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Abstract  
 
Tuberculosis remains a global health concern that requires difficult and lengthy 

treatment regimens for latent and persistent infection. Toxin-antitoxin systems have 

been linked to controlling bacterial growth rate and also implicated in bacterial 

persistence. Mycobacterium tuberculosis carries three uncharacterised type IV toxin-

antitoxin systems, rv0837c/rv0836c, rv1044/rv1045, and rv2827c/rv2826c, which are 

regulated during macrophage infection. This work characterises the DNA-binding 

capabilities of Mycobacterium tuberculosis protein antitoxins Rv0837c, Rv1044, 

Rv2827c, and a homologue AbiEi from Streptococcus agalactiae, with the aim of 

developing the autoregulatory paradigm for type IV antitoxins. Biochemical analysis 

of AbiEi corroborated already published work and structural characterisation of AbiEi 

was begun. Rv2827c demonstrated an ability to bind four sites within the rv2827c 

cognate promoter with differing affinities, and is the first example of a negatively 

cooperative autoregulatory response within toxin-antitoxin systems. Rv0837c could 

not be expressed in E. coli and Rv1044 could only bind to the abiEi promoter 

indicating a structural relationship to AbiEi. The functional relevance of these data 

are unclear, but given the essentiality of Rv2827c these results prompt further study 

into this family of systems.  
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Chapter 1. Introduction 
 
Tuberculosis is a major public health concern with approximately 8.6 million new 

cases and 1.3 million deaths each year (Sulis et al., 2014). The causative agent, 

Mycobacterium tuberculosis, has evolved to become a successful human pathogen 

through the ability to evade host immune responses and establish a persistent 

infection with no clinical symptoms; as a result, the vast majority of cases exist as 

latent tuberculosis (van Crevel et al., 2002). The prevalence of latent infections and 

the requirement for a six-month course of antibiotics to treat infections is likely due 

to the existence of specialised “persister” cells (Wayne, 1994). 

 

Persister cells are a subpopulation that have become phenotypically drug-tolerant 

due to the slowing or halting of cellular processes normally targeted by antibiotics. 

These cells account for about 1% of cells during stationary phase growth and in 

biofilms of most bacterial species (Lewis, 2008). The phenotypic change to a persister 

cell and subsequent reversion to an active cell are dynamic processes involving 

numerous and varied molecular pathways. Elucidating these pathways may offer 

new insights into approaches to tuberculosis treatment, effectively targeting active 

and persistent cells to eradicate the infection and reducing chronicity. 

  

Specific toxin-antitoxin (TA) systems have been directly linked to the persister state 

(Holden and Errington, 2018; Wang and Wood, 2011; Wen et al., 2014) however, the 

global role of TA systems in persister formation is heavily debated (Goormaghtigh et 

al., 2018; Maisonneuve et al., 2018; Wang and Wood, 2011),. TA systems are 

widespread and usually consist of a toxin that disrupts an essential cellular process, 

and an unstable and readily degraded antitoxin that inhibits toxicity (these systems 

will be discussed later). It is therefore possible to envisage how TA systems could 

integrate into molecular pathways governing persistence, by contributing to control 

of the cell’s metabolic rate.  

 

It may therefore come as no surprise that M. tuberculosis boasts 88 TA systems (Sala 

et al., 2014a), with a subset of these systems becoming activated upon exposure to 
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stresses encountered during infection. This supports the theory that TA systems are 

important in bacterial adaptation to microenvironments (Ramage et al., 2009). Three 

functionally uncharacterised type IV TA systems are present in M. tuberculosis, 

Rv0836c/Rv0837c, Rv1044/Rv1045 and Rv2826c/Rv2827c (Sala et al., 2014b). These 

systems appear to be regulated in response to stresses such as those encountered 

during macrophage infection (Keren et al., 2011; Schnappinger et al., 2003; Torrey et 

al., 2016).  

 

1.1 Toxin-Antitoxin Systems  

All known toxin-antitoxin systems include a protein toxin and a labile RNA or protein 

antitoxin. The targets of the toxins are highly variable and the roles of TA systems in 

bacterial physiology are under increasing investigation (Goormaghtigh et al., 2018; 

Holden and Errington, 2018; Slayden et al., 2018). TA systems are characterised by 

the mode of toxin inhibition and are classed as types I - V (Figure 1). TA systems 

primarily exist as a bicistronic operon, with the downstream gene encoding a stable 

toxin and the upstream gene encoding a specific antitoxin in the form of an 

inherently unstable protein or RNA. A summary of known and studied TA systems 

can be found in Table 1.1.  

1.1.1 Type I  

The first discovered type of TA system exists as a convergently arranged overlapping 

gene pair with a cis-encoded sRNA antitoxin, or a divergently arranged gene pair with 

a trans-encoded antitoxin (Figure 1.1a) (Brantl, 2012). Toxicity is inhibited post-

transcriptionally as the sRNA antitoxin binds in an antisense manner to the toxin 

transcript or a translationally coupled gene (such as mok as seen in the hok/sok 

system (Franch et al., 1997)) preventing toxin translation directly or indirectly, 

respectively (Thisted and Gerdes, 1992). Subsequently, the RNA duplex can be 

degraded or the ribosome binding site masked to further reduce toxin expression 

(Müller et al., 2016).   
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The toxins of Type I systems are generally accepted to be small hydrophobic proteins 

that interfere with membrane permeability due to a potential transmembrane 

domain; this ultimately impairs ATP synthesis by dissipating membrane potential.  

Other type I toxins exist as RNase or DNase enzymes (Guo et al., 2014); the toxin 

SymE acts as an RNase rather than a membrane interfering protein and has been 

theorized to recycle damaged RNA in the SOS response or to prevent infection with 

RNA bacteriophages (Kawano et al., 2007), and Ra1R functions as a DNase in E. coli 

increasing resistance to fosfomycin (Guo et al., 2014). Many type I systems are 

located on prophages, which possibly explains their participation in protecting the 

cell from further phage infection, but also implicates them in maintenance of the 

prophage in the host chromosome (Durand et al., 2012).  



Chapter 1. Introduction 
 

 16 

Figure 1.1 Toxin-antitoxin systems; types I – V in bacteria 
 

 
 
Figure 1.1 Legend overleaf  
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Figure 1.1 Toxin-antitoxin systems; type I – V in bacteria. a) Type I system antitoxicity 

occurs post-transcriptionally with the antitoxin sRNA binding toxin mRNA in an 

antisense manner, preventing translation. Type I toxins generally target the cell 

membrane; b) Type II system antitoxicity occurs post-translationally with the 

antitoxin protein binding directly to and inhibiting the toxin protein. Type II antitoxins 

are generally capable of negatively autoregulating the operon and type II toxins have 

a wide range of cellular targets inhibiting a variety of metabolic processes; c) Type III 

system antitoxicity occurs as a pseudoknotted antitoxin RNA binds to the protein 

toxin to inhibit toxicity; d) Type IV system antitoxicity occurs through an antagonistic 

mechanism whereby the antitoxin protein counteracts toxicity without directly 

interacting with the protein toxin. The emerging theory is that type IV antitoxins are 

also capable of autoregulation by binding to their cognate promoter regions; e) Type 

V system antitoxicity occurs via a protein antitoxin RNase targeting the toxin RNA, 

preventing toxin translation.  
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1.1.2 Type II 

In Type II TA systems both the toxin and antitoxin are proteins that directly interact, 

which results in steric changes to the toxin or blocking of critical sites required for 

toxicity (Figure 1b). These systems have been structurally classified into six groups, 

namely Kid, Doc, VapC, RelE, HipA, and z  (Blower et al., 2011a). The antitoxin 

proteins are intrinsically unstable and are usually comprised of a DNA-binding 

domain joined to a disordered regulatory region. This regulatory region is responsible 

for the instability and favoured proteolytic degradation of the antitoxin and becomes 

ordered when bound to the toxin counterpart (Buts et al., 2005; Cataudella et al., 

2012; Garcia-Pino et al., 2010).  

 

Typically, the genes form a bicistronic operon allowing for the majority of type II 

antitoxins to transcriptionally repress the toxin (alongside their own transcripts) via 

negative autoregulation. Activation of these systems depends on the rate of antitoxin 

degradation by Clp or Lon proteases and the outcome of transcriptional repression 

or de-repression is dictated by TA stoichiometry as demonstrated by the RelBE 

system; when the stoichiometry is such that RelB-RelE heterodimers form, or ternary 

RelB2-RelE complexes, the locus is repressed. The heterotetramer, RelB2-RelE2, 

however, fails to bind DNA (Overgaard et al., 2008). Interestingly, a strictly pairwise 

system may not hold true for type II TA systems, rather a ‘mix-and-match’ principle 

may fit as described by Guglielmini & Van Melderen (2011), after a bioinformatics 

approach revealed dramatic sequence diversity but structural conservation amongst 

toxins and prompted the inference that toxins may be capable of binding antitoxins 

of different classes. It has also been suggested that many families share a common 

toxin and regulatory unstructured antitoxin region, but different DNA-binding 

antitoxin domains have arisen through a series of illegitimate recombination events 

leading to TA system diversity (Leplae et al., 2011; Smith and Magnuson, 2004). 

1.1.3 Type III 

To date, only a few type III systems have been identified and validated with the toxin 

activity being inhibited by binding a non-coding pseudoknotted RNA (Figure 1c) 

(Goeders et al., 2016). ToxIN (Pectobacterium atrosepticum) (Fineran et al., 2009) 
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and AbiQ/AntiQ (Lactococcus lactis) (Emond et al., 1998) are systems with full length 

antitoxins ToxI and AntiQ containing 5.5 36-nucleotide and 2.8 35-nucleotide repeats 

respectively. These can be degraded to repeat monomers through sequence specific 

cleavage by the cognate toxin acting as an RNase. It has been shown that a single 

ToxI repeat is sufficient to repress ToxN but structural analysis revealed three 

pseudoknotted ToxI molecules bind to three ToxN protein toxins in a trimeric 

complex (Blower et al., 2011b). Furthermore, similar to many TA systems, negative 

autoregulation is observed for the ToxIN operon (Blower et al., 2009; Fineran et al., 

2009; Samson et al., 2013). Toxins ToxN and AbiQ are homologues and intensive 

database searches identified a further two families; CptIN and TenpIN, in all of which 

“I” denotes the antitoxins and “N” denotes the toxin (Blower et al., 2012). 

1.1.4 Type IV 

In a somewhat outlying mechanism of inhibition to all other TA systems, type IV 

system components require no direct interaction for toxicity to be repressed (Figure 

1d) (Masuda et al., 2012). In the first discovered system, the protein antitoxin CbeA 

and protein toxin CbtA of E. coli K-12 act antagonistically to stabilise and destabilise 

respectively cell shape and division proteins MreB and FtsZ (Tan et al., 2011). 

Interestingly, the stabilising activity of the antitoxin is capable of counteracting other 

MreB and FtsZ polymerisation inhibitors such as A22 for MreB and SulA and DicB for 

FtsZ (Masuda et al., 2012) demonstrating their general positive regulation 

capabilities. Various homologues of CbeA/CbtA exist in E. coli K-12; YkfI/YafW and 

YpjF/YfjZ. It has been demonstrated that toxins YkfI, YpjF, and CbtA bind FtsZ in E. 

coli. Interestingly, not only the cognate antitoxin rescues the cell from the 

appropriate toxin, but each of the homologues confer toxin resistance in a non-

specific manner (Wen et al., 2017). This is likely due to the lack of toxin-antitoxin 

interaction and shared targets.  

 

Additionally, it was shown that neither toxin nor antitoxin of the above type IV 

systems display autoregulation of their operon (Wen et al., 2017) which contrasts the 

type IV AbiEi/Eii system from Streptococcus agalactiae (Dy et al., 2014) in which two 

antitoxins (AbiEi) bind inverted repeats (IR) within the promoter via their N-terminal 
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domains to repress expression (Hampton et al., 2018). This type IV TA system is part 

of the abortive infection system family and is homologous to the previously 

described, uncharacterised putative type IV M. tuberculosis TA systems. 

Interestingly, the AbiEi C-terminal domain is sufficient for toxin neutralisation but 

also contributes to DNA-binding and transcriptional repression (Hampton et al., 

2018).  

