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Abstract

Over-the-counter (OTC) foreign exchange (FX) option market is the

fourth largest derivatives market in the world. However, the extant

literature on their pricing is noticeably thin, especially for less actively

traded contacts, including FX options on pegged currency pairs.

To price these FX options, firstly I propose a new discrete time

exponential-affine model in Chapter 3, with multiple estimation strate-

gies and pricing confidence intervals for the resulting synthetic volatil-

ity surface. Then I test the various specifications out-of-sample on five

liquid currencies versus the dollar. My specification can be estimated

directly from spot FX and deposit rate quotes without recourse to

quoted volatility surfaces. Results indicate that both short and long

tenor OTC FX options can be accurately priced with minimal cali-

bration.

I further extend the model to allow autoregressive conditional Poisson

jumps and multiple factors in the interest rates to handle the latent in-

terest factors in Chapter 4. I propose to adjust the discrete time-step

size to price FX options with different tenors, because this adjustment

helps preserve the volatility surface dynamic of longer maturity op-

tions. In the empirical test on G7 currencies, the model is calibrated



against market FX option quotes to extract the hidden factors in both

the domestic and foreign interest rates. Results show that these hid-

den factors have strong persistence property and certain correlation

with the spot variance.

In order to price FX options on pegged FX rates, I propose to capture

the trading and realignment uncertainties embedded in the forward

FX rate deviation by a jump diffusion model in Chapter 5. Given

the fact that transactions of FX option on such currency pairs are

currently rare with very limited data available, I design a novel ap-

proach to estimate the model parameters. I then apply the proposed

approach on four representative pegged currency pairs (EURDKK,

USDSAR, USDQAR and USDNGN) and provide option quotes un-

der the market convention. Distinguishing from traditional option

pricing model based on historical information, the proposed model is

based on forward looking information. These forward price deviation

and synthetic volatility surfaces offer an alternative way to manage

the FX rate risk for pegged currency pairs.
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2.2.1 At-the-money, ÃT . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 1vol-butterfly, 2vol-butterfly, B̃F . . . . . . . . . . . . . . 17

2.2.3 Risk reversal, R̃R . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Quoting volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



2.4 Computing option quotes from the FX volatility surface . . . . . . 20

2.5 Relative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 The Black-Scholes model . . . . . . . . . . . . . . . . . . . 23

2.5.2 The Heston model . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 The Heston Nandi model . . . . . . . . . . . . . . . . . . . 25

2.5.4 The Cox-Ingersoll-Ross model . . . . . . . . . . . . . . . . 25

2.5.5 Option pricing based on characteristic function . . . . . . 26

3 Recovering Foreign Exchange Option Prices from Spot Price Dy-

namics 27

3.1 Discrete time asset pricing models . . . . . . . . . . . . . . . . . . 27

3.2 Discrete-time affine FX option pricing models . . . . . . . . . . . 33

3.2.1 An affine stochastic term structure with GARCH volatility

model, ASTSV . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Affine stochastic volatility (ASV) and affine realised vari-

ance (ARV) models . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Estimation procedures . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Spot FX GARCH volatility model estimation via MLE . . 60

3.3.2 Spot FX realised volatility model estimation via NLLS . . 62

3.3.3 Asymptotic error of the call option price . . . . . . . . . . 63

3.3.4 Capturing the term structure dynamics . . . . . . . . . . . 65

3.3.5 Empirical illustration of term structure calibration with

and without GARCH dynamics . . . . . . . . . . . . . . . 67

3.4 Computing quoted FX surface error bounds . . . . . . . . . . . . 68

3.5 Joint calibration to the observed European volatility surface . . . 70



3.5.1 Calibration of volatility term structures . . . . . . . . . . . 73

3.6 Empirical demonstration with five currency pairs versus the dollar 76

3.6.1 Summary of data . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.2 Out-of-sample results . . . . . . . . . . . . . . . . . . . . . 83

3.7 Forecast breakdown test . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Comparison between closed form and simulated characteristic func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.9 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Implied Hidden Factors Within The Term Structure of Interest

Rate 99

4.1 FX Option implied latent factor structures . . . . . . . . . . . . . 99

4.2 Discrete-time affine FX option pricing models . . . . . . . . . . . 103

4.2.1 Multi-factor conditional jump models . . . . . . . . . . . . 103

4.2.2 A simplified version of the model . . . . . . . . . . . . . . 116

4.3 Estimation procedures . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.1 Jump detection . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.2 Likelihood based estimation . . . . . . . . . . . . . . . . . 121

4.4 Adjusted time-step and hidden factors . . . . . . . . . . . . . . . 122

4.4.1 MFJ-F model, an adjusted time-step model . . . . . . . . 123

4.4.2 MFJ-C model, including hidden factors . . . . . . . . . . . 125

4.5 Empirical study on six currencies versus the US dollar . . . . . . . 126

4.5.1 Summary of data . . . . . . . . . . . . . . . . . . . . . . . 126

4.5.2 Empirical results . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 140



5 Pricing Options with Pegged Foreign Exchange Rates 142

5.1 The problem of pegged FX rates . . . . . . . . . . . . . . . . . . . 142

5.2 The synthetic spot FX rate model . . . . . . . . . . . . . . . . . . 147

5.3 Short/long-term separated parameter estimation . . . . . . . . . . 152

5.3.1 The implied short-term FX bias process . . . . . . . . . . 152

5.3.2 The implied long-term FX bias process . . . . . . . . . . . 156

5.4 Market observations and simulations . . . . . . . . . . . . . . . . 158

5.4.1 Synthetic spot FX rates . . . . . . . . . . . . . . . . . . . 158

5.4.2 Estimation procedure . . . . . . . . . . . . . . . . . . . . . 163

5.4.3 Calibration exercise and simulations . . . . . . . . . . . . . 167

5.5 Pricing under an adjusted risk neutral measure . . . . . . . . . . 170

5.5.1 Correcting the spot rate bias . . . . . . . . . . . . . . . . . 171

5.5.2 The recovered option prices . . . . . . . . . . . . . . . . . 173

5.6 Model implied FX option quotes . . . . . . . . . . . . . . . . . . . 184

5.7 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 Conclusions 194

6.1 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . 194

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Appendix 199

References 208



List of Figures

1.1 BIS OTC FX derivatives notional amount outstanding . . . . . . 2

3.1 Term structure of the short rate models, with and without GARCH

terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Recovering the market quotes from the model option price curve. . . . 69

3.3 Comparison of the ASV-C, ASTSV-C estimated volatility surfaces EU-

RUSD from 6M to 2Y maturity on September 30, 2015. . . . . . . . . 71

3.4 Raw ASTSV estimated volatility surfaces for six days for EURUSD 1Y

contract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1

Introduction

Trader A (Thomson Reuters Dealing message)

‘‘Please, EURUSD 6M 25D fly in 300.’’

Broker B (message)

‘‘0.218, 0.318.’’

Trader A (message)

‘‘0.318 pls, spot ref 1.1523.’’

Broker B (message)

‘‘OK, vol for atm 7.612.’’

1.1 Background on the foreign exchange options

market

The snippet of conversation above provides a window into the daily life of a foreign

exchange (hereafter FX or forex) option trader, with a lot of abstract terminology

in the conversation. These traders/brokers are involved in one of the most active

and important over-the-counter (OTC) derivatives market, the FX option market.

1



Figure 1.1: BIS OTC FX derivatives notional amount outstanding
Notes: This figure presents the notional amount outstanding (in USD trillions) of OTC
FX derivatives, including gold2, reported by BIS from 1998 to 2018. BIS categorize FX
derivatives into options, currency swaps and outright forwards and FX swaps.

According to Bank for International Settlements (BIS)1, the overall OTC FX

derivatives outstanding notional amount (including gold) in 2018 has grown up

to $96 trillion from $22 trillion in 1998. In Fig. 1.1, we can see that option is

a smaller part of the FX derivatives market as a whole. However, FX option

market is still comparatively large compared to non FX financial instruments.

For instance in the first half year of 2018, the FX option market has outstanding

notional amounts of $13.455 trillion, compared with the OTC credit default swaps

(CDS) market being $8.346 trillion, US equity market being only $3.027 trillion

1Source: Bank of International Settlements OTC derivatives outstanding. URL: https:
//www.bis.org/statistics/.
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and commodity derivatives being around $2.133 trillion.

FX option is a common tool to hedge or to speculate the FX rate risk and

shares similar characters with options on other types of underlying assets, such

as equity options. As the development of this market, FX option forms its unique

trading properties to fit its underlying currency market. The first feature for the

forex spot or derivatives trading is that the underlying asset, the currency ex-

change rate, involves two currencies that both have the potential to be numéraires.

It would be ambiguous for both sides of a trade to quote without a set of agree-

ments in advance, such as which currency is the denominator and which currency

should be paid as the option premium.

Another character of FX option distinguishing from that of options on other

assets is the quotation style. Most options, like equity option, quote dollar value

price as strike or moneyness and quote option premium also in the dollar amount.

This is the nature quoting style considering most models regard option dollar

price as a function of dollar value strike price. However in the FX option market,

options are quoted in terms of Black-Scholes implied volatility, and the moneyness

of a option is represented by delta, the sensitivity of options to spot FX rate. It

is worth noting that for a specified option price, there exists an unique delta and

Black-Scholes implied volatility. Thus implied volatility is then a function of delta

and time to maturity. Under that Black-Scholes assumption, this function should

be flat that implied volatility is constant and not change according to delta and

maturity. But what we observe from the market shows that the implied volatility

is different for different moneyness. And this forms a volatility surface. Therefore

2Gold is included in the data because these precious metals’ price are often regarded as
“FX” rates, and options on gold and silver can be transacted on the FX option market.
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Table 1.1: OTC FX option notional amounts outstanding by currency (in trillion
USD)

Total USD EUR JPY GBP CHF CAD SEK Other

H1 2018 13.307 11.165 4.773 2.700 1.037 0.469 0.402 0.212 5.854
H2 2017 10.679 9.003 3.649 2.214 0.894 0.413 0.330 0.212 4.643
H1 2017 12.088 10.606 3.812 2.427 1.074 0.421 0.341 0.180 5.313
H2 2016 11.533 10.384 3.329 2.830 0.798 0.392 0.331 0.211 4.791
H1 2016 12.913 11.499 3.405 2.726 1.332 0.459 0.437 0.164 5.803
H2 2015 12.093 10.683 3.860 2.329 0.845 0.561 0.367 0.144 5.398
H1 2015 14.157 12.464 4.776 3.270 1.019 0.693 0.454 0.097 5.541
H2 2014 15.333 13.604 4.383 3.952 0.880 0.968 0.405 0.100 6.374
H1 2014 14.473 12.289 4.089 3.211 0.987 0.763 0.550 0.136 6.921

Notes: This table presents the notional amounts outstanding of OTC FX option market
by currency for the last five years from 2014 to 2018 (half-annually). Data also from
BIS OTC derivatives statistics.

the FX options are traded based on an implied volatility surface system, which I

will introduce in detail in Chapter 2.

In addition, the following Table 1.1 reports the notional amounts outstanding

of OTC FX option market by currency for the last five years. From the table we

can observe that most of the options are trading on US dollar (USD) involved

currency pairs. For example in the first half year of 2018, 83.9% of the market is

trading on USD. Further more, euro (EUR), Japanese yen (JPY) and UK pound

(GBP) account for 64.0% of the market. As a result, most of the liquidity of this

market concentrates on few currency pairs, leaving the majority of currency pairs

very sparsely traded.

Given the characters of this OTC FX option market as presented above, it is

natural to bring out the following questions studied in this thesis.

4



1.2 Main research questions

In this thesis, I will focus on the following questions:

1. (RQ1) For currency pairs with floating exchange rates, is it possible to

accurately quote FX option volatility surfaces, when there are only limited

option market quotes to calibrate against?

2. (RQ2) Do OTC FX option price and its dynamic contain information that

is not fully reflected in the spot FX rate and interest rate? Is there a hidden

interest rate factor structure determining yield curves and FX option price?

3. (RQ3) How to price an FX option on a pegged currency pair, particularly

when there is no active option market for such currency pairs?

RQ1 comes from the fact that current popular models are not applicable to all

the currency pairs. At the moment, the industry standard pricing engine for FX

options is local stochastic volatility model (LSV), which combines local volatil-

ity models and stochastic volatility models. LSV models are able to generate

promising volatility surface but they require actively traded volatility quotes to

calibrate their parameters because of the moving market conditions as discussed

by Carr and Wu [2016]. This is feasible for about 70 currency pairs that have

frequently updated option market. However for any other currency pairs it is

then unrealistic to query market quotes for calibration. Due to the demand for

trading less active FX pairs, I thereby raise RQ1: how to generate FX quotes

when options have been sparsely traded before?

There are a number of techniques that can estimate parameters for processed

with latent state variables non-parametrically from spot asset price dynamic,

5



such as Aı̈t-Sahalia et al. [2015], Andersen et al. [2015] and recent Jacod et al.

[2018]. However, the OTC FX option market does not necessarily reflect the

same distribution forecast as spot market, therefore the expected return does not

align with risk-free interest return as described by the covered interest parity.

Previous empirical literature have shown that OTC FX options contains unique

information. Beber et al. [2010] point out the implied volatility surface’s level,

shape, risk premium are affected by different beliefs of the underlying. And the

volatility surface shape is also affected by buying pressure based on Bollen and

Whaley [2004]’s test. Similarly Hanke et al. [2018] demonstrate that FX options

contain betting information on future exchange rates. An important finding by

Du et al. [2018] is that, even for G10 currencies, the covered interest parity have

been systematically violated since 2008 and as a result forward contracts on these

major currencies contains extra information than spot FX rate and risk-free rates.

RQ2 then comes with the observation from practitioners: iIs it possible to

accurately price FX option only based on the spot FX rate and interest rates?

To be more specific, will the introduction of hidden interest rate factors help

improve the pricing performance of models? I will try to answer this question by

designing a model that allows multiply interest factors to represent the hidden

dynamics embedded in the option price and check the property of these extracted

factors.

In contrast to most assets, in the FX market there are a number of currencies

that are pegged to other currencies, which means the exchange rates between

two pegged currencies is fixed or controlled to maintain the exchange rate within

specific margins, substantially altering both the physical and risk-neutral dynam-

ics. Even though the pegged currency rate seems stable, investors holding assets
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denominated by such currency are still exposed to currency risk because the au-

thority can change their currency regime under different political or economic

environments. However the existing option pricing models are not applicable for

pegged FX rates. Not only because there is no option quotes data available in the

market for these model to calibrate the parameters, but also the underlying spot

process itself has no observed dynamic thus barely contains useful information.

Therefore it is impossible to extract future spot rate’s distribution information

from option or spot markets. And this is RQ3 concerned by this thesis: how to

price an option on a pegged FX rate? Where can we find information that infers

the distribution of the pegged FX rate in the future?

1.3 Contribution of the thesis

This thesis contributes to the literature by designing FX option pricing models for

currency pairs that are sparsely or not traded. These models generalized previous

models in the literature and are applied to the less focused assets. These models

can then benefit the market makers by expanding the existing market currency

pairs coverage. This thesis also investigates the unique factors that drives drift

terms of the the FX options.

To answer RQ1, I have proposed and implemented a discrete time model with

generalized autoregressive conditional heteroskedasticity (GARCH) type stochas-

tic variance, this model is carefully derived and presented in Chapter 3. I con-

tribute to the literature by modifying the work of Heston and Nandi [2000] to fit

the FX settings. This model takes both domestic and foreign interest rates as

stochastic factors with N-GARCH type variance processes. This model also has
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the potential to include arbitrary number of factors with same structure.

The most important advantage of this discrete time model is that all the

parameters can be easily estimated from the spot rates only, without the require-

ment of option data. This immediately allows option pricing on float currency

pairs that are not traded before. For FX option contracts that do have quoting

activities, I also provide empirical evidence that given very few market option

quotations, the proposed model can be calibrated to have consistently good per-

formance of predicting the volatility level. In addition, I present an error bound

calculation algorithm based on delta method. This algorithm can be used to

impute sensitivity of the final volatility quotation to the parameter estimation

procedure.

Building on the work in Chapter 3 as a foundation, I then extend the discrete

model to include autoregressive conditional Poisson (ACP) jump process in the

spot return dynamic, and introduce multiple factors in both domestic and foreign

interest rates in Chapter 4. These factors are discrete time autoregressive and

contain both unique increments and increments correlated with the spot return

and spot variance. I then categorize these factors into observed interest rates

and hidden factors, which even though are not observed from the market interest

rates, but also affect the money account rates of return. I calibrate the model

to market FX option quotes to extract the hidden factors in the empirical part

of this chapter, and find that for the G7 currency pairs (EURUSD, GBPUSD,

AUDUSD, USDJPY, USDCAD, USDCHF), the dynamic of the hidden factors

in drift terms tend to have strong autoregressive property and certain correlation

with the spot variances.

In this chapter, I also propose to apply the model on different time-step size
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corresponding to the time to maturity. This adjustment of time-step is similar

to the approach mentioned in Chapter 3 where I use daily data for contracts

with tenor shorter or equal to 1Y and monthly data for tenor long than 1Y, but

with a more flexible adjustment rule. This change in time-step size compensates

the over mean reverting property of the variance process especially when tenor is

large and requires large number of iterations. Thus the proposed method keeps

more variance dynamic for long maturity options.

I fill a gap in the literature of option pricing for pegged FX rates in Chapter 5.

By observing the forward FX rate market for the pegged currency rates, I identify

the synthetic spot FX rates and spot rate bias. To capture the dynamic of

these identified processes, I then propose an simply but effective affine jump

diffusion model and provide an approach to estimate the model based on different

types of spot rate bias. Because the model is calibrated against the forward-

looking forward FX rate market, it contains the market’s outlook of the future

information instead of the traditional backward-looking model estimation based

on historical prices. Here I specify two types of risks for pegged currencies,

trading uncertainty captured by the diffusion part of the model, and currency

arrangement realignment uncertainty modelled by the jump part of the model.

Finally I adjust the risk neutral probability measure to include the spot rate

bias and match the real market forward FX rates, and provide the closed form

option price under this measure. I test the model on four classic pegged currency

pairs, i.e. EURDKK, USDSAR, USDQAR and USDNGN, in the empirical part

of this chapter. The model implied synthetic volatility surface contributes to the

literature by offering an alternative risk measure for these “ignored” currency

pairs.
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1.4 Structure of the thesis

The reminder of this thesis is structured as follows. I firstly present some essential

knowledge of the FX option market conventions in Chapter 2. Chapter 3 intro-

duces and modifies the existing GARCH type discrete option pricing model to the

FX option market and tests its performance given few market FX option quotes

in the empirical experiments. In Chapter 4, I derive a closed form solution to the

proposed discrete FX option model with ACP jumps and multi-factor interest

rates. The character of hidden factors in interest rates is studied in the empirical

part based on the G7 currencies. In Chapter 5, I design a model to price FX

options on pegged currency rates and test its performance on four sets of pegged

currency pairs. Chapter 6 concludes this thesis. All chapters are self-contained

and can be read independently of each other.
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Chapter 2

Market Conventions and Relative

Models

The exchange rate (FX) is the amount of currency required to buy 1 unit of

another currency. So the exchange transaction involves buying/selling one target

currency and selling/buying the other currency at the same time. Based on the

trader’s point of view, we call one leg of this pair domestic currency, and the

other one foreign currency. Sercu and Uppal [1995] provides definitions of various

concepts in the area and Backus et al. [2001] presents an mathematical description

of the economy and exchange rate movements. In the last section of this chapter,

I will introduce briefly about several important existing models.

2.1 FX spot market conventions

A simple contract can have two quotation styles, domestic currency per foreign

currency or foreign currency per domestic currency, because there are two money
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Table 2.1: Currency pair quotation conventions example

GBP USD JPY CHF AUD CAD NZD
EUR EURGBP EURUSE EURJPY EURCHF EURAUD EURCAD EURNZD
GBP - GBPUSD GBPJPY GBPCHF GBPAUD GBPCAD GBPNZD
USD - - USDJPY USDCHF AUDUSD USDCAD NZDUSD
JPY - - - CHFJPY AUDJPY CADJPY NZDJPY
CHF - - - - AUDCHF CADCHF NZDCHF
AUD - - - - - AUDCAD AUDNZD
CAD - - - - - - NZDCAD

Note: In the table, I list the conventions for some main currency pairs’ quotation.
Normally the market convention tends to order the two currencies in a way that the
resulting FX rate is larger than one.

market accounts as numeraires in one FX transaction. The terms of domestic

and foreign here can be ambiguous in the sense that the two counterparts would

both naturally think they are the domestic investor. In this market, it is purely

market convention to call one of the leg domestic currency and not the other way

around. To be more clear, we list some of the currency pair quotation conventions

in Table 2.1.

Transaction settlement time is also an important rule in FX market. The

payment of the two side of the trade generally are made on a later date which is

often known as the spot date, which is later than when transaction is agreed. For

most of the cases, FX trades settle two business days after the initial trade date,

known as T+2 settlement. Exceptions as T+1 settlement can also be found,

such as for USDCAD, USDTRY, USDRUB, EURTRY, EURRUB, CADTRY,

CADRUB and TRYRUB. “Two business days” here can also refer to different

duration for a global transaction. This period takes the holidays and other non-

trading days from both domestic and foreign countries into consideration, thus

varies from one trade to another. The character of arbitrary settlement time

introduces more FX risk into the transactions.
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Table 2.2: Volatility surface of EURUSD on October 19th, 2018

ÃT R̃R25 B̃F 25 R̃R25 B̃F 10

1D 4.340/5.630 -1.135/-0.235 -0.170/0.470 -1.910/-0.365 -0.110/0.920
1W 6.925/7.525 -1.075/-0.655 -0.005/0.295 -1.845/-1.125 0.155/0.635
1M 7.000/7.200 -0.980/-0.840 0.095/0.195 -1.680/-1.440 0.310/0.470
6M 7.455/7.655 -1.315/-1.175 0.240/0.340 -2.310/-2.070 0.775/0.866
1Y 7.605/7.805 -1.340/-1.200 0.300/0.400 -2.385/-2.145 1.020/1.180
18M 7.825/8.035 -1.230/-1.080 0.300/0.405 -2.180/-1.930 1.015/1.185
2Y 7.940/8.165 -1.175/-1.020 0.305/0.415 -2.090/-1.820 1.065/1.245

Note: This table presents volatility surface data of EURUSD on October 19th, 2018.
It includes the volatility bid and ask quotes with tenor from one day up to 2 years. ÃT
is the al-the-money volatility, R̃R is the risk reversal and B̃F is the butterfly. These
quotes describe the shape of the volatility surface, and I will introduce them later in
this chapter.

2.2 FX option quotation style

The OTC FX option market displays quotes in a way that is quite different to the

equity or bond option markets and further transformations of the option price

are needed to allow comparison with market quotes. Overall, FX option prices

are displayed in the form of five quotes that can be used to form the European

volatility surface. Table 2.2 is a snapshot of EURUSD volatility surface data on

October 19th, 2018. Here ÃT is the al-the-money volatility, R̃R is the risk reversal

and B̃F is the butterfly. These quotes represent the relative level of volatilities

at certain moneyness points and describe the shape of the volatility surface. I

will introduce the calculation of these quotes in Section 2.2.1, Section 2.2.3 and

Section 2.2.2.

In each case the quote is given in the units of Black-Scholes implied volatili-

ties. For equity options, the volatility smile describes that implied volatility is a

function of strike price. However for FX options, the options are also not quoted
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by strike, but by one of the Greeks, delta. Hence the quoted European surface

for OTC FX option is formed over five deltas, 10- and 25-delta put and call and

the at the money delta. Thus the steps to calculate an option price for a partic-

ular tenor are as follows. Collect five quotes from the market, giving a 10- and

25-delta butterfly (B̃F 25, B̃F 10), a 10- and 25-delta risk reversal (R̃R25, R̃R10)

and an at-the-money (ÃT ) volatility. Using the quotes we have then compute

the European volatilities for five points (10-delta and 25-delta puts and calls and

the at-the-money). Based on these quotes, the conventional dollar value strike

price and option premium can be calculated correspondingly. I will introduce

butterfly, risk reversal and at-the-money in detail in later sub-sections.

A client taking a bid or ask position in the OTC FX option can then compute

the strike and option premium by applying their particular discount rate using

the volatility surface computed from the quoted prices. Whilst all quotes are

based on Black-Scholes-Merton implied volatilities, this should not be confused

for the actual process presumed to drive the market. The Black-Scholes-Merton

implied volatilities actually act as a device for presenting a normalised price that

can easily be compared across tenors and deltas. The relative values of the risk

reversals and butterflies provide guidance on the anticipated skew and kurtosis

of the market.

Common industrial practice (for instance the approach used in the most pop-

ular pricing software) is to use a spline (such as a cubic spline), or SABR model,

to fill in the gaps between the 10-delta call and the 10-delta put. Pricing options

at put and call deltas of less than 10-delta is problematic. Polynomial extrapola-

tion can lead to nonsensical negative volatilities or explosive values that result in

uncomputable call prices. The parametric structure of polynomial extrapolation

14



can go to infinite to quickly.

Before discuss the volatility, we should firstly understand the delta that FX

option uses. Delta is the first order derivative of the option price with respect to

the changes in the currency price. So different types of quotation for the price

will lead to different types of delta. In essence OTC FX options use volatility

as a normalised price, when a firm quotes a volatility the individual price that

a counter-party will pay, will vary slightly depending on a variety of specific

factors, notably any counter-party valuation adjustments and this is not part of

the baseline pricing structure.

For domestic investors, when the premium is expressed and actually exchanged

in domestic currency, the premium is itself risk free and adds no further complex-

ity to their risk portfolio. Thus no premium adjustment is needed under this

circumstance. But for a foreign investor who has to accept the domestic currency

as the premium, the premium is no longer risk free and constitutes an extra

currency risk. As a result, they will calculate the premium adjusted delta.

For a given currency pair, whether to adjust the premium or not and hence

use pips or percentage delta depends on the choice of premium currency. The

premium adjustment and percentage delta are applied when the premium is ex-

pressed in foreign currency, for example as most developing currencies versus US

dollar.

The at-the-money and 25- and 10-delta put and calls are the five benchmark

points required to build the FX volatility surfaces. We will denote these five

points as σj(∆), where j ∈ {p, c} and ∆ ∈ {50, 25, 10} respectively represent

put or call options and their corresponding delta. Another characteristic of the

FX option is that the market does not directly quote the volatility implied by a
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single European option as above, but the volatility describing specific strategies

instead. We denote the strikes corresponding to the strategies as Kj(Q), where

Q ∈ [ÃT , B̃F 25, B̃F 10, R̃R25, R̃R10]′ indicates the vector of quote types at their

deltas. In our notation ∆j(K, σ) denotes that delta ∆ is a function of strike price

K and volatility σ.

With the observed option quotes, one should be able to construct the volatil-

ity surface that has volatility as a function of the delta value. Then for a

target delta, a unique dollar value strike price can be found through one of

the equations: ∆S;pips = $ exp(−rfτ)N($d1), ∆S;% = $ exp(−rdτ) K
S(t)

N($d2),

∆f ;pips = $N($d1), or the ∆f ;% = $ K
F0,T

N($d2) where σ is the corresponding

volatility and ∆ is the target moneyness delta. The choice of delta equation de-

pends on the convention of the relative currency pairs. Then the option premium

that the trader should pay in this deal is simply the value that plugging the strike

price and corresponding volatility into the Black-Scholes option pricing engine,

as the normal equity options.

2.2.1 At-the-money, ÃT

For ÃT , the at-the-money strike can be interpolated as either the forward price or

the strike for building a delta neutral straddle. The first case is straightforward,

as

K(ÃT ) ≡ F (t, T ).

This convention is used only when the currency pair is USD against a currency

from a Latin American emerging market.

In the second case, at-the-money refers to the quoted volatility ÃT and its
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corresponding strike K(ÃT ), which can be used to construct a straddle that

eliminates delta, whereby

∆p(K(ÃT ), ÃT ) + ∆c(K(ÃT ), ÃT ) = 0,

which is the quotes delta-neutral straddle. This straddle is most actively traded

product since it is the purest way to buy a volatility at the middle level of strikes.

For a straight Black-Scholes-Merton quoted forward pips delta, ÃT = σ(50).

2.2.2 1vol-butterfly, 2vol-butterfly, B̃F

The term ’Butterfly’ in the market quotation refers to a single approximated

volatility premium, which if added to the at-the-money volatility can be used

to price a market strangle that longs out-of-the-money put and call options at

the same delta level. In the preceding academic literature this market strangle is

usually approximated by butterfly. The market quotation convention is confusing

here. Commonly the OTC FX option tickers for market strangles are BF or

B10 for 25- and 10-delta quotes respectively. Unfortunately, for heavily smirked

European surfaces the straight forward 2vol-butterfly can diverge substantially

from the 1vol butterfly market strangle. This kind of approximation is based on

the assumption that the skewness of the volatility smile is neglected. Note that

the strikes of the put and call options can be calculated by equalling delta to 0.25

or -0.25 with a constant volatility (ÃT + B̃F 25−1vol). So we have

∆p(Kp(B̃F 25−1vol), ÃT + B̃F 25−1vol) =− 0.25

∆c(Kc(B̃F 25−1vol), ÃT + B̃F 25−1vol) = + 0.25.

Note that here we apply the same volatility premium B̃F 25−1vol to both call and

put options. For brevity we term this butterfly a 1vol-butterfly and this is the

17



quotation in the FX option market.

The way to calculate 1vol-butterfly is somehow complicated. In most of the

academic literature, we would use another way to quote butterfly, which demon-

strates the volatility surface shape more intuitively. This is denoted as a 2vol-

butterfly to correspond to the actual skew volatility surface. The 2vol-butterfly

is defined as the average volatility of the 25/10-delta call and 25/10-delta put,

expressed as a premium over the at-the-money volatility:

B̃F 25/10−2vol = (σc(25/10) + σp(25/10))/2− ÃT .

Even though this is the actual butterfly derived directly from the volatility

surface, the market quotations are always in the form of a 1vol-butterfly (market

strangle). As such, we then need to compute the 1vol-butterfly to generate the

right market quotation after we build the volatility surface. Notice that the

volatility smile is generally not symmetric; therefore the assumption of 1vol-

butterfly that 25-delta call and 25-delta put have the same quote ÃT + B̃F 25−1vol

is not supported. However, the aggregate market strangle price under the actual

volatility smile should be identical to the equivalent aggregate price for the same

market strangle instrument, under the biased assumption.

2.2.3 Risk reversal, R̃R

Risk reversal is used by market participants to understand the anticipated skew-

ness of the terminal distribution by tenor, and is relatively easy to compute as the

difference in the volatilities of call and put options with the same delta. Hence
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the 25-delta risk reversal (henceforth referred to as R̃R) is computed from:

R̃R25 = σc(25)− σp(25),

and R̃R10 apparently follow the same rule.

2.3 Quoting volatility

From the previous section we can see that in the FX option market options are

quoting in terms of implied volatilities, and replacing strike prices with delta of

the option. This quotation style may be difficult to understand for someone who

is new to the market, but this is actually a smart and efficient way of quoting,

especially in such a mature OTC market for professional participants. Once the

implied volatility and delta has been decided, the dollar value strike price and

option premium can be calculated given the spot FX rate and interest rates based

on the standard Black-Scholes option model and delta formula.

Quoting in this way allows the traders not to worry about the fluctuation of

the FX spot rates while negotiating about the deal. Because the counterparts

agree on delta and volatility on a deal, not strike price or option dollar price,

the real strike level and option price are not determined before closing the deal.

Only after the agreement is made, the absolute strike and option price will then

be calculated based on the market convention and BS model. Also traders in this

market tend to construct delta-hedged, gamma-hedged or Vega-hedged portfolio

positions instead of single put or call option. A trader can be sure about his or

her position is correctly hedged under this quotation style.
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2.4 Computing option quotes from the FX volatil-

ity surface

Building a European volatility surface from market quotes is straight-forward and

thoroughly covered in the practitioner literature; see for instance Clark [2011]

and Castagna and Mercurio [2007] for an overview of this procedure. However,

‘bottom-up’ computation of the surface and identification of the error bounds

is completely absent in the literature and not entirely straightforward. We also

need to make use of the delta method once more to determine the actual error

bounds on the quotes given the noisy preceding estimation.

As mentioned in sections above, there are five important quotes (two but-

terflies, two risk-reversals and the at-the-money straddle) over a range of deltas.

With the delta/volatility combination, strike prices and options prices can be

easily recovered using the Black-Scholes formula. Some data vendors such as

Thomson–Reuters provide cubic spline interpolated European surfaces by delta

by polling quotes from the major broker dealers. For deltas outside of the 10-put

to 10-call range, fitting a structural model such as a one- or two-factor Heston,

the SABR or the local stochastic volatility models by tenor provides a useful

approximation.

Overall, the task proceeds as follows: generate a smooth surface for the option

price as a function of strike from the model parameters; compute the implied

volatility for each point on the surface and then the resulting delta; interpolate

the deltas at the desired market quotes to generate the volatility by delta; and

then use these tuples to build the quotes.

I start with the options prices by strike from our preceding model specification
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and then compute the options prices by Black-Scholes volatility and delta. I

presume that the spot price, relevant discount factors and tenor are background

variables and hence constant here for simplicity, and therefore concentrate on

the variables of interest: the strike price (K), option price (P$), delta (∆) and

implied volatility (σ). Let S (∆;$) be the at least twice-differentiable function

such that S : [−1, 1] → R+. The critical points to evaluate are of course the

pivotal market quotes at ∆ = {±10,±25, 50}. Recall that $ provides the switch

from put (-1) to call (+1).

I now specify two operators, D$ : R+ → [−1, 1] and V$ : R+ → R+, which

return the Black-Scholes delta and Black-Scholes implied volatility for a given

combination of implied volatility σ and strike priceK for the former and European

option price P$ and strike price K. Finally, we have the pricing function for the

option from the structural model P$ = H (σ,K;$), such that H : R+ → R+.

Hence we have the following sequence of non-linear equations:

σ = S (∆;$), ∆ = D$(σ,K), σ = V$(P$, K), P$ = H (σ,K;$). (2.1)

Our objective is to identify the form of σ = S (∆;$) from P$ = H$(σ,K;$).

However, several practical issues occur that make this process slow.

First and foremost, the operator V$(P$, K) must be numerically evaluated,

and the accuracy of the numerical procedure is dependent on problem-specific

factors such as moneyness, tenor and the prevailing discount factor. Using

the delta convention, operator D$(σ,K) can be one of the forms ∆S;pips =

$ exp(−rfτ)N($d1), ∆S;% = $ exp(−rdτ) K
S(t)

N($d2), ∆f ;pips = $N($d1), or

the ∆f ;% = $ K
F0,T

N($d2) for a given K and σ. The market convention imposes
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the use of the Black-Scholes-Merton delta with Garmen-Kohlhagen’s adjustment

for the FX option quotes.

To find the pivotal points at ∆ = {±10,±25, 50} (the 5 most important points

of the implied volatility surface), I generate a dense grid of strike prices and then

compute the option price and implied volatility at each point. For each strike I

compute the put and call deltas (based on the four market convention combina-

tions, pips/percentage and forward/spot) from the strike and implied volatility

combination. A cubic spline is then used to recover the market quotation points

as vector pairs {∆, σ}. This gives us the corresponding implied volatility of the

option at the pivotal ∆. Volatility for the at-the-money strangle is straightfor-

wardly ÃT . Risk reversal is then the difference between the volatilities of call

and put options with the same delta R̃R∆ = σc(∆) − σp(∆). It is worth noting

that the market quotes to model is much more straight forward. In this case

volatility and delta (and hence the strike by simple numerical analysis) are given

with precision. As such, the analyst just needs to compute the option pricing

model that recovers the market volatility five pivot strikes.

The 2vol-butterfly is defined as B̃F∆−2vol = 0.5σc(∆) + 0.5σp(∆) − ÃT , but

we need to transfer this to 1vol-butterfly for the market quotation. Solving the

equation numerically, we find the market quoted B̃F∆−1vol, which its correspond-

ing strike price Kj(B̃F∆−1vol) renders ∆j(Kj(B̃F∆−1vol), ÃT + σ(B̃F∆−1vol)) =

{±0.25,±0.1}, and with this strike price, both of the volatilities at ∆j and the

1vol-butterfly adjusted volatility can be used to construct a strangle at the same
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price

Hc(ÃT + B̃F∆−1vol, Kc(B̃F∆−1vol)) + Hp(ÃT + B̃F∆−1vol, Kp(B̃F∆−1vol))

=Hc(σc(25), Kc(B̃F∆−1vol)) + Hp(σp(25), Kc(B̃F∆−1vol)). (2.2)

The solution to this equation yields the market quotation convention. In Sec-

tion 3.4 of next chapter, I will provide a figure example to demonstrate the

volatility surface building process together with the error bound calculation.

2.5 Relative models

In this section, I will present some fundamental models that this thesis is built

on. These well-known models have important implementation and impact on

both the academia and industry works.

2.5.1 The Black-Scholes model

Under the risk neutral measure, risk-free portfolios should have return the same

as risk-free rate, the spot price St is described by a geometric Brownian motion

dSt = rStdt+ σStdWt,

where r is the risk-free rate, σ is the volatility and dWt is Wiener process that

dWt ∼ N(0, dt). The closed form call option price based on such process is

C = S0N(d1)−Ke−rTN(d2),
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where T is the maturity, K is the strike price, N(·) is the cumulative distribution

function of normal distribution and

d1,2 =
ln(S0/K) + (r ± 1

2
σ2)T

σ
√
T

.

The implied volatility is then the σ that makes the model option price C equals

to the market observed option price.

2.5.2 The Heston model

The most significant disadvantage of Black-Scholes model is its constant volatility

σ. The Heston [1993] improves the model by allowing the variance also being a

stochastic process. Therefore the Heston model has the following form

dSt = rStdt+
√
vtStdW

s
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t .

Here the random shocks allow to have correlation [dW s
t , dW

v
t ] = ρdt. The variance

process is a Cox-Ingersoll-Ross process, which has the property that it will remain

positive if v0 > 0 and the Feller condition is satisfied 2κθ > σ2.

The Heston model is able to generatei implied volatility surface with desired

skewness and kurtosis characters. The model parameter ρ, which is the correlation

between the spot rate and variance processes, significantly affects the skewness

of the surface, and the volatility of volatility parameter θ affects the level of the

volatility surface.
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2.5.3 The Heston Nandi model

The Heston Nandi model is a discrete time model introduced by Heston and

Nandi [2000] based on Non-linear GARCH process. The mean return of spot

price R(t) and variance process are

R(t+ 1) = r + λh(t+ 1) +
√
h(t+ 1)Z(t+ 1),

h(t+ 1) = ω + βh(t) + α(Z(t)− γ
√
h(t))2,

where the idiosyncratic shock Z(t) ∼ N(0, 1). This process remains stationary

if β + αγ2 < 1. The most important advantage of discrete time model over

continuous time model is the process parameters can be easily estimated from

spot price observation using maximum likelihood estimation.

2.5.4 The Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross model (CIR) was designed by Cox et al. [1985] as a short

rate model to capture the term structure of the interest rate. It is defined as

drt = κ(θ − rt)dt+ σ
√
rtdWt, (2.3)

where dWt is a Wiener process. κ corresponds to the mean reverting speed, θ

corresponds to the long term mean level and σ corresponds to volatility level.

The good property of a CIR process is that it remains positive as long as 2κθ >

σ2. This property allows it to be applied to modelling volatility movements as

mentioned above. The CIR has a non-central Chi-squared distribution and I will

use this for parameter estimation in Chapter 5.
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2.5.5 Option pricing based on characteristic function

All of the three models in previous subsections (the Black-Scholes model, the

Heston model and the Heston Nandi model) can have closed form option price

using their characteristic function, denoted as Ψ(φ) = E[eiφx] and x = lnST . We

can see that the characteristic function is the Fourier transformed probability

density function, f(x)

Ψ(φ) = E[eiφx] =

∫ ∞
−∞

eiφxf(x)dx,

where i =
√
−1. Once a characteristic function is derived, the probability density

function of the terminal logarithm spot rate can be calculated by the inverse

Fourier transformation

f(x) =
1

2

∫ ∞
−∞

eiφxΨ(φ)dφ.

The Gil-Pelaez theorem uses this to derive the in-the-money probability

Pr(lnST > lnK) =
1

2
+

1

π

∫ ∞
0

<[
e−iu lnKΨ(iu)

iu
]du.

Then the option price can be derived from this probability. Details of the deriva-

tion can be found in the following chapters.
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Chapter 3

Recovering Foreign Exchange

Option Prices from Spot Price

Dynamics

3.1 Discrete time asset pricing models

The prices of European foreign exchange options reflect the market participants

view of the stochastic structure of the global economy. The largest market of

this kind is the over-the-counter (OTC) variant and these options are commonly

quoted in terms of the shape of a European volatility surface, which is based on

the Garman and Kohlhagen [1983] foreign exchange adjustment to the standard

Black-Scholes model. Typically this surface is calibrated against option quotes

from broker-dealers. However, there is an open question as to how to generate

volatility surfaces synthetically from historical spot exchange rates and deposit

rates. The word “synthetic” here emphasis that the implied volatility surface is
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hard to be observed from the market quotes and need to be generated without

directly implied from option quotes. Indeed, this is part of a more general question

in financial econometrics on the forecasting performance of models based on spot

data versus those recovered from the market price of derivative securities.

I outline a new multi-factor option pricing model that can be fitted from spot

data, adjusted and re-calibrated from any observable options data and nested

using an arbitrary number of factors. The attractive feature of my approach is

that an arbitrary number of observed or latent factors can be added and this

framework effectively generalises the approach suggested in Engle and Mustafa

[1992], Duan [1995] and Heston and Nandi [2000].

