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Abstract 

The development of the root system represents an important feature of plant development, 

as the root is the site of water and nutrient uptake, it anchors the plant in the soil, and is a 

site of interaction with other organisms, which may be pathogenic (such as nematodes) or 

beneficial (such as mycorrhiza). The model organism Arabidopsis thaliana is an excellent 

model to study the genetic basis of root development, and to study the control of gene 

expression in response to hormones and as mediators of hormone action. A key question in 

developmental biology is how genes and hormone signalling systems interact to control cell 

identity, cell division, cell patterning and cell differentiation. To address this, the work 

described in this thesis focused of two genes, previously identified as playing important roles 

in root development - the POLARIS (PLS) gene, which encodes a 36 amino acids peptide; and 

MERISTEM-DEFECTIVE (MDF), which encodes an SR protein. In the course of this work, 

information on the pathways influenced by each gene was determined using high resolution 

RNA profiling followed by bioinformatics analysis, and information was used to identify 

pathways in which the two genes are involved. The results obtained show that PLS is 

required for both correct ethylene signalling and, independently, auxin biosynthesis in 

response to ethylene; and PLS exerts its effect via control of the tryptophan-independent 

pathway for auxin biosynthesis. It is also shown that MDF is a likely splicing factor, required 

for the regulation of auxin pathway genes and transcription factors expressed in the root 

meristem via the control of alternative splicing - it likely controls the balance in the 

meristem between stem cell identity and differentiation. The results provide new insights 

into the genetic and molecular mechanisms by which these genes regulate hormone 

signalling pathways to in turn control the development of the Arabidopsis root. 
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Chapter 1. Introduction 

1.1 Study of plant development in Arabidopsis thaliana 

The growth and development of plants require many plant hormones, or phytohormones, 

including auxin, ethylene, cytokinin, gibberellin, abscisic acid, jasmonic acid, salicylic acid and 

brassinosteroids, and they are essential in regulating many biological functions in response 

to stresses, pathogens, and other external stimuli.  

Phytohormones have been studied for over a hundred years, and there has been significant 

progress made in recent years in our understanding of them in terms of biosynthesis and 

signalling pathways. It is also clear that many hormones work together, either synergistically 

or antagonistically, to regulate many aspects of plant development. Advances in technology 

and the use of computational techniques over past few years has allowed us to dissect the 

interactions systematically, leading to our lab's previous work on the kinetic model of a 

hormone crosstalk network (Liu et al., 2010). By incorporating key genes and hormones into 

the model, we examine how these key factors work with each other in the network in 

response to many external disturbances. The computational modelling approach has now 

been adopted widely, and provides a theoretical framework upon which to develop 

predictions that can then be tested experimentally (Moore et al., 2015). 

Within this hormone crosstalk network, POLARIS (PLS), a peptide composed of just 36 amino 

acids, was found to be a key part in hormone signalling in Arabidopsis (Casson et al., 2002, 

Chilley et al., 2006, Liu et al., 2010). There is limited knowledge in the regulatory properties 

of small peptides in plants, but most are believed to act as ligands for receptors, such as in 

the CLAVATA network that regulates the size of the shoot apical meristem (Farrokhi et al., 

2008). Previous work has confirmed that PLS may function as a metallochaperone for copper 

(I) ions, which are required for correct functioning of ethylene signalling (Mudge, 2016). The 

hormone crosstalk model predicts that there are roles for PLS in other parts of the network, 

especially in the biosynthesis of auxin. However, the specific mechanisms behind it are still 

to be discovered.  
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1.2 Arabidopsis root and meristem development 

Arabidopsis thaliana is a small dicot flowering plant. It has been widely used as a model 

organism for plant sciences for over 100 years due to its small diploid genome, short life 

cycle, easy to care, and diverse natural variability. These traits make it a great model plant 

especially for genetics study (Somerville and Koornneef, 2002). In early 2000s, Arabidopsis 

thaliana became the world’s first plant species to have its whole genome sequenced 

(Arabidopsis Genome, 2000). Its root is well characterised to have highly ordered structure, 

which is ideal for our study on hormone interactions and development (Figure 1) (De Smet 

et al., 2015).  

Figure 1. Organization of the Arabidopsis root (De Smet et al., 2015). (Left): Longitudinal 
section through the root showing apical-basal polarity. Different cell types (each differently 
coloured) are arranged in cell files, forming concentric single-celled layers surrounding the 
central vascular tissue. Distinct developmental zones are formed along the growing root. Cell 
division occurs in the meristematic zone, especially the apical meristem. Cell division rate 
slows down in the basal meristem and cells start to elongate in the elongation zone. The 
boundary between meristematic and elongation zone is indicated as the transition zone. Cell 
differentiation occurs in the differentiation zone; (Right): Radial polarity in on a cross section 
of the differentiated root zone showing the formation of root hairs and Casparian strips.  

 

The primary root of Arabidopsis thaliana is made up of rings of distinctive cell files as shown 

in Figure 1. Each cell file maintains their specific structure and functions, and they all begin 
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from the stem cell niche, comprising the quiescent centre (QC) and the surrounding stem 

cells ('initials') in the root tip. The QC is composed of four cells which divide occasionally, 

regulating and maintaining the undifferentiated states of neighbouring stem cells (van den 

Berg et al. 2007). In each cell file in the meristem region, cells originated from the stem cells 

actively divide, pushing cells into the elongation and differentiation zones where cells 

elongate and differentiate into mature cells. 

The well characterised structure helps us to study how the processes of division, 

differentiation, and elongation are regulated, which involves complex interactions 

between plant hormones 

 

1.3 Plant hormones interact with each other  

Hormones tightly regulate the growth and development of plants. Among the key plant 

hormones that attract most attention, auxin is the first to be discovered. Carrying the literal 

meaning of growth in Greek, auxin plays crucial roles in the development and growth plants. 

Within the complex network of hormone interactions, auxin controls fundamental cell 

activities, including elongation, division, and differentiation, all of which, in turn, will result 

in higher level development and growth, including lateral root formation, tropism and 

flowering etc (Davies, 2010). Despite all the attentions rightly deserved by auxin, we are still 

far from fully understanding how it is synthesized in plants, due to many postulated 

pathways, and possible redundent genes involved (Tivendale et al., 2014). In addition, there 

is also much more to learn about how auxin interacts with other genes and hormones to 

carry out its regulatory activity (Liu et al., 2010). This project tries to seek some light for both 

questions. 

In the era of molecular biology, and facilitated by mutational studies using Arabidopsis, 

much progress has been made in finding the molecular mechanisms underpinning the 

pathways of hormone biosynthesis and signalling. Knowing that for these plant hormones, 

their activities are closely related depending on the developmental stage of the plant and its 

environmental conditions, it has proven to be a challenge to understand these interactions 

between these hormones and relevant genes. In 2010, Liu et al. (2010) published a model of 

the crosstalk between auxin, ethylene, cytokinin and POLARIS gene, which qualitatively 

matched relevant experimental data known so far (Liu et al., 2010). By connecting the 

interactions of phytohormones into a network, the systematic study has shed light on the 
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research on the entangled interaction network in a more structured way, while more 

experimental knowledge and parameterization are required to develop the model further. 

 

Figure 2. The original phytohormone crosstalk network (Liu et al., 2010). This shows where 
rate constants (V...) have been determined for interactions between auxin, ethylene (ET), 
the ethylene signalling kinase CTR1, cytokinins (CK) and POLARIS (PLS). 

 

The model contains four major components: auxin, cytokinin, ethylene and PLS peptide, with 

particular emphasis on ethylene signalling and its interaction with PLS (Liu et al., 2010). 

Building the model was based on existing knowledge using mathematical modelling 

software, and kinetic parameters were tested and set to match available experimental data 

and the model was represented qualitatively. Investigating any component in the hormone 

network individually could be confusing without taking other affecting factors into account. 

Using molecular experiments with a complementing hormone crosstalk model provides a 

valuable approach to understanding the underlying interactions within the system as a 

whole. New components are being added to gradually develop the model. Not long after the 

model was published in 2010, the auxin efflux carrier PIN proteins were added to the model 

to include the transportation of auxin in the system, while also showing their interaction 

with PLS and other components in the model (Liu et al., 2013b). The PIN proteins comprise a 

family of 8 members, 5 of which are localised to the plasma membrane and mediate the 
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directional efflux of auxin, to establish concentration gradients; the remaining members are 

localized to the endoplasmic reticulum (ER), and their functions are not yet clear 

(Adamowski and Friml 2015).  

1.4 Many auxin biosynthesis pathways were postulated 

1.4.1 Trp independent pathway 

Auxin is an important plant hormone involved in the regulation of growth and development 

of plants at every stage of the life-cycle (Woodward and Bartel, 2005). Although the study of 

its signalling pathway has proceeded quite well over last century, the synthesis of indole-3-

acetic acid (IAA, auxin’s predominant biologically active form) and its interaction with 

developmental and environmental factors are still poorly understood. Up until now, two 

main IAA biosynthesis pathways have been suggested, the tryptophan (Trp)-dependent and 

Trp-independent pathways (Woodward and Bartel, 2005, Normanly, 2010, Mano and 

Nemoto, 2012). They share the first few steps until indole synthesis, which is then converted 

to tryptophan in the Trp-dependent pathway (Figure 3). How the Trp-independent pathways 

utilize indole-3-glycerol phosphate or indole still remains unclear (Jian et al., 2000, Zhang et 

al., 2008).  

Tryptophan is synthesized from chorismate in the chloroplast. A study on ethylene 

responses has uncovered an essential link point between ethylene and auxin activities 

(Stepanova et al., 2005). The inhibition of seeding root growth by ethylene is mediated by 

the products of WEI2 and WEI7 (WEAK ETHYLENE INSENSITIVE), which encode the two 

subunits of a tryptophan biosynthesis rate-limiting enzyme, anthranilate synthase that 

converts chorismate into anthranilate, an intermediate in the tryptophan synthesis pathway 

(Bohlmann et al., 1996). The wei2 wei7 double mutant of Arabidopsis results in ethylene 

insensitivity in the root, which can be rescued by exogenous tryptophan or IAA (Stepanova 

et al., 2005). This agrees with previous evidence that auxin response is downstream of 

ethylene signalling and the WEI2, WEI7 genes encode an essential part of the auxin 

biosynthesis pathway. Other relevant genes include TSA1 and TSB1 that encode α and β 

subunits of tryptophan synthase. Arabidopsis has another backup gene for the β subunit, 

TSB2, which is functionally redundant to TSB1 (Last et al., 1991). 
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Figure 3. Postulated auxin biosynthetic pathways. (Upper Panel): The suggested 
tryptophan synthetic pathway. Brown boxes indicate the genes related to each step. (Lower 
Panel): The postulated Trp dependent pathways. Solid arrows and boxes indicate the genes, 
or their enzymatic activities that are known. Dashed arrows and boxes are genes or steps 
that remain unknown or poorly understood. 

 

1.4.2 Trp dependent pathways 

For Trp dependent auxin biosynthesis, many pathways have been suggested (Figure 3), 

including: the indole-3-acetamide pathway (IAM), the indole-3-pyruvic acid pathway (IPA), 

the tryptamine pathway (TAM), and the Brassicaceae species specific indole-3-acetaldoxime 

pathway (IAOX) (Chandler, 2009, Mano et al., 2010, Normanly, 2010, Mano and Nemoto, 

2012, Woodward and Bartel, 2005). Despite being the first plant hormone discovered, there 

is still incomplete knowledge in the biochemistry of auxin biosynthesis. Among the many 
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postulated Trp dependent pathways, none has been proven indispensable, but it is 

suggested that the IAM and IPA pathways are the main routes to auxin synthesis. 

 

1.5 Role of POLARIS 

Previous work shows that POLARIS (PLS) plays an essential role in hormone signalling 

(Casson et al., 2002, Chilley et al., 2006, Liu et al., 2013a, Liu et al., 2010). PLS was identified 

in a promoter trap screen to identify genes expressed in the developing embryo of 

Arabidopsis, and the loss-of-function pls mutation exhibits defective root growth and 

hormonal responses (Casson et al. 2002). The pls mutant seedlings of Arabidopsis exhibit 

phenotypes of strong ethylene signalling without a noticeable increase in ethylene 

evolution, indicative of a role in ethylene signalling rather than synthesis (Chilley et al. 2006). 

Evidence shows that it regulates ethylene signalling by acting as a metallochaperone 

transporting copper (I) ion for ETR1, an ethylene receptor (Mudge, 2016). ETR1 is a member 

of a receptor family in Arabidopsis and other species, members of which form dimers 

containing a Cu(I) ion that is required for ethylene binding and signal transduction. The 

prediction is that the lack of PLS function would lead to enhanced ethylene responses as a 

consequence of receptor loss of function through lack of Cu(I) availability, as seen in ran1 

loss of function mutants - RAN1 delivers copper to the ER (Binder et al. 2010), and it is 

proposed PLS (which is also localised to the ER) retrieves this Cu and delivers it to the 

receptor complex. 

 

Figure 4. DR5:GFP showing auxin responses to exogeneous ethylene in wild type and pls. 

ACC treated seedlings are grown in the presence of 10 μM ACC added in the ½ MS10 growth 

medium. (Chilley et al., 2006) 
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Experimental data also suggest that there are direct interaction between POLARIS and auxin 

biosynthesis in response to ethylene. Ethylene plays a key role in many aspects of plant 

development, from fruit ripening, senescence and pathogenesis to the control of root 

growth and development (Li and Guo 2007). In part this is mediated through interactions 

with other hormones, and notably with auxin (Lewis et al. 2011; van der Poel et al. 2015). It 

is synthesised from methionine via the ethylene precursor 1-aminocyclopropane-1-

carboxylic acid (ACC), which is often used experimentally to mimic ethylene gas treatment of 

plants (Bleecker and Kende, 2000).Figure 4 shows ethylene- (ACC-) induced auxin 

biosynthesis in wildtype, seen as DR5:GFP expression (Chilley et al., 2006). In the pls mutant, 

ACC does not induce auxin responses, showing that the PLS peptide is required for ethylene-

mediated auxin responses. In other words, PLS peptide is acting upstream of the auxin 

response pathway, while down stream of ethylene signalling. One of the objectives of this 

project is to determine how PLS regulates auxin response pathways. 

 

1.6 Role of MDF 

Previous work has shown that the MERISTEM-DEFECTIVE (MDF) gene also plays a role in 

regulating auxin content and distribution in the Arabidopsis root (Casson et al. 2009). Its 

human homologue, the hSART-1 protein, is known to be a crucial component in pre-mRNA 

alternative splicing activity, which is a common mechanism among eukaryotes with the 

effect to have a much greater diversity in transcriptome compared with genome (Makarova 

et al. 2001). More work is required to further understand how MDF functions in the 

regulation of alternative splicing, and its effect on auxin in Arabidopsis. 

Alternative splicing is a common phenomenon in eukaryotes, where pre-mRNA strands are 

spliced differently, promoting the diversity of transcriptome significantly. Previous work 

suggests that MDF might be a key component in alternative splicing apparatus, controlling 

expression level of key genes in correct meristem development and function, including auxin 

homeostasis (Casson et al., 2009). More work needs to be done to elucidate the mechanism 

in which it interacts with other hormones in the system. 

 



19 
 

1.7 Aims and objectives of the thesis 

The overall aim of this project is to investigate the auxin biosynthesis and response 

pathways in Arabidopsis thaliana, to expand our knowledge in plant hormone crosstalk, 

especially how POLARIS and MDF proteins regulate and affect auxin distribution in the 

Arabidopsis root system. 

The study starts from transcriptome profiling on multiple genotypes of Arabidopsis using the 

most recent technology in RNA sequencing. This gives an overview of how the mutations 

affect the expression level of all genes expressed in seedlings. Further investigation using 

bioinformatics techniques was planned to identify key biological functions or pathways 

affected by mutating MDF or PLS genes.  

This led to experiments to investigate the relative contribution of auxin biosynthesis and 

transport in determine Arabidopsis root responses to ethylene. 

To better understand the control of auxin biosynthesis pathways, a comprehensive network 

for auxin biosynthesis pathways was to be built using data from experiments and the wider 

literature. 
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Chapter 2. Materials and Methods 

2.1 Materials 

All chemical supplies are from Sigma (Poole, UK) or Fisher Scientific ltd (Loughborough, UK) 

unless otherwise stated. 

Plant Material: All Arabidopsis thaliana wild type (Col-0 and C24) and mutant seeds are 

obtained from lab stocks unless otherwise stated. 

Genotypes used in tissue culture:   

C24 based lines:  C24, pls. 

Col-0 based lines: Col-0, PLSox, etr-1, pls x etr-1, mdf-1, mdf-2, MDFox. 

All seeds used in this project are from lab stock. pls mutant seeds are from C24 background. 

All other genotypes are from Col-0 background. To minimise the adverse effect of noise 

raised from different background, all such experiments used wildtype from both 

backgrounds as control group. 

The pls mutant, having a promoter trap T-DNA insertion into its short open reading frame, 

was first discovered in a promoter trap screening experiment (Casson et al., 2002).The PLSox 

overexpressing transgenic line was produced by incorporation 35S promoter of Cauliflower 

mosaic virus with PLS cDNA (Casson et al., 2002). 

 

2.2 Plant tissue culture 

2.2.1 Seed sterilisation 

Sterilization is required prior to growing plant on nutrient rich media to prevent any fungi or 

bacteria growth.  

It was done by submerging seeds in 70% ethanol v/v momentarily in 1.5ml Eppendorf tubes 

to remove the wax layer over the seeds, then the ethanol was discarded and replaced by 

10% bleach v/v diluted from concentrated bleach (Tesco, UK) and left at room temperature 

for 10 minutes to ensure sufficient penetration. The seeds were then rinsed 5 times using 

sterile distilled water to remove residual bleach before stratified in the dark at 4°C for 4-7 

days to synchronise germination. 
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2.2.2 Culturing Medium 

The base culturing medium (1/2 MS10) is half strength Murashige and Skoog medium mixed 

with 10g/L sucrose and 2g/L Phytagel. 

For every litre of culturing medium (1/2 MS10):  

2.2g (half strength) Murashige and Skoog medium, 10g sucrose and 2g phytagel were mixed 

with distilled water with pH controlled to 5.7 with HCl and KOH, before autoclaving at 121 °C 

for 20 minutes. 

 

 2.3 Nucleotide extraction  

SIGMA® Spectrum™ Plant Total RNA (Sigma-Aldrich, Gillingham, UK) kit was used for 

extracting total RNA from a small amount of plant tissue (~100mg), which were frozen in 

liquid nitrogen prior to extraction. The supplied protocol was strictly followed. 

 

2.3.1 Grinding and lysing 

About 100mg frozen plant tissue sample in an Eppendorf tube containing 500μl of lysis 

buffer (made by adding 10μl of 2-mercaptoethanol into lysis solution for every 1ml of lysis 

buffer) was ground on dry ice to fine powder with a pestle and incubated at 56°C for 2 

minutes. 

 

2.3.2 Filtration 

The Sample was centrifuged at 14,000g for 3 minutes and supernatant was then transferred 

into a Filtration Column seated in a 2-ml collection tube before centrifuged again for 1 

minute.  
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2.3.3 Binding RNA to Column 

Filtration column was discarded and the clarified lysate was mixed with 500μl of binding 

solution before briefly vortexed. 700μl of the mixture was then transferred into a binding 

column seated in a new 2ml collection tube to be centrifuged at 14,000g for 1 minute. The 

flow-through liquid was discarded before the remaining mixture was transferred to the same 

biding column to repeat the same process. Most RNA should be bound to the column. 

 

2.3.4 On-column DNase digestion 

The column was washed by pipetting 300μl of Wash Solution I into the Binding Column and 

Centrifuge at 14,000g for 1 minutes. The Flow-through liquid was discarded from the tube 

and Binding Column was put back.  

The DNase digestion mixture was prepared by mixing 10μl of DNase I (Catalogue No. D2816) 

with 70μl of DNase Digestion buffer (Catalogue No. D1566) gently by pipetting. Vortex was 

not used due to sensitivity of DNase I to physical denaturation. 

With care, 80μl of the mixture was pipetted directly onto the centre of the filter in the 

Binding Column to incubate at room temperature for 15 minutes. 

 

2.3.5 Three column washes and drying 

After incubation, the column was washed again with 500μl of Wash Solution 1 before being 

washed twice with 500μl of Wash Solution 2 with the same process in the first wash in the 

beginning of DNase digestion step. With all the flow-through liquid discarded, the column 

was put back into the tube and centrifuged at 14,000g for 1 minute to dry. 

 

2.3.6 Elution and collection 

The column was then transferred to a new, clean 2ml Collection Tube before 50μl of 

solution was directly transferred onto the centre of the binding matrix inside the column to 

sit for 1 minute. Then the column was centrifuged at 14,000g for 1 minute. Purified RNA was 

then collected in the flow-through elute and ready for immediate use or storage at -80°C. 
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2.4 Nucleotides Quantification and Quality Control 

2.4.1 NanoDrop  

Measurements of nucleic acid concentration was carried out using a NanoDrop (Wilmington, 

Delaware, USA) ND-1000 Spectrophotometer, measuring absorption at 260nm, And 

NanoDrop ND-1000 V3.5.2 Software. 

Absorption levels at 230nm and 280nm were also used as an indication to the purity of 

nucleic acid samples. 

 

2.4.2 TapeStation 

Agilent 2200 TapeStation was used to measure concentration of nucleic acid samples as well 

as their strand length distribution. D1000 ScreenTape (C/N 5067-5582) and D1000 Reagents 

(P/N 5067-5583) were used to run electrophoresis on DNA samples, while High Sensitivity 

RNA ScreenTape (C/N 5067-5579), High Sensitivity RNA ScreenTape Sample Buffer (C/N 

5067-5580), and High Sensitivity RNA ScreenTape Ladder (C/N 5067-5581) were used for 

RNA samples. 

 

2.5 Polymerase Chain Reaction (PCR) 

2.5.1 Primers 

The primes used in PCR reactions were designed using Primer-Blast 

(Http://www.ncbi.nlm.nih.gov/tools/primer-blast/) online tool and synthesised by MWG 

Eurofins (http://www.eurofinsdna.con/). Appendix 10 contains the full list of primers used in 

this project. 
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2.5.1 cDNA synthesis 

cDNA was synthesized by reverse transcription reaction, where the Poly-A RNA was copied 

into its complementary DNA form. So, the cDNA can be used as template for amplification in 

PCR reactions. Super Script III reverse transcriptase form SIGMA was used for cDNA 

synthesis. 

 

The following reaction mixture was added into a 20μl tube for first stage of incubation at 

65°C for 5 minutes: 

5ng Total RNA in water       10μl 

10μM Oligo dT        1μl 

Then the followings were added into the reaction mixture for the second stage of incubation 

at 50°C for 50 minutes: 

10x FX buffer        2μl 

50mM MgCl2         2μl 

0.1 DTT         2μl 

RNaseOut (Recombinant Ribonuclease Inhibitor)   1μl 

After the 2nd incubation, the temperature was increased to 85°C for a further 5 minutes to 

denature the enzymes in the mixture. The mixture was then put on ice for 1 minutes to cool 

down, before adding 1μl of RNase H for the last incubation at 37°C for 20 minutes to remove 

the RNA. 

The final product was diluted 1 in 4 and stored at -20°C until needed for PCR. 

 

2.5.2 Standard PCR 

For standard PCR reactions, Taq DNA polymerase from Bioline was used along with supplied 

10x reaction buffer and 50mM MgCl2 solution. 

Primers were ordered from MWG EUROFINS as freeze dried powder, which were re-

suspended to desired concentration with Milli-Q ultrapure deionised sterile water.  

The templates used were mainly cDNA synthesized from Poly(A) RNA.  
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A standard PCR reaction mix contains: 

 

DNA template  10-200ng 

Forward primer  0.2μM 

Reverse primer  0.2μM 

 

50mM MgCl2  1.5μl 

10x reaction buffer  5μl 

dNTP mix  1mM 

Taq DNA polymerase  2.5 units 

The volume was made up to 50μl with Milli-Q water in a 0.5ml PCR tube before being placed 

in a Thermal Cycler. 

 

A typical amplification program: 

Denaturation at 94°C for 2 minutes, followed by: 

30 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds and 

extension at 72°C for 1 minutes, 

Then a final extension of 10 minutes at 72°C.  

 

The size and concentration PCR products were checked by running 10-20μl of reaction mix 

on an agarose gel (0.7/2% thickness depending on expected length of products). 

 

2.5.3 Real time PCR (or Quantitative PCR, qPCR) 

Compared to standard PCR, the real-time PCR can detect the amplified DNA as the reaction 

cycles in real time. It is achieved by using a fluorescent dye, SYBR, which dramatically 

increases its fluorescence when bound to double strand DNA. The fluorescence is monitored 

after each reaction cycle and fluorescence data is analysed. By comparing with positive and 



26 
 

negative control, a comparative expression level of a target gene can be accurately 

quantified. 

Real time PCR experiments were performed using either SIGMA-ALDRICH SYBR® Green 

JumpStart™ Taq ReadyMix™ or BIOLINE SensiFAST™ SYBR® No-ROX Kit as SYBR mix. 

