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Modelling atom diffraction in pulsed and
continuous far off-resonant optical

lattices
Benjamin Thomas Beswick

Abstract

In this thesis we investigate the diffraction of cold atomic gases by optical lattices. Of par-
ticular interest to atom interferometry is the implementation of a high momentum-transfer
“beam-splitter,” which may be achieved by inducing quantum resonance in such an atomic
gas. We use Monte Carlo simulations to investigate these quantum resonances in the
regime where the gas receives laser pulses of finite duration, and demonstrate that an ε-
pseudoclassical model for the dynamics of the gas atoms reproduces quantum resonant be-
havior for both zero-temperature and finite-temperature non-interacting gases. We show that
this model agrees well with the fully quantum treatment of the system over a timescale set
by the choice of experimental parameters.

In similar setups, the depth of a laser lattice may be measured by exposing an atomic gas to
a series of off-resonant laser-standing-wave pulses, and fitting theoretical predictions for the
population found in each of the allowed momentum states. We present an analytic model for
the time evolution of the atomic populations of the lowest momentum-states, which is suf-
ficient for a weak lattice, as well as numerical simulations incorporating higher momentum
states for both relatively strong and weak lattices at zero and finite temperature. We propose a
new approach to characterizing the depths of optical lattices, in which an atomic gas is given
a finite initial momentum, leading to high amplitude oscillations in the zeroth diffraction
order which are robust to finite-temperature effects. We present a zero-temperature analytic
formula describing such oscillations, extend it to include atoms with initial momenta detuned
from our chosen initial value, and analyze the full finite-temperature response.
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Chapter 1

Overview

1.1 Introduction

In this thesis we investigate the diffraction of cold dilute atomic gases by optical lattices [4],
which has been of interest to atomic and molecular physics for some time. Many early exam-
ples of such experiments focused on the study of the relationship between classically chaotic
systems [5, 6] and atom-optical realizations of their quantum counterparts. For instance, ex-
periments in dynamical localization [7, 8, 9, 10, 11, 12, 13, 14] and quantum resonance in
the atom-optics δ-kicked particle [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

More recently these quantum resonances have been investigated as high momentum transfer
beam splitters with applications in atom interferometry [29]. It has also been demonstrated
that the measurement process of the especially small lattice depths associated with weak
atomic polarizabilities can be improved by diffracting an atomic gas using multiple pulses of
a 1d far off resonant optical lattice with a suitably tuned period [30].

Though modeling techniques for both of these experiments are present in the literature
[31, 32], many come with the burden of approximations and rules of thumb which may
fall outside the range of experimental validity, but are considered necessary in order to make
analytic and numerical results tractable and comparable to experimental data. In the case
of quantum resonance, the Raman-Nath regime is often assumed, where the infinitesimal
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nature of the lattice pulses prevent atoms from exploring the lattice during a pulse sequence.
Though this approach yields simple analytic results for the resultant diffraction patterns, in
practice such infinitesimal pulses are unachievable, and so finite-duration pulses must be
included in any reasonable theoretical model of a real experiment [33].

A further consideration is that atom diffraction models rarely account for effects due to the
finite-temperature of atomic gases, which has motivated the use of BECs due to their narrow
initial momentum distributions. Exploration of the role of these effects would make it pos-
sible to understand atom diffraction experiments performed with atomic gases with initial
temperatures that are much easier to achieve, where quantum degeneracy is not required.
We note, however, that the inclusion of explicitly finite-duration pulses drastically increases
the time necessary for a finite temperature simulation to complete, and reduces the insight
gained from finite-temperature simulations performed for the case of δ-kicks [3]. Also, for
the case of the measurement of small lattice depths, one often assumes a regime of “weak
diffraction”, in which models include only the contribution of zeroth and first diffraction or-
ders. Though this is a successful rule of thumb provided the lattice depth is sufficiently small,
it is not clear from the literature exactly how far this domain of validity extends, or how great
a role is played by the effects of population leakage into higher diffraction orders (which we
show can be treated analytically in principle), and finite-temperature initial distributions.

Where these models have been extended in order to avoid these common approximations,
for instance by exhaustive and time consuming numerical modeling, one often loses the
intuitive picture that a simpler, but more powerful model may offer. In this thesis we propose
and investigate modeling approaches for these diffraction experiments which we argue are as
simple as possible whilst still capturing the essential dynamical features of the experiments
considered, and which offer intuitive frameworks likely to be of use to experimentalists in
interpreting their results and planning future atom diffraction experiments. Further, based
on these modeling techniques, we propose a new method for lattice depth characterization,
which is more robust to finite-temperature effects than currently available methods.
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1.2 Thesis outline

This thesis is organised as follows: In Part I we discuss the implementation of a high mo-
mentum transfer beam splitter by exploiting quantum resonances in the atom-optical pulsed
particle. We present a model for such resonances based on a pseudoclassical approach, which
offers significant insight over standard methods and is simpler to explore numerically. Ex-
pected momentum distributions computed using the pseudoclassical model are compared to
those yielded by a fully quantum approach. In Part II we consider an ultracold atomic gas
exposed to a pulsed optical lattice, report analytic and numerical results for the expected
atomic diffraction patterns, and discuss implications for lattice depth characterisation using
such a setup. In Part III we propose and investigate a new approach to characterising optical
lattice depths where an ultracold atomic gas is exposed to a walking standing wave.

1.3 Publications from this work

• Benjamin T. Beswick, Ifan G. Hughes, Simon A. Gardiner, Hippolyte P. A. G. Astier,
Mikkel F. Andersen, and Boris Daszuta, ε-pseudoclassical model for quantum reso-

nances in a cold dilute atomic gas periodically driven by finite-duration standing-wave

laser pulses, Phys. Rev. A 94, 063604 (2016) [3].
Contribution: Full text, all figures, numerical investigations of the ε-pseudoclassical
and fully quantum models.

• Benjamin T. Beswick, Ifan G. Hughes, and Simon A. Gardiner Lattice-depth mea-

surement using multipulse atom diffraction in and beyond the weakly diffracting limit,

Phys. Rev. A 99, 013614 (2019) [34]
Contribution: Full text, all figures, numerical investigation, all derivations.

• Benjamin T. Beswick, Ifan G. Hughes, Simon A. Gardiner, Lattice-depth measurement

using continuous grating atom diffraction, arXiv:1903.04011 (Submitted to Phys. Rev.
A) [35]
Contribution: Full text, all figures, numerical investigation, derivations in collabora-
tion with Simon A. Gardiner



Part I

High momentum transfer beam-splitter
in the atom-optical pulsed particle
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Chapter 2

Introduction

Microkelvin-temperature cold-atom-gases are a useful medium for atom-optical experi-
ments, including atom interferometry [36]. For light-pulse atom-interferometry experiments
it is desirable to implement a high momentum transfer “beam splitter” [37, 38, 39], which
can be realized by subjecting an atomic gas to a periodically pulsed optical standing-wave.
By tuning the period of the pulse sequence to a specific value known as the Talbot time, the
phenomenon of quantum resonance can be exploited to coherently split the atomic popula-
tion of the gas in momentum space using minimal laser power.

A dilute atomic gas receiving pulses of “short” duration is well approximated by the atom-
optical δ-kicked rotor Hamiltonian [31]. The atom-optical δ-kicked-rotor has long been the
subject of study in the field of quantum chaos [5, 6], aided by the relative simplicity of
both the classical and quantum δ-kicked rotor. This includes the existence of some analyti-
cal results, as well as the ease with which the quantum δ-kicked rotor lends itself to Fourier
methods [40, 41]. Though laser pulses of truly infinitesimal duration are clearly unachievable
experimentally, this model successfully describes experiments where the distance traveled by
the atomic center of mass during each pulse is negligible relative to the spatial period of the
standing wave [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
(the so called Raman–Nath regime [33]). However, experiments indicate that finite pulse-
duration effects can increase the sensitivity of atom interferometry experiments [29]. This
consideration, coupled with the fact that the infinitesimal pulse approach gives erroneous
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predictions over larger time-scales [42], motivates their incorporation into the kicked parti-
cle Hamiltonian. Though finite duration pulse atom interferometers have been investigated
numerically for a single pulsed-particle [33], an investigation for a thermal gas of kicked
particles is absent from the literature.

A possible reason for this absence is that simulating driven systems with finite-duration
pulses is notably more numerically complex than simulating systems with δ-kicks [33], and
this problem scales substantially with the number of particles. Given that knowledge of how
the momentum distribution changes over time is necessary for designing and operating light-
pulse atom-interferometry experiments, we are motivated to introduce a computationally
simpler model, which can give accurate results for a typical experimental set-up.

In this Part we introduce an ε-pseudoclassical model for the quantum kicked particle con-
ceptually similar to that introduced to describe quantum accelerator modes by Fishman,
Guarneri and Rebbuzzini [43, 44]. This model is attractive due to its mathematical simplicity
and the minimal computational complexity of the numerics. We explore the predictions of
this model using a Monte Carlo approach, and compare the results to a fully quantum treat-
ment. We find that the model captures the essential features of quantum resonant dynamics
in finite-temperature driven gases.

Part I is organised as follows: in Chapter 3 we overview experimental considerations, and
describe the model system Hamiltonian and the time-evolution it generates; in Chapter 4 we
derive how to treat the existence of finite-duration pulses (assuming we are in the equivalent
to a quantum-resonant regime for the δ-kicked rotor) using an ε-pseudoclassical model; in
Chapter 5 we describe the Monte Carlo methodologies we use to determine our numerical
results; in Chapter 6 we compare and contrast numerical results using both full quantum
dynamics and the pseudoclassical model.



Chapter 3

System overview

3.1 Experimental considerations

As a typical system, one can consider a cloud of 105 Cesium 133 atoms. This can be rel-
atively straightforwardly confined and cooled in a MOT (magneto-optical trap), followed
by an optical molasses, to a temperature of ∼ 5µK. In such a regime the resulting cold-
atom gas is sufficiently dilute that atom–atom interactions can typically be neglected. Even
lower temperatures can be achieved by Raman-sideband-cooling [45], or by cooling to quan-
tum degeneracy [22, 28] (inter-atomic interactions can be significant within a Bose–Einstein
condensate, however these can in principle be substantially tuned away by exploiting an
appropriate magnetic Feshbach resonance [46, 47, 48, 49, 50], or letting the cloud expand).

The atomic cloud can then be released under gravity, while two counter-propagating laser
beams of wavelength λL (choosing λL = 852nm corresponds to the wavelength of the cesium
D2 transition) form a laser standing wave in the vertical direction (see Fig. 3.1), which can
be periodically pulsed [7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28]. By carefully tuning the phase-shifter element in Fig. 3.1, the laser beams will
form a “walking wave,” appearing as a standing wave in a frame comoving with the local
gravitational acceleration [1, 2]. Neglecting interactions allows for a theoretical description
using a single-particle Hamiltonian, which we describe in Chapter 3.2.
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Phase shifter

Mirror

Laser

Atomic gas

Laser standing-wave

x

TOF detection beam

Figure 3.1: Schematic of a possible experimental setup [1]. If vertically oriented, the effect
of the gravitational field can be transformed away [2] by use of the phase shifter element, for
example an electro-optic modulator [1].

After receiving a set number of laser pulses, a time-of-flight measurement can be performed
to determine the momentum distribution of the gas (and thence its momentum variance).
These experimental observables are typically what one would measure in light-pulse atom-
interferometry experiments (see Chapter 3.4), and we explain how they may be predicted
numerically in Chapter 5.

3.2 System Hamiltonians

During a laser pulse, the appropriate single-particle Hamiltonian describes a two-level atom
(ground state |g〉 and excited state |e〉) of mass M coupled to a laser standing wave of angular
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frequency ωL, wavenumber kL ≡ 2π/λL, and phase φ [51, 52]:

Ĥ2L =
~ω0

2
(|e〉〈e| − |g〉〈g|) +

p̂2

2M
+
~Ω

2
cos(kL x̂)

[
e−i(ωLt−φ)|e〉〈g| + H.c.

]
, (3.2.1)

where Ω is the on-resonance Rabi frequency, t is the time, and H.c. stands for Hermitian
conjugate. Here, x̂ and p̂ represent the atomic position and momentum along the axis of
the laser standing wave.a Transforming to an appropriate rotating frame, and adiabatically
eliminating the excited state (assuming the laser field to be far-detuned and that all population
begins in the ground state also justifies our neglect of spontaneous emission) results in the
Hamiltonian [51]

Ĥ′′2L =
p̂2

2M
− ~Ω

2

8∆
cos(2kL x̂), (3.2.2)

where we have definedb ∆ ≡ ω0 − ωL. We describe the standing wave being periodically
switched on and off through the dimensionless time-dependent function f (t), giving

Ĥ =
p̂2

2M
− ~φd cos(Kx̂)

f (t)
tp
, (3.2.3)

where we have introduced K ≡ 2kL and φd ≡ Ω2tp/8∆. The function f (t) =
∑∞

n=−∞ Fsq(t −
nT, tp), where

Fsq(t, tp) =


1 for 0 < t ≤ tp,

0 for t ≤ 0 or t > tp.
(3.2.4)

describes a square pulse of duration tp. This is typically a reasonable description of atom
optical experiments [9]. As tp → 0, then f (t)/tp → ∑∞

n=−∞ δ(t − nT ), and in this limit
Eq. (3.2.3) reduces to the familiar δ-kicked particle Hamiltonian described in [51].

aWe may consider the center-of-mass dynamics in the x direction in isolation, as they separate from the
remaining center-of-mass degrees of freedom.

bNote that the detuning is usually defined as equal to ωL −ω0 [53] and thus is equal to −∆ as defined in this
paper. Within the context of atom-optical δ-kicked rotors the convention used in this paper is typical, however
[8, 15].
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3.3 Time evolution

The time-periodicity of the Hamiltonian allows us to define a Floquet operator F̂, such that
|ψn+1〉 = F̂|ψn〉, where |ψn〉 denotes the state of the system immediately before the nth kick:

F̂ = ÛFreeÛKick = exp
(
−i

p̂2

2M
[T − tp]
~

)
× exp

(
−i

[
p̂2

2M
− ~φd

tp
cos(Kx̂)

]
tp

~

)
, (3.3.1)

where ÛFree governs the “between-kick” free evolution, and ÛKick governs the time evolution
while the kick is applied.

The spatial periodicity in x̂ of Eq. (3.2.3) allows us to invoke Bloch theory [54]. It is therefore
convenient to partition the position and momentum operators [55], such that:

Kx̂ = 2πl̂ + θ̂, (3.3.2a)

l̂|Kx = 2πl + θ〉 = l|Kx = 2πl + θ〉, (3.3.2b)

θ̂|Kx = 2πl + θ〉 = θ|Kx = 2πl + θ〉, (3.3.2c)

where l ∈ Z and θ ∈ [0, 2π) is effectively an angle variable; and

(~K)−1 p̂ = k̂ + β̂, (3.3.3a)

k̂|(~K)−1 p = k + β〉 = k|(~K)−1 p = k + β〉, (3.3.3b)

β̂|(~K)−1 p = k + β〉 = β|(~K)−1 p = k + β〉, (3.3.3c)

with k ∈ Z and β ∈ [−1/2, 1/2). We now can speak of k as the discrete part of the dimen-
sionless momentum (~K)−1 p, and β as the continuous part or quasimomentum.

