

2āλij = −%
[
uλ−µi uµj −

uλ−µp uµp
3 δij

]
, (3.117)

%Ψ̇λn + ηk2
0λ

2Ψλn = k2
0εnpqλpλmā

λ
mq . (3.118)

Note that via equation (3.117) the coefficients of the traceless tensor potential can be
expressed in terms of the coefficients of the velocity. Hence, all occurrences of āλmq in
equation (3.118) can be replaced, leading to:

%Ψ̇λn + ηk2
0λ

2Ψλn = %

λ2 εnpqλpλm

[
uλ−µm uµq −

uλ−µk uµk
3 δmq

]

= %

λ2


εnpqλpuµqλmuλ−µm − εnpqλpλq︸ ︷︷ ︸

0

uλ−µk uµk
3


 .

In addition, making use of the following identities:

εnpqλpu
µ
q = ik0εnpqεqjkλpµjΨ

µ
k = ik0 [δjnδkp − δjpδkn]λpµjΨµk = ik0

[
λpµnΨ

µ
p − λjµjΨµn

]
,

λiu
λ−µ
i = ik0εijqλi(λj − µj)Ψλ−µq = −ik0εijqλiµjΨ

λ−µ
q ,

leads to:
%Ψ̇λn + ηk2

0λ
2Ψλn −

%k2
0

λ2 [λpµn − λkµkδnp] εqijλiµjΨλ−µq Ψµp = 0 ,

and therefore a set of quadratic equations for the coefficient functions Ψλn (t). By truncating
the set of equations after a finite number of modes corresponding to the values of the multi
index λ, it can be solved numerically, to reveal the time evolution of the flow for a given
initial state, e.g. a Taylor-Green vortex [101]; a topic of fundamental interest and for future
exploration.

The attractiveness associated with periodic geometries has been mirrored in the interest
shown in the use of pseudospectral methods for the solution of 3D viscous flows in non-
periodic ones based on a primitive variable formulation – see, for example, the work
of Ku et al. [153] – having at least one coordinate direction in which the boundaries
are not periodic. The key related issues of deriving equations and boundary conditions
for the pressure there which ensure satisfaction of the divergence free constraint on the
velocity are comprehensively discussed by Tuckerman [260] with particular emphasis on
the influence matrix method. However, as is rightly pointed out in the same article, the
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solution of a Poisson equation for the pressure can be avoided completely by solving for
the governing equations for the velocity and pressure fields together in a manner similar
to the numerical scheme outlined in Appendix A.2.4, augmented with a suitably accurate
temporal discretisation of the relevant terms in the governing equations. The same is
clearly true if a solution based on a primitive variable formulation is preferred for unsteady
flow in a periodic geometry.

3.5.4 Steady Stokes flow

The well known problem of the broadside translation of a thin disc through a viscous fluid
[248], is considered. The unit disc D = {x ∈ R3 | (x2

1 + x2
2)1/2 ≤ 1 , x3 = 0} is located in

the plane P = {x ∈ R3 |x3 = 0} and a constant disc velocity U0 assumed, so that a steady
unbounded and decaying velocity field (3.66) under conditions:

u3(x) = U0 , x ∈ D and ∂3u3(x) = 0 , x ∈ P \D ,

is sought.
By assuming the potential energy density U to be zero and the vector A to be defined

by:
Al = −ηul − ∂kD(ã)kl = ∂kãkl − ∂kD(ã)kl , (3.119)

with D(ã) denoting the diagonal part of the tensor ã, then, from (3.60), it follows that
∂k∂kAl = 0. The remaining gauge freedoms in (3.66) signify ã11 = ã22 = ã33, reducing
the number of unknown fields from six to just four. As a consequence, using (3.62), the
divergence of (3.119) results in ∂lAl = −∂l∂kD(ã)kl = −∂k∂kã11 = p, providing a useful
guide for the construction of a particular solution ã11; which is that the relationship:

∂k∂kxlAl = xl∂k∂kAl + 2∂lAl = 2p

facilitates the following decomposition involving an arbitrary harmonic field χ: ã11 =
−1

2xlAl +χ. What remains to be found is an overall solution procedure for obtaining four
harmonic unknown fields Al and χ for which the continuity equation is fulfilled identically
and the velocity components are given by:

ul = −1
η

[
Al + ∂l

(
χ− 1

2xkAk
)]

. (3.120)

The pressure can be reconstructed subsequently via p = ∂lAl. Equation (3.120) is equiv-
alent to the Papkovich-Neuber representation known from elasticity theory [185] which
generally allows for the analytical solution of various axis-symmetric problems as, for in-
stance, shown by Rudge [209], Woodhouse and Goldstein [281] or Tran-Cong and Blake

96



3.5 Application of the Methodology

[256]; moreover, it is closely related to the Clebsch transformation [154, 191, 225]. The
above considerations lead to the representation of Papkovich and Neuber directly as a
special case of the first integral of the NS equations, illustrating the elegance of this gen-
eralised theory.
Inspection of the flow geometry and imposition of the missing azimuthal dependency

in the solution being sought leads to a reduced approach, that is equation (3.120) with
A1 = A2 = χ = 0; a manageable task utilising potential theory which can conveniently be
written in cylindrical coordinates as:

∆A(r, z) = ∂2A
∂r2 + 1

r

∂A
∂r

+ ∂2A
∂z2 = 0 and

{
A = −ηU0 , z = 0 , r ≤ 1
∂A
∂z = 0 , z = 0 , r > 1

(3.121)

involving A := A3, r :=
√
x2

1 + x2
2 and z := x3. Problem (3.121) can be solved by either

Hankel transform methods, see e.g. Tanzosh and Stone [248] and references therein, or
through a Green’s function representation combined with a clever reformulation of the
fundamental singularity as provided by Ramm and Fabrikant [197]. A Hankel transform
involving Bessel functions of the first kind leads to:

Hν [A] =
ˆ ∞

0
ArJν (tr) dr , Hν [∆A] =

(
∂2

∂z2 − t
2
)
Hν [A] , (3.122)

resulting in Hν [A] = A(t) exp(−tz) +B(t) exp(tz) with A and B independent of z. Sym-
metry considerations enable the calculation to be restricted to z > 0, giving B = 0 due to
the decay condition. After performing an inverse Hankel transform:

A(r, z) = H−1
ν [A(t) exp(−tz)] =

ˆ ∞
0

A(t)t exp (−tz) Jν (tr) dt , (3.123)

the boundary conditions on the right-hand side of (3.121) become:

A(r, 0) =
ˆ ∞

0
A(t)tJν (tr) dt = −ηU0 , r ≤ 1 , (3.124)

∂A
∂z

(r, 0) = −
ˆ ∞

0
A(t)t2Jν (tr) dt = 0 , r > 1 , (3.125)

which, with reference to Gradshteyn and Ryzhik [109] (6.671 and 6.693) gives A(t) =
−2ηU0 sin(t)/(πt2) in the case of ν = 0. Making use of integral calculus, see again Grad-
shteyn and Ryzhik [109] (6.752), an analytical solution of the form (3.123) is finally ob-
tained:

A(r, z) = −2ηU0
π

ˆ ∞
0

sin(t)
t

exp (−tz) J0 (tr) dt

= −2ηU0
π

arcsin
(

2√
z2 + (r + 1)2 +

√
z2 + (r − 1)2

)
, (3.126)
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enabling the velocity components to be written down via (3.120), leading to the same
result as reported by Tanzosh and Stone [248].

3.5.5 Steady free surface flow in the presence of symmetries

So far, little attention has been paid to the steady, self-adjoint form of the first integral
equations (3.73), complemented by the gauge (3.76)-(3.77), which can be derived via
the variational principle (3.75) as described in Sec. 3.4.3. However, a description of
the dynamics in terms of a scalar Lagrangian is convenient when a reformulation of the
equations in terms of arbitrary curvilinear orthogonal coordinates q1, q2, q3 is desired. The
latter can facilitate a reduction in complexity for a respective flow problem if, for instance,
the flow configuration is provided with a symmetry that implies independence of one of
the three coordinates, say q3, allowing for a formal reduction of the physical 3D problem
to a 2D mathematical description. Such a curvilinear reformulation is provided below,
essentially demonstrating that a reduction of the field equations to a very compact form,
as manifest in (1.41)-(1.42) for Cartesian 2D flow, can similarly be retained in the presence
of arbitrary symmetries; correspondingly, also a simple form of the dynamic boundary
condition similar to (3.25) can be retained. The considerations below are of a general kind
while a concrete example of coating flow over a sphere is presented later in Ch. 6.3.
Subsequently symmetry of the flow is assumed manifest by: (i) the independence of all

fields from q3 and (ii) the vanishing of all vector and tensor components in the q3-direction.
Both criteria are fulfilled by assuming the following form of the streamfunction vector and
traceless tensor potential:

Ψk = ψ (qµ) ∂kq3 ,

āij = aµν∂iqµ∂jqν ,

where Greek indices run from 1 to 2 while Latin ones run from 1 to 3. Note that aνµ = aµν

has to be fulfilled in order to ensure the symmetry of āij . For ensuring that āij is traceless,
the condition:

0 = āii = aµν∂iqµ∂iqν = aµνGµν , (3.127)

has to be fulfilled, where:
Gµν := ∂iqµ∂iqν , (3.128)

is the metric tensor of the curvilinear coordinates. Note that due to the orthogonality of
the coordinates, G12 = G21 = 0. Also it is convenient to define:

Eνµ := εijk∂iqν∂jqµ∂kq3 . (3.129)
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Now, consider the general Lagrangian (3.74) with f = 0 and the simple substitution Φ :=
ann/6, which is performed in order to draw parallels with the introductory description, Sec.
1.2.1(b), and the 2D case in Sec. 3.2, as will become clear below. With this substitution
and the above assumptions and definitions, the Lagrangian (3.74) is re-written in Appendix
A.2.3(a) in terms of the fields ψ, Φ, aµν depending on q1, q2 and their first order derivatives,
as:

` = %EµλEνκaµν∂λψ∂κψ + [ηEνκ∂κψ −Gνκ∂κΦ] [2 {Gµλ∂λ + ∆qµ} aµν + ∂νGµλaµλ] .
(3.130)

Note that due to symmetry aνµ = aµν and condition (3.127) only two entries in the tensor
potential are independent fields, say a11 and a12, while a21 = a12 and a22 = −G11a11/G22.
By variation with respect to the latter, two PDE result containing the streamfunction ψ
and the potential Φ, but not containing a11 and a12. These two Euler-Lagrange equations
are therefore decoupled from the remaining two Euler-Lagrange equations resulting by
variations with respect to ψ and Φ. As a consequence, the traceless tensor potential and
related field equations do not have any effect on the physics and the number of equations
and unknowns is effectively halved.

By means of (A.45) the first integral of the dynamic boundary condition can also be
reduced as follows. By multiplying (3.82) with ∂iqµ, the traceless tensor potential is
eliminated, resulting in the two reduced boundary conditions (µ = 1, 2):

εikl∂iqµ [2∂kΦ+ σnk − Uk] dxl = 0 . (3.131)

The vector dxl in the above may be arbitrary, but since (3.131) is a triple product with two
other vectors ∂iqµ and 2∂kΦ + σnk − Uk having both no components in the q3-direction,
only the component of dxl in the q3-direction contributes to the condition. It can be
assumed without loss of generality that: dxl = ∂lq3ds. By considering the decomposition
∂kΦ = ∂kqν∂νΦ of the Gradient of Φ into components in the qν-direction, and using the
same decomposition for the normal vector and the auxiliary quantities Uk, namely:

nk = ∂kqν ñν , Uk = ∂kqνŨν ,

respectively, equations (3.131) take the form:

εikl∂iqµ∂kqν∂lq3︸ ︷︷ ︸
Eµν

[
2∂νΦ+ σñν − Ũν

]
ds = 0 . (3.132)

Since Eµν is invertible according to det (Eµν) = E2
12 6= 0, and ds arbitrary, one finally

obtains:
2∂νΦ+ σñν − Ũν = 0 , (3.133)
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3 Approaches based on Goursat-like representation

as a reduced first integral of the dynamic boundary conditions. Regarding the computation
of the auxiliary quantities Ui it can be assumed without loss of generality that the tangent
vector t(2)

k is parallel to the gradient of q3. Thus, derivatives with respect to s2 vanish,
allowing equation (A.38) to be fulfilled identically by:

Uj =
ˆ
Ut

(1)
j ds . (3.134)

(a) Recovery of the 2D Cartesian formulation

The case of Cartesian 2D flow, q1 = x, q2 = y and q3 = z, implies Eλµ = ελµ and
Gλµ = δλµ. According to (3.127), 0 = a11 + a22 has to be fullfilled, implying a22 = −a11.
The resulting Lagrangian (3.130) then reads as:

` = %a11
[
(∂yψ)2 − (∂xψ)2

]
− 2%a12∂xψ∂yψ

+ 2 (∂xa11 + ∂ya12) [η∂yψ − ∂xΦ] + 2 (∂ya11 − ∂xa12) [η∂xψ + ∂yΦ] . (3.135)

Variation of the action integral I =
˜
A ` dxdy with respect to a11 and a12 yields:

δa11 : %
(
u2 − v2

)
+ 2

{
∂2
x − ∂2

y

}
Φ− 4η∂x∂yψ = 0 , (3.136)

δa12 : 2%uv + 4∂x∂yΦ+ 2η
{
∂2
x − ∂2

y

}
ψ = 0 , (3.137)

with the velocities u, v given by u = ∂yψ and v = −∂xψ, being equivalent to (1.41) in Ch.
1. Variations with respect to ψ and Φ deliver PDEs for a11 and a12 which are essentially
decoupled from the above two equations and can therefore be neglected.
For a free surface given explicitly as y = f(x) and a potential energy density U = U(x, y)

it follows, from (3.134), that U1 =
´
U (x, f(x)) dx, U2 =

´
U (x, f(x)) f ′(x) dx, implying:

∂Φ

∂x
+ σf ′(x)

2
√

1 + f ′(x)2 −
1
2

ˆ
U (x, f(x)) dx = 0 , (3.138)

∂Φ

∂y
− σ

2
√

1 + f ′(x)2 −
1
2

ˆ
U (x, f(x)) f ′(x) dx = 0 , (3.139)

as the resulting form of the first integral of the dynamic boundary condition (3.133). Via
(3.138), (3.139) the result (3.25) from Sec. 3.2.2(b) is reproduced.

(b) Axially symmetric flows in terms of spherical coordinates

Taking spherical coordinates q1 = r, q2 = ϑ, q3 = ϕ and assuming that the flow does not
depend on ϕ, implies G11 = 1, G22 = r−2 and E12 = −E21 = r−2/ sinϑ, while (3.127)
yields: 0 = aµνGµν = a11 + a22/r2 , giving motivation for the substitutions:

a11 =: a0 , a22 =: −r2a0 , a12 =: ra1 ;
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3.5 Application of the Methodology

the latter substitution ensures that the two remaining potentials a0,1 have the same phys-
ical dimension. Considering also that ∆q1 = 2/r and ∆q2 = cotϑ/r2, the Lagrangian
(3.130) takes the form:

` = %a0
[
u2
r − u2

ϑ

]
+ 2%a1uruϑ + 2 [ηuϑ − ∂rΦ]

[
∂r(r3a0)

r3 + ∂ϑ(a1 sinϑ)
r sinϑ

]

+ 2
[
ηur −

∂ϑΦ

r

] [
∂r(r3a1)

r3 − ∂ϑ(a0 sinϑ)
r sinϑ

]
, (3.140)

with the radial and polar velocity given by:

ur := ∂ϑψ

r2 sinϑ , uϑ := − ∂rψ

r sinϑ , (3.141)

respectively. Variation of the action integral: I = 2π
˜
A ` r

2 sinϑ drdϑ , with respect to
a0,1 delivers, after the necessary manipulation:

δa0 : %

2
(
u2
r − u2

ϑ

)
− r∂r

[1
r

(ηur − ∂rΦ)
]

+ 1
r
∂ϑ

[
ηuϑ −

∂ϑΦ

r

]
= 0 , (3.142)

δa1 : %uruϑ − r∂r
[1
r

(
ηuϑ −

∂ϑΦ

r

)]
− 1
r
∂ϑ [ηur − ∂rΦ] = 0 . (3.143)

For a free surface given by r = r0f(ϑ), the first integral of the dynamic boundary condition
(3.133) results, according to Appendix A.2.3(b), in:

∂Φ

∂r
+ σf(ϑ)

2
√
f(ϑ)2 + f ′(ϑ)2 −

%gr2
0

4

[
f(ϑ)2 cosϑ+

ˆ
f(ϑ)2dϑ sinϑ

]
= 0 , (3.144)

∂Φ

∂ϑ
− σr0f(ϑ)f ′(ϑ)

2
√
f(ϑ)2 + f ′(ϑ)2 −

%gr3
0

4 f(ϑ) cosϑ
ˆ
f(ϑ)2dϑ = 0 , (3.145)

which, in its complexity, is comparable to the Cartesian 2D case (3.138), (3.139).
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Part II

Construction of a New and Efficient
Potential-based FE Solver –

Implementation and Application





4 Discrete formulation and method of
solution

In Part I of this work, potential field representations of the NS equations are presented,
involving the establishment of a new and unconventional variational principle in Chapter 2
and facilitating their integration in Chapter 3. This Chapter explores ways in which the
theoretical findings of Chapter 3 can be exploited in a computational sense for problems
of engineering interest; with particular emphasis on the solution of 2D steady state flows.
In contrast to previous efforts at implementing such a solver with selected applications

[230], the present work leads to a more generic approach based on a FE discretisation of
the governing equations with the potential to solve large problems for arbitrary complex
and non-smooth domains. Note that, the finite difference based numerical method utilised
in Chapter 3 to solve the classical 3D lid-driven cavity problem was for proof of concept
purposes, rather than an attempt to derive an optimal and flexible solution strategy for
the solution of first integral formulations of fluid flow.
The new FE solver is established restricting attention to the solution of 2D flow problems

but can be readily extended to 3D. It possesses a number of desirable attributes from both
a numerical and computational perspective. These are:

(i) The method is formulated in a variational Galerkin type framework involving H1

function spaces only and exhibits optimal rates of convergence.

(ii) Free surface boundary conditions and more generally stress boundary conditions
are conveniently and efficiently handled by appropriate constraining of the potential
field Φ; while the treatment of standard velocity boundary conditions is no more
complicated than in the case of other classical FE formulations, namely velocity and
pressure [55, 89, 137] or streamfunction and vorticity [103, 104, 107].

(iii) Implementation complexity is limited, in that many existing and established FE
practices can be utilised; this compares well to the standard velocity-pressure for-
mulation which in contrast requires the use of trial functions of different order.

(iv) The structure of the resulting linear systems is very favourable (being symmetric
and positive definite); the conditioning is comparable to classical methods allowing
solution by efficient and scalable linear solvers.
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4 Discrete formulation and method of solution

4.1 Preliminaries

Introduction of the streamfunction into the non-linear first integral equations (3.4a), (3.4b)
and writing them in real-valued and non-dimensional form leads to:

η

(
∂2Ψ

∂y2 −
∂2Ψ

∂x2

)
− 2 ∂2Φ

∂x∂y
+ Re ∂Ψ

∂x

∂Ψ

∂y
= f1 , (4.1a)

∂2Φ

∂y2 −
∂2Φ

∂x2 + 2η ∂
2Ψ

∂x∂y
− Re

2

[(
∂Ψ

∂y

)2
−
(
∂Ψ

∂x

)2]
= f2 , (4.1b)

∆Φ = p+ Reu
2

2 + U , (4.1c)

for some Reynolds number Re = %U0`/η with U0 and ` being characteristic velocity and
length scales. Ignoring equation (4.1c) for now, the remaining two equations, (4.1a) and
(4.1b), can be expressed in a more convenient operator description given by L2v+N [v] = f ,
for the solution vector v = (Ψ, Φ)1, where:

Lij :=
[
∂y −∂x
∂x ∂y

]
, Ni[v] := Re

2

[
2∂xΨ∂yΨ

(∂xΨ)2 − (∂yΨ)2

]
, (4.2)

At first sight a plausible weak Galerkin formulation of the above would have the form:

(L2v, w)0,Ω + (N [v], w)0,Ω = (f, w)0,Ω ,

for some test functions w = (w1, w2). In order to ensure H1(Ω) Hilbert space compliance,
partial integration is required to eliminate second order derivatives; a subsequent solution
would have to fulfil2:

Seek v ∈ V , so that for all w ∈W holds:

− (Lv,L∗w)0,Ω + (Lv,L∗(n)w)0,∂Ω + (N [v], w)0,Ω = (f, w)0,Ω , (4.3)

where n is the outward pointing normal unit vector. Formally, in the above only first order
derivatives of v remain; however, the corresponding “natural” boundary value problem
requires the prescription Lv(s) = g(s) for some boundary parametrisation s, which is not
physically meaningful in the present context. In contrast, physically more meaningful
velocity boundary conditions can be formed as a combination of Dirichlet and Neumann

1Note that, in the functional analytic context of Ch. 4 and of the corresponding Appendix B no use of
explicit vector notation (involving vector arrows) is made. Instead the character and dimensionality of
mathematical objects is given by means of their definition only, cf. [44].

2In formula (4.3), L∗ denotes the adjoint of L, while L∗(n) denotes the operator symbol of L∗ with normal
vector n as explained in Sec. B.2 of Appendix B; (·, ·)0 denotes the L2(Ω) scalar product according to
(B.3).

106



4.1 Preliminaries

conditions purely for the streamfunction, namely:

Ψ(s) = g1(s) , (4.4)
∂Ψ

∂n = g2(s) . (4.5)

The potential field Φ can be freely varied except for a finite number of constraints which
guarantee a unique solution. Conditions (4.4), (4.5) have to be incorporated into the
solution space V and thus represent essential boundary conditions for the system (4.3).
The downside is that these conditions are of first order and over-constrain a classical
H1(Ω) FEM and thus necessitate at least a H2(Ω) discretisation3; this level of complexity
is undesirable.
The above is in contrast to the somewhat similar streamfunction-vorticity approach and

its FE counterpart which was introduced by Ciarlet and Raviart [62] as a mixed method
for solving the linear biharmonic equation and later extensively studied by several authors
in the context of inertial flow problems [19, 103, 107], see also Bernardi et al. [30] and
references therein. Using the streamfunction and the vorticity defined by the relations:

u = ∂Ψ

∂y
, v = −∂Ψ

∂x
, ω = ∂u

∂y
− ∂v

∂x
,

the steady 2D-NS equations can then be transformed into the system:

∆ω − Re
(
∂Ψ

∂y

∂ω

∂x
− ∂Ψ

∂x

∂ω

∂y

)
= 0 ,

∆Ψ + ω = 0 ,

with the same boundary conditions (4.4) (4.5). In terms of the solution spaces Ṽ , W̃ and
the test spaces V , W :

Ṽ :=
{
v ∈ H1(Ω) | v = g1 on ∂Ω

}
, (4.6)

V :=
{
v ∈ H1(Ω) | v = 0 on ∂Ω

}
, (4.7)

W̃ = W := H1(Ω) , (4.8)

a straightforward weak Galerkin formulation is given by the following:

Seek Ψ ∈ Ṽ , Φ ∈ W̃ , so that for all v ∈ V and w ∈W the following holds:
ˆ

Ω
∇ω · ∇v dΩ + Re

ˆ
Ω
v

(
∂Ψ

∂y

∂ω

∂x
− ∂Ψ

∂x

∂ω

∂y

)
dΩ−

ˆ
∂Ω
v
∂ω

∂n d∂Ω = 0 , (4.9)

ˆ
Ω
∇Ψ · ∇w dΩ−

ˆ
Ω
wω dΩ−

ˆ
∂Ω
wg2 d∂Ω = 0 , (4.10)

3This disadvantage is not present in the case of a non-local, spectral (i.e. Fourier) discretisation as
performed in [127, 230]
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4 Discrete formulation and method of solution

in which the boundary term in equation (4.9) can be omitted due to definition (4.7).
Obviously the formulation (4.9), (4.10) allows for the convenient incorporation of natural
Neumann conditions via the last term in (4.10), while Dirichlet boundary conditions are
ensured by a restriction of the solution space (4.6), which is in contrast to the weak first
integral approach (4.3). According to Ciarlet and Raviart [62] identical basis functions
can be used for the discretised function spaces V , W as for Ψ , ω but the same may not be
true for the function space for Ψ and Φ in the weak formulation (4.3)4.

As shown later a simple and elegant remedy to the above problems is a least-squares
stabilisation of the first integral equations, an idea which in the context of the Stokes part of
system (4.1a), (4.1b) first appears in the work by Owens and Phillips [190]. By means of a
least-squares approach the complication of mixed compatible element spaces for Φ and Ψ is
avoided while a positive definite system is retained, even in the non-zero Reynolds number
case. A variational least-squares formulation is only practical if the differential order is
reduced appropriately, that is if the differential system is rewritten as a first-order PDE
system; otherwise a discretisation in H2-spaces becomes inevitable. A reformulation in
terms of the velocity and the first-order derivatives of Φ is beneficial from another point of
view: both velocity boundary conditions and free surface conditions can be incorporated
as simple Dirichlet conditions, that is by constraining the appropriate function spaces,
without disturbing the symmetry of the system. Such an approach is definitely promising
with regard to attributes (i)-(iv) and forms the basis of the subsequent analysis.

4.2 First order system formulation

Since the overall goal is to construct a fairly general and flexible numerical method allowing
for inertial effects and being potentially extendible to 3D, below the transformed real-
valued version of the first integral equations (1.41)-(1.42) is discretised directly. Due to
the close connection between these equations and a streamfunction / Airy stress function
formulation as shown in Sec. 3.1, a review of the corresponding, though limited, literature
[8, 38, 59, 69, 138, 252] was undertaken.
In the context of the present work a least squares finite element method, inspired by

the contribution to the field of Bolton and Thatcher [38], Cassidy [59], Thatcher [252],
proves adequate. This way the highly efficient semi-analytic Ritz method developed by
Scholle et al. [230] for the integrated Stokes equations is complemented by a more flexible
method, allowing for the incorporation of inertial effects and more general applicability.
For a comprehensive review of least squares methods, including a special treatment of the
Stokes and NS equations, the reader is referred to [37].

4Although this is not analysed in detail, numerical experiments suggest that identical function spaces for
Ψ and Φ are not compatible and lead to oscillations.
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4.2 First order system formulation

The least-squares FEM (LSFEM) has gained great popularity for the numerical solution
of flow problems, facilitating the use of simple equal order elements together with highly
efficient multigrid solvers due to the symmetry and positive definiteness of the resulting
system matrices [37]. Arguments of practicality suggest rewriting the tensor equations
(1.41)-(1.42) in terms of velocity variables and first order derivatives of the Airy stress
function leading to a system of four equations involving first order derivatives only, which
is covered by the first order system least squares methodology.
The introduction of two field variables φ1 = ∂xΦ and φ2 = ∂yΦ together with the

condition:
∂φ1
∂y
− ∂φ2

∂x
= 0 , (4.11)

enables equations (1.41), (1.42) to be written as:

−%u1u2 + η

(
∂u1
∂y

+ ∂u2
∂x

)
− ∂φ1

∂y
− ∂φ2

∂x
= f1 , (4.12a)

%

2
(
u2

1 − u2
2
)

+ η

(
∂u2
∂y
− ∂u1

∂x

)
+ ∂φ1

∂x
− ∂φ2

∂y
= f2 , (4.12b)

∂u1
∂x

+ ∂u2
∂y

= 0 =: f3 , (4.12c)

∂φ1
∂y
− ∂φ2

∂x
= 0 =: f4 . (4.12d)

Applying Newton linearisation to the above equations, with ũ1 and ũ2 denoting the velocity
components of the respective previous iteration step, gives:

−%(u1ũ2 + ũ1u2) + η

(
∂u1
∂y

+ ∂u2
∂x

)
− ∂φ1

∂y
− ∂φ2

∂x
= f1 − %ũ1ũ2 , (4.13a)

%(u1ũ1 − u2ũ2) + η

(
∂u2
∂y
− ∂u1

∂x

)
+ ∂φ1

∂x
− ∂φ2

∂y
= f2 + %

2
(
ũ2

1 − ũ2
2
)
, (4.13b)

∂u1
∂x

+ ∂u2
∂y

= 0 , (4.13c)

∂φ1
∂y
− ∂φ2

∂x
= 0 , (4.13d)

which can be non-dimensionalised in terms of l and U0, with the potential fields φ1, φ2

scaled via ηU0, and finally written in the following condensed form:

Lijuj + 2Nij [ũ]uj = fi +Nij [ũ]ũj ; (4.14)

the associated differential operators are defined as:

Lij :=




∂y ∂x −∂y −∂x
−∂x ∂y ∂x −∂y
∂x ∂y 0 0
0 0 ∂y −∂x



, Nij [ũ] := Re

2




−ũ2 −ũ1 0 0
ũ1 −ũ2 0 0
0 0 0 0
0 0 0 0



, (4.15)
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4 Discrete formulation and method of solution

with Re = %lU0/η the Reynolds number and the solution vector given by:

u = (u1, u2, u3, u4) := (u1, u2, φ1, φ2) . (4.16)

The operator L embodies the terms associated with the linear Stokes flow case, while
N [ũ] contains terms related to inertial effects. In a similar way f describes possible
external forces while N [ũ]ũ includes the terms which appear on the right-hand side from
the linearisation process. Square brackets indicate the dependencies of the respective
operators on other fields such as velocities from the previous iteration step. Obviously, in
the chosen notation the exact non-linear system is given by:

Lijuj +Nij [u]uj = fi , (4.17)

while the Stokes flow case, Re→ 0, becomes simply:

Lijuj = fi . (4.18)

Note that, in subsequent analysis it is much more convenient to rename the solution vector
of field variables as in (4.16) to allow for the compact notations (4.14) and (4.17).
Typically the system (4.17) is solved in a domain Ω ⊂ R2 when either velocity boundary

conditions, stress boundary conditions or a combination of both are prescribed on each
part of the boundary ∂Ω = ⋃

i Γi; the boundary conditions take the form:

u1 = g11 , u2 = g12 on Γ1 , (4.19a)

φ1 = g21 , φ2 = g22 on Γ2 , (4.19b)

ui ni = g31 , φi ti = g32 on Γ3 , (4.19c)

ui ti = g41 , φi ni = g42 on Γ4 , (4.19d)

with position-depending boundary functions gij = gij(s). Conditions (4.19a) correspond
to fixed or moving walls, (4.19b) to the prescription of both, normal and tangential stresses
and conditons (4.19c), (4.19d) to the prescription of either the normal velocity and the
tangential stress components or vice versa; the latter being relevant for instance in the
case of inflow and outflow conditions.
Seen individually, all of the above boundary conditions are physically meaningful; how-

ever, a mixture of them at different parts of the boundary frequently occurs in engineering
applications as well, for instance in a channel problem with fixed walls and in/outflow
conditions, cf. Sec. 5.3.1(c). Another application, particularly relevant in the context
of the present work, is free surface flow where the position of the free boundary is an
unknown quantity itself, cf. the considerations in Sec. 5.1.2: Here, typically an iteration
process is employed in which a sequence of problems with fixed boundaries is solved with
(4.19a) prescribed at the walls and (4.19b), determined by (3.25), at the free surface.
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4.3 Weak form and convergence analysis of the Stokes problem

A priori estimates for the analytic solution of the problem are necessary as a basis for
a convergence analysis, that is estimates of the solution against the right-hand side of
the field equations as well as the boundary conditions are sought. For a rather general
class of elliptic boundary value problems, the present one included, such estimates can be
obtained from the famous theory of Agmon, Douglis and Nirenberg [2], [3], abbreviated
as ADN-theory (Sec. 4.3.1). The specific norms involved in the ADN-estimate restrict
the reasonable choice of norms for the least-squares minimisation: in the present case the
first integral system is classified as an elliptic system of Petrovskii type which proves to
be particularly useful as it allows for an efficient minimisation in the L2(Ω)-norm.

A convergence analysis of the full non-linear problem is currently not feasible; however, a
full analysis of the tractable linear (Stokes) problem is undertaken, the details of which are
provided below. For convenience, boundary conditions are limited to the case where one
of the conditions (4.19a)-(4.19d) is prescribed at the whole boundary; for this simplified
case the complementing condition due to Agmon et al. [2, 3] can be verified and a priori
estimates derived. Also complications in the error analysis associated with where different
boundary conditions meet are avoided; these are investigated in Sec. 4.3.4. At this point
it needs to be clarified whether a unique solution of the system (4.17) with the boundary
conditions mentioned can be obtained or whether additional constraints for the potential
fields φ1 and φ2 may be required.

4.3 Weak form and convergence analysis of the Stokes problem

4.3.1 A priori estimates for the linear equations

In order to derive a priori estimates for system (4.18) with boundary conditions (4.19)
that are relevant for the analysis of a corresponding least-squares method, the elliptic
regularity ADN-theory is employed, following in the footsteps of Bochev and Gunzburger
[37]. A review of ADN-theory together with fundamental definitions is provided in detail
in Appendix B.2.
A major outcome of the above review represents Theorem B.33 which can assist in

deriving a priori error bounds for the first integral formulation of Sec. 4.2, when as a
first step the corresponding preconditions have been verified. Consider the field equations
(4.18) with boundary conditions (4.19) in dimensionless form; this is obviously a boundary
value problem of the form (B.20), (B.21) with a differential field operator symbol given
by:

L(x, ~ξ) = L(~ξ) :=




ξ2 ξ1 ξ2 ξ1

−ξ1 ξ2 −ξ1 ξ2

ξ1 ξ2 0 0
0 0 ξ2 −ξ1



. (4.20)
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4 Discrete formulation and method of solution

Now, the two sets of integer weights for the equations and unknowns are defined as:

(s1, s2, s3, s4) = (0, 0, 0, 0) , (4.21)

(t1, t2, t3, t4) = (1, 1, 1, 1) , (4.22)

which directly allow for the verification of:

degLij(~ξ) ≤ 1 = si + tj , for all i, j = 1, . . . , 4 .

It is easy to see that the principal part of L equals the original operator, i.e. Lp(~ξ) = L(~ξ),
and that:

detLp(~ξ) = (ξ2
1 + ξ2

2)2 = |~ξ|4 6= 0 , for all ~ξ 6= 0 , (4.23)

which, together, establishes ADN-ellipticity of the operator L according to Def. B.29; by
the choice of integer weights the system is even elliptic in the sense of Petrovskii, see Def.
B.31. Moreover, the identity (4.23) gives deg(detLp(x, ~ξ)) = 4 =: 2m and for m = 2 and
C = 1 condition (B.24) is also verified:

|~ξ|4 ≤ |detLp(x, ~ξ)| = |~ξ|4 ≤ |~ξ|4 ,

and uniform ellipticity established. The fulfilment of the Supplementary Condition B.30
and thus the regularity of the system is seen by recognising that the polynomial:

detLp(~ξ + τ~ξ′) = |~ξ + τ~ξ′|4 =
(
|~ξ|2 + τ2|~ξ′|2

)2

=
(
|~ξ|+ iτ |~ξ′|

)2 (
|~ξ| − iτ |~ξ′|

)2
,

has exactly m = 2 identical roots with positive imaginary part in the complex variable τ .
Next consider the four relevant differential boundary operators, see Appendix B.2, as-

sociated with (4.19), namely:

B1(x, ~ξ) :=
[
1 0 0 0
0 1 0 0

]
, B2(x, ~ξ) :=

[
0 0 1 0
0 0 0 1

]
, (4.24)

B3(x, ~ξ) :=
[
n1(x) n2(x) 0 0

0 0 t1(x) t2(x)

]
, (4.25)

B4(x, ~ξ) :=
[
t1(x) t2(x) 0 0

0 0 n1(x) n2(x)

]
, (4.26)

noting that for the boundary equation weights (r1, r2) = (−1, −1) and all variants of the
boundary operators, the following equality holds:

degBlj(x, ~ξ) = 0 = rl + tj , for all l = 1, 2, j = 1, . . . , 4 .
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4.3 Weak form and convergence analysis of the Stokes problem

It remains to show “compatibility” between boundary conditions and differential field
operator, i.e. that the Complementing Condition B.32, holds. For this purpose consider
the normal unit vector ~n to the boundary, an arbitrary tangential counterpart ~ξ ⊥ ~n,
‖~ξ‖ = 1 and the polynomial:

M+(x, ~ξ, τ) =
m∏

k=1

(
τ − τ+

k (x, ~ξ)
)

= (τ − i)2 .

Moreover, the cofactor matrix L′ is identified as:

L′(~ξ) := det(Lp)L−p =




ξ2(ξ2
2 − ξ2

1) −2ξ1ξ2
2 ξ1(ξ2

1 + ξ2
2) −ξ1(ξ2

1 + ξ2
2)

ξ1(ξ2
1 − ξ2

2) 2ξ2
1ξ2 ξ2(ξ2

1 + ξ2
2) ξ1(ξ2

1 + ξ2
2)

2ξ2
1ξ2 ξ1(ξ2

2 − ξ2
1) −ξ1(ξ2

1 + ξ2
2) ξ2(ξ2

1 + ξ2
2)

2ξ1ξ2
2 ξ2(ξ2

2 − ξ2
1) −ξ2(ξ2

1 + ξ2
2) −ξ1(ξ2

1 + ξ2
2)



,

and it is observed that the principal parts Bp of the boundary operators in (4.24)-(4.26)
trivially equal the corresponding primary operators B. With the definition ~η := ~ξ + τ~n,
according to (B.25) an auxiliary matrix can be constructed for each of the three boundary
operators in (4.24), (4.25), namely:

4∑

j=1
Bp,1lj (x, ~η)L′jk(x, ~η) = L′l,k(x, ~η) , l = 1, 2; k = 1, . . . , 4 (4.27)

4∑

j=1
Bp,2lj (x, ~η)L′jk(x, ~η) = L′l+2,k(x, ~η) , l = 1, 2; k = 1, . . . , 4 (4.28)

4∑

j=1
Bp,3lj (x, ~η)L′jk(x, ~η) =

{
nqLqk(x, ~η) , l = 1; k = 1, . . . , 4
tqLqk(x, ~η) , l = 2; k = 1, . . . , 4 .

(4.29)

Any non-trivial linear combination of rows in the matrices (4.27)-(4.29) has elements which
are cubic in τ and these cannot be integer multiples of the τ -quadratic polynomial M+.
Also these rows are linearly independent and therefore the complementing condition is
satisfied.
Having shown the ellipticity of (4.18) in combination with boundary conditions of the

type (4.19a)-(4.19d), Theorem B.34 guarantees the Fredholm property for the operator
(L,B) and thus a finite-dimensional null-space. Thus, at most finitely many constraints
have to be formulated in order to achieve a uniquely solvable system. If these constraints
are found, the solution of the constrained system exists if and only if a solution of the
corresponding Stokes problem in primitive variables exists which can be assumed without
loss of generality in the present context; then the resulting velocities coincide. For further
details concerning the existence and uniqueness theory of the Stokes equations the reader
is referred to Hackbusch [119]. However, the desired constraints depend on the precise
boundary conditions and can be found by simple calculations, cf. [251]:
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4 Discrete formulation and method of solution

Lemma 4.1. (Unique solution for Stokes flow)

(i) Equations (4.18) with boundary conditions (4.19a) have a unique solution u if addi-
tionally the following constraints are fulfilled:

Λ1u :=
ˆ

Ω
φ1 dΩ = 0 , Λ2u :=

ˆ
Ω
φ2 dΩ = 0 , Λ3u :=

ˆ
Ω

∂φ1
∂x

dΩ = 0 . (4.30)

(ii) Equations (4.18) with boundary conditions (4.19b) have a unique solution u if addi-
tionally the following constraints are fulfilled:

Λ1u :=
ˆ

Ω
u1 dΩ = 0 , Λ2u :=

ˆ
Ω
u2 dΩ = 0 , Λ3u :=

ˆ
Ω

∂u1
∂x

dΩ = 0 . (4.31)

(iii) Equations (4.18) with boundary conditions either of the form (4.19c) or (4.19d) have
a unique solution u without additional constraints.

Proof. To show uniqueness of the solution of (4.18), it is sufficient to consider the ho-
mogeneous equations with homogeneous boundary conditions (4.19). Equations (4.18) in
terms of the streamfunction Ψ and the potential field Φ, the existence of which is ensured
by (4.12c) and (4.12d), can be written as:

∂2Ψ

∂y2 −
∂2Ψ

∂x2 + 2 ∂2Φ

∂x∂y
= 0 , (4.32)

∂2Φ

∂y2 −
∂2Φ

∂x2 − 2 ∂
2Ψ

∂x∂y
= 0 . (4.33)

For sufficiently smooth field variables Ψ and Φ, the combinations {∂yy − ∂xx}(4.32) −
2∂xy(4.33) and {∂yy − ∂xx}(4.33) + 2∂xy(4.32) lead to two biharmonic equations:

∆2Ψ = 0 , ∆2Φ = 0 .

With regard to (i), clearly the biharmonicity of Ψ in combination with prescribed velocities
(4.19a) specifies Ψ up to a constant and therefore the velocities uniquely in the whole
domain [106]; for homogeneous boundary conditions then u1 = u2 = 0 in Ω. Now, from
equations (4.12a) and (4.12d):

∂φ1
∂y

+ ∂φ2
∂x

= 0 , ∂φ1
∂y
− ∂φ2

∂x
= 0 ,

thus giving ∂yφ1 = ∂xφ2 = 0 and the reduced dependencies φ1 = φ1(x), φ2 = φ2(y),
respectively. Furthermore (4.12b) gives ∂yφ2 − ∂xφ1 = 0 and, considering the mentioned
dependencies, the constancy of these derivatives is established, i.e., ∂yφ2 = ∂xφ1 = c1.
The three constants in the solution representation:

φ1(x) = c1x+ c2 , φ2(y) = c1y + c3 ,
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4.3 Weak form and convergence analysis of the Stokes problem

are uniquely determined by the constraints (4.30) and it is obvious that the prescription
of a zero mean derivative with respect to x can be replaced by constraining an arbitrary
linear combination of both partial derivatives. With regard to (ii) the proof is completely
analogous and therefore omitted.
Constraint (iii) is technically more involved and can in principle be shown by a trans-

formation to boundary-fitted orthogonal coordinates. The most general case of mixed
boundary conditions, involving all of the four mentioned variants on different parts of the
boundary, is not considered.

In the following, constraints of the form (4.30), (4.31) are simply denoted by Λu = c

with a linear operator Λ : H1(Ω)4 → Rα where, for instance, α = 3 in the case of (4.30),
(4.31) and α = 0 otherwise. Note that Λ is H1(Ω)-continuous in the sense that:

α∑

j=1
ΛjuΛjv ≤ c

4∑

j=1
‖uj‖1‖vj‖1 , for all u, v ∈ H1(Ω)4 , (4.34)

which becomes important later. For subsequent analysis the complete and uniquely solv-
able system (4.18) together with one of the admissible boundary conditions (4.19a)-(4.19c)
and associated constraints from Lemma 4.1 is denoted as:





Lu = f ,

Bu = g ,

Λu = c .

(4.35)

Finally from Theorem B.28, a Schauder estimate can be derived by specifying t′ =
max tj = 1 and q ≥ r′ = max(0,max rl + 1) = 0. Additionally, considering Corollary B.35,
yields the following a priori estimate [37]:

Theorem 4.2. Consider the elliptic boundary value problem (B.20), (B.21) with the dif-
ferential field operator symbol (4.20) and one of the three boundary operator symbols (4.24)-
(4.26). Let q ≥ 0 and assume that Ω is a bounded domain of class Cq+1. If fi ∈ Hq(Ω),
gl ∈ Hq+1/2(∂Ω), then:

(i) every solution u ∈ L2(Ω)4 in fact belongs to Hq+1(Ω)4;

(ii) there is a positive constant C, independent of u, f and g, such that, for every solution
u ∈ ∏4

j=1H
q+1(Ω),

4∑

j=1
‖uj‖q+1 ≤ C




4∑

i=1
‖fi‖q +

2∑

l=1
‖gl‖q+1/2,∂Ω +

3∑

j=1
|Λju|


 . (4.36)
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4 Discrete formulation and method of solution

Part (i) in the above theorem is called a “regularity shift” in the literature [118]; that is, a
higher regularity in the right-hand sides f and g of the elliptic problem leads to an increased
regularity of the solution u. Note that, in the classical theory of elliptic boundary value
problems very strong assumptions are made on the smoothness of the domain boundary,
here ∂Ω ∈ Cq+1, in order to guarantee the regularity shift and thus a priori estimates of the
form (4.36). For some problems of practical relevance involving polygonal boundary parts
with angular corners or cusps, such an assumption is inappropriate and can be weakened,
although not for general ADN-elliptic systems. A glance at the vast literature on Stokes
equations in primitive variables, see [44, 107, 118] and references therein, reveals that
in the case of Dirichlet boundary conditions a velocity solution u ∈ H1(Ω) is obtained
under the considerably weaker assumption of a Hölder-continuous5 boundary ∂Ω ∈ C0,1

(Proposition 12.2.14 in [118]) which is expected to translate to the above case when q = 0.
However, as will be seen later, relevant qualitative error estimates require a solution

regularity of H2(Ω) which is generally not available in non-smooth domains [115]: for
instance the nature of a conical boundary point depends on the interior angle [32]. For
convex polygonal domains the Stokes equations in primitive variables admit a H2(Ω)-
solution, [118] Proposition 12.2.19, while interior angles greater than π introduce more
severe complications: here the solution may generally involve singularities not being cap-
tured by H2(Ω).
In order to analyse non-smooth domains in detail, it is not reasonable any more to work

with a homogeneous error measure, instead weighted Sobolev norms are introduced with
weighting factors dependant on the distance to conical points. The corresponding weighted
Sobolev spaces were first introduced by Kondrat’ev [149] and since then the theory of
elliptic systems in non-smooth domains has been further developed by [73, 115, 206]. The
subsequent analysis is mostly confined to sufficiently smooth domains while such irregular
domains are treated in Sec. 4.3.4.

Remark 4.3. Throughout the above analysis, for instance in inequality (4.36) and in
the definition of the function spaces (B.27), the sum and product symbols and thereby
the dimensionality of objects like u, f and g were explicitly written down to avoid any
confusion. In the literature, see [215, 275], a shorter notation is often preferred due to
better legibility and the fact that the dimensionality of the objects (norms, spaces, etc.)
used is clear in the context of and with their definition. In the subsequent analysis, the sum
symbols in expressions like (4.36) are omitted for convenience while the respective norms
are always consistently interpreted as depending on the object inside the norm brackets.
The dimensionality exponent n in expressions like H1(Ω)n, referring to a n-dimensional
product space, is omitted in favour of better legibility, unless it is explicitly important in

5For the definition of Hölder continuity, Ck,γ , see Def. 3.2.8 in [118].
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4.3 Weak form and convergence analysis of the Stokes problem

the context; thus, if u ∈ H1(Ω) is written for a vectorial quantity u, the convention is that
all components uj are in H1(Ω).

4.3.2 Weak variational formulation

(a) Definition of the weak variational problem

As shown in the previous section, representing the first integral equations as a first order
system allows the identification of norm indices tj , si and rl such that the requirements of
ADN-theorem B.33 are fulfilled; especially the ellipticity of the differential operator Lij ,
see (4.18), and the compatibility of the boundary operators Blj , see (4.19), in the form of
the complementing condition Definition B.32 are ensured by this choice of indices. As a
consequence, ADN-theory provides the practical a priori estimate (4.36) clearly indicating
with respect to which norm a defect minimisation is reasonable.
Following the convention of Remark 4.3, the a priori estimate (4.36) suggests a minimi-

sation of the functional:

%2
q(v − u) = ‖Lv − f‖2q + ‖Bv − g‖2q+1/2,∂Ω + |Λv − c| , q ≥ 0 , (4.37)

%2
q(uh − u) = min

v∈V
%2
q(v − u) , (4.38)

in suitable function spaces, v ∈ V , which forces the error norm ‖u− uh‖q+1 ≤
√

2C%q(uh)
to be small and is at least sufficient to obtain a convergent method [275]. In view of the
term Lv − f , the simplest numerical method results for q = 0 leading in principle to a
convenient L2(Ω)-minimisation of the residual equations and to an error ‖u−uh‖1 which is
bounded from above. However, the additional term ‖Buh − g‖1/2,∂Ω cannot be calculated
numerically without considerable difficulty6 as noted by Wendland [275], Ch. 8.2. A
simple remedy, replacing the above term by ‖Buh− g‖1,∂Ω ≤ ‖Buh− g‖1/2,∂Ω, leads to the
following convergence result, Wendland [275], for general homogeneous elliptic systems in
the plane:

Lemma 4.4. For a mesh-dependent family of approximation spaces Vh let
⋃
h≤h0 Vh be

dense in H1(Ω) and let the corresponding functions on ∂Ω be dense in H1(∂Ω) for every
h0 > 0. Furthermore, let Λj be continuous on H1(Ω), then:

lim
h→0
‖u− uh‖1 = 0 .

However, the above result does not make a statement as to the order of convergence
which is a decisive criterion by which to assess a method. Instead, a further analysis
[275] using nodal Lagrange basis functions with piece-wise k-th order polynomials from

6Compare with the formal definition of fractional Sobolev norms in the Appendix, Definition B.12.
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4 Discrete formulation and method of solution

the space V ⊂ Hm(Ω) ∩Cm−1(Ω), gives, assuming that the exact solution u is at least in
Hm+1(Ω), the following refined and more general result:

Lemma 4.5. The least-squares method (4.37), (4.38) with q = 0 and ‖ · ‖1/2,∂Ω replaced
by ‖ · ‖1,∂Ω converges for m ≥ 2 and 3/2 ≤ k ≤ m+ 1 as:

‖u− uh‖1 ≤ chk−3/2‖u‖k .

The above inequality has two obvious disadvantages: the simplest case of a continuous
and piece-wise linear FE analysis is not admissible with this method; moreover, the order
of convergence is suboptimal since it is of order 1/2 less than that of the corresponding
FE approximation. Both disadvantages disappear when an even simpler method, but
involving an h-dependent weighting of the norms, is used. By applying a least squares
method with a penalty in the boundary condition, which leads to the minimisation of the
defect functional:

%2
0(v − u) = ‖Lv − f‖20 + h−1‖Bv − g‖20,∂Ω + |Λv − c| ,

%2
0(uh − u) = min

v∈V
%2

0(v − u) ,

in the chosen unrestricted trial subspaces, Wendland [275] achieved the optimal conver-
gence:

‖u− uh‖0 + h‖u− uh‖1 ≤ ch2‖u‖2 , (4.39)

if linear elements are employed. However, convergence was proved only in the case where
first-order Petrovskii systems of the form (4.35) are solvable for all right sides f , g. In
the general case the same order of convergence was achieved by adjoining a finite number
of suitable unknowns into equations (4.35) and approximating these in the corresponding
modified method. Such an approach requires that the solvability conditions for (4.35) are
known approximately.
In the present work another approach is utilised, along the lines of Saranent and Wend-

land [215], where the boundary conditions are approximated point-wise at the boundary
nodes of the domain decomposition. This procedure leads to an error estimate consistent
with (4.39) but is more practical in dealing with non-differential boundary conditions,
especially Dirichlet conditions of the form (4.24), (4.25); although restricted trial spaces
are introduced into the analysis.
What follows is mainly based on the work of Saranent and Wendland [215], [275] where

a general theory for the least-squares FE approximation of first-order elliptic systems has
been developed in the context of linear elements. The results are applied to the first
integral equations (4.35) and generalised to higher order FEs with curved element edges,
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4.3 Weak form and convergence analysis of the Stokes problem

a possibility commonly used in the context of isoparametric FEs. In contrast to [275]
the present approach allows proof of convergence without any auxiliary variables which is
mainly due to the use of a corresponding Galerkin approximation result for the second-
order elliptic operator L∗L with appropriate boundary conditions.

For the procedure with essential Dirichlet conditions, firstly the approximation in the
case of homogeneous boundary conditions is considered:





Lu = f ,

Bu = 0 ,
Λu = 0 ;

(4.40)

non-homogeneous conditions are left to Sec. 4.3.3(b). In this case, the least-squares
principle can be formulated with restricted but identical solution and trial spaces, that is:

Find uh ∈ Vh, such that:

J (uh) := %2(uh − u) = ‖Luh − f‖20 + |Λuh − c|2 ≤ J (v) ∀ v ∈ Vh . (4.41)

The restricted function space Vh is obviously related to the mesh and the particular FE
discretisation; further notation has to be introduced at this point which is kept to a
minimum. Let Th, 0 < h ≤ h0 define a family of admissible domain decompositions of
Ω, the requirements of which will be clarified in Sec. 5.1.3(b). This decomposition into
arbitrary straight-bounded elements may allow for curved edges at the domain boundary
but will, in general, not be enough to capture Ω exactly; however, the closed domain
covered by the decomposition, subsequently denoted by Ωh = ⋃

T∈Th , in the limit converges
to Ω = limh→0 Ωh. In principle, approximations of the field variables ui are defined on the
predefined domain decomposition but without loss of generality this approximation may
be continuously extended to the boundary by the zero solution while overlapping parts
may be cut off, so that any ui ∈ H1(Ωh) uniquely represents a modified ui ∈ H1(Ω). In
respect thereof consider finite dimensional subspaces of H1(Ω)4, given by:

Vh :=
{
v ∈ H1(Ω)4 ∩ C0(Ω)4

∣∣∣B(x)v(x) = 0 for all x ∈ ∂Ωh

}
, (4.42)

such that the elements of Vh are continuous in Ω as well as piece-wise smooth with respect
to the decomposition Th; additionally they satisfy the boundary conditions:

B(x)v(x) = 0 , (4.43)

for all boundary nodes x ∈ ∂Ωh of the decomposition with one of the boundary operators
given in (4.24)-(4.26). The point-wise condition (4.43) implies a useful estimate of the
boundary integral of Bv, v ∈ Vh as demonstrated in Sec. 5.1.3(d) for the FE spaces under
consideration, which is treated as an assumption for the time being:
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4 Discrete formulation and method of solution

Assumption 4.6. Assume an isoparametric FE approximation involving polynomials of
order k, then there exists h1 > 0 and c > 0 such that for all v ∈ Vh, 0 < h ≤ h1 the
following holds:

‖Bv‖0,∂Ω ≤ ch(2k+1)/2‖v‖1,Ω , (4.44)

‖Bv‖1,∂Ω ≤ ch(2k−1)/2‖v‖1,Ω . (4.45)

By interpolation of the above7, the fractional norm estimate:

‖Bv‖1/2,∂Ω ≤ chk‖v‖1,Ω , (4.46)

is also valid. If additionally v ∈ H2(Ω)4, then the norms ‖v‖1,Ω in (4.44)-(4.46) can
alternatively be replaced by h1/2‖v‖2,Ω.

Since elements v of the trial subspace Vh do not necessarily satisfy the boundary con-
dition Bv = 0 on the whole boundary, the existence of a unique solution for (4.41) has to
be verified. In fact, it will be proved only for small enough parameters h. Furthermore
the following equivalence result holds, cf. Braess [44]:

Lemma 4.7. The minimum condition (4.41) is equivalent to the equation:

a(uh − u, v) = 0 , v ∈ Vh , (4.47)

⇔ a(uh, v) = (f,Lv)0 , v ∈ Vh , (4.48)

where a(·, ·) is the bilinear form corresponding to the norm %:

a(u, v) = (Lu,Lv)0 + ΛuΛv . (4.49)

Proof. This can be seen by a standard argument [44]. According to (4.41) set J (v) :=
%2(v − u) and for v, uh ∈ Vh, t ∈ R:

J (uh + tv) = ‖Luh + tLv − f)‖20 + |Λuh + tΛv − c)|2

= J (uh)− 2t(Luh − f,Lv)0 + t2‖Lv‖20
= J (uh)− 2t[a(uh, v)− (f,Lv)0] + t2‖Lv‖20 , (4.50)

holds. If the Galerkin orthogonality (4.48) is valid, (4.50) gives:

J (uh + tv) = J (uh) + t2‖Lv‖20 > J (uh) , (4.51)

and therefore uh describes a minimum of the functional J . On the other hand, if uh is a

7cf. Proposition B.14 with m = 1, k = 1/2 which is also valid for fractional-order trace norms.
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4.3 Weak form and convergence analysis of the Stokes problem

minimum, then:

d
dtJ(uh + tv)

∣∣∣
t=0

!= 0 ,

and therefore (4.48) holds.

(b) Existence and uniqueness of the solution

In the case of a conforming FE discretisation one tries to approximate the solution uh of
(4.40) in a subspace of:

V =
{
v ∈ H1(Ω)4

∣∣∣ Bv = 0 on ∂Ω
}
, (4.52)

that is uh ∈ Vh ⊂ V . However, as mentioned before, any kind of triangulation or domain
discretisation in general will approximate the boundary only inexactly, i.e. the boundary
conditions will be fulfilled only point-wise. Thus, a common FE discretisation involving
Dirichlet boundary conditions is non-conforming in the sense that Vh 6⊂ V but at least
Vh ⊂ H1(Ω)4. In the conforming case an existence and uniqueness result for problem
(4.41), or alternatively (4.47), is easily obtained by the classical theorem of Lax-Milgram,
see [44], which requires the bilinear form to be elliptic. It will be shown that this also
works in the present case; the relevant definitions are introduced below.

Definition 4.8. (Elliptic bilinear form) Let Ṽ ⊂ Hm be a Hilbert space. A bilinear
form a : Ṽ × Ṽ → R is said to be continuous if a constant β > 0 exists such that:

|a(u, v)| ≤ β‖u‖m‖v‖m for all u, v ∈ Ṽ .

A symmetric and continuous bilinear form a(·, ·) is said to be Ṽ -elliptic, elliptic or coer-
cive, if another constant α > 0 exists, such that:

a(v, v) ≥ α‖v‖2m for all v ∈ Ṽ .

Theorem 4.9. (Lax-Milgram) Let Ṽ be a Hilbert space and a : Ṽ ×Ṽ → R a symmetric,
V-elliptic bilinear form. Furthermore, let ` ∈ Ṽ ′ be a linear continuous functional such
that:

|`(v)| ≤ c‖v‖Ṽ for all v ∈ Ṽ ,

for a constant c > 0. Then the variational equation:

a(u, v) = `(v) for all v ∈ Ṽ . (4.53)

has exactly one solution u ∈ Ṽ .
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4 Discrete formulation and method of solution

The above theorem is sufficient to ensure the unique solution of (4.47), if the ellipticity
requirements can be shown. This is summarised and proven for the case Ṽ := Vh ⊂ H1(Ω)4

in the following Corollary, cf. [215, 251].

Corollary 4.10. (Existence and uniqueness) If h is small enough, problem (4.47)
with u ∈ V according to (4.52) has a unique solution uh ∈ Vh ⊂ H1(Ω)4 which coincides
with (4.41). Furthermore the bilinear form (4.49) is Vh-elliptic and thus defines an inner
product over Vh; the induced norm ‖ · ‖a =

√
a(·, ·) is equivalent to ‖ · ‖1.

Proof. Clearly, by the Cauchy-Schwarz inequality and the already demonstrated H1(Ω)-
continuity of λ, see (4.34), the bilinear form (4.49) is continuous since for any u, v ∈
H1(Ω)4:

|a(u, v)| = |(Lu,Lv)0 + ΛuΛv|
≤ ‖Lu‖0‖Lv‖0 + ‖Λu‖0‖Λv‖0
≤ β(|u|1|v|1 + ‖u‖1‖v‖1) ≤ β‖u‖1‖v‖1 .

Combining the inequality (4.46) with the ADN estimate (4.36) for q = 0 yields that for
sufficiently small h > 0 the bilinear form a(·, ·) is also coercive. Firstly, the ADN estimate
gives:

‖v‖1 ≤ c
(
‖Lv‖0 + ‖Bv‖1/2,∂Ω + |Λv|

)
,

for all v ∈ Vh. With (4.46) the boundary term can be estimated as:

‖Bv‖1/2,∂Ω ≤ chk‖v‖1 ≤ chk
(
‖Lv‖0 + ‖Bv‖1/2,∂Ω + |Λv|

)
,

with k ≥ 1 and therefore:

‖Bv‖1/2,∂Ω ≤
1

1− chk (‖Lv‖0 + |Λv|) ,

in which the denominator term on the right-hand side remains positive if h is sufficiently
small, i.e. h < c−1/k. This leads to:

α‖v‖21 ≤ ‖Lv‖20 + |Λv|2 = a(v, v) , (4.54)

for all v ∈ Vh and a constant α > 0. As a consequence of continuity and coerciveness, a(·, ·)
defines an inner product over Vh and induces a norm ‖ · ‖a =

√
a(·, ·) which is equivalent

to the norm of the respective Hilbert space ‖ · ‖1; i.e., for all v ∈ Vh it is:
√
α‖v‖1 ≤ ‖v‖a ≤

√
β‖v‖1 ,
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involving the two constants α, β of Definition 4.8. Finally it is easy to verify the continuity
of the linear functional `(v) := (f,Lv)0; for all v ∈ Vh it is:

`(v) := (f,Lv)0 ≤ c‖f‖0‖Lv‖0 ≤ c‖v‖1 .

At this point, the required uniqueness result is obtained directly via the Theorem 4.9 of
Lax-Milgram with Ṽ set to Vh.

4.3.3 Error of the least-squares method

(a) H1(Ω)-convergence of the method

Obviously the convergence rate of method (4.41), or alternatively (4.48), depends on the
type of FE spaces, i.e. on the precise definition of the function space Vh in (4.42), and
a necessary requirement for any reasonable proposition to state is knowledge associated
with the principle approximation properties of the FE spaces under consideration. Here
considerations are restricted to classical continuous and piece-wise polynomial Lagrange
basis functions. According to [44], for each u ∈ Hm(Ω)4, m ≥ 2 a unique interpolation
function v = Ih(u) ∈ Vh exists in Lagrange FE spaces and the corresponding interpolation
error can be estimated. For elements v ∈ Vh ⊂ H1(Ω)4 higher order Sobolev norms are
not declared so that frequently grid-dependent norms are used as an alternative:

‖v‖m,h :=


 ∑

Tj∈Th
‖v‖2m,Tj




1/2

,

which also occur in the following theorem related to interpolation error [44]. For the case
m = 1 both norms are of the same magnitude, i.e. ‖v‖1 h ‖v1,h‖. The theorem relates
to triangular elements, although similar results are valid and well-known [44] for other
element types.

Theorem 4.11. (Interpolation error) Let k ≥ 1 and Th be a quasi-uniform triangula-
tion of Ω, then interpolation by piecewise polynomial trial functions of degree k gives:

‖v − Ihv‖m,h ≤ chk+1−m|v|k+1,Ω for v ∈ Hk+1(Ω) , 0 ≤ m ≤ k + 1 , (4.55)

for a constant c = c(Ω, κ, k).

The error of the least-squares FEM measured in Hilbert norms ‖ · ‖m,h must be greater
or equal to the error of the best possible approximation in the associated approximation
space Vh, indicated by (4.55); in this sense the inequality (4.55) defines a lower error bound
so that a method with an error of the same order as that of Ihv is considered optimal. In
the following analysis optimal error estimates for the least-squares method are established
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4 Discrete formulation and method of solution

for different norms in which those estimates that are most interesting require the lowest
regularity, that is k = 1, m = 0, 1. From these two cases, the estimate for m = 1 is by far
easier to show: For instance in the conforming case Vh ⊂ V where the boundary conditions
are fulfilled exactly the minimum characterisation (4.41) would, by H1(Ω)-continuity of
a(·, ·) and Λ, directly lead to the desired result. However, in the non-conforming case
the boundary error has to be taken into account explicitly necessitating the boundary
estimates from Assumption 4.6; this is shown along the lines of [215]:

Corollary 4.12. (H1(Ω)-convergence) Let u ∈ Hk+1(Ω)4, k ≥ 1 be a solution of prob-
lem (4.40) with homogeneous boundary conditions and let Λ : H1(Ω)→ Rα be continuous.
Then for the approximate solution uh ∈ Vh defined by (4.41) and using kth-order Lagrange
elements with respect to a given domain decomposition Th the error estimate is:

‖u− uh‖1 ≤ chk‖u‖k+1 . (4.56)

Proof. Let Ihu ∈ Vh denote the piece-wise kth-order polynomial interpolate of u, then the
minimum characterisation (4.41) yields by H1(Ω)-continuity (4.34) of Λ:

%(u− uh) ≤ %(u− Ihu) =
(
‖L(u− Ihu)‖20 + |Λ(u− Ihu)|2

)1/2
,

≤ c‖u− Ihu‖1 ≤ chk‖u‖k+1 . (4.57)

Alternatively, from the ADN-estimate (4.36) and the boundary estimate (4.46) it follows:

‖u− uh‖1 ≤ c̃
(
‖L(u− uh)‖0 + ‖B(u− uh)‖1/2,∂Ω + |Λ(u− uh)|

)
, (4.58)

≤ 2c̃
(
%(u− uh) + ‖Buh‖1/2,∂Ω

)
, (4.59)

≤ c
(
hk‖u‖k+1 + hk‖uh‖1

)
, (4.60)

≤ chk
(
‖u‖k+1 + ‖u− uh‖1 + ‖u‖1

)
, (4.61)

and therefore:

‖u− uh‖1 ≤
c

1− chk h
k(‖u‖k+1 + ‖u‖1) ,

≤ 2c
1− chk h

k‖u‖k+1 ,

which clearly implies (4.56) if h is small enough, that is h ≤ c−1/k. This means, in order
to preserve the convergence rate for higher order Lagrange elements the boundary has to
be approximated to an appropriate higher order, too. This condition is fulfilled by the
isoparametric FE approach, Sec. 5.1.3, where, for instance, linear elements are associated
with a linear polygonal boundary approximation and quadratic elements with a piecewise
quadratic boundary approximation.
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4.3 Weak form and convergence analysis of the Stokes problem

As a point of clarification it is explicitly emphasised that the error estimate (4.56) and
all related h-dependent estimates rely on the additional regularity assumption that at
least u ∈ H2(Ω), which enters via interpolation Theorem 4.11. Theorem 4.2 provides a
sufficient but extremely restrictive condition for H2(Ω)-regularity, namely that Ω is of
class C2 and f ∈ H1(Ω). However, similar results based on weaker requirements for the
boundary smoothness will be considered in Sec. 4.3.4.

