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Language is no barrier.

The strangest tongues believe him.

Lenin walks around the world.

The sun sets like a scar.

Between the darkness and the dawn
There rises a red star."
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Chapter 1
Introduction

If one had to pick out a particular word in the title of this thesis that gave an
indication to the work herein, it would be "geometric'. The reader may be assumed
to have some knowledge of the theory of modular forms - though for the benefit of

those in need of a recap, we shall give a brief one.

Definition 1.0.1. Let I'(M) C SLy(Z) be given by

F(M):{(Z Z) ESLQ(Z)‘ (Z 2) - ((1) (1)) mod M};

we say I' C SLy(Z) is a congruence subgroup if it contains some I'(M). Let k > 1 be

an integer. Then a modular form for I' is a holomorphic function on the upper-half
plane f : H — C such that

b
i artb) — (¢r + d)* f(7) for all | er
(i) f(22) = (cm+ d)* f(7) ( .
(ii) f(7) is holomorphic at the cusps T'\P'(Q) of I'\H; namely, it has a non-negative

Fourier expansion f(7) = 3,50 a(n)e*™.

We say f(7) is a cusp form if it is zero at all the cusps (more precisely, if its Fourier

2miT

expansion in ¢ = e at each cusp has no terms in ¢* for k < 0); we say it has level

M where M is the smallest integer such that T'(M) C T.

We may now immediately deal with another important pair of words in the title:
theta series. Once one has had a modular form defined, one of the first examples of

such an object will be the following:

Theorem 1.0.2 (Hecke, Schoeneberg). For a lattice L C QN with a positive-

definite and even inner product (,), and a harmonic homogeneous polynomial
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p(x) € Qlzy, ..., zN]:

0(r,L,p) = > p(x)e*™®o7 ¢ M 4 gegiy (T(M)).
zcL
is a modular form of weight N/2 + deg(p) and level M = disc(L); if deg(p) # 0,
O(r, L,p) is a cusp form.

For example, from here, one may classify for a given weight what the non-cuspidal
theta series are, and then use linear algebra to express the coefficients of the Eisen-

stein series in terms of the simpler coefficients of 6.

If we wish, we may see the subsequent developments in this area - to be described
forthwith - as a way of replicating the result of Theorem 1.0.2 through numerous
different geometric avenues; in particular, what we shall focus on is analogies to
Theorem 1.0.2 coming from the geometry of locally symmetric spaces. Because of
p(x)e? X7 having a modular transformation law under orthogonal transformations
(analogously to Definition 1.0.1), one may see this as a correspondence between
automorphic forms for O(/N) and automorphic forms for GLy(R). The principles we

shall explore are the following:

(i) What are the properties of (7, L, p) when L is not positive-definite?

(ii) Can we use theta series to give us correspondences between automorphic forms,

for more general finite-dimensional reductive Lie groups replacing SO(N)?

The reader will immediately see that if we allow L to be non-positive-definite, then
several parts of Theorem 1.0.2 will immediately disappear - for example, it will
no longer have a positive g-expansion, as it will generically have non-zero terms of
the form e*™7 for negative n. Moreover, it is not clear that it will even remain a

holomorphic function of 7.

Our work shall be based on answering (i) and (i7) at the same time. To be more
specific, we shall examine theta series corresponding to the unitary group U(2,1).
This will require translating the above into the universe of differential forms using
the generalised cohomological machinery of Kudla and Millson. We shall then look at
two consecutive extensions of this theory. The first will be representation-theoretic,
which will generalise the theta series to be in a cohomology group with coefficients
in a vector bundle; this will allow the theta series to be of arbitrary odd integer

weight.

The second extension will be in taking these theta series to the boundary components.
This will give us a new class of modular forms of odd integral weight, and give a

programme for the extension of general unitary theta series of split signature.
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1.1 A Brief History

In the author’s opinion, a good starting point for introducing this area is the work
of Goro Shimura, Takuro Shintani and Shinji Niwa in a series of papers - of especial
interest is [Shi73], [Shi75] and [Niw74] - on a correspondence between integral and
half-integral weight modular forms, that has subsequently become known as the
Shimura-Shintani correspondence. We refer the reader also to e.g. [Kob93, §4] for a
good summary of the theory of half-integer weight modular forms and their Hecke
operators; one may use the rubric of Definition 1.0.1 for k£ a half-integer, where one
requires a finite-degree character ¢ on I' accompanying the automorphy factor in

part (i) of the above definition.

The details of this correspondence are unnecessary, but the broad idea may still be
elucidated: namely, in [Shi75], the author integrates a modular form G of weight
2k + 2 and level N against a theta kernel (more specifically, the sum over the

positive-discriminant parts of the 3-dimensional lattice Ly of quadratic forms in two

variables):
2mizA(Y
0(z,Ly)= S exp (7”2()>/ Y (1, —7)G(r)dr (1.1.1)
Yelg(N)\Ly N Cy
A(Y)>0

Here the {Cy} are special 1-cycles on the modular curve I'o(/N)\H, parameterised
by this set of positive-length vectors in the lattice. This produces a modular form
of weight k + 3/2.

This relationship is inverted in Niwa’s paper [Niw74] - namely, an almost identical
theta series is found that takes half-integral- to integral-weight modular forms. This
generalises the relationship of Shimura in [Shi73], which produces this lift for half-
integral Hecke eigenforms by splitting its Dirichlet L-function into two FEuler products.

We hence have the following foundational result:

Theorem 1.1.1 (Shimura-Shintani-Niwa). Let N be a positive integer. Then for

k > 1 another positive integer, there are maps
Siors/2(To(4N)) 225 Sy 5(To(N)),  Saera(To(V)) T2 Sy pa(To(4N)

which both come from integrals against theta kernels (as detailed in (1.1.1)), are
arithmetic - they preserve the action of Hecke operators - and are adjoint to each

other: namely, for f an integral and g a half-integral cusp form

(f7 @Shimg) = (CI)Shintfa g)

with respect to the Petersson inner product (see e.g. [DS05, p.182]).
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We note here that this result, though in some senses elementary compared to the
work that currently exists, contains many of the components that we shall consider.
Namely, it shows that relationships between spaces of modular forms for SLs may
be found using theta series, which use the geometry of the symmetric space H and

special cycles on its quotients to construct the coefficients.

A general approach to non-vanishing (using p-adic methods) may be found in e.g.
[Pra09], which shows that the coefficients of the modular form in the image of the
Shintani correspondence are proportional to special values of the Hecke L-functions

of the original form, which we know to be generically non-zero.

It is at this point instructive to consider the relationship between modular forms
and cohomology. There are many ways this may be interpreted; for our purposes,
the simplest formulation is in the Eichler-Shimura isomorphism, which expresses the
modular forms as a cohomology group with coefficients in Ly, the £'th power of the

standard representation of SLy(R):
Sorra(T) @ Sopso(T) ~ H (T\H, Ly,), f(7) = w; = f(1)dT @ (Tv1 +v2)** (1.1.2)

Because of this relation, we may interpret both ®g;,, and ®g4;,; from Theorem 1.1.1
as having domains in the compactly-supported & rapidly decreasing cohomology of

a modular curve.

We now move on to two more examples from Hirzebruch-Zagier and Cogdell - this
will illuminate the dialectic of compactness that is central to our approach for the
rest of this thesis. The results given are almost identical, but illuminate two special
generalisations of the locally symmetric manifold replacing the modular curve, and
give us links to classical number theory; the idea of these results giving maps on

homology and cohomology is now central.

In [HZ76], the authors consider a Hilbert modular surface which replaces one of
the modular curves I'\H in the Shimura-Shintani correspondence in Theorem 1.1.1.
They fix an odd prime p = 1 mod 4 and the real quadratic field K = Q(,/p), with
Hilbert modular group SLo(K'). This acts on H via the two real places of K, which
embed SLo(K) < SLo(R) - see [BvdGHZ08, §2, (1.3)] - and hence, for the fixed
arithmetic subgroup I' = SLy(Ok), they use the non-compact Hilbert modular
surface X = I'\(H x H).

For all positive integers N, a closed 2-cycle (more specifically, a modular curve) T
is constructed on the Hilbert modular surface X. It is here that the problem of

compactness manifests: namely, from its definitions, they find:

{ bounded if N is not a norm of Ok
Ty =

not bounded if N is a norm of Ok.
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Hence, the cycles T will generically have non-trivial intersection with the cusps
of X. This problem is not a new one - indeed, what we are dealing with is the
exact analogy of the problem of domains in Theorem 1.1.1. Namely, in the Shimura-
Shintani correspondence, the solution is to let the domains of each of the maps only
be in the cusp forms, which - by our demanding they be 0 at all cusps - decay fast
enough so that the integrals still converge. The innovation in this paper is to modify
the special cycles to allow for calculation of the intersection numbers on X with all
of the Ty. They compactify « : X < X by taking the minimal resolution at each

cusp; this decomposes the homology as follows:
Hy(X) = 1, Hy(X) ® Ho(Xoo) (1.1.3)

where X, is the subspace generated by all the homology cycles in the boundary.
They hence consider T as the image of Ty (the closure of Ty in X) in ¢, Ho(X)
under the decomposition in (1.1.3); by explicitly finding what the cap of T looks
like, they find the following two arithmetic results:

(M, Tv)x = Hy(N) = H<4Np )

TEZ
22<4N
pl(4N—z?)

where H(c) is the classical number of equivalence classes of positive-definite binary

quadratic forms of discriminant —c, and

I(T¢, T§) xo = I(N) = N z@: min (A, N/)).

A strictly positive
AN

They hence show the following:

Theorem 1.1.2. [HZ76, §3, Theorem 1] Let p = 1 mod 4 be an odd prime. Then

the generating series

7V01 T1 + ZITIC,TN 12+ i (N))q GMQ <F0(p),<p>>

N=1 N=1

is a classical modular form of weight 2 and level p with Nebentypus (character).

Moreover, it is the sum of the holomorphic parts of non-holomorphic modular forms:
1 o0 o
5t Hy(N)g", > L(N)g"
N=1 N=1

are both the positive q-series of weight 2, non-holomorphic weak Maass forms on H.



6 Chapter 1. Introduction

More generally, for any class T € Ho(X,Q), the sum

1VOI(T) + i (T, Ty)x (1.1.4)

2 N=1

is a modular form of weight 2, level p.

We note that the general statement (1.1.4) in Theorem 1.1.2 is equivalent to the

existence of a map on homology:

(DHZ : HQ(Y, Q) D SpanQ [T](\ﬂ — MQ (Fg(p), (p)) .

The reader is now invited to compare this to the result of Theorem 1.1.1 - crucially,
the difference in the domains used. In the latter, one is restricted - by the presence
of infinite geodesics - to only use ®Pgpim or Pgnie on cusp forms, as the integrals
considered would not converge on Eisenstein series. This work of Hirzebruch-Zagier

hence offers one solution to the problem of non-compactness.

We now offer a brief word on the non-vanishing of the Hirzebruch-Zagier mapping;
indeed, there are explicit results on this contained in [HZ76]. In [HZ76, §3, Theorem

1], they show that the map Hs(X) — My(T'o(p),-) is injective. In particular the

second Chern form ¢,(X) (which defines a cohomology class) on X satisfies

e = 26(-1)

(see e.g. [HZ76, §3, (1)]). Hence, taking the Poincaré dual of this second Chern form,
we see that when this zeta value is non-zero, there are non-zero modular forms in

the image of the Hirzebruch-Zagier map.

In the work of Kudla in [Kud78], the ideas of Hirzebruch-Zagier are generalised to
compact quotients of the r-fold Cartesian product of the 2-disc D; in particular, in
the middle homology H,(I"\D"), non-trivial cycles C'y may be constructed whose
generating series is a Hilbert modular form of weight 3. By specifying work in
compact locally symmetric domains from the start, this indicates a solution to the
problems indicated above, as well as generalising the Hirzebruch-Zagier results to
all totally real fields k/Q.

Of particular interest on the topic of special unitary theta lifts is the work of Cogdell
in [Cog85]. As we shall see, both the general motivation and techniques used are
very similar to those used for Theorem 1.1.2, but it is much more directly applicable
to our context of Picard modular surfaces. In this paper, Cogdell considers a split
hermitian vector space V' of signature (2, 1), an imaginary quadratic field £/Q and

the real split Lie group SU(V') ~ SU(2, 1). The associated locally symmetric space
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is a 4-manifold, and more specifically a quotient of the 4-disc by some arithmetic
subgroup. As in the work of Hirzebruch-Zagier, one may naturally construct special
cycles Cy < X = I'\D indexed by N € N. Cogdell is hence able to replicate the

Hirzebruch-Zagier result exactly, and finds:

Theorem 1.1.3. [Cog85, §4, Theorem] Fiz a special cycle Cyy — X: using the
Hirzebruch-Zagier method of Theorem 1.1.2, this may be compactified as

Cy — Chy € tHo(X),
so that the series
590l (Cun) + 32 1 (C5 Gl
_ ;Vol (Cr) + gjl [(Coar, Cn)x — %z (Cr,COn)e| ¥ (1.15)
is a holomorphic modular form of weight 3 and level D = disc(k); as in Theorem 1.1.2,

the global and local parts of (1.1.5) are the holomorphic parts of non-holomorphic

modular forms on H with the same non-holomorphic parts.

As with the Hirzebruch-Zagier results, we may see the existing of these modular
generating series as, equivalently, the existence of a map from homology to a space

of modular forms:
Beog : Ha (X, Q) O Spang [C5,] — Ms (To(D), xp) -

We now reach a decisive moment in the history of this theory. It is conjectured in
many papers - included those cited above - that the existence of all of these results,
all of which appear to have the same form, is not an accident (indeed, even what we
shall try to transcribe of this generalisation is really only one part of the spectrum
of conjectures made, as we are focusing on the holomorphic side of the theory). In
a series of papers by both Stephen Kudla and John Millson throughout the 1970s
and '80s - see e.g. [Kud78], [Kud79], [KM81], [Mil81], [Mil85] - there is an enormous
amount of work done, both computational and theoretical, on creating a uniform
theory for theta correspondences between spaces of archimedean automorphic forms,
of the form

{Geometry on I\G/K} —=_ {Modular Forms on H} .

Integration

We shall state this result as a correspondence only between split, reductive and
finite dimensional Lie groups and the special linear group SL,(R) - however, it

must be stressed, this is but a very special case of this theory, as what we have in
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full generality is a correspondence between split finite dimensional Lie groups and

symplectic groups Sp,(R).
Theorem 1.1.4. [KM86, KM87] Let G be either a special orthogonal group or a

special unitary group of a split vector space V' of signature (p,q), defined respectively
over R or C. We let r = p+q or 2(p+q) respectively be the real dimension of V. For
some mazximal compact subgroup K C G, let D = G/K be the associated symmetric
space, of real dimension m = mg = pq or 2pq respectively. For ¢y the Gaussian on
V, we let S(V) C S(V) be the space of polynomial Schwartz forms p(x)po(x) on V.

For each fized integer 1 < a < p, and k = aq or 2aq respectively, there is a non-trivial

Schwartz form ¢ such that
®a k G
p € [S(Ve) @ QYD) (1.1.6)

which is closed with respect to the differential in this complex.

The complez in (1.1.6) is acted upon by the Howe dual pair G x G’ through the Weil
representation of a symplectic group Sp(V @ V'), where G' = SLy(R). Fizing any
arithmetic subgroup I' of G, and a I'-invariant lattice L C V', ¢ will in particular be
[-invariant. Taking g = g. the element of G taking the basepoint of D to z € D, and

g = g. an element of G’ taking i to T € H, we may form a theta series as follows:

(e, 2,7) =D wlgr)e(g, ' @)

el

With X = T\ the locally symmetric space, this will define a closed cohomology
class [01(p, 2,7)] € H¥(X), which is modular of weight r/2 in 7. This may be
integrated against closed and compactly supported m — k-forms n € H™ *(X) to give
holomorphic modular forms of level M and weight r/2:

/X 0 ABL(p,2,7) € My (T(M))

More specifically, we may see what the coefficients of these modular forms are: there

exist special cycles C,, C T'\D such that

/Xn/\eL(%ZvT):C/XU/\QX“‘Z{/ n}qn

n>0 Cn

for some geometric constant ¢ € C and Qx a certain G-invariant k-form on X.

The proof method offers the key to why the work in this generality may be proven -
namely, it uses the Weil representation w of sp(V ® V’) to construct Howe operators
V in a universal enveloping algebra; the Schwartz forms are then given by ¢ = Vi,
and using the algebraic properties of the Weil representation the necessary properties

are proven.
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We note that the solution found here to the holomorphicity problem for non-positive-
definite lattices is very elegant - the negative length parts of the theta series are
still included, but these components are all exact, and so by an easy application of
Stokes’ theorem the integrals are zero. Hence, another way to write the results of

Theorem 1.1.4 is that on the level of differential forms:
0r(p,2,7) € (X)) ® M%NOHHOI(F(M));
and more specifically, in cohomology we may say
L0, 2,7)] € H(X) @ My(T(M)).

We now observe some of the developments of this relevant to our work. In [FMO06],
the authors aim to develop the results of Theorem 1.1.4 where G = SO(p, q), but
where the theta series (and special cycles) are in more general cohomology groups;

this allows a complete generalisation of the weight of the resulting modular forms.

In summary: they consider the weight-indexed irreducible representations S (V)
of SO(p, q) (whose construction is given in full generality in [FHO04]), and construct
Schwartz forms in complexes with more generic coefficients - and hence more generic
modular weight. From here, the proof structure is broadly similar to that of Theorem
1.1.4 - namely, they use the Weil representation of the symplectic group to prove
that the Schwartz form is closed, holomorphic, dual to the appropriate special cycles

and so on. Their result is hence:

Theorem 1.1.5 (Funke & Millson, 2006). Let G = SO(p,q), and let K, D and
X be as in Theorem 1.1.4, sor = p+ q and D s of real dimension k = pq. We
keep a = 1. Fix the trivial partition X =1 of |, and let H'(V) be the corresponding
irreducible representation. Then there are non-trivial, closed Schwartz functions in

the following complex:
G
o € [S(V) @ QD) @ H (V)]

and so for L a lattice of level M, we may form a cohomological theta series as in
Theorem 1.1.4:

bin(p.2,7)] € HY (X HIV)) © Moga (D)),
There are closed cycles Cy, [y defining homology classes:
me € Hq(p_l) (X, 0X,H (V)) ;

hence, for a closed and rapidly decreasing H'(V')-valued smooth differential q(p —1)-
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form n, the generating series

L
Cn,[l]

is a holomorphic modular form, which is cuspidal for 1 > 1.

A0 (0, 2, :5:/ A
/X77 L,[A](SO z,7) 1=0 X"7 X,m+z

n>0

¢" € Myta ) (T(M))

In particular, if one wishes to go back to our very first theta result - in Theorem
1.0.2 - we may see this as a generalisation of the work of Hecke and Schoeneberg for

non-positive-definite lattices!

This result will be what we attempt to recreate in the setting of G = SU(p,q).
There are two other Funke-Millson papers that were also used as key references for
the writing of this thesis. The first, [FM13], which may be viewed as a sequel to
[FMO06], is on the extension of the vector-valued theta series from Theorem 1.1.5 to
the boundary components of the Borel-Serre compactification X" of X. This is a
homotopy-invariant compactification whose boundary components e(P) are in 1-1
correspondence with the rational parabolic subgroups P of G. They show that for
each such component, the restriction of the Funke-Millson orthogonal theta series is

a convergent differential form which is also a theta series:

[“15 (QLM(%Z?T))} = [9wpm,[x}(90p, 2,7)} : (1.1.7)

This is proved using a mixture of techniques - almost all of which will feature herein
- including geometric analysis of the cohomology, the mixed model of the Weil
representation, Fourier analysis, representation theory, and more. We now look at a

particular example of this work which has motivated a lot of ours.

In their paper [FM11], the authors consider the case of split orthogonal groups of
signature (2,1). As the reader may note, because SLy ~ SO(2, 1), this is a case we

have observed already - namely, the setting of the Shintani-Shimura correspondence!

Using the machinery outlined in [FMO6], they create a vector-valued Schwartz form
oy € {S(V) @ QD) ® ’HﬂG - here (see e.g. [FHO4, §11]) the representations used
will be the harmonic subspaces H* of Sym”*(C?) - and for the usual choices of L and
I', may make a theta series 0, #(p, z,7) which is a 1-form on X with coefficients in
the representation H*. For 1 a closed and rapidly decreasing 1-form with coefficients

in H*, the results of Theorem 1.1.5 give us:

/X77 NOra(,2,7) € Myyso(T'(M)). (1.1.8)

The cusps of V' are parameterised by the isotropic lines ¢; the result of (1.1.7) give
that 6, restricts to a theta series on the boundary, and they further show that the

boundary Schwartz form is ezxact: ¢, = d¢y. This allows them to build a non-trivial,
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compactly-supported cohomology class in H}(X):

Or (o, 2,7) — > di) (Ow,nrmu(pe, 2, 7)) € HE(X).
(]
This allows them to integrate against the non-compact cohomology in H'(X). We
note here that, examining the form of the Eichler-Shimura isomorphism in (1.1.2),
this result formally extends this relationship to the non-compact cohomology - and
hence, equivalently, to Eisenstein series! Indeed, one often refers to the non-compact
part of H'(X) as the Eisenstein cohomology, and this approach (which we shall

follow) offers an approach to analyse the arithmetic of this subspace.

1.2 Our Results

We have now done enough work to contextualise our own! It is appropriate that we
finished on the paper [FM11], as this offers the most appropriate context for our
own work of anything in the existing literature. We shall start our work with two
preliminary chapters. The first will largely deal with the geometry of the locally

symmetric spaces X of the form
X =T\SU(2,1)/S(U(2) x U(1)),

and consider their compactifications, homology and cohomology; in particular, the
geometry of the boundary components of these compactifications. The second such
chapter is on the subject of irreducible representations for SU(2, 1); this will allow
us to create the coefficient systems which give homology and cohomology objects

generalising the Kudla-Millson forms.

For the remainder of this section, we fix a hermitian vector space V /k over an
imaginary quadratic field of signature (2,1), with complex points V' and special

unitary group G = SU(V).

What we shall show first is the extension of the homological side of Theorem 1.1.4 for
G = SU(2,1). Starting from the cycles C,, from Theorem 1.1.4, we first extend these

to cycles with coefficients in an irreducible representation H (V). We then create

caps in the homology group Hy(X,HE(V)), allowing us to create the compactified

cycles Cr.. We record this as a first theorem.

Theorem 1.2.1. Let X = I'\D be the locally symmetric space corresponding to
some arithmetic subgroup I' C SU(2,1). For all positive integers n, we define

C, C X as in Kudla-Millson. Then for all symmetric, finite-dimensional irreducible
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representations H' of SU(2,1), we may define closed classes Ch,u, as follows:

On,[l,l] = Z Cm & Ty (:cl ® (:E*)l)

(z,x)=2n
mod T’

These classes define generically non-trivial classes in homology:
{Cn’[uﬂ & H2 (X, 8X,7f{7’l)

and the integrals [o w1 converge for all HY(V)-valued, rapidly decreasing and
compactly supported smooth differential forms n on X.

For L an integral and even lattice of level M and L € L'/L a lattice coset, the [Cy, )
are the Fourier coefficients of a weight 21 + 3 holomorphic modular form with values
in HYL:

*51 o [Qx]" Z[ ll]} q" € Hy (X 0X, 7‘[”) ® May3(I'(M)).

n>0
n an L—norm

It will be a cusp form forl > 1.

The Borel-Serre compactification X" has finitely many boundary components e(FP),
corresponding to the classes of rational isotropic lines I'\Iso(V'). We may cap these
cycles with coefficients at each cusp with closed cycles Aﬁ,[z,l] C e(Fy) such that for

all positive rational numbers n:

Crty = Ct) = D Ay
(]
defines a closed and bounded - hence compact - class [C, ;] € Hy(X, HM). This
may be convergently integrated against the full cohomology group H*(X, H), and in
particular the sum of the capped special cycles will also define a modular form with

coefficients in the homology group, which will be cuspidal for | > 0:

,51 o [2x]7 Z[ © ] €€ Ha (X, H) @ Mar5(D(M)).

n an C norm

The rest of the paper is hence dedicated to the cohomological picture, and then to
conclude, the duality between these constructions. The first work in this direction
shall be to construct Schwartz forms with coefficients for SU(2,1). This will require
a chapter on the Weil representation of dual pairs su(p,q) x su(1,1), which will
give us the algebraic properties required to work in the complexes with coefficients.
Indeed, we shall dedicate the entirety of the proceeding chapter §6 to constructing
the appropriate vector-valued Schwartz forms, and proving - largely with abstract

algebraic techniques - that they satisfy the correct properties that will generalise the
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Kudla-Millson result. We now state the dual to Theorem 1.2.1:

Theorem 1.2.2. Fix a positive integer | > 1, and an irreducible representation
HY(V) of G = SU(2,1); the geometric constructions will be the same as in Theorem

1.2.1. Then there are non-trivial, closed Schwartz functions in the complex:
el
ot € [S(V) @ Q*(D) ® H (V)]

For L a lattice of level M and L € L'/L, we may use the non-trivial & closed
Schwartz forms ¢ to form a theta series on X = T'\D:

95,7‘1(%07 Z, T) = Z 902,{1(‘137 Z, 7—)

zeLl

This is a closed differential form, and its cohomology class defines a holomorphic

cusp form of weight 21 + 3:
Pelp, = 1) € H (X, H0V) ) © Sy, (P(M)).

This is dual to the special cycle generating series from Theorem 1.2.1; hence, for

some closed and rapidly decreasing H"'(V')-valued smooth differential 2-form n on

Lo
Chn 11,1

is a cuspidal, holomorphic modular form, with coefficients given by the integrals

X, the generating series

/Xﬁ A 05,7—[(@: 277—> =1 Z q” c S3+2[(F(M))

n>0
n an L—norm

against the Cy, ;. Equivalently, in cohomology we may write:

enle =i Y [Cond]””

n>0
n an L—norm

0" € (X, HY(V)) © Sy (T(M)

So, we may now move onto the crux of this thesis - namely, the geometric work on the
restriction of these objects to the boundary components of the Borel-Serre boundary
components. This work will use the mixed model of the Weil representation for the
Witt decomposition at each cusp, and then use geometric arguments in the boundary
complex to show that the restriction of the theta series is a convergent differential

form, given by a 1-dimensional theta series.

Theorem 1.2.3. Fiz a rational isotropic line [] of V., with associated Witt splitting
of V. given by
V=kleoW,skl

where (' is the complementary cusp and W, = (+ N '+ is a positive-definite vector

space spanned by some arbitrary rational vector wy. Let N, be the nilpotent part of
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the parabolic subgroup fixing [¢], and T'y = Ny, N T, so that the boundary component
onBS at € is written e(P;) = I'y\Ny.

Then we may define a new Schwartz function in the boundary complex
e € [S(We) ® 2*(Np) @ K (V)™

such that the theta series extends to a convergent differential form on the boundary
components, and the natural restriction of the theta series to this boundary component

may be written.

* e(P, e(P, ~
by (Ocu(p,2,7)) = Ow,ne (901,(1 E)) = Z 901,(1 Z)(waZ,T)

zeW,NL

Further, this boundary form is exact: namely, there is a primitive
o1 € [S(We) @ Q' (Ny) @ HM (V)]

such that dgbi(lpf) = gple,(lP"). Hence, we may form a non-trivial class in the cone

cohomology group:

BS

Oc (o, T ZQWZNL( s ,7') € HZ,. (Y 7(9?35)’

which gives us a compactly supported cohomology class on X :

O, ™) — > iy (e (6717.7)) -
(4]
This is a holomorphic modular form of weight 2143 in 7, and by its compact support

we may integrate this against the non-compact cohomology on X.

We now have one more piece of work left to state: namely, the duality between the

constructions in Theorems 1.2.1 and 1.2.3.

Theorem 1.2.4. Forl =0, the boundary constructions in Theorems 1.2.1 and 1.2.3
are dual; that is, the Fourier coefficients of the capped theta series are given by the
capped special cycles:

BS

0c(p.7), 3 Owenc (¢.7) | = QX |+ Y[ e 12, (X7, 0X7)

4] n>0

We may conclude by finding the work of Cogdell in Theorem 1.1.3 as an immediate
corollary. Indeed, in our work in Theorem 1.2.1, we saw a recreation of this for a
different (but related) boundary component. By using the homotopy equivalence of

X" and X , we may see the C¢ as classes in Hy(X), and show that the inclusion
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map trogr : X — X" t0 the toroidal compactification of X (considered by Cogdell)

maps our Cf, to his compactified class C,." for all n:

(tror), (Cr) = Gy
This yields Cogdell’s pairing on homology as a composition of my Borel-Serre pairing
and (tror)«, and hence gives us the main result of [Cog85] as a corollary of Theorem
1.2.1.

1.3 Outlook

I also wish to make a few comments on the future direction of this work.

The first piece of outstanding work is the duality for the case of general coefficients.
This is completed in the case of trivial coefficients, and I believe should be achievable

with the right work on the cohomology groups with coefficients in the vector bundle

HH(V).

One of our primary motivations for undertaking this work is the completion of the
unitary analogy of [FM11, §9] - namely, that the denominators of the Eisenstein
cohomology in HZ(X, m)) give quadratic zeta values, corresponding to Hecke
characters on k. There are more than enough indications in our work that this
should work - indeed, the capping process gives exactly the right structure of result
that mirrors [FM11], and there is no reason to suggest that such calculations should

not give the right structure of results.

Another generalisation which I believe will be worthwhile to examine is the case
of lattice characters. In [ANS16], a theory is laid out for "twisting" the finite Weil
representation on L'/L by a Dirichlet character modulo M; then, using the theory
of vector-valued modular forms, they show that the resulting object is modular
with respect to I'g(M), not just I'(M). In particular, a simplified version of this
is used in [FM11] to find the lift of vector-valued Eisenstein series. This process
should be recreatable in our setting, using a Hecke character y and a twisted Weil

representation w,, of sp(WW).

The reader may also have noticed that much of the work in §6 was not particularly
specialised to the case of signature (2,1). Indeed, as in the orthogonal case - con-
sidered in full generality in [FMO6] - it should be fairly harmless to extend the work

in this chapter to the consideration of the case of general signature (p, q).

The main generalisation outstanding is therefore of the cuspidal behaviour. As a
first example, can this be recreated for the case of V' of hermitian signature (p, 1),
for p > 37
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In this setting, the cusps are still stabilisers of 1-dimensional complex isotropic lines,
so the results of §7.1 should intuitively go through more or less the same. Indeed,
we will be able to work with more general representations Spy(V'), and we will have
p different types of positive Howe operators, so the combinatorial calculations will
be more involved, but I see absolutely no reason that the same result should not
be obtained - namely, that the generalised Kudla-Millson forms gof/{}l will restrict to
special forms

S €[Sy P (V)]

In this respect, at least, the results should nicely mirror the generalised orthogonal
results found in [FM13] - moreover, there is no reason to suspect that the restriction
arguments on the special cycles shouldn’t succeed. Where the symmetry with our

results will likely fall down is in the capping procedures.

The problem here is that in our case, the torus form Q, A €, € A?n* had a natural
primitive, given by the 1-form k, in the corner component. However, this process
will naturally fall down at this point - there is no obvious primitive in the Lie algebra

to a general torus element
Qua AU ANQa ANQua Ao AN Qyp1 Ay,

as we will now require a non-trivial 2p — 1 form. Because of this, there is no reason
to suspect that the process with the cone complex - which allows us to lift the
non-compact cohomology - will carry over. However, we have reason to believe that
there are solutions to be found in more generic cohomology groups - for example,
L2

Related to this, I believe, will be an investigation of the non-holomorphic parts
of this theory. Namely, because of our focusing only on the cohomological lifting,
the negative coefficients disappear by exactness. Implicit, however, in our work in
chapter 8, was that there is a non-holomorphic part of this theory existing when we
drop the requirement for the pairing form 7 to be closed - in particular, this means
that we will leave behind the perspective of this being a pairing on cohomology.
As is indicated in e.g. [FM14] (wherein an analogous type of boundary component
is considered in the Hilbert modular case) or [Cog85] (where the same capping
procedure is considered on the toroidal boundary components), the modular forms
resulting from pairing weakly converging differential forms on X with the global and
local forms ¢y, nple,(lp"') should result in non-holomorphic modular forms of generic

odd weight. Again, this is an area for future exploration.



Chapter 2

Picard Modular Surfaces & Their

Geometry

In this chapter we will give the necessary elucidation of the geometric structure
of the locally symmetric spaces under consideration. This treatment will largely
follow that done in e.g. [Cog85] or [Kud79]. We shall introduce some of the natural
compactifications of these spaces, mostly from a practical perspective - indeed, the
abstract construction of such objects will be largely unnecessary - and then look
at the geometry of the boundary components of these spaces; for the work on the
Borel-Serre compactification, we follow the theoretical work in [BJ06], and then
specialise this to our context. We will present the Lie algebras at both a global and

a local level.

2.1 The Symmetric Space D and its Models

We let d < 0 be a square free integer, and k = Q(v/d) an imaginary quadratic field
with discriminant D;, < 0. We fix:

d ifd#1mod4
wk:{\/_ ifd#1mod4, (2.1.1)

”—2‘/3 ifd=1mod4

and 6, = /Dy € iR-g, so that k has ring of integers 0, = Z[wy] and different
0, = 0,0, C 04. From Galois theory, we have two algebraic embeddings k < C: the
identity and the conjugate identity. We fix the identity embedding once and for all,
using this to define the trace Tr(a) = o+ @ and norm N(«) = a@ in k; we will often

write N(a) = |al?.

Let V /k be a 3-dimensional vector space over k with a non-degenerate Hermitian
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form

(,): VU xV =k, (2.1.2)

which is anti-linear in the first variable and linear in the second, of complex signature
(2,1) at the place given by the identity embedding above. Using our embedding of
k in C, this implies that there is an orthonormal basis {vy, vy, v3} of V =V ®; C,
fixed hereafter, such that for v = 2101 + 2909 + 2303, 0" = 2Zjvy + 25ve + 24vs € V| we

may extend our inner product linearly to find
(v,v") = Z12] + Z225 — Z325. (2.1.3)

We note that generically in what follows, we shall use the underlined notation to
refer to rational objects, and non-underlined to refer to the real (or occasionally

complex) points of said object, as we have done with for e.g. V and V.
Definition 2.1.1. We let
G/Q=SU(V) ={g € SL(V) | (gu, gv) = (u,v) for all u,v € V} (2.1.4)

be the special unitary group of the pair (V,(, )). The group of real points of G is
denoted G = G(R) ~ SU(2,1).