Fourier analysis of the Floquet operator F̂ reveals that only momentum states separated by
integer multiples of ~K are coupled [18], and so β must be a conserved quantity; in other
words [β̂, Ĥ] = 0 [16, 55]. Within any specified quasimomentum subspace we can therefore
consider the time evolution to be governed by

F̂(β) = exp
(
−i

[~K(k̂ + β)]2

2M
[T − tp]
~

)
× exp

(
−i

{
[~K(k̂ + β)]2

2M
− ~φd

tp
cos(θ̂)

}
tp

~

)
. (3.3.4)
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We now have a continuum of Floquet operators, one for each β subspace, within which β can
be considered simply a number [43, 44, 55]. For the most general time evolutions one should
in principle take relative phases between these subspaces into account, however this can be
neglected if we do not consider coherent superpositions of states with different values of β.

3.4 Quantum resonance, antiresonance and time reversal

For the δ-kicked rotor, quantum resonance occurs when the free evolution between kicks has
no net effect on the state of the system [5, 16, 31, 40, 56, 57]. Referring to Eq. (3.3.4) when
β = 0 and tp → 0, this corresponds formally to requiring ÛFree to collapse to the identity
operator. Recalling that k̂ has integer eigenvalues, this is fulfilled when

T = TT ≡ 4πM
~K2 , (3.4.1)

or any integer multiple thereof. The quantity TT is known as the Talbot time [1, 58], in
analogy with the Talbot length of optics [59]. Within the β = 0 subspace (which maps exactly
to the case of the quantum δ-kicked rotor, with its intrinsically discrete angular momentum
spectrum), adjusting the period to an integer multiple of the Talbot time gives rise to an
exactly quadratic increase in 〈p̂2〉 over time, given by 〈 p̂2〉n = ~2K2φ2

dn2/2 [57, 60], where n

is the number of kicks.

Assuming the initial momentum distribution is symmetric about a mean value of zero, such
ballistic growth of the system energy occurs via significant population being transferred
into high-magnitude momentum states of opposite value (leading, at low temperatures, to
a distribution with large, negative kurtosis [57]). This splitting of the atomic momentum-
distribution can form the first component of a light-pulse atom-interferometer [33, 61], act-
ing as the atom-optical analogue of a beam-splitter in classical optics. In an interferometric
experiment, a relative phase would be accumulated between the “arms” of the resultant split
cloud, due to coherent evolution caused by a perturbation to be measured. At a time tR, the
laser standing-wave can be near-instantaneously phase-shifted in θ by an offset of π, which
effectively reverses the quantum resonant dynamics, causing the momentum-state popula-
tions to recombine some time later. At this time the relative phase can be extracted, and
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hence the magnitude of the perturbation.

For the case where the period T is set to a half integer multiple of the Talbot time a phe-
nomenon known as antiresonance can also be observed, characterized by kick-to-kick mo-
tion where there is no net increase in 〈p̂2〉 over time, but instead 〈 p̂2〉 alternates between two
values [17, 42, 51, 60].



Chapter 4

Finite-duration pulses

4.1 Motivation for a pseudoclassical approach

In the Floquet operator for the quantum δ-kicked particle the position and momentum oper-
ators are explicitly separated, making numerical determination of the system time evolution
straightforward. Incorporating finite duration pulses combines x̂ and p̂ in the ÛKick operator
of Eq. (3.3.1), substantially increasing the numerical task. We are therefore motivated to
introduce a simpler treatment, based on ε-pseudoclassics, which is intended to approximate
the fully quantum treatment in an appropriate regime; similar treatments can be found in
[44, 55, 62, 63, 64]. The evolution of a quantum particle or ensemble of quantum particles is
modeled by a Monte Carlo simulation of an ensemble of pseudoclassical particles (described
in Chapter 5), attractive both due to its computational simplicity and dynamical insight.

4.2 Derivation of the pseudoclassical model

We begin with the Floquet operator corresponding to the kicked-particle Hamiltonian, re-
stricted to a particular β subspace [Eq. (3.3.4)], together with the constraint T = `TT/2
(where ` is an even integer — this corresponds to the condition for quantum resonance for
the δ-kicked particle). Introducing the dimensionless pulse duration ε = ~K2tp/M, we may
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rewrite Eq. (3.3.4) as

F̂(β) = exp
(
i
[
k̂2

2
ε + k̂β(ε − 2π`)

])
× exp

(
−i

[
k̂2

2
ε + k̂βε − φd cos(θ̂)

])
. (4.2.1)

We now define a rescaled and shifted discrete momentum Ĵ(β) = (k̂ + β)ε, leading to the
commutator [θ̂, Ĵ(β)] = iε. Introducing the rescaled kicking strength Ṽ = εφd, we can now
rewrite Eq. (4.2.1) as

F̂(β) = exp
(

i
ε

[Ĵ(β)2

2
− Ĵ(β)2π`β

])
× exp

(
− i
ε

[Ĵ(β)2

2
− Ṽ cos(θ̂)

])
. (4.2.2)

Note that ε appears where we would normally expect to see ~; for small values of ε, we there-
fore expect an effective classical model to give reasonable results which well approximate
the quantum treatment [44, 55, 62, 63, 64].

The dynamics governed by Eq. (4.2.2) are equivalent to those generated by the following
dimensionless Hamiltonians:

Ĥ1 =
Ĵ(β)2

2
− Ṽ cos(θ̂) , (4.2.3a)

Ĥ2 = − Ĵ(β)2

2
+ Ĵ(β)2π`β , (4.2.3b)

where Ĥ1 is associated with the kick, Ĥ2 with the free evolution, and each Hamiltonian gov-
erns the time-evolution for one dimensionless time unit (rescaled time given by t/tp). Replac-
ing the quantum Hamiltonian Ĥ1 with its classical counterpart H1, we determine Hamilton’s
equations of motion:

θ̇(β) =
∂H1

∂J(β)
= J(β) , (4.2.4a)

J̇(β) = − ∂H1

∂θ(β)
= −Ṽ sin(θ(β)), (4.2.4b)

which we recognize as the equations of motion of a simple pendulum, the phase space orbits
of which are in principle exactly solvable in terms of Jacobi elliptic functions (although they
can be more convenient to solve numerically). Referring to a phase space point immediately
before the nth kick as (θn(β),Jn(β)), we say that evolving these values under Eq. (4.2.4)
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for 1 dimensionless time unit yields (θn+(β),Jn+(β)). Feeding these values into the classical
equations of motion generated by H2 yields the very simple classical map

θn+1(β) = θn+(β) − Jn+(β) + 2π`β, (4.2.5a)

Jn+1(β) = Jn+(β), (4.2.5b)

where (θn+1(β),Jn+1(β)) is the phase space point evolved to just before the (n + 1)th kick [3].

Finally, relating the dimensionless momentum J(β) back to the momentum p yields:

p = ~K(k + β) =
~K
ε
J(β). (4.2.6)

To calculate the time evolution of expectation values using this treatment, we evolve an ap-
propriate initial ensemble of classical particles and then compute their normalized statistics,
as described below.



Chapter 5

Monte Carlo simulations

5.1 Quantum Model

In our finite-temperature simulations, we follow the approach of Saunders et al. [51], and
work within the momentum basis. The initial states are momentum eigenstates, with ran-
domly distributed values sampled from the Maxwell–Boltzmann distribution:

Dk(β) =
1

w
√

2π
exp

(−[k + β]2

2w2

)
, (5.1.1)

where the temperature Tw = ~2K2w2/MkB[51].

Time-evolving an initial momentum eigenstate |(~K)−1 p = k + β〉 using the Floquet operator
F̂(β) of Eq. (4.2.1) results in a transfer of the initial population among other momentum
eigenstates, such that the time-evolved state can be written:

|ψ(t)〉 j =

Nq∑

k

ck j(t) |(~K)−1 p = k + β〉, (5.1.2)

where |ψ(t)〉 j is the time-evolved state corresponding the the jth of Nq initial momentum
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eigenstates. The second order momentum moment is given by:

〈p̂2〉(t) = N−1
q

Nq∑

j

〈 p̂2〉 j(t) = N−1
q

Nq∑

j

〈ψ(t)| p̂2|ψ(t)〉 j. (5.1.3)

The momentum distribution can be read off from the absolute square of the coefficients
ck j(t) for the case of a single initial momentum state, and tells us the probability of the
system being in a given k subspace (some given value of k, but any value of β). For an
ensemble of Nq states, the total probability Pk(t) of finding an atom with a certain discrete
momentum k is given by the normalized sum of the absolute squares of the ck j(t) coefficients,
Pk = N−1

q
∑

j|ck j(t)|2.

It is desirable for our momentum distribution plots to be log-normalized so that fine features
may be resolved. In practice momentum states with higher k-values receive a negligible
amount of population compared to states near k = 0, and so when displaying our momentum
distributions we impose a cutoff value C, such that the condition Pk > C is true for all Pk and
t and the problem of taking the logarithm of a near-zero population is avoided.

5.2 ε-pseudoclassical model

In the case of the ε-pseudoclassical model, momentum distribution dynamics are obtained
by evolving a statistical ensemble of Nc classical particles according to Eq. (4.2.4) and
Eq. (4.2.5) (note that Nc need not in general be equal to Nq). Though the trajectory of
each particle does not in itself have a clear physical meaning, the evolution of an ensemble
of sufficiently large size can be used to produce a facsimile of the quantum momentum-
state-population-distribution of the gas. We place the momentum data into bins of width
∆p = ~K, normalize the resultant population distribution and from this extract the mean
squared momentum.

It is possible to produce an approximate momentum distribution also for the case of a zero
temperature gas, by settingJ(β) = 0 and choosing a random ensemble of initial θ values; the
ensemble approximates a single momentum eigenstate with a given β. For the case of a finite-
temperature gas, J(β) values are randomly drawn from a Maxwell–Boltzmann distribution,
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and θ values from a uniform distribution.



Chapter 6

Comparison of quantum and
pseudoclassical results

6.1 Dynamics of the pseudoclassical map

To gain insight into the system dynamics, it is useful to construct (θ,J) Poincaré sections,
which in this case are stroboscopic maps defined by Eq. (4.2.4) and Eq. (4.2.5), evolved for
some number of kicks N. We remark that we have opted to solve the equations of motion
generated by H1 numerically rather than using the exact Jacobi elliptic functions for ease
of implementation; this still requires vastly less computational power to solve the time evo-
lution of the system than the Fourier methods generally used in a fully quantum treatment.
Inspection of Eq. (4.2.4) and Eq. (4.2.5) reveals that there are exactly two free parameters:
the driving strength Ṽ , and the quasimomentum β. We therefore construct a selection of
Poincaré sections varying these, choosing Ṽ = 0.251 when we vary β (Fig. 6.1 — this value
is motivated by typical experimental values [1, 18, 19, 58, 60, 65, 66, 67, 68, 69, 70]), and
β = 0 when we vary Ṽ (Fig. 6.2). The Poincaré section of Fig. 6.1(a) [repeated in Fig. 6.2(a)
for ease of comparison between different β subspaces and values of Ṽ] corresponds to that of
an exact quantum resonance in the δ-kicked particle case (for which the dynamical behaviour
varies from resonant to antiresonant, depending on the value of β [2, 51, 57]). There are two
stable fixed points visible at (0,0) and (−π, 0) ≡ (π, 0), each surrounded by concentric or-
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Figure 6.1: Poincaré sections for (θ,J(β)) as evolved by Eq. (4.2.4) and Eq. (4.2.5), corre-
sponding to the β = 0, 0.05, 0.2, and 0.25 subspaces for (a), (b), (c), and (d) respectively,
with ` = 2 and Ṽ = 0.251. Each black circle represents one of 100 initial phase-space points,
and each color represents the evolution of a single phase-space point over 1000 kicks. The
smaller black points in (c) and (d) link up the rotational or elliptic orbits, respectively, (which
for β = 0.2 and β = 0.25, respectively, takes substantially longer than 1000 kicks).

bits characteristic of regular (non-chaotic) motion. Fig. 6.1 (d) corresponds to the β = 0.25
subspace, which we expect to behave as an antiresonance in the δ-kicked limit. Clearly the
system dynamics vary dramatically between different β subspaces, and we must therefore
consider them all when modelling a thermal gas.

In Fig. 6.2 we see that, as we increase the driving strength Ṽ from Ṽ = 0.251, a region of
pseudorandom trajectories opens up in the outer parts of each system of elliptic orbits, until
the Poincaré section becomes predominantly chaotic for Ṽ = 7.51. We remark that such high
values of Ṽ , combined with small values of ε, correspond to very high laser intensities, mak-
ing it unclear what the transition to chaos in the ε-pseudoclassical model really represents in
an atom-optical context.
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Figure 6.2: Poincaré sections for (θ,J(β)) as evolved by Eq. (4.2.4) and Eq. (4.2.5), cor-
responding to the β = 0 subspace for driving strengths Ṽ = 0.251, 2.51, 5.01, and 7.51 for
(a), (b), (c), and (d) respectively, with ` = 2. Each black circle represents one of 100 initial
phase-space points, and each color represents the evolution of a single phase-space point
over 1000 pulses.

6.2 Zero-temperature gas

We now compute the evolution of 〈p̂2〉 over time for a range of values of ε and constant
φd (meaning that Ṽ ≡ εφd scales linearly with ε), using both the pseudoclassical and fully
quantum calculations, at zero temperature. This is actually computationally straightforward
in the quantum case, as one need only evolve a single initial (zero momentum) eigenstate.

We display our results in Fig. 6.3(a). Two behaviors are clearly visible:

1. As ε increases, the approximate pseudoclassical simulations deviate from the quantum
dynamics after a smaller number of pulses. As this model relies on an expansion about
ε as a small parameter, this deviation can be thought of as a cumulative error in the
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Figure 6.3: (a) Plot of 〈p̂2〉 in units of ~2K2 vs. number of kicks for a zero temperature gas,
with φd = 0.8π and ` = 2. The scaled pulse duration ε takes the values 10−2+2 j/11, where
j = {0, 1, 2, .., 10}. The curves represent the results of the quantum dynamics [Eq. (3.3.1)],
and the points those of the ε-pseudoclassical model [Eq. (4.2.4) and Eq. (4.2.5)], with lower
values of ε giving rise to higher peak values of 〈p̂2〉. Hence, the black curve corresponds to
ε = 0.01 ( j = 0) and the red curve to ε = 0.658 ( j = 10). (b) Rescaling of (a) by ε2 in the
〈p̂2〉 axis and ε in the kick-number axis such that a universal curve is revealed, where all data
overlap over a suitably short timescale.
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pseudoclassical dynamics that increases in magnitude each time the classical maps are
applied. Results like those of Fig. 6.3(a) allow us to characterize time scales over
which we can expect agreement between the pseudoclassical and quantum treatments
for a given value of ε.

2. The peak value of 〈p̂2〉 is higher for smaller values of ε. Recalling that ε is simply
a rescaled pulse duration, as it approaches zero the system behaves increasingly as if
it were receiving δ-kicks, for which 〈p̂2〉 would increase indefinitely over time. It is
again clear that the smaller the value of ε, the longer the timescale over which the
system behaves as if it were δ-kicked. At an ε-dependent point in time, 〈p̂2〉 deviates
from the quadratic growth associated with perfect quantum resonance, corresponding
to violation of the Raman–Nath regime. We can see that 〈p̂2〉must eventually decrease
by inspection of the phase space diagram in Fig. 6.1(a), as the spread of trajectories is
forced to eventually decrease simply because they manifest as bounded quasiperiodic
orbits.

