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Abstract: Modelling the solar magnetic cycle requires the prescription of several

poorly-constrained parameters. Accurate simulations are desirable because the state

of the magnetic field at cycle minimum can be used to make predictions about the

following cycle.

Small-scale parameter surveys have previously been performed in this area, but

usually not with global coverage of the parameter space. In this thesis, a genetic

algorithm is used to systematically search for optimal parameters for 1D and 2D

surface flux transport models, with a view to applying the same technique to a

kinematic 3D dynamo model. The method successfully obtains good matches with

observations when applied to surface flux transport models. However, for more

complex models a more efficient method might be needed. Such a method is Bayesian

emulation and history matching, so we apply this method to the surface flux transport

models and successfully recreate our results.

The contributions of individual active regions to the Sun’s axial dipole moment are

assessed by simulating the evolution of each region separately from the others. It

transpires that a small number of active regions can have a significant effect on

the end-of-solar-cycle dipole moment and hence the subsequent cycle. However,

the cumulative effect of less important regions should not be ignored. Emergence

latitude is the primary property of an active region in determining its contribution



to the axial dipole moment.

Finally, a discrepancy between the surface evolution in the surface flux transport

model and dynamo model is investigated using a simple 2D diffusion model. The

difference is due to radial diffusion which is not present in the surface-only model.

An improved, yet suboptimal, match is obtained when either the diffusivity in

the convection zone is increased, or the field lines of active regions are manually

disconnected from the underlying toroidal field. Increasing diffusivity is a means

of disconnecting regions from the toroidal field whilst conserving flux. However, it

does not yet appear possible to maintain the dynamo with such a strong diffusivity,

although a more thorough parameter optimization could solve this problem.
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Chapter 1

Introduction

The Sun is a large mass of incandescent gas which sits at the centre of the Solar

System. Even before heliocentrism became generally accepted as the astronomical

model of our stellar system, humans were aware of the Sun’s light- and life-giving

energy and took time to study it in detail, recording its various temporal behaviours,

even worshipping it as a deity. It is no wonder, then, that research of the Sun

remains a pivotal area in astrophysics.

The Sun has a radius of R� ≈ 696 000 km (Emilio et al., 2012; Mamajek et al.,

2015), and much like the Earth its interior is made up of different layers (Figure

1.1). In the centre is the core, which is responsible for the production of nuclear

energy via the fusion of hydrogen to form helium. In the radiative zone, the energy

generated in the core is transported outwards from ∼ 0.25R� by radiation, before

reaching the convection zone at ∼ 0.7R�. Here the temperature gradient is too

sharp to maintain static equilibrium, so an instability is induced and convective

motions take control, transporting the energy to the surface (Tobias, 2002). In

Figure 1.2 we see granulation on the solar surface caused by convection, with granule

diameter being of the order 1000 km. The lighter areas represent convective upflows,

whilst the dark, thin lines represent convective downflows. Larger granular patterns

known as mesogranulation (∼ 5000 km) and supergranulation (∼ 32 000 km) have

been observed (Rast, 2003; Rieutord & Rincon, 2010), the latter of which is the most
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Figure 1.1: The solar interior. Energy is transported radially
outwards due to radiation before convective motions
take over at approximately 0.7R�. Taken from
http://tuttidentro.files.wordpress.com.

important for the topics studied in this thesis, and is shown in Figure 1.3. This

image was captured by Doppler imaging (Hart, 1954); red regions are where plasma

is moving away from the viewer and blue areas are where material is moving towards

the viewer. This is a line-of-sight image, indicating that motion is predominantly

horizontal since the signal is weaker at the centre.

The solar atmosphere also consists of three ‘layers’. The familiar visible surface is

called the photosphere, where we observe features such as sunspots and convective

granulation. Above this is the chromosphere where, using extreme ultraviolet and Hα

images, we can observe bright plage regions, filamentary structures and prominences.

The outermost atmosphere is called the corona, where temperatures rise to above

106 K, much hotter than the 20 000K of the chromosphere and 6000K of the photo-

sphere. This phenomenon is surprising, and the so-called ‘coronal heating problem’

remains a major topic of debate in solar physics and magnetohydrodynamics (MHD).

We know that the corona is heated ultimately by the conversion of magnetic energy

(De Moortel & Browning, 2015), but the precise mechanism is still unknown. The

most prominent theories are heating either by waves or by (nano-)flares.

In any case, observations of the atmosphere have aided us in understanding the
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Figure 1.2: Granulation pattern on the surface of the Sun caused
by small-scale convection of plasma. Lighter areas
represent convective upflows and dark areas rep-
resent convective downflows. Obtained using the
Swedish Vacuum Solar Telescope. Taken from
http://solarscience.msfc.nasa.gov.

Figure 1.3: Supergranulation on the surface of the Sun indicating
large-scale convection. Obtained using Doppler ima-
ging of the photospheric velocity from SOHO MDI/SOI.
Taken from http://solarscience.msfc.nasa.gov.
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process by which flares and coronal mass ejections (CMEs) occur (e.g. van Driel-

Gesztelyi & Culhane, 2009; Chen, 2011; Benz, 2017). While the specific mechanism

for these eruptions is still an active area of research, it is understood that the Sun’s

magnetic field is responsible. Flares and CMEs release emissions across the elec-

tromagnetic spectrum into space through the solar wind. If these solar energetic

particles (SEPs) reach the Earth, they interact with our magnetic field. This inter-

action can have positive impacts such as the famous aurora, but can also induce

strong electric currents and disturbances in the ionosphere, affecting power grids and

communication/signal transmission respectively. The effects of SEPs and magnetic

disturbances on the Earth are collectively known as ‘space weather’.

1.1 The solar cycle

With the introduction of space weather onto the UK National Risk Registera, the

importance of understanding the impact of magnetic activity in the Solar System

has never been higher. In particular, the behaviour of the Sun’s magnetic field can

have adverse effects on technology and business, as observed during the ‘Carrington

event’, a large solar storm in 1859 which, while beautiful and spectacular through the

manifestation of aurorae, wiped out telegraph networks across the globe (Carrington,

1859; Hodgson, 1859; Green et al., 2006). It is estimated that the disruption caused

by an event of similar magnitude today could cost the US alone $ 1–2 trillion, with

the global economy facing a loss of up to $ 3.4 trillion (Schulte in den Bäumen

et al., 2014; Schrijver, 2015; Schrijver et al., 2015). Moreover, the ejection of highly

energized particles would be harmful for any space-based astronauts outside the

protection of the Earth’s magnetic field. Additional financial losses could arise with

the destruction of satellites and other spacecraft. After having researched a variety

of historical records, Schrijver & Beer (2014) concluded that even more energetic

ahttps://www.gov.uk/government/publications/national-risk-register-for-civil-emergencies-
2015-edition
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events are possible.

To predict when a catastrophic event could reoccur requires robust models for the

evolution of the Sun’s magnetic field. These in turn require understanding of the

Sun’s key physical features, as well as the regular recording of observational data.

The most accessible data come from sunspot records which have been collected for

hundreds of years.

Sunspots are cooler, darker patches on the solar surface which arise due to the

presence of strong magnetic fields (∼ 3000G), a feature discovered by George Ellery

Hale (Hale, 1908). While sunspots themselves have been recorded for centuries,

with earliest known recordings as far back as around 300BC (Vaquero, 2007), Hale

noticed that the Zeeman effect, that is, the splitting of spectral lines due to a

magnetic field, occurs in the umbra of a sunspot. The magnetic field suppresses

convection, resulting in an area of relatively low temperature (∼ 3800K, compared

to 6000K, the temperature of the surrounding photosphere) and hence a darker

region.

Sunspots follow a cyclic pattern with a period of approximately eleven years, first

documented by Heinrich Schwabe (Schwabe, 1844). At the start of a cycle, sunspots

appear at latitudes of ±30° in each hemisphere. As the cycle progresses, regions

of sunspot emergence (and hence emerging magnetic fields) migrate equatorward,

and by the end of the cycle sunspot emergence is generally restricted to around ±5°.

This pattern was discovered by Richard Carrington (Carrington, 1863), but is known

as ‘Spörer’s Law’ after the astronomer Gustav Spörer (Spörer, 1880), who refined

the work of Carrington. This cycle can be seen in the so-called ‘butterfly diagram’

(Figure 1.4) which shows latitudes of sunspot emergence over time.

The sunspot number is defined as the sum of the number of individual identifiable

sunspots and ten times the number of sunspot groups. This provides a reliable

estimate to the number of sunspots because there are on average ten spots within a

group. The sunspot number varies significantly between cycles, as shown in Figure

1.5 (Hathaway, 2010). What is striking in this figure is the decreased levels of sunspot
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Figure 1.4: Butterfly diagram showing the latitude and emer-
gence time of sunspots. Colour represents sun-
spot area in each latitudinal strip. Taken from
http://solarscience.msfc.nasa.gov.

Figure 1.5: Sunspot number over time. The Maunder Minimum
was a period of decreased magnetic activity. Taken
from http://solarscience.msfc.nasa.gov.

incidence between 1634 and 1715. This period is known as the ‘Maunder Minimum’

(Eddy, 1976), and was a genuine phenomenon where solar magnetic activity was at

a low. Abundances of 10Be and 14C, which can be found in polar icecaps and tree

rings respectively, are anti-correlated with magnetic activity since they are produced

by cosmic rays entering the Earth’s atmosphere, which are in turn modulated by the

solar wind. Analysis of these isotopes show grand minima similar to the Maunder

Minimum have occurred multiple times over thousands of years, with a mean period

of approximately 200 years (Beer, 2000). Magnetic activity continued during these

minima, but at a reduced level (Beer et al., 1998).
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Figure 1.6: Magnetic butterfly diagram from Kitt Peak magneto-
grams highlighting field reversal between solar cycles
21–23. Vertical dashed lines represent start/end points
of cycles as used in this thesis. Red is positive polarity,
blue is negative polarity, and units are in G.

1.2 The solar dynamo

Following Hale’s findings, the father and son team of Harold and Horace Babcock used

their newly-developed magnetograph to show that magnetic fields are ubiquitous

on the Sun, with a predominantly dipolar large-scale field (Babcock & Babcock,

1955). Thanks to the aforementioned discoveries we can now obtain full-disk images

of the Sun’s magnetic field at the surface and track its evolution, investigate large-

and small-scale structures, or piece the images together to form magnetic butterfly

diagrams, such as the one shown in Figure 1.6.

Figure 1.6 was obtained using full-disk images from the US National Solar Obser-

vatory, Kitt Peak, which underwent a polar field correction procedure described

by Petrie (2012). Red and blue areas represent positive and negative polarities

respectively, which reverse at the end of each sunspot cycle. It is clear that the

11-year sunspot cycle is actually due to a 22-year magnetic cycle (Hale, 1924). It is

now generally believed that this magnetic cycle is maintained by a magnetohydro-

dynamic dynamo operating in the convection zone (Larmor, 1919). A dynamo is the

process which describes the regeneration of the magnetic field, usually through some
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interaction between the field and the background flows. The magnetic field can be

decomposed into its toroidal (azimuthal) and poloidal (meridional) components, and

we tend to view the dynamo process as the cyclical generation of one component

from the other (Tobias, 2002).

Unfortunately we cannot observe or measure the magnetic field inside the Sun.

Nevertheless we have some indication of the dynamic processes occurring beneath the

surface thanks to helioseismology, the study of acoustic wave oscillations in the Sun.

In particular, the differential rotation profile of a large portion the solar interior has

been mapped out (Howe, 2009), as shown in Figure 1.7. The angular velocity in this

figure was obtained by applying a 1.5D regularized least squares inversion technique

to frequency splittings from observed oscillations in the solar interior, measurements

of which were made via the Solar and Heliospheric Observatory (SOHO) Michelson

Doppler Imager (MDI; Scherrer et al., 1995). This method is described in thorough

detail by Schou et al. (1998), but briefly, the angular velocity is expanded as:

Ω (r, θ) =
smax∑
s=0

Ωs(r)ψ(1)
2s (x), (1.2.1)

where x ≡ cos θ and the functions ψ(1)
2s (x) are chosen to be:

ψ
(1)
2s (x) = dP2s+1

dx
, (1.2.2)

where Pk (x) are Legendre polynomials (see Chapter 2).

It is clear that the surface rotation rate is faster at the equator than at higher

latitudes, and this trend continues throughout the convection zone. The radiative

zone, however, rotates more as a solid body, and there is a transition region between

which has the strongest radial shear, known as the tachocline (Spiegel & Zahn, 1992).

This thin, stably-stratified layer plays an important role in the dynamo process, as

described below. While the differential rotation is approximately stable over time,

small temporal variations have been observed (Howard, 1983). The origins and

dynamics of these torsional oscillations are still under investigation but they could

also play an important role in dynamo theory (Rempel, 2007; Guerrero et al., 2016).
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Figure 1.7: Meridional cut of the solar interior showing rotation rate
at different radii and latitudes. Contours are labelled
in nHz. The dashed line represents the base of the
convection zone, and tick marks highlight latitudes of
15°, 30°, 45°, 60° and 75°. Taken from Schou et al.
(1998).

Differential rotation contributes by stretching poloidal field azimuthally, so that

sections of field lines near the equator will be stretched further than those at slowly-

rotating higher latitudes. This produces toroidal field and provides the mechanism

for one stage of the dynamo process, known as the ω-effect. Converting toroidal field

back to poloidal field is not so straightforward. Parker (1955a) suggested that the

toroidal field is stretched radially by convective upflows then twisted by the Coriolis

effect to form small-scale poloidal loops. The net effect of these loops is a large-scale

poloidal field, as required. This is called the α-effect.

The simple solar dynamo recipe is then as follows: turbulent pumping (convective

downflow) sends poloidal flux to the tachocline at the base of the convection zone

(Tobias et al., 1998), where the effect of differential rotation is very strong (some

models instead rely on meridional flow and/or turbulent diffusion to transport the

poloidal flux down to the tachocline). Regions of intense magnetic flux are less dense

than their surroundings and hence become buoyant (Parker, 1955b). If they were

stored in the convection zone, they would rise to the surface on a shorter timescale

than the 11 years we observe in butterfly diagrams. Furthermore, the diffusion

rate in the turbulent convection zone may be too strong for field to be generated
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Figure 1.8: A sketch outlining the dynamo process. Taken from
Bushby & Mason (2004).

or maintained. It seems sensible therefore to place the dynamo at the base of the

convection zone where the turbulent diffusion effect is smaller. The poloidal field is

then stretched into toroidal field via the ω-effect, and this is transported back to the

convection zone by magnetic buoyancy and diffusion, where it is in turn deformed

by the α-effect to produce poloidal field. The poloidal field is carried down to the

tachocline again and the cycle continues. Only the strongest magnetic field will be

carried to the surface to form sunspots. This process is sketched in Figure 1.8.

There are numerous varieties of dynamo models in the literature, each with their

own strengths and limitations, but in this thesis we will focus on Babcock-Leighton

(B-L) dynamos, which are a type of flux transport dynamo (FTD). The appeal of

B-L dynamos is that they rely on the decay of sunspots (‘active regions’) at the

surface, as well as interior and surface flows, all of which can be observed to some

degree. Furthermore, they have been found to reproduce features of the solar cycle

discussed in Section 1.1 (Dikpati et al., 2004; Mackay & Yeates, 2012). However,

the reliance on sunspots can also be a problem, particularly if a period of grand

minimum is reached when there is a dearth of sunspots and the dynamo can no

longer operate, although Karak & Miesch (2018) demonstrated that with a strong
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enough turbulent pumping mechanism a 3D FTD model was able to escape from

grand minimum periods.

A distinction between B-L dynamos and some other types of dynamo is that they

do not require an explicit turbulent α-effect. This mechanism is usually expressed

mathematically via mean-field electrodynamics, that is, the separation of large

(mean) and small (fluctuating) scales which has been the driving force of dynamo

theory for the best part of half a century (Moffatt, 1978; Parker, 1979; Krause &

Rädler, 1980), but open problems remain regarding the mechanism for transporting

appropriate amounts of flux to and from the tachocline, or avoiding the quenching

of the α-effect in the presence of strong magnetic fields. For a recent comprehensive

review of other types of dynamo and dynamo theory in general, see Charbonneau

(2014).

1.2.1 The Babcock-Leighton mechanism

Sunspots generally appear in pairs corresponding to bipolar magnetic regions (BMRs),

which appear on the solar surface due to the rise of buoyant flux ropes which break

through the photosphere (Fan, 2009; Cheung & Isobe, 2014). BMRs tend to emerge

tilted at an angle with respect to the east-west line (using the line connecting the

centres of the opposing polarities), with the leading polarity emerging closer to the

equator. This is thought to be due to the Coriolis effect in the convection zone and

is more pronounced at higher latitudes, according to Joy’s law (Howard, 1991). The

leading polarities are antisymmetric about the equator for each cycle, and at the

end of the cycle the polarity reverses, resulting in the 22-year magnetic cycle.

Robert Leighton conjectured that magnetic flux could be transported on a random

walk process over the supergranular convective cells on the solar surface (Leighton,

1964), which are shown in Figure 1.3. In the continuum limit this discrete random

walk process becomes supergranular diffusion. The leading polarity flux diffuses

across the equator and cancels out with the corresponding opposite flux from the
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other hemisphere. This leaves net trailing polarity flux to be transported poleward

by diffusion, as indicated by the off-vertical ‘surges’ shown at mid-latitudes in Figure

1.6 (Leighton, 1965). The trailing flux neutralizes the remaining opposite-flux polar

field from the previous cycle and stores itself at the pole instead. Polar field reversal

typically occurs around sunspot maximum.

However, the diffusion process alone is too slow to account for the timing of reversals

in the polar field (Sheeley, 2005) and most models now include a meridional ‘conveyor

belt’ flow which aids poleward flux transport at the surface, and gives rise to the

poleward surges observed in magnetograms. This was the original idea of Horace

Babcock (Babcock, 1961), who in turn was missing the diffusion aspect of Leighton’s

model, which is important for cross-equatorial cancellation. The return meridional

flow, thought to be at the base of convection zone, is a possible explanation for

the equatorward migration of sunspot emergence and helps induce polarity reversal

(Wang et al., 1991; Choudhuri et al., 1995). Meridional circulation is a relatively

slow transport mechanism, with surface speeds of ∼ 10–20m s−1 observed via heli-

oseismology (e.g. Braun & Fan, 1998; Zhao & Kosovichev, 2004; Jackiewicz et al.,

2015). However, helioseismic recordings are near the limit of credibility (Komm

et al., 2013) and so the flow profile is not well constrained. Flow speeds within the

same range have also been found by e.g. Komm et al. (1993) via the tracking of

small magnetic features, and by Topka et al. (1982) via the comparison of polar zone

filament distribution and polar magnetic field evolution. Furthermore, many simu-

lations have produced more accurate results when a meridional flow was included

than when only diffusion was considered (DeVore et al., 1985; Wang et al., 1989b).

It is now generally accepted that such a poleward flow exists – the big question is

whether the flow is an important component in the dynamo. The combination of

diffusion and meridional circulation form what is known as the Babcock-Leighton

mechanism, the cyclic process in B-L dynamo models in which the decay of sunspots

leads to the production of poloidal field. A cartoon of the B-L mechanism is shown

in Figure 1.9.
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Figure 1.9: Sketch of the B-L process: the production of a large-
scale poloidal field from the decay of active regions.
Taken from Babcock (1961).

In some cases, it is sufficient to only consider the surface/photospheric component

(r = R�) of such models. Tracking and modelling magnetic regions on the solar

surface, i.e. surface flux transport (SFT; Leighton, 1964), has been highlighted as a

key method for predicting and understanding solar cycle variability (e.g. Upton &

Hathaway, 2014b; Hathaway & Upton, 2016), without having to make assumptions

about the solar interior where more limited observations are available to constrain

dynamo models. This is because the strength of the polar field at the end of the

cycle is found to be a good indicator of the strength of the following cycle in terms

of the maximum sunspot number (e.g. Schatten et al., 1978; Muñoz-Jaramillo et al.,

2013). Thus using some form of source term to represent the BMRs, we can easily

simulate the subsequent evolution of magnetic regions due to advective and diffusive

transport on the surface alone to derive an estimate for the end-of-cycle polar field

strength, and hence the amplitude of the following cycle. In most SFT models BMR

emergences at high latitudes are not taken into account, which can occur on occasion

as found by Durrant et al. (2001, 2002), although they found that any discrepancies

were small and that generally there was a good agreement between observations and

models even when high-latitude regions were not considered. Some SFT models have

included these features (Worden & Harvey, 2000; Schrijver, 2001).
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One limitation of traditional SFT models (described mathematically in Section 1.3.2)

is that there is no radial loss of magnetic flux. The consequence is that an excess of

polar flux can build up, meaning reversal does not occur before the following cycle

begins. Schrijver et al. (2002) combated this by including an extra exponential decay

term in the model, which will be discussed in more detail throughout the thesis.

Cycle amplitude modulation can be achieved in SFT models by changing the me-

ridional flow velocity. Counter-intuitively, if the poleward flow is slower it means

that leading BMR polarities have longer to diffuse across the equator, leaving more

trailing flux to reach the poles, resulting in a stronger polar field, and vice versa.

Wang et al. (2002a) used this fact to maintain regular polar field reversals by varying

the meridional flow speed from one cycle to the next. However, it is unclear whether

a slow meridional flow is the cause of a strong cycle, or whether strong cycles quench

the meridional flow.

Modulation can also be achieved by varying tilt angles of BMRs. Reducing the tilt

inhibits cross-equatorial cancellation, meaning each active region will contribute less

to the polar field. In extreme circumstances, abnormal orientation or deviations

from Joy’s Law might even be causes of grand minima (see Chapter 4). Cameron

et al. (2010) were able to recover a more realistic polar field evolution by reducing

the tilt angles in stronger cycles, with the physical reasoning being that stronger

magnetic fields can resist deformation by the Coriolis effect (tilt- or α-quenching as

mentioned above). However, we are not really at liberty to vary the tilt angles if we

take more realistic representations of observed active regions in our models.

Of particular interest is the unusually weak polar field at the end of Cycle 23

(Muñoz-Jaramillo et al., 2012), which in turn is believed to be responsible for the

low amplitude of Cycle 24. This solar minimum period also lasted for longer than

expected (Muñoz-Jaramillo et al., 2015), and SFT models initially struggled to

replicate the behaviour (Schrijver & Liu, 2008). Jiang et al. (2013) presented changes

in either meridional flow speed or tilt angles as mechanisms for reproducing the weak

polar field, but a definitive reason for the unusual behaviour is still sought after,
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with some suggesting that the Sun is undergoing a transitional period in dynamo

behaviour (Howe et al., 2017) possibly leading to an extended grand minimum period.

Incidentally, the strength of a cycle is anti-correlated with the duration of the cycle,

according to the Waldmeier Effect (Wolf & Brunner, 1935). An explanation is

offered by Cameron & Schüssler (2016): toroidal activity belts near the base of the

convection zone cancel across the equator with the opposing polarity. Stronger cycles

have wider belts and so cancellation occurs earlier, resulting in a shorter cycle since

all declining phases are approximately the same.

1.2.2 Solar cycle prediction

As mentioned above, a major goal (or, perhaps, dream) of solar physics research is

to be able predict the timing and amplitude of future solar cycles. Pesnell (2016)

gave an overview of the predictions made for Cycle 24, around the time of its onset

in late 2008 (see also McIntosh et al., 1979, for predictions of Cycle 21; Brown, 1986,

for Cycles 21 and 22; Layden et al., 1991, for Cycle 22; and Li et al., 2001, for Cycles

22 and 23). The prediction methods for Cycle 24 were separated into six categories:

climatology, recent climatology (post Cycle 17), precursor, dynamo model, spectral,

and neural networks. The precursor method, i.e. using the state of the Sun’s polar

magnetic field or geomagnetic activity (Vennerstrøm & Friis-Christensen, 1987) at

solar minimum to form a prediction, was in general the most successful, provided the

prediction was made close to cycle minimum. Using the polar field was particularly

fruitful, and we will focus on this method specifically throughout this thesis.

Herein we advance this technique by optimizing parameters for SFT models, which

can be used to simulate the end-of-cycle polar field. The output is calibrated against

observed data and so will be as accurate as possible. We also assess the contribution

of individual magnetic regions on the solar surface to the polar field, to see how

important a role a small number of large regions could play in solar cycle variability

and prediction.



16 Chapter 1. Introduction

The precursor method has already been utilised by some studies to predict the

amplitude of Solar Cycle 25. Hathaway & Upton (2016) simulated the remainder of

Cycle 24 using active region data from Cycle 14, exploiting the similarities between

the two cycles. Multiple realizations were performed with changes to the meridional

flow profile and Joy’s Law tilt angle variations. They found an average axial dipole

moment at the start of Cycle 25 of 1.36± 0.20G compared to -1.61G at the start

of Cycle 24, 3.21G at the start of Cycle 23, and -4.40G at the start of Cycle 22.

An updated prediction of 1.56 ± 0.05G for the start of 2020 and 1.54 ± 0.04G for

the start of 2021 was made two years later (Upton & Hathaway, 2018). Note that

the new prediction carries less uncertainty because it was made deeper into the

declining phase of the cycle. As we will discuss in Chapter 4, this is because there

are fewer regions emerging in the declining phase, making it less likely for a large

region to emerge which could have a significant impact on the axial dipole moment.

Nevertheless, the new prediction was within the error bars of the old one.

Cameron et al. (2016) performed a similar procedure, but with randomly generated

active regions with properties drawn from empirical formulae. An end-of-cycle axial

dipole moment of 2.5 ± 1.1G was calculated, which is slightly stronger than the

prediction of Hathaway & Upton (2016), but has a much wider bound of uncertainty.

The forecast is still for a weaker cycle than Cycles 21–23. Other predictions made

using the precursor method include 1.76 ± 0.68G by Jiang & Cao (2018) and 2G

by Wang (2017).

Some recent studies have used alternative methods to form predictions of Cycle 25.

For example, Hawkes & Berger (2018) used the correlation between magnetic helicity

flux and cycle amplitude to predict that Cycle 25 will be of similar strength to or

only slightly stronger than Cycle 24. However, it is not clear whether the current

helicity flux cycle has yet reached its peak, and the correlation between helicity

and following cycle strength is only based on a few data points. Consequently the

uncertainty in the prediction is large. Gopalswamy et al. (2018) found that the polar

microwave brightness in one cycle is correlated with the low latitude brightness with
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a lag of about half a cycle, which is the microwave equivalent of the magnetic polar

field precursor method. The subsequent conclusion was that Cycle 25 will be similar

to Cycle 24.

Whilst these forecasts are generally consistent with each other, predicting that Cycle

25 will be another weak cycle, we will have to wait a few more years before their

accuracy can be judged. If it is indeed a weak cycle, it may be preceded by a long,

extended minimum period, so the true minimum may not be reached until 2021

(Upton & Hathaway, 2018). Additionally, Cycle 24 would then not be an isolated

weak cycle, so could be the onset of an extended minimum period. Whether it is a

short period like the Gleissberg minimum or deeper like the Dalton or even Maunder

minimum remains to be seen.

1.3 Modelling the Sun’s magnetic field

1.3.1 MHD equations

After discussing key features of the Sun and the dynamo process, we can now derive

equations to model the Sun’s magnetic activity. We will use the MHD equations

(Priest, 1982). Although plasma is made up of different particle species, i.e. electrons

and ions, MHD approximates it as a single fluid with magnetic field B, electric field

E and velocity field u. We start with the pre-Maxwell equations:

∇ ·B = 0, (1.3.1)

∇ · E = ρc
ε0
, (1.3.2)

∇×B = µ0j, (1.3.3)

∇× E = −∂B
∂t
. (1.3.4)

Equation 1.3.1 is the solenoidal condition, that is, there are no magnetic monopoles

or point sources of magnetism, and that magnetic flux is conserved. Conversely,
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Equation 1.3.2 states that the net electric flux through a closed surface is proportional

to the charge density ρc within that surface. The constant ε0 is permittivity, the

ability to store electrical energy in an electric field. However, because the length

scales assumed in MHD are much longer than gyroradii of electrons and ions, and

the Debye length, the distance over which a charge carrier’s electrostatic effect still

occurs, we can neglect Equation 1.3.2.

