
Durham E-Theses

Adaptive meshless point collocation methods:

investigation and application to geometrically

non-linear solid mechanics

FAN, LEI

How to cite:

FAN, LEI (2019) Adaptive meshless point collocation methods: investigation and application to

geometrically non-linear solid mechanics, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/13137/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13137/
 http://etheses.dur.ac.uk/13137/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Adaptive meshless point collocation
methods: investigation and
application to geometrically
non-linear solid mechanics

Lei Fan

Submitted as partial consideration towards

the degree of Doctor of Philosophy

Sustainable Infrastructure Research Challenge

Department of Engineering

University of Durham

United Kingdom

June 2019



This thesis is dedicated to
my parents.



Adaptive meshless point collocation methods:

investigation and application to geometrically

non-linear solid mechanics

Lei Fan

Abstract

Conventional mesh-based methods for solid mechanics problems suffer from issues re-

sulting from the use of a mesh, therefore, various meshless methods that can be grouped

into those based on weak or strong forms of the underlying problem have been proposed

to address these problems by using only points for discretisation. Compared to weak

form meshless methods, strong form meshless methods have some attractive features

because of the absence of any background mesh and avoidance of the need for numerical

integration, making the implementation straightforward. The objective of this thesis is

to develop a novel numerical method based on strong form point collocation methods for

solving problems with geometric non-linearity including membrane problems. To address

some issues in existing strong form meshless methods, the local maximum entropy point

collocation method is developed, where the basis functions possess some advantages such

as the weak Kronecker-Delta property on boundaries. r- and h-adaptive strategies are

investigated in the proposed method and are further combined into a novel rh-adaptive

approach, achieving the prescribed accuracy with the optimised locations and limited

number of points. The proposed meshless method with h-adaptivity is then extended

to solve geometrically non-linear problems described in a Total Lagrangian formulation,

where h-adaptivity is again employed after the initial calculation to improve the accu-

racy of the solution efficiently. This geometrically non-linear method is finally developed

to analyse membrane problems, in which the out-of-plane deformation for membranes

complicates the governing PDEs and the use of hyperelastic materials makes the compu-

tational modelling of membrane problems challenging. The Newton-Raphson arc-length

method is adopted here to capture the snap-through behaviour in hyperelastic mem-

brane problems. Several numerical examples are presented for each proposed algorithm

to validate the proposed methodology and suggestions are made for future work leading

on from the findings of this thesis.
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Chapter 1

Introduction

1.1 Overview

Most physical phenomena in nature can be described by a set of partial differential

equations (PDEs), an example being the underlying mechanical behaviour of a structure

subjected to externally applied loads and boundary conditions [2,3]. However, only lim-

ited cases with simple geometry and boundary conditions have analytical solutions and

due to the mathematical complexities, the majority cannot be solved analytically. There-

fore, numerical methods become indispensable tools to provide approximated solutions

for a wide range of problems. As only computer programs are required, numerical anal-

yses could be regarded as more environmentally friendly as compared to experimental

studies.

The solution of the problem numerically starts by turning a set of PDEs into some

more amenable formulation, e.g. a weak form. A problem domain needs to be discretised

first, and the governing PDEs and boundary conditions are imposed to formulate the

system of equations. A solution of this system is calculated, which is verified and com-

parisons with theoretical and experimental results can serve to validate the numerical

method.

Plenty of numerical methods, which are generally composed of mesh-based and mesh-

less methods, have been proposed for solving solid mechanics problems. The finite el-

ement method (FEM) proposed in [4] is by far the most popular mesh-based method

1
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which has been applied to solve a variety of problems. To implement the FEM, a contin-

uum domain is represented by discrete nodes which are connected together to form small

volumes, known as elements. Within each element, simple rules are set on variation of

the field variable, using shape (or basis) functions. Interpolations in this method rely

on the connectivity of the nodes or a mesh [5–7]. The governing PDEs and boundary

conditions are applied to elements, assembling into a system of equations spanning the

entire domain. The resulting system is then solved for the unknown field variables which

are the nodal displacements in the case of solid mechanics. The approximations of dis-

placement are then reused to obtain stresses and strains at any point in the problem

domain. Significant contributions have been made using the conventional FEM with

applications to a very wide range of solid mechanics fields, including static linear elas-

ticity [8], vibration [9], hydrostatic and hydrodynamics [10], non-linear (both material

non-linear [11] and geometrically non-linear [12]) problems, multi-material analysis [13]

and biomechanics [14].

The FEM is a robust and well-established technique, however, as a wider range of phe-

nomena have been simulated, the limitations of this conventional computational method

have become apparent [15, 16]. There are many problems of industrial and academic

interest, which cannot be easily treated by the classical FEM because the reliance of the

method on a mesh leads to complications for certain problems with special properties,

e.g. large deformation analysis is an area which presents a tough challenge to researchers

in terms of accuracy, resulting from mesh distortion. The dependence on a mesh in the

FEM has been partly dealt with by using the boundary element method (BEM) that has

some advantages over the FEM. The BEM first appeared for solving elasticity, where the

accurate mathematical description of the physics provides highly accurate solutions [17].

All elements are used at only boundaries, so volume integrals are converted to bound-

ary integrals, making the BEM more computationally efficient than the FEM. In spite

of the wide applications on certain fields of problems, the BEM still suffer from some

drawbacks. As the resulting coefficient matrix in the final system of equations is full and

non-symmetric, the computational cost for three-dimensional problems or large scale

problems increases, which reduces the efficiency of the BEM [18,19]. Then, isogeometric

analysis (IGA) proposed in [20] represents a recently developed technology in computa-



1.2. Thesis outline 3

tional mechanics where element shapes match physical geometries (derived from CAD

for instance) exactly. The use of highly smooth B-spline basis functions in IGA methods

(which have been largely applied in the FEM) provides accurate solutions to non-linear

problems. However, for complicated geometries, additional efforts are still required to

construct elements, which restricts its applications.

Conventional numerical methods, relying on a mesh for the discretisation of a con-

tinuum therefore have some issues with meshing and remeshing and meshless methods

attract much attention, in which the approximation of a solution is entirely based on

nodes (particles or points) without any necessity of forming elements [21]. Although

various meshless methods have been proposed, they remain to be fully developed for

commercial use and possible to be widely applied and compete with mesh-based meth-

ods. The goal of this thesis is the investigation of a certain type of meshless method,

which enable efficient simulations of some challenging engineering problems involving

large deformations. This topic will be dealt with in detail in the following chapters.

1.2 Thesis outline

This thesis is concerned with the theoretical derivation, numerical development and

subsequent implementation of meshless methods. The research work can be split into

two major parts. The first part, including Chapter 3 and 4, concerns the investigation

and development of a novel meshless method and adaptive strategies. The second part,

including Chapter 5 and 6, is an application of the proposed novel method to some

problems with geometric non-linearity. The contents of each chapter are detailed in the

following.

• Chapter 1 presents an overview of research background and a general description

of the thesis with an indication of notation.

• Chapter 2 provides a literature review of meshless methods for solid mechanics

problems. Meshless basis functions are introduced and some representative ex-

amples are reviewed. The history and development of meshless methods are cov-

ered followed by their classification, together with corresponding advantages and
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disadvantages. Some research challenges in meshless methods and more detailed

motivations of this thesis are discussed.

• Chapter 3 starts with the setting up of the governing PDEs and boundary condi-

tions in strong form for both Poisson and linear elasticity problems. Then the basic

formulations and numerical implementation of the classical strong form-based re-

producing kernel collocation method (RKCM) are described. As the RKCM suffers

from some issues, a local maximum entropy basis function is employed for the first

time in the author’s paper, yielding the local maximum entropy point collocation

method (MEPCM) which can facilitate those problems. The influence domains,

weight functions and the first and second derivatives of this novel method are

introduced followed by a discussion of implementation issues. Some numerical ex-

amples including two-dimensional Poisson problems and one- and two-dimensional

linear elasticity problems, are analysed to demonstrate the performance of the con-

ventional RKCM and the proposed MEPCM. Comparisons in terms of accuracy,

computational time and floating point operations of using these two methods are

made.

• In Chapter 4, various adaptive strategies are developed for the MEPCM. After

a literature review of error estimation and refinement strategies, pure r- and h-

adaptive strategies in the MEPCM are developed to improve the accuracy of the

solution. Since the use of a pure adaptive strategy cannot achieve the prescribed

accuracy efficiently, these two individual adaptivities are combined to produce a

novel rh-adaptivity approach. The implementation issues in terms of determin-

ing the number of the source points in the local support domain are discussed.

The one- and two-dimensional numerical examples are studied using uniform re-

finement, r-, h- and combined rh-adaptivities. Comparisons in terms of accuracy

and computational cost using different strategies are accomplished to validate the

proposed method and their efficiency.

• Chapter 5 analyses geometrically non-linear problems using the MEPCM with h-

adaptivity for the first time. The kinematics of large deformation and stress and

strain measures used in this chapter are first reviewed. The governing PDEs and
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boundary conditions for large deformation mechanics are then described using the

Total Lagrangian formulation with the MEPCM and the formed non-linear system

of equations is solved by the Newton-Raphson method, where the choice of the stop-

ping criterion is discussed. In large deformation analysis, h-adaptivity is employed

after the initial calculation, where the error estimators used for small deformations

are extended to large deformation cases. Some one- and two-dimensional numerical

examples are analysed to demonstrate the proposed methods, where h-adaptivity

is adopted in selected examples.

• In Chapter 6 the geometrically non-linear analysis using the MEPCM developed

in Chapter 5 is extended to membrane problems. The configurations together

with corresponding kinematics for membrane problems are introduced. Strain and

stress measures for both linear elastic and hyperelastic material models are pre-

sented. The governing equations and boundary conditions for membrane problems

are described using the Total Lagrangian formulation. After that, the numerical

implementation using the MEPCM is given, where the Newton-Raphson arc-length

method is employed for solving the non-linear system with instability. Numerical

examples of prestretched membrane problems using different material models are

studied to validate the performance of the proposed formulations.

• Chapter 7 summarises all the research work mentioned above and provides an

outlook for future directions in terms of the investigation of meshless methods and

their applications.

In this thesis, some novel numerical techniques are developed for solving solid me-

chanics problems from Chapter 3 to Chapter 6, which is the main contribution. A strong

form-based MEPCM is proposed (for the first time in the author’s paper) for Poisson

and elasticity problems, having some advantages by comparisons with existing methods.

As there is a lack of study on various adaptive strategies in strong form-based meshless

methods, a novel combined rh-adaptivity is developed in the MEPCM based on the

single r- and h-adaptivities. Large deformation problems are modelled by this newly

proposed MEPCM with h-adaptivity and membrane problems are analysed using the

MEPCM.
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1.3 Notation

For clarity and consistency, matrix/vector notation is used for both theoretical derivation

and numerical implementation throughout all thesis chapters. In Appendices A and D,

matrix/vector notation is adopted and index notation is used in Appendices B-C for

derivations, which are more appropriate there.

The numerical algorithms used in this thesis were developed using MATLAB m-

script. All programs were run in MATLAB R2015b using an Intel(R) Core(TM) i7-4790

CPU @ 3.60 GHZ. The CPU times stated in the numerical examples are the average

times over 10 measurements.



Chapter 2

Meshless methods for solid

mechanics - a review

2.1 Introduction

Meshless methods, since their inception almost 40 years ago, have become a major re-

search focus as alternatives to mesh-based methods, achieving remarkable progress in

the field of solid mechanics [22]. Before reviewing the literature on meshless methods, it

is necessary to clarify the concept of “meshless”. As the name suggests, the term “mesh-

less” or “meshfree” indicates the ability of an approximation or interpolation approach

to be constructed entirely from discrete points (nodes) without the use of a predefined

mesh. In contrast, the connectivity of points is required in conventional mesh-based

approximations. Meshless methods possess some advantages over mesh-based methods

as explained in [23].

• The reliance on a mesh is removed, thus issues associated with mesh generation

for complicated geometries in three dimensions are addressed, which reduces the

computational cost for constructing a mesh.

• Local refinement as part of an adaptivity-based method is straightforward to im-

plement, improving the accuracy of the approximations without mesh regeneration.

• Problems with discontinuities or interfaces can be directly treated with minor cost

7
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and accuracy degradation as there is no need for tedious and time consuming

remeshing.

• Mesh distortion is not an issue in large deformation analyses.

Meshless methods form a group of numerical methods for solving PDEs in a discrete

way, where a continuum is divided into a set of discrete points without connectivity and

the unknown field variables are discretised at these points. The PDEs can be written in

terms of basis functions and their derivatives, assembling into a system of equations in a

weak or strong formulation. Some background on meshless basis functions is introduced

in the next section followed by the development and classification of meshless methods.

Finally, some of the research challenges in meshless methods are discussed as motivation

for this thesis.

2.2 Basis functions

In this section, the fundamentals of basis functions are introduced and four commonly

used meshless basis functions are reviewed. In numerical methods, a basis function is used

together with unknown field variables (i.e. values at surrounding nodes) to approximate

an unknown vector of continuous field {u} in two dimensional elasticity problems as

{u} ≈ {uh} =
n∑
s=1

[φs]{ds} (2.1)

where {uh} is a 2 × 1 vector of the approximation of the solution, s is the nodal index

with s = 1, 2, ..., n, n is the number of surrounding nodes (as will be described in mesh-

based and meshless basis functions separately in the following), [φs] is a 2 × 2 matrix

of basis function values associated with the sth node and {ds} represents a 2× 1 vector

of the unknown field variables at the sth node. A key difference between mesh-based

and meshless methods is the construction of the basis functions so some background of

mesh-based and meshless basis functions will now be given.
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Figure 2.1: A two-dimensional element.

2.2.1 Finite element basis functions

In the mesh-based FEM, element e as shown in Figure 2.1, is defined by nodes 1, 2, 3

and straight line boundaries, so the approximation at any point {x} in this element can

be calculated by Eq. (2.1), where n is known to be 3 (number of surrounding nodes

mentioned above), and the matrix of basis function values [φs] and the vector of field

variables {ds} are associated with these three nodes of a element [2]. The construction

of finite element basis functions relies on the connectivity of these three nodes, where

the basis function value associated with a node is unity at the node itself and zero at

the other nodes connected to it.

2.2.2 Meshless basis functions

In meshless methods, the problem domain and boundaries are discretised by a set of ar-

bitrarily scattered nodes as shown in Figure 2.2. In order to calculate the approximation

at any point {x} by Eq. (2.1), n has to be determined by searching in a predefined local

support domain which is given in Figure 2.2 (n=5 is chosen here). The basis function

values and the field variables associated with these n surrounding nodes are used in Eq.

(2.1). The construction of meshless basis functions is based on those individual nodes

which fall in the local support domain (detailed choices of the local support domain will

be discussed in Chapter 3).
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Figure 2.2: A two-dimensional problem domain discretised by a set of nodes.

A large number of basis functions have been employed in meshless methods so far,

but it is important to note that meshless basis functions should ideally have the following

properties as set out in [24]:

• Points distribution should be arbitrary.

• A complete polynomial basis up to a certain order should be guaranteed.

• The partition of unity (PU) property is required which can be written as

n∑
s=1

φs({x}) = 1. (2.2)

{x} is the location of a point, φs({x}) is the meshless basis function value associated

with the sth node in the local support domain and n is the total number of nodes

in the local support domain.

• The requirement of consistency (reproducing condition), which is the highest poly-

nomial order can be exactly represented with the numerical solution, should be

satisfied, e.g. a linear consistency is

n∑
s=1

φs({x}){xs} = {x} (2.3)

where {xs} is the position of the sth node in the local support domain, {x} is the



2.3. Classification 11

position of any point, φs({x}) is the basis function value associated with the sth

node in the local support and n is the total number of nodes in the local support

domain.

• The Kronecker delta property is a preferable condition in meshless basis functions,

as

φi({xj}) =

 1, i = j

0, i 6= j
, i, j = 1, 2, ..., n (2.4)

where φi({xj}) is the value of basis function associated with the ith node in the

local support domain at {xj}.

It is seen that mesh-based and meshless basis functions share some common properties,

e.g. the PU property. However, meshless basis functions are constructed based on points

only and exhibit some attractive features as discussed in [23].

• The choice of meshless basis functions is more flexible than in the mesh-based

FEM.

• The polynomial-based meshless basis functions can be easily built to have any

desired order.

The positive aspects of meshless methods have been listed above, which mainly result

from the use of meshless basis functions. The origins, development, detailed formulations

and numerical implementation of meshless basis functions can be found in review papers

and books e.g. [21, 24–31]. Four representative examples are selected to be reviewed in

the following.

The fundamentals of meshless basis functions have been introduced in this section. A

wide variety of meshless methods can be developed by employing various basis functions.

A classification of meshless methods is provided in the next section, which includes some

historical perspective and current development.

2.3 Classification

Meshless methods seem to offer some advantages over mesh-based methods for solid

mechanics problems, and it is no surprise therefore that variety of meshless approaches
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have been investigated (for a comprehensive review, refer to [27]). Here, a classification of

meshless methods is presented to provide a clear picture of the relation between meshless

methods in general and the point collocation method which is the subject of the later

parts of this thesis. Meshless methods for solid mechanics can be broadly categorised

according to whether or not they use integration as discussed in [32,33], i.e.

• weak form-based meshless methods in which numerical integration is required;

• strong form-based meshless methods, which use no integration, and are therefore

truly meshless methods;

• combined weak and strong form meshless methods.

2.3.1 Weak form meshless methods

PDEs, such as the governing equations of linear elasticity can be written as follows

[Lg]
T{u} = {fg} (2.5)

where g means general cases, [Lg] is a matrix of any differential operators, {u} is a vector

of field variables and {fg} is the system’s right hand side. It is in general impossible to

fulfill a set of governing PDEs in Eq. (2.5) exactly based on a vector of the field variables

{d} at discrete nodes and a non-zero vector of error residuals {e} is given as

[Lg]
T{d} − {fg} = {e}. (2.6)

Therefore, a vector of test functions {Ψ} is used in the integral over the problem domain

Ω as ∫
{Ψ}T{e}dΩ =

∫
{Ψ}T ([Lg]

T{d} − {fg})dΩ. (2.7)

The integral expression in Eq. (2.7) is a weak form of the PDE, where the PDE can

be satisfied averagely over a domain instead of at discrete nodes, making the numerical

results stable and accurate.

One of the earliest meshless approaches, smoothed particle hydrodynamics (SPH),

was proposed in 1977 [34–37]. The approximation of a solution {uh} at a point {x} using
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SPH can be given as

{uh({x})} =

∫
Ω

[K({x} − {xs})]{d}dΩ (2.8)

where s is nodal index of the particles inside the local support domain, {xs} is the

coordinate of the sth particle, {d} is a vector of the unknown field variables associated

with all particles inside the support domain, Ω is the integral domain and [K({x}−{xs})]

is a matrix of the smoothed kernel function. The smoothed kernel function in SPH plays

the same role as the basis function in Eq. (2.1). As discussed in §1.2, the PU property

should be satisfied by the smoothed kernel function as

∫
[K({x} − {xs})]dΩ = {1} (2.9)

where {1} = {1, 1}T in two dimensions. This method has been applied to a wide range

of applications, e.g. fluid dynamics [38] and heat conduction [39]. However, SPH suffers

from some drawbacks such as the lack of consistency (explained in §1.2.1) near boundaries

and tension instability [40–42]. The sums of SPH basis function values are not exactly

one near boundaries or in areas of non-uniform discretisation. The tension instability is

that the motion of particles becomes unstable where particles are under a certain tension

stress state. The tension instability in SPH is related to the lack of consistency [43]. More

recently, substantial progress has been made by introducing some variations of SPH such

as corrected SPH [44] and moving least squares SPH [45].

The diffuse element method (DEM) was developed in 1992, where a local weighted

least-squares (WLS) approach is employed to construct basis functions, preserving the

local character of approximations. The DEM offers some advantages for calculating

the approximation gradients directly, but they are highly dependent on the choice of

weight function. In the 1990s, the element-free Galerkin method (EFGM) was introduced

in [22,46–49], where the moving least squares (MLS) approach is used to construct basis

functions. The EFGM has since become one of the most popular meshless methods

and has been effective for solving crack propagation problems, which cannot be easily

addressed by the standard FEM [50,51], achieving better rates of convergence than those
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of using the FEM [22]. As the MLS basis function does not possess the Kronecker-delta

property, Lagrange multipliers are employed to enforce Dirichlet boundary conditions

in the EFGM, which complicates the calculation process as additional unknowns must

be determined. Somewhat later, the reproducing kernel particle method (RKPM) was

introduced being based on the reproducing kernel (RK) basis function [52]. This basis

function offers favourable properties over SPH basis functions as a correction function is

applied to the SPH kernel function.

The meshless local Petrov-Galerkin method (MLPG) was proposed in [53], which uses

MLS basis functions as in the EFGM. The MLPG is a local weak form-based meshless

method as the integral is calculated over a local domain which is chosen to coincide

with the support domain of weight functions. Therefore, a background mesh used in

the EFGM is not required in the MLPG. A penalty method is employed to facilitate

Dirichlet boundary conditions in this approach. The cracking particles method (CPM)

is a meshless method, designed to model crack propagation problems [54, 55]. In this

method, a set of discontinuous segments are generated associated with the so-called

cracking particles to describe crack paths. The support domains of normal particles

are cut by these segments. Another weak form-based meshless method is the Galerkin

method with local maximum entropy (max-ent) basis functions where Dirichlet boundary

conditions can be imposed directly as the max-ent basis function satisfies the weak

Kronecker-delta property on boundaries [56]. In addition, the hp-cloud method in [47]

has been developed where MLS basis functions are enriched by adding additional degrees

of freedom to build the PU property with higher order complete polynomial basis. The

partition of unity finite element method (PUFEM) has been presented in [48] where the

concept of the PU property is used for constructing the approximation.

Table 2.1 summarises the attributes of selected weak form-based meshless methods

using different basis functions, which are ordered by the dates when the first versions of

these methods were proposed.

The classification of SPH is a subject of debate. The expression of SPH basis functions

is calculated by the integral of the product of the particle volume and the kernel function.

As integration is used in constructing kernel basis functions, SPH is grouped with weak

form meshless methods. Another viewpoint is that SPH is in general a representative of
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Method Year Researcher(s) Basis functions
SPH 1970 Lucy Smooth kernel
DEM 1992 Nayroles Diffuse MLS/RK
EFGM 1994 Belytschko Direct MLS
NEMa 1995 Braum Natural neighbour
RKPM 1995 Liu RK
PUFEM 1996 Melenk Local polynomials
HPC b 1996 Duarte et al. Enriched MLS/RK
FMM c 1996 Yagawa et al. Local polynomials
MLPG 1998 Atluri et al. MLS/RK or smooth kernel
LBIE d 1998 Zhu et al. MLS
PPUe 2000 Griebel et al. Enriched MLS/RK
PIMf 2001 Liu et al. Polynomials
max-ent 2004 Sukumar max-ent
XEFGMg 2006 Rabczuk Enriched MLS

a natural element method (NEM)
b hp-cloud (HPC)
c free mesh method (FMM)
d local boundary integral equation (LBIE)
e particle partition unity (PPU)
f point interpolation method (PIM)
g extended element-free Galerkin method (XEFGM)

Table 2.1: Weak form-based meshless methods.

a strong form collocation approach since the use of interpolation kernel allows smoothed

approximations to be calculated from the particle information rather than using a weak

form [24].

A compact integration domain, which is required in weak form for numerical integra-

tion, can be constructed globally or locally, therefore weak form meshless methods can

be further split to

• global weak forms which involve integrals over the global domain;

• local weak forms in which integration is calculated over local subdomains.

Local domains can be chosen to coincide with local support domains of weight functions.

Any shape of local domain can be selected but usually a regular and simple shape is

preferable such as circles or rectangles in two dimensions and spheres or cubes in three

dimensions. Some global and local weak form-based meshless methods are categorised

as in Table 2.2.
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Global weak form DEM [57] EFGM [22,58] PIM [32]
Local weak form MLPG [59,60] NEM, PUFEM, LBIE

Table 2.2: Global and local weak form-based meshless methods.

In spite of the potential benefits of using weak form meshless methods (as mentioned

above), there are also some drawbacks. For example, large computational cost can be

incurred by numerical integration scheme as a number of integration points are normally

needed for accurate solution, posing considerable complexities [61]. The term “meshless”

only indicates that no mesh for the approximation of the field variables. Most weak form

meshless methods have been criticised for not actually being truly meshless as global or

local background meshes have to be created to integrate the governing PDEs. Numerical

integration seems to be the most significant issue which reduces the efficiency of weak

form-based meshless methods as compared to the standard FEM for instance [62,63].

To address this drawback, attempts have been made to develop more efficient and

accurate integration techniques for weak form meshless methods. These have included

direct nodal integration [26], stabilised nodal integration [64], stabilised conforming (not

separated nor overlapped) approach [65] and non-conforming scheme [66]. Some of these

proposed numerical integration techniques can provide accurate and stable integration

schemes but it is known that much computational cost is required, especially for irreg-

ular discretisations. Therefore, other strategies have to be investigated to address this

problem.

2.3.2 Strong form meshless methods

An alternative approach, the strong form-based point collocation method, has been devel-

oped, which eliminates the use of numerical integration in weak form meshless methods.

A background mesh for numerical integration, therefore, is not required in point collo-

cation methods (PCMs), which offers the possibility of meshless methods and have in

the past been labelled as “truly meshless”. In PCMs, a set of collocation points are

distributed in the problem domain and on the boundaries. The governing PDEs and

corresponding boundary conditions are discretised at collocation points directly to for-

mulate the final system of equations in terms of the unknown field variables at a different
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set of points (called source points). The approximation of solution at any point can be

obtained by using the basis function values and the field variables associated with source

points inside the local support domain (explained in Figure 2.2). Collocation methods

necessitate the employment of higher order derivatives of basis functions as the strong

form governing equations are imposed at collocation points directly. Compared with

weak form meshless methods, strong form meshless methods possess some advantages as

given in [30].

• They can be discretised arbitrarily in theory using a regular or a random points

distribution.

• They are straightforward to implement.

• They can be computationally efficient as a background mesh is not required for

numerical integration.

• They can handle adaptive strategies directly without the use of a mesh.

• They can be applied to applications with large deformations directly as mesh dis-

tortion does not exist.

In the context of meshless methods, some strong form-based methods have been in-

vestigated. The origin of meshless collocation methods can be tracked back to the pioneer

work done by Kansa [67,68] where the radial basis function (RBF) is adopted in a PCM,

named the radial basis collocation method (RBCM). In the RBCM, the construction

of the final system of equations is direct, especially for three-dimensional problems with

complicated geometries. Recently, the RBCM has been applied to solve two-dimensional

non-linear boundary value problems [69,70] and a domain decomposition technique was

used in the RBCM for fracture mechanics [71]. However, this method may lead to ill-

conditioning matrices when RBF basis functions are constructed globally, which has an

effect on the accuracy of the solution. MLS and RK basis functions can be used in

PCMs, yielding the moving least squares collocation method (MLSCM) [72,73] and the

RKCM [74,75], respectively. Since both MLS and RK basis functions have localities, the

sparse coefficient matrices in the equation systems can be obtained using both methods.
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The RKCM has been applied to solve heat conduction problems in [74] and the stabil-

ity analysis of the RKCM was discussed in [76]. The finite point method (FPM) was

proposed in [77,78], where a WLS approach is used to construct basis functions and the

governing PDEs and boundary conditions are imposed at individual points. A stability

analysis of using the FPM was studied, in which the unstable results are caused by the

arrangement of points [79]. The Method of Fundamental Solutions (MFS) which belongs

to the group of boundary collocation methods, is used to approximate the solution of

the problem [80]. In this procedure, a set of single layer source points are distributed

outside the solution domain. The boundary conditions are satisfied by simple boundary

collocation or a least square fitting of the boundary data. In this procedure, one avoids

the problem of evaluation of the singular integrals needed in the BEM. One of the main

drawbacks of the MFS is that it is difficult to determine the position of source points for

accurate results.

Some strong form-based meshless methods are categorised in Table 2.3. There are

exceptions to this classification as some basis functions can be used in both strong and

weak form discretisations.

Method Year Researcher(s) Basis functions
RBCM 1990 Kansa Local RBF
MPSa 1996 Koshizuka et al. WLS
FPM 1996 Oñate WLS
RKCM 2000 Aluru RKPM
MLSCM 2001 Zhang MLS
HCMb 2003 Li Enriched MLS
GRKCMc 2013 Chi Diffuse RKPM
MEPCM 2018 Fan et.al Mex-ent

a moving particle semi-implicit (MPS)
b hermite collocation method (HCM)
c gradient reproducing kernel collocation method (GRKCM)

Table 2.3: Strong form-based meshless methods.

Other developments include weak and strong form-based meshless methods, which

incorporate their formulations in subdomains as proposed in [29, 81–83] for solving in-

compressible linear elasticity [84, 85]. PCMs have also been further modified to develop

an isogeometric collocation (IGA-C) method in [86] where superconvergence theory is

adopted to choose the locations for collocation points, achieving similar convergence rates
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in energy norms as that of the Galerkin method. Superconvergence theory provides an

idea for discretisation, using which the numerical solution converges to the exact solution

at a faster rate than that of using arbitrary distributions. More recently, the direct inter-

polation of the first smoothed gradients of meshless basis functions has been investigated

using the IGA-C method. The second derivatives can be computed by differentiating the

first derivatives. Using this technique to generate basis function derivatives, the second

smoothed basis function derivatives can satisfy the consistency condition and the numer-

ical results can converge to the exact solution at a faster rate than using the analytical

derivatives [87]. The free element collocation method (FECM) [88] has recently been

presented where the FEM basis function is used in PCMs. This method can provide

stable results which are not affected by slightly varying the discretisations.

The classification of meshless methods has been given in this section. Weak and

strong formulations formulate the system of equations in different ways. Some remaining

research challenges are discussed in the following section.

2.4 Discussion of research challenges

Despite the considerable research efforts to date involving meshless methods, some is-

sues remain before meshless methods can be widely and robustly applied in substantial

applications.

As mentioned above in §1.3, higher order derivatives of basis functions, i.e. second

order basis function derivatives for elasticity, are required in strong form-based PCMs.

The direct differentiation of basis functions such as in MLS and RK is time-consuming

because the calculation of the inversion of matrix terms is required in their expressions,

which is computationally expensive and further affects the efficiency of overall analyses.

In order to overcome this disadvantage, approaches such as the gradient RK basis func-

tion, in which the derivatives are approximated directly, have been proposed to improve

the analytical differentiation technique [89]. However, it remains to be an interest to

explore more available strategies.

The imposition of Dirichlet boundary conditions in the mesh-based FEM is straight-

forward as finite element basis functions automatically possess the Kronecker-delta prop-
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erty. However, due to the lack of this property in most meshless basis functions, such as

in MLS and RK basis funcitons, the direct imposition of Dirichlet boundary conditions

is impossible. Additional techniques such as using Lagrange multipliers, penalty meth-

ods, Nitsche-like methods and coupling with the FEM basis function, have to be used

to address this issue [90]. However, these strategies bring more complexities and com-

putational cost. Therefore, exploring an efficient method to impose Dirichlet boundary

conditions accurately is necessary.

Stability behaviour, which is vital in numerical analyses, can be studied by either

analysing the conditioning number of the coefficient matrix or by perturbing the pre-

defined parameters. Weak form-based meshless methods are usually stable because the

governing PDEs and boundary conditions can be applied averagely over a global or local

domain in numerical integrations. However, PCMs are criticised because these methods

suffer from instabilities, which affects the numerical accuracy. It has been suggested that

the negative values of basis functions could be the possible reason [40]. Theoretically,

basis functions can be constructed with either random or regular discretisation. How-

ever, using an arbitrary distribution of points may fail to get convergent results in some

cases.

Meshless methods present some apparent advantages in adaptive processes as the use

of a mesh is removed. Some efforts for accurate numerical integration are not required.

In meshless h-adaptivity, local regions with relative high errors need to be refined by

adding more points directly. Alternatively, points distribution can be optimised by re-

locating points in r-adaptive meshless methods, preserving the same number of degrees

of freedom. Combined rh-adaptivity could provide a more efficient way to improve the

accuracy. Up to date, h-adaptivity has been employed in meshless methods (more appli-

cations in weak form-based than strong form meshless methods) to improve the accuracy

of the solution. However, there is no available literature on meshless r- and combined

rh-adaptivities, which can be a future research interest.

The study of geometric non-linearity is of great importance in the field of solid me-

chanics. Mesh-based methods usually experience difficulties in dealing with large defor-

mation analyses because of mesh distortion that may degrade the accuracy. Meshless

methods are therefore well-suited to handle the applications with extremely large defor-
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mations robustly because meshless approximation functions are not constructed based

on elements. In particular, removed with a PCM is the computational cost for numerical

integration which is presented in weak form methods.

Structural analyses of geometrically non-linear membrane problems remain challeng-

ing in computational mechanics. Other than the strong non-linearity, the geometry of

membranes result in unstable equilibrium. Numerical simulations for membrane prob-

lems are often modelled with hyperelastic materials for which the constitutive models

are more complicated than linear elastic materials. Mesh-based FEM has been used for

membrane analyses in which continuous remeshing is required to address mesh distor-

tion. However in large deformation analyses, meshless methods are excepted to show

some attractive advantages here for modelling membrane structures without considering

mesh regeneration.

The research challenges in the development of meshless methods in particular for

strong form meshless methods, have been given above. As compared to weak form

meshless methods, much less study on strong form meshless methods has been conducted

in previous research and there are still many issues remaining to be addressed, therefore,

the investigation of strong form-based meshless methods for solid mechanics problems

becomes the research interest in the following chapters of this thesis.