Rescaling the axes in Fig. 6.3(a) according to the value of ε reveals a universal curve, which
exists independent of this value, as displayed in Fig. 6.3(b). This universality appears to be
essentially exact in the pseudoclassical model, but ceases to apply for the quantum calcu-
lations once they deviate significantly from the pseudoclassical predictions. The observed
oscillating decay encapsulates the dynamics visible in Fig. 6.1(a), and appears indicative of
the dephasing of an ensemble of anharmonic oscillators.

6.3 Quasimomentum dependence

Figure 6.4 shows comparisons of 〈 p̂2〉 evolution as computed by the quantum and ε-
pseudoclassical models for initial conditions corresponding to a single momentum eigenstate
with k = 0 and different values of β. The pseudoclassical and quantum models agree well
over the entire range of β subspaces. Hence, for any reasonable initial momentum distribu-
tion, we can expect the pseudoclassical model to reproduce the correct quantum dynamics
provided that ε is small enough on the timescale to be considered. We have chosen ε = 0.001
for Fig. 6.4(a), where the dynamics are essentially coincident with those induced by perfect
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Figure 6.4: Plots of the time evolution of the log of 〈p̂2〉 in units of ~2K2 vs. number of
kicks, for different values of the quasimomentum β = {0, 0.05, 0.1, 0.15, 0.2, 0.25}, for an
otherwise zero temperature gas [initial momentum eigenstate with J(β) = 0]. The smooth
curves represent results of the quantum evolution [Eq. (3.3.1)], and the points those of the
effective classical model [Eq. (4.2.4) and Eq. (4.2.5)]. For figure (a) ε = 0.001, and for figure
(b) ε = 0.2. Other parameters are φd = 0.8π and ` = 2.
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δ-kicks for the chosen parameters and pulse numbers. In Fig. 6.4(b) we have ε = 0.2; com-
paring with Fig. 6.4(a) it is clear that time evolution of 〈p̂2〉 is significantly affected by the
finite duration of the pulses. Note, however, that although ε = 0.2 would seem to be bor-
derline in terms of being a “small parameter,” the agreement between the ε-pseudoclassical
model and the full quantum dynamics still appears to be excellent.

As β increases from 0 the evolution of 〈p̂2〉 over time progresses from resonant to antireso-
nant behavior. This progression is twofold periodic in the space of quasimomenta: Eq. (4.2.5)
shows that for ` = 2 the same pseudoclassical dynamics are observed for β+1/2 as for β (this
symmetry can also be deduced for expectation values derived from the fully quantal Floquet
operator [Eq. (4.2.2)] acting on momentum eigenstates [51]). Furthermore, the Hamiltonian
is an even function of both p̂ and x̂, meaning that the same 〈p̂2〉 dynamics are observed for −β
as for β. Hence, the data plotted in Fig. 6.4 effectively spans the full range of β dependencies
when the initial value of J(β) (or k) is 0.

6.4 Finite temperature Monte Carlo

We now perform comparative quantum and pseudoclassical Monte Carlo simulations for
experimentally achievable timescales. The initial finite temperature ensembles are chosen
by random sampling from a Maxwell–Boltzmann distribution (combined with a uniform
distribution for θ in the case of the pseudoclassical dynamics), as described in section 5. In
Figs. 6.5(a–f) and Figs. 6.5(h–m), we compare momentum distributions, computed for three
values of ε, using both the pseudoclassical and quantum treatments, over a small number of
pulses, at zero temperature (w = 0) and for Caesium atoms at Tw ' 5 µK (w = 2.5). In
Fig. 6.5(g) and Fig. 6.5(n) we show the associated values of 〈p̂2〉 computed for each case to
check that our comparison takes place within the regime of validity of the ε-pseudoclassical
model. For the zero-temperature (w = 0) case, the population splitting in momentum space
characteristic of a quantum resonance can be seen in both models over the full 30 pulses for
ε = 0.02. For larger values of ε we observe a slowing in the momentum spreading, followed
by a clear plateau in the case of ε = 0.2, which is also visible in the corresponding plot of
〈p̂2〉.
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Figure 6.5: Comparison between the dynamics of the momentum distributions computed
by the fully quantum model, [Eq. (3.3.1)], and the pseudoclassical model [Eq. (4.2.4) and
Eq. (4.2.5)] for zero (w = 0) and finite temperature gases (w = 2.5), with φd = 0.8π and
`=2, for differing values of the scaled pulse duration ε. The first and second columns show
momentum distributions for a zero temperature gas (w = 0) as computed by the quantum
[(a), (c), (e)] and pseudoclassical models [(b), (d), (f)] respectively. Columns 3 and 4 give
the momentum distributions computed by the quantum [(h), (j), (l)] and effective classical
models [(i), (k), (m)] respectively, for w = 2.5. In each row, the distribution dynamics
are computed for a different value of ε: row 1 [(a), (b), (h), (i)] has ε = 0.02, row 2 [(c),
(d), (j), (k)] has ε = 0.11, and row 3 [(e), (f), (l), (m)] has ε = 0.2. To accommodate the
logarithmic color scale, we have chosen a cutoff value of C = 10−11. The corresponding
time-evolution of 〈p̂2〉 [in units of ~2K2] is given in (g), for w = 0 and (n) for w = 2.5; solid
lines represent results of quantum calculations, and symbols those of the effective classical
model (squares correspond to ε = 0.2, triangles to ε = 0.11, and circles to ε = 0.02). Monte
Carlo calculations were carried out with Nc = 105 particles, or Nq = 105 state vectors, as
appropriate.
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For each value of ε the overall shape of the momentum distribution computed by the ε-
pseudoclassical model matches that of the fully quantum calculation well. A degree of in-
ternal structure is present in the zero-temperature (w = 0) quantum distributions that is not
present in their ε-pseudoclassical counterparts. Similarly, in both the w = 0 and w = 2.5
quantum distributions, there is further structure visible, where the most extreme populated
states in momentum space meet the near zero-population background, that is not present in
the pseudoclassical calculation. We can clearly see from Fig. 6.5(g) and Fig. 6.5(n) that the
evolution of 〈p̂2〉 is nonetheless reproduced perfectly over a short time-scale. For the w = 2.5
case, we see a clearly defined feature centered around p = 0 representing a large concen-
tration of population. This is typical of finite-temperature quantum-resonant dynamics in
atom-optical systems [15, 42, 51], and can be understood from Fig. 6.4; essentially a broad
initial momentum distribution means that both resonant (β = 0) and bounded antiresonant
(β = 0.25) dynamics take place simultaneously, as well as the whole range of intermediate
behaviour, leading to an overall averaging of the spreading in momentum space.

With atom interferometry in mind, we have repeated these simulations with the addition of
a time-reversal event occurring at nR = 15 pulses (as described in section 3.4), displaying
our results in Fig. 6.6. In Fig. 6.6(a) and Fig. 6.6(b) (ε = 0.02 and w = 0) we clearly have
a near-perfect time-reversal process, with the majority of the population returning to the
zero-momentum state when n = 2nR. Increasing ε to 0.11, we can see from Fig. 6.6(c) and
Fig. 6.6(d) that the asymmetry about n = 2nR has increased very slightly, and for ε = 0.2 we
can see from Fig. 6.6(e) and Fig. 6.6(f) that the asymmetry has become even larger (similar
effects were observed in [33]). For w = 2.5, however [Figs. 6.6(h–n)], each distribution
begins to refocus but then again increases in breadth (this is the same behaviour as expected
for a δ-kicked atomic gas). Note that as the value of ε increases the final distributions become
narrower, which is an effect of using finite-duration pulses. In each case the ε-pseudoclassical
predictions give good agreement with the shapes of the momentum distributions yielded by a
fully quantum treatment, with the missing edge detail around each quantum distribution only
manifest at around the Pk = 10−7 level. Crucially, it is clear that the lack of internal structure
in the ε-pseudoclassical distributions is not a problem for calculating 〈 p̂2〉 under time-reversal
or at finite-temperature. An interferometric measurement would look at deviations from a
perfect time reversal, potentially motivating a study of the fidelity of a time-reversed kicked
gas with finite-duration pulses, for example using a similar approach to that derived for the
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Figure 6.6: Comparison between the dynamics of the momentum distributions computed
by the fully quantum model, [Eq. (3.3.1)], and the pseudoclassical model [Eq. (4.2.4) and
Eq. (4.2.5)] for zero (w = 0) and finite temperature gases (w = 2.5), with φd = 0.8π and
`=2, for differing values of the scaled pulse duration ε. In each case a time-reversal event
(phase-shifting the standing wave by π) occurs at the 15th of 30 pulses (marked by the dashed
lines). The first and second columns show momentum distributions for a zero temperature
gas (w = 0) as computed by the quantum [(a), (c), (e)] and pseudoclassical models [(b),
(d), (f)] respectively. Columns 3 and 4 give the momentum distributions computed by the
quantum [(h), (j), (l)] and effective classical models [(i), (k), (m)] respectively, for w = 2.5.
In each row, the distribution dynamics are computed for a different value of ε: row 1 [(a),
(b), (h), (i)] has ε = 0.02, row 2 [(c), (d), (j), (k)] has ε = 0.11, and row 3 [(e), (f), (l), (m)]
has ε = 0.2. To accommodate the logarithmic color scale, we have chosen a cutoff value of
C = 10−11. The corresponding time-evolution of 〈p̂2〉 [in units of ~2K2] is given in (g), for
w = 0 and (n) for w = 2.5; solid lines represent results of quantum calculations, and symbols
those of the effective classical model (squares correspond to ε = 0.2, triangles to ε = 0.11,
and circles to ε = 0.02). Monte Carlo calculations were carried out with Nc = 105 particles,
or Nq = 105 state vectors, as appropriate.
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δ-kicked rotor in [71].

Having carried out a detailed comparison of the quantum and ε-pseudoclassical models over
relatively short time scales and at finite temperature, we can reasonably assume that whatever
value we select for w, the pseudoclassical model will produce accurate results, provided an
appropriate value of ε is chosen. To better understand the variation of 〈p̂2〉 with temperature
over longer time scales, we have carried out simulations for six values of w, using only the ε-
pseudoclassical model (results displayed in Fig. 6.7). We choose ε = 0.2 for each simulation,
as this is a relatively large value where we have already shown excellent agreement in 〈p̂2〉
with the fully quantum treatment over a range of 100 pulses (see Fig. 6.4). Plotting 〈p̂2〉/w2

versus the number of kicks n, the n = 0 value for each curve is the same, but from n = 1 they
separate markedly — the lower the value of w, the greater the relative increase, due to the
increased dominance of quantum-resonant behavior centered at β = 0. The computational
simplicity of the pseudoclassical model means that such a plot can be produced in a few
minutes on a standard desktop computer, which is potentially invaluable when planning a
hypothetical atom-interferometry experiment.
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Figure 6.7: Plots of the time evolution of 〈p̂2〉/w2 in units of ~2K2 vs. number of kicks, with
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10−1+2 j/5, where j = {0, 1, 2, ..., 5}, as computed by the pseudoclassical model [Eq. (4.2.4)
and Eq. (4.2.5)].
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Chapter Summary

• We have derived an ε-pseudoclassical model for quantum resonances in a finite-
temperature dilute atomic gas driven by finite-duration off-resonant laser pulses,
and compared to its fully quantum counterpart. We have investigated the dy-
namics of the ε-pseudoclassical model and identified certain phase space fea-
tures associated with quantum resonant behavior.

• We have further shown how increasing the parameter ε shortens the time-scale
over which the quantum and ε-pseudoclassical calculations agree at zero tem-
perature, as well as the amount of time before a quantum resonance begins to
plateau due to violation of the Raman–Nath regime. We have shown that the
accuracy of the ε-pseudoclassical model is unaffected by the initial state’s quasi-
momentum, and is therefore suitable for treating a finite-temperature gas. We
have explicitly performed Monte Carlo simulations to this end and compared
both the expectation value 〈p̂2〉 and momentum distributions as computed by
each model, and found that the ε-pseudoclassical model reproduces the 〈 p̂2〉
essentially exactly, even at finite temperature, and the general shape of the asso-
ciated momentum distributions up to small details.

• We have also shown explicitly that the ε-pseudoclassical model correctly treats
the time-reversal mechanism necessary for light-pulse atom-interferometry.

• Finally, we have performed ε-pseudoclassical Monte Carlo simulations to de-
termine the behavior of 〈 p̂2〉 at different values of w for a large number of kicks.
We expect this approach to be useful in quantifying the suitability of particular
experimental parameter regimes for light-pulse atom interferometry.



Part II

Lattice depth characterisation using
multipulse atom diffraction
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Chapter 7

Introduction

Precision measurement of optical lattice [4] depths is important in a broad range of fields
in atomic and molecular physics [72, 73], most notably in atom interferometry [36, 61],
many body quantum physics [74, 75], accurate determination of transition matrix elements
[76, 77, 78, 79, 80], and, by extension, ultraprecise atomic clocks [81, 82]. Lattice depth
measurement schemes include methods based on parametric heating [83], Rabi oscillations
[84], and sudden lattice phase shifts [85]. The most commonly used scheme is Kapitza-Dirac
scattering [86], where an ultracold atomic gas is exposed to a pulsed laser standing wave and
theoretical predictions for the fraction of atoms found in each of the allowed momentum
states are fit to time of flight measurements to determine the lattice depth [75, 87, 88, 89].
However, when determining the matrix elements of weak atomic transitions, the lattice
depths involved are correspondingly small (V.0.01ER for any atom, were V is the lattice
depth and ER is the laser recoil energy), such that signal-to-noise considerations become an
issue [90].

Recently, the work of Herold et al. and of Kao et al. [30, 32] has suggested that this compli-
cation can be mitigated by using multiple laser standing wave pulses, and alternating each
with a free evolution-stage, both with duration equal to half the Talbot time [21, 24, 91],
such that the population in the first diffraction order is coherently added to with each pulse,
improving contrast relative to the zeroth order.a

aIn practice, this additive effect is only maintained for a certain number of pulses set by the lattice depth, as
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The modeling approach taken in [30, 32] is valid for a weak lattice which is pulsed a small
number of times, corresponding to the “weakly-diffracting limit”. In Chapter 8 we describe
our model system and its general time evolution. We then present a full analytic model for
the time evolution of the atomic populations of the zeroth and first diffraction orders, which
is sufficient for a “weak” lattice (Chapter 9), as well as numerical simulations incorporating
higher momentum states at both large (V>0.1ER) and small lattice depths, which we compare
for typical experimental values (Chapter 10). We also explore the role of finite-temperature
effects in such experiments (Chapter 11).

we discuss in Chapter 10.



Chapter 8

Model system: BEC in an optical lattice

8.1 Alternating Hamiltonian evolutions

We consider a BEC with interatomic interactions neglected.a This can be achieved experi-
mentally by exploiting an appropriate Feshbach resonance [46, 48, 49, 50], or by allowing
the cloud to expand adiabatically [92]. Working in this regime means that we need only
consider the single-particle dynamics of each atom in the gas. The laser is far off resonance
such that the atom has no internal degrees of freedom [93], and we consider only the motion
of the center of mass. We proceed in the same fashion as [3], and consider that the BEC is
periodically perturbed by an off-resonant 1d optical lattice, alternated with a free evolution.