Options on FX rates are one of the most common hedging and speculating

tools to either reduce spot FX risk or leverage exposure to it. Trading in FX

options is dominated by the over-the-counter market. The OTC FX options is

in fact, by notional volume, the fourth largest derivatives market in the world

behind various types of money market swaps and interest rate futures.1 It is also

one of the fastest growing derivatives markets post the 2008/9 global financial

crisis; yet the body of research addressing the structural asset pricing analysis of

the OTC FX option market is noticeable sparse. Two studies are of note, [Carr

and Wu, 2007; Du, 2013], both use market quotes to illustrate calibrations of

structural models, no systematic statistical testing of asset pricing effectiveness

was conducted on the options themselves, indeed in both cases the models could

not be calibrated to spot-only data. A Deutsche Bank study by Jain and Stafford

[2006] provides some coverage of the factors underlying one type of market quote

1Source: Bank of International Settlements Derivatives Market Statistics 2015. URL: http:
//www.bis.org/statistics/d5_1.pdf, last accessed January 30, 2017.
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for five currencies for a one year tenor. However, no structural model is proposed

other than a series of observations on the relationship between risk reversals and

spot variation.

Undoubtedly, one of the reasons for this lack of research on OTC FX options

is the relatively opaque nature of the market data and certain acute properties of

OTC FX options. First, the term structure, OTC FX option contracts typically

have tenors dated from overnight to beyond five years, indeed, for certain Asian

contracts versus the dollar tenors can run beyond 15 years. Very few of the

currently popular models provide good fit over all tenors for the same parameters.

Second, for a given currency pair, to price a complete OTC FX option pricing

surface would require five ticker codes, knowledge of the pricing conventions for

the particular currency pair and a structural model of the European volatility

surface. As such the pricing of OTC FX options is embedded in volatility adjust-

ments to the standard Black and Scholes [1973] model. Additionally, many fur-

ther market-specific statistical adjustments (such as the forward convention and

quoting factors) are required when inferring implied volatilities for non-quoted

strikes or maturities, which presents a challenge for the consistent determina-

tion of the different implied volatilities. For instance, previous papers use an

approximation of the functional form for quoted butterflies (the average of the

put and call volatilities at the same Black–Scholes delta minus the at-the-money

straddle volatility); however, this approximation only works in certain cases (see

for instance Carr and Wu [2007]; Du [2013] and Dupoyet [2006] for examples).

For certain shapes of the implied volatility surface, the correct market strangle

needs to be computed from the equivalent butterfly to recover an accurate quote.

Careful appreciation of these types of issues reduces many of the implementation
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errors associated with pricing FX options.

Pricing of FX options in the prior literature is generally based on contin-

uous time derivatives of models such as the Heston [1993] stochastic volatility

model, the SABR model developed by Hagan et al. [2002] and the local stochas-

tic volatility model versions of these, see Pagliarani and Pascucci [2012]; Reghai

et al. [2012]; Shiraya and Takahashi [2013]. However, such models assume the

existence of an option market surface to actively calibrate against. In the pres-

ence of sparse options information, as is the case for many currency pairs, there

is a pressing need in the industry for structural asset pricing models that can

be estimated directly from the underlying spot data and requires limited knowl-

edge of the FX option European surface for calibration. Early empirical work on

pricing FX options maybe found in Melino and Turnbull [1990] and Shastri and

Tandon [1986]. However, both cases review exchange traded options and directly

price quoted puts and calls. OTC FX options have a quite different quotation

mechanism and I will demonstrate that propagation of errors from the prices to

the European surface can result in quite significant errors and unpredictable error

dynamics.

My contribution is threefold. First, I specify a multi-factor option pricing

model in the affine GARCH type family. This model is unique in the practitioner

and academic literature and may be calibrated in exactly the same manner as

a standard Heston or SABR type model or, more usefully, fitted directly from

spot data, by adjusting the physical, observed measure to the risk neutral mea-

sure using a simple exponential affine model of interest rates with discrete time

stochastic volatility. The time series properties of the GARCH family of models

are particularly flexible at multiple time-scales. From high frequency Engle et al.

30



[1990] to very long memory Ding et al. [1993]. There is an extensive literature

on in- and out- of sample forecasting of spot integrated variance using GARCH

types models, see Engle and Ishida [2002] and Barone-Adesi et al. [2008] for some

classic examples amongst many.

Second, I outline in detail how to build actual market quotes from the pa-

rameterised form of this model and compute confidence bounds from the error

structure of the underlying estimators. These quotes can then be used to calibrate

the parameters and compared directly with the market data for performance eval-

uation and show the ability to expand the existing market by providing option

pricing tool for more currency pairs.

Finally, we provide empirical strategies to parameterise this model from spot

FX rates data at both high and low frequencies, ranging from daily to monthly

data.

One of the major issues in OTC FX option is that volatility surfaces are

regularly quoted from overnight/same week (ON/SW) all the way out to 5+

years. This makes option pricing from discrete-time models computationally

very intensive, even when a closed form solution exists. Hence we outline a

daily and a monthly version of my model to cater for both short and long tenor

option pricing. These models are then fitted to spot data for five actively traded

currency pairs. I find that a) inclusion of stochastic short rates improves out-of-

sample long horizon fitting significantly (in most cases by an order of magnitude)

for long horizon option b) joint calibration to a modest sample of option data

improves the model fit by up to two orders of magnitude.

With small adjustments to the model, it can be used to price both short and

very long maturity options. Indeed, my analysis stretches out to the five-year
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tenor options. As such, the model is easily fitted from spot data via standard

maximum likelihood estimation (MLE) and this allows for a very useful compar-

ative asset pricing analysis. For instance, using spot only data we are able to

impute the effectiveness of the pricing of the model versus market quotes. Also,

using an asymptotic expansion we can determine the anticipated pricing error

from the spot estimation procedure and whether the observed quotes sit within

the resulting error bounds, both through the term structure and across quoted

deltas.

At present, the OTC FX option market is effectively designed around param-

eterization of continuous time models direct from implied volatility curves, often

referred to as ‘European volatility surfaces’ derived from the Black—Scholes–

type models. European volatility surfaces are implied volatility curves, which

effectively perform the role of normalized prices, being priced relative to a strike

recovered from a Black–Scholes delta and the quoted volatility relative to that

delta. As such, the FX option implied volatility curves are representations of

parametric and non-parametric models such as the Heston model and its many

derivatives. This leads to the question of which comes first: the option price itself

or the European volatility surface used to quote the option? This chapter seeks to

answer this question for a group of major countries versus the US dollar. A sec-

ond question naturally follows: with such a well- established paradigm (volatility

surface → continuous time parametric model → volatility surface update), why

have a model that can be estimated from spot exchange rates when all that is

really needed is to model the volatility surface dynamics itself?

The answer to the second problem is relatively easy. There are only about

70 currency pairs that have some activity in their markets. Whilst one can use
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techniques such as the popular Vanna–Volga method (see Castagna and Mercurio

[2007] Chater 4 and Chapter 9 for the introduction to the Vanna–Volga technique

and review of it’s use in constructing untraded volatility surfaces respectively) or

the transitive method of Doust [2012] to determine bounds on an untraded implied

volatility surface using triangular arrangements in traded legs, certain correlations

still need to estimated or imposed and this presents a challenge when one seeks

to expand coverage of FX option pricing to less liquid currencies. Therefore a

structural model of the European surface estimated from spot data has a high

level of value to currency traders, in particular one for which the relative biases

versus liquid currency pairs can be well understood.

The remainder of this chapter is organised as follows. Section 3.2 describes the

proposed affine stochastic term structure volatility model and also a simplified

derivative of this model restricting the interest rates to be constant. Section 3.3

outlines the procedures for estimating the model parameters. With the knowledge

above, Section 2.4 illustrates how to construct the volatility given only FX spot

price data. And to overcome the term structure mismatch, we also propose an

out-of-model calibration adjustment. Section 3.6 reports the performance of the

proposed models from empirical analysis, while Section 3.9 concludes.

3.2 Discrete-time affine FX option pricing mod-

els

I will introduce three model specifications. Two are FX variants based on existing

models, the Heston and Nandi [2000] GARCH type model and its derivative
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Christoffersen et al. [2014], which is estimated via high frequency data. My main

specification has a stochastic short rate structure, similar to Amin and Jarrow

[1991], but operationalised in discrete-time by combining a form of the Heston

and Nandi [1999] and Heston and Nandi [2000] models. We can view the non-

stochastic interest rate models as restricted versions of the latter model, hence I

start with the general form. Evidence from prior studies by Christoffersen et al.

[2006]; Christoffersen and Jacobs [2004b]; Christoffersen et al. [2010], provide a

series of useful results on spot price derived option models. The performance

of a single factor Heston and Nandi [2000] is found to be quite competitive with

alternative specifications (whilst not always providing the smallest average pricing

error). Further useful evidence in Christoffersen and Jacobs [2004a] indicates that

when judging option pricing effectiveness results can be sensitive to the choice

of loss function. For FX options the importance of closed form solutions cannot

be understated, given the need to convert rapidly between the underlying option

pricing model and the resulting volatility surface; as such, option models such

as Duan [1995, 1997] are excluded on the grounds of requiring simulations to

generate prices.

3.2.1 An affine stochastic term structure with GARCH

volatility model, ASTSV

My baseline model presumes three independent disturbance terms and three vari-

ance processes. This represents stochasticity in the ‘domestic’ and ‘foreign’ de-

posit rates and the spot exchange rate. This representation is useful as it allows

us to formulate various restricted FX pricing models. For instance one could
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choose to restrict the dynamics on either the domestic or foreign numéraires as

constant or allow only homoskedastic innovations.

Atomically, Heston and Nandi [1999] refer to each pair of first and second

moment models of the short rate dynamics as ‘two’ factor affine volatility models.

I can think of the combined model as a six factor affine model. However, at the

continuous limit the absolute correlation between disturbance in the variance

process and the mean equation approaches unity, hence the model is really three

factors with six equations describing the evolution of the first two moments. For

tractability of the options prices I presume that the structural disturbance terms

are uncorrelated across the short-rate and spot exchange rate processes. However,

as the stochastic process driving the rates is lagged to the exchange rate there is

a higher order dependence structure intrinsic to the model.1

Assumption 1. I presume a discretely updated two country (indexed by k ∈

{d, f}) global economy with time indexed by t. Consider a forward tenor for a

contract τ , which spans the time interval t, T , where T is the maturity date, by

definition τ = T − t. Assets are valued at nominal prices. For a given discrete

time-step denoted η, 2 the money market accounts are presumed to be a timed de-

posit account paying exp(rd(t+η)) and exp(rf (t+η)) on a single unit of domestic

or foreign currency respectively. Setting S(t) be the spot conversion between do-

mestic and foreign currency. I also presume that forward money and exchange

1GARCH models are used extensively across the asset pricing and risk management spec-
trum. I nest multiple variations on the quadratic specification of Engle and Ng [1993], as my
basic time series building block, generalising the work of Heston and Nandi [1999] and Hes-
ton and Nandi [2000]. Previous work on option pricing with GARCH has features in Duan
[1997] and Barone-Adesi et al. [2008] whilst Bauwens et al. [2006] reviews some applications to
derivatives pricing amongst other applications of correlation dynamics in multivariate settings.

2A useful feature of OTC FX options is that they are explicitly tenored, rather than ex-
plicitly dated, hence all but eliminating the problem non-integer counts of time steps from t to
T .
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rate markets are complete.

Given the assumption of complete FX forward markets and complete domes-

tic forward money markets we can set F (t, T ) = EP[S(T )] = S(t) exp(
∫ T
t
rd(t)−

rf (t)dt), where P as the physical measure under a filtration Ft. Based on the no-

tational assumption on the time step, we can set J = τη−1 be the integer number

of discrete time steps from t to T . I denote F (t, T ) = S(t) exp(
∑J−1

j=0 rd(t+ jη)−

rf (t+ jη)dt) as the equivalent discrete time forward FX price.

Under my notation the forward FX market is complete if, for a vector of for-

ward FX prices F(t, T ) = [F (t, t+η), . . . , F (t, t+Jη)]′, F(t, T )−S(t) exp(f(t)) =

0, where f(t) = [
∑0

j=0 rd(t + jη) − rf (t + jη), . . . ,
∑J−1

j=0 rd(t + jη) − rf (t + jη)]′

and 0 is a J length null vector.

Assumption 2. S(t + η)|Ft is conditionally log-normal. Setting R(t + η) =

ln(S(t + η)/S(t)), the first and second moments of R(t) under the measure P

and filtration Ft are described by the following spot process with GARCH type

volatility:

R(t+ η) = rd(t)− rf (t) + λshs(t+ η) +
√
hs(t+ η)z(t+ η), (3.1)

hs(t+ η) = ωs + βshs(t) + αs(z(t)− γs
√
hs(t))

2, (3.2)

where z(t) ∼iid N(0, η). I denote hs(t) to represent the variance process in the

FX spot rate. I presume that 1−βs−αsγ2
s > 0, with 0 ≤ βs < 1 and 0 ≤ αs < 1.1

Of course the conditional variance at t + nη from time t is non-stochastic

when n = 1, therefore the SV monicker is unwarranted in this case. However,

1I use
√
. to denote the principal square root through out this thesis.
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in the main, I will always deal with n > 1 steps, as one step pricing trivially

reduces to the Garman and Kohlhagen [1983] version of the Black-Scholes model

under the Rubinstein [1976] condition when continuous rebalancing in the interval

is absent. Hence, I classify the forward looking multi-step spot variance as a

‘stochastic volatility’ model, see Fleming and Kirby [2003] for more discussion on

GARCH and stochastic volatility. A simple example is also helpful, a stationary

GARCH(1,1) process satisfies the continuous limit: dX(t) =
√
h(t)dW (1)(t), with

dh(t) = κ(h̄− h(t)) + ρh(t)dW (2)(t), where κ > 0, h̄ > 0 and ρ > 0 are arbitrary

parameters. Notice that W (1)(t) and W (2)(t) are independent Weiner processes,

see Brockwell et al. [2006] for more discussion on the continuous limits.

It is useful to note that the unconditional expectation Ē[hs(t + η)] = (αs +

ωs)/(1 − βs − αsγ
2
s ). Furthermore, whilst βs determines the persistence in the

spot variance, αs and γs are principal parameters that determine the ‘kurtosis

and skewness’ properties in the resulting implied volatility surface. λs determines

the feedback in spot variance to the mean return. The process driving the term

rd(t)− rf (t) is now specified parametrically in the next assumption.

Assumption 3. Let the value at t+η of one unit of domestic or foreign currency

in a no risk timed deposit account quoted at time t be denoted by exp(rk(t)) for

k ∈ {d, f}. I presume that the dynamics of rd(t) and rf (t) are driven by a first

autoregressive process with potentially GARCH disturbances:

rk(t+ η) = µ0k + µ1krk(t) + λkhk(t+ η) +
√
hk(t+ η)uk(t+ η), (3.3)

hk(t+ η) = ωk + βkhk(t) + αk(uk(t)− γk
√
hk(t))

2. (3.4)

for k ∈ {d, f}. Here ud(t) and uf (t) are independent standard normal structural
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disturbances such that ud(t) ∼iid N(0, η) and uf (t) ∼iid N(0, η). I presume in all

cases that 0 ≤ µ1k < 1 and 1− βk − αkγ2
k > 0, with 0 ≤ βk < 1 and 0 ≤ αk < 1.

The structural parameters of the model are collected in the vector θ = (θs, θd, θf )
′

where θs = (λs, ωs, βs, αs, γs) and θk = (µ0k, µ1k, λk, ωk, βk, αk, γk), for k ∈ {d, f}.

The variance equation parameters have the same interpretation as the spot dy-

namics. When hk(t + η) is time inhomogeneous λk is redundant and the AR(1)

model parameters µ0k and µ1k describe a discrete time Vasicek model, with

rate persistence determined by µ1k and unconditional expectation of rk(t + η)

is Ē[rk(t+ η)] = µ0k/(1− µ1k).
1

Notice that whilst z(t), ud(t) and uf (t) are restricted to being independent

structural innovations, R(t+ η) will have a non-zero conditional correlation with

rd(t) and rf (t). Setting ` = 1|k = d and ` = −1|k = f the uncentered and

centred second co-moments are given by:

Et[R(t+ η)rk(t)] =`λ2
khk(t+ η)2 + (µ0,k + µ1,krk(t))r̃ + hk(t+ η)h̃

Covt[R(t+ η), rk(t)] =`(Uk(t+ η)z(t+ η)
√
hk(t+ η)

√
hs(t+ η)+

−Uk(t+ η)Uj(t+ η)
√
hd(t+ η)

√
hf (t+ η)+

+ Uk(t+ η)2hk(t+ η))

=`hk(t+ η),

where j, k ∈ {d, f} and j 6= k, Uj/k(t+ η) = u(t+ η)|j/k = d and Uj/k(t+ η) =

v(t+ η)|j/k = f , r̃ = `hk(t+ η) + hs(t+ η)λs + µ0,d − µ0,f + µ1,drd(t)− µ1,frf (t)

and h̃ = ` − `λk(hk(t + η)λd + hs(t + η)λs + Rk) with Rk = µ0,k − 2µ0,j +

1Under the constant volatility assumption βk = αk = 0 as η → 0 the time deposit account
converges to the theoretical short rate.
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rk(t)µ1,k − 2rj(t)µ1,j. Collectively, I refer to the model described in Assumption

2 and Assumption 3 as the ‘Affine Stochastic Term Structure with Stochastic

Volatility’ model (henceforth ASTSV) when the number of time steps from t to

T is greater than one.

Since the FX spot or derivative market involves investors holding bonds de-

nominated in different currencies and holding different measurements of the prob-

ability of the asset price movements, we need to make sure we derive the risk-

neutral formula for FX markets to avoid arbitrage for either domestic or foreign

investors.

Remark 1. From a domestic investor’s point of view, the risk-neutral FX pro-

cess, under the domestic risk neutral Q{d} measure, for the ASTSV model, is

given by the following pair of expressions:

R(t+ η) = rd(t)− rf (t)− 1/2hs(t+ η) +
√
hs(t+ η)z∗(t+ η), (3.5)

hs(t+ η) = ωs + βshs(t) + αs(z
∗(t)− γ∗s

√
hs(t))

2, (3.6)

with risk neutral innovations and parameter

z∗(t) =z(t) + (λs + 1/2)
√
hs(t),

γ∗s =γs + λs + 1/2.

For brevity, I mark a risk neutral process and expectations under the domestic

risk neutral measure, Q{d}, with a superscript ∗ henceforth.

Proof. Recall that Mk(t1, t2) is the holding of a deposit account from t1 to t2,

for any t2 > t1, for k ∈ {d, f}. Consider the holding of a single unit of foreign
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money in a timed deposit account for the period t, t + η; this money market

account itself would then follow Mf (t, t + η) = exp(
∫ t+η
t

rf (s)ds). Alternatively,

holding one unit of a domestic currency in a timed deposit account would yield

a quantity Md(t, t + η) = exp(
∫ t+η
t

rd(s)ds) over the same time frame t to t + η.

As these are time deposit accounts (one night, one month), we can assume that

the risk-free rates are constant in each time step, so these quantities simplify

to Md(t, t+ η) = exp(rd(t + η)) and Mf (t, t+ η) = exp(rf (t + η)). A domestic

investor would expect an asset value to grow at a domestic risk-free rate. Hence,

each time step is a single period Garman and Kohlhagen [1983] type model.

Following my assumption of the compounded return process Assumption 2,

the conditional expectation of the ratio between the yields on the two timed

deposit accounts of a single unit of domestic currency denoted by

E

[
S(t+ η)Mf (t, t+ η)

Md(t, t+ η)

∣∣∣∣∣Ft
]

=E

[
S(t) exp

(
(rd(t)− rf (t) + λh(t+ η)+

+
√
h(t+ η)z(t+ η) + (rf (t)− rd(t)))

)∣∣∣∣∣Ft
]

=E

[
S(t)e

(
λh(t+η)+

√
h(t+η)z(t+η)

)∣∣∣∣∣Ft
]

should be a martingale under the risk neutral measure Q∗, such that

E∗
[
S(t+ η)Mf (t, t+ η)

Md(t, t+ η)

∣∣∣∣∣Ft
]

= S(t),

for some filtration Ft determined by the model characteristics conditioned on the

initial spot price S(t), interest rates rk(t) and spot variance hs(t + η), and the

space Ω ∈ R. Therefore the random innovation over t, t + η has a measurable
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σ-algebra. I write the ratio under risk neutral measure Q∗ as

S(t)e

(
v(t+η)+

√
h(t+η)z∗(t+η)

)
,

where v(t+ η) is the conditional mean and z∗(t+ η) is a normal random variable

under risk neutral measure. Then the expectation is

E∗
[
S(t)e

(
v(t+η)+

√
h(t+η)z∗(t+η)

)∣∣∣∣∣Ft
]

= S(t)e(v(t+η)+ 1
2
h(t+η)) = S(t).

This implies that v(t+η) = −0.5h(t+η) and v(t+η)+
√
h(t+ η)z∗(t+η) = λh(t+

η) +
√
h(t+ η)z(t+ η). I then recover z∗(t+ η) = z(t+ η) +

√
h(t+ η)(λ+ 1/2).

Then following the Girsanov Theorem, the Radon-Nikodym derivative is

dQ∗

dP
= e

(
−
√
h(t+η)(λ+ 1

2
)z(t+η)− 1

2
h(t+η)(λ+ 1

2)
2
)

and E[dQ∗/dP] = 1, under the risk neutral probability measure Q∗, we still

obtain z∗(t+ η) ∼iid N(0, η). Risk neutralization also requires the variance to be

unchanged between both measures, as such:

V ar∗
[
S(t+ η)Mf (t, t+ η)

Md(t, t+ η)

]
= V ar

[
S(t+ η)Mf (t, t+ η)

Md(t, t+ η)

]
.

This is equal to the following equality

h(t+ η) = ω + βh(t) + α(z∗(t)− γ∗
√
h(t))2 = ω + βh(t) + α(z(t)− γ

√
h(t))2,
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therefore we need to adjust γ∗ such that

γ∗ =
z∗(t)− z(t) + γ

√
h(t)√

h(t)
= γ + λ+

1

2
.

The difference between the standard treatment in continuous-time and discrete-

time models are that for another given time increment in the sequence t0 + (n−

1)η, t0 + nη, where n ∈ N+ and t0 + nη ≤ T , there is another σ-algebra deter-

ministically constructed from the model characteristics conditioned on the initial

spot price S(t), spot variance h(t + η) and interest rates rk(t). The σ-algebra

of Ft0+nη contains the set of possible updates of the stochastic variables from

Ft0+(n−1)η and hence there are all sub-σ-algebras of FT . Notice that the sequence

of σ-algebras F = {Ft0 ,Ft0+η, . . . ,FT} is finite and the space of outcomes is fixed,

hence {Ft0 ⊆ Ft0+η, . . . ,⊆ FT}. Therefore, Ft is a filtration. Then from t0 to T

under the probability space (Ω,F,Ft,P),

E∗
[
S(T )Mf (t0, T )

Md(t, T )

∣∣∣∣∣Ft0
]

=E∗
[
E

[
S(T )Mf (t− η, T )

Md(t− η, T )

∣∣∣∣∣FT−η
] ∣∣∣∣∣Ft0

]

=E∗
[
S(T − η)Mf (t0, T − η)

Md(t0, T − η)

∣∣∣∣∣Ft0
]
.

Continuing the process above, we obtain that

E∗
[
S(T )Mf (t0, T )

Md(t, T )

∣∣∣∣∣Ft0
]

= E∗
[
S(t+ η)Mf (t0, t0 + η)

Md(t0, t0 + η)

∣∣∣∣∣Ft0
]

= S(t0),

which affirms that under the risk-neutral probability measure P∗ is consistent not

only from t to t+ η but also t0 to T and the filtration F is still a martingale from

t0 to T .
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End of proof.

Based on the assumptions above, we can then apply in discrete time Amin

and Jarrow [1991]’s intuition for determining the risk neutral process, given that

in each step the interest rate dynamics are describing timed deposits. I provide

the exact replication and hedging arguments over a single time step as follow,

Proof. This proof illustrates the no-arbitrage principle across the two numéraires

within each time step, when the deposit account is timed. I use V (t + η′) to

denote the price of a contingent claim, the value of which depends on S(t+ η′) at

time t+η′ and within a time step t < t+η′ < t+η. From the standard treatment

of Itô’s Lemma, we can write down:

dV (t+ η′) =
∂V

∂η′
dη′ +

∂V

∂S
dS(t+ η′) +

1

2

∂2V

∂S2
dS(t+ η′)2,

where the spot price is described by a geometric Brownian motion

dS(t+ η′) = (rd(t)− rf (t))S(t+ η′)dη′ +
√
h(t+ η)S(t+ η′)dW (η′).

Here rd/f (t) and h(t+η) are constant within the time step and can be determined

at the beginning t. This implies that dS(t+ η′)2 = h(t+ η)S(t+ η′)dη′ and then

we have:

dV (t+ η′) =

[
∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2

]
dη′ +

∂V

∂S
dS(t+ η′).

Now I construct a portfolio Π(t+η′), which longs one unit of the contingent claim

and shorts Θ(t + η′) units of the foreign money market account, which has the
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price Θ(t+ η′)S(t+ η′)Mf (t, t+ η′):

Π(t+ η′) = V (t+ η′)−Θ(t+ η′)S(t+ η′)Mf (t, t+ η′),

which should be riskless. From this I derive the portfolio value as:

dΠ(t+ η′) =dV (t+ η′)−Θ(t+ η′)d(S(t+ η′)Mf (t, t+ η′))

=dV (t+ η′)−Θ(t+ η′)Mf (t, t+ η′)dS(t+ η′)−Θ(t+ η′)S(t+ η′)dMf (t, t+ η′)

=dV (t+ η′)−Θ(t+ η′)Mf (t, t+ η′)dS(t+ η′)+

−Θ(t+ η′)S(t+ η′)rf (t+ η′)Mf (t, t+ η′)dη′

=dV (t+ η′)−Θ(t+ η′)Mf (t, t+ η′)

[
(rd(t)− rf (t))S(t+ η′)dη′+

+
√
h(t+ η)S(t+ η′)dW (η′)

]
−Θ(t+ η′)S(t+ η′)rf (t)Mf (t, t+ η′)dη′

=dV (t+ η′)−Θ(t+ η′)Mf (t, t+ η′)

[
rd(t)S(t+ η′)dη′

+
√
h(t+ η)S(t+ η′), dW (η′)

]

which is equivalent to:

dΠ(t+ η′) =
∂V

∂η′
dη′ +

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
dη′ +

∂V

∂S
dS(t+ η′)+

−Θ(t+ η′)Mf (t, t+ η′)
[
rd(t)S(t+ η′)dη′ +

√
h(t+ η)S(t+ η′)dW (η′)

]
=

[
∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
−Θ(t+ η′)Mf (t, t+ η′)rd(t)S(t+ η′)

]
dη′+

+
∂V

∂S
dS(t+ η′)−Θ(t+ η′)Mf (t, t+ η′)

√
h(t+ η)S(t+ η′)dW (t+ η′)
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Substituting the parameters of the presumed process I recover:

Π(t+ η′) =

[
∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
−Θ(t+ η′)Mf (t, t+ η′)rd(t)S(t+ η′)

]
dη′+

+
∂V

∂S

[
(rd(t)− rf (t))S(t+ η′)dη′ +

√
h(t+ η)S(t+ η′)dW (t+ η′)

]
+

−Θ(t+ η′)Mf (t, t+ η′)
√
h(t+ η)S(t+ η′)dW (t+ η′)

=

[
∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
−Θ(t+ η′)Mf (t, t+ η′)rd(t)S(t+ η′)+

+
∂V

∂S
(rd(t)− rf (t))S(t+ η′)

]
dη′+

+

[
∂V

∂S
−Θ(t+ η′)Mf (t, t+ η′)

]√
h(t+ η)S(t+ η′)dW (t+ η′).

(3.7)

To eliminate the random term containing W (t + η′), Θ(t + η′) needs to satisfy

Θ(t+ η′)Mf (t, t+ η′) = ∂V/∂S, then

Θ(t+ η′) =
1

Mf (t, t+ η′)

∂V

∂S
. (3.8)

Substituting Eq. (3.8) into Eq. (3.7) yields

dΠ(t+ η′) =

[
∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
− rd(t)S(t+ η′)

∂V

∂S
+

+
∂V

∂S
(rd(t)− rf (t))S(t+ η′)

]
dη′.

Since we expect this portfolio to be risk-neutral, the growth of Π(t + η′) should

then be equal to that of the domestic riskless money market account, therefore
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dΠ(t+ η′) = rd(t)Π(t+ η′)dη′, which is

[
∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
− rd(t)S(t+ η′)

∂V

∂S
+
∂V

∂S
(rd(t)− rf (t))S(t+ η′)

]
dη′

= rd(t)Π(t+ η′)dη′ = rd(t)

[
V (t+ η′)− ∂V

∂S
S(t+ η′)

]
dη′,

and then we have

∂V

∂η′
+

1

2
h(t+ η)S(t+ η′)2∂

2V

∂S2
+ (rd(t)− rf (t))S(t+ η′)

∂V

∂S
− rd(t)V (t+ η′) = 0.

End of proof.

Denoting x(t) = lnS(t) as the natural logarithm of the spot FX price at time

t. Let f ∗(φ) denote the conditional characteristic function of the logarithm price

under domestic risk neutral measure, with φ ∈ C, then we have the following

theorem.

Theorem 1. The characteristic function for the ASTSV model is affine and of

the following form

f(φ) =E∗[eφx(T )] = exp(φx(t) + A(t;T, φ) +Bd(t;T, φ)rd(t)−Bf (t;T, φ)rf (t)+

+ Cd(t;T, φ)hd(t+ η)− Cf (t;T, φ)hf (t+ η) + Cs(t;T, φ)hs(t+ η)).

(3.9)

where d, f and s denotes the parameters for domestic risk-free rate, foreign risk-

free rate and spot FX price respectively. The recursive coefficient terms to be
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evaluated from the terminal boundary conditions are as follows:

A(t;T, φ) =A(t+ η;T, φ) +Bd(t+ η;T, φ)µ0d −Bf (t+ η;T, φ)µ0f+

+ Cd(t+ η;T, φ)ωd − Cf (t+ η;T, φ)ωf + Cs(t+ η;T, φ)ωs+

− 1

2
ln(1− 2Cs(t+ η;T, φ)αs)−

1

2
ln(1− 2Cd(t+ η;T, φ)αd)+

+
1

2
ln(1− 2Cf (t+ η;T, φ)αf ), (3.10a)

Bk(t;T, φ) =Bk(t+ η;T, φ)µ1k + φ, k ∈ {f, d}, (3.10b)

Ck(t;T, φ) =Ck(t+ η;T, φ)βk +Bk(t+ η;T, φ)λk + γkBk(t+ η;T, φ)+

− 1

2
γ2
k +

(Bk(t+ η;T, φ)− γk)2

2(1− 2Ck(t+ η;T, φ)αk)
, k ∈ {f, d}, (3.10c)

Cs(t;T, φ) =Cs(t+ η;T, φ)βs −
1

2
φ+ γ∗sφ−

1

2
γ∗2s +

(φ− γ∗s )2

2(1− 2Cs(t+ η;T, φ)αs)
.

(3.10d)

The boundary conditions at T are the following:

A(T ;T, φ) = Bk(T ;T, φ) = Cs(T ;T, φ) = 0, Ck(T − η;T, φ) = 0, k ∈ {f, d}.

Proof. The closed form GARCH pricing framework first suggested in Heston and

Nandi [2000] has been modified previously, see for instance Christoffersen et al.

[2014]. However, I introduce three new general building blocks in this proof.

First, that the change in numéraire for options is admissible using a simple ad-

justment. Second, affine combinations of vector iid normal increments are easily

additive (hence more than one stochastic factor can be included). Finally and

more importantly, I provide the exact characteristic function for stationary AR(1)

increments, alluded to, but not explicitly defined, in Heston and Nandi [1999].
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The general derivation contained herein serves as a useful foundation for combin-

ing an arbitrary number of GARCH and AR GARCH factors in an option-pricing

model.

The first step is to write down concretely the characteristic function Eq. (3.9).

Denoting xt = lnS(t), then the characteristic function is presumed to be of the

following exponential affine form:

f ∗(t;T, φ) =E∗[eφx(T )]

= exp(φx(t) + A(t;T, φ) +Bd(t;T, φ)rd(t)−Bf (t;T, φ)rf (t)+

+ Cd(t;T, φ)hd(t+ η)− Cf (t;T, φ)hf (t+ η) + Cs(t;T, φ)hs(t+ η)).

Next I demonstrate the coefficients A,Bd/f and Cd/f/s under the risk-neutral mea-

sure can be recovered from the backward recursion. At time T the log price x(T )

is known with certainty, however, the relevant timed deposit rates are actually

determined at rd/f (T − η) hence the terminal conditions are:

A(T ;T, φ) = Bk(T ;T, φ) = Cs(T ;T, φ) = 0, Ck(T − η;T, φ) = 0, k ∈ {f, d}.

Then can now apply the law of iterated expectations to f ∗(t;T, φ) and hence I

recover:

f ∗(t;T, φ) =E∗[f ∗(t+ η;T, φ)]

=E
[

exp(φx(t+ η) + A(t+ η;T, φ) +Bd(t+ η;T, φ)rd(t+ η)+

−Bf (t+ η;T, φ)rf (t+ η) + Cd(t+ η;T, φ)hd(t+ 2η)+

− Cf (t+ η;T, φ)hf (t+ 2η) + Cs(t+ η;T, φ)hs(t+ 2η))
]
. (3.11)
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I denote A(t), Bd/f (t), Cd/f/s(t) for convenience, and substituting the processes

into Eq. (3.11) yields

f ∗(t;T, φ) =E
[

exp
(
φx(t) + φrd(t)− φrf (t)−

1

2
φhs(t+ η)+

+ φ
√
hs(t+ η)z∗(t+ η) + A(t+ η)+

+Bd(t+ η)(µ0d + µ1drd(t) + λdhd(t+ η) +
√
hd(t+ η)ud(t+ η))+

−Bf (t+ η)(µ0f + µ1frf (t) + λfhf (t+ η) +
√
hf (t+ η)uf (t+ η))+

+ Cd(t+ η)(ωd + βdhd(t+ η) + αd(ud(t+ η)− γd
√
hd(t+ η))2)+

− Cf (t+ η)(ωf + βfhf (t+ η) + αf (uf (t+ η)− γf
√
hf (t+ η))2)+

+ Cs(t+ η)(ωs + βshs(t+ η) + αs(z
∗(t+ η)− γ∗s

√
hs(t+ η))2)

)]

Then we can rearranging the right hand side by gathering the coefficients for
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rk(t), hd/f/s(t+ τ) and the terms having
√

(hd/f/s) respectively,

f ∗(t;T, φ) =E
[

exp
(
φx(t) + A(t+ η) +Bd(t+ η)µ0d −Bf (t+ η)µ0f+

+ Cd(t+ η)ωd − Cf (t+ η)ωf + Cs(t+ η)ωs+

+ (Bd(t+ η)µ1d + φ)rd(t)− (Bf (t+ η)µ1f + φ)rf (t)+

− 1

2
φhs(t+ η) + φ

√
hs(t+ η)z∗(t+ η)+

+ Cs(t+ η)βshs(t+ η) + Cs(t+ η)αs(z
∗(t+ η)− γ∗s

√
hs(t+ η))2+

+Bd(t+ η)λdhd(t+ η) +Bd(t+ η)
√
hd(t+ η)ud(t+ η)+

+ Cd(t+ η)βdhd(t+ η) + Cd(t+ η)αd(ud(t+ η)− γd
√
hd(t+ η))2+

−Bf (t+ η)λfhf (t+ η)−Bf (t+ η)
√
hf (t+ η)uf (t+ η)+

− Cf (t+ η)βfhf (t+ η)− Cf (t+ η)αf (uf (t+ η)− γf
√
hf (t+ η))2

)]
.

(3.12)

Notice the terms having
√
hd/f/s, these can now be expressed using the following

pattern:

Hd/f/s = F (φ)
√
hw + C(t+ η)α(w − γ

√
h)2,

where F (φ) is a function of φ representing either φ or Bd/f (t+ η), and w denotes

the three iid structural disturbances z(t), ud(t) and uf (t), recalling that these are
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assumed to have independent moments, we can subsequently derive this part as

Hd/f/s =F (φ)
√
hw + C(t+ η)α(w2 − 2γw

√
h+ γ2h)

=C(t+ η)α

(
w2 − 2γw

√
h+ γ2h+

F (φ)
√
hw

C(t+ η)α

)

=C(t+ η)α

(
w2 − 2γw

√
h+

F (φ)
√
hw

C(t+ η)α
+ γ2h− γF (φ)h

C(t+ η)α
+

+
F 2(φ)h

4C2(t+ η)α2
+

γF (φ)h

C(t+ η)α
− F 2(φ)h

4C2(t+ η)α2

)

=C(t+ η)α

(
w2 − 2w

(
γ − F (φ)

2C(t+ η)α

)√
h+

+

((
γ − F (φ)

2C(t+ η)α

)√
h

)2

+
γF (φ)h

C(t+ η)α
− F 2(φ)h

4C2(t+ η)α2

)

=C(t+ η)α

(
w −

(
γ − F (φ)

2C(t+ η)α

)√
h

)2

+ (γF (φ)− F 2(φ)

4C(t+ η)α
)h.

(3.13)

To solve the expectation of this I follow Heston and Nandi [2000] and use the

following device, that for a standard normal random variable w to separate the

first and second moments:

E[exp(a(w + b)2)] = exp

(
−1

2
ln(1− 2a) +

ab2

1− 2a

)
. (3.14)

Applying Eq. (3.14) into Eq. (3.13), we can then calculate the expectation of
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Hd/f/s:

E[exp(Hd/h/s)] = exp
(

(γF (φ)− F 2(φ)

4C(t+ η)α
)h+

− 1

2
ln(1− 2C(t+ η)α) +

C(t+ η)αγ2 − γF (φ) + F 2(φ)
4C(t+η)α

1− 2C(t+ η)α
h
)
.

Rearranging and simplifying the preceding expression I recover:

E[exp(Hd/h/s)]

= exp
(
− 1

2
ln(1− 2C(t+ η)α) +

(
γF (φ)− 1

2
γ2 +

(F (φ)− γ)2

2(1− 2C(t+ η)α)

)
h
)
.

(3.15)

Applying Eq. (3.15) back into Eq. (3.12), we have:

f ∗(t;T, φ) = exp
(
φx(t) + A(t+ η) +Bd(t+ η)µ0d −Bf (t+ η)µ0f + Cd(t+ η)ωd+

− Cf (t+ η)ωf + Cs(t+ η)ωs +−1

2
ln(1− 2Cs(t+ η)αs)+

− 1

2
ln(1− 2Cd(t+ η)αd) +

1

2
ln(1− 2Cf (t+ η)αf )+

+ (Bd(t+ η)µ1d + φ)rd(t)− (Bf (t+ η)µ1f + φ)rf (t)+

+
(
Cs(t+ η)βs −

1

2
φ+ γ∗sφ−

1

2
γ∗2s +

(φ− γ∗s )2

2(1− 2Cs(t+ η)αs)

)
hs(t+ η)+

+
(
Cd(t+ η)βd +Bd(t+ η)λd + γdBd(t+ η)− 1

2
γ2
d+

+
(Bd(t+ η)− γd)2

2(1− 2Cd(t+ η)αd)

)
hd(t+ η)−

(
Cf (t+ η)βf +Bf (t+ η)λf+

+ γfBf (t+ η)− 1

2
γ2
f +

(Bf (t+ η)− γf )2

2(1− 2Cf (t+ η)αf )

)
hf (t+ η)

)
. (3.16)

Finally, comparing Eq. (3.11) with Eq. (3.16), we get the iteration term for A(t),
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Bd/f (t) and Cd/f/s(t):

A(t;T, φ) =A(t+ η;T, φ) +Bd(t+ η;T, φ)µ0d −Bf (t+ η;T, φ)µ0f+

+ Cd(t+ η;T, φ)ωd − Cf (t+ η;T, φ)ωf + Cs(t+ η;T, φ)ωs+

− 1

2
ln(1− 2Cs(t+ η;T, φ)αs)−

1

2
ln(1− 2Cd(t+ η;T, φ)αd)+

+
1

2
ln(1− 2Cf (t+ η;T, φ)αf ),

Bd(t;T, φ) =Bd(t+ η;T, φ)µ1d + φ,

Bf (t;T, φ) =Bf (t+ η;T, φ)µ1f + φ,

Cd(t;T, φ) =Cd(t+ η;T, φ)βd +Bd(t+ η;T, φ)λd + γdBd(t+ η;T, φ)+

− 1

2
γ2
d +

(Bd(t+ η;T, φ)− γd)2

2(1− 2Cd(t+ η;T, φ)αd)

Cf (t;T, φ) =Cf (t+ η;T, φ)βf +Bf (t+ η;T, φ)λf + γfBf (t+ η;T, φ)+

− 1

2
γ2
f +

(Bf (t+ η;T, φ)− γf )2

2(1− 2Cf (t+ η;T, φ)αf )
,

Cs(t;T, φ) =Cs(t+ η;T, φ)βs −
1

2
φ+ γ∗sφ−

1

2
γ∗2s +

(φ− γ∗s )2

2(1− 2Cs(t+ η;T, φ)αs)
.

Setting k ∈ {d, f}, I recover the expression in the theorem.

End of proof.

The closed form characteristic function can then be used to price the option.

The main idea here is that characteristic function is the Fourier transform of

the probability density function of the spot rate at terminal, thus describes the

distribution of the future spot rate. Notice the staggered boundary conditions

for the domestic and foreign spot timed deposit rates versus spot FX variance

equation. This differs from those found in the Ingersoll [1987], Heston and Nandi

[1999] and Heston and Nandi [2000] specifications. Recall that at each time step
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the timed deposit rate is already set, hence for the last step, the future variation

of the rate for T + η is not required. Therefore, the adjusted terminal condition.

This illustrates my trivial case, when τ = Jη for J = 1, the model collapses

completely to a one period Black-Scholes/Garman and Kohlhagen model and

subsequently breaking the implied volatility skew structure needed to properly

fit the observed market characteristics.

