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Chapter 1

Introduction

If one had to pick out a particular word in the title of this thesis that gave an
indication to the work herein, it would be "geometric". The reader may be assumed
to have some knowledge of the theory of modular forms - though for the benefit of
those in need of a recap, we shall give a brief one.

Definition 1.0.1. Let Γ(M) ⊂ SL2(Z) be given by

Γ(M) =


a b

c d

 ∈ SL2 (Z)
∣∣∣∣
a b

c d

 ≡
1 0

0 1

 mod M

 ;

we say Γ ⊂ SL2(Z) is a congruence subgroup if it contains some Γ(M). Let k ≥ 1 be
an integer. Then a modular form for Γ is a holomorphic function on the upper-half
plane f : H→ C such that

(i) f
(
aτ+b
cτ+d

)
= (cτ + d)kf(τ) for all

a b

c d

 ∈ Γ

(ii) f(τ) is holomorphic at the cusps Γ\P1(Q) of Γ\H; namely, it has a non-negative
Fourier expansion f(τ) = ∑

n≥0 a(n)e2πinτ .

We say f(τ) is a cusp form if it is zero at all the cusps (more precisely, if its Fourier
expansion in q = e2πiτ at each cusp has no terms in qk for k ≤ 0); we say it has level
M where M is the smallest integer such that Γ(M) ⊂ Γ.

We may now immediately deal with another important pair of words in the title:
theta series. Once one has had a modular form defined, one of the first examples of
such an object will be the following:

Theorem 1.0.2 (Hecke, Schoeneberg). For a lattice L ⊂ QN with a positive-
definite and even inner product ( , ), and a harmonic homogeneous polynomial
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p(x) ∈ Q[x1, . . . , xN ]:

θ(τ, L, p) =
∑
x∈L

p(x)e2πi(x,x)τ ∈MN
2 +deg(p) (Γ(M)) .

is a modular form of weight N/2 + deg(p) and level M = disc(L); if deg(p) 6= 0,
θ(τ, L, p) is a cusp form.

For example, from here, one may classify for a given weight what the non-cuspidal
theta series are, and then use linear algebra to express the coefficients of the Eisen-
stein series in terms of the simpler coefficients of θ.

If we wish, we may see the subsequent developments in this area - to be described
forthwith - as a way of replicating the result of Theorem 1.0.2 through numerous
different geometric avenues; in particular, what we shall focus on is analogies to
Theorem 1.0.2 coming from the geometry of locally symmetric spaces. Because of
p(x)e2πi(x,x)τ having a modular transformation law under orthogonal transformations
(analogously to Definition 1.0.1), one may see this as a correspondence between
automorphic forms for O(N) and automorphic forms for GL2(R). The principles we
shall explore are the following:

(i) What are the properties of θ(τ, L, p) when L is not positive-definite?

(ii) Can we use theta series to give us correspondences between automorphic forms,
for more general finite-dimensional reductive Lie groups replacing SO(N)?

The reader will immediately see that if we allow L to be non-positive-definite, then
several parts of Theorem 1.0.2 will immediately disappear - for example, it will
no longer have a positive q-expansion, as it will generically have non-zero terms of
the form e2πinτ for negative n. Moreover, it is not clear that it will even remain a
holomorphic function of τ .

Our work shall be based on answering (i) and (ii) at the same time. To be more
specific, we shall examine theta series corresponding to the unitary group U(2, 1).
This will require translating the above into the universe of differential forms using
the generalised cohomological machinery of Kudla and Millson. We shall then look at
two consecutive extensions of this theory. The first will be representation-theoretic,
which will generalise the theta series to be in a cohomology group with coefficients
in a vector bundle; this will allow the theta series to be of arbitrary odd integer
weight.

The second extension will be in taking these theta series to the boundary components.
This will give us a new class of modular forms of odd integral weight, and give a
programme for the extension of general unitary theta series of split signature.
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1.1 A Brief History

In the author’s opinion, a good starting point for introducing this area is the work
of Goro Shimura, Takuro Shintani and Shinji Niwa in a series of papers - of especial
interest is [Shi73], [Shi75] and [Niw74] - on a correspondence between integral and
half-integral weight modular forms, that has subsequently become known as the
Shimura-Shintani correspondence. We refer the reader also to e.g. [Kob93, §4] for a
good summary of the theory of half-integer weight modular forms and their Hecke
operators; one may use the rubric of Definition 1.0.1 for k a half-integer, where one
requires a finite-degree character ψ on Γ accompanying the automorphy factor in
part (i) of the above definition.

The details of this correspondence are unnecessary, but the broad idea may still be
elucidated: namely, in [Shi75], the author integrates a modular form G of weight
2k + 2 and level N against a theta kernel (more specifically, the sum over the
positive-discriminant parts of the 3-dimensional lattice LN of quadratic forms in two
variables):

θ(z, LN) =
∑

Y ∈Γ0(N)\LN
∆(Y )≥0

exp
(

2πiz∆(Y )
N

)∫
CY
Y (1,−τ)G(τ)dτ (1.1.1)

Here the {CY } are special 1-cycles on the modular curve Γ0(N)\H, parameterised
by this set of positive-length vectors in the lattice. This produces a modular form
of weight k + 3/2.

This relationship is inverted in Niwa’s paper [Niw74] - namely, an almost identical
theta series is found that takes half-integral- to integral-weight modular forms. This
generalises the relationship of Shimura in [Shi73], which produces this lift for half-
integral Hecke eigenforms by splitting its Dirichlet L-function into two Euler products.
We hence have the following foundational result:

Theorem 1.1.1 (Shimura-Shintani-Niwa). Let N be a positive integer. Then for
k ≥ 1 another positive integer, there are maps

Sk+3/2(Γ0(4N)) ΦShim−−−→ S2k+2(Γ0(N)), S2k+2(Γ0(N)) ΦShint−−−→ Sk+3/2(Γ0(4N))

which both come from integrals against theta kernels (as detailed in (1.1.1)), are
arithmetic - they preserve the action of Hecke operators - and are adjoint to each
other: namely, for f an integral and g a half-integral cusp form

(f,ΦShimg) = (ΦShintf, g)

with respect to the Petersson inner product (see e.g. [DS05, p.182]).



4 Chapter 1. Introduction

We note here that this result, though in some senses elementary compared to the
work that currently exists, contains many of the components that we shall consider.
Namely, it shows that relationships between spaces of modular forms for SL2 may
be found using theta series, which use the geometry of the symmetric space H and
special cycles on its quotients to construct the coefficients.

A general approach to non-vanishing (using p-adic methods) may be found in e.g.
[Pra09], which shows that the coefficients of the modular form in the image of the
Shintani correspondence are proportional to special values of the Hecke L-functions
of the original form, which we know to be generically non-zero.

It is at this point instructive to consider the relationship between modular forms
and cohomology. There are many ways this may be interpreted; for our purposes,
the simplest formulation is in the Eichler-Shimura isomorphism, which expresses the
modular forms as a cohomology group with coefficients in Lk, the k’th power of the
standard representation of SL2(R):

S2k+2(Γ)⊕S2k+2(Γ) ' H1
! (Γ\H,Lk) , f(τ)→ ωf = f(τ)dτ ⊗ (τv1 + v2)2k (1.1.2)

Because of this relation, we may interpret both ΦShim and ΦShint from Theorem 1.1.1
as having domains in the compactly-supported & rapidly decreasing cohomology of
a modular curve.

We now move on to two more examples from Hirzebruch-Zagier and Cogdell - this
will illuminate the dialectic of compactness that is central to our approach for the
rest of this thesis. The results given are almost identical, but illuminate two special
generalisations of the locally symmetric manifold replacing the modular curve, and
give us links to classical number theory; the idea of these results giving maps on
homology and cohomology is now central.

In [HZ76], the authors consider a Hilbert modular surface which replaces one of
the modular curves Γ\H in the Shimura-Shintani correspondence in Theorem 1.1.1.
They fix an odd prime p ≡ 1 mod 4 and the real quadratic field K = Q(√p), with
Hilbert modular group SL2(K). This acts on H via the two real places of K, which
embed SL2(K) ↪→ SL2(R) - see [BvdGHZ08, §2, (1.3)] - and hence, for the fixed
arithmetic subgroup Γ = SL2(OK), they use the non-compact Hilbert modular
surface X = Γ\(H×H).

For all positive integers N , a closed 2-cycle (more specifically, a modular curve) TN
is constructed on the Hilbert modular surface X. It is here that the problem of
compactness manifests: namely, from its definitions, they find:

TN =

 bounded if N is not a norm of OK
not bounded if N is a norm of OK .
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Hence, the cycles TN will generically have non-trivial intersection with the cusps
of X. This problem is not a new one - indeed, what we are dealing with is the
exact analogy of the problem of domains in Theorem 1.1.1. Namely, in the Shimura-
Shintani correspondence, the solution is to let the domains of each of the maps only
be in the cusp forms, which - by our demanding they be 0 at all cusps - decay fast
enough so that the integrals still converge. The innovation in this paper is to modify
the special cycles to allow for calculation of the intersection numbers on X with all
of the TN . They compactify ι : X ↪→ X by taking the minimal resolution at each
cusp; this decomposes the homology as follows:

H2(X) = ι∗H2(X)⊕H2(X∞) (1.1.3)

where X∞ is the subspace generated by all the homology cycles in the boundary.
They hence consider T cN as the image of TN (the closure of TN in X) in ι∗H2(X)
under the decomposition in (1.1.3); by explicitly finding what the cap of TN looks
like, they find the following two arithmetic results:

(T1, TN)X = Hp(N) =
∑
x∈Z

x2≤4N
p|(4N−x2)

H

(
4N − x2

p

)

where H(c) is the classical number of equivalence classes of positive-definite binary
quadratic forms of discriminant −c, and

I(T c1 , T cN)X∞ = Ip(N) = 1
√
p

∑
λ∈OK

λ strictly positive
λ|N

min (λ,N/λ) .

They hence show the following:

Theorem 1.1.2. [HZ76, §3, Theorem 1] Let p ≡ 1 mod 4 be an odd prime. Then
the generating series

1
2vol(T1) +

∞∑
N=1

I(T c1 , T cN)X = − 1
12 +

∞∑
N=1

(Hp(N) + Ip(N)) qN ∈M2

(
Γ0(p),

(
·
p

))
.

is a classical modular form of weight 2 and level p with Nebentypus (character).
Moreover, it is the sum of the holomorphic parts of non-holomorphic modular forms:

− 1
12 +

∞∑
N=1

Hp(N)qN ,
∞∑
N=1

Ip(N)qN

are both the positive q-series of weight 2, non-holomorphic weak Maass forms on H.
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More generally, for any class T ∈ H2(X,Q), the sum

1
2vol(T ) +

∞∑
N=1

I(T, T cN)X (1.1.4)

is a modular form of weight 2, level p.

We note that the general statement (1.1.4) in Theorem 1.1.2 is equivalent to the
existence of a map on homology:

ΦHZ : H2(X,Q) ⊃ SpanQ [T cN ]→M2

(
Γ0(p),

(
·
p

))
.

The reader is now invited to compare this to the result of Theorem 1.1.1 - crucially,
the difference in the domains used. In the latter, one is restricted - by the presence
of infinite geodesics - to only use ΦShim or ΦShint on cusp forms, as the integrals
considered would not converge on Eisenstein series. This work of Hirzebruch-Zagier
hence offers one solution to the problem of non-compactness.

We now offer a brief word on the non-vanishing of the Hirzebruch-Zagier mapping;
indeed, there are explicit results on this contained in [HZ76]. In [HZ76, §3, Theorem
1], they show that the map H2(X) → M2(Γ0(p), ·) is injective. In particular the
second Chern form c2(X) (which defines a cohomology class) on X satisfies∫

X
c2(X) = 2ζk(−1)

(see e.g. [HZ76, §3, (1)]). Hence, taking the Poincaré dual of this second Chern form,
we see that when this zeta value is non-zero, there are non-zero modular forms in
the image of the Hirzebruch-Zagier map.

In the work of Kudla in [Kud78], the ideas of Hirzebruch-Zagier are generalised to
compact quotients of the r-fold Cartesian product of the 2-disc D; in particular, in
the middle homology Hr(Γ\Dr), non-trivial cycles CN may be constructed whose
generating series is a Hilbert modular form of weight 3. By specifying work in
compact locally symmetric domains from the start, this indicates a solution to the
problems indicated above, as well as generalising the Hirzebruch-Zagier results to
all totally real fields k/Q.

Of particular interest on the topic of special unitary theta lifts is the work of Cogdell
in [Cog85]. As we shall see, both the general motivation and techniques used are
very similar to those used for Theorem 1.1.2, but it is much more directly applicable
to our context of Picard modular surfaces. In this paper, Cogdell considers a split
hermitian vector space V of signature (2, 1), an imaginary quadratic field k/Q and
the real split Lie group SU(V ) ' SU(2, 1). The associated locally symmetric space
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is a 4-manifold, and more specifically a quotient of the 4-disc by some arithmetic
subgroup. As in the work of Hirzebruch-Zagier, one may naturally construct special
cycles CN ↪→ X = Γ\D indexed by N ∈ N. Cogdell is hence able to replicate the
Hirzebruch-Zagier result exactly, and finds:

Theorem 1.1.3. [Cog85, §4, Theorem] Fix a special cycle CM ↪→ X: using the
Hirzebruch-Zagier method of Theorem 1.1.2, this may be compactified as

CM → Cc
M ∈ ι∗H2(X),

so that the series

1
2vol (CM) +

∞∑
N=1

I (Cc
M , C

c
N)X q

N

= 1
2vol (CM) +

∞∑
N=1

I(CM , CN)X −
∑
[`]
I (CM , CN,`)X

 qN (1.1.5)

is a holomorphic modular form of weight 3 and level D = disc(k); as in Theorem 1.1.2,
the global and local parts of (1.1.5) are the holomorphic parts of non-holomorphic
modular forms on H with the same non-holomorphic parts.

As with the Hirzebruch-Zagier results, we may see the existing of these modular
generating series as, equivalently, the existence of a map from homology to a space
of modular forms:

ΦCog : H2
(
X,Q

)
⊃ SpanQ [Cc

M ]→M3 (Γ0(D), χD) .

We now reach a decisive moment in the history of this theory. It is conjectured in
many papers - included those cited above - that the existence of all of these results,
all of which appear to have the same form, is not an accident (indeed, even what we
shall try to transcribe of this generalisation is really only one part of the spectrum
of conjectures made, as we are focusing on the holomorphic side of the theory). In
a series of papers by both Stephen Kudla and John Millson throughout the 1970s
and ’80s - see e.g. [Kud78], [Kud79], [KM81], [Mil81], [Mil85] - there is an enormous
amount of work done, both computational and theoretical, on creating a uniform
theory for theta correspondences between spaces of archimedean automorphic forms,
of the form

{Geometry on Γ\G/K} Theta−−−−−−→
Integration

{Modular Forms on H} .

We shall state this result as a correspondence only between split, reductive and
finite dimensional Lie groups and the special linear group SL2(R) - however, it
must be stressed, this is but a very special case of this theory, as what we have in
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full generality is a correspondence between split finite dimensional Lie groups and
symplectic groups Spn(R).

Theorem 1.1.4. [KM86, KM87] Let G be either a special orthogonal group or a
special unitary group of a split vector space V of signature (p, q), defined respectively
over R or C. We let r = p+q or 2(p+q) respectively be the real dimension of V . For
some maximal compact subgroup K ⊂ G, let D = G/K be the associated symmetric
space, of real dimension m = mG = pq or 2pq respectively. For ϕ0 the Gaussian on
V , we let S(V ) ⊂ S(V ) be the space of polynomial Schwartz forms p(x)ϕ0(x) on V .

For each fixed integer 1 ≤ a ≤ p, and k = aq or 2aq respectively, there is a non-trivial
Schwartz form ϕ such that

ϕ ∈
[
S(V ⊗a)⊗ Ωk(D)

]G
(1.1.6)

which is closed with respect to the differential in this complex.

The complex in (1.1.6) is acted upon by the Howe dual pair G×G′ through the Weil
representation of a symplectic group Sp(V ⊗ V ′), where G′ = SL2(R). Fixing any
arithmetic subgroup Γ of G, and a Γ-invariant lattice L ⊂ V , ϕ will in particular be
Γ-invariant. Taking g = gz the element of G taking the basepoint of D to z ∈ D, and
g′ = g′τ an element of G′ taking i to τ ∈ H, we may form a theta series as follows:

θL(ϕ, z, τ) =
∑
x∈L

ω(g′τ )ϕ(g−1
z x).

With X = Γ\D the locally symmetric space, this will define a closed cohomology
class [θL(ϕ, z, τ)] ∈ Hk(X), which is modular of weight r/2 in τ . This may be
integrated against closed and compactly supported m− k-forms η ∈ Hm−k

c (X) to give
holomorphic modular forms of level M and weight r/2:∫

X
η ∧ θL(ϕ, z, τ) ∈M r

2
(Γ(M))

More specifically, we may see what the coefficients of these modular forms are: there
exist special cycles Cn ⊂ Γ\D such that∫

X
η ∧ θL(ϕ, z, τ) = c

∫
X
η ∧ ΩX +

∑
n>0

[∫
Cn
η
]
qn

for some geometric constant c ∈ C and ΩX a certain G-invariant k-form on X.

The proof method offers the key to why the work in this generality may be proven -
namely, it uses the Weil representation ω of sp(V ⊗V ′) to construct Howe operators
∇ in a universal enveloping algebra; the Schwartz forms are then given by ϕ = ∇ϕ0,
and using the algebraic properties of the Weil representation the necessary properties
are proven.
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We note that the solution found here to the holomorphicity problem for non-positive-
definite lattices is very elegant - the negative length parts of the theta series are
still included, but these components are all exact, and so by an easy application of
Stokes’ theorem the integrals are zero. Hence, another way to write the results of
Theorem 1.1.4 is that on the level of differential forms:

θL(ϕ, z, τ) ∈ Ωk(X)⊗MNonHol
n
2

(Γ(M));

and more specifically, in cohomology we may say

[θL(ϕ, z, τ)] ∈ Hk(X)⊗Mn
2
(Γ(M)).

We now observe some of the developments of this relevant to our work. In [FM06],
the authors aim to develop the results of Theorem 1.1.4 where G = SO(p, q), but
where the theta series (and special cycles) are in more general cohomology groups;
this allows a complete generalisation of the weight of the resulting modular forms.

In summary: they consider the weight-indexed irreducible representations S[λ](V )
of SO(p, q) (whose construction is given in full generality in [FH04]), and construct
Schwartz forms in complexes with more generic coefficients - and hence more generic
modular weight. From here, the proof structure is broadly similar to that of Theorem
1.1.4 - namely, they use the Weil representation of the symplectic group to prove
that the Schwartz form is closed, holomorphic, dual to the appropriate special cycles
and so on. Their result is hence:

Theorem 1.1.5 (Funke & Millson, 2006). Let G = SO(p, q), and let K, D and
X be as in Theorem 1.1.4, so r = p + q and D is of real dimension k = pq. We
keep a = 1. Fix the trivial partition λ = l of l, and let Hl(V ) be the corresponding
irreducible representation. Then there are non-trivial, closed Schwartz functions in
the following complex:

ϕ[l] ∈
[
S(V )⊗ Ωq(D)⊗Hl(V )

]G
and so for L a lattice of level M , we may form a cohomological theta series as in
Theorem 1.1.4: [

θL,[l](ϕ, z, τ)
]
∈ Hq

(
X, H̃l(V )

)
⊗M p+q

2 +l(Γ(M)).

There are closed cycles Cn,[λ] defining homology classes:

Cn,[λ] ∈ Hq(p−1)

(
X, ∂X, H̃l(V )

)
;

hence, for a closed and rapidly decreasing Hl(V )-valued smooth differential q(p− 1)-
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form η, the generating series
∫
X
η ∧ θL,[λ](ϕ, z, τ) = δl=0

∫
X
η ∧ Ωq

X,[l] +
∑
n>0

[∫
Cn,[l]

η

]
qn ∈M p+q

2 +l(Γ(M))

is a holomorphic modular form, which is cuspidal for l ≥ 1.

In particular, if one wishes to go back to our very first theta result - in Theorem
1.0.2 - we may see this as a generalisation of the work of Hecke and Schoeneberg for
non-positive-definite lattices!

This result will be what we attempt to recreate in the setting of G = SU(p, q).
There are two other Funke-Millson papers that were also used as key references for
the writing of this thesis. The first, [FM13], which may be viewed as a sequel to
[FM06], is on the extension of the vector-valued theta series from Theorem 1.1.5 to
the boundary components of the Borel-Serre compactification XBS of X. This is a
homotopy-invariant compactification whose boundary components e(P ) are in 1-1
correspondence with the rational parabolic subgroups P of G. They show that for
each such component, the restriction of the Funke-Millson orthogonal theta series is
a convergent differential form which is also a theta series:[

ι∗P
(
θL,[λ](ϕ, z, τ)

)]
=
[
θWP∩L,[λ̃](ϕP , z̃, τ)

]
. (1.1.7)

This is proved using a mixture of techniques - almost all of which will feature herein
- including geometric analysis of the cohomology, the mixed model of the Weil
representation, Fourier analysis, representation theory, and more. We now look at a
particular example of this work which has motivated a lot of ours.

In their paper [FM11], the authors consider the case of split orthogonal groups of
signature (2, 1). As the reader may note, because SL2 ' SO(2, 1), this is a case we
have observed already - namely, the setting of the Shintani-Shimura correspondence!

Using the machinery outlined in [FM06], they create a vector-valued Schwartz form
ϕH ∈

[
S(V )⊗ Ω1(D)⊗Hk

]G
- here (see e.g. [FH04, §11]) the representations used

will be the harmonic subspaces Hk of Symk(C2) - and for the usual choices of L and
Γ, may make a theta series θL,H(ϕ, z, τ) which is a 1-form on X with coefficients in
the representation Hk. For η a closed and rapidly decreasing 1-form with coefficients
in Hk, the results of Theorem 1.1.5 give us:∫

X
η ∧ θL,H(ϕ, z, τ) ∈Mk+3/2(Γ(M)). (1.1.8)

The cusps of V are parameterised by the isotropic lines `; the result of (1.1.7) give
that θL restricts to a theta series on the boundary, and they further show that the
boundary Schwartz form is exact: ϕ` = dφ`. This allows them to build a non-trivial,
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compactly-supported cohomology class in H1
c (X):

θL,H(ϕ, z, τ)−
∑
[`]

dι∗` (θW`∩L,H(φ`, z, τ)) ∈ H1
c (X).

This allows them to integrate against the non-compact cohomology in H1(X). We
note here that, examining the form of the Eichler-Shimura isomorphism in (1.1.2),
this result formally extends this relationship to the non-compact cohomology - and
hence, equivalently, to Eisenstein series! Indeed, one often refers to the non-compact
part of H1(X) as the Eisenstein cohomology, and this approach (which we shall
follow) offers an approach to analyse the arithmetic of this subspace.

1.2 Our Results

We have now done enough work to contextualise our own! It is appropriate that we
finished on the paper [FM11], as this offers the most appropriate context for our
own work of anything in the existing literature. We shall start our work with two
preliminary chapters. The first will largely deal with the geometry of the locally
symmetric spaces X of the form

X = Γ\SU(2, 1)/S(U(2)× U(1)),

and consider their compactifications, homology and cohomology; in particular, the
geometry of the boundary components of these compactifications. The second such
chapter is on the subject of irreducible representations for SU(2, 1); this will allow
us to create the coefficient systems which give homology and cohomology objects
generalising the Kudla-Millson forms.

For the remainder of this section, we fix a hermitian vector space V /k over an
imaginary quadratic field of signature (2, 1), with complex points V and special
unitary group G = SU(V ).

What we shall show first is the extension of the homological side of Theorem 1.1.4 for
G = SU(2, 1). Starting from the cycles Cn from Theorem 1.1.4, we first extend these
to cycles with coefficients in an irreducible representation Hl,l(V ). We then create
caps in the homology group H2(X, H̃l,l(V )), allowing us to create the compactified
cycles Cc

n. We record this as a first theorem.

Theorem 1.2.1. Let X = Γ\D be the locally symmetric space corresponding to
some arithmetic subgroup Γ ⊂ SU(2, 1). For all positive integers n, we define
Cn ⊂ X as in Kudla-Millson. Then for all symmetric, finite-dimensional irreducible
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representations Hl,l of SU(2, 1), we may define closed classes Cn,[l,l] as follows:

Cn,[l,l] =
∑

(x,x)=2n
mod Γ

Cx ⊗ πH
(
xl ⊗ (x∗)l

)

These classes define generically non-trivial classes in homology:[
Cn,[l,l]

]
∈ H2

(
X, ∂X, H̃l,l

)
and the integrals

∫
Cn,[l,l]

η converge for all Hl,l(V )-valued, rapidly decreasing and
compactly supported smooth differential forms η on X.

For L an integral and even lattice of level M and L ∈ L′/L a lattice coset, the [Cn,[l,l]]
are the Fourier coefficients of a weight 2l + 3 holomorphic modular form with values
in Hl,l:

1
2πδl=0 [ΩX ]PD +

∑
n>0

n an L−norm

[
Cn,[l,l]

]
qn ∈ H2

(
X, ∂X, H̃l,l

)
⊗M2l+3(Γ(M)).

It will be a cusp form for l ≥ 1.

The Borel-Serre compactification XBS has finitely many boundary components e(P`),
corresponding to the classes of rational isotropic lines Γ\Iso(V ). We may cap these
cycles with coefficients at each cusp with closed cycles A`n,[l,l] ⊂ e(P`) such that for
all positive rational numbers n:

Cc
n,[l,l] = Cn,[l,l] −

∑
[`]
A`n,[l,l]

defines a closed and bounded - hence compact - class [Cc
n,[l,l]] ∈ H2(X, H̃l,l). This

may be convergently integrated against the full cohomology group H2(X, H̃l,l), and in
particular the sum of the capped special cycles will also define a modular form with
coefficients in the homology group, which will be cuspidal for l ≥ 0:

1
2δl=0 [ΩX ]PD +

∑
n>0

n an L−norm

[
Cc
n,[l,l]

]
qn ∈ H2

(
X, H̃l,l

)
⊗M2l+3(Γ(M)).

The rest of the paper is hence dedicated to the cohomological picture, and then to
conclude, the duality between these constructions. The first work in this direction
shall be to construct Schwartz forms with coefficients for SU(2, 1). This will require
a chapter on the Weil representation of dual pairs su(p, q) × su(1, 1), which will
give us the algebraic properties required to work in the complexes with coefficients.
Indeed, we shall dedicate the entirety of the proceeding chapter §6 to constructing
the appropriate vector-valued Schwartz forms, and proving - largely with abstract
algebraic techniques - that they satisfy the correct properties that will generalise the
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Kudla-Millson result. We now state the dual to Theorem 1.2.1:

Theorem 1.2.2. Fix a positive integer l ≥ 1, and an irreducible representation
Hl,l(V ) of G = SU(2, 1); the geometric constructions will be the same as in Theorem
1.2.1. Then there are non-trivial, closed Schwartz functions in the complex:

ϕHl,l ∈
[
S(V )⊗ Ω2(D)⊗Hl,l(V )

]G
.

For L a lattice of level M and L ∈ L′/L, we may use the non-trivial & closed
Schwartz forms ϕ to form a theta series on X = Γ\D:

θL,H(ϕ, z, τ) =
∑
x∈L

ϕHl,l(x, z, τ)

This is a closed differential form, and its cohomology class defines a holomorphic
cusp form of weight 2l + 3:

[θL,H(ϕ, z, τ)] ∈ H2
(
X, H̃l,l(V )

)
⊗ S3+2l(Γ(M)).

This is dual to the special cycle generating series from Theorem 1.2.1; hence, for
some closed and rapidly decreasing Hl,l(V )-valued smooth differential 2-form η on
X, the generating series

∫
X
η ∧ θL,H(ϕ, z, τ) = i

∑
n>0

n an L−norm

[∫
Cn,[l,l]

η

]
qn ∈ S3+2l(Γ(M))

is a cuspidal, holomorphic modular form, with coefficients given by the integrals
against the Cn,[l,l]. Equivalently, in cohomology we may write:

[θL,H(ϕ, z, τ)] = i
∑
n>0

n an L−norm

[
Cn,[l,l]

]PD
qn ∈ H2

(
X,Hl,l(V )

)
⊗ S3+2l(Γ(M))

So, we may now move onto the crux of this thesis - namely, the geometric work on the
restriction of these objects to the boundary components of the Borel-Serre boundary
components. This work will use the mixed model of the Weil representation for the
Witt decomposition at each cusp, and then use geometric arguments in the boundary
complex to show that the restriction of the theta series is a convergent differential
form, given by a 1-dimensional theta series.

Theorem 1.2.3. Fix a rational isotropic line [`] of V , with associated Witt splitting
of V given by

V = k`⊕W ` ⊕ k`′,

where `′ is the complementary cusp and W ` = `⊥ ∩ `′⊥ is a positive-definite vector
space spanned by some arbitrary rational vector w`. Let N` be the nilpotent part of
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the parabolic subgroup fixing [`], and Γ` = N` ∩ Γ, so that the boundary component
of XBS at ` is written e(P`) = Γ`\N`.

Then we may define a new Schwartz function in the boundary complex

ϕ
e(P`)
l,l ∈ [S(W`)⊗ Ω2(N`)⊗Hl,l(V )]N`

such that the theta series extends to a convergent differential form on the boundary
components, and the natural restriction of the theta series to this boundary component
may be written.

ι∗` (θL,H(ϕ, z, τ)) = θW`∩L
(
ϕ
e(P`)
l,l

)
=

∑
x∈W`∩L

ϕ
e(P`)
l,l (x, z̃, τ)

Further, this boundary form is exact: namely, there is a primitive

φ
e(P`)
l,l ∈ [S(W`)⊗ Ω1(N`)⊗Hl,l(V )]G

such that dφe(P`)l,l = ϕ
e(P`)
l,l . Hence, we may form a non-trivial class in the cone

cohomology group:θL,H(ϕ, τ),
∑
[`]
θW`∩L

(
φ
e(P`)
l,l , τ

) ∈ H2
cone

(
X
BS
, ∂X

BS
)
,

which gives us a compactly supported cohomology class on X:

θL,H(ϕ, τ)−
∑
[`]

dι∗`
(
θW`∩L

(
φ
e(P`)
l,l , τ

))
.

This is a holomorphic modular form of weight 2l+ 3 in τ , and by its compact support
we may integrate this against the non-compact cohomology on X.

We now have one more piece of work left to state: namely, the duality between the
constructions in Theorems 1.2.1 and 1.2.3.

Theorem 1.2.4. For l = 0, the boundary constructions in Theorems 1.2.1 and 1.2.3
are dual; that is, the Fourier coefficients of the capped theta series are given by the
capped special cycles:θL(ϕ, τ),

∑
[`]
θW`∩L

(
φ`, τ

) = 1
2π [ΩX ] +

∑
n>0

[Cc
n]PD ∈ H2

cone

(
X
BS
, ∂X

BS
)

We may conclude by finding the work of Cogdell in Theorem 1.1.3 as an immediate
corollary. Indeed, in our work in Theorem 1.2.1, we saw a recreation of this for a
different (but related) boundary component. By using the homotopy equivalence of
X
BS and X, we may see the Cc

n as classes in H2(X), and show that the inclusion
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map ιTOR : X → X
TOR to the toroidal compactification of X (considered by Cogdell)

maps our Cc
n to his compactified class C̃n

c for all n:

(ιTOR)∗ (Cc
n) = C̃n

c
.

This yields Cogdell’s pairing on homology as a composition of my Borel-Serre pairing
and (ιTOR)∗, and hence gives us the main result of [Cog85] as a corollary of Theorem
1.2.1.

1.3 Outlook

I also wish to make a few comments on the future direction of this work.

The first piece of outstanding work is the duality for the case of general coefficients.
This is completed in the case of trivial coefficients, and I believe should be achievable
with the right work on the cohomology groups with coefficients in the vector bundle

˜Hl,l(V ).

One of our primary motivations for undertaking this work is the completion of the
unitary analogy of [FM11, §9] - namely, that the denominators of the Eisenstein
cohomology in H2

! (X, H̃l,l(V )) give quadratic zeta values, corresponding to Hecke
characters on k. There are more than enough indications in our work that this
should work - indeed, the capping process gives exactly the right structure of result
that mirrors [FM11], and there is no reason to suggest that such calculations should
not give the right structure of results.

Another generalisation which I believe will be worthwhile to examine is the case
of lattice characters. In [ANS16], a theory is laid out for "twisting" the finite Weil
representation on L′/L by a Dirichlet character modulo M ; then, using the theory
of vector-valued modular forms, they show that the resulting object is modular
with respect to Γ0(M), not just Γ(M). In particular, a simplified version of this
is used in [FM11] to find the lift of vector-valued Eisenstein series. This process
should be recreatable in our setting, using a Hecke character χ and a twisted Weil
representation ωχ of sp(W ).

The reader may also have noticed that much of the work in §6 was not particularly
specialised to the case of signature (2, 1). Indeed, as in the orthogonal case - con-
sidered in full generality in [FM06] - it should be fairly harmless to extend the work
in this chapter to the consideration of the case of general signature (p, q).

The main generalisation outstanding is therefore of the cuspidal behaviour. As a
first example, can this be recreated for the case of V of hermitian signature (p, 1),
for p ≥ 3?
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In this setting, the cusps are still stabilisers of 1-dimensional complex isotropic lines,
so the results of §7.1 should intuitively go through more or less the same. Indeed,
we will be able to work with more general representations S[λ](V ), and we will have
p different types of positive Howe operators, so the combinatorial calculations will
be more involved, but I see absolutely no reason that the same result should not
be obtained - namely, that the generalised Kudla-Millson forms ϕp,1[λ] will restrict to
special forms

ϕ
p,1,e(P`)
[λ] ∈

[
S(W`)⊗ ∧2pn∗ ⊗ S[λ](V )

]
In this respect, at least, the results should nicely mirror the generalised orthogonal
results found in [FM13] - moreover, there is no reason to suspect that the restriction
arguments on the special cycles shouldn’t succeed. Where the symmetry with our
results will likely fall down is in the capping procedures.

The problem here is that in our case, the torus form Ω` ∧ Ω` ∈ ∧2n∗ had a natural
primitive, given by the 1-form κ` in the corner component. However, this process
will naturally fall down at this point - there is no obvious primitive in the Lie algebra
to a general torus element

Ω`,1 ∧ Ω`,1 ∧ Ω`,2 ∧ Ω`,2 ∧ . . . ∧ Ω`,p−1 ∧ Ω`,p−1,

as we will now require a non-trivial 2p− 1 form. Because of this, there is no reason
to suspect that the process with the cone complex - which allows us to lift the
non-compact cohomology - will carry over. However, we have reason to believe that
there are solutions to be found in more generic cohomology groups - for example,
L2.

Related to this, I believe, will be an investigation of the non-holomorphic parts
of this theory. Namely, because of our focusing only on the cohomological lifting,
the negative coefficients disappear by exactness. Implicit, however, in our work in
chapter 8, was that there is a non-holomorphic part of this theory existing when we
drop the requirement for the pairing form η to be closed - in particular, this means
that we will leave behind the perspective of this being a pairing on cohomology.
As is indicated in e.g. [FM14] (wherein an analogous type of boundary component
is considered in the Hilbert modular case) or [Cog85] (where the same capping
procedure is considered on the toroidal boundary components), the modular forms
resulting from pairing weakly converging differential forms on X with the global and
local forms ϕl,l, ϕe(P`)l,l should result in non-holomorphic modular forms of generic
odd weight. Again, this is an area for future exploration.



Chapter 2

Picard Modular Surfaces & Their
Geometry

In this chapter we will give the necessary elucidation of the geometric structure
of the locally symmetric spaces under consideration. This treatment will largely
follow that done in e.g. [Cog85] or [Kud79]. We shall introduce some of the natural
compactifications of these spaces, mostly from a practical perspective - indeed, the
abstract construction of such objects will be largely unnecessary - and then look
at the geometry of the boundary components of these spaces; for the work on the
Borel-Serre compactification, we follow the theoretical work in [BJ06], and then
specialise this to our context. We will present the Lie algebras at both a global and
a local level.

2.1 The Symmetric Space D and its Models

We let d < 0 be a square free integer, and k = Q(
√
d) an imaginary quadratic field

with discriminant Dk < 0. We fix:

ωk =


√
d if d 6≡ 1 mod 4,

1+
√
d

2 if d ≡ 1 mod 4
(2.1.1)

and δk =
√
Dk ∈ iR>0, so that k has ring of integers ok = Z[ωk] and different

dk = δkok ⊂ ok. From Galois theory, we have two algebraic embeddings k ↪→ C: the
identity and the conjugate identity. We fix the identity embedding once and for all,
using this to define the trace Tr(α) = α+α and norm N(α) = αα in k; we will often
write N(α) = |α|2.

Let V /k be a 3-dimensional vector space over k with a non-degenerate Hermitian
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form
( , ) : V × V 7→ k, (2.1.2)

which is anti-linear in the first variable and linear in the second, of complex signature
(2, 1) at the place given by the identity embedding above. Using our embedding of
k in C, this implies that there is an orthonormal basis {v1, v2, v3} of V := V ⊗k C,
fixed hereafter, such that for v = z1v1 + z2v2 + z3v3, v

′ = z′1v1 + z′2v2 + z′3v3 ∈ V , we
may extend our inner product linearly to find

(v, v′) = z1z
′
1 + z2z

′
2 − z3z

′
3. (2.1.3)

We note that generically in what follows, we shall use the underlined notation to
refer to rational objects, and non-underlined to refer to the real (or occasionally
complex) points of said object, as we have done with for e.g. V and V .

Definition 2.1.1. We let

G/Q = SU(V ) = {g ∈ SL(V ) | (gu, gv) = (u, v) for all u, v ∈ V } (2.1.4)

be the special unitary group of the pair (V , ( , )). The group of real points of G is
denoted G = G(R) ' SU(2, 1).

Using the natural embedding Q ↪→ k, we may consider V as a Q-vector space, and
then let VR = V ⊗Q R. This is a real orthogonal vector space of signature (4, 2),
which has a complex structure given by v 7→ iv, iv 7→ −v. In this way, we have

G ⊂ SO(V ), G ⊂ SO(4, 2).

Definition 2.1.2. For any k-vector space W , an ok-lattice is a projective ok-module
L ⊂ W such that L⊗ok k = W .

Such a lattice is integral if (v, v′) ∈ d−1
k for all v, v′ ∈ L, and is even if (v, v) ∈ Z for

all v ∈ L. As in [BHY15], we define the Z- and ok-dual lattices:

L′ = L′Z = {w ∈ W | (w, v)Q = Tr(w, v) ∈ Z for all v ∈ L} (2.1.5)

L′ok = {w ∈ W | (w, v) ∈ ok for all v ∈ L}. (2.1.6)

Throughout the paper, we shall be using the integral Z-dual, largely because it gives
the following desirable properties:

(i) L′ok = dkL
′;
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(ii) For an even integral lattice L, L ⊂ L′, and L′/L is a finite ok-module.

We now fix such an even and integral lattice L in the vector space V taken above.
We assume initially:

(i) There exists a primitive isotropic vector ` ∈ L; namely, k` ∩ L = ok` and
(`, `) = 0.

(ii) There exists another primitive isotropic vector `′ ∈ L′ such that (`, `′) 6= 0.

Using these vectors, we have a Witt splitting of our vector space V :

V = k`⊕W ` ⊕ k`′, (2.1.7)

where W ` := `⊥ ∩ `′⊥ is a positive definite 1-dimensional subspace of V , of complex
signature (1, 0).

We now describe the symmetric space D that we will study. We first define this space
as a set of cosets and analogously as a subset of the projective space of V ; both of
these models exist in the orthonormal picture. We also introduce the Siegel model
of D, which uses the Witt co-ordinates; this will lead to the parabolic model, which
will be our primary geometric model for the analysis of the cuspidal behaviour.

We first introduce some vector space notation:

Definition 2.1.3. (i) Let εk : V \{0} 7→ PkV be the standard projection map
from V to the rational projective space, and ε : V \{0} 7→ PCV the equivalent
map to the complex projective space. For a vector v ∈ V , we denote εk(v) = kv

or ε(v) = Cv - it should be clear from the context which is being used. The
notation ε(v) = [v] will also be used.

(ii) In the vector space V , we denote by V + the subset of positive vectors, by
V 0 = Iso(V ) the subset of isotropic vectors and by V − the subset of negative
vectors; we do exactly the same for V . We note that these three subsets are
not vector subspaces.

(iii) We denote +V and −V for the maximal positive and negative vector subspaces
of V , spanned respectively over C by {v1, v2} and {v3}.

We may now define our symmetric space.

Definition 2.1.4. (i) Let K be the stabiliser in G of the negative line ε(v3), so
that K ' S(U(2)× U(1)). This is a maximally compact subgroup, and we let
D := G/K.
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(ii) We let ΓL be the arithmetic subgroup of G(Q) acting trivially on the discrim-
inant group G of L; this is referred to as the discriminant kernel. For a fixed
arithmetic subgroup Γ ⊂ ΓL, we let

X = Γ\D = Γ\G/K (2.1.8)

be the space of double cosets of G with respect to the natural matrix actions.
X is often referred to as a Picard modular surface.

We note first that in choosing the K in Definition 2.1.4 we were being fairly arbitrary
- given any other fixed negative length vector in V , the stabiliser of the associated
line in PV− would give us a maximally compact subgroup of G.

We also note that in assuming that V is isotropic - in other words, that cusps exist
- we have equivalently assumed that D and X are non-compact manifolds. As we
shall see throughout this thesis, this non-compactness is one of the central problems
attempted to be solved both here and in many other authors’ work. The cusps of D
are parameterised by the rational isotropic lines

Iso(V ) = {[`] ∈ PV | (`, `) = 0} = εk(V 0).

We note here that while D does not, in a geometric sense, have cusps, it makes sense
to talk about "the cusps of D" as there will be a natural relationship between this
set and the set of geometric cusps of X = Γ\D, corresponding to the Γ action.

