
Durham E-Theses

A Prototype Adaptive Optics Real-Time Control

Architecture for Extremely Large Telescopes using

Many-Core CPUs

JENKINS, DAVID,RICHARD

How to cite:

JENKINS, DAVID,RICHARD (2019) A Prototype Adaptive Optics Real-Time Control Architecture for

Extremely Large Telescopes using Many-Core CPUs, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/13237/

Use policy

This work is licensed under a Creative Commons Attribution 3.0 (CC BY)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13237/
https://creativecommons.org/licenses/by/3.0/
http://etheses.dur.ac.uk

A Prototype Adaptive Optics Real-Time

Control Architecture for Extremely Large

Telescopes using Many-Core CPUs

David Richard Jenkins

A thesis presented for the degree of

Doctor of Philosophy

Centre for Advanced Instrumentation

Durham University

United Kingdom

August 2019

A Prototype Adaptive Optics Real-Time Control
Architecture for Extremely Large Telescopes using

Many-Core CPUs

David Richard Jenkins

Submitted for the degree of Doctor of Philosophy

August 2019

Abstract

A proposed solution to the increased computational demands of Extremely

Large Telescope (ELT) scale adaptive optics (AO) real-time control (RTC)

using many-core CPU technologies is presented. Due to the nearly 4x increase

in primary aperture diameter the next generation of 30-40m class ELTs will

require much greater computational power than the current 10m class of tele-

scopes. The computational demands of AO RTC scale to the fourth power

of telescope diameter to maintain the spatial sampling required for adequate

atmospheric correction. The Intel Xeon Phi is a standard socketed CPU pro-

cessor which combines many (<64) low power cores with fast (>450GB/s)

on-chip high bandwidth memory, properties which are perfectly suited to the

highly parallelisable and memory bandwidth intensive workloads of ELT-scale

AO RTC. Performance of CPU-based RTC software is analysed and compared

for the single conjugate, multi conjugate and laser tomographic types of AO

operating on the Xeon Phi and other many-core CPU solutions. This report

concludes with an investigation into the potential performance of the CPU-

based AO RTC software for the proposed instruments of the next generation

Extremely Large Telescope (ELT) and the Thirty Meter Telescope (TMT) and

also for some high order AO systems at current observatories.

Supervised by Alastair Basden and Richard Myers

i

Declaration

The work in this thesis is based on research carried out at the Centre for Advanced
Instrumentation, Department of Physics, University of Durham, England. No part
of this thesis has been submitted elsewhere for any other degree or qualification,
and it is the sole work of the author unless referenced to the contrary in the text.

Some of the work presented in this thesis has been published in journals and con-
ference proceedings - the relevant publications are listed below.

Relevant Publications

First author Publications:

ELT-scale adaptive optics real-time control with the Intel Xeon Phi Many Integrated Core Archi-
tecture, MNRAS, 478(3), August 2018, 3149–3158, Jenkins et al., 2018b

A many-core CPU prototype of an MCAO and LTAO RTC for ELT-scale instruments, MNRAS,
485(4), June 2019, 5142–5152, Jenkins et al., 2019

Conference Proceedings:

An ELT scale MCAO real-time control prototype using Xeon Phi technologies, SPIE, 10703, Jenk-
ins et al., 2018c

Multi-node homogeneous Xeon Phi architecture for ELT scale Adaptive Optics RTC (Conference
Presentation), SPIE, 10707, Jenkins et al., 2018a

ELT-scale real-time control on Intel Xeon Phi and many core CPUs, AO4ELT5, Jenkins et al.,
2017

Copyright c© 2019 by David Richard Jenkins.

“The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from
it should be acknowledged”.

ii

Acknowledgements

I would like to give special thanks to Alastair Basden and Richard Myers for their support
as supervisors during my PhD. This PhD would not be possible without their input and
teaching and I will always be grateful to them for helping me to begin my career as a
researcher.

Both Gary McCallum and Claire Whitehill have been fantastic in helping me with network
and computer issues and for organising travel and making sure I remember my seminar
dates.

I would also like to thank the Durham Green Flash team for their help and motivation
including James Osborn, Eddie Younger, Matthew Townson, Lazar Staykov, Deli Geng,
Sofia Dimoudi, Andrew Reeves and Nigel Dipper.

Very special thanks to Mizuki, Saavi, Abi, Amrit, Jay, Nico, Ollie, Huizhe, Mark, Penny,
Dougie, Alex, Daniel, Wenfeng, Zhentao, Wei, Stuie, Ruari, Vlad, Xuewen, Sam, Jonatan,
Jack, Duncan, Laura, Andy, and all the others who helped me enjoy my time in Durham
and made it an unforgettable time of my life.

Thanks to Saavi, Matt, Amrit, Abi and Jamie for organising the student journal club
and representing CfAI student on the SSCC. Thanks to Tim Morris, Simon Morris, Ray
Sharples, Richard Wilson, Tim Butterly, Larry Fitzpatrick, and Kieron O’Brien for their
support as mentors and the encouragement they gave me. Thanks to Chris Saunter and
Nigel Dipper for their excellent Masters project supervising, without which I would not
have been doing the PhD in the first place. Thanks again to Richard Myers for the role
of academic advisor during my undergraduate studies and recommending my for the PhD
project. Thanks to David Barr et al. for beginning the work on many-core CPU AO RTC
at Durham and laying the groundwork for my PhD. Thanks to Matt and Andrew for the
thesis template, which took a lot of time out of the formatting. Thanks to Ollie Farley for
his help with understanding turbulence profiling and helping me to make the Cn2 plot.

Finally thanks to my parents for making this all possible and supporting me through out
my entire life.

Real-time Adaptive Optics work by the Durham group was supported by the European Union
Horizon 2020 funded GreenFlash project, ID 671662, under FETHPC-1-2014, and is still
supported by the UK Science and Technology Facilities Council (STFC) consolidated grant
ST/P000541/1, and a STFC PhD studentship, award reference 1628730.

iii

Contents

Declaration ii

Nomenclature viii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Adaptive Optics . 3

1.1.1.1 Characterising the atmosphere 4

1.1.1.2 Representing the Aberrated Wavefront 11

1.1.1.3 Performance Estimation 13

1.1.2 AO Classifications / Types of AO 17

1.1.2.1 Single Conjugate AO 17

1.1.2.2 Laser Tomographic AO 20

1.1.2.3 Multi Conjugate AO 22

1.1.2.4 Other AO Types . 23

1.1.3 ELT-scale AO . 25

1.1.4 Real-time control of AO . 27

1.1.4.1 RTC Latency and Jitter 29

1.1.4.2 ELT-scale AO RTC 31

1.2 Real-time Controller Hardware . 32

iv

1.2.1 CPU systems . 34

1.2.1.1 Xeon Phi Knights Landing 34

1.2.1.2 Multi Socket CPU Systems 36

1.2.2 Hardware Accelerator Cards 41

1.2.2.1 General Purpose GPUs 41

1.2.2.2 Xeon Phi Knights Corner 42

1.2.3 FPGAs and DSPs . 43

1.3 Thesis Synopsis . 46

2 Real Time Control 48

2.1 The Wavefront Reconstruction pipeline 48

2.1.1 WFS Imaging . 50

2.1.2 Image Calibration . 52

2.1.3 WFS Slope Calculation . 54

2.1.3.1 Shack-Hartman WFS Processing 54

2.1.3.2 Pyramid WFS Processing 59

2.1.4 Wavefront Reconstruction . 62

2.1.5 Applying the Correction . 65

2.2 Wavefront Reconstruction Techniques 66

2.2.1 Classical MVM Control . 66

2.2.1.1 Least-squares Reconstruction 67

2.2.1.2 Minimum Variance Control 70

2.2.2 Optimal LQG Control . 73

2.2.3 Mitigation of Vibrations in AO 77

3 Many-core CPU RTC and ELT-scale Optimisations 80

3.1 Current RTCs and their Suitabilty for ELT-scale 80

3.2 Other ELT-scale Investigations . 81

3.3 Suitability of Many-core CPUs for AO RTC 83

3.3.1 Reducing Latency and Improving Jitter 83

v

3.4 Best case performance for ELT-scale SCAO RTC 86

3.5 The Durham Adaptive Optics Real Time Controller 87

3.6 Optimisations for many-core operation 88

3.6.1 Software Profiling . 89

3.6.2 Multi-threading of Subaperture Processing 91

3.6.2.1 Explicit Subaperture Thread Allocation 93

3.6.2.2 Batch Processing of Subapertures 95

3.6.3 MVM Optimisations . 96

3.6.3.1 Vectorisation . 96

3.6.3.2 16-bit Floating Point Control Matrix 97

3.6.4 Reduction of Partial DM Vectors 97

3.7 Host Optimisation and Tuning . 98

3.7.1 Tuning the OS, Kernel and BIOS for Low Latency RTC . . . 98

3.7.2 Compiler Tuning . 101

3.8 CPU-based Network Camera Simulator 103

3.8.1 UDP Camera The Durham Adaptive Optics Real Time Con-

troller (DARC) Module . 105

4 SCAO Demonstrator: Single Node SCAO 106

4.1 The Best Case Simulator on Xeon Phi 107

4.2 DARC on Xeon Phi for ELT scale AO RTC 109

4.3 Storing the control matrix as 16 bit floating point values 111

4.4 DARC SCAO with a real WFS camera 113

4.5 DARC SCAO with the UDP camera simulator 117

4.6 Batch Subaperture Allocation . 122

4.7 SCAO POLC . 124

4.8 Long Time Period AO RTC Operation 126

4.9 Chapter Summary . 128

5 MCAO Demonstrator: Multi-node Xeon Phi Cluster 130

vi

5.1 Prototyping an MCAO and LTAO RTC 130

5.1.1 UDP cameras simulator setup for MCAO/LTAO 134

5.2 Results of testing the prototype . 136

5.2.1 Effect of streaming RTC telemetry on latency 140

5.2.2 Effect of pseudo-open loop control on latency 142

6 AO RTC Performance Evaluation 144

6.1 Improving the correction with optimal control 145

6.2 Further Investigation of the RTC software 148

6.2.1 Camera Simulator Performance 148

6.2.2 Effect of on-the-fly changes to RTC parameters on latency . . 149

6.3 Multi-node Xeon Phi SCAO . 153

6.4 Other many-core CPU systems . 158

6.4.1 NUMA-aware DARC . 158

6.4.1.1 AMD EPYC: NUMA-aware DARC with pipelining 159

6.5 Latency Contribution of RTC Processes 162

7 Conclusions and Future work 167

7.1 The Challenges of ELT-scale AO RTC 167

7.2 Many-core CPUs with the DARC AO RTC 167

7.2.1 ELT-scale SCAO RTC . 168

7.2.2 ELT-scale MCAO and LTAO RTC 169

7.2.3 Considerations for ELT-scale AO Operation 169

7.3 Future work . 170

7.3.1 Future Developments . 172

7.4 Final Remarks . 175

Bibliography 176

vii

Nomenclature

AcO active optics

AO adaptive optics

AOF Adaptive Optics Facility

bpp bits per pixel

CCD charge-coupled device

CoG centre of gravity

CPU central processing unit

DARC The Durham Adaptive Optics Real Time Controller

DASP The Durham Adaptive Optics Simulation Platform

DM deformable mirror

DoF degrees of freedom

DSM deformable secondary mirror

DSP digital signal processor

EE encircled energy

ELT extremely large telescope

ESO ELT The Extremely Large Telescope

ESO European Southern Observatory

EU European Union

ExAO extreme AO

viii

FPGA field programmable gate array

FWHM full width half maximum

GLAO ground layer AO

GMT Giant Magellan Telescope

GP-GPU general purpose graphics processing unit

GPU graphics processing unit

HDL hardware description language

HPC high performance computing

IP intellectual property

IRQ interrupt request

KNC Knights Corner

KNL Knights Landing

LBT Large Binocular Telescope

LGS laser guide star

LQG linear quadratic gaussian

LTAO laser tomographic AO

MCAO multi conjugate AO

MOAO multi object AO

MV minimum variance

MVM matrix-vector multiply

NGS natural guide star

NIC network interface controller

OS operating system

PMX poke matrix

POL pseudo open-loop

POLC pseudo open-loop control

PSF point spread function

Pyr-WFS pyramid WFS

RTC real-time controller

ix

SCAO single conjugate AO

SH-WFS Shack-Hartmann WFS

SIMD single instruction multiple data

SPARTA Standard Platform for Adaptive optics Real Time Applications

SR Strehl ratio

STFC Science and Technology Facilities Council

TMT Thirty Meter Telescope

VLT ESO Very Large Telescope

WFS wavefront sensor

WHT William Herschel Telescope

x

Chapter 1

Introduction

1.1 Motivation

Ground based astronomical telescopes excel in a few areas that are extremely dif-

ficult to reproduce in space: they can be much more flexible and upgradeable, and

most importantly they can employ much larger primary apertures. To be able to

probe the furthest reaches of space, telescopes need to collect as much light as

possible and with the next generation of extremely large telescopes (ELTs) the

collecting area for optical and infra-red telescopes will be an order of magnitude

greater than that available today. A larger aperture also gives an improved diffrac-

tion limit so that a greater range of spatial frequencies can be detected and thus

smaller objects can be better resolved. However the biggest disadvantage to basing

optical and infra-red telescopes on the ground is the need to see through Earth’s

turbulent atmosphere. The atmosphere is constantly changing, with turbulent air

currents and the mixing of air with different temperatures, causing the incoming

light from extraterrestrial objects to appear blurry and to lose definition.

All optical ground based telescopes with a primary mirror greater than a certain

diameter are affected by atmospheric turbulence as it reduces the telescope diffrac-

tion limit to that of a much smaller telescope, the size of which is dependent on the

strength of the atmospheric turbulence. This is known as the seeing limit, which is

1

1.1. Motivation

Light From

Atmospheric

Flat Incoming

Telescope

Turbulence

Wavefront

Beam-
splitter

Adaptive

Telescope

Mirror

Pupil

Scientific
Camera

Wavefront
Sensor

Distorted
Wavefront

Corrected
Wavefront

Control
System

RTC

Figure 1.1: Standard closed-loop Adaptive Optics. The turbulent wavefront phase in-
duced by the atmosphere is corrected by a deformable mirror (DM) using residual phase
measurements provided by the wavefront sensor (WFS).

dependent on the wavelength of observation. Telescopes with larger primary aper-

tures are affected to an even greater extent as the best seeing conditions for a certain

observing site remain fairly constant and so the reduction in effective resolution

is even more pronounced. For the three next generation ELT-scale telescopes, the

25m Giant Magellan Telescope (GMT, Johns et al., 2004), the 30m Thirty Meter

Telescope (TMT, Stepp and Strom, 2004) and the 39m The Extremely Large Tele-

scope (The ELT, Spyromilio et al., 2008)1, mitigating the effect of the atmosphere

is even more important and crucial to their scientific success.
1The Extremely Large Telescope (ESO ELT) will henceforth be referred to as the “ESO ELT”

in this thesis, to distinguish from the more general term for extremely large telescopes (ELTs).

2

1.1.1. Adaptive Optics

1.1.1 Adaptive Optics

Adaptive optics (AO, Babcock, 1953) is a widely-used technique that helps to

negate the perturbing effects of the atmosphere and allows ground based tele-

scopes to achieve imaging fidelity much closer to the diffraction limit than oth-

erwise. AO has been widely used in Astronomical Instrumentation since its first

civilian demonstration in 1989 with the deployment of the COME-ON system at

the Haute-Provence Observatory in France (Merkle et al., 1990). The first UK AO

implementation was the MARTINI partial-AO system (Doel et al., 1992; Myers

et al., 1994; Sharples et al., 1994) developed by Durham University and deployed

at the William Herschel Telescope (WHT) on the island of La Palma and saw its

first light in 1992. Since then more complex AO systems have been developed,

which have greatly increased the degree of atmospheric correction and the size of

the corrected field of view.

The functionality of current AO systems can be split into 3 main parts: indirectly

detecting the incoming wavefront, reconstructing the wavefront, and then applying

corrections to mitigate the effects of the atmosphere. The detection and correc-

tion of the wavefront are usually performed by optical methods, using a wavefront

sensor (WFS) for the detection, and a deformable mirror (DM) for correction.

Wavefront reconstruction is a computational method. The basic idea behind the

reconstruction is to attempt to “flatten” the wavefront from a point-source natural

guide star (NGS) which picks up aberrations as it travels through the atmosphere.

Therefore any deviations of the measured phase of the wavefront from a flat wave-

front are considered perturbations and can be corrected by the DM.

The two most common types of WFS used on-sky are the Shack-Hartmann WFS

(SH-WFS) and the pyramid WFS (Pyr-WFS) which work in fundamentally dif-

ferent ways. The SH-WFS measures the local slope of the wavefront at a discrete

number of points across the pupil plane by the use of a lenslet array to create a reg-

ular grid of focussed spots made from focusing the light from smaller subapertures.

3

1.1.1.1. Characterising the atmosphere

The Pyr-WFS focusses the light on the point of an optical pyramid, or similarly

a double knife edge, which then forms 4 images of the pupil. These 4 images are

processed to find the ratios of light at each pixel location which then gives the local

wavefront slope at those points. The operation of both types of WFS is given in

more detail in Chapter 2.

The DMs used in adaptive optics are commonly made up from a continuous facesheet

mirror behind which an array of piezoelectric actuators that locally deform the

facesheet. The “stroke”, or working range, of these actuators is on the µm scale

and so large perturbations in the wavefront can be difficult to correct. A method

to improve the working range of a high order (large number of actuators) DM is

to use it in conjunction with a low order DM, which can generally achieve high

stroke values, in a “woofer-tweeter” configuration. This means that the low order

DM corrects the stronger low-order wavefront aberrations first, such as wavefront

tip and tilt, before the higher order DM corrects the higher-order aberrations.

1.1.1.1 Characterising the atmosphere

The relation between the strength of the atmospheric turbulence (and therefore

the amount of wavefront perturbation) to the size of the PSF is known as the see-

ing limit. A description of the statistics of atmospheric turbulence was developed

by Kolmogorov (Kolmogorov, 1991) by studying the mean-square velocity differ-

ence between two points in space . A number of assumptions about the atmosphere

must be made in order to derive a velocity structure function which depends on the

displacement of the two points. These are that the atmosphere is locally homoge-

nous (the velocity depends on the displacement vector between the two points), the

atmosphere is locally isotropic (the velocity depends on the magnitude of the dis-

placement), and lastly that the turbulence is incompressible (divergence of velocity

is zero, ∇ · v = 0). A further assumption is that the temperature follows velocity

as a passive additive (Tatarskii, 1971) which in turn leads to a 3D refractive index

structure function.

4

1.1.1.1. Characterising the atmosphere

Source

Received wavefront

Telescope
objective

Image plane

Turbulence

(a) Perfect image

(b) Long exposure (c) Short exposure

2.44 λ/r
0

2.44 λ/D
2.44 λ/r0

2.44 λ/D

Typical length scale
r

0
=10-15 cm

Figure 1.2: A diagram showing how the atmosphere affects the imaging resolution
of astronomical observations. The turbulent layers perturb the incoming wavefront
causing the short exposure images to be corrupted, which average out the perfect
image of width 2.44λ/D to a larger PSF of width 2.44λ/r0.

The effect that turbulence has on an incoming wavefront is shown in Figure 1.2,

showing that the width of the diffraction limited PSF is given by 2.44λ/D whilst

the width of the seeing limited PSF is given by 2.44λ/r0.

The strength of the turbulence in the atmosphere which causes the wavefront per-

turbations can be defined by the Fried parameter (Fried, 1966), r0, which has units

of length. At good observation sites this is usually of order ~10-15 cm at a wave-

length of around 500 nm at night time. The Fried parameter is related to the size

of the PSF in the seeing limit in a very similar way to the relationship of the

telescope diameter to the size of the PSF in the diffraction limit. Therefore the

5

1.1.1.1. Characterising the atmosphere

effective diffraction limit for all telescopes with aperture diameters greater than r0

will be constant for given seeing conditions and roughly equal to the diffraction

limit of a telescope with diameter r0. This means that without any AO correction

the resolving power of larger and larger ground-based telescopes remains effectively

constant at the particular seeing limit.

The atmosphere can generally be described as being made up of layers of turbu-

lence at different altitudes and with varying strengths and characteristics (Tatarskii,

1961). The refractive index structure constant, C2
n, defines the strength of turbu-

lence as a function of altitude and can be used to find the strongest layers of

turbulence. Even though it is called a constant, it is a constantly varying value

depending on short and long timescales, geographic location, and currently there is

no theoretical model accurate enough for all different situations. An equation to de-

scribe C2
n was derived by Hufnagel (Wolfe and Zissis, 1985) based on experimental

observations,

C2
n = {[(2.2× 10−53)h10(W/27)2]e−h/1000 + 10−16e−h/1500} exp[r(h, t)] (1.1)

where h is the altitude above sea level in meters, W is the wind correlating factor

(Tyson, 2010) defined as,

W =
[(1

15km

)∫ 20km

5km
v2(h)dh

]
(1.2)

and r(h, t) is a zero-mean homogenous Gaussian random variable as a function of

altitude (h) and time (t). C2
n has units of m−2/3. The W term is an important

consideration in Equation 1.1, and it requires a model of the dependence of wind

speed on altitude which governs its time sensitive nature.

As can be seen in Figure 1.3, the Paranal data show that a large portion of the

strength of the atmospheric turbulence resides very close to the ground in what is

known as the boundary layer. The boundary layer is significant as it is directly

6

1.1.1.1. Characterising the atmosphere

0 2 4 6 8 10 12 14 16 18
Kilometers above site

0

2

4

6

C
2 n
(h

),
m

2/
3 (

×1
0

17
) Median seeing

90% seeing

0 3 6 9 12 15 18 21 24
Kilometers above site

0

2

4

6
Median seeing
90% seeing

10 21

10 19

10 17

10 15
C

2 n
(h

),
m

2/
3 (

lo
g)

For Mauna Kea (no ground layer)
Median seeing
90% seeing

10 21

10 19

10 17

10 15

For Paranal
Median seeing
90% seeing

C2
n profiles

Figure 1.3: Mauna Kea (Ellerbroek and Tyler, 1998) and Paranal (Osborn et al.,
2018) C2

n values as a function of height above the site. Median and 90th percentile
seeing conditions correspond to r0 values of 0.24 and 0.42 m for the Gemini North
site on Mauna Kea (Racine et al., 1991) and 0.16 and 0.23 m for the VLT at Paranal
(Osborn et al., 2018) at a wavelength of 0.5 µm.

influenced by the surface of the Earth, causing greater variations in temperature

and complex mixing of air currents. An addition to Equation 1.1 which takes this

into account was devised by Ulrich and results in the Hufnagel-Valley boundary

(HVB) model (Ulrich, 1988),

C2
n = 5.94× 10−23z10e−z(W/27)2 + 2.7× 10−16e−2z/3 +Ae−10h (1.3)

where z is the altitude above sea level, h is the height above ground level, W is

adjustable based on upper atmosphere wind conditions and A is a scaling constant.

The r0 value for certain atmospheric conditions for a plane wave can be calculated

by integrating the C2
n distribution along a line of sight (Fried, 1965),

r0 =
[
0.423k2 sec(β)]

∫ L

0
C2

n(z)dz
]−3/5

(1.4)

where L is the path length (L = ∞ in astronomical applications), β is the zenith

angle and the C2
n is able to vary with altitude z. The r0 parameter is often known

7

1.1.1.1. Characterising the atmosphere

as the “seeing cell size”, with a “seeing cell” being a portion of atmosphere that

acts as a lens and focuses the light due to the differences in refractive index in

the turbulent air. The r0 value is the size of the “seeing cell” in a 2-dimensional

projection along the line of sight through a 3-dimensional cylinder of atmosphere.

For astronomical observations of a given wavelength, it can be useful to know the

typical night time median r0 which can be approximated as (Fried and Mevers,

1974),

[r0]median = 0.114
(

λ

5.5× 10−7

)6/5
sec(β)−3/5 (1.5)

by using Equation 1.4 because starlight arrives at the Earth’s atmosphere as a

plane wave. Here λ is the wavelength of the incident light and this is only suitable

for a carefully selected site (Fried and Mevers, 1974). The wavelength dependence,

r0 ∝ λ6/5, means that at longer wavelengths the seeing is less severe and is therefore

much easier to correct. Most current AO systems in use correct in the infrared,

whilst visible light AO correction is much more difficult to achieve. As the diffrac-

tion limit is also wavelength dependent there is an even greater disparity between

seeing limited and diffraction limited observations at shorter wavelengths, giving

the potential for a much greater reduction of the effects of the atmosphere for

visible light AO systems.

The median r0 for a given observing site is an important consideration when first

designing an AO system. However during operation of the AO instrument another

important metric is the coherence time, τ0, which is the maximum time delay

between measuring the atmosphere and applying the correction that results in a

mean square phase error of less than one radian. For the special case of a single

turbulent layer with constant wind velocity, τ0 can be defined by (Hardy, 1998)

τ0 = (6.88)−3/5 r0
vw

= 0.314 r0
vw

= 0.134
fG

(1.6)

8

1.1.1.1. Characterising the atmosphere

where fG = 0.427(vw/r0) is the Greenwood frequency and is defined for the entire

C2
n distribution with varying wind speeds as,

fG = 2.31λ−6/5
[
secβ

∫ L

0
C2

n(z)v5/3
w (z)dz

]5/3

(1.7)

For a typical observing site the Greenwood frequency would be measured to be of

order 20−40 Hz (Fried, 1990; Tyson, 2010) which gives τ0 values of 3−7 ms. This

determines the update rate of the AO system (the time between successive wave-

front measurements), and typically the closed loop bandwidth of the AO system is

taken to be roughly 10 times fG (Greenwood and Fried, 1976).

Another important consideration when designing an AO system or choosing what

type of AO to employ is the non-isoplanatic nature of the turbulence. The layers

of the atmosphere can be considered as planes having various phase changes over

their surface and orientated such that at zenith (β = 0) each plane is normal to

the direction of propagation of a beam of light from an astronomical source (see

Figure 1.4). While the atmospheric turbulence can be described statistically, and

the statistics are same for different parts of the atmosphere, the light will be affected

differently depending on its path through the atmosphere. Two different beams of

light will pick up different phase aberrations as they travel along different paths

through the atmosphere and a large beam will have varying aberrations across its

diameter. This means that propagation through the atmosphere is described as

anisoplanatic.

There are 5 main types of anisoplanatism that occur in different situations:

1. Displacement - displaced parallel beams

2. Angular - beams propagating at different angles

3. Focal - beams whose sources are at different distances from the receiver

4. Temporal - beams with a time delay between propagation

9

1.1.1.1. Characterising the atmosphere

Focal anisoplanatism Angular anisoplanatism

Laser
beacon

Turbulent
layers

Telescope
Aperture

Beam A Beam B

Figure 1.4: The two types of anisoplanatism that have the most effect on AO
performance. Focal anisoplanatism affects the performance of LGS AO systems
as it causes the “cone effect” whereby the laser doesn’t sample the full portion of
atmosphere that an NGS would. Angular anisoplanatism limits the sky-coverage
of AO as the bright guide stars need to be close to the science object of interest.

5. Chromatic - beams with different wavelengths

For astronomical adaptive optics the most important types of anisoplanatism are

angular anisoplanatism, focal anisoplanatism and temporal anisoplanatism. An-

gular anisoplanatism defines the maximum angle between an AO guide star and

the scientific object of interest before the correction applied is no longer valid for

that different line of sight. There needs to be a bright guide star available for AO

within this angular distance from the object of interest and this therefore defines

the allowable sky coverage of a natural guide star (NGS) AO system based on the

distribution of suitable stars in the sky.

To improve the sky coverage a laser guide star (LGS) can be used to provide a bright

10

1.1.1.2. Representing the Aberrated Wavefront

reference closer to the object of interest. However due to the finite altitude that a

LGS spot appears at in the sky (≈ 90km for a sodium laser) focal anisoplanatism

reduces the available turbulence information that can be recovered using an LGS.

The light from an astronomical source propagates through a cylindrical section of

the atmosphere as the source is assumed to be at infinity. However as the LGS

beacon is projected at a finite height, the light propagates through a conical section

of atmosphere as seen in Figure 1.4. This means that the wavefront detected from

an LGS beacon doesn’t include all of the information that’s required to correct for

the full cylindrical section of atmosphere and it also produces a distorting projection

of upper turbulent layers below the LGS altitude. Focal anisoplanatism is therefore

known as the “cone effect” and is shown in Figure 1.4.

As mentioned above, the temporal anisoplanatism dictates the update rate of the

AO system such that the corrections are applied within the necessary time window

before the turbulence has evolved sufficiently to invalidate the wavefront measure-

ments.

1.1.1.2 Representing the Aberrated Wavefront

The phase aberrations induced by atmospheric turbulence can be represented by

a number of mathematical constructs. These define a 2-D map of the phase on a

plane normal to the line of sight of the beam. The most common are either a power

series representation in polar (ρ, θ) coordinates or the polynomials introduced by

Zernike (1934), which are much better suited for atmospheric phase representa-

tion. The Zernike series of polynomials differs from the power series by being an

orthonormal set over a circle, which can be useful when considering circular aper-

tures in telescope design. The Zernike polynomials are composed of sums of power

series terms along with the appropriate normalising factors and are given in more

detail by Born and Wolf (1997). The Zernike polynomials are generally defined

using two indices, (n,m), however an analysis of their suitability for describing at-

mospheric turbulence was conducted by Noll (1976) and a method for sequentially

11

1.1.1.2. Representing the Aberrated Wavefront

Figure 1.5: The first 15 Zernike modes indexed in both the standard n and m
regime and with Noll j indexing (Jenkins, 2019).

indexing the Zernikes was devised that maps the two indices n and m to a single

index j given by

j = n(n+ 1)
2 + |m|+

0, m > 0 ∧ n ≡ {0, 1} (mod 4);

0, m < 0 ∧ n ≡ {2, 3} (mod 4);

1, m ≥ 0 ∧ n ≡ {2, 3} (mod 4);

1, m ≤ 0 ∧ n ≡ {0, 1} (mod 4).

(1.8)

The general Zernike series is represented by the following expression

Φ(ρ, θ) = A00 + 1√
2

∞∑
n=2

An0R
0
n

(
ρ

R′

)

+
∞∑

n=1

n∑
m=1

[Anm cosmθ +Bnm sinmθ]Rm
n

(
ρ

R′

) (1.9)

where n−m = even and R′ is the radius of the circle over which the polynomials

are defined. The Anm and Bnm coefficients determine the strength of each Zernike

12

1.1.1.3. Performance Estimation

term and the series contains all aberration terms including piston (given by A00)

and tilt. The shape of the first 15 Zernike modes are shown in Figure 1.5 given by

both the standard n and m regime and with Noll j indexing.

There are a number of properties of the Zernike series that make it very beneficial

for use in adaptive optics (Tyson, 2010). One of the main benefits is that it al-

lows a simple way to calculate the rms wavefront error directly from summing the

coefficients of all non-piston terms of the wavefront,

(∆Φ)2 =
inf∑

n=1

n∑
m=0

A2
nm +B2

nm

2(n+ 1) (1.10)

where Anm and Bnm are the coefficients of each Zernike polynomial Zm
n .

1.1.1.3 Performance Estimation

To determine the performance of an AO system it is necessary to analyse all inde-

pendent sources of wavefront error (residual uncorrected wavefront) and the over-

all performance can be estimated by summing in quadrature the individual errors.

When all sources of error are uncorrelated the total residual wavefront phase error

squared is simply given as the sum of their variances, (Hardy, 1998)

σ2
phase =

∑
σ2

i (1.11)

However in reality there are correlations between some of sources of error and

so Equation 1.11 can lead to an overestimate of the total residual error which

should be accounted for to achieve a more realistic prediction. Figure 1.6 shows

a summary of the major sources of error along with their dependence on both

external atmospheric parameters and on AO system parameters.

Once the total wavefront error variance has been estimated it is possible to calculate

image quality metrics such as the Strehl ratio that will result from the system.

The Strehl ratio is a common way to quantify the reduction in peak intensity when

13

1.1.1.3. Performance Estimation

Tilt
integration
time

Integration
time

Guide star
offset angle

Tilt aniso
angle θ

t

Tilt
bandwidth

Guide star
magnitude

Beacon
altitude

Reference
offset angle

Isoplanatic
angle θ

0

Ref. source
magnitude

Turbulence
bandwidth

Background
radiation

Tilt
measurement

error

Focal
anisoplanatic

error

Angular
anisoplanatic

errors

Wavefront
measurement

error

Resulting
Error

External
Factors

Instrument
Factors

Turbulence
strength r

0

+

+

+

+

+

+

+

Actuator spacing

Actuator influence function

Data processor
delay time

Wavefront corrector
response time

Servo bandwidth

Detector efficiency

Detector read noise

Number of beacons

Telescope aperture

Tilt detector efficiency

Tilt detector read noise

Tilt servo
bandwidth

Time
delay

Fitting
error

Temporal
error

Tilt
temporal

error

Tilt
anisoplanatic

error

Total
Wavefront

Error

Image quality
(Strehl Ratio)Bottom Line:

Figure 1.6: Main sources of wavefront error in adaptive optics, adapted from Hardy
(1998).

14

1.1.2. AO Classifications / Types of AO

aberrations are present in an optical system. It is defined as the ratio of the actual

peak intensity to that of an ideal peak intensity obtained at the Airy image point

when no aberrations are present. A common approximation of the Strehl ratio

calculation was derived for small aberrations by Marechal (1947),

S ≈ exp
{
−σ2

p

}
(1.12)

where σp is the standard deviation of the wavefront phase. This is known as the

“extended Marechal approximation”. The Strehl ratio is now a relatively easy-to-

calculate performance metric for an AO system as whole. However it does not com-

pletely represent the absolute performance of an imaging system in the following

situations: when the contrast between the signal and the background is more impor-

tant such as for exoplanet imaging; or when the important scientific/instrumental

parameter is the coupling of light to a spectrographic slit or spatial element, the

size of which can be significantly larger than the diffraction limit.

Other image quality metrics used in AO and astronomical observations include the

full width half maximum (FWHM) and the encircled energy (EE). The FWHM is

defined as the width of the PSF at half of its maximum amplitude. For a diffraction

limited Airy disk, the FWHM is almost exactly the same as the radius of the first

minimum and is therefore commonly used as a measure of the size of the PSF. The

EE is defined the proportion of light within a given radius around the centroid of

the PSF. A common use of EE in astronomical imaging is to determine the radius

at which either 50 % or 80 % of the total energy is contained. For a diffraction

limited Airy disk, the radius of the 50 % EE is almost exactly half the width of the

FWHM and the 80 % EE is roughly the same as the position of the first minimum

(first minimum has 83% EE).

15

1.1.2. AO Classifications / Types of AO

WFC

WFC

WFC

Telescope

Telescope

Reference
Star

Reference
Stars

Laser
Guide
Stars

High Altitude Layer

High
Altitude
Layer

Ground Layer

Ground
Layer

Ground Conj.
DM

Ground Conj. DM

Altitude Conj. DM

On axis WFS

WFS

WFS
Camera

Laser Tomographic AOSingle Conjugate AO

Multi Conjugate
AO

Figure 1.7: A visual comparison of SCAO, LTAO and MCAO. SCAO in general has
one WFS and one DM. MCAO has multiple WFSs focussed on different guide stars
and multiple DMs conjugated to different atmospheric layers. LTAO is similar to
MCAO except it mainly uses LGS, it generally only has one DM and it corrects
over a narrower FoV.

16

1.1.2. AO Classifications / Types of AO

1.1.2 AO Classifications / Types of AO

There are different classifications of AO system types which can be chosen to suit

the given parameters of the astronomical observations. These parameters include

but are not limited to,

• the size of the corrected field of view required

• the location and therefore NGS availability of the observation on the sky

• the wavelength of observation

• the number of observation targets

• the performance metric to be optimised e.g SR, FWHM, contrast.

The types of AO available range from comparatively simple Single Conjugate AO

(SCAO), which uses a single guide star for correction with a single DM, to more

complex systems such as Ground Layer AO (GLAO, Rigaut, 2002), Multiple Con-

jugate AO (MCAO, Beckers, 1988; Dicke, 1975; Johnston and Welsh, 1994), Laser

Tomographic AO (LTAO, Foy and Labeyrie, 1985; Fugate et al., 1991; Murphy

et al., 1991; Tallon and Foy, 1990) and Multi Object AO (MOAO, Gendron et al.,

2005; Rousset et al., 2010) which use multiple reference stars (NGS or LGS) and

can include multiple correcting elements. A recent development in AO is a tech-

nique called Extreme AO (ExAO, Angel, 1994; Guyon, 2018; Nakajima, 1994; Stahl

and Sandler, 1995) which aims to correct a single line of sight to achieve very high

SR by running the AO system at higher updates rates and, in conjunction with

a coronagraph, can achieve very high contrast levels for direct exoplanet imaging.

Table 1.1 summarises the main characteristics of each of the AO types.

1.1.2.1 Single Conjugate AO

The most basic form of AO is single conjugate AO (SCAO), generally using a single

WFS with a natural guide star to provide wavefront measurements to correct along

17

1.1.2.1. Single Conjugate AO

AO Type Summary

SCAO One main WFS (NGS or LGS), one main DM, high increase in
SR for a narrow FOV, low sky coverage for NGS, increased sky
coverage for LGS but reduced correction due to the cone effect

GLAO Multiple WFSs (NGS or LGS), one main DM optically conjugate
to the usually very strong ground layer of turbulence, low increase
in SR for a very wide FOV

MCAO Multiple WFSs (NGS or LGS), multiple DMs optically placed at
different conjugate altitudes, medium to high increase in SR for a
wide FOV

LTAO Multiple WFS (NGS and LGS), one main DM, high increase in
SR for a medium FOV, increased sky coverage, multiple LGS to
reduce cone effect compared to LGS SCAO

MOAO Multiple WFS (NGS or LGS), one DM per science target, high
increase in SR for a narrow FOV around each science target

ExAO (usually) One WFS (NGS or LGS), one high order main DM, ex-
tremely high increase in SR for a very narrow FOV, can provide
very high contrast imaging

Table 1.1: A summary of each of the main types of AO available.

a single line of sight with a single DM. This is shown in Figure 1.7. An NGS is

simply a bright star that is close enough to the science object of interest such that

the light travels through as much of the same atmosphere as possible to ensure

that the reconstruction is valid for the direction of the science object. Generally

the isoplanatic patch size is small even for good seeing conditions (≈10 mas at H-

band) leading to a small corrected field of view for SCAO and due to the sparse

distribution of stars in the sky bright enough for AO, NGS SCAO is greatly limited

by sky-coverage. SCAO can also be used with a single LGS to increase sky-coverage,

however due to the cone effect described in Section 1.1.1.1 the amount of correction

is generally less than that available with an NGS. For LGS there is also the tilt

determination problem (Rigaut and Gendron, 1992): because the LGS first needs

to propagate upwards through the turbulent atmosphere, it is therefore not possible

to recover the tilt of the wavefront from a LGS alone and so a NGS is still required

for detecting tilt.

18

1.1.2.1. Single Conjugate AO

Due to the correction being applied solely through a single DM, the DM is placed

in an optical plane conjugate to the ground layer and so all the turbulence de-

tected by the WFS is collapsed to a single layer. The reconstruction algorithm

is normally quite simple for SCAO as the NGS is considered to be at infinity; it

should therefore have a flat wavefront as it first arrives at the Earth’s atmosphere.

Reconstructing the wavefront is then a case of finding the correction that should be

applied to re-flatten the turbulent NGS wavefront and in the process also correct-

ing the wavefront of the science object of interest. The mapping from WFS to DM

can therefore be constructed by first applying a flat wavefront to the DM and then

measuring the resulting wavefront when each actuator of the DM is actuated in

turn. This is usually done off-sky with a flat reference source but can also be done

on-sky (e.g. by using temporal modulation of the poke). This procedure creates a

“poke matrix” or a mapping of DM commands to WFS measurements. Inverting

this matrix then yields the mapping needed to go from wavefront measurements to

actuator commands.