In the case that the solution of system (4.35) and therefore the solution of the exact
least-squares formulation is in H1(Ω) only, inequality (4.56) is not valid any more but at
least (4.55) can be replaced by the minimal interpolation statement:

lim
h→0
‖v − Ihv‖1 = 0 for v ∈ H1(Ω) ,

which guarantees that (4.59) goes to zero and basic convergence of the least-squares ap-
proximation is achieved; thus for u ∈ H1(Ω) only (k = 0), estimate (4.56) may be replaced
by:

lim
h→0
‖u− uh‖1 = 0 ; (4.62)

see Hackbusch [118], Proposition 8.4.6, p. 136, for the detailed underpinning argument in
the conforming case.

(b) L2(Ω)-convergence of the method

According to Theorem 4.11 the interpolation error in the L2(Ω)-norm is one order better
than in the H1(Ω)-norm which does not necessarily have to be the case for the error of
the LSFEM. In order to demonstrate that the optimal L2(Ω)-estimate is indeed valid a
duality argument is employed, often called the Nitsche trick [119]. In the present case
this technique is applied by solving a second-order equation arising from the bilinear form
a(·, ·) in a natural way, see Saranent and Wendland [215]. Consider the problem: given
f ∈ L2(Ω)4, find w ∈ V such that:

a(w, v) = (f, v)0 for all v ∈ V , (4.63)

involving the closed subspace V ⊂ H1(Ω)4 according to (4.52). By ADN estimate (4.36)
problem (4.63) has a unique solution w ∈ V for all f ∈ L2(Ω)4. The regularity of the
solution w requires investigation which is carried out in detail in Appendix B.3 mainly
providing two results. First, problem (4.63) has a unique solution w ∈ H2(Ω)4 ⊂ V

satisfying the estimate:

‖w‖2 ≤ c‖f‖0 . (4.64)
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4 Discrete formulation and method of solution

Second, the Galerkin approximation wh ∈ Vh to problem (4.63), which is given by a(wh, v) =
(f, v)0 for all v ∈ Vh, allows for the convergence result:

‖w − wh‖1 ≤ ch‖w‖2 . (4.65)

These results provide the basis for the following optimal L2-error estimate, the proof of
which is close to [215]:

Theorem 4.13. Let u ∈ Hk+1(Ω)4, k ≥ 1 be a solution of problem (4.40) and let Λ :
H1(Ω)4 → Rα be continuous. Then for the approximate solution uh ∈ Vh defined by (4.41)
and using k-th order Lagrange elements the error estimate is:

‖u− uh‖0 + h‖u− uh‖1 ≤ chk+1‖u‖k+1 . (4.66)

Proof. Use w ∈ V to denote the solution of:

a(w, v) = (e, v)0 for all v ∈ V ,

with e = u− uh. Then e ∈ H1(Ω)4 holds but e /∈ V and therefore (B.50) gives:

‖e‖20 = (e, e)0 = a(w, e)− (C′Lw,Be)0,∂Ω . (4.67)

Next both terms on the right-hand side of equation (4.67) are estimated separately. Ac-
cording to the Galerkin orthogonality (4.47), for any wh ∈ Vh the following relation:

a(wh, e) = a(wh, u− uh) = 0 ,

is true, so that a(w, e) = a(w − wh, e). Thus the H1(Ω)-convergence (4.56) of uh in com-
bination with the similar result for the Galerkin approximation (4.65) yields the estimate:

a(w, e) = a(w − wh, e) ≤ ‖w − wh‖1‖e‖1
≤ ch‖w‖2hk‖u‖k+1 ≤ chk+1‖e‖0‖u‖k+1 , (4.68)

in which the last inequality is obtained via the regularity result (4.64) with f := e. Fur-
thermore, the boundary term on the right-hand side of (4.67) is estimated as follows:

|(C′Lw,Buh)0,∂Ω| ≤ ‖w‖1,∂Ω‖B(u− e)‖0,∂Ω

≤ c‖w‖2h(2k+1)/2(‖e‖1 + h1/2‖u‖2)

≤ c̃‖e‖0h(2k+1)/2(hk‖u‖k+1 + h1/2‖u‖k+1)

≤ c̃hk+1‖e‖0‖u‖k+1 , (4.69)

using Assumption 4.6, particularly the last remark, from the first to the second line and
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4.3 Weak form and convergence analysis of the Stokes problem

again the regularity result (4.64) from the second to the third line. Finally (4.67) together
with the estimates (4.68) and (4.69) ensures the desired L2(Ω)-convergence:

‖u− uh‖0 ≤ chk+1‖u‖k+1 .

and thus also (4.66).

(c) Convergence of the non-homogeneous problem

Finally it is noted that the approximation of solutions for the complete problem (4.35)
can be reduced to the approximation of a solution satisfying the homogeneous boundary
condition [215]. Since the m×n matrix B can be extended to an invertible smooth matrix
on ∂Ω, it has a smooth right inverse B−1

r on ∂Ω. By continuing this n×m matrix smoothly
into the interior of Ω and denoting a continuous right inverse of the mapping γ0 : u→ u|∂Ω,
see Lions and Magenes [163], by γ−1

0,r : Hk+1/2(∂Ω)m → Hk+1(Ω)m, a continuous right
inverse B̃−1

r : Hk+1/2(∂Ω)m → Hk+1(∂Ω)n of B is defined by B̃−1
r g = B−1

r γ−1
0,rg. Then, if u

solves the boundary value problem:




Lu = f ∈ Hk(Ω)n ,

Bu = g ∈ Hk+1/2(∂Ω)m ,

Λu = c ,

(4.70)

take w := B̃−1
r g and approximate the solution v ∈ Hk+1(Ω)n of the system:





Lv = f − Lw ∈ Hk(Ω)n ,

Bv = 0 ,

Λv = c− Λw ,

by means of an element vh ∈ Vh as described above. For the approximate solution:

uh = w + vh , (4.71)

the following more general form of Theorem 5.2 from [215] holds:

Theorem 4.14. Let u ∈ Hk+1(Ω), k ≥ 1 be a solution of (4.70) and let uh be the
approximation given by (4.71) using k-th order nodal Lagrange elements. If Λ is L2(Ω)-
continuous, the associated error estimate is:

‖u− uh‖0 + h‖u− uh‖1 ≤ chk+1(‖f‖k + ‖g‖k+1/2,∂Ω + |c|) .
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4 Discrete formulation and method of solution

4.3.4 Least-squares FEM in irregular domains

Several elliptic boundary value problems have the fortunate property of a guaranteed
smooth solution as long as the data and domain are smooth. However, many problems of
interest are posed in non-smooth domains and, as a consequence, lose this property at a
finite number of points on the boundary. In this section problems that have non-smooth
solutions at “irregular boundary points”, that is, points that are corners of polygonal
domains, locations of changing boundary condition type, or both, are considered.
Standard solution techniques applied to such boundary value problems suffer from a

global loss of accuracy due to the reduced smoothness of the solution [33, 243]. Several
approaches are used to combat this so-called “pollution effect”. The most common of these
is systematic local mesh refinement near the singularities [12, 18] in which approximate
knowledge of the singular behaviour may be crucial to design the precise refinement rates
and to restore optimal convergence rates [164]. But even local refinement of FE subspaces
of H1 fails to converge to a solution that is not in H1. If a basis for the singular functions
is explicitly known, they can be incorporated directly into the FE space, sometimes called
the “singularity subtraction method” [33, 57, 243]. For general 2D elliptic problems of a
Poisson type and the plane elasticity and Stokes equations, the singular basis functions
are known, see [149, 151] and [114, 115], respectively. There exist quite general approaches
for plane ADN-elliptic systems [72] while for other problems, or in 3D, the character of
the singular functions is less well understood.
In particular, the accuracy of least-squares methods in the presence of corner singular-

ities has been investigated in [75]. In contrast to mixed Galerkin FEs, in the first-order
least-squares setting it is much more natural to tackle the reduced convergence near sin-
gular points by adapting the least-squares functional instead of the mesh; this opens up
the possibility of restoring convergence simply by minimising an appropriate weighted
functional, depending on the distance to singular points, and to save computational cost
induced by local mesh refinement. Such an approach was suggested for instance by Lee
et al. [157] for 2D div-curl systems which is also related to the idea of energy-correcting
methods presented in [136].
The simplest method of restoring convergence near irregular points is considered first,

namely an appropriate mesh refinement. Consider a finite sector:

Q = {(r, ϕ) : 0 < r < R, 0 < ϕ < θ < 2π} , (4.72)

with corresponding edges:

S0 = {(r, ϕ) : 0 < r < R,ϕ = 0} , (4.73)

S1 = {(r, ϕ) : 0 < r < R,ϕ = θ} , (4.74)
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4.3 Weak form and convergence analysis of the Stokes problem

which serves as a localised model of a polygonal domain in the vicinity of a corner. Solution
singularities for 2D elliptic systems can be described locally as functions f(r, ϕ) = ra in
polar coordinates, in which the exponent a may depend on the corner angle as well as
on the boundary conditions on both sides of the corner; such a singularity is placed at
the origin of the sector (4.72). A simple calculation demonstrates that f ∈ Hk(Q) only if
k < a + 1 which is a necessary condition for the k-th derivative of f to remain finite in
the L2(Q)-norm, i.e. ‖f (k)‖0 <∞:

‖f (k)‖20 =
ˆ θ

0

ˆ R

0

∣∣∣∣
a!

(a−m)!r
a−k

∣∣∣∣
2
rdrdϕ

= θ(a!)2

(a− k)!(a− k + 1)!

(
R2(a−k+1) − lim

r→0
r2(a−k+1)

)
.

In order to guarantee the H2(Q)-regularity of the qualitative h-dependent estimate of
Theorem 4.14, requires a > 1 and for a minimal convergence result, cf. Lemma 4.4, at
least a > 0. Thus it is of great importance to identify the possible radial exponents
occurring in the corner solution of the first integral equations. Consider for now the
reduced auxiliary problem: 




Lu = f in Q ,

Bu = [g0, g1] on ∂Q ,

Λu = 0 ,

(4.75)

with u being defined by the convention (4.16) and involving the first integral Stokes op-
erator from (4.15), the necessary constraints Λ, and boundary conditions Bu = [g0, g1]
with:

Bu
∣∣
Γ0

=
(
u1

u2

)
v = g0 and Bu

∣∣
Γ1

=
(
φ1

φ2

)
v = g1 . (4.76)

The complete sector boundary is given by ∂Q = S0 ∪ S1 = Γ0 ∪ Γ1 and three cases are
distinguished: (i) Γ0 = S0∪S1, Γ1 = ∅, (ii) Γ0 = ∅, Γ1 = S0∪S1, and (iii) Γ0 = S0, Γ1 = S1;
these correspond to pure velocity (i) or pure potential (ii) conditions on both edges as well
as mixed conditions (iii). The latter is the most complicated, involving a corner point
which at the same time is a meeting point of two different boundary conditions.

Analogously to [114, 115, 136, 157] the solution of the first integral equations in domains
containing an irregular point is conveniently described in terms of weighted Sobolev spaces
Hk
β of Kondrat’ev type [149] in which the weighting factor depends on the corner singu-

larity. The space Hk
β comprises all distributions v for which the weighted Sobolev norm:

‖v‖2k,β =
∑

|j|≤k
‖rβ−k+jDjv‖20 , (4.77)
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4 Discrete formulation and method of solution

remains finite and forms a Hilbert space; the corresponding semi-norm with |j| = k is
denoted by |v|k,β. For the Kondrat’ev spaces the embeddings Hm+1

β ⊂ Hm
β−1 ⊂ Hm

β and
Hm

0 ⊂ Hm are valid for m ∈ N, β ∈ R. In terms of these function spaces, the following
result is derived for an infinite sector Q with R→∞ in detail in Appendix B.4:

Theorem 4.15. Let f ∈ Hk
β(Q)4, gl ∈ Hk+ 1

2
β (Γl)2, l = 0, 1 with k ≥ 0. Then the sector

problem (4.75), (4.76) has a unique solution u ∈ Hk+1
β (Q)4, provided that k−κ < β < k+κ,

and the following a priori estimate holds:

‖u‖Hk+1
β

(Q) ≤ C

‖f‖Hk

β
(Q) +

∑

l=0,1
‖gl‖

H
k+1/2
β

(Γl)


 . (4.78)

The value of κ which effectively determines the range of β is given by:

1 + κ = min
Re(z)>1

Re(z) = min
Re(z)6=1

|Re(z)| , (4.79)

and depends on the precise boundary conditions and the sector angle θ:

1. For either pure velocity boundary conditions (i) or pure stress boundary conditions
(ii), the z-values in (4.79) are solutions of:

sin2((z − 1)θ) = (z − 1)2 sin2(θ) ; (4.80)

2. for mixed boundary conditions (iii), the z-values satisfy:

cos2((z − 1)θ) = (z − 1)2 sin2(θ) . (4.81)

Firstly note, that the above theorem provides a suitable function space setting, i.e.
weighted Sobolev spaces, in terms of which the data and solution of an irregular boundary
value problem can be described. Inequality (4.78) provides a corresponding regularity shift
which in contrast to the ADN-result (4.36) captures the case of such an irregular boundary
point. This is helpful because it guarantees smoother solutions in irregular domains if only
the data f and g is smooth enough on the regular parts of the domain boundary which is
otherwise not obvious. Definition (4.79) demonstrates that the β-weights are effectively
determined by the real part Re(z) of solutions z of two transcendental equations (4.80) and
(4.81); namely determined by the critical solution zκ which is closest to the line Re(z) = 1.
Fig. 4.1 visualises the solutions versus the sector angle θ and shows an axis-symmetry with
respect to Re(z) = 1.
When using aH1 FEM, a natural case to consider is k = 1. If for instance Re(zκ) > 2+ε,

it follows κ > 1+ε and u ∈ H2
β(Q) for all −ε < β < 2+ε; in particular the finiteness of the

weighted Sobolev norm (4.77) for β = 0, 1, 2 implies the standard regularity u ∈ H2(Q).
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Figure 4.1: Real part of the solutions z of the transcendental equation (4.80) (left) and
(4.81) (right) versus the sector angle θ. The blue dots correspond to z-values with non-
zero imaginary part while yellow dots correspond to those with zero imaginary part. The
green corridor belongs to solutions which are not in H2(Q).

In this respect, according to Fig. 4.1 (left), a corner with pure Dirichlet velocity or pure
Dirichlet potential boundary conditions will not affect the optimal H1-convergence as long
as θ < π which corresponds to the classical result for Stokes flow in primitive variables
and convex domains, see [118] Proposition 12.2.19. However, for concave domains θ > π

the solution Re(zκ) is in the critical green corridor and the regularity falls below H2;
even more severe, for mixed boundary conditions this critical point is already reached for
approximately θ > π/4. Additionally, from Fig. 4.1 it can be seen that the low regularity is
caused by a small number of singular solutions which grows with the sector angle, reaching
up to two in the left-hand case and up to four in the right-hand case; critical angles can
be identified for the different (blue) “solution lines” entering the green corridor.
In order to illustrate the consequences of the above result in more detail, consider how

the proof of optimal H1-convergence, Corollary 4.12, is influenced for corner domains with
critical angles; for convenience assume that the boundary is captured exactly, so that only
the first part of the proof is relevant. Furthermore, an interpolation result in weighted
Sobolev spaces, similar to Theorem 4.11, is needed [136, 157]:

Theorem 4.16. (Interpolation error) Let k > 0, β−1 ≤ α ≤ β and Th a quasi-uniform
triangulation of Ω, then the interpolation by piecewise polynomial trial functions of degree
k leads to:

‖v − Ihv‖m,α,h ≤ chk+1−m+α−β‖v‖k+1,β for v ∈ Hk+1
β (Ω) , 0 ≤ m ≤ k + 1 , (4.82)

with a constant c = c(Ω, β, k).
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4 Discrete formulation and method of solution

Now, consider the relevant case that under certain assumptions on the data a solution
in a domain Ω with a single irregular point is locally, i.e. near that point, identified as
u ∈ H2

β(Ω) ∩H1(Ω) but u /∈ H2(Ω); for instance Re(zκ) = 1 + ε and 1 − ε < β < 1 + ε.
Then by adopting estimate (4.57) as well as subsequent estimates, together with use of
(4.82) with m = k = 1 and α = 0, the following result is obtained:

‖u− uh‖1 ≤ c‖L(u− uh)‖0 ≤ c‖L(u− Ihu)‖0 ≤ c‖u− Ihu‖1
≤ c‖u− Ihu‖1,α=0 ≤ ch1−β‖u‖2,β , (4.83)

which reflects the drop in convergence from a rate of h to h1−β, depending on the corner-
related parameter β. An obvious remedy to restore optimal convergence is systematic
mesh refinement near the irregular point in the following form. Assuming that far away
from the corner a regular and approximately homogeneous triangulation is established
with a constant mesh width parameter h, then for triangles T approaching the corner the
circumradius hT should decrease according to the rule:

hT ≤ h
1

1−β . (4.84)

Such a rule can easily be adopted for domains with several corners and for each corner
local mesh refinement performed with a different angle-dependent β.

However, a generalisation of the above kind would require a proper extension of Theorem
4.15 to more general domains with corners. Consider, for instance, an arbitrary smooth
domain Ω with, lets say, a single irregular point and for simplicity assume that the irregular
point is again located at the coordinate origin so that a suitably truncated sector Q is
part of the domain Ω. The procedure can in principle be adopted from [114] so only the
main idea is sketched out below.

A cut-off function φδ(r) ∈ C∞(R) can be defined such that φδ = 1 for 0 < r < δ/2
and φδ = 0 for r > δ. Then, a suitable solution uQ ∈ H2

β(Q), 1 − ε < β < 1 + ε of
the infinite sector problem according to Theorem 4.15 with k = 1 can be truncated as
uδ = φδuQ and shown to be locally identical to the solution u ∈ H1(Ω) of the global
problem. As a consequence it can be shown that even u ∈ H2

β(Ω) in the whole of Ω and
thus the shift inequality (4.78) is valid for a more general domain Ω as well. Although
similar generalisations would be possible for k > 1, for reasons explained by Guo and
Schwab [115] it is useful to consider the general shift theorem for k > 1 in a modified
weighted Hilbert norm, which due to the restricted definition (4.77) is obviously also
necessary for domains with multiple corners. Also note, that for increasing k the estimate
‖u − uh‖1 ≤ chk−β‖u‖k+1,β for k-th order Lagrange elements is less helpful because β
grows with k and thus an unacceptable strong mesh refinement will be necessary to retain
k-th order convergence.
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As mentioned at the outset of this subsection, in the context of a LSFEM it could be
more desirable to retain optimal convergence rates simply by modifying the norm in which
the residual is minimised, that is to replace the L2(Ω)-norm in (4.41) by some L2

β(Ω)-norm
as shown by Lee et al. [157]. Such a method would, in contrast to (4.83), allow for an
optimal H1(Ω) error estimate for k-th order Lagrange elements of the form:

‖u− uh‖1,β ≤ c‖L(u− uh)‖0,β ≤ c‖L(u− Ihu)‖0,β ≤ c‖u− Ihu‖1,β
≤ chk‖u‖k+1,β , (4.85)

if u ∈ Hk+1
β (Ω). The above is particularly useful when u ∈ H1 \H2 but also opens up the

treatment of even less regular or discontinuous problems, i.e. mixed boundary conditions
with concave angles or the lid-driven cavity case with discontinuous boundary conditions,
when the ideas in [157] are followed further. The latter reference also provides arguments
how optimal L2-convergence can be recovered from the above H1-estimate. However, the
validity of the first inequality in (4.85) remains unclear thus far when general irregular
domains are considered (beyond the sector), because the above matching arguments, util-
ising the ADN-estimate (4.36), do not translate to the case u ∈ H1

β 6⊂ H1(Ω) and thus a
generalisation of (4.78) when k = 0 remains to be investigated.
Finally, it is mentioned that the above investigations for irregular domains are confined

to Stokes flow but most of the results carry over to NS flow as well because the asymptotic
solution near the boundary is strongly dominated by viscous effects while the convective
terms can more or less be neglected [166].

4.4 Analysis of the non-linear problem

4.4.1 Non-linear variational problem

This section explores the convergence properties of the least-squares discretisation of prob-
lem (4.17) in order to clarify in which ways the results of Theorem 4.14 for the Stokes case
extend to the non-linear case. Consider the NS solution u + û as the sum of the linear
Stokes solution û of (4.70) and a perturbation field u. Obviously the following non-linear
and homogeneous first-order system:

Lijuj +Nij [u+ û](uj + ûj) = 0 , (4.86a)

Bu = 0 , (4.86b)

Λu = 0 , (4.86c)

results from (4.17) when both the boundary conditions and the constraints are linear.
Similar to (4.41), the above system (4.86) may be solved by minimisation of the L2(Ω)
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4 Discrete formulation and method of solution

least-squares functional:

J (u) =
4∑

i=1
‖Lijuj +Nij [u+ û](uj + ûj)‖20 +

α∑

i=1
|Λijuj |2 , (4.87)

in the function space V according to (4.52); this yields the minimisation task:

Find u = (u1, u2, φ1, φ2) ∈ V, such that:

J(u) ≤ J(v) ∀ v ∈ V . (4.88)

Accordingly, the FE approximation in a suitable finite-dimensional subspace Vh of V :

V ⊃ Vh =
{
v ∈ H1(Ω)4 ∩ C0(Ω)4

∣∣∣Bv = 0 on ∂Ω
}
, (4.89)

leads to the problem:

Find uh ∈ Vh, such that:

J(uh) ≤ J(v) ∀ v ∈ Vh . (4.90)

Note, that in contrast to (4.42) the definition of the subspace Vh in (4.89) assumes a con-
forming FE discretisation in which the boundary is exactly captured by the triangulation
and therefore boundary conditions are fulfilled exactly. This assumption, however, is made
for convenience only. In principle the preceding analysis of the linear problem revealed that
the error in the boundary discretisation may be neglected as long as the grid parameter h
is small enough and the order of the boundary approximation is sufficient; a finding that
certainly translates to the non-linear problem as well, so that unnecessary complications
due to an inexact boundary approximation, which will not affect the principle results, are
avoided.

Adapting the consideratons in the proof of Lemma 4.7 it is easy to verify that minimi-
sation problem (4.88) is equivalent to the following variational setting:

Find u = (u1, u2, φ1, φ2) ∈ V, such that ∀ v ∈ V :

a(u, v) := (Lu+N [u+ û](u+ û),Lv + 2N [u+ û]v)0 + ΛuΛv = 0 , (4.91)

in which the commutation symmetry N [u]v = N [v]u has been utilised. Then the least-
squares discretisation method for the NS equations is defined either by (4.88) or (4.91) in
which u, v and V may be replaced by uh, vh and Vh in order to indicate the approximate
quantities. For the FE space Vh, again the approximation property (4.55) is assumed.
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4.4 Analysis of the non-linear problem

4.4.2 Discretisation error estimates

The main goal of this subsection is to derive error estimates for the non-linear least-squares
problem (4.90), beginning by introducing the relevant function spaces:

V m = Hm+1(Ω)4 ∩ V , Y = V ∗ , Z = L3/2(Ω)4 , (4.92)

for some non-negative integer m, in which V ∗ denotes the dual of V with respect to the
L2(Ω) inner product, see Appendix B. An important key feature for the treatment of the
non-linear problem is the fact that system (4.91) can be recast in the canonical form:

F (λ, u) := u+ T ·G(λ, u) = 0 , (4.93)

or equivalently in the discrete form:

F h(λ, u) := uh + Th ·G(λ, uh) = 0 , (4.94)

which proves extremely useful when applying the abstract approximation theory for non-
linear PDEs developed by Brezzi et al. [54] in the 1980’s. The theory is well summarised
for the NS equations in the book of Girault and Raviart [107] and in the context of
least-squares methods as applied by Bochev et al. [35]; the latter reference also proved an
excellent guide for developing the present analysis.

The discrete form (4.94) is introduced by way of operator Th and therefore, the error
estimates will depend largely on the nature of T and its approximation Th. Considering
the original system (4.86), the representations (4.93) and (4.94) can obviously be achieved
when T is identified to be the unique Stokes solution operator and its FE counterpart,
that is u = Tg for any g ∈ Y if and only if Lu = g, Bu = 0 and Λu = 0. If T is known,
then operator G is defined by G(λ, u) := N [u+ û](u+ û) in which the problem parameter
λ is identified as the Reynolds number which enters via the definition of the operator
N in (4.15). Subsequently, the Reynolds number is assumed to be taken from a fixed
compact set Dλ ⊂ R+, i.e. λ := Re ∈ Dλ. Thus, G is an operator G : Dλ × V → Y so
that the composition TG(λ, u) : Dλ × V → V is well defined. However, in the remaining
analysis the non-linear system (4.86) is not considered directly but rather its variational
formulation (4.91) leading to differing weak definitions of the operators T and G, similar
to those in [35], where for instance G involves a coupling of L and N 8:

8Note, that (g, v) := g(v) denotes the duality pair, if g ∈ V ∗ is interpreted as a linear functional g :
V → R from the dual space of V. Otherwise, g can be identified with an element of the function
space H−1(Ω)4 ⊃ L2(Ω)4, see [118], so that (g, v) := (g, v)0 can also be interpreted as the continuous
extension of the L2(Ω) scalar product (·, ·)0 from L2(Ω)4 × L2(Ω)4 to H−1(Ω)4 ×H1(Ω)4.
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4 Discrete formulation and method of solution

Definition 4.17. For g ∈ Y the operator T : Y → V is defined by u = Tg if and only if:

as(u, v) := (Lu,Lv)0 + ΛuΛv = (g, v) , for all v ∈ V . (4.95)

Correspondingly, Th : Y → Vh is defined by uh = Thg for g ∈ Y if and only if:

as(uh, vh) = (g, vh) , for all vh ∈ Vh . (4.96)

On the other hand, for u ∈ V the operator G : Dλ × V → Y is defined by g = G(λ, u) if
and only if:

(g, v) = (Lu, 2N [u+ û](v))0 + (N [u+ û](u+ û),Lv + 2N [u+ û](v))0 , (4.97)

for all v ∈ V .

Obviously the following equivalences hold [35]:

Lemma 4.18. Assume that T , Th and G are defined by (4.95), (4.96) and (4.97), respec-
tively, then the non-linear problem (4.91) is equivalent to (4.93) and the corresponding
discret non-linear problem is equivalent to (4.94).

Error estimates for the least-squares formulation (4.90) are now derived from abstract
approximation theory [54, 107]. Below the main result of this theory for general T and
Th, but otherwise specialised to the needs of the present analysis, is taken from [35]. Let
DuG(λ, u) and DuF (λ, u) denote the Fréchet derivatives of G and F with respect to u,
see Appendix B.1.5, and consider the following [35]:

Definition 4.19. The set {(λ, u(λ))|λ ∈ Dλ} is referred to as a regular branch of solutions
of (4.93) if u = u(λ) is a weak solution of (4.93) for each λ ∈ Dλ, if λ 7→ u(λ) is a
continuous map Dλ → V and if DuF (λ, u) is an isomorphism of V .

Equipped with these definitions the following theorem holds according to [35]:

Theorem 4.20. Let F (λ, u) = 0 denote abstract form (4.93) and assume that {(λ, u(λ))|λ ∈
Λ} is a branch of regular solutions of (4.93). Furthermore, assume that T ∈ L(Y, V ), that
G is a C2 map Dλ×V → Y such that all second derivatives of G are bounded on bounded
subsets of Dλ × V and that there exists a space Z ⊂ Y , with continuous embedding, such
that DuG(λ, u) ∈ L(V,Z) for all λ ∈ Dλ and u ∈ V . If the approximate problem (4.94) is
such that:

lim
h→∞

‖(T − Th)g‖V = 0 , (4.98)

for all g ∈ Y and:

lim
h→∞

‖T − Th‖L(Z,V ) = 0 , (4.99)
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4.4 Analysis of the non-linear problem

then:

(i) There exists a neighbourhood B of the origin in V and, for h sufficiently small, a
unique C2 function λ 7→ uh(λ) ∈ Vh such that {(λ, uh(λ))|λ ∈ Dλ} is a branch of
regular solutions of the discrete problem (4.94) and u(λ)−uh(λ) ∈ B for all λ ∈ Dλ.

(ii) For all λ ∈ Dλ the following holds:

‖u(λ)− uh(λ)‖V ≤ c‖(T − Th)G(λ, u(λ))‖V . (4.100)

(iii) If the regular branch is such that u(λ) ∈ V m for some integer m ≥ 1 and d̃ :=
min{d,m}, where d is the largest integer satisfying the approximation property (4.55),
then:

‖u(λ)− uh(λ)‖1 ≤ chd̃‖u(λ)‖d̃+1 . (4.101)

In the next few lemmas, the hypotheses of Theorem 4.20 are verified for the least-squares
formulation. The starting point is that of establishing essential properties of the operators
T and Th, which are defined by (4.95), (4.96), respectively. The argument follows closely
that of Bochev et al. [35].

Lemma 4.21. T ∈ L(Y, V ) and Th ∈ L(Y, Vh).

Proof. The bilinear form as(·, ·) is continuous and coercive, as already shown in the proof
to Corollary 4.10 and if, for convenience only, the boundary approximation is assummed
to be exact, then by virtue of the inclusion Vh ⊂ V , it is also continuous and coercive
on Vh × Vh. Furthermore, for each g ∈ Y , (g, v) defines a continuous functional on V ,
such that the Theorem 4.9 of Lax-Milgram is applicable. As a consequence, for all g ∈ Y ,
variational problems (4.95), (4.96) have unique solutions u ∈ V and uh ∈ Vh respectively,
i.e. T : Y → V and Th : Y → Vh are well defined linear operators. From:

c‖u‖2V ≤ as(u, u) = (g, u) ≤ ‖g‖Y ‖u‖V ,

it follows that:

‖Tg‖V = ‖u‖V ≤ c‖g‖Y ,

i.e., T is in L(Y, V ). The proof that Th ∈ L(Y, Vh) is similar.
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4 Discrete formulation and method of solution

Lemma 4.22. [35] Convergence properties (4.98) and (4.99) hold. If, in addition, g ∈ Y
is such that Tg ∈ V m for some m ≥ 1 and d̃ = min(d,m), where d is the largest integer
satisfying (4.55), then:

‖(T − Th)g‖V ≤ chd̃‖Tg‖V d̃+1 .

Proof. Firstly, the convergence statement (4.98) is established, i.e. that:

‖(T − Th)g‖V = ‖u− uh‖1 → 0 ,

when h→ 0. Recall that T : Y → V and therefore from g ∈ Y it follows that Tg = u ∈ V
and Thg ∈ Vh ⊂ V , i.e. u, uh ∈ H1(Ω)4. Then the above limit follows from the basic
convergence result (4.62), cf. the considerations in Sec. 4.3.3(a).
Secondly, note that (4.99) follows from (4.98) when the embedding Z ⊂ Y is compact;

then the following estimate holds for h→ 0:

‖T − Th‖L(Z,V ) := sup
06=g∈Z

‖(T − Th)g‖V
‖g‖Z

≤ sup
06=g∈Y

‖(T − Th)g‖V
‖g‖Y

→ 0 .

The compact embedding Z ⊂ Y is valid because according to Theorem B.15, see Appendix
B, Y ∗ = V ⊂ H1(Ω)4 is compactly embedded in L3(Ω)4; therefore Z = L3/2(Ω)4 =
(L3(Ω)4)∗ is compactly embedded in Y .
To prove the last part of the lemma, suppose u = Tg ∈ V m. Then an immediate

consequence of the H1(Ω) convergence result of Corollary 4.12 is the Stokes error estimate:

‖(T − Th)g‖V = ‖u− uh‖1 ≤ chd̃‖u‖d̃+1 .

The only hypotheses of Theorem 4.20 that remains to be verified are the assumptions
concerning the non-linear operator G. For this purpose, the weak and strong forms of
the first Fréchet derivative DuG(λ, u) and the weak form of the second Fréchet derivative
D2
uG(λ, u) are needed. Recall the characterisation (B.19) in Appendix B.1.5:

DuG(λ, u)h = G(λ, u+ h)−G(λ, u) + o(‖h‖V ) ,

for h ∈ V , which yields the following weak representation of DuG(λ, u) [35]:

Definition 4.23. For given u ∈ V , λ ∈ Dλ the mapping DuG(λ, u) : V → Y , h 7→
DuG(λ, u)h is defined by g = DuG(λ, u)h if and only if for all v ∈ V :

(g, v) = (Lu+N [u+ û](u+ û), 2N [h]v)0 + (Lh, 2N [u+ û]v)0

+ (2N [u+ û]h,Lv + 2N [u+ û]v)0 + o(‖h‖V ) , (4.102)
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where all o(‖h‖V )-terms have been neglected. The strong form of DuG(λ, u)h can be
found from (4.102) using standard integration by parts leading to the following abstract
representation:

g/2 = N T [h]Lu+N T [h]N [u+ û](u+ û) +N T [u+ û]Lh
+ L∗N [u+ û]h+ 2N T [u+ û]N [u+ û]h+ o(‖h‖V ) . (4.103)

Finally, the characterisation:

DuG(λ, u)[h, ĥ] = G(λ, u+ ĥ)h−G(λ, u)h+ o(‖h‖V , ‖ĥ‖V ) ,

is employed for the second Fréchet derivative such that its weak form is given by [35]:

Definition 4.24. For given u ∈ V , λ ∈ Dλ the mapping D2
uG(λ, u) : V × V → Y ,

(h, ĥ) 7→ D2
uG(λ, u)[h, ĥ] is defined by g = D2

uG(λ, u)[h, ĥ] if and only if for all v ∈ V :

(g, v) = (Lĥ+ 2N [u+ û]ĥ, 2N [h]v)0 + (Lh+ 2N [u+ û]h, 2N [ĥ]v)0

+ (2N [h]ĥ,Lv + 2N [u+ û]v)0 + o(‖h‖V , ‖ĥ‖V ) . (4.104)

Again, the strong form of the second derivative is obtained through integration by parts:

g/2 = N T [h]Lĥ+ 2N T [h]N [u+ û]ĥ) +N T [ĥ]Lh+ 2N T [ĥ]N [u+ û]h)

+ L∗N [h]ĥ+ 2N T [u+ û]N [h]ĥ+ o(‖h‖V , ‖ĥ‖V ) . (4.105)

The next lemma summarises some technical results that are used in the sequel [35].

Lemma 4.25. Consider a bounded Lipschitz domain Ω ⊂ Rn in two or three dimensions
(n = 2 or n = 3) and let Di denote the derivative with respect to the ith coordinate
variable. For u ∈ L2(Ω), v ∈ H1(Ω), the product uv is in L3/2(Ω) and for u, v, w ∈ H1(Ω)
the product uvw is in L3/2(Ω), i.e. the bilinear and trilinear mappings (u, v) 7→ uv,
L2(Ω)×H1(Ω)→ L3/2(Ω) and (u, v, w) 7→ uvw, H1(Ω)3 → L3/2(Ω) are continuous with:

‖uv‖0,3/2 ≤ c‖u‖0,2‖v‖1,2 for all u ∈ L2(Ω) and v ∈ H1(Ω) , (4.106)

‖uvw‖0,3/2 ≤ c‖u‖1,2‖v‖1,2‖w‖1,2 for all u, v, w ∈ H1(Ω) . (4.107)

Proof. The first part of the above lemma is easily proven by application of the Rellich-
Kondrachov embedding Theorem B.15, followed by the Hölder inequality of Propositon
B.6. In fact, statements (i) and (ii) of Theorem B.15 give, with k = 1 and p = 2 for
both, 2D and 3D, the continuous embeddings H1(Ω) ⊂ Lq(Ω) for q ∈ [2, 6]. Especially
for u ∈ L2(Ω), v ∈ H1(Ω) ⊂ L6(Ω), according to (B.4) it follows that uv ∈ Lr(Ω) with
1/r = 1/2 + 1/6, that is r = 3/2. Accordingly, due to the embedding H1(Ω) ⊂ L9/2(Ω) it
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4 Discrete formulation and method of solution

follows that for u, v, w ∈ H1(Ω) the product uvw lies in Lr(Ω) with 1/r = 3 ·2/9, resulting
again in r = 3/2. Furthermore by the Hölder inequality (B.5) the inequalities:

‖uv‖0,3/2 ≤ ‖u‖0,2‖v‖0,3/2 ≤ c‖u‖0,2‖v‖1 ∀u ∈ L2(Ω), v ∈ H1(Ω) ,

‖uvw‖0,3/2 ≤ ‖u‖0,3/2‖v‖0,3/2‖w‖0,3/2 ≤ c‖u‖1‖v‖1‖w‖1 ∀u, v, w ∈ H1(Ω) ,

are obtained in which the respective second inequalities are due to the continuity of the
embedding.

In the next lemma, the properties of G that are required for the validity of the approx-
imation result in Theorem 4.20 are established [35]:

Lemma 4.26. Assume that mapping G is defined by (4.97). For V , Y and Z given by
(4.89) and (4.92), respectively, the following are true:

(i) For all u ∈ V , λ ∈ Dλ holds DuG(λ, u) ∈ L(V,Z).

(ii) The second Frechet derivative D2
uG(λ, u) is bounded on bounded subsets of Λ× V .

Proof. To prove (i), consider the strong form (4.103) of DuG(λ, u). Via the assumption
u ∈ V , the regularity u ∈ H1(Ω)4 holds. Now, each of the four identities in (4.103) consists
of terms of the form either Diuv or uvw, where u, v and w belong to H1(Ω). As Diu is
certainly in L2(Ω), part (a) of Lemma 4.25 implies that g ∈ L3/2(Ω)4 = Z. Using (4.106)
and (4.107), it follows that:

‖DuG(λ, u)h‖Z ≤ c(λ, u, û)‖h‖V ,

i.e., thatDuG(λ, u) ∈ L(V,Z). To prove (ii), consider the strong form (4.105) of the second
Fréchet derivative which discloses D2

uG(λ, u) to be a bilinear form on V ×V . Assume that
(λ, u) belongs to a bounded subset of Dλ×V and let h, ĥ ∈ V be arbitrary. Then, similar
to the above considerations, (4.105) involves only terms of the form Diuv and uvw, where
u, v and w belong to H1(Ω), such that according to Lemma 4.25 g ∈ Z. Again, estimates
(4.106) and (4.107) result in:

‖D2
u(λ, u)[h, ĥ]‖Z ≤ c(λ, u, û)‖h‖V ‖ĥ‖V ,

where c is a polynomial function of λ, ‖u‖V and ‖û‖V . In combination with the fact that λ
and ‖u‖V are bounded subsets of Λ×V , and that ‖û‖V is fixed, it follows that D2

uG(λ, u)
is a continuous and thus bounded bilinear form V × V → Z.

This completes the verification of all assumptions of Theorem 4.20. As a result, it
can be concluded that error estimates (4.100) and (4.101) hold for the least-squares FE
approximation as long as problem (4.91) has a regular branch of solutions with sufficient
regularity.
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systems

In the preceding Chapter, a weak variational least-squares formulation for the first integral
form (4.12) of the steady 2D-NS equations was introduced and analysed from essentially a
theoretical point of view. Existence and uniqueness results for the weak solution have been
obtained in appropriate Sobolev spaces by standard elliptic PDE tools and convergence
bounds established in the common H1 and L2 norms, both in the linear and in the non-
linear case; convergence loss in the presence of irregular boundary points is investigated
also.
Here, the focus is the efficient numerical implementation of these ideas, providing details

of the linearisation process, least-squares weighting, matrix structure, conditioning and
solution of the resulting linear systems. It is shown that the latter lend themselves well to
solution by an efficient and scalable multigrid strategy; the algebraic multigrid approach in
particular is well suited as a black-box solver of large and sparse linear systems resulting
from discretisations based on unstructured grids. For this purpose a customised AMG
approach for the first integral formulation is established and its convergence properties
thoroughly investigated.

5.1 Method of solution

5.1.1 Structure of the fully non-linear problem

Recall that the aim is to solve the reformulation (4.13) of the 2D, steady and incompress-
ible NS equations based on a weak variational least-squares setting of the form (4.91).
Linearisation is performed before least squares minimization which is not equivalent to
performing it retrospectively. Actually the latter variant would be more complicated and
involve more terms; however, Payette and Reddy [192] analysed these differences and came
to the conclusion that generally the more complicated version does not lead to any faster
convergence and is thus not considered further. This means, via Newton-linearisation, a
sequence of the following minimisation problems is solved:
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Find u = (ux, uy, φx, φy) ∈ U, such that:

J (u) := ‖W(Lu+N [ũ](2u− ũ)− f)‖20 ≤ J (v) ∀ v ∈ V , (5.1)

with ũ denoting the approximate solution from the previous Newton iteration step, and
involving the function spaces:

U =
{
v ∈ [H1(Ω)]4

∣∣∣Bv = g on ∂Ω, Λiv = 0 for i = 1, . . . , Nc

}
, (5.2)

V =
{
v ∈ [H1(Ω)]4

∣∣∣Bv = 0 on ∂Ω, Λiv = 0 for i = 1, . . . , Nc

}
. (5.3)

Note, that in the implementation the constraints Λiu = 0 are incorporated in the solu-
tion space U which is a slight deviation from the considerations in Chapter 4, where the
constraints were ensured in a least-squares sense. Furthermore, the equations comprising
the differential system are multiplied by weighting factors resulting in the above presence
of the weighting operator W, which is actually a diagonal matrix with positive entries
√
wi and w1, . . . , w4 ∈ R>0; this provides the option to give special emphasis to selected

equations, for example the continuity equation with the objective of improving mass con-
servation. Such a weighting does not affect the principal convergence properties of the
method.
The above minimisation problem, (5.1), is equivalent to the weak formulation:

Find u = (ux, uy, φx, φy) ∈ U, such that:

(W(L+ 2N [ũ])u,W(L+ 2N [ũ])v)0 = (W(f +N [ũ]ũ),W(L+ 2N [ũ])v)0 ∀ v ∈ V ,

which can alternatively be written as:

Find u = (ux, uy, φx, φy) ∈ U, such that:

a(u, v) + b[ũ](u, v) = `[ũ](v) ∀ v ∈ V , (5.4)

in terms of the symmetric bilinear forms a(·, ·), b[ũ](·, ·) and the linear form `[ũ](·):

a(u, v) = (WLu,WLv)0 , (5.5)

b[ũ](u, v) = 2(WLu,WN [ũ]v)0 + 2(WN [ũ]u,WLv)0 + 4(WN [ũ]u,WN [ũ]v)0 , (5.6)

`[ũ](v) = (W(f +N [ũ]ũ),W(L+ 2N [ũ])v)0 . (5.7)

A conformal discrete version of the weak formulation (5.4) is simply obtained by replac-
ing the function spaces U and V by finite dimensional subspaces Uh ⊂ U and Vh ⊂ V 1. For
the construction of the discrete system of equations, it is convenient to neglect boundary

1Chapter 4 revealed that an error in the boundary approximation has no relevant effect on the solution
error as long as the boundary approximation is of sufficiently high order. Under this premise, for
convenience of notation, a conformal discretisation can be assumed.
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conditions initially and to include them subsequently as a final procedure. In this spirit
define the auxiliary discrete subspace H1(Ω) ⊃ Ṽh = 〈v1, . . . , vn〉 comprising all linear
combinations of n basis functions vi, and temporarily consider the modified weak problem
(5.4) with Uh = Vh = Ṽ 4

h = 〈ν1, . . . ν4n〉 and:

νk =





(vk, 0, 0, 0) if k ≤ n
(0, vk−n, 0, 0) if n < k ≤ 2n
(0, 0, vk−2n, 0) if 2n < k ≤ 3n
(0, 0, 0, vk−3n) if 3n < k ≤ 4n .

(5.8)

Then, in terms of the auxiliary quantities:

axx := (aij)i,j=1,...,n with aij = (∂xvi, ∂xvj)0 , (5.9)

axy := (aij)i,j=1,...,n with aij = (∂xvi, ∂yvj)0 , (5.10)

ayy := (aij)i,j=1,...,n with aij = (∂yvi, ∂yvj)0 , (5.11)

the symmetric matrix A = (akl)k,l=1,...4n, with akl = a(νk, νl), can be constructed as a
symmetric (4× 4) block matrix involving the blocks (Aij)i,j=1,...,4 as follows:

A11 = w1η
2ayy + (w2η

2 + w3)axx , (5.12)

A12 = w1η
2axy + (−w2η

2 + w3)aTxy , (5.13)

A13 = −w1ηayy − w2ηaxx , (5.14)

A14 = −w1ηaxy + w2ηa
T
xy , (5.15)

A22 = w1η
2axx + (w2η

2 + w3)ayy , (5.16)

A23 = −w1ηa
T
xy + w2ηaxy , (5.17)

A24 = −w1ηaxx − w2ηayy , (5.18)

A33 = (w1 + w4)ayy + w2axx , (5.19)

A34 = (w1 − w4)axy − w2ηa
T
xy , (5.20)

A44 = (w1 + w4)axx + w2ηayy . (5.21)

In a similar way, for an arbitrary function γ = γ(x, y) define the operators:

bx1[γ] := (bij)i,j=1,...,n with bij = (∂xvi, γvj)0 , (5.22)

by1[γ] := (bij)i,j=1,...,n with bij = (∂yvi, γvj)0 , (5.23)

b11[γ] := (bij)i,j=1,...,n with bij = (vi, γvj)0 , (5.24)
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which allow the matrix B[ũ] = (bkl)k,l=1,...,n, with bkl = b[ũ](νk, νl), to be analogously
constructed as a (4× 4) block matrix involving the blocks (Bij)i,j=1,...,4 as follows:

B11 = −%η
[
w1(by1[ũy] + bTy1[ũy]) + w2(bx1[ũx] + bTx1[ũx])

]

+ %2
[
w1b11[ũ2

y] + w2b11[ũ2
x]
]
, (5.25)

B12 = %η
[
w2(bx1[ũy] + bTy1[ũx])− w1(by1[ũx] + bTx1[ũy])

]

+ %2(w1 − w2)b11[ũxũy] , (5.26)

B13 = B24 = %w1b
T
y1[ũy] + %w2b

T
x1[ũx] , (5.27)

B14 = −B23 = %w1b
T
x1[ũy]− %w2b

T
y1[ũx] , (5.28)

B22 = −%η
[
w1(bx1[ũx] + bTx1[ũx]) + w2(by1[ũy] + bTy1[ũy])

]

+ %2(w1b11[ũ2
x] + w2b11[ũ2

2]) , (5.29)

B33 = B34 = B44 = 0 . (5.30)

The right-hand side vector in (5.4) is composed of sink and source terms from f as well
as terms resulting from linearisation, i.e. N [ũ]ũ; thus it is convenient to employ the
re-definition f ← f +N [ũ]ũ. If again auxiliary operators:

dx[γ] := (di)i=1,...4 with di = (∂xvi, γ)0 , (5.31)

dy[γ] := (di)i=1,...4 with di = (∂xvi, γ)0 , (5.32)

d1[γ] := (di)i=1,...4 with di = (vi, γ)0 , (5.33)

are defined depending on an arbitrary function γ = γ(x, y), the right-hand side vector
d = (dk)k=1,...,4n, with dk = `(νk), is composed of the four portions (di)i=1,...,4:

d1 = w1ηdy[f1]− w2ηdx[f2] + w3dx[f3]− w1%d1[ũyf1] + w2%d1[ũxf2] , (5.34)

d2 = w1ηdx[f1] + w2ηdy[f2] + w3dy[f3]− w1%d1[ũxf1]− w2%d1[ũyf2] , (5.35)

d3 = w1dy[f1]− w2dx[f2] + w4dy[f4] , (5.36)

d4 = w1dx[f1] + w2ηdy[f2]− w4dx[f4] . (5.37)

To account for boundary conditions the linear system has to be modified after each ma-
trix/vector construction step. Accepting that the final matrix M = A + B and the
right-hand side d for a linear system Mijcj = di, i, j = 1, . . . , 4n have been constructed
and that only Dirichlet boundary conditions are prescribed, then the coefficients ck are
known for a given index set, say ck = gk for k ∈ Ib. They can be eliminated from the
system such that the remaining coefficients are obtained by solving the set of equations:

Mijcj = di −Mikck for indices i, j = 1, . . . , 4n \ Ib and k ∈ Ib . (5.38)
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Elimination of boundary rows and columns is essential to retain a symmetric system matrix
which will allow, as demonstrated, for the use of efficient linear solvers. Note that in some
cases a re-ordering of the variables might be desirable to reduce the bandwidth of the
resulting system matrix, for instance by classical methods such as the Reverse-Cuthill-
McKee or the Minimum-Degree algorithm [211]; this is especially important when using
direct solution methods; however, less important in the context of multigrid methods as
considered in Sec. 5.4, and thus not described in detail here.
The complete procedure for solving a stationary NS problem by a least-squares FEM

is summarised in Algorithm 1. In order to construct the linear system, the sub-matrices
(5.12)-(5.21) have to be built once for the whole iteration procedure and the sub matrices
(5.25)-(5.29) as well as the sub vectors (5.34)-(5.37) have to be updated for each iteration
step based on the previous solution vector. In the special case of a weighting with w1 =
w2 and w3 = w4 certain terms in the block matrices vanish, leading to simplifications.
However, note that in the end the complexity of the building process reduces to the
construction of the auxiliary operators (5.9)-(5.11), (5.22)-(5.24) and (5.31)-(5.33); that
is, the heart of the construction process relies on the assembly of these matrices. The
efficient construction of such sub-matrices is treated in Sec. 5.1.3; the corresponding
FE calculations are based on standard Lagrange elements and follow classical concepts
such as element-wise construction, iso-parametric transformation and efficient numerical
quadrature.

Algorithm 1 Navier-Stokes solution via FEM
1: procedure u = NavierStokes(Ωh, wi, g, Re)
2: Get the necessary data from a given domain discretisation Ωh.
3: Define total variable index set I = {1, . . . , 4n} and boundary index set Ib.
4: Create Stokes matrix A according to (5.9)-(5.21).
5: Initialise u(0) = 0, m = 0.
6: while m < 1 or ‖u(m) − u(m−1)‖ > ε do
7: Calculate matrix B[u(m)] according to (5.22)-(5.30).
8: Calculate right-hand side d[u(m)] according to (5.31)-(5.37).
9: Set M (m)

ij := Aij +Bij [u(m)].
10: Set coefficients c(m+1)

k for k ∈ Ib via Dirichlet conditions Bu = g.
11: Account for BC via d(m)

i := di[u(m)]−M (m)
ik c

(m+1)
k , i ∈ I \ Ib , k ∈ Ib.

12: Solve M (m)
ij c

(m+1)
j = d

(m)
i , i, j ∈ I \ Ib.

13: Set u(m+1)(x, y) = ∑4n
i=1 c

(m+1)
i νi(x, y).

14: Set m := m+ 1.
15: end while
16: return u := u(m).
17: end procedure
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5.1.2 Treatment of periodic problems

Below, particular problems, i.e. Couette-like and thin film flows, involving periodicity in
one direction only, the x-direction, are considered. Due to the fact that periodic boundary
conditions are most conveniently handled by connecting the respective endpoints of the
FE grid, it is desirable to only have to deal with periodic fields; however, that is not
necessarily the case for the auxiliary potential fields φ1 and φ2 as is easily seen. Linear
combinations of (1.41), (1.42) lead to the identity:

− 2σij = −(p+ U)δij + η

(
∂ui
∂xj

+ ∂uj
∂xi

)
− %uiuj , (5.39)

with:
σ11 = ∂2Φ

∂y2 , σ22 = ∂2Φ

∂x2 , σ12 = − ∂2Φ

∂x∂y
, (5.40)

in which −2σij is identical to the stress tensor apart from the occurrence of the potential
energy density U . If the physical quantities ui and p are assumed periodic in the x-
direction, then the second derivatives of Φ are periodic apart from the dependency on U .
In the following consider the splitting Φ = Φp + Φa into a periodic plus a non-periodic
(aperiodic) part, respectively.

(a) Periodic channel flow

In the simpler case of Couette flows, no external forces occur, i.e. U = 0. Thus all second
derivatives of Φa can be at most constant leading to Φa(x, y) = c1x2 + c2xy + c3x and for
the representations φ1 = φ1,p + φ1,a and φ2 = φ2,p + φ2,a to aperiodic parts:

φ1,a(x, y) = c1x , φ2,a(x, y) = c2x ,

being linear in x. In a classical channel flow configuration with upper and lower walls and
periodic conditions on the left and right-hand side, the two constants c1, c2 are not known
it advance. So when connecting the FE grid points on the left- and right-hand side this
additional freedom should be taken into account. Otherwise the solution process is carried
out as described in Sec. 5.1.1.

(b) A simple iteration scheme for periodic film flow

Consider gravity-driven film flow down a corrugated rigid surface inclined at an angle α to
the horizontal, as shown in Fig. 5.1. Along the stationary rigid surface, velocity Dirichlet
conditions are imposed while at the free surface three boundary conditions are required:
a kinematic condition and two dynamic conditions in which the latter take the form of
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?
~Fg

Fixed rigid surface:
ui(s) = 0

At the free surface:
U(x, y) = %g[cos(α)y − sin(α)x]

1) Dynamic condition:

εijφj(s) = σ

2 ti(s)−
1
2

ˆ s

s0

U(s̃)ni(s̃) ds̃

2) Kinematic condition:
ui(s)ni(s) = 0

Figure 5.1: Schematic of gravity-driven film flow down a corrugated rigid surface inclined
at an angle α to the horizontal. The indices i and j in the boundary conditions run from
1 to 2.

inhomogeneous Dirichlet conditions for φ1 and φ2 as derived in Sec. 3.2.2 of Chapter
3; these depend on the surface tension, the curvature and the potential energy density.
In principle the shape of the free surface can be found by iterating over the kinematic
condition while solving a sequence of flow problems with prescribed dynamic conditions
in a fixed domain.

For gravity-driven flow the potential energy density takes the form U = %g[cos(α)y −
sin(α)x] leading to a non-periodic term in (5.39). Thus the second derivatives of Φ may
depend linearly on x, causing Φ to be possibly cubic in x. The non-periodic influence of
U can be eliminated by subtracting a suitable known solution; for instance, the Nusselt
solution for the case of a planar surface in which the free surface is correspondingly flat
and of thickness h provided the Reynolds number is below a critical value [277], which is
simply:

u1(x, y) = %g

2η sin(α)y[2h− y] , u2(x, y) = 0 , p(x, y) = −%g cos(α)y + p0 (5.41)

Φ(x, y) = −1
2%g sin(α)

[1
2xy

2 − hxy + 1
6x

3
]
− p0

2 (x2 + y2) + c1x+ c2y + c3 , (5.42)

in which the constants c1, c2, c3 can be chosen arbitrarily; for instance the prescription
φ1(0, h) = φ2(0, h) = 0 leads to:

φ1(x, y) = −1
4%g sin(α)

[
x2 + y2 − 2hy + h2

]
− p0x+ c1 , (5.43)

φ2(x, y) = −1
2%g sin(α) [xy − hx]− p0y + c2 , (5.44)

with p0 = c1 = c2 = 0. Consider now the splitting u = (u1, u2, φ1, φ2) = up + ua into a
periodic plus a non-periodic part, respectively. Obviously the non-periodic part can be
chosen as ua = uN +uL with Nusselt solution uN and another part uL which comprises the
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remaining linear dependencies in x. The latter can be found via the dynamic boundary
condition εijφj(s) = gi(s) as uL = (0, 0, c1x, c2x) with ci = gi(s1)/λ if the free surface
parametrisation is such that s ∈ [s0, s1]. Thus, for a fixed approximation of the free
surface shape a problem of the following form has to be solved:

Lup + 2N [ũp + ua]up = N [ũp + ua](ũp + ua) + f , (5.45)

in which the aperiodic part f := −Lua−2N [ũp+ua]ua has been shifted to the right-hand
side and the boundary conditions are given by:

ui,p(s) = 0 , along the fixed rigid surface, (5.46)

φi,p(s) = gi(s)− φi,a(s) , along the free surface, (5.47)

for i = 1, 2. The above problem can be solved via the method described in Sec. 5.1.1 with
the free surface updated via the kinematic boundary condition which has not been used so
far. Given that an approximate solution u(n)(x, y) together with a surface shape, expressed
in form of a height function h(n)(x) depending on x = x(s), is available, then a correction
h(n+1)(x) is found by shifting the surface position in direction of the (outflowing) velocity
field:

x = x̃+ ∆t · u(n)
1

(
x̃, h(n)(x̃)

)
=: ξ(n)(x̃) , (5.48)

h(n+1)(x) = h(n)(x̃) + ∆t · u(n)
2

(
x̃, h(n)(x̃)

)
with x̃ =

(
ξ(n)

)−1
(x) , (5.49)

in which the points x+λz, z ∈ Z are identified due to the λ-periodicity in the x-direction
and ∆t is a characteristic time scale; usually a fraction of the period time T which elapses
until a surface particle has passed a period length λ. This iteration is performed until
the norm difference of two consecutive height functions falls below a predefined threshold
leading to the procedure shown as Algorithm 2.

A few heuristic strategies which are not mentioned in detail can be crucial to improve the
stability, efficiency and convergence speed of the surface iteration. For instance the update
algorithm for the surface shape is supplemented by an adaptive damping mechanism in the
case of strong surface variations; first, this involves an automatic, self-adaptive choice of
∆t, depending on the Reynolds and Capillary numbers (being defined later in the context
of the applications), the current difference h(n+1)−h(n) and the whole convergence history;
second, a possible smoothing of a new h(n+1) by Fourier approximations of adaptive order.
Moreover, the FE grid and the accuracy of the Newton solutions in line 6 of Algorithm
2 may be refined in the course of the surface iteration process instead of calculating high
precision solutions directly from the beginning. Sometimes, instead of using (5.49), it is
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more efficient to solve a differential equation of the form:

d
dxh

(n+1)(x) =
u2(n)

(
x, h(n+1)(x)

)

u1(n) (x, h(n+1)(x)
) , h(n+1)(x0) = y0 , (5.50)

in which case the streamline starting from (x0, y0) is traced. Since the current free surface
shape and corresponding velocity field are approximations only, it may happen that a
streamline h(n+1) starting from (x0, h0) lies partly outside of the current mesh; this is
the reason why h0/2 < y0 < h0 is chosen in a way that ensures the streamline remains
inside the meshed domain and reaches the outflow boundary. If this is achieved, a new
approximation of the free surface shape is obtained by shifting the calculated streamline
h(n+1) by an amount h0 − y0 to the correct position. An automatic switch from (5.49) to
(5.50) is implemented depending on the problem parameters and the convergence history.
Finally, it is mentioned that stationary but non-periodic film flows with standard inflow

and outflow conditions can be treated in a similar way but without the need for imple-
menting a splitting into periodic and non-periodic parts. Furthermore, in the context of
a LSFEM it would be desirable to directly incorporate the free surface degrees of freedom
into the system of equations and to solve the whole system in one Newton iteration; such
a procedure would be similar to the “spine method” from [265] and is left as a future
development.

Algorithm 2 Free surface iteration
1: procedure [u, h] = FilmFlow(h, λ, σ, α, Re)
2: Initialise h(0)(x) = h0, m = 0.
3: while m < 1 or ‖h(n+1)(x)− h(n)(x)‖ > ε do
4: Calculate g(m)

i (s) via the dynamic BC in Fig. 5.1.
5: Determine aperiodic part u(m)

a := uN + u
(m)
L .

6: Solve the non-linear problem (5.45)-(5.47) with Algorithm 1.
7: Set u(m) := u

(m)
p + u

(m)
a .

8: Update the free surface h(m+1)(x) via (5.49).
9: Set m := m+ 1.

10: end while
11: return u = u(m−1), h = h(m−1).
12: end procedure

5.1.3 Isoparametric concept

An important stage in FE calculations is the construction of the system matrix in which
the course of action as well as the utilised data structures are of special interest. To set up
the FE procedure for the present work the classical “p-e-t” data structure [174] is used,
consisting of an array p for the node coordinates, an array e with the node indices of all
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boundary edges and an array t which, for each element, indicates the node indices involved
in mathematically positive order, cf. Fig. 5.3. Based on this data structure three con-
cepts transpire as particularly useful for efficient computation: Firstly, the element-wise
construction of the matrices is accepted as standard as it is much easier to handle than a
nodal-based construction which requires a more complex representation of the neighbour-
structure. Secondly, the element-wise integrals, possibly residing on complicated curved
elements, are transformed to and calculated on reference elements, in which the transfor-
mation itself is approximated by the same basis functions as the solution; thus the phrase
“isoparametric”. Finally, integrals are evaluated by numerical quadrature rules which are
extremely efficient and much more reasonable even if exact primitives were available; in
this context Gauss-quadrature is typically used as an integration tool allowing for the best
relation of exact integration order to necessary evaluation points [25].
In the following, unstructured grids comprised of both triangular and quadrilateral

elements – see Fig. 5.2 – are considered in the plane and the test and solution spaces
involve standard Lagrange elements up to quadratic order. The basic ideas are summarised
following which the practical implementation is briefly exemplified. Hereby the concepts
and the implementation are closely related to those of Bartels et al. [21].

(a) Domain decomposition and reference transformations

It is assumed that Ω is decomposed into finitely many FE domains T ∈ T with curved
boundaries which have either three or four edges, or sides, respectively. Furthermore, the
existence of T3, T4 ⊆ T is assumed such that T3 ∪ T4 = T and T3 ∩ T4 = ∅. In order to
guarantee that neighbouring elements match each other, element edges are defined through
a reference parametrisation. If A and B are the endpoints of an edge E which may be
curvilinear with a point C on E, then E is given by the parametrisation [21]:

ΦE : Eref → R2 , t 7→ A(1− t)/2 +B(1 + t)/2 + C̃(1− t)(1 + t) ,

in which C̃ = C− (A+B)/2 and Eref = [−1, 1] as in Fig. 5.2. Assume that the restriction
of ΦE to (−1, 1) is an immersion; this is guaranteed if A, B, and C are distinct and either
C lies on the line segment connecting A and B or A, B, and C are not co-linear.
Given any triangular element T ∈ T3, the three corner vertices are mandatory and

denoted by p(T )
1 , p(T )

2 , p(T )
3 , whereas the edge vertices p(T )

4 , p(T )
5 , p(T )

6 are “optional” and
can be prescribed in domain areas where a higher polynomial degree is reasonable or, for
instance, on edges of curved boundaries. For the representation of a triangular element
T ∈ T3 a reference element Tref and form functions Nt1, . . . , Nt6 ∈ H1(Tref) are defined
such that each triangular element is the image of the map [21]:

ΦT =
6∑

j=1
c

(T )
j Ntj : Tref → R2 , T ∈ T3 . (5.51)

150



5.1 Method of solution
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Ω
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[−1, 1]
ΦE

quadrilateral
9-point element

triangular element
with one

“optional” node
“optional”

nodes

Figure 5.2: Example of an admissible decomposition of a domain involving both trian-
gular and quadrilateral elements with different numbers of vertices. The edge from point
A over C to B is mapped to the interval [−1, 1] via ΦE .

Here, the coefficients c(T )
j are related to the given vertices of the element such that:

c
(T )
j = p

(T )
j , for j = 1, 2, 3

c
(T )
4 = p

(T )
4 − p

(T )
1 + p

(T )
2

2 , c
(T )
5 = p

(T )
5 − p

(T )
2 + p

(T )
3

2 ,

c
(T )
6 = p

(T )
6 − p

(T )
3 + p

(T )
1

2 ,

in which c(T )
j+3 = 0, j = 1, 2, 3 in the case that the optional edge vertices are not prescribed.

The reference element is chosen as Tref := {(ξ, η) ∈ R2 : ξ, η ≥ 0, ξ + η ≤ 1} and the form
functions defined according to:

Nt1(ξ, η) := 1− ξ − η , Nt2(ξ, η) := ξ , (5.52)

Nt3(ξ, η) := η , Nt4(ξ, η) := 4ξ(1− ξ − η) , (5.53)

Nt5(ξ, η) := 4ξη , Nt6(ξ, η) := 4η(1− ξ − η) . (5.54)

Given any quadrilateral element T ∈ T4, the four corner vertices are again mandatory
and given as p(T )

j , j = 1, . . . , 4, whereas the edge vertices p(T )
j , j = 5, . . . , 8 and an

additional vertex p(T )
9 in the interior of the element are optional. For the representation of

an element T ∈ T4 a reference element Qref is again defined together with form functions
Nq1, . . . , Nq9 ∈ H1(Qref) such that each quadrilateral element is the image of the map [21]:

ΦT =
9∑

j=1
d

(T )
j Nqj : Qref → R2 , T ∈ T4 . (5.55)
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Figure 5.3: Diffeomorphisms from the reference elements Tref, Qref in the (ξ, η)-plane to
curved elements T in the (x, y)-domain Ω, for (a) triangular and (b) quadrilateral elements.

In this case the coefficients d(T )
j are related to the given vertices of the element such that:

d
(T )
j = p

(T )
j , for j = 1, . . . , 4

d
(T )
5 = p

(T )
5 − p

(T )
1 + p

(T )
2

2 , d
(T )
6 = p

(T )
6 − p

(T )
2 + p

(T )
3

2

d
(T )
7 = p

(T )
7 − p

(T )
3 + p

(T )
4

2 , d
(T )
8 = p

(T )
8 − p

(T )
4 + p

(T )
1

2

d
(T )
9 = p

(T )
9 + 1

4

4∑

j=1
p

(T )
j − 1

2

8∑

j=5
p

(T )
j ,

in which d(T )
j+4 = 0, j = 1, . . . , 5 in the case that the optional vertices are not prescribed.

For Qref := [−1, 1]2 the form functions are defined as follows:

Nq1(ξ, η) := (1− ξ)(1− η)/4 , Nq2(ξ, η) := (1 + ξ)(1− η)/4 ,

Nq3(ξ, η) := (1 + ξ)(1 + η)/4 , Nq4(ξ, η) := (1− ξ)(1 + η)/4 ,

Nq5(ξ, η) := (1− ξ2)(1− η)/2 , Nq6(ξ, η) := (1 + ξ)(1− η2)/2 ,

Nq7(ξ, η) := (1− ξ2)(1 + η)/2 , Nq8(ξ, η) := (1− ξ)(1− η2)/2 ,

Nq9(ξ, η) := (1− ξ2)(1− η2) .
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Figure 5.4: Selected shape functions on a quadrilateral reference element. From left to
right: Nq1, Nq5 and Nq9.