1.1.5 Type V 

A currently unique method of toxin inhibition is observed in the single defining TA 

module for type V systems (Figure 1e) (Wang et al., 2012). The E. coli GhoST system 

is comprised of toxin GhoT and sequence-specific endoribonuclease GhoS, primed 

for degradation of GhoT mRNA thereby offering post-transcriptional regulation of 

toxicity. GhoT is a small hydrophobic protein similar to toxins of the type I class and 

there is currently little evidence to support any autoregulation occurring (Wang et 

al., 2012). 
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Table 1.1 Example toxin-antitoxin systems  
 

System 
 

 
Toxin 

 
Antitoxin 

 
Target/role 

 
Reference 

Type I     
hok/sok Hok Sok Cell membrane/Plasmid 

stabilising  
Thisted & Gerdes, 
1992 

symER SymE SymR mRNA cleaving 
(ribonuclease) 
 

Kawano et al., 
2007 

Type II     

ccdAB CcdB CcdA DNA gyrase/transcription 
arrest & dsDNA breaks 

Jaffe et al., 1985 

phd/doc Doc Phd 30S ribosome 
subunit/translation arrest 

Jensen & Gerdes, 
1995 

mazEF MazE MazF mRNA cleaving 
(ribonuclease) 

Hazan & 
Engleberg-Kulka, 
2004 

zeta/epsilon Zeta Epsilon Cell wall biosynthesis Zielenkiewicz & 
Ceglowski, 2005 

relBE RelE RelB mRNA degradation 
(ribonuclease) 

Gotfredsen & 
Gerdes, 1998 

vapBC VapC VapB RNA cleaving 
(ribonuclease) 

Katz et al., 1992 

higBA HigB HigA (ribonuclease) Tian et al. 1996 
     
Type III     
toxIN ToxN ToxI Endoribonuclease Fineran et al., 

2009 
     
Type IV     
cbtA/cbeA CbtA CbeA FtsZ/MreB cytoskeletal 

protein 
Masuda et al., 
2012 

ykfI/yafW Ykfl YafW FtsZ cytoskeletal protein Brown & Shaw, 
2003 

abiEi/abiEii AbiEii AbiEi Unknown 
 

Dy et al., 2014  

Type V     
ghoST 
 

GhoT GhoS Cell membrane Wang et al., 2012 

A summary of known, functionally characterised, toxin-antitoxin systems. These systems are 
present in a range of host organisms and have been split into the five categories defined by 
the mechanism of antitoxin action.  
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1.2 Importance of M. tuberculosis type IV toxin-antitoxin systems  

The type IV TA systems present in M. tuberculosis have appeared in a few datasets 

analysing the transcriptome fluctuations during stresses  encountered in 

macrophage infection and antibiotic pressure (Gupta et al., 2017). Further to this, 

the regulation of these genes has been analysed in persister cells and in response to 

in vitro stresses such as antibiotics (Keren et al., 2011; Sala et al., 2014b; Torrey et 

al., 2016). The inference is that large changes in a gene’s expression suggest the gene 

must be important during this stage of the infection and in response to specific 

environmental conditions.  

 

Considerable overlap of regulated genes identified by three separate studies 

reinforces the reliability of the studies and shows similarities in elicited responses; 

cells infecting the macrophage (Gupta et al., 2017), in vitro antibiotic pressure (Keren 

et al., 2011), and clinical persister isolates (Torrey et al., 2016) all result in the 

regulation of 10 genes by greater than 4-fold, one of which was Rv0837c. This 

highlights the potential importance of this gene during M. tuberculosis infection.  

 

Conversely, data presented on the 10 most induced TA systems in drug-tolerant M. 

tuberculosis persister cells does not support the potential importance of rv0837c; 

rather, a combination of VapBC, RelBE, HigBA and other uncharacterised TA genes 

appeared to be upregulated (Sala et al., 2014). This potentially highlights the 

stochastic nature and variability of entry into the persister state. It is likely that a 

combination of pathways is required rather than a single gene and that there is more 

than one combination possible for entry into persistence.  

 

The essentiality of the type IV TA systems was assayed by rendering them inactive 

through Himar1-based transposon mutagenesis assays (Griffin et al., 2011; Sassetti 

et al., 2003).  Table 1.2 summarises the results and highlights antitoxin rv2827c as an 

essential gene for M. tuberculosis growth, potentially highlighting the bactericidal 

efficacy of the counterpart toxin product.  
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1.3 DNA-binding in toxin-antitoxin systems   

Studying the regulation of toxin-antitoxin systems allows us to understand how 

expression of these toxic products is controlled by bacterial cells. A major feature of 

TA system control is autoregulation by protein antitoxins, which acts as a reinforcing 

mechanism to suppress counterpart toxicity and manage activation of the TA system.   

 

Specific sequences within promoter regions, such as palindromic repeats, provide 

recognisable binding motifs for DNA-binding proteins (Murre et al., 1989). These 

sequences offer a specific pattern of hydrogen bond donors and acceptors, on top of 

the natural helix distortion created by the DNA sequence from the region (Brennan 

and Matthews, 1989). For a TA system to be autoregulated, at least one of its 

components must be capable of binding to DNA, most likely somewhere in the 

cognate promoter region. It is well established that classical type II antitoxins act bi-

functionally; first, to directly interact with the toxin counterpart as described before 

and secondly, to repress the operon by binding to an operator region within the 

system’s promoter (Chan et al., 2016).  

 

DNA-binding antitoxin proteins in bacteria contain one of only a few recognised DNA-

binding motifs within their DNA-binding domains, the most common motif is the 

ribbon helix-helix having been structurally identified in ParD (Oberer et al., 2007), 

CcdA (Madl et al., 2006) and RelB (Bøggild et al., 2012). These proteins exist as dimers 

where two antiparallel β-strands form the ribbon, with each strand contributed by a 

Table 1.2 Essentiality of M. tuberculosis type IV toxin-antitoxin genes 

 Sassetti et al. (2003) Griffin et al. (2011) 

Gene Essential/Non-essential  Essential/Non-essential  

rv0836c Non-essential  Non-essential 

rv0837c Non-essential Non-essential 

rv1044 NA Essential  

rv1045 Non-essential Non-essential 

rv2826c Non-essential Non-essential 

rv2827c Essential  Essential  

NA – Not available  
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monomer. These strands are important for dimer formation and specific DNA base 

interactions (Milla et al., 1995; Raumann et al., 1994).  

 

The helix-turn-helix motif is common in transcription factors and can be seen in the 

antitoxin HigA (Schureck et al., 2014). This motif is comprised of two alpha helices, 

one responsible for DNA-sequence recognition, the other responsible for stabilising 

the interaction (Brennan and Matthews, 1903). One sub-classification of the helix-

turn helix is the winged helix-turn-helix (wHTH) which is formed by three alpha 

helices with the third helix being responsible for DNA-recognition (Brennan and 

Matthews, 1903). This motif has been identified in the uncharacterised putative type 

IV M. tuberculosis antitoxin Rv2827c (Janowski et al., 2009) and is believed to be 

present in the functionally characterised AbiEi antitoxin (Hampton et al., 2018). 

 

1.3.1 DNA-binding and autoregulation in type II toxin-antitoxin systems  
 
Within type II systems, autoregulation is classically controlled by a complex of the 

antitoxin and toxin binding to an operator site within the promoter (Afif et al., 2001). 

The efficacy of the antitoxin binding to its specific DNA sequence is modulated by the 

presence of toxin alongside the stoichiometry of the toxin and antitoxin (Garcia-Pino 

et al., 2010). As previously mentioned, toxin neutralisation by direct binding to the 

unstructured antitoxin region causes a switch to high affinity state for the operator 

site. Type II systems therefore offer a paradigm for protein antitoxin-DNA 

interactions in TA system repression.  

 

1.3.1.1 DNA-binding in the RelBE system  

For the type II RelBE system,  when the stoichiometry is at RelB2-RelE the operon is 

repressed, however, when high levels of RelE are achieved (in relation to antitoxin) 

the system becomes de-repressed in E. coli. (Overgaard et al., 2008). The importance 

of the toxin:antitoxin ratio in this system can be demonstrated via electrophoretic 

mobility shift assay (EMSA) using defined ratios and a promoter DNA-sequence probe 

(Overgaard et al., 2008). RelB alone shows a very weak affinity for the promoter 
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probe, however, on titrating in toxin to create protein complexes the affinity 

appeared to increase as seen by well-defined band shifts at low concentrations 

(Overgaard et al., 2008). Multiple binding sites appear in the relBE promoter and 

using a 2:1 molar ratio, positive cooperative binding is seen, as indicated by a 

sigmoidal binding curve (Overgaard et al., 2008). This creates a rapid switch from an 

active system to a repressed one. Inside this promoter the operator site (relO) was 

identified as an inverted repeat of 12 bp that is bound by the RHH motif of RelB2 

(Overgaard et al., 2009).  

 

1.3.2 DNA-binding by type IV antitoxins  

To date, AbiEi from Streptococcus agalactiae remains the only functionally 

characterized type IV system antitoxin proven capable of DNA-binding and negative 

autoregulation of its own operon. The C-terminal domain has a conserved charged 

surface that contributes to specific DNA-binding by the N-terminal domain to two 

inverted repeats in a positively cooperative manner, demonstrated by EMSAs and 

accompanying saturation curves and Hill plots (Hampton et al., 2018). Positive 

cooperative binding indicates that once one ligand (in this case AbiEi protein) binds 

to the target, the binding of subsequent ligands becomes easier (Crouch & Klee, 

1980; Stefan & Le Novère, 2013). Cooperativity can be displayed using the Hill plot 

and calculated as the Hill coefficient (slope) whereby the maximum degree of 

cooperativity is equal to the number of binding sites with a coefficient of greater than 

1 indicating positive cooperativity and less than 1 indicating negative cooperativity 

(Dahlquist, 1978; Hill and Av., 1910). It is predicted that AbiEi bends the DNA by 72º 

within the promoter by binding the operator site; this mechanism of repression was 

suggested to be common in the widespread AbiEi antitoxin family (abortive infection 

system members) (Hampton et al., 2018).  

 

The AbiEi homologue, Rv2827c, is essential for M. tuberculosis growth in vitro and 

regulated in response to stress (Griffin et al., 2011; Keren et al., 2011; Sassetti et al., 

2003; Torrey et al., 2016). The structure of Rv2827c has been solved to 1.93 Å and 

predicted to also be a DNA-binding protein (Janowski et al., 2009); the presence of a 
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wHTH in the NTD strongly supports this with the helix α3 sequence fragment 48-Pro-

Asp-Ser-Ala-Ile-Arg-Glu-Leu-Arg-Arg-Ile-58 likely responsible for the sequence 

specific DNA-interaction. Initial DNA-binding tests further supported this (Janowski 

et al., 2009) however no sequences from the cognate promoter were tested 

therefore, we have no insight into the potential autoregulatory capacity of this 

antitoxin.  

 

There are a number of gaps in our understanding regarding the four described AbiE 

family member antitoxins, AbiEi; Rv1044; Rv2827c; and Rv0837c. There are 

significant pieces of data for selected examples. For instance,  studies of Rv2827c 

offer good insights and a model approach to the structural classification and analysis 

of these antitoxins (Janowski et al., 2009) , and studies of AbiEi offer insights into the 

biochemistry and DNA-binding capabilities of this family (Dy et al., 2014; Hampton et 

al., 2018). It is therefore reasonable to pursue the characterisation of the remaining 

antitoxins to comprehensively cover these aspects for all target family members. 

Rv2827c, Rv1044 and Rv0837c all remain functionally uncharacterised in promoter 

binding. AbiEi remains structurally unclassified (alongside Rv1044 and Rv0837c). The 

aim of this body of work is therefore to add to our current understanding of the type 

IV protein antitoxins, through structural and functional studies of DNA-binding.  