The center of mass dynamics of a single atom in this regime is alternatingly governed by the
following Hamiltonians [3]:

ĤLatt =
p̂2

2M
− V cos(Kx̂), (8.1.1a)

ĤFree =
p̂2

2M
, (8.1.1b)

where p̂ is the 1d momentum operator in the x direction (see Fig 8.1), x̂ is the associated

aThe quantum degeneracy is not important in our analysis, as the requirement is simply for a very narrow
initial momentum spread.
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Figure 8.1: Diagram of a multi-pulse atom-diffraction setup. (a) shows a cold atomic gas
subjected to multiple lattice pulse evolution sequences, before a time of flight beam measures
the atomic population in each of the allowed momentum states, (b) shows the modulation
of the lattice depth in time, where V is the lattice depth (dimensions of energy) when the
standing wave pulse is on, and T1/2 is the Talbot time as defined in Eq. (8.1.2). For simplicity,
the laser standing wave has been oriented orthogonally to the gravitational direction, however
we note that this is equivalent to a vertically oriented system in which a phase-shifter element
is used to introduce a time dependent phase on the standing wave, which is tuned to cancel
out gravity [1, 3].
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position operator, M is the atomic mass, and V is the lattice depth,b with dimensions of
energy, of a lattice with wavenumber K (K = 2KL, here KL is the laser wavenumber) [2, 52].

As stated in the introduction, Herold et al. and Kao et al. [30, 32] suggested that when
measuring very small lattice depths (V∼0.01ER, here ER = ~2K2/8M), the signal can be
optimized by working in the regime where both the lattice pulse and free evolution have a
duration equal to the half Talbot time [94],

T1/2 =
2πM
~K2 . (8.1.2)

This is half the full Talbot time, where the Talbot time is the elapsed time for which the free
evolution operator [generated by Eq. (8.1.1b)] collapses to the identity when applied to a
momentum state that is an integer multiple of ~K.c

8.2 Time evolution

The periodicity in time of the system admits a Floquet treatment [51], where the time evolu-
tion of an initial state |ψ(t = 0)〉 for successive lattice-pulse sequences is given by the repeated
action of the system Floquet operator F̂ on the chosen initial state. This can be written as
|ψ(t = 2NT1/2)〉 = F̂N |ψ(t = 0)〉, where N is the number of pulse sequences.

The Floquet operator F̂ governing a lattice pulse of duration T1/2 [Eq. (8.1.2)], followed by
a free evolution of the same duration, can be determined straightforwardly by constructing
the time evolution operators associated with Eqs. (8.1.1a) and (8.1.1b). Further, the spatial
periodicity of the laser standing wave enables us to invoke Bloch theory [54]. By recasting

bIt is conventional to define the lattice depth with respect to a potential of the form U0 sin2(Kx/2), in this
work we refer to the lattice depth as V = −U0/2 = −~Ω2/8∆ for a laser with Rabi frequency Ω and detuning
∆ ≡ ωL − ω0.

cFor an initially zero-temperature gas, these conditions correspond to those for an antiresonance in the
quantum δ-kicked particle, where the momentum width of the gas is bounded, and alternates between two
values in time [2, 17, 21, 24, 25, 27, 28, 42, 51, 57, 60].
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the momentum operator p̂ in a basis such that:

(~K)−1 p̂ = k̂ + β̂, (8.2.1a)

k̂|(~K)−1 p = k + β〉 = k|(~K)−1 p = k + β〉, (8.2.1b)

β̂|(~K)−1 p = k + β〉 = β|(~K)−1 p = k + β〉, (8.2.1c)

with k ∈ Z and β ∈ [−1/2, 1/2) [55], we elucidate that the total dimensionless momentum
(~K)−1 p associated with a single plane wave is the sum of k, the discrete part, and β as
the continuous part or quasimomentum, which is a conserved quantity. In other words, only
momentum states separated by integer multiples of ~K are coupled [3, 16]. We may therefore
say that the system Floquet operator in a single quasimomentum subspace can be written:

F̂(β) = F̂(β)FreeF̂(β)Latt = exp
(
−i

[
k̂2 + 2k̂β

2

]
2π

)
× exp

(
−i

[
k̂2 + 2k̂β

2
− Veff cos(θ̂)

]
2π

)
,

(8.2.2)
where Veff = V M/~2K2 is the dimensionless lattice depth, θ̂ = Kx̂ and 2π is the rescaled half
Talbot time.d By using Eq. (8.2.2) to calculate |ψ(N)〉 =

∑
j c j(N)|k = j〉, the population in

each discrete momentum state |k = j〉 after N pulses is given by the absolute square of the
individual coefficients P j(N) = |c j(N)|2. In this paper we employ the well-known split-step
Fourier approach [3, 33], as well as matrix diagonalization in a truncated basis [32, 95] to
determine |ψ(t = N)〉 beyond the weakly-diffracting limit, as well as an analytic approach in
the weakly-diffracting case.

dGenerally speaking Eq. (8.2.2) should include the operator β̂, however, because we restrict our analysis to
initial states within a single quasimomentum subspace, β is simply a scalar value, and relative phases which
depend solely on β can be neglected.



Chapter 9

Analytic results in a two-state basis

For an initially zero-temperature gas (β = 0) subjected to a small number of pulses from
a shallow lattice, a useful approximation is to assume that no population is diffracted into
momentum states with |p| > ~K, the so-called “weakly-diffracting limit”. Mathematically,
this regime corresponds to the time evolution of an initial state |ψ(t = 0)〉 = |k = 0〉 in a
space spanned only by the |k = −1〉, |k = 0〉 and |k = 1〉 states of the β = 0 quasimomentum
subspace.

The symmetry of the lattice and free evolution Hamiltonians about |k = 0〉 guarantees that
for our chosen initial state, the population diffracted into the |k = 1〉 state is identical to that
diffracted into the |k = −1〉 state, as the amplitude associated with each state is the same. We
take advantage of this by expressing the system Hamiltonians (8.1.1a), (8.1.1b) as matrices
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in the truncated momentum basis:

|0〉 = |k = 0〉 =



0
1
0


, (9.0.1a)

|+〉 =
1√
2

(|k = 1〉 + |k = −1〉) =



1
0
0


, (9.0.1b)

|−〉 =
1√
2

(|k = 1〉 − |k = −1〉) =



0
0
1


, (9.0.1c)

yielding the following 3 × 3 matrix representation of the lattice Hamiltonian:

H3×3
Decoupled =



1/2 −Veff/
√

2 0
−Veff/

√
2 0 0

0 0 1/2


. (9.0.2)

There is no coupling between the |0〉 state, and the antisymmetric |−〉 state, implying
that for an initially zero-temperature gas there is no population transfer into the |−〉 state
for all time. The remnant basis is therefore only two-dimensional, with basis states:
|0〉2 ≡

(
0
1

)
and |+〉2 ≡

(
1
0

)
, which we may use to represent Equation (8.1.1a) as the 2 × 2

matrix:

HTrunc =


1/2 −Veff/

√
2

−Veff/
√

2 0

 . (9.0.3)

We recognize Eq. (9.0.3) as a Rabi matrix, the eigenvalues E± and normalized eigenvectors
Ē± of which are well known [96], and can be used to calculate the populations of the |0〉 and
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|+〉 states [P0(N,Veff) and P+(N,Veff) respectively] after N pulses:

P0(N,Veff) = 1 − A sin2(Nφ/2), (9.0.4a)

P+(N,Veff) = A sin2(Nφ/2), (9.0.4b)

A =

8V2
eff

sin2
(
π
√

1 + 8V2
eff
/2

)

8V2
eff

+ cos2
(
π
√

1 + 8V2
eff
/2

) , (9.0.4c)

φ = 2 arctan



√
8V2

eff
+ cos2

(
π
√

1 + 8V2
eff
/2

)

sin
(
π
√

1 + 8V2
eff
/2

)


, (9.0.4d)

which are explicitly derived in appendix A [34]. We can see from Eqs. (9.0.4a) and (9.0.4b)
that in the weakly-diffracting limit, P0 and P+ take the form of a sinusoidal oscillation with
the number of pulses, N, entirely characterized by an amplitude A and a “frequency” φ, both
of which depend on the lattice depth Veff as the only free parameter. We note the similarity
to the result reported in [89] for single pulse diffraction. The variation of A and of φ versus
Veff is displayed in Fig. 9.1.a

φ initially increases approximately linearly with Veff, meaning that over a sufficiently small
range of lattice depths, we should expect to see an approximate universality in the population
dynamics when the time axis is scaled by Veff . This scaling is explored in Chapter 10. The
exact form of φ in the limit where Veff → 0 is φ = 4

√
2Veff (see Appendix B), which

corresponds to the straight line plotted in Fig. 9.1(a). Further, if we substitute this result
into Eq. (9.0.4b) and expand it as a Taylor series to leading order, we recover the familiar
quadratic dependence of P+ on N of Herold et al. [30, 32] (see Appendix B.3):

P+ = 8N2V2
eff ∝ N2. (9.0.5)

This result is valid subject to the condition Nφ(Veff)/2 � 1. As Veff is increased beyond
this regime, A, which decreases steadily in the range of linearity of φ, reaches its first node
at Veff =

√
3/(2

√
2) ' 0.612, and afterward at all points where Veff =

√
4m2 − 1/(2

√
2),

aNote that when explicitly evaluating Eq. (9.0.4d), it is desirable to use the “atan2” numerical routine e.g.
in Python; this ensures that the sign of the argument is taken into account, which avoids singularities in the
frequency.
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Figure 9.1: Plot of the variation of φ/2π, (a), and the amplitude A, (b), versus Veff, all quan-
tities are dimensionless. The blue curves [beginning at φ/2π = 0 for (a), and A = 1 for (b)]
give the full analytic form for each expression, corresponding to Eqs. (9.0.4d) and (9.0.4c) re-
spectively. The solid red lines show our linear approximation to φ for Veff � 1, φ ≈ 4

√
2Veff

[the straight line of (a)], and our limiting value of A for Veff → ∞, A = sin2(
√

2πVeff) [the
lowermost curve of (b)]. The horizontal dashed line in (a) appears at φ = π, which is a
physically relevant value about which φ oscillates beyond its first turning point. The ver-
tical lines correspond to the points where φ = π, and A = 0, both of which always occur
simultaneously.
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m ∈ Z+, which are denoted by the vertical dashed lines of Fig 9.1. Physically, these values
of Veff correspond to a situation in which there is no pulse-to-pulse population transfer out
of the |k = 0〉 state, at least in the weakly-diffracting limit. It can be shown analytically (see
Appendix B), that φ = π at those values of Veff where A has a node, shown by the intersection
of the vertical and horizontal dashed lines of Fig 9.1(a).

In the limit as Veff → ∞, φ = π wherever Veff = n/
√

2, with an overall oscillatory behavior
of ever-decreasing amplitude around this value, while A takes on the form of a sinusoidal
oscillation A = sin2(

√
2πVeff).



Chapter 10

Incorporating higher diffraction orders

10.1 Numerical simulations for a large momentum basis

Having obtained analytic results for the time-evolved populations in the weakly-diffracting
limit, we may test their domain of validity by using standard numerical techniques to com-
pute the full momentum distribution of the system, and sampling the population in the |k = 0〉
state, P0. We follow the same approach as [33, 51] and work within the momentum basis.
The action of the Floquet operator (8.2.2) on the total state of the system, |ψ〉, is calculated
by a split-step Fourier method, on a basis of 2048 momentum states, which is exhaustive for
any practical purpose.

The analytic results of Eqs. (9.0.4a,9.0.4b,9.0.4c,9.0.4d) are compared to this exact numeri-
cal calculation in Fig. 10.1 for fixed values of Veff (see caption for details). From Fig. 10.1(a)
we can clearly see that for higher values of the effective lattice depth, the sinusoidal character
of the analytic result for P0 is revealed, as well as a similar oscillatory behavior in the full
numerics. Naively, we may say that increasing Veff gives rise to a greater deviation of the
full numerics from the analytics. While this is true when comparing over a fixed number
of pulses, we may use our argument in Chapter 9, that there is an approximate universality
in Veff and the number of pulses, to clarify this statement by means of the universal curve
displayed in Fig. 10.1(b).
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Figure 10.1: (a): Plot of population in the |k = 0〉 state, P0, versus number of pulses, as
calculated in a truncated momentum basis with |k| ≤ 3 by numerical diagonalization (hollow
markers), and full numerics (Fourier split-step calculation using 2048 basis states) (solid
markers). The solid lines correspond to the analytic solution for P0 in a two state basis, as
given by Eq. (9.0.4a), while the dashed lines represent the quadratic solution of Herold et
al. [Eq. (9.0.5)]. Each set of markers corresponds to a fixed value of the effective lattice
depth ranging from the slowest-oscillating curve at Veff = 0.01 (red circles) to the fastest
oscillating one at Veff = 0.11 (black pentagons) in steps of 0.02. (b): Reproduction of (a),
with the number of pulses axis scaled by the dimensionless lattice depth Veff to reveal an
approximate universal curve both in the analytics and the numerical simulations. The data
have been extended to span the full range of the horizontal axis. The universal curve reveals
a drop in the amplitude of P0 as calculated by the full numerics at the first revival, which is
not reproduced by the analytics, but is reproduced in the truncated momentum basis. In (b),
the oscillation frequency of the numerical curve increases compared to that of the analytic
result as the number of pulses or the lattice depth is increased. After three half-oscillations
on the universal curve, the truncated basis result begins to deviate appreciably from the full
numerics.
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Figure 10.1(b) clearly shows that the universality holds approximately for the full numerics
also, and that the analytics cease to agree with the full numerics at approximately the same
point on the universal curve, regardless of the value of Veff in the chosen range. We may
therefore modify our previous statement on the range of validity of the analytics, and say
instead that the analytics are sufficient to understand the system provided the product of
the number of pulses and effective lattice depth is sufficiently small. We note specifically
that there is a frequency drift which increases along the curve, and a marked reduction in
amplitude of the full numerics as compared to the analytics at the first revival of the curve.
Both features appear due to leakage of population into momentum states with |p| > ~K,
and inform our discussion of the range of validity of the weakly-diffracting limit taken in
previous work. Indeed, the quadratic result of Herold et al. [Eq. (9.0.5)] deviates from
the full numerics at a much smaller value of NVeff than our exact analytic result for two
diffraction orders.

In [30, 32], the regime in which the weakly-diffracting limit is satisfied is given as an in-
equality, NVeff � 1/4, when recast in our system of variables. Though this inequality places
an upper bound on the allowed value of NVeff , it is reasonable to ask the question: “at what
point is NVeff sufficiently small to be considered much smaller than 1/4?” We may answer
this question by reinterpreting the inequality using our universal curve, for which NVeff is
the dependent variable.