Equation 1.3.3 is Ampère’s Law, which states that the magnetic field around a closed

loop is related to the current density j within the loop. This applies in the case of

static electric fields. Maxwell’s addition was to recognise the extra effect contributed

by time-varying electric fields. The equation then becomes:

∇×B = µ0

(
j + ε0

∂E
∂t

)
, (1.3.5)

where µ0 is (constant) permeability, the ability to support the formation of a magnetic

field. If we write µ0 ε0 = c−2, where c is the speed of light, then for non-relativistic

systems this extra ‘displacement current’ term becomes very small and is neglected

in MHD. Finally Equation 1.3.4 is Faraday’s law of induction, which describes how

a time-varying magnetic field can induce a voltage within a closed circuit.

We also use Ohm’s Law in a moving medium,

j = σ (E + u×B) , (1.3.6)

where σ is (constant) conductivity, the ability to conduct an electric current. Then,

∇× j = σ (∇× E +∇× (u×B))

= σ

(
−∂B
∂t

+∇× (u×B)
)
. (1.3.7)

Also we have (Equation 1.3.3):

∇× (∇×B) = µ0 (∇× j) , (1.3.8)
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and so we can use the identity ∇× (∇×G) = ∇ (∇ ·G)−∇2G to get

∇× (∇×B) = −∇2B, (1.3.9)

since ∇ ·B = 0.

Putting this together, we have:

− 1
µ0σ
∇2B = −∂B

∂t
+∇× (u×B) , (1.3.10)

or
∂B
∂t

= ∇× (u×B) + η∇2B, (1.3.11)

where η = 1
µ0σ

is diffusivity. This is the MHD induction equation (or advection-

diffusion equation), which describes how the magnetic field changes over time due to

the effects of both advection with the fluid (first term) and diffusion (second term).

Here we have assumed an isotropic plasma for simplicity, resulting in a constant

conductivity and diffusivity. This may be a valid assumption at the photosphere

where such properties do not vary significantly on average across the solar surface,

but later we will prescribe some radial dependence to the diffusivity, and must use

a more general form of the induction equation.

For completeness, the remaining MHD equations may be stated as follows:

∂ρ

∂t
+∇ · (ρu) = 0, (1.3.12)

ρ

(
∂

∂t
+ u · ∇

)
u = −∇ p+ j×B + F, (1.3.13)

ρ

(
∂

∂t
+ u · ∇

)
e+ ρ (γ − 1) e∇ · u = −L. (1.3.14)

Note that here ρ is fluid density and is distinct from ρc in Equation 1.3.2. The

pressure is denoted by p and F is an additional force term including gravitational

and viscous forces. The ratio of specific heats is given by γ and for the adiabatic

case we take γ = 5
3 . Then the internal energy e = p

(γ − 1) ρ . The term on the right-

hand side of Equation 1.3.14, L, is the total energy loss function which includes

contributions from ohmic heating, thermal conduction and radiation.



20 Chapter 1. Introduction

Equation 1.3.12 is the continuity equation, which states that mass within a closed

system is conserved. Equation 1.3.13 is the momentum equation, describing the

motion of the fluid. This is similar to the Navier-Stokes equation in hydrodynamics,

but with an additional Lorentz force term j×B, which represents the force imparted

by the magnetic field on a charged particle. Finally, Equation 1.3.14 is the energy

equation.

In the full problem, we would solve Equations 1.3.12–1.3.14 simultaneously with the

induction equation. However, in this thesis we take a kinematic approach, where we

prescribe the velocity u based on observations of the flows. It is therefore sufficient

in this regime to solve only the induction equation to describe the evolution of the

magnetic field in the convection zone and at the photosphere.

One final important quantity in MHD is the magnetic Reynolds number, a dimen-

sionless number given by:

Rm = UL

η
, (1.3.15)

for some characteristic velocity scale U and length scale L. Typically in astrophysical

scenarios Rm � 1 (e.g. Rm ∼ 106 for the Sun), and so the effects of diffusion become

negligible compared to advection, meaning we can remove dissipative terms in the

MHD equations. This regime is called ‘ideal MHD’. However, we will continue to

include a turbulent diffusion term in the induction equation, in order to represent

the diffusive effect of unresolved small-scale convective motions on the large-scale

mean magnetic field. Such a diffusive term also aids the numerics.

1.3.2 Surface flux transport equation

Equation 1.3.11 can be written more generally as:

∂B
∂t

= ∇× (u×B)−∇× (η∇×B) , (1.3.16)

and we use spherical coordinates (r, θ, φ), representing the radial, co-latitudinal and

longitudinal directions respectively. For modelling at the surface alone, we typically
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assume the field to be exclusively radial (Martínez Pillet et al., 1997). Then taking

the radial component of Equation 1.3.16 and neglecting radial derivatives we have:

[∇× (u×B)] · er = [∇× (uφBreθ − uθBreφ)] · er

= − 1
R� sin θ

(
∂

∂θ
(uθ sin θ Br) + ∂

∂φ
(uφBr)

)
, (1.3.17)

and

[∇× (η∇×B)] · er =
[
∇×

(
η

R� sin θ
∂Br

∂φ
eθ −

η

R�

∂Br

∂θ
eφ
)]
· er

= − η

R2
� sin θ

∂

∂θ

(
sin θ ∂Br

∂θ

)
− η

R2
� sin2 θ

∂2Br

∂φ2 , (1.3.18)

since in this thesis we shall only consider η ≡ η (r) or η = constant. Factors of 1/ sin θ

arise as a result of taking the curl in spherical coordinates. This produces singularities

at the poles which could cause numerical problems. However, no problems arise

because we use a staggered grid where values of Br are defined on the centres of the

cell faces, and therefore offset from the pole. The boundary conditions at the poles

on the grid ensure magnetic flux conservation.

Putting Equations 1.3.17 and 1.3.18 together, we have:

∂Br

∂t
= η

R2
� sin θ

∂

∂θ

(
sin θ ∂Br

∂θ

)
+ η

R2
� sin2 θ

∂2Br

∂φ2

− 1
R� sin θ

(
∂

∂θ
(uθ sin θ Br) + ∂

∂φ
(uφBr)

)
, (1.3.19)

which is known as the surface flux transport equation. It was first presented by

Leighton (1964) and has been in frequent use since (e.g. DeVore et al., 1984; Wang

et al., 1989a; van Ballegooijen et al., 1998; Schrijver & Title, 2001; Baumann et al.,

2004; Sheeley, 2005; Jiang et al., 2010). Nevertheless, the model has changed over

the years since Leighton’s diffusion-based version: meridional flow is now generally

included and the diffusion is typically much weaker, as we shall discuss in Chapter

2. Due to increased computational power, we can now simulate large numbers of

magnetic regions at a time, in stark contrast to the early simulations of individual

regions (Sheeley et al., 1983). The SFT model has also been coupled to coronal field
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models (Wang et al., 1988), and used to simulate the magnetic field of other stars

(Mackay et al., 2004). In Chapter 2 we will add more details to Equation 1.3.19

involving velocity, diffusion, and sinks and sources.

1.4 Thesis outline

In this thesis we investigate models of solar magnetic field evolution, namely SFT

and dynamo models, and attempt to calibrate their parameters against observed

data. We also assess the contribution of individual source terms to the final polar

magnetic field, and explore inherent differences between the two types of model.

In Chapter 2 we present a 1D model for surface flux transport and the genetic

algorithm used to perform the optimization. We repeat the optimization process on

a 2D SFT model with an automated region identification and assimilation process

(Yeates et al., 2015), and use this to search for variation in input parameters between

solar cycles. In Chapter 3 we investigate Bayesian emulation as a possible alternative

to genetic algorithms for parameter optimization. In Chapter 4 we simulate the

evolution of individual real active regions from Cycles 21 to 24 using the 2D SFT

model. We then calculate the end-of-cycle axial dipole moment contribution of each

one in order to conclude whether a small number of regions can have a significant

effect on the amplitude of the following cycle. For the simulations we determine

optimal parameters using the same genetic algorithm as in Chapter 2. In Chapter 5

we develop a simple 2D radial diffusion model to help us understand why there is a

discrepancy between the surface evolutions of the SFT model and a 3D kinematic

dynamo model (Yeates & Muñoz-Jaramillo, 2013). The eventual goal is to optimize

the parameters of the 3D model, but the surface magnetic field evolution problem

should be corrected before any optimization can be performed. We conclude and

discuss possible directions for future research in Chapter 6.

The work carried out in Chapters 2, 4 and 5 has been published in peer-reviewed

journals (Whitbread et al., 2017, 2018, 2019).



Chapter 2

Parameter optimization for

surface flux transport models

Surface flux transport (SFT) is a crucial component of the 11-year sunspot cycle.

SFT models have been developed and used since the 1960s with some success, though

results can be sensitive to the choice of parameters. Parametrizations of the transport

processes have been made, particularly for diffusion and meridional flow, but the

exact forms are still debated, and those chosen are not always in line with the limited

observations available. Parameter studies of varying scope have been undertaken

(e.g., Schrijver et al., 2002; Durrant & Wilson, 2003; Baumann et al., 2004; Yeates,

2014; Virtanen et al., 2017), but without complete parameter coverage. In this

chapter we aim to systematically find optimal parameters to be used in SFT models

so that they accurately reproduce such features of the solar cycle as poleward flux

‘surges’, polar field reversal time, polar field strength, and axial dipole moment. The

results can also be used to constrain the surface components of dynamo simulations

to produce the most accurate cycle predictions to date.

A similar study was performed recently by Lemerle et al. (2015), who used the same

genetic algorithm used in this chapter to find optimal parameters for a 2D SFT

model for Cycle 21 only, with the view of coupling it to a 2D flux transport dynamo

model (Lemerle & Charbonneau, 2017). In contrast we analyse two distinct models
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with different dimensionality, namely 1D and 2D, and different data-assimilation

techniques, initially for Cycle 23. While Lemerle et al. (2015) used the Cycle 21

BMR database compiled by Wang & Sheeley (1989), we use the Cycle 23 BMR

database from Yeates et al. (2007) for the 1D model, and extract individual active

regions from synoptic magnetograms for the 2D model. This allows us to apply the

2D model to Cycles 21, 22, 23, and 24 to search for cyclical variation. For other

studies of modelling Cycle 23 specifically, see e.g. Schrijver & Liu (2008), Yeates

et al. (2010), Yeates & Mackay (2012) and Jiang et al. (2013).

In Section 2.1, we present the 1D model and the genetic algorithm used to perform

the optimization, eventually including a prescribed error structure dependent on

latitude and magnetic field strength in order to factor in observational uncertainty.

We also discuss the results of the optimization for Cycle 23. In Section 2.2, we

present the 2D model which directly assimilates active regions into the simulation,

and run the optimization process on this model for Cycle 23. In Section 2.3, we

compare our optimal meridional flow profiles from both models with observations.

Finally, we perform optimizations on the 2D model for Cycles 21, 22, and 24 in

Section 2.4, before concluding in Section 2.5. The results from this chapter have

been published in Whitbread et al. (2017).

2.1 One-dimensional surface flux transport

model

We begin with a 1D model because we would like to test the optimization algorithm

on a simpler model that is quick to compute. Furthermore, because we will only

optimize against longitude-averaged data, it is possible to use a 1D model in co-

latitude only.
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2.1.1 Derivation

In the absence of new flux emergence, the evolution of the radial component of

the magnetic field is described by Equation 1.3.19. We now prescribe the velocity

profiles uθ and uφ. In the azimuthal direction, the primary transport mechanism

is differential rotation uφ = ω (θ)R� sin θ which (at the surface) depends only on

co-latitude. For uθ we have the meridional flow v (θ), which again only depends on

co-latitude. Thus for B ≡ Br (θ, φ, t) we have:

∂B

∂t
= −ω (θ) ∂B

∂φ
+ η

R2
�

[
1

sin θ
∂

∂θ

(
sin θ ∂B

∂θ

)
+ 1

sin2 θ

∂2B

∂φ2

]
− 1
R� sin θ

∂

∂θ

(
v (θ) sin θ B

)
− 1
τ
B + S (θ, φ, t) , (2.1.1)

where η is turbulent diffusivity, and τ is the decay time for a hypothesised exponential

decay term added by Schrijver et al. (2002) to improve regular polar field reversal.

We include a source term S for newly emerging magnetic regions.

Since the equation is solved on a spherical surface, the magnetic field may be

decomposed into spherical harmonic form (c.f. Baumann, 2005):

B (θ, φ, t) =
∞∑
l=0

l∑
m=−l

alm (t)Ylm (θ, φ) , (2.1.2)

where

Ylm (θ, φ) =

√
(2l + 1)

4π
(l −m)!
(l +m)!P

m
l (cos θ) eimφ, (2.1.3)

with Pm
l (cos θ) representing the associated Legendre polynomials. The coefficients

alm (t) are given by:

alm (t) =
∫ 2π

0

∫ 1

−1
B (θ, φ, t)Y ∗lm (θ, φ) d (cos θ) dφ. (2.1.4)

Initially only one dimension, namely the latitudinal direction, is considered. We

average the model spatially in the longitudinal dimension. It follows from averaging

Equation 2.1.1 that differential rotation does not play a part in this model. The
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surface flux transport equation then simplifies down to:

∂B

∂t
= η

R2
� sin θ

∂

∂θ

(
sin θ ∂B

∂θ

)
− 1
R� sin θ

∂

∂θ

(
v (θ) sin θ B

)
− 1
τ
B+S (θ, t) , (2.1.5)

where B is the longitude-averaged radial field, and the magnetic field decomposition

is also averaged over longitude:

B (θ, t) =
∞∑
l=0

l∑
m=−l

alm (t) 1
2π

∫ 2π

0
Ylm (θ, φ) dφ

=
∞∑
l=0

l∑
m=−l

alm (t)

√
(2l + 1)

4π
(l −m)!
(l +m)!P

m
l (cos θ) 1

2π

∫ 2π

0
eimφdφ

=
∞∑
l=0

al0 (t)
√

2l + 1
4π Pl (cos θ) , (2.1.6)

since Pm
l (x) = (−1)m (1− x2)

m/2 dm

dxm
(Pl (x)), and we only need to consider the

m = 0 harmonic functions because the magnetic field does not depend on longitude.

In Equation 2.1.5 we have subtly swapped the order of differentiation and integration.

This is valid according to the Leibniz integral rule, because we have constant limits

of integration and continuous B and B, owing to the periodicity in the azimuthal

direction.

Using the fact that the spherical harmonics are eigenfunctions of the Laplace operator,

with eigenvalues −l (l + 1), and substituting the above form for the radial magnetic

field into Equation 2.1.5, the following system of ordinary differential equations is

obtained:
∞∑
l=0

ȧl0 (t)Yl0 (θ) =
∞∑
l=0

−ηl (l + 1)
R2
�

al0 (t)Yl0 (θ)

−
∞∑
l=0

al0 (t)
R� sin θ

∂

∂θ
(v (θ) sin θ Yl0 (θ))

−
∞∑
l=0

al0 (t)Yl0 (θ)
τ

+
∞∑
l=0

sl0 (t)Yl0 (θ) . (2.1.7)

Now using the orthogonality conditions∫ 1

−1
Pl (cos θ)Pl′ (cos θ) d (cos θ) = 2

2l + 1δll
′ , (2.1.8)
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and ∫ 2π

0
ei(m−m

′)φdφ = 2πδmm′ , (2.1.9)

Equation 2.1.7 can be multiplied by Y ∗l′0 (θ) and integrated over
∫ 2π

0

∫ 1
−1 d (cos θ) dφ

to produce:

ȧl0 (t) = −ηl (l + 1)
R2
�

al0 (t)

− 2π
R�

√
2l + 1

4π

∞∑
l′=0

√
2l′ + 1

4π al′0 (t)
∫ π

0

[
∂v (θ)
∂θ

sin θ Pl (cos θ)Pl′ (cos θ)

+ v (θ) cos θ Pl (cos θ)Pl′ (cos θ)

+ v (θ) sin θ Pl (cos θ) ∂

∂θ

(
Pl′ (cos θ)

)]
dθ − al0 (t)

τ
+ sl0 (t) . (2.1.10)

Now using the recurrence relation for the derivative of a Legendre polynomial:

d

dx

(
Pl (x)

)
= l

x2 − 1
(
xPl (x)− Pl−1 (x)

)
, (2.1.11)

Equation 2.1.10 becomes

ȧl0 (t) = −ηl (l + 1)
R2
�

al0 (t)− 2π
R�

√
2l + 1

4π

∞∑
l′=0

√
2l′ + 1

4π al′0 (t)Cll′ −
al0 (t)
τ

+ sl0 (t) ,

(2.1.12)

where

Cll′ =
∫ π

0

[
∂v (θ)
∂θ

sin θ Pl (cos θ)Pl′ (cos θ)

+ (l′ + 1) v (θ) cos θ Pl (cos θ)Pl′ (cos θ)

− l′v (θ)Pl (cos θ)Pl′−1 (cos θ)
]
dθ, (2.1.13)

which can be solved numerically using MATLAB’s inbuilt trapezoid rule solver.

Equation 2.1.12 can then be written as a matrix equation:

ȧl0 (t) = Mll′al′0 (t) , (2.1.14)

which we solve in MATLAB using the inbuilt explicit Runge-Kutta (4,5) time-

stepping method (Dormand & Prince, 1980). The equations are solved on a grid of

180 cells equally spaced in latitude. The inbuilt solver combines a moderate accuracy
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with an adaptive time step to automatically satisfy the Courant-Friedrichs-Lewy

(CFL) condition (Courant et al., 1928):

u∆t
∆x ≤ Cmax, (2.1.15)

where u is the magnitude of the velocity, ∆t is the time step, and ∆x is the spatial

step. For explicit methods, Cmax is typically set to unity. This ensures that our

choice of grid spacing does not cause numerical instability. In addition, the stability

of the explicit method relies on having the diffusion term. In an advection-only

regime, we would need to use, for example, a finite-volume scheme.

The source terms of newly-emerging BMRs, sl0 (t), are added into the equation on

the corresponding day of emergence. In order to obtain these coefficients, the day of

emergence (t0); longitude (φ0) and latitude (λ0) of the BMR centre; half-separation

distance between peaks of polarity (ρ0); magnetic flux, including polarity (Φ0); and

tilt angle (γ0) of each BMR must be given. The sources of these data will be described

below.

After converting from spherical coordinates to Cartesian coordinates:

x = sin θ cosφ, y = sin θ sinφ, z = cos θ, (2.1.16)

each BMR is rotated into the ‘BMR frame’ by the following matrix computation:
x′

y′

z′

 =


1 0 0

0 cos γ0 − sin γ0

0 sin γ0 cos γ0




cosλ0 0 sin λ0

0 1 0

− sin λ0 0 cosλ0



x

y

z

 (2.1.17)

Then after converting back to spherical coordinates in the BMR frame:

λ′ = δ arcsin (z′) , φ′ = δ arctan
(
y′

x′

)
, (2.1.18)

where δ = 180
π

, the final expression for the BMR is given by

B (θ, φ, t) = −Φ0 δ
2φ′√
πρ3

0
exp

(
−(φ′)2 + 2 (λ′)2

2ρ2
0

)
. (2.1.19)
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Since only one dimension is considered, this expression is averaged over φ by in-

tegrating via the trapezoid rule. The source term coefficients are calculated using

Equation 2.1.4, i.e.,

sl0 (t) =
∫ π

0
B (θ, t)Yl0 (θ) sin θ dθ, (2.1.20)

and are added onto the coefficients in Equation 2.1.14 at the time of emergence.

2.1.2 Optimization algorithm

To search for optimal parameter sets where the model matches the observed butterfly

diagram, we use the genetic algorithm PIKAIA 1.2. It was written by Charbonneau

& Knapp (1995) at the High Altitude Observatory (HAO) of the National Center

for Atmospheric Research (NCAR) and is publicly accessiblea.

PIKAIA is an evolutionary algorithm written in FORTRAN-77 (though versions in

other languages have been implemented). It is particularly efficient in multimodal

optimization problems, taking advantage of a mutation operator which can induce

random jumps in parameter space, while other optimization algorithms can get

trapped at a local maximum and might fail to locate the global maximum.

The algorithm generates a set of parameters, each within a user-defined range,

and runs a model simulation for each parameter set, or ‘population member’. The

population are ranked by ‘fitness’ according to a user-defined ‘fitness function’,

which in our case will be a comparison between a real reference butterfly diagram

and model-generated output.

The population members with higher ranks have a greater probability of being

selected for the crossover or ‘breeding’ process whereby sections of the parameter

strings are interchanged to produce ‘offspring’, in the hope that a fitter individual will

be found with desirable features of both ‘parents’. Random mutation of parameter

string digits is included to increase variability and hence the likelihood for population

improvement. In particular, the more recent versions of PIKAIA make use of a variable

ahttp://www.hao.ucar.edu/modeling/pikaia/pikaia.php
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mutation rate – the rate increases as the population becomes denser and vice versa,

allowing for a more efficient search of parameter space.

The breeding process is run over a pre-determined number of generations. Whilst

PIKAIA is inherently stochastic and so convergence to a ‘good’ fit is never guaranteed,

a large enough choice for the number of generations should ensure that the combined

effect of crossover and mutation has enough time to introduce sufficiently fit pop-

ulation members. It should also be noted that the algorithm will almost certainly

never find the exact optimal solution, but will converge towards it.

For a more in-depth introduction to the features and operation of PIKAIA and genetic

algorithms in general, see Charbonneau (2002a) and Charbonneau (2002b).

2.1.3 Testing PIKAIA on artificial data

To test the success and efficiency of PIKAIA, the algorithm is used on the 1D SFT

model from Section 2.1.1 with 5474 randomly generated artificial BMRs emerging

over the course of three cycles. The simulations are compared to a reference case

solution created using prescribed flows and fixed parameters, which the algorithm

must successfully match. The synthetic cycle is created by drawing on statistics

of real solar cycles, generating the day of emergence, longitude and latitude of the

BMR centre, half-separation distance between peaks of polarity, magnetic flux and

tilt angle for each artificial BMR. The BMRs are then converted into the BMR frame

in the same way as described in Section 2.1.1.

Meridional flow is modelled using the Schüssler-Baumann velocity profile (Schüssler

& Baumann, 2006), which is a combination of exponential and sinusoidal functions

adapted to helioseismic observations (Gizon & Duvall, 2004):

v (θ) = −v0 sin (2θ) exp
(
π − 2|π2 − θ|

)
, (2.1.21)

where v0 is chosen to set the maximum velocity; in this case v0 = 16m s−1. In order

to define the initial conditions, we adopt a simple sinusoidal profile (e.g. Svalgaard
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Figure 2.1: Reference case butterfly diagram generated from artifi-
cial BMRs.

et al., 1978):

B (θ, 0) = B0|cos θ|7 cos θ, (2.1.22)

with B0 = 10G. Other chosen parameters include η = 500 km2 s−1 and τ = 10 yr,

and l runs from 1 to 128; the monopole term l = 0 is omitted. The butterfly diagram

produced from these parameters is shown in Figure 2.1. The diagram suggests that

the model successfully reproduces realistic features such as equatorward migration

of active region emergence, poleward transport of flux and antisymmetry of parity

about the equator.

An initial diagnostic test is run to test whether PIKAIA can select the correct diffusion

while keeping all other parameters fixed as above, including the synthetic BMRs.

A physically plausible range of 100 km2 s−1 ≤ η ≤ 1500 km2 s−1 is given to PIKAIA

to search between. Twenty population members are generated and the breeding

process runs over 32 generations, totalling 640 model simulations. For a model

that takes about 90 seconds to run, the total runtime for the initial diagnostic

optimization comes to about 16 hours. Other parameters within PIKAIA are set to

their default values: parameter strings have length 6, probability of crossover is 0.85,

and initial, minimum and maximum values of the mutation rate are 0.005, 0.001 and
1
6k respectively, where k is the number of parameters.
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A reduced χ2 is used as a fitness function:

χ2 =
√

1
n− k

∑
i,j

(
Bmap (θi, tj)−B (θi, tj; X)

)2
, (2.1.23)

where n is the number of gridpoints, X is the set of k parameters and (n− k)−1 is

a normalization factor: the number of degrees of freedom of the fit. Since a smaller

value of χ2 indicates a better fit, and PIKAIA operates by finding a maximum fitness

value, the final fitness function is χ−2, the reciprocal of Equation 2.1.23.

The diagnostic run returns an optimal value of η = 501.8 km2 s−1. As noted in

Section 2.1.2, the exact solution is never likely to be found, especially with time

constraints, but an error at less than 0.5% is very encouraging. The corresponding

butterfly diagram is qualitatively identical to Figure 2.1.

Increasing the number of parameters for optimization slows the rate of convergence,

yet still produces qualitatively successful results (Table 2.1). The maximum velocity

is given a range of 5m s−1 ≤ v0 ≤ 30m s−1, and the decay time is restricted to 0 yr

≤ τ ≤ 32 yr. One notable aspect of the results is the sensitive balance between

accuracy and work; whilst the optimal parameters for n = 2 produce an excellent fit,

it should be noted that many more population members and breeding generations

are used, culminating in a runtime of at least 65 hours. Any meaningful increase on

these factors would make the problem computationally too expensive. The results

for n = 3 highlight the first significant error in the optimization process, namely a

deficiency of 36.3 km2 s−1 in η, owing to the combination of a shorter runtime and

more free parameters. Each of the parameter sets in Table 2.1 produce butterfly

diagrams that are qualitatively identical to Figure 2.1. The differences in values of

np and ng are due to restrictions on available time.

Next, a more flexible meridional flow profile is chosen to replicate the situation of

working with real data where the flow profile is not precisely known, as mentioned

in Section 1.2.1:

v (θ) = −v0 sinp θ cos θ, (2.1.24)
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n np ng χ−2 η v0 τ
(km2 s−1) (m s−1) (yr)

Reference - - - 500.0 16.0 10.0

1 20 32 100.0 501.8 - -
2 40 65 561.0 499.7 16.0 -
3 30 50 5.68 463.7 15.0 10.1

Table 2.1: Optimization outputs from PIKAIA runs for increasing
numbers of parameters. The number of parameters is
n, the population size is np, and ng is the number of
generations.

where p is a free parameter left to be optimized (0 ≤ p ≤ 16). Increasing p produces

a steeper gradient at low latitudes and a peak closer to the equator (Figure 2.2).

Again, v0 is chosen to be the maximum of |v|, so increasing v0 increases the height

of the peak. This severely restricts the optimization process, as shown in Table 2.2.

While more flexible in theory than setting a defined function as in Equation 2.1.21,

this form is unable to match the exact shape of the reference-case flow and so the

fitness is substantially smaller, and maximum velocities larger. Figure 2.3 shows a

direct comparison between the reference case flow and the optimal PIKAIA-generated

flow. Whilst the model flow matches the reference case effectively at the equator, it

performs poorly in the upper half of the activity belts (15°–30°) and the poleward-

surge flux transport regions (30°–50°), before providing a closer fit at the poles.

This could be due to flux-cancellation at the equator being an important factor in

determining the polar field strength for that cycle, since it is the uncancelled trailing

flux that is transported polewards to form the new polar field.

In order to reduce the duration of computationally intensive optimizations, Met-

calfe & Charbonneau (2003) created MPIKAIA , a freely accessible implementation of

PIKAIA 1.2 in MPIb. Rather than using a single processor for all model evaluations,

a network of computers is used, and each of the model evaluations from a single

generation is sent to a separate processor and computed simultaneously, achieving

near-perfect parallelization. The time taken to complete the optimization therefore

bhttp://www.hao.ucar.edu/Public/about/Staff/travis/mpikaia/
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Figure 2.2: Three examples of the meridional flow profile in Equa-
tion 2.1.24 for v0 = 15m s−1, p = 2 (cyan), p = 5
(magenta) and p = 10 (black).

n np ng χ−2 η v0 p τ
(km2 s−1) (m s−1) (yr)

Reference - - - 500.0 16.0 - 10.0

2 18 35 1.05 - 21.0 3.56 -
4 20 100 1.31 431.2 19.7 3.31 11.2

Table 2.2: Optimization outputs from PIKAIA runs including the
flexible meridional flow profile in Equation 2.1.24. The
number of parameters is n, the population size is np, and
ng is the number of generations.
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Figure 2.3: Comparison of the reference case meridional flow profile
(blue) and the profile generated using the parameters
from the n = 4 case in Table 2.2 (red).

is entirely dependent on the number of generations. For example, for the 1D optim-

ization problem in this section, each model simulation takes approximately a minute

and a half, so, with 46 processors, the runtime is brought down from 24 days to

about 12.5 hours for 46 population members evolved over 500 generations. These

choices of population size and evolution period should be large enough to obtain

good fits to the data, and will be used for the remainder of the study unless specified.

