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Abstract

Flexible electronic is a field of technology for assembling electronic circuits and devices
on flexible substrates; which are characterized by their low cost, conformable and light
weight properties compared to conventional silicon-based electronic devices. The addition
of ferromagnetic materials to flexible substrates will allow the introduction of additional
functionalities including memory and sensors. Here, I present a detailed study of the
development of perpendicular magnetic anisotropy (PMA) in Pt/Co/Pt multi-layered systems
and demonstrate the conditions for controlling the anisotropy. Two typical kinds of substrates
have been introduced for preparing trilayer thin-film structure by deposition of magnetic films
(Pt/Co/Pt) on them. Magnetron sputtering was used to deposit a series of Pt/Co/Pt trilayers
where magnetic anisotropy was studied using Atomic Force Microscope, x-ray diffraction,
x-ray reflectivity, Magneto-Optical Kerr effect magnetometry and Hall–effect measurements.
The effect of Co thickness on the anisotropy, coercivity and switching behaviour were
examined and compared between polymeric and silicon substrates. The substrate was found
to have a significant effect. A clear PMA was observed for Co thicknesses that range from
0.3 to 0.7 nm. Additional increments in the Co thickness makes the magnetization return to
the in-plane direction, with a rapid drop in both the coercivity and the remanence. Further
improvements in the PMA were obtained through the thickness of the Pt buffer layer, with
higher coercive fields for both flexible plastic and silicon dioxide substrates. However,
the thickness of the Pt capping layer did not have any systematic effect on the anisotropy.
The results of a study of the interplay between microstructure and the magnetic properties
of ultrathin Ru/Co/Ru and Pt/Co/Pt trilayer thin films with PMA is also presented. The
maximum values of PMA are observed for the Co thickness by using Pt in comparison with
Ru. The effective magnetic anisotropy and coercive field are very sensitive to Ru buffer
layer thickness. The values of coercive field increase approximately from 10 of using Ru in
comparison with about 1000 Oe for the Pt case. This is associated to the larger grains growth
of Pt while Ru has a smaller grains growth. The surface roughness have an impact on the
Hall resistivity on the ferromagnetic/non-magnetic thin films. Observation of the magnetic
domain structure by means of polar kerr microscopy reveals that out-of-plane magnetization
reversal occurs through then nucleation of bubbles on silicon dioxide.
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Chapter 1

Introduction and structure of thesis

1.1 Introduction

Recently, the flexible electronics play an effective role in developing technology. In fact,

there is a high interest to focus on the advantages of flexible electronics that offers flexible,

low-cost electronic circuits leaving expensive rigid silicon-based systems [1]. In all modern

electronic systems [2], memory plays an important role in the data storage, processing

and communication [3–6] using both rigid and flexible substrates. For the manufacture of

magnetic film on the flexible substrates, an appropriate insulating layer was often a necessity

to reduce the roughness of the flexible substrate for ensuring a continuous and functional

layer of magnetic materials [7–9]. Several studies have indicated that the use of plastic bases

in the electronics industry is somehow challenging.

Where, the plastic bases possess some unique features and that is why they exist in many

applications. Many materials and architectures used in flexible memories including flash-type

memories, ferroelectric memory [6] and resistive switching memories [10] ; which have been

studied by several research groups. Also, the properties of flexible device should not change

after or while being strained; this point represents an essential requirement. From another

point of view, however, it would be interesting if their properties can be greatly modulated

frequently.
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1.2 Aim of this work

The purpose of this thesis is to highlight and understand the effect of perpendicular magnetic

anisotropy (PMA) using different types of substrate such as silicon dioxide (rigid), polyethy-

lene naphthalate (PEN) and polyimide (flexible/rigid) substrates that is also affected by the

Hall resistivity due to Lorentz effect. Also, the usage of non-magnetic materials (like: Pt and

Ru) that grow on those substrates represents a key role for technological applications in the

data storage devices.

Taking a thorough understanding of the mechanisms of magnetic domain walls in trilayer

thin films through the sputtering deposition has been accomplished in this study. The

main goal was to focus on the out of plane anisotropy magnetic materials, in particular the

Pt/Co/Pt and Ru/Co/Ru trilayer system. Where, a detailed structural analysis was presented;

which shows the reduction in the roughness using different thicknesses of buffer layer. The

study also investigated the relationship between domain wall structure and improving the

magnetisation behaviour; in order to establish a new knowledge about the relationship

between a domain wall and enhancing PMA using rigid/flexible substrates. Where, having

further knowledge about the behaviour and mechanisms of controlling the domain walls in

thin-films plays a key role in the design of future spintronics devices.

1.3 Thesis Outline

This thesis begins with a general introduction of the background and physical theories

describing magnetism, how it can be controlled at the nanoscale and the used technique

for investigating the magnetic properties; which in turn opens the discussions about these

properties as well as the structural behaviour of sputtered magnetic material.

Chapter 2 provides a general background of magnetism that is relevant to the main

subject of this thesis; which is primarily focuses on the basic theories used for discussing and
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analysing the obtained results. In order to set this study in the coming chapters within the

context of the magnetism in nonmagnetism/ferromagnetism, a brief review on some of the

most relevant theories is introduced at the first part of this chapter. The second part focuses

on the Anomalous Hall Effect (AHE), where there are two contribution of the AHE, one

is coming from the Lorentz force and the other is coming from spin-dependent scattering.

Therefore, the experiments and analysis that are undertaken in this thesis were focused on

the impact of Hall resistivity based on the Lorentz force effect.

Chapter 2 takes into consideration the spin orbit interaction (SOI) or spin orbit coupling

(SOC), which represents an important physical concept for the behaviour of ferromag-

netic systems. The magnetic interactions in multi-atom systems help in demonstrating the

most complex magnetic behaviour in crystalline systems. The electronic arrangement of

a system, leads to some interactions such as those of crystalline field exchange. These

interactions can work together to provide the final magnetic state of the material that can

include Dzyaloshinskii-Moriya interaction (DMI); where these effects can be combined to

determine the domain-wall structure and magnetocrystalline anisotropy, which depend on

the exchange and the crystalline field interactions.

Chapter 3 presents the background theory and practical implementation of all processes

of sample fabrication. The cutting and cleaning of the sample in substrates is first introduced

before discussing the thin film deposition. The next section is the background of the material

deposition with focusing on the main deposition system, its main features and the growth

conditions of thin-film. The vapour phase growth modes are explained; in order to have clear

understanding and linking the magnetic results with any structural changes such as in the

platinum or ruthenium and/or the influence of defects /imperfections that may arise when

using the different kinds of rigid and flexible substrates.

In chapter 4, we discuss the utilized experimental techniques with including a detail

demonstration of the sample holder and new masks. This chapter introduces the experimental
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techniques and the obtained results from each technique. Also, it deals with the Hall

voltage magneto geometry and magneto optical Kerr effect magneto geometry and imaging

measurement capabilities.

Chapter 5 gives a detailed discussion that covers the experimental implementation of x-

ray reflectivity and atomic force microscopy. The x-ray reflectivity technique is an important

matter as it gives information about the thickness density of thin-film, density and interface

width. The AFM (atomic force microscope) technique was used on both silicon dioxide and

flexible/rigid plastic substrates; which is discussed in detail in this chapter to understand the

structure of substrates.

Chapter 6, demonstrates the advantage and disadvantage of using flexible/rigid substrates

depending on the surfaces roughness, stronger-weaker perpendicular magnetic anisotropy

(PMA) and Hall resistivity. Moreover, this chapter discusses the impact of bending for

decreasing the coercive field associated with the important role of interfacial PMA.

Chapter 7, illustrates the Hall resistivity of both Ru and Pt non-magnetic materials. Also,

it includes the pattern data of x-ray diffraction and structure morphology using atomic force

microscope. The correlation between perpendicular magnetic anisotropy and grain size of

trilayer thin film is demonstrated in this chapter using different kinds of substrates.

Chapter 8 describes the manufacturing of magnetic thin-films on flexible substrates. The

data analysis of domain-wall can give us a clear understanding of the implementation of

magnetic behaviour that is compared between SiO2 and PEN substrates. The manufacturing

of magnetic thin-films on SiO2 and PEN substrate has been studied with the analysis of

image magnetization. Presenting the magnetization of domain-wall structure using the polar

Kerr microscopy is also introduced in this chapter, using the analysis of Kerr microscopy

images on the bubbles of trilayer thin-films.

Chapter 9 summarizes the key results obtained from this work with the main conclusion.

Also, it introduces the possible future work based on the findings of this thesis.



Chapter 2

The physical basis of magnetic properties

in films and the Hall effect

2.1 Introduction

In this chapter, a general interaction of magnetism is first discussed with focusing primarily on

those basic theories that assist on analysing the results presented later in this thesis. In order to

set the study in the context of the whole discussion about magnetism in magnetic/nonmagnetic

multilayers in the coming chapters, a brief review of the most relevant theories is presented.

This chapter takes into consideration the study of the spin orbit interaction (SOI) or spin orbit

coupling (SOC), which represents an important material concept for the behaviour of FM

(abbreviation of Ferromagnetism). Magnetic interactions in multi-atomic systems can help

in explaining the most complex magnetic behaviour of crystalline systems. The electronic

arrangement of a system is demonstrated using this theory, which produces some interactions

such as the crystalline field exchange. These reactions can work together to provide the

final magnetic state of the material. This can be noticed in the interaction of Dzyaloshinskii-

Moriya (DMI), domain-walls and magnetocrystalline anisotropy, which depend on DMI

exchange and interactions.
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The final section of this chapter focuses on the Anomalous Hall Effect (AHE), that is

directly proportional with the magnetisation. In addition, the following discussion of the

resistivity characteristics and the impact of Hall voltage will be limited to what is directly

applicable in the experiments mentioned here.

2.2 Magnetic energy theory

The magnetic domain structure depends on several factors including the exchange interaction,

magnetic anisotropy, magnetostatic energy, zeeman energy and reorientation of spins through

intermediaries (in some thin-film systems), such as in the Dzyaloshinskii-Moriya interaction.

The high interface to volume ratio means that interactions in the interface have a great

importance.

2.2.1 Ferromagnetism

Ferromagnetism forms the basis of this research work, as it is helpful in reviewing some of the

key physics. The effect of attraction or repulsion between materials is called the Magnetism

phenomenon [11]. A magnetic moment results from the electrons within a material. The spin

is intrinsic to the electron, which is quantized into two states called spin-up and spin-down.

Magnetic moments are associated with both the orbital and spin angular momenta.

In ferromagnetic materials, the orbital angular momentum is largely quenched, and the

magnetic moment comes from the imbalance in the electrons’ spins will result in magnetizing

quenching and spin alignment; which in turn results in the ’bulk’ magnetism [12]. That

means the angular momentum of the orbital will be high in the free metal ion; which will be

decreased when ligands are attached to it. The contribution of the orbital to the magnetic

moment is called quenched when it equals to zero.
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2.2.2 Exchange interaction

The exchange interactions in ferromagnets is the mechanism by which the spins have a

direct effect on each other. The simple explanation is that the parallel-spin electrons will

have separate wave functions because of the Pauli exclusion principle, leading to reduced

Coulomb interaction between electrons and thus a lower total energy [13]. Here, "a" and "b"

refer to the adjacent spins, Jex refers to the exchange interaction, Coulomb integral, C, and

the overlapping integration, B, as follows:

the exchange constant Jab, in turn, the energy associated with two electron spins that is

determined by the Heisenberg-Hamilton exchange:

where the spin momenta are given as sa and sb. If Jab is positive, the exchange energy

prefers electrons with parallel spins; which is an essential cause of ferromagnetism in

materials. While, if Jab is negative, the interaction prefers electrons with antiparallel spins,

potentially leading antiferromagnetism [14].

2.2.3 Spin-Orbit Interaction (SOI)

The spin orbit Interaction (SOI) is known as the interaction of the electron spins with the

electric field through the associated magnetic field in the electrons rest frame and therefore

the electrons movement are within a crystal [15]. The principle of the SOI can be understood

by considering an electron orbiting a nucleus. The spin-orbit interaction (SOI) gives rise to

magnetocrystalline anisotropy and supplies a mechanism for energy dissipation to the lattice.

As illustrated in Fig. 2.1, in the frame of reference of the electron, the nucleus orbits the

electron forming a closed loop.
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Fig. 2.1 A schematic diagram illustrating the electron that is moving in the field created by a
proton. The spin-orbit interaction is due to this magnetic field Bso, affecting on the intrinsic
magnetic moment of the electron.

This orbiting positive charge makes a magnetic field that interacts with the spin of electron.

As a result, the spin moment of the electron is coupled to the orbital. For a single electron

orbiting a positively charge nucleus, the SOI Hamiltonian is given by [16];

where me is the electron’s mass, c is the revolving speed of the nucleus around the

electrons, Z is the atomic number of the nuclei and r is the radius of the electron orbital.

The expectation value r−3 is proportional to Z3 , hence the SOI scales with Z4; which

demonstrates the reason why the SOI is strong in heavy elements like Pt, Ta and Ir. Therefore,

it is significant to note that orbital hybridisation as well plays an important role when

considering complete crystals rather than single atoms. When calculating the response of a

system to the SOI, it is mostly introduced as it shown here;
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where λ is a fixed value that is proportional to the force of the SOI. The magnetic moment

on an atom is related with its whole angular momentum J ; which is a totality of the orbital

angular momentum L and the spin angular momentum S [17]. Also, the SOI represents

a small influence that can be applied after a strong contributions from the field. This is

recognized as the L-S coupling regime, by which the total angular moment J is calculated

and the SOI is applied [16].

2.2.4 Anisotropy

The magnetization orientation depends on the material system that is defined by the term

magnetic anisotropy, K. There are different types of magnetic anisotropy such as the crystal,

shape, exchange and stress anisotropy or anisotropy induced by magnetic annealing, plastic

deformation and irradiation [18].

Magnetocrystalline Anisotropy

A strong interaction between the orbit and lattice is defined by the spin-orbit interaction

that acts against the attempts to rotate the spin away from the preferred lattice axes. The

anisotropy energy is the energy needed to rotate the magnetization away from an easy

direction into a hard axis direction [18–21]. This type occurs from the spin-orbit coupling;

which in other words defines the interaction between the spin and orbital motion of each

electron (in this case the linkage between 3d spin and orbital angular momentum). There is a

positive correlation between the external field and orbit; where the spin of electron reorients

by an external field, as well as its orbit. In the presence of an external magnetic field, a

magnetic dipole will test a torque. The impact of the torque will lead to align the magnetic

dipole (i,e. the magnetic field generated by the orbiting electron) in the direction of the

applied magnetic field [22].
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Shape Anisotropy

The shape anisotropy is mediated by the dipolar interaction. This interaction is dependent

on the sample shape, hence the shape anisotropy becomes a significant matter in thin films.

More details about this topic will be discussed in the following section [23].

Out-of-plane ’Perpendicular’ Magnetic Anisotropy (PMA) in X/Co/X thin-films

In order to develop a PMA in a multilayered system with interface induced (PMA), there is a

need to identify the best setup for growing the X/FM or FM/X , where FM and X are pointing

to ferromagnetic , and the capping FM/X or based layer X/FM respectively. Generally, when

the magnetic anisotropy constant (K) is > 0 then the magnetic anisotropy is perpendicular

(PMA); i.e., out of the plane and when K is < 0, then the magnetic anisotropy is in the plane

(IMA), as illustrated in Fig. 2.2.

Fig. 2.2 A schematic diagram showing the effect of the ferromagnetic layer thickness on the
magnetic anisotropy energy (a) a thick FM layer, (b) a very thin magnetic film.

K defines the magnetic anisotropy (MA) axes of material. However, the MA depends

on other parameters, such as the volume, interface layer, temperature, pressure,etc [24].

K is known here as an effective magnetic anisotropy energy (Ke f f ) [23], where equation

2.5 shows that it has a volume term Kv and an interface of surface term. Ks represents the

influence that depends on the magnetic layer thickness, t f ilms.
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In bulk systems, the anisotropy of a system is dominated by the volume term when the

thickness of ferromagnetic layer becomes large. While, in thin-film systems, the influence

of surfaces or interfaces can be large enough to change the preferential direction of the

magnetization from in-plane to out-of plane. Fig. 2.3 illustrate the differences between hard

axis and easy axis.

Fig. 2.3 A typical hysteresis loop for (a) tPt /Co 0.4/tPt nm [in-plane] and (b) tPt /Co 0.4/tPt
nm [out-of-plane] using silicon dioxide.

2.3 The influence of roughness, interdiffusion, and strain

on anisotropy

The influence of roughness, interdiffusion and strain on magnetic anisotropy are discussed

in this section. So far, the individual layers, multi-layered systems have been represented

as they have perfect flat layers and sharp interfaces between the layers at the atomic level.

In practice, films cannot usually be grown in such an ideal way [19]. In contrast, the "real"

surface/interface areas show finite width, i.e. the vertical area of the surface/interface area
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has roughness, chemical intermixing or both. At the interface between two layers of different

kinds of materials, there is often a region of interdiffusion, i.e. a gradual transition from

one material to the other in the vertical direction. Each of these components can have a

strong impact on the anisotropy [23]. In the case of roughness, for symmetry reasons, the

atoms presented in the following steps reduce the general interface of crystalline origin and

decrease the PMA for Co/Pt (111) [25]. The effect of interdiffusion, on the one hand, may

reduce the magnetocrystalline interface anisotropy because it leads to some randomisation of

the bonds between ferromagnetic and non-ferromagnetic layers [26, 27].

Strain changes the overlap of the atomic wave functions and therefore the spin orbit

interaction; which in turn change the magnetocrystalline anisotropy, this effect is known

as magneto-elastic anisotropy [28–30]. The effect of the strain, roughness and degree of

interdiffusion can be dependent on the layer thickness as well, due to variations between 2D

and 3D growth modes with thickness. When reducing the thickness of a layer to a few atomic

layers, the magnetic layer can become discontinuous, so that it is divided into islands. Then,

lower Ks can occur compared to the effect in a continuous layer due to the discontinuous

layer having a lower interface area [31, 32, 23].

2.4 Magnetization curves and hysteresis loops

The hysteresis loop defines a non-linear, irreversible relationship between the magnetisation,

M, or the magnetic flux density, B, and the applied magnetic field Hext . Figure 2.4 shows a

typical hysteresis loop of a ferromagnetic material that demonstrates the following aspects:

Point O (origin) shows the demagnetized state. From this initial state of the material, with an

increment in the applied field (Hext) in a positive direction, the magnetisation of the material

increases in the direction of Hext , as shown in Fig. 2.4, from O to a [33].
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Fig. 2.4 A typical hysteresis loop with key parameters indicated.

The material’s magnetisation (M) becomes saturated (+Ms) when the external field Hext is

sufficiently high, by aligning all the magnetic moments in the Hext direction of the material.

Additional increases in the external field gives no further change in the magnetisation. The

term "virgin curve" refers to a region between the demagnetized state “O” and saturation. Re-

ducing the field to zero leads to a positive remanent magnetisation state. The term remanence

(+Mr) indicates that M does not reduce to zero but holds a net magnetisation. Demagnetizing

the material with a reverse field means reducing Mr to zero by applying an external field

Hext in the negative direction; which is called by a coercive field or coercivity, Hc. The

material can be saturated in the opposited direction by an additional increase of the field

in the negative direction to obtain the opposite saturated flux direction (−Ms). Where the

material reaches again to a remanent magnetisation (−Mr) when Hext field is again reduced

to zero. The term "major hysteresis loop" means that the hysteresis loop is traced out from

+Ms to −Ms, while the "minor loop" occurs when the field Hext is not enough for saturating

the sample [33].
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2.5 Magnetic Domain Walls

The domain wall (DW) is a small area between two various magnetic domains. Inside the

DW, the magnetization rotates from one domain magnetization direction to another. The

width of the domain wall depends on the competition between the energy of the exchange

(A) and the anisotropy (K) [34, 35].

Fig. 2.5 Schematic diagram to illustrate the spin up and spin down that is happen in domain
wall, black and white contrast for tPt (2.0)/tCo (0.5)/tPt (2.0) nm with a 500 µm cross section
at 0.2 Oe.
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Fig. 2.5 shows two domains, they are separated by a domain wall which is too small

to recognise it on the image. It is proportional to the exchange energy of the conduction

electrons. The exchange interaction prefers a large DW width, so that the adjacent magnetic

moments are separated by small angles. In contrast, anisotropy leads to a reduction in the

number of non-aligned magnetic moments along the easy axis. So, when the anisotropy is

large compared to the exchange energy, this leads to a thin domain wall that is opposite to

weak anisotropy. Through a domain wall, the magnetic spins transition from one domain

direction to another.

Several interactions that play an important role in the behaviour of a magnetic frameworks

have been introduced. Each interaction has a relation with it is an energy: magnetostatic, Ems,

exchange, Eex, magnetocrystalline and Emc energies respectively. These energies determine

the alignment of the magnetic moments , and the various arrangements of magnetization

direction alter the energy contributions to the system. The overall energy of the system is

described by equation 2.7, and like other physical phenomena, the stable configuration is

the case that the overall energy is minimized; which determines the behaviour happening in

magnetic materials.

Competition between energies in a ferromagnetic material is often determined by the

exchange and magnetostatic energies. The exchange energy is reduced when magnetic

moments are aligned; which saturating the magnetization. However, this will generate the

magnetic poles at the edge of the sample producing a large magnetostatic energy contribution.

In this situation the overall energy can be minimized by making multiple domains in the

system separated by domain walls. Fig. 2.6 shows an example of how the expansion of a

bubble has been occurred in case of out-of-plane magnetic anisotropy.
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Fig. 2.6 Expansion of bubble for a tPt 2.0/tCo (0.5)/tPt 2.0 nm at 80.7 Oe magnetic field.

2.5.1 Bloch and Néel domain walls

In this work, the real focus is on the out-of-plane magnetic systems. Thus, the explanation

about the domain wall presented in the next section will focus only on the magnetic systems

with out-of-plane magnetic anisotropy.

In this situation, the magnetization of the domains is directed either up or down out of

the plane. The magnetization within the domain wall rotates within from up to down. There

are two common types of wall: Bloch wall and Néel wall. If the magnetization rotates in

the plane that contains magnetization of the two domains, it is known a Néel domain wall.

In case of Bloch domain wall, magnetism rotates perpendicularly to this plane [36]. Fig.

2.7 represents a schematic graphs of two types of wall areas Néel and Bloch domain walls.
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While Fig. 2.8 shows a schematic figure of two types of a magnetic bubble in case of Néel

domain wall and Bloch domain wall as well.

Fig. 2.7 The schematic graphs of two types of wall areas distinguishable Néel and Bloch
domain walls with perpendicular magnetic anisotropy. The Néel DW. The magnetization
within the domain wall alters its direction along the DW length. While, the Bloch DW. The
magnetization rotates out of plane to the DW length.
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Fig. 2.8 Schematic configuration of a magnetic bubble. (a). [left] in case of bloch wall, the
magnetization of the plane, which describes the domain wall between the circular bubble
region ( magnetization is down) and the outer region (magnetization is up). (b). [right] same
as in the left entry but the domain wall is a Néel wall.

2.5.2 Dzyaloshinskii-Moriya interactions

The Dzyaloshinskii-Moriya interaction (DMI) is the antisymmetric exchange interaction

at interfaces between ferromagnetic and heavy metal layers with large spin–orbit coupling

[37–39]. The combination of DMI and the magnetic field can work together to influence

the magnetic structure, for example to make highly stable micromagnetic textures known as

skyrmions [40]. DMI creates a chirality between adjacent atomic moments in an interface

that has strong spin orbit coupling. The interaction energy of the DMI can be described by

the equation [41–45]:

since D12 is the vector of the Dzyaloshinskii-Moriya interaction between, Si and S j in

the interface layer. Similar spin textures can also result from long-ranged magnetic dipolar

interaction in combination with the magnetostatic interaction between two thin film layers
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and an applied bias field [41]. The SOI plays a crucial role between NM ions with a close-

layer that interacts with the FM atoms [38]. Interfacial DMI happens when a ferromagnet

is combined with a non-magnetic heavy metal. This was found in the Pt/Co multilayers

[46, 47]. In these systems, the addition of heavy metal, such as Pt, Fig. 2.9 illustrates

chirality/canting between adjacent moments, where the preferential direction of the system’s

magnetisation is out-of-plane.

