
Durham E-Theses

Structure formation in alternatives to
$\Lambda$CDM

LEO, MATTEO

How to cite:

LEO, MATTEO (2019) Structure formation in alternatives to $\Lambda$CDM, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13070/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13070/
 http://etheses.dur.ac.uk/13070/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Structure formation in

alternatives to ΛCDM

Matteo Leo

A Thesis presented for the degree of
Doctor of Philosophy

Institute for Particle Physics Phenomenology
Department of Physics
Durham University
United Kingdom

May 2019





Structure formation in

alternatives to ΛCDM

Matteo Leo

Submitted for the degree of Doctor of Philosophy

May 2019

Abstract: The standard ΛCDM is currently the most accepted theory of the Uni-

verse. The model is characterised by a nearly-scale invariant primordial curvature

power spectrum from inflation, cold and non-interacting dark matter particles and

a cosmological constant Λ. Despite the success of ΛCDM, the nature of the dark

sectors is still unknown. Moreover, the model faces some small-scale observational

controversies that are still not resolved. In this thesis, we investigate structure

formation in alternative scenarios to ΛCDM using high-resolution cosmological simu-

lations. In the first part, we focus on non-cold dark matter (e.g. warm dark matter)

and non-standard inflation (e.g. thermal inflation) models, that display damped

matter density fluctuations on small scales. We investigate first the effects of adding

thermal velocities to the gravitationally-induced velocities in simulations of warm

dark matter. Considering different non-standard linear power spectra, we then assess

which features survive the non-linear evolution and leave interesting signatures in

non-linear power spectra and halo statistics. Exploiting these results, we present a

new smooth-k space filter, to use in the Press-Schechter approach, to model the dark

matter halo mass function, which overcomes shortcomings of other filters used in the

literature. In the second part, we quantify the effects of modified gravity on neutral

hydrogen abundances and 21-cm power spectra, finding that the HI clustering is a

powerful test of gravity at redshifts z ∼ 3.
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Chapter 1

Introduction

The word cosmology comes from the Greek words kosmos (world) and -logia (study

of), so it is the study of our world (the Universe) from its origin to its final fate. Deal-

ing with the whole Universe means asking fundamental questions such as “Where

do we come from? What are we made of? Where are we going?”. These questions

have always intrigued mankind and many ancient philosophers have tried to answer

them. With the progress in mathematics and physics, and thanks also to techno-

logical achievements in computation and observations, cosmology has evolved from

mere speculative philosophy to a solid scientific discipline. However, the central

methodology remains: to search for answers we need to look at the sky.

The birth of modern cosmology is generally associated with the year 1917, when

Albert Einstein realised that his theory of general relativity could be used to con-

struct a self-consistent cosmological model [6–8]. Einstein himself recognised that

the solutions of his equations pointed to an evolving universe and, believing in a

static one, he resolved the “problem” by introducing a cosmological constant, the

repulsive force of which would counteract the attractive gravitational force. However,

Alexander Friedmann in 1922 [9] and Georges Lemaître in 1927 [10] discovered that

Einstein’s equations could describe a much larger class of dynamical models than

those considered by Einstein himself. Indeed, analysing all the homogeneous and

isotropic solutions of the field equations, they found that some solutions were char-
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acterised by an expansion of the size (as given by the physical distance R between

two points in space) of the Universe at cosmic time t. These models included ones

which predicted R = 0 at t = 0, i.e. a singularity at the beginning of time. The

Universe could be not static and eternal, but it could have an origin and, possibly,

an end. The observations of a redshift in spectral lines from distant galaxies made by

Slipher in 1915 [11] and by Hubble in 1929 [12] were considered as the first evidence

in favour of the evolution of the Universe from a singularity at t = 0 (see e.g. [13,14]

for historical reviews on modern cosmology).

1.1 The history of our Universe

In this section we review the currently most widely-accepted theory of the Universe,

the standard cosmological paradigm. This model predicts that after the singularity,

during the very early Universe, there is a nearly-exponential expansion, called infla-

tion [15–18]. In the simplest slow-roll class of models, the inflationary stage is driven

by a scalar field φ (the so-called inflaton) slowly descending a nearly flat and smooth

potential, V (φ). The field energy density is then dominated by the potential energy

and the inflaton has a negative pressure, which induces an accelerated expansion of

the Universe in Einstein’s general relativity framework (see e.g. [19, 20]). Interest-

ingly, due to the quantum nature of our world, the inflaton field is also characterised

by quantum fluctuations [21–25]. Since the Universe is exponentially expanding

during inflation, the wavelengths of the fluctuations are exponentially stretched, so

that the fluctuation amplitudes do not cancel out between each other (as is the

case in a flat space-time) but survive as small inhomogeneities, δφ, of the inflaton

field φ. In the standard slow-roll, the spectrum of these primordial perturbations

is predicted to be nearly scale invariant, Pprim(k) ∼ kn−1 with n ∼ 1, which is

confirmed by the results at large scales e.g. from cosmic microwave background (or

CMB, see below the definition) anisotropies [26–28] (e.g. the Planck experiment

gives n = 0.965 ± 0.004 [28]). This mechanism of producing perturbations is the
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currently most-favoured theory for the origin of structure in the Universe (see e.g.

the reviews [29–31]). The tiny inhomogeneities in the inflaton field are transferred to

curvature fluctuations in the metric and to perturbations in the matter and radiation

density content of the Universe. After inflation (and during the matter domination),

matter perturbations will grow via gravitational instability to become the non-linear

structures, i.e. galaxies and clusters, we see today.

During the inflation period, the inflaton field continues to descend V (φ), until it

reaches the potential minimum. The inflaton density becomes rapidly dominated by

the kinetic energy and eventually the field starts to oscillate around the minimum of

V (φ). The Universe is then dominated by coherent oscillations of the inflaton field,

which need to be converted into radiation to start the so-called hot Big Bang phase.

The mechanism leading to this transition is called reheating (see e.g. the classical

review [32] for further details).

After reheating, it is believed that the energy density of the Universe is dominated

by radiation, and the Universe starts its decelerating expansion. This scenario is

dubbed the hot Big Bang model. At this stage the Universe is filled with a tightly-

coupled sea of relativistic particles, such as photons, electrons, neutrinos, muons,

gluons and quarks. The temperature and density of this thermal bath reduce with

the expansion. When the temperature drops below T . 150 MeV, gluons and quarks

no longer have enough energy to exist separately (the so-called QCD phase transition

occurs) and are confined inside hadrons: mesons and baryons. The lightest baryons

are protons and neutrons, while the lightest mesons are the pions. After muons and

pions have annihilated and the temperature has reached T ∼ 1 MeV, the neutrino

interaction rate is no longer sufficient to maintain these particles in thermal contact

with the photon bath, so they decouple. Eventually, electrons and positrons become

non-relativistic, and soon after this transition they annihilate reducing their total

abundances. At this stage the Universe is dominated by photons and relativistic

neutrinos.

Around 380,000 years after the Big Bang, the Universe is cold enough to enable
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the formation of neutral hydrogen from the combination of electrons and protons, the

so-called recombination period. The Universe then becomes transparent to photons,

that decouple from the primordial bath and are free to stream in space. This ra-

diation will travel from this point in time to the present, redshifting to microwave

frequencies as the Universe expands. Due to their isotropic and homogeneous dis-

tribution in the sky, these photons (decoupled from the primordial plasma) are the

CMB radiation (mentioned above) and they carry valuable information about the

primordial Universe. Indeed, CMB observations have been used in the last two

decades to paint a very detailed picture of the early Universe. In particular, the

small temperature fluctuations (δT/T ∼ 10−5, which are believed to be seeded by the

quantum fluctuations in inflation as mentioned above) in the CMB, in combination

with large scale structure and type Ia supernovae observations, have been used to

constrain the cosmological parameters with high precision [26–28].

1.1.1 Cold dark matter

In the above section, we have sketched the evolution of the Universe after inflation up

to recombination. All the particles considered there are within the framework of the

standard model (SM) of elementary particles. However, to describe the later stages

of the evolution of the Universe, we need to first introduce another fundamental

ingredient, whose “dark and stable” nature can explain gravitational effects that fail

to be addressed relying on baryons only. This is commonly called dark matter (DM),

which, according to the current standard cosmological model, is something beyond

the SM theory of particles.

Several observations point towards the so-called missing mass on cosmological

and astrophysical scales1 (there is more mass than expected from a universe made

of baryons only), e.g. flat rotational curves in galaxies, measurements of velocity

dispersions and gravitational lensing in clusters of galaxies, CMB anisotropies and

1There are attempts to solve this problem without invoking dark matter, but relying on modi-
fications of standard gravity, e.g. MOND [35] or the recent emergent gravity [36].
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so on (see e.g. [33, 34] for recent reviews). For example, the analysis of the CMB

anisotropies tells us that around 30% of the total energy density today is in some form

of matter, of which only 5% of the matter density is in the form of baryons, meaning

that the majority of the matter content should be of non-baryonic nature [27, 28].

Another simple argument (taken from [34]) in favour of dark matter as non-baryonic

particles can be made by considering the evolution of the density perturbations. We

know that the baryons are strongly coupled to the photons before recombination

(see above), which takes place at zrec ∼ 1000. For this reason, baryon matter density

perturbations are of the same order of photon density perturbations (δρ/ρ ∼ 10−5)

at z ∼ zrec and they start to grow after baryons decouple from photons. At the

linear order in perturbation theory and in the matter domination period, the growth

of matter perturbations is proportional to the scale factor a = 1/(1 + z). If baryons

were the only matter content of the Universe, we would expect that the matter

perturbations today (z = 0) would be of the order of

δρ

ρ
∣∣∣
z=0

= (1 + zrec)
δρ

ρ
∣∣∣
z=zrec

∼ 10−2, (1.1.1)

which means that they would still be in linear regime (i.e. δρ/ρ� 1) today. However,

since we observe galaxies and clusters (and galaxies are observed out to high redshift),

we know that by the present time perturbations on those scales have long entered

the non-linear regime, δρ/ρ > 1, and this implies that baryons alone cannot build up

the structure we see today. Indeed, to solve the above issue, we need a non-baryonic

matter fluid whose perturbations have started to grow earlier than recombination

(i.e. at z > zrec), such that they are in the non-linear regime today. One interesting

property that follows from the above argument is that dark matter needs to be

decoupled from photons before recombination. The DM particles should also be

long-lived in order to not decay into radiation during the expansion of the Universe.

In the standard cosmological model, we also add the adjective “cold” to the DM

particles with the meaning that the DM behaves as a pressure-less fluid in the linear
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regime and at cosmological and astrophysical scales2. A class of cold dark matter

particles generally considered in the literature is that of weakly-interacting massive

particles (WIMPs, see e.g. [37]) with a mass of a few GeV and negligible thermal

velocities.

Before recombination, the Universe becomes dark matter dominated and the

small matter density perturbations (δρm/ρm) begin to grow under gravitational

instability. Indeed, regions of space in which the density is slightly higher than the

mean density of the Universe (over-dense regions) start to attract matter from the

surroundings. When the perturbation is still in linear regime (δρm/ρm � 1), the

physical size of the over-density region increases as the Universe expands. However,

once a perturbation reaches an overdensity of order of unity (δρm/ρm ∼ 1), it

decouples from the background expansion, collapses and reaches a dynamical state

near virial equilibrium, i.e. becomes a self-gravitating dark matter object called halo

(see e.g. [30, 38–41] for reviews on this subject). Haloes increase in mass and size

either by dragging material from the surrounding environment or by merging with

other haloes. The matter distribution inside a halo is, in general, not smooth, and

the halo is characterised by a number of self-bound sub-structures (the so-called

subhaloes) within its virial radius.

1.1.2 Late acceleration and Λ

As mentioned above, the nature of dark matter is beyond the current standard

model of fundamental particle physics. However, this is not the only “issue” within

the standard cosmological paradigm that potentially requires the introduction of a

“dark” sector in order to match observations. Indeed, in the late 1990s, observations

of Type Ia supernovae at redshift z > 1 by two teams, the Supernova Cosmology

Project Collaboration [42,43] and Supernova Search Team [44,45], in combination

with the extant CMB measurements, led to the discovery of the late-time accelerating

2This does not mean that the DM is truly pressure-less. Pressure-like effects appear at such
small scales that are not cosmologically relevant.
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expansion of the Universe. However, a universe consisting of matter and radiation

cannot explain such an acceleration of the expansion rate.

This has raised the still-open question of what is the nature of this component

(the so-called dark energy) that dominates the energy content of the Universe today

(around 70% of the total energy density today is in dark energy). A simple solution

to this problem involves the (re)introduction of Einstein’s cosmological constant, Λ.

We recall that a cosmological constant was first introduced by Einstein to produce

a static universe. However, in this case the constant serves another purpose, i.e. to

obtain a late-time accelerating expansion of the Universe in line with the observations.

Dark matter and the cosmological constant Λ account for almost all the energy

density of the Universe today and, for this reason, the standard cosmological model

is now referred to as the Λ cold dark matter model or ΛCDM. Therefore, considering

what we said above about the primordial fluctuations from inflation, the ΛCDM

paradigm is characterised by three assumptions:

• a nearly scale-invariant primordial curvature power spectrum,

• cold and non-interacting dark matter particles (i.e. treating the DM as a

pressure-less fluid) and

• a cosmological constant Λ.

These assumptions (in particular the first two) imply that matter density fluctu-

ations are non-vanishing on all (astrophysically- and cosmologically-relevant) scales

[19,20,37,40,41]. This has interesting implications for structure formation. Indeed,

in ΛCDM structures build up hierarchically, i.e. small objects form first and then

merge together to create larger haloes. Numerical simulations of hierarchical struc-

ture formation are remarkably in line with observations of large-scale clustering of

galaxies [40, 41, 46–51], and the ΛCDM paradigm has successfully passed almost all

observational tests on large scales available today.
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1.2 Alternatives to ΛCDM

Despite the success of the ΛCDM paradigm, the true nature of dark matter and dark

energy remain a mystery. Moreover, several studies have suggested tensions between

pure CDM predictions and observations on galactic and sub-galactic scales (the

so-called small scale controversies, for a recent review see [52]). In the subsections

below, we review these challenges and describe some alternative models to ΛCDM

that have been proposed in the literature to address these problems. Although these

models do not resolve all the issues with the standard paradigm, they introduce

variations in the large scale structure that can be used to test the validity of ΛCDM

at different scales.

1.2.1 Damped matter fluctuations on small scales

CDM haloes display central density cusps in N-body simulations [53–55]. Such

profiles are strongly excluded by the observed small scale dynamics of some spiral

galaxies, which in turn seem to prefer a constant DM distribution (core) in the

center [56,57].

The missing satellites problem is another small scale issue. This refers to the

large difference between the number of satellite galaxies observed in Milky Way-

like galaxies and the number of subhaloes in ΛCDM simulations [58, 59]. It is

unclear if this problem is really due to an absence of small structures or rather

that these structures are “dark” haloes which contain no visible galaxies and hence

are not detectable directly. Several solutions have been proposed to ameliorate

these shortcomings of the ΛCDM paradigm, e.g. by taking into account baryonic

physics [60–63]. The absence of massive subhaloes in the Milky Way could also be

interpreted as an indication that the MW halo is less massive than is commonly

assumed [64]. In any case, the observed lack of small structures implies that galaxy

formation takes place in the most massive MW subhaloes, but when we look at these

structures they appear less dense than expected in CDM simulations. This is the
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so-called “too big to fail” problem, first identified by [65], although this issue can

also be resolved by invoking baryonic physics [63].

These possible difficulties facing the standard ΛCDM paradigm have renewed

interest in alternative cosmological scenarios that display less power on small-scales.

Such damped matter fluctuations can be achieved by relaxing one of the first two

above assumptions (see bullet points at the end of Section 1.1.2) in the standard

paradigm. We can then divide the models with damped matter fluctuations (damped

models hereafter) into two broad classes: those involving modifications to the prim-

ordial power spectrum (e.g. broken scale invariance during inflation, which we dub

non-standard inflation models) [66–74] and those that suppress power at later times

through some non-standard DM mechanisms (these models are generally referred to

as non-cold dark matter or nCDM, see e.g. [75]) [76–96].

Non-standard inflation models are characterised by a suppression in the primor-

dial curvature power spectrum on small scales, while the DM sector remains the same

as in the standard paradigm (in these models the DM particles are still cold and

non-interacting). A suppression in the curvature power spectrum can be achieved

e.g. when the first derivative of the inflaton potential (in one-field inflation models)

has a discontinuity [66,72,74] or when a second inflationary stage is introduced (as

in models of thermal inflation [73]). Because of the coupling between matter and

gravity, damped curvature fluctuations induce damped DM perturbations (i.e. in

these non-standard inflation models a cut-off appears in the matter power spectrum

at small scales).

nCDM models introduce non-standard DM mechanisms that modify the shape

of the power spectrum during the evolution of the fluctuations in the radiation

and matter dominated epochs, while the primordial power spectrum remains scale-

invariant. The mechanism leading to a suppression of power in nCDM depends on

the particular particle production process. Nevertheless, nCDM candidates are often

characterized either by a non-negligible thermal velocity dispersion (the so-called

warm dark matter models or WDM [76–89]), interactions (DM interacting with
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standard model particles such as neutrinos or photons [90–92] and self-interacting

DM [93]) or pressure terms from macroscopic wave-like behaviour (e.g. ultra-light

axions [94–96]).

All these features introduce a characteristic scale below which the density fluctu-

ations are erased. Independently of whether these models can give better matches to

the observations than ΛCDM on small scales, it is interesting to find how structure

grows in such alternatives. Indeed, testing variations from ΛCDM can help us to

understand how much we can learn about the nature of dark matter and of the

mechanisms (such as inflation) that occurred in the early Universe by measuring

cosmic large-scale structure.

1.2.2 Modifications of general relativity

From the theoretical point of view, one of the biggest challenges faced by ΛCDM is

related to the assumption that the late acceleration of the Universe is driven by a

constant vacuum energy Λ. Indeed, the observed value of Λ, inferred from cosmology,

is smaller than the expected ground state energy density of the vacuum predicted

in quantum field theory by 50 ∼ 60 orders of magnitude [97, 98]. A fine-tuning

mechanism is then needed to reconcile these two values, that, at the moment, is not

provided in the framework of the standard model of particles or in its extensions (e.g.

supersymmetric models). This is referred to as the fine-tuning problem. Moreover,

the present value of the cosmological constant energy density is of the same order

of magnitude of the mean matter density in the Universe today; given that these

two densities evolve differently at earlier times, this coincidence is another potential

theoretical issue generally called the coincidence problem.

Alternative scenarios that extend general relativity (GR) (the so-called modified

gravity (MG) models) are generally not able to resolve the above-mentioned problems

concerning the cosmological constant. However, these models are interesting because

the most stringent tests for GR come from our solar system, while conclusive evidence

that GR is valid on much larger scales is still missing. Future surveys such as
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DESI [99,100], EUCLID [101] or SKA [102] (as we will see in this thesis) will be able

to test gravity on cosmological scales, potentially finding or ruling out deviations

from the standard paradigm.

There is a huge number of ways to modify GR (for reviews see e.g. [103, 104]),

and, depending on the model chosen, non-standard features can be introduced

in the background history and/or in the clustering of structure of the Universe.

Analysing the theoretical predictions of these models helps us to identify cosmological

observables that can potentially uncover any departures from GR. Here, we focus

on the class of chameleon f(R) gravity models [105, 106], in the popular variant

proposed in [107], which can be constructed to reproduce the expansion history of a

ΛCDM universe accurately. So, the main differences in chameleon f(R) with respect

to GR can be found in the formation and clustering of non-linear structures rather

than in the background evolution.