Remark 2. To derive the exact price I follow Ingersoll [1987] and use a single

characteristic function to combine the timed deposit rate and spot exchange rate

dynamics

E∗t [max(S(T )−K, 0)] =f ∗(1)

(
1

2
+

1

π

∫ ∞
0

<
[
K−φf ∗(φ+ 1)

φf ∗(1)

]
dφ

)
+

−K
(

1

2
+

1

π

∫ ∞
0

<
[
K−φf ∗(φ)

φ

]
dφ

)
. (3.17)

Proof. I use f ∗(φ) to obtain the probability density function via an inverse Fourier

transform, which is also referred to as the Inversion Theorem. Following Lévy

[1925], who provided a fundamental inversion formula, Gil-Pelaez [1951] provides

a useful treatment of the Fourier inversion theorem, which shows the cumulative

distribution function FX(x) =
∫ x
∞ fX(x)dx (given fX(x) is the probability density

function of an random variable x) is

FX(xT ) = P(x 6 xT ) =
1

2
+

1

2π

∫ ∞
0

eφxT f ∗(−φ)− e−φxT f ∗(φ)

φ
dφ.

Consider a complex number z ∈ C with properties such that its real part is

<[z] = (z + z̄)/2 and its imaginary part is =[z] = (z − z̄)/2, where z̄ is the
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complex conjugate. For the characteristic function

<[f ∗(φ)] =
f ∗(φ) + f ∗(−φ)

2
,=[f ∗(φ)] =

f ∗(φ)− f ∗(−φ)

2
,

which implies that the real part of f ∗(φ) is an even function and the imaginary

part is odd. Then I derive that

Fx(xT ) =
1

2
+

1

2π

∫ ∞
0

eiφxT f ∗(−iφ)− e−iφxT f ∗(iφ)

iφ
dφ

=
1

2
+

1

2π

∫ ∞
0

[(
e−φxT f ∗(φ)

−φ

)
− e−φxT f ∗(φ)

φ

]
dφ

=
1

2
− 1

π

∫ ∞
0

<
[
e−φxT f ∗(φ)

φ

]
dφ.

Now we can calculate that the probability P(xT > lnK) =
∫∞

lnK
fX(x)dx is simply

1− P(xt 6 lnK), which is

P(xT > lnK) =
1

2
+

1

π

∫ ∞
0

<
[
e−φ lnKf ∗(φ)

φ

]
dφ. (3.18)

The final thing to demonstrate in the raw affine model is that the expectation of

the terminal payoff is

E∗t [max(S(T )−K, 0)] = E∗t [max(exT −K, 0)]

= E∗t [exT1S(T )>K ]−KE∗t [1S(T )>K ]. (3.19)

I have shown the derivation of the second summand term, since E∗t [1S(T)>K] =

P(xT > lnK). The first expectation term E∗t [exT1S(T )>K ] needs adjustments. Ob-

serving E∗t [exT1S(T )>K ] =
∫∞

lnK
exT fX(x)dx, we can introduce a change of measure
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from Q∗ to Q̃∗ with Radon-Nikodym derivative

dQ̃∗

dQ∗
=

exT

EQ∗ [exT ]
.

This is equivalent to an adjusted probability density function defined by

f̃X(x) =
exT fX(x)

EQ∗ [exT ]
=
exT fX(x)

fQ∗(1)
.

Under the new measure Q̃∗, the characteristic function is

f Q̃∗(φ) = EQ̃∗ [eφxT ] =
EQ∗ [exT eφxT ]

EQ∗ [exT ]
=
fQ∗(φ+ 1)

fQ∗(1)
.

Then we can derive the first term as

E∗t [exT1S(T )>K ] =

∫ ∞
lnK

exT fX(x)dx = fQ∗(1)

∫ ∞
lnK

f̃X(x)dx

= f ∗(1)

(
1

2
+

1

π

∫ ∞
0

<
[
e−φ lnKf ∗(φ+ 1)

φf ∗(1)

]
dφ

)
. (3.20)

Substituting Eq. (3.20) and Eq. (3.18) into Eq. (3.19), we can get

E∗t [max(S(T )−K, 0)]

=f ∗(1)

(
1

2
+

1

π

∫ ∞
0

<
[
K−φf ∗(φ+ 1)

φf ∗(1)

]
dφ

)
−K

(
1

2
+

1

π

∫ ∞
0

<
[
K−φf ∗(φ)

φ

]
dφ

)
.

Hence the price satisfies the no-arbitrage assumption under the domestic measure.

End of proof.

Denoting Dd(τ) as the domestic discounting factor, and from τ = T−t then we
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can write the value of the option as the present value today of this expectation.1

We now have sufficient components to determine the FX option pricing formula:

Corollary 2. The call option price for an FX option following the ASTSV dy-

namics under the risk-neutral measure Q{d} is given by the following expression:

Pc =Dd(τ)E∗t [max(S(T )−K, 0)]

=Dd(τ)f ∗(1)

(
1

2
+

1

π

∫ ∞
0

<
[
K−iuf ∗(iu+ 1)

uf ∗(1)

]
du

)
+

−Dd(τ)K

(
1

2
+

1

π

∫ ∞
0

<
[
K−iuf ∗(iu)

iu

]
du

)
. (3.21)

The put option price can be then calculated by the put-call parity as

Pp = Pc −Df (τ)S(t) +Dd(τ)K. (3.22)

3.2.2 Affine stochastic volatility (ASV) and affine realised

variance (ARV) models

For FX options with shorter maturities, for instance less than two years, the

variance of the deposit rate usually has a vanishing contribution to the overall

price. We can simplify short maturity models using the following assumption.

Assumption 4. Pricing options with constant drift rd − rf . Let Rd and Rf be

the currently quoted timed deposit rates as discrete annual percentage rates for

the domestic and foreign numéraires from time t to option maturity date T . Let

1Recall that τ is measured in units of η, hence if η is one day then T − t is the number
of trading days from t to T . We suffer less from the problem of time-mismatches between the
trading day and one days interest, but this still needs to be included as this is a substantial
source of error for long maturities.
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A (η, τ) = Aτ−1η be an annualization conversion factor for a given combination

of η and τ , such that rk = A (η, τ) ln(1 +Rk/100).

For instance, with spot prices traded for five days a week, a year typically

contains 252 business days (Monday to Friday, with US holidays); hence if η is

daily, there will be 252/1 increments from t0 to T for each day’s free variation.

The factor A (η, τ) = 365/(252/1) provides the adjustment to the daily risk-free

rate to account for the difference in trading time versus calendar time for each

increment. Hence rk = A (η, τ) ln(1 + Rk/100), for k ∈ {d, f} for an annually

reported percentage rate Rk.

For short maturity options this can yield only a very small deviations from

the ‘correct’ price, but for longer maturity options the incorrect identification of

A (η, τ) can lead to substantial pricing errors.

Assumption 5. The ASV Model. When foreign and domestic numéraires are

constant, the ASTSV model collapses to a Heston and Nandi [2000] model with

constant drift rd−rf (henceforth referred to as the Garman and Kohlhagen [1983]

adjustment):

R(t+ η) = rd − rf −
1

2
hs(t+ η) +

√
hs(t+ η)z∗(t+ η), (3.23)

hs(t+ η) = ωs + βshs(t) + αs(z
∗(t)− γ∗s

√
hs(t))

2. (3.24)

The corresponding characteristic function is easily defined as a constrained form

of the ASTSV model and is given in the following proposition:

Proposition 1. The ASV Model Characteristic Function. The characteristic
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function for the ASV model with deterministic deposit rates is given by:

f ∗(φ) = E∗[eφx(T )] = eφx(t)e(A∗(t;T,φ)+B∗(t;T,φ)hs(t+η)), (3.25)

where

A∗(t;T, φ) =A∗(t+ η;T, φ) + φ(rd − rf ) +B∗(t+ η;T, φ)ωs+

− 1

2
ln(1− 2αsB

∗(t+ η;T, φ)); (3.26a)

B∗(t;T, φ) =φ(−1

2
+ γ∗s )−

1

2
γ∗2s + βsB

∗(t+ η;T, φ)+

+
(φ− γ∗s )2

2(1− 2αsB∗(t+ η;T, φ))
. (3.26b)

These coefficients can be can be calculated recursively under the terminal condi-

tions A∗(T ;T, φ) = B∗(T ;T, φ) = 0.

Proof. Proposition 1 closely follows the analysis in Heston and Nandi [2000], but

it is important to illustrate that the two numéraires do indeed allow for a similar

functional form. The proof is actually an simplified version of the ASTSV’s

characteristic function derivation. So we will just refer to the former proof. End

of proof.

Assumption 6. The ARV Model. An alternative to the GARCH–type assump-

tion for the ASV model uses realised quadratic variation to construct an exogenous

time series of conditional variances ĥs(t+ η) under the following approximation:

∫ t+η

t

h(t)dt = ĥs(t+ η)→
M∑
m=1

ε2s(t+
m

M
η), (3.27)

where M is the number of intra-day observations and h(t) is the instantaneous
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spot variance.

This model can then be fitted in a two stage estimation via non-linear least

squares.

3.3 Estimation procedures

I fit the various model specifications via non-linear least squares (NLLS) and

maximum likelihood estimation (MLE). Specifically, I fit the timed deposit rate

models via NLLS directly to the yield curve, the ARV model is fitted by NLLS

to the time series of realised quadratic variance estimated from five-minute data

and the GARCH models are fitted via MLE to the filtered spot rate dynamics. I

detail these procedures in reverse order, starting with the GARCH models.

3.3.1 Spot FX GARCH volatility model estimation via

MLE

Let θs = (λs, ωs, βs, αs, γs) represents the model parameters for the spot rate

dynamics in Assumption 2. Notice that the term rd(t)− rf (t) is lagged in respect

to R(t+ η). Let n ∈ {1, . . . , N} index a set of historical observations of exchange

rate fluctuations and timed deposit accounts denoted Rn(t), rd,n(t) and rf,n(t).

The econometric specification can be explicitly stated by

Rn(t+ η)− rd,n(t) + rf,n(t) = λshs,n(t+ η) +
√
hs,n(t+ η)zn(t+ η) = εs,n(t+ η),

hs,n(t+ η) = ωs + βshs,n(t) + αs(zn(t)− γs
√
hs,n(t))2.
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The Gaussian log likelihood function for a given parameter vector θs ∈ Θs is

denoted by:

L(θs) = −N
2

ln(2π)−1

2

N∑
n=n0

lnhs,n(t+η|θs)−
1

2

N∑
n=n0

(εs,n(t+ η)− λshs,n(t+ η|θs))2

hs,n(t0 + η|θs)
.

where Θs is the set of all admissible parameter vectors. Estimation proceeds via:

θ̂s := arg maxθs L(θs),

s.t. 1 > βs + αsγ
2
s ≥ 0, 1 > βs ≥ 0, 1 > αs ≥ 0,

with an initial condition of h(t0|θs) = ωs/(1− βs − αsγ2
s ). The number of initial-

ization observations n0 is obviously subject to discretion. As βs + αsγ
2
s → 1, the

results will be increasingly sensitive to the initial condition.

Finally, let Hs(θs) = (∂2/∂θs∂θ
′
s)L(θs) be the Hessian matrix of second order

partial derivatives of L(θs). Notice that dependency structure of this type of

GARCH model forces us to approximate the Hessian by finite differencing, a

simple and robust approach is for each pair of parameters to randomly sample

a small number of points, I use 50, in the interval (θs − ῑ, θs + ῑ), where ῑ is the

fourth root of the smallest floating point integer difference available (depends

on the computer) and then fit the closest bivariate second order polynomial,

this modifies a forward and backward differencing approach suggested by Kevin

Sheppard in the MFE-GARCH toolbox, see https://www.kevinsheppard.com/

MFE_Toolbox, last accessed December 2016. The coefficients of the quadratic

terms yield the derivatives of interest.

The asymptotic variance covariance matrix Q̂ = Asy.Cov.[θ̂s|θ0s] = ((N −
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n0)Hs(θ̂s))
−1, where θ0s is the ‘true’ parameter vector. Notice that we can write

down expressions for the derivatives of L(θs) using the recursion from the pre-

ceding section.

3.3.2 Spot FX realised volatility model estimation via NLLS

Following Assumption 6, I presume that ĥs(t + η) →
∑M

m=1 ε
2
s(t + m

M
) is iden-

tified from high frequency data, I will utilise a five minute grid from tick data.

Estimation of the structural parameters then proceeds via NLLS estimation of

the following pair of equations:

εs,n(t+ η) =λsĥs,n(t+ η) +

√
ĥs,n(t+ η)zRV,n(t+ η);

ĥs,n(t+ η) =ωs + βsĥs,n(t) + αsγ
2
s ĥs,n(t)+

− 2αsγs

√
ĥs,n(t)zRV,n(t) + αsz

2
RV,n(t) + ξn(t+ η).

First I compute:

λ̂s := arg min
λs

N∑
n=1

(λsĥs,n(t+ η) +

√
ĥs,n(t+ nη)zRV,n(t+ η)− ε2s,n(t+ η))2

s.t.
∑N

n
zRV,n(t+ η) = 0,

∑N

n
z2
n(t+ η) = 1.

Notice that there is more than sufficient slackness in the identification z̃(t) to

satisfy the restrictions. Next I input the recovered disturbances zRV,n(t + η) in
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the variance equation, given the estimated λ̂ and observed ĥs,n(t). Setting

gn+1(θRV |t+ η) =ωs + βsĥs,n(t+ η) + αsγ
2
s ĥs,n(t+ η)+

− 2αsγs

√
ĥs,n(t+ η)zRV (t+ η) + αsz

2
RV (t+ η)

to be the one step ahead, in data, forecasts of the conditional variance.

{ω̂s, β̂s, α̂s, γ̂a} := arg min
{ωs,βs,αs,γa}

LRV (ωs, βs, αs, γa), where

LRV (ωs, βs, αs, γa) =
N∑
n=1

(ĥs,n(t+ η)− gn(θRV |t+ η))2,

As λ̂s is uniquely identified I set θRV = (ωs, βs, αs, γa)
′.

3.3.3 Asymptotic error of the call option price

Let Pc(θs) be the call option price as a function of the spot exchange rate model

parameters. The ASV derivatives of the call price with respect to the underlying

parameters are given by

∆̂s(θs) :=
∂Pc(θs)

∂θs
→ 1

2

[
Pc(θi,s + ζ)− Pc(θi,s)

ζ

]
+

1

2

[
Pc(θi,s − ζ)− Pc(θi,s)

−ζ

]
.

(3.28)

Unfortunately the elements of, ∆̂s(θs) do not have convenient closed form solu-

tions and hence have to be determined by numerical approximation, via a finite

difference ζ. Using the ‘delta’ method we can approximate the distribution of

Pc(θs) in the following way. I denote
√
N(θ̂s − θ0,s) →d N(0, NQ̂); this implies

that
√
N(Pc(θ̂s) − Pc(θ0,s)) →d N(0, ∆̂′s(θs)NQ̂∆̂s(θs)) and yields an obvious,
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but very useful new result combining the ‘GARCH parameter derivatives’ and

the asymptotic covariance matrix from the estimation phase:

Corollary 3. Asymptotic Variance of the Estimated Call Price

Asy.V ar.[Pc(θ̂s)] = ∆̂′s(θs)Q̂∆̂s(θs). (3.29)

I provide a sketch of the proof of continuity of Eq. (3.28) as the following

Proof. The majority of Corollary 3 is easily verifiable from the standard proper-

ties of the delta method, see Casella and Berger [2002]. The problem reduces to

ascertaining that Pc(θs) for θs ∈ Θs is at least C2 and hence the numerical ap-

proximation in Eq. (3.28) is valid, using the Bolzano-Weierstrass theorem, when

θ̂s is from the feasible parameter set Θs. First, notice that we can reduce this

problem to simply ascertaining that

E[exp(Hd/h/s)]

= exp
(
− 1

2
ln(1− 2C(t+ η)α) +

(
γF (φ)− 1

2
γ2 +

(F (φ)− γ)2

2(1− 2C(t+ η)α)

)
h
)
,

is continuous with respect to θ = {ω, β, α, γ}, for 0 ≤ β < 1, 0 ≤ α < 1 and

1 − β − αγ2 > 0. This is dues to the call price, Eq. (3.21) as an integral of

the characteristic function, which must itself obey the fundamental theorem of

Lebesgue integral calculus. If this is the case then the pattern for the three

processes is additive hence preserving continuity. It is straightforward to note

that via the chain rule the polynomial property of C(t + η) with respect to θ

results in always continuous derivative for E[exp(Hd/h/s)]. Therefore, with at

least one time step E[exp(Hd/h/s)] is at least C2.
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End of proof.

3.3.4 Capturing the term structure dynamics

Given the dynamic of the interest rate in Assumption 3, we can derive the

bond price accordingly. For a money account M(t) associated with interest rate

rk(t), assume it has an initial value at t being M(t) = 1. Then here we use

the moment generating function for the future logarithm money account value

m(T ) = lnM(T ), which is affine and of the following form

f(u) =E∗[eum(T )] = exp(A(t;T, u) +Bd(t;T, u)rk(t) + Ck(t;T, u)hk(t+ η)).

where k ∈ d, f denotes the parameters for domestic or foreign interest rates

respectively. The recursive coefficient terms to be evaluated from the terminal

boundary conditions are as follows:

A(t;T, u) =A(t+ η;T, u) +Bk(t+ η;T, u)µ0k + Ck(t+ η;T, u)ωk+

− 1

2
ln(1− 2Ck(t+ η;T, u)αk)

Bk(t;T, u) =Bk(t+ η;T, u)µ1k + u,

Ck(t;T, u) =Ck(t+ η;T, u)βk +Bk(t+ η;T, u)λk + γkBk(t+ η;T, u)+

− 1

2
γ2
k +

(Bk(t+ η;T, u)− γk)2

2(1− 2Ck(t+ η;T, u)αk)
.

The boundary conditions at T are the following:

A(T ;T, u) = Bk(T ;T, u) = Ck(T ;T, u) = 0, Ck(T − η;T, u) = 0, k ∈ {f, d}.

65



We can then notice that the moment generating function becomes bond price

when moment u = −1.

Let B̄(sη) be the quoted bond price on a time deposit account with ma-

turity sη at time t0. If we consider the collection of bond prices {B(sη)|s ∈

{0, . . . , τη−1}} describing the yield curve for available timed deposit accounts.

Recalling that θk = (λk, ωk, βk, αk, γk)
′, the calibrated yield curve models can be

obtained from the following non-linear least squares fitting:

θ̂k := arg min
θk

τη−1∑
s=1

(f(t0 + sη;T, u = −1)−B(t0 + sη)])2.

We can make use of the standard asymptotic normality assumption for the non-

linear least squares estimator to obtain
√
τη−1(θ̂k − θ0) = H−1[θ̂k], where H[θk]

is the Hessian matrix such that:

H[θk] =
∂2

∂θk∂θ′k

τη−1∑
s=1

(f(t0 + sη;T, u = −1)−B(t0 + sη)])2.

If we restrict the functional form of the model by setting βk = αk = γk = 0

and hence implying that λk = 0, we can determine a simple formulation for the

long term rate, τ → ∞, denoted by r̄k, under the assumption that |µ1k| < 1:

r̄k = µ0k/(1− µ1k) we can determine the expectation of any forward rate r̄k,t+s in

the standard way for any discrete-time Vasicek-type model whereby r̄k(t+ sη) =∑s−1
i=0 µ0kµ

i
1k+µs1krk,t. The proposed interest dynamic with tenor equals time-step

size can also be estimated by MLE based on its time series.
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Figure 3.1: Term structure of the short rate models, with and without GARCH terms.
First five years of the US dollar term structure (red line), with the predicted model fit
from a calibrated discrete-time Vasicek model. The dashed line is the yield on a 20-year
treasury bond. The yellow line presents the calibrated model with a dynamic variance
equation, whilst the blue line presents a standard Vasicek-type fit, in discrete-time with
constant variance.

3.3.5 Empirical illustration of term structure calibration

with and without GARCH dynamics

Fig. 3.1 illustrates this calibration procedure for a US yield curve for a single day.

We can see the relative advantages and disadvantages of the two approaches.

The markers on the red line represent market quotes. They generate enough

comparative rates for calibration of the seven parameters in the unrestricted

specification; I have used linear interpolation to generate a larger number of

market rates.

The unrestricted model has more flexibility in matching the kinks in the

quoted deposit rates during the early part of the term structure, but this comes
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at a cost in terms of accuracy for the longer part of the curve. The restricted

model (standard discrete-time Vasicek) matches the long rates very well.

3.4 Computing quoted FX surface error bounds

I have showed the volatlity surface construction process in Section 2.4 of Chap-

ter 2. However, ‘bottom-up’ computation of the surface and identification of the

error bounds is completely absent in the literature and not entirely straightfor-

ward. We also need to make use of the delta method once more to determine the

actual error bounds on the quotes given the noisy preceding estimation.

To generate confidence bounds in the resulting structurally derived quotes, I

use the delta method to translate the estimation error into a pricing error. Here

I follow the process in Section 2.4 and keep alignment of the notations.

Let Q(θ̂) = [B̃F 10, B̃F 25, ÃT , R̃R25, R̃R10]′ be the vector of estimated quotes

as a function of the model parameter point estimates θ̂. Next I set D̂ = [∆̂′s,ϕ(θ̂s)]

to be a matrix with columns formed by the vectors of partial derivatives of the

following pivotal options prices P̂(θ̂s) = [P̂10c, P̂25c, P̂50c, P̂50p, P̂25p, P̂10p]
′ where

I extend my previous notation such that for a put or call option satisfying

∂P$∈{p,c}(θ̂s)/∂S(t) = ϕ is denoted P̂$. Subsequently, we can collect all of the

pivot prices at the critical market deltas ϕ ∈ {10c, 25c, 50c, 50p, 25p, 10p} and col-

lect the partial derivatives with respect to the underlying model parameters at the

optimum. It is evident that the sequence of transformations in Eq. (2.1) is smooth

hence from from the inverse function theorem the derivative ∂Q(θ̂)/∂P̂ = Γ̂ ex-

ists and is smooth, hence using the result in Corollary 3 we can extend the delta
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Figure 3.2: Recovering the market quotes from the model option price curve.
The upper left quadrant depicts the call price curve with its 95% error bound in grey
over a range of strikes. Using the Garmen-Kohlhagen adjustment to the Black-Scholes-
Merton model for FX options, I then back out the Black-Scholes-Merton implied volatil-
ities the preceding range of strikes; this is plotted in the top right corner. Combining
the implied volatilities and the strike price, we can compute the spot or forward delta
for put and call prices. The lower left quadrant depicts the absolute spot delta (recalling
that the put delta is negative) as a function of the strike price. Combining the upper
right quadrant and the lower left quadrant, we can then identify the European surface
as a function of the spot delta. In each case the 95% error bound is computed via the
delta method carried over from the previous calculation. Note that |∆p/c| = 0.5, is for
plotting purposes.The at the money volatility occurs at the point at which ∆p+∆c = 0.

method to further derive the asymptotic covariance matrix of the quotes

√
N(Q(θ̂)−Q(θ0)) ∼d N(0, N Γ̂′D̂′Q̂D̂Γ̂)

which gives an asymptotic variance for the quotes as

Asy.V ar.[Q(θ̂)] = diag[Γ̂′D̂′Q̂D̂Γ̂]
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and deriving the desired error bound on the market quote. In Fig. 3.2 I illus-

trate the ‘passing-through’ of the error structure from the estimation stage to

the volatility surface to assist in visualising the preceding steps. The grey area

presents the error bounds at each step, the lower right plot then illustrates the

volatility surface and the error bounds at the pivot points (the red circles) used

to recover the quotes.

3.5 Joint calibration to the observed European

volatility surface

Prior to comparing the fit of any structural models estimated from spot data to

option market quotes, it is important to check if it is actually possible to accu-

rately model the volatility surface, given the ‘optimal’ parameter configurations.

It makes very little sense to compare models that cannot effectively fit the ob-

served European surface under any circumstances. It is also useful to understand,

if some historical option pricing data is available, how much of an improvement

can be made by jointly estimating and calibrating to the surface.

As an example, I consider the close-of-day Euro US dollar volatility surface

for September 30, 2015 and fit the closest approximating volatility surfaces for

the six-month (6M), one-year (1Y) and two-year (2Y) tenors. I employ the ASV

and ASTSV models for this purpose and I utilise the ‘–C’ to represent calibration

from an observed European surface.

The Fig. 3.3 outlines the fit characteristics for the ASV-C and ASTSV-C

models for EURUSD from 6M to 2Y maturity. Notice that the best fitting surface
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Figure 3.3: Comparison of the ASV-C, ASTSV-C estimated volatility surfaces EU-
RUSD from 6M to 2Y maturity on September 30, 2015.
This figure illustrates some examples of the ASV model and ASTSV model fit surface
after direct calibration, to the market volatility surface of the EURUSD call option
(black line) on September 30, 2015 for a variety of tenors.

for the optimal ASV-C model is for near maturities, whereas the ASTSV-C model

fits the 2Y European surface with the same level of precision as it does for the

6M European surface.

For a general comparison, observe the level of agreement in the European

surfaces in Fig. 3.3 with those in Fig. 3.4, which are taken from the closest fitting

model estimated exclusively from spot data, the ASTSV model. We can see from

these two figures about the improvement by calibration.

For the ASTSV model I set η to be in monthly time increments and for the

ASV model I set η to be daily time increments to model the short maturities.

This also reduces the computational burden substantially. For instance, for a

2Y volatility surface, a daily update requires over 500 iterations to compute the
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Figure 3.4: Raw ASTSV estimated volatility surfaces for six days for EURUSD 1Y
contract.
Compared with Fig. 3.3, this figure shows the raw ASTSV model implied volatility
surfaces for six random selected days for EURUSD 1Y contract (dash line) against
market quotations (black line).

characteristic function for each moment. Typically, the numerical evaluation of

the integral in Eq. (3.21) requires more than 100 evaluations of the characteristic

function, to ensure that the resulting call prices form a smooth function with re-

spect to the input parameters and initial variance, interest rate and spot exchange

rate conditions. Switching to a monthly frequency for longer tenors reduces this

computational complexity markedly.

The ÃT volatilities by tenor provide the benchmark for the volatility surface,

and I will now focus on adjustments to the spot variance ĥs(t) and parameter

vector θ to correct the ÃT term structure and the observed term structure bias.
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Figure 3.5: The ÃT quote for the Australian dollar to US dollar one month FX options
from December 17, 2012 to October 8, 2015
The blue line shows the market quotes, the red line is the model quote from the ASV
model without calibration and the yellow line is the estimated quote for the ASV model
with calibration from an initial 10 days of market quotes.

3.5.1 Calibration of volatility term structures

Evidence from the time series of market quotes suggests that for given tenors the

bias in the point estimate is very consistent, and with a subtle adjustment to the

spot variance we can correct it without having to re-estimate the parameters on

a daily basis. Fig. 3.5 illustrates this effect by plotting the time series of the ÃT

market quote versus the raw estimates from the spot data for the ASV model for

Australian Dollar to US Dollar 1M FX options. The out-of-sample point estimates

from the ASV model for the ÃT are shown in the red line, labeled simply ASV,

to denote an uncalibrated model from spot data only. It is relatively easy to see

that the point estimate is systematically biased upward by an almost constant

factor.

The simplest way of adjusting the model, whilst maintaining the structural

assumptions, is to adjust the point estimates of the spot variance ĥs(t) and a
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subset of the parameter vector θ. I find that for the ÃT quotes only α needs to

be calibrated. However, for the B̃F and R̃R quotes calibration of γ is desirable

to ensure that correct skew/kurtosis effect is captured by the models implied

volatility smile. I detail my approach in the following assumption:

Assumption 7. Joint calibration with observed prices. The spot variance hs(t)

for the ASV model for can be adjusted by α and a tenor dependent parameter ζ,

to yield the following affine term structure adjustment:

h̃s(t) =


ζ(ĥs(t)− h̄s) + h̄s min ζ(ĥs(t)− h̄s) + h̄s > 0

ζ(ĥs(t)− h̄s) + h̄s −min ζ(ĥs(t)− h̄s) min ζ(τ)(ĥs(t)− h̄s) + h̄s < 0,

where h̄s =
∑T

t0
ĥs(t)/N is the average level of the estimated spot variance process.

Let ÃT 0,d(τ) be the market quote for an estimation period d ∈ {1, . . . , D} for

tenor τ . Let ÃT 0,d(α, ζ|θ) be the model estimate with other parameters fixed and

conditioned on the model estimate {ĥs(t)}d:

{α̂, ζ̂} := arg min
{α̂,ζ}

D∑
d=1

(ÃT 0,d(τ)− ÃT 0,d(α, ζ|θ))2. (3.30)

For butterflies B̃F 0,d(τ) and risk reversals R̃R0,d(τ), γ is also calibrated to fit the

out of the money delta surface:

{α̂, γ̂, ζ̂} := arg min
{α̂,γ̂,ζ}

D∑
d=1

(B̃F/R̃R0,d(τ)− B̃F/R̃R0,d(α, γ, ζ|θ))2.

The dashed plot in Fig. 3.5 illustrates the adjustment for the optimal ζ and

α, computed by calibration to the initial D = 10 days of data; the parameters are
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Figure 3.6: The stretching parameter adjusts h(t) across different maturities.
This figure shows how the stretching parameter adjusts h(t) across different maturities.
Generally the 1M option would share similar information about the implied volatility
process compared with the spot price market, thus ζ(τ = 1M) is close to 1. Maturities
longer or shorter than 1M would anticipate more volatilities in the spot variance process,
h(t). ζ will be larger if time to maturity becomes either longer or shorter.

then left constant for the remainder of the sample period (pictured in the plot).

A key point here is that for the sample period in the plot (708 days of data) all

of the coefficients ζ and θ are fixed, hence the estimates for the dashed line are

still out of sample. Because ζ effectively ’stretches’ the shape of the spot variance

process h(t), we can refer to ζ as a stretching parameter.

In Fig. 3.6 I plot the optimally adjusted spot variances for the Australian

Dollar to US Dollar FX options for tenors out to two years (2Y). The thick blue

line is the unadjusted spot variance from the point estimates of the model. Each

adjustment is computed from the initial ten days of data. I label the re-calibrated

ASV model ASV-C to indicate that the model estimates for the market quotes

have been calibrated to a sample of market data.
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3.6 Empirical demonstration with five currency

pairs versus the dollar

I will now compare the performance, out-of-sample, of the various model specifica-

tions for five currencies: Australian dollar (AUD), Euro (EUR), Sterling (GBP),

Canadian dollar (CAD) and Japanese Yen (JPY) versus the dollar, the FX rates

are denoted AUDUSD, EURUSD, GBPUSD, USDCAD and USDJPY respec-

tively. I will forecast out-of-sample FX option quotes for tenors out to five years

across the five pivotal quote types (R̃R10, R̃R25, ÃT , B̃F 25 and B̃F 10). The ASV,

ARV and ASV-C models are specified over daily data for a 252-business day year

for the same-week (SW) to two-year tenor (2Y) (Monday to Friday); I exclude

weekends as the quote updates for spot and FX option data are substantially

lower. For maturities beyond two years it is impractical to estimate daily models.

Hence I will use η = 1month for tenors beyond two years. Hence, for three-year

(3Y) and five-year (5Y) tenors, the time step is presumed to be monthly. I have

an overlap that allows us to compare the time step sizes for tenors from 6M to

2Y. The realized variances for the ARV model use five-minute data on a grid from

midnight to midnight GMT. Daily FX spot rates are taken at midnight GMT.

There are a large number of comparative out-of-sample empirical tests that

could be undertaken with the preceding specifications. In this section, I focus

on comparing the models in terms of increasing complexity by comparison of the

simplest ASV specification to the ASTSV specification with stochastic interest

rates. I illustrate the value of modest calibration of the ASV-C model to historical

options data and the effectiveness of using the ASTSV on monthly increments

rather than daily for longer maturity options.
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To compare model forecasts I employ a modification of the Hansen and Lunde

[2005] approach. This entails fitting the models over a fixed estimation window

and then rolling the forecasts forward in a forecasting window for each day, up-

dating only the spot FX data (and hence the next day estimated spot variance). I

then compute the point estimates for the FX option quotes and compare them to

the actual market quotes. For comparison, I use the standard root mean squared

error, RMSE, but supplement this with the absolute of the mean of the error,

(ME). The second comparison is useful, as if the two average losses converge then

this indicates that the error is systematic (equivalent to the intercept in Mincer-

Zarnowitz type regressions) and can be adjusted by an affine transformation of

the forecast. In the later section, I provide a recursive comparative loss analy-

sis (again using quadratic loss functions), following Diebold and Mariano [1995],

Giacomini and White [2006] and Giacomini and Rossi [2016].

The out-of-sample evaluation window for the option quotes is from Monday

December 17, 2012 to October 15, 2015, a total of 708 business days. The ASV-

C requires a short number of days to calibrate the term structure adjustment. I

use the first ten business days of the available option quotes (from December 17,

2012) for this calibration exercise and exclude them from the evaluation window.

3.6.1 Summary of data

The data I use is sourced from the Thomson–Reuters FX feed and warehoused

by SIRCA; Table 3.1 provides the sample characteristic for the data. I collect

all updated quotes for spot and FX options, both bid and ask, and compute the

mid-price for use in the models. I am led to believe by the vendor that the quote
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Table 3.1: Sample characteristics

Number of quotes

AUDUSD EURUSD GBPUSD
Data Type Days Ticks Ticks/Day Days Ticks Ticks/Day Days Ticks Ticks/Day

Spot 7,057 150,773,633 21,365 6,218 250,750,845 40,327 7,057 205,025,549 29,053
rf -SW 7,224 186,972 26 6,439 912,030 142 7,224 853,584 118
rf -1M 7,224 220,221 30 6,439 1,571,198 244 7,224 1,155,670 160
rf -6M 7,224 604,931 84 6,439 2,241,700 348 7,224 2,672,198 370
rf -1Y 6,979 1,533,812 220 6,161 9,215,498 1,496 4,440 4,068,958 916
rf -2Y 6,979 2,030,450 291 6,161 22,026,599 3,575 7,220 9,503,409 1,316
rf -3Y 6,979 1,981,043 284 6,161 32,168,789 5,221 7,220 12,460,839 1,726
rf -5Y 6,979 1,563,020 224 6,161 28,617,837 4,645 7,220 13,948,876 1,932
rd-SW 7,228 1,293,587 179 7,228 1,293,587 179 7,228 1,293,587 179
rd-1M 7,228 1,479,839 205 7,228 1,479,839 205 7,228 1,479,839 205
rd-6M 7,228 2,185,738 302 7,228 2,185,738 302 7,228 2,185,738 302
rd-1Y 7,224 10,895,576 1,508 7,224 10,895,576 1,508 7,224 10,895,576 1,508
rd-2Y 7,224 18,198,204 2,519 7,224 18,198,204 2,519 7,224 18,198,204 2,519
rd-3Y 7,224 23,285,073 3,223 7,224 23,285,073 3,223 7,224 23,285,073 3,223
rd-5Y 7,224 27,108,230 3,753 7,224 27,108,230 3,753 7,224 27,108,230 3,753
Vol-SW 704 69,340 98 708 76,515 108 708 50,123 71
Vol-1M 704 63,731 91 708 93,740 132 708 64,625 91
Vol-6M 704 40,653 58 708 64,187 91 708 46,378 66
Vol-1Y 704 38,578 55 708 58,185 82 708 42,776 60
Vol-2Y 704 27,830 40 708 30,117 43 708 24,332 34
Vol-3Y 704 10,611 15 708 15,478 22 708 9,144 13
Vol-5Y 704 10,353 15 708 14,310 20 708 9,030 13

USDCAD USDJPY
Data Type Days Ticks Ticks/Day Days Ticks Ticks/Day

Spot 7,066 120,846,026 17,102 7,057 204,418,497 28,967
rf -SW 7,228 1,293,587 179 7,228 1,293,587 179
rf -1M 7,228 1,479,839 205 7,228 1,479,839 205
rf -6M 7,228 2,185,738 302 7,228 2,185,738 302
rf -1Y 7,224 10,895,576 1,508 7,224 10,895,576 1,508
rf -2Y 7,224 18,198,204 2,519 7,224 18,198,204 2,519
rf -3Y 7,224 23,285,073 3,223 7,224 23,285,073 3,223
rf -5Y 7,224 27,108,230 3,753 7,224 27,108,230 3,753
rd-SW 7,224 180,098 25 7,224 684,751 95
rd-1M 7,224 217,847 30 7,224 1,066,954 148
rd-6M 7,224 984,930 136 7,224 5,294,711 733
rd-1Y 7,224 1,484,733 206 7,220 1,234,515 171
rd-2Y 4,337 1,907,668 440 7,220 2,737,514 379
rd-3Y 3,796 3,172,322 836 7,220 3,478,831 482
rd-5Y 4,337 2,392,454 552 7,220 3,582,771 496
Vol-SW 707 42,580 60 725 73,913 102
Vol-1M 707 48,523 69 725 82,360 114
Vol-6M 707 37,798 53 725 54,479 75
Vol-1Y 707 33,745 48 725 47,715 66
Vol-2Y 707 21,056 30 725 28,048 39
Vol-3Y 707 9,250 13 725 12,555 17
Vol-5Y 707 8,256 12 725 11,581 16

Notes: We spline the spot exchange rate tick data to a five minute grid from 1 mil-
lisecond past midnight to 1 millisecond to midnight GMT. Notice that the frequency of
updates for quotes in the OTC-FXO market is roughly two orders of magnitude lower
than the updates in quotes for the spot exchange rate. The OTC-FXO market releases
most quotes in pairs (as the updates are usually from a single source, or are the result
of an aggregator releasing an updated average). Deposit (SW to 1Y) and swap rates
(2Y to 5Y) also have a great deal of variation in the update frequency. To assist in
the calibration of the ASTSV model, we also collect long rates for sovereigns, but we
exclude these from the table as they are not strictly required in the estimation.

history for the FX options is complete, in the sense that all of the active broker

dealers are included in the survey. For the spot and deposit data the picture is
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less clear. Certain FX feeds have tighter bid-ask spreads than the quotes from

the banks surveyed by Reuters. For each day, the irregularly updated quotes are

matched to a five-minute grid to compute the realised variance. Spot and yield

curve data for AUDUSD, GBPUSD, USDCAD and USDJPY exchange rates is

taken from January 1, 1996 to October 12, 2015, while for EURUSD the spot

and yield curve data starts from February 28, 1998. For the yield curves I use

quoted timed deposits for each currency out to one year and quoted swap rates

for tenors up to 5Y. For short rate calibration purposes, I collect long swap rates

(> 10Y) for each currency. Whilst Bloomberg and other data vendors provide

some end-of-day benchmarks for FX options, the source for the data is unclear.

Hence I construct from the intraday quote record.

For the ASTSV, I fit the model for six-month (6M) to 5Y tenors only using

monthly time steps (hence I exclude SW and 1M tenors from the comparison).

However, the spot variance is estimated at a daily frequency and rescaled to

monthly increments by a factor of 252/12, allowing us to estimate closing market

quotes for each day whilst using a monthly time step.

Table 3.2 and Table 3.3 provide a comparison of the MLE estimates for the

exchange rate variance process parameters with those recovered from the non-

linear least squares fitting for the ARV model. The models are fitted over the

estimation window from January 1, 1996 to December 14, 2012. The most in-

teresting variation is in the estimated skew parameter γs versus γRV,s. The MLE

estimates indicate values between −61 (USDCAD) and 121 (GBPUSD), noting

the difference in the direction of quotation for USDCAD versus the other currency

pairs.

The ARV model’s highly variable estimates for the skew parameter will pos-
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Table 3.2: ASV parameter estimation.

Currency λs ωs βs αs γs L(θ̂s)

AUDUSD -0.0647 1.6396e-11 0.9447 2.2714e-06 79.7246 1.7513e+04
(0.0054) (0.5557) (0.0017) (0.0018) (8.4751e-4)

EURUSD 0.0993 3.1848e-18 0.9740 9.4560e-7 58.2033 1.6020e+04
(0.0071) (24.6432) (0.0022) (0.0023) (0.0014)

GBPUSD -0.0602 3.0357e-12 0.9664 6.8812e-7 121.5577 1.9038e+04
(0.0075) (0.8251) (0.0021) (0.0021) (0.0017)

USDCAD -0.3351 2.0742e-15 0.9582 9.2704e-7 -61.0273 1.9606e+04
(0.0082) (11.6105) (0.0018) (0.0017) (0.0013)

USDJPY 0.6133 2.1390e-12 0.9261 2.7293e-6 70.3874 1.8021e+04
(0.0060) (3.7675) (0.0018) (0.0017) (7.1371e-4)

Table 3.3: ARV parameter estimation.

Currency λRV,s ωRV,s βRV,s αRV,s γRV,s Sq. Error

AUDUSD -0.1102 1.2369E-
11

0.9090 1.2842E-
06

227.4733 1.5022e-06

EURUSD 0.0054 2.8207E-
18

0.7621 4.8472E-
06

-137.9202 2.1132e-06

GBPUSD 0.012 -1.638E-11 0.8669 3.5318E-
06

11.7053 5.5689e-06

USDCAD -0.3785 3.5583E-
14

0.9597 1.1182E-
07

-584.3087 7.1528e-06

USDJPY 0.5966 1.0266E-
12

0.8726 3.2265E-
06

150.0708 2.7178e-06

Notes: Parameter estimates for the spot exchange rate process: R(t+η) = rd(t)−rf (t)−
1
2hs(t+η)+

√
hs(t+ η)z∗(t+η) with spot variance hs(t+η) = ωs+βshs(t)+αs(z

∗(t)−
γ∗s
√
hs(t))

2. Table 3.2 reports the parameter estimates as a standard GARCH in mean
via maximum likelihood estimation for each currency pair; the final column reports
the estimated log-likelihood at the optimum. Table 3.3 reports the estimates for the
equivalent parameters with the spot variance ĥst approximated by

∑M
m=1 ε

2
s(t+

m
M η) ≈

ĥs(t+ η), from high frequency data. The parameters are then estimated via non-linear
least squares. The sum of squared errors (Sq. Error) of the regression are reported in
the final column.

sibly go some way to explaining the highly variable performance in the out-of-

sample tests, which I will now look at in detail.

Table 3.4 presents the parameter estimates for ASTSV model. The domestic

and foreign stochastic short-rate models are fitted via calibration to the yield
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Table 3.4: ASTSV parameter estimation.