By inspection of Fig. 10.1(b), we can see that at NVeff = 1/4, there is still excellent agree-
ment between our analytics and full numerics. To refine this statement, we calculate the
RMS difference between our analytics and full numerics [97] at this point over the range
of chosen lattice depths (defined as RMS=[

∑N
j=1{P0(N,Veff) j − P0(Numerical)(N,Veff) j}/N]1/2,

where N is the number of lattice depth values) as 0.0011 (deviation at the 0.1% level),
meanwhile the quadratic result deviates at the 42% level.a The point at which leakage into
higher momentum-states first becomes appreciable is NVeff ∼ 1/2, with an RMS of 0.0043
(deviation at the 0.4% level). Though this is clearly sufficiently small to still be considered
within the range of validity of the weakly-diffracting limit, beyond NVeff ∼ 1/2, where the
RMS becomes larger, we must incorporate higher momentum-states in order to have a valid

aIn practice, the discretization of the time axis in the number of pulses means that we cannot generally
assume that any data points from the full numerics will fall at the exact value NVeff = 1/4, and so we have
chosen the data closest to this point in our calculation of the RMS.
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Figure 10.2: Comparison between population dynamics for differing values of the dimen-
sionless lattice depth Veff , as computed by full numerics and the two-state analytic model
of Eqs. (9.0.4a) and (9.0.4b). Row 1 [(a), (c), (e)] comprises momentum distributions ver-
sus the number of lattice pulses for an initially zero-temperature gas in a basis of 2048
momentum states. Each false-color plot shows the time evolved population in the first 13
momentum states (|k| < 6), to be read on the colorbar to the right. A cutoff population value
of Pcutoff = 10−11 has been applied to each population distribution to accommodate the log
scale. This illustrates that for this choice of parameters, the amount of population diffracted
into momentum states with |p| > 3~K is negligible. Row 2 [(b), (d), (f)] shows firstly, slices
through the momentum distribution corresponding to the population in the k = 0 state, P0,
(red circles) and the |p| = ~K states, P±1, (blue squares), to which our two-state analytic
model is compared (red and blue solid lines respectively). To clarify the drop in amplitude
in the first revival of P0, the green triangles have been added, which correspond to 1 − P±2

and almost intersect the red circles corresponding to P0, indicating that the overwhelming
majority of the population which has left P0 at this point, has in fact been diffracted into the
|k| = 2 states. At the second revival, the two sets of points are further apart. Population
leakage into the |p| = 3~K states, corresponding to the magenta diamonds, which represent
1 − P±3, explains this effect. Solid lines have been added as a guide to the eye. Each col-
umn corresponds to a fixed value of Veff, [(a),(b)] Veff = 0.07, [(c),(d)] Veff = 0.10, [(c),(d)]
Veff = 0.13.
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model. This motivates the question of how many momentum states are necessary to include
for such a model to be useful for a reasonable choice of experimental parameters.

Figures 10.2 (a,c,e) show a selection of momentum distributions for a range of values of
Veff as calculated by the full numerics, showing momentum states up to |p| ≤ 6~K, with
Figs. 10.2 (b,d,f) showing corresponding slices through the momentum distributions. The
log scale makes clear that there is very little population leakage into momentum states with
|p| > 3~K for the chosen values. Instead we see that there are pronounced oscillations in
population between the |p| = 0 and |p| = ~K states, which are modulated by population
leakage into the |p| = 2~K states, and to a lesser extent the |p| = 3~K states. By inspection
of the lattice Hamiltonian in the momentum basis, this can be explained by the decrease in
magnitude of the off-diagonal coupling terms with state number. In fact, the decrease in
amplitude at the first revival in Fig. 10.1(b) is almost entirely due to population leakage into
the |p| = 2~K states, suggesting that a model incorporating only n = 5 momentum states
should be sufficient to capture the dynamics, up to at least Veff = 1.1. We investigate this
model in the following section.

10.2 Small momentum bases of dimension > 2

To incorporate higher momentum-states we numerically diagonalize Eqs. (8.1.1a) and
(8.1.1b), in a truncated basis of n momentum states, and propagate the time-evolution using
the procedure described in Appendix B.4. Our previous analysis suggests that simulations
using a basis of n = 5 momentum states ought to be sufficient for practical purposes, the
results of which are given by the hollow markers in Fig. 10.1(b). The five state model is an
order of magnitude more accurate than the analytics at NVeff = 1/4 and NVeff = 1/2, with
RMS differences with respect to the full numerics of 0.00018, and 0.00011 respectively. As
expected, the decrease in amplitude at the second revival on the universal curve is reproduced
by this approach, but is clearly also valid over a larger range, up to the fourth turning point
(NVeff ∼ 1.6, RMS deviation 0.0022), beyond which the model begins to overestimate and
then underestimate the exact numerical result.

This difference appears as a result of the basis truncation, as population leakage into states
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with |p| ≥ 5~K is explicitly not possible in this model, though it should be noted that this
effect would only be relevant to experiments performed using a very large effective lattice
depth. An attractive feature of the five state model is that it can in principle be solved
analytically for the time-evolution of the populations, which can be fit to experimental data
to extract more accurate lattice depths.



Chapter 11

Finite-temperature response

The results presented in the previous sections are valid for a gas which is assumed to be
initially at zero temperature; in practice this regime is never fully achieved, even for a BEC.
In this section we consider the role of finite-temperature effects. To find the response of P0

versus the number of pulses for a finite-temperature gas, we calculate the time evolution of
P0 for an ensemble of initial momentum states |ψ(t = 0)〉 = |(~K)−1 p = k + β〉 according to
Eq. (8.2.2), where the initial momentum is defined in a Bloch framework with k and β as free
parameters. For a sufficiently cold gas [temperature Tw . (~2K2/64MkB)]a we need only
consider initial states with k = 0 in order to capture the essential features. In this regime we
choose a fixed value of the lattice depth and scan across the full range of the quasimomentum,
β, as the only free parameter, to find the momentum dependence in the first Brillouin zone
[54] displayed in Fig. 11.1.

Figure 11.1 clearly shows the central resonance at β = 0, where our zero-temperature anal-
ysis has been concentrated. Increasing the quasimomentum to |β| = 0.0625, we can see that
the oscillation in P0 has an amplitude of less than 50% of that at β = 0, and a substantially
different frequency. Hence, the width of the central resonance is relatively narrow compared
to the full width of the Brillouin zone. For an initial momentum distribution of appreciable
width we must consider the surrounding structure when calculating the population dynam-

aThis rule of thumb is chosen such that the initial width of the momentum distribution is at most one quarter
that of the first Brillouin zone.
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Figure 11.1: (a) False-color plot of the time evolution of P0 as computed in a basis of 2048
momentum states for values of the dimensionless quasimomentum β [see Eq. (8.2.1)] rang-
ing from β = −0.5 to β = 0.5 in steps of β = 0.00025 (4001 quasimomentum values). We
have chosen a relatively large lattice depth of Veff = 0.1 such that the different dynamical
behaviors are made clear for the chosen number of pulses N = 40. (b) Slices taken through
the quasimomentum distribution parallel to the time axis for β = 0, 0.0625, 0.125, then in-
creasing in increments of β = 0.125 up to a maximum of β = 0.5, enclosing the full range
of dynamics in the k = 0 subspace. Each vertical set of markers in (a) corresponds to the
position in the quasimomentum distribution of the slices in (b), where the solid lines have
been added as a guide to the eye.
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Figure 11.2: Plot of the finite temperature response of P0 vs (number of pulses)×Veff, where
Veff is the dimensionless lattice depth [see Eq. (8.2.2)], as calculated for an ensemble of
4001 particles each evolved in a basis of 2048 momentum states. The left column [(a), (b)]
corresponds to the weak-lattice regime, and the right column [(c), (d)] to the strong-lattice
regime. The top row of plots [(a), (c)] shows the finite-temperature response of P0 at a tem-
perature of w = 0.00125 for a selection of different lattice depths, Veff = 0.01, 0.02, 0.05 (all
curves fall on top of each other) in the weak regime (a) and Veff = 0.1, 0.2, 0.5 (lower,
middle and uppermost curves) in the strong regime (b). For the bottom row [(b), (d)],
each set of curves and markers corresponds to the response of P0 at a different temperature
(w = 0.00125, 0.0125, 0.125; lower, middle and uppermost curves respectively), where the
effective lattice depth is kept constant at Veff = 0.1 in the strong-lattice case and Veff = 0.01
the weak-lattice case. In all panels, the solid lines correspond to the exact numerical result for
a given lattice depth at zero temperature, while the dashed lines represent the correspond-
ing analytic result at zero temperature in a basis of three momentum states [Eq. (9.0.4a)].
The dashed lines in panels (a) and (b) are difficult to resolve, as they match up with the full
numerical zero-temperature result almost exactly.
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ics, as the zero-temperature behavior will be washed out over time, or even be unresolvable
altogether if the temperature is sufficiently high.

Note that for broader initial momentum distributions, the dynamics will include the sec-
ondary resonances at |β| = 0.5, which have a periodicity of the form P0(N) = cos2(πVeffN),
such that P0 varies between 0 and 1 for all Veff .

Having characterized the first Brillouin zone, we calculate the full finite-temperature re-
sponse of P0 by performing Gaussian weighting in the momentum space according to a
rescaled Maxwell-Boltzmann distribution:

Dk=0(β) =
1

w
√

2π
exp

(−β2

2w2

)
, (11.0.1)

where the dimensionful temperature is given by Tw = ~2K2w2/MkB [51].

Figure 11.2 shows the variation of P0 with the number of pulses, including regimes of both
the strong and weak lattice regimes, and three different values of the initial momentum distri-
bution width w. In overview: in regimes where we have a weak lattice and low temperature
the analytic formula is adhered to almost perfectly; in regimes where we have a weak lattice
and a higher temperature, we begin to see noticeable deviations which occur for a smaller
number of pulses as the temperature is increased; where we have a strong lattice and low
temperature, although the analytic formula is not strongly adhered to as the lattice depth in-
creases, the oscillation frequency appears to be reasonably robust as Veff increases and the
amplitude of oscillation consequently decreases; finally for a strong lattice and higher tem-
perature, the analytic formula is again only adhered to for relatively short times, with that
time being dependent on the temperature.
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Chapter Summary

• We have a zero-temperature analytic formula which yields significant insight
assuming that we are working in the weakly-diffracting limit, and has a vastly
larger domain of validity than the state of the art. In view of this, we argue
that fitting this improved formula to experimental results ought to yield more
accurate values of the lattice depths associated with weak atomic transitions,
where the lattice depth is correspondingly small.

• We have shown that at zero temperature, very small basis sizes are sufficient to
capture the essential features of the population dynamics outside the weakly-
diffracting limit, and investigated how leakage of population into higher order
momentum states affects the dynamics of the population in the zeroth order
momentum state. From this analysis we have more rigorously constrained the
domain of validity of the weakly diffracting limit compared to previous work.

• We have explored the effects of finite temperature initial distributions, and elu-
cidated regimes from which the lattice depths can be determined from the ob-
served dynamics in the lowest diffraction order. In particular we have shown that
in regimes of weak lattice and low temperature, which are those most relevant to
the determination of weak atomic transitions, our zero-temperature analytic for-
mula is sufficient to capture the dynamics of the zeroth order momentum state
population. For strong lattices in both low and high temperature regimes, the
analytic formula still gives a reasonable estimate of the oscillation frequency
over a range of lattice depths.



Part III

Lattice depth characterisation using
continuous grating atom diffraction
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Chapter 12

Introduction

In the previous Part we have presented improved models for the multipulse optical lattice [4]
depth measurement scheme of [30, 32]. These models are useful for accurate determination
of transition matrix elements of weak atomic transitions [76, 77, 78, 79, 80], where the
corresponding lattice depths are small (V.0.01ER for any atom, where V is the lattice depth
and ER is the atomic recoil energy), and other available methods based on Kapitza–Dirac
scattering [75, 86, 87, 88, 89], parametric heating [83], and sudden phase shifts [85] may
suffer from signal-to-noise problems in the measurement of the resultant diffraction patterns.

Better knowledge of these matrix elements can be used to improve the black body radia-
tion correction for ultraprecise atomic clocks [81, 82], and allows quantitative modeling of
atom-light interaction [98]. In our analysis of the multipulse approach, we noted that when
considering a gas with initial momentum ~K/2, the functional form of the time evolution
of the atomic populations in the zeroth diffraction order is markedly simpler and therefore
easier to fit to data to make an accurate measurement of the lattice depth [34].

In this Part of the thesis we explore a measurement scheme based on a regime of very simple,
analytically tractable dynamics that we believe would be useful for determining optical lat-
tice depths. Like [84], it also considers Rabi oscillations between different Bloch bands. The
crucial difference is that the chosen regime accesses simple resonant behavior. We consider a
lattice which is continuously present throughout the experimental sequence, which we show
to be more robust to finite-temperature effects than a multipulse approach considered in [32]
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for the determination of matrix elements. In Chapter 13, we describe our model system and
experimental considerations. In Chapter 14, we introduce a simplified analytic approach for
determining the time evolution of the atomic population in the zeroth diffraction order, and
make a comparison to exact numerical calculations. Finally, in Chapter 15, we present an
approximate analytic model for the finite-temperature response of the system, and discuss
how these may be used to determine both the lattice depth and initial temperature of the
atomic gas.



Chapter 13

Model system: Atomic gas in an optical
grating

13.1 Experimental setup and Hamiltonian

We consider a two-level atom in an assumed noninteracting Bose-Einstein condensate ex-
posed to a far off resonance optical grating, the Hamiltonian of which is given:

H̃Latt =
p̂2

2M
− V cos

(
K

[
x̂ + vφt

])
, a (13.1.1)

where p̂ is the momentum operator along the lattice axis, V is the lattice depth, K is twice the
laser wavenumber kL, M is the atomic mass and vφ is the phase velocity of the grating in the
x direction (vφ=0 for a static grating). For the simpler case of a static grating, we consider a
BEC initially prepared in a momentum state with p = ~K/2.b As shown in Fig. 13.1(a), the
BEC is diffracted by the static optical grating for a time t, before a time of flight measurement
interrogates the population of the gas in each of the allowed momentum states. In principle
there is an infinite ladder of such states, each separated by integer multiples of ~K [3, 16],
though here we show only the zeroth and first diffraction orders. We note that an initial state

aHere H̃Latt refers to the untransformed Hamiltonian of the system in the lab frame.
bThe initial momentum p = ~K/2 is chosen with a view to creating population oscillations between the

zeroth and first diffraction orders with a strong sinusoidal character, as suggested in [34].
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Figure 13.1: (a) A BEC initially prepared in the p = +~K/2 state, where K is twice the
laser wavenumber kL, is exposed to a static optical grating, causing it to diffract into an, in
principle, infinite number of momentum states separated by integer multiples of ~K; here
we show only the first diffraction order. Equivalently, the BEC may be prepared in the
p = 0 state, and exposed to a walking grating with an linearly time-dependent phase [see
Eq. (13.1.1)] as in (b). The dynamics of the setup is identical, though the momenta in the
lab frame are shifted by −~K/2. (c), semiclassical energy-momentum diagram for a single
two-level atom scattering photons from a static optical grating. The atom begins on the
ground state energy parabola, with classical momentum p = ~K/2 before scattering a photon
carrying momentum p = −~K/2 and energy ~2K2/2M, to reach the detuned virtual state
above, before undergoing stimulated emission back to the ground state, resulting in a total
momentum transfer of ∆p = −~K. This scattering process and its exact reversal are the
only processes which semiclassically conserve both the energy and momentum of the atom
grating system, indicating that population transfer between the p = ~K/2 and p = −~K/2
states and vice versa ought to be the dominant process in the system.
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p = ~K/2 can be achieved for instance by Bragg diffraction, or equivalently we may prepare
the BEC in a state with p = 0 and impart an appropriately tuned time-dependent phase vφt to
the standing wave as in Fig. 13.1(b). We show this equivalency in Sec. 13.2 below.

