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Abstract: Dark matter (DM) and neutrinos provide the two most compelling

pieces of evidence for new physics beyond the Standard Model (SM) but they are

often treated as two different sectors. A tantalising avenue of investigation is the

possibility that a stronger connection between these two particles exists. In this thesis,

we explore the phenomenological implications of a neutrino-DM coupling and show

that the complementarity between cosmological observables and indirect detection

searches can be used to exclude large regions of the parameter space for different

DM models. After conducting a complete study of all the possible renormalizable

scenarios with such a coupling, we discuss two gauge-invariant realisations of models

where the DM phenomenology is dominated by its interactions with neutrinos. While

in these models, neutrinos set the strongest constraints, they can also be an obstacle

in our quest to understand DM. Indeed, they will soon become a source of an

important background for direct detection experiments. Here, we also compute the

changes in this background in the presence of new physics within the neutrino sector.

We find that it can increase significantly for light DM masses. This means that

future discovery claims by direct detection experiments must be carefully examined

if a signal is found well above the expected SM neutrino background.



Contents

Abstract 2

List of Figures 6

List of Tables 9

1 Introduction 15

1.1 Evidence for dark matter . . . . . . . . . . . . . . . . 16

1.1.1 Galactic scales . . . . . . . . . . . . . . . . . 16

1.1.2 The cosmic microwave background and large scale structure

formation . . . . . . . . . . . . . . . . . . . 17

1.2 Thermal dark matter . . . . . . . . . . . . . . . . . 19

1.3 Dark matter searches . . . . . . . . . . . . . . . . . 23

1.3.1 Direct detection . . . . . . . . . . . . . . . . . 23

1.3.2 Indirect detection . . . . . . . . . . . . . . . . 25

1.3.3 Collider searches . . . . . . . . . . . . . . . . 27

1.4 Neutrino masses and mixing . . . . . . . . . . . . . . . 28

1.4.1 Neutrino oscillations . . . . . . . . . . . . . . . 28

1.4.2 Generating neutrino masses . . . . . . . . . . . . 30

1.5 Constraints on dark matter-neutrino interactions . . . . . . . 32



Contents 4

1.5.1 Dark matter annihilation to neutrinos . . . . . . . . . 32

1.5.2 Structure formation . . . . . . . . . . . . . . . 34

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . 36

2 Galactic searches for dark matter using neutrinos 38

2.1 Galactic searches . . . . . . . . . . . . . . . . . . . 39

2.1.1 Velocity-dependent cross section . . . . . . . . . . . 41

2.1.2 Summary of current and future experimental searches . . . 42

2.2 Super-Kamiokande analysis for MeV dark matter masses and Hyper-

Kamiokande prospects . . . . . . . . . . . . . . . . . 47

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . 53

3 Exhausting all the possibilities 54

3.1 Scenarios considered . . . . . . . . . . . . . . . . . . 55

3.2 Results for scalar or fermion mediators . . . . . . . . . . . 58

3.2.1 Fermion DM and scalar mediators . . . . . . . . . . 59

3.2.2 Scalar DM and Majorana mediators . . . . . . . . . 64

3.3 Results for a vector mediator . . . . . . . . . . . . . . . 66

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . 70

4 Towards a gauge-invariant model of dark matter-neutrino interac-

tions 73

4.1 Naive gauge invariance . . . . . . . . . . . . . . . . . 75

4.1.1 Model . . . . . . . . . . . . . . . . . . . . 75

4.1.2 Results . . . . . . . . . . . . . . . . . . . . 76

4.2 Coupling via the neutrino portal . . . . . . . . . . . . . 79



Contents 5

4.3 Sterile neutrino portal with a scalar mediator . . . . . . . . 81

4.3.1 Model . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Results . . . . . . . . . . . . . . . . . . . . 86

4.4 Neutrino portal with a vector mediator . . . . . . . . . . . 89

4.4.1 Model . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Mixing with the Z boson . . . . . . . . . . . . . 91

4.4.3 Results . . . . . . . . . . . . . . . . . . . . 95

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 99

5 Raising the neutrino floor with new physics 101

5.1 The CEνNS floor in the presence of new hysics . . . . . . . . 103

5.1.1 New physics models . . . . . . . . . . . . . . . 105

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusions: Neutrinos as a tool to unveil the dark matter mystery113



List of Figures

1.1 Bullet Cluster mass distribution . . . . . . . . . . . . . 17

1.2 Temperature fluctuations in the CMB . . . . . . . . . . . 19

1.3 Dark matter power spectrum . . . . . . . . . . . . . . . 20

1.4 Evolution of the dark matter relic abundance with time . . . . . 22

1.5 Summary of different DM search strategies . . . . . . . . . 24

1.6 Latest XENON1T results for constraints onWIMP-DM spin-independent

cross sections . . . . . . . . . . . . . . . . . . . . 25

1.7 Changes inNeff as a function of the DMmass for different DM candidates 34

1.8 Matter power spectrum in the presence of DM-neutrino interactions 36

2.1 Summary of indirect detection searches for DM annihilations to neut-

rinos . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 90% confidence level limits on the DM self-annihilation cross section

to neutrinos from Super-Kamiokande data and Hyper-Kamiokande

projections . . . . . . . . . . . . . . . . . . . . . 52

3.1 Constraints on the parameter space for Dirac and Majorana DM

candidates coupled to a scalar mediator with g = 1 . . . . . . 60

3.2 Constraints on the parameter space for a Dirac DM candidate coupled

to a scalar mediator with g = 10−1 and g = 10−2 . . . . . . . 62



List of Figures 7

3.3 Constraints on the parameter space for a complex DM candidate

coupled to a Majorana mediator and for a Dirac DM candidate coupled

to a vector mediator with g = 1 . . . . . . . . . . . . . . 66

4.1 Constraints on the DM mass mχ and the new physics scale Λ for a

naive gauge-invariant model of neutrino-DM interactions . . . . 77

4.2 Thermally averaged annihilation cross section as a function of the DM

mass for the neutrino portal with a scalar mediator . . . . . . 83

4.3 One-loop diagrams contributing to annihilation of DM into charged

lepton-antilepton pairs for a neutrino portal with a sacalar mediator 84

4.4 DM annihilation to charged leptons compared to its annihilation to

neutrinos and indirect detection constraints for a scalar mediator . 86

4.5 Constraints on the DM and dark scalar masses for a neutrino portal

model with a scalar mediator . . . . . . . . . . . . . . 87

4.6 Values of the DM mass and the coupling yL required to reproduce

the observed relic abundance in a neutrino portal model with a scalar

mediator . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Thermally averaged annihilation cross section as a function of the DM

mass for a neutrino portal model with a vector mediator . . . . 90

4.8 One-loop diagrams contributing to the coupling of the Z ′ boson to

charged leptons and to the kinetic and mass mixing between the Z ′

and Z bosons for a neutrino portal model with a vector mediator . 92

4.9 DM annihilation to charged leptons compared to its annihilation to

neutrinos and indirect detection constraints for a vector mediator . 94

4.10 Constraints on the DM and dark scalar masses for a neutrino portal

model with a vector mediator . . . . . . . . . . . . . . 96



List of Figures 8

4.11 Values of the DM mass and the coupling g′ required to reproduce the

observed relic abundance in a neutrino portal model with a vector

mediator . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Constraints on the parameter space for the couplings and masses of

models with a scalar and a vector mediator . . . . . . . . . 108

5.2 Neutrino floor for a model with a new vector mediator in He, Ge, and

Xe experiments . . . . . . . . . . . . . . . . . . . . 110

5.3 Neutrino floor for a model with a new scalar mediator in He, Ge, and

Xe experiments . . . . . . . . . . . . . . . . . . . . 111



List of Tables

1.1 Summary of Neff lower bounds on DM masses for different DM can-

didates . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Summary of different experimental analyses relevant for indirect de-

tection searches using neutrinos . . . . . . . . . . . . . . 47

3.1 Interaction terms, annihilation cross section and low-energy limit of

the elastic scattering cross section for all the possible D = 4 scenarios

that involve DM-ν interactions . . . . . . . . . . . . . . 57



Declaration

The work in this thesis is based on research carried out in the Department of Physics

at Durham University. No part of this thesis has been submitted elsewhere for any

degree or qualification.

The following chapters have been published in the form of papers:

• Chapter 2 is based on [1] and [2]

C. A. Argüelles, A. Kheirandish, A. Olivares-Del Campo, I. Safa, and A. C.

Vincent. ‘Constraining dark matter annihilation into neutrinos: The most

invisible channel’, to appear, and

A. Olivares-Del Campo, S. Palomares-Ruiz, and S. Pascoli. ‘Implications of a

dark matter-neutrino coupling at Hyper-Kamiokande’, Proceedings in 53rd Ren-

contres de Moriond on Electroweak Interactions and Unified Theories (Moriond

EW 2018), arXiv:1805.09830

• Chapter 3 is based on [3]

C. Bœhm, A. Olivares-Del Campo, S. Palomares-Ruiz, and S. Pascoli. ‘Dark

matter-neutrino interactions through the lens of their cosmological implications’,

Phys. Rev. D97 (2018) no.7, 075039, arXiv:1711.05283

• Chapter 4 is based on [4]

M. Blennow, E. Fernandez-Martinez, A. Olivares-Del Campo, S. Pascoli, S.

Rosauro-Alcaraz, and A. V. Titov. ‘Neutrino portals to dark matter’, arXiv:1903.00006,

submitted to European Physical Journal C

https://arxiv.org/abs/1805.09830
https://arxiv.org/abs/1711.05283
https://arxiv.org/abs/1903.00006


Declaration 11

• Chapter 5 is based on [5]

C. Bœhm, D. G. Cerdeño, P. A. N. Machado, A. Olivares-Del Campo, and E.

Reid. ‘How high is the neutrino floor?’, JCAP 1901 (2019) 043, arXiv:1809.06385

Copyright © 2019 Andrés Olivares-Del Campo.

The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged.

https://arxiv.org/abs/1809.06385


Acknowledgements
I would like to start by thanking my supervisors, Prof. Celine Bœhm and Prof.

Silvia Pascoli, for all your support throughout my PhD. I have learned a lot from

you and I am very grateful for the many opportunities you have given me.

All this work would not have been possible without the amazing collaborators I have

had: Carlos Argüelles, Mattias Blennow, David Cerdeño, Ahmet Coskuner, Enrique

Fernandez-Martinez, Ali Kheirandish, Pedro Machado, Maura Ramirez-Quezada,

Elliott Reid, Salva Rosauro-Alcaraz, Ibrahim Safa, Arsenii Titov, Aaron Vincent,

Ye-Ling Zhou, and Kathryn Zurek. Special thanks go to Sergio Palomares-Ruiz for

his patient help during my first project. I would also like to thank Patrick Tunney

for suggesting a fitting subtitle for this thesis.

I have been very lucky to start my PhD with a great cohort of PhD students: Andrew

Cheek, Matheus Hostert, Kristian Moffat, Alexis Plascencia, Jack Richings, Julia

Stadler, and Philip Waite. Thanks a lot for the excellent physics discussions and

great times together.

Most importantly, I thank my family: My parents Tomás and Pepa, my grandmother

Josefina, my aunt Maite, and my brother Martín. Without your unconditional

support I would not be here. I would also like to thank Jorge Arrieta-Aldea for

the many years of friendship. My high-school friends, Miika Korja, Maite Sandoval,

Deeya Jhummon, and my Tier 1 pals for all the laughs together. Last but not least,

thanks to Macarena Teja-Ubach. You have been a very important part of my life

during these last four years.

I gratefully acknowledge financial support from the European Research Council

under ERC Grant “NuMass” (FP7-IDEAS-ERC ERC-CG 617143).



This thesis is dedicated
to

my grandfather and my
grandmother



Chapter 1

Introduction

Why do humans do Sciences, why do they do Arts? The things
that are least important for our survival are the very things that
make us humans.

— Savas Dimopoulos

Throughout the twentieth century, there has been growing evidence for the existence

of an invisible matter component which accounts for around 85% of the total matter

in our Universe. This has been called dark matter (DM) [6, 7]. Dark matter is

traditionally thought to be a neutral, non-relativistic heavy particle. However, there

are many things about its nature that remain unknown. Does it interact with any

other particles in the Standard Model (SM) and if so, how much? What is its mass

and spin? Is DM a single fundamental particle or does it form a composite sector?

How was the amount of DM that has been observed today created? Throughout

this thesis we will try to answer some of these questions using neutrinos as a tool.

In this introductory chapter, we start by summarizing the different observational

evidence that suggests DM exists in Sec. 1.1. We then explain the standard dark

matter thermal generation mechanism in Sec. 1.2 and review the status of different

DM searches in Sec. 1.3. In Sec. 1.4 we shortly discuss the significance of neutrino
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masses and their mixing while we dedicate Sec. 1.5 to the phenomenological implic-

ations of a neutrino-DM coupling. This chapter ends with an outline of the thesis

in Sec. 1.6.

1.1 Evidence for dark matter

All the observational evidence that we have about DM so far is purely based on

its gravitational effects. Alternative theories of gravity such as modified Newtonian

dynamics (MOND) [8–10] can also explain some of the physical phenomena currently

associated to DM. However, what is fascinating and compelling about DM is that

observations at both small and large scales seem to consistently point towards a

particle interpretation of DM. MOND theories however, present large tensions when

trying to describe observables at different scales [11]. There are several in-depth

reviews that explain the observational evidence for DM [12–16]. In this section we

will discuss certain observables that motivate the existence of DM.

1.1.1 Galactic scales

A strong evidence for the existence of DM is the observed velocity distribution of

rotating galaxies at galactic scales [17, 18]. A more striking observation is that

DM can also account for the matter distribution of the Bullet Cluster, which is

a galaxy merger thought to be produced after the collision of two galaxy clusters

[19]. The spatial distribution of the luminous matter within this galaxy merger has

been mapped out from the emission of X-ray radiation recorded by the Chandra

observatory (see left panel of Fig. 1.1). At the same time, the DM distribution

within the galaxy merger can be found by comparing numerical general relativity

simulations to the lensing effects observed in the Bullet Cluster (see right panel of

Fig. 1.1). By comparing these two images, one can see how the concentration of

the luminous mass falls behind the centre of the gravitational mass. This agrees
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Figure 1.1: Color images of the Bullet Cluster in the X-ray (left panel) and optical
(right panel) range taken by the Chandra observatory and the Magellan telescope
respectively. The white bars correspond to a distance of 200 kpc. The green contours
show the mass distribution as inferred from lensing measurements. These figures are
taken from [20].

very well with what one would expect to occur when two objects with a component

that does not interact very strongly (the DM) and a more interacting component

(the luminous matter) collide: the weakly interacting particles go through each other

while the particles that interact more, drag behind. In fact, Ref. [20] showed that

the offset between the position of the centre of their distributions corresponds to an

8σ effect.

1.1.2 The cosmic microwave background and large scale

structure formation

Beyond astrophysical observations, DM played a very important role in shaping the

Universe as it is observed today. At early times, the electrostatic forces between

the charged particles that constituted the ionizing plasma competed against the

gravitational attraction among themselves. Consequently, baryonic matter could

not clump together to form structures until it became neutral at recombination [21].

Before this time, the baryonic density behaved as a driven harmonic oscillator with

the photon pressure and gravity acting as driving and restoring forces respectively.

At recombination, protons and electrons formed neutral elements which meant that

photons no longer scattered off the plasma. Thus, photons were able to decouple from
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the thermal bath and travelled through the Universe to produce what we observe

today as the cosmic microwave background (CMB). Nevertheless, these photons

carry information about the baryonic density since they were strongly coupled to it

until recombination happened.

The CMB was first detected by Penzias and Wilson in the 1960s [22] and gives in-

formation about the temperature of the photons emitted during recombination from

different parts of the Universe. Although the temperature distribution looks largely

homogeneous, it shows small anisotropies associated to baryonic matter perturba-

tions in the early Universe. Moreover, the angular distribution of these temperature

anisotropies can be expressed in terms of spherical harmonics Ylm(θ, φ) with a par-

ticular multipole moment l associated to the angular position θ. Nevertheless, these

fluctuations are not large enough to account for the seeds of structure formation [23].

This demands the existence of an additional neutral matter component able to

form gravitational wells earlier in time, which also contributed to the gravitational

potential driving the baryonic matter oscillations. Consequently, the shape of the os-

cillatory pattern in the CMB spectrum (see Fig. 1.2) gives us information about the

baryonic and DM relic densities. By measuring these anisotropies, Planck has been

able to determine the relic baryonic (Ωb) and non-baryonic (ΩDM) matter densities

of our Universe. They are [7]

Ωbh
2 = 0.0224± 0.0001 , ΩDMh

2 = 0.120± 0.001 . (1.1.1)

where the parameter h is related to the measurement of the expansion rate of the

universe today.

One can also describe the distribution of matter in the Universe using the so-called

matter power spectrum P (k), which is related to the Fourier transform of the

matter density inhomogeneities δ(x) ≡ [n(x)− nAvg] /nAvg for different wave numbers

k = 2π/λ, where λ is the spatial scale. Therefore, P (k) represents the variance in

the matter distribution and consequently, a small value corresponds to a smooth

distribution while a large value implies the presence of significant underdense and

overdense regions. In this way, when P (k) is suppressed, small structures are erased
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and galaxies form large structures. Furthermore, the shape of this spectrum strongly

depends on the dark matter velocity and its interactions (see Fig. 1.3). For this

reason, P (k) can be used to infer certain DM properties by comparing the expected

spectrum from N−body simulations (e.g. [24,25]) with the measurements from large

galaxy surveys such as the Sloan Digital Sky Survey [26]. In Sec. 1.5.2 we will discuss

how the matter power spectrum also changes in the presence of sizable DM-neutrino

interactions and can therefore be used to constrain the strength of such interactions.

1.2 Thermal dark matter

As we have discussed, the effects of DM have only been observed via its gravitational

interactions. Consequently, collisionless DM has been the main paradigm for the

last four decades [13, 28]. However, at the very least, DM generated thermally

needs to have other type of interactions to be produced in the early Universe. A

plausible hypothesis is that, if DM is a fundamental particle with a given mass,

these interactions are weak. This is the so-called weakly interacting massive particle

(WIMP) hypothesis (see Refs. [29, 30] for recent reviews).
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Milky Way-like halo (right panel) for different DM models with low and high DM
velocities (CDM and WDM respectively), and models where non-relativistc dark
matter interacts with photons with different strengths. Figure taken from [27].

Throughout this thesis we consider a WIMP DM candidate interacting mostly with

neutrinos. Therefore, we now review how the observed DM relic abundance today

could have been generated within the WIMP hypothesis. An interesting possibility

is that it was produced in the same way as the SM particles. That is, via a thermal

mechanism. This implies that DM would have been in thermal equilibrium with

SM particles in the early Universe, meaning that the probability that a DM particle

χ and its antiparticle χ annihilate to a SM particle-antiparticle pair y, y was the

same as the probability of the reverse process, so that there was no change in the

number of DM particles at early times. As the universe cools down, the DM becomes

non-relativistic and the forward reaction is favoured so that DM particles annihilate

and their number density is decreased. Furthermore, when the universe expands, the

density of DM particles was further diluted and consequently, it became increasingly

difficult for DM particles to annihilate in order to maintain thermal equilibrium.

This occurred when the rate of the reaction Γ ≡ nχ〈σvr〉 dropped below the Hubble
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parameter H ≡ ȧ
a
, which describes the expansion of the Universe.1 At this point

in time, DM chemically decoupled from the thermal bath (i.e., it was no longer in

thermal equilibrium) and the density of DM particles approached a constant relic

density which, as we have already mentioned, it has been measured today by Planck.

This mechanism is generally referred to as thermal ‘freeze-out’.

The DM relic density can be computed by solving the Boltzmann equation, which

describes the change in the number density of DM particles, nχ, when they are created

or destroyed via their interaction with other particles as the Universe expands:

1
a3
d(nχa3)
dt

= 〈σvr〉(n2
χ − (n0

χ)2) (1.2.1)

where n0
χ is the equilibrium DM density. We have assumed that nχ = nχ̄ and that for

large rates ny,ȳ = n0
y,ȳ. At high temperatures (i.e., early times), nχ ∼ n0

χ but, as the

Universe cools down, DM particles become non-relativistic (when the temperature

drops below the DM mass) and the DM equilibrium abundance is exponentially

suppressed since n0
χ ∼ e−mχ/T . Therefore, at some point in the evolution of the

Universe, the number density of DM particles will be so small that they are no

longer able to maintain their equilibrium abundance so that the density approaches

a constant value as explained above. This is called the freeze-out point. The larger

〈σvr〉 is, the longer DM remains in equilibrium with SM particles (i.e., the later the

freeze-out point occurs) and consequently, the smaller the relic density is (see Fig.

1.4).