Chapter 3

The local maximum entropy point

collocation method

3.1 Introduction

In the previous chapter, a detailed literature review on meshless methods has been given

and it has been shown that strong form-based collocation methods possess some attrac-

tive features. In this chapter, the formulations and numerical implementation issues of

meshless point collocation methods, especially those based on reproducing kernel (RK)

and maximum entropy (max-ent) basis functions, are described in detail. The conven-

tional point collocation method with RK basis functions is introduced. However, due

to the lack of the Kronecker-delta property in RK basis functions, the direct imposition

of Dirichlet boundary conditions by enforcing prescribed displacement values at individ-

ual points is impossible. Therefore, alternative approaches must be used. Lagrangian

multipliers can be employed to enforce boundary conditions weakly but a set of addi-

tional unknowns are added to the linear system [22]. Dirichlet boundary conditions can

be imposed by the penalty method, where a penalty parameter is required [53]. How-

ever, using this approach, the solution may not converge optimally as the numerical

results are sensitive to the choice of the penalty parameter. Nitsche’s method can be

considered as an improvement of the penalty method. That is, rather than adding one

term to the weak form, a number of terms is added, which is determined by the spe-

22
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cific problem. Using this technique, the solution is stable and accurate with the proper

selection of the penalty parameter. In addition, a combination of the basis functions

used in Galerkin-based methods and the finite element method (FEM) was employed

in [91–95] but the difficulty is caused by addressing the interface between mesh-based

and meshless domains. One solution to overcome these issues is to use local max-ent

basis functions [56]. Max-ent basis functions were originally derived from information

theory and the max-ent principle in [96–99], and have been used to couple finite ele-

ment and meshless methods [56, 100]. Local max-ent basis functions have been further

developed into higher order approximants as described in [101,102] which have been ap-

plied to solve incompressible media problems in [103], elastoplastic geotechnical analysis

in [104], three-dimensional crack propagation in [105] and other applications in [106–113].

Compared to RK basis functions, max-ent basis functions are non-negative and possess a

weak Kronecker-delta property, which can facilitate the imposition of Dirichlet boundary

conditions directly in meshless methods.

Considering these properties in max-ent basis functions, a point collocation method

with the local max-ent basis function is developed in this chapter, which is largely based

on the published paper by the author [114]. The governing equations for two-dimensional

Poisson and elasticity problems are summarised, and strong form-based point collocation

methods are reviewed. After that, the formulations for two different basis functions

including the conventional RK and the local max-ent are provided. Some numerical

implementation issues including the choice of support domain and distribution of points

are discussed. Two-dimensional Poisson problem and one- and two-dimensional linear

elastic problems are presented. A comparative study in terms of accuracy and run time

of the RK and the max-ent based point collocation methods is performed. Another

comparison in terms of efficiency between the proposed method and the isogeometric

collocation method reviewed in §2.3.2 is discussed. Finally, concluding remarks are

given.
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3.2 Governing equations

The structural responses of a majority of problems under externally applied loads are

commonly characterised by a discrete formulation using governing PDEs in the field of

computational solid mechanics [25, 115]. Both two-dimensional Poisson and one- and

two-dimensional elasticity problems are studied in this chapter, so their governing PDEs

are summarised in this section for the ease of use.

Firstly, for two-dimensional Poisson problems, their governing equations and bound-

ary conditions are given as

∂2u

∂x2
+
∂2u

∂y2
= fp in Ω (3.1a)

u = ūp on Γu (3.1b)

∂u

∂n
= t̄p on Γt (3.1c)

where u is the field variable, fp is the value of source term , ūp and t̄p are the prescribed

values on the Dirichlet and Neumann boundaries, Γu and Γt, respectively.

Secondly, the governing equations for two-dimensional elasticity are studied. Prob-

lems with both small and large deformations are investigated in this thesis, but the

problems being considered in this chapter are modelled only under static equilibrium

condition for linear elastic homogeneous materials with small deformations.

A two-dimensional solid with domain Ω and boundary Γ(Γu ∪ Γt) is considered as

shown in Figure 3.1. This domain is subjected to a vector of external tractions {t̄} =

{t̄x, t̄y}T acting over the Neumann boundary Γt and a vector of prescribed displacements

{ū} = {ūx, ūy}T over the Dirichlet boundary Γu, where overbars are used as constraints

on boundaries and the subscripts associated with the two components in each vector

indicate their directions in the Cartesian coordinate system. The vector term {f b} =

{f bx, f by}T is the body force per unit volume. The governing equations and two different
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Γ

{f b}

Ω

Figure 3.1: A two-dimensional problem domain subjected to the body force and boundary
conditions.

boundary conditions are given as

[L]T{σ} = {f b} in Ω (3.2a)

{u} = {ū} on Γu (3.2b)

[n]T{σ} = {t̄} on Γt (3.2c)

where [L] is a matrix of differential operators as

[L] =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

 (3.3)

in two dimensions. The Cauchy stress vector {σ} is given as

{σ} = {σxx, σyy, σxy}T (3.4)

where the two subscripts for each component indicate the surface and the direction

respectively. In Eq. (3.4), σxx and σyy are normal stresses and σxy is a shear stress. The
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vector {u} is the field variable described as

{u} = {ux, uy}T (3.5)

and [n] is a matrix of the outer normals of a point lying on the boundary, which can be

written as

[n] =


nx 0

0 ny

ny nx

 . (3.6)

When a stress is applied to a solid, this solid will undergo a strain. The linear elastic

relationship between stress and strain can be expressed as

{σ} = [D]{ε}. (3.7)

[D] is the elastic material stiffness matrix given as

[D] =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 (3.8)

and

[D] =
E

(1− ν2)


1 ν 0

ν 1 0

0 0 1−2ν
2

 (3.9)

for plane strain and plane stress respectively, in which E is Young’s Modulus and ν is

Poisson’s ratio. In plane stress cases, all stress components in z direction are zero. In

latter plane strain cases, all strain components in z direction are zero. In Eq. (3.7), {ε}

is the strain vector which can be written as

{ε} = {εxx, εyy, γxy}T . (3.10)

Similarly to the stress vector, εxx and εyy are normal strains, γxy is an engineering shear

strain. For small deformation cases, the relation between displacement and strain is
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given as

{ε} = [L]{u}. (3.11)

Substituting Eqs. (3.7) and (3.11) into Eq. (3.2), the governing equations and bound-

ary conditions can be written as

[L]T [D]([L]{u}) = {f b} in Ω (3.12a)

[n]T [D]([L]{u}) = {t̄} on Γt (3.12b)

{u} = {ū} on Γu. (3.12c)

The basic formulations of the governing PDEs and boundary conditions for two-

dimensional Poisson and elasticity problems have been provided in this section. In the

following section, strong form-based point collocation methods are explained.

3.3 Point collocation methods

The point collocation method is a strong form-based method for solving PDEs and is

at the heart of the research developed in this thesis. The theoretical background now

presented is based on a two-dimensional spatial domain but it is straightforward to

modify for other dimensionalities.

Collocation points and source points (numbering Nc and Ns respectively) are dis-

tributed in the domain Ω and on the boundaries Γ as shown in Figure 3.2. In this

figure, a support domain of the collocation point is defined and the source points with

a number N∗s are located in this support. The approximation at this collocation point

is determined by the basis function values and the field variables associated with those

N∗s source points inside that local support domain. Collocation points are the locations

at which the strong form governing PDEs and corresponding boundary conditions are

enforced. Therefore the numerical integration used in weak form meshless methods is

not required and a background mesh is not needed. The enforcement of the governing

equations and boundary conditions at collocation points is written in terms of the field

variable values at source points weighted by basis functions associated with the same
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collocation point

source point

support domain of
cth collocation point

cth collocation point

{t̄}

Γt

{ū}

Γu

Ω

Γ

{f b}

Figure 3.2: A two-dimensional problem domain subjected to the body force and boundary
conditions with points discretisation.

source points. The governing PDEs and the two types of boundary conditions can be

written as

L {u} ={fPCM} in Ω, (3.13a)

Lu{u} ={ūPCM} on Γu and Lt{u} = {t̄PCM} on Γt, (3.13b)

where L is the differential operator for the governing PDEs in Ω, Lu and Lt are the

differential operators for Dirichlet and Neumann boundary conditions respectively and

{u} is the field variable. {fPCM}, {ūPCM} and {t̄PCM} can be reduced to fp, ūp and

t̄p respectively for Poisson problems while they are {f b}, {ū} and {t̄} for elasticity.

Since both Poisson and elasticity problems are demonstrated in the following numerical

examples, the differential operators for both are given in Table 3.1 where D is

D =
E(1− ν)

(1 + ν)(1− 2ν)
(3.14)

under plane strain condition. The differential operators for plane strain cases can be

derived from Eq. (3.8).

To implement the PCM one imposes the appropriate condition from Eqs. (3.13) at
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Poisson Elasticity

L ∂2

∂x2
+ ∂2

∂y2
D

[
∂2

∂x2
+ 1−2ν

2(1−ν)
∂2

∂y2
1

2(1−ν)
∂2

∂x∂y
1

2(1−ν)
∂2

∂x∂y
∂2

∂y2
+ 1−2ν

2(1−ν)
∂2

∂x2

]
Lu 1

[
1 0
0 1

]
Lt

∂
∂x

+ ∂
∂y

D

[
∂
∂x
nx + 1−2ν

2(1−ν)
∂
∂y
ny

ν
1−ν

∂
∂y
nx + 1−2ν

2(1−ν)
∂
∂x
ny

1−2ν
2(1−ν)

∂
∂y
nx + ν

1−ν
∂
∂x
ny

1−2ν
2(1−ν)

∂
∂x
nx + ∂

∂y
ny

]

Table 3.1: The differential operators for two-dimensional Poisson and elasticity problems.

each collocation point in the interior of the domain and on the boundaries, leading to a

discrete set of Nc equations for the field variables at source points, {d} of the form

[K]{d} = {f} (3.15)

where [K] is the coefficient matrix and {f} is a vector of known values. The unknown

field variables at source points {d} are to be solved for determining the approximation of

the field variables {u} which are made in summation expressions of basis function values

and the unknown field variables at source points {d}. The expanded form of Eq. (3.15)

is 

[Kl1] [Kl2] ... [KlNs ]

... ... ... ...

[Km1] [Km2] ... [KmNs ]

... ... ... ...

[Kn1] [Kn2] ... [KnNs ]

... ... ... ...





{d1}

{d2}

...

{dNs}


=



{fPCMl }

...

{ūPCMm }

...

{t̄PCMn }

...


(3.16)

where l is the number of collocation points in the interior of the domain satisfying

the governing equations, m and n are the remaining numbers of collocation points on

boundaries carrying Dirichlet and Neumann boundary conditions respectively. The total

number of collocation points covering the domain is l + m + n = Nc. Row i of [K]

represents a condition enforced at collocation point i, which is written in terms of the

source points in support of that collocation point. Note that [K] is generally non-

symmetric. For one- and two-dimensional Poisson problems, [K] in Eq. (3.16) is a

matrix with size Nc ×Ns. In two-dimensional elasticity, [K] is a 2Nc × 2Ns matrix, the
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unknown {d} is a 2Ns × 1 vector and the right hand side vector is 2Nc × 1. The linear

system of equations can be solved by either direct or iterative methods (the former

is used throughout this thesis). Although the distributions of collocation and source

points are independent to each other, Nc must equal or be greater than Ns to obtain the

solution. When Nc = Ns, a square system is formed which has a unique solution if [K]

is not singular. However, when Nc > Ns, an over-determined system is obtained and a

suitable solver (e.g. the least squares method) must be employed to obtain the source

point values. Once {d} has been determined, the approximation at any point of a two-

dimensional problem domain can be interpolated from source points inside the support

domain of this point using the basis functions associates with these source points as

{uh({x})} =

N∗
s∑

s=1

[φs({x})]{ds}, (3.17)

where {uh({x})} is a 2×1 vector of approximation of the solution at any point, [φs({x})]

is a 2×2 matrix of basis functions and {ds} is a 2×1 vector of the unknown field variables

associated with the sth source point inside the domain of support, and N∗s is the number

of source points inside the support.

3.4 Basis functions

Detailed formulations for point collocation methods have been introduced and the re-

producing kernel (RK) and the local maximum entropy (max-ent) basis functions are

described in this section.

3.4.1 Moving least squares basis functions

The MLS basis function, which was first introduced by Lancaster and Salkauskas in [50]

for curve and surface fitting, is a very important member of the family of meshless basis

functions. The objective of the MLS approach is to obtain basis functions in a bounded
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domain. In one dimension, the MLS approximation at any point uh is

uh(x) =
n∑
s=1

φsds (3.18)

where x is the point’s location, s is the nodal index, n is the total number of nodes in the

local support domain. In this equation, φs and ds are the MLS basis function value and

the field variable associated with the sth node in the local support, respectively. The

approximation uh(x) at any point x in one dimension can also be expressed in terms of

a polynomial basis via

uh(x) = {p(x)}T{a(x)} (3.19)

where {p(x)} is a polynomial basis i.e. a linear basis in one dimension is {p(x)} = {1, x}T ,

and {a(x)} is a vector of unknown coefficient at x. A weighted residual error J̄ is formed

being the difference between the approximations and the unknown field variables, as

J̄ =
n∑
s=1

ws(x)
(
{p(xs)}T{a(x)} − ds

)2

(3.20)

where xs is the coordinate of the sth node and ws is the weight function value at the

sth node. Weight functions are used to guarantee the locality of MLS basis functions.

That is, the weight function values at the nodes in the compact support domain of a

point are non-zero and zero everywhere outside the support domain. Weight functions

are required to be non-negative, monotonically decreasing, continuous and differentiable,

making the approximation stable and smooth with arbitrary order consistency in basis

functions. The unknown vector {a} is determined by minimising the weighted residual

error J̄ in Eq. (3.20), i.e. ∂J̄
∂{a} = 0. The unknown vector can be obtained as

{a} = [A(x)]−1[B(x)]{d} (3.21)

where

[A(x)] =
n∑
s=1

ws(x){p(xs)}{p(xs)}T , (3.22)

[B(x)] =
[
w1(x){p(x1)}, · · ·, wn(x){p(xn)}

]
(3.23)
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and the vector {d} is

{d} = {d1, d2, · · ·, dn}T . (3.24)

Eq. (3.19) becomes

uh(x) = {p(x)}T [A(x)]−1[B(x)]{d} (3.25)

and a 1 × n vector collecting together the MLS basis function values associated with n

nodes in the local support can be obtained by comparison with Eq. (3.18) as

{φ} = {p(x)}T [A(x)]−1[B(x)]. (3.26)

The MLS approach is distinguished from the other least squares approaches by a

moving weight function so a standard least squares method is formed if all weight function

values are constants. The imposition of Dirichlet boundary conditions using MLS basis

functions however has to be indirect as the MLS approximations do not possess the

Kronecker delta property, i.e. uh(xs) 6= ds (see Figure 3.3 for one-dimensional case).

Extra techniques are therefore needed to impose Dirichlet boundary conditions. The

inversion of a matrix term [A] is required in the calculation of MLS basis functions

and the derivatives of the inversion of the matrix term is needed in MLS basis function

derivatives, which makes the calculation computationally expensive. MLS basis functions

can be used in both weak and strong form-based methods.

O xs x

uh(xs)

ds

uh(x)

u

Figure 3.3: Moving least squares approximations in one dimension.
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3.4.2 Radial basis functions

The radial basis function (RBF) was first introduced for interpolation by satisfying some

known conditions as explained in [116]. An early example of employing RBFs in meshless

methods for solving PDEs is due to Kansa [67, 68] and in later work, the RBF-based

meshless method was used to address singularity [117] and higher order problems [118].

The theoretical foundation of the RBF for solving PDEs can be found in [119]. For

scattered data, the RBF gs(rs) at one point {x} is dependent on the distance rs between

that point {x} and a node {xs} in the local support domain as

rs = ||{x} − {xs}|| =
√

({x} − {xs})T · ({x} − {xs}). (3.27)

A few commonly used RBFs are given in Table 3.2. The constant ε in Table 3.2 is

known as the shape parameter of a RBF, which can be used to control the bandwidth

of the coefficient matrix and the locality of a local RBF. The RBF value associated with

a node in the support domain tends to be zero or infinity as the distance rs increases.

These three types of RBFs with different values of ε are plotted in Figure 3.4. It can be

observed in Figure 3.4(c)-3.4(d), the values of ε affect the shapes of RBFs.

Name gs(rs)

Multiquadric (1 + (εrs)
2)

1
2

Inverse multiquadric (1 + (εrs)
2)−

1
2

Gaussian e−(εrs)2

Table 3.2: Three commonly used radial basis functions.

The RBF is usually constructed globally so that the coefficient matrix in the discrete

system is formed as a full matrix which sometimes suffer from ill-conditioning problems.

Local RBFs have been presented, in which the bandwidth of the coefficient matrix can

be reduced by varying the shape parameter ε. However, the optimal choice of the shape

parameter ε is unknown, which needs to be determined by numerical experiments [120].

The use of domain decomposition has also been suggested to reduce the conditioning

number of the coefficient matrix [121,122]. Similarly to MLS basis functions, RBFs can

also be used in weak and strong form meshless methods, yielding the local radial point

interpolation method (LRPIM) [123] and the RBCM [124], respectively.
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(a) Multiquadric with ε = 1. (b) Inverse multiquadric with ε = 5.

(c) Gaussian with ε = 1. (d) Gaussian with ε = 3.

Figure 3.4: Three commonly-used RBFs at {x} = {0, 0}T over a two-dimensional domain.
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3.4.3 Reproducing kernel basis functions

The RK basis function is a very attractive basis function used in meshless methods for

numerical solutions and has been adopted in the EFGM, however, the implementation of

a Galerkin-based reproducing kernel particle method faces several challenges such as the

calculation of nodal volumes and efficient imposition of boundary conditions [52]. The

point collocation method with RK basis functions was presented in [74], which made the

implementation straightforward. The detailed formulation of the RK basis function is

given in this subsection.

Basis functions

In strong form meshless point collocation methods, the RK basis function has become

one of the most often used basis functions for the approximation of the field variables

(i.e. displacements in the case of solid mechanics) [52, 125]. Assuming that the support

domain at a point {x} is represented by N∗s source points, a vector of RK basis functions

associated with N∗s source points is

{φ({x})} = {K({x})}[∆V ] (3.28)

where {K({x})} is a vector of the kernel function with size 1×N∗s and [∆V ] is a matrix

of the nodal volume ∆vs (or area in two dimensions) assigned to the sth source point

inside the support domain as

[∆V ] = [diag((∆v1), ..., (∆vN∗
s
))]. (3.29)

If the kernel function equals the Dirac delta function δi({xj}), where i and j are the

indices of the source and collocation points, the field variables at source points can

be reproduced exactly and the required consistency (discussed in Chapter 2) can be

fulfilled [126]. In RK basis functions, a correction function with a certain consistency

is introduced to the kernel function which can reproduce polynomials exactly, and be

written as

{K({x})} = {C({x})}[W ({x})]. (3.30)
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In Eq. (3.30), {C({x})} is a correction function with size 1 × N∗s and [W ({x})] is a

diagonal matrix of weight function values with size N∗s ×N∗s (in the context of the RK

it is also called a window function) which is given as

[W ({x})] = [diag(w({x} − {x1}), ..., w({x} − {xN∗
s
}))]. (3.31)

w({x}−{xs}) is the weight function value centred at the sth source point that is used to

guarantee the locality of the basis function. As the correction function plays an important

role on boundaries and almost has no effect on domain far away from boundaries, it is

also referred to as a boundary correction term [52, 126]. The correction function can be

derived by several approaches including moving least squares in [127, 128] and Taylor

series in [129], but they all give the same results as

{C({x})} = {p({x})}T [M({x})]−1[P ({xs})] (3.32)

where {p({x})} is a polynomial basis function, [M({x})] is the discrete moment matrix

and [P ({xs})] is a matrix of polynomial basis functions at N∗s source points as

[P ({xs})] = [p({x1}), ..., p({xN∗
s
})]. (3.33)

The polynomial basis {p({x})} is built from, triangle and Pascals pyramid for two- and

three-dimensional problems respectively. Linear and quadratic basis functions are given

as

{p({x})} = {p(x)} = {1, x}T (3.34a)

{p({x})} = {p(x)} = {1, x, x2}T (3.34b)

in one dimension and

{p({x})} = {p(x, y)} = {1, x, y}T (3.35a)

{p({x})} = {p(x, y)} = {1, x, y, x2, xy, y2}T (3.35b)
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in two dimensions. The moment matrix is given as

[M({x})] = [P ({xs})][W ({x})][P ({xs})]T . (3.36)

The vector of RK basis functions in Eq. (3.28) is now given as

{φ({x})} = {p({x})}T [M({x})]−1[P ({xs})][W ({x})][∆V ] (3.37)

which includes basis function values associated with N∗s source points in the support

domain. One certain basis function φs({x}) associated with the sth source point can be

expressed as

φs({x}) = {p({x})}T [M({x})]−1{p({xs})}w({x} − {xs})∆vs. (3.38)

The RK basis function in Eq. (3.37) is almost the same as the MLS formulation with

the choice ∆vs = 1 but they are deduced from different areas. The RK has its roots in

wavelet theory and the MLS has its origin in data fitting [24].

Weight functions

As indicated in Eq. (3.30), weight functions which connect the source points in a col-

location point’s support domain, are used to obtain a certain locality in constructing

basis functions. Weight functions are directionally independent. The functional form of

a weight function has some influence on the convergence behaviour of an approximation

but this is difficult to predict [126]. The choice of a weight function is to some extent

arbitrary since there is no rigorous mathematical proof available to judge which type

of weight function is better than another but there are some basic requirements for the

selection of a weight function [52]:

• compact support;

• non-negative values;

• monotonically decreasing values with increasing distance;
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• continuous and differentiable function.

There exist various possible choices of weight functions but typically, exponential (Gaus-

sian) functions or spline functions with different orders are most often used [130]. The

support domains produced differ in size and shape, depending on the choice of basis

functions. The size of the support is controlled by the so-called dilatation parameter

or smoothing length dm. The shape of the support domain used in previous research

e.g. [130] is usually circular or rectangular in two dimensions and a rectangular support

is selected throughout this thesis. It is because that the basis function used in this thesis

is expressed in Cartesian coordinates, where a product of two terms in x and y directions

is included in two dimensions.

For the problems covered in this thesis, the second derivatives of weight functions

are required so an appropriate choice here for the the weight function is a cubic spline

which is given in one dimension as

w(x− xs) = w(r) =


2
3
− 4r2 + 4r3 0 < r ≤ 1

2

4
3
− 4r + 4r2 − 4

3
r3 1

2
< r ≤ 1

0 r > 1

, (3.39)

where

r(x− xs) =
‖x− xs‖
dm

, (3.40)

is the normalised radius of the support domain and ||x−xs|| is the distance between the

sth source point and collocation point of interest x. dm is user-defined as

dm = dmax ds. (3.41)

The scaling parameter dmax is typically 2.0−4.0 e.g. [131] and in terms of point collocation

methods ds is the distance between the collocation point and the nearest source point in

its support domain. Sufficient source points are required in the domain to avoid matrix

singularity problems, and the accuracy of the approximation at any point also depends

on the scaling parameter dmax [132]. Besides, the locations of the points also have an

effect on the stability of the approximation. Since the weight function is dimensionally
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independent, a two-dimensional weight function can be produced from a tensor product,

i.e. for the sth source point {xs} in two dimensions is

w({x− xs}) = w(x− xs)w(y − ys). (3.42)

As stated above, the weight function derivatives with respect to the spatial coordinates

are also required and given as follows

dw(x− xs)
dx

=
dw

dr

dr

dx
=


(−8r + 12r2) sign(x− xs) 0 < r ≤ 1

2

(−4 + 8r − 4r2) sign(x− xs) 1
2
< r ≤ 1

0 r > 1

(3.43)

in one dimension and

∂w({x− xs})
∂x

=
dw(x− xs)

dx
w(y − ys) (3.44a)

∂w({x− xs})
∂y

= w(x− xs)
dw(y − ys)

dy
(3.44b)

in two dimensions.

First and second derivatives of RK basis functions

In PCMs, depending on the PDEs to be solved, higher order derivatives are needed (as

compared to weak form approaches). These have been derived analytically in [74]. The

first derivatives of the RK basis function associated with the sth source point are

{∂φs
∂xk

}
=

([ ∂p
∂xk

]T
[M ]−1{ps}w + {p}T

[∂M
∂xk

]−1

{ps}w

+ {p}T [M ]−1{ps}
{ ∂w
∂xk

})
∆vs (3.45)

where k denotes the coordinate index,
[
∂M
∂xk

]−1

= −[M ]−1
[
∂M
∂xk

]
[M ]−1 and {ps} is the

polynomial basis associated with the sth source point {p(xs)} in short. The second
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derivatives are

[ ∂φs
∂xk∂xl

]
=

([ ∂p

∂xk∂xl

]T
[M−1]{ps}w +

[ ∂p
∂xl

]T[∂M
∂xk

]−1

{ps}w

+
[ ∂p
∂xk

]T
[M ]−1{ps}

{∂w
∂xl

}
+
[ ∂p
∂xl

]T[∂M
∂xk

]−1

{ps}w

+ {p}T
[ ∂M

∂xk∂xl

]−1

{ps}w + {p}T
[∂M
∂xk

]−1

{ps}
{∂w
∂xl

}
+

[ ∂p
∂xl

]T
[M ]−1{ps}

{ ∂w
∂xk

}
+ {p}T

[∂M
∂xl

]−1

{ps}
{ ∂w
∂xk

}
+ {p}T [M ]−1{ps}

[ ∂w

∂xk∂xl

])
∆vs (3.46)

with
[

∂M
∂xk∂xl

]−1

= [M ]−1
[
∂M
∂xl

]
[M ]−1

[
∂M
∂xk

]
[M ]−1−[M ]−1

[
∂M

∂xk∂xl

]
[M ]−1+[M ]−1

[
∂M
∂xk

]
[M ]−1[

∂M
∂xl

]
[M ]−1 where l is the coordinate index. Although RK basis functions are smooth,

determining the higher derivatives of basis functions can be quite time-consuming, espe-

cially in computing the inversion of the moment matrix [M({x})] and the derivatives of

the inversion of the moment matrix. Deriving the derivatives directly using traditional

mathematics is unwise. In order to accelerate the computational speed of derivatives,

some other methods such as the gradient RKPM proposed in [89] have been developed

using derivative approximating techniques to improve the computational efficiency.

3.4.4 Maximum entropy basis functions

MLS and RK basis functions are employed in most early strong form-based meshless

approaches but they are not strictly positive and do not possess the Kronecker-delta

property, which makes the direct imposition of Dirichlet boundary conditions impossible

[90]. A local max-ent scheme is used to construct the basis functions in point collocation

methods, which first appeared in the published paper by the author of this thesis, to

overcome some of these difficulties. Max-ent basis functions are strictly valid on convex

domains (but function well on non-convex domains in many cases [96,133,134]).

A local max-ent basis function formulation

The maximum entropy idea arises from probability theory where a set of mutually inde-

pendent events {A1, A2, ..., An} with unknown probabilities {p1, p2, ..., pn}, respectively,



3.4. Basis functions 41

are considered. The least biased probability distribution can be obtained by maximising

the informational entropy P (·) (the specific description of uncertainty) as

maximise
(
P (A1, A2, ..., An) = P (p1, p2, ..., pn) = −

n∑
a=1

pa log pa

)
. (3.47)

If one replaces the probabilities by basis functions in a given defined domain then it is

easy to see that the partition of unity property is obtained. The basis functions are

obtained by combining the max-ent constraint expressed in Eq. (3.47) with the required

linear reproducing conditions [56] and a weight function ws to give compact support, i.e.

maximising

P (φ,w) = −
N∗

s∑
s=1

φs log
(φs
ws

)
(3.48)

subject to (in the one-dimensional case)

N∗
s∑

s=1

φs = 1 and

N∗
s∑

s=1

φsxs = x. (3.49)

The local max-ent basis functions derived in this way can be written as

φs({x}) =
Zs
Z

(3.50)

where

Zs = wse
−{λ̄s}T ({xs}−{x}) (3.51)

and

Z =

N∗
s∑

s=1

Zs. (3.52)

{λ̄} denotes the unique Lagrange multiplier associated with the constraints in Eq. (3.49)

which can be found via a Newton-Raphson method [135] as

{λ̄} = arg min logZ({x}, {λ̄}). (3.53)

A detailed explanation of max-ent basis functions and their implementation can be found

in [136].
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First and second derivatives of max-ent basis functions

As indicated above, PCMs usually require expressions for derivatives of higher order

than required in weak form-based methods. The first derivatives of the max-ent basis

functions [136] can be expressed as

{∂φs
∂xp

}
= φs

{
({xs} − {x})T

[
[H]−1 − [H]−1

N∗
s∑

k=1

φk
wk

({xk} − {x})⊗
{∂wk
∂xp

}]
+

{∂ws
∂xp

} 1

ws
−

N∗
s∑

j=1

φj

{∂wj
∂xp

} 1

wj

}
(3.54)

where [H] is the Hessian matrix given by

[H] =

N∗
s∑

k=1

({xk} − {x})⊗ ({xk} − {x})φk, (3.55)

where⊗ is the dyadic product of two vectors, for example, for any two vectors {x}⊗{y} =

{x}{y}T . Similarly the second derivatives of the max-ent basis functions are

[ ∂φs
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{∂φs
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}) 1
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wk
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}
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{
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[∂H
∂xq

]−1[ N∗
s∑

k=1
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wk

(
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{∂wk
∂xp

})]
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[
({xs} − {x})T [H]−1

]
·
[
∂
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s∑
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})
/∂xq

]}
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{[
∂
({∂ws

∂xp

} 1

ws

)
/∂xq

]
−

N∗
s∑

j=1

({∂wj
∂xp

} 1

wj

)
⊗
{∂φj
∂xq

}

−
N∗

s∑
j=1

φj

[
∂
({∂wj

∂xp

} 1

∂xj

)
/∂xq

]
(3.56)

The derivation of the second derivatives is given in Appendix A.
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In Figure 3.5(a) and 3.5(b), the max-ent and RK basis functions are plotted over a

one-dimensional domain with the same sizes of supports, where 6 points are located at

x = 0, 0.2, 0.4, . . . , 1.0. It can be seen that the max-ent and RK basis functions possess

non-negativity at all points. Besides max-ent basis functions in Figure 3.5(a) satisfy the

Kronecker-delta property at the two boundary points, which makes direct imposition of

Dirichlet boundary conditions possible. However, the RK basis function values at x = 0

and x = 1.0 are less than one as shown in Figure 3.5(b). The first and the second

derivatives of the max-ent basis functions at each point in the domain are shown in

Figure 3.5(c) and 3.5(d). Of note is the fact that the first and second derivatives of the

max-ent basis functions are sensitive to the position of the points. One consequence of

this for PCMs is that distributing the collocation points and source points at the same

positions may lead to serious defects with the numerical results because of the obtained

values of basis function first and second derivatives. For instance in Eq. (3.56) the term

({xs−x}) is zero when {xs} = {x}, which results in a zero value for the first and second

derivative of basis function. Hôpital’s rule was used to obtain the expressions for the

derivatives of the max-ent basis functions [137]. Here, the positions for collocation and

source points are adjusted to avoid this problem. In this one-dimensional domain, the

number of collocation points is one greater than the number of source points. Using a

uniform distribution, the problem caused by the coincident distributions of two sets of

points can be addressed. But the collocation and source points at two boundaries are

located at the same positions, the numerical first derivatives of basis functions at these

two boundary points have to be used for imposing Neumann boundary conditions.

In Figure 3.6, the second basis function derivative components at point (0.5, 0.5) in

two dimensions are plotted. For this two-dimensional domain, the number of collocation

points in each direction is one greater than the number of source points in the same

direction, getting rid of the coincident distribution of points. If Ns = Nc is required,

a scaling factor can be defined to vary the point distributions (used in the example in

Chapter 4). The formulations of the RK and local max-ent basis functions have been

described in this section and the performance of these basis functions are compared in

the next section.
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Figure 3.5: Max-ent and RK basis functions and first and second max-ent basis function
derivatives over a one-dimensional domain.
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Figure 3.6: The second derivatives of max-ent basis functions at (0.5, 0.5) over a two-
dimensional domain.
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3.5 Numerical examples

In this section, some numerical examples are analysed to validate the efficiency and accu-

racy of the conventional reproducing kernel collocation method (referred to the RKCM)

and the proposed local max-ent point collocation method (MEPCM). In order to study

the performance of the weak Kronecker-delta property on the boundary points, only

Dirichlet boundary conditions are considered in the following examples. All examples

presented in this chapter have exact solutions so that clear error norms can be calculated

to show convergence rates and computational performance. In the results presented be-

low the L2 norm of relative error on displacement ||e||L2 is used to assess error (being

an appropriate measure for the types of problems considered, as discussed in [86]) and

is evaluated as

||e||L2 =

√
{uh − ue}T{uh − ue}√

{ue}T{ue}
, (3.57)

where {uh} denotes the approximation to the field variable and {ue} is the exact solution.

In the following examples, plots of ||e||L2 in the primary variable of solution versus

degrees of freedom are employed to demonstrate the rate of convergence of the method.

The efficiency of the proposed method will be shown compared to the point collocation

method with RK basis functions, since computational cost is clearly of great importance

for numerical methods applied to challenging real world problems in terms of reducing

the error [74].

3.5.1 One-dimensional bar problem

The first problem is a one-dimensional linear elastic bar of unit length fixed at a point

x = 0 and subjected to a linear body force f b = x. The geometry of this problem is

shown in Figure 3.7. For the one-dimensional problem, the linear system was set up so

that Dirichlet boundary conditions were applied to the collocation points at two ends

and the governing equations were imposed at all collocation points inside the problem

domain. For this example, Dirichlet boundary conditions are applied at two ends in order

to test the accuracy of the MEPCM at Dirichlet boundaries. The analytical solutions
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for the displacement and stress field of this one-dimensional bar problem are

u(x) =
1

E

(x
2
− x3

6

)
and σ(x) =

1− x2

2
, (3.58)

where here, E = 1.0.