1.3 Cosmological tools

In the era of precision cosmology, numerical simulations play a crucial role in helping

us to understand how the initially small matter perturbations grow to become non-

linear structures in the standard ΛCDM model and its alternatives. In this thesis,

we run our N-body simulations in the case of damped models (Chapter 2-5), while

we use the results from chameleon f(R) gravity hydrodynamical simulations [108]

to assess the effects of MG on the spacial distribution of neutral hydrogen and the

21-cm physics.

1.3.1 N-body simulations

N-body simulations follow the evolution of a patch of the Universe, by sampling the

DM phase-space density via a finite number ofN tracer (or simulation) particles [109].

The positions and velocities of these particles are obtained by solving the Newtonian

equations of motion, embedded in an expanding (background) Universe. For DM-only
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simulations, the interactions between the simulation particles occur only through

gravity.

The first step to run a N-body simulation is to transfer the information about

the small matter inhomogeneities, δρm, at some time t (information contained in

the matter power spectrum, P (k) ∼ 〈|δρm(k)|2〉) to the simulation particles, initially

distributed (generally) on a grid. This produces the N-body initial conditions (ICs).

In the ICs, the particles are displaced from the initial grid positions and are provided

with gravitationally-induced velocities following e.g. the Zel’dovich approximation

(first order perturbation theory) [110] or a second-order Lagrangian perturbation

theory (2LPT) [111,112].

In this process, it is important that the Fourier modes of the perturbations at

the scales and the redshift at which the ICs are generated are well inside the linear

regime, so that the above perturbation theory approximations can be used. The

choice of the starting redshift for a given simulation box is of great importance. For

our simulation set-ups (as we will see in Chapter 2) we choose to generate the initial

conditions at z = 199, using 2LPTic [112], which provides ICs based on 2LPT. We

test the impact this choice of initial redshift has on our results (see Chapter 2).

We then evolve the ICs using the publicly-available N-body and hydrodynamical

simulation code Gadget-2 [113]. The Gadget-2 code calculates the gravitational

forces between the simulation particles using a tree algorithm for short-range forces

and a high-resolution particle-mesh for computing long-range forces. The results

from N-body simulations are used to measure halo statistics and non-linear matter

and velocity power spectra that give information on the non-linear clustering and

distribution of the DM in the simulated Universe. The different N-body simulation

set-ups (number of particles, box volume, etc) used in this work are described in

more detail in the next Chapters.
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1.3.2 Hydrodynamical simulations

N-body simulations trace the growth of DM structure into the non-linear regime.

The DM, in the standard picture, is believed to be decoupled from the rest of the

Universe, interacting only via gravity. Although DM accounts for the majority of the

matter content of the Universe, in order to compare simulations with observations,

we need to take into account baryonic physics, that is responsible for the galaxies

that form within the DM structures. In a DM halo, the baryonic gas cools while

descending the DM potential well [114]. Depending on the temperature and density,

a variety of cooling processes can affect the gas (see e.g. [39, 115]). Eventually, its

self-gravitational force dominates over the DM one, and the gas collapses under its

own gravitational pull. The temperature and density of the gas rises and this self-

gravitating cloud may fragment into small, high-density cores, producing stars [39].

However, supernovae and active galactic nuclei (AGN) feedback reduce the star-

formation efficiency, by heating the surrounding gas, suppling it with momentum

and removing it from the galaxy (in what is called a galactic wind). The energy of the

AGN can also be dumped into the hot gas to balance the cooling flow, hence stopping

the gas from cooling in the first place (the so-called radio mode feedback). As is clear

from the above sketch, galaxy formation involves many interconnected processes that

can modify the abundance of the main baryonic components (hot gas, cold gas, stars

and a supermassive black hole) in a galaxy. Therefore, simulations of DM+baryon

dynamics (or hydrodynamical simulations) are more computationally-expensive than

DM-only simulations (where particles interact only via gravity), because they need

to take into account of all these different effects that influence galaxy formation and

evolution (for a review see e.g. [116]).

To model the baryonic physics in MG scenarios, we use the shybone simulations

[108], a set of very high-resolution full-physics hydrodynamical simulations in f(R)-

gravity carried out with the AREPO simulation code [117] (this code is based on P-

Gadget3, a version of the code Gadget2 [113]). The simulations use the Illustris-TNG

hydrodynamical model [118–123] incorporating prescriptions for star and black hole
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formation and feedback, gas cooling, galactic winds and magneto-hydrodynamics

on a moving Voronoi mesh3 [120, 124]. The equations for the modified gravity

force in f(R)-gravity are solved to full non-linearity in the Newtonian limit by the

modified gravity solver in the code [125], capturing the effects of the chameleon

screening mechanism (see Chapter 6 for further details). The results from these

hydrodynamical simulations are used to measure the neutral hydrogen abundance

and power spectrum in the simulated Universe.

1.4 Thesis outline

In this thesis we study the effects of some alternatives to ΛCDM on structure

formation using high-resolution cosmological simulations. In Chapter 2 we investigate

the impact of adding thermal velocities in N-body simulations in thermal WDM

cosmologies. We find that a new source of numerical noise is introduced in the

simulations and we quantify the magnitude of this error in the non-linear matter

and velocity power spectra and in halo statistics such as the halo mass function,

halo radial density profiles and the halo mass-concentration relation. In Chapter 3,

considering different power spectra with damped matter fluctuations, we assess up

to which scale the information from the linear-theory power spectrum shapes the

non-linear evolution and how non-linear quantities such as the power spectrum and

the halo mass function are sensitive to variations in the linear power spectrum. We

then propose a 2-parameter model for the power spectrum of damped scenarios and

test its validity by comparing it with the standard 3-parameter model considered

in [75]. Exploiting these results, in Chapter 4, we propose a new smooth-k space filter

to be used in the Press-Schechter approach, to analytically estimate the DM halo

mass function in models with damped matter fluctuations. We show how our filter

resolves some problems of other filters raised in the literature. In Chapter 5 we study

3The main differences in the Illustris-TNG hydrodynamical model with respect to other models
considered e.g. in Illustris [126,127] (or EAGLE [128]) simulations are in the implementation of an
updated AGN feedback model, the choice of the parametrisation for galactic winds and the inclusion
of magnetic fields (see e.g. [123] for a more complete comparison with Illustris simulations).
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a new model of non-standard inflation that is characterised by an enhancement w.r.t.

ΛCDM in the linear-theory power spectrum before a sharp cut-off. We show how

the enhancement influences the non-linear power spectra and the halo properties,

comparing the results with those expected in the standard ΛCDM and in the thermal

WDM model. In Chapter 6, we focus our study on modified gravity theories, using

the chameleon f(R) gravity as an example. In this chapter, we model the neutral

hydrogen distribution in MG using the hydrodynamical simulations in [108], assessing

to what extent the HI and 21-cm power spectrum differ in f(R) gravity theories

when compared with results from GR. Finally, a summary of our work and future

prospects is given in Chapter 7.





Chapter 2

Thermal velocities and structure

formation in WDM

2.1 Introduction

Several nCDM models have been proposed in which candidates have non-negligible

thermal velocities [76–89]. The main consequence of the presence of a non-vanishing

velocity dispersion is free-streaming: the particles cannot be confined into regions

smaller than the free-streaming length, λfs ∼ σ/H, where σ is the particle velocity

dispersion, so that density perturbations are damped on scales below λfs and a

cut-off appears in the linear matter power spectrum. The shape of the matter power

spectrum and the position of the cut-off depends on the velocity dispersion σ, which

in turn depends on the particular velocity distribution of the particles. The free-

streaming is a feature which is common in collisionless fluids with non-negligible

velocity dispersions, e.g. active neutrinos (see e.g. [129]) exhibit such behaviour1.

The simplest of these scenarios is the so-called thermal warm dark matter

(thermal WDM), where DM particles are in thermal contact with the primordial

bath, decouple when still relativistic, and enter the non-relativistic regime deep into

1CDM candidates such as WIMPs also display a cut-off in the power spectrum due to free-
streaming or to interactions in the early Universe. Since such particles are heavy and interact
weakly with Standard Model particles, the suppression scale appears at very small masses (between
10−12 h−1M� and 10−4 h−1M� depending on the parameters of the model [130,131]).
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the radiation-dominated period. This mechanism ensures that the particles have a

Fermi-Dirac (if the particles are fermions) momentum distribution, which leads to a

simple relation between the particle mass and the free-streaming length λfs, and a

distinctive cut-off in the matter power spectrum [76–79]. The Lyman-α forest has

proven to be a powerful tool to constrain the mass of the thermal WDM candidates,

suggesting a mass of mWDM & 3.3 keV [132] (although a recent analysis pushes the

limit to slightly higher masses mWDM & 3.5 keV when allowing a particular evolution

of the temperature of the IGM, [133]). These constraints on the mass are strictly

valid only if all the DM sector is in the form of thermal WDM particles. Mixed

scenarios (thermal WDM + CDM) are also possible. In these models only a fraction

of the dark matter is in the form of WDM, while the remaining fraction behaves as

standard CDM. Such models do not display the sharp cut-off in the power spectrum

that is characteristic of a pure WDM model since the CDM fluctuations are present

on small scales [134]. Constraints on mixed DM using Lyman-α forest have been

found in [134].

keV sterile neutrinos are another class of nCDM candidates with non-vanishing

thermal velocities, which are well motivated by particle physics theories (see [135] for

a summary of the cosmological impact of these particles). Their mixing with active

neutrinos offers a possible mechanism for producing a primordial abundance of such

particles. Moreover, sterile neutrinos νs produced via mixing can decay radiatively

via νs → νa + γ, where νa is an active neutrino, leading to a monochromatic X-ray

line. The mass and the mixing angle of these particles can then be constrained by

searching for decay signals in the X-ray spectrum [81, 135]. The production mech-

anism via mixing can be non-resonant (“Dodelson-Widrow”) [80–82] or resonantly

(“Shi-Fuller”) enhanced by a lepton asymmetry in the early Universe [83–85]. How-

ever, a pure non-resonant production mechanism of keV sterile neutrinos is in conflict

with the current astrophysical constraints from the Lyman-α and X-rays [132,135].

Resonantly produced sterile neutrinos are more in line with observations and can

potentially explain the recent (although controversial) detection of a 3.55 keV X-
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ray emission line [136, 137]. However, such neutrinos are constrained to a very

narrow range of masses 7 ≤ ms ≤ 36 keV and lepton asymmetries larger than

15 × 10−6 (at 95% CL) [138], and they are completely disfavoured when includ-

ing constraints from Lyman-α forest [139]. Another possibility is that keV sterile

neutrinos can be produced via the decay of a hypothetical parent particle in the

early Universe [86–89]. The initial parent decay production can be followed by a

non-resonant production [140]. This case is similar to a mixed DM scenario since

there is a colder velocity component (spectrum from decay production) and a warmer

velocity component (Dodelson-Widrow production). Sterile neutrinos produced by

mixing or by particle decays have non-thermal distributions and cannot be treated

in the simple framework of thermal WDM particles. Indeed, in some of these models,

the sterile neutrino momentum distribution deviates significantly from Fermi-Dirac,

so that, unlike thermal relics, the matter power spectrum cut-off is not a simple

function of the mass. Consequently, keV sterile neutrinos can act as warm or cold

DM depending on the model thus eluding the mWDM & 3.3 keV Lyman-α constraint

found in [132,133] (which consider only matter power spectra from thermal WDM

distributions). The very specific shape of the matter power spectrum has to be

taken into account to constrain each (non-thermal) model using the Lyman-α forest.

Another way to constrain non-thermal models using the Lyman-α forest has been

proposed in [75].

2.2 Thermal velocities and structure formation

If DM is in the form of nCDM candidates, it is important to investigate how the

predictions for structure formation differ in such models from those forecast in

standard CDM. N-body simulations have proved to be a powerful tool to follow the

evolution of the structure in the CDM scenario and can also be used to study the

effects of the damping on small scales in nCDM. However, the difference between

nCDM candidates, such as thermal relics or sterile neutrinos, and CDM is not
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only in the shape of the linear matter power spectrum, but also in the presence of

non-negligible thermal velocities for nCDM. Indeed, in structure formation we can

have two sources of DM velocities: those intrinsically due to the thermodynamical

distribution of the DM particles and those induced by the gravitational collapse

and clustering of structures (gravitationally-induced velocities), see e.g. [134]. When

running a simulation of structure formation, the starting redshift is generally chosen

to be at a reasonably high value, to ensure that all of the scales we are interested

in are well within the linear regime (see discussion in Subsection 1.3.1). If we start

at z = 199, for a typical simulation the gravitationally-induced velocities (generally

called peculiar velocities) are around or below vpec ∼ 10 km/s. CDM candidates have

negligible thermal velocities respect to the peculiar velocities vpec at the redshift

considered, and so their thermal velocities can be safely neglected. This is not

always the case for nCDM candidates, e.g. for a thermal WDM candidate with

mass of 3.3 keV, the thermal velocity dispersion is of the order σtherm ∼ 2 km/s

at z = 199 [76]. So, thermal velocities are non-negligible and should be taken into

account in the simulations. However, numerical simulations of nCDM are usually

initialised by taking into account only the cut-off in the linear matter power spectrum,

while thermal velocities are not explicitly included (see e.g. [75,76,141–147]). This

is because thermal velocities are assumed to have no influence on the halo mass

function at late times so long as the mass resolution of the N-body simulation at

the starting redshift is well above the Jeans mass of the warm particle fluid [143] (if

a simulation belongs to this class, we say that the Jeans mass criterion is satisfied).

Another argument that is often invoked to justify neglecting thermal velocities in

N-body simulations concerns the distance travelled by particles free-streaming due to

their thermal motions over the duration of the calculation, which is e.g. around a few

kiloparsecs for thermal WDM candidates with masses around a few keV [141]. If this

length is smaller than the mean-interparticle separation in the simulation, thermal

velocities are neglected since free-streaming only influences scales that are not well

resolved in the simulation (if a simulation belongs to this class, we say that the free-
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streaming length criterion is satisfied). Anyway, neglecting thermal velocities remains

an approximation which we test in this chapter. The only physical effect expected

when introducing primordial thermal velocities is a “phase-packing” limit, which

prevents the density in the central regions of the haloes from increasing arbitrarily

(producing a central core) [148–150], but for values of WDM candidate masses

compatible with the upper limits from the Ly-α forest [132,133], the cores are only a

few parsecs in size and therefore are not relevant astrophysically [149,150]. However,

there are other models in which thermal velocities cannot be easily discarded, e.g. in

the case of composite DM simulations, in which there are two DM components (e.g.

the simulations of CDM + massive ν discussed in [151–153]). The aim of this chapter

is to assess the impact of including thermal velocities in simulations of structure

formation in thermal WDM (using the standard technique described below) to see

if this affects the range of scales on which the simulation results are accurate.

A common approach used to implement thermal velocities in N-body simulations

consists of adding the physical thermal velocities to the gravitationally induced

peculiar velocities of the simulation particles in the N-body initial conditions (ICs)

[134,149–157]. The subsequent evolution of structure will then follow both sources of

the velocity field2. This approach is also used in galactic dynamics, where the fluid

is made up of stars. In this case it is well known that ignoring the stellar velocity

dispersion produces gravitational instability (see e.g. [159]). Simulations of galactic

dynamics are performed by adding a stellar velocity, drawn from a distribution, to

the simulation particles. However, as pointed out by [151,152,154,155] (see also the

discussion in [145,146]), the above approach of adding thermal velocities in the ICs

can introduce a new source of numerical error. Indeed, since a simulation particle

contains a huge number of physical particles3, the net thermal velocity has to be zero

2A different approach to simulate gravitational evolution of collisionless WDM particles has
been recently proposed in [158].

3Simulation particles are always many orders of magnitude more massive than physical particles,
e.g. in our simulations the simulation particle mass is around 107 h−1M�, while the warm particle
mass is of the order of keV ∼ 10−63 h−1M�. So each simulation particle is made up of around 1070

physical particles.
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if the thermal velocities of physical particles are drawn from a distribution without

a preferred direction. Extra numerical noise is then introduced because we assign a

net (non-zero) thermal velocity (taken from the Fermi-Dirac distribution of physical

WDM particles) to each simulation particle. [154] pointed out that the numerical

noise can be reduced by choosing a lower (z ∼ 40) redshift at which to generate

the ICs. However, a detailed study of how the noise affects the formation and the

evolution of the structures has not been carried out before.

Our aim in this chapter is to perform a comprehensive study of the effects

of thermal velocities in N-body simulations for the simplest scenario of thermal

WDM where the velocity distribution is Fermi-Dirac4. Using the approximation of

assigning thermal velocities to the simulation particles, we quantify the impact of

the numerical noise by analysing the matter and velocity power spectra measured

from simulations at different redshifts. We also show how these numerical artefacts

can affect halo properties such as the halo mass function and radial density profiles.

In particular, we derive a new mass cut-off below which spurious haloes dominate

in simulations with thermal velocities. Note also that the non-thermal production

of sterile neutrinos produces, in general, colder velocity spectra than thermal WDM.

For this reason, our results can be considered as an upper bound on the impact of

thermal velocities in sterile neutrino models.

The layout of this chapter is organised as follows. In Section 2.3, we measure

velocity power spectra for ICs generated at z = 199 for WDM simulations, quan-

tifying the source of the noise introduced by the thermal velocities in the initial

conditions. We run a series of WDM simulations with thermal velocities varying

the number of particles, box size and the physical WDM particle mass, in all cases

extracting velocity power spectra and comparing with WDM simulations without

4We stress here the fact that our simulations of thermal WDM satisfy both the Jeans mass [143]
and the free-streaming length criteria [141], so, in principle, we can also apply the approximation of
neglecting thermal velocities. However, since we are interested in quantifying the effects of the noise
introduced in the simulations when adding thermal velocities, we will take into account thermal
velocities with the justification that at the initial high redshift, zini = 199, at which the ICs are
generated, thermal velocities are comparable with peculiar ones.
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thermal velocities. Section 2.4 is devoted to the evolution of the ICs at z = 199 up

to z = 0, showing how the noise in the ICs propagates through to subsequent times.

We also discuss the possibility of reducing the numerical noise by generating the ICs

at a lower redshift, z = 39. In Section 2.5, we explore how haloes are affected by

thermal velocities, focusing on the halo mass function and radial density profiles of

haloes.

2.3 Thermal velocities and initial conditions

This section explores the impact of thermal velocities in the N-body initial conditions.

First, we introduce the WDM model chosen for our analysis. Then, we describe how

we generated N-body initial conditions for such a model. Finally, we measure velocity

power spectra from simulations which include thermal velocities and compare the

results with simulations which ignore thermal velocities.

2.3.1 The thermal WDM model

We choose for our analysis the so-called thermal WDM scenario. In this model, a non-

standard fermionic species with massmWDM is in thermal contact with the primordial

bath, decouples when still relativistic and enters the non-relativistic regime deep

into the radiation-dominated period [76,78]. Since this component freezes-out when

relativistic and in thermal contact, the functional form of the momentum distribution

remains Fermi-Dirac after decoupling,

fWDM(p) = 1
ep/TWDM + 1 , (2.3.1)

where the momenta p redshift as (1 + z). TWDM is the temperature of the WDM

species and its present value can be related to the so-called present neutrino temper-

ature T 0
ν = (4/11)1/3 T 0

γ (where T 0
γ is the present photon temperature, note that T 0

ν

actually represents the temperature that active neutrinos would have if still in the
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relativistic regime today) as [78],

T 0
WDM =

(
Ω0

WDM h2

mWDM/94 eV

)1/3

T 0
ν ,

where Ω0
WDM is the present day fractional contribution of WDM in units of the total

(critical) density of the Universe ρ0
c ≡ 3H2

0/8πG and h ≡ H0/(100 km/s/Mpc) is

the dimensionless value of the Hubble constant. We make the extra assumption

that all the DM sector is in form of WDM, i.e. Ω0
WDM = Ω0

m ∼ 0.3, where Ω0
m is

the present day total contribution of the DM in units of the critical density. When

WDM particles become non-relativistic, their thermal velocities remain a Fermi-Dirac

distribution with rms velocity of the form [76],

σtherm ≡
√
〈v2

therm〉 = 0.0429
(

Ω0
WDM
0.3

)1/3 (
h

0.7

)2/3 ( keV
mWDM

)4/3

(1 + z) km/s.