Even though Eq. 1.2.1 needs to be solved numerically to find the number density

nχ at every moment in time, we can consider the solutions for the number density

well before and after freeze out and impose that both solutions are equal at the time

of freeze out (up to a matching constant of order one, which we call c). In this way,

we can compute the temperature at which freeze out happens by iterative solving

1In the previous definitions, nχ refers to the DM number density, 〈σvr〉 represents the thermally
averaged cross section σ multiplied by the relative velocity vr between DM particles, and the scale
factor a(t) describes the physical distance between two points as the Universe evolves.
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Figure 1.4: Evolution of the thermal DM relic abundance with temperature and
time for a DM mass of 100 GeV. Y is the yield, defined as Y ≡ nχ

s
, where s is the

entropy density. The top and bottom of the coloured lines correspond to different
values of 〈σvr〉, differing from the black line by 10, 102 and 103. Lines over the black
line represent smaller values of 〈σvr〉 while the ones below show larger values. Figure
from [31].

the following equation [32]

xf = ln
[√45

8
c (2 + c) g mχMpl〈σvr〉|xf

2π3√g?xf

]
, (1.2.2)

where xf = mχ/Tf , Mpl = 1.22× 1019 GeV is the Planck mass, g are the degrees of

freedom of the DM candidate and g? is the number of relativistic degrees of freedom

during freeze out. By expanding the thermally averaged cross section in terms of

its constant and velocity-dependent terms in the non-relativistic limit, with vCM

representing the DM velocity in the centre of mass frame, we get

〈σvr〉 = 〈a+ bv2
CM + cv4

CM〉 ' a+ 6b(mχ/T )−1 + 30c(mχ/T )−2 (1.2.3)

we can find an analytical expression for the number density after freeze out so that

a relation between the DM relic density today and the annihilation cross section is

found to be [33]

ΩDMh
2 = 8.55× 10−11 1

√
g?

xf
(a+ 3b

xf
+ 10c

x2
f

)
GeV−2 . (1.2.4)

where ΩDM ∝ mχnχ.
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In order to obtain the value of the relic density ΩDMh
2 = 0.120 ± 0.001 measured

by Planck, the thermally averaged velocity independent annihilation cross section2

must be roughly 〈σvr〉 ∼ 3× 10−26 cm3/s, which is of a similar order of magnitude

as the characteristic cross section of the weak interaction. Since in this thesis we are

considering a thermal DM production mechanism, we will use this value of 〈σvr〉 as

a benchmark to which we compare our results.

1.3 Dark matter searches

A thermal mechanism of DM production is very appealing since it is based on

the paradigm of thermal decoupling, which has made very accurate predictions

for observables in the early Universe such as the CMB or the abundances of light

elements [29]. For this reason, most of the DM searches carried out during the last

30 years have looked for a WIMP particle. While nowadays there are many other

experiments searching for particles beyond the WIMP hypothesis such as axion-like

particles [35], light DM [36] or composite DM [37], in this section we will focus

on the experiments relevant to WIMP DM candidates. Most search strategies can

be divided into three categories: Direct detection, indirect detection and collider

searches, depending on the interaction considered (see Fig. 1.5). We will see in

Chapters 2, 3 and 4 that, if DM interacts mostly with neutrinos, indirect detection

will be the most powerful way of constraining different DM models.

1.3.1 Direct detection

Direct detection aims at determining the nature of DM particles through their

scattering off a target in underground detectors. A worldwide experimental effort

has lead to the design and construction of extremely sensitive experiments, based

on a variety of targets and techniques, which are exploring DM-nuclei interactions

2If the cross section is v2- or v4-dependent, a value of 〈σvr〉 ' 6 × 10−26 cm3/s or 〈σvr〉 '
9× 10−26 cm3/s respectively is then required at freeze-out [34].
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Figure 1.5: Summary of different DM search strategies depending on the interaction
considered.

with unprecedented precision. A fundamental aspect in direct DM searches is the

reduction of the SM events in order to isolate DM ones. Modern experiments employ

various techniques, such as the construction of extremely radiopure detectors, the

use of a shielding, and the measurement of various channels (e.g., ionisation and

scintillation) to discriminate DM signals against the background. The lack of a DM

signal above the background can be used to set strong bounds on the WIMP-nucleon

elastic scattering cross section for different DM masses. Results in the literature

are often expressed in terms of the spin-independent and spin-dependent elastic

scattering cross sections. The former is related to the WIMP interaction with all

nucleons while the latter refers to the interaction of the WIMP with nucleons with

an intrinsic angular momentum, which depends on the target nuclei.

Currently, the strongest limits for DM masses larger than ∼ 10 GeV are given by the

large liquid xenon detector based at Gran Sasso (Italy), XENON1T [38], which is able

to constrain spin-independent WIMP-nucleon cross sections down to ∼ 10−46 cm2

(see Fig. 1.6). In Chapter 4, we show how these bounds are so stringent that, for

large DM masses, they are able to constrain the parameter space of models where the

DM-quark interactions are loop-suppressed. Finally, direct detection of sub-GeV DM



1.3. Dark matter searches 24

via scattering off electrons has gained significant attention recently [39–42]. However,

these bounds are not strong enough yet to be relevant for the phenomenology we

discuss in this thesis and we do not consider them further.

Figure 1.6: 90% limits on the spin-independent elastic scattering WIMP-DM cross
section from XENON1T (black) with 1σ (green) and 2σ (yellow) sensitivity bands.
The plot includes previous results from the LUX collaboration [43] and PandaX-
II [44] for comparison. Figure adapted from [45].

1.3.2 Indirect detection

Indirect detection experiments look for the final states in the DM annihilation or

decay to SM particles. Self-annihilation of DM particles is expected to be sizable

today in regions with a high DM density if there is no large matter-antimatter

asymmetry in the dark sector, although indirect detection signatures might still be

present if DM is asymmetric (see Ref. [46] for a comprehensive review).

The flux of SM particles produced by DM depends on the particular annihilation

or decay channel and on the density profile used. A popular choice is the Navarro-

Frenk-White (NFW) profile which has the following form [24]

ρ(r) = ρ0

(r/rs)(1 + r/rs)2 , (1.3.1)
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where the scale radius rs dictates the shape of the profile and ρ0 is the DM density

at the galactic centre.

The most studied final states are charged leptons and photons since they are easy

to detect. However, the main challenge that indirect detection faces is the presence

of large uncertainties in the halo parameters such as rs or ρ0. This is particularly

relevant when attributing a DM origin to certain observed excesses since large

uncertainties can challenge such interpretations [47–50]. This is the case for several

potential DM signals that have appeared in DM searches over the last few years.

In particular, there has been a lot of discussion about the galactic centre gamma

ray excess of photons with GeV energies as measured by the Fermi satellite [51,52].

Nevertheless, whether a DM interpretation of this excess is correct or not is still

inconclusive [53].

Furthermore, DM annihilation into photons or charged particles in the early Universe

can leave an imprint in the power spectrum of the CMB due to the ionizing energy

injection in the thermal bath. This is particularly relevant for light DM masses

(mχ < 10 GeV) since for such masses, the number density of DM is large (i.e.,

nχ ∝ 1
mχ

), which in turn leads to a high annihilation rate. Therefore, a measurement

of the CMB multipole spectrum can be used to set constraints on the annihilation

cross section times the ionizing efficiency f(z), which depends on the particular

annihilation channel. The models we study in Chapter 4 lead to DM-charged lepton

interactions and consequently, we will constrain their parameter space using the

ionizing efficiencies computed in Ref. [54] and the bounds derived from the CMB

measurement by Planck [7], as well as the indirect detection constraints on the DM

annihilation to charged leptons from the Fermi satellite [55].

Nevertheless, in this thesis, we are mostly interested in DM-neutrino interactions

and we dedicate Chapter 2 to indirect detection constraints from DM annihilation to

neutrinos. Furthermore since we study stable DM candidates, we do not discuss the

constraints that can be placed by studying DM decay signals but refer the interested

reader to Refs. [56,57] for further discussion on this topic.
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Finally, it is interesting to point out that a powerful aspect of indirect detection

is that, for velocity-independent annihilation cross sections, constraints set by such

searches can be compared to the 〈σvr〉 required to generate the right relic abundance.

Therefore, these constraints can be used to rule out certain regions of the parameter

space for thermal DM models as we will discuss in Chapters 3 and 4.

1.3.3 Collider searches

In models where the DM candidate couples strongly to quarks, an interesting avenue

to explore is the direct creation of DM at, for example, proton-proton colliders

such as the LHC.3 There have been several model-dependent analyses that focus

on traditional super-symmetric WIMP candidates, such as the neutralino [58, 59].

Recently, model-independent searches using an effective field theory or a simplified

model approach have become increasingly popular [60]. However, the former is only

valid if the energy scale of new physics is larger than the energy of the particles

involved in the collision [61]. The latter approach relies on certain assumptions about

the nature of the mediator that need to be taken into account carefully, especially

when comparing collider results with other experimental constraints such as the ones

derived from direct detection experiments [62].

DM particles, being weakly interacting, do not leave signatures in the detector.

Consequently, most collider searches focus on reconstructing the “missing” transverse

energy accompanied by the emission of a physical object such as a jet, a photon, a

Z or a Higgs boson, which is used to compute the missing energy of the collision

(see Refs. [16,29] for detailed reviews about such analyses). In other words, if after

looking at the final states of a proton-proton collision momentum conservation seems

to be violated, it is possible that a DM particle has been created.

The leptophilic models that we will discuss in Chapters 3 and 4 will generally not

3Lepton colliders can also provide with a complementary search strategy if DM couples to the
charged leptons, but we will not discuss them here as the derived constraints are often less stringent
for large DM masses.
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have any tree-level interactions with quarks and, when loop-induced, they will be

too weak to produce any interesting collider phenomenology.

1.4 Neutrino masses and mixing

Neutrinos are the least understood particles within the SM. The discovery of neutrino

oscillations at neutrino detectors such as Super-Kamiokande (SK) in Japan [63]

during the late 1990’s, has confirmed the light, but massive nature of neutrinos.

Indeed, in order to explain neutrino mixing, we are motivated to introduce neutrino

mass terms in the SM, which lead to a non-trivial relationship between the neutrino

flavour and mass bases:
ναL = U∗PMNSνiL , (1.4.1)

where α = e, µ, τ and i = 1, 2, 3 for the flavour and mass basis respectively. The unit-

ary mixing matrix UPMNS is called the Pontecorvo-Maki-Nagawaka-Sakata (PMNS)

matrix [64–66]. A priori, the SM model does not tell us anything about the particular

form of the PMNS matrix since neutrinos are massless in the SM. Nevertheless, a

non-diagonal matrix implies that flavour neutrinos do not have a definite mass but

rather, they are a superposition of neutrinos with different masses.

1.4.1 Neutrino oscillations

The PMNS matrix can be described by six parameters4: Three angles and three

complex phases (a Dirac phase δ and two Majorana phases α1, α2 depending on

whether neutrinos are Dirac or Majorana fermions). The usual convention followed

to parametrize the PMNS matrix is [67]

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


e

iα1 0 0
0 eiα2 0
0 0 1

 .

(1.4.2)

4Since the PMNS matrix is a 3× 3 unitary matrix, it can be parametrised by three angles and
six complex phases. However, three of these complex phases can be absorbed by field redefinitions.
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where cij ≡ cos (θij) and sij ≡ sin (θij) parametrize the rotations by an angle θij in

the i − j plane. All the mixing angles have been measured at neutrino oscillation

experiments and, while these experiments are not sensitive to the Majorana phases

α1,2 [68,69], there are hints for δ 6= 0 with low significance [70]. The central values

of the oscillation parameters for normal ordering (mν1 < mν2 < mν3) from the latest

global fit combining results from solar, atmospheric, reactor and accelerator neutrino

experiments are [71]

θ12 = 33.82◦ , θ23 = 49.7◦ , θ13 = 8.61◦ , δ = 217◦ . (1.4.3)

In this way, the PMNS matrix introduces a misalignment between the flavour and

mass bases which in turn, can generate transitions between different neutrino flavours.

We can calculate the probability for this transition to occur by considering the free

particle neutrino states in a free theory. This means that Eq. 1.4.1 (dropping for

simplicity the subscript L for the neutrinos and PMNS for U) becomes

|να〉 = Uαi|νi〉 , (1.4.4)

where U is the PMNS matrix and we have explicitly written the matrix indices for

clarity. As neutrinos travel a particular distance L, the time evolution of a mass

eigenstate with energy Ei is given by

|να, L〉 = Uαie
−iEiL|νi〉, (1.4.5)

where for nearly massless neutrinos, we can assume t ≈ L. Consequently, the

probability that a neutrino with flavour α becomes a neutrino with flavour β after a

distance L is travelled is given by

Pαβ ≡ P (να → νβ) = |〈νβ|να, L〉|2 = |
3∑
i=1

UαiU
∗
βie
−iEiL|2 . (1.4.6)

In the context of indirect detection searches, neutrinos produced from DM annihila-

tion travel long distances before they reach the detectors on Earth. For these large

propagation distances, we can ignore the exponential term and consider an incoher-

ent mixture of mass eigenstates arriving at the detector. Therefore, the oscillation



1.4. Neutrino masses and mixing 29

probability simply becomes

Pαβ =
3∑
i=1
|Uβi|2|Uαi|2 (1.4.7)

so that, by substituting the best fit values for the oscillation parameters from Eq.

1.4.1 we get

Pαβ =

0.55 0.20 0.25
0.20 0.42 0.38
0.25 0.38 0.37

 . (1.4.8)

This mixing effect is taken into account in the following chapter when we discuss the

indirect detection constraints on the annihilation cross section of DM to neutrinos.

1.4.2 Generating neutrino masses

The need for neutrino mass terms presents a problem for the SM since only left-

handed neutrinos have been observed and consequently, we cannot write down a

renormalizable mass term consistent with gauge invariance. A simple extension of

the SM that explains neutrino masses is the addition of extra degrees of freedom

that correspond to a right-handed neutrino NR. Adding the following term to the

SM Lagrangian

LSM ⊃ −yνLLH̃NR + h.c. EWSB−−−→ yνv√
2
νLNR + h.c. , (1.4.9)

leads to a neutrino mass term mν = yνv/
√

2 after electroweak symmetry breaking

(EWSB), where LL is the SM leptonic doublet, H̃ = iσ2H
∗, yν is the neutrino Yukawa

coupling and the Higgs vacuum expectation value (vev) is v = 〈H0〉 = 246 GeV. In

this way, neutrinos acquire a mass of ∼ 0.1 eV compatible with the current data if

yν ∼ 10−12, which is several orders of magnitude smaller than the Yukawa couplings

for other SM fermions. While this option is viable, the large hierarchy between

Yukawa couplings is often seen as rather “unnatural” (even though we still do not

understand the hierarchy between, for example, the top and the electron mass).

Furthermore, when considering the additional field NR, there is no SM symmetry

forbidding the Majorana mass term

LSM ⊃ −
M

2 NRN
c
L + h.c. , (1.4.10)
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where N c
L = CNR

T with the charge conjugation matrix C = iγ0γ2. This term

violates the accidental lepton number symmetry of the SM, which leads to lepton

number violating processes. While this is not necessarily a problem, the presence

of an additional symmetry such as B − L would directly forbid the addition of a

neutrino Majorana mass term, implying that neutrinos are purely Dirac.

At low energies, one may also be tempted to write a Majorana mass term for the

left-handed neutrino
LSM ⊃ −

mM

2 νLν
c
R + h.c. , (1.4.11)

which also violates lepton number. Since neutrinos belong to an SU(2) doublet, this

term does not respect gauge invariance and consequently, requires the addition of an

extra particle to the SM which allows us to construct such an operator. The most

popular ways of doing this are the well-known Type I [72–74], Type II [75–77] and

Type III [78] see-saw mechanisms.

Combining all the gauge-invariant mass terms together, we can construct the follow-

ing neutrino mass matrix in the flavour basis

LSM ⊃ −
1
2
(
νL N c

L

)( 0 yνv/
√

2
yTν v/

√
2 M

)(
νcR
NR

)
+ h.c. , (1.4.12)

so that, by rotating the flavour to the mass basis using the appropriate unitary

matrix, we get the physical masses of the neutrino states:

m1,2 = M

2 ∓

√√√√(M
2

)2
+
(
yνv√

2

)2

(1.4.13)

where m1,2 are the masses of the active and heavy neutrinos respectively5. In this

way, a mixing between the active and the heavy neutrinos, which is proportional

to yν , is also induced. Consequently, the smallness of the active neutrino masses

often requires this mixing to be small. Nevertheless, there are other alternatives

that allow for neutrino mass generation in a minimal way with sizable active-heavy

mixing. For example, radiative neutrino mass models [79,80] (see also Ref. [81] for

a comprehensive review) suggest that light neutrino masses are generated via loop

5By active we mean the SM neutrinos in the flavour basis while by heavy we refer to the
additional mass eigenstate ν4.
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processes, which also explains why they are so small. Furthermore, the linear [82,83]

and the inverse see-saw models [84] are two different mechanisms that allow for

yν ∼ O(1), implying large active-heavy neutrino mixing. While throughout this

thesis we do not invoke a specific neutrino mass mechanism, in Chapter 4 we exploit

a large mixing between the SM and the heavy neutrinos in order to construct models

with large neutrino-DM interactions.

1.5 Constraints on dark matter-neutrino

interactions

As we have seen, the generation of neutrino masses requires the existence of at

least two additional particle to the SM since the measurement of two non-zero mass

differences implies the existence of two massive neutrinos at least. An interesting

possibility is to consider this particle to also be a DM candidate, or the mediator to

a dark sector [85]. In the words of neutrino physicist Jose W. F. Valle “neutrinos

might explain dark matter through an emergent theory” [86]. Furthermore, an inter-

action between DM and neutrinos can have phenomenological consequences via the

annihilation of DM to neutrinos or via the DM−ν elastic scattering. In this section

we will review the dominant physical effects produced by DM-neutrino interactions.

1.5.1 Dark matter annihilation to neutrinos

We have already seen in Sec. 1.2 that in a thermal scenario, the annihilation

cross section that is needed to explain the observed abundance is about 〈σvr〉 '

3× 10−26 cm3/s for a constant cross section. Consequently, if χ+ χ→ ν + ν is the

dominant annihilation channel, we can constrain the parameter space of our models

by requiring 〈σvr〉νν to be large enough to produce the right DM relic abundance.

Similarly, when DM annihilations to neutrinos are sizable, indirect detection con-

straints from DM and neutrino experiments are particularly relevant, as we discuss
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in the following chapter.

Big bang nucleosynthesis and neutrino reheating

The epoch of the Universe when light nuclei such as deuterium (D), helium (3He ,4He)

and lithium (7Li) were created is known as big bang nucleosynthesis (BBN). The

relic abundance of these elements can be inferred from the emission spectrum of

different astrophysical objects [87], which agrees very well with the theoretical pre-

dictions of a thermal mechanism [88]. However, DM annihilation into neutrinos after

the time neutrinos decouple from electrons (i.e., at T . Tdec ∼ 2.3 MeV [89]), can

reheat the neutrino sector, which would increase the expansion rate of the Universe

during BBN. Therefore, neutron freeze-out occurs earlier and the relic abundances

of deuterium and helium increase [90–96].

The raise in the neutrino energy density ρν is equivalent to increasing the number

of relativistic degrees of freedom (Neff) in the early Universe, according to

ρν ≡ ργ

1 + 7
8

(
Tν
Tγ

)4/3

Neff

 , (1.5.1)

where ργ is the energy density of photons. As can be seen from Fig. 1.7, the specific

value of Neff depends on the nature and mass of the DM candidate. However Neff

cannot be arbitrarily large as this would impact the CMB angular power spectrum

at decoupling [97–109]. By comparing the predicted value of Neff for different

DM models with the measured value by Planck, one can eventually rule out DM

candidates much lighter than a few MeVs (see Table 1.1).

The derivation of the precise value of the DM mass bound assumes that DM was in

thermal equilibrium with neutrinos. Nevertheless, even in the case of non-thermal

DM, a limit on Neff could be set, if DM annihilates (or decays) into neutrinos after

BBN and before decoupling.
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Figure 1.7: Change inNeff as a function of the DMmass for different DM candidates.
The brown dashed line corresponds to a value of Neff = 3.27± 0.30 as measured by
Planck [7]. Figfure modified from [105].

1.5.2 Structure formation

We have already mentioned that the matter power spectrum P (k) gives us an

indication of the matter distribution in the early Universe. An interaction between

DM and neutrinos can also alter the physics of the CMB and Large Scale Structures

(LSS) [110–112].

DM-neutrino interactions imply that DM is no longer collisionless and consequently,

as the DM particles scatter off neutrinos, they diffuse out and wash out the smallest

primordial fluctuations. This collisional damping effect translates into a suppressed

(oscillating) matter power spectrum (see Fig. 1.8), which can mimic a warm DM

spectrum [113].

By confronting the CMB and LSS predictions to observations, one can get an upper

bound on the strength of DM-ν interactions. Using Planck’s angular matter power

spectrum, one obtains that the DM-ν elastic scattering cross section cannot exceed

σel < 6 × 10−34
(
mχ
MeV

)
cm2 [114, 115]. This limit is based on physical processes

that took place in the linear regime and is therefore fairly robust. Nevertheless, it

would be a bit stronger with extremely precise polarised data. An alternative is to
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[105] [108] [109]

Real scalar DM No constraint mχ < 4.0 MeV mχ < 3.8 MeV

Complex scalar DM mχ < 3.9 MeV No constraint mχ < 7.8 MeV

Dirac DM mχ < 7.3 MeV mχ < 10.0 MeV mχ < 11.4 MeV

Majorana DM mχ < 3.5 MeV No constraint mχ < 7.7 MeV

Vector DM No constraint No constraint mχ < 10.0 MeV

Table 1.1: 95% conservative lower bounds on the DM mass for different DM can-
didates based on the Planck measurements of Neff . Different constraints correspond
to analyses using different combinations of Planck observables and numerical codes.
The particular analyses can be found in the references cited in the table.

require the matter distribution in the early Universe to be compatible with Lyman-α

observations. This means that the damping can only happen at small scales, which

translates into a constraint on the elastic scattering cross section of [116]

σel < 10−36
(
mχ

MeV

)
cm2 , (1.5.2)

for a constant elastic cross section, and

σel < 10−48
(
mχ

MeV

) (
Tν
T0

)2
cm2 , (1.5.3)

for a temperature-dependent cross section, where T0 = 2.35× 10−4 eV is the photon

temperature today. While there are uncertainties regarding the use of Lyman-α

emitters to constrain the matter power spectrum, similar limits have been derived

using the number of satellite companions of the Milky Way [27,117–119]. Such limits

are conservative and could become much stronger with a better understanding of

the role of baryons in galaxy formation, since astrophysical feedback processes may

also reduce the number of satellites (see, e.g., Ref. [120]).

Finally, in the presence of neutrino-DM interactions, the propagation of neutrinos

through DM halos could be modified as well, leading to dips in supernova neutrino

spectra due to resonant interactions with DM [122,123], or changes in the spectrum

or isotropy of the high energy cosmic neutrinos observed by IceCube [124–126].