GBPUSD
6M 1Y 2Y 3Y 5Y

µ0f -6.55E-06 -1.07E-05 -8.93E-06 -6.99E-06 -2.81E-06
µ1f 1.00 1.00 1.00 1.00 1.00
λf -10.00 -9.99 -9.98 -9.67 -9.99
ωf 9.47E-233 3.27E-25 6.97E-47 6.75E-37 1.30E-08
βf 0.78 0.76 0.85 0.86 0.39
αf 8.02E-09 8.46E-09 4.01E-09 3.99E-09 5.02E-09
γf -500.00 -500.00 499.93 500.00 -500.00

L(θ̂d) 1.72E+03 1.07E+03 1.72E+03 1.71E+03 1.71E+03
µ0d -1.64E-06 1.48E-06 -2.40E-06 3.67E-06 1.03E-05
µ1d 0.99 1.00 1.00 0.99 0.99
λd 10.00 10.00 9.95 9.97 10.00
ωd 2.81E-09 1.64E-289 8.07E-203 2.78E-290 4.80E-32
βd 0.70 0.83 0.89 0.89 0.92
αd 8.98E-09 4.12E-09 3.89E-09 4.99E-09 3.84E-09
γd 500.00 500.00 500.00 500.00 500.00

L(θ̂k) 1.70E+03 1.09E+03 1.70E+03 1.67E+03 1.65E+03
λs 1.19 -0.26 1.07 0.90 0.57
ωs 6.10E-05 7.12E-05 6.11E-05 6.10E-05 6.05E-05
βs 0.82 0.83 0.82 0.82 0.82
αs 2.39E-05 1.02E-05 2.39E-05 2.36E-05 2.32E-05
γs 37.66 291.44 38.75 39.99 41.16

L(θ̂s) 546.49 331.85 546.22 546.25 546.42

Notes: The short rate dynamics rk(t + η) = µ0k + µ1krk(t) + λkhk(t + η) +√
hk(t+ η)uk(t + η) and hk(t + η) = ωk + βkhk(t) + αk(uk(t) − γk

√
hk(t))

2 are cali-
brated to the historical yield curve data. We apply the short rate estimated dynamics
to the one-month quoted timed deposit rate and return the observed log-likelihoods
L(θ̂k) for comparison with L(θ̂s) the log-likelihoods of the spot exchange rate returns
at the monthly frequency. The parameters for the other 4 currency pairs can be found
in the Appendix Table 1.

curve data prior to the evaluation window. As this model is set up for a monthly

frequency, the spot exchange rate parameters θs need to be re-estimated at this

frequency. To generate daily estimates for the quoted currencies, the daily spot

variance from the ASV models is used and rescaled to the monthly frequency. I

also compute the results using the ARV model daily spot-realised variance for this

purpose, but the results are not materially different to the ASV model estimates.
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Table 3.5: Root mean squared error (RMSE) and mean error (ME) for at-the-
money Straddle

ÃT

Currency Maturity
ASV ARV ASTSV ASV-C

RMSE ME RMSE ME RMSE ME RMSE ME

AUDUSD SW 3.1273 2.5096 2.7537 0.4209 - - 2.1497 1.1533
1M 3.9170 3.6283 2.6527 1.3171 - - 1.2143 0.0470
6M 4.3218 4.0928 5.6920 5.4739 2.8048 2.5513 0.8813 0.0617
1Y 4.0491 3.8895 5.4009 5.2638 2.6231 2.4378 0.7357 0.0512
2Y 3.7084 3.5501 5.0454 4.9211 2.0184 1.7491 0.6966 0.0446
3Y 1.5335 1.1749 3.4440 2.9034 1.8911 1.5061 - -
5Y 1.2607 0.6620 1.7369 1.1109 1.2073 0.1567 - -

EURUSD SW 2.6408 1.9056 2.3370 0.8031 - - 2.2348 1.4308
1M 3.1452 2.9188 2.6407 2.0353 - - 1.1984 0.0736
6M 3.8133 3.6159 2.7113 2.2754 1.6492 1.3473 0.6719 0.2175
1Y 3.6470 3.4903 2.3497 2.0269 1.1641 0.8332 0.6110 0.2172
2Y 3.3831 3.2540 2.8998 2.7196 1.7662 1.5780 0.5990 0.1704
3Y 1.0093 0.7621 2.8493 0.4445 0.9799 0.7482 - -
5Y 0.6764 0.4050 2.9641 0.5560 0.6385 0.4162 - -

GBPUSD SW 2.3232 1.8167 1.8319 0.7198 - - 1.5387 0.5271
1M 2.5832 2.3696 1.9300 1.3923 - - 1.0134 0.2440
6M 2.6787 2.4864 1.6507 1.1837 1.1119 0.5632 0.7662 0.0443
1Y 2.4353 2.2912 1.2775 0.8997 0.8775 0.5122 0.6082 0.0341
2Y 2.0943 1.9605 1.3898 1.1439 0.6957 0.0058 0.5242 0.0075
3Y 0.7814 0.5136 3.1472 2.7531 0.5958 0.0504 - -
5Y 1.3121 1.1817 4.2683 4.0501 0.5818 0.0893 - -

USDCAD SW 1.6705 0.9669 2.6351 1.6040 - - 1.3422 0.5784
1M 2.0073 1.6831 3.0697 2.2900 - - 0.8467 0.1195
6M 2.1439 1.8414 3.4183 2.9387 0.5734 0.0244 0.6409 0.0172
1Y 1.8894 1.6294 3.6160 3.3128 1.3368 1.2160 0.5763 0.0255
2Y 1.5831 1.2410 3.8026 3.6636 0.9079 0.2270 0.5697 0.0260
3Y 0.8509 0.4827 2.1091 0.9257 0.7715 0.1112 - -
5Y 0.9561 0.6187 3.9722 3.7960 0.9543 0.2078 - -

USDJPY SW 2.3137 1.4267 2.9662 0.9300 - - 1.8539 0.4005
1M 3.0812 2.5797 2.6632 1.8034 - - 1.6400 0.9012
6M 3.3258 2.9002 2.5595 1.9453 1.3873 0.2713 1.2985 0.6182
1Y 3.0143 2.6626 2.2002 1.6748 1.6248 1.1968 1.1860 0.5173
2Y 2.4668 2.1265 5.0226 4.8391 1.1393 0.2647 1.0530 0.4272
3Y 1.4322 1.0284 4.6950 1.2599 1.3500 0.6813 - -
5Y 2.4027 2.9062 6.4343 6.1912 2.0731 1.3613 - -

Notes: The Root Mean Squared Error, RMSE, is given by
√∑N

n=1(ŷn − yn)2/N , where

yn stands for the market quotation for the strategies of {ÃT , B̃F∆, R̃R∆} and ŷn is the
calculated quotations from the model selected. The Mean Error, ME, is calculated by
|
∑N

n=1(ŷn − yn)/N |.
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Table 3.6: RMSE and ME for 10-delta butterfly

B̃F 10

ASV ARV ASTSV ASV-C
RMSE ME RMSE ME RMSE ME RMSE ME

AUDUSD SW 0.305 0.2855 0.3292 0.3093 - - 0.089 0.0023
1M 0.3999 0.377 0.2009 0.1562 - - 0.1613 0.033
6M 1.3705 1.3469 1.3123 1.2877 1.1416 1.1189 0.3529 0.0718
1Y 1.8471 1.8219 1.8228 1.7973 0.3854 0.1419 1.713 1.6858
2Y 2.06 2.0482 2.0475 2.0359 1.6994 1.6833 1.4827 1.4656
3Y 2.1143 2.1092 2.4235 2.0333 1.7458 1.7095 - -
5Y 2.2501 2.2448 0.9545 0.7981 0.9616 0.3592 - -

EURUSD SW 0.2969 0.2822 0.1638 0.0586 - - 0.0573 0.0113
1M 0.3818 0.3631 0.1368 0.0692 - - 0.0843 0.0128
6M 0.8392 0.8273 0.7928 0.7805 0.6704 0.6541 0.1752 0.0138
1Y 1.046 1.038 1.0498 1.0419 0.4937 0.3278 0.2664 0.0482
2Y 1.0897 1.0846 1.09 1.0849 0.3455 0.3218 1.0102 1.0045
3Y 0.9233 0.9212 1.1133 1.1118 0.2956 0.2289 - -
5Y 0.9202 0.9159 0.8151 0.7405 0.8635 0.4294 -

GBPUSD SW 0.3411 0.3324 0.864 0.8526 - - 0.0861 0.0111
1M 0.4291 0.4168 0.2737 0.2517 0.0956 0.0067
6M 0.8978 0.8894 0.9005 0.8922 0.8662 0.8564 0.1783 0.0367
1Y 1.1279 1.1224 1.1352 1.1299 2.0662 0.3393 0.2262 0.0403
2Y 1.157 1.1548 1.1602 1.158 0.9007 0.8960 1.0062 0.0018
3Y 1.2087 1.2063 1.2158 0.7012 0.5408 0.5281 - -
5Y 1.1654 1.1639 1.1928 1.1912 0.7111 0.6562 - -

USDCAD SW 0.3369 0.2187 1.618 0.0498 - - 0.0466 0.0023
1M 0.3519 0.3433 0.4609 0.4554 - - 0.0765 0.0454
6M 0.8379 0.8287 0.8358 0.827 0.9071 0.9000 0.1238 0.0062
1Y 1.0887 1.0784 1.0129 1.0024 2.1852 2.1780 0.1579 0.0107
2Y 1.203 1.1957 1.0181 1.0101 1.1059 1.0994 0.1318 0.0115
3Y 1.6946 1.3303 1.6361 1.3453 0.9396 0.9147 - -
5Y 1.4314 1.4237 1.4247 1.4172 0.9274 0.7972 - -

USDJPY SW 0.4329 0.3964 5.0639 2.1118 - - 0.195 0.0529
1M 0.4647 0.4317 0.3934 0.3517 - - 0.1652 0.0919
6M 1.2298 1.2023 1.2157 1.1879 1.0106 0.9868 0.2429 0.0324
1Y 1.7793 1.7573 1.7604 1.7382 1.4577 1.4278 0.2603 0.0571
2Y 2.1024 2.0816 2.0804 2.0593 1.4369 1.4127 0.2947 0.0582
3Y 2.0081 1.9845 2.5914 2.4603 1.4860 1.4625 - -
5Y 2.1674 2.1436 2.2594 2.2358 1.4577 1.4278 - -

3.6.2 Out-of-sample results

Table 3.5 to Table 3.9 report the root mean squared error (RMSE) and mean

absolute error (ME) for each of my models, out-of-sample for each quotation type.

The RMSE provides the overview of the comparative adequacy of the model fit,

whilst the ME illustrates the degree of average bias. If the RMSE and the ME
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Table 3.7: RMSE and ME for 25-delta butterfly

B̃F 25

ASV ARV ASTSV ASV-C
RMSE ME RMSE ME RMSE ME RMSE ME

AUDUSD SW 0.1061 0.1021 0.2133 0.1079 - - 0.0331 0.0044
1M 0.2448 0.1488 0.0802 0.0717 - - 0.0321 0.0025
6M 0.38 0.3742 0.3798 0.3741 0.3124 0.3048 0.0843 0.0069
1Y 0.4948 0.4892 0.4958 0.4902 0.1866 0.1656 0.1074 0.0274
2Y 0.5207 0.5172 0.5213 0.5178 0.4479 0.4428 0.0916 0.0123
3Y 0.5101 0.5049 0.5362 0.5311 0.4150 0.4097 - -
5Y 0.5646 0.5557 0.7254 0.7184 0.3880 0.3619 - -

EURUSD SW 0.0888 0.0855 0.1058 0.0172 - - 0.0237 0.0091
1M 0.1373 0.1335 0.0857 0.0778 - - 0.0244 0.0055
6M 0.2589 0.2566 0.2517 0.2493 0.2130 0.2107 0.0497 0.0043
1Y 0.3192 0.3155 0.3193 0.3156 0.1886 0.1757 0.0574 0.0013
2Y 0.3198 0.3179 0.3198 0.3179 0.1780 0.1429 0.045 0.0175
3Y 0.2773 0.2743 0.3410 0.2290 0.1705 0.1629 - -
5Y 0.2729 0.2714 0.3866 0.3854 0.1657 0.1437 - -

GBPUSD SW 0.1118 0.1093 0.3864 0.353 - - 0.0222 0.0055
1M 0.1511 0.1477 0.1021 0.0966 - - 0.0486 0.0373
6M 0.2752 0.2733 0.272 0.2701 0.2636 0.2617 0.0615 0.0256
1Y 0.3266 0.3178 0.326 0.3244 0.3403 0.3386 0.0869 0.0527
2Y 0.3238 0.3231 0.3236 0.3229 0.2763 0.2754 0.0233 0.0043
3Y 0.3658 0.3634 0.9157 0.0095 0.2191 0.2161 - -
5Y 0.3613 0.3588 0.3681 0.3656 0.0674 0.0554 - -

USDCAD SW 0.0878 0.0757 0.1088 0.1034 - - 0.0165 0.0053
1M 0.1272 0.1248 0.1579 0.1564 - - 0.0213 0.0066
6M 0.2506 0.2487 0.2451 0.2435 0.2754 0.2735 0.0349 0.0069
1Y 0.3142 0.3123 0.277 0.2753 0.3889 0.5404 0.0447 0.0016
2Y 0.3405 0.3384 0.2497 0.2474 0.2862 0.2845 0.0385 0.006
3Y 0.4499 0.4456 2.4416 0.1827 0.2826 0.2784 - -
5Y 0.4554 0.4523 0.4542 0.4509 0.2776 0.2715 - -

USDJPY SW 0.1624 0.1517 0.8659 0.2703 - - 0.0443 0.0178
1M 0.1976 0.1882 0.1683 0.1566 - - 0.052 0.0181
6M 0.3993 0.3929 0.3845 0.3779 0.3255 0.3187 0.0566 0.0089
1Y 0.5212 0.5153 0.5056 0.4996 0.3849 0.3565 0.0715 0.011
2Y 0.572 0.5618 0.5559 0.5454 0.4170 0.4061 0.1039 0.0171
3Y 0.4993 0.4844 1.0206 1.0011 0.4205 0.4040 - -
5Y 0.4615 0.4384 0.4973 0.4740 0.3840 0.3565 - -

are very similar, this indicates that the majority of the forecast error is from a

systematic inaccuracy in the model, which could be eliminated by adjusting the

forecast via the ME (this would then be in sample, of course).

Table 3.10 illustrates the additional ‘ad-hoc’ calibration of the spot variance

for the ASV-C model versus the ASV model. Recall that the ASV-C model

adjusts the spot variance via stretching factors ζ, α and γ from the first ten
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Table 3.8: RMSE and ME for 10-delta risk reversal

R̃R10

ASV ARV ASTSV ASV-C
RMSE ME RMSE ME RMSE ME RMSE ME

AUDUSD SW 0.8316 0.5998 1.3471 1.215 - - 0.5583 0.005
1M 0.9719 0.6609 1.42 1.2058 - - 0.6729 0.1686
6M 3.293 3.1595 1.981 1.7475 3.4444 3.3140 0.8585 0.0959
1Y 4.5447 4.4345 3.6223 3.4831 2.4513 2.1626 0.988 0.0742
2Y 5.1334 5.0446 4.4817 4.3795 3.6467 3.4979 0.9501 0.076
3Y 4.2536 4.1699 5.1394 5.0722 3.3192 3.0981 - -
5Y 4.8657 4.8047 2.5694 2.4371 2.5026 0.3918 - -

EURUSD SW 0.6665 0.4528 0.6582 0.441 - - 0.4915 0.0271
1M 0.9612 0.7026 1.0484 0.8132 - - 0.5968 0.0459
6M 2.0973 1.8378 1.4045 0.9658 1.7702 1.5080 0.7853 0.0979
1Y 2.5427 2.3387 2.8982 2.7203 1.5200 0.3318 0.9501 0.0319
2Y 2.5969 2.4422 2.614 2.4604 2.5841 1.2766 0.8078 0.0182
3Y 1.3574 1.1612 2.7296 2.6316 0.9769 0.7087 - -
5Y 1.3945 1.1766 2.0929 1.9107 1.6788 1.4665 - -

GBPUSD SW 0.7177 0.2055 1.2512 1.0469 - - 0.4081 0.1438
1M 0.8491 0.212 1.2449 0.922 - - 0.582 0.0036
6M 1.6038 1.136 2.3322 2.0334 1.8259 1.4188 1.0453 0.0506
1Y 1.981 1.63 2.625 2.3701 1.0766 0.3188 1.0112 0.0179
2Y 2.0551 1.8265 2.3174 2.1172 1.2977 0.8681 0.9359 0.047
3Y 1.5122 1.2807 2.4525 2.2920 1.2001 0.7939 - -
5Y 1.5492 1.3508 1.9496 1.7961 1.5461 1.1816 - -

USDCAD SW 0.5809 0.4445 0.7788 0.6824 - - 0.3744 0.0482
1M 0.8539 0.6934 0.6839 0.4647 - - 0.4809 0.1053
6M 1.8757 1.7942 0.8172 0.6232 2.4152 2.3553 0.559 0.097
1Y 2.2612 2.2007 0.7226 0.5272 0.5149 0.0552 0.5249 0.0802
2Y 2.4076 2.3612 4.9047 2.0483 0.8764 0.7199 0.4713 0.0396
3Y 2.7767 2.7284 2.7218 2.6718 1.3349 1.0166 - -
5Y 2.8628 2.8143 2.7912 2.7413 2.3295 1.5771 - -

USDJPY SW 0.9282 0.0472 4.4812 4.3518 - - 0.9149 0.1474
1M 1.34 0.9791 1.0251 0.4536 - - 0.9253 0.1253
6M 1.4059 0.6378 1.2586 0.1196 1.2441 0.2328 1.2573 0.0869
1Y 1.562 0.2525 1.5483 0.1442 1.5558 0.0160 1.5415 0.0019
2Y 2.2229 0.6807 2.1162 0.0215 2.1825 0.0254 2.1167 0.0527
3Y 2.7986 1.4543 4.7480 4.0610 2.6200 0.1983 - -
5Y 3.8490 2.3051 3.6493 1.8997 3.2647 0.1117 - -

or so days of the FX option data. I make this adjustment, both by tenor and

quotation type. The estimates of ζ, α and γ are then carried through the entire

evaluation window out-of-sample. Hence the ASV-C model for the out-of-sample

period is only updated by adjustments in the spot exchange rate. We see clearly

that the majority of adjustments are systematic by tenor and across quotation

type. However, the useful aspect of this adjustment is the degree of stability in
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Table 3.9: RMSE and ME for 25-delta risk reversal

R̃R25

ASV ARV ASTSV ASV-C
RMSE ME RMSE ME RMSE ME RMSE ME

AUDUSD SW 0.4863 0.3671 0.7637 0.6923 - - 0.2776 0.0027
1M 0.5574 0.4049 0.801 0.6925 - - 0.3622 0.0982
6M 1.7198 1.6561 1.03 0.9187 1.8019 1.7374 0.4247 0.063
1Y 2.331 2.2856 1.8509 1.7935 0.6071 0.3640 0.4533 0.0259
2Y 2.5286 2.4918 2.1844 2.1416 1.8601 1.8082 0.3902 0.0483
3Y 2.1168 2.0749 2.5758 2.5430 1.8445 1.7822 - -
5Y 2.4111 2.3809 1.5919 1.5363 0.9712 0.4782 - -

EURUSD SW 0.398 0.2804 0.379 0.2528 - - 0.2875 0.0518
1M 0.5834 0.444 0.5297 0.3674 - - 0.3458 0.0628
6M 1.2091 1.0712 0.8325 0.6114 1.0287 0.8864 0.4111 0.0575
1Y 1.4235 1.3103 1.6107 1.511 0.7121 0.2391 0.4782 0.0072
2Y 1.3985 1.3224 1.4076 1.3319 0.7112 0.0803 0.3931 0.0109
3Y 0.7396 0.6421 1.4582 1.4091 0.3500 0.1348 - -
5Y 0.7382 0.6333 1.1065 1.0264 0.4506 0.2675 - -

GBPUSD SW 0.4007 0.1325 0.8632 0.7818 - - 0.2023 0.0077
1M 0.5096 0.16 0.7266 0.5356 - - 0.4019 0.1616
6M 0.8992 0.6471 1.2841 1.1192 1.0099 0.7911 0.4713 0.0217
1Y 1.0768 0.8901 1.4151 1.2782 0.5711 0.1252 0.545 0.0042
2Y 1.1026 0.9782 1.2405 1.1311 0.8121 0.6246 0.4496 0.0031
3Y 0.9492 0.8612 1.4778 1.4074 0.4702 0.2363 - -
5Y 0.9537 0.8873 1.1865 1.1298 0.6343 0.8350 - -

USDCAD SW 0.3683 0.2818 0.4775 0.4148 - - 0.2438 0.0266
1M 0.5492 0.459 0.4555 0.3398 - - 0.2907 0.0707
6M 1.1024 1.0527 0.5405 0.4376 1.3656 1.3319 0.3346 0.0575
1Y 1.2925 1.2585 0.6195 0.3823 0.4079 0.2824 0.2717 0.0251
2Y 1.3567 1.3303 3.0579 1.0748 0.5687 0.5003 0.2672 0.0216
3Y 1.7004 1.6591 4.1879 4.1706 0.7744 0.6258 - -
5Y 1.6059 1.5830 1.5687 1.5435 1.0505 0.8297 - -

USDJPY SW 0.5397 0.0083 2.4686 2.411 - - 0.5309 0.1519
1M 0.732 0.5267 0.5676 0.2477 - - 0.5146 0.0727
6M 0.755 0.3696 0.6653 0.0963 0.6541 0.1309 0.6597 0.0415
1Y 0.8153 0.1915 0.7927 0.0172 0.7774 0.0597 0.7925 0.0008
2Y 1.0869 0.2441 1.0666 0.1259 1.0987 0.1330 1.0595 0.0211
3Y 1.5148 0.7973 2.5363 2.1702 1.3788 0.2667 - -
5Y 2.0892 1.2629 1.9543 1.0326 1.7620 0.3698 - -

the model fit, given these parameters, over the evaluation window, and we will

see this in the results from the out-of-sample analysis.

The four models are arranged as follows. The first three are termed ‘purely-

spot-only’, as they are estimated in the sample window without reference to

the market quoted European surface. I progress from the simplest model (the

ASV fitted by MLE) through to the ARV model, which uses high frequency
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Table 3.10: ASV calibration adjustments

Currency Strategy
SW 1M 6M

α γ ζ α γ ζ α γ ζ

AUDUSD B̃F 10 6.35E-06 85.1217 -0.1578 7.82E-06 79.1728 -0.4516 2.80E-06 112.9296 1.1078

B̃F 25 3.07E-06 112.3086 1.0835 1.65E-05 55.3784 -0.3304 2.90E-05 43.0187 1.6131

ÃT 5.35E-14 1.458 3.06E-07 1.2351 8.97E-07 3.7733

R̃R25 4.27E-06 142.005 1.6026 1.52E-06 162.4441 1.7208 2.22E-06 134.2332 7.5721

R̃R10 3.06E-06 132.1231 1.6966 1.55E-06 154.3426 1.7221 1.91E-06 148.6812 4.2606

EURUSD B̃F 10 3.91E-06 75.8195 -0.8181 5.31E-06 50.343 -0.9797 3.00E-06 48.9779 -1.0535

B̃F 25 1.33E-06 91.0748 -0.576 8.05E-06 37.9779 -0.8244 1.28E-06 83.4702 0.6732

ÃT 1.85E-14 1.3756 1.55E-12 1.2054 3.38E-07 2.3123

R̃R25 1.47E-06 109.9382 -0.9358 2.65E-06 54.5884 2.0113 2.24E-06 76.0455 6.276

R̃R10 1.45E-06 104.768 -16.6797 2.39E-06 54.5197 1.9313 9.33E-01 141.4175 2.137

GBPUSD B̃F 10 1.29E-06 151.7499 1.2576 5.17E-06 76.0272 -0.033 9.08E-07 165.1314 1.1026

B̃F 25 9.02E-07 145.0068 0.1777 1.39E-05 0.4716 -18.4367 3.39E-05 25.6752 -25.7204

ÃT 2.22E-14 1.2952 3.57E-14 1.0845 3.56E-07 2.3791

R̃R25 2.16E-06 76.9678 0.18 3.20E-06 70 4.1 2.09E-06 67.6894 13.4849

R̃R10 3.13E-06 55.5853 1.5613 8.68E-06 20.9142 8.2328 1.56E-07 463.7046 2.0531

USDCAD B̃F 10 4.16E-06 -39.8127 -0.2497 3.85E-06 -84.8983 -1.6899 3.55E-06 -100.982 0.12

B̃F 25 3.14E-06 -22.205 -0.4146 4.80E-06 -90.746 -0.7279 3.64E-06 -88.7209 -1.9035

ÃT 2.66E-14 1.2252 1.91E-07 1.2945 4.12E-07 3.7794

R̃R25 1.56E-06 -105.653 0.0415 1.01E-06 -127.909 2.3183 1.79E-06 -108.216 -0.3266

R̃R10 1.04E-05 -15.8349 1.8341 9.63E-07 -105.269 2.3489 1.73E-06 -106.121 -0.2274

USDJPY B̃F 10 8.36E-06 -23.277 -0.58 1.80E-04 -6.3584 -6.161 5.01E-06 -113.932 1.7877

B̃F 25 1.16E-05 -79.6234 -0.436 8.88E-06 -54.0836 57.0237 2.82E-06 -152.589 3.2173

ÃT 4.12E-14 1.2845 9.99E-07 1.9933 1.13E-06 6.8383

R̃R25 2.54E-05 14.1881 1.6386 2.08E-06 37.8976 1.7695 2.30E-06 38.3404 1.7278

R̃R25 3.23E-05 12.5069 1.9381 2.15E-06 36.4698 1.7111 1.26E-05 8.2827 -11.0466

Notes: To fit the market quotation of ÃT , α and ζ are calibrated though {α̂, ζ̂} :=

arg min{α̂,ζ}
∑D

d=1(ÃT 0,d(τ) − ÃT 0,d(α, ζ|θ))2 while γ is also adjusted to model the

quotations of B̃F∆ and R̃R∆. Then we fix the parameters θ̂ and carried through the
entire evaluation window out-of-sample. The useful aspect of this adjustment is the
degree of stability in the model fit given these parameters over the evaluation window,
which is useful for the application on sparsely quoted FXOs. For more maturity, see
Appendix Table 2.

observations to construct the spot variance process, to the ASTSV model, which

includes stochastic short rates. The final model, ASV-C, uses the first ten days

of the European volatility surface for calibration. Note that whilst the ASV-C

model uses a snippet of initial options data, from the estimation window; in the
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out-of-sample evaluation window the estimated surfaces are generated entirely by

the variation in the spot price providing the innovations to the model.

I order the tables in the following order: first, the ÃT (Table 3.5); second,

the B̃F 10−1vol and B̃F 25−1vol (Table 3.6, Table 3.7); third, the R̃R10 and R̃R25

(Table 3.8, Table 3.9). Note that the “−” is for models that cannot be fitted for

that tenor/model specification.

The numbers in bold refer to models estimated using a monthly time-step,

whilst the reminder are computed using a daily time step. For brevity I exclude

numerous redundant combinations (such as the ASTSV model at daily frequency,

which performs almost identically to the ASV model).

Overall, I observe the more-or-less anticipated results. The ASV and ARV

models estimated directly from spot data and in the absence of a stochastic short-

rate model generally perform poorly compared to the ASTSV model estimated

at a monthly frequency for 6M to 2Y tenors. Indeed, for a spot-only-estimated

model, the ASTSV model for these tenors is exceptional. For instance, for several

currency pairs, (see EURUSD and GBPUSD for B̃F 10−1vol), the ASTSV model

actually out-performs the ASV-C model, which uses daily increments, but is

calibrated in the estimation window to the European surface.

For short maturity tenors (SW and 1M), having some knowledge of past quotes

improves the out-of-sample fit considerably. However, the realised volatility in-

formation from the ARV model can provide some competition, albeit with a high

degree of variability. Indeed, the ARV model for short tenors can be both the best

performing spot only model (EURUSD) and the worst performing model (USD-

JPY). Hence, the evidence for the value of realised volatility over traditional spot

only estimates such as GARCH is quite mixed.
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Unsurprisingly, the spot only models (ASV, ARV and ASTSV) normally per-

form far better for the 25-delta quotes (B̃F 25−1vol and R̃R25) than the ‘wings’

quotes (B̃F 10−1vol and R̃R10), with the best fits being for the at-the-money (ÃT )

volatility quotes. The AUSUSD R̃R10 provides considerable problems for all the

spot only models; indeed, the estimates of R̃R10 for a 6M tenor from the ASTSV

model are amongst the poorest across all the model, currency, tenor and quota-

tion combinations. The only estimates to perform worse are the ARV estimates

of USDJPY, for the very hard to predict combination of SW tenor and R̃R10,

and the highly volatile ARV estimates of the USDJPY ÃT for long tenors.

A more interesting comparison occurs between the ASTSV and the ASV-C

models. As noted previously, there is a trade-off tenor between which using a

stochastic short rate model (with term structure calibrations) appears to be a

better choice than the static model calibrated to the European surface. Looking

at Table 3.5 we clearly see this transition occurring at about 1Y. Whilst the ASV-

C model certainly out-performs the ASTSV model in most cases, the comparative

performance from 6M to 2Y is relatively similar. For instance USDJPY, RMSE

for 1Y is 1.6248 (ASTSV) versus 1.1860 (ASV-C); however, up to 2Y the difference

is 1.1393 (ASTSV) versus 1.0530 (ASV-C), with a lower ME for the ASTSV.

This lends credence to practitioner anecdotes that comparative term structure

dynamics (in particular rate skews) dominate the valuation of long maturity op-

tions. Indeed, several currencies versus JPY do occasionally have options quoted

at tenors longer than 15 years, to cater for carry trade investors looking to hedge

systematic changes in monetary policy. At this point the potential stochastic

variation in yield curve dynamics in response to macro-economic (and even de-

mographic) variation would be the only factor in determining the current period
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Table 3.11: Example of a market volatility surface for AUDUSD on 08 October 2015.

AUDUSD (spot reference 0.7229)

Tenor ÃT B̃F 25 B̃F 10 R̃R25 R̃R10

ON 13.7130% 0.1750% 0.8130% -0.5250% -0.9750%
SW 11.3250% 0.1625% 0.5000% -0.8000% -1.3500%
1M 11.5000% 0.2125% 0.6630% -1.1750% -2.1000%
6M 11.6000% 0.4190% 1.6125% -2.3000% -4.1750%
1Y 11.7000% 0.5250% 2.0750% -2.7750% -5.1250%
2Y 12.1500% 0.5560% 2.2625% -2.9500% -5.6750%

Notes: The quotes in this table allow a market participant to price an option for any
delta by first constructing the European surface at 10, 25 put and call deltas and
at-the-money.

expectation of the 15-year risk neutral density.

3.7 Forecast breakdown test

This section provides additional model forecast breakdown analyses and some

helpful information for replication. Table 3.11 provides an example volatility

surface data for the AUDUSD. These strategies, at-the-money (ÃT ), butterfly

(B̃F ), and risk reversal (R̃R), mainly at 25-delta and 10-delta, give different

measurements of the volatility surface as discussed in previous sections.

Following Diebold and Mariano [1995], Giacomini and White [2006] and Gi-

acomini and Rossi [2016], I test the forecast performance between model pairs

ASV-C vs. ASV; ASV-C vs. ARV; ASTSV vs. ASV and ASTSV vs. ARV. The

test statistic is computed by a rolling sum of the difference of two loss functions

and divided by the heteroskedasticity and autocorrelation robust rolling standard

deviation. Asymptotic inference is given in Giacomini and Rossi [2016].
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Assume the real market value within the forecasting period is yt, where

t = 1, ..., T , and the forecast value calculated from two models for this pe-

riod are ŷ1,t and ŷ2,t. The information available at time t is Ft, a filtration

defined on the probability space (Ω,F,P). Then define the loss function as

Li,t(ŷi,t, yt|Ft), i = 1, 2, which can be described as squared error loss function

(ŷi,t − yt)2, absolute error loss function |ŷi,t − yt|, linear exponential loss function

exp(φ(ŷi,t − yt))− φ(ŷi,t − yt)− 1, φ ∈ R or other appropriate loss function. For

the chosen loss function, in this section I choose the squared error loss function;

The null hypothesis for equally performed forecast ŷ1,t and ŷ2,t is

H0 : E[L(ŷ1,t, yt|Ft)− L(ŷ2,t, yt|Ft)] = 0 almost surely.

The term in the expectation, L(ŷ1,t, yt|Ft) − L(ŷ2,t, yt|Ft), is called the differ-

ential loss function and denoted by the following comparative prediction error:

dt(ŷ1,t, ŷ2,t, yt|Ft). The forecast breakdown test statistic is then defined as

lt(ŷ1,t, ŷ2,t, yt|Ft) =

∑t
s=1 ds(ŷ1,s, ŷ2,s, ys|Fs)√∑t

s=1
ds(ŷ1,s,ŷ2,s,ys|Fs)′ds(ŷ1,s,ŷ2,s,ys|Fs)

s

.

If the null hypothesis is true and the forecast under two candidate models

perform equally, the test statistic lt(ŷ1,t, ŷ2,t, yt|Ft) ∼ N(0, 1). I use the approach

above to test the forecast performances on ÃT with 1-year and 2-year maturities

of five currency pairs between four model pairs and illustrates the result by the

following figures.

The left panels of Fig. 3.7 (for 1Y tenor) and Fig. 3.8 (for 2Y tenor) demon-

strate the time serieses of the models quoted and market ÃT . The ASV and ARV
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Figure 3.7: Forecast breakdown test among different models applied on 1Y tenor FX
options.

The left panel presents the ÃT quotes with 1-year maturity of five currency pairs fitted
by the four models, and the right panel shows the corresponding forecast breakdown
test statistics. The statistics time series indicates that the null hypothesis is rejected
almost surely, which means that ASTSV and ASV-C generally out-perform ARV and
ASV.

models’ quotations loss most of the fluctuation and become much more flat com-

pared with other quotes. The ASTSV and ASV-C model tracks the movement

of the market ÃT through out the data period. As the tenor increases to 2Y,

ATSTV and ASV-C’s ÃT also tends to loss track of the market dynamic.

The null hypothesis indicates that the forecast breakdown test statistic for

two equally performing models should lie within [−2.3263, 2.3263] with 99% con-

fidence. However in the right panels of both of the two figures, the test statistics

are far beyond this area even at the beginning of the data period. The breakdown

statistic for ASTSV vs. ASV is similar to ASV-C vs. ASV, indicating both of

the proposed models have good performance in pricing longer tenor FX options,
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Figure 3.8: Forecast breakdown test among different models applied on 2Y tenor FX
options.

This figure shows the fitted quotes and forecast breakdown test statistics for ÃT with
2-year maturity of 5 currency pairs.

especially in tracking the movement of the implied volatility level.

For ASV-C model, the improvement of performance comes from the calibra-

tion of the state variable dynamic. The adjustments for α and ζ change the mean

reverting property of the variance process, thus avoid the variance converging to

the long-term level when iteration number is large and lost the implied volatility

dynamic. On the other hand for ASTSV, the model benifits from the stochastic

interest rate and more suitable time-step size. The change of time-step size also

improves the computational speed.
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3.8 Comparison between closed form and simu-

lated characteristic function

For many option pricing models, a closed form solution is not possible and there-

fore many models rely on Monte Carlo simulation to generate option prices. In

this section, I provide one benefit from a closed form solution compared with

simulated solution.

In this experiment, I choose to simulate the ASTSV model based on the GB-

PUSD point estimate parameters. I generate n × T/η, n = 100, 000 standard

normal distributed random variables for each of the shocks in the risk neutral dy-

namic as in Remark 1. Recall that here T/η represents the number of time-steps

needed from spot to maturity. Then I recover the empirical characteristic func-

tion of the terminal cross section of log spot exchange rates, at T ∈ {6, 12, 18, 24}

months:

f(φ) = E[eφx(T )] =
n∑
i=1

eφxi(T )

n
,

where φ ∈ C, and xi(T ) is the ith simulated log spot rates at T .

Fig. 3.9 presents the initial evaluation of the characteristic function f(φ), with

<f(φ) plotted on the abscissa axis and =f(φ) on the ordinate axis. We can see

that for longer time frames there is a small bias in the characteristic function for

longer iterations (measured in integer months). Fig. 3.10 presents the “tail” of the

characteristic function, where we can see where the bias emerges from. The tail

of the characteristic function determines the smoothness of the density function,

which means how many times the density function can be differentiated. Hence,

as the number of steps in the simulation increases the increased perturbation of
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Figure 3.9: Characteristic function For GBPUSD
This figure illustrates the characteristic functions based on closed-form solution and
simulation. Simulated CF is represented by the dot lines and closed-form CF is the
solid lines. Darker colour represents for longer tenor.

tail of the characteristic function results in a slightly increasing error between the

closed form and the simulated CF. The bias in CF indicates the mis-specification

of the simulated probability density function and causing errors in the variance,

skewness and other moments of the distribution. And then these errors are trans-

ferred into the final synthetic implied volatility surface quotes as shown in our

delta method. Indeed, this provides an illustration of the accuracy benefits of

a closed form model over a simulation, for very long tenors, the simulation can

have a sizeable error even with a very large number of draws.
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Figure 3.10: Higher moments of the characteristic function
Similar to Fig. 3.9, this figure emphasises on the “tail” part of the CF, which determines
the smoothness of the density function.

3.9 Chapter conclusions

I have specified in generality a discrete-time model for pricing over-the-counter

foreign exchange options with stochastic short rates for domestic and overseas

numéraires. Restricting the yield curve dynamics yields an FX option version of

the classic Heston and Nandi [2000] GARCH-type affine model in discrete-time.

Building FX option models from scratch presents a number of problems, not least

of which is the quotation style for FX options, which is by delta and quoted in

the Garmen-Kohlhagen-style adjustment to the Black-Scholes implied volatility.

To generate the market quotes from the spot-estimated models, I introduce a new

procedure for computing the implied volatility by delta surface and illustrate how
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to carry the inherent asymptotic error in the model estimation phase to the actual

quotes.

I further test the various model specifications and estimation strategies out-of-

sample on quoted data for five actively traded currencies over six distinct tenors.

By fitting against the five common quotation types in the OTC-FX market, my

results permit us to analyse the effectiveness of spot-based models in capturing

the entire European volatility surface as opposed to just the at-the-money traded

volatilities.

My baseline suggested strategy for implementation is that for short tenors,

dropping the stochastic short rate model and calibrating to a snippet of options

data is very effective. For longer tenors (most notably ≥3Y), the calibrated

stochastic short-rate model performs very well compared to its alternatives. Ar-

guably the most useful aspect of the exercise is in illustrating that an affine

structural model with time-inhomogeneous spot variance estimated from spot

FX and spot yield curve data can provide a relatively good fit, without having

any recourse to the quoted European surface. Hence, for less liquid options on

free-floating currency pairs, which constitute the vast majority of currency pairs

traded, my approach provides a good first pass for generating quotes when options

data is absent.

The two obvious areas to extend my approach are a) the inclusion of time-

homogenous and time-inhomogeneous jumps in the model; and b) re-specification

of the variance process to permit multi-currency pricing. For instance, in the

latter case the addition of a triangular arbitrage correction factor would ensure

that the stochastic processes driving all three legs of the triangle is off the same

form. Doust [2012] undertakes this exercise for the popular SABR model (with
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the beta parameter set to 1).
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Chapter 4

Implied Hidden Factors Within

The Term Structure of Interest

Rate

4.1 FX Option implied latent factor structures

Yield curves for most countries have a more complex structure than can be deter-

mined by a single factor model. Indeed, many cases need more than two factors,

hence a general specification for the structure of the parity condition is desirable.

Furthermore, there is a great deal of evidence from the lack of fit for standard

volatility models and the variation between the term structure of option implied

volatility and that from a single factor GARCH model implies more than a single

factor for the spot variance structure of exchange rates. As such there is a need

for an affine model with multiple factors in the determination of the parity and

the volatility structure to provide a closed form solution under a more general
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structure. In this chapter I derive a general factor model with an arbitrary fac-

tor structure for the three components and provide a closed form solution for the

volatility surface. I then illustrate the benefits of this model over the single factor

volatility model.

The proposed new discrete option pricing model contains multiple factors

driving the return and autoregressive conditional Poisson (ACP) jump compo-

nents that can be filtered from high frequency spot data. This model can be

adjusted and calibrated from observed option data. The attractive feature of this

approach is that an arbitrary number of observable or latent interest factors can

be added. Thus this framework effectively generalises the approach suggested in

Christoffersen et al. [2015] and Ornthanalai [2014].

Most of the existing models for FX options pricing are based on continuous

time models such as the Heston [1993] stochastic volatility model, the Pan [2002]

double jump model, the Hagan et al. [2002] SABR model and the local stochastic

volatility models, such as Pagliarani and Pascucci [2012]; Reghai et al. [2012];

Shiraya and Takahashi [2013]. These models rely on actively updated market

option data to calibrate against, and therefore have limitations in finding out

the property of the option implied latent interest factor, because it is difficult

to distinguish the hidden interest factor estimation from spot rate parameter

estimation. Thus an ideal model should have spot rate process that can be

directly estimated from the underlying spot data.

Discrete models based on GARCH can overcome such disadvantage of con-

tinuous models. This type of model is used extensively across the asset pricing

and risk management spectrum. I nest multiple variations on the quadratic spec-

ification of Engle and Ng [1993], as my basic time series building block, gener-
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alising the work in Chapter 3. Previous works on option pricing with GARCH

have features in Duan [1997], Barone-Adesi et al. [2008] and Christoffersen et al.

[2013] whilst Bauwens et al. [2006] review some applications to derivatives pricing

amongst other applications of correlation dynamic in multivariate settings. The

most similar specification to one in this chapter can be found in Christoffersen

et al. [2015] and Ornthanalai [2014]. In both cases, there is a jump in risk pre-

mium embedded into the GARCH process. The model I proposed distinguishes

from these two models that my model focuses on the multi-factor structure which

can be applied to identify the latent drift terms in option pricing, and the jump

process can be estimated based on more general jump detection methods.

Utilising multi-factor volatility and jump components has been the subject

of considerable research in option pricing. Firstly, as Ait-Sahalia et al. [2008]

point out, it is more common to include multiple state variables into the models

in finance. Sundaresan [2000] lists examples of this trend, such as asset pricing

models with multiple explanatory factors, term structure models with multiple

yields or factors and stochastic volatility or stochastic mean reversion models.

