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ABSTRACT 

Senescence is known as an irreversible departure from the cell cycle and is 

considered a leading factor in the ageing phenotype, including age related diseases.  

With limited exception (such as negligible senescence and biologically immortal 

organisms), all cells reach a senescent state and all organisms age.  

The advent of Next-Generation Sequencing (NGS) technology has enabled the 

study of the cellular transcriptome in a highly intimate manner. From NGS 

experiments it is possible to infer both the quantity and isoform of a transcript of 

interest. Currently, an ever-growing body of easily accessible NGS experimental 

data has allowed researchers to foster collaborative endeavours by utilizing datasets 

from diverse experiments to ask new questions. Here, we study datasets from mouse 

tissue samples across the lifespan under a normal ad libitum diet or under 40% 

dietary restriction, and human cell lines which have undergone replicative 

senescence or irradiation induced senescence. The overall aim of this study was to 

investigate ageing from a transcriptomic point of view. 

Here, we focus on a series of parallel projects to study the landscape of changes 

occurring in ageing and senescence. We investigate differential gene expression, 

differential exon usage, and differential lncRNA expression. To further understand 

the biological relevance of the landscape changes, we utilized gene ontology (GO 

and Reactome) enrichment for differential expression changes, and we present a 

novel tool (MAltESERS) to understand the biological significance of alternative exon 

usage. 

We found that there was post senescence plasticity, meaning that both expression 

and splicing were altered after senescence induction. Our data suggests that 

senescence in mouse hepatic tissue was induced suddenly and catastrophically. We 

also observed three systems (immune/inflammation, chromatin structure, and 

energy metabolism) being strongly altered and each system can strongly induce 

changes in the other, which may strengthen the irreversibility of senescence. 
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CHAPTER 1 INTRODUCTION TO AGEING, SENESCENCE, AND 

RNA BIOLOGY 

 

Chapter objectives: 

• To illustrate the causes and effects of ageing 

• To provide an overview of distinct theorized models that contribute to the 

ageing phenotype 

• To summarize the basis of the central dogma  

• To review genetic splicing and RNA metabolism 

AGEING 

INTRODUCTION 

Ageing is a gradual physiological deterioration with age. Ageing leads to increased 

mortality, decreased stamina 1, and has been found to increase morbidity in nearly 

every multicellular or asymmetrically dividing unicellular organism from yeast to 

mammals (with some notable exceptions including; Hydra ssp 2, Turritopsis ssp 

jellyfish 3, lobsters 4, and planarian flatworms 5).  

There is a diverse repertoire of biological reasons and mechanisms that cause 

ageing in organisms. Three major pathways have been shown to contribute to 

ageing; TOR (Target Of Rapamacyn) pathway 6,7, insulin/IGF-1-like pathway 8, and 

mitochondrial activity 9–13. These three pathways act independently with dissimilar 

downstream effects. However, experimental alterations to these pathways provide 

cumulative effects 14. Additional factors implicated in ageing are telomere shortening 

15 (see senescence), genetic instability 16, metabolic waste 17,18, and wear and tear 

19. 

T E L O M E R E  A T T R I T I O N  

One of the early theories affecting ageing was the Hayflick limit proposed in 1961. 

Due to the mechanistic nature of the DNA replication fork, the 5’ ends of 

chromosomes shorten during each replication, as Okazaki fragments cannot be 

initiated. To guard against the loss of precious genetic material, 5’ chromosomal 

ends are capped with a long repetitive sequence (TTAGGG in vertebrates). These 

repetitive non-coding sequences found at the 5’ end of chromosomes, are known as 

telomeres. Telomeres are shortened during each replication cycle. However, in the 
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germline, telomeres are extended by the enzyme telomerase. Telomere length 

decreases with age. Human new-borns have approximately 11kb of telomeric caps 

20, while at an advanced age (80+ years) telomere caps have shortened to 

approximately 4kb 21. Telomere length at birth relates to the average lifespan in 

different dog breeds 22. Telomeric attrition through cell replication leads to the cell 

reaching the replicative limit and becoming senescent in a pathway mediated by the 

enzymes p53 and p16 23. Replicative senescence resulting from telomere shortening 

is known as the Hayflick limit; named after Leonard Hayflick who showed that non-

immortalized cell lines become senescent after a limited number of cell divisions 

15,24,25. 

An extensive study of the effects of ionizing radiation on animals was conducted 

during the Manhattan project in 1947 which showed that low dose radiation (doses 

which did not cause radiation sickness symptoms or induce tumours) seem to lower 

the lifespan of the organism and increase age like pathologies at an earlier age 26. 

This experiment showed the importance of DNA integrity even before we knew the 

actual structure and mechanisms of DNA function, this effect has also been found to 

affect humans. Apollo astronauts who left the magnetosphere (the magnetosphere 

protects the earth surface from solar ionizing radiation) had higher incidences of 

cardiovascular disease 27. Early research showed that individuals with improved 

DNA damage repair had longer lifespans 28. Therefore, reduction in lifespan is 

thought to be caused by accumulated cellular mutations, which cause cells to exit 

the cell cycle and enter an irreversible state of senescence. 

Not all DNA insults are the same, external oxidative stressors such as UV, ionizing 

radiation, and oxidative stress tend to damage a single base which is then repaired 

by the base excision repair (BER) pathway and nucleotide excision repair (NER). 

DNA mismatch repair (MMR) is involved in repairing DNA damage during DNA 

replication. Regardless of the repair mechanisms, a permanent epigenetic 

modification is left on the repaired region. The most prominent change is the Ser-

139 phosphorylation of a histone 2 variant H2AX (γH2AX) 29 in regions up to a 

hundred nanometers in diameter around the original DNA damage insult (visible in 

an optical microscope through γH2AX staining) 30. γH2AX recruits DNA repairing 

factors MDC1 and 53BP1 31. Accumulation of γH2AX is a reliable marker of cellular 

senescence especially on telomeric loci32.  

As the correct repair of individual DNA damage is stochastic (there is a chance that 

the wrong base is inserted and therefore a mutation is induced) the persistent DNA 

damage foci serve as a tally of the mutations received. With increased mutations, 

the likelihood of a cell to become tumorigenic increases. Therefore, a biological tally 

of DNA damage enables the cell to exit the cell cycle if it is at a high risk of inducing 

tumours. 
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M I T O C H O N D R I A L  A G E I N G  

Ageing is not only affected by nuclear DNA mechanism. Nearly all anabolic activity 

in a cell is coupled to the energy released by the conversion of adenosine 

triphosphate (ATP) to adenosine diphosphate (ADP). The majority of ATP is 

regenerated within the mitochondria, a cellular organelle which houses the citric acid 

cycle. The citric acid cycle utilizes derivates of glucose and lipids as starting 

metabolites. These metabolites can be completely reduced to water and CO2, using 

oxygen to regenerate the ATP. To do so, the mitochondria maintains a high proton 

concentration within its inner membrane. Protons are then pumped through ATP 

synthase. As mitochondrial membranes are ‘leaky’, escaped protons contribute to 

the synthesis of reactive oxygen species (ROS) such as the super acid anion radical 

and hydroxyl radical. Unlike other organelles, the mitochondria has its own DNA with 

its own genes.  

It has been theorized by Dr Denham Harman in 1965 that the ROS leaking from 

mitochondria will cause gradual damage to the cell and nuclear DNA leading to 

ageing. This theory was supported by the findings that aged animals and tissues 

have greater ROS than young tissues 33–40 and superoxide overproduction in mice 

leads to premature ageing 41. 

An extension to Harman’s theory, postulated by Loeb et al 42 suggests that free 

radicals from the electron transport chain damage the mitochondrial genome. These 

mutations cause the mitochondria to be less efficient, increasing the generation of 

ROS, thus exacerbating the mutation rate until the entire cell dies. 

M E T A B O L I C  W A S T E  

Other theories of ageing include biological by-products that cannot be digested 

metabolically. These by-products accumulate extracellularly and intracellularly within 

lysosomes. Metabolic waste may not decrease lifespan directly. However, there is 

evidence to suggest metabolic waste plays a role in  specific age-related diseases 

and symptoms such as Alzheimer’s (accumulation of β-amyloid in the central 

nervous system), Atherosclerosis (lipid accumulation in the wall of blood vessels), 

and arterial stiffening (due to spontaneous undigestible protein glycosylation 43). It is 

important to note that age prolonging treatments such as dietary restriction can delay 

the onset of Alzheimer’s disease and β-amyloid build-up 44 as well as atherosclerosis 

45. Thus, research shows that the metabolic-waste consequences are downstream 

to ageing in general and not a cause of ageing. However, autophagy, the process 

by which lysosomes and their content are cleared, is attenuated by ageing and 

activated by dietary restriction after and other age prolonging treatments 46. 
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SENESCENCE 

Senescence is defined as an irreversible cell cycle arrest. A senescent cell remains 

metabolically active and develops a pro-inflammatory phenotype. 

There are two main pathways for senescence induction, telomere-based, and cyclin-

dependent kinase inhibitor (CDKN2A or P16). The telomere pathway induces 

senescence by telomere shortening (telomeres shorten each cell cycle; page 6) 

known as the Hayflick limit. The Hayflick limit is the induction of senescence due to 

replicative stress. The cyclin-dependent kinase inhibitor pathway for senescence can 

be triggered by a variety of stressors 47,48 and is a potent anticancer mechanism 49,50. 

Senescence is involved in ageing and ageing related pathologies such as 

osteoarthritis 51, atherosclerosis 52, atherogenesis 53,54, and prostatic hyperplasia 

55,56. 

Senescent cells secrete cytokines and reactive oxygen species (Senescence-

Associated Secretory Phenotype; SASP) which induces senescence in proximal 

unstressed cells 57 the so called ‘bystander effect’. It is possible, that cellular 

senescence induction in tissues will not be gradual but catastrophic as the more 

senescent cells in a tissue the more likely the otherwise healthy cells will turn 

senescent.  

There are various cellular markers for senescence. One of the early methods to stain 

senescent cells was with the use of senescence associated β-gal. It has been 

observed that senescent cells hydrolyse β-gal producing a visible blue precipitate. 

Telomeres are unable to properly treat DNA damage (possibly due to Shelterin, a 

protein that maintains the telomeres and might block DNA damage response) 

making the telomeres of senescent cells rich in γH2AX phosphorylation (a marker of 

DNA damage) 58. Enlarged nuclei has been show to appeared in hepatocyte 

senescence 59, this is due likely to the ability of hepatocyte to undergo polyploidy 

during development and age 60.  

DIETARY RESTRICTION PATHWAYS 

During the 1930s, Clive Maine McCay theorized that slower growth rate leads to a 

longer lifespan. In his research, he decreased growth rate in rats by calorific 

restriction. The results seemed to agree with his hypothesis as lifespan increased 

from 33 to 44 months in male rats, and from 37 to 48 months in female rats. However, 

in one of his experiments, he controlled for calorific restriction by inducing a calorific 

restricted diet after puberty. DR-induction after puberty resulted in similar ageing 

benefits as DR prepuberty. Therefore DR was the main factor in life extension rather 

than growth retardation 61. 
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Since McCay’s seminal study, DR has been shown to increase lifespan in a variety 

of organisms across biological kingdoms. A meta-analysis showed up to 43% 

lifespan increase in yeast 62 and a 25% increase in maximal lifespan in C. elegans 

63. Mice experiments revealed that calorific restriction can increase lifespan up to 53 

months (a remarkable age for mice, world record for oldest mice being 60 months 

64) 65.  

Experiments on larger and longer-lived organisms are harder from a practical 

standpoint. An ageing study in yeast and worms might be conducted in a span of 

days with thousands of individual organisms. In contrast, studying larger animals 

such as primates might take decades with only a hundred individual organisms and 

a very high cost. A long-term experiment with rhesus monkeys (Macaca mulatta) 

was set up in the University of Wisconsin-Madison (76 monkeys) and the National 

Institute on Aging (121 monkeys) in 1987. Rhesus monkeys can live an average of 

40 years in captivity but can live up to 26 years in the wild 66. This is an ongoing 

study, which may end after 2030. So far, the Rhesus monkeys seem to benefit from 

Figure 1-1. Simplified diagrammatic representation of the targets of Rapamycin. 
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DR when compared to control groups 67. Recent studies have revealed that the 

spliceosome and therefore splicing is alternatively regulated during dietary restriction 

in Rhesus monkeys (not the same Rhesus monkeys from the Coleman 

experiments)68. Calorie restriction studies in humans must be done on surrogate 

evidence for which none has been validated 69. It would be nearly impossible and 

highly unethical to control the diet of a cohort of humans throughout their life and the 

project alone may exceed a century. However, a meta-analysis of human studies 

showed that many of the metabolic, hormonal, and pathological effects observed in 

smaller mammalian models were also seen in humans 70. 

T O R  

The TOR pathway regulates cell metabolism and is therefore involved with calorific 

restriction. Rapamycin was originally discovered in the Polynesian island of Rapa 

Nui (Easter Island) as a new antifungal drug in 1970. Rapamycin was also found to 

have immunosuppressant activity in 1977 and was shortly thereafter used as a drug 

to prevent host-rejection in transplant patients. Between 2003 and 2012, it was 

shown that Rapamycin extends lifespan in yeast 71 (2003), mice 64 (2009), fruit flies 

72 (2010), and nematodes 73 (2012). Rapamycin interacts with the TOR pathway 

(target of Rapamycin). Specifically, Rapamycin inhibits TORC1 (TOR complex) and 

with longer exposure TORC2 is also inhibited 74. The downstream effects and 

regulators of TORC1 and TORC2 are different. TORC1 acts as a nutrient sensor and 

controls growth, cell cycle progression, and protein/nucleotide/lipid synthesis 75. 

TORC2 acts as a regulator of the actin cytoskeleton 76. Rapamycin inhibits TORC1, 

and it is thought that this inhibition leads to lifespan extension. TORC2 has a more 

nuanced interaction and is inhibited in a tissue dependant manner during prolonged 

exposure, leading to insulin insensitivity74.  

I N S U L I N  P A T H W A Y  

The insulin pathway is also strongly involved with ageing and calorific restriction. 

Glucose tolerance declines with age, largely due to increased insulin resistance 77. 

Type II diabetes is an age-related disease (not to be confused with type I diabetes 

mellitus).  

However, insulin has been shown to be a hormonal regulator of ageing. C.elegans 

worms can halt their development by entering dauer life stage when food availability 

is low. Within this stage, the worms can live up to 8 times longer than normal worms. 

Worms return to their normal life cycle when food availability is sufficient 78. Mutants 

have been identified which have defects in dauer formation, or dauer like 

characteristics outside the dauer stage. The genes found to be affected have been 

characterized as homologues to genes in the mammalian insulin and insulin-like 

growth factor signal transduction cascade 79–81. In addition, mice with a deleted 

insulin receptor in adipose tissue were resistant to obesity, insulin insensitivity, and 

were longer lived 82. In mice, overexpression of Klotho (a transmembrane enzyme 
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that recycles insulin and insulin growth factor-1(IGF-1)), extended life up to 31% 

longer than in controls 83. 

In humans, defects in insulin signalling results in diabetes or insulin resistance. 

However, there is some evidence in humans, such as Laron syndrome, that 

decreased insulin signalling may increase life span. Laron syndrome is a type of 

dwarfism caused by the lack of production of IGF-1. Those afflicted exhibit a 

decreased stature, resistance to type-2 diabetes, and have lower incidence of cancer 

84. Type-2 diabetes and most cancers are age related pathologies, however, Laron 

syndrome does not significantly alter life expectancy.  

However, previous experiments have also suggested that insulin signalling is 

positively correlated with increased life span. Polymorphisms in insulin and insulin-

like signalling genes are more prominent in Italian centenarians communities85 and 

the Leiden 85-plus cohort (a study of octogenarians in Leiden, Netherlands)86. The 

same Leiden 85-plus study found a correlation between insulin and insulin-like 

signalling with  improved survival age 86, and reduced cognitive decline 87. In addition 

to this, Ashkenazi centenarians have higher serum levels of IGF-1 88. Single 

nucleotide polymorphisms(SNPs) in ATK (part of the insulin cascade) were 

associated with longevity in three Caucasian cohort studies89. Variants in FOXO3A 

(part of the insulin cascade) were found to be correlated with longevity in four 

Caucasian cohort studies 89–91, three Chinese cohort studies92, and a Japanese 

cohort study 93. Most of these centenarian and octogenarian cohorts have also 

shown that socialization, activity, and diet are strongly related with longevity. 

With few exceptions, research supports the insulin pathway as a regulator of growth 

and lifespan. However, the effect the insulin pathway has on human life span is not 

well understood as sometimes it does seem to improve aging prognosis (as in 

centenarian studies) and sometimes it does not (Laron’s syndrome). 

Ageing is the primary factor in a large variety of pathogenies affecting every 

anatomical system from cancers to senility. It is perhaps the single most common 

disease. The cause of ageing is multifactorial, and any improvement in its prognosis 

will significantly decrease morbidity and suffering in most of the population. The 

primary objective of anti-ageing research is not to extend ageing caused morbidity 

by prolonging lifespan, but to extend healthy lifespan by decreasing ageing-related 

ailments.  
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RNA AND SPLICING BIOLOGY 

DR experiments in Rhesus monkeys have shown that RNA splicing is affected by 

diet 94 and mice experiments show that splicing dysregulation negatively affects 

ageing 95, it is possible that splicing is responsible for the beneficial effects of dietary 

restriction. Therefore, it is important to study and understand the processing of 

mRNA.  

TRANSCRIPTION 

One of the most important bioprocesses of all living organisms is the synthesis of 

proteins from DNA, a process known as the central dogma (Figure 1-2). During 

protein synthesis, protein-coding regions of the DNA are transcribed into messenger 

RNA (mRNA) and then ribosomes translate the mRNA into protein. In some 

circumstances such as certain RNA viruses, DNA can be transcribed from RNA by 

a viral reverse transcriptase protein. 

The basic premise of the central dogma holds true for all known forms of life (the 

notable exception being the RNA theory of the origin of life 96 which states that early 

life used RNA and not proteins/DNA as both an enzymatic and genetic medium).   

RNA SPLICING 

While genes in prokaryotic organisms are single units of gene expression for a single 

gene, eukaryotic life developed a more complex system for protein synthesis using 

alternative splicing, were genes are split, with expressed coding regions (exon) and 

interrupted by in-expressed regions (intron). Splicing involves a selective extraction 

of pre-mRNA (introns) from a mRNA transcript consisting of ligated expressed 

regions (exons). The spliced mRNA is then translated into proteins. This process 

allows variation in proteins as a gene can be alternatively spliced enabling the 

production of functionally different proteins from the same gene. This is important as 

up to 90% of human genes are spliced 97. Mutations in non-coding (intronic) regions 

Figure 1-2. Canonical representation of the central dogma, showing replication, transcription 

and translation. 
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can affect splice sites, and cause diseases such as Familial Dysautonomia, 

Neurofibromatosis type 1, Frasier syndrome, Atypical Cystic Fibrosis (intron 

mutations that alter splice site recognition), Spinal Muscular Atrophy (exon mutations 

that disrupt splicing), Frontotemporal Dementia, and Parkinsonism linked to 

chromosome 17 (disruption of isoform ratio)98.  

Canonical splicing (also called spliceosomal splicing) occurs in the nucleus using the 

spliceosomal complex (Figure 1-3 A) and can even occur during transcription.  