With MPIKAIA set up, more extensive optimization runs can be processed, the results

of which are shown in Table 2.3. Note that a fifth parameter B0, the maximum initial

polar field strength, is eventually included, with a prescribed range of 0G ≤ B0 ≤

25G. Whilst the optimization is restricted for n = 2 since all other parameters are

fixed, including two more variables in the process allows the algorithm to search for

a better overall fit by altering these new variables. This is evident from the results

in Table 2.3, where the latter three parameter sets give higher values of χ−2 than the

n = 2 case. This behaviour of increasing or decreasing parameters to accommodate

additional ones also explains the reduction of ∼ 100 km2 s−1 in η.
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n np ng χ−2 η v0 p τ B0
(km2 s−1) (m s−1) (yr) (G)

Reference - - - 500.0 16.0 - 10.0 10.0

2 30 250 1.18 - 20.9 3.32 - -
4 30 200 1.32 399.1 18.9 3.28 10.8 -
4 46 500 1.33 405.7 19.0 3.25 10.7 -
5 46 500 1.32 416.4 18.8 3.22 10.0 11.0

Table 2.3: Optimization outputs from MPIKAIA runs for increasing
numbers of parameters. The number of parameters is
n, the population size is np, and ng is the number of
generations.

The resulting butterfly diagram arising from the optimal 5-parameter set in Table

2.3 is presented in the top panel of Figure 2.4, with the reference butterfly diagram

in the bottom panel for direct qualitative comparison. The model reconstructs the

solution reasonably accurately, particularly in emergence regions near the equator.

The field at the poles is too strong owing to the larger maxima of the flexible velocity

profiles. These maxima are usually located around the bottom of the transport

regions, meaning more trailing flux is quickly transported polewards resulting in a

stronger polar field.

2.1.4 Cycle 23 analysis

With both the algorithm and model sufficiently tested, our attention turns to using

the same process to optimize the model for Solar Cycle 23. Now each BMR has a

specified day of emergence; longitude and latitude; size; magnetic flux, including

polarity; and tilt angle taken from an existing observational dataset where these

properties were determined individually for each BMR from National Solar Observat-

ory (NSO) synoptic magnetograms (Yeates et al., 2007). Using these data, the 1644

recorded BMRs from Cycle 23 (1996 June 1–2008 August 3) are converted into the

appropriate frame using the same procedure described in Section 2.1.1, and inserted

into the model on the corresponding days of emergence. The BMR data are freely
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Figure 2.4: Butterfly diagram produced from the optimal 5-
parameter set in Table 2.3.
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available at the Solar Dynamo Dataversec (Yeates, 2016). As shown in Figure 2.5,

the database includes regions of each of the four tilt/polarity combinations. Of the

1644 BMRs from the database, 1127 are positive tilt and normal polarity (Case I), 38

are positive tilt and abnormal polarity (Case II), 39 are negative tilt and abnormal

polarity (Case III), and 440 are negative tilt and normal polarity (Case IV). Note

that the low-latitude Case II/III active regions at the start of Cycle 23 are more

likely to be Case I/IV regions from Cycle 22, and similarly with the high-latitude

regions at the end of Cycle 23 actually belonging to Cycle 24. These are included in

the classification of Cycle 23 because of overlapping cycles. However, they should

not confuse the statistics of relative frequency of different active region orientation

cases.

The same functional form for the meridional flow in Equation 2.1.24 is used. Lemerle

et al. (2015) used a similar, but more sophisticated profile, which is discussed in

Section 2.4.1. This provides substantially more flexibility, but introduces extra

parameters into the optimization runs which could hinder convergence to a global

maximum. Conversely, van Ballegooijen et al. (1998) used a basic sinusoidal profile

which stopped abruptly at ±75°. While a simpler functional form in practice, this

does not provide any flexibility to aid the optimization. In any case, the true

functional form of the observed meridional circulation is uncertain, particularly at

high latitudes.

Figure 2.6 (blue) shows the observed initial B profile from June 1996. The profile

is asymmetric across the equator in terms of polar field strength, and there is some

activity present at the equator. The curve given by Equation 2.1.22 and used in the

simulations is shown in red in Figure 2.6. This represents a typical cycle minimum

profile and ensures that the choice of initial profile is not hindering the optimization

process, but rather aiding it with some flexibility. We do not allow for asymmetry

because it is difficult to parametrize and vary using the algorithm whilst ensuring

flux conservation.
chttps://dataverse.harvard.edu/dataverse/solardynamo
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Figure 2.5: Scatterplot of the four cases of BMR alignment. Case I
is positive tilt and normal polarity, Case II is positive
tilt and abnormal polarity, Case III is negative tilt and
abnormal polarity, and Case IV is negative tilt and
normal polarity. Normal (abnormal) refers to when the
leading polarity matches (opposes) the typical leading
polarity of the cycle in question. Positive (negative) tilt
refers to when the leading polarity is closer to (further
from) the equator than the trailing polarity.
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Figure 2.6: Comparison between initial magnetogram (blue) and
the profile given in Equation 2.1.22 (red) with B0 = 8G.

2.1.5 Ground-truth data

As ground-truth data for optimization of the model, we use radial-component mag-

netogram data from US National Solar Observatory, Kitt Peak, in the form of

full-disk images. Prior to Carrington rotation (CR) 2007, these came from the Kitt

Peak Vacuum Telescope, while 2007CR onwards we use Synoptic Optical Long-term

Investigations of the Sun (SOLIS) datad. The original magnetograms combine to

produce a synoptic map with noise in the polar regions and data gaps for particular

Carrington rotations, visible in the top panel of Figure 2.7. To minimize noise, Petrie

(2012) corrected the butterfly diagram by calculating a cubic spline interpolation at

each latitude of annual average measurements of high-latitude fields (poleward of

±75°) which were observed with a preferable solar rotation axis tilt angle. A combin-

ation of real and interpolated data was used for the regions between ±60° and ±75°.

The resulting butterfly diagram is interpolated onto a uniform time grid at daily

intervals. This is averaged over periods of 27 days, smoothed using a Gaussian filter

dhttp://solis.nso.edu/0/vsm/vsm_maps.php
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Figure 2.7: Top: Original Kitt Peak magnetogram data for Cycle
23. Bottom: Interpolated data to be used as ‘ground
truth’.

to bring the unsigned flux down to a comparable level to the simulation, and finally

sampled at the resolution of once per Carrington rotation (27.2753 days), as shown

in the bottom panel of Figure 2.7. Unfortunately, the correction process results in a

non-physical spike in the data around 1999. While not ideal, only a small proportion

of the image is affected, so the genetic algorithm will not be severely hindered by

the error.

2.1.6 Initial results

We begin with the same five parameters as in Table 2.3 to be optimized initially.

Maximum and minimum limits are similar to those in Section 2.1.3 and are prescribed

based on results from literature and observations (e.g. Schrijver et al., 2002; Hathaway



42Chapter 2. Parameter optimization for surface flux transport models

& Rightmire, 2010; Yeates, 2014; Lemerle et al., 2015):

(i) 100 km2 s−1 ≤ η ≤ 1500 km2 s−1

(ii) 5m s−1 ≤ v0 ≤ 30m s−1

(iii) 0 ≤ p ≤ 16

(iv) 0 yr ≤ τ ≤ 32 yr

(v) 0G ≤ B0 ≤ 50G

It should be noted that these ranges are deliberately made wider than results from

literature to allow for a deeper exploration into the parameter space and to provide

a better understanding of the SFT model. Table 2.4(a) shows the results of the 1D

optimization for Cycle 23. Other entries in Table 2.4 show various tests which are

introduced in later sections.

During an optimization run, every single population member generated by PIKAIA

can be recorded, and so a range of ‘acceptable’ values can be obtained for each

parameter. These can be found in square brackets below each optimal value in Table

2.4. The upper and lower bounds are taken to be the largest and smallest values

for each parameter which produce fits above 95% of the maximum χ−2. Anything

within these limits is classed as ‘acceptable’, though it must be noted that choosing

to fix one parameter can alter the optimal solutions and bounds for others.

However, the values of χ−2 in Table 2.4 come into question since they have no

real meaning. Thus far we have not taken into account model error or observation

error, and we have assumed that each data point is independent. Ultimately this

does not allow for comparison of separate regimes, and we cannot make statistically

meaningful conclusions from the results. This was not an issue in Section 2.1.3,

because there was no ‘error’ in the model or the ‘ground truth data’ per se. The

data were produced from the model, and so it was theoretically possible in that case

to achieve a perfect match (leading to an infinite χ−2). Consequently we now consider
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Regime χ−2 η v0 p τ B0 γ Bpar
(km2 s−1) (m s−1) (yr) (G) (G)

Cycle 23

(a) 1D 0.45 330.5 14.0 3.19 2.7 15.1 1.00 n/a
[186.3, 624.4] [9.0, 28.5] [2.64, 4.72] [2.0, 5.2] [10.5, 20.1]

(b) 1D + γ 0.50 356.0 11.1 2.42 3.6 11.8 0.57 n/a
[212.5, 662.7] [7.3, 20.1] [1.95, 3.32] [2.7, 6.4] [8.9, 15.2] [0.42, 0.74]

(c) 2D + Bpar 0.40 440.4 10.7 2.82 n/a 8.2 n/a 39.4
[273.1, 768.2] [7.4, 14.9] [1.83, 5.27] [5.1, 11.8] [21.1, 48.7]

(d) 2D + τ 0.40 426.8 9.1 2.23 5.0 11.6 n/a 39.4
[249.9, 852.5] [5.1, 14.2] [1.61, 4.14] [1.8, 31.9] [5.8, 18.7]

(e) 1D, fixed p 0.44 315.8 8.0 1.87 2.1 14.5 1.00 n/a
[161.7, 630.9] [5.2, 11.0] [1.6, 2.9] [9.5, 19.8]

(f) 2D, fixed p 0.38 465.7 11.9 1.87 n/a 9.4 n/a 39.4
[289.3, 831.0] [6.6, 16.9] [6.4, 13.9]

Cycle 21

(g) 2D 0.38 455.7 9.5 2.49 n/a 6.2 n/a 39.4
[301.5, 889.7] [5.5, 14.5] [1.68, 4.29] [3.2, 9.8]

Cycle 22

(h) 2D 0.37 479.0 8.4 2.47 n/a 9.4 n/a 39.4
[289.0, 889.2] [5.2, 15.9] [1.67, 4.08] [5.5, 11.9]

Cycle 24

(i) 2D 0.55 453.5 8.1 2.17 n/a 4.1 n/a 39.4
[242.1, 1160.4] [5.1, 15.6] [0.57, 14.81] [2.0, 6.1]

Table 2.4: Optimal parameter sets for each optimization regime.
Underlined entries represent parameters that were fixed
for the corresponding run. Upper and lower bounds for
acceptable parameter ranges are given in square brackets
below each entry.
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an observation-based error structure which is discussed below in Section 2.1.7. We

find that including variance in the fitness calculation constrains the optimization

further by decreasing the range of acceptable parameter values. Moreover, it makes

minimal difference to the optimal values (see Section 2.1.8), and so we will continue

to use this updated fitness function unless stated otherwise.

2.1.7 Accounting for uncertainties in observations

We now use an improved χ2 statistic as a measure of fit between the real and

simulated butterfly diagrams:

χ2 = 1
n− k

∑
i,j

(
Bobs

(
θi, tj

)
−B

(
θi, tj; X

)
σ (θi, tj)

)2

, (2.1.25)

where n is the number of gridpoints and X is the vector of k free parameters. Again,

since improving best fit is a minimization process and PIKAIA is set up to maximize

functions, the reciprocal of the measure, χ−2, is used as the necessary fitness function.

The variance σ2 describes the error in both the measurements and the models, and

we assume the form:

σ2 (θi, tj) = σ2
obs (θi, tj) + σ2

model. (2.1.26)

This is because the observational and model errors are independent, and other

combinations would not allocate an appropriate error to each pixel. The variance

plays two roles in the optimization. Firstly, it gives a meaningful value to the

χ−2 statistic. This allows us to compare the performance of different parameter

combinations and time periods. Secondly, it effectively weights distinct locations

(θi, tj) differently in the optimization, since the observed errors are assumed to have

the form:

σobs (θi, tj) =
0.1
∣∣Bobs

(
θi, tj

)∣∣+ ε

sin θi
, (2.1.27)

where ε is some small increment to ensure that the error is non-zero even in regions of

weak magnetic field. This error structure reflects the uncertainties and inconsistencies

in photospheric magnetic field observations (e.g. Riley et al., 2014). The factor of
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sin θ allows for the fact that the errors are in the original line-of-sight measurements,

whereas Bobs is the inferred radial field (Svalgaard et al., 1978). Overall, the effect

of this error structure reduces the weight of observations both near the pole and in

strong active regions, as well as non-physical spikes as discussed in Section 2.1.5. The

resulting optimization will favour accuracy in the mid-latitude ‘transport regions’.

Strictly speaking, we should construct a covariance matrix:

Cov
(
B (x) , B (x′)

)
= σ (x)σ (x′) exp

(
−

N∑
i=1

(
xi − x′i

Θi

)2
)
, (2.1.28)

where N is the number of dimensions of the dataset (here N = 2), and Θi is some

correlation length for each dimension. Then we could calculate χ2 as:

χ2 = 1
n− k

(
Bobs −B

)
Cov−1 (Bobs −B

)T
. (2.1.29)

However, when correlation lengths are included, we find that the algorithm accounts

for both error and correlation by increasing the diffusivity η in order to smooth out

the simulated butterfly diagram. This pushes the resulting optimal value of η to the

upper limit of exploration, high above any value that has been used or estimated

before in such models. For this reason and for simplicity, we ignore correlation in

this study and assume independence. The covariance matrix then only contains

diagonal terms, and the χ2 calculation reduces to Equation 2.1.25.

Since the model error structure is unknown, we compute χ−2 with σmodel = 0. This

is sufficient for the purpose of comparing different model runs against the same set

of observational data, with a higher value of χ−2 indicating models that give a better

match. The simulations are not sufficiently detailed to achieve a significant match at,

say, the 99% level, which is evident from visual inspection of the butterfly diagrams.

To achieve such a close match would be very challenging, since the large numbers

of degrees of freedom n− k ∼ 16 000–30 000 mean that the 99% interval for the χ−2

statistic is narrow, typically [0.98, 1.02].

In principle, we could estimate σmodel by increasing it and broadening the 99% interval

until the value of χ−2 falls within this interval. This would give a meaningful estimate



46Chapter 2. Parameter optimization for surface flux transport models

of the ‘model error’ in a particular run. But this would not change the ordering

of different model runs, or indeed the final optimal parameters, so we have not

included such analysis here. For a comprehensive overview of multivariate analysis,

see Mardia et al. (1979), and for more detailed approaches to dealing with model

error, see Goldstein et al. (2013).

2.1.8 Error-weighted results

Optimal parameters

The optimization runs are performed again in the same way as above, but with the

addition of σ in the calculation of the fitness value. Table 2.5(a) shows the results of

the 1D optimization for Cycle 23, with the corresponding optimal butterfly diagram

in the top panel of Figure 2.8, and the interpolated NSO data for Cycle 23 discussed

in Section 2.1.5 in the bottom panel.

The equatorward migration of active regions is well represented by the BMR data,

and large poleward surges are reproduced by the model. While the southern polar

field reversal is well approximated by the model, the reversal in the northern hemi-

sphere has a delay of approximately 6 months. Furthermore, there are multiple weak

poleward surges in the simulated butterfly diagram, most noticeably around 2004,

which do not appear in the real butterfly diagram. This is likely to be a by-product

of approximating regions as BMRs and overestimating the contribution of flux from

smaller regions. This build-up of flux results in a strong polar field that extends to

lower latitudes, requiring a short decay timescale as is found in the optimization.

Parameter analysis

Acceptable parameter ranges introduced in Section 2.1.6 can be found in square

brackets below each optimal value in Table 2.5. Figure 2.9 shows such bounds,

denoted by the left and right vertical purple lines on each plot, for all parameter
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Regime χ−2 η v0 p τ B0 γ Bpar
(km2 s−1) (m s−1) (yr) (G) (G)

Cycle 23

(a) 1D 0.89 351.6 14.0 3.24 2.4 16.5 1.00 n/a
[229.4, 546.9] [11.3, 22.5] [2.98, 4.50] [1.9, 3.5] [12.8, 20.9]

(b) 1D + γ 1.09 373.5 11.0 2.44 3.7 11.7 0.55 n/a
[233.3, 582.8] [8.2, 16.5] [1.82, 2.96] [2.9, 6.1] [8.5, 14.8] [0.41, 0.61]

(c) 2D + Bpar 0.65 455.6 11.2 2.76 n/a 8.3 n/a 39.8
[371.6, 651.0] [8.6, 14.4] [1.64, 4.71] [5.3, 10.2] [31.7, 49.4]

(d) 2D + τ 0.67 453.5 9.6 2.15 4.5 12.9 n/a 39.8
[299.5, 807.7] [6.8, 15.2] [1.50, 3.95] [1.6, 30.3] [6.5, 18.4]

(e) 1D, fixed p 0.85 361.4 8.3 1.87 1.9 16.3 1.00 n/a
[220.1, 642.8] [7.4, 10.9] [1.5, 2.3] [11.8, 21.4]

(f) 2D, fixed p 0.64 482.1 11.5 1.87 n/a 9.7 n/a 39.8
[356.1, 712.9] [8.8, 15.2] [7.1, 12.8]

(g) 2D, half cycle 0.48 482.3 11.2 2.60 n/a 8.3 n/a 39.8
[315.1, 779.0] [7.9, 14.4] [1.64, 5.40] [5.0, 11.3]

(h) 1D, observed 0.81 294.7 13.4 3.28 2.5 n/a 1.00 n/a
initial profile [195.1, 476.0] [10.0, 25.5] [3.06, 5.04] [1.9, 4.6]

(i) 2D, observed 0.65 499.0 11.1 2.51 n/a n/a n/a 39.4
initial profile [353.0, 663.3] [8.3, 14.0] [1.61, 4.21] [29.4, 47.8]

Cycle 21

(j) 2D 0.87 455.7 9.2 2.33 n/a 6.6 n/a 39.8
[342.7, 667.0] [6.6, 12.0] [1.33, 3.93] [4.5, 9.4]

(k) 2D + τ 0.88 454.7 8.5 2.04 10.2 7.6 n/a 39.8
[303.8, 726.1] [5.7, 11.5] [0.96, 3.64] [3.1, 32.0] [3.6, 12.6]

Cycle 22

(l) 2D 0.84 506.2 8.7 2.18 n/a 10.5 n/a 39.8
[365.1, 760.9] [6.1, 11.7] [0.98, 3.60] [7.5, 13.8]

(m) 2D + τ 0.86 505.7 7.9 1.93 7.6 12.8 n/a 39.8
[351.8, 838.5] [5.3, 12.1] [1.16, 3.53] [3.1, 32.0] [7.4, 18.2]

Cycle 24

(n) 2D 0.99 454.6 8.2 2.05 n/a 4.2 n/a 39.8
[292.6, 821.7] [5.4, 12.5] [0.62, 5.22] [2.6, 5.4]

(o) 2D + τ 0.99 453.5 8.0 1.98 15.1 5.0 n/a 39.8
[268.0, 829.0] [5.0, 12.9] [0.73, 5.18] [2.5, 32.0] [3.0, 7.5]

Table 2.5: Optimal parameter sets for each optimization regime.
Underlined entries represent parameters that were fixed
for the corresponding run. Upper and lower bounds for
acceptable parameter ranges are given in square brackets
below each entry. The ranges for regime (a) are presented
visually in Figure 2.9.
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Figure 2.8: Top: Butterfly diagram for the optimal parameter 5-set
for the 1D model in Table 2.5(a). Bottom: Ground
truth data for Cycle 23.
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populations from the optimization run that produced the optimal set in Table 2.5(a).

The optimal values are highlighted by the central vertical purple lines. Using the

limits for v0 and p, acceptable meridional flow profiles are also found which are

represented by the purple shading in the bottom right panel. The bold purple profile

in the same panel represents the optimum profile.

The diffusion parameter η has not yet been accurately measured, though some in-

direct measurements by Mosher (1977) and Komm et al. (1995) have found values

within the range of 100–300 km2 s−1. Early simulations by Leighton (1964) used

values up to 1000 km2 s−1, though studies by Baumann et al. (2004), Wang et al.

(1989b) and Wang & Sheeley (1991) decreased it to ∼ 600 km2 s−1, before Wang et al.

(2002b) reduced it further to 500 km2 s−1. Our optimal value of 351.6 km2 s−1, how-

ever, is in better agreement with Yeates (2014), who found that η ∈ [200, 450] km2 s−1

produced a reasonable correlation between the butterfly diagrams, and Lemerle et al.

(2015) who found an optimal value of 350 km2 s−1 within an acceptable range of

240–660 km2 s−1 for Cycle 21. Furthermore, Schrijver (2001) and Thibault et al.

(2014) found diffusion coefficients of 300 km2 s−1 and 416 km2 s−1 respectively for

random-walk-based models, and Cameron et al. (2016) recently used a diffusion of

250 km2 s−1. The acceptable range in Table 2.5(a) is broad but can be attributed

to multiple degrees of freedom in the optimization. The range covers most values

discussed above.

The large-scale meridional flow is poorly constrained by observations, as discussed

in Section 1.2.1. Nevertheless, our optimal value of v0 = 14m s−1 is in accordance

with both the observations and simulations. Doppler measurements by Ulrich (2010)

estimated the maximum velocity to be between 14–16m s−1 for Cycles 22 and 23.

Hathaway & Rightmire (2010) obtained an average maximum velocity of 10–12m s−1

for Cycle 23 via magnetic feature tracking, though crucially they observed that the

flow is slower (approximately 8m s−1) at cycle maximum and faster (11.5–13m s−1)

at minimum. This time-dependence could be added to the model for greater real-

ism, though it is not immediately clear how it should best be parametrized in the
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Figure 2.9: Scatter plots of every population member for each para-
meter. The horizontal purple line denotes 95% of the
maximum χ−2. The central vertical purple line is the
optimum value for each parameter, with error bars given
by the neighbouring vertical purple lines. The vertical
blue lines in the top and middle right panels are the
values obtained from fitting the velocity profile in Equa-
tion 2.1.24 to observational data (see Section 2.3). The
bottom right panel shows the optimal meridional flow
profile (bold purple) with acceptable profiles represen-
ted by the surrounding purple shading.
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optimization. Furthermore, Hathaway & Rightmire (2010) noted that many SFT

models use meridional flows which go to zero poleward of ±75° latitude which is not

necessarily what is observed, as well as other deviations from observations. Upton

& Hathaway (2014a) prescribed a profile with a maximum velocity of 12m s−1 and

Baumann et al. (2004) used 11m s−1. Yeates (2014) found that a range of 11–15m s−1

improves butterfly diagram correlation, and Wang et al. (1989b) and Wang & Sheeley

(1991) found that a range of 7–13m s−1 was acceptable. Wang et al. (2002b) found

that a maximum velocity of 20–25m s−1 accurately reproduced solar cycle features,

although they used a profile which differs significantly from observations.

The parametric meridional flow profile in Equation 2.1.24 was also used by Muñoz-

Jaramillo et al. (2009). They obtained a value of p = 2 by taking an average of

helioseismic data weighted by density and fitting it to the sinusoidal profile. In this

case p = 2 does not quite fall into the narrow acceptable range for p. The bottom

right panel of Figure 2.9 shows that values within this range generally correspond

to a peak velocity at ±30° before slowing down to 0m s−1 at ±75°. As discussed in

the above paragraph, this is not necessarily in line with observations.

Taking every member of the population above the 95%χ−2
max threshold, we find that

the Pearson’s correlation coefficient between the acceptable values for v0 and p is

r = 0.86, indicating that increasing the maximum velocity of the meridional profile

generally requires an increase in p (see Figure 2.10). A faster velocity means that

active regions are transported away from the equator quicker. To counteract this,

a larger value of p narrows the band of latitudes at which the velocity is fast, and

additionally brings the maximum velocity closer to the equator.

Another interesting result is that of 2.4 yr for the exponential decay time τ . Schrijver

et al. (2002) found that a decay time of 5–10 yr was necessary to replicate regular

polar field reversal, and Yeates (2014) found that a decay time of 10 yr produced

a better fit between real and simulated butterfly diagrams. Lemerle et al. (2015)

found that exponential decay did not have a large effect on the polar field reversal

and decided to set τ = 32 yr, effectively removing the decay term from the model.
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Figure 2.10: Scatterplot of acceptable values for v0 against accept-
able values for p from the 1D optimization in Table
2.5(a). The yellow cross highlights the optimal value
and the red line is the linear regression line.

However, our optimal value for τ is close to the lower prescribed limit. This could be

because of the model trying to account for the unusually weak polar field at the end

of Cycle 23, while, for example, Lemerle et al. (2015) performed the optimization

for Cycle 21. Wang et al. (2002a) overcame the problem of producing regular polar

field reversals by increasing the meridional flow speed for stronger cycles.

Figure 2.11 highlights the need for the decay term in the 1D model when modelling

Cycle 23 using this model. The axial dipole moment is defined as:

D (t) = 3
2

∫ π

0
B (θ, t) cos θ sin θ dθ, (2.1.30)

and represents the net flux imbalance between the two hemispheres. We shall explore

the dipole moment further in Chapter 4. The purple curve represents the axial dipole

moment obtained using the optimal parameter set in Table 2.4(a), which provides a

better fit to the observed axial dipole moment (blue) than the peach curve, which

is produced from the same parameter set but with the decay term omitted. In this
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Figure 2.11: Axial dipole moments calculated from observed data
(blue), the parameter set in Table 2.4(a) (purple), and
the same parameter set but with the decay term omit-
ted (peach).

case the polar field becomes too strong and is not weakened enough without the

additional decay term. Jiang et al. (2015) found that the decay term was not required

to obtain a close match between observed and simulated axial dipole moments, when

using active region data from Li & Ulrich (2012). As well as using different active

region data, a reduction in tilt angles and a smaller value of η = 250 km2 s−1 were

included to account for the lack of the decay term. If we use similar parameters

for the 1D model, a better axial dipole moment fit is indeed obtained, but at the

expense of an accurate butterfly diagram. Hence we stress that the optimal values

in Table 2.4 are with respect to the measure of choice in Equation 2.1.25, and other

choices of metric might give different results.

Of course, the choice of decay term is not independent of the other parameters,

and the Pearson’s correlation coefficient between the acceptable values of v0 and

τ is r = 0.81: an increase in the flow speed corresponds to less trailing flux being

transported to the poles, so a fast decay to weaken the polar field would not be
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Figure 2.12: Scatterplot of acceptable values for v0 against accept-
able values for τ from the 1D optimization in Table
2.5(a). The yellow cross highlights the optimal value
and the red line is the linear regression line.

required in the presence of a faster flow (Figure 2.12).

It should be noted that the decay term in Equation 2.1.1 is not directly observed.

Baumann et al. (2006) gave a physical explanation of the decay term; namely, it

is the effect of radial (i.e., inward) diffusion of flux into the solar interior, which

cannot be accounted for directly in the SFT model. In spherical harmonics, different

modes decay at different rates, whereas in the exponential decay used by Schrijver

et al. (2002), all modes decay at the same rate. Baumann et al. (2006) found that

the lowest-order mode decayed the slowest at a rate of 5 yr (with a corresponding

volume diffusion of η = 100 km2 s−1), in good agreement with the findings of Schrijver

et al. (2002). When we include this more sophisticated form of radial diffusion in

our model and perform the optimization, we find the lowest-order mode to have

an optimal decay time of τ1 = 2.7 yr (with a corresponding volume diffusion of

η = 190 km2 s−1), in good agreement with the decay time found in Table 2.5(a).