(2.3.2)

For the model discussed in this section, a parametrisation of the linear power

spectrum of density fluctuations exists [76], which we will use throughout. This

parametrisation can be written in terms of a transfer function relative to CDM,

T 2(k) ≡ PWDM(k)/PCDM(k):

T (k) =
(
1 + (αk)β

)γ
, (2.3.3)

where

α = a

(
Ω0

WDM
0.25

)b (
h

0.7

)c (
mWDM

keV

)d
, β = 2ν, γ = −5/ν, (2.3.4)

and

a = 0.049, b = 0.11, c = 1.22, d = −1.11, ν = 1.12,

as computed in [79]. More accurate power spectra for more general non-cold DM

models can be generated using Boltzmann codes such as class [160,161].

The characteristic scale at which the cut-off in the WDM power spectra occurs

can be defined through the half-mode wavenumber k1/2. k1/2 is the wavenumber

at which the transfer function T (k) falls to 50%. Given the parametrisation in Eq.
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(2.3.3) for T (k), we have

k1/2 = 1
α

(
2ν/5 − 1

)1/2ν
. (2.3.5)

2.3.2 The mass of the WDM candidates

Thermal WDM with a particle mass around a keV has a free-streaming characteristic

length of the order of dwarf galaxy scales, so candidates with such masses can be

able to solve the missing satellite problem [76–79]. The current strongest constraints

on the free-streaming length of DM particles come from the Lyman-α forest. The

Lyman-α forest is a series of absorption lines in the spectra of distant quasars due to

the inhomogeneous distribution of the intergalactic medium (IGM). These lines can

be used as a measure of the matter power spectrum on scales 0.5h−1Mpc < λ < 100

h−1Mpc over a range of redshifts 2 < z < 6 [79,132,133]. In [132] the authors find the

following constraints5 on thermal WDM using the Lyman-α forest, mWDM & 3.3 keV.

However, the Lyman-α forest does not probe directly the DM power spectrum, but

rather that of the neutral hydrogen. The neutral hydrogen gas does not necessarily

follow the distribution of DM, since the process of reionisation heats the hydrogen,

preventing it from clustering at small scales [162]. To translate the results from the

Lyman-α forest to constraints on the DM power spectrum, a crucial parameter is the

temperature of the IGM. However, the IGM temperature is not precisely known, so

some approximations are made in the literature, depending on which the constraints

on WDM particle mass can vary. Indeed, the mWDM & 3.3 keV mass bound can

be relaxed to mWDM & 2 keV by changing the assumptions about the IGM thermal

history [132] (see also [163], in which the authors have re-analysed the Lyman-α

forest spectra considered in [132]). Motivated by the above discussion, whilst the

assumptions about the thermal history of the IGM remain controversial, we choose

three benchmark values for the WDM particle mass in our analysis: mWDM = 2 keV,

mWDM = 3.3 keV and mWDM = 7 keV (which will be our coldest WDM candidate).

5A recent analysis pushes the limit to slightly higher masses, indeed, depending on the thermal
history of the IGM, we can have mWDM & 3.5 keV [133].



48 Chapter 2. Thermal velocities and structure formation in WDM

0.0 0.5 1.0 1.5 2.0 2.5 3.0

log(k/(h Mpc−1 ))

12

10

8

6

4

2

lo
g
(P

δδ
/
(h
−

3
M

p
c3

))

CDM

mWDM =2 keV

mWDM =3.3 keV

mWDM =7 keV

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

log(k/(h Mpc−1 ))

4

3

2

1

0

1

lo
g( PW

D
M

δδ
/P

C
D

M
δδ

)

mWDM =2 keV

mWDM =3.3 keV

mWDM =7 keV

(b)

Figure 2.1: (a) Linear theory matter power spectra at redshift z = 199 for CDM and
three WDM models with masses mWDM = 2, 3.3, 7 keV as labelled. (b) Squared transfer
functions T 2(k) ≡ PWDM/PCDM(k) for the three warm candidates. The dotted black
horizontal line represents the scale at which the transfer function is suppressed by a factor
of two. The intersection between the transfer function and the horizontal line defines the
half-mode wavenumber k1/2. The WDM spectra are generated using the parametrisation
in Eq. (2.3.3).
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In Figure 2.1(a), we plot the linear matter power spectra using the parametrisa-

tion in Eq. (2.3.3) for the three WDM masses chosen. The CDM power spectrum

is also shown for comparison6. In Figure 2.1(b) we plot the square of the transfer

function T (k), together with the half-mode wavenumber k1/2 (see Eq. (2.3.5)) for

each of the WDM candidates.

2.3.3 The simulations

In order to take into account thermal velocities in the N-body simulations, the initial

conditions (ICs) for running cosmological simulations have to be modified accordingly.

We use the numerical code 2LPTic [112]. 2LPTic can generate the ICs for thermal

WDM models, taking as input the thermal WDM mass mWDM and computing the

corresponding T (k) from Eq. (2.3.3). The code also contains a module for adding

thermal velocities, following the approximation used in [134,149–157]. The thermal

velocities for simulation particles are randomly picked such that their magnitudes

obey a Fermi-Dirac distribution with a dispersion given by Eq. (2.3.2), while the

directions satisfy a uniform distribution in the 4π solid angle. The addition of

thermal velocities to peculiar velocities is done using a simple velocity addition law.

We run 2LPTic for the three WDM candidate masses mentioned above, mWDM =

2, 3.3, 7 keV. For each mass, we consider two types of WDM simulations, (i) WDM

simulations without thermal velocities (which we call WDM-novth) and (ii) WDM

simulations which take into account thermal velocities in the ICs (referred to as

WDM-vth). Our analysis consists of generating ICs for these two types of simulations,

varying the number of simulation particles N and the length of the box L. For each

pair {N,L}, the Nyquist frequency of a simulation is kNy ≡ π(N1/3/L) (this specifies

the value up to which we can trust the P (k) estimate using an FFT and the scale

down to which a clustering signal can be imposed due to the mean inter particle

6The CDM power spectrum is generated using the code class [160]. The values of the cosmolo-
gical parameters are given below. The DM contribution is Ω0

mh
2 = 0.120, the baryonic contribution

is Ωbh
2 = 0.023, the dimensionless Hubble constant is h = 0.6726, the spectral index of the prim-

ordial power spectrum is ns = 0.9652 and the linear rms density fluctuation in a sphere of radius 8
h−1Mpc at z = 0 is σ8 = 0.81.
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mWDM L N kNy WDM- WDM- zini Evolved ε
(keV) (h−1Mpc) (h Mpc−1) novth vth (h−1kpc)

2 2 5123 803.8 X X 199 × -
2 25 5123 64.3 X X 199 X 1.22

3.3 2 643 100.5 X X 199 × -
3.3 2 1283 201.0 X X 199 × -
3.3 2 2563 401.9 X X 199 × -
3.3 2 5123 803.8 X X 199 × -
3.3 10 5123 160.8 X X 199 × -
3.3 25 5123 64.3 X X 199 X 1.22
3.3 50 5123 32.2 X X 199 × -
3.3 25 5123 64.3 X X 39 X 1.22

7 2 5123 803.8 X X 199 × -
7 12 5123 134.0 X X 199 X 0.58
7 25 5123 64.3 X X 199 X 1.22

Table 2.1: Summary of the simulations performed. mWDM is the physical mass of the
WDM candidate. L and N are the simulation box length and the number of simula-
tion particles respectively. kNy is the Nyquist frequency. WDM-novth refers to simula-
tions which ignore thermal velocities, while WDM-vth refers to simulations which include
thermal velocities. zini is the redshift at which the ICs are generated. The checkmarks (X)
in the column “Evolved” indicate the simulations which have been evolved up to z = 0.
For the ICs which have been evolved, we also show the gravitational softening length ε.
Note that for L = 25hMpc−1, the modes at the smallest wavenumbers probed by the
simulations have entered the non-linear regime at z = 0. However this does not affect the
results presented in this Chapter because (i) the CDM and WDM models (considered here)
have identical linear power spectra at small wavenumbers and (ii) we are interested only
in the ratio of power spectra between models (so this issue concerning small wavenumbers
divides out when considering the ratios).

separation).

The ICs are generated at the initial redshift zini = 199, when the thermal velocity

dispersions are, see Eq. (2.3.2),

σtherm ' 3.4 km/s for mWDM = 2 keV,

σtherm ' 1.7 km/s for mWDM = 3.3 keV,

σtherm ' 0.6 km/s for mWDM = 7 keV.

These are non-negligible with respect to the peculiar velocities, which are of the

order of vpec ∼ 10 km/s at z = 199. We have run an additional simulation with a

lower initial redshift zini = 39 to test the impact of the initial redshift on the results;

we postpone a discussion of this to Section 2.4. In Section 2.4 we have also evolved

some of the ICs up to z = 0, using the code Gadget-2 [113]. The gravitational
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softening length ε is set to be 1/40-th of the mean interparticle separation, L/N1/3.

Further details of our simulations are listed in Table 2.1.

2.3.4 Velocity power spectra measurement

In order to quantify the effects of thermal velocities in WDM-vth, we measure the

matter and velocity power spectra from the simulations. However, because in the

initial conditions thermal velocities are implemented only in the velocity sector, by

default the matter perturbations in the initial conditions are not affected. Instead,

the effect of thermal velocities on the matter distribution only becomes apparent after

at the first time step and through the subsequent evolution. As in this section we

are interested only in the ICs, we shall focus on the velocity power spectra extracted

from the ICs. The velocity (divergence) power spectra are defined as [164],

Pθθ(z, k) = 1
(a(z)H(z)f(z))2

〈
θ2
~k
(z)
〉
, (2.3.6)

where θ~k(z) is the Fourier transform of the velocity divergence θ(~x, z) ≡ ~∇·~v(~x, z) and

f(z) = d lnD+/d ln a, with D+ linear growth factor and a scale factor. Remember

that the matter power spectrum is

Pδδ(z, k) ≡
〈
δ2
~k
(z)
〉
, (2.3.7)

where δ ≡ δρ/ρ̄ is the matter overdensity. So the normalisation in Eq. (2.3.6) is

useful since in the linear regime θ = −aHfδ and the velocity power spectrum is

equal to the matter power spectrum, Pθθ = Pδδ. For this reason, we can compare the

velocity power spectra measured from simulations directly with the matter power

spectra specified by the fitting formula in Eq. (2.3.3).

Extracting the velocity field from a N-body particle distribution is more chal-

lenging than constructing the matter density field, due to the non-additivity of the

velocities7. Indeed, as pointed out in [164], applying the standard methods used

7The non-additivity of the velocities refers to the fact that the net (center-of-mass) velocity of
a set of particles is not the sum of the particle velocities ~vi in the set, but is instead the mass-
weighted average, ~vnet =

∑
i wi~vi, with wi = mi/M , where mi is the mass of the i-th particle and
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to estimate matter power spectra will not always give the expected results when

we consider velocity power spectra. This is mainly because the standard methods

usually use a grid-based scheme, in which the simulation box is covered by a grid.

At each vertex a value for the matter density (or momentum density), is calculated

using some mass assignment scheme (e.g. nearest grid point, cloud in cell, triangular

shaped cloud), in the form of a weighted sum of the masses (or momenta) of the

particles near each grid vertex (see e.g. [165]). Usually, the velocity field is obtained

by averaging the particle velocities near each corresponding grid vertex. Thus, in

order to assign a velocity field value at each vertex, we need first to assign the

momenta and then divide it by the mass density at the same vertex. The limitation

of the method is clearly due to the 0/0 divergence caused by empty grid cells, in

which there could be no particles at all and then the momenta and mass density

both add to zero.

As suggested in [164], an alternative way to measure the velocity power spectra is

to use the Delaunay Tessellation methodology [166]. The Delaunay Tessellation for a

set of points p distributed in a 3D space is the set of tetrahedrons (where each vertex

is a point of the set) whose circumscribed sphere contains no points other than the

four that generate the tetrahedron (and that lie on its surface). This construction

is unique. The velocity at the general coordinate ~r = (x, y, z) inside a tetrahedron

can then be inferred using a linear interpolation between the velocity values at the

4 vertices of the tetrahedron. In this case when we split the box into cells, we avoid

the singularities, since the cell will be contained in at least one tetrahedron. The

velocity associated with each grid vertex is computed as the average (in volume)

given by all Delaunay tetrahedra contained in the grid cell corresponding to such

a point [164]. In this way, the only way to have zero velocity field in a given grid

point is a zero mean among all the tetrahedrons contained within the corresponding

cell. Throughout we will use the publicly available DTFE code to estimate velocity

power spectra, which implements the Delaunay tessellation approach [167].

M =
∑

i mi.
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2.3.5 Results and discussion

Figure 2.2 shows the velocity power spectra measured from some of the simulations

in Table 2.1. In the first panel (Figure 2.2(a)) we show the results for simulations

with box length L = {50, 25, 10, 2} h−1Mpc, whilst fixing the number of particles

at N = 5123 for mWDM = 3.3 keV. On one hand, we see that all the velocity power

spectra from WDM-novth agree well with the linear theory power spectra. The

agreement extends to higher wavenumbers when decreasing the box size as expected

since the mean interparticle separation, L/N1/3, goes down and consequently kNy

acquires a higher value. On the other hand, the velocity power spectra extracted from

WDM-vth deviate strongly from WDM-novth (and from linear theory predictions),

and show an upturn at small scales. These deviations are numerical artefacts since

they are pushed to higher wavenumbers for smaller boxes.

In Figure 2.2(b), we show the velocity power spectra for simulations with varying

number of particles N = {643, 1283, 2563, 5123} in a fixed box of length L = 2

h−1Mpc. As we can see also in this case WDM-vth deviates from WDM-novth

at high wavenumbers. These deviations tend to appear at higher wavenumbers for

larger N , confirming the previous statement that the deviations are due to numerical

noise.

The thermal velocity dispersion depends on the mass of WDM (see Eq. (2.3.2)).

So we expect that the impact of thermal velocities on the ICs will vary with mWDM.

Figure 2.2(c) shows how the behaviour changes by varying mWDM, while fixing the

number of simulated particles at N = 5123 and the box length at L = 2 h−1Mpc. As

we can see, increasing the mass (reducing the thermal velocity dispersion) reduces

the deviations due to the noise in WDM-vth and shifts the discrepancies to higher

wavenumbers. For the most massive candidate (mWDM = 7 keV) there is agreement

between WDM-vth and WDM-novth up to k ≈ 170 h/Mpc, while for the lightest

mass (mWDM = 2 keV) the power spectrum from simulations with thermal velocities

starts to disagree at k & 40 h/Mpc.

The deviations in the simulations with thermal velocities are due to numerical
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Figure 2.2: Velocity power spectra measured from ICs for WDM-vth (triangles) and
WDM-novth (dots). The different panels show how the spectra change when varying (a)
the box length L, (b) the number of particles N and (c) the mass of WDM mWDM, while
fixing the other parameters. We normalise the velocity power spectra such that Pθθ = Pδδ
(see Eq. (2.3.6)), in this way they can be directly compared with the theoretical linear
matter power spectra given by Eq. (2.3.3) (represented as black dashed lines in this figure).
Note that the range of scales plotted on the x-axis and y-axis in each panel is different.
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noise. The numerical noise originates in the way we assign a thermal velocity vector

to a simulation particle. This can be understood by the following argument. The

ICs are generated starting from a homogeneous grid of simulation particles and

associating a velocity vector ~v at each particle on the grid. Simulation particles

in CDM simulations (or in WDM simulations without thermal velocities) have no

thermal velocities, so only peculiar velocities contribute to the velocity vector at

each grid point, ~v = ~vpec. On the other hand, in WDM simulations with thermal

velocities we add a random thermal velocity vector to each simulation particle, so

the net velocity at each grid point is ~v = ~vpec + ~vtherm. The simulation particles are

initially put onto a grid to suppress shot noise effects. This is sometimes referred

to as a “quiet start”. When the particles are displaced from a grid the measured

matter power spectrum agrees with the target linear theory predictions down to

smaller scales than is the case if the particles have a random distribution before

they are displaced (see e.g. the discussion on initial particle arrangements in [168]).

However, when thermal velocities are included the particles move, on average, a

greater distance away from their initial grid positions after the first time step, and

effectively “lose memory” of where they started from. Thus, the net effect on the

matter power spectrum after the simulation has been evolved for one time step is

almost the same as perturbing a random initial particle distribution rather than a

“quiet” grid. Therefore, including thermal velocities in the simulation introduces

more shot noise compared to that in simulations without thermal velocities. It is well

known that the shot noise level is reduced when increasing the simulation resolution

(i.e. increasing the number density of the simulation particles); indeed in our results

the noise effect is pushed to smaller scales as the resolution improves for simulations

with thermal velocities (see figures 2.2(a) and 2.2(b)).

Another way to reduce the noise in the ICs is to choose a lower initial redshift.

This is because the impact of thermal velocities decreases linearly with redshift (see

Eq. (2.3.2)). However, we cannot make the initial redshift arbitrarily low since at

very low redshifts nonlinear corrections to the power spectrum, especially at small
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scales, are no longer negligible. In the next section we will discuss how the noise is

reduced if we start at a lower redshift.

2.4 Structure formation: evolved matter and

velocity spectra

This section is devoted to a study of the nonlinear evolution of the ICs. We consider

two sets of ICs, one generated at zini = 199 and the other at a lower redshift, zini = 39,

which is chosen because at this redshift the thermal velocities are negligible with

respect to peculiar velocities, so we expect that the numerical noise does not affect

the ICs. All simulations are performed in a cubic box of length L = 25 h−1Mpc

using N = 5123 particles. We choose this pair of {N,L} in our simulations since

we want to resolve the structures at scales near the half-mode wavenumber (see Eq.

(2.3.5)) of our warmer candidates8 (mWDM = 2 keV and 3.3 keV).

We evolve the ICs up to z = 0, showing how the noise in the ICs affects the

matter and velocity power spectra at intermediate redshifts.

2.4.1 Results for initial conditions generated at zini = 199

Before presenting the quantitative results of our study, let us first show two snapshots

of the matter density field to qualitatively appreciate the effects introduced by

including thermal velocities in the simulations. In Figure 2.3 we select the same

region of the simulation box at z = 0 from WDM-novth (upper panel) and from

WDM-vth (lower panel) for the WDM candidate with mass mWDM = 2 keV. It is

well known that WDM simulations - due to the cut-off in the initial power spectrum -

display the effects of artificial fragmentation, with regularly-spaced clumps (spurious

8For mWDM = 2 keV and 3.3 keV, the half-mode wavenumbers are within the scales probed
accurately by a simulation with {N = 5123, L = 25h−1Mpc}. However, for mWDM = 7 keV the
half-mode wavenumber is larger than the Nyquist frequency of the simulation, kNy ∼ 64 h/Mpc.
In Section 2.5 (when analysing halo properties) we will show some results from a high-resolution
simulation, which resolves the half-mode scale for WDM with mWDM = 7 keV.
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Figure 2.3: Logarithm of the projected mass density field of a region of (12.5× 12.5× 2)
h−3Mpc3 at z = 0 considering a WDM candidate with mass mw = 2 keV. The upper panel
is from WDM-novth, while the lower is from WDM-vth. The images are generated using
the code Py-SPHViewer [170].
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haloes) along filaments, the distance between which reflects the initial inter-particle

distance [76,92,142,144–146,169]. Such spurious haloes are numerical artefacts and

can be removed in an attempt to obtain clean, physical, halo catalogues [144, 169].