Splicing requires a donor site (5’ end of the intron), an acceptor site (3’ end of the 

intron) and a branch site (close to the 3’ end of the intron) (Figure 1-3 B).  The branch 

Figure 1-3. (A) Protein synthesis from its sequence encoded in the DNA (orange) begins by transcription in the 

nucleoplasm, a process mediated by RNA polymerase II which transcribes a DNA region into RNA, RNA is then spliced 

by removing the introns (black) during splicing, spliced RNA (green) is exported into the cytoplasm to be translated by 

ribosomes into a protein (purple). (B) Consensus sequences for splice donor/branch/acceptor sites for spliceosomal 

splicing. 

Splice donor site 

Branch site 

Splice acceptor site 

<20 bp  
10 to 
10000 pb  

A 

B 
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site is ligated to the splice donor site through transesterification making a lariat. The 

free exon in the spliced donor site then gets ligated to the splice acceptor site through 

transesterification. The intronic lariat remains in the nucleus and its nucleotides are 

recycled.  

The remaining RNA is then capped on its 5’ end with a guanine in a non-standard 5’ 

to 5’ triphosphate link.  The 3’ of the RNA is poly-adenylated. The RNA is now mature 

mRNA which is exported out of the nucleus to be translated. 

Non-spliceosomal splicing occurs through self-splicing in some RNA ribozymes and 

the tRNA splicing pathways.  

There are many types of splicing that can occur; Skipped exon (SE) involves an 

isoform that is just missing an exon, retained intron (RI) involves an isoform that 

includes expresses an intron, alternative 3’ and 5’ splice site (A3SS, A5SS) involves 

an alternative end or start of gene expression, multiple exclusive exons (MXE) 

involves isoforms that each includes an exon that the other doesn’t. There are other 

reported forms such as MXE sets and non-adjacent sets which we will not discuss 

here as they are part of MXEs. 

Resulting protein isoforms are functionally distinct, for example the Drosophila DSX 

gene encodes two isoforms, one using the exons 1, 2, 3, 5, and 6 which creates a 

transcription factor for male development, and another isoform containing exons 1, 

2, 3, and 4 which encodes a transcription factor for female development 99. Splicing 

alterations by silent mutations can lead to pathological effects such as a mutation 

c.1824C > T in the LMNA gene which does not change the amino acid sequence but 

activates a cryptic splice site resulting in an isoform lacking exon 11. This LMNA 

isoform results in the Hutchinson–Gilford progeria syndrome, a rare but debilitating 

condition leading to severe rapid ageing and a lifespan rarely reaching above the 

age of fifteen 100.  

The basis of the central dogma discovered by Watson, Crick, and Rosalind, explains 

how all proteins are encoded within genes. As RNA can be spliced, the variety of 

proteins encoded within the DNA greatly increases, because one gene can encode 

functionally distinct transcripts. These alternative transcripts can be metabolically, 

functionally, and pathologically different.   

OBJECTIVES 

Here we attempt to understand why and how dietary restriction increases lifespan 

and decreases morbidity. Using RNAseq to interrogate hepatic tissues of dietary 

restricted and control ageing mice, we can obtain precise snapshots of their 

transcriptome at many ages. 
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We will explore the splicing changes with both diet and age, as well as which 

metabolic pathways are altered and are likely to have downstream health effects.
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REVIEW OF BIOINFORMATIC METHODS FOR RNA SEQ AND 

SPLICING ANALYSIS 

Chapter objectives: 

• To present an informative guide on modern bioinformatic practices from raw 

FASTQ file interpretation to biological significance. 

• To provide a comprehensive overview of the limitations and caveats used in 

current bioinformatic techniques. 

• To review and discuss up to date management tools for complex multistep 

bioinformatical analysis.  

Next generation sequencing of RNA provides the researcher with very intimate 

information on how tissues (or single cells) behaved. However, there are many 

caveats that need to be understood in order to attain biologically significant results 

from sequencing data. A very basic oversimplified pipeline [sequencing → quality 

control → aligning → gene/exon counting → statistical analysis] is followed or varied 

upon, and the tools used at each step need to be carefully selected and used 

depending on the biological questions. 
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QUALITY CONTROL OF THE SEQUENCING OUTPUT 

During sequencing, it is common that the read quality of the DNA sample is 

decreased during each cycle (each machine cycle reads one base at a time). This 

causes the 3’ end of the DNA transcript to accumulate base pair errors and become 

lower quality than the 5’ end. Left unchecked, the lower quality 3’ end will impair 

mapping of the FASTA reads to the reference genome. When aligning for splice 

junctions (page Error! Bookmark not defined.), FASTA reads are split into two and 

aligned onto both sides of the junction. However, if the 3’ quality is too low, the read 

will be unable to bind to the other end of the junction. Kraken101 is a multifunctional 

tool used to reduce the problems caused by read 3’ mismatching. Kraken utilizes 

pair-end reads to improve mapping quality (Figure 1-4) and remove reads with too 

low quality. If this step is skipped, reference genome alignment is still feasible. 

However, fewer read matches will be found due to reduced read quality, and splice 

junction discovery will not be possible. Kraken can also be used for demultiplexing 

(using Kraken’s reaper tool), tallying (using Kraken’s Tally tool), and infer if the 3’ 

adapter sequence used for sequencing is still in the data (using Kraken’s minion 

tool). 

Figure 1-4. Line plot showing the read quality of a FASTQ before (blue) and after (red) Kraken 

quality control trimming.  Sample quality was improved after Kraken analysis. 
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ALIGNING 

To study sequencing data, it is necessary to know where FASTA/FASTQ reads 

originate from within the genome. Assuming an n sized genome (with bases 

randomly assigned), the probability of uniquely matching (binding to the correct 

genomic sequence and not to any other randomly identical region) a read of i length 

to the genome is 𝑝 = (1 −
1

4𝑖)
1+𝑛−𝑖

. This means that in the human transcriptome 

(n=2,000,000,000 base pairs; according to hg18 RefSeq n=2,011,862,672 102) the 

probability of uniquely matching a 20-base pair length is only 99.82%. With each 

base pair added to the read length, the aforementioned probability approaches 100% 

exponentially. This is without taking into account the possibility of errors in the 

sequencing and expected mismatches during alignment. Unlike a perfectly 

randomized string of characters, the human genome has many repeated conserved 

domains. For this reason, a length of at least 50 base pair reads is recommended 

for alignment. 

Earlier high throughput sequencing could only output reads up to 50 base pairs (bp) 

in length. Below the 50bp length it becomes less likely to uniquely map reads unto a 

reference genome (Figure 1-5). Unlike unspliced reads, spliced junction reads do 

not fit directly unto the genome, this is due to the read having parts from two 

separated loci.  

Figure 1-5. Proportion of unique binding sites by read 

length. Reads below 50 base pairs are harder to align 

to unique sites. 192. 
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As next-generation sequencing (NGS) is capable of outputting reads larger than 

100bp, it is possible to align junction reads. The basic algorithm involves dividing the 

unmapped reads into smaller reads, where some will map to different junction sites 

(Figure 1-6). Because part of a spliced junction will map to a reference genome, the 

rest of the read can be mapped onto the other splice junction. Variations of this 

algorithm are used by TopHat 103, MapSplice2 104, and STAR 105. 

Tophat 103 is a command line tool from the Trapnel lab at Johns Hopkins University, 

available online through a web interface in usegalaxy.org (no need for command line 

interface usage). Tophat uses a multistep pipeline to report the isoforms present. 

Tophat first uses bowtie (a conventional aligner) to align the reads to the genome. 

Next, unmapped reads are set aside as initially unmappable reads, and the mapped 

reads are assembled into exons creating a list of exons present. Afterwards, Tophat 

creates possible splice sites using the exons found, and finally initially unmappable 

reads are aligned to constructed splice sites. Bowtie uses the Burrows-Wheeler 

transform to compress data (also used in zip2 compression) so even if bowtie loads 

the genome into memory (RAM), it still only needs a couple of gigabytes of memory 

to run. Tophat returns the results of mapped reads in a binary BAM (binary alignment 

map) format, a junction bed file with the junctions found, and a deletions 

bed/insertions BED (Browser Extensible Data) indicating deletions and insertions 

found. Tophat must load the reference genome, so depending on the genome size 

the minimum RAM needed to run Tophat changes (up to 4Gb). The amount of RAM 

required to run Tophat also depends on the number of reads given. This means that 

Figure 1-6. Basic pipeline summary of the steps required for general purpose splicing analysis. The colour represents exons. First reads are 

either aligned to a reference genome or assembled, this step must account for splicing as spliced reads do not map directly (there is no 

continuous blue green or blue orange reads in reference, and alternatively spliced reads may not be assembled with other assembled reads). 

The results can then be visualized and analysed. 
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Tophat could run on a desktop for small read counts, but it may need up to 30Gb in 

larger experiments (still possible on a high end desktop 106).  

Spliced Transcripts Alignment to a Reference (STAR) 105 from Thomas Gingeras lab 

in Cold Spring Harbor NY uses a seed algorithm to map reads to the genome. Rather 

than attempting to insert entire reads onto the genome, STAR only uses a small 

portion of the reads to match. This seed is the maximal length required for uniquely 

binding onto the genome. Once a seed has been mapped to the genome, the rest of 

the read can be realigned with another seed and propagated to the rest of the 

genome. Therefore, aligning will easily find splice sites and junctions when different 

seeds from the same reads do not match to contiguous regions. This algorithm is 

very fast and does not require a lot of RAM (ca. 30Gb for aligning to the human 

genome) and runs orders of magnitude faster than any other current aligner107 (as 

of 2018) enabling alignments to be performed in desktop computers. 

An alternative method to finding splice sites involves simply mapping the RNAseq 

data to the transcriptome rather than a reference genome. This has the advantage 

of giving quicker alignments but will be unable to detect novel splice sites. 

GENE COUNTING 

Once the genome has been aligned and mapped, the mapped reads need to be 

counted to proceed with downstream analysis. One tool available for this step is 

htseq-counts 108. This python module enables scriptable analyses to be conducted 

in python but also provides a standalone “HTSeq-count” for counting the reads using 

only an aligned BAM (or SAM (sequence alignment map)) file and a GTF (Gene 

Transfer Format) file. This will output an integer value for the number of reads located 

on each gene. It is important to note that HTSeq-count works better if the aligned 

BAM/SAM file is sorted by name rather than by position, to avoid buffer overflow and 

appropriating excessive memory. 

Some analyses require specific counting algorithms. DEXSeq109 requires the 

alignment files to be counted to an exonic resolution to analyse differential exon 

expression. DEXSeq comes bundled with its own counting tools to aid in this 

process. 

QUANTIFYING DIFFERENTIAL GENE EXPRESSION 

In order to compare experimental samples to which genes were significantly 

differentially expressed, we need to use the DESeq2 R package110. 
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Even though it might be 

tempting to simply run a 

statistical test to compare the 

gene counts in different 

experiments, this is not 

recommended for a variety of 

reasons. One problem is that 

the reads must be 

normalized. If a sequencing 

lane gave greater aligning 

depth than other lanes, 

genes sequenced in that lane 

will show much more 

upregulation. This is one 

example of a batch effect. 

Additional batch effects can 

be caused by the proportion 

of GC base pair content, or 

gene length. Due to high 

sensitivity, batch effects can 

arise simply by sequencing 

samples on different 

sequencing runs due to 

minute variations on the implementation of the same sequencing preparation 

protocol. This means that in order to study the read counts across separately 

sequenced samples, the batch effects must either be modelled or reduced as much 

as possible and the data must be normalized.  

There are a handful of tools to rid samples of batch effects. DESeq will by default 

model batch effects in its design. To do so the batch information should be provided 

in the design model as shown in the code below: 

coldata <- data.frame(  
  experiment= c('3 months','3 months', '3 months', 
               ,'6 months','6 months',' 6 months',), 
  batch =  c('1','1','2','1','1','2'), 
  row.names=colnames(countdata)  
        ) 
# Here the coldata dataframe holds the metadata of the experiment including 
# the experiments names ('3 months', and '6 months'), as well as the batch 
# ('1', and '2') 
dds <- DESeqDataSetFromMatrix(countData = countdata,  
                  colData   = coldata,  
                  design    =~batch+experiment) 
# the design formula provides the variables to the model. In this case, it should 
# try to rid of the batch effect 

One caveat of DESeq is that it cannot compare different samples sequenced in   

Figure 1-7. PCA plot sowing an example of batch effects. 

Biological replicates have been connected by vertices. 

There have been two sequencing batches (highlighted by 

the ellipses).  This plot shows a large effect caused by the 

sequencing batch alone, even separating biological 

replicates. 
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different batches (a sample must be present in each batch for comparison). 

Therefore, it is recommended in the experimental design not to sequence all the 

samples of one experiment together and then sequence another experimental 

sample in another batch. It is preferable to include a part of each sample in each 

batch as much as possible. If more samples are sequenced posteriori to the first 

batch, it is necessary to include technical replicates of the original experiment to 

model the batch effect. 

Figure 1-8. PCA plot showing an example of batch removal with Combat. Biological replicates 

have been connected by vertices. This figure shows two sequencing batches (highlighted by 

blue and brown shadow).  The same data was used in Chapter 2. The batch effect was less 

prevalent than in Figure 1-7 and biological replicates related to themselves more closely than to 

the batches. 
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If there is no overlap between the samples and batches, a more drastic approach is 

needed. Combat111 uses empirical Bayes inference to try to remove batch effects 

(Figure 1-8). Even though this method is very robust, it removes genes with low 

variability between samples (regardless of significance) and can remove around 

40% of genes with batch effects.  

GENE NETWORK AND CLUSTERING 

Bioinformatic analysis conducted for the comparison of two samples is relatively 

straightforward. Differential expression algorithms are utilized to study genes that 

have been unchanged, upregulated, or downregulated. However, for each additional 

experimental sample, the total number of comparisons needed grows exponentially 

(akin to the classic handshake problem). The possible number of expression 

patterns grows exponentially with each new sample (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 = 3
𝑛(𝑛−1)

2 ). 

For 5 samples, the possible pattern space (59049 possible patterns) is more than 

twice the number of human genes.  This means simple one-on-one comparisons is 

a strong method for very specific questions but a weak method for studying many 

experimental samples (such as; genes upregulated with an inducer but not altered 

when treated with repressors to said inducer). A more complex arrangement of 

expression patterns is also feasible (rather than up/down regulated and not 

significantly changed) making this estimate extremely conservative. 

Gene network analysis can generate a network based on the gene expression 

correlation, without any experimental assumption. In doing so we can explore the 

expression topology of many biological samples 112. Gene network analysis enables 

investigations into gene co-expression.  Visualization of the gene network facilitates 

observation of differential gene expression between samples. For downstream 

analysis, it is often useful to separate what appears to be a continuous cluster, but 

is actually comprised of separated clusters of co-expressed genes using MCL 

clustering 113. These clusters can then be tested for enrichment of gene ontology, 

Reactome, or transcription factors.  

NETWORK AND CLUSTER FISHING 

Empirical phenotypic data from experimental samples can be inserted into gene 

expression datasets as a pseudogene. By preforming network analysis on a dataset 

for co-expressed genes, genes that co-express with the empirical measurements will 

be isolated. It is also possible to investigate an inverted version of the empirical 
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pseudogene in question by inverting z-score1 values (multiplying by -1) which will 

isolate genes that expressed in an opposite fashion to the empirical measurements. 

When studying a multitude of factors, it may be preferable to use MCL clustering, to 

get discreet gene expression clusters as the empirical pseudogenes can co-cluster. 

Once a list of genes is isolated with the same pattern of expression as the empirical 

measurement, downstream analyses such as Reactome enrichment can be 

performed. 

PATHWAYS ANALYSIS 

Reactome114 is a manually curated database of biological pathways and associated 

genes. Using gene enrichment tools such as ReactomePA115(an R library to enrich 

gene sets) it is possible to infer biological pathways that are overrepresented in a 

gene list of interest (by means of a Fisher's exact test). Annotations in Reactome are 

interconnected and range from highly specific pathways containing a few genes 

(e.g.: ANG-binds F-actin containing five genes) to their parent’s categories (eg: cell-

cell communication containing 130 genes). Due to the parental relationships 

between Reactome annotations, when one Reactome annotation is enriched, it is 

common that less specific Reactome parent annotations are enriched as well.  

Therefore, it is useful to filter Reactome enrichment results to remove redundancy. 

A set of rules to remove Reactome redundancy are: 

1. Remove annotations whose constituent genes are present in a more 

encompassing Reactome with more genes. 

2. If two or more Reactome annotations have the same constituent genes, 

keep the annotation with the lowest P value and remove the rest. 

The results can now be plotted externally by any plotting software such as matplotlib. 

Alternatives to Reactome are Gene Ontology 116 (GO) and Kyoto Encyclopaedia of 

Genes and Genomes 117 (KEGG). KEGG offers similar tools but with independently 

curated annotations. GO uses a hierarchical classification system. KEGG, on the 

other hand, was once popular but is based on a subscription service while its free 

tools are no longer updated. 

 

                                                      
1 Z-score: a measurement related to the number of standard deviations (above or 
below) a sample is away from the mean.  
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HETEROGENEITY ANALYSIS 

Differential expression analysis, like any statistical test, relies on comparing the 

dispersions of two groups. A strong P-value (below 0.05) means that there is likely 

to be a significant difference between the samples within a certain probability. A 

weak P-value does not mean that the sample distributions are the same or have the 

same mean (Error! Reference source not found.). For example, if one of the s

amples has high heterogeneity, the resulting P-value will be weak. This is important 

to note that two samples with the same distribution (two identical distributions) or 

one or more samples with high heterogeneity (dysregulation) are very different 

biological results which might have equally weak P-values. 

Variances naturally follow Fisher-Snedecor distributions (or simply f-distribution) 

rather than Gaussian distribution. In order to compare the distribution of variations, 

either a non-parametrical statistical test is needed, or the data can be converted into 

a normal statistical distribution. 

A 

B 

C 

 

D Figure 1-9. Diagrammatic representation 

of sample distributions. Each box plot 

represents a different type of distribution 

with low means (A, C), high means (B, D), 

low variation (A, B), and high variation (C, 

D). If comparing a distribution of A with B 

there would be significant difference, but 

if comparing A with A, C, or D there would 

be no significant difference. 
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A Box-Cox transformation (Figure 2-8) can be used to transform Non-normal data 

into a normal distribution. The transformation of non-parametric data into parametric 

data facilitates downstream analysis such as simple t-tests for sample comparison. 

It is also possible to analyse non-normal data using non-parametric statistical tests 

such as Mood’s or Kruskal-Wallis tests. Mood’s test is a variant of a Pearson’s chi-

squared test and compares medians rather than means. Kruskal-Wallis test, on the 

other hand, is a variance test that compares the distribution between sample sets.  

Another simple option is to study the coefficient of variance difference of the same 

genes across experimental samples. The mean of this distribution should refer 

clearly to the difference in variation. If the difference is very low (close to 0 once the 

distribution has been log normalized), it is possible to assume non-significant 

heterogeneity differences between the distributions. 

It is important to note that a considerable number of statistical tests can be used to 

investigate a data set. As different statistical tests can return different P-values, it is 

possible to perform various statistical tests until a desired result is achieved. This 

practice is known as P-hacking, and involves running an array of statistical tests, 

until the desired P-value is achieved, and justifying the usage of the test. P-hacking 

enables a researcher to justify previous assumptions regardless of the actual 

underlying scientific facts. 