Using the natural embedding Q < £, we may consider V as a Q-vector space, and
then let Vg = V ®¢ R. This is a real orthogonal vector space of signature (4,2),

which has a complex structure given by v + iv, iv — —v. In this way, we have

G CSO(V), G cSO(4,2).

Definition 2.1.2. For any k-vector space W, an oi-lattice is a projective ox-module
L C W such that L ®, k=W

Such a lattice is integral if (v,v') € 0;! for all v,v' € L, and is even if (v,v) € Z for
all v € L. As in [BHY15], we define the Z- and oy-dual lattices:

L'="L,={weW| (w,v)g=Tr(w,v) €Zforallve L} (2.1.5)
L, ={weW | (w,v) € o, forall v e L}. (2.1.6)

Throughout the paper, we shall be using the integral Z-dual, largely because it gives

the following desirable properties:

(i) L, = 0L
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(ii) For an even integral lattice L, L C L', and L'/L is a finite og-module.

We now fix such an even and integral lattice L in the vector space V taken above.

We assume initially:

(i) There exists a primitive isotropic vector ¢ € L; namely, k¢ N L = ol and

(¢,0) = 0.

(ii) There exists another primitive isotropic vector ¢’ € L’ such that (¢,¢") # 0.

Using these vectors, we have a Witt splitting of our vector space V:
V=kteW,®kl (2.1.7)

where W, := ¢+ N ¢+ is a positive definite 1-dimensional subspace of V', of complex

signature (1,0).

We now describe the symmetric space D that we will study. We first define this space
as a set of cosets and analogously as a subset of the projective space of V'; both of
these models exist in the orthonormal picture. We also introduce the Siegel model
of D, which uses the Witt co-ordinates; this will lead to the parabolic model, which

will be our primary geometric model for the analysis of the cuspidal behaviour.

We first introduce some vector space notation:

Definition 2.1.3. (i) Let ¢ : V\{0} — P,V be the standard projection map
from V to the rational projective space, and € : V\{0} — PcV the equivalent
map to the complex projective space. For a vector v € V', we denote €x(v) = kv
or €(v) = Cuv - it should be clear from the context which is being used. The

notation e(v) = [v] will also be used.

(ii) In the vector space V, we denote by V. the subset of positive vectors, by
V., = Iso(V) the subset of isotropic vectors and by V _ the subset of negative
vectors; we do exactly the same for V. We note that these three subsets are

not vector subspaces.

(iii) We denote .V and _V for the maximal positive and negative vector subspaces

of V, spanned respectively over C by {vy, v2} and {vs}.

We may now define our symmetric space.

Definition 2.1.4. (i) Let K be the stabiliser in G of the negative line ¢(v3), so
that K ~ S(U(2) x U(1)). This is a maximally compact subgroup, and we let
D:=G/K.
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(ii)) We let I', be the arithmetic subgroup of G(Q) acting trivially on the discrim-
inant group G of L; this is referred to as the discriminant kernel. For a fixed

arithmetic subgroup I' C I'y,, we let
X =DN\D=IG/K (2.1.8)

be the space of double cosets of G with respect to the natural matrix actions.

X is often referred to as a Picard modular surface.

We note first that in choosing the K in Definition 2.1.4 we were being fairly arbitrary
- given any other fixed negative length vector in V', the stabiliser of the associated

line in PV_ would give us a maximally compact subgroup of G.

We also note that in assuming that V' is isotropic - in other words, that cusps exist
- we have equivalently assumed that D and X are non-compact manifolds. As we
shall see throughout this thesis, this non-compactness is one of the central problems
attempted to be solved both here and in many other authors’ work. The cusps of D

are parameterised by the rational isotropic lines
Iso(V) = {[(] e PV | (¢,€) = 0} = (V).

We note here that while D does not, in a geometric sense, have cusps, it makes sense
to talk about "the cusps of D" as there will be a natural relationship between this

set and the set of geometric cusps of X = I'\D, corresponding to the I" action.

Hence, because of our interest in X rather than D, we must define the cusps of
X. By the G-invariance of the inner product (2.1.2), I acts on Iso(V) by matrix

translation on the lines; hence, the cusps of X are parameterised by the set
\Iso (V)

which is a finite set by [BJ06, Proposition 111.2.16]; if we fix L to be the oj-span of
the Witt basis and I' =T'j, as in [Hol98, Theorem 2.2], then this is the class number
of the ring 0;. Throughout the following, we generally denote the fixed set of classes
in I'\Iso(V,) by {[¢]}; so when we refer to "a fixed cusp of X", we mean to choose

one of these finitely many cusps.

2.1.1 The projective model

Our first model of D is as a subset of the Grassmanian PV'.

Lemma 2.1.5. D ~ PV_.
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Proof. G acts on PV by g-[v] = [gv]; because the inner product (2.1.2) is G-invariant,

this restricts to an action on PV_. We define the isomorphism as:

G/K — PV_, gK — glvs] = [gvs]. (2.1.9)
One may check that it is well-defined: indeed, if gK = ¢’K, then ¢~ '¢’ € K, so by
definition [g7'g'vs] = [vs] = [gvs] = [g'vs].

It is an injective map, because if gK — [v3], by definition [guvs] = [v3], so ¢ € K and
gK is the trivial coset.

To show surjectivity, let v be a negative vector in V'; by scaling, and without loss of
generality (because this representation is both possible and unique) we may assume
that v may be written v = av; + bvy + v3. The space v is positive-definite, so we
may choose an appropriate orthonormal basis t,u of v+ (with respect to (,)) so
that the matrix g, defined by

GoU1 =1, GyU2 =1U, GyUs =11

is in G. Hence, g,K + [v], and this map is an isomorphism. O

We note that this proof did not use the signature in any way - indeed, for any unitary
group SU(p, 1) and a fixed maximally compact subgroup K, SU(p,1)/K ~ PV_ for
the vector space V' of signature (p, 1) (and more generally, for signature (p, q), it will

be isomorphic to the negative part of the Grassmannian).

In this model, G (and hence, in particular, I') acts continuously on PV_ from the

vlx g [ (‘og)] = [(a) ]

In Lemma 2.1.5, we explicitly parameterised PV_ as

right as

PV_ = {[avy + bvz + vs] | (a,b) € C?, |af* + b]* < 1} (2.1.10)
which gives a more explicit domain model as a complex 2-disc:
PV_ ~ D(QC = {(21,22) € C? ’ ‘21’2 + ‘22|2 < 1}, (2111)

where DZ has the hyperbolic metric - indeed, this above map is a metric isomorphism.

2.1.2 The Siegel Domain

We now introduce the Siegel model for the upper half plane. Similar to the disc from

(2.1.11), this is an affine model for G/K; analogously to how the disc model is using
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an affine projection of the orthonormal co-ordinates, the Siegel model uses the affine
projection of the co-ordinates for the Witt splitting from (2.1.7). In this way, we
may think of the Siegel model as a change of basis from the disc model D ~ PV_.

With respect to each Witt basis {¢,wy, ¢’} of V. (with w, € W, some arbitrarily

chosen rational basis vector), the inner product by definition is of the form

. .\ (d
v.v)=(a b ¢ l|wel| b
(¢, 0) c

= [B?||we|[* + 2R (ac(¢, £')) (2.1.12)

for v=al+bw,+cl', v =dl+bw,+ .

Definition 2.1.6. With our isotropic lines ¢ and ¢ from the Witt splitting (2.1.7),
we let W, = W, ® C be the complex points of the positive-definite space given by
W, =0+ N+, We define:

Hep = {(1,0) € C x Wy | 2Z(7)|0k|| (¢, €) > > (0,0)} (2.1.13)

Here 7 refers to the imaginary part (similarly, R refers to the real part); this notation

is continued throughout.

The topology of H, is the subspace topology coming from C2.

We may easily form a bijection between these two spaces: for (7,0) € Hyp, we

associate

z2(r,0) =0+ 0+, )TLEV. (2.1.14)

This is clearly a bijection; indeed, we first note that we may assume that the ¢

co-ordinate is non-zero (and hence, by scaling, is 1) because
(c+71l,0+7l) = (0,0) > 0.

We have included the unnatural-looking factor of 05 (¢, ¢') because at certain points

later on, without any loss of generality, we shall assume that this equals 1.

Lemma 2.1.7. Write 0 = aw, for a € C, and wy € W, some basis vector as above.

We may now specifically write the Siegel domain as:
Howpe = {(7,0) € Cx C | 2Z(7)]0kl[(€, )" > |ar|* e[}
A bijection between Hy ., o and the disc DE is given by:

. 2
P - 7‘[@711,[7@/ — D(Ca
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20, + 1 20wyl
= 2.1.1
pulT: ) (25k7 10207 1)) (2.1.15)
with inverse given by
1 21+ 1 (E, 6/)22 >
21, %20) = ) . 2.1.16
007 2o = (357 e (2110

Proof. This is the result of three maps: for (7,«) € Hpw,r, we use (2.1.14) to map
this to ¢ + aw, + 0, (¢, ¢")7¢ € V'. An easy matrix calculation gives that a good

change of basis matrix between {vy,ve,v3} & {€,wy, 0'} is

(0.)
1 5

[ . (2.1.17)

_(Zvé/)
1 2

Hence, applying G to this vector, we divide through by the v component so that
the vy, v9 components are our disc co-ordinates. The inverse is calculated in exactly

the same way. O]

2.2 Parabolic Decompositions

We here elucidate some more of the theory of the parabolic subgroups of G. We
start with the theoretical viewpoint given in e.g. [BJO6] - which applies to any finite
rank Lie group - then work out the details for our specific special unitary group G.

This will give us another model of the symmetric space - the horospherical model.
Definition 2.2.1. (a) For g, h € G, we write "g := hgh™! as the conjugation map.

(b) We let P C G be any rational parabolic subgroup - namely, a closed subgroup
such that G(R)/P(R) is a projective variety. We then notate:

(i) Np, the unipotent radical of P (namely, the subgroup of Rad(P) of ele-

ments with all eigenvalues equalling 1),
(ii) Lp = Np\P, the Levi quotient of P,

(iii) X(LB) ={x: Lp+— G,,}, the algebraic maps from Lp to the multiplicative

(iv) Mp C Lp the subgroup given by
Mp = NyexKer(x?), (2.2.1)

(v) Sp, the split centre of Lp over Q - namely, the maximal Q-split component

in the centre of Lp - and
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(vi) Ap, the connected component of 1 in Sp = Sp(R).

Similarly to how we have notated G = G(R), we duplicate this for all other ra-
tional groups and write the real points without underlining. The real Langlands

decomposition (see [BJ06, 1.1.10]) is given by:
P:NPAPMPZMPAPNPZNPXAPXMP (222)

where the isomorphism, given by multiplication in the group, is an analytic diffeo-

morphism of manifolds. This induces a horospherical decomposition of :
D=G/K ~ Np x Ap x Dp, (2.2.3)

where Dp = Mp/(K N Mp).

We now specify how this construction may be understood for our specific case of G.

Because V has negative signature 1, we know that the parabolic subgroups of G will
be in 1-1 correspondence with the isotropic k-subspaces of V'; more specifically, they
will be the stabilisers of lines [¢] € Iso(V). We denote by P, the rational parabolic
group attached to the line [¢], and without loss of generality from here on we may
switch between the two notations when the context is clear, e.g. Np = Np, = N,. In
particular, this means that the components Dp are trivial for all parabolic subgroups,

so we may remove this from the horospherical decomposition in (2.2.3).

We know from (2.1.7) that for our particular isotropic line [¢] used in the Witt
splitting, we may form a flag of V by:

Fy={0}CcktC (kO =kaoW,CV]|.

The quotients of this flag are hence the three spaces:
kC/{0} = kt, (kO /kt ~W,, V/(kl): ~ k'

and so we may write L as a subgroup - rather than a quotient group - of G, as the

stabiliser in G of the quotients of the flag:

x
r,y€ k", N(y)=1,27 'y =1
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Because all characters x : L — G, are of the form x((l(z)) = N(z)™, (with
N : k — Q the norm in the field) for some m € Z, then we know that M is given by

M= {l(z) |z €k", N(z) =1}, (2.2.4)

so that M = M(R) ~ U(1). Hence, using the definition of all the above groups, we
see that
A={l(t)|teR}.

So, we are left with the unipotent group NN,. As we shall see, this is a Heisenberg

group isomorphic to W, x R.

Definition 2.2.2. For r € Q, w € W,, we may define elements of G = GL(V):

n(w,0) :v— v+ (¢, v)w — (w,v)l — ;(ﬁ, v)(w, w)l (2.2.5)

n(0,7) : v v — (€, v)rdl. (2.2.6)
We then let n(w,r) = n(w,0) on(0,r), and let
Ny={n(w,r)|we W, reQ}CCG

be the rational subgroup generated by all such translations. We call this the Heisen-

berg group attached to the cusp [¢].

One may easily check (by computing the action on ¢') that this is a group with

respect to the natural composition and inverse laws:

n(w,r)-n(w’,r’):n<w+w’,r+r'+z(7|vg’r))> (2.2.7)
k

-1 _ n(—w’ —7’) (228)

n(w,r)

Moreover, we may check that (n(w,r)v,n(w,r)v) = (v,v), so that these maps are
in GG. These are all unipotent elements, and so by a dimension calculation we know

that this is the full unipotent subgroup that we were looking for.

We summarise all of the above in the following:

Proposition 2.2.3. With respect to the integral cusp ¢ and the associated Witt
splitting V. = [{] & [w,] & [¢'], we may write the rational groups in Definition (2.2.1)

as follows:

L —s(wew) —(60) (16 + s, we)
N = {n(swl,r) = 1 (€,0)s
1

sek,re(@}
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M={l(z)|z ek, Nx)=1}

and hence write the groups in the Langlands decomposition (2.2.2) as:

N ={n(s,r) | s € C, r € R}

A:{a(t): 1 ‘te]&o}
1

M = {m(Q) = e~ 21 | ’ RS R}.

e

We note that because W, = Cw,, we may harmlessly choose a co-ordinate w, on
Wy and write n(s,r) = n(swg, ). The co-ordinate version is often preferred in later
chapters as we may assume wy, = vy or similar. We now have all the tools for the

Iwasawa decomposition of G.

Lemma 2.2.4. We let N = N(R) be the real points of our unipotent group introduced
in Definition 2.2.2 and K the mazimally compact subgroup fizing [vs] introduced in

Definition 2.1.4. We then have the Twasawa decomposition:
N xAxK~NAK =G, (2.2.9)

where this is an analytic diffeomorphism of manifolds, given by multiplication in G.

Proof. This is computed explicitly in [Saw16], while the Iwasawa decomposition is
discussed in full generality in [Bum04] and [BJ06]. O

Corollary 2.2.5. We may realise D = G/K as a space of left matriz cosets in the
most direct way possible

D~NA~N x A.

Hence, the horospherical decomposition of D from (2.2.3) may be written as

D ~{[n(s,r),t] | se C,re R, t e R }.

We now describe the necessary isomorphism between this model of D) in Corollary
2.2.5 and the Siegel model of Lemma 2.1.7. To find this, we first give a simple

Lemma.
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Lemma 2.2.6. The Heisenberg group acts on Hep as follows:

, (w,0)  (w,w) :
n(w,0) : z(1,0) — z (7’ T 0) 20 Lo+ (0,0 )w) (2.2.10)
n(0,r) : z(r,0) = z(t — r,0) (2.2.11)

Proof. This is just a simple application of (2.2.5) and (2.2.6) along with (2.1.14). O

We may find a diffeomorphism between the horospherical decomposition and the

Siegel domain as follows. For any (7,0) € Hy s, this has length
2|04 ][ (£, €)PZ(7) — (0,0) = L(7,0) € Rxg (2.2.12)

by definition. We consider the natural isomorphism between A, and R.q. Then we
wish to find co-ordinates (¢,v, L) € W} x R x {L} such that for

7—[55/ ={(r,0) e Cx W, | L(r,0) = L},

and for some isomorphism
P Hiw = Wi x R,

(¢,v) = ply(1,0) is acted on via (p,)”" as

n(w,r) - ((,v) = (w+§,r+v+z<|15l:|<),e>, (2.2.13)

and so that (p}) " (n(w,r) - (C,v)) has length L in the sense of (2.2.12).

Indeed, one may check that the map p/ required is of the form:

iro) = (R,

l

7 \—1 /|2 /
) =|—-v+———+——=(L+|/1 , (0,0 .
Hence, gluing the maps p/; together for all L, we get a diffeomorphism:
P Hewy = Nox Ay,

g

p(r,0)— (n (M, —R(T)) L 2Z(7)|6w]| (£, )] — (o, a)) (2.2.14)
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2.3 Enlargements of D and Compactifications of
X

In this section we introduce some relevant enlargements and compactifications of
the models introduced in subsections 2.1 and 2.2. As referred to above, we know
that the cusps of D are parameterised by the isotropic lines Iso(V') of V; we shall
use {[{]} to notate representatives of the finite set of cusps of X = I'\D.

2.3.1 The Baily-Borel Compactification

To illustrate this compactification, we shall use the projective disc model of D from
§2.1.1; here, the cusps of D correspond to Iso(}) in a very literal way - we attach
the set €(V), which is in bijection with Iso(}). Formally, the set €(}) is a subset
of PV, and is by definition the set of complez isotropic lines which contain a rational
vector; by associating C/ — k{, it is naturally isomorphic to Iso(V). So, we make

our first definition:

Definition 2.3.1. The Baily-Borel enlargement of D is given by

D7’ =DUel,), (2.3.1)
with a topology called the Satake topology, described in full in [BJ06, §I11.3], the
Satake topology is given by the enlargement of the subspace topology on PV_ by
adding in a system of neighborhoods of €(¢) given by:

(2, 2)|(£, )]

U = {[2] € PV_| G.OF

<=M}Uel), M €Rs. (2.3.2)
As each cusp €(¢) must have non-zero v3 component also, we may represent it in

e(Vy) as €(f) = [avy + bvy + v3] for some a, b € k, aa + bb = 1, and hence in the
enlargement D”" by the point (a,b) = (a,b), € C2.

For the compactification of X = I'\D, we need to define the action of I' on D. As
each of the lines [¢] in €(V) is represented uniquely by a point (a, b),, the quotient
by I' - giving the cusps of X - is given by the finite set of points representing the

lines in I'\e(V/,). Hence we have:
Definition 2.3.2. The Baily-Borel compactification of X ~ I'\ D2 is given by

X"’ =n\bpu U 0D\x=n\pu {J (ab) (2.3.3)
Pel\G(Q)/P(Q) (el ex (Vo)
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The topology on X" is then the quotient topology. The complex structure on this
is defined by pullbacks to the complex structure on D at each cusp; this gives a
normal complex space, but with singularities at the cusps - see [BJ06, Proposition
I11.3.14] for proof. For this reason, while this is in a way the easiest compactification

to understand (one could even draw the real points), it is not ideal for our purposes.

2.3.2 The Toroidal Compactification

Because of these singularities associated with the Baily-Borel compactification, it
makes sense to introduce the toroidal compactification instead. The work in this
section is largely based on the description in [Hof16, §1], which treats the general
case of SU(1,n); the case of all finite dimensional locally symmetric manifolds may
be found in [BJ06, §II1.7]. Topologically, this is a blowing up of the Baily-Borel

compactification in the Siegel model H;» from Definition 2.1.6.

In the subgroup P stabilising the fixed cusp ¢, we have the full rational subgroup
N C P from Definition 2.2.2. Because we have assumed our group I' to be torsion-
free, one may easily check that ' N P(Q) = ' N N(Q). We denote this subgroup by
I'y to emphasise its dependence on the cusp . One may easily calculate that the
centre of N(Q) is

C(N(Q)) = {n(0,r) | r € Q}, (2.3.4)

and so there exists a rational number C;r € Q such that
C(le) = C(NN(Q)) =A{n(0,r) | r € CorZ}, (2.3.5)

where I'y = { € T' | v[¢] = [¢]} is the stabiliser of the cusp. In [Cog85], where a
special case of the lattice L and subgroup I' is considered, the rational number is
calculated in terms of the depth of I and the basis of L. In the H,» model of X, [/]
is the "cusp at infinity", so the neighborhoods Uy, from (2.3.2) may now be written

Unr = {(1.0) € Hew | 2Z(0)|0:]1(€, ) > (0, 0) + M. (2.3.6)

So, in X, a basis for the neighbourhoods of the cusp are here given by

We know from (2.2.6) that an element n(0,7) in the centre acts as 7 — 7 —1r, 0 +— 0,

so taking exponentials and letting ¢ = exp(2miT/Cyr), we have

C(To)\Unm ~A{(q,0) | 0 < |q] < exp (—W)}, (2.3.8)
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which we may recognize as a punctured disc bundle over W,. We may then put
in the central point (0,0) to this, on which I'y acts trivially. Denoting this space

C(T'¢)\U;,, we then have an inclusion
Ow = [Do/COIN[CTNTi] = O (2.3.9)

where the right hand space is a torus bundle. We define the topology "at co" around
a point (0,0) by adding in the open sets

Be={(¢,0") | llo' = a|]> < ¢ld| <e} (2.3.10)
for any € > 0.

Definition 2.3.3. For each cusp class [¢], we may glue the spaces ) v to X for each

M € R+ q; these stratify, and the resulting manifold is the toroidal compactification
~TOR

of X, denoted X~ .

We write the topological inclusion as tpor : X — X" By results in [BJ06, §I11.7],

X% is a compact Hausdorff space without singularities, and the identity map

L : X > X extends naturally to a surjective map 7: X s X 0.
We note that the natural interpretation of this space (which we shall use later on)

is as a compact 4-manifold whose boundary X" " is a union of elliptic curves.

2.3.3 The Borel-Serre Compactification

We now describe the compactification we shall be using predominately throughout
this paper. We recall the horospherical decomposition D ~ N, x A, at each cusp /¢
from Corollary 2.2.5.

We have shown in Proposition 2.2.3 that we may identify A, with R, = R.y. This
can be compactified as 4, ~ R, = R, U {oo} and so for the subgroup P fixing [¢],

we define the associated corner as:
D(P) = N x Ay, (2.3.11)

which is a real analytic manifold with corners. For any parabolic subgroup P, we
let 1p : D(G) =D < D(P) be the natural inclusion. We now define our Borel-Serre

enlargement:

Definition 2.3.4. For any point € D(G) =D, we let tp(z) ~ 1g(x). Then we set:

D™ =DUu |J DP)/~ (2.3.12)

P parabolic
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-DU |J Ne (2.3.13)

P parabolic

To define the Borel-Serre compactification of X = I'\D, we must define the action
of G on D.

Using the horospherical decomposition of D in (2.2.3) and the Langlands decompos-
ition of P in (2.2.2), we may write z = (n,a) € Ny x Ay, so that for p = n’a’'m’ €
NAM, P acts on D as:

p-x = (“/m/ (n'n) ,a’a) : (2.3.14)

Theorem 2.3.5. The action of G on D extends to D~ - namely, it naturally extends
continuously to each face D(P). It permutes the faces by g- Np = Nop, meaning that
Stabr(P) =T NP =Tp.

Proof. See [BJ06, §I11.5.13] for details. There it is proved that if one writes g =
km'’a'n’, k € K, then Ngp = Nip, and it is from there a simple calculation that it

acts as required and is an analytic diffeomorphism. O

Corollary 2.3.6. Topologically, we may write the Borel-Serre compactification X"
of X as
X =m\d"” =r\pu |J eP), (2.3.15)
Pel\G/Q
where e(P) = I'p\Np and Q is any proper parabolic subgroup (so that T'\G/Q
gives the T'-conjugacy classes of proper parabolic subgroups). We often write e(P) as
e(P) for simplicity of notation, but this will always refer to the underlying rational

parabolic subgroup.

Taking the isotropic line parameterisation of the cusps of X, we will largely write
G(Pg) = Fg\Ng,

and iy : e(Py) — X7 for the natural inclusion of the boundary component for each

cusp [(].

The topology of X" is defined analogously to (2.3.10). For any T' > 0, we define
the open neighbourhoods

Vi = N, x (T,00] ¢ D”°

and

BS

Vi =T \Vr = e(P) x (T,00] € X (2.3.16)
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of the ¢ cusp in D" and X°° respectively. The latter provide a basis for all open
neighbourhoods of the given cusp, so in particular given any open neighbourhood U
of / in YBS, we must have U D Vi for some large enough 7. Hence, to define the
topology for X" it suffices to choose a topological basis for X and then choose in
addition the Vi for all [¢] and all T > 0.

Lemma 2.3.7 (Borel, Serre). The Borel-Serre compactification X7 s homotopy-

equivalent to X.

Proof. See e.g. [BS73, §9]. O

2.4 The Lie Algebra of SU(2,1)

We here discuss the Lie algebra of G. This will use standard constructions, and is

mostly of use in defining notation for later use.

Definition 2.4.1. Let GG be as in Definition 2.1.4, and J the matrix defining the
group:

J = 1
-1

Let X' be the conjugate transpose of the matrix X. By differentiating the relation
XTJX = J, we find that the real Lie Algebra gy of G is given by

go = {X € M5(C) | XJ+ JX' =0}

A 1-line calculation gives the following algebraic realisation:

Lemma 2.4.2. gy is an 8-dimensional real Lie Algebra, parameterised as:

ia d e
go=4XeMC), X=|-d ib fl|labceR e feC, at+b+c=0
e f ic

We reiterate that this is a real Lie Algebra, not a complex one. We write
g=go®rC

for the complexification of gg, which is taken to be a right C-vector space. This

notation is replicated throughout the paper.
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With £, the real Lie algebra of the maximal compact subgroup K = Stab(vs) ~
S(U(2) x U(1)) from Definition 2.1.4(i), we may write go = £, + po where

ia d 0
to={|—-d ib 0||a+b+c=0}
0 0 zc
and
0 0 e
po={|-0 0 f|}
e f 0

Note that &, is a Lie subalgebra of gy, but pg is not - one may calculate that
[Po, Po] C €. The adjoint representation of €, is naturally derived from this relation,

as [€o, po] C po - this will be what we use to build representations of G in §3.1.

Definition 2.4.3. (i) We define the R-linear map
oy i AZV = u(V), oo AV)(2) = (v,2)0 — (), 2)v
and hence define the elements
s = Qv(vp Avg),  Brs = v (iv, Avs) € u(V).
We hence have that & = spang{fi1 — P22, 022 — fs33, 12,512} and py =

SpanR{al,?n 51,37 a2 3, 52,3}

(ii) We hence define the following dual forms:

% I %
wr73 - ar,37 wr,?) - /87’,3

and
1 _

fr = 5 (wr,i’) + (-"-);737;) ) 67“ =

so that &, &, &, & € p*.

/ .
(wT’73 - wr,iﬂ)

N | —

We now fix a cusp £ as in our Witt splitting (2.1.7), and analyse the Lie algebra of the
associated nilpotent subgroup N = N, of SU(2, 1), written explicitly in Definition
2.2.1.

Definition 2.4.4. As in §2.4, we denote the real Lie algebra of N by ng, and the
right complexification by n = ng ®g C. With respect to the Witt basis (2.1.7), we
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may write

0 —5||wel> —(€, 0)réy
ng = {m(s,r) = 0 (,0)s ||seC,reR},
0

as one may easily check that exp(m(s,r)) = n(s,r).

The bracket relation in this Lie Algebra is:

[m(s,r),m(s, )] =m (0, 2|||§Z|||21(33/)> : (2.4.1)

As in the global case, we wish to define duals forms on each nilpotent subalgebra.

Definition 2.4.5. We define the dual forms w, = m(1,0)* and &, = m(i,0)* as the

duals of m(1,0) and m(i, 0) respectively, and hence let

1 — 1

We then define x as the dual of m(0,1) € n; hence Q, Q, x € n*.

Lemma 2.4.6. Let Q, Q and x € n} be as in Definition 2.4.5. Then they satisfy

the following relation:
4 2 —
dr = — HT;ZH QAQ e A
k

Proof. Because the elements m(0, ) and m(0,r’) commute for any r, ' € R, we use
(2.4.1) to find

) = (o 2220 2T

_ 2f|we|PZ(s"5")

o (2.4.2)

Similarly, by definition of the wedge product, the wedge product acts on A*n* as:

QAQm(s,r"),m(s", ")) = %I(s'?).

This completes the proof. n

2.5 The Geometry of the Heisenberg Group

We here expand some of the geometry of the Heisenberg group, to assist with our

analysis of the Borel-Serre boundary components. Throughout this chapter we
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assume a fixed cusp ¢ of D, its associated rational parabolic group P,, the nilpotent
Heisenberg group N, C P,, and its real points N,. First we analyse the bundle

structure arising from the quotient group I';\ N,.

Recall from (2.3.5) that we have a number Cyr € Q such that
C(T'NNy) =C(Ty) ={n(0,r) | r € CorZ}.
Hence, we may write:
Fy=NnNT={n(s,r)|seq,reCyrZ} = N(q,Cor) (2.5.1)

for some ideal q C k such that for all ¢, ¢ in g:

L7. (2.5.2)

Hence, we see that we may express e(F;) as a fibre bundle over a base torus:
St e(P) ™ T =W, /q, (2.5.3)

where the second map is projection onto the torus:

me(P) = T7,  m(Ten(s,r)) = s +4q,
and S! is the fibre circle above s € W,;/q. We now specialise:
Definition 2.5.1. For any s € W,, we define

csu = ¢s Ce(Py)

to be the fibre above s with respect to the bundle (2.5.3).

Note that we often write the base fibre circle ¢y as S'. Throughout the paper, it
will often be useful to consider e(F,) as N, with an equivalence relation on it, so an
examination of the product rule in N, gives that for any A € q and 0 € CyrZ, we

may write
e(P) =(C/q) xR/ ~,  (A+s,7+(A\s)) ~ (s,7) ~ (s,7+0). (2.5.4)

Here the symplectic product (, ) is defined by

[[wel [

(s,8") = (s,8"), = 5 Z(ss). (2.5.5)

We pick a positively oriented integral basis A;, Ay of g, so that

Z (AX2) = vol (C/q). (2.5.6)
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In particular, this quantity does not depend on the choice of Aj, A2 (so long as we

retain the condition that they are positively oriented).
Definition 2.5.2. We define the depth of the group I' at the cusp [¢] as the quantity

<A17 A2>€

d(r, g) = ﬁ’

which we have assumed in (2.5.2) to be an integer.

We now wish to discuss the integral homology of the boundary components e(FP;) =

L \Ny, for I'y = N(q,Cyr) as in (2.5.1) (this is fixed for the rest of this discussion).

Proposition 2.5.3. e(P)) is a manifold with Poincaré duality, and the Oth, 1st and
3rd integral homology groups of e(P;) are given by

Ho(e(P),Z) =2, Hi(e(P), ) =@ gt o, Hyle(P),7) =7

2d(T, O)Z’
Proof. We know that N, is a Lie group, so this is an orientable manifold, and every
element of the discrete subgroup I'y will act on N, as an orientation-preserving
diffeomorphism: hence, e(P;) = I';\N, will also be orientable. It is clearly path-
connected and hence connected, and the given bundle structure in (2.5.3) should
convince us that e(P,) is compact. Hence, by definition we see that Poincaré duality

does indeed apply.

The result for Hy is simple enough: we know that e(F;) is a connected topological
space, so by elementary algebraic topology, it has 0’th integral homology ~ Z,
spanned by the class of any fixed point in e(F).

By Hurewicz’ theorem (see eg [BT95, Theorem 17.20]) we know that as e(F) is
path-connected, H;(e(P;),Z) is the abelianisation of the first fundamental group
m(e(Fy)). In [Sco83, pp.470] it is calculated that m(e(F)) is isomorphic to I'y, so

with the simple calculation that
(n(s,r),n(s',r")] = n(0,2(s, s))
we see that
Ty, T] = {n(0,7) | r € 2{\1, \2)Z}.

Hence, by the above two cited results, we have found Hy(e(Fy),Z). The result for
Hj follows again because it is an orientable, connected & compact manifold, so we
know that Hs(e(P;),Z) = Zle(P,)] ~ Z is generated by the fundamental class. [

Furthermore, we may use our above analysis of the bundle structure of e(F;) to say

which geometric elements represent the basis elements in e.g. simplicial homology:
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consulting (2.5.3) and the proof of Proposition 2.5.3, it is clear that the basis of
H,(e(Fy),Z) isomorphic to q is just given by the homology basis of the base torus
TZ, and the finite abelian group corresponds to the circle fibre S, which may be

wrapped around 2d(I", ¢) times before it becomes trivial.






Chapter 3

Coeflicients and Representation

Theory

In this chapter, we give a brief exposition of the representation theory of SU(2,1),
and a similar treatment of homology and cohomology with coefficients in a vector
bundle. Our aim throughout will be giving a necessary theoretical exposition of
the vector bundles derived from G-representations, which will allow us to work
with generalised homological and cohomological objects in §4 and §6. The work on
representation theory is largely based on the work of [FH04] and on the exposition
given on harmonic operators in [FMO06, §3]; the work on vector bundles and coefficient
systems comes similarly from [BT95] and [FMO06, §2].

3.1 Finite Dimensional Irreducible
Representations of SU(2,1) and their Weights

We start by letting V' be an arbitrary hermitian vector space (not necessarily positive-
definite), and hence let G = SU(V'). The representation used will, as always, be the
standard representation of V', whereby G acts as a matrix on the column vectors of
V.

GxV =V (g,v)—=g-v, (3.1.1)

and we let VV* be the dual representation of V'; we note that because V' is here a

unitary representation, p*(g) = p(g).

We may hence define
T (V) =V @ (V)™ (3.1.2)

with [,I’ € Ny non-negative integers; this will be a representation of G as a vector
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product of representations. This space has an inner product on it given by extending

(@), (@) =TT (x.v:) (3::%)

For every pair of integers I = (i,7) € [I] x [I'], we define maps
P =Py : T (V) - T (V)
which remove the (4, j)’th place, so that
PM((wl®...®wl)®(w{®...®w;‘,))
=wj(w) (1 ® .. QW .. 0w R W ®...QUW;"®...0w).