 

Type IV Antitoxin DNA-binding will be analysed in vitro using the electrophoretic 

mobility shift assay (EMSA). This has proven to be a useful technique in characterising 

the type IV antitoxin-operator site interactions and offers useful insight and support 

to the theory of autoregulation by type IV antitoxins via kinetics data (Hampton et 

al., 2018). It is hypothesised that the antitoxins will bind to operator sites within their 

own promoter regions, displaying similar kinetics and positive cooperativity as has 

been seen for AbiEi (Hampton et al., 2018). We also predict that, due to conserved 

domains, Rv2827c will serve as a useful model for solving the structure of AbiEi via 

molecular replacement.  
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Chapter 2. Materials and methods  

2.1 Media, reagents and solutions  

All media, antibiotics and other supplements, and solutions used in this study are 

detailed in Tables 2.1, 2.2 and 2.3, respectively. Where appropriate these were 

sterilised via autoclaving at 121 ºC for 20 minutes or filtration via 0.22 µm filter.  

2.2 Bacterial strains and culture  

Both E. coli strains used in this study are listed in Table 2.4. E. coli were grown at 37 

ºC in liquid culture shaken at 300 rpm, or on agar plates. Culture temperature and 

shaking varied only in protein expression protocols as stated later. Growth was 

monitored using a cell density meter to (WPA Biowave C08000) give OD600. 

2.3 Recombinant DNA techniques  

Molecular biology techniques involving DNA were performed by standard methods 

(Berger and Kimmel, 1987). All oligonucleotide primers and double-stranded 

oligonucleotide probe DNA sequences were obtained from Integrated DNA 

Technologies (IDT) and can be found in Tables 2.5 and 2.6 respectively.  

2.3.1 DNA purification and visualization  

2.3.1.1 Bacterial plasmid extraction  

Plasmid DNA was purified using a NEB Monarch® Plasmid MiniPrep kit following the 

manufacturer’s instructions. Plasmids were eluted in dH20 for storage at -20 ºC. 

2.3.1.2 Agarose gel electrophoresis and DNA extraction  
 
Agarose gel preparation is described in Table 2.3. A 6x DNA loading dye (New England 

Biolabs) was added to the DNA sample in the appropriate volume prior to loading 

into the agarose gel. The DNA molecules were separated by electrophoresis at 120 V 

until necessary resolution was achieved. Molecular weights were compared to a 1 kb 

ruler (ThermoFisher) and bands at the appropriate molecular weight cut out for DNA 

extraction using a NEB Monarch® Gel Extraction kit, following the manufacturer’s 

instructions. DNA was eluted in dH20 for storage at -20 ºC.  
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Table 2.1 Media used in this study  
 

Medium 
 

 
Ingredients per litre 

 
 
Luria-broth   
 

 
10 g Casein digest peptone 
5 g Yeast extract 
5 g NaCl  
 

Luria-broth agar  
 

10 g Casein digest peptone   
5 g Yeast extract  
5 g NaCl  
15 g Agar  
 

2 x YT broth (nutrient rich broth)  
 

16 g Casein digest peptone 
10 g Yeast extract  
5 g NaCl 
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Table 2.2 Antibiotics and supplements used in this study 
 

Chemical (Abbreviation) 
 

 
Stock solution 

 

 
Working 

concentration 
 

Antibiotic 
 

  

Ampicillin (Ap) 
 

1000 x stock, 100 
mg/mL in dH20, stored 
at -20 °C 

100 µg/mL 

Supplement  
 

  

Isopropyl β – D – 
thiogalactopyranoside 
(IPTG) 
 

1000 x stock, 1 M in 
dH20, stored at -20 °C 

1 mM 
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Table 2.3 Solutions used in this study 
 

Solution 
 

 
Components 

 
DNA work 
 

 

50x TAE Buffer (per L) 
 

242 g Tris base 
[tris(hydroxymethyl)aminomethane] 
57.1 mL Glacial acetic acid (17.4 M) 
18.61 g EDTA, disodium salt  
pH 8.0  
 

6x DNA loading dye  
 

Agarose gel mix  1% Agarose in 1 x TAE 
500 ng Ethidium bromide per mL gel 
 

1D SDS-PAGE  
 

 

10 x Stock electrode buffer 
(per L)  

30.2 g Tris base 
[tris(hydroxymethyl)aminomethane] 
141 g Glycine  
0.1 L 10% SDS  
pH 8.3  
 

Working electrode buffer  100 mL Stock electrode buffer 
Diluted to 1000 mL   
 

15% (resolving) acrylamide 
gel (enough for four 10 cm 
BioRad gels) 

9 mL 40% Acrylamide  
12 mL 0.75 M Tris pH 8.8  
240 µL 10% SDS  
240 µL 10% Ammonium persulphate 
24 µL TEMED  
2.5 mL dH20 
 

6% (stacking) acrylamide gel 
(enough for four 10 cm 
BioRad gels) 

1.5 mL 40% Acrylamide  
1.5 mL 1.25M Tris-HCl pH 6.8  
150 µL 10% SDS  
150 µL 10% Ammonium persulphate  
15 µL TEMED  
11.7 mL dH20 
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Table 2.3 continued. Solutions used in this study 
 

Solution 
 

 
Components 

 
Protein purification and crystallisation  
 

 

Lysis buffer (A500) 
 

500 mM NaCl 
20 mM Tris HCl pH 7.9  
5 mM Imidazole pH 8.0  
10% Glycerol  
 

Ni-NTA column elution buffer 
(B500) 
 

500 mM NaCl 
20 mM Tris HCl pH 7.9  
250 mM Imidazole pH 8.0  
10% Glycerol  
 

Ni-NTA column low salt elution 
buffer (B100)  
 

100 mM NaCl 
20 mM Tris HCl pH 7.9  
250 mM Imidazole pH 8.0  
10% Glycerol  
 

FPLC low salt buffer (A100) 100 mM NaCl 
20 mM Tris HCl pH 7.9  
5 mM Imidazole pH 8.0  
10% Glycerol  
 

FPLC high salt buffer (C1000) 1000 mM NaCl 
20 mM Tris HCl pH 7.9  
10% Glycerol  

  
FPLC sizing column buffer  
 

500 mM KCl  
50 mM Tris HCl pH 7.9 
10% Glycerol  
 

Protein sample storage buffer 
 

500 mM KCl 
50 mM Tris HCl pH 7.9  
70% Glycerol  
 

Crystallisation buffer   
 

200 mM NaCl  
20 mM Tris HCl pH 7.9  

 2.5 mM DTT  
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Table 2.3 continued. Solutions used in this study 
 

Solution 
 

 
Components 

 
DNA-binding studies  
 

 

5 x TBE (per L)  
 

54 g Tris base  
27.5 g Boric Acid  
20 mL EDTA 0.5 M 
pH 8.3  
 

0.5 x TBE electrode buffer  
 

500 mM NaCl 
20 mM Tris HCl pH 7.9  
250 mM Imidazole pH 8.0  
10% Glycerol  
 

5 x EMSA binding buffer  
 

750 mM KCl  
50 mM Tris HCl pH 8.0  
2.5 mM EDTA pH 8.0  
0.5% Triton-X 100 
1mM DTT 
55% glycerol   
 

7 % resolving acrylamide 
gel (enough for four 10 cm 
BioRad gels) 

4.2 mL 40% Acrylamide  
2.4 mL 5 x TBE   
168 µL 10% ammonium 
persulphate 
16.8 µL TEMED  
17.2 mL dH20 
 
 

5 % resolving acrylamide 
gel (enough for four 10 cm 
BioRad gels) 

3 mL 40% Acrylamide  
2.4 mL 5 x TBE   
168 µL 10% ammonium 
persulphate 
16.8 µL TEMED  
18.4 mL dH20 
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Table 2.4 Bacterial strains used in this study 
 

Strain 
 

 
Genotype 

 
Source 

Escherichia coli    
DH5α F- Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17 (rk-, 
mk+) phoA supE44 λ-thi-
1 gyrA96 relA1 

Invitrogen 

ER2566  fhuA2 lacZ::T7 gene1 [lon] ompT 
gal sulA11 R(mcr-73::miniTn10--
TetS)2 [dcm] R(zgb-210::Tn10--
TetS) endA1 Δ(mcrC-mrr)114::IS10 
 

New England 
Biolabs  
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2.3.2 Polymerase chain reaction (PCR) 

Q5 DNA polymerase was used for DNA amplification via PCR according to the 

components and steps outlined below. Each component can be scaled to alter the 

total reaction volume and the annealing temperature was dependent on specific 

primer pairs.  

 

2.3.3 Cloning  

Ligation independent cloning (LIC) (Aslanidis and de Jong, 1990) was performed in 

order to generate expression constructs from which the genes of interest can be 

selectively expressed. Antitoxin gene abiEi was cloned into pSAT1-LIC, fused to a 6-

HIS-human SUMO-2 gene under control of the T7 promoter. The LIC protocol is 

summarised in Figure 2.1.  

2.3.3.1 Vector digest  

1 µg of pSAT1-LIC was digested with StuI producing a linearised plasmid with exposed 

blunt ended LIC sites. The linearised DNA was run on agarose gel and extracted as 

detailed in 2.3.1.2. Below is a summary of the digestion reaction.  

 

 
Q5 DNA polymerase PCR 

 
Component Volume (µL)    
10 x Q5 Buffer  5 Step Temp (ºC) Time 
10 mM dNTP’s  1 1) Initial denaturation  95 30 sec 
10 µM Primer 1  2.5 2) Denaturation 95 10 sec 
10 µM Primer 2  2.5 3) Annealing  Varies* 30 sec 
DNA sample (template) 1 4) Extension 72 30 sec 
Q5 polymerase  0.5 Repeat 2 – 4 x 40 times   
dH20 37.5 5) Final extension  72 2 min 
  6) Hold  10 ∞ 
 50    

 

pSAT1-LIC digestion with StuI 
 
Component  Volume (µL)   
pSAT1-LIC Variable (1 µg)   
10 x Buffer 2.1 (NEB) 2.5  Temperature Time 
Stu1 (NEB) 1 37 ºC 2 hr 
dH20 to 25 µL   
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2.3.3.2 Insert amplification  

A LIC site flanked-abiEi was amplified via the Q5 polymerase chain reaction (PCR) 

using the method and components described previously with template plasmid 

pRLD30 containing abiEi. Primers were designed using the abiEi sequence with the 

addition of sequences complementary to the LIC sites of pSAT1-LIC and can be found 

as “FWD abiEi LIC” (TRB1048) and “REV abiEi LIC” (TRB1049) in table 2.5. Amplified 

inserts were then run on an agarose gel and purified as detailed in 2.3.2.1.  

2.3.3.3 LIC reaction  

Purified linearised vector and amplified insert, both with LIC sites, were carried 

forward to the LIC reaction to expose complementary ‘sticky ends’ on both vector 

and insert. The reaction for each differs slightly and is detailed below. 

 

2.3.3.4 Annealing and transformation  

The products of the LIC reaction were combined in a ratio of 1:1 as 40% of the 

reaction volume. Annealing was carried out at room temperature overnight. The 

total annealing reaction volume was added to a 200 µL aliquot of heat-shock 

competent DH5α cells for transformation and selection on ampicillin supplemented 

LB agar. The recombinant plasmid was then harvested from cells using the NEB 

Monarch® MiniPrep kit.  

 

LIC reaction 
  

Vector Insert   
Component  Volume (µL) Component Volume (µL)   
Vector  25 Insert  10   
dTTP (25 mM) 5 dATP (25 mM) 2 Thermocycle 
10 x 2.1 Buffer 
(NEB) 

5 10 x 2.1 Buffer 
(NEB) 

2 1) 22 ºC 30 min 

DTT (100 mM) 2.5 DTT (100 mM) 1 2) 75 ºC 20 min 
T4 DNA 
Polymerase  
(NEB) 

1 T4 DNA 
Polymerase  
(NEB) 

0.4   

dH20 11.5 dH20 4.6   
 50  20   
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Figure 2.1 Ligation independent cloning protocol 
 

 
 

Figure 2.1 The ligation-independent cloning protocol with pSAT-LIC. a) Purified pSAT1-LIC is digested 
using the restriction enzyme StuI at the AGGCCT palindromic site to create a linear, blunt-ended 
plasmid. b) the T4 DNA polymerase 3’ – 5’ exonuclease is used to create pSAT-LIC with the long single 
strand overhang; c) pSAT-LIC with exposed overhangs; d) insert DNA (gene of interest – GOI) is treated 
with T4 DNA polymerase, creating complementary overhangs to pSAT-LIC; e) gene of interest with 
overhangs; f) pSAT-LIC and the complementary gene of interest are mixed together, allowing the 
complementary overhangs to anneal and re-seal the vector with the GOI inserted. 
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2.4 EMSA probe production  

Fluorescently labelled probes, alongside unlabelled competitor probes, were 

amplified by Q5 PCR. Primers for the reactions are listed in Table 2.5 and 

oligonucleotide primers (oligos) containing the probe sequences taken from gene 

promoters are listed in Table 2.6. A constant region was added to each oligo to which 

the reverse (REV) primer would anneal, creating either tagged or untagged double-

stranded probe sequences. Probes were eluted in dH20 and stored at -4 ºC. The QS1 

probe containing 131 base pairs upstream of rv2827c (with four identified binding 

sites) was created by Q5 PCR using forward primer TRB1107 and reverse primers 

TRB1067/TRB1068 as appropriate. The template DNA was plasmid pTRB484 

containing a 500 base pair upstream region of rv2827c fused to lacZ (created for 

promoter assays – not in this study). 