Hence, because of our interest in X rather than D, we must define the cusps of
X. By the G-invariance of the inner product (2.1.2), Γ acts on Iso(V ) by matrix
translation on the lines; hence, the cusps of X are parameterised by the set

Γ\Iso (V 0)

which is a finite set by [BJ06, Proposition III.2.16]; if we fix L to be the ok-span of
the Witt basis and Γ = ΓL as in [Hol98, Theorem 2.2], then this is the class number
of the ring ok. Throughout the following, we generally denote the fixed set of classes
in Γ\Iso(V 0) by {[`]}; so when we refer to "a fixed cusp of X", we mean to choose
one of these finitely many cusps.

2.1.1 The projective model

Our first model of D is as a subset of the Grassmanian PV .

Lemma 2.1.5. D ' PV−.
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Proof. G acts on PV by g ·[v] = [gv]; because the inner product (2.1.2) is G-invariant,
this restricts to an action on PV−. We define the isomorphism as:

G/K 7→ PV−, gK 7→ g[v3] = [gv3]. (2.1.9)

One may check that it is well-defined: indeed, if gK = g′K, then g−1g′ ∈ K, so by
definition [g−1g′v3] = [v3] =⇒ [gv3] = [g′v3].

It is an injective map, because if gK 7→ [v3], by definition [gv3] = [v3], so g ∈ K and
gK is the trivial coset.

To show surjectivity, let v be a negative vector in V ; by scaling, and without loss of
generality (because this representation is both possible and unique) we may assume
that v may be written v = av1 + bv2 + v3. The space v⊥ is positive-definite, so we
may choose an appropriate orthonormal basis t, u of v⊥ (with respect to ( , )) so
that the matrix gv defined by

gvv1 = t, gvv2 = u, gvv3 = v

is in G. Hence, gvK 7→ [v], and this map is an isomorphism.

We note that this proof did not use the signature in any way - indeed, for any unitary
group SU(p, 1) and a fixed maximally compact subgroup K, SU(p, 1)/K ' PV− for
the vector space V of signature (p, 1) (and more generally, for signature (p, q), it will
be isomorphic to the negative part of the Grassmannian).

In this model, G (and hence, in particular, Γ) acts continuously on PV− from the
right as

[v]× g 7→
[
t
(
tvg
)]

=
[(
tg
)
v
]
.

In Lemma 2.1.5, we explicitly parameterised PV− as

PV− =
{

[av1 + bv2 + v3] | (a, b) ∈ C2, |a|2 + |b|2 < 1
}

(2.1.10)

which gives a more explicit domain model as a complex 2-disc:

PV− ' D2
C = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1}, (2.1.11)

where D2
C has the hyperbolic metric - indeed, this above map is a metric isomorphism.

2.1.2 The Siegel Domain

We now introduce the Siegel model for the upper half plane. Similar to the disc from
(2.1.11), this is an affine model for G/K; analogously to how the disc model is using



22 Chapter 2. Picard Modular Surfaces & Their Geometry

an affine projection of the orthonormal co-ordinates, the Siegel model uses the affine
projection of the co-ordinates for the Witt splitting from (2.1.7). In this way, we
may think of the Siegel model as a change of basis from the disc model D2

C ' PV−.

With respect to each Witt basis {`, w`, `′} of V (with w` ∈ W ` some arbitrarily
chosen rational basis vector), the inner product by definition is of the form

(v,v′) =
(
a b c

)
(`, `′)

||w`||
(`′, `)



a′

b′

c′


= |b|2||w`||2 + 2R (ac(`, `′)) (2.1.12)

for v = a`+ bw` + c`′, v′ = a′`+ b′w` + c′`′.

Definition 2.1.6. With our isotropic lines ` and `′ from the Witt splitting (2.1.7),
we let W` = W ` ⊗ C be the complex points of the positive-definite space given by
W ` = `⊥ ∩ `′⊥. We define:

H`,`′ = {(τ, σ) ∈ C × W` | 2I(τ)|δk||(`, `′)|2 > (σ, σ)} (2.1.13)

Here I refers to the imaginary part (similarly, R refers to the real part); this notation
is continued throughout.

The topology of H`,`′ is the subspace topology coming from C2.

We may easily form a bijection between these two spaces: for (τ, σ) ∈ H`,`′ , we
associate

z(τ, σ) = `′ + σ + δk(`, `′)τ` ∈ V. (2.1.14)

This is clearly a bijection; indeed, we first note that we may assume that the `′

co-ordinate is non-zero (and hence, by scaling, is 1) because

(σ + τ`, σ + τ`) = (σ, σ) > 0.

We have included the unnatural-looking factor of δk(`, `′) because at certain points
later on, without any loss of generality, we shall assume that this equals 1.

Lemma 2.1.7. Write σ = αw` for α ∈ C, and w` ∈ W ` some basis vector as above.
We may now specifically write the Siegel domain as:

H`,w`,`′ = {(τ, α) ∈ C× C | 2I(τ)|δk||(`, `′)|2 > |α|2||w`||}.

A bijection between H`,w`,`′ and the disc D2
C is given by:

ρ` : H`,w`,`′ 7→ D2
C,
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ρ`(τ, α) =
(

2δkτ + 1
2δkτ − 1 ,

2α||w`||
(`, `′)(2δkτ − 1)

)
, (2.1.15)

with inverse given by

(ρ`)−1 (z1, z2) =
(

z1 + 1
2δk(z1 − 1) ,

(`, `′)z2

||w`||(z1 − 1)

)
. (2.1.16)

Proof. This is the result of three maps: for (τ, α) ∈ H`,w`,`′ , we use (2.1.14) to map
this to `′ + αw` + δk(`, `′)τ` ∈ V ′. An easy matrix calculation gives that a good
change of basis matrix between {v1, v2, v3} & {`, w`, `′} is

1 (`,`′)
2

||w`||
1 −(`,`′)

2

 . (2.1.17)

Hence, applying G to this vector, we divide through by the v3 component so that
the v1, v2 components are our disc co-ordinates. The inverse is calculated in exactly
the same way.

2.2 Parabolic Decompositions

We here elucidate some more of the theory of the parabolic subgroups of G. We
start with the theoretical viewpoint given in e.g. [BJ06] - which applies to any finite
rank Lie group - then work out the details for our specific special unitary group G.
This will give us another model of the symmetric space - the horospherical model.

Definition 2.2.1. (a) For g, h ∈ G, we write hg := hgh−1 as the conjugation map.

(b) We let P ⊂ G be any rational parabolic subgroup - namely, a closed subgroup
such that G(R)/P (R) is a projective variety. We then notate:

(i) NP , the unipotent radical of P (namely, the subgroup of Rad(P ) of ele-
ments with all eigenvalues equalling 1),

(ii) LP = NP\P , the Levi quotient of P ,

(iii) X(LP ) = {χ : LP 7→ Gm}, the algebraic maps from LP to the multiplicative
group Gm,

(iv) MP ⊂ LP the subgroup given by

MP = ∩χ∈X(LP )Ker(χ2), (2.2.1)

(v) SP , the split centre of LP over Q - namely, the maximal Q-split component
in the centre of LP - and
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(vi) AP , the connected component of 1 in SP = SP (R).

Similarly to how we have notated G = G(R), we duplicate this for all other ra-
tional groups and write the real points without underlining. The real Langlands
decomposition (see [BJ06, I.1.10]) is given by:

P = NPAPMP = MPAPNP ' NP × AP ×MP (2.2.2)

where the isomorphism, given by multiplication in the group, is an analytic diffeo-
morphism of manifolds. This induces a horospherical decomposition of D:

D = G/K ' NP × AP × DP , (2.2.3)

where DP = MP/(K ∩MP ).

We now specify how this construction may be understood for our specific case of G.

Because V has negative signature 1, we know that the parabolic subgroups of G will
be in 1-1 correspondence with the isotropic k-subspaces of V ; more specifically, they
will be the stabilisers of lines [`] ∈ Iso(V ). We denote by P ` the rational parabolic
group attached to the line [`], and without loss of generality from here on we may
switch between the two notations when the context is clear, e.g. NP ≡ NP` ≡ N`. In
particular, this means that the components DP are trivial for all parabolic subgroups,
so we may remove this from the horospherical decomposition in (2.2.3).

We know from (2.1.7) that for our particular isotropic line [`] used in the Witt
splitting, we may form a flag of V by:

F` =
[
{0} ⊂ k` ⊂ (k`)⊥ = k`⊕W ` ⊂ V

]
.

The quotients of this flag are hence the three spaces:

k`/{0} = k`, (k`)⊥/k` ' W `, V /(k`)⊥ ' k`′;

and so we may write L as a subgroup - rather than a quotient group - of G, as the
stabiliser in G of the quotients of the flag:

L =



x

y

x−1


∣∣∣∣ x, y ∈ k∗, N(y) = 1, xx−1y = 1


=
{
l(x) =


x

xx−1

x−1


∣∣∣∣ x ∈ k∗}.
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Because all characters χ : L 7→ Gm are of the form χ((l(x)) = N(x)m, (with
N : k → Q the norm in the field) for some m ∈ Z, then we know that M is given by

M = {l(x) | x ∈ k∗, N(x) = 1}, (2.2.4)

so that M = M(R) ' U(1). Hence, using the definition of all the above groups, we
see that

A = {l(t) | t ∈ R}.

So, we are left with the unipotent group N `. As we shall see, this is a Heisenberg
group isomorphic to W ` nR.

Definition 2.2.2. For r ∈ Q, w ∈ W `, we may define elements of G = GL(V ):

n(w, 0) : v 7→ v + (`, v)w − (w, v)`− 1
2(`, v)(w,w)` (2.2.5)

n(0, r) : v 7→ v − (`, v)rδk`. (2.2.6)

We then let n(w, r) = n(w, 0) ◦ n(0, r), and let

N ` = {n(w, r) | w ∈ W `, r ∈ Q} ⊂ G

be the rational subgroup generated by all such translations. We call this the Heisen-
berg group attached to the cusp [`].

One may easily check (by computing the action on `′) that this is a group with
respect to the natural composition and inverse laws:

n(w, r) · n(w′, r′) = n

(
w + w′, r + r′ + I(w,w′)

|δk|

)
(2.2.7)

n(w, r)−1 = n(−w,−r) (2.2.8)

Moreover, we may check that (n(w, r)v, n(w, r)v) = (v, v), so that these maps are
in G. These are all unipotent elements, and so by a dimension calculation we know
that this is the full unipotent subgroup that we were looking for.

We summarise all of the above in the following:

Proposition 2.2.3. With respect to the integral cusp ` and the associated Witt
splitting V = [`]⊕ [w`]⊕ [`′], we may write the rational groups in Definition (2.2.1)
as follows:

N =
{
n(swl, r) =


1 −s(w`, w`) −(`, `′)

(
rδk + 1

2 |s|
2(w`, w`)

)
1 (`, `′)s

1


∣∣∣∣ s ∈ k, r ∈ Q

}
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L =
{
l(x) =


x

xx−1

x−1


∣∣∣∣ x ∈ k}

M = {l(x) | x ∈ k, N(x) = 1}

and hence write the groups in the Langlands decomposition (2.2.2) as:

N = {n(s, r) | s ∈ C, r ∈ R}

A =
{
a(t) =


t

1
t−1


∣∣∣∣ t ∈ R>0

}

M =
{
m(θ) =


eiθ

e−2iθ

eiθ


∣∣∣∣ θ ∈ R

}
.

We note that because W` = Cw`, we may harmlessly choose a co-ordinate w` on
W` and write n(s, r) = n(sw`, r). The co-ordinate version is often preferred in later
chapters as we may assume w` = v2 or similar. We now have all the tools for the
Iwasawa decomposition of G.

Lemma 2.2.4. We let N = N(R) be the real points of our unipotent group introduced
in Definition 2.2.2 and K the maximally compact subgroup fixing [v3] introduced in
Definition 2.1.4. We then have the Iwasawa decomposition:

N × A×K ' NAK = G, (2.2.9)

where this is an analytic diffeomorphism of manifolds, given by multiplication in G.

Proof. This is computed explicitly in [Saw16], while the Iwasawa decomposition is
discussed in full generality in [Bum04] and [BJ06].

Corollary 2.2.5. We may realise D = G/K as a space of left matrix cosets in the
most direct way possible

D ' NA ' N × A.

Hence, the horospherical decomposition of D from (2.2.3) may be written as

D ' {[n(s, r), t] | s ∈ C, r ∈ R, t ∈ R+}.

We now describe the necessary isomorphism between this model of D in Corollary
2.2.5 and the Siegel model of Lemma 2.1.7. To find this, we first give a simple
Lemma.
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Lemma 2.2.6. The Heisenberg group acts on H`,`′ as follows:

n(w, 0) : z(τ, σ) 7→ z

(
τ − (w, σ)

δk(`, `′)
− (w,w)

2δk
, σ + (`, `′)w

)
(2.2.10)

n(0, r) : z(τ, σ) 7→ z(τ − r, σ) (2.2.11)

Proof. This is just a simple application of (2.2.5) and (2.2.6) along with (2.1.14).

We may find a diffeomorphism between the horospherical decomposition and the
Siegel domain as follows. For any (τ, σ) ∈ H`,`′ , this has length

2|δk||(`, `′)|2I(τ)− (σ, σ) := L(τ, σ) ∈ R>0 (2.2.12)

by definition. We consider the natural isomorphism between A` and R>0. Then we
wish to find co-ordinates (ζ, υ, L) ∈ W ′

` × R× {L} such that for

HL
`,`′ := {(τ, σ) ∈ C×W` | L(τ, σ) = L},

and for some isomorphism
ρ′L : HL

`,`′ 7→ W` × R,

(ζ, υ) = ρ′L(τ, σ) is acted on via (ρ′L)−1 as

n(w, r) · (ζ, υ) =
(
w + ζ, r + υ + I(w, ζ)

|δk|
, ε

)
, (2.2.13)

and so that (ρ′L)−1 (n(w, r) · (ζ, υ)) has length L in the sense of (2.2.12).

Indeed, one may check that the map ρ′L required is of the form:

ρ′L(τ, σ) =
(

σ

(`, `′) ,−R(τ)
)
,

(ρ′L)−1 (ζ, υ) =
(
−υ + i

2|δk||(`, `′)|2
(
L+ |(`, `′)|2(ζ, ζ)

)
, (`, `′)ζ

)
.

Hence, gluing the maps ρ′L together for all L, we get a diffeomorphism:

ρ′ : H`,`′
∼−→ N` × A`,

ρ′ : (τ, σ) 7→
(
n

(
σ

(`, `′) ,−R(τ)
)
, 2I(τ)|δk||(`, `′)|2 − (σ, σ)

)
(2.2.14)
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2.3 Enlargements of D and Compactifications of
X

In this section we introduce some relevant enlargements and compactifications of
the models introduced in subsections 2.1 and 2.2. As referred to above, we know
that the cusps of D are parameterised by the isotropic lines Iso(V ) of V ; we shall
use {[`]} to notate representatives of the finite set of cusps of X = Γ\D.

2.3.1 The Baily-Borel Compactification

To illustrate this compactification, we shall use the projective disc model of D from
§2.1.1; here, the cusps of D correspond to Iso(V ) in a very literal way - we attach
the set ε(V 0), which is in bijection with Iso(V ). Formally, the set ε(V 0) is a subset
of PV , and is by definition the set of complex isotropic lines which contain a rational
vector; by associating C` → k`, it is naturally isomorphic to Iso(V ). So, we make
our first definition:

Definition 2.3.1. The Baily-Borel enlargement of D is given by

DBB = D ∪ ε(V 0), (2.3.1)

with a topology called the Satake topology, described in full in [BJ06, §III.3], the
Satake topology is given by the enlargement of the subspace topology on PV− by
adding in a system of neighborhoods of ε(`) given by:

UM =
{

[z] ∈ PV− |
(z, z)|(`, `′)|2
|(z, `)|2 < −M

}
∪ ε(`), M ∈ R>0. (2.3.2)

As each cusp ε(`) must have non-zero v3 component also, we may represent it in
ε(V 0) as ε(`) = [av1 + bv2 + v3] for some a, b ∈ k, aa + bb = 1, and hence in the
enlargement DBB by the point (a, b) = (a, b)` ∈ C2.

For the compactification of X = Γ\D, we need to define the action of Γ on D. As
each of the lines [`] in ε(V 0) is represented uniquely by a point (a, b)`, the quotient
by Γ - giving the cusps of X - is given by the finite set of points representing the
lines in Γ\ε(V 0). Hence we have:

Definition 2.3.2. The Baily-Borel compactification of X ' Γ\D2
C is given by

X
BB = Γ\D ∪

⋃
P∈Γ\G(Q)/P (Q)

Γ\{?} ' Γ\D ∪
⋃

[`]∈Γ\εk(V 0)
(a, b)` (2.3.3)
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The topology on XBB is then the quotient topology. The complex structure on this
is defined by pullbacks to the complex structure on D at each cusp; this gives a
normal complex space, but with singularities at the cusps - see [BJ06, Proposition
III.3.14] for proof. For this reason, while this is in a way the easiest compactification
to understand (one could even draw the real points), it is not ideal for our purposes.

2.3.2 The Toroidal Compactification

Because of these singularities associated with the Baily-Borel compactification, it
makes sense to introduce the toroidal compactification instead. The work in this
section is largely based on the description in [Hof16, §1], which treats the general
case of SU(1, n); the case of all finite dimensional locally symmetric manifolds may
be found in [BJ06, §III.7]. Topologically, this is a blowing up of the Baily-Borel
compactification in the Siegel model H`,`′ from Definition 2.1.6.

In the subgroup P stabilising the fixed cusp `, we have the full rational subgroup
N ⊂ P from Definition 2.2.2. Because we have assumed our group Γ to be torsion-
free, one may easily check that Γ ∩ P (Q) = Γ ∩N(Q). We denote this subgroup by
Γ` to emphasise its dependence on the cusp `. One may easily calculate that the
centre of N(Q) is

C(N(Q)) = {n(0, r) | r ∈ Q}, (2.3.4)

and so there exists a rational number C`,Γ ∈ Q such that

C(Γ`) = C(Γ ∩N(Q)) = {n(0, r) | r ∈ C`,ΓZ}, (2.3.5)

where Γ` = {γ ∈ Γ | γ[`] = [`]} is the stabiliser of the cusp. In [Cog85], where a
special case of the lattice L and subgroup Γ is considered, the rational number is
calculated in terms of the depth of Γ and the basis of L. In the H`,`′ model of X, [`]
is the "cusp at infinity", so the neighborhoods UM from (2.3.2) may now be written
as:

UM = {(τ, σ) ∈ H`,`′ | 2I(τ)|δk||(`, `′)|2 > (σ, σ) +M}. (2.3.6)

So, in X, a basis for the neighbourhoods of the cusp are here given by

ŨM := Γ`\UM . (2.3.7)

We know from (2.2.6) that an element n(0, r) in the centre acts as τ 7→ τ − r, σ 7→ σ,
so taking exponentials and letting q = exp(2πiτ/C`,Γ), we have

C(Γ`)\UM ' {(q, σ) | 0 < |q| < exp
(
−π(σ, σ) +M

|δk|2|(`, `′)|2

)
}, (2.3.8)
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which we may recognize as a punctured disc bundle over W`. We may then put
in the central point (0, 0) to this, on which Γ` acts trivially. Denoting this space
C(Γ`)\U∗M , we then have an inclusion

ŨM ↪→
[
Γ`/C(Γ`)

]
\
[
C(Γ`)\U∗M

]
= ˜̃UM (2.3.9)

where the right hand space is a torus bundle. We define the topology "at∞" around
a point (0, σ) by adding in the open sets

Bε = {(q′, σ′) | ||σ′ − σ||2 < ε, |q′| < ε} (2.3.10)

for any ε > 0.

Definition 2.3.3. For each cusp class [`], we may glue the spaces ˜̃UM to X for each
M ∈ R>0; these stratify, and the resulting manifold is the toroidal compactification
of X, denoted XTOR.

We write the topological inclusion as ιTOR : X ↪→ X
TOR. By results in [BJ06, §III.7],

X
TOR is a compact Hausdorff space without singularities, and the identity map

ι : X 7→ X extends naturally to a surjective map ι : XTOR 7→ X
BB.

We note that the natural interpretation of this space (which we shall use later on)
is as a compact 4-manifold whose boundary ∂XTOR is a union of elliptic curves.

2.3.3 The Borel-Serre Compactification

We now describe the compactification we shall be using predominately throughout
this paper. We recall the horospherical decomposition D ' N` × A` at each cusp `
from Corollary 2.2.5.

We have shown in Proposition 2.2.3 that we may identify A` with R+ = R>0. This
can be compactified as A` ' R+ = R+ ∪ {∞} and so for the subgroup P fixing [`],
we define the associated corner as:

D(P ) = N` × A`, (2.3.11)

which is a real analytic manifold with corners. For any parabolic subgroup P , we
let ιP : D(G) = D ↪→ D(P ) be the natural inclusion. We now define our Borel-Serre
enlargement:

Definition 2.3.4. For any point x ∈ D(G) = D, we let ιP (x) ∼ ιQ(x). Then we set:

DBS = D ∪
⋃

P parabolic
D(P )/ ∼ (2.3.12)



2.3. Enlargements of D and Compactifications of X 31

= D ∪
⋃

P parabolic
NP . (2.3.13)

To define the Borel-Serre compactification of X = Γ\D, we must define the action
of G on D.

Using the horospherical decomposition of D in (2.2.3) and the Langlands decompos-
ition of P in (2.2.2), we may write x = (n, a) ∈ N` × A`, so that for p = n′a′m′ ∈
NAM , P acts on D as:

p · x :=
(
a′m′ (n′n) , a′a

)
. (2.3.14)

Theorem 2.3.5. The action of G on D extends to DBS - namely, it naturally extends
continuously to each face D(P ). It permutes the faces by g ·NP = NgP , meaning that
StabΓ(P ) = Γ ∩ P = ΓP .

Proof. See [BJ06, §III.5.13] for details. There it is proved that if one writes g =
km′a′n′, k ∈ K, then NgP = NkP , and it is from there a simple calculation that it
acts as required and is an analytic diffeomorphism.

Corollary 2.3.6. Topologically, we may write the Borel-Serre compactification XBS

of X as
X
BS := Γ\DBS = Γ\D ∪

⋃
P∈Γ\G/Q

e(P ), (2.3.15)

where e(P ) := ΓP\NP and Q is any proper parabolic subgroup (so that Γ\G/Q
gives the Γ-conjugacy classes of proper parabolic subgroups). We often write e(P ) as
e(P ) for simplicity of notation, but this will always refer to the underlying rational
parabolic subgroup.

Taking the isotropic line parameterisation of the cusps of X, we will largely write

e(P`) = Γ`\N`,

and ι` : e(P`)→ X
BS for the natural inclusion of the boundary component for each

cusp [`].

The topology of XBS is defined analogously to (2.3.10). For any T > 0, we define
the open neighbourhoods

VT := N` × (T,∞] ⊂ DBS

and
ṼT := Γ`\VT = e(P`)× (T,∞] ⊂ X

BS (2.3.16)
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of the ` cusp in DBS and XBS respectively. The latter provide a basis for all open
neighbourhoods of the given cusp, so in particular given any open neighbourhood U
of ` in XBS, we must have U ⊃ ṼT for some large enough T . Hence, to define the
topology for XBS it suffices to choose a topological basis for X and then choose in
addition the ṼT for all [`] and all T > 0.

Lemma 2.3.7 (Borel, Serre). The Borel-Serre compactification XBS is homotopy-
equivalent to X.

Proof. See e.g. [BS73, §9].

2.4 The Lie Algebra of SU(2, 1)

We here discuss the Lie algebra of G. This will use standard constructions, and is
mostly of use in defining notation for later use.

Definition 2.4.1. Let G be as in Definition 2.1.4, and J the matrix defining the
group:

J =


1

1
−1

 .
Let X† be the conjugate transpose of the matrix X. By differentiating the relation
X†JX = J , we find that the real Lie Algebra g0 of G is given by

g0 := {X ∈M3(C) | XJ + JX† = 0}

A 1-line calculation gives the following algebraic realisation:

Lemma 2.4.2. g0 is an 8-dimensional real Lie Algebra, parameterised as:

g0 =

X ∈M3(C), X =


ia d e

−d ib f

e f ic

 | a, b, c ∈ R, e, f ∈ C, a+ b+ c = 0

 .

We reiterate that this is a real Lie Algebra, not a complex one. We write

g := g0 ⊗R C

for the complexification of g0, which is taken to be a right C-vector space. This
notation is replicated throughout the paper.
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With k0 the real Lie algebra of the maximal compact subgroup K = Stab(v3) '
S(U(2)× U(1)) from Definition 2.1.4(i), we may write g0 = k0 + p0 where

k0 = {


ia d 0
−d ib 0
0 0 ic

 | a+ b+ c = 0}

and

p0 = {


0 0 e

−0 0 f

e f 0

}.
Note that k0 is a Lie subalgebra of g0, but p0 is not - one may calculate that
[p0, p0] ⊂ k0. The adjoint representation of k0 is naturally derived from this relation,
as [k0, p0] ⊂ p0 - this will be what we use to build representations of G in §3.1.

Definition 2.4.3. (i) We define the R-linear map

φV : ∧2
RV → u(V ), φV (v ∧ v′)(z) = (v, z)v′ − (v′, z)v

and hence define the elements

αr,s := φV (vr ∧ vs), βr,s := φV (ivr ∧ vs) ∈ u(V ).

We hence have that k0 = spanR{β1,1 − β2,2, β2,2 − β3,3, α1,2, β1,2} and p0 =
spanR{α1,3, β1,3, α2,3, β2,3}

(ii) We hence define the following dual forms:

ωr,3 = α∗r,3, ω′r,3 = β∗r,3

and
ξr := 1

2
(
ωr,3 + ω′r,3i

)
, ξr := 1

2
(
ωr,3 − ω′r,3i

)
so that ξ1, ξ1, ξ2, ξ2 ∈ p∗.

We now fix a cusp ` as in our Witt splitting (2.1.7), and analyse the Lie algebra of the
associated nilpotent subgroup N = N` of SU(2, 1), written explicitly in Definition
2.2.1.

Definition 2.4.4. As in §2.4, we denote the real Lie algebra of N by n0, and the
right complexification by n = n0 ⊗R C. With respect to the Witt basis (2.1.7), we
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may write

n0 = {m(s, r) =


0 −s||w`||2 −(`, `′)rδk

0 (`, `′)s
0

 | s ∈ C, r ∈ R},

as one may easily check that exp(m(s, r)) = n(s, r).

The bracket relation in this Lie Algebra is:

[m(s, r),m(s′, r′)] = m

(
0, 2||w`||2
|δk|

I(ss′)
)
. (2.4.1)

As in the global case, we wish to define duals forms on each nilpotent subalgebra.

Definition 2.4.5. We define the dual forms ω̃` = m(1, 0)∗ and ω̃′` = m(i, 0)∗ as the
duals of m(1, 0) and m(i, 0) respectively, and hence let

Ω = 1
2 (ω̃` + ω̃′`i) , Ω = 1

2 (ω̃` − ω̃′`i)

We then define κ as the dual of m(0, 1) ∈ n; hence Ω, Ω, κ ∈ n∗.

Lemma 2.4.6. Let Ω, Ω and κ ∈ n∗` be as in Definition 2.4.5. Then they satisfy
the following relation:

dκ = −4||w`||2
δk

Ω ∧ Ω ∈ ∧2p∗

Proof. Because the elements m(0, r) and m(0, r′) commute for any r, r′ ∈ R, we use
(2.4.1) to find

dκ(m(s′, r′),m(s′′, r′′)) = κ

(
m

(
0, 2||w`||2I(s′′s′)

|δk|

))

= 2||w`||2I(s′′s′)
|δk|

. (2.4.2)

Similarly, by definition of the wedge product, the wedge product acts on ∧2n∗ as:

Ω ∧ Ω(m(s′, r′),m(s′′, r′′)) = i

2I(s′s′′).

This completes the proof.

2.5 The Geometry of the Heisenberg Group

We here expand some of the geometry of the Heisenberg group, to assist with our
analysis of the Borel-Serre boundary components. Throughout this chapter we
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assume a fixed cusp ` of D, its associated rational parabolic group P `, the nilpotent
Heisenberg group N ` ⊂ P `, and its real points N`. First we analyse the bundle
structure arising from the quotient group Γ`\N`.

Recall from (2.3.5) that we have a number C`,Γ ∈ Q such that

C(Γ ∩N`) = C(Γ`) = {n(0, r) | r ∈ C`,ΓZ}.

Hence, we may write:

Γ` = N` ∩ Γ = {n(s, r) | s ∈ q, r ∈ C`,ΓZ} =: N(q, C`,Γ) (2.5.1)

for some ideal q ⊂ k such that for all q, q′ in q:

I(qq′) ∈ |δk|C`,Γ
||w`||2

Z. (2.5.2)

Hence, we see that we may express e(P`) as a fibre bundle over a base torus:

S1 → e(P`)
π`−→ T 2

` := W`/q, (2.5.3)

where the second map is projection onto the torus:

π` : e(P`) 7→ T 2
` , π` (Γ`n(s, r)) = s+ q,

and S1 is the fibre circle above s ∈ W`/q. We now specialise:

Definition 2.5.1. For any s ∈ W`, we define

cs,` ≡ cs ⊂ e(P`)

to be the fibre above s with respect to the bundle (2.5.3).

Note that we often write the base fibre circle c0 as S1. Throughout the paper, it
will often be useful to consider e(P`) as N` with an equivalence relation on it, so an
examination of the product rule in N` gives that for any λ ∈ q and δ ∈ C`,ΓZ, we
may write

e(P`) = (C/q)× R/ ∼, (λ+ s, r + 〈λ, s〉) ∼ (s, r) ∼ (s, r + δ). (2.5.4)

Here the symplectic product 〈 , 〉 is defined by

〈s, s′〉 ≡ 〈s, s′〉` := ||w`||
2

|δk|
I(ss′). (2.5.5)

We pick a positively oriented integral basis λ1, λ2 of q, so that

I
(
λ1λ2

)
= vol (C/q) . (2.5.6)
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In particular, this quantity does not depend on the choice of λ1, λ2 (so long as we
retain the condition that they are positively oriented).

Definition 2.5.2. We define the depth of the group Γ at the cusp [`] as the quantity

d(Γ, `) := 〈λ1, λ2〉`
C`,Γ

,

which we have assumed in (2.5.2) to be an integer.

We now wish to discuss the integral homology of the boundary components e(P`) =
Γ`\N`, for Γ` ≡ N(q, C`,Γ) as in (2.5.1) (this is fixed for the rest of this discussion).

Proposition 2.5.3. e(P`) is a manifold with Poincaré duality, and the 0th, 1st and
3rd integral homology groups of e(P`) are given by

H0(e(P`),Z) = Z, H1(e(P`),Z) = q⊕ Z
2d(Γ, `)Z , H3(e(P`),Z) = Z

Proof. We know that N` is a Lie group, so this is an orientable manifold, and every
element of the discrete subgroup Γ` will act on N` as an orientation-preserving
diffeomorphism: hence, e(P`) = Γ`\N` will also be orientable. It is clearly path-
connected and hence connected, and the given bundle structure in (2.5.3) should
convince us that e(P`) is compact. Hence, by definition we see that Poincaré duality
does indeed apply.

The result for H0 is simple enough: we know that e(P`) is a connected topological
space, so by elementary algebraic topology, it has 0’th integral homology ' Z,
spanned by the class of any fixed point in e(P`).

By Hurewicz’ theorem (see eg [BT95, Theorem 17.20]) we know that as e(P`) is
path-connected, H1(e(P`),Z) is the abelianisation of the first fundamental group
π1(e(P`)). In [Sco83, pp.470] it is calculated that π1(e(P`)) is isomorphic to Γ`, so
with the simple calculation that

[n(s, r), n(s′, r′)] = n(0, 2〈s, s′〉)

we see that
[Γ`,Γ`] = {n(0, r) | r ∈ 2〈λ1, λ2〉Z}.

Hence, by the above two cited results, we have found H1(e(P`),Z). The result for
H3 follows again because it is an orientable, connected & compact manifold, so we
know that H3(e(P`),Z) = Z[e(P`)] ' Z is generated by the fundamental class.

Furthermore, we may use our above analysis of the bundle structure of e(P`) to say
which geometric elements represent the basis elements in e.g. simplicial homology:
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consulting (2.5.3) and the proof of Proposition 2.5.3, it is clear that the basis of
H1(e(P`),Z) isomorphic to q is just given by the homology basis of the base torus
T 2
` , and the finite abelian group corresponds to the circle fibre S1, which may be

wrapped around 2d(Γ, `) times before it becomes trivial.





Chapter 3

Coefficients and Representation
Theory

In this chapter, we give a brief exposition of the representation theory of SU(2, 1),
and a similar treatment of homology and cohomology with coefficients in a vector
bundle. Our aim throughout will be giving a necessary theoretical exposition of
the vector bundles derived from G-representations, which will allow us to work
with generalised homological and cohomological objects in §4 and §6. The work on
representation theory is largely based on the work of [FH04] and on the exposition
given on harmonic operators in [FM06, §3]; the work on vector bundles and coefficient
systems comes similarly from [BT95] and [FM06, §2].

3.1 Finite Dimensional Irreducible
Representations of SU(2, 1) and their Weights

We start by letting V be an arbitrary hermitian vector space (not necessarily positive-
definite), and hence let G = SU(V ). The representation used will, as always, be the
standard representation of V , whereby G acts as a matrix on the column vectors of
V :

G× V → V, (g, v)→ g · v, (3.1.1)

and we let V ∗ be the dual representation of V ; we note that because V is here a
unitary representation, ρ∗(g) = ρ(g).

We may hence define
T l,l

′(V ) := V ⊗l ⊗ (V ∗)⊗l
′

(3.1.2)

with l, l′ ∈ N0 non-negative integers; this will be a representation of G as a vector
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product of representations. This space has an inner product on it given by extending((
xi ⊗ x̃∗j

)
,
(
yi ⊗ ỹ∗j

))
=
∏
i,j

(
xi,yi

)(
ỹj, x̃j

)

For every pair of integers I = (i, j) ∈ [l]× [l′], we define maps

PI ≡ Pi,j : T l,l′(V )→ T l−1,l′−1(V ),

which remove the (i, j)’th place, so that

Pi,j
(

(w1 ⊗ . . .⊗ wl)⊗ (w∗1 ⊗ . . .⊗ w∗l′)
)

= w∗j (wi) (w1 ⊗ . . .⊗ ŵi ⊗ . . .⊗ wl)⊗ (w∗1 ⊗ . . .⊗ ŵj∗ ⊗ . . .⊗ w∗l′) .

We note that if l or l′ is 0 then we may still allow this map; if e.g. l′ = 0 then as we
have defined [0] = ∅, we let Pi,0 : T l,0(V )→ V ⊗(l−1).

Definition 3.1.1. (i) For any non-negative integers l, l′ ∈ N, we define

V [l,l′] := ∩I⊂[l]×[l′]Ker(PI)

We let H : T l,l′(V ) 7→ V [l,l′] be the vector space projection map.

(ii) We may write the symmetric powers Sl,l′(V ) as a subspace of T l,l′(V ); we may
hence define the harmonic subspace as the image of a projection map from the
symmetric powers:

Hl,l′(V ) := πH
(
Syml(V )⊗ Syml′ (V ∗)

)
,

We emphasise here the difference between H and πH (namely, that they have
different domains); the latter shall be of primary interest.

Theorem 3.1.2. For all finite-dimensional hermitian vector spaces V , the SU(V )-
module Hl,l′(V ) is irreducible with highest weight (l, l′).

Proof. Let g0 refer to the real Lie algebra of the Lie group SU(V ), with right
complexification g = g0 ⊗ C; one may check that g ' slp+q(C). Further, one may
check in e.g. [FH04, §15] that Hl,l′(V ) is an irreducible representation of slp+q(C)
- these are classified by the exact weight structures that we have constructed, and
so give us irreducible representations by the general representation theory of special
linear groups, [FH04, Proposition 15.15].

We now wish to interpret the harmonic space in Theorem 3.1.2 using a representation
space of polynomials.; we herein fix V to be our signature (2, 1) hermitian vector
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space from §2. It is well known that the symmetric powers are isomorphic to the
space of homogeneous polynomials of degree l in the variables zi:

Syml(V ) ' C[zi]l,

and by identifying V ∗ with V , we may similarly write

Syml′(V ) ' C[zi]l′ .

We define the Laplacian operator for V as

∆ :=
2∑

α=1

∂2

∂zα∂zα
− ∂2

∂z3∂z3
, (3.1.3)

so that
Hl,l(V ) ' Ker{∆ : C[zi, zi]l,l → C[zi, zi]l−1,l−1}.

Example 3.1.3. We start with the first non-trivial example: namely, with V as
above, we look at the case l = l′ = 1. Then S1,1(V ) = V ⊗ V ∗, and an easy starting
subrepresentation is given by the metric:

ε = {C (v1 ⊗ v∗1 + v2 ⊗ v∗2 − v3 ⊗ v∗3)};

indeed, by definition of the representation V ⊗ V ∗, G = SU(V ) acts trivially on ε,
so ε ' 1G. ∇ here is a surjective map

∇ : C [zi, zi]1,1 → C,

so by the rank-nullity theorem, we have V ⊗ V ∗ ' 1G ⊕Hl,l(V ).

We now move onto a more general analysis of the structure of the weight spaces of
Hl,l(V ), for V our fixed Hermitian vector space from §2. As ever in our analysis
of the weight spaces of a finite dimensional Lie algebra, what we start with is the
eigenspaces of the centre of the Lie algebra under the adjoint action.

We may write a basis of su(2, 1) with respect to the orthonormal basis {v1, v2, v3}
as follows:

λ1 =


i

−i
0

 , λ2 =


0

i

−i

 , λ3 = 1
2


0 −1 0
1
0

 , λ4 = 1
2


0 i 0
i

0



λ5 = 1
2


0 0 1
0
1

 , λ6 = 1
2


0 0 i

0
−i

 , λ7 = 1
2


0
1

0 1 0

 , λ8 = 1
2


0
i

0 −i 0

 .
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The central subalgebra may be seen as k0 = spanR{λ1, λ2}; hence, for the principal
eigenvalues, we find the following lemma:

Lemma 3.1.4. The action of k0 through the adjoint representation on su(2, 1) is as
follows:

[λ1, λ3] = −2λ4, [λ1, λ4] = 2λ3, [λ1, λ5] = λ6, [λ1, λ6] = −λ5, [λ1, λ7] = −λ8, [λ1, λ8] = λ7

[λ2, λ3] = λ4, [λ2, λ4] = −λ3, [λ2, λ5] = λ6, [λ2, λ6] = −λ5, [λ2, λ7] = 2λ8, [λ2, λ8] = −2λ7.

Hence, we may write down the following eigenbases of g with respect to the adjoint
action of k:

[λ1, λ3 ± iλ4] = (±2i) (λ3 ± iλ4) ,

[λ1, λ5 ± iλ6] = (∓i) (λ5 ± iλ6) ,

[λ1, λ7 ± iλ8] = (±i) (λ7 ± iλ8) ,

and

[λ2, λ3 ± iλ4] = (±i) (λ3 ± iλ4) ,

[λ2, λ5 ± iλ6] = (∓i) (λ5 ± iλ6) ,

[λ2, λ7 ± iλ8] = (±2i) (λ7 ± iλ8) .

Proof. The action of k0 is simple matrix calculations; from there, the existence of
the eigenbases follows immediately.

Our objective here is hence the following: in the irreducible representation Hl,l(V ),
to write down a highest weight vector and compute the weight changing operators
(analogous to the raising and lowering operators for sl2(C)). Throughout, we refer
to the operators λj + iλj+1, j ∈ {3, 5, 7} as being in the − space and λj − iλj+1,
j ∈ {3, 5, 7} being "in the + space"; this is because the former includes the anti-
holomorphic part p− of p, and the latter includes the holomorphic part p+.

Calculations in linear algebra give us the following:

[λ3+iλ4, λ3−iλ4] = iλ1, [λ5+iλ6, λ5−iλ6] = i(λ1−λ2), [λ7+iλ8, λ7−iλ8] = iλ2,

so that λj + iλj+1 is the weight inverse of λj − iλj+1. We further may find the
following relations in the − and + space:

[λ3 − iλ4, λ5 − iλ6] = λ7 − iλ8, [λ3 + iλ4, λ5 + iλ6] = λ7 + iλ8.

So, in this setting, we do the following - which borrows largely from the analysis of
sl3(C) representations in [FH04, §12].
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Definition 3.1.5. Let W be any representation of g. We say that a vector w in W
is a highest weight vector if it satisfies the two following conditions:

(i) It is an eigenvector for the action of the central algebra k0.

(ii) It is annihilated by the + space matrices λ3 − iλ4, λ5 − iλ6, λ7 − iλ8:

w ∈ Ker(λ3 − iλ4) ∩Ker(λ5 − iλ6) ∩Ker(λ7 − iλ8)

Of course, this is not necessarily unique - but again, we have some ideas for how to
construct one. We start by finding a weight 0 vector v0: indeed, a bit of calculation
gives the following:

v0 := πH
(
vl2 ⊗ (v∗2)l

)
as one may check that λ1(v0) = λ2(v0) = 0, using the additive action of the lie
algebra on vector products. Using the isomorphism between g and sl3(C), we have
immediately the following:

Proposition 3.1.6. [FH04, Claim 12.10] Let W be some finite-dimensional irredu-
cible representation of g and w ∈ W some highest weight vector, as in Definition
3.1.5. Then W is generated by the image of w under the action of λ3 + iλ4, λ5 + iλ6

and λ7 + iλ8.

So, by the standard rubric of weight diagrams, we wish to find a highest weight
vector by applying the + space to v0. We may quickly check that the + space
acts trivially on V , and (λ3 − iλ4)(v∗2) = −v∗1 and (λ7 − iλ8)(v∗2) = v∗3 are the only
non-trivial actions on the basis of V . We hence make the following educated guess
for a highest weight vector:

vH = (λ7 − iλ8)l (v0) = πH
(
(λ7 − iλ8)l(vl2 ⊗ (v∗2)l)

)
Indeed, using the above calculations, we may find:

vH = l!πH
(
vl2 ⊗ (v∗3)l

)
.