For each reaction, following components were mixed into a 20μl cocktail: 

 

SYBR mix    10μl 

10μM forward primer   0.8μl 

10μM reverse primer   0.8μl 

Template    up to 8.4μl 

Milli-Q water    as required 

 

The cycling program was set as following: 

 

Polymerase activation   95°C for 2 minutes 

40 cycles of 

Denaturation    95°C for 5 seconds 

Annealing    60-65°C for 10 seconds 

(Annealing temperature is dependent on primers used) 

Extension    72°C for 20 seconds 

 

Each real-time PCR experiment is carried out using tissue collected from at least three 

independent biological replicates, each of which also have three technical replicates. The 

data obtained from real-time PCR were analysed using the Rotorgene Q series software v1.7. 

Relative expression level of each gene was normalised using housekeeping gene for each 

sample, and analysed by comparative quantification method using an assumption free, 

linear-regression approach (Ramakers et al., 2003). 
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2.5.3 Gel electrophoresis 

As DNA molecules are negatively charged and they travel at different rate in agarose gel 

depending on their size, electrophoresis can be used to separate DNA molecules in the PCR 

product by size.  

The gel is made by mixing Agarose Multi-Purpose (Bioline) with 1x TAE buffer (diluted 1 in 10 

from 10X TAE buffer:  242g Tris, 37.2g Na2EDTA·2H2O, 57.1ml glacial acetic acid, and water in 

5L total volume) and heated to 100°C using microwave to produce a 1% w/v mix. Ethidium 

bromide was mixed to the heated solution before it is poured into an appropriate mould 

where the gel sets. 5x DNA loading buffer (Bioline) was mixed with PCR product in 1:4 v/v 

ratio, before loaded in the wells in the gel, with a separate lane for a suitable Hyperladder as 

the standard to determine the size of each separated band. The gel was run at 80V for about 

40 minutes before imaged using BioRad Gel-Doc 1000 (BioRad). 

 

2.6 Gus staining and analysis 

The GUS (beta-glucuronidase) reporter system is used to analyse promoter localisation and 

activity in transgenic plants. The expression of the GUS enzyme can be identified by 

incubation tissues in X-Gluc solution, which is converted to a blue precipitate by GUS 

enzyme in localised tissue. 

The staining solution comprises 1mM N-N-dimethlfomamide in 100mM sodium phosphate 

(pH7.0), 10mM EDTA, 0.5mM potassium ferricyanide, and 0.1% v/v Triton X buffer (Topping 

and Lindsey, 1997). The chloral hydrate solution is made up with 8g chloral hydrate, 1ml 

glycerol and 2ml water. 

To perform the staining process, individual seedlings were immersed in the staining solution 

in a 1.5mm Eppendorf tube. Optimum time for staining is determined by a time-course 

analysing the effect of the staining prior to the experiment. The staining process is stopped 

by replacing the staining solution with 98% ethanol, which also preserves the sample. 

Before imaging, each seedling is rehydrated by replacing ethanol with water, then 

transferred to a slide with chloral hydrate solution. 
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2.7 Imaging 

2.7.1 Compound Light microscope 

A Zeiss Axioskop compound microscope ( Carl Zeiss, Cambridge, UK), were used to examine 

histological tissue sections. Digital pictures were obtained with a QImiging Retiga-2000r 

camera (Photometrics, Marlow, UK) mounted on the microscope. 

  

2.7.2 Confocal microscope 

Tissues with florescent markers were examined using a Zeiss LSM 800 laser scanning 

microscope using either x40 or x63 oil immersion objectives. Roots were mounted on slides 

in sdH2O, covered by a 1.5 x 1.5 mm cover slip. The parameters for the excitation of 

fluorophores were as following: GFP by 488 nm using Argon laser, and YFP by 514nm using 

Argon laser. 

 

2.8 RNA Sequencing 

 -By Next Gen Illumina dye sequencing 

Principle 

The Illumina dye sequencing is a new generation of sequencing technique to determine the 

series of base pairs in DNA. It is achieved by synthesizing an identical copy of template 

ssDNA, which is fixed on a flow cell, with fluorescently labelled nucleotides with terminal 3’ 

blocked, one base at a time, and a picture is taken after each base is added to the strand. 

Then the fluorescent dye, along with the terminal 3’ blocker is chemically removed, to allow 

next cycle to begin. As the four nucleotides have different colours, the dots on each picture 

gives information on which base is added to a DNA strand at given cycle, hence revealing the 

sequence of a DNA segment. 

 

With DNA sequencing technology, RNA sequencing was achieved by sequencing the cDNA 

synthesized from extracted mRNA. 

 

2.8.1 Library preparation: 
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a. RNA extraction 

 

As RNA sequencing requires high quality complete RNA samples, TRIzol 

Reagent was used in the lysis part of RNA extraction to extract as much 

RNA molecules as possible, especially the smaller ones, from plant tissue 

culture. 

 

1. Lyse samples and separate phases 

 

200mg of each sample was wrapped in foil and frozen in liquid 

nitrogen, before being ground into fine powder in a frozen pestle 

and mortar. Ground tissue was collected into a 1.5ml Eppendorf 

tube before 1000µl TRIzol Reagent is added into the tube and 

mixed by inverting the tube a few times. After 5 minutes of 

incubation at room temperature to allow complete dissociation of 

the RNA from cells, 200µl chloroform (1:5 v/v to TRIzol used) was 

added to the tube, mixed by inverting a few times, before 

incubation at room temperature for 3 minutes before centrifuged 

at 12000g at 4°C for 15 minutes. 

 

After centrifuging, the upper clear aqueous phase containing the 

RNA was transferred into a new tube very carefully to avoid 

contamination from the interphase or organic layer in the tube. 

 

2. Isolate RNA 

 

Protocol for SIGMA® Spectrum™ Plant Total RNA kit was used to isolate 

RNA from the “Binding RNA to Column” step. 

 

3. Quality Control 
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Protocol for TapeStation was used to analyse the concentration 

and quality of isolated RNA samples. 

 

b. Library Preparation 

 

Illumina TruSeq Stranded Total RNA Sample Preparation Guide (Part # 

15031048 Rev.E) was used for the Library preparation. It comprises the 

following processes: 

 

Ribo-Zero Depletion 

RNA fragmentation 

First Strand cDNA synthesis 

Second Strand cDNA synthesis 

Adenylate 3’ ends 

Adaptor ligation 

DNA Fragment Enrichment 

Library validation 

Normalisation and pooling 

 

c. Sequencing 

 

The pooled library sample was handed to sequencing lab for 125 base 

paired end sequencing on an Illumina HiSeq 2500 sequencer. 

 

2.8.2 Data Processing 

 

The raw data output from the sequencer is sequencing information for each 

of the billions of short DNA strands (up to 250 bps including adaptors and 

tags) present in the library pool. Therefore, adequate processing was 

required before the data can be used for analysis. Firstly, the sequencing 
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information from each sample needed to be separated from the pooled 

library. This was achieved by identifying the unique tags at either ends of 

each read, which were assigned during the library preparation process. 

Secondly, the reads needed to be compared against the sequence of a known 

genome as reference to be able to identify the location of each read in the 

reference genome. Thirdly, with its location data, each read was be identified 

as part of a gene by using a gene transfer format (GTF) file containing the 

coordinates of genes within the genome. Depending on research 

requirements, different quantification methods can be used to convert the 

reads into gene counts. 

 

The following is a list of programmes used for data processing: 

a. Basic genome alignment using the following programs to align the 

raw reads against TAIR10(EnsemblePlants) genome. 

i. TopHat (Controls alignment process) 

ii. Bowtie (aligns reads against genome) 

iii. Cufflinks (link mapped reads into transcripts) 

b. Sequence file indexing 

i. Samtools (Indexes and sorts the binary sequence 

alignment files (BAM files) and convert them into readable 

(SAM) files) 

c. Quantification 

i. CuffDiff2 (Differential expression analysis tool) 

ii. HTSeq (A Python package that counts reads) 

iii. DeSeq (As part of R based Bioconductor, it is a differential 

gene expression analysis based on the negative binomial 

distribution) 

2.8.3 Data analysis 

 

a. Differential gene expression analysis 
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Gene count, or transcription expression level, was estimated using 

GTF files that contain gene coordinate information within the 

genome. Various factors can affect the result of quantification, such 

as transcript length, total number of reads, and sequencing biases. It 

needs to be considered that longer genes would have more reads as a 

result of accumulating more fragments than smaller genes. This is not 

important when comparing the expression level of a certain gene 

across several different samples, but it is necessary for ranking the 

gene expression level within the same sample. Another challenge 

facing differential gene expression level analysis is the problem of 

many related transcripts’ sharing a lot of their reads. Many programs 

developed sophisticated algorithms to tackle this problem. As an 

example, TopHat analyses the non-uniform read distribution along 

the gene length to allocate reads to different transcripts accordingly. 

 

b. Alternative splicing analysis 

 

We adopted the approach which detects the presence of expression 

isoforms by looking at reads spanning across exon junctions. Tools like 

DEXseq compare significant differences in read counts on exons 

between transcripts. Using the traditional classification method, there 

are 5 basic types of alternative splicing events: 

1. Exon Skipping, where an entire exon is skipped or retained in a 

transcript. 

2. Mutually exclusive exons, where one of a group of exons is 

included in transcript after splicing, but not more than one at 

the same time. 

3. Alternative donor site, where part of an exon is skipped or 

retained before jumping to the next exon. 

4. Alternative acceptor site, where part of an exon is skipped or 

retained when starting transcription at a new exon. 
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5. Intron retention, where the intron between two exons is 

retained or skipped. 

 

DEXseq 

(http://bioconductor.org/packages/release/bioc/html/DEXSeq.html) 

is used for identifying differential exon usage between RNAseq 

samples. 

DSGseq (http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/) is used 

for comparing differentially spliced genes from two RNAseq samples. 
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Chapter 3. Function and Signalling Relationships of POLARIS 

3.  1 Introduction 

The aim of the experimental work in this chapter is to investigate the function of POLARIS 

and its relationships with other genes and hormones, and in particular whether it has a 

direct influence on auxin biosynthesis independent of ethylene signalling. 

The POLARIS (PLS) gene was first identified in a mutagenesis screen, and was found to have a 

T-DNA containing a promoterless gusA gene inserted into a small open reading frame (ORF) 

of the gene, interrupting its expression (Topping et al., 1994). Having 108bp of coding 

sequence, PLS encodes a predicted 36-amino acid POLARIS (PLS) peptide (Topping et al., 

1994). The phenotype of homozygous mutant seedlings includes a short primary root, 

reduced polar auxin transport, and low auxin accumulation. It was previously proposed that 

the peptide regulates auxin distribution in the root via effects on ethylene signalling (Chilley 

et al., 2006).  

As the very first phytohormone to be discovered, auxin is involved in many aspects of plant 

development and growth, and it is part of a complex network where phytohormones and 

relevant genes interact with each other.  Previous studies demonstrated that ethylene can 

induce auxin biosynthesis and transport in the root (Stepanova et al., 2007, Swarup et al., 

2007, Stepanova et al., 2008). In wild type seedlings, applying the ethylene precursor ACC 

shows a dramatic effect in elevating auxin accumulation in the root meristem region. 

However, evidence shows that exogenous ACC treatment failed to rescue the suppression of 

auxin accumulation in the root tip in pls transgenic line (Liu et al., 2010), suggesting that PLS 

might have a role in auxin biosynthesis independent of ethylene signalling. 

Using next generation RNA sequencing technology, I was able to compare the transcriptome 

of the pls mutant and transgenic overexpressing line with wild type. The objective was to use 

differential expression analysis to determine whether the ethylene phenotype of pls is also 

reflected in expression levels of ethylene-responsive genes, and whether this is linked to any 

upregulation of auxin biosynthetic genes. We can hypothesise that, if auxin biosynthetic 

genes are not up-regulated by the lack of PLS peptides in pls mutant, then PLS is required for 

the transcription of auxin biosynthesis-related genes. If such genes are, however, 

upregulated, this would suggest a post-transcriptional mechanism of PLS action, to account 

for the low auxin phenotype of the pls mutant. 
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3.2 Next-Gen RNA Sequencing 

Thanks to the recent development in sequencing technology, the whole transcriptome of 

tissue samples can be used to give gene differential expression information between 

different genotypes or treatments. Using the Next Gen RNA sequencing platform from 

Illumina, we sequenced the RNA profile of C24, pls, Col-0 and PLSox genotypes.  

 

3.2.1 Quality Control and Data Integrity 

Three biological replicates were used in the RNA sequencing experiment for each of the C24, 

Col-0, pls, and PLSox genotypes. Their RNA quality and concentration were monitored 

throughout the experiment. Three critical points for quality control were 1) end of RNA 

extraction, 2) end of library preparation, and 3) end of sequencing run. 

 

3.2.1.1 RNA Quantification and Quality Control 

Total RNA was extracted from each sample, and was run on TapeStation to test their quality 

and integrity. All the samples in this experiment achieved satisfactory concentration and 

excellent RINe quality scores. Figure 3.1 shows a representative TapeStation result, and high 

quality RNA was confirmed by the clear presence of ribosomal RNA. The concentration of 

each sample was also confirmed by NanoDrop spectrometry analysis.  
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  Peak Table 

Size (nt) 
Calibrated Conc. 

(ng/μl) 
Assigned Conc. 

(ng/μl) 
Peak Molarity 

(nmol/l) 
% integrated 

Area 
Peak Comment Observations 

25 47.5 47.5 5590 -  Lower Marker 
1731 20.9 - 35.6 40.06  18S 
3384 31.3 - 27.2 59.94  28S 

 

  RNA Data Table 
28S/18S (Area) 1.4 
Total RNA Area 3.59 

rRNA Area 1.10 

 

Figure 3.1 – Representative TapeStation electrophoretogram of an RNA sample used for 
RNA sequencing. Each sample was stained with fluorescent dye and separated on an 
electrophoresis tape. The x-axis shows the size of detected molecules, calculated from the 
length it travelled from the starting point, calibrated with a standard ladder. The y-axis 
shows fluorescence intensity. The bands in the gel image shows the intensity of each RNA 
constituents. Smaller molecules travel faster so they appear at the bottom of the gel and 
shown at left hand side of the graph. The two peaks on the right represent 18s and 25s 
subunits of ribosomal RNA, and the one on the left is the marker in the gel. 
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Figure 3.2 – Representative TapeStation gel images of some RNA samples used for RNA 
sequencing. Each sample was stained with fluorescent dye and separated on an 
electrophoresis tape. From left to right, the first column is a standard ladder, showing 
nucleotide length in the scale on the left. The 3 columns next to the ladder are samples from 
pls (B1), C24 (C1), and PLSox (D1) respectively. The RINe score ranges from 0 to 10, 
measuring the integrity of RNA samples. 

 

3.2.1.2 Library Quantification and Quality Control 

To construct a transcriptome library for each sample, the total RNA went through a lengthy 

process, including removal of ribosomal RNA, cutting large molecules into the size, 

converting them to cDNA while adding adaptors and indexes, and controlled amplification 

using PCR. Figure 3.3 shows a representative Tape Station electrophoretogram of a Library 

sample used for RNA sequencing. All samples accumulated large amount of DNA molecules 

of ca. 300 bp, which is ideal for this 2-sided sequencing experiment. 
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Figure 3.3 – Representative TapeStation electrophoretogram of an RNA sample used for 
RNA sequencing. Each sample was stained with fluorescent dye and separated on an 
electrophoresis tape. The x-axis shows the size of detected molecules, calculated from the 
length it travelled from the starting point, calibrated with a standard ladder. The y-axis 
shows fluorescence intensity. The bands in the gel image shows the intensity of each of the 
DNA constituents. Smaller molecules travel faster so they appear at the bottom of the gel 
and are shown at the left hand side of the graph. The large peak in the middle represents 
the DNA molecules with the desired size of around 300 bp. The two smaller peaks at either 
side of the graph are markers in the gel. 

 

As the sequencer is very sensitive to library concentration, any variation between samples 

would be amplified in the sequencing process, making differential gene analysis more 
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difficult. It is important to normalise the concentration of libraries before pooling them 

together. To achieve accurate measurements, qPCR was used to determine the 

concentration of each library. The libraries of all samples were then pooled together and 

sent for Illumina sequencing. 
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3.2.1.3 Data Quality 

Raw data from the sequencer was tested using FastQC software, which gives a score for 

each base in all reads. As shown in Figure 3.4, high quality data were obtained for all 12 

samples according to FastQC read quality reports. The quality score of the majority of bases 

are well within the desired green zone (score 28-40) for this experiment. (Figure 3.4)  

 

Genotype Average Quality Score per Read 

C24 37 
EM101 37 
Col-0 37 
PLSox 37 

 

Figure 3.4: The upper panel is a representative Per Base Sequence Quality report. The plot 
shows an overview of the quality scores across all bases at each position of all reads. The x-
axis shows the position (bp) of a base in the read, and the y-axis shows the quality score. The 
red line is median value; the yellow box represents the inter-quartile range (25-75%); The 
upper and lower whisker indicate 10% and 90% points; The blue line is median score. The 
table below the graph shows the average quality score per read of each genotype tested, 
where all four genotypes achieved 37 out of 40, well over the threshold for best quality at 
28. 
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The Illumina sequencer used in this experiment is capable of reading 125 bases in each 

direction in total. Accounting for the depleted 12 bp of adaptors and 12 bp of indexes, most 

reads in the output file have 101 bases. On most Next Gen sequencing platforms, the read 

quality degrades as the run progress (Manley et al., 2016).  Therefore, the Per Base Read 

Quality plot (Figure 3.4) exhibits slightly decreasing average quality score along the reads. 

Quality warning is only issued when the median score (red bar) of any base is below 25. In 

more severe cases, the program will register failure when the median score hits below 20, or 

the lower quartile score (yellow box bottom) is below 5 (Andrew, 2016). 

Due to the fact that the samples from all 4 genotypes were run together in the same lane, all 

successful and failed reads are uniformly distributed between them. As a result, their quality 

scores are highly similar to each other (Figure 3.4, lower panel). 

 

3.3. Overall differential gene expression comparison between pls and PLSox 

After passing the quality control, the raw data obtained from the sequencer subsequently 

went through the process of trimming off the adaptors, alignment to the known Arabidopsis 

thaliana genome (Tair10), and normalising and counting the genes. The result is a file 

containing the expression level of all genes in each sample. 

 

Figure 3.5 Venn diagram showing number of genes that have changed expression levels in 
the pls mutant and PLSox compared to wildtype (p<0.1). In total, expression of 3251 genes 
was found to be significantly different in pls whereas for PLSox the number is 5698.  
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3.3.1 Overview of Differentially Expressed Genes using Gene Ontology (GO) Analysis 

High-throughput experiments can produce large amounts of data which are difficult to 

interpret. As a good example, the RNA sequencing experiment in this project identified 

thousands of differentially expressed genes (DEGs) from each sample. In order to interpret 

the data, gene ontology (GO) enrichment analysis was carried out using the online platform 

agriGO (http://systemsbiology.cau.edu.cn/agriGOv2/ ). This analysis identifies frequently 

occurring GO terms within the list of DEGs to show the proposed biological processes that 

are affected in the pls mutant and PLS overexpressor. However, the list of enriched GO 

terms can still be long and redundant, making it hard to interpret. To make the result more 

intelligible, the long list of enriched GO terms is further reduced using REVIGO 

(revigo.irb.hr), which groups GO terms semantically based on their functional similarity into 

clusters, using a single, most relevant GO term picked from each cluster as the 

representative for that cluster. To visualise the output, the clusters are displayed in a tree 

map as rectangles, which are grouped further into superclusters each assigned a colour, with 

the sizes of the rectangles represent the p-values of the enriched GO terms. This analysis 

gives an overview of the DEG profile of each sample, making it easier to identify the 

potential biological processes and pathways of interest. 
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Figure 3.6. Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly upregulated genes in pls mutant RNA sequencing data, with 
adjusted P value <0.1 and log2 fold change (log2fc) >0.5. Each coloured rectangle represents 
a GO term cluster, and each colour with its grey bar on top and colour key below the tree 
map shows a supercluster of related clusters. The colour key is ordered by total size of the 
cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster.
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Figure 3.7. Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly upregulated genes in pls mutant RNA sequencing data, with 
adjusted P value <0.1 and log2 fold change (log2fc) <-0.5. Each coloured rectangle represents 
a GO term cluster, and each colour with its grey bar on top and colour key below the tree 
map shows a supercluster of related clusters. The colour key is ordered by total size of the 
cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster.
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Figure 3.8. Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly upregulated genes in PLSox RNA sequencing data, with 
adjusted P value <0.1 and log2 fold change (log2fc) >0.5. Each coloured rectangle represents 
a GO term cluster, and each colour with its grey bar on top and colour key below the tree 
map shows a supercluster of related clusters. The colour key is ordered by total size of the 
cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster.
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Figure 3.9. Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly downregulated genes in PLSox RNA sequencing data, with 
adjusted P value <0.1 and log2 fold change (log2fc) >0.5. Each coloured rectangle represents 
a GO term cluster, and each colour with its grey bar on top and colour key below the tree 
map shows a supercluster of related clusters. The colour key is ordered by total size of the 
cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster.
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Figure 3.10. Tree map output from REVIGO showing the clustering of enriched gene 
ontology (GO) terms in the genes that are significantly upregulated in pls AND 
downregulated in PLSox, with adjusted P value <0.1 and log2 fold change (log2fc) >0.5. Each 
coloured rectangle represents a GO term cluster, and each colour with its grey bar on top 
and colour key below the tree map shows a supercluster of related clusters. The colour key 
is ordered by total size of the cluster from left to right on each row, then top down across. 
The size of each coloured rectangle represents the absolute value of the log10 P-value (|log10 

q-value|) of its cluster.  



48 
 

3.3.2 Changes in gene expression in the pls mutant 

3.3.2.1 Ethylene-related genes are upregulated in the pls mutant 

Previous experiment results showed that by inhibiting the enhanced ethylene signalling 

observed in pls mutant seedlings, the short root phenotype was restored to approximately 

wild-type level. This suggests that increased ethylene signalling is a major contributing factor 

in the pls short root phenotype. This view is further supported by gene ontology (GO) 

analysis using AgriGO and REVIGO. It is found that among all the significantly upregulated 

genes in the pls mutant, almost all of the top 20 enriched GO terms are related to ethylene-

related biological processes, including response to a range of stress-causing stimuli, and is 

consistent with previous experimental data. 

Predictably, the data from the overexpression of PLS showed the opposite result. Many 

stress and defence related GO terms are enriched in the down-regulated gene dataset, while 

others remain not significantly changed. This finding is in line with the fact that the 

overexpressor has a similar phenotype to wildtype seedlings under standard growth 

conditions. 
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3.3.2.2 No PLS mRNA found in pls transcriptome 

 

Fig. 3.12 Sashimi Plot showing the transcription level of PLS gene in C24, pls, Col-0, and 
PLSox genotypes. Each bar represents a base in the gene, and the height of the bars 
represents relative level of expression of each base. 

 

 

Despite having key roles in signalling pathways, PLS gene has extremely low level of 

expression in the wildtype transcriptome. Among the samples sequenced, the PLS gene had 

very low levels of expression in both wild types and none in the pls mutant, while there is a 

significant level of PLS expression in PLSox lines (Figure 3.11). This confirms that pls 

transgenic line is a knock-out mutant, and that PLSox does produce excessive PLS mRNA. 
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3.3.2.3 Expression of genes in IAOX pathway 
In order to study how auxin biosynthesis pathway is affected by POLARIS, relevant genes are 
looked at in the RNA sequencing data. Among all the pathways postulated in the literature, 
the IAOX pathway stands out as having most of its genes differentially expressed in pls 
mutant. 

A. 
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B. 

 

Figure 3.13 A. The change of gene expression level in IAOX auxin biosynthetic pathway. 
The orange arrows on the genes show the change in the pls mutant, and the blue arrows 
represent the change in the PLSox line. Hyphens represent no significant change in data. B. 
The relative expression level of key genes in the IAOX pathway plotted using RNA-seq data 
from pls mutant. Vertical axis represents log2FC (fold change), where +/- 1 represents two 
folds up/down regulation relative to that of wild type. q-value < 0.01 for all but SUR1, where 
q-value < 0.1. 

 

3.3.2.2 PLS has a role in regulating photosynthetic genes 

Among all the differentially expressed genes in both pls mutant and PLSox, 212 genes were 

upregulated in pls mutant while downregulated in the PLSox. Gene ontology analysis on 

these genes revealed that the overexpression of PLS represses the expression level of many 

photosynthetic genes, which suggests that PLS might play an inhibitory role on regulating 

development of photosynthetic apparatus. 

This hypothesis is supported by previous studies on the localization of PLS expression in 

young seedlings. Being a regulatory peptide, PLS has extremely low abundance on both 

transcription and translation level. However, GUS staining experiments clearly revealed that 

PLS transcription is primarily found in non-photosynthetic tissues including root meristem 
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region and leaf vascular tissue (Casson et al., 2002), consistent with a role for PLS in 

repressing photosynthetic development or activity. 