Because of this good agreement, we opt to continue to use the original exponential
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decay parameter. Radial diffusion is discussed in much more detail in Chapter 5.

The optimal value for B0 is significantly higher than that used to approximate the

initial profile in Figure 2.6. This might be attributed to the choice of functional

form in Equation 2.1.22; not enough flux is prescribed between ±45° and ±80°,

so the algorithm compensates for this by increasing the maximum flux at ±90°.

Alternatively, a strong initial polar field is also required to counteract the short

decay time needed to reproduce the weak polar field at the end of Cycle 23.

2.1.9 Tilt Angles

Some studies (e.g. Jiang et al., 2011; Yeates, 2014) found that multiplying the

observed tilt angle of each BMR by a scaling factor reduces the polar field strength

and improves polar field reversal, since the reduced tilt inhibits equatorial cross-

cancellation and hence each magnetic region will contribute less to the axial dipole

moment. To test this, a multiplicative tilt angle factor γ is included here as an extra

parameter to be optimized within the range 0 ≤ γ ≤ 1.5. Table 2.5(b) shows the

results for the 6 parameter case, with the corresponding butterfly diagram in the

top panel of Figure 2.13.

The optimal value of 0.55 for γ is lower than that found by Yeates (2014) (γ ∼ 0.8)

and Jiang et al. (2011) (γ ∼ 0.72). It predictably produces a weaker polar field than

in the case above where it wasn’t included. Given that the main aim of the algorithm

is to reduce differences between the real and simulated butterfly diagram pixels, it

is reasonable to expect that the optimization algorithm will rely heavily on diffusion

and high amplitudes of meridional flow to achieve weak polar fields, although it

should be noted that this effect is reduced by the weighting in σ. Introducing the

tilt angle factor as a means of reducing the polar field allows for the decay time to

increase and the maximum meridional flow velocity to decrease, suggesting a delicate

balance between the parameters and the roles they play in the model. While the

polar field strength is better approximated in this case, the active regions are much
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Figure 2.13: Top: Butterfly diagram for the optimal parameter 6-
set for the 1D model with reduced tilt angles in Table
2.5(b). Bottom: Ground truth data for Cycle 23.
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weaker than in the 5-parameter case, and polar field reversal occurs later in the

simulation in both hemispheres. The fitness value of χ−2 = 1.09 is above the 99%

interval given in Section 2.1.7, which seems to indicate that the model matches the

observations better than a randomly chosen map from the observed distribution.

This is plainly a limitation of the χ−2 statistic; in particular, it likely indicates the

presence of a significant σmodel term possessing a more complex structure over θ

and t. In principle, it could be caused by too large a prescribed σobs, or by the

relatively strong assumption of independence, or possibly over-fitting of the model,

although the latter is unlikely given the small number of parameters in the model. It

should be noted that the scaling of tilt angles is not a physical phenomenon, rather

a method of reducing the flux in the model, though Cameron et al. (2010) argued

that scaling the tilt angle by a factor of 0.7 mimics the effect of inflows around active

regions. Moreover Dasi-Espuig et al. (2010) found an inverse correlation between

cycle strength and tilt angle, suggesting that tilt angle variation plays a significant

role in polar field variation.

2.2 Two-dimensional surface flux transport

model

Yeates et al. (2015) developed a 2D modele which assimilates specific shapes of

magnetic regions into the simulation on the day of emergence. The aim of the model

is to better assimilate strong, multipolar regions, which are not accurately portrayed

in a simpler bipolar form, as in the 1D model above, with the hope of simulating a

more realistic photospheric field. This selection feature requires the model to be 2D.

The model is fully automated, providing consistent highlighting of strong magnetic

regions, and is designed to replace pre-existing regions rather than superimposing

new ones.
ehttps://github.com/antyeates1983/sft_data
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Each region is assimilated on the day when its centroid crosses the central meridian.

The assimilation algorithm is described fully in the Appendix of Yeates et al. (2015).

Briefly, the synoptic magnetograms are corrected for flux imbalance, then their

absolute value is smoothed with a Gaussian filter (standard deviation σsmooth = 3),

so as to merge positive and negative polarities. Each region is then determined by

a connected group of pixels above a threshold Bpar. These pixels (from the original

unsmoothed synoptic map) are then inserted into the simulation, replacing any pre-

existing Br in that region. The flux is corrected so as to preserve the pre-existing

net flux in that region of the simulation.

Again we solve the SFT equation for the radial component of the magnetic field, as

given in Equation 2.1.1. Rather than using a spectral method like the 1D model, we

use B = ∇×A to write

B ≡ Br = 1
R� sin θ

(
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

)
, (2.2.1)

and solve the evolution equations for the vector potential:

∂Aθ
∂t

= ω (θ)R� sin θ B − η

R� sin θ
∂B

∂φ
+ Sθ (θ, φ, t) , (2.2.2)

∂Aφ
∂t

= −v (θ)B + η

R�

∂B

∂θ
+ Sφ (θ, φ, t) . (2.2.3)

These are solved in the Carrington frame (sidereal rotation period of 25.38 days)

using a finite-difference method on a spatial grid of 180 cells equally spaced in sine-

latitude and 180 cells equally spaced in longitude. We use an Euler timestepping

method and periodic boundary conditions. While higher-order implicit methods

would be more accurate, the Euler method is suitable for our purposes. Numerical

problems might arise were we to assign a non-linear diffusion, but we will keep

η constant in this model. Furthermore, it would be non-trivial to implement the

replacement aspect of the emergence in an implicit scheme, as this is technically

non-linear.

While differential rotation averaged out and so played no role in the axisymmetric
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1D model, it must be included in the 2D case. Unlike meridional flow, differential

rotation is well constrained by observations, and in the model we use the paramet-

rization of Snodgrass & Ulrich (1990) for the angular velocity in the Carrington

frame:

ω (θ) = 0.521− 2.396 cos2 θ − 1.787 cos4 θ deg day−1. (2.2.4)

For the parameter Bpar, and for GONG input data, Yeates et al. (2015) chose the

threshold of Bpar = 15G in order that the difference between the observed unsigned

flux and simulated unsigned flux (due to the smoother magnetic field distribution)

remained approximately constant. Here, this parameter is added to the optimization.

If given enough freedom, the algorithm would gradually reduce Bpar, allowing more

and more magnetic regions to be inserted until the original synoptic map is essentially

copied in (analogous to Bpar ∼ 0G). To avoid this, the lower bound is set at 10G

with an upper bound of 50G. Figure 2.14 shows snapshots of 1928CR from four

simulations with alternative values of Bpar between 10G and 50G, and all other

parameters fixed. As the threshold Bpar increases, fewer active regions are assimilated

into the simulation.

2.2.1 Five-parameter optimization

The synoptic magnetograms from NSO Kitt Peak are used to identify strong regions

for assimilation. For simplicity, Yeates et al. (2015) did not incorporate exponential

decay into the model as in Equation 2.1.1. We perform optimization runs for the

model both without decay and with the decay term included. Initially we consider

the former case. Aside from Bpar, parameters are given the same upper and lower

limits as in Section 2.1.6. Table 2.5(c) shows the results of the optimization. The

corresponding butterfly diagram is shown in the middle panel of Figure 2.15, with

the optimal 1D butterfly diagram from Section 2.1.8 in the top panel for direct

comparison.

The 2D model qualitatively improves the butterfly diagram, with active regions
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Figure 2.15: Top: Butterfly diagram for the optimal parameter 5-
set for the 1D model in Table 2.5(a). Middle: But-
terfly diagram for the optimal parameter 5-set for the
2D model with varying Bpar in Table 2.5(c). Bottom:
Ground truth data for Cycle 23.
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predictably more accurate, leading to the inclusion of more poleward surges in the

simulation which can be identified in the observed butterfly diagram (though the

gradient and strength of each surge is not always correct), and a more realistic polar

field. The optimal parameters in Table 2.5(c) are within the range of other results

from simulations and observations described in Section 2.1.8. A diffusivity of η =

455.6 km2 s−1 is stronger than in the 1D model, but the inclusion of an exponential

decay term is expected to reduce this. An increased diffusivity is somewhat supported

by Virtanen et al. (2017), who used a value of η = 400 km2 s−1 in the same 2D model

but for a single simulation of multiple cycles. The range and optimal value for

v0 is lower than for the original 1D case, indicating that there can be inherent

differences between models. Moreover, Virtanen et al. (2017) found that a value of

v0 = 11m s−1 correctly reproduced shapes of poleward surges and polar fields, in

excellent agreement with our optimal value.

Figure 2.16 shows every generated value of Bpar against χ−2. The central vertical

line indicates the optimum value of 39.8G, with the left and right vertical lines

denoting the acceptable range for Bpar, as in Figure 2.9. For the remainder of the

2D optimizations, Bpar is fixed at the optimal value of 39.8G to attain consistency,

unless stated otherwise. This should ensure that only newly emerging regions are

inserted for each Carrington rotation. However, the presence of the strong mid-

latitudinal region of positive flux in the northern hemisphere around 2003–2004

could be attributed to the choice of large Bpar, since smaller regions of negative flux

which would otherwise cancel out this positive flux are not being assimilated. The

bottom left panel of Figure 2.14 closely represents the scenario when Bpar is set at its

optimal value. Virtanen et al. (2017) used a threshold of Bpar = 50G, and this lies

just outside of our acceptable range. Comparing the bottom two panels of Figure

2.14, however, shows that the differences between our optimal value and their chosen

value are minor.
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Figure 2.16: Each population member for the 5-parameter optimiz-
ation of the 2D model in Table 2.5(c), with Bpar restric-
ted to Bpar ≥ 10G. The horizontal green line denotes
95% of the maximum χ−2. The central vertical green
line is the optimum value for each parameter, with
error bars given by the neighbouring vertical green
lines.
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Figure 2.17: Top: Butterfly diagram for the optimal parameter 5-
set for the 2D model with varying τ in Table 2.5(d).
Bottom: Ground truth data for Cycle 23.

2.2.2 Incorporating exponential decay

As discussed above, the decay parameter τ was originally added to the SFT model

to produce regular polar field reversals. The 2D model did not initially take account

of this exponential decay, but we incorporate it to assess whether the optimal value

in Table 2.5(a) is reasonable.

As shown in Figure 2.17, including the decay term improves timing of polar field

reversal by a couple of months, but is not enough to replicate precisely the observed

reversal time. Poleward surges are generally wider in the simulation, leading to the

reduction of some mid-latitude features, most notably the strong surge of positive

flux around 2003–2004 in the northern hemisphere, which is more visible in Figure

2.15.
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The optimization results are shown in Table 2.5(d). Surprisingly, the addition of an

extra decay term induces a minimal decline in diffusion, and it is not enough to bring

it down to 351.6 km2 s−1 as found in the 1D case. Rather, B0 increases to account for

the stronger decay of the polar fields in this regime. Most significantly, we obtain an

optimal value of τ = 4.5 yr. This is higher than the optimum found in the 1D model

and in closer agreement with Schrijver et al. (2002), although the acceptable range is

considerably wider towards the upper limit, indicating that a decay term may not be

required in the assimilative model. This is supported by the value of χ−2 which does

not increase significantly with the addition of the decay term. Furthermore, Figure

2.18 shows that the axial dipole moments calculated using the optimal parameter

sets for the 2D model, with and without the exponential decay term (brown and

green curves respectively), both produce good fits to the observed profile (blue). This

indicates that the method of new flux assimilation in the 2D model is better able

to account for the weak polar field at the Cycle 23/24 minimum than the idealized

BMRs used in the 1D model, since it does not require an additional decay term.

Coupled to the short optimal decay timescale are smaller optimal values for v0 and

p, suggesting that the relationships and correlations discussed in Section 2.1.8 also

hold for the 2D case.

2.3 Comparison with meridional flow

observations

Although observations of the meridional flow are not yet fully reliable, we can use

the data that are available to give an independent test of the optimized model.

David Hathaway kindly provided us with measurements of the meridional flow for

Solar Cycle 23, calculated by tracking features in images from MDI. The data were

supplied as coefficients of the following parametrization:

v (θ) =
(
C0 + C1 cos θ + C2 cos2 θ + C3 cos3 θ + C4 cos4 θ + C5 cos5 θ

)
sin θ. (2.3.1)
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Figure 2.18: Axial dipole moments calculated from observed data
(blue), the parameter set in Table 2.4(c) (green), and
the parameter set in Table 2.4(d) (brown).

The meridional flow measurements for each Carrington rotation are shown in Figure

2.19 (blue curves). The observations tend to follow either a fast or slow flow,

highlighted by denser blue areas, indicating the dependence on time and that the

flow transitions between the two extremes throughout the cycle. Additionally, for

a small number of Carrington rotations an equatorward counterflow is observed at

high latitudes, though it should be noted that such a counterflow was not visible

in HMI data (Hathaway & Upton, 2014). The choice of flexible profile in Equation

2.1.24 does not allow for this phenomenon.

The optimal profile using the parameters from the 1D optimization in Table 2.5(a)

is shown in purple in Figure 2.19 for comparison. Whilst the observed and optimal

profiles are similar in shape, the optimal profile is too fast and reaches its peak at

a slightly lower latitude. Moreover, the observed profiles tend to extend beyond

±75° but the optimal profile chooses to go to zero throughout the polar regions,

giving a possible explanation as to why many SFT models incorporate this feature.

Furthermore, the 1D optimal profile remains almost completely within the bounds
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Figure 2.19: Comparison of various meridional flow profiles: ob-
served for each CR (blue), 1D optimum (purple), 2D
optimum (green) and 2D optimum with decay (brown).

given by the observations, excluding at its peak in the northern hemisphere for which

asymmetry in the observations can be held responsible.

The green and brown profiles in Figure 2.19 represent the optima for the 2D model

excluding and including exponential decay respectively. Both profiles are fully con-

tained within the observational limits, except for a small section of the brown curve

in the southern hemisphere which is due to a lower than average maximum velocity.

Of the three optimal profiles, the 2D regime without decay matches the average

observed profile the closest, whilst the decay-enhanced flow is slightly slower (though

Hathaway & Rightmire (2010) observed speeds of 8m s−1 at cycle maximum). It

does, however, continue to latitudes poleward of ±70°, almost emulating the observa-

tional data. One limitation of tracking magnetic features to measure the meridional

flow is that it is not always easy to distinguish between the effects of the meridional

flow and the effects of supergranular diffusion. For this reason, flows derived from

feature tracking tend to peak at higher latitudes (e.g. Dikpati et al., 2010, Figure

1), giving a possible explanation as to why the observed curves in Figure 2.19 tend
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Figure 2.20: Comparison of average observed (blue) and fitted (red)
meridional flow profiles.

to peak at higher latitudes than the modelled curves.

We use a non-linear least-squares fitting method to fit the parametrized form of

the meridional flow in Equation 2.1.24 to the average observed coefficients given by

David Hathaway to ensure it is actually possible to match the observed profile. The

average observed and fitted profiles, shown in Figure 2.20 (blue and red respectively),

match closely for v0 = 11.3m s−1 and p = 1.87, and slight asymmetry in the average

observed profile is confirmed. This value of p is close to that of Muñoz-Jaramillo

et al. (2009) and is within the acceptable ranges for p in the above 2D regimes, but

is outside the equivalent range in the 1D optimization run, whence we infer that

the 1D model requires the maximum velocity to be closer to the equator than is

observed.

Given that the parametrization is able to closely fit the observed data, we could

fix one of the velocity-related parameters, say p, to the observed value and perform

optimization runs for the two models. We choose p because the model is generally

less sensitive to the choice of v0, and p = 1.87 is outside the acceptable range for the
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1D model.

The optimization results with p fixed in the 1D model are shown in Table 2.5(e).

The value p = 1.87 corresponds to a maximum velocity at ±35°, meaning poleward

transport is slower at low latitudes. This results in more flux cancellation across the

equator and so more trailing flux is present in the transport regions, as observed in

the top panel of Figure 2.21. This feature appears to be a common occurrence in the

standard SFT model (cf. Figures 2.8 and 2.13). The upshot of this numerically is

that the selected decay time of 1.9 yr is even shorter than in the original 1D case to

counteract the large amounts of flux accumulating at the poles. This couples with a

slow velocity, made even slower by the small value of p, adhering to the relationship

found in Section 2.1.8. The timing of polar field reversal, meanwhile, is reproduced

reasonably accurately. Except for a marginally smaller value of χ−2, fixing p does

not significantly hinder the quantitative performance of the 1D model, even though

p = 1.87 is not in the acceptable parameter range for regime (a).

With the higher-latitudinal velocity peak and the absence of τ in the 2D model,

the resulting diffusion value given in Table 2.5(f) is slightly larger than in previous

regimes. Contrary to expectation, the optimal maximum velocity is higher than the

previous 2D cases, but still with wide error bounds. Given that p = 1.87 lies within

the acceptable range in regime (c), it is reasonable to expect that optimal values and

associated ranges would be in line with results in Section 2.2 and hence observations

and previous studies. Consequently the optimal butterfly diagram (middle panel of

Figure 2.21) confirms this, offering only subtle changes to Figure 2.15, for example

a polar field restricted to higher latitudes due to the increase in diffusivity.

2.3.1 Initial profiles

The choice of initial profile in Equation 2.1.22 was made to ensure consistency across

all regimes. However, fixing the observed initial profile could in theory aid the

algorithm in achieving the correct polar field reversal timing for each hemisphere



70Chapter 2. Parameter optimization for surface flux transport models

Year

L
a
ti
tu

d
e
 (

d
e
g
)

1D SIMULATION

 

 

1998 2000 2002 2004 2006 2008

−50

0

50

−6

−4

−2

0

2

4

6

Year

L
a
ti
tu

d
e
 (

d
e
g
)

2D SIMULATION

 

 

1998 2000 2002 2004 2006 2008

−50

0

50

−6

−4

−2

0

2

4

6

Year

L
a
ti
tu

d
e
 (

d
e
g
)

INPUT MAGNETOGRAMS

 

 

1998 2000 2002 2004 2006 2008

−50

0

50

−6

−4

−2

0

2

4

6

Figure 2.21: Top: Butterfly diagram for the optimal parameter 4-
set for the 1D model with fixed p = 1.87 in Table 2.5(e).
Middle: Butterfly diagram for the optimal parameter
3-set for the 2D model with fixed p = 1.87 in Table
2.5(f). Bottom: Ground truth data for Cycle 23.
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and ensuring the initial field strength is more accurate, subject to observational

errors.

Therefore we perform optimization runs for both models for Cycle 23 with the

initial profile fixed to that observed (shown in blue in Figure 2.6). The optimal

values and associated acceptable ranges can be found in Table 2.5(h) and (i) for

the 1D and 2D models respectively. We find that imposing the observed profile

does not improve the fitness value in either case. This might be expected since the

parameter B0 is removed from the optimization, meaning the procedure is more

constrained. However, only the diffusion η and maximum meridional velocity v0 are

significantly affected by the change in initial profile, and even in these cases there is

only a relatively small difference, meaning each optimal parameter lies comfortably

within the acceptable ranges given in Table 2.5(a) and (c). Furthermore, there are no

significant qualitative differences in the optimal butterfly diagrams (Figures 2.22 and

2.23). Figure 2.24 shows the percentage difference between each case for each model

and we find that the main regions of discrepancy are around the initial advection of

low-latitude regions (as would be expected) and the timing of the subsequent polar

field reversal. The polar field at the end of the cycle and the majority of the rest

of the diagram is largely unaffected by the change of initial profile. From this we

conclude that the sinusoidal profile in Equation 2.1.22 is sufficient for this study.

2.4 Other solar cycles

With its automated assimilation of active region data, the 2D model can easily be

adapted for other cycles, provided there are sufficient data available. Evaluations of

Cycles 21, 22, and 24 (up to the end of 2015) using NSO data have been carried out

to search for cycle-to-cycle variation.
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Figure 2.22: Comparison between optimal butterfly diagrams for
the 1D model using the idealized initial profile (top
left) and observed initial profile (top right).
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Figure 2.23: Comparison between optimal butterfly diagrams for
the 2D model using the idealized initial profile (top
left) and observed initial profile (top right).
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Figure 2.24: Percentage difference between the optimal butterfly
diagrams using the two different initial profiles for the
1D model (left) and 2D model (right).

2.4.1 Cycle 21

Table 2.5(j) shows the optimum parameters for Cycle 21 (1976 May 1–1986 March 10).

Both η and v0 are in agreement with previous studies. Most notably, v0 = 9.2m s−1

is slower than the maximum speed of Cycle 23, supporting Upton & Hathaway

(2014a): a faster flow in Cycle 23 would have resulted in a weaker polar field at cycle

minimum since leading flux would be taken away from the equator quickly and so

would have less time to cancel across the equator. This optimum value, however, is

just outside the range of 10–13.2m s−1 as found by Komm et al. (1993) using feature

tracking during Cycle 21. However, this range overlaps with a large portion of the

95% confidence interval obtained by the optimization population.

The interpolated NSO data are shown in the bottom panel of Figure 2.25 with the

corresponding simulated butterfly diagram in the top panel of Figure 2.25. Aside

from a negative-polarity observational artefact in the northern hemisphere halfway

through 1979, many features of active regions are well reproduced. There are three

instances of large concentrations of opposite flux being transported polewards in the

northern hemisphere; the latter of these is over-estimated by the simulation and this

could be attributed to the model incorrectly reading in the corresponding emergence

region. Polar field reversal for both poles is too late in the model, particularly in
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Figure 2.25: Top: Butterfly diagram for the optimal parameter 4-
set for the 2D model in Table 2.5(j). Bottom: Ground
truth data for Cycle 21.

the northern hemisphere where the difference is in the region of a year.

Lemerle et al. (2015) performed a similar optimization process for Cycle 21 using

a 2D model and a BMR database compiled by Wang & Sheeley (1989). Although

they used a different parametrization for the meridional flow and different sources

of flux, their optimal parameter ranges for η and v0 are in good agreement with

those in Table 2.5(j). Our diffusion coefficient η = 455.7 km2 s−1 lies within their

acceptable range of 240–660 km2 s−1 and v0 = 9.2m s−1 falls between 8–18m s−1 as

calculated by PIKAIA in their study. They used the following functional form to

represent meridional flow:

v (θ) = −v0 erfq (v sin θ) erf (w cos θ) . (2.4.1)

Their optimization returned values of v0 = 12m s−1, q = 7, v = 2 and w = 8. This
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gave a profile similar to that of Wang et al. (2002b), but with a less extreme gradient

at the equator. However, when normalized, the profile shape was comparable to the

observed profile formed from Doppler measurements obtained by Ulrich (2010), and

the observed profile lay well within the error bars for the optimal solution, except

for some return flows at high latitudes, which were not incorporable in Equation

2.4.1, mirroring the limitation of our parametrization in Equation 2.1.24. Using a

non-linear least-squares fitting method, we are able to attempt to fit the functional

form in Equation 2.1.24 to the optimal meridional flow profile of Lemerle et al. (2015).

The best fit corresponds to values of v0 = 13.6m s−1 and p = 3.88. This value for

v0 is in agreement with observations and acceptable ranges for other regimes, but is

above the range for Cycle 21. Despite lying within the acceptable range, p = 3.88

favours the high values for p obtained from optimization runs as opposed to the lower

values extracted from observational data. This could suggest an inherent flaw within

the SFT model whereby the model performs better when the maximum velocity is

prescribed to be closer to the equator.

2.4.2 Cycle 22

Table 2.5(l) shows the optimization results for Cycle 22 (1986 March 10–1996 June

1). The fit is marginally worse than for Cycle 21, but optimal values for η and

v0 remain within in plausible ranges. The optimal diffusion in this case increases

to 506.2 km2 s−1, but is in better agreement with Wang et al. (2002b). The op-

timal maximum velocity for Cycle 22 is even smaller than that of Cycle 21, further

supporting the fact that a slower meridional flow results in a stronger polar field

at cycle minimum, and explaining the high optimal maximum velocity for Cycle

23. van Ballegooijen et al. (1998) performed SFT simulations for Cycle 22 with

η = 450 km2 s−1 and v0 = 11m s−1 which produced polar field strength in agreement

with observations. Again, these values are in accordance with ranges given in Table

2.5(l).
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Figure 2.26: Top: Butterfly diagram for the optimal parameter 4-
set for the 2D model in Table 2.5(l). Bottom: Ground
truth data for Cycle 22.

The ground truth data are shown in the bottom panel of Figure 2.26 and the

simulated butterfly diagram is in the top panel of Figure 2.26. The model has

recreated polarity reversal much more successfully here, with only a slight delay in

the north. Towards the end of the cycle there is a large build-up of positive flux

and some weak, but visible, poleward surges in the northern hemisphere that have

appeared in the simulation but are not clearly seen in the real butterfly diagram.

2.4.3 Cycle 24 (so far. . . )

Table 2.5(n) shows the results for the first half of Cycle 24 (2008 August 3–2016

Jan 1). We obtain a much higher value of χ−2 for Cycle 24 compared to previous

cycles, but we suspect that this is might change once we have data for the full
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cycle and try to replicate the long-term effects. The diffusivity η = 454.6 km2 s−1

is within viable ranges found in literature, though the maximum velocity is close

to the lower prescribed bound. The initial polar field B0 = 4.2G is lower than in

previous cycles as the model needs to replicate the weak polar field at the Cycle 23/24

minimum. Acceptable ranges of parameters are generally broad, but performing the

optimization on the full cycle in the next few years should tighten the upper and

lower bounds. Indeed, when a similar optimization process is performed on half

of Cycle 23, the acceptable ranges are found to be wider, though the shorter time

period has a negligible effect on the specific optimal values (see Table 2.5(g) for

optimal values and ranges).

The interpolated Kitt Peak data are shown in the bottom panel of Figure 2.27

with the corresponding simulated butterfly diagram in the top panel of Figure 2.27.

Although a large portion of the cycle is yet to take place, there are still some notable

features, such as the prominent leading-polarity region in the northern hemisphere in

2011. This region was the primary subject of Yeates et al. (2015). Polar field reversal

is slightly late in the simulated butterfly diagram; performing an optimization once

the full cycle has completed might remedy this, though a region of negative polarity

in the northern hemisphere at the end of the current dataset may not correctly be

reproduced, unless the data are corrected.

2.4.4 Exponential decay in other solar cycles

Including exponential decay in the model for Cycles 21, 22, and 24 produces optimal

values of τ = 10.2 ∈ [3.1, 32.0] yr, τ = 7.6 ∈ [3.1, 32.0] yr and τ = 15.1 ∈ [2.5, 32.0] yr

respectively (Table 2.5(k), (m) and (o) respectively). These are in better agreement

with Schrijver et al. (2002) and Lemerle et al. (2015), indicating that the low optimal

value for τ may be necessary only for Cycle 23 in order to successfully reconstruct

the unusually weak polar fields at Cycle 23/24 minimum.
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Figure 2.27: Top: Butterfly diagram for the optimal parameter 4-
set for the 2D model in Table 2.5(n). Bottom: Ground
truth data for Cycle 24.
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2.5 Conclusions

The aim of this chapter was to use a genetic algorithm to find optimal parameters to

be used for surface flux transport simulations, subsequently helping us understand

the behaviour and interplay of the many physical processes on the Sun. We began

by obtaining optimized parameter sets for a 1D SFT model for Cycle 23, both with

and without a multiplicative tilt angle factor. From these simulations we obtained

viable ranges for parameters. We found that these ranges and optimal solutions were

in good agreement with results from previous studies and from observations. We

also looked at the interaction of parameters, highlighting the positive correlations

between the meridional velocity parameters v0 and p, and exponential decay time τ .

We repeated the optimization process on a 2D assimilative model and found that

optimum parameters were mostly within ranges of those from the 1D case, but

distinct enough to suggest that the differences between models could be important.

We also found an optimum value for the assimilation threshold Bpar, which was

significantly greater than used previously for GONG magnetograms by Yeates et al.