13.2 Gauge transformations and momentum kicks

The Hamiltonian of Eq. (13.1.1) can be transformed to a frame comoving with the walking
grating by use of the unitary transformation

Û = ÛxÛpÛα = exp
(
imvφ x̂/~

)
exp

(
−ivφ p̂t/~

)
exp (iαt/~) , (13.2.1)

where we have chosen α = Mv2
φ/2 for convenience.c Using Ûp x̂Û†p = x̂ − vφt and Ûx p̂Û†x =

p̂ − Mvφ. This transformation yields:

ĤLatt =
p̂2

2M
− V cos (Kx̂) .d (13.2.2)

The Hamiltonian of Eq. (13.2.2) describes the system in a frame moving with velocity −vφ,
therefore, a gas moving with velocity v = 0 in the moving frame appears to move with
velocity −vφ in the lab frame. Conversely, a gas moving with velocity v = ~K/2M in the
comoving frame, moves with velocity v = (~K/2M) − vφ in the lab frame. Choosing vφ = 0
yields the case in Fig. 13.1(a), while with vφ = ~K/2M, we have the situation shown in Fig.
13.1(b).

The spatial periodicity of Eq. (13.2.2) allows us to invoke Bloch theory [54], by rewriting
the momentum operator in the following basis:

(~K)−1 p̂ = k̂ + β̂, (13.2.3a)

k̂|(~K)−1 p = k + β〉 = k|(~K)−1 p = k + β〉, (13.2.3b)

β̂|(~K)−1 p = k + β〉 = β|(~K)−1 p = k + β〉. (13.2.3c)

cThis choice of α ensures that the corresponding constant of Mv2
φ/2 appearing when Eq. (13.1.1) is trans-

formed by the unitary operator Ûx is canceled out, and so does not appear in Eq. (13.2.2).
dHere ĤLatt refers to the transformed Hamiltonian in the frame comoving with the laser lattice, x̂ and p̂ still

refer to the lab frame position and momentum.
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We may speak of k ∈ Z as the discrete part of the momentum, and β ∈ (−1/2, 1/2] as the
continuous part or quasimomentum [55]. Here β is a conserved quantity, as such, only mo-
mentum states separated by integer multiples of ~K are coupled [3, 16]. This simplification
allows us to construct the time evolution operator for a lattice pulse of duration t from the
lattice Hamiltonian (13.2.2) as follows:

Û(β, τ)Latt = exp
(
−i

[
k̂2 + 2k̂β

2
− Veff cos(θ̂)

]
τ

)
, (13.2.4)

in which β is simply a scalar value such that overall phases which depend solely on β can be
neglected. Here Veff = V M/~2K2 is the dimensionless lattice depth, θ̂ = Kx̂ and τ = t~K2/M

is the rescaled time.

By using Eq. (13.2.4) to calculate |ψ(τ)〉 =
∑

j c j(τ)|k = j〉, the population in each discrete
momentum state |k = j〉 following an evolution for a rescaled time of τ is given by the
absolute square of the coefficients P j(τ) = |c j(τ)|2. In this paper we employ the well-known
split-step Fourier approach [3, 33] to determine |ψ(τ)〉, as well as an analytic approach based
on a simpler two-state model.

The dynamics of a single atom in the BEC standing-wave system can be understood in terms
of the scattering process given by the semiclassical energy diagram of Fig. 13.1(c) (see also
[99, 100, 101, 102, 103]). A two-level atom begins in a state with momentum p = ~K/2,
before absorbing a photon with momentum p = −~K/2, and subsequently emits a second
photon with the momentum p = ~K/2. This is the only scattering process which classically
conserves energy, whilst also conserving the quasimomentum. We therefore expect that
scattering into states with momentum p > |~K/2| ought to be strongly suppressed even under
the fully quantum time evolution. We explore this simplified picture in Chapter 14.



Chapter 14

Reduction to an effective two-state system

14.1 Simplification

We may test the conjecture that population transfer into states with k < −1 or k > 0 is
strongly suppressed by computing the full time evolution of the system numerically; the
results of such calculations on an exhaustive basis of momentum states are displayed in Fig
14.1. Over the 13 basis states displayed, we can clearly see that, though population transfer
into higher order modes does occur, the oscillation of population between the k = −1 and
k = 0 states is the dominant process in the system. We therefore expect that a representation
of the system in a truncated momentum basis composed of only these two states ought to
capture the essential dynamics, and explore this simplified two-state model below.
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Figure 14.1: Time evolved momentum distributions for an atomic gas initially prepared in
the |k = 0, β = 1/2〉 momentum state (corresponding to the |k = 0, β = 0〉 state in the
lab frame for a walking grating), as calculated numerically on a basis of 2048 momentum
states. The top row of false color plots [(a),(c),(e)] shows the population in the first 13
momentum states, to be read on the logarithmic colorbar to the right; a cutoff population of
Pcutoff = 10−11 has been applied to accommodate the log scale. The labels pstatic and pwalking

denote the momentum as measured in the lab frame for the case of a static and a walking
grating respectively. The bottom row of plots [(b),(d),(f)] shows the time evolution of the
population in the |k = 0〉 (red circles) and |k = −1〉 (blue squares) states, where the solid line
through each curve is given by the analytic solution of Eqs. (14.2.3a) and (14.2.3b). Also
shown is the population in the |k = 1〉 state (green points). Each column of plots corresponds
to a simulation for a fixed value of the effective lattice depth Veff , here, from left to right
Veff = 0.07, 0.10, 0.13 respectively.
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14.2 Two-state model analytics

We may represent the Hamiltonian (13.2.2) in the β = 1/2 subspace, which corresponds to
the desired initial momentum p = ~K/2, using the following two-state momentum basis:

|k = 0〉 =


1
0

 , (14.2.1a)

|k = −1〉 =


0
1

 , (14.2.1b)

yielding:

H2×2
Latt =


1/8 −Veff/2
−Veff/2 1/8

 . (14.2.2)

We recognize Eq. (14.2.2) as a Rabi matrix with zero detuning, the eigenvectors and eigen-
values of which are well known [96], and can be used to straightforwardly determine the
time evolution of the population in the |k = 0〉 and |k = −1〉 states, respectively:

P0 = cos2(Veffτ/2), (14.2.3a)

P−1 = sin2(Veffτ/2), (14.2.3b)

as outlined in Appendix B.5. This analytic result is compared to our exact numerics in Figs.
14.1 and 14.2, both of which show excellent agreement for a wide range of experimentally
relevant values of the effective lattice depth Veff . We note in particular that the form of Eqs.
(14.2.3a) and (14.2.3b) is such that there is an exact universality between τ and Veff , which
is elucidated in Fig. 14.2(b), where all population curves fall on top of each other.
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Figure 14.2: (a): Plot of P0, the population in the |k = 0〉 state, versus τ, as calculated on a
basis of 2048 momentum states using a split-step Fourier method (solid markers). The solid
lines correspond to the analytic solution for P0 in a two state basis, as given by Eq. (14.2.3a).
Each set of markers corresponds to a fixed value of the effective lattice depth ranging from
the slowest-oscillating curve at Veff = 0.01 to the fastest oscillating one at Veff = 0.11 in
steps of 0.02. (b): Reproduction of (a), with the number of pulses axis scaled by Veff to
reveal a universal curve both in the analytics and the numerical simulations. The data have
been extended to span the full range of the horizontal axis.



Chapter 15

Finite-temperature response

15.1 Other values of β

In the following section we consider the effect of evolving initial states with quasimomentum
different to β = 1/2 in order to gain insight into the dynamics of a finite-temperature gas.
Numerically, this is achieved by computing the evolution of an initial state |k + β〉 under the
time evolution operator (13.2.4). We make the assumption from the outset that the initial
momentum distribution of the gas (centred at β = 1/2) spans less than half of each of the
k = 0 and k = −1 Brillouin zones for a static grating (or falls within the k = 0 Brillouin zone
with a momentum distribution centered on β = 0 for a walking grating). Our results in this
low temperature regime are displayed in Fig. 15.1, which indicates a k = 0 Brillouin zone
with high amplitude but low-frequency oscillations in the population of the zeroth diffraction
order centered around |β| = 1/2, and low amplitude but rapidly oscillating solutions as β is
detuned from this value.

We may also use our simplified semiclassical model of Chapter 14 to derive an approximate
analytic result for the same calculation, in which the quasimomentum β is encoded as a
detuning to be included in our initial Rabi model of Eq. (14.2.2). These additions yield the
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following 2 × 2 Hamiltonian matrix:

H2×2
Latt (β) =


β2/2 −Veff/2
−Veff/2 (1 − 2β + β2)/2

 , (15.1.1)

in which β is now a free parameter. The time evolution of the zeroth diffraction order popu-
lation governed by this matrix can be found using the approach given in Appendix B.6, thus:

P0(β) = 1 − V2
eff

(β − 1/2)2 + V2
eff

sin2
(√

(β − 1/2)2 + V2
eff

τ

2

)
, (15.1.2)

which is similar to the result reported in [89] for a zero temperature gas, and agrees excel-
lently with the exact numerics for physically relevant parameters as shown in Fig. 15.1. We
therefore expect that thermal averaging of this result should produce an accurate description
of the full finite-temperature response.

15.2 Finite temperature analysis

To find the finite temperature response of the system we weight the contribution of Eq.
(15.1.2) for each individual quasimomentum subspace according to the Maxwell-Boltzmann
distribution:

Dk=0(β,w) =
1

w
√

2π
exp

(−(β − 1/2)2

2w2

)
, (15.2.1)

where the dimensionful temperature is given by Tw = ~2K2w2/MkB [51]. Mathematically
this corresponds to the integral:

P0,total(w) =

∫ 1

0
Dk=0(β,w)P0(β) dβ. (15.2.2)

Inserting Eqs. (15.2.1) and (15.1.2), we have:

P0,total(ρ) =
1√
2πρ

∫ 1
2

−1
2

exp
(−γ2

2ρ2

) 1 −
1

γ2 + 1
sin2


√
γ2 + 1

2
φ


 dγ, (15.2.3)
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Figure 15.1: (a): False-color plot of the time evolution of P0 as computed in a basis
of 2048 momentum states for values of the dimensionless quasimomentum β [see Eqs.
(13.2.3b,13.2.3c)] ranging from β = −0.5 to β = 0.5 in steps of β = 0.00025 (4001
quasimomentum values). We have chosen a relatively large lattice depth of Veff = 0.1
such that the different dynamical behaviors are made clear for the chosen evolution time
τ/(2π) = 40. (b): Slices taken through the quasimomentum distribution parallel to the time
axis for β = 0, 0.0625, 0.125, then increasing in increments of β = 0.125 up to a maximum
of β = 0.5, enclosing the full range of dynamics in the k = 0 subspace. Each vertical set of
markers in (a) corresponds to the position in the quasimomentum distribution of the slices in
(b), where the solid lines represent our analytic solution for each β subspace [Eq. (15.1.2)].
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where we have introduced γ = (β − 1/2)/Veff , φ = Veffτ and ρ = w/Veff for simplicity. The
exponential and trigonometric terms can be power expanded, and the integral (15.2.3) solved
term by term, giving:

P0,total(ρ) = 1 −
∞∑

s=0

s∑

q=0

us(φ)Ms,qvq(ρ), (15.2.4)

where us(φ) = (−φ2)s+1s!/[2(s + 1)]!, Ms,q = −(2q)!/[2(q!)2(s − q)!] and vq(ρ) = (ρ2/2)q (see
Appendix B.7). Equation (15.2.4) can in principle be solved numerically by recursively pop-
ulating the elements of a sufficiently large pair of u(φ), v(ρ) vectors and M matrix, though
the elements of the vectors will grow with s and q respectively unless φ and ρ are suffi-
ciently small, and this condition is only satisfied for certain experimentally relevant regimes.
Nonetheless, Eq. (15.2.4) yields some insight when expressed as a sum over derivatives of
sinc functions (see Appendix B.8):

P0,total(ρ) = 1 −
∞∑

q=0

(
ρ

2

)2q (2q)!
q!2

{(
φ

2

)2(q+1) [(2
φ

)
d

d(φ/2)

]q [
sin2(φ/2)

(φ/2)2

]}
. (15.2.5)

With q = 0, Eq. (15.2.5) reduces to the zero temperature result of Eq. (14.2.3a), as such
we should expect the finite temperature behavior of the system to be captured in terms with
q > 0. Though the full sum over q is always convergent, the presence of the (φ/2)2(q+1) term
guarantees that all individual terms with q ≥ 1 diverge, meaning that a preferred truncation
of the sum is not obvious.

However, given the well-behaved nature of the integrand, Eq. (15.2.3) can be straightfor-
wardly integrated numerically, for instance using the trapezium rule. We compare this nu-
merical integration to our full finite-temperature numerics in Fig. 15.2, which shows excel-
lent agreement across a large range of initial momentum widths in the weak lattice regime
[Figs. 15.2 (a),(b)], and for Veff = 0.1 in the strong lattice regime [Fig. 15.2 (d)]. However,
for Veff = 0.5 [Fig. 15.2 (c)] the agreement is relatively poor, as in this regime the semiclas-
sically motivated two-state model is no longer valid. We therefore expect that numerically
fitting Eq. (15.2.3) to experimental data, with φ = Veffτ and ρ = w/Veff as free parameters,
would give an accurate value of the effective lattice depth, if the time τ is known to high pre-
cision and the lattice depth is sufficiently small. Further, we note that using standard integral
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Figure 15.2: Plot of the finite temperature response of P0 versus τ × Veff , where Veff is the
dimensionless lattice depth [see Eq. (13.2.4)], as calculated for an ensemble of 4001 particles
each evolved in a basis of 2048 momentum states (hollow markers). The left column [(a),
(b)] corresponds to the weak-lattice regime, and the right column [(c), (d)] to the strong-
lattice regime. The top row of plots [(a), (c)] shows the finite-temperature response of P0 at a
temperature of w = 0.00125 for a selection of different lattice depths, Veff = 0.01, 0.02, 0.05
(all curves fall on top of each other) in the weak regime (a) and Veff = 0.1, 0.2, 0.5 (lower,
middle and uppermost curves) in the strong regime (c). For the bottom row [(b), (d)], each
set of curves and markers corresponds to the response of P0 at a different temperature [w =

0.00125, 0.0125, 0.125; lower (black circles), middle (blue triangles) and uppermost (yellow
squares) curves respectively], where the effective lattice depth is kept constant at Veff = 0.1
in the strong-lattice case and Veff = 0.01 the weak-lattice case. In all panels, the solid lines
represent the result yielded by numerically integrating Eq. (15.2.3). The horizontal dashed
lines correspond to the result of the steady state solution of Eq. (15.2.6) for each set of
parameters.



90 CHAPTER 15. FINITE-TEMPERATURE RESPONSE

results, we may also extract the steady state solution to Eq. (15.2.3) as φ→ ∞:

P0,total,φ→∞(ρ) =
1

2ρ

√
π

2
exp

(
1

2ρ2

)
Erfc


1√
2ρ

 , (15.2.6)

which depends only on ρ = w/Veff [35]. Here, ‘Erfc’ is the complementary error function
[97].a In essence, by measuring the steady state population experimentally, and numerically
fitting Eq. (15.2.6), ρ = w/Veff can be straightforwardly determined and substituted into Eq.
(15.2.3), leaving a fit in only one parameter φ = Veffτ. The steady state population can be
found either by allowing the atomic gas to evolve in the lattice for a sufficiently long time, or
taking the average value of P0 in time for an appropriate number of oscillations. In fact, this
improved fitting approach not only allows φ = Veffτ, and therefore the effective lattice depth
Veff to be determined more accurately, but also allows the initial effective temperature to be
determined from w = ρVeff.

aWhen evaluating Eq. (15.2.6) for physically relevant values of ρ = w/Veff , the exponential term becomes
large as the error function takes a correspondingly small value such that P0,φ→∞(ρ) remains bounded between
0 and 1. This complication can present a problem for numerical evaluation using standard numerical routines.
In practice, we numerically implement Eq. (15.2.6) exclusively in terms of rational numbers in Mathematica,
before requesting a numerical evaluation to a specified precision. One could also use standard asymptotic
formulas for the product of an exponential and an error function for the evaluation.
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Chapter Summary

• We have presented a simplified model system yielding an analytic zero-
temperature formula for the evolution of the zeroth diffraction order population,
and demonstrated the validity of this approach across a wide range of lattice
depths. We have also noted that this formula contains an exact universality in
the dimensionless time and effective lattice depth, which can be represented as
a universal curve.