 

Figure 3.14 GUS expression in the PLS-GUS Promoter Trap Line showing localisation of PLS 

expression in: (A) heart stage embryo with 5 hr of GUS staining; (B) seven-day-old seedling 

root tip, with 5 min of Gus staining; (C) seven-day-old seedling root tip with 1 hr of GUS 

staining; and (D) aerial parts of a 12 day old seedling (Casson et al., 2002). 

 

Much research effort in plant biology is put into looking for ways to increase crop yield by 

increasing plants’ tolerance to various stresses. Studies on drought stress revealed that 

elevated cytokinin level successfully delayed senescence, leaving the photosynthetic 

apparatus operational for longer under stress (Smart et al., 1991). Previous experiments 

showed that the PLS peptide has negative regulatory effects on cytokinin responses and 

local concentration (Casson et al., 2002, Liu et al., 2010). This suggests that it is possible that 

PLS’s regulatory effects on photosynthesis are achieved at least in part through cytokinin 

signalling.  

 

3.4 qPCR validation of RNA sequencing data 

To test the robustness of RNA sequencing data, qPCR was carried out on additional 

biological sample replicates. Primers were designed to amplify a selection of genes in the 

auxin biosynthesis pathways, using cDNA synthesised from RNA isolated from wildtype, pls, 

and PLSox tissue samples. This is to validate how the gene expression level changed in pls 

transgenic line and PLS over expressor. All the genes tested showed a similar expression 
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pattern to those revealed by RNA sequencing data. As an example, two genes in the IAOX 

auxin biosynthesis pathway were tested again using qPCR. Figure 3.15 shows the relative 

expression level of these two genes using the data from both qPCR and RNA sequencing 

experiments, showing similar expression direction of change. Therefore, the qPCR 

experiment validates the data obtained from the sequencing experiment, confirming its 

sensitivity and robustness. 

 

Figure 3.15 Comparison of RNAseq (left) and qPCR (right) results using relative expression 

level of SUR1 and CYP79B2 genes of pls and PLSox. Vertical axis represents the 

log2(Foldchange) compared against wildtype expression level. Confidence level p<0.05. 

 

3.5 Investigation of a role for PLS in auxin biosynthesis or transport 

Previous studies demonstrated that wild type Arabidopsis seedlings treated with exogenous 

ACC, an ethylene precursor, show a significant accumulation of auxin in root tips. However, 

the root tip of pls transgenic seedlings shows no increase in auxin level under the same 

treatment (Chilley et al., 2006, Liu et al., 2010). This was confirmed experimentally again in 

this study (Figures 3.16 -3.19). This observation led us to hypothesize that POLARIS might be 

an important link between the ethylene signalling pathway and the control of auxin 

accumulation in the root tip.  
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A: 

 

 

B: 

 

 

Figure 3.16. Auxin activity in root tips of seedlings grown for 7 days on media with treatment 

of ACC or NPA. Block A pictures are from Col-0 (WT) DR5:Venus, and Block B pictures are 

from pls DR5:GFP. The first picture from each panel are non treated (NT). Histograms show 

measured average (n = 3) intensity level of fluorescent signal in meristem and peripheral 

region of roots in each graph. Scale bar = 50 μm. 
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A:      B: 

                            

Figure 3.17.  

A: Previous experimental demonstration that ethylene precursor ACC induces auxin 

response in wild-type root tips (revealed as DR5::GFP expression; upper two panels), but the 

pls mutant shows no DR5::GFP induction by ACC (lower two panels). The pls mutant (lower 

left panel) also shows a reduced DR5::GFP signal compared with wild type (upper left panel) 

(Liu et al., 2010). B: ACC treatment on Col-0 DR5::Venus shows elevated auxin level in root 

tip. ACC treatment on pls DR5:GFP. Showing little difference between control and treated 

Scale bar = 50 μm. Please refer to histograms in Figure 3.16 for fluorescent intensity 

measurements. 

 

The spatial distribution of auxin in the root tip is maintained by a range of factors including 

both auxin transport in and out, and local biosynthesis and degradation (Chilley et al., 2006). 

To investigate the molecular mechanism regulating how auxin accumulation is affected by 

PLS, it is important to separate the effects on auxin transport and local biosynthesis. NPA is 

known to inhibit the activity of PIN proteins, which are major components of auxin polar 

transport mechanism (Forestan and Varotto, 2012, Katekar and Geissler, 1980, Reed et al., 

1998). Therefore, NPA is used here to constrict auxin transport. This allows the testing of the 

hypothesis that, if the low auxin content of the pls mutant root tip is due to enhanced auxin 

transport out of the root (as the PINs are enhanced in the pls mutant; Liu et al. 2013), then 

inhibition of transport (by NPA) should lead to the accumulation of auxin in the pls tip, 

assuming PLS is not required for auxin biosynthesis. If PLS is required for auxin biosynthesis, 
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we would expect to see no increase in auxin in the root tip in response to ACC, in the 

presence of NPA.  

 

Figure 3.18. UP: Auxin distribution in root tip is dramatically changed in WT seedlings 

treated with NPA. DOWN: Effect of EPA treatment on auxin distribution of pls mutant 

seedlings. Scale bar = 50 μm. Please refer to histograms in Figure 3.16 for fluorescent 

intensity measurements. 

 

Wildtype seedlings treated with NPA show dramatic change in auxin distribution in the root 

tip. As shown in Figures 3.17 and 3.18, the DR5::Venus fluorescence (yellow areas in upper 

panels), representing auxin response, shifted its distribution from mainly in the columella 

and quiescent centre to cortex and epidermis regions, with a dosage dependent effect. In 

the pls mutant, NPA treatment showed a much less significant change in auxin distribution 

(green areas in lower panels) in the root tip. In contrast to the change seen in the wild type, 

the quiescent centre and columella region of pls retained its auxin signal, while the cortex 

and epidermal region gained a slight but significant elevation. This suggests that in wild type 

seedlings, a significant proportion of active auxin in the quiescent centre and columella 

region in root tip is transported up to the upper cortex and epidermal tissues. By treating 

seedlings with NPA, transport of auxin is restricted, leading to accumulation of auxin in the 

peripheral region; and less auxin concentration in the quiescent centre and columella region. 
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When ACC and NPA are applied to seedlings simultaneously, both wild type and pls mutant 

seedlings showed increased auxin activity in root tip, with wild type having more severe 

effect. This shows that ACC induces local auxin biosynthesis both in the meristem region and 

peripheral region in wild type seedling roots. However, the lack of significant elevation of 

auxin accumulation in pls seedlings suggests that ACC failed to induce local auxin 

biosynthesis in the root tip, and that PLS peptide is required for ethylene-mediated auxin 

biosynthesis. 

 

Figure 3.19. UP: Auxin distribution in root tip is dramatically changed in WT seedlings 

treated with NPA and ACC simultaneously. DOWN: Effect of NPA and ACC joint treatment on 

pls mutant seedlings). Scale bar = 50 μm. Please refer to histograms in Figure 3.16 for 

fluorescence intensity measurements. 
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Summary 
 

The aim of this chapter was to investigate the function of POLARIS and its relationship with 

other hormones and genes, and its role in auxin biosynthesis pathways. Using RNA 

sequencing technology, the whole transcriptomes of Arabidopsis variants including WT, pls 

and PLSox were obtained to look at the relationships at the gene expression level. Gene 

ontology analysis was carried out to provide a general overview of the large amount of data 

generated in RNA-seq. Other bioinformatic tools, bioimaging, literature search, and other 

analyses were carried out to further investigate the data. As the aim of this chapter is 

particularly aimed at the role of POLARIS in auxin biosynthesis, much work has been focused 

on identifying its effect independent of ethylene-induced auxin responses. 

The data from RNA-seq experiments revealed that PLS peptide is highly likely to be involved 

in the ethylene response as the lack of PLS in pls mutant seedlings induced upregulation of a 

significant group of ethylene related genes. The analysis also suggests that PLS may be 

playing a role in regulating development of the photosynthetic apparatus, at least in part 

through interaction with cytokinin. The bioimaging experiments confirmed that PLS peptide 

is required for ethylene-mediated auxin biosynthesis in the root tip. 
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Chapter 4. Function and Relationships of MDF 

4.1 Introduction 

MERISTEM-DEFECTIVE (MDF) is a gene which was previously identified in an embryogenesis 

analysis using laser capture microdissection technology (Casson et al. 2009). The gene 

encodes a predicted polypeptide of 820 amino acids, forming a putative serine-arginine 

related argine-serine (RS) domain protein. It was found to be crucial for correct root 

meristem organisation and maintenance. Two independent homozygous mutants (mdf-1 

and mdf-2) of MDF exhibit three cotyledons in seedlings, in addition to some similar 

phenotypes to pls seedlings, including delayed development and short roots. Most 

interestingly, the mutant seedlings also have a reduction in auxin levels in the meristem 

region and disturbed auxin patterning in the root tip region, associated with impaired 

development. Based on its structural homology to the human SART1 and yeast snu66 

proteins (Makarova et al. 2001), it is hypothesised that the MDF protein may plays a key role 

in regulating RNA splicing, which is a fundamental mechanism that expands diversity in the 

transcriptome and proteome; correctly spliced genes are basic requirements for normal cell 

activity.  

 

4.2 Next-Gen RNA sequencing on MDF 

The goal of this RNA sequencing experiment was to identify the changes in expression levels, 

as well as alternative splicing patterns, of RNAs as a result of mutating the MDF gene in 

Arabidopsis. To understand how the mutation has affected RNA profiles linked to altered 

root development, especially in the meristem region, samples were taken from 7 day old 

seedlings. 

Sequencing was performed on samples from Col-0 as wildtype control, both mutants mdf-

1and mdf-2, and a transgenic over-expresser MDFox. Each genotype was sequenced as three 

independent biological replicates, resulting in a total of 12 samples. Two lanes of high 

output run on Illumina HiSeq 2500 platform were performed to achieve up to 400-500 

million paired-ends reads per lane, equivalent to 65-78 million paired-ends reads per 

sample. This level of read depth was expected to be enough to analyse differences in 

alternative splicing events between samples. A prediction is that the mdf mutants would 

show not only differentially expressed genes associated with meristem function, but also 
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evidence of mis-splicing of at least some RNAs, given the predicted function of MDF as a 

spliceosome factor. 

 

4.2.1 Quality control. 

The program FastQC was used to test the quality of sequencing data. The data obtained 

from this experiment achieved exceptional quality. According to FastQC reports, the quality 

score of most reads lie on top of the quality scale, which is especially useful for detecting 

small RNA molecules and alternative splicing events. 

 

4.2.2 Analysis of differentially expressed genes using RNA-Seq Data 

The experiment has generated high quality and depth data, which in turn gives a strong 

foundation for identifying differentially expressed genes. The differentially expressed genes 

(DEGs) are selected based on an adjusted p-value (q-value) <0.05, representing the 

confidence level; with a log2fc >1 or <-1 representing more than two fold change in up or 

down direction respectively.  

The results shows that the severely dwarfed and deformed phenotypes of mdf-1 and mdf-2 

are associated with significantly altered expression levels of thousands of genes. Compared 

with wild type Col-0, there were 4195 up-regulated genes and 5404 down-regulated genes in 

mdf-1. For mdf-2, which has a less severe phenotype than mdf-1, the number of up and 

down regulated genes are 2830 and 3449. Both of the figures in mdf-2 are considerably less 

than that of mdf-1, which is in line with the stronger phenotypes observed in mdf-1 

seedlings, suggesting that the truncated MDF protein in mdf-2 might still be partially 

functional. 
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Figure 4.1  Venn diagram showing the number of differentially expressed genes (DEGs) in 
mdf-1 and mdf-2 homozygous transgenic 7 d.a.g. seedlings following the RNA sequencing 
experiment, with adjusted p value < 0.05, and log2 fold change (log2fc) >1. Each oval contains 
all up or down regulated genes in one of the genotypes, and the overlapping parts represent 
numbers of genes meeting the conditions of more than one encircling oval. Percentage 
under each number is calculated by dividing each number by the total number of DEGs in 
the diagram. 
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4.2.3 Overview of Differentially Expressed Genes using Gene Ontology (GO) Analysis 
High-throughput experiments can produce large amounts of data which are difficult to 

comprehend. As a good example, the RNA sequencing experiment in this project identified 

thousands of differentially expressed genes from each sample. In order to interpret such 

amount of data, gene ontology (GO) enrichment analysis was carried out using the online 

platform agriGO. This analysis identifies frequently occurring GO terms within the list of 

DEGs to show the biological processes that are affected in by the mutation in mdf-1 and 

mdf-2 seedlings. However, the list of enriched GO terms can still be long and redundant, 

making it hard to interpret. To make the result more intelligible, the long list of enriched GO 

terms is further reduced using REVIGO, which groups GO terms semantically based on their 

functional similarity into clusters, using a single, most relevant GO term picked from each 

cluster as the representative for that cluster. To visualise the output, the clusters are 

displayed in a tree map as rectangles, which are grouped further into superclusters each 

assigned a colour, with the sizes of the rectangles represent the p-values of the enriched GO 

terms. This analysis gives an overview of the DEG profile of each sample, making it easier to 

identify the potential biological processes and pathways of interest. 
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Figure 4.2 Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly upregulated genes in mdf-1 mutant RNA sequencing data, 
with adjusted P value <0.05 and log2 fold change (log2fc) >1. Each coloured rectangle 
represents a GO term cluster, and each colour with its grey bar on top and colour key below 
the tree map shows a supercluster of related clusters. The colour key is ordered by total size 
of the cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster.
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Figure 4.3 Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly downregulated genes in mdf-1 mutant RNA sequencing data, 
with adjusted P value <0.05 and log2 fold change (log2fc) <1. Each coloured rectangle 
represents a GO term cluster, and each colour with its grey bar on top and colour key below 
the tree map shows a supercluster of related clusters. The colour key is ordered by total size 
of the cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster. 
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Figure 4.4 Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly upregulated genes in mdf-2 mutant RNA sequencing data, 
with adjusted P value <0.05 and log2 fold change (log2fc) >1. Each coloured rectangle 
represents a GO term cluster, and each colour with its grey bar on top and colour key below 
the tree map shows a supercluster of related clusters. The colour key is ordered by total size 
of the cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster. 
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Figure 4.5 Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the significantly downregulated genes in mdf-2 mutant RNA sequencing data, 
with adjusted P value <0.05 and log2 fold change (log2fc) <1. Each coloured rectangle 
represents a GO term cluster, and each colour with its grey bar on top and colour key below 
the tree map shows a supercluster of related clusters. The colour key is ordered by total size 
of the cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster. 
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4.2.4 Key findings from the gene ontology analysis 
The tree maps show a strong pattern in both mdf-1 and mdf-2 transcriptomes that both 

exhibit upregulation in stress related genes, as seen in Figures 4.4 and 4.5, and the enriched 

GO terms include response to stress, defence response, response to other organism, 

immune response, aging, and reactive oxygen species metabolism (ROS). As one of the key 

stress related pathways, response to ethylene also shows up in both upregulated GO 

enrichment lists. This suggests that mutation of MDF genes has profound effects on many 

biological processes in Arabidopsis, and many stress responsive pathways were activated or 

upregulated in an effort to compensate for the damage. In both tree maps, aging and 

programmed cell death were also shown significantly upregulated, which might be a result 

of various stress placed upon the young seedlings.  

The supercluster ‘response to stress’, which also contain ‘response to ethylene’, is the 

largest one in the list in both up regulated tree maps. This suggests that MDF might be 

playing a negative regulatory role in stress response. Major superclusters also contain 

‘programmed cell death’, ‘secondary metabolism’, and ‘aging’. The supercluster ‘indole-

containing compound metabolism’ suggests that auxin biosynthesis might be affected in 

mutant lines. 

In both downregulation tree maps for mdf-1 and mdf-2 samples, most of the enriched GO 

terms are related to basic and crucial cellular functions and developmental processes. Both 

figures show down regulation in genes in GO terms of enzyme linked receptor protein 

signalling pathway, which is one of the most fundamental pathways which transmit signals 

across membrane by transmembrane receptors binding extracellular ligands causing 

enzymatic changes in the cytoplasm (Alberts B, 2002). One of the important pathways using 

this principal is the auxin signalling pathway, which is also enriched in both downregulation 

tree maps under GO term response to auxin. Other downregulated GO terms include protein 

phosphorylation, photosynthesis, cell wall organisation, tissue development and growth. 

The GO enrichment analysis provides a general overview of the change in transcriptome and 

gives indication on which direction should be investigated in more detail. These findings are 

in line with the short root and delayed development phenotypes of mdf-1and mdf-2 

homozygous mutants, as well as previous experiment results, such as the low expression 

level of auxin transporter PIN protein genes. 
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4.2.4.1 PIN protein Genes are supressed in mdf-1 seedlings 
The PIN protein family is a group of auxin carriers, which are crucial for maintaining the 

correct auxin distribution in the root for its development and growth. The quiescent centre 

in the stem cell region of the meristem is responsible for maintaining the stem cell 

population that surrounds it, and which requires a peak of auxin concentration.  

 

Figure 4.6 Table showing the relative expression level of PIN genes in mdf-1/2 mutant using 
data from RNA sequencing experiments. Green ticks indicate confidence level greater than 
95%. 

 

PIN proteins can be classified into two subfamilies based on similarity in their structures and 

subcellular localisation. PIN1-4 and PIN7 proteins are members of the larger subfamily, the 

long PINs, and are characterised by a highly conserved long sequence of hydrophilic loop, 

connecting two transmembrane domains each containing about 5 hydrophobic regions. 

They are localised at the plasma membrane and are defined as auxin efflux carriers as they 

move auxin molecules from the cytoplasm to intercellular space. Although having shortened 

hydrophilic loop, PIN6 can also be put into this group due to the highly similar 

transmembrane domains it shares with the rest of the family. But its structure anchors the 

protein in the ER membrane. The other major subfamily includes PIN5 and PIN8, which are 

characterised by almost absent hydrophilic loop, and they are also found to be localised in 

the ER like PIN6 (Krecek et al., 2009).  

In the RNA sequencing differential expression analysis, it was found that all PIN protein 

genes apart from PIN8 are significantly down regulated by 1.5 – 3.5 fold with more than 

99.99% confidence level, consistent with results from previous experiment where auxin 

distribution is found dramatically disrupted in mdf-1 seedlings (Casson et al., 2009) 

 

Gene ID Name baseMean
mdf-1 log2 
FoldChange q value

mdf-2 log2 
FoldChange q value

AT1G73590 PIN1 425.33592 -2.10 3.70E-38 -1.38 4.17788E-18
AT5G57090 PIN2 763.87419 -2.81 2.43E-49 -1.10 4.10648E-09
AT1G70940 PIN3 1880.1384 -1.44 8.81E-34 -1.55 2.03376E-38
AT2G01420 PIN4 1280.8696 -2.14 9.87E-42 -1.82 2.39411E-30
AT5G16530 PIN5 33.033236 -3.47 5.44E-13 -1.82 2.17362E-06
AT1G77110 PIN6 46.301212 -3.40 1.75E-13 -2.14 4.10881E-07
AT1G23080 PIN7 3048.8329 -2.69 4.79E-150 -1.28 1.66147E-36
AT5G15100 PIN8 0.7652549 -0.19 8.64E-01 0.61 NA
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4.2.4.2 key genes in meristem development and stem cell activity are down regulated 
It is known that MDF is required for the correct meristem patterning in Arabidopsis, one of 

the most novel phenotypes of mdf mutant seedlings is the absence of organised meristem 

region. With correct auxin concentration distribution, specifically a concentration maximum 

at the root tip region, the PLETHORA family genes are expressed to establish the quiescent 

centre, where a group of cells that are surrounded by stems cells that divides and 

differentiate into necessary cell types in the roots. This process also requires the actions of 

the SCARECROW (SCR) AND SHORTROOT (SHR) genes which are responsible for establishing 

radial patterning (Helariutta et al., 2000). 

Four of the PLT family members, PLT 1-4, partly sharing their transcriptional domain, 

function in the root meristem to maintain cell division and repress cell differentiation 

(Galinha et al., 2007). In this RNA sequencing experiment, all but PLT3 were found 

significantly down regulated by about 3-5 fold in both mdf-1 and mdf-2 mutant, with PLT3 

down at 0.8 fold. Similarly, SHR is also found to be down regulated by about 2.5 fold. 

In the PLT family, PLT3, PLT5, and PLT7 are known to be active in cells that are developing 

into lateral roots and in the shoot apical meristem, where they function to control the 

generation of lateral roots (Galinha et al., 2007). In contrast to PLT1-4, the RNA experiments 

show that both PLT5 and PLT7 are significantly up regulated in mdf1 and mdf2 mutant 

seedlings. 

Key genes in stem cell regulation that are mis-regulated also include WOX (WUSCHEL 

RELATED HOMEOBOX) gene family. These genes contain homeobox sequence which encode 

the DNA binding domain, and they are key components in the regulation of embryonic 

pattern by controlling cell differentiation on timing and location (Haecker et al., 2004). In the 

RNA sequencing result, WOX1, WOX4, and WOX5 are significantly down regulated ranging 

from 1.5 to 4.1 fold, with WOX2 showed 1 fold up regulation, while, WOX3 showed no 

difference.  
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4.2.4.3 Key genes in stress response are up regulated 
In the tree maps for up regulation in both mdf-1 and mdf-2 transgenic lines, the largest 

supercluster is ‘response to stress’, which also contains ‘response to ethylene’. This suggests 

that MDF might be acting like a switch, negatively regulating gene expressions in response to 

stresses. The result also shows that the expression of PLS is significantly down regulated in 

mdf-1 and 2. This is consistent with previous experiments confirming that, being a key 

component of an ethylene receptor, PLS negatively controls ethylene response. 

 

Figure 4.7 Key genes included in gene ontology term ‘response to stress’ are up regulated in 
both mdf-1/2 mutants. (q<0.05). 

 
4.2.5 Alternative Splicing analysis.  
 

Alternative splicing is an essential mechanism where different mRNAs can be generated 

from a single gene, thus increasing diversity in transcriptome and proteome. Statistics show 

that more than 95% of human genes undergo alternative splicing at various stage of 

development (Nilsen and Graveley, 2010). In Arabidopsis thaliana, a recent study shows that 

82190 unique transcripts were generated from 34212 genes. These transcripts were 

generated from RNA sequencing data, and assembled into a Reference Transcript Dataset 

for Arabidopsis, AtRTD2 (Zhang et al., 2017). 

MDF is an ortholog of human SART1 and yeast snu66 proteins, which are key components of 

spliceosomes responsible for RNA splicing. As a result, we hypothesize that the traumatic 
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phenotype of mdf-1 mutant seedlings are caused by defects in RNA splicing, and MDF plays a 

regulatory role in controlling alternative splicing in Arabidopsis. 

Alternative splicing events are classified into 5 categories. Firstly, Alternative 3’ splice site 

(A3SS) and A5SS are events that have exon spliced at different 3’ or 5’ end respectively. 

Then, mutually exclusive exons (MEX) refers to situations where one or the other of two 

exon is retained, but not both within the same mRNA. Intron retention (IR) is when an intron 

is retained as part of a transcript, while skipped exons (SK) means that when an exon is 

simply skipped (Black, 2003). 

Alternative splicing analysis was performed using AtRTD2 (Prof. John Brown, University of 

Dundee) as the reference transcriptome, a total of 2413 splicing events were found to be 

significantly different in mdf-1 transgenic lines compared with wildtype. The table below 

shows the number of differentially spliced events under each of the 5 alternative splicing 

categories. 

AS Type No. of differential 
splicing events in mdf-1 

Alternative 3' splice site (A3SS) 404 
Alternative 5' splice site (A5SS) 444 
Mutually exclusive exons (MEX) 11 

intron retention (IR) 1321 
Skipped exons (SK) 233 

Total 2413 
 

Figure 4.8 The number of differential splicing events of mdf-1 transgenic line compared with 
wildtype, with FDR (false detection rate) < 0.01; ILD (Inclusion Level Difference) > 10% and < 
-10%. 

 

GO analysis on differentially spliced genes. 
The 2413 differential splicing events are found from 1080 unique genes from the RNA 

sequencing data. Gene ontology analysis is used again to learn the overall pattern among 

these genes. AgriGO was used to extract GO terms from these genes, before then GO terms 

were passed onto REVIGO to group into clusters and superclusters and shown in Figure 4.9 

as a tree map. 