(2015). Qualitatively, the 2D model produced a more accurate butterfly diagram than

the 1D model, particularly at the poles. We also included an exponential decay term

in the 2D model which produced an optimal value of 4.5 yr, which lies outside the

acceptable range found in the 1D case and is in agreement with the values obtained

by other authors. Including decay induced a decrease in the velocity parameters,

but given that the acceptable range extended to the upper limits of exploration, its

inclusion may not be necessary in the 2D model. There is the possibility that we did

not model decay realistically, which could have led to a strong polar field. That the

2D model was able to give an acceptable match to the observed butterfly diagram

and axial dipole moment without a decay term is evidence that it is superior to the

1D model, which was unable to do so with the corresponding optimal parameters.

It suggests that the method of flux assimilation in the 2D model is superior to the

insertion of idealized BMRs, as used both in the 1D model and in most other SFT
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models.

We were then able to compare the optimal meridional profiles from different regimes

with observations made from feature tracking. The profiles from regimes (a), (c),

and (d) were each almost completely within the range of observed flows, but the

1D optimal profile was faster than the average observed flow, while the 2D profile

with decay included was too slow. The 2D profile without an extra decay term,

however, best matched the average observed profile. Fixing the observed profile in

both models resulted in varied success; the 2D model was able to accommodate the

observations comfortably, whilst the 1D model saw a reduction in most parameters

and a butterfly diagram containing an excess of flux in the transport regions.

Finally, the optimization process was repeated using the 2D model for Cycles 21,

22, and 24, producing plausible results for Cycles 21 and 22; Cycle 24 may need

more time to progress to capture the long-term effects of the cycle in the optimal

parameters, particularly in narrowing some of the range of viable solutions, although

an optimization run performed over the same number of years for Cycle 23 showed

that the optimal parameters themselves were barely affected; it was just the ranges

of acceptable values which widened due to fewer constraints. In order to predict

the axial dipole moment at the Cycle 24/25 minimum and hence the amplitude and

length of Cycle 25, randomly generated magnetic regions with properties based on

empirical relations must be used to simulate the remainder of the cycle (e.g. Upton

& Hathaway, 2014b; Cameron et al., 2016).

Analysis of multiple cycles highlighted significant differences in meridional circulation

speed, supporting the evidence for slower meridional flows during stronger cycles, and

initial profile strength, supporting the proposed relationship between cycle strength

and polar field strength at the preceding cycle minimum. Our multiple cycle analysis

also highlighted cycle-dependence of the decay term τ . At present, the best form

and magnitude of such a decay term remain to be determined by the community.

However, our results (and the others mentioned) do suggest that it can help to

improve the match with observations, at least for Cycle 23. It is intriguing that it
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seems to be less important for the preceding cycles. This could either be because

the decay is compensating for some other deficiency of the model that has changed

in Cycle 23, such as the inability to reproduce the unusually weak polar field at

the end of the cycle, or the radial diffusion of flux did really change from one cycle

to the next, presumably due to some difference in the flows and magnetic field in

the convection zone. This is an interesting subject for future study, but is beyond

the scope of this chapter where we consider only the surface. Radial diffusion is

investigated further in Chapter 5.

All optimization runs were performed with respect to a prescribed variance which was

proportional to both latitude and the observed magnetic field strength. We did this

to give statistical meaning to the χ−2 quantity, as well as to factor in observational

uncertainty. It should be noted that comparing fitness values is always with respect

to the chosen error structure in this chapter.

While the flexibility in the problem is beneficial in the respect that it allows more

freedom, it can also have drawbacks. For example, the choice of fitness function

is crucial to deciding which regime or parameter choice is ‘best’ for each model,

but depends entirely on what the user regards as important. Lemerle et al. (2015)

used a combination of χ2 statistics which measured the differences between real

and simulated time-latitude maps, axial dipoles and ‘transport regions’ (latitudes

±34° to ±54°). These statistics were balanced equally in the final fitness function.

Weighting could have been applied in favour of particular features, though it is not

obvious how best to put this into practice. Alternatively, weighting could be applied

to different sections of the map, i.e., active, transport and polar regions, to force the

algorithm to return parameters which produce those specific regions more accurately.

We chose a comparison between the real and simulated time-latitude maps, with an

associated error structure, as we considered the general reproduction of the whole

map to be foremost in importance.





Chapter 3

The Bayesian approach

In Chapter 2, a parameter optimization process was performed through the use of

a genetic algorithm. This method was successful when applied to a simple 1D or

2D surface flux transport model, and we would like to apply it to a more complex

3D dynamo model. However, we were running 23 000 realizations of the model to

‘ensure’ convergence. Whilst this was manageable for a model with a runtime of 1–2

minutes, a larger simulation that lasts a couple of hours using multiple processors

would require a month of computer time for the same number of iterations, with

perfect parallelization. Furthermore, as the genetic algorithm improves its current

best values over time, there is no way of knowing how close one is to the optimum

value, hence there is no definitive stopping criterion.

In light of this, we opt to test a different technique, known as Bayesian emulation.

This method stems from the ideas of Bayesian inference, where prior beliefs are

updated based on new information, and has been applied to a wide range of models

from different disciplines, including oil reservoirs, galaxy formation, climate, disease,

and plant biology (Craig et al., 1997; Bower et al., 2010; Vernon et al., 2010; Wil-

liamson et al., 2013; Andrianakis et al., 2015; Jackson et al., 2018; Vernon et al.,

2018). An emulator essentially mimics the behaviour of a model but is typically

much faster to run. A global parameter calibration can be performed quickly and

uncertainty is automatically incorporated and can be quantified simultaneously. In
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addition, the emulator is able to manage difficult regions of parameter space, such

as spikes and sharp gradients, or regions where the model is numerically unstable.

A thorough overview of Bayesian emulation can be found in Vernon et al. (2010).

In this chapter we apply these techniques to the optimization problem involving the

surface flux transport model in Chapter 2. In Section 3.1 we describe the set-up of

the emulation framework, and our results are presented in Section 3.2. We conclude

in Section 3.3.

3.1 History matching and emulation

We begin by describing the method used to perform the ‘history matching’ process.

According to Vernon et al. (2014), history matching is ‘modifying input parameters

until the output resembles historical data’. This is in essence the same global

‘parameter optimization’ goal as we were aiming for in Chapter 2, but here we shall

apply a different method. An emulator is described by Vernon et al. (2014) as a

‘representation of uncertainty about the value of the model at each input choice. It

suggests an approximation to the function along with an assessment of the error

magnitude of the approximation’. After such approximations have been calculated,

regions of parameter space can be ruled out based on a quantity called ‘implausibility’.

Various levels of sophistication exist for constructing emulators. For example, one

option is to fit an emulator using probability distributions for the model outputs,

which would be the fully Bayesian approach (Kennedy & O’Hagan, 2001). However,

here we shall use the Bayes Linear approach which only depends on expectations,

variances and covariances of outputs (Goldstein, 1999; Goldstein & Wooff, 2007).

Other simplifications are outlined below, but for a more complete study see Vernon

et al. (2010).

Following the notation of e.g. Vernon et al. (2014), we denote model inputs (para-

meters) by x and outputs by f(x), which correspond to properties y of the physical
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system. Observations are denoted by z, and observational errors by e, so z = y + e,

with E (e) = 0 and Var (e) = σ2
e , and e is assumed to be independent of y. We also

consider model discrepancy ε which can be used to represent model imperfections, so

y = f(x) + ε, with E (ε) = 0 and Var (ε) = σ2
ε , and we specify that ε is independent

of x, f(x) and e.

Typically, a Bayesian emulator is constructed as:

f(x) =
∑
i

βigi (x) + u(x) + w(x), (3.1.1)

where gi are functions of the inputs x (usually low-order polynomials) which describe

the global behaviour of the model, and βi are coefficients of these functions to be

determined. The second term u(x) is a Gaussian process which describes the local

behaviour of the model, and w(x) is an uncorrelated nugget representing white noise.

These have zero expectation and the following constructed covariance matrices:

Cov (u(x), u(x′)) = σ2
u exp

(
−‖x− x

′‖2

Θ2

)
, (3.1.2)

Cov (w(x), w(x′)) =


σ2
w if x = x′

0 otherwise
, (3.1.3)

where Θ is a specified correlation length.

For simplicity, we set βigi to be a constant term β0. Then we have:

E (f(x)) = β0, (3.1.4)

and, ignoring the nugget term for simplicity:

Var (f(x)) = σ2
u. (3.1.5)

Model outputs at inputs x(j) are placed into a column vector:

D =
(
f(x(1)), f(x(2)), f(x(3)), . . .

)T
, (3.1.6)
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and we write:

E (D) = (β0, β0, β0, . . . )T . (3.1.7)

The covariance between f (x) at a new input x and a known output f(x(j)) is given

by the row vector:

Cov (f(x), D)j = Cov
(
f(x), f(x(j))

)
= σ2

u exp
(
−‖x− x

(j)‖2

Θ2

)
, (3.1.8)

and the variance between two calculated outputs is given by the matrix:

Var (D)jk = Cov
(
f(x(j)), f(x(k))

)
= σ2

u exp
(
−‖x

(j) − x(k)‖2

Θ2

)
. (3.1.9)

Once these quantities have been calculated, we can then obtain the Bayes linear

updated expectation and variance for the model output at any new input x, where

we update our beliefs based on the actual model runs (Goldstein, 1999):

ED (f(x)) = E (f(x)) + Cov (f(x), D)Var (D)−1 (D − E (D)) , (3.1.10)

VarD (f(x)) = Var (f(x))− Cov (f(x), D)Var (D)−1 Cov (D, f(x)) . (3.1.11)

Equations 3.1.4–3.1.11 are quick to evaluate compared to performing a model simula-

tion at each input. We are given an estimate of the output at each point in parameter

space, along with an approximation of uncertainty given lack of information in the

vicinity of that particular point. Using these quantities, we define the implausibility

to be:

I2(x) = (ED (f(x))− z)2

VarD (f(x)) + Var (ε) + Var (e) . (3.1.12)

The implausibility measures the difference between the emulator mean and observed

data z given input parameters x (in the numerator) whilst simultaneously taking into

account model and observational error, as well as the lack of emulator information

in the specified region of parameter space (in the denominator). A value of I(x) > 3

indicates a high probability that the inputs produce an unacceptable match to

observations and the corresponding regions of parameter space can be discarded

(Pukelsheim, 1994).
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However, our chosen output f(x) = χ−2 from Section 2.1.7 is already a comparison

between observations and model output, subject to uncertainty, and has no ‘observed

value’ per se. Instead we use an alternative cut-off for ruling out ‘implausible’ regions:

ED (f(x)) + a
√

VarD (f(x)) < zcut, a ∈ (2, 3) , (3.1.13)

where zcut is chosen to be just smaller than the current highest value of f(x(j)).

This allows us to still find a region of acceptable parameter sets in the unlikely

event of finding the absolute optimum from one of the simulation runs. In similar

fashion to Equation 3.1.12, this equation takes into account emulator uncertainty

in regions of low exploration by adding two or three standard deviations to the

emulator expectation. The choice of a depends on how cautious we wish to be, or

how much we trust our emulator. If the sum of the two quantities is smaller than

zcut, it means that the emulator is confident that a parameter input will not produce

a better match to observations than the current best simulation run.

For our study we sample 100 points across parameter space using a maximin Latin

hypercube (Sacks et al., 1989; Currin et al., 1991; Santner et al., 2003). This

divides the range of each parameter into 100 sub-intervals and ensures that there

is exactly one point within each sub-interval. Then the hypercube with maximal

minimum distance between points is chosen in order to ensure optimal coverage

of parameter space. We perform full model runs at each of these points, and

the emulator expectation and variance are calculated at ∼ 107–108 other points in

parameter space based on the model output from the 100 sampled parameter sets.

Points below the cut-off in Equation 3.1.13 are discarded and the process is repeated

in waves until the emulator variance is smaller than other uncertainties.
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3.2 Applying history matching and emulation to

a surface flux transport model

Rather than attempting to emulate the complex 3D dynamo model KD3 (Yeates

& Muñoz-Jaramillo, 2013), we take a first step towards this by testing the process

on the 2D SFT model from previous chapters (Yeates et al., 2015). If we trust

our optimal values in Chapter 2, we have some intuition as to where in parameter

space the emulator will indicate as acceptable. However, we must ensure that this

knowledge does not add bias to our search. When it comes in future to history

match for KD3, we will not have the luxury of such information.

The SFT model solves Equation 2.1.1 and the free parameters are diffusion η, me-

ridional flow parameters v0 and p, initial dipolar field strength B0 and assimilation

threshold Bpar. These are given the same upper and lower bounds as in Section 2.2:

(i) 100 km2 s−1 ≤ η ≤ 1500 km2 s−1

(ii) 5m s−1 ≤ v0 ≤ 30m s−1

(iii) 0 ≤ p ≤ 16

(iv) 0G ≤ B0 ≤ 50G

(v) 10G ≤ Bpar ≤ 50G

We choose our output to be f(x) = χ−2 as defined in Equation 2.1.25, and we expect

a similar optimal value of ∼ 0.65.

As discussed above, we evaluate the model at 100 maximally-spaced inputs. The

respective outputs form the vector D and, maintaining the notation used in Section

3.1, we choose the prior expectation β0 to be the mean of the entries of D. The

correlation lengths Θi determine how strongly neighbouring points in parameter

space are correlated in dimension i: a large value of Θi corresponds to strong

correlation and vice versa. Rather than keep these fixed and equal for each of the
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five parameters throughout the emulation, we estimate the values of Θi, as well as

the standard deviation of the Gaussian process σu and a small random noise nugget

term w, by maximizing a log-likelihood function for the normal distribution:

l (Θ, σu, w|x) = −0.5
[
log
(
det (Var (D))

)
+ (D − E (D))T Var (D)−1 (D − E (D))

]
,

(3.2.1)

where Var (D) is the same as in Equation 3.1.9 but has been scaled by a factor of

(1 − w). This is in general a simple optimization problem and can be performed

using the in-built interior-point algorithm in MATLAB (Byrd et al., 1999). The

correlation lengths, standard deviation and nugget are re-estimated at the start of

every wave once new data have been obtained. However, it should be noted that

these are only estimations and we must be cautious to take them at face value.

3.2.1 Waves 1 and 2

One input from the first wave of runs produces an output of χ−2 = 1× 10−6. This

is many orders of magnitude lower than other output values and so we treat it as an

outlier and discard it, leaving us with 99 runs from Wave 1. The offending input has

a diffusion of η = 106.9 km2 s−1 which causes the simulation to become numerically

unstable and blow up. We find that this occurs for small values of η (with some

non-linear dependence on other parameters), hence to avoid bad emulator behaviour

in this vicinity we create a barrier at η = 150 km2 s−1 and define this to be our

new lower limit for the diffusivity. As discussed in Chapter 2, a more accurate

timestepping method may prevent this from occurring to a larger extent.

To construct the first wave emulator we split each parameter range equally into 30

sub-intervals and calculate the emulator expectation and variance at the 305 points.

Whilst this is not the best method for sampling inputs, it helps with visualizing

the parameter space in the early stages, and in Waves 3 and 4 we shall emulate at

randomly selected points.

In Figure 3.1 we plot 2D projections of the emulator expectation from 5D parameter
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Figure 3.1: Pairs plot showing maximized expectation for each 2D
projection of 5D parameter space from Wave 1.

space for each pair of parameter relationships in Wave 1. We do this by maximising

the expectation over the remaining three dimensions behind each pixel. We observe

some clear peaks and valleys, and are already able to infer potential correlations

between parameters.

However, the emulator expectation is based purely on outputs from the 99 model

runs, and there are vast regions of parameter space far away from this small sample

where more information is required. Therefore we also plot our cut-off metric from

Equation 3.1.13, with a = 3: ED (f(x)) + 3
√

VarD (f(x)), in the ‘pairs plot’ in

Figure 3.2. This takes into account lack of information and represents the ‘best-case’

or ‘optimistic’ scenario, in that we assume there are still lots of inputs that could
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produce good matches to observations. Hence in comparison with Figure 3.1, there

are fewer sections which we would class as implausible, particularly for the fifth

input Bpar. This highlights the need for more model runs to gain more insight into

parameter space. One striking feature is that all parameter sets with B0 > 30G

produce a poor χ−2 value. This is not particularly surprising given that an initial

dipole field strength that is more than twice as strong as observed would propagate

throughout the cycle and the polar field would never be accurate. Despite the

apparently wide ranges of acceptable input choices, we are able to discard regions

below zcut, which we calculate based on the current highest model output, χ−2
max:

zcut = χ−2
max

(
1 + 3

√
2

n− k

)−1

, (3.2.2)

where
√

2
n−k is the standard deviation of the normalized χ2 distribution and (n− k)

is the number of degrees of freedom. For Wave 1 we obtain zcut = 0.55. This value is

coloured in green in Figure 3.2. For Wave 2 we then discard all regions in 5D space

below this value. This amounts to removing 87% of the original parameter space

which we cannot see from the simplified visualization in Figure 3.2.

For the new sample of model runs, we generate a large number of sets of 100

parameter inputs from the remaining 13% of space, and choose the set with the

maximal minimum distance to ensure good coverage of the five dimensions. After

running the SFT model at the new inputs, we construct a new emulator for the

second wave using only the Wave 2 points, plus any Wave 1 points which exceed the

updated value of zcut as defined by Equation 3.2.2. Incidentally, there are no such

points from Wave 1, because the threshold is updated to zcut = 0.61 due to the Wave

2 outputs. The second wave emulator will be more accurate in the non-implausible

regions, but should not be used to approximate the discarded space.

Figure 3.3 shows the pairs plot for the best-case scenario from the Wave 2 emulator.

We elect to be less cautious and speed up the process by setting a = 2 in Equation

3.1.13. We now observe more distinct patches of non-implausible regions, particularly
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Figure 3.2: Pairs plot showing maximized best-case for each 2D
projection of 5D parameter space from Wave 1.
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Figure 3.3: Pairs plot showing maximized best-case for each 2D
projection of 5D parameter space from Wave 2.

at boundaries and corners of the 5D box, where a model run is unable to cover as

large an area with its information as a model run in the centre of the domain. In time

this problem will be resolved as the correlation lengths are re-estimated at each wave

and should eventually ensure that boundary points are accurately emulated. We

also see hints of a positive correlation between η and v0 to add to the relationships

found in Chapter 2, and that we can get erratic behaviour when small values of η

are prescribed (first and second panels of the first column).
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Figure 3.4: Pairs plot showing maximized best-case for each 2D
projection of 5D parameter space from Wave 3.

3.2.2 Waves 3 and 4

By the time we reach Wave 3, the equally-spaced grid of 305 points is no longer

sufficient to emulate at, especially given 99.57% of the original space has been

ruled out. Instead we generate 107 points uniformly at random and assess their

performance at each emulator level. If at any stage a point does not exceed the

cut-off for the current wave, it is discarded. Conversely, if a point performs better

than the zcut value in Waves 1 and 2, it is passed through the third emulator based

on Wave 3 runs and plotted in Figure 3.4.

We now begin to observe clear peaks in parameter space. The assimilation threshold
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appears to have a local maximum at 30–40G, and also near the lower bound of 10G,

although this could be due to boundary effects. Other parameters also appear to be

bimodal, with one of the peaks in each case agreeing well with results in Chapter 2.

On reaching Wave 4, we are at the stage where we can draw 100 sparsely-distributed

runs primarily from these two modes. Repeating the multi-step emulator process

described above, we plot the remaining non-implausible parameter space which

contains 0.11% of the original space (Figure 3.5). The history matching process

has selected a clear optimal region with η ∈ [200, 650] km2 s−1 and the very best

values of η falling between 300–450 km2 s−1. The maximum meridional flow speed v0

produces a good match when values between 7m s−1 and 14.5m s−1 are prescribed,

in excellent agreement with Chapter 2 (see Table 2.5(c) for comparison). We again

find that choosing p < 5 is required to match observations, although in this case

values of p = 0 are also deemed acceptable. In this scenario, Equation 2.1.24 reverts

to a simple cosine curve, indicating a lack of dependence on the exact shape of the

meridional flow profile, provided the peak velocity is not too close to the equator.

This is the largest deviation from the results of Chapter 2. An acceptable choice for

B0 lies in the range 3–15G, although the current best value for B0 is slightly higher

than the 8.3G found by the genetic algorithm. The assimilation threshold Bpar can

still take a wide range of values, but seems to be cut off below 30G. The upshot

is that the results from the emulation exercise are qualitatively, and in most cases

quantitatively, in good agreement with the results obtained using PIKAIA.

However, there is also a considerable population with a best-case value of approxim-

ately 0.63, represented by the large blue-green mass corresponding to, for example,

high values of p. Furthermore, there are individual points (most clearly visible in

the B0 vs η panel) that supposedly produce a good fit to observations despite being

far away from the main population. We cannot yet rule these out, because a high

best-case value indicates either a location in parameter space with little information,

or a point where a model run with a high χ−2 has been found. At this stage we

no longer need to run another 100 iterations of the model; we can simply run the
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Figure 3.5: Pairs plot showing maximized best-case for each 2D
projection of 5D parameter space from Wave 4.



3.2. Applying history matching and emulation to a surface flux
transport model 97

simulation at the specific locations of interest to determine their χ−2 values directly.

We find that these are points with large emulator variances as a result of being at the

boundaries of the 5D space, and confirm that the χ−2 values are less than 0.5. The

highest χ−2 value in the green secondary peak is 0.58 – this is modest but not as high

as the model runs performed at the primary peak (χ−2
max = 0.648). An alternative

and more sophisticated method would be to construct a separate emulator for the

secondary hill, but due to time constraints and confidence in our current emulator,

we decide against this. After Wave 4, 99.98% of the original parameter space is

discarded.

For direct comparison, in Figure 3.6 we show another pairs plot but for the population

generated by the genetic algorithm PIKAIA in Section 2.2. Note that the colour scale

is different for improved visualization. We see that the optimal regions of parameter

space obtained by the genetic algorithm and the emulator agree very well, as well

as the fact that large values of B0 produce poor fits to the ground truth data.

Unfortunately, we see that PIKAIA does not provide information for the whole of the

5D parameter space, and while it is a global optimizer, it rapidly focuses in on the

optimum, leaving large portions of space undiscovered. We also observe horiztonal

and vertical lines in a grid-like structure, showing how the genetic algorithm jumps

about parameter space slowly by typically only varying one parameter value at a

time via mutation or crossover.

3.2.3 Next steps

In spite of the excellent progress and promising results, we would like to continue to

precisely map out the shape of this probable global maximum peak. To do this we

perform 100 well-spaced new model runs at points in the non-implausible space with

highest emulator variance. Similarly, we choose 10–20 points with high emulator

expectation, and append these runs to the Wave 4 outputs. This is ongoing work,

but eventually we hope to have a much clearer idea about the behaviour of the model
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Figure 3.6: Pairs plot showing χ−2 for each 2D projection of 5D
parameter space generated by the genetic algorithm in
Section 2.2.
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and its parameters in this region of parameter space, and finally obtain ‘acceptable

ranges’ of parameters to be used in the SFT model to produce sun-like output. These

ranges can also be compared closely to those found in Chapter 2.

3.3 Conclusions

In this chapter, we repeated the parameter optimization task from Chapter 2 by

applying Bayesian emulation to the 2D SFT model of Yeates et al. (2015). Based on

just 100 model runs, the emulator provided an approximation of the model’s ability

to match observations at each point in 5D parameter space, along with an estimate

of the error of the approximation. This is far more efficient than using a genetic

algorithm, because it is much faster to evaluate the emulator at a point in parameter

space than to run the model. Parameter inputs with a high chance of producing

poor fits to data were discarded.

Using ideas stemming from Bayesian inference, we were then able to update and

improve our prior understanding of the parameter space by performing 100 more

model runs in the remaining space. This process was repeated in four waves, until

we had eventually honed in on an optimal region in 5D space. The parameter ranges

agreed qualitatively very well with the acceptable ranges found in Section 2.2. A

final step will be to perform one more wave of runs in the optimal region to gain a

better picture of the global maximum peak.

Model runs were still required to develop the emulator, but we only needed to run

400 to reduce the parameter space to that shown in Figure 3.5. It might even be

the case that we can obtain the same optimal region by only performing, say, 200

simulations. Contrast this with the genetic algorithm, where 23 000 realisations of

the model were performed to ensure convergence. This also raises a further benefit

of the Bayesian approach: the whole parameter space and the current status of the

emulator can be visualised regularly. After each wave, we can track how much space

is being discarded, assess the distribution of emulator expectation and variance, and
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update our choice of cut-off and correlation lengths. After Wave 1, 87% of space

was immediately cut, and after Wave 4, 99.98% of the original space had been ruled

out, highlighting the rapid convergence of the parameter search. Furthermore, using

emulation we were able to identify secondary peaks and local maxima and choose

whether to explore them further. This was not possible using the genetic algorithm.

As mentioned in Chapter 2, in the future we would like to optimize parameters for

the more complex 3D dynamo model, KD3. Based on the work carried out in this

chapter, Bayesian emulation looks to be a more efficient and informative method than

using a genetic algorithm, with opportunities to add even more levels of efficiency and

sophistication. Nevertheless, it will inevitably still be a time-consuming operation

and we must leave this for future work.



Chapter 4

How many active regions are

necessary to predict the solar

dipole moment?

Having optimized parameters for SFT models, we now turn our focus to solar cycle

prediction and the role of active regions in the Babcock-Leighton mechanism. We

aim to discover how much individual regions can contribute to the polar field at cycle

minimum, with particular interest in the unusually weak polar field (and equivalently

weak axial dipole moment) at the end of Cycle 23 (Muñoz-Jaramillo et al., 2012),

which in turn is believed to be responsible for the low amplitude of Cycle 24. For

the published version of this chapter, see Whitbread et al. (2018).

Jiang et al. (2015) used the BMR data of Li & Ulrich (2012) to investigate the

effect of tilt angle on the asymptotic axial dipole moment contribution D, using an

empirical relation involving tilt angle, latitude and area (Jiang et al., 2014):

D ∝ A
3
2 sinα exp

(
− λ2

110

)
, (4.0.1)

where A is the area, α is the tilt angle, and λ is the latitude of each active region

at the time of emergence. They found that axial dipole moment contributions from

observed tilt angles in Cycle 23 follow those obtained by assuming Joy’s Law at
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latitudes above ±10°. Nearer the equator, the regions with observed tilt angles

contribute substantially less than would be expected from Joy’s Law, contrary to

the behaviour of Cycles 21 and 22, which follow the Joy’s Law contributions more

closely at all latitudes. This led to the suggestion that a single large anti-Hale or

anti-Joy region emerging at a low latitude, or across the equator (Cameron et al.,

2013, 2014), has the ability to significantly alter the dipole moment, and this could

have been the catalyst behind the weak polar field at the end of Cycle 23. Therefore

the stochasticity behind the properties of emerging regions provides a problem for

those attempting to predict the amplitude of future cycles, especially given that the

magnetic flux in a single large active region is similar to the total polar flux (Wang &

Sheeley, 1991). With this in mind, it may not be possible to make reliable predictions

until the end of the cycle, unless random fluctuations of active region properties are

taken into account. Indeed, Nagy et al. (2017) recently demonstrated in a 2×2D

dynamo model that large ‘rogue’ regions can drastically affect the evolution of future

solar cycles and introduce hemispheric asymmetries. Such large regions emerging

during the early phases of a cycle can even affect the amplitude and duration of the

same cycle. In this particular dynamo model, the effect of a single region can persist

for multiple cycles. Nagy et al. (2017) found that the effect of a region in their model

is dependent on its axial dipole moment at time of emergence. So bipolar regions

near the equator, and/or with large tilt angle, are particularly strong contributors,

although significant effects were found for regions even up to ±20° latitude.

We investigate these claims further by simulating the evolution of real active regions

from Cycles 21 to 24 using the 2D SFT model from Section 2.2. The automated

region identification and assimilation process allows us to identify particular observed

properties which could have defined the contribution of each region to the axial dipole

moment. As in Section 2.2, the emerging regions are determined from NSO line-

of-sight magnetograms. In Section 4.1 we discuss the extraction of regions and

their properties in more detail. In Section 4.2 we show how assimilating different

numbers of regions based on both dipole moment contribution and flux can alter the
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end-of-cycle axial dipole moment. In Section 4.3 we investigate in more detail how

the properties of the regions determine their dipole contributions, and in Section 4.4

we assess the effect of the exponential decay term. We conclude in Section 4.5.