Fig. 2.9 The interfacial Dzyaloshinskii-Moriya interaction.

2.5.3 Chirality of Domain Walls

Relying upon the atoms involved, the strength of DMI can have different magnitudes and

signs. This will lead to two possible chiralities of DWs with sufficiently high DMI contri-

butions [48, 49], as illustrated in Fig. 2.10. The two chiralities of a Bloch wall (Fig. 2.10.

(a,b) are degenerated in energy, since both reduce the stray field along an axis of symmetry.

Néel walls that are generated by a contribution to a contribution from DMI with a positive

(negative) DMI strength, D, and hence in Fig. 2.10 (c,d) a positive (negative) effective DMI

field have chiralities that are right-handed (left-handed) [50]. Since the DMI is presented as

an effective field, it is worth noting that an applied field of enough strength can set the DWs

chirality configuration.
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Fig. 2.10 Representation of Bloch (a, b) and Néel (c, d) domain wall congurations. a and c
are left-handed (anticlockwise); b and d are right-handed (clockwise).

2.6 Theory of the Hall Effect and the Anomalous Hall Ef-

fect

First discovered in 1879 by Edwin Hall [51], the Hall effect consists of the voltage generation

in a conductor subject to a current flow and orthogonal magnetic field. This is due to

the transverse motion of electrons in a longitudinal current flow due to the magnetic field.

This results in a separation of the charges in the transverse direction. Detecting the charge

separation can be done by measuring the transverse voltage. The measurement technique

used in this work was HE magnetometry that arises due to the Anomalous Hall effect in

ferromagnets. The physics of the Ordinary Hall Effect (OHE) and Anomolous Hall Effect

(AHE) are presented here.

2.6.1 Ordinary Hall effect

The ordinary Hall effect, OHE, happens in the materials due to the current flowing under the

application of a magnetic field [52], see Fig. 2.11.
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Fig. 2.11 Schematic diagram of a Hall effect measurement. Where l is the length in the x
direction, w is the width in the y direction and t is the thickness in the z direction. The current
is the current density times the cross sectional area.

It leads to a transverse charge imbalance, and thus a transverse electric field that depends

on the direction and amplitude current, and the applied magnetic field. This happens because

of the Lorentz force on the charge carriers (electrons or holes) due to their motion in a

magnetic field. The Lorentz force F is:

where q is the charge on the carriers, E is the electric field, vex is the speed of the charge

carriers and B is the magnetic field. In a balanced state, as the electric field caused by the

charge imbalance leads to an equilibrium of the applied magnetic field, the electrons feel no

net force.



22 The physical basis of magnetic properties in films and the Hall effect

taking into consideration Ey =VH all/w and the current Ix = qntwvex, where w is the

width of the material, t is the thickness and n is the density of the charge carrier, the Hall

voltage, VH all , is given by:

where RH all = 1/(ne) is the Hall coefficient. Thus, the Hall voltage is linearly dependent

on the current and the magnetic field, but also it inversely dependent on the density of the

charge carriers [53].

2.6.2 Hall resistivity

Since the magnetic field acts perpendicularly to the carrier drift direction, the speed and

current density have a different direction for the electric field. The sum of the electric field is

the total field applied externally Eext and EH :

This in turn will lead to generalized resistivity matrix, Where ρxx and ρyy equal to the

old resistivity ρ , as shown in equation 2.14 and 2.15 respectively. Hence, ρxy means that the

current applied in the x-direction is divided by the voltage measured in the direction y.

Bx = By = 0 as field is applied along the z direction as it doesn’t show up in standard

measurements, giving:
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the equation 2.18 is obviously related to 2.12 in the usual relation between resistance

and resistivity, and gives a sample-independent quantification of the Hall effect. Since it is

appropriate to report the values independently of the current and the thickness of the sample.

2.7 Anomalous Hall effect

After the original discovery of the Hall effect [52], it was shown that the Hall effect was 10

times greater in an FM material than for non-magnetic conductors [54]. Fig. 2.12 illustrates

the drift current flows in the metal under an applied Hall voltage.

So, the drift current is spin-polarized, when the metal is ferromagnetic such as Co and Ni.

Where there are a lot of electrons with spin directed up, this leads to more electrons to be

scattered into the left direction than into into the right. The occurrence of this "abnormal"

effect was discovered to occur in ferromagnets such as Co and Ni [55]. The magnitude of

the transverse voltage was found to be roughly related to the magnetization of Ms. Big [56]

and Pugh and Lippert [57] showed that the experimental relationship:

This is applicable to many materials across a wide range of external magnetic fields.

The first term is the OHE, where R0 relies on the type and density of the charge carriers,

as described in the previous section. The second term is the AHE, where Rs (the AHE

coefficient) is found to be dependent on several specific physical parameters in addition to

temperature. The origin of the AHE remains poorly understood. After a lot of theoretical
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Fig. 2.12 Anomalous Hall Effect Theory. Different colour of electrons refers to the electrons
that is coming from both left and right sides in the thin film.

and experimental work, the AHE is believed to be occurred due to three basic mechanisms

[58]. At their center is the up and down imbalanced spins in the current flow within the FM

material.

2.7.1 Anomalous Hall effect mechanisms

Three primary mechanisms are believed to contribute separately to the AHE. One of these

mechanisms is called "intrinsic" as the theory predicts that it occurs in an ideal crystal. The

other two are referred as “extrinsic” as their causes depend on the presence of defects in the

crystal structure [59–61, 58].
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Intrinsic deflection

In 1954, Karplus and Luttinger [60], KL, showed that when an electric field is applied to a

solid material, electrons gain additional input to their group velocity, which is perpendicular

to the electric field.

Fig. 2.13 Schematic graph of KL Mechanism of Anomalous Hall Effect.

This anomalous velocity operates in two opposite directions of the different spin electrons,

and so as for ferromagnets, where there is a net spin-polarisation of carriers, this leads to

a contribution to ρxy, the Hall conductivity as sketched in Fig. 2.13. This is referred as an

intrinsic contribution because it relies only on the band structure; which is largely independent

of the scattering. It is expected to be dominant in the AHE for magnetic materials with

"moderate conductivity" [the intrinsic anomalous Hall conductivity in itinerant ferromagnets

such as Fe and Co]. After the concept introduction of the Berry phase [62], this anomalous

velocity is now considered as the Berry curvature, with the cross-section of the electric field
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and the arc of the Berry phase causing different electrons to scatter. The intrinsic effect was

expected to have a substantial impact in certain metals, e.g., for Pt/Co, large effects were

expected [63].

Side jump

The side jump mechanism depends on the same influence that causes intrinsic deviations, but

is associated with impurities in the material; when the impurity defect the electron experiences

the electric field resulting from that impurity [59, 64]. This leads to a deviation due to the

abnormal Karlo-Luttinger speed component shown in Fig. 2.14. Berger explained this as a

displacement of the mass center of an electron wave package upon collision, hence the shift

direction depends on the spin orientation Fig. 2.14 [59, 64]. The side jump mechanism is

expected to be of great importance in moderately conductive magnetism, since the intrinsic

deviation is assumed to be a prevalent mechanism in these materials [58].

Fig. 2.14 Schematic illustration of side jump scattering process of the Anomalous Hall Effect.
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Skew scattering

The third mechanism is the estimated asymmetric scattering because of the influence of the

spin-orbit coupling of the electron with defects [65, 61]. This is expected to be prevalent

in high-conductivity ferromagnets. The magnetic field B on an electron is inhomogeneous

as the scattering potential and the speed of electron are space dependent. This leads to a

spin dependent force that is proportional to the gradient of the Zeeman energy acting on

the electron [66]. Because of the force direction that relied on the spin orientation of the

electron, the spin-up and spin-down electrons are turned in different directions as sketched in

Fig. 2.15. Thus, the skew scattering is generated due to a perpendicular conductivity to the

incoming particles.

Fig. 2.15 Schematic illustration of the skew scattering mechanism of the Anomalous Hall
Effect.
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2.8 Summary

The goal of this chapter was to present the basic physics ideas behind ferromagnetism,

domain walls DWs and Anomalous Hall Effect. At first, it has been explained how magnetic

domains and DWs forms. Then, the different magnetic DW structures were discussed.

Our experimental studies were mainly focused in magnetic systems with strong spin-orbit

interaction, a thorough understanding of the Anomalous Hall Effect mechanism is required

to understand the results. Thus, this chapter has focused greatly on the discussions of various

aspects behind the AHE mechanism. Finally, the three significant mechanisms that contribute

to the Anomalous Hall Effect have been discussed in detail.



Chapter 3

Fabrication of Thin Films: Principles

and Methods

3.1 Introduction

An introduction to the processes of sample preparation by sputtering are presented in this

chapter. The first section focuses on the physical basis of the sputtering process and particu-

larly magnetron sputtering, while the second section reviews the various growth phenomena

and defects resulting from the deposition process of the thin film. Defects can importantly

affect the physical properties of the materials.

3.2 Substrate Materials and Preparations

The films studied in this work were grown on two types flexible polymeric substrates and on

rigid oxidized silicon wafer substrates for a comparison study. To make good samples, cutting

and cleaning of the high quality flat substrates was the first step. The substrate materials

were silicon, polyimide and polyethylene naphthalate wafers. The thicknesses of SiO2 on

the silicon, polyimide PI 2611 and polyethylene naphthalate C14H10O4 were 150 µm, 10



30 Fabrication of Thin Films: Principles and Methods

µm and 125 µm respectively. The electrical resistance of the substrate is important here and

needs to be very high to prevent electrical conductivity through the substrate when the Hall

effect measurements are performed.

Returning to the wafer, a diamond tipped scribe was used to produce chips and strips. The

dimensions of these chips varied depending on the measurements of the samples that were

made [the samples in this project have a length and width of 8×8 mm2]. In the following

section, a full description of the dimensions and the shapes of the samples in relation to the

intended measurement is provided. After cutting the wafer into differently shaped chips,

the chips were subjected to a cleaning process. The chips were cleaned in acetone. The

beaker with acetone and chips was put in an ultrasonic bath for 120 seconds. The chips were

removed from the acetone and a similar procedure was repeated but, with isopropan-2-ol

(IPA) in the ultrasonic for a similar amount of time. After removing the chips from the

isopropan-2-ol, a N2 gas gun was used to evaporate the remaining IPA. Cleaning and cutting

of the substrates were undertaken in the fume cupboard in the laboratory, prior to loading

into the vacuum system.

3.3 Thin-Film Deposition

In this study the magnetron sputtering deposition technique was used to grow the thin-films

and multilayers. DC magnetron sputtering was used as the technique for producing Pt, Ru

and Co thin-films. In the following sections the physical processes involved in magnetron

sputtering are explained.

3.3.1 Overview of Magnetron Sputtering

Sputtering is carried out in an initially evacuated deposition chamber. It is different from the

evaporation methods as it can deposit all kinds of materials including thin metal or ceramic
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films onto a substrate without the need for heating as for thermal evaporation. For sputtering

a low-pressure gas is required. In many systems argon gas is introduced and becomes ionised

with the formation of a plasma in the chamber that includes the substrate and the target

material to be sputtered. The term plasma refers to a gas of electrically charged ions and

electrons. The target is kept at a negative potential relative to the positively charged Ar+

ions [67]. The positive ions accelerate towards the negative charge and hit the target with

enough momentum for some of the target atoms to be removed. This Ar+ impact and removal

of target material defines the sputtering process. The liberated material travels within the

chamber and settles on all exposed surfaces in the chamber including the substrates. Inside

the magnetron the magnets reside behind the target material and the magnetic field pattern

enhances the ion interactions with the target, which are restricted to the surroundings of

the generating target plasma. There are two main methods for powering sputtering: direct

current (DC) and radio frequency (RF). Magnetron sputtering deposition can be performed

under both of them.

A schematic diagram is presented in Fig. 3.1 (a) with key features indicated. The main

chamber is linked to two turbomolecular pumps and one rotary pump forming a pumping

system capable of obtaining a UHV pressure within a reasonable period of time. The Mantis

Qprep500 system has five different sputter sources, each with gas injection, cooling water

lines and contacts for DC or RF sputtering power, Fig. 3.2 shows the Mantis sputtering

system used in this research project. The main chamber is supported with a gas analyzer

for monitoring chamber’s gaseous environment and detecting pollutants. The location of

the substrate is on an upper surface facing down and the substrate is rotated to improve

the uniformity of the film. A delicate quartz crystal balance (QCM) is installed locally to

measure the rate of film deposition growth. The samples are transferred from a load-lock

chamber to the main deposition chamber via a transfer arm that allows the substrates to be

moved on the rotating substrate stage. The system is connected to a control computer to
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Fig. 3.1 (a, b) schematic images of the sputtering system and sputtering process respectively;
(c). image of ruthenium target, in which magnetron erosion leads to a circular race.
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Fig. 3.2 Shows a side view of the Mantis Qprep500 sputtering system in the lab with the
main parts indicated.

control the deposition time. To obtain an accurate deposition time requires a known growth

rate and accurate control of when the shutters are opened and closed. At all times, the

conditions for the deposition of thin-films are controlled and monitored. Record keeping is

essential to track the history of thin film manufacturing - and to connect any results with

deposition conditions. These conditions are either related to the basic chamber environment,

like pressure, temperature or flow rate of argon gas, where the general deposition process can

be changed, or connected to the voltage, current and the DC/RF power of each target, which

affect the sputtering rate of individual targets. All the ferromagnetic targets need strong

magnets in the magnetron sputtering gun to overcome the magnetic flux flow through the

sputtering target. While for targets of non-magnetic materials the lower magnetic fields will

do in the magnetron gun.
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3.3.2 DC Magnetron Sputtering

A continuous negative bias voltage is applied to the deposition target in DC magnetron

sputtering, which acts as one electrode while a surrounding earth shield acts as the other

electrode. The voltage ionises the precursor gas to create the required plasma and ions for

the sputtering process. The target material used for film deposition using DC sputtering must

be an electrically conductive material to sustain a plasma at a specific temperature. The Co

and Pt targets are usually sputtered in DC magnetron sputtering [68, 69]. The Ar sputtering

gas was introduced from a base pressure of 3× 10−8 Torr and the typical Ar gas pressure

was 1× 10−3 Torr [68].

3.3.3 RF Magnetron Sputtering

In order to sputter non-conducting target materials, a capacitively coupled RF power supply

is used within the RF magnetron sputtering. A periodic negative bias is produced on the

target electrode; when the RF power frequency is higher than the ion plasma frequency (ion

mobility). Typically, the substrate is maintained at room temperature for the synthesis of

equiatomic CoPt films by RF sputtering under the Ar pressure of 3 to 10 mTorr [70, 71, 70,

72].

3.4 Film Growth

The growth mode of a layer is determined by the surface energies of the underlying layer, the

deposited layer and the interface [73]. However, dynamical processes also affect the growth

mode such as the diffusion length of the atoms on the surface. In addition, deposition by

sputtering involves high-energy particles impinging on the surface, which can also modify

the behaviour. The section below deals with a description of the various growth modes that

can arise in thin films and especially multilayer structures.
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3.4.1 Thin-Film Growth Modes

The deposition of atoms onto a surface is the first step to forming a material layer on a

substrate. Repetition of this step through time will increase the thickness of the layer in

general and this will lead to the formation of a thin- film. Forming layers of a thin-film

takes place through three growth modes. These three modes are strongly dependent on the

interactions between the atoms deposited with other atoms in relation to the bonding force

of those atoms and with the substrate atoms [74]. The first mode is Volmer-Weber growth,

which is also known as island growth pattern, where the strength of an atom is much stronger

than the bonding force of the adatoms to the substrate. This situation begins with a clustering

of atoms with each other, forming islands in separate areas on the substrate, eventually these

islands grow and join to form a thin layer. See Fig. 3.3. When the atomic bond strength of

the adatoms to the substrate is stronger than that of the adatoms to each other, the second

situation of deposition occurs. This is the Frank-van der Merwe growth, where layer-by-layer

growth occurs, where the deposited atoms are arranged to form a fully covered monolithic

layer on top of the substrate. The lattice interface between the substrate and the growing

layer has a key role, thus increasing layer-by-layer control.

In the third situation, as shown in Fig. 3.3, layer-by-layer growth competes with island

growth, this is called the Stranski-Krastanov growth mode. This starts by with layer-by-layer

growth to cover the entire substrate, then the growth of the island occurs to form the rest [74].

In the first and second growth modes the atoms either form their own structural arrangement

or follow the structural arrangement of substrate. Whereby, it leads to stress-free film. In

the third mode the growth switches to significantly decreases stress, because the energy of

the interface increases with the thickness of layer, by changing the growth situation. This

indicates that the following deposition layers are strained [75]. With these growth patterns,

different surface structures are assumed to be stimulated. Changes in the crystal structure can

happen either in one layer or between two layers as a function of the increase of the thickness
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Fig. 3.3 Schematic illustration of the three film growth modes. The spheres is an atoms.
Depending on the free energy contributions one finds (a) Volmer-Weber (VW), (b) Frank-
van-der-Merwe (FvdM) and (c) Stranski-Krastanov (SK) growth.
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of the film [75]. Structural changes indicate the presence of defects in thin films. These

defects can happen when two substances with different lattice parameters are adjacent to

each other, when the thickness of the substance itself increases to the extent that it weakens

the bonding strength of the deposited material. So, the strength of the atom-atom bonding is

predominant in the formation of the crystal of material and the arrangement of it.

3.4.2 Crystalline Defects

A real crystalline material can possesses a type of crystallographic structuring known as a

mosaic structure [76], which is illustrated in Fig. 3.4. This structuring consists of ideal

crystalline grains with axes that are slightly rotated in relation to each other. The ideal crystal

regions are then separated by dislocations. To determine the perfect degree of thin film the

concepts of in-plane correlation length and out-of-plane swap are introduced. The correlation

length in one axis is the average size of the ideal crystalline blocks along this direction. The

meaning of mosaicity is the angular spread of the crystalline regions from each other. Defects

that make up these features can be created by relaxing the film relative to the substrate, as

described above.

Fig. 3.4 Illustration of crystalline mosaicity and the relevant length scales in the sample.
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3.4.3 Layer Imperfections

The growth of films will have some roughness associated because the adatoms will have a

limited propagation length. Therefore, all interfaces will display some type of roughness.

Moreover, the surface roughness of the underlying layers can be propagated throughout the

further film layers. If successive interfaces have the same shapes of interface profiles, they

are said to be fully conformal. The other extreme situation of roughness is fully uncorrelated

roughness where there is no repetition between the interfaces.

As can be observed in Fig. 3.5, with correlated roughness there will be no thickness

fluctuations. On the other hand, films with uncoordinated roughness will have variations

in thickness. Another issue that arises between different layers is the interdiffusion of the

material. In contrast to topological roughness, which gives a chemically sharp interface,

interdiffusion will lead to a diffuse interface [74].

Fig. 3.5 Schematic of structures with correlated and uncorrelated roughness.

3.5 Tables of Film Growth

Examples of the deposition conditions are shown in Table 3.1, which shows the parameters

for growth of trilayered samples of pure FM layers combined with NM layers of Pt or Ru. All



3.6 Summary 39

film thicknesses were verified by the QCM through deposition and the QCM was calibrated

by the measurement of film thickness using x-ray reflectivity (XRR). QCM calibration

involves measuring an XRR on a sample that is fabricated with a thickness that is assumed

using the QCM growth rate and knowing the deposition time. The assumed thicknesses

were compared with the thickness extracted from the XRR and knowing the difference a

correction factor was introduced into the QCM as a tooling parameter within the deposition

rate monitoring programme.

Table 3.1 Deposition conditions, showing the system parameters of the multi-layer thin films
fabrication. Where, [1] refers to buffer layer, while [2] refers to capping layer.

Material,thickness (nm)Gas rate (sccm)I (mA)V (Volt)Power (W)Dep. rate (Ås−1)Time (s)

Pt, 3[1] 18.00 153 60 0.28 107
Co, 0.5 18.00 74 340 25 0.28 28
Pt, 3[2] 18.00 155 60 0.28 107
Material,thickness (nm)Gas rate (sccm)I (mA)V (Volt)Power (W)Dep. rate (Ås−1)Time (s)

Ru, 15[1] 18.00 129 60 0.17 882
Co, 1.15 18.00 74 341 25 0.18 64
Ru, 3[2] 18.00 127 60 0.17 177
Material,thickness (nm)Gas rate (sccm)I (mA)V (mV)Power (W)Dep. rate (Ås−1)Time (s)

Pt, 3[1] 18.00 173 75 0.29 103
Co, 0.5 18.00 74 342 25 0.18 22
Pt, 5 18.00 173 75 0.29 172
Co, 0.5 18.00 74 342 25 0.18 22
Pt, 3[2] 18.00 173 75 0.29 103

3.6 Summary

In summary, introducing all of the physics pertinent to the preparation of the multilayer

magnetic thin films investigated in this chapter. Hence, it contains the fundamental theories

about structure of sample and crystallography. Also, explaining the mechanisms for formation
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of this structure through sputtering system. Where, the focusing on the sputtering system

was discussed.



Chapter 4

Magnetic and Hall-Effect Measurements

4.1 Previous Work

This section gives a detailed investigation of previous studies using both of magneto optical

kerr effect and Anomalous Hall effect devices. Pt/Co multilayer systems exhibited a great

magneto optical Kerr rotation [77, 78], large anomalous Hall effect [79, 80] and perpendicular

anisotropy [81] which makes these materials viable for a new generation of storage devices

[82]. A lot of experimental studies of the magneto optical Kerr rotation properties of Co/Pt

multilayers [77, 78, 81, 83–85] prepared by various techniques. Pt/Co layers have been

amongst the most studied [77, 81, 86, 87]. Where these multilayers can show magnetisation

out of the plane of the film. In case of the bilayer, the PMA is due to the orbitals hybridising

of Pt 5d electron with the 3d orbitals of cobalt at the interface [88, 81, 89, 90], which leads

the magnetisation to be out of the plane of the sample with thin thickness of cobalt [91].

Also, in previous studies of AHE in Co/Pt multilayers [92–95] which is an ideal system

of strong 3d–5d interface spin-orbit coupling, the AH coefficients were not determined

accurately because it was overlooked both of the shunting effect and the equivalent circuit.

More information about the contents of this chapter has been illustrated in the introduction

section.
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4.2 Introduction

The functional magnetic and magneto transport measurements used to understand the mag-

netic behaviour of the Co-based thin-film samples studied in this work are presented here.

Two kinds of measurement were made to study the magnetisation status of the samples.

Magneto-optical Kerr effect (MOKE) magnetometry and Kerr effect microscopy measure-

ments represent the first kind. While the second experimental method was the Hall Effect

(HE). For all these methods the background related to the basic principles is presented

followed by details of the system setup and finally the representation of the data. These

measurements give the basic physics needed to understand the results from the different

samples that form the basis of this thesis.

4.3 Magneto-Optic Kerr Effect Optical Geometrics and Mag-

netic Sensitivities

The polar and longitudinal are two of three geometries within MOKE experiments, which

are defined by the magnetization axis and magnetic field axis regarding the incidence plane

and sample’s surface.

The MOKE induces a rotation and an ellipticity (phase shift) in polar, longitudinal and

transverse MOKE situations [96]. Fig. 4.1 shows the polarization situation of the light.

To illustrate a general elliptic polarization. It is very important to know the meaning of

ellipicity εa, which is defined as the percentage between the minor, b, and major, a, axes of

the polarization ellipse, by tan = b/a. A difference in phase between the electric field elements

perpendicular and parallel to the plane of the incident light is defined by the Kerr ellipticity.

While, the azimuth θa is the rotation angle between the basic axis of the polarization ellipse

and the S direction.
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Fig. 4.1 Time evolution of the electric field vector E (ω) at a given spatial position, decom-
posed along the s (right) and p (left) directions. When looking along the incoming light beam,
the extremity of E (ω) describes a polarization ellipse (center). The presented polarization
ellipse has a positive azimuth θ a and a negative ellipticity εa.

For more illustrating Fig. 4.2 was drawn, where a vector represents the idea of a Lorentz

force that mentions how p and s-polarised light interact in the three magneto optic geometries.