 

The tree map shows that a large proportion of differentially spliced genes is involved in RNA 

processing, having ‘mRNA metabolism’ as the largest supercluster containing major clusters 
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like ‘RNA splicing’ and ‘mRNA processing’. This suggests that MDF has an important role in 

regulating the RNA splicing mechanism and this process might be carried out by means of 

RNA splicing itself. The second largest supercluster is ‘regulation of response to stress’. This 

is in line with the suggestion that alternative splicing is a crucial mechanism to response to 

developmental processes and environmental stress in literatures (Ling et al., 2017). 
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Figure 4.9. Tree map output from REVIGO showing the clustering of enriched gene ontology 
(GO) terms in the list of genes that are differentially spliced with FDR (false detection rate) < 
0.01; ILD (Inclusion Level Difference) > 10% and  < -10%. Each coloured rectangle represents 
a GO term cluster, and each colour with its grey bar on top and colour key below the tree 
map shows a supercluster of related clusters. The colour key is ordered by total size of the 
cluster from left to right on each row, then top down across. The size of each coloured 
rectangle represents the absolute value of the log10 P-value (|log10 q-value|) of its cluster. 
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4.3 Bioinformatic study on role of MDF on response to stress 

 

Figure 4.10 (1/3) Toronto eFP viewer on effects of various abiotic stresses (cold and osmotic stress) on expression level of MDF gene in Arabidopsis. Colour 
scale shows relative express level compared with control at T0. 
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Figure 4.10 (2/3)Toronto eFP viewer on effects of various abiotic stresses (salt, drought, genotoxic, and oxidative) on expression level of MDF gene in 
Arabidopsis. Colour scale shows relative express level compared with control at T0. 
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Figure 4.10 (3/3) Toronto eFP viewer on effects of various abiotic stresses (UV-B, wounding, and heat) on expression level of MDF gene in Arabidopsis. 
Colour scale shows relative express level compared with control at T0. 
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Figure 4.11. Bar chart showing relative expression level of MDF gene in Arabidopsis under 
different stress treatment after 30 minutes. Blue dots represent difference in GCOS 
expression signal compared with control measurement at T0; Grey bars show the fold 
change of each treated group reletave to the Control Root After 30 Minutes on the top. 

 

Utilizing information from NASCArrays, the BAR eFP viewer from Toronto University provides 

a powerful to learn available data on gene expression across a variety of factors. A 

microarray study shows that MDF expression is significantly down regulated under a range 

of abiotic stresses. Along with the result from RNA sequencing data showing that 

significantly upregulated stress pathways in mdf-1 transgenic lines, this negative correlation 

suggests that MDF plays an important role in regulating responses to environment stresses, 

likely through alternative splicing. 
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Summary 

The study in this chapter helped improve understanding of how the transcriptome changed 

in response to mutation of the MDF gene in Arabidopsis, using data from Next Gen 

Sequencing technology. Gene ontology analysis using AgriGO and REVIGO on the RNA-seq 

data provided an overview on the changes, leading the way for more specific study using 

other bioinformatic and, in the future, experimental tools. The transcriptome analysis 

helped to confirm the hypothesis that MDF plays an important role in maintaining a normal 

meristematic development, very likely through means of regulating alternative splicing. The 

negative correlation between MDF expression and stress response suggests that MDF and its 

regulation in alternative splicing might also play an important role in regulating 

environmental adaptation and stress response. 
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Chapter 5 The IAA Biosynthetic Network 

5.1 Introduction 

The experimental results from previous chapters demonstrated that the POLARIS (PLS) 

peptide plays a crucial role in maintaining the homeostasis of ethylene and auxin signalling 

in Arabidopsis. More specifically, it shows that PLS is required for ethylene-mediated auxin 

biosynthesis in the root tip. Despite being the first plant hormone to be discovered, there is 

still not a clear picture of the biochemistry behind auxin biosynthesis (Mano and Nemoto, 

2012). Many pathways have been postulated over the past decades, but none has proved to 

be indispensable so far. In order to understand how auxin biosynthesis may be regulated by 

POLARIS, it is important to understand how existing auxin biosynthesis pathways may 

connect to each other, and to identify which pathways may be affected by altered PLs levels. 

To achieve this, in this chapter I built a network of existing postulated auxin biosynthesis 

pathways using information from the literature and combined it with experimental data 

from my project. 

Our group have recently proposed that POLARIS peptide is a Cu+ binding molecule that 

facilitate the ethylene signal transduction function of the ETR1 ethylene receptor (Mudge 

2016 and Mudge et al. in preparation). This is consistent with the observed phenotype 

linked to the ethylene response in pls mutant seedlings (Chilley et al, 2006). However, the 

lack of ACC-induced auxin accumulation in the pls mutant root tip further confirmed the 

hypothesis that PLS might be playing an essential role in the auxin biosynthetic pathway 

independent of ethylene signalling.  

Our group started modelling work by creating a hormonal crosstalk network, using 

experimental data and literature, to study how auxin concentration is controlled in a single 

Arabidopsis cell by the collective effects of auxin biosynthesis and transport, in conjunction 

with auxin, ethylene and cytokinin signalling and POLARIS peptide (Liu et al. 2010). It was 

then developed to include PIN1 and PIN2 activities (Liu et al. 2013) before moving on to a 

spatial model to show hormonal patterning across different developmental stages on a 

realistic root map showing individual cells (Moore et al. 2015, 2017) (Fig. 5.1). Recently the 

network was further improved by including abscisic acid signalling and effect of osmotic 

stress (Rowe et al., 2016). In this chapter, the auxin biosynthesis component of the network 

is expanded, using data from the literature and my own experiments, to help better 

understand the crosstalk between plant hormones and how they regulate root growth and 

development
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Figure 5.1 Integration of Experimental Data Reveals Multiple Layers of Complexity in Auxin, Cytokinin, and 

Ethylene Crosstalk in Arabidopsis Root Development. 

Each number refers to a chemical reaction built into the model. Upper panel (green coloured links) 

schematically describes ethylene signalling pathways. Middle panel (black coloured links) schematically 

describes cytokinin signalling pathways. Lower panel (red coloured links) schematically describes auxin 

signalling pathways. A number by a link describes the link as summarized in Supplemental Table 1. The links 

connecting the three panels are the main crosstalk links between auxin, cytokinin, and ethylene. The three 

hormones are highlighted in yellow, and are placed in different locations in the three panels, further 

showing their crosstalk. / stands for positive regulation; –j stands for negative regulation.  
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Figure 5.2 Construction of a Digital Root (Liu et al., 2017).  
(A) A realistic root map showing the individual cells, based on confocal imaging. LRC 1 to 4, 
lateral root cap 1 to 4; COL S1 to S5, columella S1 to S5; CE initials, cortical endodermis 
initials; COL initials, columella initials; QC, quiescent centre. 
(B) Localization of efflux (PIN3) carrier at the combined plasma membrane and cell wall 
entity of selected cells, with extracellular space between the cell walls of adjacent cells. COL 
S2 and S3, columella tier 2 and 3 cells.  
(C) Localization of influx (AUX1) carrier at the combined plasma membrane and cell wall 
entity of selected cells, with extracellular space between the cell walls of adjacent cells. COL 
S1, S2, and S3, columella tier 1, 2, and 3 cells; LRC 3 and 4, lateral root cap tier 3 and 4 cells. 
(D) A magnified part of the root to show an example of how to digitize the root. The root (A) 
can be discretized into grid points with any resolution (e.g., a grid point can be described by 
2 mm multiplied by 2 mm in a two-dimensional space). A number is assigned to each grid 
point to describe the identity of this grid point. For the details of constructing a digital root, 
see Moore et al. (2015c, 2017). Numbers 132, 133, 142, and 143 are the grid points 
describing the cytosolic space of 132nd, 133rd, 142nd, or 143rd cell in the root, respectively. 
1, 5, 6, 7, and 8 are used as ‘‘identifiers’’ to define grid points of the combined plasma 
membrane and cell wall entity or extracellular space, and they are also used to define 
distribution of both auxin efflux and influx carriers. Computational codes are used to 
calculate concentrations of all components in the hormonal crosstalk network at all grid 
points of the root.  
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5.2 Auxin Biosynthetic Pathways 

 

Despite being the very first phytohormones being discovered, the exact mechanism of auxin 

biosynthesis in plant cells are still not clearly understood (Mano and Nemoto, 2012, 

Mashiguchi et al., 2011). Studies on auxin biosynthesis involve a broad range of plant species 

as well as bacteria, and there seems to be great redundancy among auxin biosynthesis 

pathways. The behaviours of many pathways are species specific, or even tissue specific 

within the same species (Kriechbaumer et al., 2016, Mashiguchi et al., 2011, Tivendale et al., 

2014). Using available information from literature, I construct a network for IAA biosynthesis 

to include the most discussed postulations relevant to Arabidopsis thaliana. 

The network is split into two parts depending on whether tryptophan (Trp) is involved as an 

intermediate. As the names suggests, the Trp-independent pathway synthesises IAA from 

indole, skipping tryptophan as an intermediate; while the Trp-dependent pathway 

incorporates tryptophan as part of the key ingredient for IAA biosynthesis. 

Although Trp-dependent pathways have received most of the attention, even believed to be 

the only way that IAA can be synthesised (Tivendale et al., 2014). Experiments using isotopic 

tracer and metabolic analysis on trp-1, a loss-of-function mutant that cannot synthesise 

tryptophan, have confirmed the presence of at least some synthesised IAA without using 

exogenous tryptophan (Last and Fink, 1988). It is believed that Indole-3-glycerol phosphate 

or indole is the likely precursor. However, the exact mechanism of its biochemical pathway 

to IAA is still unknown.  

There are mainly four Trp-dependent pathways proposed for Arabidopsis thaliana and they 

deviate at indole synthesis from the Trp-independent pathway. They are named after the 

intermediates immediate downstream of tryptophan - the IAM, IPA, IAOX and TAM 

pathways. There are varying degrees of evidence to support each proposed pathway, and as 

mentioned above, some of them are tissue-specific. 

 

IAM Pathway 

It has been confirmed that Trp is converted to IAM by iaaM (encoding the tryptophan-2-

monooxygenase) in the bacteria Agrobacterium tumefaciens and Pseudomonas savastanoi, 

before being hydrolysed to IAA by iaaH (encoding IAM hydrolase) (Comai and Kosuge, 1982, 
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Yamada et al., 1985). This is proposed to be an important pathway for all plants, as IAM has 

been identified as an endogenous compound in many plant species including Arabidopsis, 

and is believed to be widespread across plant kingdom (Kriechbaumer et al., 2016). In 

Arabidopsis IAM is mainly synthesized from IAOx, which is part of a Brassica-specific auxin 

biosynthesis pathway, synthesized from Trp catalysed by the enzymes CYP79B2 and 

CYP79B3 (Sugawara et al., 2009). The lack of these enzymes and IAOx in other plant families 

fuelled speculation that IAM can also be generated by iaaM-like enzymes in plants. IAM then 

is converted to IAA by enzymes from the AMI1 family, which is believed to be widespread 

within the plant kingdom (Lehmann et al., 2010). To reflect these two distinctive sources of 

IAM, I added a separate IAM sub-pathway under IAOx pathway in my network. 

Interest in the IPA pathway originated from studies on microorganisms that synthesize IAA 

(Koga et al., 1992, Koga, 1995). The IPA molecule is readily oxidised to IAA at room 

temperature (Koga et al., 1992). Due to its instability, it is particularly hard to characterize 

the enzymatic reactions of this pathway. As a result, there have only been suggestions that 

some YUCCA family proteins are playing a role in catalysing this reaction without knowing 

the exact mechanism (Dai et al., 2013). TAA1, encoding Trp aminotransferase responsible for 

converting Trp to IPA, was identified in a study of shade avoidance in Arabidopsis. The study 

showed that taa1 seedlings have about 60% the level of IAA compared with WT IAA levels, 

and its IAA level does not change when being moved into shade as it does in WT. This 

suggests that the increased level of IAA exhibited in WT under shade is generated through 

this pathway, and it is likely that a sizeable proportion of IAA is synthesized through this 

pathway (Tao et al., 2008). There is also evidence for the activity of VAS1, which converts IPA 

and methionine, an ethylene precursor, to tryptophan and 2-oxo-4-methylthiobutyric acid, 

indicating that IPA plays a crucial role in coordinating the biosynthesis of ethylene and auxin 

(Zheng et al., 2013). 

 

The IAOX Pathway 

The IAOX pathway is believed to be a Brassicaceae-specific pathway for the biosynthesis of 

both IAA and glucosinolates (Ljung et al., 2005, Sugawara et al., 2009). It has been confirmed 

that the cytochrome p450 enzymes CYP79B2 and CYP79B3 catalyse the conversion of Trp to 

IAOX (Kriechbaumer et al., 2016). As with all the other postulated pathways, the exact 

biochemistry of conversion to IAA is still unclear. There is significant localisation of 

CYP79B2/3 in the root meristem region. Knocking out the function of both CYP79B2/3 genes 
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had little effect on the overall concentration of IAA in Arabidopsis (Ljung et al., 2005, 

Sugawara et al., 2009). However, the double mutant had significantly reduced IAA 

biosynthesis levels in excised root tips, indicating that IAOX pathway might be responsible 

for IAA biosynthesis in the root meristem region (Ljung et al., 2005). In addition, sur1 and 

sur2 mutants both exhibit significantly elevated level of IAOX and IAA (Mikkelsen et al., 

2004), further suggesting that a substantial amount of IAA can be converted from IAOX. 

 

The TAM Pathway 

The TAM pathway is possibly the best example of ambiguity in our understanding of the IAA 

biosynthesis pathways. It was originally proposed to play a role when TAM was observed to 

have auxin-like activities in an experiment with Avena coleoptiles in 1966 (Winter, 1966). 

Subsequently there were various papers showing that TAM is found in many plant species, 

including Arabidopsis (Cooney and Nonhebel, 1991, Sugawara et al., 2009). However, there 

were also results from radio-labelling metabolic experiments suggesting that the TAM and 

IAA synthesised in plants might not come from the same Trp pool, and TAM might not be a 

major source of IAA (Pollmann et al., 2002). Furthermore, accumulation of TAM in TDC- (Trp 

decarboxylase)-overexpressing tobacco plants did not correlate with significant changes in 

IAA levels (Songstad et al., 1990). Recent advances in the study of YUCCA gene families 

found that TAM might be one of the precursors of IAOX, either directly or through the 

synthesis of NHT, which was shown to be the in vitro product of TAM catalysed by YUCs 

(Zhao et al., 2001, Ljung, 2013). However, there is also evidence questioning the authenticity 

of NHT in the experiment (Tivendale et al., 2010). Thus far there is no definitive evidence to 

either confirm or reject the significance of the TAM pathway in IAA biosynthesis. 

 

5.3 Construction of the IAA Biosynthesis Network 
 

Using information from the literature alone, I constructed a network of IAA biosynthesis 

pathways (Fig. 5.4). Depending on the involvement of tryptophan, the network is separated 

into two boxes with dashed lines. Key intermediate compounds along all postulated 

pathways are shown in rectangles, colour coded for each pathway. Well recognised 

reactions are depicted using solid arrows with colour coding, accompanied by the 
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corresponding catalyst encoding gene(s). Arrows with dashed lines are used for proposed 

reactions that still trigger debates or lack evidence. 

 

Incorporating PLS into the network 

PLS is known to have negative regulatory effect on ethylene for a long time (Chilley et al 

2006). Its mechanism was later confirmed to be a copper carrier for the ethylene receptor 

ETR1 (Mudge 2016 and Mudge et al., in preparation). With this evidence in mind, an 

inhibitory arrow was placed against the ethylene signalling pathway in the network (Fig. 5.4).  

However, this arrow fails to explain why ACC-treated pls mutant seedlings do not exhibit 

increased local biosynthesis of auxin in the root tip like wild type seedlings do. Or, in other 

words, why is PLS required for ethylene-triggered auxin biosynthesis in the root tip? Upon 

looking closely at the RNA sequencing data for each postulated pathway, a pattern emerged. 

Most of the genes shown in the network did not show significant change in expression level 

in the pls mutant RNA seq data (Chapter 3). However, 6 key genes in the IAOX pathway 

showed strong signals with high confidence level (Fig. 5.4). CYP79B2/B3 and SUR1/2 all 

showed significant downregulation in the pls mutant., while CYP71A13 and NIT2 both 

showed increased expression.  

As mentioned above, the IAOX pathway is believed to be specific to the Brassicaceae, and 

there is evidence showing that it is responsible for IAA biosynthesis in the root tip 

(Kriechbaumer et al., 2016). GUS reporter promoter analysis of both B2 and B3 gene showed 

localisation pattern (fig 6.2) in the root tip meristem region , which convincingly overlaps 

with that of PLS. 

Therefore, it is feasible that the lack of IAA biosynthesis in the pls mutant is caused by the 

downregulation of the IAOX pathway. The observed downregulation of B2/B3 gene in the pls 

mutant expression could lead to insufficient accumulation of IAOX , which is a common 

precursor of IAA and indole glucosinolates. To compensate for the lack of IAA biosynthesis, 

CYP71A13 and NIT2 are proposed to be both upregulated, maximising the use of limited 

IAOX. At the same time SUR1/2 are down regulated to preserve IAOX from being used for 

synthesising indole glucosinolates. 
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Figure 5.3. The relative expression level of key genes in the IAOX pathway plotted using 

RNA-seq data from pls mutant. Vertical axis represents log2FC (fold change), where +/- 1 

represents two folds up/down regulation relative to that of wild type. q-value < 0.01 for all 

but SUR1, where q-value < 0.1. 
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Figure 5.4 Auxin biosynthesis network constructed using postulated auxin biosynthesis 
pathways in the literature. The network is divided into two parts: tryptophan independent 
and dependent pathways. Trp dependent pathways are colour coded by intermediates. Each 
solid arrow represents a chemical reaction. Dotted arrows represent hypothetical reactions. 
Known genes are marked next to reaction arrows. 
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Figure 5.5 Revised hormonal crosstalk network. Using information from PLS and MDF RNA 

sequencing analysis, ABS (auxin biosynthesis switch) and MDF (in red) are added to the 

network from (Liu et al., 2017).   



89 
 

Summary 

The aim of this chapter was to construct a new network of auxin biosynthesis pathways and 

incorporate into the existing hormone crosstalk model that includes a prospective role for 

PLS. The ambiguous nature of our understanding of auxin biosynthesis posed significant 

difficulties when constructing the network. Data from the literature were examined and 

tailored to construct the backbone of the network, and RNA seq data was used to add PLS 

into the network. Extreme care was taken when evaluating evidence from the literature, 

especially when there are opposing views, and this version of network accounts for these 

different possible pathway interactions. 

The data from RNA sequencing experiments suggest that PLS is highly likely to be a positive 

regulator in the early part of IAOx pathway, potentially explaining the lack of IAA 

biosynthesis in the root tip of pls mutant seedlings. The network also shows the potential 

route by which ethylene may influence auxin biosynthesis, in PLS-dependent and -

independent ways. 
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Chapter 6. Discussion 

Auxin is one of the major phytohormones that affect many aspects of plant development 

and growth, and it plays a key role in the interactions between phytohormones and 

regulatory genes in plants. The importance of understanding phytohormone cross talk is far 

more important than merely fulfilling the great curiosity of humankind. It has practical 

implications in areas including environmental protection, agricultural optimisation, and 

bioenergy production.  

In this thesis, RNA sequencing experiments were carried out on pls and mdf mutant 

seedlings to facilitate the study of these genes’ potential roles in auxin homeostasis. 

Previous work had suggested these genes encode proteins essential for this process, but the 

mechanisms involved were unclear (Chilley et al. 2006; Casson et al. 2002, 2009). To 

separate auxin transport from local biosynthesis, NPA was used in bioimaging experiments 

for its auxin-transport blocking properties (Sabatini et al. 1999). Bioinformatics analysis was 

also used to further investigate the roles of PLS and MDF. Building gene-signalling networks 

using data from the literature and experiments described in this thesis helped to create a 

revised overview of our current knowledge of auxin biosynthesis pathways. 

 

6.1 The POLARIS peptide is required for ethylene signalling control 

The data from my RNA sequencing experiments show that many of the top 20 enriched gene 

ontology terms in the list of upregulated genes in pls mutant seedlings are associated with 

ethylene-related biological processes. This supports previous observations that the pls 

seedlings exhibit enhanced ethylene signalling, causing its indicative short-root phenotype 

(Chilley et al., 2006); but the data provide a high resolution analysis of the transcriptional 

changes associated with loss of PLS function. This finding is also in line with the hypothesis 

on the close relationship between PLS and ethylene, which our group has recently confirmed 

by the identification of POLARIS peptide’s function in ethylene signalling, where it acts as a 

metallochaperone, donating a copper (I) ion to the ethylene receptor ETR1 (Mudge, 2016). 

This Cu ion is essential for correct ethylene binding of ethylene molecule and transduction of 

its signal (Rodriguez et al., 1999). 

Working with other hormones, ethylene plays a crucial role in plant growth and 

development, including regulation of cell elongation, differentiation, cell death, tissue 

patterning, root development, gravitropism and response to stress (Van de Poel et al. 2015). 
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This finding further confirms the hypothesis that PLS modulates a wide range of cellular 

functions and activities through negatively regulating ethylene signalling. 

 

6.2 The POLARIS peptide has a role in regulating photosynthesis genes  

Among the thousands of genes that show altered expression levels in the pls mutant and the 

PLSox transgenic overexpresser, only 212 are up-regulated in pls as well as down-regulated 

in PLSox. Further gene ontology analysis on these genes showed that the most prominent 

biological processes these genes are involved with are all related to photosynthesis. There is 

no previous information in the literature on the relationship between the PLS peptide and 

photosynthesis. However, GUS staining in transgenics containing a pPLS::GUS promoter 

fusion showed that PLS expression occurs predominantly in non-photosynthetic tissues, 

including the root meristem region and leaf vascular tissue (Casson et al., 2002). This 

suggests that PLS might be acting as a negative regulator on the differentiation of 

photosynthetic tissue, possibly through the complex network of hormones controlling cell 

differentiation, or through its metal binding activity directly controlling the activity of 

relevant enzymes or other proteins involved in chlorophyll biosynthesis, for example. 

 

6.3 The POLARIS peptide is essential for ethylene-induced auxin biosynthesis in 

the Arabidopsis root tip 

The inhibitory effect on root growth of ethylene signalling is achieved through the 

accumulation of auxin in the root tip meristem region, and its transport to the elongation 

zone of the root due to enhanced PIN gene expression (Ruzicka et al. 2007; Swarup et al. 

2007). The imaging experiment (Fig. 3.16) confirmed this effect using exogenous application 

of the ethylene precursor ACC, which induced elevated auxin accumulation in the root tip of 

wild type Arabidopsis seedlings. The lack of this effect in the pls mutant strongly suggests 

that the PLS peptide is required for ethylene-induced auxin accumulation in the root tip.  

The two main sources of auxin in root tip are local biosynthesis and auxin transport down 

the shoot (Chilley et al., 2006). The bioimaging analysis on NPA-treated seedlings (Fig. 3.16) 

ruled out the effect of auxin polar transport (which potentially could have removed auxin 

from the root tip to generate the observed low auxin content of the pls root tip (Chilley et al. 

2006). This further supports the hypothesis that, in addition to facilitating the generation of 

a functional ethylene receptor ETR1, PLS is also directly involved in regulating auxin 
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biosynthesis, independent of ethylene signalling, at least in the root meristem region. The 

mechanism of such regulatory activity is yet to be determined. However, considering that 

there is now strong evidence that PLS facilitates copper (I) transfer to ETR1, it seems feasible 

that a similar metallochaperone mechanism is responsible for regulating auxin biosynthesis, 

by providing Cu or some other metal cofactor to key enzymes in auxin biosynthesis; i.e., by a 

post-translational mechanism. This mechanism is proposed to work like a switch, whereby 

the PLS peptide is required for the switch to be activated. For the ease of discussion, this 

thesis refers it as an 'auxin biosynthesis switch' (ABS), and is discussed further below. 

 

Figure 6.1 (Liu et al., 2010) The early hormonal crosstalk network revealed by modelling 

and experimental analysis in Arabidopsis. 

 

This finding, of the putative role for PLS in auxin biosynthesis control, also sheds some light 

on the continuous development of our hormone crosstalk network (Fig. 6.1), further 

expanding our knowledge of how hormones and key genes interact with each other to 

regulate plant growth and development. The ABS that is mediated by PLS to control 

ethylene-induced auxin biosynthesis could in principle be logically placed at the position of 

molecule(s) X in this network, which was introduced in the original model to represent a 

group of unknown molecules facilitating the interaction between key components of the 

network, namely ethylene, auxin, and POLARIS (Figure 6.1). In other words, ethylene 

signalling could involve PLS to control ethylene-mediated auxin biosynthesis, as the work in 

this thesis demonstrates this essential role of PLS. However, ABS differs from molecule X in 

its relationship with PLS peptide and auxin. In the original model in Fig. 6.1, molecule X is 

inhibited by PLS and it is inhibitory to auxin, whereas ABS is positively regulated by POLARIS, 

and itself is a positive regulator of auxin biosynthesis. In this sense, it is desirable to put ABS 
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as a new component in the network, and a revised network needs to include this additional 

role for PLS.  

 

6.4 The IAOX pathway is likely to be the main POLARIS-regulated auxin 

biosynthesis pathway in Arabidopsis root tip 

The network of postulated IAA biosynthesis pathways, described in the previous chapter, 

gives a comprehensive overview of the current consensus in the literature on our 

understanding of the biochemistry underpinning IAA biosynthesis. By combining our RNA 

sequencing data with this analysis, we can propose how the lack of PLS peptide impacts the 

network, and this study suggests that the IAOX pathway is the most likely candidate for the 

ethylene-induced auxin biosynthesis that requires the presence of PLS. 