These multiple factors provide more freedom to the models. Secondly, the impor-

tance of jump in option pricing can be found in literature including Eraker et al.

[2003], Eraker [2004], Andersen et al. [2015]. Using the jump framework, these

studies find that for equity market, priced jump risks affect risk premium pricing,

contribute to the micro-structure, and have strong and persistent impacts to the

economic negative shocks compared with just asset volatility. Pan [2002] shows

that jumps in equity variance dynamic also have influence on the risk premium.

Lin et al. [2015] study specifically the effects of jump in FX option pricing and

currency price circle.
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FX options regularly quotes volatility surfaces from very short tenors such

as overnight (ON) or spot next (SN) all the way out to 7+ years. This makes

option pricing using discrete-time models computationally intensive and time

consuming, even when a closed form solution exists. Hence I outline a varying

time-step version of the model to cater short and long tenor option pricing. These

model specifications are then fitted to spot data for six actively traded currencies

against US dollar (USD): Australian dollar (AUD), Canadian dollar (CAD), Swiss

franc (CHF), Euro (EUR), UK pound (GBP) and Japanese yen (JPY). I find that

adjusting the time-step size corresponding to the tenor will improve the pricing

performance of the model.

With the GARCH based return processes, jump components and the adjusted

time-step size, the proposed model can capture most of the FX spot rate dynamic

and can be estimated from spot rate data only. This helps separating the impact

of the hidden factors within the interest rate on OTC FX option prices. Then I

identify the hidden factor’s dynamic by calibrating the proposed model against

the real market option quotes, and show that hidden factors extracted from the

FX option quotes have strong persistence property.

The remainder of this chapter is organised as follows. Section 4.2 describes

the proposed affine stochastic volatility with jump component model and also a

simplified specification of this model restricting the interest rates to be constants.

Section 4.3 outlines the procedures for estimating the model parameters. With the

these settings, Section 4.4 illustrates the time-step size adjustment method, and

more importantly, recover the hidden factors within the interest rates. Section 4.5

reports the performance of the proposed models from empirical analysis, and

Section 4.6 concludes.
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4.2 Discrete-time affine FX option pricing mod-

els

The basic specification considered in this chapter has a multi-factor GARCH

structure and includes an ACP jump type specification in the spot exchange

rate processes. This generalises the work of Christoffersen et al. [2015] and Orn-

thanalai [2014] in two ways. Firstly the introduction of multi-factor drift terms

allow the model to handle both observable and unobservable factors that drive

the interest rate return. The proposed model can also categorise factors into

domestic or foreign environments. Secondly the jump component I apply in the

model can be detected based on various existing non-parametric jump detection

techniques. When the observed interest rates is believed to dominate the drift

of the spot rate return, the proposed model can be restricted to a non-stochastic

interest rate model as a simplified version. Here I will start with the general form.

4.2.1 Multi-factor conditional jump models

The baseline model presumes multiple factors and ACP jump in the return process

with random jump size, and I will refer the model as MFJ. Multi-factors represent

stochasticity in the ‘domestic’ and ‘foreign’ economy factors. This representation

is useful as it allows us to formulate various restricted FX pricing models given

covered interest parity is violated or not. The factors describing the economy

return share a common disturbance and also have their unique shocks, which

provides certain dependence structure intrinsic to the model.

Assumption 8. I presume a discretely updated two country (indexed by k ∈
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{d, f}) global economy. Consider a forward tenor T for a contract, which spans

the time interval 0, T . At any time t before maturity, assets are valued at nominal

prices relative to potentially stochastic theoretical instant short rates rd(t) and

rf (t). They can be used to model the risk-free rates or implied interest return

processes. For a given discrete time-step denoted η,1 the money market accounts

are presumed to be timed deposit accounts paying exp(rd(t+η)) and exp(rf (t+η))

on a single unit of domestic or foreign currency respectively. Setting S(t) be the

spot conversion between domestic and foreign currency.

I denote P as the physical measure (from the domestic investor’s point of

view) under a filtration Ft, and the probability space (Ω,F,Ft,P) follows normal

condition as in Protter [2004]. Given the notational assumption on the time step,

I set τ = Tη−1 be the integer number of discrete time steps to T .

Assumption 9. S(t + η)|Ft is conditionally log-normal. Setting the loga-

rithm return R(t + η) = ln(S(t + η)/S(t)), then the state variable processes,

(R(t), fk,i(t), h(t), λ(t))′ under the probability space (Ω,F,Ft,P) are described by

1A useful feature of OTC FX options is that they are explicitly tenored, rather than ex-
plicitly dated, hence all but eliminating the problem non-integer counts of time steps from t to
T .
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the following spot process with GARCH type volatility:

R(t+ η) =
n∑
i=1

fd,i(t)−
m∑
i=1

ff,i(t) + ζsh(t+ η)− ζJλ(t+ η)+

+
√
h(t+ η)z(t+ η) +

N(t+η;λ(t+η))∑
j=0

uj(t+ η) (4.1)

fk,i(t+ η) =ωk,i + βk,ifk,i(t) + αk,i(z(t+ η)− γs
√
h(t+ η))2 + σk,ivk,i(t) (4.2)

h(t+ η) =ωs + βsh(t) + αs(z(t)− γs
√
h(t))2 (4.3)

λ(t+ η) =ωJ + βJλ(t) + αJN(t), (4.4)

where each disturbance term (z(t), vd,1, . . . , vd,n(t), vf,1(t), . . . , vf,n(t))′ indepen-

dent and identically follows standard normal distribution and jump size uj(t) ∼iid

N(µJ , σJ). In total there will be n and m factors describing the domestic and

foreign economies respectively.

Each interest rate factor fk,i(t+η) contains a common disturbance with return

process, z(t + η). This shared shock also drives the Cox-Ingersoll-Ross (CIR)

variance process denoted by h(t+η). The unique shock vk,i(t) provides freedom in

the factor dynamic. For the variance process h(t), it is useful to note that whilst βs

determines the persistence in the spot variance, αs and γs are principal parameters

that determine the ‘kurtosis and skewness’ properties in the resulting implied

volatility surface. The factor equation parameters have the same interpretation

as the variance dynamic. fk,i(t + η) is time inhomogeneous and AR(1), with

factor persistence determined by βk,i. ζs reflects the risk premium in the return

dynamic and ζJ is compensator for jump. The structural parameters of the model

are collected in the vector θ = (θs, θk, θJ)′, where θs = (ζs, ωs, βs, αs, γs)
′ is for
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return and variance, θJ = (ζJ , ωJ , βJ , αJ , µJ , σJ)′ is for the jump process and

θk,i = (ωk,i, βk,i, αk,i, γk,i, σk,i)
′ is for the ith factor.

Define the de-trend return R̄(t+η) = R(t+η)−
∑n

i=1 fd,i(t+η)+
∑m

i=1 ff,i(t+η).

Because of the existence of the shared shock among factors and return process,

R̄(t) will have a non-zero conditional correlation with the factors.

Covt+η[R̄(t+ η), fk,i(t+ η)]

=Et[R̄(t+ η)fk,i(t+ η)]− Et[R̄(t+ η)]Et[fk,i(t+ η)]

=− 2αk,iγsh(t+ η).

Then similar to HN, the de-trend return and one time step further variance

process have the covariance of

Covt+η[R̄(t+ η), h(t+ 2η)] = −2αsγsh(t+ η).

The arbitrage free price of the option can be derived by replication. Whereby a

representative domestic or foreign investor can construct a self-financing position

by being short or long in the bond market of either currency and financing a

payoff in the opposite currency at some fixed date. This is then replicated by

holding a cash and option delivering an identical payoff. From this replication

setting I can derive the risk neutral formula for FX markets no-arbitrage from

the viewpoint of either a domestic or foreign investor. Based on the assumptions

above, I can then apply in discrete time Amin and Jarrow [1991]’s intuition for

determining the risk neutral process, given that in each step the interest rate

dynamic is describing timed deposits. In this chapter, I will only focus on the
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domestic measure, since it is an analogue for foreign measure.

Remark 3. From a domestic investor’s point of view, the risk neutral FX process

of the MFJ model, under the domestic risk neutral Q measure, is given by the

following pair of expressions:

R(t+ η) =rd(t)− rf (t)−
1

2
h(t+ η)− (eµJ+

1
2
σ2
J − 1)λ∗(t+ η)+

+
√
h(t+ η)z∗(t+ η) +

N∗(t+η)∑
j=0

uj(t+ η),

rk(t) =

n,m∑
i=1

fk,i(t),

fk,i(t+ η) =ωk,i + βk,ifk,i(t) + αk,i(z
∗(t+ η)− γ∗s

√
h(t+ η))2 + σk,ivk,i(t),

h(t+ η) =ωs + βsh(t) + αs(z
∗(t)− γ∗s

√
h(t))2,

λ∗(t+ η) =ω∗J + βJλ
∗(t) + αJN

∗(t),

where

z∗(t) =z(t) + (
1

2
+ ζs)

√
hs(t), (4.5a)

γ∗s =γs +
1

2
+ ζs, (4.5b)

λ∗(t) =
ζJ

eµJ+
1
2
σ2
J − 1

λ(t) (4.5c)

ω∗J =
ζJ

eµJ+
1
2
σ2
J − 1

ωJ . (4.5d)

Under the risk neutral measure, the interest rate factors are categorised into

domestic factors and foreign factors, together acting as risk neutral drift terms.
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Here I follow the steps as in the Chapter 3 for ASTSV model to guarantee

E∗
[
S(t+ η)Mf (t, t+ η)

Md(t, t+ η)

∣∣∣∣∣Ft
]

= S(t),

where Mk(t, t + η), k ∈ {d, f}, is the money account for one of the currency of

the currency pair. The left side of the equation, discounted spot FX rate, is

a martingale after adjustment Eq. (4.5). Specifically, the last two adjustments,

for jump intensity process λ∗(t) and jump parameter ω∗J , are associated with the

jump process risk neutralisation by a fraction ζJ/(e
µJ+

1
2
σ2
J−1), where eµJ+ 1

2
σ2
J−1

is the expected jump size from the jump measure. For brevity, I mark a risk

neutral process and expectations under the domestic risk neutral measure Q with

a superscript ∗ henceforth.

Denoting x(t) = lnS(t) as the natural logarithm of the spot FX price at time

t. I follow Duffie et al. [2000] where instead of using the normal conditional char-

acteristic function as Et[exp(φx(T ))], φ ∈ C, they use the discounted conditional

characteristic function Ψ(t;T, φ) = Et[exp(−
∑J

j=0 rd(t+ jη)) exp(φx(T ))] for the

logarithm price under domestic risk neutral measure. The advantage using the

discounted version of the CF is that it can then track the discount factors si-

multaneously with each backward iteration. Thus I do not need to separate the

interest rate dynamic from the calculation. Further more I assume the discounted

characteristic function takes the log-linear form, then we have the following the-

orem.

Theorem 4. The discounted conditional characteristic function for the MFJ
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model is affine and of the following form

Ψ(t;T, φ)

=E∗t [e−
∑J
j=0 rd(t+jη)eφx(T )]

= exp(φx(t) + A(t;T, φ) +
n∑
i=1

Bd,i(t;T, φ)fd,i(t)−
m∑
i=1

Bf,i(t;T, φ)ff,i(t)+

+ C(t;T, φ)h(t+ η)) +D(t;T, φ)λ∗(t+ η). (4.6)

where d, f denote the parameters for domestic and foreign interest rate, respec-

tively. The recursive coefficients to be evaluated from the terminal boundary con-

ditions are as follows:

A(t) = A(t+ η) +
n∑
d,i

Bd,i(t+ η)ωd,i −
m∑
f,i

Bf,i(t+ η)ωf,i + C(t+ η)ωs+

+D(t+ η)ω∗J −
1

2
ln(1− 2G(t+ η)) +

1

2

n∑
i=1

B2
d,i(t+ η)σ2

d,i+

− 1

2

m∑
i=1

B2
f,i(t+ η)σ2

f,i (4.7a)

Bd,i(t) = φ− 1 +Bd,i(t+ η)βd,i (4.7b)

Bf,i(t) = φ+Bf,i(t+ η)βf,i (4.7c)

C(t) = C(t+ η)βs −
φ

2
+

n∑
i=1

Bd,i(t+ η)σd,iγ
∗2
s −

m∑
i=1

Bf,i(t+ η)σf,iγ
∗2
s +

+ C(t+ η)αsγ
∗2
s +

(φ− 2γ∗sG(t+ η))2

2(1− 2G(t+ η))
(4.7d)

D(t) = D(t+ η)βJ − φ(eµJ+
1
2
σ2
J − 1) + eD(t+η)αJ+φµJ+ 1

2
φ2σ2

J − 1 (4.7e)
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where

G(t+ η) =
n∑
i=1

Bd,i(t+ η)αd,i −
m∑
i=1

Bf,i(t+ η)αf,i + C(t+ η)αs,

These coefficients can be calculated recursively from the following boundary

conditions at T :

A(T ;T, φ) = Bk,i(T ;T, φ) = Cs(T ;T, φ) = D(T ;T, φ) = 0, k ∈ {f, d}. (4.8)

The Proof of Theorem 4 relies on the affine structure of the volatility and

jump terms and is given as follows:

Proof. Given the assumption of the discounted characteristic function, I expand

the expectation at t+ η as:

Ψ(t+ η;T, φ)

= exp(φx(t+ η) + A(t+ η) +
n∑
i=1

Bd,i(t+ η)fd,i(t+ η)+

−
m∑
i=1

Bf,i(t+ η)ff,i(t+ η) + C(t+ η)hs(t+ 2η) +D(t+ η)λ∗(t+ 2η))
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Expanding this equation with the model processes, I have

Ψ(t+ η;T, φ)

= exp(φ(x(t) +
n∑
i=1

fd,i(t)−
m∑
i=1

ff,i(t)−
1

2
hs(t+ η)− (eµJ+

1
2
σ2
J − 1)λ∗(t+ η)+

+
√
hs(t+ η)z∗(t+ η) +

N∗(t+η)∑
j=0

uj(t+ η)) + A(t+ η) +
n∑
i=1

Bd,i(t+ η)(ωd,i+

+ βd,ifd,i(t) + αd,i(z
∗(t+ η)− γ∗s

√
hs(t+ η))2 + σd,ivd,i(t))−

m∑
i=1

Bf,i(t+ η)(ωf,i+

+ βf,iff,i(t)αf,i(z
∗(t+ η)− γ∗s

√
hs(t+ η))2 + σf,ivf,i(t)) + C(t+ η)(ωs+

+ βshs(t+ η) + αs(z
∗(t+ η)− γ∗s

√
hs(t+ η))2) +D(t+ η)(ω∗J + βJλ

∗(t+ η)+

+ αJN
∗(t+ η).
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Rearranging the terms, I have

Ψ(t+ η;T, φ)

= exp(φx(t) + A(t+ η) +
n∑
i=1

Bd,i(t+ η)ωd,i −
m∑
i=1

Bf,i(t+ η)ωf,i+

+ C(t+ η)ωs +D(t+ η)ω∗J +
n∑
i=1

(φ+Bd,i(t+ η)βd,i)fd,i(t)−
m∑
f,i

(φ+

+Bf,i(t+ η)βf,i)ff,i(t) + (D(t+ η)βJ − φ(eµJ+
1
2
σ2
J − 1))λ∗(t+ η)+

+
n∑
i=1

Bd,i(t+ η)σd,ivd,i(t)−
m∑
i=1

Bf,i(t+ η)σf,ivf,i(t) +D(t+ η)αJN
∗(t+ η)+

+

N∗(t+η)∑
j=0

φuj(t+ η) + (
n∑
i=1

Bd,i(t+ η)αd,i −
m∑
i=1

Bf,i(t+ η)αf,i+

+ C(t+ η)αs)z
∗2(t+ η) + (φ− 2γ∗s (

n∑
i=1

Bd,i(t+ η)αd,i −
m∑
i=1

Bf,i(t+ η)αf,i+

+ C(t+ η)αs))
√
hs(t+ η)z∗(t+ η) + (C(t+ η)βs −

φ

2
+

n∑
i=1

Bd,i(t+ η)αd,iγ
∗2
s +

−
m∑
i=1

Bf,i(t+ η)αf,iγ
∗2
s + C(t+ η)αsγ

∗2
s )hs(t+ η).
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Separating the independent shocks, I have the expectation at t to be

E∗t [e−rd(t)Ψ(t+ η;T, φ)]]

= exp(φx(t) + A(t+ η) +
n∑
i=1

Bd,i(t+ η)ωd,i −
m∑
i=1

Bf,i(t+ η)ωf,i + C(t+ η)ωs+

+D(t+ η)ω∗J +
n∑
i=1

(φ− 1 +Bd,i(t+ η)βd,i)fd,i(t)−
m∑
f,i

(φ+Bf,i(t+ η)βf,i)ff,i(t)+

+ (C(t+ η)βs −
φ

2
+

n∑
i=1

Bd,i(t+ η)αd,iγ
∗2
s −

m∑
i=1

Bf,i(t+ η)αf,iγ
∗2
s +

+ C(t+ η)αsγ
∗2
s )hs(t+ η) + (D(t+ η)βJ − φ(eµJ+

1
2
σ2
J+

− 1))λ∗(t+ η))E∗t [exp(D(t+ η)αJN
∗(t+ η) +

N∗(t+η)∑
j=0

φuj(t+ η))]×

× E∗t [exp(
n∑
i=1

Bd,i(t+ η)σd,ivd,i(t))]E∗t [exp((
n∑
i=1

Bd,i(t+ η)αd,i −
m∑
i=1

Bf,i(t+ η)αf,i+

+ C(t+ η)αs)z
∗2(t+ η) + (φ− 2γ∗s (

n∑
i=1

Bd,i(t+ η)αd,i −
m∑
i=1

Bf,i(t+ η)αf,i+

+ C(t+ η)αs))
√
hs(t+ η)z∗(t+ η)]/E∗t [exp[

m∑
i=1

Bf,i(t+ η)σf,ivf,i(t)]

Notice that for a standard normal random variable

E[exp(a(z + b)2)] = exp

(
−1

2
ln(1− 2aσ2

z) +
a(b+ µz)

2

1− 2aσ2
z

)
,

For the z∗(t+ η) terms, denote

G(t+ η) =
n∑
i=1

Bd,i(t+ η)αd,i −
m∑
i=1

Bf,i(t+ η)αf,i + C(t+ η)αs,
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I have

E∗t [exp(G(t+ η)z∗2(t+ η) + (φ− 2γ∗sG(t+ η))
√
hs(t+ η)z∗(t+ η))]

=E∗t [exp(G(t+ η)(z∗2(t+ η) + 2
φ− 2γ∗sG(t+ η)

2G(t+ η)

√
hs(t+ η)z∗(t+ η)))]

=E∗t [exp(G(t+ η)(z∗(t+ η) +
φ− 2γ∗sG(t+ η)

2G(t+ η)

√
hs(t+ η))2+

− (φ− 2γ∗sG(t+ η))2

4G(t+ η)
hs(t+ η))]

= exp(−1

2
ln(1− 2G(t+ η)) +

(φ− 2γ∗sG(t+ η))2

2(1− 2G(t+ η))
hs(t+ η))

And

E∗t [exp[
n∑
i=1

Bk,i(t+ η)σk,ivk,i(t)] = exp(
1

2

n∑
i=1

B2
d,i(t+ η)σ2

d,i)

Also for the jump term

E∗t [exp(D(t+ η)αJN
∗(t+ η) +

N∗(t+η)∑
j=0

φuj(t+ η)))]

= E∗t [exp(

N∗(t+η)∑
j=0

D(t+ η)αJ + φuj(t+ η))]

= exp(λ∗(t+ η)(eD(t+η)αJ+φµJ+ 1
2
φ2σ2

J − 1)),
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Then the expectation becomes

E∗t [E∗t+η[eφx(T )]]

= exp(φx(t) + A(t+ η) +
n∑
i=1

Bd,i(t+ η)ωd,i −
m∑
f,i

Bf,i(t+ η)ωf,i + C(t+ η)ωs+

+D(t+ η)ω∗J −
1

2
ln(1− 2G(t+ η)) +

1

2

n∑
i=1

B2
d,i(t+ η)σ2

d,i −
1

2

m∑
i=1

B2
f,i(t+ η)σ2

f,i+

+
n∑
i=1

(φ− 1 +Bd,i(t+ η)βd,i)fd,i(t+ η)−
m∑
f,i

(φ+Bf,i(t+ η)βf,i)ff,i(t+ η)+

+ (C(t+ η)βs −
φ

2
+

n∑
i=1

Bd,i(t+ η)αd,iγ
∗2
s −

m∑
i=1

Bf,i(t+ η)αf,iγ
∗2
s + C(t+ η)αsγ

∗2
s +

+
(φ− 2γ∗sG(t+ η))2

2(1− 2G(t+ η))
)hs(t+ η) + (D(t+ η)βJ − φ(eµJ+

1
2
σ2
J − 1)+

+ eD(t+η)αJ+φµJ+ 1
2
φ2σ2

J − 1)λ∗(t+ η)).

Compared with the original affine form, I have the coefficients as in the the-

orem.

End of proof.

Corollary 5. Given the discounted characteristic function the call option price

for an FX option following the MSJ dynamic under the risk-neutral measure Q

is given by the following expression:

Pc =Ψ(1)

(
1

2
+

1

π

∫ ∞
0

<
[
K−iuΨ(iu+ 1)

iuΨ(1)

]
du

)
+

−K
(
Ψ(0)

2
+

1

π

∫ ∞
0

<
[
K−iuΨ(iu)

iu

]
du

)
. (4.9)
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The put option price can be calculated by the put-call parity as

Pp = Pc +Dd(τ)K −Df (τ)S(t). (4.10)

4.2.2 A simplified version of the model

For FX options with not long maturities, for instance less than two years, the

variance of the deposit rate usually has a vanishing contribution to the overall

price. I simplify short maturity models using the following assumption.

Assumption 10. The Simplified Model. When foreign and domestic numéraires

are constant, the MFJ model collapses to a model with constant drift rd− rf and

extra ACP jump process:

R(t+ η) =rd − rf −
1

2
hs(t+ η)− (eµJ+ 1

2
σ2
J − 1)λ∗(t+ η)+

+
√
h(t+ η)z∗(t+ η) +

N∗(t+η)∑
j=0

uj(t+ η), (4.11)

h(t+ η) =ωs + βsh(t) + αs(z
∗(t)− γ∗s

√
h(t))2, (4.12)

λ∗(t+ η) =ω∗J + βJλ
∗(t) + αJN

∗(t), (4.13)

The corresponding discounted characteristic function is easily defined as a

constrained form of the MFJ model and is given in the following proposition:

Proposition 2. The Simplified Model Characteristic Function. The character-

istic function for the simplified model with deterministic deposit rates is given
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by:

Ψ(t;T, φ) =E∗t [e−Jrdeφx(T )]

= exp(φx(t) + A(t;T, φ) + C(t;T, φ)h(t+ η) +D(t;T, φ)λ∗(t+ η)),

(4.14)

where

A(t) =A(t+ η) + φ(rd − rf )− rd + C(t+ η)ωs +D(t+ η)ω∗J+

− 1

2
ln(1− 2C(t+ η)αs)

C(t) =C(t+ η)βs −
φ

2
+ C(t+ η)αsγ

∗2
s +

(φ− 2γ∗sC(t+ η)αs)
2

2(1− 2C(t+ η)αs)

D(t) =D(t+ η)βJ − φ(eµJ+
1
2
σ2
J − 1) + eD(t+η)αJ+φµJ+ 1

2
φ2σ2

J − 1,

These coefficients can be calculated recursively under the terminal conditions

A(T ;T, φ) = C(T ;T, φ) = D(T ;T, φ) = 0.

4.3 Estimation procedures

In this section, I will firstly provide the jump detection tool selected for the

empirical section. Then in the rest part of this section, I will show how to

estimate the parameters of GARCH type process.
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4.3.1 Jump detection

To improve reliability of the estimator, I have separated the jump identification

out from the estimation of the spot variance model. This is in different from

the Christoffersen et al. [2015] where jump intensity λ(t) and diffusion variance

h(t) are updated simultaneously using the bipower variance (BV ) and realize

quadratric variation (RV ). My approach is similar, but uses the BV and RV in

a first stage cleaning of the jumps. In the empirical part of this chapter, I adopt

the method proposed by Tauchen and Zhou [2011] to detect the occurrence and

jump size distribution parameters as an example. Jump detection itself is an im-

portant and active econometric topic. Notable works include the application of

BV and tripower quarticity in jump identification proposed by Barndorff-Nielson

and Shephard [2004] and Barndorff-Nielson and Shephard [2006], the jump re-

gression method by Li et al. [2014] and the comparison of different techniques by

Huang and Tauchen [2005]. Other jump detection techniques such as Lee and

Mykland [2008] and Jacod et al. [2018] can also be applied into my framework

for parameter estimation, but I will refer the application of these techniques in

future works.

Denoting the intraday logarithm return for day t as Rintra,j(t) = log(x(t +

jη̄))− log(x(t+ (j−1)η̄)), where η̄ is the intraday time step and j is the intraday

index. Barndorff-Nielson and Shephard [2004] show that when the intraday time

step η̄ → 0, the realized variance RV (t) and realized bipower variance BV (t)
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converge to the following

RV (t) =
n∑
j=1

R2
intra,j(t)→

∫ t

t−1

σ2
sds+

∫ t

t−1

J2
s dNt

BV (t) =
π

2

n

n− 1

n∑
j=2

|Rintra,j(t)||Rintra,j−1(t)| →
∫ t

t−1

σ2
sds,

where σt, Jt and Nt are the diffusion and jump terms of a continuous jump-

diffusion process

dxt = µtdt+ σtdWt + JtdNt.

According to Huang and Tauchen [2005], where they document the jump detect-

ing accuracy that the following ratio statistics converges to a standard normal

distribution

ZJ(t) ≡ RJ(t)√
[(π

2
)2 + π − 5] 1

n
max(1, TP (t)

BV 2(t)
)
→ N(0, 1), (4.16)

where

RJ(t) ≡ RV (t)−BV (t)

RV (t)
,

and TP (t) is the tripower quarticity defined by

TP (t) ≡ nµ−3
4/3

n

n− 2

n∑
j=3

|Rintra,j−2|4/3|Rintra,j−1|4/3|Rintra,j|4/3 →
∫ t

t−1

σ4
sds

with

µk ≡ 2k/2Γ((k + 1)/2)/Γ(1/2), k > 0.

Following Tauchen and Zhou [2011] and Andersen et al. [2007]’s significant
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jump assumption that there is at most one significant jump per day (per normal

time-step η), the realised jumps are filtered by

J(t) = sign(R(t))
√

(RV (t)−BV (t))IZJ(t)>Φ−1
a
,

where Φa is the cumulative density function of standard normal distribution with

probability level a, and IZJ(t)>Φ−1
a

is an indicator function. sign(·) here is the

function to extract the sign of the real value represented by “·”. Thus sign(R(t))

ensures the jump has the same direction of the return.

I then estimate the jump size distribution by observing the behaviour of J(t)

in the estimation window

µJ(t) =mean of the realized jumps (4.17a)

σJ(t) =standard deviation of the realized jumps. (4.17b)

The jump assumption of Tauchen and Zhou [2011] I applied in the jump

detection leads to the fact that counting process N(t) is the same as IZJ(t)>Φ−1
a

,

which takes value from {0, 1}. By construction, here the model does not consider

simultaneous small jumps as in Lee and Mykland [2008]. I adopt the estimation

of jump size distribution method as in Eq. (4.17), and then use the realised jump

counting process N(t) to update the intensity process λ(t) instead of calculating

the intensity as a proportion of realised jump observations in the total estimation

window days. This treatment makes sense in the way that the test statistics

ZJ(t) only helps observe the occurrence of a significant jump and then infer

the intensity statistically. I will infer the intensity dynamic based on the return
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dynamic as in the following sub-section.

4.3.2 Likelihood based estimation

After identifying domestic and foreign factors and jumps J(t), which represents

the
∑N(t+η)

j=0 uj(t+η) in the logarithm return dynamic, I have the filtered logarithm

return

R̃(t+ η) =R(t+ η)− rd(t) + rf (t)− J(t)

=ζsh(t+ η)− ζJλ(t+ η) +
√
h(t+ η)z(t+ η). (4.18)

This implies the variance process h(t+η) can be updated by the knowledge of new

return and implied new shock. Together with the innovation of jump intensity

λ(t+η) with the identification of jump counting process N(t), I have the following

state variables updating dynamic:

h(t+ η) =ωs + βsh(t) + αs
(R̃(t+ η)− ζsh(t+ η) + ζJλ(t+ η)− γh(t+ η))2

h(t+ η)

(4.19a)

λ(t+ η) =ωJ + βJλ(t) + αJN(t). (4.19b)

I use their unconditional expectation to be the initial points of these processes,

that is

h(0) ≡E[h(t)] =
ωs + αs

1− βs − αsγ2
s

λ(0) ≡E[λ(t)] =
ωJ

1− βJ − αJ
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Now I have

z(t+ η) =
R̃(t+ η)− ζsh(t+ η) + ζJλ(t+ η)√

h(t+ η)
∼ N(0, 1),

N(t+ η) ∼Poisson(λ(t+ η)).

With these information, I can then write the marginal log-likelihood function L(t)

as the sum of the log-likelihood function for the logarithm return, jump intensity

and factors, which are

Ls(t) =− 1

2
ln(2π)− 1

2
ln(h(t+ η))− 1

2h(t+ η)
(R̃(t+ η)− ζsh(t+ η)+

+ ζJλ(t+ η))2, (4.20a)

LJ(t) =− λ(t+ η)− ln(N(t+ η)!) + ln(λ(t+ η))N(t+ η). (4.20b)

Then I can get the optimal parameter θ̂ by maximise the aggregate likelihood.

4.4 Adjusted time-step and hidden factors

To use the model to uncover the underlying latent factor structure, I firstly pro-

pose a time-step adjustment technique at the beginning of this section. This

adjustment is inspired by the time-step adjustment in Chapter 3, where I use

monthly time-step for contracts with longer tenor and daily time-step for shorter

tenor contracts. In this section, I apply a more flexible time-step size to accel-

erate the computation speed and improve the option quotes accuracy. Based on

these upgrades, I then show how to extract the hidden factors from the OTC FX

option market quotes using the proposed model.

122



4.4.1 MFJ-F model, an adjusted time-step model

For longer tenor options, a GARCH type model suffers from the disadvantage

that it tends to significantly increase the computational time (O(τ)) and loss the

variation in the option implied volatility as the maturity increases. In Fig. 4.1,

I show an example of the market quotes for the at-the-money volatility (ÃT ) of

EURUSD options with 1M and 2Y tenors in solid lines. Then I compute the

HN model implied ÃT for corresponding period and present in the figure as dash

lines.

From the figure we can see that the HN model provides good dynamic time-

series for 1M tenor option compared with the market ÃT movements. But for the

2Y tenor contract, the fluctuation from the HN model decays and the outcome

is much more flat compared with the market quotes.

One of the most important reason for this term structure issue is the iteration

character of the GARCH based model. The option price engine iterate the state

variable from initial value towards maturity, which means longer tenor contracts

have more iterations during the calculation. Then the mean reverting variance

process tends to converge to its long-term mean level when the number of iter-

ations is sufficiently large, thus losses its dynamic. To handle this, I propose to

adjust the size of time-step corresponding to the time to maturity, and I call this

the MFJ-F model.

I set 1M tenor FX option contract as benchmark, which has time-step size of

1 day, denoted as 1. Then the 1-minute intraday return frequency is equivalent

to 1440 subsections of a time-step. It is worth pointing that here I use 1-minute

just for demonstration, the empirical jump detection part of this chapter is based
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Figure 4.1: ÃT market quotes and HN model implied volatility for EURUSD options
with 1M and 2Y tenors.

This figure shows the HM model implied ÃT for EURUSD with 1M and 2Y tenors.
Market quotes are solid lines in the plots and dash lines represent HN quotes. From the
plot we can see that the GARCH based HN model provide good dynamic for short-term
tenor options. But for the long-term one, the fluctuation of the HN model outcome
decays.

on the averaged 5-minute time grid as Liu et al. [2015] suggested. Then for any

tenor, τ , longer than 1M, the adjusted return time-step size will be

ητ =
τ

1M
1,
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and accordingly, the intraday frequency is set as

ηintra,τ =
τ

1M

1

1440
.

Under this arrangement, take options with 6M tenor as an example, the return

process is based on a 6-day time-step size, and the ’intraday’ frequency return

for realised variance and realised jump detection is based on 6-minute return.

Note that the interest rate process should also be adjusted for the modified of

time-step size.

4.4.2 MFJ-C model, including hidden factors

I have provided the results from the restricted version of the proposed model,

outlined in Section 4.2.2 where interest rate is presumed to be constant. Based

on the observation of the interest parity mis-match, I use the multi-factors in

interest return to identify the hidden factors in the option price, while muting

the fluctuation of the observed interest rates. Therefore I assume both domestic

and foreign interest return contains one hidden factor and one fixed observed rate

respectively to extract what is driving the future expectation.

To achieve so, I just need to choose the factor number as n = 2 and m = 2

for domestic and foreign interest rates respectively. While keeping one of the

factor as the target hidden factor, I force the dynamic parameter βk,2 = 1 and all

other parameters θk,2 to be zeros. This adjustment fixes the second factor as the

constant observed interest rate.

As in Chapter 2, a volatility smile of a FX option at a given time generally

includes five volatility quoted strategies describing the smile shape, such as B̃F 10,
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B̃F 25, ÃT , R̃R25 and R̃R10. From these five strategies, I am able to back out the

five pivotal points, which are Black-Scholes implied volatilities corresponding to

10-put-delta, 25-put-delta, delta-neutral-straddle at-the-money, 25-call-delta and

10-call-delta. I denote these five volatilities as σp(10), σp(25), ÃT , σc(25) and

σc(10). I then use cubic polynomial to interpolate the volatility smile across a n-

point strike price grid, n = 100, and denote the interpolated smile as volmarket(K).

For a given volatility smile, I calibrate the hidden factor parameter set,

which includes (θfd,ff = {fd(t), ff (t), ωd, βd, αd, σd, ωf , βf , αf , σf}), by minimise

the quadratic variation between the market volatility smile (volmarket) and the

model quoted smile (volMFJ−C)

θfd,ff := arg min
θfd,ff

n∑
i=1

(volmarket(Ki)− volMFJ−C(Ki))
2. (4.21)

Then for every volatility smile, there will be a corresponding hidden factor pa-

rameter set θfd,ff . I specify the model including the calibrated hidden factors as

MFJ-C model.

4.5 Empirical study on six currencies versus the

US dollar

4.5.1 Summary of data

I apply the various model specifications mentioned in previous sections for six

currencies (G7): Australian dollar (AUD), Euro (EUR), UK pound (GBP), Cana-

dian dollar (CAD), Swiss franc (CHF) and Japanese yen (JPY) versus US dollar
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Table 4.1: Sample characteristics

AUD
Obs. Mean Std. dev. Min Max

Spot 8159041 0.7709 0.1453 0.4776 1.1080
r 1M 7660 4.4635 1.5404 1.5650 7.9250
r 6M 7668 4.6394 1.5377 1.7400 8.2350
r 1Y 7623 4.8382 1.5496 2.0750 8.7950
r 2Y 7592 4.6057 1.6630 1.5950 8.2800
σp(10)1M 1384 11.2440 2.5565 6.4500 18.8880
σp(25)1M 1384 10.4232 2.3714 6.0115 16.9875

ÃT1M 1384 9.6878 2.2076 5.5550 15.5870
σc(25)1M 1384 9.3373 2.0882 5.3645 14.8620
σc(10)1M 1384 9.3071 2.0346 5.1520 14.6558
σp(10)6M 1330 13.3145 2.1716 8.6400 18.5745
σp(25)6M 1330 11.4790 1.8391 7.9440 15.8940

ÃT6M 1330 10.0872 1.6344 6.9000 13.7625
σc(25)6M 1330 9.4610 1.5309 6.4125 12.7810
σc(10)6M 1330 9.5307 1.5263 6.4120 12.9375
σp(10)1Y 1311 14.4847 2.0021 10.0250 18.9995
σp(25)1Y 1311 12.1109 1.5963 8.7845 15.7200

ÃT1Y 1311 10.4153 1.3682 7.7175 13.5450
σc(25)1Y 1311 9.6908 1.2727 7.0995 12.5200
σc(10)1Y 1311 9.8530 1.3020 7.0050 12.8000
σp(10)2Y 1305 15.3605 1.9750 10.9380 19.9560
σp(25)2Y 1305 12.6427 1.5264 9.4870 16.0335

ÃT2Y 1305 10.8615 1.3103 8.3750 13.8275
σc(25)2Y 1305 10.0967 1.2170 7.7625 12.8060
σc(10)2Y 1305 10.3134 1.2579 8.0750 13.1995

CAD
Obs. Mean Std. dev. Min Max

Spot 8157601 1.2596 0.1889 0.9061 1.6164
r 1M 7664 2.4483 1.6299 0.1750 5.9800
r 6M 7681 2.6960 1.5400 0.4000 6.5700
r 1Y 7689 2.9350 1.4816 0.5500 6.4500
r 2Y 4864 2.0368 1.1675 0.2100 5.0315
σp(10)1M 1430 7.7551 1.7500 4.0875 12.8750
σp(25)1M 1430 7.6393 1.7290 3.9690 12.5750

ÃT1M 1430 7.7709 1.7273 4.0500 12.6250
σc(25)1M 1430 8.2427 1.7751 4.4190 13.1185
σc(10)1M 1430 8.7574 1.8316 4.8375 13.7500
σp(10)6M 1349 7.7633 1.2852 5.0500 11.7065
σp(25)6M 1349 7.6016 1.2851 4.8180 11.4250

ÃT6M 1349 7.8830 1.3058 5.0300 11.6750
σc(25)6M 1349 8.6973 1.3831 5.6735 12.5185
σc(10)6M 1349 9.6591 1.4649 6.5050 13.6500
σp(10)1Y 1377 7.9988 1.1399 5.5500 11.5250
σp(25)1Y 1377 7.7789 1.1337 5.3240 11.2190

ÃT1Y 1377 8.0879 1.1535 5.5550 11.5250
σc(25)1Y 1377 9.0276 1.2306 6.3740 12.5190
σc(10)1Y 1377 10.1880 1.3275 7.3500 13.7500
σp(10)2Y 1365 8.4171 1.0904 6.4125 11.8630
σp(25)2Y 1365 8.1423 1.1021 6.0125 11.5750

ÃT2Y 1365 8.4505 1.1211 6.2250 11.8500
σc(25)2Y 1365 9.4188 1.1933 7.0875 12.8500
σc(10)2Y 1365 10.6926 1.2719 8.3000 14.1130

Notes: I interpolate the spot exchange rate tick data to a 1 minute grid from 1 millisecond past midnight to 1
millisecond to midnight GMT. For the rest of the 4 currency pairs, see Appendix Table 3.
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(USD). Following the market quotation convention, the FX cross rates are de-

noted as AUDUSD, EURUSD, GBPUSD, USDCAD, USDCHF and USDJPY

respectively. I will compute FX option quotes in terms of Black-Scholes implied

volatility across the five pivotal delta points (σp(10), σp(25), ÃT , σc(25) and

σc(10)) for tenors out to two years. The HN, MFJ and MFJ-C models are spec-

ified over daily data or adjusted frequencies according to maturity (from 1M up

to 2Y); I exclude weekends as the quote updates for spot and FX option data are

substantially lower.

I collect the tick data from the Tick History database provided by the Thom-

son Reuters FX feed and warehoused by SIRCA; Table 4.1 provides the sample

characteristic for the data. I query both the bid and ask quotes for spot and FX

options, and compute the mid-price to use in the models. I am led to believe by

the vendor that the quote history for the FX options is complete, in the sense

that all of the active broker dealers are included in the survey. For the spot

and deposit data the picture is less clear. Certain FX feeds have tighter bid-ask

spreads than the quotes from the banks surveyed by Thomson Reuters Tick His-

tory. Spot and yield curve data for AUDUSD, GBPUSD, USDCAD, USDCHF

and USDJPY exchange rates is taken from January 1, 1996 to July 5, 2018, while

for EURUSD the spot and yield curve data starts from February 28, 1998. For

the yield curves I use quoted timed deposits for each currency out to one year

and quoted swap rates for 2Y tenors. I should note that even though as Du et al.

[2018] pointed that CIP condition is typically tested based on interbank offered

rates, I use deposit rates in this thesis as the interest rate because this is the rate

that OTC FX option market participants undertake to finance their positions.

Table 4.2 provides the MLE estimates for the daily exchange rate variance
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Table 4.2: Heston–Nandi parameter estimation.

ζs ωs βs αs γs L

AUDUSD 0.026 3.446e-12 0.951 2.021e-06 71.649 19944.592
(0.005) (1.015) (0.002) (0.002) (0.001)

EURUSD -0.005 7.148e-13 0.974 7.893e-07 91.499 18488.754
(0.006) (1.718) (0.002) (0.002) (0.001)

GBPUSD -0.901 4.227e-13 0.964 9.529e-07 75.573 21437.498
(0.006) (2.308) (0.002) (0.002) (0.001)

USDCAD 0.002 1.783e-13 0.964 8.231e-07 -44.457 22135.470
(0.007) (2.136) (0.002) (0.002) (0.001)

USDCHF -0.524 1.438e-12 0.946 1.553e-06 -131.019 20008.023
(0.005) (3.111) (0.002) (0.001) (0.001)

USDJPY 0.355 2.089e-11 0.939 2.239e-06 72.872 20239.174
(0.005) (0.881) (0.002) (0.002) (0.001)

Notes: Parameter estimates for the spot exchange rate process: R(t + η) = rd − rf −
1
2hs(t+η)+

√
hs(t+ η)z∗(t+η) with spot variance hs(t+η) = ωs+βshs(t)+αs(z

∗(t)−
γ∗s
√
hs(t))

2. This table reports the parameter estimates as a standard Heston Nandi
model via MLE for each currency pair; the final column reports the estimated log-
likelihood at the optimum.

process parameters of HN model. Table 4.3 and Table 4.4 present the parameters

estimated for MFJ model with fixed daily time-step and the adjusted time-step

MFJ-F model, respectively. Here I do not estimate interest factor parameters

and use only the restricted version of the MFJ model with constant drift terms.