Proposition 3.1.7. vH is a highest weight vector in Hl,l(V ).

Proof. By our calculations in Lemma 3.1.4, vH is a weight vector:

λ1(vH) = πH
[
λ1
(
(λ7 − iλ8)l (v0)

)]
= πH

[
([λ1, λ7 − iλ8] + (λ7 − iλ8)λ1) (λ7 − iλ8)l−1 (v0)

]
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= πH
[
(−i(λ7 − iλ8) + (λ7 − iλ8)λ1) (λ7 − iλ8)l−1 (v0)

]
= −ivH + πH

[
(λ7 − iλ8)λ1 (λ7 − iλ8)l−1 (v0)

]
.

Iterating this calculation - namely, using the bracket relation from Lemma 3.1.4 to
interchange λ1 and λ7 − iλ8 - a further l − 1 times, we find that λ1(vH) = −ilvH .

By an identical calculation with λ2, we see that

λ2(vH) = −2ilvH ,

so that vH is a weight vector for the action of k. It is now a fairly trivial calculation
to check that the + space acts trivially on vH : indeed, we may check that the vectors
v2 and v∗3 are mapped to 0 by the action of all the matrices in the − space, so by
definition of the action of the Lie algebra on vector products, vH is in the kernel of
these maps.

The astute reader may have noticed that this is hardly the only choice of highest
weight vector we could have picked - indeed, using a hexagonal weight diagram as
in e.g. [FH04, §12], anything in the top right edge will work equally well.

Though this is not all we could say about the representation theory of SU(2, 1), this
is more or less sufficient for our purposes - namely, it will allow us to move around
the weight diagram for each representation, and to find primitives for v0 with respect
to all of the raising operators in the + space.

3.2 Homology and Cohomology with Coefficients

In this section we revisit the theory of simplicial homology and cohomology with
coefficients in a flat vector bundle E. In principle, it would not be fundament-
ally harder to develop the theory of singular (co)homology, but as all the objects
under consideration in future chapters will be simplicial complexes, this would be
redundant.

Let X0 be a simplicial complex such that its topological space X is a finite dimen-
sional manifold, and let E → X be a flat vector bundle. For p ∈ N0, the abelian
group of E-valued p-chains is written:

Zp(X,E) = {
n∑
j=1

σj⊗sj | n ∈ N, σj an oriented p−simplex and sj a flat section of E over σj}.

For convenience, we define Zp(X,E) = {0} for p ≤ −1. For σ a fixed oriented
p-simplex, we let Γ(σ,E) be the group of sections of E over σ.
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For any face σ̃j of σj, a flat section s̃j of E over σ̃j may be uniquely extended to a
section sj of E over σj; we write this section eσj ,σ̃j(s̃j).

Definition 3.2.1. (i) Writing a p-simplex σ as σ = (v0, . . . , vp), we define the
j’th face of σ as σj = (v0, . . . , vj−1, vj+1, . . . , vp).

(ii) The boundary operator is hence defined as:

∂ : Zp(X,E)→ Zp−1(X,E), ∂(σ ⊗ s) =
p∑
j=0

(−1)jσj ⊗ rσj ,σ(s),

where rσj ,σ(s) is the natural restriction of s to the j’th face.

One may show as always that ∂2 : Zp(X,E)→ Zp−2(X,E) is trivial, so this defines
a boundary operator. We let Cp(X,E) = Ker(∂) be the cycles in Zp(X,E), and
Bp(X,E) ⊂ Cp(X,E) as the boundaries and so we have a homology theory, with
the group written Hp(X,E).

We now treat the cohomological theory. The abelian group of E-valued p-cochains
is written:

Zp(X,E) = {f : Zp(X)→ Γ(·, E), f(σ) ∈ Γ(σ,E)}

where Zp(X) is the abelian group of p-simplices.

Definition 3.2.2. The coboundary operator is defined:

δ : Zp(X,E)→ Zp+1(X,E), δ(f)(σ) =
p∑
j=0

(−1)jeσ,σj(f(σj)).

This satisfies δ2 = 0 and so this defines a cohomology theory, with the cohomology
groups written Hp(X,E).

Remark 3.2.3. We may define relative homology (resp. cohomology) groups for any
simplicial subspace Y of X, written Hp(X, Y,E) (resp. Hp(X, Y,E)), and defined
as the homology of the complex of E-valued p-chains whose boundary is a non-zero
p− 1 chain only on Y (similarly for the cohomology).

We now discuss the usual pairings and products in the homology and cohomology
theories; for this section we fix flat bundles E, F, G over X and a parallel section µ
of Hom(E ⊗ F,G) (ie a bundle map µ : E ⊗ F → G).

Definition 3.2.4. (i) Let f ∈ Cp(X,E) and σ ⊗ s ∈ Cp(X,E). Then the Kro-
necker pairing of f and σ ⊗ s is given by:

〈f, σ ⊗ s〉 := µ (f(σ)⊗ s)
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(ii) In exactly the same way as in the case of trivial coefficients - see eg [BT95,
p.192] - we may introduce the cup and cap products

∪ : Hp(X,E)⊗Hp′(X,F )→ Hp+p′(X,G)

∩ : Hp(X,E)⊗Hp′(X,F )→ Hp−p′(X,G)

where for the latter we require p ≥ p′ (implicitly, this will use our specified
choice of µ as above).

Proposition 3.2.5. (i) Let X be a compact oriented manifold of dimension k

with boundary ∂X. Then the pairing with the fundamental class [X, ∂X] gives
the isomorphism

P : Hp(X,E)→ Hk−p(X, ∂X,E), P(f) = f ∩ [X, ∂X]

(ii) More generally, let X be a not-necessarily compact manifold with boundary
∂X; then the Poincaré duality is as follows:

P : Hp
c (X,E)→ Hk−p(X, ∂X,E)

where without loss of generality we denote the map with the same letter. Co-
homology with compact support here formally means that the representative of
the class is compactly supported in each of the fibres of E → X.

We now quote one more result which will be important in our consideration of the
duality of our elements. We may also give a de Rham theory of (co)homology with
coefficients in E; one may find the details in eg [BT95, §6], but given a vector bundle
E with a connection ∇, a differential p-form is a section of

∧pT ∗(X)⊗ E ' Hom (∧pT (X), E)

which is closed w.r.t. the differential d∇ given by the equation:

d∇(ω)(X1, . . . , Xp+1) =
p∑
j=1

(−1)j−1∇Xi

(
ω
(
X1, . . . , X̂j, . . . , Xp+1

))
+
∑
i<j

(−1)i+jω
(
[Xi, Xj], X1, . . . , X̂i, . . . X̂j, . . . Xp+1

)
.

The group of such de Rham cochains, with the differential d∇, is denoted Cp
dR(X,E);

for σ any p-simplex and U some open neighbourhood of σ in X, we may write
σ = ∑

j ωj⊗ sj for ωj ordinary de Rham forms and sj sections of E | U . The natural
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integration map between Cp
dR(X,E) and Cp(X,E) is hence given by

ιdR(ω)(σ) =
∑
j

(∫
σ
ωj

)
sj (3.2.1)

Proposition 3.2.6. (i) The map ιdR is trivial on cochains and descends to a map
ιdR : H•dR(X,E)→ H•(X,E) on cohomology which is an isomorphism.

(ii) Hence, we have Poincaré duality on flat vector bundles E → X of the form

P : Hp
c,dR(X,E)→ Hk−p(X, ∂X,E).

Proof. Part (i) is proven in e.g. [BT95, Theorem 12.15]; part (ii) is hence an
immediate corollary using the Poincaré duality of Proposition 3.2.5(ii).





Chapter 4

Special Cycles on Picard Modular
Surfaces

In this chapter, we introduce the homological side of the Kudla-Millson theory. First,
we define the special cycles Cx on our Picard modular surface X for all positive
vectors x, which will allow us to formulate the first version of the main theorem of
Kudla & Millson from [KM86] and [KM87]; namely, that the generating series of
these special cycles is a modular form of weight 3. Our first step will be to look at
their natural extensions to the chain complexes constructed in §3.2. This will allow
us to state the first extension of the theorem of Kudla-Millson - namely, that the
generating series of the special cycles Cx,[l,l] with coefficients in Hl,l(V ) is modular
of weight 2l+ 3. This theorem will not be proven at this stage - it makes more sense
to wait until the cohomological statement can be proven, and then use duality - so
we shall have to wait until the end of §6 for this.

Following this, our main focus in this chapter will be to look at the interaction
between the generalised special cycles Cx,[l,l] and each of the boundary compon-
ents e(P`). Using a similar argument to other work on modular cycles on Borel-
Serre compactifications, we shall create chains Ax,[l,l] ∈ Z2(∂XBS

,Hl,l(V )) such that
∂Ax,[l,l] = ∂Cx,[l,l]. This will allow us to define capped cycles on X

BS which are
closed and whose generating series will be modular; analogously, this will be proven
in §8.

4.1 Special Cycles on X

We now return to the geometry of §2, namely where D = G/K is the symmetric
space of a unitary group of signature (2, 1), corresponding to a hermitian vector
space V /k.
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Definition 4.1.1. Let x ∈ V be a positive, rational vector. In the projective model,
we may define

Dx := {z ∈ D | z ⊥ x}

and for Γx the stabiliser of x in Γ, we let Cx := Γx\Dx. For n ∈ Q>0, h ∈ L′/L and
L = L+ h as before, we define the (finite) sum of Cx’s:

Cn ≡ Cn,h :=
∑

x∈L,(x,x)=2n
mod Γ

Cx (4.1.1)

Dx is embedded in D as a topological subspace; indeed, by its definition, we may
realise it as a subset of the projective lines in PV−. For Γx[v] ∈ Cx, the natural map
from Cx → X given by

Γx[v]→ Γ[v] (4.1.2)

is well-defined.

We say an element γ ∈ G is neat if the subgroup of C∗ generated by the eigenvalues
of γ is torsion-free; we hence say that the arithmetic subgroup Γ is neat if all γ ∈ Γ
are neat elements. In [FM06, Proposition 4.4], it is shown that for all x ∈ V , there
exists a neat subgroup Γ(x) ⊂ Γ such that Cx injects into Γ(x)\D.

In general, for any chosen Γ, however, the Cx will not inject into X; henceforth, we
will identify Cx with its natural image in X = Γ\D, and so write it as a chain on X.
As in §2, we shall herein assume that Γ is indeed torsion-free.

So, we are now in a position to state the homological part of the Kudla-Millson
theorem.

Theorem 4.1.2 (Kudla-Millson, ’86). Let η be a closed, compactly supported and
rapidly decreasing differential form on X, representing a class [η] ∈ H2

c (X). Let L
be an even, integral lattice in V of level M , and let L be some coset of L′/L.

Using the map from (4.1.2), we may consider Cx as a chain on X: this represents a
relative homology class on X:

[Cx] ∈ H1(X, ∂X,Z).

This class is generically non-compact, and the integrals given by the Kronecker pairing∫
Cx
η

all converge. We let ΩX be the Kähler form on X, so that c1(X) = i
2πΩX is the

Chern form on X; then the sum

1
2π

∫
X

(η ∧ ΩX) +
∑
n>0

[∫
Cn
η
]
e2πinτ ∈M3(Γ(M))
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is a holomorphic modular form of weight 3 and level M .

This theorem is proven in the papers [KM86] and [KM87] in complete generality;
namely, when V is any real, complex or quaternionic split vector space - and hence
when G is any finite dimensional orthogonal, unitary or symplectic Lie group.

We here note that when we sum over "positive n" in e.g. Theorem 4.1.2 and the
sum in consideration is over some collection of special cycles, what we mean is to
sum over all non-trivial norms n of elements in L, so that this is really a sum over a
well-ordered and discrete set as usual.

For the rest of this section, we shall attempt to recreate Theorem 4.1.2 for generic
odd weight 2l + 3; we recall our work on G-representations from §3.1. For any
G-representation E, and any x ∈ V of positive length, the bundle we will be working
with is the natural one given locally as a projection:

Cx ×Γx E → Cx.

For any Γx-invariant vector w in E, we may write sections sw of the bundle as

sw(z) = (z, w);

for simplicity we write Cx ⊗ w ≡ Cx ⊗ sw. Hence, fixing E = Sl,l
′(V ), the naturally

chosen w here is given by xl ⊗ (x∗)l′ .

This is a constant and thus parallel section; we may now write down the special
cycle with coefficients in the relevant representations!

Proposition 4.1.3. Fix integers l, l′ ∈ N0, and any positive vector x ∈ V . We then
define the special cycle with coefficients in Sl,l′(V ) as follows:

Cx,l,l′ := Cx ⊗ xl ⊗ (x∗)l
′
.

Similarly, we then define the special cycle with coefficients for the representation
Hl,l′(V ) from Definition 3.1.1 as

Cx,[l,l′] = Cx ⊗ πH
(
xl ⊗ (x∗)l

′)
.

These are cycles - namely, they are closed - and so in particular represent classes in
homology:

[Cx,l,l′ ] ∈ H2

(
X, ∂X, S̃l,l′(V )

)
,

[
Cx,[l,l′]

]
∈ H2

(
X, ∂X, H̃l,l′(V )

)
.

Proof. We shall prove this in the complex with symmetric coefficients; it should
be clear that as the second complex is a restriction of the first, closure in the
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first implies closure in the second. Indeed, examining the boundary operator from
Definition 3.2.1, and picking some simplicial decomposition of Cx, it is clear that for
all Cx ⊗ v ∈ C2(X,Sl,l′(V )), we will have

∂ (Cx ⊗ v) = ∂0 (Cx)⊗ v

where the boundary operator without coefficients is denoted ∂0. Hence, the closure
of Cx,l,l′ follows immediately from ∂0(Cx) = 0 from the equivalent statement for
closure without coefficients in Theorem 4.1.2.

Remark 4.1.4. We note here that although, a priori, we cannot say that the
harmonic projection πH(xl ⊗ (x∗)l′) is non-zero, it should not be hard to imagine
why it is generically so. For example, in [FM11, §4], they are able to describe the
integrals of the analogous orthogonal special cycles Cx,[k] against differential forms
to give weighted periods of f(z) over the cycle Cx - which in particular are described
by Kohnen and Zagier in [KZ84].

More specifically, one may e.g. look at l = l′ = 1 to get an idea of why these vectors
are generically non-zero; indeed, in this case, V ⊗ V ∗ = 1 ⊕H1,1(V ), where 1 is a
1-dimensional representation spanned by the metric. In particular, this tells us that
all vectors x⊗ x∗ will not project to 0 in H1,1(V ), as there is no vector x ∈ V such
that x⊗ x∗ is proportional to the metric.

As an example of this, see Example 8.2.5 to see why the lift of the capped theta class
is non-trivial - and in particular why these vectors πH(xl ⊗ (x∗)l) are generically
non-zero.

We may hence state the main theorem analogising Theorem 4.1.2; the proof of
the most important part will be deferred until the following chapter (where the
cohomological side will be treated), but it makes sense to state it before we move
onto the boundary behaviour.

Theorem 4.1.5. Fix a non-negative integer l ≥ 0. Let η ∈ H2
c (X, H̃l,l(V )) be a

compactly supported and rapidly decreasing differential form with coefficients in the
irreducible representation Hl,l(V ), and let L be some coset of L′/L, where L is of
level M . Considering Cx → X, and letting η ∈ H2

c (X, H̃l,l(V )) be some rapidly
decreasing and compactly supported differential form, then the integrals∫

Cx,[l,l]
η :=

∫
Cx

(
η, πH

(
xl ⊗ (x∗)l

))
all converge - we here take this integral as the scalar integral resulting in pairing the
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coefficients in each fibre. We let ΩX be the Kähler form on X, and η as above. Then

1
2πδl=0

∫
X

(η ∧ ΩX) +
∑
n>0

[∫
Cn,[l,l]

η

]
e2πinτ ∈M3+2l(Γ(M))

is a holomorphic modular form of weight 3 + 2l and level M .

Proof. The convergence of all the integrals
∫
Cx,[l,l]

η is an immediate consequence
of our requirement that η be compactly supported and rapidly decreasing on each
fibre. The proof of the weight and modularity will be at the end of the chapter
on the construction of the Schwartz forms - in Corollary 6.4.2 to Theorem 6.4.1 -
but it should be intuitively clear to the reader at this point why we believe it to be
true.

4.2 Restriction and Capping of Special Cycles

In this section, we shall look at the restriction of the special cycles from §4.1 to the
boundary components. What we shall see is that at each boundary component e(P`)
of XBS, each cycle Cx,[l,l] has boundary a finite collection of 1-cycles. These 1-cycles
are themselves boundaries in Z1(e(P`),Hl,l(V )), and so we may create modified
2-cycles Cc

x,[l,l] such that ∂Cc
x,[l,l] = 0 in X

BS; crucially, these new cycles will be
integrable against non-compact cohomology, and so we will be able to expand the
results of Theorem 4.1.5 to drop the condition on η being compactly supported and
rapidly decreasing.

A quadratic space is said to be split if there is a subspace that is equal to its own
orthogonal complement. In [Fun02, Lemma 3.6], in the analogous real case, it is
proven that

Cx is an infinite geodesic at [`] ⇐⇒ x⊥ is split ⇐⇒ q(x) = ||w`||2N(α)

for some α ∈ k; the proof for the complex vector space is identical. As we assume
x is of positive length, then x⊥ is a hyperbolic space of complex signature (1, 1);
in particular, if Cx is infinite at [`] (namely, for all neighborhoods U of [`] in X,
U ∩ Cx 6= 0), x = β`+ αw`. We focus on this case for the moment.

We start by investigating the interaction of

Dx,[l,l] := Dx ⊗ πH
(
xl ⊗ (x∗)l

)
∈ C2

(
D,Hl,l(V )

)
with N`, the enlargement of D at the cusp `; it is clear (because Γx acts trivially on
the vector components of Dx,[l,l]) that Cx,[l,l] = Γx\Dx,[l,l].
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We now recall the horospherical decomposition N`×A` of D given in Corollary 2.2.5,
and the map ψ : H`,w`,`′ → N` × A` from (2.2.14); by definition of the space Dx as
the space of vectors perpendicular to x, we may write:

Dx,[l,l] ' {[n(s, r), t]⊗ πH
(
xl ⊗ (x∗)l

)
|
(
ψ−1[n(s, r), t],x

)
= 0}

= {[n(s, r), t]⊗ πH
(
xl ⊗ (x∗)l

)
| β + α||w`||2s = 0}

=
{[
n (s(x), r) , t

]
⊗ πH

(
xl ⊗ (x∗)l

)
| r ∈ R, t ∈ R+

}
.

where we have defined s(x) = −β/(α||w`||2).

Lemma 4.2.1. Fix a rational isotropic line ` of V . Let x = β` + αw` ∈ V be
a positive-length vector split at [`], so that Dx,[l,l] intersects non-trivially with the
boundary component N` of the Borel-Serre enlargement DBS. For such an x, we let
s(x) := −β/(α(w`, w`)) as above. Then considering the Borel-Serre enlargement, the
intersection at the cusp corresponding to ` is given by:

Dx,[l,l] ∩N` =
{
n (s(x), r)⊗ πH

(
xl ⊗ (x∗)l

)
| r ∈ R

}
.

Now, using this, we may characterise what the equivalent picture is on the quotient
X = Γ\D and its Borel-Serre compactification.

Lemma 4.2.2. We now fix a cusp class [`] of X; for any positive n ∈ Q, we may
introduce the following subset of the lattice coset L:

Ln,` := {x ∈ L split | (x,x) = 2n, x ⊥ `};

by our work above, we know that for all x ∈ Ln,`, Cx,[l,l] will intersect non-trivially
with the boundary component e(P`) at [`].

For y ∈ Ln,`, we let cy,` = cs(y),` ⊂ e(P`) be the fibre circle above s(y) ∈ T 2
` . Then:

∂`Cx,[l,l] := Cx,[l,l] ∩ e(P`) =
∐

y∈Γ`\Ln,`
y=γx, γ∈Γ

cy,` ⊗ πH
(
xl ⊗ (x∗)l

)
,

and for all x 6∈ Ln,`, ∂`Cx,[l,l] = 0.

Proof. We fix elements d = [n(s(x, r), t] and d′ = [n(s(x), r′), t′] in Dx, and let d`, d′`
be the images in the boundary component e(P`). Then by definition d ≡ d′ in X if
and only if d = d′γ for some γ ∈ Γ; analogously, d` ≡ d′` if and only if d` = d′`γ` for
some γ` ∈ Γ`. Hence, by definition, the closure of Cx includes all the Γ translates of
cx, and so the statement is proven for trivial coefficients.

Moreover, it is clear that for any Γx-invariant vector v ∈ Sl,l(V ),

∂`(Cx ⊗ v) = ∂0,`(Cx)⊗ v; .
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hence, the coefficients fit harmlessly onto the end - in particular, the identical result
holds in the complex C2(X,Hl,l(V )).

So, for any given x ∈ V of positive length, we wish to find a two-cycle A`x,[l,l] ⊂ e(P`)
such that ∂`A`x,[l,l] = ∂`Cx,[l,l].

We first introduce some generic algebraic objects which will allow us to deal with the
denominators of these objects. Formally, the cycles cx are cycles with coefficients in
the trivial representation Q of G; in this way, the natural integral structure came
from Z, the ring of integers of Q. When we now work in Hl,l(V ), we wish to define
a Z-submodule which replicates the natural integral structure; this will follow the
work of Harder on this subject.

Definition 4.2.3. Let Sl,l′(V ) be the vector space of symmetric powers as above,
and let πH : Sl,l′(V )→ Hl,l′(V ) be the projection into the harmonic subspace.

We let Sl,l′(V ) be the symmetric powers over k of V l ⊗k (V ∗)l′ , and Hl,l′(V ) the
harmonic vectors; we may understand these objects as either a Q or a k-vector space.

For L ∈ L′/L some coset of an even and integral lattice L, we may define the
Z-module Sl,l′(L) as follows:

Sl,l
′(L) = {x ∈ Sl,l′(V ) | all components of x in L},

and hence define Hl,l′(L) = πH(Sl,l′(L)). For R a Z-module, we may extend the
coefficients on these modules by letting Hl,l′(L)(R) = Hl,l′(L)⊗Z R.

In particular, we shall be interested in these module constructions when R′ is a
subring of Q given by the inversion of some integers in Z.

We start our analysis of the capping procedure with the immediate question: why
should such a cap exist? In the existing literature, such things are common - see for
example [FM14] - but there are also examples where they explicitly cannot exist -
see e.g. [FM11], where the caps exist only when the coefficient system is non-trivial.
We shall start by looking at the case l = 0 - where the coefficients are in Q - and
then try to adapt these methods to the case of coefficients in Hl,l(V ) for l ≥ 1. We
let dw and dw be the toroidal 1-forms on W`, given by the image in the evaluation
map of the forms Ω` and Ω`, written in Definition 2.4.5:

dw = π` (Ω`) , dw = π`
(
Ω`

)

In the case l = 0, we may see as an immediate corollary of Proposition 2.5.3
that H1

dR(e(P`)) is spanned by the projections into e(P`) of dw and dw, so that in
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particular ∫
cx,`

η = 〈cx, η〉 = 0 (4.2.1)

for all η ∈ H1
dR(e(P`)). This tells us that this 1-cycle is exact, and so in this case

the cap must exist.

Lemma 4.2.4. Let all the y which parameterise the boundary fibre circles of Cx in
e(P`) be denoted

{x | `} = {y ∈ Γ`\Ln,` | y = γx}

For x ∈ L∩W` and y ∈ {x | `}, the special cycles cx ⊗ xl ⊗ (x∗)l and cy ⊗ yl ⊗ (y∗)l

are homologous.

Proof. More specifically, we may say that they are parallel: we consider the action
of N on the complex Γ(e(P`), H̃l,l(V )) of sections on the bundle generated by the
harmonic representation. Let x = αw` and y = β`+αw`. Then the nilpotent matrix
n(s(x), 0) acts on the fibre circle as:

n(s(x), 0) · n(0, r) = n(s(x), r),

and on the vector components as:

n(s(x), 0)x = −s(x)α`+ αw` =
(
β

α

)
α`+ αw` = y,

and exactly analogously for the action on x∗.

In particular, this lemma tells us that, heuristically, all the fibre circles of the same
norm related by Γ-maps are equivalent, so once we know a property up to homology
for one of them, we know it for them all.

We now look at the bounding of the cycles with trivial coefficients. By the results of
Lemma 4.2.4, we know here that all the distinct fibre circles in ∂`Cx are homologous.

We recall here the equivalence relation formulation from (2.5.4), and in particular
the chosen integral basis λ1, λ2 of the ideal q ⊂ k. Let x = β` + αw` ∈ Ln,` be an
arbitrary vector, with associated constant s(x) = −β/α ∈ k. Using the inclusion of
q in k, we write

s = s(x) = xλ1 + yλ2

for some rational numbers x and y (because we know that s(x) ∈ k). We define the
following 2-cycle in e(P`):

χs : [0, 1]2 7→ e(P`), χs(a, b) = n
[
(a+ x)λ1 + (b+ y)λ2,−(a+ x)(b+ y)〈λ1, λ2〉`

]
.
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In the following, we use the algebraic notation of singular homology. The boundary
of χs is hence given by:

∂χs =n
[
(a+ x)λ1 + yλ2,−(a+ x)y〈λ1, λ2〉`

]
+ n

[
(1 + x)λ1 + (b+ y)λ2,−(1 + x)(b+ y)〈λ1, λ2〉`

]
− n

[
(ã+ x)λ1 + (1 + y)λ2,−(ã+ x)(1 + y)〈λ1, λ2〉`

]
− n

[
xλ1 + (b̃+ y)λ2, x(b̃+ y)〈λ1, λ2〉`

]
,

where a, b, ã, b̃ ∈ [0, 1]. For the rest of the calculations we drop the specifications of
where the variables lie. Using the equivalence relations for the Γ` element n(−λ2, 0),
we find that:

n
[
(ã+ x)λ1 + (1 + y)λ2,−(ã+ x)(1 + y)〈λ1, λ2〉`

]
∼ n

[
− λ2 + (ã+ x)λ1 + (1 + y)λ2, 〈−λ2, (ã+ x)λ1 + (1 + y)λ2〉` − (ã+ x)(1 + y)

]
= n

[
(a+ x)λ1 + yλ2,−(a+ x)y〈λ1, λ2〉`

]
,

where the equality follows from 〈λ2, λ1〉` = −〈λ1, λ2〉`. Similarly:

n
[
(1 + x)λ1 + (b+ y)λ2,−(1 + x)(b+ y)〈λ1, λ2〉`

]
∼ n

[
− λ1 + (1 + x)λ1 + (b+ y)λ2, 〈−λ1, (1 + x)λ1 + (b+ y)λ2〉`

− (1 + x)(b+ y)〈λ1, λ2〉`
]

= n
[
xλ1 + (b+ y)λ2,−(2 + x)(b+ y)〈λ1, λ2〉`

]
.

Hence, we may write:

∂χs = n
[
xλ1+(b+y)λ2,−(2+x)(b+y)〈λ1, λ2〉`

]
−n

[
xλ1+(b̃+y)λ2, x(b̃+y)〈λ1, λ2〉`

]
,

(4.2.2)
where b, b̃ ∈ [0, 1]. One may easily see that

∂χs − n(xλ1 + yλ2,−2(˜̃b+ y)〈λ1, λ2〉`)

= n(bλ2,−2b〈λ1, λ2〉`)− n(b̃λ2, 0)− n(s(x),−2(˜̃b+ y)〈λ1, λ2〉`) (4.2.3)

= ∂Ts,`

is an oriented 1-cycle which bounds a singular 2-cycle Ts,` ∈ Z2(e(P`),Q) - indeed,
we may define Ts,` to be the 2-chain defined by the closure of the interior of the
1-cycle ∂Ts,`. By definition, we may write the cycle cs(x),` as

cs(x),` = {n(s(x), r) | r ∈ [0, C`,Γ]},

where we again use (2.5.4) to join n(0, 0) with n(0, C`,Γ). We may harmlessly rotate
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it round to remove the constant y in the r component in (4.2.3), and hence, in the
group of rational chains Z1(e(P`),Q) we have:

∂χs = −2〈λ1, λ2〉`
C`,Γ

cs,` + ∂Ts,` = −2d(Γ, `)cs,` + ∂Ts,`. (4.2.4)

Hence, we have capped the fibre circle cw` with a rational 2-chain contained entirely
in the boundary component e(P`).

We hence may define the capped cycles for the trivial coefficients l = 0.

Definition 4.2.5. For a fixed cusp [`] and positive vector x split at `, we define A`x
to be the two-cycle defined by

A`x := 1
2d(Γ, `)

(
Ts(x),` − χs(x),`

)
.

For all other x and [`], we let A`x ≡ 0. Using the calculations of Lemma 4.2.2 we
define the compactified two-cycle in the Borel-Serre compactification XBS of X by

Cc
x := Cx −

∑
[`]

∑
y∈Γ`\Ln,`
y=γx, γ∈Γ

A`y

and hence for n ∈ Q positive, similarly define Cc
n as

Cc
n = Cn −

∑
[`]

∑
y∈Γ`\Ln,`

A`y

We shall now record all of the above in a theorem, which generalises Theorem 4.1.2
for the case of trivial coefficients. We are stating this theorem now for several reasons:
firstly, because the general case of l ≥ 1 requires one more result to express the
integrality; secondly, it also will still contain the Kähler form, which we will see
in later chapters to disappear for l ≥ 1. Finally, at the end of the thesis we will
relate our work to that of Cogdell, who worked in this same setting of l = 0, and so
separating it out seems sensible.

Theorem 4.2.6. For all cusp classes [`] the cycle cx,` is a rational boundary in
e(P`), and so is trivial in the rational homology group H1(e(P`),Q).

For all positive n ∈ Q, the compactified special cycles Cc
n define homology classes

[Cc
n] ∈ H2

(
X
BS
,Z
[ 1
dΓ

])
' H2

(
X,Z

[ 1
dΓ

])
which are generically non-exact, and have denominator dividing the even integer
dΓ := lcm[`]2d(Γ, `). These classes may be convergently integrated against non-
compactly-supported cohomology classes η ∈ H2

dR(X), and when we specify η ∈
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H2(X,Z), the resulting integrals satisfy∫
Ccn

η ∈ 1
3dΓ

Z.

For any fixed η ∈ H2
dR(X), the generating series

1
2πδL=L

∫
X

(η ∧ ΩX) +
∑
n>0

[∫
Ccn

η

]
e2πinτ ∈M3(Γ(M))

is a holomorphic modular form of weight 3 and level M .

Proof. The exactness of the cx,` was shown above; by their definition and the results
of Lemma 4.2.2, it follows that all the Cc

x are closed with respect to the bound-
ary operator ∂ in Z2(XBS). By Lemma 2.3.7, XBS is a compact space homotopy
equivalent to X, so we know that

H2(XBS
, R) ' H2(X,R)

for any Z-module R. Hence, for all x, [Cc
x] defines a compact class in H2(X); this

compactness tells us that ∫
Ccx

η

converges for all x and all choices of η as in the statement of the theorem. Further,
because the Kronecker pairing〈

,
〉

: H2(XBS
, R)⊗H2(XBS

, R)→ R

is perfect for all Z[1/6]-modules R, then the fractional integrality holds up to the
extra factor of 3 in the denominator (we know that 2 will always divide dΓ, so we
only need 3-divisibility).

So, we are left with the modularity: this, again, shall be proven using geometric
arguments in §8.

We now treat the general case of the capping of the cycles Cx,[l,l] in X
BS. We shall

naively try to use the same objects as in Theorem 4.2.6, and show that these objects
give us the right capping properties.

We will now attempt to adapt the above machinery to the general case of coefficients
our irreducible representations of G = SU(V ), constructed in §3.1. Without loss of
generality, we shall consider the rational part of this - namely, Hl,l(V ), which we
may consider as an irreducible representation of G.

Lemma 4.2.7. Let ` be an arbitrary isotropic vector, n be an arbitrary positive
rational number, l a positive integer and x ∈ Ln,` a vector of length n, split at the
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cusp represented by [`]. Let λ ∈ k be some arbitrary element of the field. Then in
the irreducible representation Hl,l(V ), we have the following equivalence:[

n(λ, 0)
(
xl ⊗ (x∗)l

)]
=
[
xl ⊗ (x∗)l

]
Proof. This is a fairly simple exercise in arithmetic: indeed, one may easily calculate
that if we write x = β`+ αw` as usual, then:

n(λ, 0)
(
xl ⊗ (x∗)l

)
=
(
x + λα`

)l
⊗ (x∗ + λα`∗)l . (4.2.5)

It is a simple calculation to check that with respect to the Witt basis, the Laplacian
operator ∇ from (3.1.3) may be written:

∇ = ∂2

∂w`∂w∗`
+ δk

(
∂2

∂`′∂`∗
− ∂2

∂`∂ (`′)∗
)
.

As there are no non-zero terms with `′ or (`′)∗ in (4.2.5), then we only need to
consider the central terms - namely, the coefficients of w` and w∗` . It is hence a
trivial exercise in linear algebra to check that:

∇
(
xl ⊗ (x∗)l

)
= l2|α|2

(
xl−1 ⊗ (x∗)l−1

)
(4.2.6)

and

∇
(
n(λ, 0)

(
xl ⊗ (x∗)l

))
= l2|α|2

((
x + λα`

)l−1
⊗ (x∗ + λα`∗)l−1

)
(4.2.7)

Hence, as are assuming that l ≥ 1 and α must be non-zero, then the difference
between (4.2.6) and (4.2.7) must be non-zero: indeed, it may be written

l2|α|2
∑

j,j′∈{0,1,...,l−1}2

not both l−1

(−1)j+j′−1
(
l − 1
j

)(
l − 1
j′

)
xj
(
λα`

)l−1−j
⊗ (x∗)j

′
(λα`∗)l−1−j′

which for all chosen parameters will be a non-zero vector, and so their difference will
project to zero in harmonic coefficients.

This now allows us to cap our cycles over Q.

Proposition 4.2.8. Let `, n and l be as in Lemma 4.2.7. Let x ∈ Ln,`, and let
y ∈ {x | `}. Then there exists a collection of chains A`x,l,l ⊂ e(P`) such that
∂`A

`
x,l,l = ∂`Cx,[l,l].

Proof. We start by noting that by Lemma 4.2.7, the boundary of Cx,[l,l] in e(P`)
from Lemma 4.2.2 can now be written

∂`Cx,[l,l] =
∐

y∈{x|`}
cy,` ⊗ πH

(
yl ⊗ (y∗)l

)



4.2. Restriction and Capping of Special Cycles 61

by acting with the element γ ∈ Γ taking x to each y - such a γ exists by definition
of the set {x, `}. Because we have assumed Γ to preserve each lattice coset, this
action will preserve integrality. We write s(y) = xλ1 + yλ2 as in Definition 4.2.5, so
the following holds:

∂
[
χs(y) ⊗ πH

(
yl ⊗ (y∗)l

) ]
=
[
n
[
(a+ x)λ1 + yλ2,−(a+ x)y〈λ1, λ2〉`

]
(4.2.8)

+ n
[
(1 + x)λ1 + (b+ y)λ2,−(1 + x)(b+ y)〈λ1, λ2〉`

]
(4.2.9)

− n
[
(ã+ x)λ1 + (1 + y)λ2,−(ã+ x)(1 + y)〈λ1, λ2〉`

]
(4.2.10)

− n
[
xλ1 + (b̃+ y)λ2, x(b̃+ y)〈λ1, λ2〉`

]]
⊗ πH

(
yl ⊗ (y∗)l

)
.

(4.2.11)

We now see that our argument follows identically as before - namely, by acting with
n(−λ2, 0) on (4.2.10) we find

n(−λ2, 0)
n[(ã+ x)λ1 + (1 + y)λ2,−(ã+ x)(1 + y)〈λ1, λ2〉`

]
⊗ πH

(
yl ⊗ (y∗)l

)
∼ n

[
(a+ x)λ1 + yλ2,−(a+ x)y〈λ1, λ2〉`

]
⊗ πH

(
n(−λ2, 0) ◦

(
yl ⊗ (y∗)l

))
so by applying Lemma 4.2.7 again, this is equal to (4.2.8); similarly, acting with
n(−λ1, 0) on (4.2.11), we have

n(−λ1, 0)
n[(1 + x)λ1 + (b+ y)λ2,−(1 + x)(b+ y)〈λ1, λ2〉`

]
⊗ πH

(
yl ⊗ (y∗)l

)
∼ n

[
xλ1 + (b+ y)λ2,−(2 + x)(b+ y)〈λ1, λ2〉`

]
⊗ πH

(
n(−λ1, 0) ◦

(
yl ⊗ (y∗)l

))
and identically to above, we may apply Lemma 4.2.7 so that with the coefficient
system,

∂
[
χs ⊗ πH

(
yl ⊗ (y∗)l

) ]
=
n[xλ1 + (b+ y)λ2,−(2 + x)(b+ y)〈λ1, λ2〉`

]

− n
[
xλ1 + (b̃+ y)λ2, x(b̃+ y)〈λ1, λ2〉`

]⊗ πH (yl ⊗ (y∗)l
)

and so defining T `s(y),[l,l] = Ts(y),` ⊗ πH
(
yl ⊗ (y∗)l

)
, we see by an identical argument

to the case of l = 0 that the cycle is indeed capped, so that

∂
(
T `y,[l,l] − χ`s(y),[l,l]

)
= 2d(Γ, `)cy ⊗ πH

(
yl ⊗ (y∗)l

)
.

Hence, taking A`x,l,l to be the collection of these 2-cycles over all y ∈ {x | `}, the
proof is complete.
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We note that because the matrices n(−λi, 0) takes x to an integral vector, the cap
A`x,[l,l] will have the same denominator as in the trivial coefficients case.

So, we now may state our full theorem.

Theorem 4.2.9. Fix an integer l ≥ 1. For all cusp classes [`] the cycle cx,`⊗xl⊗(x∗)l

is a rational boundary in e(P`), and so is trivial in the rational homology group
H1(e(P`), H̃l,l(V )) with coefficients in the rational part of the harmonic vectors.

For x split at `, we define A`x,[l,l] to be the two-chain defined by

A`x,[l,l] := 1
2d(Γ, `)

(
Ts(x),` − χs(x),`

)
⊗ πH

(
xl ⊗ (x∗)l

)
;

for all other x and [`], we let A`x,[l,l] ≡ 0. Using the calculations of Lemma 4.2.2 we
define the compactified two-cycle in the Borel-Serre compactification XBS of X by

Cc
x,[l,l] := Cx,[l,l] −

∑
[`]

∑
y∈Γ`\Ln,`
y=γx, γ∈Γ

A`y,[l,l]

and hence for n ∈ Q positive, similarly define Cc
n as

Cc
n,[l,l] = Cn,[l,l] −

∑
[`]

∑
y∈Γ`\Ln,`

Ay,`

For all positive n ∈ Q, the compactified special cycles Cc
n,[l,l] define homology classes

[Cc
n] ∈ H2

XBS
,

˜
Hl,l(L)

(
Z
[ 1
dΓ

]) ' H2

X, ˜
Hl,l(L)

(
Z
[ 1
dΓ

])
which are generically non-exact, and have denominator dividing the even integer
dΓ := lcm[`]2d(Γ, `). These classes may be convergently integrated against non-
compact cohomology classes η ∈ H2

dR(X, H̃l,l(V )), and when we specify η ∈ H2(X, H̃l,l(L)),
the resulting integrals satisfy ∫

Cc
n,[l,l]

η ∈ 1
3dΓ

Z.

Finally, for any fixed η ∈ H2
dR(X, H̃l,l(V )), the generating series

∑
n>0

[∫
Ccn

η

]
e2πinτ ∈M3+2l(Γ(M))

is a holomorphic modular form of weight 3 + 2l and level M .

Proof. The proof of this (or indeed, the lack thereof, given our need to wait until we
have further machinery to prove modularity) is identical to that of Theorem 4.2.6,
except that we must note one more thing about the denominator of the pairing: we
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have defined L to be integral, and hence in particular the natural pairing between
the homological and cohomological coefficients - using the inner product ( , ) on V -
will produce a product of integers if we input lattice vectors. The factor of 3 appears
for the same reason as stated in the proof of Theorem 4.2.6.

Hence, because we may write

3dΓC
c
n,[l,l] ∈ H2

(
X, H̃l,l(L)

)
,

the pairing between this class and η ∈ H2(X, H̃l,l(L)) will be an integer.





Chapter 5

The Weil Representation for
Unitary Groups

In this section, we shall write in detail the action of the Weil representation of the
dual pair U(p, q)× U(1, 1). This will be the foundation stone for our construction
of generalised Kudla-Millson forms in §6. In particular, we shall show how the
Weil representation acts in both the Fock and Schrödinger models; in line with the
existing literature, the former will be the model we perform most of our computation
in - because it is homogeneous - whereas the latter model will give us the structure
necessary to interpret the resulting objects as differential forms. This work will follow
that existing in many places in the existing literature - to see an equivalent setup of
the unitary case, one may examine e.g. [FH19, Appendix B]. We shall largely omit
the computation in this section, as the results are only of interest to support our
main arguments in §6.

5.1 The Fock Model of the Weil Representation

We start here by giving an abstract treatment of the Fock model of the Weil repres-
entation.

Let W be a real vector space of positive even dimension 2M , equipped with a
non-degenerate symplectic inner product

〈 , 〉 :W ⊗W → R

and a positive-definite complex structure J :W →W . We let {e1, . . . eM , f1, . . . fM}
be the symplectic basis of W with respect to 〈 , 〉 and J such that:

(i) 〈ei, ej〉 = 〈fi, fj〉 = 0 and 〈ei, fj〉 = δij.
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(ii) Jei = fi and Jfi = −ei.

In particular, condition (ii) tells us that J acts with eigenvalues ±i on W . We now
define the right vector space WC :=W ⊗ C; this decomposes into the two complex
symplectic eigenspaces

WC =W ′ ⊕W ′′ (5.1.1)

under the induced action of J (formally acting as J ⊗ 1 on W ⊗C). One may check
that appropriate symplectic bases over C are given by {g′j = ej − fji}Mj=1 for the −i
eigenspace W ′, and {g′′j = ej + fji}Mj=1 for the +i eigenspace W ′′.