L

x

f b(x) = x

Figure 3.7: The geometry model of the one-dimensional bar.

The unit length bar was discretised by a uniform distribution of 11 collocation points

with 10 source points located between each pair of collocation points as shown in Figure

3.8. The figure shows two different sizes of the support domains for dmax = 2.0 and

dmax = 4.0, so different numbers of source points are included in the support domain.

To demonstrate the effect of the choice of dmax on accuracy, the problem has been

collocation points

source points

dmax = 4.0

dmax = 2.0

Figure 3.8: A portion of the one-dimensional bar with points distribution and different
sizes of support domain.

solved using the MEPCM with a range of different values of this parameter, for varying

discretisations (Ns values), and the results are plotted in Figure 3.9. In the analyses with
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dmax = 1.5, 2.0, 2.5, each collocation point has two source points in the local support,

however the accuracy and convergence properties differ between analyses due to the

effect of dm in Eq. (3.41) on the weighting functions embedded in the basis functions

in Eq. (3.39). In this problem the optimum dmax is around 2.0 with close to quadratic

convergence characteristics for all three analyses. When dmax increases to 3.5, 4.0 and 8.0

the accuracy and rate of convergence deteriorate, likely due to the loss of locality of the

approximation (as seen in MLS as it moves towards LS). It is particularly noticeable that

the convergence rate for dmax = 8.0 is very poor. From this discussion, it clearly remains

difficult to predict a priori optimum value of dmax although the max-ent basis function

satisfies the linear reproducing conditions, the minimum number of source points in

support is 2, which provides a lower bound value for dmax. As discussed in §3.5, source

points and collocation points should not be distributed at the same positions. When

analyses are carried out with coincident points, ||e||L2 were recorded as 0.4929, 0.4936,

0.4942, 0.4943, 0.4936, 0.7581 with Nc=Ns=119, 172, 287, 341, 1000, 2000, respectively.

It is clear that ||e||L2 does not converge using coincident source points and collocation

points.

Figures 3.10(a) and 3.10(b) compare the MEPCM results from the “best” choice of

dmax = 2.0, using Ns = 200 and Nc = 201, with the analytical solution, showing close

agreement (note that for clarity only 11 MEPCM results have been plotted from the 201

total values).

The absolute displacement errors at 11 selected collocation points using the MEPCM

and the RKCM are shown in Figure 3.11 for different refinements. It is clear that

the boundary conditions can always be imposed accurately in the MEPCM due to the

Kronecker-delta property at boundaries of the max-ent basis functions, while in the

RKCM, the direct imposition of Dirichlet boundary conditions makes the displacement

errors on two edge points are greater than 0.005, which has a major effect on the total

||e||L2 for the overall accuracy. Since the problem is non-symmetric, it is reasonable that

the errors at two ends using the RKCM are different.
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Figure 3.9: Convergence rate of ||e||L2 of the one-dimensional bar problem using the
MEPCM with different dmax.
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Figure 3.10: Displacement and stress results of the one-dimensional bar problem using
the MEPCM.
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Figure 3.11: The displacement errors of the one-dimensional bar problem using the
MEPCM and the RKCM with different Ns.

The convergence rates of ||e||L2 using both the MEPCM and the RKCM are shown

in Figure 3.12(a) in which Ns denotes degrees of freedom in the one-dimensional bar

problem. It is clear that the decrease of ||e||L2 in the MEPCM is greater as compared to

the RKCM. In PCMs, errors can be attributed to boundary errors and domain errors.

For the RKCM, the combination of the two effects mentioned above leads to the total

error, while the error on the boundaries in the MEPCM is considerably reduced leading

to better convergence rates. In Figure 3.12(a), the errors at boundary points and in

the domain are split out and ||e||L2 in the domain for refinements are presented. In the

MEPCM, the convergence rates for the whole problem and for the domain alone match

because of the accurate imposition of the boundary conditions. Using the RKCM, ||e||L2

for the problem domain alone is smaller than ||e||L2 for the whole problem and keeps

the same convergence rate as the whole problem. This is a clear demonstration of the

major improvement the max-ent approach gives to the MEPCM in terms of reducing



3.5. Numerical examples 51

the error associated with imposing Dirichlet boundary conditions. In Figure 3.12(b),

the L2 norms of strain energy using both the MEPCM and the RKCM are compared.

Comparing Figure 3.12(a) with Figure 3.12(b), a similar trend is obtained for ||e||L2 and

the L2 norm of strain energy. For the one-dimensional bar problem, using the MEPCM

can achieve better convergence rate as in the weak form-based meshless method [136].

With “strong” and “weak” form-based methods, the fundamental difference lies in the

approximation. In strong formulations, all the provided information is located at the

discrete collocation points and connectivities between points are avoided to decrease

the complexities. In weak form approximation the linear system is formulated through

numerical integration. In this case, only a number of collocation and source points are

distributed in the interior of the problem domain and on boundaries using the MEPCM

to study the convergence performance. The information at each collocation point only

represents the collocation point itself rather than the average value over its integral

domain.
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(b) The L2 norm of energy.

Figure 3.12: Convergence rate of ||e||L2 and energy norm of the one-dimensional bar
problem using the MEPCM and the RKCM .

In addition to the comparison in terms of accuracy, computational cost is important.

Table 3.3 gives CPU times using both the RKCM and the MEPCM methods for selected
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analyses with varying discretisations. The results show that for a given discretisation,

the MEPCM leads to lower CPU times than the RKCM in all cases, and from the results

discussed above concerned with convergence, it can be concluded that the MEPCM gives

greater accuracy in a lower CPU time. Further support for this point can be shown by

plotting error against CPU time as in Figure 3.13 where the advantage of the MEPCM

is obvious. The computational cost of the two methods is principally concentrated in

the construction of the basis functions and derivatives, and in the solution of the linear

system. Both the MEPCM and the RKCM have similar overheads for the latter and

the source of the significant difference in CPU time is due to the former. In the RKCM,

the calculation of the inversion of the moment matrix in the basis function derivatives

are time-consuming. However, these calculations are totally avoided with max-ent basis

functions, and the only potential issue is the determination of the Lagrange multipliers

{λ̄} in Eq. (3.53) by the Newton-Raphson method because the derivatives of max-

ent basis functions are derived analytically. In this elasticity example on which the

proposed MEPCM has been tested, the max-ent schemes have better accuracy for a

given discretisation than those based on RK methods.

Ns MEPCM (s) RKCM (s) Speed up

172 1.492× 10−2 2.144× 10−1 14.4
216 2.672× 10−2 3.274× 10−1 12.3
287 3.324× 10−2 5.744× 10−1 17.3
357 4.373× 10−2 8.778× 10−1 20.1
1000 2.532× 10−1 6.764× 100 26.7
2000 7.506× 10−1 2.726× 101 36.3

Table 3.3: CPU times for analyses using the MEPCM and the RKCM of the one-
dimensional bar problem.

Another useful metric in comparisons of numerical algorithms is floating point oper-

ations (flops). Ideally one should be able to make clear comparisons of methods, such

as between the MEPCM and the IGA-C methods in [86] (which have been reviewed in

Chapter 2). In some cases it is possible to break down a complex algorithm to provide

neat expressions for the order of flop counts related to the discretisation (e.g. the num-

ber of elements in the IGA-C methods), dimensionality and order of basis (e.g. Table

2 in [86]). Both the MEPCM and the RKCM form the linear system of equations at

collocation points in the same way as the IGA-C method of [86] so it is expected that
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Figure 3.13: Convergence rate of ||e||L2 against CPU time of the one-dimensional bar
problem using the MEPCM and the RKCM.

flop counts for those operations to be similar here. However, attempting to go further

with the MEPCM and the RKCM methods, encounters problems in that there is no

clear link between the underlying basis (which is linear here) and the order of the com-

puted basis functions developed via the max-ent procedure (for MEPCM at least) which

is undefined. Instead numerical results are presented to indicate trends as regards flop

counts based on numerical experiments.

The total flops required for instances of the one-dimensional problem, with different

discretisations, are plotted in Figure 3.14. The figure shows that for the same number

of collocation points, Nc, the flop count using the MEPCM is smaller than the RKCM.

For this one-dimensional problem, the total cost (if taken proportional to flop count)

for both the MEPCM and the RKCM is O(N3
c ). It is hard to determine the role of the

dimensionality here and, for the reasons outlined above, not possible to include the order

of a basis.
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Figure 3.14: Total flops for analysis against Nc of the one-dimensional bar problem using
the MEPCM and the RKCM.
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Figure 3.15: Flops of max-ent basis functions with different dmax of the one-dimensional
bar problem.

Maintaining interest in flop counts but now focussing on comparison of the MEPCM
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with the RKCM it is instructive to consider the cost of forming the basis functions in

each method. In the formation of the max-ent basis functions, the flops per Newton

iteration are the same for each collocation point in the same discretisation although the

number of iterations is not known in advance. The cost of constructing max-ent basis

functions with varying dmax is shown in Figure 3.15 in which the gradients of all the lines

are close to 2 for different dmax.

The costs of constructing the max-ent and RK basis functions and derivatives are

shown in Figure 3.16 where it is clear that the flop counts for max-ent basis functions are

less than RK basis functions. It is also observed that the cost of calculating RKPM basis

functions derivatives is more expensive than max-ent basis functions derivatives because

some variables calculated in max-ent basis functions can be reused in the calculation

of max-ent derivatives. The cost of calculating the max-ent and RK basis functions in

terms of the number of collocation points is seen to be O(N2
c ).
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Figure 3.16: Flops of max-ent and RK basis functions and derivatives in one dimension.
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3.5.2 Two-dimensional Poisson problem

The second example is a two-dimensional Poisson problem with Dirichlet boundary con-

ditions on a unit square domain. The governing equation is

∇2u(x, y) = 4, Ω ∈ (0, 1)× (0, 1) (3.59)

with the following Dirichlet boundary conditions

ux=0 = y2 (3.60a)

ux=1 = 1 + y2 (3.60b)

uy=0 = x2 (3.60c)

uy=1 = x2 + 1, (3.60d)

where the analytical solution is

u(x, y) = x2 + y2, Ω ∈ (0, 1)× (0, 1). (3.61)

All collocation and source points were distributed in x and y directions and the scaling

parameter of the support domain dmax for each collocation point was 2.0. Note that for a

two-dimensional Poisson problem, there is a single degree of freedom in the field variable

at each collocation point and also that the PDE contains no mixed derivatives, which

simplifies the formation of the differential operators as given in Table 3.1, as compared

to two-dimensional elastic problems.

For this example, four different refinements are used (Ns=121, Nc=144; Ns=441,

Nc=484; Ns=1681, Nc=1764; Ns=2601, Nc=2704) and Ns is the number of degrees

freedom. Figure 3.17 shows convergence rates of the L2 norm of relative error on

the field variable using the MEPCM and the RKCM for this problem, in which the

MEPCM clearly performs better convergence rate with lower errors than the RKCM.

The differential operators for two-dimensional Poisson problems are simpler than those

for two-dimensional elastic problems as given in Table 3.1 and independent in x and y

components without the coupling effect, which reduces the relative error.
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Figure 3.17: Convergence rate of ||e||L2 of the two-dimensional Poisson problem using
the MEPCM and the RKCM.

Table 3.4 gives the computational times of the MEPCM and the RKCM analyses

for this problem, and again, the advantage of the former is clear. The corresponding

ratios for CPU time vary from 2.7 (Ns = 121) to 10.8 (Ns = 2601). Compared to

the one-dimensional bar problem, these simulations take longer since the calculation of

basis functions and derivatives in two directions are required and the linear solver is also

consuming more CPU time than the one-dimensional problem, despite the change in

PDEs. The speed up is lower than in the first example which may also be explained by

the discretisation. In a two-dimensional domain, the distribution of points is known to

have an effect on the iteration times in the calculation of the Lagrange multipliers {λ̄}

and hence the overall computational time. Although this speed up is not as significant

as seen in the one-dimensional bar problem, it is nevertheless the case that the MEPCM

is more efficient than the RKCM for this problem and that the speed up increases with

refinement.

In this two-dimensional domain, considering again just the flops for the formation

of basis functions, Figure 3.18 is equivalent to Figure 3.16 for one-dimensional domain

and indicates the same relation for two-dimensional problems, implying that the basis
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Ns MEPCM (s) RKCM (s) Speed up

121 5.467× 10−2 1.476× 10−1 2.7
441 2.290× 10−1 7.755× 10−1 3.4
1681 2.100× 100 1.329× 101 6.3
2601 6.295× 100 6.794× 101 10.8

Table 3.4: CPU times for analyses using the MEPCM and the RKCM of the two-
dimensional Poisson problem.
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Figure 3.18: Flops of max-ent and RK basis functions and derivatives in two dimensions.
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function formation is not controlled by dimensionality. It is noted that the flops for

mixed second derivatives of basis functions are included in the plot although they are

not used for solving Poisson problems. A further plot of flops against the reciprocal of

distance h between two nearest collocation points for a regular distribution (in Figure

3.19) gives gradients close to 4.0. As for the one-dimensional problem, the flop counts in

terms of Nc is equivalent to the flops in terms of 1
h

considering the proportional relation

between Nc and 1
h

in one dimension. Therefore, the cost for constructing the max-ent

and the RK basis functions is conjectured to be O(( 1
h
)2d) where d is the dimension of the

physical problem.
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Figure 3.19: Flops of max-ent and RK basis functions and derivatives against 1/h in two
dimensions.
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3.5.3 A two-dimensional elasticity problem: a confined square

domain

The third example is a linear elastic unit square domain, subjected to roller boundary

conditions on three sides and a prescribed displacement ūy on the fourth as shown in Fig-

ure 3.20. The purpose of this example is to study the performance of the two-dimensional

elasticity problem with convex and symmetric geometry and boundary conditions using

the MEPCM. The analytical solution for the displacement field for this problem under

plane stress condition is simply given as

ux = 0 and uy =
1− ν2

E
y . (3.62)

The differential operators for two-dimensional linear elasticity are used where the field

variables are displacements for elasticity. The material properties used were Young’s

modulus E = 1000 and Poisson’s ratio ν = 0.25.

x

y ūy=1

Figure 3.20: An elasticity problem: a confined square domain subjected to a displacement
ūy = 1 in y direction.

All collocation and source points were distributed uniformly in this regular domain

and the corresponding errors for different refinements of points are used to plot the

convergence rates in Figure 3.21. For two-dimensional elasticity problems, (2 × Ns)
1/2

denotes the density of points given that the approximation of displacement is a 2 × 1

vector. The results again demonstrate that, for a given level of discretisation, the error

in the MEPCM is less than that in the RKCM. In addition, the convergence rate in the

MEPCM is better than using the RKCM. In this example, the differential operators for
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elasticity problems are more complicated than for the two-dimensional Poisson problem.

Another feature in this two-dimensional elasticity problem is that the mixed second

derivatives of the basis functions ∂2φ
∂x∂y

are required in the differential operators thus x

and y directions are coupled. In this example, the geometry and boundary conditions

are symmetric and the body force for this elasticity problem is zero which simplifies the

numerical implementation.
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Figure 3.21: Convergence rate of ||e||L2 in the two-dimensional elasticity problem: a
confined square domain using the MEPCM and the RKCM.

The CPU times for solutions using both the MEPCM and the RKCM are given in

Table 3.5 and again there appear to be clear benefits using the MEPCM. The speed

up increases with an increasing number of source and collocation points. At the same

time, however, the overall computational time in this two-dimensional elasticity prob-

lem is longer than that for the previous two-dimensional Poisson problem, for similar

discretisations. The explanation for this is the need for calculation of mixed derivatives

of max-ent basis functions, assembly of the larger final coefficient matrix and the least

squares solver for the over-determined system in this example, all of which take more

time than the two-dimensional Poisson problem.



3.5. Numerical examples 62

Ns MEPCM (s) RKCM (s) Speed up

121 8.200× 10−2 2.010× 10−1 2.5
441 3.392× 10−1 1.176× 100 3.5
1681 3.150× 100 2.553× 101 8.1
2601 9.099× 100 8.560× 101 9.4

Table 3.5: CPU times for analyses using the MEPCM and the RKCM of the two-
dimensional elasticity problem: a confined square domain.

3.5.4 An infinite plate with a circular hole

The final example is another classic elasticity problem: an infinite plate with a circular

hole under a far field traction p = 10 in x direction. This numerical example is included

to study the performance of max-ent basis functions in a non-convex problem domain.

Due to symmetry, only the upper right quarter of the infinite plate, with b = 5, was

taken for analysis as shown in Figure 3.22. Roller boundary conditions were imposed at

b

b

y ūy

ūx

x

r
a θ

Figure 3.22: A portion of the infinite plate with a circular hole.

the collocation points on the bottom and left edges, the prescribed displacement ūx and

ūy were applied on the right and top edges and the rest collocation points are required

to satisfy the equilibrium equations. This problem has been widely used for validation
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in the past and has an analytical solution [138] which can be expressed as

ux =
10a

8G

{r
a

(κ+ 1) cos θ +
2a

r
[(1 + κ) cos θ + cos(3θ)]− 2a3

r3
cos(3θ)

}
(3.63a)

uy =
10a

8G

{r
a

(κ− 3) sin θ +
2a

r
[(1− κ) sin θ + sin(3θ)]− 2a3

r3
sin(3θ)

}
(3.63b)

where G is the shear modulus

G =
E

2(1 + ν)
(3.64)

and κ is the Kolosov constant

κ =

3− 4ν plane strain

3−ν
1+ν

plane stress.

(3.65)

r and θ are the polar coordinates as defined in Figure 3.22. Here, the problem was solved

with the plane stress condition and E=100000, ν=0.3 in compatible units.

collocation points
source points

Figure 3.23: The discretisation of points of the infinite plate with a circular hole.

In this example the domain and boundaries are not as regular as in the previous

examples so the influence of the discretisation is more noticeable. The (non-convex)

problem domain and corresponding boundaries were discretised by 117 source points

and 130 collocation points, as shown in Figure 3.23. In order to avoid the coincident
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distributions of collocation and source points, source points were distributed at different

positions to the collocation points except on the top and right edges, since the second

derivatives are not required for imposing Dirichlet boundary conditions on these two

edges. The singularity problem (highlighted in §3.5.2) has to be avoided by adjusting

the numbers and positions of points. Since both collocation and source points in this

example are distributed non-uniformly, the distances between collocation points and their

nearest source points in support are different. The scaling parameter dmax is therefore

adjusted to guarantee sufficient source points in the support domain of each collocation

point. This also has an effect on the iteration number for the Lagrange multipliers

required in max-ent basis functions, and for these combined reasons in these analyses,

the scaling parameter for the support domain was set to 3.5 which is higher than used

in the previous numerical examples.

(a) Displacement error of ux. (b) Displacement error of uy.

Figure 3.24: Absolute errors of displacement in x and y directions of the infinite plate
with a circular hole problem using the MEPCM.

The distribution of absolute errors between the approximation of displacements and

the theoretical solutions in x component and y component is shown in Figure 3.24.

The maximum x-displacement for this problem at (5,0) provided by Eq. (3.63)(a) is

5.5248 × 10−4. As expected, errors on the Dirichlet boundaries are very low, and the

most significant source of error is linked to strain gradients in the interior of the domain,

and around the circular hole because of the stress concentration. Comparing the errors

in x and y directions, the maximum value of error for ux is higher than in y component
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linked to the fact that the far field stress is applied to x direction. The example also

shows that the MEPCM works for this non-convex geometry with Dirichlet boundary

conditions however, on the circular edge the weak Kronecker-delta property is lost.

To study the convergence properties, the problem is solved with different discreti-

sations using both the MEPCM and the RKCM. It is clear from the results shown in

Figure 3.25 that the accuracy for a given discretisation and rate of convergence of the

MEPCM is higher than the equivalent RKCM. With an increasing number of degrees of

freedom, the convergence using RKCM degrades while the proposed method shows good

performance in this irregular geometry as the errors on the Dirichlet boundaries using

the RKCM also increase which affects the convergence performance. Compared with a

regular domain problem (e.g. Example 3 above), different numbers of source points in-

side the support domain of collocation points in this example generate different number

of basis functions for each collocation points, which has an effect on the value of ||e||L2

and the bandwidth of the final coefficient matrix.
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Figure 3.25: Convergence rate of ||e||L2 of an infinite plate with a circular hole problem
using the MEPCM and the RKCM.

This elastic plate with a circular hole problem has also been studied in [86] and the

||e||L2 using the IGA-C with varying order of basis functions has been demonstrated. It
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was observed in [86] that the convergence rate using the IGA-C with the second and

third order basis function was close to 2. However Figure 3.25 shows a higher rate of

convergence using the MEPCM plotted in terms of the number of degrees of freedom,

i.e. delivering a rate of convergence which is higher than using the third order IGA-C.

As indicated above the major differences in the basis functions and the discretisations

probably invalidates a direct and reliable comparison without further study.

Table 3.6 compares the computational times for analyses using the MEPCM and

the RKCM for this problem. As can be seen, when the number of degrees of freedom

is small, the speed up using these two methods is 1.9 , and the speed up increases as

the discretisations get finer. As stated above, the varying number of source points in

support at collocation points results from the non-uniform distribution of source points

and collocation points in the geometry, and increases the computational burden in both

the MEPCM and the RKCM as compared to the previous two-dimensional examples.

However, the speed up is not seen to increase as fast as in the other two-dimensional

examples as the discretisations get finer. This appears to be due to the non-uniform

distribution of points which has more effect on the MEPCM than the RKCM. In this

example, the percentage of computational time used in calculating the max-ent basis

functions and their derivatives is larger than the previous two-dimensional problems.

Using the MEPCM improves the computational efficiency but the effect caused by non-

uniform distribution of points cannot be ignored and may be a significant issue for real

world geometries, although that investigation is beyond the scope of this chapter. In all

cases studied to date however, an increased speed up can be seen with refinement when

comparing the MEPCM and the RKCM.

Ns MEPCM (s) RKCM (s) Speed up

117 2.060× 10−1 3.845× 10−1 1.9
426 9.996× 10−1 3.530× 100 3.5
1681 8.009× 100 3.085× 101 3.9
2601 2.072× 101 1.166× 102 5.6

Table 3.6: The CPU times for analyses using the MEPCM and the RKCM of the infinite
plate with a circular hole problem.
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3.6 Concluding remarks

This chapter has presented for the first time a point collocation method based on the

local maximum entropy basis functions. These functions have two properties that make

them ideal for the use with point collocation methods: (i) non-negativity and (ii) a weak

Kronecker delta for convex domains. Both of these properties improve the convergence

rate of the method, in particular the latter removes errors associated with the imposition

of Dirichlet boundary conditions which have been shown to limit the convergence rate of

other point collocation methods. The performance of the proposed method was explored

in the chapter using four numerical examples which included one-dimensional and two-

dimensional problems with linear elasticity and Poisson PDEs on both convex and non-

convex domains. In all cases the proposed max-ent point collocation method (MEPCM)

showed lower errors with higher rates of convergence compared to an existing RKCM. The

MEPCM also had an increasingly lower computational cost, with speed-ups of over 20

times for one-dimensional problems and around 5.6 times for two-dimensional elasticity

solutions. A numerical study of cost in terms of flop counts further confirms that the

MEPCM is more efficient than the RKCM and the proposed approach has been compared

to the IGA-C of [86] for one problem solved in both this chapter and that paper. The

key improvement of the MEPCM over the RKCM is that for the same number of degrees

of freedom, the computational time in calculating the second derivatives of the basis

functions is reduced. The performance of max-ent basis functions on non-convex domains

with non-uniform point distributions was also investigated and, although lower speed

gains were realised, the method still outperformed the RKCM on all simulations in

terms of errors and CPU time.



Chapter 4

Error estimation and adaptive

strategies

4.1 Introduction

The numerical solution for a continuum problem is obtained by conversion to a discrete

formulation in which discretisation errors due to imbalance of the governing equations

and boundary conditions at individual points are introduced [26]. The discretisation

errors can be split into sources arising from improper distribution of points, an inadequate

number of degrees of freedom and inadequacy of the solution space [28]. Uniform h-

refinement in which the distances between any two nearest points are reduced uniformly

is the easiest way to reduce the error but it is not efficient because it might lead to

unnecessary additional computational cost as new points are introduced to regions with

very low errors.

An adaptive process is defined as one that has error assessment and then a refinement

strategy. There are three types of adaptive strategies such as r-, h- and p- adaptivities,

depending on the refinement strategy chosen (similar error measure might be used). The

main idea of h-adaptivity is to increase the number of degrees of freedom by refining the

mesh in mesh-based methods or simply inserting additional nodes in meshless methods

locally to reduce the discretisation errors in the solution [139, 140]. r-adaptivity means

maintaining the same number of degrees of freedom and the order of the field variable

68
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approximation, but altering their locations [141–143]. p-adaptivity works by changing

the order of the basis functions [144–146].

As the point collocation method with local maximum entropy basis functions pro-

posed in Chapter 3 is implemented only based on individual points, the problems caused

by the use of a mesh in adaptive strategies such as the requirement of remeshing can

be avoided, which reduces the computational cost. Therefore, r-, h- and combined rh-

adaptive strategies with the local maximum entropy point collocation method (MEPCM)

for linear elasticity problems are developed in this chapter. Since the arbitrary higher

order of max-ent basis functions are unavailable, p-adaptivity is not considered. In this

chapter, previous work on h-, r- and combined rh-adaptivity strategies is reviewed first.

Then these three adaptive approaches with the MEPCM are introduced which include

basic formulations for different error estimators and refinement strategies. After that,

numerical implementation issues are discussed. Finally, some numerical examples includ-

ing one- and two-dimensional elasticity are included to demonstrate the performance of

the proposed approach.

4.2 Literature review

In this section, a literature review covering h-, r- and rh-adaptivity in the finite element

method (FEM) and meshless methods is presented.

4.2.1 h-adaptivity

Error estimation

Error estimators are used to estimate the difference between the exact solution and the

approximation. As the exact solution is unknown in most practical cases, the “recov-

ered” stress has been presented, which can be approximated by a recovery technique,

to replace the exact solution in error estimators. The superconvergent patch recovery

technique proposed by Zienkiewicz and Zhu in [147] is one of the most-often used recov-

ery method in the FEM. In this procedure stresses and strains are initially calculated at

the superconvergent points, which are then used to calculate stresses and strain at the
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nodes [148]. Error estimators can be computed in an energy norm depending on the dif-

ference between the recovered and approximated stress fields at a point or in an individual

element [149]. Since the superconvergent patch recovery technique is simple to implement

as explained in [150–152], the proposed error estimate based on the recovered stress in

mesh-based methods have been widely employed for solving hyperbolic problems [153],

two-dimensional planar elasticity problems [154] and other problems [155, 156]. After

that, the idea of the “recovered” stress has been extended to a “projected” stress, which

is computed in different way [157] and most often used in weak form-based meshless

methods such as in the RKPM [158–160]. The projected stress values are evaluated with

the same discretisation as the approximation but a reduced influence domain [161,162].

More recently, error estimation in strong form-based meshless methods has been devel-

oped although available literature is very limited, where the errors have been estimated

by the residuals of the governing equations at a set of individual points directly [163,164].

Apparently, this error estimate is simple and straightforward to implement.

Refinement strategy

In the following refinement step, new points are inserted in the problem domain and

on the boundaries to reduce the distance between adjacent nodes in areas with rela-

tively high local errors. However, in weak form-based meshless methods, regeneration

of background mesh is required for numerical integration based on the newly generated

points after each refinement step, which decreases the computaitonal efficiency such as

using the non-conforming meshing [27]. The local refinement makes the treatment of

non-conforming discretisation complicated especially for boundaries. Then refinement

works with strong form-based PCMs have been developed in [163–166], which possess

some advantages. The new collocation points can be inserted to local regions with rel-

atively high errors directly. As PCMs are truly meshless methods, it is not necessary

to consider numerical integration and remeshing, overcoming the difficulties mentioned

above. Convergence studies on h-adaptivity in meshless collocation methods have also

been provided in [166]. In contrast to weak-form based meshless methods, there is very

little literature on h-adaptive methods with PCMs to date.
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4.2.2 r-adaptivity

In r-adaptivity, the moving distances and directions for points or nodes need to be

determined by error estimators. The residual of the material equilibrium in terms of

the material force derived in [167, 168] has been used to measure the error because the

material force is concerned with the energetic changes of a continuum with respect to

points’ locations [169–172]. The finite element method (FEM) with r-adaptivity has

received much attention such as in [173–178], where the material forces were used as

driving forces to relocate the mesh. Although r-adaptivity is expected to offer a better

solution in the FEM, the crucial issue arising in mesh-based r-adaptivity is element

distortion. The estimated errors increase in r-adaptivity process since that the movement

of nodes of an element cause mesh distortion, which affects the accuracy of the solution

[179–182]. Mesh optimisation has then been proposed in [183], where the movement of

points is constrained to be sufficiently small by a step length parameter [184]. However

this additional mesh optimisation leads to extra computational cost.

It is possible to reduce errors using r-adaptivity, but a specific accuracy may not be

achievable with a fixed number of degrees of freedom. To tackle this, h-adaptivity can

be used after a sequence of r-adaptivity to reduce the discretisation errors. In [185], r-

and h-adaptive strategies were used in two subdomains separately without refinement on

the interfaces to exploit the advantageous properties of both stategies. A comparison in

terms of accuracy and convergence speed using pure and combined adaptive strategies

was conducted in [186, 187] where a combined rh-adaptive approach was shown to be

more efficient than pure r- or h-adaptivity alone. Combined rh-adaptivity was studied in

[188,189] for bimaterial interface problems, where discretisation errors can be reduced in

succesive adaptive steps and the best sequence for combining the effectiveness of r- and h-

adaption has been studied. The efficiency of using combined rh-adaptivity was compared

with pure h-adaptivity in [188] and it was found that a smaller number of degrees of

freedom was required in the combined strategy than in pure h-adaptivity. In relation to

the present study, to author’s knowledge, there is currently no literature on combined

rh-adaptivity for PCMs. Therefore, the investigation of the treatment of combined rh-

adaptive strategies and the comparison in terms accuracy and computational cost using
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pure h-, r- and combined rh-adaptivity is the focus of this chapter.

4.3 r-adaptivity strategy in the MEPCM

As in all adaptive procedures, an error measure is required in r-adaptivity and for the

case of linear elasticity, non-zero residuals of material force equilibrium (divergence of

energy momentum tensor with zero body force) are used as such in [190,191]. The idea

of r-adaptivity is then applied to the MEPCM. Current approximations of solutions

obtained from a given discretisation are therefore employed to estimate existing errors,

which can be used to determine the moving direction and distance for collocation points

in iterative r-adaptive procedure. For other PDEs, such as in Poisson problems, similar

quantities can be found to act as error estimators. In this section, error estimation and

point relocation in r-adaptivity with the MEPCM for linear elasticity are explained.

In this chapter, linear elastic material models with small deformations are studied.

As derived in [190], the material equilibrium takes the form

[L]T{Σ} = {0} in Ω (4.1)

where [L] is a matrix of differential operators as given in Eq. (3.3), {Σ} is the Eshelby

stress (or momentum tensor), {0} = {0, 0}T in two dimensions and Ω is the problem

domain. The residuals of the material equilibrium are adopted as an error estimator in

r-adaptivity as

[L]T{Σ} =
{∂W
∂x

}
explicit

(4.2)

where
{
∂W
∂x

}
explicit

is the explicit derivatives of the strain energy with respect to the

nodal position {x}.

The MEPCM approximations {uh} satisfy physical equilibrium, which is expressed in

terms of the Cauchy stress at each collocation point in the interior of the problem domain,

but they may not fully satisfy the material equilibrium. The non-optimal locations of

collocation points act in a similar way to a defect of a material as explained in Eshelby’s

original work and the subsequent literature on configurational mechanics for fracture.

The Cauchy stress describes the deformed state with respect to displacement while the
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Eshelby stress is related to the global energy change of the deformed solid with respect to

nodal positions. The imbalance of the material equilibrium using the MEPCM can then

be seen as a result of the discretisation. The discrete points can be argued to be defects

since the translation of strain energy is broken with respect to translations between each

pair of points [188]. These non-zero residuals in the divergence of the Eshelby tensor are

proposed as the measure of error and r-adaptivity is accomplished by minimising these

residuals in Eq. (4.1) with respect to collocation point positions.

In PCMs, the stored strain energy for linear elasticity can be expressed as

W ∼=
Nc∑
c=1

1

2
{σ}Tc {ε}cVc

∼=
Nc∑
c=1

1

2

{
[L]{u}

}T
c

[D]
{

[L]{u}
}
c
Vc (4.3)

where {σ} is the Cauchy stress, {ε} is the strain vector, Vc denotes a volume (area in

two dimensions and length in one dimension) associated with a collocation point c, [L] is

the differential operators given in Eq. (3.3) and [D] is the elastic stiffness matrix given

in Eqs. (3.8) and (3.9). As the material equilibrium residual in Eq. (4.1) is non-zero in

the discrete PCM formulation, the residuals can be collected as the explicit derivative of

strain energy with respect to collocation point positions

{R(x)} =
{∂W
∂x

}
c
. (4.4)

The physical equilibrium equation for elasticity problems is linearly dependent on the

field variables {d}, however the material equilibrium is non-linear as non-linear terms of

the field variables {d} are included in Eq. (4.4). Therefore, the Newton-Raphson method

is adopted to solve the non-linear system of equations. The positions of collocation points

in the iterative step can be found by

{xn+1} = {xn} − [R′(xn)]−1{R(xn)}, (4.5)

where n is the Newton-Raphson iteration number, {xn} and {xn+1} are the estimate

of positions in the previous step and the new positions in the current step. [R′(xn)]
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is the derivative of the residual vector {R(xn)} with respect to the coordinates of the

collocation points. The second term on the right-hand side of Eq. (4.5) indicates the

moving direction and distance for collocation points. Eq. (4.5) can be solved pointwise

and the explicit form of [R′(x)] is

[R′(x)]c =

 ∂2W
∂x2c

∂2W
∂xc∂yc

∂2W
∂xc∂yc

∂2W
∂y2c

 (4.6)

for two-dimensional problems where the second derivatives of strain energy W with

respect to the current position of each collocation point are required. Since collocation

points are independent of each other, the mixed second derivatives of strain energy with

respect to two different collocation points are zero. Once the residual in the Newton-

Raphson method is checked to satisfy the convergence criteria, the updated positions of

collocation points are obtained.