We find that this artificial effect becomes more prominent when thermal velocities

are included in the simulations, due to the extra noise they introduce. In the case of

2 keV WDM particles, we find (see Section 2.5 for more details) that such spurious

structures dominate for haloes with mass M < 109h−1M�, which are shown as white

dots in Figure 2.3. A quick inspection of Figure 2.3 confirms that simulations with

thermal velocities generally show more such structures. However, the spacing of

the spurious haloes is less regular than in simulations without thermal velocities.

This is because the regularity of the spurious haloes reflects the grid distribution of

the simulation particles in the ICs. However, when adding thermal velocities the

particles move further than without thermal velocities, and “lose memory” of the

initial regular distribution (see the discussion in Section 2.3). This noise effect will

also be reflected in terms of enhanced matter clustering on small scales, as we shall

see below.

In order to quantify the effects of thermal velocities, in Figure 2.4 we show the

matter power spectra from the evolved simulation outputs in the range of redshifts

z ∈ [199, 0]. The matter power spectra are measured using the code powmes [171].

We present the evolved matter power spectra by plotting the nonlinear growth

(P (z)/P (199)) (D+(199)/D+(z))2, where (D+(199)/D+(z))2 is the ratio between the

ΛCDM growth factor at z = 199 and at redshift z. This rescaling highlights the

changes in the shape of the power spectrum due to nonlinear growth, removing the

much bigger change in the amplitude of the power spectrum due to linear growth

over a large change in redshift. For comparison we have also displayed the non-linear

growth for CDM matter power spectra.

At high redshifts (z ∈ [199, 39]), the wavenumbers probed by our simulations are

well inside the linear regime, so the power spectrum ratio plotted is close to unity,

which indicates that the power spectrum is evolving according to linear theory for
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both the CDM and the three WDM-novth simulations, see Figure 2.4. However,

the matter power spectra of WDM-vth deviate from those of WDM-novth at high

wavenumbers, as a consequence of the noisier ICs. As expected from the discussion

in Section 2.3, the effects of the numerical noise depend on the WDM mass. Defining

the ratio between the WDM-vth and WDM-novth matter power spectrum as,

R(k, z) ≡ PWDM-vth(k, z)
PWDM-novth(k, z) , (2.4.1)

R is of the order of ∼ 700 at redshift z = 99 and at the Nyquist frequency kNy ' 64

h/Mpc for mWDM = 2 keV. It decreases to R(kNy, 99) ∼ 30 for mWDM = 3.3 keV and

to R(kNy, 99) ∼ 1.3 for mWDM = 7 keV.

At intermediate redshifts (z = 9 − 5), the situation changes. For CDM, the

highest wavenumbers probed in our analysis start to enter the nonlinear regime and

the ratio of the scaled power spectra starts to deviate from unity. The same effects

can be observed in WDM-novth. Note that since the nonlinear evolution transfers

power from large scales to small scales, the differences between CDM and the various

WDM models are significantly reduced in the nonlinear matter power spectra [156].

Therefore, WDM displays more nonlinear growth than CDM since the WDM initial

matter power spectra are highly-suppressed compared to CDM initial P (k) at small

scales. At such redshifts, the differences between WDM-vth and WDM-novth are

also reduced. For example, simulations with mWDM = 2 keV show the most dramatic

deviations at high redshifts: R(kNy, 99) ∼ 700, which become smaller at z = 9,

R(kNy, 9) ∼ 1.5, and further reduced to R(kNy, 5) ∼ 1.07 at z = 5. This is because,

being random, the noise effect does not significantly grow in size, and when the effect

of gravitational collapse starts to grow it gradually dominates over the noise effect.

Similar behaviour is found for the other WDM candidates.

At late times (z ≤ 2), all the wavenumbers probed in our analysis have entered

the nonlinear regime, where the nonlinear growth factors for WDM-vth and WDM-

novth are indistinguishable for all three WDM masses. However, small deviations

can be seen by looking at the ratio R, as shown in the bottom panels of figures
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Figure 2.4: Matter power spectra for (a) CDM and WDM with mass (b) mWDM = 7 keV,
(c) mWDM = 3.3 keV and (d) mWDM = 2 keV, evolved with GADGET-2 up to redshift
z = 0. Triangles represent WDM-vth, while dots are WDM-novth. The power spectra
are plotted as ratios respect to the initial power spectrum at zini = 199 scaled to take out
the difference between the ΛCDM growth factor at z = 199 and the evolved simulation
at redshift z. The bottom panels in figures (b-d) show the ratio between WDM-vth and
WDM-novth at redshifts z = 2 (green), z = 1 (red), z = 0 (cyan). The dashed vertical
line shows the Nyquist frequency.
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2.4(b), 2.4(c), 2.4(d). As we can see, for all the WDM candidates studied here, the

difference in the power spectra of WDM-vth with respect to WDM-novth is less

than 2% below kNy for redshifts z ≤ 2.

We have performed a similar analysis for the velocity power spectra. Since the

thermal velocity noise also affects the initial redshift zini = 199, in our plots we

choose to take the nonlinear growth (P (z)/P (199)) (D+(199)/D+(z))2 by dividing

all the power spectra (WDM-vth and WDM-novth) by the initial noiseless velocity

power spectrum P (zini = 199). Figure 2.5 shows the results for CDM and the three

WDM simulations. The noise effect in WDM-vth is dominant at high redshifts. For

example, the ratio R for the velocity power spectrum is around R(kNy, 99) ∼ 3000

for mWDM = 2 keV. The impact of the noise depends on the mass and R is smaller

for the two colder WDM candidates: R(kNy, 99) ∼ 100 for mWDM = 3.3 keV and

R(kNy, 99) ∼ 1.8 for mWDM = 7 keV.

At intermediate (z = 9− 5) and low redshifts (z ≤ 2), the highest wavenumbers

probed in our simulations have entered the non-linear regime. However, the transfer

of power from large to small scales is more pronounced for the velocity P (k), with

the power transfer wavenumber moving to higher k. At these redshifts the effects

due to the noise in the ICs of WDM-vth are strongly reduced. For the warmest

candidate (mWDM = 2 keV) we find that R(kNy, 9) ∼ 2.5 at z = 9, which is further

reduced to R(kNy, 5) ∼ 1.2 at z = 5. Similar behaviour is found for the other WDM

candidates.

The values of the ratio R at the lowest redshifts z = 2, 1, 0 are plotted in the

bottom panels of figures 2.5(b), 2.5(c), 2.5(d). As we can see, unlike the matter

power spectra, in the velocity power spectra R does not decrease at z ≤ 2, but rather

its peak shifts to lower k when z decreases. For example, for the warmest candidate,

R has a peak at k ∼ 50 h/Mpc at z = 2 and it is shifted to small wavenumbers,

k ∼ 32 h/Mpc, at z = 0, while the magnitude of the peak does not change and is

around 18% for all z ≤ 2. For mWDM = 3.3 keV, we find the same result, but in this

case the magnitude of the peak is around R ∼ 6% for all z ≤ 2. For mWDM = 7 keV,
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Figure 2.5: The same as Figure 2.4, but for velocity power spectra. All spectra are
divided by the initial noiseless spectrum at z = 199 (the velocity spectrum measured
from the ICs for WDM-novth).
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R is always well below 1% for redshifts z ≤ 2.

In conclusion, the matter and velocity power spectra for WDM-vth are always

affected by the noise. The importance of the noise is reduced when the system

evolves and the nonlinear gravitational evolution starts to dominate. However, we

note that in the warmest WDM scenario examined here (mWDM = 2 keV), the noise

still affects appreciably the velocity power spectra at z ≤ 2, causing deviations of the

order of ∼ 18%. Therefore, adding thermal velocities reduces the range of validity

of the simulation predictions.

2.4.2 Results for initial conditions generated at zini = 39

It was suggested by [154] for WDM candidates and [151, 152] for active neutrinos

that a useful way to suppress the effect of the thermal velocity noise in the matter

power spectrum is to start the simulation at a lower redshift, when the thermal

velocity contribution is smaller (see Eq. (2.3.2)). To check this, we have run another

set of simulations with initial redshift zini = 39. We have evolved the two sets of ICs

(the one at zini = 199 and the other at zini = 39) to z = 19 and measured the matter

power spectra from the snapshots at z = 39 and z = 19.

The results for mWDM = 3.3 keV are shown in Figure 2.6. The ratio R given in

Eq. (2.4.1) is of the order of ∼ 30 at z = 39 and at the Nyquist frequency kNy ∼ 64

h/Mpc for the first set of simulations with starting redshift at zini = 199, while it is

exactly 1 for all the wavenumbers probed in the simulations with the ICs at zini = 39.

This is because the z = 39 snapshots are the ICs for the second set of simulations

and, as mentioned in Section 2.3, the matter power spectra measured from the ICs

are not affected by the noise. On the other hand, the (evolved) matter power spectra

at z = 19 are affected by the noise in both the two sets of WDM-vth simulations,

but the choice of a lower starting redshift reduces the differences with respect to

WDM-novth. Indeed, the matter power spectrum measured from WDM-vth with

the ICs at zini = 199 is affected by the noise and deviates significantly at high

wavenumbers from the result measured from WDM-novth at z = 19. Quantitatively,
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Figure 2.6: (a) Matter power spectra at redshifts z = 39, 19 for WDM with mw = 3.3
keV with the ICs at zini = 199. (b) Matter power spectra at redshifts z = 39, 19 for WDM
with mw = 3.3 keV with the ICs at zini = 39.
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we have R ∼ 10 at z = 19 and near kNy for simulations with the ICs at zini = 199.

However, in the case of ICs at zini = 39 the differences in the matter power spectra

when adding thermal velocities are negligible, e.g. at z = 19 we have R . 1.04

for k < kNy. This test confirms that the enhanced power observed in simulations

with thermal velocities is numerical and can be reduced by choosing a lower initial

redshift.

By starting at a lower redshift we inevitably lose information about the high

redshift evolution of the system and the accuracy of the simulations could be com-

promised. This is because we need to evolve the simulation over a large number

of expansion factors away from ICs to get the proper gravitational evolution of

the density field. However, using second-order Lagrangian perturbation theory (on

which the code 2LPTic is based) the accuracy of the simulations without thermal

velocities starting at low redshift (zini = 39) is not seriously compromised for the

scales resolved in our simulations. For example, considering the two power spectra

at z = 19 displayed in Figure 2.6 (those measured from WDM-novth with ICs at

zini = 199 and from WDM-novth with ICs at zini = 39 respectively), we find that

they agree between each other up to k ∼ 10h/Mpc. Above such wavenumbers the

P (k) with ICs at zini = 39 displays more power than that with ICs at zini = 199,

although the differences in the amplitudes between the two power spectra never

exceed ∼ 10%. So, starting at low redshift does not affect the results significantly

from simulations without thermal velocities, while it drastically reduces the extra

numerical noise introduced when adding thermal velocities.

2.5 Halo properties

As found in the previous section, the numerical noise caused by including thermal

velocities influences even the lowest redshifts. We expect that some halo properties

can also be affected by this noise. In this section, we quantify how the WDM-

vth simulations differ from WDM-novth in halo properties, such as the halo mass
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function and halo density profiles.

2.5.1 Halo mass functions

It is well known that a reduction in power on small scales is reflected in the suppres-

sion of the number of low mass structures in the Universe (once spurious structures

have been removed) [76, 92, 142, 144–146, 169]. This can be seen by counting the

number of haloes as a function of mass (i.e. the halo mass function) in WDM

simulations, and comparing with the result from a CDM simulation. As we saw in

Section 2.4, the noise in the ICs due to thermal velocities propagates to late times

and could influence the halo mass function. To study this we focus on simulation

snapshots at z = 0. To extract the halo properties, we use the code rockstar,

which is a phase-space friend-of-friends halo finder [172]. We use the virial mass

(Mvir) to characterise the haloes, which is defined as the mass enclosed in a sphere of

radius rvir, where rvir is the virial radius given in [173]. The (differential) halo mass

function is presented as F (Mvir, z) = dn/d log(Mvir), where n is the number density

of haloes with virial mass Mvir.

As mentioned in Section 2.4, WDM simulations (in which the initial power spec-

trum has a resolved cut-off) are affected by the artificial fragmentation of filaments,

i.e. spurious haloes, which can be seen as an upturn in the halo mass function at

small masses. A mass cut-off, Mlim, was proposed in [169] below which haloes are

likely to be spurious9:

Mlim = 10.1 ρ̄ d k−2
peak, (2.5.1)

where ρ̄ is the mean density of the Universe, d is the mean interparticle separation

and kpeak is the wavenumber at which the dimensionless matter power spectrum,

∆(k) ≡ k3P (k)/(2π2), has its maximum. The simulations used by [169] did not

9This limit can be considered as an estimate. Not all of the haloes with masses below this limit
are unphysical. Furthermore there could be some spurious haloes with masses above this limit.
The common way to find the unphysical haloes is explained in [144]. Since our treatment is simply
intended to show the effects of adding thermal velocities, here we will not go into a detailed study
of how to eliminate spurious haloes. We postpone the discussion on how to remove unphysical
haloes in WDM models in Chapter 4.
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include thermal velocities.

In Figure 2.7 we plot the ratio between the halo mass functions measured from

our WDM and CDM simulations. As we can see in the figure, at the largest masses

probed by our simulations the WDM and CDM models predict the same number of

haloes. However, the halo abundance in WDM is progressively reduced at smaller

masses. The mass scales at which the damping of the structures appears depend

on the WDM particle mass. Colder candidates shift the damping in the halo mass

function towards smaller masses. However, all the WDM halo mass functions in

Figure 2.7 show a clear upturn at low masses, which is evidence of spurious haloes.

For WDM-novth, the mass scale at which the upturn appears is well described by Eq.

(2.5.1) (see the red vertical dashed line in figures 2.7(a) and 2.7(b); the results for

the candidate with mWDM = 7 keV will be treated separately). However, Eq. (2.5.1)

fails to reproduce the position of the upturn seen in our WDM-vth simulations. As

we can see, there are more (spurious) substructures at low masses in WDM-vth and

these spurious haloes appear at larger masses than in WDM-novth. These differences

are caused by the additional noise present in WDM-vth. We have found a revised

mass cut-off for WDM-vth (see the cyan vertical dashed line in Figure 2.7),

Mlim = 32.2 ρ̄ d k−2
peak. (2.5.2)

Eq. (2.5.1) (for WDM-novth) and our result (2.5.2) (for WDM-vth) reproduce

quite well the cut-off scales for WDM candidates with masses mWDM = 2 keV and

3.3 keV. However, both formulae fail to reproduce the predicted mass cut-off for

the coldest candidate (mWDM = 7 keV) in a simulation with a box length of 25

h−1Mpc and 5123 particles (see Figure 2.7(c)). The reason is that this simulation

has a Nyquist frequency kNy ∼ 64 h/Mpc, which is below the half-mode wavenumber

k1/2 ∼ 83 h/Mpc (see Figure 2.1(b)) for the case of mWDM = 7 keV. The simulation

does not fully resolve the power spectrum cut-off for such heavy WDM masses,

and consequently only produces deviations from CDM at very small mass scales,

as shown in Figure 2.7(c). To study the effects on the halo mass function for
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Figure 2.7: Halo mass function for WDM plotted as a ratio with respect to CDM. WDM-
vth are in cyan, while WDM-novth are in red. The red vertical dashed line is the mass
cut-off suggested in [169] (see Eq. (2.5.1)) to take care of the spurious haloes. The cyan
vertical dashed line is our limit for simulations with thermal velocities (see Eq. (2.5.2)).
The halo mass functions are measured from the simulations at redshift z = 0. For (a) (b)
(c) the simulation box size is L = 25 h−1Mpc. For the mWDM = 7 keV candidate we ran
an extra simulation (d) with a smaller box size, L = 12 h−1Mpc.
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mWDM = 7 keV we ran an additional simulation with a box length of 12 h−1Mpc and

5123 particles, which has a Nyquist frequency kNy ∼ 134 h/Mpc. The results are

shown in Figure 2.7(d), where we can see that the two formulae (2.5.1) and (2.5.2)

describe the mass cut-off in the high simulation run very well.

Although the results are presented for z = 0, we have found that the mass

below which spurious haloes become important is the same at higher redshifts, i.e.

the spurious haloes appear at roughly the same mass independently of the redshift

considered. This is true for simulations with and without thermal velocities.

2.5.2 Radial density profiles

In addition to the halo mass function, we investigate if the radial density profile of

haloes in WDM simulations is affected by numerical noise. It is well known that CDM

haloes exhibit cuspy profiles [53–55], described by the NFW fitting formula [55],

ρfit(r)
ρc

= δc
r
rs

(
1 + r

rs

)2 , (2.5.3)

where δc is the characteristic overdensity and rs is the scale radius.

In [147] it was found that WDM radial density profiles also follow a NFW form

in the outer parts of the halo. We examine this feature in Figure 2.8, where we

display some examples of radial density profiles measured from simulations at z = 0,

stacking haloes in mass bins centred on log(M central
vir /h−1M�) = 10, 11.8 with width

0.2 dex. We plot the median density for the haloes in each radial bin. The radial

bins are chosen such that the logarithmic difference between the central radius values

(ri) for two near bins is | log(ri/rvir) − log(ri+1/rvir)| = 0.2 with i ∈ {1, Nbin} and

Nbin is the total number of bins. We fit the NFW formula using each of these dark

matter profiles between the convergence radius10 rconv and the virial radius rvir. The

10The convergence radius is defined to be the radius within which the relaxation time is of the
order of the age of the Universe [174] and it is intended as the radius beyond which the halo mass
density profile is reliably modelled for a given halo mass for a given simulation set-up.
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Figure 2.8: Some halo radial density profiles extracted from CDM (blue), WDM-vth
(green) and WDM-novth (red) simulations at z = 0. (a-b) WDM with mass mWDM = 3.3
keV. (c-d) WDM with mass mWDM = 2 keV. The coloured dashed curves represent the
NFW fits of the radial density profiles measured from simulations. The black dashed line
displays the position of the convergence radius rconv. The bottom panel of each figure
shows the ratio between the WDM and CDM radial profiles measured from our simulations.
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best fit is found by minimising the following sum of squares:

QNbin(δc, rs) = 1
Nbin

Nbin∑
i=1

[
log

(
ρi
ρc

(
ri
rvir

)2
)
− log

(
ρfit(ri, δc, rs)

ρc

(
ri
rvir

)2
)]2

, (2.5.4)

where ρi is the value of the radial density profile extracted from our simulations at

the radius ri, while ρfit(ri, δc, rs) is the value of the NFW fit in Eq. (2.5.3) at the same

radius ri. As we can see from Figure 2.8, the halo radial density profiles extracted

from our simulations of CDM and WDM both agree quite well with the NFW fits.

Moreover, in the larger halo mass bin, the density profiles in the WDM simulations

are not significantly affected by the small scale cut-off in the initial power spectrum,

so they do not present significant differences with respect to those measured from

CDM. This is true for both the WDM candidates with mWDM = 3.3 and 2 keV, as

can be seen from figures 2.8(a) and 2.8(c) respectively. The effect of adding thermal

velocities to the initial conditions is also very small for high mass haloes. In the

smaller halo mass bin, on the other hand, the density profiles in WDM simulations

are clearly shallower than in CDM towards the halo centres – ∼ 10% for the case of

3.3 keV WDM particles and ∼ 30% for the 2 keV case near the convergence radius.