We let λ ∈ C\{0} be some constant, and we hence define an action of W on
PMC := C[z1, . . . , zM ] as follows

ρλ(g′j) = 2iλ ∂

∂zj
, ρλ(g′′j ) = zj. (5.1.2)

We wish to find an action of the associated symplectic Lie algebra sp(WC) using
ρλ. The symmetric vector product Sym2(W) is by definition the quotient of W⊗W
given by:

Sym2(W) =W ⊗W/〈a⊗ b− b⊗ a〉;

as is standard, we write

x ◦ y = 1
2(x⊗ y + y ⊗ x) ∈ Sym2(W). (5.1.3)

One may check that the algebras Sym2(W) and sp(W) are isomorphic by writing

(x ◦ y) ∈ sp(W), (x ◦ y)(z) = 〈x, z〉y + 〈y, z〉x. (5.1.4)

Using (5.1.3) and (5.1.4), we may write down the Weil representation.

Definition 5.1.1. The Weil representation of sp(W) ⊗ C = sp(WC) on PMC with
central character λ ∈ C\{0} is written:

ωλ(x ◦ y) = 1
2λ (ρλ(x)ρλ(y) + ρλ(y)ρλ(x)) (5.1.5)

This is the Fock model of the Weil representation, with character λ; we also write
this as ωFλ later on to refer to the Fock model.
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5.2 The Fock Model of the Weil Representation
for Unitary Dual Pairs

We now give the explicit action of the Weil representation when the symplectic space
W is specified as a space representing the unitary dual pair u(p, q)×u(1, 1). We shall
write down the Lie algebras separately, form an action ρλ on the product of their
relevant vector spaces, and hence use this to form a symplectic Weil representation
which u(p, q) and u(1, 1) act via inclusions.

We now invite the reader to temporarily amend the notation given in §2; namely, in
that chapter, we used V to denote a vector space over k of signature (2, 1) with an
inner product ( , ), antilinear in the first place and linear in the second. We now let
these objects denote a k-vector space of split signature (p, q) for p, q > 0. We pick a
basis of V = V ⊗k C given by orthonormal {vα}pα=1 and {vµ}p+qµ=p+1 such that

(vα, v′α) = δαα′ , (vµ, vµ′) = −δµµ′ , (vα, vµ) = 0. (5.2.1)

We let G = U(V ), g0 = u(V ), and g = g0 ⊗ C. We may construct an R-linear map
φV,R : ∧2

RV → g0 - which naturally generalises that in Definition 2.4.3 - by

φV,R(v1 ∧ v2)(z) = (v1, z)v2 − (v2, z)v1. (5.2.2)

Indeed, one may check that φV,R(v1 ∧ v2) satisfies

(φV,R(v1 ∧ v2)(z1), z2) = (z1, φV,R(v1 ∧ v2)†(z2)) (5.2.3)

for all vectors v1, v2, z1, z2 ∈ V , so that this is a well-defined map. It is surjective,
so we may without loss of generality write a generic element of g0 as v1 ∧ v2.

Definition 5.2.1. We write αr,s := vr ∧ vs and βr,s := ivr ∧ vs ∈ g0; the Lie algebra
g0 decomposes as g0 = k0 + p0, where:

k0 = {αr,s, βr,s | 1 ≤ r, s ≤ p or p+ 1 ≤ r, s ≤ p+ q}

p0 = {αr,s, βr,s | 1 ≤ r ≤ p, p+ 1 ≤ s ≤ p+ q}

For a basis of g, we write Z ′r,s = (αr,s − βr,si)/2 and Z ′′r,s = (αr,s + βr,si)/2, so that
g = g0 ⊗ C is spanned by all the Z ′r,s and Z ′′r,s for all possible entries of r, s.

We let W be a 2-dimensional vector space over k of signature (1, 1), assuming as
with V that the inner product is antilinear in the first variable and linear in the
second. We give W = W ⊗k C the quasi-orthonormal basis {e1, e2} such that

(e1, e1) = i, (e2, e2) = −i, (e1, e2) = 0.
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We let G′ be the unitary group of W , with real points G′. We hence may define the
real vector space W := (V ⊗C W )R, which has a symplectic form given by:

〈v ⊗ w, v′ ⊗ w′〉 = Re ((v, v′)V (w,w′)W ) . (5.2.4)

Analogously to (5.1.1), we split the complexification of W as follows: we let JW be
the natural complex structure on W such that JW (e1) = −ie1 and JW (e2) = ie2;
then the right C-vector space

WC = W ⊗R C = W ′ ⊕W ′′

splits into ±i eigenspaces. We may calculate, for example, that

JW (w′1) = JW (e1) + J(ie1)i = −ie1 + e1i = (ie1i+ e1)i = w′1i

and hence split into eigenbases:

W ′ = {w′1 = e1 + ie1i, w
′
2 = e2 − ie2i}, W ′′ = {w′′1 = e1 − ie1i, w

′′
2 = e2 + ie2i}

(5.2.5)
We define the R-linear map φW,R : Sym2

RW → g′0:

φW,R(w1 ◦ w2)(z) = (w1, z)w2 + (w2, z)w1

Entirely analogously to (5.2.3), one may check that this map is well-defined and
surjective; hence, we may without loss of generality refer to elements of u(W ) = g′0

as w1 ◦ w2.

Definition 5.2.2. The complexified Lie algebra g′ decomposes as g′ = k′+ p′ where

k′ = spanC{e1 ◦ e1 + ie1 ◦ e1i, e2 ◦ e2 + ie2 ◦ e2i}

p′ = spanC{e1 ◦ e2 − ie1 ◦ e2i, e1 ◦ e2 + ie1 ◦ e2i}

The isomorphism su(W ) ' sl2(R) may be realised by changing basis in W to
{e1 + e2, −ie1 + ie2}. This Lie algebra splits into

su(W ) = k′ ∩ {tr(X) = 0}+ p′,

and we may split p′ into p′ = p′+ + p′− spanned by operators giving rise to the
classical Maass raising and lowering operators respectively:

p′+ = spanC

{−i
2 (e1 ◦ e2 − ie1 ◦ e2i)

}
= spanC

R := 1
2

1 i

i −1


p′− = spanC

{−i
2 (e1 ◦ e2 + ie1 ◦ e2i)

}
= spanC

L := 1
2

 1 −i
−i −1


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The groups G and G′ embed in Sp(W), forming a dual reductive pair as in [How77];
equivalently, g and g′ = su(W )⊗C form a dual pair in sp(WC). We wish to construct
a Weil representation of this algebra; in order to do so, we must find a symplectic
basis of the complex space WC = V ⊗W ⊗C. Using the inner product (5.2.4) of W ,
we have a naturally occuring Lagrangian basis:

{vα ⊗ e1, vα ⊗ e2, vµ ⊗ e1, vµ ⊗ e2}

{vα ⊗−ie1, vα ⊗ ie2, vµ ⊗ ie1, vµ ⊗−ie2}, (5.2.6)

where we have notated (5.2.6) to emphasise the pairing as with the {ej, fj} in §5.1.
With κ the Cartan involution on V induced by the maximally compact subgroup
U(p)× U(q) of G, written

κ(vα) = vα, κ(vµ) = −vµ,

then W has an inherited complex structure of the form J = κ⊗ JW . we may split
WC =W ⊗R C into ±i eigenspaces for J using the complex basis for WC in (5.2.5)
in the natural way:

W ′ = spanC{vα ⊗ w′1, vα ⊗ w′2, vµ ⊗ w′′1 , vµ ⊗ w′′2} (5.2.7)

W ′′ = spanC{vα ⊗ w′′1 , vα ⊗ w′′2 , vµ ⊗ w′1, vµ ⊗ w′2}. (5.2.8)

Hence, because of our construction of a proper symplectic basis in (5.2.7) and (5.2.8),
we may write down a Weil representation of sp(W)⊗C. In the Fock model, we know
that sp(W)⊗ C will act on Sym•(W ′′). We denote the variables in our polynomial
space by {z′rs, z

′′
rs}1≤r≤p+q, 1≤s≤2. We may naturally identify Sym•(W ′′) with a space

of complex polynomials in 2(p+ q) variables as follows:

vα ⊗ w′′1 ↔ z′′α,

vα ⊗ w′′2 ↔ z′α,

vµ ⊗ w′1 ↔ z′µ,

vµ ⊗ w′2 ↔ z′′µ. (5.2.9)

From this, we can use (5.1.2) to write down the action of W :

ρλ(vα ⊗ w′1) = 2iλ ∂

∂z′′α
, ρλ(vµ ⊗ w′1) = z′µ,

ρλ(vα ⊗ w′′1) = z′′α, ρλ(vµ ⊗ w′′1) = 2iλ ∂

∂z′µ
,

ρλ(vα ⊗ w′2) = 2iλ ∂

∂z′α
, ρλ(vµ ⊗ w′2) = z′′µ,
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ρλ(vα ⊗ w′′2) = z′α, ρλ(vµ ⊗ w′′2) = 2iλ ∂

∂z′′µ
(5.2.10)

We may now write down the inclusions of the subalgebras g0 and g′0 into sp(W).
By definition of the wedge product v1 ∧ v2 = v1 ⊗ v2 − v2 ⊗ v1, we may write the
inclusion jV : g0 → sp(W) as

jV (v1 ∧ v2) = [(v1 ⊗ iw1) ◦ (v2 ⊗ w1)− (v1 ⊗ w1) ◦ (v2 ⊗ iw1)]

− [(v1 ⊗ iw2) ◦ (v2 ⊗ w2)− (v1 ⊗ w2) ◦ (v2 ⊗ iw2)] .

Similarly, using the form of the symmetric product, we may write the inclusion jW
of g′0 as:

jW (w1 ◦ w2) =
p∑

α=1
[(vα ⊗ w1) ◦ (vα ⊗ w2) + (ivα ⊗ w1) ◦ (ivα ⊗ w2)]

−
p+q∑

µ=p+1
[(vµ ⊗ w1) ◦ (vµ ⊗ w2) + (ivµ ⊗ w1) ◦ (ivµ ⊗ w2)] .

We hence may extend these maps to inclusions jV,C : g → sp(WC) and jW,C : g′ →
sp(WC) as follows:

jV,C(v1 ∧ v2 + (iv1 ∧ v2)i) = −i(v1 ⊗ w′1) ◦ (v2 ⊗ w′′1) + i(v1 ⊗ w′′2) ◦ (v2 ⊗ w′2),

jV,C(v1 ∧ v2 − (iv1 ∧ v2)i) = i(v1 ⊗ w′′1) ◦ (v2 ⊗ w′1)− i(v1 ⊗ w′2) ◦ (v2 ⊗ w′′2),

and

jW,C(w1 ◦ w2 + (iw1 ◦ w2)i) =
p∑

α=1
[(vα ⊗ (w1 + iw1i)) ◦ (vα ⊗ (w2 − iw2i))]

−
p+q∑

µ=p+1
[(vµ ⊗ (w1 + iw1i)) ◦ (vµ ⊗ (w2 − iw2i))] ,

jW,C(w1 ◦ w2 − (iw1 ◦ w2)i) =
p∑

α=1
[(vα ⊗ (w1 − iw1i)) ◦ (vα ⊗ (w2 + iw2i))]

−
p+q∑

µ=p+1
[(vµ ⊗ (w1 − iw1i)) ◦ (vµ ⊗ (w2 + iw2i))] .

So, we are now in a position where we may write down the action of the subalgebras
g, g′ through the Fock model of the Weil representation; we shall write for e.g.
ωλ(Z ′r,s) ≡ ωλ(jV,C(Z ′r,s)). When we write P2(p+q)

C in the following lemma, we mean -
in the notation of (5.2.9) - the complex polynomials in the variables z′′α, z′µ, z′α and
z′′µ for 1 ≤ α ≤ p and p+ 1 ≤ µ ≤ p+ q.

Lemma 5.2.3. For the remainder of this lemma, we let numbers between 1 and
p be represented by the indices α and β, and numbers between p + 1 and p + q be
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represented by µ and ν.

The basis elements Z ′α,β and Z ′′α,β of u(V ) ⊂ k (defined in Definition 5.2.1) act on
P2(p+q)

C as follows:

ωλ(Z ′α,β) = −z′′α
∂

∂z′′β
+ z′β

∂

∂z′α
= −ωλ(Z ′′α,β);

further, the basis elements Z ′µ,ν and Z ′′µ,ν of u(W ) ⊂ k act on P2(p+q)
C as follows:

ωλ(Z ′µ,ν) = −z′ν
∂

∂z′µ
+ z′′µ

∂

∂z′′ν
= −ωλ(Z ′′µ,ν).

The basis elements Z ′α,µ of p+ act on P2(p+q)
C as

ωλ(Z ′α,µ) = − 1
2iλz

′′
αz
′
µ + 2iλ ∂2

∂z′α∂z
′′
µ

and the basis elements Z ′′α,µ of p− act on P2(p+q)
C as

ωλ(Z ′′α,µ) = − 1
2iλz

′
αz
′′
µ + 2iλ ∂2

∂z′′α∂z
′
µ

.

Using the same strategy, we may write down the action of the bases of k′ and p′: the
action of er ◦ er + ier ◦ eri for r = 1, 2 on P2(p+q)

C is given by

ωλ(e1 ◦ e1 + ie1 ◦ e1i) = 2i
 p∑
α=1

z′′α
∂

∂z′′α
−

p+q∑
µ=p+1

z′µ
∂

∂z′µ

+ i(p− q),

and

ωλ(e2 ◦ e2 + ie2 ◦ e2i) = 2i
 p∑
α=1

z′α
∂

∂z′α
−

p+q∑
µ=p+1

z′′µ
∂

∂z′′µ

+ i(p− q).

Finally, the action of p′+ on P2(p+q)
C is given by

ωλ(e1 ◦ e2 − ie1 ◦ e2i) = 1
λ

p∑
α=1

z′′α1z
′
α2 + 4λ

p+q∑
µ=p+1

∂2

∂z′µ1∂z
′′
µ2
,

and the action of p′− on P2(p+q)
C is given by

ωλ(e1 ◦ e2 + ie1 ◦ e2i) = −4λ
p∑

α=1

∂2

∂z′′α1∂z
′
α2
− 1
λ

p+q∑
µ=p+1

z′µ1z
′′
µ2.

Proof. The proof of all of these identities uses the formulae for the inclusions jV,C
and jW,C, the definition of the Weil representation in the Fock model in (5.1.5) and
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then the formulae in (5.2.10). For example, for the action of Z ′α,µ, we may write

jV,C(Z ′α,µ) = 1
2jV,C(vα ∧ vµ − (ivα ∧ vµ)i)

= i

2 ((vα ⊗ w′′1) ◦ (vµ ⊗ w′1)− (vα ⊗ w′2) ◦ (vµ ⊗ w′′2)) .

Hence, we may write the action of the Weil representation as

ωλ(Z ′α,µ) = i

4λ
[
ρλ(vα ⊗ w′′1)ρλ(vµ ⊗ w′1) + ρλ(vµ ⊗ w′1)ρλ(vα ⊗ w′′1)

− ρλ(vα ⊗ w′2)ρλ(vµ ⊗ w′′2)− ρλ(vµ ⊗ w′′2)ρλ(vα ⊗ w′2)
]

= i

4λ

[
z′′αz

′
µ + z′µz

′′
α −

(
2iλ ∂

∂z′α

)(
2iλ ∂

∂z′′µ

)
−
(

2iλ ∂

∂z′′µ

)(
2iλ ∂

∂z′α

)]

= − 1
2iλz

′′
αz
′
µ + 2iλ ∂2

∂z′α∂z
′′
µ

and the reader may check that this is exactly the prescribed formula in the statement
of the theorem. The rest are proven in exactly the same way.

5.3 The Schrödinger Model, Intertwiners and
the Mixed Model

We now give a summary of the Schrödinger model of the Weil representation. For
notational convenience, we let F ≡ Fp+q = C[z′α, z′′α, z′µ, z′′µ] be the space of polyno-
mials used in the Fock model in §5.2.

Definition 5.3.1. (i) We write vectors in V with respect to the orthonormal
co-ordinates (5.2.1) as

x =
∑
α

zαvα +
∑
µ

zµvµ. (5.3.1)

(ii) We let S(V ) be the space of Schwartz functions on V :

S(V ) = {f : V 7→ C | ∀ multi-indices β1, β2, supx|∂β1xβ2f(x)| and supx|∂β1xβ2f(x)| <∞};

we may think of this as the collection of functions that decay faster than any
power of the monomials zi, zi. We define the principal majorant for V as
follows:

(x,x)0 =


(x,x) if x 6∈ SpanC{vµ}

p+q
µ=p+1,

−(x,x) if x ∈ SpanC{vµ}
p+q
µ=p+1

(5.3.2)

This defines a positive-definite inner product on V - we will see more on such
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objects in §6.1. With respect to the basis from (5.3.1) , we have

(x,x)0 =
∑
α

|zα|2 +
∑
µ

|zµ|2.

We let ϕ0(x) := exp(−π(x,x)0) be the standard Gaussian on V , and hence let

S(V ) = {f(x) = p(x)ϕ0(x) | p ∈ C [zi, zi]} ⊂ S(V )

be the subset of the Schwartz space spanned by products of the Gaussian with
complex polynomials in the coefficients.

We first note that it is clear that S(V ) ⊂ S(V ); indeed, by elementary analysis, we
know that exp(−x2) dominates any polynomial in x, so all elements of S(V ) have a
normed supremum, and hence are elements of S(V ).

Secondly, we note that F is algebraically isomorphic to S(V ). Analogously to (5.2.9),
we may write down an action ofW on S(V ) which will lead to a Weil representation.
We now specify to the central character λ = 2πi, and remove this from the notation
- we instead use a subscript S to specify the Schrödinger model, so that ρS ≡ ρ2πi,S .

ρS(vα ⊗ w′1) =
√

2πi
(
zα + 1

π

∂

∂zα

)
, ρS(vµ ⊗ w′1) = −

√
2πi

(
zµ −

1
π

∂

∂zµ

)
,

ρS(vα ⊗ w′′1) =
√

2πi
(
zα −

1
π

∂

∂zα

)
, ρS(vµ ⊗ w′′1) = −

√
2πi

(
zµ + 1

π

∂

∂zµ

)
,

ρS(vα ⊗ w′2) =
√

2πi
(
zα + 1

π

∂

∂zα

)
, ρS(vµ ⊗ w′2) = −

√
2πi

(
zµ −

1
π

∂

∂zµ

)
,

ρS(vα ⊗ w′′2) =
√

2πi
(
zα −

1
π

∂

∂zα

)
, ρS(vµ ⊗ w′′2) = −

√
2πi

(
zµ + 1

π

∂

∂zµ

)
.

(5.3.3)

By examining how each of these act on the Gaussian ϕ0, we may construct an
intertwiner between F and S(V ); for example, zα − 1

π
∂
∂zα

(ϕ0) = 2zαϕ0, so we wish
to relate this operator to the one resulting from vα ⊗ w′′1 in the Fock model - this is
z′′α. Hence, following this logic, we may write down the intertwiner:

Lemma 5.3.2. There is a unique sp(WC)-intertwiner J : F → S(V ) satisfying
J (1) = ϕ0, and the intertwiner satisfies

J z′αJ −1 =
√

2πi
(
zα −

1
π

∂

∂zα

)
, J ∂

∂z′′α
J −1 = 1

2
√

2i

(
zα + 1

π

∂

∂zα

)

J z′′αJ −1 =
√

2πi
(
zα −

1
π

∂

∂zα

)
, J ∂

∂z′α
J −1 = 1

2
√

2i

(
zα + 1

π

∂

∂zα

)

J z′µJ −1 = −
√

2πi
(
zµ −

1
π

∂

∂zµ

)
, J ∂

∂z′′µ
J −1 = −1

2
√

2i

(
zµ + 1

π

∂

∂zµ

)
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J z′′µJ −1 = −
√

2πi
(
zµ −

1
π

∂

∂zµ

)
, J ∂

∂z′µ
J −1 = −1

2
√

2i

(
zµ + 1

π

∂

∂zµ

)

Hence, herein we shall always refer to S(V ) for the representation ωS in the Schrödinger
model for λ = 2πi.

Proof. The proof that the intertwiner exists and is unique is proven in [KM86, §2];
there it is formulated in terms of the quantum algebra generated by W , but for our
purposes the statement above suffices. For the calculation of the intertwiner, one
only needs to use the uniqueness and then compare how the elements acts on the
elements 1 and ϕ0 in F and S(V ) respectively.

In §6, we shall use the Weil representations to create operators ∇ such that ∇ϕ0 is
a non-trivial form in complexes [S(V )⊗ ∧•p∗ ⊗ E]K and ∇ϕ0 is a closed form!

We now introduce one more model for the Weil representation - the mixed model of
the Weil representation. For V here still assumed to be of arbitrary signature (p, q),
we fix E ⊂ V some non-trivial, totally isotropic and maximal vector subspace (so
that (x,x) = 0 for all x ∈ E). Our reason for prescribing maximality is that the
parabolic subgroups of SU(V ) are classified by flags

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ek

of complex parabolic subspaces; hence, choosing a maximal isotropic subspace is
equivalent to choosing a conjugacy class of maximal parabolic subgroups. Then we
may define a conjugate isotropic subspace, denoted E ′, as follows:

E ′ = {v ∈ V | (v, e)0 = 0 for all e ∈ E⊥} =
(
E⊥

)⊥0
,

where ⊥ is the perpendicular space with respect to ( , ) and ⊥0 the perpendicular
space with respect to ( , )0. We note that we may identify E ′ naturally with the dual
of E - namely, they are of the same real dimension, and we may pick bases {ei}ri=1

of E and {e′j}rj=1 such that (ei, e′j) = δij. Then we may define WE = E⊥/E as a
non-degenerate space of signature (p− dim(E), q − dim(E)), and a Witt splitting:

V = E ⊕WE ⊕ E ′.

Definition 5.3.3. The mixed model of the Weil representation is on the space

S (E∗)⊗ S (WE)⊗ S (E ′) ' S (E ′)⊗ S (WE)⊗ S (E ′)
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where we have initially used the isomorphism between E ′ and E∗. We may derive it
as an isomorphism from S(V ) as follows:

S(V )→ S (E ′)⊗ S (WE)⊗ S (E ′) ,

φ→ φ̂

where φ̂ is the Fourier transform, given by

φ̂(u′1, w, u′2) =
∫
E
φ(u,w, u′2)exp(−2πi(u, u′1))du

for u′1, u′2 co-ordinates on E ′ and w a co-ordinate on WE.

For the sake of brevity, we denote the mixed model with respect to a subspace E as
S(V )MM

E ; here we understand the complementary subspace E ′ to be fixed.

We first note that it is well known that the Fourier transform takes Schwartz forms to
Schwartz forms, and in particular will take polynomial Schwartz forms to polynomial
Schwartz forms (this is implicitly proven later on for our specific choice of V of
signature (2, 1), in e.g. Lemma 7.1.3). One may easily check that this is a G-
equivariant map, so it follows that this is indeed an intertwiner. We will not need
to do this at this point, but one may e.g. write down the action of G on S (E ′) ⊗
S (WE)⊗ S (E ′) - see e.g. [FM13, §4.2].





Chapter 6

A Generalisation of
Kudla-Millson’s Schwartz Form To
Complex Harmonic Coefficients

In this chapter, we shall look to fully generalise the construction of G-invariant
Schwartz forms for G a special unitary group of signature (2, 1). More specifically,
for Hl,l(V ) an irreducible representation of SU(2, 1) as we constructed in §3.1, we
will use this chapter to show that one may construct a Schwartz form

ϕl,l ∈ [S(V )⊗ Ω2(D)⊗Hl,l(V )]G

which is closed and of weight 2l + 3.

Further, it will give us a theta series θL(ϕl,l, τ) which is holomorphic as a cohomology
class, whose Fourier coefficients are given by the duals of the special cycle Cx,[l,l]

from Proposition 4.1.3.

The work in this chapter will draw on the algebraic arguments in [FM06], and in
particular will make heavy use of the Fock model calculations from §5.2.

6.1 The Kudla-Millson Schwartz Form

We start here by giving some detail on the construction of the Schwartz forms by
Kudla and Millson in their papers [KM86] and [KM87]; these shall be referred to
hereon as "Kudla-Millson Schwartz forms", and notated as ϕKM .

We start with a definition of the complexes that we shall work in. We recall the
polynomial Schwartz space S(V ) and the polynomial Fock space F(V ) from Defini-
tion 5.3.1; in particular, we shall stress that we are now working with our particular
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V of signature (2, 1), so that the notation of §5 may be carried over unchanged with
this specialisation.

Definition 6.1.1. Let G ' SU(2, 1) be the real points of the special unitary group
of V ; let g be the complexification of its Lie algebra g0 as in Definition 5.2.1, which
decomposes into g = k+ p. Let A be either of the spaces S(V ) or F with associated
Weil representation ωA, and hence define the two complexes we shall work in:

[A⊗ ∧•p∗]K , [A⊗ Ω•(D)]G .

Here the group K (resp. G) acts on A via the Weil representation and on the wedge
product (resp. the differential forms on D) via the canonical left matrix actions
respectively. Hence the notation ]K (resp. ]G) refers to the set of K-invariants (resp.
G-invariants) in these sets.

We now cite a result which we shall use throughout the thesis.

Proposition 6.1.2. For all the objects defined in Definition 6.1.1, and E any finite-
dimensional representation of the group G, we have:

π : [S(V )⊗ ∧•p∗ ⊗ E]K '−→ [S(V )⊗ Ω•(D)⊗ E]G

where the isomorphism is canonically given by evaluating the right-hand side at the
basepoint of D.

Proof. See the discussion in [KM87, §3].

We note that this fact is generically true for all finite-dimensional split Lie groups G
- indeed, this idea is central to the construction of the Kudla-Millson forms in full
generality, as it allows the authors to work only with the Lie algebra differentials.
We may hence write down the differentials in these complexes:

Definition 6.1.3. For λ∗ ∈ p∗, let A(λ∗) : ∧•p∗ → ∧•+1p∗ be the wedge product on
the left with λ∗. We fix {λ} to be some complex basis of p.

Let B be some representation of G acting with νB, and as in [BW00, §1], we define
the differential in the complex [B ⊗ ∧•p∗]K as

dB :=
∑
λ

νB(λ)⊗ A(λ∗).

Lemma 6.1.4. For any such B, the differential satisfies d2
B = 0 and dB preserves

the K-invariance.

So, we now may write down the Kudla-Millson Schwartz form.
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Definition 6.1.5. With the orthonormal co-ordinates {z1, z2, z3} corresponding to
the basis {v1, v2, v3}, we define the following operators:

∇S = 1
2

2∑
α=1

[(
zα −

1
π

∂

∂zα

)
⊗ A

(
ξα
)]

: [S(V )⊗ ∧•p∗]K →
[
S(V )⊗ ∧•+1p∗

]K
,

∇S = 1
2

2∑
α=1

[(
zα −

1
π

∂

∂zα

)
⊗ A(ξα)

]
: [S(V )⊗ ∧•p∗]K →

[
S(V )⊗ ∧•+1p∗

]K
;

in the literature - see e.g. [KM86] - these are known as Howe operators, so we shall
follow this tradition. Let ϕ0 ∈ S(V ) be the standard Gaussian on V from Definition
5.3.1:

ϕ0(x) = e−π(x,x)0 .

Then the Kudla-Millson Schwartz form ϕKM(x) is defined by

ϕKM(x) =
(
∇S ◦ ∇S ◦ ϕ0

)
(x) ∈

[
S(V )⊗ ∧2p∗

]K
.

We shall start with the properties necessary for showing the main parts of the Kudla-
Millson result; we then shall examine how this may be developed into a suitable
cohomological object. Using the notation of Definition 5.2.1, we recall the chosen
basis of p:

Z ′r ≡ Z ′r,3 = 1
2 (αr,3 − βr,3i) , Z ′′r ≡ Z ′′r,3 = 1

2 (αr,3 + βr,3i) (6.1.1)

for r = 1, 2, and similarly the basis p∗:

ξα =
(
Z ′α,3

)∗
, ξα =

(
Z ′′α,3

)∗
.

Proposition 6.1.6 (Kudla & Millson, 1987). ϕKM(x) is closed, and has weight 3
with respect to the action of k′.

Proof. Throughout, we shall work in the Fock complex. Using the intertwiner from
Lemma 5.3.2, we may rewrite the ∇ operators in the Fock model as:

∇F = −i
2
√

2π

2∑
β=1

z′β ⊗ A
(
ξβ
)
,

∇F = −i
2
√

2π

2∑
β=1

z′′β ⊗ A (ξβ) .

Hence, utilising the isomorphism between the Fock and Schrödinger models, we will
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equivalently prove that the form

ϕFKM =
(
−i

2
√

2π

)2 2∑
β,β′=1

z′βz
′′
β′ ⊗ ξβ′ ∧ ξβ ∈

[
F ⊗ ∧2p∗

]K
is closed. Using the definition of the action of p in the Fock model from Lemma
5.2.3, we may use the definition of the differential in Definition 6.1.3, use the basis
{Z ′α, Z ′′α}2

α=1 of p, and hence write the differential dF = d+
F + d−F for the complex

[F ⊗ ∧•p∗]K :

d+
F = 1

4π

2∑
α=1

(
z′′αz

′
3 ⊗ A (ξα) + z′αz

′′
3 ⊗ A

(
ξα
))
,

d−F = −4π
2∑

α=1

(
∂2

∂z′α∂z
′′
3
⊗ A (ξα) + ∂2

∂z′′α∂z
′
3
⊗ A

(
ξα
))

(6.1.2)

Because ϕFKM has no terms with z′3 or z′′3 in, we see immediately that d−FϕFKM =
0, so we only need prove that d+

Fϕ
F
KM = 0. Because the polynomial terms act

symmetrically and p acts antisymmetrically, one immediately finds the formulae

2∑
α=1

(z′′α ⊗ A (ξα))ϕF =
2∑

α=1

(
z′α ⊗ A

(
ξα
))
ϕF = 0; (6.1.3)

Hence, d+
Fϕ
F = 0 follows directly, and so the proof of closedness is complete.

For the weight statement, we again may read off from Lemma 5.2 that the basis for
k′ acts through ωF as

ωF(e1 � e1 + ie1 � e1i) = 2i
[ 2∑
α=1

z′′α
∂

∂z′′α
− z′3

∂

∂z′3

]
+ i

ωF(e2 � e2 + ie2 � e2i) = 2i
[ 2∑
α=1

z′α
∂

∂z′α
− z′′3

∂

∂z′′3

]
+ i.

One may now calculate that ωF(er � er + ier � eri)
(
ϕFKM

)
= 3iϕFKM for r = 1 and

2, and so the Schwartz form has weight 3.

Definition 6.1.7. Let p+ be the subspace of p spanned by the Z ′α and p− the
subspace spanned by the Z ′′α; hence let

∧1,1p∗ =
(
p+
)∗
∧
(
p−
)∗
⊂ ∧2p∗

We define the interior multiplication maps A∗γ, A∗γ on ∧1,1p∗ by:

A∗γ
(
ξα ∧ ξα′

)
= δγαξα′ , A∗γ

(
ξα ∧ ξα′

)
= −δγα′ξα

which act as inverses to A(ξγ), A(ξγ); indeed, one may see that the action of these
operators (which we defined to be an action by the wedge on the left) recovers the
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original form. We hence define the homotopy operators h, h:

h, h :
[
F ⊗ ∧1,1p∗

]K
→ [F ⊗ p∗]K

by:

h = 1
4

2∑
γ=1

z′3
∂

∂z′γ
⊗ A∗γ, h = 1

4

2∑
γ=1

z′′3
∂

∂z′′γ
⊗ A∗γ

We define (in the Fock model) the second Schwartz form ψF by:

ψF :=
(
h+ h

) (
ϕF
)

Lemma 6.1.8. Let L ∈ p′− be the basis element that gives the lowering operator.
Then the following equation holds in the Fock model:

ωF(L)
(
ϕF
)

= dFψF

Proof. Using the calculations in Lemma 5.2.3, and fixing λ = 2πi, we may write

ωF(L) = −4π
2∑

γ=1

∂2

∂z′′γ∂z
′
γ

+ 1
4πz

′′
3z
′
3. (6.1.4)

An easy calculation then gives us:

ωF(L)(ϕF) = 1
4πz

′
3z
′′
3ϕ
F + 1

2π
(
ξ1 ∧ ξ1 + ξ2 ∧ ξ2

)
.

We may calculate that in the Fock model, ψF may be written:

ψF = 1
4

2∑
γ=1

(
z′3

∂

∂z′γ
⊗ A∗γ + z′′3

∂

∂z′′γ
⊗ A∗γ

)(
ϕF
)

= 1
4

(
−i

2
√

2π

)2 2∑
α=1

(
z′3 · 2z′′α ⊗ (−ξα) + z′′3 · 2z′α ⊗

(
ξα
))

= −1
16π2

2∑
α=1

(
−z′3z′′α ⊗ ξα + z′′3z

′
α ⊗ ξα

)
. (6.1.5)

Recalling the definition of the differential dF = d+
F + d−F in (6.1.2), we calculate:

d+
Fψ
F = −1

64π3

2∑
γ=1

(
z′3z
′′
γ ⊗ A (ξγ) + z′′3z

′
γ ⊗ A

(
ξγ
))
·

2∑
α=1

(
−z′3z′′α ⊗ ξα + z′′3z

′
α ⊗ ξα

)

= −1
64π3

2∑
α,γ=1

(
− (z′3)2z′′αz

′′
γ ⊗ ξγ ∧ ξα − z′3z′′3z′γz′′α ⊗ ξγ ∧ ξα (6.1.6)

+ z′3z
′′
3z
′
αz
′′
γ ⊗ ξγ ∧ ξα + (z′′3 )2z′γz

′
α ⊗ ξγ ∧ ξα

)
= 1

8π

(
−i

2
√

2π

)2

z′3z
′′
3

2∑
α,γ=1

(
z′γz
′′
α ⊗ ξα ∧ ξγ + z′αz

′′
γ ⊗ ξγ ∧ ξα

)
, (6.1.7)
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where the last equality in (6.1.7) holds because all of the terms of the form ξγ ∧
ξα, ξγ∧ξα disappear - this is because of the anti-symmetric properties of these wedge
products. Hence, as what remains is recognisable as two copies of the original ϕF ,
we hence have:

d+
Fψ
F = 1

4πz
′
3z
′′
3ϕ
F .

Similarly, we calculate:

d−FψF = −4π
2∑

γ=1

(
∂2

∂zγ′∂z′′3
⊗ A (ξγ) + ∂2

∂zγ′′∂z′3
⊗ A(ξγ)

)
· −1

16π2

2∑
α=1

(
−z′3z′′α ⊗ ξα + z′′3z

′
α ⊗ ξα

)

= 1
4π

2∑
α,γ=1

(
∂2

∂zγ′∂z′′3
(z′′3zα′)⊗ ξγ ∧ ξα + ∂2

∂zγ′′∂z′3
(z′3z′′α)⊗ ξα ∧ ξγ

)

= 1
4π

2∑
α,γ=1

(
δαγ ⊗ ξγ ∧ ξα + δαγ ⊗ ξα ∧ ξγ

)
= 1

2π
(
ξ1 ∧ ξ1 + ξ2 ∧ ξ2

)
and so the proof is completed.

Given all of the above - which essentially treated the Schwartz form as an abstract
algebraic object - we now examine how we may view this Schwartz form on the
right hand side of the isomorphism in Proposition 6.1.2; in particular, we wish to
understand ϕKM as a differential form on D.

Definition 6.1.9. For z ∈ PV− ' D and x ∈ V , we may construct the majorant
attached to z as follows:

(x,x)z :=

 (x,x) if x ∈ z
−(x,x) if x ∈ z⊥;

(6.1.8)

one may recognise this as a generalisation of the majorant for the line spanned by v3,
constructed in Definition 5.3.1. Indeed, as an alternate definition of the majorant,
one may take ( , )0 from Definition 5.3.1 and the property

(x,x)z = (g−1
z x, g−1

z x)B, (6.1.9)

where gz ∈ G such that gzzB = z. We hence form

ϕ0(x, z) = ϕ0
(
g−1
z (x)

)
= exp(−π(x,x)z).

This allows us a further redefinition of D: as the space of majorants for the hermitian
space V . We also note that all choices of majorants ( , )z give us a positive-definite,
and hence signature (3, 0), inner product on V ; in particular, this will allow us to
address convergence properties.
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We may now realise the isomorphism π from Proposition 6.1.2 on the given co-
ordinates.

Definition 6.1.10. We define the canonical G-invariant differential forms Ξα, Ξα

on D as Ξα = π(ξα), Ξα = π(ξα). By the general theory of Maurer-Cartan forms, we
may write these as follows:

Ξα = dzα
1− |z1|2 − |z2|2

, Ξα = dzα
1− |z1|2 − |z2|2

We may now write down the Kudla-Millson Schwartz forms in the complex of dif-
ferential forms. For α = 1, 2, we let Dα and Dα be the operators on S(V ) given
by

Dα = 1
2

(
zα −

1
π

∂

∂zα

)
, Dα = 1

2

(
zα −

1
π

∂

∂zα

)
(6.1.10)

so that ∇S = ∑
αDα ⊗ Ξα and ∇S = ∑

αDα ⊗ Ξα.

ϕKM(x, gz) =
2∑

α,α′=1

(
Dα ◦ Dα′(ϕ0)

) (
g−1
z x

)
⊗ Ξα′ ∧ Ξα (6.1.11)

Because we know that G/K = D parameterises the set of negative length lines z, we
may view this as a function of z rather than gz, and write this as ϕKM(x, z).

Further, we may write down the polynomials resulting from the ∇ operators: it is a
simple calculation that(

zα −
1
π

∂

∂zα

)
◦
(
zα −

1
π

∂

∂zα

)
=
(
zα −

1
π

∂

∂zα

)
◦
(
zα −

1
π

∂

∂zα

)

as operators on S(V ), and so
(
Dα ◦ Dα(ϕ0)

)
(x) =

(
|zα|2 −

1
2π

)
ϕ0(x),

and for {α, α′} = {1, 2}:(
Dα ◦ Dα′(ϕ0)

)
(x) = (zα′zα)ϕ0(x)

Throughout this work, we shall use ϕ0 to refer to the polynomial part - namely,
ϕ0(x) = ϕ(x)eπ(x,x). We now illustrate how we may insert the SL2(R) ' SU(W )
variable; we first must calculate how the Lie algebra sl2(R) acts, using the matrix
exponential:

exp
1

2 logv
ulogv
v−1

−1
2 logv

 =
√v u√

v
1√
v

 =: g′τ

where τ = u+ iv is some point in the upper-half plane H.
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Lemma 6.1.11. Let g =
a b

d

 be a generic upper-triangular matrix in SL2(R).

Then this acts via the Weil representation on a polynomial Schwartz form f(x) ∈
S(V ) as follows:

((exp(ω)(g)) (f)) (x) = |a|3exp (πiR [ab(x,x)]) f(ax)

Proof. This is just a change of basis from the unitary basis e1, e2 of W to the
necessary symplectic basis (which gives su(W ) ' sl2(R)): this gives bi

2 a− bi
2

a+ bi
2 − bi

2

 ∈ su(W )

and then an application of the Weil representation actions of k′ and g′ in Lemma
5.2.3.

Definition 6.1.12. For an arbitrary τ ∈ H, we define ϕ(x, τ) as a function of τ as
follows:

ϕ(x, τ) := j(g′τ , i)3(exp(ω)(g′τ )ϕ)(x)

= v−3/2
(√

v
3exp(πiu(x,x))ϕKM(

√
vx)

)
=

2∑
α,α′=1

ϕ0
α,α′(
√
vx)eπi(x,x)τ ⊗ ξα′ ∧ ξα (6.1.12)

where ϕ0
α,α′(x) = ϕα,α′(x)eπ(x,x) is the polynomial part of ϕKM in the ξα′ ∧ ξα

component.

Since all the actions will commute, one may check that this is closed in the complex
[S(V )⊗∧•p∗]K for all τ , so in particular when inserting z as in (6.1.11), we acquire
a closed form ϕ(x, z, τ) given by

ϕ(x, z, τ) =
2∑

α,α′=1
ϕ0
α,α′

(
g−1
z

(√
vx
))
eπi(x,x)zτ ⊗ Ξα′ ∧ Ξα ∈

[
S(V )⊗ Ω2(D)

]G
.

We are now ready to introduce the theta series.

Theorem 6.1.13 (Kudla-Millson, 1986). Let x ∈ V be a positive length vector. Up
to a constant, the special cycle Cx is a Poincaré dual of ϕKM(x, z, τ); namely, for η
a closed, G-invariant and rapidly decreasing closed differential 2-form on Γx\D:∫

Γx\D
η ∧ ϕKM(x, z, τ) = ieπi(x,x)τ

∫
Cx
η (6.1.13)

For x ∈ V of negative length, ϕKM(x, z, τ) is exact, and so by Stokes’ theorem in
particular the integral on the left hand side of (6.1.13) is 0.
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Let L ⊂ V be an even, integral lattice of level M ∈ N such that all of its cosets
L ⊂ L′/L are fixed by some arithmetic group Γ ⊂ G. We may hence define the
Kudla-Millson theta series:

θL(ϕKM , τ) =
∑
x∈L

ϕKM(x, z, τ) ∈ Ω2(X)⊗Mnonhol
3 (Γ(M));

This defines a differential form on X which is uniformly convergent on compact
subsets of X, and as a function in τ is a non-holomorphic modular form of level M .
We may treat this as a cohomology class in H2

dR(X); this class is non-trivial, and
defines a holomorphic modular form in τ :

[θL(ϕKM)] =
∑
x∈L

[ϕ(x, z, τ)] ∈ H2(X)⊗M3(Γ(M)).