2.5 Sequencing and sequence analysis  

Extracted plasmids containing the gene of interest were sequenced in-house by DBS 

Genomics, Durham University Biosciences Department, using the ABI 3730 DNA 

sequencer via primer walking (primers listed in Table 2.5). Confirmation of gene 

sequences was performed using 4Peaks and BLASTN sequence alignment 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2. Materials and methods 
 

 38 

 

 

 

 

 

  

Table 2.5 Primers used in this study  
 

Primer 
 

 
Sequence 

 
Notes (Organism/Gene) 

TRB873 TTAATGCAGCTGATTAATACG FWD pSAT LIC sequencing 
TRB875 TACTCAAGCTTATGCATGC REV pSAT LIC sequencing  
TRB1048 
 

CAACAGCAGACGGGAGGTTCAAAAAAAGA
GATTCTACTCGATTTTATAG 

FWD abiEi LIC, S. agalactiae, 
abiEi 

TRB1049 
 

GCGAGAACCAAGGAAAGGTTATTATATTA
GAACCTCCAGAGTTTGTTTAAC 

REV abiEi LIC, S. agalactiae, 
abiEi  

TRB1065 AAAAGAAAATGTTGCTTTTATACCACA FWD for TRB1061, TRB1063, 
S. agalactiae, abiEi 

TRB1066 
 

AAAAGAAAACCCCCCCCC 
 

FWD for TRB1062, TRB1064, 
S. agalactiae, abiEi 

TRB1067 TGCGCACTGACAAAAGCTT REV EMSA untagged 
TRB1068 /56-FAM/TGCGCACTGACAAAAGCTT REV EMSA 56-FAM 

(fluorescein) tagged   
TRB1087 AACTAGGCGCGCCTAG FWD for TRB1086, M. 

tuberculosis, rv1044 
TRB1103 
 

GTATCTGCGACAAGGGCAG 
 

FWD for TRB1102, M. 
tuberculosis, rv1044 

TRB1105 
 

CAAGTGATTTCTTGAGTTTGAACATTG 
 

FWD for TRB1104, TRB1271, 
M. tuberculosis, rv2827c 

TRB1107 
 

CAGGGCACTTGAGTTTGGAAC 
 

FWD for TRB1106, TRB1277, 
M. tuberculosis, rv2827c 

TRB1272 
 

CAAGTGATTCCCCCCCCC 
 

FWD for TRB1271, TRB1274, 
M. tuberculosis, rv2827c 

TRB1276 
 

CAGGGCCCCCCCCCC 
 

FWD for TRB1275, TRB1278, 
M. tuberculosis, rv2827c  

TRB1280 
 

CAAGTTCAATACCATCATAAAAAAGAAGG 
 

FWD for TRB1279, S. 
agalactiae, abiEi 

TRB1297 
 

AAGTGATTACTTGAATTCACACCG 
 

FWD for TRB1296, M. 
tuberculosis, rv2827c 
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Table 2.6 EMSA probe oligos used in this study 
 

Oligo 
 

 
Sequence a 

 
Notes (Organism / Gene) 

TRB1061 AAAAGAAAATGTTGCTTTTATACCACAAAT
ATTGTAAAATTGTAGTGTAAAAGCAACAAG
TGGGGGGCCGTAAGCTTTTGTCAGTGCGCA 

Streptococcus agalactiae / 
abiEi -1 to -71 Wild type 

TRB1062 AAAAGAAAACCCCCCCCCCCTACCACAAAT
ATTGTAAAATTGTAGTGTAAAAGCAACAAG
TGGGGGGCCGTAAGCTTTTGTCAGTGCGCA 

Streptococcus agalactiae / 
abiEi -1 to -71 Mutant; 
inverted repeat 1 poly-C 
track substitution 

TRB1063 AAAAGAAAATGTTGCTTTTATACCACAAAT
ATTGTAAAATTGTAGTGCCCCCCCCCCCAGT
GGGGGGCCGTAAGCTTTTGTCAGTGCGCA 

Streptococcus agalactiae / 
abiEi -1 to -71 Mutant; 
inverted repeat 1 & 2 poly-C 
track substitution 

TRB1064 AAAAGAAAACCCCCCCCCCCTACCACAAAT
ATTGTAAAATTGTAGTGCCCCCCCCCCCAGT
GGGGGGCCGTAAGCTTTTGTCAGTGCGCA 

Streptococcus agalactiae / 
abiEi -1 to -71 Mutant; 
inverted repeat 1 & 2 poly-C 
track substitution  

TRB1086 
 

AACTAGGCGCGCCTAGCCTGGACGAGTCCC
CGGGCCGACATTCGCCCGAGGCCTTGGCCT
CCATCACCTAAAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv1044, -1 to -71 
Wild type 

TRB1102 
 

GTATCTGCGACAAGGGCAGCGTCGATGCCT
CGACATGCAGAGTCGGTGTTCGCTTCACGC
GAACTAGGCGCAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv1044, -61 to -131 
Wild type 

TRB1104 
 

CAAGTGATTTCTTGAGTTTGAACATTGTTGC
GTACAGATATAGTATAGTTTCCGGTGTGAA
TTCAAGTTCGAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -1 to -71 
Wilde type 

TRB1106 
 

CAGGGCACTTGAGTTTGGAACGGGTTTCGT
ACTGTCACTGACCGAAGCCCGTTCCTAAAT
CAAGTGATTTCAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -61 to     -
131 Wild type 

TRB1262 
 

CGGTCGTCCGCGAAGCGCGTTTTGTCTCTC
GCCGTTGCACCGCATCGCCGCCAGCCCGTA
CAGGGCACTTAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -121 to    -
191 Wild type 

TRB1271 
 

CAAGTGATTCCCCCCCCCCCCCCCCCCCCCC
CTACAGATATAGTATAGTTTCCGGTGTGAA
TTCAAGTTCGAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -1 to -71 
Mutant; inverted repeat 3 
poly-C track substitution 

TRB1273 
 

CAAGTGATTTCTTGAGTTTGAACATTGTTGC
GTACAGATATAGTACCCCCCCCCCCCCCCCC
CCCCCCTCGAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -1 to -71 
Mutant; inverted repeat 4 
poly-C track substitution 
 

a Probe sequences are fused with a constant region from the lacZ gene, highlighted in grey. The reverse primer 
was designed to anneal to this sequence for amplification.  
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Table 2.6 continued. EMSA probe oligos used in this study 
 

Oligo 
 

 
Sequence a 

 
Notes (Organism / Gene) 

TRB1274 
 

CAAGTGATTCCCCCCCCCCCCCCCCCCCCCC
CTACAGATATAGTACCCCCCCCCCCCCCCCC
CCCCCCTCGAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -1 to -71 
Mutant; inverted repeat 3 & 
4 poly-C track substitution 

TRB1275 
 

CAGGGCCCCCCCCCCCCCCCCCCCCCCCCTA
CTGTCACTGACCGAAGCCCGTTCCTAAATC
AAGTGATTTAAGCTTTTGTCAGTGCGCA 
 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -61 to -
131 Mutant; inverted repeat 
1 poly-C track substitution 

TRB1277 
 

CAGGGCACTTGAGTTTGGAACGGGTTTCGT
ACTGTCACTGACCCCCCCCCCCCCCCCCCCC
CCCCGATTTAAGCTTTTGTCAGTGCGCA 
 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -61 to -
131 Mutant; inverted repeat 
2 poly-C track substitution 

TRB1278 
 

CAGGGCCCCCCCCCCCCCCCCCCCCCCCCTA
CTGTCACTGACCCCCCCCCCCCCCCCCCCCC
CCCGATTTAAGCTTTTGTCAGTGCGCA 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -61 to -
131 Mutant; inverted repeat 
1 & 2 poly-C track 
substitution 

TRB1279 
 

CAAGTTCAATACCATCATAAAAAAGAAGGC
TTGATTTTGTTATCACAATAAATTGAGGGA
AAAGAAAATGTAAGCTTTTGTCAGTGCGCA 

Streptococcus agalactiae / 
abiEi -61 to -131 Wild type 

TRB1296 
 

AAGTGATTACTTGAATTCACACCGGAAACT
ATACAGATATAGTATAGTTTCCGGTGTGAA
TTCAAGTTCGAAGCTTTTGTCAGTGCGCA  
 

Mycobacterium tuberculosis 
H37Rv / rv2827c, -1 to -71 
Mutant; inverted repeat 4 
perfect inverted repeat 
 

a Probe sequences are fused with a constant region from the lacZ gene, highlighted in grey. The reverse primer 
was designed to anneal to this sequence for amplification. 
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Table 2.7 Plasmids used in this study 
 

Plasmid 
 

 
Backbone 
plasmid 

 

 
Resistance 

 
Inserted gene 

/ region 

 
Origin organism 

/ notes 

 
Source 

pRLD30 pTRB30 Km abiEi S. agalactiae, 
antitoxin 

Dy et al. 
2014 
(Fineran 
Lab) 

pTRB525 pSAT1-LIC Ap abiEi S. agalactiae, 
antitoxin  

This study 

pTRB491 pSAT1-LIC Ap rv1044 M. 
tuberculosis, 
antitoxin 

Blower Lab 

pTRB493 pSAT1-LIC Ap rv2827c M. 
tuberculosis, 
antitoxin 

Blower Lab 

pTRB484 pRW50 Tc rv2827c 
promoter 

M. 
tuberculosis, 
500 bp of 
promoter 
fused to lacZ 
 

Blower Lab 
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2.6 Protein expression and purification  

Using pSAT1-LIC as our expression vector allows for high scale protein expression 

exploiting the T7 polymerase system. Selecting a host strain such as ER2566 (Table 

2.4), with a chromosomally integrated T7 RNA polymerase under the control of the 

lac promoter, allows for selective expression of our gene of interest under the control 

of the T7 promoter.  

2.6.1 Large scale protein expression  

The pSAT1-LIC derived expression vector (plasmids can be found in Table 2.7) was 

transformed into ER2566 and grown using pre-defined conditions in nutrient rich 2 x 

YT media supplemented with Ap to an optical density (OD600) of 0.6 – 0.8. The 

cultures were cooled to 17 ºC and IPTG was added to a final concentration of 1 mM 

to induce expression of the target protein. Cultures were shaken at 150 rpm for 16 

hours to maximise expression. 

2.7 Protein purification  

Proteins were expressed and purified following published protocols (Blower et al., 

2016), with small variations as appropriate. 

2.7.1 Isolating the soluble fraction  

Bacterial cells were pelleted from liquid culture by centrifugation at 4200 x g for 30 

minutes at 4 ºC. Cell pellets were resuspended in lysis buffer A500 and sonicated for 

a total of 3 min. The sonicated sample was centrifuged at 20,000 x g for 40 min at 4 

ºC to isolate the soluble fraction from cell debris.  

2.7.2 Nickel-affinity chromatography, tag cleavage, and ortho-Nickel  

The protein rich isolated soluble fraction was passed through a Ni-NTA His-TrapTM HP 

5 mL column (GE Healthcare) at slow speed to maximise recombinant protein binding 

via the 6-His tag. A wash step was performed using lysis buffer. The column was 

eluted from using the high imidazole elution buffer B500. The eluted sample was 

dialysed for 16 hours into lysis buffer A500 with the addition of 40 mg SENP2 in order 

to cleave the 6His-hSUMO tag, therefore reducing the metal binding affinity of the 

protein. The SENP2 treated sample was then run through another Ni-NTA His-TrapTM 
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HP 5 mL column (ortho-Ni step) and the flow through collected. The flow through 

sample now contains our cleaved, partially purified protein of interest.  