We note that if [ or I’ is 0 then we may still allow this map; if e.g. I’ = 0 then as we
have defined [0] = (), we let P : TWO(V) — Ve(u-b,

Definition 3.1.1. (i) For any non-negative integers [,!’ € N, we define
I = NrcpxpKer(Pr)
We let H : TH (V) = VI be the vector space projection map.

(ii) We may write the symmetric powers S (V) as a subspace of T (V); we may
hence define the harmonic subspace as the image of a projection map from the

symmetric powers:
HH (V) = my (Sym! (V) @ Sym" (V7))

We emphasise here the difference between H and 7y (namely, that they have

different domains); the latter shall be of primary interest.

Theorem 3.1.2. For all finite-dimensional hermitian vector spaces V', the SU(V')-
module H'' (V') is irreducible with highest weight (1,1').

Proof. Let go refer to the real Lie algebra of the Lie group SU(V'), with right
complexification g = go ® C; one may check that g ~ sl,,,(C). Further, one may
check in e.g. [FHO4, §15] that H“' (V) is an irreducible representation of sl,,,(C)
- these are classified by the exact weight structures that we have constructed, and
so give us irreducible representations by the general representation theory of special
linear groups, [FH04, Proposition 15.15]. O

We now wish to interpret the harmonic space in Theorem 3.1.2 using a representation

space of polynomials.; we herein fix V' to be our signature (2,1) hermitian vector
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space from §2. It is well known that the symmetric powers are isomorphic to the

space of homogeneous polynomials of degree [ in the variables z;:
Sym' (V) ~ C[z];,

and by identifying V* with V, we may similarly write
Sym" (V) ~ C[z]y.

We define the Laplacian operator for V' as

2 82 82
A= -
aZ::1 02,0%Z, 0z30%3°

(3.1.3)

so that
7‘[“(‘/) ~ Ker{A : (C[Zi, Z]u — C[Zi, Zii]l,l’l,l}.

Example 3.1.3. We start with the first non-trivial example: namely, with V' as
above, we look at the case [ =1’ = 1. Then SV (V) =V ® V*, and an easy starting

subrepresentation is given by the metric:
e={C(v1 ®v] + v @ vy —v3 ®V3)};

indeed, by definition of the representation V @ V* G = SU(V) acts trivially on ¢,

so € >~ 1. V here is a surjective map
V:C [2%72‘]1,1 — C,

so by the rank-nullity theorem, we have V @ V* ~ 145 @ H-Y(V).

We now move onto a more general analysis of the structure of the weight spaces of
HUL(V), for V our fixed Hermitian vector space from §2. As ever in our analysis
of the weight spaces of a finite dimensional Lie algebra, what we start with is the

eigenspaces of the centre of the Lie algebra under the adjoint action.

We may write a basis of su(2, 1) with respect to the orthonormal basis {vy, ve, v3}

as follows:
1 0 . 0 -1 0 . 0 7 0
)\1— —1 s )\2— ] y )\3—* 1 > )\4—5 7
0 —3 0 0
. 0 01 . 0 0 1 . 0 . 0
)\525 0 ; >\6=§ 0 ,)\725 1y, )\825 i
1 —1 010 0 — O
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The central subalgebra may be seen as £, = spang{ A1, A2}; hence, for the principal

eigenvalues, we find the following lemma:

Lemma 3.1.4. The action of & through the adjoint representation on su(2,1) is as

follows:

[)\la )‘3] = _2A47 [)\17 >‘4] - 2)\37 [Ala A5] - )‘67 [Ala )‘6] = _)\5’ [)\17)\7] = _)‘87 [Ala AS] = )‘7
[)\27 )\3] = )\47 [)\27 )\4] = _)\37 [>\27 >\5] = )\ﬁa [)\27)\6] = _)\57 [)\27 )\7] = 2)\87 [/\27/\8] = _2>\7

Hence, we may write down the following eigenbases of g with respect to the adjoint

action of €:
(A1, A3 £id\g] = (£2i0) (A3 £ i\y),
[)\1, )\5 + Z)\G] = (:FZ) ()\5 + Z/\G) ,
[A1, A7 £iXg] = (£9) (A7 £ iAs),
and

[A2, A3 £ iX\y] = (£7) (A3 £ iAy),
[)\2, )\5 + Z)\G] = (:FZ) ()\5 + Z)\6) ,
Do, Ar = idg] = (£20) (s 2 idg) -

Proof. The action of £, is simple matrix calculations; from there, the existence of

the eigenbases follows immediately. O

Our objective here is hence the following: in the irreducible representation H%(V),
to write down a highest weight vector and compute the weight changing operators
(analogous to the raising and lowering operators for sly(C)). Throughout, we refer
to the operators A\; +i);41, 7 € {3, 5, 7} as being in the — space and A\; — i\;41,
J € {3, 5, 7} being "in the + space'; this is because the former includes the anti-
holomorphic part p~ of p, and the latter includes the holomorphic part p*.

Calculations in linear algebra give us the following:
[)\3"‘2)\4, )\3—2)\4] == 7/-)\1, [>\5+i)\6, )\5—2)\6] - i()\l—)\g), [)\7+i)\g, )\7—Z)\g] - i)\g,

so that A\; + @)1 is the weight inverse of A\; —i\;1;. We further may find the

following relations in the — and + space:
A3 —iAg, A5 —iXg] = A7 —ids, [Nz +idg, A5 +iXg] = A7 + i )s.

So, in this setting, we do the following - which borrows largely from the analysis of
sl3(C) representations in [FH04, §12].



3.1. Finite Dimensional Irreducible Representations of SU(2,1) and
their Weights 43

Definition 3.1.5. Let W be any representation of g. We say that a vector w in W

is a highest weight vector if it satisfies the two following conditions:

(i) It is an eigenvector for the action of the central algebra .
(ii) It is annihilated by the + space matrices A3 — iy, A5 — iAg, A7 — iAg:

w € Ker(A3 —iAy) N Ker(As — iAg) N Ker(A7 — i)g)

Of course, this is not necessarily unique - but again, we have some ideas for how to
construct one. We start by finding a weight 0 vector vy: indeed, a bit of calculation

gives the following;:

Vo = Ty (Ué ® (Uék)l)

as one may check that A\j(vg) = Aa(vg) = 0, using the additive action of the lie
algebra on vector products. Using the isomorphism between g and sl3(C), we have

immediately the following:

Proposition 3.1.6. [FH0/, Claim 12.10] Let W be some finite-dimensional irredu-
cible representation of g and w € W some highest weight vector, as in Definition
3.1.5. Then W is generated by the image of w under the action of A3 +1Ayg, A5+ iXg
and A7 + i )s.

So, by the standard rubric of weight diagrams, we wish to find a highest weight
vector by applying the + space to vg. We may quickly check that the + space
acts trivially on V', and (A3 —i\y)(v5) = —vf and (A7 — iXg)(v3) = v are the only
non-trivial actions on the basis of V. We hence make the following educated guess

for a highest weight vector:
_ SRV _ Sy N\l *\1
v = (A7 —iAs) (vo) = Tx (()\7 —iAs) (vy @ (v3) ))
Indeed, using the above calculations, we may find:

vy = llmy (Ué ® (vg‘)l) .

Proposition 3.1.7. vy is a highest weight vector in HY(V).

Proof. By our calculations in Lemma 3.1.4, vy is a weight vector:

M (vy) = 7y [)\1 <(>\7 —idg)' (Uo))}
= 7 [([Ar, A — iA] + (A — ids) A1) O — iXe)' ™ (29)]
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= [(—i(Ar — iAs) + (hr — iA)A1) (hr — idg) ™ ()]
= —ivg + Ty [(/\7 — i)\ (A7 —idg)' ™ @0)} '

[terating this calculation - namely, using the bracket relation from Lemma 3.1.4 to

interchange A\; and A; — iAg - a further [ — 1 times, we find that A\;(vy) = —ilvg.

By an identical calculation with Ay, we see that
)\Z(UH) = —2Z'ZUH,

so that vy is a weight vector for the action of £. It is now a fairly trivial calculation
to check that the 4 space acts trivially on vg: indeed, we may check that the vectors
vy and v; are mapped to 0 by the action of all the matrices in the — space, so by
definition of the action of the Lie algebra on vector products, vy is in the kernel of

these maps. |

The astute reader may have noticed that this is hardly the only choice of highest
weight vector we could have picked - indeed, using a hexagonal weight diagram as

in e.g. [FHO4, §12], anything in the top right edge will work equally well.

Though this is not all we could say about the representation theory of SU(2, 1), this
is more or less sufficient for our purposes - namely, it will allow us to move around
the weight diagram for each representation, and to find primitives for vy with respect

to all of the raising operators in the + space.

3.2 Homology and Cohomology with Coefficients

In this section we revisit the theory of simplicial homology and cohomology with
coefficients in a flat vector bundle E. In principle, it would not be fundament-
ally harder to develop the theory of singular (co)homology, but as all the objects
under consideration in future chapters will be simplicial complexes, this would be

redundant.

Let Xy be a simplicial complex such that its topological space X is a finite dimen-
sional manifold, and let £ — X be a flat vector bundle. For p € Ny, the abelian

group of E-valued p-chains is written:

Zy(X,E) ={>_0;®s; | n € N,o; an oriented p—simplex and s; a flat section of E over ;}.
j=1
For convenience, we define Z,(X,E) = {0} for p < —1. For o a fixed oriented

p-simplex, we let I'(o, E') be the group of sections of E over o.
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For any face 7; of 0;, a flat section §; of I over ¢; may be uniquely extended to a

section s; of E over o;; we write this section e, 7 (5;).
777

Definition 3.2.1. (i) Writing a p-simplex o as ¢ = (v, ...,v,), we define the

j'th face of o as 0; = (vg, ..., Vj_1,Vjt1,. .., Up).

(ii) The boundary operator is hence defined as:
p
0: Zy(X,E) = Z,1(X,E), 9(0®s) Z 1)0; ®@14,.4(s),
where 7,5, ,(s) is the natural restriction of s to the j’th face.

One may show as always that 9% : Z,(X, E) — Z, o(X, E) is trivial, so this defines
a boundary operator. We let C,(X, E) = Ker(d) be the cycles in Z,(X, E), and
B,(X,E) C Cy(X, E) as the boundaries and so we have a homology theory, with
the group written H,(X, E).

We now treat the cohomological theory. The abelian group of E-valued p-cochains

is written:
ZMNX,E)=A{f:Z,(X) = I'(-, E), f(o) €T(0, £)}

where Z,(X) is the abelian group of p-simplices.

Definition 3.2.2. The coboundary operator is defined:
/4
§: Z°(X,E) — ZFY(X | E), Z ) €00, (f(05))-

This satisfies 62 = 0 and so this defines a cohomology theory, with the cohomology
groups written H?(X, E).

Remark 3.2.3. We may define relative homology (resp. cohomology) groups for any
simplicial subspace Y of X, written H,(X,Y, E) (resp. H?(X,Y,E)), and defined
as the homology of the complex of E-valued p-chains whose boundary is a non-zero

p — 1 chain only on Y (similarly for the cohomology).

We now discuss the usual pairings and products in the homology and cohomology
theories; for this section we fix flat bundles E, F, G over X and a parallel section u
of Hom(E ® F,G) (ie a bundle map p: E® F — G).

Definition 3.2.4. (i) Let f € C?(X,FE) and 0 ® s € C,(X, E). Then the Kro-

necker pairing of f and o ® s is given by:

(fio®s8) =n(flo)®s)
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(ii) In exactly the same way as in the case of trivial coefficients - see eg [BT95,

p.192] - we may introduce the cup and cap products
U: HP(X,E) ® HY (X, F) — H"7 (X, G)
Mn: Hp(X, E) ® Hp/(X’ F) — Hp_p/(X, G)

where for the latter we require p > p’ (implicitly, this will use our specified

choice of p as above).

Proposition 3.2.5. (i) Let X be a compact oriented manifold of dimension k
with boundary 0X. Then the pairing with the fundamental class [X,0X] gives

the isomorphism

P: H(X,E) — H,_,(X,0X,E), P(f)=fn[X,0X]

(i) More generally, let X be a not-necessarily compact manifold with boundary

0X ; then the Poincaré duality is as follows:
P:HP(X,E) — Hy_,(X,0X,E)

where without loss of generality we denote the map with the same letter. Co-
homology with compact support here formally means that the representative of

the class is compactly supported in each of the fibres of E — X.

We now quote one more result which will be important in our consideration of the
duality of our elements. We may also give a de Rham theory of (co)homology with
coefficients in E; one may find the details in eg [BT95, §6], but given a vector bundle

E with a connection V, a differential p-form is a section of
NPT (X) ® E ~ Hom (NPT(X), E)

which is closed w.r.t. the differential dy given by the equation:

A

Ay (W) (X1, ..., Xpy1) = i(—mﬂ'—lm (w (X1, Xy X))

<.
Il
—_

+ Z(—l)”jw ([Xian];Xla ce 7Xi7 .. .Xj, N Xp+1) .

The group of such de Rham cochains, with the differential dy, is denoted C%, (X, E);
for ¢ any p-simplex and U some open neighbourhood of ¢ in X, we may write

0 =) ;w;®s; for w; ordinary de Rham forms and s; sections of £/ | U. The natural
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integration map between C%,(X, E) and C?(X, E) is hence given by

Lar(@)(0) = 3 (/o_ wj> s; (3.2.1)

J
Proposition 3.2.6. (i) The map tqr is trivial on cochains and descends to a map
tar : HIp(X, E) — H*(X, E) on cohomology which is an isomorphism.
(ii) Hence, we have Poincaré duality on flat vector bundles E — X of the form

P H (X, E) = Hy_(X,0X, E).

Proof. Part (i) is proven in e.g. [BT95, Theorem 12.15]; part (i7) is hence an

immediate corollary using the Poincaré duality of Proposition 3.2.5(i1). O






Chapter 4

Special Cycles on Picard Modular

Surfaces

In this chapter, we introduce the homological side of the Kudla-Millson theory. First,
we define the special cycles Cyx on our Picard modular surface X for all positive
vectors x, which will allow us to formulate the first version of the main theorem of
Kudla & Millson from [KM86] and [KM87]; namely, that the generating series of
these special cycles is a modular form of weight 3. Our first step will be to look at
their natural extensions to the chain complexes constructed in §3.2. This will allow
us to state the first extension of the theorem of Kudla-Millson - namely, that the
generating series of the special cycles Cy ;) with coefficients in HH(V) is modular
of weight 2/ 4 3. This theorem will not be proven at this stage - it makes more sense
to wait until the cohomological statement can be proven, and then use duality - so

we shall have to wait until the end of §6 for this.

Following this, our main focus in this chapter will be to look at the interaction
between the generalised special cycles Cy ;) and each of the boundary compon-
ents e(F). Using a similar argument to other work on modular cycles on Borel-
Serre compactifications, we shall create chains Ay € ZQ(&YBS, HH(V)) such that
OAx iy = 0Cxpy. This will allow us to define capped cycles on X"% which are
closed and whose generating series will be modular; analogously, this will be proven
in §8.

4.1 Special Cycles on X
We now return to the geometry of §2, namely where D = G/K is the symmetric

space of a unitary group of signature (2,1), corresponding to a hermitian vector
space V /k.
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Definition 4.1.1. Let x € V be a positive, rational vector. In the projective model,

we may define

Dy ={zeD|zLlx}

and for I'y the stabiliser of x in I', we let Cyx = I'y\Dx. For n € Q~o, h € L'/L and
L = L+ h as before, we define the (finite) sum of Cy’s:

Co=Chpn= Y, Cx (4.1.1)
xEL,(x,x)=2n
mod I
Dy is embedded in I as a topological subspace; indeed, by its definition, we may
realise it as a subset of the projective lines in PV_. For I'y[v] € Cy, the natural map
from Cy — X given by

Ix[v] = T[v] (4.1.2)
is well-defined.

We say an element v € GG is neat if the subgroup of C* generated by the eigenvalues
of v is torsion-free; we hence say that the arithmetic subgroup I' is neat if all y € T’
are neat elements. In [FMO06, Proposition 4.4], it is shown that for all x € V, there
exists a neat subgroup I'(x) C I' such that Cy injects into I'(x)\D.

In general, for any chosen I', however, the Cy will not inject into X; henceforth, we
will identify Cy with its natural image in X = I"'\ID, and so write it as a chain on X.
As in §2, we shall herein assume that I' is indeed torsion-free.

So, we are now in a position to state the homological part of the Kudla-Millson

theorem.

Theorem 4.1.2 (Kudla-Millson, ’86). Let n be a closed, compactly supported and
rapidly decreasing differential form on X, representing a class [n] € H?(X). Let L

be an even, integral lattice in' V_ of level M, and let L be some coset of L'/ L.

Using the map from (4.1.2), we may consider Cy as a chain on X : this represents a

relative homology class on X :
Cy] € Hi(X,0X,7Z).

This class is generically non-compact, and the integrals given by the Kronecker pairing

X
Ca

all converge. We let Qx be the Kdhler form on X, so that ¢;(X) = iQX is the

Chern form on X ; then the sum

217T/X (n A Qx) + Z [/ n] ™" € M3(T'(M))

n>0 Cn
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s a holomorphic modular form of weight 3 and level M.

This theorem is proven in the papers [KM86] and [KM87] in complete generality;
namely, when V' is any real, complex or quaternionic split vector space - and hence

when G is any finite dimensional orthogonal, unitary or symplectic Lie group.

We here note that when we sum over "positive n" in e.g. Theorem 4.1.2 and the
sum in consideration is over some collection of special cycles, what we mean is to
sum over all non-trivial norms n of elements in £, so that this is really a sum over a

well-ordered and discrete set as usual.

For the rest of this section, we shall attempt to recreate Theorem 4.1.2 for generic
odd weight 2] + 3; we recall our work on G-representations from §3.1. For any
G-representation F, and any x € V of positive length, the bundle we will be working

with is the natural one given locally as a projection:
Cx Xr, F — Cx.

For any I'y-invariant vector w in E, we may write sections s,, of the bundle as
sw(2) = (2, w);

for simplicity we write Cy ® w = Cx ® s,,. Hence, fixing £ = SY (1), the naturally

chosen w here is given by x! ® (x*)"".

This is a constant and thus parallel section; we may now write down the special

cycle with coefficients in the relevant representations!

Proposition 4.1.3. Fiz integers [,1' € Ny, and any positive vector € € V.. We then
define the special cycle with coefficients in SU'' (V') as follows:

03;7171/ = Cw & .’BI X (IB*)Z/ .

Similarly, we then define the special cycle with coefficients for the representation
HYY (V) from Definition 8.1.1 as

Coy) = Ca ®@ my (:cl ® (m*)l,) .

These are cycles - namely, they are closed - and so in particular represent classes in

homology:
[Om,l,l’] c Hg <X, aX, SW)) s [O%[u/]} - Hg (X, 8X, HW)) .

Proof. We shall prove this in the complex with symmetric coefficients; it should

be clear that as the second complex is a restriction of the first, closure in the
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first implies closure in the second. Indeed, examining the boundary operator from

Definition 3.2.1, and picking some simplicial decomposition of CY, it is clear that for

all Oy @ v € Cy(X, SH(V)), we will have
D (Cr®@v) =0y (Cx) @0

where the boundary operator without coefficients is denoted dy. Hence, the closure
of Cx,p follows immediately from 0y(Cx) = 0 from the equivalent statement for

closure without coefficients in Theorem 4.1.2. O

Remark 4.1.4. We note here that although, a priori, we cannot say that the
harmonic projection my(x! ® (x*)") is non-zero, it should not be hard to imagine
why it is generically so. For example, in [FM11, §4], they are able to describe the
integrals of the analogous orthogonal special cycles Cy ) against differential forms
to give weighted periods of f(z) over the cycle Cx - which in particular are described
by Kohnen and Zagier in [KZ84].

More specifically, one may e.g. look at [ =1’ =1 to get an idea of why these vectors
are generically non-zero; indeed, in this case, V @ V* = 1 @ H'(V), where 1 is a
1-dimensional representation spanned by the metric. In particular, this tells us that
all vectors x ® x* will not project to 0 in H!(V), as there is no vector x € V such

that x ® x* is proportional to the metric.

As an example of this, see Example 8.2.5 to see why the lift of the capped theta class
is non-trivial - and in particular why these vectors my(x! ® (x*)!) are generically

non-zero.

We may hence state the main theorem analogising Theorem 4.1.2; the proof of
the most important part will be deferred until the following chapter (where the
cohomological side will be treated), but it makes sense to state it before we move

onto the boundary behaviour.

Theorem 4.1.5. Fiz a non-negative integer | > 0. Let n € H*(X,HY(V)) be a
compactly supported and rapidly decreasing differential form with coefficients in the

irreducible representation H"'(V'), and let L be some coset of L' /L, where L is of
level M. Considering C, — X, and letting n € H*(X,HY(V)) be some rapidly

decreasing and compactly supported differential form, then the integrals

[ n= [ (@ e @)

all converge - we here take this integral as the scalar integral resulting in pairing the
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coefficients in each fibre. We let Q0x be the Kdhler form on X, and n as above. Then

1 2minT
%5l:0 /)( (77 A QX) + Z l/c’n7[l’l] 7]‘| € c M3+21(F<M))

n>0

is a holomorphic modular form of weight 3 4+ 2l and level M.

Proof. The convergence of all the integrals fo,u,z] 7 is an immediate consequence
of our requirement that n be compactly supported and rapidly decreasing on each
fibre. The proof of the weight and modularity will be at the end of the chapter
on the construction of the Schwartz forms - in Corollary 6.4.2 to Theorem 6.4.1 -
but it should be intuitively clear to the reader at this point why we believe it to be
true. [

4.2 Restriction and Capping of Special Cycles

In this section, we shall look at the restriction of the special cycles from §4.1 to the
boundary components. What we shall see is that at each boundary component e( /%)
of YBS, each cycle Cx ;) has boundary a finite collection of 1-cycles. These 1-cycles
are themselves boundaries in Z;(e(P), H"(V)), and so we may create modified
2-cycles CF ;y such that 9CL ;) = 0 in YBS; crucially, these new cycles will be
integrable against non-compact cohomology, and so we will be able to expand the
results of Theorem 4.1.5 to drop the condition on n being compactly supported and

rapidly decreasing.

A quadratic space is said to be split if there is a subspace that is equal to its own
orthogonal complement. In [Fun02, Lemma 3.6], in the analogous real case, it is

proven that

1

Cy is an infinite geodesic at [(] <= x* is split <= q(x) = ||we||* N ()

for some « € k; the proof for the complex vector space is identical. As we assume

1

x is of positive length, then x— is a hyperbolic space of complex signature (1,1);

in particular, if Cyx is infinite at [¢] (namely, for all neighborhoods U of [¢] in X,
UNCx #0), x = B¢+ aw,. We focus on this case for the moment.

We start by investigating the interaction of
Dx,[l,l} = ]D)x X T (Xl & (X*)Z) S CQ (D, Hl’l(v))

with Ny, the enlargement of I at the cusp ¢; it is clear (because I'y acts trivially on

the vector components of ]DX,M) that Cyx 1 = FX\JD)xW].
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We now recall the horospherical decomposition N, x A, of D given in Corollary 2.2.5,
and the map ¢ : Hy 0 — Ne X Ay from (2.2.14); by definition of the space Dy as

the space of vectors perpendicular to x, we may write:

)1 (¢ (s, ), 1], x) = 0}

= {[n(s,r), ] @ mn (X' ® (x7)') | B+ allw|*s = 0}
{[n (x),7), } ® Ty (x ®(x*)) | r ER,tER+}.

i) = {n(s,r),t] @ my (X ® (x*

)
)

where we have defined s(x) = — 3/ (a|we||?).

Lemma 4.2.1. Fiz a rational isotropic line { of V.. Let € = {4+ aw, € V be
a positive-length vector split at [(], so that Dy intersects non-trivially with the
boundary component Ny of the Borel-Serre enlargement D°°. For such an x, we let
s(x) = —fB/(a(wg,we)) as above. Then considering the Borel-Serre enlargement, the

intersection at the cusp corresponding to { is given by:
Dg g N Ne = {n (s(x),r) @ my (ml ® (:I:*)l) |7 e R} .

Now, using this, we may characterise what the equivalent picture is on the quotient

X =T'\D and its Borel-Serre compactification.

Lemma 4.2.2. We now fix a cusp class [£] of X; for any positive n € Q, we may

introduce the following subset of the lattice coset L:
Lo =A{xe L split| (x,z) =2n, z L (};

by our work above, we know that for all x € L, 4, Cypy will intersect non-trivially

with the boundary component e(P;) at [(].
For y € Ly, we let cyp = oy C e(Py) be the fibre circle above s(y) € T7. Then:

850 ”] = Cm,[l,l} N €(Pg) = H Cyr (059 TTH (IBZ X (ZB*)l> ,
yerf\‘cn,é
y=vyx, vyl
and for all € & Ly, ¢, 0iCypi = 0.

Proof. We fix elements d = [n(s(x,r),t] and d’ = [n(s(x),7'), '] in Dy, and let dy, d
be the images in the boundary component e(P;). Then by definition d = d’ in X if
and only if d = d'vy for some ~ € I'; analogously, d, = d, if and only if d;, = d}, for
some 7, € I'y. Hence, by definition, the closure of C includes all the I' translates of

Cx, and so the statement is proven for trivial coefficients.

Moreover, it is clear that for any I'y-invariant vector v € SY(V),

6@(0,{ ® ’U) = 8075(0,{) & v;.
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hence, the coefficients fit harmlessly onto the end - in particular, the identical result
holds in the complex Cy(X, H (V). O

So, for any given x € V of positive length, we wish to find a two-cycle Afg[l’l] Ce(Py)
such that agAi[u} = 0yCx j1,1]-

We first introduce some generic algebraic objects which will allow us to deal with the
denominators of these objects. Formally, the cycles ¢, are cycles with coefficients in
the trivial representation Q of G; in this way, the natural integral structure came
from Z, the ring of integers of Q. When we now work in H%(V), we wish to define
a Z-submodule which replicates the natural integral structure; this will follow the

work of Harder on this subject.

Definition 4.2.3. Let S”'(V) be the vector space of symmetric powers as above,

and let 7y : SY (V) — HY (V) be the projection into the harmonic subspace.

We let SY' (V) be the symmetric powers over k of V! @, (V*)¥, and HY' (V) the

harmonic vectors; we may understand these objects as either a Q or a k-vector space.

For £ € L'/L some coset of an even and integral lattice L, we may define the

Z-module S*' (L) as follows:
S (L) = {x € SV | all components of x in L},

and hence define H"' (L) = 7 (S"'(L£)). For R a Z-module, we may extend the
coefficients on these modules by letting H"' (£)(R) = HY (L) ®z R.

In particular, we shall be interested in these module constructions when R’ is a

subring of Q given by the inversion of some integers in Z.

We start our analysis of the capping procedure with the immediate question: why
should such a cap exist? In the existing literature, such things are common - see for
example [FM14] - but there are also examples where they explicitly cannot exist -
see e.g. [FM11], where the caps exist only when the coefficient system is non-trivial.
We shall start by looking at the case | = 0 - where the coefficients are in Q - and
then try to adapt these methods to the case of coefficients in H*(V) for [ > 1. We
let dw and dw be the toroidal 1-forms on Wy, given by the image in the evaluation

map of the forms €, and €, written in Definition 2.4.5:

dw:ﬂ'g(Qg), dw = m (m)

In the case [ = 0, we may see as an immediate corollary of Proposition 2.5.3

that Hlr(e(P;)) is spanned by the projections into e(P;) of dw and dw, so that in
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particular
/ n = {(cx,n) =0 (4.2.1)
Cx, 0

for all n € Hix(e(P)). This tells us that this 1-cycle is exact, and so in this case

the cap must exist.

Lemma 4.2.4. Let all the y which parameterise the boundary fibre circles of Cy in
e(Py) be denoted

{w|} ={yeT\Li|y=nz}
Forxe LOAW, and y € {x | (}, the special cycles c, @ ¥ @ (*)! and ¢, ® Y @ (y*)'

are homologous.

Proof. More specifically, we may say that they are parallel: we consider the action
of N on the complex I'(e(Fy), H"(V')) of sections on the bundle generated by the
harmonic representation. Let x = awy and y = ¢+ aw,. Then the nilpotent matrix

n(s(x),0) acts on the fibre circle as:
n(s(x),0) - n(0,7) = n(s(x),r),

and on the vector components as:
N ony _ (5 _
n(s(x),0)x = —s(x)al + awy = | — | ol + aw; =y,
a

and exactly analogously for the action on x*. O

In particular, this lemma tells us that, heuristically, all the fibre circles of the same
norm related by I'-maps are equivalent, so once we know a property up to homology

for one of them, we know it for them all.

We now look at the bounding of the cycles with trivial coefficients. By the results of

Lemma 4.2.4, we know here that all the distinct fibre circles in 9,Cx are homologous.

We recall here the equivalence relation formulation from (2.5.4), and in particular
the chosen integral basis A;, Ay of the ideal ¢ C k. Let x = 8¢ + aw, € L,,4 be an
arbitrary vector, with associated constant s(x) = —3/a € k. Using the inclusion of
q in k, we write

s =38(x) = A + Yy

for some rational numbers x and y (because we know that s(x) € k). We define the

following 2-cycle in e(FP):

Xe 1[0 = e(P), - xalab) = nf(a+ @)X+ (0 9)Ao, —(a+ 2)(b+ 1) (M, Aa)e].



4.2. Restriction and Capping of Special Cycles 57

In the following, we use the algebraic notation of singular homology. The boundary
of x, is hence given by:
OXs :n{(a + )M + yA2, —(a + 2)y (A, )\g)g]
+n[(1+2)A + (04 y)Aa, (1 +2)(b+ 1) (A1, o))
—n[(@+ )\ + (1+y)Ae, =@+ 2)(1 +y) (A1, Aa)e]
— n[m)\l + (b+ ) Ag, (b + 1) (A1, )\2)4,
where a, b, @, b € [0, 1]. For the rest of the calculations we drop the specifications of

where the variables lie. Using the equivalence relations for the I'y element n(—\s, 0),
we find that:

n[(@+ )\ + (1+ ), —(@+ 2)(1+ ) (A1, Ao
~ n[ — Xt (@+z)M+ (1 +y)A, (Ao, (@+ )M\ + (L +y)Ao)r — (a4 2)(1 + y)}
= n{(a + )\ + yAe, —(a + 2)y(\, )\2>4,

where the equality follows from (Ag, A1)y = — (A1, Ag),. Similarly:
n[(1+2)A + (0 + y)ha, —(1+2) (0 + y) (A1, Aa)]
~ n[ =M+ T+ 2)A + (b +y) A2, (A1, (T +2) A + (b +y)A2)e
— 1+ 2)(b+ ) (A, Ao
= n[zA + (b+ Yo, =24 2)(b+ 1) (M1, o).

Hence, we may write:

Oxs = n [z M+ (b+y)Aa, —(242) (b+y) (A1, Ao)e| =1 [2h+(b+y) Ao, 2(b+y) (i, M)
(4.2.2)
where b, b € [0, 1]. One may easily see that

Oxs — n(xA1 + yAa, —2(l:) + ) (A1, Aa)e)
= n(bAa, —2b(A1, Ao)e) — n(BAa, 0) — n(s(x), —2(b + ) (A1, Aade)  (4.2.3)
= @TS,K

is an oriented 1-cycle which bounds a singular 2-cycle Ty, € Zy(e(F;), Q) - indeed,
we may define T, to be the 2-chain defined by the closure of the interior of the

1-cycle 9T . By definition, we may write the cycle cyx) ¢ as
Cs(x),t = {n(s(x), T) ‘ re [Oa CEI]}»

where we again use (2.5.4) to join n(0,0) with n(0, Cyr). We may harmlessly rotate
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it round to remove the constant y in the r component in (4.2.3), and hence, in the

group of rational chains Z;(e(F;), Q) we have:

—2(A1, A
Oxs = <C,172>ZCS,Z + 0Ty = —2d(T, €)csp + 0T . (4.2.4)
Lr

)

Hence, we have capped the fibre circle ¢,,, with a rational 2-chain contained entirely

in the boundary component e(F).

We hence may define the capped cycles for the trivial coefficients [ = 0.

Definition 4.2.5. For a fixed cusp [f] and positive vector x split at ¢, we define A%
to be the two-cycle defined by

A= 2d(1F,€) (Te.e = Xsot) -

For all other x and [{], we let A% = 0. Using the calculations of Lemma 4.2.2 we

define the compactified two-cycle in the Borel-Serre compactification X7 of X by

Ce=Ce—>. > Af,
[Z] yGFZ\En,Z
y=7x,v€l

and hence for n € Q positive, similarly define C¢ as

Ci=Ci=> X 4

[6] yEFg\Ln‘g

We shall now record all of the above in a theorem, which generalises Theorem 4.1.2
for the case of trivial coefficients. We are stating this theorem now for several reasons:
firstly, because the general case of [ > 1 requires one more result to express the
integrality; secondly, it also will still contain the Kahler form, which we will see
in later chapters to disappear for [ > 1. Finally, at the end of the thesis we will
relate our work to that of Cogdell, who worked in this same setting of [ = 0, and so

separating it out seems sensible.

Theorem 4.2.6. For all cusp classes [{] the cycle ¢z is a rational boundary in

e(FPy), and so is trivial in the rational homology group Hi(e(FP), Q).

For all positive n € Q, the compactified special cycles C¢ define homology classes

— 1 1
(C<] € H, (XBS 7z [D ~ M, <X, Vi [])
dr dr
which are generically non-exact, and have denominator dividing the even integer

dp = lem2d(I,0). These classes may be convergently integrated against non-

compactly-supported cohomology classes n € H3in(X), and when we specify n €
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H?*(X,Z), the resulting integrals satisfy

1
€ —72.
Ccs g 3dr

For any fized n € H3x(X), the generating series

1
E(SE:L /X (nAQx)+ Z

n>0

[ | e anron)

n

is a holomorphic modular form of weight 3 and level M.

Proof. The exactness of the cx, was shown above; by their definition and the results
of Lemma 4.2.2, it follows that all the C¢ are closed with respect to the bound-
ary operator 0 in ZQ(YBS). By Lemma 2.3.7, X" is a compact space homotopy

equivalent to X, so we know that
Hy(X"" R) ~ Hy(X,R)
for any Z-module R. Hence, for all x, [CS] defines a compact class in Hy(X); this

[.n
Cg

converges for all x and all choices of 77 as in the statement of the theorem. Further,

compactness tells us that

because the Kronecker pairing
() Hy(X™* Ry® H* X" R) > R

is perfect for all Z[1/6]-modules R, then the fractional integrality holds up to the
extra factor of 3 in the denominator (we know that 2 will always divide dr, so we

only need 3-divisibility).