In this Brassicaceae-specific pathway, IAOX is produced from Trp by CYP79B2/3 proteins. It 

has been demonstrated that the loss of function cyp79b2/3 mutant failed to produce IAOX 

in Arabidopsis (Sugawara et al., 2009). Expression studies using promoter::GUS constructs 

showed that both CYP79B2/3 genes have localisation patterns in the root meristem region 

that overlap with PLS expression (Figure 6.2) (Ljung et al., 2005). In the RNA sequencing data 

from the pls mutant, CYP79B2/3 genes showed significant downregulation compared with 

wild type, suggesting that it is a rate limiting step in the IAOX pathway downstream of PLS 

function. In other words, PLS function is necessary for the expression of these genes and, by 

implication, the functioning of the IAOX pathway for auxin biosynthesis. 
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Another important function of IAOX in the Brassicaceae is to produce indole glucosinolate 

through genes including SUR1 and SUR2, and this compound appears to share the common 

pool of IAOX with auxin biosynthesis. Knocking out the function of the SUR1 or SUR2 genes 

results in significantly increased level of IAOX and auxin accumulation in seedlings, having a 

similar phenotype to that of wild type seedlings treated with exogenous auxin, with ectopic 

roots (Boerjan et al., 1995). Interestingly, genetic crosses have shown that the pls mutation 

acts as a phenotypic suppressor of the superroot mutant, i.e. introduction of the pls 

mutation reduces the frequency of ectopic roots in the sur mutant, presumably through a 

reduction of auxin content characteristic of pls (Casson et al., 2002). The RNA seq data show 

that both SUR1 and SUR2 are significantly downregulated in the pls mutant. A plausible 

interpretation would be that the system is trying to compensate the lack of IAOX for auxin 

biosynthesis, by a feedback mechanism. It can be speculated that evolution has deemed that 

auxin biosynthesis has higher priorities over synthesis of glucosinolates, which are secondary 

Figure 6.2 CYP79B2-GUS and CYP79B3-GUS Localisation in 
Arabidopsis Roots (Ljung et al., 2005). 
CYP79B2-GUS transgenic plants are shown at left, and 
CYP79B3-GUS transgenic plants are shown at right. 
CYP79B2-GUS plants were stained with X-Gluc for 1 h, and 
CYP79B3-GUS plants were stained for 18 h.  
(A) to (C): Expression patterns of CYP79B2 and CYP79B3 in 
the primary root tip (A), sites of lateral root formation (B), 
and developing lateral roots (C) of 7-DAG seedlings.  
(D): The primary root after treatment with 1 mM IAA for 24 
h at 7 DAG, showing expression at all sites of lateral root 
formation (arrows) but not in the rest of the primary root. 
Bars ¼ 25 mm in (A) and (B), 50 mm in (C), and 250 mm in 
(D).  
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metabolites associated with defence. It would be interesting to look further and possibly 

measure the effect of the pls mutation on glucosinolate content. In response to reduced 

auxin levels, the upregulation of the CYP71A13 and NIT2 genes follow a similar pattern, to 

boost auxin biosynthesis pathway. 

 

6.5 MDF is required for correct RNA splicing 

Alternative splicing enables organisms to generate more transcripts from a much smaller 

number of genes to increase diversity in the transcriptome and proteome. This ancient 

mechanism is highly conserved, and is shared by all eukaryotes (Black, 2003). The MDF 

human homologue, the hSART-1 protein, is known to be essential for the assembly of the 

spliceosome, and its absence is inhibitory to pre-RNA splicing activity (Gottschalk et al., 

1999, Makarova et al., 2001). A prominent pattern in the RNA sequencing data obtained for 

the mdf-1 mutant is the thousands of differential splicing events, where transcripts are not 

spliced properly compared to the wildtype. This is consistent with the possibility raised by 

Casson et al. (2009) that MDF may serve as a key component in the pre-mRNA splicing 

mechanism. The defect in splicing of so many genes seen in two independent mdf mutants is 

most likely the cause of the dramatic change in the transcriptome, leading to the severe 

phenotypic abnormalities seen in the mdf mutant meristems. 

 

6.6 MDF is required for correct auxin patterning and meristem development 

One of the key features of mdf mutant seedlings is the failure to maintain the quiescent 

centre (QC) and surrounding stem cells, leading to disrupted meristem patterning. Meristem 

organisation and development requires a stable auxin gradient and concentration maximum 

around the QC, which are delicately maintained by auxin transport proteins and local auxin 

biosynthesis (Sabatini et al., 1999; Aida et al. 2004). Members of the PIN protein family are 

responsible for the polar transport of auxin across membrane to the adjacent cell 

(Adamowski and Friml 2015).  

Data from the RNA sequencing experiment on mdf mutants revealed that the transcript 

levels of PINs1-7 in both mdf-1 and mdf-2 are significantly downregulated with high 

statistical confidence level. This shows that MDF plays a key role in regulating the expression 

the PIN protein family. Since there is no evidence that these PIN transcripts are mis-spliced 

in the mdf mutants, it is likely that in  these mutants, one or more key genes, like 
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transcription factors that are responsible for regulating PIN protein family, are mis-spliced, 

causing the reduced PIN gene expression and leading to the observed disruption in polar 

auxin transport (Casson et al. 2009). Without the necessary auxin gradient and maximum at 

the root tip, the key meristem forming genes fail to establish the QC to form a functional 

meristem. Considering that the plt1 and plt2 double mutant does not show significantly 

disrupted auxin patterning, it is likely that the PLT genes are down stream of auxin signalling 

(Aida et al., 2004). As a result, it is hard to elucidate whether the reduced expression of the 

PLT genes in the mdf mutants is the product of differential splicing independent of disrupted 

auxin accumulation, or due to the reduced auxin maximum. It is likely that there is 

regulatory loop involving MDF, PLTs and PINs to control QC identity and meristem pattern 

and activity.  

 

6.7 MDF has a role in regulating responses to environment stresses. 

The RNA sequencing data show that many key stress-related genes are upregulated in mdf 

mutants. In addition, gene ontology analysis suggests that stress-related terms are among 

the most prominent. While this is evidence that MDF is a suppressor of stress responses and 

cell differentiation, further study was carried out to investigate this possibility. This led to a 

bioinformatics study on MDF expression levels in response to environmental stresses 

(Chapter 4). The aggregated microarray data from NASCArrays shows that MDF transcription 

exhibits a rapid response to many environment stimuli. 30 minutes after each of a range of 

environmental stress treatments, including cold, osmotic stress, drought, genotoxin, and 

wounding, the expression level of MDF showed significant downregulation in the root, while 

salt and heat treatment results in slightly increased MDF expression level. This shows that 

MDF is among the fast reacting genes that are quickly adjusted when plant need to respond 

to sudden change in surroundings, suggesting that MDF may play a key role in regulating 

stress related pathways. Given it is also required for maintaining stem cell identity in the 

root meristem, a model can be proposed in which MDF plays a key role in regulating the 

balance between two antagonistic processes, namely the maintenance of stem cell 

behaviour versus the activation of stress responses, secondary metabolism and cell 

differentiation and (ultimately) cell death (Figure 6.2). The reduction in MDF expression in 

response to environmental stress potentially provides a mechanism to restrict growth 

through inhibition of cell division as root auxin transport and levels are reduced in the 

meristem. 
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Figure 6.3 MDF responds to environmental stresses and regulates a variety of genes and 

biological functions. 

 

6.8 Future work 
6.8.1 ABS molecule in kinetic model 

This thesis found that in the Arabidopsis root, the IAOX pathway is responsible for auxin 

biosynthesis, which is controlled by the PLS peptide. However, it is still unclear how PLS 

controls the expression levels of CYP79B2/3 genes, or the activity of the encoded proteins. 

Further work is required to identify the ABS components to better understand the 

controlling mechanism. Potentially by more in depth analysis using existing rich collection of 

RNA sequencing data, candidate genes or pathways related to CYP79B2/3 regulation can be 

identified, which in turn can lead to more exploration and confirmatory work Combining 

currently knowledge in the mechanism of PLS in ethylene signally, discovering its activities in 

other pathways could shed more light on how small peptide carry out regulatory activities. 

 

6.8.2 Confirming the IAOX pathway by measuring concentration of IAOX and 

glucosinolate in pls mutant 

Apart from auxin biosynthesis, IAOX is also required for glucosinolate synthesis. Available 

data show that when IAOX is in short supply, glucosinolate synthesis is tuned down, giving 

priority to auxin biosynthesis.  
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To confirm the hypothesis that the lack of auxin in ACC-treated pls seedling root tip is also 

due to reduced IAOX activity, it would be helpful to compare the IAOX and glucosinolate 

contents using metabolic profiling. If the hypothesis is true, pls mutant seedlings treated 

with ACC are predicted to have lower concentrations of IAOX and glucosinolate compared 

with ACC-treated wild type seedlings. If confirmed, this would further solidify the 

importance of IAOX pathway in Arabidopsis, auxin biosynthesis pathways, and more 

interestingly, further expand the hormonal crosstalk model to include secondary metabolism 

in plants. 

 

6.8.3 PLS and Photosynthesis  

Analysis of RNA sequencing data showed direct correlation between gene expression levels 

between PLS and photosynthesis-related genes. However, there are little data or literature 

linking these two. More work can be done to gain more knowledge in development of 

photosynthetic tissues and how it is regulated by PLS, such as measuring photosynthetic 

activities of pls and PLSox transgenic lines more directly, such as measuring uptake of carbon 

dioxide, production of oxygen, or production of carbohydrates (increase in dry mass). New 

findings will expand our knowledge in small peptide signalling and regulation of tissue 

specific development and growth, and potentially adding regulation of photosynthesis 

activities into the hormonal crosstalk model.  

 

6.8.4 Validation of abnormal splicing events discovered in RNA sequencing experiment. 

The data from RNA sequencing experiment gave an overview of alternative splicing events in 

mdf-1/2. However, when it comes to investigating individual genes, quantitative PCR can 

normally give much better resolution. Therefore, it would be useful to identify key genes 

that are shown wrongly spliced in mdf mutants, and validate using qPCR. A better 

understanding of alternative splicing control mechanism opens more opportunity in leaning 

plant growth and development, and their response to external changes in the environment. 
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6.9 Summary 
In summary, the work described in this thesis provides new information on the mechanisms 

of hormone signalling in relation to root growth and development. The studies on two genes 

expressed in the root tip, PLS and MDF, provide new insight into the complexities of gene-

hormone signalling networks linked to the control of cell identity, cell division, cell 

elongation and cell differentiation, which must all be balanced to construct a functional root 

meristem. The role of auxin is central to this study, but it is important to recognise that it 

does not function in isolation, but as one component of a complex network of signalling 

pathways that exhibit crosstalk. Future studies require a combination of experimental and 

predictive modelling approaches to further dissect control mechanisms. 
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Appendices 
Appendix 1 List of enriched gene ontology terms for up regulated genes in pls 
mutant. 
 

term_ID representative description Abs 
Log10Pvalue 

GO:0042221 response to chemical response to chemical 9.0809 
GO:0018298 protein-chromophore 

linkage 
protein-chromophore linkage 8.4437 

GO:0010033 response to chemical response to organic substance 8.4437 
GO:0050896 response to stimulus response to stimulus 8.4437 
GO:0009719 response to chemical response to endogenous 

stimulus 
7.7959 

GO:0009725 response to chemical response to hormone 7.2366 
GO:0006950 response to chemical response to stress 7.0132 
GO:0071369 response to chemical cellular response to ethylene 

stimulus 
6.0706 

GO:0000160 response to chemical phosphorelay signal 
transduction system 

5.5376 

GO:0009628 response to chemical response to abiotic stimulus 5.5229 
GO:0009768 photosynthesis, light 

harvesting in 
photosystem I 

photosynthesis, light harvesting 
in photosystem I 

5.4437 

GO:0044710 secondary metabolism single-organism metabolic 
process 

5.1024 

GO:0009607 response to chemical response to biotic stimulus 4.9208 
GO:0009611 response to chemical response to wounding 4.6576 
GO:0051707 response to chemical response to other organism 4.6383 
GO:0019748 secondary metabolism secondary metabolic process 4.6383 
GO:1901700 response to chemical response to oxygen-containing 

compound 
4.6021 

GO:0010200 response to chemical response to chitin 4.301 
GO:0044699 single-organism 

process 
single-organism process 4.301 

GO:0072359 circulatory system 
development 

circulatory system development 4.301 

GO:0001944 circulatory system 
development 

vasculature development 4.301 

GO:0009605 response to chemical response to external stimulus 4.1612 
GO:0036294 response to chemical cellular response to decreased 

oxygen levels 
4.0757 

GO:0015979 photosynthesis photosynthesis 4.0269 
GO:0009645 response to chemical response to low light intensity 

stimulus 
3.8861 

GO:1901698 response to chemical response to nitrogen 
compound 

3.8239 

GO:0006952 response to chemical defense response 3.699 
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GO:0009642 response to chemical response to light intensity 3.4202 
GO:0006955 response to chemical immune response 3.2147 
GO:0002376 immune system 

process 
immune system process 2.6778 

GO:0006979 response to chemical response to oxidative stress 2.5229 
GO:0044550 secondary metabolism secondary metabolite 

biosynthetic process 
2.5229 

GO:0009269 response to chemical response to desiccation 2.4318 
GO:0055114 secondary metabolism oxidation-reduction process 2.2596 
GO:0010114 response to chemical response to red light 2.2291 
GO:0051704 multi-organism 

process 
multi-organism process 2.1739 

GO:0009651 response to chemical response to salt stress 2.0809 
GO:0070482 response to chemical response to oxygen levels 2.0605 
GO:0006091 generation of 

precursor metabolites 
and energy 

generation of precursor 
metabolites and energy 

1.8861 

GO:1901362 secondary metabolism organic cyclic compound 
biosynthetic process 

1.699 

GO:0001101 response to chemical response to acid chemical 1.5528 
GO:0009056 catabolism catabolic process 1.4949 
GO:0044711 secondary metabolism single-organism biosynthetic 

process 
1.4559 

GO:0090487 secondary metabolism secondary metabolite catabolic 
process 

1.4089 

GO:0009407 secondary metabolism toxin catabolic process 1.4089 
GO:0042545 cell wall modification cell wall modification 1.4089 
GO:0019438 secondary metabolism aromatic compound 

biosynthetic process 
1.3872 

GO:0009409 response to chemical response to cold 1.284 
GO:0008152 metabolism metabolic process 1.2596 
GO:0009746 response to chemical response to hexose 1.2218 
GO:0051716 response to chemical cellular response to stimulus 1.1805 
GO:0010035 response to chemical response to inorganic 

substance 
1.1612 

GO:1902600 hydrogen ion 
transmembrane 
transport 

hydrogen ion transmembrane 
transport 

1.1192 

GO:0042744 hydrogen peroxide 
catabolism 

hydrogen peroxide catabolic 
process 

1.1135 

GO:0042886 hydrogen ion 
transmembrane 
transport 

amide transport 1.1135 

GO:0044712 hydrogen peroxide 
catabolism 

single-organism catabolic 
process 

1.0362 

GO:0007154 cell communication cell communication 1.0044 
GO:0034654 secondary metabolism nucleobase-containing 

compound biosynthetic process 
0.9586 

GO:0023052 signaling signaling 0.9208 
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GO:0018130 secondary metabolism heterocycle biosynthetic 
process 

0.9208 

GO:0009168 secondary metabolism purine ribonucleoside 
monophosphate biosynthetic 
process 

0.9208 

GO:0006355 secondary metabolism regulation of transcription, 
DNA-templated 

0.8539 

GO:0009664 cell wall modification plant-type cell wall organization 0.8539 
GO:0046129 secondary metabolism purine ribonucleoside 

biosynthetic process 
0.7959 

GO:0044763 secondary metabolism single-organism cellular process 0.7696 
GO:0007568 circulatory system 

development 
aging 0.7696 

GO:0006818 hydrogen ion 
transmembrane 
transport 

hydrogen transport 0.7696 

GO:0015833 hydrogen ion 
transmembrane 
transport 

peptide transport 0.7696 

GO:0006629 secondary metabolism lipid metabolic process 0.6778 
GO:0022900 photosynthesis, light 

harvesting in 
photosystem I 

electron transport chain 0.6778 

GO:0071395 response to chemical cellular response to jasmonic 
acid stimulus 

0.5686 

GO:0080167 response to chemical response to karrikin 0.4685 
GO:0071554 cell wall organization 

or biogenesis 
cell wall organization or 
biogenesis 

0.4559 

GO:0000272 hydrogen peroxide 
catabolism 

polysaccharide catabolic 
process 

0.4559 

GO:0015698 hydrogen ion 
transmembrane 
transport 

inorganic anion transport 0.4437 

GO:0072593 reactive oxygen 
species metabolism 

reactive oxygen species 
metabolic process 

0.4318 

GO:0034220 hydrogen ion 
transmembrane 
transport 

ion transmembrane transport 0.3979 

GO:0005975 carbohydrate 
metabolism 

carbohydrate metabolic process 0.3372 

GO:0016042 hydrogen peroxide 
catabolism 

lipid catabolic process 0.3279 

GO:0006811 hydrogen ion 
transmembrane 
transport 

ion transport 0.301 
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Appendix 2 List of enriched gene ontology terms for down regulated genes in pls 
mutant. 
 

term_ID representative description Abs 
Log10pvalue 

GO:0019761 sulfur compound 
biosynthesis 

glucosinolate biosynthetic 
process 

7.6021 

GO:0044710 secondary metabolism single-organism metabolic 
process 

7.3188 

GO:0044272 sulfur compound 
biosynthesis 

sulfur compound biosynthetic 
process 

7.0269 

GO:0050896 response to stimulus response to stimulus 7.0269 
GO:0006950 response to stress response to stress 6.7696 
GO:0019748 secondary metabolism secondary metabolic process 6.1487 
GO:0055114 sulfur compound 

biosynthesis 
oxidation-reduction process 6.1135 

GO:0009628 response to stress response to abiotic stimulus 5.301 
GO:0044711 sulfur compound 

biosynthesis 
single-organism biosynthetic 
process 

5.301 

GO:0006790 sulfur compound 
metabolism 

sulfur compound metabolic 
process 

4.4202 

GO:0044699 single-organism process single-organism process 4.3979 
GO:1901700 response to stress response to oxygen-containing 

compound 
4.2924 

GO:0009625 response to stress response to insect 4.0458 
GO:0001101 response to stress response to acid chemical 3.3565 
GO:0042221 response to stress response to chemical 3.3372 
GO:0006082 sulfur compound 

biosynthesis 
organic acid metabolic process 3.3372 

GO:0009607 response to stress response to biotic stimulus 3.0269 
GO:0080167 response to stress response to karrikin 2.9208 
GO:0051707 response to stress response to other organism 2.8239 
GO:0046394 sulfur compound 

biosynthesis 
carboxylic acid biosynthetic 
process 

2.8239 

GO:0009409 response to stress response to cold 2.7447 
GO:0009605 response to stress response to external stimulus 2.5376 
GO:0009611 response to stress response to wounding 2.4437 
GO:0009414 response to stress response to water deprivation 2.4437 
GO:0036293 response to stress response to decreased oxygen 

levels 
2.3979 

GO:0070482 response to stress response to oxygen levels 2.3872 
GO:0010033 response to stress response to organic substance 2.1805 
GO:0008152 metabolism metabolic process 2.1739 
GO:0044281 sulfur compound 

biosynthesis 
small molecule metabolic 
process 

2.1739 

GO:0009813 sulfur compound 
biosynthesis 

flavonoid biosynthetic process 1.9208 

GO:0042445 hormone metabolism hormone metabolic process 1.8239 
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GO:0009812 flavonoid metabolism flavonoid metabolic process 1.6778 
GO:0006952 response to stress defense response 1.585 
GO:0080134 response to stress regulation of response to 

stress 
1.585 

GO:0009411 response to stress response to UV 1.585 
GO:0044283 sulfur compound 

biosynthesis 
small molecule biosynthetic 
process 

1.585 

GO:0032787 sulfur compound 
biosynthesis 

monocarboxylic acid metabolic 
process 

1.5686 

GO:0065008 hormone metabolism regulation of biological quality 1.5686 
GO:0009725 response to stress response to hormone 1.4318 
GO:0051704 multi-organism process multi-organism process 1.4318 
GO:0010035 response to stress response to inorganic 

substance 
1.2596 

GO:0009719 response to stress response to endogenous 
stimulus 

1.1487 

GO:0048583 response to stress regulation of response to 
stimulus 

1.1367 

GO:0033554 response to stress cellular response to stress 1.1367 
GO:1901605 sulfur compound 

biosynthesis 
alpha-amino acid metabolic 
process 

1.0223 

GO:0010817 hormone metabolism regulation of hormone levels 0.9586 
GO:1901615 organic hydroxy 

compound metabolism 
organic hydroxy compound 
metabolic process 

0.6383 

GO:0006811 ion transmembrane 
transport 

ion transport 0.4089 

GO:0034220 ion transmembrane 
transport 

ion transmembrane transport 0.3872 

GO:0006979 response to stress response to oxidative stress 0.3665 
GO:0048878 hormone metabolism chemical homeostasis 0.3665 
GO:0044763 secondary metabolism single-organism cellular 

process 
0.3188 
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Appendix 3 List of enriched gene ontology terms for up regulated genes in PLSox 
over expressor. 
Gene Ontology analysis on Up-regulated genes in PLSox overexpressor. q<0.05 

term_ID representative description ABS 
log10pvalue 

GO:0009698 phenylpropanoid 
metabolism 

phenylpropanoid metabolic 
process 

6.6778 

GO:0044710 phenylpropanoid 
metabolism 

single-organism metabolic 
process 

6.2676 

GO:0019748 phenylpropanoid 
metabolism 

secondary metabolic process 5.7447 

GO:0044699 single-organism process single-organism process 5.3768 
GO:0042744 hydrogen peroxide 

catabolism 
hydrogen peroxide catabolic 
process 

4.7447 

GO:0006950 response to stress response to stress 4.1487 
GO:0050896 response to stimulus response to stimulus 4.0605 
GO:0055114 phenylpropanoid 

metabolism 
oxidation-reduction process 3.6383 

GO:0009409 response to stress response to cold 3.4437 
GO:0006970 response to stress response to osmotic stress 3.3565 
GO:0009628 response to stress response to abiotic stimulus 3.0506 
GO:0044711 phenylpropanoid 

metabolism 
single-organism biosynthetic 
process 

3.0506 

GO:0071554 cell wall organization or 
biogenesis 

cell wall organization or 
biogenesis 

3.0506 

GO:0071555 cell wall organization cell wall organization 2.9208 
GO:0019722 response to stress calcium-mediated signaling 2.7696 
GO:0009651 response to stress response to salt stress 2.7447 
GO:0006979 response to stress response to oxidative stress 2.6778 
GO:0071702 organic substance 

transport 
organic substance transport 2.6778 

GO:0019932 response to stress second-messenger-mediated 
signaling 

2.5229 

GO:0006869 organic substance 
transport 

lipid transport 2.5229 

GO:0045229 cell wall organization external encapsulating 
structure organization 

2.5229 

GO:0009806 phenylpropanoid 
metabolism 

lignan metabolic process 2.3768 

GO:0009807 phenylpropanoid 
metabolism 

lignan biosynthetic process 2.3768 

GO:0010876 organic substance 
transport 

lipid localization 2.3768 

GO:0010200 response to stress response to chitin 2.3098 
GO:0072593 reactive oxygen species 

metabolism 
reactive oxygen species 
metabolic process 

2.284 

GO:0042221 response to stress response to chemical 2.2007 
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GO:0006629 phenylpropanoid 
metabolism 

lipid metabolic process 1.8539 

GO:0009267 response to stress cellular response to starvation 1.8239 
GO:0048767 root hair elongation root hair elongation 1.7696 
GO:1901698 response to stress response to nitrogen 

compound 
1.5086 

GO:0071496 response to stress cellular response to external 
stimulus 

1.4437 

GO:0072330 phenylpropanoid 
metabolism 

monocarboxylic acid 
biosynthetic process 

1.4089 

GO:1901700 response to stress response to oxygen-containing 
compound 

1.3872 

GO:0002213 response to stress defense response to insect 1.3872 
GO:0042343 phenylpropanoid 

metabolism 
indole glucosinolate metabolic 
process 

1.3872 

GO:0034220 organic substance 
transport 

ion transmembrane transport 1.3872 

GO:0016143 S-glycoside metabolism S-glycoside metabolic process 1.3872 
GO:0009611 response to stress response to wounding 1.3768 
GO:0000038 phenylpropanoid 

metabolism 
very long-chain fatty acid 
metabolic process 

1.3768 

GO:0044763 phenylpropanoid 
metabolism 

single-organism cellular 
process 

1.3768 

GO:0016126 phenylpropanoid 
metabolism 

sterol biosynthetic process 1.3768 

GO:0008610 phenylpropanoid 
metabolism 

lipid biosynthetic process 1.3768 

GO:0006810 organic substance 
transport 

transport 1.3768 

GO:1901135 carbohydrate derivative 
metabolism 

carbohydrate derivative 
metabolic process 

1.3768 

GO:0051179 localization localization 1.1871 
GO:0033036 organic substance 

transport 
macromolecule localization 1.1549 

GO:0006811 organic substance 
transport 

ion transport 1.1427 

GO:0040007 growth growth 1.0809 
GO:0022622 root hair elongation root system development 1.0809 
GO:1902578 organic substance 

transport 
single-organism localization 1.041 

GO:0071456 response to stress cellular response to hypoxia 0.9586 
GO:0009056 catabolism catabolic process 0.9586 
GO:0044248 hydrogen peroxide 

catabolism 
cellular catabolic process 0.9586 

GO:0010035 response to stress response to inorganic 
substance 

0.9208 

GO:0090627 root hair elongation plant epidermal cell 
differentiation 

0.9208 

GO:0042435 phenylpropanoid 
metabolism 

indole-containing compound 
biosynthetic process 

0.8861 
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GO:0006818 organic substance 
transport 

hydrogen transport 0.8861 

GO:0009741 response to stress response to brassinosteroid 0.8239 
GO:0042430 phenylpropanoid 

metabolism 
indole-containing compound 
metabolic process 

0.8239 

GO:0055085 organic substance 
transport 

transmembrane transport 0.8239 

GO:0090662 organic substance 
transport 

ATP hydrolysis coupled 
transmembrane transport 

0.8239 

GO:1901657 S-glycoside metabolism glycosyl compound metabolic 
process 

0.8239 

GO:0010033 response to stress response to organic substance 0.7959 
GO:0021700 root hair elongation developmental maturation 0.7696 
GO:0009719 response to stress response to endogenous 

stimulus 
0.7447 

GO:0032787 phenylpropanoid 
metabolism 

monocarboxylic acid 
metabolic process 

0.7212 

GO:0009828 cell wall organization plant-type cell wall loosening 0.6198 
GO:0044085 cell wall organization cellular component biogenesis 0.6021 
GO:0006082 phenylpropanoid 

metabolism 
organic acid metabolic process 0.585 

GO:0042742 response to stress defense response to 
bacterium 

0.5528 

GO:0009605 response to stress response to external stimulus 0.5376 
GO:0015698 organic substance 

transport 
inorganic anion transport 0.4685 

GO:0042254 cell wall organization ribosome biogenesis 0.4559 
GO:0009414 response to stress response to water deprivation 0.3979 
GO:0044281 phenylpropanoid 

metabolism 
small molecule metabolic 
process 

0.3565 

GO:2001057 reactive nitrogen species 
metabolism 

reactive nitrogen species 
metabolic process 

0.3279 

GO:0005976 polysaccharide 
metabolism 

polysaccharide metabolic 
process 

0.3188 

 