4.1 Determination of active region properties

We will investigate the distribution of various magnetic region properties, namely

latitude, magnetic flux, and initial and final axial dipole moment. The regions and

their properties are extracted from NSO Kitt Peak and SOLIS synoptic magneto-

grams, and the overall photospheric evolution is simulated using the 2D SFT model

described in Section 2.2 and Yeates et al. (2015). The extracted active region data

are freely available at the Solar Dynamo Dataversea (Whitbread, 2019). All sim-

ulations are performed using optimal values for diffusivity, meridional flow, initial

field strength, exponential decay and assimilation threshold, obtained using PIKAIA.

In Section 4.4 we present the case without decay and show that similar conclusions

hold in both regimes. The optimum values are shown in Table 4.1, with associated

‘acceptable ranges’ below each entry. We use the same value of Bpar = 39.8G as

found in Section 2.2. All conclusions made in this Chapter are with respect to

these optimal parameter values. Note that these differ slightly to those in Table

2.5, because we keep the parameters fixed across Cycles 21 to 23 and re-perform the

optimization against the butterfly diagram provided by Petrie (2012). Unfortunately,

the ground-truth data only goes up to 2016 Jan 1, so for Cycle 24 we assume that

the optimal parameters from earlier cycles are appropriate for use, given that they

lie within the acceptable ranges for Cycle 24 in Table 2.5(n).

Note also that B0 is the initial field strength at the start of Cycle 21 only; each

other cycle immediately follows on from the final state of the preceding cycle. As

mentioned in Section 2.5, if we calibrate the parameters for each cycle individually,

we find that any errors in the end-of-cycle dipole moment induce errors in the initial

ahttps://dataverse.harvard.edu/dataverse/solardynamo
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η v0 p τ B0
(km2 s−1) (m s−1) (yr) (G)

466.8 9.2 2.33 10.1 6.7
[325.7, 747.3] [5.6, 11.9] [1.12, 3.95] [3.6, 31.9] [0.0, 15.0]

Table 4.1: Optimal parameter set for the simulation shown in Figure
4.1. Upper and lower bounds for acceptable parameter
ranges are given in square brackets below each entry,
although here we use the optimum values themselves for
all simulations.

state of the next cycle, and these discrepancies can propagate through, in some

cases forcing parameters of future cycles to be unrealistic. Keeping the parameters

fixed throughout ensures that both the overall magnetic field and dipole moment are

well reproduced, and validates any comparisons made between cycles. The optimal

butterfly diagram for Cycles 21 to 24 is shown in the top panel of Figure 4.1, and

the bottom panel shows the observed butterfly diagram from Kitt Peak, also partly

shown in Figure 1.6.

The axial dipole moment of region i is given by:

D(i) (t) = 3
2

∫ π

0

∫ 2π

0
B(i) (θ, φ, t) cos θ sin θ dφ dθ, (4.1.1)

where B(i) (θ, φ, t) is the evolving magnetic field of the individual region i, com-

puted after its initial insertion by solving Equation 2.1.1 with no other field present.

Isolating the evolution of a single region like this is meaningful because Equations

2.1.1 and 4.1.1 are approximately linear, so that the contributions D(i) (t) may be

added together to give the overall dipole moment Dtot (t). The linearity is only

approximate because our newly inserted regions replace pre-existing flux, and in

some cases, very strong regions can reappear in the magnetogram of the following

Carrington rotation. Because of complex flux emergence and cancellation processes

that occur between the multiple observations of the same region, it is not trivial to

automatically define whether an active region is new or a repeat in the model, so

we class these repeats as new regions altogether. The replacement technique ensures

that the axial dipole moment contribution from a returning region is not counted
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twice, hence the repeated regions do not affect our conclusions. In any case, the

evolution of the strongest of a set of repeated regions is a good approximation to

the combined evolution including replacements, and it is therefore useful to isolate

them.

To assess the contribution of each region to the overall evolution of the dipole

moment, we will also use the relative axial dipole moment Drel, which is defined as:

D
(i)
rel (t) = D(i) (t)

Dtot (tend)−Dtot (tstart)
, (4.1.2)

for region i, where Dtot (t) is the dipole moment of the full simulation with all regions

included, and D(i) (t) is the dipole moment contribution of a single active region

as calculated in Equation 4.1.1. The times tstart and tend are the start and end of

each cycle respectively, so that D(i)
rel represents the contribution from region i to the

overall change in dipole moment during the cycle. The start and end times are the

same as in Chapter 2, i.e.: tstart = 1976 May 1 and tend = 1986 March 10 for Cycle

21, tstart = 1986 March 10 and tend = 1996 June 1 for Cycle 22, and tstart = 1996

June 1 and tend = 2008 August 3 for Cycle 23. For Cycle 24 we choose tstart =

2008 August 3 and tend = 2017 November 6. The final relative axial dipole moment

D
(i)
rel (tend) then reflects the proportional contribution of region i to the end-of-cycle

axial dipole moment. A positive Drel (tend) corresponds to a strengthening of the

axial dipole moment at the end of the cycle, whilst a negative Drel (tend) corresponds

to a weakening.

Note that most SFT simulations, including Jiang et al. (2015), assume that all

regions are BMRs with a simple bipolar structure. However in our 2D model this

is not always the case. The model inserts the observed shapes of active regions,

meaning that complex multipolar configurations are often assimilated. Figure 4.2

shows the configurations of the top nine largest contributors from Cycle 23, as

measured by Drel (tend). Among these are two regions that share similar features

(left and centre panels of the middle row), and are likely to have been the same region

appearing in two consecutive rotations, having undergone some sort of interaction
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Figure 4.2: Nine most significant contributing regions from Cycle
23, as measured by Drel (T ). The panels are equal in
size and centred around each region. Each image is
saturated individually.

in the interim. Whilst some regions are clearly bipolar, some are less clear and are

harder to separate into BMRs. Because of this, a ‘tilt angle’ is no longer a sensible

measure, and so instead we use the initial (relative) axial dipole moment which

still takes into account orientation and polarity. Similarly, we also do not consider

polarity separation distance. Here the initial axial dipole moment of an active region

is measured at the time of assimilation, that is, on the day it crosses the central

meridian.

For the optimal threshold Bpar, we tend to extract fewer regions per cycle than other

studies, because the model can consider a cluster of active regions to be one single

large region. Despite this, the insertion of realistic configurations of active regions

combined with the optimization procedure means that the evolution of the observed

axial dipole moment Dtot is well reproduced by the simulation, even though the axial

dipole moment is not considered directly in the fitness function (unlike Lemerle et al.,

2015). We will also continue to use the term ‘regions’ to describe both individual
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regions and clusters of regions.

4.2 How many regions are required?

Initially we consider the effect on the overall axial dipole moment of including the

largest dipole moment contributions only, to assess how many regions are needed to

replicate the original axial dipole moment. Regions are listed in order of absolute

Drel (tend) and only those above a certain threshold are assimilated. This routine is

performed at five thresholds so that the top 10, 100, 250, 500 and 750 regions are

included over five separate runs in each cycle, and the resulting profiles are shown in

Figure 4.3(a). These are superimposed on the observed axial dipole moment (light

grey). Because we only analyse a portion of Cycle 24, which was in itself a less active

cycle, we instead consider the effect of including 10, 100, 200, 300 and 400 active

regions.

The left-hand section of Figure 4.3(a) shows the effect of keeping the largest contribu-

tions to the axial dipole moment from the simulation of Cycle 21. Incorporating the

largest 750 contributors of the 844 regions makes only a little difference (a decrease

of 1.6%), but using 500 regions corresponds to a reduction of 7% of the axial dipole

moment.

The left-middle section of Figure 4.3(a) shows the effect of including the largest

contributions to the axial dipole moment from the simulation of Cycle 22. As few as

500 of the 846 regions can be used with a shortfall of just 1.3%, and using 750 regions

makes little difference to the evolution of the axial dipole moment. If we assimilate

the top ten contributors of Cycle 22, polar field reversal is almost achieved.

The right-middle section of Figure 4.3(a) shows the same profiles as the two leftmost

sections but for Cycle 23. Even when the largest 750 contributors of the 951 regions

are assimilated, there is a more significant discrepancy (a decrease of 4.7%) between

the resulting axial dipole moment and Dtot than in the previous two cycles. We
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Figure 4.3: Evolution of the axial dipole moment for Cycles 21 to
24. Each profile is obtained by: (a) only using a certain
number of the biggest contributors to the axial dipole
moment, or (b) removing the biggest contributors to
the axial dipole moment. Numbers in brackets apply
to Cycle 24 only. Colour intensity is indicative of the
number of regions used in each simulation, as shown in
the legend. The light grey curve shows the observed
axial dipole moment. Vertical dashed lines indicate
start/end points of cycles as used in this thesis.



110
Chapter 4. How many active regions are necessary to predict the solar

dipole moment?

will show later that this is because most of the large contributors in Cycle 23 act to

weaken the overall dipole moment (opposite to the majority pattern). The cumulative

contribution of many weaker regions is therefore needed to recover its final strength.

So although a small number of regions have a disproportionate effect, the cumulative

contribution of the many regions with weaker dipole moment cannot be ignored,

owing to their common sign.

The right-hand section of Figure 4.3(a) shows the effect of including the largest

contributions to the axial dipole moment the simulation of Cycle 24. This is a weak

cycle, so as few as 200 regions are required to obtain a good match to the original

simulation. The quantitative behaviour of the profiles is similar to that of Cycle 22,

particularly the ability to almost achieve polar field reversal with just 10 regions.

In each cycle we see that the top ∼ 10% of contributors (that is, about 100 of them)

determine the rapid short-term changes in the axial dipole moment. Here we see the

deficit in Cycle 23; even when the top 100 contributors are included the polar field is

still unable to reverse. If we remove the top 10 strongest regions from the simulation

instead of keeping them (Figure 4.3(b)), we discover that the amplitude of the final

axial dipole moment is overestimated in Cycles 21 and 23, and underestimated in

Cycles 22 and 24. This demonstrates the impact of the strongest regions from the

four cycles, and that the polar field at the end of Cycle 23 could have been stronger

had the strongest few regions emerged with different properties or not emerged at all.

If the top 100 strongest regions are removed from Cycle 23, the axial dipole moment

is better represented than in the equivalent cases for Cycles 21 and 22, presumably

because the proportion of regions with negative dipole moment contribution is greater

in Cycle 23.

It is imperative to note that there are more total regions involved in our simulations

of Cycle 23 than in Cycles 21 and 22, because it is a weaker and therefore longer cycle.

The consequence of this is that the same number of regions in Cycle 23 represents a

smaller proportion of the total number of regions compared to the other two cycles,

and so naturally we might expect the axial dipole moment to be weaker when using,
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Cycle 10% 20% 30% 40% 50% 60% 70% 80% 90%

21 11.3 7.31 5.36 4.04 2.85 2.06 1.48 0.97 0.53
22 14.8 9.17 6.62 4.60 3.30 2.37 1.59 1.06 0.60
23 12.9 7.98 5.21 3.78 2.79 2.08 1.51 0.98 0.49
24 8.66 5.68 4.32 3.22 2.54 1.95 1.39 0.99 0.48

Table 4.2: Flux thresholds corresponding to the top x% of regions
per cycle when ordered by flux. Values given are mul-
tiples of 1021.

say, 750 regions in Cycle 23. However, when we balance the proportion of regions

with the previous cycles, there is still a larger difference between the profile with all

regions and the profile with some regions removed. We conclude that ultimately this

pattern comes down to the polarity distribution of regions with a small contribution

to the axial dipole moment, and that the smallest 100 contributors of Cycle 23 must

have predominantly positive Drel (tend).

4.2.1 What are the implications for making predictions?

Up to this point regions have been ordered by Drel (tend). Unfortunately, calculating

this at time of emergence requires us to know the subsequent behaviour of all other

regions during the rest of the cycle, which is not ideal if the aim is to predict

future contributions and the required information is not yet available. Therefore we

now examine the consequences of ordering and including regions based on absolute

flux, which is a quantity readily measured at time of emergence. The solid lines in

Figure 4.4 display the change in Drel (tend) as more active regions are included in the

simulation, ordered by decreasing flux, for Cycles 21 (pink), 22 (yellow), 23 (dark

green) and 24 (brown). Table 4.2 shows some examples of flux thresholds.

There are multiple regions with large flux that contribute positively to the axial

dipole moment during Cycle 21. Because of this, 80% of Dtot (tend) is attained when

less than 40% of regions are considered (bearing in mind the threshold for the top

40% is ∼ 3.5–4.5× 1021 Mx depending on the cycle). There is then a sharp decrease
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Figure 4.4: Final Drel against percentage of regions included for
Cycles 21 (pink), 22 (yellow), 23 (dark green) and 24
(brown). Solid lines are the cases with exponential decay,
and dashed lines are the cases where the decay term has
been removed. Regions are ordered by flux and the top
x% of the strongest regions are incorporated. Some
thresholds for inclusion are given in Table 4.2.
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when the two biggest contributions of Drel (tend) are included, before the 80% mark

is reached again, corresponding to half the number of regions being used. Note

that more than 25% of Dtot (tend) is attained by using only a small percentage of

the largest regions. This is a side-effect of the measure we use. For example, when

decay is not present (see Figure 4.9 in Section 4.4) and 10 regions are included,

the end-of-cycle dipole moment is far away from the original end-of-cycle dipole

moment (thick black line), and the contribution is small (dashed profiles in Figure

4.4). However when we include decay (Figure 4.3), these profiles both go closer to

zero, thereby reducing the difference between the two end-of-cycle dipole moments

and hence increasing the relative dipole moment obtained by the 10 regions. This

effect is even stronger for the other two cycles. Inclusion of decay does not affect the

basic shape of each profile, it merely weakens the contribution from stronger regions.

This can be seen by comparing the solid and dashed lines in Figure 4.4.

The Drel (tend) of Cycle 22 rises at a steady rate as more regions are added, but there

are two clear phases with a large jump in between. One can attribute this jump

to the inclusion of the largest contributor of Cycle 22. Because of this significant

addition to the dipole moment, using 55% of regions is enough to ensure that 80%

of Dtot (tend) is reached.

The profile for Cycle 23 initially reaches almost 0.5Dtot (tend), presumably because

the regions with strongest flux contribute positively to the dipole moment. There is

then barely an increase in Drel (tend) as another 30% of the regions are included. This

mimics the problem found in Figure 4.3; Cycle 23 is largely dominated by negative

Drel (tend) active regions.

The Cycle 24 profile is on average the most effective at trying to match Dtot (tend)

when regions are ranked by flux, suggesting that Cycle 24 is dominated by large

positive Drel (tend) regions. This is supported by Figure 4.3, which shows that when

the top ten contributors are removed from the simulation, the final axial dipole

moment is underestimated.

It may be noteworthy that when 60% of the strongest regions are incorporated (i.e.
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regions with flux above about 2× 1021 Mx), the four cycles all reach 80% of the

final Dtot and adding small regions bears minimal difference, regardless of cycle

number. If 90% of regions are used, corresponding to a threshold of approximately

5× 1020 Mx, all four cycles reach a similar relative level close to Dtot (tend).

4.3 Distributions of active region properties

4.3.1 Latitude, flux and initial dipole moment

We now turn to analyse the effects of emergence latitude, flux and initial Drel on the

axial dipole moment contribution Drel (tend) of each region. Latitude is calculated by

taking the longitudinal average of the magnetogram and finding the location of the

centroid of unsigned flux; applying the usual method of finding the centroid of each

polarity is not necessarily meaningful when considering complex multipolar regions.

For magnetic flux we integrate the radial magnetic field in latitude and longitude,

and initial Drel is calculated using Equation 4.1.2 at time t = tstart.

The top panels of Figure 4.5 show the relationships between Drel (tend) and these

three quantities from left to right respectively for the regions from Cycle 21. We find

that most significant contributors to the axial dipole moment emerge below ±20°,

the very largest of which emerge below ±10°. We also find that these regions do not

necessarily have strong levels of magnetic flux; very few of the biggest contributors

are stronger than 1.5× 1022 Mx.

We see that the relationship between initial and final Drel is largely determined by

the emergence latitude: regions emerging at mid-latitudes (dark purple) tend to

contribute little to the final axial dipole moment, regardless of their initial values.

Conversely, regions emerging at low latitudes (yellow and orange) can undergo an

increase in axial dipole moment contribution as cross-equatorial flux cancellation

occurs and flux is transported poleward by the meridional flow.
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Figure 4.5: Final Drel for each region against absolute latitude (left
panels), flux (middle panels) and initial Drel (right pan-
els). Markers are sized by absolute final Drel, and col-
oured by flux (left panels) and absolute latitude (middle
and right panels).
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The second row of Figure 4.5 shows the same relationships as discussed above but

for Cycle 22. The left and middle panels tell a different story to that of Cycle 21.

There are fewer big contributions (i.e. contributions of more than 2.5%) to the

axial dipole moment, and the largest is a strengthening rather than a weakening

as in Cycle 21. This explains why the axial dipole moment increased in amplitude

during Cycle 22, and why polar field reversal is almost achieved with just ten regions

in Figure 4.3(a). This largest region is also the only significant contributor to lie

below ±10°, although the others still emerge below ±20° as in Cycle 21. The most

striking difference between the two cycles is the effect of strong-flux regions. In

Cycle 22 some of the most significant contributions to the axial dipole moment come

from regions with fluxes above 3× 1022 Mx, which is not the case in Cycle 21. The

same latitudinal dependence of the initial to final Drel relationship is found as in

Cycle 21, supporting the idea that latitude of emergence plays an important role in

determining whether a region will contribute significantly to the polar field.

The third row of panels in Figure 4.5 shows the same three distributions but for Cycle

23. We return to a similar regime to Cycle 21: of the most significant contributors,

we observe more regions which weaken the axial dipole moment, and the biggest

contributors have fluxes smaller than 2× 1022 Mx. Again, most of these regions

emerge below ±20°. We find that the most significant regions in Cycle 23 induce

a weakening of the overall axial dipole moment. These low-latitude regions could

indeed be the cause of the weak polar field at the end of Cycle 23, and hence the

low amplitude of Cycle 24, as suggested by Jiang et al. (2015).

The final row of panels shows the distributions for Cycle 24. We see that regions that

emerge above ±20° are not significant contributors to the dipole moment. Again,

we see a similarity between Cycles 22 and 24, in that both big and small regions

(in terms of flux) can be large contributors. However, we should eventually also

consider active regions from the remainder of the cycle, as there is a small chance

that regions emerging later in the cycle will significantly add to these statistics.

The latitude-dependent relationship between initial and final Drel holds across all
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Figure 4.6: Ratio between final Drel and initial Drel for 5° latitud-
inal bins for Cycles 21 (pink), 22 (yellow), 23 (dark
green) and 24 (brown). Error bars show standard error.
Markers are plotted at the midpoint of each 5° bin. The
dark blue curve is a Gaussian fit to the data.

cycles. Separating the regions into bins of 5° and calculating the gradient of the lines

in the right-hand panels of Figure 4.5 for each bin (see Figure 4.6), we find that down

to ±20° the relationship between initial and final Drel is practically identical across

the four cycles, and even down to ±5° the relationships over the four cycles are close.

For the 0–5° bin, the gradient is much steeper for Cycles 23 and 24. However, this

bin has relatively few points, and is least well fitted by a linear relationship between

initial and final Drel. The standard errors for all of the fits are very small, indicating

a strong relationship between the overall amplification in Drel and the latitude of

emergence. If we fit a Gaussian to the data (dark blue curve in Figure 4.6), we find

that the axial dipole moment contribution is proportional to exp
(
− λ2

252

)
. This is

similar to the relationship between latitude and axial dipole moment contribution

given by Jiang et al. (2014) who also found a Gaussian latitudinal dependence in

their model (Equation 4.0.1). The difference in Gaussian width is probably caused

by differences in parameter choices, particularly meridional flow velocity.
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4.3.2 Latitude and time

We now focus on the time-latitude distributions, i.e. ‘butterfly diagrams’, of the

active regions drawn from the assimilative 2D model. The top section of Figure 4.7

shows the butterfly diagrams of Cycle 21 for the cases shown in the first section of

Figure 4.3(a), where border colours match profile colours. We find few strong regions

that have emerged across the equator, suggesting that large contributors from Cycle

21 are likely to be because of orientation reasons rather than being cross-equatorial.

There is a cluster of negatively contributing regions in the northern hemisphere

around 1983 which is not followed by many significant regions during the remainder

of the cycle; this cluster could be responsible for a lower axial dipole moment in

Cycle 21 (compared to Cycle 22), and explains why the polar field fails to reverse

when only 10 regions are used in Cycle 21, as seen in Figure 4.3(a).

The bottom section of Figure 4.7 shows the corresponding butterfly diagrams for

Cycle 22. As inferred from Figure 4.5, the majority of large contributions to the axial

dipole moment in Cycle 22 enhance the dipole moment and are clustered around

−20°. However, there are two large contributors at low latitudes, possibly cross-

equatorial, which would support the claim of Cameron et al. (2013): that regions

emerging across the equator can significantly change the amount of net flux in each

hemisphere, in turn weakening or strengthening the axial dipole moment, meaning

future cycle predictions will be less reliable.

The top section of Figure 4.8 shows the butterfly diagrams of Cycle 23. Significant

negatively-contributing regions include a cluster across the equator around 2002, and

a group of regions in the southern hemisphere towards the end of the cycle, visible as

blue patches in all but the bottom-right frame. While the cross-equatorial group is

important for reasons discussed above, the majority of regions in the late-emerging

cluster might not have had as significant an effect on the current cycle as if they

had instead emerged earlier in the cycle, as discussed by Nagy et al. (2017), who

inserted an extreme active region into a dynamo model simulation at different times
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Figure 4.7: Time-latitude distributions of regions from Cycles 21
(top) and 22 (bottom) used to obtain the profiles in the
first and second sections of Figure 4.3(a), where border
colours match profile colours. That is, the bottom right
panel shows the top 10 regions, increasing from right
to left, bottom to top. Markers are sized by flux and
coloured by final Drel.
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throughout a cycle and found that late-emerging regions had the smallest effect. This

is because any poleward-advected flux would not have had enough time to reach

the pole and cancel with the polar field before the end of the cycle. The weaker

contribution from regions emerging later in the cycle is also evident in Figure 4.7,

suggesting that it could take at least a few years for regions to reach their asymptotic

contributions to the axial dipole moment. Nevertheless, by comparing Cycles 21 and

23 we see that a lack of disruption from a major cross-equatorial region in Cycle 21

led to a stronger axial dipole moment compared to Cycle 23. The butterfly diagrams

again illustrate that the largest contributors are not necessarily the biggest in terms

of flux.

Finally, the bottom section of Figure 4.8 shows the equivalent butterfly diagrams

for Cycle 24. Uniquely, we find that the top 10 most significant contributors are

all positive, indicating that Cycle 24 has behaved in an ‘ordinary’ way and has

not significantly altered the amplitude of the next cycle. This is supported by the

precursor predictions discussed in Section 1.2.2, which generally state that Cycle 25

is likely to be of similar strength to Cycle 24.

4.4 Effect of decay on the axial dipole moment

As mentioned in Section 4.1, we also remove the decay term from Equation 2.1.1 (i.e.

set τ →∞) and repeat the optimization and subsequent analysis on the same four

cycles. Whilst the equivalent distributions as those shown in the scatterplots of Sec-

tion 4.3.1 and butterfly diagrams of Section 4.3.2 are qualitatively indistinguishable

up to a scaling factor, the axial dipole moment profiles for simulations with regions

included based on Drel (T ) as shown in Section 4.2 behave slightly differently, simply

because of the lack of decay impacting on cycle minima.

The profiles from simulations without decay where only the largest contributors

are included are shown in Figure 4.9(a). With less freedom from fewer parameters,

the optimal axial dipole moment does not match the observed counterpart as well
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Figure 4.8: Time-latitude distributions of regions from Cycles 23
(top) and 24 (bottom) used to obtain the profiles in the
third and fourth sections of Figure 4.3(a), where border
colours match profile colours. That is, the bottom right
panel shows the top 10 regions, increasing from right
to left, bottom to top. Markers are sized by flux and
coloured by final Drel.
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when decay is included, but the fit is still acceptable. Again we find that when the

top 750 (400) contributors are used, Cycles 21, 22 and 24 are hardly affected but

the discrepancy in Cycle 23 is now even more visible than before. When the 100

largest contributors are used, the polar field reverses in Cycles 21, 22 and 24, but

not in Cycle 23. Furthermore, polar field reversal is only just achieved with 250

regions in Cycle 23, supporting the claim that the biggest contributors from Cycle 23

contribute negatively to the axial dipole moment. With their BMR data for Cycle

21, Wang & Sheeley (1991) found that about 54% of the axial dipole moment came

from about 10.7% of regions, and here we find a similar result (dashed blue curve).

In fact, we find the same outcome for Cycle 22 but not for Cycle 23.

Figure 4.9(b) shows the axial dipole moment evolution when the strongest regions

are removed from each cycle. With no exponential decay, the deficit created by the

removal of the top 10 regions of Cycle 23 is even clearer here than in Figure 4.3(b),

highlighting the detrimental effect of those contributors with negative Drel (T ).

4.5 Conclusions

Our aim was to test claims that the polar field at the end of Cycle 23 could have

been weakened by a small number of large, low-latitude regions. We extracted

active region properties from magnetograms using an automated region assimilation

technique, and analysed the relationships between these properties and the evolution

of the axial dipole moment using a 2D flux transport model.

We first looked at the effect of keeping regions with the largest final axial dipole

moment contribution Drel (tend) in the simulation in increments, to see how many

were required to obtain a good match with the original axial dipole moment. Using

the 500 (or 300 for Cycle 24) biggest contributors produced an acceptable axial

dipole moment in Cycles 21, 22 and 24, but the lack of small contributions was

more damaging in Cycle 23, where at least 750 regions are required to produce an

acceptable match. When we only considered the top 10–100 regions, we observed
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that the odd-numbered cycles, especially Cycle 23, struggled to achieve polar field

reversal. We attributed this discrepancy to the influence of negatively contributing

regions which appear to dominate the axial dipole moment. On the removal of

these strongest contributors we found that the axial dipole moment was enhanced,

suggesting that the weak polar field at the Cycle 23/24 minimum may indeed have

been caused by a small number of extreme regions. When regions were included

in order of flux instead of Drel (tend) there were some differences between cycles,

although in each case using the top 80–90% of the strongest regions was enough to

provide a good match to the original axial dipole moment.

We also examined how the final contribution of a single region to the axial dipole

moment at the end of the cycle is affected by a region’s emergence latitude, flux

and initial axial dipole moment, and compared these relationships across Cycles 21

to 24. We found that generally all large contributions to the axial dipole moment

emerge below ±20°, with the largest emerging below ±10°. This supports the idea

that regions emerging at low-latitude can have a large effect on the evolution of

the axial dipole moment (Cameron et al., 2013; Jiang et al., 2015). For our more

realistically shaped multipolar regions, we cannot measure the conventional tilt

angle, so instead we calculated the more meaningful parameter of initial relative

axial dipole moment which takes into account orientation as well as latitude. We

found a positive correlation between initial and final Drel within all latitudinal bins in

all cycles, but that the constant of proportionality depended on latitude with regions

at low latitudes contributing most, whence we concluded that emergence latitude is

the dominant parameter controlling the amplification or suppression of the initial

dipole moment of a region. This latitude dependence exists because a large dipole

moment arises from hemispherical polarity separation, which occurs most effectively

when regions emerge tilted and at low latitudes so that cross-equatorial transport of

flux can occur (Wang & Sheeley, 1991; Yeates et al., 2015). Therefore once we have

measured the initial dipole moment of a given region, we can predict its long-term

contribution to the dipole moment based purely on its latitude of emergence and
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the flux decay parameter τ .