The effect is more prominent in WDM-novth than in WDM-vth. This means that

the numerical noise caused by including thermal velocities modifies the slope of the

radial density profiles for the small halo masses probed in our analysis.

The concentration parameter, cvir ≡ rvir/rs, is usually used to quantify the

steepness of the inner density profiles of NFW haloes. Figure 2.9 shows the values

of this parameter at redshift z = 0 for our CDM and WDM simulations. At large

halo masses, the concentrations measured from WDM and CDM simulations agree

well between each other. However, there are differences at lower masses. While the

concentration parameter continues to increase in CDM, it turns over and decreases

in WDM-novth simulations at small masses (this is well known in the literature,

see e.g. [142,147]). The mass scale at which the downturn appears depends on the

WDM candidate mass. For example, the downturn appears at masses . 1011 h−1M�

for the WDM candidate with mass mWDM = 2 keV (see Figure 2.9(a)), while it is
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Figure 2.9: Median concentration parameter cvir for CDM and WDM with mWDM =
2, 3.3, 7 keV at redshift z = 0. For the WDM candidate mass mWDM = 7 keV we present
also the results from the high resolution simulation with L = 12 h−1Mpc. The bands show
the 68%-ile range around the median. The black vertical dashed line indicates haloes with
mass ∼ 1000 times the mass of our simulation particles, which is Msim = 1.01×107h−1M�
for L = 25 h−1Mpc and Msim = 1.11× 106h−1M� for L = 12 h−1Mpc.
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Figure 2.10: Median concentration parameter cvir at z = 0 for CDM and WDM with
mWDM = 3.3 keV for simulations with (a) ICs at zini = 199 and (b) ICs at zini = 39. The
bands show the 68%-ile range around the median.

shifted to smaller masses, . 3 × 108 h−1M�, for the case of mWDM = 7 keV (see

Figure 2.9(d)).

In WDM-vth the reduction in the concentration is less pronounced than in

WDM-novth; indeed the median values extracted from WDM-vth are in general

larger than those measured from WDM-novth at small halo masses. As expected

the magnitude of these differences depends on the mass of the WDM candidate. For

instance, for masses around mWDM = 2 keV, cvir ' 13.9 ± 2.2 (the 68%-ile range

around the median) in WDM-vth for haloes with masses of 1010 h−1M�, while the

value predicted from WDM-novth is cvir ' 12.8. For colder WDM candidates the

effect is weaker at the mass scales probed by our simulations; indeed for the case

of particle mass mWDM = 7 keV the effect is negligible for simulations with L = 25

h−1Mpc (see Figure 2.9(c)), while some differences can be noticed at the very small

masses in simulation with L = 12 h−1Mpc (see Figure 2.9(d)), however the values of

cvir measured from WDM-novth and WDM-vth simulations are always compatible

between each other within the 68%-ile range around the median.

For completeness, we have compared the halo concentration-mass relations for

WDM and CDM simulations starting at different initial redshifts (zini = 199 on
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the left and 39 on the right), for the case of mWDM = 3.3 keV, in Figure 2.10.

The differences between WDM-vth and WDM-novth seen in simulations with initial

redshift zini = 199 are not present in those starting at zini = 39. This confirms that

the observed deviations in the halo properties of simulations with thermal velocities

are due to numerical artefacts.

As studied in [148–150], imprinting primordial thermal velocities on the particles

ensures a “phase-packing” limit, which prevents the density in the central region

of the haloes from increasing arbitrarily, producing a central core. However, for

values of WDM candidate masses compatible with the upper limits from the Ly-α

forest [132, 133], the cores are only a few parsecs in size and not astrophysically

relevant [149, 150]. This explains why we do not expect to find such new physical

features in halo properties when adding thermal velocities.

2.6 Summary and Conclusions

Thermal WDM candidates are characterised by Fermi-Dirac distributions for the

thermal velocities. However, apart from the induced free-streaming effect, the role of

thermal velocities in structure formation remains unclear. We have investigated the

effect of thermal velocities in N-body simulations of structure formation in WDM

cosmologies when the thermal velocities are imposed on the simulation particles.

At high redshift, z = 199, thermal velocity dispersions are non-negligible with

respect to the peculiar velocities and they must be taken into account in the initial

conditions. However, when this is done, a new source of numerical noise affects the

simulations. We have improved upon the results presented in [154] by increasing

the simulation resolution to reach the scales relevant to free-streaming. The results

in [154] are based on a WDM candidate (a non-thermal sterile neutrino with mass

0.5 keV), which is now ruled out by the current Ly-α constraints [132, 133]. Here,

we have focused on more realistic WDM masses, mWDM ≥ 2 keV, which can be

compatible with the limits from the Ly-α forest. Moreover, we have extended the
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analysis of [154] by measuring the velocity power spectra, spanning a vast range

of redshifts, from early times (z = 199) to the present day and we have estimated

the impact of the noise at different times. The initial velocity power spectrum

in simulations with thermal velocities is always affected by the noise caused by

adding thermal velocities to the peculiar velocities of simulation particles. The

noise propagates to all subsequent times, influencing the matter and velocity power

spectra. These numerical artefacts dramatically affect the simulation predictions at

early times, when all the modes are in the linear regime, producing enhancements

in the velocity power of ∼ 100 (for WDM candidates with masses of 3.3 keV) and

of ∼ 3000 (for masses of 2 keV) at the Nyquist frequency kNy ∼ 64 h/Mpc. At late

times, these effects are less pronounced because the non-linear growth of structure

gradually dominates over the noise. Indeed, at z ≤ 2 the deviations do not exceed

6% in the velocity spectrum and 2% in the matter spectrum for scales 10 < k < 64

h/Mpc for masses of 3.3 keV. However, for the masses around 2 keV there are still

appreciable deviations in the velocity power spectrum at z ≤ 2 around 18%.

Looking at halo properties at late times, such as the halo mass function and the

radial density profile of haloes, we found some differences in simulations with thermal

velocities with respect to those without. These deviations are due to the noisy initial

conditions of the simulations which include thermal velocities. Due to this new source

of noise, more spurious substructures appear and the cut-off mass proposed by [169]

fails to reproduce the mass at which the upturn in the halo mass function appears

due to spurious haloes. We find a new mass cut-off, Mlim = 32.2 ρ̄ d k−2
peak, which

works better at reproducing the mass scale below which spurious haloes start to be

important in simulations with thermal velocities. However, we note that the amount

of numerical noise introduced in simulations with thermal velocities depends also on

the starting redshift of the simulations. This new mass cut-off is then expected to

reproduce the mass upturn for simulations with ICs at z = 199 only. To assess the

impact of the numerical noise on the halo mass function measured from simulations

with a starting initial redshift, it is necessary to carry out a similar analysis as done
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here for the case of ICs at z = 199.

The standard practice of imposing thermal velocities in N-body simulations by

adding them to the peculiar velocities in the initial conditions then reduces the range

of validity of simulation predictions with respect to simulations without thermal

velocities because of the noise introduced in the initial conditions. The noise can

be reduced by increasing the number of simulation particles or starting at a lower

redshift. Obviously, both of the options introduce side effects: increasing the number

of particles increases the computational time needed to evolve the simulations, while

by starting at very low redshifts, we inevitably lose information about the high

redshift behaviour of the system and the accuracy of the calculation could also be

reduced. Our results help to determine the range of applicability of simulations of

WDM.



Chapter 3

Nonlinear growth of structure in

damped models

3.1 Introduction

Damped models such as WDM introduce a characteristic scale below which the

density fluctuations are erased resulting in a cut-off appearing in the linear matter

power spectrum. As we saw in Chapter 2, N-body simulations can be a powerful tool

to model the nonlinear evolution of cosmic structure and can also be used to study

the effects of the damping on small scales. In the previous chapter, we focused on

the thermal WDM model, we now move to study other power spectra with damped

matter fluctuations on small scales. Different damped models (coming from different

particle physics models, see Section 1.2) display different forms for the linear power

spectrum, whose shape and cut-off position depend on the particular model. This

implies that, in principle, one needs to analyse the entire plethora of power spectra

(each coming from a specific scenario and a specific set of particle physics parameters)

to study the impact of every single damped model on structure formation. In [75],

the authors found a general parametrisation of the power spectrum with three free

parameters, which is flexible enough to reproduce accurately the linear power spectra

of a large class of nCDM models.
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However, the nonlinear evolution of structure transfers power from large scales

to small scales, so the differences at small scales between standard ΛCDM and the

damped models can be significantly reduced in the nonlinear matter power spectra

(c.f. Figure 2.4, but see also [156]). It is therefore interesting to understand how well

different damped models can be distinguished from the point of view of cosmological

structure measurements and if there is a limit to how much simulations can tell

us about different models. In other words, if two damped linear spectra are very

similar to one another on large scales and they only differ appreciably at small

scales (say, below the half-mode wavelength defined in Subsection 2.3.1), we can ask

if such differences survive the nonlinear growth of structure and what imprint, if

any, they leave behind. If gravitational instability erases these differences, the two

spectra (although coming from two different theories) give the same results in terms

of cosmological observables at late times and, as a consequence, this limits what we

can learn about the nature of dark matter from large-scale structure1.

In this chapter, we show to what extent the full shape of a linear damped power

spectrum influences structure formation. We run a series of N-body simulations

starting from different initial linear matter power spectra which are identical on

large scales but differ substantially on small scales. One of our aims is to establish

down to which scale does the shape of the linear power spectrum matter as regards the

nonlinear growth of structure. We measure the nonlinear matter power spectra from

simulations at low redshifts and compare between one another and with standard

CDM results. Moreover, we analyse halo catalogues extracted from the simulations,

with particular attention to how the halo mass function is influenced by the initial

power spectrum. Based on our results, we propose a 2-parameter model for the initial

power spectrum (which we compare against the 3-parameter model found in [75])

and show that two parameters are sufficient to capture the interesting features of

the power spectrum from the point of view of structure formation.

1Indeed, large scale structure cannot distinguish if the cut-off in the matter power spectrum
is due to a primordial damping or a late time DM mechanism. Other observables could be more
sensitive to the physics of the early Universe [72].
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Figure 3.1: Initial linear perturbation theory matter power spectra at z = 199 for different
models as labelled. The black vertical dotted line represents the half-mode wavenumber
k1/2 for the thermal WDM power spectrum (green). Note that the power spectrum for
the model (vii) is not considered in the analysis conducted in this chapter, it will be taken
into account and defined in Chapter 4 when we will look at models from non-standard
inflation.

In Section 3.2 of this chapter, we describe the initial power spectra used in our

analysis and the set-up of the N-body simulations. In Section 3.3, we present the

results from our simulations, measuring nonlinear power spectra and the halo mass

function for several damped models. Finally, the description and the results from

our 2-parameter fitting formula are presented in Section 3.4. We conclude and

summarise in Section 3.5.

3.2 Initial linear-theory power spectra

We consider the following initial damped power spectra (some of these are phenomen-

ological, i.e. specific linear power spectra which have no theoretical motivation, but

are considered here as test cases).

i Thermal WDM – We consider the matter power spectrum from a thermal WDM

candidate as described in Subsection 2.3.1. The WDM candidate is chosen to have
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mass mWDM = 2 keV. We also introduce three characteristic scales: k1/2, k4/5

and k19/20. k1/2 is the half-mode wavenumber (see Eq. (2.3.5)), at which the

thermal WDM transfer function (Eq. (2.3.3)) is suppressed by 50%. While k4/5

and k19/20 are the wavenumbers at which T = 4/5 and T = 19/20 respectively,

i.e. at these wavenumbers the transfer function is suppressed by 20% and 5%

with respect to CDM. Given the parametrisation in Eq. (2.3.3) for T (k) and for

a mass of mWDM = 2 keV, we have

k1/2 ' 21.2hMpc−1, (3.2.1)

k4/5 ' 12.2hMpc−1, (3.2.2)

k19/20 ' 6.4hMpc−1, (3.2.3)

so, k1/2 > k4/5 > k19/20.

ii Fantastic WDM – We generate a second power spectrum from the parametrisation

given in Eq. (2.3.3), by fixing the parameters at α = 0.0233, β = 2.128 and

γ = −2.946. We choose this power spectrum because it is identical to the power

spectrum for thermal WDM in case (i) at small wavenumbers, while it starts

to differ at scales beyond k ∼ k4/5 (the differences in shape of these two power

spectra are very similar to those between a resonantly-produced sterile neutrino

and a thermal WDM with candidate mass mWDM = 3.3 keV, e.g. see Figure 1

in [147]).

iii Truncated at k1/2 – The third initial linear power spectrum is obtained by trun-

cating the power spectrum in (i) at k = k1/2 such that for k ≤ k1/2 the P (k) for

cases (i) and (iii) are identical, while for k > k1/2 the (iii) power spectrum is

P (k > k1/2) = 0,

P(iii)(k) =


P(i)(k) if k ≤ k1/2

0 if k > k1/2.

(3.2.4)
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iv Truncated at k4/5 – The fourth power spectrum is obtained by truncating the

power spectrum in (i) at k = k4/5 such that for k ≤ k4/5 the P (k) for cases (i) and

(iv) are identical, while for k > k4/5 the (iv) power spectrum is P (k > k4/5) = 0,

P(iv)(k) =


P(i)(k) if k ≤ k4/5

0 if k > k4/5.

(3.2.5)

v Truncated at k19/20 – The fifth power spectrum is obtained by truncating the

power spectrum in (i) at k = k19/20 such that for k ≤ k19/20 the P (k) for

cases (i) and (v) are identical, while for k > k19/20 the (v) power spectrum is

P (k > k19/20) = 0,

P(v)(k) =


P(i)(k) if k ≤ k19/20

0 if k > k19/20.

(3.2.6)

vi Oscillatory WDM – Our last power spectrum is an oscillatory one. This spectrum

is inspired by interacting DM [90–92], but we have artificially enhanced the

amplitude of the first peak to see if there are any signatures of the oscillation

after the nonlinear growth of structure.

All the linear power spectra are shown in Figure 3.1, together with that for standard

CDM. Here, we present the matter power spectra at z = 199 plotted as ∆(k) ≡

k3P (k)/(2π2). We stress that the power spectra in cases (ii-vi) are not physically

motivated but instead are intended to test how changing the shape of the initial

linear power spectrum influences the nonlinear evolution of structure.

The linear matter power spectra in Figure 3.1 are used to generate the initial

conditions for N-body simulations. As in Chapter 2 we use the 2LPTic code [112] for

the ICs at initial redshift zini = 199. The simulations are performed in a cubic box of

comoving length L = 25 h−1Mpc and with N = 5123 particles, using Gadget-2 [113]

to evolve the initial perturbations. In this case, we do not include thermal velocities in

these simulations because their physical effects are negligible for our choice of WDM

candidate masses and N-body parameters (the models satisfy the Jeans mass [143]
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and the free-streaming length criteria [141] defined in Section 2.2), and also because

including them we introduce extra numerical noise in the simulations, reducing the

range of scales we can trust (according to the results in Chapter 2).

3.3 Results from N-body simulations

3.3.1 Matter power spectra

We measure the matter power spectrum from simulations using the code in [175]

based on the cloud-in-cell mass assignment scheme and the work [176]. The matter

power spectra measured from the ICs are shown in Figure 3.2(a) as symbols, while

the lines show the theoretical power spectra. In Figure 3.2(b) we show the ratio,

R(k) = Pdamped(k)
PCDM(k) , (3.3.1)

where Pdamped(k) is the matter power spectrum measured from a simulation of a par-

ticular damped model, while PCDM(k) is that measured from the ΛCDM simulation.

As we can see, the measured matter power spectra are in good agreement with the

theoretical expectations up to the Nyquist frequency. We also note that although

the power spectra are very similar at small wavenumbers, they differ appreciably

from one another at high wavenumbers, e.g. the ratio between thermal and fantastic

WDM at k ∼ k1/2 is ∼ 0.75 and reaches ∼ 6 between thermal WDM and the trun-

cated at k1/2 power spectra. For the cases of spectra truncated at k4/5 and k19/20

the deviations start at even smaller wavenumbers.

The situation changes when the ICs are evolved and the system undergoes nonlin-

ear evolution. In Figure 3.3 we plot the matter power spectra ratios (see Eq. (3.3.1))

for (evolved) simulations at redshifts z = 9, 5, 3, 1, 0. We can see that the transfer

of power from large to small scales progressively reduces the differences between

CDM and the various damped scenarios and the difference between the P (k) in

the different damped models themselves decreases in time. Indeed, at z = 0 for all

the spectra, except for the most extreme truncation at k19/20, the relative difference
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Figure 3.2: (a) Initial linear matter power spectra generated at z = 199. The symbols
represent the matter power spectra measured from the ICs. The black vertical dotted line
represents the half-mode wavenumber k1/2 for the thermal WDM power spectrum (green
curve). (b) Ratios of damped power spectra at z = 199 relative to that from CDM, see
Eq. (3.3.1). The black dashed line in both panels indicates the Nyquist frequency of the
simulations. The colour scheme is the same as used in Figure 3.1

between each damped spectrum respect to the thermal WDM one is always less

than ∼ 1.2% over all the scales resolved by the simulations. We find also that the

differences between the power spectrum for the model truncated at k19/20 and the

other damped power spectra become progressively smaller at lower redshifts (they
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Figure 3.3: Ratios of matter power spectra measured from simulations with damped
fluctuations with respect to those measured from a CDM simulation. Each panel shows a
different redshift as labelled. The black vertical dashed line displays the Nyquist frequency
of the simulations.
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never exceed ∼ 8% at z = 0) and the differences are pushed to higher wavenumbers.

The oscillatory pattern in the linear power spectrum of the oscillatory WDM,

the first peak of which is well resolved in the N-body ICs (see Figure 3.2), is washed

away during the nonlinear evolution; we can see in Figure 3.3 that no trace of it

remains at late times. This suggests that the nonlinear power spectrum cannot be

used to distinguish between models with damped fluctuation spectra, such as warm

and interacting dark matter.

3.3.2 Halo mass function

The story is different when we look at the halo mass function. This quantity is more

sensitive to the initial conditions and the form of the linear theory power spectrum

than the evolved power spectrum at late times and, indeed, we find appreciable

differences in the halo catalogues extracted from N-body simulations of different

damped models. In this case, as a definition of the halo mass, we use the mass, M200,

contained in a sphere of radius r200, within which the average density is 200 times

the critical density of the universe at the specified redshift. As in Chapter 2, the

(differential) halo mass function is presented as F (M200, z) = dn/d log(M200).

In Figure 3.4 we show the ratios between the damped and CDM halo mass func-

tion at z = 0 extracted from the simulations. As we can see, the six damped spectra

give rise to halo mass functions which are noticeably different from one another and

from CDM. For example, the ratio between the measured halo mass function from

a thermal WDM model and scenario in which the initial power spectrum is trun-

cated at k19/20 is around a factor of 8 at a halo mass of M200 ∼ 1010 h−1 M�. This

is remarkable as the ratio in the nonlinear matter power spectra between the two

models at z = 0 never exceeds ∼ 1.08 (see previous subsection). Similar conclusions

are reached for the other damped models, although for them the differences in the

halo mass function with respect to the thermal WDM case are less pronounced.

As final remark (and as found in Section 2.5), for M200 < 109 h−1 M�, the halo

catalogues measured from N-body simulations of damped models are dominated by
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Figure 3.4: Ratios of the halo mass function measured from N-body simulations at
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(4π/3) ρ̄

(
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)3
, where ρ̄ is the mean density of the universe and k1/2 is the half-mode

wavenumber of the thermal WDM P (k).

spurious haloes. We will present the results for cleaned catalogues of these damped

models in Chapter 4.