Appendix 4 List of enriched gene ontology terms for down regulated genes in 
PLSox over expressor. 
 

term_ID representative description Abs 
Log10Pvalue 

GO:0090304 RNA processing nucleic acid metabolic process 17.8539 
GO:0006996 organelle organization organelle organization 17.7696 
GO:0051276 organelle organization chromosome organization 17.5086 
GO:0046483 RNA processing heterocycle metabolic process 17.3979 
GO:0006139 RNA processing nucleobase-containing 

compound metabolic process 
17.2518 
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GO:1901360 organic cyclic compound 
metabolism 

organic cyclic compound 
metabolic process 

17.1367 

GO:0006725 RNA processing cellular aromatic compound 
metabolic process 

16.8539 

GO:0009987 cellular process cellular process 16.8239 
GO:0006396 RNA processing RNA processing 15.5376 
GO:0006397 RNA processing mRNA processing 15.0132 
GO:0044699 single-organism process single-organism process 15 
GO:0000003 reproduction reproduction 13.3468 
GO:0016070 RNA processing RNA metabolic process 13.3468 
GO:0009791 post-embryonic 

development 
post-embryonic development 13.284 

GO:0016071 RNA processing mRNA metabolic process 13.284 
GO:0061458 post-embryonic 

development 
reproductive system 
development 

13.0088 

GO:0050789 negative regulation of 
biological process 

regulation of biological 
process 

12.8239 

GO:0022414 reproductive process reproductive process 12.6198 
GO:0065007 biological regulation biological regulation 12.1427 
GO:0071840 cellular component 

organization or 
biogenesis 

cellular component 
organization or biogenesis 

12 

GO:0006325 organelle organization chromatin organization 10.3468 
GO:0006259 RNA processing DNA metabolic process 10.0362 
GO:0008152 metabolism metabolic process 9.7212 
GO:0071704 organic substance 

metabolism 
organic substance metabolic 
process 

9.7212 

GO:0044763 movement of cell or 
subcellular component 

single-organism cellular 
process 

9.6383 

GO:0008380 RNA processing RNA splicing 9.5086 
GO:0032502 developmental process developmental process 8.8539 
GO:0016569 organelle organization covalent chromatin 

modification 
8.7959 

GO:0044237 RNA processing cellular metabolic process 8.7696 
GO:0048856 post-embryonic 

development 
anatomical structure 
development 

8.7447 

GO:0044238 organic substance 
metabolism 

primary metabolic process 8.7212 

GO:0043170 organic cyclic compound 
metabolism 

macromolecule metabolic 
process 

8.4685 

GO:0043933 organelle organization macromolecular complex 
subunit organization 

8.1427 

GO:0032501 multicellular organismal 
process 

multicellular organismal 
process 

7.6383 

GO:0033554 cellular response to 
stress 

cellular response to stress 7.3872 

GO:0044260 RNA processing cellular macromolecule 
metabolic process 

7.3872 
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GO:0048519 negative regulation of 
biological process 

negative regulation of 
biological process 

7.2757 

GO:0019222 negative regulation of 
biological process 

regulation of metabolic 
process 

7.1487 

GO:0006807 nitrogen compound 
metabolism 

nitrogen compound metabolic 
process 

6.7959 

GO:0034641 RNA processing cellular nitrogen compound 
metabolic process 

6.6383 

GO:0010605 negative regulation of 
biological process 

negative regulation of 
macromolecule metabolic 
process 

6.5229 

GO:0050896 response to stimulus response to stimulus 6.4318 
GO:0006950 cellular response to 

stress 
response to stress 6.3665 

GO:0010468 negative regulation of 
biological process 

regulation of gene expression 6.0605 

GO:0006928 movement of cell or 
subcellular component 

movement of cell or 
subcellular component 

5.8861 

GO:0051716 cellular response to 
stress 

cellular response to stimulus 5.8539 

GO:0006075 movement of cell or 
subcellular component 

(1-&gt;3)-beta-D-glucan 
biosynthetic process 

5.1938 

GO:0000819 organelle organization sister chromatid segregation 5.0706 
GO:0015979 photosynthesis photosynthesis 4.9586 
GO:0018130 RNA processing heterocycle biosynthetic 

process 
4.7447 

GO:0010467 RNA processing gene expression 4.6778 
GO:1901362 RNA processing organic cyclic compound 

biosynthetic process 
4.6383 

GO:0040029 negative regulation of 
biological process 

regulation of gene expression, 
epigenetic 

4.5229 

GO:0019438 RNA processing aromatic compound 
biosynthetic process 

4.4202 

GO:0051128 organelle organization regulation of cellular 
component organization 

4.3665 

GO:1901699 cellular response to 
stress 

cellular response to nitrogen 
compound 

4.2007 

GO:0034654 RNA processing nucleobase-containing 
compound biosynthetic 
process 

4.0605 

GO:0048367 post-embryonic 
development 

shoot system development 3.9208 

GO:0048518 negative regulation of 
biological process 

positive regulation of 
biological process 

3.8861 

GO:0007059 movement of cell or 
subcellular component 

chromosome segregation 3.7959 

GO:0010033 cellular response to 
stress 

response to organic substance 3.6383 

GO:1901700 cellular response to 
stress 

response to oxygen-containing 
compound 

3.6021 
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GO:0009416 cellular response to 
stress 

response to light stimulus 3.6021 

GO:0007018 movement of cell or 
subcellular component 

microtubule-based movement 3.3872 

GO:0007049 movement of cell or 
subcellular component 

cell cycle 3.2757 

GO:0000280 organelle organization nuclear division 3.2518 
GO:0010228 reproductive process vegetative to reproductive 

phase transition of meristem 
3.2518 

GO:0042221 cellular response to 
stress 

response to chemical 3.2076 

GO:0009628 cellular response to 
stress 

response to abiotic stimulus 2.9586 

GO:0048285 organelle organization organelle fission 2.8861 
GO:0006310 RNA processing DNA recombination 2.7959 
GO:0051640 organelle localization organelle localization 2.7447 
GO:0051239 post-embryonic 

development 
regulation of multicellular 
organismal process 

2.699 

GO:0018205 RNA processing peptidyl-lysine modification 2.5229 
GO:0044728 RNA processing DNA methylation or 

demethylation 
2.5229 

GO:0030029 movement of cell or 
subcellular component 

actin filament-based process 2.4949 

GO:0006304 RNA processing DNA modification 2.4685 
GO:0030048 movement of cell or 

subcellular component 
actin filament-based 
movement 

2.4559 

GO:0010608 negative regulation of 
biological process 

posttranscriptional regulation 
of gene expression 

2.3188 

GO:0007389 post-embryonic 
development 

pattern specification process 2.0706 

GO:1901698 cellular response to 
stress 

response to nitrogen 
compound 

2.0362 

GO:0033993 cellular response to 
stress 

response to lipid 2.0177 

GO:0048511 rhythmic process rhythmic process 2 
GO:0009743 cellular response to 

stress 
response to carbohydrate 1.9586 

GO:0009657 organelle organization plastid organization 1.9208 
GO:0007623 circadian rhythm circadian rhythm 1.9208 
GO:0048507 post-embryonic 

development 
meristem development 1.8861 

GO:0005986 movement of cell or 
subcellular component 

sucrose biosynthetic process 1.8861 

GO:0009605 cellular response to 
stress 

response to external stimulus 1.7959 

GO:0001101 cellular response to 
stress 

response to acid chemical 1.7959 

GO:0019253 movement of cell or 
subcellular component 

reductive pentose-phosphate 
cycle 

1.7959 
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GO:0016051 movement of cell or 
subcellular component 

carbohydrate biosynthetic 
process 

1.7959 

GO:0019685 movement of cell or 
subcellular component 

photosynthesis, dark reaction 1.7447 

GO:0044249 RNA processing cellular biosynthetic process 1.699 
GO:1901576 RNA processing organic substance 

biosynthetic process 
1.699 

GO:0003002 post-embryonic 
development 

regionalization 1.6778 

GO:0002376 immune system process immune system process 1.6576 
GO:0048522 negative regulation of 

biological process 
positive regulation of cellular 
process 

1.6576 

GO:0009902 organelle localization chloroplast relocation 1.6576 
GO:0006403 organelle localization RNA localization 1.6576 
GO:0097305 cellular response to 

stress 
response to alcohol 1.6576 

GO:0000018 RNA processing regulation of DNA 
recombination 

1.6576 

GO:0051028 organelle localization mRNA transport 1.6383 
GO:0006260 RNA processing DNA replication 1.6383 
GO:0007017 movement of cell or 

subcellular component 
microtubule-based process 1.6198 

GO:0043414 RNA processing macromolecule methylation 1.6021 
GO:0002252 immune effector process immune effector process 1.5686 
GO:0051644 organelle localization plastid localization 1.5686 
GO:0043038 RNA processing amino acid activation 1.5686 
GO:0006418 RNA processing tRNA aminoacylation for 

protein translation 
1.5686 

GO:0015977 carbon fixation carbon fixation 1.5376 
GO:0009737 cellular response to 

stress 
response to abscisic acid 1.5086 

GO:0043412 RNA processing macromolecule modification 1.5086 
GO:0010072 reproductive process primary shoot apical meristem 

specification 
1.4815 

GO:0051179 localization localization 1.4685 
GO:0009058 biosynthesis biosynthetic process 1.4685 
GO:0048583 cellular response to 

stress 
regulation of response to 
stimulus 

1.4559 

GO:0044764 multi-organism cellular 
process 

multi-organism cellular 
process 

1.4089 

GO:0044710 movement of cell or 
subcellular component 

single-organism metabolic 
process 

1.4089 

GO:0006298 cellular response to 
stress 

mismatch repair 1.3979 

GO:0042742 cellular response to 
stress 

defense response to 
bacterium 

1.3979 

GO:0015994 movement of cell or 
subcellular component 

chlorophyll metabolic process 1.3979 
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GO:0015995 movement of cell or 
subcellular component 

chlorophyll biosynthetic 
process 

1.3372 

GO:0090066 organelle organization regulation of anatomical 
structure size 

1.3279 

GO:0032535 organelle organization regulation of cellular 
component size 

1.3279 

GO:0009607 cellular response to 
stress 

response to biotic stimulus 1.2596 

GO:0034645 RNA processing cellular macromolecule 
biosynthetic process 

1.2596 

GO:0034285 cellular response to 
stress 

response to disaccharide 1.1871 

GO:0051234 organelle localization establishment of localization 1.1612 
GO:0006302 cellular response to 

stress 
double-strand break repair 1.1612 

GO:0044262 movement of cell or 
subcellular component 

cellular carbohydrate 
metabolic process 

1.1612 

GO:0009059 RNA processing macromolecule biosynthetic 
process 

1.1367 

GO:0080135 cellular response to 
stress 

regulation of cellular response 
to stress 

1.1308 

GO:0080188 RNA processing RNA-directed DNA 
methylation 

1.1192 

GO:0033043 organelle organization regulation of organelle 
organization 

1.1135 

GO:0051301 movement of cell or 
subcellular component 

cell division 1.1135 

GO:0006366 RNA processing transcription from RNA 
polymerase II promoter 

1.0655 

GO:0033013 RNA processing tetrapyrrole metabolic 
process 

1.041 

GO:0040034 post-embryonic 
development 

regulation of development, 
heterochronic 

1.0223 

GO:0009719 cellular response to 
stress 

response to endogenous 
stimulus 

1.0223 

GO:0006261 RNA processing DNA-dependent DNA 
replication 

1.0223 

GO:0019752 RNA processing carboxylic acid metabolic 
process 

1.0223 

GO:0044711 movement of cell or 
subcellular component 

single-organism biosynthetic 
process 

1.0088 

GO:0016310 RNA processing phosphorylation 1.0044 
GO:0052545 organelle localization callose localization 0.9208 
GO:0051641 organelle localization cellular localization 0.9208 
GO:0032101 cellular response to 

stress 
regulation of response to 
external stimulus 

0.9208 

GO:0018193 RNA processing peptidyl-amino acid 
modification 

0.9208 

GO:1901361 RNA processing organic cyclic compound 
catabolic process 

0.9208 
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GO:0034660 RNA processing ncRNA metabolic process 0.9208 
GO:0042440 carbon fixation pigment metabolic process 0.9208 
GO:0044093 negative regulation of 

biological process 
positive regulation of 
molecular function 

0.8861 

GO:0017038 organelle localization protein import 0.8861 
GO:0051704 multi-organism process multi-organism process 0.8861 
GO:0048532 post-embryonic 

development 
anatomical structure 
arrangement 

0.8539 

GO:0033037 organelle localization polysaccharide localization 0.7959 
GO:0048878 organelle organization chemical homeostasis 0.7696 
GO:0040007 growth growth 0.7696 
GO:0000725 cellular response to 

stress 
recombinational repair 0.7696 

GO:0008213 RNA processing protein alkylation 0.7696 
GO:0005982 movement of cell or 

subcellular component 
starch metabolic process 0.7696 

GO:0065008 negative regulation of 
biological process 

regulation of biological quality 0.7447 

GO:0007033 organelle organization vacuole organization 0.7212 
GO:0019439 RNA processing aromatic compound catabolic 

process 
0.7212 

GO:0051168 organelle localization nuclear export 0.699 
GO:0006082 RNA processing organic acid metabolic process 0.6778 
GO:0006401 RNA processing RNA catabolic process 0.6778 
GO:0016116 movement of cell or 

subcellular component 
carotenoid metabolic process 0.6778 

GO:0099402 post-embryonic 
development 

plant organ development 0.6383 

GO:0006289 cellular response to 
stress 

nucleotide-excision repair 0.6383 

GO:0051052 RNA processing regulation of DNA metabolic 
process 

0.6383 
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Appendix 5 List of enriched gene ontology terms for up regulated genes in mdf-1 
mutant. 
 

term_ID representative description Absolute 
Log10pvalue 

GO:0050896 response to stimulus response to stimulus 35.3279 
GO:0042221 response to chemical response to chemical 34.7959 
GO:0006950 response to chemical response to stress 34.0458 
GO:1901700 response to chemical response to oxygen-containing 

compound 
28.1308 

GO:0044710 proton transport single-organism metabolic 
process 

23.6778 

GO:0009628 response to chemical response to abiotic stimulus 23.4815 
GO:0001101 response to chemical response to acid chemical 21.7212 
GO:0055114 cellular respiration oxidation-reduction process 19.7959 
GO:0006952 response to chemical defense response 19.585 
GO:0044699 single-organism process single-organism process 19.4815 
GO:0010033 response to chemical response to organic substance 19.1871 
GO:0009719 response to chemical response to endogenous 

stimulus 
17.5376 

GO:0006979 response to chemical response to oxidative stress 17 
GO:0010035 response to chemical response to inorganic 

substance 
16.8539 

GO:0045333 cellular respiration cellular respiration 16.6576 
GO:0051707 response to chemical response to other organism 16.4559 
GO:0009607 response to chemical response to biotic stimulus 15.3979 
GO:0006970 response to chemical response to osmotic stress 15.1427 
GO:0009651 response to chemical response to salt stress 13.9586 
GO:0009605 response to chemical response to external stimulus 13.8239 
GO:0010243 response to chemical response to organonitrogen 

compound 
13.0605 

GO:0080167 response to chemical response to karrikin 12.6198 
GO:0044281 cellular respiration small molecule metabolic 

process 
11.7696 

GO:0051704 multi-organism process multi-organism process 11.301 
GO:0044712 cellular respiration single-organism catabolic 

process 
11.0809 

GO:0009753 response to chemical response to jasmonic acid 10.0969 
GO:0009611 response to chemical response to wounding 10.0315 
GO:0006082 cellular respiration organic acid metabolic process 9.8539 
GO:0009723 response to chemical response to ethylene 9.8239 
GO:1901698 response to chemical response to nitrogen 

compound 
9.585 

GO:0002376 immune system process immune system process 9.5528 
GO:0044763 proton transport single-organism cellular 

process 
9.5086 

GO:0009056 catabolism catabolic process 8.7959 
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GO:0097305 response to chemical response to alcohol 8.3979 
GO:0001666 response to chemical response to hypoxia 8.0088 
GO:0006955 response to chemical immune response 7.7696 
GO:0006091 generation of precursor 

metabolites and energy 
generation of precursor 
metabolites and energy 

7.7212 

GO:0019748 cellular respiration secondary metabolic process 7.3372 
GO:0007568 aging aging 7.2924 
GO:0009404 cellular respiration toxin metabolic process 7.1549 
GO:0080134 response to chemical regulation of response to 

stress 
7.1024 

GO:0009873 response to chemical ethylene-activated signaling 
pathway 

6.5528 

GO:1901657 cellular respiration glycosyl compound metabolic 
process 

6.3665 

GO:0009813 flavonoid biosynthesis flavonoid biosynthetic process 6.1308 
GO:0010038 response to chemical response to metal ion 6.0809 
GO:0042430 indole-containing 

compound metabolism 
indole-containing compound 
metabolic process 

5.7212 

GO:0009812 flavonoid metabolism flavonoid metabolic process 5.5086 
GO:0046034 cellular respiration ATP metabolic process 5.3188 
GO:0090487 cellular respiration secondary metabolite 

catabolic process 
5.301 

GO:0009407 cellular respiration toxin catabolic process 5.301 
GO:0055085 proton transport transmembrane transport 5.301 
GO:0010150 aging leaf senescence 5.1367 
GO:0010260 aging animal organ senescence 5.1367 
GO:0000160 response to chemical phosphorelay signal 

transduction system 
5.0969 

GO:0012501 cellular respiration programmed cell death 5.0862 
GO:0032787 cellular respiration monocarboxylic acid metabolic 

process 
4.9208 

GO:0008219 cellular respiration cell death 4.8861 
GO:0044711 cellular respiration single-organism biosynthetic 

process 
4.8539 

GO:0048583 response to chemical regulation of response to 
stimulus 

4.7696 

GO:0008152 metabolism metabolic process 4.3565 
GO:0009626 cellular respiration plant-type hypersensitive 

response 
4.0458 

GO:0023052 signaling signaling 4.0088 
GO:0007154 cell communication cell communication 4 
GO:0034050 cellular respiration host programmed cell death 

induced by symbiont 
3.9586 

GO:0009696 cellular respiration salicylic acid metabolic process 3.9208 
GO:1901135 carbohydrate derivative 

metabolism 
carbohydrate derivative 
metabolic process 

3.699 

GO:0051716 response to chemical cellular response to stimulus 3.6383 
GO:0072593 reactive oxygen species 

metabolism 
reactive oxygen species 
metabolic process 

3.6021 
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GO:0034440 cellular respiration lipid oxidation 3.5686 
GO:0006811 proton transport ion transport 3.5686 
GO:0015992 proton transport proton transport 3.4559 
GO:0006818 proton transport hydrogen transport 3.4559 
GO:0072521 indole-containing 

compound metabolism 
purine-containing compound 
metabolic process 

3.3565 

GO:0000154 indole-containing 
compound metabolism 

rRNA modification 3.3372 

GO:0009697 cellular respiration salicylic acid biosynthetic 
process 

3.3098 

GO:0030258 cellular respiration lipid modification 3.2518 
GO:0044283 cellular respiration small molecule biosynthetic 

process 
3.2441 

GO:1901605 cellular respiration alpha-amino acid metabolic 
process 

3.2218 

GO:0044242 cellular respiration cellular lipid catabolic process 3.2007 
GO:0010193 response to chemical response to ozone 3.1079 
GO:0006855 response to chemical drug transmembrane transport 3.0915 
GO:1902578 proton transport single-organism localization 3.0223 
GO:0055086 cellular respiration nucleobase-containing small 

molecule metabolic process 
2.9208 

GO:0006102 cellular respiration isocitrate metabolic process 2.9208 
GO:0006839 proton transport mitochondrial transport 2.8861 
GO:0046942 proton transport carboxylic acid transport 2.8539 
GO:0044419 interspecies interaction 

between organisms 
interspecies interaction 
between organisms 

2.8539 

GO:0006790 sulfur compound 
metabolism 

sulfur compound metabolic 
process 

2.8539 

GO:0005996 cellular respiration monosaccharide metabolic 
process 

2.7959 

GO:0009853 photorespiration photorespiration 2.7959 
GO:0042493 response to chemical response to drug 2.7696 
GO:0009068 cellular respiration aspartate family amino acid 

catabolic process 
2.7696 

GO:0042435 indole-containing 
compound metabolism 

indole-containing compound 
biosynthetic process 

2.7696 

GO:0006810 proton transport transport 2.6778 
GO:0072350 cellular respiration tricarboxylic acid metabolic 

process 
2.6576 

GO:0048513 aging animal organ development 2.6383 
GO:0019725 cellular respiration cellular homeostasis 2.5376 
GO:0006733 oxidoreduction 

coenzyme metabolism 
oxidoreduction coenzyme 
metabolic process 

2.5376 

GO:0051179 localization localization 2.5376 
GO:0042181 cellular respiration ketone biosynthetic process 2.4949 
GO:0031407 cellular respiration oxylipin metabolic process 2.4949 
GO:0052314 cellular respiration phytoalexin metabolic process 2.4559 
GO:0009700 cellular respiration indole phytoalexin 

biosynthetic process 
2.4559 
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GO:0006560 cellular respiration proline metabolic process 2.4559 
GO:0042180 cellular respiration cellular ketone metabolic 

process 
2.4318 

GO:0006787 cellular respiration porphyrin-containing 
compound catabolic process 

2.3872 

GO:0033015 cellular respiration tetrapyrrole catabolic process 2.3872 
GO:0015748 proton transport organophosphate ester 

transport 
2.3872 

GO:0051187 oxidoreduction 
coenzyme metabolism 

cofactor catabolic process 2.3872 

GO:0080024 indole-containing 
compound metabolism 

indolebutyric acid metabolic 
process 

2.3665 

GO:0046487 cellular respiration glyoxylate metabolic process 2.3468 
GO:0072524 indole-containing 

compound metabolism 
pyridine-containing compound 
metabolic process 

2.2924 

GO:0002213 response to chemical defense response to insect 2.284 
GO:0046149 cellular respiration pigment catabolic process 2.284 
GO:0042743 hydrogen peroxide 

metabolism 
hydrogen peroxide metabolic 
process 

2.284 

GO:0006862 proton transport nucleotide transport 2.1871 
GO:0031408 cellular respiration oxylipin biosynthetic process 2.1805 
GO:0010498 cellular respiration proteasomal protein catabolic 

process 
2.1675 

GO:0009694 cellular respiration jasmonic acid metabolic 
process 

2.1367 

GO:0071695 aging anatomical structure 
maturation 

2.0969 

GO:0009835 aging fruit ripening 2.0969 
GO:0042440 cellular respiration pigment metabolic process 2.0506 
GO:0009072 cellular respiration aromatic amino acid family 

metabolic process 
2.0269 

GO:0016143 cellular respiration S-glycoside metabolic process 2.0223 
GO:0042343 cellular respiration indole glucosinolate metabolic 

process 
2.0223 

GO:0051186 cofactor metabolism cofactor metabolic process 2.0132 
GO:0030162 cellular respiration regulation of proteolysis 2 
GO:0006097 cellular respiration glyoxylate cycle 1.9586 
GO:0043094 flavonoid biosynthesis cellular metabolic compound 

salvage 
1.9586 

GO:0006022 cellular respiration aminoglycan metabolic 
process 

1.9208 

GO:1990542 proton transport mitochondrial transmembrane 
transport 

1.8861 

GO:0070588 proton transport calcium ion transmembrane 
transport 

1.8539 

GO:0009744 response to chemical response to sucrose 1.7959 
GO:0046348 cellular respiration amino sugar catabolic process 1.7959 
GO:0046939 cellular respiration nucleotide phosphorylation 1.7959 
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GO:0006121 cellular respiration mitochondrial electron 
transport, succinate to 
ubiquinone 