2.7.3 Fast protein liquid chromatography (FPLC) 

FPLC steps are carried out using an Åkta protein chromatography system (GE 

Healthcare). This allows for programmable, precise and semi-quantifiable 

fractionation with multiple buffers when required.  

2.7.3.1 Size exclusion chromatography  

A HiPrep column loaded with sephacryl S-300 HR SEC resin (GE Healthcare) was used 

to partially separate proteins by size. The column was equilibrated in sizing column 

buffer and a concentrated protein sample applied and fractionated at a rate of 0.5 

mL/min. Column calibration allows us to identify proteins of specified and 

appropriate weights which can be visualised on an output chromatogram. Peaks on 

the chromatogram were sampled and analysed by SDS-PAGE. Fractions containing 

the protein of interest were carried forward for further purification if needed.  

2.7.3.2 Anion exchange 

The protein sample was loaded on to a HiTrap Q HP anion exchange 5 mL column (GE 

Healthcare) in low salt buffer A100. This column was then subjected to an increasing 

salt gradient using the Åkta system, titrating in high salt buffer C1000 until a final salt 

concentration of 500 mM NaCl was achieved. Fractions were collected and analysed 

by SDS-PAGE. Fractions containing the protein of interest were pooled. An example 

anion exchange fractionation chromatogram can be seen in Figure 2.2.  

2.7.4 Protein storage 

Purified protein in either FPLC sizing column buffer, or an appropriate salt 

concentration from anion exchange, was concentrated to 1.5 mg/mL. The sample 

was added to protein storage buffer in the ratio of 2:1 to reach a final protein 

concentration of 1 mg/mL and a final glycerol (cryoprotectant) concentration of 30% 

(v/v). The protein sample was snap-frozen in liquid nitrogen prior to storage at -80 

ºC. 
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Figure 2.2 Anion exchange chromatogram 
 

 
Figure 2.2 Anion exchange chromatogram from protein purification using the Åkta. The purified sample of 
protein elutes in a tight peak in response to a specific salt concentration. Protein is measured by UV and 
registered in milli-arbitrary units. Fractions are collected in a 96 well block with fractions corresponding to 
the X-axis. 
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2.8 Electrophoretic mobility shift assay (EMSA) 

Promoter region sequence containing probes were amplified as previously 

described. Proteins were diluted to appropriate concentrations using diluent buffers 

matching their storage buffer constitution. Each individual binding reaction included 

250 fmoles of fluorescently labelled probe. The reaction components are shown 

below. Native polyacrylamide gels (at either 7% or 5% as required) were pre-run at 

150 V and 4 ºC for 2 hours. Binding reactions were added appropriately to 

demonstrate a protein titration from zero to an appropriate concentration and run 

at 200 V and 4 ºC for 45 min.  

 

 

2.8.1 EMSA visualisation and data processing  

Three EMSA gels per assay were visualised using the Amersham Biosciences Typhoon 

9400 on variable mode image in fluorescence mode, emission filter 526 SP. 

Sensitivity was set to normal. Band intensities were calculated using the grid scan 

feature and triplicate data processed in Prism (GraphPad Software) to create graphs 

seen in the results section. Fractional saturation curves were produced with 

fractional saturation, Y, varying from 0 – 1.0. Y values are calculated by (Y/(Y+(1-Y))) 

and plotted against protein concentration. Data were converted to the Hill plot to 

analyse the degree of cooperativity in the binding events, characterised by the Hill 

coefficient (slope of the plot at log(θ)=0). The Hill plot is constructed by plotting logθ 

against log[protein], with θ defined as (θ = (Y/(1-Y))). Dissociation coefficients (Kd) 

can also be extracted from the Hill plot as Kd = 10X-intercept. 

EMSA binding reaction setup 

Component Volume (µL) 

5 x EMSA Binding buffer  2 

Fluorescently labelled probe DNA Variable (250 fmoles) 

BSA  0.1 

Poly(d[IC]) 1 

Protein of interest  1 

dH20 to 10 µL 
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2.9 Protein crystallisation 

2.9.1 Crystallisation screens 

The protein AbiEi, once at optimum purity, was dialysed into crystallisation buffer 

and concentrated to 12 mg/mL. Commercially available 96-well crystallisation 

screens (Molecular Dimensions) were used to assay preferred crystallisation 

conditions for AbiEi. Sitting drop crystallisation trials were set-up using an 

Innovadyne Screenmaker robot. Table 2.8 shows the screens tested for AbiEi and 

their respective temperature for crystallisation. Each condition was tested at 8 

mg/mL and 6 mg/mL by altering the ratio of protein to mother-liquor on the robotic 

crystallisation stage.  

2.9.2 Crystallisation screen optimization 

A customized crystallisation screen was designed to further test a range of conditions 

based on two early identified positive conditions. A range of conditions were 

designed to optimise conditions present in JCSG-plus (condition H3), and Pact 

Premier (condition F10). Both presented the same buffer, salt and precipitant. The 

customised screen tested a range of buffer pH, salt concentration, and PEG 

concentration. 

2.9.3 Crystal harvesting 

Positive individual crystallisation conditions were identified by microscopy. Mother 

liquor from the appropriate condition and 100% glycerol were mixed in a ratio of 1:1 

and an equal volume of this mixture was added to the sitting drop. The crystal was 

visualised under a microscope to check for durability or deformity at this point. 

Surviving crystals were harvested using cryo-loops of appropriate sizes and snap-

frozen in liquid nitrogen before adding to a puck submerged in liquid nitrogen for 

storage and transport.  
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2.10 X-ray crystallography  

2.10.1 Data collection  

Data collection was performed at Diamond Light Source, Oxford, UK, via remote 

access on beamline I03. Data sets were collected from a number of native AbiEi 

protein crystals. These datasets were merged in downstream processing. 

2.10.2 Data processing  

Initial data processing was automated by Diamond Light Source iSpyB using the X-ray 

image integration programs Xia2 and Xia2-DIALS (Winter and IUCr, 2010). Image 

integration and space group selection were carried out manually using the same 

programs as well as Mosflm (Leslie and Powell, 2007) to confirm maximum resolution 

and space group.  Data reduction and generation of R sets was carried out using 

AIMLESS (Evans et al., 2013). Molecular replacement was run using PHASER (McCoy 

and IUCr, 2007) using Rv2827c (PDB code: 1ZELA (Janowski et al., 2009)) as a model. 

Following PHASER, refinement was carried out in REFMAC5 (Murshudov et al., 2011) 

or via rigid body refinement in PHASER. ARCIMBOLDO (Rodríguez et al., 2012) was 

used for ab initio phasing and chain tracing to position ideal molecular fragments 

using PHASER and SHELXE (Sheldrick and IUCr, 2008).  
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Table 2.8 Crystallisation screens for AbiEi 
 
Crystallisation screen  
 

 
Product code a 

 
Temperature 

BCS MD1-105 18 ºC 
Clear Strategy 1 MD1-31 18 ºC 
Cleat Strategy 2 MD1-32 18 ºC 
JCSG-plus MD1-40 18 ºC 
JCSG-plus MD1-40 4 ºC 
LMB MD1-99 18 ºC 
Morpheus  MD1-47 18 ºC 
NR-LBD + Extension MD1-34 18 ºC 
Pact Premier  MD1-36 18 ºC 
Pact Premier  MD1-36 4 ºC 
SG1 MD1-89 18 ºC 
Structure Screen 1 + 2  MD1-30 18 ºC 

 
a – product codes can be used to find these commercially available screens at 
https://www.moleculardimensions.com 
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Chapter 3. Results  

3.1 Antitoxin protein expression and purification  

The S. agalactiae antitoxin protein, AbiEi, and M. tuberculosis antitoxin proteins, 

Rv1044 and Rv2827c, were expressed using the pET vector pSAT1-LIC via the T7 

system in ER2566 following already published methods with minor amendments as 

appropriate (Blower et al., 2016). A combination of the purification techniques set 

out in 2.7 resulted in the purified proteins as visualised by SDS-PAGE in Figure 3.1. 

The shift in molecular weight from the tagged recombinant protein in the soluble 

fraction of the first nickel pull-down, to the isolated final protein sample at the 

appropriate molecular weight demonstrates successful cleavage of the affinity tag 

(Figure 3.1). It is worth noting that no detectable protein was made during trial 

expressions of Rv0837c. The rv0837c gene contains multiple rare codons and so an 

optimised expression sequence was synthesised and trialled for expression, but again 

no protein expression was detected. It was decided to continue the studies using 

purified AbiEi, Rv1044 and Rv2827c.   

3.2 DNA-binding via EMSA  

To test whether our type IV antitoxins are capable of binding DNA, EMSAs were 

performed using DNA sequences from the promoter regions of each system (detailed 

in Table 2.6). Our initial aim was to corroborate previously published data on the 

DNA-binding activity of AbiEi (Hampton et al., 2018). 

3.2.1 AbiEi binds to a single inverted repeat in the AbiEi promoter and displays 

positive cooperativity  

AbiEi has been shown to autoregulate expression of the abiE operon through positive 

cooperative binding of the antitoxin to inverted repeat sequences within and slightly 

upstream of the abiE promoter (Hampton et al., 2018). To validate our experimental 

system, DNA-binding studies by EMSA were repeated to confirm positive cooperative 

binding by AbiEi. AbiEi titrations against promoter region probes (as per Table 2.6, 

TRB1061 – TRB1064) demonstrated clear band shifts similar to already published 

data (Hampton et al., 2018) (Figure 3.2a-d). Densitometry of the EMSAs against a WT 

probe (Figure 3.2a) was performed and the data were used to make semi-
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quantitative analyses of DNA-binding in the form of a saturation curve and Hill plot 

(Figure 3.2e-f). As the Hill co-efficient (or Hill slope) is significantly greater than 1 at 

1.553 ± 0.31 AbiEi bound the WT probe in a positively cooperative manner (Figure 

3.2f). This result matches published data (Hampton et al., 2018). Further saturation 

curves and Hill plots (Figure 3.3) were then generated for EMSAs containing a single 

knock-out of the inverted sequences (Figure 3.2b-c). As only the single binding site is 

present, no level of cooperativity could be established, however it is clear to see that 

affinity for the two binding sites, IR1 and IR2, is roughly equal with Kd’s of 0.593 ± 

0.003 µM and 0.607 ± 0.005 µM respectively (Figure 3.3c and Figure 3.3e 

respectively).   
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Figure 3.1 Protein expression and purification 

 

 
 
Figure 3.1. Pre- and Post- induction samples were taken before and after the addition of IPTG for protein 
expression. These samples were resuspended in appropriate amounts of buffer A500 and boiled at 95 ºC to lyse 
the bacterial cells. Post-induction samples show selectively induced protein expression of our target proteins 
which can be successfully pulled down via the N-terminal 6-His tag and purified after cleavage of the 6-His-SUMO2 
fusion (successful cleavage indicated by an approximately -11 kDa shift in molecular weight).  
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Figure 3.2 DNA-binding studies of AbiEi with abiEi -1 to -71 
 

 
 

Figure 3.2. AbiEi titrations against 250 femto-moles fluorescently labelled dsDNA probe oligos. a) Oligo 
TRB1061 contains two inverted repeats (IR1 and IR2) intact; b) Oligo TRB1062 contains IR1 intact and IR2 
substituted for a poly-C track; c) Oligo TRB1063 contains IR2 intact and IR1 substituted for a poly-C track; 
d) Oligo TRB1064 contains both inverted repeats, IR1 and IR2, substituted for a poly-C track; e) Fractional 
saturation curve plotted using the EMSA data seen in a); f) Hill plot using the data from the EMSA seen in 
a). Points are plotted from triplicate data and display mean values with SEM. S – each experiment 
contained 100-fold excess of the specific unlabelled probe; NS – each experiment contained 100-fold 
excess of non-specific unlabelled probe. Numbering -1 to -71 denotes the promoter region included in the 
probe, upstream of the transcriptional start site.  
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Figure 3.3 Saturation curves and Hill plots for individual inverted repeats of 
the abiEi promoter -1 to -71 region 

 

 
 
Figure 3.3. Saturation curves and Hill plots for individual repeats of the abiEi promoter -1 to -71 region. a) 
Schematic demonstrating the binding of AbiEi (structure unknown) to the abiEi -1 to -71 promoter region 
probe inverted repeats IR1 and IR2.  b – c) Plots from Figure 3.2 b); d – e) plots from Figure 3.2 c). Points 
are plotted from triplicate data and display mean values with SEM. Hill plots display calculated Kd for each 
site (Kd = 10X intercept). Numbering -1 to -71 denotes the promoter region included in the probe, upstream 
of the transcriptional start site. 
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3.2.2 Rv1044 binding site is yet to be identified  

On testing Rv1044 against the 130 base pairs directly up-stream within the rv1044 

promoter region, no DNA-binding was seen (Figure 3.4. No shifts are evident despite 

a titration up to 5 µM Rv1044 protein (Figure 3.4). Analysing the sequence of the 

regions tested in these assays highlighted no obvious inverted repeat or other DNA-

binding sequence motifs. Bioinformatic analyses failed to highlight any candidate 

sequences for binding up to 500 bp upstream of the rv1044 promoter. 