In the Newton-Raphson method, the choice of convergence criteria is important,

which has an effect on the accuracy and computational efficiency in the points relocation

procedure. As the values of residual norms vary with problems, it is difficult to define a

specific tolerance in general. Then the relative residual ηr is defined as

ηr =
||∆R(xn)||

||R(xn) + ∆R(xn)||
(4.7)

in which ||R(xn)|| is the L2 norm of the total material force residual of all collocation

points at the nth iteration step expressed as

||R(x)|| =

√√√√ Nc∑
c=1

(∂W
∂x

)2

c
, (4.8)

and ||∆R(xn)|| is the norm of the total material force residual difference between (n+1)th

and nth iteration steps. A value, η, is set as a measure of the tolerance and r-adaptivity

continues until the relative residual ηr satisfies ηr < η. Typical value for η is usually

set to 10−5. In mesh-based methods, the relative residual norm ηr decreases initially,

however ηr tends to go up in latter iterations due to progressive mesh distortion [192].

In PCMs, the variations of relative residual norm are not influenced by mesh distortion.



4.4. h-adaptivity strategy in the MEPCM 75

This convergence criterion is validated in the r-adaptive analyses presented in numerical

examples section.

In the implementation of r-adaptivity with the MEPCM, the field variables {d} are

used to measure the material force residuals {R} and form the tangent matrix [R′] in

the current Newton-Raphson iteration step. The positions for collocation points in the

current iterative step can be determined by Eq. (4.5) directly. Additional constraints

are employed so that collocation points on the boundaries can only be moved on those

boundaries. The vector {d} is recalculated using the collocation points obtained in each

iterative step. It is noted that in the r-adaptive MEPCM, the material force residuals

are minimised with respect to collocation point coordinates since total potential energy

is collected based at collocation points. Positions of source points are not changed so

the max-ent basis functions constructed based at the initially distributed source points

in the overall r-adaptivity analyses.

4.4 h-adaptivity strategy in the MEPCM

In addition to using r-adaptivity to improve accuracy, discretisation errors can be re-

duced by inserting extra collocation and source points at appropriate locations, i.e. h-

adaptivity. In the proposed h-adaptivity strategy with the MEPCM, errors are measured

by the residuals of the physical equilibrium at some generated calculation points in local

areas and these proposed error estimators indicate the error distributions in the overall

domain, while their summation estimate the global accuracy of the solution.

In order to provide an efficient way where errors can be estimated over local areas,

a Delaunay triangulation associated with collocation points is generated (see Figure

4.1). The so-called calculation points in the proposed scheme are located at the Gauss

quadrature points within these triangles. Arbitrary number of calculation points can be

generated in each triangulation as these points are used for error estimation rather than

numerical integration. In order to keep the balance of accuracy and computational cost,

three calculation points are selected for each triangulation. The local error estimator is

provided by calculating the residuals of the strong form-based governing equations at
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collocation points
calculation points

Delaunay triangulation

Figure 4.1: The generation of the Delaunay triangulation and calculation points in h-
adaptivity.

the generated calculation points as

et =
1

3
At

3∑
g=1

||L {uh(xg)} − {f b(xg)}||, (4.9)

where 1
3

is the product of weight and Jacobian of Gauss quadrature, g is the number of

calculation point, At is the area of the tth Delaunay triangle, {xg} is the coordinates of

the gth calculation point, {uh} is the approximation of the solution and ||L {uh(xg)} −

{f b(xg)}|| is the L2 norm of residual of the governing equations calculated at the gth

calculation point in the corresponding Delaunay triangle. et in Eq. (4.9) can be used

as the local error estimate over the subdomain (rather than a single point). For elastic

problems, the residual of the strong form governing equations in Eq. (4.9) is replaced by

the physical equilibrium equation. With the description of local error in Eq. (4.9), the

global error estimator can be easily obtained by

eg =
1

A

nt∑
t=1

et (4.10)

where A =
∑nt

t=1 At is the area of the problem domain and nt is the total number of

Delaunay triangles. The local and the global error estimators, et and eg, developed for

the MEPCM are used in the refinement procedure as described below.
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The refinement strategy used in MEPCM h-adaptivity is based on mesh refinement

ideas from weak form-based methods [193, 194] but facilitates an easier implementation

without the constraints of point connectivity. The target is to reduce both local and

global errors, achieving a prescribed accuracy. Here, a local refinement coefficient k ∈

[0, 1] (uniform refinement with k = 0) is predefined. The permissible local error ηt is

then defined as

ηt = kemax (4.11)

where emax is the maximum local error. Triangles with et > ηt are flagged for refinement.

The selection of k is problem dependent and there is not a rule for the choice of the value

of k. However, the choice of k is determined by the variation of local error estimators.

A larger value of k could be chosen if local errors vary in a wide range while a smaller k

is used if all local errors are close to each other.

(a) Initial points distribution; (b) First refinement; (c) Second refinement.

Figure 4.2: Step by step points refinement in h-adaptivity.

Three new collocation and source points are inserted into these flagged triangles.

Consider a discretisation with four points distributed as shown in Figure 4.2(a) in which

two Delaunay triangles can be generated. The lower triangle is flagged for refinement

so three new points are added at the centre of each two initially distributed points as

presented in Figure 4.2(b). A further second refinement is given as in Figure 4.2(c).

For an irregular problem domain or random distributed points, although the generated

triangles are not right angled triangles, refinement is still straightforward as indicated in

Figure 4.2. In each h-adaptivity step, some new points may be coincident, which have

to be removed from the list of points. In the h-adaptive MEPCM, collocation points are

refined in the same way as shown in Figure 4.2. The new source points are situated at
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the same positions with the new collocation points. Refined source points improve the

performance of the max-ent basis functions while more collocation points serve to better

satisfy the governing PDEs and boundary conditions. h-adaptivity continues until the

global error in Eq. (4.10) meets a prescribed value.

The effectiveness of the h-adaptive procedure can be described by an effectivity index

as

θ =
eg
||e||L2

(4.12)

where eg is the global error estimator and ||e||L2 is the L2 norm of relative error. The

effectivity index can be measured for those problems with analytical solutions to validate

the performance of the proposed error estimator. If the effectivity index, θ keeps around

a constant with an increasing number of degrees of freedom, the error estimate is efficient

to indicate the actual errors. It is because the estimated error can converge at a similar

rate to the actual error.

4.5 A combined rh-adaptivity approach

r- and h-adaptivity can be employed in the MEPCM separately to improve accuracy,

however both have their limitations. Nc and Ns do not change in r-adaptivity and only

the density of collocation points in the domain and on the boundaries is changed so

in a pure r-adaptivity, an arbitrarily prescribed accuracy may not be achievable within

a given number of degrees of freedom. In single h-adaptivity, although the number of

points increases continuously, the positions of newly inserted points are at least partially

determined by the initial distribution of points which presents a degree of inflexibility.

The initial discretisation may not be the optimal distribution of points, in which the

accuracy with this number of degrees of freedom can be further improved. Therefore,

a combined rh-strategy is now considered in which intermittent point relocation (r-

adaptivity) and h-adaptivity are both conducted. An arbitrarily defined accuracy ηg

can be accomplished by an optimised point distribution within an optimal number of Nc

and Ns. After the initial calculation using a given discretisation, r-adaptivity is adopted

to adjust the point positions, which is followed by further h-adaptivity. As different
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quantities of error estimators are used in r- and h-adaptivity respectively, it is vital to

point out that the given accuracy should be achieved by the residual ηr in r-adaptivity

or eg in h-adaptivity.

4.6 Numerical implementation

All detailed formulations used in different adaptive strategies have been described in the

last section. Numerical implementation using different algorithms for determining source

points in the local support, is discussed in this section.

4.6.1 Algorithms for determining source points in a support

The local max-ent basis function values vary with the changes of size and shape of

the local support domain of a collocation point, so compact support should be defined

thereby satisfying the required property for basis functions as introduced in §3.5. Enough

source points should be included in the local support domain for each collocation point

to guarantee the partition of unity (PU) property of the basis functions. That is, for

a given discretisation, the basis function values associated with source points inside the

support domain of a collocation point are non-zero and the summation of these basis

function values equals one.

In previous studies using max-ent basis functions [195, 196], the size of the support

domain for each collocation point has been controlled by a scaling parameter dmax, so the

choice of dmax is vital as this support region has an influence on accuracy and stability of

the approximation. For a regular distribution of source and collocation points, N∗s is the

same using a fixed dmax for most collocation points in the interior of the problem domain

and the computational cost for calculating basis functions for each collocation point in

the interior of the problem domain is similar. Therefore, it is not necessary to consider

this problem in Chapter 3. However, using a fixed dmax in a random (or unstructured)

distribution of points, not only is the calculation time for constructing basis functions

associated with each collocation point different because N∗s varies but also the coefficient

matrix [K] may be singular since N∗s might be zero for some collocation points. For some

collocation points on boundaries, fewer source points are included in the local support. In



4.6. Numerical implementation 80

r-, h- and rh-adaptive processes, collocation point relocation and points refinement make

the initial discretisation irregular in the following adaptive steps, therefore, additional

efforts are needed to deal with this difficulty caused by the use of a fixed dmax.

To address this issue in the MEPCM, a method has been devised to search for the

N∗s nearest source points in the neighbourhood of each collocation point. The main idea

of this algorithm is not to define a constant dmax but to define a minimum number of

source points N∗s in the support domain throughout the problem and these N∗s nearest

source points for each collocation point are stored for calculating the basis functions.

The minimum N∗s could be set as three in two dimensions for linear basis functions and

the three nearest source points are selected. An additional check is required to ensure

that the N∗s source points are not collinear associated with the collocation point in two

dimensions (similar to the issue in [197] for weak form-based meshless methods). Using

this idea, the computational cost for calculating basis functions for each collocation

point is similar and singular coefficient matrices [K] can be avoided. If the N∗s th and

(N∗s + 1)th source points have the same distances from the centred collocation point,

both are included.

(a) Fixed N∗s (b) Fixed size for support

source points
collocation points

Figure 4.3: Two algorithms using fixed N∗s and dmax for determining N∗s .

Determining proceeds by selection of a rectangular support domain is chosen around

each colocation point and two different approaches can then be used as are shown in

Figure 4.3. In Figure 4.3(a) N∗s is set as 6 for all collocation points and it can be seen

that the sizes of support domain for all collocation points are different. Since coincident

source and collocation points may lead to inaccuracy of the first max-ent basis function
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derivatives [114], source points that are identified in a search that are coincident with

the collocation point are not counted in N∗s . Figure 4.3(b) shows the case where the size

and shape of support domain (i.e. dmax) is the same for all collocation points and N∗s

varies across the support domains. In the numerical examples section, the performance

in terms of accuracy using fixed N∗s and fixed dmax is demonstrated for comparison.

4.7 Numerical examples

In this section, some numerical examples are presented to demonstrate the performance

of the proposed r-, h- and rh-adaptivity procedures. The two different algorithms for

determining source points inside the support domain are implemented and compared

in terms of accuracy for r- and h-adaptivity separately. The first three examples have

analytical solutions so that clear L2 norm of relative error on the displacements ||e||L2

can be determined to show convergence rates in multiple adaptivity strategies. The

effectiveness of the proposed error estimators are also validated by comparing ||e||L2 and

eg versus degrees of freedom. The computational efficiency with respect to accuracy and

computational times are also presented for each adaptivity strategy.

4.7.1 A one-dimensional bar problem

This is the same example as presented in §3.6.1, i.e. a one-dimensional linear elastic bar of

unit length fixed at the point x = 0 is subjected to a body force f b(x) = x. For this one-

dimensional problem, the linear system of equations was set up in which the collocation

points at the two ends satisfy the Dirichlet boundary conditions and all collocation points

in the interior of the domain are enforced to satisfy the physical governing PDEs. In

the small deformation case, the analytical solutions for the displacement and stress field

of this problem have been given previously in Eq. (3.58). The unit length bar was

discretised by a uniform distribution of collocation points and source points at the same

positions.
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r-adaptivity

Eleven collocation and source points are distributed uniformly in the problem domain

and on the boundaries. All source points are fixed in r-adaptivity so that the max-ent

basis function values stay the same in the overall analysis. Displacements at these eleven

collocation points that are obtained by solving the linear system are used to measure

the norm of the residual function ||R(x)||. The residual norm ||R(x)|| described in Eq.

(4.8) in each Newton-Raphson iterative step against the iteration number is shown in

Figure 4.4 (a) where the residual norm decreases in the first 7 iterative steps followed

by a degradation in the last four steps, leaving ||R(x)|| converging to a non-zero value.

This is a demonstration that the discretisation errors cannot be further reduced with

this given number of degrees of freedom, which is a limitation in pure r-adaptivity. The

convergence characteristics of the Newton-Raphson method for this one-dimensional bar

problem are shown in Figure 4.4 (b) where the gradients between pairs of steps are

shown. The convergence rate is less than the theoretical convergence rate of 2.0 for the

Newton-Raphson method [198, 199]. The possible reason for the lower convergence rate

might be the discretisation errors from basis function values. Source points, which are

used to construct basis functions, are not relocated in r-adaptivity and the same basis

function values are used in the overall analysis, therefore, the errors resulting from basis

functions are kept in r-adaptivity, serving to reduce the speed of error minimisation.

A comparison in terms of ||e||L2 using uniform h-refinement and r-adaptivity with

either fixed N∗s or dmax is presented in Figure 4.5. It is shown that r-adaptivity with

N∗s = 2 has similar convergence with lower relative errors than uniform h-refinement with

N∗s = 2. The number of source points inside the local support N∗s is critical to accuracy

but it remains unclear how to find the optimal N∗s theoretically [24]. As the analytical

solution exists, the L2 norm of relative error on displacements ||e||L2 are used to study

the influence of using different N∗s . When using dmax = 2.0, the size of support domain

stays the same and result in N∗s = 4 for the collocation points in the interior of the

problem domain using a regular discretisation. However, in the r-adaptive procedure,

some collocation points are gradually moved to form an irregular distribution which may

lead to deficiency in the linear system using dmax = 2.0. In the case with dmax = 2.0,
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(b) Convergence rate of ||R(x)||.

Figure 4.4: Residual norms and convergence rate in the Newton-Raphson method of the
one-dimensional bar problem.

the convergence rate of ||e||L2 in the r-adaptivity analyses goes down when Ns = 41

as not enough source points are included in the support domain in the irregular points

distribution, especially for the collocation points at two ends. When N∗s = 3 and 4, 3

and 4 source points in the support domain are included to construct the basis functions.

In the initially symmetric discretisations, N∗s = 3 and 4 lead to the same discretisation

errors for the most collocation points in the interior of the problem domain. In the latter

r-adaptive steps, using N∗s = 4 and N∗s = 3 results in different weight function values

in the irregular point distributions. From this study, using N∗s = 2 appears to achieve

better convergence rates than using N∗s = 3, 4 and dmax = 2.0.

In order to measure the efficiency of the proposed r-adaptivity procedure, CPU times

with different discretisations using uniform h-refinement and r-adaptivity were measured.

With the same number of collocation points, uniform h-refinement is cheaper than r-

adaptivity as the r-adaptive process takes more time to minimise the material force

residuals by relocating collocation points iteratively than using uniform h-refinement.

Efficiency in terms of relative errors ||e||L2 against CPU times for uniform refinement and

r-adaptivity is compared in Figure 4.6. Although for a small number of degrees of free-

dom (relatively high errors), r-adaptivity needs more computational time than uniform
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Figure 4.5: Convergence rate of ||e||L2 of the one-dimensional bar problem using uniform
refinement and r-adaptive strategy with various N∗s .

refinement, it is observed that with an increasing number of degrees of freedom (rela-

tively small errors), r-adaptivity is more cost effective than using uniform h-refinement.

Uniform refinement cannot always improve the accuracy efficiently because the extra

degrees of freedom are introduced in local regions with small errors. In this example, it

is concluded that the accuracy of the MEPCM approximation can be improved through

effective r-adaptivity.

h-adaptivity

The one-dimensional bar is now analysed using h-adaptivity. For initial discretisation,

6 collocation points and 6 source points were distributed in the interior of the problem

domain and on the boundaries uniformly as shown in Figure 4.7(a). The governing

PDEs and boundary conditions are identical to those used in the study of r-adaptivity

above. The L2 norm of relative error on displacement ||e||L2 and the proposed global

error estimator eg in each h-adaptive step were measured. In one-dimensional analysis,

the local error estimate is replaced by el which is estimated in each local length. In order
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Figure 4.6: Convergence rate of ||e||L2 against CPU time of the one-dimensional bar
problem using uniform refinement and r-adaptivity with N∗s = 2.

to calculate the error estimate el, the residuals of the strong form governing PDE were

determined at the calculation points as shown in Figure 4.7(b).

collocation points
source points

collocation points
source points
calculation points

(a) (b)

Figure 4.7: The collocation, source and calculation points generation in h-adaptivity of
the one-dimensional bar problem.

The local error estimator given in Eq. (4.9) can be changed as

el =
1

2
l

2∑
g=1

||E
d2uhg
dx2

g

− xg||, (4.13)

for each local length in one-dimensional problem where l is the length between two
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adjacent collocation points, xg is the coordinate of the gth calculation point and uhg is

the approximation at the gth calculation point. The global error is

eg =
1

L

nl∑
l=1

el, (4.14)

where L is the length of the one-dimensional problem domain and nl is the number of

individual lengths. In this example, new collocation and source points are added at the

centres of local lengths as determined by the local error estimate el.

In this study, a comparison in terms of accuracy using fixed dmax and fixed N∗s is

also included. Figure 4.8 shows a plot of ||e||L2 in the main variable u against Ns using

uniform refinement and h-adaptivity with k = 0.95 and different sizes of support domain

for the one-dimensional problem. In this figure, it can be seen that h-adaptivities with

N∗s = 2, 3, 4 have better convergence rates with lower errors than uniform h-refinement

with N∗s = 2, 3, 4. Although any choice of the support shape and size might be possible,

they have an effect on the weight function and basis function values, which are critical

to numerical solution. Similarly to the previous example, numerical experiments provide

a way to choose an optimal N∗s with better accuracy [24]. In the uniform h-refinement,

N∗s=2, 3, 4 are picked for comparison. It can be seen that N∗s=2 has lower errors than

the other two cases with the same discretisations. The sizes of support are different for

these three different N∗s and the maximum weight function value for N∗s=2 is higher

than the other two values. For the regular distribution of points, N∗s=3 and 4 lead

to the same support domain for the collocation points in the interior of the problem

domain and consequently these approaches have similar error convergence rates, but in

the adaptive process, points are added into regions with higher errors, which makes the

points distribution irregular therefore N∗s=3, 4 analyses produce different error norms.

The size of support using dmax=2.0 is the same as N∗s=4 for the collocation points in the

interior of the problem domain, but for the boundary collocation points, N∗s=4 has larger

support. It can be observed in Figure 4.8 that the size of support domain plays a more

important role in h-adaptivity as the discretisation becomes irregular. h-adaptivity with

N∗s=2 achieves a better convergence rate than using N∗s=3, 4. In addition, this irregular

points distribution also causes deficiency using dmax = 2.0 and some issues raised in §4.6
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appear here, i.e. singularity problems in [K] has an effect on solving the linear system

and approximating the solution in the last three h-adaptive steps. From this analysis,

using a fixed minimum N∗s is more robust in h-adaptivity and N∗s=2 is an appropriate

choice in this example to achieve better accuracy.
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Figure 4.8: Convergence rate of ||e||L2 of the one-dimensional bar problem using different
N∗s with k = 0.95.

In order to study the effect of using different values of the local refinement coefficient

k on accuracy in h-adaptivity, eg with k = 0.9, 0.95, 0.99 are obtained using N∗s=2.

Although there is no theoretical value for the local refinement coefficient, k, the choice

of k is affected by the variation of local errors over the domain, which is discussed with

the error distribution. The global error estimator eg given in Eq. (4.10) for uniform

and h-adaptivity with different k are plotted against Ns in Figure 4.9. It can be seen

that the global error estimator eg for uniform refinement decreases slower than in h-

adaptivity with different k values. Using k = 0.9 allows more points to be added than

using k = 0.95 and 0.99 in the adaptive steps. The convergence rate of the global error
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estimator eg using k = 0.95 is greater than using k = 0.99 and smaller than using 0.9 in

the initial two steps. However, this global error estimator decreases faster than the rest

two cases in the latter steps. The number of new points in the case with k = 0.95 makes

h-adaptivity more efficient than the other two cases, achieving a better convergence with

more accurate results.
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Figure 4.9: Convergence rate of eg of the one-dimensional bar problem using different k
with N∗s = 2.

Figure 4.10 shows the convergence rates of ||e||L2 in uniform refinement and h-

adaptivity with different k, which is used to validate the performance of proposed eg.

It can be seen that k=0.95 performs better than using k=0.9 and 0.99 in the overall

adaptive steps except for the first step. Comparing Figure 4.9 with Figure 4.10, in this

one-dimensional problem with an analytical solution, a similar trend is apparent using

eg and ||e||L2 with different k which influences the efficiency in h-adaptivity, although

the magnitudes in these two figures are different.

The effectivity index θ, which is designed to show the effectiveness of the proposed

error estimator in Eq. (4.9) is of use here. In Figure 4.11, the effectivity index with

different k values in h-adaptivity for this one-dimensional problem is plotted. The ef-

fectivity index for k = 0.95 increases slightly in the continuous adaptive steps and the
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Figure 4.10: Convergence rate of ||e||L2 of the one-dimensional bar problem using different
k with N∗s = 2.

gradient of θ is not a constant as the convergence rates of errors described by different

error estimators have different magnitudes. The effectivity index with k = 0.9 shows os-

cillation around a value 10, which implies the ratio of the proposed error estimator and

the actual error is close to a constant as discussed in §4.4. The global error estimator eg

converges at the similar rate to the actual errors.

The global error estimator eg versus the CPU time that includes the total computa-

tional time for calculation, error estimation and point refinement for uniform refinement

and h-adaptivity with different k, is shown in Figure 4.12. It can be seen that uniform

refinement takes more time than h-adaptivity since in h-adaptivity fewer points are used

than in uniform refinement, which makes h-adaptivity more efficient to achieve a given

accuracy. Comparing the CPU times in h-adaptivity with different k, the computational

cost using k = 0.9 is more expensive than using k = 0.95 and k = 0.99 as more new

points are inserted. Less points are inserted using k = 0.99, but it is slower to achieve the

predefined accuracy. From the above numerical results, h-adaptivity with k = 0.95 can

achieve better accuracy with less CPU time than uniform refinement and h-adaptivity

with other k values.
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Figure 4.11: The effectivity index using h-adaptivity of a one-dimensional bar problem
using different k with N∗s = 2.
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Figure 4.12: Convergence rate of eg against CPU time of the one-dimensional bar problem
using different k with N∗s = 2.
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(c) The second h-adaptive step.
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(d) The third h-adaptive step.

Figure 4.13: The collocation points and local error distributions in h-adaptivity with
k = 0.95 of the one-dimensional bar problem.
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Distributions of collocation points with local errors el and the L2 norm of relative

error on displacement ||e||L2 of each local length in the step-by-step h-adaptivity with

k = 0.95 are shown in Figure 4.13. It can be observed that the local lengths with

local errors el and ||e||L2 greater than the permissible errors are refined to reduce eg in

the h-adaptive process. In this figure, el and ||e||L2 perform the same trend although

they are measured in different ways. In Figure 4.13(b)-4.13(d), the positions for newly

added collocation points can be determined by el or ||e||L2 . It can also be observed in

Figure 4.13 that there is only a little variation in the local errors across the domain, the

selections of refinement parameter k are in a small range and sensitive to the analysis. If

values of k are chosen in a larger range, some choices below a value lead to the analyses

which are identical with the uniform refinement (k = 0).

4.7.2 An infinite plate with a circular hole

In this example, an infinite plate with a circular hole with a far field stress p = 10 in x

direction under plane stress conditions is analysed. An analytical solution exists for this

problem so the proposed error estimator can be validated by comparing to the actual

L2 norms of relative errors ||e||L2 . In this example, uniform refinement, pure r-, h- and

combined rh-adaptivity are compared in terms of accuracy and computational cost. As

this example has already been studied in §3.6.4, the boundary conditions and analytical

solution for this problem can be found there. In the entire analysis, N∗s = 3 is chosen to

be used. For the initial distribution, 121 collocation points are distributed in the problem

domain and on the boundaries as shown in Figure 4.14(a). A total of 81 collocation points

are in the domain, 4 corner points are fixed and 36 collocation points are on boundaries

and can only be relocated on boundaries in one direction in pure r-adaptivity. The

predefined maximum iteration number in the Newton-Raphson method was set as 20

with a tolerance number ηr = 10−5 in the r-adaptive process. The global error estimator

eg is adopted to estimate the global error for overall accuracy. The local error estimator

et for each local area is estimated at the generated calculation points as described in

§3.3 and k = 0.2 in this example is selected to test the performance of various adaptive

strategies. Unlike in the one-dimensional bar problem, the local refinement parameter k
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can be defined as a small number 0.2. The variation of local errors in this example is

apparent as the stress concentration effect around the circular hole area can cause a wide

range of variation while the errors close to Dirichlet boundaries are getting smaller. In

addition, combined rh-adaptivity is conducted and the performance in terms accuracy

and computational cost of various refinement strategies is explored.

(a) A portion of the infinite plate with a circu-

lar hole with a far field stress p = 1.0 in x dire-

ction.

(b) Collocation points after the 1st relocation.

(c) The generation of triangles and calculat-

ion points.

(d) Collocation points after the 1st rh-adaptivity.

Figure 4.14: The distribution of collocation points in rh-adaptivity with k = 0.2 of the
infinite plate with a circular hole problem.

The distributions of collocation points in the first rh-adaptivity step are illustrated in

Figure 4.14. After the initial calculation, collocation points moved towards the circular

hole area as shown in Figure 4.14(b) because the errors close to the hole are higher

than in the other local areas, considering the stress concentration effect caused by the

circular hole. These updated collocation points are employed to construct the Delaunay

triangulations where three calculation points are generated in each triangulation as shown

in Figure 4.14(c). In the following h-adaptivity step as shown in Figure 4.14(d), most of
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the newly added points are located in the area close to the hole.

The L2 norm of relative error ||e||L2 in terms of the displacement solutions for uniform

refinement, pure h and r-adaptivity and combined rh-adaptivity are plotted in Figure

4.15. These four strategies start with the same number of degrees of freedom. The

convergence rate of uniform refinement is 2.0, which agrees well with the convergence

rate for the MEPCM [114]. Values of ||e||L2 in h-adaptivity are smaller and have higher

convergence rate than in uniform refinement with the same degrees of freedom. It can

be observed that the convergence rate of ||e||L2 for r-adaptivity is almost the same as

the error convergence in uniform refinement as their basis functions are the same. The

improvement of accuracy between uniform and r-adaptivity for different discretisations

stays approximately the same. A combined rh-adaptive process is adopted five times

continuously using the same initial number of degrees of freedom as in pure adaptivity.

It is observed that ||e||L2 in the combined rh-strategy exhibits a better convergence rate
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Figure 4.15: Convergence rate of ||e||L2 of the plate with a circular hole problem with
k = 0.2.

than uniform, r- and h-adaptivity. In rh-adaptivity, Nc and Ns increase from 121 to 1213

over five steps. After the initial calculation, the accuracy of solution can be improved

in r-adaptivity where the number of degrees of freedom keeps the same indicated by the
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vertical decrease in Figure 4.15. In the following h-adaptive step, the errors are reduced

by increasing the number of degrees of freedom. Not only are the collocation points

relocated in r-adaptivity but also additional points are refined in a combined strategy,

which gives a more flexible approach with better performance in terms of accuracy than

pure adaptive strategies.

In h-adaptivity and rh-adaptivity, the global error eg is estimated in each h-adaptive

refinement as shown in Figure 4.16 where eg converges faster in rh-adaptivity than in

h-adaptivity. Comparing ||e||L2 in Figure 4.15 with eg in Figure 4.16, although the actual

values of eg and ||e||L2 for this example are different, they show the same changing trend

and the proposed eg can be used to predict the distributions of actual errors.

101.3 101.4 101.5 101.6 101.7 101.8

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

(2×Ns)
1
2

G
lo

b
al

er
ro

r
e g

h-adaptivity
rh-adaptivity

Figure 4.16: Convergence rate of eg using h and hr-adaptivity of the plate with a circular
hole problem with k = 0.2.

Figure 4.17 shows the material force residuals in each r step in combined rh-adaptivity.

It can been seen in Figure 4.17 the minimisation of material force residual becomes more

efficient from the second r-adaptive step because the refined points in the following

h-adaptive step can also be used to minimise the discretisation errors.

Once again, the computational cost using these strategies are presented in Table 4.1.

It is obvious that uniform refinement uses the shortest CPU time which computes the
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Figure 4.17: The material force residuals in the iteration process of the plate with a
circular hole problem with k = 0.2.

Initial
Ns

Final
Ns

CPU time
(s)

Final
||e||L2

Final eg

Uni 1225 1225 7.76× 101 1.49×10−3 1.66× 10−5

h 121 1213 8.20× 102 2.10×10−4 2.28× 10−6

r 1225 1225 1.23× 103 3.20×10−4 3.55× 10−6

rh 121 1213 1.92× 103 9.07×10−5 1.74×10−10

Table 4.1: Quantitative results in the infinite plate of a circular hole problem using
different adaptivity approaches.
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approximation of solution using the MEPCM with Ns = 1225. The pure h-adaptivity

starts from Ns = 121 to Ns = 1213 and the CPU time for h-adaptivity includes 5

calculations using the MEPCM, 5 error measurements and 5 point refinements in total,

taking 820.2s which is nearly 10 times that of using uniform refinement. The pure r-

adaptivity relocates 1225 collocation points for a certain number of iterations to minimise

the total potential energy. The total CPU time for this process is 15.8 times greater than

uniform refinement but the error is cut by 78.5%. The total CPU time for combined rh-

adaptivity is also reported. Compared to the pure h-adaptivity, the combined approach

reduces 99.9% of the error but within an even longer time. After the point refinement,

additional collocation point relation is conducted. This study shows that a combined rh-

approach can generate more accurate approximations than r-adaptivity and h-adaptivity

alone but with additional computational cost.

4.7.3 L-shaped plate under uniaxial loading

The final example presented in this chapter is that of a plane stress L-shaped plate

subjected to uniform displacement on the left edge, for which the problem model and

boundary conditions are shown in Figure 4.18. The right and top edge were constrained

in x and y directions, respectively, and Dirichlet boundary conditions were imposed on

the left edge. The other three edges were traction free. The material properties used for

this example were E = 1.0 × 105 and ν = 0.3. An analytical solution is not available

for this example so it is impossible to work out ||e||L2 . The proposed eg in h-adaptivity

is adopted to identify the accuracy of the local approximation in h- and rh-adaptive

processes.

Again, uniform h-refinement, pure r-, h-adaptivity and combined rh-adaptivity ap-

proaches were considered for comparison in terms of accuracy and computational cost

for this example. N∗s = 3 is selected for entire analysis and k = 0.3 in h-adaptivity.

As explained in last example, the local errors vary a lot in this example because of

the stress singularity at point C. The total iteration number in the Newton-Raphson

method for the r-adaptive process was 20 with a predefined tolerance number ηr = 10−5

in r-adaptivity. At the beginning of the analysis, 96 collocation points were distributed
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Figure 4.18: The L-shaped plate with a uniform displacement on the left edge.

regularly with the same number of source points but at slightly different positions, as

shown in Figure 4.19(a). All source points inside the domain were concentrated towards

point C by a scaling parameter 0.01.

As shown in 4.19(b) the collocation points relocation in the initial rh-adaptivity

process leads to a distribution that concentrates a group of collocation points towards

the stress singularity at C while the boundary collocation points are not moved since

they fully satisfy the Dirichlet boundary conditions. Figure 4.19(c) shows the generated

Delaunay triangulations associated with the updated collocation point positions in Figure

4.19(b). The generation of collocation points are illustrated in Figure 4.19(d). Figure

4.19(e) shows the collocation points distribution after the first h-adaptivity. Most new

points are inserted around point C and traction free boundaries, however, the material

equilibrium is not fully satisfied with these newly generated discrete points, which need

further relocation as shown in Figure 4.19(f). It can be observed that although the

geometry of the problem is symmetric, the points relocation and refinement are not due

to the non-symmetric boundary conditions. In both the r- or h-process, collocation

points are inserted near or moved towards the singularity point since the material force

residual or et are much higher there than the rest of the domain as might be expected.

The global error eg is also calculated to assess the accuracy of uniform refinement, r-,

h- and rh-adaptivity, as shown in Figure 4.20. The global error estimator eg in uniform
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(a) Collocation and source points. (b) Collocation points after the 1st relocation.

(c) The generation of triangles. (d) The generation calculation points in trian-
gles.

(e) Collocation points after the 1st refinement. (f) Collocation points after the 2nd relocation.