  

Figure 1-10. (A) a series of different non-parametric f-distributions. (B) the same distributions as A after 

being boxcox normalized, now fitting a parametric normal curve. (C) Box-Cox transformation where Y 

is the response variable and the 𝝀 is the power parameter. 

A 
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𝑇(𝑌) = (𝑌𝜆 − 1)/𝜆 
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DETECTION OF ALTERNATIVE SPLICING 

There are three different methodologies for quantifying differential splicing. One 

simple option is to assemble the transcriptome before mapping and then quantify the 

amount of each transcript found. There is a variety of assemblers each with their 

subtle differences, however, they will not be discussed in depth here: Cufflinks 118, 

Trinity 119, Trans-ABySS 120… 

Another possibility is to run differential expression analyses at exonic resolution 

rather than at gene level. DEXSeq 109 is an implementation of the DESeq 110 

algorithm that focuses on exonic level resolution rather than gene level resolution. It 

is a slight oversimplification to state that DEXSeq just runs DESeq using exon 

resolution as it must normalize each exonic read, otherwise, a significantly 

upregulated (or downregulated) gene will show as all its exons being significantly 

included (or excluded). DEXSeq is not the only tool to quantify alternative exon 

expression, SplicingCompass 121 which can detect differential exon expression as 

well. CuffDiff 122 is part of the tuxedo suite that includes Tophat, and Cowtie. CuffDiff 

cannot find novel splice sites or exons, however, CuffDiff outputs files of isoforms, 

genes, coding sequences, and primary transcript in FPKM (Fragment per Kilobase 

per Million fragments Mapped), raw counts, and differential expression tests formats 

by analysing BAM/SAM mapped files and a GTF/GFF file. MISO 123 can provide a 

similar analysis as CiffDiff with similar limitations. 

A third possibility is to quantify the amount of each type of splice event (skipped 

exon, alternative 5’/3’ splice site, mutually exclusive exon, and retained intron). In 

order to quantify distinct splice events, a more complex set of statistical tools are 

needed. rMATS uses a Bayesian hierarchical model to find and annotate splice 

events. Unlike DEXSeq or assembly techniques it provides information on each type 

of splice event. rMATS requires all the reads to be trimmed to the same length 

(regardless of FASTA file or BAM file input). Ideally, the largest possible lengths are 

preferred for trimming. However, this leads to shorter reads being lost. In order to 

maintain as much data as possible, the quantity of information should be obtained 

for various trim lengths. The option with the most data retained should then be used 

for further analyses. 

Pseudocode for finding the best trimming length: 

listOfLengths=[0,0,0,0,0…,0,0,0,0] 
for line in bamFile: 
 #add one to the appropriate lengths  
  listOfLengths[length of sequence of line] += 1   
for i in [1,2,3,4,5…largest length]: 
 print i,i*∑(listOfLengths[i:]) 
#This should output something like: 
#1 100 
#2 200 
#3 300 
#... 
#80 5000 
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#81 6100 
#82 6143 <- linear growth until the longest reads are being trimmed 
#83 6198 
#... 
#90 9180 
#91 9207 
#92 9170 <- Largest ammount of information preserved with trimming length 92 
#93 9120 <- the amount of information is decreasing now 
#... 
 

Python code: 

#! /usr/bin/env python 
import fileinput  
 # module to handle STDIN 
 # this enables us to use samtools piping to read straight from a bam file 
MAXLEN = 500  #use an arbitrarily large number as the read size limit 
lengths = [0]*MAXLEN #(unlikely to have reads longer than MAXLEN  ) 
for line in fileinput.input(): #reads stdin one line at a time 
 lengths[len(line.split()[9])]+=1  
 #splits the sam string,  
 #gets the 9th item (sequence) measures its length,  
 #adds one to the item in the list with the index of the sequence length 
 
for i in range(MAXLEN): # iterates through all the lengths 
 print (i,i*sum(lengths[i:]))) 
 #prints the length 
 #prints the amount of sequences larger and equal to the  
 #iterated length times the iterated length.  

Should run like: 

samtools view [bam files] | python optimalTrimm.py 

Using this extremely short program (only 7 lines without comments), we can choose 

the best trimming length to minimize information loss. Another similar tool is SpliceR 

124. SpliceR is an R bioconductor tool to analyze. It is designed to work with 

specifically with cufflinks. It can find and categorize alternative splicing events (single 

exon skipping exclusion/inclusion, multiple exon exclusion/inclusion, intron 

retention/inclusion, alternative 3’/5’ splice sites, alternative transcription start/end 

site, mutually exclusive exons). It is also capable of discovering de novo splice sites 

as it does not rely on annotation files to find exons. SpliceR can then generate 

annotation GTF files which can be used as input for many other analysis pipelines 

and visualized into genome browsers. 

PROTOCOL MANAGEMENT 

Interpreting biologically relevant events from a FASTQ file outputted by the 

sequencing process requires a fair number of steps and various software programs. 

These programs and tools are modular allowing the researcher to choose the latest 

or best-suited sequencing mapping tool or quality control tools. One large 

inconvenience involves the tenuous work of managing all the files and steps. There 

is no need for a tool to manage protocols if all the steps and commands are 

annotated and carefully organized.  
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Makefile 125 is a tool originally designed to automate the building of executable 

programs and compile their libraries. Makefile is quite possibly one of the oldest 

programming languages currently in widespread use (published in 1976) apart from 

C (1972; Makefile was built mainly for compiling C projects). Make relies on simple 

rules with a target and dependencies: 

target: dependencies 
    command to create target 

To executes Makefile in order to generate the target: 

make target 

Makefile will check for dependencies to see if they exist (if dependencies do not exist 

then Makefile will try to create them if there are rules to create them in the Makefile) 

or if the dependencies have been updated, Makefile will run the command to create 

the target. This is useful for the management of complex protocols and custom 

commands: 

1  counts = counts/Pro_NGSs.1.count counts/Pro_NGSs.2.count counts/Pro_NGSs.3.count 
2  
3  counts/%.count: aligned/%.Psorted.bam #the % sign acts as a wildcard between the target and the dependency 
4          mkdir -p counts ;\  # makes the folder for the counts to be saved 
5          echo counting $* ;\  # $* stands for the % 
6          python  -m HTSeq.scripts.count \ # This runs the counting program 
7                  -f bam \ 
8                  aligned/$*.Psorted.bam \  
9                  genome/Homo_sapiens.GRCh38.84.gtf > counts/$*.count && \ # this create the target 
10         chmod 555 counts/$*.count && \ # changes priorities of the target in order for it not to be easily 
deleted  
11 
12 counts/merged.csv: $(counts) 
13         python -c 'import glob,re,pandas; \ # python command 
14  files = glob.glob("counts/*.count");  \    
15  df=pandas.concat([pandas.Series.from_csv(x,sep="\t") for x in files],axis=1);\  
16   # this reads the files and concats them in a dataframe 
17  df.columns = [re.findall(".+/(.+)\.",x)[0] for x in files]; \ # this renames the header  
18 df.to_csv("counts/merged.csv")' # this saves the new dataframe  

In this Makefile snippet, the ‘make counts/merged.csv’ command will try to create a 

file named ‘counts/merged.csv’ (line 12) but before running a python command to 

merge all the counts files, it will first check to see if the files in the variable $(counts) 

exist (line 1). If the files in the $(counts) variable do not exist, it will run the command 

to create them (by first checking if there is a dependency BAM file) using HTSeq-

count (line 3). This snipped is not part of the entire Makefile (it’s a simplified example) 

but the entire Makefile can take raw FASTQ files, run quality control, index the 

genome for alignment, align the samples and then proceed all the way to standard 

analyses such as differential expression or splicing analysis. 

Some major advantages of using a Makefile for the management of computational 

protocols is that a script is available for all analysis performed, including all the 

parameters used allowing for replicability and troubleshooting. Another advantage is 

that when the input files and the Makefile are not deleted, every file in the analysis 
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can be recovered allowing peace of mind in case of an accident. This also 

significantly diminishes the number of files that need to be archived (by default 

Makefile will delete intermediary files once the script has finished). The main 

disadvantage of Makefile involves the learning of a reasonably complex 

computational language, and with little experience troubleshooting can be a daunting 

process. The reason Makefile can seem an intentionally esoteric language is 

because during its development the computational zeitgeist was different and 

included the need for short single letters commands rather than humanly 

understandable commands (due to restrictive computational memory). Learning to 

use Makefile can be harder than most computer languages as it is designed and 

implemented for the use of large complex and highly technical computational 

projects. Scant ‘non-computational expert’ help for Makefile troubleshooting is 

available (unlike most computational languages where help is available and plentiful 

for all skill levels). 

There are many modern alternatives to Makefile such as snakemake 126 (which offers 

more pythonic syntax),  cmake 127, and SCons 128 (which also offers a more pythonic 

syntax).  Although all Makefile variations offer similar functions, the modern 

alternatives provide improved grammar and more advanced features. 
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CONCLUSION 

Sequencing data is highly sensitive to a variety of issues, from batch effects to low-

quality reads. However, sequencing data can also provide a wealth of information 

when properly curated and can be used in a menagerie of bioinformatical analysis. 

Careful choice needs to be made at each analysis step to prevent the introduction 

of errors into the pipeline. It is important to take into account that splicing studies 

require greater quality control than general purpose differential expression. 

As there are multiple steps to analyse data and each step has a variety of tools with 

their own strength and weaknesses, the specific pipeline used must be carefully 

chosen depending on the experimental question. A standard analysis pipeline does 

not exist. However, the basic outline of [sequencing → quality control → aligning → 

gene/exon counting → statistical analysis] holds true for most biological questions. 

 



 

33 
 

CHAPTER 2 AGE AND CALORIFIC RESTRICTION EFFECT ON 

TRANSCRIPTOME 

Chapter objectives: 

• To investigate the biological pathways altered during dietary restriction and 

how this may affect ageing in mice. 

• Bioinformatic analysis of the progression of ageing in mice under normal diet 

and short-term or long-term form of dietary restriction. 

• To investigate RNA splicing involvement in ageing and DR. 

Chapter Hypothesis: 

• DR seems to slow down the onset of ageing phenotype, therefore we would 

expect to see DR affecting senescence pathways or counteract to a certain 

degree the effect ageing has on the transcriptome. 

• With use of RNAseq technology and DR mice time series (with a normal diet 

control) we should be able to probe and see the mechanisms of increased 

longevity through DR 
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INTRODUCTION AND BACKGROUND 

Since the 18th century, mice have been a popular mammalian model organism. We 

(humans) share almost 99% of our genes with mice and due to the short lifespan of 

mice, they enable us to study mammalian biology which is relevant to human biology. 

Mice ageing aging is not directly correlated to humans.  

Mice age at different rates depending of the life stage (Figure 2-1). Important to note 

that the Figure 2-1 ignores differences in gender or breed but is rather only a 

summary 129. As with humans and animals in general, mice tissues accumulate DNA 

damage as seen by γ-H2AX loci staining and become senescent 130,131. 

Figure 2-1. Diagrammatic representation of the ageing rate differences between mice and humans. Adapted from 129. 
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The Institute for Ageing and Health at Newcastle University, UK conducted a mouse 

ageing cohort study to investigate the effect of diet on mouse health 132 (This study 

was conducted and completed before the PhD projects commencement,  and the 

author of this thesis did not have any input or interaction with the original mice study). 

In this study (Figure 2-2) a cohort of C57/BL6 mice were fed a normal chow diet (Ad 

libitum; AL) until they reached three months of age. Then, a subgroup of these mice 

was placed on a dietary restricted (DR) regime132. Finally, three mice from both AL 

and DR cohorts were sacrificed at 3 (only AL) 15, 24, and 30 months of age.   At 12 

months, a subgroup of mice from AL and DR diets were placed on the opposite diet 

and sacrificed at 15 months to study the effects of short sudden AL and DR dietary 

changes (AL>DR and DR>AL). Mice were chosen for this study as they are a well-

known and study mammalian subject to study with a short lifespan (compared with 

the long lived rhesus monkeys whose dietary experiments started in the late 80s and 

are still ongoing 67).  
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 Figure 2-2. Diagrammatic representation of mice growth and sampling of our main study. Each mice 

diagram represents a point where three mice were sacrificed for sequencing. 
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Mice were fed standard rodent pellet chow (CRM (P) from Special Diets Services, 

Witham, UK). DR mice were fed 60% of the amount AL mice eat on a standard diet. 

Mice were housed in same-sex cages in groups of 4 to 6 mice. Each mouse was 

individually tagged by earmarks and maintained with an ambient temperature of 20◦ 

± 2◦ C. Mice hepatic tissues were collected from mice of all groups at 3, 15, 24, and 

30 months of age.  

Hepatic tissues were chosen for this study as they are key regulators of nutrient 

intake, storage, and usage. All nutrient intake from the gut goes through the hepatic 

portal vein into the liver for processing by the hepatic tissues. The liver also has 

endocrine by regulating insulin growth factors which affects aging.  

AL mice had food available throughout the day, while DR mice were fed once per 

day circa 9:00 AM (Mice were not fed for six hours prior to being sacrificed. This was 

to facilitate dissection of the mice, as their digestive tracts were empty). Therefore, 

differences in mouse metabolism between AL and DR could be due to a circadian 

rhythm affect, and not diet. To control for transcriptomic changes induced by the 6 

hours fast, a subgroup of mice from both diets at 15 months of age were sacrificed 

after feeding (post fed mice; PF).  

Both AL and DR mice were healthy and had low mortality rates until 15 months 132 

(Figure 2-3). From 15 to 24 months of age, both AL and DR mice had an increased 

mortality rate. The increase in mortality rate remained constant between 24 to 30 

months. DR mice, however, had a lower mortality rate compared to AL132. 

Figure 2-3 Kaplan Meier survival curve of ageing mice 132. Showing survival rates of mice under different dietary 

regimes. Survival rates decline between 15 to 24 months and remain low past 24 months. 
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AL mice had a heavier body mass than DR mice, but there was an interesting trend 

regarding the crossover mice (Figure 2-4 A). AL>DR mice quickly lost weight once 

switched to a DR diet at 12 months but when returned to an AL diet at 15 months, 

they did not reach the same weight as their AL diet peers in the same period of time 

under AL diet. DR>AL mice increased in weight during AL and, unlike AL>DR, 

reached and retained the same weight as their DR peers when returned to a DR diet. 

Figure 2-4.(A) Mouse weight with age, Dotted lines represent sequencing time points. 

Adapted from  132. (B) Mice diet schedule, red being DR and blue being AL. 
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Strand-specific paired-end libraries for RNA-seq were generated from DNAse 

treated total RNA using NuGene (Y, 15AL, 15DR, 24AL, 24DR, 30AL, 30DR) or 

ScriptSeq (crossovers, postfed, one 24AL repeat and one 24 DR repeat), then run 

with an Illumina 2500 sequencer to obtain 100 base pair-end reads.  

Up until this point all the work was performed prior of me joining the lab. My research 

focused on studying the FASTQ files obtained from the sequencer. 

Figure 2-5. (A) Gene biotypes of different samples showing most protein coding genes as well as 

a large number of mitochondrial genes. Protein_coding genes transcripts are translated into 

protein, Mt-rRNA are shuttled into the mitochondria to form mitochondrial ribosomes, lincRNA are 

long (longer than 200 bases) intergenic non coding RNA, misc_RNA are uncategorized non coding 

transcripts, unprocessed_pseudogene are pseudogenes that are not translated, and others are 

an amalgamation of all other categories that accounted for less than 1% of transcripts. (B) Read 

counts of different samples.  
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The sequenced FASTQ files were filtered to remove low-quality reads by Kraken101. 

Reads were aligned using Tophat2133 (GRCm38 reference genome) without multi-

mapping or novel junctions, returning a high percentage of protein-coding RNA and 

mtRNA (Figure 2-5). Sequence alignment files were sorted by name134 for HTSeq-

count 108 to read gene counts. Protein coding counts were normalized and compared 

sample by sample using DESeq2 135. 

The expression datasets were averaged, filtered to remove low variability (variability 

less than 10% of the mean ;from 43628 genes down to 10920 genes), then used to 

generate an expression network with Biolayout express112 using a minimum Pearson 

correlation of 0.7 and clustering coefficient of 0.95. Clusters were extracted from the 

network using Markov cluster algorithm 113 with an inflation coefficient of 2.2 and pre-

inflation coefficient of 3, clusters with less than 30 components were removed 

(leaving only 26 clusters containing a total of 5419 genes). The clusters were then 

analysed for Reactome annotations overrepresentation using ReactomePA 136. As 

the network was ring-shaped, the clusters were manually renamed to reflect their 

position on the ring rather than the cluster size (default sorting). As expression values 

were averaged before clustering, clusters where intra-sample variation was greater 

than 0.1 means were filtered out. Reactome annotations were filtered by p adjusted 

value of less of 0.05 and redundancy was removed by filtering Reactomes where all 

the composing genes were contained in another significantly enriched Reactome 

annotation. In case of two Reactome annotations with the same composing genes, 

the one with the lowest p adjusted value was kept.  

In order to isolate genes with similar expression patterns as senescence markers, 

empirical karyomegaly and telomere-associated foci measurements were z-

normalized and inserted into the gene expression data. The z-normalized 

measurements were inverted and inserted in the expression dataset as well, to 

evaluate genes that showed anti-clustering with senescence markers. Expression 

values with senescence markers in it were clustered using a 0.9 correlation 

coefficient and a minimum Pearson correlation of 0.7 using BiolayoutExpress. Genes 

that were positively corelated with senescence markers were extracted. As both 

karyomegaly linked genes and telomere-associated foci linked genes were similar 

and had the same enrichments (same for the negatively correlated clusters), these 

lists were intersected to study the strongest senescence and anti-senescence 

genes. 

Splicing analysis was conducted with rMATS 137. rMATS is a statistical tool to find 

quantify and categorize alternative splicing events. 

Locus analysis was conducted by counting the number of significantly 

up/downregulated genes within specific loci (determined using UCSC gap tables).  
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Loci then were filtered by loci which contained at least 10 genes of which at least 

two thirds of those genes were significantly upregulated for upregulated loci or two 

thirds of those genes were downregulated for downregulated loci. 
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RESULTS 

Principal component analysis (PCA) analysis (Figure 2-6, A), performed using the 

DESeq2 module (see page Error! Bookmark not defined.), showed a clear 

separation between 15 to 24 months of age and a smaller separation between 24 to 

30 months of age.  Diet, on the other hand, had a large separation within the PC1 

Figure 2-6. (A) PCA plot showing mice samples after batch removal with Combat. Biological replicates have been 

connected by vertices. (B) Reactome overrepresentation analysis of the top most influential genes for principal 

components one, two, and three (PC1, PC2, & PC3). 
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representing 43% of the variance. Interestingly there was a large intrasample PC2 

variance within 24 and 30 months DR. 

Differential expression analysis (Figure 2-7;file [1]) was in agreement with the PCA 

analysis (Figure 2-6) and network analysis (Figure 2-14), that the largest changes 

occur between 15 and 24 months (Figure 2-7 II & VII) regardless of diet (Figure 2-7 

X).  In contrast, there was a small change between 3AL and 15AL (Figure 2-7 I) and 

very little change between 24 and 30 months (Figure 2-7 III, IX & XI). However, diet 

still had a strong effect (Figure 2-7 IV, V & VI) which was consistent regardless age 

(Figure 2-7 VII). 