3.2.3 Rv2827c binds to two inverted repeats in the rv2827c promoter 

Bioinformatics was used to identify four 23 bp inverted repeats in the promoter 

region of the rv2827c/rv2826c operon between -1 and -131 bp (Figure 3.5 created 

using weblogo.berkley.edu (Crooks et al., 2004)). These were labelled inverted 

repeats (IR) 1 to 4, with 1 being the furthest upstream of the transcriptional start and 

4 being the closest. The repeats were included in two separate dsDNA oligos listed in 

Table 2.6 and assayed against Rv2827c, covering regions -1 to -71 and -61 to -131. 

These regions were first tested as two consecutive pairs to allow for direct 

comparison with the AbiEi promoter (Figure 3.3a). 

3.2.3.1 Rv2827c binding to rv2827c -1 to -71 requires further study  

Rv2827c bound to both inverted repeats within the -1 to -71 region, however 

saturation remained low as can be seen in the EMSA (Figure 3.6a) and corresponding 

saturation curve (Figure 3.6e). Sequential removal of the inverted repeats by 

mutating one, the other or both to poly-C tracts reduced Rv2827c to a single binding 

event (Figure 3.6b – c) or ablated binding (Figure 3.6d). This contrasts data for the 

binding of AbiEi to its cognate repeats where saturation occurs at lower protein 

concentrations (Figure 3.6e, cf Figure 3.2e). Despite the obviously low saturation, the 

Hill plot indicated positively cooperative binding with a Hill slope of 1.172 ± 0.52. This 

result cannot be trusted due to the extremely large error associated with the Hill 

slope, and is therefore likely not a true reflection of the degree of cooperativity, if 

any, for binding to this region. This experiment requires repeating to obtain more 

accurate data and a better understanding of the protein-DNA interactions of this IR 

pair.  
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3.2.3.2 Rv2827c binds in a negatively cooperative manner to rv2827c -61 to -131 

Similarly, Rv2827c bound to both inverted repeats within the -61 to -131 region 

(Figure 3.7a) however for this region, saturation appears to have increased (Figure 

3.7e) in comparison to that seen for the -1 to -71 region (Figure 3.7e, cf Figure 3.6e) 

but remains low in comparison to AbiEi with its cognate promoter (Figure 3.7e, cf 

Figure 3.2e). Again, sequential removal of the inverted repeats by mutating one, the 

other or both to poly-C tracts reduced Rv2827c to a single binding event (Figure 3.7b 

– c) or ablated binding (Figure 3.7d). Data analysis via the Hill plot indicates that the 

binding to this region is negatively cooperative with a Hill slope of 0.846 ± 0.07 (Figure 

3.7f). This is a surprising result having initially predicted a similar degree of 

cooperativity seen for AbiEi (Figure 3.2e).  
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Figure 3.4 DNA-binding studies of Rv1044 with rv1044 -1 to -131 
 

 
 
Figure 3.4 Rv1044 titrations against 250 femto-moles fluorescently labelled dsDNA probe oligos. a) Oligo 
TRB1086; b) Oligo TRB1102. Neither oligo sequence contains a recognised DNA-binding sequence motif. S – 
each experiment contained 100-fold excess of the specific unlabelled probe; NS – each experiment contained 
100-fold excess of non-specific unlabelled probe.  Numbering -1 to -131 denotes the promoter region 
included in the probe, upstream of the transcriptional start site. 

 
 

Figure 3.5 Consensus motif for rv2827c inverted repeats 1 – 4 
 

Inverted repeat sequence  Consensus motif 
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Figure 3.6 DNA-binding studies of Rv2827c with rv2827c -1 to -71 

 

 
 

Figure 3.6. Rv2827c titrations against 250 femto-moles fluorescently labelled dsDNA probes for IR3 and IR4. 
a) Oligo TRB1104 contains two inverted repeats (IR3 and IR4) intact; b) Oligo TRB1273 contains IR3 intact and 
IR4 substituted for a poly-C track; c) Oligo TRB1271 contains IR4 intact and IR3 substituted for a poly-C track; 
d) Oligo TRB1274 contains both inverted repeats, IR3 and IR4, substituted for a poly-C track; e) Fractional 
saturation curve plotted using the EMSA data seen in a); f) Hill plot using the data from the EMSA seen in a). 
Points are plotted from triplicate data and display mean values with SEM. S – each experiment contained 100-
fold excess of the specific unlabelled probe; NS – each experiment contained 100-fold excess of non-specific 
unlabelled probe. Numbering -1 to -71 denotes the promoter region included in the probe, upstream of the 
transcriptional start site. 
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Figure 3.7 DNA-binding studies of Rv2827c with rv2827c -60 to -131 
 

 
 

Figure 3.7. Rv2827c titrations against 250 femto-moles fluorescently labelled dsDNA probe oligos for IR1 and 
IR2. a) Oligo TRB1106 contains two inverted repeats (IR3 and IR4) intact; b) Oligo TRB1277 contains IR1 intact 
and IR2 substituted for a poly-C track; c) Oligo TRB1275 contains IR2 intact and IR1 substituted for a poly-C 
track; d) Oligo TRB1278 contains both inverted repeats, IR1 and IR2, substituted for a poly-C track; e) Fractional 
saturation curve plotted using the EMSA data seen in a); f) Hill plot using the data from the EMSA seen in a). 
Points are plotted from triplicate data and display mean values with SEM. S – each experiment contained 100-
fold excess of the specific unlabelled probe; NS – each experiment contained 100-fold excess of non-specific 
unlabelled probe. Numbering -60 to -131 denotes the promoter region included in the probe, upstream of the 
transcriptional start site. 
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3.2.3.3 Rv2827c binds in a negatively cooperative manner to the -1 to -131 

promoter region of rv2827c  

A full-length probe covering the rv2827c region -1 to -131 was generated in order to 

examine the interaction of Rv2827c protein with all four identified inverted repeats. 

Four distinct species were observed, indicating that all four inverted repeats can be 

bound simultaneously by Rv2827c (Figure 3.8). Saturation of these sites was low 

(Figure 3.8b) and the Hill coefficient of 0.779 ± 0.12 confirmed negatively cooperative 

binding of Rv2827c across these four inverted repeats (Figure 3.8c). Displaying the 

saturation curve data on a semi-log scale (Figure 3.8d) highlights breaks and multiple 

distinct gradients in the binding curve, eluding to multiple individual binding events.  

3.2.3.4 Negative cooperativity within the rv2827c -1 to -131 promoter region is 

DNA-sequence based rather than protein-protein interaction based  

To analyse the protein-DNA interaction further and validate the negatively 

cooperative binding of Rv2827c, a perfect inverted repeat probe was created using 

two copies of IR4. IR4 was selected as the high affinity sequence in the IR pair with 

the greatest degree of negative cooperativity (Figure 3.6f). The perfect inverted 

repeat probe was made by maintaining the spacing between the repeats and IR3 was 

mutated to an exact inverted repeat of IR4. Using the perfect IR4 repeat probe, the 

Rv2827c-DNA interaction appeared stronger (Figure 3.9a). Data analysis showed 

higher occupancy of binding and a Hill coefficient of 0.945 ± 0.21 (Figures 3.9b-c), 

indicating Rv2827c interacts with each of the inverted repeats independently of each 

other in a more non-cooperative manner. Therefore, we can postulate that it is the 

DNA sequence of the IR that is causing the ‘pseudo’ negatively cooperative binding 

rather than protein-protein interactions. 

 

To test this hypothesis, saturation curves and Hill plots were generated for each 

independent IR (Figure 3.10). The resulting Kd values support the observed rapidity 

of binding saturation for IR1 and IR4, and the slow binding saturation of IR2 and IR3.  

Ranking the IRs by Kd, we can suggest a model for promoter binding wherein Rv2827c 

will bind first to IR1, closely followed by IR4, then IR2 and finally IR3.  
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Figure 3.8 DNA-binding studies of Rv2827c with rv2827c -1 to -131 
 

 
Figure 3.8. DNA-binding studies of Rv2827c with rv2827c -1 to -131. a) EMSA image from the Rv2827c titration against 250 femto-moles fluorescently labelled dsDNA probe oligo QS1 (rv2827c 
-1 to -131) with all four inverted repeats present; b) Fractional saturation curve plotted using the EMSA data seen in a); c) Hill plot using the EMSA data seen in a); d) Semi-log saturation 
curve plotted using the EMSA data seen in a) showing distinct breaks in the binding pattern, in accordance with the multiple binding sites present in the probe. Points are plotted from 
triplicate data and b) displays mean values with SEM. S – each experiment contained 100-fold excess of the specific unlabelled probe; NS – each experiment contained 100-fold excess of 
non-specific unlabelled probe. Numbering -1 to -131 denotes the promoter region included in the probe, upstream of the transcriptional start site. 
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Figure 3.9 DNA-binding studies of Rv2827c with rv2827c -1 to -71 IR4 perfect repeat 
 

 
 

Figure 3.9. DNA-binding studies of Rv2827c with rv2827c -1 to -71 IR4 perfect repeat. a) EMSA with oligo TRB1296 
containing IR3 substituted for a perfect inverted repeat of IR4; b) Fractional saturation curve plotted using the EMSA 
data seen in a); c) Hill plot using the data from the EMSA seen in a). Points are plotted from triplicate data and display 
mean values with SEM. S – each experiment contained 100-fold excess of the specific unlabelled probe; NS – each 
experiment contained 100-fold excess of non-specific unlabelled probe. Numbering -1 to -71 denotes the promoter 
region included in the probe, upstream of the transcriptional start site.   
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Figure 3.10 Saturation curves and Hill plots for individual inverted repeats of the rv2827c promoter -1 to -131 region 

 
Figure 3.10 Legend overleaf 
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Figure 3.10. Saturation curves and Hill plots calculated from EMSAs examining 

binding of individual inverted repeats. a) Schematic demonstrating Rv2827c (PDB: 

1ZELA – Janowski et al., 2009) binding to the rv2827c upstream region in order as 

determined by calculated Kds for each IR. Plots from Figure 3.5; e – h) Plots from 

Figure 3.6. Points are plotted from triplicate data using mutant probes and display 

mean values with SEM. Hill plots display calculated Kd for each site (Kd = 10^X intercept). 

Proteins are cartoon structures of Rv2827c (PDB: 1ZELA – Janowski et al., 2009) and 

are labelled with predicted order of binding.   
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3.2.4 Binding of type IV antitoxin proteins to non-cognate type IV toxin-antitoxin 

promoter regions  

3.2.4.1 Rv1044 can bind to the abiEi WT promoter region IRs  

Initially, in order to test the binding capabilities of Rv1044, once no rv1044 promoter 

sequence could be identified for cognate binding, the abiEi -1 to -71 probe was used 

as a positive DNA-sequence control. In this assay Rv1044 successfully bound to the 

probe DNA resulting in a double shift in the EMSA gel (Figure 3.11a), similarly to AbiEi 

(Figure 3.2). Interestingly, with an inverted repeat known to be capable of facilitating 

positive cooperativity (seen in the AbiEi titrations), the binding of Rv1044 appeared 

to be non-cooperative as indicated by a Hill coefficient of 0.964 ± 0.26, however, 

given the error this result will need validating by further repeats (Figure 3.11c).   