The electric field of the plane polarised light which is incident onto the sample. This leads

to exciting the electrons so that they vibrate parallel to the incident polarisation. This gives

increase to the normal component (EN: ES, EP) of light in the reflected light. The extra Kerr

component, EK , originates because of the Lorentz force. The Lorentz force motivates a small

component which is perpendicular to both the elementary movement (normal component)

and the magnetisation direction [97].

In general, the two components are not in-phase and it is the overlap of those two compo-

nents which gives increase to a magnetisation that depends on rotation of the polarisation. In

case of longitudinal and polar Kerr effects Fig. 4.2 a,b, p or s-polarised light will usually

become elliptically polarised with its main axis rotated (Kerr rotation). This is a result of

perpendicular electric field component being motivated because of the Lorentz force. The

Lorentz force directions, and the motivated components, are shown by the dashed arrows

(EK). The Kerr effect reduces as the incident angle approaches the normal to the plane of
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Fig. 4.2 A schematic diagram of the Magneto Optic interaction utilizing the concept of a
Lorentz force. The normal component (EN: ES or EP) of light is specified by the solid lines,
the Kerr component (EK) and the Lorentz force direction is specified by the discontinuous
lines.

sample in the longitudinal effect because neither the Lorentz force disappears (p-polarised)

or points along the direction of the s-polarised light. This light is not for the polar Kerr effect

because of the magnetisation is out of the sample plane and always a Lorentz force exists at

normal incidence [97].
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The polar effect is independent of the incident polarisation at normal incidence. In Fig

4.2 (c), the transverse effect include a variation in the light intensity (reflectivity of Kerr).

Variation of intensity is dependent onto the element of magnetisation which is perpendicular

to the incidence plane. No Kerr ellipticity is found because of M X E motivates the element

which is in the incidence plane. Both of the normal element and the induced Kerr element

allow rise to an alter in the amplitude. Is is possible to see a Kerr rotation in case when a

Lorentz force is present. Generally, either light of s or p-polarised light is utilized. The reason

is because any alter in the light polarisation will be a consequence of the magnetisation,

because in an ideal case there will be no alter in the light polarisation for either s or p-polarised

light [97].

4.3.1 Polar MOKE

In this case, the magnetic vector is perpendicular to the reflecting surface. It is parallel to the

plane of incidence in the polar MOKE as shown in Fig. 4.3.

Fig. 4.3 Polar MOKE geometry with magnetic and polarisation indicated (where M is
magnetization vector).
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Near-normal angles of incidence and reflection from the reflecting surface are most

frequently studied in the polar MOKE, because the polar MOKE sensitivity is a maximum at

normal incidence and, practically, both beams must pass through a hole in a one-pole magnet.

Atkinson [98] demonstrates a schematic of polar MOKE as shown in Fig. 4.3.

4.3.2 Longitudinal MOKE

The magnetic field lies within the plane of incidence and is parallel to the sample surface for

longitudinal MOKE. The experimental setup is not identical as polar is reflected at 90o to the

surface and hence requires a beam splitter in the optics path, longitudinal reflection is at 45o

and along the optical path as shown in Fig. 4.4.

Fig. 4.4 Longitudinal MOKE geometry with polarisation and magnetization (where M is
magnetization vector).

There are two cases of incident polarisation that should be taken into consideration,

which are S-polarisation and P-polarisation [98]. In the S-polarisation, the electric vector, E,

direction is perpendicular to the incidence plane, while in the P-polarisation, the polarisation

plane and the incidence plane are parallel. Both cases can be taken into consideration when
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the first polariser is placed into a precision rotator by simply changing the first polariser

orientation, in which the equations of the polar MOKE can be applicable for the longitudinal

MOKE setup [72].

4.3.3 Transverse MOKE

In case of transverse MOKE geometry, the magnetic field will be in-plane but normal to the

plane of light incidence as it shown in Fig. 4.5.

Fig. 4.5 Transverse MOKE geometry with polarisation and magnetization (where M is
magnetization vector).

It is quite different from the polar MOKE and longitudinal MOKE effects. Where, a

smaller Kerr is generated that is being parallel to the reflected polarization. This increase or

decrease in the amplitude in case if polarisation depends on the direction of the magnetic

field. Some researchers have been used a Photo-elastic Modulator [PEM] when a very fast

response is needed in order to modulate the incident of the laser beam [72].
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4.4 The Magneto-optic Kerr Effect

The study of the reflection polarised light by a ferromagnetic material sample that is subjected

to a magnetic field is defined as the Magneto-optical Kerr Effect (MOKE). There are several

effects occurring from this reflection, such as: 1) the rotation of the plane of the light

polarisation, 2) the occurrence of ellipticity of the polarisation within the reflected beam,

and 3) an alteration of the intensity of the reflected beam [96]. In this thesis, both polar and

longitudinal MOKE were utilized.

Fig. 4.6 Optical Bench Set-up for polar MOKE with key component indicated.

The experimental setup utilized for polar MOKE and the schematic diagram of polar

MOKE measurements are illustrated in Fig. 4.6 and Fig. 4.7 respectively. For the longitudinal

MOKE the laser was incident on the sample at an angle of 45o, whereas for the polar MOKE

the light was incident at 90o. The experimental setup utilized for longitudinal MOKE and

the schematic diagram of longitudinal MOKE measurements are illustrated in Fig. 4.8 and

Fig. 4.9 respectively.

The following discussion applies to both MOKE setups. Polar MOKE is a technique for

studying out-of-plane and was used to examine all samples in this work. Fig. 4.7. shows the

actual polar MOKE geometry and set-up used here. A diode laser was used as a light source,
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where the wavelength was 658 nm. The laser beam passed through to a beam expander.

Fig. 4.7 Schematic of the polar magneto-optical Kerr effect magnetometry system with
all the principle components showing the light path through the optical enhancement and
focusing.

Polarisation was imposed using a Glan-Taylor prism located before a lens focusing the laser

beam to a spot size of ∼ 5 µm on to the sample [75] for the in-plane MOKE, but the spot

size will be larger for the polar MOKE as the lens is much farther away and has a longer

focal length. Fig. 4.7 shows a schematic diagram of the polar MOKE magnetic system

architecture. The maximum range of magnetic fields reaches 1000 Oe. Magnetic fields were

provided out-of-plane in the sample by a small electromagnet powered by a Kepco bipolar

amplifier; which was driven by a function generator. The figure illustrates the optical method

with optical elements and other necessary components. An attenuator was put between the

beam expander and the polarising prism to decrease the intensity of the laser when focusing

the laser spot and when locating the spot of the laser on the sample using the camera.
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Fig. 4.8 Optical Bench Set-up for longitudinal MOKE with key component indicated.

A movable mirror was put into the beam path to guide the reflected beam to the camera.

After reflection from the sample, the laser beam passes through a quarter-wave plate to

remove any ellipticity and restore the linear polarisation of the reflected beam. A CCD

camera was used with a white light source, to observe the focus of the spot of the laser and

the spot location on the sample surface. Measurements as a function of magnetic field were

collected using a digital oscilloscope that was controlled by a computer for synchronisation

of the full process. The polar MOKE measurement requires an additional beam splitter to

detach the incident lighting and reflected lighting from the sample and two lenses to re-focus

the light onto the photodiode.

For MOKE measurements both the in/out attenuator and in/out beam splitter were put

out of the beam. The laser passes out of a beam expander, thereafter a Glan Taylor polarising

prism, which was set to ensure p-polarised light was incident on the sample. The initial

lens focused the laser spot to ∼ 5 µm upon the sample. The reflected light was concentrated

upon the photodiode, having passed through a λ /4 wave plate and an analysing polariser. As

before, the aim of the λ /4 wave plate was to remove any induced ellipticity in the reflected

illumination. The analyser was set to extinction and then offset to between 2o to 6o, which

was changing dependent on the reflectivity of the sample. The Kerr rotation was thereafter
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measured as a variation of intensity at the photodiode due the rotation of the polarisation

axis of the reflected illumination proportional to the polarisation axis of the analyser. The

photodiode voltage was passed to a Melles-Griot dynamic range amplifier that can amplify

small signals, which is representative for the Kerr voltage. The oscillating magnetic field

causes the sample magnetisation to cycle through the hysteresis loop, making an oscillating

Kerr signal voltage, which was measured by an oscilloscope and time-averaged through

hundreds of field cycles to efficiently improve the signal to noise ratio. White light was

applied to image the sample to align microstructures with the laser spot. For that purpose,

the in/out attenuator and in/out beam splitter were put into the beam. The white light follows

the same beam track as the laser beam.

Fig. 4.9 Schematic of the longitudinal magneto-optical Kerr effect magnetometry system
with all the principle components showing the light path through the optical enhancement
and focusing.
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4.5 Magneto-optic Kerr effect microscopy

Magnetic Kerr microscopy and magnetometer systems have been used to visualise magnetic

domains and the magnetisation process in various kinds of magnetic materials. With me-

chanical stabilisation facilities a standard microscope with high-quality optics can obtain

high-resolution domain imaging with spot sizes between approximately 100 µm and 5 mm.

The light from a source is linearly polarised. It is reflected by a semi-reflective piece to

be incident on the sample through the objective. The reflected light returns through the

analyser and reaches the camera. Fig. 4.10 (a,b) illustrates the MOKE microscope from

Evico Magnetics used in this work [99, 100].

Fig. 4.10 (a). Evico Magneto-Optical Kerr Effect Microscope. (b). Magnification part of
(Evico) microscope machine.
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In the MOKE microscope, the magnetic state of the material is measured by analysing the

change in polarisation of the reflected light from the surface through an appropriate optical

microscope. The image contrast depends on the magnetisation state of the sample. The

reflected light is recorded on a CCD camera through which a magnetic image can be obtained

after subtracting the non-magnetic background that includes topographical features. In Fig.

4.11, the light emitted from a high-intensity lamp is transformed into linearly polarized

light to illuminate the sample surface. After reflection, the light is passed through both of

compensator and analyser.

Fig. 4.11 Schematic of the optical diagram of the MOKE microscope.
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Fig. 4.12 shows examples of images from multilayers with out-of-plane domain structures

for films on SiO2 and PEN, respectively.

Fig. 4.12 Examples of MOKE microscopy imaging of magnetic films on (a) SiO2 and (b)
PEN using the MOKE microscope.

4.6 Hall effect magnetometry

The experimental aspect of the magnetoresistance device is presented in Fig. 4.13 (a,b).

Measuring of the Hall Voltage (VH) through the sweep of an external magnetic field leads to

a voltage hysteresis loop for the material.

The sample holder should be well aligned between the two magnetic poles perpendicular

to the magnetic field. Where, the magnetic field was applied perpendicular to the direction of

a flow current [101]. A small current I = 0.25 mA was used. The current passing through

the sample must not be too large, which leads to heating. Finally, the Hall Voltage (VH) is

measured as a function of the magnetic field while maintaining a proper value for the current.

A schematic design of the sample holder is shown in Fig. 4.14 (a) with all the components,

which consists of brass spring-pins, an aluminum arm and a piece to rotate the direction

of current and voltage to be longitudinal or perpendicular. Also, the magnetic field was

measured using a Gaussmeter. Fig. 4.15 illustrates a diagram of the required measurement
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Fig. 4.13 (a). Magnetoresistance machine for Hall measurements. (b). Magnification photo
of sample holder.
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Fig. 4.14 (a) Schematic design for Hall measurements of thin-film samples. (b) Example Hall
measurements sample holder. The sample holder was designed by the author Ala Bahaaldin.

system. A sample is put between a pole of an electromagnet so that a out of plane magnetic

field can be applied. The arrangement allows the sample to be rotated to do the measurements

at different angles. In our measurements the angle was 90o. Current and voltage pins are

attached to the Hall cross so that the current can be applied from the current source. The
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Fig. 4.15 Schematic of Hall Effect electrical connections.

output voltage is measured by the voltmeter (either the lock amplifier or nanovoltmeter).

These components are controlled by the software on the control computer. The program then

plots the measured voltage against the magnetic field in real-time to construct the hysteresis

loop.

4.7 Geometrical sample designs for Hall Effect measure-

ments

At the beginning of the work, to carry out sensitive Hall Effect electrical measurements,

shape masks were already manufactured. This engineering design of shape is appropriate for

performing thin-film sample measurements. The samples in this project have a length and

width of 8 × 8 mm2, and it is shown in both geometrical mask that is executed in work shop

Fig. 4.16 (a,b).
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Fig. 4.16 (a,b) Geometry of the shadow mask with different shapes for Hall measurements.

For accurate measurements in this study, using both of the samples cross and square

shape samples were investigated. It should be taken into consideration that the thicknesses

of samples should be homogeneous, and the pins point contacts placed at the edges of the

samples. As described in one study [102], a very satisfactory way of performing Hall effect

measurements is that through the van der Pauw method [103], using a "square" sample.

Several studies have focused on the effect of inhomogeneous samples using van der Pauw

measurements [104–110]. Some disadvantages of Hall effect measurements have been found

using circular samples, this may be due to the spreading of the current everywhere in the

sample from the current contacts. Van der Pauw introduced how to calculate the resistivity

and mobility of a flat sample in the case that the following conditions are met: 1. pin contacts

are on the perimeter of the sample, 2. pin contacts are small enough, 3. the sample has a

uniform thickness, and 4. the sample is connected individually (does not contain isolated

holes).

At the beginning of this work a circular mask was manufactured. A big difference was

found in the hysteresis results when compared with the results of the MOKE. So, differently

shaped masks were manufactured to study the differences between them and to get accurate
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results. For square samples with length sides and d is represented a contact of size in the four

corners, if a/d <0.1, the measurement error is less than 10 % [111]. The error is decreased

by putting the contacts on square samples at the middle point of the sides. The error of our

square shape was approximately 10 %. Since, d is represented the length of deposition film

sample while a is the distance between the probe and the edge of sample. Fig. 4.17 (a,b)

shows a schematic images of Greek mask and square masks respectively.

Fig. 4.17 Geometrical of the shadow mask with different shapes for Hall measurements for
(a). Greek cross and (b). square shapes. Where, d is the length of deposition film and a is
the distance between pin and the edge of deposition film. The white colour represents the
deposition film region while the black colour represents the substrate region.

4.8 Summary

In this chapter, different kinds of techniques have been introduced linking to the understanding

of the structural and magnetic properties in thin films. It has been included MOKE, Hall

magnetoresistance magnetic analysis techniques. Each techniques has features for giving

more understanding of the magnetisation behaviour in this study. Also, Magneto optic Kerr
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microscopy has been used to visualise magnetic domains and the magnetisation process in

various kinds of magnetic materials.



Chapter 5

Structural Characterization of

Thin-Films and Substrates

5.1 Previous Work

The structure of thin film samples plays an important role in the dynamics of magnetisation,

so that the capability to describe the particular sides of it is pivotal. X-rays gives the

opportunity to know the properties of the interior structure of samples, like layer thickness,

electron density and interface roughness and interweave [112, 113]. Wells et al. has found

that the data of roughness that are taken from the X-ray curves on the first Kiessig fringe

exhibited a reduction in the interface roughness with deposition temperature, referring that

the peak in whole disorder has resulted due the competition between growing intermixing

and lessening of the roughness with temperature [112]. Besides, in this study, the focusing

was on increasing the thickness of Pt buffer layer to decrease the roughness of the polymer

substrates; in order to improve the preferential orientation of magnetisation to be out-of-

plane. Also, x-ray diffraction (XRD) measurements was used because of the grain size of the

magnetic material; which represents an important structural factor that has a great impact

on the magnetic properties i.e, the magnetic anisotropy. According to other studies, when
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the diffraction peaks indicate a high crystal quality, this means the anisotropy was greater

compared to broader, or less intense diffraction peaks [114, 115].

Moreover, surface morphology and magnetic structure were studied using atomic force

microscopy. In previous study of Kolesnikov [116], it was shown that the surface morphol-

ogy consideration of Ru films with different thicknesses leads to smoother silicon dioxide

substrate. Lower root-mean-square roughness rq = 0.095 nm was illustrated at tbu f f er = 15

nm. However, when the thickness of the buffer layer increased from 3 nm to 20 nm, the

surface roughness has decreased to less than 10% .

5.2 Introduction

In this chapter, all structural analysis techniques that have been used in this study are

discussed in detail. Structural analysis in this work includes x-ray reflectivity (XRR), x-ray

diffraction (XRD) and atomic force microscope (AFM), which are used to measure the

thickness of the samples, surface and interface structure and crystallization respectively.

5.3 Structural Characterisation

It is known that the functional physical properties and material structure are linked in most

materials. The structural characterization is an important aspect of the work in this thesis.

Structural analysis of thin films was performed primarily by x-ray scattering techniques and

with surface roughness studied using atomic force microscopy.

5.4 X-Ray Reflectivity

X-ray reflectivity is occasionally referred to as x-ray reflectometry. It represents a surface-

sensitive analytical mechanism to distinguish between thin films surfaces and multilayers
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used in physics ,chemistry and materials science where the thickness of film ranges from less

than 1.0 nm up to several tens of nanometers [117–120].

Fig. 5.1 Bede D1 x-ray reflectivity system with key components indicated.

Fig. 5.1 shows the x-ray reflectivity system that was used. The fundamental concept

is based on the reflection of an x-ray beam from a surface and interfaces of thin films that

determines the intensity of the reflected x-rays in the specular condition i.e. reflected angle =

incident angle. The intensity of the reflected beam depends on constructive and destructive

interference and is furthers affected whenever the interfaces are not perfectly sharp and

smooth according to the law of Fresnel reflectivity. This technique was first implemented

with the x-ray by Professor Lyman G. Parratt of Cornell University in an article published

in Physical Review in 1954 [113]. The determination of x-ray reflectivity can be measured

using a conventional powder diffractometer with very low angle of incident x-rays. The
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Fig. 5.2 Interpretation of x-ray reflectivity data that is includes critical angle, roughness, film
thickness and density.

modified Bragg equation links the interference fringe positions to the film thickness [121–

123]. Fig. 5.2 shows x-ray reflectivity as a function of incident angle for tPt 5.0/tCo 0.5/tPt

5.0 nm.

5.4.1 X-Ray Reflectivity: Refraction and Reflection

In a medium containing many atoms, many x-ray scattering and absorption events will occur.

As a result, x-rays will be refracted and then reflected as they travel due to media with

different electron densities. Refraction in thin-films can occur between various materials

or when the x-rays propagates through into the surface from the ambient air. The refractive

index, n, is

where, c is the speed of light and v is the velocity with material. The x-ray incident

interacts with the atoms of every layer. The atoms can be considered to absorb x-rays and

emit spherical x-ray waves, propagating in all directions. This is considered as the best

description in which the atoms are thought of as the source of the waves. Since the refractive
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Fig. 5.3 Schematic illustration of x-ray reflection.

index, n, increases with the wave frequency ω , the excitation and spontaneous emission

will rapidly repeat. Above the resonance frequency, n reduces the number of electrons

transitions. For x-rays the frequencies are very high and this will lead to x-rays with small n

propagating into a material with velocity v and vector k. The refractive index n is associated

with scattering, the dispersion coefficient δ , connects the incident beam wave vector k, and

the density of the electrons in the material. The second factor is the absorption coefficient,

β ; this is responsible for attenuation of the photon beam. When a beam travels through a

material, it will experience attenuation. The refractive index can be written as follows:

the value of β is known to be very small, of the order of 10−6 and 10−8, and the value of

δ will be approximately to 1. Fig. 5.3 illustrates the x-ray reflectivity geometry. Equations

5.1 and 5.2 mean that n is slightly less than 1, by an amount δ , which is small, and therefore

v in the material is greater than the speed of light, c, which cannot be correct except if v

represents the phase velocity not the group velocity [124]. The total beam amplitude is equal
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to the sum of both the reflected and refracted components. Snell’s law is used to find the

critical angle which leads to that the total reflection is external is a result of n being slightly

less than 1. This law concerns the occurrence of incidence and refraction angles due to the

refractive index by:

the condition that leads to total external reflection is θt = 0, and θi is very small. Equation

5.3 can be written as follows:

The critical angle θc for the whole reflection is very small, of the order 10−2 radians,

10
−1

degrees is an angle, with scattering vector is in inverse angstroms. Both refraction

and reflection occur in the case when the x-ray beam propagates in the medium [124].

Increasing the number of layers in the medium increases the complexity of the equations

due to the greater number of the interfaces. These increase the number of scattering events,

such as multiple reflections from the top and bottom interfaces within the medium. On

top of this, changing the material changes the refractive index, due to additional layers and

materials having different electron densities. This change will affect the reflection profile

that is determined by the combination of materials.

Reflection from a Thin-Film

The simplest scenario of an x-ray propagating into a medium by single refraction and

reflection events is explained here. In thin-films case, these processes can be repeated in

each layer, hence each layer has its own refractive index, n. The refractive index of the

vacuum around the thin film is n0 followed by the first layer of the film with the refractive

index n1 and the substrate with ns. Beyond the substrate there is no contribution to the total

intensity of the reflective radiation. When x-rays enter a thin film at a limited angle, a series
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of reflections appear from both the top and bottom of each layer within the thin film. Fig. 5.4

illustrates the reflection of the thin-films and the resulting beam components.

Fig. 5.4 Schematic illustration of x-ray interactions with a single layer above the layer of
substrate with the total reflection calculation of the x-ray incident beam. In the case of the
reflected or the transmission is towards the thin-film surface then n > m, whereas if the
transmission is towards the substrates then n < m, where n and m = 0,1 or 2 only .

From this schematic, the whole reflected x-ray intensity (rt ot) can be calculated, beginning

with the x-ray beam incident to the final reflected, r, and transmitted, t, beams:

in this equation, the layer density is homogeneous, making the calculation easier. In

addition, reflectivity is associated with the phase factor, p, where the phase difference can be
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calculated by P2 = Exp(idq). The layer thickness, d, and the wave number, q, are linked to

the wavevector, k1, of the incident beam θ i by the equation:

The critical angle can also be calculated from thin films using Snell’s law. This term is

used for calculating the amplitude of both reflectivity and transmissivity. This equation leads

to a relationship between reflected amplitude, αR, the transmitted amplitude, αT , and the

incident amplitude, α I .

5.5 Influence of Thin-Film Thickness, Density and Surface

or Interface Roughness

The reflected x-ray intensity from a thin film is affected by several factors, such as: number

of layers, the thicknesses and the interfaces between the layers. When the thin-films have

more than one layer, equation 5.8 governs the reflected intensity of the nearest layer of the

substrate. Considering N layers will add more to the equation.

The recursive equation of Parratt’s 5.8 [113] can be used to obtain the intensity of the

overall reflected x-rays for the thin-film system. As mentioned above, when the x-rays move

through a thin -film, the x-ray intensity will be attenuated in relation to the thin-film thickness

d. This intensity attenuation is by the factor of e−µ d , but the attenuation of amplitude will

be by the factor e−µ d/2. The increment of the incident angle beyond the critical angle will
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increase the path travelled through the thin-film, thus the intensity of x-rays will decrease

with increasing angle of incidence to the angle of the incident [124].

Thickness influence of Thin-Film

Changes in reflection intensity as a function of thin-film thickness are shown in Fig. 5.5.

Fig. 5.5 Reflectivity of Pt/Co/Pt film with different values of film thickness (a).
tPtPt5.0/tCo0.5/tPt5.0 nm, (b). tPt2.0/tCo0.5/tPt2.0 nm and (c). tPt1.0/tCo0.5/tPt1.0 nm respec-
tively deposited on SiO2 substrate. The blue symbols indicate the measured data and the red
lines the best fitting simulations.

Fig. 5.5 illustrates the x-ray reflective curve of a Pt/Co/Pt film deposited on a SiO2

substrate. In general, the y-axis of the curve of x-ray reflectivity appears in a logarithmic

scale of the measured I/I0. A logarithmic scale is used to account for the wide range of

reflected x-ray intensity. The occurrence of interference between the x-rays reflected from the
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surface of the Pt/Co/Pt thin-film and interface between Pt/Co/Pt film and substrate appears

the profile as oscillations known as Kiessig fringes caused by x-ray interference. Those

oscillations were observed firstly in 1931 by Kiessig and have shorter period oscillations for

thicker films [121].

Influence of density on Pt and MgO buffer layers

The influence of film density on the x-ray reflectivity curve is explained below. Fig. 5.6

illustrates two reflective curves of 10.8 nm thin-films with different densities deposited on the

SiO2 substrates. In this case, the films are deposited using different deposition parameters.