There have been and currently are many implementations of simple SCAO systems

either operating on-sky or in laboratory environments for testing. Gemini Ob-

servatory has operated the ALTitude conjugate Adaptive optics for the InfraRed

(ALTAIR, Herriot et al., 1998) system which has been available for observations

since 2004 using NGS, with final commissioning of an LGS operation mode (Boccas

et al., 2006) in 2007. The W.M. Keck Observatory operates a SCAO system on

the Keck II telescope (Wizinowich et al., 1998), which has been operational since

1999, with an LGS upgrade (Wizinowich et al., 2006) in late 2004. The ESO Very

Large Telescope (VLT) operates multiple different SCAO systems for its different

instruments. The first AO system operational on the VLT was the Nasmyth Adap-

tive Optics System (NAOS, Rousset et al., 1998, 2003) which had its first light in

2001 and an LGS upgrade in 2004 (Kasper et al., 2004).

More recently there have been several very interesting implementations of SCAO

that have improved upon first generation instruments. Robo-AO (Baranec et al.,

19

1.1.2.2. Laser Tomographic AO

2011) achieved first light in 2012 at the 1.5m Palomar Observatory (Baranec et al.,

2013; Riddle et al., 2014) before moving to the 2.1m telescope at Kitt Peak in

2015 (Jensen-Clem et al., 2017; Salama et al., 2016) and more recently to the 2.2m

UH88 (Ashcraft and Baranec, 2018; Baranec et al., 2018) telescope on Mauna Kea.

Robo-AO is the first fully autonomous LGS AO system and science instrument that

has operated on-sky. It is capable of performing large scale surveys, monitoring

long-term astrophysical dynamics and characterising newly discovered transients.

It is able to do this all at the visible light diffraction limit of the 2m class telescopes

it operates on.

Another visible light SCAO system is Magellan AO (MagAO, Close et al., 2010)

currently in operation on the twin 6.5m Magellan telescopes in Chile, which saw

first light in 2012 and first general science run in 2014 (Morzinski et al., 2014). As

mentioned in Section 1.1.1.1, shorter wavelengths are affected more by atmospheric

turbulence and so correcting in the visible spectrum is more difficult than the

infrared and until recently has been rarely achieved. MagAO achieves this by the

use of a high order deformable secondary mirror (DSM) and a modulating NGS

pyramid WFS (Morzinski et al., 2014) running at up to 1000Hz. MagAO has been

able to achieve up to 30% Strehl ratio (SR) in the visible (Close et al., 2014).

MagAO is very similar to the twin First Light AO (FLAO, Quirós-Pacheco et al.,

2010) systems on the Large Binocular Telescope (LBT) at Mt. Graham Arizona,

FLAO#1 and FLAO#2, which achieved their first light in 2010 (Esposito et al.,

2011) and 2011 (Esposito et al., 2012) respectively. The FLAO systems also use a

high order DSM coupled with a high order pyramid WFS to deliver a >80% SR in

the H-band (Esposito et al., 2011).

1.1.2.2 Laser Tomographic AO

Laser tomographic adaptive optics (LTAO) is one of the more simple extensions to

SCAO to help improve performance. Its main aim is the reduce the focal anisopla-

natism (cone effect) as described in Section 1.1.1.1. To achieve this, LTAO systems

20

1.1.2.2. Laser Tomographic AO

employ multiple laser guide stars such that the conical corrected lines of sight of

each overlap to get a better measurement of the turbulence for the science object

of interest. This is shown in Figure 1.7, which can be contrasted to the single LGS

case demonstrating the cone effect shown in Figure 1.4. The corrected field of view

of LTAO systems is generally kept quite small and similar to that of SCAO sys-

tems, however the use of multiple LGS gives much greater sky coverage and better

correction than a single LGS can provide.

Due to the overlapping cross sections of the LGS beams, it is possible to measure the

turbulence at different altitudes by considering the degree of correlation between

the different LGS WFS measurements. This technique is know as tomography and,

used with suitable reconstruction algorithms, yields greater correction due to the

greater volume of turbulence that is corrected along the line of sight of the science

target. Knowing the turbulence at different heights allows the corrected field of

view to be directed towards the science object by considering the cross-section of the

incident light through these layers. The geometry of the overlapping cross-sections

can be seen in Figure 1.8. LTAO systems use a single DM to apply correction

and so the turbulence measured along the required line of sight is collapsed to the

altitude that the DM is conjugated to; usually the ground layer.

The VLT currently offers LTAO for the “Multi-Unit Spectroscopic Explorer” (MUSE

McDermid et al., 2008) instrument using the GALACSI (Ströbele et al., 2012) AO

system of the Adaptive Optics Facility (AOF Madec et al., 2018). The narrow field

mode of the MUSE facility (MUSE instrument + GALACSI AO) uses 4 LGS to

provide tomographic information for applying the corrections using the Adaptive

Optics Facility (AOF) deformable secondary mirror (DSM Arsenault et al., 2006).

MUSE achieved its first light in 2014, and achieved its first narrow field AO cor-

rected light using LTAO in 2018.

21

1.1.2.3. Multi Conjugate AO

Telescope Optical Axis

Telescope
Pupil

Metapupil

Ground
Turbulent Layer

Turbulent
Layer

Off-Axis
Guide Stars

a) 3-dimensional view of a four LGS LTAO setup

20 10 0 10 20
Distance / m

20

10

0

10

20

Di
st

an
ce

 /
m

b) Simulated LGS overlap using
DASP. The LGS beacons are set to a
height of 90 km and the layer shown
is at 35 km. The aperture is an ESO
ELT-like 39 m primary with an 11 m
central obscuration. The asterism
has a radius of 60 mas with the four
beacons positioned at 0, 60, 180 and
240 degrees.

Figure 1.8: Using tomography to measure the turbulence along the optical axis of
the telescope by considering the overlapping cross section of the off-axis LGS to
create a metapupil. (a) Shows a 3-dimensional schematic view of a 4 LGS LTAO
setup. (b) Shows a the overlap of the LGS as simulated by DASP. Colours are for
illustrative purposes only.

1.1.2.3 Multi Conjugate AO

Multi conjugate adaptive optics (MCAO) uses multiple DMs in the optical path

conjugate to different altitudes in the atmosphere resulting in a wider corrected

field of view compared with LTAO. It can operate solely with NGS or using a

combination of NGS and LGS. Along with the multiple WFSs looking at different

guide stars, it can use the tomographic information to correct for the strongest

layers of turbulence. This is shown in Figure 1.7. The corrected field of view of

MCAO is generally wider than that of LTAO as it takes into account multiple

layers of turbulence allowing it to get a better correction along the different lines

of sight, however the maximum amount of correction is generally lower than that

achievable with LTAO.

22

1.1.2.4. Other AO Types

There is currently only one MCAO system in operation on an 8-m class telescope.

The Gemini Multi-Conjugate Adaptive Optics System (GeMS d’Orgeville et al.,

2008) is located at the Gemini South Observatory where it achieved first light in

2011 (Rigaut et al., 2012). During commissioning it had already produced images

with H band Strehl ratio in excess of 35% over fields of view of 85× 85 arcsec, ful-

filling the MCAO promise of wide field correction. The VLT demonstrated MCAO

with its “Multi-Conjugate Adaptive Optics Demonstrator” (MAD, Marchetti et al.,

2003) which was on-sky for 8.5 effective nights in 2007 (Marchetti et al., 2007). The

result of MAD was a corrected field of view of almost 2 arcminutes with greater

than 20% Strehl and peaks of up to 40% around the guide stars; a representative

Strehl map is shown in Figure 1.9 (Marchetti et al., 2007) from MAD.

1.1.2.4 Other AO Types

There are 3 other major types of AO that won’t be discussed in this thesis. The

first is ground layer AO (GLAO Baranec et al., 2007) which is similar to LTAO

except it uses a much wider asterism for either LGS or NGS to correct over a wider

field of view. GLAO only considers the ground layer of turbulence such that the

LGS can be spaced wider apart and so their cross sections only need to overlap up

to a relatively low altitude. As shown in Section 1.1.1.1 the ground layer is a large

source of turbulence: typically 0.5 to 0.67 of the total atmospheric turbulence is in

the ground layer (Baranec et al., 2009) and there is a very high degree of overlap of

the LGS and so the correction can be quite good over the large field of view. The

wide field mode of GALACSI for the VLT MUSE instrument operates in GLAO

mode, which had its first light in 2017. A representative Strehl map from the VLT

comparing the sky coverage of SCAO, GLAO and MCAO is shown in Figure 1.9

Marchetti et al. (2007).

One of the most complicated types of AO is known as multi object AO (MOAO)

which aims to correct along many different lines of sight at once by the use of

multiple DMs, one for each line of sight. The CANARY (Myers et al., 2008) AO

23

1.1.2.4. Other AO Types

Strehl Map - MCAO

Strehl Map - GLAOStrehl Map - SCAO

arcsec

arcsecarcsec

ar
cs

ec

ar
cs

ec

ar
cs

ec

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 1100 10 20 30 40 50 60 70 80 90 100 110

0

00

10

1010

20

2020

30

3030

40

4040

50

5050

70

7070

80

8080

90

9090

100

100100

110

110110

60

6060

40

35

30

25

20

15

10

 5

Figure 1.9: A comparison of representative Strehl maps from the VLT showing
the Strehl (in % at 2.2µm) of SCAO (left), GLAO (right) and the MCAO result
(bottom) of the MCAO Demonstrator (MAD) (Marchetti et al., 2007).

demonstrator on the WHT on La Palma demonstrated MOAO in 2010 (Gendron,

E. et al., 2011). The first MOAO demonstrated on an 8-m class telescopes was

the RAVEN demonstrator (Lardière et al., 2012) on the Subaru telescope which

achieved first light in 2014 (Lardière et al., 2015). The reconstruction of MOAO

combines multiple WFS measurements and tomography to calculate the corrections

separately for each line of sight. Due to the large number of independent DMs,

MOAO needs to run in an open-loop configuration, i.e the WFS don’t see the

corrections applied by the DMs and so the reconstruction step algorithm is generally

quite different to those of closed loop AO.

24

1.1.3. ELT-scale AO

The last major type of AO is known as extreme AO (ExAO). ExAO systems correct

a very narrow field of view to deliver a very high Strehl ratio which is essential for

the direct observation of exoplanets in conjunction with a chronograph to exclude

the starlight for better contrast. ExAO achieves its high level of correction by

running the AO loop faster, >1kHz, and using higher order WFS and DMs to

be able to correct for high order aberration modes in the turbulent wavefront.

Current ExAO instruments include the Gemini Planet Imager (GPI, Poyneer et al.,

2014) on Gemini South which achieved first light 2014 (Macintosh et al., 2014),

the Spectro-Polarimetric High-contrast Exoplanet Research instrument (SPHERE,

Beuzit et al., 2019) on the VLT achieving first light in 2014 (Vigan et al., 2016)

and the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO, Lozi

et al., 2018) on the Subaru telescope which saw first light in 2017 (Currie et al.,

2017).

1.1.3 ELT-scale AO

For the next generation of extremely large telescopes (ELTs), including the GMT,

the TMT and the ESO ELT, good AO correction will become much more important

but also much more difficult to achieve. The dependence of AO system requirements

on telescope diameter is an extremely important consideration for the ELTs. The

computational complexity of the conventional wavefront reconstruction algorithm

scales with the fourth power of telescope diameter; this is due to the reconstruction

problem size, which is governed by the total number of correcting elements in the

DMs and the number of slope measurements from the WFSs, which both scale

to the second power of telescope diameter. This presents a huge challenge in the

process of designing a real-time controller (RTC) suitable for ELT scale AO, both

in the choice of hardware suitable to process the computational demands and with

producing software capable of delivering performance that meets the requirements

of the AO system.

Many typical AO reconstruction techniques involve computing one or more large

25

1.1.3. ELT-scale AO

Table 1.2: A summary of first light instruments planned for the ELTs and the
types of AO they will use. Also included is the approximate problem size for the
wavefront reconstruction for each, adapted and updated from Hippler (2018).

AO Type ↓ Approx. Telescopes and Instruments ↓
problem size ESO ELT, 39.3m TMT, 30m GMT, 24.5m

SCAO (9k× 5k)1 METIS, HARMONI, NFIRAOS+IRIS GMTNIRS
→(NGS) MICADO
MCAO (54k× 6k)2 MICADO-MAORY NFIRAOS+IRIS
→(NGS+LGS)

LTAO (54k× 5k)2 HARMONI GMTIFS,
→(LGS) GMTNIRS
GLAO (36k× 5k)3 WFOS G-CLEF,
→(NGS) GMACS

1Assuming a single high-order WFS of dimensions ≈ 80× 80. 2Assuming 6× high-order LGS
WFS. 3Assuming 4× high-order NGS WFS.

matrix-vector multiplies (MVMs) where the dimensions of the matrix are defined

by the number of input values and degrees of freedoms (DoFs) of the system. The

control matrix, which contains information mapping given wavefront measurements

to the appropriate actuator commands, is multiplied by an input vector containing

the wavefront slope measurements, the results of which yields the wavefront shape

required for correction. A MVM operation is defined as,

y = Ax→ yi =
∑

aijxj , (1.13)

where x is the wavefront slope vector of length N , A is the control matrix of dimen-

sions N×M and y is the resulting DM command vector of lengthM , xi, aij and yj

are the elements of each respectively. This has computational complexity O(NM)

(O(N2) when N ≈ M). Both N and M scale to the square of telescope diameter

resulting in a total fourth power dependence on telescope diameter for the matrix

size. Due to this, the MVM becomes very large for ELT-scale operation posing a

big challenge for the wavefront reconstruction. The approximate dimensions of the

problem size for each type of ELT-scale AO are given in Table 1.2.

26

1.1.4. Real-time control of AO

A number of instruments utilising AO have been proposed for the first light of

the three ELTs. For the ESO ELT, the “High Angular Resolution Monolithic

Optical and Near-infrared Integral field spectrograph” (HARMONI, Thatte et al.,

2016) instrument will utilise both SCAO and LTAO modes using LGS. The “Multi-

Adaptive Optics Imaging Camera for Deep Observations” (MICADO, Davies et al.,

2016) instrument will have an SCAO mode and the “Multi-conjugate Adaptive Op-

tics RelaY” (MAORY, Diolaiti et al., 2016) module will provide wider field MCAO

correction. Finally the “Mid-infrared ELT Imager and Spectrograph” (METIS,

Brandl et al., 2016) will use SCAO firstly with an NGS and later with a single

LGS. For the Thirty Meter Telescope (TMT), the first light instrument, the “In-

frared Imaging Spectrograph” (IRIS Larkin et al., 2016), will utilise the “Narrow

Field InfraRed Adaptive Optics System” (NFIRAOS, Herriot et al., 2014) which

will provide SCAO and MCAO operating modes. This will use two DMs, six LGS

WFSs and single high order NGS WFS for the SCAO mode. The TMT will also

have the “Wide-Field Optical Spectrometer” (WFOS, Pazder et al., 2006) for first

light which will operate either in seeing limited mode or with GLAO. The Giant

Magellan Telescope (GMT), like the TMT and ELT, will utilise both active op-

tics (AcO) and AO (Bouchez et al., 2014, 2018; McLeod et al., 2014), where the

AcO is the active control of telescope optics to compensate alignment and figure

errors and the AO is used for atmospheric correction working in three modes, NGS

SCAO, GLAO and LTAO with 6 LGS. The GMTs AcO and AO will share the same

WFSs and wavefront compensators (segmented primary and deformable secondary)

and will be available for all instruments.

Table 1.2 shows an overview of the first light ELT-scale instruments that will be

utilising AO corrections, adapted from Hippler (2018).

1.1.4 Real-time control of AO

An AO RTC is the hardware and software responsible for ensuring that the AO

correction is computed and applied at the required update rate to effectively cor-

27

1.1.4. Real-time control of AO

time

WFS integration

read-out

pixel calibration

centroiding

reconstruction

DM command
conditioning
apply
DM command

(k - 1)T(k - 2)T kT

jitter
RTC latency

φk-1
res

yk-1 yk

φk
res

uk-1 uk

yk+1

uk-2

Figure 1.10: Two frame delay AO loop chronogram showing the overlapping com-
putation times of the pipelined RTC operations. The jitter on the RTC latency
is shown as the varying end times for each computation step which results in an
overall jitter on the time the DM command is applied. The parameter k designates
the time step, φres is the residual wavefront phase, y is the wavefront gradient
vector, and u is the DM command vector.

rect the turbulent wavefront for the given atmospheric conditions. This is typically

of order 1 kHz for visible wavelengths to ensure that correction is applied within an

atmospheric coherence time. The RTC is labelled as the controller in Figure 1.1.

Figure 1.10 shows the steps needed in the reconstruction pipeline. The RTC is

responsible for receiving the WFS images after readout, calibrating the WFS im-

ages, computing the wavefront slopes, reconstructing the wavefront, conditioning

the DM command using a control algorithm before finally delivering the command

vector to the DM. These processes are described further in Chapter 2.

The wavefront reconstruction involves restoring the absolute phase values that are

not seen when measuring the local wavefront slopes. If the slope measurements

are used directly as a description of the residual wavefront phase, then they will

add incoherently and therefore the angular resolution obtainable will be no greater

than that of a single subaperture, λ/d, where d is subaperture diameter (Hardy,

1998). Wavefront reconstruction is therefore needed to restore the overall phase

relationship between each subaperture that is essential to recover the full angular

28

1.1.4.1. RTC Latency and Jitter

resolution of the aperture, λ/D, where D is primary mirror diameter. The process

of reconstructing the wavefront is to assemble the individual slope measurements

into a continuous 3-dimensional representation of the wavefront. When the sub-

apertures are correctly sized and phased, the AO system is capable of producing a

potential D/r0 improvement in angular resolution.

The most common and mathematically straight forward method of reconstructing

the wavefront is to directly map the WFS slope measurements to DM actuator

commands. This is known as zonal reconstruction as the actuator commands rep-

resent phase variations across the different zones of the face of the DM. This is in

contrast to modal reconstruction which involves mapping the slope measurements

to optical aberration modes defined by a given basis or series, such as the Zernike

series described in Section 1.1.1.2. Modal reconstruction then requires a second

operation to map the power of each aberration mode to DM actuator commands

and is therefore more computationally demanding.

The temporal anisoplanatism described in Section 1.1.1.1 requires corrections to be

performed in real-time; i.e. there is a defined time limit between measurement and

correction within which the reconstruction must be computed and applied such

that the AO performance is sufficient to correct for the atmospheric conditions.

The real-time control of AO is therefore a fundamental aspect of the operation of

AO and is an extremely important consideration in the design of an AO instru-

ment. For the different types of AO described in Section 1.1.2, the computational

complexity increases with each additional WFS or DM mirror in the system. An

MVM operation as described above is needed to reconstruct the wavefront for each

WFS sensor and map this to required number of DM actuator commands.

1.1.4.1 RTC Latency and Jitter

The latency of an RTC is a measure of the time taken to process a WFS image

into DM commands and is given as the time between the RTC receiving the last

29

1.1.4.1. RTC Latency and Jitter

WFS pixel and delivering the DM command; this is shown in Figure 1.10. This is

in contrast to the general AO correction bandwidth, which is determined by the

frame-rate of the WFS, or the inverse of the integration time over which the WFS

is averaging the guide star signal. The time taken between last pixel in to DM

command out, is more appropriate from a RTC point of view as it encompasses

only the time taken to process the frame without including the delays caused by

sensor readout and DM settling; i.e. only the additional latency that is directly

affected by the RTC.

The upper limit of latency required for the RTC is generally given by the atmo-

spheric coherence time as described in Section 1.1.1.1. This places strict require-

ments on the underlying hardware of the RTC as it must be capable of computing

the multiple steps required for reconstructing the DM commands at frequencies of

order 1 kHz.

Another important metric for an AO RTC is jitter, which describes the variation

in latency for the processing of each frame. As mentioned above, the corrections

need to be applied in real time and so the ideal RTC latency for each iteration

is a constant value which would always meet the requirements of the AO system.

However the RTC processing is generally not deterministic and so the latency

measurements form a distribution of values, and the jitter can refer to either the

shape and width of this latency distribution or to the presence of large outliers in

the latency measurements, with different consequences for the magnitude of each

type.

The principle of jitter can be seen in Figure 1.10. A single large outlier, where

the frame computation time may be instantaneously many times larger than the

average, will delay the sending of the DM command and therefore it will no longer

be valid for the continuously changing atmospheric conditions. It can also cause the

RTC to miss the next frame received from the WFS. In a closed loop system this can

have the effect of “resetting” the AO loop which then needs time to settle back to

correcting the image. The overall shape of the frame time distribution will generally

30

1.1.4.2. ELT-scale AO RTC

have more of an effect on the average PSF size and the more the distribution tails

off to longer frame times the larger the PSF will become. Latency and jitter become

ever more important in the context of ExAO for extrasolar planet finding where

the threshold for latency is much lower than that for other AO regimes and any

amount of jitter will have a much greater detrimental effect.

1.1.4.2 ELT-scale AO RTC

Due to the increased problem size when computing the reconstructed wavefront

and then preparing the resulting DM commands, the computational performance

of the AO RTC for ELT-scale must be many times greater than the performance

required for the largest optical telescopes today. The fourth power scaling of the

reconstruction DoF with telescope diameter means that there is up to 250× the

number of operations required to process each frame of WFS data in an ELT-

scale SCAO system. This places strict requirements not only on the computational

performance of the AO RTC hardware but also on the interfaces required for the

transfer of data from WFSs → RTC → DMs. All of the next generation ELTs will

utilise AO not only in their scientific instruments but also for the alignment and

co-phasing of their segmented primary mirror designs.

As mentioned above the computational requirements are even greater for the high

order AO types such as LTAO and MCAO as they require the steps of image calibra-

tion, wavefront gradient calculation and wavefront reconstruction to be performed

for each WFS. The size of each of the wavefront reconstruction calculations is also

increased for each additional DM present in the system, with each resulting DM

command vector needing to be conditioned appropriately before being delivered to

the correcting devices. As shown in Section 1.1.3, there are many proposed instru-

ments for the ELTs which will require the use of AO and so the development of

an RTC platform capable of performing these operations in real-time is paramount

to the success of these ELT instruments. Another important consideration due to

the increased physical size of the telescope enclosures of the ELTs is the increase

31

1.2. Real-time Controller Hardware

in aberrations due to wind induced vibrations. This will have much more of an

impact compared to current telescope designs and therefore will require proper

characterisation, and additional algorithms will need to be added to the control

processing to mitigate their effects on observations.

1.2 Real-time Controller Hardware

The large MVM calculations needed for the wavefront reconstruction is a memory-

bandwidth bound problem. This is because the processing time during each AO

RTC cycle is dependent on the rate at which the processing hardware is capa-

ble of reading the large control matrix from main memory due to it being too

large (typically several GB) to be stored in the much faster but smaller cache.

This favours computational architectures with large amounts of memory with high

memory bandwidths. The Intel Xeon Phi (Intel, 2017a) is an example of such

an architecture, with the Knights Landing (KNL) model having an on-chip 16 GB

MCDRAM package, giving a measured memory bandwidth as high as 480 GB s−1,

measured using the STREAM benchmark (McCalpin, 1995).

The first consideration when designing an AO RTC is to choose hardware that can

meet the requirements of the AO system, both in terms of input and output (I/O)

interfaces for the instruments and in terms of computational performance for the

algorithms required. The computational requirements are largely dictated by the

reconstruction problem size. Historically, a variety of hardware architectures have

been used for AO RTC, including digital signal processors (DSPs, Fedrigo et al.,

2006), field programmable gate arrays (FPGAs, Fedrigo et al., 2006; Rodríguez-

Ramos et al., 2012), central processing units (CPUs, Basden et al., 2010) and

graphics processing units (GPUs, Basden et al., 2010; Truong et al., 2012).

These architectures have proved capable for previous and current AO systems with

varying advantages and disadvantages for each. The main disadvantage with DSPs,

FPGAs and GPUs is the time cost associated with designing, writing and, if nec-

32

1.2. Real-time Controller Hardware

essary, modifying the RTC software. The main advantage of FPGAs and DSPs is

deterministic behaviour. Due to their more general computing nature, CPU-based

systems can be at a disadvantage when it comes to some specific computation prob-

lems, such as highly parallelisable problems which may be better suited for GPUs;

however CPU systems have a large selection of programming tools and libraries to

aid development, and are generally backwards compatible with common program-

ming languages. For ELT-scale systems, two of the main challenges are scaling of

these systems for the increased computational complexity (usually requiring many

of these devices working in parallel), and future proofing the development of the

system for updated hardware.

Within the past 5 years advances in processing technology have allowed AO RTCs

to operate with the required latency for 8-10 m class telescopes on off-the-shelf

server CPU and graphics processing unit (GPU) technologies. For the next gen-

eration of ELT-scale telescopes, GPUs have demonstrated the capability of accel-

erating the various computational tasks involved. However, though modern GPUs

have enormous compute capabilities, they are limited by the fact that these only

apply to tasks that can be sufficiently parallelised and they can only be used as

an accelerator and not as the host processor. The latter fact generally means that

the demanding computations must all be offloaded to the GPU for computation

and the results then copied back to the host CPU, which can introduce an increase

in latency and complicate the software so that it is no longer portable. Portable

software code is important for being able to implement the RTC software and algo-

rithms for different AO systems and on different processing hardware quickly and

easily. A solution to the GPU offload problem has been developed by the Green

Flash project (Gratadour et al., 2018) by utilising the technique of direct memory

access (DMA) which can allow a network device to receive WFS images and copy

them directly to the internal GPU memory for processing and then the results can

be copied directly back for sending to the DMs.

33

1.2.1. CPU systems

MCDRAMMCDRAM MCDRAMMCDRAM

EDC EDC EDC EDC

EDC EDC EDC EDC

DDR MC DDR MC

Tile

misc

PCIe Gen 3

MCDRAMMCDRAMMCDRAM MCDRAM MCDRAM

3

D
D
R

C
H
A
N
N
E
L
S

3

D
D
R

C
H
A
N
N
E
L
S

36 Tiles
connected

by 3D Mesh
Interconnect

D
M
I

2 x16 1 x4
1 x4
DMI

Figure 1.11: Schematic of Xeon Phi Knights Landing CPU showing the MIC ar-
chitecture along with the high bandwidth MCDRAM. Each tile contains two CPU
cores, two vector processing units per core and a shared 1MB of Level2 cache.
(DDR MC = DDR memory controller, DMI = Direct Media Interface, EDC =
MCDRAM controllers, MCDRAM = Multi-Channel DRAM (Intel, 2016))

1.2.1 CPU systems

1.2.1.1 Xeon Phi Knights Landing

The Intel Xeon Phi processor family combines many low power x86 CPU cores

utilising wide 512 bit vector registers with high bandwidth on-chip memory to en-

able acceleration of highly parallelisable tasks, while keeping the cores sufficiently

fed with data. These x86 cores use the backwards compatible x86 instruction sets

which are used in the vast majority of Intel and AMD based CPU systems. This

allows the Xeon Phi to leverage the benefits both of having a CPU-based archi-

tecture and of having a highly parallelisable work flow similar to that of GPUs.

These attributes of the Xeon Phi make it a very interesting candidate for an ELT-

scale AO RTC as they can be developed using conventional CPU programming

techniques. However due to the relatively low performance of an individual Xeon

34

1.2.1.1. Xeon Phi Knights Landing

Table 1.3: Available Knights Landing models and their key specifications. The peak
single precision (SP) TFLOPS is a theoretical calculation resulting from the core
count, the clock speed (-200MHz for 512-bit vector operation), the vector register
size, the number of vector process units per core and the number of floating point
operations per fused-multiply-add. e.g for the 7210 model: 64 × (1.3 − 0.2) ×
512/32 × 2 × 2 = 5325 GFLOPS. The memory bandwidth is that as measured
using the STREAM triad benchmark.

KNL Core Base CPU Peak Memory
Model count Clock Speed SP Bandwidth

(GHz) TFLOPS (GB s−1)
7210 64 1.3 4.51 450
7230 64 1.3 4.51 -
7250 68 1.4 5.22 480
7290 72 1.5 5.99 -

Phi CPU core, properly utilising vectorisation and parallelism is essential for good

performance.

Knights Landing (KNL) is the third generation Xeon Phi processor and is the

first to be released in the self-booting socketed form factor, with a number of

variants, as given in Table 1.3. A schematic diagram of the CPU layout of the

KNL processor is shown in Figure 1.11. Previous generation Xeon Phi chips were

available as accelerators only. The KNL processor can therefore be used just like a

conventional server processor and can run the Linux operating system and standard

software environment. Existing applications can be ported to the Xeon Phi quickly:

recompilation is usually not even required, though code will not be well optimised

in this case.

The KNL introduces additional instruction sets such as AVX-512 which can be

utilised for improved performance. The AVX-512 instructions work with 512 bit

CPU registers, which allow Single Instruction Multiple Data (SIMD) operation on

16 single-precision floating point numbers simultaneously per core, per instruction

cycle. This improves the parallelisation advantage of the KNL architecture over

previous processors, which included a maximum of 256 bit wide vector registers.

This 512 bit register is also included in forthcoming (and most recent) standard

35

1.2.1.2. Multi Socket CPU Systems

Intel CPUs, so any code optimisations made for this feature will also be applicable

to future non-Xeon-Phi CPUs. However, it should be noted that for the KNL

system, high utilisation of 512 bit instructions reduces the base core clock speed

by 200Hz, which is taken into consideration in the peak SP TFLOPS calculated in

Table 1.3.

The wavefront sensor cameras can be directly attached to a KNL server via the PCIe

bus. This is an advantage over accelerator cards such as the previous generation

Xeon Phi cards and GPUs, where, unless specific effort is taken (often requiring

specific custom network cards, and low level device programming), image data

must be transferred first to the CPU from the camera, and then to the accelerator

(essentially 2 PCIe transfers, with increased latency and jitter). The previous

generation of the Xeon Phi, the Knights Corner, was only available in an accelerator

form factor and has also been investigated for AO RTC (Barr et al., 2015), which

showed promise for continuing the investigation to future processor generations

(i.e. the KNL).

1.2.1.2 Multi Socket CPU Systems

While the properties of the Xeon Phi KNL make it ideally suited for the processing

of ELT-scale AO, there are also available other x86 CPU-based systems that can

provide the required performance. Multi socket CPU systems incorporate two

or more CPU packages onto a single motherboard to create a processing node

with greater computational performance. Each CPU package has its own memory

channels and using non-uniform memory access (NUMA), each CPU socket is able

to access the memory channels of the others. However the main advantage of

NUMA is that the sockets’ memory channels are grouped into what are called

NUMA nodes. This allows the operating system (OS) and the NUMA library to

specify which NUMA nodes it should use for the allocation of specific blocks of

memory. This can allow multi-threaded applications to not only specify which

CPU cores to execute certain threads, but also which NUMA memory node the

36

1.2.1.2. Multi Socket CPU Systems

Intel Scalable Processors 4 Socket and 2 Socket configurations:

"Zen" Based EPYC Processors

"Zen 2" Based EPYC Processors

AMD EPYC Zen 1 and Zen 2 (Rome) Architectures:

Figure 1.12: Many-core CPU architectures with NUMA topology to acheive the
required memory bandwidth for ELT-scale AO RTC. The Intel configurations and
the AMD architecture are described in Section 1.2.1.2.

37

1.2.1.2. Multi Socket CPU Systems

thread should have its memory allocated to. In theory, multi-threaded software that

uses the NUMA node allocation correctly can greatly increase the usable memory

bandwidth by allocating the threads equally among each CPU socket and allocating

the memory for each on the local NUMA nodes. The theoretical memory bandwidth

available on NUMA systems is therefore the sum of the memory bandwidths of each

individual socket.

Having multiple CPU packages on the same motherboard also allows the processors

to work in parallel with much faster data transfers between them than if they were

on separate nodes. It also simplifies the software environment as a single OS is

able to schedule tasks and synchronise all processors. The main downside to multi-

socket systems is that the link between each processor can become a bottleneck in

the processing performance if a lot of data is needed to be shared between them. It

is therefore necessary to reduce the amount of synchronisation and data transfers

between processing threads to ensure peak performance and allocate large memory

structures to the correct node to avoid threads needing to frequently access the

memory on non-local nodes.

x86 CPUs: Intel and AMD The most common type of desktop, server and

high performance computing (HPC) central processing unit (CPU) architecture is

the x86 architecture. Due to its ubiquity there is a wide selection of tools and

libraries available for x86 application development and a number of operating sys-

tems (OS’s) are available. There is also continuous development of x86 CPUs from

the two main vendors, Intel and AMD, meaning that there is a constant update to

performance and capability, and, as mentioned above, the Xeon Phi is also based

on this architecture. Both Intel and AMD currently produce multi-socket CPU sys-

tems with total memory bandwidth capabilities that are comparable to the Xeon

Phi.

Intel CPUs are generally better performing than AMD CPUs, having greater clock

speeds, more advanced feature sets, faster memory channels, and until recently

38

1.2.1.2. Multi Socket CPU Systems

much better instruction-per-cycle, which is a measure of how many CPU instruc-

tions can be processed each CPU clock cycle. One of the main advantages of

modern Intel CPUs relating to AO RTC is the support for the AVX-512 instruc-

tion set which was first introduced with the Xeon Phi, and some high-end Intel

CPU models incorporate two of the AVX-512 vector processing units per CPU

core, further increasing the potential for accelerating vectorisable workloads. The

NUMA architecture of multi-socket Intel CPU systems is shown in Figure 1.12 for

both a quad-socket (4S) and a dual-socket (2S) configuration. The CPU are con-

nected via the UPI links and each has up to 6 memory channels available, giving a

maximum of 24 memory channels in the 4S configuration.

AMD CPUs, whilst generally not performing as well as Intel’s products, still have

a few advantages. The biggest advantage when considering building an RTC for an

AO system is the cost of the processors. AMD processors can be much cheaper than

Intel CPUs with comparable specifications. AMD CPUs also have more memory

channels per socket than Intel CPUs, with the current generation EPYC processors

having up to 8-channels per socket, compared with 6 for Intel, giving a higher

theoretical memory bandwidth per socket. The Zen architecture of the current

AMD EPYC processors is shown in Figure 1.12. A single Zen based EPYC CPU

is made up of four individual dies called Zeppelins, which themselves have two

memory channels each and two core complexes. Each core complex has up to four

active CPU cores, giving a maximum of 32 cores per CPU package. A downside

of the Zen architecture is that each of the dies is a separate NUMA node with

reduced memory bandwidths between each one. A dual-socket EPYC system will

then have a total of 8 NUMA nodes which can complicate the memory allocation

scheme and introduce extra latency between nodes.

The next generation “Zen 2” architecture, due for release in 2019, will simplify

the memory access by consolidating all memory channels for a single CPU package

onto a single I/O die and then having up to 8 connected CPU chiplets containing

the CPU cores. This is shown in Figure 1.12. This gives each of the CPU cores

39

1.2.1.2. Multi Socket CPU Systems

equal access to all 8 memory channels of the CPU package, potentially reducing

latency and simplifying NUMA memory allocations.

ARM CPU Architecure Another interesting hardware candidate for AO RTC

is the ARM architecture. First developed in the 1980s as co-processors it has since

been developed into a fully fledged CPU architecture that is used primarily for small

form factor low power devices such as smart phones, tablets and laptop computers.

However due to recent advances in performance, and it being available to license

by 3rd party manufacturers, the ARM architecture has seen use in a number of

server and HPC related processors. One of the most recent announcements was the

Fujitsu a64fx (Shimizu, 2018) which is a HPC processor aimed at supercomputing

applications. Its specification includes up to 48 CPU cores with the ARM scalable

vector extensions, with up to 512-bit vector registers similar to the Intel AVX-512

instructions. It will also have on-chip high bandwidth memory for a maximum

memory bandwidth of 1024GB/s and the capability of performing native 16-bit

floating point operations, which can reduce the memory bandwidth requirement.

It is unlikely that this CPU will be available as a stand-alone system as it is being

developed for integrating into a supercomputing cluster, however the fact that

an ARM CPU with these specifications has been developed means that there is

potential for similar devices to be available in the future.

A different type of ARM CPU device is the Mellanox BlueField smart network

interconnect (Mellanox, 2018). This device is a network interface controller (NIC)

with an integrated ARM based system-on-a-chip (SoC) with up to 16 ARM CPU

cores and up to 16GB of on-board DDR4 memory. Whilst these specifications

wouldn’t make it suitable for processing the entire ELT-scale RTC pipeline, it does

present an interesting capability as a wavefront processing unit (WPU). This means

it would perform the less intensive operations of pixel calibration and wavefront

gradient measurements and only transfer the wavefront slopes to the host processor

to complete the wavefront reconstruction. As it is itself the NIC, the WFS pixels

40

1.2.2. Hardware Accelerator Cards

arrive directly for immediate processing and due to the much smaller memory

footprint of the wavefront gradients compared to the pixel data, the latency of

data transfer to the host can be reduced substantially. The processing of network

packets would also be offloaded to the Bluefield SoC which would further reduce

the latency for devices with relatively weak single threaded performance such as

the Xeon Phi. The precursor of this device was investigated for AO RTC use by

Barr et al. (2015).

1.2.2 Hardware Accelerator Cards

1.2.2.1 General Purpose GPUs

In recent years there has been a push in the HPC world to utilise general purpose

graphics processing units (GP-GPUs) more and more for the acceleration of highly

vectorisable and parallelisable workloads. The processing of computer graphics

involves streaming lots of data at a high rate whilst performing the same math-

ematical operations on large chunks of the data at once. This is known as the

single instruction multiple data (SIMD) paradigm as it involves performing a sin-

gle sequence of operations on many individual data points at once. This idea also

works very well for large mathematical operations such as matrix multiplications

and MVMs and so these graphics processing unit (GPU) devices are now used for

accelerating more general purpose processing workloads.

A GP-GPU is inherently an add-in accelerator card to be used with a host CPU

system and therein lies their most fundamental disadvantage for working on large

data sets; the data need to first be transferred to the device before processing can

begin. Previous investigations into using GPU systems to accelerate AO RTC have

been conducted (Bitenc et al., 2018) by using the device solely to process the most

computationally demanding aspect of the reconstruction pipeline. There have also

been efforts to use GP-GPUs to fully process the entire RTC pipeline by using

them in conjunction with separate dedicated network cards to allow data to be

41

1.2.2.2. Xeon Phi Knights Corner

copied directly from the memory of one to another without needing to go through

the host CPU.

As mentioned in Section 1.2 the GreenFlash project developed a solution to the

data transfer problem with GP-GPUs by using direct memory access to transfer

the incoming pixel data directly to the GPU memory and process the entire RTC

pipeline on the GPU. However this a non-standard solution involving collaboration

with the manufacturers of the devices and using advanced techniques to ensure that

the GPU can continually process the pipe-line. GPUs normally work by processing

a certain set of input data using a kernel; the kernel defines the operations to be

applied, their order and how the output should be returned. Normally, a host

processor dispatches data and a kernel to the GPU devices and receives the output

once the kernel has completed. The GreenFlash project developed a persistent

kernel which is capable of operating continuously on data transferred directly from

the network device without any input from the host CPU. This all has to be

written in the specific proprietary language for the GPU device and is therefore

non-portable to other devices. The feature that allows direct memory access is also

not available on all GPU devices, even from the same manufacturers, and so this

solution is very specific and difficult to transfer to other hardware.