So, we are left with the modularity: this, again, shall be proven using geometric

arguments in §8. O

We now treat the general case of the capping of the cycles Cx ;) in X", We shall
naively try to use the same objects as in Theorem 4.2.6, and show that these objects

give us the right capping properties.

We will now attempt to adapt the above machinery to the general case of coefficients
our irreducible representations of G = SU(V), constructed in §3.1. Without loss of
generality, we shall consider the rational part of this - namely, H"(V), which we

may consider as an irreducible representation of G.

Lemma 4.2.7. Let { be an arbitrary isotropic vector, n be an arbitrary positive

rational number, | a positive integer and & € L, ¢ a vector of length n, split at the
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cusp represented by [¢]. Let X € k be some arbitrary element of the field. Then in

the drreducible representation H"(V'), we have the following equivalence:

(n(X,0) (¢ @ (2))] = [7 ® ()]

Proof. This is a fairly simple exercise in arithmetic: indeed, one may easily calculate

that if we write x = 8¢ + aw, as usual, then:
N
n(X,0) (X' ® (x°)') = (x +Xal) ® (x*+ Xat?)'. (4.2.5)

It is a simple calculation to check that with respect to the Witt basis, the Laplacian
operator V from (3.1.3) may be written:

0? 0? 0?
V=—r—F—"+0d — - -
Ow,ow; ovors oLo (1)
As there are no non-zero terms with ¢ or (¢')* in (4.2.5), then we only need to

consider the central terms - namely, the coefficients of w, and wj;. It is hence a

trivial exercise in linear algebra to check that:
V(x'® ")) =2af(x e x)) (4.2.6)

and
-1

\Y (n(/\, 0) (Xl ® (X*)l>> = I?|a)? ((X —I—Xaﬁ) ® (x* + )xaf*)ll> (4.2.7)

Hence, as are assuming that [ > 1 and « must be non-zero, then the difference

between (4.2.6) and (4.2.7) must be non-zero: indeed, it may be written

Y [—1 [—1 . — —1—j . ./
l2|a|2 (_1)]+] 1( . )( } >Xj ()\af)l 1—-j ® (X*>J ()\ag*)l—l—ﬂ
. 2 J J
S

which for all chosen parameters will be a non-zero vector, and so their difference will
project to zero in harmonic coefficients. O]
This now allows us to cap our cycles over Q.

Proposition 4.2.8. Let {, n and | be as in Lemma 4.2.7. Let x € L, 0, and let
y € {x | (}. Then there exists a collection of chains AY;,; C e(P;) such that
aZAiz,z - afczc,[l,l]-

Proof. We start by noting that by Lemma 4.2.7, the boundary of Cyxj in e(F)

from Lemma 4.2.2 can now be written

0Cxnn= [l cye®mn (Yl ® (y*)l>
ye{x|(}
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by acting with the element v € I" taking x to each y - such a ~ exists by definition
of the set {x,¢}. Because we have assumed I' to preserve each lattice coset, this
action will preserve integrality. We write s(y) = zA; + yA2 as in Definition 4.2.5, so

the following holds:

0[xs(y) ® T (yl ® (y") ) n[ a+ )M+ yAg, —(a + 2)y(A, AM (4.2.8)
(

[+ o)+ b+ y)he, —1+2)b+y) (A, Aa)e]  (429)
—n[(@+2)\ + (1+y)ha, (@ +2)(1+y)(A, Aa)e|  (4.2.10)
—nfzds + (0 + y)ha, (b + ) (M, Aa)e H o (¥ ® ("))

(4.2.11)

We now see that our argument follows identically as before - namely, by acting with
n(—A2,0) on (4.2.10) we find

n(=Aa,0) (n[<a F 2+ (1 ) —(a+ 2)(1+ 1), )] @ (v @ (v7)) )
n[(a + )M + yhe, —(a + 2)y(\, )\2>4 ® Ty (n(—>\2, 0) o (yl ® (y*)l)>

so by applying Lemma 4.2.7 again, this is equal to (4.2.8); similarly, acting with
n(—A1,0) on (4.2.11), we have

n(=X1,0) <n[(1 +2)As + (04 Yo, —(1+ 2) (b + 1) (A, do)e] @ 7 (¥ © (v7)') )
[+ 0+ y)ha, =2+ 2)(b+ 1), de)e] © my (n(=A1,0) 0 (y' ® (7))

and identically to above, we may apply Lemma 4.2.7 so that with the coefficient

system,
3[><s (v @ (y)') ] = [n 221+ (b+y)A2, —(2+ 2) (b + y) (A1, Ao
—nfad (b e, (b+ 1) A o) | @7 (v @ (7))

and so defining Tf(y),[z,z] = Ts(y),0 @ Tx (yl ® (y*)l>, we see by an identical argument
to the case of [ = 0 that the cycle is indeed capped, so that

O (Typn — Xega) = 24T, Ocy @ (¥' @ (v7)') -

Hence, taking AL ;; to be the collection of these 2-cycles over all y € {x | £}, the

proof is complete. O
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We note that because the matrices n(—\;,0) takes x to an integral vector, the cap

Aiw will have the same denominator as in the trivial coefficients case.
So, we now may state our full theorem.
Theorem 4.2.9. Fiz an integer| > 1. For all cusp classes [(] the cycle cp @@ @ (x*)!

is a rational boundary in e(FPy), and so is trivial in the rational homology group
Hi(e(Py), HH (V) with coefficients in the rational part of the harmonic vectors.

For x split at ¢, we define Ai[u] to be the two-chain defined by

Ai[l,l] = M(lm (Ts(w),z - XS(ac),€> ® Ty (fL’l ® (w*)l) ;

for all other x and [¢], we let Ai[l’” = 0. Using the calculations of Lemma 4.2.2 we
define the compactified two-cycle in the Borel-Serre compactification X7 of X by

Copn=Cag =2 D Af/,[l,l]
[f] yng\En,g
y=yx, vl

and hence for n € Q positive, similarly define C¢ as
Cri,[l,l} = Chiy — Z Z Ay
[f} yer@\ﬁn,é

For all positive n € Q, the compactified special cycles CZ,W] define homology classes

e (v 010 o[ 1) = (010 e 1]

which are generically non-exact, and have denominator dividing the even integer

dr = lemy2d(T,0). These classes may be convergently integrated against non-

—_—

compact cohomology classesn € H3n(X, HW(V)), and when we specifyn € H*(X, HY(L)),

the resulting integrals satisfy

1
e —Z.
/CC " 3dr

n,[l,1]

Finally, for any fized n € H3p(X, HW(V)), the generating series
[ ] et
n>0 n

is a holomorphic modular form of weight 3 + 21 and level M.

Proof. The proof of this (or indeed, the lack thereof, given our need to wait until we
have further machinery to prove modularity) is identical to that of Theorem 4.2.6,

except that we must note one more thing about the denominator of the pairing: we
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have defined L to be integral, and hence in particular the natural pairing between
the homological and cohomological coefficients - using the inner product (, ) on V -
will produce a product of integers if we input lattice vectors. The factor of 3 appears

for the same reason as stated in the proof of Theorem 4.2.6.

Hence, because we may write

3drC iy € Hy (Xv H/WE)) :

e~

the pairing between this class and n € H*(X, H" (L)) will be an integer. O






Chapter 5

The Weil Representation for
Unitary Groups

In this section, we shall write in detail the action of the Weil representation of the
dual pair U(p,q) x U(1,1). This will be the foundation stone for our construction
of generalised Kudla-Millson forms in §6. In particular, we shall show how the
WEeil representation acts in both the Fock and Schrédinger models; in line with the
existing literature, the former will be the model we perform most of our computation
in - because it is homogeneous - whereas the latter model will give us the structure
necessary to interpret the resulting objects as differential forms. This work will follow
that existing in many places in the existing literature - to see an equivalent setup of
the unitary case, one may examine e.g. [FH19, Appendix B]. We shall largely omit
the computation in this section, as the results are only of interest to support our

main arguments in §6.

5.1 The Fock Model of the Weil Representation

We start here by giving an abstract treatment of the Fock model of the Weil repres-

entation.

Let W be a real vector space of positive even dimension 2M, equipped with a

non-degenerate symplectic inner product
(,):WeaW-—=R

and a positive-definite complex structure J : W — W. Welet {eq, ...en, f1, ... fur}
be the symplectic basis of YW with respect to (, ) and J such that:

(i) (ei,ez) = (fi, f;) = 0 and (e, f;) = 6.
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(11) J@Z‘ = fz and Jfl = —€;.

In particular, condition (i) tells us that J acts with eigenvalues +i on WW. We now
define the right vector space We := W ® C; this decomposes into the two complex
symplectic eigenspaces

We =W aW" (5.1.1)

under the induced action of J (formally acting as J ® 1 on W ® C). One may check
that appropriate symplectic bases over C are given by {g} = ¢; — f;i}}Z, for the —i

eigenspace W', and {g; = ¢; + fji}j]\il for the +i eigenspace W".

We let A € C\{0} be some constant, and we hence define an action of W on

P = Clzy, ..., 2y as follows

/ . a "
Palg;) = 2005, palgy) = % (5.1.2)
Zj

We wish to find an action of the associated symplectic Lie algebra sp(Wc) using
pa. The symmetric vector product Sym?(W) is by definition the quotient of W ® W
given by:

Sym* W) =W e W/{a®b—b® a);

as is standard, we write
1
xoyzi(x®y+y®x) € Sym?*(W). (5.1.3)
One may check that the algebras Sym?*(W) and sp(W) are isomorphic by writing

(xoy) €sp(W), (xoy)(z)={(x,2)y+ (y,2). (5.1.4)

Using (5.1.3) and (5.1.4), we may write down the Weil representation.

Definition 5.1.1. The Weil representation of sp(W) ® C = sp(Wc) on P¥ with
central character A € C\{0} is written:

1

wi(roy) = o (pA(m)pA(y) + pa(y)pa()) (5.1.5)

This is the Fock model of the Weil representation, with character \; we also write

this as w{ later on to refer to the Fock model.
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5.2 The Fock Model of the Weil Representation
for Unitary Dual Pairs

We now give the explicit action of the Weil representation when the symplectic space
W is specified as a space representing the unitary dual pair u(p, ¢) x u(1,1). We shall
write down the Lie algebras separately, form an action p, on the product of their
relevant vector spaces, and hence use this to form a symplectic Weil representation

which u(p, ¢) and u(1,1) act via inclusions.

We now invite the reader to temporarily amend the notation given in §2; namely, in
that chapter, we used V to denote a vector space over k of signature (2,1) with an
inner product (, ), antilinear in the first place and linear in the second. We now let
these objects denote a k-vector space of split signature (p, ¢) for p, ¢ > 0. We pick a

basis of V =V ®;, C given by orthonormal {v,}5_, and {v,}/"?,, such that

(Vo V) = Oaers (Vs V) = =0y (Va,v,) = 0. (5.2.1)

Welet G =U(V), go =u(V), and g = go ® C. We may construct an R-linear map
dvr : ARV — go - which naturally generalises that in Definition 2.4.3 - by

Pvr(vr A2)(2) = (v1, 2)v2 — (v2, 2)01. (5.2.2)

Indeed, one may check that ¢vgr(v A vy) satisfies

(¢V,R<U1 A UQ)(Zl), 22) = (Zl, ¢V,R(U1 A\ UQ)T(ZQ)) (523)
for all vectors vy, vo, 21, 290 € V, so that this is a well-defined map. It is surjective,
so we may without loss of generality write a generic element of gy as vy A vs.
Definition 5.2.1. We write o, 5 == v, Avg and 3, 5 == iv, A vs € go; the Lie algebra
go decomposes as go = & + po, where:

EOI{QT,& ﬁr,s | 1 §T75 Sporp+1§7’75§p+Q}
po={rs, Brs [ 1 <7 <p,p+1<s<p+q}

For a basis of g, we write Z , = (a, s — f,57)/2 and Z, = (s + Brs1)/2, so that
g = go ® C is spanned by all the Z] , and Z!, for all possible entries of r, s.

We let W be a 2-dimensional vector space over k of signature (1,1), assuming as
with V that the inner product is antilinear in the first variable and linear in the

second. We give W = W ®;, C the quasi-orthonormal basis {e;, e} such that

(617 61) = 7;7 (627 62) = _ia (617 62) =0.
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We let G’ be the unitary group of W, with real points G’. We hence may define the
real vector space W = (V ®¢ W)y, which has a symplectic form given by:

(v@w,v @w') =Re((v,V)y(w,w)w). (5.2.4)

Analogously to (5.1.1), we split the complexification of W as follows: we let Jy, be
the natural complex structure on W such that Jy (e;) = —ie; and Jy(e3) = ies;

then the right C-vector space
We=W@rC=W oW"
splits into +¢ eigenspaces. We may calculate, for example, that
Jw(wy) = Jw(er) + J(ier)i = —ieq + eyi = (ieyi + e1)i = whi
and hence split into eigenbases:

W' ={w] = ey +ieyi, wy = eg —ieqi}, W' ={w] =e; —ieyi, wy =ey+ieqi}
(5.2.5)
We define the R-linear map ¢y : SymgW — gj:

dwr(wy o wy)(2) = (wr, 2)ws + (w2, 2)w;

Entirely analogously to (5.2.3), one may check that this map is well-defined and
surjective; hence, we may without loss of generality refer to elements of u(W) = gj

as Wy © wWsy.

Definition 5.2.2. The complexified Lie algebra g’ decomposes as g’ = € + p’ where

E/ = Span(c{el oe; + Z‘Gl e} 612., €9 0 €9 + 1'62 e} Ggi}

p’ = spang{e; 0 ey —ie; 0 egi, €1 0 g + i€y 0 gl }

The isomorphism su(W) ~ sly(R) may be realised by changing basis in W to
{e1 + ey, —ie; + iey}. This Lie algebra splits into

su(W) =¥ N {tr(X) =0} +p/,

and we may split p’ into p’ = p'" + p’~ spanned by operators giving rise to the

classical Maass raising and lowering operators respectively:

. 1 (1 i
p’t = spang {Z(el o0ey — 1€ 0 egi)} = spang {R == ( ! ) }
2 2\i -1

, —1 . ‘ 1({1 —i
p'~ = spang {(el o€y +ie; 0 621)} =spang{ L = - .
2 2\ —i —1
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The groups G and G’ embed in Sp(W), forming a dual reductive pair as in [How77];
equivalently, g and g’ = su(IW)®C form a dual pair in sp(Wc). We wish to construct
a Weil representation of this algebra; in order to do so, we must find a symplectic
basis of the complex space We = V @ W ® C. Using the inner product (5.2.4) of W,

we have a naturally occuring Lagrangian basis:

{va®er, vy ®e, v, Qe1, v, e}

{ve ® —ieq, v, ® i€y, v, ®ier, v, @ —ies}, (5.2.6)

where we have notated (5.2.6) to emphasise the pairing as with the {e;, f;} in §5.1.
With & the Cartan involution on V' induced by the maximally compact subgroup

U(p) x U(q) of G, written
K(Va) = Vo, K(v,) = =y,

then W has an inherited complex structure of the form J =k ® Jyy. we may split
We = W ®g C into +i eigenspaces for J using the complex basis for W in (5.2.5)

in the natural way:

W' = spanc{v, ® wi, vy, ® wy, v, @ WY, v, ® Wy (5.2.7)

W' = spanc{v, ® Wi, v, @ wh, v, @ Wi, v, @ wh}. (5.2.8)

Hence, because of our construction of a proper symplectic basis in (5.2.7) and (5.2.8),
we may write down a Weil representation of sp(W)® C. In the Fock model, we know
that sp(W) ® C will act on Sym®*(W”). We denote the variables in our polynomial

space by {z.., 2. }1<r<piqi<s<2. We may naturally identify Sym®(W”) with a space

/
rs?
of complex polynomials in 2(p + ¢) variables as follows:
" "
Vo @ W < 2y,
" /
Vo @ Wy <> 2y,
Uy @ Wy 4 2,

Uy ® Wy > 2, (5.2.9)

From this, we can use (5.1.2) to write down the action of W:

L0
(Ve @ W) = 22)\@, pa(v, @ wh) = 2,
0
/))\(Ua ® wlll) = zga p)\(v,u ® 'LU/1/> = 2?’)\77
0z,
0
pa(vg @ wh) = 22)\87, pa(v, @ wy) = 2,

«
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/

pa(ve @ wh) = 2., pA(v, @ wy) =

— (5.2.10)

n

We may now write down the inclusions of the subalgebras gy and g{ into sp(WV).
By definition of the wedge product v; A v9 = v1 ® vy — vy ® V1, we may write the

inclusion jy : go — sp(W) as

jV(Ul A\ ’UQ) = [(Ul ® Z’l,Ul) (¢] (UQ X wl) — (Ul X wl) o (Ug X zwl)]
— [(v1 @ 1wy) 0 (V2 ® wa) — (V1 @ wy) 0 (V2 @ iws)] .

Similarly, using the form of the symmetric product, we may write the inclusion jy,

of g as:

p
Jw(wiows) = [(va @ wr) 0 (Ve ® wa) + (v, @ wr) 0 (ivg ® wo)]
a=1
p+q
= X (@ wi) o (v, ® ws) + (v, @ wn) o (iv, @ ws)] .
p=p+1
We hence may extend these maps to inclusions jyc : g = sp(We) and jwc : ¢ —

sp(We) as follows:

Jve(vr Avg + (ivg Avg)i) = —i(v; @ wh) o (ve ® i) + i(vy @ wy) o (vy @ wh),
Jvc(vr Ave — (ivg Avg)i) = i(vg @ wy) o (v2 ® wh) — i(vy ® wh) o (v @ wh),

and
p
Jw.e(wy 0wy + (iwy o wy)i Z (w1 + iwqi)) o (Vg ® (wy — iwoi))]
a=1
ptaq
— D> (W ® (w1 + iwyi)) o (v, @ (wy — 1wai))]
p=p+1
p
Jw.e(wy 0wy — (iwy 0 we)i Z (w1 — iwqi)) o (Ve & (wy + iwoai))]
a=1
p+q
— Y (v @ (wr — i) o (v, @ (wa + iwsi))] .
p=p+1

So, we are now in a position where we may write down the action of the subalgebras
g, ¢ through the Fock model of the Weil representation; we shall write for e.g.
wr(Z,.,) = waljvie(Z).,)). When we write Pé(pﬂ) in the following lemma, we mean -
in the notation of (5.2.9) - the complex polynomials in the variables 2, z),, z;, and
ziforl<a<pandp+1<pu<p+q

Lemma 5.2.3. For the remainder of this lemma, we let numbers between 1 and

p be represented by the indices o and [, and numbers between p + 1 and p + q be



5.2. The Fock Model of the Weil Representation for Unitary Dual Pait$

represented by p and v.

The basis elements Z;, 5 and Z, 5 of (V') C  (defined in Definition 5.2.1) act on

Pé(p D 45 follows:

+ 2 0

587; = _WA(Z;:,B)§

w( é,g) = —Zg@
B

further, the basis elements 7}, , and Z; , of w(W) C € act on Pé(pﬂ) as follows:

vV

0

w)\(Z/ZH ) Zuail + ,Ufazl/ = w)\(Z/,LV)
The basis elements Z|, , of p* act on Pa P g
wa(Z!, ) = —iz”z’ + 20\ :
Mo 200 H 021,02
and the basis elements Z;, , of p~ act on Pé(pﬂ) as
1 0?
1" o N/ .
C())\(Za”u) —ﬁzaz‘u + 2 62:582:/&

Using the same strategy, we may write down the action of the bases of ¥ and p’: the
action of e, o e, +1e,.0e.1 forr=1,2 on Pé<p+q> s given by

p+q 0
wy(ey oep +iej oeqi) = 2i Z 0‘8,2” - > Z‘/‘az’ +i(p —q),
p=p+1 H
and _ -
U g 0]
wy(eg 0 €9 +ieg 0 eg1) = 2i Z ” - > Zzaz” +i(p — q).
= Fa p=p+l K
Finally, the action of 't on Pé(p+Q) is given by
p+q 82

wy(e1 0 ey —ieg o egi)

and the action of p'~

wy(ey 0 eq +ieq o eql)

Z zalza2 + 4\ Z I

on PEP™ s given by

2

—4A Z ozl 82(12

p=p+1

ulaZ” ’

p+q

)\ Z Z,uz

p=p+1

Proof. The proof of all of these identities uses the formulae for the inclusions jy ¢

and jw,c, the definition of the Weil representation in the Fock model in (5.1.5) and
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then the formulae in (5.2.10). For example, for the action of Z, ,, we may write

. 1. . .
jwc(ZéW) = 5]\/7((;(’1}@ A v, — (10q Avy)i)

1
= 2 (00 ®w]) 0 (1, ® ) — (va ® ) 0 (1, )

Hence, we may write the action of the Weil representation as

i
WA(Z;M) VSN [PA(Ua ® wy)pa(vy ® wh) + pa(vy @ wh)pa(vae @ wi)

= pA(va @ wy)pa(vy @ wy) = pa(v, @ wy)pa(va ® wé)}

v "1 N L 0 0 0 0
=0 lzazu + 2,2, (22)\8%) <2M5ZZ> (22)\62;) (22)\62&)1
1

2

and the reader may check that this is exactly the prescribed formula in the statement

of the theorem. The rest are proven in exactly the same way. O]

5.3 The Schrodinger Model, Intertwiners and
the Mixed Model

We now give a summary of the Schrodinger model of the Weil representation. For

!/ " /

notational convenience, we let F = FPt4 = Clz.,, 2, 20 zZ] be the space of polyno-

mials used in the Fock model in §5.2.

Definition 5.3.1. (i) We write vectors in V' with respect to the orthonormal

co-ordinates (5.2.1) as
X = ZaUa+ D 24Uy (5.3.1)
a u

(ii) We let S(V') be the space of Schwartz functions on V:
S(V) = {f:V + C |V multi-indices 3, B2, sup,|ds x™f(x)| and sup, |0s,x" f(x)| < 0o};

we may think of this as the collection of functions that decay faster than any
power of the monomials z;, Z;. We define the principal majorant for V as

follows:

X, X if x & Spang{v,}?t9
(x,%)o = ) eltidicp (5.3.2)

—(x,x) if x € Spanc{v, 7%,

This defines a positive-definite inner product on V - we will see more on such
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objects in §6.1. With respect to the basis from (5.3.1) , we have
(x,x)0 = > _|zal> + Y _|2u]%
a u
We let ¢o(x) = exp(—m(x,x)o) be the standard Gaussian on V', and hence let

S(V) ={f(x) = px)po(x) | p € Clz;, Z]} € S(V)

be the subset of the Schwartz space spanned by products of the Gaussian with

complex polynomials in the coefficients.

We first note that it is clear that S(V') C S(V); indeed, by elementary analysis, we
know that exp(—2z?) dominates any polynomial in z, so all elements of S(V') have a

normed supremum, and hence are elements of S(V).

Secondly, we note that F is algebraically isomorphic to S(V'). Analogously to (5.2.9),
we may write down an action of W on S(V') which will lead to a Weil representation.
We now specify to the central character A = 2mi, and remove this from the notation

- we instead use a subscript S to specify the Schrodinger model, so that ps = pari.s.

ps(Ve @ wh) = v/2mi (za 710? ) . ps(v, @ w)) = —\/2mi (zu 71T8(ZM> ,
" " 1 0

ps(Va @ W) = \/2mi (za—aza) ps(v, @ wi) = \/_m< 7r(9zu>’
10

ps(Va @ wh) = V/2mi ( (T) ps(v, @ wh) = —/2ri ( 7”92#) )

ps(Va @ wh) = \/2mi (za 1;) ps(v, @ wh) = —/2mi ( i;;) .

(5.3.3)

By examining how each of these act on the Gaussian Yo, We may construct an

1

intertwiner between F and S(V'); for example, Z, — - 5-

9 () = 2Zatp0, SO We wish
to relate this operator to the one resulting from v, ® w! in the Fock model - this is

2. Hence, following this logic, we may write down the intertwiner:

Lemma 5.3.2. There is a unique sp(Wg)-intertwiner J : F — S(V) satisfying
J (1) = o, and the intertwiner satisfies

1 1 1
JZ;J_IZ\/?Wi<za—Wa(Z>, J (z J = ‘<Za+a>

1 1 1
ngj_lzx/ﬁﬂi<za—m£>, sz_lz ‘<2a+a>

T = _fm(zu 18>,j§j-1: —1,(%;8)

T Oz,
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y o 10 _ 1 (. 190
797 = (1) T = (1)

Hence, herein we shall always refer to S(V') for the representation ws in the Schriodinger
model for A = 2.

Proof. The proof that the intertwiner exists and is unique is proven in [KM86, §2];
there it is formulated in terms of the quantum algebra generated by W, but for our
purposes the statement above suffices. For the calculation of the intertwiner, one
only needs to use the uniqueness and then compare how the elements acts on the

elements 1 and ¢p in F and S(V') respectively. O

In §6, we shall use the Weil representations to create operators V such that Vy is

a non-trivial form in complexes [S(V) @ A*p* @ E]¥ and Vi, is a closed form!

We now introduce one more model for the Weil representation - the mixed model of
the Weil representation. For V' here still assumed to be of arbitrary signature (p, q),
we fix £ C V some non-trivial, totally isotropic and maximal vector subspace (so
that (x,x) = 0 for all x € E). Our reason for prescribing maximality is that the
parabolic subgroups of SU (V') are classified by flags

OCE,CEyC...CEL

of complex parabolic subspaces; hence, choosing a maximal isotropic subspace is
equivalent to choosing a conjugacy class of maximal parabolic subgroups. Then we

may define a conjugate isotropic subspace, denoted E’, as follows:
i
E={veV|(v,e)g=0forallec Et} = (EL) ’

where L is the perpendicular space with respect to (, ) and L, the perpendicular
space with respect to (, )o. We note that we may identify £’ naturally with the dual
of E - namely, they are of the same real dimension, and we may pick bases {e;}}_;
of E and {¢}}_, such that (e;€}) = d;;. Then we may define Wy = E*/E as a
non-degenerate space of signature (p — dim(F), ¢ — dim(FE)), and a Witt splitting:

V=EoWra@FE.

Definition 5.3.3. The mixed model of the Weil representation is on the space

S(EYS(Wp)@S(E)~S(E)®S (Ws) @S (E)
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where we have initially used the isomorphism between £’ and E*. We may derive it

as an isomorphism from S(V') as follows:

SV)—=>S(E)oS(Wr)®S(F),
¢— o

where ¢ is the Fourier transform, given by

%(u’l,w,ug) :/Egzﬁ(u,w,u'z)exp(—QM(u,u/l))du

for u), ufy co-ordinates on £’ and w a co-ordinate on Wipg.

For the sake of brevity, we denote the mixed model with respect to a subspace E as

S(V)¥M: here we understand the complementary subspace E’ to be fixed.

We first note that it is well known that the Fourier transform takes Schwartz forms to
Schwartz forms, and in particular will take polynomial Schwartz forms to polynomial
Schwartz forms (this is implicitly proven later on for our specific choice of V' of
signature (2,1), in e.g. Lemma 7.1.3). One may easily check that this is a G-
equivariant map, so it follows that this is indeed an intertwiner. We will not need
to do this at this point, but one may e.g. write down the action of G on S (E') ®
S (Wg)®S (F') - see e.g. [FM13, §4.2].






Chapter 6

A Generalisation of
Kudla-Millson’s Schwartz Form To

Complex Harmonic Coefficients

In this chapter, we shall look to fully generalise the construction of G-invariant
Schwartz forms for G' a special unitary group of signature (2,1). More specifically,
for H (V') an irreducible representation of SU(2,1) as we constructed in §3.1, we

will use this chapter to show that one may construct a Schwartz form
i1 € [S(V) ® Q*(D) @ HY(V))©

which is closed and of weight 2/ + 3.

Further, it will give us a theta series 6. (¢, 7) which is holomorphic as a cohomology
class, whose Fourier coefficients are given by the duals of the special cycle Cx

from Proposition 4.1.3.

The work in this chapter will draw on the algebraic arguments in [FMO06], and in

particular will make heavy use of the Fock model calculations from §5.2.

6.1 The Kudla-Millson Schwartz Form

We start here by giving some detail on the construction of the Schwartz forms by
Kudla and Millson in their papers [KM86] and [KM8T7]; these shall be referred to

hereon as "Kudla-Millson Schwartz forms", and notated as @g .

We start with a definition of the complexes that we shall work in. We recall the
polynomial Schwartz space S(V') and the polynomial Fock space F (V') from Defini-

tion 5.3.1; in particular, we shall stress that we are now working with our particular
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V of signature (2, 1), so that the notation of §5 may be carried over unchanged with

this specialisation.

Definition 6.1.1. Let G ~ SU(2, 1) be the real points of the special unitary group
of V; let g be the complexification of its Lie algebra gq as in Definition 5.2.1, which
decomposes into g = £+ p. Let A be either of the spaces S(V') or F with associated

Weil representation wy, and hence define the two complexes we shall work in:
Ao A", [AeQ (D).

Here the group K (resp. GG) acts on A via the Weil representation and on the wedge
product (resp. the differential forms on D) via the canonical left matrix actions
respectively. Hence the notation | (resp. |¢) refers to the set of K-invariants (resp.

G-invariants) in these sets.

We now cite a result which we shall use throughout the thesis.

Proposition 6.1.2. For all the objects defined in Definition 6.1.1, and E any finite-

dimensional representation of the group G, we have:
T [S(V)® Ap* @ E)* 5 [S(V) 2 QD) ® E|°

where the isomorphism is canonically given by evaluating the right-hand side at the

basepoint of D.
Proof. See the discussion in [KM87, §3]. O

We note that this fact is generically true for all finite-dimensional split Lie groups G
- indeed, this idea is central to the construction of the Kudla-Millson forms in full
generality, as it allows the authors to work only with the Lie algebra differentials.

We may hence write down the differentials in these complexes:

Definition 6.1.3. For A\* € p*, let A(\*) : A®p* — A*T!p* be the wedge product on
the left with A*. We fix {A} to be some complex basis of p.

Let B be some representation of G acting with vg, and as in [BW00, §1], we define
the differential in the complex [B @ A*p*|¥ as

ds =) vs(A) @ A(X).

Lemma 6.1.4. For any such B, the differential satisfies d% = 0 and dg preserves

the K-invariance.

So, we now may write down the Kudla-Millson Schwartz form.
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Definition 6.1.5. With the orthonormal co-ordinates {z;, 22, z3} corresponding to
the basis {v1, va, v3}, we define the following operators:

Ve = ; 22: Kza - 71T£a> ® A (fa)] SV @ AT = [S(V)® /\'+1p*}K,

V=33 (B an) @ )]st e a - sy e ]

in the literature - see e.g. [KM86] - these are known as Howe operators, so we shall
follow this tradition. Let ¢y € S(V') be the standard Gaussian on V' from Definition
5.3.1:

—m(xX)o

po(x) = e
Then the Kudla-Millson Schwartz form ¢/ (x) is defined by

(%) = (V0 V9 00 (x) € [S(V) @ %]

We shall start with the properties necessary for showing the main parts of the Kudla-
Millson result; we then shall examine how this may be developed into a suitable
cohomological object. Using the notation of Definition 5.2.1, we recall the chosen
basis of p:

1

1
B (a3 — Brsi), Z;/ = Z7l~/,3 =5

Zl=7,= 5 (

Qr3 + 67‘,3“ (611)

for r =1, 2, and similarly the basis p*:

o = (Z&,S)* ) g = (Zg,3>* .

Proposition 6.1.6 (Kudla & Millson, 1987). ¢xun (@) is closed, and has weight 3

with respect to the action of .

Proof. Throughout, we shall work in the Fock complex. Using the intertwiner from

Lemma 5.3.2, we may rewrite the V operators in the Fock model as:
v = 2 ® A
2\/_ 21 5 Z g <56)

2\/_71'22 ®A§5

Hence, utilising the isomorphism between the Fock and Schrodinger models, we will
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equivalently prove that the form

N2 2
Cren = (2_\/%#) 5,52/::1 22 @€y NEg € {]—“ ® /\Qp*}K
is closed. Using the definition of the action of p in the Fock model from Lemma
5.2.3, we may use the definition of the differential in Definition 6.1.3, use the basis
{Z!, Z"}2_, of p, and hence write the differential d = d% + d for the complex
[F @ A°p*] &

1 & _

G = 4 2 (50 A + 259 A(%)).

1

2 82 82 .
F=—4 A — ®A 1.2

a=1

Because @7, has no terms with 2} or 24 in, we see immediately that dz¢%,, =
0, so we only need prove that dfp%,, = 0. Because the polynomial terms act

symmetrically and p acts antisymmetrically, one immediately finds the formulae
2 2 -
Z (2l @ A (&) Z (zg ® A (fa)) ©" =0; (6.1.3)

Hence, dx¢” = 0 follows directly, and so the proof of closedness is complete.

For the weight statement, we again may read off from Lemma 5.2 that the basis for

t’ acts through wr as

2 0

wr(er ® ey +iey © egi) = {Z Za > _23323] ti
2 0

wr(es ® ey +ieg © egi) = 22{2 82”} + 1.
a=1 3

One may now calculate that wr(e, © e, + ie, ® e,1) (cpﬁM) = 3ig}y, for r =1 and
2, and so the Schwartz form has weight 3. [

Definition 6.1.7. Let p™ be the subspace of p spanned by the Z! and p~ the
subspace spanned by the Z”; hence let

/\1’113* _ (p+)* A (p—>* - /\213*
We define the interior multiplication maps A%, A* on Ab!'p* by:
A; (504 A 5) = ’yaaa Af; (ga A 5) = _670/501

which act as inverses to A(&,), A(E,); indeed, one may see that the action of these

operators (which we defined to be an action by the wedge on the left) recovers the
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original form. We hence define the homotopy operators h, h:

ho e [Foay | — [Fep®
by:
12 0 — 1 0
h i / A* h — "= *
4;2382*;@ v 4;'2382’7’@ v

We define (in the Fock model) the second Schwartz form ¢ by:

= (149) ()
Lemma 6.1.8. Let L € p'~ be the basis element that gives the lowering operator.
Then the following equation holds in the Fock model:

wr(L) (SDF) = drp”

Proof. Using the calculations in Lemma 5.2.3, and fixing A = 274, we may write

2 2
0 1
(.U]:(L) = —47T E ‘ ag/@z/ + EZ:/;)/Z:; (614)
Y= YUY

An easy calculation then gives us:

(D)) = -4 + o= (6 AG+EAE).