Figure 2-7. Diagram showing the up/downregulated genes between ageing comparisons (left to 

right) and diet comparisons (up/down). Each bar plot represents the number of genes upregulated 

(upper bar) and downregulated (lower bar) between the treatment groups (shown as mice) it is 

placed between (e.g.: plot I is placed between 3AL and 15 AL and represents the significantly 

changed genes between 3AL and 15AL). Largest changes occur between 15 to 24 months 

regardless of the diet (II, VIII) with most of these gene changes occurring regardless of the diet 

(X). Diet also had significant effects on gene expression (IV, V, VI) with many gene expression 

changes occurring regardless of the age (VII). Altered genes that have been up/downregulated in 

common across age or diet (X, and VII). Changed between 24 and 30 (XI) have been omitted from 

Reactome enrichment as not enough genes were commonly changed between those 

comparisons.  
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When checking if there was consistency of gene length distribution with up/down 

regulation (Figure 2-8), we saw a slight but significant difference in size of up and 

downregulated genes showing a bias of upregulating longer genes and 

downregulating shorter genes with ageing (p=4.7E-21 for AL, and p=1.7E-49 for 

DR). This is contrary to previously published results, which theorized that longer 

genes are more susceptible to mutations (due to size) and so will be less likely to be 

expressed 138. 

D E S E Q  

As a large amount of differentially expressed genes existed between many samples, 

we looked into which regions (defined as inter-heterogeneous loci by UCSC gap 

table browser 139) showed prevalent differentially expressed genes (at least twice as 

many significantly upregulated genes compared to significantly downregulated gene 

loci and vice versa; Figure 2-9). There were 14 upregulated and 20 downregulated 

inter-heterogeneous loci between 15 to 24 months. Age had downregulatory effects 

15 to 24 AL to DR 

Figure 2-9. Karyomere showing locus of genes upregulated (red), or downregulated (blue) between 15 to 24 months and AL to DR. 

A) AL B) DR 

Figure 2-8. Distribution of gene length for downregulated and upregulated genes between 15 to 24 months in AL (A) and DR (B) 

showing that upregulated genes were on average 3% longer in AL (p=4.7E-21) and 4% longer in DR (p=1.7E-49). The geometric 

mean has been marked with vertical lines with their respective colours. 
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in the pericentromeric region on chromosomes 13, chromosome 14 and 

chromosome 18. Diet, on the other hand, upregulated regions near telomeres in 

chromosome 4 (both ends), chromosome 5 (both ends), and chromosome 7 

(pericentromeric end). Excluding telomeric effects, there were only five 

downregulated loci compared with fourteen upregulated loci between AL to DR. 

Some regions were suppressed with age but not diet (centromeric end of 

chromosome 4 and chromosome 18). These changes were indicative of chromatin 

remodelling with both age and diet as large regions of chromatin were being 

activated and inactivated. No chromatin regions were specifically up/down-regulated 

between 24 to 30 months.  

There are a few ways to explain why so few significant changes in genes were found 

between 24 and 30 months across both AL and DR groupings. One possibility is that 

minimal transcriptomic changes occurred between 24 months and 30 months 

timepoints, and the results shown accurately reflect the biology. Another possibility 

is that heterogeneity increases with age, and therefore statistical tests would be less 

likely to show significance with higher variability. To test that possibility the variations 

have been normalized (Figure 2-10 A) and variations have been compared (Figure 

2-10 B). No significant differences on variances were found between 24 and 30 

months of age (Mann Whitney U test p=0.8). 

 

A 
B 

Figure 2-10.  (A) histogram of the log of the coefficient of variations for each gene of different samples. 

The distributions seem to overlap. (B) histogram of the log of the coefficient of variation at 30 months 

divided by the coefficient of variation at 24 months. 
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Reactome enrichment (Figure 2-11;file [2]) revealed that both chromatin organization 

and gene expression (including splicing) were upregulated with age (between 15 and 

24 months). During the same time there was a broad downregulation of metabolism 

including: metabolism of amino acids and derivates, metabolism of lipids and 

lipoproteins, the citric acid cycle and respiratory electron transport, detoxification of 

reactive oxygen species, metabolism of vitamins, bile acid metabolism, and glucose 

metabolism. Other significant changes included downregulation of insulin pathway 

genes between 15 and 24 months, even though insulin pathway genes were found 

in the enrichment for Regulation of AMPK (regulates lipid oxidation and inhibits lipid 

uptake; not shown in the plot) activity via LKB1 (liver kinase B1; main upstream 

activating kinase for AMPK). 

The effects of DR were distinct from ageing, DR tissues showed upregulated 

circadian clock genes, and phospholipid metabolism. RORA activated gene 

expression regulates circadian rhythms (R-MMU-136809) genes were both up and 

downregulated between AL to DR (Figure 2-7 VII). Regulation of cholesterol 

biosynthesis by SREBP (R-MMU-1655829), and negative regulators of RIG-I/MDA5 

signalling (R-MMU-936440; regulation of the immune response) pathways were 

significantly enriched among downregulated genes with DR. 

Between 15 and 24 months of age, we found the largest numbers of differentially 

regulated genes under both dietary regimens. Moreover, many of these changes 

occurred similarly under AL and DR (Figure 2-7 X). Immune system regulatory genes 

Figure 2-11. Reactome enrichment of differentially expressed genes common or unique between 

comparisons (only 5 most significant annotations for each group are shown; In brackets are the 

gene counts for each annotation). 
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(R-MMU-168256) were significantly upregulated in AL (between 15 to 24 months) 

but not significantly altered in 15 to 24 months DR. 

Two genes (Bcl2l13 and Bcl2l15) from the Bcl2 (an apoptotic regulator) family were 

found to be upregulated in DR. This may be relevant as Bcl family genes have been 

found significantly upregulated in centenarians140 and suspected to have tumour 

supressing roles in ageing. 

Some metalloproteins and metal related enzymes have been found to be 

significantly altered. Therefore, it is possible that during senescence the metal 

landscape of a tissue is altered (Appendix 1). 

A simple question when considering ageing and DR is what genes are up/down 

through ageing and their relationship with DR (Figure 2-12). We see 131 genes that 

Figure 2-12. 4-way Venn diagram representing the genes that have been downregulated between 

15 months AL to 15 months DR (Up in DR), upregulated between 15 months AL and 15 months DR 

(Up in AL), upregulated between 15 months AL to 30 months AL (Up in age), and downregulated 

between 15 months AL to 30 months AL (Down in age). All changes are significant and at least 

log2 > 1. Regions where by definition we expect to find nothing have been blank out for clarity. A 

4-way Venn diagram was chosen instead of 4 individual 2-way Venn diagram. 
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were upregulated in DR but downregulated with age, 64 genes downregulated with 

DR but up in age, 24 genes that went up in DR and up in age, and only 4 genes that 

was down in DR and down in age. 

To get the landscape of changes regarding transcriptomic changes, the expression 

data was networked and clustered into an unbiased distinct pattern of gene clusters 

using Markov Clustering implemented in Biolayout Express (file [3]). The visual 

cluster was graphed using a fast multipodal multilevel method (FMMM) graph with a 

minimum correlation coefficient of 0.95 (Correlation coefficient declares how related 

is the expression between two genes; correlation of 1 indicates identical expression).  

The Markov chain (used to declare distinct clusters) was made using an inflation 

coefficient of 2.2 and a preinflation coefficient of 3 (These two parameters define the 

statistical distribution of the clusters). Cluster with less than 30 genes were filtered 

out. 

The dimensionless network distances genes depending on how similar the 

expression patterns were. Genes that were expressed in similar ways across 

samples were connected. The clustering attempts to segregate the connected 

network into distinct expression patterns. Individual clusters were then tested for 

enrichment for Reactome pathway annotations with a 0.05 P-value cut off. 
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Construction and visualization of the co-expression network (Figure 2-13, top) shows 

a genus 1 topology (doughnut/ring shape). After clustering, the resulting clusters 

were ordered by position in the torus (by default clusters were ordered by size) which 

interestingly showed that the network ring corresponds to an expression pattern 

continuum (Figure 2-13, bottom).  

Figure 2-13 Expression network of mice ageing samples (top). Expression curves of different 

distinct MCL clusters shown in clockwise order of location in the network (bottom). 
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It is possible to visualize how the network of clustered genes changed with respect 

to diet and age (Figure 2-13) by graphing the node size of each experimental point 

by the expression amount. Displaying the data this way is useful to explain the genus 

1 topology of the expression network. The torus shape was predominately caused 

by major expression changes between 15 to 24 months, with notably fewer changes 

occurring between all other age comparisons (AL 3 ≃ AL 15, AL 24 ≃ AL 30, DR 24 

≃ DR 30). Even though the data is comprised of seven experimental points, there 

are only two data points showing major changes which occurred across diet and age 

between 15 to 24 months. Consequently, the continuum was pulled across two axes. 

In addition to the expression changes between 15-24 months, there is a common 

‘young’ expression (right of the network), an ‘old’ expression (left of the network), an 

‘AL’ expression (top of the network), and a ‘DR’ expression (bottom of the network). 

These four expression types define the network morphology. 

It is also interesting to note that the expression network analysis was practically 

unchanged between 24 to 30 months of age. This implies that almost all age induced 

transcriptomic effects on mouse hepatic tissue occurred prior to 24 months. 

Figure 2-14 Network showing the genes expressed in each diet and age. 
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Due to the continuum in gene expression patterns within the clusters (Figure 2-13; 

file [4]) and the division between neighbouring clusters being somewhat arbitrary, 

some Reactome enrichments (Figure 2-15) span multiple clusters. This effect is most 

prevalent in metabolism (R-MMU-1430728.1) (together with metabolism of amino 

acids and derivatives (R-MMU-71291.1) as its most enriched subcategory) spanning 

from cluster XIX to cluster VII (these clusters were upregulated at 3 and 15 months 

regardless of diet). Similarly, clusters II and III showed a pronounced increase of 

metabolism of lipoproteins (R-MMU-556833). The area most upregulated at 30 

months was gene expression (R-MMU-74160.1; cluster XI and X). DR was shown to 

induce down-regulation of cell cycle genes (R-MMU-1640170) and DNA repair (R-

MMU-73894; cluster XVII to XIX) across all ages (The complete list of genes for each 

category are in file [4]). 

It was apparent from the gene network topology (Figure 2-14) that the largest and 

most significant change across age grouping occurred between 15 to 24 months of 

age.  

N E T W O R K  F I S H I N G  O F  S E N E S C E N C E  M A R K E R S  

Figure 2-15. Reactome enrichment of discrete clusters. 
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Both cell cycle (R-MMU-1640170) and immune system (R-MMU-168256) genes 

were found enriched in the expression network (Figure 2-15) and DESeq analysis 

(Figure 2-11) associated with ageing. This could be indication of senescence 

activation as these are known markers of senescence. Therefore, we integrated well 

accepted experimental measurements of senescence; karyomegaly and telomere-

associated foci (TAF). These were measured by Mikolaj Ogrodnik in a collaboration 

with the Newcastle University Institute for Ageing, UK 141 (Appendix 2). We extracted 

all the genes that followed the same coexpression patterns as the senescent 

markers of TAF, Karyomegaly and oil droplets, we call this method network fishing 

(page Error! Bookmark not defined.).  Karyomegaly and TAF were both 

upregulated at 15 months (Figure 2-16) compared to 3 months. However, this 

difference was minimal when compared to the marker upregulation shown in AL at 

24 months (DR was still upregulated at 24 months compared to 15 months). Oil lipids 

were highly increased in AL at 15 months but were reduced at 24 months. This 

pronounced increase at 15 months was due to hepatic steatosis. This decrease at 

24 months may be due to a survival effect of the steatosis resistant mice. Many of 

the same genes were found in the karyomegaly and TAFS marker expression 

network. These shared genes were found to be overrepresented by the immune 

system (R-MMU-168256) and hemostasis (R-MMU-109582) Reactome clusters 

(Figure 2-16.c). Genes that cluster in an inverted pattern to both karyomegaly and 

TAF were found to be enriched for respiratory electron transport chain (R-MMU-

1428517) and metabolism (R-MMU-1430728) Reactome clusters. 

C R O S S O V E R S   

a Karyomegaly b TAF c Oil 

d 

Figure 2-16. Network fishing of genes with same expression pattern of karyomegaly (a), TAF (b) or intracellular lipid droplets (c) for 

AL (blue) and DR (red).  (d) Reactome enrichment of karyomegaly and TAFs and the genes which followed an expression opposite to 

them (inverting the z-scored values across the mean). 
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The crossover mice (AL>DR and DR>AL) provided a glimpse into the effects (or lack 

thereof) of short-term dietary changes. This study focused on four mice treatments. 

AL mice spent their entire lifespan on an AL diet, and DR mice were placed on a 

dietary restricted diet after 3 months of age (DR mice were fed as AL mice from 0 to 

3 months). The AL>DR mice were placed on a DR diet from an AL diet at 13 months. 

The DR>AL mice were on an AL diet until 3 months of age when they were placed 

on a DR diet; then at 12 months they reverted to an AL diet. 

Oil red lipid staining (Figure 2-17 A, B ;Appendix 2Error! Reference source not f

ound.) shows that AL mice developed steatosis (accumulation of fat in the liver), 

A B 

Figure 2-17.  (A) Lipid staining of liver sections. (B) AL livers were steatotic while any form of DR had protective 

effects (B). Senescence marker staining of. γH2A.X and telomere fluorescent in situ hybridization. (C) 

Representative microscopy samples of γH2A.X labelling (green) and telomere in situ hybridization (red) in mice 

hepatocytes of different treatments (scale bar is 4 μm). (D) Percentage of hepatocytes with ≥3 TAF. Adapted from 

Ogrondnik (2017) 141. 

C 

D 
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while all forms of DR (DR, AL>DR, and DR>AL) did not show signs of hepatic 

steatosis (P=0.0045). This effect was supported by changes to telomere-associated 

foci in mice hepatic tissue (TAF; Figure 2-17 C, D). These results suggest that an AL 

diet induces senescence in the liver and is correlated with steatosis. Any form of DR 

induces a degree of protection against both senescence and steatosis.  

Empirical measurements of senescence markers (intracellular lipids, and TAFs) and 

RNAseq of similar tissues at the same age and treatments, were combined to assess 

gene expression networking and clustering. This allowed for the isolation of genes 

that co-clustered with senescence markers. This was achieved by inserting empirical 

measurements into a normalized gene expression dataset of the samples. The 

Network was produced with BiolayoutExpress142 using a Pearson coefficient of 0.7 

and a correlation value of 0.95. This network was clustered using  MCL 

implementation of Markov Cluster Algorithm112 using an inflation coefficient of 2.2 

and a pre-inflation coefficient of 3.0. This returned a cluster which contained both 

TAF and lipid measurements as well as 709 other genes. Fished genes were found 

to contain a large amount of GO annotations for cell-cell binding, lipid modification, 

and immune system function (Figure 2-18 B; Appendix 3). There was also a large 

number of significant annotations related to immune system genes, cell-cell binding, 

and lipid modifications.  

The results of the network fishing analysis have been published (Ogrodnik, 2017) 

141. 

  

A B 

Figure 2-18.(A) Cluster fishing of senescence markers Oil staining and TAFs provides 709 genes that co-clustered with the 

aforementioned senescence markers. (B) GO enrichment of genes that co-clustered with senescence markers coloured by 

immune system annotations (green), cell-cell binding annotations (orange) and lipid annotations (blue). 
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C I R C A D I A N  C H A N G E S  

A possible source of experimental error might result from the DR mice daily feeding 

(ca 9:00), while AL mice had food available throughout the day. It has been 

demonstrated in previous research that altering feeding schedules affects biological 

circadian rhythms 143. In addition to feeding schedules other studies have 

demonstrated that calorie content (sans feeding schedule alteration)  144 and age 

also effects circadian rhythms 145. It is possible that the dietary affects in this study 

could also be caused by circadian changes. This problem is further confounded by 

the fact that most factors in this study are known to affect circadian rhythms (age, 

diet, and calorie content). However, this study does not attempt to understand the 

role and biology of the circadian clock in ageing. Therefore, we have assumed that 

the circadian changes are downstream of the dietary treatments (whether or not 

ageing benefits are downstream of circadian changes will remain outside of the 

scope of this study).  

Within the datasets to study circadian effects, there were stark changes in the 

transcription of different mitochondrial tRNAs. The changes in different amino acids 

mt-tRNA might in turn affect the expression of different mitochondrially expressed 

proteins. This hypothesis was modelled and explored (Appendix 4). However, there 

was not enough empirical data to obtain a concrete conclusion. 

To control for the effects of circadian rhythm, mice samples were sacrificed after 

being fed rather than 6 hours after feeding.  
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The PCA plot comparing all treatments (Figure 2-6) showed that post fed mice gene 

expressions were closer to each other (AL and DR) than to 15 months AL and 15 

months DR. Genes significantly up or down-regulated with post fed sequencing 

(Figure 2-19) show some interesting inconsistency. Genes upregulated and 

downregulated with AL and DR, compared with their respective post fed sequencing 

show that half of the genes upregulated in AL are also upregulated in postfed DR 

(while the other half is in fact downregulated in DR postfed). A similar effect was 

present with downregulated genes in AL (Figure 2-19). DR had, however, the most 

genes that were only upregulated or downregulated with DR postfed and were not 

significantly altered when comparing AL to AL postfed. This means that postfed DR 

had more transcriptomic alterations affecting genes not affected in postfed AL. 

Figure 2-19. Venn diagram showing upregulated and downregulated genes when compared with 

post fed sequencing for both AL and DR. 
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Reactome enrichment for genes altered with post fed mice (Figure 2-20; file [5]) 

showed that apoptosis (R-MMU-109581) was upregulated with DR postfed (when 

compared with DR) and mitosis Reactomes were downregulated. These results 

implied that DR tissues were more apoptotic and less mitotic after feeding than 6 

hours after feeding. However, many genes were found altered only in DR postfed, 

including upregulation of DNA repair (R-MMU-73894). 

These results suggested that sporadic feeding may act as a stressor in DR diets. In 

contrast to AL mice (who ate throughout the day as food was always available) which 

did not show dietary induced changes to mitotic or apoptotic gene expression 

patterns. 

It is possible that the dietary stress of sudden food availability would cause a short-

term metabolic trauma, albeit DR mice were healthier than AL mice. This might 

provide some evidence of a hormesis effect 146 which states that low levels of stress 

can provide beneficial effects. 

  

Figure 2-20. Reactome enrichment of significant genes when compared with postfed mice of the 

same treatment. Also included are genes that only appeared upregulated or downregulated in DR. 
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SPLICING IN MICE AGEING AND DIET 

R M A T S  

While studying RNAseq data, we can not only look at the transcriptomic changes, 

but also at the splicing changes. Using the differential expression data we see strong 

regulation of the spliceosomic genes (Figure 2-21; splicing example in Appendix 6). 

Therefore, after studying in detail differential gene expression, we focused on 

alternative isoform expression, and expression of long non-coding RNA expression 

(Appendix 5).  

Further analysis has been conducted using MAltESERS, a novel tool to identify 

changes in functional domains (page 87). 

Figure 2-21. Z-scored clustered heatmap showing strong age and dietary effects 

spliceosome genes (R-MMU-72172; 252 genes). 
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Unlike differential gene expression, differential splicing changes were found across 

all timepoints (Figure 2-22). The number of spliced events increased with age (1532 

events between 3 months to 15 months; 2207 events between 15AL to 24AL; and 

1871 events between 24AL to 30AL).  