1.2.2.2 Xeon Phi Knights Corner

Both the Knights Corner (KNC) and KNL Xeon Phi processors were available as

co-processor accelerator cards in the same format as GPUs but KNL was the only

one also available as a socketed host processor much like a standard CPU. The

accelerator cards suffer from the same offloading problems as GP-GPUs mentioned

above, however as the KNC is based on the x86 based architecture, like the vast

majority of current server CPUs, standard programming code can be ported di-

rectly to it without the need for much, if any, modification. The main caveats with

the KNC co-processors are that the many cores available are comparatively much

slower individually than those of a standard CPU and while no modifications to

42

1.2.3. FPGAs and DSPs

the source code are required (other than specifying the operations to be offloaded),

certain optimisations still need to be considered in order to achieve optimal per-

formance on these devices.

1.2.3 FPGAs and DSPs

Field programmable gate arrays (FPGAs) and digital signal processors (DSPs)

have been used quite extensively for AO RTC. An FPGA is an integrated circuit

processor that can be re-configured for different purposes, hence the name “field

programmable”. They tend to be integrated into an add-on accelerator form factor,

similar to network devices and GPUs, however they can operate independently of a

host CPU. They are made up of an array of programmable logic blocks connected

with reconfigurable interconnects that allow the blocks to be wired up in different

configurations. The configuration is written in a hardware description language

(HDL) which is a specialised programming language to describe the structure and

behaviour of digital logic circuits. Once the configuration has been created, the

FPGA kernel then needs to be built and deployed to the device. This is generally

a time consuming process, of order hours, and so rapidly prototyping and testing

FPGA kernels is infeasible.

Due to the complexity of designing the HDLs and the steep learning curve of the

language, there have been efforts to introduce high level languages that abstract a

lot of the underlying functionality into easy to use programming tools, such as the

FPGA add-in tool for LabVIEW and the QuickPlay software from Accelize. There

are also libraries of complex functions available that are pre-made and optimised

for certain tasks; these are referred to as intellectual property (IP) cores and are

generally available to license from FPGA vendors and third-party IP suppliers.

However due to the costs associated with licensing the IP cores that are most

optimal for specific operations, it may not be an ideal solution for AO RTC which

would need to license the IP for the lifetime of the system, which can be of order

decades.

43

1.2.3. FPGAs and DSPs

A DSP is generally much simpler than an FPGA; it’s a specialised microproces-

sor which is optimised to carry out the large number of repeated mathematical

operations that are needed to process digital input signals. They are much more

efficient than general-purpose microprocessors programmed for the same task and

are able to achieve better performance allowing them to process signals continu-

ously in real-time. The DSP instruction sets are optimised for the mathematical

operations that are needed in signal processing but the instruction sets would be

considered highly irregular compared to those for general purpose processors. To

achieve the best performance, the DSP software needs to be hand-written as even

modern compilers are unable to properly optimise for the architectures. This is a

significant drawback if the algorithms need to be changed and development can be

a very time consuming task.

The main benefits to using FPGAs and DSPs is that they are very deterministic

with their processing; the time taken to complete their preprogrammed routines is

very consistent and results in an AO RTC that has very low jitter. They are also

more efficient at performing the mathematical operations needed for processing the

input signal, however they can struggle with more complex algorithms due to their

more limited instruction sets compared with general purpose processors. It is also

typical for DSPs to have lower memory bandwidth than other devices; it would

therefore be extremely difficult to scale a DSP based system for ELT-scale AO

RTC operation. The time and effort factor in designing the software also makes

it impractical to design many different algorithms for different situations which

makes them essentially fixed function processors after their initial implementation.

Even though FPGAs are often used independently, they can also be used with

a CPU host machine such that they act as either an algorithm accelerator or as

a smart network interface. This allows the FPGAs to perform the more simple

operations that are continuously needed and the general purpose host machine

can then perform the more complex algorithms which can be more easily modified.

Until recently the computational performance of CPU based systems has not really

44

1.2.3. FPGAs and DSPs

allowed this configuration and FPGA based AO RTCs have been implemented

entirely on stand-alone FPGA and DSP hardware. There is also the possibility to

use FPGAs with GPUs to leverage the benefits of each and overcome some of their

more serious drawbacks.

45

1.3. Thesis Synopsis

1.3 Thesis Synopsis

Chapter 2 will expand upon some of the RTC concepts introduced in this chapter

and give more detail on the theory behind the most commonly used reconstruction

techniques. It will then go on to describe the RTCs that are used to control some

of the AO systems described in Section 1.1.2, their suitability for ELT-scale, and

other ELT-scale AO RTC investigations. It will conclude with a discussion of the

suitability of many-core CPUs for the processing of ELT-scale AO RTC.

Chapter 3 will introduce the AO RTC software used in this thesis along with

an implementation of a CPU-based software camera simulator which is used to

simulate the pipelining of pixels over a network interface. It will then cover the op-

timisations made to the software and host machines to enable optimal performance

for ELT-scale AO RTC.

Chapter 4 presents results and discussion of testing the updated and optimised

RTC and camera simulator software in the SCAO regime of AO using Intel Xeon

Phi hardware. Results are presented for both Shack-Hartmann and pyramid WFS

processing and for the performance optimisations discussed in Chapter 3. The work

in this chapter was initially presented in Jenkins et al. (2018b).

Chapter 5 introduces a prototype architecture for processing both MCAO and

LTAO AO RTC on multiple nodes of Intel Xeon Phi hardware. It also presents

results and discussion of testing the prototype architecture using the camera sim-

ulator to stream pipelined WFS images to all reconstruction nodes. The work in

this chapter was initially presented in Jenkins et al. (2019).

Chapter 6 discusses performance evaluation of AO RTC for ELT-scale systems

beginning with a comparison of classical least squares reconstruction and optimal

46

1.3. Thesis Synopsis

LQG predictive control. It will also presents results of using a reduced version of

the MCAO and LTAO architecture described in Chapter 5 to process SCAO RTC

on multiple CPU processing nodes and a discussion of the performance benefits at

the cost of increased complexity. It will conclude with preliminary results of testing

the AO RTC software on a number of NUMA aware multi socket systems similar

to those discussed in Section 1.2.

Chapter 7 finally concludes with a discussion of the work presented in this thesis

and a look ahead at the future investigations to continue the work.

47

Chapter 2

Real Time Control

All adaptive optics (AO) systems need to update the wavefront correction at a rate

that is consistent with the given atmospheric conditions such that the turbulent

phase hasn’t evolved sufficiently to render the measurements obsolete. To make sure

that the computations are completed in the time allotted the AO control should be

processed in real-time: there should be a maximum acceptable computation time

delay in which all frames should be processed. This is the basis for real time control

of AO.

2.1 The Wavefront Reconstruction pipeline

A general instruction pipeline refers to a set of data processing elements connected

in series where the output of one element is the input to the next. The processing

of wavefront measurements into DM commands is made up of a number of distinct

steps with the flow of data following a set path. The AO RTC pipeline is the

process of transferring the wavefront information from the wavefront measurement

devices, processing it to recreate the incident wavefront and using the information

to build control commands to deliver to the wavefront correctors.

For ELT-scale AO systems, the majority of the computation time is spent in the

reconstruction of the turbulent wavefront and incorporating this into the control

48

2.1. The Wavefront Reconstruction pipeline

time

WFS integration

read-out

pixel calibration

centroiding

reconstruction

DM command
conditioning
apply
DM command

(k - 1)T(k - 2)T kT

RTC latency

Figure 2.1: An AO RTC two-frame delay AO loop chronogram, showing the pipe-
line of information as it arrives from the WFS and is processed to obtain the DM
command. Single pieces of data, e.g. as shown in orange and blue, are pipelined
by different processing threads.

law that controls the time evolution of DM commands. This entire process can be

split into 5 main sub-processes:

• WFS image acquisition

• WFS image calibration

• Wavefront gradient calculation

• Wavefront reconstruction

• Conditioning the DM command with the given control law

These are needed for all types of AO operation and the data pipeline is shown in

Figure 2.1. Section 2.1 describes these 5 main processes and Section 2.2 gives a

description of the most common control law used as well as two other more complex

control laws which are used to improve the correction. The descriptions that follow

are based on the operation of closed-loop SCAO unless otherwise stated.

49

2.1.1. WFS Imaging

2.1.1 WFS Imaging

The first step in the RTC pipeline is to acquire the pixel data from the WFS

cameras. These WFS cameras can have different interface formats, and so most

current and previous AO systems have been bespoke, designed to work with a spe-

cific camera. In recent years however it has been more desirable to utilise detectors

from camera vendors which use industrial camera interfaces such as Camera Link

or GigE Vision. However the European Southern Observatory are developing their

own camera interface to cope with the very high data rates of some of the WFS

cameras to be used on ESO ELT. This camera interface, named MUDPI, will use

the User Datagram Protocol (UDP) network communications protocol to transmit

the frame data from the WFSs to the RTC hardware.

In order to improve the AO performance, a very useful technique when processing

the WFS images is to pipeline the processing of pixel data, and to process small

packages (subapertures) as soon as enough data has arrived, rather than waiting

for the full image. This will be especially important for ELT-scale AO systems

as they will generally require larger image formats that will take more time to

read-out and transfer. Pipelining then allows the RTC to utilise the read-out and

transfer time for processing, further reducing the apparent latency. This thesis

will henceforth only consider the situation where pipelining can achieved, which

involves the transfer of image data in fixed size chunks or packets, smaller than a

full frame, which can be processed by the RTC as soon as they arrive.

Regardless of the individual camera interfaces used for acquiring the WFS images,

there are several properties of the camera image transport that need to be consid-

ered. These include the bits per pixel (bpp), the individual packet size, and the

location of the read-out ports on the detector, which affects the order that pixels

arrive. The bpp informs the RTC how many bits of data are used per pixel to store

the intensity information. The detector will usually record pixel values of 8-16 bpp

and format them as either 8 bit or 16 bit integer values. These have a range of 256

50

2.1.1. WFS Imaging

Figure 2.2: Schematic of the e2v technologies 240x240 pixel L3Vision CCD220
showing the 4 detector read-out ports on each side of the device. The layout of
the read-out ports needs to be taken into consideration when receiving the WFS
pixels. (Downing et al., 2018)

or 65536 counts respectively. The bpp is a measure of the range of intensity values

that can be retrieved from the exposure. The bpp and packet size information is

vital for the RTC so it can properly store the image data as the packets arrive and

convert it into floating point values for further processing.

If a charge-coupled device (CCD) detector is used in the WFS, the number of read-

out ports of the detector affects the ordering of pixels during the pixel transfer.

The pixels are generally read out line by line and a WFS camera detector with a

single read-out port will read out the pixels contiguously (all in order) from top to

bottom and so the RTC simply needs to place the pixel data in a contiguous section

of memory as it arrives. However to create larger sensors and improve the read-out

speed it is often helpful to have multiple read-out ports on a single detector. For

example the Teledyne e2v CIS124 Large Visible Sensor Module (LVSM, Downing

et al., 2018; Jorden et al., 2018), which will be used for the ELTs SH-WFS cameras,

has a usable 800 × 800 pixel area with its readout split into the upper and lower

sections of the device meaning that the pixels from the top and bottom will be

interleaved during the read-out. Another sensor to be used with ESO ELT is the

e2v technologies L3Vision CCD220 (Jorden et al., 2018) which will be used for the

51

2.1.2. Image Calibration

Figure 2.3: An example of image calibration for an astronomical image; WFS
calibration is a similar procedure. (Ré, 2019, reproduced with permission)

Pyr-WFS and has a usable 240×240 pixel area with a total of eight read-out ports,

four on each side of the device; this can seen in Figure 2.2. As the pixels arrive

out of order with rows from the both top and bottom interleaved, the RTC must

be aware of the format that the read-out takes such that it can properly store the

pixels in the correct order.

2.1.2 Image Calibration

Once the pixels have arrived at the RTC, the first step in the image processing

pipeline is the pixel calibration step. This is necessary to reduce the amount of

52

2.1.2. Image Calibration

noise and unwanted signals in the image. The noise present in the image comes

from a number of different sources. The first of these is the camera sensor itself

which will have a characteristic dark noise and read out noise. The read-out noise

cannot necessarily be corrected using calibration as the amount will vary per pixel

and from frame to frame. The dark noise however can be corrected by using a dark

frame which is an average of several images taken when there is no light incident

on the detector, hence the name “dark” frame. The dark frame will capture any

fixed-pattern noise from the detector which is constant from frame to frame and is

caused by differing dark currents in each pixel.

Another source of noise or unwanted signal comes from distortions in the optical

path and from irregularities of the detector surface. These cause unwanted intensity

variations from pixel to pixel. These can be artefacts resulting from vignetting of

the field or simply shadows from dust in the optical path. This can be mitigated by

taking a flat field image which is an average of several images taken when there is a

uniform field of light evenly distributed across the field of view. This information is

then combined with the dark frame as described above to calibrate both the sensor

dark noise and the optical system’s flat field variations.

Some sensors, such as CCDs that use all-gates pinning (AGP, Bosiers et al., 1993)

can have a very low dark current but will still have bias associated with each pixel,

i.e. a non-uniform pixel-to-pixel deviation in the signal received from the camera.

This bias is independent of exposure and so can be represented by a bias frame

which is, ideally, an average of several images taken with an exposure of zero length.

The last major source of unwanted signals comes from the sky background, which

is the signal measured by the detector when looking at an empty patch of sky taken

a short time before or after observations. The source of this unwanted light can

be from general light diffusion from the atmosphere or from light pollution from

nearby sources.

53

2.1.3. WFS Slope Calculation

The calibrated images are usually obtained using the following equation,

Calibrated = ((Raw - Dark) / Flat) - Background (2.1)

Once the image has been calibrated, for AO RTC image processing it can also be

beneficial to perform a thresholding of the pixel vales, setting any pixel values that

fall below a certain threshold to either zero or a pre-determined minimum value.

This can be an important way to remove any un-calibrated noise that is still present

in very small pixel values and ensures that no values fall below zero. Figure 2.3

shows an example calibration process for astronomical images; this is similar to

WFS image calibration.

2.1.3 WFS Slope Calculation

Once the WFS image has been calibrated, the images must be further processed

to obtain the wavefront information. As mentioned in Section 1.1.1 the two most

common types of WFS sensor used in astronomical AO are the Shack-Hartmann

WFS (SH-WFS) and the pyramid WFS (Pyr-WFS) which both function by mea-

suring the local wavefront slopes at a number of discrete points across the pupil.

These are currently the only WFSs being considered for first light ELT-scale AO.

However other types of WFS exist such as curvature WFSs (Roddier, 1988) and in-

terferometric WFS such as ZELDA (N’Diaye et al., 2013), CAWS (Bharmal et al.,

2012) and the Mach–Zehnder interferometer (Delacroix et al., 2015). Interferomet-

ric WFS can be used for continuous calibration of AO systems at a slower update

rate than the main RTC rate. In this role they are not a primary driver of RTC

specification or design.

2.1.3.1 Shack-Hartman WFS Processing

The operation of a SH-WFS is demonstrated in Figure 2.4. It shows that the images

obtained by the SH-WFS camera form a regular grid of subaperture spots and the

54

2.1.3.1. Shack-Hartman WFS Processing

deviation of each spot from the centre of its subaperture gives the local wavefront

slope at that point on the pupil. The number of SH-WFS subapertures needed

across the pupil for general correction is given roughly by the telescope primary

mirror diameter divided by the average seeing, r0, at the observing site, N ≈ D/r0.

This is so that when projected onto the size of the primary mirror, each subaperture

is roughly r0 in diameter. The reason for this is to ensure that the image formed by

each subaperture is in general unaffected by modes of aberration of greater order

than the first 3 modes of piston, tip and tilt (see Section 1.1.1.2). The individual

subaperture images will therefore be approximately diffraction limited, giving a

well defined image spot whose position is solely affected by the local wavefront

gradient.

The SH-WFS lenslet optics are designed such that for the number of subapertures

and the detector used, there are equal numbers of pixels dedicated to each sub-

aperture. This information is then required by the RTC software such that the

pixels of each subaperture can be copied into the right memory location before the

slope computation can begin. Once the subaperture pixels have been copied to the

correct memory location, the local slope for each one needs to be calculated. There

are three major types of wavefront gradient calculation for SH-WFS that are used

depending of the specific AO system in use. These are centre of gravity (CoG),

correlation wavefront sensing and matched filter gradient calculations

Centre of gravity The most common slope computation algorithm for SH-WFS

is a CoG calculation over all pixels in each of the subapertures. The CoG involves

summing the intensity values of each pixel multiplied by their coordinates within

the subaperture along both axes of the pixel array independently. The resulting

slope values are then divided by the total flux in the subaperture to normalise their

amplitudes. The CoG equation is defined as,

SCoG = (xc, yc) =
∑

ij XijIij∑
Iij

(2.2)

55

2.1.3.1. Shack-Hartman WFS Processing

Figure 2.4: (Li and Li, 2018) The operation of a Shack-Hartmann WFS, showing
the lenslet array and the subapertures on the detector. A deviation in the local
wavefront slope causes a subapertures spot to move on the detector. The size of the
subapertures projected on to the telescope pupil ensures that the main aberrations
seen by a single subaperture are tip and tilt.

where SCoG = (xc, yc) are the x and y slope values, Xij are the pixel coordinates

and Iij are the pixel intensity values.

The results of the CoG then need to be shifted by half a pixel value to arrive at the

final wavefront slope for each subaperture. Some post-processing of the SH-WFS

slopes is often required once they have been computed. This involves subtracting a

reference slope from each of the subaperture slopes to remove any systematic bias in

the system causing an un-perturbed wavefront to give off-centre slope values. The

reference slopes are calculated by using a calibration source to detect the neutral

CoG of the subapertures when a flat wavefront is incident on the WFS.

A downside to using the CoG centroiding algorithm for the SH-WFS is that it

becomes less effective for sensing on extended objects instead of the more typical

point-source like guide stars. The CoG algorithms essentially determine the loca-

tion around which the majority of the flux is located within each subaperture and

for a point source this is assumed to be the centre of the PSF formed by the lenslet.

56

2.1.3.1. Shack-Hartman WFS Processing

However for sensing on extended sources such as LGSs the PSF is no longer well

defined, and so tracking the movement of the CoG of flux is no longer a reliable

method for calculating the local wavefront slope. This is important, for exam-

ple in solar AO where the WFS slopes are measured using patterns of extended

structure on the solar surface itself. It’s also important for LGS WFS, where the

PSFs obtained on the WFS images are elongated due to the laser being launched

off-axis from the subaperture lines of sight. If the elongation of the LGS spots is

sufficient, the PSF will be truncated by the finite size of the subaperture reducing

the effectiveness of the CoG algorithm.

Correlation wavefront sensing To overcome the limitation of CoG centroid-

ing in solar AO, the technique of correlation wavefront sensing is used (Townson,

2016). This involves calculating a correlation image for each subaperture by cross-

correlating a reference image with a subaperture image. The deviation of the peak

intensity in the correlation image from the centre then indicates the shift between

the reference and the sub-aperture images. There are many different techniques

to perform the cross-correlation itself, one such technique is the square difference

function which is simply calculated for each pixel, i, j, using ,

∑
x,y

(Im(x, y)−Ref(x+ i, y + j))2, (2.3)

where Im represents the sub-aperture image and Ref represents a reference image.

This corresponds to a least squares exploration of the possible alignments of the two

images (Townson, 2016). Once the correlation image is formed, the CoG algorithm

can be used to determine the shift of the images and therefore the local slope. The

downsides to correlation wavefront sensing are the computational requirements of

computing the cross-correlation, then computing the CoG and finally needing to

create and update the reference images for each subaperture as the view of the

extended object changes. Updating the reference slopes is then non-trivial, see

Basden et al. (2014).

57

2.1.3.1. Shack-Hartman WFS Processing

Matched filter An alternative technique that has been investigated for deal-

ing with the elongation of the LGS spots, which is especially relevant for the large

apertures of the ELTs, is matched filtering of the WFS subapertures. The matched

filtering algorithm for WFS proposed by Gilles and Ellerbroek (2006) involves gen-

erating the matched filter on-sky by continual measurements and averaging of the

LGS spots. Once the matched filter has been computed, the process of determin-

ing the slope is by computing the dot product of the match filter with the pixel

values of each subaperture and then normalising by dividing by the total flux per

subaperture,

SMF = (xc, yc) = R · I∑
Iij
, (2.4)

where SMF = (xc, yc) are the x and y slope values, R is the matched filter and I is

the sub-aperture image. This is not any more computationally demanding than the

CoG; however for ELT-scale LGS WFS the spot elongation changes significantly

across the pupil and so ideally each subaperture needs a unique matched filter which

needs continually updating as atmospheric conditions change. Matched filtering

has been proposed for the TMT AO and a number of experimental demonstrations

have been conducted to explore its efficacy for ELT-scale wavefront sensing (Basden

et al., 2017).

Regardless of the slope computation method employed, one of the benefits of

SH-WFS processing is that the slopes for each subaperture can be computed com-

pletely independently and therefore can be pipelined along with the pixel transfer.

In practice this means that when using a WFS detector that can stream pixels row

by row, once enough rows of pixels have arrived the processing of the first row of

subapertures can begin. Figure 2.5 shows the pipelining of pixels for the SH-WFS.

This allows much of the subaperture processing time to overlap with pixel transfer

and therefore reduces the effect that RTC processing has on the overall AO loop

latency.

58

2.1.3.2. Pyramid WFS Processing

Pi
xe

l r
ea

d-
ou

t

Shack-Hartman sub-apertures Pyramid pixels

(x, y) slope = Centre of Gravity
per sub-aperture

(x, y) slope = relative difference
in (x, y) pixel values

w
ai

t f
or

 th
es

e
pi

xe
ls

w
ai

t f
or

 th
es

e
pi

xe
ls

Figure 2.5: Comparison of the pixel pipelining for SH-WFS and Pyramid WFS
image layouts. Each slope measurement from a SH-WFS is taken as the centre of
gravity of the pixels values in each subaperture, slopes can be calculated as soon as
all subaperture pixels have arrived. For the Pyramid WFS the slopes are calculated
as the relative x and y differences between corresponding pixels from each pupil
quadrant, no slopes can be computed until at least half the frame has been read.
This difference makes pipelining of slopes much less effective when using a Pyramid
WFS. Here we have assumed that the pixels are read from the top of the detector
to the bottom, however the principle is the same for other read-out regimes.

2.1.3.2 Pyramid WFS Processing

Pyr-WFS slope computation differs from the more conventional SH-WFS, as de-

scribed above, in the fundamental approach to detecting the local wavefront slopes

across the telescope aperture, shown in Figure 2.6. The images received from a

Pyr-WFS show the four split images of the telescope pupil in each quadrant which

are made by focusing the PSF of the guide star onto the point of an optical pyra-

mid or similarly the leading edge of an optical double knife-edge. The difference in

intensity at each pixel location in each of the quadrants gives the local wavefront

slope at that point in the pupil, these are calculated for each pixel position by,

Spyr = (xc, yc) =
[(
I2 + I4 − I1 − I3
I1 + I2 + I3 + I4

)
,

(
I1 + I2 − I3 − I4
I1 + I2 + I3 + I4

)]
, (2.5)

where Spyr = (xc, yc) are pyramid slopes and I1, I2, I3 and I4 are the pixel intensity

59

2.1.3.2. Pyramid WFS Processing

Figure 2.6: (van Kooten, 2016) The operation of a pyramid WFS, showing the
optical pyramid and the four pupil images on the detector. A deviation in the local
wavefront slope causes the intensity of complementary pixels to vary between the
4 quadrants. The size of the pixels projected on to the telescope pupil ensures that
the main aberrations seen by a single set of complementary pixels are tip and tilt.

Shack-Hartman sub-apertures Pyramid pixels

(x, y) slope = Centre of Gravity
per sub-aperture

(x, y) slope = relative difference
in (x, y) pixel values

Figure 2.7: The organisation of wavefront data in the images from both a
SH-WFS(left) and Pyr-WFS(right). The SH-WFS is made of a 7 × 7 array of
subapertures, each of which is a quad-cell meaning that the subapertures are 2× 2
pixels in size. The Pyr-WFS has the same dimensions as the SH-WFS and the
arrows show the how wavefront data is distributed in both WFS types.

60

2.1.3.2. Pyramid WFS Processing

values in each of the four quadrants. This is similar to the slope calculation in a

quad-cell SH-WFS where each subaperture is only 2 × 2 pixels. The relationship

between distribution of wavefront data in a Pyr-WFS and a quad-cell SH-WFS

is shown in Figure 2.7. Because the value of each equivalent pixel in the four

quadrants is needed to calculate the slope values, the pipelining of the slope com-

putation with pixel transfer isn’t as efficient as that for the SH-WFS; this is shown

in Figure 2.5.

The important information needed by the RTC for the slope calculation of the

Pyr-WFS is the number of pixels per quadrant and the offset of the quadrant from

the edges of the image. The slope computation then involves summing the pixel

values in two adjacent quadrants and then subtracting the pixel values from the

other two; this is done in both directions to get both the x and y slope values.

These then need to be normalised by dividing by the total flux in the image.

Whilst Pyr-WFS processing can benefit from the streaming of pixels so that the

slope computation can be pipelined, this is not a efficient as with the SH-WFS as

the slope computation cannot begin until at least half of the image has arrived;

this is shown in Figure 2.5.

Another disadvantage to Pyr-WFS is that for a point source guide star the focused

image needs to be rapidly moved on the tip of the pyramid to reduce non-linear

effects due to diffraction; this is called modulation. This usually involves moving

the spot in a circular motion around the tip of the pyramid such that the signal

received during a single integration contains one or more of these movement cycles.

With increasing modulation, drawing a larger circle around the tip of pyramid, the

linearity of the Pyr-WFS increases, though the sensitivity decreases. With small

modulation the sensitivity can be greater than that of SH-WFSs (Esposito and

Riccardi, 2001). The reduction in sensitivity with more modulation also means

that there is a reduction in sensitivity for wavefront sensing on extended sources,

as the modulation essentially blurs the point source out during a single integration.

Therefore currently no LGS Pyr-WFS are planned for the ELTs.

61

2.1.4. Wavefront Reconstruction

There are however benefits to using Pyr-WFS over SH-WFS. The first is the

increase in sensitivity at low modulations as mentioned above. The lack of a lenslet

array means that the subapertures are therefore defined by the detector pixels in

each quadrant, so for fainter sources the number of subapertures can be reduced

simply by binning the pixels to increase the signal. For extended sources such

as LGSs, a Pyr-WFS doesn’t suffer from truncation of the PSF which can occur

due the finite size of SH-WFS subapertures. The reduction in sensitivity due to

extended sources is also seen in SH-WFSs. The Pyr-WFS also requires fewer pixels

for the same number of subapertures as compared to the SH-WFS which reduces

the read noise and dark current effects as described in Section 2.1.2.

2.1.4 Wavefront Reconstruction

Once the slope values have been calculated from the WFS measurements, the next

step in calculating the correction is to reconstruct the wavefront. In the case of

closed-loop AO operation, this can be a fairly simple step which is achieved by

mapping the slope values calculated from the WFS directly to actuator commands

for the DM. The result of this is a wavefront described in actuator space, meaning

that it gives the actuator commands that produce a DM configuration that matches

the incident wavefront. In practice this transformation is achieved by a MVM

operation between the slope vector and a control matrix which defines the mapping.

A reconstruction MVM is given as,

y = Ax→ yi =
∑

aijxj , (2.6)

where x is the wavefront slope vector of length N , A is the control matrix of

dimensions N ×M , y is the resulting DM command vector of length M and xi,

aij and yj are the elements of each respectively. The control matrix is constructed

by calculating the inverse of the interaction matrix, the “poke matrix”, which is

formed by recording the response of WFS slope measurements when each of the

62

2.1.4. Wavefront Reconstruction

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

NGS
WFS

NGS
WFS

NGS
WFS

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU MC PU

Master
Processing Unit

M4M5DM2DM1

DMs

MCAO Only

MCAO Only

MC PU = Many Core Processing Unit

Figure 2.8: A multi processing node AO RTC architecture showing how for more
complicated AO system such as MCAO and LTAO, the individual WFS can be
processed seperately and the final result combined by a master processing node.
This technique is further explained in Chapter 5.

DM actuators is actuated, or “poked”, in turn. This is expanded upon further in

Section 2.2.1.

For the more complicated closed-loop AO types such as GLAO, MCAO and LTAO,

reconstructing the wavefront in this way can be very computationally demanding

and so more efficient techniques have been proposed for ELT scale (e.g. Rosen-

steiner, 2012). However the majority of the processing for each WFS can be com-

pleted independently and the computational requirements for each are on the same

scale as a SCAO systems’ computational requirements. Therefore it is possible

to process each WFS on a separate processing node before combing the results of

the individual reconstructions. This method of processing is shown in Figure 2.8

and is further explained in Chapter 5. In the case of MCAO with multiple DMs

the control matrix is constructed such that the wavefronts at the right altitudes

are mapped to the correct set of DM actuators. More complicated reconstruc-

tors combine the wavefront reconstruction with a number of control steps such as

with linear quadratic gaussian (LQG) control, which is explained in more detail in

63

2.1.4. Wavefront Reconstruction

Section 2.2.2.

Tomographic wavefront reconstruction In normal closed-loop operation of

AO, the WFS measures the residual wavefront after the correction has already

been applied to the wavefront and so the residual slopes themselves do not contain

information about the atmospheric phase perturbations. However another require-

ment of tomographic reconstructors is the need for open-loop WFS measurements

to acquire information about the atmospheric conditions. As described in Sec-

tion 1.1.2.2, tomographic reconstruction involves considering information about

the strength and altitude of the different turbulent layers that make up the Earth’s

atmosphere.

To retrieve information about the atmosphere from closed-loop slopes, a technique

called pseudo open-loop control (POLC) can be used. This uses the previous DM

command along with the residual slopes to calculate the pseudo open-loop (POL)

slopes. The POL slopes are normally calculated by multiplying the previous DM

command by the interaction matrix to get the open loop slopes that would have

resulted in that DM shape, and then adding on the current residual slope values:

sPOL
n = sRES

n + P · an−1, (2.7)

where s are the wavefront slopes (POL and residual respectively), P is the interac-

tion matrix (which can be measured in a conventional way by poking the DM), and

a are the actuator demands from the previous frame (n-1) (Basden et al., 2019).

This specific method of calculating the POLC is an explicit calculation of the POL

slopes, however POLC can also be achieved implicitly without actually calculating

the POL slopes themselves. This implicit POLC technique is described in Basden

et al. (2019). For an AO system withM slope values and N actuator values, where

M > N and usually M ≈ 2N , using implicit POLC decreases computation time

by reducing the number of operations from N ×M for the explicit POLC to just

N2 as the POL slopes aren’t explicitly required in the POLC calculation.

64

2.1.5. Applying the Correction

2.1.5 Applying the Correction

The last step in the AO RTC pipeline is to apply any control to the DM commands

to condition them ready for sending to the DMs. This can involve simply applying

a gain to the DM commands which scales them such that the specific control law

is adhered to. The classic SCAO control uses the method of least-squares which is

described in more detail in Section 2.2.1. As mentioned above there are also more

complex control regimes that can be used to overcome some of the limitations of the

classic minimum variance (MV) control such as predictive techniques to overcome

the two-frame delay between measurement and correction and vibration filtering

to mitigate non-atmospheric perturbations to the system.

Before sending the commands to the DM hardware it can be important, depending

on the specific DMs used, to further condition the commands. This can involve

scaling of the commands to appropriate values for the DM actuators, clipping of

the commands to make sure they are within the required range and adding a bias

to the commands to compensate for DM effects such as creep, hysteresis or non-

linearities in actuator movements. A DM can interface with the RTC hardware

via different methods (Basden et al., 2016) including, but not limited to, PCIe

digital-to-analogue converter cards, which take the DM commands and transmit

the correct voltages for the actuators directly to the hardware, as well as ethernet

based devices and USB devices.

The ESO ELT’s integrated deformable mirror, M4, will use an Ethernet inter-

connect (Chiozzi et al., 2018) and will perform further conditioning on the DM

commands to ensure that they adhere to the constraints of the hardware (Vernet

et al., 2014). This ultimately means that the actual shape taken by the DM may

slightly vary from that which the RTC commands have computed. The RTC there-

fore requires feedback from M4 to ensure that the current DM shape can be taken

into account in the tomographic calculations. Using the multiple processing node

approach as shown in Figure 2.8 and the POLC method as described above, this

65

2.2. Wavefront Reconstruction Techniques

feedback only needs to be received by the master processing unit which combines

the individual reconstructions and integrates the previous DM shape into the next

command.

2.2 Wavefront Reconstruction Techniques

2.2.1 Classical MVM Control

Most AO systems work in a closed-loop configuration, that is the WFSs measure

the residual wavefront phase errors which result from applying a correction to the

incident turbulent wavefront phase. A closed-loop control AO feedback loop is

shown in Figure 2.9, and shows the relationship between the DM actuator values u

and the incident turbulent wavefront phase φtur. The ultimate aim of an AO RTC

is to produce DM commands such that the wavefront errors due to φtur are fully

corrected; in practice, however, this is not possible and so AO control techniques

aim to minimise the wavefront error of φres via various means.

Due to the finite time steps between measurement and correction, the variables

used in the wavefront reconstruction calculations are not continuous but in fact

discrete and are defined as the value of the variable averaged over one time step,

T . Using the variable k to define the current time-step gives the notation,

xk = 1
T

∫ kT

(k−1)T
x(t)dt, (2.8)

where xk is the variable x averaged over the time period [(k − 1)T, kT).

This discrete nature is illustrated in Figure 1.10, which shows an AO loop with

a two-frame delay. During frame [(k − 2)T, (k − 1)T) the residual wavefront is

integrated by the WFS resulting in φres
k−1 which is used to calculate yk during

[(k − 1)T, kT), which in turn is used to calculate uk. The residual phase, φres
k , at

66

2.2.1.1. Least-squares Reconstruction

WFS

DM Controller
u

y

w

cor

tur res+
-

+

Figure 2.9: Block-diagram of an AO disturbance rejection feedback loop. The input
turbulent phase, φtur, is corrected by subtracting the corrected phase, φcor, which
gives the residual phase, φres. The WFS measures the residual phase giving slope
measurements y which are integrated by the controller to produce actuator com-
mands u for the DM that produces a new corrected phase to correct the turbulent
phase for the next iteration.

time step k is the sum of the turbulent phase and the negative corrected phase at

that time step, φres
k = φtur

k − φcor
k .

2.2.1.1 Least-squares Reconstruction

The most basic form of AO closed-loop control is the least-squares MVM recon-

structor which involves simply calculating the DM commands directly from the

WFS slope measurements. In least-squares control the WFS measurements y for

time step k are defined by,

yk = Gyuk−1 + wk, (2.9)

where Gy is the DM-to-WFS influence matrix (poke matrix), uk−1 are the DM

commands for the previous time step and wk is an additive Gaussian measurement

noise. The poke matrix gives a direct mapping of DM actuator commands to WFS

slope values and can be computed by actuating each of the DM elements in turn

67

2.2.1.1. Least-squares Reconstruction

and recording the WFS response. This then gives an AO control law defined by,

uk = uk−1 + (Gy)−1yk, (2.10)

where (Gy)−1 is the AO control matrix. This shows how classical AO control

calculates the DM commands directly from WFS slope measurements as well as

integrating the DM command from the previous time step.

In general the matrix Gy is not directly invertible as it is not normally a square

matrix and may also be singular. This requires that the pseudo-inverse of the

matrix be calculated using the method of least squares which minimises the merit

function defined as,

χ2 =
M∑

i=1

[
yi −

N∑
k=1

akBik

]2

(2.11)

e.g for matrix [B] in (y) = [B](a), the sum of the squares of the differences between

the actual value of y and the estimated value of y from [B]a which is equivalent to

solution of a given by,

a = [BtB]−1[Bt]y, (2.12)

where Bt = Transpose(B) (Tyson, 2010). Combining this with Equation 2.10 gives

the least squares control equation,

uk = uk−1 + [(Gy)t(Gy)]−1[(Gy)t]yk. (2.13)

where [(Gy)t(Gy)]−1[(Gy)t] is the least squares pseudo-inverse of [Gy]. This method

of least squares breaks down when [(Gy)t(Gy)] is singular and is therefore not

directly invertible, in which case the singular value decomposition (SVD) method

can be used (Tyson, 2010).

68

2.2.1.1. Least-squares Reconstruction

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Si
ng

ul
ar

 v
al

ue
s

Example singular values for 52 × 72 CANARY poke matrix

100

101

102

In
ve

rs
e

va
lu

es

Singular values
Inverse values

Figure 2.10: An example distribution of the singular values obtained via the SVD
algorithm described in Section 2.2.1. These values are for a 52 × 72 poke matrix
from the CANARY AO demonstrator (Basden, 2011).

The SVD method involves splitting up a matrix, such as an M × N matrix [B],

into the product of three matrices, [B] = [U][W̄][V t]. Here [U] is also an M × N

matrix, [V] is a square N ×N matrix and [W̄] is an N ×N diagonal matrix given

by,

[W̄] =

w1 0

w2
. . .

0 wN

 , (2.14)

The diagonal values wi of W̄ are called the singular values of B and are positive

and real. The matrices U and V are orthogonal which gives the properties UUT =

UTU = 1 and therefore U−1 = UT . The columns of U and V form an orthonormal

set and are called the left and right singular vectors of B respectively.

The elements of [U], [W̄], and [V] can be calculated from SVD computational

algorithms. The inverse of [B] is then simply given as [B]−1 = [V][W̄]−1[U t] where

[W̄]−1 is also a diagonal matrix with elements that correspond to the inverse of the

elements of [W̄], i.e ([W̄]−1)ii = ([W̄]ii)−1. A representative example of singular

69

2.2.1.2. Minimum Variance Control

values for a 250 × 250 matrix and their inverse values are shown in Figure 2.10.

Due to the orthogonality of U and V their inverses are trivial to calculate.

However if the matrix [B] is singular then at least one of the values of [W̄] will be

zero and so the corresponding value in [W̄]−1 will be a singularity. The SVDmethod

allows the calculation of a solution that is closest to the least squares solution by

replacing any singularities in [W̄]−1 with zero (Tyson, 2010). Combining the SVD

method and Equation 2.13 gives us the SVD control equation,

uk = uk−1 + [V][W̄]−1[U t]yk, (2.15)

with [V][W̄]−1[U t] = [Gy]−1, where as before the elements of [U], [W̄], and [V] can

be calculated from SVD computational algorithms (Tyson, 2010).

2.2.1.2 Minimum Variance Control

The WFS model described in Equation 2.9 is in general an oversimplification of the

actual response of the WFS. Due to this the least-squares wavefront reconstruction

algorithm described above performs poorly for some AO applications. The WFS

measurements y are actually a function of the atmospheric turbulence and not

of the pre-existing actuator commands that must be nullified to obtain a perfect

wavefront. The DM actuator commands u required are ones that compensate for

the turbulence induced wavefront error which is in general not the same as the

solution to the best fit to the WFS measurements y. Minimum variance (MV)

wavefront reconstruction can provide an optimal solution in the minimisation of

the variance of the residual wavefront error when the statistics of the atmospheric

turbulence profile and the WFS measurement noise are known (Ellerbroek, 2002).

From Figure 1.10 we can see that the controls, uk, will provide the corrected phase

70

2.2.1.2. Minimum Variance Control

for the time period [kT, (k + 1)T) and so the corrected phase is given by,

φcor
k+1 = Nuk, (2.16)

where N is the mirror influence matrix which maps actuator commands to the

corresponding wavefront phase and is defined by which ever basis the phase is

represented in e.g. Zernike modes as described in Section 1.1.1.2. The residual

wavefront φres
k that remains after the turbulent wavefront φtur

k been corrected by

the DM actuator commands uk−1 is then given by,

φres
k = φtur

k − φcor
k = Hxk −Nuk−1, (2.17)

where N is the influence matrix as above, x is the vector of the turbulent phase

values and H is the influence matrix that associates with the vector x. The vector x

is similar to the DM command vector u, in that it describes the incident turbulent

phase values at discrete points on the atmospheric phase screen. The effects of

the two phase vectors, x and a, on the corrected phase φcor are assumed to be

linear. This can be numerically evaluated by tracing rays through the atmospheric

phase screens and the DM conjugate planes to compute the interaction matrices H

and N , as described in Ellerbroek (2002). The vector x is a random variable with

zero mean and finite second-order statistics, which are typically modelled using the

Kolmogorov or von Kármán spectrum, see Section 1.1.1.1.