The reference transformations for triangular and quadrilateral elements are visualised in
Fig. 5.3 and selected shape functions are shown in Fig. 5.4.
With the help of the diffeomorphism ΦT according to (5.51) and (5.55) for T ∈ T3

and T ∈ T4, respectively, and the form functions Nt1, . . . Nt6 and Nq1, . . . , Nq9, a discrete
subspace Ṽh ⊆ H1(Ω) can be defined as follows. Let P denote the set of grid vertices or
nodes, then for each node a basis function is defined which is not equal to zero only on the
neighbouring elements containing this node. Given a node z ∈ P and an element T ∈ T
with associated node indices j ∈ JT such that z = p

(T )
j , a piecewise definition of basis

functions vz is given by [21]:

vz|T :=





Ntj ◦ Φ−1
T if z ∈ T and T ∈ T3 ,

Nqj ◦ Φ−1
T if z ∈ T and T ∈ T4 ,

0 if z /∈ T ,
(5.56)

in which vz ∈ H1(Ω) is easily checked. The solution space:

Ṽh =
{∑

z∈N
αzvz : αz ∈ R

}
, (5.57)

from Sec. 5.1.1 is then formed as the linear combination of all these basis functions vz,
whereas the discrete versions Uh, Vh from the spaces (5.2) and (5.3) are constructed as
appropriate restrictions of Ṽ 4

h , thus incorporating the Dirichlet boundary conditions.

(b) Assumptions on the decomposition

The following assumptions concerning the decomposition T are made, which imply re-
strictions on the choice of the vertices, points on the sides of elements, and points in the
interior of elements [21]. The assumptions imply that the elements with three and four
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vertices define a proper decomposition of Ω in the sense that edges or sides of neighbour-
ing elements match and that the mapping ΦT is an diffeomorphisms in the triangular and
quadrilateral case.

1. a) There exist T3, T4 ⊆ T such that T3 ∪ T4 = T and T3 ∩ T4 = ∅.
b) For each T ∈ T3 there exist {1, . . . , 3} ⊆ JT ⊆ {1, . . . , 6} and initially prescribed

points p(T )
j ∈ R2, j ∈ JT , such that T is the image of Tref under ΦT .

c) For each T ∈ T4 there exist {1, . . . , 4} ⊆ JT ⊆ {1, . . . , 9} and initially prescribed
points p(T )

j ∈ R2, j ∈ JT , such that T is the image of Qref under ΦT .

2. The closure of Ω is covered exactly by T , i.e., Ω = ⋃
T∈T T and the interior of the

elements is non-intersecting, i.e. int(T ) ∩ int(T ′) = ∅ for all T, T ′ ∈ T .

3. If T ∩ T ′ = {x} for T, T ′ ∈ T and some x ∈ R2 then x is a vertex of both elements
T and T ′.

4. If T ∩T ′ = {x, y} for T, T ′ ∈ T and distinct x, y ∈ R2 then T and T ′ share an entire
side.

5. There exists c > 0 such that |detDΦT | > c for all T ∈ T , in which DΦT denotes the
Jacobian, see the next paragraph (c).

(c) Element-wise construction of the discrete system

In order to construct the system matrices A and B, the sub matrices (5.12)-(5.21) have
to be built once for the whole iteration procedure and the sub matrices (5.25)-(5.29) have
to be updated for each iteration step based on the previous solution vector. These sub
matrices can again be compounded from the blocks (5.9)-(5.11) and (5.22)-(5.24); that is,
the heart of the construction process relies on the assembly of the latter six block matrices.

Consider now the assembly of axy from (5.10) as an example keeping in mind that the
remaining block matrices from (5.9)-(5.11) can be assembled in the same manner. The
presentation below is again close to Bartels et al. [21]. In the case of a triangulated two-
dimensional domain Ω ⊂ R2 involving n grid points, the discrete approximation space
Ṽh = 〈v1, . . . vn〉 consist of n continuous and piecewise smooth basis functions as defined
in the previous section (b). The basis function vi(x, y) has a function value of 1 at the
grid point with index i and a function value of 0 at any other grid point; Fig. 5.5 shows
a basis function vi for the piecewise linear case. The entries of axy are accumulated by:

(axy)ij = (∂xvi, ∂yvj)0 =
ˆ

Ω
∂xvi∂yvj dΩ =

∑

T∈T

ˆ
T
∂xvi∂yvj dT , (5.58)
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5.1 Method of solution

in which T is the set of all elements. As ∂xvi∂yvj in the last expression is non-zero, i.e.
supp(vi) ∩ supp(vj) 6= ∅, only if the indices i and j both belong to the element T , the
matrix can conveniently be assembled element-wise. It is sufficient to compute for each
element T ∈ T3 a matrix M (T ) = (M (T )

jk )j,k∈JT defined by:

M
(T )
jk =

ˆ
T
∂x(Ntj ◦ Φ−1

T ) · ∂y(Ntk ◦ Φ−1
T ) dT ,

and for each T ∈ T4 a matrix M (T ) = (M (T )
jk )j,k∈JT defined by:

M
(T )
jk =

ˆ
T
∂x(Nqj ◦ Ψ−1

T ) · ∂y(Nqk ◦ Ψ−1
T ) dT .

Thus, matrices M (T ) ∈ R6×6 and M (T ) ∈ R9×9 are computed for T ∈ T3 and T ∈ T4 in-
volving the indices j, k ∈ JT of the corresponding elements. The element-wise construction
of the system matrix by contributions from local element matrices M (T ) is illustrated in
Fig. 5.6. This process is easily extended to more complex and three-dimensional elements.

For a further, more compact explanation, the annotations “t” and “q” in the shape
functions Ntj , Nqj are skipped and automatically assumed in the context of either a
triangular or a quadrilateral element. Moreover, in order to avoid repetition the notation
“Tref” covers both triangular and quadrilateral reference elements. The Jacobian of the
coordinate transformation ΦT at a point p = (ξm, ηm), is defined by:

DΦT (p) := ∂(x, y)
∂(ξ, η) (p) =




∑

j

c
(T )
j,1

∂Nj

∂ξ
(p)

∑

j

c
(T )
j,2

∂Nj

∂ξ
(p)

∑

j

c
(T )
j,1

∂Nj

∂η
(p)

∑

j

c
(T )
j,2

∂Nj

∂η
(p)



, (5.59)

and its inverse denoted by D−1ΦT , in which single matrix entries of the inverse Jacobian

2 6

3

ψ i

Figure 5.5: Linear basis function ψi and selected triangular element with corner point
indices 2, 3 and 6.
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local
element matrix M (T )

M11 M12 M13

M21 M22 M23

M31 M32 M33







2
3
6

2 3 6

global system matrix

0 0 0 0 0 0 0
0 M11 M12 0 0 M13 0
0 M21 M22 0 0 M23 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 M31 M32 0 0 M33 0
0 0 0 0 0 0 0







1
2
3
4
5
6
7

1 2 3 4 5 6 7

global indices
local indices

Figure 5.6: Assembly of the global system matrix out of local element matrices.

are denoted by D−1
ij ΦT . Employing the substitution rule for the diffeomorphism ΦT and

using the identity (Dφ−1
T ) ◦ ΦT = (DΦT )−1 yields:

M
(T )
jk =

ˆ
T
∂1(Nj ◦ Φ−1

T ) · ∂2(Nk ◦ Φ−1
T ) d(x, y)

=
ˆ
Tref

[
D−1

1l ΦT (ξ, η)∂lNj(ξ, η)
] [
D−1

2l ΦT (ξ, η)∂lNk(ξ, η)
] ∣∣∣ detDΦT (ξ, η)

∣∣∣ d(ξ, η)

in which the Einstein summation convention has been used. In order to evaluate DΦT ,
temporarily missing, i.e. not initially specified, points p(T )

j+4, j = 1, . . . , 5 are computed by
interpolation. The local stiffness matrix is then approximated using a quadrature rule on
Tref which is defined by points (ξm, ηm) ∈ Tref and weights γm for m = 1, . . . ,KT :

M
(T )
jk ≈

KT∑

m=1
γm
[
D−1

1l ΦT (ξm, ηm)∂lNj(ξm, ηm)
]

·
[
D−1

2l ΦT (ξm, ηm)∂lNk(ξm, ηm)
] ∣∣∣ detDΦT (ξm, ηm)

∣∣∣ . (5.60)

In the implementation Gaussian quadrature is employed in which quadrature points and
weights for reference triangle and quadrilateral elements are taken from Bathe [25]; see
also Fig. 5.7.
In the same way that axy, from (5.58), is assembled by element matrices according to

(5.60), the block matrices axx and ayy, from (5.9) and (5.11), can be assembled; this only
needs modification of the corresponding indices. Slightly differently but in a completely
analogous way, the matrices (5.22)-(5.24) can be assembled which is exemplified by bx1[f ]
for an arbitrary function f = f(x, y). The corresponding calculations:

(bx1)ij = (∂xvi, fvj)0 =
ˆ

Ω
∂xvifvj dΩ =

∑

T∈T

ˆ
T
∂xvifvj dT , (5.61)
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(a)

ξ

η

−
√

3/5
−
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√
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(b) η

ξ

1

11
2

0

1/2

Figure 5.7: (a) Gaussian quadrature on the unit square involving one (green), four (blue)
and nine (red) quadrature points. (b) Gaussian quadrature on the reference triangle
involving one (green), three (blue) and seven (red) quadrature points.

require the allocation of element matrices:

M
(T )
jk =

ˆ
T
∂1(Nj ◦ Φ−1

T )(x, y) · f(x, y)Nk ◦ Φ−1
T (x, y) d(x, y)

=
ˆ
Tref

[
D−1

1l ΦT (ξ, η)∂lNj(ξ, η)
]

[f(ΦT (ξ, η))Nk(ξ, η)]
∣∣∣ detDΦT (ξ, η)

∣∣∣ d(ξ, η)

≈
KT∑

m=1
γm
[
D−1

1l ΦT (ξm, ηm)∂lNj(ξm, ηm)
]

· [f(ΦT (ξm, ηm))Nk(ξm, ηm)]
∣∣∣ detDΦT (ξm, ηm)

∣∣∣ . (5.62)

Finally, vectors of the form (5.31)-(5.33), including parts of the linearisation as well as vol-
ume forces, are required. Their calculation is exemplified via dx[f ], again for an arbitrary
function f(x, y). The corresponding calculations:

(dx)i = (∂xvi, f)0 =
ˆ

Ω
f∂xvi dΩ =

∑

T∈T

ˆ
T
f∂xvi dT , (5.63)

require the allocation of element vectors:

M
(T )
j =

ˆ
T
∂1(Nj ◦ Φ−1

T )(x, y) · f(x, y) d(x, y)

=
ˆ
Tref

[
D−1

1l ΦT (ξ, η)∂lNj(ξ, η)
]

[f(ΦT (ξ, η))]
∣∣∣ detDΦT (ξ, η)

∣∣∣ d(ξ, η)

≈
KT∑

m=1
γm
[
D−1

1l ΦT (ξm, ηm)∂lNj(ξm, ηm)
]
· [f(ΦT (ξm, ηm))] | detDΦT (ξm, ηm)| .
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(d) Boundary estimates for isoparametric finite elements

At this point attention is returned to Assumptions 4.6 concerning the boundary approx-
imation used in the FE method. Lemma 5.2 below demonstrates why these assumptions
are fulfilled for the isoparametric elements under consideration. Prior to this, some well-
known results concerning inverse Sobolev inequalities, taken from Brenner and Scott [48],
are cited:

Lemma 5.1. Let ρh ≤ diam(T ) ≤ h, be the diameter of an element T with incircle radius
ρh where 0 < h ≤ 1, and P be a finite-dimensional subspace of W l

p(T ) ∩Wm
q (T ), where

1 ≤ p, q ≤ ∞ and 0 ≤ m ≤ l. Then there exists c = c(P̂, T̂ , l, p, q, ρ) such that for all
v ∈ P, we have:

‖v‖W l
p(T ) ≤ chm−l+n/p−n/q‖v‖Wm

q (T ) . (5.64)

Here, W l
p denotes the classical Sobolev spaces, cf. Definition B.9 in Appendix B, where

H l = W l
2. The above Lemma allows for the estimation of higher order Sobolev norms

against lower order norms with an appropriate h-dependent factor; a result that is needed
in the proof of the following estimates:

Lemma 5.2. Consider a Lagrangian isoparametric finite element space Ṽh ⊂ H1(T ) of the
form (5.56), (5.57) but with arbitrary polynomial order k. Let T denote the corresponding
triangulation with elements Ti ∈ T which approximates a given domain Ω ⊂ R2 such
that the boundary approximation ∂T of ∂Ω consists of transformed piece-wise k-th order
polynomial curves. Furthermore, define by u ∈ Vh elements of the product space:

Vh := {u ∈ Ṽ 4
h | B(x)u(x) = 0 for all x ∈ ∂T } ,

with one of the boundary operators given in (4.24), (4.25)2. Then there exist constants
h1 > 0 and c > 0 such that for all u ∈ Vh, 0 < h ≤ h1 holds:

‖Bu‖0,∂Ω ≤ ch(2k+1)/2‖u‖1,Ω , (5.65)

‖Bu‖1,∂Ω ≤ ch(2k−1)/2‖u‖1,Ω . (5.66)

If additionally u ∈ H2(Ω)4, then the norms ‖u‖1,Ω in (5.65) and (5.66) can alternatively
be replaced by h1/2‖u‖2,Ω.

Proof. Boundary integrals are estimated using a typical method for non-conforming FEs
[48] with the analysis confined to triangular elements, although a generalisation to quadri-
lateral elements is straight-forward. The essential analysis is performed in the reference

2Note, that by extension with the zero solution and restriction of u ∈ Vh to Ω, then without loss of
generality it also holds that u ∈ H1(Ω)4.
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y

x(0, 0)

Ωi

Ti

Ei

Γi

η

ξ

(0, h)

(h, 0)(0, 0)

Ω̂i = Φ−1
Ti

(Ωi)
T̂ = Φ−1

Ti
(Ti)

Ê Γ̂i

Φ−1
T

ΦT

Figure 5.8: Schematic of the transformation of an element (left) located at the boundary
to a reference domain (right) and vice versa. The curved element edge Ei is transformed
to the straight line Ê while the corresponding part of the exact boundary Γi is generally
transformed to the curve Γ̂i = Φ−1

Ti
(Γi).

domain and then transferred back to the computational domain; this requires the precise
assignment of different edge and domain quantities. Consider a boundary element Ti ∈ T
with its adjacent boundary edge Ei ⊂ ∂T , then the corresponding part of the exact do-
main is denoted by Ωi ⊂ Ω with boundary edge Γi ⊂ ∂Ω, cf. Fig. 5.8. An isoparametric
mapping Φ−1

Ti
: Ti → T̂ is used which transforms element Ti to reference element T̂ having

straight edges and corner points (0, 0), (h, 0) and (0, h) in the reference coordinate system
(ξ, η); the transformed quantities are denoted with a hat:

ΦTi(T̂ ) = Ti , ΦTi(Ω̂i) = Ωi ,

ΦTi(Ê) = Ei , ΦTi(Γ̂i) = Γi .

in which Ê can assumed to be the straight edge from the coordinate system origin to the
point (ξ, η) = (h, 0), without loss of generality. Furthermore Γ̂i can be parametrized as
(ξ, η(ξ)) for 0 ≤ ξ ≤ h with η(ξj) = 0 for k + 1 fixed points ξi ∈ [0, h]. A parametric
approximation of degree k gives:

|η(ξ)| ≤ chk+1 and |η′(ξ)| ≤ chk , (5.67)

for all ξ ∈ [0, h] due to the fact that η(ξ) can be interpreted as an interpolation error for
a polynomial of degree k and, similarly, η′(ξ) for a polynomial of degree k − 1, cf. [31].
Consider first the case of a homogeneous Dirichlet boundary condition, (4.24), with, for

instance, Bu(x) = (u1(x), u2(x)) = (0, 0) for all x ∈ ∂T . Here, it is sufficient to examine
one of the components v := ui and its transform v̂ = ΦTiv. A Taylor series expansion
leads to:

v̂(ξ, η(ξ)) =
k∑

l=1

∂
(l)
η v̂(ξ, 0)
l! ηl(ξ) , (5.68)
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in which the index l = 0 is skipped due to v(ξ, 0) = 0. Using expressions (5.67), (5.68) and
the inverse estimates (5.64) the following estimate is derived for an arbitrary transformed
boundary element Ti and a function v̂:

‖v̂‖20,Γ̂i =
ˆ

Γ̂i
|v̂(s)|2 ds =

ˆ h

0
v̂2(ξ, η(ξ))

√
1 + η′(ξ)2 dξ

≤ 2
ˆ h

0
v̂2(ξ, η(ξ)) dξ = 2

ˆ h

0

(
k∑

l=1

∂
(l)
η v̂(ξ, 0)
l! ηl(ξ)

)2

dξ

.
k∑

l=1
h2l(k+1)

ˆ h

0

[
∂(l)
η v̂(ξ, 0)

]2
dξ ≤

k∑

l=1
h2l(k+1)‖v̂‖2

l,Ê

.
k∑

l=1
h2(lk+1)‖v̂‖21,Ê ≤ kh

2(k+1)‖v̂‖21,Ê . h2k+1‖v̂‖21,T̂ . (5.69)

In arriving at the last line, (5.69), Lemma 5.1 has been used with p = q = 2 and m = 1,
l = 1, . . . , k. Moreover, in the very last inequality use is made of the norm equivalence
relations:

‖v‖0,T̂ h h‖v‖0,Ê , (5.70)

which hold for all v ∈ Vh due to scaling arguments and the fact that the considered space,
restricted to an element T̂ , is of finite dimension [48, 160]. Following the same argument:

‖v‖0,T̂ h ‖v‖0,Ω̂i , (5.71)

holds for all v ∈ Vh if T̂ is sufficiently close to Ω̂i such that it allows invertible mapping
between T̂ and Ω̂i.

The above result can be transferred from the reference to the computational domain
via the following inequalities with m = r = 1, cf. [29]:

‖v‖0,Γi ≤ c‖v̂‖0,Γ̂i , (5.72)

‖v̂‖m,Ω̂i ≤
∥∥det JΦTi

∥∥−1/2
L∞(Ω̂i)

∥∥JΦTi
∥∥m
L∞(Ω̂i)

m∑

r=0
‖v‖r,Ωi . (5.73)

Obviously Ω = ⋃Ωi holds, but note that a summation over all boundary edges gives
‖v‖0,∂Ω ≤ chk+1/2‖v‖1,ΩΓ involving the sub domain ΩΓ ⊂ Ω which includes only those
Ωi that meet the boundary at two points at least. Clearly, this directly implies the
desired result (5.65) for Dirichlet boundary conditions; if, however, the additional condition
v ∈ H2(Ω) is assumed, then the Poincaré-Friedrich inequality (B.10):

‖v‖1,ΩΓ ≤ s|v|2,ΩΓ ≤ s‖v‖2,Ω ,
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holds with s = |ΩΓ|1/2 = ch1/2 such that the term ‖u‖1,Ω in (5.65) and (5.66) can alter-
natively be replaced by h1/2‖u‖2,Ω.
Using the same arguments as above the following estimate is obtained:

ˆ
Γ̂i
|v̂′(s)|2 ds =

ˆ h

0

|v̂′(ξ, η(ξ))|2√
1 + η′(ξ)2 dξ ≤

ˆ h

0
|v̂′(ξ, η(ξ))|2 dξ

.
k−1∑

l=1
h2l(k+1)

ˆ h

0

[
∂(l)
η ∂ξ v̂(ξ, 0)

]2
dξ

≤
k−1∑

l=1
h2l(k+1)‖v̂‖2

l+1,Ê .
k−1∑

l=1
h2lk‖v̂‖21,Ê

≤ (k − 1)h2k‖v̂‖21,Ê . h2k−1‖v̂‖21,T̂ . h2k−1‖v̂‖21,Ω̂i ,

and therefore:

‖v̂‖21,Γ̂i .
ˆ

Γ̂i
|v̂(s)|2 + |v̂′(s)|2 ds . h2k−1‖v̂‖21,T̂ .

As before, the transformation estimate (5.73) and the equivalence relations (5.71) together
with a summation over all boundary edges gives ‖v‖1,∂Ω ≤ chk−1/2‖v‖1,ΩΓ . Thus the result
(5.66) for Dirichlet boundary conditions follows immediately and the additional estimate
for ‖ · ‖2,Ω follows by the same arguments as above. The corresponding results for the
remaining boundary operators (4.25) can be derived analogously; the proof of which is
omitted.

5.2 Conditioning of linear systems

It is desirable to determine bounds for the condition number of the system matrices that
arise, which is crucial for the assessment of possible linear solvers. For this purpose con-
siderations by Braess [44] are extended to the present case of Petrovskii systems. Consider
solutions u ∈ Uh of problem (5.4) with U , V replaced by the discrete Lagrangian finite
element spaces Uh, Vh as described in Sec. 5.1.3(a). For convenience a polygonal domain
Ω ⊂ R2 is assumed such that the boundary approximation is exact and only non-curved,
straight elements are involved in the triangulation; in this case the FE discretisation is
conforming. For a domain discretisation with N given grid points the functions of the
nodal basis vi are normed such that:

vi(zj) = h−1δij ,
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for i, j = 1, . . . , N involving the Kronecker delta. In order to describe the conditioning of
the resulting linear systems it is necessary to introduce discrete vector norms in contrast
to the above Sobolev norms. In the following, the Euclidean vector norm is denoted
by ‖x‖2e = (x, x)e := xTx for any x ∈ Rn. Whenever ‖u‖e or (u, u)e is written for a
function u = ∑4N

i=1 ciνi ∈ H1(Ω)4, then, u is identified with the nodal vector (c1, . . . , c4N )
corresponding to the basis {νi}i=1,...4N from (5.8), that is:

‖u‖2e :=
4∑

i=1

N∑

j=1
ui(zj)2 =

4N∑

i=1
c2
i .

This is reasonable since, with a h-independent constant c, the following holds:

c−1‖u‖e ≤ ‖u‖0,Ω ≤ c‖u‖e , (5.74)

and therefore the Euclidean norm is equivalent to the L2(Ω) norm.
In order to encapsulate the main idea in a brief and convenient way, further consideration

is subsequently restricted to the linear Stokes flow case, although they similarly carry over
to the non-linear one. Under the premise that FE quadrature is performed without error,
for a FE approximation u ∈ Uh the identity:

a(u, u) = (u,Au)e , (5.75)

is valid in which a(·, ·) denotes the bilinear form from (4.49), which in the proof of Corollary
4.10 has been shown to be elliptic, and A denotes the discrete system matrix of the resulting
linear system. Employing (5.74), (5.75) along with the inverse inequality [44]:

‖u‖1 ≤ ch−1‖u‖0 , (5.76)

and the continuity of the bilinear form a(·, ·) yields:

λmax = sup
u∈Uh

(u,Au)e
(u, u)e

. sup
u∈Uh

a(u, u)
‖u‖20

≤ sup
u∈Uh

β‖u‖21
‖u‖20

. sup
u∈Uh

h−2‖u‖20
‖u‖20

= h−2 , (5.77)

with a continuity constant β according to Definition 4.8. The simple relation ‖u‖1 ≥ ‖u‖0
and the coerciveness of the bilinear form leads to:

λmin = inf
u∈Uh

(u,Au)e
(u, u)e

& inf
u∈Uh

a(u, u)
‖u‖20

≥ inf
u∈Uh

α‖u‖21
‖u‖20

& inf
u∈Uh

‖u‖20
‖u‖20

= 1 ,

with a coerciveness constant α. Obviously the bounds for the eigenvalues identifiy the
condition of matrix A to be of magnitude λmax/λmin, that is cond(A) = O(h−2). This
estimate is sharp and the term h−2 in (5.77) is optimal which relies on the fact that the
inverse inequality (5.76) is sharp. Braess [44] shows that functions u ∈ Uh exist for which
(5.76) holds with an equality symbol.
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5.3 Numerical tests and validation

Certainly the condition number of a linear system is a relevant indicator of whether or
not the system is difficult to solve. Not only can the error propagation be characterised
by the condition number but also the convergence rate of an iterative solver, such as
conjugate gradient (CG), the use of which is essential for large and sparse systems, Saad
[211]. A growth rate of h−2 for the condition number for increasingly refined grids is
typical for elliptic systems of Petrovskii type in general and is also typical for standard
FE discretisations of the Stokes and Navier-Stokes equations; this is known for the Taylor-
Hood element in the primitive variable case or for equal order Lagrange elements in the
case of streamfunction-vorticity formulations [107]; so in this respect the method developed
here is at least competitive.
However, as iterative solvers are almost always complemented by a suitable form of pre-

conditioning, also the effort necessary to construct a reasonably exact inverse, for instance
by multigrid techniques, plays an important role. In this context it is easily shown, along
the lines of Bochev and Gunzburger [37], that the system matrix A is spectrally equivalent
to the block diagonal matrix D̂ = diag(D,D,D,D) with:

Dij = (vi, vj)1 .

Using (5.75) and the following similar relationship:

(ui, Dui)e = (ui, ui)1 ,

reveals, together with the continuity and coerciveness of a(·, ·), that:

c−1
4∑

i=1
(ui, Dui)e ≤ (u,Au)e ≤ c

4∑

i=1
(ui, Dui)e ,

which means that the condition number of D̂−1A is bounded from above by a constant
independent of the matrix size and therefore independent of h.

As an important consequence of these considerations, least-squares algebraic problems
for Petrovskii systems, including the one under consideration, can be preconditioned using
any good preconditioner for the Poisson equation; in this respect all the geometric and
algebraic multigrid methods, originally designed for Poisson-like equations, are directly
accessible.

5.3 Numerical tests and validation

In order to validate the above FE method expressed in terms of the velocities and two
potential fields a selection of test cases is considered which exhibit increasing complexity
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with regard to the geometry and boundary conditions: this involves singly and multiply-
connected domains with curved boundaries and sharp corners. Various combinations of
boundary conditions are explored; pure velocity and pure potential conditions as well as
different types of mixed conditions.
At first investigations are confined to Stokes flow, that is non-linear inertial effects are

neglected, the aim being to verify the predicted convergence rates reported in Sec. 4.3.3(a)
and (b). Full NS flow is then considered with special emphasis placed on the use of Newton
iteration which is expected to converge faster when compared to corresponding primitive
variable formulations, due to a reduction in the order of the non-linearity. Further aspects
include the influence of grid structure on the error and the analysis of mass conservation:
as the present least-squares approach assures mass conservation only globally and not
element-wise, convergence is achievable but only slowly on coarse grids; resulting in non-
physical results with streamlines ending at walls unless a minimum number of elements
is utilised. This problem is traditionally overcome by increasing the polynomial degree or
alternatively by weighting the least-squares functional and giving solution of the continuity
equation priority.

5.3.1 Linear test cases and results

(a) Laminar Taylor-Couette [TF] flow

The flow between two infinitely long concentric cylinders with radii R1 < R2 and rotating
at different angular velocities ω1, ω2 is considered, see Fig 5.9a. In terms of the two
constants:

a = R2
2ω2 −R2

1ω1
R2

2 −R2
1

, b = R2
1R

2
2(ω1 − ω2)
R2

2 −R2
1

,

the resulting velocity in polar coordinates (r, ϕ) is ur(r, ϕ) = 0, uϕ(r, ϕ) = ar+ b/r, while
in Cartesian coordinates, (x, y) with r2 = x2 + y2, it can be written as:

u1(x, y) = −uϕ
y

r
, φ1(x, y) = 2b y

r2 ,

u2(x, y) = uϕ
x

r
, φ2(x, y) = −2b x

r2 .

The following cases are explored:

[TF.1] R1 = 1, R2 = 2, ω1 = 1, and ω2 = 0 with least-squares weighting omitted, that
is wj = 1 for j = 1, . . . , 4. Linear basis functions on 3-point triangular Lagrange
elements are used and pure velocity Dirichlet boundary conditions specified; in
order to obtain a uniquely solvable system necessary constraints are prescribed
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for the potential variables:




u1,h(p) = u1(p) for p ∈ ∂Ω ,

u2,h(p) = u2(p) for p ∈ ∂Ω ,

φ1,h(p) = 0 for p ∈ {(−1, 0); (2, 0)} ,
φ2,h(−1, 0) = 0 .

Initially, a simply connected domain is considered which is achieved by additionally
specifying the solution along an arbitrary cross section.

[TF.2] The same configuration as TF.1 but using quadratic polynomial basis functions
on 6-point Lagrange triangles. Here, in addition, the curved boundary is approx-
imated by piecewise quadratic edges.

[TF.3] The same configurations as in TF.1 and TF.2 but now considering the full Taylor-
Couette problem in a multiply-connected domain.

(a)

x

y

u

ϕ

r

ω1

(b)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 5.9: (a) Taylor-Couette flow between two concentric circles with different angular
velocity [TF]. (b) Streamlines for Colliding flow [CF] in the interval [−1, 1].

The results obtained for cases TF.1-TF.3 are provided in tabular form in Appendix
C.1 and displayed graphically in Figures 5.10-5.12. Fig. 5.10 shows convergence results
for both test case TF.1 and TF.2. Both tests were carried out with equal least-squares
weighting of the four partial differential equations and calculated on approximately ho-
mogeneous increasingly refined grids, with grid width parameter h. The graphs show the
global error versus the reciprocal of h, using logarithmic scales, in which according to
Table C.1 the finest grid corresponds to approximately 250 thousand grid points and 1
million variables. The error is measured using three different norms: the energy norm
‖u‖a =

√
a(u, u), which according to Corollary 4.10 is equivalent to the H1(Ω) norm, the

L2(Ω) norm and the maximum norm. For linear FEs the error scales linearly, i.e. O(h), in
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Figure 5.10: Convergence results for test case TF.1 (left) and TF.2 (right) showing global
errors in terms of the energy, the L2(Ω), and the maximum norm.
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Figure 5.11: Variable-wise convergence results for test case TF.1 (top row) and TF.2
(bottom row) with errors displayed in term of the L2(Ω) (left) and the maximum (right)
norm.
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the H1-norm and quadratically, i.e. O(h2), in the L2-norm; the maximum norm behaves
similar to the L2-norm, as expected. For quadratic elements the exponents increase by
one, leading to quadratic and cubic scalings, respectively. In summary, the errors behave
precisely as predicted theoretically by Theorems 4.12 and 4.14, thus providing numerical
verification for the optimal error theory from Chapter 4.

Fig. 5.11 shows convergence results for TF.1 and TF.2, this time for the individual
variables u1, u2 and φ1, φ2. Those in the left column corresponds to L2 error measurements
and those in the right column to maximum error measurements. The scalings once again
turn out to be optimal, as expected; although for the velocity components, in the case of
linear FEs, is dependent on the degree of mesh refinement. The full multiply connected
case, TF.3, exhibits no qualitative differences. The global error scaling displayed in Fig.
5.12 are compatible to those in Fig. 5.10.
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Figure 5.12: Convergence results for test case TF.3 using linear (left) and quadratic
(right) basis functions, showing global errors in terms of the energy, L2(Ω), and the max-
imum norm.

(b) Colliding flow [CF]

Colliding Stokes flow with an exterior force f = 0 is considered on the unit square [0, 1]2,
see Fig. 5.9b: 




u1(x, y) = 20xy3 ,

u2(x, y) = 5(x4 − y4) ,

φ1(x, y) = −20(x3y + xy3) ,

φ2(x, y) = −30x2y2 + 15y4 − 5x4 ,

(5.78)

when either pure velocity or potential Dirichlet boundary conditions or three variants of
mixed conditions are prescribed:
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[CF.1] Quadratic basis functions and 6-point triangular Lagrange FEs are used with no
least-squares weighting applied to the equations. Pure velocity Dirichlet boundary
conditions are specified and in order to obtain a uniquely solvable system the
following constraints are prescribed for the potential variables:





u1,h(p) = u1(p) for p ∈ ∂Ω ,

u2,h(p) = u2(p) for p ∈ ∂Ω ,

φ1,h(p) = 0 for p ∈ {(0, 0); (1, 1)} ,
φ2,h(0, 0) = 0 .

The case of pure potential Dirichlet boundary conditions can be handled analo-
gously leading to nearly identical results and is therefore omitted.

[CF.2] Using the same quadratic basis functions as in CF.1, a combination of velocity
and potential Dirichlet boundary conditions are prescribed such that for x ∈ [0, 1],
y ∈ (0, 1): 




u1,h(x, 0) = u1(x, 0) , u1,h(0, y) = u1(0, y)

u2,h(x, 0) = u2(x, 0) , u2,h(0, y) = u2(0, y)

φ1,h(x, 1) = φ1(x, 1) , φ1,h(1, y) = φ1(1, y)

φ2,h(x, 1) = φ2(x, 1) , φ2,h(1, y) = φ2(1, y) .

[CF.3] Using the same quadratic basis functions as in CF.1 and CF.2, a combination of
velocity and potential Dirichlet boundary conditions are prescribed such that for
x ∈ [0, 1], y ∈ (0, 1):





u1,h(x, 0) = u1(x, 0) , u1,h(x, 1) = u1(x, 1) ,

u2,h(x, 0) = u2(x, 0) , u2,h(x, 1) = u2(x, 1) ,

φ1,h(0, y) = Φ1(0, y) , φ1,h(1, y) = φ1(1, y) ,

φ2,h(0, y) = Φ2(0, y) , φ2,h(1, y) = φ2(1, y) .

[CF.4] Using the same quadratic basis functions as above, a combination of velocity and
potential Dirichlet boundary conditions are prescribed such that for x ∈ [0, 1],
y ∈ (0, 1): 




u2,h(x, 0) = u2(x, 0) , u2,h(x, 1) = u2(x, 1) ,

φ1,h(x, 0) = φ1(x, 0) , φ1,h(x, 1) = φ1(x, 1) ,

u1,h(0, y) = u1(0, y) , u1,h(1, y) = u1(1, y) ,

φ2,h(0, y) = φ2(0, y) , φ2,h(1, y) = φ2(1, y) .
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Figure 5.13: Convergence results for CF.1 - CF.4 solved on an unstructured grid (left);
the discrete 2-norm condition numbers of the resulting system matrices (right).

The impact of different types of boundary conditions on the convergence behaviour
and also on the condition number of the system matrices is explored. In contrast to the
Taylor-Couette flow the present set-up exhibits additional complications imposed by the
four irregular boundary corner points. These points not only exhibit sharp geometric
corners with 90◦ angles, they are also contact points for different boundary conditions: In
case CF.1 there are no contact points since only velocity conditions are prescribed. Cases
CF.2 and CF.3 exhibit 2 and 4 contact points, respectively, but on each edge either both
velocity components or both potential components are prescribed; such a combination of
boundary conditions is, for instance, typical for free surface problems as described in Sec.
5.1.2 with the difference that in the example of periodic film flow the free surface does not
come into contact with the rigid wall. The last case CF.4 is the most complex, since here
again 4 contact points occur and on each of the edges different combinations of u and φ
components are prescribed; such boundary conditions may be physically relevant when an
outflow is present, as in the case of the backward-facing step problem investigated below.

Once again a sequence of homogeneous and increasingly refined grids with mesh width
parameters h is utilised, with corresponding results provided in tabular form in Appendix
C.2 and displayed graphically in Fig. 5.13. The left-hand plot demonstrates that optimal
error reduction, proportional to h3, is achieved in all four test cases independent of the
imposition of irregular points. This is not unexpected as the convergence rates from The-
orem 4.14 are in principle valid also for irregular domains as long as a H3(Ω) solution can
be guaranteed (when using 2nd-order polynomials) which is obviously true as prescribed
by (5.78).
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The right-hand plot of Fig. 5.13 displays the 2-norm condition number of the resulting
linear system versus the reciprocal of the mesh width parameter h, both using a logarithmic
scale. The condition numbers for cases CF.1-CF.3 are obviously bounded by ch−2 and
thus verify the considerations of Sec. 5.2; however, the case CF.4 with mixed component
boundary conditions appears to scale with h−4 indicating the linear system is significantly
more difficult to solve with standard iterative solvers.

(c) Flow past a backward-facing step [BS]

In order to investigate the issue of mass conservation for the least-squares first integral
method mentioned in Sec. 5.1.1, the benchmark test case of flow past a backward-facing
step, see Fig. 5.14, is explored; the lower and upper walls are rigid, while on the left-hand
side there is an inflow prescribed in the form of a Poiseuille profile. The outflow boundary
conditions on the right is handled naturally by prescription of the components u2 and φ2

as defined in the following boundary value problem:




u1,h(0, y) = 2y(1− y) for y ∈ (0, 1) ,

u1,h(p) = 0 for p ∈ {(x, y) ∈ ∂Ω | 0 < x < 5} ,
u2,h(p) = 0 for p ∈ ∂Ω ,

φ1,h(5,−1) = 0 ,

φ2,h(5, y) = 0 for y ∈ (−1, 1) .

0 1 2 3 4 5
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1

0 1 2 3 4 5

−1

0

1

Figure 5.14: Flow geometry and streamlines (left) for the backward-facing step problem
and a typical unstructured triangular grid with local refinement at the relevant corners
(right).

The following alternatives are considered, including various combinations of them: (1)
a homogeneous grid structure with a constant mesh width parameter or a locally refined
mesh, as illustrated in Fig. 5.14, is employed, both have approximately the same number
of grid points; (2) two weighting variants are tested, either w = (1, 1, 1, 1) corresponding
to an equal weighting or w = (1, 1, 100, 1) corresponding to an overweight of the continuity
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equation by a factor of 100; (3) as in the earlier studies both linear and quadratic elements
are tested.
Fig. 5.15 shows the loss in volume flow compared to the specified inflow measured at

a finite number of 50 equidistant cross sections x = c ∈ [0, 5], with the maximum value
being identified, termed the maximum loss of volume flow and measured as a percentage.
The maximum loss is calculated for increasingly refined grids and displayed versus the
number of grid points np using logarithmic scales. The left and right-hand plots of Fig.
5.15 show results for linear and quadratic elements; for both element types the two grid
types and weighting variants lead to four possible scenarios.

It is observed that very coarse grids in combination with linear elements result in a
massive and unacceptable loss of volume flow rendering the solutions effectively useless.
Local mesh refinement leads to a slight improvement only, while an overweight of the
continuity equation shows a significant improvement. Of course, with increasingly refined
grids the FE approximation converges to the exact solution but requires in excess of 100
grid points to push the mass loss below 20% which is still unacceptable.
The situation changes with quadratic elements; the right-hand plot of Fig. 5.15 demon-

strates that a combination of higher order elements (at least quadratic), strong weighting
and local mesh refinement is sufficient to control the mass loss problem to an acceptable
degree. The huge difference between the worst case, unweighted linear, and the best case,
weighted quadratic, is exemplified in Table 5.1 for different numbers of grid points. In the
worst case the mass loss for a mesh with 149/150 grid points is about 78% and in the best
case only 0.17%. However, as is often the case a strong weighting of one of the equations
comes at a price, namely that the positive definite least-squares problem is shifted towards
a constrained (saddle point) problem identified by higher condition numbers. This is why
weighting has to be applied with care and requires experience; in the present investigation
weighting factors between 102 and 104 proved optimal.

np linear, w = 0 np quadratic, w = 1000
149 −77.83 150 −0.1662
332 −63.66 331 −0.1032
851 −43.16 855 −0.0223
4167 −17.86 4116 −0.0105
23323 −6.87 23891 −0.0067

Table 5.1: Maximum loss of volume flow as a function of number of grid points: the worst
and best cases being linear FEs on a homogeneous grid without least-squares weighting
and quadratic FEs on a locally refined mesh with weighting, w = 1000, respectively.
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Figure 5.15: Maximum loss in volume flow measured over all possible cross sections and
for increasingly refined grids; in the case of linear FEs (left) and quadratic FEs (right).
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Figure 5.16: The loss of volume flow calculated for each cross-section along the x-axis
for x ∈ (0, 5) and for the cases specified: with linear FEs (left) and quadratic FEs (right).

Finally Fig. 5.16 shows the mass loss continuously distributed over all cross sections on
the x-axis, for linear and quadratic elements in the left and right-hand plot, respectively.
In the linear case the mass loss grows continuously with distance from the inflow but this
is not the case when quadratic elements are used and in which case the maximum loss
occurs just to the right of the step down. In both cases three variants are displayed: firstly,
for a relatively coarse grid without weighting; secondly, for a coarse grid with a weighting
factor of 100 for the continuity equation; thirdly, in the case of a significantly refined mesh
without weighting. This demonstrates, for example in the quadratic element case, that
without weighting about 700 grid points are necessary to achieve the same accuracy of
mass conservation which, with weighting, is already achieved with only 40 grid points.
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5.3.2 Non-linear test cases and results

As a last step and for completeness the performance of the full non-linear NS solver is
investigated using the well-known lid-driven cavity problem as a test case, solved on the
unit square [0, 1]2 with the usual velocity boundary conditions as indicated in the top-left
plot of Fig. 5.17; the streamlines shown correspond to the symmetric Stokes flow case,
Re = 0.

u1 = u2 = 0
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u2 = 0
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Figure 5.17: Problem set-up and streamlines (Re = 0) for the 2D Lid-driven cavity
problem (top-left); convergence of the Newton method for the LSFEM (blue) and Taylor-
Hood mixed Galerkin FEM (red) for three different Reynolds numbers (top-right); u1-
velocity along the axis x = 1/2 and u2-velocity along the axis y = 1/2 for Re = 1000
(bottom-left) – the red lines are calculated with the LSFEM and compared to the black
crosses obtained by Erturk et al. [90]; the maximum error displayed against the reciprocal
of the mesh width parameter h using logarithmic scales (bottom right) – the convergence
curves can be compared to the straight lines which are proportional to h and h2.
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In the top right-hand plot of Fig. 5.17 the decay of the absolute residuals in the course of
the Newton iteration are shown for three different Reynolds numbers, Re = 200, 400 and
600. The blue lines correspond to the LSFEM and the red lines to a Taylor-Hood discreti-
sation of the primitive variable formulation, see Sec. C.3 of Appendix C. The calculations
were performed using an unstructured, corner-refined grid comprised of approximately
30,000 nodes and 15,000 triangular elements for the quadratic basis functions. Here and
in subsequent calculations a least-squares weighting was chosen with w = [1, 1, 104, 104].
Both approaches lead to a comparable number of Newton iterations to reduce the abso-
lute residual beyond a specified threshold of 10−7. It is observed that the convergence
behaviour of the mixed FEM is somewhat more uniform: after starting off slowly the
length of which increases with increasing Re, a phase of fast quadratic convergence is
reached. In contrast, the LSFEM associated with the first integral reaches a subsequent
third phase of slower convergence towards the end; showing that the reduced non-linearity
of the first integral formulation does not exhibit any advantage over a standard one for
moderate Reynolds numbers of a few hundred. However, it should be noted that the radius
of convergence of the LSFEM is slightly larger: Even for Re = 600 it can be seen that the
latter reaches a point of faster convergence earlier and this trend is reinforced for higher
Reynolds numbers, delaying – compared to the mixed FEM – the onset of divergence. The
standard remedy for this for highly convection dominated flows is to employ a Reynolds
number stepping methodology.

Consider now the bottom-left plot in Fig. 5.17 which displays the u1-velocity along the
axis x = 1/2 and the u2-velocity along the axis y = 1/2 for the case Re = 1000. The
red lines are calculated with the LSFEM and a grid width parameter of h = 1/100 with
additional corner mesh refinement leading to approximately 36,000 elements and 72,000
nodes. These are compared with the black crosses obtained by Erturk et al. [90] using a
high-order FD scheme on a uniform regular grid containing 601× 601 points. The two are
seen to be in very good qualitative agreement. This agreement is captured in more detail
in the bottom-right plot of Fig. 5.17, where the error is displayed versus the reciprocal
of the mesh width parameter h, using logarithmic scales, for which the number of grid
points varies between approximately 3700 and 161,000. The error in the maximum norm
is approximated by taking the maximum absolute deviation from the solution by Erturk
et al. [90]. Two cases are shown: the convergence of LSFEM with and without local mesh
refinement (MR) at the corners; the convergence curves can be compared to the straight
lines which have been included and are proportional to h and h2. Obviously convergence
without local MR starts approximately quadratically and approaches a linear asymptote
only, while convergence with local MR is able to restore the optimal cubic convergence
after starting off slowly. Note, that the maximum norm also represents an upper bound
for the L2-norm.
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Figure 5.18: Streamline plots for the 2D Lid-driven cavity problem and Reynolds num-
bers Re = 400 (top-left), 1000 (top-right), 2500 (bottom-left), 5000 (bottom-right) ob-
tained via the LSFEM.

A nearly optimal convergence rate for the lid-driven cavity problem is rather unexpected
in the light of the results of Sec. 4.3.4. The 90◦-corners at the bottom of the domain pose
no problems as the boundary data is otherwise smooth; here, the solution is even locally
in H3, cf. Fig. 4.1, which is the necessary requirement for optimal convergence of second-
order Lagrange elements. However, the u1 velocity component exhibits discontinuities
at both upper corners locally leading to a further decrease of regularity. Recapitulating
the considerations in Appendix B.4, the transcendental equation (B.77) characterises the
solutions of the homogeneous boundary-value problem, but in the present example the sin-
gularity is to leading order determined by the particular solution of the non-homogeneous
problem in the vicinity of the corner. Corresponding calculations of the particular Stokes
solution, which are in accord with Luchini [166], result in u1(r, ϕ) = f(ϕ) in polar coor-
dinates only depending on the angle but not on the radius. In Cartesian coordinates this
leads to a gradient ∇(x,y)u1 /∈ L2 which goes to infinity and is not square-integrable; thus
the local solution is characterised by u ∈ H1

β 6⊂ H1 for some β > 0. Although the present
H1 discretisation is non-conforming in this respect – unless modifications are performed
as in [136, 157] – a strong mesh refinement seems to be able to recover more or less the
complete convergence loss.
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For illustration purposes Fig. 5.18 shows streamlines for the 2D Lid-driven cavity prob-
lem for Reynolds numbers of Re = 400, 1000, 2500, 5000. The computations were per-
formed with least-squares weighting and Newton iteration and stopped when the corre-
sponding residual reached a threshold of 10−8. The LSFEM was employed with quadratic
basis functions and a corner-refined unstructured grid having approximately 200,000 nodes
and correspondingly 100,000 elements; this would be equivalent to a uniform 450 × 450
mesh. The resulting linear systems involved roughly 800,000 unknowns and a matrix with
approximately 35 million non-zero entries. The streamline plots shown are in excellent
agreement with corresponding investigations in the literature, see [90].

5.4 Algebraic multigrid

Multigrid methods, geometric (GMG) and algebraic (AMG), essentially rely on two ba-
sic principles: smoothing and coarse-grid correction [119, 259]. The former exploits the
observation that classical relaxation techniques, for instance Jacobi or Gauss-Seidel (GS)
procedures, exert a strong smoothing effect on the error, efficiently reducing high fre-
quency error components. While low frequency error components are reduced much more
slowly, according to the coarse-grid principle they can be well approximated on coarser
grids; here, fine grid low frequency errors become higher frequency ones and can be more
easily reduced by classical relaxation methods. By a suitable combination of smoothing
and coarse-grid correction a recursively applicable scheme is achieved capable of efficiently
reducing error components of all frequencies. In principle by smart tuning of the multigrid
parameters, an asymptotically optimal method is possible allowing for a computing effort
which, in contrast to most conventional methods, increases linearly with the number of
unknowns.
In contrast to GMG methods, AMG only utilises information given by the system ma-

trix and consequently is less problem specific and applicable in a broader context. AMG
is particularly well suited to problems involving complex and unstructured grid systems.
Certainly, the spirit behind this development is the desire to provide multigrid perfor-
mance in an intelligent black box like setting without any need for problem-dependent
adaptation and tuning; an objective far from being realised at the present time. AMG
utilises the fact that all information about the grid and the variable coupling is essentially
included in the system matrix. Thus a matrix-based method can be constructed that is
not founded on grids, partial grids and nodes but on sets of variables, subsets of these
and single variables. Without knowledge of the geometry the system is interpreted as an
adjacency matrix, apropos graph/network theory, and the variables as its nodes. Against
this background a recursive scheme of smoothing and coarse-grid correction is established
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similar to GMG. AMG was introduced in the 1980s for the solution of scalar elliptic PDEs
[45, 46, 56, 210, 242, 259] and has been continuously developed resulting in variants such
as aggregative AMG, smoothed aggregation (SA) [51, 242, 263], extensions to PDE sys-
tems [65] and in customised versions for FE applications (AMGe) [50, 126]. Moreover,
intelligent adaptive mechanisms [51, 52, 66, 67] have been devised and efficient parallel
implementations constructed [93, 152, 212].
In the present work the classical ideas of scalar elliptic AMG [45, 46, 210, 242] are

adopted to solve linear systems resulting from the LSFEM described above. To what
extent this is possible forms part of the investigation, i.e., how close the corresponding
linear systems fit into the class of so-called M-matrices, that classical convergence analysis
relies on. Clearly the desired objective is the construction of an efficient and, at the same
time, flexible PDE algebraic multigrid procedure which easily deals with unstructured
grids, with different types and combinations of FEs, which exploits the beneficial positive
definiteness of the linear systems and at best exhibits a linearly increasing computational
effort with regard to the number of variables. The AMG strategy illustrated in Sec.
5.4.1 – 5.4.2 is confined to a scalar and serial algorithm and is substantially based on
the well-established monograph by Stüben [242], which also served as a starting point
for the Matlab implementation in Sec. 5.4.4. Extension to PDE strategies in Sec. 5.4.3,
particularly the so-called unknown-based AMG, relies on the work of Clees [65].

5.4.1 Scalar AMG: basic ideas

Before focussing on specific components of AMG a short but sufficiently detailed overview
of the method is provided together with introduction of the necessary underpinning nota-
tion. For the sake of clarity the description is initially restricted to a two-level MG cycle
(Sec. 5.4.1(a)) using geometrically motivated notation, i.e., the index h indicates the fine
level and H the coarse level; subsequently in Sec. 5.4.1(b) the full V-cycle and its variants
are specified.

(a) Two-level cycle

A large and sparse linear system of the form:

Ahu
h = fh or

∑

j∈Ωh
ahiju

h
j = fhi (i ∈ Ωh) , (5.79)

is to be solved without any knowledge of the associated geometric information. Let Ah ∈
Rn×n and uh, fh ∈ Rn denote the system matrix, solution and the right-hand side on the
fine level with Ah assumed to be symmetric and positive definite; Ωh denotes the index
set {1, 2, ..., n} of all fine level variables.
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The AMG is based on the interplay between smoothing and coarse-level correction;
however, in a pure algebraic context smoothness has to be suitably redefined without
reference to grids, see Sec. C.4.1 of Appendix C. For now, assume a linear smoothing
operator Sh : Rn → Rn to exist which smooths the error in a “reasonable” algebraic
sense. Let uh? denote the exact solution of the linear system (5.79) on the fine level and
uh and ūh the current approximation before and after one smoothing step, respectively;
the corresponding errors are eh = uh? − uh and ēh = uh? − ūh. Assuming that ēh (= She

h),
compared to eh, is algebraically smoothed, a smoothing step uh → ūh with corresponding
error smoothing eh → ēh is given by:

ūh = Shu
h + (Ih − Sh)A−1

h fh , (5.80)

ēh = She
h . (5.81)

Typical smoothers are linear iterative solvers such as the Jacobi, GS or successive over-
relaxation (SOR) schemes, sometimes more expensive solvers based on a an incomplete
lower-upper (ILU) decomposition are applied [119, 211, 259]; however, most of these meth-
ods can be represented by means of a defect correction of the form:

Sh := Ih −B−1
h Ah , (5.82)

in which Bh defines a reasonably good approximation to Ah such that Bh is comparatively
easy to invert and the inverse B−1

h remains sufficiently sparse. The simplest variants are
obtained for Bh equal to the diagonal part or the lower/upper triangular part of Ah which
leads to the Jacobi and the GS-smoothers. Using definition (5.82) transforms equation
(5.80) into the form:

ūh = uh +B−1
h (fh −Ahuh) ,

which will be used later.

If uh is the current approximation after smoothing with corresponding residual rh =
fh −Ahuh, the error components that could not be reduced by algebraic smoothing have
to be handled via coarse-grid correction, as illustrated in Fig. 5.19. Thus the system
of equations for the error, namely Ahe

h = rh, is approximated on a coarser level, the
construction of which requires an algorithm that splits the total index set Ωh into two
disjoint subsets, Ωh = Ch ∪ F h, in which case the sets Ch = ΩH and F h include the
variable indices only existing on the coarse and fine levels, respectively. The coarsening
procedure should follow the direction of algebraic smoothness, see Sec. C.4.2.

In the following a splitting of the index set into C- and F-variables is assumed to be
given with nc = |Ch| = |ΩH | < n denoting the number of coarse level variables; then
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(a) (b) (c)

Figure 5.19: An illustration of error evolution in the course of an AMG: (a) the initial
error, (b) the error after smoothing and (c) approximation of the smoothed error on a
coarser grid.

appropriate transfer operators are required allowing movement between the levels, see
Sec. C.4.3. IHh : Rn → Rnc and IhH : Rnc → Rn denote the linear restriction and
interpolation operators mapping fine level vectors to coarse level vectors and vice versa;
these operators can be represented by matrices IHh ∈ Rnc×n and IhH ∈ Rn×nc which are
subsequently assumed to be of full column and row rank, respectively. Moreover, for
symmetry reasons the restriction operator is always assumed to equal the transpose of the
interpolation operator, that is IHh = (IhH)T .

The linear system for the error on the coarse level will be of the form:

AHe
H = rH or

∑

l∈ΩH
aHkle

H
l = rHk (k ∈ ΩH)

with AH ∈ Rnc×nc and eH , rH ∈ Rnc , respectively, and is constructed in accordance
with the Galerkin principle [242]. The residual vector on the coarse level is obtained by
restriction of the corresponding fine level vector and the Galerkin matrix AH is constructed
by means of the fine level matrix Ah and the transfer operator, i.e.,

rH := IHh r
h = (IhH)T rh ,

AH := IHh AhI
h
H = (IhH)TAhIhH .

At the coarse-grid level the linear system can be solved with considerably less effort
and the associated solution eH interpolated back to the fine level to correct the former
approximate solution uhold. A two-level correction step leading from uhold with error ehold to
a new approximation uhnew with error ehnew can be written as:

uhnew = uhold + IhHe
H involving AHe

H = IHh (rhold) = IHh (fh −Ahuhold) , (5.83)

ehnew = Kh,He
h
old with Kh,H := Ih − IhHA−1

H IHh Ah . (5.84)

Kh,H denotes the so-called coarse-grid correction operator. The error reduction of a com-

179



5 Implementation and solution of linear systems

uh
old rh = fh −Ahuh

old uh
new = uh

old + eh

AHeH = rH

uh
old ← ūh

old

rH = (Ih
H)T rh eh = Ih

HeH

uh
new ← ūh

new

Figure 5.20: Schematic of a two-level cycle involving pre-smoothing, coarse-grid correc-
tion and post-smoothing.

plete two-level cycle consisting of ν1 pre-smoothing steps, a coarse-grid correction step
and ν2 post-smoothing steps, as illustrated schematically in Fig. 5.20, is characterized by
the following two-level iteration operator Mh,H :

ehnew = Mh,He
h
old with Mh,H(ν1, ν2) = Sν2

h Kh,HS
ν1
h .

(b) V-cycle and more complex variants

When applied recursively the above gives rise to the so-called V-cycle, Algorithm 3, which
is comprised essentially of a setup (Algorithm 4) and a cycle (Algorithm 5) phase. In
the setup phase, based on the initial system matrix A, recursively coarsened levels k =
1, 2, . . . ,M are defined with corresponding variable index sets Ω1 ⊃ Ω2 ⊃ · · · ⊃ ΩM and
corresponding sets for coarse and fine level variables Ωk = Ck ∪ F k, k = 1, 2, . . . ,M − 1.
If the maximum number of variables of the linear system falls below a pre-estimated
value, the coarsening process stops. For each new level k = 2, 3, . . . ,M the interpolation
matrix Ik−1

k and the Galerkin operator Ak are calculated and additionally a smoothing
operator Sk is determined. All this information is calculated and saved only once and then
iteratively utilised in the cycle phase.

Algorithm 3 Classical AMG method
1: procedure u = AMG(A, f , u, n)
2: SETUP(A, n).
3: Set r := f −Au.
4: while ‖r‖ > ε do
5: e := CYCLING(r, 1).
6: Set u := u+ e.
7: end while
8: return u.
9: end procedure
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Algorithm 4 AMG Setup
1: procedure SETUP(A, n)
2: Set k := 1.
3: Set Ak := A.
4: Set Ωk := {1, 2, . . . , n}.
5: repeat
6: [Ck, F k] := SPLITTING(Ak, Ωk).
7: (Split Ωk into two disjoint subsets Ωk = Ck ∪ F k).
8: Set Ωk+1 := Ck.
9: Ikk+1 := INTERPOL(Ak, Ck, F k).

10: (Compute interpolation matrix Ikk+1).
11: Compute Galerkin operator Ak+1 := (Ikk+1)TAkIkk+1.
12: Define smoothing operator Sk involving the approximation Bk ≈ Ak.
13: Set k := k + 1.
14: until |Ωk| small enough.
15: Set M := k.
16: Save setup data in module DATA:
17: Iii+1 (i = 1, . . . ,M − 1), Ai (i = 1, . . . ,M), M .
18: end procedure

Algorithm 5 AMG V-cycle
1: procedure uk = CYCLING(fk, k)
2: Load module DATA.
3: if k = M then
4: Solve AMuM = fM by a direct solver.
5: else
6: Set uk := B−1

k fk.
7: for i = 1, . . . , ν1 do
8: Set uk := uk +B−1

k (fk −Akuk).
9: end for

10: (Apply ν1 times the smoothing operator Sk := Ik −B−1
k Ak).

11: Execute coarse level correction:
12: Set rk+1 := (Ikk+1)T (fk −Akuk).
13: ek+1 := CYCLING(rk+1, k + 1).
14: Interpolate and correct uk := uk + Ikk+1e

k+1.
15: for i = 1, . . . , ν2 do
16: Set uk := uk +B−Tk (fk −Akuk).
17: end for
18: (Apply ν2 times the smoothing operator Sk := Ik −B−Tk Ak).
19: end if
20: return uk.
21: end procedure
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(a)

3 × 3

6 × 6

12 × 12

Restriction
Interpolation

(b)

(c) (d)

Figure 5.21: Schematic of different multigrid cycling strategies: (a) illustrates restriction
(red arrows) and interpolation (green arrows) between three different grid hierarchies using
structured Cartesian refinement; (b) recursive W-cycle; (c) V-cycle; (d) a symmetrised full
multigrid cycle (F-cycle), half of which forms the classical full multigrid cycle.

The cycling process continues until the residual norm reaches a specified threshold value
ε. Every cycle is initialised by a right-hand side f , and the level index k; the remaining
data is obtained from the setup phase. One cycle consists of ν1 pre-smoothing steps, a
coarse-grid correction step and ν2 post-smoothing steps in which the smoothing, according
to lines 8 and 16 of Algorithm 5, is performed in a symmetric manner. As a coarse-grid
solver the cycle procedure is called until the coarsest level M is reached at which point
the system is solved directly by Gaussian elimination. The computed error is interpolated
onto the finest level and used there to correct the approximate solution.

A detailed descritpion of the above essential multigrid components is provided in Ap-
pendix C.4. In brief, Sec. C.4.1 considers algebraic smoothing followd by the setup phase
for an appropriate coarsening procedure and a construction formula for the interpola-
tion operators in Sec. C.4.2 and C.4.3; these components have to be chosen in a way
that guarantees an efficient interplay between smoothing and coarse-grid correction and
thus guarantee convergence of the iteration. Furthermore, splitting and transfer operators
should be chosen such that the dimension of the Galerkin operator is sufficiently reduced
while preserving a reasonable sparse structure. The convergence of the V-cycle can be
improved by more elaborate and simultaneously expensive variants such as W or F type
cycles [242], cf. Fig. 5.21, which normally do not pay off for pure scalar elliptic problems,
but may pay off in the PDE case. In contrast the “acceleration” of AMG by an iterative
solver or, in other words, the preconditioning of such an iterative solver by AMG, is nearly
always worthwhile.
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5.4.2 AMG as a preconditioner

In order to improve robustness, multigrid methods are rarely used as stand-alone solvers
but in practice are frequently combined with so-called accelerators, namely standard itera-
tive Krylov solvers such as the conjugate gradient (CG) method, its biconjugate stabilised
variant (BiCGstab) or the generalised minimal residual method (GMRES) [211, 242]. This
development was prompted by the experience that an acceleration approach is both sim-
pler and more efficient compared to the elaborate optimisation of the numerous multigrid
components.

This is also true for AMG. Research has demonstrated that AMG works as an excellent
preconditioner, much better than for instance one-level methods of an ILU type; the main
reason being that AMG, in contrast to one-level methods, efficiently acts on all error
components, the high as well as the low frequency error components. Nevertheless, it can
be beneficial to limit the cost of the setup phase in favour of appropriate acceleration.
Of course one wants to “transport” the most important information between levels by
optimising coarsening and interpolation but this will always remain a heuristic process and
it is commonly found that error reduction efficiency is compromised for a few components
of the error. In fact, a few eigenvalues of the AMG iteration matrix may be located
significantly closer to 1 than the rest and consequently the convergence factor will be
limited by the slow convergence of these specific components. Such components can be
quickly reduced by an acceleration procedure, an exemplar of which is preconditioned CG
[43, 237].

Denote the input error and the error after the i-th iteration step by e0 and ei; further-
more let σ(A) denote the set of all eigenvalues of a matrix A and ‖.‖1 the energy norm.
Define the set of all polynomials of order i by Pi, with Pi(0) = 1. Then under the assump-
tion of a symmetric positive definite system matrix the CG method admits the following
error estimate in the i-th iteration step [43]:

‖ei‖21 ≤ min
Pi

max
λ∈σ(A)

[Pi(λ)]2‖e0‖21 .

As a consequence, CG solves a system with only k different eigenvalues in k iteration
steps and in general the convergence speed improves for systems for which eigenvalues
are strongly concentrated in few areas in comparison to systems which exhibit a homo-
geneous distribution of eigenvalues in the interval [λmin, λmax]. Normally, AMG methods
efficiently reduce most of the error components apart from a few corresponding to al-
gebraically smooth eigenvectors; thus the eigenvalues of the preconditioned system are
strongly concentrated around 1 with few very small eigenvalues remaining near zero. In
the case of nc remaining eigenvalue clusters, the error associated with a CG-accelerated
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AMG method is extremely small after just nc iteration steps. Algorithm 6 illustrates the
general procedure forming a CG-accelerated AMG.

Algorithm 6 AMG preconditioned CG method
1: procedure u = PCG(A, f , u, n)
2: SETUP(A, n).
3: r := f −Au.
4: d = h := CYCLING(r, 1).
5: while ‖r‖ > ε do
6: z := Ad.
7: α := rTh/(dT z).
8: u := u+ αd.
9: β := rTh.
10: r := r − αz.
11: h := CYCLING(r, 1).
12: β := rTh/β.
13: d := h+ βd.
14: end while
15: end procedure

5.4.3 AMG and the first integral approach

Above and in Sec. C.4 of Appendix C, the foundations of an algebraic multigrid solver
for scalar elliptic differential equations have been laid which can, to a certain degree, be
extended to the systems of PDEs [65] of interest in this thesis. Indeed, such an extension is
needed to deal with the discrete systems stemming from the first integral LSFEM described
earlier.
Essentially there are three different approaches for PDE systems: variable-based; un-

known-based and point-based. The first two only are considered here. The first just
ignores the fact that the system matrix A arises from the discretisation of a system of
PDEs; instead, the AMG setup as described above is applied “as-is” to the matrix A.
This so-called variable-based AMG ([65], Section 3.2) will only work well if A is a M-
matrix or an essentially positive matrix, see Sec. C.4.1(b). In practice, for systems of
PDEs this requires that the couplings between the different physical unknowns are very
weak which is not fulfilled for the discrete systems arising from Sec. 5.1. Indeed, a series
of tests using scalar AMG as a standalone solver applied to the system (5.38) for a 2D
lid-driven cavity problem show, at best, extremely slow convergence. In contrast, due to
the positive definiteness apropos linear systems the classical iterative CG method is more
applicable and should be used to accelerate the multigrid procedure as described in Sec.
5.4.2. But the multigrid cycle is very inefficient so that the accelerated AMG is only a
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slight improvement against the bare CG iteration.
In unknown-based AMG ([65], Section 3.3), the second approach for PDEs, scalar AMG

algorithms are applied to each physical unknown ui separately. To use this method, a
variable-to-unknown mapping (VU mapping) has to be provided. Having a discrete vector
u ∈ Rn, this mapping identifies, for each entry ui, the physical unknown j ∈ {1, . . . ,M}
that ui belongs to. In other words, the index set Ω = Ω[1]∪· · ·∪Ω[M ] is disjointly divided,
where each Ω[i] contains the indices corresponding to discretisation of the physical unknown
ui. Now, the matrix is reordered such that it is sorted in terms of the physical unknowns,
and the block structure,

A =




A[1,1] A[1,2] · · · A[1,M ]

A[2,1] A[2,2] · · · A[2,M ]
...

... . . . ...
A[M,1] A[M,2] · · · A[M,M ]



,

is obtained where each matrix block A[i,j], i, j = 1, . . . ,M describes the couplings between
the physical unknowns i and j. The matrix blocks A[i,j], i 6= j are not necessarily square,
as the discretization meshes Ω[i] for different physical unknowns may not have the same
size. Each diagonal block A[i,i] can be viewed as the discretization of a scalar equation
for the i-th unknown. In unknown-based AMG, the method is built around these scalar
blocks; more precisely, for each i = 1, . . . ,M , the following steps are performed:

1. Extraction of a strength matrix S[i] from the matrix entries of A[i,i] .

2. C/F-splitting C[i] ∪ F[i] = Ω[i] based on S[i] .

3. Building an interpolation operator I[i] : R|C[i]| → R|Ω[i]|, and a restriction operator
R[i] = IT[i] .

Now, the different coarse-grids related to the unknowns are merged into a global coarse-
grid:

C =
M⋃

i=1
C[i] ,

and the global interpolation (the so-called multiple-unknown (MU) interpolation) operator
and the restriction operator are assembled according to:

I =




I[1] 0 · · · 0

0 I[2]
. . . ...

... . . . . . . 0
0 · · · 0 I[M ]



.
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and R = IT . Finally the coarse-grid operator is assembled via the full Galerkin product
as:

AC = ITAI . (5.85)

A different way to define the coarse-grid operator is to employ the diagonal block entries
A[i,i] only (block Galerkin), i.e.,

ÃC = ITAuI , (5.86)

with the block diagonal matrix:

Au =




A[1,1] 0 · · · 0

0 A[2,2]
. . . ...

... . . . . . . 0
0 · · · 0 A[M,M ]



.