Figure 2-22. Significant alternative splicing changes among age and diet. Significant splicing 

between AL to DR at all timepoints. Unlike differential expression, there are many events in all age 

point comparisons and few of the events occur with age regardless of diet (XI & XII) or with diet 

regardless age (VII). A3SS and A5SS is Alternative 3’ or 5’ Splice site respectively, MXE is Multiple 

Exclusive Exon, RI is Retained Intron, and SE is SplicedExon.  

II I III 

VII IX 

X XI 

IV V VI VII 
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When comparing all splicing events (filtering for 0.001 P adjusted and absolute 

inclusion level difference of at least 50%), circa 2000 splice events occurred in every 

comparison (file [6]). Approximately half of the splicing events were spliced exons 

(compared to alternative 3’ or 5’ polyadenylation, mutually exclusive exons, or 

retained introns) and a third of the events were conserved regardless of diet (Figure 

2-22 X, XI), and around a tenth of splicing events were consistent in ageing (Figure 

2-22 VII). When tested for enrichment of Reactome annotations (Figure 2-23), cell-

cell junctions organization (R-MMU-446728) genes were found alternatively spliced 

both between AL15 to AL30 and between AL15 to DR15. Reactomes for “lipid 

digestion, mobilization and transport” and “HDL-mediated lipid transport” were found 

alternatively spliced during ageing in DR, but also alternatively spliced in DR at 24 

months.   

Figure 2-23.  Reactome enrichment of splice events between treatments (file [14]).  

AL age DR age AL v DR 
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Reactome enrichment analysis without merging event types (Figure 2-24) found 

significant changes in mRNA splicing (Transport of Mature mRNA derived from 

intron-Containing Transcript (R-MMU-159236) & mRNA Splicing – Major Pathway 

(R-MMU-72163)) in spliced exons and multiple exclusive exons between 24 to 30 

months and at 30 months between diets (Figure 2-24). In addition, Reactome 

enrichment found diet dependant alternative splicing of 5’ splice sites in genes 

important for formation of senescence foci (R-MMU-2559584) at 15 months. 

Chromatin modifying enzymes (R-MMU-3247509) were also found alternatively 

spliced with a 5’ spliced site between 24 months DR and 30 months DR. 

  

Figure 2-24. Reactome enrichment of spliced events without merging splice types (file [12]). 
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CONCLUSION 

CHROMATIN STRUCTURE 

Reactome annotations for chromatin modifying enzymes were shown to be 

upregulated by differential expression analysis between 15 to 24 months(Figure 

2-11),  downregulated between 15 to 24 months by network analysis (Figure 2-15), 

and alternatively spliced between 24 DR to 30 DR (Figure 2-22). 

Genes coding for chromatin modifying enzymes were significantly upregulated in 

DESeq and network clustering analysis (Figure 2-25). This was expected as both 

DESeq and network clustering are essentially two different methods for detecting 

changes in expression. However, genes coding for chromatin modifying enzymes 

were also found increasingly alternatively spliced in DR between 24 to 30 months 

(Figure 2-25).  The increased alternative splicing of genes encoding chromatin 

modifying enzymes was not found in DESeq or network analysis enrichment. This 

might mean that DR affects chromatin structure through splicing at a later age to 

compensate/ameliorate the ageing effects initiated between 15-24 months of age.  

 

RESPIRATION 

Differential expression shows a strong downregulation of metabolism genes 

between 15 to 24 months. However, metabolic genes were found upregulated with 

DR treatments and further downregulated with AL treatment (Figure 2-11). In 

addition to differential expression, clustering analysis showed similar transcriptomic 

changes to metabolic pathways across age and diet (Figure 2-13 clusters I, II, III, V, 

VII, XIX, XX, XXI).  Clustering analysis also found respiratory associated genes to 

be anti-clustered with senescence markers (Figure 2-16). The decrease in metabolic 

Figure 2-25. Venn diagram of genes enriched for 

chromatin modifying enzymes (R-MMU-3247509) 

across multiple analysis. This Venn shows 

overlapping genes found by differential 

expression and clustering. However, these genes 

were not found to be significantly spliced 

between 24 to 30 months DR. 
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genes with age noted by clustering and differential expression studies here,  has  

been previously reported in mice metabolic analyses 147,148. 

Decreased stamina is a prominent symptom of ageing. Decreased stamina with 

ageing has been attributed to Aconitase1 (ACO1) downregulation 1. ACO1 is found 

in both the mitochondria and cytosol. In the mitochondria, ACO1 is a crucial part of 

the citric acid cycle, where it catalyses the isomerization of citrate to iso-citrate. In 

the cytosol, ACO1 acts as a post-transcriptional regulatory factor for iron 

homeostasis. As intracellular iron concentrations decrease, ACO1 binds to iron-

responsive elements at the 5’ end of ferritin mRNA, repressing ferritin translation 

(ferritin is a protein that stores iron). Our data show that ACO1 was indeed 

downregulated with ageing between 15-24 months (suddenly not gradually; Figure 

2-26). However, ACO2 was strongly upregulated with DR. This might provide a 

compensatory mechanism that improved the DR mice stamina with age. 

ACO1 and ACO2 have distinct functions and are not enzymatically identical.  ACO2 

lacks iron regulatory functions, and ACO2 has been shown to prevent oxidative 

damage in mitochondrial DNA 149. This means that the DR use of ACO2 may function 

to increase oxidative damage protection to the mitochondrial DNA, further improving 

stamina. 

INFLAMMATION 

Differential expression showed an upregulation of immune system (R-MMU-168256) 

genes with AL, as well as decreased inflammation in DR (negative regulators of RIG-

I/MDA5 signalling; Figure 2-11). Immune system genes were also strongly co-

clustered with senescence markers (karyomegaly and TAF; Figure 2-16). 

There was a clear link between inflammation, immune system activation, and obesity 

150–152. However, it is important to stress that AL mice were not obese. However, DR 

was shown to decrease inflammation in mice. 

SENESCENCE TRIFECTA 

Transcriptomic changes found throughout the mice ageing experiments have shown 

three motifs to be affected by both age and diet: respiration, chromatin structure, and 

immune system. These three factors are likely to be involved in the ageing 

phenotype, and seem to be ameliorated to a certain extent by DR.  

Figure 2-26. Z-scored heatmap showing 

Aconitase 1 (ACO1) and Aconitase 2 

(ACO2) across ageing and diets. 
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These three factors appear to influence each other (which is not surprising given the 

interdependence of many biological systems) in the following ways:  

• Inflammation decreases respiration. 

o Inflammation leads to a decrease in mitochondrial activity 153,154.  

• Inflammation affects chromatin structure. 

o Inflammation has been shown to induce chromatin remodelling 

155,156. 

• Chromatin structure changes induce inflammation 

o Reversible progeroid models show that when chromatin structure is 

returned to a non-pathogenic state, inflammation decreases157. 

• Respiration affects chromatin structure. 

o Packaging chromatin by SIRT2 requires NAD+. As  respiration 

increases NAD+ availability, this can lead to an increase in SIRT2 

activity 158. 

These three factors are highly interconnected (Figure 2-27) and proper modelling 

might reveal in depth interactions of the ageing trifecta. One possibility is that each 

factor of the trifecta can activate and enforce other factors, and once activated they 

are very stable. However, by studying this trifecta we might be able to pinpoint 

specific triggers that activate the trifecta which may be of clinical importance. It is 

also likely that these three interacting pathways act as three locks which prevent 

reversal of the cell cycle. In this case, all three pathways have to be returned to 

normal to reverse senescence thus preventing mutations affecting a single pathway 

from reversing senescence. 

SENESCENCE BLOOMING 

As seen in differential expression studies (Figure 2-7), there was a large change in 

gene expression between 15 to 24 months, followed by little changes thereafter. A 

similar result was found using network analysis (Figure 2-13). Between 15 to 24 

months, there was a stark increase in senescence markers (TAF and karyomegaly; 

Inflammation 

Chromatin structure Respiration 

153,154 

155,156 

157 

158 

Figure 2-27. Diagrammatic representation of how the senescent trifecta factors 

interact with each other. 
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Figure 2-16). During the same 15 to 24 months period the survival rate changed in 

both AL and DR (less in DR; Figure 2-3). A likely explanation for the sudden 

transcriptomic and survival rate changes could be a sudden senescence induction 

in cells during this period. This means that the mouse hepatic tissues were found to 

undergo induction of senescence in a very short time window. 

A possible mechanism for sudden induction of senescence is that senescent cells 

secrete proinflammatory factors in the senescence-associated secretory phenotype 

(SASP). SASP paracrine signaling can induce healthy cells to transition into 

senescence through the bystander effect  57.  

It is likely that once some cells become senescent in the liver tissue (be it from the 

accumulation of mutational insults, telomeric attrition, oxidative stress, or other 

reasons), these cells then secret SASP factors. SASP secretion will induce healthy 

cells to commit to the senescence transition and in turn, push a large fraction of cells 

into senescence. This senescence bloom can disproportionally age the mice in a 

very short term. The question thus arises as to whether the more gradual induction 

of ageing phenotypes can happen after a sudden senescent induction. It has been 

shown that eliminating senescent cells can significantly delay ageing-related 

pathologies 159. In doing so senescent blooming might be delayed.  

Previous mouse ageing studies have shown a sudden change in metabolism after 

18 months 160 and ageing biomarkers suddenly altered at 12 months of age 161. 

These might confirm the hypothesis that ageing involves a sporadic senescent 

bloom. 

The results of this research point to the conclusion that ageing is a sudden event. 

During a reasonably short period of time tissues and therefore organs (and perhaps 

systems), undergo a sudden senescent blooming. As a consequence of the 

senescent induction, specific age pathologies are more likely to take hold.  

This study only focused on female mice hepatic tissues, so it is not known whether 

these effects are indeed extrapolatable unto other tissues, organs, and/or species.  

An alternative explanation of the effects observed could be a survival bias, we only 

see the healthier older mice as the unhealthy ones succumb to age related illnesses. 

Therefore, showing us older mice who are healthy vs younger mice with more variety 

in their health status. However, the mice were genetically identical and had the same 

treatment and environment. Another technical issue could arise from batch effects 

(see gene counting page: Error! Bookmark not defined.) as consequence of 

sequencing the different age mice on different batches. However, if the gene 

expression changes are due to batch effects, up/downregulated genes would be 

stochastic (or derive from a technical reason such as specific nucleotide distribution, 
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gene length…) and therefore, make it unlikely to get Reactome enrichments. Another 

experiment could be performed were tissues are biopsied from the same animal in 

a longitudinal study. This study would be too hard to perform on hepatic tissue as it 

would require a liver biopsy on the same animal every few months. Perhaps looking 

at dermal tissues using small skin biopsies would be possible. However, we might 

first need validation that the senescence blooming effect happens on skin tissues. 

In order to validate the observation and interpretations of this study, we should study 

if the effect is replicated in another longitudinal study, and at the same time study if 

the effect is replicated in other tissues. Increased temporal resolution would show 

how quick and in which order senescence occur on an organ. There is a need for 

longitudinal ageing experiments with many time points, there are plenty of RNA-seq 

ageing experiments, however they usually compare a defined young age (between 

1 to 6 months in mice) to an old age (between 12 to 18 months in mice), and with 

only two timepoints the effects seen here become impossible to observe (There are 

however development studies with greater temporal resolution for developmental 

studies but those tend to stop after the animal reach maturity). More research with 

more timepoints is needed to accept the observations made in this chapter. 

The most direct way to assert this theory would be to retrieve temporal samples from 

a model organism longitudinal study (ideally short-lived chordates such as Zebrafish 

or mice). Rather than sacrificing the animal at each time point, by using skin biopsies, 

we could make a longitudinal study on the same individuals. Instead than sequence 

tissues (high cost), it will be more informative to stain for β-Galactosidase (senescent 

cell staining), γH2AX, Ki67, BrdU (former two are negative markers) and count 

senescent and non-senescent cells by flow cytometry. Plotting the results in a 
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timeline (Figure 5‑3) could either corroborate or dismiss this hypothesis. These 

methods need to be conducted in as many timepoints as possible to determine if 

senescence blooming is or not real. 
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CHAPTER 3 SENESCENCE SIGNATURES IN HUMAN CELL 

Chapter objectives: 

• To showcase the results of an in-depth bioinformatic study on post 

senescence transcription. 

• To review and investigate replication induced senescence. 

• To investigate the plasticity of senescent cells. 

• To provide an overview and bioinformatic study on ionizing radiation induced 

senescence. 

Hypothesis: 

Cells become senescent through many mechanisms (such as ageing, replicative 

limit, and IR). In Chapter 2 we studied age induced senescence in mice tissues. 

However, using public published datasets, we can interrogate the senescence 

phenotype derived from different methods for senescence induction.   

WI38 ONCOGENE INDUCED SENESCENCE 

INTRODUCTION 

In a study conducted by Tamir Chandra’s group in the Babraham Institute UK, WI38 

lung fibroblasts cells were cultured into and past oncogene induced senescence. 

The aim of the study was to investigate chromatin structure under senescence162. 

The sequencing data obtained in Chandra’s fibroblast study has been repurpose 

here to study the post senescence transcriptome. All cell culture and sequencing 

was performed by Tamir Chandra’s lab163, and the data is publicly available (Gene 

Expression Omnibus GSE95021). 

In this section we study the effects of senescence on the transcriptome, and splicing, 

by interrogating WI38 datasets that were driven to oncogene induced senescence. 
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METHODS 

WI38 data was aligned using STAR (page Error! Bookmark not defined.) however 

due to ample sequencing being  conducted in different batches, with one 

experimental replicate per batch, there was a strong batch effect (Appendix 8) 

affecting the principal component 1 of the PCA plot (Figure 3-1). 

One solution to reduce batch effect was to run the DESeq recommended SVA 

correction (Appendix 9). This normalization method decreased the batch effect. 

However, batch effect was still prevalent in the principal component 2 (Figure 3-2).   

A B 

Figure 3-1. PCA plots of WI38 samples coloured by batch number (A), and by biological sample (B). The 

biological samples are early senescence (eSen), late senescence (lSen) and proliferating (Pro) as well 

as weather they have been treated with glucocorticoids (*_GSs) or without (*_NGs); glucocorticoids 

treatments are not relevant for our study but were used to normalize and remove batch bias. 

A B 

Figure 3-2. PCA plots of WI38 samples after SVA normalization coloured by batch number (A), and by biological 

sample (B). 
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A more powerful approach to reducing batch effect is running Combat batch removal 

(Appendix 10). This method provided a strong batch effect treatment as now the 

biological samples clustered without any batch bias (Figure 3-3 A and B). However, 

when Combat batch effect removal was applied only to the non-glucocorticoid 

treated samples, an even better batch effect removal was achieved (Figure 3-3 C). 

  

A 

B 

C 

Figure 3-3. PCA plots of WI38 samples after Combat normalization coloured by batch 

number (A), and by biological sample (B). The same batch extraction performed without 

glucocorticoid treated samples showed an even better batch effect removal (C) 
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RESULTS 

Principal components analysis (Figure 3-3 C) of WI38 experiment showed that 

experimental samples distinctly separated with small intra-sample variation. 

Principal component one explains 73% of the variation and places the samples in a 

temporal sequence with a wide gap between the proliferating and senescent cells.  

Differential expression of the WI38 studies show how many genes were 

up/downregulated between individual comparisons. Figure 3-4 shows over 9000 

genes altered between proliferating and early senescence, circa 7000 genes altered 

between early senescence and late senescence, and circa 13000 genes altered 

between proliferating and late senescence. This means that there were still many 

differential expression changes occurring between early and late senescence. 

If there is a large overlap between the genes altered between proliferating and early 

senescence, and between early senescence and late senescence, it would seem 

that changes between early and late senescence could be attributed to the number 

of senescent cells increasing. However, if the genes altered are different, a 

biologically distinct post senescent effect would explain the transcriptomic changes 

between early and late senescence. 

Proliferating 
Late 

Senescence 

Early 

Senescence 

A B 

C 

Figure 3-4. Bar charts representing the up regulated  (red; P-adjusted=<0.05, lod2 >1) and down regulated (blue; P-adjusted=<0.05, lod2 

<-1) genes between time points, showing (A) genes altered between proliferating and early senescence, (B) early senescence and late 

senescence, and (C) proliferating to late senescence (Files [16]). 
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Genes up/down-regulated between proliferating and early senescent were shared 

with up/down-regulated genes in proliferating vs late senescence (Figure 3-5 A) with 

23.4% and 24% of significantly altered genes being upregulated and downregulated 

respectively in both comparisons. This indicated that altered genes between 

proliferating and early senescence tend to remain altered at late senescence.  

Surprisingly, when comparing proliferating vs early senescence and early 

senescence vs late senescence (Figure 3-5 B), the percentage of genes being 

up/down-regulated in both comparisons fell to 7.9% and 16.1% respectively. This 

indicated that although senescence is irreversible, transcriptomic changes were still 

taking place.  

Genes that were altered between proliferating and early senescence remained 

altered in late senescence (Figure 3-6 A, B). A variety of immune system genes were 

both upregulated and downregulated. Interestingly, apoptosis (R-HSA-109581) was 

found to be upregulated (not senescence) in late senescent cells. 

A B 

Figure 3-5. (A) Venn diagram showing the differences in upregulated and downregulated genes 

between proliferating cells (PRO) vs early senescent cells (EARLY) and proliferating cells vs late 

senescent cells (LATE). Each circle represents the significantly upregulated (top circles) or 

downregulated (bottom circles) genes of a specific comparison. (B) Venn diagram showing the 

difference between proliferating cells vs early senescent cells and early senescent vs late 

senescent cells. We see that the overlaps between upregulated and downregulated genes of the 

same category have by definition zero genes. Venn diagrams made using Venny 193. 
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Genes  that were altered between proliferating to early senescence and early 

senescence to late senescence (genes that continued  being 

upregulated/downregulated after early senescence; Figure 3-6), were found to 

correspond to nearly all Reactome enrichment from genes that were altered between 

proliferating and early senescence and remained altered in late senescence (Figure 

3-6), this is because by definition they have to be included. However, WNT signalling 

(R-HSA-195721), and G-protein coupled receptors (R-HSA-500792) pathways 

appear to be misregulated as they appear both up and downregulated. 

Downregulation of platelet degranulation (R-HSA-114608) was also apparent 

between proliferating to late senescent cells. 

Figure 3-6. Reactome enrichment of genes that were upregulated in proliferating (Pro) vs early 

senescence (Early) and late senescence (Late). (File [10]). 
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When looking at splicing factors genes of WI38 (Figure 3-7; R-HSA-72203), we see 

a similar effect as we saw with IMR90. We see that some genes are downregulated 

going from proliferating to early senescence (Figure 3-7 B; SRRT, SRSF2, SNRPG, 

SRRM1. SNRPB, HNRNPR. DHX9, LSM4, HNRNPA1, HNRNPA3, TRA2B, 

POLE2B, HNRNPM, POLR2L, GCFC2, SRSF7, WBP11, NCPB1), and some genes 

are upregulated during late senescence (Figure 3-7 A; U2AF1L4, CHERP. 

SNRNP25, PRPF4, PLRG1, PCF11, PPIL6, TFIP11, BUD31, SRSF9, PCBP2, 

SNRPD3, SNRPB2, CSTF3, CSTF2T, CLP1, RMB22).  