The WFS model given by Equation 2.9 can be now be replaced with,

yk = Gxk−1 + wk, (2.18)

where G is the phase-to-WFS influence matrix and wk now has finite second-order

statistics. The elements of G can be numerically evaluated similarly to the ele-

ments of H and N by tracing rays from the guide star(s) through the turbulent

71

2.2.1.2. Minimum Variance Control

atmospheric phase screen to the WFS sub-apertures, as described in Ellerbroek

(2002). This can also be expressed as,

yk = Dφres
k−1 + wk, (2.19)

where D is the WFS matrix that maps the incident wavefront phase to slope

measurements. This gives the WFS measurements as a function of φres
k and not

solely of the previous DM actuator commands uk.

The minimum variance AO control law can then be defined similarly to Equa-

tion 2.10 by,

uk = uk−1 + Eyk, (2.20)

where E is the wavefront reconstruction matrix. The minimum variance recon-

structor E∗ is then value of E that minimises the expected value of the mean

square piston-removed wavefront error, denoted by σ2, averaged over the statistics

of the phase profile x and the WFS measurement noise wk. σ2 is related to φtur by

σ2 = (φtur)TWφtur, (2.21)

where W is a symmetric, positive-semidefinite matrix. The elements of W can be

defined such that the value of σ2 is equal to the mean square piston-removed value

of a continuous phase profile obtained by interpolating a smooth function through

the values of φtur specified on the discrete set of grid points x (Ellerbroek, 1994,

2002). This definition of E∗ can be generalised as,

E∗ = argminE

〈
σ2 + k||u||2

〉
, (2.22)

where the angle brackets 〈·〉 denote ensemble averaging over the statistics of noise

and turbulence. The regularization term k||u||2 = kuTu must be included (with

72

2.2.2. Optimal LQG Control

a very small value of k) to avoid singularities if the subspace of DM actuator

commands having no effect on σ2 is not a priori known. A full derivation of the

reconstructor can be found in Ellerbroek (2002).

2.2.2 Optimal LQG Control

As shown in Section 2.2.1 and Figure 1.10, classical AO control is limited due to the

discrete time delay between measurement and correction. LQG control improves

upon classical control methods by making a better prediction of the turbulent

phase at the time-step that the correction is to be applied. Equation 2.16 shows

how φcor
k+1 which is applied at time [kT, (k + 1)T) is computed from uk, which is

itself computed from φres
k−1 at time [(k − 1)T, kT), demonstrating the two-frame

delay shown in Figure 1.10. LQG control instead calculates uk from a prediction

of the turbulent phase φtur
k+1 at time [kT, (k + 1)T), i.e in the future with respect

to uk.

Starting from the fact that the correction applied by the DM should match the

turbulent phase profile so that they cancel each other out and so minimise the

residual phase, we can rewrite Equation 2.16 as,

ulq
k = (N tN)−1N tφtur

k+1, (2.23)

where ulq
k is the optimal full information feed-forward control and (N tN)−1N t is

the pseudo-inverse of the DM influence matrix, assuming with no loss of generality

that N tN is invertible (Kulcsár et al., 2012). This shows that if we know φtur
k+1, i.e.

in the full information regime, we can calculate the optimal commands to correct

this incident turbulent phase profile. In reality however we don’t generally know

what the future turbulent phase will be and so we need to predict it based on past

73

2.2.2. Optimal LQG Control

measurements, giving rise to,

uopt
k = (N tN)−1N tφ̂tur

k+1|k, (2.24)

where uopt
k are optimum DM commands based on the prediction of the turbulent

phase φ̂tur
k+1|k and the xk+1|k notation represents the variable x at time-step k + 1

given previous measurements at time-step k. This predicted turbulent phase is

approximated in the simplest case by the vector valued auto-regressive model,

AR(1), which models the turbulent phase as,

φtur
k+1 = Aturφtur

k + vk, (2.25)

where Atur is a diagonal matrix which enables the adjustment of the cut-off fre-

quency for each turbulent mode according to priors (Kulcsár et al., 2012) and is

given in the Zernike basis by,

aii = exp
(
−0.3(n(i) + 1)V T

D

)
, (2.26)

where n(i) is the radial order of the i− th Zernike mode, V is the wind speed norm,

T is the sampling period and D is the telescope diameter.

The AR(1) model shown in Equation 2.25 shows how the turbulent phase from one

time frame depends on the turbulent phase from the previous frame, however it

doesn’t include any actual prior measurements. Applying a Kalman filter to the

AR(1) model produces a prediction which then depends on the delay- and control-

free measurements, Sk = {s0, ..., sk}, with sk = yk+1 + DNuk−1, resulting in a

prediction of the form,

φ̂tur
k+1|Sk

= Aturφ̂tur
k|Sk−1

+ Lk(sk −Dφ̂tur
k|Sk−1

), (2.27)

74

2.2.2. Optimal LQG Control

where Lk is the Kalman gain (Kulcsár et al., 2012). Due to the stationary model

used and because the estimate is to be used for infinite horizon LQG (Kulcsár

et al., 2012), the time-varying Kalman gain Lk can be replaced, with no loss of

optimality, by the steady state counterpart,

L∞ = AturΣ∞Dt(DΣ∞Dt + Σw)−1, (2.28)

where Σw is the covariance matrix of the measurement noise in Equation 2.19 and

Σ∞ is the solution to the discrete algebraic Riccati equation (DARE),

Σ∞ = AturΣ∞(Atur)t + Σv −AturΣ∞Dt(DΣ∞Dt + Σw)−1DΣ∞(Atur)t, (2.29)

where Σv is the covariance matrix of the noise term in Equation 2.25. A solution to

Equation 2.29 can be found by using a DARE solver included in some mathematical

programming languages, e.g MATLAB, python/scipy.

The next step is to combine Equations 2.16, 2.19, and φres
k−1 = φtur

k−1−φcor
k−1 to give,

yk = Dφtur
k−1 −DNuk−2 + wk, (2.30)

which can be substituted into Equation 2.27 via the delay- and control-free mea-

surements sk = yk+1 +DNuk−1 resulting in,

φ̂tur
k+1|k+1 = Aturφ̂tur

k|k + L∞(yk+1 −Dφ̂tur
k|k +DNuk−1), (2.31)

or equivalently,

φ̂tur
k|k = Aturφ̂tur

k−1|k−1 + L∞(yk −Dφ̂tur
k−1|k−1 +DNuk−2). (2.32)

75

2.2.2. Optimal LQG Control

This result is then used to calculate the predicted turbulent phase at the next step,

φ̂tur
k+1|k, by,

φ̂tur
k+1|k = Aturφ̂tur

k|k (2.33)

The equations for φ̂tur
k|k and φ̂tur

k+1|k are then simply the non-trivial part of the Kalman

filter in predictor form adjusted to the state space model given by,

xk+1 = Axk +Buk + ξk and yk = Cxk + wk, (2.34)

where,

xk =

φtur
k

φtur
k−1

uk−1

uk−2

, A =

Atur 0 0 0

I 0 0 0

0 0 0 0

0 0 I 0

, B =

0

0

I

0

,

ξk =
(
vt

k 0 0 0
)t

, C =
(

0 D 0 −DN
)
.

(2.35)

And so the predicted turbulent phase is then given by,

x̂k+1|k = Ax̂k|k−1 +Buk + L∞(yk − ŷk|k−1), (2.36)

where ŷk|k−1 is the best estimate of the model output given Sk−1 and is given by,

ŷk|k−1 = Cx̂k|k−1, (2.37)

where L∞ is as given in Equation 2.28.

The state space model demonstrated thus far in Equations 2.34, 2.35, and 2.36 is

not however the only model that can be used to describe and then predict the state

of the system. Smaller state vectors, xk, can also be used (Kulcsár et al., 2012)

and as the vector given in Equation 2.34 includes two occurrences of u and φtur it

is a non-minimal state representation. The reason to use the non-minimal model

76

2.2.3. Mitigation of Vibrations in AO

described is due to the fact that the control matrices A and B in Equation 2.35 do

not depend on the DM parameter which makes the model structurally simple and

the choice of state-vector also allows an adaptation to more complex models and

configurations (Kulcsár et al., 2012).

2.2.3 Mitigation of Vibrations in AO

The LQG AO control described in Section 2.2.2 doesn’t immediately account for

telescope vibrations. However by inserting in the model additional states corre-

sponding to spring-mass subsystems, this observer-based control can also filter out

and/or compensate for telescope vibrations. This can be achieved by defining a

global phase, φglob
k , which includes the turbulent phase and also a phase perturba-

tion, φvib
k , due to vibrations,

φglob
k = φtur

k + φvib
k . (2.38)

This allows the additive vibrations to be straightforwardly included as perturba-

tions in the state vector and estimated in the same way as the turbulence (Petit

et al., 2008); the models then only need to be modified to explicitly describe the

impact of vibrations on the phase. The vibrations can be modelled as a dampened

oscillatory signal generated by a forcing function at the natural frequency of the

vibrations to be compensated for, as described in Petit et al. (2008). This then

leads to a a second order auto-regressive model, AR(2),

φvib
k = a1φ

vib
k−1 + a2φ

vib
n−2 + Ξk, (2.39)

where the coefficients a1 and a2 are given by,

a1 = 2e−Kω0T cos(ω0T
√

1−K2), a2 = −e−2Kω0T . (2.40)

77

2.2.3. Mitigation of Vibrations in AO

where K is the damping coefficient, ω0 = 2πfvib is the natural vibration frequency, T

is the sampling period and Ξk is the, in general unknown, forcing function modelled

simply as Gaussian white noise.

This vibration induced phase profile can then be included in the state space model

with a modified state space vector given by,

xk =
(
φvib

k
t
φvib

k−1
t
φtur

k
t
φtur

k−1
t
uk−1

t uk−2
t

)t

, (2.41)

and the measurement equation, Equation 2.19, now takes into account the global

phase so that it becomes,

yk = Dφres
k−1 + wk = D(φtur

k−1 − φcor
k−1) + wk ⇒ yk = D(φglob

k−1 − φ
cor
k−1) + wk. (2.42)

The state space model matrices, A, B, C etc, as shown in Equation 2.35 can

easily be modified for this new vector and the estimation of the vibration and

turbulence is still provided by an equation of the form of Equation 2.36. Correction

is also performed similarly, by projecting both the turbulent phase and the phase

perturbation caused by vibrations onto the DM (Petit et al., 2008).

The most popular alternative methods for vibration rejection are the H2 and H∞

frequency based approaches which have been shown to perform similarly to LQG

(Guesalaga et al., 2013). It has been demonstrated by simulation (Kulcsár et al.,

2006) that the LQG control described here, without vibration mitigation, has been

able to increase the SR of a PSF to 71% from the 69% obtained using the classical

techniques. Other laboratory simulations (Petit et al., 2008) have shown that LQG

vibration mitigation has been able to increase an 81% SR, measured without vibra-

tion mitigation, up to 90% with an equivalent vibration free measurement of 91%.

H2 synthesis has been demonstrated (Guesalaga et al., 2013) to give reductions of

up to 50% in the variance of residuals in off-line runs and also an improvement

of around 30% in on-line runs, although the on-line results are inconclusive. LQG

78

2.2.3. Mitigation of Vibrations in AO

control has also demonstrated benefits in wide-field AO control (Kulcsár et al.,

2012) with test bench results giving LQG control an 81% SR for a an off-axis star

with relative separation of 20% compared to the 34% SR obtained for the same

star with classical AO control.

These results show the potential for LQG and H2/H∞ control to improve the reso-

lution of seeing limited observations and also to allow for the characterisation and

mitigation of telescope vibrations. Further research and study into these methods

is currently being conducted with the aim of producing an AO control system suit-

able for Extremely Large Telescopes for which vibrations are expected to play a

large role in the perturbations of the detected wavefront.

79

Chapter 3

Many-core CPU RTC and

ELT-scale Optimisations

3.1 Current RTCs and their Suitabilty for ELT-scale

As described in Section 1.2 current AO RTCs are implemented on multiple hard-

ware types and running different implementations of RTC software. One of the

most widely used RTC systems is the European Southern Observatory (ESO) Stan-

dard Platform for Adaptive optics Real Time Applications (SPARTA, Fedrigo et al.,

2006) platform, which is a set of tools and definitions which can be used to build

AO RTC systems. The hardware defined by SPARTA uses FPGAs for the wave-

front processing and DSPs for the reconstruction step. Section 1.2 discusses how

both FPGAs and DSPs are generally more complex to work with than CPUs and

therefore more time is required in the initial development, and it makes it difficult

for further modifications to the RTC algorithms to be made. There is also the

problem of the limited processing power per device with these technologies and so

scaling such a system to the ELT-scale as described in Section 1.1.4.2 becomes very

difficult.

Other current AO RTC implementations will use either GP-GPU technologies or

standard CPU systems. However the data transfer from host to accelerator makes

80

3.2. Other ELT-scale Investigations

the use of GP-GPUs infeasible for ELT-scale AO since the amount of data to

be transferred increases massively compared to current AO systems. Standard

CPU systems also suffer not only from their reduced computational performance

but also from their very limited memory bandwidth compared to either GP-GPU

technologies or many-core and multi-socket CPU solutions. Table 3.1 shows a

comparison of the computational performance, memory bandwidth and number

of processing nodes required for ELT-scale for the different hardware technologies

available. The measured memory bandwidths shown in Table 3.1 were gathered

using a modified version of the STREAM benchmark (McCalpin, 1995) which used

NUMA aware memory allocations and pthread multi-threading. This was not as

optimal as the standard STREAM benchmark when used on a non-NUMA system,

however it does allow a direct comparison between the different hardware platforms.

3.2 Other ELT-scale Investigations

Due to the challenges involved in the processing of ELT-scale AO there are a

number of other investigations ongoing and complete to discover a solution to the

RTC processing problem.

GreenFlash was an European Union (EU) Horizon2020 funded project to inves-

tigate different HPC technologies for the facilitation of ELT-scale AO RTC pro-

cessing. It concentrated on three main technologies, GP-GPU, many-core CPUs,

and FPGAs to be used for the entire RTC pipeline. The Green Flash GP-GPU

solution consisted of a hybrid FPGA-GP-GPU design where the FPGA receives

WFS and transfers it directly to the GP-GPU using direct memory access. The

GP-GPU also uses a persistent kernel, as described in Section 1.2.2.1, allowing it

to continue the RTC processing without any host CPU intervention. These two

techniques reduced the latency due to memory transfers from host to accelerators

that are normally present in GP-GPU solutions and the persistent kernel allows

all processing to occur on either the FPGA or GP-GPU, further reducing latency

81

3.2. Other ELT-scale Investigations

Processor Representative Computational Memory Nodes Price
Type Example Performance Bandwidth Required per unit

(SP TFLOPS) (GBs−1) (6×WFS) (USD)
T M

GPU NVIDIA V100 14.9 900 - 3 10, 600
Xeon Phi KNL 7250 5.2 4801 432 6 3, 400
Xeon Phi KNL 7210 4.5 4501 385 6 3, 400
Intel CPU Platinum 22.9 512 362 6 40, 0002

8180 ×4
Intel CPU Platinum 11.5 256 182 12 20, 0003

8180 ×2
Intel CPU Gold 2.3 230 139 8 3, 1003

5120 ×2
AMD CPU EPYC 3.0 341 294 6 2, 5003

7351 ×2
FPGA Intel Stratix 6.3 512 - 6 ~14, 0004

10 MX2100

Table 3.1: A comparison of computational performance, theoretical and measured
memory bandwidth and nodes required for ELT-scale AO, for the different hard-
ware types available for AO RTC. The T and M columns for memory bandwidth re-
fer to theoretical and measured respectively. DSPs are not included as it is difficult
to find specifications and in general their computational and memory bandwidth
performance are far behind the other processor types.

1Measured using starboard STREAM, no theoretical available. 2Price is for the four CPUs.
3Price is for the two CPUs. 4Price is for a development kit with 256GBs−1 memory bandwidth.

from host interruptions. The Green Flash many-core CPU solution was based on

work conducted in this thesis and will be discussed in Chapter 4 and Chapter 5.

The FPGA investigation proposed a cluster of many FPGAs running in parallel.

However due to the complexity involved in developing both the software and hard-

ware required, this was not considered a viable solution for ELT-scale AO RTC

with the technology available.

Other more direct investigations are being conducted at other institutions with the

aim of developing working RTCs for the proposed ELT instruments. This includes

the NFIRAOS RTC for the TMT as well as RTCs proposed for the ESO ELT

instruments, HARMONI, MAORY and METIS. The main technology being inves-

82

3.3. Suitability of Many-core CPUs for AO RTC

tigated for all of these efforts are many-core CPU systems. The ESO has investi-

gated many-core CPUs for the next iteration of the SPARTA platform, SPARTA2

(Fedrigo and Donaldson, 2010) and so they are very much in favour of the use of

this technology for the first light ESO ELT instruments.

3.3 Suitability of Many-core CPUs for AO RTC

3.3.1 Reducing Latency and Improving Jitter

For an MVM AO reconstructor the main computational burden lies with the re-

construction itself, transforming WFS slope measurements to DM commands, and

its complexity scales linearly with the product of the total number of WFS sub-

apertures and number of DM actuators. After centroiding of the WFS spots, the

slope of each subaperture is described by two values, a displacement of the spots

from centre along two perpendicular axis, commonly referred to as the x and y

values of each slope. The poke matrix (PMX) is therefore a 2 dimensional matrix

of size (M ×N) where M corresponds to the total number of actuators and N to

the total number of slope values. The AO control matrix has the same dimensions

as the PMX and since the number of subapertures and actuators increases with

the square of telescope diameter, the size of the control matrix increases with the

fourth power of telescope diameter.

An MVM operation can be parallelised fairly straightforwardly as the computation

can be split up into smaller parts all of which can be calculated concurrently with

the results of each combined at the end to produce the final result. The most

efficient way of calculating the multi-threaded MVM computationally is by com-

puting the multiplication in a column-major fashion, as described in Figure 3.1.

This allows the calculation of each part of the matrix to be associated with the

corresponding part of the WFS slope measurements and not the entire vector,

meaning that calculations can begin before all of the WFS sensor data has arrived.

83

3.3.1. Reducing Latency and Improving Jitter

Figure 3.1: A comparison of the standard row-major (blue) and column-major (red)
MVM calculation types. The row major method requires the full input vector to
produce an entire single element of the output vector. The column major method
only requires a subset of the input vector and produces a partial result for each of
the output vector elements; once all input vector elements have been processed, the
elements of the output vector will be complete. The column major method is used
for the wavefront reconstruction MVM operation when the pixels are pipelined as
not all elements of the input slope vector will be ready for processing at once.

The idea of splitting the incoming data into smaller parts, each of which can be

operated on separately, is known as pipelining and is a fundamental function of an

efficient AO RTC in all aspects of operation, globally reducing the dependence on

memory bandwidth and meaning less time spent idle waiting for data.

Accelerating the AO RTC in off-load mode to an accelerator card such as a GPU

or a Xeon Phi co-processor requires copying data to and from the accelerator for

every WFS image. The pipelining of data reduces the impact of this process on the

latency as only a small amount of slope data needs to be copied at a time before

processing can commence and the results can be copied back whilst other parts are

being processed. However there is no way to entirely eliminate the impact of the

offload on the latency and it can also have an effect on the jitter of the frame times

as the offload is an additional process in the loop adding complexity to the code

and another source of uncertainty. One method of reducing offload latency being

investigated is to copy the WFS data directly to the accelerator without having it

go through the host CPU and then sending the resulting DM commands directly

from the GPU, as shown in Figure 3.2. However this method further increases both

the complexity of the software and the hardware by requiring a separate custom

device to deliver the data to the accelerator as currently no commercial options

84

3.3.1. Reducing Latency and Improving Jitter

Host CPU

Network
Interface

Accelerator
e.g. GPU

Input WFS
Images

Output DM
Commands

Direct
network accelerator
accelerator network

Indirect
network host accelerator, accelerator host network

Figure 3.2: A comparison of the standard indirect data transfer through the host
CPU and the more efficient direct to acclerator transfer sheme. A downside to the
latter is that it currently involves non-portable software and the use of proprietary
libraries.

exist.

The most straightforward way of reducing the latency and jitter introduced by

offloading the data is to completely remove the accelerator card from the process

and do all computations on the host CPU. For current 8-10m class telescopes this

is easily achievable for a relatively simple AO system with 1 or 2 WFSs/DMs as

the AO RTC can be wholly run on existing CPU hardware at the required latency.

However for larger AO systems such as those needed for the next-generation ELT

scale telescopes and those needed for more complex AO instruments using multiple

WFSs and DMs, current CPU technology is unable to provide the computational

performance required to reduce the latency and jitter of these systems to the re-

quired levels.

A large component of the time and effort required to design and produce an AO

RTC stems from development of the control software. For technologies such as

DSPs, FPGAs and GPUs, this can be extremely time consuming and require spe-

cific technological expertise, without any guarantee that the software will be in any

85

3.4. Best case performance for ELT-scale SCAO RTC

way compatible with future devices. CPU program development is comparatively

more straightforward with a choice of well documented and easily accessible pro-

gramming languages to choose from which are compatible with a wide range of

CPU-based platforms.

3.4 Best case performance for ELT-scale SCAO RTC

In order to determine the best performance achievable with the Xeon Phi devices

described in Chapter 1, a highly optimised algorithmic RTC was developed, i.e. a

simple software solution which performs all necessary RTC algorithms using op-

timised library functions. However the software doesn’t interface with a camera

or DM hardware and so its operation is not pipelined and not user configurable.

Therefore, although this RTC cannot be used in a real AO system, it gives some

idea of the minimum frame computation time (or maximum frame rate) which can

be achieved using given hardware. We note that an investigation using a full on-sky

tested RTC is introduced in later sections.

The simple simulator uses the OpenMP API (OpenMP Architecture Review Board,

2015) for multi-threading, and performs pixel calibration on fake image data, cen-

troiding of the calibrated pixels, an MVM reconstruction of the centroids and finally

introduces a gain factor to the final result. The slope measurements are computed

as if all pixels are available at once. This is the minimum computational require-

ment of an SCAO RTC and gives a base-line for best-case expected performance of

the Xeon Phi. Figure 3.3 gives an overview of this system. Results of this best-case

simulator are presented in Chapter 4.

86

3.5. The Durham Adaptive Optics Real Time Controller

a) Image Acquisition
 and Processing

c) Wavefront
 Reconstruction

d) Actuator
Commands

...

...

m11
m1n

mm1 mmn

s1

sn

g1

gm

....

....

....

....

......=

b) Wavefront Gradient
 Calculation

(x,y)i

(si,sn/2+i)

x and y
gradient
of sub-
aperture i

Figure 3.3: A figure showing the basic RTC operations, including a) image acqui-
sition and processing (background subtraction, flat field application and thresh-
old application), b) local wavefront gradient computation (using a centre of grav-
ity algorithm), c) wavefront reconstruction (using a Matrix Vector Multiplication,
MVM) and d) output of actuator commands. A thread will process a defined set
of subapertures from beginning to end. For each subaperture, the local wavefront
gradients are placed in a slope vector such that all the x gradients come first and
then the y gradients ((x, y)i -> (si, sn/2+i)). The result of the MVM is a vector of
actuator commands which can be reformatted to show the resulting shape of the
correcting element.

3.5 The Durham Adaptive Optics Real Time

Controller

This thesis presents the optimisation of a real on-sky tested RTC for the Xeon Phi

KNL in the form of the The Durham Adaptive Optics Real Time Controller (DARC,

Basden et al., 2010). DARC is a freely available and on-sky proven AO RTC

software package written in the c and python programming languages. It is built

upon a modular real-time core which allows it to be extended for many different AO

RTC scenarios such as for different AO regimes like SCAO and MOAO and allows

individual algorithms such as pixel calibration and wavefront reconstruction to be

replaced or modified. The modular design also allows it to interface with many

87

3.6. Optimisations for many-core operation

different devices for wavefront sensing and wavefront correction (Basden et al.,

2016), making it flexible enough to be used in almost any AO situation.

Because DARC is built on the c and python programming languages it can be

compiled and run on many different systems including the socketed Xeon Phi, x86

(Intel & AMD), IBM POWER8 (Basden, 2015) and ARM processors. Within

DARC, wavefront sensor images are processed in parallel, with subapertures being

processed as soon as enough pixels have arrived at the computer. DARC uses a hor-

izontal processing strategy (Basden et al., 2010) which allocates a similar workload

to each thread, with threads being responsible for processing of a subaperture from

start to finish (including calibration, slope calculation and partial reconstruction).

This means that AO latency can be reduced, since by the time the last pixels arrive

at the computer, the majority of the processing for that frame has already been

completed. Here, we consider the optimisation of DARC for use with the Xeon Phi

architecture, and report on performance investigations.

3.6 Optimisations for many-core operation

An x86 CPU the Xeon Phi shares many attributes with standard CPU hardware.

However, it is also very different from previous CPUs with its many (≥ 64) low

power cores, and its high bandwidth memory due to the integrated MCDRAM

and the 512 bit wide vector registers for improved SIMD performance. The SIMD

processing paradigm is extremely important when considering large computational

problems that can be easily vectorised. While most software developed for standard

CPU systems can be compiled and run on Xeon Phi hardware with no alterations,

to make the most of the new features, some optimisations are needed to best utilise

the available hardware. These include:

1. thread synchronisation, to make efficient use of all cores

2. memory access, to optimise for the fast memory

88

3.6.1. Software Profiling

Figure 3.4: An example screenshot of the Intel vtune amplifier software and
it shows the computation performance of the application. This shows that the
avx512_mic_sgemv function call is taking most of the processing time, which is
used for the reconstruction MVM.

3. vectorisation, to take advantage of the wide vector registers.

3.6.1 Software Profiling

To analyse the utilisation of the hardware and therefore the efficiency of the pro-

gramming, software profiling methods were used. The software profiling involves

executing the RTC application at the same time that the profiling software is run-

ning and (depending on the type of software) it can access different information

about the state and execution of the RTC software. The three main profiling tools

used were Intel’s vtune amplifier, perf, and htop. Each was used depending

on which information was required and how much impact the profiling should have

on the application performance. Due to the way the software profilers work they

can reduce the performance of the application being tested, and depending on how

much information is gathered, the performance drop can be quite severe.

vtune amplifier was by far the most comprehensive profiling tool used. It works

with the Intel compiler to show the impact of each function call in the application

89

3.6.1. Software Profiling

and how much time the hardware spends executing each instruction. Because of

the amount of data collected, the impact on performance of the vtune software on

the RTC was very high, reducing the performance by as much as 40%. This drop

in performance for real time software potentially means that the data it collects

are not necessarily representative of how the RTC spends its time during normal

operation. Therefore this tool was mainly used to discover any functions that

seemed to be taking up more CPU time than expected and also to find any areas

of code that were being inefficiently vectorised by the compiler.

The most straight forward way to use vtune amplifier involves starting the RTC

software like normal and using the vtune GUI to attach to the running process

by specifying the process ID. The software will begin to collect profiling data until

stopped by the user or a pre-determined time limit has been reached. The vtune

GUI shows a comprehensive breakdown of the time spent in each section of code.

Figure 3.4 shows an example of the functionality of the vtune software.

The next step in the profiling involved using the Linux perf tool, which, when

used with the top argument, displays the percentage of time the system spends

on different function and instruction calls. This tool is less intrusive than vtune

and so the impact on the performance of the RTC is reduced. Because of this, it

is a useful tool to use when debugging modifications made to the source code if

the RTC is not performing as expected. The final tool used is the htop utility

which is similar to the built-in Linux top utility, however it also displays a handy

visualisation of the utilisation of each of the processor cores. This tool has very

little impact on performance and therefore is used regularly to inspect the multi-

threading of the RTC and to ensure that specific threads are using the resources

as they should. Figure 3.5 shows an example of the functionality of the perf and

htop utilities.

90

3.6.2. Multi-threading of Subaperture Processing

Figure 3.5: An example screenshot of the htop (left) and perf (right) utilities and
how they show a profile of the DARC RTC execution. This is for 60 reconstruction
threads executing on cores 8-67 as seen in the htop utility. The perf utility
shows that the mkl_blas_avx512_mic_sgemv function call is taking most of
the processing time; this is used for the reconstruction MVM.

3.6.2 Multi-threading of Subaperture Processing

Multi-core CPU systems have become the norm in recent years leading to DARC

being developed using a multi-threaded real-time core with the POSIX (‘The-Open-

Group’, 2016) pthread library. The main method of ensuring thread synchronisa-

tion has been by the use of pthread mutexes and condition variables. A mutex is a

mutual-exclusion variable which allows threads to ‘lock’ a certain section of code,

preventing other threads from accessing these protected regions. If a thread calls

the lock function on an unlocked mutex variable, then that thread will be allowed

to acquire the mutex lock. Any other threads which attempt to lock this mutex

will have to wait at the lock function until the mutex is unlocked.

Condition variables provide a powerful facility to synchronise different threads by

using mutexes. If a thread has acquired a mutex lock it can call a condition wait

function that is associated with that specific mutex variable. That thread will

then proceed to release the mutex lock and then wait until the condition variable

has been signalled; other threads can also wait on the same condition variable. To

91

3.6.2. Multi-threading of Subaperture Processing

release the waiting threads a condition variable can either be signalled or broadcast

by a non-waiting thread. A signal will release a single waiting thread which will

then reacquire the mutex before proceeding with execution. A broadcast will wake

all threads that are waiting and one at a time the waiting threads will reacquire

the mutex and be allowed to continue.

If multiple threads are waiting at a mutex then they will proceed one by one as the

mutex is repeatedly locked and unlocked by the preceding thread. A thread waiting

at a mutex will generally be descheduled by the operating system scheduler and

put to sleep, reducing power consumption and freeing up the hardware for other

threads to be scheduled. This works well for low order multi-core systems with

2-16 CPU cores, as it allows for more threads than physical CPU cores and the

simultaneous descheduling and rescheduling of these few threads when they are

waiting at the same mutex has little overhead.

However, for the Xeon Phi MIC architecture with ≥ 64 low power cores, DARC

needs to be configured to execute a single thread per core with > 48 threads to

achieve maximum performance for ELT-scale SCAO (Figure 3.6). This can cause

problems when using mutexes and condition variables as the constant sleeping and

waking of this large number of threads significantly increases latency. The solution

that we have developed is to use a structure similar to mutexes called spinlocks,

which also protect critical sections of parallel code but instead of sleeping and

descheduling, threads simply wait until they can proceed. This waiting process

constantly consumes CPU cycles but this increases the system’s responsiveness.

This helps to reduce the computation latency when using a large number of pro-

cessing threads as each thread can resume operation without needing to wake from

a sleep state.

Unfortunately, the condition variables described above do not work with spinlocks

and so we replace these where possible by simple volatile flag variables, taking care

to ensure that thread safety is maintained.

92

3.6.2.1. Explicit Subaperture Thread Allocation

35 40 45 50 55 60
No. of threads

1000

1050

1100

1150

1200

1250

1300

1350
Fr

eq
ue

nc
y

/ H
z

Frequency
Jitter

5

10

15

20

25

30

RM
S

Jit
te

r /

s

Figure 3.6: A measure of the average frequency of DARC running with different
numbers of threads on Xeon Phi KNL, given in Hz. Also shown is the RMS jitter
of the frame time data used given in µs. The increases seen in the frequency at
threads counts of 35, 38, 43, 47, 51, 54 are most likely due the thread allocation
used to aid in vectorisation described in Section 3.6.3.1.

3.6.2.1 Explicit Subaperture Thread Allocation

As described in Chapter 1 the latency of an RTC is defined as the time between the

arrival of the last WFS pixel at the RTC to the time that the final DM command is

delivered; reducing this interval is therefore essential to improving the performance

of the RTC. The different options for handling and processing the pixel stream are

shown in Figure 3.7, with each subsequent option reducing the RTC latency.

As each DARC thread processes its subapertures from beginning to end, they must

be allocated a specific set of subapertures to process. The most simple and naive

way of assigning subapertures would be to divide them equally amongst the threads

as shown in Figure 3.7(c). However since each thread will spend an equal amount

of time to complete its processing, the threads will complete processing of their

93

3.6.2.1. Explicit Subaperture Thread Allocation

a) Option 1

1.00.6250.250.15

b) Option 2

c) Option 3

d) Option 4

Pixel Transfer

Data Processing

LatencyLast pixel

No pipelining of pixels, single threaded processing

With pipelining of pixels, single threaded processing

With pipelining of pixels,
multi threaded processing,
equal subaperture allocation

With pipelining of pixels,
multi threaded processing,
unequal subaperture allocation

Figure 3.7: A comparison of the latency introduced via various pixel handling
techniques. It shows that minimal latency is achieved via pipelining of the recon-
struction using threads which process unequal numbers of subapertures such that
they finish processing at roughly the same time.

allocated subapertures asynchronously. Threads that process the earlier arriving

subapertures will finish ahead of the others, with the end time of each dictated by

the pipe-lining of the arriving pixels.

Seen in Figure 3.7(d) is an option whereby the subapertures are not allocated

equally among the threads. Rather the threads that process earlier subapertures

are given more work to do and the later ones are given less. This ensures that

the threads finish their work at roughly the same time and so helps to reduce the

time between the last pixel arriving and the final DM command being sent out.

However, the time waiting for pixels also changes as processing more subapertures

requires waiting for more pixels, which can be seen in the different sized blocks

for pixel waiting. This is a lot more complex in practice as there will not be a

one-to-one relation between the number of subapertures and the number of pixels

that need to be waited for.

94

3.6.2.2. Batch Processing of Subapertures

3.6.2.2 Batch Processing of Subapertures

The method of allocating specific subapertures to specific threads, as described

above, fixes the number of subapertures and the order that they are processed for

each thread. With the correct tuning and optimisation this approach can reduce

the RTC jitter as the local caching of information reduces the number of times that

data needs to be transferred between each CPU core. However for pipelined WFS

pixels the rate at which the data arrives for each row of pixels can vary for different

WFSs and therefore the optimal number of subapertures to be processed by each

thread will change. If this isn’t taken into account then the latency will be worse.

A different approach is to instead split the subapertures into a number of batches

and allow the threads to process a batch as soon as the batch and thread are ready.

This means that each subaperture will be processed by different CPU cores each

frame and so the jitter is likely to increase due to the caching of data no longer

being efficient. However this does provide a benefit to overall RTC latency without

any optimisation needed of the subaperture allocation, i.e. the OS scheduler is

allowed to optimise the subaperture allocation at runtime. For pipelined pixels,

the most simple and efficient way of splitting up the subapertures into batches is

to put each row, or groups of rows, of subapertures into their own batch. This is

because each row of pixels is read out as a whole and so the pixels for an entire row

of subapertures will be available for processing almost simultaneously. This method

of subaperture allocation should be more efficient at reducing latency, because as

long as there are adequate processing resources, the subapertures will processed as

soon as they arrive.

95

3.6.3. MVM Optimisations

3.6.3 MVM Optimisations

3.6.3.1 Vectorisation

The 512 bit wide vector registers present on the Xeon Phi allow up to 16 single

precision (SP) operations to be performed per cycle per CPU core. An operation in

this case can be a fused-multiply add (FMA) operation which combines an addition

and a multiplication, allowing up to 16 SP additions and 16 SP multiplications per

instruction cycle. This is double the previous specification of 256 bit vector registers

allowing a theoretical 2X speed up for vectorisable computations. Vectorisation is

generally handled by the compiler: depending on the level of optimisation chosen

at compile time, a certain amount of auto-vectorisation will occur. However, steps

can be taken to aid the compiler and investigate where vectorisation occurs or

does not occur. Essentially, if the compiler is able to detect that vector or matrix

operations include 16-float boundaries at the same points, then these operations

can be vectorised. This therefore usually means that by aligning memory to the

nearest 64 bytes, vectorisation will be aided.

The allocation of subapertures to specific threads within DARC can be optimised

such that each thread processes a multiple of 16 slope measurements when calcu-

lating its own section of the wavefront reconstruction MVM. As each subaperture

has 2 slope measurements, x and y, we therefore ensure that the subapertures are

allocated to threads such that each thread processes a multiple of 8 subapertures

as a single chunk.

Alignment of array memory to page cache boundaries is important so that the data

required for the vectorised instructions can be loaded into the registers efficiently

and with the right ordering. This can be done when allocating memory for the

arrays using the posix_memalign (‘The-Open-Group’, 2016) function call which

aligns the amount of memory required at the specified boundary. The next step is

to then ensure that sections which can be vectorised are written in such a way that

96

3.6.3.2. 16-bit Floating Point Control Matrix

the compiler can apply auto-vectorisation; Intel provides a guide which details the

necessary steps (Intel, 2012).

3.6.3.2 16-bit Floating Point Control Matrix

Because the wavefront reconstruction MVM is a memory bandwidth bound oper-

ation, due to the relatively simple mathematical operations but large data size,

investigating ways to reduce the memory bandwidth dependence is an important

consideration for ELT-scale AO RTC. A potential solution is to store the control

matrix using 16 bit floating point format, rather than the conventional 32 bit for-

mat. The format used for the 16 bit floats is the IEEE 754 specification for binary16

(IEEE, 2008) which reduces the exponent from 8 to 5 bits and the mantissa from

23 to 10 bits.

This change does result in some loss of precision in the control matrix, however the

available precision is still greater than that of the wavefront slope measurements

(which are based on integer-valued detector measurements) and is therefore still

considered sufficient for the reconstruction (Basden et al., 2010). Every AO loop

iteration, this control matrix is then loaded into CPU registers, converted to 32 bit

format for operations (necessary since the Xeon Phi cannot perform 16 bit floating

point mathematical operations), and the DM vector computed. The reduction in

memory bandwidth required can therefore reduce AO system latency.

3.6.4 Reduction of Partial DM Vectors

As each DARC thread processes a set of subapertures from beginning to end, the

result of each thread’s execution is a partial DM vector corresponding to those

subapertures. To combine these results into a final DM command vector they

must be all be summed together. Previously DARC has achieved this by using a

mutex to lock the final DM command vector whilst each thread adds its vector into

it in turn. This works well for small numbers of threads on fast cores. However

97

3.7. Host Optimisation and Tuning

for the KNL case where there are more threads on comparatively slower cores, this

serial addition is a processing bottleneck and a large source of extra latency.

A solution that I have developed is a branching algorithm which allows groups of

threads to add their partial DM vectors and so each group can work in parallel.

A group will be defined by a spin-lock and a thread-barrier. Within the group a

thread will get the lock whilst it copies its partial DM vector into a temporary

output array and once each thread has copied its partial vector it waits at the

barrier for the other threads in the group to finish. At the completion of a group’s

work, one thread from each group will take ownership of the temporary output

array and move on to the next group. This can be seen in Figure 3.8 where each

group adds its partial DM vector into the red box before that moves down to

the next group where the process is repeated until the final DM command vector

results.

This can help reduce the computational latency of an ELT-scale SCAO system by

up to 200 µs or 18 %. The benefit of the algorithm is reduced in the pipe-lined case

where it can help to reduce the latency by up 20 µs or 5 %. This difference is likely

due to the individual threads finishing their execution at slightly different times

when they receive pipe-lined pixels. For an optimal unequal subaperture allocation

as described in Section 3.6.2.1, however, this branching algorithm would reduce the

waiting time for each thread.