3.2.4.2 Non-cognate promoter binding is unique to Rv1044-abiEi 

To test whether the other antitoxins being examined were also capable of binding to 

non-cognate promoter regions, EMSAs were run using each antitoxin against the 

identified probes to which binding has been seen (Figure 3.12). Binding is not 

apparent between the remaining combinations of protein and type IV TA system 

promoter regions (Figure 3.12). Therefore, from our current data, we can say that 

the binding of Rv1044 to the abiEi promoter inverted repeat is unique amongst these 

systems. This interaction is also almost certainly a novelty with no functional 

significance considering the interspecies nature of this binding; Rv1044 being M. 

tuberculosis derived, and abiEi being of S. agalactiae origin.  
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Figure 3.11 DNA-binding studies of Rv1044 with abiEi -1 to -71 
 

 
 

Figure 3.11. DNA-binding studies of Rv1044 with abiEi -1 to -71. a) EMSA of Rv1044 with oligo TRB1061 containing 
the wild-type AbiEi promoter -1 to -71 region containing the intact inverted repeat sequences; b) Fractional 
saturation curve plotted using the EMSA data seen in a); c) Hill plot using the data from the EMSA seen in a). Points 
are plotted from triplicate data and display mean values with SEM. S – each experiment contained 100-fold excess 
of the specific unlabelled probe; NS – each experiment contained 100-fold excess of non-specific unlabelled probe. 
Numbering -1 to -71 denotes the promoter region included in the probe, upstream of the transcriptional start site. 
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Figure 3.12 DNA-binding studies of protein antitoxins with non-cognate promoter 
region probes  

 

 
 

Figure 3.12. DNA-binding studies of protein antitoxins with non-cognate promoter region probes. a) EMSA with oligo 
TRB1296 containing IR3 substituted for a perfect inverted repeat of IR4; b) Fractional saturation curve plotted using 
the EMSA data seen in a); c) Hill plot using the data from the EMSA seen in a). Points are plotted from triplicate data 
and display mean values with SEM. S – each experiment contained 100-fold excess of the specific unlabelled probe; 
NS – each experiment contained 100-fold excess of non-specific unlabelled probe. Numbering -1 to -71 and -61 to -
131 denotes the promoter region included in the probe, upstream of the transcriptional start site.   
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3.3 Crystallography  
 
The protein AbiEi presented itself as an ideal crystallography candidate, having 

expressed at around 10 mg/L and subsequently been shown to be stable in solution 

at very high concentrations (> 25 mg/mL). Obtaining the crystal structure of AbiEi will 

help explain the functional data previously published on AbiEi (Hampton et al., 2018), 

provide further support for the activity of this antitoxin family, and allow direct 

comparisons between AbiEi and the structure of Rv2827c. Multiple screens were set 

as previously described, with varied protein concentrations and temperatures.  

3.3.1 Crystallisation  

AbiEi crystallised in multiple conditions with various buffers, salts, and precipitants. 

The crystal form was similar in each crystal ‘hit’ and returned on re-screening in the 

same conditions. The crystal shape is long and thin; many formed in needle shapes 

and in wider planes. Examples of the crystals can be seen in Figure 3.13 alongside 

their respective crystallisation condition.   

3.3.2 X-ray crystallography data collection  

Multiple data sets were collected at Diamond Light Source. An example of the 

diffraction pattern can be seen in Figure 3.13. All data sets refined to space group P1. 

Merging the best data sets resulted in a final resolution of 1.83 Å. Table 3.1 contains 

the data collection processing and statistics resulting from the merging of three 

independent datasets collected from three different native AbiEi crystals. The 

statistics from the data collection show high resolution data for protein crystals, with 

a high signal-to-noise ratio as indicated by the overall I/σI value. 

 
3.3.2.1 Structure solving  

Using the best data set obtained for AbiEi the structure could not be solved by 

molecular replacement using the structure of Rv2827c (PDB code: 1ZEL). Various 

attempts to modify and optimise the MR model using CHAINSAW and protein 

sequence alignment also resulted in failed MR. Ab initio structure solving could not 

be completed using the program ARCIMBOLDO. An experimental phasing method 

will need to be used to solve the AbiEi structure. 
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Figure 3.13 AbiEi crystals and diffraction pattern 
 

 
 

Figure 3.13. AbiEi crystals and diffraction pattern. a – b) Example crystals of 
AbiEi which regularly form long, thin planes; c) X-ray diffraction pattern from 
AbiEi protein crystals  
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Table 3.1 Data collection and refinement statistics 
 
Data Collection  
 

 
AbiEi 

Number of crystals  
 

3 

Beamline 
 

iO3 

Space group 
 

P1 

Cell Dimensions   
a, b, c (Å) 34.24, 80.85, 122.17 
α, β, γ (º) 
 

102.48, 96.74, 100.47 

Wavelength (Å) 
 

0.97625 

Resolution low (Å) 
 

42.11 

Resolution high (Å) 
 

1.83 

Number unique reflections 
 

106618 (5213) 

CC(1/2) 
 

0.999 (0.471) 

Mean I/σI 
 

10.7  

Completeness (%) 
 

97.4 (96.1) 

B-factor from Wilson plot (Å2) 28.99 
Values in parentheses are for the outer shell  
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Chapter 4. Discussion  

4.1 Promoter region binding by type IV TA system antitoxins 

The results presented so far appear to support the currently emerging theory that 

protein antitoxins of type IV TA systems are bifunctional and therefore similar to 

those of type II TA systems (Hampton et al., 2018). One function of each antitoxin is 

to relieve cellular stress as exerted by its toxin counterpart (without directly 

interacting); the other function is to regulate transcription of the TA system operon 

by promoter binding. The picture now emerges that, similar to type II systems, the 

overall activation and regulation of type IV TA systems is slightly more complex than 

originally thought and that autoregulation may also be a common and defining 

feature of type IV systems. Understanding the kinetics of the binding of type IV 

antitoxins with their respective promoters provides insights into the regulation of 

these systems. Calculating binding constants and analysing the nature of the 

interaction may allow us to better understand how exactly the systems can respond 

to counteract toxicity from their protein counterparts.  

4.1.1 AbiEi-promoter interactions 

The data for AbiEi binding to its cognate promoter region (Figure 3.3) demonstrated 

positively cooperative binding. This corroborated published work from our 

collaborators (Hampton et al., 2018) and demonstrated that our experimental 

system is reliable. However, values determined for the binding constants vary slightly 

between this study and published work; this may be due to differences in methods 

used to perform the EMSA, buffer differences, or sensitivity of equipment used to 

analyse band shifts. Nevertheless, the general trends remain the same and build 

confidence in our new data. 

 

Positive cooperative binding is a key feature of the negative autoregulation observed 

in the AbiE system. Once one AbiEi protein has bound to an IR, this enhances the 

AbiEi protein binding to the second IR. Furthermore, assays have shown that AbiEi 

binding induces DNA bending (Hampton et al., 2018). The induced DNA-bending via 

protein binding to the recognised DNA sequences bring the IRs into closer spatial 

proximity to facilitate sequential binding (Khrapunov et al., 2006). AbiEi has been 
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shown to induce a DNA-bend of 72º, not only improving the spatial relationship of 

the inverted repeats, but also promoting AbiEi CTD interactions (Hampton et al., 

2018). If the case is that two proteins bound to the promoter are required for full 

feedback inhibition, positive cooperative binding creates a rapid switch for shutting 

down transcription and therefore very tight regulation of the operon; hence, a 

rapidly responding system. In other words, once antitoxin levels reach a critical 

concentration determined by the binding constants, it is likely that transcription of 

both antitoxin and toxin will be repressed rapidly.  

4.1.2 Mycobacterial antitoxin-promoter interactions  

4.1.2.1 Rv1044 promoter interactions 

The Rv1044 protein, despite being unable to bind the immediate region upstream of 

the transcriptional start site, does in fact possess the capability to bind DNA as seen 

by the binding to abiEi promoter sequences (Figure 3.11). This is likely due to their 

homology and a shared similar DNA-binding domain in structure, rather than 

sequence similarity. A possible reason for the negative cooperativity is that the 

amino acid-DNA base interactions that are favourable for AbiEi are not the same 

when Rv1044 binds. Structural similarity may have permitted the binding event; 

however, sequence dissimilarity dictated the affinity.  

 

Such is the complexity of mycobacterial promoters, Rv1044 cognate binding motifs 

could be present further than 500 base pairs upstream from the transcriptional start 

site and still offer some functional significance in regulation of the operon when 

bound by protein. Unfortunately, none were identified even within 2000 bp 

upstream, using programs EMBOSS einverted (inverted repeat identifying software 

available at http://emboss.bioinformatics.nl/cgi-bin/emboss/einverted) and BLASTN 

(Altschul et al., 1990) (https://blast.ncbi.nlm.nih.gov/Blast.cgi), searching for 

inverted repeats and aligned inverted repeats from already identified motifs, 

respectively. The question remains; does Rv1044 bind to its own promoter region 

and therefore support the emerging paradigm of type IV antitoxin autoregulation, 

or, is this protein anomalous and DNA-binding is simply a residual character to which 

the counterpart promoter DNA and necessity for autoregulation has been lost.  
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Some studies have highlighted a potential role for DNA-binding antitoxins acting as 

transcriptional regulators outside of their own systems in an emerging theory known 

as ‘cross-talk’ (Kasari et al., 2013; Walling and Butler, 2016; Wessner et al., 2015). 

Despite the theory of ‘cross-talk’ not being supported by our current analyses, this 

merely rules of a very small subset of promoters. The overall idea of protein 

antitoxins as part of a larger transcriptional network will be considered later in the 

context of all three protein antitoxins. To address this on a genome level would 

require genomics studies beyond the scope of this work.  

4.1.2.2 Rv2827c promoter interactions  

The structure of the Rv2827c protein has been solved to 1.93 Å and was predicted to 

have DNA-binding capabilities; the crystal structure includes a wHTH within the N-

Terminal Domain (NTD) with three arginine-rich α-helices. This further supported the 

initial hypothesis for Rv2827c being a DNA-binding protein (Janowski et al., 2009). 

 

The identification of candidate sequences using EMBOSS einverted within the 

rv2827c promoter initially returned the two sites denoted rv2827c IR1 and rv2827c 

IR2. Following a simple alignment of these two sequences with the 500 bp upstream 

region, the two sites denoted rv2827c IR3 and rv2827c IR4 were identified (these 

were initially missed using the default settings of einverted due to low completeness 

scores).  

 

The data presented in this study (Figure 3.10) demonstrate a potentially novel 

mechanism for antitoxin-promoter binding in that four sites of differing Kds create a 

system mimicking negative cooperativity under these in vitro experimental 

conditions. A similar system has been reported for the binding of Cu2+ to a Prion 

protein whereby four distinct and varied Kds can be seen to contribute to negative 

cooperativity allowing the protein to respond to a wide range of Cu2+ concentrations; 

the physiological relevance has not, however, been agreed upon (Kozlowski et al., 

2010). 
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Interestingly, our results show that the binding of Rv2827c to the rv2827c promoter 

region can be improved by manipulating the DNA sequence; Figure 3.9 shows a probe 

containing the IR4 exact inverted repeat return a Hill coefficient of 0.945 ± 0.21. This 

value indicates non-cooperative binding and poses that the IR sequences are bound 

to independently of each other. To explore the possibility of protein-protein 

interaction facilitating positive-cooperativity perfect repeat pairs for each of IR1 - 4 

should be tested, and most importantly, the strongest identified binding sequence, 

IR1. In theory, if Rv2827c can bind in a sequence dependent positive cooperative 

manner, IR1 would elicit the greatest positive cooperative response. Conversely, the 

weakest sequence, IR3, would in theory return very negatively cooperative results.  

 

It will be useful to test the necessity and importance of the spacer between each 

inverted repeat and determine what part this short sequence plays in the efficiency 

of protein-DNA kinetics. It was shown for AbiEi that even when the space was 

increased to 50 bp some degree of positively cooperative binding was still apparent 

(Hampton et al., 2018). This may be a useful and informative assay to conduct on the 

native promoter sequence to check if the kinetics alter when the inverted repeat 

sequences remain in the same order. Furthermore, repeating spacer alterations for 

the positively cooperative binding model of the IR4 perfect repeat (as well as the IR1 

perfect inverted repeat if positive cooperative results are obtained) should provide 

useful insight into DNA-bending in this system as well as positive cooperativity.  