Further, by duality, we may write what the Fourier coefficients are: with

ΩX =
2∑
j=1

dzj ∧ dzj
(1− |z1|2 − |z2|2)2

the Kähler form on X - so that c1(X) = i
2πΩ is the first Chern form on X - we may

write:
[θL(ϕKM)] = [c1(X)] +

∑
n>0

[Cn]PD qn

Hence, for any rapidly decreasing form η ∈ H2
c (X), we have

∫
X
η ∧ θL (ϕKM) = i

[
1

2πδL=L

∫
X
η ∧ ΩX +

∑
n>0

e2πinτ
(∫

Cn
η
)]
∈M3(Γ(M))

Proof. The full proof of this is contained entirely (not to mention in much broader
generality) in the papers [KM86] and [KM87]; we note only that once the duality
equation is proven (which we need not attempt - see e.g. [KM87, Proposition 6.3]),
the rest of the theorem largely follows from this and our earlier work.

In particular, the fact that θL(ϕKM , τ) defines a differential form on X follows
immediately from the Γ-invariance of L. The modularity of weight 3 comes from
the weight calculation in Proposition 6.1.6; similarly, the holomorphy in cohomology
comes from Lemma 6.1.8 - which, when translated to the cohomological language,
means that [LτϕKM(x, z, τ)] = [0] in cohomology.

The fact that it is a specifically holomorphic modular form - i.e., that for negative
length x, the integral in (6.1.13) is 0 - follows from a standard construction of Kudla
and Funke in [KF17, §3.3]. Namely, given the relationship ω(L)ϕKM = dψKM , one
forms an auxiliary form ψ̃ by

ψ̃(x) = −
∫ ∞

1
ψ0
KM

(√
rx
) dr
r
e−π(x,x) = − 1

2π|z3|2
ψKM(x).
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Inserting z in the usual way, we see that this is a smooth function exactly for z 6∈ Dx

- indeed, for z at the basepoint, it is defined for z such that |z3| 6= 0, or rather x not
perpendicular to [v3]. We may hence write

dψ̃0(x, z) = −
∫ ∞

1
d
(
ψ0
KM

(√
rx, z

)) dr
r

= −
∫ ∞

1

∂

∂r

(
ϕ0
KM(
√
rx, z)

)
dr = ϕ0

KM(x, z),
(6.1.14)

where the 2nd equality in (6.1.14) is a rewriting of Lemma 6.1.8 for v = r. The rest
of the theorem then follows from the duality statement.

6.2 Working towards a Generalised Schwartz
Form

We now dedicate some time to motivating and then writing down the general-
ised Schwartz form with coefficients in our chosen irreducible representations of
G. Namely, the problem naturally arises: how does one actually write down a
K-invariant Schwartz function? We shall hope to motivate this, using the Howe
operators of Kudla and Millson as inspiration. After all, at this point (with only
the original Kudla-Millson form to work with) we could, a priori, do a quite large
number of things in order to write down a vector-valued Schwartz form.

Definition 6.2.1. For two arbitary non-negative integers l, l′, let T l,l′(V ) = V ⊗l ⊗
(V ∗)⊗l′ be the vector product space, and Sl,l′(V ) ⊂ T l,l

′(V ) be the symmetric powers.
As in earlier chapters, let A denote the insertion on the left of a vector - so that
A(v) : V ⊗l → V ⊗l+1, and similarly for the dual. Then in the Schrödinger model, we
define the following Howe operators:

∇SV = 1
2

2∑
α=1

(
zα −

1
π

∂

∂zα

)
⊗ 1⊗ A(vα)⊗ 1,

∇SV = 1
2

2∑
α=1

(
zα −

1
π

∂

∂zα

)
⊗ 1⊗ 1⊗ A(v∗α),

which both act as endormophisms on [S(V )⊗ ∧•p∗ ⊗ T ?(V )]K .

One may see the logic to this as follows: recall from Definition 2.4.3 that we have
defined the Lie algebra elements as

ξj = 1
2
(
α∗j + β∗j i

)
= 1

2 ((vj ∧ v3)∗ − (ivj ∧ v3)∗ i) ,

ξj = 1
2
(
α∗j − β∗j i

)
= 1

2 ((vj ∧ v3)∗ + (ivj ∧ v3)∗ i)
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V has a left action by C, and we may give VC = V ⊗RC a right action as well, which
decomposes VC as

VC = VC,+i ⊕C VC,−i

where VC,±i = {v ∓ ivi | v ∈ V } is the ±i eigenspace for the complex structure
extended to VC. We may check that as left vector-spaces V ' VC,+i and V ∗ ' VC,−i;
hence, we may write

ξj = 1
2 ((vj + ivji)∗ ∧ v∗3) ∈ p∗,−, ξj = 1

2 ((vj − ivji)∗ ∧ v∗3) ∈ p∗,+. (6.2.1)

Indeed, using the forms from (6.2.1), we may write:

∇S = 1
2

2∑
α=1

[(
zα −

1
π

∂

∂zα

)
⊗ A

(1
2 ((vα − ivαi)∗ ∧ v∗3)

)]
, (6.2.2)

∇S = 1
2

2∑
α=1

[(
zα −

1
π

∂

∂zα

)
⊗ A

(1
2 ((vα + ivαi)∗ ∧ v∗3)

)]
. (6.2.3)

So, exploiting all the above isomorphisms, we may write the vector-valued Howe
operators ∇V , ∇V as:

∇SV = 1
2

2∑
α=1

(
zα −

1
π

∂

∂zα

)
⊗ 1⊗ A (vα − ivαi)⊗ 1

∇SV = 1
2

2∑
α=1

(
zα −

1
π

∂

∂zα

)
⊗ 1⊗ 1⊗ A (vα + ivαi) .

The correspondence between these two sets of operators may be seen as follows (we
treat the correspondence ∇S ↔ ∇SV , the other is identical). Both of them are sums
over the positive parts of V , and the terms in the S(V ) component are identical;
further, each has one term acting on ∧•p∗ or T l(V ), indexed by the negative signature
of V - hence, this correspondence may be reduced to the study of these terms.

Indeed, using the form of ∇S given in (6.2.2), we see that the map

+V → (+V ∧− V )∗, v → v∗ ∧ v∗3

is an isomorphism - indeed, this is by definition of the wedge product map in (5.2.2).
Hence, using all of the above, we may see the new operators ∇V and ∇V to be the
obvious choice of operators with coefficients.

We also note (because we know, from Kudla-Millson, that the operators ∇S and
∇S are K-invariant) the K-invariance of the ∇SV and ∇SV follows immediately from
these observations.

We may now write down our Schwartz forms in full generality.

Definition 6.2.2. Let l, l′ be two non-negative integers. Throughout, we use the
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superscript S to refer to objects in the Schrödinger model, and F to objects in the
Fock model.

(i) In the Schrödinger model, we define the Schwartz form with coefficients as
follows:

ϕSl,l′ =
(
∇SV

)l
·
(
∇SV

)l′ (
ϕS
)
∈
[
S(V )⊗ ∧2p∗ ⊗ T l,l′(V )

]K
(ii) Similarly, in the Fock model, we may use the intertwiners between S and F to

write

∇FV = −i
2
√

2π

2∑
α=1

z′α ⊗ 1⊗ A(vα)⊗ 1,

∇FV = −i
2
√

2π

2∑
α=1

z′′α ⊗ 1⊗ 1⊗ A(v∗α).

We hence define the relevant Schwartz form as:

ϕFl,l′ =
(
∇FV

)l
·
(
∇FV

)l′ (
ϕF
)
∈
[
F ⊗ ∧2p∗ ⊗ T l,l′(V )

]K
(iii) As noted in §3.1, the irreducible representations will be subspaces of T l,l′(V );

hence, for any such B ⊂ T l,l
′(V ), with projection map πB : T l,l′(V ) → B, we

write the form with coefficients in B as

ϕS,Bl,l′ = (1⊗ 1⊗ πB)
(
ϕSl,l′

)
,

and similarly for the Fock model. Of particular interest to us is the subspace
Sl,l

′(V ) of symmetric vectors, which has corresponding irrep. Hl,l′(V ), discussed
in §3.1.

We here mention that the advantage of working in the complex [S(V ) ⊗ ∧•p∗ ⊗
S•,•(V )]K is that all of the Howe operators fully commute. We also mention here
that our primary focus is on the case l = l′ - indeed, we shall see in the next section
that this is the only case giving us holomorphic theta series - but because of the
need for some auxiliary forms later on, we will stay in the non-specialised case as
often as possible early on.

We now record the full form of the vector-valued Schwartz functions in a lemma; it
is at this point that the reader will see the usefulness of the Fock model, because in
the Schrödinger model the expression involved is significantly more opaque.

Lemma 6.2.3. Let x = z1v1 + z2v2 + z3v3 be the orthonormal co-ordinates of V . In
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the Schrödinger model we may explicitly write the form ϕSl,l′ as

ϕSl,l′(x) = 1
2l+l′+2

∑
α,α′

β,β′

(
zα −

1
π

∂

∂zα

)(
zα′ −

1
π

∂

∂zα′

) ∏
β,β′

(
zβ −

1
π

∂

∂zβ

)(
zβ′ −

1
π

∂

∂zβ′

)
(ϕ0)

⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β

where
β = (β1, . . . , βl) , β′ = (β′1, . . . , β′l′) ,

all α, α′, βi, β′i run from 1 to 2 and we use the usual notation of vβ = vβ1 ⊗ . . .⊗ vβl
and v∗β′ = v∗β′1

⊗ . . .⊗ v∗βl′ .

Similarly, we may write for the Fock model

ϕFl,l′ =
(
−i

2
√

2π

)l+l′+2 ∑
α,α′

β,β′

z′αz
′′
α′z
′
βz
′′
β′ ⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′ .

6.3 The Many Properties of ϕF ,Hl,l

So, as promised a while ago - we look through the mists of time, back through
all the way to §4.1 and in particular Theorem 4.1.5 - we shall soon be able to
use these new Schwartz functions to prove our highly generalised statement about
modular generating series of odd integral weight, stated originally in the introductory
Theorem 1.2.2. For the rest of the section we write, unless otherwise necessary:

ϕl,l′ = ϕ
F ,T l,l′ (V )
l,l′ .

We now prove the following properties of the Schwartz function ϕl,l, when l = l′:

(i) With respect to the action of the central subalgebra k′ ⊂ g′ under the Weil
representation, ϕl,l has weight 2l + 3 [Lemma 6.3.2].

(ii) ϕl,l is closed in the differential for the complex [F⊗∧2p∗⊗T l,l(V )]K - and hence
in [F ⊗ ∧2p∗ ⊗ E]K for any subrepresentation E ⊂ T l,l(V ) [Proposition 6.3.5].

(iii) The lowering operator L spanning p′− from Definition 5.2.2 acts trivially in
cohomology with coefficients: namely, ωF(L)(ϕl,l) defines a Schwartz form that
satisfies

ωF(L) (ϕl,l) = d (βl,l) + ∆l,l

where βl,l is some Schwartz form and ∆l,l is a Schwartz form whose vector
component is proportional to the metric in V ⊗ V ∗, so that in particular
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(1⊗ 1⊗ πH(∆l,l)) = 0. Hence, by using the Schrödinger model with harmonic
coefficients, it follows that [

ωS(L)ϕS,Hl,l
]

= [0]

in H2
(
D, H̃l,l(V )

)
[Theorem 6.3.8].

(iv) In the Schrödinger model, ϕSl,l(x) is cohomologous to a "geometric" Schwartz
form: namely, we may define

ϕl,l,G(x) = [1⊗ 1⊗ A(x)⊗ 1]l ◦ [1⊗ 1⊗ 1⊗ A(x)]l ϕKM(x)

= ϕKM(x)⊗ xl ⊗ (x∗)l

so that ϕl,l,G(x) is the result of replacing all the vectors vβ with x (and similarly
in the dual) in the Howe operators from Definition 6.2.1 - or rather, we "shift"
x from the S(V ) part of the operator to the vector product part. Then this
form is cohomologous to ϕSl,l when we work with coefficients in the irrep Hl,l(V )
[Theorem 6.3.9].

Before we start, a couple of notes: firstly, I have listed these results here because,
despite my most ardent optimism, I think it is fair to assume that these results
are themselves a good deal more interesting than their proofs, which are largely
algebraic. Of course, these are necessary, and the insights derived from these results
are at the core of our work, but one need not understand the proofs to understand
the remainder of this thesis.

A second thing worth noting is exactly why part (iv) exists. The reader will hopefully
see the utility in parts (i)-(iii) - these results collectively will give us that the
associated theta series will define a modular class in cohomology. The most obvious
motivation is in our definition of the special cycles with coefficients in Proposition
4.1.3; indeed, once one sees this, it is suddenly very clear what this result will give
us - duality!

Definition 6.3.1. For any multi-index β = (β1, . . . , βl) of length l, with all βi ∈
{1, 2}, we let r(β) be the number of indices equalling 1, so that l−r(β) is the number
of indices equalling 2.

We start with a nice introductory result.

Lemma 6.3.2. ϕl,l is an eigenvector of weight (2l + 3) for the action of k′ under
the Weil representation.
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Proof. This proof is virtually identical to that of Proposition 6.1.6. We recall from our
work on the Weil representation in Lemma 5.2.3 that the basis {er�er+ ier�eri}2

r=1

acts in the Fock model as

ωF(e1 � e1 + ie1 � e1i) = 2i
[ 2∑
γ=1

z′′γ
∂

∂z′′γ
− z′3

∂

∂z′3

]
+ i

ωF(e2 � e2 + ie2 � e2i) = 2i
[ 2∑
γ=1

z′γ
∂

∂z′γ
− z′′3

∂

∂z′′3

]
+ i

We prove the statement for the first basis element - the proof for the other is
completely identical.

ωF(e1 � e1 + ie1 � e1i) (ϕl,l) = 2i
2∑

γ=1
z′′γ

∂

∂z′′γ
(ϕl,l) + iϕl,l

= 2i
(
−i

2
√

2π

)2l+2 ∑
γ,α,α′

β,β′

(
z′′γ

∂

∂z′′γ

(
z′αz

′′
α′z
′
βz
′′
β′

)
⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

)
+ iϕl,l

= 2i
(
−i

2
√

2π

)2l+2 ∑
γ,α,α′

β,β′

(
z′′γz

′
αz
′
β

∂

∂z′′γ

(
z′′α′z

′′
β′

)
⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

)
+ iϕl,l.

We may hence write:

2∑
γ=1

z′′γ
∂

∂z′′γ

(
z′′α′z

′′
β′

)
=

2∑
γ=1

z′′γ

(
δγα′z

′′
β′ + z′′α′

∂

∂z′′γ

(
z′′β′
))

=
2∑

γ=1
z′′γ

(
δγα′z

′′
β′ + zα′

[
δγ1(r(β′)(z′′1 )r(β′)−1(z′′2 )l−r(β′)

+ δγ2
(
l − r(β′)

)
(z′′1 )r(β′)(z′′2 )l−r(β′)−1

])
= z′′α′z

′′
β′ + z′′α′

[
r(β′)z′′β′ + (l − r(β′))z′′β′

]
= (l + 1)z′′α′z′′β′

and so we immediately have that

ωF(e1 � e1 + ie1 � e1i) (ϕl,l) = 2i(l + 1)ϕl + iϕl,l = i(2l + 3)ϕl,l.

We note here that implicit to this proof is that the element ϕl,l′ for l 6= l′ will not
give a theta series which is a holomorphic modular form in τ ! This is because the
two basis elements (for r = 1 and r = 2) will generate different weights - 2l + 3 and
2l′ + 3 respectively.

We may now start with a full definition of the differentials in the complexes used;
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this was something slightly fudged in Definition 6.1.3, where (because of our only
needing to work in coefficient-free complexes) we gave only one half of the picture.

Definition 6.3.3. We recall the complex basis {Z ′r, Z ′′r } of p from (6.1.1). Then we
define the vector-valued differentials by:

d+
V =

∑
p−basis

1⊗ A (λ)∗ ⊗ ρV (λ)⊗ 1

=
2∑

α=1
[1⊗ A (ξα)⊗ ρV (Z ′α)⊗ 1] +

2∑
α=1

[
1⊗ A

(
ξα
)
⊗ ρV (Z ′′α)⊗ 1

]
and

d−V =
∑

p−basis
1⊗ A (λ∗)⊗ 1⊗ ρ∗V (λ)

=
2∑

α=1
[1⊗ A (ξα)⊗ 1⊗ ρ∗V (Z ′α)] +

[
1⊗ A

(
ξα
)
⊗ 1⊗ ρ∗V (Z ′′α)

]
.

Here ρV , ρ∗V are, respectively, the derived actions (from the standard representation)
of the Lie algebra on the symmetric powers V ⊗l and (V ∗)⊗l′ . The + and − super-
scripts are to signify (as in the discussion in §6.2) how V and V ∗ are respectively
isomorphic to the +i and −i eigenspaces of VC. We hence define the differential

dV := d+
V + d−V .

We here recall the restricted differential dF in [F ⊗ ∧•p∗]K from (6.1.2); hence, in
the Fock model (and, identically in the Schrödinger model), we may define the
differential

d := dF + dV ,

on the complex [F ⊗∧•p∗ ⊗ T l,l′(V )]K . We note also that for any subrepresentation
B of T l,l′(V ), we may use the exact same differential, just restricted using the map
πB in exactly the same way as we may restrict the Schwartz functions from Definition
6.2.2.

The reader may notice where the full differential d = dF+dV is derived from. Indeed,
for E any G-representation, in [BW00] one associates a differential as outlined here
to [E ⊗∧•p∗]K ; so in particular, this is the case of E = F ⊗ T l,l′(V ), and in the case
of trivial coefficients, dV will just act trivially.

Lemma 6.3.4. We here record some small results which we will need to refer back
to throughout the key proofs.

(i) For γ, γ′ ∈ {1, 2}, the action of the basis elements Z ′γ, Z ′′γ on the relevant basis
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elements of V and V ∗ is given by:

ρV (Z ′γ)(vγ′) = 0, ρV (Z ′′γ )(vγ′) = δγγ′v3,

ρV (Z ′γ)(v3) = vγ, ρV (Z ′′γ )(v3) = 0

ρ∗V (Z ′γ)(v∗γ′) = −δγγ′v∗3, ρ∗V (Z ′′γ )(v∗γ′) = 0

ρ∗V (Z ′γ)(v∗3) = 0, ρ∗V (Z ′′γ )(v∗3) = −v∗γ.

(ii) For l, l′ non-negative integers, we define an auxiliary Schwartz form as follows:

ϕF0,l,l′ :=
∑
β,β′

z′βz
′′
β′ ⊗ 1⊗ vβ ⊗ v∗β′ (6.3.1)

so that ϕFl,l′ = ϕFKM · ϕF0,l,l′. We then have:(
1⊗ 1⊗ ρV (Z ′γ)⊗ 1

)
ϕ0,l,l′ = 0(

1⊗ 1⊗ ρV (Z ′′γ )⊗ 1
)
ϕ0,l,l′ = −i

2
√

2π

l∑
j=1

(
z′γ ⊗ 1⊗ Aj(v3)⊗ 1

)
· ϕ0,l−1,l′

(
1⊗ 1⊗ 1⊗ ρ∗V (Z ′γ)

)
ϕ0,l,l′ = i

2
√

2π

l∑
j=1

(
z′′γ ⊗ 1⊗ 1⊗ Aj(v∗3)

)
· ϕ0,l,l′−1(

1⊗ 1⊗ 1⊗ ρ∗V (Z ′′γ )
)
ϕ0,l,l′ = 0,

where Aj(v) : V l−1 → V l is the insertion of v in the j’th place (and similarly
for the dual vector space):

Aj(v) (v1 ⊗ . . .⊗ vl−1) = (v1 ⊗ . . . vj−1 ⊗ v ⊗ vj+1 ⊗ . . .⊗ vl−1) .

(iii) Similarly, we have:(
∂

∂z′γ
⊗ 1⊗ 1⊗ 1

)
ϕ0,l,l′ = −i

2
√

2π

l∑
j=1

(1⊗ 1⊗ Aj(vγ)⊗ 1)ϕ0,l−1,l′

(
∂

∂z′′γ
⊗ 1⊗ 1⊗ 1

)
ϕ0,l,l = −i

2
√

2π

l′∑
j=1

(
1⊗ 1⊗ 1⊗ Aj(v∗γ)

)
ϕ0,l,l′−1

Proof. Part (i) is simple linear algebra, based on the definition of how ρV and ρ∗V
act and the matrix forms of the basis elements. Parts (ii) and (iii) are then just
applications of part (i).

Proposition 6.3.5. ϕFl,l′ ∈
[
F ⊗ ∧•p∗ ⊗ T l,l′(V )

]K
is a closed form.

Proof. We start by showing dFϕl,l′ = 0. We recall that we may write dF = d+
F + d−F ,
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where

d+
F = 1

4π

2∑
α=1

(
z′′αz

′
3 ⊗ A (ξα) + z′αz

′′
3 ⊗ A

(
ξα
))
,

d−F = −4π
2∑

α=1

(
∂2

∂z′α∂z
′′
3
⊗ A (ξα) + ∂2

∂z′′α∂z
′
3
⊗ A

(
ξα
))

.

Because of the lack of z′3, z′′3 variables in ϕl,l′ , we may immediately write d−Fϕl,l′ = 0.
Because d+

F acts multiplicatively, we may write

d+
Fϕl,l′ =

(
d+
FϕKM

)
· ϕ0,l,l′ = 0 · ϕ0,l,l′ = 0

as we already showed that
(
d+
FϕKM

)
= 0 in Proposition 6.1.6.

We now calculate the d+
V action. We write:

d+
V ϕl,l′ =

2∑
γ=1

(
1⊗ A(ξγ)⊗ ρV (Z ′γ)⊗ 1 + 1⊗ A(ξγ)⊗ ρV (Z ′′γ )⊗ 1

)
· (ϕKM · ϕ0,l,l′)

=
2∑

γ=1

[
(1⊗ A(ξγ)⊗ 1⊗ 1) (ϕKM) ·

(
1⊗ 1⊗ ρV

(
Z ′γ
)
⊗ 1

)
(ϕ0,l,l′)

+
(
1⊗ A(ξγ)⊗ 1⊗ 1

)
(ϕKM) ·

(
1⊗ 1⊗ ρV

(
Z ′′γ
)
⊗ 1

)
(ϕ0,l,l′)

]

=
2∑

γ=1

[
0 +

(
1⊗ A(ξγ)⊗ 1⊗ 1

)
(ϕKM) · −i

2
√

2π

l∑
j=1

(
z′γ ⊗ 1⊗ Aj(v3)⊗ 1

)
(ϕ0,l−1,l′)

]

=
2∑

γ=1

−i
2
√

2π
(
z′γ ⊗ A(ξγ)⊗ 1⊗ 1

)
(ϕKM) ·

l∑
j=1

(1⊗ 1⊗ Aj(v3)⊗ 1) (ϕ0,l−1,l′) .

(6.3.2)

The 2nd equality in (6.3.2) follows from the fact that ϕKM has no vector components
and ϕ0,l,l′ has no ∧2p∗ components, and the third equality is the first statement in
Lemma 6.3.4(ii). From (6.1.3) (in the proof of Proposition 6.1.6), we already have
that

2∑
γ=1

(
z′γ ⊗ A(ξγ)⊗ 1⊗ 1

)
(ϕKM) = 0

and so d+
V ϕl,l′ = 0. The proof of d−V ϕl,l′ = 0 is exactly identical.

We now move onto the first of our two sizeable proofs. To improve readability,
we shall put as much of the necessary notation and auxiliary algebraic objects as
possible before the statement, as most of these objects are only needed specifically
for this chapter.

Definition 6.3.6. (i) We recall the Schwartz form ψFKM ≡ ψF from Definition
6.1.7, and the form ϕ0,l,l′ from (6.3.1). Then for any positive integers l, l′, we
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define the form
ψFl,l′ := ψF · ϕ0,l,l′

(ii) For 1 ≤ j ≤ l, we define the Schwartz forms as follows:

Aj = i

2
√

2π
(z′3 ⊗ 1⊗ Aj(v3)⊗ 1)ϕl−1,l

Bj = i
√

2
∑
α

(
∂

∂z′′α
⊗ 1⊗ 1⊗ 1

)
ϕKM · (1⊗ 1⊗ Aj(vα)⊗ 1)ϕ0,l−1,l

C+
j = 1

2πϕKM ·
∑
α

l∑
k=1

(1⊗ 1⊗ Aj(vα)⊗ Ak(v∗α))ϕ0,l−1,l−1

C−j = 1
2πϕKM ·

l∑
k=1

(1⊗ 1⊗ Aj(v3)⊗ Ak(v∗3))ϕ0,l−1,l−1

and

Aj = i

2
√

2π
(z′′3 ⊗ 1⊗ 1⊗ Aj(v∗3))ϕl,l−1

Bj = i
√

2
∑
α

(
∂

∂z′α
⊗ 1⊗ 1⊗ 1

)
ϕKM · (1⊗ 1⊗ 1⊗ Aj(v∗α))ϕ0,l,l−1

Cj
+ = 1

2πϕKM ·
∑
α

l∑
k=1

(1⊗ 1⊗ Ak(vα)⊗ Aj(v∗α))ϕ0,l−1,l−1

Cj
− = 1

2πϕKM
l∑

k=1
(1⊗ 1⊗ Aj(v3)⊗ Ak(v∗3))ϕ0,l−1,l−1.

(iii) For any 1 ≤ j ≤ l, we also define the following homotopy operators

hj =
2∑

γ=1

(
∂

∂z′′γ
⊗ A∗ (ξγ)⊗ Aj(v3)⊗ 1

)
, hj =

2∑
γ=1

(
∂

∂z′γ
⊗ A∗

(
ξγ
)
⊗ 1⊗ Aj(v∗3)

)

and forms:
Λj,l := i

√
2

l + 2hjϕ
F
l−1,l, Λj,l := i

√
2

l + 2hjϕ
F
l,l−1.

The next proposition shall give us a lot of control over these objects, and in particular
indicates how one may construct the necessary primitives of ω(L)ϕl,l. The rubric
shall be that the differential d = d+

F + d−F + d+
V + d−V acts with each of its constituent

parts on Λj,l to give one of the Aj, Bj, C
−
j .

Proposition 6.3.7. For d the differential in the Fock complex with coefficients, we
have

dΛj,l = −Aj −Bj − C−j , dΛj,l = −Aj −Bj − Cj
−
. (6.3.3)

More specifically, we have the following 8 algebraic relations:

d+
FΛj,l = −Aj, d−FΛj,l = 0, d+

V Λj,l = −Bj, d−V Λj,l = −C−j (6.3.4)
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d+
FΛj,l = −Aj, d−FΛj,l = 0, d+

V Λj,l = −Bj, d−V Λj,l = −Cj
− (6.3.5)

Proof. I hope to convince the reader of the need only to show one half of this; namely,
because of the symmetry between the definitions of e.g. Aj and Aj, hj and hj etc,
the algebra for the proofs of (6.3.4) and (6.3.5) will be identical. Assuming that this
is satisfactory, we start by showing that dFΛj,l = −Aj. Re-arranging the constants,
this is equivalent to:

dF (hjϕl−1,l) = −i(l + 2)√
2

Aj. (6.3.6)

Firstly, it is clear that d−F (hjϕl−1,l) = 0, because by examination none of the terms
in hjϕl−1,l contain either of the variables z′3, z′′3 . Hence, we have reduced (6.3.6) to:

d+
F (hjϕl−1,l) = −i(l + 2)√

2
Aj.

Putting the two operators together, we have

d+
Fhj = 1

4π

2∑
γ,γ′=1

(
z′′γz

′
3
∂

∂z′′γ′
⊗A(ξγ)A∗(ξγ′)⊗ Aj(v3)⊗ 1

+ z′γz
′′
3
∂

∂z′′γ′
⊗ A(ξγ)A∗(ξγ′)⊗ Aj(v3)⊗ 1

)
. (6.3.7)

The differential operators act on ∧2p∗ as:

A(ξγ)A∗(ξγ′)(ξα′ ∧ ξα) = −δαγ′ξγ ∧ ξα′ ; (6.3.8)

here we see that exchanging α′ and γ acts as −1, whereas exchanging α and γ′ is
invariant. Hence the second term in (6.3.7) acts trivially on ϕl−1,l:

1
4π

2∑
γ,γ′=1

(
z′γz
′′
3
∂

∂z′′γ′
⊗ A(ξγ)A∗(ξγ′)⊗ Aj(v3)⊗ 1

)
ϕl−1,l = 0.

We now treat the other half. We see very similarly that

A(ξγ)A∗(ξγ′)(ξα′ ∧ ξα) = δαγ′ξγ ∧ ξα

and

∂

∂z′′γ′

(
z′αz

′′
α′z
′
βz
′′
β′

)
= z′αz

′
β

[
δα′γ′z

′′
β′ + z′′α′

(
δγ′1r(β′)(z′′1 )r(β′)−1(z′′2 )l−r(β′)

+ δγ′2(l − r(β′))(z′′1 )r(β′)(z′′2 )l−r(β′)−1
)]
.

Hence, splitting into γ′ = 1 and γ′ = 2, we may write

d+
Fhjϕl−1,l = 1

4π

(
−i

2
√

2π

)2l+1 2∑
γ,α=1

∑
β,β′

[
z′3z
′′
γz
′
αz
′
β

(
(z′′β′ + r(β′)z′′β′)⊗ ξγ ∧ ξα ⊗ Aj(v3)vβ ⊗ v∗β′

)
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+ z′3z
′′
γz
′
αz
′
β

(
(z′′β′ + (l − r(β′))z′′β′)⊗ ξγ ∧ ξα ⊗ Aj(v3)vβ ⊗ v∗β′

)]

= 1
4π

(
−i

2
√

2π

)2l+1 2∑
γ,α=1

∑
β,β′

[
z′3z
′′
γz
′
αz
′
β

(
(l + 2)z′′β′

)
⊗ ξγ ∧ ξα ⊗ Aj(v3)vβ ⊗ v∗β′

]

= −i(l + 2)√
2

Aj.

Next, we wish to prove that d+
V hjϕl−1,l = −i(l+2)√

2 Bj. As before, we write:

d+
V hj =

2∑
γ,γ′=1

 ∂

∂zγ′′
⊗ A(ξγ′)A∗(ξγ)⊗ ρV

(
Z ′γ′3

)
◦ Aj(v3)⊗ 1


+
 ∂

∂zγ′′
⊗ A(ξγ′)A∗(ξγ)⊗ ρV

(
Z ′′γ′3

)
◦ Aj(v3)⊗ 1

 (6.3.9)

As in the proof of the Aj statement, because of the action on ∧2p∗ from (6.3.8)
we may see quite easily that the second term in (6.3.9) acts trivially on ϕl−1,l, for
exactly the same reasons. Hence, we only need to look at the first term.

By Lemma 6.3.4(i), we know that ρV
(
Z ′γ′3

)
(v3) = vγ′ and that ρV

(
Z ′γ′3

)
(vα) = 0,

so that (
ρV
(
Z ′γ′3

)
◦ Aj(v3)

)
vβ = Aj(vγ′)vβ. (6.3.10)

Using the product rule and (6.3.10), we may apply (6.3.9) to ϕl−1,l and write:

d+
V hjϕl−1,l =

2∑
γ,γ′=1

(
∂

∂z′′γ
⊗ A(ξγ′)A∗(ξγ)⊗ 1⊗ 1

)
(ϕKM) · (1⊗ 1⊗ Aj(vγ′)⊗ 1)ϕ0,l−1,l

+
2∑

γ,γ′=1
(1⊗ A(ξγ′)A∗(ξγ)⊗ 1⊗ 1) (ϕKM) ·

(
∂

∂z′′γ
⊗ 1⊗ Aj(vγ′)⊗ 1

)
ϕ0,l−1,l.

We may calculate that

∂

∂z′′γ
⊗ A(ξγ′)A∗(ξγ)⊗ 1⊗ 1 (ϕKM) =

(
−i

2
√

2π

)2 2∑
α=1

z′α ⊗ ξγ′ ∧ ξα

and so splitting the second sum into γ = 1, 2, we may write

d+
V hjϕl−1,l =

(
−i

2
√

2π

)2 2∑
α,γ′=1

(
2z′α ⊗ ξγ′ ∧ ξα

)
· (1⊗ 1⊗ Aj(vγ′)⊗ 1)ϕ0,l−1,l

+
2∑

α,γ′=1

(
−i

2
√

2π

)2l+1 (
zαz

′′
1 ⊗ ξγ′ ∧ ξα

)
·
∑
β,β′

r(β′)z′β(z′′1 )r(β′)−1(z′′2 )l−r(β′)

⊗ 1⊗ Aj(vγ′)vβ ⊗ v∗β′

+
2∑

α,γ′=1

(
−i

2
√

2π

)2l+1 (
zαz

′′
2 ⊗ ξγ′ ∧ ξα

)
·
∑
β,β′

(l − r(β′))z′β(z′′1 )r(β′)(z′′2 )l−r(β′)−1
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⊗ 1⊗ Aj(vγ′)vβ ⊗ v∗β′

= (l + 2)
(
−i

2
√

2π

)2l+1 2∑
α,γ′=1

(
z′α ⊗ ξγ′ ∧ ξα

)∑
β,β′

z′βz
′′
β′ ⊗ 1⊗ Aj(vγ′)vβ ⊗ v∗β′

= −i(l + 2)√
2

Bj

Finally, we show that d′−V hjϕl−1,l = −i(l+2)√
2 C−j . As before, we write the operator as

d−V hj =
2∑

γ,γ′=1

(
∂

∂z′′γ
⊗ A(ξγ′)A∗(ξγ)⊗ Aj(v3)⊗ ρ∗V

(
Z ′γ′3

))

+
2∑

γ,γ′=1

(
∂

∂z′′γ
⊗ A(ξγ′)A∗(ξγ)⊗ Aj(v3)⊗ ρ∗V

(
Z ′′γ′3

))
(6.3.11)

As in the previous parts, the second term in (6.3.11) will act trivially on ϕl−1,l

because the action on ∧2p∗ is as in (6.3.8). So:

d−V hjϕl−1,l =
2∑

γ,γ′=1

(
∂

∂z′′γ
⊗ A(ξγ′)A∗(ξγ)⊗ 1⊗ 1

)
(ϕKM)

·
(
1⊗ 1⊗ Aj(v3)⊗ ρ∗V

(
Z ′γ′3

))
ϕ0,l−1,l

+
2∑

γ,γ′=1
(1⊗ A(ξγ′)A∗(ξγ)⊗ 1⊗ 1) (ϕKM) ·

(
∂

∂z′′γ
⊗ 1⊗ Aj(v3)⊗ ρ∗V

(
Z ′γ′3

))
ϕ0,l−1,l

=
(
−i

2
√

2π

)2 2∑
α,γ′=1

(
2z′α ⊗ ξγ′ ∧ ξα

)
·
(
1⊗ 1⊗ Aj(v3)⊗ ρ∗V

(
Z ′γ′3

))
ϕ0,l−1,l

+
(
−i

2
√

2π

)2l+1 ∑
α,γ′

β,β′

z′αz
′′
1r(β′)z′β(z′′1 )r(β′)−1(z′′2 )l−r(β′) ⊗ ξγ′ ∧ ξα ⊗ Aj(v3)vβ ⊗ ρ∗V

(
Z ′γ′3

)
v∗β′

+
(
−i

2
√

2π

)2l+1 ∑
α,γ′

β,β′

z′αz
′′
2 (l − r(β′))z′β(z′′1 )r(β′)(z′′2 )l−r(β′)−1 ⊗ ξγ′ ∧ ξα ⊗ Aj(v3)vβ ⊗ ρ∗V

(
Z ′γ′3

)
v∗β′

= −i(l + 2)√
2

1
2π

(
−i

2
√

2π

)2l∑
α,γ′

β,β′

z′αz
′
βz
′′
β′ ⊗ ξγ′ ∧ ξα ⊗ Aj(v3)vβ ⊗ ρ∗V

(
Z ′γ′3

)
v∗β′ .

Using Lemma 6.3.4(i) again to find the action of ρ∗V , we see that this last expression
is equal to −i(l+2)√

2 C−j .

Using the above, we may state a central result: namely, that the form ωF(L)(ϕl,l)
is exact with coefficients in the harmonic representation Hl,l. We shall discuss
afterwards the consequences that may be drawn from this - as well as its relation to
the coefficients-free result equivalent to it in Lemma 6.1.8.
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Theorem 6.3.8. Let l ≥ 1 be a positive integer. The lowering element

L = −i2 (e1 � e2 + ie1 � e2i) ∈ p′−

acts through the Weil representation in the Fock model on ϕl,l as follows:

ωF(L)
(
ϕFl,l
)

= d
ψl,l − 1

2

l∑
j=1

(
Λj,l + Λj,l

)+
l∑

j=1

(
C+
j − C−j

)

Proof. We first note that we’ve already calculated what quite a lot of this equation
is: indeed, from Proposition 6.3.7, we know that

d
 l∑
j=1

(
Λj,l + Λj,l

) = −
l∑

j=1

(
Aj + Aj +Bj +Bj + C−j + Cj

−)
,

so what we shall show is the following:

(i) ωF(L)
(
ϕFl,l
)

=
(
ωF(L)

(
ϕFKM

))
ϕ0,l,l +∑l

j=1

(
Bj +Bj + C+

j

)
(ii) dFψl,l =

(
dFψF

)
ϕ0,l,l + 1

2
∑l
j=1

(
Bj +Bj

)
(iii) d+

V ψl,l = −1
2
∑l
j=1Aj and d−V ψl,l = −1

2
∑l
j=1Aj.

We first note that ∑j C
±
j = ∑

j Cj
±, which simplifies some of the above equations.

We also note that the above implicitly uses the results of Lemma 6.1.8 - that dFψF =
ωF(L)ϕFKM .

We start by showing part (i), the action of the lowering operator. We know from
Lemma 5.2.3 that L acts in the Fock model as:

ωF(L) = −4π
2∑

γ=1

∂2

∂z′′γ∂z
′
γ

+ 1
4πz

′′
3z
′
3

The 1
4πz
′′
3z
′
3 acts purely linearly, so it makes sense to focus on the action of the

derivatives - our main tool here will be the product rule.

∂2

∂z′′γ∂z
′
γ

ϕl,l =
(
−i

2
√

2π

)2l+2 ∑
α,α′

β,β′

∂

∂z′γ

(
z′αz

′
β

) ∂

∂z′′γ

(
z′′α′z

′′
β′

)
⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

=
(
−i

2
√

2π

)2l+2
∑
α,α′

β,β′

δγαz
′
βδγα′z

′′
β′ ⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

+
∑
α,α′

β,β′

∂

∂z′γ
(z′α)z′βz′′α′

∂

∂z′′γ

(
z′′β′
)
⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′
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+
∑
α,α′

β,β′

zα′
∂

∂z′γ

(
z′β
) ∂

∂z′′γ
(z′′α′)z′′β′ ⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

+
∑
α,α′

β,β′

zα′
∂

∂z′γ

(
z′β
)
z′′α′

∂

∂z′′γ

(
z′′β′
)
⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

.

We may use the identities in Lemma 6.3.4(iii) to write the above as:

∂2

∂z′′γ∂z
′
γ

=
(
−i

2
√

2π

)2l+2
∑
α,α′

β,β′

δγαz
′
βδγα′z

′′
β′ ⊗ ξα′ ∧ ξα ⊗ vβ ⊗ v∗β′

+ −i
2
√

2π

l∑
j=1

∑
α,α′

β,β′

∂

∂z′γ
(z′α)z′βz′′α′z′′β′ ⊗ ξα′ ∧ ξα ⊗ vβ ⊗ Aj(v∗γ)v∗β′ (6.3.12)

+ −i
2
√

2π

l∑
j=1

∑
α,α′

β,β′

z′αz
′
β

∂

∂z′′γ
(z′′α′)z′′β′ ⊗ ξα′ ∧ ξα ⊗ Aj(vγ)vβ ⊗ v∗β′ (6.3.13)

+
(
−i

2
√

2π

)2 l∑
j,k=1

∑
α,α′

β,β′

z′αz
′
βz
′′
α′z
′′
β′ ⊗ ξα′ ∧ ξα ⊗ Aj(vγ)vβ ⊗ Ak(v∗γ)v∗β′

,
(6.3.14)

where the β, β′ sums in (6.3.12), (6.3.13) and (6.3.14) are respectively over {1, 2}l & {1, 2}l−1,
{1, 2}l−1 & {1, 2}l and {1, 2}l−1 & {1, 2}l−1. Hence, summing over γ, and re-arranging
the sums (which is harmless, as they are all over finite sets), we find:

−4π
2∑

γ=1

∂2

∂z′′γ∂z
′
γ

ϕl,l = 1
2π

(
−i

2
√

2π

)2l∑
β,β′

z′βz
′′
β′ ⊗

(
ξ1 ∧ ξ1 + ξ2 ∧ ξ2

)
⊗ vβ ⊗ v∗β′

+
l∑

j=1
i
√

2
(
−i

2
√

2π

)2l+2 2∑
γ=1

∑
α,α′

β,β′

∂

∂z′γ
(z′α)z′βz′′α′z′′β′ ⊗ ξα′ ∧ ξα ⊗ vβ ⊗ Aj(v∗γ)v∗β′

︸ ︷︷ ︸
=Bj

+
l∑

j=1
i
√

2
(
−i

2
√

2π

)2l+2 2∑
γ=1

∑
α,α′

β,β′

z′αz
′
β

∂

∂z′′γ
(z′′α′)z′′β′ ⊗ ξα′ ∧ ξα ⊗ Aj(vγ)vβ ⊗ v∗β′

︸ ︷︷ ︸
=Bj

+
l∑

j=1

1
2π

(
−i

2
√

2π

)2l+2 2∑
γ=1

l∑
k=1

∑
α,α′

β,β′

z′αz
′
βz
′′
α′z
′′
β′ ⊗ ξα′ ∧ ξα ⊗ Aj(vγ)vβ ⊗ Ak(v∗γ)v∗β′ .