Figure 4.19: The generation of points and triangulations of rh-adaptivity of the L-shaped
plate.
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refinement reduces more slowly than the other three methods with higher error values.

h-adaptivity improves the accuracy more efficiently with a greater convergence rate than

that for uniform refinement. For the same number of degrees of freedom, new collocation

points are refined in the regions with higher et, such as near point C in this example. In

uniform refinement, et in some regions far away point C reaches the prescribed accuracy

requirement where additional collocation points are not needed. Although the material

force residuals are used as residual in Newton method in r-adaptivity, eg is also calculated

after each r-process as a consistent error estimator to compare the convergence rate with

the other three strategies. r-adaptivity decreases eg within the same number of degrees

of freedom and shows similar convergence rate to uniform h-refinement. Given the fact

that errors have more than one source, the r-adaptive procedure can eliminate part of

the discretisation errors by minimising the material force residual.
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Figure 4.20: Convergence rate of eg using different adaptivity of the L-shaped plate with
k = 0.3.

The material force residuals measured from r-adaptive steps in a combined rh-

adaptivity are shown in Figure 4.21. In the 5 r-adaptivity steps, collocation points

relocations are completed within 5 iterations to achieve the prescribed requirement. The

absolute value of residual in the first r-adaptivity step is higher than the rest because
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Figure 4.21: Material force residuals in the iteration process of the L-shaped plate with
k = 0.3.

h-adaptivity is implemented after the first r-process.

For this example, Table 4.2 presents the CPU times for the different adaptive strate-

gies. The time in h-adaptivity is counted from Ns = 96 to Ns = 357 which includes

4 MEPCM calculations, 4 error estimations and 4 point refinements. Both source and

collocation points are refined in each process and basis functions and derivatives are

recalculated. This repeated process costs much more CPU time (3 times) than uniform

h-refinement but with an accuracy improvement. In r-adaptivity, 408 collocation points

are relocated iteratively and compared to uniform refinement, an additional 184s is spent

on relocation. The combined adaptive procedure is repeated 4 times which takes more

time than the summation of pure h- and pure r-adaptivity since single h- and r-adaptive

process are dependent to each other. The error estimation in each adaptivity step re-

lies on the solution obtained from the previous step. However this combined method

provides a more flexible way to achieve the best accuracy in contrast to the other three

adaptivity processes.
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Initial
Ns

Final Ns CPU time
(s)

Final eg

Uni 408 408 9.12× 101 3.33× 10−4

h 96 357 2.26× 102 9.84× 10−6

r 408 408 2.75× 102 4.02× 10−5

rh 96 511 5.22× 102 1.85× 10−6

Table 4.2: Quantitative results of the L-shaped plate using different adaptivity ap-
proaches.

4.8 Concluding remarks

In this chapter, r-, h- and combined rh-adaptive strategies have been investigated and

implemented with the MEPCM. The discrete material force residuals act as driven forces

in r-adaptivity that implies the imbalance of material equilibrium equation for linear

elasticity problems. r-adaptivity results in an optimal distribution of collocation points

with minimum total potential energy achieved by collocation point relocation within a

certain number of degrees of freedom. h-adaptivity offers a point refinement strategy

to achieve better accuracy that reduces error by satisfying the physical equilibrium at

more collocation points than at the original arrangement of points. Therefore, a robust

error estimate based on the strong form of the governing equations residual and a clear

point refinement procedure have been developed. The selection of refinement parame-

ter k value, which has an effect on efficiency of h-adaptivity in terms of accuracy and

computational cost, is not identical in h-adaptivity for different analyses. k is depen-

dent on the requirement of prescribed accuracy in adaptivity and the problem geometry

with boundary conditions and external loads. Although there is not rigorous rule to

define the value of k, it can be suggested by the variation of local errors. A combined

adaptive technique has been conducted in which r- and h-adaptivity are repeated in

cycles to achieve a prescribed tolerance. Numerical studies are demonstrated to validate

the proposed adaptivity strategies. A comparison on convergence characteristics in L2

norm of relative error and proposed relative error norm on material force residual for

the problem with analytical solution indicates that r-adaptivity is more flexible than

uniform h-refinement. Meanwhile, another comparison between h-adaptivity and uni-

form h-refinement verifies that error estimator in h-adaptivity is stable. Both r- and

h-adaptivity can achieve better accuracy with higher convergence rates than uniform re-
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finement. Finally, two-dimensional problems with and without analytical solutions were

examined using the combined rh-adaptivity. Discretisation errors are minimised though

the satisfaction of physical and material equilibrium equations at the most points. In ad-

dition, the combined rh-adaptivity with the local MEPCM, unlike mesh-based methods,

does not suffer from ill-shaped mesh and points connectivity in the updated discretisa-

tion. However, the computational cost of using combined rh-adaptivity is more expensive

than single adaptive strategies and uniform refinement.



Chapter 5

Geometric non-linearity

5.1 Introduction

A large number of engineering problems are analysed under the assumption of small

deformation in which a linear relationship between strains and displacements is assumed

when external forces of reasonable magnitudes are applied [200]. However, this assump-

tion may result in a less accurate approximation of the actual response when the struc-

ture undergoes large deformations [201]. For this reason, geometric non-linearity (GNL)

or finite deformation becomes important, where the assumption of linearity is replaced

by a non-linear relationship between strains and displacements, providing more real-

istic results to a variety of problems such as non-linear truss problems [202], carbon

nanotube-reinforced functionally graded panels [203], crystal plasticity [204] and elastic

shells [205].

Three descriptions of motion are most often used for finite deformation analyses and

an appropriate choice needs to be made. In Lagrangian descriptions, motions follow the

movement of each point of a body from the reference state to the current state [206,207].

Lagrangian descriptions can be split into Total and Updated Lagrangian approaches,

where the measures of strain and stress are referred to the reference and current co-

ordinates respectively, resulting in identical results [208]. The key difference between

these two formulations is that they are described in terms of different configurations,

making differences in numerical efficiency [209]. In Eulerian descriptions of motion the

104
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focus is on specific locations in the spatial coordinates at time t [206]. Co-rotational

formulations use coordinate systems that can rotate with the body [210]. Lagrangian

descriptions are preferable in solid mechanics because the constitutive behaviour in solids

is often presented in terms of material coordinates [211]. The sequence of events in La-

grangian formulations for quasistatic problems (as covered in this thesis) is ordered by

the pseudo-time. Eulerian descriptions are most appealing in fluid mechanics since all

relevant quantities are referred to the position in space at time t. Co-rotational formula-

tions are relatively less common and have been developed for the analyses of beams and

shells, for instance in [210,212].

The finite element method (FEM) has been used as a conventional way to solve large

deformation problems however they are ineffective in handling extremely large deforma-

tion owing to severe mesh distortion [213,214]. The arbitrary Lagrangian-Eulerian (ALE)

method attempts to circumvent these difficulties by combining the advantages of both

the Lagrangian and Eulerian methods. In the method, motion is represented by a set of

nodes that are allowed to move arbitrarily within the domain and mesh distortion can be

better addressed by the ALE method than a pure Lagrangian or Eulerian method, but ad-

ditional computational complexities are introduced in this method [215,216]. Given these

problems, meshless methods have been seen as ideal tools for large deformation problems.

In meshless methods, the physical domain of interest is entirely presented by scattered

field points without considering meshes and elements, so the overall analyses are totally

free from the issues of mesh entanglement and distortion. This attractive feature has

motivated the development of this group of methods in the past 20 years, such as smooth

particle hydrodynamics [217,218], the element-free Galerkin method [219], the meshless

local Petrov-Galerkin method [220], the reproducing kernel particle method [221], the

meshless max-ent method [222, 223], Galerkin-based methods with max-ent basis func-

tions [109] and the isogeometric meshless method [27,214,224–229].

Most meshless methods used in previous research for large deformation problems are

in weak forms. Accurate and stable results can be obtained for modelling large defor-

mation problems using these methods but they are computationally expensive because

of the use of numerical integration. To challenge this, strong form-based meshless col-

location methods have been suggested as they are truly meshless techniques where a
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distribution of points only is required, although the literature here is tiny compared to

weak form-based approaches. Strong form-based approaches have been extended to large

deformation analyses such as for micromechanical structures in [230] and the collocation

method of finite spheres was introduced as a meshless technique for real time simulation

of surgical processes in [231].

As only a few studies using strong form-based meshless methods focus on large de-

formation problems, a natural development in this thesis is to apply the point collo-

cation approach with local maximum entropy basis functions developed in Chapter 3

to problems with large deformations. In the development described here a Total La-

grangian description in terms of the reference configuration using a linear Kirchhoff

stress-logarithmic strain relationship is adopted, which provides one of the most straight-

forward ways to implement large deformation elasticity [232]. In Chapter 4, adaptive

procedures were demonstrated for the local maximum entropy point collocation method

(MEPCM) but only h-adaptivity is employed for large deformation problems in this

chapter. r-adaptivity is not used here for large deformation problems considering the

computational cost and complexities resulting from solving two sets of non-linear systems

for points relocation and recalculation of geometrically non-linear problems, respectively.

An existing error estimation procedure for small deformations proposed in Chapter 4 is

extended, implemented and demonstrated for large deformation in this chapter. After

that, some numerical examples are presented to validate the performance of the proposed

method.

5.2 Extending to geometric non-linearity

Consider a reference (undeformed) configuration in an open region Ω0 using a Cartesian

coordinate system. At time t = 0, a point P ∈ Ω0 is denoted by {X̄} = {X, Y }T in two

dimensions. The capital indices denote the positions in the reference configuration. As

the continuum body deforms to a region Ω in the current (deformed) configuration at

time t, the point P is mapped into p ∈ Ω at the position {x̄} = {x, y}T . The spatial
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Figure 5.1: Configuration and motion of a continuum body.

position of the material point can be given as a function of pseudo-time through

{x̄} = ϕ({X̄}, t) (5.1)

where ϕ is the Lagrangian description of the motion of a body. The motion ϕ is a

uniquely invertible function that carries the information of a material point P from the

material configuration to p in the current configuration. Conversely, {X̄} can be specified

uniquely by {x̄} at pseudo-time t as

{X̄} = ϕ−1({x̄}, t) (5.2)

where ϕ−1 is the inverse motion. The displacement field of a material point is the

difference between its position in the current and the reference configurations as

{u({X̄}, t)} = {x̄({X̄}, t)} − {X̄} (5.3)

in terms of the reference configuration or alternatively

{u({x̄}, t)} = {x̄} − {X̄({x̄}, t)} (5.4)

in terms of the current configuration. The vector of displacement in terms of the reference

configuration in Eq. (5.3) is chosen in this chapter as a Total Lagrangian formulation is

used.
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Deformation gradient, which is used as a primary measure of deformation for a con-

tinuum body, is a crucial quantity to provide the fundamental link between the reference

and current configurations as

[F ] =
∂{x̄}
∂{X̄}

= [I] +
∂{u}
∂{X̄}

(5.5)

where [I] is a 2× 2 identity matrix in two dimensions and ∂{u}
∂{X̄} is the partial derivatives

of the displacement vector with respect to {X̄} in the reference configuration. Eq. (5.5)

involves the partial derivative of an independent variable {x̄} with respect to another

independent variable {X̄}, which is ambiguous, so it is noted that {x̄} should refer to Eq.

(5.1) whenever it appears as mentioned in [207]. Any point in the reference configuration

can be mapped into the current configuration by the action of [F ]. The volume ratio

(or Jacobian determinant) J is defined as the volume change between the reference and

current configurations as

J =
dV

dV0

= det([F ]) > 0 (5.6)

where dV0 and dV denote infinitesimal volumes in the reference and current configura-

tions respectively. det(·) is the determinant of (·).

In geometrically non-linear analyses, multiple strain measures are available as intro-

duced in [233]. By applying the polar decomposition to the deformation gradient, the

total deformation can be split into [210,234]

[F ] = [R][U ] = [v][R] (5.7)

where [U ] and [v] are, respectively, the right (material) and left (spatial) stretch tensors

and [R] is the orthogonal local rotation tensor with [R]T = [R]−1. A pure stretch is

obtained when [R] equals the identity matrix [I]. The right and left stretch tensors,

which measure a change of local shape, are unique, positive definite and symmetric.

Using Eq. (5.7), the right and left Cauchy-Green strain tensors, [C] and [b], can be

obtained directly from the deformation gradient as

[C] = [F ]T [F ] = [U ]2, (5.8)
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and

[b] = [F ][F ]T = [v]2, (5.9)

respectively, which describe the deformation without rigid body rotation. Although there

are many options for strain and stress measures, the logarithmic strain and Kirchhoff

stress are chosen in finite deformation analyses throughout this thesis, which extends the

use of the small deformation constitutive model to large deformation problems without

modification. These strain and stress measures can also provide constitutive models with

the same framework for other material behaviour for instance material non-linearity. The

logarithmic strain based on the left stretch is defined as

[ε] =
1

2
ln([b]) (5.10)

in which [ε] is the spatial logarithmic strain measure. The symmetric Kirchhoff stress

{τ} for linear elastic materials can be obtained from the logarithmic strain via a linear

relationship as

{τ} = [D]{ε} (5.11)

where [D] is the conventional linear elastic isotropic material stiffness tensor introduced

in Eq. (3.9). As the vector form {ε} is required in Eq. (5.11), four components in

the matrix form [ε] in Eq. (5.10) can be written in a 3 × 1 vector with a relationship

εxy = εyx.

In large deformation problems, stress measures can be defined in terms of the ref-

erence and current configurations, corresponding to Total and Updated Lagrangian for-

mulations. As shown in Figure 5.2, the first Piola-Kirchhoff stress component P11 is

calculated from the undeformed area A0 and the current area A is used to obtain the

Cauchy stress component σ11. The Cauchy stress can also be given by making use of the

Kirchhoff stress [τ ], as

[σ] =
[τ ]

J
(5.12)

with the volume ratio J given in Eq. (5.6). As the matrix form of the Kirchhoff stress is

required in Eq. (5.12), all components in Eq. (5.11) τxx, τyy and τxy with a relationship

τxy = τyx in the vector form of the Kirchhoff stress can be written in a matrix form. As
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Figure 5.2: Stress components referred to the reference and current configurations.

mentioned in §5.1, the Total and Updated Lagrangian formulations can be transformed

to each other, so the two corresponding stress measures can be related by the volume

ratio J and the deformation gradient [F ] as

[P ] = J [σ][F ]−T . (5.13)

Although the Cauchy stress is symmetric, it is noted that the first Piola-Kirchhoff stress

is, in general, non-symmetric because the deformation gradient is a non-symmetric ma-

trix.

As the Total Lagrangian formulation is selected for large deformation analyses, the

first Piola-Kirchhoff stress [P ] will be used in the governing PDEs, which will be described

in the next section.
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5.3 Geometric non-linearity with the local max-ent

point collocation method

In this section, the MEPCM with a Total Lagrangian formulation will be detailed for

geometrically non-linear problems, named geometrically non-linear MEPCM.

The Total Lagrangian formulation is used for large deformation problems throughout

this thesis as the basis functions and their derivatives calculated based on the reference

configuration can be reused throughout the analysis. Therefore, the continuous readjust-

ment of basis functions required in the Updated Lagrangian formulation can be avoided

here, improving the computational efficiency [212,235].

The governing PDEs and boundary conditions in terms of the reference configuration

are therefore expressed as

[LNL]T{P} = {f b} in Ω0 (5.14)

and

{u} = {ū0} on Γ0
u and [n0]T{P} = {t̄0} on Γ0

t . (5.15)

where Ω0 is problem domain in the reference configuration, and Γ0
u and Γ0

t are the Dirich-

let and Neumann boundaries in terms of the reference configuration, respectively. In Eq.

(5.14), [LNL] is a matrix of differential operators for two-dimensional large deformation

problems

[LNL] =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

∂
∂x

∂
∂y

 (5.16)

which is different from the differential operators for small deformation problems in

Eq. (3.3) because the first Piola-Kirchhoff stress is non-symmetric in general and four

components of [P ] given in Eq. (5.13) are included in the vector form, i.e. {P} =

{Pxx, Pyy, Pxy, Pyx}T . In Eq. (5.14), {f b} is a vector of body forces, {u} is a vector of

displacements, {ū0} and {t̄0} are the prescribed displacements and tractions and [n0] is
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the normal matrix to the boundary Γ0
t in the reference configuration as

[n0] =


nx 0

0 ny

ny nx

nx ny

 . (5.17)

The superscript zero in Eqs. (5.14) and (5.15) denotes that the variables are defined over

the undeformed configuration. Compared with the governing equations and boundary

conditions for small deformation analyses, the Cauchy stress is here replaced by the first

Piola-Kirchhoff stress in the Total Lagrangian formulation. In the following, the MEPCM

will be used to discretise the formulations in Eqs. (5.14) and (5.15) for geometrically

non-linear problems.

In PCMs, the governing equations in Eq. (5.14) are applied to all collocation points

in the interior of the problem domain and the corresponding boundary conditions in

Eq. (5.15) are imposed at the boundary collocation points, leading to a discrete set of

equations, as set out in Eq. (3.15). Since three different conditions (governing equations,

Dirichlet and Neumann boundary conditions) are applied to collocation points in the in-

terior of the problem domain and on boundaries respectively, three different components

which are included in the overall collection of collocation point equations, are rewritten

in terms of the exact solution as

{G} = {{G1}T , {G2}T , {G3}T} = {0}, (5.18)

which is size 2Nc × 1 in two dimensions. The three individual components are

{G1} =
{

[LNL]T{P} − {f b}
}
i

i = 1, ..., l (5.19a)

{G2} =
{
{u} − {ū0}

}
j

j = 1, ...,m (5.19b)

{G3} =
{

[n0]T{P} − {t̄0}
}
k

k = 1, ..., n (5.19c)

respectively, where the variables in each component represent the same meanings as in

Eqs. (5.14) and (5.15). Similarly to small deformation analyses presented in Chapter
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3, l is the number of collocation points in the interior of the domain, m and n are the

remaining numbers of collocation points on boundaries carrying Dirichlet and Neumann

boundary conditions. The total number of collocation points covering the domain is

l+m+ n = Nc. All components in the non-linear system {G} equal zero with the exact

solution. However, the vector of displacements at source points {d} cannot always fully

satisfy the equation system {G}, resulting in a non-zero residual vector {R} in terms of

the displacements at source points {d}. Similarly to {G}, there are three components in

{R}. The non-linear relationship between strains and displacements in finite deformation

analyses for solid mechanics leads to a non-linear system of equations in terms of the

unknown displacements at source points, which cannot be determined directly, therefore

a suitable solver is needed.

A Newton-Raphson method is adopted here to linearise the non-linear system and

provide the approximations of the solutions to these problems with geometrically non-

linearity. Unlike the use of the Newton-Raphson method for r-adaptivity in Chapter 4,

it is difficult to obtain a converged solution if the entire load (which could be a traction

or a prescribed displacement) is imposed over one step for a large deformation analysis,

so the external load is split into load steps. A number of iterations are required over

each load step. The vector of incremental displacements at source points {∆dp+1} over

the (p + 1)th load step is obtained by the summation of the iterative displacements of

all iteration steps used in this load step as

{∆dp+1} =
nNR∑
q=1

{δdq} (5.20)

where nNR is the total number of iterations to find convergence in the (p + 1)th load

step and {δdq} is the vector of iterative displacements in the current qth iteration step.

In the (p+ 1)th load step, the unknown iterative displacements in the (q+ 1)th iterative

step can be calculated by reducing the problem to a linear system of equations as

{δdq+1} = −[{Rq
p+1}′]−1{Rq

p+1} (5.21)

where {Rq
p+1} is the residual vector at the previous qth iterative step and [{Rq

p+1}′] is
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Jacobian of the residual vector {Rq
p+1} with respect to the displacements in the qth

iterative step {dqp+1} as

[{Rq
p+1}′] =

∂{Rq
p+1}

∂{dqp+1}
. (5.22)

The displacements at source points in the (p+1)th load step {dp+1} with the incremental

displacements in this load step are

{dp+1} = {dp}+ {∆dp+1} (5.23)

where {dp} is the vector of displacements at source points in the pth load step. In Eq.

(5.22), the gradients of {R2} and {R3} can be derived easily. The detailed derivation of

the gradient of {R1} is given in Appendix B.

A vital component of the Newton-Raphson method is the stopping criterion. The

choice of the stopping criterion to signal that enough iterations have been undertaken over

each load step of the Newton-Raphson method, has an effect on the accuracy and com-

putational efficiency of this method. In finite deformation analyses with the MEPCM,

the terms in the residual vector {R} arise from different sources and hence may have

significantly different dimensions and significance. Therefore, the choice of stopping cri-

terion must take account of the different sources of residual. For the l collocation points

in the interior of the problem domain, at which the governing PDEs must be satisfied,

the norm of the residual which is used to set the stopping criterion at each individual

collocation point, can be expressed as

||R1|| =

√√√√ l∑
i=1

([LNL]T{P} − {f b})2
i . (5.24)

The residual norms at collocation points on the Dirichlet and Neumann boundaries are

given as

||R2|| =

√√√√ m∑
j=1

({u} − {ū0})2
j (5.25)
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and

||R3|| =

√√√√ n∑
k=1

([n0]T{P} − {t̄0})2
k (5.26)

respectively. As the mixed nature of the sources in the residual norms, the normalised

residual is used. In the (p + 1)th load step, the residual norm for the whole problem in

the qth iterative step ||R||qp+1 can be obtained as

||R||qp+1 =
||R1||qp+1

||R1||1p+1

+
||R2||qp+1

||R2||1p+1

+
||R3||qp+1

||R3||1p+1

. (5.27)

In Eq. (5.27), three components of residual norms in the qth iteration step are normalised

by the corresponding residual norm in the first iterative step of the same load step. The

total residual norm is the summation of the normalised residual norm components. In

the Newton-Raphson method, the stopping criterion is defined as

||R||qp+1 ≤ η (5.28)

where η is the user-defined tolerance number. The choice of a stopping criterion and

the associated user-defined tolerance number η must be done with great care. A typical

value of the prescribed tolerance η is set to 10−5.

The performance of the proposed stopping criterion in the Newton-Raphson method

will be validated in the numerical examples section.

5.4 h-adaptivity with geometric non-linearity

The idea of h-adaptivity for large deformation analyses can be identical to those small

deformation analyses ideally, but they have some differences since load steps are intro-

duced in large deformation analyses and different stress measures are used for problems

with geometric non-linearity. The error estimator proposed for small deformations in

§4.4 is here extended to large deformations with necessary modifications.

For large deformation problems, h-adaptivity is applied after the initial calculation

using all load steps. Error estimators are employed to estimate the local and global

errors existed in the solution obtained from the last load step of previous calculation.
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The following points refinement is determined by the local error estimators and the

global error estimator is used to describe the overall accuracy of the problem. The

problem needs to be recalculated from the first load step after the points refinement

of h-adaptivity, where the basis functions are constructed based on the refined points

distribution.

The local error estimator Et for large deformation problems is given as

Et =
1

3
At

3∑
g=1

||[LNL]T{P} − {f b}||g (5.29)

where 1
3

is the product of weight and Jacobian of Gauss quadrature, At is the area of the

tth Delaunay triangulation, ||[LNL]T{P} − {f b}|| is the L2 norm of the residual of the

strong form-based governing equations described by the Total Lagrangian formulation

in terms of the reference configuration in Eq. (5.14) and g is the gth calculation point

in the corresponding Delaunay triangulation. The residuals in Eq. (5.29) are evaluated

as opposed to the Cauchy stress for the small deformation case (refer back to a previous

§4.4). Similarly to small deformation cases, three calculation points are generated in each

Delaunay triangulation associated with collocation points. As the calculation points are

not used for integration purpose, the choice of the number of calculation points in each

Delaunay triangulation can be arbitrary for error estimation. In order to keep balance

between effectiveness and computational cost, three calculation points are selected here.

The global error estimator Eg is then defined as

Eg =
nt∑
t=1

Et, (5.30)

where t is the index of Delaunay triangulation, nt is the total number of Delaunay

triangulations and Et is the local error estimator given in Eq. (5.29).

The refinement strategy is also the same as that used for small deformation prob-

lems. Three new collocation and source points are inserted in each triangulation. Using

h-adaptivity in large deformations, basis functions have to be recalculated after the re-

finement in each h-adaptive step and the nearest points searching is required, which is

time-consuming. Compared with weak-form meshless methods, remeshing and numerical
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integration are not required in h-adaptive MEPCM for large deformation problems. The

efficiency of h-adaptivity for large deformation will be studied in the following numerical

examples section.

5.5 Numerical examples

The basic formulation including the kinematics and stress measures for the analysis of

large deformation problems using the Total Lagrangian approach in terms of the reference

configuration with the MEPCM has been developed in previous sections of this chapter.

In this section, some numerical examples that have analytical solutions are analysed to

demonstrate the performance of the proposed method. h-adaptivity for large deformation

is validated for some of the problems.

5.5.1 One-dimensional bar with h-adaptivity

A one-dimensional bar of unit length (l0 = 1) was modelled as the first example in this

section as shown in Figure 5.3(a). The bar was fixed at one end, i.e. ūx(X=0) = 0 and a

large deformation prescribed Dirichlet boundary condition was applied to the other end,

i.e. ūx(X=1) = 1. The material property was Young’s modulus E = 1000. According to

Eqs. (5.5), (5.9) and (5.10), the analytical solutions for the deformation gradient, left

Cauchy-Green strain and logarithmic strain are, respectively

F = 1 +
ūx
l0
, b = (1 +

ūx
l0

)2, ε = ln(1 +
ūx
l0

) (5.31)

where ūx is the prescribed displacement at the end of the bar and l0 is the original length

of the bar. Substituting Eqs. (5.11) and (5.12) to (5.13), the first Piola-Kirchhoff stress

can be determined using the expression of the deformation gradient in Eq. (5.31) as

Pxx = E
ln(1 + ūx

l0
)

1 + ūx
l0

(5.32)

which can be used to compare with the numerical results.

The geometrically non-linear MEPCM was employed to solve the problem and the
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ūx(X=l0) = 1

(a) The geometry model.

collocation points
source points

(b) Points distribution.

Figure 5.3: The geometry model and points distributions of the one-dimensional bar
problem.

problem domain and boundaries were discretised by 11 collocation and source points

placed uniformly as shown in Figure 5.3(b). For each collocation point, the minimum

number of source points inside the support domain N∗s was set as 2 and the local max-

ent formulation was used to construct basis functions and derivatives. Nine collocation

points inside the domain were set to satisfy the governing PDEs in Eq. (5.14) and the

two collocation points at the ends, were set to satisfy the Dirichlet boundary conditions

as given in Eq. (5.15). The formed non-linear system of equations was solved by the

Newton-Raphson method using 10 load steps with a predefined tolerance number of η =

10−5. The maximum number of iterations used in each load step was 10. In order to find

the iterative displacements in the current iterative step as described in Eq. (5.21), the

Jacobian matrix [R′] has to be calculated by the derivative of the residual vector {R} with

respect to the displacements in the previous iterative step. In the formulation of [R′] (see

Appendix B), all basis functions and derivatives are constructed referred to the reference

configuration. As discussed in §5.3, the recalculation of basis functions and derivatives

are not required in the overall analysis because the Total Lagrangian formulation is used

where all variables are obtained referred to the reference configuration.

For comparison, the analytical and numerical (obtained by the MEPCM with a ge-

ometrically non-linear framework) first Piola-Kirchhoff stress Pxx in each load step are

plotted against displacement ux in Figure 5.4. It can be seen that both analytical and

numerical results follow an almost identical non-linear path. The residual norms in all

iterative steps of the first three load steps in the Newton-Raphson method are presented

in Table 5.1 where the residual norms ||R|| calculated by Eq. (5.27) keeps decreasing in

each load step until the stopping criterion in Eq. (5.28) is satisfied. Four iterative steps
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Figure 5.4: First Piola-Kirchhoff stress Pxx against displacement ux of the one-
dimensional bar problem.

are required in the first load step and three iterations are needed in the latter two load

steps. These residual norms in different load steps show the convergence rate close to

2.0 which is the theoretically optimum value [199].

Load step

Iteration 1 2 3

1 2.000× 100 2.000× 100 2.000× 100

2 1.458× 10−1 3.907× 10−2 2.440× 10−4

3 1.132× 10−3 3.009× 10−6 1.778× 10−11

4 9.047× 10−6 – –

Table 5.1: Residual norms of the Newton-Raphson method showing near asymptotic
quadratic convergence of the one-dimensional bar problem.

After the initial calculation, h-adaptivity with different values of the local refinement

coefficient k = 0, 0.6, 0.7 and 0.8 is studied to improve the accuracy of the approximation.

Since an analytical solution exists for this problem, the L2 norm of relative error on

displacement ||e||L2 with different discretisations are calculated to show the convergence

performance of using the geometrically nonlinear MEPCM (as shown in Figure 5.5(a)).

The convergence rate for uniform refinement is close to 2.5, which is identical to the

convergence rate for linear elasticity using the MEPCM in [114]. In this figure, ||e||L2 for
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analyses using h-adaptivity, with different values of k = 0.6, 0.7, 0.8, are plotted against

the degrees of freedom Ns. It can be seen that h-adaptivity with k = 0.6, 0.7, 0.8 achieves

better convergence rates with lower errors than uniform h-refinement. In the case with

k = 0.6, more local regions are refined where more new collocation and source points

are inserted than in the cases with k = 0.7 and 0.8, but ||e||L2 using k = 0.6 converges

slower than using k = 0.7 and 0.8 as some of the newly added points are not critical for

the convergence. The relative error ||e||L2 in the analysis with k = 0.8 decreases faster

in the first adaptive step but there is degradation in the latter steps. This is likely to be

due to not enough new points being added to reduce the discretisation errors from the

second step, which makes the adaptivity less efficient. It can be observed that k = 0.7 is

more efficient in the overall h-adaptivity analysis than the other two choices of the local

refinement coefficient k. The global error estimator Eg given in Eq. (5.30) is used to

describe the overall accuracy for general problems with or without analytical solutions

and here Eg for the analyses with different values of k is plotted against Ns (see Figure

5.5(b)). Similar convergence rates to those plotted for ||e||L2 in Figure 5.5(a) are evident

although they are measured in different ways.

101 101.2 101.4 101.6

10−5

10−4

Ns

R
el

at
iv

e
er

ro
r
||e
|| L

2

Uniform k = 0.6
k = 0.7 k = 0.8

2.5

8.0

(a) Convergence rate of ||e||L2
.

101 101.2 101.4 101.6

10−2

10−1

Ns

G
lo

b
al

er
ro

r
E
g

Uniform k = 0.6
k = 0.7 k = 0.8

2.0

8.0

(b) Convergence rate of Eg.

Figure 5.5: Convergence rates of ||e||L2 and Eg of the one-dimensional bar problem for
the analyses with different k.

In order to study the effectiveness of the proposed global error estimator Eg, the
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effectivity indices θ (as introduced in §4.4) of using different k values are plotted in

Figure 5.6. The effectivity index θ for the analysis with uniform refinement (k = 0)

keeps increasing in four steps. When k = 0.6, the value of θ increases in the third step

while θ oscillates around a constant value in other three steps. The values of effectivity

indices θ for analyses with k = 0.7 and k = 0.8 are very close to each other. They are

close to a constant in the first two h-adaptive steps and slightly increase in the latter

two steps. As it has been discussed in §4.4, the effectivity index θ is expected to oscillate

around a constant so that the relative error ||e||L2 has the similar convergence rate to

the proposed global error estimator Eg. Here it can be analysed that θ in the analyses

of using k = 0.7 and 0.8 shows oscillations. The proposed global error estimator Eg and

the L2 norm of relative error on displacements ||e||L2 show similar convergence rates in

adaptive steps.
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Figure 5.6: The effectivity index θ using h-adaptivity of the one-dimensional bar problem
for the analyses with different k.
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Figure 5.7: The collocation points and local error distributions in h-adaptivity with
k = 0.7 of the one-dimensional bar problem.

It is useful to compare the distributions of the local errors measured by El with the

L2 norm of relative error ||e||L2 in this simple problem with analytical solution because

this comparison can show the performance of the proposed error estimator. The discrete

local error distributions of both ||e||L2 and El in h-adaptivity analysis with k = 0.7 are

plotted in Figure 5.7. The local lengths in which the local errors are greater than their
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permissible errors require further refinement in the following adaptive steps. Figure 5.7

shows that the same local lengths are selected for refinement even though different error

measures are used. It is seen that the proposed local error estimator El is efficient as

the actual error distribution can be estimated by El. In the continuous adaptivity steps,

the distribution of collocation points become irregular from a uniform distribution in the

initial calculation. Although there is not a direct method for choosing an appropriate

value of the local refinement parameter k to make h-adaptivity more efficient, it has been

analysed in §4.7.1 that the choice of k is based on the variation of the local error estimator

across the problem. When k is below a specific value, the same points refinement can

be given. For example, the variation of the local error in this example is not apparent,

small values of k can lead to the same refinements.

5.5.2 Two-dimensional square domain problems

Two two-dimensional square domain problems are now analysed to validate the perfor-

mance of the geometrically non-linear MEPCM in two dimensions.

Tension of a square domain

This example is the one-dimensional tension of a two-dimensional plane strain square

domain as shown in Figure 5.8(a). The original side length of the square domain was

L0 = 1. The material properties used in this example were Young’s modulus, E of 1000

and Poisson’s ratio, ν of 0.3. Three sides of the square domain were subjected to roller

boundary conditions and a prescribed displacement of ūx = 1 was imposed perpendicular

to the fourth edge.