Nevertheless, these physical processes yield sub-leading effects for the models we

discuss in this thesis.
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and σTh is the Thomson cross section. Figure taken from [121].

1.6 Thesis outline

This thesis aims to understand the role that neutrinos play in our understanding

of DM. Specifically, we study the phenomenology of neutrino-DM interactions and

determine the possible changes in the neutrino background for DM direct detection

experiments in the presence of new physics.

In Chapter 2, we begin by describing the necessary ingredients to conduct indirect

detection searches using neutrinos and provide with an overview of the current status

of such searches. We then describe in detail an analysis carried out using SK data

for low energy neutrinos. This analysis allows us to constraint the annihilation

cross section of DM to neutrinos for light DM masses. Furthermore, we make

projections for the use of gadolinium in the detector and for the future project

Hyper-Kamiokande (HK).

In Chapter 3, we highlight the complementarity between cosmological observables

and indirect detection searches when studying DM properties. In particular, following

a simplified model approach, we perform a phenomenological study and consider all
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the different possibilities in which DM can couple to neutrinos in a minimal way. We

then examine the allowed parameter space of the DM and the mediator masses for

each possible model. In this way, we determine that the models with the richest DM

phenomenology are those with Dirac DM candidates and scalar or vector mediators.

Building upon what we learned from the study described in Chapter 3, we explore the

possibility of constructing gauge-invariant scenarios where the DM phenomenology

is dominated by its interactions with neutrinos in Chapter 4. With this goal in mind,

we study the DM phenomenology of two different implementations of the neutrino

portal in which neutrinos mix with a SM singlet fermion that interacts directly with

dark matter through either a scalar or vector mediator. For both of these scenarios,

we show that future neutrino detectors will be able to rule out certain regions of the

parameter space.

In Chapter 5, we compute the contribution to the coherent elastic neutrino-nucleus

scattering cross section from new physics models in the neutrino sector. We then use

this information to calculate the maximum value of the so-called neutrino floor for

direct dark matter detection experiments, which determines when these detectors are

sensitive to the neutrino background. We find that the increase in the neutrino floor

can be significant. This implies that future claims by direct detection experiments

must be carefully examined if a signal is found well above the expected SM neutrino

floor.

Finally, we summarise our conclusions and discuss avenues for future work in Chapter

6.



Chapter 2

Galactic searches for dark matter

using neutrinos

No matter how complex our instruments may be, no matter how
sophisticated and subtle our theories and calculations are, it’s still
our consciousness that finally interprets our observations. And
it does so according to its knowledge and conception of the event
under consideration.

— David Bohm

We have explained in the introduction (Sec. 1.3.2) that indirect detection is a popular

strategy to try to understand DM properties. In the context of indirect detection,

studying neutrinos as a final state particle is particularly interesting. Neutrinos are

the weakest interacting particles in the SM and consequently, the hardest particles

to detect. Therefore, the limits derived on the DM annihilation to neutrinos can be

interpreted as an upper bound on the total DM annihilation cross section [127,128].

In this chapter, we will discuss the current status of galactic searches for DM anni-

hilation to neutrinos in the Milky Way. Furthermore, an analysis done with MeV

neutrinos detected at Super-Kamiokande (SK) will be presented in detail.
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2.1 Galactic searches

DM annihilations in high density regions like the Milky Way may lead to a detectable

monochromatic flux1 of neutrinos (and antineutrinos) in neutrino detectors [128–130].

For a velocity-independent cross section, the differential neutrino flux per flavour at

Earth by DM annihilations in the Milky Way halo is given by [129]

dφ

dEν
= κ〈σvr〉

4πm2
χ︸ ︷︷ ︸

Particle physics

1
3 F︸︷︷︸

Oscillations

δ(Eν −mχ) J︸︷︷︸
Astrophysics

≡ Γ(〈σvr〉,mχ) δ(Eν −mχ) ,

(2.1.1)

where mχ is the mass of the DM candidate and the delta function accounts for the

monochromatic nature of the flux. Note that the same equation applies for the

differential antineutrino flux per flavour. Let us discuss the different terms that

contribute to the neutrino-antineutrino flux separately:

• Particle physics term: The annihilation cross section 〈σvr〉 depends on the

underlying particle physics model. Furthermore, the factor κ changes according

to the nature of the DM candidate since the number of combinations in which

DM particles pair up in order to annihilate depends on whether the DM particle

is self-conjugate or not. In this way κ = 1
2 for self-conjugate DM while for a

Dirac/complex DM candidate, a DM antiparticle can only annihilate with half

of the total number of DM particles and κ = 1
4 .

• Neutrino oscillations term: F is a numerical factor which depends on the

particular neutrino flavour an experiment can measure. As we discussed in

Sec. 1.4, the neutrino flavour that arrives at Earth depends on the neutrino

flavour produced at the source. For the results presented throughout this

thesis, we use the appropriate F -factor depending on the neutrino flavour

the experimental analysis is based on. For example, the dominant detection

channel at low energies for an experiment like SK is via electron antineutrinos.

1Since the direct annihilation of non-relativistic DM particles to a neutrino-antineutrino pair is
a two to two process, each neutrino produced in this annihilation will carry away an energy equal
to the DM mass.
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Consequently, if an equal mixture of neutrino flavours is produced at the source,

F = Pee + Pµe + Pτe, where the probability that a neutrino with flavour α

becomes a neutrino with flavour β (Pαβ) was given in Eq. 1.4.8.

• Astrophysical term: The so-called J-factor contains information about

the DM density distribution in our galaxy and it is defined as the integ-

ral of the square of the DM density along the line of sight (l), i.e., J =∫
dΩ

∫
l.o.s ρ

2 (r (l, ψ)) dl. In this definition, ρ(r) is the DM density profile within

the halo, r =
√
R2

0 − 2 l R0 cosψ + l2, with ψ being the angle between the

Galactic Centre (GC) and the line of sight and R0 is the distance between

the Sun and the GC. Furthermore, the upper limit of integration lmax =√
R2

halo − sinψ2R2
0 +R0 cosψ is a function of the radius of the halo Rhalo. This

quantity can be estimated numerically using different DM halo profiles. As

mentioned in Sec. 1.3.2, there are uncertainties in the value of J associated

with the specific halo profile and halo parameters used [49]. Nevertheless, if we

consider all sky searches by integrating over the whole angular region2, different

halo profiles only change the value of J by a factor of 3 at most [128]. In what

follows we choose an NFW profile [24] where the Sun’s distance to the GC is

given by R0 = 8.5 kpc, the DM density at that position is ρ0 = 0.6 GeV/cm3,

and we use a halo parameter of rs = 25.5 kpc based on the central values from

Ref. [49]. Calculating the J-factor over the whole sky with these parameters

yields J = 3.23× 1023 GeV2/cm5 for a velocity independent cross section.

In this way, we can use the observed neutrino flux at different neutrino detectors to

set constraints on the annihilation cross section of DM to neutrinos.
2Note that for analyses that focus on the neutrinos arriving from the Galatic Centre direction,

the J-factor would be an integral over the relevant ∆Ω region, instead of the whole angular region
(see for example, Ref, [131].
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2.1.1 Velocity-dependent cross section

In the previous section, we have discussed DM annihilations into neutrinos for

velocity-independent cross sections. Nevertheless, depending on the nature of the

DM candidate, the leading term in the annihilation cross section to neutrinos can be

proportional to v2
CM or v4

CM, where vCM is the DM velocity in the centre of mass frame.

The DM velocity distribution depends on the kinematical details of the structure

in which it is bound, as well as its distance from the centre of that distribution.

Assuming a Maxwell-Boltzmann distribution with dispersion v0(r), the annihilation

rate will be proportional to:

〈vn〉 =
∫
d3vvnf(v, r), (2.1.2)

where f(v, r) is the normalized dark matter phase space distribution. For v2- and

v4-dependent annihilation cross sections, this respectively yields

〈v2〉 = 3v2
0(r) , (2.1.3)

〈v4〉 = 15v4
0(r) . (2.1.4)

The velocity dependence of the cross section leads to change in the J-factor. One

could derive reasonably accurate limits on the annihilation cross section for the

velocity-dependent case by simply rescaling the constant cross section limits by

the appropriate power of the DM velocity in the halo (vhalo ∼ 2 × 10−3 c [132]).

Nevertheless, we can follow the procedure done in Ref. [133] and obtain the dispersion

velocity v0 by solving the spherical Jeans equation, assuming isotropy and hydrostatic

equilibrium:
d(ρ(r)v2

0(r))
dr

= −ρ(r)dφ(r)
dr

, (2.1.5)

where φ(r) is the total gravitational potential at radius r. We include not only

the contribution of the DM halo to φ(r), but also follow Ref. [134] and include a

parametrisation of the Milky Way bulge and disk potentials to account for their

masses:

φ(r)bulge = −GNMb

r + cb
, (2.1.6)
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φ(r)disk = −GNMd

r

(
1− e−r/cd

)
, (2.1.7)

where GN is Newton’s gravitational constant, Mb = 1.5× 1010M� and cb = 0.6 kpc

are the bulge mass and scale radius, while Md = 7× 1010M� and cd = 4 kpc are the

disk mass and scale radius [134], with the solar mass M� = 1.99× 1030 kg.

The galactic J-factor can then be re-evaluated via:

Jvn =
∫
dΩ

∫
l.o.s.
〈(v/c)n〉(r)ρ2 (r (l, ψ)) dl . (2.1.8)

For the NFW halo profile (see Eq. 1.3.2), using the halo parameters we mentioned

before and integrating over the whole angular region, we get Jv2 = 4.35 × 1017

GeV2/cm5 and Jv4 = 9.73 × 1011 GeV2/cm5. Consequently, the constraints on the

annihilation cross section of DM to neutrinos must be rescaled by J/Jv2 and J/Jv4

for v2- and v4- dependent cross sections respectively. As anticipated, this means

that such constraints are much weaker since the neutrino flux generated from DM

annihilations to neutrinos is suppressed for velocity dependent cross sections.

2.1.2 Summary of current and future experimental

searches

As discussed previously, the energy of the neutrino produced in the direct annihilation

of two DM particles to a neutrino-antineutrino pair is the same as the mass of the

DM particle. Consequently, different neutrino experiments that focus on studying

specific neutrino energy regimes allow us to place bounds on the cross section of DM

annihilation to neutrinos for different DM masses. From low to high DM masses,

the dominant current constraints are given by

• Borexino: Borexino is liquid scintillator neutrino experiment located in the

Gran Sasso Underground Laboratory, Italy. This experiment was primary built

to study solar neutrinos at sub-MeV energies via ν − e elastic interactions in

the liquid scintillator and had a 71.3 tons fiducial mass in its latest run [135].
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Nevertheless, it is also a great ν̄e detector and has the advantage of a reduced

reactor neutrino background due to its large distance from nuclear power

stations. The electron antineutrino is detected via the inverse beta decay

(IBD) interaction, ν̄e + p→ n+ e+. Consequently, we can only probe neutrino

energies over 1.8 MeV due to its kinematic threshold. From the electron

antineutrino flux measured at Borexino during 1218 days [136], we can set a

conservative bound on the annihilation cross section of DM to neutrinos for

DM masses between ∼ 2− 16 MeV.

• Super-Kamiokande at low energies: Under Mount Ikeno in Japan, one can

find the 22.4 kton water-Cherenkov detector, Super-Kamiokande (SK) [137].

In the same way as Borexino, SK detects electron antineutrinos mainly via

IBD at low neutrino energies but, due to its larger size, we can also use this

detector to set 〈σvr〉 bounds for larger DM masses (between 10 − 200 MeV).

The reason why this occurs is that larger statistics make up for the decrease in

the IBD cross section as the neutrino energy increases. For this detector, we

perform a detailed analysis using 2853 days of data, which is explained later

in Sec. 2.2.

• Yüksel et. al. analysis: In Ref. [128], a combined analysis of the measured

neutrino and antineutrino flux for all flavours at the Fréjus [138], AMANDA

[139] and SK detectors leads to a conservative upper bound on the cross section

for DMmasses between 100 MeV to 300 TeV. The authors acknowledge however,

that a dedicated experimental analysis would improve their bounds by 1 or 2

orders of magnitude.

• Super-Kamiokande at high energies: In 2015, the SK collaboration pub-

lished their first results of a dedicated search for a neutrino flux arising from

DM annihilations in the GC [130]. The analysis is based on the atmospheric

muon neutrino and antineutrino data collected over 5325.8 days. In fact, this

analysis improves the bounds derived in Ref. [128] by 2−3 orders of magnitude
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for DM masses between 1− 10 GeV as it was expected.

• ANTARES: The neutrino telescope ANTARES is located ∼ 2.5 km below

the Mediterranean Sea. It contains 900 photomultipliers which capture the

Cherenkov light of charged particles going through the detector [140]. This

detector is most sensitive to muon neutrinos and it is able to reconstruct the

direction from which they enter the detector. Its great angular resolution

allows the ANTARES collaboration to place very strong limits on the DM self

annihilation to neutrinos for DM masses between 53 GeV and 100 TeV. This

analysis is based on the muon neutrinos and antineutrinos arriving from the

GC direction during 9 years of data taking [141,142].

• IceCube: IceCube is a cubic-kilometer neutrino detector in the South Pole.

It is made of ice and it contains 5160 photomultipliers which capture the

Cherenkov light emitted by the charged leptons created when a neutrino hits

the detector [143]. Due to its large size, IceCube is sensitive to all neutrino

flavours as each charged lepton displays a particular topology in the detector.

The collaboration has performed an analysis constraining the neutrino flux

arriving from DM annihilation in the GC by looking at the particle cascades

produced by neutral or charged currents at the detector. They were able to

place competitive limits on the DM annihilation cross section for DM masses

between 25 GeV and 10 TeV [144]. However, its lowest angular resolution

compared to the angular resolution of ANTARES means that IceCube’s limits

are not as good as ANTARES’ for DM masses above 1 TeV.

Future neutrino, DM, and even gamma-ray detectors will also be able to set stringent

constraints on the DM annihilation cross section to neutrinos. From lowest to largest

DM masses, the most relevant experiments are:

• DUNE: This experiment is a 46.4 kton neutrino liquid argon detector to

be built in the United States [145]. Consequently, its main advantage in
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detecting neutrinos from DM annihilation is its improved energy resolution

with respect to water Cherenkov detectors like SK, ANTARES or IceCube.

DUNE is most sensitive to electron neutrinos and antineutrinos, which are

detected via charged current interactions νe/ν̄e +40 Ar→ e−/e+ + X (where X

is the remaining nuclei after the interaction). An analysis done in Ref. [146]

has placed the strongest constraints on the DM annihilation cross sections to

neutrinos for DM masses between 20 − 90 MeV, assuming that DUNE takes

data for 3000 days.

• Hyper-Kamiokande: Building on SK’s technology, a new water Cherenkov

detector with a fiducial volume of 187 kton called Hyper-Kamiokande (HK)

will be built in Japan [147]. Due to its larger size, this detector will be able

to place stronger limits on the DM annihilation cross section to neutrinos [2].

Furthermore, the possibility of doping both the SK and the HK detectors

with gadolinium will reduce the dominant background for the low energy SK

analysis by a factor of 5 and consequently, improve the constraints on the DM

annihilation cross section. We discuss these possibilities in detail in Sec. 2.2.

• DARWIN: DARWIN is a proposed liquid xenon direct detection DM experi-

ment, with a fiducial mass which has not been determined yet [148]. DARWIN

is able to detect all neutrino flavours via neutrino coherent scattering and

consequently, it can also place competitive limits on the neutrino flux created

by DM self-annihilation. McKeen and Raj have performed an analysis in

Ref. [149] assuming a fiducial volume of 40 ton and a run-time of 3000 days.

With these assumptions, they are able to set limits on the DM annihilation

cross section for DM masses between 20− 1000 MeV

• CTA: The Cherenkov Telescope Array (CTA) will be an array of gamma-

ray detectors located in the northern and southern hemisphere [150]. The

reason why this telescope can be relevant is that, instead of looking for the

neutrinos produced in DM annihilation, one could try to observe the gamma
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ray- spectrum produced by electroweak bremsstrahlung from such neutrinos

[151]. Consequently, future gamma-ray telescopes such as CTA will be able to

place strong limits on the DM annihilation cross section to neutrinos, especially

for high DM masses due to the ln (m2
χ/m

2
W ) enhancement in the cross section

arising from the weak corrections. One should also note that the annihilation

to a ντ , ν̄τ pair produces a harder gamma-ray spectrum than the annihilation

to νe,µ, ν̄e,µ pairs [152]. This explains the different CTA sensitivities to the

neutrino flavour in Fig. 2.1.

The main features of the experimental analyses described above and the limits on

the annihilation cross section to neutrinos are summarised in Table 2.1 and Fig. 2.1

respectively.

10−3 10−2 10−1 100 101 102 103 104 105 106

mχ [GeV]

10−27

10−26

10−25

10−24

10−23

10−22

10−21

10−20

10−19

〈σ
v

r〉
[c

m
3
/
s]

Borexino

HK own
analysis

DUNE

DARWIN

Yuksel et. al.

Analysis by
SK collaboration

ANTARES

IceCube

SK own
analysis

CTA (νe, νµ)

CTA (ντ )

Unitarity limit

Thermal Relic Abundance

Figure 2.1: 90% current limits (solid lines) and projections (dashed lines) on the
thermally averaged DM annihilation cross section to neutrinos as a function of the
DM mass from a variety of experiments. Everything above the lines is excluded by
the different experiments mention in the labels. The thick red line corresponds to
the value that is needed to explain the observed abundance in thermal DM scenarios,
i.e., 〈σvr〉 = 3× 10−26 cm3/s. The pink area represents the region of the parameter
space where the cross section is no longer unitary, i.e., 〈σvr〉 > 4πc/(m2

χvhalo) [153]
with vhalo ∼ 2× 10−3 c [132].
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Energy range Experimental
analysis

Directionality Detected flavour

2.5− 15 MeV Borexino [136] × ν̄e

SK [3], HK [2] × ν̄e

15− 103 MeV DUNE [146] × νe, ν̄e

DARWIN [149] × All flavours

1− 104 GeV SK [130] νµ, ν̄µ

20− 104 GeV IceCube [144] All flavours

50− 105 GeV ANTARES
[142]

νµ, ν̄µ

0.2− 100 TeV CTA [151] × All flavours

Table 2.1: Summary table of the most relevant analyses (current and future) that set
limits on the cross section of DM annihilation to neutrinos at the Galactic Centre for
different energy ranges. The table also indicates whether the experimental analysis
takes into account the direction neutrinos arrive from and the neutrino flavour the
analysis is based on.

2.2 Super-Kamiokande analysis for MeV dark

matter masses and Hyper-Kamiokande

prospects

The neutrino flux from DM self-annihilation described by Eq. 2.1.1 could leave a

signature at neutrino detectors which would look like a peak over the background at

a neutrino energy that corresponds to the DM mass. We can calculate the expected

number of neutrinos that could be observed at a detector from the annihilation of

two DM particles using the following equation

N ' σdet (Eν = mχ)φNtarget t ε , (2.2.1)

where σdet is the detector cross section and is evaluated at Eν = mχ. φ is the total

flux of neutrinos or antineutrinos, Ntarget is the total number of particles in the

detector, t is the exposure time and ε is the detector energy efficiency.
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Neutrinos interact very weakly with other SM particles and are therefore very difficult

to observe directly. However, in their interaction with free and bound nucleons,

they produce a charged lepton which interacts via the electromagnetic force and

consequently, can be detected using different technologies such as water Cherenkov,

liquid scintillator or liquid argon detectors.

As already mentioned, SK uses a water based Cherenkov detector with a fiducial

volume of 22.5 kton, which corresponds to Ntarget = 1.5 × 1033 free protons. This

type of detector identifies different particles by their emitted Cherenkov radiation,

which provides with a good energy resolution but has the limitation of not being

able to identify particles with a kinetic energy below the Cherenkov threshold.

Here we improve and update the analysis performed in Refs. [56, 129]. In these

references, it was found that neutrino experiments with a low-energy threshold such

as SK can be used to place limits on DM-ν interactions for DM candidates with

masses in the MeV range. In what follows, we combine SK data from the diffuse

supernova neutrino searches, using the energy resolutions, thresholds and efficiencies

from SK-I, II, III phases [154–157] for a total data taken period of 2853 days. For

neutrino energies between 10− 200 MeV, we simulate the expected neutrino signal

from DM annihilations and the relevant backgrounds for each phase. Since we

only consider the dominant interactions within this energy range, we include the

interactions of antineutrinos with free protons (IBD) as well as the interactions of

neutrinos and antineutrinos with bound nucleons, as done in Refs. [56,129].

In order to determine the possibility of obtaining a signal, one needs to take into

account the backgrounds at the energy range of interest (10−200 MeV). The relevant

backgrounds for this energy range are:

• The electrons produced from the decay of “invisible muons” (created by νµ, ν̄µ

atmospheric neutrinos) are the dominant background at low energies. They

have energies below the Cherenkov threshold and therefore cannot be detected.

• Atmospheric νe and ν̄e neutrinos. Which could be reduced by tagging the



2.2. Super-Kamiokande analysis for MeV dark matter masses and
Hyper-Kamiokande prospects 48

associated neutron produced in the IBD interaction.

• Spallation products produced by muon interactions around the detector. This

sets the lower energy threshold of the detector.

• Reactor ν̄e neutrinos, whose flux is much larger than the expected neutrino

flux from DM annihilation below 10 MeV.

Therefore, we will estimate the contribution from the first two backgrounds, consider

the spallation cuts applied to each SK phase, and start our analysis from 10 MeV in

order to avoid the reactor flux background.