A 

B 

Figure 3-7. Z-scored heatmap showing splicing genes (R-HSA-72203) during proliferating, early senescence 

(Early) and late senescence (Late). Some genes are downregulated going into senescence (B) and some are 

upregulated during late senescence (A)  
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SPLICING 

After seeing evidence of differential expression of splicing factors and spliceosome 

(Figure 3-7), we focused on splicing analysis of the WI38. 

Splicing analysis of WI38 cells revealed a total of 382 significantly spliced events 

(Figure 3-8). But only 12 events were conserved between early senescence and late 

senescence: ZNF598, EDA2R, AFTPH, ARF1, ERBB2IP, ILKA, MIPOL1, CTSB, 

APBB3, FOPNL, DOCK7, and ENDOV. This list was too short to find significant gene 

ontology or Reactome annotations. These results showed that the splicing events 

which occurred between proliferating and early senescent cells were rarely 

conserved into late senescence. 

Reactome enrichment of the rMATS results (Figure 3-9) showed that immune 

system annotations (Infectious disease (R-HSA-5663205)) were enriched in all 

comparisons. This meant that immune system genes were not only alternatively 

spliced and continued to be alternatively spliced after early senescence, but that their 

Figure 3-8. Venn diagram showing how many genes were significantly spliced between paired 

comparisons; proliferating to early senescence (PRO_eSEN) and proliferating to late senescence 

(PRO_lSEN). As well as proliferating to early senescence and early senescence to late senescence 

(eSEN_lSEN) in WI38 cells. 

Figure 3-9. Reactome enrichment of spliced genes of WI38 cells (at least 0.05 P value and 0.05 

inclusion level difference). 

Log10(p.adjust) 
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alternative splicing increased in late senescence (showing stronger enrichment in 

early senescence vs late senescence).  

Energy metabolism was found to be enriched in both proliferating to early 

senescence and proliferating to late senescence, but not in early to late senescence. 

These results showed that alternative splicing of genes involved in energy 

metabolism splicing was mainly occurred in early senescence and was not further 

regulated between early to late senescence.  

Splicing of apoptotic genes and nonsense-mediated decay was not strongly 

significant when compared with early senescence but was found to be strongly 

significant when compared with late senescence cells. 

Splicing dysregulation was found in a variety of pathways at the induction of 

senescence, but not in late senescence.  The pathways affected (NGF, DAP12, 

PDGF, Gastring-CREB, VEGF, and EGFR) showed an increase in isoform switch 

between proliferating and late senescence, which was then subdued in late 

senescence. It is possible that alternative splicing of genes in these pathways played 

an important role in cell changes during early and late senescence. This finding 

supports a hypothesis that a strong yet ephemeral splice alteration heralds 

senescence induction. 

CONCLUSION 

Postsenescence plasticity raises many questions about the nature of cellular 

senescence, as we tend to assume (and perhaps oversimplify) that senescence is a 

reasonably static terminal cellular state. If senescence is not static and there is still 

plasticity in the post senescence phenotype, this would raise questions about the 

nature of senescence. For example, do senescent cells/tissues/organs/systems 

behave differently after they have been senescent for a certain length of time? Do 

late senescence transcriptional changes affect the cells progression towards a 

certain outcome? Do post senescent transcriptional changes increase or decrease 

cellular homeostatic abilities? 

DESeq analysis showed that late senescence was distinct from early senescence. 

This difference, however, is subtle, and perhaps consists mostly in increased 

deregulation of immune system genes. This hypothesis was supported by immune 

system Reactome annotations which were both upregulated and downregulated 

across the timeline past early senescence.  

There seems to be a splicing effect as some splicing factors are differentially affected 

in different time points.  
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Unfortunately, this experiment did not contain enough time points to assess if 

increased biological replicates would cluster depending on early/late senescence or 

on a chronological progression. Such an analysis would distinguish between two 

distinct hypothetical possibilities (Figure 3-10). One possibility is that there is a 

distinct post-senescent pathway, and experimental repetition would show distinct 

clustering of proliferating, early senescence, and late senescence (Figure 3-10 A). 

However, if late senescent changes were due to senescence led misregulation, 

clustering would be segregated by proliferating and senescent cell types (Figure 

3-10 B). However, senescence plasticity is a contributing factor in both hypotheses, 

in contrast to the current model where senescent cells become ‘transcriptionally 

frozen’.  

As there are very few studies showing late senescence alterations, it is not possible 

to determine how prominent and what role post senescence plasticity plays in 

senescent cells. More research is needed to determine if senescent plasticity only 

affects WI38 cells or cells across all eukaryotes (as seen in cotton leaves 164).  

Further understanding into the role and prevalence of senescent plasticity is also 

medically relevant. For example, does a senescent tissue’s function further 

deteriorate through post senescence plasticity? Could post senescence plasticity be 

Figure 3-10. Hypothetical PCA plots of proliferating (circle) early senescence (triangle) and late 

senescence (square) for three biological replicates (red, orange and green). (A) if there was a 

distinct post senescence change. (B) if there was no post-senescence changes and the 

observed effects were due to mis-regulation.  

Proliferating 

Proliferating 

Senescence 

Early senescence 

Late senescence 
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used to improve a senescent tissues health? The answers to these questions can 

only be determined through new research. Replicating the study with an increased 

number of parallel biological replicates would show if there is a predetermined post 

senescence program or if the changes were due to missregulation. The study should 

also be replicated across different cells types to determine the prevalence of post 

senescence plasticity. Replication across different organisms would determine if this 

effect is common across living eukaryotes. This study has raised far more questions 

than it has answered. 

WI38 show strong signs of senescence like the effects seen in the mice experiments. 

These include cell cycle arrest, immune system genes (SASPS), and splicing 

changes. There were strong splicing alteration with senescence induction 

Non-splicing based analysis of WI38 cells (DESeq, Reactome, and network analysis) 

revealed that genetic expression patterns during the onset of senescence were not 

maintained in late senescence. Similarly, splicing analysis found splicing changes 

were not maintained during early and late senescence. Although immune system 

and energy metabolism genes remained spliced, there were many spliced pathways 

(NGF, DAP12, PDGF, Gastring-CREB, VEGF, and EGFR) which were only spliced 

during early senescence and not in late senescence. 
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IMR90 IONIZING RADIATION INDUCED SENESCENCE 

INTRODUCTION 

In a study conducted by Peter Adam’s lab, aimed at elucidating the epigenetic role 

of the HIRA gene (HIR Histone cell cycle regulation defective homologue), IMR90 

cells (human myofibroblasts foetal lung cells) and senescent HIRA mutant cells, 

were cultured and sequenced after undergoing ionizing radiation (IR) induced 

senescence. Peter Adam’s lab cultured and sequenced three cohorts with three 

replicates each (Gene Expression Omnibus GSE53356). The samples we are 

interested are: senescent IMR90 without vector for control, senescent IMR90 with 

empty vector, proliferating IMR90 with empty vector.  

In this section we study the effects of senescence on the transcriptome, and splicing, 

by interrogating IMR90 cells that were driven to irradiation induced senescence. 

METHODS 

The IMR90 data were aligned to the genome by STAR 165 (page Error! Bookmark 

not defined.).  Gene expression was counted using HTSeq 108. Both senescent 

cohorts show co-cluster in principal component analysis (Figure 3-11). DESeq 

analysis of IMR90 (file [7]), showed little intrasample variation and large intersample 

variation between samples. 92% of the variance between proliferating and 

senescent samples could be attributed to senescence induced changes. 

Figure 3-11. PCA analysis show that senescent cells with 

empty vector co-cluster with senescent without a vector. 
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RESULTS 

Reactome enrichment of IMR90 for up/down genes (Figure 3-12; file [8]), showed a 

very strong downregulation of mitosis Reactome annotations (M phase (R-HSA-

68886), Mitotic Prophase (R-HSA-68875)), genome organization (Nucleosome 

assembly (R-HSA-774815), HATs acetylate histones (R-HSA-3214847), PRC2 

methylates histones and DNA (R-HSA-212300), Telomere Maintenance (R-HSA-

157579), and DNA methylation (R-HSA-5334118)). Upregulated genes were found 

to be enriched for cell death (TP53 Regulates transcription of cell death genes (R-

HSA-5633008)), immune genes (Neutrophil degranulation (R-HSA-6798695), and 

Interferon alpha/beta signalling (R-HSA-909733)). 

Figure 3-12. Reactome enrichment of upregulated and downregulated of IMR90 experiments. 
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When looking at expression of splicing factor genes of the IMR90 experiment (Figure 

3-13 ;R-HSA-72203), We see a large downregulation of splicing factor genes with a 

minority of them being upregulated, suggesting perhaps a decrease in splicing 

control. 

SPLICING 

After seeing evidence of differential expression of splicing factors and spliceosome 

(Figure 3-13), we focused on splicing analysis of the IMR90 datasets. 

Figure 3-13. Z_scored clustered heatmap of splicing genes of IMR90 

(R-HSA-72203). 
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rMATS analysis of IMR90 senescence cells found 225 significantly spliced genes 

(filtered by P-value of at least 0.05 and inclusion level difference of at least 20%) 

between proliferating and senescent cells (Figure 3-14; file [9]). Energy metabolism 

and biological oxidation were highly enriched in the spliced events. 

CONCLUSION 

IMR90 show strong signs of senescence like the effects seen in the mice 

experiments. These include cell cycle arrest, immune system genes (SASPS), and 

splicing changes. There were strong splicing alteration with senescence induction. 

Differential gene expression showed decreased mitotic and increased immune 

system gene transcription in IMR90. Splicing analysis revealed significant changes 

to metabolic pathways and an important change to an immune cell receptor CD44 

increasing perhaps its activity in a compensatory fashion. 

 

 

 

Figure 3-14. Reactome enrichment of significantly (P-value =< 0.05 and inclusion level difference 

=> 0.2) spliced genes of IMR90 during irradiation induced senescence. 
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CHAPTER 4 MALTESERS 

Chapter objectives: 

• To introduce a novel algorithm created to predict the effect of removal or 

addition of a functional motif on a protein after an alternative splicing event. 

• Present MAltESERS, a novel tool for determining functional motif changes 

in alternative splicing. 

• To review the application of MAltESERS and to study alternative splicing in 

a variety of senescence experiments. 

o In ageing mice and diet 

o Between proliferating, early senescence, and late senescence cells 

o In irradiation induced senescence cells 

INTRODUCTION 

Splicing changes often involve the inclusion or exclusion of a large domain.  It would 

be beneficial to know how changes in alternative splicing affect a protein’s function. 

Currently, each splice event is treated as an individual case. After a splicing event is 

identified, manual identification of the specific isoform is necessary. Then it is 

necessary to check if the isoforms  mRNA processing is known in the Ensemble 

database 166 (if the mRNA is processed into protein or not), or manually assert 

domain changes in the isoform changes, or do a literature search on the different 

phenotypes associated with each isoform. While the methods listed above can be 

productive, a single experimental treatment often results in hundreds of splice 

events. Researching each splice event individually becomes an impossible and 

heavily monotonous task. In addition to the large number of isoforms requiring 

manual identification, literature searches fail to provide functional results for novel 

splicing events.  

There are some solutions available for getting functional changes of alternative 

splicing. MAISTAS developed in the instituto Pasteur Fondazione Cenci Bolognetti 

in the Sapienza University of Rome, it uses machine learning in human data to 

predict structural changes between different isoforms 167. A similar tool 

SpliceDisease168 uses a curated database to relate splicing changes with diseases, 

however. 

A more practical way to summarize and study the functional consequences of 

splicing events. For this reason, we created MAltESERS. MAltESERS is a tool to 

annotate and analyse all splicing changes at once using the Prosite ps-scan 169, and 

relate these changes to functional domain changes. 
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ALGORITHM 

MAltESERS (Motif ALTernative Exons Scanner Enrichment of RNA-Seq; Git 

repository available in github.com/aLahat/maltese; Figure 4-1), is a tool written in 

Python2.7 that systematically extracts the sequences of all exons enriched (through 

other tools such as rMATS 137 or DEXSeq 109) and their respective background genes 

Figure 4-1. Diagrammatic representation of the MALTESERS algorithm. Each row of DEXSeq (a) output contains 

information about the coordinates of the exon (b). Using exon coordinates the sequence of the exon is retrieved, the 

sequence of the rest of the exons (sans the exon in question) are retrieved as well (c). ps_scan (d) is a tool that scans 

the sequences for known domains. The ps_scan output (e) is used to calculate the score for domains. The score is 

calculated by the fraction of the exon containing the motif divided by the fraction of background containing the motif 

(simplified in f). The output (g) is given for each row of the DEXSeq output. In the case where a motif is found in an exon 

and not in the background, it is returned with an ‘N’ (number) suffixing the number of motifs found in the exon. 
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and transcodes them from nucleotide sequences to amino acids. Once the genes 

and exons amino acid sequence are extracted into a FASTA format, MAltESERS 

finds known domains using the Prosite ps_scan tool 170. Prosite_scan is an open 

source tool that matches known domain types with biological significance from the 

Prosite database 171 to a source FASTA file.  

Once motifs have been found for each exon and background gene, MAltESERS 

counts the motif types for each exon and background and calculates the fold motif 

density enrichment: 

𝑆𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔2( 
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑜𝑡𝑖𝑓 𝑖𝑛 𝑒𝑥𝑜𝑛

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑜𝑡𝑖𝑓 𝑖𝑛 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 ) 

𝑆𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔2( 

length(motifs in exon)
length(exon)

length(motifs in background)
length(background)

 ) 

Score = log2( 
length(motifs in exon)×length(background)

length(motifs in background)×length(exon)
 ) 

If a motif in an exon has no representative in the background, then the score consists 

of the number of times the motif appears in the exon with an ‘N’ flag. This is important 

because if no motifs are found in the background (but are present in the exon), the 

result must not be discarded due to a simple division by zero error. 

The output consists of the input table with rows prepended with motifs enrichments. 

In addition to the main output table, three plots are produced; a box and whisker plot 

for enriched motifs, a box and whisker plot for enriched genes, and a heatmap for 

enriched motifs of genes (Figure 4-2 B, C and D). 

TESTING WITH PUBLICALLY AVAILABLE DATA 

Public datasets were used to test MAltESERS. The dataset GSE59335172 was 

chosen from the gene expression omnibus173. This study compared MDA-MB-231 

cells treated with TRA2A/B siRNA to inhibit splicing versus the same cells without 

siRNA treatment. The raw FASTQ was trimmed and filtered using Kraken101, 

trimmed to 95pb, aligned using STAR 174, and tested for splice events using rMAT137 

(Appendix 11). 

MAltESERS was tested using only spliced exons with a significance of at least 5% 

and an absolute inclusion level of at least 85% (kept high to keep the results smaller 

for presentation).  

MAltESERS outputs a table (Figure 4-2 A) as well as three plots (Figure 4-2 B, C, 

D). The main table output is based on the splicing table provided. For each motif 
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found on each row of the splice sites provided, there is a row in the output table. The 

output table contains a motif column with the motif name, log2fold density scores of 

the domain against the rest of the gene, P value calculated using a Fisher’s exact 

test, the number of motifs found in the exon (‘Motif Exon Count’), the length of the 

exon (‘Exon Len’), the number of motifs found in the background gene (‘Motif Gene 

Count’), the background gene length (‘Gene Len’), and the rest of the columns are 

the original columns of the input file provided. 

There are three plots outputted by MAltESERS. There is a table called [input file]_ 

motif.[file format] (Figure 4-2 b) with an associated csv file which has the horizontal 

box and whisker plot for each motif found and the log2score and each dot is coloured 

by the inclusion level difference as well as a box and whisker representing the 

median, and the quartiles of the data distribution. This plot shows if some motifs are 

overrepresented regardless of the gene they were spliced from or into. Imagine as 

an example, that a specific domain is highly repressed or included in many genes. It 

would be difficult to notice if only looking at individual genes. 

A similar plot [input file]_exons.[file format] (Figure 4-2 c) and its associated csv file 

represents the enrichment of motifs (regardless of motifs) for each exon spliced. This 

shows what genes are being affected the most by splicing. A third plot [input 

b 

c 

d 

a 
motif logFold2 Pvalue Motif  

Exon 
 Count 

Exon  
Len 

Motif  
Gene  
Count 

Gene  
Len 

Gene  
Symbol 

chr Strand Exon 
Start_0base 

Exon 
End 

PValue Inc  
Level  
Difference 

CK2_PHOSPHO_SITE 6.81 9.30E-08 4 32 140 126040 THRB 3 - 24297225 24297323 1.77636E-15 -0.933 

PKC_PHOSPHO_SITE 5.81 2.98E-05 3 32 210 126040 THRB 3 - 24297225 24297323 1.77636E-15 -0.933 

CK2_PHOSPHO_SITE 1.5 5.69E-04 16 174 146 4482 ZNF75A 16 + 3308312 3308836 8.02691E-14 0.865 

ASN_GLYCOSYLATION 2.5 7.57E-03 4 34 337 16148 NAP1L1 12 - 76059776 76059878 1.12244E-13 0.909 

CK2_PHOSPHO_SITE 2.49 8.36E-03 4 22 506 15673 KHDRBS1 1 + 32038551 32038619 3.7701E-12 1 

MYRISTYL 1.77 1.33E-02 6 35 377 7482 XPA 9 - 97689533 97689639 0 0.907 

MYRISTYL 1.59 2.22E-02 6 34 948 16148 NAP1L1 12 - 76059776 76059878 1.12244E-13 0.909 

CAMP_PHOSPHO_SITE 1.83 3.07E-02 4 161 104 14833 DSCR3 21 - 37231492 37231975 5.22572E-09 -0.889 

MYRISTYL 0.73 6.02E-02 18 174 279 4482 ZNF75A 16 + 3308312 3308836 8.02691E-14 0.865 

CK2_PHOSPHO_SITE 0.78 1.53E-01 8 161 428 14833 DSCR3 21 - 37231492 37231975 5.22572E-09 -0.889 

PKC_PHOSPHO_SITE -0.48 5.83E-01 6 174 216 4482 ZNF75A 16 + 3308312 3308836 8.02691E-14 0.865 

MYRISTYL 0.13 7.53E-01 12 161 1007 14833 DSCR3 21 - 37231492 37231975 5.22572E-09 -0.889 

Figure 4-2. MAltESRS output. (a) original output lines are prepended with MAltESERS domains (blue), the log fold 2 significance, 

and the numbers of domains found in the exon and the rest of the gene. Each output line is repeated for each domain that was 

found but input lines with no motifs found are not present in the output (some columns were removed for display). (b) a box and 

whiskers plot showing log fold 2 scores of motifs found. The motifs found are also coloured by the change (Inc Level Difference). 

(c) a box and whiskers plot showing the log fold 2 scores of motifs by genes, also coloured by the change. (d) clustered heatmap 

showing the log fold 2 scores of motifs and their gene exon.  
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file]_motifExon.[file format] (Figure 4-2 d) and an associated csv file is a clustered 

heatmap of domain enrichment showing the most significantly enriched motifs as 

dark spots and enables to visually understand which domains are affected and by 

how much on the gene in question. 

MAltESERS found some motifs that were significantly represented in the exons 

provided (Figure 4-2). This includes; cAMP and cGMP dependent protein kinase 

phosphorylation site (CAMP_PHOSPHO_SITE), Casein kinase II phosphorylation 

site (CK2_PHOSPHO_SITE), Protein kinase C phosphorylation site 

(PKC_PHOSPHO_SITE), N-glycosylation site (ASN_GLYCOSYLATION), and an N-

myristoylation site (MYRISTYL). 