A shift in the whole reflection edge is apparent which leads a change in density. The thin

film sample with the lowest density [lowest reflection edge] exhibits interference fringes in a

shorter angular range than the thin film sample with highest density.

Fig. 5.6 X- ray reflectivity curves of different structure for both (a). tPt5.0/tCo0.8/tPt5.0 nm
and (b). tPt5.0/tCo0.8/tMgo5.0 nm respectively on SiO2 substrates (film thickness 10.8 nm).
The blue symbols indicate the measured data and the red lines the best fitting simulations.
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Pt and MgO films are used in the figure as examples of large and small densities,

respectively. The results show that the amplitude and wavelength of the oscillation and the

critical angle are affected by the film density, with the amplitude of the oscillation depending

on the difference between the substrate and the electronic density of the film [121].

Surface and interface roughness

The thickness shown above is estimated by calculating the reflectivity using the recursion

method of Parratt. This method assumes that the interface between each layer in the thin

layer is completely flat or smooth and there is no mixing in the interface [121].

Fig. 5.7 X- ray reflectivity curves of tPt5.0/tCo0.5/tPt5.0 deposited on both (a). SiO2 and (b).
polyimide substrates with two different values of surface roughness (film thickness 10.5 nm).
The blue symbols indicate the measured data and the red lines the best fitting simulations.

This is not typically the state of real thin-films, in which the interfaces will have a finite

amount of roughness. The interface width can be composed of topographical roughness

and/or chemical grading or intermixing. The specular reflectivity is influenced by the width

of the interface structure. Fig. 5.7 illustrates the reflectivity for SiO2 and polyimide substrates



72 Structural Characterization of Thin-Films and Substrates

with two different values of surface roughness. The results indicates that reflected x-rays

decrease more rapidly with greater surface roughness. Surface roughness includes an uneven

physical interface and a transition boundary layer that constantly changes in density.

5.6 X-Ray Diffraction

X-ray diffraction is used to obtain information on the crystal structure. High intensity x-ray

peaks occur when constructive x-ray interference results from scattering from the electrons

of periodically arranged groups of atoms. When x-rays are diffracted from various planes

in the lattice, constructive interference occurs for a path difference. This was explained

mathematically in Bragg’s law [125].

where: λ is the x-ray wavelength of the incident, n: is a positive integer, dhkl: is the

spacing between the plane, θ : is the angle between the x-ray of the incident and the relevant

lattice planes hkl are Miller’s indices, which are linked to reciprocal lattice parameters [124].

Fig. 5.8 illustrates the Bragg case of structural interference of x-rays, which are diffracted

from atoms separated by d spacing. The relationship between the angles of incidence and

reflection and the path difference is given by Bragg’s law [126]. With the diffraction of

x-rays from different planes in the grid, an interference occurs:

In cubic material, they are associated to spacing between plane levels. In Bragg’s Law,

when x-rays interfere constructively, the difference between path lengths of the two waves

must be equal to nλ . Diffraction pattern refers to vertices which can be identified by

measuring the scattered x-ray intensity as a function of the incident and the detector angle.

So, every peak is associated with certain planes where the atoms are arranged.
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Fig. 5.8 Schematic figure showing x-ray diffraction, the condition of the constructive interface
between the incident and the reflective x-ray beams.

5.6.1 Crystallite size

Experimental diffraction peaks can be compared to those in the JCPDS (Joint Committee on

Powder Diffraction Standard) database for phase identification [127]. The peak broadening of

the experimental diffraction peak can also give information of the material dimensions. The

grain size can be calculated from the Scherrer formula, using the full-width-half-maximum

(FWHM) values of indexed peaks in the X-ray pattern [128–130]. For conventional XRD

this is the out-of-plane grain size D, given by the Debye-Scherer equation:

where, λ is the wavelength of the incident X-ray beam, θB is the diffraction angle and

β is the FWHM at θB in radians. The grain size can only be determined by means of XRD

measurements.

5.7 Atomic Force Microscopy (AFM)

Scanning probe microscopies can provide very high spatial resolution structural and func-

tional information. Atomic force microscope (AFM) measures the local surface characteris-
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tics by means of scanning a sharp probe tip, which is usually mounted on a cantilever, across

a surface.

Fig. 5.9 Schematic of a atomic force microscope.

The small displacements of the cantilevers are detected by the reflection of a laser beam

from the upper surface of the cantilever onto a detector. The beam is focused on the back

part of a cantilever by means of a four-piece optical detector. Fig. 5.9 illustrates a schematic

atomic force microscope, which usually consists of a small spring cantilever a piezoelectric

element cantilever. The sharp tip is located at the free end of the cantilever, and the detector

records the deflection of the cantilever. The sample is placed on the sample stage. An xyz

piezoelectric drive moves the sample stage in x, y, and z directions relative to the tip. As
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Fig. 5.10 Image of the atomic force microscope used in this study.

illustrated in the schematic, the interaction between the tip and the sample allows detection

of features down to the atomic scale. Many aspects of the cantilever movement can be used

to determine the interaction between the tip and the sample, the detector of AFM measures

the deflection of the cantilever and transforms it into an electrical signal. AFM signals,

like sample height or cantilever deflection, are recorded on a computer as a function of x-y

scan position. The data are displayed a pseudocolor images, where each pixel represents

the x-y position on the sample, and the color refers the recorded signal [131]. Fig. 5.10

shows an actual atomic force microscope. To survey the surface, the cantilever is scanned

along the surface by a piezoelectric actuator [132]. Examples of atomic force microscope

topographical scans of silicon dioxide (SiO2) and polyethylene naphthalate (PEN) substrates

are shown in Fig. 5.11. The micro and nano-scale features of the both substrates can be
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Fig. 5.11 Image illustrates the topography of 2.0 nm ruthenium grown on both (a). SiO2 and
(b). PEN substrates using atomic force microscopy machine.
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observed, portraying the roughness of the material. The image space is (x,y,z) = (1 µm x 0.37

µm × 2 nm).

5.8 Summary

This chapter detailed the investigation of the structural studies by x-ray reflectivity, atomic

force microscope and x-ray diffraction as well. X-ray reflectivity (XRR) gives insight into

the thickness of each layer in thin films and interfaces between them. Both atomic force

microscope measurements (AFM) and x-ray diffraction (XRD) techniques give more details

about morphology of nano scale structure, in particular for buffer layers, in the case of using

AFM, and the crystallisation of thin films for multilayer thin films for XRD.





Chapter 6

Influence of Pt buffer layer on magnetic

behaviour of Pt/Co/Pt thin films on

flexible substrates

6.1 Previous Work

Perpendicular anisotropy magnetic materials have an important role in the storage media of

hard-disk drives [133], applications of newer spintronic concepts that involve DMI domain

walls for memory applications, spin-orbit torque switching and interfacial skyrmions. For

some future applications, there is much interest to move away from expensive, rigid substrates,

such as silicon, to lower cost flexible polymeric substrates [134]. Such a thing is driving an

interest in controlling the behaviour of magnetic multilayers on plastic substrates for device

applications. It has been shown recently that the functional GMR structures with in-plane

magnetisation can be fabricated on plastic substrates[135]. The spin orbit coupling that was

discovered and leads to the switching exploits a spin accumulation at the Co/Pt interface,

which imposes a torque on the Co magnetization[136]. Buffer layer such as Pt and Ta are

often used to reduce interstitial surface roughness [137], in order to stimulate out-of-plane
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layers from anti-ferromagnetic layer [138], and to release the inherent stress of magnetic

films [139]. A lot of the earlier work focused on the impact of buffer layers on the magnetic

properties of magnetic thin films which has been performed on rigid substrates [137]-[140].

Over the previous years, magnetic and spintronic systems are growing on flexible substrates

that have gained a great deal of interest because of the exciting new applications offered

by geometric surface after manufacturing [141]. Fabricating flexible spintronic devices

as a priority, then a certain buffer layer needs to be introduced in order to decrease the

roughness of flexible substrates, enhancing the orientation of crystal of magnetic thin films,

also releasing the residual stress [92]. The rotation and vertical polarization of Pt/Co can be

explained by the current in the plane caused by torque rotation, owing to the effect of the

torque phenomenon [142, 143].

In this study, it has been demonstrated the out of plane voltage/current that causes magne-

tization switching in a perpendicularly polarized Pt/Co/Pt by assembling the heterostructure

on a flexible/rigid substrate at room temperature. Studying the magnetism of Pt/Co/Pt trilay-

ers and interfacial roughness took the great attention, because the magnetic characterization

of these trilayers system relate strongly on the change of the interface composition. This

change has been done using different kinds of substrates.

6.1.1 Properties of flexible material substrates

Polyethylene Naphthalate (PEN-Teonex Q65H)

PEN is a high-transparency film and it is suitable for optical and electronic applications.

The treat of film is done on one side to provide improved adhesion, handling and winding

properties. It contains high temperature resistance and it can be used continuously at 160 °C

(320 °F). It has high mechanical strength and high-strength insulation. PEN is also considered

an excellent resistance to solvents and chemical materials [144, 145].
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Polyamide (PI 2611)

Polyimide film contains the perfect thermal properties of films available. The range of

temperature can be used from -269 °C to 350 °C (-450 °F to 660 °F). The material properties

are excellent and contains a high resistance and abrasion, solvents and high tensile strength.

It is considered as an ideal insulating material, because it has a high dielectric strength for

using it with high voltage. Polyimide film has a resist to radiation and ultraviolet light [145].

6.2 Introduction

This chapter includes the investigation of the structural properties and the magnetic properties

of multi-layered thin-films measured by using an atomic force microscopic and both MOKE

and Hall-effect measurements for the magnetic properties. It is found that the film structure

and interfacial roughness of SiO2, polyimide and PEN substrates can be influenced by the

nature of the buffer layer; which is likely to be affected by the substrate. This structural

influence of the substrates correlates with the structure of thin films and influences the

anisotropy developed.

It is known that the Hall effect has two contributions; the first contribution is coming

from the Lorentz force effect and the second anomalous contribution is coming from spin-

dependent scattering. The magnetic measurements focus in this chapter on the analysis

studying of magnetization that is coming from the effect of spin-dependent scattering while

the Hall resistivity calculations were done through of Lorentz force effect. Hence, all the

calculations was done through of using Hall effect measurements.

6.3 Experimental Work

The multi-layer Pt/Co/Pt samples were deposited on Si/SiO2, Polyimide and PEN substrates

respectively at room temperature using DC magnetron sputtering. Fig. 6.1 shows the
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deposition time that was taken to grow different thickness of platinum buffer layers from 1.0

nm to 5.0 nm the growth rate was constant (linear slope).

Fig. 6.1 Deposition time as a function of thickness of platinum started from 1.0 - 5.0 nm that
was used for the growing buffer layer by sputtering system.

The base pressure of the sputtering system was typically 1.13 x 10−7 Torr. Magneto

hysteresis loop measurements have been performed in a polar geometry (i.e. with field

out-of-plane). The topography of the deposited samples was measured by atomic force

microscopy.

6.4 Influence of Pt buffer layer on perpendicular magnetic

anisotropy using rigid/flexible substrates

For fabricating rigid/flexible magnetic films, a suitable buffer layer will be necessarily

to be inserted to reduce the roughness of rigid/flexible substrates and enhance the crystal

orientation of magnetic films. Therefore, the buffer layers are highly important in determining
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the features of rigid/flexible magnetic films, such as magnetic anisotropy and coercivity

[133]. A schematic diagrams of cross masked sample structure used for Hall measurements

with the different substrates is shown in Fig. 6.2.

Fig. 6.2 Atomic force microscopy image of a silicon dioxide surface.

6.4.1 Influence of Pt buffer layer on perpendicular magnetic anisotropy

on SiO2 substrate

Before investigating PMA on flexible polymer substrates the developments of PMA on

conventional rigid SiO2/Si substrates is described first. The effectiveness of using the buffer

layer thicknesses tPt was studied by using different thickness of Pt buffer layers tPt = 1.0 -

5.0 nm. First the surface structuring is discussed. In Fig. 6.3, the AFM micrographs shows

that the Pt buffer layer can effectively reduced the roughness of magnetic film grown on

silicon dioxide substrate. Fig. 6.3 shows the surface roughness morphology of silicon dioxide
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without adding any platinum. Where, the rms roughness was 0.3 nm. The line signal of

roughness shows smaller fluctuations.

Fig. 6.3 Atomic force microscopy image of a silicon dioxide surface.

Co/Pt has a strong PMA when the Co layer is thin enough (tCo ≤ 1.0 nm), and the layer

of Pt has (111) texture. In Fig. 6.4, the trend indicates that with increasing Pt buffer layer

from 1.0 nm to 5.0 nm, reduced the roughness gradually, the films became smooth and the

RMS roughness of the films was decreased gradually from 0.5 nm at Pt = 1.0 nm to reach

a constant value 0.22 nm at Pt = 5.0 nm. Therefore, it was found that a Pt buffer layer can

effectively reduced the roughness of magnetic film grown on silicon dioxide substrate and

can therefore be applied to enhance the film structure. For the manufacture of magnetic film

on flexible substrates, an appropriate insulating layer has often been needed to reduce the

roughness of the flexible substrate that then ensure a continuous and functioning layer of

magnetic materials [7–9]. Fig. 6.5 shows that the root mean square roughness reduced with

increasing Pt thickness from 1 nm to 5 nm.
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Fig. 6.4 Graphs showing the topography of the Pt 1.0 - 5.0 nm buffer layers that is grown on
a SiO2 substrate.
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Fig. 6.5 Graph shows the trend of roughness as a function of increasing Pt buffer layer
thickness for tPt film sputtered on SiO2 substrate.

6.4.2 Influence of Pt buffer layer on out-of-plane anisotropy on Pt/Co

on flexible Polyethylene Naphthalate substrate

Fig. 6.6 shows the surface topography for a PEN substrate.

Fig. 6.6 Atomic force microscopy image of a Polyethylene Naphthalate substrate.
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The root-mean-square RMS roughness was 7.0 nm, which was obtained from a scan area of

1 × 0.37 µm2 by atomic force microscope. In other work [146] it was found that PEN had a

value of roughness RMS= 6.3 nm, which was closed to the roughness that was found in this

studying.

Fig. 6.7 (a,b,c,d,e) shows AFM 3D height images for Pt buffer layers, deposited on PEN

substrate using identical process conditions, showing clear variations in roughness details.

The averaging of surface roughness values (RMS) on a 5 × 5 µm2 area are significantly

decreased from 4.0 nm at tPt = 1.0 nm to 2.5 nm at tPt = 5.0 nm with increase in deposition

time as it shown in Fig. 6.1. It is clear that as for rougher films, the distinguished of smaller

grains could not easily seen by AFM; basically, they are being hidden because the surface

roughness scale is far bigger than the size of these features. In Fig. 6.7 (f,g,h,i,j) more

exhaustive 2D roughness profiles shows that deposition time period for Pt buffer layer which

was grown on PEN substrate leads to much larger peak heights, with increasing Pt thickness

(where, cluster formations represent higher root mean square roughness).

In Fig. 6.7, the AFM micrographs indicates that the Pt buffer layer can effectively reduce

the roughness of magnetic film grown on flexible plastic substrates and can therefore be

applied to improve the film structure in the fabrication of flexible magnetoelectric devices.

After growing the Pt layer on PEN started from 1.0 - 4.0 nm, the films became smooth and

the RMS roughness of the films was decreased slowly to a constant value of 1.5 nm at Pt =

4.0 nm as shown in Fig. 6.8. With further increasing of the Pt thickness until 5.0 nm, the

roughness was increased. Inserting a buffer layer of a Pt between Co and PEN substrate

can effectively improve the growth condition and reduced the roughness of layers. For the

manufacture of magnetic film on flexible substrates, an appropriate insulating layer has often

been needed to reduce the roughness of the flexible substrate that then ensure a continuous

and functioning layer of magnetic materials [7–9]. The growth mechanism that has been
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Fig. 6.7 Graphs showing the topography of the Pt 1.0 - 5.0 nm buffer layers that is grown on
a polyethylene naphthalate substrate.
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Fig. 6.8 Graph shows the trend of roughness as a function of increasing Pt buffer layer
thickness for tPt film sputtered on a polyethylene naphthalate.

occurred by deposition Pt buffer layer on PEN substrate is Stranski-Krastanov growth mode.

Also, the increasing of roughness at Pt = 5.0 nm is due to the higher interface energy.

6.4.3 Influence of Pt buffer layer grown on polyimide substrate

Atomic force microscopy imaging of the polyimide substrate surface is shown in Fig. 6.9.

Fig. 6.9 Atomic force microscopy image of a polyimide substrate surface.
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The root-mean-square RMS roughness was 1.5 nm, which was obtained from a scan area

of 1 × 0.37 µm2 by atomic force microscope. Moreover, as shown in Fig. 6.10 (a,b,c,d,e),

the roughness was decreased until reaching to tPt = 4.0 nm then it was increased at tPt = 5.0

nm ,where the roughness was increased to about 0.6 nm. Also, a thin Pt capping layer was

used to prevent oxidation.

Fig. 6.10 (f,g,h,i,j) shows a 2D AFM image of a photoresist line. This images were

taken by scanning in the direction over the line using Gwyddion software. This images show

informations with high resolution for surfaces. Higher roughness and protrusion from surface

were shown very visible by of the photoresist line at lower Pt buffer thicknesses, but the

surfaces at higher Pt buffer thicknesses are much smoother.

The profiles of single line on the top surface could be extracted from the higher resolution

3D AFM images. Where, Fig. 6.10 shows the profiles of single line at various surface

of the photoresist. These profiles line also clearly display that the surfaces of lower Pt

buffer thickness are much rougher than the surfaces of greater Pt buffer thickness. Taken

together, these analyses can elucidate the differences in the structural properties of the Pt

buffer layers films. Since inserting a buffer layer of a Pt between Co and polyimide substrate

can effectively improve the growth condition and reduced the roughness of layers. After

growing the Pt layer on polyimide started from 1.0 - 4.0 nm, the films became smooth and

the RMS roughness of the films was decreased slowly to a constant value of 0.29 nm at Pt =

4.0 nm as shown in Fig. 6.11. With further increasing of the Pt thickness until 5.0 nm, the

roughness was increased. Inserting a buffer layer of a Pt between Co and polyimide substrate

can effectively improve the growth condition and reduced the roughness of layers. It seems

that in both cases PEN and polyimide substrates at Pt = 5.0 nm the roughness increased,

and this may be related to increase in the interface energy due to stranski-krastanove growth

mode.
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Fig. 6.10 Graphs showing the topography of the Pt (1.0 - 5.0) nm buffer layers that is grown
on a polyimide substrate.
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Fig. 6.11 Graph shows the trend of roughness as a function of increasing Pt buffer layer
thickness for tPt film sputtered on a polyimide substrate.

6.5 Coercivity of Pt/Co/Pt trilayers thin-films on rigid and

flexible substrates

For realizing a higher recording density based on having high coercivity, high PMA and high

remenant squareness, Pt/Co multilayer thin-films deposited on rigid/flexible substrates were

shown in this section and comparing between them.

6.5.1 Coercivity of Pt/Co/Pt trilayer thin-films on SiO2 substrate

Fig. 6.12 Hall effect hysteresis loops for different Pt thicknesses from 1.0 nm to 5.0 nm with

a fixed Co layer thickness of 0.5 nm. In Fig. 6.13, the values of coercive field were increased

with the increment of Pt thickness. An increase of the coercive field was associated with an

improvement in the fcc (111) texture [147] because of the reduction in the RMS roughness.

XRD diffraction measurements in chapter 8 confirmed the enhancement in the fcc (111)

texture.

The coercivity was increased with increase in Pt thickness. It can be concluded that the

increase of the perpendicular magnetic anisotropy, indicated by the increasing coercivity,
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Fig. 6.12 Hysteresis loops of tPt /Co0.5/tPt nm using different thickness of platinum grown
on SiO2 substrate.

Fig. 6.13 Coercive field of tPt /Co0.5/tPt nm as a function of platinum thickness grown on
SiO2 substrate. The error bar is very small.
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with the increasing Pt thickness was related to the modification of the Pt surface roughness.

It has already been observed in the case of Co/Pt (upper) multilayers grown on a Pt buffer

[148, 149] that increasing the buffer thickness increases the multilayer anisotropy and

coercive field; due to the smoother top Pt surface of larger buffer thicknesses coming from

the improvement of the (111) texture and the larger grain size [147].

6.5.2 Coercivity of Pt/Co/Pt trilayer thin-films on Polyimide substrate

Fig. 6.14 shows the hysteresis loops was increased gradually with the increase of Pt thickness.

Fig. 6.14 Hysteresis loops of tPt /Co 0.5/tPt nm using different thickness of platinum grown
on polyimide substrate.

In the case of polyimide, it was shown here that the coercive field increase gradually with

increase platinum thickness until tPt = 5.0 nm as it shown in Fig. 6.15. This was associated

with the enhancement of the fcc texture [147].
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Fig. 6.15 Coercive field of tPt /Co 0.5/tPt nm as a function of platinum thickness grown on
polyimide substrate. The error bar is very small.

6.5.3 Coercivity of Pt/Co/Pt trilayer thin-films on Polyethylene Naph-

thalate substrate

Fig. 6.16 shows the hysteresis loop for Pt/Co/Pt films on PEN with increasing thicknesses of

the Pt buffer layer from 1.0 nm to 5.0 nm. In the case of PEN, it was shown here that the

coercive field increase gradually with increase platinum thickness until tPt = 4.0 nm as it

shown in Fig. 6.17. This was associated with the enhancement of the fcc texture [147]. Fig.

6.18 illustrates the Pt/Co/Pt trilayer structures; which was consisted of a fixed ferromagnetic

Co layer 0.5 nm and a varying Pt layer 1.0 - 5.0 nm using different kinds of substrate, rigid

SiO2, flexible Polyethylene Naphthalate and rigid Polyimide. The Pt/Co/Pt system contains

an ultrathin Co film, with Pt used as a buffer layer to motivate (111) texture and enhance

the perpendicular magnetic anisotropy (PMA) while the usage of a Pt capping layer was

to prevent oxidation [150]. In general, magnetic films on rough surfaces can also exhibit a
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Fig. 6.16 Hysteresis loops of tPt /Co 0.5/tPt nm using different thickness of platinum grown
on PEN substrate.

Fig. 6.17 Coercive field of tPt /Co 0.5/tPt nm as a function of platinum thickness grown on
PEN substrate. The error bar is very small.
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higher Hc than smooth films. This was attributed to the pinning of the magnetic domains.

But since applications such as micro-structuring or hard disks need a smooth surface (danger

of head crashes or a too large read/write distance), an increased roughness is not suitable.

Fig. 6.18 Graph shows the coercive field values of tPt 1.0 - 5.0/Co 0.5/tPt 1.0 - 5.0 nm trilayers
thin-films grown on different substrates.

6.6 Correlation between roughness and coercivity using rigid/

flexible substrates

This section is focused on the important role of the substrate in supporting the development

Perpendicular Magnetic Anisotropy (PMA) and coercive field shape in the Pt/Co/Pt system

for the application of these materials in flexible spintronic applications. The film structure

and interfacial roughness are expected to play a role as they can influence structure of the Pt
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buffer layer; which in turn will affect the interface and growth of the Co layer. Silicon chips

are used extensively in the manufacture of electronic devices. However, the silicon chips

are rigid, while some applications are growing that require electronics that are soft, elastic

and bendable. Technology for assembling the electronic circuits and devices on flexible

substrates depends on the flexible electronics that are much less expensive, more compact

and lighter, when compared to the traditional electronic devices although component density

and device speeds are much lower.

In Fig. 6.19 (a), SiO2 case, it was shown that the coercive field was increased with

decreasing of root mean square roughness. While, in Fig. 6.19 (b), PEN case, it was shown

that the coercive also increased with decreasing of root mean square roughness from 1.0

nm to 4.0 nm Pt thickness, then at 5.0 nm there was an increase in roughness which was

associated with decrease coercive field a little bit from 80 Oe to 79 Oe. Finally, in Fig. 6.19

(c), polyimide case, the coercive field increase with increasing of root mean square roughness

from 1.0 nm to 2.0 nm Pt buffer layer. Finally at 5.0 nm Pt, the coercive field was increased

and it was associated with increase roughness. It seems that in both cases PEN and polyimide

substrates at Pt = 5.0 nm the roughness increased and this may be related to increase in the

interface energy due to stranski-krastanove growth mode. Where, it was very clear that when

the thickness of platinum at 5.0 nm, the differences between the root mean square roughness

[RMS] of polyethylene naphthalate and polyimide were 2.5 nm and 0.65 nm respectively.