︸ ︷︷ ︸
=C+

j
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Hence, we may write

ωF(L) (ϕl,l) = 1
4πz

′
3z
′′
3ϕl,l + 1

2π

1⊗
 2∑
γ=1

ξγ ∧ ξγ

⊗ 1⊗ 1
 · ϕ0,l,l

+
l∑

j=1
Bj +

l∑
j=1

Bj +
l∑

j=1
C+
j

= (ωF(L) (ϕKM))ϕ0,l,l +
l∑

j=1

(
Bj +Bj + C+

j

)
,

which completes the proof of (i). Next, we show part (ii), the action of dF . From
(6.1.5), we have the explicit algebraic form given by

ψF = 1
2

(
−i

2
√

2π

)2 2∑
α=1

(
−z′3z′′α ⊗ ξα + z′′3z

′
α ⊗ ξα

)
,

so we write:

ψFl,l = 1
2

(
−i

2
√

2π

)2l+2 ∑
α,β,β′

(
−z′3z′′αz′βz′′β′ ⊗ ξα ⊗ vβ ⊗ v∗β′ + z′′3z

′
αz
′
βz
′′
β′ ⊗ ξα ⊗ vβ ⊗ v∗β′

)
(6.3.15)

We recall the forms of dF = d+
F + d−F from (6.1.2). The action of d+

F is completely
multiplicative, so we may write

d+
F (ψl,l) =

(
d+
F

(
ψF
))
· ϕ0,l,l,

and hence we may focus on the action of d2
F . By the usual argument - see e.g. (6.3.8)

- for the differential operators in ∧•p∗, we may discard terms of the form ξγ ∧ ξα,
ξγ ∧ ξα in d−FψFl,l. Hence, we may write:

d−FψFl,l = −2π
(
−i

2
√

2π

)2l+2
 ∑
γ,α,β,β′

∂2

∂z′γ∂z
′′
3

(
z′′3z

′
αz
′
βz
′′
β′

)
⊗ ξγ ∧ ξα ⊗ vβ ⊗ v∗β′

+
∑

γ,α,β,β′

∂2

∂z′′γ∂z
′
3

(
z′3z
′′
αz
′
βz
′′
β′

)
⊗ ξα ∧ ξγ ⊗ vβ ⊗ v∗β′

. (6.3.16)

Our first observation is that the first term (resp. the second term) in (6.3.16) has
exactly one z′′3 and one ∂/∂z′′3 (resp. one z′3 and one ∂/∂z′3) term, so these may be
moved to the front of the equation - though we keep them in some of the terms to
help our correspondence with the action of d−F . We may hence split this equation
using the chain rule:

d−FψFl,l =− 2π
(
−i

2
√

2π

)2l+2
 ∑
γ,α,β,β′

z′βz
′′
β′

∂2

∂z′γ∂z
′′
3

(z′′3z′α)⊗ ξγ ∧ ξα ⊗ vβ ⊗ v∗β′
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+
∑

γ,α,β,β′
z′βz

′′
β′

∂2

∂z′′γ∂z
′
3

(z′3z′′α)⊗ ξα ∧ ξγ ⊗ vβ ⊗ v∗β′


− 2π
(
−i

2
√

2π

)2l+2
 ∑
γ,α,β,β′

z′αz
′′
β′
∂

∂z′γ

(
z′β
)
⊗ ξγ ∧ ξα ⊗ vβ ⊗ v∗β′

+
∑

γ,α,β,β′
z′′αz

′
β

∂

∂z′′γ

(
z′′β′
)
⊗ ξα ∧ ξγ ⊗ vβ ⊗ v∗β′

. (6.3.17)

The first two lines of (6.3.17) are easily recognisable as equal to (d−F(ψF)) · ϕ0,l,l;
we may use the relations of Lemma 6.3.4(iii) to rewrite the remaining two lines as
follows:

d−FψFl,l =
(
d−F

(
ψF
))
· ϕ0,l,l − 2π

(
−i

2
√

2π

)2l+3 l∑
j=1

∑
γ,α,β,β′

z′αz
′′
β′z
′
β ⊗ ξγ ∧ ξα ⊗ Aj(vγ)vβ ⊗ v∗β′

− 2π
(
−i

2
√

2π

)2l+3 l∑
j=1

∑
γ,α,β,β′

z′′αz
′
βz
′′
β′ ⊗ ξα ∧ ξγ ⊗ vβ ⊗ Aj(v∗γ)v∗β′

=
(
d−F

(
ψF
))
· ϕ0,l,l + 1

2

l∑
j=1

i
√

2
(
−i

2
√

2π

)2l+2 ∑
γ,α,β,β′

z′αz
′′
β′z
′
β ⊗ ξγ ∧ ξα ⊗ Aj(vγ)vβ ⊗ v∗β′

︸ ︷︷ ︸
=Bj

+ 1
2

l∑
j=1

i
√

2
(
−i

2
√

2π

)2l+2 ∑
γ,α,β,β′

z′′αz
′
βz
′′
β′ ⊗ ξα ∧ ξγ ⊗ vβ ⊗ Aj(v∗γ)v∗β′

︸ ︷︷ ︸
=Bj

=
(
d−F

(
ψF
))
· ϕ0,l,l + 1

2

l∑
j=1

Bj + 1
2

l∑
j=1

Bj;

hence we have shown part (ii). We finish by showing part (iii), the action of dV ;
by the symmetry of the operators, we only show the d+

V action, as the d−V action is
essentially identical.

By the same logic as in the proof of parts (i) and (ii), using e.g. (6.3.8), when
applying dV to ψFl,l we may discard all terms of the form ξγ ∧ ξα, ξγ ∧ ξα. doing this,
we find

d+
V ψ
F
l,l =1

2

(
−i

2
√

2π

)2l+2
 ∑
γ,α,β,β′

z′′3z
′
αz
′
βz
′′
β′ ⊗ ξγ ∧ ξα ⊗ ρV (Z ′γ)(vβ)⊗ v∗β′

+
∑

γ,α,β,β′
z′3z
′′
αz
′
βz
′′
β′ ⊗ ξα ∧ ξγ ⊗ ρV (Z ′′γ )(vβ)⊗ v∗β′

.
We know from our calculations in Lemma 6.3.4(i) how ρV will act on the symmetric
products vβ. For any multi-index β, we let β̂

j
= (β1, . . . , βj−1, βj+1, . . . , βl) be the
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multi-index with βj excluded - we may write the above as

d+
V ψ
F
l,l = 1

2

(
−i

2
√

2π

)2l+2 ∑
γ,α,β,β′

z′3z
′′
αz
′
βz
′′
β′ ⊗ ξα ∧ ξγ ⊗

 l∑
j=1

δβjγAj(v3)vβ̂
j

⊗ v∗β′ ,
Keeping the indices β, β′ ∈ {1, 2}l, and for any given 1 ≤ j ≤ l:

(
−i

2
√

2π

)2l+1 ∑
α,γ,β,β′

δβjγz
′′
αz
′
βz
′′
β′ ⊗ ξα ∧ ξγ ⊗ vβ̂

j

⊗ v∗β′

=
(
−i

2
√

2π

)2l+1 ∑
α,γ,β,β′

δβjγz
′′
αz
′
βj
z′
β̂
j

z′′β′ ⊗ ξα ∧ ξγ ⊗ vβ̂
j

⊗ v∗β′

=
(
−i

2
√

2π

)2l+1 ∑
α,γ,β̂

j
,β′

z′γz
′′
αz
′
β̂
j

z′′β′ ⊗ ξα ∧ ξγ ⊗ vβ̂
j

⊗ v∗β′

= ϕFl−1,l.

Hence we have:

d+
V ψ
F
l,l = −i

4
√

2π

l∑
j=1

(z′3 ⊗ 1⊗ Aj(v3)⊗ 1)ϕFl−1,l

= −1
2

l∑
j=1

Aj.

The proof of the d−V action is identical, so we shall skip it.

We have already given a small amount of motivation, at the beginning of this section,
for the final theorem we shall prove; we invite the reader to revisit this, as the duality
problem is one that should be kept at the back of the mind throughout; indeed, the
relevant duality calculation (which, a priori, looks very daunting) is only a few lines’
work once the following result is shown.

In the Schrödinger model, we define operators

Gj,S =
3∑

α=1
(zα ⊗ 1⊗ Aj(vα)⊗ 1) = 1⊗ 1⊗ Aj

( 3∑
α=1

zαvα

)
⊗ 1

Gj,S =
3∑

α=1
(zα ⊗ 1⊗ 1⊗ Aj(v∗α)) = 1⊗ 1⊗ 1⊗ Aj

( 3∑
α=1

(zαvα)∗
)

where the second equality comes from the linearity of the vector products. As one
may see, by inspection, these operators correspond to the insertion of the vector
z1v1 + z2v2 + z3v3 in the j’th slot of the vector product and its dual respectively.
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Theorem 6.3.9. For any 1 ≤ j ≤ l, the following holds:

ϕl,l = Gj (ϕl−1,l) + dΛj,l −
(
C+
j − C−j

)
= Gj (ϕl,l−1) + dΛj,l −

(
Cj

+ − Cj
−)

Proof. Because of the convenience we have found in working in the Fock model, it
makes sense to start by find these operators in the Fock complex: for this, we use
the intertwiners in Lemma 5.3.2. We may use the intertwiner notation from Lemma
5.3.2) to write Gj,F = J −1Gj,SJ as

Gj =i
√

2
( 2∑
α=1

((
∂

∂z′′α
− 1

4πz
′
α

)
⊗ 1⊗ Aj(vα)⊗ 1

)
−
(
∂

∂z′′3
− 1

4πz
′
3

)
⊗ 1⊗ Aj(v3)⊗ 1

)

= −i
2
√

2π

( 2∑
α=1

(z′α ⊗ 1⊗ Aj(vα)⊗ 1)− z′3 ⊗ 1⊗ Aj(v3)⊗ 1
)

(6.3.18)

+i
√

2
( 2∑
α=1

(
∂

∂z′′α
⊗ 1⊗ A(vα)⊗ 1

)
− ∂

∂z′′3
⊗ 1⊗ Aj(v3)⊗ 1

)
. (6.3.19)

Herein, we write the expression in (6.3.18) as G′j, and that in (6.3.19) as G′′j , so that
Gj = G′j +G′′j . The operator Gj,S may similarly be written in the Fock model as

Gj =i
√

2
( 2∑
α=1

((
∂

∂z′α
− 1

4πz
′′
α

)
⊗ 1⊗ 1⊗ Aj(v∗α)

)
−
(
∂

∂z′3
− 1

4πz
′′
3

)
⊗ 1⊗ 1⊗ Aj(v3∗)

)

= −i
2
√

2π

( 2∑
α=1

(z′′α ⊗ 1⊗ 1⊗ Aj(v∗α))− z′′3 ⊗ 1⊗ 1⊗ Aj(v∗3)
)

(6.3.20)

+i
√

2
( 2∑
α=1

(
∂

∂z′α
⊗ 1⊗ 1⊗ A(v∗α)

)
− ∂

∂z′3
⊗ 1⊗ 1⊗ Aj(v∗3)

)
; (6.3.21)

analogously we write the expression in (6.3.20) as Gj
′ and the expression in (6.3.21)

as Gj
′′, so that Gj = Gj

′ +Gj
′′.

Applying all of these operators to ϕl−1,l and ϕl,l−1 respectively, we have:

G′j (ϕl−1,l) = ϕl,l + i

2
√

2π
(z′3 ⊗ 1⊗ Aj(v3)⊗ 1)ϕl−1,l︸ ︷︷ ︸

=Aj

and

G′′j (ϕl−1,l) = i
√

2
2∑

α=1

(
∂

∂z′′α
⊗ 1⊗ Aj(vα)⊗ 1

)
ϕl−1,l

= i
√

2
2∑

α=1

(
∂

∂z′′α
⊗ 1⊗ 1⊗ 1

)
ϕKM · (1⊗ 1⊗ Aj(vα)⊗ 1)ϕ0,l−1,l

+ i
√

2ϕKM ·
2∑

α=1

(
∂

∂z′′α
⊗ 1⊗ Aj(vα)⊗ 1

)
ϕ0,l−1,l
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= i
√

2
2∑

α=1

(
∂

∂z′′α
⊗ 1⊗ 1⊗ 1

)
ϕKM · (1⊗ 1⊗ Aj(vα)⊗ 1)ϕ0,l−1,l︸ ︷︷ ︸

=Bj

+ 1
2πϕKM ·

2∑
α=1

l∑
k=1

(1⊗ 1⊗ Aj(vα)⊗ Ak(v∗α))ϕ0,l−1,l−1︸ ︷︷ ︸
=C+

j

,

so that Gjϕl−1,l = ϕl,l + Aj +Bj + C+
j . Similarly, we have

Gj
′ (ϕl,l−1) = ϕl,l + i

2
√

2π
(z′′3 ⊗ 1⊗ 1⊗ Aj(v∗3))ϕl,l−1︸ ︷︷ ︸

=Aj

and

Gj
′′ (ϕl,l−1) = i

√
2

2∑
α=1

(
∂

∂z′α
⊗ 1⊗ 1⊗ Aj(v∗α)

)
ϕl,l−1

= i
√

2
2∑

α=1

(
∂

∂z′α
⊗ 1⊗ 1⊗ 1

)
ϕKM · (1⊗ 1⊗ 1⊗ Aj(v∗α))ϕ0,l,l−1

+ i
√

2ϕKM ·
2∑

α=1

(
∂

∂z′α
⊗ 1⊗ 1⊗ Aj(v∗α)

)
ϕ0,l,l−1

= i
√

2
2∑

α=1

(
∂

∂z′α
⊗ 1⊗ 1⊗ 1

)
ϕKM · (1⊗ 1⊗ 1⊗ Aj(v∗α))ϕ0,l,l−1︸ ︷︷ ︸

=Bj

+ 1
2πϕKM ·

2∑
α=1

l∑
k=1

(1⊗ 1⊗ Ak(vα)⊗ Aj(v∗α))ϕ0,l−1,l−1︸ ︷︷ ︸
=Cj

+

.

so that Gjϕl,l−1 = ϕl,l + Aj +Bj + Cj
+.

All we need use now is the calculations on dΛj,l and dΛj,l from Proposition 6.3.7;
this completes the proof.

6.4 The Extension of the Kudla-Millson Result
to Higher Weights

We have now reached the point where the proof of our first main vector-valued
theorem is possible; namely, about the modularity of the theta series attached to
the Schwartz form ϕS,Hl,l . On top of this, because of the duality result in Theorem
6.3.9, we will also be able to prove Theorem 4.1.5.
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The reader has hopefully been illuminated as to why the delay between the statement
of Theorem 4.1.5 and the proof of its main result exists. In §1, we saw several
preliminary approaches to proofs about modular forms coming from special cycles;
however, these largely relied on the specific arithmetic of the group Γ, and were in
particular quite specialised proofs, using Hirzebruch-Zagier methods. In this work,
we have made no assumptions on Γ, beyond it being small enough to be torsion-free
(in equivalent work - see e.g. [FM11, §10] - even this condition may be relaxed), and
hence we have needed the constructions using the Weil representation. It is here
that this generalised approach shows its power.

Theorem 6.4.1. Let Γ ⊂ G be a torsion-free arithmetic subgroup of the group G,
and let L ⊂ V be a full and integral level M lattice in the k-vector space V such that
Γ acts trivially on all the cosets L = L+ h of L′/L.

We fix a positive integer l ≥ 1, and work in the Schrödinger model, with all our
forms understood to have coefficients in the harmonic subspace Hl,l(V ) ⊂ Sl,l(V ).
Then there exists a closed, non-trivial Schwartz form

ϕS,Hl,l ∈
[
S(V )⊗ Ω2 (D)⊗Hl,l(V )

]G
.

We may form a theta series θL,H(ϕ, z, τ) which defines a closed differential form
on X with coefficients in Hl,l(V ); this theta series converges uniformly on compact
subsets of X. Moreover, it is a non-holomorphic modular form of weight 2l + 3:

θL,H(ϕ, z, τ) :=
∑
x∈L

ϕS,Hl,l (x, z, τ) ∈ Ω2(X)⊗Hl,l(V )⊗MNonHol
3+2l (Γ(M)). (6.4.1)

All the ϕ are closed, and so taking it as a cohomology class, it defines a cuspidal
holomorphic modular form in τ :

[θL,H(ϕ, z, τ)] ∈ H2
(
X, H̃l,l(V )

)
⊗ S3+2l(Γ(M)).

Moreover, the coefficients of qn = e2πinτ in this modular form are given by duals of
the special cycles Cn,[l,l] defined in Proposition 4.1.3; in cohomology, we may write:

[θL,H(ϕ, z, τ)] = i
∑
n>0

n an L−norm

[
Cn,[l,l]

]PD
qn.

Hence, for some closed and rapidly decreasing Hl,l(V )-valued smooth differential
2-form η on X, the generating series

∫
X
θL,H(ϕ, z, τ) ∧ η = i

∑
n>0

n an L−norm

[∫
Cn,[l,l]

η

]
qn ∈ S3+2l(Γ(M)) (6.4.2)
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is a holomorphic modular form, with coefficients given by the integrals against the
Cn,[l,l].

Proof. Throughout this proof we will be using the G-isomorphism between the
complexes

π : [S(V )⊗ ∧•p∗ ⊗ E]K '−→ [S(V )⊗ Ω•(D)⊗ E]G

from Proposition 6.1.2. The existence of ϕl,l for l = 0 was proven by Kudla and
Millson - see Theorem 6.1.13 - and the form ϕl,l with coefficients that we constructed
in Definition 6.2.2 was proven in Proposition 6.3.5 to be closed.

θL,H(ϕ, z, τ) defines a differential form on X (and not just on D) because we have
shown that ϕS,Hl,l is G-invariant; hence it is in particular Γ-invariant. Further, we
have assumed that L is Γ-invariant, so that the entirety of the sum is Γ-invariant -
hence, as a function of the co-ordinates z ∈ D, it is Γ-invariant, so that it defines a
differential form on Γ\D = X.

As it is a closed form - by Proposition 6.3.5 - we may take this theta series as a
cohomology class with coefficients in Hl,l(V ):

[θL,H(ϕ, z, τ)] =
[∑

x∈L
ϕS,Hl,l (x, z, τ)

]
∈ H2

(
X, H̃l,l(V )

)
.

The element ∑j(C+
j − C−j ) projects to 0 in the coefficient system Hl,l(V ); hence

using the results of Theorem 6.3.8, the cohomology element [ωF(L)(ϕFl,l)] equals [0]
in this cohomology group, as it is exact. Immediately, this gives us that this is a
holomorphic function of τ ∈ H, as ω(L) = −2iv∂τ once τ is inserted.

We now address modularity. Using the isomorphism from Proposition 6.1.2, we
may take ϕl,l as a differential form on D with coefficients in the representation.
From Lemma 6.3.2, we know that it is closed, so defines a cohomology class in
H2(D, H̃l,l(V )). From the general theory of the Weil representation, it follows from
the above and Proposition 6.3.5 - which gives us that it is an eigenvector of weight
2l + 3 under the action of the maximally compact subgroup K ′ ⊂ G′ - that the
associated theta series defined in (6.4.1) has a modular transformation law of weight
2l + 3 with respect to the correct congruence subgroup. For further reading on this
from a theoretical standpoint, see e.g. [KM87, §4 & 5], and in particular Theorem
5.2 from this work.

The results of Theorem 6.3.9 tell us that in the cohomology with harmonic coefficients,
[ϕl,l] = [Gjϕl−1,l] = [Gjϕl,l−1] for all j. Hence, we may define a new Schwartz form
in the Schrödinger model as follows:

ϕl,l,G(x) = [1⊗ 1⊗ A(x)⊗ 1]l ◦ [1⊗ 1⊗ 1⊗ A(x)]l (ϕKM(x))



108
Chapter 6. A Generalisation of Kudla-Millson’s Schwartz Form To

Complex Harmonic Coefficients

= ϕKM(x)⊗ xl ⊗ (x∗)l

So, using Theorem 6.3.9 repeatedly, it follows that

ϕHl,l,G(x) = (1⊗ 1⊗ πH) (ϕl,l,G(x))

= (1⊗ 1⊗ πH)
 l∏
j=1

(
Gj ◦Gj

) (
ϕSl,l(x)

)
satisfies ϕHl,l,G(x) = ϕHl,l(x) + dβ for all x and for β some differential form on X.

Let x ∈ V be any non-negative vector. By Stokes’ theorem, integrals of exact forms
are 0, so for η any compactly supported and rapidly decreasing differential form, we
have ∫

Γx\D
ϕHl,l(x, z, τ) ∧ η =

∫
Γx\D

ϕHl,l,G(x, z, τ) ∧ η.

Locally, we may write (without loss of generality) η = ω⊗ v. Hence, using the inner
product on Hl,l(V ) given by extending ( , ) to the symmetric product, as well as the
corresponding Kudla-Millson result from (6.1.13) in Theorem 6.1.13, we find:∫

Γx\D
ϕHl,l(x, z, τ) ∧ η =

∫
Γx\D

ϕKM(x, z, τ) ∧ ω ·
(
v, πH

(
xl ⊗ (x∗)l

))
=
[
ieπi(x,x)τ

∫
Cx
ω
]

·
(
v, πH

(
xl ⊗ (x∗)l

))
. (6.4.3)

However, we know that the integral of a section of ∧kT ∗ ⊗ E over a k-cycle with
coefficients in E will also be given by taking the pairing in the fibre; hence, we may
write (6.4.3) as: ∫

Γx\D
ϕHl,l(x, z, τ) ∧ η = ieπi(x,x)τ

∫
Cx,[l,l]

η

and so duality is established for x of non-negative length. A completely identical
argument - namely, using that∫

Γx\D
ϕKM(x, z, τ) ∧ ω = 0

for all negative-length x and closed scalar differential forms ω, shown in Theorem
6.1.13 - gives us the exactness of ϕHl,l(x) for all such x.

We also comment that the constant coefficient also vanishes here, unlike in the case
l = 0; indeed, in that case, it is given by integration against the Chern form c1(X).
However, in the case l = 0, another application of the above homotopy argument
shows the constant coefficient (which, by definition, will be the parts of ϕl,l given by
x = 0) to be given by integration against

c1(X)⊗ 0l ⊗ (0∗)l = 0
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and hence will be identically zero; in particular, we may say here that these forms
will not only be modular, but will be cuspidal.

Combining these two results gives us the result for the form of the Fourier coefficients,
by summing over all x ∈ L.

Corollary 6.4.2. Theorem 4.1.5 is proven; namely, the special cycles sum with
coefficients is modular of weight 2l + 3.

Proof. This is a restatement of (6.4.2) in Theorem 6.4.1.





Chapter 7

Restriction to Boundary
Components

Given our work in §4 on special cycles and their restriction, and in §6 on the creation
of new Schwartz forms and theta series, which give us geometric modular forms of
generic odd weight ≥ 3, one of the outstanding problems is the restriction of these
theta series to the boundary components of XBS. In this section, we will aim to
prove Theorem 1.2.3 from the introduction, using geometric techniques, the mixed
model of the Weil representation, Fourier transforms and Poisson summation. This
will draw heavily on equivalent work done by Funke and Millson, primarily in the
orthogonal setting - for example, [FM11], [FM13] and [FM14].

There will, however, also be some arithmetic near the end! What we may turn the
proof into (once most of the geometry has been sorted) is a series of combinatorial
proofs about the vanishing of coefficients of ϕ̂l,l, which is quite interesting in its own
right as a result in combinatorics.

7.1 Fourier Transforms of Laguerre Polynomials

We start with a redefinition of the Schwartz forms from Lemma 6.2.3.

Definition 7.1.1. Fix an integer l; then in the Schrödinger model, we may write
the Schwartz form with coefficients in Hl,l(V ) = πH

(
Syml(V )⊗ Syml(V ∗)

)
as

ϕl,l(x) = 1
22l+2

∑
α,α′

β,β′

[
Dβ ◦ Dβ′ ◦ Dα ◦ Dα′

]
(ϕ0) (x)⊗ ξα′ ∧ ξα ⊗ πH

(
vβ ⊗ v∗β′

)

(7.1.1)

∈
[
S(V )⊗ ∧1,1p⊗Hl,l(V )

]K
,
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where Dγ = zγ − 1
π

∂
∂zγ

and Dγ = zγ − 1
π

∂
∂zγ

for γ = 1, 2. By using the isomorphism
detailed in Definition 6.1.10, we may insert z ∈ D by acting with gz on all the terms,
and find the differential form on D written as:

ϕl,l(x, z) = 1
22l+2

∑
α,α′

β,β′

[
Dβ ◦ Dβ′ ◦ Dα ◦ Dα′

]
(ϕ0)

(
g−1
z x

)
⊗ Ξα′ ∧ Ξα ⊗ πH

(
gz
(
vβ ⊗ v∗β′

))

∈
[
S(V )⊗ Ω1,1(D)⊗Hl,l(V )

]G
,

We note here that this notation vβ is used repeatedly throughout this chapter, to
mean a vector product vβ1 ⊗ vβ2 ⊗ . . .⊗ vβl - we similarly do this for polynomials in
the Fock model, operators D, etc.

We now fix an isotropic vector `, which we will assume without any loss of generality
is one of our finite representatives of the cusps on XBS; hence, our relevant boundary
component will be written ι` : e(P`) ↪→ X

BS. We now fix a cusp ` of D, and - as in
the definition of the mixed model in §5.3 - fix a Witt splitting of V as

V = k`⊕W` ⊕ k`′.

Without any real loss of generality - as we may rescale the inner product to achieve
this - we may assume the following

(i) W ` is spanned by a rational w` such that ||w`||2 = 1;

(ii) (`, `′) = δ−1
k

Indeed, what we shall see throughout this chapter is that these constants are not
particularly important - the rubric shall be that the coefficients of ` and `′ will vanish
at the boundary, and hence that the behaviour in W ` (which is orthogonal to the
other co-ordinates) will be what survives.

Examining the form of the inner product in (2.1.12), we see that the inner product
may hence be written (with respect to the above basis) as:


a

b

c

 ,

a′

b′

c′


 = |b|2 − 2I (ac)

|δk|
.

We recall from (2.2.2) that we have decomposed the real points of the parabolic
subgroup P = P (R) fixing k` as P = NPAPMP ; hence, on the level of Lie algebras,
we immediately have the following direct sum:

p = n⊕ a⊕mP . (7.1.2)
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We recall also from Definition 2.3.4 that for our group G, the parabolic part mP of
m will be trivial and the boundary component is realised by compactifying A →
A = R>0 ∪ {∞}, so that e(P`) = Γ`\N`. Hence, in our case, the maximally compact
subgroup of P` may be denoted KP .

The natural restriction to the boundary for Lie algebras will be to project p → n

in (7.1.2). We recall our work on the mixed model of S(V ) at each cusp `, from
§5.3. Throughout this chapter, we shall denote f̂ as the Fourier transform in the `
variable.

So, for any fixed cusp ` of D, and for any G-representation E, we hence define the
restriction map r` as follows:

r` : [S(V )⊗ ∧•p∗ ⊗ E]K → [S(W`)⊗ ∧•n∗ ⊗ E] (7.1.3)

by
r`
(
f(x)⊗ ∧iω∗ji ⊗ w

)
= f̂ (x |W`

)⊗ ∧i (ωji |n)
∗ ⊗ w. (7.1.4)

We shall now give a brief remark on the reason for introducing this map. We first
comment that calling it a "restriction map" is itself a bit of a fudge; indeed, a
fuller understanding of it is given as following. It is the composition of two maps:
r` = r̃` ◦ f`, where

f` : [S(V )⊗ ∧•p∗ ⊗ E]K →
[
S(V )MM

` ⊗ ∧•p∗ ⊗ E
]K

is the Fourier transform map, acting as the identity on ∧•p∗ ⊗ E and acting as
the Fourier transform in the ` variable (as in Definition 5.3.3); r̃` is hence a "true"
restriction map, given by

r̃` :
[
S(V )MM

` ⊗ ∧•p∗ ⊗ E
]K
→ [S(W`)⊗ ∧•n∗ ⊗ E] ,

acting as the restriction to W` on the Schwartz component and as restriction to
n∗ ⊂ p∗ in the Lie algebra. Despite this, it makes sense to describe r` as a restriction
map, as we know that f` is an isomorphism.

Remark 7.1.2. So, why have we used this map in the first place? As hinted in
the title of this chapter, our ultimate aim herein is to extend the differential form
θL,H(ϕ, τ) to the boundary of XBS, and to find what the restriction is on each
component. One may examine the form of the scalar parts of ϕ in e.g. (7.1.7) to
see that the critical problem in finding this restriction (which will crudely be given
by taking t → ∞ outside the sum over the lattice) is that there is a factor of 1/t2

accompanying the |a|2 in the exponential factor.

In particular, this should convince the reader that individually, each of the ϕ(x, z, τ)
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do not converge near the boundary components. We shall hence be using Poisson
summation on the sum over a ∈ k` ∩ L; of course, a priori, this solves nothing, but
what we shall see is that under the map f` : ϕ→ ϕ̂, this shifts the t2 factor to the
numerator, and hence renders the term inside the exponential polynomial in t! In
particular, this explains why we use the map f` - namely, that on the level of the
complex of differential forms, it gives a Schwartz form with satisfactory convergence
properties.

Similarly, we may now explain the reason for the restriction map r̃`. Because of the
action of f` as explained above, we see that the geometric restriction of θL,H(ϕ, τ)
may be taken termwise; in particular, in the sum over L, we shall see that all the
terms ϕl,l(x, z, τ) not lying in W` ∩ L will go to zero under the restriction map!

In particular, what this tells us is that in some sense, the Fourier transform is
unnecessary - namely, following the rubric of the above, the only part of ϕ̂l,l that
will survive is the origin, where the new variables φ = 0 - hence, this is really the
trivial part of the Fourier transform. For those familiar with the literature, this is
also recognisable as the 0’th coefficient of the Fourier-Jacobi expansion of the theta
series.

We shall now spend the rest of this section showing that the previewed properties of
this restriction map do indeed hold. We shall hence focus on finding the image under
f` of the scalar parts of ϕl,l, given in the Schrödinger model in Definition 7.1.1.

As previously, we let β, β′ be two collections of indices in {1, 2}l, and hence define
two counting functions: let 0 ≤ r(α, β) ≤ l + 1 be the number of indices in {α} ∪ β
which are 1, and 0 ≤ r(α′, β′) ≤ l + 1 the number of indices in {α′} ∪ β′ which are
1. Hence, for fixed indices 0 ≤ r, r′ ≤ l + 1, we define the scalar Schwartz form
ϕl,l,r,r′(x) and the polynomial gr,r′(x) by:

ϕl,l,r,r′(x) := gr,r′(x)ϕ0(x) = 1
22l+2

[
Dβ ◦ Dβ′ ◦ Dα ◦ Dα′

]
(ϕ0) (x) (7.1.5)

The change of variables between the orthonormal basis {v1, v2, v3} and the Witt
basis {`, w`, `′} may be assumed to be given by the co-ordinate change

z1

z2

z3

→

a+ c

2δk
b

a− c
2δk

 ,
where as in the rest of the paper we write vectors x = a` + bw` + c`′ ∈ V . The
insertion of τ into ϕl,l(x) is analogous to that given in Definition 6.1.12; by Lemma
6.2.3, ϕl,l has weight 2l + 3 under the ω-action of the Lie algebra k′, so in order to
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make the new form SL2-invariant we define

ϕl,l(x, τ) = j(g′τ , i)−(2l+3)exp (πiu(x,x))
(√

v
)3
ϕ(
√
vx)

= v−lexp (πiu(x,x))ϕ(
√
vx).

In order to incorporate the action of A on the Schwartz form in the mixed model,
we act by definition as a(t)−1 = a(t−1) on the column vector x. Hence the resulting
scalar term for the above fixed α, α′, β, β′ is given by:

ϕl,l,r,r′(a, b, c, a(t), τ) := 1
22l+2

[
Dβ ◦ Dβ′ ◦ Dα ◦ Dα′

]
(ϕ0) (a, b, c, a(t), τ)

= v−lgr,r′
(
a(t)−1

(√
vx
))

exp
(
πiu

(
|b|2 − 2I(ac)

|δk|

))
(7.1.6)

× exp
(
−πv

(
2
t2
|a|2 + |b|2 + t2

|δk|2
|c|2

))

= v−lgr,r′
(
a(t)−1

(√
vx
))

exp
(
−2πv

t2
|a|2 + 2πiu

|δk|
(I(c)R(a)−R(c)I(a))

)

× exp
(
πiτ |b|2 − πvt2

2|δk|2
|c|2

)
. (7.1.7)

As above, we write R(a) = X and I(a) = Y . Letting the polynomial fr,r′(X, Y ) be
defined by

fr,r′(X, Y ) = v−lgr,r′

(√
v

t
X + i

√
v

t
Y +

√
vc

2δk
,
√
vb,
√
vtX + i

√
vtY −

√
vc

2δk

)
,

(7.1.8)
our objective is to Fourier transform (at the origin) the following function of two
real variables X and Y :

fr,r′(X, Y )exp
(
−2πv
t2

[
X2 + Y 2 − iut2I(c)

v
X + iut2R(c)

v
Y

])
(7.1.9)

Indeed, one may see that this is a scalar part of ϕl,l,r,r′(x, a(t), τ), and hence in
finding the Fourier transform in the a = X + iY variable will give us the first part
of the restriction map.

By definition of the real Fourier transform, our calculation will be the following:

∫∫
R2

fr,r′(X, Y )exp
(
−2πv
t2

[
X2 + Y 2 − iut2I(c)

v
X + iut2R(c)

v
Y

])

× exp (2πi(Xφ1 + Y φ2))
dXdY

=
∫∫

R2
fr,r′(X, Y )exp

(
−2πv

t2

[
X2 + Y 2 + β1X + β2Y

])
dXdY (7.1.10)
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where the constants β1, β2 are given by

β1 = −iut
2

v
I(c)− it2

v
φ1 = −it

2

v
β̃1, β2 = iut2

v
R(c)− it2

v
φ2 = −it

2

v
β̃2.

We now give the two main results that will allow us to calculate this integral.

Lemma 7.1.3. Let A ∈ R>0 be a strictly positive constant, and f(X, Y ) = ∑
m,n bm,nX

mY n

a finite degree complex polynomial function of two variables X and Y . Then:
∫∫

R2
f(X, Y )exp(−A(X2+Y 2))dXdY = π

A

∑
n≥0

( 1
4A

)n 1
n!

n∑
k=0

b2k,2n−2k(2k)!(2n−2k)!
(
n

k

)

Proof. We start with two results from elementary calculus, where k is a positive
integer and A a positive real number.∫ ∞

−∞
X2ke−AX

2dX = (2k)!
(4A)kk!

√
π

A
,

∫ ∞
−∞

X2k+1e−AX
2dX = 0 (7.1.11)

These may be proved respectively by differentiating by A and replacement of variables
for negative X. Hence, we may only focus on the purely even coefficients. We write:∫∫

R2
f(X, Y )exp

(
−A(X2 + Y 2)

)
dXdY

=
∑
n≥0

n∑
k=0

b2k,2n−2k

∫∫
R2
X2kY 2n−2kexp

(
−A(X2 + Y 2)

)
dXdY

=
∑
n≥0

n∑
k=0

b2k,2n−2k

[∫
R
X2kexp(−AX2)dX

] [∫
R
Y 2n−2kexp(−AY 2)dY

]
.

The result is hence a simple application of the first formula in (7.1.11).

Lemma 7.1.4. Let j ≥ 0 be a non-negative integer, a ∈ R a real number and
α ∈ R>0 a positive real number. Then∫

R+ia
Xjexp

(
−αX2

)
dX =

∫
R
Xjexp

(
−αX2

)
dX (7.1.12)

Proof. We start with the case of j = 0, so this is just a classical Gaussian integral.
We may switch variables to Y = X − ia, and write the left hand side of (7.1.12) as∫

R+ia
exp

(
−αX2

)
dX =

∫
R

exp
(
−α (Y + ia)2

)
dY ; (7.1.13)

hence, as a function of α ∈ R, the right-hand side of (7.1.13) is continuously differ-
entiable. Because of this, we may differentiate under the integral by a and find:

∂

∂a

[∫
R

exp
(
−α (Y + ia)2

)
dY

]
=
∫
R

∂

∂a

[
exp

(
−α (Y + ia)2

)]
dY

=
∫
R

(
−iα(Y + ia)exp

(
−α (Y + ia)2

))
dY
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= i
[
exp

(
−α (Y + ia)2

)]Y=∞

Y=−∞

= 0.

The value of this integral does not depend on a, and so we may conclude that (7.1.12)
holds for j = 0.

We next treat the case of j = 2k an even, non-negative integer. Indeed, because
the function X2kexp(−αX2) is C∞ and rapidly decreasing as a function of α, the
integral gives a continuously differentiable function of α. Hence, in particular, we
may differentiate inside the integral and write:

∫
R+ia

X2kexp
(
−αX2

)
dX =

∫
R+ia

(−1)k ∂
k

∂αk

(
exp

(
−αX2

))
dX

= (−1)k ∂
k

∂αk

∫
R+ia

(
exp

(
−αX2

))
dX.

Hence, (7.1.12) for even integers j = 2k follows immediately from the case j = k = 0,
which we have proven above.

For the case of j ≥ 1 odd, we use both the proof method and the result of the
even case. Indeed, we may again differentiate under the integral, change variables
as above, and hence write:

∂

∂a

[∫
R+ia

Xjexp
(
−αX2

)
dX

]
= ∂

∂a

[∫
R
(Y + ia)jexp

(
−α(Y + ia)2

)
dX

]
=
∫
R

[
ij(Y + ia)j−1exp

(
−α(Y + ia)2

)
− 2iα(Y + ia)j+1exp

(
−α(Y + ia)2

)]
dY.

(7.1.14)

We see now that both terms in (7.1.14) are shifted integrals of even powers; hence,
we may apply the result of this lemma for even powers and write this as:

ij
∫
R
Y j−1exp

(
−αY 2

)
dY − 2iα

∫
R
Y j+1exp

(
−αY 2

)
dY.

We may hence apply (7.1.11) - namely, the numerical evaluations of these integrals -
and see that this equals 0. Hence, we have shown:

∂

∂a

[∫
R+ia

Xjexp
(
−αX2

)
dX

]
= 0,

and so this again is independent of a. This completes the proof.

In particular, this shows a very neat result for Gaussian integrals: namely, that all
integrals of the form

∫
RX

jexp(−αX2)dX are invariant under linear transformations
X → X + z for all z ∈ C!

Using Lemmas 7.1.3 and 7.1.4, we may prove the following result:
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Proposition 7.1.5. (a) We let the coefficient of XmY n in fr,r′(X, Y ) be notated
am,n = am,n,r,r′, and hence for each m, n define the finite sum

ãm,n =
∑
i,j≥0

ai,j

(
i

m

)(
j

n

)(
−β1

2

)i−m (−β2

2

)j−n

Then the integral in (7.1.10) is given by∫∫
R2
fr,r′(X, Y )exp

(
−2πv

t2

[
X2 + Y 2 + β1X + β2Y

])
dXdY (7.1.15)

= t2

2v exp
(
−πt

2

2v (β̃1
2 + β̃2

2)
)∑
n≥0

(
t2

8πv

)n 1
n!

n∑
k=0

(
n

k

)
(2k)!(2n− 2k)! ˜a2k,2n−2k

(b) The real Fourier transform of ϕl,l,r,r′(a, b, c, a(t), τ) with respect to the a = X+iY
variable is given by:

ϕ̂l,l,r,r′(φ1, φ2, b, c, a(t), τ) = t2

2v exp
(
πiτ |b|2 − πvt2

2|δk|2
|c|2 − πt2

2v (β̃1
2 + β̃2

2)
)

×
∑
n≥0

(
t2

8πv

)n 1
n!

n∑
k=0

(
n

k

)
(2k)!(2n− 2k)! ˜a2k,2n−2k

Proof. The proof of the first statement is an application of Lemma 7.1.3: we change
variables to X → X + β1/2, Y → Y + β2/2, and may hence write (7.1.15) as

exp
(
−πt

2

2v (β̃1
2 + β̃2

2)
)∫

R+β2

∫
R+β1

f̃r,r′(X, Y )exp
(
−2πv

t2

[
X2 + Y 2

])
dXdY,

(7.1.16)
where f̃r,r′(X, Y ) = f(X − β1/2, Y − β2/2).

Directly from the results of Lemma 7.1.4, we see that the βi factors in the integrals
in (7.1.16) are trivial, so we may take these integrals to be over the real line R.

One may easily calculate that the XmY n coefficient in f̃r,r′(X, Y ) is given by the
ãm,n defined above. Hence, part (i) is given by the application of Lemma 7.1.3 to
the equation in (7.1.16), and so part (ii) is an immediate corollary of part (i) by
multiplying by the extra term in (7.1.7).

With all of the above, we are now ready to explicitly find the image of ϕl,l under
r`. We have one more piece of business to attend to before finding the image r`ϕl,l;
namely, we must find the restriction of the Lie algebra elements ξα′ ∧ ξα.

A good change of basis matrix was found in (2.1.17); we may use this to write m(s, r)
with respect to the orthonormal basis as:

m(s, r) =


rδk −s rδk

s 0 −s
−rδk −s −rδk

 . (7.1.17)
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Hence, from this, we may immediately read off how the elements restrict. We know
n` is a real Lie algebra of dimension 3, so n∗` will have 3 basis elements - indeed, in
Definition 2.4.5, we have written down 3 non-trivial elements of this space, which by
their definition are linearly independent. Using the construction of the ξα, ξα from
Definition 2.4.3, we find the following relations:

Lemma 7.1.6. The action of p∗ on the basis of n` ⊂ g is given by:

ξ1(m(s, r)) = δk
2 r, ξ1(m(s, r)) = −δk2 r, ξ2(m(s, r)) = −1

2s, ξ2(m(s, r)) = −1
2s.

Hence, the restriction of the forms in p∗ under the map r` is given by

r` |p∗ (ξ1) = −δk2 κ`, r` |p∗
(
ξ1
)

= δk
2 κ`, r` |p∗ (ξ2) = −Ω`, r` |p∗

(
ξ2
)

= −Ω`.

Proof. This is essentially by definition of the forms ξα, ξα; one only needs check their
action on the matrix in (7.1.17).

So, as we have now obtained the restriction of all the components of ϕl,l, we are
ready to find the restriction of the theta series!