We may calculate that in the Fock model, ¥/" may be written:
0

F_Z
=15 (4

) i (222 © (~€) + 4 221, © (€2))

16W2 Z (~#2t @+ 242, ®F,). (6.1.5)

Recalling the definition of the differential dz = df + dz in (6.1.2), we calculate:

2

2
d}’(ﬁf Z(Zéz’/@A ffy)‘f‘zgz/ ®A<§7)> . Z <—Z§2g®§a+z§z’ ®g)

7=l a=1
2

6471'3 Z ( 2 // // ® g'y A éa ZéZ-gZ/ ! (%9 f,y A fa (616)

+ 222l @ & N + ()42, 8 G A L)
1 —i \? 2
e I/ ///® LA +///® NED, 6.1.7
e (2\/§7r> Z3%3 OW:l( & 57 A 57 £ ) ( )
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where the last equality in (6.1.7) holds because all of the terms of the form &, A
€u, & NE, disappear - this is because of the anti-symmetric properties of these wedge
products. Hence, as what remains is recognisable as two copies of the original 7,
we hence have:

1
dfy” = EZ:/),Z:,{SOF-

Similarly, we calculate:

2 o2 92 _ -1 2 _
dﬂ¢=—“§3< ®A@%%®A@0- > (—#h ® &+ #7 @8)

" / 2
1\ 02,023 Oz 024 1672 =

N

4¥§fﬂ’)®£A?+—ﬁi%’U®£A?
L \ 02,025 “3 %ol TR 02002 “3% R

«,

e 70 1

(0ay ® & A e+ 0oy ® & A E,)

25@1/\54‘&/\5)

and so the proof is completed. O]

Given all of the above - which essentially treated the Schwartz form as an abstract
algebraic object - we now examine how we may view this Schwartz form on the
right hand side of the isomorphism in Proposition 6.1.2; in particular, we wish to

understand ¢y, as a differential form on D.

Definition 6.1.9. For z € PV_ ~ D and x € V, we may construct the majorant

attached to z as follows:

) (xx) ifxez
(x,%), = { Cxx) ifx e ot (6.1.8)

one may recognise this as a generalisation of the majorant for the line spanned by vs,
constructed in Definition 5.3.1. Indeed, as an alternate definition of the majorant,

one may take (, )o from Definition 5.3.1 and the property

1

(X’ X)z = (gz_ X, gz_lX)Ba (619)

where g, € GG such that g,z = 2. We hence form
o(x,2) = g0 (97 (%)) = exp(—7(x,x).).

This allows us a further redefinition of ID: as the space of majorants for the hermitian
space V. We also note that all choices of majorants (, ), give us a positive-definite,
and hence signature (3,0), inner product on V; in particular, this will allow us to

address convergence properties.
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We may now realise the isomorphism 7 from Proposition 6.1.2 on the given co-

ordinates.

Definition 6.1.10. We define the canonical G-invariant differential forms Z,, =,
onD as Z, = m(&,), Zq = 7(&,). By the general theory of Maurer-Cartan forms, we
may write these as follows:

dz,

S T P PR

—_

_ dz,
AR PR

[1]

We may now write down the Kudla-Millson Schwartz forms in the complex of dif-

ferential forms. For a = 1, 2, we let D, and D, be the operators on S(V) given

by
1 10 ~ 1 19
D, = B (Za - 7r62a> ) D, = B (Za - 7r(‘92a) (6.1.10)

so that VS =3, D, ® Z, and Vo = > Do ® Z,.

orm(X,g.) = 22: (Da o Da/(goo)) (g;lx) ® Zr A o (6.1.11)

a,a’=1

Because we know that G/K = D parameterises the set of negative length lines z, we

may view this as a function of z rather than g,, and write this as ¢x(X, 2).

Further, we may write down the polynomials resulting from the V operators: it is a

simple calculation that

O CINN IV (S ML DY DU
“a T 0Zg “a 10zq ) “a T 0%y “a T 0%Zq
as operators on S(V'), and so
_ 1
(a0 Dali0)) () = (J20f* = 5-) o),
m
and for {a, o/} = {1,2}:
(a0 Dar(p0)) (%) = (20rZa) ()

Throughout this work, we shall use ¢° to refer to the polynomial part - namely,
(%) = p(x)e™™¥) . We now illustrate how we may insert the SLy(R) ~ SU(W)

variable; we first must calculate how the Lie algebra sly(R) acts, using the matrix

llOgU ulogv \/E U
exp | 2 _il_l = f =g
5108V /o

where 7 = u + ‘v is some point in the upper-half plane H.

exponential:
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b
Lemma 6.1.11. Let g = (a d) be a generic upper-triangular matriz in SLs(R).

Then this acts via the Weil representation on a polynomial Schwartz form f(x) €
S(V) as follows:

((ezp(w)(9)) (f)) (x) = |al*exp (wiR [ab(, @)]) f(az)

Proof. This is just a change of basis from the unitary basis ej, e; of W to the

necessary symplectic basis (which gives su(WW) ~ sl,(R)): this gives

bi q— Y
2 2

, 2| esu(W)
a—i—% —u

and then an application of the Weil representation actions of ¥ and g’ in Lemma
5.2.3. u

Definition 6.1.12. For an arbitrary 7 € H, we define ¢(x,7) as a function of 7 as

follows:

p(x,7) = (g7 1) (exp(w)(g7)¢) (%)
v 32 (\/Egexp(m'u(x, X))QOKM(\/ZX))
i o (VX)X @ £ N E, (6.1.12)

a,a’=1

where gogm,(x) = Qoo (x)e™¥) is the polynomial part of gy, in the £y A &,
component.
Since all the actions will commute, one may check that this is closed in the complex

[S(V) @ A*p*]¥ for all 7, so in particular when inserting z as in (6.1.11), we acquire

a closed form ¢(x, z,7) given by

o(x,2,7) Z gpaa ( (\/_X>> X" @ = o ANZq € {S(V)@QQ(D)}G

a,a’=1
We are now ready to introduce the theta series.

Theorem 6.1.13 (Kudla-Millson, 1986). Let € V. be a positive length vector. Up
to a constant, the special cycle Cy is a Poincaré dual of g (@, z,T); namely, for n

a closed, G-invariant and rapidly decreasing closed differential 2-form on T'z\D:

A .2, T) = e @7 6.1.13
/FE\DU orm(®, 2,7) = ie Czn ( )

For © € V_ of negative length, oy (x, z,T) is exact, and so by Stokes’ theorem in
particular the integral on the left hand side of (6.1.13) is 0.
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Let L C V. be an even, integral lattice of level M € N such that all of its cosets
L C L'/L are fized by some arithmetic group I' C G. We may hence define the
Kudla-Millson theta series:

Oc(prar,7) = Y wrm(z,2,7) € Q*(X) @ My (D(M));

el

This defines a differential form on X which is uniformly convergent on compact
subsets of X, and as a function in 7 is a non-holomorphic modular form of level M.
We may treat this as a cohomology class in H3n(X); this class is non-trivial, and

defines a holomorphic modular form in 7:
0c(prn)] = > lo(x, z,7)] € H(X) © Ms(T(M)).
el
Further, by duality, we may write what the Fourier coefficients are: with

2 de N dZ

j=1 (1 —|z1]* = [22]?)?

Qx =

the Kdhler form on X - so that ¢1(X) = 2LQ is the first Chern form on X - we may

™

write:
[02(pran)] = [ea(X)]+ X [Cal ™ g

n>0

Hence, for any rapidly decreasing form n € H*(X), we have

1 .
. =i|bees [ A0 i ([ )
/XU c (Prm) Z[2W£L 1 x+ e Cn77

n>0

€ Ms(T'(M))

Proof. The full proof of this is contained entirely (not to mention in much broader
generality) in the papers [KM86] and [KMS87]; we note only that once the duality
equation is proven (which we need not attempt - see e.g. [KM87, Proposition 6.3]),

the rest of the theorem largely follows from this and our earlier work.

In particular, the fact that 6.(¢xu,7) defines a differential form on X follows
immediately from the I'-invariance of £. The modularity of weight 3 comes from
the weight calculation in Proposition 6.1.6; similarly, the holomorphy in cohomology
comes from Lemma 6.1.8 - which, when translated to the cohomological language,

means that [L.oxu(x,2,7)] = [0] in cohomology.

The fact that it is a specifically holomorphic modular form - i.e., that for negative
length x, the integral in (6.1.13) is 0 - follows from a standard construction of Kudla
and Funke in [KF17, §3.3]. Namely, given the relationship w(L)pxy = dig s, one

forms an auxiliary form ¢ by

1

2m|zs)?

500 = — [ s (Vi) Lot = bicar ().
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Inserting z in the usual way, we see that this is a smooth function exactly for z ¢ Dy
- indeed, for z at the basepoint, it is defined for z such that |z3]| # 0, or rather x not

perpendicular to [vs]. We may hence write

dy0(x,z) = _/lood (d’?{M (\/FX, Z)) (ir = _/100 Efr (SO%M(\/?XyZ)) dr = (%, 2),

(6.1.14)
where the 2nd equality in (6.1.14) is a rewriting of Lemma 6.1.8 for v = r. The rest

of the theorem then follows from the duality statement. m

6.2 Working towards a Generalised Schwartz

Form

We now dedicate some time to motivating and then writing down the general-
ised Schwartz form with coefficients in our chosen irreducible representations of
G. Namely, the problem naturally arises: how does one actually write down a
K-invariant Schwartz function? We shall hope to motivate this, using the Howe
operators of Kudla and Millson as inspiration. After all, at this point (with only
the original Kudla-Millson form to work with) we could, a priori, do a quite large

number of things in order to write down a vector-valued Schwartz form.

Definition 6.2.1. For two arbitary non-negative integers [, I, let T (V) = V¥ ®
(V*)® be the vector product space, and SY' (V') € T (V) be the symmetric powers.
As in earlier chapters, let A denote the insertion on the left of a vector - so that
A(v) : V& — VOHL and similarly for the dual. Then in the Schrodinger model, we

define the following Howe operators:

(22 sro o

10
(512 Yorore

I\D\r—t [\')\r—k

3%
13

which both act as endormophisms on [S(V) @ A®p* @ T*(V)|¥

One may see the logic to this as follows: recall from Definition 2.4.3 that we have

defined the Lie algebra elements as

§ = ; (Oé§ + ﬁf@) = 5 ((v; A vs)" = (iv; Avs) i)

5]':5( 5= Bi) =

N — DN —

((v; Awvg)" + (iv; Avs)™ i)
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V has a left action by C, and we may give Ve = V ®g C a right action as well, which
decomposes V¢ as

Ve = Ve 4 ©c Ve,—i
where Ve g = {v Fivi | v € V} is the +i eigenspace for the complex structure

extended to Ve. We may check that as left vector-spaces V' ~ Vi 4; and V* >~ V¢ _y;

hence, we may write

(0 +ingi) Ag) €0, G = ((wy —inyi) A§) €™ (62.1)

N | —

& =

Indeed, using the forms from (6.2.1), we may write:

VS = ;a; Kza _ ;&) %A (; (00 — i00d)" A 1)3))] | (6.2.2)
v = ; > [(za — iao;’a) ® A <; (Vg + ivat)" /\US))] : (6.2.3)

So, exploiting all the above isomorphisms, we may write the vector-valued Howe

operators Vi, Vy as:

10 o
( W%>®1®A( — 0,1) ® 1

1 2
=32
Vo 122: 10 e 181@ A (v + ivd)
= Vo + 1041) .
270 T 024
The correspondence between these two sets of operators may be seen as follows (we
treat the correspondence VS < V¢, the other is identical). Both of them are sums
over the positive parts of V', and the terms in the S(V) component are identical;
further, each has one term acting on A®p* or T%(V'), indexed by the negative signature

of V' - hence, this correspondence may be reduced to the study of these terms.

Indeed, using the form of VS given in (6.2.2), we see that the map
V= GVAZV) 0= 0" A

is an isomorphism - indeed, this is by definition of the wedge product map in (5.2.2).
Hence, using all of the above, we may see the new operators V" and V" to be the

obvious choice of operators with coefficients.

We also note (because we know, from Kudla-Millson, that the operators VS and
Vv are K -invariant) the K-invariance of the V¢ and V}i follows immediately from

these observations.

We may now write down our Schwartz forms in full generality.

Definition 6.2.2. Let [,!’ be two non-negative integers. Throughout, we use the
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superscript S to refer to objects in the Schrodinger model, and F to objects in the
Fock model.

(i) In the Schrodinger model, we define the Schwartz form with coefficients as

follows:
o5 = (V) (V) (+°) € [s(v) @ a2 @ T ()]

(ii) Similarly, in the Fock model, we may use the intertwiners between S and F to

write

Vi = f Zz ®1® A(v,) ®1,

=F

\Y%
v= 2\/_7T

We hence define the relevant Schwartz form as:

Zz”®1®1®A( ).

dlr=(V5) - (T0) () € [Feny T v)]*

(iii) As noted in §3.1, the irreducible representations will be subspaces of T (V);
hence, for any such B c T (V), with projection map mg : T (V) — B, we

write the form with coefficients in B as

et = (1@ 1@ms) (¢),

and similarly for the Fock model. Of particular interest to us is the subspace
SH (V') of symmetric vectors, which has corresponding irrep. H4 (1), discussed
in §3.1.

We here mention that the advantage of working in the complex [S(V) ® A*p* ®
S**(V)]¥ is that all of the Howe operators fully commute. We also mention here
that our primary focus is on the case [ = [’ - indeed, we shall see in the next section
that this is the only case giving us holomorphic theta series - but because of the
need for some auxiliary forms later on, we will stay in the non-specialised case as

often as possible early on.

We now record the full form of the vector-valued Schwartz functions in a lemma; it
is at this point that the reader will see the usefulness of the Fock model, because in

the Schrodinger model the expression involved is significantly more opaque.

Lemma 6.2.3. Let © = z1v1 + 2909 + 2303 be the orthonormal co-ordinates of V. In
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the Schraodinger model we may explicitly write the form gofl, as

10 10 10 10
(pl a 21+l’+2 Z( Wf)za> (Za/ a 7T820/> 51;!/ <Z a 7T82’5> (Zﬂ/ B 71'3231) (o)

8.8

®REw N ® Uz ® Vg

where

éz(ﬁly"'vﬁl) 5 (517"'761,')7

all a, o/ By, Bl run from 1 to 2 and we use the usual notation Ofyé =18 Q...

andyé/ :/Uﬁi ®...®Uﬁl/.

Similarly, we may write for the Fock model

I+1'42
F —t &, -
4= (3vi) 3 Al © & NG O By
ﬁ B’

6.3 The Many Properties of gpﬁ’%

So, as promised a while ago - we look through the mists of time, back through
all the way to §4.1 and in particular Theorem 4.1.5 - we shall soon be able to
use these new Schwartz functions to prove our highly generalised statement about
modular generating series of odd integral weight, stated originally in the introductory

Theorem 1.2.2. For the rest of the section we write, unless otherwise necessary:

Frhl(v)
Py = P :

We now prove the following properties of the Schwartz function ¢;;, when | ="

(i) With respect to the action of the central subalgebra ¢ C g under the Weil
representation, ¢;; has weight 2/ + 3 [Lemma 6.3.2].

(ii) ¢y, is closed in the differential for the complex [F@A%p* @ T4 (V)X - and hence
in [F ® A’p* ® E]¥ for any subrepresentation E C T% (V) [Proposition 6.3.5].

(iii) The lowering operator L spanning p'~ from Definition 5.2.2 acts trivially in
cohomology with coefficients: namely, wz(L)(¢;;) defines a Schwartz form that

satisfies
wr(L) (pi) = d (Brr) + Ay

where ;; is some Schwartz form and A;; is a Schwartz form whose vector

component is proportional to the metric in V' ® V*, so that in particular
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(1®1®my(As;)) = 0. Hence, by using the Schrodinger model with harmonic

coefficients, it follows that

in H? (]D), m)> [Theorem 6.3.8].

(iv) In the Schrodinger model, 7 (x) is cohomologous to a "geometric’ Schwartz

form: namely, we may define

pcx) =[1910AX) @1 o 1®1® 10 AX)] vxu(x)
= pru(x) @ x' @ (x)

so that ¢;; ¢(x) is the result of replacing all the vectors vg with x (and similarly
in the dual) in the Howe operators from Definition 6.2.1 - or rather, we "shift'
x from the S(V') part of the operator to the vector product part. Then this
form is cohomologous to gofl when we work with coefficients in the irrep H (V)
[Theorem 6.3.9].

Before we start, a couple of notes: firstly, I have listed these results here because,
despite my most ardent optimism, I think it is fair to assume that these results
are themselves a good deal more interesting than their proofs, which are largely
algebraic. Of course, these are necessary, and the insights derived from these results
are at the core of our work, but one need not understand the proofs to understand

the remainder of this thesis.

A second thing worth noting is exactly why part (iv) exists. The reader will hopefully
see the utility in parts (i)-(éi7) - these results collectively will give us that the
associated theta series will define a modular class in cohomology. The most obvious
motivation is in our definition of the special cycles with coefficients in Proposition
4.1.3; indeed, once one sees this, it is suddenly very clear what this result will give

us - duality!

Definition 6.3.1. For any multi-index 8 = (f1,...,3) of length [, with all ; €
{1,2}, we let 7(3) be the number of indices equalling 1, so that [ —r() is the number

of indices equalling 2.

We start with a nice introductory result.

Lemma 6.3.2. ¢;; is an eigenvector of weight (21 + 3) for the action of ¥ under

the Weil representation.
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Proof. This proof is virtually identical to that of Proposition 6.1.6. We recall from our
work on the Weil representation in Lemma 5.2.3 that the basis {e, ® ¢, +ie, ®e,i}2_,

acts in the Fock model as

0 0

wr(er ® ey +ie; ® eqi) —QZ{Z %5 ”_Zéaz’} +14
3
0

wr(es ® ey +iey © egi) = {Z Vaz 362”}+i
3

We prove the statement for the first basis element - the proof for the other is

completely identical.

0
wr(er @ ey +ie; © eri) (vrg) _222278 ; (p11) + iy

y=1
. 2042
. —1 " 0 PN e * .
=27 % Z 2., 527 (zaza,§§§ﬁ> ® & N &, ®yé ®Q@ + 101
~¥,0,0! o
BB

. 2042
_2 v n_r I /,N, a/\a /
Z(Qﬁﬂ') Z/(szazﬂazg< 2’5)@5 5 ®Uﬁ®’05>+up”

We may hence write:

2 " 8 " 2 Z 8 Z
;Z“’({)W( ’Zﬁ’) ;zv ﬁ,a/zﬁ + 20— oz 7 (Zg’)
2

= 32 (Dl + 20 [ ()Y O

60 (1=1(8)) (P (5 ))

=z + 20 [ r(B)zy + (- 7‘(5'))%’}

=1

2

o "o_n
= (l + )za/ggz
and so we immediately have that
w]:(el ®e+1ie1 ® €1i) (Sol,l) = Zl(l + 1)(,01 —+ Z'QOZ’[ = Z<2l + 3)(,0171.

[]

We note here that implicit to this proof is that the element ¢, for I # I will not
give a theta series which is a holomorphic modular form in 7! This is because the
two basis elements (for » = 1 and r = 2) will generate different weights - 21 + 3 and

20" + 3 respectively.

We may now start with a full definition of the differentials in the complexes used;



Chapter 6. A Generalisation of Kudla-Millson’s Schwartz Form To
92 Complex Harmonic Coefficients

this was something slightly fudged in Definition 6.1.3, where (because of our only

needing to work in coefficient-free complexes) we gave only one half of the picture.

Definition 6.3.3. We recall the complex basis {Z/, Z} of p from (6.1.1). Then we

define the vector-valued differentials by:

Y IAN @pr( M) @1
p—basis
2

Z 1 A(E) ®pv (Z) @1+ [18A (L) ®pv (Z) ®1]

a=1

and

= > 10AN)®1®p (N

p—Dbasis

z @A(L) @10 (Z)] + [1®A(&) @ 1@ (2)].
Here py, pj are, respectively, the derived actions (from the standard representation)
of the Lie algebra on the symmetric powers V® and (V*)®". The 4 and — super-
scripts are to signify (as in the discussion in §6.2) how V' and V* are respectively

isomorphic to the +i and —i eigenspaces of V. We hence define the differential

dy = dis +dy.

We here recall the restricted differential dz in [F ® A®p*]¥ from (6.1.2); hence, in
the Fock model (and, identically in the Schrodinger model), we may define the

differential
d:= d]: + dv,

on the complex [F @ A*p* @ T (V)]¥. We note also that for any subrepresentation
B of TW (V), we may use the exact same differential, just restricted using the map
75 in exactly the same way as we may restrict the Schwartz functions from Definition
6.2.2.

The reader may notice where the full differential d = dz+dy is derived from. Indeed,
for £ any G-representation, in [BWO00] one associates a differential as outlined here
to [E ® A*p*]¥; so in particular, this is the case of E = F @ T"'(V), and in the case

of trivial coefficients, dy will just act trivially.

Lemma 6.3.4. We here record some small results which we will need to refer back

to throughout the key proofs.

(i) For~y, ' € {1,2}, the action of the basis elements Z., Z'/ on the relevant basis
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elements of V and V* is given by:

pv(Z3)(vy) = byyrvs,
pv(Z3)(vs) =0
pv(Z3)(v) =
pv(Z7)(v5) = —vl.

(ii) Forl,1" non-negative integers, we define an auziliary Schwartz form as follows:

Fooo_ 1
Posr = D 252y

BE

®1®us ®@up (6.3.1)

so that gofl/ =k goof“,. We then have:

(1 ®1®pv(Z)® 1) wour =0

(1 R1® PV(Z;/) ® 1) 00,11

]

(1 o N e P;(Z;)) ©o,1,1r

(1 RI®1IE p”{/(Z;/)) wour =0,

)
227

2271

I
> (z; ®1® Aj(vs) ® 1) o111
=1

I
) (z;l ®lele Aj(v§)) P01

j=1

where A;(v) : VI=1 — V! is the insertion of v in the j’th place (and similarly

for the dual vector space):

Aiv)(nm®...0u_1) =1 ®..

(7ii) Similarly, we have:
0
02,
0

— X111l =
((’92@’® ®1l® )Spo,z,l

—1
2/ 2

—1

2271

®1®1®1> o =

.Uj,1®1)®1)j+1®...®1}l,1).

l
> (1®10A;(vy) @1) po—1p
=

l/

> (1 RIR1I® Aj(v:;)) 00,11 ~1

j=1

Proof. Part (i) is simple linear algebra, based on the definition of how py and pj,

act and the matrix forms of the basis elements. Parts (i7) and (iii) are then just

applications of part ().

]

, K
Proposition 6.3.5. ¢/, € {]’“@ Ap* @ T (V)} is a closed form.

Proof. We start by showing dz¢; » = 0. We recall that we may write dr = d¥ +d7,
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where

2
df = 41 Z (z”zé@A (&) —i—z'zg@A(g)),

2 82 82 .
=4 E QA — R A )
dz 7ra:1 (82&84{ (S) + 021024 ®© (@))

—_

Because of the lack of 2}, 2§ variables in ¢, we may immediately write dz¢; = 0.

Because df acts multiplicatively, we may write

drpry = (d}SOKM) o = 0o =0

as we already showed that (d}goKM) = (0 in Proposition 6.1.6.

We now calculate the dj> action. We write:

dy oy = (1 @A) @ pv(Z,) @1+ 10 A(E) @ pv(Z]) ® 1) - (YrM - Pour)

[ 1®AE) @1 1) (eru) - (1 ®1® py (Z;) ® 1) (¢o,r)

+ (1 ®AE)®1® 1) (Prm) - (1 ®1® py (Z;/) ® 1) (900,1,1/)}

|
M)~

0+ (18 AG) @ 1@1) (pru) 57—

(zﬁ, RAE)®1® 1) (orm) ) (1®1® Aj(vs) ®1) (¢ou-10) -

J=1

Z_: (Z’/y ®1® A;(vs) ® 1) (@0,171,1/)}

2
Il
—

—1

Il
fivel
~

™

(6.3.2)

The 2nd equality in (6.3.2) follows from the fact that ¢y has no vector components
and g, has no A?p* components, and the third equality is the first statement in
Lemma 6.3.4(i7). From (6.1.3) (in the proof of Proposition 6.1.6), we already have

that
2

S (2 @AG) @1@1) (pxa) =0

v=1

and so d{%pl,p = 0. The proof of dj, ¢, = 0 is exactly identical. O

We now move onto the first of our two sizeable proofs. To improve readability,
we shall put as much of the necessary notation and auxiliary algebraic objects as
possible before the statement, as most of these objects are only needed specifically

for this chapter.

Definition 6.3.6. (i) We recall the Schwartz form v, = ¢ from Definition
6.1.7, and the form g from (6.3.1). Then for any positive integers [,1’, we
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define the form
Wiy =07 o

(ii) For 1 < j <, we define the Schwartz forms as follows:

i
A; = NeT (25 @1 A;j(v3) ®1) @_1y

- Z\/_Z (8 1" RI1I® 1) $YKM - (1® 1 ®Aj(va) ® 1) $0,1—1,1

1

Cff = o—prum 3 Z (1®1® Aj(va) ® Ar(v3)) Poi-1,-1
a k=1
1 !
C; = S PKM Y (1®1® Aj(vs) @ Ap(v3)) Pou—1,4-1
k=1

and

N

? " *
= 220110 A (v _
J 2\/571_( 3 ]( 3))@l,l 1

- 0

Bj—Z\/ﬁZ(a/ )@KM (1211 4;(v))) v
!

@* 7§0KM ZZ (1®1® Ag(ve) @ A;(V2)) You—1,-1

;- **SOKMZ ®1® Aj(vs) @ Ap(v3)) wou-11-1-

(iii) For any 1 < j <, we also define the following homotopy operators

2 9 . 2
:Z (82//®A (§V)®AJ(U3)®1> ) :Z ( <§W)®1®A (U?’)>
y=1 il =1
and forms: \/_ \/_
iv2 — W2 —
M= gt M= gl

The next proposition shall give us a lot of control over these objects, and in particular
indicates how one may construct the necessary primitives of w(L)y;;. The rubric
shall be that the differential d = d% +dz + d; + dj; acts with each of its constituent
parts on Aj; to give one of the A;, B;, C; .

Proposition 6.3.7. For d the differential in the Fock complex with coefficients, we

have
= A= B=Cf, A=A -F-Cr. (633

More specifically, we have the following 8 algebraic relations:

d}_tAj,l = —A]’, d;'Aj,l - O, d\tAj,l - —Bj, d;Aj,l - —Cf (634)

J
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dphji = =45, dphj =0, dyAj=—B;, dyhAj=-C; (6.3.5)

Proof. 1 hope to convince the reader of the need only to show one half of this; namely,
because of the symmetry between the definitions of e.g. A; and A;, h; and h; etc,
the algebra for the proofs of (6.3.4) and (6.3.5) will be identical. Assuming that this
is satisfactory, we start by showing that drA;; = —A;. Re-arranging the constants,

this is equivalent to:
—i(l 42
dr (hjpi-11) = (\/ﬁ)Aa‘- (6.3.6)

Firstly, it is clear that dz (h;¢—1,) = 0, because by examination none of the terms

in hjp;_1, contain either of the variables 23, 2. Hence, we have reduced (6.3.6) to

—i(l+2)
dx (hjpi1g) = TAJ"

Putting the two operators together, we have

1 2 n_! a *
Ay = 5o 3 (570466 & 4
T yy=1

0 _
2 © AGAE) © Ayl @ 1. (63

The differential operators act on A%p* as:
A(E) A (&) (Ewr NEa) = =Oay&y N Ears (6.3.8)

here we see that exchanging o’ and v acts as —1, whereas exchanging a and ' is

invariant. Hence the second term in (6.3.7) acts trivially on ¢;_q:

1 2 N 8 - *
An (Z'Y’Z3 02", ® A(&) A" (&) ® Aj(vs) @ 1) w111 = 0.

7=l

We now treat the other half. We see very similarly that
A(&) A" (69 (Ear N o) = day&y N a
and
o7 (actizhe) = Zhzalteny + (b @)CHN DG
+ Sya(l = r(B)) ) D () E )],

Hence, splitting into 4/ = 1 and 7/ = 2, we may write

. 2041 o
1 ) —
dhjo1, = (2\/—7T> Sy {zéz;’z(;»z}g((zg/ + r(@);g/) ® & N ® Aj(v3)us ® QE/)
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+4(+ -r(E)) © 6 AT © Ay D0

1 Lo\ 2L B
-+ (3 ﬂ) S ¥ [t (1+25) 06 G 8 Aualuy 0 13]

ve=1pp
—i(l+2
— MAj.
V2
Next, we wish to prove that di hjp_1, = _ifl/;m B;. As before, we write:

D> ( T @A) A"(E) © oy (Zéfg)oAng)@l)

+( ’ ®A<@>A*<a>®pv(z;c3)oAj<v3>®1) (6.3.9)

(927//

As in the proof of the A; statement, because of the action on A?p* from (6.3.8)
we may see quite easily that the second term in (6.3.9) acts trivially on ¢;_1,, for

exactly the same reasons. Hence, we only need to look at the first term.

By Lemma 6.3.4(i), we know that py (Z ) (v3) = vy and that py (Z ) (va) =0,
so that

(v (Z) © Aj(v3)) w5 = Aj (v )15 (6.3.10)

Using the product rule and (6.3.10), we may apply (6.3.9) to ¢;_1, and write:

2 0
dfhjpiii = ) (82” ® A(§y)A (&) ®1e 1> (orm) - (1@1@ Aj(vy) @1) po-14
Y

et

+ Z (1®A(§’Y')A*(£’Y)®1®1)(¢KM)'<88//®1®A(U’Y)®1>SOOZ L

¥y'=1

We may calculate that

a .
27 © A ) @101 (pra) = (M ) DRI

and so splitting the second sum into v = 1, 2, we may write
2

. 2
— _
dyhjor 11 = <W> > (2,2; ® &y A é‘a) -(1®1® Aj(vy) @ 1) @o-14

a,y'=1
. 20+1
b3 (L) (e @ AT - (B )
ay'=1 2\/§7T -
®1® A;(vy)us © vy

2 o\ 2041 B |
" ( ) (202 ® 6 AE) - (1= 1B E) ()7
1

B, -
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R1® Aj(l),y/)yé & QE/
2

. 2[4+1
—1
= (l—|—2) <> Z Z;@f,y//\fa Z ’Bzg/@)l@AJ(%/)gﬁ ®QZ{/
2\/§7T OC,’YIZI ( )Bﬁ -
il +2)
- "% p
v2

Finally, we show that dy hjp_1; = _’%2)

2

o= 3 7 & AEAE6) © 400 9.5 (2.))

vy'=1

+ Z (a ;© A&y EN)A™(&) @ Aj(vs) @ pyy (Z,/y//g)> (6.3.11)

7y'=1

As in the previous parts, the second term in (6.3.11) will act trivially on ¢;_1,

because the action on A?p* is as in (6.3.8). So:

_ 2 0 .
dvhj(Pl—Ll = Z (82// ® A(@)A (57) ®1I® 1) (@KM)
= v
. (1 ®1® Aj(vs) ® pyr (Z'IYIS)) ©0,1-1,l

2 0
+ Z 1®A£V A*(£7)®1®1)(90KM)' <a "
¥'=1

(52) 5 (et e (1o1e A (24) s
a,y'=1

. 2l+1
¢ P // 1 l—r( _ . ) §
(2\/§7T> (é) ( ) B—) (ZZ)l ) ® 5’)/’ VAN éa ® AJ(U?’)QE ® pV (Z’y’S) yél
ﬁﬁ'

2l+1
? / // / mM\l—r(B")— e * / *
o) - 11— ()2 OO @ £y NG ® Ay © g1 (Zhs)

RIR A, (1)3) &® /)V (Z )) ©o,1—1,1

+

—z’<l+2>1(

\/§ 2\/_71') Z Z’ ZIﬁZé/ () f’y’ AN fa ® Aj(?}g)yé ® ,0?/ (Z'/y’?)) QE/.

oy
8.8
Using Lemma 6.3.4(i) again to find the action of pj,, we see that this last expression
is equal to _igl/;Z) Cy. O]

Using the above, we may state a central result: namely, that the form wxz(L)(¢1)
is exact with coefficients in the harmonic representation H“. We shall discuss
afterwards the consequences that may be drawn from this - as well as its relation to

the coefficients-free result equivalent to it in Lemma 6.1.8.
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Theorem 6.3.8. Let [ > 1 be a positive integer. The lowering element

L=""

5 (61 ®ey+ie; ©® 62i) € p/_

acts through the Weil representation in the Fock model on ¢;; as follows:

j=1

w]:(L) (Sol],:l) =d (@Z)u - ;zl: (AjJ +/\]J)) + zl: (Cj_ - O;)

Proof. We first note that we’ve already calculated what quite a lot of this equation

is: indeed, from Proposition 6.3.7, we know that
! L ! o o .
A (A +8) | == (4 + A+ B+ B+ C; + T ),
j=1 j=1

so what we shall show is the following:

(i) wr(L) ((pl]:l) = (WI(L) ((PQM)) o1t E] 1 ( .+ B + CJr)
(i) driry = (dﬂbf) Yo, + %Zzzl (Bj + E)

(ifi) diihy = —3 Zé‘:l Aj and dythyy = —3 Eé’:lzj

We first note that >, C’f =2, ﬁji, which simplifies some of the above equations.
We also note that the above implicitly uses the results of Lemma 6.1.8 - that d 717 =
wr (L)
We start by showing part (i), the action of the lowering operator. We know from
Lemma 5.2.3 that L acts in the Fock model as:

2 2

0 1
L) — —4 v /v

wrlk) = —dm ; 00, Am

The —zé’ 24 acts purely linearly, so it makes sense to focus on the action of the

derivatives - our main tool here will be the product rule.