This is because the main purpose of studying the interest bias assume that the

stochastic interest factor are hidden from observation.

4.5.2 Empirical results

Compared with the fixed time-step HN model in Fig. 4.1 (The root mean squared

error (RMSE) for 2Y ÃT being 2.741), the following figure Fig. 4.2 shows that

the MFJ-F model with maturity adjusted time-step size preserves some level of
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Table 4.3: MFJ parameter estimation

AUD EUR GBP CAD CHF JPY

ζs 0.650 -0.634 -0.553 -0.401 1.270 3.024
ζJ 7.335e-5 2.940e-7 3.826e-7 3.505e-8 3.812e-7 5.490e-4
ωs 1.952e-11 5.199e-10 1.144e-11 8.276e-13 1.260e-11 2.517e-10
βs 0.951 0.977 0.965 0.963 0.966 0.931
αs 1.827e-6 8.288e-7 8.676e-7 7.724e-7 1.177e-6 2.166e-6
γs 81.765 1.179 76.306 -50.438 68.003 87.440
ωJ 0.072 0.078 0.080 0.082 0.061 0.084
βJ 0.022 0.021 0.022 3.747e-6 0.038 0.045
αJ 0.834 0.876 0.731 0.917 0.955 0.245
µJ 3.778e-5 2.459e-5 1.362e-5 -1.266e-5 -3.301e-5 5.60484e-6
σJ 1.178e-3 1.031e-3 8.799e-4 9.414e-4 2.305e-3 1.231e-3
L 18161.630 16785.240 19462.640 20250.288 18770.097 18174.350

Notes: Parameter estimates for the MFJ model via MLE for each currency pair. The
spot exchange rate log-return process is described by R(t+ η) = rd − rf − 1

2h(t+ η)−

(eµJ+
1
2σ

2
J − 1)λ∗(t+ η) +

√
h(t+ η)z∗(t+ η) +

∑N∗(t+η)
j=0 uj(t+ η), the spot variance is

h(t + η) = ωs + βsh(t) + αs(z
∗(t) − γ∗s

√
h(t))2 and the jump intensity is λ∗(t + η) =

ω∗J +βJλ
∗(t) +αJN

∗(t). Notice that here I just use the restricted model with constant
interest rates because I assume observed interest rates are constant and the stochastic
parts come from latent factors. The final row reports the estimated log-likelihood at
the optimum.

fluctuation and level of accuracy of its implied volatility even when tenor increases

to 2Y (RMSE decreasing to only 0.906).

By adjusting the time-step size, variance process h(t) is changed accordingly.

I present EURUSD’s h(t) from different time-step size time series in the upper

panel of Fig. 4.3. As the tenor grows, the size of time-step grows linearly by the

adjustment rule ητ = τ
1M

1 and h(t) increase its scale in a similar manner. It

is reasonable since for a Brownian motion Wt ∼ N(0, t), we should have Wnt ∼

N(0, nt). For the 2Y tenor case (the lightest line in the plot), the MFJ-F model

is built on a variance process that is much larger in scale (about ×24) compared
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Table 4.4: MFJ-F parameter estimation

AUDUSD EURUSD
1M 6M 1Y 2Y 1M 6M 1Y 2Y

ζs 0.65 2.733 2.285 1.883 -0.634 -0.882 0.813 1.204
ζJ 7.34E-05 8.29E-04 5.71E-04 0.001 2.94E-07 5.78E-10 0.001 2.07E-07
ωs 1.95E-11 3.52E-06 2.63E-05 2.25E-10 5.20E-10 5.69E-13 4.41E-11 9.39E-07
βs 0.951 0.916 0.778 0.889 0.977 0.932 0.893 0.866
αs 1.83E-06 1.93E-05 6.81E-05 1.14E-04 8.29E-07 1.09E-05 2.63E-05 7.21E-05
γs 81.765 13.171 27.958 -4.4 1.179 25.233 38.091 17.864
ωJ 0.072 0.234 0.233 0.222 0.078 0.199 0.26 0.31
βJ 0.022 2.61E-05 0.053 0.104 0.021 0.036 3.94E-07 2.03E-05
αJ 0.834 0.234 0.931 5.26E-05 0.876 0.955 0.027 0.352
µJ 3.78E-05 1.53E-04 -2.63E-04 -6.11E-04 2.46E-05 8.10E-05 .2.720e-4 -3.60E-04
σJ 0.001 0.005 0.007 0.011 0.001 0.004 0.007 0.011
L 18161.63 1804.823 676.947 212.282 16785.24 1773.036 679.205 237.241

GBPUSD USDCAD
1M 6M 1Y 2Y 1M 6M 1Y 2Y

ζs -0.553 0.887 -0.506 0.211 -0.401 2.676 -0.068 2.312
ζJ 3.83E-07 3.65E-08 8.51E-11 8.14E-04 3.51E-08 4.94E-04 1.55E-07 4.95E-08
ωs 1.14E-11 1.57E-10 1.89E-04 9.42E-05 8.28E-13 2.15E-11 5.98E-10 1.05E-04
βs 0.965 0.925 0.12 0.171 0.963 0.912 0.85 0.502
αs 8.68E-07 1.04E-05 7.44E-05 1.04E-05 7.72E-07 1.16E-05 3.46E-05 1.69E-04
γs 76.306 30.858 12.297 251.815 -50.438 2.991 19.122 1.032
ωJ 0.078 0.17 0.24 0.303 0.082 0.146 0.178 0.257
βJ 0.022 0.038 0.006 0.018 3.75E-06 0.088 0.068 0.008
αJ 0.731 0.008 5.85E-05 0.315 0.917 0.002 0.003 0.019
µJ 1.36E-05 -1.54E-04 1.07E-04 2.93E-04 -1.27E-05 -1.21E-04 6.48E-05 -7.28E-04
σJ 8.80E-04 0.003 0.005 0.01 9.41E-04 0.003 0.004 0.008
L 19462.64 2127.967 832.471 192.479 20250.29 2259.113 938.224 219.833

USDCHF USDJPY
1M 6M 1Y 2Y 1M 6M 1Y 2Y

ζs 1.27 1.851 0.472 1.135 3.024 0.732 0.597 1.355
ζJ 3.81E-07 3.26E-08 1.29E-07 6.07E-08 5.49 2.47E-06 1.75E-10 9.63E-10
ωs 1.26E-11 1.68E-09 1.15E-05 1.25E-05 2.52E-10 2.03E-06 3.82E-06 1.11E-04
βs 0.966 0.955 0.912 0.931 0.931 0.881 0.87 0.742
αs 1.18E-06 8.28E-06 2.20E-05 4.22E-05 2.17E-06 2.63E-05 5.40E-05 4.26E-06
γs 68.003 -24.654 -7.753 1.997 87.44 1.481 1.8 149.687
ωJ 0.061 0.188 0.239 0.229 0.084 0.201 0.281 0.307
βJ 0.038 0.022 0.038 0.056 0.045 0.037 0.015 0.007
αJ 0.955 7.38E-03 0.95 6.28E-04 0.245 0.17 2.17E-05 0.99
µJ -3.30E-05 -3.00E-04 -5.07E-05 -0.001 5.61E-06 -2.10E-04 -2.85E-04 1.90E-06
σJ 0.002 6.77E-04 0.01 0.018 0.001 0.004 0.007 0.011
L 18770.1 1963.499 742.358 136.942 18174.35 1849.138 694.342 234.81

Notes: Following the time-step adjustment rule, ητ = τ
1M 1, I estimate the parameters

for the MFJ-F model and list the parameters in this table.

with the one used in HN model, which is the wider line at the bottom.

In the lower panel of Fig. 4.3, I present the EURUSD’s realised jumps for
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Figure 4.2: ÃT market quotes and MFJ-F model implied volatility for EURUSD
options with 1M and 2Y tenors.

This figure illustrates the 1M and 2Y ÃT quoted by MFJ-F model and the correspond-
ing market quotes. Here solid lines represent market quotes and dash lines are MFJ-F
model quotes.

different tenor contracts based on the jump detection method in Tauchen and

Zhou [2011] and Section 4.3.1 on different time-step size return processes for the

MFJ-F model. From the plot we can observe some jump-clustering property, and

the realized jump size tends to be bigger as the time-step size increases. I should

note that during the process of generating realized jumps, some short term jumps

may be neglected because of the relatively large time-step of data sampling.

Following the Eq. (4.21) to calibrate the hidden factors, I then include the
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Figure 4.3: The time-series of variance process h(t) and realised jumps with different
time-step size.
The time-series of EURUSD’s variance process h(t) with different time-step size are
shown in the upper panel. Lighter lines represents larger tenor and time-step size. In
the lower panel, I plot the realised jumps from different time-step size time series, based
on the jump detection method in Section 4.3.1.

hidden factors into the MFJ-C model, which yields a more accurate volatility

smile as in Fig. 4.4. The time-series well presents the improvement of the accuracy

of the MFJ-C model and the effectiveness of the hidden factors, with the RMSE

being only 0.545 (one fourth of the RMSE for HN).

I then collect the implied volatility quotation error for options with 2Y tenor,

which losses the most time series dynamic, based on the selected models (HN,

MFJ-F and MFJ-C). The results are plotted in Fig. 4.5. The error here is absolute
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Figure 4.4: ÃT market quotes and MFJ-C model implied volatility for EURUSD
options with 1M and 2Y tenors.
From the figure we can see that including the hidden factors based on the calibration
can improve the accuracy of the volatility smile, compared with HN model in Fig. 4.1
and MFJ-F model in Fig. 4.2.

error as percentage of the market quotes. In this figure, black square marks,

representing errors for MFJ-C, are more concentrated at lower level across all the

six currency pairs. Among these, MFJ-C works best for the volatility smile of

GBPUSD (the lowest RMSE, 0.399) and also for EURUSD (0.545) and USDJPY

(0.434). It suggests that GPBUSD’s market option quotes are more affected by

the latent factors in the interest rate. MFJ-C and MFJ-F both outperform HN

for the 2Y tenor contracts.
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Figure 4.5: Absolute error as a percentage of the market quote among HN, MFJ-F
and MFJ-C models
In the figure, I calculate the absolute percentage error of different models compared
with the market option quotes. Black square marks, representing errors for MFJ-C,
are more concentrated at lower level across all the six currency pairs, especially for
GBPUSD. MFJ-C and MFJ-F (triangle marks) both outperform HN (circle marks) for
the 2Y tenor volatility smiles.

Further more, I calibrated the hidden factor parameters for tenors from 1M

to 2Y across all the six currency pairs, and record the mean value of them in

Table 4.5. Based on the hidden factors I quote the HN, MFJ-F and MFJ-C

implied option volatility smiles and compared with market quotes. RMSE for

each model is shown in Table 4.6, Table 4.7 and Table 4.8.

From Table 4.5 we can see that the hidden factors in the interest return all

have large autoregressive parameter βd/f (from 0.9418 to 0.9994), which means

these hidden factors have dynamic that are very persistent through out of the life

circle before option maturity. On the other hand, αd/f shows that these hidden
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Table 4.5: Calibrated MFJ-C hidden factor parameters (mean value)

AUDUSD EURUSD
1M 6M 1Y 2Y 1M 6M 1Y 2Y

fd 0.005053 0.05758 0.009267 0.005832 0.002038 0.06181 -0.00549 -0.00205
ff 0.005832 0.05748 0.005788 -0.00459 0.001273 0.06143 -0.0054 -0.00361
ωd 3.71E-07 2.51E-06 1.06E-07 1.87E-07 4.83E-08 3.08E-06 1.94E-07 1.66E-07
βd 0.9927 0.9941 0.998 0.9988 0.9985 0.9878 0.9992 0.9932
αd 3.18E-05 6.97E-05 -6.81E-05 -3.06E-05 1.79E-05 6.24E-05 9.63E-05 2.34E-05
σd 2.45E-08 2.93E-07 6.75E-08 4.08E-08 1.06E-08 3.01E-07 1.23E-08 6.35E-08
ωf 2.78E-07 2.36E-06 6.29E-07 5.92E-07 5.40E-08 2.67E-06 1.52E-07 5.83E-07
βf 0.9912 0.9803 0.9953 0.9988 0.9959 0.9815 0.9988 0.9933
αf -3.05E-05 -6.85E-05 7.16E-05 2.90E-05 -8.76E-06 -4.71E-05 -9.01E-05 3.80E-06
σf 3.14E-08 3.11E-07 4.65E-08 5.58E-08 5.14E-09 2.63E-07 2.16E-08 3.54E-08

GBPUSD USDCAD
1M 6M 1Y 2Y 1M 6M 1Y 2Y

fd 0.002244 0.06559 0.00412 0.003647 -5.73E-05 0.06397 -0.00332 -0.00225
ff 0.002699 0.06625 -0.00429 0.008103 0.000252 0.06797 -0.00139 0.004254
ωd 3.13E-07 2.52E-06 1.00E-07 1.00E-06 1.24E-07 3.18E-06 1.72E-07 2.20E-07
βd 0.9896 0.9946 0.9993 0.9532 0.9901 0.9953 0.9994 0.999
αd 2.58E-05 5.63E-05 7.44E-05 -3.64E-05 -9.73E-06 9.53E-05 4.90E-05 5.54E-05
σd 2.83E-08 1.64E-07 5.48E-09 7.06E-08 2.03E-08 3.44E-07 2.14E-08 7.14E-09
ωf 3.50E-07 1.86E-06 1.17E-07 5.47E-07 2.10E-07 2.85E-06 9.38E-08 1.25E-07
βf 0.987 0.991 0.9989 0.9418 0.9879 0.9905 0.9995 0.9992
αf -2.45E-05 -4.67E-05 -7.32E-05 -3.63E-05 1.21E-05 -9.62E-05 -4.61E-05 -5.58E-05
σf 3.32E-08 2.15E-07 7.91E-09 8.70E-08 1.52E-08 3.43E-07 2.11E-08 2.78E-08

USDCHF USDJPY
1M 6M 1Y 2Y 1M 6M 1Y 2Y

fd -0.00348 0.03865 -0.00012 -0.00326 -0.00562 0.07759 -0.00093 0.006027
ff -0.00202 0.03668 0.002485 -0.00359 -0.00369 0.08343 -0.00367 -0.00623
ωd 1.86E-07 8.72E-07 1.19E-07 1.04E-07 8.85E-07 4.17E-06 2.89E-07 1.35E-07
βd 0.9951 0.9871 0.9963 0.9984 0.9835 0.9947 0.9994 0.9937
αd 2.10E-05 4.77E-05 -6.73E-05 5.71E-05 3.68E-05 3.29E-05 4.57E-05 1.25E-05
σd 1.84E-08 1.07E-07 1.72E-08 7.50E-09 9.07E-08 4.54E-07 2.97E-08 1.05E-08
ωf 1.87E-07 7.15E-07 9.35E-08 8.56E-08 8.12E-07 4.34E-06 3.65E-07 2.31E-07
βf 0.993 0.9891 0.9992 0.9994 0.9786 0.986 0.9981 0.9939
αf -2.25E-05 -6.57E-05 5.86E-05 -5.73E-05 -3.26E-05 -3.00E-05 -5.14E-05 3.71E-06
σf 2.07E-08 7.84E-08 1.65E-08 9.06E-09 8.47E-08 4.62E-07 3.43E-08 1.79E-08

Notes: To fit the market quotations of volatility surfaces, I assume there exist one
unobservable domestic factor and one foreign factor hidden in the drift dynamics. These
laten factors are calibrated under the MFJ-C setting. The estimated parameters’ mean
value for these factors are listed here.

factors do have certain correlation with the variance process h(t). Notice that

αd and αf tend to have opposite signs and similar magnitude, for example in

AUDUSD 1M αd is 3.18e-5 and αf is -3.05e-5. Notice that it is fd and −ff that
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Table 4.6: RMSE for HM model

σp(10) σp(25) ÃT σc(25) σc(10)

AUDUSD 1M 2.627 2.814 3.034 2.934 2.777
6M 2.056 2.590 3.370 3.615 3.362
1Y 2.060 2.016 3.044 3.457 3.140
2Y 2.615 1.704 2.778 3.332 3.050

EURUSD 1M 2.244 2.376 2.583 2.619 2.539
6M 2.132 2.475 2.896 2.884 2.563
1Y 1.842 2.227 2.773 2.877 2.513
2Y 1.591 1.926 2.471 2.550 2.175

GBPUSD 1M 3.182 2.926 2.741 2.191 1.993
6M 2.648 2.195 2.258 2.274 2.030
1Y 2.591 1.864 1.910 1.932 1.603
2Y 2.084 1.693 2.054 2.159 1.809

USDCAD 1M 1.337 1.375 1.329 1.217 1.214
6M 1.497 1.622 1.494 1.262 1.465
1Y 1.472 1.573 1.365 1.168 1.789
2Y 1.903 2.205 2.010 1.418 1.284

USDCHF 1M 2.879 2.953 2.910 2.553 2.192
6M 2.889 3.265 3.404 3.043 2.489
1Y 2.714 3.148 3.248 2.729 2.008
2Y 2.295 2.785 2.988 2.580 1.858

USDJPY 1M 2.438 2.427 2.438 2.070 1.912
6M 2.159 2.402 2.690 2.473 2.138
1Y 1.816 2.032 2.515 2.292 1.910
2Y 1.977 1.569 2.106 1.935 1.686

Notes: I list the RMSE for HM model compared the the market quotes in this table.

RMSE is calculated by

√∑
(HM−MKT )2

n , where n is the number of observations.

appear in the return process, thus the correlated shocks in both interest rates

merge into the return process.

The RMSE listed in Table 4.6, Table 4.7 and Table 4.8 show the performance

improvement of MFJ-C compared with HN model, that MFJ-C has RMSE being

about one third of the HN’s RMSE for all of the currency pairs and maturities

(take ÃT of GBPUSD 2Y as an example, HN is 2.054 and MFJ-C is 0.399). On

the other hand, MFJ-F has better performance for longer maturities compared
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Table 4.7: RMSE for MFJ-F

σp(10) σp(25) ÃT σc(25) σc(10)

AUDUSD 1M 2.780 2.993 3.235 3.146 2.995
6M 1.990 1.954 2.668 3.065 3.037
1Y 6.338 4.772 4.033 4.382 5.649
2Y 4.322 1.910 1.207 1.786 1.957

EURUSD 1M 2.245 2.376 2.584 2.619 2.539
6M 1.583 1.382 1.535 1.520 1.334
1Y 1.636 1.954 2.255 2.159 1.711
2Y 1.723 1.127 0.906 0.782 0.763

GBPUSD 1M 3.182 2.926 2.741 2.192 1.995
6M 2.390 1.882 1.755 1.635 1.375
1Y 3.104 2.026 1.660 1.591 1.377
2Y 1.814 1.690 1.872 1.710 1.222

USDCAD 1M 1.337 1.375 1.329 1.216 1.214
6M 1.363 1.325 1.138 1.171 1.675
1Y 1.546 1.407 1.130 1.389 2.307
2Y 1.316 1.390 1.176 1.240 2.098

USDCHF 1M 2.837 2.914 2.871 2.514 2.154
6M 2.403 2.584 2.625 2.281 1.984
1Y 1.611 1.524 1.678 1.573 1.561
2Y 1.545 1.277 1.360 1.278 1.382

USDJPY 1M 4.028 4.292 4.502 4.065 3.743
6M 1.802 1.709 2.072 2.151 2.072
1Y 2.020 1.226 1.470 1.521 1.548
2Y 3.352 1.634 1.205 1.415 2.284

Notes: I list the RMSE for MFJ-F model compared the the market quotes in this table.

RMSE is calculated by

√∑
(MFJ−MKT )2

n , where n is the number of observations.

with HN, which benefits from the adjustment of the time-step size (RMSE for

GBPUSD 2Y ÃT is 1.872). I should note that among these five FX option

quotes, ÃT is the most important indicator, since it determines the fundamental

volatility level, while the other four moneyness points are the relative volatilities

affecting the shape of the volatility smile at the out-of-the-money reign. Because

the deeply out-of-the-money part of the smile is harder to model and may contains

other information, the RMSE for σc/p(10) is higher than that for ÃT , for example
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Table 4.8: RMSE for MFJ-C

σp(10) σp(25) ÃT σc(25) σc(10)

AUDUSD 1M 1.153 0.544 0.723 2.376 2.511
6M 1.722 1.779 1.094 1.504 2.557
1Y 1.079 0.194 0.802 0.821 0.902
2Y 1.894 0.523 1.220 1.676 1.485

EURUSD 1M 1.714 1.800 0.997 1.259 1.998
6M 1.107 0.861 0.502 1.079 1.003
1Y 1.175 0.763 1.104 1.227 0.984
2Y 0.956 0.329 0.545 0.558 0.477

GBPUSD 1M 0.816 0.523 1.611 1.604 1.649
6M 1.148 0.604 0.527 1.008 0.889
1Y 0.412 0.593 0.962 1.082 0.890
2Y 1.219 0.222 0.399 0.390 0.304

USDCAD 1M 1.031 0.884 0.342 0.455 0.468
6M 1.124 1.093 0.501 0.413 0.701
1Y 0.996 0.951 0.663 0.630 1.482
2Y 1.006 1.168 0.968 0.474 0.647

USDCHF 1M 1.307 0.647 0.816 2.245 2.106
6M 0.796 0.555 0.319 0.506 0.977
1Y 1.083 1.215 1.429 1.236 1.008
2Y 0.878 0.938 1.222 1.112 0.932

USDJPY 1M 2.063 1.403 0.911 2.896 3.017
6M 1.742 1.771 0.747 1.500 1.737
1Y 1.193 0.924 1.461 1.417 1.312
2Y 0.602 0.273 0.434 0.167 1.108

Notes: I list the RMSE for MFJ-C model compared the the market quotes in this table.

RMSE is calculated by

√∑
(MFJ−MKT )2

n , where n is the number of observations.

the MFJ-C model for USDCAD 6M has σp(10) being 1.124 and ÃT being 0.501.

Compared with the ASV-C (average RMSE 0.867) in Chapter 3, the MFJ-C

(average RMSE 0.846) model has similar performance. These two model both use

the market option quotes to calibrate the parameters but emphasis on different

aspects. ASV-C focus on the adjustment of the variance process dynamic and

MFJ-C tries to find the hidden interest rate factors that affecting the return

dynamic. These observations confirm the argument that the violation of covered
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interest parity of the market contributes to the OTC FX option pricing.

4.6 Chapter conclusions

To sum up, in this chapter I specify a new discrete-time model for pricing over-

the-counter foreign exchange options with ACP jumps in the return process and

multiple stochastic interest factors for domestic and foreign interest rates. Re-

stricting the multi-factor dynamic yields an FX version of the classic Heston and

Nandi [2000] GARCH-type model plus an extra jump component in discrete-time.

The introduction of multiple interest rate factors help handle the dynamic in the

observed market yield data, and can be applied to extract the hidden factors from

the market FX option data. The jump component in the model can be estimated

non-parametrically from a filtered realised jump process.

I further test the various model specifications and compute the model implied

FX option quotes for six actively traded currency pairs over tenors from 1M up-to

2Y. To deal with the over-reverting property of the variance process, I propose

to adjust the time-step size according to the tenor of the option.

From the empirical test, I find that applying time-step adjustments help pre-

serve the model implied volatility time series dynamic, which improves the model

performance especially for longer tenor options. Then I assume there exist a

hidden factor in each of the domestic and foreign drifts, and calibrate the model

against market quoted volatility smile to recover the parameters describing these

latent factors. The model including these unobservable factors performs well

compared with its alternatives for all the option contracts. Theses factors have

strong persistence in dynamic and have certain correlation with the spot variance
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process. One obvious area to extend my approach is to further generalise the

model specification to allow more flexible state variables’ correlation structure

and more general jumps. Also it is worth to identify the factors and channels

explaining such hidden drift terms in future works.
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Chapter 5

Pricing Options with Pegged

Foreign Exchange Rates

5.1 The problem of pegged FX rates

The preceding chapters focus on cases when the currency is either in a free or

partially free float. That is there are no interventions in the currency market to

maintain the price of a specific currency relative to a benchmark such as the US

dollar. A large number of currencies are however pegged, either by a de-facto or

hard peg imposed by the central bank controlling that currency or a de-jour or

soft peg, where there are restrictions that amount to a peg and the central bank

intervenes to maintain a price band.

Pegged currency pairs account for the major proportion of this less traded

category. IMF [2016] reports that by 2016, countries with soft pegs are still

the single largest exchange rate arrangement category accounting for 39.6% of

all members, compared with 37% members belonging to floating arrangement
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category. Ilzetzki et al. [2017] also provide a comprehensive study of the exchange

arrangements for 194 countries showing similar statistic.

Currently FX option market for pegged currency pairs barely exist. It is rea-

sonable under normal market condition, considering that the FX rate of such

type at expiry is expected to remain the same value with great confidence. Thus

there is little demand to trade options on this currency pair. However under some

extreme condition such as asset price shocks, or productivity shocks mentioned

in Nakatani [2017] for instance, the country authority may abandon the existing

pegged currency regime and switch to other exchange rate arrangements, or the

currency may be traded with a premium because of liquidity or trading friction

issue. Goldberg [2017] provides a literature review on the de-peg event predic-

tion, Guimaraes [2008], Codogno and de Grauwe [2015] and Li [2017] discuss

the criteria and probability of certain authorities changing their exchange rate

arrangements. From this point, even though there are literature providing risk

management techniques such as Lustig and Verdelhan [2007], Reus and Mulvey

[2016] and López-Suárez and Razo-Garcia [2017], it is still a big research gap

to develop option pricing approaches to hedge the future realignment risk and

trading friction risk of these currencies.

Application of econometric models to historical spot prices for pegged cur-

rencies is inappropriate. Hence an alternative strategy is needed that collects

available information from market prices of various traded contracts to extract

the probability structure for any currency realignment through peg breaks or

changes in banding limits.

In this chapter, I fill this gap by designing a simple but effective option pricing

model under the affine-jump-diffusion (AJD) model family to model a synthetic
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spot FX rate, and proposing a corresponding parameter estimation approach

given the absence of option market. Using some simple limits to arbitrage re-

strictions I then derive the closed form solution for a European options contract

on the pegged currency pairs. In the empirical part, I test the proposed approach

on four classic pegged currency pairs using simulation analysis and calculate their

volatility surfaces based on the estimated parameters. Results show the new ap-

proach can capture the uncertainty information and provide reasonable option

price quotes.

In the work of Lin et al. [2015], a regime switching model with jump shocks

is proposed to price foreign exchange option. However this model has constant

volatility and fixed parameters estimated from the historical spot FX rate, which

is not consistent with the heteroskedasticity character of FX rates and is not

suitable for pegged currency pairs. My idea is inspired by Yu [2007], who argues

that for a controlled currency, the forward FX rate no longer align with the

normal theoretical risk neutral expectation, and uses a stochastic intensity jump

model to predict the probability of Chinese yuan’s (CNY) realignment, or de-peg

event. Yu [2007] documents the mismatch between the Chinese non-deliverable

forward rate and covered interest parity implied rate before CNY de-peg with

USD, and modelled this phenomenon with a pure jump process with a stochastic

up/down jump intensity that follows a Levy process. Yu [2007] shows that the

model implied policy realignment distribution responds quickly to the news on

the China-US trade.

Forward transaction is available for most of the currencies. Evidences of the

forward prices violating interest parity are documented by Hansen and Hodrick

[1980], and then studies in detail as forward premium puzzle by Fama [1984],
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Bansal [1997], Londono and Zhou [2017] and especially Du et al. [2018], where

they provide evidence that all G10 currencies systematically violate covered in-

terest parity after the financial crisis. I make similar argument that for these

managed currencies, the existence of trading friction and de-peg risk leads to a

market with arbitrage opportunity and implies a synthetic spot FX rate align

with the market forward price. And since the model is based on the information

of forward market, it naturally contains market’s outlook of the future, which

surpasses the models that use parameter estimated on historical price informa-

tion.

AJD type models, including the affine-diffusion models (AD), have been pop-

ular and effective for asset pricing since the short rate models of Vasicek [1977]

and Cox et al. [1985], and later on the applications in option pricing such as

Heston [1993]. Garman and Kohlhagen [1983] specify the model and risk neutral

measure to FX option pricing. Hagan et al. [2002]’s SABR model extends the

idea to be more suitable for building implied volatility surface. In Duffie et al.

[2000]’s work, the general closed-form solution of AJD for option pricing is given,

and Pan [2002] applies that to a double jump model and studies the jump-risk

premium implicit in S&P 500 index. Da Fonseca et al. [2007] also propose a

multi-asset based option pricing model with stochastic correlation.

Estimation of the AJD model parameters is problematic as there are a number

of latent, unobserved processes that require parameterisation. This problem is

not new and has drawn considerable attention in the extent literature. Given the

observable state variables, Yu [2007], Ait-Sahalia et al. [2008], Li et al. [2013] and

Li and Chen [2016] derive closed-form (or approximation) likelihood function for

AJD model and used maximum likelihood estimation (MLE) or quasi maximum
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likelihood estimation to estimate the parameters. Conley et al. [1995], Duffie and

Glynn [2004] and Carrasco et al. [2007] propose generalised method of moments

type methods. Characteristic function based estimation can be found in Single-

ton [2001], Jiang and Knight [2002], Da Fonseca et al. [2014] and Carrasco and

Kotchoni [2017]. Beside the parametric estimations above, there are also non-

parametric estimation techniques suggested by Bandi and Phillips [2003], Zhao

and Wu [2009], Bull et al. [2016] and Gourieroux et al. [2017]. There are also

more general Levy process estimation techniques such as Jacod et al. [2018], but

I will not extend to that in this chapter.

The estimation for process with latent or unobservable state variables, such

as the volatility in the stochastic volatility models, is studied in Pan [2002],

Aı̈t-Sahalia et al. [2015] and Andersen et al. [2015]. These methods require sup-

plementary information such as derivatives prices. Then the derivatives prices

can be converted into information equivalent to unobservable state variables and

then techniques above for observable state variables can be used. Other ap-

proaches includes simulation of likelihood, efficient method of moments, indirect

inference, Markov Chain Monte Carlo or Bayesian estimation, which can be found

in Brandt and Santa-Clara [2002], Gallant and Tauchen [1996], Gourieroux and

Monfort [1993], Elerian et al. [2001], Andersen et al. [2002], Särkkä et al. [2015],

Hurn et al. [2013] and Creel and Kristensen [2015].

By studying the characters of the pegged currencies, I argue that market

quoted forward FX rates for the pegged currencies reflect not only the normal

risk neutral expectation of the observed pegged spot FX rate, but also market

participants’ bets1 on the currency regime rearrangement and trading friction

1Such as the betting information in Hanke et al. [2018].
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situation in the future. The difference between market quoted forward and theo-

retical forward is systematically existing and informative of uncertainty outlook,

at least in the four currency pairs selected in this chapter. And this leads to a

synthetic spot FX rate different from the observed pegged FX rate and gives rise

to the adjusted risk neutral measure Q as proposed in this chapter. I then price

the option based on the dynamic of the synthetic spot rate. I also follow the FX

option market convention to quote the option in terms of volatility surface.

This chapter is organised as follows. Section 5.2 introduces the synthetic spot

FX rate and spot rate bias process. Section 5.3 provides parameter estimation

using approximate likelihood based on the segments of the forward information.

Section 5.4 describes the data used for empirical study. Then I estimate param-

eters and simulate forward FX rate based on the proposed model. I present the

option pricing model in Section 5.5 and calculate the volatility surfaces following

the FX option market convention. Section 5.7 concludes the this chapter.

5.2 The synthetic spot FX rate model

Assuming the filtered probability space (Ω,F, (Ft)t>0,P) satisfies the usual condi-

tions (i.e. Protter [2004]), I denote the pegged FX rate as St, domestic and foreign

interest rates as rt and qt respectively. I will make the following assumption on

the pegged spot FX rate which helps us focus on the trading and realignment

uncertainties in later derivations.

Assumption 11. Trading and realignment uncertainties are the only sources of

pegged currency pairs’ spot FX rate risks. Without these two types of uncertainty,

the pegged FX rate is then believed to follow a risk neutral process before the future
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time T . Then any domestic investor holding one unit of foreign currency in the

money account should expect the future exchange rate to follow:

Ste
∫ T
t rτ−qτdτ .

This assumption is essentially an analogue to the CIP condition. Therefore

the typical theoretical forward FX rate Ft,T expiring at T is simply given by

Ft,T = E(ST ) = Ste
∫ T
t rτ−qτdτ ,

which demonstrate the fair expected exchange rate for an risk neutral investor

holding one unit of foreign currency in the money account, given the risk-free

domestic and foreign interest rate. It also shows that the forward FX rate is a

function that contains only pegged spot FX rate at current level and interest rate

dynamics in order to avoid arbitrage. What is more, the pegged currency pair

will remain at its spot FX rate for sure if no other uncertainty is presented.

However, uncertainties do exist in terms of the likelihood of a peg break and

these uncertainties can significantly affect the outlook for a pegged currency pair

and by extension this uncertainty will be reflected in the forward FX rate. I

will then make an interpretation of the forward FX rate similar to Yu [2007]

that when the currency is under control, the market quoted forward FX rate F̄t,T

does not fully follow its theoretical counterpart Ft,T , especially for hard pegged

currency pair. Yu [2007] shows an example that the forward FX rate’s market

value of a controlled currency pair, USDCNY, did not agree with its theoretical

value before Chinese yuan de-peg with dollar and the difference between these
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two forward rates reflects the expectation of the future realignment risk.

This property of forward FX rate of pegged currency pairs implies that the

market forward FX rate, F̄t,T , contains both information on the parity adjust-

ment and market’s views of the currency regime uncertainty. In addition to the

currency regime switch risk, pegged currency rates may also be affected by the

currency supply and thus has liquidity uncertainty. This type of uncertainty with

other trading frictions that might happen in the future should also be priced-in

the market forward rate.

Based on these facts that the forward FX rate for pegged currency pairs

are more informative than spot rate by including the trading and realignment

uncertainty, I will make the following assumption:

Assumption 12. The market quoted forward FX rate of a controlled currency

pair is constructed by the theoretical expectation, trading uncertainty and realign-

ment uncertainty:

ln F̄t,T = lnFt,T +

∫ T

t

−1

2
Vτdτ +

∫ T

t

√
VτdW

s
τ + Jt, (5.1)

where Ft,T is the theoretical forward FX rate, i.e.

Ft,T = E(ST ) = Ste
∫ T
t rτ−qτdτ . (5.2)

Stochastic variance Vt and short rates for domestic and foreign interest rates, rr
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and qt, follow Cox-Ingersoll-Ross (CIR) process,

dVt =κV (V̄ − Vt)dt+ σV
√
VtdW

V
t , (5.3)

drt =κr(r̄ − rt)dt+ σr
√
rtdW

r
t , (5.4)

dqt =κq(q̄ − qt)dt+ σq
√
rtdW

q
t . (5.5)

Each element of the Brownian motions W = (W s,W V ,W r,W q)> are indepen-

dent and identical distributed. The jump process Jt is also independent:

Jt =
Nt∑
i=0

Ui, (5.6)

where Nt is the counting process with intensity λ and Ui is the independent stan-

dard normal distributed jump size Ui ∼iid N(µJ , σJ), where constants µJ and σJ

are the mean and variance of the jump size, respectively.

Notice that in Eq. (5.1), I keep the quadratic term,
∫ T
t
−1

2
Vτdτ , to compensate

the Brownian motion term. Thus the discounted forward rate E[
F̄t′,T exp(

∫ t′
t qτdτ)

exp(
∫ t′
t rτdτ)

], t′ ∈

[t, T ] is a martingale if we do not consider jumps, i.e. Jt′ = 0,∀t′ ∈ [t, T ]. This

setting is made under the belief that the trading uncertainty even though exist

and drive the forward rate away from the theoretical value, this kind of uncer-

tainty does not systematically drive the process to a certain direction. On the

other hand, the jump process does not have a compensator, thus it will affect the

expectation of forward rate with a clear direction. This setting fits the fact that

the market normally bet the exchange rate jumping to one of the directions.

Take the market forward rate dynamics above as the foundation, I then infer

a potential spot FX rate. In another word, I propose that at a spot time t the
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market quoted forward FX rate maturing at T implies a synthetic spot FX

rate, denoted as S∗t|t,T . This synthetic rate is different from the pegged spot FX

rate because it is not observable from the market and it contains the uncertainty

anticipation information. I define S∗t|t,T as the discounted market quoted forward

FX rate:

S∗t|t,T = F̄t,T e
∫ T
t (−rτ+qτ )dτ , (5.7)

where t|t, T means the synthetic spot FX rate at time t implied by a forward

contract at time t and expiring at T .

Now comparing the synthetic spot FX rate, S∗t|t,T , and the pegged rate, St =

Ft,T exp(
∫ T
t

(−rτ + qτ )dτ) (from Eq. (5.2)), I denote the difference between their

logarithm value as spot rate bias, which is

Dt,T = lnS∗t|t,T − lnSt = ln F̄t,T − lnFt,T

=

∫ T

t

−1

2
Vτdτ +

∫ T

t

√
VτdW

s
τ + Jt. (5.8)

Under these definition and assumption, the spot rate bias between the two

logarithm spot FX rates is generated by a Levy process including a Brownian

motion with stochastic volatility and a jump process with constant jump inten-

sity and normal distributed jump size. To sum up, I use the Brownian motion

to represent the trading frictions that diverge theoretical and market forward

rates with no preferred direction, and use the non-compensated Poisson process

to represent the realignment risk with a expected jump direction. These two

components will actually have different roles in the spot rate bias term structure,

which I will demonstrate in the following section.
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5.3 Short/long-term separated parameter esti-

mation

As mentioned in the introduction, the model process proposed in Section 5.2

could have been easily estimated by methods from various approaches if additional

option data is given. However, the tricky part of parameter estimation for pegged

currency pairs is that no, or very limited, option data can be observed.

By studying the character of the forward contracts of these currency pairs,

I hereby make an novel argument that for pegged FX rates, short term forward

contracts contain different information of uncertainty from the long term for-

ward contracts. More specifically, spot rate bias implied by short term, shorter

than 1M, forward time series reflects the trading uncertainty, and spot rate bias

implied by long term, over 6M, forward term structure hints the realignment un-

certainty. Then these two segmented parts on the bias term structure can be

used to estimated different set of parameters of the proposed model.

5.3.1 The implied short-term FX bias process

For most of the pegged FX rates, there is very small probability to observe a

de-peg event within a short period for most of the time. Thus spot rate bias

from short-term maturity forward rate mainly reflects the fluctuation of trading

friction, which means we can separate jump process from the model when focusing

only on the short-term forward rates. So I firstly emphasis on the spot rate bias

process, denoted as D0,d, which spans from spot (time zero) to a specific short
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maturity date d→ 0:

D0,d =

∫ d

0

−1

2
Vτdτ +

∫ d

0

√
VτdW

s
τ + Jd (5.9)

I will summarise the preceding arguments in the following assumption:

Assumption 13. As the maturity date being close to spot date, i.e. d→ 0, the

probability of observing a jump event is small (Nd
d→0
= 0, Jd

d→0
= 0), especially for

the pegged currency pairs cases we are interested in, then the spot rate bias can

be restricted to a Brownian motion as:

D0,d
d→0
=

∫ d

0

−1

2
Vτdτ +

∫ d

0

√
VτdW

s
τ . (5.10)

The simplified spot rate bias can be further modified. Since the variance pro-

cess Eq. (5.3) follows a standard CIP process, it has mean reverting property even

with the shock W V
t . Given such reversion trend and neglect the concave/convex

property and random shocks as d→ 0, I will approximate the stochastic variance

Vt using its middle state constant value Vd/2. This brings the next assumption:

Assumption 14. As d→ 0, the change in the CIR type variance process within

a short-term period is of smaller order relative to its middle state at d/2 and thus

I use a fixed representative state Vd/2 to approximate the true stochastic Vt for

D0,d before the maturity date d. The the approximate short-term spot rate bias

is:

D̃d
d→0≡

∫ d

0

−1

2
Vτdτ +

∫ d

0

√
VτdW

s
τ ≈ −

d

2
Vd/2 +

√
Vd/2W

s
d . (5.11)
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With the assumptions above, we can now calculate the approximate distribu-

tion of the spot rate bias with a certain parameter vector, (κV , V̄ , σV )′ and initial

variance V0. For the variance process at time d/2, Vd/2 is a Cox-Ingersoll-Ross

process thus the transition probability density function (p.d.f) fVd/2 is

fVd/2(Vd/2;V0, κV , V̄ , σV ) = ce−u−ω(
ω

u
)q/2Iq(2

√
uω), (5.12)

where

c =
2κV

(1− e−κV d/2)σ2
V

,

q =
2κV V̄

σ2
V

− 1,

u =cV0 exp(−κV d/2),

ω =cVd/2,

and Iq(2
√
uω) is modified Bessel function of the first kind of order q. A useful

transform 2cVd/2 will follow non-central χ2 distribution, with 2q + 2 degrees of

freedom and non-centrality parameter 2u.

Then
√

2cVd/2 follows the non-central χ distribution. And the distribution of

vd/2 =
√
Vd/2 can be calculated applying transformation of density function:

fvd/2(vd/2) =f√2cVd/2
(
√

2cVd/2)
d
√

2cVd/2

dvd/2

=
√

2cχ(
√

2cvd/2; 2q + 2,
√

2u)

=2
√
cue−u−cv

2
d/2(

√
cvd/2√
u

)q+1Iq(2
√
cuvd/2) (5.13)
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I also denote the probability density function of the Wiener process at d as

fWd
≡ fW (Wd;W0 = 0) = N(0, d) (5.14)

When the variance process is independent with the W s
t of the spot rate bias

process, using change of variable transformation, we can have the probability

density function of D̃d

fD̃d(D̃d) =

∫ ∞
0+

fvd/2(vd/2)fD̃d(D̃d|vd/2)dvd/2

=

∫ ∞
0+

fvd/2(vd/2)fWd
(
D̃d + d

2
v2
d/2

vd/2
)

∣∣∣∣∣∂(D̃d + d
2
v2
d/2)/vd/2

∂D̃d

∣∣∣∣∣ dvd/2
=

∫ ∞
0+

fvd/2(vd/2)fWd
(
D̃d + d

2
v2
d/2

vd/2
)

1

vd/2
dvd/2. (5.15)

Substitute the probability density functions Eq. (5.13) and Eq. (5.14) into Eq. (5.15),

we will have the probability density function for the short-term approximate spot

rate bias as in the following proposition.