Theorem 7.1.7. Let q ≥ 0 be a non-negative integer. For a complex variable w, we
define the q’th Laguerre polynomial Lq(w) by

Lq(w) = ew

q!
dq

dwq

(
e−wwq

)
=

q∑
r=0

γq,rw
r.

Let ϕH,`l,l be the Schwartz form in the boundary complex
[
S(W`)⊗ ∧•n∗ ⊗Hl,l(V )

]
given by:

ϕH,`l,l (x, τ) = (−1)l+1(l + 1)!
2(2πv)l+1 Ll+1 (2πv||x||) exp (πiτ ||x||)⊗Ω` ∧Ω`⊗ πH

(
vl2 ⊗ (v∗2)l

)
Then this form is invariant with respect to the maximally compact subgroup KP , and
for x ∈ V :

r`
(
ϕHl,l(x, τ)

)
= ϕH,`l,l (bw`, τ).

Proof. We start by noting that it is almost trivial that this form is KP -invariant;
indeed, we may check that the relevant subgroup is given by the circle group S1 '
M ⊂ P . As ϕH,`l,l is in reality only a function of the norm of x, it is clear that
the scalar parts are invariant (because the action of S1 leaves the norm invariant).
Similarly, the action on Ω` ∧ Ω` will be as

S1 × ∧1,1n∗` → ∧1,1n∗` , (eiθ, Ω` ∧ Ω`)→
(
eiθΩ`

)
∧
(
e−iθΩ`

)
= Ω` ∧ Ω`,
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and identically for the powers of v2. Hence, the invariance follows.

Hereafter, the proof divides into two parts:

(i) For all α, α′ β, β′ such that r(α, β) = r(α′, β′) = r, we shall prove that the
restriction

r`

[
ϕl,l,r,r ⊗ ξα′ ∧ ξα ⊗ πH

(
vβ ⊗ v∗β′

) ]
= ϕH,`l,l

if and only if r = 0.

(ii) For all α, α′ β, β′ such that r(α, β) = r, r(α′, β′) = r′ with r 6= r′, we shall
prove that the restriction is always trivial:

r`

[
ϕl,l,r,r′ ⊗ ξα′ ∧ ξα ⊗ πH

(
vβ ⊗ v∗β′

) ]
= 0.

We start with part (i); we recall the operators Dα, Dα from (6.1.10). By the results of
[KM87, (6.49), p.303] - though this may easily be proven with an induction argument
- we know that

1
22q

(
Dα ◦ Dα

)q
(ϕ0) = (−1)q q!

(2π)qLq
(
2π|zα|2

)
ϕ0 (7.1.18)

Because all of the operators Dα, Dα commute, we may write

ϕl,l,r,r(x) = 1
22l+2

(
D1 ◦ D1

)r
◦
(
D2 ◦ D2

)l+1−r
(ϕ0)

= (−1)r r!
(2π)rLr

(
2π|z1|2

)
(−1)l+1−r (l + 1− r)!

(2π)l+1−r Ll+1−r
(
2π|z2|2

)
ϕ0

= (−1)l+1 r!(l + 1− r)!
(2π)l+1 Lr

(
2π|z1|2

)
Ll+1−r

(
2π|z2|2

)
ϕ0.

In the co-ordinates corresponding to the Witt basis, using the natural change of
basis from (7.1.17), we may write this as

ϕl,l,r,r(x) = (−1)l+1 r!(l + 1− r)!
(2π)l+1 Lr

(
2π
(
|a|2 + |c|2

4|δk|2
− I(ac)
|δk|

))

× Ll+1−r
(
2π|b|2

)
exp

(
−π

(
2|a|2 + |b|2 + |c|2

2|δk|2

))
(7.1.19)

Identically to earlier in this chapter, we write a = X + iY and ϕ̂l,l,r,r as the real
partial Fourier transform of ϕl,l,r,r with respect to the {X, Y } variables. We may
now see that we have done a lot of the work needed to prove this already - namely,
we have found the general form of such Fourier transforms in Proposition 7.1.5 - so
that the main work remaining in this half of the proof is applying it to our particular
polynomial. We now set t = 1 in this result, so that this is still a Schwartz function
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of x and τ only. Using the notation of this proposition, we have:

fr,r(X, Y ) = (−1)l+1r!(l + 1− r)!
(2π)l+1vl

Ll+1−r
(
2πv|b|2

)
× Lr

(
2πv

(
X2 + Y 2 + |c|2

4|δk|2
− YR(c)−XI(c)

|δk|

))
(7.1.20)

By definition of r`, we are restricting to the case φ1 = φ2 = c = 0. In particular, this
means that β1 = β2 = 0: hence, by definition again, we have ˜a2k,2n−2k = a2k,2n−2k,
so that

fr,r(X, Y )|φ1=φ2=c=0 = (−1)l+1r!(l + 1− r)!
(2π)l+1vl

Lr
(
2πv(X2 + Y 2)

)
Ll+1−r

(
2πv|b|2

)
= (−1)l+1−rr!(l + 1− r)!

(2π)l+1vl
Ll+1−r

(
2πv|b|2

) r∑
s=0

γr,s (2πv)s
s∑

s0=0

(
s

s0

)
X2s0Y 2s−2s0 .

and so the a2k,2n−2k coefficients are of the form:

a2k,2n−2k = (−1)l+1−rr!(l + 1− r)!
(2π)l+1vl

Ll+1−r
(
2πv|b|2

)
γr,n (2πv)n

(
n

k

)
.

We now examine Proposition 7.1.5(b). Putting all the components together, we may
now write:

(
r` |S(V )

)
(ϕl,l,r,r(x, τ)) = 1

2v
(−1)l+1−rr!(l + 1− r)!

(2π)l+1vl
Ll+1−r

(
2πv|b|2

)

× exp
(
πiτ |b|2

)∑
n≥0

γr,n
1

4nn!

n∑
k=0

(
n

k

)2

(2k)!(2n− 2k)! (7.1.21)

We have now reduced this to arithmetic. Indeed, by two simple induction arguments,
one may prove:

n∑
k=0

(
n

k

)2

(2k)!(2n− 2k)! = 4n (n!)2 ; γr,n =
(
r

n

)
(−1)r+n
n! , (7.1.22)

for all k ≤ n ≤ r. This allows us to rewrite (7.1.21) as:

(
r` |S(V )

)
(ϕl,l,r,r(x, τ)) = t2

2v
(−1)l+1−rr!(l + 1− r)!

(2π)l+1vl
Ll+1−r

(
2πv|b|2

)
× exp

(
πiτ |b|2

) r∑
n=0

(−1)r+n
(
r

n

)
. (7.1.23)

We may check that the last term of (7.1.23) may be expressed as:

r∑
n=0

(−1)r+n
(
r

n

)
=

 1 if r = 0
0 if r > 0.
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which gives us immediately that the restriction r` of the Schwartz function will be
trivial for all r > 0.

We may now focus on the case r = 0. In this case, there is trivially only one choice
of {α, α′, β, β′} giving r(α, β) = r(α′, β′) = 0 - namely, when all the indices equal
2. So, putting (7.1.23) into the full form of r`, we have shown:

r`
(
ϕl,l,0,0 ⊗ ξ2 ∧ ξ2 ⊗ πH

(
vl2 ⊗ (v∗2)l

))
= 1

2v
(−1)l+1(l + 1)!

(2π)l+1vl
Ll+1

(
2πv|b|2

)
exp

(
πiτ |b|2

)
⊗ (−Ω`) ∧

(
−Ω`

)
⊗ πH

(
vl2 ⊗ (v∗2)l

)
= ϕH,`l,l (bw`, τ),

and that
r`
[
ϕl,l,r,r ⊗ ξα′ ∧ ξα ⊗ πH

(
vβ ⊗ v∗β′

)]
= 0

for all choices of α, α′, β, β′ such that r(α, β) = r(α′, β′) = r > 0. This completes
the proof of part (i).

We now move on to part (ii), the case of r 6= r′; this will largely follow the same
structure as the proof of part (i). We start by finding the structure of the polynomials
gr,r′(x) and fr,r′(x) as before. Fix an integer q ≥ 1, and another integer k ≥ 0, and
we again work with the operators Dα and Dα from Definition ??. We claim the
following:

1
22q+kD

k
α ◦

(
Dα ◦ Dα

)q
(ϕ0) = q!

(2π)q z
k
α

q∑
j=0

Γq,j,k
(
2π|zα|2

)j
ϕ0 (7.1.24)

and

1
22q+kDα

k ◦
(
Dα ◦ Dα

)q
(ϕ0) = q!

(2π)q zα
k

q∑
j=0

Γq,j,k
(
2π|zα|2

)j
ϕ0 (7.1.25)

where the coefficients Γq,j,k are defined by Γq,j,0 = γq,j and:

Γq,j,k =
k∑
i=0

(−1)i
(
k

i

)
γq,j+i

i∏
l=1

(j + l) = (−1)j+q
j!

(
q + k

j + k

)
. (7.1.26)

We shall refer to the Γq,j,k as generalised Laurent coefficients, because of their coming
from the action of the operator Dkα or Dα

k on a Laurent polynomial. Once (7.1.24)
is proven, we may see that the proof of (7.1.25) will be identical, so we shall only
do the first.

We know from the above-cited result (7.1.18) that this holds when k = 0; we shall



7.1. Fourier Transforms of Laguerre Polynomials 123

prove (7.1.24) by induction on k. One may easily calculate that

1
π

∂

∂zα

zkα q∑
j=0

Γq,j,k
(
2π|zα|2

)
(ϕ0)

 =− zk+1
α

 q∑
j=0

Γq,j,k
(
2π|zα|2

)jϕ0

− 2zk+1
α

q−1∑
j=0

(j + 1)Γq,j+1,k
(
2π|zα|2

)jϕ0

so that

1
2Dα

zkα q∑
j=0

Γq,j,k
(
2π|zα|2

)
(ϕ0)

 = zk+1
α

q∑
j=0

(Γq,j,k − (j + 1)Γq,j+1,k)
(
2π|zα|2

)j
ϕ0.

We may hence write (assuming nothing here about the form of γq,j)

Γq,j,k − (j + 1)Γq,j+1,k =
k∑
i=0

(−1)i
(
k

i

)
γq,j+i

i∏
l=1

(j + l)−
k∑
i=0

(−1)i
(
k

i

)
γq,j+1+i

i+1∏
l=1

(j + l)

=
k+1∑
i=0

(−1)iγq,j+i
i∏
l=1

(j + l)
[(
k

i

)
+
(

k

i− 1

)]

=
k+1∑
i=0

(−1)i
(
k + 1
i

)
γq,j+i

i∏
l=1

(j + l)

= Γq,j,k+1;

this completes the proof of the equality in (7.1.24). To prove (7.1.26) (the specific
form of the generalised Laurent coefficients) we use the form for γq,j given in (7.1.22).
We hence find:

Γq,j,k =
k∑
i=0

(−1)i
(
k

i

)[(
q

j + i

)
(−1)q+j+i
(j + i)!

]
i∏
l=1

(j + l)

= (−1)j+q
j!

k∑
i=0

(
k

i

)(
q

j + i

)
. (7.1.27)

One may proof with an inductive argument that

k∑
i=0

(
k

i

)(
q

j + i

)
=
(
q + k

j + k

)

(it may be proven by induction on k again); hence, inserting this into (7.1.27)
completes the proof of this identity.

So, we are now ready to find the coefficients of the Fourier transform at the origin.
Because of the symmetry in (7.1.24) and (7.1.25), we shall focus on the case of r > r′,
as the proof for r′ > r will be identical. Following the above notation, we write
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r = q + k and r′ = q for some k > 0, and so have

gq+k,q(x) = q!(l + 1− q − k)!
(2π)l+1−k

zk1 q∑
j=0

Γq,j,k
(
2π|z1|2

)j·
z2

k
l+1−q−k∑
j′=0

Γl+1−q−k,j′,k
(
2π|z2|2

)j′ .
(7.1.28)

Using the definition of gr,r′(X, Y ) from (7.1.8), we wish to Fourier transform ϕl,l,q+k,q(x, τ).
So, writing (7.1.28) in terms of the Witt basis, we have

fq+k,q(X, Y ) = v−lgq+k,q

(
√
v(X + iY ) +

√
vc

2δk
,
√
vb,
√
v(X + iY )−

√
vc

2δk

)

= q!(l + 1− q − k)!
vl−k(2π)l+1−k b

k
l+1−q−k∑
j′=0

Γl+1−q−k,j′,k
(
2πv|b|2

)j′
(X + iY )k×

q∑
j=0

Γq,j,k
(

2πv
(
X2 + Y 2 + |c|2

4|δk|2
− YR(c)−XI(c)

|δk|

))j
. (7.1.29)

For any integers α and β, we use the notation of Proposition 7.1.5 and let aα,β be
the coefficient of XαY β in fq+k,q(X, Y ). Firstly, by examination of the above, it is
easy to see that for n > q + k/2, a2m,2n−2m = 0 for all m - so in particular, this is a
finite degree polynomial. Secondly, if k is odd, then this will imply the total weight
(i.e. α+ β) of each term is odd, as the only monomials present in the expansion will
be of the form X2mY k+2j−2m for 0 ≤ j ≤ q. Hence, we may say immediately that
for k odd, the Fourier transform of ϕl,l,q+k,q - evaluated at φ1 = φ2 = 0 - is trivial!

Again, by definition of the map r` on S(V )MM
` , we wish to restrict the Fourier

transform to the positive-definite space W`; by exactly the same logic as in our proof
of part (i), this means we can immediately (before the Fourier transform) take c = 0.
We write

Cq,2k(b) = q!(l + 1− q − 2k)!
vl−2k(2π)l+1−2k b

2k
l+1−q−2k∑

j′=0
Γl+1−q−2k,j′,2k

(
2πv|b|2

)j′
,

which is a function of b, but we may treat as a constant as we are only interested in
the behaviour related to the X, Y variables. We may hence write:

fq+2k,q(X, Y ) |c=0= Cq,2k(b)
[ 2k∑
r=0

(
2k
r

)
Xr(iY )2k−r

]
·

 q∑
j=0

Γq,j,2k
(
2πv(X2 + Y 2)

)j
= Cq,2k(b)

[ 2k∑
r=0

(
2k
r

)
Xr(iY )2k−r

]
·

 q∑
j=0

Γq,j,2k (2πv)j
j∑
s=0

(
j

s

)
X2sY 2j−2s



= Cq,2k(b)
q+k∑
n=k

2n∑
m=0

Γq,n−k,2k (2πv)n−k
∑
r,s≥0

r+2s=m

(
2k
r

)
i2k−r

(
n− k
s

)XmY 2n−m.

(7.1.30)
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We notice that the sum in (7.1.30) splits into either terms XaY b with a and b of the
same parity. As we only care about the terms with both even, we discard the odd
parts, replace m with 2m and hence write

fq+2k,q(X, Y )EVEN = Cq,2k(b)
q+k∑
n=k

n∑
m=0

Γq,n−k,2k (2πv)n−k

×
∑
r,s≥0
r+s=m

(
2k
2r

)
(−1)k−r

(
n− k
s

)X2mY 2n−2m.

From this we may extract:

a2m,2n−2m = Cq,2k(b)Γq,n−k,2k (2πv)n−k
∑
r,s≥0
r+s=m

(
2k
2r

)
(−1)k−r

(
n− k
s

)
, (7.1.31)

and so combining (7.1.31) with the results of Proposition 7.1.5, we may write:

(
r` |S(V )

)
(ϕl,l,q+2k,q) = |δk|2v exp

(
πiτ |b|2

)
Cq,2k(b)

( 1
2πv

)k q+k∑
n=k

Γq,n−k,2k
4nn!

×
n∑

m=0


(
n

m

)
(2m)!(2n− 2m)!

∑
r,s≥0
r+s=m

(
2k
2r

)
(−1)k−r

(
n− k
s

) (7.1.32)

We now claim that for all k, the internal sum over m in (7.1.32), given by

n∑
m=0


(
n

m

)
(2m)!(2n− 2m)!

∑
r,s≥0
r+s=m

(
2k
2r

)
(−1)k−r

(
n− k
s

) (7.1.33)

is trivial for all n and k ≤ n; assuming this is true, it is clear that the restriction of
all the ϕl,l,q+2k,q to the boundary complex is trivial for all relevant choices.

We group the terms in this sum by m− r = N ≥ 0 and hence define:

Q(n, k,N) =
k∑
r=0

(−1)r
(

2k
2r

)
(2r + 2N)!(2n− 2r − 2N)!

(
n

r +N

)

so that (7.1.33) is given by (−1)k∑n−k
N=0Q(n, k,N)

(
n−k
N

)
. We claim that this sum is

0 for all positive k ≤ n. This may be shown by induction on k, but a more direct
proof (shown in full for e.g. k = 1) gives:

n−1∑
N=0

(
n− 1
N

)[(
n

N

)
(2N)!(2n− 2N)!−

(
n

N + 1

)
(2N + 2)!(2n− 2N − 2)!

]

=
n−1∑
N=0

(
n− 1
N

)
n!(2N)!(2n− 2N − 2)!

(N + 1)!(n−N)! ×
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× [(N + 1)(2n− 2N)(2n− 2N − 1)− (n−N)(2N + 1)(2N + 2)]

=
n−1∑
N=0

(
n− 1
N

)
n!(2N)!(2n− 2N − 2)!

(N + 1)!(n−N)! 2(N + 1)(n−N)(2n− 4N − 2)

= 2n
n−1∑
N=0

(
n− 1
N

)2

(2N)!(2n− 2N − 2)!(2n− 4N − 2). (7.1.34)

Under the substitution N ′ = n− 1−N , this sum is given by

n−1∑
N ′=0

(
n− 1

n− 1−N ′

)2

(2n− 2− 2N ′)!(2N ′)!(−2n+ 4N ′ + 2)

which is easily seen to be the negative of the sum in (7.1.34); hence this sum is
trivial.

More generally, we see that we may write:

Q(n, k,N) =
(
n− k
N

)
(2N)!(2n− 2N − 2k)!

 k∑
r=0

(−1)r
(

2k
2r

)

×
r∏
i=1

(2N + 2i− 1)
k−r∏
j=1

(2n− 2N − 2j + 1)


and so one may see that the form contained in the brackets is anti-symmetric with
respect to the substitution N → n− k −N ; this completes the proof.

We will now look at an analogy of the work done in [FM11, §6]; namely, seeing
the image of the restriction r`(ϕl,l) as being in the image of a map from "pure"
vector-valued forms. This will follow the constructions in [FM13]; in the above-cited
work, there is a vast and very complex theory of restriction constructed, which we
have recreated a very small part of in Theorem 7.1.7.

Definition 7.1.8. Let l ≥ 0 be a non-negative integer, and [`] a cusp class of X.
Then we define the complex of pure Schwartz forms at the associated boundary
component as [

S(W`)⊗ T l+1,l+1(W`)
]KP ⊂ [S(W`)⊗ T l+1,l+1(V )

]KP
The associated map at the boundary is given by

τ` :
[
S(W`)⊗ T l+1,l+1(W`)

]KP → [
S(W`)⊗ ∧1,1n∗` ⊗ T l,l(W`)

]KP
,

acting as the identity on S(W`) and mapping the first term in each power of the
vector product into the dual forms on n`:

τ` [f ⊗ (w1 ⊗ w2 ⊗ . . .⊗ wl+1)⊗ (w̃1
∗ ⊗ w̃2

∗ ⊗ . . .⊗ ˜wl+1
∗)]
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= f ⊗ (w1 ⊗ (`′ + i`′i))∗ ∧ (w̃1 ⊗ (`′ − i`′i))∗

⊗ (w2 ⊗ . . .⊗ wl+1)⊗ (w̃2
∗ ⊗ . . .⊗ ˜wl+1

∗) .

So, using this map, we may immediately write down a pre-image for the restricted
Schwartz form ϕ

e(P`)
l,l , under the map τ`.

Proposition 7.1.9. τ` induces a map of complexes

τ` :
[
S(W`)⊗ T l+1,l+1(W`)

]KP → [
S(W`)⊗ ∧1,1n∗` ⊗ T l,l(W`)

]KP ;

namely, it maps closed forms to closed forms and preserves the invariance under KP .
It is invariant under restriction of T l+1,l+1(V ) to the symmetric powers Sl+1,l+1(V )
and hence to the harmonic vectors Hl+1,l+1(V ). We may hence write down a derived
map on cohomology:

τ̃` : H0
(
N`, ˜Hl+1,l+1(V )

)
→ H2

(
N`, H̃l,l(V )

)
Further, ϕl,l has a pre-image under this map, which we may write as

ϕPl+1,l+1(x) = (−1)l+1(l + 1)!
2(2πv)l+1 Ll+1 (2πv||x||) exp (πiτ ||x||)⊗ πH

(
vl+1

2 ⊗ (v∗2)l+1
)

Proof. The vast majority of this - namely, everything other than the statement
about the pre-image - may be found in [FM13, §6]. The pre-image statement follows
immediately from the definition of the forms Ω` and Ω`.

We note that here we are really using a very specialised case of the work done therein
- namely, that this is a statement about generalised theta liftings with coefficients in
a vector bundle coming from a general representation of SO(p, q).

Our next theorem will hence give us the restriction of the theta series θL,H(ϕ, z, τ).
What we shall prove is that, for each boundary component ι` : e(P`) → X

BS, the
natural restriction map ι∗` on the level of differential forms on X will act - using
the isomorphism π between the complexes of Lie algebra dual forms and differential
forms - via the map r`.

Theorem 7.1.10. Fix a single cusp class [`], representing the associated Borel-Serre
boundary component e(P`) defined in Corollary 2.3.6; let ι` : e(P`) → X

BS be the
natural inclusion map, with pullback ι∗` .

The complex of differential forms at this cusp is given by[
S(W`)⊗ ∧•n∗ ⊗Hl,l(V )

]KP '−→
π`

[
S(W`)⊗ Ω• (N`)⊗Hl,l(V )

]N`
,
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where the isomorphism π` is given, as with the global complexes, by evaluation at the
basepoint s = r = 0.

Under this isomorphism we may write the boundary form ϕH,`l,l (x, z, τ) as:

ϕH,`l,l (x, z, τ) = (−1)l+1(l + 1)!
2(2πv)l+1 Ll+1 (2πv(x,x)) eπiτ(x,x)⊗ ds∧ ds⊗ πH

(
n(s, r)

[
vl2 ⊗ (v∗2)l

])
,

and the theta series θL,H(ϕ, z, τ) extends as a differential form to X
BS; on each

boundary component e(P`), it restricts to a convergent differential form with coeffi-
cients in Hl,l(V ):

ι∗` (θL,H(ϕ)) = θW`∩L
(
ϕH,`l,l

)
=

∑
x∈W`∩L

ϕH,`l,l (x, z, τ).

Proof. We write the lattice L in the Witt basis; keeping our assumption that L is
even and integral, without loss of generality - namely, by rescaling the inner product
and the basis - we may assume that it can be written as

L = ok`⊕ bw` ⊕ c`′ (7.1.35)

for N(b), N(c) ∈ Z. We wish to perform Poisson summation over the a variable;
hence, we need a dual sublattice. Under the real inner product given by

(x1 + x2
√
d, y1 + y2

√
d) = x1y1 + x2y2),

the dual lattice of ok is given by

o′k,R :=

 ok if d ≡ 2, 3 mod 4
2ok if d ≡ 1 mod 4.

For our choice of L as in (7.1.35), one may easily calculate that the dual lattice is
given by

L′ = b
−1
`⊕ (dka)−1w` ⊕ ok`

′.

So, for some arbitrary coset L, we write L = L+ h for h = h``+ hww` + h`′`
′.

We know - from Theorem 6.4.1 - that the sum over x ∈ L in the theta series defines
a convergent differential form on X. So, by a standard argument with Poisson
summation, we may Poisson sum over the a = X + iY variables and write:

θL,H(ϕ, z, τ) =
∑
α,α′

β,β′

∑
(φ1,φ2)∈o′k,R

b,c

e2πi(φ1R(h`)+φ2I(h`)) ̂ϕl,l,r(α,β),r(α′,β′)(φ1, φ2, b, c, z, τ)

⊗ Ξα′ ∧ Ξα ⊗ πH
(
gz
(
vβ ⊗ v∗β′

))
. (7.1.36)
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In order to find the restriction to the boundary component, as in the case of the
individual Schwartz forms in Theorem 7.1.7, we wish to insert the t variable in all
necessary positions and then take t→∞. We use Proposition 7.1.5(b) to recall the
form of ϕ̂ for all necessary parameters: namely, as a function of t, it is of the form:

h(t, t−1)exp
(
−πvt

2

|δk|2
|c|2 − πt2

2v

(
β̃1

2 + β̃2
2
))

(7.1.37)

for some finite degree complex polynomial h in two variables. In particular, this
shows the power of the Poisson summation employed here - it removes all the terms
of the form 1/t2 in the exponential, and hence in particular gives us a form that is
rapidly decreasing in t.

Moreover, this immediately limits this theta series enormously! Because the ex-
ponential term in (7.1.37) will dominate all polynomials h(t, t−1) whenever |c|2 or
β̃1

2 + β̃2
2 6= 0 ⇐⇒ c, φ1 or φ2 6= 0, we may now immediately say that under

the image of the restriction map ι∗` , all terms with these variables not 0 will van-
ish identically. In particular, we see that θL,H(ϕ, z, τ) restricts to a smooth and
convergent differential form on XBS.

More precisely, therefore, we may say how the restriction map acts on the theta
series: we are restricting to W` ⊂ V ! What I hope to have convinced the reader
of here is that the reason the map r` was introduced was precisely for this task
of finding the boundary behaviour of this theta series - namely, by using Poisson
summation we have found that we need to restrict to the central component W`,
and then take the limit as t→∞. Writing this in full, we may see:

ι∗` (θL,H(ϕ, z, τ)) = ι∗`

∑
α,α′

β,β′

∑
(φ1,φ2)∈o′k,R

b,c

e2πi(φ1R(h`)+φ2I(h`))

× ̂ϕl,l,r(α,β),r(α′,β′)(φ1, φ2, b, c, z, τ)⊗ Ξα′ ∧ Ξα ⊗ πH
(
gz
(
vβ ⊗ v∗β′

)) 

= limt→∞


∑
α,α′

β,β′

∑
b

̂ϕl,l,r(α,β),r(α′,β′)(0, b, 0, z, τ)⊗ Ξα′ ∧ Ξα ⊗ πH
(
gz
(
vβ ⊗ v∗β′

))


(7.1.38)

Inserting the t variable into the Fourier transforms, we see that we have an extra
power of t2 at the front coming from the 1/t2 in the exponential of ϕ. Using the
orthogonal presentation of the nilpotent Lie algebra n` in (7.1.17), we may calculate,
because p acts on k via the adjoint representation, that ξ2 and ξ2 evaluate in the t
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variable as

ξ2
(
a(t)−1m(s, r)a(t)

)
= −1

t
s, ξ2

(
a(t)−1m(s, r)a(t)

)
= −1

t
s.

Hence, evaluated in this variable, ξ2 ∧ ξ2 acts as (Ω` ∧ Ω`)/t2, and so this cancels
with the t2 from the Fourier transform. We finally note that a(t) acts trivially on
the vector component vl2 ⊗ (v∗2)l; hence, we may write:

ι∗` (θL,H(ϕ, z, τ)) = π`

 ∑
W`∩L

r`ϕ
H
l,l(x, τ)

 = π`

 ∑
W`∩L

ϕH,`l,l (x, τ)
 ,

and so applying π` to the Lie algebra forms, the proof is complete.

We now give a small amount of context into what we have achieved. We have shown
that the theta series θL,H(ϕ, z, τ) extends to a convergent differential form on the
Borel-Serre compactification XBS, and that on each of the boundary components
e(P`) ofX

BS, it restricts to a one-dimensional positive-definite theta series. Moreover,
because of the results of Proposition 7.1.9, we see immediately that each of these
boundary forms is N`-invariant; hence, to use the language of special cohomology
classes, the restricted form is almost "special" - namely, on each boundary component
e(P`) it is an N`-invariant form. We will see more on such forms in the next chapter,
when duality is discussed.

7.2 Construction of Compactly-Supported Theta
Series with Coefficients

What we wish to do in this section is to situate the work of §7.1 in the world of
modular forms. The principle idea contained herein - namely, that we may use the
cone cohomology group to extend the theta series - comes from the work of Funke
and Millson again; we shall use much of the theoretical work on the related cochain
complex from [FM11, Appendix A].

In particular, our aim in the remainder of this chapter is to use the results of Theorem
§7.1.10 to construct a compactly supported differential form on X. In order to do
this, we will need to construct a primitive for ϕH,`l,l (x) in the boundary complex. This
will allow us to use the structure of the cone cohomology on the compact manifold
X
BS - using the exactness at the boundary, we shall be able to use the isomorphism

between the cone cohomology and the compactly supported cohomology on X to
find a compactly supported class; hence, we shall be able to integrate this class
against the non-compact cohomology on X.
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We start with some introductory theory.

Definition 7.2.1. Let A be a smooth, finite-dimensional manifold (possibly with
boundary) and B a submanifold, with inclusion iB : B ↪→ A, and projection πB :
A → B. Let E → A be a flat vector bundle over A as in §3.2; we write the i-
dimensional differential forms on a space C with coefficients in E as Ωi(C,E). Then
we define the mapping cone complex as:

Ci
cone(A,B,E) = {[ω, η], ω ∈ Ωi(A,E), η ∈ Ωi−1(B,E)}

where the differential is given by:

d[ω, η] = [dω, i∗Bω − dη]. (7.2.1)

One may check that this differential satisfies the necessary condition d2 = 0, and
so the pair of the complex and this differential defines a cochain complex, with
cohomology groups denoted H i

cone(A,B,E).

In particular, by reading off the definition, we may see immediately what a cocycle
in this complex is: it is a pair [ω, η] such that

(i) ω is closed.

(ii) i∗Bω = dη.

Lemma 7.2.2. Let XBS be the Borel-Serre compactification of the manifold X, and
E → X a flat vector bundle on X that extends to the compactification. Then for all
i ∈ Z,

H i
cone(X

BS
, ∂X

BS
, E) ∼= H i

c(X,E),

where H i
c(X) denotes the cohomology on X of degree i with compact supports, defined

in eg [BT95, §1].

Proof. The proof is identical to that found in [FM14, Lemma Appendix A]: indeed,
the manifold considered there (corresponding to the case G = SO(2, 1)) has the
same limiting behaviour, as both have the group A ⊂ P isomorphic to R+, with the
boundary components given by compactifying t =∞. Hence, the limiting behaviour
is identical, so the proof will work identically.

The isomorphism is derived from a quasi-isomorphism on cochain complexes. Writing
Z for cochain complexes, we let k : Z•c (X,E)→ Z•(XBS

, ∂X
BS
, E) be the inclusion

of the complex of compactly supported cochains into the complex of relative cochains
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on the Borel-Serre compactification; from [Hat09, Theorem 3.43], we know this to
be a quasi-isomorphism. Defining the map j:

j : Z•(XBS
, ∂X

BS
, E)→ Z•cone(X

BS
, ∂X

BS
, E), j(z) = [z, 0]

then this is a cochain map - hence well-defined - and in [FM11, Lemma A.3] it
is proven that j is also a quasi-isomorphism. Hence, j ◦ k is our required quasi-
isomorphism between Z•c (X,E) and Z•cone(X

BS
, ∂X

BS
, E).

In the reverse direction, there is a natural construction considered: namely, for a
class [ω, η] ∈ Z•cone(X

BS
, ∂X

BS
, E), one may show that there exists a closed and

compactly supported class ξ and a form β, vanishing on ∂XBS, such that

ω − d (π∗B (f(η))) = ξ + dβ,

where f is some indicator function on A, non-zero only near ∞. The map

Z•cone(X
BS
, ∂X

BS
, E)→ Z•c (X,E)

is hence given by [ω, η] → ξ, and in [FM11, Lemma A.8] they prove that this is a
quasi-isomorphism.

The motivation for introducing the above machinery should now be clear: once
we have found a primitive φH,`l,l for ϕH,`l,l , then the associated theta series will be
able to take the place of η, giving us a cohomology class! Further, using all the
maps in the proof of Lemma 7.2.2, we may use this class to write out what the
associated compactly supported class on X will be, allowing us to integrate against
the non-compact cohomology on X.

We now give a heuristic for the following proof. Though the case with coefficients
is more complicated, because coefficients will be paired off when integrated against
homology, the rubric of our argument will still apply. So, we need to look at how
the differential acts in the complex [S(W`)⊗ Ω1(N`)]N` .

Luckily, it turns out we have done almost all the necessary work here! Firstly, we
note that N` acts trivially on S(W`), so we only need to consider d acting on the
differential form. We only have the scalar differential dS here (as our representation
is trivial); in Lemma 2.4.6, we have already found a primitive for Ω` ∧ Ω`: indeed,
the results of this lemma are

d
(
−δk

4 κ

)
= Ω` ∧ Ω`.
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We may check that in the case l = 0, the restricted Schwartz form is

ϕ
e(P`)
KM (x, τ) = −1

4πvL1(2πv(x,x))eπiτ(x,x) ⊗ Ω` ∧ Ω`,

so that in the complex [S(W`)⊗ n∗` ]KP with trivial coefficients, a primitive is given
by

φ`KM(x, τ) = δk
16πvL1(2πv(x,x))eπiτ(x,x) ⊗ κ`.

So, this immediately gives us a starting point for finding a generic primitive. Here,
the derivative will act as a sum of the scalar differential dS and the vector-valued
differential dV , which will be summed over our chosen basis of n`; we should also
stress that the choice of primitive here will not be unique, as we will be able to add
highest/lowest-weight vectors to the components of Ω` and Ω`.

Proposition 7.2.3. There is a primitive for ϕH,`l,l in the boundary complex
[
S(W`)⊗ ∧•n∗ ⊗Hl,l(V )

]KP
,

given by

φH,`l,l (x, τ) =(−1)l+1(l + 1)!
2(2πv)l+1 Ll+1 (2πv(x,x)) eπiτ(x,x)

⊗
[
−δk

4 κ⊗ πH(v0) + Ω` ⊗ πH (vHOL) + Ω` ⊗ πH (vAHOL)
]

(7.2.2)

where v0 is as usual our weight 0 vector, and vHOL, vAHOL are given by

vHOL = − lδk2 vl2 ⊗ (`′)∗ (v∗2)l−1 = − l4v
l
2 ⊗ (v∗1 − v∗3) (v∗2)l−1 ,

vAHOL = − lδk2 `′vl−1
2 ⊗ (v∗2)l = −l4 (v1 − v3) vl−1

2 ⊗ (v∗2)l .

Proof. We start by noting that the action of the scalar differential dS gives the
appropriate form; indeed, we have already calculated above that the action of dS
on the κ component gives ϕH,`l,l . By our calculations of the homology in Proposition
2.5.3, we know that in the cohomology with rational coefficients, the forms Ω` and
Ω` will map to closed 1-forms on e(P`), so that dS acts trivially on them. Hence, we
have shown:

dS
(
φH,`l,l (x, τ)

)
= ϕH,`l,l

Secondly, one may check that when l = 0, this form is identical to the one above, and
in this case, dV = 0 anyway. Hence, we may take this case as proven, and assume
herein that l ≥ 1.

We now claim that dV acts trivially on φH,`l,l . We know from the definition of the
action of the differential that we shall act by the representation ρ on Hl,l(V ); we
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write the basis of n` as

ν` = m(1, 0)− im(i, 0), ν` = m(1, 0) + im(i, 0), µ` = m(0, 1).

For notational simplicity, we may ignore the splitting of dV into dV = d+
V + d−V

(namely, we may incorporate the action on Sl,l(V ) into one representation ρ) so that
the action of dV is

dV = (1⊗ A (Ω`)⊗ ρ (ν`)) +
(
1⊗ A

(
Ω`

)
⊗ ρ (ν`)

)
+ (1⊗ A (κ`)⊗ ρ (µ`)) .

Acting with this on (7.2.2) and collecting terms, we may write:

dV
(
φH,`l,l

)
=(−1)l+1(l + 1)!

2(2πv)l+1 Ll+1 (2πv(x,x)) eπiτ(x,x)

⊗

κ` ∧ Ω` ⊗
(
ρ(µ`)(vHOL) + δk

4 ρ(ν`)(v0)
)

+ κ` ∧ Ω` ⊗
(
ρ(µ`)(vAHOL) + δk

4 ρ(ν`)(v0)
)

+ Ω` ∧ Ω` ⊗ (ρ(ν`)(vAHOL)− ρ(ν`)(vHOL))
 (7.2.3)

So, we now check that this vector is identically 0. It is an easy calculation that

ρ (ν`) (v0) = −2lvl2 ⊗ `∗ (v∗2)l−1 , ρ (ν`) (v0) = −2l`vl−1
2 ⊗ (v∗2)l

and, writing µ` with respect to the Witt basis as in Definition 2.4.4, we have

ρ (µ`)
(
vl2 ⊗ (`′)∗ (v∗2)l−1

)
= −vl2⊗ `∗ (v∗2)l−1 , ρ (µ`)

(
`′vl−1

2 ⊗ (v2)∗
)

= −`vl−1
2 ⊗ (v2)∗

so our choices of vHOL, vAHOL ensure that the κ` ∧ Ω`, κ` ∧ Ω` terms are trivial.
Using the weight operators from §3.1, we may check that

ν` = (λ3− iλ4)+(λ7− iλ8), ν` = (λ3 + iλ4)+(λ7 + iλ8), µ` = |δk|(λ1 +λ2 +2λ6),

so, switching to the orthogonal basis, we may use our calculations in the weight
bases from §3.1 to check that that

ρ (ν`)
(
(v1 − v3)vl−1

2 ⊗ (v∗2)l
)

= ((λ3 − iλ4) + (λ7 − iλ8))
(
(v1 − v3)vl−1

2 ⊗ (v∗2)l
)

= v0 − l(v1 − v3)vl−1
2 − v0 + l(v1 − v3)vl−1

2 ⊗ v∗3 (v∗2)l−1

= l(v1 − v3)vl−1
2 ⊗ (v∗3 − v∗1) (v∗2)l−1 (7.2.4)
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and

ρ (ν`)
(
vl2 ⊗ (v∗1 − v∗3) (v∗2)l−1

)
=
(
(λ3 + iλ4) + (λ7 + iλ8)) vl2 ⊗ (v∗1 − v∗3) (v∗2)l

)
= −lv1v

l−1
2 ⊗ (v∗1 − v∗3) (v∗2)l−1 + v0 + lv3v

l−1
2 ⊗ (v∗1 − v∗3) (v∗2)l−1 − v0

= l(v3 − v1)vl−1
2 ⊗ (v∗1 − v∗3) (v∗2)l−1 ; (7.2.5)

we see that (7.2.5) equals (7.2.4), and so the proof is complete.

So, we are ready now to state our main theorem. This will use much the same
arguments as were contained in §7.1, but the structure of the statement will be
very similar to that contained in §6.3. Namely, we will show that the natural cone
form that we wish to construct is holomorphic as a function of τ , using the lowering
operator. To do this, we will show that the lowering operator acts on the cone class
to give an exact form, and in particular that the auxiliary forms that we used in
Theorem 6.3.8 restrict to the boundary complex to give an appropriate auxiliary
form here.

Theorem 7.2.4. Let L be an even, integral lattice of level M as in our previous
theorems, with L some coset of L fixed by Γ. For each cusp class [`] of Γ\Iso(V ), we
let θW`∩L(φH,`l,l ) be the differential form on ∂XBS defined by

θW`∩L
(
φH,`l,l , τ

)
=

∑
x∈W`∩L

φH,`l,l (x, z̃, τ)

on the component e(P`) ⊂ ∂X
BS, and identically 0 on all other components.

Then the class θL,H(ϕ, τ),
∑
[`]
θW`∩L

(
φH,`l,l , τ

)
defines a cocycle in the cone cochain complex, and hence defines a cohomology class:θL,H(ϕ, τ),

∑
[`]
θW`∩L

(
φH,`l,l , τ

) ∈ H2
cone

(
X
BS
, ∂X

BS
, H̃l,l(V )

)
.

This class is non-trivial in cohomology whenever [θL,H(ϕ)] is non-trivial in H2(X, H̃l,l(V )),
and is a holomorphic modular form in τ of weight 2l + 3 and level M . It is cuspidal
for l ≥ 1.

Proof. From the results of Proposition 7.2.3, Theorem 7.1.10 and Theorem 6.4.1, we
may write in the cone complex:

d
θL,H(ϕ),

∑
[`]
θW`∩L

(
φH,`l,l

) =
dθL,H(ϕ), ι∗θL,H(ϕ)− d

∑
[`]
θW`∩L

(
φH,`l,l

)
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=
0,

∑
[`]
θW`∩L

(
ϕH,`l,l

)
− d

∑
[`]
θW`∩L

(
φH,`l,l

)
= [0, 0]

and so it is indeed a cocycle. Because of the action of d on the first component of
the cone complex, we see immediately that if θL,H(ϕ) is not exact then the above
class cannot be either.

Now we may show holomorphy. For this argument, we require a modification of our
earlier restriction argument: indeed, we shall look at what form holomorphy should
take, and then restrict the appropriate parts. Acting with the lowering operator on
this pair, and using the results of Theorem 6.3.8, we find:

ω(L)
θL,H(ϕ),

∑
[`]
θW`∩L

(
φH,`l,l

) =
ω(L)θL,H(ϕ),

∑
[`]
ω(L)θW`∩L

(
φH,`l,l

)
=
dθL,H

ψl,l − 1
2

l∑
j=1

(
Λj,l + Λj,l

) ,∑
[`]
ω(L)θW`∩L

(
φH,`l,l

)
?= d

θL,H
ψl,l − 1

2

l∑
j=1

(
Λj,l + Λj,l

) , 0


=
dθL,H

ψl,l − 1
2

l∑
j=1

(
Λj,l + Λj,l

) , ι∗θL,H
ψl,l − 1

2

l∑
j=1

(
Λj,l + Λj,l

)
Of course, the question mark equality is not shown - hence, we want to show the
following at each cusp [`]:

ι∗`θL

ψl,l − 1
2

l∑
j=1

(
Λj,l + Λj,l

) = θL
(
ω(L)

(
φH,`l,l

))
.