3.4 2-parameter transfer function

In [75], the authors proposed an analytical parametrisation for the power spectrum

which is flexible enough to match the linear theory matter power spectra for a

wide range of nCDM models discussed in the literature (e.g. non-resonantly and

resonantly produced sterile neutrinos, sterile neutrinos from scalar decay, ultra-light

axions, etc). The mathematical form of this parametrization is identical to that used

for thermal WDM (see Eq. (2.3.3)). However, unlike the thermal WDM case, the

three parameters {α, β, γ} are not related to one another and are left free (hereafter

we call the parametrization introduced by [75] the 3-parameter transfer function).

In the previous section we saw that after the nonlinear evolution of structure the
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shape of the linear power spectrum for k > k1/2 becomes unimportant in determining

the nonlinear power spectrum at intermediate and low redshifts. Moreover, if two

linear spectra differ minimally at k & k1/2, we find no appreciable deviation in the

halo mass function predicted by the models (as will be confirmed below). So, since

the full shape of the linear matter power spectrum is irrelevant from the point of

view of structure formation2, we can ask if the number of free parameters in the

parametrisation found in [75] can be reduced if we are interested only in the form of

the power spectrum for k ≤ k1/2. Indeed, out of the three parameters γ is the one

which controls the slope of T (k) for k > k1/2 [75], so it seems reasonable to reduce

the number of parameters by fixing the value of γ. Here, we fix γ such that it is

equal to the value in the case of thermal WDM, i.e. γ = −5/ν with ν = 1.12. Our

parametrisation will then read

T (k) =
(

1 + (α̃k)β̃
)−5/ν

, (3.4.1)

where {α̃, β̃} are the new free parameters. This new parametrisation has only two

free parameters (hereafter we call it the 2-parameter transfer function). The two new

parameters {α̃, β̃} are in general different from the old ones {α, β}. This is because

although γ is mostly responsible for the shape of the transfer function at k > k1/2, it

also makes some contribution to T (k) at k ≤ k1/2. So, in order to capture the slope

of the 3-parameter transfer function at small wavenumbers, the free parameters in

the new parametrisation need to be different from the old {α, β}. We show below

that this new parametrisation is able to match very well the 3-parameter fitting

function for k ≤ k1/2.

We fit the 2-parameter transfer function against some of the 3-parameter transfer

functions presented in [75] using a least-squares approach and requiring that the

2We agree that our results are strictly true only for linear theory P (k) with k1/2 around or
larger than the values considered here. This means that our results may not apply in the case of
linear P (k) with half-mode wavenumbers smaller than those considered here. However, we note
that e.g. a thermal WDM matter candidate with mWDM < 2 keV is strongly disfavoured by the
current Lyman-α constraints [132,133]. So, our results can be considered to be general in the sense
that they can be applied to all the damped models which are not already ruled out by astrophysical
constraints.
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Figure 3.5: Transfer functions (left) and power spectra (right) generated using the values
in Table 3.1 for the 3-parameter (solid blue) and 2-parameter (dashed green) transfer
function. The bottom panels of the figures on the left show the relative differences between
the two parametrisations. The vertical dotted line indicates the half-mode wavenumber
k1/2.
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Figure 3.6: Transfer functions (left) and power spectra (right) generated using the values
in Table 3.1 for the 3-parameter (solid blue) and 2-parameter (dashed green) transfer
function. The bottom panels of the figures on the left show the relative differences between
the two parametrisations. The vertical dotted line represents the position of the half-mode
wavenumber k1/2.
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Model 3-param. transfer function 2-param. transfer function
α, β , γ α̃, β̃

Resonantly Produced (I) 0.025, 2.3, −2.6 0.019, 2.250
Resonantly Produced (II) 0.071, 2.3, −0.98 0.029, 2.029

Scalar Decay 0.016, 2.6, −8.1 0.021, 2.637
Non-resonantly produced 0.038, 2.2, −4.4 0.037, 2.199

Table 3.1: Values of the three parameters {α, β, γ} found in [75] and of our two
parameters {α̃, β̃} for the transfer function of the models listed in the first column.

best-fit is obtained for k ≤ k1/2, while it does not matter if the two parametrisa-

tions diverge at higher wavenumbers. In Table 3.1, we show how the values of the

parameters found in [75] for a 3-parameter transfer function change when using our

2-parameter function. The plots of the transfer functions for the models in Table 3.1

are shown in Figures 3.5 and 3.6. In these plots, we show the transfer functions

on the left and the corresponding linear power spectra on the right. As shown

in these figures, our parametrisation matches very well the parametrisation in [75]

for k ≤ k1/2, and only at high wavenumbers do the two formulae diverge. Indeed,

looking at the relative differences T2/T3 − 1 (bottom panels in Figures 3.5 and 3.6),

where T2 and T3 refer to the 2- and 3-parameter transfer functions respectively, for

k ≤ k1/2 the transfer functions agree to better than 1%.

To confirm that our parametrisation is sufficiently accurate to study DM models

from the point of view of structure formation, we choose one of the above examples

(the one called “resonantly produced (I)” in Table 3.1) and use N-body simulations

to evolve the ICs generated at z = 199 generated using both the parametrisations.

The simulations are performed in a cubic box of length L = 25h−1 Mpc using

N = 5123 particles. The matter power spectra measured from the ICs are shown in

Figure 3.7, which captures the small differences between the two parametrisations

at k > k1/2. However, when the system evolves, these differences are reduced and

become negligible at late times. Indeed, in Figure 3.8(a), where we display the ratio

P2/P3 between the evolved power spectra obtained from 2- and 3-parameter transfer

functions, we see that e.g. at z = 9 the differences are washed out and the two power

spectra are identical. This is true also for lower redshifts which are not shown here.
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Figure 3.7: Initial linear matter power spectra generated at z = 199 for resonantly
produced (I) (see Table 3.1) using 3-parameter (blue) and 2-parameter (green) transfer
function. The symbols represent the matter power spectra measured from the ICs. The
black vertical dotted line represents the half-mode wavenumber k1/2, while the black
vertical dashed line is the Nyquist frequency of the simulation.

In Figure 3.8(b), we show the ratio of the halo mass functions at z = 0 measured

from the two simulations with respect to that from the CDM simulation. In this

case also there are no appreciable differences between the two parametrisations.

In conclusion, reducing the number of free parameters required to describe the

damped linear theory power spectra by neglecting the high wavenumber behaviour of

the transfer function does not introduce any appreciable deviations in the nonlinear

matter power spectrum and the halo mass function with respect to the results coming

from the full 3-parameter transfer function (at least for linear P (k) with k1/2 similar

or above those considered here). This means that our parametrisation is able to

capture the interesting features of a linear matter power spectrum from the point of

view of structure formation.
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Figure 3.8: (a) Ratios between the matter power spectra coming from the 2- and 3-
parameter transfer function (as labelled) measured from N-body simulations at redshift
z = 199 and 9. (b) Ratios of the halo mass function measured from N-body simulations
at z = 0 for both of the parametrisations (as labelled) with respect to that in CDM.

3.5 Summary and conclusions

In damped models, the slope of the linear power spectrum and the position of the cut-

off strictly depend on the particular model considered. However, nonlinear evolution

of structure transfers power from large to small scales, reducing the differences

between different damped models at later times and power spectra with different

slopes can yield the same cosmological structure.

We have investigated how much information is retained at late times from the

initial linear power spectrum following the nonlinear growth of structure. We found

that at late times when the system has undergone nonlinear evolution, the shape

of the initial linear theory power spectrum above the half-mode wavenumber k1/2 is

irrelevant for determining the form of the nonlinear power spectrum. Two models,

whose linear power spectra are identical at small wavenumbers and differ only for

k > k1/2, will produce identical evolved power spectra at late times. On the other

hand, some differences can be still seen in the halo mass function even at z = 0.

We found that this quantity is more sensitive to the linear matter power spectrum,

so potentially it can be used to detect variations in the linear theory power at

wavenumbers k & k1/2. However, if two linear power spectra are very similar to one
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another around k1/2 (so no big jumps near or above k1/2), the deviations in the halo

mass functions for such models are negligible.

Motivated by our results, we have reduced the number of free parameters in the

3-parameter analytic fitting formula given in [75] to parametrise a damped linear

power spectrum. Indeed, we have shown that a 2-parameter transfer function (which

matches extremely accurately the 3-parameter transfer function at k ≤ k1/2, but

which gives rise to different linear spectra at higher wavenumbers) is capable of cap-

turing the main features of a damped model (such as nCDM) in structure formation.

In particular, the halo mass function (which is more sensitive to variations in the

linear theory power) seems to be unaffected by this change in the parametrisation.

We conclude that although damped models come from very different underlying

physical models, if two models are characterised by linear power spectra which are

very similar below the half-mode wavenumber, the results in terms of structure form-

ation are similar. This limits what we can hope to learn about the mechanisms that

occurred in the early Universe by measuring cosmic large-scale structure. Neverthe-

less, this simplifies the work of finding constraints on the impact of damped models

of structure formation, because results coming from a particular model can be easily

generalised to other models with similar linear power spectra at small wavenumbers.





Chapter 4

A new smooth-k space filter

4.1 Introduction

A common impact of the models studied in the previous chapter on structure forma-

tion is a reduction in the halo abundance at low masses. Analytical approaches, such

as Press-Schechter (PS) [177–180], that predict halo statistics, need to be modified

from those used in standard ΛCDM, in order to predict the downturn in the halo

mass function at low masses in damped scenarios. The common way to achieve this

is to change the filter used to smooth the matter distribution from a spherical top-hat

in real space (generally used in standard ΛCDM) to a sharp-k space filter [143,181]

(see also [178]).

In this chapter, we show that when applied to damped scenarios (especially

those with abrupt truncations of the linear spectra above some wavenumber) the

PS approach with a sharp-k space filter fails to reproduce the behaviour of the halo

mass function measured in N-body simulations at low masses. We present a solution

to this problem by introducing a new filter function which gives better agreement

with the simulation results than the sharp-k space filter.

The linear damped power spectra considered in this analysis are those presented

in Chapter 3 plus a new spectrum (which we call “funny inflation”) and the seven

power spectra are shown in Figure 3.1 of Chapter 3. The matter power spectrum
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from the funny inflation model (see case (vii) in Figure 3.1) is generated using as

input a primordial power spectrum that is damped on small scales. This damping

can be achieved by considering particular inflaton models [66–72]. Here, we use the

parametrisation adopted in [72] for a suppressed primordial spectrum,

P prim
damp = P prim

st

[
1 + 10−α

2 − 1− 10−α
2 tanh

(
log k

ks

)]
, (4.1.1)

where 10−α describes the power suppression and ks is the wavenumber at which

the suppression appears. We choose α = 1 and ks = 5 Mpc−1. We use class

to obtain the matter density fluctuations starting from this damped primordial

spectrum. We note that the form of this power spectrum is similar to that of a

mixed DM model [134], which means that the results obtained in the next sections

for this spectrum are expected to be also valid for mixed DM models. The N-body

simulations used to compare the results from the PS approach are those previously

described in Section 3.2

The rest of the chapter is organised as follows. In Section 4.2 we introduce the

standard PS approach together with a description of the sharp-k space filter. In

Section 4.2 we also show how this filter is not accurate enough for some of the models

studied here. Section 4.3 is devoted to the introduction of our new filter function

(which we call the smooth-k space filter). Some results using our filter are presented

in Section 4.4.

4.2 Press-Schechter analytical approach

Some aspects of the non-linear evolution of structure can be captured using ana-

lytical methods. The well known PS approach is used to predict some important

characteristics of structure formation, such as the halo mass function [177–179]. This

method is based on the simplified assumption that if the initial density contrast in

a spatial region is larger than some threshold so that the region collapses to a singu-

larity by redshift z, then this region corresponds to a halo that formed and virialised
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at z [177] (for a review see [180]). The threshold can be calculated using a spherical

or elliptical collapse model [179].

In this approach, the starting point to calculate the differential halo mass function

is given by
dn

d log(M) = 1
2
ρ̄

M
f(ν) d log(ν)

d log(M) , (4.2.1)

where n is the halo number density, M is the halo mass and ρ̄ is the average density

of the universe. f(ν) is the first-crossing distribution [178]. Assuming an ellipsoidal

collapse model [179], f(ν) is well approximated by

f(ν) = A

√
2qν
π

(
1 + (qν)−p

)
e−qν/2, (4.2.2)

with A = 0.3222, p = 0.3 and1 q = 1. In the above formula, ν is defined to be

ν =
δ2
c,0

σ2(R)D2(z) , (4.2.3)

where δc,0 = 1.686 and D(z) is the linear growth factor normalised such that D(z =

0) = 1. σ2(R) is the variance of the density perturbations on a given scale R,

σ2(R) =
∫ d3k

(2π)3P (k)W̃ 2(k|R), (4.2.4)

where P (k) is the linear matter power spectrum at z = 0 and W̃ (k|R) is a filter

function in Fourier space. The filter function is not fixed a priori, so it could be

chosen to suit the particular cosmological model and power spectrum. In CDM, it

is generally chosen to be a top-hat function in real space,

WTop−Hat(x|R) =


3

4πR3 if x ≤ R

0 if x > R

, (4.2.5)

1We note that although q = 1 is expected from a standard ellipsoidal collapse, the authors in [179]
observed that the number of the haloes with masses M > 1013 M�/h in CDM is underpredicted,
so they artificially calibrated the value to q = 0.707 to match N-body simulation results. Here we
will maintain the standard parametrisation where q is set to unity for two reasons: (1) the volume
of our simulations is too small to contain a statistically relevant sample of such massive haloes and
(2) when using a sharp-k filter it was shown in [143, 182] that q = 1 gives a better match with
simulations.
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which in Fourier space becomes (see Figure 4.1(a)),

W̃Top−Hat(k|R) = 3 (sin(kR)− kR cos(kR))
(kR)3 . (4.2.6)

Other choices made in the literature include the Gaussian function and the sharp-k

filter (see e.g. [178,180]). In general, the filter function is associated with a volume,

VW . In the case of a real space top-hat function, the filter in real space describes a

sphere of radius R, so the filter volume is VW = 4πR3/3, leading to a straightforward

relation between the scale radius R and the enclosed mass M(R) of the virialised

object, M(R) = 4πρ̄R3/3. For other filters, there is either no fixed radius in real

space (e.g. for the case of a Gaussian filter) or there is a divergent integral (for a

sharp-k space filter) [183], so the mass-radius relation is calibrated using N-body

simulations [178].

4.2.1 Sharp-k space filter

The PS approach with a real space top-hat filter function works very well for standard

ΛCDM (see e.g. [143,147,180–182]), but it predicts an excess of low-mass haloes when

applied to models with a cut-off in the power spectrum at small scales [143,181,182].

This can be understood using the following argument. If the linear power spectrum

P (k) has a cut-off at high wavenumbers, its amplitude decreases faster than that

of CDM (i.e. faster than ∼ k−3). In the limit of small radii R, the variance (see

Eq. (4.2.4)) becomes constant (irrespective of the filter used) because the cut-off

in the linear power spectrum ensures negligible contributions to the integral from

high wavenumbers. However at small radii, the halo mass function predicted by Eq.

(4.2.1) varies according to the derivative of the variance [143],

lim
R→0

dn

d log(M) ∝ lim
R→0

(
1
R3

∣∣∣∣∣ dσ2

d log(M)

∣∣∣∣∣
)
, (4.2.7)

whose behaviour strongly depends on the filter used. For a real space top-hat filter

function, we find (see also [143]) that dσ2/d log(M) ∝ R2 for R→ 0, so Eq. (4.2.7)
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Figure 4.1: (a) Some filters in Fourier space described in Section 4.2 and 4.3 (as labelled
by the key). (b) The same as (a) but we have multiplied R by c (or ĉ) to take into account
the differences in the mass definitions for the filters (discussed in Section 4.3). (c) The
associated predictions for the halo mass function for the linear power spectrum truncated
at k19/20 (see case (v) in Figure 3.1). The black dashed line shows the asymptotic behaviour
(∝ R−1) of the real space top-hat filter at small radii.
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goes as

lim
R→0

(
dn

d log(M)

)
Top−Hat

∝ 1
R
, (4.2.8)

irrespective of the linear P (k) considered. This behaviour is shown in Figure 4.1(c)

(note we discuss 4.1(a) and 4.1(b) later), where we show the halo mass function

predicted by a top-hat filter for the linear power spectrum truncated at k19/20 (case

(v) in Figure 3.1), and we also display the asymptotic behaviour of this halo mass

function at small radii, i.e. ∝ R−1. This means that the halo mass function with a

top-hat filter diverges at small radii, while it should decrease and become negligible

for damped models.

To solve this issue at small masses it was proposed e.g. in [143,181] (see also [178])

to use a sharp-k space filter,

W̃Sharp−k(k|R) = Θ (1− kR) , (4.2.9)

where Θ is the Heaviside step function (see Figure 4.1(a)). With this filter, Eq.

(4.2.1) can be simplified to(
dn

d log(M)

)
Sharp−k

= 1
12π2

ρ̄

M
f(ν) P (1/R)

R3 σ2(R) , (4.2.10)

and it is interesting to see that for small radii,

lim
R→0

(
dn

d log(M)

)
Sharp−k

∝ 1
R6P (1/R), (4.2.11)

so the halo mass function remains dependent on the linear power spectrum. If

P (1/R) goes to zero more rapidly than R6 for R → 0, the halo mass function

becomes negligible at small radii. This is true in general for a damped spectrum,

e.g. the linear power spectrum of a thermal WDM candidate at small radii displays

the approximate behaviour

PWDM(1/R) ∼ R4−ns−2βγ = R24−ns , (4.2.12)

since PWDM(k) = PCDM(k)T 2(k), where T (k) is the transfer function given in

Eq. (2.3.3). ns is the primordial spectral index. For this WDM model, Eq. (4.2.11)
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goes as ∼ R18−ns for R→ 0. This example can be found in [143]. The sharp-k space

filter in real space reads

WSharp−k(x|R) = 1
2π2R3

(sin(x/R)− (x/R) cos(x/R))
(x/R)3 , (4.2.13)

and the integral of WSharp−k over all space (which defines the volume of W ) diverges

logarithmically. This means that there is not a well-defined volume in the case of

the sharp-k filter, and thus no well-defined mass M associated with the scale R.

However, by dimensional analysis M should be proportional to R3, and so we can

write

M(R) = 4π
3 ρ̄(cR)3, (4.2.14)

where c is a free parameter to be calibrated using N-body simulations. In [182], it

was found that c = 2.5 gives the best match between the analytical and the numerical

results.

We have compared the analytical predictions at z = 0 using PS for the models

shown in Figure 3.1 with the (differential) halo mass functions extracted from the

N-body simulations (see Section 4.4 for details on how the halo catalogues have

been cleaned). The results are summarised in Figure 4.2. The pink lines show the

analytical predictions using a sharp-k filter. As we can see, the sharp-k space filter

gives reasonably good agreement with N-body results for the four smooth linear

power spectra (thermal, fantastic, oscillatory WDM and funny inflation). On the

other hand, it fails to reproduce the low-mass behaviour of the halo mass functions

extracted from simulations for the three sharply-truncated power spectra. Indeed,

the PS approach in the case of a truncated P (k) predicts a step-like transition to

zero below some mass scale, while N-body results show a smoother behaviour at

small masses.