In order to estimate the signal we are interested in, one needs to take into account the

finite energy resolution of the detector. This can be done by multiplying the neutrino

flux by a Gaussian energy distribution R(Ee, Evis) = 1√
2πe
−
E2

vis
2σ2 , where Ee is the true

electron energy, Evis is the observed electron energy, and σ is the corresponding

energy resolution of each SK phase. Then, the number of monochromatic neutrinos

from DM annihilation per bin l and for each SK phase i is calculated via the following

quantity

Ail =Ais
∫ [(dσν̄ef

dEe
(Eν̄e , Ee) + 1

2
dσν̄eb
dEe

(Eν̄e , Ee)
)
dΦν̄e

dEν̄e
(Eν̄e)

+1
2
dσνeb
dEe

(Eνe , Ee)
dΦνe

dEνe
(Eνe)

]
dEedEνe ×

∫ El+1

El

ε(Evis)R(Ee, Evis)dEvis (2.2.2)

where the data has been distributed in 18 bins of 4 MeV between 16 MeV and

88 MeV. dσν̄e
f

dEe
(Eν̄e , Ee) represents the interaction of antineutrinos with free protons

under the inverse beta decay process which is numerically calculated from [158,159].
dσ
νe/ν̄e
b

dEe
(Eνe/ν̄e , Ee) represents the interaction of neutrinos/antineutrinos with nuclei

(bound nucleons) and the factor of 2 accounts for the fact that in water, there are two

free protons per each oxygen nuclei. This interaction was calculated using the Fermi

gas model [160] with a Fermi momentum of 225 MeV and a binding energy of 27

MeV. Note that the integral over the flux reduces to evaluating the neutrino energy

at the DM mass due to the delta function in the flux expression (see Eq. 2.1.1).

Finally, Ais is a normalisation constant so that ∑lA
i
l = 1 for each SK phase. In this
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way, if we define α as the total number of neutrinos from DM self-annihilation, αAil
represents the fraction of neutrinos from DM annihilation at each energy bin for the

SK phase i.

Similarly, the atmospheric νe and ν̄e backgrounds can be estimated by defining a

coefficient Bi
l which can be calculated in a similar way as Eq. 2.2.2 but integrating

over the atmospheric neutrino and antineutrino flux at SK. The atmospheric fluxes

are computed by FLUKA [161,162] and we used a linear interpolation to estimate

the values of the flux at all energies of interest.

The number of invisible muons is estimated by considering the interaction of atmo-

spheric muon neutrinos/antineutrinos with free and bound nucleons which produce

muons and antimuons. Then, by integrating Eµ between mµ and the Cherenkov

treshold (pµ = 120 MeV for muons) the number of such muons/antimuons is determ-

ined. These muons/antimuons will be stopped in the rocks surrounding the detector

and decay at rest to produce electrons/positrons within the detector, which can be

mistaken with the electrons/positrons produced by νe, ν̄e from DM annihilation and

therefore, contribute to the background. One can define a coefficient Ci
l in order

to consider the fraction of such events at each bin. This coefficient is calculated as

follows:

Ci
l =Ci

s

(
(N+ + 0.816N−)

∫ dΓmichel

dEe
(Ee) + 0.184N−

∫ dΓorbit

dEe
(Ee)

)
dEe (2.2.3)

×
∫ El+1

El

ε(Evis)R(Ee, Evis)dEvis

where N+ is the number of antimuons and N− is the number of muons below

the Cherenkov tresshold. Most of the decayed muons follow a Michel spectrum
dΓmichel
dEe

(Ee) [163]. Nevertheless, one needs to take into account the fact that 18.4%

of the µ− are trapped in an atomic orbit which slightly modifies the spectrum to
dΓorbit
dEe

(Ee) [164]. Again, Ci
s is a normalization constant so that ∑l C

i
l = 1.

Once these coefficients are calculated, one can construct a χ2
i for each SK phase

assuming that each quantity is normally distributed:

χ2
i =

18∑
l=1

[(α · Ail) + (β ·Bi
l ) + (γ · Ci

l )−N i
l ]2

σ2
stat + σ2

sys
, (2.2.4)
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where N i
l is the number of events at the l−th bin taken from each i−th SK

phase [154–157] and α, β, γ are the χ2 fitting parameters that represent the total

number of neutrinos from DM annihilation, neutrinos from the atmospheric neutrino

flux and neutrinos from invisible muons respectively. The statistical error is
√
N i
l

and dominates over the systematic error which is ∼ 6% for each bin. We then

combine these χ2
i into a single quantity, χ2 = χ2

I + χ2
II + χ2

III, as done in Ref. [165].

The total χ2 is minimized with respect to the rate of events of the two background

components, resulting in a function of the event rate from DM annihilations, i.e.,

χ2(α). The 90% confidence level (C.L.) limit on the DM event rate, α90, is obtained

from ∫ α90
0 χ2(α) dα∫∞
0 χ2(α) dα = 0.9 . (2.2.5)

We show in Fig. 2.2 the 90% C.L. limit on the annihilation cross section from the

SK data (blue solid line), which is obtained by solving [165]

Γ(〈σvr〉,mχ)Atot = α90 , Atot ≡
∑
iA

i ti∑
i ti

, (2.2.6)

where Ai (i = {I, II, III}) is the number of events for a monochromatic neutrino

flux, δ(Eν −mχ), for each SK phase at the detector, and ti are the corresponding

data-taking times. Note that Γ(〈σvr〉,mχ) was defined in Eq. 2.1.1.

From this analysis, we can determine the sensitivity of the next generation experiment

Hyper-Kamiokande (HK). We start by estimating the number of neutrino events at

HK for MeV energies using a scaling in fiducial volume of a factor of ∼ 8.3, which

corresponds to the ratio of the planned HK fiducial volume (187 kton) to the current

SK fiducial volume (22.5 kton). In addition, studies show that adding 0.1% by mass

of gadolinium (Gd) to the water detector would allow to tag the neutron produced

in the IBD process which in turn, would reduce the background due to invisible

muons by a factor of 5 [166]. In this analysis, we use the same energy resolution

and efficiency for HK as the ones achieved during the different SK phases. The

energy resolution is an important experimental parameter when determining the

sensitivity of such monochromatic searches and therefore, our limits will be weaker
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Figure 2.2: 90% confidence level limits on the DM self-annihilation cross section
to neutrinos for different DM masses. The blue and black line correspond to the
analysis done with SK data and the projections for HK respectively. The dashed
lines represent the projections for the a Gd-doped detector for SK and HK and a
data taken time of 10 years. The red line corresponds to the approximate value of
the self-annihilation cross section of 3× 10−26 cm3/s, which is required to yield the
observed relic abundance. Although this value will be smaller for MeV DM masses
and it is model dependent, here we include this line as a benchmark point to which
we compare our sensitivities to. A more precise analysis is done in Chapter 4 using
appropiate numerical simulations.

if HK has a lower energy resolution than SK. We show in Fig. 2.2 the constraints on

the thermally averaged DM annihilation to neutrinos that HK will be able to reach

with 10 years of data-taking time with (solid black line) and without (dashed black

line) Gd-doping. For reference we also include the sensitivity of a Gd-doped SK

detector (which is actually an approved project [167]) after 10 years of taking data

(dashed blue line). This figure shows that HK will be able to probe DM annihilation

cross sections one order of magnitude larger than the analysis done using SK data.

Moreover, adding Gd to the detector will allow to discover or rule out models where
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DM annihilates into neutrinos for DM masses ∼ 20 MeV. A more detailed analysis

considering more backgrounds and more sophisticated statistics [165] could lead to

better results and might allow us to probe a larger range of the parameter space

where the thermal relic density could be achieved for different DM masses.

2.3 Conclusions

In this chapter we have reviewed the current status of indirect detection DM searches

using neutrinos. For the different analyses presented, we have assumed that 100%

of the DM annihilates to neutrinos and we have discussed how this allows to set

strong model independent constraints on the DM self annihilation cross section to

neutrinos for different DM masses. Furthermore, we have performed an analysis

using SK data to constrain DM masses at low energies (10 − 200 MeV), and have

showed the sensitivity that future large scale water Cherenkov neutrino detectors

such as HK will have.

Competitive constraints from DM annihilations in the Sun to neutrinos, or other

SM particles that decay to neutrinos, have also been derived by neutrino detectors

such as SK [168] and IceCube [169]. These exploit the higher DM concentration

expected in the solar interior since it could capture DM particles from the halo via

scatterings. In all the realisations we study in this thesis, we explore the connection

between the DM and the neutrino sector with very suppressed interactions with the

rest of the SM and, in particular, with quarks. Thus, in these scenarios, the Sun

does not accrete DM particles effectively and the constraints from these searches do

not apply.



Chapter 3

Exhausting all the possibilities

Like every elementary particle. You can think of neutrinos as
little points, as tiny pieces of reality. Strangely enough, these
bizarre little chunks might be the answer to why we are here.

— Juan José Gómez Cadenas

We have seen the power of indirect detection searches in constraining the thermal

DM parameter space for a wide range DM masses. In this chapter, we will explore

the different ways in which a DM candidate can interact with neutrinos via renor-

malizable 4−dimensional operators. We will perform an exhaustive analysis of all

the possible spin combinations of the DM candidate and mediator that connects

neutrinos to the DM sector. We will also discuss the allowed region of the parameter

space for each scenario when the constraints discussed in Sec. 1.5 are taken into

account.
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3.1 Scenarios considered

In order to determine the viability of models with DM-ν interactions, we can carry out

a systematic study assuming that DM only interacts with left-handed active neutrinos.

In this way, we can establish the list of all possible dimension 4 scenarios (i.e., the

combination of DM and mediator particles) consistent with Lorentz invariance1.

Here we follow a simplified model approach and consider only the interaction terms

that are relevant at low energies. Two possible UV-completions where the DM

phenomenology is dominated by neutrinos will be discussed in Chapter 4.

In this chapter, we refer to the DM candidate as χ. The mediator is referred to as

Z ′ if it is a spin-1 particle, φ if it is a spin-0 particle and N if it is a spin-1/2 particle.

The expressions for the relevant interaction terms in the Lagrangian, and for the

approximate elastic scattering and annihilation cross sections are summarized in

Table 3.1. When the DM candidate is a spin-1 particle, we consider a real vector

candidate, since the only difference with the case of complex vector DM coupled to

a Dirac (Majorana) mediator is a factor of 1
4 ( 5

12) in the annihilation cross section2.

To perform our calculations, we have assumed that

• There are only left-handed neutrinos in the final and/or initial states. For

simplicity, we do not differentiate between neutrino species.

• Neutrino masses can be neglected. Nevertheless, the neutrino mass generation

mechanism and the particular nature (Dirac vs Majorana) of neutrinos would

impose further constraints on the parameter space.

• The elastic scattering cross section could be safely averaged over the range

cos θ ∈ [−0.95, 0.95], to avoid the co-linear divergence [170, Chapter 20.3].

• The DM-ν coupling (g) is equal to 1. This means that we are probing the

1Scenarios with DM candidates of any spin interacting with a triplet scalar mediator have a
very similar phenomenology to those cases with a spin-1 mediator. Thus, we disregard them for
simplicity.

2This is due to the fact that a real vector DM with a fermion mediator annihilates via a t- and
a u- channel, while a complex vector DM proceeds via a t- channel only.
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regime where DM is strongly coupled to neutrinos. Limits can be rescaled

accordingly when g � 1 and will be discussed in the text.

• For the calculations of the elastic scattering we have assumed that neutri-

nos follow a Fermi-Dirac distribution with temperature Tν and consequently,

〈E2
ν〉 ' 12.9T 2

ν and 〈E4
ν〉 ' 396T 4

ν .

• Indirect detection bounds are computed considering the total observed DM

relic abundance and a regeneration mechanism [171] is assumed for the regions

of the parameter space where the DM would be under-abundant otherwise.

We have checked that all the scenarios considered in this chapter predict a late

kinetic decoupling (in agreement with the way the collisional damping bound was

derived in [116]) and that the elastic cross section calculations are valid at low

energies (see Appendix B in Ref. [3] for the full expressions and their approximations

at low and high energies). The elastic scattering cross section depends on the

neutrino temperature Tν . The latter differs from the photon temperature after

the standard neutrino decoupling. Moreover, DM-ν interactions may modify the

neutrino temperature by reheating the neutrino sector due to DM annihilations, as

discussed in Sec. 1.5.1. However, the difference between the neutrino and photon

temperatures is bound to be small, owing to the Neff constraint. Hence we have

approximated the neutrino temperature to Tν = Tγ throughout this work.
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Scenario Lagrangian (Lint) σvr σel

Complex Scalar DM

Dirac Mediator

− g χNR νL + h.c.

g4

12 π
m2
χ

(m2
χ +m2

N)2 v
2
CM

g4

32 π
m2
χ y

2

(m2
N−m2

χ)2

Real Scalar DM

Dirac Mediator

4 g4

15 π
m6
χ

(m2
χ +m2

N)4 v
4
CM

g4

8 π
m6
χ y

4

(m2
N−m2

χ)4

Complex Scalar DM

Majorana Mediator

g4

16 π
m2

N
(m2

χ +m2
N)2

g4

32 π
m2
χ y

2

(m2
N−m2

χ)2

Real Scalar DM

Majorana Mediator

g4

4π
m2

N
(m2

χ +m2
N)2

g4

8 π
m6
χ y

4

(m2
N−m2

χ)4

Dirac DM

Scalar Mediator
−gχRνLφ + h.c.

g4

32 π
m2
χ

(m2
χ +m2

φ)2
g4

32 π
m2
χ y

2

(m2
χ−m2

φ)2

Majorana DM

Scalar Mediator

g4

12 π
m2
χ

(m2
χ +m2

φ)2 v
2
CM

g4

16π
m2
χ y

2

(m2
χ−m2

φ)2

Vector DM

Dirac Mediator
− gNLγ

µχµνL + h.c.

2 g4

9π
m2
χ

(m2
χ +m2

N)2

g4

4 π
m2
χ y

2

(m2
χ−m2

N)2

Vector DM

Majorana Mediator

g4

6π
m2

N
(m2

χ +m2
N)2

Complex Scalar DM

Vector Mediator

− gχZ ′µ((∂µχ)χ† − (∂µχ)†χ)

− gννLγµZ ′µνL

g2
χ g

2
ν

3 π
m2
χ

(4m2
χ−m2

Z′)
2 v

2
CM

g2
χ g

2
ν

8 π
m2
χ y

2

m4
Z′

Dirac DM

Vector Mediator

− gχLχLγ
µZ ′µχL − gχRχRγ

µZ ′µχR

− gννLγµZ ′µνL

g2
χ g

2
ν

2 π
m2
χ

(4m2
χ−m2

Z′)
2

g2
χ g

2
ν

8 π
m2
χ y

2

m4
Z′

Majorana DM

Vector Mediator

− gχ
2 χ̄γ

µZ ′µγ
5χ

− gννLγµZ ′µνL

g2
χ g

2
ν

12π
m2
χ

(4m2
χ−m2

Z′)
2 v

2
CM

3 g2
χ g

2
ν

32π
m2
χ y

2

m4
Z′

Vector DM

Vector Mediator

− gχ 1
2χ

µ∂µχ
νZ ′ν + h.c.

− gννLγµZ ′µνL

g2
χ g

2
ν

π

m2
χ

(4m2
χ−m2

Z′)
2 v

2
CM

g2
χ g

2
ν

8 π
m2
χ y

2

m4
Z′

Table 3.1: This table presents the relevant interaction terms in the Lagrangian,
the approximate expressions for the annihilation cross section and the low-energy
limit of the elastic scattering for all possible scenarios that involve DM-ν interactions
(12 in total). Only the leading terms in vCM and y = (s − m2

DM)/m2
χ ' 2Eν/mχ

(where s is the usual Mandelstam variable) are presented for the annihilation cross
section and the elastic scattering cross section, respectively. We refer the reader to
Appendix B in Ref. [3] for the full expressions of the elastic scattering cross sections.
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3.2 Results for scalar or fermion mediators

Eight out of the twelve scenarios tabulated in Tab. 3.1 involve spin-0 and spin-1/2

mediators. Many share common properties, so we will articulate the discussion

accordingly. In all of these eight scenarios, a left-handed neutrino couples directly

to the DM candidate and the mediator must be heavier than the DM candidate to

prevent DM from decaying. This stability condition excludes half the parameter

space of the (mχ −mMediator) plane, as shown in Fig. 3.1.

In all these eight configurations, the DM annihilation cross section never involves an

s- channel and is therefore never resonantly enhanced3. Furthermore, in most cases,

we observe that the annihilation cross section is dominated by a velocity-independent

term, except for complex scalar or Majorana DM for which it is v2-suppressed and

for real DM candidates, as it is v4-suppressed. As expected, a velocity-suppressed

cross section weakens the indirect detection constraint (since vCM ∼ 2×10−3 c in the

halo today [132]), which in turns opens up the parameter space, as shown explicitly

in Fig. 3.1 (right panel) (see Sec. 2.1.1 for details).

The elastic scattering cross section associated with these scenarios is proportional

to the square of the neutrino energy (E2
ν). The only exception occurs for real

DM candidates in which case the elastic scattering cross section varies as E4
ν (see

Table 3.1). We note also that, for a very strong mass degeneracy (mMediator −mχ �

Eν), the denominator of the propagator depends on the DM mass and the transferred

momentum, which is similar to the neutrino energy. Consequently, this factor of E2
ν

or E4
ν in the denominator cancels out with the factor in the numerator. Therefore,

the elastic cross section no longer depends on the neutrino energy and it can be

considerably enhanced [172]. This is shown as the region along the diagonal in

Fig. 3.1.

All (elastic scattering and annihilation) cross sections depend on both the DM

3In the case of a triplet scalar mediator, the annihilation cross section proceeds via an s- channel,
but we have not considered it in the eight scenarios above.
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and mediator masses, as well as the coupling g. One can therefore constrain both

the DM and mediator masses using the collisional damping and indirect detection

constraints for a fixed value of the coupling g, which we take to be unity in the

figures for definiteness.

3.2.1 Fermion DM and scalar mediators

Most of the scenarios listed in this section predict a similar phenomenology. For

illustration purposes, we shall focus on fermion DM particles coupled to a scalar

mediator. However, the discussion below can be easily extended to other scenarios.

The corresponding Lagrangian is given by

Lint ⊃ − g φχR νL + h.c. , (3.2.1)

where χ is the DM candidate and can be either a Dirac or Majorana particle.

Since the neutrino is a member of an SU(2) doublet, one can consider two minimal

extensions of the SM which include such a coupling. First, χR can be promoted to an

SU(2) doublet like in supersymmetric models [173,174] or supersymmetry-inspired

models [172]. This would constrain the DM mass to be heavier than few GeVs or

even few TeVs in the presence of co-annihilations [175,176]. Second, we can assume

χR to be a singlet and the scalar φ a SU(2) doublet like in inert doublet models [177].

This would also imply that the DM necessarily interacts with charged leptons, a

scenario which is strongly constrained by cosmological observations, astrophysics

and particle physics experiments [178]. Therefore, such interactions would need to

be suppressed, for instance by a very heavy charged mediator [172,179].

In order to consider masses below the 100 GeV scale for the DM and the mediator,

both fields need to be singlets. The required coupling in Eq. (3.2.1) can then be

generated via mixing with extra scalar or fermion doublets. If the mixing occurs

via an extra fermion doublet R, the strongest constraints arise from lepton flavour

violating processes at one loop and from measurements of the anomalous magnetic

moments of the electron and the muon [172, 180, 181]. On the other hand, if one
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Figure 3.1: Elastic scattering of Dirac DM (left panel) and Majorana DM (right
panel) coupled to a scalar mediator in the mφ−mχ plane for g = 1. Different regions
are constrained by: the collisional damping limit (dashed region and black line along
the diagonal up to the orange dot), a conservative bound from the antineutrino flux
at Borexino [136] (in yellow), our analysis at Super-Kamiokande (SK) described in
Sec. 2.2 (in red), the analysis done in Ref. [128] using results from SK, Fréjus and
Amanda (in green), and the analysis done by the SK collaboration for GeV neutrinos
produced at the Galactic Centre [130] (in purple). The parameters that give rise to
the right relic abundance (brown line) are shown as a reference. The dashed line
refers to the DM mass lower bound derived from Neff in [105, 108] as discussed in
Sec. 1.5.1.

introduces another scalar doublet, η, that mixes with the scalar DM singlet, φ, there

are tight, though model-dependent, constraints on the effective DM-ν coupling from

the requirement that 2→ 2 scalar processes must be unitary [182]. In the following

chapter, we will study the possibility of generating an effective DM-ν coupling via

neutrino mixing with an additional right-handed fermion singlet.

Annihilation cross section. Dirac particles annihilate via a constant cross sec-

tion while the cross section is v2-dependent for Majorana particles. Nevertheless,

both models can explain the observed DM abundance if the value of their annihilation

cross section is of the order of 〈σvr〉 ' 3× 10−26 cm3/s and 〈σvr〉 ' 6× 10−26 cm3/s,

respectively, represented by the brown lines in Fig. 3.1. For the parameters below

that line, the annihilation cross section is larger than the thermal value. Hence, χ’s
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cannot constitute all the DM unless one invokes a different production mechanism,

such as the decay of an unstable heavy particle (see Ref. [183] for a recent review

of non-thermal DM production mechanisms) or a regeneration mechanism [171]. In

contrast, configurations above the brown line over-predict the DM abundance and

require, e.g., additional annihilation channels to explain the observed abundance.

We note that, in these fermion DM scenarios, the mediator needs to be light if the

DM is weakly coupled to neutrinos, i.e., g � 1. Furthermore, the DM cannot be

too heavy. Indeed the stability condition, mχ < mφ, leads to an upper limit on the

DM mass of mχ < 104 (100) MeV for g = 10−1 (10−2) (see Fig. 3.2). If we further

impose the limit on Neff and require thermal DM, then any coupling smaller than

g � 10−2 is ruled out.