It was found that there is an inverse correlation between root mean square roughness and

coercive field i.e, [Rq proportional to 1/HC]. Therefore, according to these results, it was

found that there was a highly correlated between increasing of coercivity and decreasing

of roughness in a lot of Pt buffer layer thickness and this relationship between increasing

of coercive field and decreasing of roughness as it has been shown in this work which was

similar to the study of Wang et. al. [151].



6.6 Correlation between roughness and coercivity using rigid/ flexible substrates 99

Fig. 6.19 (a,b and c) Graphs show the root mean square values as a function of coercive field
for various Pt buffer layers grown on SiO2, PEN and polyimide substrates.
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6.7 Magnetic reversal behaviour in Pt/Co multilayers us-

ing rigid/flexible substrates

Studying of the influence of ferromagnetic Co layer thickness separated by non-magnetic

layer on the magnetic properties of multilayers will be explained in this section by using

different kinds of substrates. The combination of magnetic layers with different switching

field was investigated. The [Co/Pt]n ML has strong perpendicular anisotropy when the Co

thickness layer is thin enough and the layers of Pt have the (111) texture. As it is considered as

an important member of the magnetic systems with perpendicular magnetic anisotropy, it has

the applications in recording media with higher-density perpendicular magnetic storage. The

expection of the presence of AF coupling across the Pt spacer had been shown theoretically

[152], comprehensive studies on [Co/Pt]n multilayers with perpendicular magnetic anisotropy

had just detected the FM interlayer coupling [153–155]. Magnetic tunnel junctions that used

perpendicular magnetic anisotropy have highly interested because of their potential for higher

storage densities with higher capacity magnetic memory applications. Fig. 6.20 shows a

schematic diagram of multilayer thin-films grown on different substrates.

Fig. 6.20 Graph shows configuration of multilayer thin-films grown on different substrates.
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Fig. 6.21 (a,b and c) Graphs show two steps of hysteresis loops using different thickness of
cobalt 0.4 nm and 0.8 nm respectively grown on (a). SiO2, (b). polyimide, and (c). PEN
substrate.
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Fig. 6.21 shows the Hall measurements of multi-layered sample with using different

cobalt thickness 0.4 nm and 0.8 nm. In Fig. 6.21 (a,b and c), in case of black colour of

hysteresis loop [tCo=0.4 nm] using SiO2 substrate, the hysteresis loops alternate between

stepped loop. It was shown that in case of using SiO2 substrate the smaller density of

nucleation sites that were appearing on hysteresis loop in comparison with polyimide and

PEN substrates.

In Fig. 6.21 (a,b and c), in case of blue colour of hysteresis loop [tCo=0.8 nm] using SiO2

substrate, the hysteresis loops alternate between stepped loop. It was shown that in case of

using SiO2 substrate the smaller density of nucleation sites that were appearing on hysteresis

loop in comparison with polyimide and PEN substrates. In PEN substrate, higher nucleation

sites were seen in the blue hysteresis loop; which was correlated with Mr/Ms < 1. Also, it

was very clear that the reaching of saturation magnetization in case of using SiO2 substrate

was faster than polyimide and PEN as it shown in Fig. 6.21 (c). Fig. 6.21 (a,b and c) shows

that with increasing cobalt thickness from 0.4 nm [black loops; which contains two steps of

loops] to 0.8 nm [blue loops; which contains two steps of loops] the areas enclosed by the

hysteresis loops were increased. The Hall hysteresis loop showed an ideal sample, which

was a perfectly symmetric square of homogeneous material at a constant (room temperature).

Referring to Fig. 6.21; it was shown the hysteresis loops, as a function of increasing the

thickness of the cobalt between tCo = 0.4 nm to tCo = 0.8 nm. Both films show a significant

increase in the width of area enclosed by the hysteresis loop for 0.8 nm. Also, the shape of

hysteresis loops was not very sharp squareness at tCo = 0.8 nm. This might be happened due

to the large value of root mean square roughness of polyethylene naphthalate at tPt = 3.0 nm

and 5.0 nm respectively.

In the case of using a polyimide, Fig. 6.21 (b) illustrates that the increasing in the

thickness of cobalt from 0.4 nm to 0.8 nm was resulted in an increase in the coercive field.

Also, the shape of hysteresis loops was shown to be more improved than in case of using
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PEN. This might be happened due to the small value of root mean square roughness [RMS]

of PEN at tPt = 3.0 and 5.0 nm respectively.

6.8 Comparison of the influence of the Pt buffer layer on

magnetization behaviour of Pt/Co/Pt on flexible and

rigid substrates

Studying the influence of thicker and thinner Pt buffer layer thicknesses on improvement

magnetization were focused in this section. Samples with varying thickness of the Pt buffer

(15.0 and 5.0) nm layers, the top Pt layers (3.0 and 5.0) nm and varying thickness of cobalt

(0.3-0.7) nm were deposited on SiO2, Polyimide and PEN substrates by sputtering system.

In the measurements, the highest maximum coercive field reached for Pt15.0 nm buffer

layer case was about 1000 Oe. While, the highest maximum coercive field reached for Pt5.0

nm buffer layer case highest 300 Oe. Magneto Optical Kerr Effect measurements of the films

show hysteresis loops with comparable coercive fields and saturation fields for the in-plane

and perpendicularly magnetized films. With increasing thickness of the Pt buffer layer, the

magnetization and the squareness of the Pt/Co/Pt trilayer thin-films significantly change as

shown in Fig. 6.22 (a-e), (f-j) for cases when tPt = 5 nm and 15 nm. The results show that

the coercive field increased with increasing of cobalt thickness from 0.3 nm to 0.7 nm. The

shape of hysteresis loops is also very square, indicating sharp switching and approximately

full remanence.

Fig. 6.23 shows the values of coercive field at 5.0 nm and 15.0 nm platinum thickness.

For tCo = 0.3 nm to 0.7 nm the coercivity increased with increasing cobalt thickness. In

Fig. 6.22 (j) at tCo = 0.7 nm the shape of hysteresis loop was not full square. But, it was

very obvious that at tPt = 15 nm, the values of coercive field was higher than in the case

when the platinum thickness was 5.0 nm. Examples of hysteresis loops are shown in Fig.
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Fig. 6.22 Out-of-plane polar MOKE hysteresis loops for Pt/Co/Pt films with different
thicknesses of Pt buffer layer of 15.0 nm and 5.0 nm grown on silicon dioxide substrates.
The Pt top layer was 3.0 and 5.0 nm.
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Fig. 6.23 Comparison between different values of Pt buffer layers on coercive field as a
function of Co thickness. The red and black lines are linear fits.

6.24 (a-e), (f-j) for films on polyimide substrates with tPt = 15.0 nm and 5.0 nm respectively.

The variation of the coercive field as a function of Co thickness is shown in Fig. 6.25. The

coercivity increased with increasing cobalt thickness from 0.3 nm to 0.7 nm. However, the

larger values of coercivity were obtained for tPt = 15.0 nm.

Fig. 6.26 (a-e) shows the hysteresis behaviour and the (f-j) values of coercive field are

shown in Fig. 6.27 as a function of Co thickness for two Pt buffer layer thickness using PEN

substrate. The coercivity increased with increasing cobalt thickness from 0.3 nm to 0.7 nm.

In Fig. 6.26 (j) at tCo = 0.7 nm the shape of hysteresis loop was not square. For all cases

using SiO2, polyimide and PEN, the coercivity values at tPt = 15.0 nm was higher than the

coercivity values at tPt = 5.0 nm. The increment of coercive field has been shown in Fig.

6.23, 6.25 and 6.27. In Fig. 6.27, the coercivity increased with increasing cobalt thickness

from 0.3 nm to 0.7 nm. However, the larger values of coercivity were obtained for tPt = 15.0

nm.
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Fig. 6.24 Out-of-plane polar MOKE hysteresis loops for Pt/Co/Pt films with different thick-
nesses of Pt buffer layer of 15.0 nm and 5.0 nm grown on a polyimide substrate. The Pt top
layer was 3.0 and 5.0 nm.
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Fig. 6.25 Comparison between different values of Pt buffer layers on coercive field as a
function of Co thickness. The red and black lines are linear fits.

From the results of tCo ranged from (0.3-1.15) nm using different kinds of substrates as

shown in Fig. 6.28 at tPt = 15 nm, the coercive field was increased gradually. Then, the

coercive field decreased gradually until reaching a 1.15 nm. In general, higher coercivity was

found for all cases SiO2, polyimide and PEN at tPt = 15 nm with increasing cobalt thickness

from 0.3 to 0.7 nm in comparison when tPt = 5.0 nm.

From Magneto Optical Kerr Effect (MOKE) measurements, the films show hysteresis

loops with comparable coercive field and saturation field for both the multilayers with in-plane

and perpendicular magnetization. The increase in thickness of Pt buffer layer substantially

improved the PMA with higher coercive fields and the squareness of the Pt/Co/Pt trilayer

thin-films [151]. The highest remenance Mr/Ms =1 was shown in case of using silicon

dioxide because of the root mean square roughness of Pt buffer at 5.0 nm was 0.2 nm. Then,

the medium remenance of hysteresis loop was shown in case of using polyimide substrate

because of the root mean square roughness of the Pt buffer layer at 5.0 nm was 0.6 nm. In
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Fig. 6.26 Out-of-plane polar MOKE hysteresis loops for Pt/Co/Pt films with different
thicknesses of Pt buffer layer of 15.0 nm and 5.0 nm grown on a PEN substrate. The Pt top
layer was 3.0 and 5.0 nm.
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Fig. 6.27 Comparison between different values of Pt buffer layers on coercive field as a
function of Co thickness. The red and black lines are linear fits.

the polyimide case, it appears from Fig. 6.24, at tPt = 5.0 nm, that there was a transformation

from out-of-plane to in-plane. The reason for this transformation may be the increasing of

roughness to 0.6 nm, as shown in tPt = 5.0 nm, also as it was referred to in chapter 5, the

roughness from x-ray reflectivity at tPt = 5.0 nm was 0.6 nm, which agrees with the result

from atomic force microscopy. Finally, the lowest remenance of hysteresis loop was shown

in case of using PEN substrate because of the root mean square roughness of Pt buffer at 5.0

nm = 2.4 nm. According to this result, it is illustrated that the smooth roughness of Pt buffer

layer plays an important role to enhance the perpendicular magnetic anisotropy.

The very small out-of-plane remanence ratio in these samples of high thickness means

that their magnetisation was almost completely in-plane. Interestingly, a sharp maximum

value appeared in the out-of-plane coercive field at a Co thickness of 0.7 nm. Although, it

could be associated to the small anisotropy near the spin reorientation thickness, or the effect
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Fig. 6.28 Graph shows the comparison between using different values of Pt buffer layers on
coercive field with the error bar for tPt /Co(0.3-1.15)/tPt nm.

of stronger DW pinning (switching becomes somewhat broader at larger Co thicknesses)

[156, 157].

6.9 Comparison of Hall Resistivity (ρHall) of Pt/Co/Pt tri-

layers on rigid and flexible substrates

Measurements of the Hall resistivity considered as an important techniques to directly know

the charge concentration and mobility of a thin film. Figure 6.29 shows the resistivity

decreased with increasing of Pt thickness from 1.0 nm to 5.0 nm for both SiO2 and PEN.

While, the resistiviy in the case of polyimide was smaller than SiO2 and PEN. It is very

clear that the decreasing of resistivity of the platinum layers showed a significant thickness

dependence most likely due to increased interface scattering when the thickness was reduced

[158–160]. Also, when the thickness of Pt layer is not thick enough, the interfacial roughness,



6.9 Comparison of Hall Resistivity (ρH all) of Pt/Co/Pt trilayers on rigid and flexible
substrates 111

defects and pinholes in the Pt layers lead to prompt the magnetostatic interactions. Hence, it

will increase the exponential decay of the interlayer coupling strength of Co/Pt with increase

the thickness of Pt layer [154]. Therefore, the reason of lower resistivity of using polyimide

in comparison with higher resistivity for SiO2 and PEN came from the reducing of interface

scattering when the thickness was increased [161, 162]. Hence, this might be associated

with a fluctuation of roughness with increasing thickness of platinum in comparison with

no fluctuation in roughness happens in case of using SiO2 and PEN substrates. Due to the

hybridization of the Co 3d and Pt 5d orbitals at the Co/Pt interface, the Pt layers are polarized

[85]. It is well known that the polarization depth of the Pt layer was only several monolayers

at room temperature.

Fig. 6.29 Graph shows the trend of tPt /tCo (0.5)/tPt nm of the Pt (1.0 - 5.0) nm buffer layers
that was grown on a SiO2, Polyimide and PEN substrates. The error bar is very small.

Figu. 6.30 shows the Hall resistivity as a function of Co thickness. The cobalt plays an

important role for increasing the Hall resistivity and also because of the layer of cobalt does

not fully complete, so the polarisation will lead to increase the resistivity. The Hall resistivity

increased with increasing cobalt thickness from (0.3-0.7) nm for silicon dioxide, polyimide
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Fig. 6.30 Graph shows the Hall resistivity of tPt 5.0/tCo/tPt 5.0 nm as a function of the Co
layer thickness on a SiO2, Polyimide and PEN substrates. The error bar is very small.

and PEN substrates respectively. Fig. 6.30 shows that the Hall resistivity increased with

increasing cobalt thickness from 0.3 nm to 0.7 nm. Hence, the resistivity dependence on the

Pt and Co layer thickness. The roughness of surface was shown here to be strongly dependent

on the thickness of buffer layer and the preparation conditions. In Co/Pt multilayers that

were sputtered, the roughness of the surface increases with increasing thickness of Co layer

[163, 164]. This leads to increase scattering which is associated to increased resistivity due

to Lorentz effect.

6.10 Influence of bending on magnetization behaviour of

Pt/Co/Pt trilayers on PEN substrates

The effect of strain on Pt/Co/Pt layers on flexible substrates was also studied. The aim

from this section is to know the influence of tension and compression of flexible substrate

on increases or decreases the coercivity due to the reversal magnetization. Controlling of
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magnetic properties by mechanical strains of flexible magnetic films is considered as an

interesting subject from the viewpoint of both essential researches and potential applications

[165]. Fig. 6.31 illustrates a photo of samples deformed such that the magnetic thin-films a

brought into tension or compression.

Fig. 6.31 Photo illustrates aluminum pieces used to bend the PEN samples.

Fig. 6.32 shows a schematic diagram of a two typical cases: compression and tension

for a bending magnetic plastic substrate. The magnetic properties of PEN/Pt/Co/Pt were

investigated by bending the PEN substrates to different degrees of curvature as shown in

Table 6.1.

Fig. 6.32 Schematic of a PEN flexible plastic substrate for the calculation of the tensile and
compressive strains.
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Equations 6.1, 6.2, 6.3 and 6.4 [166] show the tensile strain ε and compressive strain ε0

that appear within the films. r represents the curvature radius of bending of the the substrate

from the neutral plane, ε represents strain; while ε0 represents compressive strain. Where,

D defines the thickness of a sample; in which it equals to 125 µm. Also, d is the height

measured from the center of a circle to the middle of a sample and θ is the angle of radius

curvatures of samples.

Fig. 6.33 shows a real photo of PEN thin film that have been used for position bending

of flexible magnetic thin films in both sides; which the top side represents the tensile strain

while the other side represents the compressive strain.

Fig. 6.33 (a,b and c) photo illustrates compression,flat and tension of Pt/Co/Pt trilayer
magnetic thin film deposited on PEN flexible substrate.

In Fig. 6.34 the PEN/Pt/Co/Pt samples were bended to different ε (tension) and ε0

(compression) for introducing various effects on the sample. The strains ε and ε0 have been
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Table 6.1 A comparison of parameters for varies bending strains for the PEN samples.

No.Radius (r) (10−3m)Rst rain,-Rcom pressive (10−3m)d (10−3m)θ (deg.)ε (10−3)ε0 (10−3)
1 33.5 33.50,-33.43 31.0 29.0 3.73 -3.73
2 32.5 33.12, -31.87 31.0 35.0 3.77 -3.92
3 22 22.62,-21.37 24.0 35.0 5.52 -5.84
4 15 15.62,-14.37 14.5 48.0 8.0 -8.69

applied to Pt/tCo0.5/Pt nm multilayers which have different thicknesses of Pt. The range of

Pt thicknesses tPt is 1.0 - 3.0 nm.

Fig. 6.34 Percentage of coercive field changing after bending as a function of tensile strain
and compressive strain sides for PEN flexible plastic substrate using different kinds of
structures.

Fig. 6.35 shows the change of the coercive field due to a given strain as a function of Pt

thickness. It shows the decline of coercive field as a function of different platinum thickness.

It shows that the highest changing in ε was equal to 68 % for Pt1.0/Co0.4/Pt1.0 nm and

39 % for Pt1.0/Co0.5/Pt1.0 nm. Moreover, there was a gradual decreasing in the coercive

field with increasing thicknesses of Pt which ranges from 2.0 to 5.0 nm, with a thickness of

(tCo = 0.4 nm). Also, there was a sudden increase when the (tCo = 0.4 nm) at Pt thickness
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range from (3.0 - 4.0) nm, then it falls again. The ε and ε0 of Pt/tCo0.5/Pt nm was studied for

different thicknesses of Pt.

Fig. 6.35 Percentage of coercive field changing as a function of thickness of Pt in nm. The
error bar is very small.

The greatest change occurred when the Pt thickness tPt was equal to 1.0 nm. When

the Pt/Co/Pt was stretched, there must be an effective compression along the z-direction

in the layers, which decreases the distance between the Pt an Co layers [167]. This

behaviour may come from changing in the perpendicular magnetic energy; which is due to

orbital hybridization at the Pt/Co interface. It was found that the highest impact of bending

occurred at the lowest thickness of tPt = 1.0 nm. So, it were supposed that the increment

in the intermixing between layers was led to an enhancement in the effective saturation

magnetization; which in turn was led to an improvement in the interface at lower thickness

of (tPt = 1.0 nm). [168] showed that the strain will lead to a reduced coercive field. Here, the

highest change in coercivity was 68 % for Pt1.0/Co0.4/Pt1.0 nm [ from 20 Oe to 7 Oe ] and

39 % for Pt1.0/Co0.5/Pt1.0 nm; due to the ease of movement of a few spin magnetic moments

through the thin film. It is clear that the presence of interfaces can cause a perpendicular

magnetic anisotropy which is a feature for high density hard disk media and required for
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magneto-optical recording. Platinum is important for the magnetism of these systems, since

the late d-transition elements can be significantly magntically polarized ferromagnetically

ordered atoms [162]. An extensive studying was focused on the perpendicular magnetic

anisotropy that is associated with strain. Hence, the interface of Pt atoms became polarized

by common atoms in its vicinity [169, 170].

6.11 Conclusion

It was found the important of using a Pt buffer that grown on SiO2, Polyimide and PEN

substrates in the development of PMA. Hence, it would allow the readers to distinguish

between the advantage and disadvantage of using both flexible plastic/rigid substrates. Where,

it depends on the surface roughness that will effect on the strength of perpendicular magnetic

anisotropy (PMA). Also, it was found that with increasing Co thickness, the resistvity has

been increased due to increasing of roughness and scattering from 0.3 nm to 0.7 nm.

Moreover, decreasing the root mean square roughness of the Pt buffer layers plays an

important role to improve the shape of hysteresis loop and this will be correlated to improve

perpendicular magnetic anisotropy with decrease resistivity. In case of Pt/Co/Pt/Co/Pt

trilayers, because of the higher roughness of PEN, the squareness shape of hysteresis loop

seems to be not very squareness. Hence, it was appeared that there was a transformation

from out-of-plane to in-plane direction. Here, the most significant difference in the magnetic

behaviour was found to depends on the variation of the roughness of substrates; which

represents of the needing to more time for reaching to saturation magnetization. The variation

was the main subject of the discussion.





Chapter 7

Perpendicular magnetic anisotropy in

Ru/Co and Pt/Co trilayer thin-films on

flexible substrates

7.1 Previous Work

The advantages of using Perpendicular magnetic anisotropy (PMA) in device applications is

due to the thermal stability and decreasing of the current density for magnetization switching;

which in turn will enhance the low power consumption operation of spintronics devices like

the magneto-resistive random access memories (MRAMs) [171, 172]. Also, the structure of

PMA in ferromagnetic multilayer has been studied thoroughly; due to its significant effect

on the performance enhancement of electronic devices like the storage devices, magnetic

read-heads, and random access memory. In the nano-structure, the increase in the magnetic

density is resulting from the larger PMA; which in turn will develop the efficiency of

electronic devices. According to such studies, there are multiple elements that fabricate

the thin films like the Co/Pt or Pt/Co/Pt, or more complicated nano-structures using thin or



120
Perpendicular magnetic anisotropy in Ru/Co and Pt/Co trilayer thin-films on flexible

substrates

ultra-thin films like the Pt/Co/MOx/Pt; which have an important role in the orientation an

MA [151, 173–177].

7.1.1 Pt/Co structures

Cobalt and Platinum have focused on the magnetism society for decades [178, 179], specifi-

cally in the form of an alloy. But gained great popularity when, in 1988, Carcía et al. [180]

PMA has found found in multiple thin layers of Pt/Co. Perpendicular magnetic anisotropy

(PMA) is inversely dependent on the thickness of Co, so its interpretation of this is something

Neel presented in his 1954 paper on the contrast of the facade [181], once the application is

proposed by Zipper et al [77], from the recording of optical magnetism, the research on the

system has grown considerably. The regime was a major candidate for such a request, not

only because of the PMA, but also due to the because of the enhanced Kerr effect. In 1991,

Lin et al [81]. posted some major work on the super lattices of Pt/Co, not only the different

thickness of the layer, but also, the direction of crystal, follow-up from Den Broeder et al

[182]. They showed that the variation and coercion of samples were more dependent on Co

thickness of Pt and more significantly, a sharp contrast to the crystalline orientation, PMA

presentation of Pt (111) and strong variability of the plane to Pt (110) were affected. This

indicates that the variation was originally magnetic. At this period, Bruno [183] published a

theoretical work to discuss the relationship between the magnetic-magnetic variation and the

orbital moment in the traveling iron magnets.

7.1.2 Ru/Co structures

In Ru/Co films the reasons for the cration of PMA are still not obviously defined, and remain

a dialectical issue. In some researches, the PMA origin is demonstrated from the point of

view of strains relaxation in films —in other states, it is clarified as a conclusion of surface

contribution [184], hybridization of d orbitals by spin–orbit coupling [185], or even like a
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catalyst-resulted manipulation of the interfacial electronic structure through an ultra-thin

Ru layer [186]. In this study, we explore the influence of ruthenium (Ru) buffer layers of

various thicknesses on coercive field, magnetic anisotropy and Hall resistivity in ultrathin

Ru/Co/Ru trilayers. It must be noted that, in contrast to the plurality of prior investigations

on epitaxial Ru/Co systems with a very thin Ru buffer (thickness of buffer layer up to a

small nm) [187, 188, 184, 189, 190], this research has studied the polycrystalline Ru/Co/Ru

trilayers with a buffer thickness of up to 15 nm and compared to the Pt/Co structures.

PMA has been experimentally observed in a diversity of ultrathin films [191, 192, 173] and

multilayers like Co/Ru [187] and Co/Pt [115]. Theoretical studies have exhibited that PMA

in thin films may occur due to various reasons. The fundamental models leads to spin–orbit

interaction, and demonstrates the appearance of PMA in terms of: (i) magnetocrystalline

anisotropy consequent to loss of atomic bonds on the surface [181]; (ii) the contribution

of orbital moment to the magnetocrystalline anisotropy of transition metals [183]; and (iii)

magnetoelastic anisotropy growing as a consequence of tensile distortion of the film [193].