We can understand why for initial truncated power spectra a sharp-k filter

predicts a sharp transition to zero below a certain mass in the halo mass function,

by looking at the general behaviour of this filter for small R (see Eq. (4.2.11)). We

have constructed a given truncated power spectrum, Ptrunc(k), by truncating the
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linear thermal WDM spectrum, Ptherm(k) (case (i) in Figure 3.1), above a certain

wavenumber kt (for the cases analysed here kt takes the values {k1/2, k4/5, k19/20},

see Section 3.2 for details). Following this construction, Ptrunc(k) can be written in

general as

Ptrunc(k) = Ptherm(k) Θ
(

1− k

kt

)
, (4.2.15)

so that at k = kt there is a step-like transition and Ptrunc(k) = 0 for k > kt. Plugging

Eq. (4.2.15) in Eq. (4.2.11), we obtain that, for a truncated power spectrum, the

analytical halo mass function at small radii behaves as(
dn

d log(M)

)
Sharp−k

∝ 1
R6 Ptherm(1/R) Θ

(
1− (Rkt)−1

)
, (4.2.16)

so it has a step-like transition to zero below R = 1/kt, and then for haloes with

R < 1/kt (see Eq. (4.2.14) for the radius-mass relation) the above function is exactly

zero.

We note that the above discussion is strictly true only when using linear trun-

cated power spectra (see Eq. (4.2.15)) in Eq. (4.2.11). If, instead of using the

linear perturbation theory power spectrum to compute the halo mass function, as is

standard practice, we used the non-linear power spectrum (calculated e.g. by using

higher-order perturbation theories [184]), the resulting halo mass function with a

sharp-k filter could give non-zero values also for haloes with R < 1/kt. However, it

is well known that cosmological high-order perturbation approaches are not accurate

at wavenumbers larger than k ∼ 0.1hMpc−1 and low redshifts, see e.g. [184]. These

scales are well below the power spectrum truncation scale considered here, e.g. for

the truncated at k19/20 power spectrum we have k19/20 ∼ 6hMpc−1 (see Figure

3.1). Furthermore, in Chapter 3 we found that the non-linear power spectra are

remarkably similar to one another at low redshift, see e.g. Figure 3.3, whereas there

are clear differences in the halo mass functions (which can be identified with the

differences in the linear theory power spectra). Hence, here we will always compute

the PS halo mass function by using linear power spectra.
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4.3 Smooth-k space filter

Given the above failure to reproduce the halo mass function of a truncated power

spectrum, it is interesting to ask if there is some other filter which gives better

agreement with N-body simulations. In this section, we show the results of using

a new filter function W , which we call the smooth-k space filter. We show below

that this new filter gives competitive and, for truncated P (k), better matches to the

N-body results than the sharp-k filter.

We start by looking at the general behaviour of the filter functions in Fourier

space (see Figure 4.1(a)). As we can see, the asymptotic behaviour of the top-hat

and sharp-k filters is W̃ (ξ → 0) = 1 and W̃ (ξ →∞) = 0, where ξ ≡ kR. Moreover,

the sharp-k filter has a sudden transition at ξ = 1. We smooth this discontinuity

(hence the filter name of “smooth-k” space) by replacing the Heaviside step function

with a function which is continuous around ξ = 1,

W̃smooth−k(k|R) =
(

1 + (kR)β̂
)−1

, (4.3.1)

where β̂ > 0 is a free parameter. Two examples of this filter are shown in Figure

4.1(a) corresponding to different choices for the value of the parameter β̂. Finally, as

with the sharp-k filter, we need to find the mass-radius relation for our filter using

N-body simulations, so that M(R) = 4π
3 ρ̄(ĉR)3, and ĉ is the other free parameter of

our model.

This new filter introduces two free parameters, which will be fitted against the

results of N-body simulations. The interesting feature of this new filter is that

depending on the set of the parameters used, the shape of the new filter can be made

to match closely that of other standard filters. For example, in Figure 4.1(c), we

show how different filters predict the halo mass function in the truncated at k19/20

model (case (v) in Figure 3.1). We can see that if {β̂ = 2, ĉ = 3.15}, the halo mass

function predicted by our filter matches very well that from the real-space top-hat

filter (i.e. it goes as R−1 at small masses). On the other hand, if {β̂ = 100, ĉ = 2.5},

the smooth-k space filter prediction displays (almost) the same sharp truncation
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predicted by the sharp-k space filter. This characteristic behaviour of the smooth-k

space filter can be understood by looking at Figure 4.1(a), where the shape of the

filter for different parameter sets is displayed. Indeed, when β̂ →∞, the smooth-k

space filter becomes a sharp-k space filter, while for smaller β̂, the width of the step

(i.e. the range of ξ where the function is different from zero or unity) in the filter

function becomes broader. However, since the smooth-k space with {β̂ = 2, ĉ = 3.15}

and the top-hat filter are characterised by different mass definitions, in figure 4.1(a)

it is not clear why they give the same halo mass function predictions. In figure 4.1(b),

we have rescaled the radius R such that for the smooth-k space and sharp-k space

filters the new variable R̃ is R̃ = ĉR and R̃ = cR respectively, while maintaining

R̃ = R for the top-hat filter. In this way the definition of the enclosed mass for

all the filters will be the same, M(R̃) = 4π/3 ρ̄ R̃3. After this rescaling, it is clear

that at low ξ the smooth-k filter with {β̂ = 2, ĉ = 3.15} and the top-hat filter are

very similar to one another, and so they predict similar halo mass functions at low

masses.

Concluding this section, we discuss why we expect results from our new filter to

be in better agreement with N-body simulations of truncated power spectra than

those from using the sharp-k space filter. As we did for the sharp-k space filter,

we analyse the behaviour of the analytical halo mass function at small radii for a

truncated power spectrum. To do so, we use the asymptotic expression (see Eq.

(4.2.7)) for R → 0, which depends on the derivative of the variance σ2(R). For a

truncated power spectrum, Ptrunc(k) (see Eq. (4.2.15)), the derivative of the variance

takes the form,

dσ2

d log(M) ∝ R
∫ kt

0
k2dk Ptherm(k) W̃Smooth−k(k|R)

∣∣∣∣∣dW̃Smooth−k(k|R)
dR

∣∣∣∣∣ , (4.3.2)

The integral depends on the derivative of the filter function, i.e. on how fast is

the transition of the filter function from zero to unity. The width of the region of

wavenumbers for which the derivative of W̃ is non-zero depends on the width of the

step in W̃ , which, in turn, depends on β̂. The larger the value of β̂ the steeper the
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step is, and so the interval of k where the derivative is non-null is smaller. As long

as R > 1/kt the interval of wavenumbers for which the derivative of W̃ is non-zero

always overlaps with the interval of integration, k ∈ [0, kt], so that the above integral

will always be non-zero no matter how large β̂ is chosen. On the other hand, when

R < 1/kt (at small masses), the width of the interval of k for which dW̃/dR is

non-null matters. This is because for R < 1/kt the center of this interval is at high

wavenumbers (k > kt). So, if it is not sufficiently broad, the interval of k for which

the derivative is non-null possibly has no overlap with the integration interval, and

then the above integral would be zero. Indeed, for β̂ →∞ the integral is equivalently

zero for R < 1/kt, as we found for the sharp-k space filter. On the other hand, if the

range of values for which the derivative is non-zero is broader, more wavenumbers

in k ∈ [0, kt] will contribute to the above integral, enhancing the value of the halo

mass function at low masses (R < 1/kt) with respect to the case of the sharp-k space

filter. In the next section we will show which parameters of the smooth-k space filter

give a sufficient enhancement of the analytical halo mass function at low masses to

match the results from N-body simulations.

4.4 Results with the new filter

Before showing the results from our new filter, we briefly discuss the cleaning process

adopted here to remove spurious haloes from the halo catalogues extracted from the

simulations. We saw in the previous chapters that N-body simulations of damped

models display the effects of artificial fragmentation and then some of the haloes at

low masses are unphysical, and need to be identified and removed.

An estimate of the mass below which spurious haloes are likely to be found was

given in Section 2.5 (see Eq. (2.5.1)). However, not all haloes with masses below this

limit are unphysical, and there could be some spurious haloes with masses above

this limit. In order to identify haloes which are unphysical, we use the method

in [144] to clean the halo catalogues. This method refines the criterion in [169] by
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excluding possible unphysical haloes also using the shape of the initial Lagrangian

region (proto-halo) from which the simulation particles have evolved to form a given

halo at late times. To decide if a halo is genuine or not, this method uses the

sphericity of the proto-halo, defined as the ratio between the minor and major axes

of the proto-halo region, s ≡ c/a. Haloes with sphericity below slim = 0.165 are

considered to be spurious [144]. We clean the halo catalogues in our simulations by

considering a halo to be spurious (and then removed) if one of these conditions is

satisfied:

• the sphericity of the proto-halo is s < slim, or

• the halo mass is Mhalo < 0.5Mlim.

The results from N-body simulations are displayed in Figure 4.2, where we show

the N-body results as symbols: circles are from uncleaned halo catalogues, while

crosses represent results after the cleaning. We note that Eq. (2.5.1) depends on the

damped P (k) via kpeak, which is different for different models. So, the lowest mass

displayed in the various cleaned catalogues (0.5Mlim) is expected to be different

for different initial linear power spectra. The results of using this new filter are

shown as black lines in Figure 4.2. We find that the smooth-k space filter with

{β̂ = 4.8, ĉ = 3.30} consistently gives better matches to the N-body results than the

sharp-k space for the models studied here. In the case of truncated spectra, replacing

the sharp-k filter with a smoother function smooths the step-like behaviour in the

analytical halo mass function and gives much better matches to the simulations as

we expect from the discussion in the previous section.

To reinforce our statement that our filter works better in the case of truncated

P (k), we have also run simulations with higher resolution for the thermal WDM

and truncated at k19/20 power spectra. We choose L = 10h−1 Mpc and N = 5123 as

parameters for the high resolution simulations. The halo mass functions measured

at z = 0 from these simulations are shown in Figure 4.3. As can be seen from

this figure, there is no appreciable difference between the sharp-k and the smooth-k



4.4. Results with the new filter 107

8 9 10 11 12 13 14

log
(
M200/(h

−1 M¯)
)

4

2

0

2

4

lo
g( F(

M
20

0,
z
=

0
))

Thermal WDM

Fantastic WDM

Truncated at k1/2

Truncated at k4/5

Truncated at k19/20

Cleaned catalogues

Oscillating WDM

Funny inflation

Sharp−k space filter

Smooth−k space filter

Figure 4.2: Halo mass function at z = 0 for various models with damped initial
power spectra (as labelled). Circles are results from N-body simulations in a cubic
box of length L = 25 h−1Mpc using N = 5123 particles. The lines are the theoretical
predictions using two filters: sharp-k space filter (pink) and smooth-k space filter
with {β̂ = 4.8, ĉ = 3.30} (black). Note that in this Figure all the halo mass functions
are shifted above or below the one for the thermal WDM (which is the only one in
the right position) to make the results clearer.
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(b) Truncated at k19/20

Figure 4.3: Halo mass function at z = 0 for (a) thermal WDM and (b) the truncated
at k19/20 power spectrum model. Circles are uncleaned results from uncleaned catalogues
measured from N-body simulations for a cubic box of length L = 25 (low resolution,
in green) and 10 h−1Mpc (high resolution, in red) respectively, with N = 5123 particles.
Crosses represents results from cleaned catalogues. The lines are the theoretical predictions
using: sharp-k space filter (pink) and smooth-k space filter with {β̂ = 4.8, ĉ = 3.30}
(black). The vertical dotted lines show Mlim/2, with Mlim given by Eq. (2.5.1), for the
two simulation resolutions (green for the low and red for the high resolution)

.
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space filters for the thermal WDM, both filters are in agreement with the N-body

results (at least for the masses resolved in our analysis). However, in the case of

the truncated at k19/20 power spectrum there is an appreciable difference in the halo

mass function predicted by the smooth-k space filter with respect to that obtained

with the sharp-k space filter, and the former gives a better match to the N-body

results. We note also that the high resolution simulation result in the case of the

truncated spectrum agrees with the low resolution simulation, i.e. that there are

some structures below R < 1/k19/20. These structures are clearly physical and not

due to numerical noise.

4.5 Summary and conclusions

We have shown that the sharp-k space filter is not accurate enough to reproduce

results coming from initial damped power spectra with a sharp truncation at small

scales. Indeed, when using the linear power spectrum to calculate halo abundances,

the PS approach with a sharp-k space filter predicts no structure at all below some

mass scale for these models, while the N-body simulations clearly display some

structures. We have presented a solution to this problem via the identification of a

new filter function (which we call the smooth-k space filter), which gives always good

agreement with the N-body simulations. This new filter has two free parameters,

{β̂, ĉ}, that have been tuned to give the best match with simulations. Once the

halo catalogues have been cleaned, we have found that {β̂ = 4.8, ĉ = 3.30} give the

best predictions for the halo mass function, and it works very well in predicting the

halo mass function for the seven P (k) in Figure 3.1. However, we note that in the

case of thermal WDM there are no appreciable differences between the predictions

using the smooth-k space and the sharp-k space filter. Both filters predict halo mass

functions that are in agreement with N-body results at the mass scales probed by

our analysis.





Chapter 5

Thermal inflation and damped

matter fluctuations

5.1 Introduction

In the previous chapters, we focused mainly on phenomenological nCDM-like mod-

els such as the thermal WDM. In this chapter, we focus instead on the class of

non-standard inflation scenarios that introduces a cut-off on small scales in the

linear theory power spectrum, with particular attention on models of thermal infla-

tion. Thermal inflation (which feature two inflationary stages) can display damped

primordial curvature fluctuations on small scales, producing damped dark matter

fluctuations. For a reasonable choice of parameters, thermal inflation models natur-

ally predict a suppression of the matter power spectrum on galactic and sub-galactic

scales, mimicking the effect of warm or interacting dark matter.

Historically, thermal inflation was introduced to solve the moduli problem [185,

186]. The moduli are long-lived scalar fields generally present in supersymmetric

models. Due to their properties, moduli can dominate the energy density of the

Universe for a sufficiently long time to interfere with the epoch of Big Bang Nucle-

osynthesis (BBN) (this is referred to as the cosmological moduli problem) [187,188].

Thermal inflation solves this problem by introducing a second, low-energy inflation-
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ary period that dilutes the moduli density to harmless values. The second inflation

period is induced by a new field (the so-called flaton) trapped at its origin by coup-

ling with the thermal bath [185,186]. Thermal inflation ends when the temperature

is no longer sufficiently high to maintain the flaton at φ = 0, so the field rolls toward

its minimum and starts to oscillate, giving rise to a flaton matter dominated period.

Finally, the flaton decays, ensuring the standard radiation-domination period before

BBN.

It was recently pointed out that models of thermal inflation can produce inter-

esting effects on the matter density perturbations [73]. Indeed, in thermal inflation

the standard inflationary stage is followed by additional periods that can modify

the nearly scale-invariant curvature power spectrum characteristic of the standard

ΛCDM paradigm by introducing a damping scale kb. Modes with k > kb enter

the horizon before (and may exit during) thermal inflation, so they are strongly

influenced by the intermediate stages between the first inflation and the radiation

dominated period after the flaton decay. It was shown in [73] that the perturbations

for k > kb are strongly suppressed compared with those predicted in the standard

ΛCDM paradigm, so the primordial curvature power spectrum for these models

presents a damping at high wavenumbers (small scales). In turn, the matter density

perturbations are affected, showing a suppression in the CDM power spectrum at

k > kb. Thus, these thermal inflation scenarios belong to the class of non-standard

inflation models introduced in Section 1.2. We stress that in non-standard inflation

models, the matter power spectrum is naturally suppressed at small scales, without

requiring modifications of the standard cold dark matter sector. So, in thermal

inflation, DM particles are still massive and non-interacting. Thermal inflation can

also produce interesting signatures in CMB observables [189] and in the physics of

primordial gravitational waves (see e.g. the discussion in [190]). However, here we

will focus only on the effects on the matter fluctuations.

As found in [73] the linear matter power spectrum from models of thermal

inflation differs from that expected in the standard ΛCDM by the presence of
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an enhanced peak in the transfer function at k ∼ kb followed by a damping and

oscillations at k > kb. The damping is very similar to that seen in nCDM scenarios.

For nCDM models, we have seen in Chapter 3 that the nonlinear evolution of the

Universe at low redshifts transfers power from low to high wavenumbers. The non-

linear power spectrum is then less affected by the damping, while the halo mass

function is more sensitive to the form of the linear power spectrum. We expect that

this behaviour is true also for thermal inflation. However, the presence of an enhanced

peak and oscillations for k > kb (which are in general not present in simple thermal

WDM scenarios, see e.g. [76,79]) can potentially introduce new features into structure

formation that deserve to be investigated in detail, and which could potentially leave

signatures of thermal inflation in the large-scale structure of the Universe. In this

chapter, we investigate the non-linear evolution of structure formation in the thermal

inflation scenario described in [73] by using N-body simulations, highlighting the

main differences with respect to the results found in nCDM, other non-standard

inflation models and standard ΛCDM. We note that the impact of thermal inflation

on structure formation was addressed recently in [190], by e.g. using semi-analytical

techniques to calculate dark matter halo abundances. However, we show here that a

full study using N-body simulations is necessary to model accurately the non-linear

evolution of structure (and to find accurate estimations of the non-linear power

spectra and halo abundances at late times). As a second step we compare the N-

body results with the Press-Schechter (PS) semi-analytical techniques introduced in

Chapter 4 showing the degree of accuracy of these approaches.

This chapter is structured as follows. In Section 5.2 we briefly describe the

theoretical model of thermal inflation considered here. In Section 5.3 we show our

main results for the non-linear power spectra. Section 5.4 is devoted to the study of

halo statistics at z = 0, while in Section 5.5 we show the results for halo abundances

at higher redshifts. In these sections, we measure the halo mass function from N-

body simulations and compare with analytical predictions from the version of the PS

approach discussed in Chapter 4. Finally, our conclusions are given in Section 5.6.
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5.2 Theoretical model of thermal inflation

In this section we briefly describe the model of thermal inflation and we compare

the linear-theory matter power spectrum from this model with two other damped

scenarios: the thermal WDM model introduced in Subsection 2.3.1 and a broken

scale invariance inflation model. The latter two models are considered because we are

interested in quantifying if the results (in terms of structure growth and clustering)

from thermal inflation are, in some way, different from those found in other damped

models. The linear power spectra for all the models considered here are shown in

Figure 5.1(a), while the ratios with respect to ΛCDM are shown in Figure 5.1(b)

(in these figures we show also the power spectra measured from the N-body initial

conditions at z = 199).

5.2.1 Thermal inflation

We consider the model of thermal inflation proposed in [185,186] and studied in [73]

from the point of view of the effects on density perturbations. This model predicts (at

least) two inflationary stages. The universe starts as usual with a standard first (or

primordial) inflationary period, which produces nearly scale-invariant perturbations

and ends at t = te. However, since moduli acquire non-null vacuum expectation

values (VEV) during the first inflation, this stage is followed by a moduli dominated

period (moduli are non-relativistic, so in this stage the Universe is matter dominated),

starting at t = ta. In this period a sub-dominant standard radiation component is

also present. The moduli dominated era ends when their energy density drops below

the constant value V0 = V (φ = 0) of the flaton potential, maintained at the origin

by thermal effects. At this stage, t = tb, the Universe undergoes a second low-energy

inflationary expansion, which dilutes the moduli. Thermal inflation finishes when

the thermal bath temperature is not sufficient to hold the flaton at φ = 0. The flaton

rapidly rolls to its true minimum, starting to oscillate. At t = tc a flaton matter

dominated period begins and a first-order phase transition converts the flaton energy
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into standard radiation at t = td, before BBN. The universe, from this point on,

follows the standard history.