• We have extended this model to incorporate finite-temperature effects and dis-
cussed from where they arrive mathematically. We have also shown that the
frequency and amplitude of the oscillations in the population of the zeroth order
momentum state are extremely robust to these finite-temperature effects, espe-
cially as compared to the population dynamics of a the multipulse approach
described in Part II.

• We have shown that there is excellent agreement between this analytic model
and exact numerical calculations if the lattice depth is sufficiently small, and
shown that a steady state solution exists, which may be useful for determining
the lattice depth and initial temperature of a gas from a single set of population
measurements.

• With regard to potential experimental implementations, we note that the phase
velocity of a walking optical lattice can be calibrated extremely precisely; how-
ever, this does require optical elements to be in place which will reduce the
intensity of the laser beam and therefore the lattice. The alternative is to impart
a specified momentum to an initially stationary BEC; it is unlikely that this can
be achieved with the same level of precision, however with such a scheme there
is no need for any additional optical elements affecting the lattice depth.



Chapter 16

Conclusions

In conclusion, we have presented intuitive and simple models for the diffraction of cold
dilute atomic gases by single and multiple laser standing-wave pulses which we believe will
be of use to experimentalists in the field for understanding existing experiments and planning
new ones. Specifically, we have shown that the ε-pseudoclassical model of Part I is capable
of treating quantum resonances with finite duration laser standing-wave pulses. The model
reduces the computational time necessary to simulate such experiments for finite temperature
gases and offers insight beyond standard methods in that it gives a clear visualization of the
dynamics of the diffracted ensemble, especially in terms of the momentum spread, which
can be understood in terms of bounded quasiperiodic orbits about resonances in phase space.
We note also that in further work, the model can be extended to include gravitational effects,
which will be of further use for planning atom interferometry experiments.

In Part II, we have presented an analytic formula for population oscillations in the zeroth or-
der momentum state which improves on those currently used in state of the art measurements
of weak lattice depths. We have also characterized the domain of validity of this formula in
magnitude of lattice depth and number of pulse sequences, and shown that a five state model
which is solvable analytically, captures the essential features for experimentally relevant
choices of parameters. The effects of finite-temperature initial momentum distributions on
such experiments have been investigated.

We note in particular that the lattice depth measurement scheme described in Part III, which
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we have shown to be especially robust to finite-temperature effects and mode leakage, is
simple to implement experimentally compared to many atom-optical setups, and offers the
advantage that population measurements can be gathered over large experimental times, with
minimal heating. An advantage of this approach is that it makes it possible in principle to
determine both the width of the initial momentum distribution of the atomic gas and the
lattice depth from one set of population measurements.

In all three Parts, we have elucidated universalities in time and lattice depth (driving
strength), which reduce the space of parameters to be considered in interpreting and planning
atom diffraction experiments.



Appendix A

Time evolution for 2 diffraction orders

A.1 Floquet operator in two-state basis

We may calculate the time evolution of the |0〉 and |+〉 state populations by first diagonalizing
Eq. (9.0.3) (reproduced here for convenience)

HTrunc =


1/2 −Veff/

√
2

−Veff/
√

2 0

 , (A.1.1)

using the well known eigenvalues and normalized eigenvectors of a Rabi matrix, E± = (1 ±√
1 + 8V2

eff
)/4, and

|E+〉 =


cos(α/2)
− sin(α/2)

 , (A.1.2a)

|E−〉 =


sin(α/2)
cos(α/2)

 , (A.1.2b)

respectively, where α = arctan(2
√

2Veff). HTrunc can then be written:

Hdiag = R†HTruncR =


E+ 0
0 E−

 , (A.1.3)
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such that R is the matrix of normalized eigenvectors. This leads directly to the part of the
Floquet operator governing the lattice evolution:

FLatt = R†

e−2πiE+ 0

0 e−2πiE−

 R. (A.1.4)

Expressing FFree in the truncated momentum basis, |0〉2 ≡
(

0
1

)
; |+〉2 ≡

(
1
0

)
, we can represent

the total Floquet operator in matrix form thus:

F = FFreeFLatt =


−1 0
0 1

 R†

e−2πiE+ 0

0 e−2πiE−

 R. (A.1.5)

A.2 Floquet evolution for a general two-level system

Any time-evolution operator associated with a two-level system can be expressed as a 2 × 2
unitary matrix, and all unitary matrices are diagonalizable, hence we may represent such a
time-evolution operator thus:

U = S UdiagS † =


v+

1 v−1
v+

0 v−0



λ+ 0
0 λ−



v+

1 v−1
v+

0 v−0


†

. (A.2.1)

Here S is a matrix composed of the normalized eigenvectors of U:

~v+ =


v+

1

v+
0

 , ~v− =


v−1
v−0

 , (A.2.2)

and λ± are the corresponding eigenvalues of U, which have unit magnitude and so can be
expressed as:

λ± = exp(−iθ±), (A.2.3)
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where θ+ and θ− are phase angles to be determined. The matrix which produces N successive
evolutions can therefore be written:

U = S UN
diagS † =


v+

1 v−1
v+

0 v−0



(λ+)N 0

0 (λ−)N



v+

1 v−1
v+

0 v−0


†

=


(λ+)N |v+

1 |2 + (λ−)N |v−1 |2 (λ+)Nv+
1 (v+

0 )∗ + (λ−)Nv−1 (v−0 )∗

(λ+)Nv+
0 (v+

1 )∗ + (λ−)Nv−0 (v−1 )∗ (λ+)N |v+
0 |2 + (λ−)N |v−0 |2

 .
(A.2.4)

Suppose that the initial state of the system can be represented by |0〉2 ≡
(

0
1

)
, and the excited

state by |+〉2 ≡
(

1
0

)
, the probability of the system occupying the |0〉 state after N evolutions

can be written:

P0(N) =

∣∣∣∣∣∣∣
(
0 1

)
UN


0
1



∣∣∣∣∣∣∣

2

=
∣∣∣∣
[
(λ+)N |v+

0 |2 + (λ−)N |v−0 |2
]∣∣∣∣

2
, (A.2.5)

which is the absolute square of the bottom-right matrix element of Eq. (A.2.4). The corre-
sponding probability of the system being in the |+〉 state is simply P+(N) = 1− P0(N). Since
S is a unitary matrix, v+

0 and v−0 must satisfy |v+
0 |2 + |v−0 |2 = 1, using this identity and inserting

Eq. (A.2.3), P0(N) and P+(N) can be written:

P0(N) = 1 − 4|v+
0 |2|v−0 |2 sin2(N[θ+ − θ−]/2) (A.2.6a)

P+(N) = 4|v+
0 |2|v−0 |2 sin2(N[θ+ − θ−]/2). (A.2.6b)

By finding v±0 and θ± for our specific Floquet operator (A.1.5), we explicitly determine Eq.
(A.2.6a) and (A.2.6b), in terms of the number of pulses N and the effective potential depth
Veff, this is the origin of Eq. (9.0.4a) and (9.0.4b).

A.3 Back to the system Floquet operator

Both the amplitude A = 4|v+
0 |2|v−0 |2, and the oscillation frequency φ = θ+ − θ− can be de-

termined by calculating the eigenvalues and eigenvectors of the Floquet operator (A.1.5),
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reproduced here for convenience:

F = FFreeFLatt =


−1 0
0 1

 R−1


e−2πiE+ 0

0 e−2πiE−

 R, (A.3.1)

where

R =


cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

 . (A.3.2)

Introducing µ± = e−2πiE± , cos(α/2) = c and sin(α/2) = s, we can express (A.1.5) in the the
more compact form:

F =


−µ+c2 − µ−s2 µ+cs − µ−cs

−µ+cs + µ−cs µ+c2 + µ−s2

 . (A.3.3)

Using s2 = 1 − c2 we can write (A.3.3) as:

F =


−c2(µ+ − µ−) − µ− cs(µ+ − µ−)
−cs(µ+ − µ−) s2(µ+ − µ−) + µ−

 . (A.3.4)

Further, introducing the shorthand c2 ≡ c2(µ+ − µ−), s2 ≡ s2(µ+ − µ−), sc ≡ sc(µ+ − µ−), we
have:

F =


−c2 − µ− sc

−sc s2
+ µ−

 , (A.3.5)

the eigenvalues of which can be written:

λ± =
1
2

−
(
c2 − s2

)
±

√(
c2 − s2

)2
+ 4µ−

{
c2 − s2

+ µ−
} . (A.3.6)

Noting that (c2 − s2)2 = (c2 − s2)(µ+ − µ−)2, and (c2 − s2)2 = 1 − 4s2c2, we can simplify the
argument of the radical (c2 − s2)2 + 4µ−{c2 − s2

+ µ−} = (µ+ + µ−)2 − 4s2c2(µ+ − µ−)2, leading
to:

λ± =
(µ+ − µ−)

2

−
(
c2 − s2

)
±

√

−4s2c2 +

(
µ+ + µ−
µ+ − µ−

)2
 . (A.3.7)
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Recalling that µ± = e−2πiE± , and E± = (1 ±
√

1 + 8V2
eff

)/4, it can be shown that

(µ+ − µ−) = −
(
eiπ[E+−E−] − e−iπ[E+−E−]

)
e−iπ[E++E−]

= −2 sin(π[E+ − E−]), (A.3.8a)

(µ+ + µ−) = −
(
eiπ[E+−E−] + e−iπ[E+−E−]

)
e−iπ[E++E−]

= −2i cos(π[E+ − E−]), (A.3.8b)

where we have made use of the fact that E+ + E− = 1/2, leading to:

(
µ+ + µ−
µ+ − µ−

)2

= −cos2(π[E+ − E−])
sin2(π[E+ − E−])

= − cot2(π[E+ − E−]). (A.3.9)

Since (A.3.9) and (A.3.8a) are always real and negative, it is straightforward to separate the
eigenvalues (A.3.7) into their real and imaginary parts:

λ± = Re(λ±) + i Im(λ±)

=
(µ+ − µ−)

2

[
−

(
c2 − s2

)
± i
√

4s2c2 + δ2
]
, (A.3.10)

where we have introduced δ ≡ i(µ+ + µ−)/(µ+ − µ−) and δ2 ≡ −(µ+ + µ−)2/(µ+ − µ−)2. We
can now solve the eigenvalue equation:

F


v±1
v±0

 =
(µ+ − µ−)

2

[
−

{
c2 − s2

}
± i
√

4s2c2 + δ2
] 

v±1
v±0

 , (A.3.11)

for v±0 , v±1 . Equation (B.5.2) leads directly to:

v±1 = i
[
ε ±
√
ε2 + 1

]
v±0 , (A.3.12)

where we have introduced the shorthand ε ≡ −δ/2sc. We can now state that:

~v+ ∝


i
[
ε +
√
ε2 + 1

]

1

 , ~v− ∝


i
[
ε −
√
ε2 + 1

]

1

 , (A.3.13)
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and noting that
√
ε2 + 1 − ε =

[√
ε2 + 1 + ε

]−1
, we can express the normalized eigenvectors

thus:

~v+ =
1√

2
√
ε2 + 1


i
√√

ε2 + 1 + ε√√
ε2 + 1 − ε

 , (A.3.14a)

~v− =
1√

2
√
ε2 + 1



√√
ε2 + 1 − ε

i
√√

ε2 + 1 + ε

 . (A.3.14b)

The amplitude A=4|v+
0 |2|v−0 |2 can now be determined from the product of the absolute squares

of the bottom entries of ~v+ and ~v−:

A =
4

[√
2
√
ε2 + 1

]4

([√
ε2 + 1 − ε

] [√
ε2 + 1 + ε

])

=
1

ε2 + 1
. (A.3.15)

Inserting ε2 = δ2/4s2c2 and 4s2c2 = sin2(α) = sin2(arcsin(2
√

2Veff/
√

1 + 8V2
eff

)) = 8V2
eff
/(1+

8V2
eff

) we can express the amplitude in terms of the effective lattice-depth Veff:

A =

8V2
eff

sin2
(
π
√

1 + 8V2
eff
/2

)

8V2
eff

+ cos2
(
π
√

1 + 8V2
eff
/2

) , (A.3.16)

which corresponds to Eq. (9.0.4c). Using Eq. (A.3.10), we can also determine the oscillation
frequency φ = θ+ − θ− = arg(λ−) − arg(λ+). We can express φ as:

φ = arctan
(
Im(λ−)
Re(λ−)

)
− arctan

(
Im(λ+)
Re(λ+)

)
= 2 arctan

(
Im(λ−)
Re(λ−)

)
,

where we have used the relations Re(λ−) = Re(λ+), and Im(λ+) = −Im(λ−). Substituting in
Re(λ−) = −(µ+ − µ−)(c2 − s2)/2 and Im(λ−) = −(µ+ − µ−)

√
4s2c2 + δ2/2 we have:

φ = 2 arctan

√

4s2c2 + δ2

c2 − s2

 , (A.3.17)
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which, noting that 4s2c2 = 8V2
eff
/(1 + 8V2

eff
) and recalling that δ2 = cot2(π

√
1 + 8V2

eff
/2), can

be written:

φ = 2 arctan



√
8V2

eff
+ cos2(π

√
1 + 8V2

eff
/2)

sin(π
√

1 + 8V2
eff
/2)


,

which corresponds to Eq. (9.0.4d).