We now recall these objects; what we shall see is that a lot of our earlier work on
the restriction map r` will carry over identically. In (6.3.15), we defined ψFl,l in the
complex [F ⊗ p∗ ⊗ T l,l(V )]K as follows:

ψFl,l = 1
2

(
−i

2
√

2π

)2l+2 ∑
α′,β,β′

(
−z′3z′′α′z′βz′′β′ ⊗ ξα′ ⊗ vβ ⊗ v∗β′ + z′′3z

′
α′z
′
βz
′′
β′ ⊗ ξα ⊗ vβ ⊗ v∗β′

)
,

(7.2.6)
where α′ is summed over {1, 2} and β, β′ ∈ {1, 2}l. To distinguish the two terms
involved here, we now define ψHoll,l to be the left hand side of (7.2.6) (with the ξα term)
and ψAntiHoll,l to be the right hand side (with the ξα term). We use the intertwiner of
Lemma 5.3.2 to write the above in the Schrödinger model:

ψSl,l = 1
22l+3

∑
α′,β,β′

(
−D3Dα′DβDβ′ ⊗ ξα′ ⊗ vβ ⊗ v∗β′ +D3Dα′DβDβ′ ⊗ ξα ⊗ vβ ⊗ v∗β′

)
.
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We now recall the restriction arguments in Theorem 7.1.7. We may see that when
we let c = 0, the scalar term in ψHoll,l (x) will be of the form

− a ·
(
Dr1 ◦ Dl−r2 ◦ D1

r′D2
l+1−r′(ϕ0)

)
(a, b, 0) (7.2.7)

Using the rubric of the proof of Theorem 7.1.7 - namely, that everything of the form
of a modified Laguerre polynomial in a would Fourier transform trivially - we see
that there is exactly one term here that has non-trivial Fourier transform: when
r = 0 and r′ = 1, we may write (7.2.7) as

ψHoll,l,0,1 = −a
(
Dl2 ◦ D1

1D2
l(ϕ0)

)
(a, b, 0) = aa(−1)l l!

(2π)lLl
(
2π|b|2

)
ϕ0.

Inserting τ and t as usual, we hence may use Proposition 7.1.5 again to find the
restriction of the Fourier transform to the W` component. With r = 0 and r′ = 1,
we must have all β = 2 and exactly one of α′, β′ = 1 (with all the others = 2); there
are plainly l choices of which of the βi to equal 1 in the latter case. In Lemma 7.1.6,
we found the restriction of the Lie algebra dual forms, which we will now apply here.

Using Poisson summation identically to that in the proof of Theorem 7.1.10, we may
write

ι∗`
(
θL
(
ψHoll,l

))
= π`

limt→∞

 ∑
b∈W`∩L

−t2(l + 1)
8π (−1)l (l + 1)!

(2πv)l Ll
(
2πv|b|2

)
exp

(
πiτ |b|2

)

⊗
[
− δk

2t2κ` ⊗ a (t) (v0)− l

t
Ω` ⊗ a (t)

(
vl2 ⊗ (v∗1) (v∗2)l−1

)]
.


By the same logic as in the proof of Theorem 7.1.10, this limit will be exactly the
terms without powers of t in. We may easily calculate how a(t) acts on the symmetric
powers: for example

a(t)
(
vl2 ⊗ (v∗1) (v∗2)l−1

)
= t−1

2
(
vl2 ⊗ (v∗1 − v∗3) (v∗2)l−1

)
+O(1)

and similarly for other terms. Hence, writing this out, we have hence shown:

ι∗`
(
θL
(
ψHoll,l

))
=
∑
W`∩L

−(l + 1)
8π (−1)l (l + 1)!

(2πv)l Ll
(
2πv|b|2

)
exp

(
πiτ |b|2

)

⊗
[
−δk2 dr ⊗ v0 − ds⊗ vl2 ⊗

l

2 (v∗1 − v∗3) (v∗2)l−1
]

We may apply exactly the same argument to the anti-holomorphic part ψAntiHoll,l to
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find the same type of restriction:

ι∗`
(
θL
(
ψAntiHoll,l

))
=
∑
W`∩L

 l + 1
8π (−1)l (l + 1)!

(2πv)l Ll
(
2πv|b|2

)
exp

(
πiτ |b|2

)

⊗
[
δk
2 dr ⊗ v0 − ds⊗ l

2(v3 − v1)vl−1
2 ⊗ (v∗2)l

]
We now consider the Λj,l and Λj,l. Using Definition 6.3.6(iii), we may easily write
down an explicit form in the Fock model:

Λj,l = 1
2π

(
−i

2
√

2π

)2l ∑
α∈{1,2}

β∈{1,2}l−1

β′∈{1,2}l

z′αz
′
βz
′′
β′ ⊗ ξα ⊗ Aj(v3)vβ ⊗ v∗β′ ,

Λj,l = −1
2π

(
−i

2
√

2π

)2l ∑
α∈{1,2}
β∈{1,2}l

β′∈{1,2}l−1

z′′αz
′
βz
′′
β′ ⊗ ξα ⊗ vβ ⊗ Aj(v∗3)v∗β′ .

We again use the restriction arguments from Theorem 7.1.7; we may use the inter-
twiners from Lemma 5.3.2 to write these forms in [S(V )⊗ p∗ ⊗ T l,l(V )]K :

ΛSj,l(x) = 1
2π

∑
α∈{1,2}

β∈{1,2}l−1

β′∈{1,2}l

DαDβDβ′(ϕ0)⊗ ξα ⊗ Aj(v3)vβ ⊗ v∗β′ ,

Λj,l
S(x) = −1

2π
∑

α∈{1,2}
β∈{1,2}l

β′∈{1,2}l−1

DαDβDβ′(ϕ0)⊗ ξα ⊗ vβ ⊗ Aj(v∗3)v∗β′ .

Indeed, we see that in both ΛSj,l and Λj,l
S , we have the same number of Di and Di

terms for all indices, and so the pattern in the scalar terms will be identical as in
the ϕl,l, but here we have l rather than l + 1 of each. Hence, in order to find the
restriction in the S(V ) term, a completely identical argument to Theorem 7.1.7 may
be employed, and we may say that for all indices with any of the α, α′, βi, β′i 6= 2
the restriction of the Fourier transform will be trivial.

So, we may again project into the symmetric co-ordinates and find that the geometric
restriction of the relevant theta series is given by

ι∗` (θL (Λj,l)) =π`

limt→∞

 1
4π

t2(l + 1)
2v

(−1)l(l + 1)!
(2π)lvl−1 Ll(2πv|b|2)exp

(
πi|b|2τ

)

⊗
(−1
t

Ω`

)
⊗ a (t)

(
v3v

l−1
2 ⊗ (v∗2)l

)
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and

ι∗`
(
θL
(
Λj,l

))
=π`

limt→∞

−1
4π

t2(l + 1)
2v

(−1)l(l + 1)!
(2π)lvl−1 Ll(2πv|b|2)exp

(
πi|b|2τ

)

⊗
(−1
t

Ω`

)
⊗ a (t)

(
vl2 ⊗ v∗3 (v∗2)l−1

)
So, by an exactly identical argument to the above, we now need to find the O(t−1)
parts; this is, again, identical to the above. We may combine all of these calculations
to give us that:

ι∗`

θL
ψl,l − 1

2

l∑
j=1

(
Λj,l + Λj,l

) =
∑
W`∩L

 l + 1
8π

(−1)l(l + 1)!
(2πv)l Ll

(
2πv|b|2

)
exp

(
πiτ |b|2

)

⊗

δkdr ⊗ v0 + lds⊗ vl2 ⊗ (v∗1 − v∗3) (v∗2)l−1 + lds⊗ (v1 − v3)vl−1
2 ⊗ (v∗2)l


(7.2.8)

We now need the action of the lowering operator. For convenience, because our work
so far was in the Schrödinger model, we shall continue in this vein. Here we know
that the lowering operator acts as:

Lτ = −2iv2 ∂

∂τ
.

Ignoring the constants (and the other terms in the vector product), we may calculate:

∂

∂τ

(
vq−(l+1)eπi(x,x)τ

)
= i

2(q − (l + 1))vq−(l+2)eπi(x,x)τ ,

and so

ω(L)
(
v−(l+1)Ll+1(2πv(x,x))eπiτ(x,x)

)
= −2iv2

l+1∑
q=0

(2π(x,x))qγl+1,q
∂

∂τ

(
vq−(l+1)eπi(x,x)τ

)

=
l∑

q=0
(2π(x,x))qγl+1,q(q − (l + 1))vq−leπi(x,x)τ ;

(7.2.9)

we note that q = l + 1 gives 0 in this sum, so we only need sum from 0 to l. It is
a simple calculation using (7.1.22), the explicit form of the coefficients γl+1,q of the
Laguerre polynomials, that:

(q − (l + 1))γl+1,q = (q − (l + 1))
(
l + 1
q

)
(−1)l+1+q

q! = −(l + 1)γl,q,
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and so we may write (7.2.9) as

ω(L)
(
v−(l+1)Ll+1(2πv(x,x))eπiτ(x,x)

)
= −(l + 1)v−l

l∑
q=0

(2πv(x,x))q γl,qeπiτ(x,x)

= −(l + 1)v−lLl(2πv(x,x)).

As ω(L) acts only non-trivially only on S(V ), we may write:

ω(L)
(
φS,`l,l

)
=− (l + 1)(−1)l(l + 1)!

2(2π)(2πv)l Ll(2πv(x,x))exp (πi(x,x)τ)

⊗
[
− δk

4 κ` ⊗ v0 + Ω` ⊗ vHOL + Ω` ⊗ vAHOL
]
.

Inserting the forms of the vectors vHOL and vAHOL found in Proposition 7.2.3, we
may take a factor of −1/4 out of this form, and hence see that this is equal to the
restriction of the form found above in (7.2.8).

Finally, we may say why this class in the cone cohomology is a holomorphic modular
form: indeed, we have already shown it to be a holomorphic class when taken
in cohomology. We know that the global theta series θL,H(ϕ, τ) has a modular
transformation property with respect to the subgroup Γ(M).

Using identical arguments to those of Lemma 6.3.2, we may see that φH,`l,l is also an
eigenvector of weight 2l + 3 under the action of k′, and by the theta machinery, we
may identically see that for each [`], the boundary theta series θW`∩L(φH,`l,l , τ) also
has a modular transformation law of weight 2l + 3 with respect to the subgroup
Γ(M). In particular, we have shown that for all C ∈ H2(X, H̃l,l(V )), all the terms
in the Kronecker pairing
〈
C,

θL,H(ϕ, τ),
∑
[`]
θW`∩L

(
φH,`l,l , τ

)〉 =
∫
C
θL,H(ϕ, τ)−

∑
[`]

∫
∂`C

θW`∩L
(
φH,`l,l , τ

)

are modular of weight 2l+ 3. Hence, as we know that this will be holomorphic, then
we may conclude by linearity that this is a holomorphic modular form.
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Duality

In this final section, we look at the last outstanding work - namely, duality. We will
here be able to prove that the generating series of special cycles for l ≥ 0 is modular,
and in particular will give the relevant duality statement that will tell us the Fourier
coefficients of the capped theta series. This will follow the geometric arguments of
[FM14].

We will also be able to use this to interpret the work of Cogdell as a corollary of
ours, using a natural map between the Borel-Serre compactification and the toroidal
compactification used by Cogdell to find his geometric modular forms on similar
Picard modular surfaces. We shall illustrate this with an example.

8.1 Duality

We shall start with a restatement of the global duality statement of Theorem 6.1.13.
In order to do so on the manifold X, we shall define some more Schwartz forms
which homogenise the indexing used previously; this exactly follows the notation of
[FM14].

Definition 8.1.1. Fix n ∈ Q>0. For the global Schwartz form ϕHl,l, we let

ϕHl,l(n) =
∑
x∈L

(x,x)=2n

ϕHl,l(x, z, τ).

We may define the same object for the local differential form φH,`l,l at any cusp [`] of
X:

φH,`l,l (n) =
∑

x∈L∩W`
(x,x)2n

φH,`l,l (x, z, τ).
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At each such cusp [`], we consider some product neighbourhood of ṼT of e(P`) in X
BS

as in (2.3.16); we hence may define some smooth function f` : ṼT → R>0 which is
only a function of the t co-ordinate, and satisfies f` = 1 near t =∞ and 0 elsewhere
- one may think of it as a smoothed step function. We let πBS : XBS → ∂X

BS be
the topological projection into the boundary.

We hence define the compactified Schwartz function

ϕH,cl,l (n) = ϕHl,l(n)−
∑
[`]

d
[
f`
(
πBS

)∗ (
φH,`l,l (n)

)]
.

In general, this notation of replacing the x variable with a norm n may be understood
in the same way as above. So, we may now state the duality result.

It is proven in [BF04, Theorems 7.1 & 7.2] in the orthogonal case, but one may see
the proof to carry over identically to the unitary setting, as in e.g. [FH19]; indeed,
we here recall the form ψ̃(x, z) defined in the proof of Theorem 6.1.13, which is
non-singular for x 6⊥ z.

Proposition 8.1.2 ([FH19]). Let η be a compactly-supported 2-form on X. Then∫
X
η ∧ ϕKM(n) = ie2πinτ

∫
Cn
η −

∫
X

dη ∧ ψ̃(n) (8.1.1)

Indeed, the reader may see that when η is closed, the second integral on the right
hand side of (8.1.1) is trivial, which recovers the duality expressed in Theorem .
Further, an analogous form ψ̃l,l(x, z) must exist as a primitive to ϕl,l(x, z) for x 6⊥ z;
by an identical argument to the geometric arguments in §6.3, we may take this in
harmonic coefficients as ψ̃Hl,l(x, z) = ψ̃(x, z)⊗ πH(xl ⊗ (x∗)l).

Definition 8.1.3. We say a differential form η ∈ H2(XBS
, H̃l,l(V )) is special if

(i) For each cusp [`] of X, there is a neighbourhood ṼT of e(P`) where η may be
written as a pullback of a differential form η` on e(P`).

(ii) Under the pullback of the map N` → Γ`\N`, η` is left N`-invariant.

These forms are closed under the action of the normal differential d from the full
cochain complex, and hence give cohomology groups H i

Sp(XBS
, E). We have the

following important result on special forms:

Lemma 8.1.4 ([GHM94]). For any coefficient system E on XBS, the special forms
on XBS with coefficients in E compute the full cohomology group:

H i
Sp(XBS

, E) ' H i(XBS
, E).
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Proposition 8.1.5. Let x ∈ W ` be a vector of positive length in the central Witt
component, and let y ∈ {x | `} be some vector parameterising the boundary fibres
of Cx, using the notation of Lemma 4.2.4. Then for η any closed special 2-form on
X
BS, 2-forms η on e(P`), the boundary integrals are 0:∫

A`y
η = 0 =

∫
e(P`)

η ∧ φe(P`)KM (n). (8.1.2)

Proof. We first note that the second equality in (8.1.2) is an immediate consequence
of the definition of φe(P`)KM and of the structure of the 2nd cohomology group of e(P`).
Indeed, using Proposition 2.5.3, we see that over C, the de Rham cohomology group
H2
dR(e(P`)) - which is naturally isomorphic to H2(e(P`),C) - is spanned over C by

the forms dw ∧ dr and dw ∧ dr. Moreover, as we assume (using Lemma 8.1.4, this
is without any loss of generality) that η is special, we know it may be written as a
sum of representatives of the cohomology on e(P`) at each cusp.

So, as we know that φe(P`)KM is proportional to the differential form dr, the wedge
product with this and η will be identically 0, and so this integral is 0.

We now treat the integral over the 2-chain A`y; without loss of generality, it is clear
we may assume that y satisfies s(y) = 0, and hence that y = x. We recall this chain
from Definition 4.2.5 as (proportional to) the difference of the 2-chains

A`x = 1
2d(Γ, `) (T0,` − χ0,`) .

We shall prove the integral to be trivial for the form dw ∧ dr; the reader may see
that the proof for dw ∧ dr will be identical.

Indeed, we claim that the integral over the triangular chain T0,` is equal to the
integral over χ0,`. We have defined the former to be the 2-chain bounding the
triangular 1-chain

n(bλ2,−2b〈λ1, λ2〉`)− n(b̃λ2, 0)− n(0,−2˜̃b〈λ1, λ2〉`).

So, we now change variables in the r term: namely, we swap r′ = 2r, so that we
write T̃0,` as the cycle bounding

n(bλ2,−b〈λ1, λ2〉`)− n(b̃λ2, 0)− n(0,−˜̃b〈λ1, λ2〉`).

Changing variables in the differential form as well, we have hence shown∫
T0,`

dw ∧ dr = 2
∫
T̃0,`

dw ∧ dr

However, we may now recognise this as a pair of chains which add together to give
χ0,`. Indeed, taking the second copy of T̃0,`, we may see this as homotopic to the
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complementary chain T̃0,`
′ bounding the 1-cycle given by

n(bλ2, 0)− n
(
0, b̃〈λ1, λ2〉

)
− n

(
˜̃bλ2,−2˜̃b〈λ1, λ2〉

)
.

We hence see that the two 2-chains T̃0,` and T̃0,`
′ are the two triangular chains adding

together to give χ0,`, and so we have shown∫
T0,`

η =
∫
T̃0,`

η +
∫
T̃0,`
′ η =

∫
χ0,`

η,

and so the integral of any closed η over Ax,` will be 0.

Theorem 8.1.6. Let n ∈ Q>0. The compactified Schwartz function ϕcKM(n) is an
Poincaré dual for Cc

n; namely, for η a closed 2-form on XBS:∫
X
η ∧ ϕcKM(n) = ie−2πn

∫
Ccn

η (8.1.3)

Proof. At each cusp [`], we let σT ≡ σT,` be a smooth function on X which is 1 for
t ≤ T and 0 for t ≥ T + 1; in particular, this means we may write the left hand side
of (8.1.3) as ∫

X
η ∧ ϕcKM(n) = limT→∞

∫
X

(σTη) ∧ ϕcKM(n).

For each T , σTη is a compactly supported form on X, so we may apply Theorem
8.1.2: splitting ϕcKM(n) into its global and cuspidal parts, we may write the left
hand side of (8.1.3) as

ie−2πn
∫
Cn
η− limT→∞

∫
X

d (σTη)∧ ψ̃(n)−
∑
[`]

limT→∞

∫
X
σTη ∧ d

[
f`
(
πBS

)∗ (
φ`KM(n)

)]
.

(8.1.4)
Using the elementary equation

d(α1 ∧ α2) = dα1 ∧ α2 + (−1)deg(α1)α1 ∧ dα2,

and using Stokes’ theorem - see e.g. [BT95, Theorem 3.5] - which tells us that∫
X d

[
σTη ∧ f`

(
πBS

)∗ (
φ`KM(n)

)]
= 0 for all T , we may write (8.1.4) as

ie−2πn
∫
Cn
η− limT→∞

∫
X

d (σTη)∧ ψ̃(n) +
∑
[`]

limT→∞

∫
X

d (σTη)∧ f`
(
πBS

)∗ (
φ`KM(n)

)
.

(8.1.5)
By definition of the differential on local co-ordinates, we have [σTη] = σ′T (t)dt ∧ η +
σTdη; as we have defined σT to be constant outside [T, T + 1], and dη is assumed to
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be 0, we may hence write (8.1.5) as

ie−2πn
∫
Cn
η − limT→∞

∫
X

σ′T (t)dt ∧ η ∧
ψ̃(n)−

∑
[`]

limT→∞f`
(
πBS

)∗ (
φ`KM(n)

)
(8.1.6)

By Lemma 8.1.4, we may without loss of any generality assume that η is special. As
each ṼT is a product of e(P`) with a space that is homotopically trivial, we know
by the Künneth formula - see [BT95, §5, p.47] - that any special cohomology class
η will be equal to η` on ṼT ; in particular, it will be independent of T , so we may
separate the differential forms in the wedge product and write (8.1.6) as

ie−2πn
∫
Cn
η + limT→∞

∫ T+1

t=T
σ′T (t)dt

∫
e(P`)

η ∧

∑
[`]
f`
(
πBS

)∗ (
φ`KM(n)

)
− ψ̃(n)

 .
(8.1.7)

We now claim that the form ψ̃(n) restricts to a form proportional to dr on each
boundary component e(P`); equivalently, looking at the restriction of the Lie algebra
elements in Lemma 7.1.6, we claim that the scalar terms proportional to ξ2 and ξ2

in ψ̃(n) will restrict to 0.

By definition, the ξ2 and ξ2 scalar terms in ψ̃KM(x) will be of the form

b

t−1a− tc
2δk

,

 b

t−1a− tc
2δk


Again, putting c = 0, we see that this is an odd function in a; by our Fourier transform
calculations in Proposition 7.1.5 again, this tells us that the Fourier transform of this
scalar term will be identically 0, as the restriction map only picks up the coefficients
a2k,2n−2k. Hence, this tells us that hence, this is trivially also true for ψ̃Hl,l.

We recall now that we have assumed without loss of generality that η is special, and
hence retracts to a closed 2-form η` on each e(P`). In the boundary integrals, we
may write (πBS)∗φ`KM(n) = φ`KM(n), write f` ≡ 1 for large enough T . Because η -
assumed closed - will have dr in its wedge product in local co-ordinates, the term
vanishes, and so we may split the integral in (8.1.7) and write∫

X
η ∧ ϕcKM(n) = ie−2πn

∫
Cn
η −

∑
[`]

∫
e(P`)

η ∧ φ`KM(n) (8.1.8)

We now take the pairing in the integral on the right-hand side of (8.1.8); in Propos-
ition 8.1.5 we showed that these integrals are all 0 for l = 0, and in particular are
hence equal to the integrals over An for all n. Hence, all the boundary integrals will
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disappear when η is closed, and we may write∫
X
η ∧ ϕcKM(n) = ie−2πn

∫
Ccn

η.

Using the relationship between the compactly supported cohomology and the co-
homology of the cone complex, we now have our main theorem.

Theorem 8.1.7. Let L be an even integral lattice in V of level M , with L ∈ L′/L
some coset. Let Γ ⊂ G be some arithmetic subgroup fixing all such L. Then the classθL(ϕ, τ),

∑
[`]
θW`∩L

(
φ`KM , τ

) ∈ H i
cone

(
X
BS
, ∂X

BS
)

defines a non-cuspidal, holomorphic modular form of weight 3 and level M , whose
coefficients are given by the compactified cycles Cc

n:θL(ϕ, τ),
∑
[`]
θW`∩L

(
φ`KM , τ

) = 1
2πδL=L [ΩX ] +

∑
n>0

[Cc
n]PD e2πinτ

Proof. This is an immediate corollary of Theorem 7.2.4 and Theorem 8.1.6 for η a
closed form, as we may notice that ϕcKM(n) is the image in H2

c (X) of the pair in the
cone complex, under the map into the compactly supported cohomology constructed
in Lemma 7.2.2.

Corollary 8.1.8. Theorem 4.2.9 is true; namely, that for all l ≥ 0, the generating
series given by

1
2πδl=0 [ΩX ]PD +

∑
n>0

[
Cc
n,[l,l]

]PD
qn

is modular of weight 2l + 3, and is a cusp form if l ≥ 1.

Proof. This follows immediately from the proof of Proposition 8.1.5 and from The-
orem 8.1.7. Namely, given any closed η representing a cohomology class [η] on X,
the integral against Cc

n will equal the integral against Cn, as the integrals against
An will be trivial at all the cusps. As the capping cycles An,[l,l] are proportional to
the An - namely, at each vector y they are equal to Ay ⊗ yl ⊗ (y∗)l - we see that
this will also hold for general l, and hence modularity follows immediately.
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8.2 A relationship to Cogdell’s modular
generating series

In Cogdell’s paper [Cog85], the author follows the same logic as us - namely, he
recognises that on XTOR, there is a need to modify the natural cycles Cn in order
to be able to find a pairing into the space of holomorphic modular forms.

The natural starting point here is to consider the cycles Cn embedded in XTOR; we
hence may find the topological closure of these in XTOR for all n > 0, and denote
these cycles by Dn → X

TOR. By the definition of the topological closure, this will
define a class (which, like the Cn in X, will be generically non-trivial) in H2(XTOR).
The divisors compactifying X to XTOR may be explicitly written down in this case;
using the notation of §2.3.2, these are the ˜̃UM defined in (2.3.9). At each cusp
class [`] ∈ Γ\Iso(V ), we let D` be the span of all the classes given by compactifying
divisors at [`].

We may view the Borel-Serre boundary as dividing XTOR into two sections:

X
TOR = X

TOR
int ∪X

TOR
ext , (8.2.1)

where XTOR

int ∩X
TOR

ext = ∂X
BS and the interior part is just isomorphic to X. Hence,

from e.g. [Cog85, p.125], we know that when ιTOR : X → X
TOR is the natural

inclusion map, we have a splitting of the homology of the compactified Picard
modular surface as follows:

H2(XTOR) = (ιTOR)∗H2(X)⊕[`] H2(D`). (8.2.2)

which will be orthogonal with respect to the intersection pairing.

Proposition 8.2.1. Let Dn be the topological closure of Cn ↪→ X
TOR as defined

above, and let Dc
n be projection of Dn into (ιTOR)∗H2(X) in the splitting (8.2.2) -

this is exactly the compactified cycle considered by Cogdell in [Cog85]. For all n we
have the following equation in homology:

(ιTOR)∗ [Cc
n] = [Dc

n] .

Proof. We largely mimic the proof given in [FM14]; as there, for simplicity, we
assume that there is a single cusp [`] of X. By the splitting of XTOR given in (8.2.1),
we can split along these submanifolds to get

Dn =
(
Dn ∩X

TOR

int

)
+
(
Dn ∩X

TOR

ext

)
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We have defined Dn so that it is closed with respect to the homological boundary
operator ∂ : Zj(X

TOR) → Zj−1(XTOR). As in e.g. §4, we let Cn be the closure of
Cn in XBS, which - using the homotopy equivalence XBS ' X - we may consider
as a class in H2(X). As we know from e.g. [BJ06, III.15.6] that the intersection of
the interior and exterior parts of the toroidal compactification are the Borel-Serre
boundary e(P`), we have the relations

(ιTOR)∗Cn = Dn ∩X
TOR

int , ∂Cn = −∂
(
Dn ∩X

TOR

ext

)
.

So, we can write
Dn = (ιTOR)∗Cc

n +
(
Dn ∩X

TOR
ext

)c
.

Note that the compactification of the exterior two-chain Dn ∩X
TOR
ext is identical to

the compactification of the Cn in X
BS - namely, we attach −An for An the two

chain in ∂XBS from Definition 4.2.5. So, because we have now decomposed Dn into
two orthogonal parts for the homological splitting given in (8.2.2), we know (by
definition of the direct sum operation) that this is the unique splitting - hence we
may say that

Dc
n =

[
(ιTOR)∗Cc

n +
(
Dn ∩X

TOR

ext

)c]c
= (ιTOR)∗Cc

n

and so we are done.

What is to be done? We revisit the setting of Cogdell to compare the homology
therein to ours. For any positive length x ∈ V , he creates a modular form

νx(τ) = 1
2vol (Cx) +

∞∑
n=1

(Dc
x ·Dc

n)X q
n. (8.2.3)

Writing (8.2.3) in terms of an intersection between a homological modular form and
the class Dc

x, we may see this as lying in the image of a pairing on homology:

νx(τ) =
((

[PD (c1(X))] +
∑
n>0

Dc
n

)
·Dc

x

)
. (8.2.4)

Definition 8.2.2. For any lattice coset L, let H2(X)L (resp. H2(XTOR)L) be the
span of all the classes [Cc

x] (resp. [Dc
x]) for x ∈ L.

Then we may interpret the modular forms ϕx in (8.2.4) as specific images of the
pairing: (

H2
(
X
TOR

)
⊗M3(Γ(M))

)
×H2

(
X
TOR

)
L
→M3(Γ(M))

It is clear that we may interpret (ιTOR)∗ as a map from H2(X)L to H2(XTOR)L;
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hence, given our knowledge of the result from Theorem 3, we have the map

((ιTOR)∗ ⊗ 1) : H2(X)⊗M3(Γ(M))→ H2
(
X
TOR

)
⊗M3(Γ(M)). (8.2.5)

Fixing an x ∈ L of positive length, we may interpret the results of Theorem 4.2.6 as
equivalent to the existence of a map ΞBS : H2(X)→M3(Γ(M)); in particular, there
exists a pairing

〈 , 〉BS : (H2(X)⊗M3(Γ(M)))×H2(X)L →M3(Γ(M)). (8.2.6)

Hence, the Cogdell result follows simply from (8.2.6) for the fixed class Cc
x ∈ H2(X)L:

we apply the map from (8.2.5) in the left-hand side and (ιTOR)∗ in the right-hand
side of the pairing.

We have hence proven the following; it is a corollary to 4.2.6, Proposition 8.2.1 and
the main result of [Cog85].

Proposition 8.2.3. The main theorem of Cogdell regarding automorphic liftings
of special cycles on Picard modular surfaces, stated in [Cog85], is a corollary of
Theorem 4.2.6 for the special case when η is the Poincaré dual of a Borel-Serre
special cycle Cc

x.

Example 8.2.4. We now illustrate this with an example; in particular, we will
integrate the capped theta series of weight 3 against the special cycle Cv2 . We will
assume we work with a single cusp [`], and the lattice L = ok` ⊕ okw` ⊕ ok`

′ as in
[Cog85].

By definition of the mapping betweenH2
cone(X

BS
, ∂XBS) andH2

c (X) given in Lemma
7.2.2, this is given in the Kronecker pairing by

〈Cv2 , [θL(ϕKM , τ), θW`∩L(φKM , τ)]〉 =
∫
Cv2

θL(ϕKM , τ)−
∫
∂Cv2

θW`∩L(φKM , τ).

(8.2.7)
As v2 has length 1, the intersection with the cusp [`] is given by the single fibre circle
cv2 . We may hence write the cuspidal integral as∫

cv2

θW`∩L(φKM , τ) =
∑

x∈W`∩L

∫
cv2

−δk
8

(
||x|| − 1

2πv

)
eπiτ ||x|| ⊗ dr

=
∑

x∈W`∩L
−δkC`,Γ8

(
||x|| − 1

2πv

)
eπiτ ||x||. (8.2.8)

We may recognise this as a non-holomorphic modular form: we let R1 be the raising
operator from weight 1 to weight 3 modular forms, given by

R1 := 2i ∂
∂τ

+ 1
v
.
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Then we may easily calculate that

R1
(
eπiτ ||x||

)
= −2π

(
||x|| − 1

2πv

)
eπiτ ||x||

and so we may recognise the sum in (8.2.8) as proportional to the action of R1 on
the weight 1 holomorphic modular form given by the theta series:

∑
x∈W`∩L

eπiτ ||x||;

in particular, this tells us that the integral in (8.2.8) is a non-holomorphic modular
form of weight 3, equal to the sum of a holomorphic theta series

∑
x∈W`∩L

||x||eπiτ ||x||

and a non-holomorphic theta series.

We may define the weight 2 Eisenstein series E2(τ) by

E2(τ) = 1
2ζ(2)

∑
(c,d)∈Z2\{(0,0}

(cτ + d)−2 = 1 + 24
∑
n=1

σ1(n)qn.

An elementary fact from the elementary theory of modular forms is that E2(τ)
(unlike E2k(τ), k ≥ 2) is not modular with respect to SL2(Z), and to retain this
property we define the non-holomorphic Eisenstein series given by

Ê2(τ) = E2(τ)− 3
πv

;

which has the correct modular property with respect to the generators of SL2(Z).
Following the example of e.g. [FM11, Lemma 5.4], we may split the global integral
in (8.2.7) into a product of integrals:

∫
Cv2

θL(ϕKM , τ) =
(∫

Cv2

θW⊥
`
∩L(ϕ0

KM , τ)
) ∑

x∈W`∩L
eπiτ ||x||

 (8.2.9)

and we may calculate the first integral on the right-hand side of (8.2.9) using the
work of [Sta15, §4] on unitary signature (1, 1) non-holomorphic liftings as follows:∫

Cv2

θW⊥
`
∩L(ϕ0

KM , τ) = δkC`,Γ
48 Ê2(τ).

Hence, we may conclude the following:

(i) Both the integrals on the right-hand side of (8.2.7) are modular forms of weight
3, which are explicitly not holomorphic on H.
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(ii) The non-holomorphic parts of these integrals are equal: namely, we have[∫
Cv2

θL(ϕKM , τ)
]
NonHol

= δkC`,Γ
16πv

∑
x∈W`∩L

eπiτ ||x|| =
[∫

∂Cv2

θW`∩L(φKM , τ)
]
NonHol

.

Hence, this replicates the work of Cogdell for the cycle Cv2 , so that the difference∫
Cv2

θL(ϕKM , τ)−
∫
∂Cv2

θW`∩L(φKM , τ)

is a holomorphic modular form of weight 3.

We hence in particular see the same structure of result as in [Cog85]: namely, that
both the local and the global integrals give non-holomorphic modular forms of weight
3, with the same non-holomorphic parts - and hence in particular the Kronecker
pairing between Cv2 and the capped theta series gives a holomorphic modular form.
The advantage to this method over Cogdell’s is that this vanishing property is seen
as an immediate corollary of the capping procedure.

We now develop this example to give an indication of why our capped theta series
from Theorem 7.2.4 are non-trivial - namely, we shall imitate the work of Example
8.2.4 for l = 1.

Example 8.2.5. We let l = 1, and keep the same initial assumptions on the lattice
and number of cusps as in Example 8.2.4; in particular, we assume Γ = ΓL is the
full stabiliser of the lattice. We shall integrate the capped theta class (emphasising
the chosen value of l)

[
θL,H (ϕ1,1, τ) , θW`∩L

(
φ`1,1, τ

)]
∈ H2

c

(
X
BS
, H̃1,1(V )

)
against the special cycle

Cv2,[1,1] ∈ H2

(
X, H̃1,1(V )

)
;

given the results of Theorem 7.2.4, we expect this to give us a holomorphic cusp
form of weight 5.

We may now analogise the results of [FM11, Lemma 5.4] for the case of complex
harmonic coefficients. We letW⊥

` ⊂ V be the hyperbolic subspace of signature (1, 1),
and let H ' DW⊥

`
⊂ D be the corresponding subsymmetric space. We let ϕW`

KM and
ϕ
W⊥`
KM be the Kudla-Millson form for W` (spanned by v2) and W⊥

` respectively, so
that we may immediately write

ϕW`
KM(w, τ) = eπi(w,w)τ , ϕ

W⊥`
KM(x, τ) =

(
|z1|2 −

1
2πv

)
eπi(x,x)τ ⊗ ξ1 ∧ ξ1.
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The latter may have z ∈ DW⊥
`

inserted in the usual way, as in §6. The restriction of
the vector-valued operators ∇V , ∇V to these subspaces gives

∇W` = D2 ⊗ 1⊗ A(v2)⊗ 1, ∇W` = D2 ⊗ 1⊗ 1⊗ A(v∗2)

and
∇W⊥` = D1 ⊗ 1⊗ A(v1)⊗ 1, ∇W⊥` = D1 ⊗ 1⊗ 1⊗ A(v∗1).

For l, l′ arbitrary non-negative integers, we hence define the vector-valued forms in
the reduced subspaces as follows:

ϕW`
l,l′ =

(
∇W`

)l
◦
(
∇W`

)l′ (
ϕW`
KM

)
, ϕ

W⊥`
l,l′ =

(
∇W⊥`

)l
◦
(
∇W⊥`

)l′ (
ϕ
W⊥`
KM

)
. (8.2.10)

Hence, using exactly the same principles as in the discussion preceding [FM11,
Lemma 5.4], we see that for x ∈ W⊥

` and w ∈ W`, the restriction of the Schwartz
form ϕl,l′ (defined in Lemma 6.2.3) to the subsymmetric space is given by

rD
W⊥
`

(ϕl,l′) =
∑

0≤j≤l
0≤j′≤l′

ϕW`
j,j′(w, τ)ϕW

⊥
`

l−j,l′−j′(x, τ). (8.2.11)

The Kronecker pairing is given by〈
Cv2,[l,l], [θL,H(ϕ1,1, τ), θW`∩L,H(φ1,1, τ)]

〉
=
∫
Cv2,[1,1]

θL,H(ϕ1,1, τ)−
∫
∂Cv2,[1,1]

θW`∩L,H(φ1,1, τ).

(8.2.12)
Applying (8.2.11), we may rewrite the first integral on the right-hand side of (8.2.12)
as follows:

∫
Cv2,[1,1]

θL,H(ϕ1,1, τ) =
∫
Cv2,[1,1]

 1∑
j,j′=0

θW`∩L
(
ϕW`
j,j′ , τ

)
θW⊥

`
∩L

(
ϕ
W⊥`
1−j,1−j′ , τ

) .
By definition, the integral will be given by pairing the vector v0 = πH(v2 ⊗ v∗2) with
the coefficients in the fibre; in particular, examining the form of the vector-valued
forms in (8.2.10), we see that if j or j′ 6= 1, then the integrand will have a v1 or v∗1
term in, and hence in particular will be orthogonal to v0. Hence, we may discard
almost all the terms in this sum and take out the one-dimensional theta series in the
global integral (as it does not have any differential forms involved). Further, for the
cuspidal integral, we notice that this same pairing triviality occurs - namely, that
the terms proportional to Ω` and Ω` in ϕ1,1 will disappear. Hence, we may integrate
at the cusp as in Example 8.2.4 and hence write the pairing between the special
cycle and the capped theta series as

〈
Cv2,[l,l], [θL,H(ϕ1,1, τ), θW`∩L,H(φ1,1, τ)]

〉
=
[∫

Cv2

θW⊥
`
∩L

(
ϕ
W⊥`
KM , τ

)]
θW`∩L

(
D1 ◦ D1

(
ϕW`
KM

)
, τ
)
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− δkC`,Γ
8 θW`∩L

((
D2 ◦ D2

)2 (
ϕW`
KM

)
, τ
)

(8.2.13)

In particular, what we have shown here completely generalises the equivalent calcu-
lation in the Kudla-Millson case, and in particular gives a method for calculating
generic integrals of this type.

We now check that the non-holomorphic parts of this lifting disappear. We know
from the trivial coefficients calculations that the 1/v term in the integral on the right-
hand side of (8.2.13) is given by −δkC`,Γ/8πv, and the same in the one-dimensional
theta series coming from the splitting will be from the constant term of the first
Laguerre polynomial:

[
θW`∩L

(
D1 ◦ D1

(
ϕW`
KM

)
, τ
)]

1
v

= − 1
2πv

∑
w∈L∩W`

eπiτ ||w||.

(this notation of [X]vk notating the vk part of X continues throughout). Similarly,
the 1/v2 term in the boundary integral will come from the constant term of the
second Laguerre polynomial:[

θW`∩L

((
D2 ◦ D2

)2 (
ϕW`
KM

)
, τ
)]

1
v

= 1
2(πv)2

∑
w∈W`∩L

eπiτ ||w||.

Hence, putting this together, we see that the 1/v2 term in (8.2.13) is given by
[
(8.2.13)

]
1/v2

=
∑

w∈W`∩L

[(
−δkC`,Γ

8πv

)( −1
2πv

)
− δkC`,Γ

16(πv)2

]
eπiτ ||w|| = 0.

We will now use the interpretation from [Sta15] of the coefficients of the integral
on the right-hand side of in (8.2.13) to be given by representation numbers in the
lattice W⊥

` ∩ L modulo the action of ΓW⊥
`
. We write the term not proportional to

1/v as G(τ); hence, the full 1/v part of (8.2.13) is given by:

− δkC`,Γ
2 G(τ)

[
θW`∩L

(
D1 ◦ D1

(
ϕW`
KM

)
, τ
)]

1
v

+ δkC`,Γ
8 θW`∩L

(
D1 ◦ D1

(
ϕW`
KM , τ

)]
v0

+ δkC`,Γ
8

[
θW`∩L

((
D2 ◦ D2

)2 (
ϕW`
KM

)
, τ
)]

1
v

= −δkC`,Γ2 G(τ)
( −1

2πv

) ∑
w∈W`∩L

eπiτ ||w|| + δkC`,Γ
8πv

∑
w∈W`∩L

||w||eπiτ ||w||

− δkC`,Γ
4πv

∑
w∈W`∩L

||w||eπiτ ||w||

= δkC`,Γ
8πv

[
2
[∑
n

ΓW⊥
`
\rW⊥

`
∩L(n)qn

] [∑
ñ

ΓW`
\rW`∩L(ñ)qñ

]
−
∑
n′

2n′ΓW`
\rW`∩L(n′)qn′

]
,

where as usual we have assumed that q = e2πiτ . However, by our assumptions on Γ
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(namely, that it is the full lattice stabiliser), then we see that all the representation
numbers are just 1, in which case we see that this 1/v term also disappears.

We are hence left with the constant v0 part; we only now need check that this is
non-zero. However, this is trivial: we may check that for e.g. ok the ring of Gaussian
integers, the q coefficient is given by −δkC`,Γ/3, and this will replicate in general for
other rings of integers.

In particular, this shows us that these constructions will not in general be trivial -
indeed, when treating the case of l = 1, this pattern of the vk terms disappearing
for k > 0 should replicate, and the same non-triviality will again happen, because
the holomorphic parts of the Kronecker pairing will be given by products of dif-
ferent weight holomorphic theta series, and hence in particular will have non-zero
coefficients of qn for some sufficiently large n.

We record all of the above in a theorem.

Theorem 8.2.6. For l = 1, the cohomology class

[θL,H(ϕ1,1, τ), θW`∩L,H(φ1,1, τ)] ∈ H2
cone

(
X
BS
, ∂X

BS
, H̃l,l(V )

)
is non-trivial; more specifically, the Kronecker pairing with the class Cv2,[1,1] is a
holomorphic cusp form of weight 5:〈

Cv2,[l,l], [θL,H(ϕ1,1, τ), θW`∩L,H(φ1,1, τ)]
〉

=
∑
n≥1

a(n)qn

where

a(n) = δkC`,Γ

(
1
24nrWL

(n)−
n−1∑
k=1

[(n− k)σ1(k)rWL
(n− k)]− 1

8n
2rWL

(n)
)
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