As expected from the velocity-dependence of the cross section, indirect detection

searches are much more sensitive to Dirac DM candidates than Majorana DM

particles (see Fig. 3.1). Dirac DM candidates strongly coupled to neutrinos (g ∼ 1

and 〈σvr〉 > 10−26 cm3/s) are excluded by a combination of low-energy neutrino

detectors (such as Borexino) and high-energy experiments, including SK, even when

their mass is up to ∼ 100 GeV. As such, limits from future neutrino detectors com-

bined with those from CMB and gamma-ray observations [6, 54, 133,184–217] could

rule out the entire thermal DM region below ∼ 100 GeV.

The bounds derived above become significantly weaker when the value of the coupling

g becomes smaller (see Fig. 3.2). In fact there is no observable signal at SK (and at

future neutrino detectors) when g becomes smaller than g = 10−1 (10−2) if the DM

mass is a few GeV (MeV). Note however, that, since the annihilation cross section

controls both the thermal relic density and the indirect detection constraints, it is

always possible to test thermal DM candidates in future neutrino experiments as

long as g ≥ 10−2.
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Figure 3.2: Same as left panel of Fig. 3.1 but for g = 10−1 (left panel) and for
g = 10−2 (right panel).

Elastic scattering cross section. The elastic scattering cross section is similar

for Majorana and Dirac DM. It reads

σel ' 1.1 (2.2) × 10−41 g4
(
Eν
T0

)2 (
mφ

MeV

)−4
1−

(
mχ

mφ

)2
−2

cm2, (3.2.2)

for Dirac (Majorana) DM candidates, where T0 = 2.35 × 10−4 eV is the photon

temperature today. The difference stems from the additional s- channel diagram in

the Majorana case. When the DM and mediator masses are degenerated, the elastic

scattering cross section in the low-energy regime becomes

σel = 1 (2)× g4 1
32 π m2

χ

' 4 (8)× 10−24 g4
(
mχ

MeV

)−2
cm2, (3.2.3)

for Dirac (Majorana) DM candidates. Therefore, the collisional damping constraint

can only exclude masses below ∼ O(10) GeV. In general, collisional damping bounds

require rather large values of the elastic scattering cross section, i.e., light medi-

ators, (mφ ∈ [O(10),O(103)] MeV), and light DM particles (with a mass in the

sub–10 MeV range), or degenerate values of the DM and mediator masses between

mχ ∼ [10, 104] MeV for g = 1, to enhance the elastic scattering cross section. Given

the Neff bound on the DM mass and the Borexino constraints, the first possibility

(light DM and light mediators) is mostly excluded for any value of the coupling.
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The second option (degenerate masses) is ruled out by the other indirect detection

searches for a large coupling (g = 1).

The exclusion region for fermion DM candidates weakly coupled to neutrinos (i.e.,

g � 1) is shown in Fig. 3.2. As one can see, the regions excluded by indirect

detection searches and the collisional damping mechanism become smaller. As a

result, Dirac DM candidates heavier than a few GeVs are now allowed.

One can obtain an expression for the elastic scattering cross section that is inde-

pendent of the coupling g by combining the elastic scattering and annihilation cross

sections when mφ � mχ. The latter reads

σel ' 2.6 (19)× 10−54
(
Eν
T0

)2 (
mχ

MeV

)−2
(

〈σvr〉
3× 10−26 cm3/s

)
cm2 , (3.2.4)

for Dirac (Majorana) DM, assuming vCM ' 1/3 at freeze-out. This expression can be

used to set a lower bound on the DM mass from the collisional damping constraint

in Eq. (1.5.3) and requiring DM annihilations into neutrinos to explain the observed

DM abundance. As can be readily seen from Eq. (3.2.4), thermal candidates must

be heavier than mχ > 14 keV or mχ > 34 keV for Dirac or Majorana DM candidates,

respectively. These constraints are not as stringent as the limits from Neff described

in Sec. 1.5.1, which impose mχ > 10 MeV for Dirac DM and mχ > 3.5 MeV

for Majorana DM [105, 108]. However, unlike the Neff constraint, the collisional

damping bound remains valid in the case of asymmetric DM candidates, and also

enables to constrain the mediator mass. Furthermore, it is worth recalling that we

have used a conservative limit from collisional damping, which may improve with a

better knowledge of the matter distribution in the early Universe and an improved

understanding of the role of baryonic physics in galaxy formation.

Finally, the lower limit on the DM mass that we have found by combining the

annihilation and scattering cross sections should remain the same when g � 1,

because both the annihilation and elastic scattering cross sections scale in the same

way with respect to the coupling g.

Other scenarios where the mediator is either a fermion or a scalar, show a similar
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behaviour to the one discussed here if no lepton number violating (LNV) process

occurs. Specifically, scenarios in which a vector DM candidate is coupled to a

Dirac mediator would have a very similar behaviour to the case of a Dirac DM

particle coupled to a scalar mediator. Indeed, the leading term in the annihilation

cross section is velocity-independent and features the same DM and mediator mass

dependence. The scenario with a complex scalar DM coupled to a Dirac mediator is

analogous to the Majorana DM case, and given the v2-dependence of the annihilation

cross section, indirect DM searches are less sensitive to it. The only case which

is somewhat different is the real scalar DM and Dirac mediator scenario, since

the annihilation cross section scales as v4. Therefore, finding evidence for this

scenario using indirect detection searches would be very challenging. In this case,

unless mχ ∼ mN, the elastic cross section is severely suppressed, as it varies as E4
ν .

Therefore, for this scenario we only expect sizable collisional damping when the

mediator and DM masses are similar and in the ∼ [4, 104] MeV range, i.e., above

the Neff bound (see Appendix A in Ref. [3] for the relevant results of the remaining

scenarios).

3.2.2 Scalar DM and Majorana mediators

When the mediator is a Majorana particle, LNV processes are allowed and change the

phenomenology significantly. In fact, LNV processes may constitute the dominant

annihilation channels. This is the case for example when the DM is a spin-0 or a spin-

1 particle that interacts with active neutrinos through the exchange of a Majorana

fermion NR. We will focus here on the spin-0 DM scenario for concreteness, but

similar conclusions apply to a spin-1 DM candidate. The term in the Lagrangian

describing this interaction corresponds to
Lint ⊃ − g χNR νL + h.c. , (3.2.5)

and applies regardless of whether the DM candidate, χ, is a real or a complex

scalar. Note that the same interaction term can also lead to neutrino masses at loop

level [85,218–220].
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Annihilation cross section. The two dominant annihilation channels are χχ∗ →

νν and χχ∗ → ν̄ν̄, which violate lepton number by two units. We ignore annihila-

tions into χχ∗ → νν̄, even though they also take place in LNV scenarios because

the associated cross section is v2-suppressed. This scenario provides a natural imple-

mentation of thermal light DM candidates while keeping the mass of the mediator

very heavy. The annihilation cross section is proportional to

〈σvr〉 ∝ g4 m2
N(

m2
χ +m2

N

)2 ∝
g4

m2
N
, (3.2.6)

when mN � mχ. The relic density does not constrain the DM mass, but only the

mediator mass and the coupling g, satisfying the relation

mN ' O(1) g2
(

〈σvr〉
3× 10−26 cm3/s

)− 1
2

TeV. (3.2.7)

Hence, the DM candidate could be light while the mediator could be very heavy,

i.e., with a mass of a few TeVs for g = 1. Since the leading term in the annihilation

cross section is velocity-independent, we expect a copious production of neutrinos in

the galactic halo. As a result, indirect detection searches set significant constraints

and exclude a large fraction of the parameter space for DM particles with a mass in

between [2, 104] MeV.

Elastic scattering cross section. The elastic scattering is mostly controlled by

the mediator mass and Eν , and reads

σel ' 1.2× 10−41 g4
(
Eν
T0

)2 (
mN

MeV

)−4
(

1−
(
mχ

mN

)2
)−2

cm2 , (3.2.8)

assuming mN � mχ. As for the previous scenario, this cross section can be signific-

antly enhanced if both the mediator and DM masses are degenerate.

Observable collisional damping effects require either very light DM particles, mχ <

2 MeV or degenerate DM and mediator masses with values below mχ < 10 GeV.

This is however excluded by the Neff bound and indirect DM searches, respectively.

Furthermore, if the DM candidate is a real scalar, the elastic scattering cross section

scales as E4
ν and it is therefore very suppressed. Consequently, there is no room for

significant collisional damping in this case.
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Figure 3.3: Same as Fig. 3.1 but for complex DM with a Majorana mediator (left
panel) and for Dirac DM with a vector mediator (right panel).

3.3 Results for a vector mediator

We now discuss scenarios where the mediator is a spin-1 particle. There are four

possible Lagrangians to describe DM-ν interactions in presence of such a mediator,

which are shown in Table 3.1. For concreteness, let us focus on scenarios with a

spin-0 or spin-1/2 (Dirac) DM candidate. The associated Lagrangians read

Lint ⊃


− gννLγ

µZ ′µνL − gχZ ′µ
(
(∂µχ)χ† − (∂µχ)†χ

)
,

− gννLγ
µZ ′µνL − gχL,RχL,Rγ

µZ ′µχL,R .

(3.3.1)

In both cases, the first term represents the coupling of the spin-1 particle to active

neutrinos while the second term represents the spin-1 coupling to the DM particle.

The top and the bottom lines correspond to a vector mediator which couples to

a complex scalar or a Dirac DM candidate respectively. This type of interaction

was initially introduced in Refs. [113, 172] as an attempt to build viable models of

sub-GeV DM candidates and illustrates the new collisional damping effects described

in Refs. [111,113].

More recently, models where the DM is coupled to a light spin-1 mediator have

been proposed in the context of self-interacting DM [221] and models with both self-

interactions and DM-ν interactions (all mediated by a spin-1 boson) have also been
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considered in Refs. [222–224]. In these references, collisional damping – that stems

from early DM interactions – is neglected and the thermal-production assumption

has been relaxed.

The phenomenology of these scenarios with spin-1 mediators is different from that

associated with spin-0 and spin-1/2 mediators. Firstly, the absence of a direct

coupling between the DM candidate and neutrinos ensures the stability of the DM

candidate. Mediators lighter than the DM are allowed (unlike for the spin-0 and

spin-1/2 mediator cases). Secondly, since DM can be heavier than the mediator, DM

particles can also annihilate into two spin-1 particles. This process may actually be

the dominant annihilation channel, depending on the exact value of the couplings.

Annihilation cross section. For concreteness, we shall consider Dirac DM can-

didates coupled to vector boson mediators, i.e., gχL = gχR = gχ. When the mediator

is heavier than the DM particles, the only possible annihilation channel is a neut-

rino/antineutrino pair. The associated cross section is given by

〈σvr〉 =
g2
χ g

2
ν

2 π
m2
χ

(4m2
χ −m2

Z′)2 '
g2
χ g

2
ν

2π
m2
χ

m4
Z′
, (3.3.2)

which can become resonant since it proceeds via an s- channel diagram. We do not

illustrate the impact of the resonance on the parameter space but a smaller value of

the coupling would be required to explain the observed DM abundance4.

When the mediator is lighter than the DM particles, annihilations can be both i)

into neutrino/antineutrino pairs, with a cross section of the order of

〈σvr〉νν̄ '
g2
χ g

2
ν

32 π
1
m2
χ

, (3.3.3)

and ii) into two vector bosons, with a cross section of the order of

〈σvr〉Z′ Z′ =
g4
χ

8 πm2
χ

√√√√1− m2
Z′

m2
χ

'
g4
χ

8π
1
m2
χ

, (3.3.4)

4In fact, using the Breit-Wigner form of the propagator, a DM mass of the order of O(100) TeV
would be needed to explain the observed DM abundance for gχ = 1.
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which does not have a resonant structure since the Z ′ are produced via a t- channel

diagram.

Both final states eventually contribute to the relic density calculations. However one

may dominate over the other one, depending on the relative strength of gχ and gν

(hence the two thermal lines in Fig. 3.3). One expects a lower limit on the Z ′ mass

if Z ′’s are copiously produced by DM annihilations and decay into neutrinos after

the standard neutrino decoupling, as this would lead to an increase in Neff . To avoid

such a limit, one can invoke additional Z ′ decay channels to suppress the branching

fraction into neutrinos.

Here, we only consider the χχ̄ → νν̄ channel in order to derive the constraints

from indirect detection searches. For mediators lighter than the DM mass, the DM

annihilation into two vector bosons could also yield a signal in neutrino detectors if

the produced Z ′ bosons decay into neutrino/antineutrino pairs. This signal would

however generate a box-shaped energy spectrum that depends on the Z ′ branching

ratio into neutrinos and on the mχ/mZ′ ratio [225, 226]. For simplicity, we do not

consider this case.

Note that the Sommerfeld enhancement of the annihilation cross section whenmZ′ �

mχ at the time of freeze-out is expected to be small and consequently, we disregard

this effect5. However, the Sommerfeld effect might be important at late-times and

it might increase the neutrino production in the galactic halo, in particular for v2-

dependent cross sections and DM masses above 1 TeV [229,230]. Nevertheless, our

analysis focuses on smaller DM masses and we do not consider the effects of such

enhancements, although this might rule out tiny DM mass regions between the 1–100

TeV regime, depending on the particular scenario [226].

The scalar and Majorana DM case is similar except that the annihilation cross

section is v2-dominated and therefore suppressed with respect to the Dirac DM

case. Yet, despite the v2-dependent suppression, indirect detection searches rule out

5We expect order O(1) corrections to our relic density results [227,228].
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the parameter space where large collisional damping effects would be expected (see

Appendix C in Ref. [3]).

Elastic scattering cross section. The elastic scattering cross section for spin-1

mediator scenarios is independent of the DM mass. It reads

σel ' 4.4× 10−41 g2
ν g

2
χ

(
Eν
T0

)2 ( mZ′

MeV

)−4
cm2 , (3.3.5)

which proceeds via a t- channel diagram and is proportional to E2
ν , in contrast to

previous scenarios in which the cross section is energy-independent in the regime

of degenerate DM and mediator masses. Moreover, contrary to scenarios with a

spin-0 and a spin-1/2 mediator, the mZ′ < mχ region could give rise to measurable

collisional damping for mχ > few MeV. However, for constant annihilation cross

sections, indirect detection constraints imply that only DM masses above & 100

GeV and mediators between [1, 10] MeV would produce sizable collisional damping

for gν = gχ = 1. This is alleviated if the DM annihilation cross section is velocity-

dependent (for Majorana, scalar and vector DM candidates). In such cases, collisional

damping could be important for mχ ∼ [1, 10] MeV and mχ & 100 MeV with mZ′ ∼

[1, 100] MeV. Moreover, for gχ ∼ gν � 1 indirect detection constraints weaken,

allowing for sizable collisional damping for mχ ∼ [0.4, 1] GeV and O(few) MeV

mediators masses for g = 10−1, while mχ & 100 MeV and sub-MeV mediators are

required for g = 10−2 .

For a thermal DM candidate and mχ � mZ′ ,

σel ' 7.7× 10−55
(
Eν
T0

)2 (
mχ

MeV

)−2
(

〈σvr〉
3× 10−26 cm3/s

)
cm2 , (3.3.6)

so that, using the collisional damping and relic density constraints, we obtain a

lower limit on the DM mass independent of the DM coupling to the mediator and

neutrinos (gχ and gν , respectively). More specifically, we find mχ ≥ 9.2 keV. This

lower bound is again less constraining than the one derived by the change in Neff ,

which in turn, also excludes observable collisional damping for light DM candidates

and mZ′ ∼ [10, 103] MeV. Nevertheless, indirect constraints could still constrain a
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large region of the parameter space when gν � 1 if one considers the annihilation

channel into a pair of Z ′ and its subsequent decay into neutrinos for a strongly

coupled dark sector (gχ ' 1).

Finally, if the DM candidate is heavier than the mediator, to produce the correct

DM relic density assuming only DM-ν interactions, Eq. (3.3.1), requires mχ '

4 g2
χ

(
1 + 1

4

(
gν
gχ

)2
) 1

2
TeV. Therefore, in the mχ � mZ′ limit and for a thermal DM

candidate, the elastic cross section is

σel ' 1.2× 10−47 g2
ν

1 + 1
4

(
gν
gχ

)2
− 1

2 (
Eν
T0

)2 ( mχ

MeV

)(
mZ′

MeV

)−4
(3.3.7)

×
(

〈σvr〉
3× 10−26 cm3/s

) 1
2

cm2 , (3.3.8)

which, when compared to the collisional damping constraint, Eq. (1.5.3), sets a

lower bound in the mediator mass of mZ′ ≥ 2 g
1
2
ν

(
1 + 1

4

(
gν
gχ

)2
)− 1

8
' 2 MeV, for

gν = gχ = 1.

3.4 Conclusions

In this chapter, we have investigated the viability of scenarios in which DM is coupled

to active neutrinos, by evaluating their cosmological effects (collisional damping and

relic density) and their implications for indirect DM searches with neutrino detectors.

Using a simplified model approach and considering only dimension 4 terms in the

Lagrangian, we have identified twelve different scenarios. Many of these share some

common properties and can be grouped according to the nature of the particle that

mediates the interactions. For all these scenarios we have computed the elastic

scattering and DM annihilation cross sections. The full expressions are given in

Appendix B in Ref. [3] while their dominant terms are given in Table 3.1. We have

not explicitly assumed thermal DM. However, we do show the DM and mediator

masses that lead to a thermal annihilation cross section of 〈σvr〉 ' 3× 10−26 cm3/s

(or 〈σvr〉 ' 6 × 10−26 cm3/s for v2-dependent cross sections). For each of these
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scenarios, we constrain the parameter space by imposing the stability of the DM

candidate and also that i) the DM-ν interactions are compatible with small scales

Lyman-α forest data, ii) there are no anomalous neutrino signals at Borexino and

SK experiments and finally iii) DM annihilations into neutrinos do not significantly

change the CMB angular power spectrum.

We find that, generically, for scalar and fermion mediators that are much heavier

than the DM particle, the annihilation cross section is either constant or velocity-

dominated and scales as the square of the DM mass (except if LNV annihilation

channels dominate, which occurs when the mediator is a Majorana particle). While

the velocity dependence is not particularly important at the time of the DM freeze-

out, it is crucial for annihilations in the Milky Way, as it significantly suppresses the

neutrino signal. Therefore, only scalar DM-Majorana mediator, Dirac DM-scalar

mediator and vector DM-Dirac mediator scenarios have strong indirect detection

constraints. These bounds are not far from the values required for a thermal DM

candidate. Hence, future neutrino experiments have the potential to significantly

improve these constraints and exclude a large fraction of the thermal DM parameter

space (assuming the DM annihilates into SM particles). This conclusion remains

valid as long as g � 10−2, since the relic density line and the indirect constraints

are both proportional to g4. Couplings of this magnitude can be achieved in specific

UV-complete models as we will discuss in the following chapter.

The elastic cross section typically scales as the neutrino energy squared and can be

resonantly enhanced if the DM and mediator masses are nearly degenerate. Observ-

able collisional damping requires very large values of this cross section, which implies

sub-MeV DM masses or the quasi-degenerate DM-mediator mass regime. The first

possibility is, however, excluded by constraints from Neff , using CMB data [105,108].

The second case is viable, but only for velocity-dependent annihilation cross sections

(scalar DM-Dirac mediator and Majorana DM-scalar mediator), so that the indirect

detection bounds are weak and leave significant portions of the parameter space

unconstrained, in particular, DM masses in the ∼ [100, 104] MeV range for g = 1.
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The real scalar DM-Dirac mediator case is an exception, as the annihilation and

the elastic scattering cross sections are suppressed by v4 and E4
ν terms respectively,

which in turn, might produce observable collisional damping if the mediator and

DM masses are degenerate and in the ∼ [4, 104] MeV range.

If the mediator is a vector, the phenomenology is different because it can be lighter

than the DM particle and moreover, when the DM and mediator particles are

degenerate in mass, the annihilation cross section can be resonantly enhanced. If the

DM particle is heavier than the vector mediator, the annihilation channel into two

vectors is open and could dominate, depending on the value of the parameters. The

indirect DM searches apply to both mass regimes: if DM is lighter than the mediator,

the constraints are similar to those obtained for the previous cases, i.e., strong and

close to the thermal relic line for Dirac DM and significantly weaker for complex,

Majorana and vector DM, due to the velocity dependence of the cross section. In

the opposite case, i.e., DM heavier than the mediator, DM can annihilate both into

neutrinos and into Z ′, which can subsequently decay into neutrinos. Depending

on the relative strength of the couplings gν and gχ, either of the two channels can

dominate and lead to significant constraints on the parameter space. The values

of the elastic cross section needed for collisional damping can be achieved even for

heavy DM, if the mediator mass is in the ∼ [1− 10] MeV range.

In summary, we find that DM-ν interactions can have a strong impact on the

early and present Universe and that the complementarity between cosmological

and astrophysical constraints can test large areas of the allowed parameter space.

These bounds should be taken into account when considering a particular UV-

complete model that generates interactions between DM and neutrinos and would

be particularly relevant for models that generate neutrino masses while providing a

DM candidate.



Chapter 4

Towards a gauge-invariant model

of dark matter-neutrino

interactions

-But, Friedrich, to reach the truth, we, scientists, have to get rid
of all illusions don’t we?
-Oh, TRUTH -said Nietzsche- I forgot, Josef, that scientists still
need to learn that TRUTH is also an illusion, yet an illusion
without which we could not survive.

— from When Nietzsche Wept by Irvin D. Yalom

In the previous chapter, we have investigated the phenomenology of strong neutrino-

DM interactions and the possibility to probe DM through neutrinos both via its

cosmological implications as well as through indirect detection searches. However,

it is not straightforward to envision a scenario in which the DM phenomenology

is dominated by its interaction with neutrinos. Naively, gauge invariance dictates

that the interactions of the left-handed (LH) SM neutrinos with DM will be equal

to those of their charged lepton counterparts in the SU(2) doublets. In this case,
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the best window to DM would instead be the charged leptons rather than the more

elusive neutrinos.