The resulting coarse-grid matrix ÃC is block diagonal and thus sparser than the full
Galerkin product. Hence, the computational cost on the coarser levels can be reduced,
but the variational principle of Theorem C.6 is violated.
As pointed out, the unknown-AMG approach treats each physical unknown separately.

Hence, the coarse-grids, transfer operators and coarse-grid operators can be adapted to the
specific properties (e.g. anisotropies, coefficient jumps, ...) inside each physical property,
as these are reflected within the diagonal matrix blocks A[i;i]. Also, it is not required
that the different physical unknowns are discretised on a common mesh. The downside
is that information between different unknowns (the entries inside the off- diagonal block
matrices A[i;j], i 6= j) is completely ignored. If these entries are large, the resulting
AMG hierarchy may loose its efficiency as not all relevant information is reflected. The
convergence statements analogous to those of Sec. C.4.4 are:

Lemma 5.3. Let A > 0 and a VU mapping be given. If the C/F-splitting and interpolation
IFC are such that the τ -condition of MU-interpolation (C.32),

‖eF − IFCeC‖20,F ≤ τu‖e‖2u,1 (5.87)

is fulfilled with τu being independent of e and using the modified norm ‖v‖u,1 = (Auv, v)E,
then (C.31) is satisfied with τ = τuρ(A−1Au) and with K = I − IA−1

C RA denoting the
two-grid correction operator.

Together with the smoothing property (C.22) the following result for a two-level cycle
with one post-smoothing step is obtained.
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Lemma 5.4. Let A > 0 and a VU mapping be given and let S satisfy the smoothing
property (C.22). Furthermore, assume the C/F-splitting and interpolation to be such that
condition (5.87) is fulfilled with some τu being independent of e. Then:

‖SK‖1 ≤
√

1− σ

τ
,

is satisfied with τ = τuρ(A−1Au) ≥ σ.

The smoothing property (C.22) does not reflect the decomposition of A into the matrix
blocks A[i,j]. However, the AMG hierarchy is built solely using information from the
diagonal blocks A[i,i]. More precisely, implicit use is made of heuristics that rely on the
algebraic smoothness of the error with respect to each A[i,i] separately. Hence, to obtain an
efficient interplay between smoothing and coarse-grid correction, the smoothing property
should be formulated accordingly.

Definition 5.5. An operator S satisfies the unknown-smoothing property with respect to
A > 0 and a given VU mapping, if a σu > 0 exists such that for all e:

‖Se‖21 ≤ ‖e‖21,u − σu‖e‖22,u . (5.88)

Here, the scalar product (u, v)2,u := uTATuD
−1Auv and the associated norm ‖ · ‖2,u are

defined with regard to Au. Now, the two-grid correction operator with one post-smoothing
step SK can be estimated in terms of ‖ · ‖u,1 instead of ‖ · ‖1.

Theorem 5.6. ([65], Theorem 3.9) Let A > 0 and S satisfy the smoothing property (5.88).
Furthermore, assume the C/F-splitting and interpolation to be such that the τu-condition
of MU-interpolation (5.87) is fulfilled with τu being independent of e. Then:

‖SK‖u,1 ≤
√
ρ(A−1Au)ρ(A−1

u A)
√

1− σu
τ̃
, (5.89)

with τ̃ = τuρ((A−1Au)2)ρ(A−1
u A)2.

The factor:

ρu := ρ(A−1Au)ρ(A−1
u A) ,

can be interpreted as an indication of the strength of unknown cross-couplings, i.e. how
well the spectrum of A is captured by Au. If ρu is large, the overall convergence may
detoriate. Note, however, that the bound (5.89) is not sharp.
The essential conditions for the unknown-based approach to work are that, for each

unknown, the submatrix of A reflecting the couplings of this unknown to itself is close to
being an M-matrix and that smoothing results in an error which is smoothed separately for
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each unknown. Advantages of this approach are that it can easily cope with anisotropies
which are different between the different unknowns and that unknowns can be distributed
arbitrarily across mesh points. This simple approach works quite efficiently for some
important applications. However, it may become inefficient if the cross-function couplings
are too strong.

5.4.4 Validation of the AMG approach

In what follows different configurations of the algebraic multigrid scheme are thoroughly
validated using the standard lid-driven cavity problem, a test case that has been used
extensively in the development of multigrid methods [119, 181, 259, 282]. The focus is
on matrices formed by quadratic FE discretisation, which are certainly more complicated
to solve than those arising from their linear element counterparts, and for this case the
matrices resulting in the case of Stokes flow and those resulting from Newton linearisation
of inertial flow are investigated separately. In the course of the analysis various influential
factors such as the choice of least-squares weighting and Re are considered; furthermore
the scaling performance of increasing numbers of variables is analysed. Note, that a
symmetrised F-cycle is used, see Fig. 5.21d, explaining the higher runtimes compared to
a W-cycle. The standard non-symmetric F-cycle which performs a further V-cycle only
after each interpolation, returns run-times very close to those of the W-cycle.

(a) Lid-driven cavity; Stokes flow

Consider the 2D lid-driven cavity problem in the unit square, cf. Fig. 5.17, discretised
using an unstructured, boundary-refined triangulation consisting of 27053 grid points and
13328 elements (for quadratic basis polynomials) resulting in a square system matrix with
108212 unknowns and of the order of 4.61 million entries, cf. the first column of Table 5.3.
Note, that for all the tests carried out the least-squares weighting factors appearing in
equations (5.12)-(5.21) were chosen to be w = [1, 1, 5, 1] which is explained subsequently.
Initially, the algebraic smoothing properties of standard relaxation methods on the error

of the above linear system are considered. While a simple Jacobi iteration proves to be
totally inefficient and ILU-type smoothers are too costly, the GS method comes close
to the desired and also expected behaviour. Table 5.2 shows the evolution of different
error norms for i GS sweeps; the 2-norm decreases much faster than the 1-norm such that
‖e(i)‖1,u � ‖e(i)‖1,u for increasing i as suggested in Sec. C.4.1(a). A comparison of the first
with the third column shows that the unknown-smoothing property (5.88) is fulfilled with
σu ≈ 0.92. With increasing difference in the error norms the error smooths algebraically
in the sense that residual reduction becomes inefficient as seen in the last column: while
the first smoothing step reduces the residual significantly by a factor of 1/3 the following
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sweep i ‖e(i)‖1,u ‖e(i)‖2,u ‖e(i−1)‖1,u − σu‖e(i−1)‖2,u ‖r(i) −Ae(i)‖E
0 681.5375 519.4413 - 52.5562
1 203.1415 22.2745 203.6515 18.7161
2 155.9838 11.1301 182.6490 13.1397
3 130.3514 7.1448 145.7442 10.3753
4 113.8123 5.1305 123.7781 8.6982
5 102.0534 3.9132 109.0922 7.5414
6 93.1644 3.1018 98.4532 6.6826
7 86.1552 2.5312 90.3107 6.0187

Table 5.2: Evolution of different error norms for i GS sweeps.

steps have a progressively weaker impact until the residual tends to stagnate. Certainly
only very few smoothing steps are effective while the remaining error components must
be reduced by coarse-level correction.
For the coarse-grid correction three basic variants were tested; first of all the pure scalar

AMG, that is disregarding the fact that a PDE depending on several physical unknowns
is being dealt with; the second and third are the unknown-based PDE approach of Sec.
5.4.3 involving either the full Galerkin product (5.85) or the block Galerkin product (5.86),
respectively. In the full Galerkin variant, at each level coarsening and interpolation are
based on the block diagonal matrix only while the Galerkin product and also the smoothing
procedure involve the full matrix. By this means also the coupling information between the
physical unknowns is transferred to the coarsest level which is more expensive but might
be beneficial for problems with a stronger unknown to unknown coupling. On the other
hand, the block Galerkin variant is based solely on the block diagonal matrices while the
coupling information only comes into play through the residual calculation at the finest
level and by a possible acceleration treatment via, for example, the CG method.

The above three variants are used in combination with three different types of MG-cycle,
the V, W and F-cycle, and are either CG-accelerated according to Alg. 6 or not. On each
level between one and three pre-smoothing and post-smoothing steps are performed via
a GS-relaxation method. At the coarsest level, i.e. when the number of unknowns falls
below 2000, a direct solver is employed. The interplay between smoothing and coarse-
grid correction for a case with fewer variables and full Galerkin AMG is shown in Fig.
5.22. Here the error in the cavity velocity in the x-direction is displayed at different levels
before and after smoothing. Although the coarse-level variables are no longer connected
to any kind of triangulation, for reasons of visualisation they have been connected by an
artificial Delauny triangulation for levels 2 and 3. For convenience only, the boundary
points are transported to the coarser levels, although they would have been sorted out
into the F-variable set directly at the first level.
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method level 1 level 2 level 3 level 4 setup CG+Vcyc
scalar 2.77 s 0.10 s

matrix size 108212 7478 1745 -
number entries 4619322 422634 6661 -
full Galerkin 1.39 s 0.13 s
matrix size 108212 13398 2310 1625

number entries 4619322 1483123 97130 3031
block Galerkin 0.89 s 0.05 s
matrix size 108212 13398 2310 1625

number entries 1208892 373042 25512 1951

Table 5.3: The relative complexity of the three AMG variants utilised subsequently; the
setup time and time per cycle for each case is shown.

Attention is paid to the precise coarsening algorithm and the construction of interpo-
lation operators which via the τu-factor from (5.87) mainly contribute to the convergence
estimate of Theorem 5.6. A look at the matrix blocks (5.12)-(5.21) reveals that the diago-
nal blocks only depend on second order derivatives and will come close to M-matrices, see
Definition C.3, with zero row-sums except for the rows belonging to boundary-adjacent
nodes. So the conclusions of Sec. C.4.1(d), that the error evolves slowly along strong
negative couplings, remains essentially valid, at least for couplings between nodes of the
same physical unknown which is relevant for unknown-based AMG. Certainly the diagonal
blocks are invertible with dominating positive diagonal entries but besides the majority
of negative off-diagonal entries there will also be some comparatively small positive ones
which are typical for higher order discretisations and arise for instance when using second
order FE basis functions in contrast to first order ones; the latter becomes clear when
analysing the couplings between the triangular shape functions (5.52)-(5.54).
When considering the origin of the positive entries there is no reason to assume an

oscillatory error behaviour along the positive couplings so that it is reasonable to treat the
positive and negative off-diagonal entries during the coarsening process in a completely
symmetric way, as also suggested in [242]. Thus, all couplings are considered strong unless
their absolute value undercuts a certain value which in the present implementation is for
each row a fraction of εstr = 10−3 of the largest off-diagonal entry, cf. (C.25). If, however,
the coarsening strategy is built upon the whole matrix, as in the case of scalar AMG, the
off-diagonal matrix blocks come into play also. Then the M-matrix structure can no longer
be assumed, also mixed derivatives are involved, and very large off-diagonal entries are
present. Here, no simple arguments allow for conclusions on the relation between couplings
and error behaviour and the best strategy is to simply treat all off-diagonal entries equally.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: AMG error associated with ux-velocity component during the restriction
process; the AMG uses a full Galerkin approach with standard interpolation and at each
level 20 smoothing steps are performed. Rows 1 - 3, from top to bottom, show the error
at the first, second and third level of the AMG hierarchy (containing approximately 800,
400 and 100 grid points) demonstrating the error state before (left column) and after
(right column) smoothing. Normally, boundary grid points are moved to the F-set at the
first level; however, they have been transferred to the coarser levels here for reasons of
visualisation.
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case AMG appr. cycle accel. interp. # sm. # iter. runtime [s]
C1 - - CG - - 5309 58.9
C2 full Galerkin V - stand. 2 485 53.08
C3 full Galerkin W - stand. 2 203 28.62
C4 full Galerkin F - stand. 2 70 37.97
C5 full Galerkin V CG stand. 2 43 6.77
C6 full Galerkin W CG stand. 2 34 5.58
C7 full Galerkin F CG stand. 2 17 10.81
C8 full Galerkin V CG direct 2 652 127.17
C9 scalar V - stand. 2 > 5000 > 500
C10 scalar V CG stand. 2 768 77.11
C11 block Galerkin V CG stand. 2 69 4.21
C12 block Galerkin W CG stand. 2 59 3.84
C13 block Galerkin F CG stand. 2 50 8.65
C14 block Galerkin W CG stand. 1 74 3.59
C15 block Galerkin W CG stand. 3 58 4.78

Table 5.4: AMG performance for the solution of the 2D lid-driven cavity problem using
different solver ingredients. The labels “scalar”, “full” and “block Galerkin” refer to the
scalar AMG method (disregarding the fact that a PDE is being solved for), and the two
versions of the unknown-based approach involving either the full Galerkin product (5.85)
or the block Galerkin product (5.86). The abbreviations # sm. and # iter. correspond
to the number of smoothing steps per level and the total number of iterations needed to
reach an absolute residual smaller than ε = 10−8.

Generally, the error evolution between the physical unknowns will be non-smooth from a
geometric point of view. Nevertheless, the variational principle of Theorem C.6 guarantees
also in the case of scalar AMG, convergence of the method regardless of the precise form
of coarsening and interpolation.
In all cases the standard coarsening procedure is complemented by either direct or

standard interpolation, see Sec. C.4.3, which only needs minor modification in order to
avoid negative interpolation weights in the case of positive off-diagonal entries; in principle,
for all rows, the sign of positive off-diagonals can be assigned as negative in order to use
the stated algorithms and then the diagonal entry modified accordingly in order to retain a
zero row-sum. In the case of standard interpolation the interpolation operator is truncated
by a factor of εtr = 0.01 according to the considerations of Sec. C.4.3(b) in order to avoid
Galerkin operators that are too dense.
Table 5.3 shows the relative complexity of the three different AMG variants considered;

in each case standard coarsening and standard interpolation is used. The coarsening
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procedures and thus the sets of coarse-grid variables in the full and block Galerkin case
are equivalent since they are based on the diagonal block structure only; however, the
number of matrix entries differ depending on how the Galerkin product is constructed
leading to significantly less entries in the block Galerkin case, a fact which is also reflected
in the corresponding combined AMG setup and single cycle (involving one CG step and one
AMG V-cycle) times. Here it is noted that the higher cycling time of the full against the
block Galerkin variant is not only due to the more complex construction of the Galerkin
product but also by the significantly higher cost of full relaxation sweeps versus block
diagonal relaxation sweeps.

In all cases the ratio between the number of entries and the matrix size is strongly
reduced if the initial system is compared to the system at the coarsest level: in the full
Galerkin case this ratio is reduced from 42.7 to 1.87 and in the block Galerkin case from
11.17 to 1.20. That is to say, not only the matrix size reduces for each coarser level but
also an increasingly sparser matrix structure is enforced; so that at the coarsest level the
direct solver has to deal with an extremely sparse matrix only. The complexities of Table
5.3 demonstrate, for the standard coarsening algorithm of Sec. C.4.2(a), an absolutely
sufficient coarsening speed with descending levels such that more aggressive strategies are
unnecessary. This, amongst other possibilities, is due to the fact that quadratic FEs lead
to a denser adjacency structure of the matrix so that for each C-variable more coupled
neighbours can be moved into the F-set; however, in the case of linear elements a more
aggressive strategy might prove useful.

Attention is now directed to the corresponding AMG performance results. Table 5.4
shows both the number of iterations and runtime required in order to reach an absolute
residual smaller than ε = 10−8. Additionally Fig. 5.23 provides the associated convergence
histories. Note that the underpinning Matlab code was not optimised and that the run
times therefore do not reflect the full potential of the method; they are merely displayed
to allow for a relative comparison between different AMG strategies.

A clear observable is that despite the favourable positive definiteness of the system ma-
trix it is found that a pure conjugate gradient solver (C1) needs over 5000 iterations to
satisfy the residual requirement; however, the iteration steps are computationally cheap
resulting in a runtime of approximately 60 seconds. Although each of the AMG variants
tested needs significantly fewer numbers of iterations than pure CG, a higher effort as-
sociated with the AMG cycles does not always pay off; at first glance two factors stand
out. On the one hand, standard interpolation improves over direct interpolation (C8) to
such an extent that the slight additional computational cost involved appears more than
worthwhile. This result can essentially be explained in terms of the two-level convergence
theory, see Lemma C.10, which requires the fine-level variables to be interpolated from
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Figure 5.23: Absolute residual reduction of the AMG configurations of Table 5.4 for the
2D lid-driven cavity problem; the convergence history of the pure conjugate gradient solver
(C1), of the non-accelerated AMG cycles (C2-C4) and of two particularly poor performing
variants involving CG-accelerated AMG with direct interpolation (C8) instead of standard
and CG-accelerated pure scalar AMG (C9) [left]; the same for the various variants of CG-
accelerated AMG with different types of cycles and using either the full or the block
Galerkin product, cf. Table 5.4 [right].

a fixed percentage of the surrounding neighbours; a criterion which is considerably bet-
ter fulfilled by standard interpolation than by direct interpolation. The second obviously
poor performing variant is scalar AMG (C9 and C10). Although the stand-alone multi-
grid solver converges smoothly as predicted by the variational principle of Theorem C.6
the convergence rate is similar to that of pure CG; it is improved, but insufficiently, by
multigrid acceleration. It is observed that the wiggles appearing in the convergence curve
of C10 are introduced merely by the behaviour of the acceleration method. For both vari-
ants the slow convergence can be explained by the fact that the system matrix as a whole
does not exhibit the desired M-matrix property while the diagonal blocks do. Generally
it seems also reasonable to expect the relaxation method, in this case a GS iteration, to
have a strong smoothing effect on each physical unknown seperately, rather than a strong
algebraic smoothing effect on the whole system. Indeed, a coarsening and interpolation
strategy based only on the block diagonal information proves to be much more efficient.
The focus henceforth is directed at those AMG strategies that show promise of further

improvement. In contrast to C9 and C10, the plain non-accelerated AMG cycles, C2-C4, in
combination with standard interpolation exhibit an exemplary linear convergence except
for the presence of a distinct kink occurring roughly at the mid-point of the iteration
process, which is particularly noticeable in the V-cycle case, cf. Fig. 5.23. This indicates
that the coarsening and interpolation processes, in principle, allow for an efficient transfer
of relevant information between different levels; however, after successive reduction of the
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“well captured” error components, the method is eventually left with error components
which are represented by the AMG setup only sub-optimally leading to a slow-down of
convergence. This effect can be decreased by using more elaborate cycling processes such as
W- and F-cycles reducing the number of iteration steps from almost 500 to little more than
200 and even to 70, which although positively affecting the run times remain unsatisfactory.
C5-C7 confirm what is also known from the literature [242]: AMG acceleration or, in

other words, the preconditioning of an iterative method by a multigrid scheme, nearly
always pays off. While it is hardly possible or at least inefficient to optimise the interplay
between smoothing and coarse-grid correction such that all relevant error components are
well captured in the reduction process, the normally few remaining components, which
belong to the remaining eigenvalue clusters of the multigrid preconditioned matrix, can
be perfectly well eliminated by a standard Krylov solver such as CG. For example in
the V-cycle case CG acceleration yields a reduction in the number of iterations and in
the runtime by roughly a factor of 10. Also Fig. 5.23 demonstrates much more uniform
convergence rates in the accelerated cases where the pronounced kinks are reduced to small
disturbances after which the typical fast convergence speed is restored.
Comparison between the three full Galerkin variants C5-C7 and the block Galerkin

variants C11-C13 reveals that, at least for the matrices resulting in the Stokes flow case,
the time saving of the latter variants slightly exceed the extra cost of more cycles, even
though there are 50 compared to 17 cycles in the F-cycle case for example (C13 versus
C7). A glance at the convergence histories shows quantitative differences between the full
and block Galerkin schemes only, no qualitative differences. In general the performance of
V- and W-cycles is very similar, the latter slightly outperforming the former; on the other
hand, F-cycles always lead to by far the lowest number of iterations but their use does not
seem to altogether pay off. Finally, application of a single pre- and post-smoothing step at
each level seems to achieve sufficient smoothing for the further coarsening such that any
additional relaxation sweeps are not cost effective. The best AMG variant (C14) proves
to be about 15 times faster than a pure CG iteration.

(b) Lid-driven cavity: inertial flow

The AMG’s performance is investigated for linear systems arising in the case of Newton-
linearisation of inertial flow: starting with the Stokes flow solution as an initial guess, the
performance data provided in Table 5.6 are for the first Newton iteration which is assumed
to be representative for all subsequent iterations. Unless stated otherwise Re = 200; use
is made of an unstructured, boundary-refined triangular grid having the same number of
grid points, elements and unknowns as for the Stokes flow case, but due to the additional
matrix entries stemming from Newton linearisation the total number of non-zero entries,
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method level 1 level 2 level 3 level 4 setup CG+Vcyc
full Galerkin 1.39 s 0.1 s
matrix size 108212 13397 2315 1625

number entries 4819994 1484313 98091 3031
block Galerkin 0.89 s 0.04 s
matrix size 108212 13397 2315 1625

number entries 1209214 372933 25767 1951

Table 5.5: The relative complexity of two AMG variants for matrices resulting from
Newton-linearised systems for inertial flow. The setup involves using standard coarsening
and standard interpolation.

4.82 million, is approximately 4% higher than in the Stokes case. The complexities of
the AMG setup for the full and block Galerkin cases are summarised in Table 5.5 and
are seen to be close to those of Table 5.3. The coarsening procedures and thus the sets
of coarse-grid variables in the full and block Galerkin case are equivalent since they are
based on the diagonal block structure only; however, the number of matrix entries differs
depending on how the Galerkin product is constructed leading to significantly less entries
in the block Galerkin case. This is also reflected in the corresponding run times for the
AMG setup and for a single cycle involving one CG step and one AMG V-cycle. Due to
its inefficiency, scalar AMG is not considered a serious option and is therefore omitted
from future comparisons.

For reasons of comparability the values in Table 5.6 were obtained under the same con-
ditions as those in Table 5.4. Again, in all cases standard coarsening and standard inter-
polation was applied and at the coarsest level, i.e. when the number of unknowns becomes
equal to or less than 2000, a direct solver is employed. The solver iterates until the abso-
lute residual reaches a cut-off value less than ε = 10−8. The cases investigated in Table 5.6
correspond to those in Table 5.4, except that C8-C10 are excluded due to inefficiency while
C14∗ and C15∗ are carried out with V instead of W-cycles. The least squares-weighting is
applied in a different way: several benchmark tests for higher Reynolds numbers revealed
that the new terms entering the matrix due to linearisation - which may even be of or-
der Re2, cf. equations (5.25)-(5.30) - lead to a disproportionate least-squares weighting
between the equations of momentum conservation and those of mass conservation, thus
necessitating change of the weighting factors. In order to avoid AMG convergence loss,
a heuristic weighting of the continuity equation by a factor proportional to

√
Re proves

adequate and subsequently the rule w = [1 1 max{5,
√

Re} 1] is adhered to, see Fig. 5.25.
An initial comparison between the linear and the-non-linear case, Tables 5.4 and 5.6,

reveals that in the latter case the iteration numbers and run-times increase significantly.
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While for the pure CG method this is true by a factor of about 3, the stand-alone multigrid
variants perform decidedly worse. Although the shapes of the corresponding convergence
curves in Fig. 5.24(left) are qualitatively similar to those in Fig. 5.23(left), the iteration
numbers and run-times for C2-C4 are increased by factors of up to 10. Comparison
between C1 and C2-C4 demonstrates the strong deterioration in the multigrid efficiency
for the non-linear problem and that the use of acceleration is certainly necessary. Indeed,
C5-C7 and C11-C13 show that CG-acceleration improves the performance dramatically
pushing the cycle number ratio between the non-linear and linear examples below 3 and
in the best case even below 2; nevertheless the corresponding convergence curves in Fig.
5.24(right) all exhibit a number of small plateaus which seem to stretch with growing
Reynolds number, cf. also Fig. 5.25.

In contrast to the linear case the block Galerkin method does not dominate the full
Galerkin variant but the result is inconclusive. Here a trend can be identified which
continues for increasing Reynolds number: the cycle number ratio between the block and
full Galerkin method does not remain constant but increases in favour of the full Galerkin
method, an effect which is firstly noticeable for the more complex F- and W-cycles but will
later also be apparent for the V-cycle. However, in the present case with Re = 200 the block
Galerkin method is still the best but now, in contrast to the Stokes case, in combination
with the cheapest variant using V-cycles. The best performance (C14∗) achieved with one
pre- and one post-smoothing step per level, is more than 20 times faster than pure CG
and just 1.9 times slower than the best performer in Table 5.4.
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Figure 5.24: Absolute residual reduction of the AMG configurations of Table 5.6 for
the non-linear 2D lid-driven cavity problem with Re = 200; the convergence history of
the pure conjugate gradient solver (C1) and of the non-accelerated AMG cycles (C2-C4)
(left); the same for the various variants of CG-accelerated AMG with different types of
cycles and using either the full or the block Galerkin product (right).
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case AMG appr. cycle accel. interp. # sm. # iter. runtime [s]
C1 - - CG - - 13877 143.85
C2 full Galerkin V - stand. 2 4771 471.99
C3 full Galerkin W - stand. 2 2120 251.03
C4 full Galerkin F - stand. 2 676 315.02
C5 full Galerkin V CG stand. 2 100 10.84
C6 full Galerkin W CG stand. 2 73 9.75
C7 full Galerkin F CG stand. 2 38 18.98
C11 block Galerkin V CG stand. 2 203 8.22
C12 block Galerkin W CG stand. 2 192 9.46
C13 block Galerkin F CG stand. 2 188 29.45
C14∗ block Galerkin V CG stand. 1 227 6.81
C15∗ block Galerkin V CG stand. 3 197 10.39

Table 5.6: AMG performance for the solution of the non-linear 2D lid-driven cavity prob-
lem, Re = 200: starting with the Stokes flow solution as an initial guess the performance
is measured following the first subsequent Newton iteration which is assumed to be rep-
resentative of subsequent iterations. In contrast to cases C14 and C15 in Table 5.4 the
above cases C14∗ and C15∗ are carried out with V instead of W-cycles.

Fig. 5.25 shows the AMG residual history of C5 for different Reynolds numbers; based
on the heuristic least-squares weighting w = [1, 1, max{5,

√
Re}, 1] (left) and the standard

weighting w = [1, 1, 1, 1] (right). It is clear that the effort required to solve the linear sys-
tems using Newton-iteration grows continuously with Re and that the type of least-squares
weighting strongly influences the effective dependency: for standard weighting computa-
tional effort versus Re does not scale proportionally, unlike the heuristic weighting which
does; in the latter case the computational cost is reduced by a factor of up to three and
the convergence curves themselves are comparatively smoother. A broader investigation
of the influence of weighting on AMG performance reveals that any choice, other than
the over-weighting of only the continuity equation, downgrades the performance; this is
particularly the case if the third and fourth equation in the system (4.12) are weighted
equally, as in Sec. 5.3.1(c), when investigating the problem of flow past a backward-facing
step.

Fig. 5.26 (left) shows, for the AMG configuration C5 of Table 5.6, the number of
iteration steps necessary to solve a linearised equation using the Newton method versus
the least-squares weighting factor wc of the continuity equation. Here, only the weighting
factor for the continuity equation is varied while the other weighting factors are kept
constant, that is the overall weighting is w = [1, 1, wc, 1]. Obviously the curves exhibit
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distinct minima which are significantly below the equal weighting case wc = 1; these
minima shift to the right-hand side with increasing Re, suggesting as earlier a choice for
the weighting factor as proportional to

√
Re. It should be borne in mind that in order to

solve a very high Reynolds number problem, it might be more efficient to utilise a stepping
algorithm with moderate Re steps or to increase Re during the Newton-iteration; in such
cases only moderate weighting would be necessary.
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Figure 5.25: Absolute AMG residual reduction for C5, Table 5.6, and for different
Reynolds numbers based on: heuristic least-squares weighting w = [1, 1, max{5,

√
Re}, 1]

(left); standard weighting w = [1, 1, 1, 1] (right).
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Figure 5.26: Number of iterations necessary to solve C5 depending on the least-
squares weighting factor for the continuity equation wc and an overall weighting of
w = [1, 1, wc, 1], when Re = 100, 200, 400 (left). AMG run-time versus total number
of variables n [problem size] revealing the scaling performance of the AGM; the runtime
in seconds required to solve the Stokes problem (blue line) and to obtain a solution of
the first subsequent Newton-iteration (red line) for Re = 200 taking the Stokes matrix as
initial guess (right).
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The last and one of the most important aspects addressed in the present analysis is
the question of how the performance of the AMG scales with increasing problem sizes.
The main reason for using a multigrid approach is the possibility of achieving linear
scaling as reported in the literature. Fig. 5.26 (right) investigates the runtime of the
AMG approach when solving the Stokes problem followed by the first Newton-iteration
of the non-linear problem with Re = 200. In both cases the best performing variants
from Tables 5.4 and 5.6 are used, that is C14 in the linear and C14∗ in the non-linear
case. Run-time is plotted against the matrix size in which the latter varies from a few
thousand to over 600 thousand with increasing problem size. In the non-linear case the
largest matrix involves approximately 630,000 variables, over 28.5 million entries and a
condition number of 1.2 × 109. The measured run-times were fitted to a function of the
form f(n) = c · nk via a non-linear least-squares algorithm revealing what is also clear to
the naked eye: the scaling law is slightly over-linear with exponents of 1.14 and 1.25 in the
Stokes and the non-linear case, respectively. These exponents might be further improved
by optimising individual multigrid components, but for the purposes of the present work
are acceptable.
Although the above analysis is restricted to a specific flow problem, the 2D lid-driven

cavity, it can be argued most of the results will transfer, in one way or another, to arbitrary
viscous and inertial flow problems. The suggested multigrid configuration using a block
Galerkin approach, GS smoothing, standard coarsening and interpolation, V- or W-cycles
and CG-acceleration, in combination with a suitable least-squares weighting, forms a sat-
isfactory basis for defining an efficient black box method for the solution of linear systems
arising from a least-squares FE-discretisation. The caveat being that in the context of
overall implementation, scope for improvement remains.
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In this chapter a series of problems involving lubrication and film-like flows are investigated
which appear and play a key role in a number of industrial applications. The problems
are solved using the new FE method and solution strategies described in Chapter 5 com-
plemented by more customised series solutions based on complex-valued description when
applicable. The whole is centred on the first integral methodology in order to demonstrate
its versatility, efficiency and convenience in addressing a range of flow types.
The industrial applications are chosen in an order of increasing complexity, starting with

hydrodynamic lubrication between corrugated surfaces moving relative to each other, an
archetypal form of friction which is modelled in a 2D steady Couette-like setting, see
Sec. 6.1. While this problem deals with periodic and wall boundary conditions only, the
convenient form of the dynamic boundary condition comes into play when considering
steady coating flows over planar and curvilinear surfaces as explored in Secs. 6.2 and
6.3; the latter explicitly demonstrating that the advantages related to 2D steady film flow
extend to arbitrary axis-symmetric flows. For the solution of periodic film flows a spectral
solution method is provided which lend itself to predicting the stability of film flows in
particular.
One aspect of lubrication applications with corrugated surfaces is the process of mate-

rial exchange between the fluid inside the valleys of the corrugations and the bulk flow
which, in some applications, it is desirable to control, for instance to achieve a minimum
mixing of the lubricant fluid, see Sec. 6.4. This problem is intrinsically unsteady requiring
an approach different to the above; in this context a generalisation of the complex-valued
Goursat formulation and unsteady FE formulation, together with corresponding compu-
tational results, are presented.

6.1 Friction reduction between lubricated surfaces

6.1.1 Problem description and solution approach

Modern combustion engines have to comply with ever increasing challenges, whether with
respect to performance attributes and efficiency, or the emission of pollutants. One of
numerous approaches to increase their efficiency is the optimisation of the tribological
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Lubricant oil

Cylinder

Piston
Lubrication gap

Corrugated surface

Figure 6.1: Schematic of a cylinder-piston system: the cylinder wall (light gray) has a
smooth surface while the piston skirt (metallic) is corrugated with the objective of reducing
the hydrodynamic friction in the lubricated (blue) gap as the cylinder and piston move
relative to each other.

processes involved in lubricated contacts. The friction generated between moving surfaces
is complex since both dry and hydrodynamic friction can occur depending on the condi-
tions, normally a mixture of both ensues. In the case of hydrodynamic friction its value
in a lubricated contact, as a function of the relative speed of the moving parts, is usually
described in the form of a Stribeck curve [241].

If one takes the cylinder-piston system as an example, see the schematic of Fig. 6.1,
experience shows that the friction generated is strongly influenced by the precise shape
of the surfaces involved with experimental and numerical investigations being strongly
focused on optimising the shape of the piston ring [249, 280]. With increasing optimisation
components such as the piston skirt have come into focus. Typical methods to reduce
friction is the reduction of microscopic surface roughness by grinding processes and/or
periodically profiling the surface on a more macroscopic level; the aim of the latter being
to decrease the effective area generating the hydrodynamic friction in contrast to that
generated by a flat surface; cf. the piston profile in Fig. 6.1 shown up close as a cross-
section of the lubricated gap in Fig. 6.2. Profiles such as these can promote the generation
of eddies in the corrugation valleys which in effect act as a hydrodynamic ball bearing as is
known from work relating to the shark skin effect [83]. Increasing the clearance (separation
of the two surfaces) can also reduce friction but in many practical problems is not a realistic
option. Accordingly, in the present study profiled moving surfaces containing a suitable
periodically repeating structure is considered, as these can be realised practically.
Diverse geometric parameters are involved, other than the specific type of corrugation

contour; in particular the amplitude, i.e. corrugation depth, and wave length, i.e. number
of corrugations per unit length. Depending on these parameters and considering relevant
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6.1 Friction reduction between lubricated surfaces

manufacturing constraints a friction coefficient can be measured and minimised to find
a suitable corrugation structure. To obtain a complete picture the assessment of surface
profiling should be based on a systems behaviour in the hydrodynamic and mixed regime;
however, it is useful to decouple the two different effects and, as a first step, to concentrate
on investigating the pure hydrodynamic regime as is the case here. For this purpose a
simple two-dimensional model for shear flow over a corrugated surface is considered using
fluid flow models of increasing complexity; these include the lubrication equations, the
Stokes and the NS equations. Thus also the range of validity for the first two methods
is clarified. Following on from the work of [217, 221] who demonstrated that, based on
the objective of reducing the wall shear stress, a periodically occurring ridge-like structure
is more suitable than a corresponding sinusoidal variation, attention is focussed on the
former which have received less attention.

6.1.2 Mathematical modelling

A realistic piston movement, see Fig. 6.1, is a time-dependent process and thus relevant
quantities affecting friction, depending on the velocity gradients, will be time-dependent
too. Even if dynamic temperature effects and variation away from parallel alignment are
neglected, the piston velocity U will cover a wide range of values. Nevertheless, considering
a small periodic length λ of the piston skirt profile in comparison to the piston length it
is reasonable to assume the velocity field in the lubricating gap to be close to that of a
set of steady states of the periodic shear flow problem which might depend on a range of
Reynolds numbers defined by the approximate minimum and maximum values for those
constants (characteristic length and velocity, density, viscosity) occurring in a realistic
time-dependent process.

In order to achieve a rough guide and impression of how surface profiling might influence
hydrodynamic friction, a two-dimensional shear flow model amenable to simple analytic
methods, is explored. Consider a cross section of the lubrication gap, Fig. 6.2a, with a
periodically contoured lower surface and a parallel-aligned flat upper surface moving with
a relative velocity of U ; the minimum and average gap height are denoted by H0 and H,
the periodic length of the bottom contour by λ.

Unless the lubrication approximation is employed, which allows for an analytic solution
as shown below, solutions of the Stokes and full NS equations are obtained by the first
integral formulation (4.12) and the least-squares FE technique provided in Ch. 5. Fig.
6.2 shows the problem setup, with physical quantities on the left-hand side (a), and non-
dimensioned ones on the right-hand side (b), for which the corresponding scalings are given
in Table 6.1. The physical coordinates x̃ and z̃, together with H0, H and λ, are scaled by
the inverse wave number of the bottom contour, i.e. λ/(2π), and the velocities ũ1, ũ2 are
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(a)

x̃

z̃

U

H

H0

λ

(b)

x

z

1

h

h0

2π

Figure 6.2: Shear flow geometry over a corrugated bottom contour showing (a) the
physical and (b) non-dimensioned quantities.

physical quantities dimensionless quantities scaling factor
x̃, z̃ x, z λ

2π

ũ1, ũ2 u1, u2 U

φ̃1, φ̃2 φ1, φ2 ηU

p̃ p 2πηUλ
ψ̃ ψ Uλ

2π

Table 6.1: Scaling of the fundamental quantities: coordinate unit lengths, velocities,
auxiliary potential fields, pressure and the streamfunction.

scaled by the lid velocity U , leading to the corresponding scalings of the potential fields
φ1, φ2, the pressure p and the streamfunction ψ.

Accordingly, the non-dimensioned boundary value problem, using the operator notation
from Sec. 4.2 with u = (u1, u2, φ1, φ2), is:

Lu+N [Re, u]u = 0 , in the domain , (6.1a)

u1(x, b(x)) = u2(x, b(x)) = 0 , along the lower surface, (6.1b)

u1(x, h) = 1 , u2(x, h) = 0 , along the upper surface, (6.1c)

with the problem domain confined to the interval x ∈ [−π, π] and z = b(x) denoting the
2π-periodic lower surface contour; the problem domain is assumed periodic on the left,
x = −π, and right-hand side, x = π, which is assured by identification of the respective
grid points. Note that in contrast to the velocities, which are assumed 2π-periodic, the
potential fields φ1, φ2 can exhibit an aperiodic part (being linear in x) as mentioned in
Sec. 5.1.2.
The Reynolds number based on the above scaling is Re := %λU/(2πη). Considering

standard piston velocities, typical viscosities for the occurring temperature range and
manufacturing restrictions, the following characteristic parameter range is assumed [100]:
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6.1 Friction reduction between lubricated surfaces

% = 850 kg/m3 , 0.5 mm ≤ λ ≤ 1 mm ,

20 mPa s ≤ η ≤ 60 mPa s , 0 m/s ≤ U ≤ 15 m/s ,

leading to Reynolds numbers in the range of 0 ≤ Re ≤ 100.
Central to the present study is the definition of the friction coefficient depending on the

non-dimensionalised quantities. For this purpose, note that the resistance force for the
upper surface is given by the integral:

F =
¨

A

η

[
∂ũ1
∂z̃
− ∂ũ2

∂x̃

]
dx̃ dỹ = ηB

L̂

0

∂ũ1
∂z̃

dx̃ = ηB
L

λ

λ/2ˆ

−λ/2

∂ũ1
∂z̃

dx̃

= ηA
2π
λ
U

1
2π

π̂

−π

∂u1
∂z

dx = η
A

H0



h0
2π

π̂

−π

∂u1
∂z

dx


U ,

in which a comparison to pure Couette flow between two flat surfaces (F = ηAU/H0)
identifies the quantity:

κ := h0
2π

π̂

−π

∂u1
∂z

dx = h0
2π

π̂

−π

2∂φ2
∂x

dx = h0
π

[φ2(π, h)− φ2(−π, h)] , (6.2)

as the scalar factor describing the change of resistance in the presence of a curved surface
contour in comparison to that of a flat surface; subsequently κ is referred to as the friction
coefficient or resistance factor. The last equality in the above equation is obtained by the
definition of the potential fields, see for example (5.39), (5.40), and demonstrates that κ
can be obtained in a relatively simple and convenient way. In contrast to a formulation
in terms of primitive variables, no derivatives have to be calculated from the FE solution
and no integral needs be calculated; just the potential field φ2 has to be evaluated at the
two end points of the upper boundary revealing that κ only depends on the non-periodic
part of φ2.

6.1.3 Lubrication solution

Lubrication theory opens up the possibility of an analytical approximation. The starting
point is the Reynolds equation which, for the present geometry, takes the form [217, 241]:

d
dx

{
[h− b(x)]3 dp

dx

}
= 6 d

dx [h− b(x)] , (6.3)

which following integration with respect to x directly becomes:

[h− b(x)]3 dp
dx = 6 [h− b(x)]− C ,
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with integration constant C. Solving for the pressure gradient gives:

dp
dx = 6

[h− b(x)]2
− C

[h− b(x)]3
, (6.4)

which can be integrated over one period and, considering the periodicity of the pressure
field, yields the identity:

0 = p(π)− p(−π) =
π̂

−π

dp
dxdx = 6

+πˆ

−π

dx
[h− b(x)]2

− C
+πˆ

−π

dx
[h− b(x)]3

, (6.5)

with integration constant:

C = 6hI2
I3

and In := 1
2π

+πˆ

−π

dx
[1− b∗(x)]n , b∗(x) := b(x)

h
.

Following Scholle [217] an explicit form of the x-component of velocity is given by:

u1 = z − b(x)
h− b(x) −

dp
dx

[h− b(x)]2

2

[
1− z − b(x)

h− b(x)

]
z − b(x)
h− b(x) ,

= Z − 3
[
1− I2

I3 [1− b∗(x)]

]
[1− Z]Z , (6.6)

with Z := z−b(x)
h−b(x) ; which can be further integrated with respect to z to obtain the stream-

function:

ψ =
ˆ
u1 dz = [h− b(x)]

ˆ
u1 dZ

= h− b(x)
2 Z2 − 3

[
h− b(x)− hI2

I3

] [
Z2

2 −
Z3

3

]

= h

[3I2
2I3
− 1 + b∗(x)

]
Z2 + h

[
1− I2

I3
− b∗(x)

]
Z3 .

Obviously ψ vanishes along the contoured surface Z = 0 while taking a constant value
along the upper flat surface Z = 1.

Accordingly, the non-dimensioned shear stress is given by:

τ ≈ ∂u1
∂z

=
1− 3

[
1− I2

I3[1−b∗(x)]

]
[1− 2Z]

h [1− b∗(x)] ,

in which case the shear stress along Z = 0 takes the form:

τw ≈
3I2

I3h [1− b∗(x)]2
− 2
h [1− b∗(x)] ,
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and along Z = 1 the form:

τp ≈
4

h [1− b∗(x)] −
3I2

I3h [1− b∗(x)]2
.

The corresponding resistance factor κ is given by:

κ ≈ h0
2π

π̂

−π

[
4

h [1− b∗(x)] −
3I2

I3h [1− b∗(x)]2

]
dx = H0

H

[
4I1 −

3I2
2
I3

]
, (6.7)

depending on easily computable functionals of the contoured surface.

Figure 6.3: Stokes flow results for a cosine-like surface contour with h0 = a = π/2. Top
row (from left to right): unstructured FE-triangulation, x-velocity and z-velocity; bottom
row (left to right): absolute velocity plus streamlines, pressure and scaled shear stress.
The flow is from left to right.

6.1.4 A parametric study

The numerical results shown subsequently, for Stokes and NS flow, were obtained by
the LSFEM of Ch. 5 using quadratic basis functions and an unstructured, boundary-
refined triangular grid for all test and solution spaces and a least-squares weighting of
w = [1, 1, 104, 104]; the boundary triangles are allowed to be curved in accordance with
the isoparametric concept and the number of grid points involved ranged from 30,000 to
50,000. A typical Stokes solution using the surface contour b(x) = −a cos(x) is depicted
in Fig. 6.3 which shows the corresponding unstructured FE triangulation, the x and z

velocity components, the resulting streamline pattern, the pressure and the shear stress.
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The latter two have been constructed from the velocities and potentials according to
p = ∂kφk−ukuk/2, see equation (1.42), and τ = ∂u1/∂z. Note, that the periodic boundary
conditions require special treatment as described in Sec. 5.1.2.

(a) Wave number study

The impact of varying the wave number on hydrodynamic friction is now investigated.
Taking, in non-dimensioned form, shear flow over a cosine-like contour with fixed constants
a, h and h0, the number of ridges can be increased by considering a sequence of contours
bK(x) = −a cos(Kx − γπ), K ∈ N+ on the interval [−π, π] with γ := 1 for even K and
γ := 0 otherwise; K then specifies the number of ridges per unit length 2π. However,
in order to generate a continuous curve it is easier to consider the equivalent problem
on the interval [−π, π] with contours bK(x) = −aK cos(x) and clearance h0,K = h0K

with K ∈ R+. The associated friction coefficient κ is obtained using either formula
(6.2) or (6.7) and, for three selected sequences of a and h0, is displayed in Fig. 6.4. As
expected, only in the limit case K → 0 are the lubrication and Stokes results in agreement,
lubrication theory only being valid if λ is the dominant length scale or in non-dimensioned
quantities a� 2π. Obviously, lubrication theory results in constant friction for allK and is
thus inappropriate for studying wave number effects. Alternatively, the Stokes equations
qualitatively describe the entire transition from a near lubrication state (K → 0) to a
Couette-like state (K →∞) for arbitrarily dense ridge structures.

0 5 10 15 20

0.7

0.8

0.9

1

Lubrication

Stokes

K

κ

Figure 6.4: Plots of friction coefficient κ versus wave number K obtained with: the
lubrication approximation (red, constant); the Stokes equations (blue). The pairs of curves
shown are for: a = Kπ/16, h0 = Kπ/2; a = h0 = Kπ/2; a = Kπ/2, h0 = Kπ/4.
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6.1 Friction reduction between lubricated surfaces

Figure 6.5: Vortex structure dependence on the amplitude of the cosine-like surface
contour under Stokes conditions. Streamlines are depicted (from left to right) for fixed
h0 = π/2 and a = π/8, π/4, π/2 and π. Flow is from left to right.

(b) Amplitude study and vortex structures

Firstly, note that in principle hydrodynamic friction can be reduced by simply increasing
the clearance h0, that is for Couette flow the decrease in wall shear stress will follow a
1/h0 law. However, in practice the clearance in the cylinder-piston system is required to
be small for technical reasons so that a compromise is the use of periodically corrugated
surface shapes with a fixed h0 but varying amplitude a. Although the amplitude can be
set to an arbitrarily high value this is in practice limited by the material properties of the
components involved and manufacturing restrictions. Here the dependence of the friction
coefficient κ on the amplitude is investigated which is expected to be more complex due
to vortex generation in the associated valleys; the latter defines a relevant study object
of its own due to its influence on fluid transport properties, temperature convection and
related topics.
To begin with, Fig. 6.5 demonstrates the effect of increased amplitude of the surface

contour on the streamline pattern in the case of Stokes flow; obviously at certain critical
amplitudes a new eddy is born. This phenomenon is described in more detail in Fig. 6.6
(right), for increased amplitude the generation of new eddies (here, up to six) indicated
by the black bullet-points; showing that for higher amplitudes, the critical amplitude and
number of eddies are related essentially linearly and independent of the height h0. To
generate this plot roughly 70 simulations were run on the interval a ∈ [0, 3π]. Fig. 6.6
(left) is a plot of the scaled shear stress along the upper flat surface for selected amplitudes
of the contoured surface, including those of Fig. 6.5. It shows that for small amplitude
there is no eddy present; the shear stress exhibits only one maximum at x = 0. On
formation of the first eddy two local maxima appear, the x-coordinates of which coincide
with those of the streamline triple points; the value at x = 0 becomes a local minimum.
In general, the number of eddies can be obtained from the number of local maxima of the
surface shear stress curve divided by two as in Scholle [219].
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Figure 6.6: Scaled shear stress along the upper flat surface for the case of h0 = π/4
and selected amplitudes a of the cosine-like surface contour (left). Critical amplitudes
for the eddy formation in the presence of a cosine-like contour and under Stokes flow
conditions (right); for selected height values h0 the friction coefficient κ is plotted against
the amplitude a while, for increasing amplitudes, the black bullet-points indicate the
formation of a new eddy.
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Figure 6.7: Friction coefficient κ dependence on the quotient α = a
h for a cosine-like

contour (left): for selected height values h0 the blue curves represent Stokes flow conditions
while, independent of h0, the red curve stems from the lubrication approximation; the
results relate to those at 30 equidistant points (blue dots) on the interval α ∈ [0, 0.95].
Contour study using the lubrication approximation (right): for selected parameters b3 of
the logarithmic surface contour b(x), defined in paragraph (c) below, the friction coefficient
κ is plotted against the quotient α; the shape of the curves does not depend on h0.

In order to illustrate the friction behaviour of the co-sinusoidal corrugated system in
the h0-a-parameter domain in a simple way and to provide a clear comparison between
lubrication theory and the Stokes solution it is instructive to introduce the quotient α :=
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a
h = a

a+h0
. Fig. 6.7 (left) plots the friction coefficient κ against α and for selected height

values h0 the blue curves result under Stokes flow conditions while, independent of h0, the
red curve results from the lubrication approximation. Obviously, α = 0 corresponds to
a = 0 and thus to the case of Couette flow with κ = 1; for α → 1, i.e. h0 becomes small
in comparison to a, generally friction decreases and in the limit case lubrication theory
predicts zero friction. In the Stokes simulations the predicted κ-values increase with h0

and altogether the possible Stokes curves are confined to the area between κ = 1 and the
lubrication curve.

(c) Variation of the contour shape

The preceding investigations concentrated on the case of a cosine-like bottom contour
which can indeed serve as a reasonable starting point. In the following it is investigated
how a variation of the contour shape, depending on a preferably small number of geo-
metric parameters, influences the hydrodynamic friction. For this purpose the following
parametrised set of logarithmic surface contours is examined:

b(x) = b1 + b2 log(1 + b3 cos(x)) ,

b2 = 2a
log

(
1−b3
1+b3

) ,

b1 = a− b2 log(1− b3) ,

depending on the geometry parameter b3 ∈ [−1, 1] only; the parameters b1 and b2 are
chosen such that for a given amplitude a and for varying b3 ∈ [−1, 1] the identities
b(−π) = b(π) = a and b(0) = −a always hold. The above contour in an elegant way
of encompassing the transition from a concave pin contour (b3 → −1) to a convex box
shape (b3 → 1) includes both extremes as special cases; the familiar cosine-like contour
b(x) = −a cos(x) is obtained in the limit b3 → 0 as can be verified by L’Hôpital’s rule. Fig.
6.8 shows streamline patterns for selected values of b3 and under Stokes flow conditions,
thus illustrating the transition process: taking b3 = 0 as a starting point, as b3 → −1
an increasing number of eddies is generated, in the limit infinitely many; moving in the
other direction, b3 → 1, there is just one eddy present until in the limit b3 = 1 additional
secondary corner eddies appear, cf. Moffatt [180].
For values of b3 commensurate with those depicted in Fig. 6.8, Fig. 6.7 (right) shows

the corresponding κ-α dependencies based on the lubrication model, giving when b3 = 0
the case for a cosine-like contour, cf. Fig. 6.7 (left). As in the latter the corresponding
Stokes curves for varying h0 (but not depicted here) will reside in the area confined by the
lubrication curves and the constant line κ = 1. Obviously the friction behaviour improves
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Figure 6.8: Vortex structure depending on the parameter b3 of the logarithmic surface
contour under Stokes flow conditions. The streamlines depicted above, chronologically
from top left to bottom right, correspond to: b3 = −1 + 10−6, −0.99, −0.6, 0.01, 0.6, 0.99,
1 − 10−12 and 1. In the limit case limb3→−1 the contour converges to a needle point at
x = 0, which is of no physical interest, unlike the limit case limb3→1 which results in a box
shape (below right) and is of interest.

for increasing b3, which is less a contour inherent property but rather expressing the fact
that friction decreases with the average gap width between the two surfaces. In the latter
sense the box shaped contour is the logical optimum while a practically feasible contour,
considering manufacturing restrictions and stability requirements for the ridges, will be
much closer to b3 = 0.

Fig. 6.9 illustrates, for fixed a and selected height values h0, the explicit dependence
of the friction coefficient κ on the geometry parameter b3 of the logarithmic contour b(x).
For a simpler representation b3 has been re-expressed via the parameter c ∈ [−16, 16] and:

b3 = sgn(c) · [1− 10−|c|] .

The deviation between lubrication and Stokes solutions increases for c > 0 and thus the
lubrication approximation overestimates the possible friction reduction significantly. The
left graph suggests the parameter c ∈ [0, 5], to be more or less independent of a and
h0; beyond the value c = 5, both solutions predict no significant further reduction in
friction. The corresponding contours for c = 1, . . . , 4 are depicted on the right-hand side
emphasising the relevant effect: the contour peaks become slimmer and slimmer.

As mentioned before the hydrodynamic friction in the lubrication gap mainly depends on
the average gap width, that is on the fluid volume between the upper and lower surface.
In order to separate this effect out a study with constant volume is employed which is
achieved by modifying the amplitude a = a(b3) depending on the parameter b3 according
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Figure 6.9: Friction coefficient κ dependence on the parameter c of the logarithmic con-
tour (left). For a = π/2 and selected height values h0 = π/2, π/16 the lubrication solution
is given by the red and the FE Stokes solution by the blue curves. The corresponding
contours for c = 1, . . . , 4 are depicted on the right-hand side.

to the formula:

υ(a; b3) =
ˆ π

−π
a− b(x) dx != V = constant ,

thus giving:
ˆ π

−π
b2 log(1− b3)− b2 log(1 + b3 cos(x)) dx = V ,

and:

b2(b3) = 1
V

[
2π log(1− b3)−

ˆ π

−π
log(1 + b3 cos(x)) dx

]
, (6.8)

a(b3) = b2
2 log

(1− b3
1 + b3

)
, (6.9)

b1(b3) = a− b2 log(1− b3) . (6.10)

The left-hand side of Fig. 6.10 displays the friction coefficient κ as a function of the
dimensionless volume υ(a = π/2, b3) of the logarithmic surface contour; V = 4πa = 2π2

denotes the maximum possible volume for a given amplitude a. For a = π/2 and selected
height values h0 = π/2 and h0 = π/16, the lubrication approximation results in the red
and the FE Stokes solution in the blue curves. The dependency of the Stokes friction
coefficient on the volume υ is nearly linear while lubrication theory predicts a significant
deviation from a linear profile when approaching a box shaped contour. In order to obtain
a pure contour driven effect, on the right-hand side of Fig. 6.10 the volume impact has
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Figure 6.10: Friction coefficient κ dependence on the dimensionless volume υ(a = π/2, b3)
of the logarithmic contour, the latter being denoted in terms of fractions of the maximal
possible volume V = 4πa (left); for a = π/2 and selected height values h0 = π/2, π/16 the
lubrication approximation leads to the red and the FE Stokes solution to the blue curves.
For h0 = π/2 and constant υ(a(b3), b3) = V = 2π2 the κ-values of the lubrication (red)
and FE Stokes (blue) solution are displayed versus the contour parameter c (right); the
amplitudes are adapted according to (6.9).

been separated out: the amplitude of the logarithmic contour has been adapted according
to (6.9) such that the volume υ(a(b3), b3) = V always remains constant. For h0 = π/2
and a constant volume V = 2π2 again the lubrication approximation and the FE Stokes
solution result in similar red and blue curves as in Fig. 6.9.

(d) Inertial effects

Although inertial effects play a quantitatively minor role for the present problem, even
for Reynolds numbers up to Re = 100, it is useful to obtain an overview of the basic
mechanisms and how the eddy structure and the friction coefficient are influenced by an
increase of the Reynolds number.
Fig. 6.11 illustrates the evolution of streamline patterns for increasing Reynolds number

up to Re = 60 in which the top row refers to the cosine-like contour (c = 0) and the second
row to the logarithmic contour using c = 2. The geometric aspect ratio in all cases is given
by h0 = 3

2a = π
4 , while for visualisation a different but for all cases identical scaling has

been used. For the logarithmic contour inertial effects on the streamlines are, along with
symmetry breaking, much more pronounced; this is also reflected in the variation of the
friction coefficient: in the case of the cosine-like contour and Re = 60 a 1.9% increase in
κ results compared to the Stokes case while for the logarithmic contour an approximate
7.7% increase is observed. Generally speaking, the advantage of a higher average gap for
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6.1 Friction reduction between lubricated surfaces

large b3 compared to those contours with b3 ≈ 0 seems to diminish for increased Reynolds
numbers; the sharper ridge contours cause stronger vortex activity and asymmetry which
again leads to increased friction. It would be worth extending investigation for higher
Reynolds numbers, obviously at least Re > 100 which is out of scope of the present study,
as to whether a trade off point can be found.

Re = 0 Re = 30 Re = 60
c = 0 κ = 0.8123 κ = 0.8178 κ = 0.8277

c = 2 κ = 0.7171 κ = 0.7461 κ = 0.7723

Figure 6.11: Evolution of streamline patterns for Re = 0, 30, 60 (from left to right) for
the case of the cosine-like contour using c = 0 (top row) and the logarithmic contour using
c = 2 (bottom row). The geometric aspect ratio in all cases is h0 = 3

2a = π
4 , while for the

visualisation a different but for all cases identical scaling has been used.
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Figure 6.12: Scaled shear stress along the upper surface for h0 = 3
2a = π/4 and Re = 0,

30, 60. The shear stresses correspond to the streamline patterns in Fig. 6.11, for c = 0
(left) and c = 2 (right).
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Fig. 6.12 displays corresponding scaled shear stress distributions along the upper surface
for h0 = 3

2a = π/4 and Re = 0, 30, 60: on the left-hand side for the cosine-like contour
and on the right-hand side for the logarithmic contour. With increasing Reynolds numbers
the asymmetry of the velocity field becomes more pronounced which is also reflected in
the shear stress curve. Qualitatively the shear stresses for both contours turn out to be
similar. Fig. 6.13 displays the friction coefficient κ depending on the Reynolds number
Re = ρU0λ/(2πη) for the three different contour parameters c = −2, 0, 4 (from left to right)
in the case of a logarithmic contour. For fixed amplitude a = π/2, three height values are
considered: h0 = π (yellow), h0 = π/2 (blue) and h0 = π/8 (red). The friction coefficient
increases with the Reynolds number, the effect for small Re being only moderate; with
decreasing height h0 the relevance of non-linear effects increases significantly.

Fig. 6.14 displays the friction coefficient κ depending on the quotient α = a
h for the

cosine-like contour. For selected height values h0 the blue curves result for Stokes flow
(Re = 0), the green curves for NS flow with Re = 75 and the red curves depict the
corresponding lubrication approximation (independent of h0). This figure complements
Fig. 6.7 (left) by including inertial effects thus combining the dependency of κ on α and
h0 for the three different flow regimes in just one picture.
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Figure 6.13: Friction coefficient κ depending on Re for the three different contour pa-
rameters c = −2, 0, 4 (from left to right); for a fixed amplitude a = λ/4, three height
values are considered: h0 = π (yellow), h0 = π/2 (blue) and h0 = π/8 (red).
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Figure 6.14: Friction coefficient κ depending on the quotient α = a
h for the cosine-like

contour. For selected height values h0 the blue curves result under Stokes conditions
(Re = 0), the green curves under NS conditions with Re = 75 and the red curve depicts
the lubrication approximation (independent of h0). For this diagram the flow field has
been evaluated for 30 equidistant points on the interval α ∈ [0, 0.95].

6.2 Gravity-driven steady film flow over periodic topography

Over the past two decades, considerable interest has been generated in the motion of liquid
films over rigid surfaces containing well defined topographical features, mainly because of
their importance in many branches of technology, such as functional thin film coatings
[147, 274]. Relevant applications are manifold, comprising diverse fields like protective
coatings in the ceramic and metalworking industry [139], the production of photo films
and similar multilayer materials [147], high precision coatings in the microelectronics and
semiconductor industry, falling film heat exchangers [268, 273], optical coatings and many
more. To some extent prototypic film flow models cover macroscopic geological phenomena
such as avalanches [165], glaciers [112] and debris flows [132] as well.
The primary motivation for considering topological features is that surfaces encountered

in practice are never completely flat; rather, they contain complicating features such as
well defined irregularities in the form of sharp steps or trenches or regular corrugations
arising from nature or as a consequence of a particular manufacturing process. Despite
the comparably simple geometric configuration gravity-driven film flow exhibits a wide
range of complex physical phenomena like free-surface wave evolution [78], eddy genesis
[228], film break-up [147] or rivulet [238, 239] and droplet formation [158]. Understanding
the impact of various disturbances on flow structure is necessary to control and optimize
relevant characteristics like the surface shape and stability [7, 39, 193, 234, 267], the
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Figure 6.15: Gravity-driven film flow down an inclined corrugated rigid substrate in an
experimental set-up (right) [219] and as an idealised two-dimensional model (left).

evolution of the vortex profile [228, 278] and the related mass transport [279] as well as
characteristics influencing the temperature distribution and the drying process [147].

In the following the case of two-dimensional gravity-driven film flow over periodically
corrugated topography inclined at an angle of α to the horizontal [228, 257, 258, 266,
267] is considered as shown in Fig. 6.15. Investigations focus on the computation of
steady and periodic solutions of the full 2D Navier-Stokes equations involving inertial
and capillary effects which generally exist under restricted conditions only [277], i.e. low
Reynolds numbers depending on the inclination angle. Experimental results are known
from [234, 278] indicating that steady solutions can, under certain conditions, also exist
for higher Reynolds numbers. Normally in the direction of increasing Reynolds number
a kind of pseudo-stable state is reached exhibiting a low-amplitude periodic movement of
the free surface which leaves the eddy structure of the internal flow essentially the same
[117]; thus, when the focus lies on the inner flow structure, it can be helpful to compute
steady-state solutions which do not exist physically.
The periodic film flow problem is tackled by two different methods of solution: first,

a spectral Fourier method for Stokes flow based on the complex-valued form of the first
integral as described in Sec. 3.2; second, the LSFEM approach also including inertial
effects based on the considerations in Chapter 5 and particularly Sec. 5.1.2.

6.2.1 Spectral complex-valued solution representation

An efficient procedure for solving free surface problems is given by the least-squares FE
method of Chapter 5, particularly for the periodic flow described in Sec. 5.1.2. However,
especially for the latter case one would usually prefer a Fourier basis instead of locally
supported basis functions which would be suitable for stability analysis as well. This is
the reason why, in the following, an alternative discretisation is proposed to solve for the
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6.2 Gravity-driven steady film flow over periodic topography

special case of steady, gravity-driven film flow over periodically corrugated substrates.
Considerations are confined to the Stokes flow case although a generalisation to Re > 0 is
in principle possible. Scholle [219] provides an overview of how such a problem is tackled
by means of the Stokes equations in primitive variables both for the limit case of thick
films assuming a flat surface and for thin films allowing for a wavy surface.
Consider the 2D first integral of NS equations (3.12), (3.13) in terms of complex coor-

dinates ξ := x + iz and its conjugate ξ. In the steady Stokes flow case, (3.13) is a scalar
equation for the determination of the pressure, which is of no importance here, while equa-
tion (3.12) reduces to a bianalytic equation ∂2χ/∂ξ

2 = 0 for the complex-valued potential
field χ = Φ+ iηΨ ; the real part of which is the scalar potential field Φ and the imaginary
part essentially the streamfunction Ψ . The scaling is similar to that of Sec. 6.1.2:

x = 2π
λ
x̃ , z = 2π

λ
z̃ , u = ũ

un
, Ψ = 2πΨ̃

λun
, Φ = 2πΦ̃

ληun
, (6.11)

using as characteristic quantities the wavelength λ and the Nusselt velocity:

un = %gλ2 sinα
8π2η

; (6.12)

and leading to a Reynolds number of Re = %unλ/(2πη). The physical quantities are then
denoted by capital letters and dimensionless quantities by small letters, analogous to Fig.
6.2 in Sec. 6.1.2. The domain is confined to x ∈ [−π, π] and the solution is assumed
2π-periodic.

As mentioned in Secs. 1.2.1(b) and 3.1 the general solution of the bianalytic equation
can be written in terms of two analytic functions P (ξ) and Q(ξ) which, without loss of
generality, can be modified to χ = Φn+i(Ψn+P (ξ)+ ξQ(ξ))1, thus separating the Nusselt
solution Φn + iΨn from the rest. A representation for the streamfunction then results as:

Ψ = Im(χ) = hz2 − z3

3 + P (ξ) + P (ξ) + z
(
Q(ξ) +Q(ξ)

)
, (6.13)

with the non-dimensional height h = 2πH/λ; in equation (6.13) the x-dependant part,
stemming from ξ, has been omitted due to the assumed 2π-periodicity of the streamfunc-
tion and the result coinciding with that obtained by Scholle [219]. Moreover, the following
derivative of Φ is used:

2∂Φ
∂ξ

= 2 ∂
∂ξ

Re(χ) = ix(h− z)− x2 + z2

2 + hz − p0(x+ iz)

+Q(ξ)−Q(ξ)− 2i
(
P ′(ξ) + zQ′(ξ)

)
, (6.14)

1Multiplication with i and separation of the Nusselt solution is performed to keep in track with the
considerations in [219] and is done without loss of generality.
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in which the non-dimensioned Nusselt solution Φn plus derivatives have been taken from
(5.42)-(5.44).

6.2.2 Boundary conditions in terms of analytic functions

In what follows the interest lies in obtaining the streamfunction according to (6.13); sub-
sequently the velocities can be computed as a byproduct. In order to fix the degrees of
freedom provided by the analytic functions Q(ξ) and P (ξ), the streamfunction represen-
tation has to fulfil the necessary boundary conditions, cf. Fig. 6.15 (left), in this case wall
boundary conditions at the lower rigid surface and free boundary conditions at the upper
free surface; the periodicity of the solution will be guaranteed by the choice of Q and P .

(a) Substrate boundary conditions

No-slip and no-penetration boundary conditions at the substrate contour z = b(x) are
required which, according to the streamfunction definition and (6.13), can be written as:

0 = u = −2i∂Ψ
∂ξ

= 2hz − z2 +Q(ξ) +Q(ξ)− 2i
(
P ′(ξ) + zQ′(ξ)

)
, (6.15)

for z = b(x) and ξ = x+ ib(x).