We found that the patterns of regions contributing most to the dipole moment were

not consistent across the three cycles. In particular, Cycle 22 contained multiple

strong-flux regions which were also some of the largest contributors to the axial

dipole moment. This was not the case in Cycles 21 and 23; most large contributors

had fluxes of less than 2× 1022 Mx, reinforcing that flux alone is not an appropriate

measure of contribution. Incidentally, across all cycles there were no significant

contributors with fluxes less than 1× 1021 Mx, indicating that the smallest regions

are not able to drastically alter the axial dipole moment, regardless of emergence

latitude. In their coupled surface-interior model, Nagy et al. (2017) showed that

changing BMR tilt and emergence latitude had more immediate consequences than

changing flux, unless a very large amount of flux was included. Consequently, if a

very large, anti-Joy, anti-Hale region was to emerge close to the equator, it could

have a significant detrimental impact on the polar field and hence the amplitude of

the next cycle. Following the results of Nagy et al. (2017) it could even be speculated

that, in the most extreme case, such an event could lead to a grand minimum.

As discussed in Chapter 1, some predictions of Cycle 25 using the polar field as

a precursor have already been made, for example by Hathaway & Upton (2016)

and Cameron et al. (2016), who used two distinct models but came to a similar

conclusion: that Cycle 25 will be another weak cycle. However, by incorporating

uncertainty in tilt angles and performing multiple simulations, a wider range of cycle

amplitudes was found, suggesting that the behaviour of our Sun really does hinge

on the random fluctuations in active region properties, highlighting the incurred

uncertainty in making early forecasts of the next cycle, and that making predictions

of future cycles is perhaps futile.

On a more positive note, as we approach the minimum at the end of Cycle 24

predictions of Cycle 25 will become more reliable, since it becomes less likely that

any more large regions which can significantly alter the polar field will emerge.

Indeed, from our analysis of the previous three cycles, we only found significant
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contributors emerging up to the early stages of the descending phase, although that

isn’t to say such an event is not possible. Indeed, Nagy et al. (2017) found that

‘rogue’ regions emerging late in the cycle can still have an effect on the following cycle,

but this cannot be assessed using our surface flux transport approach, and requires

simulation of the interior of the convection zone. For completeness we should go

back and repeat this analysis once we reach cycle minimum, using the results to

assess any current predictions of Cycle 25.



Chapter 5

Three-dimensional kinematic

dynamo model

Progression in Babcock-Leighton models of the solar dynamo has primarily been

through the implementation of 2D or 2×2D models (e.g. Wang et al., 1991; Durney,

1995; Chatterjee et al., 2004; Guerrero & de Gouveia Dal Pino, 2008; Lemerle &

Charbonneau, 2017). However, we would ideally like to develop 3D B-L dynamo

models in order to realistically model the emergence of buoyant magnetic structures,

and fully describe the evolution of magnetic fields under the effects of diffusion,

differential rotation and meridional circulation. These models are more complex

and require in-depth calibration in order to match the observed magnetic field.

Nevertheless, success in overcoming these obstacles would be a sizeable step towards

the development of a forecasting model for the Sun-Earth system (Nita et al., 2018),

and would hopefully provide us with the most accurate solar cycle predictions to

date.

Yeates & Muñoz-Jaramillo (2013) developed KD3, a 3D kinematic B-L dynamo

model which was the first of its kind, though some authors have since had success

in developing their own 3D B-L dynamo models (Miesch & Dikpati, 2014; Kumar

et al., 2018). In KD3, the ideal MHD induction equation describes the evolution of
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the magnetic field:

∂B
∂t

= ∇× (u×B)−∇× (η∇×B) , (5.0.1)

for a prescribed velocity field u (r, θ, φ, t) and a prescribed turbulent diffusivity η (r).

There is no small-scale α-effect. Equation 5.0.1 is solved in a spherical shell using

a finite volume scheme. The coordinates are not actually spherical but stretched

Cartesian (van Ballegooijen et al., 2000), with variable grid spacing in the horizontal

directions. For more details see Appendix A of Yeates & Muñoz-Jaramillo (2013).

Unlike previous 2D B-L dynamo models, KD3 explicitly models the buoyant emer-

gence of flux tubes through the convection zone (Fan, 2009). In the 2D models, the

active region emergence process has either been parametrized through a volumetric

α-effect term in the induction equation, or through manual insertion of regions at

the surface, corresponding to areas of strong toroidal field at the base of the con-

vection zone (e.g. Durney, 1997; Nandy & Choudhuri, 2001; Muñoz-Jaramillo et al.,

2010; Guerrero et al., 2012). However, these ‘non-local’ methods make magnetic flux

conservation difficult to enforce because the process of forming the emerging region

from the pre-existing toroidal field is not followed explicitly through the induction

equation (5.0.1). In KD3, a time-dependent velocity perturbation v is included which

is intended to capture the effects of advection and buoyancy on the flux tubes. The

non-axisymmetric perturbation has a radial component, which transports the tube

outwards through the convection zone to the surface; a vortical component, which

models the helical convective motions and gives rise to tilts in the active regions; and

a diverging component, responsible for expanding the tube as the density decreases.

The tube centre velocity is set so that the travel time from r = 0.7R� to r = R� is

25 days, after which the perturbation is removed.

Yeates & Muñoz-Jaramillo (2013) presented a full simulation of Solar Cycle 23, using

BMR data from NSO/Kitt Peak, and showed that the KD3 model is able to reproduce

the qualitative behaviour of active region decay at the surface, leading to poleward

transport of flux and reversal of the polar field. However, the photospheric magnetic
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field was not systematically calibrated against observed data, and closer inspection

has shown that the quantitative details of the surface evolution are significantly

different from 2D SFT models, even when the same parameters are used at the

surface. Moreover, Yeates & Muñoz-Jaramillo (2013) did not demonstrate a self-

sustaining dynamo. A future goal is to use the genetic algorithm PIKAIA from

Chapter 2 to optimize parameters for the 3D model to produce the most accurate

dynamo simulations to date, and eventually develop a sun-like, self-excited dynamo

model. This would be a huge step forward in solar cycle modelling and prediction.

In this chapter we explore the effects of radial diffusion in KD3 which we believe

to be the cause of the discrepancy between the SFT model and dynamo model. In

Section 5.1 we present the inconsistency, and in Section 5.2 we investigate the effect

of radial diffusion using a simple Cartesian 2D model of the convection zone. We

return to KD3 in Section 5.3 to assess whether the same results hold. In Section

5.4 we attempt to simulate Cycle 23 using an ‘improved’ diffusion profile, and in

Section 5.5 we conclude. For the published version of this chapter, see Whitbread

et al. (2019).

5.1 Radial diffusion in KD3

On comparing the surface evolution of Br in KD3 with the 2D SFT model from

earlier chapters, it is apparent that the two are markedly different, even when the

same horizontal flows and diffusivity and same initial Br are used at the surface. As

an example, the SFT evolution of a single BMR (Figure 5.1) placed at 10° latitude

with flux 1× 1022 Mx and a tilt angle of 30° is shown in the top panel of Figure

5.2, and the KD3 equivalent is shown below. The parameters used are introduced

in Section 5.3. The BMR is inserted in the SFT simulation at the time when the

flux has stopped emerging in KD3, i.e. when the unsigned flux at the photosphere

has reached its peak (Figure 5.3). Even though the differential rotation, meridional

flow and horizontal diffusion in the SFT model match the surface parameters of the
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Figure 5.1: Three-dimensional image of an emerged active region in
KD3. Magnetic field lines are connected to the toroidal
field at the base of the convection zone and the radial
magnetic field is shown at the transparent surface.

KD3 simulation, the transport to the poles is significantly faster in the SFT case.

In addition, the top panel of Figure 5.3 shows that there is significantly more flux

present at the surface in the KD3 system. There is also a large difference in the

respective evolutions of the polar flux (bottom panel of Figure 5.3). In KD3, the

south polar field barely develops by the end of the simulation, and the peak of the

north polar field is stronger and occurs 3 years later than in the SFT case.

In Section 1.3.2 we took the radial component of the induction equation (Equation

5.0.1) and neglected radial derivatives to derive the surface flux transport model. If

we instead include radial derivatives, the advection term remains the same but the
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Figure 5.2: Top: Longitude-averaged evolution of Br for a single
BMR in a 2D SFT model. Bottom: Surface compon-
ent of the 3D dynamo model showing the equivalent
evolution of the same BMR.
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diffusion term gains extra components:

[∇× (η∇×B)] · er =
[
∇×

{(
η

R� sin θ
∂Br

∂φ
− η

r

∂

∂r
(rBφ)

)
eθ

+
(
η

r

∂

∂r
(rBθ)−

η

R�

∂Br

∂θ

)
eφ

}]
· er

=− η

r2 sin θ
∂

∂θ

(
sin θ∂Br

∂θ

)
− η

r2 sin2 θ

∂2Br

∂φ2

+ η

r sin θ
∂

∂θ

(
sin θ∂Bθ

∂r

)
+ η

r sin θ
∂2Bφ

∂φ∂r
. (5.1.1)

The final two terms are not present in the SFT equation, in the absence of radial

derivatives. It is likely that the discrepancy shown in Figs. 5.2 and 5.3 is due to this

exclusion of radial diffusion in the SFT model. As discussed in earlier chapters, some

attempts to mimic the effect of radial decay have been implemented. For example,

an exponential decay term of the form −Br

τ
was added to the model by Schrijver

et al. (2002) to ensure regular polar field reversal over many cycles, and Baumann

et al. (2006) gave a physical explanation of this decay term: it is the effect of radial

diffusion of flux into the solar interior, which cannot be accounted for directly in

the SFT model. Baumann et al. (2006) built on this work by considering a modal

version of the decay term, where a poloidal magnetic field in the convection zone

is decomposed into spherical harmonic form and the decay time of each mode is

calculated. This is in contrast to the exponential decay parameter used by Schrijver

et al. (2002), where all modes decay at the same rate. Despite this added layer of

sophistication, it is not trivial to say whether this simplified representation of radial

diffusion is realistic. Whitbread et al. (2017) and Virtanen et al. (2017) have shown

that using modal decay rates does not make a significant difference to the butterfly

diagram.

It should be noted that, like in previous chapters, the diffusivity η is merely a tur-

bulent diffusivity, representing the diffusive effect of convection. Horizontally, this

corresponds to random walks over the supergranular convection cells, and vertically

it mimics the effect of opposing motions of upward convective plumes and down-
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ward pumping. The buoyancy in the model is handled by the emergence velocity

perturbation. Ideally we would like to include convective motions in the model as

advection rather than diffusion, but it is currently too expensive computationally in

3D, although see Upton & Hathaway (2014b) for a purely advective 2D SFT model.

Using ∇ ·B = 0 in spherical coordinates, we have:

− sin θ
r

∂

∂r

(
r2Br

)
= ∂

∂θ
(sin θBθ) + ∂Bφ

∂φ
, (5.1.2)

so the radial component of the diffusion term from the induction equation can be

rewritten as:

[∇× (η∇×B)] · er =− η

r2 sin θ
∂

∂θ

(
sin θ∂Br

∂θ

)
− η

r2 sin2 θ

∂2Br

∂φ2

− η

r

∂

∂r

(
1
r

∂

∂r

(
r2Br

))
. (5.1.3)

If we remove the final term from the right-hand side of Equation 5.1.3 from the

KD3 model, we find that the model now behaves similarly to the SFT equivalent,

as shown in Figure 5.4. Again, the surface parameters are identical and we have

inserted the BMR in the SFT model once all flux has emerged in KD3. The unsigned

flux is shown in the top panel of Figure 5.5, and this confirms the reconciliation

between the two models. Furthermore, in the bottom panel of the same figure we

see that the qualitative evolution of the polar flux in each model is the same. There

is a small discrepancy in both panels due to subtle differences between the models,

such as the numerical grid, but the general evolution is consistent.

However, this removal of the radial diffusion term in KD3 is artificial, and the two

models should reproduce at least similar results at the surface with all terms included.

Moreover, we have shown in Chapter 2 that the SFT model is able to sufficiently

match the observed magnetic field, so the likelihood is that the problem lies with the

KD3 model and we need to fix it, or at the very least improve it, without removing

the radial diffusion term. This should be done before any attempts to optimize

parameters or search for self-sufficient dynamo solutions are made.
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Figure 5.4: Top: Butterfly diagram showing the 2D surface evol-
ution of Br for a single BMR. Bottom: Surface com-
ponent of the 3D dynamo model showing the equivalent
evolution of the same BMR but with the radial diffusion
term removed.



136 Chapter 5. Three-dimensional kinematic dynamo model

0

0.5

1

1.5

2

2.5

U
n
s
ig

n
e
d
 F

lu
x
 (

M
x
)

10
22 Without 

r

2 4 6 8 10 12

Time (years)

-2

-1

0

1

P
o
la

r 
F

lu
x
 (

M
x
)

10
21
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5.2 2D model of active region decay

We begin by investigating a 2D model that illustrates the basic cause of the difference

between the KD3 and SFT models. Inspired by van Ballegooijen (1998), we take a

2D Ω-loop representing a newly-emerged BMR in the convection zone and evolve it

according to diffusion alone. The benefit of a simpler toy model is that it captures

the diffusive effects of a 3D model but is computationally less expensive, and at this

stage we are not interested in other features such as the amount of poloidal field

produced.

Here we use Cartesian coordinates (x,z) which denote the width and depth of the

convection zone domain respectively, with −0.4 ≤ x ≤ 0.4 and 0.6 ≤ z ≤ 1.

Neglecting variation in the y-direction, we write B in terms of a flux function as:

Bx = −∂A
∂z

, (5.2.1)

Bz = ∂A

∂x
. (5.2.2)

We neglect the effects of advection in Equation 1.3.16, which therefore reduces to

∂A

∂t
= η (z)∇2A. (5.2.3)

Note that we allow the diffusivity η to be a function of z, so that we can investigate

the effect of different diffusivity profiles with depth. The effect of advection will be

considered in the 3D simulations of Section 5.3. We also simultaneously evolve a

1D surface diffusion model as the analogue of the SFT model. For visualization a

potential field extrapolation is performed in the corona. As an initial condition, the

region is assumed to have emerged and is connected to the toroidal field at the base

of the convection zone (see top left panel of Figure 5.7), as in KD3, and is of the

form:

A0 = exp
(
−z − 0.6

0.04

)
+ 1

2 exp
(

(z − 1)2

0.4 − x2

0.008

)
. (5.2.4)

We impose periodic boundary conditions in x and set ∂A
∂t

= 0 at the base (z = 0.6).
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At the surface (z = 1) we follow van Ballegooijen (1998) and van Ballegooijen &

Mackay (2007) by setting:

Bx,cz = βBx,cor, (5.2.5)

where Bx,cz is the horizontal field at the convection zone boundary and Bx,cor is

the horizontal component of a potential extrapolation into the corona. Then the

parameter β determines whether the interior field at the photosphere is matched

to the potential field in the corona (β = 1), or whether it is purely radial (β = 0),

which was the original boundary condition in KD3 (and, indeed, in most other

models). This will allow us to assess the effect of the top boundary condition on

radial diffusion, although for most tests we set β = 0. The effects of changing the

top boundary condition are discussed later.

In general we will use the following depth-dependent two-step profile for η (z):

η (z) = ηc + η0 − ηc
2

(
1 + erf

(
z −R1

∆1

))
+ ηs − η0 − ηc

2

(
1 + erf

(
z −R2

∆2

))
,

(5.2.6)

which is normalised so that ηmax = 1. Here ηc is the core diffusivity, η0 is the

diffusivity in the convection zone, and ηs is the surface diffusivity. The step locations

and thicknesses are Ri and ∆i respectively. The profiles used in this thesis are

shown in Figure 5.6. For a given diffusion profile and boundary condition, Equation

5.2.3 is solved using an explicit second-order finite difference method with Euler

timestepping.

For comparing different diffusivity profiles, it is useful to calculate the apparent

velocity of the field lines (Wilmot-Smith et al., 2005), using the fact that the contours

of A are the field lines of B, since B · ∇A = 0. We have the equation:

∂A
∂t

= η∇2A ey. (5.2.7)

In 2D the field lines behave as though frozen in to an apparent velocity field u,

except at null points where the velocity becomes singular. To derive this velocity
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Figure 5.6: Normalized multi-step diffusion profiles used in this
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from KD3, the dashed purple curve is the profile which
takes into account diffusivity quenching, and the dotted
yellow curve is derived from mixing-length theory.

field, write:
∂A
∂t

= (u×B) +∇ψ, (5.2.8)

where ψ is a locally single-valued gauge function that can be chosen. Then taking

the curl of this expression, we get:

∂B
∂t

= ∇× (u×B) , (5.2.9)

which is the ideal MHD induction equation, valid away from u = 0. Then:

(u×B) +∇ψ = η∇2A ey. (5.2.10)

Taking the vector product of this equation with B from the left-hand side we have:

u (B ·B)−B (B · u) = B×
(
η∇2A ey −∇ψ

)
. (5.2.11)

Now since Equation 5.2.10 only determines the components of u perpendicular to
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B, the parallel component is arbitrary so we are free to choose B · u = 0. Hence:

u = B× (η∇2A ey −∇ψ)
B2 . (5.2.12)

This is well-defined away from null points, i.e. where B2 = 0. We can now choose ψ

such that ∂ψ
∂y

= 0, so

ux = −Bz η∇2A

B2 , (5.2.13)

and

uz = Bx η∇2A

B2 . (5.2.14)

We focus on the central axis of x = 0, where Bz (0, z) = 0. Therefore:

ux (0, z) = 0, (5.2.15)

and

uz (0, z) = η∇2A

Bx

= 1
Bx

∂A

∂t
, (5.2.16)

since B2 = B2
x at x = 0. Thus we can track the radial field line velocity at the centre

of the domain using Equation 5.2.16. This is useful, because it gives an indication

of how flux is transported throughout the convection zone.

For diffusivity in KD3, Yeates & Muñoz-Jaramillo (2013) used Equation 5.2.6 with

values of ηc = 108 cm2 s−1, η0 = 1.6× 1011 cm2 s−1, ηs = 6× 1012 cm2 s−1, R1 = 0.71,

∆1 = 0.03, R2 = 0.95 and ∆2 = 0.025. This profile is displayed as the solid orange

curve in Figure 5.6. These parameter choices were originally made so that a full

cycle could successfully be simulated. Four snapshots of the simulation using the

KD3 profile are shown in Figure 5.7. It is clear from the middle column that there

is significantly more flux at the surface than would be expected without radial

derivatives, as we saw for the KD3 model in Section 5.1. This is because the

relatively low diffusion below z = 0.9 does not allow for much diffusive transport,

and field lines remain attached to the toroidal field at the base of the convection
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zone. This interpretation is supported by the right-hand column, which shows the

field line velocity in the z-direction. The field diffuses downwards very slowly due to

the gradient in the diffusion profile. Because the field lines in the lower convection

zone are essentially fixed in place, movement at the surface is heavily restricted and

cancellation at the boundary is limited, resulting in an excess of surface flux. This

transpires even though diffusion is stronger near the surface, as indicated by the

outward bulging of field lines.

Miesch & Dikpati (2014) presented a self-sustaining 3D kinematic dynamo model

(hereafter STABLE), which is described in more detail in Miesch & Teweldebirhan

(2016). The main difference between STABLE and KD3 is the flux emergence process:

whilst in KD3 a velocity perturbation is applied to the toroidal field and the buoyant

rise of flux tubes through the convection zone is explicitly modelled, in STABLE

active regions are deposited at the surface, situated above locations of strong toroidal

field at the base of the convection zone. We believe that the emergence process in

KD3 is more realistic, but multiple examples of self-sustaining dynamo action using

STABLE have been presented (Karak & Miesch, 2017, 2018), and Hazra et al. (2017)

suggested that the method is in principle more suitable for modelling the surface

diffusion phase once the BMR has fully emerged.

To demonstrate the different evolution for a disconnected active region such as

considered by STABLE, we alter the initial condition slightly from Equation 5.2.4:

A0 = 1
2 exp

(
−x

2 + (z − 1)2

0.008

)
. (5.2.17)

This forms a potential field below the surface, disconnected completely from the

base of the convection zone (see top left panel of Figure 5.8).

Figure 5.8 shows four snapshots from the simulation with the original KD3 diffusion

profile and disconnected initial condition. Because field lines are no longer connected

to the toroidal field at the base of the domain, the weak diffusion no longer plays a

role in anchoring field lines in place. This allows for more diffusive transport and

cancellation of magnetic flux at the surface. Instead of flux cancellation occurring at
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Figure 5.7: Four snapshots of magnetic field lines from the simula-
tion with the diffusion profile used in the original KD3
model. The black dashed line is the top of the domain,
above which is shown a potential field extrapolation.
The middle column shows the amount of magnetic flux
at the surface, compared to a 1D surface model (green
dashed line). The right column shows the radial field
line velocity at the centre of the domain.
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the side boundary after field lines are pushed outwards as before, cancellation takes

place between the two polarities of the active region, with a null point appearing

at approximately a quarter of the depth of the convection zone, as evidenced by

the discontinuities in the right-hand column. The consequence is that there is less

surface flux in the early stages of evolution in comparison to the 1D model. The

cancellation rate eventually decreases, but we observe in the bottom right panel that

there is less surface flux present at the end of the simulation than in the case where

the connected initial condition was used. The upshot is that the disconnected region

qualitatively provides a better match to the surface than the connected region.

In the presence of strong magnetic fields, turbulent diffusivity can be suppressed

(Roberts & Soward, 1975). This ‘quenching’ can be included in models via a non-

linear relationship whereby the diffusion parameter η is scaled by the reciprocal of

the square of the magnetic field (e.g. Tobias, 1996; Gilman & Rempel, 2005; Muñoz-

Jaramillo et al., 2008; Guerrero et al., 2009). By instead taking the geometric

spatiotemporal average over many effective diffusivity profiles, Muñoz-Jaramillo

et al. (2011) approximated the effect of the dynamically quenched diffusion using

a fixed profile in the form of Equation 5.2.6 by using the following parameters:

ηc = 108 cm2 s−1, η0 = 1.6× 1011 cm2 s−1, ηs = 3.25× 1012 cm2 s−1, R1 = 0.71,

∆1 = 0.017, R2 = 0.895 and ∆2 = 0.051. This is shown as the dashed purple

curve in Figure 5.6, and will henceforth be referred to as the ‘quenching profile’ for

simplicity.

The four snapshots from the simulation using the quenching profile and the original

connected initial condition are displayed in Figure 5.9. The field lines diffuse down-

ward initially, but approximately halfway through the simulation the direction of

motion changes and the magnetic field starts to diffuse upwards. We note a reduction

in the surface flux, presumably because the stronger diffusivity levels extend deeper

into the domain and the field lines have more freedom to move, allowing for more

diffusive transport. However, we find again that flux cancellation is hindered by the

weak diffusion in the lower convection zone, which keeps the field lines attached to
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Figure 5.8: Four snapshots of magnetic field lines from the simula-
tion with the KD3 diffusion profile and a disconnected
initial magnetic field. The black dashed line is the top
of the domain, above which is shown a potential field
extrapolation. The middle column shows the amount of
magnetic flux at the surface, compared to a 1D surface
model (green dashed line). The right column shows the
radial field line velocity at the centre of the domain.
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the toroidal field.

Figure 5.10 shows four snapshots from the simulation with the quenching diffusion

profile and disconnected initial condition. We find that, as for the KD3 profile, flux

cancels inwardly because field lines are not connected to the base of the convection

zone. However, it diffuses at a much faster rate than the regime with the KD3

diffusion profile (and hence the 1D case), and by the end of the simulation the

majority of the surface flux has been cancelled.

The third profile we experiment with is derived from mixing-length theory (MLT;

Prandtl, 1925). The mixing-length is the average vertical distance travelled by a fluid

element before mixing with the surrounding fluid due to some eddy viscosity, and is

usually parametrized as l ∝ αpHp. Here αp is the mixing-length parameter and Hp

is the pressure scale height, Hp = P

ρg
, where P is pressure, ρ is mass density, and

g is gravitational acceleration. These parameters can then be used to estimate the

diffusivity. Although the mixing-length model is only a rough approximation, it has

been applied to various physical models and has been found to be in agreement with

turbulent convection simulations (Chan & Sofia, 1987; Abbett et al., 1997). Muñoz-

Jaramillo et al. (2011) used the solar interior model of Christensen-Dalsgaard et al.

(1996) to estimate αp and Hp and hence the diffusivity profile based on GONG

data. The value of diffusion found for the convection zone is up to two orders of

magnitude larger than those used in KD3 and other kinematic dynamo simulations

in literature. This is because simulated dynamo action has not yet been achieved

with such strong diffusion. Muñoz-Jaramillo et al. (2011) attempted to reconcile

the MLT estimates with numerical values by incorporating diffusivity quenching,

leading to the quenching profile above. Nevertheless, a fit to the MLT profile was

also made in the form of Equation 5.2.6, with the following resulting parameters:

ηc = 108 cm2 s−1, η0 = 1.4× 1013 cm2 s−1, ηs = 1010 cm2 s−1, R1 = 0.71, ∆1 = 0.015,

R2 = 0.96 and ∆2 = 0.09. This profile is the dotted yellow curve shown in Figure

5.6.

Four snapshots from the corresponding simulation are shown in Figure 5.11. With
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Figure 5.9: Four snapshots of magnetic field lines from the simu-
lation with the diffusion profile that represents diffus-
ivity quenching. The black dashed line is the top of
the domain, above which is shown a potential field ex-
trapolation. The middle column shows the amount of
magnetic flux at the surface, compared to a 1D surface
model (green dashed line). The right column shows the
radial field line velocity at the centre of the domain.
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Figure 5.10: Four snapshots of magnetic field lines from the simu-
lation with the quenching diffusion profile and a dis-
connected initial magnetic field. The black dashed line
is the top of the domain, above which is shown a po-
tential field extrapolation. The middle column shows
the amount of magnetic flux at the surface, compared
to a 1D surface model (green dashed line). The right
column shows the radial field line velocity at the centre
of the domain.
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this diffusion profile, the field initially diffuses downwards before being pushed back

up due to the diffusion gradient at the surface. This surface flux then diffuses to

the boundary where it cancels. Low diffusivity at the base means the field remains

toroidal but a much larger diffusivity throughout the convection zone helps transport

flux upwards from as deep as z = 0.7. In the right-hand panel of the second row,

we see that there is a discontinuity in the velocity, indicating a null point. This is

visible in the left-hand panel of the same row, where field lines are being pushed

together at the top of the domain due to the reduced diffusivity near the surface and

a balance between outward and inward diffusion. At a higher cadence, we observe

that this causes the field lines to reconnect. The position of the null initially moves

downwards, before changing direction and reaching the surface after approximately

a third of the simulation time. After this point, magnetic field diffuses outwards

rapidly. In terms of surface flux, this regime is closer to the 1D case than any other

two-step profile we test with the connected active region.

Finally, Figure 5.12 shows four snapshots from the simulation with the MLT profile

and STABLE initial condition. Because of the strong diffusivity in the bulk of the

domain, the field spreads out in the convection zone and diffuses radially outwards

due to the reduced diffusivity at the surface. This leads to a surface evolution that

matches the 1D case very closely.

It may seem that a good match to the 1D model can be achieved by increasing

the diffusion in the 2D model until the surface-flux-versus-time curves lie on top of

each other, particularly in the MLT simulation where the general shapes are similar.

Tests show that although this does improve the situation somewhat, the match is

by no means perfect, especially compared to the performance of the simulation with

the MLT profile and disconnected active region.

We now assess the effect of the upper boundary condition on the surface evolution.