In this chapter, we will investigate some gauge-invariant SM extensions that lead

to sizeable neutrino-DM interactions, exploring if neutrino probes could dominate

our sensitivity to the dark sector. This is actually a rather natural possibility. In

fact, if DM does not participate in any of the SM gauge interactions, the natural

expectation is that the strongest connection to DM will be via singlets of the SM

gauge group. Indeed, if non-singlet fields were involved instead, the dimensionality

of the operators linking the two sectors would have to increase in order to comply

with gauge invariance. This reasoning leads to the three well-known SM portals to

the dark sector: the “gauge boson portal” [231], the “Higgs portal” [232, 233], and

the “neutrino portal” [180, 234, 235]. The neutrino portal includes the addition of

right-handed (RH) neutrinos NR, which makes this option particularly appealing in

connection to the evidence of neutrino masses and mixing from neutrino oscillations,

as discussed in Sec. 1.4.

Since the neutrino portal relies on the mixing between NR and the light SM neutrinos

to connect the neutrino and DM sectors, this mixing needs to be sizeable. In the

“canonical” seesaw mechanism [72,74,236–238], the smallness of neutrino masses is

explained through a large Majorana mass for NR and the mixings are then similarly

suppressed by the large scale. An interesting alternative is to explain the smallness

of neutrino masses via a symmetry argument instead [82, 83, 239–242]. Indeed, in

models with an approximate lepton number (L) symmetry such as the linear [82,83]

or inverse [84] seesaw mechanisms, neutrino masses are suppressed by the small

L-breaking parameters while light neutrino mixing with NR is unsuppressed. In the

present study, we will assume relatively large mixing angles noting that they can

be compatible with neutrino masses, but we will not specify a concrete neutrino

mass generation mechanism, since these small lepton number violating parameters,

and hence light neutrino masses, will have no significant impact on the DM-related

phenomenology.
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We will consider fermion DM and, more specifically, Dirac DM, which has the richest

phenomenology when interacting with SM neutrinos. Indeed, as we showed in the

previous chapter, the dominant term in the annihilation cross section to neutrinos is

not velocity suppressed and DM annihilations therefore lead to interesting signatures

at neutrino detectors. Alternative scenarios with a Majorana, scalar, or vector DM

candidate will lead to a velocity dependent annihilation cross section to neutrinos

(see Table 3.1). While such possibilities are viable, they are difficult to probe

experimentally at neutrino detectors, since, as it was already mention, the small DM

velocity in the halo today significantly reduces the annihilation rate to neutrinos.

4.1 Naive gauge invariance

In this section, we will study the simplest scenario, in which the neutrino-DM

interaction arises from a direct coupling to the full SM SU(2) lepton doublet. In

order to avoid specifying the nature of the mediator, we will adopt an effective field

theory approach, simply adding a D = 6, 4-fermion interaction.

4.1.1 Model

Since the 4-fermion operator needs to involve two LH SM lepton doublets Lα =

(ναL, `αL)T , α = e, µ, τ , its Lorentz structure is fixed to be LαγµLα. For definiteness

we will assume a vector structure for the DM part. An axial coupling would instead

lead to a velocity-suppressed DM annihilation cross section to neutrinos for both

DM relic abundance and indirect searches. The cross section for DM annihilation

to charged leptons would however have an additional term only suppressed by the

lepton mass, and thus, it would tend to dominate over the annihilation cross section

to neutrinos. Therefore, we will not consider this option in what follows.

The Lagrangian describing the neutrino-DM interaction is thus given by

L = LSM + χ
(
i/∂ −mχ

)
χ+ cα

Λ2 χγµχLαγ
µLα , (4.1.1)
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where χ is a Dirac fermion DM particle, and flavour diagonal couplings cα/Λ2 between

DM and the lepton doublets have been assumed in order to avoid new sources of

flavour violation. For the effective description to be consistent we will require that

Λ2/cα � m2
χ.

The Lagrangian in Eq. (4.1.1) implies that, in this naive gauge-invariant scenario, the

coupling between the SM neutrinos and DM will be accompanied by a DM-charged

lepton coupling of the same strength. Therefore, the strongest constraints on this

model will typically come from indirect searches for DM annihilations to charged

leptons. The DM relic abundance will also be set by its annihilation into leptons,

either neutrinos or charged leptons, with the annihilation cross section given by

〈σvr〉 ≈
c2
αm

2
χ

2πΛ4

(
1− m2

α

4m2
χ

)√√√√1− m2
α

m2
χ

, (4.1.2)

where mα is the lepton mass for the different α flavour.

4.1.2 Results

In Fig. 4.1, we show regions in the parameter space of the DM mass mχ and the

new physics scale Λ excluded by different experiments. The blue line corresponds

to the correct DM relic density ΩDMh
2 = 0.120 ± 0.001 [7] obtained through the

thermal freeze-out mechanism. This line has been computed with micrOMEGAs [243].

In the upper hatched region, the DM-lepton interaction would be too weak, leading

to overclosure of the Universe (ΩDMh
2 > 0.12). In the region below the blue line,

the relic density is smaller than the observed DM abundance. If there are additional

production mechanisms contributing to the DM density, this region is also viable.

The constraints from indirect DM searches are shown as different shaded regions.

The light green (Planck [7, 54]) and orange (Fermi satellite [55]) regions correspond

to the bounds from DM annihilation to charged leptons described in Sec. 1.3.2. The

remaining shaded regions correspond to the constraints from DM annihilation to

neutrinos as searched for in neutrino detectors and summarised in Chapter 2. In
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Figure 4.1: Constraints on the DMmassmχ and the new physics scale Λ. The upper
and bottom-left panels correspond to couplings to only one of the lepton doublets
(electron, muon, or tau), while the bottom-right panel corresponds to all three
couplings being of equal strength. Along the blue line we recover the correct DM relic
abundance from thermal freeze-out. The coloured shaded regions are excluded by
different experiments, while the hatched areas correspond to prospective sensitivities
of future experiments. The lower bound mχ & 10 MeV is set by observations of the
CMB and BBN. See text for further details.
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the upper-left panel of Fig. 4.1, we show in different colours the bounds coming

from different neutrino experiments. The SK analysis [3,130] are shown in red while

the Borexino bounds [136] are displayed in yellow). The pink colour corresponds

to the bounds from [128] obtained by combining the atmospheric neutrino data.1

The dark red hatched region corresponds to prospective sensitivity of experiments

on DM-electron scattering [41], while the blue, black, and green hatched regions

correspond to prospects from different neutrino experiments as also described in

Chapter 2. In the following panels and in the rest of the chapter we show all present

indirect detection constraints from neutrino experiments in pink colour.

As can be seen in Fig. 4.1, the strongest constraints come from DM annihilation

to charged leptons as probed by Fermi-LAT [55] for χχ → τ+τ−, µ+µ− and from

Planck [7, 54] for χχ → `+`−, ` = e, µ, τ . Indirect searches at neutrino detectors

will always play a sub-leading role as long as annihilation to charged leptons is

possible. Indeed, present constraints from DM annihilation to charged leptons are

strong enough to rule out the entire allowed region of the parameter space that

could lead to the correct DM relic density as long as the coupling to electrons is

sizeable. However, if DM dominantly couples to the heavier lepton generations,

allowed windows open up for mχ < mµ (mτ ) (see the upper-right and bottom-left

panels of Fig. 4.1). In this case, the DM relic density would be set by its annihilation

to neutrinos, and the most relevant present constraints come from the results of SK

and Borexino. The prospects for HK and DUNE would be very promising in these

scenarios, allowing to probe most of the parameter space up to and beyond where

the relic density is entirely explained by freeze-out based on neutrino interactions.

Regarding the constraints that could be set by the DM effects in the spectrum or

isotropy of high energy cosmic neutrinos as observed by IceCube [124], these would

lie in the region of the parameter space already excluded by the number of relativistic

degrees of freedom in the early Universe [96,105].

From Fig. 4.1 it is clear that, barring the ad hoc choice of light DM coupling

1“F+A+SK" in the corresponding legend stands for Fréjus + AMANDA + SK.
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exclusively to the heavier leptons, this option for a neutrino-DM coupling is mostly

ruled out by DM-charged lepton interactions.

4.2 Coupling via the neutrino portal

Given the results of the previous section, we will now explore whether the neutrino

portal option is able to lead to a rich DM-neutrino phenomenology without being

in conflict with indirect searches involving charged leptons. The first necessary

ingredient is to have sizeable mixing between the SM neutrinos and the new sterile

neutrinos that will mediate the DM interaction. Therefore, the sterile-light neutrino

mixing should not scale with the light neutrino masses, unlike in the canonical seesaw

mechanism. Therefore, we will instead attribute the smallness of neutrino masses

to an approximate lepton number (or B − L) symmetry rather than to a hierarchy

of scales between the Dirac and Majorana masses. The new singlets will thus form

pseudo-Dirac pairs since lepton number violation will necessarily be very small to

account for the lightness of SM neutrinos. This is the case for instance in the popular

“linear” [82,83] and “inverse” [84] seesaw mechanisms based on such a symmetry.

As a simplifying assumption we will here consider the addition of only one Dirac

sterile neutrino that will serve as portal between the SM neutrinos and DM. As

discussed in Sec. 1.4, neglecting this small lepton number violation, the couplings

between the SM and the new Dirac singlet neutrino are given by

L = LSM +N
(
i/∂ −mN

)
N − λαLαH̃NR , (4.2.1)

where N is the Dirac sterile neutrino and H̃ = iσ2H
∗, with H being the Higgs

doublet.

Electroweak symmetry breaking gives rise to the neutrino Dirac mass term(
ναL, NL

)
MνNR + h.c. , (4.2.2)

where Mν = (λαv/
√

2, mN)T is the neutrino mass matrix and v = 〈H0〉 = 246 GeV

is the Higgs vacuum expectation value (vev). Diagonalising MνM
†
ν with a 4 × 4
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unitary matrix U ,
U †MνM

†
ν U = diag

(
m2

1,m
2
2,m

2
3,m

2
4

)
, (4.2.3)

we find the mass of the heavy neutrino to be

m4 =
√
m2
N +

∑
α

|λα|2v2/2 . (4.2.4)

As expected, the lepton number symmetry forbids light neutrino masses. In order

to account for neutrino masses, small breaking of this symmetry via terms such as

µNLN
c
L (inverse seesaw), or λ′αLαH̃N c

L (linear seesaw) can be added. Since these

small parameters would have negligible impact in the phenomenology of neutrino-DM

interactions, we will not consider them in what follows.

The neutrino mixing matrix U , which relates LH flavour neutrino fields and the

neutrino fields with definite masses as
ναL

NL

 = U


νiL

ν4L

 , α = e, µ, τ , i = 1, 2, 3 , (4.2.5)

has the form

U =


Uαi Uα4

Usi Us4

 . (4.2.6)

The upper-left 3× 3 block Uαi would correspond to the PMNS matrix (see Sec. 1.4)

once the small lepton number-breaking terms that induce neutrino masses are taken

into account. Note that this matrix, being a 3 × 3 sub-block of a larger unitary

matrix will, in general, not be unitary. The upper-right 3 × 1 block Uα4 describes

the mixing between the active flavour neutrinos and the LH component of the heavy

neutrino with mass m4. The last row of the matrix U specifies the admixture of each

νjL, j = 1, 2, 3, 4, in the LH sterile neutrino NL. As we will see in what follows, the

DM-related phenomenology is driven by the mixing of active-heavy mixing matrix

elements Uα4. We will use the unitarity deviations of the PMNS matrix to constrain

these mixings [244]. The mixing elements of interest are given by

Uα4 = θα√
1 +∑

α |θα|2
, Us4 = 1√

1 +∑
α |θα|2

,
3∑
i=1
|Usi|2 =

τ∑
α=e
|Uα4|2 ,

(4.2.7)
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with θα = λαv/(
√

2mN). Note that, even though the SM neutrino masses have been

neglected, the mixing with the extra singlet neutrino that will act as portal can still

be sizeable. For definiteness we will fix the mixing to the different flavours to their

1σ limit from Ref. [244], namely:

|θe| = 0.031 , |θµ| = 0.011 , |θτ | = 0.044 . (4.2.8)

In the following sections, we will explore two possible ways in which these Dirac

neutrinos could couple to the dark sector and become portals between it and the

SM neutrinos.

4.3 Sterile neutrino portal with a scalar

mediator

In this first example, we will assume that DM is composed of a new fermion, singlet

under the SM gauge group, and that a new scalar mediates the Dirac neutrino-DM

interactions.

4.3.1 Model

The Lagrangian of the model we will consider is given by

L = LSM + χ
(
i/∂ −mχ

)
χ+N

(
i/∂ −mN

)
N + ∂µS

∗∂µS

−
[
λαLαH̃NR + χ (yLNL + yRNR)S + h.c.

]
− µ2

S|S|2 − λS|S|4 − λSH |S|2H†H , (4.3.1)

where χ is a Dirac fermion DM candidate and S is a complex scalar. The fields

χ and S form the dark sector of the model (they are SM singlets), while N serves

as a mediator between the dark sector and the SM. The Lagrangian in Eq. (4.3.1)

respects a global U(1)L lepton number symmetry under which Lα, N , and S∗ have the

same charge and which protects the SM neutrino masses. Moreover, the Lagrangian

respects a global U(1)D dark symmetry, under which χ and S have equal charges.
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This preserved symmetry ensures the stability of χ, if mχ < mS, where m2
S =

µ2
S + λSHv

2/2 is the mass squared of the scalar S.

This model was previously considered in Refs. [117,245]. However, we will go beyond

these works by performing a comprehensive analysis of the sensitivity of neutrino

experiments to the parameter space of this model.

We will limit ourselves to the case in which DM is lighter than the heavy neutrino,2

i.e., mχ < m4. This is the so-called direct annihilation regime [246], since DM

annihilates through the mediator directly to SM particles. As intended, the only

channel for DM annihilation at tree-level is the one into light neutrinos. This process

occurs via a diagram involving a t-channel exchange of the scalar mediator S. In

the opposite regime, which is usually referred to as secluded [246], DM annihilates

to heavy neutrinos, which subsequently decay. The phenomenology of this regime

has been studied in Refs. [247–250].

Neglecting velocity-suppressed terms, we find the following thermally averaged cross

section for DM annihilation to neutrinos:

〈σvr〉 ≈
y4
L

32π

( 3∑
i=1
|Usi|2

)2
m2
χ(

m2
χ +m2

S

)2 ≈
y4
L

32π

( ∑
α=e,µ,τ

|θα|2
)2 m2

χ(
m2
χ +m2

S

)2 .

(4.3.2)

The product yL
√∑

α |θα|2 controls 〈σvr〉 and, in order to allow for sufficient anni-

hilation to reproduce the observed relic density, it cannot be too small. The value

of the coupling yL is limited by the requirement of perturbativity. We will restrict

ourselves to yL < 4π. Since the coupling yR does not enter Eq. (4.3.2), and thus,

does not affect the tree-level DM-neutrino interactions, in what follows we set it

to zero for simplicity. Regarding the mixing parameters θα, the bounds on them

depend on the mass of the heavy neutrino. For definiteness we will assume that the

heavy neutrino has a mass above the electroweak scale. At this scale the bounds on

heavy neutrino mixing derived in the global analysis of flavour and electroweak pre-

cision data performed in Ref. [244] apply. If smaller masses were instead considered,

2Otherwise the χχ→ νiν4 or χχ→ ν4ν4 channels would dominate the annihilation cross section
and only sub-dominant DM interactions with the 3 light SM neutrinos νi would be allowed.
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Figure 4.2: Thermally averaged annihilation cross section multiplied by the relative
velocity for χχ→ νν. We have fixed mS = 3mχ, θe = 0.031, θµ = θτ = 0, and varied
yL between 0.1 and 4π.

more stringent constraints from collider and beam-dump searches and, eventually,

production in meson and beta decays could potentially apply [251] (see discussion

in Sec. 4.4.3). In any case, all the observables relevant to DM phenomenology have

a sub-leading dependence on m4. We also consider the case where the coupling

λSH = 0, ensuring the neutrino portal regime. In Refs. [117, 245], the radiative

generation of the |S|2H†H operator was considered and its effects on mS as well as

on the invisible width of the Higgs boson were found to be negligible.

In Fig. 4.2, we show the region of the parameter for which the correct thermal relic

abundance is obtained. This region spans DM masses up to 100 GeV for |θe| = 0.031,

θµ = θτ = 0, and yL between 0.1 and 4π while keeping mS = 3mχ as a benchmark.

Annihilation of DM into charged lepton-antilepton pairs `+`− (` = e, µ, τ), proceeds

via the one-loop diagrams3 shown in Fig. 4.3 (in unitary gauge).

The dominant contribution comes from the first and second diagrams, while the

contribution from the last diagram is suppressed by the small Yukawa couplings of

3The Feynman diagrams in this chapter are produced with the Tik Z-Feynman package [252].
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Figure 4.3: One-loop diagrams (in unitary gauge) contributing to annihilation of
DM into charged lepton-antilepton pairs `α`β, α, β = e, µ, τ . The indices i and j run
from 1 to 4.

the charged leptons. The first diagram leads to the following effective operator:

L ⊃ −aSW
g2

m2
W

χγµPRχ `αγµPL`β , (4.3.3)

where g is the weak coupling constant. Neglecting external momenta, the effective

coupling aSW is given by

aSW = |Us4|2Uα4U
∗
β4

y2
L

(4π)2G

(
m2
S

m2
4

)
, (4.3.4)

where the loop function G(x) reads

G(x) = x− 1− ln x
4 (1− x)2 . (4.3.5)

The second diagram in Fig. 4.3 leads to the following effective interaction of DM

with the Z boson:
L ⊃ −aZ

g

cos θW
χγµPRχZµ , (4.3.6)

where θW is the Weinberg angle and aZ is the effective coupling, which in the limit

of zero external momenta is given by

aZ = |Us4|2
(
1− |Us4|2

) y2
L

(4π)2G

(
m2
S

m2
4

)
. (4.3.7)

These contributions have been also computed using a combination of packages:

FeynRules [253, 254] to produce a model file, FeynArts [255] for generating the

diagrams and FormCalc [256] for computing their numerical contributions. For nu-

merical evaluation of the Passarino-Veltman functions we have used LoopTools [256].

We have also considered the limit of zero external momenta, which effectively cor-

responds to the limit of small DM and charged lepton masses, and confronted the

analytical results obtained in this approximation using the package ANT [257] with
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the LoopTools results. For the DM masses between 1 MeV and 100 GeV that we

are interested in, the approximation works very well. The availability of analytical

expressions allows for an easier exploration of the parameter space.

In Fig. 4.4, we present the cross sections for annihilation of DM into e+e−, µ+µ−,

and τ+τ− for benchmark values of the model parameters. We fix mS = 3mχ,

m4 = 400 GeV, yL = 1, θe = 0.031, and θµ,τ = 0. As can be seen from the left panel,

the annihilation cross sections to charged leptons are several orders of magnitude

smaller than the cross section for DM annihilation into neutrinos. The difference

in the cross sections becomes smaller when the DM mass approaches mZ/2, and

the cross sections for χχ → `+`− exhibit a resonant behaviour due to the second

diagram in Fig. 4.3. In the right panel, we show the indirect detection constraints

from Planck [7, 54] and Fermi-LAT [55]. Note that those constraints assume a

100% annihilation rate into a single SM channel. Even for yL = 4π the resulting

annihilation cross sections into charged leptons are well below the experimental

constraints. Thus, the considered realisation of the neutrino portal does provide an

example of a gauge-invariant model in which the neutrino-DM interactions dominate

DM phenomenology.

At one-loop level DM also interacts with quarks via diagrams involving Z and h,

which are analogous to those in Fig. 4.3. The corresponding effective DM-nucleon

spin-independent scattering cross section reads [245]

σn = µ2
n

π

(Zfp + (A− Z) fn)2

A2 , (4.3.8)

where µn is the reduced mass of the nucleon, A is the total number of nucleons in a

nuclei, Z is the number of protons,

fp =
(
4 sin2 θW − 1

) GFaZ√
2

, fn = GFaZ√
2

, (4.3.9)

with aZ given in Eq. (4.3.7), andGF being the Fermi constant. The radiative coupling

of DM to the Higgs, χχh, would also give a contribution to direct detection searches.

This contribution is however suppressed by the small quark Yukawa couplings.
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Figure 4.4: Thermally averaged annihilation cross section multiplied by the relative
velocity for DM annihilation into e+e−, µ+µ−, and τ+τ−. We have fixed mS = 3mχ,
m4 = 400 GeV, yL = 1, θe = 0.031, and θµ,τ = 0. The left panel provides comparison
with 〈σvr〉 for DM annihilation into neutrinos assuming the same set of model
parameters. The right panel displays the indirect detection constraints coming from
Planck and Fermi-LAT. The lower bound mχ & 10 MeV is set by observations of
the CMB and BBN. See text for further details.

The most stringent constraint on DM-nucleon spin-independent cross section for

mχ & 10 GeV comes from XENON1T [45]. As we will see in the next subsection,

this constraint is strong enough to probe the loop-suppressed scattering process if the

value of the coupling yL is sufficiently large. We have also considered DM scattering

off electrons and found that the corresponding cross section is much smaller than

the projected sensitivities of silicon, germanium, and xenon experiments derived in

Ref. [41]. Thus, DM-electron scattering cannot provide an additional probe of the

considered neutrino portal model.

4.3.2 Results

In this subsection, we explore the parameter space to find regions that satisfy all

direct and indirect detection constraints and in which the DM phenomenology could

be dominated by its interactions with SM neutrinos. We show our results in the

mχ − mS plane to determine the masses of the DM and the dark scalar that are

presently allowed and could lead to the correct relic abundance (see Fig. 4.5).
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Figure 4.5: Constraints on the DM mass mχ and the dark scalar mass mS. We
have fixed θe = 0.031, θµ,τ = 0; θµ = 0.011, θe,τ = 0; and θτ = 0.044, θe,µ = 0 (from
top to bottom), considering yL = 1 and 4π. Along the blue line the DM relic density
matches the observed value. The coloured shaded regions are excluded by different
experiments, while the hatched areas correspond to prospective sensitivities of future
experiments. The lower bound mχ & 10 MeV is set by observations of the CMB and
BBN. See text for further details.
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In Fig. 4.5 the triangular region mS < mχ is forbidden by DM stability. Along the

blue line(s) computed with micrOMEGAs,4 the DM relic density matches the observed

value ΩDMh
2 = 0.120 ± 0.001 [7]. Above this line (the upper hatched region), the

DM relic density is bigger than the measured value, i.e., DM overcloses the Universe.