1.7959 

GO:0044723 cellular respiration single-organism carbohydrate 
metabolic process 

1.7696 

GO:0016053 cellular respiration organic acid biosynthetic 
process 

1.7696 

GO:0009132 cellular respiration nucleoside diphosphate 
metabolic process 

1.6576 

GO:0006561 cellular respiration proline biosynthetic process 1.6576 
GO:1901362 cellular respiration organic cyclic compound 

biosynthetic process 
1.6576 

GO:0050789 cellular respiration regulation of biological process 1.6198 
GO:0009828 indole-containing 

compound metabolism 
plant-type cell wall loosening 1.585 

GO:0009695 cellular respiration jasmonic acid biosynthetic 
process 

1.5528 

GO:0009987 cellular process cellular process 1.5528 
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Appendix 6 List of enriched gene ontology terms for down regulated genes in 
mdf-1 mutant. 

term_ID representative description Abs 
Log10pvalu
e 

GO:0044699 single-organism process single-organism process 25.1805 
GO:0071554 cell wall organization or 

biogenesis 
cell wall organization or 
biogenesis 

13.4202 

GO:0044763 secondary metabolism single-organism cellular 
process 

13.041 

GO:0015979 photosynthesis photosynthesis 11.1938 
GO:0009888 tissue development tissue development 10.6778 
GO:0071555 cell wall organization cell wall organization 9.9586 
GO:0007167 enzyme linked receptor 

protein signaling pathway 
enzyme linked receptor 
protein signaling pathway 

9.6383 

GO:0032502 developmental process developmental process 9.1612 
GO:0045229 cell wall organization external encapsulating 

structure organization 
9.1079 

GO:0007166 enzyme linked receptor 
protein signaling pathway 

cell surface receptor 
signaling pathway 

8.4559 

GO:0006928 movement of cell or 
subcellular component 

movement of cell or 
subcellular component 

8.0044 

GO:0032501 multicellular organismal 
process 

multicellular organismal 
process 

7.9586 

GO:0019684 photosynthesis, light 
reaction 

photosynthesis, light 
reaction 

7.585 

GO:0044707 single-multicellular 
organism process 

single-multicellular organism 
process 

7.585 

GO:0006468 protein phosphorylation protein phosphorylation 7.4318 
GO:0005976 protein phosphorylation polysaccharide metabolic 

process 
7.2518 

GO:0044710 secondary metabolism single-organism metabolic 
process 

7.1675 

GO:0090627 tissue development plant epidermal cell 
differentiation 

6.5528 

GO:0005975 carbohydrate metabolism carbohydrate metabolic 
process 

6.5376 

GO:0040008 enzyme linked receptor 
protein signaling pathway 

regulation of growth 6.4949 

GO:0007018 movement of cell or 
subcellular component 

microtubule-based 
movement 

5.9586 

GO:0050794 enzyme linked receptor 
protein signaling pathway 

regulation of cellular process 5.8861 

GO:0007049 movement of cell or 
subcellular component 

cell cycle 5.7212 

GO:0007017 movement of cell or 
subcellular component 

microtubule-based process 5.6778 

GO:0051301 movement of cell or 
subcellular component 

cell division 5.6383 
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GO:0009733 enzyme linked receptor 
protein signaling pathway 

response to auxin 5.5229 

GO:0010817 enzyme linked receptor 
protein signaling pathway 

regulation of hormone levels 5.4318 

GO:0019748 secondary metabolism secondary metabolic process 5.3979 
GO:0055114 secondary metabolism oxidation-reduction process 5.0655 
GO:0023052 signaling signaling 5.0362 
GO:0040007 growth growth 5 
GO:0022402 movement of cell or 

subcellular component 
cell cycle process 4.9208 

GO:0044711 secondary metabolism single-organism biosynthetic 
process 

4.8861 

GO:0009914 enzyme linked receptor 
protein signaling pathway 

hormone transport 4.8239 

GO:0065007 biological regulation biological regulation 4.6576 
GO:0009606 enzyme linked receptor 

protein signaling pathway 
tropism 4.6021 

GO:0007154 cell communication cell communication 4.5528 
GO:0006629 secondary metabolism lipid metabolic process 4.2518 
GO:0044550 secondary metabolism secondary metabolite 

biosynthetic process 
4 

GO:0009629 enzyme linked receptor 
protein signaling pathway 

response to gravity 3.9586 

GO:0006720 movement of cell or 
subcellular component 

isoprenoid metabolic 
process 

3.8239 

GO:0018298 protein phosphorylation protein-chromophore 
linkage 

3.7212 

GO:0042744 hydrogen peroxide 
catabolism 

hydrogen peroxide catabolic 
process 

3.2757 

GO:0006793 protein phosphorylation phosphorus metabolic 
process 

3.1871 

GO:0050896 response to stimulus response to stimulus 2.9586 
GO:0015995 secondary metabolism chlorophyll biosynthetic 

process 
2.699 

GO:0006820 anion transport anion transport 2.6778 
GO:0045168 tissue development cell-cell signaling involved in 

cell fate commitment 
2.6576 

GO:0009719 enzyme linked receptor 
protein signaling pathway 

response to endogenous 
stimulus 

2.3979 

GO:0030104 enzyme linked receptor 
protein signaling pathway 

water homeostasis 2.3565 

GO:1901362 secondary metabolism organic cyclic compound 
biosynthetic process 

2.2757 

GO:1905177 tissue development tracheary element 
differentiation 

2.1675 

GO:0022403 cell cycle phase cell cycle phase 2.1675 
GO:0044848 biological phase biological phase 2.1675 
GO:0008356 movement of cell or 

subcellular component 
asymmetric cell division 2.1675 
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GO:0071840 cellular component 
organization or biogenesis 

cellular component 
organization or biogenesis 

2.1612 

GO:0006091 generation of precursor 
metabolites and energy 

generation of precursor 
metabolites and energy 

2.1079 

GO:0031425 protein phosphorylation chloroplast RNA processing 2.0269 
GO:1900865 protein phosphorylation chloroplast RNA 

modification 
2.0044 

GO:0015849 anion transport organic acid transport 2 
GO:0019438 secondary metabolism aromatic compound 

biosynthetic process 
2 

GO:0015706 anion transport nitrate transport 1.9586 
GO:0007043 cell wall organization cell-cell junction assembly 1.9586 
GO:0000003 reproduction reproduction 1.9208 
GO:0044093 enzyme linked receptor 

protein signaling pathway 
positive regulation of 
molecular function 

1.8861 

GO:0051049 anion transport regulation of transport 1.8539 
GO:0006811 anion transport ion transport 1.7959 
GO:0071705 anion transport nitrogen compound 

transport 
1.7959 

GO:0016572 protein phosphorylation histone phosphorylation 1.7447 
GO:0008284 enzyme linked receptor 

protein signaling pathway 
positive regulation of cell 
proliferation 

1.7212 

GO:0033013 protein phosphorylation tetrapyrrole metabolic 
process 

1.7212 

GO:0042793 protein phosphorylation transcription from plastid 
promoter 

1.699 

GO:0009625 enzyme linked receptor 
protein signaling pathway 

response to insect 1.6778 

GO:0016128 movement of cell or 
subcellular component 

phytosteroid metabolic 
process 

1.6778 

GO:0030029 movement of cell or 
subcellular component 

actin filament-based process 1.6576 

GO:0009987 cellular process cellular process 1.6383 
GO:0044272 secondary metabolism sulfur compound 

biosynthetic process 
1.6383 

GO:0007059 movement of cell or 
subcellular component 

chromosome segregation 1.6198 

GO:1902578 anion transport single-organism localization 1.585 
GO:0018130 secondary metabolism heterocycle biosynthetic 

process 
1.585 

GO:0015977 secondary metabolism carbon fixation 1.5229 
GO:0008283 cell proliferation cell proliferation 1.5229 
GO:0070589 cell wall organization cellular component 

macromolecule biosynthetic 
process 

1.4949 

GO:0045962 tissue development positive regulation of 
development, heterochronic 

1.4089 
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Appendix 7 List of enriched gene ontology terms for up regulated genes in mdf-2 
mutant. 
 

term_ID representative description Abs 
Log10pvalue 

GO:0080134 response to stress regulation of response to stress 6.1249 
GO:0080167 response to stress response to karrikin 4.1249 
GO:0009409 response to stress response to cold 3.8539 
GO:0010243 response to stress response to organonitrogen 

compound 
18.8861 

GO:0006955 response to stress immune response 13.8861 
GO:0001666 response to stress response to hypoxia 7.6198 
GO:0009414 response to stress response to water deprivation 10.4815 
GO:0001101 response to stress response to acid chemical 22.9208 
GO:0009744 response to stress response to sucrose 1.6198 
GO:0006952 response to stress defense response 46.7212 
GO:0033037 response to stress polysaccharide localization 1.699 
GO:0010286 response to stress heat acclimation 1.6778 
GO:0045229 response to stress external encapsulating structure 

organization 
1.4949 

GO:2000022 response to stress regulation of jasmonic acid 
mediated signaling pathway 

2.1367 

GO:0009605 response to stress response to external stimulus 28.6383 
GO:0009628 response to stress response to abiotic stimulus 13.3872 
GO:0000160 response to stress phosphorelay signal transduction 

system 
5.7447 

GO:0052545 response to stress callose localization 1.8539 
GO:0052386 response to stress cell wall thickening 2.4437 
GO:0009723 response to stress response to ethylene 9.0862 
GO:0006970 response to stress response to osmotic stress 8.1549 
GO:0010646 response to stress regulation of cell communication 1.4437 
GO:0009719 response to stress response to endogenous stimulus 17.3565 
GO:0010035 response to stress response to inorganic substance 9.4089 
GO:0006979 response to stress response to oxidative stress 14.0269 
GO:0010033 response to stress response to organic substance 20.5086 
GO:0009625 response to stress response to insect 2.1367 
GO:0052544 response to stress defense response by callose 

deposition in cell wall 
3.1938 

GO:0009743 response to stress response to carbohydrate 1.3872 
GO:0002239 response to stress response to oomycetes 2.6576 
GO:0048583 response to stress regulation of response to stimulus 4.0757 
GO:0033554 response to stress cellular response to stress 2.3372 
GO:0042493 response to stress response to drug 2.3279 
GO:0006855 response to stress drug transmembrane transport 2.585 
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GO:0009607 response to stress response to biotic stimulus 33.1079 
GO:0009873 response to stress ethylene-activated signaling 

pathway 
7.1367 

GO:0042221 response to stress response to chemical 28.2924 
GO:0002229 response to stress defense response to oomycetes 2.301 
GO:0002213 response to stress defense response to insect 2.2676 
GO:0051707 response to stress response to other organism 33.8861 
GO:1901698 response to stress response to nitrogen compound 14.4559 
GO:0051716 response to stress cellular response to stimulus 8.2757 
GO:0009651 response to stress response to salt stress 6.9208 
GO:0009611 response to stress response to wounding 13.6383 
GO:1901700 response to stress response to oxygen-containing 

compound 
27.8239 

GO:0006950 response to stress response to stress 49.1367 
GO:0097305 response to stress response to alcohol 7.8861 
GO:0009646 response to stress response to absence of light 2.3565 
GO:0023051 response to stress regulation of signaling 1.3372 
GO:0042542 response to stress response to hydrogen peroxide 3.1739 
GO:0010193 response to stress response to ozone 2.8239 
GO:0044763 secondary 

metabolism 
single-organism cellular process 4.9586 

GO:0009407 secondary 
metabolism 

toxin catabolic process 2.8861 

GO:0090487 secondary 
metabolism 

secondary metabolite catabolic 
process 

2.8861 

GO:0044711 secondary 
metabolism 

single-organism biosynthetic 
process 

3.2757 

GO:0006629 secondary 
metabolism 

lipid metabolic process 1.5376 

GO:2000762 secondary 
metabolism 

regulation of phenylpropanoid 
metabolic process 

1.4318 

GO:1901362 secondary 
metabolism 

organic cyclic compound 
biosynthetic process 

1.5528 

GO:0044550 secondary 
metabolism 

secondary metabolite biosynthetic 
process 

9.2291 

GO:0009700 secondary 
metabolism 

indole phytoalexin biosynthetic 
process 

3.4815 

GO:0055114 secondary 
metabolism 

oxidation-reduction process 15.585 

GO:0044281 secondary 
metabolism 

small molecule metabolic process 1.8539 

GO:0019748 secondary 
metabolism 

secondary metabolic process 11.7447 

GO:0044710 secondary 
metabolism 

single-organism metabolic process 14.4949 

GO:0006040 programmed cell 
death 

amino sugar metabolic process 2.284 
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GO:0006022 programmed cell 
death 

aminoglycan metabolic process 3.0458 

GO:1901657 programmed cell 
death 

glycosyl compound metabolic 
process 

1.7212 

GO:0008202 programmed cell 
death 

steroid metabolic process 1.5686 

GO:0031408 programmed cell 
death 

oxylipin biosynthetic process 2.8239 

GO:0009626 programmed cell 
death 

plant-type hypersensitive 
response 

5.7447 

GO:0031407 programmed cell 
death 

oxylipin metabolic process 3.2518 

GO:0006694 programmed cell 
death 

steroid biosynthetic process 1.4437 

GO:0050789 programmed cell 
death 

regulation of biological process 3.699 

GO:0044272 programmed cell 
death 

sulfur compound biosynthetic 
process 

1.2518 

GO:0034050 programmed cell 
death 

host programmed cell death 
induced by symbiont 

5.6576 

GO:0030258 programmed cell 
death 

lipid modification 2.8861 

GO:0016101 programmed cell 
death 

diterpenoid metabolic process 1.3279 

GO:0034440 programmed cell 
death 

lipid oxidation 3.5229 

GO:0008219 programmed cell 
death 

cell death 8.5086 

GO:0016143 programmed cell 
death 

S-glycoside metabolic process 4.9208 

GO:0009851 programmed cell 
death 

auxin biosynthetic process 1.3279 

GO:0006355 programmed cell 
death 

regulation of transcription, DNA-
templated 

1.4685 

GO:0006874 programmed cell 
death 

cellular calcium ion homeostasis 3.2676 

GO:0045333 programmed cell 
death 

cellular respiration 1.5229 

GO:0045927 programmed cell 
death 

positive regulation of growth 1.5229 

GO:0048518 programmed cell 
death 

positive regulation of biological 
process 

2.1549 

GO:0042445 programmed cell 
death 

hormone metabolic process 1.5376 

GO:0012501 programmed cell 
death 

programmed cell death 8 

GO:0016042 cellular catabolism lipid catabolic process 2.699 
GO:0044242 cellular catabolism cellular lipid catabolic process 3.5376 
GO:0046149 cellular catabolism pigment catabolic process 2.8239 
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GO:0009074 cellular catabolism aromatic amino acid family 
catabolic process 

2.1612 

GO:0033015 cellular catabolism tetrapyrrole catabolic process 2.4949 
GO:1901136 cellular catabolism carbohydrate derivative catabolic 

process 
3.7212 

GO:0046348 cellular catabolism amino sugar catabolic process 3.3665 
GO:0042545 cellular catabolism cell wall modification 1.6576 
GO:0010411 cellular catabolism xyloglucan metabolic process 1.8239 
GO:0044248 cellular catabolism cellular catabolic process 10.2757 
GO:0015996 cellular catabolism chlorophyll catabolic process 2.9208 
GO:0016998 cellular catabolism cell wall macromolecule catabolic 

process 
3.1675 

GO:0042744 cellular catabolism hydrogen peroxide catabolic 
process 

3.3279 

GO:0042787 cellular catabolism protein ubiquitination involved in 
ubiquitin-dependent protein 
catabolic process 

2.0315 

GO:0051187 cellular catabolism cofactor catabolic process 2.4949 
GO:0050896 response to stimulus response to stimulus 42.7447 
GO:0009299 indole-containing 

compound 
metabolism 

mRNA transcription 1.5229 

GO:0010337 indole-containing 
compound 
metabolism 

regulation of salicylic acid 
metabolic process 

2.2518 

GO:0006082 indole-containing 
compound 
metabolism 

organic acid metabolic process 3.0706 

GO:0006560 indole-containing 
compound 
metabolism 

proline metabolic process 2.8539 

GO:0042435 indole-containing 
compound 
metabolism 

indole-containing compound 
biosynthetic process 

4.5528 

GO:0006576 indole-containing 
compound 
metabolism 

cellular biogenic amine metabolic 
process 

1.5086 

GO:0009696 indole-containing 
compound 
metabolism 

salicylic acid metabolic process 2 

GO:0009695 indole-containing 
compound 
metabolism 

jasmonic acid biosynthetic process 2.0605 

GO:0042180 indole-containing 
compound 
metabolism 

cellular ketone metabolic process 1.699 

GO:0009694 indole-containing 
compound 
metabolism 

jasmonic acid metabolic process 2.0655 
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GO:0009064 indole-containing 
compound 
metabolism 

glutamine family amino acid 
metabolic process 

2.5229 

GO:0042430 indole-containing 
compound 
metabolism 

indole-containing compound 
metabolic process 

8.8539 

GO:0009072 indole-containing 
compound 
metabolism 

aromatic amino acid family 
metabolic process 

1.8861 

GO:0032787 indole-containing 
compound 
metabolism 

monocarboxylic acid metabolic 
process 

2.1135 

GO:0016053 indole-containing 
compound 
metabolism 

organic acid biosynthetic process 1.3872 

GO:0010260 aging animal organ senescence 6.5376 
GO:0048317 aging seed morphogenesis 2.4685 
GO:0001763 aging morphogenesis of a branching 

structure 
1.5528 

GO:0009956 aging radial pattern formation 1.2924 
GO:0010150 aging leaf senescence 6.5376 
GO:0048513 aging animal organ development 4.8239 
GO:0007568 aging aging 9.8861 
GO:0051704 multi-organism 

process 
multi-organism process 24.0915 

GO:0055085 calcium ion 
transmembrane 
transport 

transmembrane transport 2.7447 

GO:0015749 calcium ion 
transmembrane 
transport 

monosaccharide transport 1.2757 

GO:0046323 calcium ion 
transmembrane 
transport 

glucose import 1.4318 

GO:0046942 calcium ion 
transmembrane 
transport 

carboxylic acid transport 1.7959 

GO:0070588 calcium ion 
transmembrane 
transport 

calcium ion transmembrane 
transport 

2.2676 

GO:0006820 calcium ion 
transmembrane 
transport 

anion transport 1.7696 

GO:0043090 calcium ion 
transmembrane 
transport 

amino acid import 1.7959 

GO:0006869 calcium ion 
transmembrane 
transport 

lipid transport 1.2366 
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GO:0015833 calcium ion 
transmembrane 
transport 

peptide transport 1.4437 

GO:0030001 calcium ion 
transmembrane 
transport 

metal ion transport 1.3979 

GO:0015849 calcium ion 
transmembrane 
transport 

organic acid transport 2.0915 

GO:0006811 calcium ion 
transmembrane 
transport 

ion transport 1.7212 

GO:0044699 single-organism 
process 

single-organism process 19.2218 

GO:0002376 immune system 
process 

immune system process 16.7447 

GO:0009056 catabolism catabolic process 9.9586 
GO:0030162 protein 

phosphorylation 
regulation of proteolysis 2.8239 

GO:0016310 protein 
phosphorylation 

phosphorylation 2.1024 

GO:0045732 protein 
phosphorylation 

positive regulation of protein 
catabolic process 

1.5229 

GO:0006468 protein 
phosphorylation 

protein phosphorylation 3.4685 

GO:0007154 cell communication cell communication 8.5229 
GO:0023052 signaling signaling 8.4202 
GO:0006012 cellular carbohydrate 

metabolism 
galactose metabolic process 1.5528 

GO:0044262 cellular carbohydrate 
metabolism 

cellular carbohydrate metabolic 
process 

1.5686 

GO:0005991 cellular carbohydrate 
metabolism 

trehalose metabolic process 1.3872 

GO:0072593 reactive oxygen 
species metabolism 

reactive oxygen species metabolic 
process 

4.4685 

GO:0065007 biological regulation biological regulation 2.8239 
GO:0008152 metabolism metabolic process 2.7696 
GO:0044419 interspecies 

interaction between 
organisms 

interspecies interaction between 
organisms 

2.699 

GO:0005975 carbohydrate 
metabolism 

carbohydrate metabolic process 2.1612 

GO:0006790 sulfur compound 
metabolism 

sulfur compound metabolic 
process 

1.4685 

GO:0071554 cell wall organization 
or biogenesis 

cell wall organization or 
biogenesis 

1.3565 

GO:2001057 reactive nitrogen 
species metabolism 

reactive nitrogen species 
metabolic process 

1.3468 
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Appendix 8 List of enriched gene ontology terms for down regulated genes in 
mdf-2 mutant. 

term_ID representative description Abs 
Log10pvalu
e 

GO:0000003 reproduction reproduction 1.3279 
GO:0005976 polysaccharide 

metabolism 
polysaccharide metabolic process 7.7447 

GO:0044723 polysaccharide 
metabolism 

single-organism carbohydrate 
metabolic process 

1.5686 

GO:0016051 polysaccharide 
metabolism 

carbohydrate biosynthetic process 3.6021 

GO:0016310 polysaccharide 
metabolism 

phosphorylation 1.6383 

GO:0044264 polysaccharide 
metabolism 

cellular polysaccharide metabolic 
process 

5.699 

GO:0044262 polysaccharide 
metabolism 

cellular carbohydrate metabolic 
process 

5.3188 

GO:0018298 polysaccharide 
metabolism 

protein-chromophore linkage 2.1427 

GO:0016572 polysaccharide 
metabolism 

histone phosphorylation 2.4685 

GO:0006468 polysaccharide 
metabolism 

protein phosphorylation 3.699 

GO:0008152 metabolism metabolic process 1.2676 
GO:0009733 response to auxin response to auxin 10.6021 
GO:0071241 response to auxin cellular response to inorganic 

substance 
1.6383 

GO:0010218 response to auxin response to far red light 2.3098 
GO:0071281 response to auxin cellular response to iron ion 1.7959 
GO:0006355 response to auxin regulation of transcription, DNA-

templated 
1.5528 

GO:0050794 response to auxin regulation of cellular process 3.9586 
GO:0007267 response to auxin cell-cell signaling 1.7959 
GO:0009630 response to auxin gravitropism 4.7212 
GO:0009629 response to auxin response to gravity 3.9586 
GO:0071731 response to auxin response to nitric oxide 1.2441 
GO:0010583 response to auxin response to cyclopentenone 6.0862 
GO:0009637 response to auxin response to blue light 2.1249 
GO:0009606 response to auxin tropism 4.8539 
GO:1902170 response to auxin cellular response to reactive nitrogen 

species 
1.284 

GO:0007167 response to auxin enzyme linked receptor protein 
signaling pathway 

7.6383 

GO:0007166 response to auxin cell surface receptor signaling 
pathway 

5.301 

GO:0007165 response to auxin signal transduction 4.7959 
GO:0010033 response to auxin response to organic substance 1.9208 
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GO:0009740 response to auxin gibberellic acid mediated signaling 
pathway 