7.1.3 Physical properties of materials

Physical properties of ferromagnetic material Cobalt

In bulk, Co has an (HCP) structure of hard, brittle and magnetic properties [68].It is widely

utilized in magnetic recording media. In addition, it goes through an allotropic transformation

and adjusts itself upon the face centred cubic (FCC) structure at temperature of 425o C. In

ultra-thin films, it can also be face centred cubic (FCC). Perpendicular Magnetic Anisotropy

(PMA) decreases with the increase of Co thickness [68].

Physical properties of ruthenium and platinum elements

Ruthenium is the 44th element in the periodic table, just below the iron and above the

Osiumium in the eighth group, but its properties are closer to the osmium compared with
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iron [194]. Fig. 7.1 shows the electrical resistivity and the electrical conductivity of metals

as a function of rank from smallest to largest.

Fig. 7.1 Resistivity and electrical conductivity of metals at 295 K as a function of rank from
smallest to largest.

There are four stable stages with having a low temperature phase. Its high melting

temperature reachs to 2334 °C. Also it has a resistance to chemical attack on a wide broad of

temperatures. Moreover, it is used as a hardener in metal alloys and in industrial as a catalyst

[195]. Ruthenium is a transitional metal with equal electrons that occupies more than one

shell (4d7, 5s1) [196]. Less than 1000 °C, Ruthenium shows a closed hexagonal structure

packed (hcp), where successive atomic levels follow the A-B-A stack sequence. Ruthenium is

a resistant to magnetism and is a reactive metal of the type p [197]. It contains approximately

five times the resistivity of silver at room temperature and is considered as a very good

conductor of heat and current [198]. While Pt doesn’t have a magnetic characteristic, it can
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be proximity polarised, and thin-films on ferromagnetic layers have a big effect on damping

and can lead to interface DMI. Co/Pt showed large PMA at room temperature. Also, it has

been regarded as the best candidate for the dielectric layer and can be utilized in the capacitor

applications to improve the storage capability.

7.2 Introduction

In this chapter, the effect of using different thickness of ruthenium and platinum buffer layers

on the crystal structure and the surface roughness in the development of PMA for ultrathin

Ru/Co/Ru, Pt/Co/Pt trilayers was studied. X-ray diffraction data for Ru15.0/(tCo)/ Ru3.0 nm

and Pt15.0/(tCo)/Pt3.0 nm with different cobalt thickness (tCo = 0.75, 0.85, 0.95, 1.05 and

1.15 nm) was studied.

The data obtained during the experiments were related to the microstructural features of

thin-films and their relationship to the measured magnetic properties. The surface structural

analysis was supplemented using x-ray diffraction studies. The grain size was calculated

from the XRD data and Hall resistivity was calculated from the Hall measurements and film

thickness measurements. The details of experimental data and the results obtained from this

formation of thin-films are presented in the following sections.

7.3 Experimental work

Ru/Co/Ru and Pt/Co/Pt multilayered films were sputtered on to SiO2, Polyimide and PEN

substrates at room temperature. The base pressure was 1.0 × 10−8 Torr. The growth pressure

during deposition was 1.1 × 10−3 Torr. The cobalt thickness (tCo) ranged from 0.75 nm to

1.15 nm. The thickness of the Ru and Pt buffer layers (tBu f f er) was 15.0 nm.

A capping layer of 3.0 nm of either Ru or Pt was used to prevent oxidation of the Co layer

and to aid the development of PMA. The magnetic properties of the films were examined
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using magneto - optical Kerr effect magnetometry. The surface morphology was studied

using atomic force microscopy and the crystal structure studied using x-ray diffraction.

7.4 Structural characterization of Ru and Pt buffer layer

on SiO2, Polyimide and PEN substrates

The results of the AFM surface morphology of single-layer films is displayed for similar

thicknesses of ruthenium and platinum in Fig. 7.2, Fig. 7.3 and Fig. 7.4. The area of thin-film

measured was 5.0 µm × 5.0 µm. The surface ripples were very small in Fig. 7.2 (a,b).

Hence, the smooth substrate surface of SiO2 gave low roughness for both Ru and Pt seed

layers. The root-mean-square roughness was 0.25 nm for 15.0 nm thick films of both Ru and

Pt seed layers respectively.

Fig. 7.3 (a,b) shows the surface structure of 15 nm Pt and Ru on polyimide. Values

for the root mean square roughness of 1.4 nm for Pt and 1.35 nm for Ru were obtained on

polyimide.

The AFM images shown in Fig. 7.3 (a,b) shows that the morphology of the films is

complex, including large scale surface features. The area of thin-film was taken from a

different part of the film surface, which is of an area of 5 µm × 5 µm. It can be observed

that there are large ripples and peaks in the case of ruthenium compared with platinum.

Nano structural features are observed when using PEN substrate. Fig. 7.4 (a,b) illustrates

the AFM images of PEN/Pt and PEN/Ru thin films with similar buffer layer thicknesses of

15.0 nm. The measured area of thin-film was 1 µm × 1 µm.

The AFM image of PEN/Ru (15.0 nm) thin-film shows the discontinuous nature of the

films that were deposited. However, the AFM image of PEN/Pt (15.0 nm) thin-film sample

was consistent with both layer by layer and island types of growth. RMS roughness of
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Fig. 7.2 (a,b) Surface morphology for both Pt 15.0 nm and Ru 15.0 nm seed layers grown on
SiO2 substrate. Area and line scans are shown.
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Fig. 7.3 (a,b) Surface morphology for both Pt 15.0 nm and Ru 15.0 nm seed layers grown on
polyimide substrate. Area and line scans are shown.
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Fig. 7.4 (a,b) Surface morphology for both Pt 15.0 nm and Ru 15.0 nm seed layers grown on
PEN substrate. Area and line scans are shown.
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the surface increased from 0.9 nm to 1.6 nm for PEN/Pt (15.0 nm) and PEN/Ru (15.0 nm)

thin-films respectively.

Maximum and minimum root mean square roughness obtained are shown in Fig. 7.5.

Fig. 7.5 Root mean square roughness for 15.0 nm ruthenium and 15.0 nm platinum deposited
on rigid/flexible substrates.

By using the Gwyddion program [199] it was taken different cross section parts of the

sample surface were analysed in order to calculate the error bar. It was obvious that in cases

of SiO2 and polyimide substrates, the root mean square roughness of Pt was similar, but the

root mean square roughness of Ru was different. In case of using PEN substrate, it seems

that the root mean square roughness of Pt is significantly lower than with a Ru base layer.

7.5 X-Ray diffraction for films on SiO2, Polyimide and PEN

substrates

XRD scans of trilayer thin-films are shown in Fig. 7.6 (a,b) and (c,d). The Pt/Co/Pt

trilayer with tCo = 1.05 nm grown on SiO2 substrate, showed Co/Pt (111) texture with

multiple peaks that appeared at a range of theta values along with a weak appearance of peaks
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Fig. 7.6 X-ray diffraction scans of the (a,b) Pt15.0/(tCo)/Pt3.0 nm and (c,d)
Ru15.0/(tCo)/Ru3.0 nm trilayer thin-films grown on SiO2 substrate.
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Fig. 7.7 X-ray diffraction scans of the (a,b) Pt15.0/(tCo)/Pt3.0 nm and (c,d)
Ru15.0/(tCo)/Ru3.0 nm trilayer thin-films grown on polyimide substrate.
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Fig. 7.8 X-ray diffraction scans of the (a,b) Pt15.0/(tCo)/Pt3.0 nm and (c,d)
Ru15.0/(tCo)/Ru3.0 nm trilayer thin-films grown on PEN substrate.
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of Ru/Co/Ru using 1.05 nm thickness of cobalt. Sharp peaks in XRD patterns indicated good

crystalline structure. The beginning of the curve profile that starts of the XRD profile within

the region 2θ = 10o to 30o may be coming from the SiO2 substrate as it shown in Fig. 7.6

(a,b) and (c,d).

Fig. 7.7 (a,b) and (c,d) show x-ray diffraction pattern of the Pt15.0/Co(1.05-1.15)/Pt 3.0

nm and Ru15.0/Co(1.05-1.15)/Ru 3.0 nm trilayer thin-films respectively that were grown

on polyimide substrates. The sharpness of the (111) peak for both Pt15.0/Co1.05/Pt3.0 nm

and Ru15.0/Co1.05/Ru3.0 nm was improved, where, all the peaks appeared in comparison

with silicon dioxide especially at tCo = 1.15 nm. The higher peaks that is shown in the region

between 2θ = 10o to 30o may be coming from the polyimide substrate as it shown in Fig.

7.7.

Fig. 7.8 (a,b) and (c,d) show the diffraction pattern of the Pt15.0/tCo/Pt3.0 nm and

Ru15.0/tCo/Ru3.0 nm trilayer thin-films respectively using the polyethylene naphthalate,

where the thickness of cobalt was 1.05 nm and 1.15 nm respectively. In Fig. 7.8 (a,b),

the tPt /tCo/tPt thin-film shows the disappearance of the peaks while in case of tRu/tCo/tRu

thin-film, the Ru (002) peak appeared. The curve and the broad peak that appear in Fig. 7.8

7.7 (a,b) and 7.7 (c,d) respectively may be coming from the PEN substrate. The reason of the

higher quality films of Pt compared to the Ru came from the difference of surface energy

roughness for both Pt and Ru (non-magnetic) materials.

Where, in general, the surface energy of a metal is proportional to the number of broken

bonds at the surface. In case of Pt fcc (111) and Ru (200) surfaces, it is clear that the surface

energy increase along with the corrugation of the surface, being lowest value for the Pt (111)

surfaces and highest value for the Ru (200) surfaces. Moreover, the growth mode of Pt

grown on substrate is Volmer Weber while the growth mode of Ru grown on substrate is

Stranski-Krastanove [higher interface energy].
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7.6 Influence of Ru and Pt buffer layer on the magnetisa-

tion using Hall effect on rigid/flexible substrates

To determine the optimised materials and thicknesses for the establishment of the PMA, the

effects of tCo and tBu f f er thicknesses on magnetic behaviour was comparatively studied in

Ru/Co/Ru and Pt/Co/Pt thin films. Fig. 7.9 illustrates the measured Hall hysteresis loops

with the applied magnetic field out-of-plane, for both ruthenium and platinum buffer layers.

These results show that the coercive field (Hc) varied with increasing cobalt thickness. The

deposited films all show out-of-plane magnetisation, with the remanence ratio of M(H)/MS

= 1, which indicates a dominant PMA.

In Fig. 7.9 (a-e), the hysteresis loop width increased with increasing cobalt thickness

from 0.75 to 0.85 nm and then decreased from 0.95 to 1.15 nm. While in the case of Fig. 7.9

(f-k), the width of the hysteresis loops increased with increasing thickness of cobalt from

0.75-1.05 nm [to be out-of-plane] and then decreasing at tCo = 1.15 nm [to be in-plane].

The values for the coercive field as a function Co thickness for Ru and Pt buffer layers are

compared in Fig. 7.10.

It is shown that the coercive field in case of Ru/Co/Ru thin-films was significantly smaller

than that of Pt/Co/Pt thin-films [the values has been illustrated in Figs. 7.9, 7.11 and 7.12].

In Ru/Co/Ru thin-films, Hc increased when the cobalt thickness increased from 0.75 nm to

0.95 nm and the reduced at 1.15 nm cobalt thickness. In Pt/Co/Pt thin-films, the increase

in Hc was shown from tCo = 0.75 nm to 0.85 nm and then decrease from 0.85 nm to 1.15

nm. For Co layer thickness, larger than 0.75 nm, in-plane anisotropy was indicated from the

in-plane M-H loops shown as inset in Fig. 7.9 in case of Pt/Co/Pt films.

Fig. 7.11 shows the experimental field dependence of the normalized magnetization

M/MS(H) for Ru15.0/tCo (0.75-1.15)/Ru3.0 nm and Pt15.0/tCo (0.75-1.15)/Pt3.0 nm thin-
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Fig. 7.9 Hysteresis loops for both Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm using
SiO2 substrate. Note different magnetic field scales for Pt and Ru data.
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Fig. 7.10 Comparison of coercive field values with error bars for Ru15.0/(tCo)/Ru3.0 nm and
Pt15.0/(tCo)/Pt3.0 nm on SiO2 substrates as a function of Co thickness.

films on polyimide substrates, measured in an external magnetic field H applied in the

direction normal to the film surface.

For the Ru buffer layer, it is clear from Fig. 7.11 (g-j) that the coercivity of the hysteresis

loops increased gradually until tCo reaches 0.95 nm, and then decreased as the Co thickness

increased from 1.05 nm to 1.15 nm. In Fig. 7.11 (a-e), for the Pt buffer layer, when tCo

increased from 0.75 nm to 0.85 nm, the hysteresis loops increased then it decreased gradually

until reaches to 1.15 nm. The reason behind the study of out-of-plane anisotropy was to

understand how spontaneous magnetism can be vertically oriented on a surface, while the film

shape tends to direct the magnetization strongly in the plane of the film. The Pt/Co/Pt system

displays a perpendicular magnetic anisotropy at room temperature for a variety of thicknesses

of cobalt. The coercivity increased with increasing Co thickness and the magnetisation

remains perpendicular until the tCo reaches 1.15 nm. Fig. 7.12 illustrates the coercive field

for both Ru and Pt trilayer thin-films as a function of cobalt thickness on polyimide substrates.

In the Ru case, Hc increased from tCo = 0.75 nm to 0.95 nm then it was reduced up to 1.15
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Fig. 7.11 Hysteresis loops for both Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm using
polyimide substrate. Note different magnetic field scales for Pt and Ru data.
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nm cobalt thickness. In contrast, for Pt trilayer thin films, from tCo = 0.75 nm to 0.85 nm Hc

increased slightly then decreased more significantly and approximately linearly from 0.85

nm to 1.15 nm cobalt thickness.

Fig. 7.12 Comparison between coercive field values with error bars for Ru15.0/(tCo)/Ru3.0
nm and Pt15.0/(tCo)/Pt3.0 nm using polyimide substrate.

Typical Hall hysteresis loops that were measured on multilayer samples deposited on

PEN substrates are shown in Fig. 7.13. These samples have different thicknesses for the seed

layer 15.0 nm and the capping layer 3.0 nm and show a range Co thicknesses. The loops

show in most cases clear perpendicular magnetic anisotropy with a remanence ratio of 1.0.

In Fig. 7.13 (a-e), for the Pt buffer layer, the hysteresis loop decreased with increasing Co

thickness from 0.75 nm to 1.15 nm. While for the Ru buffer layer, the loops increased from

tCo = 0.75 - 1.05 nm then it decreased at tCo = 1.15 nm as it shown in Fig. 7.13 (f-j).

Fig. 7.14 summaries the change of coercivity as a function of cobalt thickness. For the

case of Pt15.0/tCo (0.75-0.85)/Pt3.0 nm, the coercive field decreased with increasing cobalt

thickness, before reaching a constant value above tCo = 1.05 nm. In Fig. 7.14, in the case
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Fig. 7.13 Hysteresis loops for both Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm using
PEN substrate. Note different magnetic field scales for Pt and Ru data.
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Fig. 7.14 Comparison between coercive field values with error bars for Ru15.0/(tCo)/Ru3.0
nm and Pt15.0/(tCo)/Pt3.0 nm using PEN substrate.

of Ru trilayer thin films, the coercive field increased from 0.75 nm up to 1.05 nm cobalt

thickness then fell for 1.15 nm thick cobalt.

7.7 Dependence of the coercive field on Ru and Pt buffer

layers on rigid/flexible substrates

Typical Hall hysteresis loops that were measured on multilayer samples deposited on SiO2,

polyimide and PEN substrates are shown in Fig. 7.15 (a,b). In Fig. 7.15 (a), the Ru/Co/Ru

system displays a perpendicular magnetic anisotropy at room temperature for a variety

of thicknesses of cobalt. The coercivity increased with increasing Co thickness and the

magnetisation remains perpendicular until the tCo reaches 1.15 nm. Fig. 7.15 (b) illustrates

the coercive field for both Pt/Co/Pt trilayer thin-films as a function of cobalt thickness on

SiO2, polyimide and PEN substrates. In the Ru case, Hc increased from tCo = 0.75 nm to

0.85 nm then it was reduced up to 1.15 nm cobalt thickness.
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Fig. 7.15 (a,b) Coercive field for both Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm on
SiO2, polyimide and PEN substrates respectively as a function of the cobalt thickness. The
error bars are very small.
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7.8 Dependence of the Hall Resistivity on Ru and Pt buffer

layers on rigid/flexible substrates

This section focus on the determination of longitudinal resistivity for both Pt/Co and Ru/Co

trilayer thin films. It is well known that there is a major correlation between longitudinal

resistivity and grain size [200]. The grain size and also the film morphology are important to

determine the resistivity of film. Therefore, in order to have a comprehensive understanding

this study is focus on showing the link between the resistivity and film morphology.

The Hall resistivity with Ru and Pt buffer trilayers on SiO2 substrates is presented and

it was calculated using ρxy = R0 B, where R0 is Hall coefficient and B is magnetic field.

Fig. 7.16 shows the variation of Hall resistivity with varied thickness of cobalt tCo for

Ru15.0/tCo/Ru3.0 nm and Pt15.0/tCo/Pt3.0 nm thin-films.

For the Ru case on SiO2 substrate, the Hall resistivity increased slightly with cobalt

thickness increased from 0.75 nm to 1.05 nm and then decreased at 1.15 nm cobalt thickness.

For Pt/Co on SiO2, the Hall resistivity is roughly constant with increasing cobalt thickness.

The Hall Resistivity with Ru and Pt buffer on polyimide substrates for thicknesses of the

cobalt layer in NM/tCo/NM multilayers at room temperature are shown in Fig. 7.16 (b).

The Hall resistivity increased with increasing cobalt thickness for Ru layers within the Co

thickness range 0.75 nm to 1.05 nm and then fell dramatically for tCo = 1.15 nm. While, in

the Pt case, the resistivity increased up to a Co thickness of 1.05 nm and then fell slightly for

Co thickness of 1.15 nm.

The Hall resistivity with Ru and Pt buffer on PEN substrates for thicknesses of the

cobalt layer in NM/tCo/NM multilayers at room temperature are shown in Fig. 7.16 (c).

For Ru15.0/tCo/Ru3.0 nm the Hall resistivity decreased with increasing cobalt thickness.

However, it was always larger than Pt15.0/tCo/Pt3.0 nm sample series, where it appears that
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Fig. 7.16 (a,b,c) Hall resistivity for both Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm
on SiO2, polyimide and PEN substrates respectively as a function of the cobalt thickness.
The error bars are very small.
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Fig. 7.17 (a,b) Hall resistivity for both Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm on
SiO2, polyimide and PEN substrates respectively as a function of the cobalt thickness. The
error bars are very small.
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the Hall resistivity is approximately stable for Co thicknesses from 0.75 nm to 0.95 nm,

which later increases at tCo = 1.05 nm and decreases at tCo = 1.15 nm.

In Fig. 7.17 (a), in case of using PEN substrate, the increase in resistivity was shown

from tCo = 0.75 nm to 0.85 nm and then decrease from 0.85 nm to 1.15 nm. While similar

trend was shown for both SiO2 and polyimide substrates. The resistivity increased from tCo

= 0.75 nm to 1.05 nm then it reduced at tCo = 1.15 nm. In Fig. 7.16 (b), the Hall resistivity

increased from tCo = 0.75 nm to 1.15 nm for all cases SiO2, polyimide and PEN substrates.

7.9 Analysis of results and discussion

The focus of this chapter is to compare the role of Ru and Pt in the formation of PMA

in NM/Co/NM multilayers. This comparison combines structural analysis using Atomic

force microscopic and x-ray diffraction with magnetic measurements from the Hall Effect. In

thin-film systems, such as Co/Pt [81] and Co/Pd [201], out-of-plane remnant magnetisation

is associated with the perpendicular magnetic anisotropy that occurs over a limited range of

ultra-thin thicknesses of the ferromagnetic layer. The physical origin of this PMA is linked to

the increasing importance of the ferromagnet surfaces in the ultrathin limit. The anisotropy

is also sensitive to the details of the surface structure, the crystallographic orientation and

interfacing with other thin-film materials, such as Pt or MgO [201]. The ferromagnetic film

structure and interfacial roughness can be influenced by the buffer layer, which is likely to

be affected by the substrate which may influence the difference between Ru/Co and Pt/Co

thin-films.

To understand the structure, the results from using atomic force microscope are combined

with a structural investigation using XRD. The XRD results from the films are illustrated

in Fig. 7.18 for Pt/Co/Pt. Where it is clear that the XRD data showed only one peak at 40o

for Pt (111). This indicates the coherent growth of the trilayered (TL) Co/Pt (111) structure.

For Pt/Co/Pt thin-film sample an intense peak at 2θ = 40o corresponds to (111) fcc Pt. The
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Fig. 7.18 (a,b,c). XRD patterns with 15 nm tPt with tCo = 1.05 for SiO2, polyimide and PEN
respectively. (d,e,f). XRD patterns with 15 nm tPt with tCo = 1.15 for SiO2, polyimide and
PEN respectively.

2θ position was consistent with the value reported for fcc Pt. The intense Pt (111) peak

shows a high crystal quality at tCo = 1.05 nm as it shown in Fig. 7.18 (a,b,e). In the situation

of Pt/Co thin-films, the growth was more like Volmer-Weber (VW) [202], which leads to

stress-free thin-film. In Fig. 7.18 (a), due to the good PMA observed previously, an intense

Pt (111) peak would be expected due to the correlation between structural and magnetic

properties i.e. magnetic anisotropy [203, 115]. The reason behind the absence a significant
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Fig. 7.19 (a,b,c). XRD patterns with 15 nm tRu with tCo = 1.05 for SiO2, polyimide and PEN
respectively. (d,e,f). XRD patterns with 15 nm tRu with tCo = 1.15 for SiO2, polyimide and
PEN respectively.

Pt (111) peak in Fig. 7.18 (d) to may be some mistake in the measurements that was done.

Also, in Fig. 7.18, in the case of SiO2 a slight change in intensity may be an artefact of

the alignment procedure again (flatter substrate is more prone to this problem). In case of

polyimide Fig. 7.18, the peak has shifted compared to SiO2 case and is less intense and there

is no significant difference with Co thickness as expected. While, in the case of PEN as
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it shown in Fig. 7.18, the peak has shifted further to lower angle, no peak for thicker Co

probably also a measurement alignment artefact. Also, in Fig. 7.18 (c,f), in case of PEN, the

higher roughness of buffer layer may be linked to the disappearance of peaks and suggests a

poor crystal quality of structure. This may be related to the large average maximum RMS

roughness for PEN of 1.4 nm. On the other hand, in Fig. 7.18 (b,e), in case of polyimide

at tCo = 1.15 nm, it was found that there was an improvement of anisotropy due to a higher

crystal quality of structure, confirming that there is a correlation between a magnetic property

[i.e, anisotropy] and structural characterization [203, 115]. It was found that there was no

significant change in the texture of peaks, that means the anisotropy was approximately same

or close to each other at tCo = 1.05 nm and 1.15 nm respectively and the anisotropy seems to

be enhanced more in case of polyimide substrate at tCo = 1.15 nm.

In the situation of Pt/Co/Pt that was grown on polyimide substrate, it appears that there

was a slight shifting; where the intensity of peak was decreased. This may be linked to a

decrease of anisotropy. Moreover, according to the results of roughness of Ru buffer layer, it

was found that the corrugation was higher than in Pt case. The analysis of these differences

might be due to the result of growing Ru/Co in a structure similar to Stranski-Krastanov

mode which was explain in chapter 3. Several studies have looked at the deposition of Co

on Ru, showing that it can lead to the formation of islands in a Stranski–Krastanov growth

mode [189, 204–206]. The surface interface energy increases in this mode leading to lattice

strain, which is due to the distortion of cobalt lattice due to the mismatch between Co and Ru

and may also be affected by the higher roughness in the case of using Polyimide and PEN

substrates.

In Fig. 7.18 (c,f), for thin Pt/Co films that were grown on PEN substrate, the peaks

disappeared consistent with decreasing of anisotropy and with increasing surface roughness.

Surface/interface roughness was shown to have an important influence on the demagnetizing

field [207]; When the thickness of cobalt was 1.05 nm and 1.15 nm respectively, the dis-
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appearance of the peaks Pt/Co/Pt thin-film was due to the poor crystal quality of thin-film.