(b) Kinematic BC at the free surface

Let the free surface (x(s), z(s)) = (f1(s), f2(s)) be parametrised with respect to arclength
s. Normal and tangential unit vectors are then given by ti(s) = f ′i(s), ni(s) = εjitj(s) as
in Sec. 3.2.2. A complex-valued description is provided by f(s) = f1(s)+if2(s), t = f ′(s),
n = if ′(s). For convenience the shape of the free surface is represented by the derivative
of a periodic function g:

z = h+ g′(x) . (6.16)

In the case of stationary flow the kinematic boundary condition is equivalent to identify-
ing the free surface as a streamline, i.e. Ψ(f) = ψs = const., which leads, after substitution
of (6.16) into formula (6.13), to the final form:

ψs = 2
3h

3 + h2g′(x)− g′(x)3

3 + 2Re(P (ξ) + zQ(ξ)) , (6.17)

for all x ∈ [−π, π] with z = z(x) = h+ g′(x) and ξ = ξ(x) = x+ iz(x).
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6.2 Gravity-driven steady film flow over periodic topography

(c) Dynamic BC at the free surface

In the case of stationary Stokes flow with constant surface tension the dynamic boundary
condition (3.23) in dimensionless form reduces to:

d
ds

(
σ̂f ′ + 4i∂Φ

∂ξ

)
= Un , (6.18)

with the following dimensionless quantities: when Ũ(x̃, z̃) = %g[cos(α)z̃− sin(α)x̃] denotes
the potential energy density in dimensional form, the scaling (6.11) leads to:

U(x, z) = Ũλ

2πηun
= 2[cot(α)z − x] ; (6.19)

accordingly the Capillary number is given by Ca = ηun/σ, but for convenience the inverse
σ̂ := Ca−1 is used.

In equation (6.18) the term involving the potential energy density can, by use of the
identity n = ix′ − z′, be rewritten as:

Un = 2(z cotα− x)n = d
ds
(
2xz − ix2 − cot(α)z2

)
+ 2 (i cotα− 1) zx′ , (6.20)

= d
ds
(
2xz − ix2 − cot(α)z2 + 2(i cotα− 1)(hx+ g(x))

)
, (6.21)

in which zx′ has, via (6.16), been replaced by the more convenient expression:

zx′ = (h+ g′(x))x′(s) = d
ds (hx+ g(x)) .

Substitution of (6.14) and (6.21) into the dynamic boundary condition (6.18) gives:

0 = d
ds
(
σ̂f ′ + 2 (1− i cotα) g + (cotα− i) z2 + 2i

(
Q̄−Q

)
+ 4

(
P ′ + zQ′

)

− 2h cot(α)z + 2ihz
)
, (6.22)

in which the pressure constant in (6.14) has been set to p0 = −h cotα in order to eliminate
remaining x-dependencies. Integration of (6.22) and substitution of (6.16) then results in:

C = σ̂f ′ + 2 (1− i cotα) g − h2 cotα+ cot(α)g′2 + ih2 − ig′2

+ 2i
(
Q̄−Q

)
+ 4

(
P ′ + zQ′

)
,

involving an arbitrary integration constant C; the choice of C := σ̂− (cotα− i)h2 delivers:

0 = σ̂(f ′ − 1) + 2 (1− i cotα) g + cot(α)g′2 − ig′2 + 2i
(
Q̄−Q

)
+ 4

(
P ′ + zQ′

)
. (6.23)
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The following simple relations will be utilised subsequently:

2i(Q−Q)f ′ + 4(P ′ + zQ′)f ′ = 4 d
ds(P + zQ) + 4 Im

(
Qf ′

)
,

f ′ = x′ − iz′ = x′ − i
(
g′′x′

)
=
(
1− ig′′

)
x′ ,

1 = f ′f ′ =
√
x′(s)2 + z′(s)2 =

√
1 + g′′(x)2x′(s) .

Multiplication of equation (6.23) by f ′ and splitting of the resulting product into real and
imaginary part yields, under consideration of the above relations, two equations:

0 = σ̂

2

(√
1 + g′′2 − 1

)
+
(
1− cot(α)g′′

)
g + cotα

2 g′2 − g′2g′′

2

+ 2 d
dx Re (P + zQ) + 2 Im

(
Q(1− ig′′)

)
, (6.24)

0 = σ̂

2 g
′′ − (g′′ + cotα)g − cotα

2 g′2g′′ − g′2

2 − 2 d
ds Im (P + zQ) . (6.25)

Inserting the derivative of (6.17),

2 d
dxRe(P (ξ) + zQ(ξ)) =

(
g′2 − h2

)
g′′ ,

into (6.24) leads to:

σ̂

√
1 + g′′2 − 1

2 + g − h2g′′ + g′2g′′

2 + cotα
(
g′2

2 − gg
′′
)

+ 2 Im
(
Q(1− ig′′)) = 0 . (6.26)

The integral of (6.25) with respect to x:

σ̂

2 g
′ −
ˆ (

gg′′ + g′2

2 + cot(α)g
)

dx− cotα
6 g′3 − 2 Im (P + zQ) = 0 , (6.27)

can, in combination with the kinematic boundary condition (6.17), conveniently be com-
pounded to form a complex-valued “hybrid” boundary condition:
(
h2 − i

2 σ̂
)
g′ + i

ˆ (
gg′′ + g′2

2 + cotαg
)

dx+ i cotα− 2
6 g′3 + 2(P + zQ) = ψs −

2
3h

3 .

(6.28)

6.2.3 Fourier series discretisation

In order to discretise the wall condition (6.15) and the two free surface conditions (6.26),
(6.28) the unknown functions Q(ξ) and P (ξ) are expanded as Fourier series:

Q(ξ) =
∞∑

k=−∞
k 6=0

Qke
ikξ + u0 + iw0

2 , P (ξ) =
∞∑

k=−∞
k 6=0

Qk −Rk
2k eikξ + 1

2ψ0 , (6.29)

depending on two series of complex-valued coefficients Qk and Rk.
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6.2 Gravity-driven steady film flow over periodic topography

(a) Substrate boundary condition

Substitution of (6.29) into the substrate boundary condition (6.15) delivers an equation
0 = ub(x) of the form:

0 = u0 + 2hb(x)− b2(x) +
∞∑

k=−∞
k 6=0

e−kb(x)
(
Qke

ikx +
(
R̄k − 2kb(x)Q̄k

)
e−ikx

)
. (6.30)

In principle, a system of infinitely many linear equations for the coefficients Qk and Rk

can be obtained from (6.30) by using the standard inner product in the following way:

(ub(x), e−imx)0 := 1
2π

ˆ π

−π
ub(x)e−imx dx = 0 , for m ∈ Z ; (6.31)

for the case of a sinusoidal substrate contour b(x) = −a cosx = −a
2
(
eix + e−ix), which is

of particular interest here, Scholle [219] demonstrates that the linear system (6.31) can be
reduced further to the more convenient form:

δ0mu0 +
∞∑

k=−∞
k 6=0

(
Im−k(ka)Qk + ka

(
Im+k−1(ka) + Im+k+1(ka)

)
Q̄k + Im+k (ka) R̄k

)
= Bm ,

(6.32)
with inhomogeneity:

Bm = a2

2 δ0m + ah (δ1m + δ−1m) + a2

4 (δ2m + δ−2m) , (6.33)

involving the Kronecker delta, δ, and the modified Bessel functions of the first kind [1]:

In(x) := 1
π

ˆ π

0
ex cos(θ) cos(nθ) dθ . (6.34)

(b) Free surface conditions

Now, consider the two conditions (6.26), (6.28) at the free surface. These require the
Fourier expansion of the surface function g(x) and its derivatives:

g(x) =
∞∑

k=−∞
gke

ikx , g′(x) = i
∞∑

k=−∞
kgke

ikx , g′′(x) = −
∞∑

k=−∞
k2gke

ikx , (6.35)

along with g−k = ḡk due to g being real-valued. The Fourier expansions (6.29) of Q(ξ)
and P (ξ) with ξ = x + i(h + g′(x)) involve the inconvenient term e−kg

′(x); if this term is
approximated by a truncated Taylor series:

e−kg
′(x) ≈ 1− kg(x)′ = 1− ik

∞∑

l=−∞
lgle

ilx , (6.36)
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representations for Q and P at the free surface result as:

Q(x+ i(h+ g′(x))) =
∞∑

k=−∞
k 6=0

e−khQk


1− ik

∞∑

l=−∞
lgle

ilx


 eikx + u0 + iw0

2

=
∞∑

k=−∞
k 6=0

ek(ix−h)Qk − i
∞∑

k,l=−∞
k 6=0

k(l − k)gl−keilx−khQk + u0 + iw0
2 , (6.37)

and:

P (x+ i(h+ g′(x))) =
∞∑

k=−∞
k 6=0

e−kh
Qk −Rk

2k


1− ik

∞∑

l=−∞
lgle

ilx


 eikx + 1

2ψ0 (6.38)

=
∞∑

k=−∞
k 6=0

ek(ix−h)Qk −Rk
2k − i

∞∑

k,l=−∞
k 6=0

(l − k)gl−keilx−khQk −Rk
2 + 1

2ψ0 , (6.39)

in which an index shift l← l+k has been used to arrive at the second equality in both cases.
In a next step the series representations (6.35)-(6.39) are applied to the dynamic boundary
condition (6.26) and to the hybrid boundary condition (6.28) which is described in detail
in [176] and summarised in Appendices D.1.1 and D.1.2. There it is also shown that an
inner product approach, similar to that in (6.31) for the substrate boundary condition,
leads after mathematical manipulations to the two systems of non-linear equations:

w0δ0m +
∞∑

l=−∞

(
σ̂

4 l
2(m− l)2 + cotα

2 l(3l −m)
)
glgm−l

+
(
1 + h2m2 + u0m

2
)
gm +

∞∑

k=−∞
k 6=0

(m− k)(m− 2k)
(
e−khQk + ekhQ̄−k

)
gm−k

− i
(
e−mhQm − emhQ̄−m

)
(1− δ0m) + 1

2

∞∑

k,l=−∞
k2(l − k)(m− l)gkgl−kgm−l

− i
∞∑

k,l=−∞
k(l − k)(m− l)2

(
e−khQk − ekhQ̄−k

)
gl−kgm−l = 0 , (6.40)

for (eimx, (6.26))0 = 0 and:
((

ih2 + σ̂

2 + iu0 − w0

)
m+ cotα

m
(1− δ0m)

)
gm + (ψ0 + hu0 + ihw0 + iC) δ0m

+ e−mh
(1 + 2hm)Qm −Rm

m
(1− δ0m) + i

∞∑

k=−∞
k 6=0

e−kh(m− k)gm−k
(
(k − 2hk)Qk +Rk

)
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− 1
2

∞∑

l=−∞

l(l +m)
m

glgm−l (1− δ0m) + 2
∞∑

k,l=−∞
e−khk(l − k)(m− l)gl−kgm−lQk

+ cotα+ 2i
6

∞∑

k,l=−∞
k(l − k)(m− l)gkgl−kgm−l =

(
ψs −

2
3h

3
)
δ0m , (6.41)

for (eimx, (6.28))0 = 0, both for arbitrary m ∈ Z. Note that always m is used as an
equation index, while k and l are used as variable indices.

(c) Determination of the surface function’s zero-mode

In order to solve for the discretised boundary conditions the zero-mode g0 of the surface
function g has yet to be determined. For this purpose equation (6.28) is evaluated at
x = ±π. The difference of both results leads, due to the 2π-periodicity of g′, P and Q, to:

ˆ π

−π

(
gg′′ + g′2

2 + cot(α)g
)

dx =
ˆ π

−π

(
−1

2g
′2 + cot(α)g

)
dx = 0 ,

in which the second equality is due to partial integration of the gg′′ term. Using (6.35) it
follows that:

ˆ π

−π


1

2

∞∑

k,l=−∞
l(k − l)glgk−leikx + cotα

∞∑

k=−∞
gke

ikx


 dx = 0 . (6.42)

Furthermore for each k ∈ Z the property (1, eikx)0 = δ0k holds which when applied to
equation (6.42) yields:

1
2

∞∑

l=−∞
−l2glg−l + cotαg0 = 0 ;

due to being real-valued the zero-mode of the surface function g after manipulation finally
reads:

g0 = tanα
∞∑

l=1
l2glḡl . (6.43)

6.2.4 Spectral iterative method of solution

In order to solve the system of coupled equations (6.32), (6.40) and (6.41) the infinite
series involved have to be truncated. Thus the complex-valued coefficients Qk and Rk

are confined to an index range of −Nn ≤ k ≤ Np with k ∈ Z and Np, Nn ∈ N>0, while
coefficients outside of this range are set to zero. Correspondingly, replacing g−k = ḡk and
g0 by (6.43) the index range of gk can be confined to 1 ≤ k ≤ Ng ∈ N>0; in summary,
considering u0 and w0, a number of 2(Nn + Np) + Ng complex-valued and 2 real-valued
unknown coefficients arise. In order to obtain a consistent system with an equal number
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of equations and unknowns, equations (6.32) and (6.41) are considered for m ∈ Z, −Nn ≤
m ≤ Np, while (6.40) is considered for 1 ≤ m ≤ Ng.

The resulting system of equations is solved in a decoupled way by an iterative solution
strategy, cf. Fig. 6.16. Starting with zero values for the negative modes, i.e. for Qk, Rk
with k < 0, the following two steps are repeated until the norm of the difference between
two consecutive solutions falls below a certain threshold value ε:

(1) Using given values for the negative modes Qk, Rk, k < 0 from the previous iteration
step, the discretised substrate boundary condition (6.32) with −Nn ≤ m ≤ Np is
solved for u0 and for the positive modes Qk and Rk with k > 0. The corresponding
linear system of equations is:

δ0mu0 +
Np∑

k=1

(
Im−k(ka)Qk+ka

(
Im+k−1(ka)+Im+k+1(ka)

)
Q̄k+Im+k (ka) R̄k

)
= B∗m,

(6.44)
involving the modified inhomogeneity:

B∗m = a2

2 δ0m + ah (δ1m + δ−1m) + a2

4 (δ2m + δ−2m) (6.45)

−
−1∑

k=−Nn

(
Im−k(ka)Qk + ka

(
Im+k−1(ka) + Im+k+1(ka)

)
Q̄k + Im+k (ka) R̄k

)
.

(2) Using given values of u0 and the positive modes Qk, Rk, k > 0 from the previous
iteration step, the discretised non-linear boundary conditions at the free surface, i.e.
(6.40) with 1 ≤ m ≤ Ng and (6.41) with −Nn ≤ m ≤ Np, are solved for w0, gk and
the negative modes Qk, Rk with k < 0. Linearisation is performed via Newton’s
method the details of which are omitted here.

Although the convergence is not analysed in detail, practice shows that only very few
modes (below 10) and iteration steps (below 15) are necessary to obtain highly accurate
results. However, this is only true for comparatively small substrate waviness. For in-
creasing substrate amplitude a it is observed that the solution near the free surface is
still accurate while the series solution does not converge in the vicinity of the fixed sub-
strate. This leads to a possibly low resolution of eddy structures, a phenomenon which was
similarly observed by Scholle [219], while the free surface is well captured for, otherwise
problematic, extremely thin films. The latter feature makes it particularly suitable if only
the free surface shape is of interest or, for instance, if a subsequent stability analysis is
desired.
It is further mentioned that the equation splitting and correspondingly the iteration

direction in the above method is designed in a particular way: if the fixed-wall equations
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pass u0, Qk, Rk

k > 0
pass Qk, Rk

k < 0

Solve substrate eq. for u0, Qk, Rk, k > 0

Solve free surface eq. for w0, g, Qk, Rk, k < 0

Figure 6.16: Iterative solution procedure as described by steps (1) and (2): the fixed-
substrate equation (6.44) is solved for u0 and the negative modes of Q, R which are then
passed to the free-surface equations (6.40), (6.41). The latter are solved for w0, gk and
the positive modes of Q, R which are again passed to the substrate equation etc.

are solved for the positive modes k > 0, the corresponding complex-valued exponential
functions in (6.29) decay in the direction of the free surface, thus influencing the free surface
equations only in a minor way. On the other hand the free surface equations are solved
for negative modes k < 0 the exponential functions of which decay in wall direction. This
approach ensures that the iteration remains stable which is probably not the case if the
iteration is performed in the opposite direction. Moreover, from a numerical perspective,
this can be interpreted as an unconventional way to circumvent the conditioning problem
which is otherwise involved, an interesting perspective for future investigations.

6.2.5 Alternative solution by the LSFEM

The above spectral method is based on an analytic function representation which is con-
fined to Stokes flow and, in the above implementation, also to sinusoidal contour shapes
of the substrate. In the case of Re > 0 and arbitrary substrate contours the first integral
formulation of the full steady 2D-NS equations (4.12) is solved by the LSFEM of Chap-
ter 5, the same as employed for the friction problem in Sec. 6.1, using in particular the
procedure for film flows given in Sec. 5.1.2.
The boundary conditions are in principle the same as given for the spectral method,

cf. also Fig. 5.1 of Sec. 5.1.2, but of course are treated differently in a FE context. The
problem domain is assumed periodic on the left and right-hand side, which is assured by
an identification of the respective grid points, while a pair of no-slip and no-penetration
velocity conditions, given along the substrate, are treated as standard Dirichlet conditions.
Moreover, three boundary conditions are required along the free surface, a kinematic con-
dition (no flow penetration of the surface) and two dynamic conditions (stress equilibrium).
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As two conditions are sufficient to determine a problem with fixed domain, the shape of the
free surface can be found by iterating over one of the conditions while solving a sequence
of flow problems with the other two conditions set on a fixed domain.

In this vein, the complete non-linear problem with variable surface shape is solved by
the iterative procedure of Algorithm 2 presented in Sec. 5.1.2. In each iteration step a
simpler problem with a fixed approximation of the free surface is solved only prescribing
the dynamic BC, and between the iteration steps the surface is updated via the kinematic
condition by solving equation (5.49). Each of the non-linear sub-problems is solved by
Newton’s method as demonstrated in Algorithm 1 relying on the matrix construction of
Sec. 5.1.1 and the isoparametric concept of Sec. 5.1.3.

For reasons of clarity non-dimensionalisation of the first integral is specified for which
the inclination angle, film height, substrate amplitude and wave length are defined as in
Fig. 6.15. The relevant physical quantities are either denoted by a tilde or by capital
letters similar to Sec. 6.1; in contrast to the scaling employed in (6.11), (6.12) and (6.19)
which is particularly useful for the Fourier discretisation, it is more appropriate for thin
films, and also for comparison with results in the literature, to base the scaling on the
film height rather than on the wave length. Using the film height H0 = H − A as a
characteristic length scale, the corresponding non-dimensional quantities are obtained as:

x = x̃

H0
, z = z̃

H0
, a = A

H0
, ` = λ

H0
, h0 = 1 . (6.46)

As a characteristic velocity the free surface Nusselt velocity un,h of a film with height H0

is assumed, i.e.:

un,h = %gH2
0 sin(α)
2η , (6.47)

leading to the scaling of the velocities ui, the potential fields φi and the potential energy
density Ũ(x̃, ỹ) = %g[cos(α)ỹ − sin(α)x̃] as:

ui = ũi
un

, φi = φ̃i
ηun

, Uh(x, y) = ŨH0
ηun

= 1
2[cot(α)y − x] ,

for i = 1, 2. Then, with a Reynolds number Reh = %unH0/η and a Capillary number
Cah = ηun/σ

2 the non-dimensioned boundary value problems solved in each free surface
iteration step, using the operator notation from Sec. 4.2 with u = (u1, u2, φ1, φ2), are of
the form:

2The index h of the non-dimensional numbers distinguishes them from the above used numbers based on
a wave length scaling. However, it is easily seen that: Cah =

( 2πH0
λ

)2 Ca and Reh =
( 2πH0

λ

)3 Re.
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6.2 Gravity-driven steady film flow over periodic topography

Lu+N [Reh, u]u = 0 , in the domain , (6.48a)

ui(s) = 0 , along the bottom , (6.48b)

2εijφj(s) = Ca−1
h ti(s)−

ˆ s

s0

Uh(s̃)ni(s̃) ds̃ , along the free surface . (6.48c)

It is noted that the above kind of iterative splitting avoids the necessity to incorporate
the geometric degrees of freedom into the system matrix, as in the case of the spine method
[265], which would result in a more complicated implementation process and destroy the
favourable structure of the occurring matrices3. In contrast the linear systems in each
iteration step can be constructed and solved efficiently via the multigrid procedure of Sec.
5.4.3. On the downside the iterative procedure is heuristic and may in selected cases take
over a hundred iteration steps; however, the number of surface iterations in the presence of
a cosine-like substrate contour is usually found to be between 10 and 20. The step width
is controlled by a complex adaptive relaxation scheme which can smooth the correction
of the free surface automatically to avoid numerical instabilities; in severe cases also a
Reynolds number stepping method is activated. As a convergence criterion the fraction
between the flow in the normal direction of the surface and flow in the tangential direction
is used which is required to fall below a value of 0.1%. The domain is approximated
by a structured triangulation (6-point triangles) using continuous, piecewise quadratic
basis functions for all test and solution spaces and the boundary triangles are allowed to
be curved in accordance with the isoparametric concept. In the following study usually
about 50,000 grid points are used. The mesh is only created once, while in the course of
the iteration only the y-values of the coordinates are changed with the surface.

6.2.6 Numerical results

The aim of this section is less a parameter study on periodic film flow which has been
extensively carried out by several authors [40, 186, 228, 266, 267], but to demonstrate that
the first integral approach, both the above described spectral variant and the LSFEM, are
suitable for and efficient at solving such problems. First, results obtained by the LSFEM
are compared to the experimental results by Schörner et al. [234] and Wierschem et al.
[278] in Figs. 6.17 and 6.18; they are found to be in very good agreement and serve as a
verification of the FE methodology4.
The parameter studies in Figs. 6.19 - 6.22 demonstrate that the first integral FE solver is

capable of accurately solving a number of periodic film flow problems for variously shaped
3The splitting is also fundamentally different from the one for the spectral method described in Sec. 6.2.4.
4The calculated Reynolds and Capillary numbers deviate slightly from those in [278] who, in contrast to
(6.46), (6.47), use hn = 3

√
3νq̇/(g sin(α)) with flow rate q̇ as characteristic length scale and the mean

Nusselt velocity un = q̇/hn as the characteristic velocity.
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042103-4 Schörner, Reck, and Aksel Phys. Fluids 27, 042103 (2015)

FIG. 4. Experimental setup for the visualization of the free surface and the streamlines of the stationary film flow. The free
surface is illuminated by a blue laser diode and recorded by camera 1. The filter suppresses light scattered at the substrate.
The streamlines are visualized by a red laser diode and recorded by camera 2. Exemplary pictures have been placed at the
back of the respective camera.

To portray the curved free surface, we dissolved the fluorescent dye Quinizarin from Sigma-Aldrich
in the Elbesil 145 oil and excited the fluorescence by a blue line laser from Laser Components type
FP-L-450-40P-10-F210. The laser sheet was aligned parallel to the x-z-plane at the channel’s center.
A Nikon D700 camera with a spatial resolution of 11 µm/pixel detected the free surface as the interface
between the dark air and the fluorescing fluid. An optical filter mounted to the Nikon D700 blocked
the scattered laser light. Capillary rise at the side walls made it inevitable to incline the Nikon D700
with respect to the y-axis (camera 1 in Figure 4). A calibration plate served as reference to correct
the resulting distortion for each recorded free surface image. Subsequently, the periodic free surface
h0(x) of the steady-state flow was localized by an edge-detection algorithm provided by Labview.
The free surface h0(x) constitutes the upper boundary of the flowing domain.

To measure the velocity field, we visualized the streamlines by portraying the scattering light
of tracer particles in the fluid. The tracer particles were illuminated by a red line laser from Laser
Components type FP-L-635-30P-10-F210, whose laser sheet was aligned parallel to the x-z-plane
at the channel’s center. A CMOS camera from IC Imaging type DBK 61BUC02 with a spatial
resolution of 22 µm/pixel was mounted parallel to the y-axis and collected the light scattered at the
tracer particles (camera 2 in Figure 4). To receive the streamlines as shown in Figure 4 at the back of
camera 2, we superimposed about 50 pictures à 0.1 s exposure time. The streamlines enabled us to

FIG. 5. Free surface and streamlines of the steady film flow at Re= 12.7 for (a) the sinusoidal topography S1 and (b) the
rectangular topography S3. The boundaries h0(x) and f0(x) of the flowing domain are highlighted by dashed lines.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  132.180.225.244 On: Fri, 22 May 2015 12:37:44

Figure 6.17: The upper streamline patterns reproduce the lower experimental results of
[234] using silicon oil Elbesil 145: ρ = 964.8 kg/m3, ν = 144.2 mm2/s, σ = 20.1 mN/m,
λ = 20 mm, A = 4 mm, H0 = 5 mm, α = 10◦; the corresponding non-dimensional numbers
are Reh = 5.12, Cah = 1.022.

substrate, various aspect ratios of the geometry and a wide range of inclination angles,
Reynolds numbers and Capillary numbers. Although problems of mass conservation in
conjunction with least-squares methods tend to increase when other than pure velocity
boundary conditions are imposed, the example flows considered demonstrate the method
to produce accurate results even in the case of periodic and free boundary conditions which
pose a particular challenge.

Although a small number of selected parameter combinations is considered, some general
trends can be observed. Initially a substrate contour of the form b(x) = −a cos(2πx/`)
is considered. Fig. 6.19 shows, for fixed aspect ratios `/h0 = 5, a/h0 = 1 and non-
dimensional numbers Reh = 5, Cah = 1, the streamline patterns obtained for increasing
inclination angle: 3◦ ≤ α ≤ 45◦. As the inclination angle increases the free surface shape
undergoes a complex transformation in which the shape minimum is shifted in the flow
direction from the left to the right-hand side. For small angles, below 3◦, the free surface is
rather flat while its highest amplitude is reached when the free surface minimum passes the
mid-point in the x-direction, x = `/2, which is approximately the case for 10◦ < α < 12◦.
When the inclination angle is increased further the free surface flattens again and for
α > 20◦ both its shape and the internal flow structure remain essentially the same. In
accord with the amplitude of the free surface shape the size of the eddy in the vicinity of
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6.2 Gravity-driven steady film flow over periodic topography

Figure 6.18: The upper streamline patterns reproduce the lower experimental re-
sults of Wierschem et al. [278] using silicon oil Basildon-BC10 with the properties:
ρ = 924.3 kg/m3, ν = 11.6 mm2/s, σ = 18.87 mN/m. The geometry is given by λ = 10 mm,
A = 1 mm, α = 8◦ and H0 = 1 mm (left) / 2.2 mm (right). This translates to a Reynolds
number Reh = 5.66/55.67 and a Capillary number Cah = 0.036/0.165.

the substrate contour decreases in the range 3◦ < α < 12◦ and increases again for α > 12◦.
Due to the fixed Reynolds number the tilt angle of the eddy is approximately constant.
Figure 6.20 shows, for `/h0 = 5, a/h0 = 1, α = 8◦, Cah = 1, the impact of varying

Reynolds numbers (2 ≤ Reh ≤ 50) on the resulting flow structure. The transformation of
the free surface shape is similar to the above case but in contrast the internal eddy grows
with increasing Reynolds number and the eddy mid-point is shifted slowly in the flow
direction; also the tilt angle of the eddy separatrix increases until approximately Reh = 10
and then decreases again together with a flattening of the free surface. Although thin
gravity-driven film flow appears unstable at the free surface at a sufficiently high Reynolds
number, as indicated in Haas [117], the region below the free surface in the vicinity of the
eddy is heuristically stable and resolved correctly. These results are in accordance with
the work of Haas [117], Pollak and Aksel [193], Scholle et al. [228].
Moreover, Fig. 6.21 shows, for `/h0 = 5, a/h0 = 1, α = 8◦, Reh = 5, the impact

of varying Capillary numbers Cah = 1/0.1/0.01 on the resulting flow structure. The
numerical results suggest that there is little change for Capillary numbers Cah > 1 and
Cah < 0.01, that is most of the effect is in the range of investigation. The main effect
of lowering the Capillary number is a smoothing and flattening of the free surface; for
Cah = 0.01 a nearly flat surface is reached which is accompanied by a moderate increase
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of the eddy. Interestingly this also involves a slight shift of the free surface minimum in a
direction opposite to that of the flow, i.e. to the left-hand side, which is opposite to the
effect induced by increasing the Reynolds number or the inclination angle.

Figure 6.19: Film flow study with varying inclination angle: `/h0 = 5, a/h0 = 1, Reh = 5,
Cah = 1, α = 3◦/8◦/10◦/12◦/20◦/45◦.

Figure 6.20: Film flow study with varying Reynolds number: `/h0 = 5, a/h0 = 1, α = 8◦,
Cah = 1, Reh = 2/5/9/15/20/50.
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6.2 Gravity-driven steady film flow over periodic topography

Figure 6.21: Film flow study with varying Capillary number: `/h0 = 5, a/h0 = 1, α = 8◦,
Reh = 5, Cah = 1/0.1/0.01.

Reh = 0 Reh = 5 Reh = 12

Reh = 16 Reh = 18 Reh = 50

Figure 6.22: Thin gravity-driven film flow down an inclined substrate investigated in
terms of varying the Reynolds number: `/h0 = 4, a/h0 = 0.6, α = 15◦ and Ca→∞.

The FE code is in principle applicable for arbitrary substrate contour shapes. In Fig.
6.22 a study of film flow over a box-shaped contour at an angle of α = 15◦ degree and
different Reynolds numbers is performed. At low Reynolds numbers the eddies in the
corners are of equal size, with increasing Reynolds number the left one grows and the
right one shrinks until they both coalesce to form one big eddy. The highest amplitude
of the free surface occurs approximately at a Reynolds number of 12; afterwards the
free surface becomes smoother. It is observed that those Reynolds numbers causing the
strongest waviness of the surface (typically in the range of 5 < Reh < 20 for the present
application) also pose the most problems to the adaptive free surface trace algorithm,
frequently requiring adjustment of parameters and generally a high number of iterations;
this behaviour tends to get worse for decreasing Ca although one would expect that the
corresponding flattening simplifies the finding of the free surface. On the other hand,
stable Re and higher pseudo-stable Re generally lead to fast convergence.
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Figure 6.23: Impact of film thickness on free surface shape. Free surface profiles are
computed by the spectral method, Np = Nn = Ng = 6, for fixed a = π/5, α = 8◦,
Ca = 1/σ̂ = 2 and varying film height h = (2k − 1)π/10, k = 2, . . . , 7. The dotted red
line connects the surface shape minima (left). Comparison between the spectral method,
carried out for different mode numbers, and LSFEM for the above case h = 3π/10 (right);
the axis are unequally scaled.

The same numerical approach has been used to explore the problem of continuous
gravity-driven film flow down an inclined piece-wise planar and non-periodic substrate
in the absence of inertia, Scholle et al. [232]. Numerical solutions of the first integral
equations are compared with analytical ones from a linearised form of a reduced equation
set resulting from application of the long-wave approximation. The results obtained are
shown to: (i) be in very close agreement with existing, comparable experimental data
and complementary numerical predictions for isolated step-like topography available in
the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary
numbers and step heights/depths, becoming quantitatively similar when both are small. A
novel outcome of the formulation adopted is identification of an analytic criteria enabling
a simple classification procedure for specifying the characteristic nature of the free sur-
face disturbance formed; leading subsequently to the generation of a related, practically
relevant, characteristic parameter map in terms of the substrate inclination angle and the
Capillary number of the associated flow.
Now the spectral method is investigated which, in the implemented form, is confined to

Stokes flow and sinusoidal substrate contours. Fig. 6.23 (left) demonstrates the impact
of film thickness on the free surface contour. As the film thickness h is reduced5, the
amplitude of the free surface increases and the symmetry is increasingly broken; the latter
leading to a shift of the minimum of the free surface contour in a direction opposite to
the flow (to the left). A connection between the different shape minima (red dotted line)

5Here, again the wave length scaling without index h is used leading to Ca = ηun/σ with un according
to (6.12).

234



6.2 Gravity-driven steady film flow over periodic topography

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

a = 1
15π

−3 −2 −1 0 1 2 3−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

a = 1
5π

−3 −2 −1 0 1 2 3−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

a = 2
5π

−3 −2 −1 0 1 2 3−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

α = 10◦

−3 −2 −1 0 1 2 3−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

α = 30◦

−3 −2 −1 0 1 2 3−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

α = 60◦

−3 −2 −1 0 1 2 3−2

−1

0

1

2

3

Figure 6.24: Film flow parameter study with fixed h = π/2, Ca = 0.2. Upper row:
impact of substrate waviness on the free surface shape with α = 45◦ and a = π/15, π/5,
2π/5. Bottom row: impact of the inclination angle on the free surface shape with a = 2π/5
and α = 10◦, 30◦, 60◦.

is well approximated by a simple quadratic function. While for a film height of h = 1.3π
a nearly flat free surface occurs, the amplitude for h = 0.3π is already approximately 0.3,
which is more than half of the substrate amplitude a = π/5. The results were calculated
using a low number of modes, Np = Nn = Ng = 6, and obtained significantly quicker as
compared to the LSFEM; this is normally expected for a highly customised semi-analytic
code.

However, while a comparison between the spectral method and the LSFEM leads to
congruent results for near harmonic free surface shapes, which is normally the case for
sufficiently high film thickness, very thin films lead to a significant deviation between both
methods, as is shown for the case h = 0.3π on the right-hand side of Fig. 6.23. The
LSFEM result, obtained on a grid with approximately 50,000 nodes, can be considered
very accurate and it is observed that the spectral method with a minimal number of
modes, Np = 2, Nn = Ng = 1, deviates strongly; when increasing the number of modes
to Np = Nn = Ng = 6, the deviation near the endpoints ±π is marginalised while near
the free surface shape minimum, between −π/2 and 0, a severe discrepancy remains,
especially with respect to the precise minimum location. The latter does not change when
the number of modes is increased further to about 10. A problem of the spectral method
is that a high number of modes (> 10) leads to badly conditioned matrices which are not
solvable by standard 16 digit precision any more. Probably an increase of digits would
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lead to a better result, but also the approximation (6.36) could be responsible for the
persisting error. However, this is not investigated further here.
Finally some representative results obtained by the spectral method are shown. The

upper row of Fig. 6.24 demonstrates the impact of the substrate waviness on the free
surface shape. It is clearly seen that an increase in waviness also leads to an increase of
the free surface amplitude and a shift of the surface minimum in the opposite direction to
the flow (to the left). As expected, a flat substrate results in a flat, parallel free surface
while, for example, a substrate amplitude of a = 2π/5 results in a free surface amplitude
of 0.43 which is approximately 34% that of the substrate amplitude. The number of
calculated positive and negative modes is Np = 15 and Nn = Ng = 6. The bottom row
of Fig. 6.24 shows the impact of the inclination angle on the free surface, calculated with
the same number of modes as before.

6.3 Film flow over non-planar surfaces

Following the previous section on film flow over 2D corrugated surfaces it is important to
highlight that the first integral methodology is also amenable to curvilinear surfaces as
mentioned in Sec. 3.4.3. The advantages found for the 2D Cartesian case, i.e. that the
equations of motion can be described in terms of two real-valued auxiliary potentials which
allow for a convenient form of the dynamic boundary condition, extend to 3D domains
with an arbitrary symmetry; for example axis-symmetric flows described in cylindrical or
spherical coordinates. Although such flows are not considered in greater detail, an outlook
is given below of how such symmetries can be treated within the first integral methodology
in terms of the continuous coating of a hemisphere.

6.3.1 Steady axisymmetric flow over a hemisphere

When changing from Cartesian to spherical coordinates, the field equations (3.136), (3.137)
and the dynamic boundary conditions (3.138), (3.139) have to be replaced by (3.142),
(3.143) and (3.144), (3.145), respectively, as shown in Sec. 3.4.3. In principle, the least-
squares FE methodology, both the theoretical part in Ch. 4 and the implementation part
in Ch. 5 together with the multigrid solution strategy, Sec. 5.4, could be readily adapted
for spherical coordinates to account for full inertial NS flow; however, this is beyond the
scope of the thesis. Instead, the example of film flow over a hemisphere is considered in
the context of the lubrication approximation only.
Consider a steady axisymmetric flow over a hemisphere of radius r0, using spherical

coordinates r, ϑ, ϕ with the respective velocities u1 = ur and u2 = uϑ given by (3.141),
while uϕ = 0. The following asymptotic analysis makes use of assumptions that are usually
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common for other lubrication-like problems:

(i) The flow direction is predominantly in the polar direction, hence ur � uϑ.

(ii) Changes of the flow in the polar direction are much smaller than changes in the
radial direction, thus ∂ϑuµ � ∂ruµ, µ = 1, 2.

(iii) For a thin film it can also be assumed uµ/r � ∂ruµ.

(iv) Finally Stokes flow Re� 1 is assumed, allowing quadratic terms to be neglected.

Applying the above simplifications to equation (3.143) gives, to leading order:

∂r

[
2∂ϑΦ
r
− ηuϑ

]
= 0 , (6.49)

allowing for direct integration with respect to r, delivering:

∂ϑΦ = ηr

2 uϑ + rΦ1(ϑ) , (6.50)

with an unknown integration function Φ1(ϑ). Accordingly, ∂ϑΦ can be substituted into
(3.142), which to leading order yields:

∂r

[1
r

(
∂rΦ−

3η
2 ur

)]
= Φ′1(ϑ)

r2 ,

which can again be integrated, leading to:

∂rΦ = 3η
2 ur − Φ

′
1(ϑ) + rΦ2(ϑ) , (6.51)

and another integration function Φ2(ϑ). By computing the derivative of (6.50) with respect
to r and the derivative of (6.51) with respect to ϑ, the potential Φ is eliminated by the
difference ∂r(6.50)−∂ϑ(6.51):

η

2∂r(ruϑ) + Φ1(ϑ)− 3η
2 ∂ϑur + Φ′′1(ϑ)− rΦ′2(ϑ) = 0 .

Neglecting again ∂ϑur in comparison to ∂r(ruϑ), the equation can be integrated with
respect to r, leading to:

ηruϑ + 2r
[
Φ′′1(ϑ) + Φ1(ϑ)

]− r2Φ′2(ϑ) = Φ3(ϑ) ,

giving a third integration function Φ3(ϑ), and implying the following analytical form for
the velocity profile:

ηuϑ = rΦ′2(ϑ)− 2
[
Φ′′1(ϑ) + Φ1(ϑ)

]
+ 1
r
Φ3(ϑ) , (6.52)
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as a combination of powers rn with n = −1, 0, 1. Considering (3.141), the streamfunction
is obtained by integrating:

η
∂Ψ

∂r
=
[
−r2Φ′2(ϑ) + 2r

[
Φ′′1(ϑ) + Φ1(ϑ)

]− Φ3(ϑ)
]

sinϑ ,

leading finally to:

ηΨ =
[
−r

3

3 Φ
′
2(ϑ) + r2 [Φ′′1(ϑ) + Φ1(ϑ)

]− rΦ3(ϑ)
]

sinϑ+ Φ4(ϑ) , (6.53)

and the integration function Φ4(ϑ). Thus an asymptotic solution of the field equations
(3.142), (3.143) has been obtained with yet unknown functions Φ1, · · · , Φ4 which have to
be obtained from the boundary conditions: at the surface of the hemisphere, r = r0, the
no-penetration condition Ψ(r0, ϑ) = 0 and the no-slip condition uϕ(r0, ϑ) = 0 have to
be considered, while at the free surface, r = r0f(ϑ), the kinematic boundary condition
Ψ (r0f(ϑ), ϑ) = −V̇0 with volumetric flow rate V̇0 and the first integral of the dynamic
boundary condition (3.144), (3.145) have to be fulfilled. Overall a set of five equations for
five unknown functions, Φ1, · · · , Φ4 and the shape of the free surface, f(ϑ), is obtained as
provided in detail in Appendix D.2.1: by successive elimination of unknowns one ends up
with two equations (D.10), (D.13) for two unknown functions Φ2 and f .

It is useful to introduce the non-dimensional function:

F (ϑ) := Φ2(ϑ)
%gr0

, (6.54)

the Bond number Bo, the non-dimensional flow rate Q and the non-dimensional local film
thickness as:

Bo := %gr2
0

σ
, (6.55)

Q := 2ηV̇0
%gr4

0
, (6.56)

h(ϑ) := f(ϑ)− 1 , (6.57)

respectively, by which the two remaining equations (D.10), (D.13) can be written in the
non-dimensional form:

−
(2

3 + h

2

)
hF ′ − (1 + h)h′F − h′

2Bo + 1
2(1 + h)2h′ cosϑ = Q

2h2 sinϑ , (6.58)

1− h′′
2Bo −

h2

2 F
′′ − hh′

[
2F ′ + 1 + h

2 sinϑ
]

+
[
1 + h− hh′′]

[
F − 1 + h

2 cosϑ
]

= 0 , (6.59)

where f ′2 = h′2 is again neglected. Having solved the ODEs (6.58), (6.59), the streamfunc-
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(a)
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(b)

Figure 6.25: Film flow over a hemisphere: (a) film thickness vs. polar angle with velocity
profile uϑ at fixed positions ϑ and (b) resulting film shape.

tion (D.3) and the polar velocity (D.4) are obtained as follows, when Φ′′1 +Φ1 is eliminated
according to (D.5) and the above scaling (6.54)–(6.57) is applied:

2ηΨ
%gr4

0
=z2

[2
3(h− z)F ′ sinϑ− Q

h2

]
, (6.60)

2ηuϑ
%gr2

0
= 2z

1 + z

[(
z − 2

3h
)
F ′ + Q

h2 sinϑ

]
, (6.61)

where:
z := r − r0

r0
,

has been introduced as a non-dimensional coordinate, indicating the distance from the
surface of the hemisphere.

(a) Asymptotic solution for very thin films

Assuming that h′ � h� 1, all the terms in (6.58), (6.59) containing h′ are neglected and
only the terms of leading order with respect to h are maintained, leading to the simplified
set of equations:

−2
3hF

′ = Q

2h2 sinϑ , (6.62)
1

2Bo + F − 1
2 cosϑ = 0 , (6.63)

with the obvious solution:

F (ϑ) =1
2 cosϑ− 1

2Bo , (6.64)

h(ϑ) = 3

√
− 3Q

4F ′(ϑ) sinϑ = 3

√
3Q

2 sin2 ϑ
. (6.65)

A visualisation of this solution is shown in Fig. 6.25: as expected the film becomes thin-
ner for increasing polar angle and the appearance of the velocity profiles is close to the
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parabolic profile known from the Nusselt solution for film flow over an inclined plane.
It is remarked that the result for the film thickness (6.65) corresponds to that of [246],

as demonstrated in Appendix D.2.2. On the other hand the velocity profile (6.61) is not
exactly parabolic as assumed by Takagi and Huppert [246] and not even self-similar, i.e.
uϑ can not be written in a form hnf(z/h).

6.4 Unsteady Couette flow confined between two corrugated
rigid surfaces

The case of Couette flow for a Newtonian, incompressible fluid confined between two hor-
izontally aligned rigid surfaces, both corrugated sinusoidally and driven by the movement
of the upper surface with uniform velocity U0, the lower one remaining stationary, is ex-
plored, see Marner et al. [172]. The flow configuration is illustrated schematically in Fig.
6.26; the unsteady character of the flow being due to the geometry of the domain varying
with time. The geometry is defined in terms of the mean film thickness H0, the amplitudes
A and H1 of the lower and upper surfaces, respectively, and the wavelength λ for both
surfaces. External forces are not considered subsequently.
Exploration of the above unsteady Couette problem ties in well with an existing series of

experimental and numerical investigations on thin film and channel flows over periodically
occurring topography [170, 228, 234, 258], which is a topic of considerable interest in
diverse technical and industrial processes; for example, in coating [147] or lubrication [170,
217, 229] applications, heat exchangers and evaporators [245]. The existence of isolated or
periodically occurring topographical features as exemplified by the sinusoidal lower surface
contour in Fig. 6.26, can give rise to the formation of closed eddy structures [105, 239,
267, 276] leading to particle trapping and stagnant flow in separated flow regions. In the
subsequent investigation the reader’s attention is directed in particular to the inner flow
structure present within the valleys of the lower surface topography and to the mechanism
of mass exchange from the fluid in such valleys to the overlying bulk flow and vice versa,
as the channel thickness varies with time.
The effect of mass exchange together with the prospects of process enhancement have

been studied by several authors: for instance, Wierschem and Aksel [276] observed experi-
mentally the transport of inert tracers from fluid in the valleys of sinusoidal topography in
the presence of surface waves, enabled via a turnstile lobe mechanism; Horner et al. [129]
provides a comprehensive overview of this mechanism for modulated flow over a square
cavity, while Wilson et al. [279] investigated, both experimentally and theoretically, the
enhancement of transport and stirring between two rollers via lobe dynamics. Although
these research topics are in the main associated with flows involving a free surface, the
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λ

Figure 6.26: Schematic of the unsteady Couette flow configuration, showing the relevant
defining geometrical parameters.

turnstile lobe effect is purely driven by temporal changes of the geometry of the flow
domain, which can conveniently and more easily be studied in the model framework of
Couette flow, in which the geometry variance is artificially induced by specifying a non-
uniform moving upper surface; that is, one with a well defined topography profile as shown
in Fig. 6.26.

The boundary value problem as defined is formulated in (Sec. 6.4.1) and the effect
of mass exchange within the channel explored by means of two different self-contained
methods, highlighting in addition different ways in which the new reformulation of the NS
equations might be beneficially utilised. The first (Sec. 6.4.2) is based on a generalised
form of the Goursat representation (1.33), combined with a spectral Fourier discretization
of the holomorphic functions involved; the second (Sec. 6.4.3) is a FE procedure based
on a weak integral form of the field equations. The corresponding results are presented in
Sec. 6.4.4.

6.4.1 Equations of motion

All relevant quantities are scaled in terms of λ/(2π), U0, λ/(2πU0) and 2πηU0/λ for
lengths, velocities, the time and for the pressure, respectively. Consequently, the set of
relevant parameters is reduced to two non-dimensional amplitudes a, h1, a non-dimensional
film thickness h0 and the Reynolds number Re given by:

Re := %U0λ

2πη , a := 2πA
λ

, h0 := 2πH0
λ

, h1 := 2πH1
λ

;

accordingly, the scaled governing field equations (3.12), (3.13) read:

−Reu
2

2 = 4∂
2χ

∂ξ
2 , (6.66a)

−i
[
Re∂Ψ

∂t
− 4 ∂

2Ψ

∂ξ∂ξ

]
+ p+ Re ūu2 = 4 ∂

2χ

∂ξ∂ξ
. (6.66b)
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The two boundaries formed by the lower ξ = β(x) and upper ξ = ϕ(x, t) corrugated
surfaces are given by the functions:

β(x) := x− ia cosx , (6.67)

ϕ(x, t) := x+ ih0 − ih1 cos(x− t) , (6.68)

along which the following no-slip/no-penetration conditions have to be fulfilled:

u
(
β(x), β̄(x), t

)
= 0 , (6.69)

u (ϕ(x, t), ϕ̄(x, t), t) = 1 . (6.70)

As an initial condition the fluid is assumed to be at rest, that is:

Ψ
(
ξ, ξ̄, t0

)
= χ

(
ξ, ξ̄, t0

)
= 0 . (6.71)

With reference to the work of Scholle et al. [229] and Esquivelzeta-Rabell et al. [91],
who have shown for steady Couette flow generated with a flat upper driving surface that
inertial effects play a minor role only up to Reynolds numbers with a value of about 10,
by restricting the current investigation to Reynolds number Re ≤ 10 the nonlinear terms
in the governing field equations (6.66a), (6.66b) can be effectively omitted while retaining
the Reynolds number in the term involving the time derivative, leading to:

p− i
[
Re∂Ψ

∂t
− 4 ∂

2Ψ

∂ξ∂ξ

]
= 4 ∂

2χ

∂ξ∂ξ
, (6.72a)

∂2χ

∂ξ
2 = 0 . (6.72b)

Below, variants of time-dependent Couette flow, involving aspect ratios of a < h0 < 2π
and h1 � a, are considered.

6.4.2 Asymptotic model and method of solution

(a) Generalised Goursat form

According to earlier studies [217, 221], the streamfunction for the case of steady Stokes
flow with h1 = 0 can conveniently be written as:

Ψs = By2 + 2Re [R(ξ) + yQ(ξ)] , (6.73)

where the constant B and the two 2π-periodic holomorphic functions R and Q are deter-
mined by the boundary conditions. By identifying g0(ξ) = 2R(ξ) − iξQ(ξ) − Bξ2/2 and
g1(ξ) = iQ(ξ) + Bξ/2, it becomes obvious that (6.73) is a variant of the Goursat form
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6.4 Unsteady Couette flow confined between two corrugated rigid surfaces

(1.33), by which it is guaranteed that Ψs fulfils the biharmonic equation, ∆2Ψs = 0.
The streamfunction Ψ for unsteady flow with h1 > 0 is expected to differs from (6.73).

However, neglecting inertia and assuming small Reynolds numbers, Re < 1, it is proven, see
Appendix D.3.1, that ∆3Ψ = O

(
Re2

)
, motivating the following analytical ’triharmonic’

form for Ψ :
Ψ = By2 + 2Re

[
R(ξ, t) + yQ(ξ, t) + Rey

2

2 P (ξ, t)
]
, (6.74)

which is obviously a generalisation of (6.73) containing a third 2π-periodic holomorphic
function P and considering time-dependence for the three functions P,Q,R and the param-
eter B. The analytical form ∂χ/∂ξ̄ = f(ξ, t) is obtained directly from (6.72b). Inserting
this and (6.74) into the field equation (6.72a) and neglecting terms of order O

(
Re2

)
, the

following identity is implied for the pressure field:

p = 4f ′ − 2iB − iIm
{
−4Q′ − Re

[
2i
(
Ṙ− P

)
+ 2y

(
iQ̇+ 2P ′

)]}
, (6.75)

where the prime denotes a derivative with respect to ξ. Since the pressure has to be real-
valued, the first three terms 4f ′ − 2iB − iḂy2 have to equate to the complex expression
inside the curly parentheses, leading to:

4f ′ = 2iB − 4Q′ − Re
[
2i
(
Ṙ− P

)
+ 2y

(
iQ̇+ 2P ′

)]
+ p0(t) . (6.76)

By taking the derivative of the above equation with respect to ξ̄ and considering ∂y/∂ξ̄ =
i/2, the identity:

iQ̇+ 2P ′ = 0 , (6.77)

is obtained, revealing that the two complex functions P and Q take the form of a PDE.

(b) Perturbation approach and boundary conditions

According to the aforementioned restriction h1 � 1, the decomposition:

Q(ξ, t) = Qs(ξ) + h1Qu(ξ, t) ,

R(ξ, t) = Rs(ξ) + h1Ru(ξ, t) ,

P (ξ, t) = h1Pu(ξ, t) ,

of the three complex functions P,Q,R is applied, where the subscript ’s’ denotes the
corresponding steady flow (h1 = 0) and ’u’ the small perturbation invoked by the mov-
ing, slightly corrugated, upper surface. As a consequence, the complex conjugate of the
complex velocity field is likewise decomposed as ū = 2i∂Ψ/∂ξ = ūs + h1ūu with:

ūs := 2By + 2i
[
Rs
′ + yQs

′]+ 2ReQs , (6.78)
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ūu := 2i
[
Ru
′ + yQu

′]+ Rey
2

2 Q̇u + 2Re [Qu + Re yPu] . (6.79)

Considering the above, the complex conjugate of the no-slip/no-penetration condition
(6.69) at the lower surface can be decomposed into the two boundary conditions:

ūs
(
β(x), β̄(x)

)
= 0 , (6.80)

ūu
(
β(x), β̄(x), t

)
= 0 ; (6.81)

while at the upper surface a domain perturbation is given by (6.68) due to h1 appearing
explicitly. Via a Taylor expansion of the no-slip/no-penetration condition (6.70) with
respect to h1 and sorting terms by powers of h1, one ends up with the two conditions:

ūs (x+ ih0, x− ih0) = 1 , (6.82)

ūu (x+ ih0, x− ih0, t) = i
[
∂ūs
∂ξ
− ∂ūs

∂ξ

]
cos(x− t) . (6.83)

With reference to Appendix D.3.2, these two equations reveal a hierarchy: the inhomo-
geneity in equation (6.83) for the first order perturbation depends on the base solution.
Apart from this, the inhomogeneity is purely harmonic with respect to time. Due to the
linearity of the problem, the perturbation must be harmonic with respect to time too,
implying the following analytical form:

Pu(ξ, t) = p+(ξ) exp(it) + p−(ξ) exp(−it) ,

Qu(ξ, t) = q+(ξ) exp(it) + q−(ξ) exp(−it) ,

Ru(ξ, t) = r+(ξ) exp(it) + r−(ξ) exp(−it) ,

for the three holomorphic functions. By inserting the above forms into equation (6.77), it
follows that:

2p±′(ξ) = ±q±(ξ) . (6.84)

(c) Discretisation by Fourier decomposition

In line with the work of others [170, 217], the periodic holomorphic functions are repre-
sented by a truncated Fourier series as follows:

Qs(ξ) =
N∑

k=−N
Qk exp(ikξ) , q±(ξ) =

N∑

k=−N
q±k exp(ikξ) , (6.85)

Rs(ξ) =
N∑

k=−N
Rk exp(ikξ) , r±(ξ) =

N∑

k=−N
r±k exp(ikξ) , (6.86)
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up to order N ∈ N, reducing the problem to a finite set of complex coefficients and the yet
unknown constant B. For the two remaining functions p±(ξ), equations (6.84) are fulfilled
identically by:

p±(ξ) = p0 ∓ i
N∑

k=−N
k 6=0

q±k
2k exp(ikξ) , (6.87)

with integration constant p0. On inserting the above series representation (6.85)-(6.87) into
boundary conditions (6.80), (6.81) and (6.82), (6.83), a linear set of algebraic equations for
the coefficients Qk, Rk, q±k , r

±
k , p0 and B is obtained. Full details regarding the formulation

of this algebraic set of equations is provided in Appendix D.3.2.

6.4.3 Numerical model and method of solution

The starting point for a weak integral formulation is again the linear field equations (6.72a),
(6.72b). As the pressure is not of relevance for the problem under investigation, the
imaginary part only of (6.72a) is taken into account, namely:

Re
4
∂Ψ

∂t
− ∂2Ψ

∂ξ∂ξ
= − Im

(
∂2χ

∂ξ∂ξ

)
=: −Φ(ξ, ξ, t) , (6.88)

and from (6.72b) it follows directly that:

Im
(

∂4χ

∂ξ
2
∂ξ2

)
= ∂2Φ

∂ξ∂ξ
= 0 , (6.89)

in which the more convenient real-valued field Φ has been introduced, thus replacing the
complex-valued χ.

In order to solve for the modified field equations (6.88), (6.89), complemented by the
conditions (6.69)-(6.71), the implicit Crank-Nicolson time discretization scheme is com-
bined with a weak Galerkin FE formulation, resulting in a second order accurate method
in both space and time. Consequently, iteration in time, starting with Ψ0 = Φ0 = 0, is
accomplished according to:

Re
2∆tΨt+1 −

∂2Ψt+1
∂ξ∂ξ

+ Φt+1 = Re
2∆tΨt + ∂2Ψt

∂ξ∂ξ
− Φt , (6.90)

∂2Φt+1
∂ξ∂ξ

= 0 , (6.91)

and at each time step a spatial FE problem is solved based on the weak variational for-
mulation:

Find Ψ ∈ {Ψ ∈ H1(Ω) : Ψ = g1 on ∂Ω
}
and Φ ∈ H1(Ω),

such that for all v ∈ H1(Ω) and w ∈ H1
0 (Ω):
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Re
2∆t〈Ψt+1, v〉L2,Ω − 〈∇Ψt+1,∇v〉L2,Ω + 〈Φt+1, v〉L2,Ω = 〈g2, v〉L2,∂Ω + bt+1(v, Ψt) , (6.92)

b0 = 0 , bt+1(v, Ψt) = Re
∆t〈Ψt, v〉L2,Ω − bt , (6.93)

〈∇Φt+1,∇w〉L2,Ω = 0 , (6.94)

in which the standard L2-inner product is used and the standard H1 Sobolev space as
defined in Appendix B.1.2. H1

0 comprises H1-functions with zero boundary conditions.
Ω and ∂Ω denote the computational domain and its boundary, respectively; the func-
tions g1 and g2 define the space and time-dependent velocity boundary conditions for the
streamfunction.

U0

time-independent subdomain

Figure 6.27: Restriction of the problem to a time-independent domain.

In order to provide a complete description of the solution procedure it is necessary to
take a closer look at the boundary conditions. First of all, the no-slip and no-penetration
conditions at the lower, stationary surface lead to g1(x, β(x), t) = g2(x, β(x), t) = 0, in
which the arbitrary constant offset of the streamfunction is fixed. The periodicity of the
domain is incorporated simply by identifying the related nodes on the left and right-hand
side of the FE grid; therefore a separate periodic boundary treatment can be omitted.
In order to avoid complications with the upper moving bounding surface and any time-
dependent re-meshing issues, condition (6.68), (6.70) is approximated as a flat surface with
a constant hight of h0−h1, that is directly beneath the surface waviness. In this sense the
impact of the lower surface corrugations on the flow near the upper surface is neglected
so that for the approximation of Ψ close to the height h0 − h1, a geometry with h̃0 = h0,
h̃1 = h1 and ã = 0 is assumed, see Fig. 6.27.

An analytical approximation of the above reference problem can be derived under the
assumptions of lubrication theory and for moderate aspect ratios [217], giving:

Ψ(x, h0 − h1, t) ≈ U0y − Ψ0(x− t, h0 − h1) + c0 , (6.95)

Ψ0(x, y) = h0(h2
0 − h2

1)
2h2

0 + h2
1
Y 2(3− 2Y )− h0Y

2(1− Y )
(

1 + h1
h0

cos(x)
)
,

Y (x, y) := y + h1 cos(x)
h0 + h1 cos(x) .
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The boundary functions g1 and g2 can than be derived from (6.95) and its normal deriva-
tive. In order to fix the remaining constant c0, note that an additional constraint for
the vorticity ω is assigned to the upper surface as is similarly the case for all multiply
connected domains [250]. Denoting the upper boundary as Γu and the tangential and
normal velocity components with subscripts τ and n, respectively, then by integrating the
equation:

Re
[
∂uτ
∂t

+ uτ
∂uτ
∂τ

]
= −∂p

∂τ
+ ∂ω

∂n
,

over Γu, the condition:

− 1
Re

ˆ
Γu

∂ω

∂n
dΓu = ∂uτ

∂t

ˆ
Γu

dΓu +
ˆ

Γu

∂

∂τ

[1
2u

2
τ + p

]
dΓu = 0 ,

is established, which in the present context translates as the following condition on the
potential Φ:

0 =
ˆ

Γu

∂ω

∂n
dΓu =

ˆ
Γu

∂

∂n

[Re
4
∂Ψ

∂t
+ Φ

]
dΓu =

ˆ
Γu

∂Φ

∂n
dΓu .

6.4.4 Results and discussion

(a) Asymptotic Results

According to Appendix D.3.2(a) the original set of 4N + 3 algebraic equations is reduced
to the set (D.24) of 2N + 1 equations for the coefficients Qn, Rn;n > 0 and Q0. This
set of equations was solved for a = π/8 and h0 = π/4 using Maple at a truncation order
of N = 24. The remaining coefficients are determined according to (D.21), (D.22) and
(D.20). A plot of the resulting streamline pattern is shown in Fig. 6.28: note that the
presence of a closed eddy in the valley formed by the lower surface topography is in
complete accordance with prior results reported in literature [170, 217, 221, 229].

π
8

π
8

Figure 6.28: Steady Couette flow (h1 = 0) for a = π/8 and h0 = π/4, Re = 0: streamlines
revealing the associated flow structure. Stationary points are indicated by a bold dot.
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The coefficients q±k and r±k , by which the complex functions for the first perturbation
order are determined, result from solving the set of equations (D.25) and (D.27) given
in Appendix D.3.2(b). Again, Maple is used to solve the associated algebraic equation
set. Since the perturbation provides a small contribution only to the entire solution, a
truncation order of N = 12 proves sufficiently accurate.
As for the steady Stokes flow case, the same geometric parameters are chosen for a = π/8

and h0 = π/4; the additional parameter for unsteady flow, being the choice Re = 0.5 and
thus h1 = 0.02. The resulting instantaneous streamline patterns at four different times,

t = −π t = −π/2

t = 0 t = π/2

Figure 6.29: Unsteady Couette flow with a = π/8, h0 = π/4, Re = 0.5 and h1 =0.02;
instantaneous streamline patterns, at four different times, revealing the associated flow
structure.

t ∈ {−π,−π/2, 0, π/2}, are shown in Fig. 6.29: the time-dependence of the flow invoked by
the corrugated upper surface is considerable, especially regarding the shape and skewness
of the eddy, regardless of the small amplitude h1. Since during each time period the eddy
occupies slightly different regions of the flow domain, it is only to be expected that some
fluid particles which are located in the vicinity of the border between the eddy and main
flow, while trapped inside (outside) of the eddy at some point in time will be located
outside (inside) the eddy at some different point in time, due to an associated shift of the
separating streamline, or separatrix. Accordingly, the mechanism for material exchange
between an eddy and the main flow is captured qualitatively, see Fig. 6.30. In order to
study this feature in more detail, the movement of material particles has to be visualised
by path lines or sweep lines. This is conveniently performed numerically as described
below.

(b) Numerical results

FE calculations based on the weak formulation (6.92)-(6.94) were performed within a
Matlab framework, with a triangular mesh structure containing of the order of 40 thousand
elements and employing quadratic Lagrange elements for all test and solution spaces; one
time period, T = λ/U0, is discretized over 150 time steps.
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6.4 Unsteady Couette flow confined between two corrugated rigid surfaces

Figure 6.30: For the same geometry and conditions as in Fig. 6.29, the movement of two
single particles is tracked for several 2π-time periods; the red particle leaves the eddy and
is flushed away with the bulk flow while the blue one is approaching from the bulk flow
and then entrapped in the eddy.

(a) (b)

Figure 6.31: Couette flow between corrugated surfaces for the case of λ = 2π, a = π/4,
h0 = π and h1 = a/20 with a Reynolds number Re = 10. (a) Euclidean norm of the FE
solution vector of Ψ evolving with time; a time-periodic flow is established after a 2T time
period. (b) Separatrices confining the eddy region from the bulk flow for three different
states; these being minimum and maximum eddy shape in terms of surface area occurring
in the time-periodic regime as well as the steady-state eddy shape corresponding to the
case of h1 = 0.

First a representative example geometric configuration with λ = 2π, a = π/4, h0 = π

and h1 = a/20, for a Reynolds number of Re = 10, is considered. Figure 6.31a shows
that a time periodic flow field is established after just two time periods and that in this
time-periodic regime the size and shape of the eddy lies either side the equivalent steady
state configuration which exists when h1 = 0, see Fig. 6.31b. In this context the question
arises whether particles entrapped within the steady-state eddy can be made to escape
by being flushed away by the bulk flow. The subsequent investigations indicate that in
general a mass exchange, at least in both directions, cannot be expected for arbitrarily
small amplitudes h1 of the upper plate. To visualise material transport the time evolution
of sweep lines was computed, i.e. material lines consisting of the same fluid particles at
all times, their initial shape being conveniently defined by corresponding streamlines at a
particular time.
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Figure 6.32 shows results for the above geometry in more detail, in the form of a sequence
of snap-shots. At the time t = 0 the corrugated upper surface is considered to instanta-
neously accelerate to a velocity of U0 and then the flow is subsequently solved for over 20
time periods; the direction of flow is always from left to right. At t = 3.44T , representing
a state with a maximum eddy size, the instantaneous streamline pattern is captured in
terms of the ’initial’ sweep lines present, the material movement of which is then tracked
in the following sequence of plots; for each sweep line the advection equation dx

dt = u(x, t)
is solved for the trajectories x(t) via a fourth-order Runge-Kutta scheme. Each sweep
line is represented by between 500 and 1000 fluid particles. Moreover, the shaded area
represents the material time evolution of the fluid region which at time t = 3.44T is ini-
tially defined by the shape of the original closed steady-state eddy. From the deformation
of the sweep lines it can be seen that material from the maximum eddy is flushed away
with the bulk flow and fluid in the region of its bounding separatrix plunges lower down
the right hand side of the valley to displace the separatrix bounding the shaded former
steady-state area. Part of the fluid originally in the maximum eddy is entrained into the
shaded region; however, over the course of solution the material within the steady state
eddy region is not expelled and remains trapped. These observations clearly indicate that
small perturbations of the steady-state flow, interpreted as being due to the corrugations
in the upper plate, leave the material movement of the steady-state flow qualitatively in-
variant: a certain amount of fluid particles covering an area smaller than the maximum
eddy size but larger than the minimum eddy size, as expected fairly close to the shape
of the steady-state eddy, remain trapped; whereas fluid particles above this region are
flushed away.