 

Negative cooperativity has been reported to be just as prevalent as positive 

cooperativity (Bush et al., 2012; Levitzki and Koshland, 1969). A system 

demonstrating negative cooperativity is, as one would expect, comparatively delayed 

in response; the system will however be responsive over a wider range of ligand (in 

this case Rv2827c protein) concentrations rather than the tight range seen in 

positively cooperative systems. The question is though, at what point in the 

saturation of the promoter region is negative autoregulation and repression of the 

operon achieved. If we assume that all four inverted repeat regions are to be bound 

before the system is repressed, we can safely assume that this is unlikely to ever 

happen due to the high concentrations needed. However, if the repression is 
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somehow dose-respondent, in that the expression of the toxin and antitoxin genes 

are separately dependent on the number of sites bound we can now see a more 

complex system emerging.  

 

The physical interactions documented here should be followed up and 

complemented by functional assays. The promoter of a system, or simply the short 

70 – 140 bp sequence containing identified binding sites, can be cloned upstream of 

a reporter gene such as lacZ, in order to determine promoter expression levels 

through beta-galactosidase assays (Smale, 2010). Indeed, Rv2827c has been shown 

to be negatively autoregulatory using this reporter system with 500 bp directly 

upstream of rv2827c used as the promoter (Usher, unpublished). Following this 

positive result up with a refined promoter region, that is, the sequence containing all 

four IRs as shown in Figure 3.10 should provide better insight as to the functionality 

of our identified DNA-binding region. It will be important to perform a series of 

knock-out experiments on this region to highlight which IR, or combination of IRs, is 

important for negative autoregulation.  

 

We could hypothesis that occupancy of IR1 and possibly IR4 as the initial binding sites 

may create a loop only fully repressing the toxin gene; low levels of antitoxin are 

transcribed, translated, bind to the promoter and turned over before transcripts for 

the toxin can be created due to the position of the antitoxin before the toxin. This 

theory may align with the ability of a negatively cooperative system to respond over 

a greater range of ‘inhibitor’ concentrations. This may maintain a steady background 

pool of antitoxin to antagonistically nullify toxic effects or to promote this cellular 

process without toxin presence, or even act as a transcription factor outside of its 

own system.   

 

A tuneable antitoxin expression system in tandem with a dual quantifiable reporter 

mimicking the antitoxin and toxin genes under the rv2827c promoter could be used 

to analyse the nature of the negative autoregulation. This could then give us more 

information as to the response, that is how much of either gene is expressed, of the 

system to a given amount of antitoxin. Similar systems have been used previously in 
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yeast (Belli et al., 1998; Kainth et al., 2009) and plasmids are commercially available 

as dual reporters, however, not specifically set up to mimic a TA system. Figure 4.1 

shows the envisaged molecular set up of this promoter assay.  

 

Alternatively, another benefit of a negatively autoregulated system could be if 

competitor molecules are present, such as an additional transcription factor. 

Assuming the kinetics for binding this promoter remains the same for other 

molecules, such as a protein binding to increase transcription of the rv2827c/rv2826c 

operon, then the response will occur over a greater range of concentrations. This 

may be useful to limit expression overall.  

 

Considering the documented importance of the rv2827c gene in M. tuberculosis 

growth and survival (Griffin et al., 2011; Keren et al., 2011; Sassetti et al., 2003; 

Torrey et al., 2016) it may be sensible to assume that the toxin product of rv2826c is 

incredibly potent and therefore Rv2827c is absolutely required to nullify it, or 

Rv2827c has an important role elsewhere in the cell. This may then support the 

hypothesis that the negative cooperativity has been adopted in this system to 

maintain a basal level of antitoxin expression when repressed, and a steady and 

useful level of antitoxin and toxin when activated.  

 

On examination of the individual inverted repeat regions that make up the consensus 

motif, alongside the saturation data, we can attempt to explain the order of binding. 

We can deduce the importance of adenine in the first position from the weak binding 

seen for IR3. With IR1 and IR4 being the best binding sites we can also deduce that a 

purine base in position 7 is important, but guanine is favoured as seen in IR1. This is 

supported by the fact arginine residues (present in the DNA-recognition helix) favour 

guanine bases (Luscombe et al., 2001). This is then followed by IR2 with the thymine 

present at position 7. In order for this to hold true, the adenine in the premier 

position must be considered the most important, followed by the position 7 

variations. It should be easy to analyse these hypotheses with a series of mutational 

studies using IR1, changing the base at positions 1 and 7 and assaying Rv2827c 

binding.  
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4.2 Crystallography  

The structure of AbiEi could not be solved by molecular replacement using the 

structure of Rv2827c, probably due to the low sequence similarity of 11%. We can 

therefore assume the structures of these proteins are more dissimilar than originally 

thought. The ab initio structure solving program ARCIMBOLDO was used as AbiEi is 

predicted to contain multiple helices, however, this program was unable to provide 

any insight into the AbiEi structure. The merged dataset presented earlier is of very 

high resolution and incorporating the heavy element selenium into the protein 

structure using selenomethionine may allow us to solve the phase problem as has 

been completed in many studies (Hendrickson et al., 1990; Hunter et al., 2016; 

Paterson et al., 2006; Rice et al., 2000; Walden, 2010) (see additional information). 

Expressing and crystallising a selenomethionine labelled AbiEi protein, followed by 

single or multi- wavelength anomalous diffraction experiments should allow us to 

determine the position of the three methionine residues in the AbiEi structure and 

build out from there. As this is a well-documented and historically successful 

technique in macromolecular structure solving so is a logical next step. Alternatively, 

derivatisation of native protein crystals could be used, as was completed for Rv2827c 

(Janowski et al., 2009).  
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Figure 4.1 Schematic for rv2827c promoter assay with a dual reporter 
 

 
Figure 4.1 Schematic for rv2827c promoter assay with dual reporter. A tuneable protein expression system 
(left) whereby the amount of Rv2827c produced can be controlled and estimated could be used alongside 
the dual reporter (right). Expressing a given amount of protein and measuring the signal of two reporter 
molecules, in this case two fluorescent proteins, with the knowledge of the order of binding from Figure 
3.10 may provide insight into how the Rv2827c acts as an autoregulatory protein for the rv2827c/rv2826c 
operon. 
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4.3 Future directions   

AbiEi has been studied relatively extensively when compared to the mycobacterial 

proteins analysed in this study. It has been shown that AbiEi fails to directly interact 

with its counterpart toxin AbiEii, yet is capable of neutralising the toxic effects. In 

order to properly characterise the mycobacterial antitoxins Rv1044 and Rv2827c, 

their affinity for cognate toxins Rv1045 and Rv2826c, respectively, should be 

analysed alongside their ability to counteract their partner toxin. Incubating purified 

samples of the toxin-antitoxin pairs together in an appropriate buffer followed by 

analytical FPLC using a calibrated superdex 200 increase column (GE Healthcare) 

could demonstrate an interaction by a chromatographic peak at the combined 

molecular weight, or lack thereof indicated by two separate peaks at their respective 

molecular weights. This technique can also be used to determine or confirm the 

monomeric or multimeric state of the proteins in solution. Toxicity assays and growth 

curves can be used to determine the effects on bacterial growth of the antitoxin 

alone, toxin alone, and co-expression to determine functionality as a TA pair. This will 

allow us to better understand the functional nature of the TA pairs and demonstrate 

whether growth can be rescued or not eluding as to whether the toxin is 

bacteriostatic or bactericidal respectively.  

 
The toxin components should be tested for DNA-binding capabilities using the probes 

from this study containing binding motifs. DNA-binding studies using the same 

probes should also be conducted with the toxin and antitoxin present to assay 

whether interactions with DNA alter with the two components of the system present.  

 

It is conceivable that antitoxins may have roles as transcriptional regulators outside 

of their own system. In order to better understand the antitoxins in this study and 

their full DNA-binding capabilities, DNA chip-seq can be performed (Kharchenko et 

al., 2008). This should identify the full range of DNA-sequences recognised and bound 

by our proteins. Following this with sequence alignment to the M. tuberculosis H37Rv 

genome may shed light on a transcriptional network for the protein antitoxins and 

identify possible binding sites for Rv1044 within the rv1044 promoter. If promoters 

are identified, the beta-lactamase assay (Smale, 2010) can again be used to 
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determine whether the binding antitoxin is in-fact functional in regulating gene 

expression under that promoter. This data could then be analysed alongside M. 

tuberculosis transcriptomics, notably when the TA systems are active; it may be 

possible to piece together a functional network from here and demonstrate the 

complexity of the M. tuberculosis transcriptome during infection.  

 

The expression and purification of Rv0837c is a necessary step to characterising all 

three putative type IV TA systems from M. tuberculosis and may be functionally the 

most important given the transcriptomic data presented earlier (Keren et al., 2011; 

Torrey et al., 2016). So far, this protein has not expressed in detectable amounts 

using E. coli with the native gene sequence, nor with a codon optimised sequence for 

E. coli expression. Mycobacterium smegmatis or Mycobacterium thermoresistible 

may be more appropriate organisms being more closely related to express Rv0837c 

in. This could then enable the comprehensive analysis of the TA pairs as has been 

suggested previously.  

 
Finally, as these systems are grouped together as part of the AbiEi abortive infective 

family of proteins, their effectiveness in aborting bacteriophage infection should be 

tested. These assays could also shed light on the native function of the systems: it is 

possible that they were initially incorporated to protect from bacteriophage infection 

but have now been adapted to respond to various stimuli including immune defence 

stress in the host. Cloning the entire locus for each system in to our model organism 

E. coli DH5α and subjecting the transformed bacteria to E. coli phages may not 

provide useful information. Phages are highly specific to the bacteria they infect 

(Koskella et al., 2013) therefore, these systems logically should only respond to M. 

tuberculosis phage infection. It would be necessary to test phage-resistance in 

Mycobacterium smegmatis, or if available, M. tuberculosis.   

 

In summary, the type IV antitoxins AbiEi, Rv1044, and Rv2827c can be expressed as 

soluble proteins and purified. These antitoxins have been shown capable of binding 

specific DNA sequences within promoter regions, demonstrating positive 

cooperativity in the case of AbiEi with its cognate promoter, and negative 
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cooperativity in the case of Rv2827c and its cognate promoter. Rv1044 can bind to 

the S. agalactiae abiEi promoter but not to any region yet identified in its cognate 

promoter. This highlights a structural relationship between Rv1044 and AbiEi.  

 

AbiEi has been previously functionally characterised (Hampton et al., 2018) and was 

shown to be negatively autoregulatory, binding to two inverted repeats in the 

promoter region and our results corroborate this. The structural characterisation of 

AbiEi has begun and good-quality crystals have been generated, resulting in a current 

best data set of 1.83 Å resolution. Molecular replacement has not been possible with 

Rv2827c, indicting these proteins are less structurally related than initially believed 

(see additional information). 

 

This is the first study in which the structurally characterised Rv2827c antitoxin 

protein has been shown to bind DNA, specifically to four inverted repeats in its 

cognate promoter. Interestingly, Rv2827c did so with negative cooperativity and we 

have shown that this is DNA-sequence dependent rather than protein-protein 

interaction dependent as generally accepted. We have therefore coined this term 

‘pseudo-negative cooperativity’ as variations in the target binding sequence dictated 

the degree of cooperativity and these interactions ultimately occur independently of 

each other (as shown by mutational EMSAs creating a non-cooperative system). The 

promoter-binding events demonstrated here presents us with a potentially novel 

mechanism of negative autoregulation which requires further study. Understanding 

how each inverted repeat within the promoter relates to the function of negative 

autoregulation will improve our understanding of this essential gene and the TA 

system overall.  
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Additional information, post the research period 
 

Having produced selenomethionine-derivatised AbiEi, the structure was solved in Jan 

2019 by the MAD method. The global structure was similar to Rv2827c but the fold 

was sufficiently different to prevent reasonable alignments. This structure will be 

used for future studies. 
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