1.3098 

GO:0009719 response to auxin response to endogenous stimulus 2.8861 
GO:0009314 response to auxin response to radiation 2.0044 
GO:0009888 tissue development tissue development 11.2007 
GO:0007389 tissue development pattern specification process 2.8539 
GO:0003002 tissue development regionalization 2.4685 
GO:0099402 tissue development plant organ development 6.2291 
GO:0048507 tissue development meristem development 1.5376 
GO:0090558 tissue development plant epidermis development 9.0223 
GO:0021700 tissue development developmental maturation 2.699 
GO:0022622 tissue development root system development 8.1308 
GO:0010089 tissue development xylem development 3.7959 
GO:0010087 tissue development phloem or xylem histogenesis 3.3188 
GO:0048469 tissue development cell maturation 4.585 
GO:0030855 tissue development epithelial cell differentiation 2.7959 
GO:0045165 tissue development cell fate commitment 3.2076 
GO:0010453 tissue development regulation of cell fate commitment 3 
GO:0048367 tissue development shoot system development 1.4318 
GO:0048364 tissue development root development 8.2147 
GO:0010374 tissue development stomatal complex development 3.8539 
GO:0009791 tissue development post-embryonic development 1.2676 
GO:0048646 tissue development anatomical structure formation 

involved in morphogenesis 
1.284 

GO:0009886 tissue development post-embryonic animal 
morphogenesis 

1.6198 

GO:0090627 tissue development plant epidermal cell differentiation 6.8239 
GO:1905177 tissue development tracheary element differentiation 3.8239 
GO:0010817 regulation of 

hormone levels 
regulation of hormone levels 5.8861 

GO:0051338 regulation of 
hormone levels 

regulation of transferase activity 1.7212 

GO:0008284 regulation of 
hormone levels 

positive regulation of cell 
proliferation 

2.2366 

GO:0035266 regulation of 
hormone levels 

meristem growth 2.8539 

GO:0032147 regulation of 
hormone levels 

activation of protein kinase activity 1.9208 

GO:0040008 regulation of 
hormone levels 

regulation of growth 5.8239 

GO:0010252 regulation of 
hormone levels 

auxin homeostasis 2.8861 

GO:0009914 regulation of 
hormone levels 

hormone transport 5.8539 

GO:0023052 signaling signaling 5.1079 
GO:0032501 multicellular 

organismal process 
multicellular organismal process 6.6778 
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GO:0032502 developmental 
process 

developmental process 8.0269 

GO:0040007 growth growth 5.9208 
GO:0044699 single-organism 

process 
single-organism process 23.4685 

GO:0050896 response to stimulus response to stimulus 3.0088 
GO:0065007 biological regulation biological regulation 3.2291 
GO:0071554 cell wall 

organization or 
biogenesis 

cell wall organization or biogenesis 15.8539 

GO:0071840 cellular component 
organization or 
biogenesis 

cellular component organization or 
biogenesis 

3.1739 

GO:0042744 hydrogen peroxide 
catabolism 

hydrogen peroxide catabolic process 3.9586 

GO:0044273 hydrogen peroxide 
catabolism 

sulfur compound catabolic process 1.8539 

GO:0042546 cell wall biogenesis cell wall biogenesis 11.8539 
GO:0000280 cell wall biogenesis nuclear division 5.3665 
GO:0034329 cell wall biogenesis cell junction assembly 2.4685 
GO:0034330 cell wall biogenesis cell junction organization 1.9586 
GO:1903340 cell wall biogenesis positive regulation of cell wall 

organization or biogenesis 
2.2757 

GO:1903338 cell wall biogenesis regulation of cell wall organization or 
biogenesis 

2.2366 

GO:0044085 cell wall biogenesis cellular component biogenesis 1.5686 
GO:0030261 cell wall biogenesis chromosome condensation 1.5686 
GO:0048285 cell wall biogenesis organelle fission 4.0655 
GO:0009834 cell wall biogenesis plant-type secondary cell wall 

biogenesis 
8.7447 

GO:0009828 cell wall biogenesis plant-type cell wall loosening 1.7212 
GO:0007010 cell wall biogenesis cytoskeleton organization 3.2757 
GO:0070589 cell wall biogenesis cellular component macromolecule 

biosynthetic process 
2.8239 

GO:0045229 cell wall biogenesis external encapsulating structure 
organization 

8.6778 

GO:0009812 flavonoid 
metabolism 

flavonoid metabolic process 1.5229 

GO:0009768 photosynthesis, light 
harvesting in 
photosystem I 

photosynthesis, light harvesting in 
photosystem I 

2.3468 

GO:0007049 cell cycle cell cycle 10.699 
GO:0019762 cell cycle glucosinolate catabolic process 2.0809 
GO:0033384 cell cycle geranyl diphosphate biosynthetic 

process 
2.2291 

GO:0033383 cell cycle geranyl diphosphate metabolic 
process 

2.2291 

GO:0033386 cell cycle geranylgeranyl diphosphate 
biosynthetic process 

1.9586 
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GO:0033385 cell cycle geranylgeranyl diphosphate 
metabolic process 

1.9586 

GO:0019742 cell cycle pentacyclic triterpenoid metabolic 
process 

1.8239 

GO:0019745 cell cycle pentacyclic triterpenoid biosynthetic 
process 

1.8239 

GO:0045337 cell cycle farnesyl diphosphate biosynthetic 
process 

2.2291 

GO:0051302 cell cycle regulation of cell division 1.3372 
GO:0051301 cell cycle cell division 10.1675 
GO:0044550 cell cycle secondary metabolite biosynthetic 

process 
4.4089 

GO:0008610 cell cycle lipid biosynthetic process 3.5229 
GO:0006720 cell cycle isoprenoid metabolic process 4.6021 
GO:0006722 cell cycle triterpenoid metabolic process 2.3665 
GO:0008299 cell cycle isoprenoid biosynthetic process 4.6383 
GO:0061640 cell cycle cytoskeleton-dependent cytokinesis 3.4685 
GO:0007059 cell cycle chromosome segregation 3.0757 
GO:0007017 cell cycle microtubule-based process 5.6383 
GO:0007018 cell cycle microtubule-based movement 5.9586 
GO:0022402 cell cycle cell cycle process 9.5376 
GO:0030029 cell cycle actin filament-based process 1.699 
GO:0006928 cell cycle movement of cell or subcellular 

component 
6.9586 

GO:0030048 cell cycle actin filament-based movement 1.6383 
GO:0008356 cell cycle asymmetric cell division 3.0555 
GO:1901617 organic hydroxy 

compound 
biosynthesis 

organic hydroxy compound 
biosynthetic process 

2.3665 

GO:0009813 organic hydroxy 
compound 
biosynthesis 

flavonoid biosynthetic process 1.8861 

GO:0015979 photosynthesis photosynthesis 2.0969 
GO:1901615 organic hydroxy 

compound 
metabolism 

organic hydroxy compound 
metabolic process 

2.3979 

GO:0072593 reactive oxygen 
species metabolism 

reactive oxygen species metabolic 
process 

1.7696 

GO:0007154 cell communication cell communication 5.2441 
GO:0005975 carbohydrate 

metabolism 
carbohydrate metabolic process 5.6021 

GO:0019748 secondary 
metabolism 

secondary metabolic process 8.8239 

GO:0044711 secondary 
metabolism 

single-organism biosynthetic process 6 

GO:0044710 secondary 
metabolism 

single-organism metabolic process 7.9208 

GO:0044763 secondary 
metabolism 

single-organism cellular process 13.3098 
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GO:0055114 secondary 
metabolism 

oxidation-reduction process 5.0605 

GO:0019438 secondary 
metabolism 

aromatic compound biosynthetic 
process 

1.2924 

GO:0006629 secondary 
metabolism 

lipid metabolic process 4.699 

GO:0046148 secondary 
metabolism 

pigment biosynthetic process 2.699 

GO:1901362 secondary 
metabolism 

organic cyclic compound 
biosynthetic process 

1.6778 

GO:0042440 secondary 
metabolism 

pigment metabolic process 1.7959 

GO:0008283 cell proliferation cell proliferation 1.2518 
GO:0035825 reciprocal DNA 

recombination 
reciprocal DNA recombination 2.8861 

GO:0006865 amino acid transport amino acid transport 2.8539 
GO:0006820 amino acid transport anion transport 1.3768 
GO:0006869 amino acid transport lipid transport 1.4437 
GO:0010876 amino acid transport lipid localization 1.5229 
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Appendix 9 List of enriched gene ontology terms for differentially spliced genes 
in mdf-1 mutant. 
 

term_ID representative description Abs 
Log10Pvalue 

GO:0000003 mRNA metabolism nucleobase-containing 
compound metabolic process 

9.2076 

GO:0002376 mRNA metabolism nucleic acid metabolic process 9.0555 
GO:0007623 mRNA metabolism mRNA metabolic process 7.2757 
GO:0008152 mRNA metabolism mRNA processing 6.9586 
GO:0009987 mRNA metabolism RNA metabolic process 6.7447 
GO:0010050 mRNA metabolism RNA processing 6.5528 
GO:0044706 mRNA metabolism RNA splicing 5.2441 
GO:0099402 mRNA metabolism macromolecule modification 5.0605 
GO:0048510 mRNA metabolism cellular macromolecule 

metabolic process 
4.8861 

GO:0048507 mRNA metabolism phosphate-containing 
compound metabolic process 

4.1675 

GO:0022622 mRNA metabolism DNA metabolic process 4.1367 
GO:0009553 mRNA metabolism tRNA metabolic process 3.5528 
GO:0048367 mRNA metabolism regulation of RNA splicing 3.1135 
GO:0048364 mRNA metabolism organic cyclic compound 

biosynthetic process 
3.0315 

GO:0009791 mRNA metabolism heterocycle biosynthetic 
process 

3 

GO:0040034 mRNA metabolism ncRNA metabolic process 2.9586 
GO:0009888 mRNA metabolism cellular nitrogen compound 

metabolic process 
2.6778 

GO:0061458 mRNA metabolism peptidyl-lysine modification 2.6021 
GO:0016071 mRNA metabolism histone H3-K4 methylation 2.585 
GO:0006306 mRNA metabolism protein phosphorylation 2.3979 
GO:0018193 mRNA metabolism nucleobase-containing 

compound biosynthetic process 
2.1805 

GO:0006796 mRNA metabolism aromatic compound 
biosynthetic process 

2.0969 

GO:0018205 mRNA metabolism steroid metabolic process 2.041 
GO:0016070 mRNA metabolism macromolecule methylation 2.041 
GO:0044260 mRNA metabolism macromolecule glycosylation 1.9208 
GO:0044275 mRNA metabolism RNA 3'-end processing 1.9208 
GO:0006139 mRNA metabolism nucleobase-containing 

compound catabolic process 
1.8861 

GO:0019438 mRNA metabolism peptidyl-amino acid 
modification 

1.8539 

GO:0046488 mRNA metabolism steroid biosynthetic process 1.7696 
GO:0006694 mRNA metabolism protein autophosphorylation 1.7696 
GO:0090407 mRNA metabolism phosphatidylinositol metabolic 

process 
1.6778 
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GO:0006259 mRNA metabolism nucleic acid phosphodiester 
bond hydrolysis 

1.6778 

GO:0090304 mRNA metabolism gene expression 1.4949 
GO:0090305 mRNA metabolism protein alkylation 1.4559 
GO:0043484 mRNA metabolism phospholipid metabolic process 1.3188 
GO:0010467 mRNA metabolism protein acetylation 1.3098 
GO:0018130 mRNA metabolism organophosphate biosynthetic 

process 
1.301 

GO:0051568 mRNA metabolism cellular carbohydrate catabolic 
process 

1.1549 

GO:0008202 mRNA metabolism glyceraldehyde-3-phosphate 
metabolic process 

1.0044 

GO:0043414 mRNA metabolism DNA methylation 1 
GO:0043413 regulation of response 

to stress 
negative regulation of 
biological process 

4.041 

GO:0006644 regulation of response 
to stress 

regulation of response to stress 3.3872 

GO:0043412 regulation of response 
to stress 

regulation of biological process 3.1249 

GO:0008213 regulation of response 
to stress 

response to oxygen radical 3.1135 

GO:0006396 regulation of response 
to stress 

regulation of gene expression 3.041 

GO:0008380 regulation of response 
to stress 

immune response 3.0269 

GO:0006397 regulation of response 
to stress 

negative regulation of 
metabolic process 

2.9586 

GO:0006399 regulation of response 
to stress 

regulation of metabolic process 2.8861 

GO:0019682 regulation of response 
to stress 

defense response, 
incompatible interaction 

2.8239 

GO:1901362 regulation of response 
to stress 

cellular response to DNA 
damage stimulus 

2.7696 

GO:0034641 regulation of response 
to stress 

regulation of response to 
stimulus 

2.3468 

GO:0006473 regulation of response 
to stress 

defense response to fungus, 
incompatible interaction 

2.2218 

GO:0031123 regulation of response 
to stress 

response to light stimulus 2.0809 

GO:0046777 regulation of response 
to stress 

regulation of DNA metabolic 
process 

2.0223 

GO:0006468 regulation of response 
to stress 

response to inorganic 
substance 

1.8861 

GO:0034660 regulation of response 
to stress 

regulation of DNA-dependent 
DNA replication 

1.7959 

GO:0034655 regulation of response 
to stress 

cell cycle DNA replication 1.7447 

GO:0034654 regulation of response 
to stress 

response to acid chemical 1.699 
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GO:0022414 regulation of response 
to stress 

DNA-dependent DNA 
replication 

1.6383 

GO:0010228 regulation of response 
to stress 

auxin metabolic process 1.6198 

GO:0009845 regulation of response 
to stress 

cellular metal ion homeostasis 1.585 

GO:0009910 regulation of response 
to stress 

response to oxygen-containing 
compound 

1.5686 

GO:0032501 regulation of response 
to stress 

cellular response to stimulus 1.4685 

GO:0032502 regulation of response 
to stress 

DNA recombination 1.4559 

GO:0044699 regulation of response 
to stress 

cold acclimation 1.3372 

GO:0048511 regulation of response 
to stress 

regulation of hormone levels 1.2441 

GO:0048519 regulation of response 
to stress 

telomere maintenance 1.2366 

GO:0006304 regulation of response 
to stress 

anatomical structure 
homeostasis 

1.1938 

GO:0090066 regulation of response 
to stress 

response to abiotic stimulus 1.1549 

GO:0048518 regulation of response 
to stress 

DNA modification 1.0555 

GO:1901700 regulation of response 
to stress 

regulation of response to biotic 
stimulus 

1.0555 

GO:0006310 regulation of response 
to stress 

positive regulation of biological 
process 

1 

GO:0000305 regulation of response 
to stress 

detection of external stimulus 1 

GO:0051716 regulation of response 
to stress 

DNA replication 1 

GO:0006261 regulation of response 
to stress 

regulation of anatomical 
structure size 

0.9586 

GO:0048583 regulation of response 
to stress 

reciprocal DNA recombination 0.9586 

GO:0009581 organelle organization chromosome organization 4.4437 
GO:0044786 organelle organization organelle organization 4.4202 
GO:0006875 organelle organization chloroplast organization 3.4318 
GO:0019222 organelle organization macromolecular complex 

subunit organization 
3.3768 

GO:0009628 organelle organization organelle fission 2.9208 
GO:0050789 organelle organization plastid organization 2.5376 
GO:0009631 organelle organization chromatin organization 2.4437 
GO:0002831 organelle organization protein polymerization 2.041 
GO:0006260 organelle organization protein-DNA complex subunit 

organization 
1.6198 

GO:0010035 organelle organization regulation of organelle 
organization 

1.6021 

GO:0001101 organelle organization cellular component assembly 1.5686 
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GO:0010468 organelle organization cellular component 
disassembly 

1.2924 

GO:0035825 organelle organization telomere organization 1.2366 
GO:0090329 organelle organization regulation of cellular 

component biogenesis 
1.1675 

GO:0009814 organelle organization ribonucleoprotein complex 
subunit organization 

1.1135 

GO:0009817 cofactor metabolism heterocycle metabolic process 10.1675 
GO:0051052 cofactor metabolism cellular aromatic compound 

metabolic process 
8.3979 

GO:0060249 cofactor metabolism cellular metabolic process 5.5376 
GO:0009892 cofactor metabolism phosphorus metabolic process 4.0088 
GO:0010817 cofactor metabolism cofactor metabolic process 1.8539 
GO:0009850 cell recognition cell recognition 2.8539 
GO:0006974 cell recognition cell cycle process 2.6021 
GO:0009416 cell recognition amino acid activation 2.3372 
GO:0006955 cell recognition sister chromatid cohesion 2.2218 
GO:0080134 cell recognition chromosome segregation 2.0706 
GO:0000723 cell recognition cell cycle 2.0506 
GO:0051179 cell recognition cellular amino acid metabolic 

process 
1.5528 

GO:0065007 cell recognition polyol metabolic process 1.3188 
GO:0071840 cell recognition actin filament-based process 1.2076 
GO:0072511 cell recognition cell death 1.1805 
GO:0055085 cell recognition cellular ketone metabolic 

process 
1.1675 

GO:0006810 cell recognition pyrimidine-containing 
compound biosynthetic process 

1.1487 

GO:0006811 cell recognition water-soluble vitamin 
metabolic process 

1.0132 

GO:0070838 cell recognition programmed cell death 0.9586 
GO:0016197 cell recognition amine metabolic process 0.9586 
GO:0042886 vegetative phase 

change 
vegetative phase change 3.3468 

GO:0030001 vegetative phase 
change 

post-embryonic development 2.3768 

GO:0032259 vegetative phase 
change 

multi-multicellular organism 
process 

1.8861 

GO:1900673 vegetative phase 
change 

regulation of timing of 
transition from vegetative to 
reproductive phase 

1.8539 

GO:0006996 vegetative phase 
change 

regulation of development, 
heterochronic 

1.8239 

GO:0071824 vegetative phase 
change 

plant organ development 1.6021 

GO:0071826 vegetative phase 
change 

meristem development 1.6021 

GO:0051258 vegetative phase 
change 

shoot system development 1.585 
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GO:0051276 vegetative phase 
change 

reproductive system 
development 

1.3665 

GO:0006325 vegetative phase 
change 

root development 1.3279 

GO:0022607 vegetative phase 
change 

root system development 1.3098 

GO:0044087 vegetative phase 
change 

tissue development 1.0706 

GO:0009658 vegetative phase 
change 

embryo sac development 1.0362 

GO:0009657 organic cyclic 
compound metabolism 

organic cyclic compound 
metabolic process 

9.7696 

GO:0048285 organic cyclic 
compound metabolism 

macromolecule metabolic 
process 

4.6576 

GO:0043933 organic cyclic 
compound metabolism 

carbohydrate derivative 
metabolic process 

1.7959 

GO:0033043 organic cyclic 
compound metabolism 

carbohydrate metabolic 
process 

1.2676 

GO:0022411 divalent inorganic 
cation transport 

divalent inorganic cation 
transport 

3.5528 

GO:0032200 divalent inorganic 
cation transport 

divalent metal ion transport 3.1612 

GO:1901615 divalent inorganic 
cation transport 

metal ion transport 2.4949 

GO:0070085 divalent inorganic 
cation transport 

ion transport 2.1249 

GO:0044723 divalent inorganic 
cation transport 

transport 1.7447 

GO:0044710 divalent inorganic 
cation transport 

endosomal transport 1.585 

GO:0044763 divalent inorganic 
cation transport 

transmembrane transport 1.4318 

GO:0006629 divalent inorganic 
cation transport 

amide transport 1.0555 

GO:0044281 cofactor biosynthesis cofactor biosynthetic process 2.6383 
GO:0005982 cofactor biosynthesis glycoprotein metabolic process 2.5086 
GO:0008037 cofactor biosynthesis carbohydrate derivative 

biosynthetic process 
2.3188 

GO:0019751 cofactor biosynthesis glycoprotein biosynthetic 
process 

2.284 

GO:0012501 cofactor biosynthesis ethylene biosynthetic process 1.4318 
GO:0042180 cofactor biosynthesis cellular metabolic compound 

salvage 
1.1024 

GO:0043038 cofactor biosynthesis liposaccharide metabolic 
process 

0.9586 

GO:0006767 glycosylation single-organism cellular process 2.9586 
GO:0006520 glycosylation glycosylation 2.9208 
GO:0007062 glycosylation single-organism metabolic 

process 
2.4559 
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GO:0007049 glycosylation single-organism carbohydrate 
metabolic process 

1.3279 

GO:0007059 glycosylation small molecule metabolic 
process 

1.2518 

GO:0008219 glycosylation starch metabolic process 1.1308 
GO:0009308 glycosylation lipid metabolic process 1.0269 
GO:0022402 organic substance 

metabolism 
organic substance metabolic 
process 

5.7212 

GO:0072528 organic substance 
metabolism 

primary metabolic process 5.0655 

GO:0030029 reproductive process reproductive process 2.7212 
GO:0051188 reproductive process vegetative to reproductive 

phase transition of meristem 
2.0862 

GO:0009100 reproductive process negative regulation of flower 
development 

1.699 

GO:0009101 reproductive process seed germination 1.4815 
GO:1901137 metabolism metabolic process 6.7447 
GO:0043094 cellular process cellular process 3.9208 
GO:0009693 rhythmic process rhythmic process 3.5686 
GO:1903509 single-organism 

process 
single-organism process 3.3468 

GO:1901360 circadian rhythm circadian rhythm 3.1805 
GO:0043170 nitrogen compound 

metabolism 
nitrogen compound metabolic 
process 

2.7447 

GO:1901135 reproduction reproduction 2.6778 
GO:0005975 immune system 

process 
immune system process 2.6198 

GO:0071704 biological regulation biological regulation 1.8539 
GO:0044238 localization localization 1.8239 
GO:0051186 methylation methylation 1.8239 
GO:0006793 multicellular 

organismal process 
multicellular organismal 
process 

1.7959 

GO:0044237 olefin metabolism olefin metabolic process 1.4318 
GO:0046483 developmental process developmental process 1.3768 
GO:0006725 organic hydroxy 

compound metabolism 
organic hydroxy compound 
metabolic process 

1.3188 

GO:0006807 cellular component 
organization or 
biogenesis 

cellular component 
organization or biogenesis 

1.0706 
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Appendix 10 Primer List 
 

 

Target Gene  Primer Sequence (5’ to 3’) 

AOO1 F   GAAGCGAGTAGTGAAGCGGT 

AOO1 R   TTTACTTCAACCTCGCTCGCT 

ATM1 A F  TCGTCGGTGAAGCCAGAGTT 

ATM1 A R  CACCCTTCTCCCCGAGCAAA 

ATM1 B F  ATCTCGTCGGTGAAGCCAGA 

ATM1 B R  TAGCTTGGAGATGCGGTGGA 

ATMKK9 F  TCTCCGCCGTACAGATTCAC  

ATMKK9 R  TCCGCCGTCCATATACTCCA  

ATMYB122 F  GCCGTGTTGTAGAGCAGAAG  

ATMYB122 R  GAATGGCGTGGAGGTTGATG  

ATMYB34 F  CTTCTTAACCGCGTCGCAAG  

ATMYB34 R  GCAATGTGGAGGTCGGAGAA  

AUX1 F   TCGGTCCAATCAATTCCGCT 

AUX1 R   AGAACCCAAACCACCACGAA 

CYP71A13 F  TGTAGGCCGATTTGACTGGA  

CYP71A13 R  TAGTGTTGCATAGCATAACAAGGT  

CYP79B2 F  CCGTTGGTTATGGTCGGTGA  

CYP79B2 R  GGCGTCGTCTCATCTCACTT  

CYP79B3 F  GGCGTTAGGTACGGCGATAA  

CYP79B3 R  CACGTGTCTCACTTCCTGCT  

IAA2 C F  CCTCCTACCAAAACTCAAATCGTT 

IAA2 C R  CGTAGCTCACACTGTTGTTGTTCT 

LAX1 F   TCTGCTTCGGAGAGTGTAGAA 

LAX1 R   AACGAATACGGCAGCGTCAA 

LAX2 F   CTGCGGTTTATTGGGCGTTT 

LAX2 R   ACCGAACCCGAATCCAACAA 

LAX3 F   CTCGGACTCGCTATGACCAC 
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LAX3 R   CAAACGCCCAATAAACCGCA 

MYB51 F  TCTTCCTTCGCACCAACCTC  

MYB51 R  CGTGGACGAAGAACACGTCA  

PAD3 F   CAGTGGCGCTTCTCCAATAC  

PAD3 R   TAGCACTTCCTCTGCTGCTT  

PIN1 B F  TCGTTGCTTCTTATGCCGTT 

PIN1 B R  AGAAGAGTTATGGGCAACGC 

PIN1 C F  CGGCGGCTATGAGATTTGTCGTT 

PIN1 C R  CGCGATCAACATCCCAAATATCAC 

PIN2 B F  AACGAGTGGAGCAAGTGGAG 

PIN2 B R  CGGTGGAAGAACCTCTGGTC 

PIN2 C F  AATGCTGGTTGCTTTGCCTG 

PIN2 C R  CCTTTGGGTCGTATCGCCTT 

SOT16 F  CGTCCTGCTGTTTATGCGAA 

SOT16 R  TTTCGCCGCACCAAATAACA 

SUR1 F   TGTTTCTACCAGGGGATGCT  

SUR1 R   CTTTTGGGCACACACATCCT  

TAA1 A F  GTGGTCAATCTGGATCATGGTG 

TAA1 A R  CAGCGTTACCAACAACACCG 

TAA1 B F  TGGTCAATCTGGATCATGGTG 

TAA1 B R  CCGTACACCTGTCACCCATC 

TSB1 A F  TATGAAGGTGGTAGCCCAGC 

TSB1 A R  GCTACTTGCCATACTTCGCA 

TSB1 B F  TGATTTTGGCGATACGGCTG 

TSB1 B R  ACCGGCATGGATAGGATCAG 

TSB2 F   CGAACTACCGATTTCCTCCAC 

TSB2 R   ATTTGGGGAGTTTGGAGGGT 

UGT74B1 F  ACAATGGCGGAAACAACTCC  

UGT74B1 R  GTGGTGGCGATTGTGACTTT  

WEI2 F   GGGTTATTTGCAGGCTAGAGG 

WEI2 R   TCCCTCTCTTGCTGGTTCCT 
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WEI7 F   CTTCAACCCAAGTCTGGCTC  

WEI7 R   ACGGAAACTCTTGTGGGATT  

YUC2 F   CCCATGTGGCTAAAGGGAGTG 

YUC2 R   CAATCCGCTTTCGCCTTTCC 

YUC8 F   CGCGGTTAAGATCGCACAAG 

YUC8 R   CTTGAGCGTTTCGTGGGTTG 