In contrast to the above, the following example considers the effect of varying the
amplitude of the upper plate h1. Figures 6.33-6.35 show sweep lines for the configuration
λ = 2π, a = π/8, h0 = π/4, Re = 1 with different amplitudes h1 = 0.01, h1 = 0.03
and h1 = 0.09. As before, several time periods are allowed to pass before the flow can
be considered to lie in the time-periodic regime; in this case the streamlines are captured
at times when the eddy shape is closest to the steady state case h1 = 0, this being the
reason for the slightly different starting times for the three computations shown. The time-
dependent variation of channel thickness leads to periodically increasing and decreasing
eddy formation in the valley of the corrugated lower surface. As the solution proceeds,
material from within the initially closed eddy region is exchanged with the bulk flow, as
the separatrix detaches from the right-hand side of the valley and fluid is entrained into
the valley; at the same time fluid is ejected from the eddy into the bulk flow. In all
three cases material exchange takes place in both directions, from the bulk flow to the
eddy region and vice versa. For the case h1 = 0.01 the effect appears marginal, while
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6.4 Unsteady Couette flow confined between two corrugated rigid surfaces

for increasing amplitude h1 the amount of material exchange grows significantly. The
above results exhibit a variant of the “turnstile lobe effect”, as observed for instance by
Wierschem and Aksel [276] and Horner et al. [129], and therefore represent a qualitative
difference to the case of Fig. 6.32. This leads to the assumption that the amount of
mass exchange between the steady-state eddy and the bulk flow depends proportionally,
involving a geometry-dependent constant, on the energy induced by the perturbation
signal, e.g. by the corrugation of the upper surface; while a certain minimum energy is
necessary to initiate the process at all. Revealing in this context would certainly be that of
a study of different upper corrugated surface wavelengths in relation to the lower surface
contour. Furthermore, for the small Reynolds numbers considered in this example, i.e.
Re ≤ 10, the influence of the nonlinear terms that have been effectively neglected are
anticipated to increase slightly any effects due to a more pronounced asymmetry of the
eddy.
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6 Engineering applications

Figure 6.32: Sweep lines at different times for the case: a = π/4, h0 = π, h1 = a/20
and Re = 10; six snap-shot solutions obtained over 20 time periods. The initial shape
of the sweep lines at a state with maximum eddy size (t = 3.44T ) correspond to the
instantaneous streamline pattern; the shaded area represents the material time evolution
of the area defined at t = 3.44T from the eddy shape of the corresponding steady-state
flow.
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6.4 Unsteady Couette flow confined between two corrugated rigid surfaces

Figure 6.33: Sweep lines at different times for the case: h0 = π/4, a = π/8, h1 = 0.01,
Re = 1; the shaded area represents the particle distribution at successive times, that was
initially confined within the steady-state closed eddy (upper, top left-hand image) at the
onset of the unsteady behaviour. Mass transfer takes place between the eddy region and
the bulk flow and vice versa.
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Figure 6.34: Sweep lines at different times for the case: h0 = π/4, a = π/8, h1 = 0.03,
Re = 1; the shaded area represents the particle distribution at the times shown that were
initially contained within the steady-state closed eddy at the onset of unsteady behaviour
- see, uppermost top left hand flow pattern. Mass transfer takes place between the eddy
region and the bulk flow and vice versa.
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Figure 6.35: Sweep lines at different times for the case: h0 = π/4, a = π/8, h1 = 0.09,
Re = 1; the shaded area represents the particle distribution at the times shown that were
initially contained within the steady-state closed eddy at the onset of unsteady behaviour
- see, uppermost top left hand flow pattern. Mass transfer takes place between the eddy
region and the bulk flow and vice versa.
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7 Conclusions and future work

The work contained within this thesis contributes significantly to the topic and use of
potential field approaches in fluid mechanics, in particular viscous incompressible flow.
This is considered from two standpoints, with use being made of the classical Clebsch
and Goursat approaches to derive both a Lagrangian formalism for, Chapter 2, and a
first integral of, Chapter 3, the NS equations. To fully appreciate the significance of
the outcomes of the thesis one needs to view and understand them in the context of the
historical development of both approaches.
The Clebsch approach is rooted in the treatment of 3D inviscid flow and can be viewed

as a formal extension of potential theory, where the velocity field is assumed to be given by
~u = ∇φ, with Bernoulli equation arising as a natural consequence and which was indeed the
goal of Clebsch’s original work [64]; at the same time his velocity representation enabled a
useful variational derivation of the flow equations thus contributing to the historical debate
of how to embed fluid mechanics in the Lagrange formalism. The subsequent desire to
extend this to viscous flow is obvious and represents the first two major achievements of
the thesis:

• A new avenue to introducing a description of viscous fluid flow in the Lagrange
formalism based on a novel extended discontinuous Lagrangian is established [226,
232]; deviations from classical theory are shown to admit an interpretation of the
new equations of motion beyond thermodynamic equilibrium. Although not explored
further, such a Lagrangian is useful for the creation of variational solution methods
which normally exhibit advantageous features, from a numerical point of view and
the associated analysis of its convergence properties etc., compared to pure Galerkin
methods.

• A generalised Clebsch transformation for viscous flow is formulated [225], enabling
the construction of a first integral of the NS equations written in terms of a gen-
eralised Bernoulli equation complemented by convection-diffusion-like equations for
the potentials involved. These equations are solved for a well-known stagnation-point
flow but they could be readily solved within an appropriate numerical framework
and applied more widely.
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In contrast, the Goursat approach has its roots in the treatment of steady Stokes flow,
based on its biharmonic streamfunction formulation, and while restricted to 2D flow pro-
vides a general solution (a second integral) in terms of analytic functions, thus allowing
for a reduction of the problem dimension. An analogous complex-valued formulation for
2D inertial flow does not allow for the construction of an explicit general solution but was
shown by [199] to facilitate (much more complicated) implicit parametrized solutions. As
above, the desire to extend these ideas to unsteady 3D viscous flow with applications is
obvious, leading to the remaining two major achievements of the thesis:

• The inclusion of unsteadiness and/or moving to three dimensions required a funda-
mental abstraction of the above ideas:

– firstly, an existing first integral for 2D viscous flow [230] was identified as a
generalisation of the classical Goursat approach enabling it to be written in a
compact form [171];

– secondly, the introduction of an additional potential field enabled the incorpo-
ration of unsteadiness [172];

– thirdly, an exact first integral of the unsteady 3D NS equations, based on the
introduction of a real-valued tensor potential field, was derived [231]. The re-
sulting gauge freedoms allow for a versatile tuning of the equations for different
fields of application. A corresponding first integral of the dynamic boundary
condition, present in free surface flow applications, has been established. The
usefulness of the methodology is established via the solution, analytically and
numerically, of a hierarchy of well-known benchmark flow problems.

• A new FEM for the solution of 2D and axi-symmetric 3D flows, based on the first
integral of the NS equations and particularly suited to free surface problems, has been
constructed which incorporates an accompanying suitably customised and efficient
algebraic multigrid solution strategy. The method is theoretically analysed and
numerically validated prior to solving a number of challenging thin film flow problems
of topical engineering interest.

Note that, much of Part II remains to be published, the exception being the work
reported in Sec. 6.4 [172]. A directly related supplementary article that has appeared is
[232].
The above key outcomes are reviewed in greater detail below, following which an outlook

as to how they might be extensively utilised and extended further is provided.
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7.1 Summary and discussion of results

A direct comparison between the relative merits of the complementary Clebsch and Gour-
sat approaches followed in Part I of the thesis is not feasible at the present time, plus it
remains an open question as to whether the two can ever be merged in a unified frame-
work. The former aims at a description of viscous flow based on a Lagrange formalism by
thermodynamic means, leading at present to purely theoretical results and leaving many
open questions with respect to the related physics. By comparison the latter, a purely
mathematical integration procedure centred on tensor calculus, offers much greater scope,
utility and applications wise, such as in the framework of the numerical method developed
and employed in Part II to solve a range of thin film flow problems of engineering interest.

Clebsch-related potential approaches

Section 1.2.2 highlights that in contrast to Lagrangian variables the more common fluid
description in terms of Eulerian variables poses severe problems for the establishment
of a variational principle for viscous flow. Early investigations by Millikan [178] and
later Finlayson [99] proved that such a variational principle purely in terms of primitive
variables is impossible and thus a representation in terms of auxiliary potential fields
required. Furthermore, Scholle [218] provides a general explanation for the necessary use
of potential representations of the observables for different physical systems along the lines
of a rigorous analysis of the fundamental symmetries the Lagrangian has to fulfil, with
particular regard to Galilean invariance.
Eulerian principles have been proposed for the particular cases of Stokes flow by Helm-

holtz [124] and for ideal fluids by Clebsch [64], Lin [162] and Seliger and Witham [236], the
latter based on a Clebsch-like velocity representation, equation (1.70). By comparing the
latter with the original Clebsch formula (1.23) for isothermal flow, shows that any kind of
extension of the system, by additional degrees of freedom as well as by additional physical
effects, requires adjustment of the potential representation, see e.g. Wagner [271]. The
argument of the physical insignificance of such a potential based variational principle is
opposed to Salmon’s [213] remark that all the potentials are more or less related to either
thermodynamics or at least to “particle labels” of the Lagrangian fluid description.
Based on the above preliminary findings, Scholle [222, 223] suggested the Lagrangian

given by equation (2.4) for viscous flow by suitably supplementing the Lagrangian (1.68)
of [236] with additional terms from the Helmholtz principle (1.51), fulfilling all the re-
quirements given in [218]. In Chapter 2, Sec. 2.1, this Lagrangian is analysed revealing it
to be only partially successful: while the phenomenon “viscosity” occurs in a qualitatively
correct manner the equations of motion resulting from the variation of Hamilton’s prin-
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ciple differ significantly from the NS equations, including their differential order and the
occurrence of a further physical degree of freedom, the thermasy. Similar differences have
also been found in the case of compressible flow with pure volume viscosity by Zuckerwar
and Ash [288], and the appearance of an additional physically relevant degree of freedom,
in particular, appears also in the variational formulation of heat conduction proposed by
Anthony [11].

An unexpected feature of the modified equations is that the momentum density result-
ing as a canonical Noether observable, does not equal the mass flux density. The difference
between both, termed quasi-momentum density, needing to be explained physically; ac-
cording to [218], the quasi-momentum density could be due to contributions to the system’s
momentum balance beyond the scope of the continuum hypothesis on a molecular scale,
e.g. Brownian motion. This hypothesis is tested by means of several “benchmark prob-
lems” which, in some cases, provide qualitative agreement with the classical NS equations
including viscosity effects, but in other cases reveal the occurrence of strong deviations
and partly non-physical behaviour.

As a remedy for the observed problems and based on an analogy between quantum
mechanics and fluid mechanics the Lagrangian (2.4) has been refined, leading to a new
discontinuous Lagrangian (2.32). In a first step, calculation of the corresponding Euler-
Lagrange equations required the abstract extension of Lagrange formalism to discontinu-
ities which is investigated in detail in Sec. 2.2. Next, Secs. 2.3-2.4, it is proven via a
careful analysis that the dynamics resulting from Hamilton’s principle based on equation
(2.32) can consistently be interpreted as a generalisation of the theory of viscous flow
towards thermodynamic non-equilibrium, with recovery of the classical NS-equations and
the balance of inner energy when applying the limit ω0 →∞ to the resulting equations of
motion. The physical dimension of ω0 is a reciprocal of time and can be interpreted as a
relaxation parameter which is related to the frequency of a “stick-slip” friction mechanism
between fluid layers. As a striking feature, the application of the limit ω0 → ∞ directly
to the Lagrangian (2.32) fails; indicating that a variational formulation of viscous flow
cannot be achieved using a continuous Lagrangian.

It is important to note that the Euler-Lagrange equations resulting from the two La-
grangians (2.4, 2.32), the latter one derived in Sec. A.1.3 of Appendix A.1, can also be
interpreted as a first integral of the equations of motion; thus providing a generalisation of
the methodology of Sec. 1.2.1(a), indicating that the use of potential fields seems inevitable
for the construction of first integrals of the equations of motion in fluid mechanics.

Closely related to the above new Lagrangian, which involves the Clebsch variables from
the ideal flow principle [236], is the question of whether the Clebsch transformation itself
can be extended beyond its classical inviscid flow context. This is investigated in Sec. 2.5.
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The essential problem inhibiting the application of the Clebsch transformation to viscous
flow is due to the friction force density −ν∆~u in the NS equations which does not seem
to fit into the scheme (1.28). The problem of finding a decomposition of the form (1.28)
with prescribed Clebsch variables α, β is handled for an arbitrary vector field ~a using a
new approach. Consequently, a generalised Clebsch transformation is developed which
also covers the case of incompressible viscous flow.
Although the idea presented here follows similar objectives to [171, 230], the methodical

approach involving a generalized Clebsch transformation differs significantly and results
in a formulation which requires fewer potential fields in the 3D case; a notable benefit.
Depending on the individual flow problem, the equations may be simplified further by
utilising the combined gauge transformation (1.24) and (2.63) with functions f(α, β, t),
g(α, β, t) and h(α, β, t) fulfilling (1.25, 1.26) and F (α, β, t) = −∂f/∂t−g∂h/∂t. Associated
boundary conditions for the Clebsch variables can be derived straightforwardly from the
known boundary conditions for the observable fields, e.g. from the no-slip/no-penetration
condition at a solid surface at rest as: ~0 = ~u = ∇φ+ α∇β.

Goursat-related potential approaches

The principal aim of Ch. 3 was to derive a first integral representation of the full unsteady
incompressible NS equations, for use as an alternative starting point for the solution
of 3D viscous flow problems; in contrast to previous work the construction of the first
integral does not rely on Clebsch-like velocity representations but on a generalisation of
the Goursat-related approach as demonstrated in Sec. 1.2.1(b). Although representing a
novel achievement in itself, not unexpectedly the emphasis was broadened to encompass
a number of related topics; these have been explored and reported in tandem, in some
cases representing a future research area in its own right and thus left as such with a
constructive way forward having been provided.
The investigation starts with a generalisation of the methodology of Sec. 1.2.1(b) to 2D

unsteady flow using complex variables, Sec. 3.2; the corresponding representative formulas
are particularly well suited for spectral (i.e. Fourier) solution methods as used in Ch. 6.
A central finding is that the incorporation of unsteady effects is necessarily accompanied
by a more complex potential representation: instead of two real-valued potentials (Ψ and
Φ), in the unsteady case one complex-valued and one real-valued field (χ and Ψ) are
necessary. In tandem with the field equations (3.12)-(3.13), a first integral of the dynamic
boundary conditions present in free surface applications is established; which, in the steady
case, reduces to a simple pair of Dirichlet and Neumann conditions (3.28), (3.26) for Φ,
representing a key feature for the development of an efficient free surface FE solver as
described in Ch. 5.
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In Secs. 3.3 - 3.4 the first integral in its full 3D and unsteady form is derived in an
analogous fashion to Maxwell’s use of potential fields in developing his classical electro-
magnetic theory and governing equations [133]. A tensor potential is introduced as an
auxiliary unknown allowing the NS-equations to be recast as the divergence of a tensor
quantity set to zero. Integration leads to a tensor equation that splits conveniently into
symmetric and skew-symmetric parts. Following this it is shown that the gauge freedoms
present can be exploited in an astute way leading to a re-ordering of the first integral via
the elimination of mixed derivatives; this results in a more tractable equation set consisting
of a vector-valued linear inhomogeneous diffusion equation and a tensor-valued generalised
Poisson equation possessing the distinguishing feature of reduced non-linearity for both
unsteady and steady flows. Furthermore, traceless forms of the same are derived, leading
for unsteady (steady) flow to just eight (six) independent PDEs for eight (six) unknowns.
Steady Stokes flow leads to a further reduction still, to simply four independent PDEs for
four unknowns.

The inviscid (zero viscosity) limit of the first integral is investigated showing that, start-
ing with its re-ordered form, the Euler equations are recovered proving that it satisfies this
important subset together with the requirement that energy, momentum (in the absence
of external forces), angular momentum and helicity are all conserved. In addition, for the
case of steady flow it is shown in the context of finding a variational formulation how the
first integral can be used to define a Lagrangian enabling it to be written in a self-adjoint
form which can be useful in relation to representing particular flow problems.

Starting with the first integral, in Sec. 3.5 three well known 3D classical benchmark
viscous flow problems are solved. The boundary conditions required to do so are defined
and particularly those to be applied at a free surface are derived in full with the dy-
namic condition itself taking the form of a first integral. Two of the problems investigated
are amenable to analysis – that of (i) a translating disc in a viscous fluid and (ii) a non-
axisymmetric stagnation flow. In both cases the new approach leads to a non-conventional
but straight forward solution procedure yielding results consistent with counterparts avail-
able in the open literature. In addition, for the translating disc problem the well-known
potential representation of Papkovich and Neuber [185], known from linear elasticity the-
ory, is reproduced; validating the calculations carried out and demonstrating the use of
such a general formulation as a versatile means of representing viscous flow.

The third problem, that of viscous flow in a cubic domain, is considered from two
perspectives: (iii) as a classical lid-driven cavity; (iv) from the point of view of evolving
flow in periodic geometries synonymous with the DNS of viscous flow. Both situations
require a numerical approach to solve them. Since (iii) involves the satisfactory use of a
discrete version of the equation set defining the first integral – finite difference, volume or
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element, any one of which will suffice – attention was directed at this problem for validation
purposes. A finite difference methodology was used to obtain solutions for three different
Reynolds number flows, yielding results in very good agreement with, for example, the
corresponding predictions of Ding et al. [86]. A satisfactory outcome in itself, but just as
importantly the auxiliary boundary conditions for the tensor potential entries, derived in
Section 3.5.1(c), are shown to confirm the establishment of a system of equations that are
uniquely solvable. For (iv) the traceless form of the first integral proves to be extremely
beneficial since the pressure, in addition to typically causing regularity problems in the
numerical treatment [260] of evolving flows in non-periodic geometries, is not involved
pointing to an alternative formulation. By Fourier decomposition a set of uniquely solvable
quadratic equations for the coefficient functions is obtained, describing the time evolution
of the flow and therefore a promising starting point for future exploration.
Finally, in Sec. 3.5.5 a methodology for the treatment of film flows over non-planar

surfaces in the presence of symmetries is provided which is used later on in Sec. 6.3 for the
problem of thin film coating of a hemisphere. For this purpose the previously introduced
variational principle from Sec. 3.4.3 proves useful because the Lagrangian (3.74) is easily
amenable to coordinate transformation. As an outcome, the advantages found for the 2D
Cartesian case, i.e. that the equations of motion can be described in terms of two real-
valued auxiliary potentials which allow for a convenient form of the dynamic boundary
condition, extend to 3D domains with an arbitrary symmetry; for example symmetric
flows described in cylindrical or spherical coordinates. The Cartesian 2D case is recovered
as a special case.

A new FE flow solver based on the first integral

In Chapter 4, a theoretical description of a new FE method based on the first integral
for the case of the 2D steady NS equations is given. The method is centred on a least-
squares FE framework which essentially requires the set of equations to be of first order
to allow for practical function spaces; the corresponding reformulation is presented in Sec.
4.2. As a basis for further convergence analysis, which is mostly confined to the linear
Stokes case, a priori estimates for the analytic solution of the problem are necessary, that
is estimates of the solution against the right-hand side of the field equations as well as
the boundary conditions are sought. For a rather general class of elliptic boundary value
problems, the present one included, such estimates can be obtained from the well-known
theory of Agmon, Douglis and Nirenberg (ADN) [2], [3], which is summarised in Appendix
B.2 and applied to the first integral formulation in Sec. 4.3.1. The specific norms involved
in the ADN-estimate restrict the choice of norms for the least-squares minimisation: in
the present case the first integral system is classified as an elliptic system of Petrovskii
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type which proves to be particularly useful as it allows for an efficient minimisation in the
L2(Ω)-norm.

A weak formulation based on the minimisation of a least-squares energy functional is pre-
sented in Sec. 4.3.2; here, the ellipticity of the corresponding bilinear form is demonstrated
also and the existence of a unique weak solution derived via the theorem of Lax-Milgram.
In this context the question arises whether boundary conditions are either weakly incor-
porated in the least-squares functional or strongly incorporated via a restriction of the
finite element space. Although the first approach allows for a simpler analysis in the sense
that it results in a conforming FE discretisation, the second approach is favourable as one
primarily deals with Dirichlet type boundary conditions which are most easily treated in
an explicit way; as a consequence, neither weighting nor the construction of the otherwise
occurring boundary integrals is necessary. However, this comes at a price, namely the
precise arrangement of the domain discretisation, especially near the boundary, enters the
convergence analysis. At this point it becomes clear that a higher order FE domain dis-
cretisation should be accompanied by a corresponding high order boundary approximation
in order to retain the expected convergence rate; this is, for instance, ensured by iso- or
superparametric approaches. The subsequent verification of optimal H1(Ω)-convergence
in Sec. 4.3.3(a) mainly relies on the ADN-estimate and an approximation theorem which
estimates the principle error of interpolation in the associated FE space. Optimal L2(Ω)-
convergence, see Sec. 4.3.3(b), is technically more involved and utilises convergence and
regularity results from the Galerkin discretisation of a system of second order PDEs which
is naturally derived from the first order one (App. B.3). Possible problems and an exten-
sion of the convergence analysis to non-smooth domains with corners are discussed in Sec.
4.3.4 and finally the full non-linear problem is considered in Sec. 4.4. From the analysis
as a whole it can be concluded that optimal convergence rates, which are already known
for a number of different FE discretisations for different formulations of the NS equations
[107], are equally well obtained for the present least-squares first integral setting.

Subsequent to the theoretical results obtained above, Chapter 5 focus on the numer-
ical aspects of an efficient implementation providing details of the linearisation process,
least-squares weighting, matrix structure, conditioning and solution of the linear systems.
Initially, implementation details of the full non-linear problem are given in Sec. 5.1 pro-
viding the resulting matrix structure, split into linear contributions and those resulting
from Newton-linearisation depending on least-squares weighting factors. Firstly, the case
of Dirichlet velocity and potential boundary conditions is considered, then separately the
case of periodic boundary conditions which is relevant for the investigation of the shear
and film flow problems investigated in Chapter 6. In this context a simple free surface
iteration scheme is presented.
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For the construction of the system matrix and right-hand side an isoparametric con-
cept of triangular and quadrilateral elements of first and second order is applied; that is,
the matrix is constructed element-wise and the individual integrals are approximated by
element transformation and efficient numerical quadrature. Here, it is also argued why
isoparametric elements fulfil the discretisation Assumptions 4.6, necessary to obtain the
desired convergence results. In Sec. 5.2 conditioning of the linear systems is discussed and
found to be of order O(h−2), similar to that of a standard Laplace matrix.

The method is thoroughly validated in Sec. 5.3 by checking the theoretically predicted
convergence rates for different elements, grid types and weighting strategies for several
examples; these involve possible complicating features such as multiply connected domains,
irregular boundary points and various combinations of boundary conditions. Generally,
the results are found to be in agreement with the convergence theory of Chapter 4; also the
condition numbers are checked and found to behave as expected. Potential problems with
mass conservation are addressed and resolved by a combination of proper least-squares
weighting and the use of higher order elements. It was found that an overweight of the
continuity equation by a factor between 100 and 1000 versus 1 for the other equations, in
combination with at least second-order elements for all test and solution spaces, results in
a sufficient level of accuracy in relation to mass conservation even for comparatively small
numbers of elements.

As an ultimate test case, convergence of the Newton iteration and error behaviour
for increasingly refined grids is checked for the well-known benchmark lid-driven cavity
problem and compared to the solutions obtained using a standard formulation in terms of
primitive variables. It is found that the optimal convergence rates obtained for the linear
Stokes case also translate to the linearised equations in the Newton discretisation of the full
non-linear problem; in this respect the first integral form and the primitive variable form
of NS equations are comparable. The importance of ensuring adequate mesh refinement in
the corners forming the solution domain is highlighted; the consequence otherwise is that
the convergence rate suffers. Moreover, the reduced non-linearity of the first integral form
motivated an investigation of the Newton convergence speed for a wide range of Reynolds
numbers which was found to be comparable to the primitive variable case; the difference
being that the first integral formulation exhibits a slightly wider radius of convergence.

One of the significant advantages of the new method, compared to classical ones, is the
beneficial structure of the accompanying symmetric and positive definite systems, avoiding
the complication of having to solve saddle point problems [28]. It is clearly shown that the
solution of these systems can be achieved in an efficient and scalable way using multigrid
techniques: especially the algebraic multigrid (AMG) approach allows for the treatment
of linear systems resulting from large, sparse and unstructured grids. An adapted AMG
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approach for the first integral formulation is proposed and thoroughly tested in Sec. 5.4. It
is found that a suitable choice of the standard multigrid components, i.e. the coarsening,
interpolation, smoothing and cycling procedures, allows for a virtually optimal (linear)
scaling of the computational effort with the number of unknowns; this depends both on
the Reynolds number and the choice of least-squares weighting.

Engineering applications

In Chapter 6 several problems of engineering interest are solved using the above solution
methodology. These include the investigation and minimisation of friction between par-
allelly moving corrugated surfaces, material exchange between entrapped vortex regions
and the overlying bulk flow in a similar lubrication setting, gravity-driven film flow over
corrugated planar and over curvilinear substrates. These applications demonstrate the
flexibility and efficiency of the proposed method, even in the presence of periodic and free
surface boundary conditions.
A possible way to reduce hydrodynamic friction in a system consisting of lubricant oil

confined between two rigid surfaces translating relative to each other is contouring of the
normally flat surfaces with corrugations allowing for the controlled generation of eddies
which act like hydrodynamic roller bearing [217]. The impact of such contouring on the
friction developed is investigated for an idealised system of two-dimensional steady Couette
flow, Sec. 6.1, and a friction coefficient, (6.2), is defined which measures the decrease of
friction in a corrugated surface system compared to a flat surface system. The friction
coefficient κ can be calculated conveniently from the auxiliary potential fields involved in
the first integral FE formulation without the need to approximate velocity derivatives in
a post-processing step as would be necessary based on a primitive variable formulation.
For three models of increasing complexity, i.e. a lubrication approximation, Stokes flow

and solution of the full NS equations (in its first integral form), the effect on κ is investi-
gated in terms of the geometric parameters of the contoured surface. Also Reynolds num-
ber effects are investigated and generally the validity of the two reduced models checked.
It is observed that the lubrication approximation, for the gaps h0 under consideration,
underestimates the friction significantly while, for Re < 100, the Stokes solution gives a
good approximation. Given h0 as a technical constraint, a comparison of different surface
contours – resulting in the same fluid volume in the gap, which is ensured by variation
of the amplitude – reveals a theoretical optimum for a castellated shape. However, if the
surface contour exhibits increasingly sharp ridges – when the geometry is varied from a
sinusoidal contour in the direction of a castellated contour – the Reynolds number effect on
κ becomes important also and can no longer be neglected. The latter provokes a quicker
increase in friction for sharper ridges compared to smooth harmonic contours, so that for
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a certain critical Reynolds number (which is outside the considered range) a trade-off is
to be expected.

In Sec. 6.2 the first integral FE formulation of the full steady 2D-NS equations presented
in Chapter 5 is used to solve for gravity-driven film flow down an inclined corrugated
substrate; in doing so the specific remarks of Sec. 5.1.2 for periodic and free boundaries
are implemented. The FE method is complemented by a spectral Fourier method based
on the complex-valued representation of the first integral from Sec. 3.2. The latter is, in
contrast to the generic FE method, tailored to periodic film flow applications and more
suitable for possible stability analyses.

In order to verify both methods, the results obtained are compared to well-known exper-
iments by [234, 278] and found to be in excellent agreement. Further studies investigate
the impact of varying inclination angle, Reynolds number and Capillary number on the
free surface shape and the internal flow structure, when the substrate contour is either
sinusoidally or box-shaped. While the LSFEM delivers accurate results and streamlines
for a wide range of parameters, correctly reflecting the complex interplay between the
two non-linearities due to convection and curvature, the series solution of the spectral
method is observed to diverge for streamlines approaching the contoured bottom surface;
leading to inaccurate resolution of eddies in the vicinity of the corrugations and generally
to streamlines which are only accurate close to the free surface. Similar behaviour was
observed by Scholle [219] but seems unproblematic as long as only the free surface shape
is sought. However, it is found that for free surface shapes which deviate from a harmonic
shape too much, the error of the spectral method is still comparatively large; this could
be due to the Taylor approximation (6.36) or due to conditioning problems being typical
for such Fourier approaches.

In addition to film flow over planar corrugated surfaces, an outlook as to the treatment
of coating flow over curvilinear surfaces is also given in Sec. 6.3, based on the variational
description induced by the Lagrangian (3.74). In particular, coating flow over a hemi-
sphere is investigated and, although the methodology of Chapters 4 and 5 could equally
well be extended to spherical coordinates (compare formulas (3.136)-(3.139) with (3.142)-
(3.145)), considerations are confined to the lubrication approximation and an asymptotic
analytic solution for very thin films. The corresponding result for the film thickness (6.65)
corresponds to that of Takagi and Huppert [246], as demonstrated in Appendix D.2.2
while, differently, the velocity profile (6.61) is not exactly parabolic as assumed by [246]
nor is it self-similar.

As an important outcome of the latter study, it is found that all the advantages present
for Cartesian 2D flow, i.e. the description of the first integral equations in terms of only
two scalar quantities (Ψ and Φ) and the dynamic boundary condition as a pure gradient
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condition on Φ, similarly extend to 3D axisymmetric film flows; this broadens the range
of applicability significantly.

A particular aspect of lubrication-like flows involving corrugated surfaces is the process
of material exchange between the fluid inside the valleys of the corrugations and the bulk
flow which, in some applications, is desirable to be controlled for instance to achieve a
homogeneous mixture of the lubricant. This is investigated in Sec. 6.4 using an unsteady
2D Couette flow model in a channel bounded by two sinusoidally corrugated surfaces.
Calculations are carried out by means of a semi-analytical and a purely numerical method
which are adapted, in comparison to Chapter 5, to deal with the time-dependency.
For the analytical approach a generalised Goursat form with a third holomorphic func-

tion is established for the streamfunction, which more generally can be written in the
form: ψ = Re

[
g0 (ξ) + ξ̄g1 (ξ) + Re ξ̄2g2 (ξ)

]
. It is noted that although this elegant exten-

sion of the classical complex variable method is not generally applicable, it can at least
be applied to flow problems with negligible non-linear inertial effects and small Reynolds
numbers taking into account the remaining unsteady effects. Asymptotic analysis reveals
a time-dependent eddy structure invoking a material exchange, a topical subject of re-
search in relation to coating and film flows. Via numerical studies, based on implicit
Crank-Nicolson time discretization in combination with a weak Galerkin FE method, this
material exchange is revealed in detail by visualisation of sweep lines, showing the as-
sociated flow structure via a sequence of snap-shots of the ensuing motion. As a main
outcome of the investigation it is concluded that the observed “turnstile lobe” effect is
induced purely geometrically, even when inertial effects are absent, and can be controlled
by the relative speed of the surfaces and the geometrical properties of the corrugation
contour.

7.2 Suggestions for future work

The above summary and discussion of results demonstrate that the research begun in
this thesis can be related to a number of very different fields, such as variational calculus
and particularly the classical Lagrange formalism with possible extensions to discontinu-
ities involving also distribution theory. Certainly the stick-slip friction law inherent in
the new variational formulation for viscous flow is somehow equivalent to a stochastic
representation (allowing for an analysis from a completely different viewpoint). Related
to variational principles is the Noether theorem, symmetry analysis and gauge theory in
the broadest sense. All the research involving Clebsch-like representations is also deeply
related to topological fluid mechanics and some of the findings would most likely have
their natural description in the field of differential geometry. The more applied FE related
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analysis is based on PDE theory, a wide spectrum of functional analysis and not least
numerical methods.

Considering this, the thesis provides a number of important novel ideas, sketches possible
utilisation of the same and in particular tries to cross-link the ideas with a focus on
overview. Although the research presented is clearly formative many avenues to further
development are raised throughout the chapters; a selection of specific avenues for future
research are mentioned explicitly below.

Certainly, the discontinuous variational principle for viscous flow presented in Chapter
2 requires further verification. The question arises as to whether the occurrence of dis-
continuous interfaces inside fluid flow is an artefact of the model or if such phenomena
really exist on a microscopic scale. Although for large ω0 the discontinuities are physically
reduced to fluctuations on a micro scale, it would be of great interest future work wise
to explore further the dynamics of the discontinuous interfaces and the induced physical
effects beyond thermodynamic equilibrium for various flow geometries. It is further noted
that the approach is deeply related to the stochastic variational formulation of Arnaudon
and Cruzeiro [13, 14], see also [148], which is worth a detailed comparison. Here, the
question arises whether a stochastical description provides tools of analysis which are oth-
erwise unamenable. From a less methodical and more physical point of view, a comparison
to Constantin et al. [71] (formula 2.12) – see also the work of Feireisl and Vasseur [94]
related to a fluid mechanics model proposed by Brenner [47] – would be illuminating. In
the latter a new approach to continuum fluid mechanics is proposed, based on the con-
cept of two different velocities: the mass-based (Eulerian) velocity um derived from the
classical notion of mass transport, and the fluid-based (Lagrangian) volume velocity u as-
sociated to the motion of individual particles (molecules); the resulting equations exhibit
similar additional terms compared to the NS equations as observed in (2.43), (2.44) and
are explained by thermodynamics.

Generally, by evaluating the dynamics induced by the Lagrangian (2.32), it has been
demonstrated how Lagrange formalism applies to physical problems with discontinuities.
Independent of the particular problem of viscous flow, the general formalism specified in
Sec. 2.2 may also be a valuable mathematical tool for embedding various discontinuous
phenomena into the Lagrange formalism, such as phase boundaries between immiscible
fluids, propagating shock waves in gaseous media, flame fronts, detonation shocks and also
interfaces in solids like micro cracks [79] and grain boundaries. Discontinuities also occur
in some optimum control problems [120]. The extended formalism can be utilised for FE
simulations of such phenomena without the imperative of considering the related matching
conditions explicitly, since they result automatically from the respective Lagrangian. It is
therefore realistic to expect an improvement of, for example, numerical algorithms.
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First integrals of the type described in Sec. 2.5, related to the generalised Clebsch trans-
formation, may be relevant from the point of view of initiating new simulation methods in
fluid dynamics: apart from the analytic example provided in Sec. 2.5.2 the Clebsch trans-
formation has already been proven to be useful for solving flow problems by Prakash et al.
[195] in the case of inviscid flow, see also Cotter and Holm [74] and related work. There
is therefore a realistic perspective for extending the method to many other viscous flow
problems. It should be stressed that the generalised Clebsch transformation developed
here applies to an arbitrary vector field ~a and can therefore be generalised to, for example,
non-Newtonian fluid flows and non-conservative external forces, as well as to the Navier-
Stokes-Duhem equations in order to include phenomena occurring in compressible flow
such as trans- and hypersonic flows, sound and shock waves. Finally, Clebsch variables
apply to dislocations in crystals [224] based on an analogy between vortices and disloca-
tions [205], giving rise to a dynamic theory of dislocations. Based on these considerations,
perspective exists for establishing a field theory of plasticity.

With respect to Chapter 3 it is clear that there remains considerable scope for further
advancement, since the principle focus of the present work has been the new approach
and theory underpinning the establishment of the first integral and its subsequent valida-
tion via the solution of a number of benchmark test problems; the investigation of a 3D
problem involving the presence of a free-surface, such as that of thin film flow over sur-
face topography [7, 267], represents an obvious avenue to explore. For this purpose a FE
method of the form described in Chapters 4 and 5 could be established but, considering
the difficulties with the numerical method in Sec. 3.5.3, the most suitable gauge for the
underlying first integral equations is not obvious. However, note also that the numerical
schemes suggested in Chapter 3 and particularly the LSFEM described in Chapters 4 and
5 describe only one possible way of utilising the new formalism while completely different
opportunities exist, for instance, along the lines of Ranger [198, 199] whose work is rather
unrecognised.

The new approach promises to be other than just useful for deriving different existing
potential formulations from within a unified framework but able to serve as a source for
further representative formulas with reference to specific applications, as sketched out for
the case of unsteady flow involving periodic boundary conditions. Such formulas can serve
as the starting point for both new analytical solutions and numerical techniques; in this
sense the variational principle established in Section 3.4.3 points a promising way forward
for further research. An interesting feature of this gauge variant is, that general 3D coating
flows in the presence of symmetry can be handled in a similarly elegant way as the 2D
Cartesian case. In this respect, via the full solution of (3.142)-(3.145) the calculations for
flow over a hemisphere in Sec. 6.3 could be extended to full NS flow and various other
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surfaces with symmetry.
Generally, the numerical method described in Chapters 4 and 5 could be optimised in

various ways. First of all, a further improvement in performance is desirable, i.e. with
respect to the precise multigrid components and a more sophisticated parallelisation strat-
egy; this should be accompanied by a more detailed benchmark test involving comparisons
to a standard code based on a primitive variable formulation and also to other codes based
on first-order formulations of the NS equations; the latter being more natural competi-
tors. In contrast to previous benchmark tests, what follows should focus on free surface
applications, which is a major field of application for the first integral method. The most
obvious extensions of the 2D code physical-wise would be multilayer flows, which can be
treated completely analogously to the one-layer case; also thermal effects can be coupled
to the equations in a way which is no more complicated than in classical implementations
based on primitive variables. In contrast, a possible extension to non-Newtonian material
laws would be more involved.
The above generalisations could also be used to refine the studies in Chapter 6 which

are, so far, based on rather strong and unrealistic assumptions (steady, isothermal and
incompressible Couette flow as a hydrodynamic friction model). Moreover, the remaining
error in the semi-analytic film flow method of Sec. 6.2.1 should be investigated, before
the method could be used as a basis for stability studies. The work on the turnstile lobe
problem could be continued in several ways. In particular, future studies are planned that
will include the non-linear inertial terms in the field equations and utilise the approach
to explore free surface film flows making use of the elegant reformulation (3.19, 3.23) of
the kinematic and dynamic boundary conditions in order to find solutions for solitary
surface waves. Analysis of the stability of steady-state base flows, subject to a small
disturbance away from equilibrium, is a second attractive research area for application of
the field equations (3.12) and (3.13). Also, since they are in complex form they represent
a suitable mathematical framework from which to calculate the time evolution of small
wave-like perturbations; in combination with the complex form (3.23) of the dynamic
boundary condition, the onset of surface waves in film flows [234] can be explored.
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A.1 Variational principle for viscous flow - Calculations

A.1.1 Symmetries and associated Noether balances of (2.4)

In article [218] a general analysis is provided concerning the analytical structure of La-
grangians in continuum theories fulfilling invariance with respect to the full Galilei group.
In the same paper a general scheme for Lagrangians is constructed. Using Noether’s the-
orem, canonical formulae give rise to the identification of the relevant observable fields
like mass density and flux density, momentum density, stress tensor, energy density and
Poynting vector.
The analysis given in [218] is rigorously applied to Lagrangian (2.4): for simultaneous

invariance with respect to time and space translations and Galilei boosts, a collective
symmetry criterion, the duality criterion:

`

(
Ψ i,

◦
Ψ i,∇Ψ i + 1

t
~Ki
(
Ψ j
))

= `
(
ψi, ψ̇i,∇ψi

)
, (A.1)

has to be fulfilled, where:

ψ̇ = ∂ψ

∂t
,

◦
Ψ =

{
∂

∂t
+∇ζ · ∇

}
Ψ ,

ζ = ~x 2

2t ,

are the conventional time derivative, the dual time derivative and the generating field,
while:

ψi = Ki
(
Ψ j , ζ,∇ζ

)
, (A.2)

~Ki
(
Ψ j
)

= lim
ζ,∇ζ→0

∂Ki

∂(∇ζ) , (A.3)

is the dual transformation and the corresponding infinitesimal generator. In the case of
Lagrangian (2.4) the dual transformation takes the form:
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~u = ~U +∇ζ , ϕ = Φ+ ζ ,

α = A , β = B , (A.4)

% = P , s = S ,

ϑ = Θ ,

fulfilling criterion (A.1) as required. One consequence of which is that the mass balance:

∂%

∂t
+∇ · (%~u) = 0 , (A.5)

is automatically fulfilled and %~u is identified as the mass flux density. In the following
the computation of the canonical stress tensor, energy density and Poynting vector from
Noether’s theorem is skipped, with the focus on the canonical momentum density which
[218] takes the form :

~p = − ∂`

∂ψ̇i
∇ψi = % [∇ϕ+ α∇β − s∇ϑ] , (A.6)

and need not to be identical to the mass flux density %~u. Since the dual transformation
formula (A.4) contains a real ∇ζ-dependence, the relation:

~p = %~u+ ~p ∗ , (A.7)

is given with quasi-momentum density:

~p ∗ = − ∂

∂t

[
∂`

∂ψ̇i
~Ki

]
−∇ ·

[
∂`

∂∇ψi
~Ki
]

= −∇ ·
(
ϑ

T

[
2ηD + η′ (∇ · ~u) 1

])
. (A.8)

Hence, a striking feature of Lagrangian (2.4) is the difference between mass flux density
and momentum density which is in contrast to classical continuum mechanics.

A.1.2 Steady solution of (2.8-2.10) for Poiseuille flow

Considering the flow geometry ~u = u(y)~ex and assuming time-independent thermasy ϑ,
the evolution equation (2.10) takes the form:

u(y) ∂
∂x

(
ϑ

T

)
= 1 , (A.9)

which obviously implies the general solution (2.14). Making use of (A.9), equations (2.8)
read:

∇p
ν%0

=
{
u
∂

∂x
+ u′~ey ⊗ ~ex

}[
u′ (~ex ⊗ ~ey + ~ey ⊗ ~ex)∇

(
ϑ

T

)
+ ϑ

T
∆~u
]
− 1

2u
′2∇

(
ϑ

T

)
,
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= uu′
∂

∂x

{
~ex

∂

∂y
+ ~ey

∂

∂x

}
ϑ

T
+ u′′~ex +

[
u′2

∂

∂y

(
ϑ

T

)
+ u′u′′

ϑ

T

]
~ey −

1
2u
′2∇

(
ϑ

T

)
,

=
[
u′′ − 3u′2

2u

]
~ex + ∂

∂y

[
u′2

2
ϑ

T

]
~ey .

Taking the component in the y-direction, it follows that:

p = η
ϑ

T

u′2

2 + f2(x) ,

for the pressure (η = %0ν) with integration function f2(x). Inserting this into the x-
direction equation, leads to:

f ′2(x)
η

= u′′ − 2u
′2

u
.

Since the left-hand side of the above equation depends on x only and the right-hand side
on y only, both sides are constant, i.e.:

f ′2(x)
η

= −K ,

u′′ − 2u
′2

u
= −K ,

with K > 0. Hence, the pressure can be written as:

p = p0 − ηKx+ η
ϑ

T

u′2

2 , (A.10)

while the velocity profile has to fulfill the nonlinear ODE:

uu′′ − 2u′2 +Ku = 0 . (A.11)

Via the substitution g(y) = 1/u(y), equation (A.11) simplifies to the second order ODE:
g′′ −Kg2 = 0, which after multiplication with g′ becomes integrable:

d
dy

[
g′2

2 −K
g3

3

]
= 0 ,

implying the first order ODE g′2−2Kg3/3 = C. The integration constant, C, is evaluated
at the middle of the channel, y = h/2, where the velocity is a maximum, u(h/2) = umax,
and therefore u′(h/2) = 0, implying: C = −2K/(3u3

max). Hence, after re-substituting
u = 1/g:

u′ = ±
√

2K
3

[
1− u3

u3
max

]
u ,

results as a nonlinear first order ODE for the velocity profile, with the positive sign valid
for 0 ≤ y < h/2 and the negative sign for h/2 < y ≤ h. Using separation of variables, the
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above ODE can be solved, with the solution for y ≤ h/2 given implicitly as:

y =
√

2u
K

2F1

(1
6 ,

1
2; 7

6;u3/u3
max

)
, (A.12)

umax =
9Γ(2

3)2Γ(5
6)2

8π3 Kh2 , (A.13)

with Gaussian hypergeometric function 2F1.

A.1.3 Euler-Lagrange equations of Lagrangian (2.32)

The Lagrangian (2.32) is based on the following fields: the velocity ~u, the three Clebsch
variables Φ, α, β and the complex field of thermal excitation χ. The associated Euler-
Lagrange equations are computed according to (2.36). First, variation with respect to the
Clebsch variable Φ delivers the continuity equation:

∇ · ~u = 0 . (A.14)

As a consequence the identity∇·(ξ~u) = ~u·∇ξ, which is fulfilled for any field ξ, is considered
subsequently. Next, variation with respect to the two remaining Clebsch variables α and
β lead to the transport equations:

Dtβ = 0 , (A.15)

Dtα = 0 , (A.16)

after simple mathematical manipulation. By variation with respect to the velocity ~u:

%0~u+ %0
ν

ω0
∇ ·

[
i ln

√
χ̄

χ
2D
]

= %0

[
∇Φ+ α∇β + 1

ω0
Im (χ̄∇χ)

]
, (A.17)

is obtained. Finally, the Euler-Lagrange equation related to variation with respect to χ̄
leads to the evolution equation:

Dtχ+ iω0χ = ν

2χ̄trD2 , (A.18)

for the thermal excitation; variation with respect to χ̄ delivers the complex conjugate of
(A.18).

A.1.4 Equations of motion

The Euler-Lagrange equations (A.15)-(A.18) are a first integral of the equations of motion,
i.e. the latter can be obtained from their differentiation as follows. Considering the
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identities:

Dt

[
∇Φ+ α∇β + Im χ̄∇χ

ω0

]
= ∇

[
DtΦ+ αDtβ + Im χ̄Dtχ

ω0

]
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[
∇Φ+ α∇β + Im χ̄∇χ

ω0

]

+ Dtα∇β −Dtβ∇α−
2
ω0

Im(Dtχ∇χ̄) ,
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[
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χ
2D
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= 2DIm∇χ
χ

+ i ln
√
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χ
[∇ (∇ · ~u) + ∆~u] ,

iDt ln
√
χ̄

χ
= Im

(Dtχ

χ

)
,

and the Euler-Lagrange equations (A.14)-(A.18), the material time derivative of (A.17)
reads:

Dt~u− ν∆~u+ ν

ω0

[
i ln
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χ
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2DIm∇χ
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χ̄

χ
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, (A.19)

where the pressure p is, according to:

p := −%0

[
DtΦ+ αDtβ + Im χ̄Dtχ

ω0
− ~u 2

2 + χ̄χ+ V − ν

iω0
ln
√
χ̄

χ
trD2

]
= `E.L. ,

given as the Lagrangian evaluated for real processes, as is well-known from the classical
literature [240]. Finally, a balance for the inner energy, c0T = χ̄χ is derived from (A.18)
according to:

c0DtT = Dt(χ̄χ) = χ̄Dtχ+ χDtχ̄ = νtrD2 . (A.20)

A.1.5 Derivation of the production condition (2.42) using distributions

Within the theory of distributions a very elegant way is provided by which the generalised
formalism for discontinuous Lagrangians can be understood in terms of conventional La-
grange formalism. Under the same assumptions made in Sec. 2.2, a continuous reference
Lagrangian is defined by:

`c (· · · , ϕ) := ` (· · · , ϕ)−
NS∑

n=1
[[` (· · · , ϕn)]]H(ϕ− ϕn) , (A.21)

where H(x) is the Heaviside function giving 0 for x < 0 and 1 for x ≥ 0. Equation (A.21)
defines a decomposition of the entire Lagrangian into a continuous part and a sum of
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discontinuities; the derivative of it with respect to ϕ gives:

∂`

∂ϕ
= ∂`c
∂ϕ

+
NS∑

n=1
[[` (· · · , ϕn)]] δ(ϕ− ϕn) , (A.22)

where δ(x) denotes Dirac’s delta function. Using this, the Euler-Lagrange expression ELN
defined according to (2.36) with respect to ψN = ϕ can be defined across the entire domain,
leading to:

ELN = ∂`

∂ϕ
− ∂

∂t

(
∂`

∂ϕ̇

)
−∇ ·

(
∂`

∂∇ϕ
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= ∂`c
∂ϕ
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)

︸ ︷︷ ︸
:=ELc

N

+
NS∑

n=1
[[` (· · · , ϕn)]] δ(ϕ− ϕn) .

As a consequence of the above decomposition, the first term in equation (2.38), for ψN = ϕ,
results in:

t2ˆ

t1

NS∑
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˚
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ELN δϕdV dt =
t2ˆ
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˚
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ELc
N δϕdV dt+
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˚

V

[[`]] δϕ δ(ϕ− ϕn)dV dt .

(A.23)
In order to evaluate the integrals on the right hand with delta functions, a representation
of dV in terms of local coordinates, dV = dξdS, is used where dS is the surface element of
the interface Sn and dξ is related to the direction perpendicular to Sn. Via the substitution
dϕ = |∇ϕ|dξ, the identity:

˚

V

[[`]] δϕ δ(ϕ− ϕn)dV =
˚

V

[[`]] δϕ
|∇ϕ| δ(ϕ− ϕn)dϕdS =

¨

Sn

[[`]] δϕ
|∇ϕ| dS ,

is obtained, giving (A.23) the more convenient form:

t2ˆ

t1

NS∑

n=0

˚

Vn

ELN δϕdV dt =
t2ˆ

t1

˚

V

ELc
N δϕdV dt+

t2ˆ

t1

NS∑

n=0

¨

Sn

[[`]]
|∇ϕ|δϕdSdt . (A.24)

Finally, considering the identity (2.39) and the vanishing of δϕ at t = t1,2, the variation
of the action integral, (2.38), turns out to be:

δI =
t2ˆ

t1

˚

V

ELc
i δϕdV dt+

t2ˆ

t1

NS∑

n=0

¨

Sn

{
~n ·
[[

∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]]
+ [[`]]
|∇ϕ|

}
δϕdSdt , (A.25)
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which implies, next to the well-known Euler-Lagrange equation with respect to ϕ, the
production condition (2.42).

A.2 Three-dimensional first integral

A.2.1 Recovery of the 2D form as a special case

In the following, proof is given that the equations derived in [171, 172] for 2D flow uniquely
result from equation (3.55) as a special case of general 3D flow. For steady flow with
∂tΨn = 0 equation (3.49) is fulfilled via the identity ϕn = ηΨn, while the auxiliary vector
field defined by (3.57) reads:

Aj = ∂kãkj + εjlk∂lϕk = ∂kãkj + ηεjlk∂lΨk = ∂kãkj + ηuj .

Thus, equations (3.55) yields:

%uiuj + (p+ U)δij = −∂k∂kãij − ∂l∂kãklδij + ∂i [∂kãkj + ηuj ] + ∂j [∂kãki + ηui] . (A.26)

Considering now u3 = 0 and a completely vanishing x3-dependence of all fields for a 2D
flow, i.e. ∂3 (· · · ) = 0, it is obvious that in case of the choice ãij = −Φδij for i, j =
1, · · · , 2 for the modified tensor potential the three field equations for steady 2D flow are
reproduced.
For the remaining components of the modified tensor potential, on the assumption that

ã13 = ã23 = 0 and ã33 = −ζ(x1, x2), equation (A.26) is fulfilled identically for indices
i = 1, j = 3 and i = 2, j = 3; whereas when the indices are i = j = 3 it gives:

∂k∂kζ = p+ U − ∂k∂kΦ , (A.27)

which is a Poisson equation for ζ and therefore solvable. Note that ζ has no influence on
the other equations and therefore has no physical effect.

A.2.2 Free surface boundary conditions

Consider the kinematic and dynamic boundary conditions at a free surface. Assuming a
parametrisation of the free surface in terms of:

xi = fi(s1, s2, t) , i = 1, 2, 3 , (A.28)

the two tangential vectors t(1)
i , t(2)

i given by:

t
(λ)
i := ∂fi

∂sλ
, (A.29)
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are orthogonal and normalised. Together with the normal vector ~n, an orthonormal basis
exists locally fulfilling the relations:

nj = εjpqt
(1)
p t(2)

q , (A.30)

t
(1)
i = −εiklnkt(2)

l , (A.31)

t
(2)
i = εiklnkt

(1)
l . (A.32)

The kinematic boundary condition at a free surface is given by:

0 = [ḟj − uj ]nj = ḟjnj − [δkpδlq − δkqδlp]t(1)
p t(2)

q ∂kΨl = ḟjnj + {fl, Ψl} , (A.33)

with Poisson brackets defined as:

{f, g} := ∂f

∂s1

∂g

∂s2
− ∂f

∂s2

∂g

∂s1
. (A.34)

The classical form of the dynamic boundary condition:

Tijnj = σsκni , (A.35)

involving the stress tensor Tij , surface tension σs and curvature κ, can be reformulated in
terms of the tensor potential: substituting the term −pδij in the stress tensor (3.40) by
means of (3.45) and then replacing εjlk∂lϕk according to (3.59) by −∂kãkj , the identity:

Tij = %uiuj + Uδij − εilkεjpq∂l∂pakq + ∂i [ηuj + ∂kãkj ] + ∂j [ηui + ∂kãki] (A.36)

results. Inserting (A.36) into (A.35), provides the general form of the dynamic boundary
condition for unsteady flows.

In the case of steady flow, the kinematic boundary condition simplifies to: 0 = uini =
{fl, Ψl}. Utilising this and (3.66), the dynamic boundary condition resulting from (A.35)
and (A.36) takes the form:

εiklεjpq∂k∂palqnj = (U − σsκ)ni . (A.37)

Next, the left-hand side of equation (A.37) can be written as:

εiklεjpqεjnm∂k∂palqt
(1)
n t(2)

m = εikl [δpnδqm − δpmδqn] ∂k∂palqt(1)
n t(2)

m

= εikl

[
t(2)
m

∂

∂s1
(∂kalm)− t(1)

n

∂

∂s2
(∂kaln)

]
= εikl

[
∂

∂s1

(
∂kalmt

(2)
m

)
− ∂

∂s2

(
∂kalmt

(1)
m

)]
,

in which the relationships:

t(λ)
m ∂m(· · · ) = ∂

∂sλ
(· · · ) , ∂t

(1)
m

∂s2
− ∂t

(2)
m

∂s1
= 0 ,
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have been used. Making use of the following relationship for the curvature:

−κni = ∂2fi
∂s2

1
+ ∂2fi
∂s2

2
= ∂t

(1)
i

∂s1
+ ∂t

(2)
i

∂s2
= −εikl

[
∂

∂s1

(
nkt

(2)
l

)
− ∂

∂s2

(
nkt

(1)
l

)]
,

together with the introduction of auxiliary functions Uj(s1, s2) implicitly as solutions of
the condition:

2Uni = εijk

[
∂Uj
∂s1

t
(2)
k −

∂Uj
∂s2

t
(1)
k

]
, (A.38)

enables the dynamic boundary condition (A.37) to be written mathematically in the fol-
lowing integral form:

∂

∂s1

{
εikl

[
∂kalmt

(2)
m +

(
σsnk −

Uk
2

)
t
(2)
l

]}
− ∂

∂s2

{
εikl

[
∂kalmt

(1)
m +

(
σsnk −

Uk
2

)
t
(1)
l

]}
= 0 ,

yielding:

εikl

[
∂kalmt

(λ)
m +

(
σsnk −

Uk
2

)
t
(λ)
l

]
= ∂χi
∂sλ

, λ = 1, 2 (A.39)

as the first integral of the dynamic boundary condition; containing the yet to be determined
integration function χi = χi(s1, s2). On applying the gauge transformation (3.53):

εikl∂kalmt
(λ)
m → εikl∂kalmt

(λ)
m + εikl∂k∂lαmt

(λ)
m + t(λ)

m ∂mεikl∂kαl

= εikl∂kalmt
(λ)
m + ∂

∂sλ
(εikl∂kαl) ,

equation (A.39) becomes:

εikl

[
∂kalmt

(λ)
m +

(
σsnk −

Uk
2

)
t
(λ)
l

]
= ∂

∂sλ
[χi − εikl∂kαl] , λ = 1, 2 . (A.40)

Via a proper choice of αl, the right hand of equation (A.40) can be gauged to zero, leading
to the simplified form:

εikl

[
∂kalmt

(λ)
m +

(
σsnk −

Uk
2

)
t
(λ)
l

]
= 0 , λ = 1, 2 . (A.41)

From a numerical standpoint the above formulation of the dynamic boundary condition
contains an inconvenience, namely the necessity of having to construct the two tangent
vectors t(λ)

i . A more convenient and therefore more general formulation is obtained by
contraction of (A.41) with dsλ, resulting in:

εikl

[
∂kalmdxm +

(
σsnk −

Uk
2

)
dxl
]

= 0 , (A.42)
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where the fact that t(λ)
l dsλ = dxl has been introduced. Note that the above parametrisa-

tion (A.28) of the free surface is not required for the general form (A.42) of the first integral
of the dynamic boundary condition. For instance, the free surface may equally well be given
in an explicit form, such as x3 = f(x1, x2), leading to dx3 = (∂f/∂x1) dx1 +(∂f/∂x2) dx2.

A.2.3 First integral with non-planar surfaces

(a) Lagrangian in terms of curvilinear coordinates

The velocity field (3.37) results in:

ui = εijk∂j [ψ (qµ) ∂kq3] = εijk∂jψ (qµ) ∂kq3 = εijk∂jqµ∂kq3∂µψ , (A.43)

while ∂iΦ = ∂iqµ∂µΦ. Considering the definitions (3.128), (3.129), the useful relations:

ui∂iqν = Eνµ∂µψ ,

∂iΦ∂iqν = Gνµ∂µΦ ,

are obtained from which the following identities are derived:

āijuiuj = aµνui∂iqµuj∂jqν = EµλEνκaµν∂λψ∂κψ ,

aµν∂iqµ∂i∂jqν = 1
2aµν∂iqµ∂i∂jqν + 1

2aµν [∂j (∂iqµ∂iqν)− ∂j∂iqµ∂iqν ]

= 1
2aµν [∂iqµ∂i∂jqν − ∂i∂jqµ∂iqν ]︸ ︷︷ ︸

skew-symmetric w.r.t. µ↔ν
+1

2aµν∂jqλ∂λGµν ,

∂iāij = ∂iaµν∂iqµ∂jqν + aµν∆qµ∂jqν + aµν∂iqµ∂i∂jqν

= ∂iqµ∂iqλ︸ ︷︷ ︸
Gµλ

∂λaµν∂jqν + aµν

[
∆qµ∂jqν + 1

2∂jqλ∂λGµν
]
,

uj∂iāij = GµλEνκ∂κψ∂λaµν +
[
Eνκ∂κψ∆qµ + 1

2Eλκ∂κψ∂λGµν
]
aµν ,

∂jΦ∂iāij = GµλGνκ∂κΦ∂λaµν +
[
Gνκ∂κΦ∆qµ + 1

2Gλκ∂κΦ∂λGµν
]
aµν .

Next, consider the curl of the tensor potential:

εikl∂kālm = εikl∂kqλ∂λālm , (A.44)

being aware that ālm does not depend on q3. It then follows that:

∂iqκεikl∂kālm =
‖∂lq3︷ ︸︸ ︷

εikl∂iqκ∂kqλ

⊥∂lq3︷ ︸︸ ︷
∂λālm = 0 , (A.45)
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εikl∂kālm∂mq3 = εikl∂k (ālm∂mq3)︸ ︷︷ ︸
0

−εiklaµν∂lqµ ∂mqν∂k∂mq3︸ ︷︷ ︸
∂k(∂mqν∂mq3)−∂mq3∂m∂kqν

= 0 , (A.46)

from which the form for the curl of the tensor potential:

εikl∂kālm = cµ∂iq3∂mqµ ,

is obtained with respective quantities cµ. As a consequence of this, the quadratic term in
the Lagrangian (3.74) vanishes according to:

εilkεjpq∂lāij∂pākq =− εkli∂lāijεjpq∂pāqk
=cµ∂kq3∂jqµcν∂jq3∂kqν = cµcν

0︷ ︸︸ ︷
∂jqµ∂jq3

0︷ ︸︸ ︷
∂kqν∂kq3 = 0 .

Finally the Lagrangian (3.74) results in:

` = %EµλEνκaµν∂λψ∂κψ + [ηEνκ∂κψ −Gνκ∂κΦ] [2 {Gµλ∂λ + ∆qµ} aµν + ∂νGµλaµλ] .
(A.47)

(b) First integral of the dynamic boundary condition in terms of spherical coordinates

Assuming the free surface to be given by r = r0f(ϑ) and U = %gr cosϑ as the usual form
of the potential energy density, the auxiliary quantities Ũν are determined via (3.134) as
follows. First use is made of the identity:

~t(1)ds = r0f
′(ϑ)~erdϑ+ r0f(ϑ)~eϑdϑ = r0

d
dϑ [f(ϑ)~er] dϑ ,

and the decomposition ~er = sinϑ~e∗+ cosϑ~ez for the unit vector ~er, where ~e∗ := cosϕ~ex +
sinϕ~ey, delivering:

~U

%gr2
0

=
ˆ
f(ϑ) cosϑ d

dϑ [f(ϑ)~er] dϑ

=
ˆ
f(ϑ) cosϑ d

dϑ [f(ϑ) sinϑ] dϑ~e∗ +
ˆ
f(ϑ) cosϑ d

dϑ [f(ϑ) cosϑ] dϑ~ez

=
ˆ
f(ϑ)f ′(ϑ) sinϑ cosϑdϑ

︸ ︷︷ ︸
f2
2 sinϑ cosϑ−

´ f2
2 [cos2ϑ−sin2ϑ]dϑ

~e∗ +
ˆ
f(ϑ)2 cos2 ϑdϑ~e∗ + 1

2 [f(ϑ) cosϑ]2 ~ez

= 1
2f(ϑ)2 cosϑ [sinϑ~e∗ + cosϑ~ez]︸ ︷︷ ︸

~er

+1
2

ˆ
f(ϑ)2dϑ~e∗ .

Decomposition of the above vector according to ~U = Ũr∇r + Ũϑ∇ϑ = Ũr~er + r−1Ũϑ~eϑ

yields:

Ũr
%gr2

0
= ~U · ~er = 1

2f(ϑ)2 cosϑ+ sinϑ
2

ˆ
f(ϑ)2dϑ ,
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Ũϑ
%gr2

0
= r0f(ϑ)~U · ~eϑ = r0f(ϑ) cosϑ

2

ˆ
f(ϑ)2dϑ ,

while the normal vector reads:

~n =
~er − f ′(ϑ)

f(ϑ) ~eϑ√
1 + f ′(ϑ)2

f(ϑ)2

= f(ϑ)~er − f ′(ϑ)~eϑ√
f(ϑ)2 + f ′(ϑ)2 = f(ϑ)∇r − r0f(ϑ)f ′(ϑ)∇ϑ√

f(ϑ)2 + f ′(ϑ)2 .

Finally, the dynamic boundary condition (3.133) result in:

2∂Φ
∂r

+ σf(ϑ)√
f(ϑ)2 + f ′(ϑ)2 −

%gr2
0

2

[
f(ϑ)2 cosϑ+

ˆ
f(ϑ)2dϑ sinϑ

]
= 0 , (A.48)

2∂Φ
∂ϑ
− σr0f(ϑ)f ′(ϑ)√

f(ϑ)2 + f ′(ϑ)2 −
%gr3

0
2 f(ϑ) cosϑ

ˆ
f(ϑ)2dϑ = 0 . (A.49)

(c) Axially symmetric flows in terms of cylindrical coordinates

By making the choice q1 = z, q2 = r with q3 = ϕ as neutral coordinate, Gµν = δµν

and Eµν = r−1εµν are obtained. Considering ∆z = 0 and ∆r = 1/r, the corresponding
Lagrangian (3.130) takes the form:

` = %
[
a11

(
u2
z − u2

r

)
+ 2a12uruz

]

+ 2 [ηuz − ∂zΦ]
[
∂za11 + 1

r
∂r (ra12)

]
+ 2 [ηur − ∂rΦ]

[
∂za12 −

1
r
∂r (ra11)

]
,

with the velocities given by:

uz = 1
r

∂ψ

∂r
, ur = −1

r

∂ψ

∂z
. (A.50)

Variation of the action integral I = 2π
˜
A ` rdrdz with respect to a1i delivers, after division

by r/2:

δa11 : %2
(
u2
z − u2

r

)
= ∂z [ηuz − ∂zΦ]− ∂r [ηur − ∂rΦ] , (A.51)

δa12 : %uruz = ∂r [ηuz − ∂zΦ] + ∂z [ηur − ∂rΦ] . (A.52)

A.2.4 Finite difference scheme

A classical velocity-pressure staggered-grid scheme for the finite difference solution of
viscous flow problems [95] is extended to encompass the tensor entries aij in a consistent
way which is partly inspired by a common numerical method for solving the velocity-
stress-formulation of wave propagation through elastic media, as for example utilised by
Graves [110]. As well as the stabilising effect inherent with the use of a staggered grid
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h

(a) (b)

a11, a22, a33, p

ux, uy, uz

a12
a13
a23

Figure A.1: Schematic of the 3D staggered grid arrangement used to solve the lid-driven
cavity problem. (a) Shows three contiguous grids with the pressure and the diagonal
tensor entries located at, and identified by, the red spheres, velocities at the sites indicated
by green arrows, the off-diagonal tensor entries at the corresponding black squares and
triangles. The solution domain of interest is shaded red while the associated boundary
region containing the necessary ghost points is shaded blue. (b) View of just one xy-
plane, with the dependencies of selected finite difference stencils highlighted at different
grid points for the sake of clarity: the stencil for Eq. (3.112) (for a12) is shown in green,
that for Eq. (3.113) in red and that for Eq. (3.115) (for u2) in blue.

arrangement, the method also economises on the number of unknowns in contrast to the
use of any alternative non-staggered grid scheme. The resulting 3D grid arrangement, see
Fig. A.1, is such that the diagonal tensor components and the pressure are discretised at
identical cell centred grid points (i, j, k), the velocities at face centred grid points (i+1, j, k),
(i, j+1, k), (i, j, k+1) and the off-diagonal tensor components at cell edges (i+1, j+1, k),
(i, j + 1, k + 1), (i+ 1, j, k + 1).
In contrast to classical discretisation of the vector-valued NS equations, in the present

case the “mapping” between equations and unknown fields is less obvious. Here, the six
equations of (3.112) are discretised at the grid points of the corresponding tensor potential
entries, equation (3.113) at the pressure grid points and equations (3.114) at the boundary
velocity grid points only; correspondingly, recovery of the velocities, equation (3.115), is
also performed at the velocity grid points. Boundary conditions are incorporated via
an appropriate ghost cell method involving two grid levels of additional boundary points
where conditions (3.84)-(3.86) are similarly specified. Figure A.1a highlights a section
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of the solution domain, shaded red, with the associated boundary region, shaded blue,
illustrating the staggered grid arrangement in terms of the various grid point locations.

With reference to the above defined correlation between equations and unknowns, equa-
tions (83) to (85) are discretised at different subgrids as indicated in Fig. A.1a and all
occurring derivatives are approximated by second order central difference stencils in which
the nearest available grid points are utilised; the staggered grid arrangement accounts for
varying step lengths for the diverse stencils, as illustrated in Figure A.1b. The velocities
ui, used iteratively in equation (3.112), are calculated from the tensor potential entries
subsequent to each iteration step, which is achieved by application of equation (3.115) at
all points indicated by a green arrow. The resulting velocity field is then interpolated onto
the remaining grid points by a simple weighting of neighbouring points.