3.7 Host Optimisation and Tuning

3.7.1 Tuning the OS, Kernel and BIOS for Low Latency RTC

The operating system (OS) installed on the Xeon Phi used in this thesis is CentOS

Linux 7.3 (The-CentOS-Project, 2001). To obtain the best low latency and low

jitter performance various changes have been made to the default settings of the

BIOS, the operating system and the kernel. The main changes to the BIOS settings

98

3.7.1. Tuning the OS, Kernel and BIOS for Low Latency RTC

Group 1 Group 2 Group 3 Group 4

Final DM Command Vector

Stage 1

Stage 2

Stage 3

Figure 3.8: A schematic of the branching vector addition algorithm for a 4->2->2
situation with 16 threads, the first stage involves groups of four threads adding
up their partial DM vectors, stages 2 and 3 reduce the resulting temporary DM
commands to final DM command vector. This example allows up to 4 vector
additions to happen in parallel and a total of 3 sequential stages instead of simply
adding up all 16 threads’ partial DM vectors sequentially. For larger thread counts,
the effect is even more pronounced.

involve turning off Intel Hyper-threading, which allows more logical threads to

execute concurrently on hardware cores. Removing Hyper-threading allows each

software thread to be pinned to a single hardware core and removes scheduling

inefficiencies caused when cores switch between different Hyper-Threads. During

initial testing a Linux kernel with a real-time patch was considered. The real-time

patch attempts to increase the kernel’s real time response and allows the scheduler

to pre-empt tasks to allow processes with higher priorities to proceed. However I

discovered that with the tuning described above a real-time kernel was not required

and in some cases degraded performance or even caused the system to crash.

Other BIOS settings include Xeon Phi specific settings which relate to how the CPU

handles memory addressing, with information available online (Intel, 2015), and

different modes which determine how the fast Multi-channel DRAM (MCDRAM)

is allocated, either accessible like standard RAM, reserved for the OS as a large last

level cache (LLC), or a mixture of the two; these modes are termed ‘flat’, ‘cache’,

and ‘hybrid’ respectively.

OS and kernel setup refers to options such as isolating certain CPU cores so that

99

3.7.1. Tuning the OS, Kernel and BIOS for Low Latency RTC

the OS doesn’t schedule any program to run on these cores without specific in-

struction, and also to other options relating to CPU interrupts and different power

and performance modes. The main kernel options used are:

• isolcpus=[corelist] - specify isolated CPU cores

• nohz_full=[corelist] - stop certain CPU core ticks whenever possible

• idle=poll - improve the performance of waking up idle cores

• irqaffinity=[corelist] - specify cores that handle interrupt requests (IRQs)

• nohalt - turns off some power saving functions

The isolcpus option isolates all but the first 2 CPU cores from the OS scheduler

such that processes must be explicitly allocated to them. This prevents the OS

from potentially interrupting the simulator processes. The nohz_full option sets

the specified CPUs whose tick will be stopped whenever possible, which can reduce

the number of scheduling-clock interrupts and reduce jitter. The irqaffinity

options set the specified CPUs to handle interrupt requests (IRQs). This can

reduce jitter by allowing the necessary interrupts to be processed on the correct

CPU cores. The nohalt option tells the kernel not to use certain power saving

functions which reduces interrupt wake-up latency and can improve performance

for real-time systems. Finally the idle=poll option forces a polling idle loop that

can slightly improve the performance of waking an idle CPU at the expense of power

consumption. A comprehensive description of the kernel command line parameters

can be found at The Linux Kernel (2019).

During our testing, we have identified that best performance is achieved with the

CPU set to Quadrant memory addressing mode, and the MCDRAM was set to ‘flat’

mode. In ‘flat’ mode, the MCDRAM is visible to the CPU on a separate NUMA

(Section 1.2.1.2) node from the standard RAM and so this must be addressed either

by explicitly allocating the memory in the program (using a NUMA library), or

100

3.7.2. Compiler Tuning

by executing the program on the specific NUMA node to make use of the fast

MCDRAM. In this report the MCDRAM was allocated by running software with

the numactl command with the –membind=nodes option, ensuring that the entire

RTC is allocated on this NUMA node. On the Xeon Phi, the MCDRAM is 16 GB

in size, which is sufficient to fit a whole ELT-scale RTC.

3.7.2 Compiler Tuning

There are multiple compilers available for compiling software written in the c pro-

gramming language to target x86 hardware. During initial testing, two compilers

were considered to achieve the best performance of the AO RTC. These were the

Intel C compiler, icc, and the GNU’s Not Unix (GNU) C compiler, gcc. By far

the main benefit to using gcc is that it is the default Linux compiler and is there-

fore widely available, it is also completely free to use and modify under the GNU

General Public License (GPL). It is being constantly updated to incorporate new

features such as the Intel AVX-512 instruction set. Intel’s icc is not open source

and not free to use, being available only as part of a paid license subscription to

the Intel Parallel Studio XE or Intel System Studio packages. Intel do however

offer a free version of these packages to students and classroom educators which

was used to compile software used for this thesis.

For optimal compilation with either icc or gcc, certain compiler flags were nec-

essary to achieve best performance on the Intel Xeon Phi. The -O3 compiler flag

(GNU; Intel, 2017b) was used with both compilers as it enables the most aggressive

automatic compiler optimisations including vectorisation, inlining of function calls

and optimising loop structures. The gcc specific flags used were

• -mavx512f -mavx512er -mavx512cd -mavx512pf - enable AVX-512

• -march=knl - optimise for the Xeon Phi KNL

• -mfma - ensure fused-multiply add (FMA) operations are used

101

3.7.2. Compiler Tuning

• -finline-functions - attempt to inline functions

• options to statically link the Intel Math Kernel Library (MKL)

– The options to enable MKL for gcc have been omitted for brevity

To enable AVX-512, gcc needed to be of version 7 or above and so version 7.3.1

was installed manually, as the default CentOS gcc version is only 4.8.5. The Intel

MKL is used to accelerate common basic linear algebra subroutines (BLAS) such

as MVMs using pre-compiled optimised libraries.

The icc specific compiler flags used were

• -static-intel - link intel libraries statically

• -xMIC-AVX512 optimise for the many integrated core (MIC) architecture

• -fma - ensure fused-multiply add (FMA) operations are used

• -align - attempt to align memory allocations to natural boundaries

• -mkl=sequential - dynamically link the Intel math kernel library (MKL)

The shared Intel libraries were statically linked to avoid having to install the com-

piler software package on every target system; this was needed as the free student

license had a limit to the number of machines it could be installed on simultane-

ously.

It was found that icc provided the best performance for the AO RTC. This is

as expected due to the number of optimisations available for the Intel platform.

However the performance difference was only of order 10-15 % and so depending

on the dimensions of the AO system, it may be more beneficial to use the free and

open GNU gcc. Intel’s icc was used for the compilation of all software used in

this thesis unless otherwise stated.

102

3.8. CPU-based Network Camera Simulator

3.8 CPU-based Network Camera Simulator

Results presented in this thesis were obtained from the DARC software using either

a real camera for pipelined pixels or a CPU camera simulator machine. The early

camera simulator results used the Aravis GigE Vision Library (AravisProject, 2018)

to both transmit and receive the pixels. However this library is not optimised for

large frame and high rate camera simulations and so instead a camera simulator

based on the proposed standard for ESO ELT WFS (Downing et al., 2018) that

streams pixels using UDP packets was developed. The UDP camera simulator is

controlled at runtime of the simulator executable and the receiver software simply

waits to receive the packets. In this way we can define the parameters of the

camera simulator separately from the receiving of the camera stream, and it no

longer requires a heartbeat thread to keep the camera sending packets, which we

found could interfere with the pixel stream.

The camera simulator is implemented in the c programming language in an effort

to make it both low level and as easy to modify and develop as possible. The

underlying networking uses packet sockets, which are used to receive or send raw

packets at the device driver (OSI Layer 2) level (Kerrisk, 2018). This allows minimal

overhead from the kernel when sending and receiving packets as most of the protocol

implementation can be programmed in user space on top of the physical layer.

The type of socket used here is SOCK_DGRAM which does not have the link

level header removed by the network stack and so is not quite as low level as

SOCK_RAW packets.

The operating system on the simulator machine is Ubuntu 16.04 on top of a Linux

4.4.0 generic kernel. A low-latency Linux kernel was investigated but was observed

to provide no discernible performance benefit. Some OS, Kernel and network level

tuning was performed to improve performance. Some of the steps taken involved:

◦ isolating most CPU cores from the OS scheduler,

103

3.8. CPU-based Network Camera Simulator

◦ specifying the core affinity for the NIC interrupts and camera threads,

◦ tuning both the NICs and linux network stacks UDP buffer sizes using the linux

ethtool command and the sysctl utility,

◦ and setting the CPU power settings to “performance”.

The camera simulator software is used only to simulate the pipelined transfer of

pixels to the RTC and so the unique images that were streamed by each camera were

created ahead of time via AO simulations to properly construct images for the type

and dimensions of AO system tested. The images were stored on a PCIe fast raid

storage array consisting of 4 Samsung 960 EVO NVMe solid state drives (SSDs)

which provided transfer rates > 4.2GBs−1 which is sufficient to allow the pixel

data to be streamed directly from storage. The simulator software is set up such

that both the inter-packet delay and inter-frame delay can be set independently.

This not only allows different camera frame rates to be simulated, it also allows

the readout time to be adjusted to better reflect that of a real camera, rather than

just sending out the packets as soon as possible. As the inter-packet delay needs to

have microsecond precision the timing is achieved via the Linux timer_fd utility

which uses file descriptors to achieve a repeatable high precision timer.

The simulator hardware consists of a 2012 Intel Xeon E5-2650 dual socket system

with 8 CPU cores and 32GB of DDR3-1600MHz RAM per socket with a base CPU

frequency of 2.0GHz. The network devices used are 2 PCIe Intel Ethernet X710-

DA4 Network Interface Controllers (NICs) with 4 10GbE ports each where a single

camera simulator stream will have exclusive use of one of these 8 interfaces. In a

multi-socket CPU system, certain PCI-e lanes are physically connected to a single

CPU socket. The NICs were therefore installed in the host such that each was

local to a different CPU socket and then the camera threads for each interface were

assigned CPU cores on the local socket.

Some BIOS settings were tuned for the simulator, Intel HyperThreading was turned

off to allow a single processing thread exclusive use of a CPU hardware core and

104

3.8.1. UDP Camera DARC Module

the power settings were tuned to performance settings. Linux kernel settings, as

described above, were tuned such that the relevant command line options were

isolcpus=2-15 nohz_full=2-15 nohalt idle=poll.

3.8.1 UDP Camera DARC Module

To interface with the UDP camera simulator described above it was necessary to

implement a camera module for DARC to receive and process the image packets.

This is implemented in DARC with a worker thread that performs the data transfer:

it listens on a network socket, receives the packets, checks that they originate from

the camera simulator, copies the data into a buffer and increments the received

pixel count. The subaperture processing threads meanwhile wait for the correct

number of pixels required to begin their portion of the processing, once enough

pixels have arrived they are copied into the DARC raw pixel buffer for further

processing. Depending on the data type of the pixels, usually either 8 bit or 16

bit, and the order that pixels are read out from the detector (see Section2.1.1) the

data might need to be converted and/or reordered when being copied to the raw

pixel buffer.

105

Chapter 4

SCAO Demonstrator: Single Node

SCAO

In this chapter I present results of the investigation into optimising the DARC RTC

software for many-core CPU operation as described in Chapter 3. First is presented

the results of the best case simulator as described in Section 3.4. This is followed

by an investigation of storing the AO RTC control matrix as 16 bit floating point

values for the purpose of reducing the memory bandwidth requirement. Results of

the DARC RTC software interfacing with a real camera and the simulated camera

as described in Section 3.8 are presented. Finally results are presented for the

batch subaperture allocation described in Section 3.6.2.2, the implicit POLC for

the SCAO case as described in Section 2.1.4, and for a long time period operation

of an ELT-scale SCAO configuration. Results and discussion in this chapter have

been previously published in Jenkins et al. (2018b) and Jenkins et al. (2019).

The performance of an AO RTC is generally defined by the time taken for it to

process each frame, where a frame is a single WFS image, and the processing

includes calibrating the pixels, computing the centroids and reconstructing the

wavefront before sending the results to a correcting element. There are different

ways of defining the amount of time that it takes an RTC to process a frame and

it depends on the definition of when a frame starts and when it ends.

106

4.1. The Best Case Simulator on Xeon Phi

Timing for the entire AO RTC loop is generally taken from the time the first

pixels arrive at the RTC hardware to the time when the last DM commands have

been sent to the correcting element. This encompasses the entire computation of

the RTC especially when the main loop is pipelined, i.e., the processing is done

for groups of pixels as they arrive due to the way the image sensors read-out the

pixels. However, in the case of a fast RTC and a slower camera, RTC latency will

be artificially lengthened by periods waiting for camera pixels to arrive. Therefore

here, we use the traditional definition of RTC latency, defined by the time taken

between last camera pixels arriving at the RTC and the last DM demand being

computed. This definition can therefore be computed entirely within the RTC

hardware, though does not include delays due to the capture of camera pixels (e.g.

by a frame grabber card, and transfer to the computer memory), or delays due

to time taken for DM demands to leave the computer and arrive at the DM. In

addition to latency, we also report the maximum stable RTC loop rate, i.e. the

fastest rate at which the RTC can operate stably.

In cases where we present the maximum RTC rate, i.e. without a camera attached,

we define latency as the inverse frame time: in this case, the latency represents

the minimum computation time for the RTC loop. The jitter of the AO RTC is

defined to be the variation in latency which is presented as both rms jitter and also

peak-to-peak (worst case) jitter.

4.1 The Best Case Simulator on Xeon Phi

We configure the best case SCAO RTC simulator as described in Chapter 3 in

an ELT configuration with 80 × 80 subapertures, a 0.25 × D central obscuration

and 10× 10 pixels per subaperture. This results in 4708 active subapertures, and

therefore 9416 slope measurements. The number of DM actuators is 5170, based

on a circular 81× 81 actuator DM aperture. This system was tested using an Intel

Xeon Phi 7250 system as described in Table 3.1.

107

4.1. The Best Case Simulator on Xeon Phi

Figure 4.1: a) Frame time results of SCAO best case simulator for 106 frames with
an average frame time of 770± 20 µs which corresponds to an average frame rate
of 1300± 30 Hz. The horizontal silver line is the average frame time, the red line
shows a running median for every 1000 frame times. b) A histogram of the frame
times in (a).

Figure 4.1 shows the frame time results of the SCAO best case simulator for 106

frames. The figure shows the minimal number of outliers and also the small spread

of the distribution. The average frame time of 770± 20 µs corresponds to an average

frame rate of 1300± 30 Hz. This is shorter than a typical atmospheric coherence

time, and therefore would be suitable for an ELT-scale SCAO RTC. The rms jitter

is 16.3 µs, which is about 2 % of the mean frame time, and would have insignificant

impact on AO performance (Pettazzi et al., 2012). The maximum instantaneous

peak-to-peak jitter between consecutive frames is 107 µs, including the startup

measurements, or 88.8 µs during the long-term measurements.

108

4.2. DARC on Xeon Phi for ELT scale AO RTC

4.2 DARC on Xeon Phi for ELT scale AO RTC

Figure 4.2 shows the frame time results of DARC configured for ELT-scale SCAO

(in a similar configuration as above however with 5316 actuators, to mimic the

ESO ELTs M4 Adaptive mirror, and 4632 subapertures for a total of 9264 slope

measurements) though without a physical camera connected, measured over 106

frames. It can be seen in Figure 4.2(a) that for the system using an Intel mother-

board (model S72000, 7250 processor), there are a small number of regular single

frame outliers which add about 200-250 µs to the frame time, roughly every 63.75 s.

We have determined that these events are due to the Intel system management in-

terface on the motherboard, which periodically polls the processor for information.

There appears to be no way in which this can be turned off. The presence of these

interrupts can be verified using this code:

1. for SEC in ‘seq 0 200‘; do echo -n "$SEC "; rdmsr -p 0 -d 0x34; sleep 1; done,

which has been used to confirm their presence on the Intel S72000 motherboard

used in this report.

Figure 4.2(b) shows results taken using a Ninja Development platform Xeon Phi

using a Supermicro motherboard (model K1SPE with 7210 processor). Here it can

be seen that these 64 s period events are not present. It is therefore important

to take care when evaluating motherboards suitable for AO RTC. Histograms of

both measurements are shown in Figure 4.2(c), the difference in mean frame time

between the two distributions is due to the specification of the processors used

in each motherboard; 1.4 vs. 1.3 GHz clock speed, 480 vs. 450 GB s−1 memory

bandwidth (Table 1.3). From this figure, it can be seen that the distribution of

latency measurements is approximately Gaussian, except for the outliers.

Therefore, DARC is able to operate ELT-scale SCAO with a 930± 10 µs frame

time, corresponding to a 1070± 10 Hz maximum frame rate. When the 64 s events

109

4.2. DARC on Xeon Phi for ELT scale AO RTC

Figure 4.2: a) Frame times for DARC SCAO on an Intel Motherboard with no
camera for 106 frames with an average frame time of 930± 10 µs which corresponds
to an average frame rate of 1070± 10 Hz. b) As for (a), except for a Supermicro
motherboard with an average frame time of 1010± 10 µs which corresponds to an
average frame rate of 990± 10 Hz. c) Histograms of the frame times are presented in
(a) and (b), for both a log scale (top) and a non-log scale (bottom). The horizontal
silver lines in (a) and (b) are the average frame times for each distribution, the red
lines show a running median for every 1000 frame times.

are included, the instantaneous peak-to-peak jitter over a million frames is 263 µs,

while ignoring these events reduces the peak-to-peak jitter to 92.7 µs and the RMS

jitter is only 11.4 µs. The Ninja development platform can operate ELT-scale SCAO

with a 1010± 10 µs frame time, corresponding to a 990± 10 Hz maximum frame

rate. This is a lower maximum performance than the Intel motherboard system

due to the difference in processor specification, which is as expected.

110

4.3. Storing the control matrix as 16 bit floating point values

4.3 Storing the control matrix as 16 bit floating point

values

Being able to store the control matrix as 16 bit floats could potentially reduce

the memory bandwidth requirement of the RTC by a factor of two, compared with

storing it as standard single precision floats. Most CPU systems available, however,

are unable to operate on 16 bit floats directly as they lack the proper arithmetic

units to do so; and so an alternative method was devised. This involves converting

the control matrix, stored as 16 bit float values, at execution of the MVM 32 bit

float values, which the CPU is able to process. This is enabled via the Xeon Phi

intrinsic instructions that allow converting 16 bit values 16 at a time and loading

them directly into the 512 bit vector registers where they are ready for the FMA

MVM operations. This ensures that there is a minimum overhead for the transfer

of 32 bit values to conserve memory bandwidth.

To achieve this functionality a custom implementation of the MVM algorithm was

designed using only Intel intrinsic functions to load to matrix, convert it to 32 bit

floating point values, and compute the MVM operation. This was needed as the

Intel MKL library that is used to calculate the reconstruction MVM in previous

results is unable to load 16 bit floating point values. To be able to use it, the

values would need to be converted to 32 bit before each call to the MKL library.

This would not be ideal as MKL works best on larger MVM problem sizes and

converting a large amount of the control matrix to 32 bit would defeat the purpose

of storing it as 16 bit floats. Also making too many calls to the library would vastly

increase the latency.

A similar custom 32 bit MVM implementation, simply loading the data instead of

converting it, shows that this algorithm isn’t as optimised as MKL. It gives an

average frame time of 995± 6 µs with an RMS jitter of 5.96 µs which can be com-

pared to results that use MKL on the same processor/motherboard of 930± 10 µs

111

4.3. Storing the control matrix as 16 bit floating point values

from Figure 4.2.

The algorithm that uses a 16 bit control matrix decreases this average frame time to

902± 6 µs with an RMS jitter of 5.60 µs. The need to use a less optimised custom

MVM and the need to convert to 32 bit floats introduces extra overhead which

greatly reduces the potential gain. These results show that this implementation of

storing and converting the 16 bit control matrix increases performance by only 3 %

over the best case MKL results.

The next iteration of Xeon Phi after KNL, Knights Mill (KNM) which is available

now, includes support for Intel variable precision operations (vector neural network

instruction, VNNI) which include intrinsic instructions that can directly operate

on 16 bit integer values by addition and multiplication to produce an accumulated

32 bit integer sum. This would require some conversion of the control matrix and

slope values to fixed-point 16 bit precision integers but could reduce the memory

bandwidth requirement without introducing a costly 16 to 32 bit conversion for

each control matrix value at execution time. Simulations have shown that 16 bit

fixed-point values would just be sufficient to provide the required precision (Basden

et al., 2010), however when taking into account a real system with misalignments

it may not be adequate.

The VNNI functionality comes via a redesigned vector processing unit (VPU) which

also introduces quad FMA (QFMA) instructions; these allow sequential FMA to

accumulate over four sets of calculations within a single instruction cycle. This

has the potential to double the theoretical number of SP FMA operations possible

per instruction cycle, increasing the theoretical peak SP-FLOPS by a factor of two

over KNL. There are caveats to this, however, due to the instruction pipeline of

the VPUs; a factor of two speed up is therefore unlikely. The QFMA operations

should definitely benefit the highly vectorisable MVM and may make the 16 bit

VNNI unnecessary; investigation into KNM VNNI and QFMA instructions could

be useful for future work.

112

4.4. DARC SCAO with a real WFS camera

Figure 4.3: a) Frame times of DARC SCAO with a real wavefront sensor camera
operating at 500 Hz for 106 frames, the red line shows a running median for every
1000 frame times. The average frame time is 2000± 20 µs. b) A histogram of the
frame times, showing the distribution of jitter.

4.4 DARC SCAO with a real WFS camera

Figure 4.3 and Figure 4.4 show two sets of frame time results for DARC configured

for ELT-scale SCAO, with pixels arriving from a real 10GigE Vision based camera

running at 500 Hz and at the camera’s maximum frame rate of 966 Hz respectively.

The camera is an Emergent Vision Technologies HS2000M, delivering 100 pixels

per subaperture. The figures show minimal numbers of outliers and also a small

spread in the distributions, with rms jitters of 20.1 µs and 13.8 µs for 500 Hz and

966 Hz respectively, which is similar to that when DARC operates without a real

camera.

The 64 s events due to the Intel motherboard are visible in the data for 966 Hz,

however they are not seen in the data for 500 Hz. This is likely due to the reduced

113

4.4. DARC SCAO with a real WFS camera

Figure 4.4: a) Frame times of DARC SCAO with a real wavefront sensor camera
operating at 966 Hz for 106 frames, the red line shows a running median for every
1000 frame times. The average frame time is 1040± 10 µs. b) A histogram of the
frame times, showing the distribution of jitter.

computational demands for SCAO at 500 Hz and so the CPU has ample time to

process the interrupts without affecting DARC. The maximum instantaneous peak-

to-peak jitter is 510 µs for 500 Hz and 163 µs for 966 Hz excluding the 64 s events,

over one million frames.

The shapes of the histograms in Figure 4.3 and Figure 4.4 are quite different, the

differences are more pronounced because they are plotted on a log scale. They show

that for the camera operating at 500 Hz there is a high narrow peak at the mean

of the distribution with relatively small numbers of frames spread out to either

side. This gives the distribution its low RMS jitter but a relatively high relative

instantaneous peak-to-peak jitter.

For interfacing with the real camera we used a modified version of the Aravis GigE

Vision Library (AravisProject, 2018), which enables access to the pixel stream,

114

4.4. DARC SCAO with a real WFS camera

Figure 4.5: A measure of the time from the last pixel arriving from the camera
to end of thread computation per thread. ‘Equal number’ shows the results for
a naive subaperture allocation whereby each thread processes an equal number
of subapertures. ‘Unequal number’ shows allocation by a simple algorithm which
gives more work to threads which are processing subapertures whose pixels arrive
earlier.

rather than waiting until the entire frame has been delivered. In this way, DARC

can begin processing subapertures as soon as enough pixels have arrived, reducing

latency. As the latency of an RTC is defined as the time between last pixel arriv-

ing and the final DM command being sent out, reducing this time improves the

performance of the RTC.

For the case of multi-threaded AO RTC software it is important to ensure that

none of the individual processing threads are taking substantially longer to finish

processing than the others; as this will reduce the overall latency performance. Fig-

ure 4.5 shows the time taken for the DARC processing threads to finish processing

their subapertures from the time the last pixel arrives from a real camera; these are

average times for 105 frames. Figure 4.5 (Equal number) is for the case described in

115

4.4. DARC SCAO with a real WFS camera

Figure 4.6: Latency measurements (time between last pixel received to DM demand
ready) for DARC operation with a real wavefront sensor camera at ELT-scale at
500 Hz. a) shows results when using the unequal subaperture thread allocation.
b) shows results for the equal subaperture thread allocation, Figure 4.5. c) shows
histograms for each distribution using a log scale (top) and a non-log scale (bottom).
The horizontal silver lines in (a) and (b) are the average frame times for each
distribution, the red lines show a running median for every 1000 frame times.

Figure 3.7(c) and Figure 4.5 (Unequal number) is for the Figure 3.7(d) case. Both

sets of data are taken with the real camera operating at 500 Hz. Figure 4.6 shows

that for the situation with equal numbers of subapertures the mean RTC latency

for 105 frames is 840± 20 µs, and for unequal numbers, the mean RTC latency is

640± 20 µs. Figure 4.5 shows a modest improvement in RTC latency, bringing the

latency below that of the best case simulator and demonstrates the different end

of thread execution times described in Figure 3.7. These results show that DARC

on the Xeon Phi can operate SCAO at ELT-scales with a real camera.

The algorithm used to assign the unequal numbers of subapertures is a very basic

implementation with a linearly decreasing subaperture count per thread. This

algorithm will be explored further to find the optimal subaperture allocation to

116

4.5. DARC SCAO with the UDP camera simulator

Figure 4.7: Frame time results for an SCAO setup using a SH-WFS type WFS
slope calculation with 80 subapertures across the pupil. (a) shows the frame time
distribution and (b) shows histograms of the data both on a log scale (top) and
a non-log scale (bottom). Results shown are for 1.5 × 105 iterations at 500 Hz for
a total time of 300 s. The mean latency is 511± 15 µs and the red line shows a
running median for every 1000 frame times. The strange behaviour exhibited at
250 s is rare and due to it causing a reduction in the latency, albeit with a brief bi-
modal distribution, it shouldn’t have any negative affects on the AO performance.

improve latency for desired frame rates and different read-out rates.

4.5 DARC SCAO with the UDP camera simulator

Figure 4.7 shows frame time and latency results for DARC running an SCAO RTC

on an Intel Xeon Phi 7250 with an attached simulated camera using the UDP pixel

streaming method as described in Section 3.8. These results are for a SCAO setup

with a single 80×80 SH-WFS with 4616 valid subapertures and an ELT-like M4 +

M5 DM configuration with a total of 5318 actuators. The reconstruction therefore,

is a single MVM of dimensions 5318× 9232. There are 300 seconds worth of data

corresponding to 1.5× 105 frames at a frame rate of 500 Hz; the average latency is

117

4.5. DARC SCAO with the UDP camera simulator

Figure 4.8: Frame time results for an SCAO setup using a Pyramid type WFS slope
calculation with 100 pixels across each quadrant. Results shown are for 1.5 × 105

iterations at 500 Hz for a total time of 300 s. The mean latency is 998± 10µs and
the red line shows a running median for every 1000 frame times.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency / ms

100

101

102

103

104

105

Co
un

t (
lo

g)

a)
74x74
80x80
90x90
100x100
110x110

70 75 80 85 90 95 100 105 110 115
Subap count across the pupil

b)

0.2

0.4

0.6

0.8

1.0

1.2
Measured Latency
Square Fit

Scaling of Latency with Shack-Hartman subap count

Figure 4.9: The scaling of latency with subapertures across the pupil for the Shack-
Hartman type WFS. a) shows histograms of frame time data for each test while the
relationship of the mean values is shown in b). The latency is that for the entire
RTC operation from pixels to DM commands as shown in Figure 3.3, measured
from the time the last pixel arrives until the DM command is ready. The relevant
values for the data are shown in Table 4.1.

118

4.5. DARC SCAO with the UDP camera simulator

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Latency / ms

100

101

102

103

104

105
Co

un
t (

lo
g)

a)
80x80
90x90
100x100
110x110
120x120

70 80 90 100 110 120 130
Pixels across each pyramid quadrant

b)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Measured Latency
Square Fit

Scaling of Latency with pyramid pixel count

Figure 4.10: The scaling of latency with pixels across the pupil for the Pyramid type
WFS. a) shows histograms of frame time data for each test while the relationship
of the mean values is shown in b). The latency is that for the entire RTC operation
from pixels to DM commands as shown in Figure 3.3, measured from the time the
last pixel arrives until the DM command is ready. The relevant values for the data
are shown in Table 4.1.

Table 4.1: Latency, RMS jitter and largest outliers results for all of the data
presented in Sections 4.5 and 4.6. For all results the a) columns correspond to
results from 1.5 × 105 continuous iterations and where no frame rate is given at
500 Hz for a total time of 300 s for each test case. The b) columns correspond to
results from a subset of no less than 2× 104 continuous iterations chosen from the
larger a) data sets for a total time of 40 s each where no frame rate is given. The b)
column subsets were chosen to avoid any large outliers that result from simulated
camera delays to give a better representation of the “steady” latency.

Mean RMS Largest
Latency Jitter (µs) Outlier (µs)

AO Mode (µs) a) b) a) b)
Pyr-WFS 80× 80 609 11 11 898 653
Pyr-WFS 90× 90 796 16 16 1051 862
Pyr-WFS 100× 100 998 10 9 1667 1049
Pyr-WFS 110× 110 1209 12 12 1433 1292
Pyr-WFS 120× 120 1450 8 8 1886 1508
SH-WFS 74× 74 357 18 16 495 436
SH-WFS 80× 80 511 15 15 754 589
SH-WFS 90× 90 497 14 14 1237 559
SH-WFS 100× 100 778 12 11 1314 821
SH-WFS 110× 110 1001 14 14 1397 1065
Batch Allocation 500 Hz 348 12 - 605 -
Batch Allocation 700 Hz 406 47 - 1190 -

119

4.5. DARC SCAO with the UDP camera simulator

measured at 511±15µs. This compares favourably with similar results of 640±20µs

from Jenkins et al. (2018b), with a reconstructor of dimensions 5170× 9416. The

problem size used here has been adjusted to better reflect the potential dimensions

of actual ELT instruments using more up to date information (Biasi et al., 2016;

Correia, 2018).

By default when the camera simulator operates at 500Hz, the delay between the

sending of each UDP packet is set to a finite value such that the total read-out time

is 1400 µs. This was chosen to emulate the readout of the ESO LVSM cameras as

described in Downing et al. (2018). However for results presented in later sections

where other frame rates were used, the simulated camera was operated with a

zero time delay between the sending of packets to keep the results consistent. The

latencies obtained with the zero time delay are generally greater than reported here

where the finite inter-packet delay was used. This is because the last pixels arrive

at the RTC sooner and so there is less time to process the RTC operation during

read-out, resulting in a greater RTC latency. All results in this section should be

assumed to use the 1400 µs read out unless otherwise stated.

Figure 4.8 shows frame time results for a similar AO setup as above but using a

Pyr-WFS instead of a SH-WFS, with the differences between the WFS processing

as described in Section 2.1.3. There are 300 seconds worth of data corresponding

to 1.5 × 105 frames at a frame rate of 500Hz, and the average latency here is

measured at 998± 10µs. The dimensions of 100× 100 pixels for the Pyr-WFS and

80×80 subapertures for the SH-WFS were chosen as these are the likely dimensions

that would be used for real a WFS on ELT-scale instruments (Hippler, 2018).

The SH-WFS dimensions result from technological limitations of the sensors being

developed by ESO and the required dimensions of each subaperture (Schreiber

et al., 2018). The Pyr-WFS dimensions were chosen based on what is being targeted

for the ESO ELT first light instrument HARMONI (Thatte et al., 2014) SCAO

mode (Schwartz et al., 2018).

Figures 4.9 and 4.10 show the latency scaling of both the SH-WFS RTC and Pyr-

120

4.5. DARC SCAO with the UDP camera simulator

WFS RTC against subapertures/pixels across the pupil. Due to the use of a simu-

lated camera as described in Section 3.8, there are some unavoidable latency spikes

that result from delays of the pixel transmission from the simulated camera. The

mean latencies, RMS jitters and largest outliers are shown in Table 4.1 for data sets

containing 1.5 × 105 samples at 500Hz. Table 4.1 also shows the RMS jitter and

largest outliers for each case for a reduced subset of the data containing at least

2 × 104 continuous iterations. These reduced sets were chosen to eliminate any

major outliers resulting from camera delays to give a better idea of the “steady”

latency distribution.

For all of these results the input image sizes are kept constant for each type of WFS

processing used; images of 800× 800 pixels are used for the SH-WFS and 240x240

for the Pyr-WFS and either the number of pixels per subaperture is reduced to

provide more subapertures or a smaller area within the input image is used for

reduced numbers of subapertures. In this way the pixels received are kept constant

between the different WFS and only the calibration, centroiding and reconstruction

are affected by the different dimensions. We can see that for the Pyr-WFS the

scaling matches very closely to a square fit, which is as expected; because the

change in degrees of freedom in the reconstruction scales with the second power of

the number of pixels across the pupil.

For the SH-WFS results shown in Figures 4.9 there is no clear fitting to a square fit

and the case of 90× 90 subapertures actually has a lower latency than the 80× 80

subapertures case. We believe this is due to the reduced number of pixels per

subaperture when using 90 × 90 subapertures. Because all of the SH-WFS tests

use the same simulated camera image dimensions of 800× 800 pixels, the 90× 90

subapertures case is only using 8 × 8 pixels per subaperture compared to 10 × 10

pixels per subaperture for the 80 × 80 case. This reduces the perceived latency

in two ways; firstly by the reduced pixel processing required and secondly by the

fact that the latency is measured as the time from when the last pixel arrives and

due to the way this is measured, the timestamp is taken when the full 800 × 800

121

4.6. Batch Subaperture Allocation

image has arrived which is later than when the processing has completed for the

90 × 90 subapertures case. The 8 × 8 pixel subapertures would also be processed

more efficiently by vectorisation due to the 512 bit wide vector registers allowing

16 values to be computed simultaneously.

If the latencies for the Pyr-WFS in Table 4.1 are compared directly with the la-

tencies from the SH-WFS for the same WFS dimensions, we see that the SH-WFS

overall results in reduced latencies. This is a result of the reduced pipelining effi-

ciency of the Pyr-WFS vs. the SH-WFS as described in Section 2.1.3 and shown

in Figure 2.5.

4.6 Batch Subaperture Allocation

The results presented thus far have used a fixed subaperture allocation for each

thread as described in Chapter 2, using the unequal subaperture allocation de-

scribed in Section 3.6.2.1. Here I present similar results using the batch processing

of subapertures as described in Section 3.6.2.2. The batches are devised as de-

scribed in Section 3.6.2.2, by putting each row of subapertures into a separate

batch. The 80 × 80 subaperture SH-WFS case gives 80 individual batches with

varying numbers of subapertures in each one due to the circular aperture and cen-

tral obscuration. The algorithm then lets each thread process a batch as soon as

it is ready and with 54 total reconstruction threads as before, at least 26 of the

threads will process more than one batch. The strength of this method is that

the balancing of work between threads is done automatically at run time and little

ahead of time optimisation is needed.

Figure 4.11 shows results of the batch allocation with the configuration as described

above with the simulated camera operating at 500 Hz. The overall RTC latency has

been decreased by up to 160 µs compared to the explicit subaperture allocation as

described above. The jitter on the RTC has remained roughly constant compared

to other subaperture allocation method. Figure 4.12 shows results of the batch

122

4.6. Batch Subaperture Allocation

Figure 4.11: Frame time results for an SCAO setup using a Shack-hartman type
WFS slope calculation using the batch subaperture allocation scheme described in
Section 2.2. Results shown are for 1.5 × 105 iterations at 500 Hz for a total time
of 300 s. The mean latency is 348± 12µs and the red line shows a running median
for every 1000 frame times.

allocation with the configuration as described above with the simulated camera

operating at 700 Hz. For these results the simulated camera was operating with

a zero inter-packet delay resulting in a greater average RTC latency. The jitter

on the results obtained at 700 Hz is noticeably worse than the results obtained at

500 Hz.

This method does however reduce the maximum computational no-camera per-

formance compared with the equal subaperture allocation due to the number of

chunks being different to the number of threads and so without the pipelining of

pixels, some threads need to process more subapertures than others. The best per-

formance would be achieved with a compromise between the two methods whereby

the rows of subapertures are split into chunks and they are assigned to specific

threads such that the workload is balanced and each thread processes the same

123

4.7. SCAO POLC

Figure 4.12: Frame time results for an SCAO setup using a Shack-hartman type
WFS slope calculation using the batch subaperture allocation scheme described in
Section 2.2. Results shown are for 1.5× 105 iterations at 700 Hz for a total time of
214.3s. The mean latency is 406± 47µs and the red line shows a running median
for every 1000 frame times.

subapertures each frame.

4.7 SCAO POLC

As described in Section 2.2, to perform any tomographic reconstruction of the

atmospheric structure it is necessary to either directly measure the turbulent at-

mosphere in open-loop configuration or to reconstruct the POL wavefront from

the residual wavefront and the previous DM shape. This can either be calculated

explicitly or implicitly as shown in Basden et al. (2019); here we present the RTC

latency of an ELT-scale SCAO DARC configuration with both types of POLC com-

putation and a comparison with a no-POLC setup. The results were obtained with

the same ELT-scale configuration used throughout this chapter and using the Intel

124

4.7. SCAO POLC

Figure 4.13: The RTC latency as a function of frame rate for the explicit and im-
plicit POLC methods compared with the case where no POLC compuation occurs.
The explicit POLC method is unable to operate at frame rates exceeding 500 Hz
whilst the implicit POLC method extends the maximum frame rate to 600 Hz (Bas-
den et al., 2019).

Xeon Phi 7250 hardware. Results were obtained with the UDP camera simulator

at increasing WFS frame rates until each different mode was unable to keep up and

began to drop frames. The camera simulator inter-packet delay was set to zero to

keep results comparable across the different frame rates.

Figure 4.13 shows a comparison of the two different POLC methods and no-POLC

operation as described above with the results displayed in Table 4.2. As can be

seen from the figure, both POLC modes are unable to keep up with the no-POLC

operation at the higher frame-rates and the RTC latency for the POLC modes is

generally increased at all frame rates. With no-POLC the RTC is able to operate at

up to 750 Hz with the latency having a steady increase above 500 Hz. The implicit

POLC is able to achieve a maximum frame rate of 600 Hz and also shows a steady

increase in latency above 500 Hz. The explicit POLC mode is only able to achieve a

125

4.8. Long Time Period AO RTC Operation

Table 4.2: Latency and RMS jitter results for the SCAO POLC data shown in
Figure 4.13 and discussed in Section 4.7. For all results the means and RMS are
computed from 1.5× 105 continuous iterations. Exp refers to results of the explicit
POLC method, Imp refers to implicit POLC and None is for the case where no
POLC computation occurred.

Mean Latency (µs) RMS Jitter (µs)
Exp Imp None Exp Imp None

200 403 397 392 8 8 7
250 396 395 394 9 8 9
300 400 397 392 7 7 9
350 400 397 393 7 8 9

Frame 400 399 396 393 7 7 9
Rate 450 398 395 390 7 7 9
(Hz) 500 398 394 389 8 9 7

550 398 390 7 9
600 400 392 8 9
650 394 9
700 397 8
750 409 28

maximum frame-rate of 500 Hz before it begins to drop frames. These results show

that the implicit POLC method does indeed have a smaller cost on the operation

of the RTC and allows SCAO POLC to achieve a maximum frame-rate of 600 Hz

on the Xeon Phi hardware.

4.8 Long Time Period AO RTC Operation

The continuous operation of AO systems over long periods is extremely important

for situations where the astronomical observations require an AO corrected beam

for long integration times. During these time periods, any interruption in the AO

performance of the system can have dramatic effects on the final image quality of

long exposure images. This requires the AO RTC to provide wavefront corrections

with consistent latencies to match the requirements due to the constantly changing

atmospheric conditions during the course of observations. Here I present long time

period results of the DARC RTC software to demonstrate its stability over time

periods exceeding 8 hours.