For this test, we prescribe a constant diffusivity of η = 1 independent of depth. Four

snapshots of the simulation are shown in Figure 5.13. The left-hand column shows

magnetic field lines where the upper boundary condition is potential, and the middle
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Figure 5.11: Four snapshots of magnetic field lines from the sim-
ulation with the diffusion profile derived from MLT.
The black dashed line is the top of the domain, above
which is shown a potential field extrapolation. The
middle column shows the amount of magnetic flux at
the surface, compared to a 1D surface model (green
dashed line). The right column shows the radial field
line velocity at the centre of the domain.
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Figure 5.12: Four snapshots of magnetic field lines from the simula-
tion with the MLT diffusion profile and a disconnected
initial magnetic field. The black dashed line is the top
of the domain, above which is shown a potential field
extrapolation. The middle column shows the amount
of magnetic flux at the surface, compared to a 1D
surface model (green dashed line). The right column
shows the radial field line velocity at the centre of the
domain.
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column shows the field lines where the boundary condition is radial. Qualitative

differences are small, but we see in the right-hand column that there is a little too

much magnetic flux at the surface in the radial case, compared to the 1D surface

model. Conversely, the potential case matches the 1D evolution closely. If β = 1, we

introduce −∂Bx

∂z
into Equation 5.2.3 at the surface which is not present in the radial

case. Hence the difference between the two regimes is only situated in the upper

quarter of the domain. The enforcement of a radial field at the surface boundary also

means that the field lines interact with the periodic boundary later, because they

are strictly vertical as opposed to the potential case where cancellation can occur

more readily. Since the diffusivity is high throughout the domain, the majority of

the flux is diffused out of the convection zone by the time we reach t = 0.1 (bottom

row of Figure 5.13).

Although the choice of radial or potential-field boundary condition can slightly change

the amount of magnetic flux at the surface, the differences are only small, and starker

differences arise when we prescribe a more realistic multi-step diffusion profile in

place of the constant diffusivity. Further tests show that the small improvement

attained by changing boundary condition is the same regardless of the choice of

diffusion profile. Interestingly, the 2D model in the constant case provides a good

match to the 1D model and explains in part why the MLT profile performs best

out of the multi-step profiles we tested: the strong diffusivity allows the magnetic

field to diffuse outwards in both cases, the only difference being that the field lines

remain attached to the toroidal field in the MLT case due to a weak base diffusion.

The periodic boundary conditions in x can be interpreted as the presence of neigh-

bouring active regions. To check the influence of this inter-region spacing, we tried

increasing the width of the domain. This results in more flux present at the surface

because it takes longer to diffuse to the boundary and cancel. However, the results

above hold qualitatively, and in any case we cannot choose the locations of active

region emergence when simulating the evolution of observed BMRs, so varying the

width of the domain does not give us significantly deeper insight.
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Figure 5.13: Four snapshots of magnetic field lines from the
simulation with the potential boundary condition
(left column) and radial boundary condition (middle
column). The black dashed line is the top of the do-
main, above which is shown a potential field extrapola-
tion. The right column shows the amount of magnetic
flux at the surface in each case, compared to a 1D
surface model (green dashed line).
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5.3 Effect of diffusivity for a 3D decaying active

region

We return to the 3D dynamo model KD3 to test whether the results found in Section

5.2 hold qualitatively here as well. We emerge a single region at 10° latitude with

flux 1× 1022 Mx and a tilt angle of 30°. Because the position of the flux tube during

the rising phase depends on differential rotation (Yeates & Muñoz-Jaramillo, 2013),

we turn on rotation until the region has emerged after 25 days, at which time the

velocity perturbation is turned off. A snapshot of the system is taken on that day,

and all subsequent experiments are run from time of emergence, regardless of whether

differential rotation is included.

Differential rotation takes the form of Charbonneau et al. (1999), which was derived

from observations:

Ω (r, θ) = Ωc + 1
2

[
1 + erf

(
r −R0

∆0

)]
·
[
ΩE − Ωc + (Ωp − ΩE)

(
C cos2 θ + (1− C) cos4 θ

)]
, (5.3.1)

where Ωc = 2.714 34× 10−6 s−1, ΩE = 2.9531× 10−6 s−1, Ωp = 2.073 45× 10−6 s−1,

C = 0.483, R0 = 0.7R� and ∆0 = 0.025R�.

For meridional flow we first define the following stream function:

Ψ (r, θ) =−v0 (r −Rp)
7.633 r sin θ sin

(
π
r −Rp

R� −Rp

)
exp

(
−
(
r −R1

Γ

)2
)

·
(
1− exp

(
−1.5θ2)) (1− exp

[
1.8
(
θ − π

2

)])
, (5.3.2)

where Rp = 0.62R�, R1 = 0.1125R�, Γ = 3.47× 108 m and v0 = 20m s−1. Note

that this can be written as a function of r multiplied by a function of θ. Then the

meridional circulation is given by

um = 1
ρ (r)∇× (Ψ (r, θ) eφ) , (5.3.3)
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Figure 5.14: Depictions of velocity components used in this chapter,
taken from Yeates & Muñoz-Jaramillo (2013). The left
and middle panels primarily show meridional circula-
tion, and the right panel shows differential rotation.
Colour-scale units are in cm s−1.

where ρ (r) =
(
R�
r
− 0.95

) 3
2

is the radial density profile. This produces a single

cell circulation profile with a poleward flow at the surface, as observed, and an

equatorward branch that penetrates the tachocline (Nandy & Choudhuri, 2002).

Whilst it is likely that the meridional flow consists of a more complex form than

just a single cell, Hazra et al. (2014) showed that solar behaviour is reproduced as

long as an equatorward return flow is present. The velocity components are shown

in Figure 5.14. Diffusivity is now given by ηs η(r/R�) using Equation 5.2.6, where

ηs = 6× 1012 cm2 s−1.

We use a grid resolution of ∆φ = 2π
384 and ∆r = 0.45R�

48 , and initial and boundary

conditions are the same as used by Yeates & Muñoz-Jaramillo (2013): the bottom

boundary condition at r = 0.55R� is a perfectly conducting core, i.e. ∂(rBθ)
∂r

=
∂(rBφ)
∂r

= 0. The upper boundary condition is radial, although we expect from

Section 5.2 that changing to a potential-field boundary condition would have a

negligible effect on the flux evolution. The initial condition is created by emerging

a single BMR from a belt of toroidal field at the base of the convection zone of the

form:

B = B0

2

(
erf
(
r −R7

∆8

)
− erf

(
r −R8

∆8

))
eφ, (5.3.4)
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with R7 = 0.66R�, R8 = 0.74R�, ∆8 = 0.018R� and B0 = 2.5× 103 G. At the

surface, we do not prescribe any initial magnetic field, aside from that of the emerged

BMR.

We run the model for 9000 days from the time of emergence with no post-emergence

differential rotation, using a different diffusion profile from Section 5.2 each time.

This best reflects the scenario modelled in the simplified 2D diffusion model in

Section 5.2. The top-left panel of Figure 5.15 shows the unsigned surface flux from

each of these simulations, while the bottom-left panel shows the polar fluxes. As we

found in the 2D model (Section 5.2), the KD3 profile (orange) restricts cancellation,

resulting in a vast excess of flux at the surface. Poleward transport is also slower

in this case; the northern polar flux still hasn’t reached its peak after the full 9000

days.

Qualitatively, the other profiles also exhibit the same behaviour as in the 2D model.

The MLT profile (yellow) provides a more rapid decay of flux, and the quenching

profile (purple) lies somewhere between the other two. Unfortunately, even after

9000 simulation days, there is ∼ 1× 1022 Mx of unsigned magnetic flux at the surface

in all three regimes – much more than in the SFT model as shown by the dotted blue

(without exponential decay) and black (with a decay term of τ = 10 years) curves.

Whilst the decay term in the SFT model makes only a very small difference in the

total unsigned surface flux, its impact at the poles is more evident, acting as a sink

for the polar flux which is not otherwise possible in the SFT model. Although the

peak strength of the northern polar field is weaker in the MLT case than the SFT

model, it occurs at a similar time and the shape of the profile is close to that of the

SFT model when exponential decay is included.

If we do not turn off differential rotation after 25 days, we obtain the curves plotted

in the middle column of Figure 5.15. On comparing the first two columns of Figure

5.15, it is clear that the shearing caused by differential rotation aids the cancellation

of flux at the surface. By the end of the simulation, the amount of flux at the surface

eventually decreases to a similar level to that of the SFT model in all regimes,
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Figure 5.15: Top row: Unsigned surface flux from 3D simulations of
a single active region under the effects of diffusion only
(left), diffusion plus differential rotation (middle), and
diffusion, rotation and meridional flow (right), using
the KD3 diffusion profile (orange), quenching profile
(purple) and MLT profile (yellow). The equivalent 2D
SFT flux is shown in the dotted blue (without decay)
and black (with decay) curves. Bottom row: Northern
polar flux (solid and dotted lines) and southern polar
flux (dashed and dash-dotted lines) from the same
simulations.
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although the evolution of unsigned flux is still different in each case. Even with the

aid of differential rotation, none of the diffusion profiles are able to produce results

that match the SFT model, and the qualitative proximity of each curve to the SFT

curve found in previous tests is preserved. Note that the signed polar flux remains

the same regardless of whether rotation is included. This is because differential

rotation drops out when we average over longitude.

If we also include meridional circulation, we obtain the results plotted in the right-

hand column of Figure 5.15. This is the same setup as described in Section 5.1 but

starting from a different time. We show only the first fifteen years of simulation

time to focus on the main evolution; after this point, the curves remain at the same

level asymptotically. Qualitatively, the three profiles give similar results. As with

the rotation-only case, by the end of the simulation there is a similar amount of

surface flux in the KD3 simulations as in the SFT simulations. The meridional flow

transports flux to the poles on a shorter timescale than the other two cases, resulting

in a much stronger polar field. The inability of the KD3 diffusion profile to remove

magnetic flux from the surface means that the peak polar flux is stronger than that

of the SFT simulation. We observe that once again the MLT profile produces the

closest qualitative match to the surface-only model.

5.4 Effect of diffusivity on a 3D full-cycle

simulation

Yeates & Muñoz-Jaramillo (2013) demonstrated a simulation of a full solar cycle

using BMR data from Solar Cycle 23. However, this was not systematically calibrated

to observations. It can be seen in Figure 5.16 (or equivalently Figure 12 of Yeates

& Muñoz-Jaramillo, 2013) that the magnetic field is too strong and poleward surges

are too slow compared to the optimal butterfly diagram found in Section 2.2, shown

in the lower panel of Figure 5.16, which was calibrated against observations. The
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Figure 5.16: Top: Simulation of Cycle 23 from Yeates & Muñoz-
Jaramillo (2013). Bottom: Optimal butterfly diagram
of Cycle 23 from Section 2.2 of this thesis.

active regions across the full solar cycle behave similarly to the individual region

in Figure 5.2. We repeat this 3D simulation of Cycle 23 but replace the original

diffusion profile (orange curve in Figure 5.6) with the quenching and mixing-length

theory profiles (purple and yellow curves in Figure 5.6 respectively). Ideally we

would like to run a full solar cycle using disconnected active regions, but calculating

the interior potential field is time-consuming and we leave this for future work.

Equation 5.3.4 again defines the initial toroidal field, but now we try B0 = 250G.

An initial dipolar field is given by

B = ∇× (Aφeφ) , (5.4.1)

where

Aφ = Bd
sin θ
r3

(
r − 0.7R�

0.3R�

)
, (5.4.2)

and Aφ = 0 for r < 0.7R� (Jouve et al., 2008). The field strength is set as
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Bd = −0.008B0.

We run the simulation for 5000 days, using observed BMRs of Cycle 23 from

NSO/Kitt Peak as input data (Yeates et al., 2007). The unsigned surface flux

and signed polar flux for the simulation of Yeates & Muñoz-Jaramillo (2013) are

shown by the orange curves (top and bottom respectively) in Figure 5.17. The blue

and black curves show the 2D SFT simulation without and with decay respectively

for comparison. Note that here the regions are automatically extracted from NSO

magnetograms and are not the BMRs used in KD3, otherwise all surface parameters

are the same and we use Bpar = 39.8G (see Chapter 2). Therefore the cause of the

discrepancy is no longer obvious. In particular, Yeates & Muñoz-Jaramillo (2013)

state that the magnetic flux in KD3 can be scaled arbitrarily by simply changing

the strength of the toroidal field, so the difference in scale here is not significant.

The purple profiles in Figure 5.17 correspond to the simulation where the quenching

diffusivity profile has been used. If all parameters other than the diffusivity profile

are fixed, it is evident that not enough magnetic flux reaches the surface, and the

polar field is barely able to reverse. To combat this, we increase the strength of

the initial toroidal field by an order of magnitude. This provides a stronger source

from which active regions can develop, thereby increasing the amount of flux at the

photosphere. This is demonstrated by the purple curve in the top panel of Figure

5.18. Here, the total surface flux peaks earlier than the original simulation. In the

bottom panel, we see that the polar field reverses at a similar time to the original

case, albeit with a reduced strength throughout the simulation. Nevertheless, the

toroidal field appears to be strong enough to produce more regions as a subsequent

cycle (top panel of Figure 5.19) if we were to continue the simulation. The bottom

panel of Figure 5.19 shows the surface butterfly diagram of the same simulation.

While it is suboptimal, it displays observable features of the solar cycle and a more

realistic distribution and transport of magnetic flux than before. A future task is

to calibrate other parameters in the model against observations while keeping the

quenching profile fixed.
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Figure 5.17: Top: Unsigned surface flux from 3D simulations of
Cycle 23 using the KD3 diffusion profile (orange),
quenching profile (purple) and MLT profile (yellow).
The equivalent 2D SFT flux is shown in the dotted
blue (without decay) and black (with decay) curves.
Bottom: Northern polar flux (solid and dotted lines)
and southern polar flux (dashed and dash-dotted lines)
from the same simulations.
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Figure 5.18: Top: Unsigned surface flux from 3D simulations
of Cycle 23 using the KD3 diffusion profile (or-
ange), quenching profile (purple) and MLT profile
(yellow), but where the initial toroidal field has been
strengthened by one and two orders of magnitude for
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flux (solid line) and southern polar flux (dashed line)
from the same simulations.
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Figure 5.19: Top: Toroidal field at the base of the convection zone
from a 3D simulation of Cycle 23 using the quenching
profile and a strengthened initial toroidal field. Bot-
tom: Radial magnetic field at the surface from the
same simulation.

Ideally we would like to be able to simulate Cycle 23 using the diffusion profile derived

from mixing-length theory, because this gave the closest match to the surface-only

evolution in Sections 5.2 and 5.3. Figure 5.17 shows that even less flux emerges at

the surface in this case, because the diffusion in the convection zone is too strong

and kills off the majority of rising flux tubes. Even when the initial toroidal field is

increased by an order of magnitude, it rapidly diffuses and so no regions are able to

emerge after a few years.

When the toroidal field is increased by another order of magnitude, the flux still

decays too rapidly, as shown by the yellow curve in Figure 5.18. However, we now

observe polar field reversal, although very early in the cycle, and the bottom panel

of Figure 5.20 shows that the surface evolution during the first few years of the cycle

appears to be sun-like. The top panel of Figure 5.20 shows that no new toroidal

field is created. This occurs in all simulations when the MLT diffusivity profile is

used and is one reason why dynamos have thus far been unable to accommodate the

diffusion profile derived from mixing-length theory.
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Figure 5.20: Top: Toroidal field at the base of the convection zone
from a 3D simulation of Cycle 23 using the MLT pro-
file and a strengthened initial toroidal field. Bottom:
Radial magnetic field at the surface from the same
simulation.

Scaling the MLT profile by a factor of 0.5 allows significantly more flux to emerge

at the surface, but it is still not enough on its own to sustain the dynamo. However,

if we also shift the location of the low-diffusivity step in the MLT profile up so

that the toroidal field is stored in a region of low diffusion (i.e. set R1 = 0.74 and

∆1 = 0.024), we find that the field survives for longer and more flux can reach the

surface. However, although more new toroidal field starts to appear at the base of

the convection zone for the next cycle, it is still too weak, and the polar field at the

surface still reverses too early. In summary, increasing the diffusivity to the level

required for a realistic surface evolution is not on its own sustainable in a full-cycle

simulation, because the high diffusivity removes too much flux from the system.

5.5 Conclusions

In this chapter our aim was to investigate and fix a discrepancy in surface evolution

between a 3D dynamo model and 2D surface flux transport model. Suspecting that
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the problem was probably due to radial diffusion, we used a simple 2D model of the

convection zone to quickly assess the effects of diffusion profile, initial condition and

boundary conditions. We simultaneously solved a 1D diffusion model to create a

reduced-dimension analogue of the original problem.

We found that weak diffusivity at the base of the domain meant that field lines were

unable to detach from the toroidal field and were held fixed in place. This meant that

movement of magnetic flux at the surface was severely limited, restricting diffusion

and cancellation. Because of its relatively reduced diffusivity in the convection

zone, using the original KD3 diffusion profile in particular left a significant excess

of unsigned flux at the surface. However, this can be reduced by increasing the

diffusivity in the convection zone so that diffusive transport is more effective, as

demonstrated by diffusion profiles derived from diffusivity quenching estimates and

mixing-length theory. There was an improvement in surface flux when potential

rather than radial boundary conditions were used, but the difference was negligible

compared to improvements gained by changing the diffusion profile.

We also tested an initial condition where the magnetic field was disconnected from

the toroidal field at the base of the convection zone. Field lines were no longer

fixed in place so diffusion was very effective. Using the MLT profile with this initial

condition produced a very good match between the surface magnetic flux and the

flux from the 1D model. Evolving a disconnected active region provided a better fit

to the 1D surface evolution in general, although in the case of the quenching profile,

diffusion acted too rapidly.

Based on these results, we believe that the source of the discrepancy between the SFT

model and the surface component of KD3 arises from a combination of prescribing

a weak diffusivity in the bulk of the convection zone and maintaining a connected

subsurface structure of active regions, and that these become manifest through the

radial diffusion term.

We then repeated some of the experiments in KD3, and found qualitatively similar

results: the MLT diffusion profile produced the closest match in surface flux evolution
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to the SFT model, whilst the quenching and KD3 profiles performed second and

third best respectively. The MLT profile also induced a small improvement in polar

flux evolution.

Finally, we made an attempt of simulating Cycle 23 with KD3 using the quenching

and MLT profiles. After increasing the strength of the initial toroidal field, we were

able to present an acceptable representation of Cycle 23 using the quenching profile.

However, using the preferred MLT profile was largely unsuccessful, and the toroidal

field decayed away without any new toroidal field being produced to act as the seed

for the next cycle. While this profile worked best for simulating a single region,

applying the strong diffusivity throughout the convection zone meant that the cycle

was not able to sustain itself for a sufficiently long time, and very little toroidal flux

was being produced for the next cycle. The implication of this is that in order to

accurately recreate the solar cycle using a 3D diffusion-dominated dynamo model,

it may be that emerged regions should at some point be disconnected from the

underlying toroidal field (Schüssler & Rempel, 2005), in order for the evolution of

surface flux to match that of an SFT model.





Chapter 6

Conclusions and future work

In this thesis we investigated methods for optimizing parameters of solar magnetic

cycle models. In Chapter 2 we developed a 1D surface flux transport model and

applied a genetic algorithm to this model to search for optimal parameters. We also

applied the algorithm to a 2D surface flux transport model which uses an automated

method to extract specific active region shape from magnetograms. In Chapter 3 we

used Bayesian emulation to calibrate parameters for the 2D model, and in Chapter

4 we used the 2D model along with its optimal parameters to simulate active regions

individually and obtain properties such as axial dipole moment, latitude and flux.

Finally, in Chapter 5 we assessed the effect of radial diffusion at the surface of

a 3D dynamo model, compared to the 2D surface flux transport model. We now

summarise the conclusions from each chapter:

Chapter 2: Parameter optimization for surface flux transport models.

• A 1D surface flux transport model is developed which uses observed bipolar

magnetic regions as source terms.

• Optimal parameters and ‘acceptable ranges’ for parameters are successfully

found using a genetic algorithm. Parameter relationships are also inferred.
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• Observational uncertainty is incorporated to add statistical significance to the

results.

• The genetic algorithm is also applied to a 2D surface flux transport model

which extracts specific active region shape from magnetograms.

• Optimal parameters for both models are in good agreement with observations.

• The 2D model accommodates the observed meridional flow better than the 1D

model, and does not require an additional exponential decay term. Its auto-

mated assimilation technique allows for quick simulations of different datasets.

• There exists variation between optimal parameters from different solar cycles.

• Global search techniques are not common in this research area and are often

overlooked. Work in this chapter builds on similar studies by Lemerle et al.

(2015) and Lemerle & Charbonneau (2017), but instead the algorithm is applied

to two distinct models and different solar cycles.

Chapter 3: The Bayesian approach.

• Bayesian emulation is applied to the same optimization problem as Chapter 2,

specifically for the 2D model. Such a technique has never been used before in

the area of Solar Physics.

• Emulation provides a more efficient and informative parameter search. The

multi-dimensional parameter space can be regularly visualized, and regions of

space ruled out based on a quantity called ‘implausibility’.

• Results are in excellent agreement with Chapter 2, and significantly fewer

model runs are required.

• Efficiency of emulators increases with model complexity. Therefore a more

sophisticated emulator would be an appropriate tool for optimizing the 3D

kinematic dynamo model in Chapter 5.
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Chapter 4: How many active regions are necessary to predict the solar

dipole moment?

• Active regions and their properties from Solar Cycles 21 to 24 are extracted

from observed magnetograms. Each region is simulated individually so its

contribution to the dipole moment can be calculated.

• Large contributors can have a drastic effect on the end-of-cycle dipole moment

and hence subsequent cycle amplitude.

• The cumulative effect of smaller contributors is also important.

• Emergence latitude primarily determines the dipole moment contribution of

a region, but there are secondary dependencies on initial magnetic flux and

dipole moment.

• In particular, all significant contributions are from regions above a certain size.

• This improves on work by Jiang et al. (2015), who used an empirical rela-

tion involving active region emergence properties to determine dipole moment

contributions, rather than a simulation.

Chapter 5: Three-dimensional kinematic dynamo model.

• There is a discrepancy between the evolution of a 2D surface flux transport

model and the surface component of a 3D dynamo model.

• This is caused by radial diffusion which is absent in the surface-only model.

• Tests using a simple 2D diffusion model show that a strong diffusivity is

required in the convection zone in order for the surface flux to match.

• Alternatively, disconnecting the active region from the toroidal field at the

base of convection zone provides a more accurate surface flux evolution.

• The effect of changing surface boundary condition appears to be negligible.
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• Repeating the experiments in the 3D dynamo model confirms the results.

• It does not yet appear to be possible, in this particular model, to maintain

a full realistic solar cycle with a strong convection zone diffusion and active

regions initially connected to the underlying toroidal field.

• The aforementioned discrepancy seems to be largely unexplored – at least in

the context of flux transport models – so the work in this chapter is original

and hopefully will be impactful.

6.1 Potential future work

The adaptability of the 2D model provides a wide scope of possible future directions

for optimization. One such direction is testing variability between different measuring

instruments to ascertain whether inconsistent literature results could simply be due

to the choice of observatory or satellite. This comes with the issue of either deciding

on or computing an appropriate value for the assimilation threshold Bpar for different

datasets. Another future possibility that takes advantage of the model’s assimilation

technique is to optimize multiple cycles at the same time. We have shown that there

exists variation in parameters between cycles, so a single optimal parameter set for

more than one cycle might be less realistic. An alternative method would be to treat

each cycle separately, coupled only at each cycle minimum, where the final profile

of the previous cycle becomes the initial profile of the next. However, using this

method we found in Chapter 4 that errors in early cycles can propagate through the

simulations and affect later cycles, and that using a single parameter set actually

improves the overall match between observed and simulated axial dipole moment.

Our methodology assumes a static meridional flow. The inclusion of a time-varying

meridional flow in the optimization could significantly alter results, however para-

metrizing time-dependence without introducing too many parameters is not a trivial

procedure. On the other hand, large-scale inflows towards active regions were first
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observed by Gizon et al. (2001), and Cameron & Schüssler (2012) proposed that

these flows were at least partially responsible for variation of meridional flow over

the solar cycle. Indeed, Martin-Belda & Cameron (2016) found that the inflows

increased the effect of flux cancellation and also reduced the latitudinal separation

of polarities, thereby decreasing the axial dipole moment contribution of a bipolar

region. This process weakens the polar field in the same way that a time-dependent

meridional flow can, and although we have not accounted for inflows in this study,

it is an option under consideration for future work. A possible technique for simu-

lating the effect of active region inflows without having to calculate a flow pattern

explicitly is using a flux-dependent diffusion parameter whereby the presence of a

strong magnetic field quenches diffusion (e.g. Muñoz-Jaramillo et al., 2011).

We would also like to accurately simulate solar cycles earlier than Cycle 21. Unfor-

tunately, magnetograms are not available for these cycles. However, an alternative

possibility is to combine chromospheric plage data from Ca II K line spectrohelio-

grams with polarity information from historic sunspot magnetic field measurements

to create pseudo-magnetograms (Pevtsov et al., 2016). These could subsequently

be used as assimilation data for the 2D SFT model in order to gain deeper insight

into the behaviour of earlier cycles, particularly the polar field (Virtanen et al., 2017,

2018). It may also be possible to optimize parameters for these historical cycles

against other datasets such as filament observations, but this is ongoing work.

Remarkably, even a relatively basic Bayesian emulator was successful. One would

hope that a more sophisticated emulator would be even more accurate and efficient.

For example, the functions βigi (x) in Equation 3.1.1 were chosen to be constant as

opposed to more complicated functions like low-order polynomials, which might more

accurately describe the global behaviour of the model. Furthermore, we considered

all variables to be ‘active’, i.e. all parameters influence the output f(x). However

we may decide that some variables are less important than others in determining

the output, and only construct the emulator based on those which have a greater

influence. This enhances efficiency by reducing dimensions, and would therefore
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be more useful when calibrating more complex models than the 2D SFT model.

Active variables can be chosen using statistical model-fitting criteria such as the

Akaike information criterion (AIC) or Bayesian information criterion (BIC). Further

modifications and improvements are discussed in Vernon et al. (2010).

In Chapter 5 we only varied the diffusion profile and initial condition in the 3D

dynamo model. Perhaps a way to find a working dynamo with connected active

regions would be to vary the other parameters (e.g. meridional flow profile, turbulent

pumping). As discussed throughout this thesis, the end goal is to systematically

calibrate the full set of parameters in KD3 against the real solar cycle, so we would

like to use the work in Chapters 2, 3 and 5 to add some constraints to the optimization

problem. It may be that modelling the solar cycle is still possible using active regions

that remain connected to the toroidal field at the base of the convection zone.

A subsequent future target would be to achieve a self-sustaining dynamo using this

model, where the locations of emerging regions are automatically chosen based on

the strength of the toroidal field and not to match the observed regions necessarily.

In particular, we would like achieve this whilst ensuring the surface magnetic field

behaviour is sun-like. This remains an open research problem for 3D B-L dynamo

models and work is being done on this topic by other groups.

For example, the 3D B-L model of Miesch & Dikpati (2014) has been shown to suc-

cessfully produce self-sustaining dynamo action in multiple tests of increasing com-

plexity, such as adding axisymmetric and convective flows (Miesch & Teweldebirhan,

2016; Hazra & Miesch, 2018), operating in a regime where diffusion dominates over

advection (Hazra et al., 2017), and experimenting with solar cycle variability (Karak

& Miesch, 2017, 2018). However, this model uses an idealized spot-deposition al-

gorithm and does not explicitly model the emergence process, which, aside from

probably being less realistic, comes with a small number of problems. For instance,

the interior structure of the magnetic field must be defined (in this case a potential

field is assumed), and the depletion of flux from the toroidal field needs to be taken

into account in an appropriate way, which is by no means a trivial (or, indeed,
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resolved) task. Furthermore, using such an algorithm allows for the alteration of

active region parameters, such as emergence time and delay, size, magnetic flux,

latitude and tilt angle. In many of the studies listed above, the flux of each region

was amplified above observed solar values in order to ensure supercritical dynamo

solutions.

Kumar et al. (2018) and Kumar et al. (2019) presented another 3D B-L dynamo

model, which uses a similar emergence process to that of Yeates & Muñoz-Jaramillo

(2013). Whilst promising self-sustaining dynamo simulations were performed, the

model displayed some shortcomings, such as an overlap between consecutive cycles.

In like fashion to the model of Miesch & Dikpati (2014), the magnetic flux of active

regions was too strong, and a detailed comparison to the behaviour of the solar

magnetic cycle was not performed, leaving lots of avenues for future work.
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