Below this line, the relic abundance would be smaller than the observed value.

However, if there is an additional production mechanism, the relic abundance could

also be compatible with this region.

As can be seen in the figure indirect searches for annihilation to neutrinos, together

with direct detection bounds by XENON1T for large DM masses, are the only

probes that are presently constraining the allowed parameter space. The prospects

to explore the remaining allowed regions through annihilation to neutrinos are very

promising. In particular DUNE would be able to detect the neutrino signal in the

range 25− 100 MeV if the DM abundance is entirely due to the DM annihilation to

neutrinos.

In Fig. 4.6, we fix mS to several representative values, namely mS = 0.04, 0.2, 1,

and 5 GeV, and show the lines corresponding to the correct relic abundance in the

mχ − yL plane. These results have been obtained with micrOMEGAs. Small values of

yL are ruled out since they do not lead to efficient DM annihilation. As can be seen,

a lighter dark scalar allows for smaller values of yL. For mS & 500 MeV, values of

yL & 1 are required to yield the observed relic density.

Overall, the cosmologically allowed parameter space of the model is already con-

strained by the current neutrino detectors as well as XENON1T. Moreover, the

next generation of neutrino experiments, in particular DUNE, will be able to probe

thermal MeV Dirac DM in the considered scenario.
4We have implemented the effective DM couplings to the Z boson and to the charged leptons

via exchange of the W boson (see Fig. 4.3) to the FeynRules model file.
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Figure 4.6: Values of the DM mass mχ and the coupling yL required to reproduce
the observed relic abundance. We have fixed mS = 0.04, 0.2, 1, and 5 GeV, and
have considered the representative case of θe = 0.031, while keeping θµ,τ = 0. Along
(above) the blue lines the DM relic density matches (is less than) the observed value.
The lower bound mχ & 10 MeV is set by observations of the CMB and BBN.

4.4 Neutrino portal with a vector mediator

In this second example, we will again assume that DM is composed of a new Dirac

fermion, this time coupled to a new massive vector boson. The Dirac singlet neutrino

will also interact with this boson so as to provide the neutrino-DM interaction.

4.4.1 Model

The Lagrangian of the model is given by

L = LSM + χ
(
i/∂ −mχ

)
χ+N

(
i/∂ −mN

)
N

+
[
g′χRγ

µχRZ
′
µ + g′NLγ

µNLZ
′
µ − λαLαH̃NR + h.c.

]
− 1

4Z
′
µνZ

′µν + 1
2m

2
Z′Z ′µZ

′µ , (4.4.1)

where χ is a Dirac fermion DM candidate, Z ′ is a new vector boson mediating the

interaction between neutrinos and DM, and N is the Dirac sterile neutrino connecting

the dark and visible sectors through its mixing with the active neutrinos. This
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Figure 4.7: Thermally averaged annihilation cross section multiplied by the relative
velocity for χχ → νν. We have fixed mZ′ = 3mχ, θe = 0.031, θµ = θτ = 0, and
varied g′ between 0.1 and 4π.

Lagrangian could for instance describe a new U(1)′ gauge symmetry spontaneously

broken by the vev of a scalar SM singlet charged under it, that would induce masses

for the Z ′ as well as for the heavy neutrino N and the DM. The particular mechanism

is not relevant for the rest of the discussion and will not be elaborated further. We

will also assume there is an additional conserved charge (e.g., a Z2 symmetry) not

shared between the neutrino and the DM that prevents their mixing. Note that in

order to keep the Lagrangian in Eq. (4.4.1) anomaly free without introducing new

fields, the simplest option is to couple the LH part of the Dirac sterile neutrino and

the RH part of the DM to the new gauge boson with the same coupling g′.

As in the previous scenario, we will assume that the DM mass mχ < m4 so that

the dominant DM annihilation channel is to the three light SM neutrinos. This is a

tree-level process and its cross section is given by

〈σvr〉 ≈
g′4

8π

( 3∑
i=1
|Usi|2

)2
m2
χ

(4m2
χ −m2

Z′)2 ≈
g′4

8π

( ∑
α=e,µ,τ

|θα|2
)2 m2

χ

(4m2
χ −m2

Z′)2 .

(4.4.2)

Note however that, for mZ′ . mχ, the tree-level DM annihilation to a pair of Z ′



4.4. Neutrino portal with a vector mediator 90

bosons is allowed. When this channel is open, it will dominate over the direct

annihilation into neutrinos, since the latter is suppressed by neutrino mixing. This

is the so-called secluded annihilation regime [246], which we do not consider in the

present study.

In this scenario, as can be seen from Fig. 4.7, the correct relic abundance can be

obtained purely from annihilation to the SM neutrinos for values of the new gauge

coupling g′ between 0.1 and 4π, and DM masses in the 0.01 − 100 GeV range. In

this figure, we have fixed mZ′ = 3mχ, |θe| = 0.031, and θµ = θτ = 0 as benchmark

values.

A direct coupling between the Z ′ boson and the charged leptons will also be induced

through the loop diagrams in Fig. 4.8. Neglecting external momenta for the charged

leptons, the effective vertex from the first loop diagram is given by

L ⊃ −aWg′`αγµPL`βZ ′µ , (4.4.3)

where
aW = |Us4|2Uα4U

∗
β4

g2

(4π)2
m2

4
2m2

W

. (4.4.4)

4.4.2 Mixing with the Z boson

Since the neutrino mass eigenstates have components that couple both to the Z and

the Z ′, mixing between the two gauge bosons will be induced at loop level [231]

through the second diagram in Fig. 4.8. The kinetic and mass mixings are described

by the effective Lagrangian

LZ′Z = −sin ε
2 Z ′µνZ

µν + δm2Z ′µZ
µ . (4.4.5)

Notice that these two terms could be present already at the Lagrangian level after

gauge symmetry breaking. These would represent additional free parameters of the

Lagrangian. However, these parameters do not contribute to the neutrino portal

of interest here. Conversely, the neutrino mixing required for the neutrino portal

does induce the Z-Z ′ mixing at the loop level. Barring fine-tuned cancellations
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Figure 4.8: One-loop diagrams contributing to the coupling of the Z ′ boson to
charged leptons (left) and to kinetic and mass mixing between the Z ′ and Z bosons
(right).

between the allowed free parameters at the Lagrangian level and the loop-induced

contributions from neutrino mixing, the minimum contribution present in our set-up

will be the latter. We will therefore set the tree-level parameters to zero and require

that the loop-induced contributions are below the present experimental constraints

on Z-Z ′ mixing. We find the following results for the mixing parameters:

δm2 = 2
(4π)2 g

′ g

cos θW
|Us4|2

(
1− |Us4|2

)
m2

4 f1 , (4.4.6)

sin ε = 2
(4π)2 g

′ g

cos θW
|Us4|2

(
1− |Us4|2

)
f2 , (4.4.7)

where f1 and f2 are functions of x ≡ m2
4/p

2, namely,

f1(x) = 1
12

{
4x2

(
1− x−1

)3
coth−1 (1− 2x) + 2x− x−1 ln (x)

− 2
√
x (4− x−1)3 arctan

(
(4x− 1)−1/2

)}
, (4.4.8)

f2(x) = −x
2

6

{
4
(
2x− 3 + x−2

)
coth−1 (1− 2x) + 4 + x−2 ln (x)

− 2
√
x−1(4− x−1)

(
2 + x−1

)
arctan

(
(4x− 1)−1/2

)}
. (4.4.9)

For the purposes of this work p2 ∼ m2
χ, and thus, f1 and f2 will only depend on the

ratio of the masses of the heavy neutrino and the DM particle. Following Ref. [258],

we first diagonalise the kinetic term through a non-unitary transformation and then

perform a rotation to diagonalise the mass term. The mass eigenstates Z1 and Z2

have masses given by

m2
Z1,2 = sec2 ε

2
(
m2
Z +m2

Z′ − 2δm2 sin ε∓∆
)
, (4.4.10)
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where

∆ = sgn
(
m2
Z′ −m2

Z

(
1− 2 sin2 ε

)
− 2δm2 sin ε

)
×
√
m4
Z +m4

Z′ + 4δm4 − 4 (m2
Z +m2

Z′) δm2 sin ε− 2m2
Zm

2
Z′ (1− 2 sin2 ε)

(4.4.11)

From Eq. (4.4.10), one can easily verify that in the limit of small mass and kinetic

mixing, i.e., δm2 → 0 and sin ε→ 0, the masses mZ1 → mZ and mZ2 → mZ′ . After

the full diagonalisation, we can write the Z and Z ′ in terms of the mass eigenstates

Z1 and Z2 as follows:

Zµ = (cos ξ − tan ε sin ξ)Z1µ − (sin ξ + tan ε cos ξ)Z2µ , (4.4.12)
Z ′µ = sec ε (sin ξ Z1µ + cos ξ Z2µ) , (4.4.13)

where ξ is the angle related to the mass diagonalisation, which is defined through

tan (2ξ) = 2 cos ε (m2
Z sin ε− δm2)

m2
Z′ −m2

Z (1− 2 sin2 ε)− 2δm2 sin ε . (4.4.14)

The two angles ξ and ε will control the phenomenology associated to the Z-Z ′ mixing

and consequently, the possible Z ′ couplings to fermions.

The loop-induced kinetic mixing parameter ε depends solely on the ratio x ≈ m2
4/m

2
χ,

providing the coupling g′ and the element Us4 of the neutrino mixing matrix are

fixed (see Eqs. (4.4.7) and (4.4.9)), and increases with it. Fixing |θe| = 0.031 and

θµ,τ = 0, we find that for x = 4, which is the lowest value preventing the χχ→ νiν4,

i = 1, 2, 3, channels, and g′ = 1 (4π), the mixing parameter | sin ε| is of order of

10−6 (10−5). For values of x as large as 104 and g′ = 1 (4π), the value of | sin ε|

does not exceed approximately 10−5 (10−4). Generally, these values can be probed

in beam dump and fixed target experiments searching for visible decay products

(electrons and muons) of the Z2 boson with mass between approximately 1 MeV and

1 GeV (see, e.g., [259,260]). However, in the considered model the Z2 decays mostly

invisibly, either to a pair of the SM neutrinos or, if it is heavy enough, to a pair of

DM particles, while its decays to charged leptons are suppressed. Thus, the bounds

from fixed target experiments will not apply in this case. Constraints on the kinetic

mixing parameter from the anomalous cooling of supernovas cover nearly the same
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Figure 4.9: Thermally averaged annihilation cross section multiplied by the relative
velocity for DM annihilation into e+e−, µ+µ−, and τ+τ−. We have fixed mχ : mZ2 :
m4 = 1 : 3 : 6, g′ = 1, θe = 0.031, and θµ,τ = 0. The left panel provides comparison
with 〈σvr〉 for DM annihilation into neutrinos assuming the same set of model
parameters. The right panel displays the indirect detection constraints coming from
Planck and Fermi-LAT. The lower bound mχ & 10 MeV is set by observations of
the CMB and BBN. See text for further details.

Z2 masses, but a different range of ε ∼ 10−10− 10−7 [259] and consequently, are also

avoided. For larger Z2 masses, up to 100 GeV, collider experiments place the best

constraints on ε ∼ 10−4 − 10−3 (see, e.g., Ref. [260]). These constraints are above

the values of the loop-induced kinetic mixing parameter in our model.

Together with the first diagram in Fig. 4.8, the size of ξ and ε will determine how

relevant the DM annihilation to a pair of charged leptons is. We find that the tree-

level annihilation to neutrinos dominates over that to charged leptons. In Fig. 4.9,

we show a particular example of this behaviour for m4 = 2mZ2 , mZ2 = 3mχ, g′ = 1,

|θe| = 0.031, and θµ = θτ = 0. It is clear from this figure that the annihilation to

charged leptons is unconstrained by current experimental searches. Note that the

Planck and Fermi-LAT constraints shown in the right panel of Fig. 4.9 assume a

100% annihilation rate into a single SM channel.
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4.4.3 Results

The allowed region of the parameter space in the mχ − mZ2 plane that satisfy

cosmological, indirect and direct detection constraints for this model are presented

in Fig. 4.10 for g′ = 1 and 4π, setting θα 6= 0 one at a time and keeping two

other mixing angles fixed to zero. For definiteness, in the figure we set m4 = 2mZ2 .

Notice that this choice is not relevant for the interaction between the SM neutrinos

and DM and only plays a role in the loop-induced processes that are sub-dominant.

Nevertheless, if the Z2 originates from a new U(1)′ gauge group, its massmZ2 , as well

as that of the Dirac neutrino m4, are generated after the breaking of the symmetry.

Thus, the natural expectation is that m4 is not much heavier than mZ2 as long

as the new gauge coupling g′ is O(1). Hence, unlike for the scalar example, it is

not appropriate to set m4 to a value above the electroweak scale while exploring

(sub-)GeV Z2 boson masses.

Below the electroweak scale constraints on the neutrino mixing parameters θα are

a priori much more stringent [251]. However, in the model under investigation

the heavy neutrino decays mostly invisibly to either a SM neutrino and the Z2 (if

m4 > mZ2), or a SM neutrino and a pair of the DM particles (ifm4 < mZ2), assuming

g′ & 1. This implies that the existing collider and beam dump constraints5 should be

rescaled with the corresponding branching ratios and become even weaker than the

non-unitarity constraints imposed previously for the scalar realisation. The bounds

from peak searches in leptonic decays of pions and kaons will however apply, since

they rely entirely on the kinematics of a two-body decay. Thus, the non-unitarity

constraints actually dominate down to m4 ≈ mK ≈ 0.5 GeV, where mK is the

kaon mass. In the region m4 ∼ 0.01 − 0.4 GeV, the bounds on Ue4 and Uµ4 from

peak searches are very stringent. We do not display them explicitly in Fig. 4.10,

because they are m4-dependent, while all the constraints shown in the figures have

an extremely sub-leading dependence on m4, as outlined above. Thus, Fig. 4.10 is

5If the heavy neutrino decays before reaching the detector, the constraints from beam dump
experiments will not apply at all.
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Figure 4.10: Constraints on the DM mass mχ and mZ2 . Along the blue lines,
computed with micrOMEGAs, the DM relic density matches the observed value. The
coloured shaded regions are excluded by different experiments. The lower bound
mχ & 10 MeV is set by observations of the CMB and BBN. See text for further
details.
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to be interpreted as generally valid for any neutrino mass m4 > mK .

The blue line was calculated with micrOMEGAs and represents the DM and vector

boson masses that will produce the correct relic abundance in a thermal scenario,

while the masses in the upper hatched area would generate too much DM. A key

difference with respect to the previous model is that here the DM annihilation cross

section to neutrinos proceeds via an s-channel and thus is enhanced for mZ2 ∼ 2mχ,

as can be seen from Eq. (4.4.2). This explains the second branch of the blue line

below the resonant condition in the panels with g′ = 1. A line where the relic

abundance can be obtained below mZ2 = 2mχ also occurs for g′ = 4π but, since the

cross section is larger, the relic abundance is achieved for mχ > 100 GeV, which is

ruled out by XENON1T. This resonant effect also explains the shape of the indirect

detection constraints which follow the same trend.

Similar to the previous model in Sec. 4.3, the direct detection constraints from

XENON1T become relevant at large DMmasses for g′ = 4π. However, even for values

of the gauge coupling this large, we have checked that direct detection constraints

from the elastic DM scattering off electrons are negligible.

The complementarity between cosmological observables, DM, and neutrino exper-

iments allows us to set very strong bounds on the DM and Z2 masses for this

particular realisation, ruling out significant portions of the parameter space. There

are still allowed regions for larger values of the gauge coupling consistent with a

thermal DM candidate. However, future neutrino experiments such as DUNE will

be able to probe down to the value for which the correct relic abundance is obtained

in some parts of the parameter space.

It is worth noticing that the sensitivity of present and future neutrino detectors to

DM annihilations into neutrinos is largely independent of the flavour to which the

sterile neutrino dominantly couples. Indeed, as discussed in Sec. 1.4 regardless of the

original flavour composition produced by the DM annihilations, neutrino oscillations

will tend to populate all flavours with similar fractions when the flux arrives to

the detector. The main differences between the three rows in Fig. 4.10 are due to
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Figure 4.11: Values of the DM mass mχ and the coupling g′ required to reproduce
the observed relic abundance. We have fixed mZ2 = 0.04, 0.2, 1, and 5 GeV, and
have considered the representative case of θe = 0.031, while keeping θµ,τ = 0. Along
(above) the blue lines the DM relic density matches (is less than) the observed value.
We do not consider mχ > mZ2 to ensure the neutrino portal regime. The lower
bound mχ & 10 MeV is set by observations of the CMB and BBN.

the different magnitude of the mixing allowed to the different flavours, with more

stringent constraints applying for the mixing with muon neutrinos.

Finally, in Fig. 4.11, we fix mZ2 to several values, namely, mZ2 = 0.04, 0.2, 1, and

5 GeV, and show the lines corresponding to the correct relic abundance in the mχ−g′

plane. These results were obtained using micrOMEGAs. Small values of g′ are ruled

out except for DM masses in the proximity of the resonance, i.e., when mχ ≈ mZ2/2.

As can be seen from this figure, a lighter dark vector boson allows for smaller values

of g′. For mZ2 & 1 GeV, values of g′ & 1 are required to yield the observed relic

density, except for the resonant region. The dip towards mχ ≈ mZ2 corresponds to

the opening of new DM annihilation channels at tree level.
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4.5 Conclusions

Due to SU(2) gauge invariance, one expects that neutrinos share all their inter-

actions with their charged lepton counterparts, which are much easier to detect.

Consequently, the usual concern when studying neutrino-DM interactions is whether

they actually provide with any additional information relevant to the DM phenomen-

ology. In this chapter, we have explored whether a dominant neutrino-DM interaction

is allowed in simple gauge-invariant models without conflicting with searches through

charged leptons.

We first studied the simplest scenario, in which DM couples to the full lepton doublet.

We verified that, as long as the DM is heavier than the charged lepton(s) it couples

to, the bounds from DM annihilation to charged leptons preclude DM-neutrino

couplings sizeable enough to be probed. In fact, in this regime, charged lepton

constraints are so strong that they rule out all of the parameter space that would

not lead to overclosure of the Universe. Alternatively, if DM couples to τ (µ) and is

lighter than the charged lepton, its phenomenology is dominated by the interaction

with neutrinos. This region is constrained by present neutrino detectors and will be

fully probed for certain DM masses by future experiments.

We have then explored the option of the neutrino portal to DM and showed, as

an example, two specific realisations with scalar and vector couplings, respectively.

In the neutrino portal DM couples directly to new heavy neutrinos. Indeed, their

singlet nature makes them natural candidates to probe the dark sector since they are

allowed to interact with it via relevant or marginal operators. These right-handed

neutrinos are also a natural addition to the SM particle content so as to account

for the evidence for neutrino masses and mixings. The mixing between the SM

neutrinos and the new singlets will induce DM-neutrino interactions at tree-level,

but DM-charged lepton couplings only at loop level.

In the two realisations considered we find that it is indeed possible for neutrino

detectors to place the most stringent and competitive bounds through searches for
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DM annihilations to neutrinos. Present searches at Super-Kamiokande, Fréjus, or

Borexino are ruling out large areas of the parameter space. Interestingly, future

projects such as Hyper-Kamiokande, DARWIN, or DUNE will be able to probe the

cross section very close and beyond the value required to explain the DM abundance

solely by annihilation to SM neutrinos.



Chapter 5

Raising the neutrino floor with

new physics

Experimental confirmation of a prediction is merely a measure-
ment. An experiment disproving a prediction is a discovery.

— Enrico Fermi

In the previous chapters, we have examined how useful neutrinos are in order to

deepen our understanding of the DM nature. However, neutrinos can also become a

challenging obstacle in this quest. In fact, future DM direct detection experiments

will soon be sensitive to a new source of background, due to coherent elastic neutrino-

nucleus scattering (CEνNS), which proceeds through the exchange of a Z boson in

the SM [261]. Neutrinos with energies in the 1− 100 MeV range are quite abundant,

cannot be shielded against, and could induce keV scale nuclear recoils which would

be difficult to distinguish from those caused by DM particles. For example, the recoil

spectrum expected from the 8B solar neutrino flux would resemble that of a 6 GeV

DM particle (with a specific scattering cross-section) [262]. This is interpreted as

a “neutrino floor” [263] in the DM-nucleus scattering cross section and DM mass
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parameter space, which corresponds to the threshold below which the number of

neutrino events is expected to be much larger than the number of DM events, which

prevents to identify DM events with certainty. Discriminating these signals would

require exploiting their different contributions to annual modulation [262,264], using

a combination of complementary targets [265] and directional detectors [266,267] or

employing detectors with improved energy resolution [268].

Despite the extremely small energy deposition and weak scale cross section, CEνNS

has recently been observed by the COHERENT collaboration [269] for the first time,

using neutrinos from a spallation source. Direct detection experiments will soon be

sensitive to the CEνNS from solar neutrinos, which takes place at lower energies,

thereby providing complementary information on this process. For example, the

xenon based LZ [270], currently under construction, expects to observe approximately

seven neutrino events in a three-year run. This also offers the possibility of studying

different solar models [271], and it is perhaps a unique opportunity to measure

neutrinos from the CNO cycle [272,273] and thus estimate the solar metallicity [272].