Moreover, this may be coming from the higher roughness of polyethylene naphthalate as is

noted in the section on atomic force microscope measurements. In the case of Ru/Co/Ru

thin-film, the Ru (002)/Co was present. According to Kolesnikov[116], it was found that

the lattice mismatch on the Ru/Co due to the strain leads to distortion of the Co lattice. The

average maximum root mean square roughness for Ru grown on PEN substrate is 1.5 nm and

this caused to a shifting in the peak angle as it shown in Fig. 7.19.

In Fig. 7.19, in case of Ru buffer layer grown on PEN, it is shown that there is a shifting

of the Co/Ru lattice peak position at 2θ with different substrate material, which may suggest

that the roughness leads to increase the strain of the film. Also, it is very interesting to note

that the intensity of the peak decreased and that there was an appearance of small peak at 2θ

= 46.25o for the higher roughness of the 15 nm Ru buffer. Hence, this is because of the loss

of lattice correlations of the structure [114] where the maximum average root mean square

roughness was 1.5 nm. The conclusion of this result that the increasing of roughness plays

an important role in defining the decreasing of anisotropy for Co/Ru trilayers and also it was

reduced the quality crystal with coherent Co/Ru trilayers structure.

The grain sizes in Fig. 7.20 were calculated from the XRD peaks using Scherrer formula

[208]. For conventional XRD this is the out-of-plane grain size D, given by the Debye-

Scherer equation D = 0.9 λ /β Cosθ B, where, λ is the wavelength of the incident x-ray beam,

θB is the diffraction angle and β is the FWHM at θB in radians. In Fig. 7.20 (a.c), it is shown

that the grain size in the case of using a Pt buffer layer was bigger than in case of using Ru

buffer layer as it shown in Fig. 7.20 (b.d). The anisotropy is higher in case of SiO2 which was

associated with high crystal quality due to smooth surface [lower RMS roughness = 0.25 nm].

With increasing of the full width half maximum the perpendicular magnetic anisotropy was

decreased [209]. Also, the higher values of FWHM appeared in Ru samples in comparison

with Pt samples.



7.9 Analysis of results and discussion 149

The grain size of the magnetic material constitutes an important structural factor that

affects decisively the magnetic properties i.e, the magnetic anisotropy. Some investigations

were conducted on the impact of microstructure on magnetic properties of magnets, where

the impact of the improvement of the grain size is linked with the measured M-H Hall

hysteresis behaviour that is related to the anisotropy [209] Ke f f , which increases linearly

with tPt [115]. According to these studies, when the diffraction peaks indicate a high crystal

quality, this means the anisotropy was higher compared to broader, or less intense diffraction

peaks [23, 114, 115]. The increase in peak intensity relates to the increase in grain size of

the thin-film and any shift in peak mode is due to stress as the film thickness increase. It is

well known that very thin film contain different defects points [210].

In Fig. 7.10, 7.12 and 7.14, the use of Ru buffer layer, lowers coercive field values

were found due to decrease in grain size, which leads to decrease in perpendicular magnetic

anisotropy. While, in the case of using Pt buffer layer, the highest value of coercive field

shown because of the bigger grain size. Almost all the deposited films showed the out-of-

plane loops with a remanence ratio of MR/MS = 1, which indicates the dominant PMA. The

higher coercive field in Pt/Co/Pt compared to Ru/Co/Ru appears to be generally related to

the improved crystallinity of the Pt (111) buffer layer over that of the Ru (002) buffer layer,

which in turn appears to be correlated to the increased surface roughness of Ru over that

of Pt buffer layers. This is considered here as the first reason for why the coercive field of

Ru/Co/Ru trilayer thin-film is smaller than the coercive field of Pt/Co/Pt trilayer thin-film.

The second reason suggested is the smaller grain size of Ru/Co TL, which is linked to lower

coercive field.

For more clarification, the broken bonds at the surfaces of a thin-film or interface in a

multilayer leads to a change in the crystal fields and energies of dipole of the atoms at these

surfaces [24]. These interfaces will usually cause uniaxial anisotropy. Where, it is clear that

the energy of surface increased along with corrugation of the surface which is being lowest
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Fig. 7.20 (a,b,c,d) Grain size for tPt 15.0/tCo/tPt 3.0 nm and tRu 15.0/tCo/tRu 3.0 nm values at
tCo = 1.05 nm and 1.15 nm respectively. (a’,b’,c’,d’). Diagrams illustrate the comparison
between the full width half maximum for both tPt 15.0/tCo/tPt 3.0 nm and tRu 15.0/tCo/tRu
3.0 nm trilayer thin-film using different kinds of substrates.
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for the fcc (111) surfaces [24] because of smooth surface. While, In case of Ru (002) the

energy of surface was higher due to higher strain and roughness/corrugation.

It was shown that ultrathin cobalt films containing a few thick monolayers have an

out-of-plane easy axis, transform to in-plane direction with an increasing film thickness

[151]. Where the transformation from out-of-plane to in-plane was shown in the range of

(tCo) = 0.95 to 1.15 nm for Pt15.0/(tCo)/Pt3.0 nm. Rough surfaces/interfaces of thin films

lead to scattering of electron and hence to electrical resistivity of the film. In the case of

Ru15.0/(tCo)/Ru3.0 nm and Pt15.0/(tCo)/Pt3.0 nm, it was seen that Hall resistivity decreased

with increasing of cobalt thickness (tCo). However, it was still higher than the case of using

Pt15.0/(tCo)/Pt3.0 nm. The reason for higher Hall resistivity of Ru/Co may be related to

increase of roughness which can increase scattering. It was shown that the Hall resistivity

increased with increase cobalt thickness and this was associated with a decrease of the

anisotropy with increasing cobalt thickness from 0.75 to 1.15 nm. Hence, fcc cobalt-films

of a few monolayer thick have a perpendicular easy axis, which transforms to in-plane as

the film thickness increases. This anisotropy was extremely dependent on the details of

the surface structure, and hence affected by the impurity adsorption, surface reconstruction,

relaxation, segregation, and other properties [24].

In general, to give more insight on the structural role for both Pt and Ru buffer layers,

XRD measurements were carried out. The MLs grown on Pt and Ru buffer layers showed

out-of-plane hysteresis loops at tCo = 1.05 nm. With further increase of cobalt thickness

tCo = 1.05 nm, the PMA decreases and this was identical with Kulkarni [209], where PMA

decreases at tCo = 1.05 nm. Cobalt thickness more than 1.15 nm is the transition point from

out-of-plane to in-plane easy axis direction. This result might be coming from the formation

of many crystal grains at the interface which leads to poor quality of crystalline structure.

The result of the surface morphology investigation of single-layer Pt and Ru films by

means of AFM showed that the buffer layer smoothen the surface of the naturally oxidized
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SiO2 substrate. The root mean square roughness was observed at tBu f f er = 15.0 nm. However,

increasing surface roughness is observed to be greater in Ru compared with Pt for all

substrates. PMA in Co films may be attributed to large strain due to an in-plane expansion of

cobalt, and in increase of the contribution for the interface between Co and Ru nonmagnetic

metal. This contributions have been made to link between the magnetic anisotropy with

atomic structure by estimating the energy of magnetoelastic anisotropy from the strain in the

films [211, 212, 25, 213, 214]. Beyond the thickness of the layer, the growth and strain of

a coherent layer can no longer be absorbed, and the strain was expected to be relaxed with

increasing cobalt thickness [188]. In the case of a Ru buffer layer, the strain has been shown

to be higher than the case of using a Pt buffer layer. A Ru buffer layer 15.0 nm thick was

suggested to have a less homogeneous surface, so Ru/Co trilayer thin films have a poorer

crystal quality and a weaker PMA. This comes from increased roughness of Ru 15 nm that

contributed to the decrease in the quality of the crystal structure and PMA.

According to Fig. 7.16 (a,b,c), it was shown that the Hall resistivity in the case of using 15

nm Pt buffer layer is smaller than in case of using 15 nm Ru buffer layer. This is because, in

Pt15.0/tCo/Pt3.0 nm case the grain size was larger, and the scattering leading to resistivity was

lesser. On the other hand, higher Hall resistivity was found in the case of Ru15.0/tCo/Ru3.0

nm with smaller grain sizes. Increasing Hall resistivity with 15.0 nm high seed layer of Ru

can be linked to shortness of the effective free path. In contrast, lower Hall resistivity and

smaller variation with increase of thickness of cobalt were found in case of using Pt seed

layer because of longer mean free path. In general, the grain boundaries had an effect on the

Hall resistivity. The reduction in grain size, increases the probability of dispersion at grain

boundaries and increases resistivity [200]. This situation occurred when the Ru buffer was

used.
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7.10 Conclusion

This study compared the viability of Ru and Pt as a buffer layers for producing high - quality

Pt/Co TLs with PMA. In comparison to the TLs sputtered on Pt buffer layer the TLs using

Ru buffer layers exhibited lower PMA. It was found that with increasing cobalt thickness

from 0.75 nm to 1.15 nm the PMA samples with Pt buffer layer was significantly higher

than Ru buffer layer. The enhancement of the PMA using Pt buffer layers was attributed to

smooth of layer growth with pronounced (111) fcc crystallographic orientation. This was

seen by using silicon dioxide substrate rather than the roughes polyimide and PEN substrates.

The perpendicular magnetic anisotropy was higher in the case of SiO2 in comparison with

Polyimide and PEN. Even though, the use of polyimide substrates showed Pt (111) textured

layers a XRD and a significantly decreased mean island height. A minimum roughness [0.25

nm] was achieved with 15 nm thick Pt (111) buffer layers on SiO2. It was found that the

effective anisotropy and coercive field of the Co layer were very sensitive to the buffer layer

material. The coercive field values increased approximately from 10 Oe of Ru in comparison

to about 1000 Oe for the Pt case. This was associated with the larger grains growth of Pt

while Ru has a smaller grains growth. The impact of surface roughness on the Hall resistivity

of the films was also found. Higher Hall resistivity was found in the case of Ru/Co/Ru in

comparison with lower Hall resistivity in the case of Pt/Co/Pt. This study was focused on the

interaction between morphology and magnetic properties of thin films. Moreover, it provided

a simple but powerful instrument, based on the buffer layer engineering, to enable significant

enhancement of PMA and coercivity of Ru/Co/Ru trilayers, making them suitable for wide

range of spintronic applications. The trilayers sputtered with Pt exhibited improvement of

PMA in comparison to trilayers with Ru layers. In particular, the Pt/Co/Pt buffer layers

allow to maintain magnetization out-of-plane up to cobalt thickness of 1.05 nm in the case of

SiO2 substrate, which was a significant increase compared to the maximum cobalt thickness

exhibiting PMA of 1.05 nm attained with Ru buffer layers. The improvement of PMA using
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Pt buffer layers was due to the growth of a layer with clear crystalline (111) orientation and a

coherent strain at tCo = 1.05 nm.

Silicon dioxide wafers had the lowest surface roughness and were used in the fabrication

of Pt/Co/Pt and Ru/Co/Ru TLs characterized by strong PMA. The AFM characterization of

Si/SiO2 under specific systems confirms the flattening of overlapping areas on the surface

of the thin-films compared with the use of polyimide and polyethylene naphthalate, leading

to smoothed morphology of the Pt/Co/Pt and Ru/Co/Ru films. The phase composition of

thin-films studied by XRD demonstrates the crystallinity of Pt/Co and Ru/Co thin-films.

The Hall effect hysteresis loops recorded under an external magnetic field orthogonal to the

sample surface reveal the PMA in these thin-films. The coercive field and effective anisotropy

field can be considerably enhanced by the thickness variation of the buffer layer. This study

was focused on the interaction between morphology or topography and magnetic properties

of trilayer thin films. This gives a simple but strong instrument dependence on the buffer

layer, which gives a significant improvement of PMA, making them appropriate for a broad

range of spintronic applications. The trilayers that were grown on Pt buffer layers showed

enhancement of PMA in comparison to trilayers that were grown on metallic Ru buffer layers.

The improvement of PMA using Pt buffer layers was due to the growth of a layer with clear

crystalline (111) orientation.



Chapter 8

Understanding magnetization reversal in

Pt/Co/Pt trilayer thin films on Silicon

Dioxide and Polyethylene Naphthalate

substrates

8.1 Previous Work

The dynamics of a domain wall (DW) is considered as the significant topic for multilayer

thin films of perpendicular magnetic anisotropy (PMA). Where, these magnetic objects

can be used in the binary information as carriers in the super density for storage systems.

However, the perpendicular magnetic anisotropy with high anisotropy have captured the

attention of many researchers recently [215–222]. Hence, there are many advantages of the

growing domain, and the motion steps have been found in ultra thin magnetic films of vertical

anisotropy. The reflection properties of multilayers are determined by the interlayer coupling

through a non-magnetic separator and the response of the magnetic layers of the applied
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magnetic field. Various magnetization reversal advantages occurred in such structures that

may be caused due to the advantages of magnetization reversal in single films, while others

occur due to the interlayer coupling. Observing a detailed study was not found yet for the

nucleation and growth of domain walls in Pt/Co/Pt ultra-thin structures having an equal Co

thickness layers and various Pt spacer thickness, while the magnetic field is vertical in reverse.

Micromagnetic calculations [39] were obtained in 2012; which confirmed empirically that

the important role of Dzyaloshinskii-Moriya interaction (DMI) [223, 37, 38] at interfaces

between ferromagnetic (FM) and heavy nonmagnetic elements [50, 224–231] spontaneous,

skyrmion, and a higher velocity has been obtained in asymmetric tPt 2.0/tCo 0.5/tPt 2.0 nm.

The dynamics of magnetization reversal have been studied in ultrathin cobalt films [232–

235, 156, 236]. It was shown that the reversed domains have grown at the same locations and

grow isotropically. Also, the velocity of domain wall in ultrathin cobalt films were measured

for a vast range of magnetic fields and temperature. Moreover, in other studies of [Co/Pt]n

multilayers, the magnetisation reversal has been found after many different repetitions of

ultrathin cobalt films [237–245]. This study present the magnetic domain-wall velocity

measurements. It also showed experimentally that the magnitude of domain wall velocity

is sensitive to the environment of the interfaces including the Pt layer thickness. In this

study, the magnetization of domain wall structure has been presented using the polar Kerr

microscopy.

8.2 Introduction

With regards to the previous chapters that examined the effect of the thicknesses of the

ferromagnetic and nonmagnetic layers on the perpendicular magnetic anisotropy, this chapter

presents the magnetization reversal behavior of tPt /tCo/tPt thin-films observed using polar

Kerr effect microscopy. An explanation about the nucleation of reversal domains, bubbles

and domain wall propagation in the presence of an out-of-plane field for tPt /tCo/tPt thin
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films has been explained here. This chapter also reviews the various studies reported in the

literature and compare these studies with the experimental results obtained in this work.

8.3 Experimental work

For this study, tPt /tCo/tPt films with perpendicular magnetic anisotropy were deposited on

an Si substrate with a 150 µm thick SiO2 layer and on a 125 µm polyethene naphthalate

by DC magnetron sputtering. Prior to deposition, the substrates were cleaned with acetone

and isopropanol. The tPt /tCo/tPt thin-film trilayers were deposited at room temperature by

DC magnetron sputtering from a base pressure of 1.0 x 10
7

Torr. Argon with a purity of

99.998 % was introduced as a working gas. The deposition rates of Pt and Co were 0.1 Å /S

and 0.2 Å /S respectively measured using a quartz crystal monitor calibrated from thickness

measurements using x-ray reflectivity. The diameter of circular shape masked samples was 16

mm. The images of magnetic domain structures were obtained using a magneto-optical Kerr

effect microscope magnetometer systems from (Evico), with a vertical field electromagnet.

The mechanical stabilization tools for a standard microscope with a high-quality optics, assist

in obtaining a high-resolution domain imaging.

8.4 Results of experimental study of field induced magneti-

sation reversal

Because of the importance of the ferromagnetic/nonmagnetic trilayer thin films for various

technological applications fundamental properties, such as magnetization reversal have been a

major key focus area of active research through several decades [246–250]. However, in spite

of of the large amount of studies, a lot of aspects are still not well understood as magnetization

reversal is a collective phenomenon [251], just as ferromagnetism is, but moreover it is also
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very sensitive in nature to changes in structure or composition. Magnetization reversal is

a dynamic phenomenon that predict the states of magnetization correctly. After reversal it

should be taken the account of the dynamic behaviour of the system. Symmetry bubbles

means the process of magnetization reversal, starting with the ”white” status through the

emergence of a limited number of ”black” irregular areas these images show that up-to-

down and down-to-up reversals of the magnetisation are very similar. While asymmetric

bubbles mean the changing of the bubble domain structure, decreasing the threshold of

magnetization reversal and asymmetrical of bubbles for both up/down and down/up direction

of magnetization. Therefore, this study focus on imaging of magnetization reversal in

tPt /tCo/tPt TL thin-films on rigid and flexible substrates as a function of Co and Pt thickness.

For more understanding of the symmetric and asymmetric bubble expansion, this study was

performed in the presence of a magnetic field. The Domain Wall of tPt /tCo/tPt TL thin-films

was studied using (MOKE) microscopy.

8.4.1 Imaging magnetic domain structure as a function of Co thickness

In this study the nucleation and growth of domains was studied in tPt /tCo/tPt trilayer with

different Co thicknesses. The magnetic field induced magnetic reversal for tPt /tCo/tPt trilayers

using wide field Kerr microscopy was observed as a series of domain images captured at

a constant time interval. Examples of differential MOKE microscopy images (i.e. with

structural background subtracted as a function of Co thickness are shown in Fig. 8.1 (Pt

thickness 5.0 nm) and Fig. 8.2 (Pt thickness 3.0 nm) respectively. These images were

obtained by averaging several successively acquired images as the magnetic field was swept,

and thus, each single image shows some domains expanding in time. It is observed that

when the out-of-plane field was applied, a number of magnetic domains are nucleated and

these then grow rapidly. Fig. 8.1 (a,a’-b,b’-c, c’,d,d’) and Fig. 8.2 (a,a’-b,b’-c, c’,d,d’)

illustrated the process of magnetization reversal, starting with the ”white” status through the
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Fig. 8.1 MOKE images of the evolution of domain structure in the ultra thin cobalt as a
function of Co thickness for tPt5.0/tCo/tPt5.0 nm (a, a’). with H = +451 Oe and -334 Oe, (b,
b’). with H = +169 Oe and -170 Oe, (c, c’). with H = +280.7 Oe and -278 Oe and (d, d’). H
= +468 Oe and -464.9 Oe.
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Fig. 8.2 MOKE images of the evolution of domain structure in the ultra thin cobalt as a
function of Co thickness for tPt3.0/tCo/tPt3.0 nm, (a, a’).with H = +148.8 Oe and -148.2 Oe,
(b, b’).with H = +274 Oe and -271.2 Oe, (c, c’).with H = +254 Oe and -251.9 Oe and (d,
d’).with H = +367.1 Oe and -368.3 Oe.
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emergence of a limited number of ”black” irregular areas these images show that up-to-down

and down-to-up reversals of the magnetisation are very similar. The influence of cobalt

thickness on the magnetic properties of tPt /tCo/tPt nm trilayer is described below.

Reversal domains were observed for all cobalt thicknesses. For the thickness Pt/Co film

the domains were irregular in shape but for all other films circular "bubble" domains were

observed. The number of bubbles increased with an increase in the Co thickness from (tCo =

0.3 to 0.7 nm) in Fig. 8.1 and from (tCo = 0.4 to 0.6 nm) in Fig. 8.2. Also, when the cobalt

thickness increases the mean size of the domains observed decreases.

In Figs. 8.1 and 8.2, for a different range of cobalt thickness, the formation and spreading

of bubble domains were observed under variation of the magnetic field magnitude. Figs. 8.1

and 8.2 clearly show that when a circular domain expands under an out-of-plane magnetic

field, the center of the circular domain did not shift.

By increasing the cobalt thickness a reduced of bubble domains was obtained. Through

the analysis of the Kerr microscopy images for the bubbles of trilayer thin films with tCo

larger than 0.4 nm (after applying of magnetic field), the number of bubbles domain nucleated

increased in number but the grew less with further increase in magnetic field.

8.5 Imaging of magnetic domain structure as a function of

Pt thickness

The influence of the buffer layer thickness tPt on the magnetisation reversal was analyzed by

using different thickness of Pt layer (tPt = 2.0 nm, 3.0 nm and 5.0 nm), where the Co layer

has a thickness of 0.5 nm in all samples.

Fig. 8.3 (a, a’) showed that a Pt buffer layer equal to 2.0 nm changes the bubble domain

structure, decreasing the threshold of magnetization reversal and asymmetrical of bubbles

for both up/down and down/up direction of magnetization. While Figs. 8.3 (b, b’) and (c,c’)
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Fig. 8.3 MOKE images of the evolution of domain structure in tPt 2.0/tCo (0.5)/tPt t 2.0 nm
(a, a’). with H = +179 Oe and after subsequent magnetic field switch to H = -179 Oe. For
tPt 3.0/tCo (0.5)/tPt 3.0 nm (b, b’). with H = +274 Oe and after subsequent magnetic field
switch to H = -274 Oe. For tPt 5.0/tCo (0.5)/tPt 5.0 nm (c, c’). with H = +169 Oe and after
subsequent magnetic field switch to H = -169 Oe.

showed an increase in a number of bubbles domains nucleated in comparison to the thinner

Pt in Fig. 8.3 (a, a’).
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8.5.1 The domain nucleation site density vs cobalt and platinum thick-

ness

The magnetic domain nucleation site density can simply be found by taking the total number

of nucleation sites and dividing by the total image area.

Fig. 8.4 Domain walls by Evico Kerr microscope images for tPt 5.0/tCo0.6/tPt 5.0 nm as a
function of the direction of applied magnetic field H = -464.9 Oe using SiO2 substrate.

Each site was selected by using ImageJ program. Fig. 8.4 shows the number of reversal

(white) domains that was observed during reversal for a tPt 5.0/tCo 0.6/tPt 5.0 nm trilayer

thin-film, the domains are identified by using the ImageJ software. The area in ImageJ

appears in pixel units, so it was necessary to convert from pixel units to µm units. The

measured nucleation site densities versus cobalt thickness (0.3-0.6) nm is presented in Fig.

8.5 (a,b). While, the nucleation site densities versus cobalt thickness (0.4-0.7) nm is presented
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Fig. 8.5 (a,b) and (c,d) showed Log and linear nucleation site densities scales as a function of
the cobalt thickness for tPt = 5.0 nm and tPt = 3.0 nm respectively. While, (e,f) showed Log
and linear nucleation site densities scales as a function of the platinum thickness at tCo = 0.5
nm.
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in Fig. 8.5 (c,d). In both cases linear scale and log scales were presented in order to give

more clarity of the trend for numbers that were very near to zero. Fig. 8.5 (e,f) shows the

reverse domain nucleation site density as a function of the platinum thickness. Here, a low

nucleation site density was observed at 2.0 nm Pt thickness and it increased at 3.0 nm then

decreased a slightly for 5.0 nm platinum thickness with the cobalt thickness at 0.5 nm. It

was shown that the nucleation site density increased with increasing cobalt thickness. The

bubbles are pinned by using similar thickness of platinum in the top and buffer layers. While,

in another case by using different thickness of Pt with similar thickness of cobalt.

8.6 DW velocity as a function of Co and Pt thickness

Magnetization reversal occurs here via nucleation of domains with reverse magnetization

and growth of those domains by domain wall motion.

The movements of the domain walls were analyzed to study the domain wall velocities

as a function of cobalt and platinum thickness. The velocity of the domain wall (DWs) was

calculated from the time lapsed domain structure imaging. From the circular domains imaged,

the DWs velocity (v) was measured from the change in radius with a constant time step. The

radius of a bubble domain was calculated through the program Gwyddion. In the present

experiment, v was determined from 4 repeated measurements for each sample. Based on a

number of bubble domains, the variation of the DW velocities has been determined.

The DWs bubbles experience different effective fields +Hz and -Hz, leading to differences

in their velocities. In Fig. 8.6, a summary of the domain wall velocity is presented. Each

data point in these figures represents the average values of all bubbles radius per the growth

time of the single nucleation site in (second) over 5.521 × 104µm2 area in all captured

images. The start of bubble growth simply corresponds to the time at which the field of the

nucleation site begins to decline. The time at which bubble growth stops is set at the time

when saturation magnetization in a region is reached. Fig. 8.6 (a) summarized the results of
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Fig. 8.6 a. Domain wall velocity of a tPt 3.0/tCo/tPt 3.0 nm multilayers as a function of
magnetic field. b. coercivity of a tPt 3.0/tCo/tPt 3.0 nm multilayers as a function of magnetic
field. c. Domain wall velocity of a tPt 3.0/tCo/tPt 3.0 nm multilayers as a function of thickness
of cobalt.