82 — 2042 a a
!/ n_n
0" —\5 /A Z r&p! o N&a /
02702, o (2\/§7r> 07, (Zagé) 02!t ( FarZp ) © o Na © U3 ® U5

B.p’

o\ 2042
_Z JE—
= —= O 230mar 2 @ Eqr N Eq @ V5 @ Uy
8,68’

B -
+ Z 8 , zgzg 5.7 (gg) ® €or N o ® 05 ® Uy
Y

@E
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0
+Z'Za’ ( )W< Nz © o Mo ®up © vy
5

+ 5wy () gy () o b Ao os;
5.

We may use the identities in Lemma 6.3.4(iii) to write the above as:

0? —i \¥? _
02" = (2\/§7T> [Z 5‘/0@,@570&’1%’ Q& Néa ® Ug X QE/
vy

ﬁ’ﬁ’
Neg2lh 2 @ € NEq @ ug @ A (Vv 6.3.12
2\/—7_(_] = 827 £p ] 5 § =B J( 'y)—é ( )
55/
z&g’ —(2,, )z 'y @& N, ® A (v Jug ® Uy (6.3.13)
55/

2
(2\/_7T> ;12 o Z%Z”’Zgﬂ ® Ey /\§a ®A (UV)Uﬁ ®Ak( )vﬂ, ,
Js a,o
5.8

(6.3.14)

where the 8, " sums in (6.3.12), (6.3.13) and (6.3.14) are respectively over {1, 2} & {1, 2}/,
{1,2}°1& {1, 2} and {1,2}-1 & {1, 2}~1. Hence, summing over v, and re-arranging
the sums (which is harmless, as they are all over finite sets), we find:

1 ra N *

_477'2 //8 /90” (2\/—7'(') /5’25:’2//822/ (51/\€I+§2A£2) ®Qﬁ®yé/
s i\ 2

+) V2 1)25rm 2 @ Ew NEq @ ug @ Aj(vE)uky

;z (2\/%) ZZa, a2y ® Gar Mo @ U5 @ A;(V))ug

=1 a,a’
ﬁﬁl

2042 o

1 .

—1

+ 2\/§<> 2 2 "2l @€ N Ea @ Aj(v,)ug @ Uy

j; 2\/§7T ;g /38 // B8 VIEL S =B
B8

=B,

l 2042 o 1
1 —t c * *
Lo (over) DL Db ot nE e A e A
: ’)/:1 k= - - -

1 a,aof

B,

=CT
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Hence, we may write

1 1 2 _
wr(L) (p11) = 47TZ;’),Z§,’90171 + o ( (Zj & A 57) R1® 1) ST
4+ Z C;

l l
DR W

+

= (wr(L) (prm)) pour + Z ( .+ B, + C+)
7j=1
which completes the proof of (7). Next, we show part (ii), the action of dz. From

(6.1.5), we have the explicit algebraic form given by

2

. 2
1 —1 _
1/}]: - 5 <2\/§7T> o (_Zézg ? ga " Zgz, ? 50‘) 7

=1

so we write:

2042

1 - *
BB’

(6.3.15)

We recall the forms of dr = d% + dz from (6.1.2). The action of d% is completely

multiplicative, so we may write

dF () = (d]-" (WT)) Qo1

and hence we may focus on the action of d%. By the usual argument - see e.g. (6.3.8)
- for the differential operators in A®*p*, we may discard terms of the form &, A &,,

& N & in dzef;. Hence, we may write:

.o\ 2042 5
dz” = —on [ —L- (22 22" @ & A Ea ® g QU
7 ”@ﬁJ LEM%%<“6” A

+ Z ”3 (zézg;’égé/) RENE ® vg ® QE/ . (6.3.16)

7,08,
Our first observation is that the first term (resp. the second term) in (6.3.16) has
exactly one 2§ and one 0/0z} (resp. one 24 and one 0/0z}) term, so these may be
moved to the front of the equation - though we keep them in some of the terms to
help our correspondence with the action of dz. We may hence split this equation

using the chain rule:

Lo\ 2042 9
—1 (7
dzvF = — 9 / /// /// ANE. N
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82
+ ) 252y 57 (7 20) ® £ NE ® 1g ® Uy

// /
V08,8 702
. 2042 o
—%< ) Yo zazya (25) @& N E Qs ® U
2V/27 Law, 2oz, ( ,) B2

S %%aﬂ%)®@Ag®%®%, (6.3.17)

V08,8

The first two lines of (6.3.17) are easily recognisable as equal to (dz(¥7)) - ¢o.;
we may use the relations of Lemma 6.3.4(iii) to rewrite the remaining two lines as

follows:

s 20+3 o
d}wlfl - (d} (wf)) “P0LL T 2 (2\/37T> Z Z 2, Zg’zlﬁ(@ f’y N ﬁa ® AJ(UW)QE@) QE/

i=1v,ap,8

. 2143 |
—i —
— 27 > > 222y Q& NE Qus @ Aj(vh)uly
(2\/§7T> £p=3 5 57 =B j( 7)—@

i=l~,a,8,6

oo\ 2042
:(d]f-(z/}}—)) Yo+ = ZZ\/—<2\/_7T> Z z’zg/zé@)fy/\g@Aj(%)@g@g%

78,8
=B,
1 l i 2042
#30vI(5) ¥ 06 ngene A0
2 2 2or) gy R = e
=B;
_ F 1 : 1 .
(1 (7)ot 3 3B ST
j=1 J=1

hence we have shown part (ii). We finish by showing part (7ii), the action of dy;
by the symmetry of the operators, we only show the d;; action, as the d;; action is

essentially identical.

By the same logic as in the proof of parts (i) and (i7), using e.g. (6.3.8), when
applying dy to ¢f; we may discard all terms of the form &, A &, & A &,. doing this,

we find

oo\ 2042

1 = *

d;wll (2\/_77') [ Z Zé’Z;élgéé/ X fﬂ/ VAN fa & PV(Z,;)(QE) ® Qé/
v,0.8,8'

Y R @6 NG @ pv(Z])(ug) ® |-
v 8,8’

We know from our calculations in Lemma 6.3.4(i) how py will act on the symmetric
products vz. For any multi-index 3, we let éj = (b1,-..,8i-1,Bj+41,--., 1) be the
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multi-index with 3; excluded - we may write the above as

o\ 2042
_Z [R—
Ay, = (2\/_7r> > 23202528 ® §a NEy ® (Z 0p,vAj(v3)vp ) ® vy,

v.0.8,8"
Keeping the indices 3, ' € {1,2}!, and for any given 1 < j <

2041
— n_r _n e %
(2\/§7T> %ﬁ/ 08;72a2p2g ® Ea NEy ® vy O Uy

20+1
_Z —
= ——= Opninzp 2n 2 @ELNE, Quy QU
<2\/§7T> MZBB’ Pir=a=p;=p =p a N &, =B, <=8

2[+1
_Z L .
= (2\/5 ) Y 4z 2 @b NG By Qv
T ow,ﬁj,ﬁ’ J

_ T
= Y-,

Hence we have:

!

Z (25®1® Aj(vs) @ 1) ] 1,0
]:1

!

—5 > A

J=1

@/)u—

I\DM—t

The proof of the dy, action is identical, so we shall skip it.

We have already given a small amount of motivation, at the beginning of this section,

for the final theorem we shall prove; we invite the reader to revisit this, as the duality
problem is one that should be kept at the back of the mind throughout; indeed, the

relevant duality calculation (which, a priori, looks very daunting) is only a few lines’

work once the following result is shown.

In the Schrodinger model, we define operators

3
is=> (210 A;(v,) ®1) =10 1® A (Zzava>®1
a=1

a=1

j7S -

Mw

D

3
(Za®1lR1®A;(W)=101R01Q A; (Z ZaUa) >

a=1

where the second equality comes from the linearity of the vector products. As one

may see, by inspection, these operators correspond to the insertion of the vector

2101 + 2909 + 2303 in the j’th slot of the vector product and its dual respectively.
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Theorem 6.3.9. For any 1 < j <, the following holds:
Y= Gj ((,0[_1,1) + dAj,l — (O;— — Cj_)

= G (pri-1) +dAj; — (ﬁf B @_)

Proof. Because of the convenience we have found in working in the Fock model, it
makes sense to start by find these operators in the Fock complex: for this, we use
the intertwiners in Lemma 5.3.2. We may use the intertwiner notation from Lemma
5.3.2) to write G; r = J 'G5 as

, 2 0 1, 0 1,
G; =iv2 (Zl <<8zg — 471-ZO‘> R1® Aj(va) ® 1) — (azg - 47Tz3> ®1® Aj(vs) ® 1)

(22: (%a ®1®Aj(va)®1)—Z§,®1®Aj(v3)®1> (6.3.18)

:2\;%

(Va) ® 1) 882” R1® A;(vs) ® 1> : (6.3.19)

Herein, we write the expression in (6.3.18) as G, and that in (6.3.19) as G, so that
Gj = G + GY. The operator G s may similarly be written in the Fock model as

- 2 o 1 o 1
C=iV/?2 — @11 A4;0) |- —-—2 2110 A,
G; =i (2((32 47Tza)® ®18 j<va>> (M Ang)@ @1 ](v3*>>

[0}

:2\;57 ((; (2110 A;(V)) -2 11® Aj(v§)> (6.3.20)
+N§<Z<£,®1®1®A(@)>—£,®1®1®A( )); (6.3.21)

analogously we write the expression in (6.3.20) as G, and the expression in (6.3.21)
as G, so that G, = G, + G,

Applying all of these operators to ¢;_1; and ¢;;_1 respectively, we have:

7
G (p_1;) = 4+ — (21 A;(v3) ® 1) ¢
L (pim1) = wu 2\/%( 5 j(03) @ 1) pr-1y

:Aj

and

G (Sol 1l _Z\/_Z (a //®1®A](/Ua)®1> Qplfl,l

—sz (a ,,®1®1®1> orm - (1®1® A;(va) ®1) @oi—1y

2

, 0
+ V2050 + Z (6 —®1® Aj(va) ® 1) P0,1—1,1
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2
, 0
NG 5—1 (02” RIR1IR 1) orm - (1®1® Aj(va) ®1) o1

:Bj

2 1
—(pK Z Z (1®1® Aj(va) ® Ar(vy)) Poi-11-1,

—t
_C]_

so that Gjgi_1; = w1 + A; + B; + C; . Similarly, we have

i ) .
G; (¢ri-1) = o + on (@1 ®@1® Aj(v3)) @i

and
&' (- =23 (1 ) s
_Z\/_Z< >goKM~(1®1®1®Aj(1);))800,l,l—1
+z\/§<pKM-§ijl<£, ®1®1® A ))soou |
—N_Z< >¢KM (1®1®1® A;(vE) Poni-1

-5,

2
+ SOK ZZl@l@Akva)@)A( 2)) oi—11-1 -

=c;"

so that Gjp-1 = wi + A + B + ﬁj—i_'

All we need use now is the calculations on dA;; and dA;; from Proposition 6.3.7;

this completes the proof. O]

6.4 The Extension of the Kudla-Millson Result
to Higher Weights

We have now reached the point where the proof of our first main vector-valued
theorem is possible; namely, about the modularity of the theta series attached to
the Schwartz form gpfl’H. On top of this, because of the duality result in Theorem
6.3.9, we will also be able to prove Theorem 4.1.5.
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The reader has hopefully been illuminated as to why the delay between the statement
of Theorem 4.1.5 and the proof of its main result exists. In §1, we saw several
preliminary approaches to proofs about modular forms coming from special cycles;
however, these largely relied on the specific arithmetic of the group I', and were in
particular quite specialised proofs, using Hirzebruch-Zagier methods. In this work,
we have made no assumptions on I', beyond it being small enough to be torsion-free
(in equivalent work - see e.g. [FM11, §10] - even this condition may be relaxed), and
hence we have needed the constructions using the Weil representation. It is here

that this generalised approach shows its power.

Theorem 6.4.1. Let I' C G be a torsion-free arithmetic subgroup of the group G,
and let L C V. be a full and integral level M lattice in the k-vector space V such that
[ acts trivially on all the cosets L= L+ h of L'/ L.

We fix a positive integer | > 1, and work in the Schrodinger model, with all our
forms understood to have coefficients in the harmonic subspace H'(V) c SY(V).

Then there exists a closed, non-trivial Schwartz form
G
et € [S(V) ® Q2 (D) @ HY (V)]

We may form a theta series 0;4(p,z,7) which defines a closed differential form
on X with coefficients in H"'(V); this theta series converges uniformly on compact

subsets of X. Moreover, it is a non-holomorphic modular form of weight 21 + 3:

Oculpz,7) =Y @i (x,2,7) € Q(X) @ HM(V) © MG (D(M)).  (6.4.1)
el
All the ¢ are closed, and so taking it as a cohomology class, it defines a cuspidal

holomorphic modular form in 7:

—_——

Oenli,2,7)] € HE (X, HUV)) @ Sy (DO,

Moreover, the coefficients of ¢* = €*™"7 in this modular form are given by duals of
the special cycles Cy, iy defined in Proposition 4.1.3; in cohomology, we may write:
_ PD

[HAC,’H(QO, Z, T)] =1 Z |:On>[lvl]:|

n>0
n an L—norm

q".

Hence, for some closed and rapidly decreasing H'(V)-valued smooth differential

2-form n on X, the generating series

[entozninn=i X |[ sl esaron 642

n>0
n an L—norm
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is a holomorphic modular form, with coefficients given by the integrals against the
Cr 1

Proof. Throughout this proof we will be using the G-isomorphism between the

complexes

T [S(V)@ A @ BN 5 [S(V) 2 Q*(D) @ E]°

from Proposition 6.1.2. The existence of ¢;; for [ = 0 was proven by Kudla and
Millson - see Theorem 6.1.13 - and the form ¢;; with coefficients that we constructed

in Definition 6.2.2 was proven in Proposition 6.3.5 to be closed.

Oc4(p, z,7) defines a differential form on X (and not just on D) because we have
shown that gofl’H is G-invariant; hence it is in particular I'-invariant. Further, we
have assumed that £ is ['-invariant, so that the entirety of the sum is I'-invariant -
hence, as a function of the co-ordinates z € I, it is I'-invariant, so that it defines a

differential form on I'\D = X.

As it is a closed form - by Proposition 6.3.5 - we may take this theta series as a

cohomology class with coefficients in H (V):

[QE’H QOaZT |\Z@ll XZT QHQ(X7W)>

xeL

The element Y-;(C}” — C}) projects to 0 in the coefficient system H"“(V'); hence
using the results of Theorem 6.3.8, the cohomology element [wr(L)(¢;)] equals [0]
in this cohomology group, as it is exact. Immediately, this gives us that this is a

holomorphic function of 7 € H, as w(L) = —2iv0z once T is inserted.

We now address modularity. Using the isomorphism from Proposition 6.1.2, we
may take ¢;; as a differential form on D with coefficients in the representation.
From Lemma 6.3.2, we know that it is closed, so defines a cohomology class in
H?*(D, m)) From the general theory of the Weil representation, it follows from
the above and Proposition 6.3.5 - which gives us that it is an eigenvector of weight
2] + 3 under the action of the maximally compact subgroup K’ C G’ - that the
associated theta series defined in (6.4.1) has a modular transformation law of weight
2l 4+ 3 with respect to the correct congruence subgroup. For further reading on this
from a theoretical standpoint, see e.g. [KM87, §4 & 5|, and in particular Theorem
5.2 from this work.

The results of Theorem 6.3.9 tell us that in the cohomology with harmonic coefficients,
[o11] = [G1-1.1] = [Gjpii-1] for all j. Hence, we may define a new Schwartz form

in the Schrodinger model as follows:

prc®) =1010AX) @10 10181 AX)] (vxu(x))
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= prar(x) ©x' ® (x7)'
So, using Theorem 6.3.9 repeatedly, it follows that
QOZ:[I,G(X) = (1®1®my) (pric(x))

=(1®1®m) (H (G0 &) (sof,z(X)))

j=1

satisfies @]} (x) = ¢]i(x) + dj for all x and for § some differential form on X.

Let x € V. be any non-negative vector. By Stokes’ theorem, integrals of exact forms
are 0, so for n any compactly supported and rapidly decreasing differential form, we

have
H H
X,2,T) N :/ X,2,T)A\7.
/FX\DSOZJ( T) A FX\D%J,G( T)A

Locally, we may write (without loss of generality) n = w ® v. Hence, using the inner
product on H (V) given by extending (, ) to the symmetric product, as well as the
corresponding Kudla-Millson result from (6.1.13) in Theorem 6.1.13, we find:

/ gpz’j(x, 2, T) AN = / oM (X, 2,7) Aw - (U,Trq{ (Xl ® (x*)l>)
Ty \D T \D

X

:{wmmwi/x4.@ﬂm<ﬂ@WfY». (6.4.3)

However, we know that the integral of a section of A*T™* ® E over a k-cycle with
coefficients in E will also be given by taking the pairing in the fibre; hence, we may
write (6.4.3) as:

/ glel(x, 2, T)An= ie”i(x’x)T/ n
I'x\D "~ Cx,11,1]

and so duality is established for x of non-negative length. A completely identical

argument - namely, using that
/ orm(X,2,T) Aw =0
Tx\D

for all negative-length x and closed scalar differential forms w, shown in Theorem

6.1.13 - gives us the exactness of ¢](x) for all such x.

We also comment that the constant coefficient also vanishes here, unlike in the case
[ = 0; indeed, in that case, it is given by integration against the Chern form ¢;(X).
However, in the case [ = 0, another application of the above homotopy argument
shows the constant coeflicient (which, by definition, will be the parts of ¢;; given by

x = 0) to be given by integration against

a(X)®0'® (01 =0
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and hence will be identically zero; in particular, we may say here that these forms

will not only be modular, but will be cuspidal.

Combining these two results gives us the result for the form of the Fourier coefficients,

by summing over all x € L. ]

Corollary 6.4.2. Theorem 4.1.5 is proven; namely, the special cycles sum with

coefficients is modular of weight 21 + 3.

Proof. This is a restatement of (6.4.2) in Theorem 6.4.1. O






Chapter 7

Restriction to Boundary

Components

Given our work in §4 on special cycles and their restriction, and in §6 on the creation
of new Schwartz forms and theta series, which give us geometric modular forms of
generic odd weight > 3, one of the outstanding problems is the restriction of these
theta series to the boundary components of X" In this section, we will aim to
prove Theorem 1.2.3 from the introduction, using geometric techniques, the mixed
model of the Weil representation, Fourier transforms and Poisson summation. This
will draw heavily on equivalent work done by Funke and Millson, primarily in the
orthogonal setting - for example, [FM11], [FM13] and [FM14].

There will, however, also be some arithmetic near the end! What we may turn the
proof into (once most of the geometry has been sorted) is a series of combinatorial
proofs about the vanishing of coefficients of ¢;;, which is quite interesting in its own

right as a result in combinatorics.

7.1 Fourier Transforms of Laguerre Polynomials

We start with a redefinition of the Schwartz forms from Lemma 6.2.3.

Definition 7.1.1. Fix an integer [; then in the Schrodinger model, we may write
the Schwartz form with coefficients in H4 (V) = my (Syml(V) ® Syml(V*)> as

1 - . J—
(Pl,l(x) = m Z [Qé 0] Qél @) Da e} DO/:I (%00) (X) (9 ga/ A 504 & TTH (Qé & QEI)

8.8
(7.1.1)

€ [S(V) @AM p o HH (V)] a
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where D, = 2z, — %% and D, =z, — %% for v =1, 2. By using the isomorphism
detailed in Definition 6.1.10, we may insert z € D by acting with g, on all the terms,

and find the differential form on D written as:

pri(x, 2) = 2211+2 > D5 © Dy 0 Da o Duv (0) (9 'x) @ Eow AEq @ 1y (9 (25 © 1))

8.8
e [svye o e n(v)”,

We note here that this notation v is used repeatedly throughout this chapter, to
mean a vector product vg, ® vg, ® ... ® vg, - we similarly do this for polynomials in

the Fock model, operators D, etc.

We now fix an isotropic vector ¢, which we will assume without any loss of generality
is one of our finite representatives of the cusps on YBS; hence, our relevant boundary
component will be written ¢y : e(FP) — X%, We now fix a cusp £ of D, and - as in
the definition of the mixed model in §5.3 - fix a Witt splitting of V as

V=kieW,®kl

Without any real loss of generality - as we may rescale the inner product to achieve

this - we may assume the following

(i) W, is spanned by a rational w, such that ||w,||> = 1;
(ii) (6,€) = 0"

Indeed, what we shall see throughout this chapter is that these constants are not
particularly important - the rubric shall be that the coefficients of £ and ¢ will vanish
at the boundary, and hence that the behaviour in W, (which is orthogonal to the

other co-ordinates) will be what survives.

Examining the form of the inner product in (2.1.12), we see that the inner product

may hence be written (with respect to the above basis) as:

!/

a
2T (a
ol o || =p2- (ac)
, |0%|
C C

We recall from (2.2.2) that we have decomposed the real points of the parabolic
subgroup P = P(R) fixing k¢ as P = NpApMp; hence, on the level of Lie algebras,

we immediately have the following direct sum:

p=undadmp. (712)
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We recall also from Definition 2.3.4 that for our group G, the parabolic part mp of
m will be trivial and the boundary component is realised by compactifying A —
A =TR.qU {oo}, so that e(P,) = I';\N,. Hence, in our case, the maximally compact
subgroup of P, may be denoted Kp.

The natural restriction to the boundary for Lie algebras will be to project p — n
in (7.1.2). We recall our work on the mixed model of S(V') at each cusp ¢, from
§5.3. Throughout this chapter, we shall denote f as the Fourier transform in the ¢

variable.

So, for any fixed cusp ¢ of D, and for any G-representation F, we hence define the

restriction map r, as follows:
re: [S(V) @ A% @ B — [S(W,) @ A®n* @ E] (7.1.3)

by
re (f(x) ® Nws @ w) = f (% lw,) @ A (w), )" @ w. (7.1.4)

We shall now give a brief remark on the reason for introducing this map. We first
comment that calling it a "restriction map" is itself a bit of a fudge; indeed, a
fuller understanding of it is given as following. It is the composition of two maps:

re = 7 0 fy, where
o x K MM . x K
fo[S(V) @A @ BN — |S(V)i™ @ A% @ E|

is the Fourier transform map, acting as the identity on A®p* ® F and acting as
the Fourier transform in the ¢ variable (as in Definition 5.3.3); 7 is hence a "true'

restriction map, given by
K
o [SVIM @A @ BT = [S(Wy) @ A'n' @ E,

acting as the restriction to W, on the Schwartz component and as restriction to
n* C p* in the Lie algebra. Despite this, it makes sense to describe 7, as a restriction

map, as we know that f, is an isomorphism.

Remark 7.1.2. So, why have we used this map in the first place? As hinted in
the title of this chapter, our ultimate aim herein is to extend the differential form
0z3(p,T) to the boundary of YBS, and to find what the restriction is on each
component. One may examine the form of the scalar parts of ¢ in e.g. (7.1.7) to
see that the critical problem in finding this restriction (which will crudely be given
by taking ¢t — oo outside the sum over the lattice) is that there is a factor of 1/t

accompanying the |a|? in the exponential factor.

In particular, this should convince the reader that individually, each of the ¢(x, z, T)
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do not converge near the boundary components. We shall hence be using Poisson
summation on the sum over a € kf N L; of course, a priori, this solves nothing, but
what we shall see is that under the map f; : ¢ — @, this shifts the ¢? factor to the
numerator, and hence renders the term inside the exponential polynomial in ¢! In
particular, this explains why we use the map f, - namely, that on the level of the
complex of differential forms, it gives a Schwartz form with satisfactory convergence

properties.

Similarly, we may now explain the reason for the restriction map 7,. Because of the
action of f; as explained above, we see that the geometric restriction of 6, 4(p, T)
may be taken termwise; in particular, in the sum over £, we shall see that all the

terms ¢;;(x, z,7) not lying in W, N £ will go to zero under the restriction map!

In particular, what this tells us is that in some sense, the Fourier transform is
unnecessary - namely, following the rubric of the above, the only part of ¢;; that
will survive is the origin, where the new variables ¢ = 0 - hence, this is really the
trivial part of the Fourier transform. For those familiar with the literature, this is
also recognisable as the 0’'th coefficient of the Fourier-Jacobi expansion of the theta

series.

We shall now spend the rest of this section showing that the previewed properties of
this restriction map do indeed hold. We shall hence focus on finding the image under

fe of the scalar parts of ¢, given in the Schrodinger model in Definition 7.1.1.

As previously, we let 8, 8’ be two collections of indices in {1, 2}, and hence define
two counting functions: let 0 < r(a, 3) <1+ 1 be the number of indices in {a} U
which are 1, and 0 < 7“(0/,@') < [+ 1 the number of indices in {a/} U é’ which are
1. Hence, for fixed indices 0 < r, ' < [ + 1, we define the scalar Schwartz form

@11 (%) and the polynomial g, ,/(x) by:

1 — _
P (%) 1= 9rw(X)20(%) = 53725 Dy 0 Dy 0 Do Dur] (0) (x)  (7.15)

The change of variables between the orthonormal basis {v, ve, v3} and the Witt

basis {¢, wy, '} may be assumed to be given by the co-ordinate change

c
21 CL+E
Z9 — b y
c
zZ3 a—ﬁ

where as in the rest of the paper we write vectors x = al + bw, + ¢’ € V. The
insertion of 7 into ¢;;(x) is analogous to that given in Definition 6.1.12; by Lemma

6.2.3, ¢, has weight 2/ 4+ 3 under the w-action of the Lie algebra ¥, so in order to
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make the new form S Lo-invariant we define

pu(x,7) = (g, 1) FHexp (miu(x, x)) (Vo) (Vo)
= v lexp (Tiu(x, X)) @(v/Ux).

In order to incorporate the action of A on the Schwartz form in the mixed model,
we act by definition as a(t)™' = a(t™') on the column vector x. Hence the resulting

scalar term for the above fixed a, o, 3, ' is given by:

1 _ _
Spl,l,r,r/<a7 ba ¢, a(t)v T> = 921+2 [Qﬁ © Qﬁl © Da © ’Da/} (900) (CL, b’ & Cl(t), T>

= v g (a(t) " (Vx)) exp (m <|b|2 - QI|§Z|C)>> (7.1.6)

2, 1 2, e
X exp | —mv t—2|a| + |b]* + 5 ’2|c|

— vl (alt) (VX)) exp (-2;\@12 4 2@:?'“‘ (Z(c)R(a) - R(@I@)))

t2
X exp (mﬂb\z = ;;LIQ‘C‘Z) . (7.1.7)
As above, we write R(a) = X and Z(a) =Y. Letting the polynomial f, . (X,Y") be
defined by

XD = e (f W_Y+ﬁ Vb, JULX + i/t — \2/(;;)

(7.1.8)
our objective is to Fourier transform (at the origin) the following function of two

real variables X and Y:

Forr(X, Y Jexp (‘ - [X2 Lyr o () uR(e) YD (7.1.9)

(% (Y

Indeed, one may see that this is a scalar part of ¢,/ (x,a(t),7), and hence in
finding the Fourier transform in the a = X + Y variable will give us the first part
of the restriction map.

By definition of the real Fourier transform, our calculation will be the following:

//RQ |:fr7r/(X, Y)exp <_ 27T’U [X2 + Y2 . Zut2I(C)X + ZUt2R(C) Y‘|>

v (Y
X exp (2mi(X ¢ + Vo))

dXdY

_// Fo Xyexp(_2[X2+Y2+ﬁlX—l—Bg DdXdY (7.1.10)
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where the constants [, B2 are given by

iut? it? it? ~ iut? it? it? ~

B = _TI( c) — *4151 —*51, fo = 773( ) — *¢2 —*52

We now give the two main results that will allow us to calculate this integral.

Lemma 7.1.3. Let A € Ry be a strictly positive constant, and f(X,Y) = 3, , by n X™Y™
a finite degree complex polynomial function of two variables X and Y. Then:
s 1 " 1

n>0

Proof. We start with two results from elementary calculus, where £ is a positive

integer and A a positive real number.

/OO X dxX = (44) kkl\/i /OO XHHAAX =0 (7.1.11)

These may be proved respectively by differentiating by A and replacement of variables

for negative X. Hence, we may only focus on the purely even coefficients. We write:
// FX,Y)exp (AX? +Y?2)) dXdY

— S oo / / XY 2 Hexp (~AX? + V) dXdY

n>0 k=0
= Z bok.2n—2k { / X2kexp(—AX2)dX} { / Y2 exp(—AY?)dY | .
n>0 k=0 R R
The result is hence a simple application of the first formula in (7.1.11). ]

Lemma 7.1.4. Let j > 0 be a non-negative integer, a € R a real number and

a € Rog a positive real number. Then

Xiexp (~aX?) dX:/RXjexp (—ax?)dx (7.1.12)

R+ia
Proof. We start with the case of j = 0, so this is just a classical Gaussian integral.
We may switch variables to Y = X — ia, and write the left hand side of (7.1.12) as

/Rm exp (—aX2> dX = /Rexp (—a (Y + m)2) dY; (7.1.13)

hence, as a function of a € R, the right-hand side of (7.1.13) is continuously differ-

entiable. Because of this, we may differentiate under the integral by a and find:

0

o /Rexp(—a(Y-f-iaf)dY} /aaa lexp (—a (Y +ia)®) | aY

_/ a(Y +ia) exp( (Y+z'a)2>)dY
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= {exp (—oz (Y + ia)z)]yzoo

=0.

Y=-—0c0

The value of this integral does not depend on a, and so we may conclude that (7.1.12)
holds for 5 = 0.

We next treat the case of j = 2k an even, non-negative integer. Indeed, because
the function X% exp(—aX?) is C* and rapidly decreasing as a function of a, the
integral gives a continuously differentiable function of . Hence, in particular, we

may differentiate inside the integral and write:

[, X (coxax = [ (1 (o (-ax?)) ax

oF
— (_1)k — 2
= (—1) Dok /R+m (exp( aX ))dX.
Hence, (7.1.12) for even integers j = 2k follows immediately from the case j = k = 0,

which we have proven above.

For the case of 7 > 1 odd, we use both the proof method and the result of the
even case. Indeed, we may again differentiate under the integral, change variables

as above, and hence write:

;)a e sin Xexp (—aX2) dX] = aaa [/R(y + ia)jexp (—a(Y n z'a)z) dX]
- /R [ij(Y +ia) texp (—a(Y + ia)Q) — 2ia(Y 4 ia)exp (—a(Y . m)Qﬂ 1

(7.1.14)

We see now that both terms in (7.1.14) are shifted integrals of even powers; hence,

we may apply the result of this lemma for even powers and write this as:
z'j/ Y7 texp (—ozYQ) dY — Qia/ Y7t exp (—aYQ) dY.
R R

We may hence apply (7.1.11) - namely, the numerical evaluations of these integrals -

and see that this equals 0. Hence, we have shown:

0 )
J _ 2 —
20 L X exp (—aX )dX] =0,
and so this again is independent of a. This completes the proof. O

In particular, this shows a very neat result for Gaussian integrals: namely, that all

integrals of the form [p X7exp(—aX?)dX are invariant under linear transformations

X = X 4 2z for all z € C|

Using Lemmas 7.1.3 and 7.1.4, we may prove the following result:
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Proposition 7.1.5. (a) We let the coefficient of X™Y™ in f...(X,Y) be notated

U = Ao, and hence for each m, n define the finite sum

. i3\ (=BT =5\ "
T = 2 i (m> @ (2) (2)

Then the integral in (7.1.10) is given by

//R fr (X, Y )exp (_2;“ [X2 +Y? + B X + ﬁQYD dxdy (7.1.15)
t2 T2 ~2 2 2\"1 & (n —
= g (550 2 () w s () ewren -2,

(b) The real Fourier transform of ¢y, (a,b, c,a(t), T) with respect to the a = X +iY

variable is given by:

e 2 ) Tut? T2 —2 —2
G (s 6, s a(t),7) = oxp (mﬂbﬁ— -G ))

2v 26,2 T 20
> \g=) 12 2k)!(2n — 2k ) agron_

Proof. The proof of the first statement is an application of Lemma 7.1.3: we change
variables to X — X + 3,/2, Y — Y + 3,/2, and may hence write (7.1.15) as

2 ~2 — 2
exp (—”(63 + 55)) Lo R )en (<20 [x7 +v7] ) dxay,
2v R+B2 JR+51 t
(7.1.16)
where fr,r’<X7 Y) = f(X - 61/27 Y — 52/2)
Directly from the results of Lemma 7.1.4, we see that the [3; factors in the integrals

in (7.1.16) are trivial, so we may take these integrals to be over the real line R.

One may easily calculate that the X™Y™ coefficient in ﬁ;/ (X,Y) is given by the
am.n defined above. Hence, part (i) is given by the application of Lemma 7.1.3 to
the equation in (7.1.16), and so part (i7) is an immediate corollary of part (i) by

multiplying by the extra term in (7.1.7). O

With all of the above, we are now ready to explicitly find the image of ¢;; under
r¢. We have one more piece of business to attend to before finding the image ¢y ;

namely, we must find the restriction of the Lie algebra elements &, A &,.

A good change of basis matrix was found in (2.1.17); we may use this to write m(s,r)

with respect to the orthonormal basis as:

rd, —S5 10k
m(s,r) =1 s 0 —s |. (7.1.17)

—rd, —S5 —roi
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Hence, from this, we may immediately read off how the elements restrict. We know
n, is a real Lie algebra of dimension 3, so n; will have 3 basis elements - indeed, in
Definition 2.4.5, we have written down 3 non-trivial elements of this space, which by
their definition are linearly independent. Using the construction of the &,, &, from

Definition 2.4.3, we find the following relations:

Lemma 7.1.6. The action of p* on the basis of ny C g is given by:

4] — 0 — 1
Ei(m(s, ) = Tr, Elmls,r) =~ %r, Gm(s,) = s, Glm(sr) = 55
Hence, the restriction of the forms in p* under the map r, is given by
Pl (€)= =%k el (8) = Sk by @)= il (&) = %
0 |p* 1) — 9 2 0 |p* 1) — 9 12 0 |p* 2) — 12 £ |p* 2) — 0-

Proof. This is essentially by definition of the forms &,, &,; one only needs check their

action on the matrix in (7.1.17). O

S0, as we have now obtained the restriction of all the components of ¢;;, we are

ready to find the restriction of the theta series!