The finite difference analogues of the system (3.112)-(3.115) can be written in a compact
way by defining a number of discrete operators for an arbitrary 3D scalar function f : Ω→
R; these are valid point-wise for a given set of indices [i, j, k] belonging to grid coordinates
(xi, yj , zk). Note, that in the finite difference description provided a grid with uniform step
length h in all three coordinate directions is assumed for convenience only (see Fig. A.1);
generalisation to a more complex grid pattern follows in a straightforward manner. The
standard second order central difference operators for the first and second order partial
derivatives of f are given by:

∂h,1[i, j, k]f := 1
h

[
f(xi + h/2, yj , zk)− f(xi − h/2, yj , zk)

]
,

∂h,2[i, j, k]f := 1
h

[
f(xi, yj + h/2, zk)− f(xi, yj − h/2, zk)

]
,

∂h,3[i, j, k]f := 1
h

[
f(xi, yj , zk + h/2)− f(xi, yj , zk − h/2)

]
,

∂h,11[i, j, k]f := 1
h2
[
f(xi + h, yj , zk)− 2f(xi, yj , zk) + f(xi − h, yj , zk)

]
,

∂h,22[i, j, k]f := 1
h2
[
f(xi, yj + h, zk)− 2f(xi, yj , zk) + f(xi, yj − h, zk)

]
,

∂h,33[i, j, k]f := 1
h2
[
f(xi, yj , zk + h)− 2f(xi, yj , zk) + f(xi, yj , zk − h)

]
,

which allows the discrete Laplacian to be written as:

∆h[i, j, k]f :=
3∑

l=1
∂h,ll[i, j, k]f . (A.53)

Second order discretisation of the mixed derivatives is performed in the standard way,
giving:

∂h,12[i, j, k]f := 1
h2
[
f(xi + h/2, yj + h/2, zk)− f(xi + h/2, yj − h/2, zk)

−f(xi − h/2, yj + h/2, zk) + f(xi − h/2, yj − h/2, zk)
]
,
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∂h,13[i, j, k]f := 1
h2
[
f(xi + h/2, yj , zk + h/2)− f(xi + h/2, yj , zk − h/2)

−f(xi − h/2, yj , zk + h/2) + f(xi − h/2, yj , zk − h/2)
]
,

∂h,23[i, j, k]f := 1
h2
[
f(xi, yj + h/2, zk + h/2)− f(xi, yj + h/2, zk − h/2)

−f(xi, yj − h/2, zk + h/2) + f(xi, yj − h/2, zk − h/2)
]
.

In addition to the above well-known finite difference stencils the following interpolation
operators for functions and their first order derivatives are introduced for convenience:

Ih,1[i, j, k]f := 1
2
[
f(xi + h/2, yj , zk) + f(xi − h/2, yj , zk)

]
, (A.54)

Ih,2[i, j, k]f := 1
2
[
f(xi, yj + h/2, zk) + f(xi, yj − h/2, zk)

]
, (A.55)

Ih,3[i, j, k]f := 1
2
[
f(xi, yj , zk + h/2) + f(xi, yj , zk − h/2)

]
, (A.56)

Jr,sh [i, j, k]f := Ih,r[i, j, k]∂h,sf ; (A.57)

with (A.57) in particular facilitating a very compact discrete form of the tensor-valued
equation (3.112), i.e., for α, β = 1, 2, 3 it is:

∆h[γ]a(n+1)
αβ − Re

[
Ih,β[γ]u(n)

α

3∑

l=1
Jα,lh [γ]a(n+1)

βl + Ih,α[γ]u(n)
β

3∑

l=1
Jβ,lh [γ]a(n+1)

αl

]

+
[
p(n+1)(xi, yj , zk) + U(xi, yj , zk)

]
δαβ = Re Ih,β[γ]u(n)

α Ih,α[γ]u(n)
β ,

(A.58)

with the abbreviation γ = (i, j, k) used for a given index set. Recall, that equations (A.58)
are not formed at all grid points (i, j, k), but rather at the respective subsets of grid points
belonging to aαβ according to Fig. A.1, whereas the discrete form of equation (3.113):

3∑

k,l=1
∂h,kl[γ]a(n+1)

kl = 0 ,

is collocated at the pressure grid points only. Finally, the discrete form of the vector-valued
equation (3.115), similar to that of (3.114), is given by:

u(n+1)
α = −

3∑

l=1
∂h,l[γ]a(n+1)

αl ,

for α = 1, 2, 3 and collocated at the uα velocity grid points.
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B Functional analysis and elliptic PDE
theory

B.1 Brief compendium of functional analysis

For analysis of the least-squares FEM in Chapter 4 a fundamental acquaintance with
the field of functional analysis is required; this is also essential for the more advanced
considerations relating to the Agmon-Douglis-Nirenberg theory in B.2 and the regularity
investigations in B.3 and B.4. The following compendium is mainly based on the standard
textbooks by Hackbusch [119] and Braess [44].

B.1.1 Banach and Hilbert spaces

Definition B.1. (Norm) Given a linear space (vector space) V over the field K of real
or complex numbers, a norm on V is a mapping ‖ · ‖ : V → R+

0 , v 7→ ‖v‖ such that for all
u, v ∈ V and λ ∈ K:

‖v‖ = 0 ⇒ v = 0 (definiteness)

‖λv‖ = |λ| · ‖v‖ (absolute homogeneity)

‖u+ v‖ ≤ ‖u‖+ ‖v‖ (subadditivity)

Definition B.2. (Banach space) A sequence {vn ∈ V : n ≥ 1} is called a Cauchy
sequence if:

sup
{‖vn − vm‖V : n,m ≥ k}→ 0 for k →∞ .

A space V is said to be complete, if every Cauchy sequence converges to some v∞ ∈ V . A
Banach space is a complete and normed space.

Definition B.3. (Inner product) Given a linear space V over the field K of real or
complex numbers, the mapping (·, ·) : V × V → K defines an inner product on V , if for
all u, v, w ∈ V and λ ∈ K:

(v, v) ≥ 0 and (v, v) = 0 ⇔ v = 0 (positive definiteness)
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(λu+ v, w) = λ(u,w) + (v, w) (linearity)

(u, v) = (v, u) (conjugate symmetry)

Definition B.4. (Hilbert space) A Banach space V is named a Hilbert space, if an
inner product (·, ·)V exists on V , such that a norm is induced by ‖v‖V =

√
(v, v)V for all

v ∈ V .

It is easily seen that in the latter case the inequality of Cauchy-Schwarz is valid:

|(u, v)V | ≤ ‖u‖V ‖v‖V for all u, v ∈ V .

B.1.2 Sobolev spaces

The so-called Sobolev function spaces, which play an essential role in the solution theory
of PDEs, are based on the Lebesgue spaces Lp of Lebesgue-integrable functions. In the
following let Ω always be an open subset of Rn with a piecewise smooth boundary. The
space Lp(Ω) comprises all Lebesgue-measurable functions f with a finite integral over |f |p,
i.e.:

Lp(Ω,A, µ) :=
{
f : Ω→ K,

ˆ
Ω
|f(x)|p dµ(x) <∞

}
,

in which the triple (Ω,A, µ) forms a measurable space involving a σ-algebra A and a
measure µ, and K is the space of real or complex numbers. Basically, two functions
u, v ∈ Lp(Ω) are considered identical (u = v), if u(x) = v(x) holds for nearly all x ∈ Ω
except for a set with a Lebesgue measure of zero; an identification that guarantees the
mapping:

‖ · ‖Lp : Lp → R

f 7→
(ˆ

Ω
|f(x)|p dµ(x)

)1/p
,

defines a norm on Lp for all p ≥ 1, rather than a semi-norm. In fact, for 1 ≤ p ≤ ∞, Lp

forms a Banach space but only for the case p = 2 can a corresponding inner product be
defined giving the L2-space crucial importance:

Proposition B.5. L2(Ω) forms a Hilbert space equipped with the inner product:

(u, v)L2(Ω) :=
ˆ

Ω
u(x)v(x) dx for all u, v ∈ L2(Ω) , (B.3)

and the associated norm:

‖u‖L2(Ω) :=
√ˆ

Ω
|u(x)|2 dx .
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Some parts of the analysis in Chapter 5 involve products of Lp-functions which need
not lie in the same space, instead the following extended Hölder inequality is valid:

Proposition B.6. (Hölder inequality) Assume that f1, f2, . . . fk are functions such
that:

fi ∈ Lpi , 1 ≤ i ≤ k with 1
p

= 1
p1

+ 1
p2

+ · · ·+ 1
pk
≤ 1 ; (B.4)

then the product f = f1f2 · · · fk belongs to Lp and:

‖f‖p ≤ ‖f1‖p1‖f2‖p2 · · · ‖fk‖pk . (B.5)

In particular, if f ∈ Lp ∩ Lq with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr for all r, p ≤ r ≤ q, and
the following interpolation inequality holds:

‖f‖r ≤ ‖f‖αp ‖f‖1−αq , where 1
r

= α

p
+ 1− α

q
, 0 ≤ α ≤ 1 .

Essential for the definition of Sobolev spaces is the concept of weak derivatives:

Definition B.7. (Multi-indices) A vector of indices α = (α1, . . . αn) with non-negative
components αi is said to be a multi-index of order:

|α| = α1 + · · ·+ αn .

For a given multi-index α a partial derivative of order |α| is defined according to:

Dαu(x) = ∂|α|u(x)
∂xα1

1 . . . ∂xαnn
.

Definition B.8. (Weak derivative) u ∈ L2(Ω) is said to have a weak derivative v :=
Dαu ∈ L2(Ω), if v fulfils:

(w, v)L2(Ω) = (−1)|α|(Dαw, u)L2(Ω) for all w ∈ C∞0 (Ω) .

In the above definition C∞0 (Ω) denotes the function space of infinitely often continuously
differentiable functions with compact support, that is:

C∞0 (Ω) := {u ∈ C∞(Ω) : supp(u) compact, supp(u) ⊂⊂ Ω} ,
supp(u) := {x ∈ Ω : u(x) 6= 0} ,

in which the double inclusion Ω′ ⊂⊂ Ω is meant to say that Ω′ is in the inner part of
Ω, implying Ω′ ⊂ Ω and Ω′ ∩ ∂Ω = ∅. In a further step, spaces of weakly differentiable
functions can be defined as follows:
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Definition B.9. (Sobolev spaces) Let k ∈ N0. Define Hk(Ω) ⊂ L2(Ω) as the set of
functions with existing weak derivatives Dαu ∈ L2(Ω) for all |α| ≤ k:

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀ |α| ≤ k} . (B.6)

A similar definition to the above is possible based on any Lp(Ω)-space in which case it is
usually denoted asW k,p, so that Hk(Ω) = W k,2(Ω). The above function spaces defined via
weak derivatives are referred to as Sobolev-spaces and, as already suggested by the capital
H, also form Hilbert spaces when equipped with suitable inner products and norms:

Proposition B.10. Hk(Ω) forms a Hilbert space equipped with the inner product:

(u, v)k = (u, v)Hk(Ω) :=
∑

|α|≤k
(Dαu,Dαv)L2(Ω) , (B.7)

and the associated (Sobolev-)norm:

‖u‖k := ‖u‖Hk(Ω) :=
√∑

|α|≤k
‖Dαu‖2L2(Ω) . (B.8)

As the Hk-spaces are due to their identification as Hilbert spaces, see Definition B.4,
complete, an alternative but insightful definition of them can be provided via completion.
Let X := {u ∈ C∞(Ω) : |u|k <∞}, then the completion of X = C∞(Ω)∩Hk(Ω) in L2(Ω)
with respect to the norm (B.8) is exactly Hk(Ω). Accordingly, the completion of C∞0 (Ω)
in L2(Ω) with respect to (B.8) is denoted as Hk

0 (Ω). The latter one is especially important
in the context of boundary value problems with Dirichlet-boundaries. The completed
space Hk

0 (Ω) is a subspace of Hk(Ω) and again forms a Hilbert space with the same inner
product (B.7) and the norm (B.8). Particularly in the case of k = 0 it is:

H0
0 (Ω) = H0(Ω) = L2(Ω) ,

and the shorter notation of both choices (u, v)L2(Ω) = (u, v)0 and ‖u‖L2(Ω) = ‖u‖0 is used
frequently. Moreover, by:

|u|k = |u|Hk(Ω) :=
√∑

|α|=k
‖Dαu‖2L2(Ω) , (B.9)

a semi-norm is defined and by applying the well-known Poincaré-Friedrich inequality it
can be demonstrated that | · |Hk(Ω) and ‖ · ‖Hk(Ω) represent equivalent norms on Hk

0 (Ω), if
the domain Ω is bounded:
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Proposition B.11. (Poincaré-Friedrich) Consider a bounded domain Ω ⊂ Rn, then
the inequality:

‖v‖0 ≤ s|v|1 for all v ∈ H1
0 (Ω) , (B.10)

holds with s = |Ω|1/n and the norms | · |k and ‖ · ‖k are equivalent due to:

|v|m ≤ ‖v‖m ≤ (1 + s)m|v|m for all v ∈ Hm
0 (Ω) .

For clarification different connections are summarised in the subsequent complex:

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .
= ∪ ∪

H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) ⊃ . . .

In a next step the previously defined Sobolev spaces Hk with k ∈ N0 are extended to
non-integer indices:

Definition B.12. Let Ω ⊂ Rn and split s ∈ R+
0 into two parts s = k + λ with k ∈ N0

and 0 < λ < 1. Then an inner product and a corresponding norm, the so-called Sobolev-
Slobodeckij norm, are defined by:

(u, v)s :=
∑

α≤k



ˆ

Ω

Dαu(x)Dαv(x) dx+
¨

Ω×Ω

[Dαu(x)−Dαu(y)][Dαv(x)−Dαv(y)]
|x− y|n+2λ dxdy


 ,

‖u‖s := ‖u‖Hs(Ω) :=
√

(u, u)s . (B.11)

Obviously for the above definition only the existence of weak derivatives up to order k
is necessary as was the case for the integer order Sobolev spaces. Thus, a fractional order
Sobolev spaceHs can be defined by the set of functions (B.6) equipped with the above inner
product and the Sobolev-Slobodeckij norm which again forms a Hilbert space. For s ∈ N0

this definition coincides with Definition B.9 and Proposition B.10. Important properties
of the fractional order Sobolev spaces are summarised in the following Propostion:

Proposition B.13. Let s ≥ 0.

(i) {u ∈ C∞(Ω) : supp(u) compact, |u|s <∞} is dense in Hs(Ω).

(ii) C∞0 is dense in Hs
0(Ω).

(iii) aDα(bu) ∈ Hs−|α|(Ω), if |α| ≤ s, u ∈ Hs(Ω), a ∈ Ct−|α|(Ω), b ∈ Ct(Ω) with either
t = s ∈ N0 or t > s.

(iv) Hs(Ω) ⊂ Ht(Ω), Hs
0(Ω) ⊂ Ht

0(Ω) for s ≥ t.
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Often the following interpolation result is useful when dealing with Hm
0 -spaces:

Proposition B.14. Let m, k ∈ R. For m ≥ 1 constants c = c(m) exist, such that:

|u|k ≤ c|u|k/mm |u|(m−k)/m
0 for all 0 ≤ k ≤ m, u ∈ Hm

0 (Ω) . (B.12)

It is important to know, how different spaces like Lebesgue, Sobolev and Hölder spaces
are related to each other. In this context a key result is the following version of the
Rellich-Kondrachov embedding theorem according to Evans [92]:

Theorem B.15. (Rellich-Kondrachov) Let Ω ⊂ Rn be a Lipschitz domain, k ∈ Z+

and p ∈ [1,∞) then the following embeddings are valid:

(i) If kp < n, W k,p(Ω) ⊂ Lq(Ω) is a compact embedding for all q ∈ [1, p∗), where
1
p∗ = 1

p − k
n . For q = p∗ the embedding is continuous only.

(ii) If kp = n, W k,p(Ω) ⊂ Lq(Ω) is a compact embedding for all q ∈ [p,∞).

(iii) If kp > n, W k,p(Ω) ⊂ Cm(Ω) for every integer m that satisfies 0 ≤ m < k − n
p .

Although the Rellich-Kondrachov theorem is more often cited under the stronger con-
dition of a C1 domain boundary due to a simpler proof, see for instance Brezis [53], the
above cited version is more helpful, particularly in the context of FEs where most often
piecewise smoothly bounded domains occur which are generally in C0 only. Also, the
theorem is frequently reduced to the case (i), probably due to historical reasons, whereas
the treatment of two-dimensional elliptic equations rather requires (ii), as seen in Sec. 4.4.
Note, (iii) reveals a well-known fact as a special case, namely that H1(Ω)-functions need
to be continuous only in one dimension.

B.1.3 Traces and continuation

The nature of boundary value problems requires a reasonable determination of boundary
values u|∂Ω in the sense that the restriction of a function u in Ω to the boundary ∂Ω, the
so-called trace, results in a well-defined object. It is easy to see that a Hölder-continuous
function u ∈ Cs(Ω) has a restriction u|∂Ω ∈ Cs(∂Ω) if ∂Ω is simply sufficiently smooth.
On the other hand from u ∈ Hs(Ω) it does not automatically follow that u|∂Ω; the identity
u = v in Hs(Ω) only requires that u(x) = v(x) is equal nearly everywhere in Ω apart from
a set of zero measure, as for instance the boundary ∂Ω is. Therefore u(x) 6= v(x) can in
principle hold for any x ∈ ∂Ω. Neither can the boundary value u(x), x ∈ ∂Ω be defined by
continuous extension, as for instance u ∈ H1(Ω) need not to be continuous. The inverse
problem to the definition of u|∂Ω is the continuation: does for a given boundary value φ
on ∂Ω a function u ∈ Hs(Ω) exist such that φ = u|∂Ω? In the negative case there is also
no solution u ∈ Hs(Ω) to the Dirichlet boundary value problem.
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Lemma B.16. Given a bounded domain Ω ∈ Ct [ω ∈ Ck,1], the corresponding quantities
N ∈ N, U i (0 ≤ i ≤ N), Ui, αi (1 ≤ i ≤ N) exist with:

(i) U i open, bounded (0 ≤ i ≤ N), ⋃N
i=0 U

i ⊃ Ω, U0 ⊂⊂ Ω,

(ii) Ui := U i ∩ ∂Ω (1 ≤ i ≤ N), ⋃N
i=0 Ui = ∂Ω,

(iii) αi : Ui → αi(Ui) ⊂ Rn−1 bijective for all i = 1, . . . , N ,

(iv) αi ◦ α−1
j ∈ Ct(αj(Ui ∩ Uj)) or likewise αi ◦ α−1

j ∈ Ck,1(αj(Ui ∩ Uj)).

A set of pairings {(Ui, αi) : 1 ≤ i ≤ N} with the above properties is called a Ct or Ck,1

coordinate system of ∂Ω.

Lemma B.17. (Partition of unity) Given {U i : 0 ≤ i ≤ N} with the property (i) of
Lemma B.16, then functions σi ∈ C∞0 (Rn), 0 ≤ N exist with:

supp(σi) ⊂ U i ,
N∑

i=0
σ2
i (x) = 1 for all x ∈ Ω . (B.13)

The general construction of the σi can be found in [119]. A function u on ∂ω can be
written in the form ∑

σ2
i u and every summand σ2

i u is parametrisable over αi(Ui) ⊂ Rn−1:
(σ2
i ) ◦ α−1

i : αi(Ui) ⊂⊂ Rn−1 → R. This gives rise to the following definition:

Definition B.18. Let Ω ∈ Ct [∈ Ck,1]. (Ui, αi) and σi fulfil the conditions of Lemma
B.16 (ii)-(iv) and (B.13). Let s ≤ t ∈ N [s ≤ k + 1] or s < t /∈ N, t > 1. The Sobolev
space Hs(∂Ω) is the set of all functions u : ∂Ω → R such that (σiu) ◦ α−1

i ∈ Hs
0(Rn−1),

i ≤ i ≤ N .

Proposition B.19. Hs(∂Ω) defines a Hilbert space with the corresponding inner product:

(u, v)s := (u, v)Hs(∂Ω) :=
N∑

i=1

(
(σiu) ◦ α−1

i , (σiv) ◦ α−1
i

)
Hs(Rn−1)

.

If {(Ũi, α̃i) : 1 ≤ i ≤ N} is another Ct [Ck,1] coordinate system of ∂Ω and {σ̃i} another
partition of unity, the hereby defined space H̃s(∂Ω) is quantitatively equal to Hs(∂Ω). The
norms of Hs(∂Ω) and H̃s(∂Ω) are equivalent.

A few statements about traces and continuation can be made in sufficiently smoothly
bounded domains; here, γ denotes the trace operator restricting a function to its boundary:
γu = u|∂Ω:

Proposition B.20. (Trace inequality) Let Ω ∈ Ct with 1/2 < s < t ∈ N or 1/2 < s < t

[alternatively Ω ∈ Ck,1, 1/2 < s = k + 1 ∈ N]. The following statements hold:
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(i) The restriction of u ∈ Hs(Ω) to the boundary, i.e. γu, belongs to Hs−1/2(∂Ω); thus
the restriction mapping is of the form:

γ : Hs(Ω)→ Hs−1/2(∂Ω)

u 7→ γ(u) = u|∂Ω ,

and an s-dependent constant exists such that:

|γu|s−1/2 ≤ cs|u|s . (B.14)

(ii) For each w ∈ Hs−1/2(∂Ω) exists an u ∈ Hs(Ω) with w = γu such that for an
s-dependent constant:

|u|s ≤ cs|w|s−1/2 .

(iii) For each w ∈ Hs(Ω) exists a continuation E : Hs(Ω)→ Hs(Rn), w 7→ Ew.

Finally, an alternative definition of the Hk
0 -spaces can be given:

Proposition B.21. For Ω ∈ C1 and k ∈ N it is:

Hk
0 (Ω) = {u ∈ Hk(Ω) : ∂`u/∂n`|∂Ω = 0 for all 0 ≤ ` ≤ k − 1}

= {u ∈ Hk(Ω) : Dαu|∂Ω = 0 for all 0 ≤ |α| ≤ k − 1} .

B.1.4 Dual spaces

If X is a normed linear space over R, the dual space X ′ consists of all bounded linear
maps from X to R, also written in the form: X ′ = L(X,R). X ′ is a Banach space with
the norm (dual norm):

‖x′‖X′ := ‖x′‖R←X = sup
{ |x′(x)|
‖x‖X

: 0 6= x ∈ X
}
. (B.15)

The elements x′ ∈ X ′ are called linear functionals on X. Instead of x′(x) (evaluation of x′

with x) it is often written x′(x) = 〈x, x′〉X×X′ = 〈x′, x〉X′×X in which 〈·, ·〉X×X′ is called
the dual form on X ×X ′.

Lemma B.22. Given a Banach space X being dense and continuously embedded in an-
other Banach space Y , then the dual space Y ′ is continuously embedded in X ′.

Lemma B.23. Let X and Y be normed and T ∈ L(X,Y ). For each y′ ∈ Y ′ the equation:

〈Tx, y′〉Y×Y ′ = 〈x, x′〉X×X′ for all x ∈ X
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a unique x′ ∈ X ′. The linear map y′ 7→ x′ defines the dual operator T ′ : Y ′ → X ′ with
T ′y′ = x′. It is T ′ ∈ L(Y ′, X ′) and

‖T ′‖X′←Y ′ = ‖T‖Y←X .

If X is a Hilbert space over R, every y ∈ X defines by:

fy(x) := (x, y)X ,

a linear functional fy ∈ X ′ with ‖fy‖X′ = ‖y‖X . The converse is equally true.

Proposition B.24. (Riesz representation) Consider a Hilbert space X and a func-
tional f ∈ X ′. Then a unique yf ∈ X exists such that:

f(x) = (x, y)X for all x ∈ X and ‖f‖X′ = ‖yf‖X .

Corollary B.25. (Riesz isomorphism) Let X be a Hilbert space.

(i) A unique correlation JX ∈ L(X,X ′) wit JXy = fy, J−1
X f = yf exists, the so-called

Riesz isomorphism, which preserves the norm: ‖JX‖X′←X = ‖J−1
X ‖X←X′ = 1.

(ii) X ′ is a Hilbert space with inner product (x′, y′)X′ = (J−1x′
X , J−1

X y)X . The dual norm
‖x′‖X′ from (B.15) agrees with the norm induces by (x′, x′)1/2

X .

(iii) X can be identified via X ′′ via x(x′) := x′(x) and hereby follows:

JX′ = J−1
X , JX = J ′X and T ′′ = T for T ∈ L(X,Y ) ,

if also Y = Y ′′ is a Hilbert space.

(iv) One can identify X and X ′ by: X = X ′, JX = I.

Lemma B.26. Consider two Hilbert spaces V ⊂ U with a continuous and dense embed-
ding, then U ′ is continuously and densely embedded in V ′.

According to Corollary B.25 (iv) U and U ′ can be identified, leading to the Gelfand
triple:

V ⊂ U ⊂ V ′ (V ⊂ U continuously and densely embedded) .

and it can be shown that V and U are continuously and densely embedded in V ′ also. In
the context of Sobolev spaces the case U := L2(Ω) is frequently considered, yielding the
following embeddings:

Hs
0(Ω) ⊂ L2(Ω) ⊂ (Hs

0(Ω))′ , s ≥ 0 , (B.16)
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Hs(Ω) ⊂ L2(Ω) ⊂ (Hs(Ω))′ , s ≥ 0 ; (B.17)

(B.16) and (B.17) are Gelfand triples.

Definition B.27. (Negative norm Sobolev spaces) Let s ≥ 0. The dual space of
Hs

0(Ω) is denoted by H−s(Ω) or H−s0 (Ω):

H−s0 (Ω) := H−s(Ω) := (Hs
0(Ω))′ .

A norm related to H−s(Ω) is according to (B.15) for all u ∈ L2(Ω) defined by:

‖u‖−s := sup
06=v∈Hs

0(Ω)

{
(u, v)L2(Ω)
‖v‖s

}
, (B.18)

in which (u, v)L2(Ω) denotes the dual form on Hs
0(Ω)×H−s(Ω). The closure of L2(Ω) with

respect to ‖ · ‖−s is denoted with H−s(Ω).

Finally, for spaces and norms the following relations are summarised:

. . . ⊃ H−2(Ω) ⊃ H−1(Ω) ⊃ L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .

. . . ≤ ‖u‖−2 ≤ ‖u‖−1 ≤ ‖u‖L2(Ω) = ‖u‖0 ≤ ‖u‖1 ≤ ‖u‖2 ≤ . . .

B.1.5 Functional derivatives

The Fréchet derivative is a derivative defined on Banach spaces. It is commonly used
to generalise the derivative of a real-valued function of a single variable to the case of a
vector-valued function of multiple real variables, and to define the functional derivative
used widely in the calculus of variations.

Definition B.28. Let V and W be Banach spaces, and U ⊂ V be an open subset of V .
A function f : U → V is called Fréchet differentiable at x ∈ U if there exists a bounded
linear operator A : V →W such that:

lim
h→0

‖f(x+ h)− f(x)−Ah‖W
‖h‖V

= 0 .

The limit here is meant in the usual sense of a limit of a function defined on a metric
space, using V and W as the two metric spaces, and the above expression as the function
of argument h in V . As a consequence, it must exist for all sequences {hn}∞n=1 of non-zero
elements of V which converge to the zero vector hn → 0. Equivalently, the first-order
expansion holds, in Landau notation given as:

f(x+ h) = f(x) +Ah+ o(‖h‖V ) . (B.19)
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If there exists such an operator A, it is unique, so write Df(x) = A and call it the Fréchet
derivative of f at x.

B.2 Review of Agmon-Douglis-Nirenberg theory

In order to derive a priori estimates for the first integral formulation in Sec. 4.3.1 the un-
derpinning theory by Agmon et al. [2, 3] is reviewed. Consider the general boundary value
problem to find a set of scalar functions u = {u1, u2, . . . , uM} ∈ X(Ω) under conditions:

L(x,D)u = f in Ω , f ∈ Y (Ω) , (B.20)

B(x,D)u = g on ∂Ω , g ∈ B(∂Ω) , (B.21)

involving an arbitrary differential field operator:

Lij(x,D) =
∑

|α|≤rij
aα(x)Dα , i, j = 1, . . . ,M , (B.22)

and a corresponding boundary operator:

Blj(x,D) =
∑

|β|≤qlj
bβ(x)Dβ , l = 1, . . . , L; j = 1, . . . ,M . (B.23)

Here, α and β are multi-indices, rij and qlj non-negative integers and Dα is a partial
derivative operator, i.e. the following definitions hold for a d-dimensional problem:

α = (α1, α2, . . . , αd) , Dα = ∂α1
1 ∂α2

2 . . . ∂αdd ,

|α| = α1 + α2 + · · ·+ αd ,

in which the abbreviation ∂αii := ∂αi/∂xαii is used. Note, that definitions (B.22) and
(B.23) remain valid even if the differential operator D is replaced by a vector ~ξ ∈ Rd and
Dα by ~ξα := ξα1

1 ξα2
2 . . . ξαdd , in which case L(x, ~ξ) is called the symbol of L.

Definition B.29. (ADN ellipticity) The system (B.20), (B.21) is ADN-elliptic if there
exist integer weights {si} and {tj} for the equations and unknowns, respectively, such that:

(i) degLij(x, ~ξ) ≤ si + tj

(ii) Lij(x, ~ξ) ≡ 0, whenever si + tj < 0

(iii) detLpij(x, ~ξ) 6= 0 for all ~ξ 6= 0, where the principle part Lp of L is defined as all
terms Lij for which degLij(x, ~ξ) = si + tj.
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The operator L is said to be uniformly elliptic of order 2m, if an integer m ≥ 1 exists,
with deg(detLp(x, ~ξ)) = 2m, and a positive constant C, such that:

C−1|~ξ|2m ≤ |detLp(x, ~ξ)| ≤ C|~ξ|2m . (B.24)

Consider now an ADN-elliptic system (B.20), (B.21) being uniformly elliptic of order
2m in line with the above definition. A minimal condition on the operators L and B to
guarantee a well-posed system is that the number of rows in B equals m, i.e. L = m.
An additional condition on L which is satisfied for all elliptic systems in three or more
space conditions, but must be assumed in two dimensions, is the so-called supplementary
condition [37].

Definition B.30. (Supplementary Condition) The operator L satisfies the supple-
mentary condition if, for every pair of linearly independent vectors ~ξ and ~ξ′, the polynomial
detLp(x, ~ξ + τ~ξ′) in the complex variable τ has exactly m roots with positive imaginary
part.

An ADN-elliptic system that satisfies the Supplementary Condition is also called regular
elliptic [37]. In addition to the sets {si}, {tj}, a further set of integer weights {rl},
l = 1, . . . L is introduced for the boundary operator B. Each rl is attached to the l-th
boundary condition in (B.21) and must satisfy the inequality:

degBlj(x, ~ξ) ≤ rl + tj ,

on the understanding that Blj ≡ 0 when rl+tj < 0. The principal part Bp of the boundary
operator is defined as all terms Blj such that degBlj(x,D) = rl + tj . The three sets of
ADN-weights can always be normalised in such a way that si ≤ 0, rl ≤ 0 and tj ≥ 0.
However, the weights may not be unique, even with such a normalisation; i.e., there are
examples of operators L for which one can define more than one principal part Lp that
satisfies Definition B.29 [36]. An important subset of ADN-elliptic systems is the class of
Petrovski systems, see [275].

Definition B.31. A system is elliptic in the sense of Petrovskii if it is ADN-elliptic and
s1 = · · · = sM = 0. If, in addition, t1 = · · · = tM the system is called homogeneous
elliptic.

Given an ADN-elliptic operator L, the problem (B.20), (B.21) is well-posed if and only
if the boundary operator B “complements” the field operator L in a proper way. In [3]
it is shown that this is equivalent to an algebraic condition, called the Complementing
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Condition, on the principal parts Lp and Bp. To state this condition, let ~n denote the unit
normal to ∂Ω at x, τ+

k (x, ~ξ) denote the m roots of detLp(x, ~ξ + τ~n) with ~ξ ⊥ ~n, having
positive imaginary part, and:

M+(x, ~ξ, τ) =
m∏

k=1

(
τ − τ+

k (x, ~ξ)
)

;

furthermore, let L′ denote the adjugate matrix of Lp1, then the condition is:

Definition B.32. (Complementing condition) For any point x ∈ ∂Ω and any real
non-zero unit vector ~ξ tangent to ∂Ω at x, regard M+(x, ~ξ, τ) and the elements of the
matrix Bp(x, ~ξ + τ~n)L′(x, ~ξ + τ~n) given by:

M∑

j=1
Bplj(x, ~ξ + τ~n)L′jk(x, ~ξ + τ~n) , l = 1, . . . ,m; k = 1, . . . ,M (B.25)

as polynomials in τ . The operators L and B satisfy the Complementing Condition if and
only if the rows of the latter matrix are linearly independent modulo M+(~ξ, τ); i.e.,

m∑

l=1
Cl




M∑

j=1
Bplj(x, ~ξ + τ~n)L′jk(x, ~ξ + τ~n)


 ≡ 0 mod M+ . (B.26)

For brevity, in what follows the boundary value problem (B.20), (B.21) is called elliptic
if L is ADN-elliptic, regular and uniformly elliptic and if B satisfies the Complementing
Condition. The main result of ADN theory, relevant to least-squares methods, is a priori
estimates that give rise to energy balances required to define well-posed least-squares
principles. These estimates are stated in terms of solution and data spaces that are direct
products of the scalar spaces Hk(Ω) and Hk±1/2(∂Ω), parametrized by a non-negative
integer regularity index q:

Xq =
M∏

j=1
Hq+tj (Ω) , Yq =

M∏

i=1
Hq−si(Ω) , Bq =

m∏

l=1
Hq−rl−1/2(∂Ω) . (B.27)

Theorem B.33. Let t′ = max tj, q ≥ r′ = max(0,max rl + 1), and assume that Ω is a
bounded domain of class Cq+t′. Furthermore, assume that the coefficients of Lij are of
class Cq−si(Ω) and that the coefficients of Blj are of class Cq−rl(∂Ω). If (B.20), (B.21) is
elliptic, f ∈ Yq and g ∈ Bq, then:

(i) every solution u ∈ Xr′ in fact belongs to Xq;

1Recall that the adjugate or cofactor matrix of A is the matrix A′ = (detA)A−1 [37]
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(ii) there is a positive constant C, independent of u, f and g, such that, for every solution
u ∈ Xq,

M∑

j=1
‖uj‖q+tj ≤ C




M∑

i=1
‖fi‖q−si +

m∑

l=1
‖gl‖q−rl−1/2,∂Ω +

M∑

j=1
‖uj‖0


 . (B.28)

Moreover, if the problem (B.20), (B.21) has a unique solution in the indicated function
spaces, then the L2(Ω)-norm on the right-hand side of (B.28) can be omitted.

While the above result is helpful for deriving a priori estimates for elliptic differential
equations, even stronger assertions can be proved concerning the properties of the corre-
sponding differential operators; the following theorem, sometimes also called the “Equiv-
alence Theorem” on elliptic differential equations, is cited from [207] and originally taken
from [269]:

Theorem B.34. ([207], Lemma 2) Under the assumptions of the ADN-theorem B.33 the
following statements are equivalent:

(i) The problem (B.20), (B.21) is elliptic.

(ii) The differential operator:

Tq : Xq → Yq ×Bq
u 7→ (Lu,Bu)

is a Fredholm operator, i.e., the range ran(Tq) := {Tqx |x ∈ Xq} ⊆ Yq × Bq of
Tq is a finite-dimensional closed subspace of Yq × Bq and the null-space or kernel
ker(Tq) := {x ∈ Xq : Tqx = 0} is finite-dimensional.

(iii) The a priori estimate (B.28) holds for u ∈ Xq.

In the general case the solution of problem (B.20), (B.21) is non-unique but, according
to Theorem B.34, the mapping Tq is Fredholm and thereby the null space is independent
of q and finite-dimensional, dim ker(Tq) =: α < ∞. This allows the problem to be com-
plemented by a number of α linear functionals Λj in order to obtain the following refined
estimate:

Corollary B.35. If the continuous linear functionals Λj : Xq(Ω) → R, j = 1, . . . , α are
fixed such that they are linearly independent on ker(Tq), then (B.28) yields the stronger
estimate:

M∑

j=1
‖uj‖q+tj ≤ C




M∑

i=1
‖fi‖q−si +

m∑

l=1
‖gl‖q−rl−1/2,∂Ω +

α∑

j=1
|Λju|


 . (B.29)
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In the following, some further results related to the adjoint of elliptic systems are pro-
vided which will be important later on; here, the focus lies on differential operators L
being elliptic in the sense of Petrovskii according to Definition B.31. Basically, the com-
plementing condition implies that the m rows of matrix B are linearly independent for
all x ∈ ∂Ω so that it can be completed to form a smooth, square and invertible Dirichlet
matrix simply by adding further M −m rows, denoted by the non-unique operator Cij ,
i = 1, . . . ,M −m; j = 1, . . . ,M [207]. Under these conditions Roitberg and Seftel [207]
show that a matrix operator:

B′lj(x,D) =
∑

|β|≤q′
lj

bβ(x)Dβ , l = 1, . . . ,M −m; j = 1, . . . ,M ,

of the same size as C exists, such that for all u, v ∈ Xq the Green’s formula:

(Lu, v)0 − (u,L∗v)0 = (Bu, C′v)0,∂Ω − (Cu,B′v)0,∂Ω , (B.30)

holds, in which C′i,j , i = 1, . . . ,m; j = 1, . . . ,M completes B′ to form a square Dirichlet
matrix and L∗ denotes the formal adjoint of L.
Green’s formula (B.30) leads to the natural definition of the following problem, adjoint

to (B.20), (B.21):

L∗(x,D)u = f ′ in Ω , (B.31)

B′(x,D)u = g′ on ∂Ω . (B.32)

If problem (B.20), (B.21) is elliptic, the number of rows of matrix B is equal to m while
the number of rows of B′ is equal to M −m which is generally not equal to m. Therefore
problem (B.31), (B.32) may fail to be elliptic; however, in the case of Petrovskii-elliptic
systems both row numbers are equal to m so that ellipticity is guaranteed as proven by
Roitberg and Seftel [207]. Moreover, the solubility of (B.20), (B.21) can be expressed in
terms of the adjoint system, summarised in the following theorem:

Theorem B.36. Suppose that the operator (B.20) is elliptic in the sense of Petrovskii
and that the boundary operator (B.21) can be completed to a Dirichlet system. If now
the system (B.20), (B.21) is elliptic as a whole, then the adjoint system (B.31), (B.32) is
elliptic as well. Furthermore, (f, g) ∈ ran(Tq) if and only if (f, g) ∈ Yq ×Bq such that:

(f, v)0 − (g, C′v)0,∂Ω = 0 ,

for all v ∈ ker(T ∗q ).
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B.3 Auxiliary problem and regularity considerations

In order to obtain the optimal L2-error estimates in Sec. 4.3.3(b) the following auxiliary
problem is investigated in more detail: given f ∈ L2(Ω)4, find w ∈ V such that:

a(w, v) = (f, v)0 for all v ∈ V , (B.33)

involving the closed subspace V ⊂ H1(Ω)4 according to (4.52). The regularity of the
solution w requires investigation. For this purpose consider the case Λ = 0, for which
formal partial integration of (B.33) shows:

a(w, v) = (Lw,Lv)0 = −(LTLw, v)0 + (Lw,L(x, ~n)v)0,∂Ω (B.34)

= −(LTLw, v)0 + (C′Lw,Bv)0,∂Ω − (B′Lw, Cv)0,∂Ω (B.35)

= (L∗Lw, v)0 − (B′Lw, Cv)0,∂Ω . (B.36)

In the above, the form of (B.35) is due to the application of the Green’s formula (B.30),
the middle term of which is eliminated by the boundary condition Bv = 0 giving (B.36).
The formal adjoint of L is in this case obviously given by L∗ := −LT . Thus, problem
(B.33) naturally corresponds to the second-order problem:





L∗Lw = f ,

Bw = 0 ,

B′Lw = 0 ,

(B.37)

in which the last condition appears in (B.33) as a natural boundary condition. This leads
to a mapping of the form:

Ps : Hs+2(Ω)n → Hs(Ω)n ×Hs+3/2(∂Ω)m ×Hs+1/2(∂Ω)m =: Zs ,

Tsw 7→ (L∗Lw,Bw,B′Lw) , s ≥ 0 .

A straightforward calculation shows that the second-order matrix operator L∗L is strongly
elliptic. Furthermore, the boundary operators (B,B′L) satisfy the complementing condi-
tion. By equivalent characterizations of the ellipticity up to the boundary, Theorem B.34,
the operator Ps : Hs+2(Ω)n → Zs is Fredholm for s ≥ 0. These assertions are included in
the following more complete result [215]:

Lemma B.37. Let s ≥ 0. Then the operator Ps : Hs+2(Ω)n → Zs is a Fredholm operator
with vanishing index.
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Denote the adjoint of Λ by Λ̃, then by definition Λ̃ : Rα → H1(Ω) with:

Λu · c = (u|Λ̃c)0 ,

for all u ∈ H1(Ω)4, c ∈ Rα. The mapping Λ̃ is linear and continuous and it can be stated
that:

Theorem B.38. Let f ∈ L2(Ω)4 be given and let Λ be H1(Ω)-continuous. Then problem
(B.33) has a unique solution w ∈ V . For this solution the regularity w ∈ H2(Ω)4 together
with the estimate:

‖w‖2 ≤ c‖f‖0 , (B.38)

hold. Moreover, the following relations are true:

L∗Lw + Λ̃Λw = f , (B.39)

Bw = 0 , B′Lw = 0 . (B.40)

Proof. Obviously the variational equation (B.33) is valid for all v ∈ V and therefore also
for:

φ ∈
{
v ∈ [H1(Ω)]4

∣∣∣ Bv = 0, B′Lv = 0 on ∂Ω
}
.

Similar to (B.36) but now with Λ 6= 0, integration by parts yields:

(f, φ)0 = a(w, φ) = (L∗Lw, φ)0 + (Λ̃Λw, φ)0 ,

in which all boundary terms vanish, leading to (B.39). To explore the regularity property
further note that (B.33) implies:

(Lw,Lφ)0 + (w, φ)0 = (fw, φ)0 for all φ ∈ V , (B.41)

where fw = f − Λ̃Λw + w. By Lemma B.37 the mapping:

P̃s : Hs+2(Ω)4 → Hs(Ω)4 ×Hs+3/2(∂Ω)2 ×Hs+1/2(∂Ω)2 ,

u 7→ (L∗Lu+ u,Bu,B′Lu) , s ≥ 0 .

is Fredholm with vanishing index. But this mapping has a zero null space since u ∈ ker(P̃s)
implies by Green’s formula, (B.30), that:

0 = (u,L∗Lu+ u)0 = ‖Lu‖20 + ‖u‖20 .
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Consequently P̃s is bijective and:

‖u‖s+2 ≤ c(‖L∗Lu+ u‖s + ‖Bu‖∂Ω,s+3/2 + ‖B∗Lu‖∂Ω,s+1/2) , (B.42)

for all u ∈ Hs+2(Ω)4, s ≥ 0 and a constant c = c(s). Thus, for a fixed fw, there exists a
unique solution w0 ∈ H2(Ω)4 such that:





L∗Lw0 + w0 = fw ,

Bw0 = 0 ,

B′Lw0 = 0 .

(B.43)

Moreover, via the homogeneous boundary conditions in (B.43) and inequality (B.42) the
estimate:

‖w0‖2 ≤ c‖fw‖0 , (B.44)

is valid. From the regularity w0 ∈ H2(Ω)4 applying Green’s formula leads to:

(Lw0,Lφ)0 + (w0, φ)0 = (fw, φ)0 , (B.45)

for all φ ∈ V . Writing φ = w − w0, equations (B.41) and (B.45) imply:

‖L(w − w0)‖20 + ‖w − w0‖20 = 0 , (B.46)

and thus w = w0. From (4.36) and (B.33) it follows:

‖w‖1 ≤ c‖f‖0 , (B.47)

which, by the definition of fw, yields:

‖fw‖0 = ‖f − Λ̃Λw + w‖0 ≤ ‖f‖0 + ‖Λ̃Λw‖0 + ‖w‖0
≤ ‖f‖0 + c‖w‖1 + ‖w‖0 ≤ c̃‖f‖0 . (B.48)

The first inequality in (B.48) follows due to the continuity of Λ and Λ̃, such that:

‖Λ̃Λw‖0 ≤ ‖Λ̃Λw‖1 . ‖Λw‖E . ‖w‖1

and the second inequality from ‖w‖0 ≤ ‖w‖1 and (B.47). Now the assertions (B.38) -
(B.40) follow via (B.43), (B.44) and (B.48).

Consider next the Galerkin approximation of the solution w ∈ V ∩H2(Ω) to problem
(B.33), which is denoted by wh ∈ Vh and given through:

a(wh, v) = (f, v)0 , for all v ∈ Vh . (B.49)

306



B.3 Auxiliary problem and regularity considerations

The existence of a unique solution is guaranteed for small parameters h for the same reason
as for the least squares approximation. To derive the error estimates, firstly observe that
via (B.30) and (B.39), (B.40) the following identities:

a(w, v) = (Lw,Lv)0 + ΛwΛv

= (L∗Lw, v)0 + (Λ̃Λw, v)0 + (C′Lw,Bv)0,∂Ω − (B′Lw, Cv)0,∂Ω

= (f, v)0 + (C ′Lw,Bv)0,∂Ω (B.50)

are valid for all v ∈ H1(Ω)4. Accordingly, (B.49) and (B.50) imply:

a(w − wh, v) = (C′Lw,Bv)0,∂Ω for all v ∈ Vh . (B.51)

On the other hand, for all ψ ∈ Vh:

a(ψ − wh, ψ − wh) = a(ψ − w,ψ − wh) + a(w − wh, ψ − wh)

≤ c‖ψ − w‖1‖ψ − wh‖1 + a(w − wh, ψ − wh) . (B.52)

By the coerciveness (4.54) for small h, the following inequality is obtained using (B.52):

‖ψ − wh‖1 ≤ c
(
‖ψ − w‖1 + sup

06=γ∈Vh

a(w − wh, γ)
‖γ‖1

)
,

yielding:

‖w − wh‖1 ≤ c
(

inf
ψ∈Vh

‖ψ − w‖1 + sup
06=γ∈Vh

a(w − wh, γ)
‖γ‖1

)
. (B.53)

The above inequality essentially corresponds to the Lemma of Berger, Scott and Strang,
see [44]. Obviously the first term on the right-hand side is bounded by the error of the
best approximation in the associated finite element space, that is Theorem 4.11 gives:

inf
ψ∈Vh

‖ψ − w‖1 ≤ ch‖w‖2 .

Via (B.51) the last term in (B.53) can be simplified to:

a(w − wh, γ) = (C′Lw,Bγ)0,∂Ω

≤ c‖w‖1,∂Ω‖γ‖0,∂Ω ≤ c̃‖w‖2h3/2‖γ‖1 ,

in which the H1(∂Ω)-norm is estimated via the trace inequality (B.14) and the L2(∂Ω)-
norm via assumption (4.44). Thus (B.53) implies convergence via:

‖w − wh‖1 ≤ ch‖w‖2 . (B.54)
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B.4 Auxiliary problem in an infinite sector

Below the first integral boundary value problem (4.75), (4.76) in a sector domain Q is
considered in more detail. The corner singularities and related β-values are investigated
for various opening angles θ and, for completeness, also shift theorems are provided in the
weighted Sobolev spaces defined in Sec. 4.3.4 finally leading to Theorem 4.16.
It is instructive to start with the geometry of an infinite sector, i.e. (4.72)-(4.74) with

R → ∞. The non-dimensioned first integral of the Stokes equations in terms of the
streamfunction Ψ and the potential field Φ can, according to (1.45), be written as:

∂2Ψ

∂y2 −
∂2Ψ

∂x2 + 2 ∂2Φ

∂x∂y
= f1 , (B.55a)

∂2Φ

∂y2 −
∂2Φ

∂x2 − 2 ∂
2Ψ

∂x∂y
= f2 , (B.55b)

which can formally be identified as a plane elasticity system:

∆v1 − 2 ∂

∂x

(
∂v1
∂x

+ ∂v2
∂y

)
= f1 , (B.56a)

∆v2 − 2 ∂
∂y

(
∂v1
∂x

+ ∂v2
∂y

)
= f2 , (B.56b)

with displacement components v1 = Ψ , v2 = −Φ and Lamé coefficients µ = −1, λ = 3.
This identification seems crude from a physical point of view due to the signs of the Lamé
coefficients and particularly the, at least in this context, anomalous boundary conditions
stemming from the fluid mechanics context. These are given by Bu = [g0, g1] with:

Bv
∣∣
Γ0

=




1 0

∂n 0


 v = g0 and Bv

∣∣
Γ1

=




0 1

0 ∂n


 v = g1 , (B.57)

in which the complete sector boundary is given by ∂Q = S0∪S1 = Γ0∪Γ1 and three cases
are distinguished: (i) Γ0 = S0 ∪ S1, Γ1 = ∅, (ii) Γ0 = ∅, Γ1 = S0 ∪ S1, and (iii) Γ0 = S0,
Γ1 = S1; the completed boundary value problem is abbreviated by:

Lv = f in Q , (B.58)

Bv = [g0, g1] on ∂Q . (B.59)

Note that the variational principle established in [230] is a direct consequence of well-known
results in elasticity theory [114]. However, the above analogy is more mathematically than
physically useful in that a considerable part of the analysis for the classical elasticity system
can be extended to the present boundary value problem. In the following, results from
Guo and Babuska [114] are generalised to obtain estimates in the infinite sector Q.
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Let v̄ = (vr, vϕ) = Av, f̄ = Af with:

A =




cosϕ sinϕ

− sinϕ cosϕ


 ,

then equations (B.56a), (B.56b) in polar coordinates are:

∆vr −
1
r2 vr −

2
r2
∂vϕ
∂ϕ
− 2 ∂

∂r

(
∂vr
∂r

+ vr
r

+ 1
r

∂vϕ
∂ϕ

)
= fr , (B.60)

∆vϕ −
1
r2 vϕ + 2

r2
∂vr
∂ϕ
− 2
r

∂

∂ϕ

(
∂vr
∂r

+ vr
r

+ 1
r

∂vϕ
∂ϕ

)
= fϕ , (B.61)

and additionally one of three kinds of boundary conditions, may be imposed on ∂Q:

B̄0v̄
∣∣
ϕ=0,θ =




cos(ϕ)∂r − sin(ϕ)∂r

− sin(ϕ) + cos(ϕ)∂ϕ − cos(ϕ)− sin(ϕ)∂ϕ


 v̄ = ḡ0 = g0 , (B.62)

B̄1v̄
∣∣
ϕ=0,θ =




sin(ϕ)∂r cos(ϕ)∂r

cos(ϕ) + sin(ϕ)∂ϕ − sin(ϕ) + cos(ϕ)∂ϕ


 v̄ = ḡ1 = g1 , (B.63)

B̄0v̄
∣∣
ϕ=0 = ḡ0 and B̄1v̄

∣∣
ϕ=ω = ḡ1 , (B.64)

in which (B.62) corresponds to velocity, (B.63) to stress and (B.64) to mixed boundary
conditions. The boundary value problem is written as: [L̄, B̄]v̄ = [f̄ , ḡ0, ḡ1]. By change of
variable τ = ln(1/r) the sector is converted to a strip domain D = {(τ, ϕ) | − ∞ < τ <

∞, 0 < ϕ < θ} and the system L̃ṽ = f̃ is obtained:

ṽτ −
∂2ṽτ
∂τ2 + ∂2ṽτ

∂ϕ2 + 2 ∂
2ṽϕ

∂τ∂ϕ
= f̃τ , (B.65)

−ṽϕ + ∂2ṽϕ
∂τ2 −

∂2ṽϕ
∂τ2 − 2 ∂

2ṽτ
∂τ∂ϕ

= f̃ϕ , (B.66)

with boundary conditions of the form B̃lṽ = g̃l, where:

B̃0ṽ
∣∣
ϕ=0,θ =




− cos(ϕ)∂τ sin(ϕ)∂τ

− sin(ϕ) + cos(ϕ)∂ϕ − cos(ϕ)− sin(ϕ)∂ϕ


 ṽ = g̃0 = e−τg0 , (B.67)

B̃1ṽ
∣∣
ϕ=0,θ =




− sin(ϕ)∂τ − cos(ϕ)∂τ

cos(ϕ) + sin(ϕ)∂ϕ − sin(ϕ) + cos(ϕ)∂ϕ


 ṽ = g̃1 = e−τg1 , (B.68)

ṽ = (ṽτ , ṽϕ) := (vr(e−τ , ϕ), vϕ(e−τ , ϕ)) ,
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f̃ = (f̃τ , f̃ϕ) := e−2τ (vr(e−τ , ϕ), vϕ(e−τ , ϕ)) ,

g̃ = (g̃τ , g̃ϕ) := e−τ (g0(e−τ , ϕ), g1(e−τ , ϕ)) .

Finally, by Fourier transform v̂ = (v̂τ , v̂ϕ) = (F (ṽτ ), F (ṽϕ)) with:

F (ṽ) = 1√
2π

ˆ ∞
−∞

e−iητ ṽ(τ, ϕ) dτ , η = ξ + ih , −∞ < ξ <∞, h > 0 ,

a system of ODEs in the strip I = (0, θ) is obtained:

(1 + η2)v̂τ + d2v̂τ
dϕ2 + 2iηdv̂ϕ

dϕ = f̂τ , (B.69)

−(1 + η2)v̂ϕ −
d2v̂ϕ
dϕ2 + 2iηdv̂τ

dϕ = f̂ϕ , (B.70)

with boundary conditions B̂lv̂ = ĝl on ∂I = {0, θ}:

B̂0v̂
∣∣
ϕ=0,θ =




−iη cos(ϕ) iη sin(ϕ)

− sin(ϕ) + cos(ϕ)∂ϕ − cos(ϕ)− sin(ϕ)∂ϕ


 v̂ = ĝ0 , (B.71)

B̂1v̂
∣∣
ϕ=0,θ =




−iη sin(ϕ) −iη cos(ϕ)

cos(ϕ) + sin(ϕ)∂ϕ − sin(ϕ) + cos(ϕ)∂ϕ


 v̂ = ĝ1 , (B.72)

B̂0v̂
∣∣
ϕ=0 = ĝ0 and B̂1v̂

∣∣
ϕ=ω = ĝ1 , (B.73)

that can be written as:

U(η)v̂ = [L̂(η), B̂(η)]v̂ = [f̂ , ĝ0, ĝ1] . (B.74)

The operator U(η) depends polynomially on the complex parameter η. By arguments used
in [114] for all η, with the exception of certain isolated points, U(η) realises an isomorphism
H2(I) → L2(I) × C2 × C2. Consequently, the inverse operator R(η) = U(η)−1 is an
operator-valued meromorphic function of η with poles of finite multiplicity; these poles are
the eigenvalues of U(η) [114, 115, 149]. For each pole η of R(η), the homogeneous problem
of (B.74) has at least one non-trivial solution, an eigenvector, corresponding in H2(Ω).
The transcendental equations which the eigenvalues satisfy have been derived for the
elasticity and Stokes equations for instance in [114, 115], where typically the corresponding
biharmonic problem is considered [34]. Since the coefficients of the operators L̂ and B̂
are constants, transcendental equations can be derived directly from the homogeneous
equations (B.69)-(B.70) and the boundary conditions (B.71)-(B.73).
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Lemma B.39. Let η = iz be an eigenvalue of U(η), then:

1. for field equations (B.69), (B.70) with either pure velocity boundary conditions (B.71)
or pure stress boundary conditions (B.72), z satisfies:

sin2((z − 1)θ) = (z − 1)2 sin2(θ) ; (B.75)

2. for the field equations (B.69), (B.70) with mixed boundary conditions (B.73), z sat-
isfies:

cos2((z − 1)θ) = (z − 1)2 sin2(θ) . (B.76)

Proof. Since the coefficients of the differential operator L̂ and boundary operator B̂ are
constants, the solution can be written as v̂i = cje

bjϕvi,j with complex-valued constants cj ,
bj and complex eigenvectors v, in which b and c satisfy Aij(b)vj = 0 with:

A(b) =




1 + η2 + b2 2iηb

2iηb −(1 + η2)− b2


 .

Then:

detA(b) = −[1 + η2 + b2]2 + 4η2b2

= −[(η − b)2 − 1][(η + b)2 + 1] ,

and with η = iz it follows from detA(b) = 0, that:

b1/2 = ±i(z + 1) , b3/4 = ±i(z − 1) ,

with corresponding eigenvectors:

v1/3 =



−i

1


 , v2/4 =




i

1


 .

Considering that v̂ must be real-valued, the solution of the homogeneous problems is:

v̂ = c1




sin(z + 1)ϕ

cos(z + 1)ϕ


+ c2




cos(z + 1)ϕ

− sin(z + 1)ϕ


+ c3




sin(z − 1)ϕ

cos(z − 1)ϕ


+ c2




cos(z − 1)ϕ

− sin(z − 1)ϕ


 ,

involving the four real-valued constants cj . Now, inserting the above solution representa-
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tion into boundary condition (B.71) results in a system Qij(z)cj = g with:

Q(z) =




0 z 0 z

z 0 z − 2 0

z sin(zθ) z cos(zθ) z sin((z − 2)θ) z cos((z − 2)θ)

z cos(zθ) −z sin(zθ) (z − 2) cos((z − 2)θ) −(z − 2) sin((z − 2)θ)




.

For the existence of non-trivial solutions it is necessary and sufficient that detQ(z) = 0,
which leads, following some trigonometric manipulations, to:

detQ(z) = −z2[2z(2− z)− 2 cos(2(z − 1)θ) + 2(z − 1)2 cos(2θ)
]
,

= −4z2[sin2((z − 1)θ)− (z − 1)2 sin2(θ)
] != 0 , (B.77)

providing the transcendental equation (B.75). The identical result is obtained for bound-
ary conditions (B.72) while insertion of the mixed conditions (B.73) into the solution
representation delivers the transcendental equation (B.76).

From equations (B.75), (B.76) it is easy to see that zeroes of these equations are sym-
metric with respect to the origin and the axis Re z = 1 in the complex plane. Hence the
eigenvalues of U(η) are located in the complex plane symmetrically with respect to the
origin and the axis Im η = 1. Let Tη denote the eigenvalues and κ, κ1 be positive numbers
such that:

1 + κ = κ1 = min
η∈Tη

Im(η)>1

Im(η) = min
η∈Tη

Im(η) 6=1

| Im(η)| .

Next a proof of the Agranovich and Vishik conditions [4] is given. Let Dv̂ = i(dv̂/dϕ) and
L̂p(D, η) be the principal part of the operator L̂(Dϕ, η) in matrix form reading:

L̂p(D, η) =



η2 −D2 2ηD

2ηD −η2 +D2


 .

Lemma B.40. (Condition I) For ξ ∈ R, η ∈ Σφ1 = {η : | arg η| < φ1 or | arg η−π| < φ1}
with any φ1 ∈ (0, π/2) and |η| + |ξ| 6= 0, det(L̂p(ξ, η)) 6= 0. Furthermore, the equation
det(L̂p(ζ, η)) = 0 in ζ has equal numbers of roots in the upper and lower half-planes for
η ∈ Σφ1 and η 6= 0.

Proof. It is easy to see that:

det L̂p(ξ, η) = −(ξ2 + η2)2 6= 0 ,
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for ξ ∈ R, η ∈ Σφ1 with any φ1 ∈ (0, π/2), and |ξ|+ |η| 6= 0. Also it is seen that ζ = ±iη
are the roots of the equation det(L̂p(ζ, η)) = 0 in ζ (complex). Hence the equation has
two roots in the upper and lower planes, respectively if 0 6= η ∈ Σφ1 .

Let B̂p(D, η) be the principal part of the boundary operator B̂(Dϕ, η) given by (B.71)-
(B.73), and define for ϕ = ϕ0 with ϕ0 = 0 or θ, respectively, the two infinite strips Iϕ0

with I0 = (0,∞) and Iθ = (−∞, θ). This leads to the following lemma:

Lemma B.41. (Condition II) For any φ1 ∈ (0, π/2), if η 6= 0 and η ∈ Σφ1, the equation
on the half-line:

L̂p(D, η)ŵ = 0 , ϕ ∈ Iϕ0 , (B.78)

B̂p(D, η)ŵ
∣∣
ϕ=ϕ0

= ĥ , (B.79)

has a unique stable solution ŵ such that |ŵ| → 0 as ϕ→∞ (resp. ϕ→ −∞).

Proof. The proof of the above lemma is provided for ϕ0 = 0 and Iϕ0 = (0,∞) only; the
proof for ϕ0 = θ being very similar. For the homogeneous equation (B.78) the solution ŵ
must have the form ebϕ(c1, c2)T with b satisfying the equation:

det L̂p(ib, η) = −(b2 − η2)2 = 0.

Hence b = ±η are the roots with multiplicity of two; for η ∈ Σφ1 and η 6= 0, Re b = Re η 6=
0. Letting α = −sgn(Re η):

ŵ =



ŵτ

ŵϕ


 = c1e

αηϕ




1

αi


+ c2e

αηϕ



ϕ

αiϕ


 ,

is a stable solution if c1, c2 can be uniquely determined by any given boundary condition
ĥ. Velocity boundary conditions (B.79), together with (B.71) [114] lead to:

B̂p(D, η)ŵ
∣∣
ϕ=0 =



−iηŵτ

∂ϕŵτ



ϕ=0

=



−iη 0

ηi αi






c1

c2


 = ĥ ,

which is uniquely solvable for η 6= 0. The same is true for the stress boundary operator,
i.e. the homogeneous system (B.78), (B.79) has a unique stable solution for η ∈ Σφ1 and
η 6= 0, namely:

|ŵ| ≤ c0e
−b0ϕ → 0 as ϕ→∞ ,

with c0 > 0 and b0 = −|Re η|.
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For further analysis, η-dependent norms in the strip domain I are required:

|‖v̂‖|2Hk(I) :=
k∑

l=0
|η|2l‖v̂‖2Hk−l(I) .

Verification of Conditions I and II above, Agranovich and Vishik [4], leads directly to the
following theorem for k = 0, which can be generalised along the lines of Guo and Schwab
[115] for the case of k > 0:

Theorem B.42. Suppose there is no pole of R(η) on the line `h = {η ∈ C | Im η = h},
then problem (B.69), (B.70) with one of the boundary conditions (B.71)-(B.73) and data
f̂ ∈ Hk(I), ĝl ∈ C2 admits a unique solution v̂ = R(η)[f̂ , ĝ0, ĝ1] ∈ Hk+2(I) and for k ≥ 0
and all η ∈ `h the following estimate holds:

|‖v̂‖|2Hk+2(I) ≤ c

|‖f̂‖|2Hk(I) +

∑

l,m=0,1
|η|2(k−m)+3|ĝlm|2


 , (B.80)

with a constant c independent of ξ.

Proof. Due to Lemmas B.40 and B.41 the Conditions I and II of Agranovich and Vishik
[4] are satisfied with η ∈ Σφ1 , φ1 ∈ (0, π/2). Via Theorem 6.1 of [4] the above inequality
holds with a constant c independent of η and v̂ if η ∈ Σφ1 and |η| > η0, where η0 is some
positive real constant. The line Im η = h is contained in Σφ1 except for a finite segment
for which |Re η| < |h|/ sin(φ1). Hence, the proposed inequality holds for η on the line
Im η = h with |η| > η0. For values of η on the line with |η| ≤ η0, R(η) is analytic.

Completely analogous to Lemma 4.4 of Guo and Babuska [114] the following result is
obtained:

Lemma B.43. Let T be a strip {η | 1− h < Im η < 1 + h}, 0 < h < κ, then the resolvent
R(η) has no pole in T for the velocity, stress and mixed problems, and the point η = i is
the only pole of R(η) in T for the mixed problem.

In the following the goal is to transfer the result from Theorem B.42 back to the Carte-
sian coordinate system; this requires the use of technical results from [115], together with
the definition of a norm on the strip domain D:

‖ṽ‖Hk
h

(D)2 :=
∑

α≤k
‖ehτDαṽ‖L2(D)2 . (B.81)

Lemma B.44. If v̄(r, ϕ) ∈ Hk
β(Q), k ≥ 0, then ṽ(τ, ϕ) := v̄(e−τ , ϕ) ∈ Hk

h(D) with
h = k − 1− β, and:

c1‖ṽ‖Hk
h

(D) ≤ ‖v̄‖Hk
β

(Q) ≤ c2‖ṽ‖Hk
h

(D) . (B.82)

314



B.4 Auxiliary problem in an infinite sector

Moreover, for 0 ≤ l ≤ 1, ṽl(τ, ϕ) = e(l−2)τ v̄(e−τ , ϕ) ∈ Hk
h(D), with h = k+ 1− l− β, and:

c1‖ṽl‖Hk
h

(D) ≤ ‖v̄‖Hk
β

(Q) ≤ c2‖ṽl‖Hk
h

(D) , (B.83)

in which the two constants c1 and c2 are independent of v, ṽ. Now, define D = R × I =
(−∞,∞)× (0, θ) and let ṽ ∈ Hk

h(D), k ≥ 0, then v̂(η, ·) = F (ṽ) ∈ Hk(I), and:

c1‖ṽ‖Hk
h

(D) ≤
ˆ ∞+ih

−∞+ih
‖v̂‖Hk(I) dη ≤ c2‖ṽ‖Hk

h
(D) , (B.84)

where the positive constants c1, c2 are independent of ṽ.