MAltESERS found two highly enriched and significant phosphorylation sites (CK2 

phosphorylation with P=9.3E-8 and PKC phosphorylation with P=3E-5) in the thyroid 

hormone receptor B (THRB). This hormone receptor needs to be phosphorylated in 

order to function 175 and so this splicing event might be important in the cell's 

response to thyroid hormone. Even though this motif was enriched by two types of 

phosphorylation sites, it is important to note that the motifs for Casein kinase II and 

Protein Kinase C phosphorylation motifs ([ST]-x(2)-[DE] and [ST]-x-[RK] 

respectively) cannot overlap and are mutually incompatible. Therefore, both domains 

are independent of each other and do not represent the same domain 

mischaracterized as two plausible domains.  

MAltESERS also found splicing changes at a significant CK2 phosphorylation site in 

p68 (KHDRBS1; P=0.008) which is activated by phosphorylation 176,177. 
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TESTING WITH MICE AGEING DATA 

Following the splicing analysis of the mice ageing experiments we use MAltESERS 

for further analysis of the rMATS data (Figure 4-3; looking for rMATS events with a 

significance of at least 0.001 and a differential inclusion level of 50%; splicing 

example in (Appendix 6)). MAltESERS identified 395 significant motifs in various 

splicing events. The motifs returned by MAltESERS were significantly differentially 

spliced, in a treatment dependant manner. For example, a bipartite nuclear 

localization signal (NLS_BP; domain needed for a protein to be translocated into the 

nuclei) was highly enriched in an exon of Bicc1 (RNA binding protein), that was 

spliced out significantly at AL15 but not in AL24, Young, or DR15. According to 

COMPARTMENTS subcellular location database178, Bicc1 is present in the nucleus, 

therefore losing its nuclear localization signal might change its functionality. Another 

interesting example was Dennd1b a T-cell receptor that is alternatively spliced out 

Figure 4-3. Top 40 MAltESERS results heatmap showing the log2 (density difference of motif 

between spliced exon and rest of gene; “Y” samples are young 3-month AL).  
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in DR24 (compared with DR15 and DR30). The alternative spliced exon contains a 

phosphorylation site. Removal of a phosphorylation site is likely to be relevant for 

the protein’s function, since Denn1b is activated by phosphorylation, DR24 mice 

might lack Dennd1b function. This would lead to decreased immune sensitivity in 

DR.  Dip2c (Disco Interacting Protein 2 Homolog C) has an exon containing an RGD 

tripeptide which is crucial for cell surface receptors. MAltESERS found the Dip2c 

protein to have increased RGD tripeptide splicing in DR24. Dip2c is located in the 

plasma membrane178 and so this exonic loss might impair its function. Another 

interesting spliced gene found in MAltESERS was Sorbs2, an adapter protein that 

links ABL kinases to the cytoskeleton. MAltESERS found increased excision of the 

Sorb2 zinc finger domain with age regardless of diet.  

Differential gene expression changes (page 43) showed few genes significantly 

altered past 24 months of age. However, rMATS returned many changes in 

alternative splicing between both age and diet comparisons. Lipid transport genes 

were spliced when comparing 15 months DR to 30 months DR and in AL at 30 

months. This means that lipid splicing might be affected by diet. 

rMATS analysis also showed a splicing of spliceosomic genes between 24 to 30 

months, this might be a cause of the continual splicing effects past senescence. 

Splicing changes to splicing genes also occurred between AL to DR (could this 

compensate for ageing effects?). 

In conclusion, rMATS showed significant changes to lipid transport and splicing 

genes in both ageing and diet. 
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TESTING WITH IMR90 DATA 

MAltESERS analysis of IMR90 splicing data () revealed many significant domains 

altered by irradiation induced senescence (Figure 4-4). ZNF207 is a kinetochore and 

microtubule binding protein with DNA binding functions. Alternative splicing and 

excision of a DNA binding leucine zipper in ZNF207 was found with senescence. 

C5orf42 is a ciliary protein whose activation is dependent on phosphorylation179. 

C5orf42 gained a phosphorylation site with senescence. USP21 is a deubiquitinase, 

that stabilizes Nanog (an important protein that maintains pluripotency of stem cells) 

when phosphorylated180. During senescence, USP21 loses a phosphorylation site 

which may affect stem cell pluripotency. CD44 is an important cell receptor that 

allows leukocyte migration during inflammation when phosphorylated181. During 

senescence MAltESERS showed that CD44 phosphorylation sites were increased 

in comparison with proliferating cells. This might facilitate inflammation in tissues.  

Figure 4-4. MAltESERS results heatmap 

showing the log2(density difference of motif 

between spliced exon and rest of gene).  
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TESTING WITH WI38 DATA 

Following the splicing analysis conducted on the WI38 datasets (page 67), we run 

MAltESERS (Figure 4-5; file [10])  which returned 303 enriched spliced domains. 

Only enriched spliced domains found to be maintained in late senescence were 

analysed further. Two of the most significant domains included pertained to Clip1 

and AFTPH.  CLIP1 regulates microtubule dynamics by binding to the microtubule 

plus end. CLIP1 is activated by mTOR dependant phosphorylation. MAltESERS 

found the CLIP1 isoform with a phosphorylation site to be more prominent in 

senescence and maintained in late senescence. Alternative splicing of the CLIP1 

phosphorylation site may regulate the mTOR downstream effects on the 

cytoskeleton. AFTPH (Aftiphilin) is a vesicle binding and transport protein, which 

gains a tyrosine phosphorylation site in senescence. It is not known if this AFTPH is 

phosphorylated or not, and the role of AFTPH in senescence is currently unknown. 

In the WI38 senescence and late senescence study, Maltesers found an interesting 

target of regulatory splicing, CLIP1. MAltESERS found phosphorylation sites of 

Figure 4-5. Top 40 MAltESERS results heatmap showing the log2(density 

difference of motifs between spliced exons and the rest of the gene).  
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CLIP1 to be more prevalent in late senescence. CLIP1 binds vesicles to microtubules 

and needs to be phosphorylated by mTOR to be active. This gain in phosphorylation 

site containing isoforms might increase CLIP1 dependant vesicle transport during 

senescence for the senescent associated secretory pathway. 

CONCLUSION 

MAltESERS systematically finds possible motifs affected by splicing. Some of these 

motifs are already present in the literature but many putative motifs are not annotated 

yet. MAltESERS returns putative motifs that are lost or gained during a splice event. 

Therefore, MAltESERS can be used to predict the effects of splicing on a protein. 

However, MAltESERS likely outputs false positives which are impossible to disprove 

unless experimental techniques are utilized. For example, we would need to prove 

that a putative phosphorylation motif is in fact a developed phosphorylation region. 

However, MAltESERS is a useful tool for initial assessment regarding the functional 

effects of alternative splicing on a gene in a more practical fashion. 

A challenge in bioinformatic data analysis is to find important factors in gigabytes of 

data. This is extremely hard when focusing on one datum at a time, as it would take 

weeks to scan through all significant events. In addition, scanning data manually is 

open to a large number of biases, such as cherry picking, or simply disregarding 

relevant results out of sheer exhaustion. MAltESERS significantly decreases the 

number of significant events worth investigating manually. 
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CHAPTER 5 CONCLUSIONS 

Senescence Trifecta  

Transcriptomic changes across all experimental data sets showed three major 

senescent effects; immune system (including Senescence-Associated Secretory 

Pathway), chromatin structural changes, and metabolic changes. These changes 

were observed in the WI38 post senescence plasticity experiment (immune system 

mostly), and the IMR90 irradiation induced senescence experiment (chromatin 

structure). Splicing analyses also showed significant isoform expression in genes for 

chromatin structure and metabolic changes in ageing mice. In addition to this, 

immune system genes were increasingly spliced in WI38 experiments, and biological 

respiration gene regulators were found spliced in IMR90 senescence. 

As argued previously (page Error! Bookmark not defined.) each component of the 

biological trifecta is affected by the other two components. These three senescent 

factors may work in concert to reinforce each other and ensure the irreversibility of 

senescence. However, a proper modelling study needs to be conducted to properly 

ascertain this theory.  

Senescence is important for inactivating cell division of cells with DNA damage which 

might become tumorigenic182. In order to stop mitotic activity in oncogenic cells, 

senescence has to be irreversible (although experimental exceptions do exist183). 

For a certain cellular (or any system) state to be irreversible, there must be redundant 

mechanisms to inaction (akin to using more than one lock to secure a door). If there 

is DNA damage which might compromise one of the trifecta pathways, senescence 

could still be established by the other two reinforcing nearly independent 

mechanisms. After all, if senescence was only maintained by one pathway, a single 

well-placed mutation might reverse it and lead to a pathogenic tumorigenic 

phenotype. 

It is important to consider the complexity of all the pathways involved indirectly in 

senescence. It is possible that these observations are based on Reactome biases. 

As both metabolism (contains 2116 genes) and immune system (contains 2229 

genes) are amongst the largest Reactome classes. However, there are numerous 

experimental studies that support our thoughts. Systemic inflammation is common 

with ageing 69,184,185, as is metabolic changes 186. 

Ageing is an Event or a Process?  

The results of the mice ageing experiments propose an interesting question. 

Senescence induction was found to appear in a reasonably short period of time. The 

abrupt transcriptomic changes corresponded to a decrease in mouse survival rates. 
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These results were consistent with a sudden (possibly organism wide) onset of 

senescence. Considering this finding, it may be more accurate to view the cause of 

ageing as a sudden shift in cellular transcriptomic activity, instead of a gradual 

degradation in health over time.   

One likely mechanism for sudden senescence induction is the senescence 

bystander effect 57. The bystander effect occurs as the senescent secretory 

associated pathway initiates the release of inflammatory factors which can induce 

senescence in nearby cells. This effect might induce a rapid organ senescent 

blooming in tissues. This is because when cells become senescent in a tissue, the 

non-senescent cells are more likely to follow suit. Previous experiments which 

induced apoptosis in early senescent cells, found an increase in fitness and health 

in the mice 187.  

Currently, the dynamic of continual ageing in tissues past senescent induction is 

unknown. For example, if a liver becomes mostly senescent at an age of 50 years, 

will the liver tissues remain transcriptomically similar at an age of 80 years (besides 

accumulation of metabolic waste)? could a sudden senescence onset produce a 

gradual phenotype onset? 

DESeq analysis was conducted on replication induced senescent cells to gain insight 

into the amount of transcriptomic plasticity post senescence. The mice ageing and 

WI38 trans-senescence experiments showed that the cells had changes between 

early and late senescnce. Both WI38 and mice hepatic cells revealed that past 

senescent induction, the splicing landscape was still being altered (seen in both 

WI38 and mice liver) as well as the transcriptome landscape (seen only in WI38). It 

is possible that transcriptomic plasticity post senescence is universal in multicellular 

organisms (although very few late senescence experiments have been reported). 

It was not evident if the late senescence pathway was predefined or resulted from 

missregulation. If it is based on missregulation, then senescent tissues will gradually 

deviate from the senescent phenotype. This could lead to an eventual 

tissue/organ/systemic failure leading to age-related mortality. 

A plausible explanation for this event would be a survival effect. As the study did not 

follow individual mice, as the mice aged, the probability of obtaining samples from 

exceptionally healthy mice increased. Meaning that the longest-lived mice were 

disproportionally healthy compared with the young mice. Therefore, it could be 

possible that a survivor effect would alter the results. It is however important to 

consider that all the mice were genetically identical and were kept in the same 

conditions in order to minimize any individual sample difference. 
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As ageing is perhaps the most common inducer of human morbidity and mortality, 

there is a strong movement to treat it as a disease. Treatments to ageing could 

possibly lead to biological immortality in humans188 

. However, with consideration for the senescent blooming hypothesis, speculative 

antiaging senescence targeting therapies would have little effect on patients who 

have already gone through the senescent blooming. Therefore, even if antiaging 

senescent targeting therapies appear, the aged demographic will be unable to 

receive it. As expressed earlier (page 85) senescence appears to be maintained by 

three nearly independent pathways. Therefore, reversal of senescence would 

involve navigating a complicated and multiplexed network of cellular interactions. 

Future Research Questions 

Post Senescence Plasticity 

The observation of post senescence plasticity, raises three questions; how prevalent 

this effect in different tissues or taxa is, whether these changes are due to 

missregulation or a defined late senescence differentiation pathway, and can these 

changes lead to a pathogenic phenotype leading to tissue/organ/system failure? 

The prevalence of late senescence plasticity can be addressed by screening 

transcription changes in proliferating, senescent, and late senescent cell lines 

derived from as many organisms and tissues as possible. The falling cost of 

sequencing would enable the analysis of more cell lines within budgetary constraints. 

The result would be apparent in a simple PCA plot (Figure5‑1) where tissues or 

organisms with post senescence plasticity would have non-overlapping early and 

late senescence clusters, while cells with no late senescence plasticity would have 

overlapping early and late senescence clusters. 

Figure 5‑1. PCA showing hypothetical results for postsenescence plasticity study. Here the ageing 

effect is seen in the principal component 1. Both tissues 1 and 2 show post senescence plasticity, 

(non-overlapping early and late senescence). However, tissue 3 shows no senescence plasticity as 

early and late senescence overlap. 
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In order to determine if late senescence plasticity is a predetermined differentiation 

pathway or due to cumulative missregulation, a similar experiment can be conducted 

where clonal tissues are grown in the same conditions independently (Figure 5‑2). 

We would expect to see late senescence expression in a PCA plot diverge if the 

plasticity is due to missregulation (Figure 5‑2A), or cluster together (albeit with some 

batch effects) if the changes were predetermined in the Waddington developmental 

landscape (Figure 5‑2B). 

Perhaps a more difficult and important question is whether late senescence plasticity 

is pathologically relevant. This might be difficult to study as we would need to know 

in detail the cause of a specific age-related organ failure and whether it was trigged 

by a gene affected during senescent plasticity. 

Senescence Trifecta Modelling 

To corroborate this triple senescent lock model in which the senescence trifecta acts 

as a way to impede senescent reversal, a very careful and complex model needs to 

be created using system biology techniques. As some level of transcriptomic data is 

available from the mice experiments and interactions between different pathways 

Figure 5‑2. Hypothetical PCA plots to study if late senescence plasticity is due to 

missregulation (A) or a biological predefined developmental pathway (B) 
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are available in Reactome 114, a top-down approach can be used for modelling. If the 

model is successful, the ultimate test is to find targets on each of the three pathways 

to create a cell line with reversible senescence. 

This is undoubtedly a difficult project, but it might open the door for development of 

senescence reversal clinical treatments which could significantly extend lifespan 

(especially healthy lifespan) on patients, while minimising increased risk of cancer. 
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APPENDIX 1. AGE ALTERATION OF METAL LANDSCAPE 

During analyses of the mice dietary longitudinal study, changes in metalloprotein 

expression were found (Figure 0-1). This might lead to alterations in metal regulation 

both intra or intercellular. Specifically, iron genes were found to be altered with age 

(except Aconitase2 which was upregulated in dietary restriction). Magnesium was 

also strongly affected by age and diet. It is known that iron 189,190, magnesium 191 

missregulation and accumulation happens in senescent cells. 

In order to investigate the change in the metal landscape with ageing, biological 

samples extracted from the mice would need to be analysed for metallic ion 

concentrations. However, as the mice longitudinal study had already finished, there 

were few samples left from those mice to perform additional tests.

Figure 0-1. Unclustered z scored heatmap showing metalloprotein 

genes (sorted by their metal). 
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APPENDIX 2. MICROSCOPY ANALYSIS OF MICE TISSUES 

Imaging was conducted by Mikolaj Ogrodnik at the Newcastle University Institute for 

Ageing, Institute for Cell and Molecular Biosciences141. Samples were prepared 

according to Wang, Jurk, Maddick, Nelson, Martin-Ruiz, and Von Zglinicki131. The 

OCT-embedded hepatic samples were washed three times with PBS and mounted 

with DAPI and imaged. Karyomegaly frequency was imaged by maximum Z 

projections with a nucleus being considered enlarged if the nuclear area was 127 

µm2. 

For telomere-associated foci counting, samples were first stained with γ − H2A.X 

(S139 no. 9718, rabbit monoclonal), then washed in PBS three times for 5 minutes 

each. Sections were then cross-linked with 4% paraformaldehyde for 20 minutes, 

rewashed with PBS three time for 5 minutes each and dehydrated and dried by 

graded ethanol for 3 minutes each. Sections were denatured at 82◦C for 10 minutes 

in hybridization buffer (70% formamide, 25mM MgCl2, 0.1 Tris (pH 7.2), 5% blocking 

reagent) containing 2.5µgml−1 telomere-specific Cy-3-labelled (CCCTAA). Slides 

were then washed with 70% formamide (10 min), then twice with ssc (15 min), then 

twice with scc ad PBS (10 min), sections were then incubated with DAPI mounting 

media and imaged. Number of TAFs per cells were assessed by quantification of 

overlapping telomere probe and γ − H2A.X. 
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APPENDIX 3. GO ENRICHMENT FOR CLUSTER FISHED GENES FOR 

CROSSOVER MICE SENESCENCE 

Table showing all significant GO annotations for the cluster fished genes for 

crossover mice senescence. Some annotations have been coloured by type of 

annotation; immune system, cell-cell binding, and lipid metabolism. 