This problem has an analytical solution where the deformation gradient can be sim-

plified into two dimensions with the plane strain condition as

[F ] =

 L
L0

0

0 1

 (5.33)

where L0 is the original side length and L is the current side length of the two-dimensional

domain in x direction. The left Cauchy-Green strain and the logarithmic strain can
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Figure 5.8: Tension of a two-dimensional square domain: geometry and configurations.

consequently be determined by

[b] =

 ( L
L0

)2 0

0 1

 and [ε] =

 ln( L
L0

) 0

0 0

 (5.34)

respectively. A linear elastic constitutive relationship in Eq. (5.11) is employed to obtain

the Kirchhoff stress as

{τ} =
E(ln(L)− ln(L0))

(1 + ν)(1− 2ν)

{
(1− ν) ν 0

}T
(5.35)

in a vector form as explained in §5.2 and the first Piola-Kirchhoff stress, which is derived

with respect to the reference configuration is given as

{P} =
E(ln(L)− ln(L0))

(1 + ν)(1− 2ν)

{
(1− ν) ν

L

L0

0 0
}T
. (5.36)

There are four components in {P} as Pxy 6= Pyx in general. The shear components in

the first Piola-Kirchhoff stress are zero as the prescribed displacement, ūx perpendicular

to the edge of the square domain is a constant.

Using the geometrically non-linear MEPCM to analyse this large deformation prob-

lem, 16 source and collocation points were distributed in the domain and on the bound-

aries uniformly as shown in Figure 5.8(b). The prescribed displacement boundary con-

dition ūx = 1 was applied in 10 load steps. The maximum iteration number in each load
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Figure 5.9: Tension of a two-dimensional square domain: first Piola-Kirchhoff stress
components Pxx and Pyy against displacement in x direction ux.

step was predefined as 10 and the prescribed tolerance number η was 10−5. The deformed

configuration for the final load step is shown in Figure 5.8(b). The approximations of

the normal components of the first Piola-Kirchhoff stress Pxx and Pyy are plotted against

the displacement in x direction in Figure 5.9. It can be seen that both Pxx and Pyy show

non-linear relationship with displacement and the numerical and analytical results agree

even for this very coarse discretisation where Pxx shows greater non-linearity because

the prescribed displacement was applied in x direction.

To examine the overall performances across the domain (instead of at one point

as above) the L2 norms of relative errors on displacement ||e||L2 against an increasing

number of degrees of freedom by uniform refinement are shown in Figure 5.10. It can

be observed that the order of convergence is greater than 2.0, which agrees with the

convergence rate of the MEPCM for small deformations (as indicated in Chapter3).
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Figure 5.10: Tension of a two-dimensional square domain: convergence rate of ||e||L2

with uniform refinement.

A two-dimensional square domain under simple shear with h-adaptivity

This example is a two-dimensional plane strain square domain under simple shear as

shown in Figure 5.11. The original side length of the square domain was L0 = 1. The

material properties used in this problem were Young’s modulus, E of 1000 and a Poisson’s

ratio, ν of 0.3. The bottom edge was fixed and a roller boundary condition was applied

to the top edge. It is noted that the displacement constraints are required for left and

right edges since the reference configuration does not deform as expected without any

external traction or prescribed displacement. For plane strain analysis, the deformation

in the out-of-plane direction is zero, so the current configuration in two dimensions is

given as

x = X +
∆L

L0

Y (5.37a)

y = Y (5.37b)
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Figure 5.11: Geometry of a two-dimensional square domain under simple shear.

where L0 is the original side length of the square domain, ∆L is the sheared distance on

the top side and is predefined as 25 in this example. The deformation gradient and the

left Cauchy-Green strain can be determined as

[F ] =

 1 ∆L
L0

0 1

 and [b] =

 1 + (∆L
L0

)2 ∆L
L0

∆L
L0

1

 (5.38)

respectively and the principal logarithmic strains derived from the left Cauchy-Green

strain are

{ε̂} =
1

2

{
ln

(
1 +

(∆L)2

2
+ ∆L

√
(∆L)2

4
+ 1

)
ln

(
1 +

(∆L)2

2
−∆L

√
(∆L)2

4
+ 1

)
0

}T

. (5.39)

In this example, the Cauchy stress equals the Kirchhoff stress due to J = 1. With the

given value of ∆L, the analytical solution of Cauchy stress can be obtained by using Eqs.

(5.10) and (5.11).

The problem was initially modelled using 16 source and collocation points distributed

uniformly in the domain and on the boundaries. The prescribed shear deformation (to

the top edge) was imposed over 40 load steps, the maximum number of iterations in

each load step was set as 10 and a tolerance number, η = 10−5 was used in the Newton-

Raphson method. The analytical and numerical MEPCM results for the Cauchy stress

components σxx and σxy are plotted against displacement in x direction ux in Figure

5.12(a) where the non-linear stress-displacement relationship can be clearly observed.
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Figure 5.12: Cauchy stress and principal logarithmic strain components against displace-
ment of the top boundary in x direction, ux of the two-dimensional square domain under
simple shear.

The shear component of the Cauchy stress, σxy increases initially before reaching a

maximum and then decreases gradually, the explanation being that the change of cross

section area has an effect on the values of σxy. It is observed that the numerical results

show in general good agreement with the analytical solution components. In Figure

5.12(b), the numerical and analytical principal strains are plotted against displacement

in x direction, in which the geometrically non-linear behaviour is clear. The MEPCM

results again show good agreement with the analytical solution.

The reference configuration and the current configuration for the first load step with

discretisations are shown in Figure 5.13(a). As the shear component of the Cauchy stress

σxy shows greater non-linearity, the relative error eσ of the Cauchy stress component σxy

is measured by

eσ =
∣∣∣σhxy − σexy

σexy

∣∣∣ (5.40)

where σhxy and σexy are the approximated and exact solution respectively. A plot of eσ

using the same discretisation as in Figure 5.13(a) is shown in Figure 5.13(b) where the
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cp in the first load step

(a) The reference and current configurations. (b) The relative error of the Cauchy stress compo-
nent σxy.

Figure 5.13: Configurations and relative error of Cauchy stress error component σxy of
the two-dimensional square domain under simple shear.

errors on boundaries are lower than that of the problem domain because three sides

are restrained by Dirichlet boundary conditions and the other side is restrained in Y

direction. Although the stress field is a constant over the domain and on the bound-

aries of this two-dimensional square domain under simple shear, the relative error of

Cauchy stress component σxy is not uniformly distributed. The highest relative error is

around 8 times of the error on boundaries. The governing PDEs are only enforced at

individual collocation points to formulate the linear system in terms of the displacement

at source points. The different discretisation errors at these source points give different

distributions of stress error.

Figure 5.14 shows the L2 norm of relative error on displacement ||e||L2 for overall

problem at the last iterative step of each load step against the displacement of the top

boundary, where staggered decreases of ||e||L2 can be seen with an increasing displace-

ment in the first 20 load steps. It seems that some oscillations occur in the numerical

solution. The satisfaction of the stopping criterion could be a possible reason. The

residual norm ||R||nNR

p of the last iteration step at each load step is plotted in this figure

where all residual norms converge to the prescribed tolerance number η = 10−5 but in

different order of magnitude. It is observed that in the first 20 load steps, the values of

||e||L2 at odd load steps are higher than the values at their next steps (even steps). The
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Figure 5.14: L2 norm of relative error ||e||L2 and the residual norm ||R||nNR

p in each load
step of the Newton-Raphson method against displacement of the top boundary of the
two-dimensional square domain under simple shear.

corresponding values of residual norms at these odd load steps are in the range between

10−8 and 10−5 while those at even load steps between 10−13 and 10−10. It is explained

that a smaller error norm can be obtained if the residual norm is much lower than the

prescribed tolerance number in the stopping criterion. Although there is not a strict

value for tolerance number, it is obvious that a smaller η gives more accurate results

with higher computational cost. Tolerance number should be chosen considering the

balance between accuracy and computational cost. In the following 20 load steps, ||e||L2

stays around a constant value, where the oscillations disappear. The residual norms in

the latter 20 load steps do not converge to a constant, but their oscillation is reduced to

a small range, leading to similar accuracy in these load steps. It is summarised that the

value of the residual norm indicates the accuracy at corresponding load step.

The non-zero residual norms at all iterative steps in the Newton-Raphson method

for the first 3 load steps are selected here to show the convergence behaviour (see Table

6.1). The stopping criterion proposed in §5.4 is adopted. The asymptotically quadratic

convergence exhibited here indicates a correct implementation. In order to validate the
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performance of the proposed stopping criterion in the Newton-Raphson method, the

residual norms ||R|| at boundaries, in the interior of the problem domain only and for

the overall problem are plotted separately for comparison as shown in Figure 5.15. It

can be seen that the normalised residuals on the boundary and in the interior of the

problem domain only converge at a rate of 2.0, which is the same with the convergence

rate for overall problem.

Load step

Iteration 1 2 3

1 2.000× 100 2.000× 100 2.000× 100

2 1.193× 10−2 5.436× 10−1 9.941× 10−2

3 1.112× 10−6 3.565× 10−5 6.189× 10−6

4 – 2.276× 10−13 –

Table 5.2: Residual norms of the Newton-Raphson method showing near asymptotic
quadratic convergence of the two-dimensional square domain under simple shear.
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Figure 5.15: Convergence rate of residual norms in the second load step of the Newton-
Raphson method of the two-dimensional square domain under simple shear.

To examine the convergence behaviour of h-adaptivity for this two-dimensional square

domain under simple shear, the L2 norm of relative error on displacement ||e||L2 against

an increasing number of degrees of freedom for uniform refinement and h-adaptivity with
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various local refinement coefficient k=0.25, 0.4, 0.5 and 0.6 is presented in Figure 5.16(a).

The convergence rate of ||e||L2 using uniform refinement (k = 0) is close to 2.0 and it is

observed that h-adaptivity with k=0.25, 0.4, 0.5 and 0.6 gives better convergence rates

with lower errors than using uniform refinement (the case with k=0). As the numbers of

newly added points in the first adaptive step are the same for all k values, ||e||L2 values

are the same in this adaptive step. However, in the latter adaptive steps performances

diverge and k=0.5 achieves better efficiency than the other cases. The global error

estimate Eg of this problem using the same values of k as in Figure 5.16(a) is plotted in

Figure 5.16(b). It can be seen that the global error estimator Eg converges at the same

rate as the ||e||L2 . In this example, the value k=0.5 is chosen as a more efficient local

refinement parameter than using the other values in h-adaptivity, which is different from

the optimal k value for the one-dimensional bar problem, as the variations of local errors

in these two problems are not identical. A smaller k value used in this example than in

the one-dimensional bar problem, which indicates that the variation of the local errors

across the problem domain in this example is in a wide range.
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(b) Convergence rate of Eg.

Figure 5.16: Convergence rate of ||e||L2 and Eg of the two-dimensional square domain
under simple shear for the analyses with different k.

Figure 5.17 shows the distributions of collocation points in the successive h-adaptive

steps. The regular distribution of collocation points becomes irregular as some new
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(a) The initial distribution. (b) The first h-adaptive step.

(c) The second h-adaptive step. (d) The third h-adaptive step.

Figure 5.17: The collocation point distributions using h-adaptivity with k = 0.5 of the
two-dimensional square domain under simple shear.

collocation points are inserted into local regions with relatively high errors. It can be

seen, the newly added points are mainly located in the interior of the two-dimensional

square domain away from boundaries as the errors on boundaries are relatively small.

The distributions of collocation points gradually become non-symmetric as the error

distributions are non-symmetric caused by the prescribed displacement. In the first h-

adaptive step, new collocation points are added near top and bottom edges, which have

shear displacement and zero displacement respectively. In the following second and third

adaptive steps, some local regions near the top edge are refined again, where the relative

error in the Cauchy stress component is higher than the other areas by recalling Figure

5.13(b). The differences of stress distributions in this example are not significant, so it

is not clearly measurable to determine the areas that need more points.

5.5.3 Plate and beam problems with large deformation

Plate and beam problems with finite deformation are classical problems for numerical

validation, for which some analytical solutions are available (e.g. those available in [236]).
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Compared with the examples studied above, the resulting shear stress distributions for

plate and beam problems show singularities at the constraint end, leading to a signifi-

cant adaptive refinement in this area. Here, they are used to further demonstrate the

performance of the geometrically non-linear MEPCM with h-adaptivity.

Uniformly distributed load and fully fixed ends

This is effectively a plane strain plate subjected to a uniformly distributed load q and fully

fixed at two ends. Since the structure is symmetric, only half of the plate was simulated.

Figure 5.18 shows the geometry with the boundary conditions of this problem, where

dimensions were length L = 10 and thickness H = 0.2. Since this is plane strain, the

width of the plate out of the plane of the diagram, was taken as being unity. The elastic

material properties were Young’s modulus, E = 1× 107 and Poisson’s ratio, ν = 0.2 and

the uniformly distributed load, q = 40. The half of the plane strain plate was fully fixed

at the centre point of left-hand end and above and below the centre point at this end

were restrained by roller boundary conditions. At the truncation end, roller boundary

conditions were applied. This plane strain plate problem has previously been used to

validate the performance of the FEM using an Updated Lagrangian formulation and the

max-ent basis fucntion-based method in [237] and [136], respectively. The analytical

solution for the deflection can be found in [237].

X

Y

q

L
2

H

Figure 5.18: Geometry and boundary conditions of the plate with uniformly distributed
load, q and fixed at two ends.

To solve this problem, 63 (21×3) source and collocation points were distributed in

the problem domain and on the boundaries. The centre collocation point at the left-hand

end was subjected to zero displacement boundary condition in both x and y directions.
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Roller boundary conditions were applied to the other two collocation points at this

end and the three collocation points at the truncation end. The uniform pressure q was

applied over 20 equal load steps. In the Newton-Raphson method the maximum iteration

number was 10 and the tolerance η was set as 10−5. The initially undeformed and the

final deformed configurations with collocation point distributions are shown in Figure

5.19. As the displacement in y direction, uy is much larger than the deformation in x

direction, the color in this figure shows the displacement, uy of this plate with uniformly

distributed load, q, and fixed at two ends. The positive direction is defined in Figure

5.18, so uy for this problem is negative as indicated by the colourbar where the scale of

displacement is the same as the geometry. It can be seen that the maximum deflection

at the right-hand side end is near −0.12 , which is over the half of the thickness of the

plate. The deformation at the left-hand side is zero.

Figure 5.19: The reference and current configurations with displacement uy of the plate
with uniformly distributed load, q, and fixed at two ends.

Comparison of the uniformly distributed pressure, q versus the normalised displace-

ment, uy
H

relationship between analytical and numerical solutions is given in Figure 5.20.

The non-linear relationship between the uniformly distributed load and normalised dis-

placement can be observed in Figure 5.20 and the numerical results are in agreement

with the analytical solution.

The residual norms of the Newton-Raphson method in three selected load steps are

presented in Table 5.3 where the quadratic convergence rates indicate the correct imple-
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Figure 5.20: Pressure versus normalised displacement of the plate with uniformly dis-
tributed load, q, and fixed at two ends

mentation of the non-linear solver. The stopping criterion proposed in §5.4 are adopted

and the residual norms in the iterative steps of the Newton-Raphson method satisfy the

stopping criterion within three or four iterative steps in all load steps. As three condi-

tions (governing equations and two different boundary conditions) are employed in this

example, the normalised residual norm in the first iterative step is 3.0.

Load step

Iteration 1 10 20

1 3.000× 100 3.000× 100 3.000× 100

2 3.536× 10−1 9.803× 10−2 4.011× 10−2

3 3.483× 10−3 9.393× 10−6 5.965× 10−6

4 5.819× 10−7 –

Table 5.3: Residual norms in the Newton-Raphson method showing near asymptotic
quadratic convergence of the plate with uniformly distributed load, q, and fixed at two
ends.

Uniformly distributed load and simple supported ends

The plane strain plate subjected to a uniformly distributed load q with simple supports

is analysed. Similarly to the previous example, one-half was taken for simulation. The
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problem geometry and the boundary conditions are shown in Figure 5.21. The same

dimensions and material properties as used in the last example were used but different

boundary conditions were applied on this plate problem with uniformly distributed load

and simple supported ends. The centre point at the left-hand side was fully fixed and

roller boundary conditions were applied to the right-hand side. The analytical solution

of the deflection of this plate problem can be found in [237].

q

L
2

H

X

Y

Figure 5.21: Geometry of the plate with uniformly distributed load, q, and simple sup-
ported ends

The total number of 153 (51×3) source and collocation points were distributed in

the problem domain and on the boundaries. The boundary conditions were imposed at

the collocation points at the ends and the uniform pressure q was applied over 20 equal

load steps. The maximum number of iterations in the Newton-Raphson method was 10

and the predefined tolerance η was 10−5. The undeformed and deformed configurations

with collocation point distributions are shown in Figure 5.22. Similarly to the plate

problem with fully fixed ends, the colour in this figure indicates the displacement in y

direction, uy. The colourbar provides the value of displacement with the same scale as the

geometry. The maximum deflection at the right-hand side of this simply supported plate

is around −0.2, which is the thickness of the plate. Compared with the last example, the

deformation for in this problem is larger as the plate with fixed ends has more constraints

on boundaries.

Comparison of the uniformly distributed pressure, q versus the normalised displace-

ment, uy
H

relationship between analytical and numerical solutions is given in Figure 5.23.

The non-linear relationship between the uniformly distributed load and normalised dis-

placement can be observed in Figure 5.23 and the numerical results once again there is
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Figure 5.22: The reference and current configurations with displacement uy of the plate
with uniformly distributed load, q, and simple supported ends.

excellent agreement with the analytical solution. With the same externally applied load,

it can be seen that the deflection in this figure is more pronounced than in Figure 5.20.
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Figure 5.23: Pressure versus normalised displacement of the plate with uniformly dis-
tributed load, q, and simple supported ends.

Beam bending with large deformation and h-adaptivity

While it is important to take account of geometric non-linearity in the two beam bending

problems above the displacement is not extremely large compared to the thickness of the
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plane strain beams. In order to thoroughly test the geometrically non-linear MEPCM, a

cantilever beam bending under uniformly distributed load with very large displacement is

studied, and here h-adaptivity is used to improve the accuracy of the solution efficiently.

The problem model with the boundary conditions is shown in Figure 5.24. The problem

was solved with L = 10, B = 1, H = 1, Young’s modulus E = 12000 and Poisson’s

ratio ν = 0.2. A load, q = 10 was applied on the top edge of the beam. Note that

throughout the analysis, this uniformly distributed load, does not change its direction

and magnitude, and is independent of the deformation. The centre point of the left-

hand side was fully fixed and roller boundary conditions were applied to points above

and below the centre point. The right-hand side of this beam was free. The analytical

solution for this problem starts from the Euler-Bernoulli bending theory and was derived

in [238].

q
y

x
L

y

H

B

z

Figure 5.24: Geometry of the elastic cantilever beam problem with uniformly distributed
load.

In the analysis, 3×33 collocation and source points were distributed uniformly in the

domain and on the boundaries. The middle collocation point at the fixed end was fully

fixed and roller boundary conditions were applied to the other two collocation points at

this end. Define a load parameter to convert the external load dimensionless as

K =
qL3

EI
(5.41)

where I is the moment of inertia of the cross section

I =
BH3

12
. (5.42)

The total pressure was applied in 50 load steps. The prescribed tolerance, η was set
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as 10−5. The uniform pressure was applied to collocation points on the top edge. As

mentioned in §5.3, the basis functions and derivatives associated with source points,

which are used throughout the analysis, are constructed based on the initial distribution

of points because that all variables in the Total Lagrangian formulation are referred back

to the reference configuration.

The undeformed configuration at the beginning of the simulation and deformed con-

figuration of the beam at the end of the analysis are shown in Figure 5.25 where a clear

large deformation can be observed. Again, the colours in this figure shows the displace-

ment in y direction, uy. The colourbar indicates the value of displacement with the same

scale as the geometry. Compared with the last two beam problems, the deformation for

this beam bending problem is significant.

Figure 5.25: The reference and current configurations with displacement uy of the elastic
cantilever beam problem with uniformly distributed load.

The residual norms in selected load steps are presented to show the convergence

performance of the Newton-Raphson method in Table 5.4. In these selected load steps,

the stopping criterion are satisfied within three steps and the convergence rate of error

norms is close to 2.0, which is the theoretical value.
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Load step

Iteration 1 26 50

1 3× 10−0 3× 100 3× 100

2 5.793× 10−2 3.713× 10−2 4.707× 10−2

3 3.597× 10−6 8.582× 10−6 2.968× 10−6

Table 5.4: Residual norms in the Newton-Raphson method showing near asymptotic
quadratic convergence of the elastic cantilever beam problem with uniformly distributed
load.

Figure 5.26 shows the load parameter K against the honrizotal and vertical displace-

ments at the middle point of the free end normalised by the length of the beam. The

analytical solution provided in [238] is also given for comparison. It can be seen that the

load parameter and the normalised displacement have a non-linear relationship and the

MEPCM results agree well with the analytical solution.
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Figure 5.26: The load parameter K against normalised displacements, ux
L

and uy
L

, at
the mid-depth point at the end of beam of the elastic cantilever beam problem with
uniformly distributed load.

Finally, h-adaptivity is applied after all load steps of the initial calculation for this

beam bending problem and the local refinement parameter k = 0.5 is chosen. The local

error estimator Et is used to estimate the local error in each Delaunay triangulation,

which is constructed based at originally distributed collocation points as shown in Figure
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5.27(a). Three calculation points are generated in each triangle given in Figure 5.27(b)

to estimate the local error estimators, which are used in the following points refinement.

The problem needs to be recalculated using the new discretisation from the first load

step. The distributions of collocation points in the first and second h-adaptive steps

are shown in Figure 5.27(c)-5.27(d) where new collocation points are added close to the

fixed end as expected. In Figure 5.27(c), all new collocation points are inserted close

to the fixed end of the beam. In the second step (see Figure 5.27(d)), although all

new points are added close to the fixed end, most of them are located near the two

corners where the singularities occur. The global error estimator Eg is presented to

(a) The generation of Delaunay triangulations
after the initial calculation.

(b) The generation of calculation points in Delau-
nay triangulations for error estimation in the first
h-adaptivity.

(c) The distribution of collocation points after
the first h-adaptive step.

(d) The distribution of collocation points after
the second h-adaptive step.

Figure 5.27: h-adaptivity of the elastic cantilever beam problem with uniformly dis-
tributed load with k = 0.5.

show the discretisation error for the whole beam problem using uniform refinement and

h-adaptivity with k = 0.5 in Figure 5.28, where h-adaptivity achieves better convergence

rate with lower error than uniform refinement. As discussed in Chapter 4, the choice

of the local refinement parameter is affected by the variation of the local errors. It is

apparent that the shear stress at the fixed end varies a lot, so the local errors for this

beam problem vary in a large range and a smaller value of k can be selected.
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Figure 5.28: Convergence rate of Eg in h-adaptivity of the elastic cantilever beam prob-
lem with uniformly distributed load with k = 0.5.

5.6 Concluding remarks

In this chapter, the MEPCM has been developed for modelling problems subjected to

geometric non-linearity, where a non-linear strain-displacement relationship is included.

The basic kinematics and strain measures used in large deformation problems have been

reviewed. A Total Lagrangian approach is employed in this chapter in which stress

measures correspond to this description are referred to the reference configuration. The

entire load is applied over load steps for large deformations and the Newton-Raphson

method has been used to solve the formed non-linear system, in which the stopping cri-

terion has been discussed. h-adaptivity strategy used for small deformations earlier in

the thesis has been extended to large deformation analyses and some differences between

large and small deformations have been pointed out. In large deformation problems,

h-adaptivity is adopted after the initial calculation of all load steps. The local error

estimator for small formation problems is extended here but the Cauchy stress in strong

form governing equations is replaced by the first Piola-Kirchhoff stress referred to the

reference configuration for large formation problems. The problem requires to be recalcu-
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lated after each refinement therefore basis functions and derivatives have to be computed

based on the newly generated points. Some numerical examples, in both one and two

dimensions have been analysed to validate the performance of the proposed approach.

The L2 norm of the residual on displacement ||e||L2 and proposed error estimators using

various discretisations have been calculated to show the convergence performance. The

proposed h-adaptive strategy has been implemented in selected numerical examples and

its efficiency with different values of the local refinement parameter, k has been com-

pared. This chapter shows that the MEPCM appears to be a robust way to model large

deformation problems, given that it is a strong form-based meshless method.



Chapter 6

Membrane problems

6.1 Introduction

Membranes are widely used in engineering structures such as roofs, airbags, aircrafts and

parachutes as they typically possess high performance in resisting external loads with

much lower weight than traditional structures, reducing the cost and environmental im-

pact of structures [239–241]. As shown in Figure 6.1, a membrane is a thin structure

where the ratios between thickness and other dimensions are very small. The external

pressure pz is applied to the out-of-plane direction, leading to in-plane stress σ and cor-

responding deformation, uz. A review of the literature on the behaviour of membranes,

with emphasis in practical applications, can be found in [242].

Membrane theory which describes the mechanical behaviour of membranes, is ex-

tracted from the far more complex, classical shell theory, although computational mem-

brane formulations are not always absolutely identical to the relevant parts of shell

theory [243–248]. Bending stiffness is taken into account in shell theory, whereas it

is completely neglected in membrane theory [249]. It is computationally challenging

to model membrane problems as they are geometrically non-linear structures that can

undergo large displacements and large strains [250, 251]. In order to describe the me-

chanical behaviour of real membrane structures accurately, membrane problems are often

modelled using hyperelastic materials, where the constitutive laws are derived from the

free-energy functions [252]. The most widely used hyperelastic material models for mem-

145
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Figure 6.1: Membrane structure (given in [1]).

brane problems are the neo-Hookean [234], Mooney-Rivlin [253] and Ogden models [254].

An extensive review of constitutive models for hyperelasticity can be found in [255]. An

important characteristic of rubber-like membrane is the instability when they undergo

large deformations. The geometry of membranes can be complex and their configu-

rations under external loads may result in instability phenomena. The external load

increases sharply first until an unstable condition with the maximum external load is

reached. Then this load declines and re-rises finally with an increasing deformation. The

maximum and minimum external loads, which appear on the equilibrium path, are cor-

responding instability points. The instability analysis of tubular and spherical balloons

using the Gent material model has been presented from theoretical and experimental

views [256]. The unstable status has been illustrated by analysing the relationship be-

tween the external pressure and the variation of energy [257]. As the instability is

complicated to analyse, no doubt the instability study remains to be discovered.

For membrane problems, the out-of-plane deformations result from in-plane stresses

rather than using full three-dimensional constitutive theory. The stiffness of a membrane

problem is zero at the start of deformation. A prestress or a prestretch can be, therefore,

applied to the undeformed membrane structures by either prescribed displacements or
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tractions acting along the boundary to avoid zero stiffness [258]. As shown in Figure

6.2(a), a cylindrical membrane with a length L0 is prestretched in z direction to a length

L (see Figure 6.2(b)). The prestretch leads to negative radial expansions at all height

sections except the top and bottom surfaces. The external load is then applied to this

prestretched membrane in Figure 6.2(b).

X

Y

Z

L0 L

(a) (b)

Figure 6.2: Prestretched cylindrical membrane.

Analytical solutions are only available for a few membrane problems such as the in-

flation of spherical rubber balloons [259], thus the numerical study of geometrically non-

linear membrane problems is of great importance. The finite element method (FEM)

has been widely used in early numerical analysis of membrane problems [260–264], where

membranes with various loading and boundary conditions have been modelled, such as

the inflation of a flat circular membrane without a prestretch [265, 266] and the de-

formation of an initially tensioned membrane under uniform pressure with analytical

solutions [267]. The initial configuration with a prestress has been introduced for the

air supported membranes and further used in membranes with more complex geome-

tries [268,269]. The analog equation method has been applied to flat and non-flat mem-

branes with arbitrary shapes, in which the governing PDEs for membrane problems are

replaced by Poisson’s equations [270]. More recently, a point collocation finite element

method has been proposed to analyse the prestressed membrane problems where the gov-
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erning equations described in the Cartesian coordinates are applied to collocation points

directly and the basis functions are constructed based on a mesh [271]. As compared

to the methods used above, the strong form based MEPCM can be applied to analyse

membrane problems due to they have some attractive features, which is the aim of this

chapter.

As the local maximum entropy point collocation method (MEPCM) proposed in

Chapter 3 has been applied to large deformation analyses in Chapter 5, demonstrat-

ing some advantages due to the lack of a mesh, it seems natural to extend this strong

form-based method to geometrically non-linear membrane analyses, presented for the

first time in this thesis. However, the MEPCM cannot be applied to membranes di-

rectly since the use of a prestress (or a prestretch) introduces an additional configuration

and the governing equation component in the out-of-plane direction has to be included.

The kinematics and stress measures for both linear elastic and large strain hyperelas-

tic materials are introduced first followed by the basic theory for membrane problems

including the governing equations and boundary conditions described by a Total La-

grangian formulation with the MEPCM. Since the instability occurs at the equilibrium

path of hyperelasticity, a Newton-Raphson arc-length method is introduced to capture

the snap-through behaviour. Some numerical examples of membrane problems using

different material models are analysed to demonstrate the performance of the proposed

novel method under prestretches and external loads.

6.2 Kinematics

In this section, the basic kinematics for flat membrane structures with a prestretch is

introduced. As mentioned in the last section, an in-plane prestretch, which is used

for membrane problems to obtain a non-zero stiffness at the start of deformation, can

be applied independently before external loads. In order to apply a prestretch to a

membrane, a prescribed displacement vector {upre} = {uprex , uprey }T can be imposed on

boundaries of a membrane in the reference configuration, resulting in a new configuration,

referred to the initial configuration. In the prestretch vector, uprex and uprey are the

values of the prestretch components in X and Y directions. Therefore kinematics for
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flat membrane problems with a prestretch includes a description of three successive

configurations, the reference (undeformed), initial (prestretched) and current (deformed)

configurations, as shown in Figure 6.3.

Ω0

X

Y

dY

dX

Reference configuration

[F0]

[Fn]

xpre

ypre

zpre

Initial configuration

dypre
dxpre

dx

dy

Ωpre

[F ]

Ω

x

y

z

Current configuration

Figure 6.3: The reference, initial and current configurations of membranes.

A point on the membrane surface in the two-dimensional reference configuration Ω0

is given by {X̄} = {X, Y }T . The coordinate {x̄pre} = {xpre, ypre, zpre}T is defined in the

initial configuration Ωpre with a prestretch and the coordinate {x̄} = {x, y, z}T describes

the position of a point in the corresponding current configuration Ω. The position vectors

in both the initial and current configurations, {x̄pre} and {x̄}, have three components,

which can refer to the two-dimensional reference coordinate {X̄}. Mappings between

these three configurations can be given as

{x̄pre} = ϕxpre({X̄}), {x̄} = ϕ({x̄pre}, t) and {x̄} = ϕx({X̄}, t). (6.1)

The function ϕxpre is the Lagrangian description of the motion which can map a point
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from the reference configuration Ω0 to the initial configuration Ωpre, ϕ is used to map

a point from the initial configuration Ωpre to the current configuration Ω and a point

in the reference configuration Ω0 can be mapped into the current configuration Ω by ϕx

directly. The corresponding deformation gradients can be expressed in terms of these

three different configurations as

[F0] =
∂{x̄pre}
∂{X̄}

, [F ] =
∂{x̄}
∂{x̄pre}

and [Fn] =
∂{x̄}
∂{X̄}

(6.2)

where [F0] describes the deformation from the reference to the initial configurations

caused by the prestretch, [F ] measures the deformation resulting from the external load

without the prestretch and [Fn] gives the total deformation referred back to the reference

configuration.

Similarly to large deformation analyses in Chapter 5, a Total Lagrangian formulation

is used for membrane problems as the initially calculated basis functions and the deriva-

tives can be reused throughout the analysis. However, as the deformation is caused by

the external load without a prestretch, all variables used in the Total Lagrangian formu-

lation can refer to both the reference and the initial configurations (see [269,272]). The

Total Lagrangian formulation in terms of the reference configuration is used in this chap-

ter as the reference configuration is given directly and mappings between the reference

and the initial configurations are not required. The deformation gradient [Fn] is used in

the following strain and stress measures as it refers to the reference configuration.

In order to find the relationship between these expressions of deformation gradients,

[F0], [F ] and [Fn], the vector of the infinitesimal lengths in the initial configuration

{dx̄pre} can be given in terms of the reference configuration, and the vector of the in-

finitesimal lengths in the current configuration {dx̄} can be described in terms of the

reference and the initial configurations, by using the corresponding deformation gradients

as

{dx̄pre} = [F0]{dX̄}, {dx̄} = [F ]{dx̄pre} and {dx̄} = [Fn]{dX̄} (6.3)

where {dX̄} is the vector of the infinitesimal lengths in the reference configuration. Eq.
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(6.3) can be rearranged to obtain the following relationship

[Fn] = [F ][F0]. (6.4)

Three corresponding right and left Cauchy-Green strains (given in Eqs. (5.8) and (5.9))

in terms of the different configurations are given as

[C0] = [F0]T [F0], [C] = [F ]T [F ] and [Cn] = [Fn]T [Fn] (6.5)

and

[b0] = [F0][F0]T , [b] = [F ][F ]T and [bn] = [Fn][Fn]T (6.6)

in which [C0] and [b0] describe the strains resulting from the a prestretch, [C] and [b] are

used to measure the strains caused by the external load, and [Cn] and [bn] represent the

total strains. Substituting Eq. (6.4) into Eq. (6.5), [Cn] can be written as a function of

deformation gradients [F0] and [Fn] as

[Cn] = [Fn]T [Fn] = [F0]T [F ]T [F ][F0] = [F0]T [C][F0]. (6.7)

Again, various strain measures are available in large deformation membrane problems.