Theorem 7.1.7. Let ¢ > 0 be a non-negative integer. For a complex variable w, we

define the q’th Laguerre polynomial L,(w) by

e df —w 2 r
Lafw) = g (7 0%) = 20"
: r=0

Let goztl’z be the Schwartz form in the boundary complex {S(Wg) XN ® HI’Z(V)}
given by:

—1) (14 1)! : Q, :
( 22271'15)l+1 ) Lyyy (2mol[]]) exp (wit|[z]]) @ €20 Ay @ 7y (Ué © @2)1)

901?:117£($’ T) =

Then this form is invariant with respect to the maximally compact subgroup Kp, and
forzeV:
0
Ty (@?fl(mv T)) =Y (bw@v T)'

Proof. We start by noting that it is almost trivial that this form is Kp-invariant;
indeed, we may check that the relevant subgroup is given by the circle group S*! ~
M C P. As @Z{l’g is in reality only a function of the norm of x, it is clear that
the scalar parts are invariant (because the action of S! leaves the norm invariant).

Similarly, the action on €, A Q, will be as

Stx Ay o AN (€, Q0 A Q) = (€7Q0) A (e7) = QAT
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and identically for the powers of vy. Hence, the invariance follows.

Hereafter, the proof divides into two parts:

(i) For all o, o/ 38, B such that r(a,§) = r(«/, ) = r, we shall prove that the

restriction

Te|PLirr @ o AN ® Tx (Qg ® QE/) } = ‘Pﬁz

if and only if r = 0.

(ii) For all a, ' B3, ' such that r(a, 8) = r, r(/,8') = r’ with r # 1/, we shall

prove that the restriction is always trivial:

Te|PuLrr ® 60/ A g @ Ty (Qé ® QE) } =0.

We start with part (7); we recall the operators Dy, D, from (6.1.10). By the results of
[KM87, (6.49), p.303] - though this may easily be proven with an induction argument

- we know that

1

5 (Do o D) (on) = (<1 Ly (270 ) 0 (7.1.18)

Because all of the operators D,, D, commute, we may write

_ r r! 2 I+1—r (l +1- T)' 2
= (—]_> WLT (27T‘Zl| ) (—1) WLH_I_T (27T|ZQ| ) @Yo
i MM+ 1 —=7)!

= (—1) L, (27T|21|2) Ly, (27r|z2|2) ©o-

(27r)l+1

In the co-ordinates corresponding to the Witt basis, using the natural change of

basis from (7.1.17), we may write this as

orinn(x) = (—yn UL (27r <Ia|2+ of _I<“C>>>

(2m)e+ 4lox[* 0]

|cf?
X Lit1-, (27T|b|2> exp (—w <2|a|2 + |b]? + 2|5L|2 (7.1.19)

Identically to earlier in this chapter, we write a = X + Y and W as the real
partial Fourier transform of ¢;;,, with respect to the {X,Y} variables. We may
now see that we have done a lot of the work needed to prove this already - namely,
we have found the general form of such Fourier transforms in Proposition 7.1.5 - so
that the main work remaining in this half of the proof is applying it to our particular

polynomial. We now set t = 1 in this result, so that this is still a Schwartz function
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of x and 7 only. Using the notation of this proposition, we have:
(=D)Ll + 1 —7r)! 9
[rr(X,Y) = R L1y (27w|b| )
2 YR(c)— XTI
% L, <2m <X2 Ly - ) (C))> (7.1.20)
46| |0k |

By definition of r,, we are restricting to the case ¢ = ¢ = ¢ = 0. In particular, this

means that 8, = Sy = 0: hence, by definition again, we have a@:% = 2k 2n—2k;
so that

—DHP (41— 1)
fr,,(X,Y)yd,l:@:c:O:( ) (%;mvl )Lr (270(X? +Y?)) Lija, (270]b]?)

)L 1= )] - sy (5 x2soy2sas
e Lo (omolo) X o 3 () xtoyocon
s=0

so=0 S0

and so the agy, 2,,—2r coefficients are of the form:

(=D)H=rel (41 —7)
A2k 2n—2k =

! n
2 n
I Lizi—r (270[b]?) 3 (270) ( k)

We now examine Proposition 7.1.5(b). Putting all the components together, we may
now write:

(W |5(V)) (Prirr(x,7)) = 1 (=D (141 =)

|
. 2
% (2m)H 1yl Lisir (270l0f?)
1 ™ (n)?
x exp (mir|b|?) ;07”471' ;} <k> (2k)!(2n — 2K)! (7.1.21)

We have now reduced this to arithmetic. Indeed, by two simple induction arguments,
one may prove:

kz:] (Z)Z(%)!(% N =4 (n))?; = <r> (—1)r+n
<

7.1.22
n nl ( )
for all & <mn <r. This allows us to rewrite (7.1.21) as:
P (—1)l+1*TT!(l+1—T)!L o olbl?
(W |5(V)> (Prire(x,7)) = 2% (27)F 1yl 1-r ( mu|b] )
. 2 r r4+n T
X exp (mﬂb| ) > (-1) ( > (7.1.23)
n=0 n

We may check that the last term of (7.1.23) may be expressed as:

" 1 ifr=0
—1 r+n r —
;::0( ) (TL) { 0 ifr>0.
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which gives us immediately that the restriction 7, of the Schwartz function will be

trivial for all » > 0.

We may now focus on the case » = 0. In this case, there is trivially only one choice
of {a, ¢/, B, '} giving r(a, f) = r(«/, ) = 0 - namely, when all the indices equal
2. So, putting (7.1.23) into the full form of r,, we have shown:

re (SOl,l,o,o ® &N & @ Ty (Ué ® (05)1»
_ 1 (=)™ +)
20 (2m)Hly!

N
= Soll}:[l (bwﬁa T)?

!Ll+1 (20[b]?) exp (mir|b]*) @ (= Q) A (—r) @ m (vh ® (v3)")

and that
Ty [Sﬂl,l,m ® Ear N é: ® Ty (yé ® QE/)} =0

for all choices of «, o/, 8, B such that r(c, 3) = r(¢/, f') = r > 0. This completes
the proof of part ().

We now move on to part (ii), the case of r # r’; this will largely follow the same
structure as the proof of part (7). We start by finding the structure of the polynomials
gr(x) and f,,/(x) as before. Fix an integer ¢ > 1, and another integer k£ > 0, and

we again work with the operators D, and D, from Definition ??. We claim the

following;:
1 k 7~ \4 q' k I 2\J
S3ri Da o (Do 0Da) (00) = m)qzaquJ,k (272l?)” 0 (7.1.24)
=0
and
1 —=& =\ ¢ o\ J
WDQ o (DaoDa) (po) = (2W)qza ZF%M (27r]za| ) ©o (7.1.25)
7=0

where the coefficients I ; , are defined by I'y ;o = 4, and:

k i j
[k . (—=1)7*9 (q+ k
Lyin= 1) . w +1)=—"|" . 7.1.26
o= X0 (w0 = S (17 (7.026)
We shall refer to the I'y ; » as generalised Laurent coefficients, because of their coming
from the action of the operator D or D." on a Laurent polynomial. Once (7.1.24)
is proven, we may see that the proof of (7.1.25) will be identical, so we shall only
do the first.

We know from the above-cited result (7.1.18) that this holds when k = 0; we shall
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prove (7.1.24) by induction on k. One may easily calculate that

10 “ - '
(ziz > o (27]2a?) (900)) = — 24+ [Z Tqah (2w|za|2)1 #0

707, o =

— 281 ri:l(i + Dl 1k (27T|Za|2)j] ©o
=0

so that

10 (535 P (o) () = 55 (Tt 4 Do) (215
We may hence write (assuming nothing here about the form of ~, ;)

‘ k ] k 7 k i+1 )
Fq,j,k - (] + 1)Fq,j+1,k = Z(_l)z<i>7q,j+i H J +l Z ( >7qj+1+z H(J + l)

=0 =1 1=0 =1

:lgjol(—l)ivq,ﬁilﬁlwﬂ l( )+< : ﬂ

- Z (kfl)vq,jﬂ-f[(j )

=1

=Ly jk+1;

this completes the proof of the equality in (7.1.24). To prove (7.1.26) (the specific

form of the generalised Laurent coefficients) we use the form for v, ; given in (7.1.22).

We hence find:
g

=0 1 J+1 j—l—z -1

.j i X; ( ) (; ! Z) (7.1.27)

One may proof with an inductive argument that

()L = ()

(it may be proven by induction on k again); hence, inserting this into (7.1.27)

completes the proof of this identity.

So, we are now ready to find the coefficients of the Fourier transform at the origin.
Because of the symmetry in (7.1.24) and (7.1.25), we shall focus on the case of r > 1/,

as the proof for ' > r will be identical. Following the above notation, we write
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r =q+ k and r’ = ¢ for some k > 0, and so have

Q+1—q—k)
glI+k7q(X) = (27T)l+17k

q . l+1—qg—k
A3 Tyn (27T|21|2)j} [ Z Trir—gongi (27]22)) ]

7=0 7'=0
(7.1.28)
Using the definition of g, (X, Y) from (7.1.8), we wish to Fourier transform ¢, 441 4(x, 7).
So, writing (7.1.28) in terms of the Witt basis, we have

forka(X,Y) = v ggr1q <\/_(X +iY) + L , Vb, Vo(X +1Y) — \2/5_:>

g(l+1—q— k) I4+1—q—Fk
vl=k(27)iH1-k Z Pryig- k31k<27rv]b| ) (X +iY)F x

j'=0

q 2 . J
> Dyjw (270 [ X2+ Y2+ o _ YR() - XT( . (7.1.29)
§=0 4|5k|2 |5k’

For any integers a and 3, we use the notation of Proposition 7.1.5 and let a, g be
the coefficient of X*Y*? in f,14,(X,Y). Firstly, by examination of the above, it is
easy to see that for n > ¢+ k/2, agmon—am = 0 for all m - so in particular, this is a
finite degree polynomial. Secondly, if £ is odd, then this will imply the total weight
(i.e. a+ ) of each term is odd, as the only monomials present in the expansion will
be of the form X?mY**+2=2m for ) < j < ¢. Hence, we may say immediately that

for k odd, the Fourier transform of ¢;; 4414 - evaluated at ¢ = ¢ = 0 - is triviall

Again, by definition of the map 7, on S(V)¥M  we wish to restrict the Fourier
transform to the positive-definite space Wy; by exactly the same logic as in our proof
of part (7), this means we can immediately (before the Fourier transform) take ¢ = 0.
We write

QU+ 1—q—2k) o T
Cq,Qk(b> = Ul_2k(27r)l+1—2k b Z 1—\lJrl q—2k,j’ 2k (277"U|b’ )

j'=0

which is a function of b, but we may treat as a constant as we are only interested in

the behaviour related to the X, Y variables. We may hence write:

fq+2kz,q(X7 Y) ’c:[): quk(b) [i <2T‘k> XT(iY)2k_T] . [Zq: Fq7j72k (271"0(X2 + Y2))j

r=0 7=0

— Cyonh) [i’“: (%) v (Z.Yyk_r] , [i I o (270) XJ: @ ey 22

r=0 r j=0 s=0

q+k 2n ok ok
q 2k Z Z q,n—k,2k 271"[}) —k Z ( > Z’Qk)—’l’ ( ) me2n—m'
n=k m=0 r,5>0 T S
r+2s=m

(7.1.30)



7.1. Fourier Transforms of Laguerre Polynomials

125

We notice that the sum in (7.1.30) splits into either terms XY with a and b of the

same parity. As we only care about the terms with both even, we discard the odd
parts, replace m with 2m and hence write

gtk n

farok.q( X, Y)EvEN = Cyok(b) Z Z [Fq,nk,zk (QWU)n_k

n=k m=0

<3 (o) ()

r4+s=m

X2my2n72m

From this we may extract:

50 \27
r4+s=m

tam.on—am = Caak(D)gm_rax 2m0)" % 3 <2k>(—1)kr<n_k>, (7.1.31)

and so combining (7.1.31) with the results of Proposition 7.1.5, we may write:

|5k| . 2 1 \* fany Fq,n—k,2k
(re Isov)) (Progezng) = 5 P (wiT|b[?) Cyak(b) ( ) >

2mv —. 4nn!
n—=

x ;::o (;)(Qm)!(Zn—Qm)! ) <§’;>(—1)k—r<”;k> (7.1.32)

r,s>0
r+s=m

We now claim that for all k, the internal sum over m in (7.1.32), given by

éo (;;) (2m)!(2n —2m)! > @ﬁ) (—1)F (n B k) (7.1.33)

r,s>0 8
r+s=m

is trivial for all n and k& < n; assuming this is true, it is clear that the restriction of

all the ¢ 449k, to the boundary complex is trivial for all relevant choices.

We group the terms in this sum by m —r = N > 0 and hence define:

k

Q(n,k,N) = ;)(—W@i) (2r +2N)!(2n — 2r — 2N)! (T fN>

so that (7.1.33) is given by (—1)* =% Q(n, k, N)(”X,k) We claim that this sum is

0 for all positive £ < n. This may be shown by induction on k, but a more direct
proof (shown in full for e.g. £ = 1) gives:

;i)(";f 1) K;) (2N)(2n — 2N)! — (NZ 1) (2N +2)!(2n — 2N — 2)!]

1 (n—1\n!(2N)!(2n — 2N — 2)!
:2( N > (N+Dln—N)
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x [(N+1)(2n — 2N)(2n — 2N — 1) — (n — N)(2N + 1)(2N + 2)]

1 (n—1\n!(2N)!(2n — 2N — 2)!
( N ) (N +1)!(n— N)!

2(N + 1)(n — N)(2n — AN — 2)

RS (”]; 1>2(2N)!(2n — 2N — 2)I(2n — 4N — 2). (7.1.34)

Under the substitution N’ =n — 1 — N, this sum is given by

n—1 _1 2
Z ( nl N’) (2n — 2 —2N)I(2N")(—=2n + 4N’ + 2)
N—=o \"" — 1 —

which is easily seen to be the negative of the sum in (7.1.34); hence this sum is

trivial.

More generally, we see that we may write:

r=0

Q(n,k, N) = (n}; k:) (2N)!(2n — 2N — 2k)! {Xk:(_l)r @f)

T k—r
x [T2N +2i = 1) [[(2n — 2N — 25 + 1)
j=1

i=1

and so one may see that the form contained in the brackets is anti-symmetric with

respect to the substitution N — n — k — N; this completes the proof. O

We will now look at an analogy of the work done in [FM11, §6]; namely, seeing
the image of the restriction ry(¢;;) as being in the image of a map from "pure'
vector-valued forms. This will follow the constructions in [FM13]; in the above-cited
work, there is a vast and very complex theory of restriction constructed, which we

have recreated a very small part of in Theorem 7.1.7.

Definition 7.1.8. Let [ > 0 be a non-negative integer, and [¢] a cusp class of X.
Then we define the complex of pure Schwartz forms at the associated boundary

component as

Kp Kp

[S(Wg) ® Tl+1,l+1<W£)} C [S(Wz) Q Tl+1,l+1(v)}

The associated map at the boundary is given by

Kp

7 [SW) @ T W] ™" = [S(We) @ Abn; & TH (W)™

acting as the identity on S(W;) and mapping the first term in each power of the

vector product into the dual forms on ny:

Tg[f@(wl®w2®...®wl+1)®(u71*®u72*®...®wl~+1*)]
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=f@(w W +il'd)" A@h @ —ili)
R (W ®...Qw) ® (W' ® ... wi").

So, using this map, we may immediately write down a pre-image for the restricted

Schwartz form gole,gp’“’) , under the map 7.

Proposition 7.1.9. 7, induces a map of complexes

Kp

Ty [S(Wg) Q Tl-l—l,l—&—l(Wé)} _> [S(Wg) Q /\1’an ® TU(W()} Kp :

namely, it maps closed forms to closed forms and preserves the invariance under Kp.
It is invariant under restriction of T"*1 (V) to the symmetric powers STHHL(V)
and hence to the harmonic vectors H'™HH(V). We may hence write down a derived

map on cohomology:

7 HO (Ng,Hl“»l“(V)) L H? (Ng,Hlvl(V)>
Further, ¢;; has a pre-image under this map, which we may write as

(1) + 1)) . o
PFoar(®) = g L @rvllal) e (rirllal) @ me (1 © (03))

Proof. The vast majority of this - namely, everything other than the statement
about the pre-image - may be found in [FM13, §6]. The pre-image statement follows
immediately from the definition of the forms €2, and €. O

We note that here we are really using a very specialised case of the work done therein
- namely, that this is a statement about generalised theta liftings with coefficients in

a vector bundle coming from a general representation of SO(p, q).

Our next theorem will hence give us the restriction of the theta series 0, 4 (p, 2, 7).
What we shall prove is that, for each boundary component ¢, : e(FP;) — YBS, the
natural restriction map ¢; on the level of differential forms on X will act - using
the isomorphism 7 between the complexes of Lie algebra dual forms and differential

forms - via the map r,.

Theorem 7.1.10. Fiz a single cusp class [{], representing the associated Borel-Serre
boundary component e(Py) defined in Corollary 2.3.6; let vy : e(FPy) — X% be the

natural inclusion map, with pullback ¢} .

The complex of differential forms at this cusp is given by

Ny

[S(Wy) @ A" @ H”(V)]KP = [S(Wy) @ Q° (No) @ HY (V)]



128 Chapter 7. Restriction to Boundary Components

where the isomorphism m, is given, as with the global complexes, by evaluation at the

basepoint s = r = 0.
Under this isomorphism we may write the boundary form w?fl’e(w, z,T) as:

(=D"*+1)!
2(2mv)HHt

SOZL/(ZE’ Z, 7_) =

and the theta series 07 3(p, z,T) extends as a differential form to YBS; on each
boundary component e(Py), it restricts to a convergent differential form with coeffi-

cients in HY(V):

* H, Ll H,L
b (Oeu(p)) = Ow,nc (sz,z ) = Z P (x,2,7).
zeW,NL

Proof. We write the lattice L in the Witt basis; keeping our assumption that L is
even and integral, without loss of generality - namely, by rescaling the inner product

and the basis - we may assume that it can be written as
L= Oké D b’wg D Cgl (7135)

for N(b), N(c) € Z. We wish to perform Poisson summation over the a variable;

hence, we need a dual sublattice. Under the real inner product given by
(z1 + wVd, Y + 3/2\/8) = T1Y1 + T2Y2),

the dual lattice of oy is given by

, 0, ifd=2,3mod4
Uk‘,R =

20, if d =1 mod 4.

For our choice of L as in (7.1.35), one may easily calculate that the dual lattice is
given by
L/ = 5716 D (Dka)*lwg @D Okgl.

So, for some arbitrary coset £, we write L = L + h for h = hyl + hy,wp + het'.

We know - from Theorem 6.4.1 - that the sum over x € £ in the theta series defines
a convergent differential form on X. So, by a standard argument with Poisson

summation, we may Poisson sum over the a = X + ¢Y variables and write:

eﬁH 9072 7' Z Z €2m(¢17€(h£)+¢21(h0)Spl,l,r(/-\r(a’,ﬂ (¢1;¢2;b ¢z 7')

a,o’ (¢17¢2)€0k R
55 b,c

® B A S ® Ty (gz (QE ®QE/)) ) (7.1.36)

L1 2mo(z, @) ™™™ @ ds A ds @ 7y (”(37 r) [Ué ® (U;)ZD ;
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In order to find the restriction to the boundary component, as in the case of the
individual Schwartz forms in Theorem 7.1.7, we wish to insert the ¢ variable in all
necessary positions and then take ¢ — co. We use Proposition 7.1.5(b) to recall the

form of ¢ for all necessary parameters: namely, as a function of ¢, it is of the form:

2 2 .
h(t,t Vexp <_T:;;TQ‘ 2 - ﬂ (51 522)> (7.1.37)

for some finite degree complex polynomial h in two variables. In particular, this
shows the power of the Poisson summation employed here - it removes all the terms
of the form 1/t in the exponential, and hence in particular gives us a form that is

rapidly decreasing in ¢.

Moreover, this immediately limits this theta series enormously! Because the ex-
ponential term in (7.1.37) will dominate all polynomials h(t,¢~') whenever |c|? or
512 + 522 # 0 <= ¢, ¢1 or o # 0, we may now immediately say that under
the image of the restriction map ¢j, all terms with these variables not 0 will van-
ish identically. In particular, we see that 6. 4/(¢, 2z, T) restricts to a smooth and

convergent differential form on X"

More precisely, therefore, we may say how the restriction map acts on the theta
series: we are restricting to W, C V! What I hope to have convinced the reader
of here is that the reason the map r, was introduced was precisely for this task
of finding the boundary behaviour of this theta series - namely, by using Poisson
summation we have found that we need to restrict to the central component W,

and then take the limit as ¢ — co. Writing this in full, we may see:

(95 n(p,2,7) Z Z e2mi(1R(he)+¢2L(he))
a,o (¢1,92)€0% 5
ﬁﬁl b,c
X (pl7l7r( 76) (¢17 ¢27 b C z T) ® ol /\ —x ® ’7TH (gz (Uﬁ ® Uﬁ/))

= limtﬁoo Z Z gphl’r@a/’ﬁ/)(o, b, O, Z, 7') & Ea/ A\ 5704 & Ty (gz (Qé ® Qg))
a,a b

B.A
(7.1.38)

Inserting the t variable into the Fourier transforms, we see that we have an extra
power of t? at the front coming from the 1/¢? in the exponential of . Using the
orthogonal presentation of the nilpotent Lie algebra n, in (7.1.17), we may calculate,

because p acts on £ via the adjoint representation, that & and &, evaluate in the t
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variable as

Hence, evaluated in this variable, & A & acts as (Qy A ©y)/t?, and so this cancels
with the ¢ from the Fourier transform. We finally note that a(t) acts trivially on

the vector component vh @ (v3)!; hence, we may write:

b Ocw(p, 2,7)) = m [ > repli(x, T)] =T [ > e (x, 7)} :

WenL WeNL

and so applying 7, to the Lie algebra forms, the proof is complete. O]

We now give a small amount of context into what we have achieved. We have shown
that the theta series 0,3 (¢, 2, 7) extends to a convergent differential form on the
Borel-Serre compactification YBS, and that on each of the boundary components
e(FPy) of YBS, it restricts to a one-dimensional positive-definite theta series. Moreover,
because of the results of Proposition 7.1.9, we see immediately that each of these
boundary forms is Ny-invariant; hence, to use the language of special cohomology
classes, the restricted form is almost "special” - namely, on each boundary component
e(Py) it is an Ny-invariant form. We will see more on such forms in the next chapter,

when duality is discussed.

7.2 Construction of Compactly-Supported Theta

Series with Coefficients

What we wish to do in this section is to situate the work of §7.1 in the world of
modular forms. The principle idea contained herein - namely, that we may use the
cone cohomology group to extend the theta series - comes from the work of Funke
and Millson again; we shall use much of the theoretical work on the related cochain

complex from [FM11, Appendix A].

In particular, our aim in the remainder of this chapter is to use the results of Theorem
§7.1.10 to construct a compactly supported differential form on X. In order to do
this, we will need to construct a primitive for gpﬁl’e(x) in the boundary complex. This
will allow us to use the structure of the cone cohomology on the compact manifold
X7 using the exactness at the boundary, we shall be able to use the isomorphism
between the cone cohomology and the compactly supported cohomology on X to
find a compactly supported class; hence, we shall be able to integrate this class

against the non-compact cohomology on X.
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We start with some introductory theory.

Definition 7.2.1. Let A be a smooth, finite-dimensional manifold (possibly with
boundary) and B a submanifold, with inclusion ip : B < A, and projection g :
A — B. Let E — A be a flat vector bundle over A as in §3.2; we write the -
dimensional differential forms on a space C' with coefficients in F as Q'(C, F). Then

we define the mapping cone complex as:

Cl (A B E)={[w,n], we(AE),neQ B, E)}

cone

where the differential is given by:
dw, n] = [dw, izw — dn). (7.2.1)

One may check that this differential satisfies the necessary condition d? = 0, and
so the pair of the complex and this differential defines a cochain complex, with
A B, E).

cohomology groups denoted HY__.(
In particular, by reading off the definition, we may see immediately what a cocycle

in this complex is: it is a pair [w,n] such that

(i) w is closed.
(i) ipw = dn.

Lemma 7.2.2. Let X be the Borel-Serre compactification of the manifold X, and
E — X a flat vector bundle on X that extends to the compactification. Then for all
i €7,

o, (X" 0x" E)~ H(X,E),

cone

where H(X) denotes the cohomology on X of degree i with compact supports, defined
in eg [BT95, §1].

Proof. The proof is identical to that found in [FM14, Lemma Appendix A]: indeed,
the manifold considered there (corresponding to the case G = SO(2,1)) has the
same limiting behaviour, as both have the group A C P isomorphic to R, , with the
boundary components given by compactifying ¢t = oo. Hence, the limiting behaviour

is identical, so the proof will work identically.

The isomorphism is derived from a quasi-isomorphism on cochain complexes. Writing
Z for cochain complexes, we let k : Z*(X, E) — Z*(X"",0X" ", E) be the inclusion

of the complex of compactly supported cochains into the complex of relative cochains
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on the Borel-Serre compactification; from [Hat09, Theorem 3.43], we know this to

be a quasi-isomorphism. Defining the map j:

i 29X, 0X" By = z2 (X"° 0X"° B), j(z) =20

cone

then this is a cochain map - hence well-defined - and in [FM11, Lemma A.3] it
is proven that j is also a quasi-isomorphism. Hence, j o k is our required quasi-
isomorphism between Z*(X, E) and Z8, (X"°,0X"° E).

cone

In the reverse direction, there is a natural construction considered: namely, for a
(YBS, 8?35, E), one may show that there exists a closed and

compactly supported class £ and a form (3, vanishing on (9YBS, such that

class [w,n] € Z2

cone

w—d(rp (f(n))) =& +dp,
where f is some indicator function on A, non-zero only near co. The map

ze (X" 0X"° B) - 7°(X,E)

cone

is hence given by [w,n] — &, and in [FM11, Lemma A.8] they prove that this is a

quasi-isomorphism. O

The motivation for introducing the above machinery should now be clear: once
we have found a primitive gbﬁl’f for gp?#, then the associated theta series will be
able to take the place of 7, giving us a cohomology class! Further, using all the
maps in the proof of Lemma 7.2.2, we may use this class to write out what the
associated compactly supported class on X will be, allowing us to integrate against

the non-compact cohomology on X.

We now give a heuristic for the following proof. Though the case with coefficients
is more complicated, because coefficients will be paired off when integrated against
homology, the rubric of our argument will still apply. So, we need to look at how
the differential acts in the complex [S(W;) ® QY (N,)]Me.

Luckily, it turns out we have done almost all the necessary work here! Firstly, we
note that N, acts trivially on S(W,), so we only need to consider d acting on the
differential form. We only have the scalar differential ds here (as our representation
is trivial); in Lemma 2.4.6, we have already found a primitive for €, A Q,: indeed,

the results of this lemma are

d <_46k/i> = Qg /\m.
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We may check that in the case [ = 0, the restricted Schwartz form is

Piinr (x,7) = T Li(2mu(x, %)) Y © 0 A T,
so that in the complex [S(W;) ® n}]XP with trivial coefficients, a primitive is given
by

Ok
167v
So, this immediately gives us a starting point for finding a generic primitive. Here,

Shenr(x,7) = —2 Ly (2m0(x, %)) e™ 0% @ g,

the derivative will act as a sum of the scalar differential ds and the vector-valued
differential dy, which will be summed over our chosen basis of n,; we should also
stress that the choice of primitive here will not be unique, as we will be able to add

highest /lowest-weight vectors to the components of Q, and Q.

Proposition 7.2.3. There is a primitive for gp?fl’e in the boundary complex
o x Ll Kp
[S(Wy) @ A*n” @ 1 (V)]

given by

(D)D)

! iT (X,
2(2mv)it1 Lisa (2mo(a, @) ™7

5 _
X [J/ﬁ & WH(U()) + Q@ Ty (UHOL> + Q@ Ty (UAHOL> (722)

where vy is as usual our weight 0 vector, and vyor, Vagor are given by

16 I

* o x\l—1 * * *\[—1
VHOL = _77)2 & ([) (Uz) = _EUIQ ® (v — Ug) (U2) )
%) -1
VAHOL = —7’“5'@12_1 ® (vg)l =7 (v1 — v3) vé_l ® (vg)l .

Proof. We start by noting that the action of the scalar differential ds gives the
appropriate form; indeed, we have already calculated above that the action of dg
on the k component gives cp;:é’e. By our calculations of the homology in Proposition
2.5.3, we know that in the cohomology with rational coefficients, the forms €2, and
Q, will map to closed 1-forms on e(F;), so that ds acts trivially on them. Hence, we

have shown:
H L H,L
ds (4251,1 (x, 7')) = P

Secondly, one may check that when [ = 0, this form is identical to the one above, and
in this case, dy = 0 anyway. Hence, we may take this case as proven, and assume
herein that [ > 1.

We now claim that dy acts trivially on (b?fl’g. We know from the definition of the

action of the differential that we shall act by the representation p on HY(V); we
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write the basis of n, as
ve =m(1,0) —im(:,0), g =m(1,0)+im(i,0), p,=m(0,1).

For notational simplicity, we may ignore the splitting of dy into dy = di; + dy
(namely, we may incorporate the action on S" (V') into one representation p) so that

the action of dy is
dy =(1®AQ)®@pm) + (18 A (%) @p (@) + (1@ A (k) @ p ().

Acting with this on (7.2.2) and collecting terms, we may write:

(_1 l+1(l+1)' miT(X,X
dy (gzﬁe) = 2227w)l+1 Ly (2mu(x, %)) ™%

b2y

e 00 (plpomon) + E o)

Ok

+re A ® <P(M€)(UAHOL) + 4P(V€)(U0)>

+ Qe A @ (p(ve)(vanor) — p(T) (vaor)) ] (7.2.3)

So, we now check that this vector is identically 0. It is an easy calculation that
p(ve) (vo) = =2y @ £ (v3) ™, p(7) (wo) = —20v5 " @ (v3)
and, writing p, with respect to the Witt basis as in Definition 2.4.4, we have
plu) (b () @3)' ) = —h@ £ @3 o) (P © ()) =~k @ ()’

so our choices of Vo, vamor ensure that the x; A Q, k¢ A Qp terms are trivial.

Using the weight operators from §3.1, we may check that
Vp = (Ag—i)\4)+()\7—i)\8), Uy = ()\3 +i)\4)+()\7+i)\8), e = ‘5k|()\1+>\2+2)\6),

so, switching to the orthogonal basis, we may use our calculations in the weight
bases from §3.1 to check that that

p (o) ((vn = va)uh ' @ (13)') = ((As — iha) + (A7 — iXs)) (v — v @ (23)")
=g — l(v; — ’Ug)Ué_l — v+ (v — U3)'Ul2_1 ® vs (vg)l_l

= I(v; — v3)ob ™t @ (v —ob) ()" (7.2.4)
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and

p @) (vh @ (o] —05) (13)' ) = (A + i) + (A +1iXs)) vh @ (0] — v3) (v3)')
= —lvvht @ (vf —v) () + vy + lugh ™ @ (v — v3) (v3) ! =
= l(vy —v)ob ' @ (v] —v3) (v3) (7.2.5)

we see that (7.2.5) equals (7.2.4), and so the proof is complete. O

So, we are ready now to state our main theorem. This will use much the same
arguments as were contained in §7.1, but the structure of the statement will be
very similar to that contained in §6.3. Namely, we will show that the natural cone
form that we wish to construct is holomorphic as a function of 7, using the lowering
operator. To do this, we will show that the lowering operator acts on the cone class
to give an exact form, and in particular that the auxiliary forms that we used in
Theorem 6.3.8 restrict to the boundary complex to give an appropriate auxiliary

form here.

Theorem 7.2.4. Let L be an even, integral lattice of level M as in our previous
theorems, with L some coset of L fized by I'. For each cusp class [¢] of I'\Iso(V), we
let HWng(gb;rfl’Z) be the differential form on ox"? defined by

Owine (61757) = X o' (@ 57)

zeW,NL

on the component e(Py) C 8?35, and identically 0 on all other components.

Then the class

[(957{ ©, T ZGWgﬁﬁ (¢lz ) )}

defines a cocycle in the cone cochain complex, and hence defines a cohomology class:

et ) e (7)€ e (X707 D).

(€]

e~

This class is non-trivial in cohomology whenever [0 ()] is non-trivial in H*(X, H-H(V)),
and is a holomorphic modular form in 7 of weight 2l + 3 and level M. It is cuspidal
forl>1.

Proof. From the results of Proposition 7.2.3, Theorem 7.1.10 and Theorem 6.4.1, we

may write in the cone complex:

d | 0c3(0), > Owinc (¢ﬁ£>] = ldeﬁ,ﬂ(@a VOen(p) —d (Z Ow,nc (dﬁf))}
4 (41
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0, Z Ow,nc (901{175) —d (Z Owinc (gbl?fl’f))]
[

0
=10,0]

and so it is indeed a cocycle. Because of the action of d on the first component of
the cone complex, we see immediately that if 6, 4,(y) is not exact then the above

class cannot be either.