126

4.8. Long Time Period AO RTC Operation

Table 4.3: A table showing the percentages of the frame times for the long period
results that fall within and below multiples of the RMS of the distribution; the
latencies are shown in Figure 4.14. The values for ‘Within’ fall within the range
(µ−nσ, µ+nσ), where µ is the mean latency of 335 µs, σ is the RMS jitter of 16 µs,
and n is a multiple of σ. The values for ‘Below’ are the for latencies (< µ+ nσ).

Deviation From the Mean
Percentage (%) 0σ 1σ 2σ 3σ 4σ 5σ

Within 0.00 65.81 97.18 99.72 99.97 99.99
Below 48.25 83.73 98.68 99.93 99.99 99.99

Figure 4.14 shows latency results for 1.5× 107 frames for an ELT-scale SCAO con-

figuration using a SH-WFS and the batch subaperture allocation as described in

Section 4.6. This is operating at 500 Hz for a total time of 8.3 hours; the WFS im-

ages are delivered at this rate by the UDP camera simulator described in Chapter 3.

Also shown in Figure 4.14 (b) is a 1.8 × 106 frame subset of these results which

corresponds to one hour of continuous operation. This highlights a regular spike

in the latency measurements that occurs at 5 minute intervals. These correspond

to frame drops detected from the camera simulator and so are not representative

of real results using a deterministic camera.

The mean latencies for both distributions shown in Figure 4.14 are both measured

at 335± 16 µs; this is the same regardless of whether the regular latency spikes due

to the camera simulator are removed. Table 4.3 shows percentages for the latency

values of the full distribution that fall within certain time limits. The percentages

are given for the number of latency values that fall within multiples of the RMS

value from the mean and also for the number of latency values that fall below the

mean plus multiples of the RMS jitter. This is because for AO RTC we are not

particularly concerned with latencies that are less than the requirements, it is only

frames that take longer than required that will affect AO RTC performance. These

results demonstrate that the DARC RTC software is stable over long periods of

time and that 99.73 % of the frame latencies fall within 3 standard deviations from

the mean. They also show that 99.93 % of the frame latencies fall below 3 standard

deviations above the mean.

127

4.9. Chapter Summary

Figure 4.14: Frame time results for an SCAO setup using a Shack-hartman type
WFS slope calculation using the batch subaperture allocation as described in Sec-
tion 2.2. Results shown in (a) are for 1.5× 107 iterations at 500 Hz for a total time
of 8.3 hours. Results in (b) show a 1.8 × 106 frame subset of these results, which
corresponds to one hour of continuous operation; this is to highlight the regular
latency spikes at 5 minute intervals due to the camera simulator. (c) shows his-
tograms of the data sets shown in (a) and (b) with a log scale (top) and a non-log
scale (bottom). The non-log scale demonstrates that the vast majority of frame
times fall within a very narrow distribution around the mean.

4.9 Chapter Summary

The chapter presents results of testing the DARC AO RTC software for SCAO

systems and utilising the CPU camera simulator. The results show that a single

Intel Xeon Phi Knights Landing processing node is able to compute the AO RTC

for ELT-scale SCAO systems with latencies as low as 348± 12 µs for a WFS frame

rate of 500 Hz, and has the ability to process WFS images delivered at up to

750 Hz. The RTC latency was measured for the processing of both a SH-WFS and

a Pyr-WFS configuration, with an investigation of how the latency for each scales

128

4.9. Chapter Summary

with the dimensions of the WFSs.

Different subaperture allocation schemes were investigated with the most efficient

for pipe-lined WFS operation being an un-equal subaperture allocation. The effect

of POLC computation for the SCAO case was explored, involving both explicit and

implicit POLC methods. It was found that both methods reduce the maximum

framerate that the RTC could achieve on the given hardware, however the implicit

POLC had much less of an effect on the maximum achievable performance.

A long time period test demonstrates the stability of the CPU-based RTC software,

giving consistently low latencies over the full 8 hour duration. The camera simu-

lator does introduce extra latency due to missing frames however, and the Xeon

Phi’s single threaded performance does hinder its ability to process serial tasks and

especially network related tasks.

129

Chapter 5

MCAO Demonstrator: Multi-node

Xeon Phi Cluster

In this chapter I present results of an investigation into designing a multi-node

many-core CPU architecture for the processing of MCAO and LTAO RTC. First

is presented the process of designing the architecture based on the DARC software

and its many-core optimisations as described in Chapter 3. This is followed by

results of testing the prototype architecture for the MCAO and LTAO cases using

seven Xeon Phi processing nodes and a camera simulator as described in Section 3.8

to deliver unique pre-simulated WFS images to each node. Results are presented of

an investigation into how the latency is affected whilst streaming telemetry during

RTC operation for the MCAO case. Finally results are presented for the MCAO

implicit POLC calculation as described in Section 2.1.4. Results and discussion in

this chapter have been previously published in Jenkins et al. (2019).

5.1 Prototyping an MCAO and LTAO RTC

As mentioned in Chapter 1 MCAO and LTAO generally differ from SCAO by the

number of WFSs and DMs used. Therefore in the context of the RTC they are both

much more computationally demanding and more complex than the simple SCAO

130

5.1. Prototyping an MCAO and LTAO RTC

Table 5.1: A comparison of the specifications of ELT-scale SCAO, MCAO and
LTAO, the values are the most current known specifications for the HARMONI
SCAO mode, the MAORY MCAO mode and the HARMONI LTAO mode respec-
tively.

Mode SCAO-SH SCAO-Pyr MCAO LTAO
Target Frame rate (Hz) 700 1000 500 500
LGS number 0 0 6 6
LGS subaperture geometry N/A N/A 80× 80 80× 80
LGS pixel geometry N/A N/A 10× 10 10× 10
LGS total subapertures N/A N/A 4616× 6 4616× 6
LGS image format N/A N/A 800× 800 800× 800
NGS number 1 1 3 1
NGS type SH-WFS Pyramid SH-WFS SH-WFS
NGS subaperture geometry 80× 80 100× 100 2× 2 2× 2
NGS pixel geometry 10× 10 N/A 100× 100 100× 100
NGS total subapertures 4616 4616 4× 3 4
NGS image format 800× 800 240× 240 240× 240 240× 240
DM number 1 1 3 1
Total DM modes 5316 + 2 5316 + 2 5316 + 2 5316 + 2

+2× 500 +6× 2
+6× 2

case. When prototyping an RTC architecture for MCAO and LTAO we decided to

design it based on the ELT first-light instruments, the Multi-conjugate Adaptive

Optics RelaY (MAORY, Ciliegi et al., 2018) and the HARMONI LTAO mode

(Neichel et al., 2016). For both of these instruments, the most demanding aspects

will be the reconstruction of 6 laser guide star (LGS) WFSs operating at 500Hz.

The parameters for these instruments and a comparison with an SCAO system

are shown in Table 5.1. Targeting proposed ELT MCAO and LTAO instruments

allows us to demonstrate more realistic test cases and puts better constraints on

the design of the architecture.

One of the main benefits of designing a CPU-based RTC lies in the flexibility

and generality that the CPU architecture provides. The product of this is that

the software optimisations and modifications detailed in Chapter 3 for SCAO can

be readily applied to different AO types such as MCAO and LTAO. Therefore

131

5.1. Prototyping an MCAO and LTAO RTC

the architecture we propose for these AO regimes is an extension of the SCAO

case by scaling the software and hardware to match the increased computational

complexity.

For the MAORY MCAO and HARMONI LTAO parameters detailed in Table 5.1

the computational demands for each LGS WFS are similar to those of the SH-

WFS SCAO case tested in Section 4.5; albeit with increased DM actuator DoFs

due to additional DMs and laser-pointing tip-tilt mirrors but targeting a reduced

framerate. We therefore decided that for each LGS WFS the processing of the

WFS images to reconstructed wavefronts can be done in a very similar way to the

SCAO procedure in Section 4.5 by processing a single LGS WFS per processing

node.

The NGS parameters demand far fewer computational resources than the SCAO

case demonstrated on a single node in Section 4.5, therefore we propose that the

NGSWFS processing, 3 NGS for MAORY and 1 for HARMONI, can be achieved by

a single instance of DARC on a single processing node. The partial DM commands

resulting from these calculations then need to be summed together to produce a

single DM command vector for all of the required DMs. This will be achieved by

having a separate “master” processing node which can receive partial DM com-

mands from the reconstruction nodes and perform any post-processing that may

be required before delivering the final actuator commands to the DMs.

Figure 5.1 shows the prototype architecture for MCAO/LTAO RTC using the ideas

described above. There are a total of 7 reconstruction nodes to process all the WFSs

required for the either the MAORY MCAO case or the HARMONI LTAO case. An

8th master node is used for summing the partial results from each reconstruction

node and processing them for sending to the DMs. Due to the way the ESO ELT

M4 will operate (Xompero et al., 2018), the correction applied by M4 will not nec-

essarily be the same as that which is delivered to M4 from the RTC. It will therefore

be necessary for the RTC of an ELT instrument to receive feedback from M4 such

that it can incorporate the actual correction applied for the previous iteration. In

132

5.1. Prototyping an MCAO and LTAO RTC

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

NGS
WFS

NGS
WFS

NGS
WFS

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU MC PU

Master
Processing Unit

M4M5DM2DM1

DMs

MCAO Only

MCAO Only

MC PU = Many Core Processing Unit

Figure 5.1: The proposed architecture for the MCAO and LTAO multi node RTC.
The 6 LGS WFSs are each processed by a single many-core node. The NGS are all
processed on the same node, three for MAORY and one for HARMONI. The master
node sends out the final DM commands once it has finished summing and processing
the partial vectors. The master node should also able to receieve feedback from
the ESO ELT M4 to integrate the actual M4 shape used in the next command.

Camera Simulator

High Speed Switch (40Gb)

MC PU MC PU MC PU MC PU

MC PU MC PU MC PU Master PU

LGS x6 NGS

Camera streams

Partial DM commands

Multicast
timing packet

Figure 5.2: The lab test setup for the MCAO and LTAO architecture. The simu-
lated camera streams 6 LGS WFSs and either 1 or 3 NGS WFSs through a high
speed switch to the processing units. The many-core processing units send their
partial DM commands calculated from the individual WFSs to the master node for
summing and further processing. For the tests to determine the overall latency of
the system, the master node multicasts a timing packet for all other nodes to time
stamp the end of frame.

133

5.1.1. UDP cameras simulator setup for MCAO/LTAO

our prototype architecture, this will be processed by the master processing unit,

shown in Figure 5.1.

Figure 5.2 shows a lab test set up derived from the prototype architecture shown in

Figure 5.1. It shows the simulated camera delivering the required camera streams

to each reconstruction node over a high speed network. The master processing node

communicates with the reconstruction nodes over a separate high speed network

on the same physical switch but using a different VLAN and different network

interconnects to the camera streams. For our lab test setup the full RTC latency

is calculated on each reconstruction node by measuring the time between when

it receives the last pixel from its camera stream to the time it receives a timing

packet from the master which is multicast to the reconstruction nodes when it has

completed the current frame. As the cameras use the proposed ESO MUDPI packet

format they stamp each image with a frame number which is then propagated

through to the master and back through the timing packet to be able to match the

correct DM command to the camera frames.

5.1.1 UDP cameras simulator setup for MCAO/LTAO

For the testing of the architecture described above, the UDP camera simulator

was configured to stream the 7 individual pixel streams required, one for each of

the reconstruction nodes. The camera streams were configured such that they

delivered previously simulated frames stored on the fast storage of the simulator

machine. The simulated frames were made with The Durham Adaptive Optics Sim-

ulation Platform (DASP), configured for a MAORY type AO system as described

in Table 5.1 in open loop. Open loop operation was chosen due to the difficulty

of constructing a closed-loop reconstructor that produced valid WFS images, and

closed loop WFS images were not required.

Each of the six LGS wavefront sensors were separately simulated with an asterism

134

5.2. Results of testing the prototype

Table 5.2: Latency, RMS jitter and largest outliers results for all of the data
presented in this chapter. For all results other than LTAO with buffer swap the
a) columns correspond to results from 1.5 × 105 continuous iterations at 500 Hz
for a total time of 300 s for each test case. The b) columns correspond to results
from a subset of no less than 2× 104 continuous iterations chosen from the larger
a) data sets for a toal time of 40 s each. The b) column subsets were chosen to
avoid any large outliers that result from simulated camera delays to give a better
representation of the “steady” latency. The LTAO with buffer swap results are
for 1.5 × 104 continuous iterations at 500 Hz for a total time of 30 s, there are no
“steady” results for this case as the outliers here are a result of the parameter swap
itself and not from an external factor.

Mean RMS Largest
Latency Jitter (µs) Outlier (µs)

AO Mode (µs) a) b) a) b)
Full MCAO 985 33 29 4465 1235
Full LTAO 894 29 28 4434 1174
MCAO telemetry 1085 32 30 2988 1466
MCAO POLC 1090 45 44 2880 1312
MCAO 6 LGS 992 47 46 3498 1143
MCAO 5 LGS 979 46 44 2870 1261
MCAO 4 LGS 969 45 45 3305 1285
MCAO 3 LGS 943 43 42 2817 1182
MCAO 2 LGS 951 42 43 2858 1119

where each LGS was projected 60 mas1 off-axis equally spaced around the central

axis. For simplicity and because simulated LGS elongation was not required, the

LGS were simulated as point sources so that no elongation of the spots was present

in the images. The NGS WFS images were projected 90 mas off-axis and for the

LTAO tests, only one of the NGS WFS image sets were used. The atmosphere was

simulated using a 35 layer atmospheric model as described in Sarazin et al. (2013)

with an r0 value of 0.137 m and an outer scale of 10 m. Figure 5.3 shows one of the

WFS images used with the camera simulator for the MCAO and LTAO prototype

and Figure 5.4 has a more detailed view of the first quadrant of the image.

135

5.2. Results of testing the prototype

0 100 200 300 400 500 600 700 800
Pixels

0

100

200

300

400

500

600

700

800

Pi
xe

ls

Figure 5.3: Simulated ELT-scale LGS WFS images without elongation.

5.2 Results of testing the prototype

When testing the MCAO prototype described in Section 5.1 certain considerations

needed to be made with regards to the timing of the individual frames. Ideally

we would want to measure the time from the last pixel into the RTC until the

time the DM command is ready, however we discovered that for a multi-node

CPU-based architecture it is difficult to synchronise the clocks between nodes with

enough precision using our available hardware such that timestamps generated on
1milliarcsecond (mas)

136

5.2. Results of testing the prototype

0 50 100 150 200 250 300 350 400
Pixels

0

50

100

150

200

250

300

350

400

Pi
xe

ls

Figure 5.4: A zoom in on the first quadrant of a simulated ELT-scale LGS WFS
images without elongation.

each node can be directly compared. Instead we have to rely on only comparing

timestamps generated on individual nodes and so the full RTC latency is calculated

as the time between a reconstruction node receiving the last pixel from its camera

stream and the time it receives a timing packet from the master node indicating

that the final DM command is ready, which does result in a slightly pessimistic

measurement.

Ideally the full RTC latency would be measured externally with a device that is

able to record the time between when the camera finishes sending a frame and the

time when the corresponding DM command is received from the master node. This

137

5.2. Results of testing the prototype

Figure 5.5: Latency results for the full MCAO setup as described in Section 5.1
and Table 5.1. This is for 1.5 × 105 iterations at 500 Hz corresponding to a total
cumulative time of 300 s. This is a measure of the time between when the last pixel
arrives at a reconstruction node and when it receives the timing packet from the
master node. The large outliers are result of delays from the CPU-based simulated
cameras, which is compounded by the fact that this timing data includes delays
from all 7 simulated camera streams.

process would make the RTC latency measurement easier. However the method

described above is no less valid as a measure of the RTC latency.

For all the MCAO and LTAO tests described in this report, the system architecture

used is shown in Figure 5.1 and network interconnects are as shown in Figure 5.2.

Each of the 7 reconstruction nodes uses a single instance of the DARC software

to receive an 800 × 800 pixel camera stream which it processes from pixels to a

partial DM command for that WFS. This processing is done in a very similar way

to the SH-WFS SCAO case as described in Chapter 2 and in Section 4.5; the main

differences are the way in which the reconstruction matrix is constructed, and the

DM software library that is used to send the partial DM command vector to the

master node. The master node itself runs a separate instance of DARC which

138

5.2. Results of testing the prototype

Figure 5.6: Latency results for the full LTAO setup as described in Section 5.1
and Table 5.1. This is for 1.5 × 105 iterations at 500 Hz corresponding to a total
cumulative time of 300 s. This is a measure of the time between when the last pixel
arrives at a reconstruction node and when it receives the timing packet from the
master node. The large outliers are result of delays from the CPU-based simulated
cameras, which is compounded by the fact that this timing data includes delays
from all 7 simulated camera streams.

receives the partial DM commands, sums them together, processes the result and

once finished it sends a timing packet to the other nodes.

Figure 5.5 and Figure 5.6 show RTC latency plots for the MCAO and LTAO test

cases respectively. They show the timing data from one of the reconstruction nodes

of the 7 during full operation, which includes the transmission and receiving time

of the DM timing packet and can therefore be considered slightly pessimistic. The

ping latency has been measured to be ≈30 µs. The specifications used for each are

shown in Table 5.1 and the mean latency of the MCAO case is 985 ± 33µs and

894±29µs for the LTAO case. It can be seen that there are 2 major outliers in the

latency for the MCAO test and one for the LTAO test which are a result of delays

introduced from the CPU-based simulated cameras. The number of frame losses

139

5.2.1. Effect of streaming RTC telemetry on latency

however is acceptable considering that there is at worst one frame drop per 150 s

total integration time.

As well as testing the full 8 node MCAO RTC we also tested the architecture with

different numbers of LGS WFSs, and therefore reconstruction nodes, combined

with the master node. Table 5.2 shows the results for the MCAO case where there

are less than the full number of reconstruction nodes for the MAORY specification.

Results are shown for the cases where there are 2, 3, 4, 5 and 6 LGS reconstruction

nodes feeding partial DM commands to the master node. As can be seen from the

results the total latency varies only slightly by the reduction in processing nodes,

showing that the solution is scalable at least up until the desired number of nodes

for ELT-scale MCAO.

5.2.1 Effect of streaming RTC telemetry on latency

Another very important aspect of AO RTC operation involves the streaming of

telemetry during operation, either for concurrent processing so as to update the

reconstruction matrices or reference centroids or purely for saving data to disk for

later analysis. DARC employs circular buffers to store telemetry when requested

during operation and also has the capability to read from these buffers and send

the telemetry to wherever is necessary. All the timing data used in this thesis is

gathered by using the telemetry streaming functionality of DARC. There are three

buffers which are read for every timing measurement used in this chapter; an RTC

time buffer which stores frame times, an RTC status buffer which stores various

status information and and RTC DM time buffer which stores the timing data for

the receipt of the timing packet from the master node.

The status buffer is used to retrieve the timestamps for when the last pixel has

arrived and also the timestamp for when each node has delivered its partial DM

command. The DM time buffer is populated by a process which listens for packets

from the master node and takes a time stamp on arrival. A common iteration

140

5.2.1. Effect of streaming RTC telemetry on latency

Figure 5.7: Latency results for an MCAO setup as described in Section 5.1 whilst
both centroid and DM command telemetry is taken for all nodes as described in
Section 5.2.1. This is for 1.5 × 105 iterations at 500 Hz corresponding to a total
cumulative time of 300 s.

number between the two buffers originating from the simulated camera is used to

synchronise the data. In this way we can match up the DM command timing packet

sent from the master to the image frame received from the simulated camera and

calculate the full RTC latency.

Figure 5.7 shows the RTC latency for an MCAO setup for a case when slope teleme-

try and partial DM command telemetry are also streamed from the reconstruction

nodes during operation. The mean latency is measured at 1085 ± 32µs and there

are several outliers which result from delays due to the simulated camera streams.

There are also a number of relatively small outliers in this data, < 1.5ms, com-

pared to the case without slope and DM telemetry which results from the taking

of telemetry itself.

141

5.2.2. Effect of pseudo-open loop control on latency

Figure 5.8: Latency results for an MCAO setup as described in Section 5.1 whilst
implicit POLC is computed on the master processing node as described in Sec-
tion 5.2.2. This is for 1.5 × 105 iterations at 500 Hz corresponding to a total
cumulative time of 300 s.

5.2.2 Effect of pseudo-open loop control on latency

All of the types of AO used in this report would generally be used in closed-loop

operation, that is, the atmospheric wavefronts are corrected before the residual

phase error is measured by the WFSs. This approach means that the wavefront

phase errors measured by the WFSs are smaller than those measured in open loop

and so the WFSs can be tuned for finer precision. Also, during closed-loop opera-

tion, errors in the measurement, correction, and reconstruction can be dynamically

removed by the feedback of the system. The downside to closed-loop AO is that

the slopes measured by the WFS no longer give a measurement of the actual atmo-

spheric wavefront phase. The slopes measured in open-loop can be used to retrieve

information about the atmospheric conditions which are required for reconstruction

algorithms that take the current atmospheric statistics into account.

142

5.2.2. Effect of pseudo-open loop control on latency

To get around the lack of open-loop slopes in closed-loop operation, it is possible

to reconstruct pseudo-open loop (POL) (Piatrou and Gilles, 2005) slopes from the

DM commands and resulting closed-loop slopes. As described in Chapter 2, for

reconstruction algorithms that rely on POL control (POLC) there are two ways

in which the POL slopes can be incorporated into the final reconstruction result.

They can either be calculated explicitly and used directly in the algorithms or

the effects of POLC can be incorporated into the final reconstruction implicitly

without first calculating the actual POL slopes. The benefits of implicit POLC are

massively reduced computational requirements. Explicit POLC requires the POL

slopes to be computed before the wavefront reconstruction computation. However

implicit POLC only needs the final DM command as calculated by the master node

and so the POLC computation can be done there.

We have implemented the implicit POLC calculation for the MCAO and LTAO

operation of DARC on the master node. The POLC is calculated for the next

frame after the DM command is ready and so it should have minimal impact on

the overall latency. The summing of partial DM commands on the master node

is calculated by a single thread and so there are enough computational resources

remaining to calculate the implicit POL, which is a single MVM, without affecting

latency. Figure 5.8 shows the RTC latency for an MCAO setup for a case when

the master node is performing POLC computation using 32 threads. The mean

latency is measured at 1090± 45µs and there is a single large outlier which results

from delays due to the simulated camera streams.

143

Chapter 6

AO RTC Performance Evaluation

Chapter 4 and Chapter 5 demonstrate the use of the Intel Xeon Phi processors

and the DARC software to achieve ELT-scale AO RTC operation. This chapter

will further explore the performance of AO RTC and evaluate different techniques

for increasing the performance of an AO RTC. This chapter begins with a de-

scription and results of a simple simulation showing the comparison of a first order

LQG reconstructor with the standard minimum variance MVM reconstructor. The

chapter will then expand upon some of the results presented in the earlier chapters

including results of NUMA aware SCAO (Jenkins et al., 2019), SCAO RTC on

multiple processing nodes, the effect of parameter changes during operation of a

SCAO and LTAO system (Jenkins et al., 2019), and concluding with a breakdown

of the timing of the individual RTC sub-processes as described in Chapter 2.

These considerations must be taken into account for the deployment of the next

generation ELTs due to the challenges that they pose. The LQG control presents

a solution to help reduce the effects of vibrations on the telescope structure; other

many-core CPU systems need to be considered due to the unavailability of future

Xeon Phi processors; and updating of AO parameters during RTC operation is

crucial for any real telescope deployment.

144

6.1. Improving the correction with optimal control

6.1 Improving the correction with optimal control

For the next generation of ELTs, by far the the most computationally demanding

aspect of the real-time control is the reconstruction of the turbulent wavefront.

Section 2.2.1 details the most common reconstruction method, which is also the

simplest, by directly mapping the WFS measurements to DM commands by using

the least squares solution of the influence equation, Eq. 2.16. This method doesn’t

utilise any statistics or direct measurements of the atmospheric turbulence and so

is a non-optimal control solution. The LQG method described in Section 2.2.2

however is an example of optimal control which uses information about the atmo-

sphere in the reconstruction. It also takes into account previous measurements in

order to make a prediction of the atmospheric conditions when the DM command

is to be applied.

However the LQG control is significantly more computationally intensive than the

standard single MVM approach of the least-squares reconstruction. In practice, the

LQG reconstruction requires multiple MVM operations to incorporate the atmo-

spheric statistics and to perform the prediction step as described in Section 2.2.2.

In this section a comparison of the AO correction performance as corrected Strehl

ratio is presented for the two reconstruction methods shown in Section 2.2. The

methods are compared by simulating the AO correction of two reconstruction meth-

ods using AO simulation software.

To begin investigation into the performance of LQG control in AO, a very simple

AO simulation was created to compare the MVM control with the optimal LQG

control directly, by running both methods on exactly the same simulated wavefront

data. The simulation consists of a set up phase, whereby all the required matri-

ces needed for the duration of the test are calculated, including the interaction

(poke) matrix and control matrix for the MVM method and the various matrices

required by LQG as described in Section 2.2.2. The simulation then enters the main

AO loop where successive areas of turbulent phase are corrected by each method

145

6.1. Improving the correction with optimal control

Figure 6.1: Long exposure images of 400 frames from a simple AO simulation including
images for no correction (None), MVM control and LQG control. The Fried parameter of
the simulated turbulence was set at 0.2m.

Fried Parameter (m)

0.2 0.5 1.0

MVM 2.4 44.9 77.9

SR (%) LQG 2.7 37.0 70.3

None 0.6 3.0 12.1

Table 6.1: The SRs of simulated long exposures of 400 frames for a simple SCAO AO sim-
ulation showing results for LQG control, MVM control and no control (None) for different
values of the Fried parameter.

and a long-exposure image is constructed for each. The criterion for determining

the correcting performance of each algorithm is the measure of the Strehl ratio

of the long-exposure results, which would approximate the image attainable in a

real-world situation. The simulation makes extensive use of DASP (the Durham

Adaptive Optics Simulation Platform) to simplify certain aspects of the simulation

such as the creation of the turbulent phase and simulating the action of the WFSs

and DMs.

The SCAO simulation for both types of reconstruction was set up with the following

parameters:

◦ Telescope diameter of 4.2m (William Herschel Telescope)

◦ 7× 7 WFS subapertures

146

6.1. Improving the correction with optimal control

◦ 8× 8 DM actuators

◦ 32 Zernike modes to represent the wavefront

◦ Kolmogorov turbulence statistics

◦ Wind speed of 10 m s−1

◦ Turbulence outer scale of 30 m

◦ Wavelength of 640 nm

Figure 6.1 shows three long-exposure images: one with no AO correction (None),

one created using the least-squares MVM method and the other with the optimal

LQG control method. Strehl ratios are shown in Table 6.1. The results show the

mean Strehl ratios for the methods using different values of the Fried parameter.

The results shown in Figure 6.1 and Table 6.1 agree with the statement that LQG

control with a first order model, such as the AR1 model used here, will be able

to correct to a similar degree as the classical MVM reconstructor (Kulcsár et al.,

2012). However the LQG results here are not optimised due to the extra parameters

involved, which require more tuning and characterisation, compared to the simple

MVM case. Therefore the performance we see is reduced. Higher order models,

such as the AR2 model, are able to correct for the turbulent phase to a greater

extent, which could be the target of further investigation. Due to the more com-

putationally demanding nature of LQG control its use has been limited to smaller

AO system sizes and so it would be an ideal candidate for acceleration by the Xeon

Phi discussed in Section 1.2.1.1. The main computational difference between LQG

and the MVM methods is the reconstruction of the DM commands for each frame

in the main RTC loop: whilst the MVM method has an eponymous single matrix-

vector multiply (MVM), LQG control has multiple MVMs and matrix additions

to compute for each frame as described in Chapter 2. This however should still be

applicable for acceleration with the Xeon Phi and other many-core CPU systems.

147

6.2. Further Investigation of the RTC software

Due to it being a highly parallelisable process, it could be processed by multiple

processing nodes to achieve the necessary performance. As demonstrated in Chap-

ter 5, multi-node RTC computation is a viable method to process large ELT-scale

AO problems sizes at the required rates. Section 6.3 presents results of processing

a single SCAO WFS across two processing nodes, which could be similarly applied

to the LQG control technique.

6.2 Further Investigation of the RTC software

6.2.1 Camera Simulator Performance

The ESO MUDPI camera simulator (described in Chapter 3) is unable to provide

completely jitter free cameras streams, being based on CPU technology which is

non-deterministic. Figure 6.2 shows two representative frame time distributions

from the camera simulator whilst it was delivering 7 individual camera streams for

an MCAO or LTAO setup as described in Chapter 5. For 10 random distributions

similar to those shown, the number of outliers can vary from 0-11 over the 1.5×105

frame for 300 s of total running time, the largest outlier is never more than twice the

frame time. For the periods of low jitter the RMS jitter is very low and of order 5 µs.

Each of these data sets were collected after restarting the camera simulator software

and the amount of jitter present in each run can vary significantly. This introduces

random high latency spikes into some of the AO RTC timing data presented in

this thesis. The camera induced latency spikes were minimised by waiting a small

amount of time to determine if a certain run met a minimum stability criterion.

Once the camera simulator was running the amount of jitter varied little and so

once a stable run was found, it was used for as many RTC tests as possible.

Due to the simulator software needing to time the inter-packet delay to microsecond

precision and to deliver up to 7 individual camera streams at high frame rates, the

CPU system used is not an ideal candidate. The workload of the simulator is very

148

6.2.2. Effect of on-the-fly changes to RTC parameters on latency

Figure 6.2: Frame time results from the camera simulator software showing two
representative samples of frame time distributions while the camera simulator is
delivering the 7 individual camera streams as needed by the MCAO and LTAO
RTC architectures described in Section 5.1. (a) shows a frame time distribution
with 8 frame drops whilst (b) shows a comparatively better distribution with only
3 frame drops. (c) shows histograms of the data. Results shown are for 1.5 × 105

iterations at 500 Hz for a total time of 300 s.

different to that of the AO RTC system and so a more modern single socket CPU

system with faster cores and lower latency memory could potentially improve the

camera simulator’s jitter performance. We note that the jitter originating from

the camera simulator would not be present in real cameras as they are usually

deterministic.

6.2.2 Effect of on-the-fly changes to RTC parameters on latency

An important aspect of any real on-sky RTC is the ability to change parameters

during operation, for example to update the matrix used in the reconstruction pro-

cess or to update the reference centroids. DARC has the ability to set parameters

through two different means. The first is a command line utility called “darcmagic”

149

6.2.2. Effect of on-the-fly changes to RTC parameters on latency

Figure 6.3: Latency results for an SCAO setup as described in Section 4.5 whilst
two types of buffer swap are performed as described in Section 6.2.2. As can be seen,
the buffer swap causes a ≈ 650µs spike in the latency whenever it is performed.
This is for 3× 104 iterations at 500 Hz corresponding to a total cumulative time of
60 s to highlight the 10 second transfer time of the first two parameter changes of
the control matrix.

Table 6.2: Latency, RMS jitter and largest outliers results for SCAO and LTAO
with parameter swap detailed in Section 6.2.2. The results are for 1.5 × 104 con-
tinuous iterations at 500Hz for a total time of 30s.

Mean RMS Largest
Latency Jitter Outlier

AO Mode (µs) (µs) (µs)
LTAO with buffer swap 1034 31 1949
SCAO with buffer swap 522 19 1165

150

6.2.2. Effect of on-the-fly changes to RTC parameters on latency

Figure 6.4: Latency results for an LTAO setup as described in Section 5.1 whilst
a periodic buffer swap is performed as described in Section 6.2.2. As can be seen,
the buffer swap causes a ≈ 800µs spike in the latency whenever it is performed.
This is for 1.5× 104 iterations at 500 Hz corresponding to a total cumulative time
of 30 s to highlight the disturbance every 5 s.

which can change simple parameters such as string and scalar values directly from

the command line and more complex parameters by loading values from config-

uration files. The second is a Python interface which is loaded as a module and

can be used for more complex scripting of parameter updates; this is used by the

“darcmagic” command line utility to interface with the running RTC.

DARC uses a double buffer approach to handle parameter switching with the buffers

containing all the necessary parameters for RTC operation. One buffer is read by

the RTC during operation and the second can be modified by a user to include any

required new values without affecting the running processes. Once the necessary

changes have been made to the second buffer, DARC is instructed to perform a

buffer swap, which causes it to start reading values from the second buffer instead

of the first. The process that DARC uses to handle a buffer swap involves a flag

151

6.2.2. Effect of on-the-fly changes to RTC parameters on latency

in the main processing loop which instructs the first thread beginning a new frame

that a buffer swap is required. This thread performs some checks, updates some

information and then replaces the buffer pointer. Because all of the processing

threads will read from the buffer this needs to be thread safe and so all other

threads are temporarily blocked while the buffer is swapped.

The double buffering of the parameters reduces the effects of a parameter change

by allowing the majority of the change to happen during general operation without

affecting latency. However on a platform like the Xeon Phi, which excels on multi-

threaded performance, the single threaded buffer swap can have a noticeable impact

on the latency of the frame during the swap. Figure 6.3 shows the effect of a buffer

swap on a SCAO system set up as described in Table 5.1. The first 2 latency

spikes seen are due to changing the control matrix of size 5318× 9232 which takes

approximately 10 seconds for the transfer to happen. The other latency spikes are

due to a periodic change of a single value parameter every five seconds. The size

of the latency spikes shows that for different size parameters the amount of jitter

introduced is the same and the spike only occurs once the internal RTC buffer is

actually swapped.

Figure 6.4 shows the latency for an LTAO type system set up as described in

Table 5.1 whilst a buffer swap is set to occur on one of the reconstruction nodes

every five seconds. There is a clear impact on the latency which corresponds to

a ≈800 µs spike to latency when the buffer swap occurs. Here the relative size of

the latency spikes is increased from the SCAO case above as this is the full LTAO

RTC system as described in Section 5.1. This essentially results in a frame drop

for every buffer swap due to the average latency being 1034 µs for this particular

case.

The relatively large effect of a buffer swap on the latency of the LTAO system is

partly caused by the fact that the Xeon Phi has poor single threaded performance

and partly because of the need for all reconstruction nodes to be synchronised by

the master node, compounding any adverse effects of the swap. The parameter

152

6.3. Multi-node Xeon Phi SCAO

change performed here was for a single valued scalar parameter, however due to

the double buffered approach of DARC, changing more complex parameters such

as arrays or matrices shouldn’t have any more impact on the latency, as all copying

of data can occur concurrently with RTC operations. The rate of data transfer can

be reduced by copying the data in small batches so as to have little effect on the

memory bandwidth of the system.

A future improvement for DARC would involve introducing more robust methods to

change parameters. This would involve a facility to only update a single parameter

without causing a full buffer swap which would reduce the size of the jitter event

as only the new parameter would need to be checked for validity before RTC

operations can continue. Another important feature update would be the ability

to perform the buffer swap at a given future frame number. This would be necessary

for properly synchronising the update on multi-node AO systems such as MCAO

and LTAO to ensure that all processing nodes swap buffers simultaneously. The

new parameter would be copied to each node and only after the specified frame

number is reached would the parameter be used in the AO calculations.

The DARC RTC software also has a buffer interface which can continuously update

parameters, and in particular array parameters, at the beginning of each frame

without a buffer swap. This could be utilised to achieve the required functionality

mentioned above.

6.3 Multi-node Xeon Phi SCAO

The results presented in Chapter 4 show that the Intel Xeon Phi is capable of

processing an ELT-scale WFS at up to 800 Hz. However due the CPU’s relatively

poor single threaded performance it is not capable of processing the large data

streams at a greater rate. It has been suggested that for the ESO ELT, a goal for

WFS frame rate for SCAO operation is 1 kHz, which has not yet been possible on a

single Xeon Phi node. Here we describe a method for processing a single ELT-scale

153

6.3. Multi-node Xeon Phi SCAO

NGS
WFS

MC PU 1 MC PU 2 +
Master
Processing Unit

M4M5

DMs

MC PU = Many Core Processing Unit
Example subaperture allocations
for each of the processing units

1

1

1

1

2

1

2

2

2

1

1

1

2

2

1

2

2

2

1

2

2

1

1

1

2

1

1

1

2

1

1

1

2

2

1

2

2

1

2

2

2

2

2

1

2

1

2

2

2

2

2

1

2

2

2

1

2

2

1

2

2 2

2

1

1

1

1

1

2

1

2

1

2

1

2

1

1

2

2

1

1

2

2

1

1

2

1

1

2

2

2

1

2

2

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

1

2

2

1

2

1

2

1

2

1

2

1

2

2

1

1

2

1

2

1

2

1

2

1

2

2

1

A

C

B

D

Figure 6.5: The architecture of the multi-node SCAO system setup as described
in Section 6.3, this is an example for the ESO ELT. The WFS is multicast to the
two processing units each of which process half of the total WFS subapertures, the
master processing unit receives the partial DM vectors before combining them and
delivering them to the DMs.

SCAO WFS across two separate Xeon Phi processing nodes, followed by results of

the investigation.

As the camera simulator uses the UDP protocol to transfer the image frame packets,

it is straightforward to specify a multicast address for the destination of the images.

Multicast addresses fall within a set range within a network’s available IP addresses

and, if supported by the networking hardware, allow devices to subscribe to a group

specified by the address and receive any valid packets sent to that address. The

processing of multicast packets is usually performed within a network switch with

negligible impact on packet latency and jitter. It is therefore possible to have

two or more processing nodes subscribe to a multicast address and receive a single

simulated pixel stream simultaneously. The DARC software can then be configured

such that each node will process a unique set of subapertures and distribute the

processing load accordingly. This demonstrates the flexibility of using a CPU-based

AO RTC.

The configuration of the multi-node SCAO RTC is similar to that of the MCAO

154

6.3. Multi-node Xeon Phi SCAO

and LTAO architecture in Chapter 5 and is shown in Figure 6.5. It uses the same

master node concept as the other architectures, however now the master node is

also one of the processing nodes to reduce the amount of data transfers required.

The combined reconstruction and master processing node operates two separate

instances of the DARC software, one of which is configured similarly to the other

reconstruction node and the other configured to receive the partial DM vectors and

combine them to form the final command vector.

The reconstruction nodes are configured such that each one processes alternat-

ing subapertures in the subaperture rows, as shown in layout A in Figure 6.5.

This layout of the subaperture allocation per node was chosen as entire rows of

subapertures become available to process simultaneously due to the pipelining of

pixels from the camera simulator. Alternative layouts were considered, such as

each node processing entire alternating rows of subapertures as shown in layout B

in Figure 6.5. However the subaperture allocation shown in layout A in Figure 6.5

delivered the best performance. The layout which splits each row exactly in half

down the centre, with one node processing the first half and the other the second

half as shown in layout C in Figure 6.5, was expected to provide better performance

than the other layout, however it was found to be unable to deliver similar latencies

as layout A. This is because the striding of subapertures within a row limits cache

misses in the process of copying each subaperture into contiguous memory.

Figure 6.7 and Figure 6.8 show the full latency distributions for the multi-node

SCAO architecture operating at 500Hz and 700Hz respectively. This latency is

measured between the last pixel arriving at the combined reconstruction and master

node the DM command becoming ready. Figure 6.6 shows the on-node latency of

one of the reconstruction nodes, which includes the time taken from receiving the

last pixel to delivering the partial DM vector to the master node. The latency

and jitter values for these results, as well as for other frame rates can be seen in

Table 6.3.