The logarithmic strain, which has a linear relationship with the Kirchhoff stress, is

used for linear elastic membranes, as explained in §5.2 the constitutive model for small

deformation can be used for large deformation problems without modification. The

logarithmic strain in terms of the reference configuration [εn] is given as

[εn] =
1

2
ln([bn]). (6.8)

Another strain measure, the Green-Lagrangian strain, which is adopted for hyperelastic

material models, is defined in terms of the reference configuration as

[En] =
1

2

(
2
∂{u}
∂{X̄}

+
∂{u}
∂{X̄}

∂{u}
∂{X̄}

)
=

1

2
([Cn]− [I]) (6.9)

where {u} = {ux, uy, uz}T is the vector of displacement for membrane problems in terms
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of the reference configuration and the non-linear term ∂{u}
∂{X̄}

∂{u}
∂{X̄} is the source of the

geometric non-linearity.

Comparing with large deformation analyses in Chapter 5, an initial configuration is

introduced for membrane problems. Kinematics and two strain measures in terms of the

reference configuration have been given in this section, which will be employed to obtain

stress measures for different material models in the next section.

6.3 Stress measures

In this section, stress measures for both linear elastic and hyperelastic material models

are provided associated with the membrane kinematics introduced in the last section.

6.3.1 Linear elastic membranes

For linear elastic membrane problems with geometric non-linearity, a linear Kirchhoff

stress-logarithmic strain relationship is used as

{τn} = [D]{εn} (6.10)

for the same reasons as mentioned in §6.2. In Eq. (6.10), [D] is the elastic material

stiffness matrix given in Eq. (3.9) and {εn} is the logarithmic strain with respect to the

reference configuration. Four components in the 2× 2 matrix of [εn] in Eq. (6.8) can be

written into a 3× 1 vector form of {εn} with εxy = εyx. The first Piola-Kirchhoff stress

in terms of the reference configuration can then be expressed as

[Pn] = [τn][Fn]−T (6.11)

where the symmetric Kirchhoff stress [τn] can be rearranged from {τn} in Eq. (6.10) with

τxy = τyx. In the analysis of membrane problems, the symmetric second Piola-Kirchhoff

stress with respect to the reference configuration is introduced as

[Sn] = [Fn]−T [τn][Fn]−T = [Fn]−1[Pn] (6.12)
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which has no direct physical meaning but is used in the following section for hypere-

lastic materials. It should be noted that using the Total Lagrangian formulation, all

stress measures used in the governing PDEs and corresponding boundary conditions for

membranes, need to refer to the reference configuration.

6.3.2 Hyperelastic membranes

As hyperelastic materials are most often used in membrane problems, some basic concepts

of hyperelasticity are now reviewed. The formulation of stress measures for the hyper-

elastic membrane problems, for one particular case (the Ogden [273] material model) is

described.

Basic theory

A brief introduction to hyperelasticity is included here (based on [234, 274]). In con-

trast to linear elasticity, hyperelastic materials are characterised by the existence of a

free-energy function ψ which is dependent on the deformation, so stress measures are

obtained based on the free-energy function, i.e. the second Piola-Kirchhoff stress used for

membrane problems can be obtained from the free-energy function ψ with respect to the

Green-Lagrangian strain or the right Cauchy-Green strain. Although ψ is usually given

in terms of different variables, such as the principal stretches and invariants, for different

material models, they can be converted to the function in terms of the Green-Lagrangian

strain or the right Cauchy-Green strain. The principal stretches λ1, λ2, λ3, which are the

principal values of the right and left stretches, [U ] and [v] (given in §5.2), are the square

root of principal values of the right Cauchy-Green strain [C]. The relationship between

the right Cauchy-Green strain [C] and the invariants I1, I2 and I3 is given as

I1([C]) = tr([C]) (6.13a)

I2([C]) =
1

2

[
(tr([C]))2 − tr([C]2)

]
(6.13b)

I3([C]) = det([C]) (6.13c)
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where tr([C]) = C11 + C22 + C33. As the right Cauchy-Green strain can be obtained

from deformation gradient by Eq. (6.5) in terms of the different configurations, the

free-energy function can be expressed as a function of the deformation gradient [F ], the

right Cauchy-Green strain [C], the invariants I1, I2 and I3, and the principal stretches

λ1, λ2, λ3 as

ψ([F ]) = ψ̃([C]) = ψ̄(I1([C]), I2([C]), I3([C])) = ψ̂(λ1, λ2, λ3). (6.14)

For some hyperelastic materials which are assumed to have incompressibility, very little

volumetric change is observed with very large deformations. In such cases, the invariant

I3 as given in Eq. (6.13c), is unity, so the free-energy function in Eq. (6.14) is only

dependent on I1 and I2 as ψ̄(I1([C]), I2([C])).

In order to obtain the second Piola-Kirchhoff stress from the free-energy function,

the principal stretches and invariants in Eq. (6.14) have to be replaced by the right

Cauchy-Green strain, which is described in the following.

Hyperelastic membranes

The stress measures for hyperelastic membranes with respect to the reference configura-

tion are introduced here. This derivation follows the idea in [268]. Using the Total La-

grangian formulation in terms of the reference configuration, the second Piola-Kirchhoff

stress is given as

[Sn] = 2
∂ψ̃([C̄])

∂[Cn]
(6.15)

where [Sn] is the second Piola-Kirchhoff stress in terms of the reference configuration,

ψ̃([C̄]) is the free-energy function of the right Cauchy-Green strain caused by the external

load and [C̄] is the in-plane strain resulting from the external load. Using the chain rule,

the second Piola-Kirchhoff stress in Eq. (6.15) can be written as

[Sn] = 2
∂ψ̃([C̄])

∂[C̄]

∂[C̄]

∂[Cn]
. (6.16)

It is noted that the deformation caused by the prestretch is not included in the free-

energy function as the prestretch is used to avoid zero stiffness. For membrane problems,
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transverse shear strains in [C̄] vanish and the thickness strain in the out-of-plane direction

is dependent on the in-plane strain components as indicated in the incompressibility

condition. Two components C11 and C22 are the principal values of [C̄]. The in-plane

principal stretches λ1 and λ2 can be expressed by the in-plane right Cauchy-Green strain

components as

λ2
1 = C11 and λ2

2 = C22. (6.17)

The right Cauchy-Green strain in terms of the initial configuration [C] can be rearranged

as

[C] =

 [C̄] 0

0 C33

 (6.18)

where the in-plane strain [C̄] is

[C̄] =

 C11 0

0 C22

 (6.19)

and each component of [C̄] can be found in the expression of [C]. The current thick-

ness of the membrane varies in the deformation process, and is obtained by using the

incompressibility condition so that

h = λ3h
pre = (C33)

1
2hpre (6.20)

in which the thickness in the initial configuration hpre caused by a prestretch can be

obtained via

hpre = (λ0)3h0. (6.21)

In Eq. (6.21), (λ0)3 is the principal stretch in terms of the reference configuration.

Considering incompressibility, (λ0)3 can be given by (λ0)3 = (C0)−1
11 (C0)−1

22 where (C0)11

and (C0)22 can be found in Eq. (1.5a). The thickness value hpre is used in the initial

configuration and the thickness h is used in the current configuration.
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The Ogden material model

The Ogden [273] material model is considered in this chapter to provide a capability

for very large strains as the Neo-Hookean [234] and Mooney-Rivlin [253] models fail to

represent the behaviour of rubbery materials with very large strains [275]. The free-

energy function, ψ, based on the principal stretches has been proposed by Ogden [276–

278]. Its form is given by

ψ̂(λ1, λ2, λ3) =
N∑
p=1

µp
αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3) (6.22)

in which N is the total number of terms in the series (N = 3 is used in the following

examples), αp (p = 1, ..., N) and µp are corresponding material constants. The values

of these material constants are selected appropriately to fit the experimental results.

Using the relationship in Eq. (6.17) and the chain rule, the second Piola-Kirchhoff stress

(which will be used in next section) in Eq. (6.16) can be derived as

[Sn] = 2
∂ψ̂(λk)

∂[Cn]
(6.23)

= 2
∂ψ̂(λk)

∂λk

∂λk
∂[C̄]

∂[C̄]

∂[Cn]

where
∂ψ̂(λ1, λ2)

∂λk
=

N∑
p=1

µpλ
αp−1
k , (6.24)

∂λk
∂[C̄]

and ∂[C̄]
∂[Cn]

can be calculated from Eqs. (6.17) and (6.7).

In this section, the stress measures required for linear elastic and the hyperelastic

Ogden material models for membrane problems have been provided, and will next be

introduced to the equilibrium theory for membranes.
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6.4 Equilibrium of membranes

The governing PDEs based on the stress measures introduced in the previous section,

for geometrically non-linear membranes, are given in [279,280] as

∂Nxx

∂X
+
∂Nxy

∂Y
= px (6.25a)

∂Nxy

∂X
+
∂Nyy

∂Y
= py (6.25b)

∂

∂X

(
Nxx

∂uz
∂X

+Nxy
∂uz
∂Y

)
+

∂

∂Y

(
Nyy

∂uz
∂Y

+Nxy
∂uz
∂X

)
= pz (6.25c)

in terms of the reference configuration over the domain Ω0 where uz is the out-of-plane

displacement in the vector of {u} = {ux, uy, uz}T and px, py and pz are the external

pressure components in

{p̄} = {px, py, pz}T . (6.26)

In Eq. (6.25), Nxx, Nyy and Nxy are in-plane resultant forces (integrated forces or

membrane forces) in terms of the reference configuration. These components of resultant

forces can be written in a matrix form as

[N ] =

 Nxx Nxy

Nxy Nyy

 . (6.27)

In membrane problems, membrane forces are often employed in the governing PDEs as

they vary with thickness. Membrane force matrix [N ] is obtained from the second Piola-

Kirchhoff stress in terms of the reference configuration [Sn] and the current thickness h

as

[N ] = h({u})[Sn]. (6.28)

It is noted that the membrane thickness h({u}) is a function of the displacement {u},

which is updated with the deformation of membranes in the current configuration. The

expression of the second Piola-Kirchhoff stress in terms of the reference configuration

[Sn] can be found in Eqs. (6.12) and (6.23) for linear elastic and the hyperelastic Ogden

materials, respectively.
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Dirichlet and Neumann boundary conditions for membrane problems are given as

ux = ū0
x uy = ū0

y and uz = ū0
z (6.29)

on Dirichlet boundaries Γu and

tx = Nxxn
0
x +Nxyn

0
y = t̄0x (6.30a)

ty = Nxyn
0
x +Nyyn

0
y = t̄0y (6.30b)

tz = (Nxxn
0
x +Nxyn

0
y)
∂uz
∂X

+ (Nyyn
0
y +Nxyn

0
y)
∂uz
∂Y

= t̄0z (6.30c)

on Neumann boundaries Γt where the prescribed displacement vector is given as {ū0} =

{ū0
x, ū

0
y, ū

0
z}T , the prescribed traction vector is given as {t̄0} = {t̄0x, t̄0y, t̄0z}T and n0

x, n
0
y

and n0
z are the components of the unit normal matrix to the membrane surface in the

reference configuration

[n0
m] =


n0
x 0

0 n0
y

n0
y n0

x

 . (6.31)

Compared to the governing equations and boundary conditions used for two-dimensional

geometrically non-linear problems in Eqs. (5.14) and (5.15), here the third compo-

nent in the out-of-plane direction is included in Eqs. (6.25), (6.29) and (6.30) and the

non-symmetric first Piola-Kirchhoff stress is replaced by the symmetric resultant force.

Therefore, the 4×2 unit normal matrix in Eq. (5.17) becomes the 3×2 unit normal ma-

trix in Eq. (6.31). The derivatives of the out-of-plane displacement terms are included

in the component of Neumann boundary conditions given in Eq. (6.30).

To analyse the membrane problem using the MEPCM, an appropriate condition from

Eqs. (6.25), (6.29) and (6.30) is imposed at each collocation point in the interior of the

membrane surface and on boundaries, leading to a non-linear system of equations in

terms of a vector of the displacement at source points, similar to the systems developed

earlier in the thesis for different problems, i.e.

{G} = {{G1}T , {G2}T , {G3}T} = {F int
p }T − {F ext

p }T = {0} (6.32)
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where three different components are

{G1} =


∂Nxx

∂X
+ ∂Nxy

∂Y
− px

∂Nxy

∂X
+ ∂Nyy

∂Y
− py

∂
∂X

(
Nxx

∂uz
∂X

+Nxy
∂uz
∂Y

)
+ ∂

∂Y

(
Nyy

∂uz
∂Y

+Nxy
∂uz
∂X

)
− pz


i

i = 1, ..., l (6.33)

{G2} =


ux − ū0

x

uy − ū0
y

uz − ū0
z


j

j = 1, ...,m (6.34)

and

{G3} =


tx − t̄0x
ty − t̄0y
tz − t̄0z


k

k = 1, ..., n. (6.35)

In the above equations, l is the number of collocation points in the interior of the domain

where the collocation is to the governing equations, m and n are the remaining numbers

of collocation points on boundaries carrying Dirichlet and Neumann boundary conditions

respectively. The total number of collocation points covering the domain is l+m+ n =

Nc. {F int
p } is a vector of the internal variables and {F ext

p } is a vector of the external

variables. All terms at the right-hand side of Eqs. (6.25), Eqs. (6.29) and Eqs. (6.30) are

put in {F int
p } and the known variables including the out-of-plane pressures, prescribed

displacements and external tractions are independently put in the external variables

{F ext
p }. The internal {F int

p } and external variables {F ext
p } are introduced here as they

are used in the non-linear solver in the following. The non-linear system of equations

in Eq. (6.32) should equal a zero vector with the vector of the exact displacements.

However the exact solution is unknown and the non-linear system {G} in Eq. (6.32)

has a non-zero residual vector {R} in terms of the unknown vector of displacements at

source points {d} = {dx, dy, dz}T . The solution can be found by minimising the non-zero

residual vector

{R} = {{R1}T , {R2}T , {R3}T} = {F int
p }T − {F ext

p }T (6.36)
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which can be expressed by three corresponding residual components.

For linear elastic membrane problems, the Newton-Raphson method introduced in

§5.3 can be adopted to linearise the non-linear system and obtain a vector of displace-

ments at source points {d} incrementally. In the Newton-Raphson method, Jacobian

of the residual vector is formed by linearising the non-linear system of residual in Eq.

(6.36) with respect to the displacement at source points {d} as

[R′] =


[
∂R1

∂dx

] [
∂R1

∂dy

] [
∂R1

∂dz

]
[
∂R2

∂dx

] [
∂R2

∂dy

] [
∂R2

∂dz

]
[
∂R3

∂dx

] [
∂R3

∂dy

] [
∂R3

∂dz

]
 . (6.37)

Eq. (5.22) can be used to calculate the iterative displacement vector and the Newton-

Raphson method continues until the stopping criterion in Eq. (5.28) are satisfied. Com-

pared with the residual norms ||R1||, ||R2|| and ||R3|| for the other large deformation

problems in Chapter 5, one more component at each collocation point is included in Eqs.

(5.24), (5.25) and (5.26) for membrane problems. For hyperelastic materials, instability

can occur on the equilibrium path, therefore an appropriate method is required to find

a solution for the non-linear system, which is described in the following.

The Newton-Raphson method is usually ideal for the solution of sets of non-linear

equations resulting from numerical methods used in solid mechanics due to fast con-

vergence and robustness, however, they have some limitations. The method is able to

solve any load-controlled non-linear system efficiently, where the equilibrium path can

be captured by increasing the load field in {F ext
p } and the increment between any two

load steps can be user-defined. The displacement-controlled equilibrium path can also

be tracked using the Newton-Raphson method by increasing the vector of displacements

{d}. However, the Newton-Raphson method fails to accurately follow the equilibrium

path which is not load- and displacement-controlled (with more complex unstable equi-

librium). As reviewed in §6.1, the instability happens when the external load does not

change monotonically and the external load in the next load step needs to be determined

automatically. A limit point appears on the equilibrium path to show a local maximum

or minimum value (defined as a snap-through or a snap-back behaviour) [281, 282]).
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Typical equilibrium paths associated with a snap-through or a snap-back behaviour are

illustrated in Figure 6.4 in which λm is a load factor to determine the external load in the

next load step. The Newton-Raphson method is unable to track the equilibrium path

accurately when the limit point A is reached.

λm λm

o od d

snap-through snap-back

A A

Figure 6.4: Unstable equilibrium: Snap-through and snap-back behaviour.

To address these issues, the Newton-Raphson approach can be complemented by an

“arc-length” method [283] which provides an efficient way to trace the equilibrium path

beyond the limit point A. An equilibrium path is controlled by a load factor λm and

displacement pairs as {λm, {d}} (see Figure 6.4). An extra constraint with an additional

unknown λm is added to the residual vector {R} to find the solution. The arc-length

method is grouped into spherical and cylindrical arc-length methods because they have

different constraint equations

{∆u}T{∆u}+ ∆λ2
mψ

2
arc{F int

p }T{F int
p } − l2 = 0 (6.38)

and

{∆u}T{∆u} = l2 (6.39)

respectively, where ∆{u} is the incremental displacement and ∆λm is the incremental

load factor, ψarc is a prescribed scaling parameter, {F int
p } is a vector of internal vari-

ables and l is a prescribed incremental solution length. In this chapter, the cylindrical
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arc-length method is combined with the Newton-Raphson method to find the solution

of the non-linear system for membrane problems with hyperelastic materials since the

prescribed scaling parameter ψarc is zero in Eq. (6.39) which simplifies the constraint

equation. The stopping criterion in Eq. (5.28) are adopted here with some differences.

Similarly to the stopping criterion used for linear elastic membrane problems above, three

components at each collocation points are included to calculate the residual norms. The

detailed formulations of the Newton-Raphson arc-length method are provided in Ap-

pendix D [211,283–290].

The vector of displacements at source points {d} in terms of the reference configu-

ration for linear elastic and hyperelastic membrane problems can be calculated by the

Newton-Raphson and the Newton-Raphson arc-length methods, respectively. The ap-

proximation of displacement including the prestretch at any point can be approximated

by basis function values and {d} associated with the source points inside the support

domain using Eq. (3.17). However, compared to the previous two-dimensional problems,

the matrix of basis function values associated with each source point is 3 × 3 and the

vector of displacement at each source point is 3 × 1 as the out-of-plane displacement

exists for membrane problems.

6.5 Numerical examples

The detailed formulation for the analysis of membrane problems using the Total La-

grangian approach in term of the reference configuration with the geometrically non-

linear MEPCM have been discussed in previous sections of this chapter. In this section,

some numerical examples using both linear elastic and the hyperelastic Ogden materials

are analysed to demonstrate the performance of the proposed method.

6.5.1 Inflation of a linear elastic membrane

The first example is the analysis of an initially flat rectangular membrane loaded with

a uniform pressure on the membrane surface as shown in Figure 6.5. This linear elas-

tic membrane problem has been studied in a reference [270], where the geometry and

material properties were used here with side length a = 5.0 m, aspect ratios a/b = 1
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and 7/5, thickness h0 = 0.004 m, uniform pressure pz = 5 kPa, Young’s Modulus of

linear elasticity, E=1.1× 105 kN/m2, and Poisson’s ratio, ν=0.3. The four edges of the

membrane were fully fixed.

a

b X

YZ

pz

Figure 6.5: An initially flat linear elastic membrane model subjected to a uniform pres-
sure.

A square membrane with a/b = 1 is studied first. Using the MEPCM to analyse this

problem, 21× 21 collocation and source points were distributed uniformly in the interior

of the problem domain and on boundaries. The change of the thickness is ignored in this

linear elastic membrane as the deformation caused by the given uniform pressure has

little effect on the current thickness. The prescribed uniform pressure pz was applied at

collocation points in the interior of the problem domain. A zero displacement boundary

condition was imposed at each collocation point on boundaries in the initial configuration.

As the non-linear strain-displacement relationship has been used in this geometrically

non-linear membrane problem, a non-linear system of equations is formed in terms of

the unknown displacements at source points {d}. For a linear elastic membrane, the

equilibrium path is monotonic and the problem can be solved by the Newton-Raphson

method. The out-of-plane pressure pz was normalised by p̄z = pz(1−ν2)/Eh0 and applied

over 10 load steps. The maximum number of iterations was set as 10 and the tolerance

number, η set as 10−5.

Figure 6.6 displays the deformed configurations of the linear elastic square membrane

under a uniform pressure at the first, second, fourth and tenth load steps, respectively,

which presents the total deformation of the membrane caused by the successively in-

creased out-of-plane pressure. These four configurations in Figure 6.6 are mapped from
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the reference configuration by using the vector of displacements at all collocation points.

The colours in Figure 6.6 indicate the out-of-plane displacements, uz at all collocation

points over different load steps and the colours are illustrated by the colourbar in each

subfigure next to the configuration with the same unit as the dimensions of the geome-

try. As expected, the maximum deflection occurs at the central point of the membrane

surface. The out-of-plane deformation becomes apparent with an increasing value of the

pressure. The differences between Figure 6.6(a)-(d) are caused by the different values of

the external pressure pz over all these load steps.

(a) The first load step. (b) The second load step.

(c) The fourth load step. (d) The tenth load step.

Figure 6.6: The deformed configurations with the out-of-plane displacement, uz (m) at
different load steps of the initially flat linear elastic membrane problem subjected to a
uniform pressure.

The deflection uz at Y = 0 against the position in X direction at four different load
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steps are presented in Figure 6.7 to show the deformation throughout selected load steps.

It can be observed that the in-plane displacements are smaller than the out-of-plane

displacement at each of these four load steps. The overall out-of-plane displacement, uz

of this linear elastic membrane problem under the given uniform pressure is slightly less

than fifteen times of its original thickness, h0.
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Figure 6.7: The deflections uz (m) at Y = 0 over different load steps of the initially flat
linear elastic membrane problem subjected to a uniform pressure.

Figure 6.8 shows the relationship between the normalised pressure p̄z and the nor-

malised out-of-plane deflection uz/a at the centre point of the membrane surface over all

load steps, in which a non-linear relationship can be clearly observed by comparing with

the linear indicator in this figure. For this linear elastic membrane problem, it can be

seen that the external pressure goes up with an increasing displacement, uz, therefore,

the equilibrium path without instability can be captured by using the Newton-Raphson

method. The increment between each two load steps can be predefined. Here, a constant

increment is employed.
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Figure 6.8: The normalised pressure p̄z at the centre point of the membrane surface
against normalised deflection uz

a
of the initially flat linear elastic membrane problem

subjected to a uniform pressure.

Load step

Iteration 1 2 3

1 2.000× 100 2.000× 100 2.000× 100

2 2.097× 10−1 9.704× 10−2 1.673× 10−2

3 8.512× 10−3 1.683× 10−6 1.513× 10−6

4 4.307× 10−8 – –

Iteration 8 9 10

1 2.000× 100 2.000× 100 2.000× 100

2 9.274× 10−2 4.412× 10−2 1.273× 10−2

3 9.926× 10−6 4.389× 10−6 4.315× 10−6

Table 6.1: Residual norms in the Newton-Raphson method of the initially flat linear
elastic membrane problem subjected to a uniform pressure.
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The residual norms of the non-linear system of equations at each iteration step over

the first and the last three load steps of the Newton-Raphson method are given in Table

6.1 where the stopping criterion described in Eq. (5.28) is satisfied using four iteration

steps for the first load step and using three iteration steps over the other five load steps.

Compared with the residual vector for large deformation analyses in Chapter 5, three

components for each collocation point are included in the residual vector for membrane

problems. However, the convergence rates of residual norms in these selected load steps

are close to 2.0, which is the theoretical value. The convergence rate of the Newton-

Raphson method is not affected by the number of components in the residual vector.

The study above demonstrates the MEPCM to deliver apparently physically rea-

sonable results. However to properly validate, further studies of the rectangular linear

elastic membrane were then carried out. In addition to the square membrane (a/b = 1),

a rectangular membrane with a/b = 7/5 was studied and various discretisations were

applied to both problems. The reference results of the normalised maximum deflections

uz/a at the central point of the rectangular membranes with different aspect ratios are

given in Table 6.2 where the reference results collected in [270] are listed for compar-

ison without further citations of the original publications. These reference results are

obtained by different approximated solutions and the solution given by Storakers is seen

the closest to the exact solution. In this table, Nc represents the number of nodes in

mesh-based methods instead of the number of collocation points in the MEPCM. When

a/b = 1, the MEPCM result is close to reference results and the percentage difference

of the normalised out-of-plane displacement uz/a between the MEPCM and the Storak-

ers’s results is 0.78%. The numerical result using the MEPCM is larger than Hencky’s

and Kao and Perrone’s results. When the ratio a/b is greater than one, the maximum

deflection is smaller than that of square membranes as the side length b is shorter than

a, in which the change of geometry restricts the inflation of the rectangular membrane.

The normalised deflection obtained by the MEPCM is greater than most results in Table

6.2 but it is still lower than Foppl’s and Storakers’s results. The percentage differences

between the MEPCM and Storakers’s solution is 2.42% .
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a/b = 1 a/b = 7/5

Methods Nc uz/a Nc uz/a

Foppl (1920) – 0.1208 – 0.0909

Hencky (1921) – 0.1080 – –

Borg (1953) – – – 0.0833

Kao and Perrone (1972) – 0.1090 – 0.0810

Storakers (1983b) – 0.1156 – 0.0869

FEM 149 0.1142 189 0.0843

AEM (2001) 149 0.1082 189 0.0801

MEPCM 41× 41 0.1147 43× 31 0.0848

Table 6.2: Normalised central deflection uz
a

with different aspect ratios and discretisations
of the initially flat linear elastic membrane problem subjected to a uniform pressure.
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Figure 6.9: The normalised deflection uz/a at the centre point against the number of
degrees of freedom of the initially flat linear elastic membrane problem subjected to a
uniform pressure.
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Figure 6.9 shows the normalised deflection uz/a at the centre point against the num-

ber of degrees of freedom of the initially flat linear elastic membrane problem subjected

to a uniform pressure. With an increasing number of degrees of freedom, the normalised

deflections for both square and rectangular membranes using the MEPCM is getting

closer to Storakers’s results. The maximum deflection uz increases with a uniformly re-

fined discretisation. As the out-of-plane displacements for this linear elastic membrane

problem are not very large, the membrane problems using the large strain hyperelastic

Ogden material model are presented in the following.

6.5.2 Inflation of a square hyperelastic membrane

In this example, the inflation of a square membrane using the hyperelastic Ogden material

model with an initial prestretch and clamped boundary conditions is analysed. The

simulation of this square membrane problem has already been carried out in [291], which

provides the reference results to this problem for comparison.

L
δl

Initial configuration

Reference configuration

X

Y

Figure 6.10: The reference and initial configurations of the square hyperelastic membrane
problem subjected to a uniform pressure.

The reference and initial configurations of this membrane problem are shown in Figure

6.10, where the side length in the reference configuration, L = 20 cm and the original

thickness of the thin membrane, h0 = 0.1 cm. The initial external pressure was p0 = 0.98

kPa. All boundaries were fully fixed. As the rotation stiffness for membrane problems is
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zero, clamped boundary conditions can be simplified as fully fixed boundary conditions.

In order to avoid numerical issues arising from the zero tangent stiffness of this flat

membrane without any load (as has been discussed in §6.1), the square membrane in the

reference configuration was prestretched by applying an in-plane prescribed prestretch

vector {upre} to boundaries before the external load was applied, resulting in the initial

configuration (see Figure 6.10). As the exact value of prestretch is not given in the

reference [291]. The in-plane prestretch components in {upre} were chosen to be δl =

uprex = uprey = 0.05 cm and the external load comprised a uniform pressure applied to the

membrane surface.

This example is studied to show the effectiveness of the geometrically non-linear

MEPCM for large strain hyperelastic material models. The rubber behaviour of this

square membrane is described by the incompressible Ogden material model where the

free-energy function has been given in Eq. (6.22) and using the material parameters

(which can be found in [273,292])

α1 = 1.3, α2 = 5.0, α3 = −2.0, (6.40a)

µ1 = 6.3, µ2 = 0.012, µ3 = −0.1kg/cm2. (6.40b)

As the equilibrium path of this problem using the hyperelastic Ogden material model

shows instability, which cannot be traced by the Newton-Raphson method, a combined

Newton-Raphson arc-length method is employed to capture the snap-through behaviour.

The details of this method have been discussed in §6.4 and given in Appendix D. The

external load in the current load step is obtained by multiplying the load factor λm in

this load step with the initial pressure of p0 = 0.98 kPa. The maximum number of load

steps and iterations were predefined as 150 and 10 respectively, and the tolerance number

was set as η=10−5. To study this square membrane example, 21 × 21 collocation and

source points were distributed uniformly in the interior of the problem domain and on

boundaries.

Figure 6.11 depicts the evolution of the deformed geometry of the square membrane

over four different load steps. The total deformation results from the initially applied

prestretch and the external pressure. The out-of-plane displacements at all collocation
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points in each subfigure are indicated by different colours and the corresponding values

of different colours are given by the colourbar in each subfigure with the same unit as the

dimensions of the geometry. The initially flat membrane inflates from Figure 6.11(a)-

(d), corresponding to central deflections, uz=4.39 cm to uz=21.49 cm, respectively. The

deflection, uz in Figure 6.11(d) is over 20 cm which is the side length of the square

membrane in the reference configuration. Both the in-plane tension and the out-of-plane

deflection are clearly significant as compared to the original dimensions of the square

membrane.

(a) uz(0, 0) = 4.39cm. (b) uz(0, 0) = 12.68cm.

(c) uz(0, 0) = 17.64cm. (d) uz(0, 0) = 21.49cm.

Figure 6.11: The deformed configurations with the out-of-plane displacement, uz (cm) at
different load steps of the square hyperelastic membrane problem subjected to a uniform
pressure.

To examine the pressure-deflection relationship and the effect of prestretch values on
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the equilibrium path in this membrane problem, the uniform pressure against deflection

uz at the central point of the square membrane surface with four different prestretch

values is given in Figure 6.12. This equilibrium path is captured using the Newton-

Raphson arc-length method and the reference results [291] are also plotted in this figure

for comparison. It can be seen that the snap-through behaviour using different prestretch

values is captured clearly and the pressure-deflection curves for this square membrane

problem exhibit similar trends with the reference results in general. In the analyses

using different prestretch values and reference results, the pressure increases sharply at

the beginning of the deformation until it reaches a limit point with the maximum pressure

(an instability point) which corresponds to the deformed state shown in Figure 6.11(b).

After that, an apparent drop of the pressure is followed by a monotonic increase. The

membrane keeps inflating with an non-monotonically increasing external pressure.
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Figure 6.12: Pressure versus deflection at central point of the square hyperelastic mem-
brane problem subjected to a uniform pressure.

Also clear in Figure 6.12 is the fact that the prestretch value {upre} adopted in the

reference configuration has a clear effect on the pressure-deflection relationship, perhaps

not a surprise. The analyses with {upre} = {0.05, 0.05}T and {upre} = {0.50, 0.50}T (cm)

show very close numerical results except the slightly different maximum pressures. At the
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start of the equilibrium path using these two prestretch values, the membrane is stiffer to

inflate and the pressure increases faster than using the other values, reaching the maxi-

mum pressure which is higher than using the other cases. Then the pressure decreases to

reach the local minimum pressure value followed by a re-rise. After these two instability

points, the equilibrium paths with {upre} = {0.05, 0.05}T and {upre} = {0.50, 0.50}T

(cm) are still close to each other. When the prestretch values are 5.00 cm and 50.00 cm,

the square membrane becomes easier to inflate than in the other cases with smaller gra-

dients at the beginning of the path and a smaller peak pressure value. For the same pres-

sure value, the analysis with the largest value of the prestretch, {upre} = {50.00, 50.00}T

(cm) results in the largest central deflection uz. In this analysis, it is observed that the

maximum pressure decreases as the prestretch increases. The larger prestretch value can

affect the instability behaviour, i.e. the equilibrium path using {upre} = {0.05, 0.05}T

(cm) shows stronger instability than using {upre} = {50.00, 50.00}T (cm). The use of

prestretch can also lower the maximum pressure.

It can be seen that the analysis with {upre} = {5.00, 5.00}T (cm) gives the closest

results with the reference results but there are still some differences. Their equilibrium

paths at the beginning are nearly overlapped but show some differences from the pressure

value of about 6 kPa. The membrane in the reference results is softer to inflate. Then the

difference can be seen at the peak pressure value, at which the peak pressure in the refer-

ence results is a lower than the numerical result with {upre} = {5.00, 5.00}T (cm). After

the peak pressure, the reference results are still softer than using {upre} = {5.00, 5.00}T

(cm). Therefore, the prestretch values used in [291] is analysed between 0.50-5.00 (cm).

The numerical and reference results of this membrane problem were obtained by different

methods and discretisations. Different prestretch values were applied to the reference

configuration in the numerical and reference results, which results in different initial con-

figurations. However, the snap-through behaviour is obtained using the MEPCM and

the equilibrium path using {upre} = {5.00, 5.00}T (cm) generally agree well with the

reference results.

In order to investigate the influence of the value of a prestretch, some formulations

introduced in previous sections need to be recalled. The resultant forces used in the gov-

erning PDEs for geometrically non-linear membrane problems (as given in Eqs. (6.25)),
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are calculated using the second Piola-Kirchhoff stress [Sn] in terms of the reference con-

figuration, and the current thickness of the membrane, h as described in Eq. (6.28).

Since the same uniform pressures are applied to all analyses with different values of the

prestretch, [Sn] is identical with different values of the prestretch. It is presented in Eq.