Appendix B

Limiting behaviours of Equations (9.0.4c)
and (9.0.4d)

B.1 Weak coupling regime

Equation (9.0.4d) can be linearized in the weak coupling regime as Veff → 0. To clarify the
procedure, we introduce the following notation:

φ = 2 arctan
(Y
X

)
, (B.1.1a)

Y =

√
8V2

eff
+ cos2

(
π

2

√
1 + 8V2

eff

)
, (B.1.1b)

X = sin
(
π

2

√
1 + 8V2

eff

)
. (B.1.1c)

Clearly as Veff → 0, it follows that Y → cos(π/2) = 0, X → sin(π/2) = 1, and therefore
φ→ 2 arctan(0/1) = 0. However, we can still find an approximation to φ that is linear in Veff

by means of a Taylor expansion:

φ = 2 arctan(Z) ≈ Z − Z3

3
+

Z5

5
. . . , (B.1.2)
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where Z = Y/X. Hence, near Veff = 0, φ is given approximately by φ ≈ 2Y/X. Note that
sin(θ) = cos(θ − π

2 ), cos(θ) = − sin(θ − π
2 ), and hence

sin
(
π

2

√
1 + 8Veff

)
= cos

(
π

2

[ √
1 + 8Veff − 1

])
, (B.1.3a)

cos
(
π

2

√
1 + 8Veff

)
= − sin

(
π

2

[ √
1 + 8Veff − 1

])
. (B.1.3b)

The arguments of the trigonometric functions on the right hand side tend to zero as Veff → 0,
which simplifies the expansions of (B.1.3a) and (B.1.3b), since we can use standard small-
angle approximations. We can simplify the arguments further by use of the binomial approx-
imation

√
1 + ε ≈ 1 + ε/2, yielding:

cos
(
π

2

[ √
1 + 8Veff − 1

])
≈ cos(2πV2

eff) ≈ 1 − 4π2V4
eff

2
, (B.1.4a)

sin
(
π

2

[ √
1 + 8Veff − 1

])
≈ sin(2πV2

eff) ≈ 2πV2
eff . (B.1.4b)

Hence:

Y =

√
8V2

eff
+ cos2

(
π

2

√
1 + 8V2

eff

)

=

√
8V2

eff
+ sin2

(
π

2

[√
1 + 8V2

eff
− 1

])

≈
√

8V2
eff

+ 4π2V4
eff

≈ 2
√

2Veff , (B.1.5)

X = sin
(
π

2

√
1 + 8V2

eff

)
= cos

(
π

2

[√
1 + 8V2

eff
− 1

])

≈ cos
(
2πV2

eff

)
≈ 1 − 2π2V4

eff

≈ 1. (B.1.6)

Therefore, to leading order in Veff , around Veff = 0

φ ≈ 2 × 2
√

2Veff

1
= 4
√

2Veff . (B.1.7)
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We may follow a similar procedure for Eq. (9.0.4c), reproduced here for convenience:

A =

8V2
eff

sin2
(
π
√

1 + 8V2
eff
/2

)

8V2
eff

+ cos2
(
π
√

1 + 8V2
eff
/2

) . (B.1.8)

Using Eqs. (B.1.3a) and (B.1.3b), it follows that around Veff = 0, sin2
(
π
√

1 + 8V2
eff
/2

)
≈ 1

and cos2(π
√

1 + 8V2
eff
/2) ≈ 0 leading to:

A ≈ 8V2
eff
× 1

8V2
eff

+ 0
≈ 1. (B.1.9)

B.2 Strong coupling regime

To determine the behavior of φ as Veff → ∞ we first rearrange Eq. (B.1.1b):

Y =

√
8V2

eff
+ cos2

(
π

2

√
1 + 8V2

eff

)

= 2
√

2Veff


1 +

cos2
(
π
2

√
1 + 8V2

eff

)

16V2
eff


. (B.2.1)

Clearly, as Veff→∞, Y≈2
√

2Veff, whereas X= sin(π
√

1 + 8V2
eff
/2) simply oscillates. There-

fore, recalling Eq. (B.1.1a), if X = 0 and Y > 0, then φ = π. Also, for nonzero X,
then as Veff → ∞, Y → ∞, and therefore φ → π, either from below (X > 0) or above
(X < 0). The curve of φ as a function of Veff crosses through the line where φ = π whenever
π
√

1 + 8V2
eff

= mπ for m ∈ Z+, in other words where:

Veff =

√
4m2 − 1

8
, (B.2.2)

or, as Veff → ∞,
Veff =

m√
2
. (B.2.3)
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B.3 Quadratic approximant to Equation (9.0.4b)

Equation (9.0.4b) can be rewritten by means of a Taylor expansion thus:

P+(N,Veff) = A sin2(x) ≈ Ax2 − A
3

x4 . . . , (B.3.1)

with x ≡ Nφ/2, in a regime where x � 1. Further, assuming that Veff is near zero, we
may replace φ and A with our leading order approximations of Eqs. (B.1.7,B.1.9), with x ≈
2
√

2NVeff. Hence, to leading (quadratic) order in x:

P+(N,Veff) ≈ 8N2V2
eff∝N2, (B.3.2)

which corresponds to the result used in [30, 32] where P+ ≡ P1 and Veff = V0/(16ER) =

U0/(16ER).

B.4 Numerical diagonalization

To diagonalize the lattice Hamiltonian in the zero-quasimomentum subspace, we first express
Eq. (8.1.1a) in the following form:

M
~2K2 Ĥlatt = H̃latt =

k̂2

2
− Veff

2

(
ei2kl x̂ + e−i2kl x̂

)
. (B.4.1)

Here ei2kl x̂ and e−i2kl x̂ are momentum displacement operators, which act on the momentum
eigenkets in the following way:

ei2kl x̂|k = α〉 = |k = α + 1〉, e−i2kl x̂|k = α〉 = |k = α − 1〉. (B.4.2)
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The matrix elements of the Hamiltonian can, therefore, be expressed in the momentum basis
thus:

H̃latt γ,α = 〈k = α|H̃latt|k = γ〉

=
γ2

2
δγ,α − Veff

2
(δγ,α−1 + δγ,α+1)

=
γ2

4
δγ,α − Veff

2
δγ,α−1 + H.c, (B.4.3)

where α, γ ∈ Z. Equation (B.4.3) can then be expressed in matrix form, and numerically
diagonalized in order to find the time evolution of an initial momentum eigenstate.

By expressing Eq. B.4.3 in matrix form thus:

Hlatt =



. . .
...

...
...

...

. . . 1/2 −Veff/2 0 . . .

. . . −Veff/2 0 −Veff/2 . . .

. . . 0 −Veff/2 1/2 . . .
...

...
...

...
. . .



, (B.4.4)

We may now construct the matrix Pn×n which diagonalizes Hn×n
latt , such that Hn×n

latt,diag =

(P†)n×nHn×n
latt Pn×n. We are led to the expression:

|ψ(t = N)〉n×1 = [Hn×n
free Pn×nHn×n

latt,diag(Pn×n)†]N |K = α〉n×1, (B.4.5)

for |ψ(t = N)〉n×1, the time evolution due to N pulse sequences of an initial eigenstate |K =

α〉n×1, where α ∈ [−(n − 1)/2, (n − 1)/2]. The n × 1 superscript denotes that the ket should
be understood as an n-dimensional column vector.

B.5 Derivation of the two-state model

To calculate the time-evolution of the population in the zeroth diffraction order, we construct
the time evolution operator in the momentum basis from the Hamiltonian of Eq. (14.2.2),
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reproduced here for convenience:

H2×2
Latt =


1/8 −Veff/2
−Veff/2 1/8

 . (B.5.1)

The diagonal terms simply represent an energy shift that can be transformed away, thus the
eigenvalues of Eq. (14.2.2) can simply be read from the off-diagonal: E± = ±Veff/2. We may
now solve the eigenvalue equation:


0 −Veff/2

−Veff/2 0



v±1
v±0

 = ±Veff/2


v±1
v±0

 . (B.5.2)

Equation (B.5.2) leads directly to −v±1 = ±v±0 , yielding eigenvectors:

|E+〉 =
1√
2


1
−1

 , |E−〉 =
1√
2


1
1

 . (B.5.3)

We may now construct our initial condition in the energy basis, in which the matrix repre-
sentation of the time evolution operator

Û(τ) = exp
(
−iĤLattτ

)
(B.5.4)

is diagonal:

|ψ(τ = 0)〉 = |k = 0〉 =
1√
2

(|E+〉 + |E−〉) . (B.5.5)

The time evolution of the population in the zeroth diffraction order is given by:

P0 =

∣∣∣∣∣
1
2

(〈E+| + 〈E−|) Û(τ) (|E+〉 + |E−〉)
∣∣∣∣∣
2

,

=
1
4

∣∣∣e−iE+τ + e−iE−τ
∣∣∣2 ,

=
1
4

∣∣∣e−iVeffτ/2 + eiVeffτ/2
∣∣∣2 ,

= cos2(Veffτ/2), (B.5.6)

which corresponds to Eq. (14.2.3a).
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B.6 Derivation of β dependent two-state model

To calculate the time-evolved population for a given quasimomentum subspace, we follow
the same procedure as in Appendix B.5. Equation (15.1.1), reproduced here for convenience

H2×2
Latt (β) =


β2/2 −Veff/2
−Veff/2 (1 − 2β + β2)/2

 ,

is nothing other than a Rabi matrix, the eigenvalues of which are E± =[
(1/2 − β + β2) ±

√
(β − 1/2)2 + V2

eff

]
/2, and the corresponding eigenvectors:

|E+〉 =


cos(α/2)
sin(α/2)

 =
1√
2

[ √
1 + cos(α)|k = 0〉

+
√

1 − cos(α)|k = −1〉
]
,

(B.6.1a)

|E+〉 =


− sin(α/2)
cos(α/2)

 = − 1√
2

[ √
1 − cos(α)|k = 0〉

−
√

1 + cos(α)|k = −1〉
]
,

(B.6.1b)

where cos(α) = (β − 1/2)/
√

(β − 1/2)2 + V2
eff

. This leads directly to:

|ψ(τ = 0)〉 = |k = 0〉 = cos(α/2)|E+〉 − sin(α/2)|E−〉
=

1√
2

[ √
1 + cos(α)|E+〉 −

√
1 − cos(α)|E−〉

]
.

We may now simply calculate the time-evolved state from the action of the time evolution
operator

Û(τ, β) = exp
(
−iĤ(β)Lattτ

)
,

on this initial state thus:

|ψ(τ, β)〉 = exp
(
−iĤ(β)Lattτ

)
|k = 0〉

=
1√
2

[√
1 + c e−iE+τ|E+〉 +

√
1 − c e−iE−τ|E−〉

]
.
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Here we have introduced c ≡ cos(α). The time-evolved population in the zeroth diffraction
order for a given β subspace is then given by:

p0(τ, β) = |〈k = 0|ψ(τ, β)〉|2

=
1
4

∣∣∣(1 + c) e−iE+τ + (1 − c) e−iE−τ
∣∣∣2

=
1
4

∣∣∣∣eE+τ/2eE−τ/2
[
(1 + c) e−i[E+−E−]τ/2 + (1 − c) ei[E+−E−]τ/2

]∣∣∣∣
2

= cos2([E+ − E−]τ/2) + c2 sin2([E+ − E−]τ/2)

= 1 + (c2 − 1) sin2([E+ − E−]τ/2)

= 1 − V2
eff

(β − 1/2)2 + V2
eff

sin2
(√

(β − 1)2 + V2
eff
τ/2

)
, (B.6.2)

which corresponds to Eq. (15.1.2).

B.7 Derivation of finite-temperature matrix equation

To derive the matrix equation for the finite-temperature response of the zeroth diffraction
order population, we begin from Eq. (15.2.2), into which we insert Eqs. (15.2.1) and (15.1.2),
yielding:

P0(w) = 1−
1√
2πw

∫ ∞

−∞
dα

V2
eff

α2 + V2
eff

exp
(−α2

2w2

)
sin2

(√
α2 + V2

eff

τ

2

)
,

= 1 − P−1(w) (B.7.1)

where we have introduced α ≡ (β − 1/2). For simplicity, we now refer to P−1(w), the
population in the |k = −1〉 state. The sinusoidal term can be rewritten using sin2(θ) =

[1 − cos(2θ)]/2, thus:

P−1(w) =
V2

eff√
2πw

∫ ∞

0
dα

1
α2 + V2

eff

exp
(−α2

2w2

)
×

[
1 − cos

(√
α2 + V2

eff
τ
)]
, (B.7.2)
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where we have used the fact that the integrand is an even function. The term in
cos

(√
α2 + V2

eff
τ
)

can then be power expanded, leading to:

P−1(w) =
V2

eff√
2πw

∫ ∞

0
dα

−1
α2 + V2

eff

exp
(−α2

2w2

) ∞∑

s=1

(−1)s(α2 + V2
eff

)sτ2s

(2s)!
,

=
V2

eff√
2πw

∞∑

s=0

(−1)sτ2(s+1)

(2[s + 1])!

∫ ∞

0
dα exp

(−α2

2w2

)
(α2 + V2

eff)s, (B.7.3)

such that the square root in the argument no longer appears, and the (α2 + V2
eff

)s term can be
binomially expanded thus:

P−1(w) =
V2

eff√
2πw

∞∑

s=0

(−1)sτ2(s+1)s!
(2[s + 1])!

s∑

q=0

V2(s−q)

q!(s − q)!

∫ ∞

0
dαα2q exp

(−α2

2w2

)
. (B.7.4)

Further, introducing ξ ≡ α2/(2w2), the remaining integral can be rewritten as:

∫ ∞

0
dαα2q exp

(−α2

2w2

)
= w2q+12q−1/2

∫ ∞

0
dξ exp(−ξ)ξq−1/2,

= w2q+12q−1/2Γ(q + 1/2),

which, when substituted into Eq. (B.7.4) leads to:

P−1(w) =
1

2
√
π

∞∑

s=0

(−1)s(Veffτ)2(s+1)s!
(2[s + 1])!

s∑

q=0

1
q!(s − q)!

(
2w2

V2
eff

)q

Γ(q + 1/2). (B.7.5)

Finally, noting that Γ(s + 1/2) = (2s)!
√
π/(22ss!), Eq. (B.7.5) can be rewritten, thus:

P−1(w) =

∞∑

s=0

s∑

q=0

(−V2
eff
τ2)s+1s!

(2[s + 1])!

(
−1

2

)
(2q)!

(q!)2(s − q)!

(
w2

2V2
eff

)q

, (B.7.6)

= us(Veffτ)Ms,qvq(w/Veff),

or, equivalently, with φ = Veffτ and ρ = w/Veff:

P0(ρ) = 1 − P−1(ρ) = 1 −
∞∑

s=0

s∑

q=0

us(φ)Ms,qvq(ρ),
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which corresponds to Eq. (15.2.4).

B.8 Expression of Eq. (15.2.4) in terms of Sinc functions

Equation (B.7.6) can be rewritten as:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2



(−1
2

) ∞∑

s=q

s!
(2[s + 1])!(s − q)!

(−φ2)s+1

 ,

where we have used φ = Vefft and ρ = w/Veff . We now introduce τ = φ2 and re-index the
sum in s, yielding:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2



(−1
2

) ∞∑

s=q+1

(s − 1)!
(2s)!(s − 1 − q)!

(−1)sτs


.

Expanding the factorial terms in s and rearranging in τ in the following way:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2

τ
q+1

(−1
2

) ∞∑

s=1

(s − 1)(s − 2)...(s − q)
(2s)!

(−1)sτs−q−1

 ,

which we recognize can be expressed as a derivative in q, thus:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2

τ
q+1

(−1
2

)
dq

dτq

∞∑

s=1

(−1)sτs−1

(2s)!

 . (B.8.1)

Equation (B.8.1) can be rewritten:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2

τ
q+1 dq

dτq


1
τ

−
1
2

∞∑

s=1

(−1)sτs−1

(2s)!




 ,

such that the sum in s can now be recognized as a sinusoidal term, yielding:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2

{
τq+1 dq

dτq

(
1
τ

[
sin2(

√
τ/2)

τ

])}
.
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Reintroducing φ leads to:

P−1(ρ) =

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2

{
φ2(q+1)

(
1

2φ
d

dφ

)q [
sin2(φ/2)

φ2

]}
,

=
1
2

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2



(
φ2

2

)q+1 (
1
φ

d
dφ

)q [
sin2(φ/2)

φ2

] ,

=
1
2

∞∑

q=0

(
ρ2

2

)q (2q)!
q!2

×


(
φ2

2

)q+1 1
22q

[(
2
φ

)
d

d(φ/2)

]q [
sin2(φ/2)

φ2

] .

Equivalently,

P0(ρ) = 1 − P1(ρ)

= 1 −
∞∑

q=0

(
ρ

2

)2q (2q)!
q!2

{(
φ

2

)2(q+1) [(2
φ

)
d

d(φ/2)

]q [
sin2(φ/2)

(φ/2)2

]}
,

which corresponds to Eq. (15.2.5).
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