New physics in the neutrino sector (described in terms of new mediators between

neutrinos and electrons and/or quarks, or in terms of non standard effective inter-

actions) can increase the CEνNS scattering cross-section at low energies (as well as

the elastic neutrino-electron scattering) [259,274–285]. This can raise the neutrino

floor, inevitably affecting the search for light DM particles in upcoming experiments,

especially in those that will explore the low-mass DM window. In this chapter we

study a range of simplified models with emphasis on low-mass mediators in the

neutrino sector to which we apply the most recent constraints in order to determine

how high the neutrino floor can be. This information is crucial in order to correctly

interpret a future signal in direct DM detectors.

We have found that the CEνNS floor can be raised by several orders of magnitude

in the region with DM mass below 10 GeV when a new scalar mediator is assumed.

However, the impact that such a mediator could have on the equation of state

of a supernovae core would require further analysis. The increase is only by a
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factor of approximately 2 for a new vector mediator. This result already affects

the background predictions for xenon based experiments such as XENON1T [45]

and, more importantly, it has deep implications for future results from detectors

that explore the low-mass DM window, such as SuperCDMS SNOLAB [286] and

NEWS-G [287].

5.1 The CEνNS floor in the presence of new

hysics

The total number of expected events from CEνNS in a direct DM detection exper-

iment with a given exposure, ε, can be computed by integrating the CEνNS cross

section, dσνN/dER, and the incoming flux of neutrinos, dφν/dEν , over the resulting

nuclear recoil energy,

NCEνNS = ε

mN

∫ Emax

ET
dER

∫
Emin
ν

dEν
dφν
dEν

dσνN
dER

, (5.1.1)

where mN is the nuclear mass, and Emin
ν is the minimum neutrino energy to produce

a nuclear recoil of energy ER. In the SM, the coherent scattering of neutrinos off

nuclei takes place through the exchange of a Z boson, and the resulting cross section

reads [261]
dσνN
dER

= G2
F

4π Q
2
vNmN

(
1− mNER

2E2
ν

)
F 2(ER), (5.1.2)

where GF is the Fermi constant, QvN = N− (1−4 sin2 θw)Z is the weak hypercharge

of a target nucleus containing N neutrons and Z protons, and F 2(ER) is the nuclear

form factor, for which we have taken the parametrisation given by Helm [288].

The scattering cross section benefits from a coherence factor that scales as the

total number of nucleons squared Q2
vN ∼ A2. The neutrino flux at low energies

is dominated by solar neutrinos, and the relevant fluxes used in this work can be

found in Refs. [289, 290]. At higher energies, atmospheric neutrinos are the most

important source, although their flux is substantially smaller [291]. As a side note,

although there are systematic and statistical uncertainties of the order of 1− 10%
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associated to the flux of solar neutrinos, we will neglect these in calculating the

neutrino floor. As we will show below, the effect of new physics can be much larger

than such uncertainties.

We construct the neutrino floor as follows, based on Ref. [262]. For a given target

nucleus, a minimum energy threshold ET is set and, using Eq. (5.1.1), the exposure

required to give 1 expected count of CEνNS is calculated. Using this value of the

exposure, one can compute the minimum spin-independent WIMP-nucleon elastic

cross section, σSIχn, that can be excluded at the 90% confidence level for each value

of the DM particle mass, mχ. For a background-free analysis, this lies along the 2.3

DM event isovalue contour. The threshold energy is then varied across the relevant

range and, by taking a lower envelope on σSIχn, we obtain the contour in parameter

space along which, given an optimal choice of the threshold to minimise the neutrino

background, there will be as many CEνNS events as WIMP events. Alternatively,

it is also possible to define the neutrino floor as a DM discovery limit using spectral

information and including uncertainties in the solar neutrino fluxes [262]. The

neutrino floor can also be generalised to other types of DM-nucleus effective field

theory operators [292], but in this work we assume only a spin-independent WIMP-

nucleon interaction. In our calculation of the DM signature we have assumed a

Standard Halo Model with a local density of 0.4 GeV cm−3, a central velocity of

230 km/s, and a velocity dispersion of 156 km/s.

Disentangling DM and neutrino signals in the region of parameter space below

this line is not impossible, but the CEνNS floor serves as an indication of the

point at which neutrinos become a significant obstacle to DM direct detection.

New physics in the neutrino sector can contribute to the predicted CEνNS cross

section, thus shifting the neutrino floor. These contributions are larger for light

mediators [275,276,278,283,292,293].
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5.1.1 New physics models

We have considered a set of low scale simplified models in which the SM structure is

extended by the inclusion of a new light mediator [184,294] between the neutrinos

and quarks (and/or leptons). An obvious concern of dealing with simplified models at

low scales is the difficulty in realizing such models in UV complete frameworks. This

concern is justified as such models typically have chiral anomalies, requiring extra

light fermion content to fix it, or non-trivial scalar sectors associated to the breaking

of some symmetry at low scales. To mitigate this worry, we will focus on low scale

simplified models that may have a clear UV completion: gauged B − L [259, 295],

gauged B − L(3) of the third family [296], sequential Z ′ [297] and scalar mediators

(see e.g. Ref. [298]).

• Vector/Axial Vector Mediator:

The introduction of a new vector field, Z ′, that couples to SM fermions gives

rise to new terms in the SM Lagrangian of the form

L ⊃ −
(
gZ′JµZ′ −

g

cW
ε′JµZ − eεJµem

)
Z ′µ , (5.1.3)

where gZ′ is the gauge coupling of the new gauge group; JZ′ , Jem, and JZ

are the Z ′, electromagnetic, and Z currents; and ε and ε′ parametrize the Z ′

mixing with the photon and the Z boson, respectively. Here we will not study

any model with kinetic mixing1, so we can disregard the last term in eq. (5.1.3).

To ease the notation, we parametrise the Lagrangian as

L ⊃ −
∑
f

cf f̄γ
µfZ ′µ + h.c. , (5.1.4)

where the sum runs over all left- and right-handed fermion fields, that is

f = QL, uR, dR, L, eR for each flavour. For the B − L case, cf = gB−L/3 for

quarks and cf = −gB−L for leptons. In the sequential Z ′, all couplings come

1If the U(1) studied here is a subgroup of a non-Abelian gauge group, kinetic mixing is forbidden
at tree level, although it will be induced at loop level. The loop contribution depends on the
fermion content of the UV theory, but generically we expect it to be suppressed by a factor of
ε ∼ gB−Le/16π2 ∼ 2× 10−3gB−L, and is therefore negligible.
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from the mass mixing to the SM Z boson, ε′, and thus cf are given by gZ′ε′

times the Z couplings of each fermion. In the B − L(3) model, the couplings

to the third family are identical to the B − L, while the coupling to the first

two comes from Z − Z ′ mass mixing. The resulting CEνNS cross section can

be written as

dσνN
dER

= dσSMνN
dER

−
(
GFmNQνNQ

′
νN,v(2E2

ν − ERmN)
2
√

2πE2
ν (2ERmN +m2

Z′)

−
Q′2νN,vmN(2E2

ν − ERmN)
4πE2

ν (2ERmN +m2
Z′)2

)
F 2(ER), (5.1.5)

where the SM cross section is given in Eq. (5.1.2). Here QνN and Q′νN,v are

the coherence factors of the cross section, the latter being given by

Q′νN,v =
[
(2Z +N)(cQL + cuR)

2 + (Z + 2N)(cQL + cdR)
2

]
cν . (5.1.6)

Eq.(5.1.4) assumes a vector mediator. However we did check the case of

an axial coupling. Typically, axial interactions contribute less significantly

to the CEνNS cross section than vector interactions, as the former couple

to the overall spin of the nucleus [299–302]. The coherence factor for an

axial interaction is proportional to the nuclear angular momentum, and does

not benefit from the ∼ A2 enhancement. Since the couplings cν are still

affected by the constraints from electron interactions, one should not expect

a large contribution from the axial component for heavy nuclei. However,

this contribution can be significant for light targets provided they have non-

vanishing nuclear angular momentum. In our study, we have considered Ge

and Xe (which are heavy targets), and He (which has zero spin), for all of

which the contribution from axial couplings is negligible, and thus has been

dropped out in Eq. (5.1.6).

To obtain the CEνNS cross section for any of the models considered here, we

simply need to identify the corresponding cf couplings. Different models have

different couplings to quarks and leptons, leading to distinct constraints on

the values of the gauge coupling and mediator mass: the constraints used in
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this chapter for the B − L(3) model are taken from Ref. [260,296,303] for the

case tan β = 10, which leads to ε′ ' 0.01gB−L(3); while the constraints on the

B − L model are a combination of those used in Refs. [259,275,304,305] and

Big Bang nucleosynthesis (BBN) constraints given in Ref [306]. The Sequential

SM turns out to be extremely constrained and the resulting contribution to

the neutrino floor is very small, thus we will not discuss it further.

• Scalar/Pseudoscalar mediator:

The other scenario of interest which may impact the neutrino floor is consti-

tuted by a light scalar mediator that interacts with SM fermions [85,172]. We

consider here a simple extension of the form

L = −yν ν̄cLφνL −
∑
f 6=ν

yf f̄φf −
∑
f 6=ν

y5
f f̄φiγ5f + h.c. , (5.1.7)

where the sum runs over all charged fermions. Note that in this scenario the

scalar coupling violates lepton number2. For simplicity, we assume that all

SM particles have the same coupling yf = y to φ. We also neglect y5
f , as

this pseudoscalar coupling leads to a very small contribution to the coherent

scattering cross section (see e.g. [302]). The resulting CEνNS cross section

reads
dσνN
dER

= dσSMνN
dER

+
y4Q′2νN,sm

2
NER

4πE2
ν(2ERmN +m2

φ)2F
2(ER) , (5.1.8)

where mφ is the mass of the scalar mediator and the new coherence factor

Q′νN,s = 13.8A − 0.02Z is computed using Refs. [307–310] to calculate the

scalar-quark form factors.

Compared with the models with a vector mediator discussed above, the specific

couplings of this scalar model are less motivated by theory. It therefore has

fewer model specific constraints. In this work, we have considered the bounds

from astrophysical and cosmological sources discussed in Ref. [311], and the

results of the COHERENT experiment [269].

2One could also work with a lepton number conserving model, at the expense of including
right-handed neutrinos. The predictions for CEνNS would not change but this scenario is more
affected by supernova constraints, which limit the contribution to the neutrino floor.
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Figure 5.1: The gray areas represent the regions excluded in the case of a vector
(left panel) and scalar (right panel) mediator. The solid black line represents the
values of the mediator coupling that we have used to determine the maximum
contribution to the neutrino floor in both cases. In the scalar case we include
constraints from supernovae in green: both those from neutrino diffusion (dashed)
and the core equation of state (dot-dashed).

Fig. 5.1 represents the areas in the mediator mass and coupling parameter space

that are available for models with new vector (left panel) and scalar (right panel)

mediators. Gray regions are excluded by various astrophysical and cosmological lim-

its, as well as bounds from neutrino and neutron scattering experiments. The upper

bound on new physics couplings obtained from the COHERENT observation [269]

is shown by means of a dashed gray line [282,311,312]. The green dashed and green

dot-dashed lines for scalar mediators indicate the values of the neutrino coupling for

which the neutrino diffusion rate and the core equation of state in supernovae could

be significantly altered and need to be reevaluated. Vector mediators are extremely

constrained by a combination of bounds from neutrino experiments (mainly Borexino,

GEMMA and TEXONO) as well as astrophysical constraints (on supernovae and

other stellar systems), fixed target and beam dump experiments (CHARM, U70

and E317) and e+e− colliders (such as BaBar and Belle). Contrariwise, models with

extra scalar mediators are in principle more flexible (with the caveat that supernovae

limits might have to be reevaluated).
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5.2 Results

For each simplified model described in Sec. 5.1, we have considered the largest

possible values of the neutrino couplings as a function of the mediator mass that is

allowed by the various experimental constraints (represented as a solid black line in

Fig. 5.1), and we have used these to determine the maximum contribution to the

CEνNS cross section. The height and shape of the CEνNS floor vary for different

target nuclei. Here we consider three different materials. Germanium and xenon

have qualitatively similar shapes, but we include both as they are common targets in

low and high mass searches respectively, such as SuperCDMS [286], XENON1T [45],

LZ [270], and DARWIN [148]. We also include helium, as an example of a very

light target, which has been proposed as a way of probing very low DM masses in

a future phase of the NEWS-G experiment [287]. The sensitivity line for NEWS-G

has been extracted from Ref. [313]. The very low mass of the He nucleus allows solar
8B neutrinos to generate much higher energy recoils. The resulting flattening of the

recoil spectrum prevents us from distinguishing 8B neutrinos from higher mass DM

simply by choosing a higher energy threshold, and so the neutrino floor is noticeably

flatter than it is for heavier targets.

Figure 5.2 represents the resulting CEνNS floor for the two vector mediated models

discussed in Sec 5.1.1. For comparison, the SM contribution is shown as a solid

grey line. We can observe that the new physics contribution can be greater than a

factor of 2 for DM masses below 10 GeV. The B − L model (black dashed line) has

a greater enhancement at low masses than the B −L(3) (black dot-dashed line) due

to less stringent constraints on the mediator mass. However, at higher energies the

B−L(3) enhancement is comparable, as larger couplings to the third generation are

allowed with higher mediator masses. We also observe that current direct detection

experiments are beginning to probe the region of parameter space below the “new”

neutrino floor, suggesting that future detectors could be used to put competitive

limits on the properties of these new vector mediators. It should be noted that
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Figure 5.2: Upper: CEνNS floor for a new vector mediator, computed for direct
detection experiments utilising, from left to right, He, Ge, and Xe. The SM neutrino
floor (solid, grey) is compared with the maximum level reached in a B − L (dashed,
black) and a B − L(3) (dot-dashed, black) model. For comparison, the sensitivities
of some current (solid) and future (dashed) direct detection experiments are shown
in color. Lower: Ratio of the new neutrino floor to the SM result. The sensitivities of
representative direct detection experiments are also shown in this parameter space.

astrophysical uncertainties in the parameters that describe the DM halo can lead to

a greater effect in the DM discovery limit over the neutrino floor [314].

As expected, models with scalar mediators allow for a much larger enhancement of

the neutrino floor, represented by a dashed line in Fig. 5.3. However, the spectacular

increase of several orders of magnitude for DM masses below 10 GeV is subject to the

reevaluation of supernovae constraints in this kind of lepton-violating models. As

pointed out in Ref. [311], it is uncertain whether this range of mediator masses and

couplings can induce changes in the equation of state that describes the supernova

core and the physics of neutrino diffusion. To account for these effects, in Fig. 5.3

we also show the results when neutrino diffusion are limits included (dot-dashed

line) and when a strict limit on the supernova core equation of state is also added

(dotted line). The spectacular enhancement of the neutrino floor at small DM masses

corresponds to very light new mediators (with masses in the MeV range) [85, 172],

while for heavier mediators, such as those considered in Ref. [276], the increase is

much more moderate.

The new scalar mediator gives very little enhancement to the neutrino floor at higher
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Figure 5.3: As in Fig. 5.2, but for a scalar mediator. For the constraints on
our model, we consider three different cases discussed in Sec 5.1.1: one in which
supernova constraints are neglected (dashed), one in which supernova diffraction
constraints are included but bounds from the SN core EoS are ignored (dot-dashed)
and one in which all supernova constraints are included (dotted).

WIMP masses, since the region of heavy mediators is more constrained from particle

physics bounds, meaning that the best prospects to constrain such models come

from experiments with low energy thresholds such as SuperCDMS SNOLAB.

The shape and height of the neutrino floor depend on the nature of the DM interac-

tion, and thus they change significantly for different EFT operators [292], especially

when these feature non-trivial momentum or velocity dependence. However, we have

checked explicitly that the ratio by which the neutrino floor is raised with respect

to its SM value is only slightly distorted. In particular, the maximum increase in

the neutrino floor at small DM masses is insensitive to the choice of EFT operator.

Therefore, the lower panels of Figures 5.2 and 5.3 are a useful guide to the results

for all other EFT operators.

5.3 Conclusions

In this chapter, we have determined the contribution from new physics models to the

coherent neutrino scattering (CEνNS) floor, which is expected to be within the reach

of next-generation DM direct detection experiments. We have considered a collection
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of simplified models that include a new vector or scalar mediator between the SM

neutrino and the SM quarks and leptons. We have incorporated the most recent

constraints from various sources of experiments and astrophysical observations and

used them to determine the maximum reach of the neutrino floor in the parameter

space of elastic spin-independent DM scattering. In doing this, we have payed

particular attention to the limits on new physics that can be derived from the recent

observation of CEνNS by the COHERENT collaboration.

We have observed that, in the case of vector mediators embedded in UV complete

frameworks, the CEνNS floor can be raised by approximately a factor of two for

small DM masses (below 10 GeV, where the main contribution is due to solar

neutrinos) and by a factor of 1.3 for large DM masses (where atmospheric neutrinos

dominate). Experimental limits from neutrino and beam dump experiments are the

main obstacle that limits the height of the neutrino floor in these scenarios.

In the case of new scalar mediators, the neutrino floor can be raised by several orders

of magnitude in the region of low-mass DM (below 10 GeV), a feature that is defin-

itely within the reach of upcoming experiments such as SuperCDMS SNOLAB and

NEWS-G. However, this spectacular enhancement is subject to the re-examination

of supernovae bounds, as new physics can induce changes in the equation of state

of the supernova core that must be carefully analysed. If these bounds turn out to

be as strong as suggested in Ref. [311], the maximum enhancement of the neutrino

floor due to a light scalar mediator would be quite small.

In conclusion, our results indicate that the expected CEνNS background in the

recent XENON1T results could increase by a factor of two or even more. More

importantly, future claims by DM experiments in the low-mass window must be

carefully examined to discriminate neutrino and DM signals well above the expected

SM neutrino floor.



Chapter 6

Conclusions: Neutrinos as a tool

to unveil the dark matter mystery

In eternity there is no time, only an instant long enough for a
joke.

— from Steppenwolf by Hermann Hesse

The unknown origin of neutrino masses and mixing together with the existence of the

DM component of the Universe constitute the most significant experimental evidence

for physics beyond the SM and therefore, the best windows to explore new physics.

Neutrinos and DM also share an elusive nature with very weak interactions with the

other SM particles. Indeed, neutrinos only participate in the weak interaction of the

SM while all direct and indirect searches for DM interactions with the SM, other

than gravity, are so far negative or inconclusive. A tantalising avenue of investigation

is the possibility of a stronger connection between these two sectors. In this case,

the best way to probe DM would be through the neutrino sector.

Non-vanishing DM-neutrino interactions have several important cosmological and

astrophysical consequences. They can explain the observed DM relic density if DM
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has been thermally produced and annihilations into neutrinos are the dominant

channel. They can also lead to DM indirect detection signatures if DM annihilates

or decays into neutrinos in the galaxy. In Chapter 2 we have seen how, in the

absence of a DM signal, indirect detection searches can set strong constraints on the

annihilation cross section of DM to neutrinos across several orders of magnitude in

the DM mass. Furthermore, future neutrino experiments like DUNE or HK doped

with gadolinium will be able to rule out thermal DM candidates for DM masses

between 10−100 MeV. We exploit these searches to study different simplified models

in which DM couples to neutrinos in Chapter 3. We found that the complementarity

between cosmological and astrophysical constraints can be used to test large areas

of the allowed parameter space for such models.

Nevertheless, SU(2) gauge invariance would naively dictate that neutrinos share

all their interactions with their charged lepton counterparts, which are much easier

to detect. We have therefore explored in Chapter 4 whether a dominant neutrino-

DM interaction is allowed in simple gauge-invariant models without conflicting with

searches involving charged leptons. In fact, if DM couples to the full leptonic doublet,

we have found that the bounds from DM annihilation to charged leptons preclude

DM-neutrino couplings sizeable enough to be probed, even ruling out all of the

parameter space that would not lead to overclosure of the Universe. However, if DM

couples directly to new sterile neutrinos, the mixing between the SM neutrinos and

the new singlets will induce DM-neutrino interactions at tree-level, while DM-charged

lepton couplings only at loop-level. We have discussed two possible realisations with

a scalar and a vector mediator between the DM and the right-handed neutrinos and

we found that it is indeed possible for neutrino detectors to place the most stringent

and competitive bounds through searches for DM annihilations to neutrinos. It

would be very interesting to study whether generating light neutrino masses can set

complementary constraints on the parameter space by invoking a mass mechanism

such as the one presented in [315]. Together with indirect detection constraints from

future experiments such as HK, DARWIN, or DUNE, these bounds will effectively
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cover most of the parameter space, probing if the right-handed singlet fermions that

can explain the origin of neutrino masses also represent the best window to the

discovery of the dark matter sector.

At the same time, direct detection experiments are becoming so sensitive that it is

possible to study neutrino physics with them. In Chapter 5 we have determined the

contribution from new physics models to the coherent neutrino scattering (CEνNS)

floor. By considering two simplified models with a vector and a scalar mediator

between the neutrinos and the charged leptons and quarks, we have seen that, for

DM masses below ∼ 10 GeV, the neutrino floor can be raised by a factor of 2 or by

several orders of magnitude for a vector and a scalar mediator respectively. This

implies that potential future discovery claims by DM detectors for low DM masses

should be carefully studied to understand whether they correspond to a DM signal or

to new physics in the neutrino sector. Furthermore, if we were able to discriminate

such signals, it would be intriguing to see whether one can set competitive constraints

on the new physics parameters.

Some interesting continuation of this work would be to study the constraints that

neutrino detectors can set on decaying DM models. This analysis would be very

similar to the one performed in 2 but it would require the use of a different energy

spectrum. Similarly, DM models with a vector mediator could be further constraint

by studying the neutrinos produced in the χ + χ̄ → 2Z ′ → 2ν + 2ν̄ annihilation

channel. This is more challenging since the spectrum changes significantly but the

results could allow us to rule out certain DM models.

In conclusion, neutrinos play a very important role in our understanding of DM.

Recognising what the nature of DM is will only be possible through the comple-

mentarity between different observables at distinct energy scales. I hope the work

presented in this thesis helps us to further our understanding about what DM is, or

at least, what it cannot be.
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