In this configuration the multi-node system was able to process the simulated cam-

155

6.3. Multi-node Xeon Phi SCAO

Figure 6.6: On-node latency results for the multi-node SCAO setup as described
in Section 6.3 operating at 500Hz. This latency is for the processing of half the
total subapertures for the WFS and includes the time between when the last pixel
arrives and until the partial DM vector is ready. These results are for 1.5 × 105

iterations at 500 Hz corresponding to a total cumulative time of 300 s.

Frame
Rate

Latency (µs) ± Jitter (RMS)
On node Master node Single node

500 183 ± 8 376 ± 19 348 ± 12
600 186 ± 6 384 ± 16
700 186 ± 6 380 ± 20 406 ± 47
800 187 ± 6 383 ± 20
900 185 ± 6 380 ± 26
936 184 ± 6 442 ± 84

Table 6.3: Full latency and on-node latency results for the multi-node SCAO setup
described in Section 6.3 for different WFS frame rates. The on-node latency in-
cludes the time take to process half of the total WFS subapertures from last pixel
arriving to delivery of the partial DM vector. The full latency includes the time
taken to process all WFS subapertures from arrival of the last pixels to when the
full DM vector is ready.

156

6.3. Multi-node Xeon Phi SCAO

Figure 6.7: Full latency results for the multi-node SCAO setup as described in
Section 6.3 operating at 500Hz. This latency is for the processing of all subapertures
for the WFS and includes the time between when the last pixel arrives and until
the final DM vector is ready. These results are for 1.5 × 105 iterations at 500 Hz
corresponding to a total cumulative time of 300 s.

era stream at its maximum achievable frame rate of 936 Hz, though with an in-

creased latency and jitter compared to the slower frame rates. The full latency

achievable with the multi node configuration is similar to the latency achievable

with a single node, as shown in Chapter 4 and Table 6.3. However it does enable

processing of WFSs operating at increased frame rates compared to a single node,

which was able to achieve a maximum WFS frame rate of 750 Hz. This demonstra-

tion proves that multi-node SCAO is possible with a similar software architecture

used for MCAO and LTAO and for observatories and instruments that use an

MCAO or LTAO mode, the necessary processing hardware will be readily available

for the multi-node SCAO.

157

6.4. Other many-core CPU systems

Figure 6.8: Full latency results for the multi-node SCAO setup as described in Sec-
tion 6.3 operating at 700 Hz. This latency is for the processing of all subapertures
for the WFS and includes the time between when the last pixel arrives and until
the final DM vector is ready. These results are for 1.5 × 105 iterations at 700 Hz
corresponding to a total cumulative time of 214.3 s.

6.4 Other many-core CPU systems

6.4.1 NUMA-aware DARC

Most of the results presented in this report are obtained from Intel Xeon Phi CPU

systems as described in Jenkins et al. (2018b). However the Xeon Phi platform has

been discontinued and so it is unlikely to be considered as a candidate for real AO

RTC hardware. One of the main reasons for choosing a CPU-based RTC is that

the software and the optimisations made for many-core operation are not specific

to a single CPU architecture or vendor. This thesis has demonstrated the flexibility

of a CPU-based AO RTC system, with many different AO system types profiled.

Here we investigate RTC performance on different hardware platforms.

158

6.4.1.1. AMD EPYC: NUMA-aware DARC with pipelining

"Zen" Based EPYC Processors

"Zen 2" Based EPYC Processors

AMD EPYC Zen 1 and Zen 2 (Rome) Architectures:

Figure 6.9: The AMD Zen and Zen 2 EPYC architectures showing the NUMA
node topology, each of the core complexes is made up of two CPU cores sharing a
single memory channel.

The main advantage the Xeon Phi has over traditional CPU systems is the large

memory bandwidth of the MCDRAM which can be accessed by all CPU cores

equally. For other CPU systems the memory bandwidth of a single CPU package

(<200 GB s−1) is much less than that available to the Xeon Phi (480 GB s−1). How-

ever it is possible to increase the memory bandwidth of traditional CPU systems

by using multiple CPU sockets per system and utilising the NUMA properties of

the system. With software that takes into account the NUMA architecture it is

possible to multiply the memory bandwidth of each socket by the number of sockets

in the system as described in Chapter 1.

6.4.1.1 AMD EPYC: NUMA-aware DARC with pipelining

Here we consider DARC running on an AMD EPYC 7351 dual socket system

using the camera simulator as described in Chapter 3 to deliver pipelined pixels

for an ELT-scale SCAO system configuration. Figure 6.10 shows frame time and

latency results which can be compared directly to the Xeon Phi results presented

in Chapter 4. There is 300 s of continuous measurements corresponding to 1.5×105

frames at a framerate of 500 Hz and the average latency is measured at 616± 17 µs.

The source code and RTC parameters are identical for the two different CPUs with

159

6.4.1.1. AMD EPYC: NUMA-aware DARC with pipelining

Figure 6.10: Frame time results for an SCAO setup using a SH-WFS type WFS
slope calculation with 80 subapertures across the pupil for an AMD EPYC system
as described in Section 6.4. Results shown are for 1.5× 105 iterations at 500 Hz for
a total time of 300 s. The mean latency is 616± 17µs.

the only differences coming from the compiler options (no AVX512 instructions for

the EPYC) and the configuration of the threading and NUMA aware memory

allocation for the two different platforms. The EPYC processor used for these

results has 16 cores and 64GB of DDR4 2667 MHz memory per socket. The core

topology of the EPYC CPUs is such that each CPU has four NUMA regions with

each region having 4 CPU cores and 16 GB of memory each, as shown in Figure 6.9.

The RTC software uses the NUMA information of the CPU to allocate memory

for the RTC control matrix on the nodes relevant to each CPU core. The Linux

Kernel and OS is tuned in a similar way to the Xeon Phi, with the major differences

being the OS itself (Ubuntu 16.04 for EPYC vs. CentOS for the Xeon Phi) and

that simultaneous multi-threading (Hyper-Threading) is turned on for the EPYC

system as it provides better performance and allows 8 threads per NUMA node.

The maximum theoretical memory bandwidth of the EPYC system is 341 GB s−1.

Using the STREAM benchmark the maximum attainable memory bandwidth was

160

6.4.1.1. AMD EPYC: NUMA-aware DARC with pipelining

measured at 200 GB s−1 using a NUMA-aware version of the STREAM benchmark.

This is 58 % of the theoretical maximum, which is determined by considering the

8 DDR4 memory channels per socket running at 2667 MHz. This is less than half

of the measured memory bandwidth of 480 GB s−1 of the Xeon Phi 7250. It is

therefore expected that the performance of the EPYC will be less than that of the

Xeon Phi for the memory bandwidth bound RTC operations. However these results

show that the software can be readily used on different CPU platforms and that

performance is as expected based on the knowledge that the main RTC operations

are memory bandwidth bound.

Other multi-socket CPU systems would also be suitable for ELT-scale AO RTC

such as the Intel Xeon Scalable processors, which in a quad socket configuration

can provide comparable maximum memory bandwidth to the Xeon Phi when the

NUMA regions are taken into account. Multi-socket systems also benefit from gen-

erally running at a higher base CPU frequency than the Xeon Phi and so their

single threaded performance is better. A dual-socket EPYC system with the re-

quired memory bandwidth can be purchased for a similar price to the Xeon Phi,

making it the most likely substitute. For the Intel Xeon Scalable processors, due to

their reduced memory channels per socket, a quad socket system would be required

to match the memory bandwidth and this can increase the per node costs to over

4× that of comparable EPYC or Xeon Phi systems as shown in Table 3.1.

Next generation AMD EPYC processors will introduce a new architecture (Paper-

master, 2018) that simplifies the core topology of the system and will be built on

a smaller 7nm process node to provide better energy efficiency. This involves in-

troducing a 9-die architecture which includes 8 compute chiplets and a single I/O

interface die such that each CPU core can access all memory channels equally. This

is different to the current design where each of the 4 NUMA regions has 8 cores and

2 memory channels each and so only those 8 cores can access the full bandwidth

of those 2 channels. The new architecture will reduce the relative complexity of

NUMA memory management and allow more efficient interleaving of memory over

161

6.5. Latency Contribution of RTC Processes

all 8 memory channels, which will reduce the latency of the EPYC results shown

in Figure 6.10, as each CPU socket will be a single NUMA node. The memory for

these next-generation processors will likely be clocked faster, at up to 3200 MHz

compared to the current maximum of 2667 MHz, increasing memory bandwidth to

a theoretical 410 GB s−1 for a dual socket system.

6.5 Latency Contribution of RTC Processes

Here is presented an analysis of the contribution to the overall RTC latency from

each of the 5 RTC sub-processes described in Section 2.1. As described in Sec-

tion 6.1, the wavefront reconstruction is the most time consuming process in an

ELT-scale AO RTC. However for the large WFS image frames needed for ELT-scale

SH-WFSs, the image calibration and centroiding steps can also have a significant

contribution to the overall latency. With a pipelined camera stream, a large por-

tion of the pixel processing latency can be reduced but due to their inherent serial

nature, it is difficult to efficiently accelerate these processes with vectorisation and

multi-threading.

The results presented in this section compare the computational latency of different

CPU systems for the RTC processes described in Chapter 2, and where necessary

use NUMA-aware DARC operation. Due to the unavailability of the camera simu-

lator for all systems, the results show the computation performance without pixel

pipelining. The computational latency refers to the time needed to complete the

processes described in Section 2.1. To achieve the best computational latency on

each platform the subapertures were allocated to each processing thread equally,

similar to Option 3 in Figure 3.7. However each thread can begin processing si-

multaneously due to the lack of pixel pipelining.

The computational latencies were measured for each hardware platform with the

AO systems parameters for the ELT-scale SCAO system as described in Chapter 4.

The latencies were measured by taking timestamps at the beginning and end of

162

6.5. Latency Contribution of RTC Processes

processing for each of the individual RTC processes. All the timing data was

gathered using the clock_gettime posix function call and collected through the

standard DARC status buffer telemetry. Data was gathered for the Xeon Phi 7210

and 7250 systems, the Intel Xeon Platinum 8180, the Intel Xeon Gold 5120 and

the AMD EPYC 7351 as described in Chapter 1. The Intel Platinum system is a

4-socket system and so data was gathered for the full 4-socket configuration and

also for a 2-socket configuration to compare with the 2-socket Intel Gold and AMD

EPYC systems.

The number of processing threads has varied across the different systems in an

attempt to achieve the best performance on each one, with the number used for

each shown in Table 6.4. Due to the large number of processing threads for each

system, it was difficult to accurately and consistently make timing measurements

for each of the RTC processes without adding significant overhead and increasing

the latency. Therefore the timing results for the processes are not exact due to

each thread operating asynchronously on unique sets of subapertures.

Figure 6.11 shows a comparison of the latency measurements for the different hard-

ware systems. It includes the time taken to complete the five processes of calibra-

tion, centroiding, reconstruction, preparing the DM command and then sending

the DM command via UDP network transfer. Table 6.4 shows the values for when

each of the five process are completed as well as RMS jitter values. Each timing

measurement is the median value from 1.5×105 frames. Figure 6.12a shows the la-

tency distributions for the completion time for each of the five process for the Intel

Xeon Phi 7250 system. Figure 6.12b shows similar results for the Intel Platinum

8180 quad socket configuration.

The results in this section show that CPU systems other than the Xeon Phi are

capable of delivering ELT-scale AO RTC performance. A quad socket Intel Plat-

inum system can complete the RTC computation in less than half the time of Xeon

Phi whilst the dual socket Intel Platinum configuration is also capable of increased

performance compared to the Xeon Phis. The AMD EPYC and Intel Gold dual

163

6.5. Latency Contribution of RTC Processes

0.
25

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

La
te

nc
y

(m
s)

51
20

 2
S

Go
ld

In
te

l

73
51

 2
S

EP
YC

AM
D

72
10

Xe
on

 P
hi

In
te

l

72
50

Xe
on

 P
hi

In
te

l

81
80

 2
S

Pl
at

in
umIn
te

l

81
80

 4
S

Pl
at

in
umIn
te

l

Ch
ro

no
gr

am
 o

f c
om

pu
ta

tio
na

l l
at

en
cy

 fo
r d

iff
er

en
t p

ro
ce

ss
or

s Ca
lib

ra
tio

n
Ce

nt
ro

id
in

g
Re

co
ns

tru
ct

io
n

Pr
ep

ar
in

g
DM

Se
nd

in
g

DM

Fi
gu

re
6.
11

:
A

co
m
pa

ris
on

of
th
e
co
m
pu

ta
tio

na
ll
at
en

cy
fo
r
di
ffe

re
nt

ha
rd
wa

re
pl
at
fo
rm

s.
T
he

pr
oc
es
so
rs

ar
e
de

sc
rib

ed
in

C
ha

pt
er

3
an

d
th
e
la
te
nc

ie
s
sh
ow

n
ar
e
fo
r
th
e
di
ffe

re
nt

co
m
pu

ta
tio

na
lp

ro
ce
ss
es

de
sc
rib

ed
in

C
ha

pt
er

2.

164

6.5. Latency Contribution of RTC Processes

Time from start-of-frame to completion of each process

Hardware
Platform N

o.
of

T
hr
ea
ds

Ca
lib

ra
tio

n

Ce
nt
ro
id
in
g

Re
co
ns
tr
uc
tio

n

Pr
ep
ar
in
g
D
M

Se
nd

in
g
D
M

Intel Xeon
Platinum 4S 48 173± 9 186± 9 414± 11 450± 12 471± 12

Intel Xeon
Platinum 2S 48 207± 9 223± 9 810± 8 851± 8 882± 9

Intel Xeon
Phi 7250 54 280± 6 327± 7 871± 7 1001± 7 1118± 7

Intel Xeon
Phi 7210 54 286± 6 333± 7 914± 8 1049± 8 1181± 8

AMD EPYC
7351 2S 60 287± 11 350± 23 1270± 18 1379± 18 1399± 18

Intel Xeon
Gold 2S 48 158± 05 200± 06 1230± 08 1389± 15 1423± 15

Table 6.4: The median values of the latency measurements and the RMS jitter for
the computational latency results presented in Section 6.5. This shows the latency
from start-of-frame until completion of each of the RTC processes for the different
hardware platforms. Figure 6.11 illustrates these results.

socket systems are not quite able to match the performance of the Xeon Phis,

however their much lower cost compared to the Intel Platinum keep them cost

competitive without sacrificing too much latency. These results show that even

though the Xeon Phi processors have been discontinued there is still CPU-based

hardware available to process ELT-scale AO RTC.

165

6.5. Latency Contribution of RTC Processes

a Intel Xeon Phi 7250

b Intel Xeon Platinum 8180 4S

Figure 6.12: Computational latency results for the individual subprocess of DARC
for both the Intel Xeon Phi 7250 (top) and the Intel Xeon Platinum 8180 quad
socket system (bottom). This is using a SCAO configuration with a SH-WFS type
WFS slope calculation with 80 subapertures across the pupil. Each distribution
corresponds to the time from start-of-frame to the completion of each of the five
RTC processes shown in Figure 6.11 and median latencies for each process are pre-
sented in Table 6.4. Results shown are for 1.5× 105 iterations. Colours correspond
to the legend shown in Figure 6.11.

166

Chapter 7

Conclusions and Future work

7.1 The Challenges of ELT-scale AO RTC

The next generation of ELT-scale telescopes brings with it many challenges in the

design and implementation of AO systems. All three of the planned ELTs will use

AO as an integral tool for their successful operation, and, due to the scaling of

the AO real-time control problem size with telescope diameter, the computational

requirements are greatly increased compared to currently operating AO RTC sys-

tems. Further considerations such as the size of corrected field of view required for

observation, the number of science targets to be observed simultaneously, and the

increase in dynamic aberrations due to telescope wind shake will dictate the AO

system types needed and the wavefront reconstruction techniques to be employed.

This thesis presents an investigation into a many-core CPU-based AO RTC archi-

tecture to achieve the computational performance necessary to help mitigate the

increased effects of the atmosphere on ELT-scale astronomical observations.

7.2 Many-core CPUs with the DARC AO RTC

The Intel Xeon Phi Knights Landing CPU was investigated for the processing of

ELT-scale AO RTC. It has up to 72 CPU cores with 16GB of high bandwidth

167

7.2.1. ELT-scale SCAO RTC

memory, which is ideal for accelerating the highly parallelisable and vectorisable

wavefront reconstruction problem. The DARC RTC software is a mature on-sky

tested modular application that has been optimised and adapted for many-core

CPUs and for ELT-scale AO RTC. It is written in the standard c and python

programming languages. The optimisation process was not specific to any particu-

lar type of CPU system and did not involve any non-standard programming prac-

tices, but used only widely available tools and libraries. A UDP based networked

camera simulator was developed to deliver simulated pipe-lined WFS images to the

CPU-based DARC RTC. This is written in the c programming language and used

only general Linux libraries and commands to achieve its functionality.

7.2.1 ELT-scale SCAO RTC

The results of testing the DARC AO RTC software for SCAO systems and utilising

the CPU camera simulator is presented in Chapter 4. The results show that a

single Intel Xeon Phi Knights Landing processing node is able to compute the AO

RTC for ELT-scale SCAO systems with latencies as low as 348± 12 µs for a WFS

frame rate of 500 Hz and has the ability to process WFS images delivered at up to

750 Hz. The RTC latency was measured for the processing of both a SH-WFS and

a Pyr-WFS configuration, with an investigation of how the latency for each scales

with the dimensions of the WFSs. Different subaperture allocation schemes were

investigated, with the most efficient for pipe-lined WFS operation being an un-

equal subaperture allocation. The effect of POLC computation for the SCAO case

was explored, involving both explicit and implicit POLC methods. It was found

that both methods reduce the maximum framerate that the RTC could achieve on

the given hardware, however the implicit POLC had much less of an effect on the

maximum achievable performance.

168

7.2.2. ELT-scale MCAO and LTAO RTC

7.2.2 ELT-scale MCAO and LTAO RTC

An architecture for the processing of ELT-scale MCAO and LTAO system types

was presented in Chapter 5. This scales the DARC RTC across multiple process-

ing nodes by processing each of the MCAO or LTAO WFSs independently in the

same way as the SCAO RTC computation is performed in Chapter 4. The partial

results of the wavefront reconstruction for each WFS can then be combined by

a master processing node to acquire the final DM command vector for the entire

system. This shows the flexibility of the CPU-based DARC RTC software; with no

modifications to the base RTC software and only the implementation of different

software modules and configuration the RTC software can achieve the performance

required for ELT-scale MCAO and LTAO operation. For a cluster of seven Xeon

Phi Knights Landing processing nodes, an ELT MAORY-like MCAO RTC sys-

tem was capable of achieving RTC latencies of as low as 985± 33 µs; for operation

with a simulated camera at a WFS frame rate of 500 Hz. Similarly, for an ELT

HARMONI-like LTAO RTC configuration, results of 894± 29 µs were achieved.

7.2.3 Considerations for ELT-scale AO Operation

Chapter 6 presents results of the investigation into other considerations for ELT-

scale AO, such as different wavefront reconstruction techniques that can help mit-

igate telescope induced vibrations and the use of other many-core CPU processors

for the computation of the AO RTC. A comparison is made between the standard

MVM wavefront reconstruction and the optimal LQG control method. The ar-

chitecture for a multi-node SCAO RTC configuration, whereby a single WFS is

processed by two CPU nodes, is presented. This technique can be used to reduce

the latency of a SCAO RTC configuration compared to the results presented in

Chapter 4 and allow WFSs frame rates of up to 966 Hz. This multi-node approach

could also be used to achieve the required latencies with the more computation-

ally demanding reconstruction techniques such as LQG control, building upon the

169

7.3. Future work

flexibility of the CPU-based DARC RTC demonstrated in Chapter 5.

Also presented are results similar to those discussed in Chapter 4, for an ELT-scale

SCAO configuration, but by using an AMD EPYC dual-socket CPU system for

the processing of the RTC. This demonstrates that the software and techniques are

applicable to many-core CPU systems other than the Intel Xeon Phi. The AMD

EPYC CPU system demonstrated an RTC latency of 616± 17 µs at a WFS frame

rate of 500 Hz. These results are consistent with the difference in specification

between the Xeon Phi Knights Landing and EPYC CPU; specifically the mem-

ory bandwidth of each. Finally Chapter 6 concludes with an investigation of the

computational performance of the DARC RTC software on different CPU systems.

This demonstrates again the flexibility of the software being used with different

processor architectures and also the scaling of performance due to the different

specifications of each system.

Table 7.1 shows the cost of each of the available hardware technologies including

many-core CPU systems, this is representative of future trends for each manufac-

turer. As seen the AMD EPYC CPU systems are by far the most cost effective

option for scaling the hardware for ELT-scale operation.

7.3 Future work

To complete a full investigation into all the AO RTC system types proposed for the

next generation ELTs, an architecture for a MOAO RTC needs to be considered.

Due to the flexibility of CPU-based RTC, this could be accomplished with an

architecture similar to that shown in Figure 7.1; proposed by Basden et al. (2019).

Due to the number of DMs required for MOAO, each DM would use a single

processing node to complete the wavefront reconstruction along its line of sight.

A subset of the DM processing nodes are used to process the WFSs to obtain the

wavefront slope values which are then distributed amongst all the DM processing

nodes allowing them to complete the full wavefront reconstruction.

170

7.3. Future work

Processor Representative Computational Memory Nodes Price
Type Example Performance Bandwidth Required per unit

(SP TFLOPS) (GBs−1) (6×WFS) (USD)
T M

GPU NVIDIA V100 14.9 900 - 3 10, 600
Xeon Phi KNL 7250 5.2 4801 432 6 3, 400
Xeon Phi KNL 7210 4.5 4501 385 6 3, 400
Intel CPU Platinum 22.9 512 362 6 40, 0002

8180 ×4
Intel CPU Platinum 11.5 256 182 12 20, 0003

8180 ×2
Intel CPU Gold 2.3 230 139 8 3, 1003

5120 ×2
AMD CPU EPYC 3.0 341 294 6 2, 5003

7351 ×2
FPGA Intel Stratix 6.3 512 - 6 ~14, 0004

10 MX2100

Table 7.1: A comparison of computational performance, theoretical and measured
memory bandwidth and nodes required for ELT-scale AO, for the different hard-
ware types available for AO RTC. The T and M columns for memory bandwidth re-
fer to theoretical and measured respectively. DSPs are not included as it is difficult
to find specifications and in general their computational and memory bandwidth
performance are far behind the other processor types.

1Measured using starboard STREAM, no theoretical available. 2Price is for the four CPUs.
3Price is for the two CPUs. 4Price is for a development kit with 256GBs−1 memory bandwidth.

Future upgrades to the DARC software would involve the improved parameter

updating methods as described in Chapter 5, especially the functionality to enable

synchronous parameter switching amongst all reconstruction nodes in multi-node

RTC configurations.

Further exploration of the available many-core CPU systems would be useful to

determine their performance in the multi-node RTC configurations. The Xeon

Phi range of processors has now been discontinued and so other systems would be

required for the actual deployment of ELT-scale AO RTC systems.

171

7.3.1. Future Developments

LGS
WFS

LGS
WFS

NGS
WFS

NGS
WFS

LGS
WFS

LGS
WFS

NGS
WFS

NGS
WFS

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU

DM1

DM2

DM3

DM4

DM5

DM6

DM7

DM8

DM9

DM10

CCS:
M4
M5

MC PU = Many-core Processing Unit
CCS = ELT Central Control System

WFS Images

DM Commands

Sharing WFS slopes

CCS Feedback

Laser G
uide Stars

Natural G
uide Stars

Figure 7.1: (a) A possible ELT MOAO real-time control system architecture based
on 12 CPU nodes. The dark blue lines represent the multicast of slope measure-
ments between nodes. The green lines represent distribution of CCS feedback when
implicit POL is used; the CCS is the ELT Central Control System which controls
the telescope mirrors M4 and M5 among other functions. The orange lines rep-
resent WFS pixel flow and the black lines represent DM command flow. (Basden
et al., 2019).

7.3.1 Future Developments

With the next generation of ELT-scale telescopes on the horizon, it is a very in-

teresting time in adaptive optics with ongoing developments in both general AO

instrumentation and in the RTC domain. Due to the results achieved in this thesis,

developing an RTC for ELT-scale SCAO, GLAO, LTAO or MCAO operation can

now be considered an engineering challenge rather than a research challenge; the

performance necessary for ELT-scale operation has been demonstrated with open-

source software running on commercial off-the-shelf (COTS) CPU hardware. The

greater challenges involved with MOAO and ExAO require further research to de-

172

7.3.1. Future Developments

termine a suitable architecture for ELT-scale operation. The ExAO problem might

be better suited to a GPU based solution rather than a CPU based one if the data

interconnect problem can be solved reliably using a COTS solution. GPUs have

increased computational performance compared to CPUs which may be necessary

to efficiently process the high order ExAO systems at the necessary frame rates,

typically > 3 kHz, but are disadvantaged as they are unable to behave as a host

processor.

In the near future it will be interesting to see the developments of many-core

CPU based RTC systems, both for the ELT-scale instruments and for current

observatories. It will be interesting to see how other AO groups approach the

problem and to see their solutions. I would be interested in investigating the

other AO RTC software packages, such as CACAO (Guyon et al., 2018), COSMIC

(Gratadour, 2018) and HEART (Dunn et al., 2018), and their performance for

ELT-scale AO, both on current hardware and also on the upcoming Zen 2 based

EPYC CPUs from AMD.

The Zen 2 based EPYC Rome CPUs will be available with up to 64 CPU cores and

8 DDR4 memory channels running at 3200 MHz per socket. This memory speed is

20% greater than that available on the current generation of Zen 1 based EPYC

Naples processors, giving a potential 20% boost in memory bandwidth performance.

These specifications make it potentially feasible to process a single ELT-scale WFS

at up to 1 kHz or multiple smaller dimension WFSs for current observatories at

higher frame-rates.

Looking further ahead towards the future I am interested to see how the smart net-

work interface controllers (NICs) such as the Mellanox Bluefield devices, mentioned

in Section 1.2.1.2, perform in the context of AO RTC. The smart NICs are ideally

suited for performing the duties of a WFS processing unit to process the incoming

pixels to wavefront slope values before passing the data on the host CPU for the

reconstruction step. This can reduce the impact of the data transfer latency of the

PCI bus by requiring much less data to be copied into main CPU memory and can

173

7.3.1. Future Developments

Host CPU

Network
Interface

Accelerator
e.g. GPU

Input WFS
Images

Output DM
Commands

Direct
network accelerator
accelerator network

Indirect
network host accelerator, accelerator host network

Figure 7.2: A comparison of the standard indirect data transfer through the host
CPU and the more efficient direct to acclerator transfer sheme. A downside to the
latter is that it currently involves non-portable software and the use of proprietary
libraries.

free up the host CPU cores to further accelerate the reconstruction step. They are

also a potential COTS solution to the GPU interconnect problem by allowing the

host CPU memory to be bypassed and therefore removing the latency overhead of

extra data transfers as shown in Figure 7.2.

The CPU technologies used in this report are standard off the shelf products that

have been developed without the specific problem of AO RTC in mind. The CPU

vendors cater mostly to the server and HPC markets, the requirements of which

don’t overlap significantly with the needs of AO RTC. Based on the experience I

gained as outlined in this report I would like to see in the future CPU hardware

that combines the strengths of the Xeon Phi processors with the greater single core

performance of standard server CPUs. This is almost realised with the Zen 2 based

EPYC Rome CPUs due their high core count, up to 64 cores per socket, and their

high memory bandwidth, up to 410 GB s−1 theoretical for a dual-socket system.

The Xeon Phi processor was ahead of its time in terms of its core count and memory

bandwidth capabilities and it will be some time before a comparable single socket

174

7.4. Final Remarks

system will be available. To replace the Xeon Phi I would like to see a many core

Intel Xeon or AMD EPYC design with 64 cores able to operate with at least a 4 GHz

clock speed with at least an 8 GB pool of on-chip high bandwidth memory with a

memory bandwidth exceeding 1 TB s−1. This CPU should be compatible with a

four socket motherboard configuration with high speed interconnects between each

of the sockets.

I believe this type of system would provide the best performance, not only for

ELT-scale AO RTC, but for AO RTC in general. The fast cores would give single

threaded tasks much greater performance than on the Xeon Phi processors and

the on-chip high bandwidth memory would reduce the impact of the significantly

memory bandwidth bound reconstruction step. This type of CPU architecture

coupled with a smart network interconnect acting as a WFS processing unit would

be ideally suited for tackling the problem of ELT-scale AO RTC.

7.4 Final Remarks

This thesis demonstrates the capability of the CPU-based DARC RTC platform

to enable the acceleration of AO RTC to achieve the required performance for the

next generation of ELT-scale AO systems. A CPU-based RTC provides the flex-

ibility and performance necessary to scale to the ELT AO problem size without

introducing unnecessary complexity or the need to rely on non-standard technolo-

gies or programming techniques. It will be interesting to see the development of

the AO RTC systems for the ELTs and hopefully some of the ideas presented in

this thesis will be used for their successful operation.

175

Bibliography

Angel, J.R.P. Ground-based imaging of extrasolar planets using adaptive optics.

Nature, 368:203–207, Mar. 1994. doi: 10.1038/368203a0.

AravisProject. Aravis, 2018. URL https://github.com/AravisProject/aravis.

[Online; accessed 21-January-2018].

Arsenault, R., Biasi, R., Gallieni, D. et al. A deformable secondary mirror for the

vlt, 2006. URL https://doi.org/10.1117/12.672879.

Ashcraft, J. and Baranec, C. Simulated Guide Stars: Adapting the Robo-AO Tele-

scope Simulator to UH 88. In American Astronomical Society Meeting Abstracts

#231, volume 231 of American Astronomical Society Meeting Abstracts, page

152.13, Jan. 2018.

Babcock, H.W. The Possibility of Compensating Astronomical Seeing. Publications

of the Astronomical Society of the Pacific, 65:229, 1953. ISSN 0004-6280. doi: 10.

1086/126606. URL http://iopscience.iop.org/article/10.1086/126606.

Baranec, C., Lloyd-Hart, M., Milton, N.M. et al. Astronomical imaging us-

ing ground-layer adaptive optics, 2007. URL https://doi.org/10.1117/12.

732609.

176

https://github.com/AravisProject/aravis
https://doi.org/10.1117/12.672879
http://iopscience.iop.org/article/10.1086/126606
https://doi.org/10.1117/12.732609
https://doi.org/10.1117/12.732609

Bibliography

Baranec, C., Hart, M., Milton, N.M. et al. ON-SKY WIDE-FIELD ADAPTIVE

OPTICS CORRECTION USING MULTIPLE LASER GUIDE STARS AT THE

MMT. The Astrophysical Journal, 693(2):1814–1820, mar 2009.

Baranec, C., Riddle, R., Ramaprakash, A.N. et al. Robo-ao: An autonomous

laser adaptive optics and science system. In Imaging and Applied Optics, page

AWA2. Optical Society of America, 2011. doi: 10.1364/AOPT.2011.AWA2. URL

http://www.osapublishing.org/abstract.cfm?URI=AOPT-2011-AWA2.

Baranec, C., Riddle, R., Law, N. et al. Rise of The Machines: First Year Operations

of The Robo-AO Visible-Light Laser-Adaptive-Optics Instrument. In Advanced

Maui Optical and Space Surveillance Technologies Conference, page E48, Sept.

2013.

Baranec, C., Chun, M., Hall, D. et al. The robo-ao-2 facility for rapid visible/near-

infrared ao imaging and the demonstration of hybrid techniques, 2018. URL

https://doi.org/10.1117/12.2312835.

Barr, D., Basden, A., Dipper, N. et al. Reducing adaptive optics latency

using many-core processors. 2015. URL http://dx.doi.org/10.20353/

K3T4CP1131546.

Basden, A. The durham ao real-time controller and the canary implementa-

tion. In Imaging and Applied Optics, page AMB1. Optical Society of America,

2011. doi: 10.1364/AOPT.2011.AMB1. URL http://www.osapublishing.org/

abstract.cfm?URI=AOPT-2011-AMB1.

Basden, A., Geng, D., Myers, R. et al. Durham adaptive optics real-time controller.

Applied optics., 49(32):6354–6363, November 2010. URL http://dro.dur.ac.

uk/10424/.

Basden, A.G. Investigation of power8 processors for astronomical adaptive optics

real-time control. Monthly Notices of the Royal Astronomical Society, 452(2):

177

http://www.osapublishing.org/abstract.cfm?URI=AOPT-2011-AWA2
https://doi.org/10.1117/12.2312835
http://dx.doi.org/10.20353/K3T4CP1131546
http://dx.doi.org/10.20353/K3T4CP1131546
http://www.osapublishing.org/abstract.cfm?URI=AOPT-2011-AMB1
http://www.osapublishing.org/abstract.cfm?URI=AOPT-2011-AMB1
http://dro.dur.ac.uk/10424/
http://dro.dur.ac.uk/10424/

Bibliography

1694–1701, 2015. doi: 10.1093/mnras/stv1396. URL +http://dx.doi.org/10.

1093/mnras/stv1396.

Basden, A.G., Myers, R. and Butterley, T. Considerations for EAGLE from Monte

Carlo adaptive optics simulation. Appl. Optics, 49:G1–G8, May 2010.

Basden, A.G., Chemla, F., Dipper, N. et al. Real-time correlation reference update

for astronomical adaptive optics. Monthly Notices of the Royal Astronomical

Society, 439(1):968–976, 01 2014. ISSN 0035-8711. doi: 10.1093/mnras/stu027.

URL https://doi.org/10.1093/mnras/stu027.

Basden, A.G., Atkinson, D., Bharmal, N.A. et al. Experience with wavefront

sensor and deformable mirror interfaces for wide-field adaptive optics systems.

Monthly Notices of the Royal Astronomical Society, 459(2):1350–1359, 2016. doi:

10.1093/mnras/stw730. URL +http://dx.doi.org/10.1093/mnras/stw730.

Basden, A.G., Bardou, L., Bonaccini Calia, D. et al. On-sky demonstration of

matched filters for wavefront measurements using ELT-scale elongated laser guide

stars. Monthly Notices of the Royal Astronomical Society, 466(4):5003–5010, 01

2017. ISSN 0035-8711. doi: 10.1093/mnras/stx062. URL https://doi.org/10.

1093/mnras/stx062.

Basden, A.G., Jenkins, D., Morris, T.J. et al. Efficient implementation of pseudo

open loop control for adaptive optics on Extremely Large Telescopes. 03 2019.

doi: 10.1093/mnras/stz918. URL https://doi.org/10.1093/mnras/stz918.

Beckers, J.M. Increasing the Size of the Isoplanatic Patch with Multiconjugate

Adaptive Optics. In Ulrich, M.H., editor, European Southern Observatory Con-

ference and Workshop Proceedings, volume 30 of European Southern Observatory

Conference and Workshop Proceedings, page 693, 1988.

Beuzit, J.L., Vigan, A., Mouillet, D. et al. SPHERE: the exoplanet imager for the

Very Large Telescope. arXiv e-prints, art. arXiv:1902.04080, Feb 2019.

178

+ http://dx.doi.org/10.1093/mnras/stv1396
+ http://dx.doi.org/10.1093/mnras/stv1396
https://doi.org/10.1093/mnras/stu027
+ http://dx.doi.org/10.1093/mnras/stw730
https://doi.org/10.1093/mnras/stx062
https://doi.org/10.1093/mnras/stx062
https://doi.org/10.1093/mnras/stz918

Bibliography

Bharmal, N.A., Myers, R.M., Basden, A.G. et al. An interferometric wavefront

sensor for high-sensitivity low-amplitude measurements, 2012. URL https://

doi.org/10.1117/12.925988.

Biasi, R., Manetti, M., Andrighettoni, M. et al. E-elt m4 adaptive unit final design

and construction: a progress report. In Astronomical Telescopes + Instrumenta-

tion, volume 9909, pages 9909 – 9909 – 16, 2016. doi: 10.1117/12.2234735. URL

https://doi.org/10.1117/12.2234735.

Bitenc, U., Basden, A.G., Dipper, N.A. et al. Suitability of gpus for real-time

control of large astronomical adaptive optics instruments. Journal of Real-Time

Image Processing, 14(4):743–751, Apr 2018. ISSN 1861-8219. doi: 10.1007/

s11554-017-0702-7. URL https://doi.org/10.1007/s11554-017-0702-7.

Boccas, M., Rigaut, F., Bec, M. et al. Laser guide star upgrade of Altair at

Gemini North. In Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, volume 6272 of Proc.SPIE, page 62723L, June 2006. doi:

10.1117/12.670842.

Born, M. and Wolf, E. Principles of Optics: Electromagnetic Theory of Prop-

agation, Interference and Diffraction of Light. Cambridge University Press,

1997. ISBN 9780521639217. URL https://books.google.co.uk/books?id=

fbwTQwAACAAJ.

Bosiers, J., Roks, E., Peek, H.L. et al. Frame-transfer ccd’s with all-gates pinning:

Device modeling and dark-current evaluation. In Proc. 1993 IEEE Workshop on

Charge-Coupled Devices and Advanced Image Sensors, 1993.

Bouchez, A.H., Acton, D.S., Biasi, R. et al. The giant magellan telescope adaptive

optics program, 2014. URL https://doi.org/10.1117/12.2057613.

Bouchez, A.H., Angeli, G.Z., Ashby, D.S. et al. An overview and status of gmt

active and adaptive optics, 2018. URL https://doi.org/10.1117/12.2314255.

179

https://doi.org/10.1117/12.925988
https://doi.org/10.1117/12.925988
https://doi.org/10.1117/12.2234735
https://doi.org/10.1007/s11554-017-0702-7
https://books.google.co.uk/books?id=fbwTQwAACAAJ
https://books.google.co.uk/books?id=fbwTQwAACAAJ
https://doi.org/10.1117/12.2057613
https://doi.org/10.1117/12.2314255

Bibliography

Brandl, B.R., Agócs, T., Aitink-Kroes, G. et al. Status of the mid-infrared e-

elt imager and spectrograph metis, 2016. URL https://doi.org/10.1117/12.

2233974.

Chiozzi, G., Kiekebusch, M., Kornweibel, N. et al. The elt control system, 2018.

URL https://doi.org/10.1117/12.2312164.

Ciliegi, P., Diolaiti, E., Abicca, R. et al. Maory for elt: preliminary design overview.

In Astronomical Telescopes + Instrumentation, volume 10703, pages 10703 –

10703 – 10, 2018. doi: 10.1117/12.2313672. URL https://doi.org/10.1117/

12.2313672.

Close, L.M., Gasho, V., Kopon, D. et al. The Magellan Telescope Adaptive Sec-

ondary AO System: a visible and mid-IR AO facility. In Adaptive Optics Systems

II, volume 7736 of Proc.SPIE, page 773605, July 2010. doi: 10.1117/12.857924.

Close, L.M., Males, J.R., Follette, K.B. et al. Into the blue: AO science with

MagAO in the visible. In Adaptive Optics Systems IV, volume 9148 of Proc.SPIE,

page 91481M, Aug. 2014. doi: 10.1117/12.2057297.

Correia, C. Architecture of elt 1st light instruments’ hard real time computing

facility with xeon-phis, 2018.

Currie, T., Guyon, O., Tamura, M. et al. Subaru/SCExAO First-light Direct Imag-

ing of a Young Debris Disk around HD 36546. Astrophysical Journal, Letters,

836:L15, Feb. 2017. doi: 10.3847/2041-8213/836/1/L15.

Davies, R., Schubert, J., Hartl, M. et al. MICADO: first light imager for the E-

ELT. In Ground-based and Airborne Instrumentation for Astronomy VI, volume

9908 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference

Series, page 99081Z, Aug 2016. doi: 10.1117/12.2233047.

Delacroix, C., Langlois, M.P., Loupias, M. et al. Development of an elt xao testbed

using a mach-zehnder wavefront sensor: calibration of the deformable mirror,

2015. URL https://doi.org/10.1117/12.2189094.

180

https://doi.org/10.1117/12.2233974
https://doi.org/10.1117/12.2233974
https://doi.org/10.1117/12.2312164
https://doi.org/10.1117/12.2313672
https://doi.org/10.1117/12.2313672
https://doi.org/10.1117/12.2189094

Bibliography

Dicke, R.H. Phase-contrast detection of telescope seeing errors and their correction.