Now we may show holomorphy. For this argument, we require a modification of our
earlier restriction argument: indeed, we shall look at what form holomorphy should
take, and then restrict the appropriate parts. Acting with the lowering operator on

this pair, and using the results of Theorem 6.3.8, we find:

) 10c3(0), > Owinc (d) le)]

(4]

L)0ca(p ZW J0w,ne (617" )]
= {d@gﬂ (@D” ; i A+ A]l)) , Z L«J(L)@W(gmﬁ (qﬁﬁl,ﬁ)]

[f)

? 1<
:d[eﬁg.[( 5 ]l‘l‘Ajl)), ]
7=1

1 —\)
_ 7 - . I -
[dezy (@/)u 2Z(Al+A3l)) L0 (@/)u

N | —

i=1

zl: (A + Ajl))

i=1

Of course, the question mark equality is not shown - hence, we want to show the

following at each cusp []:

Llr (%,z - ;El: (Aj,l + Aﬂ)) =0 (W(L) <¢?[l£)) '
j=1

We now recall these objects; what we shall see is that a lot of our earlier work on
the restriction map r, will carry over identically. In (6.3.15), we defined ¢ﬁ in the
complex [F @ p* @ TH (V)X as follows:

2042

o — 1 <2\/_7T> a;ﬁ;ﬂ/ ( %2252y ® ot @ Vg ® Uy + 25202525 ® & ® U5 ® yg) ;
(7.2.6)

where o is summed over {1,2} and 3, 8’ € {1,2}'. To distinguish the two terms

involved here, we now define ¢/} to be the left hand side of (7.2.6) (with the &, term)

and "7 to be the right hand side (with the &, term). We use the intertwiner of

Lemma 5.3.2 to write the above in the Schrodinger model:

o\B,6
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We now recall the restriction arguments in Theorem 7.1.7. We may see that when

we let ¢ = 0, the scalar term in /7% (x) will be of the form
. (p; 0 DL o 131’"’192’“7"’(900)) (a,b,0) (7.2.7)

Using the rubric of the proof of Theorem 7.1.7 - namely, that everything of the form
of a modified Laguerre polynomial in a would Fourier transform trivially - we see
that there is exactly one term here that has non-trivial Fourier transform: when

r =0 and ' = 1, we may write (7.2.7) as

Hol _ A S _ - ! 2

fi61 = —a (D oDy Dy (#0)) (a,b,0) = aa(—1) G (27(b%) 0.
Inserting 7 and ¢ as usual, we hence may use Proposition 7.1.5 again to find the
restriction of the Fourier transform to the W, component. With » =0 and ' = 1,
we must have all § = 2 and exactly one of , 8’ =1 (with all the others = 2); there
are plainly [ choices of which of the f; to equal 1 in the latter case. In Lemma 7.1.6,

we found the restriction of the Lie algebra dual forms, which we will now apply here.

Using Poisson summation identically to that in the proof of Theorem 7.1.10, we may

write

L («95 (1/1501)) =y (limt_m< > —CU+1) (—1)! (L+ 1)!Lz (27w|b|2) exp <m'7'|b|2>

beWane & (2mv)!

® [_25:2/% ® a(t) (vo) — iQf ®a(t) (Ul? ® (v1) (U;)l_l)] ))

By the same logic as in the proof of Theorem 7.1.10, this limit will be exactly the
terms without powers of ¢ in. We may easily calculate how a(t) acts on the symmetric

powers: for example

o) (5@ () (5)' ") = - (v @ (v — 05 (03)" ) + O)

and similarly for other terms. Hence, writing this out, we have hence shown:

L (93 ( ﬂ"l» =Y (_(l 1 (—1)l<l + 1)!Ll (27w|b|2) exp (m’7‘|b|2)

Wt 8w (2mv)!

5 l -
® [—;dr@w@ —ds @ vy @ o (o] — v3) (1) ])

We may apply exactly the same argument to the anti-holomorphic part wl“jl”tiH o to
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find the same type of restriction:

Ly (95 ( lAjlmHOl» = (l;rl(—l)l((ler;))l!Lz (27rv|b|2) exp (7Ti7|b|2)

WenL

1) [
®[;ﬂr®vo—ds®20&—4MW§1®<@Y])

We now consider the A;; and A;;. Using Definition 6.3.6(iii), we may easily write

down an explicit form in the Fock model:

N2
1 —1 —
ANyj=—|—— E 222 @€, @ Aij(v3)us @ Uy,
Sz (2\/§7T> ae{1,2} iy ®° ()2 -
Be{1,2}-1
Bge{1,2}!

NG
1 =
M= 50\ 3050 22l @ Ea @ 05 ® Aj(v3)uh.
ok 2 (2\/§7r> ae%:z} a=f=f § <8 J( 3)7§
Be{1,2}
ple{1,2y!-t
We again use the restriction arguments from Theorem 7.1.7; we may use the inter-

twiners from Lemma 5.3.2 to write these forms in [S(V) @ p* @ TH(V)]¥:

1 o) e *
AT (x) = Y > DoDsDy (po) ® Ea ® Aj(vs)us ® v,
ae{1,2}
Be{1,2}-!
Be{1,2}!
NS —1 IR D N
A (x) = or > Daﬂgﬁg(wo) ® fa ®ug @ A; (’US)QE/.
ae{1,2}
Be{1,2}
Ble{1,23t-1

Indeed, we see that in both Afl and m‘s, we have the same number of D; and D;
terms for all indices, and so the pattern in the scalar terms will be identical as in
the ¢;;, but here we have [ rather than [ 4 1 of each. Hence, in order to find the
restriction in the S(V') term, a completely identical argument to Theorem 7.1.7 may
be employed, and we may say that for all indices with any of the a, o/, 3;, 5. # 2

the restriction of the Fourier transform will be trivial.

So, we may again project into the symmetric co-ordinates and find that the geometric

restriction of the relevant theta series is given by

. . 121+ 1) (=D + 1)! :
i (0e (M) =m(hmm(4ﬂ o e Creltes (wilbPr)

® <_tle> ® a(t) (03vl2_1 ® (”g)l) ))
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and

Iy (95 (Tﬂ)) =y (limHoo (;t (121_ D (_(;;;lvj_ 11) Li(2mv|b|*)exp (m|b[2 )

® (—tlg) @a(t) (v @ v (v3)") ))

So, by an exactly identical argument to the above, we now need to find the O(t!)

parts; this is, again, identical to the above. We may combine all of these calculations

to give us that:

Ly (95 (%,z - ;; (Aj,z +Ajl>)> = (l;rl( ()27(:1; ok L (27rv]b\ )exp (m’r\b|2>

WynL

Spdr @ vo + 1ds @ vh @ (vF — %) (V) +1ds ® (v, — v3)h ' @ (v;‘)l])

(7.2.8)

We now need the action of the lowering operator. For convenience, because our work
so far was in the Schrodinger model, we shall continue in this vein. Here we know

that the lowering operator acts as:

0

L. = —2iv’—.
A 87

Ignoring the constants (and the other terms in the vector product), we may calculate:

0 . i 4
q—(41) mixx)Ty _ (. 4—(142) mi(x,%)7
87’ (/U € ) - 2(q (l + 1))/0 e ,
and so
. +1 9
w(L) (U_(l+1)Ll+1(27W(X7 X))GMT(&X)) = —2iv* Y (27 (%, X)) Y41, 157 (Uq (HD) gmitx, X)T)
q=0
l
=3 (27m(%, %)) it1,4(q — (1 + 1)o7 e X7,
q=0

(7.2.9)

we note that ¢ = [ 4+ 1 gives 0 in this sum, so we only need sum from 0 to [. It is
a simple calculation using (7.1.22), the explicit form of the coefficients ;41 , of the

Laguerre polynomials, that:

q q' _(l + 1)71#17

(= (T+1)Vig1q=(g— ([ +1)) (l + 1> w B
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and so we may write (7.2.9) as

w(L) (U_(l+1)Ll+1(27TU(X, X))eﬂ'ZT(X x)) (l + 1 -1 Z 27TU X X)) %7qem‘r(x,x)
q=0

—(1+ D' Ly(2mv(x,x)).

As w(L) acts only non-trivially only on S(V'), we may write:

(=D +1)!

w(L) () == (1+1) 2(27) (270)!

Li(2mv(x,x))exp (mi(x,X)T)

1) .
® [—:K4®U0+QZ®UHOL+95®UAHOL .

Inserting the forms of the vectors vgor and v por, found in Proposition 7.2.3, we
may take a factor of —1/4 out of this form, and hence see that this is equal to the

restriction of the form found above in (7.2.8).

Finally, we may say why this class in the cone cohomology is a holomorphic modular
form: indeed, we have already shown it to be a holomorphic class when taken
in cohomology. We know that the global theta series 6. 4(p,7) has a modular
transformation property with respect to the subgroup I'(M).

Using identical arguments to those of Lemma 6.3.2, we may see that (ﬁlﬂlf is also an
eigenvector of weight 2/ + 3 under the action of €, and by the theta machinery, we
may identically see that for each [¢], the boundary theta series GWZM((bel’E? 7) also

has a modular transformation law of weight 2/ + 3 with respect to the subgroup

e~

['(M). In particular, we have shown that for all C' € Hy(X, H(V)), all the terms

in the Kronecker pairing

(c.

are modular of weight 2/ + 3. Hence, as we know that this will be holomorphic, then

Oca(p,T Zewgmc ¢”, ]> /‘9£H 0, T / Ownc Cbu, )

(€]

we may conclude by linearity that this is a holomorphic modular form. O]



Chapter 8
Duality

In this final section, we look at the last outstanding work - namely, duality. We will
here be able to prove that the generating series of special cycles for [ > 0 is modular,
and in particular will give the relevant duality statement that will tell us the Fourier
coefficients of the capped theta series. This will follow the geometric arguments of
[FM14].

We will also be able to use this to interpret the work of Cogdell as a corollary of
ours, using a natural map between the Borel-Serre compactification and the toroidal
compactification used by Cogdell to find his geometric modular forms on similar

Picard modular surfaces. We shall illustrate this with an example.

8.1 Duality

We shall start with a restatement of the global duality statement of Theorem 6.1.13.
In order to do so on the manifold X, we shall define some more Schwartz forms
which homogenise the indexing used previously; this exactly follows the notation of
[FM14].

Definition 8.1.1. Fix n € Q-(. For the global Schwartz form go?fl, we let

eiin) =Y ohix 2,7).
xcLl

(x,x)=2n
We may define the same object for the local differential form ¢Z{l7£ at any cusp [(] of
X:
o) = > ' (x,27).

xeLNW,
(x,x)2n



142 Chapter 8. Duality

At each such cusp [¢], we consider some product neighbourhood of Vi of e(Py) in x7°
as in (2.3.16); we hence may define some smooth function f; : Vo — Rso which is
only a function of the ¢ co-ordinate, and satisfies f; = 1 near ¢ = co and 0 elsewhere
_ one may think of it as a smoothed step function. We let 785 : X°° — 9X"" be

the topological projection into the boundary.

We hence define the compactified Schwartz function

90173’6( 9011 Zd [f@( ) ( Hé(n)ﬂ :

In general, this notation of replacing the x variable with a norm n may be understood

in the same way as above. So, we may now state the duality result.

It is proven in [BF04, Theorems 7.1 & 7.2] in the orthogonal case, but one may see
the proof to carry over identically to the unitary setting, as in e.g. [FH19]; indeed,
we here recall the form v(x, z) defined in the proof of Theorem 6.1.13, which is

non-singular for x [ z.

Proposition 8.1.2 ([FH19]). Let n be a compactly-supported 2-form on X. Then
Jonnewatn) =ie= [ n— [ anndn) (8.1.1)

Indeed, the reader may see that when 7 is closed, the second integral on the right
hand side of (8.1.1) is trivial, which recovers the duality expressed in Theorem .
Further, an analogous form vy ;(x, z) must exist as a primitive to ¢;;(x, z) for x £ z;
by an identical argument to the geometric arguments in §6.3, we may take this in

harmonic coefficients as QZJ% (x,2) = (%, 2) @ T (x! @ (x*))).

Definition 8.1.3. We say a differential form n € H2(X"~, H(V)) is special if

(i) For each cusp [{] of X, there is a neighbourhood Vp of e(P) where 1 may be

written as a pullback of a differential form 7, on e(F).

(ii) Under the pullback of the map N, — [',\ Ny, 1, is left Nj-invariant.

These forms are closed under the action of the normal differential d from the full
cochain complex, and hence give cohomology groups Hép(YBS, E). We have the

following important result on special forms:

Lemma 8.1.4 ([GHMO94|). For any coefficient system E on YBS, the special forms
on X°° with coefficients in & compute the full cohomology group:

Hy (X7 B) ~ H'(X™ E).
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Proposition 8.1.5. Let € € W, be a vector of positive length in the central Witt
component, and let y € {x | L} be some vector parameterising the boundary fibres
of Cy, using the notation of Lemma 4.2.4. Then for n any closed special 2-form on
YBS, 2-forms n on e(P;), the boundary integrals are 0:

[ n=0=[, nnodio) (8.1.2)
y el

Proof. We first note that the second equality in (8.1.2) is an immediate consequence
of the definition of ¢§§f\)§) and of the structure of the 2nd cohomology group of e(F%).
Indeed, using Proposition 2.5.3, we see that over C, the de Rham cohomology group
HZp(e(P;)) - which is naturally isomorphic to H?*(e(P),C) - is spanned over C by
the forms dw A dr and dw A dr. Moreover, as we assume (using Lemma 8.1.4, this
is without any loss of generality) that 7 is special, we know it may be written as a

sum of representatives of the cohomology on e(FP;) at each cusp.

So, as we know that ¢§§§§) is proportional to the differential form dr, the wedge

product with this and n will be identically 0, and so this integral is 0.

We now treat the integral over the 2-chain Af,; without loss of generality, it is clear
we may assume that y satisfies s(y) = 0, and hence that y = x. We recall this chain

from Definition 4.2.5 as (proportional to) the difference of the 2-chains

1
Af( = W (To,z - Xo,e) .

We shall prove the integral to be trivial for the form dw A dr; the reader may see
that the proof for dw A dr will be identical.

Indeed, we claim that the integral over the triangular chain 7p, is equal to the
integral over xo,. We have defined the former to be the 2-chain bounding the

triangular 1-chain
n(bra, —2b(\1, Aa)e) — n(bAg, 0) — (0, —=2b(A1, Aa)y).

So, we now change variables in the r term: namely, we swap " = 2r, so that we

write TBJ,L; as the cycle bounding
n(bAa, —b(A1, XA2)e) — n(bAg, 0) — n(0, —=b( A1, Aa)).
Changing variables in the differential form as well, we have hence shown

dondr=2[__ dwAdr
To,e To,e

However, we may now recognise this as a pair of chains which add together to give

Xo,e- Indeed, taking the second copy of m, we may see this as homotopic to the
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complementary chain TOV/ bounding the 1-cycle given by
n(b)\g, O) —n (0, l~)<>\1, )\2)) —nNn (zAQ, —2@()\1, )\2)) .

We hence see that the two 2-chains m and TE/ are the two triangular chains adding

together to give xo ¢, and so we have shown

77:/~77+ N,ﬁ:/ 7,
To,e To,e To,e X0,¢

and so the integral of any closed n over Ay, will be 0. O

Theorem 8.1.6. Let n € Q~g. The compactified Schwartz function @5 ,,;(n) is an

Poincaré dual for Ct; namely, for n a closed 2-form on X7

[ oA ieam) =ie [ (8.1.3)
X ce

Proof. At each cusp [¢], we let o7 = o7y be a smooth function on X which is 1 for
t <T and 0 for t > T+ 1; in particular, this means we may write the left hand side
of (8.1.3) as

Jo A i) =timeoe [ (orn) A ().
For each T', orn is a compactly supported form on X, so we may apply Theorem

8.1.2: splitting ¢ ,,(n) into its global and cuspidal parts, we may write the left
hand side of (8.1.3) as

ie” 2™ /Cn n—limr_ /X d (orn) A(n) — %limTﬁoo /X ornAd [fg (WBS) ( %M(n))} .
(8.1.4)
Using the elementary equation

d(og A ag) =dag Aag + (—1)deg(a1)a1 A da,

and using Stokes’ theorem - see e.g. [BT95, Theorem 3.5] - which tells us that
Jxd {JTn A fo (ﬂ'BS)* ( %M(n)ﬂ =0 for all T, we may write (8.1.4) as

je /Cn n—limp_ o /X d (orn) A (n) + [%: 7o /X d(orm) A fe (WBS)* ( %M(n)) '

(8.1.5)
By definition of the differential on local co-ordinates, we have [orn] = o/ (t)dt A+

ordn; as we have defined or to be constant outside [T',7 + 1], and dn is assumed to
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be 0, we may hence write (8.1.5) as

e [t [, [ow)dt AnA (w - St fe (v77) %MW)H
(8.1.6)

By Lemma 8.1.4, we may without loss of any generality assume that 7 is special. As
each V is a product of e(P;) with a space that is homotopically trivial, we know
by the Kiinneth formula - see [BT95, §5, p.47] - that any special cohomology class
n will be equal to 7, on Vi; in particular, it will be independent of T', so we may

separate the differential forms in the wedge product and write (8.1.6) as

(4]

ie /n 7+ limy o /:: or(t)dt /E(Pe) A [Z e (72" (dfar(m)) = $(m)
(8.1.7)

We now claim that the form 1)(n) restricts to a form proportional to dr on each
boundary component e(F); equivalently, looking at the restriction of the Lie algebra
elements in Lemma 7.1.6, we claim that the scalar terms proportional to & and &
in ¥ (n) will restrict to 0.

By definition, the & and & scalar terms in QZKM(X) will be of the form

b b
4—1.  tc T—1.  tc
tla—ﬁ tla—ﬁ

Again, putting ¢ = 0, we see that this is an odd function in a; by our Fourier transform
calculations in Proposition 7.1.5 again, this tells us that the Fourier transform of this
scalar term will be identically 0, as the restriction map only picks up the coefficients

ok 2n—2k- Hence, this tells us that hence, this is trivially also true for 1;?{[

We recall now that we have assumed without loss of generality that n is special, and
hence retracts to a closed 2-form 7, on each e(F;). In the boundary integrals, we
may write (75%)*¢% 1, (n) = ¢% 1 (n), write f, = 1 for large enough T. Because 7 -
assumed closed - will have dr in its wedge product in local co-ordinates, the term

vanishes, and so we may split the integral in (8.1.7) and write
J oA =ie [ =3[ 0 (8.18)

We now take the pairing in the integral on the right-hand side of (8.1.8); in Propos-
ition 8.1.5 we showed that these integrals are all 0 for [ = 0, and in particular are

hence equal to the integrals over A,, for all n. Hence, all the boundary integrals will
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disappear when 7 is closed, and we may write

/Xn A @len(n) = ie‘Q’m/c n

n

Using the relationship between the compactly supported cohomology and the co-

homology of the cone complex, we now have our main theorem.

Theorem 8.1.7. Let L be an even integral lattice in V of level M, with L € L'/L

some coset. Let I' C G be some arithmetic subgroup fizing all such L. Then the class

{eﬁ £.7). Y brne <¢KM>T>} € Hypn, (X7, 0X7)

[
defines a non-cuspidal, holomorphic modular form of weight 3 and level M, whose

coefficients are given by the compactified cycles Cf:

n>0

leﬁ w,T ZQWeﬁﬁ (¢KM7 )] 755 L QX —|-Z C’C PD 27r'm7—

Proof. This is an immediate corollary of Theorem 7.2.4 and Theorem 8.1.6 for n a
closed form, as we may notice that 5 ,,(n) is the image in H2(X) of the pair in the
cone complex, under the map into the compactly supported cohomology constructed
in Lemma 7.2.2. [l

Corollary 8.1.8. Theorem 4.2.9 is true; namely, that for all | > 0, the generating

series given by

*51 o[Qx]77 + > { [zz]}

n>0

is modular of weight 21 + 3, and is a cusp form if | > 1.

Proof. This follows immediately from the proof of Proposition 8.1.5 and from The-
orem 8.1.7. Namely, given any closed 7 representing a cohomology class [n] on X,
the integral against C; will equal the integral against C,,, as the integrals against
A, will be trivial at all the cusps. As the capping cycles A, ;; are proportional to

l

the A, - namely, at each vector y they are equal to Ay ® y' ® (y*)! - we see that

this will also hold for general [, and hence modularity follows immediately. O]
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8.2 A relationship to Cogdell’s modular

generating series

In Cogdell’s paper [Cog85], the author follows the same logic as us - namely, he
recognises that on YTOR, there is a need to modify the natural cycles C,, in order
to be able to find a pairing into the space of holomorphic modular forms.

The natural starting point here is to consider the cycles C,, embedded in YTOR; we

hence may find the topological closure of these in X% for all n > 0, and denote

~1TOR

these cycles by D, — X . By the definition of the topological closure, this will

define a class (which, like the C), in X, will be generically non-trivial) in Ho (YTOR).
The divisors compactifying X to X" may be explicitly written down in this case;
using the notation of §2.3.2, these are the Uy defined in (2.3.9). At each cusp
class [¢] € I'\Iso(V), we let D, be the span of all the classes given by compactifying

divisors at [/].
. . .1 ~—TOR . .
We may view the Borel-Serre boundary as dividing X into two sections:

TOR  —TOR 6 ~=TOR
=X, UX,.

X re (8.2.1)

<TOR _ <TOR
where X, NX_,

int = 9X"% and the interior part is just isomorphic to X. Hence,
from e.g. [Cog85, p.125], we know that when t7op : X — X" is the natural
inclusion map, we have a splitting of the homology of the compactified Picard

modular surface as follows:

~TOR

HQ(X ) = (LTOR)* HQ(X) EB[@ HQ(Dg) (822)

which will be orthogonal with respect to the intersection pairing.

Proposition 8.2.1. Let D, be the topological closure of C,, — X% gs defined
above, and let D¢ be projection of D, into (tror), H2(X) in the splitting (8.2.2) -
this is exactly the compactified cycle considered by Cogdell in [Cog85]. For all n we

have the following equation in homology:

(LTOR)* [Chl = [Dy].

Proof. We largely mimic the proof given in [FM14]; as there, for simplicity, we
assume that there is a single cusp [¢] of X. By the splitting of x"or given in (8.2.1),

we can split along these submanifolds to get

wnt

D, = (D.n X)) + (DanX.)")
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We have defined D,, so that it is closed with respect to the homological boundary
operator 0 : Z; (YTOR) — Zj_l(YTOR). As in e.g. §4, we let C,, be the closure of
C, in YBS, which - using the homotopy equivalence X%~ X - we may consider
as a class in Ho(X). As we know from e.g. [BJ06, II1.15.6] that the intersection of
the interior and exterior parts of the toroidal compactification are the Borel-Serre

boundary e(P;), we have the relations

9C, = -0 (DN X0y,

So, we can write

Dn = (LTOR)* CZ + (Dn N ysztR)C

Note that the compactification of the exterior two-chain D,, N YETIOtR is identical to
the compactification of the C), in X7 namely, we attach —A,, for A, the two
chain in X" from Definition 4.2.5. So, because we have now decomposed D,, into
two orthogonal parts for the homological splitting given in (8.2.2), we know (by
definition of the direct sum operation) that this is the unique splitting - hence we

may say that
c * e < TOR\ 1€ * e
Dn = [([’TOR) Cn + (Dn N Xe:r:t ) } = (LTOR) Cn
and so we are done. O

What is to be done? We revisit the setting of Cogdell to compare the homology

therein to ours. For any positive length x € V| he creates a modular form

1 (e.¢]
vx(7) = Vol (Ci) + > (D= D)y d™ (8.2.3)
n=1
Writing (8.2.3) in terms of an intersection between a homological modular form and

the class D, we may see this as lying in the image of a pairing on homology:

ve(T) = (([PD (a(X)]+ > D;;) -D;) . (8.2.4)

n>0

Definition 8.2.2. For any lattice coset £, let Hy(X), (resp. HQ(YTOR

span of all the classes [C¢] (resp. [Dg]) for x € L.

)c) be the

Then we may interpret the modular forms ¢y in (8.2.4) as specific images of the
pairing:
—~TOR —TOR
(Ha (X77") @ Ma(D(M))) x Hy (X77F) = My(D(M)

It is clear that we may interpret (tror), as a map from Hy(X), to HQ(YTOR)L;
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hence, given our knowledge of the result from Theorem 3, we have the map

~TO

((tror), ® 1) : Hy(X) @ My(T(M)) — Hy (X' 77) @ My(D(M)). (8.2.5)
Fixing an x € L of positive length, we may interpret the results of Theorem 4.2.6 as
equivalent to the existence of a map Zpg : Ho(X) — M3(I'(M)); in particular, there

exists a pairing
() )ps  (Ha(X) @ M3(I'(M))) X Ha(X)p = Ms(I'(M)). (8.2.6)

Hence, the Cogdell result follows simply from (8.2.6) for the fixed class C< € Ho(X)y:
we apply the map from (8.2.5) in the left-hand side and (trog), in the right-hand
side of the pairing.

We have hence proven the following; it is a corollary to 4.2.6, Proposition 8.2.1 and
the main result of [Cog85].

Proposition 8.2.3. The main theorem of Cogdell regarding automorphic liftings
of special cycles on Picard modular surfaces, stated in [Cog85], is a corollary of
Theorem 4.2.6 for the special case when n is the Poincaré dual of a Borel-Serre

special cycle C%.

Example 8.2.4. We now illustrate this with an example; in particular, we will
integrate the capped theta series of weight 3 against the special cycle C,,. We will
assume we work with a single cusp [{], and the lattice L = oxf @ opw, ® 0l as in
[Cog85].

By definition of the mapping between H2, (X", 9X55) and H?(X) given in Lemma

cone

7.2.2, this is given in the Kronecker pairing by

(Cons [0L(0rc0rs T), Ow,nn(Pxcar, T)]) = /C Or(Pra, T) — /ac Ow,nr (P, 7).
i : (8.2.7)
As vy has length 1, the intersection with the cusp [¢] is given by the single fibre circle

Cv,- We may hence write the cuspidal integral as

—0 1 ,
Owrrloan ) = 5 [ (Il = 5= ) e @ dr

Cug xeW,NL v Cv2
5:C 1y
— oy %ber <||x||—> erirlil, (8.2.8)
xeW,NL 8 2mv

We may recognise this as a non-holomorphic modular form: we let R; be the raising

operator from weight 1 to weight 3 modular forms, given by

0 1
= 21— 4+ —.
i Z@T+v
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Then we may easily calculate that

miT||x 1 miT||x
R, (e [ H) — _9r <||X|| _ 2m> eI

and so we may recognise the sum in (8.2.8) as proportional to the action of R; on

the weight 1 holomorphic modular form given by the theta series:

Z 67rz7-||x||;

xeW,NL

in particular, this tells us that the integral in (8.2.8) is a non-holomorphic modular

form of weight 3, equal to the sum of a holomorphic theta series

Z HXHem'TIIXII

xeW,NL

and a non-holomorphic theta series.

We may define the weight 2 Eisenstein series F(7) by

1
Ey(1) = —= > (cr+d)>=1+24> o1(n)q".
2C<2) (c,d)€Z2\{(0,0} n=1
An elementary fact from the elementary theory of modular forms is that FEy(T)
(unlike Eor(7), k > 2) is not modular with respect to SLy(Z), and to retain this

property we define the non-holomorphic Eisenstein series given by

By(r) = By(r) —

)
o

which has the correct modular property with respect to the generators of SLy(Z).
Following the example of e.g. [FM11, Lemma 5.4], we may split the global integral
in (8.2.7) into a product of integrals:

Je

and we may calculate the first integral on the right-hand side of (8.2.9) using the

Or(pr, T) = </02 GWZLHL(SO(I)(M’T)> ( > f/’m“x”) (8.2.9)

2 xeW,NL

work of [Stalb, §4] on unitary signature (1, 1) non-holomorphic liftings as follows:

5kCe,FA
|, Burieahcar ™) = L5 Ba(),

Hence, we may conclude the following:

(i) Both the integrals on the right-hand side of (8.2.7) are modular forms of weight

3, which are explicitly not holomorphic on H.
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(ii) The non-holomorphic parts of these integrals are equal: namely, we have

I

Hence, this replicates the work of Cogdell for the cycle C,,, so that the difference

_ 0xCor
167v

Z eTriTHXH — l/ac HWZOL(¢KM77—)

OL(rn, T)]
xeW,NL 2 NonHol

2 NonHol

/CU Oc(prm,T) —/ : Ow,ne(Prm, T)

2 2

is a holomorphic modular form of weight 3.

We hence in particular see the same structure of result as in [Cog85]: namely, that
both the local and the global integrals give non-holomorphic modular forms of weight
3, with the same non-holomorphic parts - and hence in particular the Kronecker
pairing between C,, and the capped theta series gives a holomorphic modular form.
The advantage to this method over Cogdell’s is that this vanishing property is seen

as an immediate corollary of the capping procedure.

We now develop this example to give an indication of why our capped theta series
from Theorem 7.2.4 are non-trivial - namely, we shall imitate the work of Example

824 for | = 1.

Example 8.2.5. We let [ = 1, and keep the same initial assumptions on the lattice
and number of cusps as in Example 8.2.4; in particular, we assume [I' = I' is the
full stabiliser of the lattice. We shall integrate the capped theta class (emphasising

the chosen value of [)

{QL,’H (11,7),0w,nL (Qb?p T)} € HCQ (XBS> Hl’l(v)>

against the special cycle
Cv27[171] c H2 <X,H1’1(V)> ;

given the results of Theorem 7.2.4, we expect this to give us a holomorphic cusp

form of weight 5.

We may now analogise the results of [FM11, Lemma 5.4] for the case of complex
harmonic coefficients. We let W;- C V be the hyperbolic subspace of signature (1,1),

and let H ~ Dy CD be the corresponding subsymmetric space. We let oy, and

1
gofvgfw be the Kudla-Millson form for W, (spanned by v,) and W respectively, so

that we may immediately write

(W, W)T Wi 1 (X, X)T c
erh(w, T) = emimT, Cru(x,7) = <|21|2—2m})€ X7 @ & N EL
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The latter may have z € DW; inserted in the usual way, as in §6. The restriction of

the vector-valued operators VV, V" to these subspaces gives
V=D, @10 Awm)®1l, V' =D®131e A

and

WL PR

For [,1" arbitrary non-negative integers, we hence define the vector-valued forms in

the reduced subspaces as follows:

= (O o (@) (). A = (7)o (9) (). 2

Hence, using exactly the same principles as in the discussion preceding [FMI11,
Lemma 5.4], we see that for x € Wi and w € Wy, the restriction of the Schwartz

form ¢, (defined in Lemma 6.2.3) to the subsymmetric space is given by

Wi
TDWZJ_ (1) = Z SO%'Z/ (w, T)(Pl—lj,l’—j’<xa 7). (8.2.11)

0<y<l
0<y' <l

The Kronecker pairing is given by

<Cv2,[z,z}, 0r2(011,7), 6WgﬂL,H(¢1,177)]> = / 9L,H(901,1,7')—/ Ow,nrp (P11, 7).
vg,[1,1] vg,[1,1]
’ ’ (8.2.12)
Applying (8.2.11), we may rewrite the first integral on the right-hand side of (8.2.12)

as follows:

1
_ Wy Wit
/C Orwn(p11,7) = /C Z Ow,nr (%’,j/aT) HW,}mL (@13‘,1]‘/77 :
vg,[1,1] v9,[1,1]

J,3'=0

By definition, the integral will be given by pairing the vector vy = 7 (ve ® v3) with
the coefficients in the fibre; in particular, examining the form of the vector-valued
forms in (8.2.10), we see that if j or j’ # 1, then the integrand will have a v; or v}
term in, and hence in particular will be orthogonal to vy. Hence, we may discard
almost all the terms in this sum and take out the one-dimensional theta series in the
global integral (as it does not have any differential forms involved). Further, for the
cuspidal integral, we notice that this same pairing triviality occurs - namely, that
the terms proportional to €, and € in ¢, ; will disappear. Hence, we may integrate
at the cusp as in Example 8.2.4 and hence write the pairing between the special

cycle and the capped theta series as

<Cv2,[l,l], 10.20(11,7), Ow,nnm(d11, T)]> = [/C OwinL (90%4, T)] Ow,nr (771 oDy (90%\4) 77)
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- (SkgM@WmL ((Dz 052>2 (SO%Z\/[) 77')

(8.2.13)

In particular, what we have shown here completely generalises the equivalent calcu-
lation in the Kudla-Millson case, and in particular gives a method for calculating

generic integrals of this type.

We now check that the non-holomorphic parts of this lifting disappear. We know
from the trivial coefficients calculations that the 1/v term in the integral on the right-
hand side of (8.2.13) is given by —6,Cyr/8mv, and the same in the one-dimensional
theta series coming from the splitting will be from the constant term of the first

Laguerre polynomial:

_ 1 )
W, _ mir||wl|
[QWmL (D1 oDy (SOKM) 77)]% = "5 e;w e -
w [
(this notation of [X],« notating the v* part of X continues throughout). Similarly,
the 1/v? term in the boundary integral will come from the constant term of the

second Laguerre polynomial:

[QWZmL((D2ODz)2(SO%4),T>L:2<7T1U>2 S emirlvl,

weW,NL

Hence, putting this together, we see that the 1/v? term in (8.2.13) is given by

—0,Cer -1 0kCor <
21 — ) . ) wiT||wl| —0.
8 Sﬂ 1/v2 2 K 8mv > (27?2}) 16(7?@)2] ‘ 0

weW,NL

We will now use the interpretation from [Stalb] of the coefficients of the integral
on the right-hand side of in (8.2.13) to be given by representation numbers in the
lattice Wi N L modulo the action of FWZJ_. We write the term not proportional to
1/v as G(7); hence, the full 1/v part of (8.2.13) is given by:

) CK, _ ) C& —
B G0 e (P15 (o) )] + s (210 )
0C, =\ 2
+ k8z,r [QWM <(D2 o D2) (So%u) aTﬂ .
) -1 , ) ,
—-S0EG() (5] X eI B S i
2 2mv weW,NL 8mu weW,NL
B 5kCE,F Z HwHem‘erH
4mv weWanL
0.C, ~\ 7 n’
= ;ij’r [2 lZ FW;\TWﬁmL(n)qn] [Z L \rw,nL(it)q ] =220 Tw, \rw,ne(n')g ] '

where as usual we have assumed that ¢ = ¢*™". However, by our assumptions on I'
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(namely, that it is the full lattice stabiliser), then we see that all the representation

numbers are just 1, in which case we see that this 1/v term also disappears.

We are hence left with the constant v° part; we only now need check that this is
non-zero. However, this is trivial: we may check that for e.g. o the ring of Gaussian
integers, the ¢ coefficient is given by —,Cy /3, and this will replicate in general for

other rings of integers.

In particular, this shows us that these constructions will not in general be trivial -
indeed, when treating the case of [ = 1, this pattern of the v* terms disappearing
for k > 0 should replicate, and the same non-triviality will again happen, because
the holomorphic parts of the Kronecker pairing will be given by products of dif-
ferent weight holomorphic theta series, and hence in particular will have non-zero

coefficients of ¢ for some sufficiently large n.

We record all of the above in a theorem.

Theorem 8.2.6. For [ =1, the cohomology class
[QL,H(SDLMT),HWmL,H(cbl,l,T)] < H(:Qone (XB aaXB ,Hl’l(v)>

is non-trivial; more specifically, the Kronecker pairing with the class Cy,[11] is a

holomorphic cusp form of weight 5:
<Ov2,[l,l]7 00.2(01.1,7), Ow,nr (P11, T)]> => a(n)q"

where

o(0) = Cr (g, ) = 32 [0 = Ko (e ] = L, (o)
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