Proposition 3. When the bias shock W s
t and the variance process are indepen-

dent, the probability density function of the short-term spot rate bias is (omitting

the parameters in notations for short):

fD̃d(D̃d = −d
2
Vd/2 +

√
Vd/2W

s
d )

=

∫ ∞
0+

fvd/2(vd/2)fWd
(
D̃d + d

2
v2
d/2

vd/2
)

1

vd/2
dvd/2

=

∫ ∞
0+

√
2cu

πv2
d/2d

e
−u−cv2

d/2
−

(D̃d+
d
2 v

2
d/2

)2

2v2
d/2

d

(
cv2
d/2

u

) q+1
2

Iq(2
√
cuv2

d/2)dvd/2. (5.16)
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This p.d.f can be calculated numerically, and then the logarithm likelihood

function lnLshort(κV , V̄ , σV , V0|D̃d) can also be calculated. Therefore the trading

uncertainty parameters, κV , V̄ and σV , can be estimated using maximum likeli-

hood estimation (MLE) on the historical short-term spot rate bias of a collection

of points on the time series with the same tenor d,

(V̂0, κ̂V ,
̂̄V , σ̂V )′ = arg max

κ∗V ,V̄
∗,σ∗V ,V

∗
0

n∑
i=1

lnLshort(κV , V̄ , σV , V0|D̃d,i),

where the subscript i ∈ [1, n] indicates the sample points on the time series of

spot rate bias with the specified short-term maturity d.

5.3.2 The implied long-term FX bias process

Unlike in the short-term assumption where spot rate bias mainly contains trading

uncertainty and jump events are neglected because of small possibility, I assume

that the outlook of jump events, the realignment uncertainty such as de-peg

changes, dominate the spot rate bias term structure implied by long-term forward

rates at a given time, and the premium the bias caused by the trading uncertainty

is expected to be irrelevant for large tenors. Based on these, I form the following

assumption for long-term spot rate bias:

Assumption 15. For an increasing series of long-term tenors, denoted as d =

[d1, d2, ..., dn] and di > dj if i > j, the long-term term structure of spot rate

bias at a specific time t is dominated by the jump process Jd to reflect market’s

expectation of de-peg events, while the continuous part of the process representing
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trading friction is expected to be neglected, that is

D̂dm ≡
Ndm∑
i=1

Ui, (5.17)

where dm ∈ d.

Under this assumption, D̂dm is a non-compensated compound Poisson process.

Since jump size and the counting process are independently distributed, the joint

probability density of D̂d,m is

fD̂dm (Jdm = D̂dm) =
∞∑
n=1

fJ(

Ndm∑
i=1

Ui = D̂dm|Ndm = n)fNt(Ndm = n), (5.18)

where fJ(·) is the probability density of the aggregate size of Ndm jumps with

normal distributed jump sizes, and fNt(·) is the Poisson density function with

intensity λ. I should note that when jump times n = 0, the compound Poisson

process Jdm = 0 since no jump is observed, and thus the conditional jump size

distribution becomes a degenerate distribution with in this function. Also it is

almost impossible to observe Jdm being exactly zero in the real world, I will skip

the distribution point mass at D̂dm = 0.

With Eq. (5.18), we can now substitute the p.d.f of Poisson distribution can

get the following proposition.

Proposition 4. Under the assumption of long-term term structure at a given

time point t, the probability density of the spot rate bias with tenor dm ∈ d is
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given by

fD̂dm (Jdm = D̂dm) =
∞∑
n=1

fJ(
n∑
i=1

Ui|Ndm = n)
(λdm)ne−λdm

n!

=
∞∑
n=1

N(nµJ , nσ
2
J)

(λdm)ne−λdm

n!

=
∞∑
n=1

(λdm)ne
−λdm−

(D̂dm
−nµJ )2

2nσ2
J

n!
√

2πnσ2
J

(5.19)

This also need to be calculated numerically. Now the logarithm likelihood,

lnLlong(µJ , σJ , λ|D̂dm), for each long-term tenor on the spot rate bias term struc-

ture dm ∈ d can be computed and used to estimate the realignment uncertainty

parameters,

(µ̂J , σ̂J , λ̂)′ = arg max
µJ ,σJ ,λ

n∑
m=1

lnLlong(µJ , σJ , λ|D̂dm) (5.20)

5.4 Market observations and simulations

Before going to price any option, I hereby estimate the model on selected market

data to test the model performance in this section. Firstly I will introduce the

currency data used in this chapter.

5.4.1 Synthetic spot FX rates

For the empirical application of my model, I select four representative currencies,

Danish krone (DKK), Saudi riyal (SAR), Qatar riyal (QAR) and Nigerian naira

(NGN). Except DKK, which is pegged with euro (EUR) within the framework

of European Exchange Rate Mechanism (ERM II), the other three currencies
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are pegged to US dollar (USD). DKK and the two Gulf Cooperation Council

(GCC) currencies SAR and QAR are under the conventional peg category and

NGN is under the stabilised arrangement according to IMF [2016]. EURDKK

has been a relatively stable peg with no sudden changes in the FX rate. On the

contrary, USDNGN had a major de-peg event in 2016 and jumped from one peg

rate to a much higher peg level. USDQAR and USDSAR are hard pegs and has

similar economic situations. But USDQAR experienced a FX rate fluctuation in

2016. These characters makes the four currency pairs have unique characters and

suitable for the study in this chapter.

I collect the tick-by-tick spot FX rates, forward FX rates and their corre-

sponding domestic and foreign interest rates with various maturities of the four

pegged currency pairs from Thomson Reuters Tick History database and pick the

end of day value from the time series. By market convention, EUR and USD are

the foreign currencies in the targeting currency pairs.

Note that USDNGN also have a non-deliverable forward (NDF) market. Sub-

jecting to the currency restriction, NDF contracts of USDNGN provides more

information of this currency’s outlook. Thus I will separate the NDF outright

data and normal forward outright data. To be more specific, in the Thomson

Reuters Tick History database, normal forward and NDF have different identity

tickers, such as ”NGN1MV=” and ”NGN1MNDFOR=” for USDNGN.

The starting dates of my dataset for EURDKK, USDSAR, USDQAR, USD-

NGN are July 16th, 2013, June 24th, 2014, September 28th, 2014 and September

28th, 2014, respectively. The ending point for all my datasets is February 23rd,

2018. I summarise the details of the data in Table 5.1. Panel A of the table

shows the number of maturities and the shortest and longest tenors for each mar-
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Figure 5.1: Market spot FX rates compared with synthetic spot FX rate implied by
forward prices with different maturities
In these plots, I show the synthetic spot FX rates implied by forward prices with
1M (dash line), 1Y (dot line) and 3Y (dash-dotted line) tenors, compared with the
market spot FX rates (solid line), for the four currency pairs. We can observe that the
difference between any synthetic rate and corresponding market rate increases as the
maturity grows. The biases exist and being consistent among all the selected currency
pairs within the data periods.

ket forward FX rate and interest rate term structure. For the interest rates, I use

the deposit rates for each currency, and I use the forward FX outright instead of

base points for each forward FX rate to avoid the transformation process . Panel

B provides a descriptive statistics for the spot FX rate and forward FX rate time

series for selective maturities.

To demonstrate the synthetic spot FX rate and the spot rate bias, I plot

Fig. 5.1 and highlight the synthetic spot implied by NDF in Fig. 5.2. Each
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Table 5.1: Data summary

Panel A: Number of maturities of domestic and foreign interest rates and market forward FX rates

Tenor No. Min Max Tenor No. Min Max

EURDKK rd 23 SW 10Y USDQAR rd 9 SW 10Y
rf 21 SW 10Y rf 24 SW 10Y
F̄ 25 SW 10Y F̄ 20 SW 5Y

USDSAR rd 18 SW 7Y USDNGN rd 8 SW 1Y
rf 24 SW 10Y rf 24 SW 10Y
F̄ 17 SW 5Y F̄ 12 SW 5Y

NDF 6 1M 1Y

Panel B: Descriptive statistics for spot FX rates and forward FX rates time series
(selective maturities)

Obs. Mean Std. dev. Min Max Skewness Kurtosis
EURDKK Spot 1162 7.4503 0.0108 7.4328 7.4746 0.0271 1.4581

SW 1162 7.4500 0.0106 7.4328 7.4735 0.0149 1.4463
1M 1162 7.4489 0.0101 7.4319 7.4696 -0.0116 1.4403
6M 1162 7.4423 0.0101 7.3815 7.4622 -0.9827 6.5219
1Y 1162 7.4367 0.0120 7.3586 7.4613 -1.7026 10.5567
3Y 1162 7.4374 0.0218 7.3062 7.4864 -1.2929 7.7037

USDSAR Spot 925 3.7507 0.0012 3.7475 3.7605 3.5677 22.2399
SW 925 3.7510 0.0012 3.7478 3.7603 3.0150 17.5033
1M 925 3.7519 0.0020 3.7478 3.7622 1.6625 6.2326
6M 925 3.7587 0.0087 3.7476 3.8018 1.4399 5.6065
1Y 925 3.7733 0.0196 3.7507 3.8511 1.0164 3.7338
3Y 925 3.8502 0.0711 3.7505 4.0762 0.6899 2.6342

USDQAR Spot 858 3.6508 0.0329 3.6384 3.8635 4.3500 23.2935
SW 858 3.6512 0.0329 3.6386 3.8635 4.3454 23.2584
1M 858 3.6526 0.0327 3.6392 3.8634 4.3239 23.0934
6M 858 3.6606 0.0332 3.6402 3.8660 3.9182 19.9144
1Y 858 3.6717 0.0363 3.6435 3.8717 3.1390 14.2197
3Y 858 3.7105 0.0440 3.6537 3.9124 1.6872 7.5679

USDNGN Spot 858 250.3745 57.7367 163.6150 366.3000 0.0391 1.2127
SW 858 250.9289 57.9516 163.8250 367.0500 0.0398 1.2120
1M 858 253.0309 58.6372 164.6250 372.3954 0.0430 1.2084
6M 858 267.3803 63.5221 170.5600 405.2696 0.0527 1.2273
1Y 858 287.3378 70.9601 179.1650 447.2658 0.1038 1.3040

1M–NDF 858 265.4417 64.4165 164.5100 354.5000 -0.0398 1.1491
6M–NDF 858 296.4558 69.3979 170.4800 408.4250 -0.0869 1.4106
1Y–NDF 858 323.0643 76.3641 178.3250 448.5000 -0.0909 1.5299

Notes: The data used in this chapter is summarized in this table. I collect deposit rate
with maturity from SW up to 10Y. Foreign rates (EUR, USD) of the four currency
pairs have more points on the yield curve than the domestic rates. For each currency
pair, I intersect the cross-section data to have the same time-stamp. From Panel B we
can see that the spot rate of USDNGN, which experienced a de-peg event within the
data period, has large standard deviation (50%+) compared with others (<4%).
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Figure 5.2: NGNUSD market spot FX rate compared with synthetic spot FX rate
implied by NDF with different maturities
This figure shows the difference between NGNUSD market spot rate and NDF implied
synthetic spot FX rate. Since for NGNUSD, NDF is a more actively traded asset, it
reflect more information about market’s outlook than normal forwards, thus the biases
are more obvious in this plot than the one in Fig. 5.1.

panel of the first figure represents one of the four selected currency pairs. The

solid lines are the market spot FX rates. The spot FX rate of EURDKK and

USDSAR are generally bounded with in a small range, while USDQAR had a

major fluctuation after May 2017. After the peak in November 2017, which is

about 5.8% higher than its average rate, the spot rate dropped back to the normal

peg level. USDNGN acts differently from the others that it firstly increased to its

first peg level in March 2015 and stayed around 199 naira per dollar until June
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17th, 2016. Then it de-pegged and jumped to a new peg level on June 20th, 2016

with more volatility around 304 naira per dollar. The dash lines in the figures are

the synthetic spot FX rates calculated using Eq. (5.7) based on forward FX rates

with tenors ranging from 1M to 3Y (or 1Y for USDNGN because of the deposit

rate data limitation). It is clearly observed that as the maturity increases, the

spot rate bias from Eq. (5.8) becomes more significant.

Note that for USDNGN, NDF is more actively traded than standard forward

rate, therefore NDF is a better indicator of the market’s opinion. Different from

the last plot in Fig. 5.1, Fig. 5.2 shows that the synthetic spot rates rocketed

much earlier than the de-peg event, showing that the de-peg jump in June 2017

was anticipated by the NDF. This evidence can be used for carry trade strate-

gies and can reflect market participants’ outlook of the trading and realignment

uncertainties.

5.4.2 Estimation procedure

In this section, I apply the proposed approximate likelihood estimation approach

as described in Section 5.2 to estimate the bias process parameters. To be more

specific, I choose SW forward contracts for the short term trading uncertainty

estimation, and use the first 600 days in the time series of each currency pair as

their estimation window.

The estimated trading uncertainty parameters are listed in Panel A of Ta-

ble 5.2. From the parameters we can see that all of these currency pairs have rel-

ative smaller long term unconditional mean of volatilities, v̄, than what normally

observed from other equity assets, such as in Pan [2002]. Based on the normal
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Table 5.2: Estimated parameters

Panel A: Trading uncertainty parameters based on 600 days’ SW forward implied spot rate bias

κv v̄ σv v0 κv v̄ σv v0

EURDKK 0.018 4.344e-4 0.004 1.490e-8 USDQAR 0.045 0.001 0.009 1.490e-8
USDSAR 0.058 9.532e-4 0.011 9.443e-8 USDNGN 0.836 0.003 0.022 0.002

Panel B: Realignment uncertainty parameters based on 6M–5Y forward implied spot rate biass
on 23 February 2018

λ µJ σJ λ µJ σJ

EURDKK 0.895 -4.965e-4 6.813e-4 USDQAR 1.504 0.003 9.622e-4
USDSAR 1.983 0.003 8.756e-4 USDNGN 9.912 -0.006 7.369e-4

USDNGN–NDF 1.852 0.083 0.005

Panel C: Interest rate term structure parameters based on CIR model on 23 February 2018

κr r̄ σr r0 κr r̄ σr r0

DKK 16.034 1.599e-4 0.004 8.648e-7 QAR 14.833 5.754e-4 0.494 0.027
SAR 0.080 0.135 0.338 0.021 NGN 2.704 0.068 0.256 0.107
USD 10.186 0.001 0.499 0.021 EUR 13.434 1.981e-4 0.005 1.079e-6

Notes: This table documents selected estimated parameters of the model for different
currency pairs. I use the likelihood based estimation in Section 5.3 to estimated the
parameters for trading and realignment (just for February 23rd, 2018 here) uncertain-
ties, as listed in panel A and panel B, respectively. In panel C, I pick one day’s interest
term structure and estimate the parameters for the CIR processes. Summary of the
parameters for all the term structures in the data period is presented in Table 5.3.

forward outright data, USDNGN has the largest v̄, which is only 0.003. The

mean reversion speed parameters, κv, are generally small indicating the volatility

process for the trading uncertainty are more vulnerable to the disturbances, ex-

cept for USDNGN being 0.836. USDNGN spot FX rate changes more sharply in

direction and bigger in magnitude compared with the other three because of the

bigger κv and v̄. The volatility of volatility parameters, σv being less than 0.022,

and short volatility, v0 being less than 0.002, also reflect that trading uncertainty

of the pegged currency pairs has effects on the spot FX rate, but the effects are

less significant than the natural fluctuation of free floating currencies. The pa-

rameters overall indicate that EURDKK has less trading friction or liquidity issue
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than the other currency pairs. Since the NDF data for USDNGN starts from 1M,

I do not estimate the trading uncertainty based on NDF.

Then to estimate the realignment uncertainty parameters for each day in

the rest days in the data, I calculate every day’s spot rate bias term structure

implied by forward contracts with maturities from 6M up to 5Y (for USDNGN

the estimation is based on 1M–1Y forward implied spot rate bias because of

the limitation of the interest rate data). I use cubic polynomial to interpolate

this term structure on a 300-points uniformly distributed grid with the same

maturity range. The interpolation stabilises the likelihood level and provides a

natural weighting for different maturities, thus bias implied by longer maturity

forward FX rates has more influences on the likelihood.

Panel B of Table 5.2 lists the long term uncertainty estimation for the realign-

ment parameters on February 23rd, 2018, the last day of my sample data, as an

example. The parameters estimated for February 23rd, 2018 shows that USD-

NGN has the largest realignment uncertainty, with the biggest jump intensity, λ,

being 9.912, while DKK has the lowest jump intensity 0.895. And the mean size of

jumps of DKK, µJ , is just -4.965e-4 showing there is no clear jump direction. The

two GCC currencies has similar µJ around 0.003, showing the market expecting

similar jump direction and jump size for these two currencies, while USDNGN is

expected to jump to an opposite direction with µJ being -0.006. Notice that NDF

of USDNGN behaves differently compared with its normal forward counterpart.

NDF implies larger jumps in size (0.083) and lower frequency (1.852), which is

in-line with the figures before that the NDF implied spot bias is more consistent

and large.

I use the standard CIR model to fit the interest rate term structure of each day.
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Table 5.3: Descriptive statistics for realignment uncertainty parameters

Obs. Mean Std. dev. Min Max Skewness Kurtosis
EURDKK

λ 1162 0.8622 0.0448 0.7344 1.1101 0.2109 3.2182
µJ 1162 0.0019 0.0010 -0.0007 0.0044 -0.1674 2.3361
σJ 1162 0.0022 0.0007 0.0006 0.0052 0.3152 4.3235

USDSAR
λ 925 1.9217 0.3046 0.5522 2.7693 -0.2644 4.3316
µJ 925 0.0023 0.0013 -0.0019 0.0118 1.3389 9.3130
σJ 925 0.0014 0.0008 0.0001 0.0069 1.7597 9.1822

USDQAR
λ 858 1.6827 0.1636 0.7646 2.2811 -0.2883 6.3201
µJ 858 0.0027 0.0009 0.0001 0.0054 -0.7073 3.6566
σJ 858 0.0019 0.0010 0.0003 0.0056 0.3199 2.2199

USDNGN
λ 858 5.8151 2.8974 1.3333 12.9496 0.1136 2.1375
µJ 858 0.0024 0.0131 -0.0691 0.1401 3.2959 40.7038
σJ 858 0.0023 0.0031 0.0000 0.0172 2.3289 8.7562

USDNGN–NDF
λ 858 6.6678 4.3132 1.6000 14.9033 0.2359 1.4997
µJ 858 0.0488 0.0587 -0.1024 0.4647 2.6435 13.8117
σJ 858 0.0057 0.0066 0.0001 0.0495 3.0895 15.7439

Notes: Different from panel B in Table 5.2, this table summarise the descriptive statis-
tics for the realignment uncertainty parameters of all the dates outside of the short-term
estimation window. Overall the NDF implied USDNGN has the most significant jump
process with the largest intensity and mean jump size. And EURDKK on the other
hand has the smallest jump intensity and jump size.

The parameters listed in Panel C of Table 5.2 are the parameters on February

23rd, 2018 for all the domestic and foreign interest rates. Specifically, USD

interest rates are the foreign counterpart for USDSAR, USDQAR and USDNGN

by market convention, and EUR interest rates are the foreign counterpart for

EURDKK. The 4 currencies I study in this chapter are on the domestic side.

Table 5.3 and Table 5.4 record the descriptive statistics for the realignment

and interest rate term structure parameters for all the days outside of short-term

estimation window. In general, the NDF of USDNGN implies the largest jump

intensity and mean jump size on the dates my data covers.
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Table 5.4: Descriptive statistics for interest rate term structures parameters

Panel A: Domestic interest rate term structure parameters

Obs. Mean Std.
dev.

Min Max Skewness Kurtosis

DKK
κr 1162 11.2324 8.8783 0.3399 27.7511 0.3435 1.6537
r̄ 1162 0.0013 0.0024 0.0000 0.0136 2.8992 11.4924
σr 1162 0.0497 0.0757 0.0005 0.3146 1.5462 4.2175
r0 1162 0.0005 0.0007 0.0000 0.0026 1.2783 3.2616

SAR
κr 925 0.9039 1.8623 0.0265 17.2821 3.5860 19.2205
r̄ 925 0.1475 0.1851 0.0002 0.5000 1.0600 2.4175
σr 925 0.2594 0.1435 0.0012 0.5000 -0.2239 2.4619
r0 925 0.0122 0.0060 0.0000 0.0243 -0.3406 1.7748

QAR
κr 858 1.7257 4.4304 0.0165 23.0646 3.0564 11.2884
r̄ 858 0.0682 0.1073 0.0004 0.4999 2.6541 10.0811
σr 858 0.3650 0.0826 0.0121 0.5000 -0.4447 6.4242
r0 858 0.0168 0.0057 0.0045 0.0278 -0.2917 1.6995

NGN
κr 858 2.0820 3.4498 0.0000 29.9042 6.0122 42.5976
r̄ 858 0.1152 0.1313 0.0003 0.5000 2.4135 7.2543
σr 858 0.2805 0.0960 0.0002 0.5000 0.6758 5.3053
r0 858 0.0952 0.0231 0.0042 0.1929 -0.9255 4.5047

Panel B: Foreign interest rate term structure parameters

Obs. Mean Std.
dev.

Min Max Skewness Kurtosis

EUR
κq 1162 8.9574 8.7702 0.0157 29.7474 0.7464 2.1984
q̄ 1162 0.0104 0.0363 0.0000 0.2734 4.4735 23.6385
σq 1162 0.0564 0.0761 0.0001 0.4996 2.3466 11.3879
q0 1162 0.0010 0.0014 0.0000 0.0053 1.1207 3.0285

USD
κq 925 0.8166 1.9772 0.0236 12.7602 3.8234 17.5405
q̄ 925 0.1080 0.1415 0.0009 0.4999 1.6419 4.5949
σq 925 0.3607 0.0983 0.0083 0.5000 -0.2604 3.6754
q0 925 0.0101 0.0061 0.0000 0.0215 -0.2185 1.7423

Notes: Similar to Table 5.3, this table describes the properties of the domestic and
foreign interest rate CIR process parameters of all the dates in my data periods. Based
on the market convention, DKK, SAR, QAR and NGN are the domestic currencies of
the four currency pairs, while EUR and USD are the foreign currencies. Also since
EUR and USD are the conventional premium currencies, I apply the premium adjusted
deltas as the moneyness.

5.4.3 Calibration exercise and simulations

Using the estimated parameters above, I run a Monte Carlo simulation, and the

results are shown in Fig. 5.3. The left panels contain simulations for short term

167



trading uncertainty. I generate 10000 simulations of the possible spot rate bias in

the 1 month future, and then add these biases as corrections to the theoretical 1M

forward FX rates to get the uncertainty adjusted 1M forward FX rates. Upper and

lower boundary dot lines record the 90% and 10% quantile of these simulations,

respectively. The thinner solid lines are the traditional theoretical 1M forward

FX rates. From the plots we can see that for these pegged currency pairs, the

differences between theoretical and market quotes forward FX rates are less than

0.5%. Therefore it shows that trading uncertainty though exists, yet it is not the

main reason for the big difference between the observed market forward FX rates

and theoretical values especially for longer tenors.

For the long term realignment uncertainty, I use the estimated jump param-

eters to simulate 10000 bias on the selected term structure, i.e. from 6M to 5Y

(1Y for USDNGN) on February 23rd, 2018. These values again are added to

the theoretical forward FX rates with the corresponding maturities. The circles

on the right panels of Fig. 5.3 are the mean values constructed by the adjusted

forward FX rate term structure. It illustrates that the adjustments of spot rate

bias lead to closer fits to the market forward FX rate term structure, while the

theoretical forward FX rate diverges from the market values at longer maturities.

In Fig. 5.3, such difference between the adjusted forward and theoretical forward

can be 4.4% as in USDNGN.

Further, to show that the bias contains market’s outlook of the de-peg event,

I present similar simulation exercise for USDNGN NDF term structure from May

13th, 2016 to June 30th, 2016, which covers the de-peg jump event on June

20th. In Fig. 5.4, I illustrate the models analysis of a de-peg event for USDNGN

on June 20th, 2016. Before June 20th, 2016, the difference between market
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Figure 5.3: Simulations for short and long term forward adjusted by bias with upper
and lower boundary on February 23rd, 2018
Based on the estimated parameters as in Table 5.2, I simulate 10000 times possible
short (left panel) and long (right panel) term adjusted forwards. For the short term,
the forward bias is not as significant as the long term counterparts. In the right panel,
I list the market forward term structure in solid line, the theoretical forward in dash
line, 90% and 10% quantile in the simulation as upper and lower bounds in dot lines
and mean of the simulations in circles. It is clear that the bias adjusted forwards are
more close to the market term structure than the theoretical forwards.

quoted NDF and theoretical forward started from 75 for 1Y contract and were

significant and increasing. Market NDF were much higher than the theoretical

forward indicating market’s expectation of the de-peg event, and the difference

peaked on June 17th, 2016 in this figure (the difference for 1Y contract is 132).

The mean of bias adjusted forward from the proposed model tracks the market

value. After the realignment, the market NDF and theoretical forward converged

together, showing the risk-off after the de-peg, and the difference for 1Y contract

dropped to 13 on June 30th.
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Figure 5.4: Simulations for USDNGN NDF adjusted by bias during the de-peg (June
13-30th, 2016) period
This figure shows the difference between market NDF (solid line) and theoretical for-
ward rate (dash line) are growing since May 13th, and reach its pick on June 17th, 2016
(Friday, the last business date of the week), and then decrease after the realignment
on June 20th. These plots show that the estimated parameters (circles) capture the
synthetic spot bias and thus contains the information of future realignment risks that
reflected by the NDF rate.

5.5 Pricing under an adjusted risk neutral mea-

sure

As pointed out by Hanke et al. [2018] that FX options generally containing bet-

ting information, I will include the bias extracted from forward market into FX

option pricing model to reflect the market’s outlook of trading and realignment

uncertainties. Firstly I need to introduce an adjusted risk neutral measure.
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5.5.1 Correcting the spot rate bias

Given the assumptions in Section 5.2, we now need to revise and interpret the

meaning of risk neutral under the restricted market of the controlled currencies.

Under the traditional circumstance, the risk neutral expectation of holding a

foreign currency bond should be equal to holding St shares of the domestic risk-

free bonds. Then the ratio of these therefore should be a martingale, such as

E(
STB

f
t,T

Bd
t,T

|FT−1) =
ST−1B

f
t,T−1

Bd
t,T−1

,

where Bd
t,T = exp(

∫ T
t
rττ) and Bf

t,T = exp(
∫ T
t
qττ) are the money account of

domestic and foreign investors respectively. This is already implied in Assumption

11 as the theoretical forward FX rate. However, this expectation will not match

the real market forward quotes because of the existence of trading and realignment

uncertainties. These components shift the market’s belief of spot FX rates in the

future, yet can not be reflected by conventional risk-free rate dynamics. As a

result, fundamental valuation of the FX rate may alter with the expectation of

the risks. Then such differences needs to be compensated in order to achieve

non-arbitrage.

When I take the spot rate bias into consideration, the synthetic spot rates will

replace the market quoted pegged spot FX rates in order to match the real market

anticipations of the future since the difference mentioned above is embedded

within the synthetic spot rates. Then holding one unit of the risky synthetic

foreign bond should be considered to be holding risk-free domestic bonds adjusted

by the spot rate bias, which is not reflected by the risk-free rates. Thus the ratio
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being a local martingale is
S∗t|t,TB

f
t,T

Bd
t,T e

Dt|t,T
, (5.21)

remind from Eq. (5.8) that Dt|t,T is the spot rate bias. We can see that

E(
S∗T |t,TB

f
t,T

Bd
t,T e

DT |t,T
|FT−1) = E(

STB
f
t,T

Bd
t,T

|FT−1) =
ST−1B

f
t,T−1

Bd
t,T−1

is the same as
S∗T−1|t,TB

f
t,T−1

Bd
t,T−1e

DT−1|t,T
=
ST−1B

f
t,T−1

Bd
t,T−1

,

This results in the expectation of the future value under the restricted market

setting and allows trading uncertainty and re-alignment uncertainty to be taken

into consideration and embedded in eDT−1|t,T . Thus the expected return is not

only the interest rates, but also the terms that adjust the expectation bias. Then

to achieve the non-arbitrage assumption, contingents claims on the controlled

currency should expect the spot rate bias adjusted risk-free return as well. I refer

to this the new adjusted risk neutral measure, under the peg constraint, as Q.

FX option on pegged currency pairs will be priced under this new measure.
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5.5.2 The recovered option prices

Under the spot rate bias adjusted risk neutral measure Q, the synthetic process

is then

dxt = (rt − qt −
1

2
Vt)dt+

√
VtdW

s
t + dJt, (5.22)

dVt = κv(v̄ − Vt)dt+ σv
√
VtdW

v
t , (5.23)

drt = κr(r̄ − rt)dt+ σr
√
rtdW

r
t , (5.24)

dqt = κq(q̄ − qt)dt+ σq
√
qtdW

q
t , (5.25)

where xt = lnS∗t|t,T is the logarithm synthetic spot FX rate at time t. I denote D

as the space of cádlág processes with filtration Ft on R4, and X = (x, V, r, q)> ∈ D

is the tuple of the state variables on the probability space (Ω,F,Ft,Q).

Following Duffie et al. [2000]’s work, the transition function Ψ : C×D×R+×

R+ → C is defined as

Ψ(c,X, t, T ) = E[exp(

∫ T

t

−rτdτ)ecxT ], (5.26)

Duffie et al. [2000] prove that this function can be written as exponential affine

term

Ψ(c,X, t, T ) = exp(α + βX>t ) (5.27)

where α ∈ C and β = (βx, βv, βr, βq)
> ∈ C4 are the coefficients of state variables

at time t. When c ∈ C, Ψ(c,X, t, T ) is the discounted characteristic function

of xT . From the terminal condition, Ψ(c,X, T, T ) = exp(cxT ), we can get that

βx = c.
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Proposition 5. The coefficients of the transition function Ψ(c,X, t, T ) = exp(α+

βX>t ) is given by:

βq =−
2c
(
1− e−γq(T−t)

)
2γq − (γq − κq)(1− e−γq(T−t))

βr =−
2(1− c)

(
1− e−γr(T−t)

)
2γr − (γr − κr)(1− e−γr(T−t))

βv =−
(c− c2)

(
1− e−γv(T−t))

2γr − (γv − κv)(1− e−γc(T−t))

α =− κrr̄

σ2
r

(
(γr − κr)(T − t) + 2 ln

[
1− γr − κr

2γr
(1− e−γr(T−t))

])
− κq q̄

σ2
q

(
(γq − κq)(T − t) + 2 ln

[
1− γq − κq

2γq
(1− e−γq(T−t))

])
− κvv̄

σ2
v

(
(γv − κ̄v)(T − t) + 2 ln

[
1− γv − κ̄v

2γv
(1− e−γv(T−t))

])
+ λs(T − t)

(
exp(cµJ +

c2σ2
J

2
)− 1

)
, (5.28)

The derivation of Proposition 5 is based on Ito’s lemma as follows.

Proof. For convenience, I will expand Eq. (5.27) and assume the discounted char-

acteristic function for xt is of the affine type:

f(c; t, x, V, r, q) = exp(α(c, t)+βx(c, t)xt+βv(c, t)Vt+βr(c, t)rt+βq(c, t)qt), (5.29)

where c ∈ C, and α(c, t) and βv/r/q(c, t) are functions of c and t. Define xct , V
c
t , r

c
t
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and qct are the continuous parts of corresponding processes, i.e.

dxct =(rt − qt −
1

2
Vt)dt+

√
VtdW

s
t , (5.30)

dV c
t =κv(v̄ − Vt)dt+ σv

√
VtdW

v
t , (5.31)

drct =drt, (5.32)

dqct =dqt. (5.33)

Apply Ito’s formula to the characteristic function,

df(c; t, x, V, r, q) =f ′tdt+ f ′xdx
c
t + f ′V dV

c
t + f ′rdr

c
t + f ′qdq

c
t + f ′′x,V dx

c
tdV

c
t

+ f ′′x,rdx
c
tdr

c
t + f ′′x,qdx

c
tdq

c
t + f ′′V,rdV

c
t dr

c
t + f ′′V,qdV

c
t dq

c
t

+ f ′′r,qdr
c
tdq

c
t +

1

2
f ′′x,xdx

c
tdx

c
t +

1

2
f ′′V,V dV

c
t dV

c
t

+
1

2
f ′′r,rdr

c
tdr

c
t +

1

2
f ′′q,qdq

c
tdq

c
t + ∆f(c; t, xt, Vt, rt, qt) (5.34)

Then we can list the relative derivatives,

f ′t(c) =(α′ + β′vVt + β′rrt + β′qqt)f(c),

f ′i(c) =βif(c),

f ′′i,j(c) =βiβjf(c), (5.35)

where i, j ∈ [x, V, r, q] and βx = c. Substitute the derivatives in Eq. (5.35)] into
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Eq. (5.34), we have

df(c; t, x, V, r, q)

f(c; t, x, V, r, q)
=(α′ + β′vVt + β′rrt + β′qqt)dt+ cdxct + βvdV

c
t + βrdr

c
t + βqdq

c
t

+ cβvdx
c
tdV

c
t + cβrdx

c
tdr

c
t + cβqdx

c
tdq

c
t + βvβrdV

c
t dr

c
t

+ βvβqdV
c
t dq

c
t + βrβqdr

c
tdq

c
t +

1

2
c2dxctdx

c
t +

1

2
β2
vdV

c
t dV

c
t

+
1

2
β2
rdr

c
tdr

c
t +

1

2
β2
qdq

c
tdq

c
t + ∆f(c; t, xt, Vt, rt, qt). (5.36)

The discrete parts, which comes from the jump processes, denoted as ∆f(c; t, xt, Vt, rt, qt),

is calculated by

∆f(c; t, xt, Vt, rt, qt) =f(c; t, xt, Vt, rt, qt)− f(c; t−, xt−, Vt−, rt−, qt−)

=λs

∫
(ecU

s − 1)ps(U
s)dU sdt, (5.37)

where ps(·) here is the p.d.f of the jump size distribution.

Since Wt are independent, the cross terms dxctdV
c
t , dxctdr

c
t , dV

c
t dr

c
t , dx

c
tdq

c
t ,

dV c
t dq

c
t , dr

c
tdq

c
t are all equal to 0. Then we have

df(c; t, x, V, r, q)

f(c; t, x, V, r, q)
=(α′ + β′vVt + β′rrt + β′qqt)dt+ c(rt − qt −

1

2
Vt)dt

+ c
√
VtdW

s
t + βvκv(v̄ − Vt)dt+ βvσv

√
VtdW

v
t

+ βrκr(r̄ − rt)dt+ βrσr
√
rtdW

r
t + βqκq(q̄ − qt)dt+ βqσq

√
qtdW

q
t

+
1

2
c2Vtdt+

1

2
σ2
vβ

2
vVtdt+

1

2
β2
rσ

2
rrtdt+

1

2
β2
qσ

2
qqtdt

+ λs

∫
(ecU

s − 1)ps(U
s)dU sdt
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f(c; t, x, V, r, q) being a martingale requires E[df ] = rtfdt, that is

(α′ + β′vVt + β′rrt + β′qqt)dt+ c(rt − qt −
1

2
Vt)dt

+ βvκv(v̄ − Vt)dt+ βrκr(r̄ − rt)dt+ βqκq(q̄ − qt)dt

+
1

2
c2Vtdt+

1

2
σ2
vβ

2
vVtdt+

1

2
β2
rσ

2
rrtdt+

1

2
β2
qσ

2
qqtdt

+ λs

∫
(ecU

s − 1)ps(U
s)dU sdt

= rtdt,

which can be arranged as the ordinary differential equations (ODEs) form as the

following

The ODEs for β

β̇ =



0

0

1

0


−



0 0 0 0

−1
2
−κv 0 0

1 0 −κr 0

−1 0 0 −κq





βx

βv

βr

βq



− 1

2



0

β2
x + 2σvρβxβv + σ2

vβ
2
v

σ2
rβ

2
r

σ2
qβ

2
q


−



0

0

0

0


(5.38)

and the ODE for α

α̇ = −κvv̄βv − κrr̄βr − κq q̄βq − λs(θ(βx)− 1) (5.39)
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The terminal condition is βx(T, c) = c, βv/r/q(T, c) = 0, thus we have βx(t, c) =

c. Firstly derive βq(t, c).

β̇q(t, c) = βx + κqβq −
1

2
σ2
qβ

2
q

= c+ κqβq −
1

2
σ2
qβ

2
q (5.40)

Set S = −σ2
qc/2 and R = κq and y′′ − Ry′ + Sy = 0. Then we have the solution

to the function y2 − κqy − σ2
qc/2 = 0 is

κq ±
√
κ2
q + 2σ2

qc

2
=
κq ± γq

2

where γq =
√
κ2
q + 2σ2

qc. The general solution for the linear ODE is of the form

y = a1e
κq+γq

2
t + a2e

κq−γq
2

t

for some constant a1 and a2. The derivative of y should be 0 when t = T

y′(T, c) =
κq + γq

2
a1e

κq+γq
2

T +
κq − γq

2
a2e

κq−γq
2

T = 0

Thus we have the relationship between these constants

κq + γq
2

a1e
κq+γq

2
T = −κq − γq

2
a2e

κq−γq
2

T
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We can choose

a1 =
2m

κq + γq
e−

κq+γq
2

T , a2 = − 2m

κq − γq
e−

κq−γq
2

T

where m is a constant number. Then we set the solution to be

2m

κq + γq
e−

κq+γq
2

T+
κq+γq

2
t − 2m

κq − γq
e−

κq−γq
2

T+
κq−γq

2
t,

which is

y =
2m

κq + γq
e−

κq+γq
2

(T−t) − 2m

κq − γq
e−

κq−γq
2

(T−t)

y′ = me−
κq+γq

2
(T−t) −me−

κq−γq
2

(T−t).
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Thus we have

βq = − y′

−σ2
q

2
y

=
2

σ2
q

me−
κq+γq

2
(T−t) −me−

κq−γq
2

(T−t)

2m
κq+γq

e−
κq+γq

2
(T−t) − 2m

κq−γq e
−κq−γq

2
(T−t)

=
2

σ2
q

e−
γq
2

(T−t) − e−
−γq
2

(T−t)

2
κq+γq

e−
γq
2

(T−t) − 2
κq−γq e

−−γq
2

(T−t)

=
2

σ2
q

(κ2
q − γ2

q )
(
e−

γq
2

(T−t) − e−
−γq
2

(T−t)
)

2(κq − γq)e−
γq
2

(T−t) − 2(κq + γq)e
−−γq

2
(T−t)

=
2

σ2
q

(κ2
q − κ2

q − 2σ2
qc)
(
e−

γq
2

(T−t) − e
γq
2

(T−t)
)

2(κq − γq)e−
γq
2

(T−t) − 2(κq + γq)e
γq
2

(T−t)

= −
2c
(
e−γq(T−t) − 1

)
(κq − γq)e−γq(T−t) − (κq + γq)

= −
−2c

(
1− e−γq(T−t)

)
−(κq − γq)(1− e−γq(T−t)) + (κq − γq)− (κq + γq)

= −
−2c

(
1− e−γq(T−t)

)
−(κq − γq)(1− e−γq(T−t))− 2γq

= −
2c
(
1− e−γq(T−t)

)
2γq − (γq − κq)(1− e−γq(T−t))

. (5.41)

For the ODE for βr, the derivation is similar except that c is replaced with

1− c because the ODE is of the form

β̇r(t, c) = −βx + κrβr −
1

2
σ2
rβ

2
r

= 1− c+ κrβr −
1

2
σ2
rβ

2
r .
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So the result is then

βr = −
2(1− c)

(
1− e−γr(T−t)

)
2γr − (γr − κr)(1− e−γr(T−t))

,

where γr =
√
κ2
r + 2(1− c)σ2

r .

Then the ODE for the variance process, the βv is then of the form:

β̇v =
βx
2

+ κvβv −
1

2

(
β2
x + σ2

vβ
2
v

)
=
c− c2

2
+ κvβv −

1

2
σ2
vβ

2
v

Denote γv =
√
κ2
v + (c− c2)σ2

v , which leads to:

βv = −
(c− c2)

(
1− e−γv(T−t))

2γr − (γv − κv)(1− e−γc(T−t))

Then we can integrate the ODE of α to get the solution for α

α̇ = −κvv̄βv − κrr̄βr − κq q̄βq − λs(θ(c)− 1)
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Now we consider the integration of −κq q̄βq

∫ τ

0

−κq q̄βq(s)ds = −κq q̄
∫ τ

0

βq(s)ds

= −κq q̄
∫ τ

0

− y(s)′

−σ2
q

2
y(s)

ds

= −2κq q̄

σ2
q

ln(y(s))|τ0

= −2κq q̄

σ2
q

ln
y(τ)

y(0)

= −κq q̄
σ2
q

(
(γq − κq)τ + 2 ln

[
1− γq − κq

2γq
(1− e−γqτ )

])

Thus

α = −κrr̄
σ2
r

(
(γr − κr)(T − t) + 2 ln

[
1− γr − κr

2γr
(1− e−γr(T−t))

])
− κq q̄

σ2
q

(
(γq − κq)(T − t) + 2 ln

[
1− γq − κq

2γq
(1− e−γq(T−t))

])
− κvv̄

σ2
v

(
(γv − κ̄v)(T − t) + 2 ln

[
1− γv − κ̄v

2γv
(1− e−γv(T−t))

])
+ λs(T − t)

(
exp(cµJ +

c2σ2
J

2
)− 1

)
. (5.42)

Gather the information above, we have the coefficients of the characteristic

function as
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βq =−
2c
(
1− e−γq(T−t)

)
2γq − (γq − κq)(1− e−γq(T−t))

βr =−
2(1− c)

(
1− e−γr(T−t)

)
2γr − (γr − κr)(1− e−γr(T−t))

βv =−
(c− c2)

(
1− e−γv(T−t))

2γr − (γv − κv)(1− e−γc(T−t))

α =− κrr̄

σ2
r

(
(γr − κr)(T − t) + 2 ln

[
1− γr − κr

2γr
(1− e−γr(T−t))

])
− κq q̄

σ2
q

(
(γq − κq)(T − t) + 2 ln

[
1− γq − κq

2γq
(1− e−γq(T−t))

])
− κvv̄

σ2
v

(
(γv − κ̄v)(T − t) + 2 ln

[
1− γv − κ̄v

2γv
(1− e−γv(T−t))

])
+ λs(T − t)

(
exp(cµJ +

c2σ2
J

2
)− 1

)
,

where γq =
√
κ2
q + 2σ2

qc, γr =
√
κ2
r + 2σ2

r(1− c), γv =
√
κ2
v + (c− c2)σ2

v . The

derivation comes from the application of Ito’s lemma on the discounted charac-

teristic function.