"The Astrophysical Journal", 198:605–615, jun 1975. doi: 10.1086/153639.

Diolaiti, E., Ciliegi, P., Abicca, R. et al. Maory: adaptive optics module for the

e-elt, 2016. URL https://doi.org/10.1117/12.2234585.

Doel, A.P., Dunlop, C.N., Major, J.V. et al. MARTINI - Sensing and control

system design. In Ealey, M.A., editor, Active and Adaptive Optical Components,

volume 1543 of Proc.SPIE, pages 472–478, Jan. 1992. doi: 10.1117/12.51202.

d’Orgeville, C., Daruich, F., Arriagada, G. et al. The gemini south mcao laser

guide star facility: getting ready for first light, 2008. URL https://doi.org/

10.1117/12.788970.

Downing, M., Amico, P., Brinkmann, M. et al. Update on development of wfs

cameras at eso for the elt. volume 10703, pages 10703 – 10703 – 14, 2018. doi:

10.1117/12.2314489. URL https://doi.org/10.1117/12.2314489.

Dunn, J., Kerley, D., Smith, M. et al. The real-time controller (rtc) for the narrow

field infrared adaptive optics system (nfiraos) for tmt final design, 2018. URL

https://doi.org/10.1117/12.2314226.

Ellerbroek, B. and Tyler, D. Adaptive optics sky coverage calculations for

the gemini-north telescope. PASP, 110(744):165–185, 1998. ISSN 00046280,

15383873. URL http://www.jstor.org/stable/10.1086/316120.

Ellerbroek, B.L. First-order performance evaluation of adaptive-optics systems

for atmospheric-turbulence compensation in extended-field-of-view astronomi-

cal telescopes. J. Opt. Soc. Am. A, 11(2):783–805, Feb 1994. doi: 10.1364/

JOSAA.11.000783. URL http://josaa.osa.org/abstract.cfm?URI=josaa-

11-2-783.

Ellerbroek, B.L. Efficient computation of minimum-variance wave-front reconstruc-

tors with sparse matrix techniques. J. Opt. Soc. Am. A, 19(9):1803–1816, Sep

181

https://doi.org/10.1117/12.2234585
https://doi.org/10.1117/12.788970
https://doi.org/10.1117/12.788970
https://doi.org/10.1117/12.2314489
https://doi.org/10.1117/12.2314226
http://www.jstor.org/stable/10.1086/316120
http://josaa.osa.org/abstract.cfm?URI=josaa-11-2-783
http://josaa.osa.org/abstract.cfm?URI=josaa-11-2-783

Bibliography

2002. doi: 10.1364/JOSAA.19.001803. URL http://josaa.osa.org/abstract.

cfm?URI=josaa-19-9-1803.

Esposito, S. and Riccardi, A. Pyramid Wavefront Sensor behavior in partial cor-

rection Adaptive Optic systems. Astronomy and Astrophysics, 369:L9–L12, Apr.

2001. doi: 10.1051/0004-6361:20010219.

Esposito, S., Riccardi, A., Pinna, E. et al. Large binocular telescope adaptive

optics system: new achievements and perspectives in adaptive optics, 2011. URL

https://doi.org/10.1117/12.898641.

Esposito, S., Riccardi, A., Pinna, E. et al. Natural guide star adaptive optics

systems at lbt: Flao commissioning and science operations status, 2012. URL

https://doi.org/10.1117/12.927109.

Fedrigo, E. and Donaldson, R. Sparta roadmap and future challenges, 2010. URL

https://doi.org/10.1117/12.857109.

Fedrigo, E., Donaldson, R., Soenke, C. et al. SPARTA: the ESO standard platform

for adaptive optics real time applications. In Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, volume 6272 of Proc.SPIE, page

627210, June 2006. doi: 10.1117/12.671919.

Foy, R. and Labeyrie, A. Feasibility of adaptive telescope with laser probe. As-

tronomy & Astrophysics, 152:L29–L31, Nov. 1985.

Fried, D.L. The effect of wavefront distortion on the performance of an ideal optical

heterodyne receiver and an ideal camera, 1965.

Fried, D.L. Optical resolution through a randomly inhomogeneous medium for

very long and very short exposures. J. Opt. Soc. Am., 56(10):1372–1379, Oct

1966. doi: 10.1364/JOSA.56.001372. URL http://www.osapublishing.org/

abstract.cfm?URI=josa-56-10-1372.

182

http://josaa.osa.org/abstract.cfm?URI=josaa-19-9-1803
http://josaa.osa.org/abstract.cfm?URI=josaa-19-9-1803
https://doi.org/10.1117/12.898641
https://doi.org/10.1117/12.927109
https://doi.org/10.1117/12.857109
http://www.osapublishing.org/abstract.cfm?URI=josa-56-10-1372
http://www.osapublishing.org/abstract.cfm?URI=josa-56-10-1372

Bibliography

Fried, D.L. Greenwood frequency measurements. J. Opt. Soc. Am. A, 7(5):946–

947, May 1990. doi: 10.1364/JOSAA.7.000946. URL http://josaa.osa.org/

abstract.cfm?URI=josaa-7-5-946.

Fried, D.L. and Mevers, G.E. Evaluation of ro for propagation down through

the atmosphere. Appl. Opt., 13(11):2620–2622, Nov 1974. doi: 10.1364/AO.13.

002620. URL http://ao.osa.org/abstract.cfm?URI=ao-13-11-2620.

Fugate, R.Q., Fried, D.L., Ameer, G.A. et al. Measurement of atmospheric wave-

front distortion using scattered light from a laser guide-star. Nature, 353:144–146,

Sept. 1991. doi: 10.1038/353144a0.

Gendron, E., Assémat, F., Hammer, F. et al. Falcon: multi-object ao. Comptes

Rendus Physique, 6(10):1110 – 1117, 2005. ISSN 1631-0705. doi: https:

//doi.org/10.1016/j.crhy.2005.10.012. URL http://www.sciencedirect.com/

science/article/pii/S1631070505001660. Multi-Conjugate Adaptive Optics

for very large telescopes.

Gendron, E., Vidal, F., Brangier, M. et al. Moao first on-sky demonstration with

canary. A&A, 529:L2, 2011. doi: 10.1051/0004-6361/201116658. URL https:

//doi.org/10.1051/0004-6361/201116658.

Gilles, L. and Ellerbroek, B. Shack-Hartmann wavefront sensing with elongated

sodium laser beacons: centroiding versus matched filtering. Applied Optics, 45:

6568–6576, Sept. 2006. doi: 10.1364/AO.45.006568.

GNU. Options that control optimization. URL https://gcc.gnu.org/

onlinedocs/gcc/Optimize-Options.html.

Gratadour, D. The cosmic rtc platform, 2018. URL https://indico.obspm.

fr/event/57/contributions/211/attachments/178/197/dgratadour-

cosmic.pdf.

183

http://josaa.osa.org/abstract.cfm?URI=josaa-7-5-946
http://josaa.osa.org/abstract.cfm?URI=josaa-7-5-946
http://ao.osa.org/abstract.cfm?URI=ao-13-11-2620
http://www.sciencedirect.com/science/article/pii/S1631070505001660
http://www.sciencedirect.com/science/article/pii/S1631070505001660
https://doi.org/10.1051/0004-6361/201116658
https://doi.org/10.1051/0004-6361/201116658
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://indico.obspm.fr/event/57/contributions/211/attachments/178/197/dgratadour-cosmic.pdf
https://indico.obspm.fr/event/57/contributions/211/attachments/178/197/dgratadour-cosmic.pdf
https://indico.obspm.fr/event/57/contributions/211/attachments/178/197/dgratadour-cosmic.pdf

Bibliography

Gratadour, D., Morris, T., Biasi, R. et al. Prototyping ao rtc using emerging high

performance computing technologies with the green flash project, 2018. URL

https://doi.org/10.1117/12.2312686.

Greenwood, D.P. and Fried, D.L. Power spectra requirements for wave-front-

compensative systems∗. J. Opt. Soc. Am., 66(3):193–206, Mar 1976. doi:

10.1364/JOSA.66.000193. URL http://www.osapublishing.org/abstract.

cfm?URI=josa-66-3-193.

Guesalaga, A., Neichel, B., O’Neal, J. et al. Mitigation of vibrations in adaptive

optics by minimization of closed-loop residuals. Optics express, 21(9):10676–

10696, 2013. ISSN 1094-4087 (Electronic). doi: 10.1364/OE.21.010676.

Guyon, O. Extreme adaptive optics. Annual Review of Astronomy and Astro-

physics, 56(1):315–355, 2018. doi: 10.1146/annurev-astro-081817-052000. URL

https://doi.org/10.1146/annurev-astro-081817-052000.

Guyon, O., Sevin, A., Gratadour, D. et al. The compute and control for adaptive

optics (cacao) real-time control software package, 2018. URL https://doi.org/

10.1117/12.2314315.

Hardy, J. Adaptive Optics for Astronomical Telescopes. Oxford Series in Optical

& Ima. Oxford University Press, 1998. ISBN 9780195090192. URL https:

//books.google.co.uk/books?id=-0aAWyckS_8C.

Herriot, G., Morris, S., Roberts, S.C. et al. Innovations in gemini adaptive optics

system design, 1998. URL https://doi.org/10.1117/12.321684.

Herriot, G., Andersen, D., Atwood, J. et al. Nfiraos: first facility ao system for the

thirty meter telescope, 2014. URL https://doi.org/10.1117/12.2055525.

Hippler, S. Adaptive Optics for Extremely Large Telescopes. arXiv e-prints, Aug.

2018.

IEEE. Ieee standard for floating-point arithmetic, Aug 2008.

184

https://doi.org/10.1117/12.2312686
http://www.osapublishing.org/abstract.cfm?URI=josa-66-3-193
http://www.osapublishing.org/abstract.cfm?URI=josa-66-3-193
https://doi.org/10.1146/annurev-astro-081817-052000
https://doi.org/10.1117/12.2314315
https://doi.org/10.1117/12.2314315
https://books.google.co.uk/books?id=-0aAWyckS_8C
https://books.google.co.uk/books?id=-0aAWyckS_8C
https://doi.org/10.1117/12.321684
https://doi.org/10.1117/12.2055525

Bibliography

Intel. A guide to auto-vectorization with intel c++ compilers, 2012.

URL https://software.intel.com/en-us/articles/a-guide-to-auto-

vectorization-with-intel-c-compilers. [Online; accessed 27-September-

2017].

Intel. Memory modes and cluster modes: Configuration and use cases, 2015. URL

https://software.intel.com/en-us/articles/intel-xeon-phi-x200-

processor-memory-modes-and-cluster-modes-configuration-and-use-

cases. [Online; accessed 27-September-2017].

Intel. Intel xeon phi processor 7200 family memory management optimizations,

2016. URL https://software.intel.com/en-us/articles/intel-xeon-

phi-processor-7200-family-memory-management-optimizations. [Online;

accessed 27-September-2017].

Intel. Intelxeon phi processors, 2017a. URL https://www.intel.com/content/

www/us/en/products/processors/xeon-phi/xeon-phi-processors.html.

[Online; accessed 27-September-2017].

Intel. Step by step performance optimization with intel c++ compiler,

2017b. URL https://software.intel.com/en-us/articles/step-by-step-

optimizing-with-intel-c-compiler.

Jenkins, D., 2019. URL https://commons.wikimedia.org/wiki/File:

ZernikePolynome6.svg. “ZernikePolynome6”, Reordered the tip-

tilt modes and resized the legend by d.r.jenkins@durham.ac.uk,

https://creativecommons.org/licenses/by-sa/3.0/legalcode.

Jenkins, D., Basden, A.G., Myers, R.M. et al. Multi-node homogeneous xeon phi

architecture for elt scale adaptive optics rtc (conference presentation). volume

10707, 2 2018a. doi: 10.1117/12.2313943. URL https://doi.org/10.1117/12.

2313943.

185

https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers
https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
https://software.intel.com/en-us/articles/intel-xeon-phi-processor-7200-family-memory-management-optimizations
https://software.intel.com/en-us/articles/intel-xeon-phi-processor-7200-family-memory-management-optimizations
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler
https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler
https://commons.wikimedia.org/wiki/File:ZernikePolynome6.svg
https://commons.wikimedia.org/wiki/File:ZernikePolynome6.svg
https://doi.org/10.1117/12.2313943
https://doi.org/10.1117/12.2313943

Bibliography

Jenkins, D.R., Basden, A. and Myers, R.M. Elt-scale real-time control on intel

xeon phi and many core cpus. 2017. doi: 10.26698/AO4ELT5.0046.

Jenkins, D.R., Basden, A. and Myers, R.M. Elt-scale adaptive optics real-time

control with the intel xeon phi many integrated core architecture. Monthly

Notices of the Royal Astronomical Society, 478(3):3149–3158, 2018b. doi:

10.1093/mnras/sty1310. URL http://dx.doi.org/10.1093/mnras/sty1310.

Jenkins, D.R., Basden, A.G., Myers, R.M. et al. An elt scale mcao real-time control

prototype using xeon phi technologies. volume 10703, pages 10703 – 10703 – 7, 1

2018c. doi: 10.1117/12.2312845. URL https://doi.org/10.1117/12.2312845.

Jenkins, D.R., Basden, A. and Myers, R.M. A many-core cpu prototype of an mcao

and ltao rtc for elt-scale instruments. Monthly Notices of the Royal Astronomical

Society, 2019.

Jensen-Clem, R., Duev, D.A., Riddle, R. et al. The performance of the robo-AO

laser guide star adaptive optics system at the kitt peak 2.1 m telescope. The

Astronomical Journal, 155(1):32, dec 2017.

Johns, M., Angel, R., Shectman, S. et al. Status of the giant magellan telescope

(gmt) project. volume 5489, pages 5489 – 5489 – 13, 2004. doi: 10.1117/12.

550741. URL http://dx.doi.org/10.1117/12.550741.

Johnston, D.C. and Welsh, B.M. Analysis of multiconjugate adaptive optics.

Journal of the Optical Society of America A, 11:394–408, Jan. 1994. doi:

10.1364/JOSAA.11.000394.

Jorden, P., Bourke, D., Cassidy, R. et al. Teledyne e2v sensors optimised for

ground-based and space applications, 2018. URL https://doi.org/10.1117/

12.2310097.

Kasper, M.E., Charton, J., Delabre, B. et al. Lgs implementation for naos, 2004.

URL https://doi.org/10.1117/12.551650.

186

http://dx.doi.org/10.1093/mnras/sty1310
https://doi.org/10.1117/12.2312845
http://dx.doi.org/10.1117/12.550741
https://doi.org/10.1117/12.2310097
https://doi.org/10.1117/12.2310097
https://doi.org/10.1117/12.551650

Bibliography

Kerrisk, M. Packet(7) linux programmer’s manual, 2018. URL http://man7.org/

linux/man-pages/man7/packet.7.html.

Kolmogorov, A.N. Dissipation of energy in the locally isotropic turbulence. Pro-

ceedings: Mathematical and Physical Sciences, 434(1890):15–17, 1991. ISSN

09628444. URL http://www.jstor.org/stable/51981.

Kulcsár, C., Raynaud, H.F., Petit, C. et al. Optimal control, observers and integra-

tors in adaptive optics. Optics express, 14(17):7464–7476, 2006. ISSN 1094-4087.

doi: 10.1364/OE.14.007464.

Kulcsár, C., Raynaud, H.F., Petit, C. et al. Minimum variance prediction and

control for adaptive optics. Automatica, 48(9):1939–1954, 2012. ISSN 00051098.

doi: 10.1016/j.automatica.2012.03.030. URL http://dx.doi.org/10.1016/j.

automatica.2012.03.030.

Lardière, O., Nash, R., Markes, J.P. et al. Final opto-mechanical design of Raven, a

MOAO science demonstrator for Subaru. In Adaptive Optics Systems III, volume

8447 of Proc.SPIE, page 844753, July 2012. doi: 10.1117/12.927176.

Lardière, O., Ono, Y., Dave, A. et al. On-sky results of Raven, a MOAO sci-

ence demonstrator at Subaru Telescope. In Adaptive Optics for Extremely Large

Telescopes IV (AO4ELT4), page E77, Oct. 2015.

Larkin, J.E., Moore, A.M., Wright, S.A. et al. The infrared imaging spectrograph

(iris) for tmt: instrument overview, 2016. URL https://doi.org/10.1117/12.

2232212.

Li, Z. and Li, X. Fundamental performance of transverse wind estimator

from shack-hartmann wave-front sensor measurements. Opt. Express, 26(9):

11859–11876, Apr 2018. doi: 10.1364/OE.26.011859. URL http://www.

opticsexpress.org/abstract.cfm?URI=oe-26-9-11859.

187

http://man7.org/linux/man-pages/man7/packet.7.html
http://man7.org/linux/man-pages/man7/packet.7.html
http://www.jstor.org/stable/51981
http://dx.doi.org/10.1016/j.automatica.2012.03.030
http://dx.doi.org/10.1016/j.automatica.2012.03.030
https://doi.org/10.1117/12.2232212
https://doi.org/10.1117/12.2232212
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-9-11859
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-9-11859

Bibliography

Lozi, J., Guyon, O., Jovanovic, N. et al. Scexao, an instrument with a dual purpose:

perform cutting-edge science and develop new technologies, 2018. URL https:

//doi.org/10.1117/12.2314282.

Macintosh, B., Graham, J.R., Ingraham, P. et al. First light of the Gemini Planet

Imager. Proceedings of the National Academy of Science, 111:12661–12666, Sept.

2014. doi: 10.1073/pnas.1304215111.

Madec, P.Y., Arsenault, R., Kuntschner, H. et al. Adaptive optics facility: from an

amazing present to a brilliant future..., 2018. URL https://doi.org/10.1117/

12.2312428.

Marchetti, E., Hubin, N.N., Fedrigo, E. et al. MAD the ESO multi-conjugate

adaptive optics demonstrator. In Wizinowich, P.L. and Bonaccini, D., editors,

Adaptive Optical System Technologies II, volume 4839 of Proc.SPIE, pages 317–

328, Feb. 2003. doi: 10.1117/12.458859.

Marchetti, E., Brast, R., Delabre, B. et al. On-sky Testing of the Multi-Conjugate

Adaptive Optics Demonstrator. The Messenger, 129:8–13, Sept. 2007.

Marechal, A. Rev. d’Optique, 26, 257, 1947.

McCalpin, J.D. Memory bandwidth and machine balance in current high perfor-

mance computers. IEEE Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, pages 19–25, Dec. 1995.

McDermid, R.M., Bacon, R., Bauer, S. et al. Muse: A second-generation integral-

field spectrograph for the vlt. In Kaufer, A. and Kerber, F., editors, The 2007

ESO Instrument Calibration Workshop, pages 325–336, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg. ISBN 978-3-540-76963-7.

McLeod, B., Bouchez, A.H., Espeland, B. et al. The giant magellan telescope active

optics system, 2014. URL https://doi.org/10.1117/12.2056435.

188

https://doi.org/10.1117/12.2314282
https://doi.org/10.1117/12.2314282
https://doi.org/10.1117/12.2312428
https://doi.org/10.1117/12.2312428
https://doi.org/10.1117/12.2056435

Bibliography

Mellanox. Mellanox bluefield smartnic, 2018. URL http://www.mellanox.com/

related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf.

Merkle, F., Rousset, G., Kern, P. et al. First diffraction-limited astronomical

images with adaptive optics. Proc.SPIE, 1236 pt 1(1990):193–202, 1990.

ISSN 0277786X. doi: 10.1117/12.19189. URL http://www.scopus.com/

inward/record.url?eid=2-s2.0-17044445365{&}partnerID=40{&}md5=

cd3a9dfeb3694b08517e302d7de5e13f.

Morzinski, K.M., Close, L.M., Males, J.R. et al. MagAO: Status and on-sky perfor-

mance of the Magellan adaptive optics system. In Adaptive Optics Systems IV,

volume 9148 of Proc.SPIE, page 914804, July 2014. doi: 10.1117/12.2057048.

Murphy, D.V., Primmerman, C.A., Zollars, B.G. et al. Experimental demonstra-

tion of atmospheric compensation using multiple synthetic beacons. Optics Let-

ters, 16:1797–1799, Nov. 1991. doi: 10.1364/OL.16.001797.

Myers, R.M., Doel, A.P., Dunlop, C.N. et al. Astronomical adaptive optics system

for use on a 4-m-class telescope at optical wavelengths. In Ealey, M.A. and

Merkle, F., editors, Adaptive Optics in Astronomy, volume 2201 of Proc.SPIE,

pages 437–446, May 1994. doi: 10.1117/12.176077.

Myers, R.M., Hubert, Z., Morris, T.J. et al. Canary: the on-sky ngs/lgs moao

demonstrator for eagle, 2008. URL https://doi.org/10.1117/12.789544.

Nakajima, T. Planet detectability by an adaptive optics stellar coronagraph. ApJ,

425:348–357, Apr. 1994. doi: 10.1086/173990.

N’Diaye, M., Dohlen, K., Fusco, T. et al. Calibration of quasi-static aberrations

in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. As-

tronomy & Astrophysics, 555:A94, Jul 2013. doi: 10.1051/0004-6361/201219797.

Neichel, B., Fusco, T., Sauvage, J.F. et al. The adaptive optics modes for harmoni:

from classical to laser assisted tomographic ao. volume 9909, pages 9909 – 9909

189

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-17044445365{&}partnerID=40{&}md5=cd3a9dfeb3694b08517e302d7de5e13f
http://www.scopus.com/inward/record.url?eid=2-s2.0-17044445365{&}partnerID=40{&}md5=cd3a9dfeb3694b08517e302d7de5e13f
http://www.scopus.com/inward/record.url?eid=2-s2.0-17044445365{&}partnerID=40{&}md5=cd3a9dfeb3694b08517e302d7de5e13f
https://doi.org/10.1117/12.789544

Bibliography

– 15, 2016. doi: 10.1117/12.2231681. URL https://doi.org/10.1117/12.

2231681.

Noll, R.J. Zernike polynomials and atmospheric turbulence∗. J. Opt. Soc. Am.,

66(3):207–211, Mar 1976. doi: 10.1364/JOSA.66.000207. URL http://www.

osapublishing.org/abstract.cfm?URI=josa-66-3-207.

OpenMP Architecture Review Board. OpenMP application program interface ver-

sion 4.5, 2015. URL http://www.openmp.org/wp-content/uploads/openmp-

4.5.pdf. [Online; accessed 27-September-2017].

Osborn, J., Wilson, R.W., Sarazin, M. et al. Optical turbulence profiling with

Stereo-SCIDAR for VLT and ELT. MNRAS, 478:825–834, July 2018. doi: 10.

1093/mnras/sty1070.

Papermaster, M. Amd next horizon, 2018. URL https://www.amd.com/system/

files/documents/next_horizon_mark_papermaster_presentation.pdf.

Pazder, J.S., Roberts, S., Abraham, R. et al. Wfos: a wide field optical spectro-

graph for the thirty meter telescope, 2006. URL https://doi.org/10.1117/

12.672712.

Petit, C., Conan, J.M., Kulcsár, C. et al. First laboratory validation of vibration

filtering with LQG control law for adaptive optics. Optics express, 16(1):87–97,

2008. ISSN 1094-4087. doi: 10.1364/OE.16.000087. URL http://www.ncbi.

nlm.nih.gov/pubmed/18521135.

Pettazzi, L., Fedrigo, E. and Clare, R. Impact of latency and jitter on the perfor-

mance of adaptive optics systems for elts, 2012. URL https://www.eso.org/

sci/meetings/2012/RTCWorkshop/1_2_fedrigo.pdf.

Piatrou, P. and Gilles, L. Robustness study of the pseudo open-loop controller

for multiconjugate adaptive optics. Appl. Opt., 44(6):1003–1010, Feb 2005. doi:

10.1364/AO.44.001003. URL http://ao.osa.org/abstract.cfm?URI=ao-44-

6-1003.

190

https://doi.org/10.1117/12.2231681
https://doi.org/10.1117/12.2231681
http://www.osapublishing.org/abstract.cfm?URI=josa-66-3-207
http://www.osapublishing.org/abstract.cfm?URI=josa-66-3-207
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.amd.com/system/files/documents/next_horizon_mark_papermaster_presentation.pdf
https://www.amd.com/system/files/documents/next_horizon_mark_papermaster_presentation.pdf
https://doi.org/10.1117/12.672712
https://doi.org/10.1117/12.672712
http://www.ncbi.nlm.nih.gov/pubmed/18521135
http://www.ncbi.nlm.nih.gov/pubmed/18521135
https://www.eso.org/sci/meetings/2012/RTCWorkshop/1_2_fedrigo.pdf
https://www.eso.org/sci/meetings/2012/RTCWorkshop/1_2_fedrigo.pdf
http://ao.osa.org/abstract.cfm?URI=ao-44-6-1003
http://ao.osa.org/abstract.cfm?URI=ao-44-6-1003

Bibliography

Poyneer, L.A., De Rosa, R.J., Macintosh, B. et al. On-sky performance during

verification and commissioning of the Gemini Planet Imager’s adaptive optics

system. In Adaptive Optics Systems IV, volume 9148 of Proc.SPIE, page 91480K,

July 2014. doi: 10.1117/12.2057092.

Quirós-Pacheco, F., Busoni, L., Agapito, G. et al. First light ao (flao) system for

lbt: performance analysis and optimization, 2010. URL https://doi.org/10.

1117/12.858208.

Racine, R., Salmon, D., Cowley, D. et al. Mirror, dome, and natural seeing at

CFHT. PASP, 103:1020–1032, Sept. 1991. doi: 10.1086/132920.

Ré, P. CCD ASTROPHOTOGRAPHY by Pedro Ré, 2019. URL http://www.

astrosurf.com/re/standard.jpg. [Online; accessed 21-March-2019].

Riddle, R., Baranec, C., Law, N.M. et al. Robo-AO: Initial results from the first

autonomous laser guide star adaptive optics instrument. Contributions of the

Astronomical Observatory Skalnate Pleso, 43:190–199, Mar. 2014.

Rigaut, F. Ground Conjugate Wide Field Adaptive Optics for the ELTs. In Ver-

net, E., Ragazzoni, R., Esposito, S. et al, editors, European Southern Observatory

Conference and Workshop Proceedings, volume 58 of European Southern Obser-

vatory Conference and Workshop Proceedings, page 11, 2002.

Rigaut, F. and Gendron, E. Laser guide star in adaptive optics - The tilt determi-

nation problem. Astronomy & Astrophysics, 261:677–684, Aug. 1992.

Rigaut, F., Neichel, B., Boccas, M. et al. GeMS: first on-sky results. In Adaptive

Optics Systems III, volume 8447 of Proc.SPIE, page 84470I, July 2012. doi:

10.1117/12.927061.

Roddier, F. Curvature sensing and compensation: a new concept in adaptive

optics. Appl. Opt., 27(7):1223–1225, Apr 1988. doi: 10.1364/AO.27.001223.

URL http://ao.osa.org/abstract.cfm?URI=ao-27-7-1223.

191

https://doi.org/10.1117/12.858208
https://doi.org/10.1117/12.858208
http://www.astrosurf.com/re/standard.jpg
http://www.astrosurf.com/re/standard.jpg
http://ao.osa.org/abstract.cfm?URI=ao-27-7-1223

Bibliography

Rodríguez-Ramos, L.F., Chulani, H., Martín, Y. et al. FPGA-based real time

controller for high order correction in EDIFISE. In Adaptive Optics Systems III,

volume 8447, page 84472R, jul 2012. doi: 10.1117/12.925352.

Rosensteiner, M. Wavefront reconstruction for extremely large telescopes via cure

with domain decomposition. J. Opt. Soc. Am. A, 29(11):2328–2336, Nov 2012.

doi: 10.1364/JOSAA.29.002328. URL http://josaa.osa.org/abstract.cfm?

URI=josaa-29-11-2328.

Rousset, G., Lacombe, F., Puget, P. et al. Design of the nasmyth adaptive optics

system (naos) of the vlt, 1998. URL https://doi.org/10.1117/12.321686.

Rousset, G., Lacombe, F., Puget, P. et al. Naos–the first ao system of the vlt:

on-sky performance, 2003. URL https://doi.org/10.1117/12.459332.

Rousset, G., Fusco, T., Assemat, F. et al. EAGLE multi-object AO concept study

for the E-ELT. In Adaptative Optics for Extremely Large Telescopes, page 02008,

2010. doi: 10.1051/ao4elt/201002008.

Salama, M., Baranec, C., Jensen-Clem, R. et al. Robo-ao kitt peak: status of the

system and deployment of a sub-electron readnoise ir camera to detect low-mass

companions, 2016. URL https://doi.org/10.1117/12.2233741.

Sarazin, M., Le Louarn, M., Ascenso, J. et al. Defining reference turbulence profiles

for e-elt ao performance simulations. In Esposito, S. and Fini, L., editors, Pro-

ceedings of the Third AO4ELT Conference, Firenze, 2013. INAF - Osservatorio

Astrofisico di Arcetri. ISBN 978-88-908876-0-4. doi: 10.12839/AO4ELT3.13383.

Schreiber, L., Feautrier, P., Stadler, E. et al. The maory laser guide star wavefront

sensor: design status. volume 10703, pages 10703 – 10703 – 9, 2018. doi: 10.

1117/12.2314467. URL https://doi.org/10.1117/12.2314467.

Schwartz, N., Sauvage, J.F., Correia, C. et al. Analysis and mitigation of pupil

discontinuities on adaptive optics performance. volume 10703, pages 10703 –

192

http://josaa.osa.org/abstract.cfm?URI=josaa-29-11-2328
http://josaa.osa.org/abstract.cfm?URI=josaa-29-11-2328
https://doi.org/10.1117/12.321686
https://doi.org/10.1117/12.459332
https://doi.org/10.1117/12.2233741
https://doi.org/10.1117/12.2314467

Bibliography

10703 – 12, 2018. doi: 10.1117/12.2313129. URL https://doi.org/10.1117/

12.2313129.

Sharples, R.M., Doel, A.P., Dunlop, C.N. et al. Co-Phasing of Segmented Mirrors

Using Neural Networks. In Merkle, F., editor, European Southern Observatory

Conference and Workshop Proceedings, volume 48 of European Southern Obser-

vatory Conference and Workshop Proceedings, page 475, Jan. 1994.

Shimizu, T. Post-k supercomputer with fujitsu’s original cpu, a64fx powered

by arm isa, 2018. URL https://www.fujitsu.com/global/Images/post-

k_supercomputer_with_fujitsu’s_original_cpu_a64fx_powered_by_arm_

isa.pdf.

Spyromilio, J., Comerón, F., D’Odorico, S. et al. Progress on the European Ex-

tremely Large Telescope. The Messenger, 133:2–8, Sept. 2008.

Stahl, S.M. and Sandler, D.G. Optimization and Performance of Adaptive Optics

for Imaging Extrasolar Planets. ApJ, 454:L153, Dec. 1995. doi: 10.1086/309777.

Stepp, L.M. and Strom, S.E. The Thirty-Meter Telescope project design and devel-

opment phase. In Ardeberg, A.L. and Andersen, T., editors, Second Backaskog

Workshop on Extremely Large Telescopes, volume 5382 of Proc.Spie, pages 67–75,

July 2004. doi: 10.1117/12.566105.

Ströbele, S., La Penna, P., Arsenault, R. et al. GALACSI system design and

analysis. In Adaptive Optics Systems III, volume 8447 of Proc.SPIE, page 844737,

July 2012. doi: 10.1117/12.926110.

Tallon, M. and Foy, R. Adaptive telescope with laser probe - Isoplanatism and

cone effect. Astronomy & Astrophysics, 235:549–557, Aug. 1990.

Tatarskii, V.I. Wave Propagation in Turbulent Medium. McGraw-Hill, 1961.

Tatarskii, V.I. The effects of the turbulent atmosphere on wave propagation. 1971.

193

https://doi.org/10.1117/12.2313129
https://doi.org/10.1117/12.2313129
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu's_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu's_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu's_original_cpu_a64fx_powered_by_arm_isa.pdf

Bibliography

Thatte, N.A., Clarke, F., Bryson, I. et al. Harmoni: the first light integral field

spectrograph for the e-elt. volume 9147, pages 9147 – 9147 – 11, 2014. doi:

10.1117/12.2055436. URL https://doi.org/10.1117/12.2055436.

Thatte, N.A., Clarke, F., Bryson, I. et al. The E-ELT first light spectrograph

HARMONI: capabilities and modes. In Ground-based and Airborne Instrumen-

tation for Astronomy VI, volume 9908 of Proc.SPIE, page 99081X, Aug. 2016.

doi: 10.1117/12.2230629.

The-CentOS-Project. Centos linux, 2001. URL https://www.centos.org/about/.

[Online; accessed 27-September-2017].

The Linux Kernel. The kernel’s command-line parameters, 2019. URL https://

www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html.

‘The-Open-Group’. The open group base specifications issue 7, 2016. URL

http://pubs.opengroup.org/onlinepubs/9699919799.2016edition/. [On-

line; accessed 27-September-2017].

Townson, Mathew, J. Correlation wavefront sensing and turbulence profiling for

solar adaptive optics, 2016.

Truong, T.N., Bouchez, A.H., Burruss, R.S. et al. Design and implementation of

the palm-3000 real-time control system. In Proc.SPIE, volume 8447, pages 8447

– 8447 – 9, 2012. doi: 10.1117/12.927867. URL http://dx.doi.org/10.1117/

12.927867.

Tyson, R. Principles of Adaptive Optics, Third Edition. Series in Optics and

Optoelectronics. CRC Press, 2010. ISBN 9781439808597. URL https://books.

google.co.uk/books?id=x1PUYBvHHqcC.

Ulrich, P. Hufnagel-valley profiles for specified values of the coherence lenght and

isoplanatic patch angle. W. J. Schafer Associates, WJSA/MA/TN-88-103, 1988.

194

https://doi.org/10.1117/12.2055436
https://www.centos.org/about/
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
http://pubs.opengroup.org/onlinepubs/9699919799.2016edition/
http://dx.doi.org/10.1117/12.927867
http://dx.doi.org/10.1117/12.927867
https://books.google.co.uk/books?id=x1PUYBvHHqcC
https://books.google.co.uk/books?id=x1PUYBvHHqcC

Bibliography

van Kooten, M. Investigation of alternative pyramid wavefront sensors. Master’s

thesis, University of Victoria, 2016.

Vernet, E., Cayrel, M., Hubin, N. et al. On the way to build the m4 unit for the

e-elt, 2014. URL https://doi.org/10.1117/12.2056281.

Vigan, A., Bonnefoy, M., Ginski, C. et al. First light of the VLT planet finder

SPHERE. I. Detection and characterization of the substellar companion GJ 758

B. A&A, 587:A55, Mar. 2016. doi: 10.1051/0004-6361/201526465.

Wizinowich, P.L., Acton, D.S., Gregory, T. et al. Status of the W.M. Keck Adaptive

Optics Facility. In Bonaccini, D. and Tyson, R.K., editors, Adaptive Optical

System Technologies, volume 3353 of Proc.SPIE, pages 568–578, Sept. 1998. doi:

10.1117/12.321714.

Wizinowich, P.L., Le Mignant, D., Bouchez, A.H. et al. The W. M. Keck Obser-

vatory Laser Guide Star Adaptive Optics System: Overview. Publications of the

ASP, 118:297–309, Feb. 2006. doi: 10.1086/499290.

Wolfe, W.L. and Zissis, G.J. The infrared handbook. 1985.

Xompero, M., Briguglio, R., Pariani, G. et al. Fitting error analysis and perfor-

mance evaluation of m4 deformable mirror. volume 10703, pages 10703 – 10703

– 11, 2018. doi: 10.1117/12.2310105. URL https://doi.org/10.1117/12.

2310105.

Zernike, F. Diffraction theory of the knife-edge test and its improved form, the

phase-contrast method. Monthly Notices of the Royal Astronomical Society, 94:

377–384, Mar. 1934. doi: 10.1093/mnras/94.5.377.

195

https://doi.org/10.1117/12.2056281
https://doi.org/10.1117/12.2310105
https://doi.org/10.1117/12.2310105

Colophon

This thesis was typeset with LATEX2ε. It was created using the memoir package,

maintained by Lars Madsen, with the madsen chapter style. The font used is Latin

Modern, derived from fonts designed by Donald E. Kunith.

	Declaration
	Acronyms
	Nomenclature
	Introduction
	Motivation
	Adaptive Optics
	Characterising the atmosphere
	Representing the Aberrated Wavefront
	Performance Estimation

	AO Classifications / Types of AO
	Single Conjugate AO
	Laser Tomographic AO
	Multi Conjugate AO
	Other AO Types

	ELT-scale AO
	Real-time control of AO
	RTC Latency and Jitter
	ELT-scale AO RTC

	Real-time Controller Hardware
	CPU systems
	Xeon Phi Knights Landing
	Multi Socket CPU Systems

	Hardware Accelerator Cards
	General Purpose GPUs
	Xeon Phi Knights Corner

	FPGAs and DSPs

	Thesis Synopsis

	Real Time Control
	The Wavefront Reconstruction pipeline
	WFS Imaging
	Image Calibration
	WFS Slope Calculation
	Shack-Hartman WFS Processing
	Pyramid WFS Processing

	Wavefront Reconstruction
	Applying the Correction

	Wavefront Reconstruction Techniques
	Classical MVM Control
	Least-squares Reconstruction
	Minimum Variance Control

	Optimal LQG Control
	Mitigation of Vibrations in AO

	Many-core CPU RTC and ELT-scale Optimisations
	Current RTCs and their Suitabilty for ELT-scale
	Other ELT-scale Investigations
	Suitability of Many-core CPUs for AO RTC
	Reducing Latency and Improving Jitter

	Best case performance for ELT-scale SCAO RTC
	The Durham Adaptive Optics Real Time Controller
	Optimisations for many-core operation
	Software Profiling
	Multi-threading of Subaperture Processing
	Explicit Subaperture Thread Allocation
	Batch Processing of Subapertures

	MVM Optimisations
	Vectorisation
	16-bit Floating Point Control Matrix

	Reduction of Partial DM Vectors

	Host Optimisation and Tuning
	Tuning the OS, Kernel and BIOS for Low Latency RTC
	Compiler Tuning

	CPU-based Network Camera Simulator
	UDP Camera DARC Module

	SCAO Demonstrator: Single Node SCAO
	The Best Case Simulator on Xeon Phi
	DARC on Xeon Phi for ELT scale AO RTC
	Storing the control matrix as 16 bit floating point values
	DARC SCAO with a real WFS camera
	DARC SCAO with the UDP camera simulator
	Batch Subaperture Allocation
	SCAO POLC
	Long Time Period AO RTC Operation
	Chapter Summary

	MCAO Demonstrator: Multi-node Xeon Phi Cluster
	Prototyping an MCAO and LTAO RTC
	UDP cameras simulator setup for MCAO/LTAO

	Results of testing the prototype
	Effect of streaming RTC telemetry on latency
	Effect of pseudo-open loop control on latency

	AO RTC Performance Evaluation
	Improving the correction with optimal control
	Further Investigation of the RTC software
	Camera Simulator Performance
	Effect of on-the-fly changes to RTC parameters on latency

	Multi-node Xeon Phi SCAO
	Other many-core CPU systems
	NUMA-aware DARC
	AMD EPYC: NUMA-aware DARC with pipelining

	Latency Contribution of RTC Processes

	Conclusions and Future work
	The Challenges of ELT-scale AO RTC
	Many-core CPUs with the DARC AO RTC
	ELT-scale SCAO RTC
	ELT-scale MCAO and LTAO RTC
	Considerations for ELT-scale AO Operation

	Future work
	Future Developments

	Final Remarks

	Bibliography
	Colophon