 

5.5 
 fold Enrichment P-value 

immune system process (GO:0002376) 2.51 6.48E-08 

positive regulation of biological process (GO:0048518) 1.66 7.55E-07 

biological adhesion (GO:0022610) 2.96 1.64E-06 

regulation of cell motility (GO:2000145) 3.36 1.82E-06 

regulation of cell migration (GO:0030334) 3.43 1.83E-06 

regulation of locomotion (GO:0040012) 3.19 2.44E-06 

cell adhesion (GO:0007155) 2.93 3.91E-06 

regulation of localization (GO:0032879) 2.05 5.99E-06 

regulation of multicellular organismal process (GO:0051239) 1.99 7.26E-06 

regulation of cellular component movement (GO:0051270) 3.09 9.81E-06 

cell activation (GO:0001775) 3.59 1.19E-05 

locomotion (GO:0040011) 2.7 4.05E-05 

regulation of immune system process (GO:0002682) 2.49 1.90E-04 

positive regulation of multicellular organismal process (GO:0051240) 2.25 2.03E-04 

regulation of molecular function (GO:0065009) 1.91 4.61E-04 

regulation of response to stimulus (GO:0048583) 1.76 5.01E-04 

regulation of developmental process (GO:0050793) 1.93 6.22E-04 

leukocyte activation (GO:0045321) 3.49 7.99E-04 

single organismal cell-cell adhesion (GO:0016337) 3.47 9.11E-04 

cell migration (GO:0016477) 2.87 1.09E-03 

positive regulation of hydrolase activity (GO:0051345) 3.06 1.20E-03 

positive regulation of cell adhesion (GO:0045785) 3.86 1.69E-03 

regulation of cell adhesion (GO:0030155) 2.99 1.84E-03 

negative regulation of cellular process (GO:0048523) 1.61 2.10E-03 

positive regulation of cellular process (GO:0048522) 1.56 2.27E-03 

cell-cell adhesion (GO:0098609) 3.11 2.29E-03 

single organism cell adhesion (GO:0098602) 3.27 2.69E-03 

single-organism process (GO:0044699) 1.23 3.09E-03 

actin cytoskeleton organization (GO:0030036) 3.56 3.39E-03 

localization of cell (GO:0051674) 2.67 3.60E-03 

cell motility (GO:0048870) 2.67 3.60E-03 

regulation of hydrolase activity (GO:0051336) 2.4 4.39E-03 

regulation of catalytic activity (GO:0050790) 1.96 4.73E-03 

negative regulation of biological process (GO:0048519) 1.56 5.27E-03 

positive regulation of molecular function (GO:0044093) 2.14 5.67E-03 

regulation of biological quality (GO:0065008) 1.74 5.69E-03 

regulation of multicellular organismal development (GO:2000026) 2 6.15E-03 

response to external stimulus (GO:0009605) 2.11 6.16E-03 

defense response (GO:0006952) 2.46 6.70E-03 

positive regulation of developmental process (GO:0051094) 2.21 7.15E-03 

positive regulation of catalytic activity (GO:0043085) 2.29 7.28E-03 

response to stress (GO:0006950) 1.75 7.72E-03 

cellular component organization (GO:0016043) 1.55 8.26E-03 

actin filament-based process (GO:0030029) 3.34 9.55E-03 

localization (GO:0051179) 1.54 1.16E-02 

leukocyte differentiation (GO:0002521) 3.69 1.23E-02 

regulation of signal transduction (GO:0009966) 1.81 1.32E-02 

response to stimulus (GO:0050896) 1.36 1.51E-02 

lymphocyte differentiation (GO:0030098) 4.22 1.56E-02 

regulation of anatomical structure morphogenesis (GO:0022603) 2.4 1.65E-02 

negative regulation of multicellular organismal process (GO:0051241) 2.3 1.71E-02 

regulation of leukocyte differentiation (GO:1902105) 4.14 1.95E-02 

cell differentiation (GO:0030154) 1.63 2.14E-02 

immune response (GO:0006955) 2.49 2.18E-02 

regulation of cellular component organization (GO:0051128) 1.8 2.30E-02 

phagocytosis (GO:0006909)  > 5 2.39E-02 

lymphocyte activation (GO:0046649) 3.38 2.39E-02 

lipid modification (GO:0030258)  > 5 2.76E-02 

cytoskeleton organization (GO:0007010) 2.43 3.79E-02 

regulation of vasculature development (GO:1901342) 4.16 3.83E-02 

cellular component organization or biogenesis (GO:0071840) 1.5 3.95E-02 

positive regulation of immune system process (GO:0002684) 2.61 3.96E-02 

positive regulation of metabolic process (GO:0009893) 1.6 4.21E-02 

regulation of actin filament-based process (GO:0032970) 3.52 4.39E-02 

negative regulation of blood vessel morphogenesis (GO:2000181)  > 5 4.73E-02 
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APPENDIX 4. REGULATION OF MITOCHONDRIAL GENE EXPRESSION BY TRNA 

AVAILABILITY 

Differential expression analysis showed mitochondrial tRNAs to be significantly 

altered between different treatments (Figure 0-2 A). For example, the tRNA for 

alanine is more abundant after feeding than after fasting (PFAL and PFDR), and the 

tRNA for serine is highly present during youth (3 to 15 months, 3AL, 15AL, and 

15DR). Because the tRNA landscape is flexible, and mitochondrial genes are 

homogenous (Figure 0-2 B) in their amino acid content, we can easily assume that 

a different tRNA landscape will affect the expression of mitochondrial genes.  

Figure 0-2. (A) Expression of mitochondrial tRNA for different amino acids at different 

treatments (z-scored). (B) Aminoacid fraction of four mitochondrial genes. (C) Plot 

representing the mRNA changes, the expected effect of different tRNA landscape, and the 

expected expression levels for mitochondrial genes. 

∆𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∆𝑅𝑁𝐴 ×
∆𝑚𝑡𝑇𝑎 × 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑎) + ⋯ + ∆𝑚𝑡𝑇𝑣 × 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑣)

20
 

Equation 1. Simplistic model on how gene expression was affected both by changes in RNA 

and by the changes in tRNA landscape (∆𝒎𝒕𝑻𝑿) and the fraction of the gene composed of a 

specific aminoacid (𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏(𝑿)). 
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A simplistic model can be designed where we assume that the more a tRNA is 

present the faster a gene will be translated into protein (depending on the fraction of 

the protein the amino acid in question is needed for (Equation 1)). When applying 

this model comparing expression and tRNA landscape among two arbitrary samples 

(Figure 0-2 C) some genes were found highly affected. According to RNA content 

alone, it seemed that mt-ATP8 was upregulated. However, the tRNA landscape 

seems very ‘hostile’ to mt-ATP8 so the model predicts less mt-ATP8 translation even 

with increased RNA transcription. Mt-ND5 had a lower expression but with a more 

‘favourable’ tRNA landscape, so its translation levels seem unaltered.  

This model might be too simplistic as it does not account for aminoacyl-tRNAs 

availability (observable in RNA-seq) and amino acid availability (not observable in 

RNA-seq). 

This model and question were formulated on mitochondrial genes for two reasons. 

A practical reason being that during sequencing nuclear tRNAs were filtered out and 

so were not available for analysis. Another perhaps more theoretical reason is that 

there are very few genes in the mitochondria (yet all very important for energy 

metabolism) making it plausible to regulate gene expression by alterations of the 

tRNA landscape. However, there are circa 20,000 genes in the human genome and 

so its regulation by alteration of tRNA landscape seems much more difficult, as 

regulation of individual genes would not be possible.  

A parallel study which focused on mitochondrial ageing using the same tissues from 

the sequenced mice utilized proteomic analysis by mass spectrometry. However, do 

to time constraints, further investigation of mitochondrial protein synthesis by tRNA 

regulation was not feasible. 
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APPENDIX 5. LONG NON-CODING RNA STUDY ON MICE AGING DATA. 

Reactome enrichments on ageing and diet show changes in splicing and lncRNAs 

(Figure 2-11 and Figure 2-15). These changes largely occurred between 15 to 24 

months of age, which corresponds to a drastic increase in mouse death rate (Figure 

2-3). During these two timepoints, a clear demarcation between healthy young mice 

and feeble dying mice was present. Long non-coding RNAs followed a similar trend 

to differential expression analysis (Figure 0-3), with most changes occurring between  

 

Figure 0-3. (top) Differential expression of long non-coding RNAs. Each plot represents the genes 

upregulated (on top) or downregulated (on the bottom) in a log10 scale between the treatments of 

the mice neighbouring the plot (ex. Plot I represents the changes between 3 months AL and 15 

months AL). Plots VII, X, and XI represent the changes that are consistent between AL to DR (VII), 

15 to 24 (X) and 24 to 30 (XI). (Bottom) diagrammatic representation of the varying types of 

lncRNAs studied. 



 

104 

 

15 to 24 months, and negligible changes thereafter.  During the 15 to 24 month’s 

time points, there was a decrease in antisense lnRNAs (compared to upregulated 

antisense lncRNA). Long non-coding RNAs were extracted using their respective 

GTF file annotation (GRCm38 release 91). 

Reactome enrichment for long non-coding RNAs (Figure 0-4) showed that 

metabolism (R-MMU-1430728; including amino acid synthesis (R-MMU-71291) and 

gluconeogenesis (R-MMU-70263)) was downregulated at an increased age. 

  

Figure 0-4. Reactome enrichment of 

differentially expressed long non-

coding RNAs 
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APPENDIX 6. SASHIMI PLOT SHOWING DETECTED SPLICING EXAMPLE OF 

MICE AGEING DATA. 

 

A sashimi plot showing a retained intron detected on chromosome 5 showing a 

retained intron in AL for MRPS17, a mitochondrial riboprotein.  

DR 

AL 

1297168
66

1297156
83

Chr5  
MRPS17
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APPENDIX 7. SASHIMI PLOT EXAMPLE OF MALTESERS ANALYSIS OF AGEING 

MICE 

 

BICC1      chr10:70927698-70927809 

15 months 
AL

3 months AL 
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APPENDIX 8. WI38 DIFFERENTIAL EXPRESSION WITHOUT BATH CORRECTION 

library("sva")  
library(DESeq2)  
countdata = read.table('counts/merged.csv',header =TRUE,row.names=1,sep=',')  
countdata = round(countdata) countdata = as.matrix(countdata)  
coldata = data.frame( experiment= c( 'lSen_NGSs', 'eSen_NGSs', 'eSen_GSs', 'eSen_GSs', 
    'Pro_NGSs', 'Pro_GSs', 'eSen_NGSs', 'eSen_NGSs', 
    'lSen_NGSs', 'Pro_NGSs', 'eSen_GSs', 'Pro_GSs',  
    'Pro_NGSs', 'Pro_GSs', 'lSen_NGSs'),  
  batch = c( '3','2','2','3','2','1','3','1','1','1','1','3','3','2','2'), 
  batchEffect=c( 'B','B','B','B','B','A','B','A','A','A','A','B','B','B','B'), 
  row.names=colnames(countdata) )  
dds <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata,  
   design =~batchEffect+experiment)  
dds <- DESeq(dds)  
rld <- rlogTransformation(dds)  
pdf('DESeq/deseq.pdf')  
plotPCA (rld, intgroup = c('experiment'))  
plotPCA (rld, intgroup = c('batchEffect'))  
sampleDists <- as.matrix(dist(t(assay(rld))))  
heatmap(sampleDists)  
plotDispEsts(dds)  
dev.off()  
norm <- counts(dds,normalize = T)  
head(norm)  
write.table(norm,'DESeq/normCounts.counts')  
save.image(file = 'DESeq/Ranalysis.r') 
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APPENDIX 9. WI38 DIFFERENTIAL EXPRESSION WITH SVA BATCH 

CORRECTION 

library("sva")  
library(DESeq2)  
countdata = read.table('counts/merged.csv',header =TRUE,row.names=1,sep=',')  
countdata = round(countdata) countdata = as.matrix(countdata)  
coldata = data.frame( experiment= c( 'lSen_NGSs', 'eSen_NGSs', 'eSen_GSs', 'eSen_GSs', 
    'Pro_NGSs', 'Pro_GSs', 'eSen_NGSs', 'eSen_NGSs', 
    'lSen_NGSs', 'Pro_NGSs', 'eSen_GSs', 'Pro_GSs',  
    'Pro_NGSs', 'Pro_GSs', 'lSen_NGSs'),  
  batch = c( '3','2','2','3','2','1','3','1','1','1','1','3','3','2','2'), 
  batchEffect=c( 'B','B','B','B','B','A','B','A','A','A','A','B','B','B','B'), 
  row.names=colnames(countdata) )  
mod = model.matrix(~as.factor(experiment) + as.factor( batchEffect),data=coldata)  
fit = lm.fit(mod,t(countdata))  
countdata=(t(combat_edata$fitted.values))  
countdata[countdata<0]=0  
storage.mode(countdata) = "integer"  
dds <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata,  
   design =~batchEffect+experiment)  
dds <- DESeq(dds)  
rld <- rlogTransformation(dds)  
pdf('DESeq/deseq.pdf')  
plotPCA (rld, intgroup = c('experiment'))  
plotPCA (rld, intgroup = c('batchEffect'))  
sampleDists <- as.matrix(dist(t(assay(rld))))  
heatmap(sampleDists)  
plotDispEsts(dds)  
dev.off()  
norm <- counts(dds,normalize = T)  
head(norm)  
write.table(norm,'DESeq/normCounts.counts')  
save.image(file = 'DESeq/Ranalysis.r') 
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APPENDIX 10. WI38 DIFFERENTIAL EXPRESSION WITH COMBAT CORRECTION 

library("sva")  
library(DESeq2)  
countdata = read.table('counts/merged.csv',header =TRUE,row.names=1,sep=',')  
countdata = round(countdata)  
countdata = as.matrix(countdata)  
coldata = data.frame( experiment= c( 'lSen_NGSs', 'eSen_NGSs', 'eSen_GSs', 'eSen_GSs', 
    'Pro_NGSs', 'Pro_GSs', 'eSen_NGSs', 'eSen_NGSs', 
    'lSen_NGSs', 'Pro_NGSs', 'eSen_GSs', 'Pro_GSs',  
    'Pro_NGSs', 'Pro_GSs', 'lSen_NGSs'),  
  batch = c( '3','2','2','3','2','1','3','1','1','1','1','3','3','2','2'), 
  batchEffect=c( 'B','B','B','B','B','A','B','A','A','A','A','B','B','B','B'), 
  row.names=colnames(countdata) )  
batchEffect = coldata$batchEffect  
countdata = (countdata[(rowVars(countdata)) > 0,])  
modcombat = model.matrix(~1, data=data.frame(countdata))  
combat_edata = ComBat(dat=(countdata), batch=batchEffect, mod=NULL, par.prior=TRUE, prior.plots=FALSE) 
countdata=(t(combat_edata$fitted.values))  
countdata[countdata<0]=0  
storage.mode(countdata) = "integer"  
dds <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata,  
   design =~batchEffect+experiment)  
dds <- DESeq(dds)  
rld <- rlogTransformation(dds)  
pdf('DESeq/deseq.pdf')  
plotPCA (rld, intgroup = c('experiment'))  
plotPCA (rld, intgroup = c('batchEffect'))  
sampleDists <- as.matrix(dist(t(assay(rld))))  
heatmap(sampleDists)  
plotDispEsts(dds)  
dev.off()  
norm <- counts(dds,normalize = T)  
head(norm)  
write.table(norm,'DESeq/normCounts.counts')  
save.image(file = 'DESeq/Ranalysis.r') 
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APPENDIX 11. MAKEFILE USED FOR TESTING MALTESERS 

.PRECIOUS: 

.SECONDARY: 
trimm_len = 101 
cores     = 4 
rawFa     = $(wildcard rawFasta/*.fastq.gz) 
MATS      = ../tools/rMATS.3.2.2.beta/RNASeq-MATS.py 
GENOME    = ../tamir/genome 
GTF       = $(GENOME)/Homo_sapiens.GRCh38.84.gtf 
SJoutTAB  = $(shell python -c 'print " 
".join(set([i.replace("rawFasta/","aligned/out1/").replace(".fastq.gz","")[:-2]+"SJ.out.tab" for i in 
"$(rawFa)".split()]))' ) 
BAMS      = $(shell python -c 'print " 
".join(set([i.replace("rawFasta/","aligned/out2/").replace(".fastq.gz","")[:-2]+"Aligned.sortedByCoord.out.bam" 
for i in "$(rawFa)".split()]))' ) 
BAMS_TRIMM= $(shell python -c 'print " 
".join(set([i.replace("rawFasta/","aligned/$(trimm_len)/").replace(".fastq.gz","")[:-
2]+"Aligned.sortedByCoord.out.bam" for i in "$(rawFa)".split()]))' ) 
COUNTS    = $(shell python -c 'print " ".join(set([i.replace("rawFasta/","counts/").replace(".fastq.gz","")[:-
2]+".count" for i in "$(rawFa)".split()]))' ) 
 
 
 
pre: rawFasta/readCount.txt 
 
rawFasta/readCount.txt: 
        echo making $@ 
        for i in rawFasta/*.fastq.gz; do echo $$i $$( expr $$( zcat $$i | wc -l ) / 4 ) >> 
rawFasta/readCount.txt ; done 
 
test: 
        echo $(BAMS)  
 
monitor: 
        watch "ls -tho aligned/*/*bam rMATS_Kidneys_Pancreas/* 2>/dev/null " 
 
align: $(BAMS) 
 
aligned/$(trimm_len): 
        mkdir -p $@ 
 
aligned/out1/%SJ.out.tab: rawFasta/%_1.fastq.gz rawFasta/%_2.fastq.gz 
        mkdir -p aligned/out1 ;\ 
        STAR    --alignEndsType EndToEnd \ 
                --alignSJDBoverhangMin 6 \ 
                --alignIntronMax 300000 \ 
                --chimSegmentMin 2 \ 
                --readFilesIn $^ \ 
                --genomeDir $(GENOME)/index \ 
                --runThreadN $(cores) \ 
                --readFilesCommand zcat \ 
                --twopassMode None \ 
                --sjdbGTFfile   $(GTF) \ 
                --sjdbOverhang 84 \ 
                --outSAMstrandField intronMotif \ 
                --outFilterMismatchNmax 3 \ 
                --outFileNamePrefix aligned/out1/$* \ 
                --outSAMmultNmax 1 \ 
                --outSAMtype BAM SortedByCoordinate \ 
                --outFilterMultimapNmax 1 \ 
                --outSAMprimaryFlag OneBestScore 
 
 
 
aligned/out2/%Aligned.sortedByCoord.out.bam: $(SJoutTAB) | rawFasta/%_1.fastq.gz rawFasta/%_2.fastq.gz 
        mkdir -p aligned/out2 ;\ 
        STAR    --alignEndsType EndToEnd \ 
                --alignSJDBoverhangMin 6 \ 
                --alignIntronMax 300000 \ 
                --chimSegmentMin 2 \ 
                --readFilesIn $| \ 
                --genomeDir $(GENOME)/index \ 
                --runThreadN $(cores) \ 
                --readFilesCommand zcat \ 
                --twopassMode None \ 
                --sjdbGTFfile   $(GTF) \ 
                --sjdbOverhang 84 \ 
                --outSAMstrandField intronMotif \ 
                --outFilterMismatchNmax 3 \ 
                --outFileNamePrefix aligned/out2/$* \ 
                --outSAMmultNmax 1 \ 
                --outSAMtype BAM SortedByCoordinate \ 
                --outFilterMultimapNmax 1  \ 
                --outSAMprimaryFlag OneBestScore \ 
                --sjdbFileChrStartEnd $(SJoutTAB) 
 
trimmLen.txt: $(BAMS) 
        samtools view $^ |head | python optimalTrimm.py > $@ 
        cat $@ 
 
aligned/$(trimm_len)/%.bam: aligned/out2/%.bam aligned/$(trimm_len) trimmLen.txt 
        samtools view -h $< | python trimmBam.py $(trimm_len) | samtools view -hb - > $@ 
 
rMATS: $(BAMS_TRIMM) 
        mkdir -p rMATS_Kidneys_Pancreas/ 
        python  $(MATS) \ 
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                -b1 $(shell python -c 'print ",".join(filter(lambda x: "kidney" in 
x,"$(BAMS_TRIMM)".split()))') \ 
                -b2 $(shell python -c 'print ",".join(filter(lambda x: "pancreas" in 
x,"$(BAMS_TRIMM)".split()))') \ 
                -gtf $(GTF) \ 
                -o rMATS_Kidneys_Pancreas/ \ 
                -t paired \ 
                -len $(trimm_len) 
 
counts: 
        mkdir -p counts 
 
counts/%.count: aligned/$(trimm_len)/%Aligned.sortedByCoord.out.bam counts 
        echo counting $* 
        python  -m HTSeq.scripts.count \ 
                -f bam \ 
                $< \ 
                $(GTF) > $@ && \ 
        chmod 555 $@ \ 
 
 
counts/merged.csv: $(COUNTS) 
        python -c 'import glob,re,pandas; \ 
                files = glob.glob("counts/*.count");  \ 
                df=pandas.concat([pandas.Series.from_csv(x,sep="\t") for x in files],axis=1); \ 
                df.columns = [re.findall(".+/(.+)\.",x)[0] for x in files]; \ 
                print df.head();\ 
                df.to_csv("counts/merged.csv")' 
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