End of proof.

For a specific strike price K, I denote kt = K/St as the moneyness at time t,

and then the European FX call option expiring at T is given by,

Ct = St(P1 − ktP2), (5.43)
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where

P1 =
Ψ(1,X, t, T )

2
− 1

π

∫ ∞
0

=(Ψ(1− iu,X, t, T ))eiu ln kt

u
du,

P2 =
Ψ(0,X, t, T )

2
− 1

π

∫ ∞
0

=(Ψ(−iu,X, t, T ))eiu ln kt

u
du,

and =(·) is the imaginary part of a complex number. Put option price can be

calculated easily by the put-call parity.

Note that under Q, the transition function Ψ(1,X, t, T ) with c = 1 is an

analogue of the ’discounted forward FX rate’ since

Ψ(1,X, t, T ) = E[exp(

∫ T

t

−rtdτ)eXT ].

Also when c = 0 we have

Ψ(0,X, t, T ) = E[exp(

∫ T

t

−rtdτ)],

which can then applied in the put-call parity as the foreign bond price. With

Eq. (5.28) being the closed form of the coefficients for the discounted characteristic

function Eq. (5.27) and the option price in Eq. (5.43), we can then compute the

model implied FX option quotes.

5.6 Model implied FX option quotes

For the selected four currency pairs, I will apply spot percentage delta convention

since I only compute FX option with tenor up to 1Y and the foreign currencies

(EUR or USD) are the premium currency of the four currency pairs. In this
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Figure 5.5: Synthetic spot FX rate implied FX option quotes with 6M maturity.
In this figure, I calculate the five pivot quotes for 6M tenor FX option based on the
synthetic spot FX rates for EURDKK. Appendix Fig. 1 is for USDSAR, USDQAR
and USDNGN. The top panel contains model implied 10 and 25 delta BF , the middle
panel contains delta-neutral ATM and the bottom panel is for 10 and 25 delta RR. In
each plot, the lighter lines are for 10-delta strategies and darker lines are for 25-delta
strategies.

section, I use the estimated parameters in previous section and calculate the 5

typical types of FX option quotes, i.e. butterflies (BF10, BF25), delta-neutral

at-the-money (ATM) and risk reversals (RR25, RR10), for the 4 currency pairs

through all the dates out of the short-term estimation window. Fig. 5.5 (with

Appendix Fig. 1) and Fig. 5.6 (with Appendix Fig. 2) illustrate the model implied

quotes for FX options expiring in 6M and 1Y, respectively. Each set of sub-plot

represents one of the chosen currency pairs. Table 5.5 and Table 5.6 provide a

more detail descriptive statistics of the model implied quotes.

The first rows of the plots present the time series of BF25 and BF10. In the

plots, BF10 is always higher than BF25 for all the currency pairs through out the

chosen periods, which is commonly observed from normal FX option market and
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Figure 5.6: Synthetic spot FX rate implied FX option quotes with 1Y maturity
Similar to Fig. 5.5, this figure and Appendix Fig. 2 are the model implied FX option
quotes but for 1Y maturity. Again, the lighter lines are for 10-delta strategies and
darker lines are for 25-delta strategies. From the figure we can see that the 10-delta
strategies are normally larger in magnitude compared with the 25-delta strategies.

means the distributions have more mass at the tails than normal distribution and

the shape of volatility smiles are convex. USDSAR and USDQAR generally have

higher BF (1Y mean value in percentage are 0.0558 and 0.0873, respectively)

than the rest 2 currency pairs (1Y mean value is 0.0158 for EURDKK and 0.0107

for USDNGN) showing their synthetic spot FX rates are less concentrated at

the pegged level compared with normal distribution, and the volatility surfaces

should be less flat. The second rows illustrate the behaviour of ATM within

the periods. USDNGN has the overall highest mean volatility level (6M being

5.5869 and 1Y being 6.0981) and EURDKK remains at the lowest volatility level

(6M being 0.2243 and 1Y being 0.2833). Time series of RR in the third rows

shows the direction of the slop of volatility surfaces are not always the same.

For example USDQAR 1Y has RR10 from -3.2423 to 4.3184. All the currency
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Table 5.5: Descriptive statistics for 6M FX option quotes

Obs. Mean Std. dev. Min Max Skewness Kurtosis

EURDKK
BF10 562 0.0509 0.0320 0.0070 0.2338 2.1558 11.2107
BF25 562 0.0158 0.0123 0.0005 0.0926 2.8863 16.4019
ATM 562 0.2243 0.0363 0.1619 0.4497 1.9007 10.6401
RR25 562 0.0143 0.0381 -0.0561 0.1713 0.5884 3.7988
RR10 562 0.0409 0.0632 -0.1209 0.2590 0.3077 2.9484

USDSAR
BF10 325 0.2160 0.1498 0.0146 0.7859 1.3964 5.0199
BF25 325 0.0558 0.0623 -0.0383 0.3194 1.4041 5.9937
ATM 325 1.3994 0.3250 0.6713 2.3255 0.2260 2.7783
RR25 325 -0.2124 0.2825 -1.0308 0.6262 -0.2682 3.7404
RR10 325 -0.3780 0.5215 -1.7954 1.3254 -0.0453 3.7801

USDQAR
BF10 258 0.2668 0.1127 0.0384 0.6341 0.7448 3.9354
BF25 258 0.0873 0.0394 -0.0024 0.2281 0.5738 3.8434
ATM 258 1.5391 0.4132 0.5507 2.4656 -0.6703 2.5880
RR25 258 0.0432 0.2457 -0.5962 0.8973 0.4082 4.2447
RR10 258 0.0870 0.4595 -1.2559 1.6112 0.3221 4.1930

USDNGN
BF10 258 0.0470 0.0690 0.0206 0.4425 4.5713 23.9796
BF25 258 0.0107 0.0123 -0.0561 0.0851 2.4294 24.1641
ATM 258 5.5869 0.8118 4.7823 11.6211 4.4301 29.3505
RR25 258 0.0576 0.4262 -1.4081 3.5000 4.5976 42.0696
RR10 258 0.0976 0.7470 -2.6711 5.8952 3.8372 37.0228

USDNGN–NDF
BF10 858 0.2540 0.9222 -0.3132 12.3339 8.2980 87.9506
BF25 858 0.1456 0.6994 -0.4574 9.6083 8.7385 95.7332
ATM 858 9.5820 4.2257 4.6922 34.7252 2.0256 8.9166
RR25 858 1.9932 4.0240 -3.7201 40.1916 4.7364 33.6054
RR10 858 3.1984 5.6373 -5.8391 53.0278 4.1059 26.7439

Notes: Corresponding to Fig. 5.5, this table documents the summary statistics of the
model implied quotes for the 6M tenor FX option quotes. It also contains the data
for Fig. 5.7, which is based on the NDF of USDNGN. I should note that in the table
USDNGN-NDF has 600 more observation than the normal forward counterpart. This
is because for the USDNGN-NDF, I take the short-term parameters estimated from the
normal forward rate bias as given, thus do not exclude this estimation window from
the option computation.

pairs experienced positive and negative risk reversals. The sudden changes on

the quotes indicate the inconsistency of the market’s anticipation.

In Fig. 5.7 and Fig. 5.8, I show the strategies implied by the USDNGN-NDF

for the whole dataset period with 6 month and 1 year maturity, respectively. I

should note that in the table USDNGN-NDF has 600 more observations than the

187



Table 5.6: Descriptive statistics for 1Y FX option quotes

Obs. Mean Std. dev. Min Max Skewness Kurtosis
EURDKK

BF10 562 0.0332 0.0204 0.0126 0.3368 7.7886 97.4944
BF25 562 0.0109 0.0072 0.0024 0.0996 5.6579 53.2469
ATM 562 0.2833 0.0450 0.2142 0.6659 2.6693 17.6885
RR25 562 0.0091 0.0239 -0.2829 0.0929 -2.7327 42.3836
RR10 562 0.0183 0.0463 -0.7353 0.1406 -7.5436 126.1996

USDSAR
BF10 325 0.6503 0.4516 0.0129 2.3324 1.3101 4.9721
BF25 325 0.1762 0.2080 -0.1203 0.9725 1.2011 5.0067
ATM 325 2.3884 0.7030 0.7392 4.1814 -0.1142 2.6983
RR25 325 -0.5236 0.6826 -2.4532 1.2199 -0.2450 3.3918
RR10 325 -0.8904 1.3562 -4.4067 3.3659 0.1090 3.6232

USDQAR
BF10 258 0.8712 0.3941 0.0270 2.0483 0.1218 3.6963
BF25 258 0.3003 0.1617 0.0052 0.6884 0.0297 2.5044
ATM 258 2.4385 0.8873 0.6127 4.1655 -0.5042 2.0052
RR25 258 0.2391 0.6588 -1.3025 2.2409 0.4079 3.7027
RR10 258 0.4170 1.3053 -3.2423 4.3184 0.2959 3.6907

USDNGN
BF10 258 0.0581 0.0447 0.0246 0.2936 2.5912 10.3167
BF25 258 0.0158 0.0090 0.0085 0.0591 2.6002 10.3733
ATM 258 6.0981 0.8666 5.0460 12.3018 4.2083 27.3144
RR25 258 0.0670 0.2654 -0.9056 2.1099 3.5713 33.8126
RR10 258 0.1134 0.4984 -1.6947 3.8334 3.2071 30.5312

USDNGN–NDF
BF10 858 0.2945 0.5249 -0.4579 5.8482 5.9789 52.8188
BF25 858 0.1075 0.3206 -0.2455 5.1205 10.7173 139.2258
ATM 858 10.6075 4.7322 4.8842 41.3973 2.2418 10.7230
RR25 858 1.0531 2.4446 -2.1082 23.6532 4.3675 30.0622
RR10 858 1.7036 3.6424 -3.8257 30.8596 3.3778 19.5235

Notes: Corresponding to Fig. 5.6, this table documents the summary statistics of the
model implied quotes for the 1Y tenor FX option quotes. It also contains the data for
Fig. 5.8, which is based on the NDF of USDNGN. The table structure is similar to
Table 5.5.

normal forward counterpart. This is because for the USDNGN-NDF, I take the

short-term parameters estimated from the normal forward rate bias as given, thus

do not exclude this estimation window from the option computation. Clearly in

these two figures, the peaks of all strategies appear at the de-peg day. Before the

announcement of realignment, NDF implied volatility is high, with maximum 1Y

ATM being 41.3973, and heavily skewed, with maximum 1Y RR10 being over 30,

because of the market’s firm confidence of future peg break. Notice that 1Y tenor
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Figure 5.7: USDNGN NDF implied FX option quotes with 6M maturity
Different from the ones in Fig. 5.5 and Fig. 5.6, I use the NDF to estimate the bias
and implied 6M FX option quotes for USDNGN. The three panels are BF , ATM and
RR quotes respectively. Lighter lines in the first and last plots are for 10 delta quotes,
while the darker lines are for 25 delta quotes. Compared with the normal forward, NDF
implied option quotes show more clear patterns of the the volatility surfaces dynamics.

BF (maximum 5.1205) and RR (maximum 23.6532) are smaller compared with

6M ones (9.6083 and 40.1916 respectively), while 1Y ATM (maximum 41.3973)

is higher than 6M ATM (maximum 34.7252). This shows 1Y tenor option has

higher overall volatility smile, but with a more flat smile curve. This is consistent

with the fact that farther future is more unpredictable.

Fig. 5.9 contains the synthetic spot FX rate implied volatility surfaces for

the four currency pairs on February 23rd, 2018 with 6M, 9M and 1Y maturities.
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Figure 5.8: USDNGN NDF implied FX option quotes with 1Y maturity.
Similar to Fig. 5.7, this figure use the NDF to compute the implied FX option quotes
but with 1Y maturity for USDNGN. Notice that 1Y tenor BF and RR are smaller
compared with 6M ones, while 1Y ATM is higher than 6M ATM . This shows 1Y
tenor option has higher overall volatility smile, but with a more flat smile curve.

In the figure, the x-axis represents call delta from 0.1 to 0.9, which is the spot

percentage delta by convention. From the figure we observe that all the currency

pairs have an overall increasing volatility surface as the maturity grows at all the

deltas (or moneyness). EURDKK and USDNGN have more flat smiles than the

two GCC currency pairs, which is also reflected by the smaller BF in Fig. 5.5

and Fig. 5.6. EURDKK and USDQAR on this date skew to a opposite direction

compared with USDSAR, consistent with the sign of their RR.
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Figure 5.9: Synthetic spot FX rate implied volatility surfaces on February 23rd, 2018.
I select the model implied volatility surface on February 23rd, 2018 for the EURDKK,
USDSAR, USDQAR and USDNGN. The x-axis is call delta from 0.1 to 0.9, and y-axis
is Black-Scholes implied volatility in percentage. Lightest lines represent for 1Y tenor
volatility smiles and darkest lines are for 6M tenor smiles.

I also provide the implied volatility surfaces of USDNGN based on NDF on

June 16th, 2016 and June 21st, 2016 in Fig. 5.10, which represent the volatility

surfaces before and after the realignment jump and illustrate the effectiveness of

the model. Volatility level on June 16th, 6M ATM being 23.10, is much higher

than that after the de-peg (6M ATM equals 10.25), and so is the slop of the

surface. The RR of the volatility surface is thus higher before de-peg (6M RR

being 7.44) than after the event (6M RR being 1.17), meaning that call options
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Figure 5.10: Implied volatility surfaces of USDNGN based on NDF before and after
the de-peg (June 16th and 21st, 2016)
Addition to Fig. 5.9, I pick the model implied volatility surface before and after the
de-peg event of USDNGN based on the NDF bias and present in this figure. The x-axis
is call delta from 0.1 to 0.9, and y-axis is Black-Scholes implied volatility in percentage.
Lightest lines represent for 1Y tenor volatility smiles and darkest lines are for 6M tenor
smiles.

are more expensive or in-favour than put options. This indicates the shift of

volatile outlook of the market before and after the major shock and the market’s

expectation of NGN’s sudden depreciation.

These exercises show the proposed model can capture the uncertainty infor-

mation that embedded in the forward rates, and the model implies an fair FX

option price that can be used to manage such risk.

192



5.7 Chapter conclusions

In this chapter, I fill the option pricing gap for pegged FX rates. By studying their

character, I identify the synthetic spot FX rate and spot rate bias implied by the

forward FX rate deviation evidence. Spot rate bias information are divided into

two parts by maturity and I then propose to use an affine jump diffusion model to

capture the trading uncertainty and realignment uncertainty embedded in these

two parts of the spot rate bias. Given the fact that FX option transactions for

such currency pairs are currently rare and there are very limited data available, I

design a novel approach to estimate the model parameters from forward market

data. Then under an adjusted risk neutral measure, I provide the FX option price

model based on the forward looking information.

In the empirical part of this chapter, I apply the proposed approach on four

representative pegged currency pairs (EURDKK, USDSAR, USDQAR and US-

DNGN) and provide model implied volatility quotes under the FX option market

convention. The volatility surfaces generated by the proposed model do reflect

the market’s anticipation of the future uncertainties, thus offer an alternative

way to manage the FX rate risk of pegged currency pairs. This also contributes

to the literature on asset pricing with consistent prices, their associated forward

price puzzles and carry trade opportunities. This chapter can also be extended

on improving the parameter estimation method, and upgrade the model to fit the

synthetic spot FX rate process better.
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Chapter 6

Conclusions

6.1 Summary and remarks

This thesis provides an extensive analysis of the OTC FX option pricing. Previous

works tend to focus only on the actively traded FX option contracts and ignore

the numerous currency pairs that have relatively small option market. Literature

in this area, such as Beber et al. [2010], Chalamandaris and Tsekrekos [2010]

and Hanke et al. [2018], generally are based on mature FX option markets and

presume the existence of the whole updated volatility surfaces. In this thesis,

I fill such research gap by proposing models to price FX options with inactive

market quotes.

In Chapter 3 I introduce and modify the discrete time model by Heston and

Nandi [2000] to the FX world and allow a multi-factor structure. The GARCH

based processes can be estimated from spot rate observations by MLE, without

the requirement of option data. I further test various specifications of the model

and generate model implied volatility quotes out-of-sample for five actively traded

currencies over different tenors. I show that the model provides a good first pass

for generating volatility level when option data is absent, and by the calibration to
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a few market volatility quotes, which is the case for sparsely updated FX option

market, the fitting performance improves significantly. The main strengths of

the proposed model is then 1) it can contain multiple NGARCH type of factors

in the mean return process, which allows the model to have more general and

complex dynamic structure; 2) The parameter estimation is simple and can be

improved to have much better time-series performance with only few option data

for calibration; 3) It generates accurate ATM volatility level and dynamic. One of

the main limitations of such discrete time type model is the computational time.

Even with a closed-form solution, this model is still slower than the continuous

models. Based on the empirical analysis in Section 3.6.2, the proposed model

has better performance at the ATM, but still need to be improved at the deeply

out-of-the-money part of the implied volatility surface.

This works is useful for industry practitioners because it allows the market

maker to provide FX options on more currency pairs that were sparsely traded.

Therefore investors hold such currencies have more tools to hedge their currency

risk.

These GARCH type model based results suggest that even though spot FX

rate and interest rates do share similar information with the FX option, the OTC

FX option still contains extra information that diverge the level and shape of the

implied volatility surface.

To address this issue, in Chapter 4 I extend the model in Chapter 3 to include

ACP jump component in the return process and allow multiple factors in both

domestic and foreign interest rates to capture the hidden interest factors. The

jump process can be estimated by non-parametric methods from high frequency

spot FX rate data. To improve the performance, I design a time-step size adjust-
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ment rule so that different frequency return data is applied to price options with

different tenors. I find that this adjustment helps reduce the over mean reverting

property of the variance process and thus preserve the implied volatility dynamic,

especially for longer maturity contacts which require large number of iteration

in the calculation. Further I assume there is one hidden factor in each of the

domestic and foreign drift terms, and calibrate these factors against the market

option quotes.

The empirical test of this chapter shows that using the hidden factors cal-

ibrated from the market option data improves the model performance. These

extracted factors show strong persistence dynamic character with large βk. The

improvement of the performance also comes from the correlated shock terms

among the hidden factors and variance process. This correlation affect the skew-

ness of the spot rate distribution thus influence the shape of the implied volatility

surface. The test also shows the adjusted time-step size overcomes over mean re-

verting of the variance process and improves the performance for longer maturity

options. The main limitation of this chapter is that the extracted hidden factors

are not identified thus it is not studied in this chapter that what are the economic

factors that causes these hidden dynamics.

The takeaway of this chapter is that the spot rate process can be modified

by 1) including hidden interest factor 2) including correlation between the state

variables and 3) adjusting the time-step size to yield better option pricing per-

formance.

Chapter 5 focuses on option pricing for pegged FX rates, which has been ne-

glected in the literature. By carefully studying the character of pegged FX rates

and their forward rates, I identify the synthetic spot FX rates and spot rate bias

196



implied by the forward rate deviation. I formulate an affine jump diffusion model

to capture the information reflected by the spot rate bias. Such information is

categorised into trading uncertainty and policy realignment uncertainty, which

are modelled by the diffusion and jump part of the model respectively. In the

empirical analysis, I test the model on four representative pegged currency pairs.

The simulation experiments based on the estimated parameters show that the

model generated bias can adjust the process to be align with the market forward

expectation. Then based on these parameters I calculated the implied volatil-

ity quotes under the market convention. These generated volatility surfaces has

ideal skewness and kurtosis property and illustrates dynamics that reflect the mar-

ket’s anticipation of the future uncertainties. Therefore these synthetic volatility

quotes offer an new way to manage the FX risk of the pegged currency pairs.

This chapter can benefit the industry by providing new tools to price FX op-

tions for the majority currency pairs that were not able to be priced. It helps

market makers to generate benchmark quotes for these pegged currency pairs and

provides instruments for investors holding assets denominated by these currencies

to hedge their currency risk. The main limitation of the chapter is its model set-

ting that it currently can not handle the volatility jumps that may happen along

with the regime switch. Solving this issue requires different source of information

that implies the volatility distribution after de-peg events.

6.2 Future work

This thesis can be further improved in various ways. From the option pricing

model perspective, the proposed models have potential to be more generalised,
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such as to include stochastic variance jump components and more flexible and

general form of return, variance and interest rate dynamic. State variables also

can be allowed to have correlations with each others. One of the obvious example

is to allow volatility jumps in the peg currency synthetic spot rate process, which

models the variance distribution changes along with the policy realignment. Non-

parametrically models can be mixed into the FX option pricing, such as empirical

characteristic function estimated from high frequency spot data. And for more

general models, it is then a research question that how to estimate these models,

especially given limited market derivatives data.

Based on the empirical works in this thesis, the OTC FX option markets

contains unique information compared with their underlying spot markets. I

contribute part of these differences to the hidden factors that affect the money

account rate of return as in Chapter 4. And then use the bias information from

forward contracts to price options for pegged currency pairs in Chapter 5. An

possible extension is to find out what are the factors that contribute to such

anticipation differences, and whether we can use these factors to improve the

option pricing performance.
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Appendix

The supplementary tables and figures of the main chapters are provided in this

appendix. Appendix Fig. 1 corresponding to Fig. 5.5 and Appendix Fig. 2 cor-

responding to Fig. 5.6 in Chapter 5 illustrate the model implied quotes for FX

options on the selected four currency pairs with maturity from 6M to 1Y, respec-

tively. Each set of sub-plot represents one of the chosen currency pairs. These

supplementary figures covers the currency pairs including USDSAR, USDQAR

and USDNGN.

Appendix Table 1 documents the estimated parameters for the ASTSV model

on AUDUSD, EURUSD, USDCAD and USDJPY, as an extension to the Table 3.4

in Chapter 3. More data sample characteristic of EUR, CHF, GBP and JPY for

Chapter 4 can refer to Appendix Table 3 as the extension to the Table 4.1.
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Figure 1: Synthetic spot FX rate implied FX option quotes with 6M maturity (Cont.).
In this figure, I calculate the five pivot quotes for 6M tenor FX option based on the
synthetic spot FX rates for USDSAR, USDQAR and USDNGN. The top panel contains
model implied 10 and 25 delta BF , the middle panel contains delta-neutral ATM and
the bottom panel is for 10 and 25 delta RR. In each plot, the lighter lines are for
10-delta strategies and darker lines are for 25-delta strategies. Note that for USDNGN,
the quotes here are based on normal forwards.

Figure 1: Synthetic spot FX rate implied FX option quotes with 6M maturity (Cont.).
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Figure 1: Synthetic spot FX rate implied FX option quotes with 6M maturity (Cont.).

Figure 2: Synthetic spot FX rate implied FX option quotes with 1Y maturity (Cont.).
Similar to Fig. 5.5, this figure is the model implied FX option quotes but for 1Y
maturity. Again, the lighter lines are for 10-delta strategies and darker lines are for
25-delta strategies. From the figure we can see that the 10-delta strategies are normally
larger in magnitude compared with the 25-delta strategies.
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Figure 2: Synthetic spot FX rate implied FX option quotes with 1Y maturity (Cont.).

Figure 2: Synthetic spot FX rate implied FX option quotes with 1Y maturity (Cont.).
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Table 1: ASTSV parameter estimation (Cont.)

AUDUSD
6M 1Y 2Y 3Y 5Y

µ0f 7.40E-05 3.51E-05 3.03E-05 3.16E-05 4.01E-05
µ1f 0.98 0.99 0.99 0.99 0.99
λf -9.99 10.00 9.92 9.97 10.00
ωf 3.45E-94 2.69E-08 5.90E-10 6.59E-267 1.30E-10
βf 0.52 0.80 0.84 0.86 0.91
αf 3.13E-08 2.02E-08 6.29E-09 5.95E-09 3.49E-09
γf -500.00 500.00 500.00 500.00 500.00

L(θ̂s) 1.67E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03
µ0d -1.68E-06 2.05E-04 3.57E-07 7.71E-06 1.69E-05
µ1d 0.99 0.91 0.99 0.99 0.99
λd 9.99 -0.46 10.00 10.00 10.00
ωd 2.48E-09 5.27E-08 6.67E-248 1.72E-57 4.80E-32
βd 0.73 0.87 0.89 0.89 0.92
αd 8.08E-09 3.95E-07 3.83E-09 4.86E-09 3.68E-09
γd 500.00 -63.75 500.00 500.00 500.00

L(θ̂s) 1.70E+03 1.45E+03 1.64E+03 1.61E+03 1.60E+03
λs 0.98 0.76 0.72 0.65 0.54
ωs 2.76E-4 1.81E-04 1.87E-04 1.91E-04 1.95E-04
βs 0.90 0.71 0.70 0.70 0.69
αs 1.10E-04 1.40E-04 1.40E-04 1.39E-04 1.37E-04
γs 12.66 18.94 19.89 20.71 21.80

L(θ̂s) 457.25 436.06 435.98 436.19 436.55

EURUSD
6M 1Y 2Y 3Y 5Y

µ0f 3.41E-06 1.10E-03 1.55E-03 -9.19E-06 -1.25E-05
µ1f 0.99 0.87 0.82 1.00 1.00
λf -9.90 -0.96 -10.00 10.00 9.96
ωf 5.75E-10 6.43E-08 2.31E-07 1.18E-37 2.09E-16
βf 0.91 0.85 0.87 0.87 0.94
αf 1.48E-09 4.68E-07 3.54E-07 3.18E-09 1.20E-09
γf -500.00 334.82 385.72 500.00 -500.00

L(θ̂s) 1.54E+03 8.52E+02 1.15E+03 1.48E+03 1.48E+03
µ0d 1.90E-06 1.47E-05 -5.61E-07 6.58E-06 1.45E-05
µ1d 0.99 0.97 0.99 0.99 0.99
λd 10.00 9.96 10.00 10.00 10.00
ωd 3.01E-09 3.57E-53 0.00E+00 1.72E-57 4.80E-32
βd 0.69 0.77 0.90 0.90 0.92
αd 1.04E-08 6.70E-09 3.66E-09 3.91E-09 3.48E-09
γd 500.00 500.00 500.00 500.00 500.00

L(θ̂s) 1.49E+03 1.06E+03 1.45E+03 1.42E+03 1.41E+03
λs -0.10 -0.40 -0.44 -0.56 -0.69
ωs 4.73E-05 3.42E-05 4.01E-05 4.02E-05 4.07E-05
βs 0.84 0.82 0.85 0.85 0.85
αs 6.25E-05 7.72E-05 6.99E-05 6.82E-05 6.75E-05
γs 22.82 26.38 21.32 22.31 23.15

L(θ̂s) 438.36 307.34 424.34 424.42 424.60

Notes: The short rate dynamics rk(t + η) = µ0k + µ1krk(t) + λkhk(t + η) +√
hk(t+ η)uk(t + η) and hk(t + η) = ωk + βkhk(t) + αk(uk(t) − γk

√
hk(t))

2 are cali-
brated to the historical yield curve data. We apply the short rate estimated dynamics
to the one-month quoted timed deposit rate and return the observed log-likelihoods
L(θ̂k) for comparison with L(θ̂s) the log-likelihoods of the spot exchange rate returns
at the monthly frequency.
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Table 1: ASTSV parameter estimation (Cont.)

USDCAD
6M 1Y 2Y 3Y 5Y

µ0f -1.59E-06 2.02E-04 9.26E-07 1.45E-07 1.30E-05
µ1f 0.99 0.91 0.99 0.99 0.99
λf 9.98 -0.47 10.00 9.96 9.93
ωf 2.68E-09 5.77E-08 0.00E+00 9.62E-265 4.80E-32
βf 0.71 0.87 0.89 0.87 0.92
αf 8.59E-09 3.99E-07 2.57E-09 3.88E-09 3.13E-09
γf 500.00 -87.82 500.00 500.00 500.00

L(θ̂s) 1.70E+03 1.50E+03 1.04E+03 8.95E+02 8.78E+02
µ0d 2.30E-05 3.11E-05 5.69E-06 8.21E-06 2.13E-05
µ1d 0.98 0.98 0.99 0.99 0.98
λd 0.05 9.99 10.00 10.00 9.99
ωd 2.88E-09 4.69E-09 8.82E-09 9.61E-09 1.26E-08
βd 0.66 0.75 0.56 0.60 0.55
αd 1.30E-08 8.03E-09 3.67E-09 3.24E-09 4.14E-09
γd 209.23 500.00 500.00 500.00 500.00

L(θ̂s) 1.68E+03 1.65E+03 1.03E+03 8.88E+02 8.79E+02
λs -0.27 -0.39 0.02 0.54 0.68
ωs 5.23E-06 5.19E-06 4.91E-05 4.94E-05 4.91E-05
βs 1.00 1.00 0.85 0.82 0.82
αs 1.66E-07 2.52E-07 4.21E-05 5.78E-05 5.88E-05
γs 136.91 97.77 -36.14 -36.25 -36.12

L(θ̂s) 551.82 551.90 300.44 260.29 260.30

USDJPY
6M 1Y 2Y 3Y 5Y

µ0f -1.69E-06 2.49E-04 -2.47E-06 3.41E-06 9.63E-06
µ1f 0.99 0.89 1.00 0.99 0.99
λf 9.99 -10.00 10.00 10.00 9.94
ωf 2.82E-09 1.26E-07 0.00E+00 1.72E-57 4.80E-32
βf 0.70 0.87 0.89 0.89 0.92
αf 8.86E-09 1.41E-06 3.91E-09 4.83E-09 3.57E-09
γf 500.00 -499.98 500.00 500.00 500.00

L(θ̂s) 1.70E+03 1.31E+03 1.70E+03 1.67E+03 1.66E+03
µ0d 2.60E-05 1.06E-05 1.41E-05 1.59E-05 2.02E-05
µ1d 0.88 0.96 0.96 0.96 0.96
λd -9.91 -9.93 -10.00 -9.97 -9.80
ωd 1.04E-267 0.00E+00 0.00E+00 0.00E+00 2.18E-19
βd 0.80 0.91 0.91 0.95 0.88
αd 2.32E-09 1.27E-10 2.39E-10 1.46E-10 1.13E-09
γd -500.00 -500.00 -500.00 -500.00 -500.00

L(θ̂s) 1.85E+03 1.90E+03 1.98E+03 1.92E+03 1.85E+03
λs 2.81 2.53 2.98 3.03 3.16
ωs 1.10E-05 2.41E-5 1.09E-05 9.13E-06 1.13E-05
βs 0.94 0.95 0.93 0.94 0.94
αs 5.04E-05 5.72E-05 5.52E-05 5.03E-05 5.04E-05
γs -3.99 -3.66 -2.27 -2.85 -2.33

L(θ̂s) 485.75 443.78 489.05 485.91 486.29
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Table 2: ASV calibration adjustments (Cont.)

Currency Strategy
1Y 2Y

α γ ζ α γ ζ

AUDUSD B̃F 10 3.06E-06 122.5541 0.3966 3.41E-06 127.3123 1.0167

B̃F 25 5.49E-05 23.9143 -9.9772 5.75E-05 20.3219 -11.3734

ÃT 1.04E-06 5.6356 1.16E-06 9.735

R̃R25 3.28E-07 114.3564 1.0343 9.64E-07 227.4117 17.6237

R̃R10 3.29E-06 114.4447 1.0329 3.28E-06 118.2591 0.9433

EURUSD B̃F 10 1.96E-06 82.1613 0.3387 1.43E-06 121.7796 0.6686

B̃F 25 2.07E-05 28.1478 -9.1389 4.49E-06 74.3001 -2.0642

ÃT 3.87E-07 3.5461 4.45E-07 5.2167

R̃R25 2.48E-07 322.4567 3.0285 2.04E-07 342.2352 7.4177

R̃R10 2.53E-06 72.9664 7.3971 5.67E-07 190.0486 26.082

GBPUSD B̃F 10 8.62E-07 161.5054 1.0769 1.47E-06 140.922 1.1438

B̃F 25 1.06E-05 54.5887 -15.6857 2.59E-05 25.3295 -17.5142

ÃT 3.88E-07 3.7122 4.27E-07 6.1962

R̃R25 1.38E-07 484.3177 4.2012 1.14E-07 522.9823 6.6826

R̃R10 1.08E-07 558.8289 2.8041 2.38E-06 90.2603 9.3116

USDCAD B̃F 10 2.57E-06 -117.678 -1.7279 1.90E-06 -136.629 0.5732

B̃F 25 1.86E-06 -133.948 -0.7267 1.83E-06 -131.055 -0.631

ÃT 4.87E-07 5.8318 5.31E-07 11.8408

R̃R25 3.84E-07 -301.22 -301.22 1.99E-06 -118.375 -0.5716

R̃R10 1.85E-06 -113.337 0.6285 1.94E-06 -118.001 0.5831

USDJPY B̃F 10 2.32E-06 -173.846 4.8506 1.86E-06 -193.303 4.3697

B̃F 25 3.48E-06 -130.652 8.5358 1.42E-06 -216.099 4.2324

ÃT 1.37E-06 10.3351 1.65E-06 16.3169

R̃R25 2.28E-05 4.9698 -0.9289 1.04E-06 190.6999 -83.6336

R̃R25 1.05E-05 14.2869 -13.5317 3.53E-06 88.5417 0.7993

Notes: To fit the market quotation of ÃT , α and ζ are calibrated though {α̂, ζ̂} :=

arg min{α̂,ζ}
∑D

d=1(ÃT 0,d(τ) − ÃT 0,d(α, ζ|θ))2 while γ is also adjusted to model the

quotations of B̃F∆ and R̃R∆. Then we fix the parameters θ̂ and carried through the
entire evaluation window out-of-sample. The useful aspect of this adjustment is the
degree of stability in the model fit given these parameters over the evaluation window,
which is useful for the application on sparsely quoted FXOs.
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Table 3: Sample characteristics (Cont.)

EUR
Obs. Mean Std. dev. Min Max

Spot 7308001 1.2062 0.1682 0.8232 1.6035
r 1M 7204 1.7831 1.7047 -0.4550 5.8887
r 6M 7189 1.9954 1.6875 -0.4650 7.3700
r 1Y 7201 2.1391 1.6593 -0.3400 6.3335
r 2Y 6656 2.2514 1.5983 -0.0900 5.5600
σp(10)1M 1459 9.3863 2.4697 4.8750 18.1500
σp(25)1M 1459 8.8472 2.2601 4.5370 15.8873

ÃT1M 1459 8.3974 2.0680 4.2000 14.3750
σc(25)1M 1459 8.3073 1.9599 4.0880 14.0000
σc(10)1M 1459 8.4588 1.9528 4.1565 14.0880
σp(10)6M 1443 10.5385 2.1473 6.6255 15.4680
σp(25)6M 1443 9.4394 1.8253 5.8625 13.4425

ÃT6M 1443 8.5648 1.5036 5.2500 11.6800
σc(25)6M 1443 8.2715 1.2807 5.1375 11.2310
σc(10)6M 1443 8.4896 1.2251 5.4005 11.6190
σp(10)1Y 1428 11.0577 1.8991 7.6700 16.7550
σp(25)1Y 1428 9.7480 1.5827 6.7190 15.5960

ÃT1Y 1428 8.7646 1.2471 6.0000 14.3050
σc(25)1Y 1428 8.4526 1.0128 5.8810 13.9960
σc(10)1Y 1428 8.7335 0.9565 6.2125 13.8050
σp(10)2Y 1408 11.3114 1.6601 8.1255 14.9600
σp(25)2Y 1408 9.9825 1.3653 7.3625 13.0965

ÃT2Y 1408 9.0470 1.0772 6.6250 11.7775
σc(25)2Y 1408 8.7877 0.8854 6.4875 11.3965
σc(10)2Y 1408 9.0973 0.8490 6.8625 11.5375

CHF
Obs. Mean Std. dev. Min Max

Spot 8159041 1.2065 0.2535 0.7103 1.8296
r 1M 7684 0.7232 1.1618 -3.4750 4.1400
r 6M 7733 0.8876 1.2046 -1.7950 4.2750
r 1Y 7748 1.0574 1.2030 -1.3950 4.7150
r 2Y 3937 0.4154 1.0221 -1.0500 3.6750
σp(10)1M 1253 9.2004 2.4204 4.6875 32.5765
σp(25)1M 1253 8.7512 2.2674 4.5125 30.0450

ÃT1M 1253 8.5504 2.1854 4.5750 27.9825
σc(25)1M 1253 8.8043 2.2265 4.9875 26.9450
σc(10)1M 1253 9.2850 2.3518 5.2875 28.1313
σp(10)6M 1220 9.8316 1.9580 6.2560 22.0450
σp(25)6M 1220 9.0910 1.6368 5.8310 19.1515

ÃT6M 1220 8.8275 1.5072 5.9000 17.1575
σc(25)6M 1220 9.2645 1.6162 6.3375 16.4015
σc(10)6M 1220 10.1372 1.8375 6.6625 17.4200
σp(10)1Y 1235 10.3591 1.7760 7.0313 19.4380
σp(25)1Y 1235 9.4378 1.3876 6.6190 16.4440

ÃT1Y 1235 9.1115 1.2554 6.6750 14.4880
σc(25)1Y 1235 9.5981 1.4202 6.8625 13.8440
σc(10)1Y 1235 10.6470 1.6763 7.4130 15.2130
σp(10)2Y 1155 10.8832 1.6155 7.8125 18.7375
σp(25)2Y 1155 9.8431 1.2337 7.3000 15.6000

ÃT2Y 1155 9.4385 1.1099 7.1150 13.7000
σc(25)2Y 1155 9.8160 1.2468 7.1475 13.1000
σc(10)2Y 1155 10.7737 1.4127 7.7250 14.6625

Notes: I interpolate the spot exchange rate tick data to a 1 minute grid from 1 millisecond past midnight to 1
millisecond to midnight GMT.
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Table 3: Sample characteristics (Cont.)

GBP
Obs. Mean Std. dev. Min Max

Spot 8159041 1.6131 0.1782 1.2038 2.1159
r 1M 7697 3.0832 2.4206 0.1600 7.6800
r 6M 7696 3.3111 2.3498 0.3400 8.1850
r 1Y 7694 3.5138 2.2655 0.4300 8.3100
r 2Y 5347 2.7952 1.6567 0.8400 6.8100
σp(10)1M 1404 9.4805 3.5278 4.7250 39.0375
σp(25)1M 1404 8.8289 3.0843 4.4565 34.0685

ÃT1M 1404 8.2917 2.6521 4.3250 29.2000
σc(25)1M 1404 8.1466 2.3139 4.3940 25.0935
σc(10)1M 1404 8.2920 2.1841 4.5500 23.3125
σp(10)6M 1393 10.8891 2.7580 6.5685 20.7938
σp(25)6M 1393 9.6099 2.2928 5.9940 17.8940

ÃT6M 1393 8.6162 1.8520 5.6000 15.1500
σc(25)6M 1393 8.2676 1.5509 5.5750 13.5435
σc(10)6M 1393 8.4717 1.4422 5.8750 13.4530
σp(10)1Y 1371 11.5133 2.3751 7.5505 19.5150
σp(25)1Y 1371 9.9641 1.9402 6.7625 16.0275

ÃT1Y 1371 8.8280 1.5470 6.3000 13.5000
σc(25)1Y 1371 8.4418 1.2881 6.4250 12.4225
σc(10)1Y 1371 8.7126 1.2051 6.8438 12.5540
σp(10)2Y 1354 11.9339 2.0459 8.3375 18.7605
σp(25)2Y 1354 10.3368 1.6876 7.3935 15.5600

ÃT2Y 1354 9.2261 1.3974 6.8750 13.4000
σc(25)2Y 1354 8.8523 1.2162 6.9685 12.5750
σc(10)2Y 1354 9.1358 1.1483 7.2995 12.5630

JPY
Obs. Mean Std. dev. Min Max

Spot 8159041 108.4896 13.9679 75.6124 147.6081
r 1M 7618 0.1685 0.2722 -0.7950 1.7000
r 6M 7709 0.2798 0.3472 -0.3950 2.4250
r 1Y 7616 0.3829 0.3692 -0.2500 2.7750
r 2Y 7549 0.4481 0.3837 -0.1800 1.8500
σp(10)1M 1395 11.1883 2.7867 5.0685 20.0940
σp(25)1M 1395 10.4149 2.5787 4.7370 18.2795

ÃT1M 1395 9.8337 2.4502 4.5180 17.4980
σc(25)1M 1395 9.7916 2.4765 4.5190 17.7545
σc(10)1M 1395 10.0204 2.5541 4.7313 18.3920
σp(10)6M 1392 12.0610 2.1635 7.2850 18.4150
σp(25)6M 1392 10.7809 1.8214 6.5350 16.0590

ÃT6M 1392 9.9842 1.6682 6.0500 14.9900
σc(25)6M 1392 10.0230 1.7633 6.0005 15.3090
σc(10)6M 1392 10.5709 1.9947 6.3050 16.4650
σp(10)1Y 1393 12.7467 1.8789 5.2788 17.9365
σp(25)1Y 1393 11.0801 1.5024 3.8100 15.5615

ÃT1Y 1393 10.1360 1.3581 2.9600 14.3800
σc(25)1Y 1393 10.2584 1.5002 2.8850 14.6865
σc(10)1Y 1393 11.0800 1.8293 3.4412 16.4615
σp(10)2Y 1362 13.6036 1.8162 10.7800 19.1560
σp(25)2Y 1362 11.5316 1.3762 9.2615 15.9380

ÃT2Y 1362 10.4620 1.2364 8.2020 14.6500
σc(25)2Y 1362 10.5729 1.4080 7.8800 14.9380
σc(10)2Y 1362 11.5891 1.7886 7.7875 16.2690
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