DW velocity for different Co thickness for a fixed 3.0 nm Pt thickness. The field at which the

DW velocity is measured depends on the Co thickness because this determines the reversal

field and coercivity, which increases with Co thickness. However, the domain wall velocity

falls with increasing Co thickness, even though the magnetic field is higher. Fig. 8.6 (b)

shows typical (MOKE) loops measured on trilayer samples of the same Pt buffer layer and

capping layer (3.0 nm).

Fig. 8.6 (c) shows that the DW velocity decreases with increasing thickness of cobalt. Fig.

8.7 (a) summarizes the DW velocity with different cobalt thicknesses and a fixed Pt thickness
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Fig. 8.7 a. Domain wall velocity of a tPt 5.0/tCo/tPt 5.0 nm multilayers as a function
of magnetic field.b. coercivity of a tPt 5.0/tCo/tPt 5.0 nm multilayers as a function of
magnetic field.c. Domain wall velocity of a tPt 5.0/tCo/tPt 5.0 nm multilayers as a function of
thickness of cobalt. The black and red symbols refer to the down-up and up-down reversal
magnetization respectively.

of 5.0 nm. The behavior shows similar behavior to the samples with 3.0 nm Pt thickness, as

is shown in Fig. 8.6 (a) except for the thinnest Co sample, for which the reverse domains are

not circular bubbles. It is clear that the velocity decreased with increasing magnetic field.

Fig. 8.7 (b) shows typical (MOKE) loops measured on trilayer samples of the same Pt buffer

layer and capping layer (5.0 nm). Fig. 8.7 (c) shows the DW velocity as a function of cobalt

thickness for 5 nm thick Pt samples. At the lowest cobalt thickness, 0.3 nm, the DW velocity

is low. The velocity increased at 0.4 nm and then start to decrease with the increase of cobalt

thickness following a similar trend to the 3 nm Pt samples.
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Fig. 8.8 a. Domain wall velocity of a tPt /tCo (0.5)/tPt nm multilayers as a function of
magnetic field.b. coercivity of a tPt /tCo (0.5)/tPt nm multilayers as a function of magnetic
field in (Oe).c. Domain wall velocity of a tPt /tCo (0.5)/tPt nm multilayers as a function of
thickness of platinum. The black and red symbols refer to the down-up and up-down reversal
magnetization respectively.

Fig. 8.8 (a) summarize the results of DW velocity for different platinum thicknesses for

0.5 nm Co thickness. Fig. 8.8 (a) shows that the velocity of the domain walls decreased with

increasing Pt thickness. The MOKE hysteresis loops for these samples are presented in Fig.

8.8 (b). All loops showed a very square loop; which indicates a good perpendicular magnetic

anisotropy (PMA) which increased with the thickness of Pt from 2.0 nm to 5.0 nm. It is also

noted that an asymmetry in velocity was obtained in the tPt 2.0/tCo 0.5/tPt 2.0 nm sample,

with a higher velocity for DW reversal in one direction than the other. The DW velocity was
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reduced in sample with 3.0 nm to 5.0 nm of Pt. Fig. 8.8 (c), shows the DW velocity as a

function of Pt layer thickness.

8.7 DW mobility vs Co thickness and Pt thickness

Magnetization reversal occurs via nucleation of domains with reverse magnetization and

growth of these domains by domain wall motion. The velocity was analysed, and it was

noted that the wall motion occured at different magnetic fields.

Fig. 8.9 a. Domain wall mobility of a tPt 3.0/tCo/tPt 3.0 nm multilayers as a function of
thickness of cobalt (nm). b. Domain wall mobility of a tPt 5.0/tCo/tPt 5.0 nm multilayers
as a function of thickness of cobalt (nm). c. Domain wall mobility of a tPt /tCo (0.5)/tPt nm
multilayers as a function of thickness of platinum (nm). The black and red symbols refer to
the down-up and up-down reversal magnetization respectively.



170
Understanding magnetization reversal in Pt/Co/Pt trilayer thin films on Silicon Dioxide and

Polyethylene Naphthalate substrates

To more directly compare the DW velocity between samples the domain wall mobility

was calculated. The mobility is defined as the DW velocity divided by the magnetic field

at which the velocity was measured. The DW mobilities as a function of cobalt and Pt

thickness are compared. The general trend for mobility as a function of thickness of cobalt

and platinum are shown in Fig. 8.9 (a, b) respectively. While, the DW mobility was at tCo =

0.3 nm. Fig. 8.9 (c) showed the mobility was decreased from 2.0 nm to 3.0 nm and then it

was approximately stable at 5.0 nm platinum thickness.

8.8 Imaging Magnetisation reversal behaviour in Pt/Co/Pt

as a function of Pt thickness on flexible PEN substrate

To understand the effect of using different thickness of platinum on magnetic properties

microscopically, it is necessary to image the magnetic domain structures under magnetic field.

Fig. 8.10 (a,b and c) presents the magnetization reversal behavior of tPt /tCo/tPt multilayers

on PEN substrates observed using the polar Kerr microscopy. In contrast to tPt /tCo/tPt films

on SiO2, a huge smaller number of nucleation sites was found at the tPt = 3.0 nm as shown

in Fig. 8.10 (b). Fig. 8.10 (a’,b’ and c’) showed the associated magnetization loops of the

tPt /tCo (0.6)/tPt nm trilayer thin films on PEN. It was shown that the coercive field increased

with increasing the thickness of platinum from 1.0 nm to 3.0 nm to 5.0 nm.

The loop in Fig. 8.10 (b’) showed a very squareness shape with a relatively high

remanance which a magnetic easy axis at tPt = 3.0 nm. While in contrast to films on PEN,

Fig. 8.10 (c’) shows the loop was not very square at tPt = 5.0 nm. Fig. 8.11 a to f and

Fig. 8.11 g to l show images of the out-of-plane domain structures for films on SiO2 and

PEN, respectively. For the tPt /tCo/tPt films on SiO2, magnetization reversal proceeds via the

nucleation of small reversed domains followed by rapid uniform growth of these bubbles via

domain wall motion. The locations of the nucleation points appear randomly for any given
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Fig. 8.10 (a,b and c). Magneto-optic kerr effect microscopy images for a tPt /tCo (0.6)/tPt nm
multilayers on PEN as a function of the Pt thickness at H = 351.19 Oe, H = 339.4 Oe and H
= 471.2 Oe respectively. (a’,b’ and c’). The MOKE hysteresis curves of different thickness
of platinum 1.0, 3.0 and 5.0 nm respectively
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Fig. 8.11 Comparison of magnetisation reversal behaviours of Pt/Co/Pt multilayers on rigid
SiO2 and flexible PEN substrates. Hysteresis loop of tPt /tCo (0.6)/tPt (nm) for SiO2. Figs.
(b) to (f) are domain images taken at fields marked by point 1 to 5 in (a) at H = 485 Oe,
+456.6 Oe, + 471.2 Oe, + 502.9 Oe and -470 Oe, respectively. The white arrow in image (b)
represents the direction of applied magnetic field (H). While (g). Hysteresis loop of tPt /tCo
(0.6)/tPt (nm) for PEN. Figs. (h) to (l) are domain images taken at fields marked by point 1
to 5 in (a) at H = -198.1 Oe, +377.9 Oe, + 327.9 Oe, + 209.3 Oe and -347.9 Oe, respectively.
The red arrow in image (h) represents the direction of applied magnetic field (H).
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film and not linked to any clear substrate features, but probably reflect some localized energy

variations. In contrast, for trilayers on PEN, particularly for 5 nm Pt, the reversal proceeds via

extended nucleation of irregular domains and growth of domains in many locations; which

appears to follow some non-random lines and features associated with the flexible substrate.

8.9 Result and discussion

A detailed microscopy study has been undertaken on the nucleation and growth of domain in

tPt /tCo/tPt ultra-thin multi-layered structures on both rigid SiO2 and flexible PEN substrates.

Many researchers have focused on the topic of perpendicular magnetic anisotropy [215,

252, 253, 222]. However, here the focus is on the development of magnetic anisotropy

and magnetisation reversal behaviour of on rigid substrates. Magnetic thin films with

perpendicular magnetic anisotropy were deposited directly onto flexible substrates, this

process is receiving attention for the creation of flexible magnetic devices for sensors and

other applications in flexible electronics [254, 8] therefore, a common flexible substrates

PEN was used in this study and compared with the behaviour of similar films on traditional

SiO2 substrates. PEN is characterized by high flexibility is in expensive and widely used

in flexible electronics [255]. A detailed explanation of the results and analysis of imaging

magnetisation reversal is presented here. The sample of Co thickness from (0.3-0.6) nm

and from (0.4-0.6) nm exhibit square out-of-plane hysteresis with 100 % remanence, clearly

indicating PMA. This is due to the fact at low Co thicknesses the interfacial anisotropy causes

the magnetisation to be out-of-plane direction while dipolar energy dominates [256] at higher

thickness of cobalt, making the easy axis of magnetisation in-plane, thus showing the spin

re-orientation. Interestingly, the hysteresis loop appears to a decrease of the sharpness for a

Co thickness of 0.7 nm. This observation could be related to the stronger DW pinning effect

(switching becomes somewhat broader at large Co thicknesses) [156, 257]. Through the

analysis of Kerr microscopy images of the domains in trilayer thin films with tCo larger than
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0.3 nm and 0.4 nm, the number of domains nucleation increased in number and they grew

less. The role of magnetic anisotropy may also be important because of its role in defining the

DW width, where lower magnetic anisotropy give wider domain walls and higher magnetic

anisotropy give narrower domain walls. However, the thickness of the cobalt magnetic layer

was changing, thus there is an additional influence from the magnetostatic energy that can

affect the DW width, see Fig. 8.12. The effect was associated with the low wall area energy

in relative to the magnetic variation caused by dco [258].

Fig. 8.12 Sketch of the width of magnetic bubble for different thickness : (a). thin cobalt
thickness and (b). thick cobalt thickness respectively.
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The Pts coverage at low thickness 1.0-3.0 nm may not 100 % [256] and hence the Co

layer grown on top may have less Pt neighbours. As a result, some Co atoms may be contact

in direct with substrate surface which did not create PMA. Pt being a fcc crystal grows

predominantly in (111) orientation due to its lower surface energy compared to other planes

[202] Pt (111) is reported to promote PMA in ultrathin Co films [259].

For the manufacture of magnetic films on flexible substrates, an appropriate non-magnetic

layer is often needed to decrease the roughness of the flexible substrate, which can help

to ensure the continuity of the magnetic films and multi-layered structures and functional

performance [254, 8, 9]. The dependence on the buffer layer thickness can be understood; a

1.0 nm buffer Pt layer is not sufficiently thick to completely induce PMA at the Pt/Co interface

and the crystalline structure in the buffer Pt layer becomes enhanced as its thickness increases

from 1.0 nm to 3.0 nm [256]. The effectiveness of the buffer layer may be attributable to the

inter diffusion at the upper Co/Pt interface [260, 261]. In case of using PEN substrate, when

the Pt thickness increased from 1.0 nm to 3.0 nm, it was found that there was a significant

influenced of the increasing of multi-nucleation sites on improving the shape anisotropy to be

very squareness as it shown in Fig. 8.10 (b,b’). The reason of this may be coming due to the

decreasing of RMS at 3.0 nm Pt thickness. In PEN case, the disappearing of multi-domain

structure at 1.0 nm Pt thickness and at 5.0 nm it seems like inhomogeneous lines. This

disappearing of multi-nucleation sites was associated with increasing of the RMS roughness

when the platinum thickness was 1.0 nm and 5.0 nm as well [see chapter 6]. Therefore, at tPt

= 5.0 nm, the shape anisotropy was shown to have decreased where the hysteresis loop was

not square, as shown in Fig. 8.10 (c,c’).

The results were done here offer two different methods. Firstly; by increasing the Co

thickness (0.3-0.7) nm and fixed Pt thickness at 3.0 nm and 5.0 nm respectively; it was

found that it tends to minimize the DWs velocity, and DW mobility that was associated with

enhancing anisotropy. Secondly; by increasing the Pt thickness 2.0 nm, 3.0 nm and 5.0 nm
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as well and fixed the Co thickness thickness to 0.5 nm, it was observed that the DW velocity

is sensitive to the thickness of the non-magnetic Pt layers in tPt /tCo/tPt films. Hence, the

anisotropy was increased with increasing Pt thickness.

A magnetic bubble represents in Fig. 8.13 shows a domain of reversed magnetisation that

happens in a thin film with a uniaxial anisotropy, Ku, oriented perpendicular to the film. The

magnetisation reversal through the domain wall will not be sudden because the exchange

energy, Ex, leads to maintain the angles between neighboring spins small. Therefore, there is

a region of transition, termed the bubble domain wall, which has a width [262].

Hence, based on this explanation and according to the results of this study, it was found

that with increasing of the Co thickness, the anisotropy energy will be lowest when the

magnetic moments are aligned with the lattice of crystal axes therefore decreasing the

domain wall width. This was shown when the size of the magnetic bubble was decreased.

Thus, it leads to increase the perpendicular magnetic anisotropy. Hence, the reduction of

the velocity and the mobility of domain wall were confirm that there is an association with

reduced anisotropy energy and enhanced anisotropy. On the contrary, at lower Co thickness,

the size of magnetic bubble was larger when the magnetic moments are aligned parallel

to each other so the exchange energy will be decreased [263] and therefore this tends to

make the wall thicker, due to the repulsion between them [263]. Thus, the anisotropy will be

reduced.

Fig. 8.12 (a) refers to that at lower thickness of cobalt for example at tCobalt = 0.3 nm,

the width of bubble increased, meaning that the anisotropy will be low. While, Fig. (b) refers

to that at higher thickness of cobalt for example at tCobalt = 0.6 nm, the width of bubble

decreased, so the anisotropy will be high. Fig. 8.13, describes this further; when the wall

energy (h) is smaller than the wall width (δw), energy of wall, a bubble, if created, would

breakdown. While, when the wall energy (h) is larger than the wall width (δw) energy, it
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Fig. 8.13 Schematic figure to illustrate the spin up and spin down that is happen in domain
wall, black and white contrast.

takes only a little energy of wall to expand the wall compared to amount of magnetostatic

energy that the bubble provides [262].

The sample of 0.3 nm Co-layers exhibits a low velocity, low mobility and wider hysteresis

loop, implying the formation of a multi-domain structure during magnetic reversal [264, 151].

Hence, it is probably related to the non-uniform coverage of these very thin Co films that

is leading to decrease the DWs velocity. Moreover, the velocity and mobility of DWs were

decreased relative to the thickness increase of Co-layer. While, in the case of changing Pt

thicknesses, from the DWs velocity and mobility calculations, it was found at tPt = 2.0 nm, a

higher velocity and mobility of DWs were obtained. Hence, it was shown that a Pt buffer

layer equal to 2.0 nm basically changes the bubbles domain structures of magnetisation,
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decreasing the threshold of magnetisation reversal due to symmetrical bubbles for both

up/down and down/up direction of magnetisation. From tPt = 3.0 nm, to 5.0 nm an decrease

in DW velocity and mobility were observed. This decrease of DWs velocity and mobility

implies that the wall energy was decreased, and this is associated with increased anisotropy.

Also, this change can be attributed to an improvement in the fcc (111) texturing of the layer

of cobalt with thicker Pt buffer layers [86, 265, 123]. In addition, it is known that with

increasing of Pt thickness, a reduction in Co/Pt interface roughness can enhance interfacial

anisotropy; which should also contribute to an increase in coercivity [266].

8.10 Summary and Conclusion

It was found in this chapter there is a large correlation between the magnetic properties of

thin film and the morphology; in particular upon the role of magnetic anisotropy that is

represented by the ability of controlling PMA (Perpendicular Magnetic Anisotropy) in two

cases: [(lower magnetic anisotropy/widely domain walls structure during reversal (DWs)]

at lower thickness of cobalt or [(higher magnetic anisotropy/tight domain walls structure

during reversal (DWs)] at higher thickness of cobalt. Also, the results showed that the

magnetic reversal and anisotropy of Co/Pt multilayers depend strongly on the thickness of

the magnetic Co layer, as well as the thickness of the non-magnetic Pt buffer. Hence, the

interface transmission coefficient between Co and Pt layers plays an important role in this

study. The magnetization reversal measurements showed that increasing the thickness of

platinum leads to an increased coercivity; which is associated with a strong increase in the

effective magnetic anisotropy. Films grown on PEN showed an increased film roughness,

which in general, leads to a lower PMA than smoother films. This was shown to relate to the

pinning of the magnetic domains at the asperities. It was found that in low-coercivity ultrathin

Co films, the asymmetry in domain wall velocity and domain wall mobility increased with the

applied field. To examine the effect of Pt spacer layers on domain wall velocity, Pt thickness
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was increased from 2.0, 3.0 and 5.0 nm while keeping Co layer thickness fixed at 0.5 nm. It

was found that the velocity and mobility of domain walls were approximately stable. The

anisotropy in this case was increased due to decrease of the wall energy. Increasing the

nucleation site density was related to enhance perpendicular magnetic anisotropy as it shown

in both cases firstly; increasing Co thickness and fixed Pt thickness and secondly; increasing

Pt layer thickness and fixed Co layer thickness.





Chapter 9

Conclusion and future work

9.1 Conclusion

The aim of this thesis is to highlight and understand the effect of perpendicular magnetic

anisotropy using different kinds of substrate such as silicon dioxide, polyethylene naphtha-

late and polyimide substrates that is also influenced by the Hall resistivity due to Lorentz

effect. Moreover, the usage of non-magnetic materials (like: Pt and Ru) that grown on those

substrates consider as a beneficial for technological applications in data storage devices.

Giving a deeper understanding of the mechanisms of magnetic domain walls in trilayer

thin films through sputtering deposition is done in this study. The focusing is on out-of-

plane anisotropy magnetic materials, in particular the comparison between a Pt/Co/Pt and

Ru/Co/Ru trilayer system. A detailed structural analysis is presented, reducing the roughness

through using different buffer layer thickness. The study also includes an investigation into

the relationship between domain wall structure and enhancing magnetization behaviour. This

aimed to build a new knowledge about the relationship between domain wall and enhancing

PMA using rigid/flexible substrates. Further knowledge about the behaviour and mechanisms

for the control of domain walls in thin films will be highly relevant for the design of future
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spintronic devices.

This thesis starts with an overview of several significant topics in theoretical and exper-

imental physics, their history and how this project fits into the general scientific narrative.

Key theory was provided, necessary for the understanding of results and measurement tech-

niques and those techniques were described. The growth and characterisation of Pt/Co/Pt

samples was explained, showing how several structural and magnetic properties of the films

changed with deposition at room temperature. It was seen that the samples were crystalline

and strongly textured, with the degree of their total interfacial disorder depending on the

deposition at room temperature of the top ferromagnetic/non-magnetic bilayer and type of

substrates. Improving the anisotropy that is associated with the role of strong spin-orbit cou-

pling in different magnetic structure is currently a popular research topic in nanomagnetism.

This thesis reports different experiments on this significant topic, by studying different types

of substrates: silicon dioxide SiO2 polyimide and polyethylene naphthalate as a substrate,

where Pt/Co/Pt trilayer thin-film grown on them.

The magnetization measurements illustrate that increasing the thickness of Pt leads to

an increase in coercivity which is associated with a strong increase in effective magnetic

anisotropy. In general, films with a rough surface exhibit a lower PMA than smooth films.

This is attributed to pinning of the magnetic domains. But, since applications such as hard

disks need a smooth surface (danger of head crashes or a too large read/write distance), an

increased roughness is not suitable. Decreasing the root mean square roughness of the Pt

buffer layers plays an important role to improve the shape of hysteresis loop and this will be

correlated to improve perpendicular magnetic anisotropy with decrease in Hall resistivity.

The full-width-half-maximum of the XRD patterns using 15 nm for Pt and Ru buffer lay-
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ers allowed determmination of the perpendicular grain size. This was found to vary most

significantly between different substrate materials. Improvement in the crystalline structure

leads to enhance magnetocrystalline interface anisotropy. Ke f f increases linearly with tPt .

The grain size of the magnetic material is an important structural factor that effects the

magnetic properties. When the shape of peaks [higher high with lesser width] suggest high

crystal quality, this means the anisotropy is higher than for less intense, broader peaks, which

indicate lower crystal quality. The reduction in full-width-half-maximum peak width refers

to the increase in grain size of the thin-film. The shift in peak mode is suggested to be the

strain as the for different substrate roughnesses. By using 15 nm Pt buffer layer, in both cases

SiO2 and polyimide substrates, the intense Pt (111) peak shows high crystal quality. When

the shape of peaks [higher high with lesser width] indicates high crystal quality, this means

the anisotropy is higher than when the shape of peak [lower high with larger width] indicates

a poorer crystal quality.

The domain wall (DW) was detected using MOKE microscopy magnetic imaging technique.

Where, it has been performed a detailed quantitative study of the symmetric/asymmetric

bubble domain expansion in Pt/Co/Pt system in presence of Hz magnetic field. Previous

studies have reported that the DW motion asymmetry due to the presence of the DMI. In

this study, the detailed analysis of the symmetric and anti-symmetric components of the

DW velocities showed Neel wall behaviour. The velocity of the domain wall and domain

growth rate was calculated from the time resolved domain wall structure imaging. It has

been studied the variation of the DW asymmetry. A main conclusion can be observed here,

in the case of the Pt/Co/Pt, for small DW velocity region, the DW motion is a mixture of

the pinning events. As a result, we can propose that symmetric DW bubbles studies can be

used as a standard tool to understand the DW whether it is a steady state or oscillatory. The

sample of cobalt thickness from 0.3-0.7 nm exhibit perfect squareness with 100 % remenance
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clearly indicating PMA. This is due to the fact that at low cobalt thickness the interfacial

anisotropy causes the magetization to be out-of-plane where as dipolar energy dominates at

higher thickness of cobalt at 0.7 nm, making the easy axis of magnetization in-plane, thus

exhibiting the spin re-orientation transition.

9.2 Future Work

This study has presented methods for knowing the effectiveness of Hall resistivity and the

domain walls behaviour in trilayer. This has led to some finding, however, further scientific

realization is still required before this knowledge can be utilized in technological applications.

This section highlights some possible areas of research that could be persisted and may lead

to additional advances in the fundamental grasping in magnetization process.

Several of the results presented here suggest that the pinning of domain walls shows a

dependence on their structural properties where stronger pinning of thin films using plastic

substrate that modifies the magnetic properties as well. This difference is likely to be of great

importance in the development of domain wall devices and deserves a great deal of further

attention through focusing on reduce roughnes to some extent to get a better foramation of

thin films.

Finally, the velocity of bubbles study investigated here has been driven by applied

magnetic field. The change in magnetic behaviour of these trilayer thin-film samples has

been attributed to changes in the magnetic moment and the spin-orbit interaction for the

atoms at the near interface region. These provide an explanation for the observed variation

in the saturation magnetization which shows the most dramatic changes. For complete

understanding of the magnetic properties,. the study of domain wall in case of in-plane

magnetic anisotropy for smaller thickness of ruthenium will be need to do in the future using

silicon dioxide and PEN substrates. In fact, the samples have been already prepared but there

is a needing to use magneto optical kerr effect microscopy with higher magnetic field. Also,
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the Ru buffer layers from 1.0 - 5.0 nm grown on both rigid/flexible substrates were already

prepared. Then, atomic force microscope has been used for all those samples. Where, this

could lead to the discovery of other layered structures that may give a greater level of control

over the magnetization and my also add to the understanding of the physical properties taking

place.

Also, Mgo/Co/Pt multilayer thin films were prepared but still some measurements need in

order to have a full understanding about the effect of buffer layers like MgO on magnetisation

in comparison with Pt and Ru buffer layers as well. Moreover, this plan can be completed

in the future with using different kind of substrates like: silicon dioxide, polyethylene

naphthalate and polyimide.
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