(6.21) that the thickness of the membrane in the initial configuration hpre is affected by

prestretch. To measure this influence, the membrane thicknesses in the initial config-

uration hpre and the maximum pressures at the first limit points of pressure-deflection

curves (pz)max using four different prestretch values are given in Table 6.3. It is clear

that a larger value of the prestretch leads naturally to a thinner membrane in the initial

configuration, achieving a lower limit point on the pressure-deflection curve. When the

prestretch uprex = uprey = 50 cm, the gradient of the equilibrium path at the start indicates

a softer response and the instability behaviour is less obvious than the other cases. The

reference result of the maximum pressure in the equilibrium path is closer to the results

using prestretch values 50.00 cm than 5.00 cm but the equilibrium path generally agrees

better with the case using 5.00 cm.

uprex (cm) uprey (cm) h0(cm) hpre(cm) (pz)max(kPa)

0.05 0.05 0.1 0.0990 8.6294
0.50 0.50 0.1 0.0907 8.5314
5.00 5.00 0.1 0.0444 7.6490
50.00 50.00 0.1 0.0028 7.3451

Reference – 0.1 – 7.3550

Table 6.3: The thicknesses and the maximum pressures of the square hyperelastic mem-
brane problem subjected to a uniform pressure.

The residual norms in the non-linear system of equations over the first three load steps

and another three load steps after the first instability point of the Newton-Raphson arc-

length method are given in Table 6.4. It can be seen that, near asymptotic quadratic

convergence using the Newton-Raphson arc-length method is reached using three or four

iteration steps before satisfying the stopping criterion given in Eq. (5.28). The conver-

gence rate in the Newton-Raphson arc-length method is not affected by the instability

of the equilibrium path.

A half diagonal of the flat square membrane was taken for analysis as a portion of

the full geometry where one end (the corner point of the square membrane) was fully
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Load step

Iteration 1 2 3

1 2.000× 100 2.000× 100 2.000× 100

2 9.000× 10−2 1.950× 10−1 9.326× 10−2

3 3.990× 10−3 9.582× 10−3 8.141× 10−6

4 3.036× 10−7 9.053× 10−7 –

Iteration 60 61 62

1 2.000× 100 2.000× 100 2.000× 100

2 1.832× 10−1 4.239× 10−2 1.842× 10−1

3 5.360× 10−3 9.723× 10−6 4.674× 10−3

4 1.116× 10−7 – 6.589× 10−7

Table 6.4: Residual norms in the arc-length Newton-Raphson method of the square
hyperelastic membrane problem subjected to a uniform pressure.

fixed and the roller boundary condition was applied to another end (centre point of

the square membrane). The maximum number of iterations in the arc-length Newton-

Raphson method was set the same as the analysis for the full geometry. The numerical

results of the deformed configurations at four different load steps are shown in Figure

6.13, in which the similar changing trend is observed to the full geometry as shown in

Figure 6.11.
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Figure 6.13: The deformed configurations with the out-of-plane displacement, uz (cm)
at different load steps of the half diagonal of the square hyperelastic membrane problem
subjected to a uniform pressure.
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6.5.3 Inflation of a circular membrane with hyperelasticity

Reference Configuration

Initial configuration

R δl

X

Y

Figure 6.14: The reference and initial configurations of the circular hyperelastic mem-
brane subjected to a uniform pressure.

The final example is the inflation of a circular membrane with an initially applied

prestretch, which has been modelled in [291,293] using the FEM. The reference and the

initial configurations of the circular membrane are shown in Figure 6.14 where the radius

and the original thickness of the circular membrane were R = 10 cm and h0 = 0.1 cm, re-

spectively. All material parameters used for the hyperelastic Ogden material model, the

external pressure at the first load step and boundary conditions of the circular membrane

were the same as in the previous square membrane problem. The same prestretch value

uprex = uprey =0.50 cm was used in this example. Again, the Newton-Raphson arc-length

method was employed to solve the non-linear system of equations, where the maximum

number of load steps and iterations were set as 150 and 10, respectively, and the pre-

defined tolerance number η was 10−5. Using the MEPCM to analyse this initially flat

circular problem, a total number of 361 collocation and source points, i.e. 10 collocation

points in the radial direction, 36 collocation points in the axial direction and 1 collocation

point at the central of the circular membrane, were distributed.

The evolution of this circular membrane using the hyperelastic Ogden material model

obtained at different load steps in this simulation is plotted in Figure 6.15. The colours
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(a) uz(0, 0) = 5.02 cm. (b) uz(0, 0) = 11.37 cm.

(c) uz(0, 0) = 17.77 cm. (d) uz(0, 0) = 21.60 cm.

Figure 6.15: The deformed configurations with the out-of-plane displacement, uz (cm)
at different load steps of the circular hyperelastic membrane subjected to a uniform
pressure.
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in each subfigure represent the out-of-plane deflections at all collocation points of each

deformed configuration with a colourbar next to the configuration which indicates the

scale of the out-of-plane deformation. The deformation of the circular membrane can

be seen to be very similar to the previous example, although here a spherical form is

approached. The in-plane tension and out-of-plane deflection can be observed clearly.
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Figure 6.16: Pressure versus deflection at central point of the square hyperelastic mem-
brane problem subjected to a uniform pressure.

Similarly to the last example of the square membrane, the pressure-deflection curves

at the central point of the circular membrane with two different values of prestrtch, 0.50

cm and 5.00 cm are presented in Figure 6.16. The reference results for this circular

membrane are also plotted in this figure for comparison. The snap-through behaviour

observed in the last example is also detected for the present circular membrane problem.

As shown in this figure, the circular membrane with a prestretch is inflating under the

uniform pressure until the pressure reaches a limit point with the maximum pressure.

Then, a decrease of the pressure occurs followed by a monotonic increase. The config-

uration corresponding to the maximum pressure is shown in Figure 6.15(b). It can be

seen from Figure 6.15(c)-(d) and Figure 6.16 that the circular membrane keeps inflating

after the first instability point although the pressure value goes down.



6.5. Numerical examples 179

Again, two different values of the prestretch are chosen in the simulation, which gives

the similar trends for pressure against deflection curves. Comparing these two curves

using different prestretches, the smaller prestretch value uprex = uprey =0.50 cm makes

it difficult to inflate the initially flat circular membrane therefore a higher maximum

pressure is required than the other case. After the first instability point, the pressures

with two different prestretch values decrease at a similar rate, but the deflection uz is

larger using a larger prestretch than another one with the same pressure value. In this

example, the equilibrium path with a prestretch value of 5.00 cm is closer to the reference

results but with some differences at the start of the deformation. The membrane in the

reference is stiffer to inflate at the beginning stage before the instability point than

using uprex = uprey =5.00 cm but their maximum pressure values are very similar. The

pressure-deflection relationship at the central point of the circular membrane in the

reference [291] shows the similar trend as the numerical results. As discussed above,

the differences between the reference and numerical results could be caused by the same

reasons, i.e. different methods and discretisations, and the use of different prestretch

values in numerical and reference results. The differences in the analyses with different

values of the prestretch may be caused by the membrane thickness, where the larger

prestretch value, i.e. 5.00 cm, makes the membrane thickness in the initial configuration

thinner, leading to a larger deformation than the case using a prestretch of 0.50 cm

with the same pressure value as shown in Table 6.5. Comparing the maximum pressure

(pz)max between the square membrane in last example and a circular membrane in this

example, a higher pressure value is required for the circular membrane to reach the

instability point in the reference results, resulting from the differences of geometry. The

numerical results using the MEPCM with uprex = uprey =5.00 cm give higher maximum

pressure for circular membrane than the square membrane. The circular membrane is

axisymmetric geometry and the discretisations for the square and circular membranes are

different but as shown in Table 6.5 the initial thickness values are the same in both the

square and circular membranes. Since there is no snap-back behaviour for this example,

the displacement-controlled Newton-Raphson method is employed to solve this example

for comparison, in which the total out-of-plane displacement at the centre point was

40 cm and applied by 160 steps. The pressure-deflection curve using the displacement-
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controlled Newton-Raphson method is given in Figure 6.16. It can be observed that

the displacement-controlled Newton-Raphson method presents very similar results to

the results obtained by the arc-length Newton-Raphson method with the same value

of prestretch. However, in this figure, slight differences can be seen around the first

instability point as the increment of the externally applied displacement at each step

using the displacement-controlled Newton-Raphson method is a constant, making it less

accurate to capture the equilibrium path around the instability point than using the

arc-length Newton-Raphson method. The increment of the externally applied load in

the arc-length Newton-Raphson method varies at each load step, which is determined

by the incremental variables in the last load step.

For both square and circular hyperelastic Ogden membranes studied in this section,

the numerical results using the MEPCM in terms of their inflation process over four load

steps (one step before the first instability point, one load step at the first instability

and two loads after the first instability points) have been presented. The equilibrium

paths with snap-through behaviour have been traced and the configurations correspond

to the maximum pressure values on the load-deflection curves have been analysed. The

equilibrium paths of both square and circular membranes with different prestretch values

have been presented, which are compared with the reference results. They show similar

trend with two instability points and the MEPCM results show generally good agreement

with the reference results when uprex = uprey =5.00 cm. It has been analysed that the values

of prestretch have an effect on the equilibrium curve including the positions and the

values of the instability points. Both of these two examples show that a larger prestretch

can lead to a thinner membrane in the initial configuration, which makes the membrane

softer to inflate. It has been seen from the numerical results that a large value of the

prestretch can reduce the instability.

uprex (cm) uprey (cm) h0(cm) hpre(cm) (pz)max(kPa)

0.50 0.50 0.1 0.0907 7.9433
5.00 5.00 0.1 0.0444 7.8257

Reference – 0.1 – 7.8453

Table 6.5: The thicknesses and the maximum pressures of the circular hyperelastic mem-
brane problem subjected to a uniform pressure.
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(a) uz(0, 0) = 5.26 cm. (b) uz(0, 0) = 10.52 cm.

(c) uz(0, 0) = 17.98 cm. (d) uz(0, 0) = 20.78 cm.

Figure 6.17: The deformed configurations with the out-of-plane displacement, uz (cm)
at different load steps of quarter of the circular hyperelastic membrane subjected to a
uniform pressure.
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Due to symmetry, quarter of the circular membrane was taken for analysis. Roller

boundary conditions were applied at the symmetric boundaries. The deformed config-

urations with the out-of-plane displacement, uz at different load steps of quarter of the

circular hyperelastic membrane with prestretch 0.50 cm are given in Figure 6.17, which

shows the similar inflation procedure to the full geometry.

6.6 Concluding remarks

In this chapter, an application of the geometrically non-linear MEPCM to membrane

problems has been investigated. The initial configuration results from an initially applied

prestress or prestretch has been introduced therefore three configurations are included

for membrane problems. Stress measures for linear elastic and hyperelastic materials

have been presented. The governing PDEs, which include the in-plane and the out-of-

plane components, have been described by the Total Lagrangian formulation in terms

of the reference configuration, where all variables referred to the reference configuration

have been used and the out-of-plane deformation is characterised by in-plane stresses

and strains. The proposed formulation can accommodate both linear elastic and large

strain hyperelastic material models, resulting in a non-linear system of equations. A

Newton-Raphson arc-length method has been employed to capture the snap-through

behaviour in the equilibrium path of hyperelastic membranes involving very large defor-

mations. Some numerical examples using both linear elastic and the hyperelastic Ogden

model with a prestretch have been analysed to validate the capabilities of the proposed

method. The inflation process and the non-linear load-displacement relationship have

been observed for the linear elastic membrane problem. Comparisons in terms of the

central deflection with various aspect ratios and discretisations between the reference

results and the numerical results using the MEPCM have been conducted, in which a

good agreement has been observed. For the hyperelastic square and circular membranes,

the proposed geometrically non-linear MEPCM has been employed to obtain their evo-

lution process. The differences of their equilibrium paths using various prestretch values

have been discussed and one of those prestretch values gives generally good agreement

with the reference results although the prestretch value is not given in the reference. In
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addition, it has been analysed that the thickness in the initial configuration is affected

by the prestretch, which has further influence on the equilibrium path and deformation.



Chapter 7

Conclusions and recommendations

for future work

7.1 Conclusions

Numerical modelling of solid mechanics problems with geometric non-linearity remains

challenging due to their complicated mechanical behaviour and high computational cost.

A variety of numerical methods have been reviewed, however, it is still an ongoing

research topic in the field of computational mechanics to develop accurate and efficient

numerical methods that can accommodate these problems. Weak form-based meshless

methods become attractive in some ways to provide solutions but they are restricted

by their high computational cost caused by numerical integration. In this thesis, a

strong form-based meshless method with local maximum entropy basis functions has

been proposed as a novel numerical model, which has been applied to solve geometrically

non-linear problems.

The overview and motivation of this thesis have been introduced in Chapter 1. Chap-

ter 2 has presented the background of meshless methods. Some properties of meshless

basis functions have been discussed followed by four representatives of meshless basis

functions. After that, the development together with the classification of meshless meth-

ods have been discussed. The remaining research challenges have been listed at the end

of Chapter 2. The main contributions of this thesis are contained from Chapter 3 to

184
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Chapter 6. In the following, important points and main conclusions of each contributing

chapter are summarised one by one.

The local maximum entropy point collocation method

In Chapter 3, the local maximum entropy point collocation method (MEPCM) has been

proposed for solving Poisson and linear elastic problems. The conventional PCM with

RK basis functions has been implemented first, however, the imposition of Dirichlet

boundary conditions is inaccurate as the RK basis function does not satisfy the Kro-

necker delta property and the calculation of the second basis function derivatives is

computationally expensive. The local maximum entropy (max-ent) basis function has,

therefore, been employed in a PCM, where those issues in the conventional RK-based

point collocation method have been addressed. Local max-ent basis functions possess

the weak Kronecker-delta property on boundaries, which allows the direct imposition of

Dirichlet boundary conditions. Some variables used in max-ent basis functions can be

reused in their derivative expressions, which reduces the computational cost for the over-

all analysis using the MEPCM. Two-dimensional Poisson and one- and two-dimensional

linear elastic examples have been presented using both methods. The comparison in

terms of accuracy, CPU times and flops has been studied, where the MEPCM performs

better than the RK-based point collocation method as the MEPCM results are more

accurate with higher rate of convergence and lower flops than the other.

Error estimation and adaptive strategies

In Chapter 4, r-, h- and combined rh-adaptive strategies have been developed in the

PCM with local max-ent basis functions for linear elasticity problems. r-adaptivity us-

ing the MEPCM has been proposed first where the discretisation errors are minimised

by points relocation, preserving the same number of degrees of freedom. The errors are

estimated by the material equilibrium residuals, which provide the moving distances and

directions to relocate collocation points. h-adaptive MEPCM has then been presented,

in which the residuals of strong form-based governing PDEs at three calculation points

in each Delaunay triangulation has been used as the local error estimate. A refinement

strategy based on the discretisation of collocation points has been adopted. As the pre-
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scribed accuracy cannot be achieved by a pure adaptivity efficiently, r- and h-adaptivity

have been combined to rh-adaptivity which can reduce the discretisation errors with

limited number and optimal positions of points. Compared with adaptivity in weak

form-based meshless methods, the implementation of adaptivity in the MEPCM is more

straightforward without considering the remeshing for numerical integration and mesh

distortion. After the discussion of numerical issues, linear elasticity problems have been

analysed to demonstrate the performance of the proposed adaptive strategies. The com-

parison using different adaptive strategies in terms of accuracy and computational cost

has been conducted, in which the combined rh-adaptivity achieves better accuracy with

less number of degrees of freedom than pure strategies but with much computational

cost.

Geometrically non-linear analysis

In Chapter 5, the MEPCM with h-adaptivity has been developed for solving geometri-

cally non-linear problems. Completed formulations including the kinematics and stress

measures in terms of different configurations have been given. The governing PDEs

and boundary conditions have been described using the Total Lagrangian formulation

referred to the reference configuration. As the non-linear system of equations in terms

of the field variables at source points has been formulated, the Newton-Raphson method

has been employed to linearise the non-linear system, where the stopping criterion have

been discussed. After the initial calculation, h-adaptivity for small deformations has

been extended to large deformations, in which the local error estimator is replaced by

the governing PDEs in terms of the first Piola-Kirchhoff stress. The problem needs to

be recalculated after each h-adaptive step. A variety of numerical examples subjected

to large deformations have been presented to demonstrate the performance of the pro-

posed method, where a non-linear strain-displacement relationship has been observed.

h-adaptivity has been employed in selected examples, which can improve the accuracy

more efficiently than using the uniform refinement.
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Analysis of membrane problems

In Chapter 6, the MEPCM for geometrically non-linear problems has been extended

to the analysis of membrane problems. Three different configurations including the

reference, initial and current configurations have been introduced as a prestretch is used

to avoid the non-zero stiffness matrix. The kinematics and stress measures for linear

elastic and hyperelstic materials have been given. After that, the governing PDEs and

boundary conditions have been described using the Total Lagrangian formulation in

terms of the reference configuration. The Newton-Raphson method has been used for

solving linear elastic membrane problems. As the instability occurs at the equilibrium

path of hyperelastic materials with large deformations, the Newton-Raphson arc-length

method has been employed to find the snap-through equilibrium path. Some numerical

examples including linear elastic and hyperelastic Ogden materials have been analysed

to validate the proposed methods. The effect of prestrestch values on the equilibrium

path have been discussed. As all examples do not have analytical solutions, reference

results have been used for comparison.

7.2 Recommendations for future work

Based on the work undertaken in this thesis, there are a number of areas which present

themselves as clear opportunities for future research and development. Some of those

points are listed as below:

• Geometric non-linearity has been modelled using the proposed MEPCM in many

problems in this thesis, which gives the structural response under extremely large

external loads or low stiffness. The proposed MEPCM can be further applied to

material non-linearity where the linear Kirchhoff stress-logarithmic strain relation-

ship can be used.

• The modelling of membrane problems using the hyperelastic Ogden material model

has been provided in this thesis and it would be clearly interesting to see the

performance using the other hyperelastic material models such as the neo-Hookean,

Mooney-Rivlin, and Hencky models for membrane problems. Different expressions
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for the free energy functions would be used to find the corresponding equilibrium

paths.

• All numerical examples demonstrated in this thesis have two-dimensional geome-

tries although membrane problems have out-of-plane displacements. Extending

the numerical analyses using the MEPCM to three dimensions is more realistic

and challenging. The representation of boundaries and the construction of ba-

sis functions with an appropriate choice of the size of support domain for each

collocation point need to be further explored.

• Strong form-based point collocation methods are relatively easy to implement, but

in use they often suffer from instabilities and lower accuracy. One of the possi-

ble reasons is that the governing partial differential equations and corresponding

boundary conditions are applied only at a limited number of individual colloca-

tion points. These conditions are neglected at the other points. There is always

a set of points at which the approximations are more accurate than at the other

points, however, no theoretical “best” distribution is available for the number and

locations of collocation points. Some special techniques have to be investigated to

improve the quality of a discretisation.

• All the examples presented in this thesis have been chosen with boundaries which

are aligned with the collocation points. There is a lack of well-developed method for

tracking boundaries when the geometry boundaries do not align with distributed

points. Some recent work on this topic has been proposed such as the use of B-

splines but there are still some distances from a method which can be extended for

all types of arbitrary boundaries.

• The local error estimator used in h-adaptivity for the point collocation method

in this thesis, takes into account the error residuals at some generated calculation

points that are distributed in domain area. In further study, the error residuals

at boundaries could be considered and the errors result from boundaries can be

reduced using the following h-refinement strategy.

• Basis functions in the current PCM are obtained by the local maximum entropy
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approximation, which shows some advantages. However, some other types some

basis functions could also be considered to make a comparison in terms of the

accuracy and computational cost, such as using the radial basis function.



Appendix A

The second derivatives of a local

maximum entropy basis function

This appendix presents the derivation of the second derivatives of a local maximum

entropy basis function. The expression of the local max-ent basis function at a single

point is

φi =
Zi
Z

=
wie

fi({x},{λ})∑N∗
s

j=1 wje
fj({x},{λ})

, (A.1)

where

fi({x}, {λ}) = −{λ}T · ({xi} − {x}) (A.2)

and {λ} is the function of {x}. The gradient of Zi and Z can be written as

{Zi,k} = {wi,k}efi + wie
fi{fi,k}, (A.3)

[Zi,kl] = [wi,kl]e
fi + {wi,l}efi{fi,k}+ {wi,l}efi{fi,k}+wie

fi{fi,k}{fi,l}+wie
fi [fi,kl], (A.4)

and

{Z,k} =

N∗
s∑

j=1

{wj,k}efj +

N∗
s∑

j=1

wje
fj{fj,k}, (A.5)

[Z,kl] =

N∗
s∑

j=1

(
[wj,kl]e

fj + {wj,k}efj{fj,l}+ {wj,l}efj{fj,k}+wje
fj{fj,k}{fj,l}+wje

fj [fj,kl]
)
,

(A.6)
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where the gradient of fi({x}, {λ}) is

{fi,k} =
∂fi
∂{x}

+
∂fi
∂{λ}

[Dλ] = {λ} − ({xi} − {x})[Dλ], (A.7)

[fi,kl] = 2[Dλ]− ({xi} − {x})[Dλ] · [Dλ], (A.8)

Define {r({x}, {λ})} is a function on {x} and {λ} as

{r({x}, {λ})} =

N∗
s∑

j=1

−φj · ({xj} − {x}) (A.9)

and {r({x}, {λ})} is exactly zero because of the reproducing conditions. The derivatives

of {r({x}, {λ})} is

[r({x}, {λ}),k] =
[∂r
∂x

]
+
[∂r
∂λ

]
[Dλ] = 0, (A.10)

where [∂r
∂x

]
= 1−

n∑
j=1

φj({xj} − {x})
{wj,k}
wj

(A.11)

obtained from Eq. (A.9) and

[J({x}, {λ})] =
[∂r
∂λ

]
=

N∗
s∑

j=1

φj({x}, {λ})({xj} − {x})⊗ ({xj} − {x}) (A.12)

− {r({x}, {λ})} ⊗ {r({x}, {λ})}.

Then [Dλ] is solved as

[Dλ] = −[J ]−1 + [J ]−1

N∗
s∑

j=1

φj({xj} − {x})
{wj,k}
wj

. (A.13)

The second derivatives of the basis function is

[φi,kl] =
[Zi,kl]

Z
−{Zi,k}{Z,l }

Z2
−{Zi,l}{Z,k }

Z2
−Zi{Z,kl}

Z2
+
Zi({Z,k })2

Z3
+
Zi({Z,l })2

Z3
. (A.14)

Substitute the Eq. (A.3)-(A.6) into Eq. (A.14) then the expression of the second deriva-

tives of the basis functions are obtained.



Appendix B

Tangent stiffness matrix for large

deformation analysis

In this appendix the derivation of the tangent stiffness matrix for large deformation

analysis is presented. The first Piola-Kirchhoff stress can be written as

Pij = τikF
−T
kj . (B.1)

The governing PDE using the total Lagrangian formulation is

∂Pij
∂Xj

=
∂τik
∂Xj

(F−1)jk + τik
∂(F−1)jk
∂Xj

(B.2)

Using the chain rule,
∂τik
∂Xj

=
∂τik
∂εab

∂εab
∂bcd

∂bcd
∂Fef

∂Fef
∂Xj

(B.3)

where
∂τik
∂εab

= Dikab, (B.4)

∂εab
∂bcd

=
1

2

∂ log(bab)

∂bcd
, (B.5)

∂bcd
∂Fef

=
∂Fcm
∂Fef

F T
md + Fcm

∂F T
md

∂Fef
(B.6)

= δceFdf + Fcfδde
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and
∂Fef
∂Xj

=
∂

∂Xj

( ∂xe
∂Xf

)
. (B.7)

Using the chain rule,
∂(F−1)jk
∂Xj

=
∂(F−1)jk
∂Fef

∂Fef
∂Xj

. (B.8)

The tangent matrix which is the gradient of the governing PDEs with respect to the

displacement at source points as

∂

∂dg

(∂Pij
∂Xj

)
=

∂

∂dg

(∂τik
∂Xj

)
(F−1)jk +

∂τik
∂Xj

∂(F−1)jk
∂dg

+
∂τik
∂dg

∂(F−1)jk
∂Xj

+ τik
∂

∂dg

(∂(F−1)jk
∂Xj

)
(B.9)

where
∂

∂dg

(∂τik
∂Xj

)
=
∂τik
∂εab

∂εab
∂bcd

∂bcd
∂Fef

∂

∂dg

(∂Fef
∂Xj

)
, (B.10)

∂(F−1)jk
∂dg

=
∂(F−1)jk
∂Fef

∂Fef
∂dg

, (B.11)

∂τik
∂dg

=
∂τik
∂εab

∂εab
∂bcd

∂bcd
∂Fef

∂Fef
∂dg

(B.12)

and
∂

∂dg

(∂(F−1)jk
∂Xj

)
=
∂(F−1)jk
∂Fef

∂

∂dg

(∂Fef
∂Xj

)
. (B.13)
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The tangent matrix for linear elastic

membranes

The membrane force for linear elastic materials is

Nij = h0(F−1)ikPkj (C.1)

The first two components R1 and R2 in the governing PDE are

∂Nij

∂Xj

= h0

[∂(F−1)ik
∂Xj

Pkj + (F−1)ik
∂Pkj
∂Xj

]
(C.2)

where
∂(F−1)ik
∂Xj

=
∂(F−1)ik
∂Fab

∂Fab
∂Xj

(C.3)

and
∂Pkj

∂Xj
is given in Eq. (B.2). The gradient of {R1} and {R2} with respect to dg is

∂

∂dg

(∂Nij

∂Xj

)
= h0

[ ∂

∂dg

(∂(F−1)ik
∂Xj

)
Pkj +

∂(F−1)ik
∂Xj

∂Pkj
∂dg

(C.4)

+
∂(F−1)ik
∂dg

∂Pkj
∂Xj

+ (F−1)ik
∂

∂dg

(∂Pkj
∂Xj

)]
where

∂

∂dg

(∂(F−1)ik
∂Xj

)
=
∂(F−1)ik
∂Fab

∂

∂dg

(∂Fab
∂Xj

)
, (C.5)
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∂(F−1)ik
∂Xj

=
∂(F−1)ik
∂Fab

∂Fab
∂Xj

, (C.6)

∂(F−1)ik
∂dg

=
∂(F−1)ik
∂Fab

∂Fab
∂dg

(C.7)

and ∂
∂dg

(
∂Pkj

∂Xj

)
is given in Eq. (B.9).

The third component in the governing PDE is

R3 = N11
∂2d3

∂X2
1

+ 2N12
∂2d3

∂X1∂X2

+N22
∂2d3

∂X2
2

+ f bz , (C.8)

. The derivatives of R3 with respect to dg are

∂R3

∂dg
=
∂N11

∂dg

∂2d3

∂X2
1

+ 2
∂N12

∂dg

∂2d3

∂X1∂X2

+
∂N22

∂dg

∂2d3

∂X2
2

(C.9)

where

∂Nij

∂dg
= h0

[∂(F−1)ik
∂dg

Pkj + (F−1)ik
∂Pkj
∂dg

]
(C.10)

= h0

{∂(F−1)ik
∂dg

Pkj + (F−1)ik

[∂τkl
∂dg

(F−1)jl + τkl
∂(F−1)jl
∂dg

]}
.
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Newton-Raphson arc-length method

The detailed formulations for the Newton-Raphson arc-length method are given in this

Appendix, where the vector {u} denote to the {d} in Chapter 6. The non-linear system

of equations is given as

{F int
p ({u})} − {(F ext

p )} = {0} or {F int
p ({u})} − λ{F ext

p0 } = {0} (D.1)

with the exact solution {u}. It is supposed that the point (λ, {u}) satisfies the system of

equations and thus follows the equilibrium path. Unlike the Newton-Raphson method,

the arc-length method postulates in both the displacement increments {∆u} and load

parameter increment ∆λ. The incremental load factor within load step is updated by

λn+1 = λn + ∆λ (D.2)

which is used to find the external load in the incremental load step. Both {∆u} and ∆λ

are unknowns in contrast to the Newton-Raphson method where ∆λ is given and {∆u}

needs to be solved iteratively. At (n+ 1)th load step, the solution (λn+1, {un+1}) is used

to measure the residual as

{R} = {F int
p ({un+1})} − λn+1{F ext

p0 } (D.3)

= {F int
p ({un}+ {∆u}+ {δu})} − (λn + ∆λ+ δλ){F ext

p0 }

196



Appendix D. Newton-Raphson arc-length method 197

{δu} and δλ are the displacement and load parameter increment in the current iteration

step within (n + 1)th load step and {∆u} is the displacement increment in the current

load step. The residual from in Eq. (D.3) can be written as a form using Taylor series

with linear term as

{F int
p ({un}+ {∆u})}+ (D.4)[∂{F int

p ({u})}
∂{u}

]
{un}+{∆u}

· {δu}−

(λn + ∆λ+ δλ){F ext
p0 } = {0}

where the derivatives of the internal variables with respect to the field variable {u}

[∂{F int(u)}/∂{u}] is replaced by the quantity [R′], leading to

[R′]{un}+{∆u} · {δu} − δλ{F ext
p0 } = −{F int

p ({un}+ {∆u})}+ (λ+ ∆λ){F ext
p0 }. (D.5)

In order to solve {δu} and one more unknown value δλ, the number of equations in

Eq. (D.5) is not sufficient to determine {δu} and δλ. The supplementary equation that

completes the non-linear system is the arc-length equation. The cylindrical arc-length

constraint can be defined as

({∆u}+ {δu})T ({∆u}+ {δu}) = l2 (D.6)

where l is the defined arc length. A graphical representation is shown in Figure D.1

which illustrates a system with two degrees of freedom. The value of l decides the

position of next point on equilibrium path. The equilibrium solution at the end of the

increment is determined by an intersection A and B between the solution path and a ball

of radius l in the space of nodal displacements (a cylinder in the λ− u space) centred at

the equilibrium configuration un of the beginning in this load step. The non-consistent

method is implemented to solve the coupled system to obtain the unknowns {δu} and
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δλ as

{δu} = −[R′]−1
{un}+{∆u} · [{F

int
p ({un}+ {∆u})} (D.7)

− (λn + ∆λ){F ext
p0 }]

+ δλ([R′]−1
{un}+{∆u}{F

ext
p0 }).

Introducing {δuN} and {δuA} to Eq. (D.7), it is obtained

{δu} = {δuN}+ δλ{δuA} (D.8)

where

{δuN} = −[R′]−1
{un}+{∆u} · [{F

int
p ({un}+ {∆u})} − (λn + ∆λ){F ext

p0 }] (D.9(a))

{δuA} = ([R′]−1
{un}+{∆u}{F

ext
p0 }). (D.9(b))

Eq. (D.8) is substituted into the arc-length constraint in Eq. (D.6), leading to a quadratic

equation for δλ

({δuA}T{δuA})δλ2+ (D.10)

2{δuA}T
{
{∆uk−1}+ {δuN}

}
δλ+{

{∆uk−1}+ {δuN}
}T{
{∆uk−1}+ {δuN}

}
− l2 = 0

Once δλ is solved, it can be substituted into Eq. (D.8) to update the displacement

variation and complete the iteration. The possible intersections are associated with

δλ1 and δλ2. The projections (dot products) of the increment in current and previous

iteration step are calculated to select the proper δλ as

max
{
δλ1,2({∆uk−1}+ {δuN}+ δλ{δuA})T{∆uk−1}

}
(D.11)

or

max
{
δλ1,2{∆uk−1}T{∆uA}

}
.
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u1

u2

λ

λn

O

un

l

A

B

(λn, un)

∆uTi ∆ui = l

Equilibrium path

Figure D.1: The cylindrical arc-length method.

Application of this rule leads to a robust selection of a appropriate δλ in each iteration

but is again associated with yet another drawback. Since the increments in the first

load step are zero, it fails to find a proper δλ using Eq. (D.11) as the corresponding dot

products are zero for both solutions. One way to initiate the method at the beginning

of every increment has been proposed that for the first iteration step in every load step,

the load factor is computed as

δλ = sign
(
{∆un}T{δu}A

)
× l√

{δuA}T{δuA}
(D.12)

instead of using Eq. (D.11).

The combined Newton-Raphson arc-length scheme is explained as follows.

(i) For the first load step n = 1, the Newton-Raphson method is employed to

obtain the increment and update the initial displacement {u0} as
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{u1} = {u0}+ {∆uk−1}+ {δu} (D.13)

where

{δu} = −[R′]−1{F int
p ({u0}+ {∆uk−1})} (D.14)

(ii) At nth (n > 1) load step, when k = 1, and set initial field variable and

incremental load factor

{u0
n} = {un−1}, λ0

n = λn−1, {R0} = {F int
p ({un})} − λn{F ext

p0 } (D.15)

Use Eq. (D.9) to solve the incremental displacement {δuN} and {δuA} and Eq.

(D.12) to initialise the load factor δλ1. (iii) Set k = k + 1 and solve the linear

system for {δuN} and {δuA}. (v) Find the appropriate iterative load factor δλ by

solving Eq. (D.10) and choose the proper direction by Eq. (D.10). (vi) Update

the displacement

{δu} = {δuN}+ δλ{δuA} (D.16)

and

{∆uk} = {∆uk−1}+ {δu} (D.17)

(vii) Update the incremental load factor

λkn+1 = λk−1
n+1 + δλk (D.18)

and the incremental displacements

{ukn+1} = {uk−1
n+1}+ δ{uk} and {∆ukn+1} = {∆uk−1

n+1}+ {δuk} (D.19)

(viii) Update residual

(ix) Check the stopping criterion
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[146] P. Šolın and L. Demkowicz, “Goal-oriented hp-adaptivity for elliptic problems,”

Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 6-8,

pp. 449–468, 2004.



References 217

[147] J. Zhu and O. Zienkiewicz, “Superconvergence recovery technique and a posteriori

error estimators,” International Journal for Numerical Methods in Engineering,

vol. 30, no. 7, pp. 1321–1339, 1990.

[148] O. Zienkiewicz and J. Zhu, “Adaptivity and mesh generation,” International Jour-

nal for Numerical Methods in Engineering, vol. 32, no. 4, pp. 783–810, 1991.

[149] M. Kumar, T. Kvamsdal, and K. A. Johannessen, “Superconvergent patch recovery

and a posteriori error estimation technique in adaptive isogeometric analysis,”

Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 1086–1156,

2017.
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