Lemma B.45. Let Ḡlm(r, ϕ) ∈ Hk−m+2
β (Q) with Ḡl|Γl = ḡl, l = 0, 1, and let Ĝl = F (G̃l),

with G̃l = e−lτ Ḡ(e−τ , ϕ), leading to the a priori estimate:

|η|2(k−m)+3)|ĝlm|2 ≤ c‖Ĝlm‖Hk−m+2(I) , m, l = 0, 1; k ≥ 0 . (B.85)

Theorem B.46. Let f̄ ∈ Hk
β(Q)2, ḡlm ∈ H

k−m+ 3
2

β (Γl), m, l = 0, 1 with k ≥ 0. If R(η) has
no pole on the line `h = {η ∈ C | Im η = h} with h = k + 1 − β, i.e. k − κ < β < k + κ,
then the problem (B.60), (B.61) with one of the boundary conditions (B.62)-(B.64) admits
a unique solution v̄ ∈ Hk+2

β (Q) and:

‖v̄‖Hk+2
β

(Q) ≤ C

‖f̄‖Hk

β
(Q) +

∑

m,l=0,1
‖ḡlm‖

H
k−m+ 3

2
β

(Γl)


 . (B.86)

Proof. Via the definition Hk−m+3/2
β (Γl), there exists Ḡl ∈ Hk+2

β (Q) ×Hk+1
β (Q), l = 0, 1,

such that Ḡl|Γl = ḡl, and for l = 0, 1:

1
2‖Ḡ

l
m‖Hk−m+2

β
(Q) ≤ ‖ḡ

l
m‖Hk−m+3/2

β
(Q) ≤ ‖Ḡ

l
m‖Hk−m+2

β
(Q) . (B.87)

Due to Lemma B.44 the partial Fourier transforms f̂ ∈ Hk(I), Ĝlm ∈ Hk−m+2(I)2 exist
and (B.82)-(B.84) hold. Via Theorem B.42 the system (B.69), (B.70) with one of the
boundary conditions (B.71)-(B.73) has a unique solution v̂ ∈ Hk+2(I)2 for k ≥ 0 and the
a priori estimate (B.80) holds. The last term can be replaced according to Lemma B.45.
Since R(η) has no pole on the line {η | Im η = h} with h = k + 1− β, the solution:

ṽ := F−1(v̂) = 1√
2π

ˆ ∞+ih

−∞+ih
eiητ (v̂) dη ,
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of the system (B.65)-(B.66) is in Hk+2
h (D) and by Lemma B.44 the following holds:

‖ṽ‖Hk+2
h

(D) ≤ C

‖f̃‖Hk

h
(D) +

∑

m,l=0,1
‖G̃lm‖Hk−l

h
(D)


 .

Consequently, v̄ ∈ Hk+2
β (Q)2 is the unique solution of problem (B.60)-(B.61) with one

of the boundary conditions (B.62)-(B.64) and it follows from (B.82), (B.83) that for any
k ≥ 0:

‖v̄‖Hk+2
β

(Q) ≤ C

‖f̄‖Hk

β
(Q) +

∑

m,l=0,1
‖Ḡlm‖

H
k+ 3

2−l
β

(Q)


 ,

which, together with (B.87), gives the desired estimate (B.86).

For the original problem in Cartesian coordinates, equations (B.56a)-(B.56b) with bound-
ary conditions (B.57), one can start from (B.82) with k = 2 and pass from polar to Carte-
sian coordinates via v = A−1v̄. Under such a transformation, the same inequality (B.86)
follows for v, f and glm as shown in [115]. The final step is to transfer the latter result
from the first integral equations in terms of Ψ and Φ (B.55a) to the first order form (4.75),
(4.76). Due to the fact that for k ≥ 0:

‖u‖k+1,β ≤ ‖∇⊥Ψ‖k+1,β + ‖∇Φ‖k+1,β ≤ ‖Ψ‖k+2,β + ‖Φ‖k+2,β ≤ ‖v‖k+2,β ,

the respective Theorem 4.15 for the first order system is obtained.
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This appendix provides detailed convergence results for the benchmark cases of Sec. 5.3.1
from Ch. 5. Furthermore, the discretisation of the NS equations in terms of primitive
variables is considered, being needed for comparison purposes; in particular the details of
the classical scalar algebraic multigrid method are described as a background for Sec. 5.4.

C.1 Convergence results: Taylor-Couette flow

# variables h ‖u− u∗‖1 ‖u− u∗‖0 ‖u− u∗‖∞
108 3.9018e-01 6.6642e+01 4.4920e+00 4.7164e+00
340 1.9603e-01 3.7467e+01 2.0548e+00 2.0976e+00
1188 9.8135e-02 1.9631e+01 6.1111e-01 5.8799e-01
4420 4.9082e-02 9.9522e+00 1.9213e-01 1.6371e-01
17028 2.4543e-02 4.9984e+00 5.3523e-02 4.5816e-02
66820 1.2272e-02 2.5067e+00 1.3965e-02 1.2563e-02
264708 6.1359e-03 1.2562e+00 3.7016e-03 3.4122e-03
1053700 3.0680e-03 6.2894e-01 1.0002e-03 9.2239e-04

Table C.1: Convergence results for test case [TF.1] with linear basis functions on 3-point
triangular Lagrange elements and equal least-squares weighting of the four equations. The
table shows the global errors in the energy norm, the L2(Ω) norm and the maximum norm
for increasingly refined grids.

# variables h ‖u1 − u∗1‖0 ‖u2 − u∗2‖0 ‖φ1 − φ∗1‖0 ‖φ2 − φ∗2‖0
108 3.9018e-01 1.0678e-01 1.0678e-01 4.1921e+00 1.6070e+00
340 1.9603e-01 1.0711e-01 1.0711e-01 1.9126e+00 7.3950e-01
1188 9.8135e-02 1.3206e-01 1.3206e-01 5.5079e-01 2.0474e-01
4420 4.9082e-02 7.5014e-02 7.5014e-02 1.5797e-01 5.4868e-02
17028 2.4543e-02 1.9400e-02 1.9400e-02 4.5230e-02 1.4900e-02
66820 1.2272e-02 3.4821e-03 3.4821e-03 1.2631e-02 4.0109e-03
264708 6.1359e-03 5.0244e-04 5.0244e-04 3.4833e-03 1.0782e-03
1053700 3.0680e-03 6.6205e-05 6.6205e-05 9.5349e-04 2.9001e-04

Table C.2: Convergence results for test case [TF.1]. The table shows for each variable
the errors in the L2(Ω) norm for increasingly refined grids.
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# variables h ‖u1 − u∗1‖∞ ‖u2 − u∗2‖∞ ‖φ1 − φ∗1‖∞ ‖φ2 − φ∗2‖∞
108 3.9018e-01 1.5577e-01 1.5577e-01 4.7164e+00 2.3850e+00
340 1.9603e-01 1.5442e-01 1.5442e-01 2.0976e+00 1.1025e+00
1188 9.8135e-02 1.4155e-01 1.4155e-01 5.8799e-01 3.0920e-01
4420 4.9082e-02 9.5485e-02 9.5485e-02 1.6371e-01 8.2674e-02
17028 2.4543e-02 2.9861e-02 2.9861e-02 4.5816e-02 2.2081e-02
66820 1.2272e-02 5.9129e-03 5.9129e-03 1.2563e-02 5.8085e-03
264708 6.1359e-03 9.0827e-04 9.0827e-04 3.4122e-03 1.5215e-03
1053700 3.0680e-03 1.2442e-04 1.2442e-04 9.2239e-04 3.9863e-04

Table C.3: Convergence results for test case [TF.1]. The table shows for each variable
the errors in the maximum norm for increasingly refined grids.

# variables h ‖u− u∗‖1 ‖u− u∗‖0 ‖u− u∗‖∞
340 3.9018e-01 3.1112e-02 3.6462e-01 2.3545e-01
1188 1.9603e-01 7.5789e-03 3.6053e-02 2.3631e-02
4420 9.8135e-02 1.8745e-03 2.7477e-03 1.8377e-03
17028 4.9082e-02 4.6311e-04 2.1854e-04 1.4957e-04
66820 2.4543e-02 1.1481e-04 1.9497e-05 1.3523e-05
264708 1.2272e-02 2.8562e-05 1.9699e-06 1.3640e-06

Table C.4: Convergence results for test case [TF.2] with quadratic basis functions on 6-
point triangular Lagrange elements and equal least-squares weighting of the four equations.
The table shows the global errors in the energy norm, the L2(Ω) norm and the maximum
norm for increasingly refined grids.

# variables h ‖u1 − u∗1‖0 ‖u2 − u∗2‖0 ‖φ1 − φ∗1‖0 ‖φ2 − φ∗2‖0
340 3.9018e-01 1.3629e-02 1.3629e-02 1.3421e-01 2.3545e-01
1188 1.9603e-01 1.4659e-03 1.4659e-03 1.3115e-02 2.3631e-02
4420 9.8135e-02 1.0826e-04 1.0826e-04 1.0012e-03 1.8377e-03
17028 4.9082e-02 8.1272e-06 8.1272e-06 7.9191e-05 1.4957e-04
66820 2.4543e-02 8.0087e-07 8.0087e-07 6.9708e-06 1.3523e-05
264708 1.2272e-02 1.0634e-07 1.0634e-07 6.9379e-07 1.3640e-06

Table C.5: Convergence results for test case [TF.2] with quadratic basis functions on 6-
point triangular Lagrange elements and equal least-squares weighting of the four equations.
The table shows for each variable the errors in the L2(Ω) norm for increasingly refined
grids.
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# variables h ‖u1 − u∗1‖∞ ‖u2 − u∗2‖∞ ‖φ1 − φ∗1‖∞ ‖φ2 − φ∗2‖∞
340 3.9018e-01 1.4513e-02 1.4513e-02 1.1859e-01 3.4439e-01
1188 1.9603e-01 1.3952e-03 1.3952e-03 1.1216e-02 3.4225e-02
4420 9.8135e-02 1.0378e-04 1.0378e-04 7.8973e-04 2.6288e-03
17028 4.9082e-02 8.5704e-06 8.5704e-06 5.8275e-05 2.1033e-04
66820 2.4543e-02 8.6220e-07 8.6220e-07 5.3609e-06 1.8709e-05
264708 1.2272e-02 9.9642e-08 9.9642e-08 6.1581e-07 1.8660e-06

Table C.6: Convergence results for test case [TF.2] with quadratic basis functions on 6-
point triangular Lagrange elements and equal least-squares weighting of the four equations.
The table shows for each variable the errors in the maximum norm for increasingly refined
grids.

# variables h ‖u− u∗‖1 ‖u− u∗‖0 ‖u− u∗‖∞
132 5.0000e-01 1.0992e+02 9.2902e-01 4.7789e-01
420 2.5000e-01 6.7602e+01 4.5945e-01 2.3316e-01
1476 1.2500e-01 3.6539e+01 2.7409e-01 1.6850e-01
5508 6.2500e-02 1.8712e+01 1.9639e-01 1.2867e-01
21252 3.1250e-02 9.4086e+00 6.4963e-02 5.0974e-02
83460 1.5625e-02 4.7170e+00 1.3868e-02 1.2551e-02
330756 7.8125e-03 2.3642e+00 2.2619e-03 2.1634e-03
1316868 3.9063e-03 1.1842e+00 3.2044e-04 3.1050e-04

Table C.7: Convergence results for test case [TF.3] with linear basis functions on 3-point
triangular Lagrange elements and equal least-squares weighting of the four equations. The
table shows the global errors in the energy norm, the L2(Ω) norm and the maximum norm
for increasingly refined grids.

# variables h ‖u− u∗‖1 ‖u− u∗‖0 ‖u− u∗‖∞
420 5.0000e-01 9.8125e+00 1.6072e+00 8.4174e-01
1476 2.5000e-01 2.5304e+00 1.7601e-01 9.7660e-02
5508 1.2500e-01 6.2993e-01 1.4133e-02 9.3039e-03
21252 6.2500e-02 1.5262e-01 1.0850e-03 7.6415e-04
83460 3.1250e-02 3.6454e-02 9.6779e-05 9.3713e-05
330756 1.5625e-02 8.8204e-03 7.8854e-06 7.7389e-06

Table C.8: Convergence results for test case [TF.3] with quadratic basis functions. The
table shows the global errors in the energy norm, the L2(Ω) norm and the maximum norm
for increasingly refined grids.
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C.2 Convergence results: Colliding flow

# variables h CF.1 CF.2 CF.3 CF.4
100 5.0000e-01 1.4966e+00 3.3853e+00 2.8345e-01 3.1376e-01
324 2.5000e-01 2.4242e-01 1.6120e-01 3.2931e-02 3.5283e-02
1156 1.2500e-01 3.5569e-02 1.3945e-02 3.9720e-03 5.4919e-03
4356 6.2500e-02 4.8052e-03 1.1789e-03 4.9275e-04 7.9649e-04
16900 3.1250e-02 6.2595e-04 1.0535e-04 6.1552e-05 9.3813e-05
66564 1.5625e-02 7.9971e-05 1.0413e-05 7.6960e-06 2.2858e-05
264196 7.8125e-03 1.0110e-05 1.1474e-06 9.6205e-07 4.0205e-06

Table C.9: L2(Ω)-norm of the solution error (‖u−u∗‖0) for cases [CF.1]-[CF.4] of colliding
flow and for increasingly refined grids. The speed of convergence is comparable for all types
of boundary conditions and in each case the optimal cubic rate for second-order FEM basis
functions is reached, that is ‖u− u∗‖0 ∼ ch3.

# variables h CF.1 CF.2 CF.3 CF.4
100 5.0000e-01 1.1073e+04 2.1678e+04 6.4855e+02 3.2408e+02
324 2.5000e-01 4.1697e+04 3.2151e+04 2.7153e+03 3.2180e+03
1156 1.2500e-01 1.7898e+05 7.8765e+04 7.1439e+03 2.1099e+04
4356 6.2500e-02 7.7416e+05 1.9773e+05 2.1354e+04 2.0543e+05
16900 3.1250e-02 3.3629e+06 5.0759e+05 8.2021e+04 2.6761e+06
66564 1.5625e-02 1.4609e+07 1.1090e+06 2.9502e+05 5.0867e+07
264196 7.8125e-03 6.3289e+07 4.1829e+06 1.1459e+06 1.1974e+09

Table C.10: 2-norm condition numbers of the system matrices resulting from test cases
[CF.1]-[CF.4] of colliding flow and for increasingly refined grids. The condition numbers
grow proportional to h2 apart for case CF.4.

C.3 Taylor-Hood discretisation of the NS equations

The Stokes equations describe the flow of an incompressible viscous fluid under the as-
sumption that inertial effects can be neglected in comparison to inner friction. The
two-dimensional variant of the equations without external forces and with pure Dirich-
let boundaries is:

η∆u−∇p = 0 in Ω , (C.1)

div(u) = 0 in Ω , (C.2)

u = g auf ∂Ω . (C.3)
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C.3 Taylor-Hood discretisation of the NS equations

Here, u = (ux, uy) denotes the velocity vector, p the pressure and η the dynamic viscosity.
The domain and its boundary is denoted by Ω and ∂Ω. Equations (C.1), (C.2) result from
the Lagrangian density:

L(ui, ∂jui, p) = 2η
2∑

i,j=1
DijDij − p

2∑

i=1

∂ui
∂xi

, (C.4)

with strain rate tensor:

Dij = 1
2

[
∂ui
∂xj

+ ∂uj
∂xi

]
,

so that the variational principle behind (C.4) can be interpreted as a minimisation of
dissipation. The pressure p plays the role of a Lagrangian multiplier necessary in order to
fulfil the incompressibility condition (C.2), which is therefore obtained by variation with
respect to p. The two equations (C.1) follow by variation with respect to ux and uy.
In the following let L2(Ω) denote the Lebesgue space of quadratic integrable functions:

L2(Ω) :=
{
f : Ω→ R measurable,

ˆ
Ω
|f |2 dΩ <∞

}
,

and H1(Ω) the standard Sobolev space of real-valued functions g ∈ L2(Ω) with all first
order partial derivatives existing and being in L2(Ω). H1

0 denotes the Sobolev space H1

with zero boundary conditions. Now, define the bilinear form:

a(v, u) = η

ˆ
Ω
∇u · ∇v dΩ , (C.5)

b1(v, p) = −
ˆ

Ω
p · ∂v

∂x
dΩ , b2(v, p) = −

ˆ
Ω
p · ∂v

∂y
dΩ , (C.6)

and the function spaces:

V0 = H1
0 (Ω) , V =

{
v ∈ [H1(Ω)]2

∣∣∣ v = g auf ∂Ω
}
,

W =
{
w ∈ L2(Ω)

∣∣∣∣
ˆ

Ω
w dΩ = 0

}
,

then a weak formulation of the Stokes system (C.1) – (C.3) is given by:

Find (ux, uy) ∈ V , p ∈W , such that: (C.7)

a(vx, ux) + b1(vx, p) = 0 for all vx ∈ V0 , (C.8)

a(vy, uy) + b2(vy, p) = 0 for all vy ∈ V0 , (C.9)

b1(ux, w) + b2(uy, w) = 0 for all w ∈W . (C.10)

In practice, a frequently used choice of mixed FE spaces fulfilling the so-called Inf-Sup
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C Numerical method: further underpinnings

compatibility condition employs Lagrangian elements with different polynomial degree:
k-th order polynomials for the velocities and (k− 1)-th order polynomials for the pressure
field. This combination is called the Taylor-Hood element and known to be stable for
k ≥ 2. The Taylor-Hood FEM calculations for a comparative study with the LSFEM
in Sec. 5.3.2 are based on (P2,P1) elements for an irregular triangulation; velocity and
pressure variables are distributed on the grid nodes as shown in Fig. C.1.

ux, uy

ux, uy, p

Figure C.1: Variable distribution on a FE triangulation: the pressure is discretised at
corner points only (linear approximation), the velocities additionally at the edge centres
(quadratic approximation) also.

Consider Fig. C.1, then for each node of the given grid quadratic basis functions vi
can be found and for each corner node linear basis functions wi forming the discrete finite
element subspaces V h ⊂ V , W h ⊂W :

V h = {v1, v2, . . . , vnu} , W h = {w1, w2, . . . , wnp} , nu > np ;

the unknown velocity and pressure fields are approximated by the basis functions according
to:

ux =
nu∑

i=1
c1
i vi , uy =

nu∑

i=1
c2
i vi , p =

np∑

i=1
c3
iwi .

Thus the discret version of (C.7) – (C.10) transforms to a linear system of equations: with
matrices A ∈ Rnu×nu , B1, B2 ∈ Rnu×np :




A 0 B1

0 A B2

BT
1 BT

2 0



·




c1

c2

c3




=




0

0

0



, (C.11)

in which:

Aij = a(vi, vj) , (B1)ij = b1(vi, wj) , (B2)ij = b2(vi, wj) . (C.12)
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C.3 Taylor-Hood discretisation of the NS equations

The Dirichlet boundary conditions are incorporated subsequently and the periodic bound-
ary conditions are automatically fulfilled by a fictitious linkage of the grid points on the
left and right-hand side of the domain boundary.

In order to solve the full Navier-Stokes equations with non-linear convection terms a
Newton linearisation is applied such that for n = 1, 2, . . . an iteration process of the form:

ρ

[
u(n−1)
x

∂u
(n)
x

∂x
+ u(n)

x

∂u
(n−1)
x

∂x
+ u(n−1)

y

∂u
(n)
x

∂y
+ u(n)

y

∂u
(n−1)
x

∂y

]
+ ∂p

∂x
− η∆ux =

ρ

[
u(n−1)
x

∂u
(n−1)
x

∂x
+ u(n−1)

y

∂u
(n−1)
x

∂y

]
,

ρ

[
u(n−1)
x

∂u
(n)
y

∂x
+ u(n)

x

∂u
(n−1)
y

∂x
+ u(n−1)

y

∂u
(n)
y

∂y
+ u(n)

y

∂u
(n−1)
y

∂y

]
+ ∂p

∂y
− η∆uy =

ρ

[
u(n−1)
x

∂u
(n−1)
y

∂x
+ u(n−1)

y

∂u
(n−1)
y

∂y

]
,

∂u
(n)
x

∂x
+ ∂u

(n)
y

∂y
= 0 ,

is obtained. As a starting point, n = 0, the linear Stokes solution is employed. If the
bilinear form is defined similar to the above, i.e.:

c(v, u, u1, u2) = ρ

ˆ
Ω
v

[
u1
∂u

∂x
+ u2

∂u

∂y

]
dΩ , (C.13)

d1(v, u, u1) = ρ

ˆ
Ω
v

[
u
∂u1
∂x

]
dΩ , d2(v, u, u1) = ρ

ˆ
Ω
v

[
u
∂u1
∂y

]
dΩ , (C.14)

the method can be described by a sequence of linear systems:



A+ C
(n−1)
1 D

(n−1)
1 B1

D
(n−1)
2 A+ C

(n−1)
2 B2

BT
1 BT

2 0



·




c1

c2

c3




=




E
(n−1)
1

E
(n−1)
2

0



, (C.15)

with matrices C1, C2, D1, D2 ∈ Rnu×nu and vectors E1, E2 ∈ Rnu×1:

(C1)ij = c(vi, vj , u(n−1)
x , u(n−1)

y ) + d1(vi, vj , u(n−1)
x ) , (C.16)

(C2)ij = c(vi, vj , u(n−1)
x , u(n−1)

y ) + d2(vi, vj , u(n−1)
y ) , (C.17)

(D1)ij = d2(vi, vj , u(n−1)
x ) , (D2)ij = d1(vi, vj , u(n−1)

y ) , (C.18)

(E1)i = c(vi, u(n−1)
x , u(n−1)

x , u(n−1)
y ) , (E2)i = c(vi, u(n−1)

y , u(n−1)
x , u(n−1)

y ) . (C.19)

As a stopping criterion a residual of Res < 10−6 is fixed. Subsequent to the solution for
the velocity components and the pressure, the velocity derivatives which are crucial to the
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calculation of the wall shear stress along the upper plate are continuously reconstructed
by standard methods.

C.4 Scalar algebraic multigrid: the details

This section is attached to the basic considerations concerning scalar AMG as utilised in
Chapter 5, Sec. 5.4. Here a few more details are provided which are mandatory for the
understanding of the AMG strategy developed for the linear systems resulting from the
first integral LSFEM. In particular, the meaning of algebraic smoothing is clarified and
standard coarsening and interpolation methods summarised.

C.4.1 Algebraic smoothing

Smoothing and coarse-grid correction play the same role in both AMG and GMG but with
algebraic smoothness having a different meaning to geometric smoothness. In a geometric
context the term “smooth” is used in a natural and restrictive way, i.e., an error is called
geometrically smooth if it can be well approximated on a predefined coarser grid; thus the
smoothing property in GMG is always related to two specified grids; conversely in AMG
no predefined grids exist and the classical definition is meaningless; instead, an error is
said to be algebraically smooth if it converges slowly with regard to a smoothing operator
S, i.e. Se ≈ e, or in other words if it is not efficiently reduced by the smoothing operator
and thus must be approximated on a coarser level.

Before proceeding further, additional notation is introduced for the description of al-
gebraic smoothness. A large and sparse n-dimensional linear system with a symmetric,
positive definite matrix A is assumed, the latter property indicated by A > 0. Related to
the matrix A, three scalar products are defined for u, v ∈ Rn:

(u, v)0 = (Dhu, v)E , (u, v)1 = (Ahu, v)E , (u, v)2 = (D−1
h Ahu,Ahv)E , (C.20)

with the corresponding norms ‖.‖i (i = 0, 1, 2)1. Here, (., .)E denotes the Euclidean scalar
product and Dh = diag(Ah). (., .)1 and ‖.‖1 are also called the energy product and energy
norm. The spectral radius of a matrix is denoted by ρ(.) as usual.

(a) Eigenvectors and Eigenvalues

The eigenvectors φ of D−1A play a significant role in the context of algebraic smoothness.
The eigenvectors that belong to the smallest eigenvalues λ normally lead to the slowest

1The discrete inner products and norms given by (C.20) are valid throughout Sec. C.4 only and are not
to be confused with the similar notation for Sobolev norms used elsewhere.
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C.4 Scalar algebraic multigrid: the details

convergence of the relaxation process and thus correspond to the above definition of al-
gebraically smooth error components. This can be easily verified for a ω-Jacobi iteration
with suitable under-relaxation. Small eigenvalues λ of D−1A correspond to eigenvalues of
the ω-Jacobi operator S = (I − ωD−1A) which are close to one. This is similar to related
linear iteration methods, for example GS relaxation.
Next, some basic correlations between the above defined norms belonging to the scalar

products (C.20) are discussed [242]:

Lemma C.1. Let A > 0 ∈ Rn×n. Then for all vectors e ∈ Rn:

‖e‖21 ≤ ‖e‖0‖e‖2, ‖e‖22 ≤ ρ(D−1A)‖e‖21, ‖e‖21 ≤ ρ(D−1A)‖e‖20 ;

and for the eigenvectors of D−1A:

D−1Aφ = λφ ⇒ ‖φ‖22 = λ‖φ‖21 and ‖φ‖21 = λ‖φ‖20 . (C.21)

The eigenvalues and eigenvectors of D−1A in combination with the result (C.21) demon-
strate the significance of the choice of norms in the context of smoothing: if (C.21) is
applied to an algebraically smooth error component e = φ the corresponding eigenvalue λ
is close to one and therefore the norms have considerably differing magnitude:

‖φ‖2 � ‖φ‖1 and ‖φ‖1 � ‖φ‖0 .

Conversely, norms of algebraically non-smooth errors are of comparable magnitude, leading
to the conclusion that an algebraically smooth error can be identified simply by comparing
different norms. This yields the following formal definition of the smoothing property:

Definition C.2. The relaxation operator S will possess the required smoothing property
with regard to the matrix A > 0 if:

‖Se‖21 ≤ ‖e‖21 − σ‖e‖22 (σ > 0) , (C.22)

holds for all e and σ independent of e.

The relaxation operator S efficiently reduces the error e provided ‖e‖2 is large relative
to ‖e‖1. In contrast, relaxation operations become inefficient if ‖e‖2 � ‖e‖1; the error is
then called algebraically smooth. Furthermore, S is said to fulfil the smoothing property
with regard to a class of matrices A if S satisfies inequality (C.22) uniformly for all A ∈ A
with an identical σ. A necessary requirement for (C.22) to hold is σ‖e‖22 ≤ ‖e‖21 which is
equivalent to ρ(D−1A) ≤ 1/σ. Consequently, for fulfilment of the smoothing property in
A, the spectral radius ρ(D−1A) has to be uniformly bounded from below for all A ∈ A.
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(b) Smoothing methods

Classical relaxation schemes such as Jacobi or GS are usually employed as smoothers;
the computational effort is comparably low and the smoothing effect sufficient for typical
classes of matrices. Such a typical class in the context of elliptic differential equations is
that of symmetric and positive definite M-Matrices the row sum of which is close to zero.
The M-matrix property is defined as follows:

Definition C.3. A matrix A ∈ RN×N is called a M-Matrix, if the following conditions
are fulfilled:

(i) aii > 0 for i = 1, . . . , N ,

(ii) aij ≤ 0 for all i 6= j ,

(iii) A−1 exists and it holds A−1 ≥ 0 .

A well-known result concerning the smoothing property of the GS method, which is
similarly valid for Jacobi relaxation, is stated by Stüben [242], namely:

Proposition C.4. For all symmetric M-matrices Gauss-Seidel relaxation fulfils the smooth-
ing property (C.22) uniformly with σ = 1/4. This similarly holds for all matrices A which
are obtained from symmetric M-matrices by symmetric permutation of arbitrarily many
signs.

In addition, many classical ILU schemes [211] which are frequently used for precondi-
tioning Krylov subspace iterations exhibit a strong smoothing effect on the error. The
computation of an ILU decomposition requires a lot more computational effort in compar-
ison to point-wise relaxation schemes, but, due to the higher number of variables involved
in the smoothing process, may provide a significantly higher quality of smoothing.

(c) Interpretation of algebraically smooth errors

For a better understanding of coarsening and interpolation further discussion is required
of the meaning of algebraically smooth errors. As noted in Sec. 5.4, an algebraic smooth
error e is characterised by the property Se ≈ e according to the above considerations
implying ‖e‖2 � ‖e‖1. Expressing this in terms of the residual r = Ae gives:

(D−1r, r)E � (e, r)E .

Therefore algebraically smooth errors are on average characterised by scaled residuals
which are significantly smaller than the error itself leading to the heuristic assumption:

|ri| � aii|ei| ,
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for row indices i of an algebraically smooth error e and its corresponding residual r. This
again yields the approximate relationship:

aiiei ≈ −
∑

j∈Ni
aijej , (C.23)

in which Ni := {j ∈ Ω : j 6= i, aij 6= 0} denotes the index set of the neighbouring variables
of i. Thus, although the error might be large globally, ei may be approximated well by a
function in terms of the neighbouring errors ej .

(d) Algebraically smooth errors and strong couplings

In the following the relationship between the direction of algebraic smoothness and the
variable coupling in the system matrix is identified. An algebraic smooth error e satisfying
‖e‖2 � ‖e‖1 implies ‖e‖1 � ‖e‖0. The latter, for symmetric matrices A, is equivalent to:

1
2
∑

i,j

(−aij)(ei − ej)2 +
∑

i

sie
2
i �

∑

i

aiie
2
i , (C.24)

with the sum of the i-th row of A denoted by si = ∑
j aij . Moreover, for M-matrices

aij ≤ 0 (j 6= i) holds and if additionally the row sums are close to zero, that is si ≈ 0, for
each i the following estimate:

∑

j 6=i

|aij |
aii

(ei − ej)2

e2
i

� 1 ,

can be derived. This motivates the following statement which is firstly confined to sym-
metric M-matrices with approximately zero row sums:

Lemma C.5. An algebraic smooth error varies slowly in directions of strong negative
couplings, that is the error from ei to ej will change only marginally if |aij |/aii is relatively
large. Relaxation methods that satisfy the smoothing property will smooth the error in
directions of strong negative couplings.

The above results can be generalised to certain classes of matrices with positive non-
diagonal entries [242] but it is not necessary to consider these further in the context of the
present work.

C.4.2 Coarsening procedure

Consider as in Sec. 5.4 a two-level arrangement where a suitable disjoint splitting of the
fine-level variables Ω = C ∪ F into coarse-level variables (C) and the remaining variables
(F) is required. In order to obtain fast convergence, the algebraically smooth error should
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be well approximated by interpolation and this in turn is best achieved the stronger the
coupling between the F and C-variables is. As the overall efficiency of the method de-
pends on both the convergence rate and the computational effort per cycle, the coarsening
process should be designed so as to minimise the number of C-variables while retaining a
sufficiently strong coupling between the F and C-variables. Furthermore, the splitting into
F and C-variables should preferably be performed in a homogeneous manner in the sense
that F-variables are surrounded by C-variables from which they can be interpolated. This
requirement usually improves the interpolation considerably leading to faster convergence;
such a simple splitting scheme is given by so-called standard coarsening, see (a) below.
The imperative of a strong coupling between F- and C-variables does not necessarily

mean that this coupling has to exist in a direct manner; not every F-variable has to be
directly strongly-coupled to a C-variable but the link can exist indirectly via a coupling to
other F-variables which are again strongly coupled to a C-variable. This approach allows
for a distinct reduction in the number of necessary C-variables and opens up the prospect
of a drastic reduction in computation time which often compensates for the disadvantage
of a limited smoothing and interpolation quality in practice. Such an aggressive coarsening
strategy is presented in (b).

(a) Standard coarsening

The term standard coarsening comprises splitting schemes, based on direct couplings be-
tween C- and F-variables. According to a pre-determined requirement, for each F-variable
i a minimal number of direct and sufficiently strong couplings j ∈ Ni to the set of coarse
level variables has to be identified. For the applications considered in the present work,
the strong couplings are mostly negative and the splitting algorithm can be confined to
those negative couplings. In other words coarsening takes place in the direction of slowly
varying algebraically smooth errors, see Lemma C.5. Here, a specific variable i is said to
have a strong negative coupling to another variable j if:

−aij ≥ εstr max
aik<0

|aik| with fixed 0 < εstr < 1 . (C.25)

The set of strong couplings of the variable i is denoted by:

Si = {j ∈ Ni : i strongly coupled to j} . (C.26)

All other couplings, including strong positive ones, are treated as weak. A standard
value for this coupling constant is εstr = 0.25 [242]. The relationship of strong couplings
will normally be non-symmetric even if the matrix A is symmetric; therefore the set of
transposed couplings to a variable i must be defined also, that is the set of variables
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coupled to i:

STi = {j ∈ Ω : i ∈ Sj} .

A simple coarsening procedure works as follows: An arbitrary first variable i is chosen to
be a C-variable and all variables j ∈ STi strongly coupled to i are classified as F-variables.
The rest of the non-classified variables are treated in the same way until all variables are
either in the fine-level or the coarse-level set. In order to obtain a uniform distribution of
C- and F-variables the respective next C-variable is not chosen randomly but according
to a specified priority order. For this purpose a priority measure λi is defined indicating
the urgency for i to be chosen as the next C-variable:

λi = |STi ∩ U |+ 2|STi ∩ F | (i ∈ U) . (C.27)

Here, U is the set of currently unspecified variables and | · | denotes the number of elements
in the specified set. λi indicates the value of i as a C-variable. At the beginning variables
are preferred to which many other variables are strongly coupled; later on variables are
preferred to which many F-variables are strongly coupled. Figs. C.2 and C.3 illustrate
this process.

F := ∅, C := ∅, U := Ω

λi := |ST
i ∩U |+2|ST

i ∩F | (i ∈ U)

Update λi = 0? Return

Choose i ∈ U with max. λi and
set: C := C ∪ {i}, U := U \ {i}

For all j ∈ ST
i ∩ U set:

F := F ∪ {j}, U := U \ {j}

yes

no

Figure C.2: Standard coarsening algorithm schematic
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In a preceding step of the algorithm variables without couplings, or which belong to
strongly diagonally dominant rows, are filtered and marked as F-variables; these variables
do not need to be interpolated. At the end of the algorithm all F-variables, except for
the filtered ones, have at least one strong coupling to a C-variable but it may be the case
that some U-variables are left without any strong coupling to a C-variable. Neither of
these variables have strong couplings between them nor is any F-variable strongly coupled
to them. However, each of these variables is at least strongly coupled to at least one F-
variable; that means they can be marked as F-variables and will be interpolated indirectly
via their strong F-couplings (Sec. C.4.3). Finally, it is noted that the resulting set of
C-variables is close to the maximum set of variables not being coupled to each other
(maximum independent set).

2 3 3 3 2

3 4 4 4 3

3 4 4 4 3

3 4 4 4 3

2 3 3 3 2

2 3 3 3 2

3 4 4 4 3

3 4 4 3

4 3

2 3 3 2

2 3 3 3 2

3 5 4 4 3

5 6 4 3

5 3

4 5 3 2

2 3 3 3 2

3 5 4 3

5 3

5 3

4 5 3 2

2 3 4 3 2

3 6 6 3

5 4

6 3

4 5 3 2

2 3 4 3 2

3 6 6 3

5 4

4 5 2

2 3 4 3 2

3 6 6 3

5 5

4 6 4

2 4 3 2

6 3

5 5

4 6 4

Figure C.3: A schematic illustration of standard coarsening for a five-point finite dif-
ference stencil. At the beginning (top-left) every U-variable is initialised with a number
representing of its strong coupling to its immediate neighbours (here it is assumed that
any delineated connection represents a strong coupling). Proceeding chronologically from
top-left to bottom-right, one of the variables with highest priority is chosen as a C-variable
(red), the neighbours become F-variables (white), then for each F-variable the priority of
the neighbouring U-variables (blue) is increased by one. Next, a new C-variable is chosen
and so on.

(b) Aggressive coarsening

In many applications the discretisation involves relatively small difference stencils and in
those cases a coarsening procedure based on direct couplings requires many C-variables,
thus resulting in a Galerkin operator with a high level of complexity. This becomes
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noticeable especially in the first coarsening step which in turn contributes significantly to
the overall complexity of the setup phase.

In order to achieve a more aggressive coarsening, indirect couplings between variables
are considered. A variable i is said to be coupled to a variable j over a path of length l
if a sequence of variables i0, i1, ..., il exists with i = i0 and j = il such that ik+1 ∈ Sik for
k = 0, 1, 2, ..., l − 1. Let p ≥ 1 and l ≥ 1, then i is said to be strongly (p, l)-coupled to j
if at least p paths with a length of at most l exist providing a strong coupling between i
and j. Such an aggressive coarsening is obtained if in the algorithm of Fig. C.2 for given
p and l the set Si is replaced by:

Sp,li = {j ∈ Ω : i strongly (p, l)-coupled to j} .

In practice only strategies involving very low values of p and l pay off, therefore coarsening
with S1,2

i and S2,2
i is also seperately called A1 and A2 coarsening, respectively. Normally

rarely more than one aggressive coarsening per setup is used and is most often performed
directly at the beginning of the coarsening procedure.

If the coarsening algorithm is applied directly to Sp,li rather than Si the complete cou-
pling information and information about (Sp,li )T have to be saved for all variables i. The
cost for this can be reduced by employing a two-step algorithm: in the first step the
algorithm of Fig. C.2 is performed in its original form as explained in Sec. 2.2.1.; in
the second step strong couplings are solely defined between C-variables (via neighbouring
F-variables):

Ŝp,li = {j ∈ C : i strongly (p, l)-coupled to j} .

Now, the standard coarsening algorithm is applied once again but confined to the C-
variables and the resulting variable set defines the next coarser level (see Fig. C.4).

→ →

Figure C.4: Schematic illustration of two types of aggressive coarsening, A2 (left) and
A1 (right), for the case of a five-point stencil. The marked boxes in each case emphasise
the range of the strong couplings in the sense of Ŝ2,2

i and Ŝ1,2
i .
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C.4.3 Interpolation

Having defined the split into C and F-variables on each grid level, it is now necessary
to specify the corresponding different interpolation operators. These operators in turn
depend on whether standard or aggressive coarsening has been employed. In the first case
direct (Par. (a)) or standard interpolation (Par. (b)) is used, in the second case multi-
pass interpolation (Par. (c)). Both forms of interpolation can be improved by additional
relaxation steps leading to, a so-called, Jacobi interpolation [242] but which is not consid-
ered here. However, in contrast to direct interpolation the standard form already involves
indirect strong couplings, i.e. an extension of the interpolation radius is effected, which
can necessitate a truncation of the interpolation operator complexity before eventually
computing the Galerkin operator.
In what follows additional conventions are required. Let Si be defined as in (C.26) and

furthermore let:

Ci = C ∩Ni, Csi = C ∩ Si
Fi = F ∩Ni, F si = F ∩ Si .

(a) Direct interpolation

Sec. C.4.1(d) revealed that for symmetric M-matrices the algebraically smooth error varies
slowly in directions of strong coupling, that is the error in a variable i can be well approx-
imated by a weighted average error of the strongly coupled neighbouring variables. For
each i ∈ F a set of interpolation variables Pi = Csi is defined and (C.23) is approximated
by:

aiiei +
∑

j∈Ni
aijej = 0 ⇒ aiiei + αi

∑

k∈Pi
aikek , (C.28)

with:

αi =
∑
j∈Ni aij∑
k∈Pi aik

.

This leads to the interpolation formula:

ei =
∑

k∈Pi
wikek mit wik = −αiaik/aii (i ∈ F, k ∈ Pi) ,

which only considers direct couplings, thus the descriptor direct interpolation, see also
Fig. C.5.
The above procedure can be applied as long as Csi 6= ∅ but this condition is, when using

standard coarsening, satisfied for all F-variables except for special cases; these always have
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→
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→
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1
3

1
3

1
3

Figure C.5: A schematic illustration of direct interpolation, from left to right, for a
five-point stencil. The middle F-variable (red) is strongly coupled to all four neighbours
(diagonal entry: 4, all minor diagonal entries: -1) but is only interpolated from the neigh-
bouring C-variables (blue). The interpolating weights, in this case are all equal to 1/3,
depend on the magnitude of the matrix entries.

at least one strong coupling to a regular F-variable and thus can be interpolated indirectly
as shown in the following.

(b) Standard interpolation

As in Sec. C.4.3(a) a predetermined C/F-splitting according to the standard coarsening
algorithm is assumed ensuring a strong coupling between F and C-variables. Nevertheless,
this does not guarantee the requirement of the two-level theory (see Sec. C.4.4) that for
each F-variable a certain percentage of the total coupling is represented in the coarse level
set (defined by the parameter τ). Although this argument does not pose any problem
in practice as the coarsening algorithm provides a sufficient F/C coupling, the problem
can be easily overcome. The direct interpolation is modified such that for each variable
i ∈ F the strong coupling to other F-variables is indirectly incorporated as well. Instead
of approximating the i-th equation on the left-hand side of (C.28) directly, all associated
ej with j ∈ F si are replaced by means of the j-th equation, that is:

ej → −
∑

k∈Nj
ajkek/ajj , (C.29)

is replaced for all j ∈ F si and a new equation is obtained for ei:

âiiei +
∑

j∈Ni
âijej = 0 mit N̂i = {j 6= i : âij 6= 0} . (C.30)

If now Pi is redefined as Pi = Csi ∪
⋃
j∈F si C

s
j and all a are replaced by â and Ni by

N̂i, respectively, the interpolation can be performed exactly as in Sec. 2.4.1, see Fig.
C.6. This modification can improve the quality of direct interpolation significantly as the
approximation from (C.30) reduces the error in comparison to (C.28).
Direct and standard interpolation can also be combined in a complementary way. For
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Figure C.6: standard interpolation for the five-point stencil. The middle F-variable (red)
is strongly coupled to all four neighbours (diagonal entry: 4, all minor diagonal entries:
-1). The error of the neighbouring F-variables (blue) is eliminated according to (C.29)
and new matrix entries (C.30) are generated. The error of the middle F-variable is now
directly interpolated by the new and old neighbouring C-variables.

example one can basically use direct interpolation together with standard interpolation
for those variables for which the F/C-coupling appears too weak. Additionally, the set of
interpolation variables could be extended by also taking into account the weak couplings.

Standard interpolation may result in large sets of interpolation variables Pi such that the
complexity of the Galerkin operator significantly increases in the direction of coarsening;
a drawback which can be controlled by a truncation of interpolation operators. The inter-
polation weights of variables being far away from i are usually considerably smaller than
the largest ones. Thus the interpolation operators should be truncated before computing
the coarse level Galerkin operator; for example, by ignoring weights which are smaller by
a factor εtr than the maximum weight. In practice εtr = 0.2 is a commonly used value.

(c) Multipass interpolation

Multipass interpolation can be utilised in the context of aggressive coarsening strategies.
Here, if possible, direct interpolation is performed and the remaining variables are in-
terpolated via strongly coupled F-variables. The procedure is as follows (see also Fig.
C.7):

1. For all variables i ∈ F with Csi 6= ∅ use direct interpolation and collect the indices
of these variables in F ∗. If F = F ∗ → stop, else continue.

2. For all i ∈ F \ F ∗ with Si ∩ F ∗ 6= ∅ proceed as follows: Take the i-th equation
(left-hand side in (C.28)) replacing ej for all j ∈ Si ∩ F ∗ by:

ej →
∑

k∈Pj
wjkek ,

leading to a modified form of equation (C.30) for ei. Define the set of interpolation
variables for i as Pi = ⋃

j∈Si∩F ∗ Pj ; an interpolation formula analogous to standard
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interpolation can then be derived. After having treated all variables, the particular
ones assigned an interpolation formula are added to F ∗.

3. If F = F ∗ → stop, else go to step 2.

1 1

1 2 1 2 1

1 1

1 2 1 2 1

1 1

1 2 1

1 2 1 2 1

2 1 1 2

1 2 1 2 1

1 2 1

Figure C.7: A schematic illustration of multipass interpolation for a five-point stencil
using aggressive A2 (left) and A1 (right) coarsening, respectively. The numbers indicate
in which pass the respective F-variable has been reached.

C.4.4 Convergence of the two-level cycle

In the following subsections a few key results associated with the convergence theory of
AMG are summarised.

(a) The variational principle for positive definite problems

The notation of the two-level cycle from Sec. 5.4.1 is adopted and a symmetric, positive
definite system matrix assumed. With regard to the transfer operators let IHh = (IhH)T

such that the Galerkin operator AH is also symmetric and positive definite. The image
space of an operator Q is denoted by R(Q). Using the theory of orthogonal projections
a variational principle can be constructed for the coarse level correction operator Kh,H

[242].

Theorem C.6. Let Ah > 0 (positive definiteness) and consider an arbitrary C/F-splitting
and interpolation IhH of full rank. Then the coarse level correction operator Kh,H is an
orthogonal projector with regard to the energy product (, ., )1. In particular:

(i) R(Kh,H) ⊥1 R(IhH) or (AhKh,Hu
h, IhHv

H)E = 0 holds for all uh, vH ,

(ii) ‖uh + vh‖21 = ‖uh‖21 + ‖vh‖21 holds for uh ∈ R(Kh,H) and vh ∈ R(IhH) ,

(iii) ‖Kh,H‖1 = 1 ,

(iv) ‖Kh,He
h‖1 = mineH ‖eh − IhHeH‖1 holds for all eh .
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The fourth statement of the above proposition expresses a variational principle: Galerkin-
based coarse-grid correction minimises the error in the energy norm with regard to all
variants in R(IhH). As a consequence a two-level method never diverges as long as the
smoother satisfies ‖Sh‖1 ≤ 1. This is also valid for complete V-cycles with arbitrary C/F-
hierarchies and arbitrary interpolation operators having full rank, as seen by recursive
application of the following Lemma [242]:

Lemma C.7. Replace the exact coarse-grid correction eH in (5.83) by an arbitrary ap-
proximation ẽH with ‖eH − ẽH‖1 ≤ ‖eH‖1. Then the approximated coarse-grid correction
operator K̃h,H satisfies the inequality ‖K̃h,H‖1 ≤ 1.

This statement does not quantify the efficiency of a V-cycle but provides a minimum
of robustness. In respect thereof, the truncation of interpolation operators as mentioned
earlier is a “safe” process as long as it is performed before computing the Galerkin operator.
In the worst case, convergence is downgraded but divergence is impossible. In contrast,
the direct truncation of the Galerkin operator itself violates the variational principle and
should only be used carefully.

(b) Post-smoothing and two-level convergence

Consider two-level convergence for symmetric positive definite matrices assuming IHh =
(IhH)T so that the Galerkin operator remains symmetric and positive definite as well and
that the coarse level correction operator fulfils the variational principle. Furthermore,
assume that only one post-smoothing step is performed per cycle, so that a two-level
operator K can be applied.

For the product SKe to become small, it is important that the smoothing operator S
is able to reduce all vectors in R(K) efficiently. If the smoothing property is fulfilled,
smoothing becomes more efficient if ‖e‖2 is small in comparison to ‖e‖1. A minimal
requirement is that for all e ∈ R(K) the norm ‖e‖2 is bounded from below by ‖e‖1. This
leads to the following proposition [242]:

Theorem C.8. Let A > 0 and assume S to fulfil the smoothing property. Furthermore,
the C/F-splitting and the interpolation are such that:

‖Ke‖21 ≤ τ‖Ke‖22 , (C.31)

with τ > 0 independent of e. Then τ ≥ σ and ‖SK‖1 ≤
√

1− σ/τ hold.

In general the above coarsening and interpolation requirement, necessary to provide
such a convergence estimate, is contained in the following lemma:
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Lemma C.9. If the C/F-splitting and interpolation IFC are such that, for all e,

‖eF − IFCeC‖20,F ≤ τ‖e‖21 , (C.32)

is fulfilled with τ being independent of e, then (C.31) is satisfied.

In the above formula eC and eF denote restrictions of the vector e to either the set of
C- or F-variables. Accordingly, IFC denotes the interpolation matrix from the C to the
F-variables and ‖ · ‖0,F relates to the 0-norm based on (C.20) except that the measured
matrices and vectors are restricted to the F-variable set. Now, particularly for symmetric
M-matrices, the convergence conditions can be formulated more practically:

Lemma C.10. Let A be a symmetric M-matrix with si = ∑
j aij ≥ 0. With fixed τ ≥ 1

choose a C/F-splitting such that for each i ∈ F a set Pi ⊆ C ∩Ni exists with:

∑

k∈Pi
|aik| ≥

1
τ

∑

j∈Ni
|aij | .

Then, the direct interpolation of Sec. C.4.3(a) fulfils condition (C.32) and thus (C.31).

In this way a direct relationship between convergence and interpolation quality is es-
tablished: with an increasing coupling fraction 1/τ of the interpolation variables Pi in
proportion to the total coupling strength of the neighbours Ni, the interpolation quality
of an F-variable i improves as well as the convergence. The convergence speed complies
with the interpolation formula involving the weakest coupling fraction 1/τ .
The assumption of weak diagonal dominance in Lemma C.10 is sufficient but not nec-

essary, a similar result can be stated for symmetric M-matrices the row sum of which
is bounded from below. The above results can be generalised from direct to indirect
interpolation.
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D Application related calculations

This appendix is related to calculations required in Chapter 6, particularly including
calculations for the spectral approach in Sec. 6.2, the analytic solution of film flow over a
hemisphere, Sec. 6.3, and the turnstile-lobe effect, Sec. 6.4.

D.1 Film flow over periodically corrugated topography

In order to obtain the two systems of non-linear equations (6.40) and (6.41) in Sec. 6.2.3(b)
various series representations and the evaluation of a number of inner products are re-
quired.

D.1.1 Calculations for the dynamic BC (6.26)

For the series representation of the dynamic boundary condition (6.26) the occurring g,
Q and R terms, which are considered separately, have to be replaced by the expansions
(6.35)-(6.39). For convenience the multiple sums are written down in a compact notation
and, if not mentioned otherwise, all sum indices are assumed to run from −∞ to ∞.
Firstly, the expansion (6.35) gives the relationships:

σ

√
1 + g′′2 − 1

2 ≈ σ

2

(
1 + g′′2

2 − 1
)

= σ

4
∑

k,l

l2(k − l)2glgk−le
ikx ,

g′g′′ = −i
∑

k,l

l2(k − l)glgk−leikx ,

(g′)2g′′ =
∑

k,l,n

l2(k − l)(n− k)glgk−lgn−keinx ,

g′2 = −
∑

k,l

l(k − l)glgk−leikx ,

gg′′ = −
∑

k,l

l2glgk−le
ikx .

A little more involved but straightforward is the last term:

Im(Q(1− ig′′)) = w0
2 −

i
2
∑

k 6=0

(
e−khQk − ekhQ̄−k

)
eikx + u0

2
∑

k

k2gke
ikx
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+ 1
2
∑

k 6=0,l
(l − k)(l − 2k)

(
e−khQk + ekhQ̄−k

)
gl−ke

ilx

− i

2
∑

k,l,n

k(l − k)(n− l)2
(
e−khQk − ekhQ̄−k

)
gl−kgn−le

inx .

If all the above expansion formulas are inserted into (6.26), a system of equations can be
constructed via (eimx, (6.26))0 = 0 for m ∈ Z in which the inner product (6.31) is used.
The required inner products are calculated separately:

(
eimx,

σ

2

(√
1 + g′′2 − 1

))

0
= σ

4
∑

l

l2(m− l)2glgm−l ,

(
eimx, g

)
0

= gm ,
(
eimx, h2g′′

)
0

= −h2m2gm ,
(
eimx, (g′)2g′′/2

)
0

= 1
2
∑

k,l

l2(k − l)(m− k)glgk−lgm−k ,

(
eimx, cot(α)g′2/2

)
0

= −cotα
2

∑

l

l(m− l)glgm−l ,
(
eimx, cot(α)gg′′

)
0

= − cotα
∑

l

l2glgm−l ,

and, again, the last term is more complicated:
(
eimx, 2 Im

(
Q
(
1− ig′′

)))
0

= −i
(
e−mhQm − emhQ̄−m

)
(1− δ0m) +

∑

k 6=0
(m− k)(m− 2k)

(
e−khQk + ekhQ̄−k

)
gm−k

− i
∑

k,l

k(l − k)(m− l)2
(
e−khQk − ekhQ̄−k

)
gl−kgm−l + w0δ0m + u0m

2gm .

In summary a linear system of equations for the differential equation (6.26) is obtained
by (eimx, (6.26))0 = 0 resulting in (6.40).

D.1.2 Calculations for the dynamic BC (6.28)

For the series representation of the hybrid boundary condition (6.28) the same procedure
as above is employed. Firstly, the following two additional relationships are required:

(g′)3 = −i
∑

k,l,n

l(k − l)(n− k)glgk−lgn−keinx ,

gg′ = i
∑

k,l

lglgk−le
ikx .
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The occurring integral term in (6.28) can, by partial integration, be expanded as:

I :=
ˆ (

gg′′ + g′2

2 + cot(α)g
)
dx =

ˆ (
−1

2g
′2 + cot(α)g

)
dx+ gg′

= i
2
∑

k 6=0,l

l(l + k)
k

glgk−le
ikx − i cotα

∑

k 6=0

gk
k
eikx + C ,

while the term P + zQ gives:

P + zQ = ψ0 + hu0 + ihw0
2 +

∑

k 6=0
e−kh

(1 + 2hk)Qk −Rk
2k eikx + iu0 − w0

2
∑

k

kgke
ikx

+ i
∑

k 6=0,l
e−kh(l − k)gl−k

(k − 2hk)Qk +Rk
2 eilx

+
∑

k,l,n

e−khl(l − k)(n− l)gl−kgn−lQkeinx .

Similar to the previous Sec. D.1.1 the following inner products are required for the dis-
cretisation of the hybrid boundary condition (6.28):

(
eimx, (h2 − iσ/2)g′

)
0

=
(
ih2 + σ/2

)
kgm ,

(
eimx, iI

)
0

= −1
2
∑

l

l(l +m)
m

glgm−l (1− δ0m) + cot(α)gm
m

(1− δ0m) + iCδ0m ,

(
eimx, (i cotα− 2)g′3/6

)
0

= cotα+ 2i
6

∑

k,l

k(l − k)(m− l)gkgl−kgm−l .

Further calculations deliver:
(
eimx, 2 (P + zQ)

)
0

= (ψ0 + hu0 + ihw0) δ0m + e−mh
(1 + 2hm)Qm −Rm

m
(1− δ0m)

+ (iu0 − w0)mgm + i
∑

k 6=0
e−kh(m− k)gm−k

(
(k − 2hk)Qk +Rk

)

+ 2
∑

k,l

e−khk(l − k)(m− l)gl−kgm−lQk ,

and:
(
eimx, ψs −

2
3h

3
)

0
=
(
ψs −

2
3h

3
)
δ0m .

In summary a linear system of equations for the differential equation (6.28) is obtained
by the inner product (eimx, (6.26))0 = 0 resulting in (6.41).
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D.2 Film flow over non-planar surfaces

D.2.1 Boundary conditions for flow over a hemisphere

At the surface of the hemisphere, r = r0, the no-penetration condition ψ(r0, ϕ) = 0 and
the no-slip condition uϕ(r0, ϕ) = 0 imply:

[
−r

3
0
3 Φ
′
2(ϑ) + r2

0
[
Φ′′1(ϑ) + Φ1(ϑ)

]− r0Φ3(ϑ)
]

sinϑ+ Φ4(ϑ) = 0 , (D.1)

r0Φ
′
2(ϑ)− 2

[
Φ′′1(ϑ) + Φ1(ϑ)

]
+ 1
r0
Φ3(ϑ) = 0 , (D.2)

allowing the two functions Φ3(ϑ) and Φ4(ϑ) to be expressed as combinations of Φ1(ϑ) and
Φ2(ϑ) and their derivatives: taking the combination (6.53)−(D.1)+r0(r − r0) sinϑ(D.2),
the streamfunction simplifies to:

ηψ = (r − r0)2
[
Φ′′1(ϑ) + Φ1(ϑ)− 2r0 + r

3 Φ′2(ϑ)
]

sinϑ , (D.3)

while the corresponding velocity profile reads:

ηuϑ = −2
(

1− r0
r

)[
Φ′′1(ϑ) + Φ1(ϑ)− r + r0

2 Φ′2(ϑ)
]
. (D.4)

Next the kinematic boundary condition ψ (r0f(ϑ), ϑ) = −V̇0 implies:

Φ′′1 + Φ1 −
f + 2

3 r0Φ
′
2 = − ηV̇0

r2
0 (f − 1)2 sinϑ

. (D.5)

Since the first integral of the dynamic boundary condition, (3.144), (3.145), refers to the
gradient of the potential Φ, equations (6.50), (6.51) have to be considered. Due to the
lubrication approximation the term 3ηur/3 in (6.51) is neglected again and the square
root appearing in (3.144), (3.145) is approximated as

√
f(ϑ)2 + f ′(ϑ)2 ≈ f(ϑ). These

simplifications lead to the following two equations:

r0f(ϑ)Φ2(ϑ)− Φ′1(ϑ) + σ

2 −
%gr2

0
4

[
f(ϑ)2 cosϑ+

ˆ
f(ϑ)2dϑ sinϑ

]
= 0, (D.6)

f(ϑ)2−1
2 r0Φ

′
2(ϑ)−[f(ϑ)−1]Φ′′1(ϑ)+Φ1(ϑ)−σ2 f

′(ϑ)− %gr
2
0

4 f(ϑ) cosϑ
ˆ
f(ϑ)2dϑ = 0, (D.7)

where (D.4) has been considered. Together with (D.5), they provide a set of three equations
for three unknown functions Φ1(ϑ), Φ2(ϑ) and f(ϑ). A further reduction to a set of two
equations is possible by eliminating Φ1(ϑ) as follows: subtracting (D.5) from (D.7) gives:

1
6
(
3f2 + 2f + 1

)
r0Φ
′
2 − fΦ′′1 −

σ

2 f
′ − %gr2

0
4 f cosϑ

ˆ
f2dϑ = ηV̇0

r2
0 (f − 1)2 sinϑ

, (D.8)

342



D.2 Film flow over non-planar surfaces

while, taking the derivative of (D.6), Φ′′1 can be expressed as:

Φ′′1 = r0fΦ
′
2 + r0f

′Φ2 −
%gr2

0
4

[
2ff ′ +

ˆ
f2dϑ

]
cosϑ . (D.9)

Eliminated Φ′′1 in (D.8) according to (D.9), yields:

1
6
(
−3f2 + 2f + 1

)

︸ ︷︷ ︸
−(3f+1)(f−1)

r0Φ
′
2 − r0ff

′Φ2 −
σ

2 f
′ + %gr2

0
2 f2f ′ cosϑ = ηV̇0

r2
0 (f − 1)2 sinϑ

, (D.10)

as a pure ODE containing only Φ2 and f . Inserting (D.9) into (D.5), delivers:

Φ1 + 2
3(f − 1)r0Φ

′
2 + r0f

′Φ2 −
%gr2

0
4

[
2ff ′ +

ˆ
f2dϑ

]
cosϑ = − ηV̇0

r2
0 (f − 1)2 sinϑ

, (D.11)

Taking the derivative of (D.11) and adding (D.6) yields:

2
3(f − 1)r0Φ

′′
2 + 5

3f
′r0Φ

′
2 + (f ′′ + f)r0Φ2 + σ

2 (D.12)

+%gr2
0

2
[
ff ′ sinϑ−

(
f ′2 + ff ′′ + f2

)
cosϑ

]
= ηV̇0

2f ′ + (f − 1) cotϑ
r2

0 (f − 1)3 sinϑ
,

as a second ODE, to accompany (D.10), containing only Φ2 and f . It is convenient to add
the derivative of (D.10) to (D.12), leading to:

−1
2 (f − 1)2 r0Φ

′′
2 − 2r0(f − 1)f ′Φ′2 −

[
f ′2 − f + (f − 1)f ′′

]
r0Φ2 + σ

2 (1− f ′′) (D.13)

+%gr2
0

2
([

(2f − 1)f ′2 + (f − 1)ff ′′ − f2
]

cosϑ− (f − 1)ff ′ sinϑ
)

= 0 .

Via (D.10), (D.13) the set of equations is reduced to two equations for two unknown
functions.

D.2.2 Comparison with heuristic considerations

The paper [246] utilises a form of the mass conservation obtained from the local mass con-
servation by integration with respect to the coordinate perpendicular to the flow direction,
which the authors call local mass conservation. Using spherical coordinates for the flow
over a hemisphere, the mean flow direction is the ϑ-direction, while the radial direction is
perpendicular to the flow. Thus one obtains:

∂th+ 1
r sinϑ∂ϑ (sinϑq) = 0 ,

where q is assumed to be the flow rate of the Nusselt film flow at a given polar angle ϑ,
i.e.:

q = %g sinϑh3

3η , (D.14)

343



D Application related calculations

leading to the evolution equation:

∂th+ %g

3ηr0 sinϑ∂ϑ
(
h3 sin2 ϑ

)
= 0 ,

for the film thickness h(ϑ, t) in the unsteady case. For a steady flow, ∂th = 0, it follows
from the above equation that:

h3 sin2 ϑ = const ,

in full accordance with the asymptotic result (6.65).

D.3 Turnstile lobe effect

D.3.1 General considerations for small Reynolds numbers

Note that in two dimensions the vorticity ω is given by 2ω = ∆Ψ , and the corresponding
evolution equation for ω, the vortex transport equation, is obtained from the imaginary
part of (3.13), by applying the Laplacian ∆ = 4∂2/∂ξ∂ξ̄, as:

Re∂ω
∂t
−∆ω = −1

2∆2Imχ ; (D.15)

while taking the derivative of (3.12) with respect to ξ twice, leads to:

∆2χ = −Re
2
∂2u2

∂ξ2 . (D.16)

The Reynolds number appears in both of the above equations but with a different physical
meaning: in equation (D.16) inertia is present by accounting for quadratic terms, whereas
in equation (D.15) it is related to the unsteady character of the flow.

By assuming that inertia can be neglected due to physical reasoning while retaining the
unsteady character of the flow, leads to the following simplified vortex transport equation:

Re∂ω
∂t
−∆ω = 0 . (D.17)

By taking the time derivative of (D.17), multiplying the result with Re and utilising (D.17)
again, gives:

0 = Re2∂
2ω

∂t2
−∆

[
Re∂ω

∂t

]
= Re2∂

2ω

∂t2
−∆2ω . (D.18)

Finally, noting that ∆2ω = O
(
Re2

)
for small Reynolds numbers, and remembering that

2ω = ∆Ψ , leads to:
∆3Ψ = O

(
Re2

)
.
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D.3 Turnstile lobe effect

D.3.2 Fourier discretization

(a) Base flow: steady Stokes flow (h1 = 0)

By inserting the series representation (6.85), (6.86) into condition (6.82) at the upper
corrugated surface, it follows that:

2h0Bδ0n + exp(−nh0) [(1− 2nh0)Qn − 2nRn] + exp(−nh0)Q̄−n = δ0n . (D.19)

For n = 0 the constant B can be expressed in terms of Q0 via:

B = 1
2h0

[1− 2ReQ0] ; (D.20)

while for n > 0, the negative-indexed Q-coefficients can be expressed in terms of their
positive-indexed counterparts.:

Q̄−n = exp(−2nh0) [2nRn − (1− 2nh0)Qn] . (D.21)

For the case n < 0 use is made of the complex conjugate of the equations and the substi-
tution n→ −n, leading finally to:

R̄−n = − exp(−2nh0)
[
(1 + 2nh0)Rn + 2nh2

0Qn
]
, (D.22)

enabling, as above, the negative-indexed R-coefficients to be expressed in terms of their
positive-indexed counterparts.

Next, the series representation (6.85), (6.86) is applied to boundary condition (6.80)
related to the lower corrugated surface and considering equations (D.20), (D.21) and
(D.22). Furthermore the gauging condition ImQ0 = 0 is added to the set of equations and
the Fourier decomposition [1]:

exp (ka cosx) =
+∞∑

n=−∞
In(ka) exp(inx) , (D.23)

is used with In being the modified Bessel functions of order n. Finally, a set of linear
algebraic equations follow:

∞∑

k=0



4k2 I

(1)
n−k − h0I(0)

n−k
exp(2kh0) R̄k − 2k


I(0)
nk −

I(0)
−n−k

exp(2kh0)


Rk +

[
I(0)
nk − 2kI(1)

nk −
1− 2kh0

exp(2kh0)I
(0)
−n−k

]
Qk

+
[
I(0)
−nk −

1− 2kh0 + 4k2h2
0

exp(2kh0) I(0)
n−k + 2k(1− 2kh0)

exp(2kh0) I(0)
n−k

]
Q̄k

}
= a

2h0
[δ1n + δ−1n] ,

(D.24)
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where I(0)
nk := In−k(ka) and I(p+1)

nk := −a
[
I(p)n−1 k + I(p)n+1 k

]
/2 are used as abbreviations

(p = 0, 1). Note that in (D.24) the index n goes from −N to N .

(b) Perturbation

By inserting (6.84)-(6.84) in (6.79), the complex conjugate of the velocity reads:

ūu =
{

2i
[
r+′ + yq+′ + Re y

2

2 p
+′
]

+ q+ + q− + Re y
[
p+ + p−

]}
exp(+it)

+
{

2i
[
r−′ + yq−′ + Re y

2

2 p
−′
]

+ q− + q+ + Re y
[
p− + p+

]}
exp(−it) .

Next, by applying the series representation (6.85), (6.86) and (6.87), the following linear
algebraic set of equations is obtained (n 6= 0) from the boundary condition (6.81):

N∑

k=−N
k 6=0

{[
I(0)
nk − 2kI(1)

nk ±
iRe
2k

(
kI(2)
nk − I(1)

nk

)]
q±k +

[
I(0)
−nk ∓

iRe
2k I(1)

−nk

]
q̄∓k − 2kI(0)

nk r
±
k

}

− aRe (δ1n + δ−1n) p0 = 0 , (D.25)

for the coefficients q±k , r
±
k and p0. For convenience the derivative of (6.82) with respect to

x is taken, implying the identity ∂ūs/∂ξ = −∂ūs/∂ξ̄ at ξ = x + ih0, in order to simplify
the boundary condition (6.83) together with (6.78) as follows:

ūu (x+ ih0, x− ih0, t) = −2i∂ūs
∂ξ

cos(x− t) = 2
[
B − 2ImQ′s

]
cos(x− t) . (D.26)

Applying the series representation (6.85), (6.86) and (6.87) again, the boundary condition
(6.83) implies the following linear algebraic set of equations (n 6= 0) :

[
1− 2nh0 ± ih0Re

2n (nh0 − 1)
]
q±n − 2nr±n

exp(nh0) + exp(nh0)
[
1± ih0Re

2n

]
q̄∓−n = b±n , (D.27)

2h0 Re p0 = b+0 , (D.28)

for the coefficients q±k , r
±
k and p0, where the inhomogeneity b±n is calculated according to:

b±n := Bδ∓1n −
1
π

+πˆ

−π

ImQ′s (x+ ih0) exp (−i[n± 1]x) dx ,

from the coefficient B and the function Qs of the base solution.
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