Following the convention in [73], we define the characteristic wavenumbers, kx ≡

a(tx)H(tx), with x = {a, b, c, d} (where the various times tx have been introduced in

the above paragraph). The numerical values are given e.g. in [190]. In some thermal

inflation scenarios (e.g. multiple thermal inflation [186]), the values of ka and kb are

sufficiently small to be in the range of wavenumbers that are interesting for structure

formation. In particular, there are cases when kb � ka, kd, so the impact of thermal

inflation on the curvature power spectrum comes effectively from one parameter,

kb, [73]. In such cases the curvature power spectrum for thermal inflation can be

written as [73],

PTI
R (k) = Pprim

R (k)T 2
TI(k), (5.2.1)

where Pprim
R (k) is the (dimensionless) curvature power spectrum from the first in-

flationary stage, while TTI(k) is the transfer function which contains information

about the effects of thermal inflation on the modes with wavenumbers k > kb. The

matter power spectrum at a given redshift z is then calculated from the primordial

curvature perturbations as P (k, z) = PTI
R (k)T 2(k, z), where T (k, z) is the transfer

function that characterises the evolution after the flaton decay.

Pprim
R takes the approximate form (as calculated in [189]),

Pprim
R ' A∗

(
1− 1

N∗
ln
(
k

k∗

))(1−n∗)N∗

, (5.2.2)

where A∗ is the amplitude at the pivotal scale k∗ and N∗ is

N∗ ≡ ln
(
ke
k∗

)
. (5.2.3)

N∗ is uncertain mainly because of the unknown phases before the moduli domination

epoch (see [189] for the interval of possible values that can be taken by N∗).



116 Chapter 5. Thermal inflation and damped matter fluctuations

The thermal inflation transfer function TTI(k), takes the analytical form [73],

TTI(k) = cos
( k

kb

) ∫ ∞
0

dα√
α(2 + α3)


+ 6

(
k

kb

)∫ ∞
0

dγ

γ3

∫ ∞
0

dβ

(
β

2 + β3

)3/2

sin
( k

kb

) ∫ ∞
γ

dα√
α(2 + α3)

 .
(5.2.4)

The above expression is unity for k � kb, and corresponds to an enhancement of

∼ 20% around k ' 1.13 kb, while for k � kb the transfer function oscillates around

zero as TTI(k) ' − cos(2.23 k/kb)/5.

The primordial curvature power spectrum for the standard ΛCDM paradigm is

Pprim,s
R (k) = A∗

(
k

k∗

)n∗−1

, (5.2.5)

where the pivotal wavenumber is k∗ = 0.05 Mpc−1. Three differences arise when

comparing the power spectrum from thermal inflation (Eq. (5.2.1)) with that from

the standard paradigm (Eq. (5.2.5)):

• a small change in the Pprim
R with respect to Pprim,s

R due to N∗ (this difference

is k-dependent). However, as shown in [190] the difference due to the choice

of N∗ is negligible (if compared to the other effects listed below) at k . kb for

kb ≥ 1 Mpc−1, while the range of wavenumbers really affected by N∗ are those

(k � kb, oscillation regime) which are already extremely damped by T 2
TI (see

Figure 3 or 4 in [190]). So, instead of fixing a value of N∗, from here on we

will consider Pprim
R (k) = Pprim,s

R (k);

• an enhancement in the power amplitude at k ∼ kb, and

• a strong damping for k > 3kb, with an oscillatory pattern in the power spectrum

of thermal inflation (T 2
TI oscillates around 1/50 at large wavenumbers).

To calculate the matter power spectrum in thermal inflation, we have used the

class code [160,161], providing as input the primordial curvature power spectrum for

thermal inflation. The matter power spectra P (k) at z = 199 are shown in Figure 5.1

for the two values of the characteristic wavenumber kb = 5 and 3 Mpc−1 considered
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in this analysis, together with that from standard ΛCDM and two other damped

models (see below) for comparison. We choose these two values of kb because they

produce a sufficient reduction of the number of haloes with massMhalo < 109 h−1 M�

(as we will see in the next sections) to be considered as possible solutions to the

missing satellite problem. Larger values of kb give matter power spectra that are less

suppressed and so are very similar to standard ΛCDM at the scales of interest in

our analysis, and as pointed out in [73, 189] only kb & 1 Mpc−1 is allowed by CMB

constraints. As can be seen in Figure 5.1(b), the enhancement at k ∼ kb and the

damping at larger wavenumbers influence significantly the shape of the matter power

spectrum of thermal inflation when comparing with that from standard ΛCDM, so

we will focus on the effect of these two properties on structure formation. We also

note that the matter power spectra from thermal inflation are significantly different,

in general, from those expected from nCDM (see e.g. the thermal WDM power

spectrum in Figure 5.1), because of this enhancement in power at k ∼ kb and the

presence of oscillations (although some nCDM scenarios such as axion-like DM [94]

or interacting DM [90–93] also display oscillations in the matter P (k)).

The thermal WDM model shown in Figure 5.1 was introduced in Subsection 2.3.1.

We choose the WDM particle mass mWDM = 2 keV because the corresponding

half-mode wavenumber (k1/2,WDM2) is roughly equal to the half-mode wavenumber

(k1/2,TI5) for the thermal inflation model with kb = 5Mpc−1 (see Figure 5.1(b)), so

these two models are directly comparable.

5.2.2 BSI inflation

We also compare thermal inflation with another non-standard inflation model, which

hereafter we call broken scale invariance inflation or BSI. Inspired by the scenario

proposed in [74,191] (which was studied as a viable solution of the small-scale crisis

in [66]), we consider a model where the primordial curvature spectrum takes the

form Pprim
R (k) = Pprim,s

R (k)T 2
BSI(k), where Pprim,s

R is the standard ΛCDM primordial
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Figure 5.1: (a) Matter power spectra generated at z = 199 for different models as
labelled. (b) Ratios of the linear damped power spectra relative to that from standard
ΛCDM. Solid lines show the linear theory power spectra, while symbols represent the
power spectra measured from the N-body ICs. The black vertical dashed line indicates the
Nyquist frequency of the simulations. The green vertical dashed line in panel (b) shows
the position of the half-mode wavenumber k1/2,TI5 for the thermal inflation matter power
spectrum with kb = 5 Mpc−1.

spectrum (see Eq. (5.2.5)), while T 2
BSI is given by [74]

T 2
BSI(k)
NBSI

= 1− 3(p− 1)
(
k0
k

) [(
1− k2

0
k2

)
sin
(2 k
k0

)
+
(2 k0

k

)
cos

(2 k
k0

)]

+ 9
2 (p− 1)2

(
k0
k

)2 (
1 + k2

0
k2

) [(
1 + k2

0
k2

)
+
(

1 + k2
0
k2

)
cos

(2 k
k0

)
−
(2 k0

k

)
sin
(2 k
k0

)]
,

(5.2.6)
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where k0 is the wavenumber above which the power spectrum breaks its scale-

invariance, p quantifies the power suppression1 and the normalisation NBSI is chosen

such that T 2
BSI(k) = 1 for k � k0, so at small wavenumbers the BSI power spectrum

is equal to that in the standard paradigm. We note that this transfer function has

an enhanced peak at k ∼ k0, whose amplitude depends on p. As we did for the

case of thermal inflation, we have modified class providing the BSI primordial

power spectrum as input. In this way, class can calculate the linear theory matter

power spectrum for BSI. We choose the free parameters, {k0, p}, such that the linear

matter power spectrum for BSI has the enhanced peak in the same position and

with the same amplitude as the linear P (k) for the case of thermal inflation with

kb = 5 Mpc−1. We find that for k0 = 5.45hMpc−1 and p = 2.21, the enhanced peak

in BSI linear matter power spectrum is roughly equal to that of thermal inflation with

kb = 5 Mpc−1. The linear power spectrum for the BSI model is shown in Figure 5.1.

From Figure 5.1(b) the choice of this BSI model to compare with thermal inflation

with kb = 5 Mpc−1 is clear. Indeed, the linear matter power spectrum of BSI is very

similar to that of thermal inflation with kb = 5 Mpc−1 up to k ∼ 20hMpc−1. For

larger wavenumbers, the thermal inflation transfer function oscillates around zero,

while the BSI TBSI(k) oscillates around a constant non-zero value2. However, we note

that the power spectrum depends on the squared transfer function. In the case of

thermal inflation T 2
TI(k) oscillates around 1/50 at high wavenumbers (see Section 5.2)

while for BSI T 2
BSI(k) ∼ 0.22. The thermal inflation linear power spectrum is then

more suppressed at large wavenumbers than that from BSI.

The linear matter power spectra shown as solid lines in Figure 5.1 are used as

input for the N-body simulations. The simulations are performed (using the Gadget-

1Note that if p > 1 the power is suppressed at high wavenumbers, while if p < 1 the power is
enhanced at high wavenumbers.

2Apart from the enhanced peaks, the differences in the transfer functions at high wavenumbers
between BSI and thermal inflation are very similar to those between mixed DM (see e.g. [134]) and
pure WDM. Indeed, pure WDM models have vanishing transfer functions at high wavenumbers
(see e.g. the thermal WDM power spectrum in Figure 5.1(b)). While, in mixed DM the transfer
function reaches a constant non-zero value at high wavenumbers since CDM fluctuations are present
on small scales [134].
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Figure 5.2: Ratios of the matter power spectra measured from N-body simulations of
thermal inflation respect to those measured from standard ΛCDM simulations at various
redshifts (as labelled). Panel (a) shows the results for thermal inflation with kb = 5 Mpc−1,
while the results for kb = 3 Mpc−1 are shown in panel (b). The black vertical dashed line
indicates the Nyquist frequency of the simulations.

2 code) in a cubic box of comoving length L = 25h−1 Mpc using N = 5123 particles

(the simulation particle mass is∼ 107 h−1 M�). We choose this pair of {N,L} because

we want to resolve structures on scales near the cut-off of the thermal inflation linear

power spectra (see Figure 5.1). We have tested the accuracy of simulations with this

choice of parameters against possible numerical effects (see Appendix A).

5.3 Matter power spectra

Below we present our results for the matter power spectra measured from the sim-

ulations. We show our results for seven redshifts z = 199 (initial conditions) and

z = 19, 9, 5, 3, 1, 0. As in Chapter 3 the matter power spectrum is measured using

the code in [175].

Initial P (k) – The matter power spectra measured from the ICs for all the models

described in Section 5.2 are shown as symbols in Figure 5.1(a). These are presented

normalised as ∆2(k) ≡ k3P (k)/(2π2). The ratios P damped/PΛCDM of the damped

power spectra with respect to that from ΛCDM are displayed in Figure 5.1(b) instead.

As shown in these figures, the ICs resolve well the cut-off region for all the power
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spectra considered in our analysis. It is interesting to note how well the ICs capture

the enhanced peak at k ∼ kb and the oscillatory behaviour at k > kb in the case of

the thermal inflation models. Below we will see how the enhancement in the thermal

inflation P (k) changes the non-linear power spectrum and if the oscillatory pattern

at high wavenumbers survives non-linear evolution.

Evolved P (k) – The matter power spectra at late times for the two thermal

inflation models are shown in Figure 5.2. First, we note that the oscillations at high

wavenumbers do not survive the non-linear evolution and they are erased at low

redshifts, in agreement with what we have found in Chapter 3 for an oscillatory power

spectrum. Second, the enhanced peak in the linear power spectra is progressively

shifted to higher wavenumbers in the non-linear regime, while the peak height is

reduced. By z = 0, the thermal inflation P (k) are very similar to the P (k) of the

standard ΛCDM at all the wavenumbers probed by our simulations. We note that

in the linear regime, the thermal inflation power spectra were extremely suppressed

at k > 3 kb (see Figure 5.1(b)). However, due to the shift of the peak position to

large wavenumbers, the non-linear power spectra for these models show, in general,

more power at k > 3 kb with respect to ΛCDM. This is true for both the thermal

inflation power spectra considered here. For example, at z = 0, for the model

with kb = 5 Mpc−1 we have PTI/PΛCDM ' 1.02, while for the thermal inflation

with kb = 3 Mpc−1 PTI/PΛCDM ' 1.05 at wavenumber k ∼ 32hMpc−1. In the

linear regime, both thermal inflation power spectra where suppressed by ∼ 1/50 at

k ∼ 32hMpc−1 with respect to ΛCDM.

Comparison with WDM and BSI – We have also compared the results from

thermal inflation with kb = 5 Mpc−1 with those from the WDM and BSI models

described in Section 5.2. The non-linear power spectra measured from N-body

simulations for these models (shown as ratios to standard ΛCDM) are given in

Figure 5.3. For thermal WDM, although the non-linear evolution transfers the

power from small to large scales, the non-linear power spectra at low z always have

less power than the standard ΛCDM P (k), in contrast with what we find for thermal
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Figure 5.3: Ratios of the matter power spectra for thermal inflation with kb = 5 Mpc−1

(green), thermal WDM (cyan) and BSI (magenta) with respect to those from standard
ΛCDM measured from N-body simulations at redshifts z = 5, 3, 1, 0 as labelled. The black
vertical dashed line indicates the Nyquist frequency of the simulations.

inflationary models (see the discussion in Evolved P(k) above). In the case of the BSI

model, the non-linear power spectrum behaviour follows that of thermal inflation.

Indeed, as can be seen from Figure 5.3 the enhanced peak is reduced in magnitude

and shifted by the same amounts for both thermal inflation and BSI. In general, the

matter power spectra at low redshift from thermal inflation display less power than

BSI. However, the differences in the non-linear matter power spectra at k � k0, kb

between thermal inflation and BSI are appreciably less than those in the linear

theory power spectra on the same scales. For example, the ratio between thermal

inflation and BSI power spectrum at z = 199 (linear theory) is small, ∼ 0.09 at
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k ∼ kNy, while the ratio between the two non-linear power spectra at z = 0 is ∼ 0.98

for wavenumbers near the Nyquist frequency. The non-linear transfer of power from

large to small scales has reduced the initial linear theory difference between these

two models by a factor of 10.

In conclusion, non-linear matter power spectra are then a blunt tool to distinguish

the effects of thermal inflation or BSI. We will see below that halo statistics are

more sensitive to the shape of the linear P (k). We stress, however, that the results

regarding the non-linear P (k) have not appeared in the literature before, since

previous studies on damping models have always focused on the damping features of

the matter power spectra. In thermal and BSI inflation, we find that the presence of

an enhanced peak in the linear power spectrum affects substantially the behaviour

of the non-linear power spectra at small scales. The non-linear power spectra in

these models are then different from those found in nCDM scenarios, particularly at

high redshifts.

5.4 Halo statistics at z = 0

In this section we explore whether counting the number of haloes of different masses

can discriminate between thermal inflation and the standard paradigm. We will

see also if the thermal inflation models predict a different halo mass function than

thermal WDM and BSI. In this section we focus on results at z = 0, we discuss the

halo mass function at high redshifts in the next section.

5.4.1 Measured halo mass function

As we saw in the previous chapters, one common impact of damped models on

structure formation is a reduction in halo abundance at low masses, offering a

possible solution to the missing satellite problem. Since thermal inflation models are

characterised by damping in the linear matter power spectrum at high wavenumbers

(as seen above), we expect a similar reduction in the number of low-mass haloes



124 Chapter 5. Thermal inflation and damped matter fluctuations

with respect to standard ΛCDM. However, since thermal inflation power spectra are

characterised by enhanced peaks, it is also possible to find such features imposed

on the halo mass function3. In this subsection we show the halo mass function

measured from the N-body simulations at z = 0 (for halo mass functions at high

redshifts see Section 5.5). The (differential) halo mass function is always presented

as F (M200, z) = dn/d log(M200). We assume a minimum of 50 simulation particles

in a halo, so the minimum halo mass is ∼ 5 × 108 h−1 M�. We note also that the

volume of our simulations is too small to provide a statistically robust sample of

haloes with masses M200 > 1012 h−1 M�. This means that for the most massive

haloes in our simulations the results are influenced by large Poisson fluctuations. To

identify spurious haloes in thermal inflation, BSI and WDM simulations we adopt

the method described in Chapter 4.

The halo mass functions at z = 0 extracted from the simulations are shown in

Figure 5.4(a) for all the models considered in our analysis. The symbols show the

results measured from the halo catalogues once the spurious haloes have been re-

moved. In the lower panels of Figure 5.4 we display the measured halo mass functions

(shown as ratios to the ΛCDM) for the damped models before (Figure 5.4(b)) and

after (Figure 5.4(c)) the spurious structures have been removed. Comparing Figures

5.4(b) and 5.4(c) we can see that the spurious haloes affect only the low-mass end

(M200 < 4× 109 h−1 M�) of the halo mass function of the damped models. This is in

line with what we found in Chapter 4. We now discuss the cleaned results in more

detail starting from the thermal inflation models and then comparing with WDM

and BSI.

Thermal inflation – As we can see from the plots of the ratios with respect

to ΛCDM (lower panels in Figure 5.4), for both thermal inflation models the halo

mass function has the following behaviour: (i) it approaches the ΛCDM predictions

3These features in thermal inflation cosmologies have been found in [190] by inferring the halo
mass function by using the analytical PS approach. We review this approach in the next subsection
by showing that using a spherical top-hat filter the PS analytical predictions over-estimate the
small mass halo abundance when compared with N-body simulations.
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Figure 5.4: (a) Halo mass function at z = 0 for all the models considered here (as labelled).
Symbols show the results from cleaned catalogues extracted from N-body simulations and
cleaned using the method explained in the text. Lines show the results obtained using
the PS analytical approach with the smooth-k space filter. Note that in (a) all the halo
mass functions are shifted above or below that for thermal inflation for presentation
purposes. Lower panels: ratios of the halo mass function for the damped models with
respect to that for ΛCDM from (b) uncleaned and (c) cleaned halo catalogues respectively.
Note that in the lower panels we have reduced the number of bins in the mass range
log(M/(h−1 M�)) ∈ [11.2, 13.8] to suppress fluctuations due to Poisson noise.

at large halo masses, (ii) has an enhancement (∼ 17% larger than ΛCDM) at

intermediate mass scales (i.e. M200 ∼ 3× 1010 h−1 M� for kb = 5 Mpc−1 and M200 ∼

1.5×1011 h−1 M� for kb = 3 Mpc−1) and (iii) becomes much smaller than the ΛCDM

results for lower halo masses. This behaviour follows that of the linear matter power

spectrum presented in the previous section (this can be seen more clearly when using

analytical approaches to calculate the halo mass function, see next subsection).
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Comparison with WDM and BSI – Here, we compare the halo mass function at

z = 0 for thermal inflation with kb = 5 Mpc−1 with that from N-body simulations of

thermal WDM and BSI inflation. As can be seen in Figure 5.4, the differences in the

behaviour of the halo mass function among these three damped models follow those

in the linear power spectrum (see Figure 5.1) than those in the non-linear spectrum.

Indeed, at intermediate mass scales (M200 ∼ 1010 h−1 M�) the thermal inflation and

BSI halo mass functions have an enhancement with respect to ΛCDM while thermal

WDM always displays halo abundances equal to or lower than standard ΛCDM. At

lower masses, thermal inflation and WDM display roughly the same downturn. In

the case of BSI, the halo mass function at z = 0 is very similar to that of thermal

inflation for halo masses M200 > 1.5 × 109 h−1 M�. However, at low halo masses

(M200 < 1.5 × 109 h−1 M�), the halo mass function for BSI is less suppressed than

that measured in the thermal inflation model.

We note that from our N-body results (see Figure 5.4) it seems that the ratio

between the BSI and ΛCDM halo mass function is close to a constant value (which

is also confirmed by the analytical predictions, see next subsection) instead of de-

creasing further as in thermal inflation. However, we note that our simulations

cannot resolve accurately mass scales M200 < 5 × 108 h−1 M�, so higher resolution

simulations would be needed to confirm the existence of this plateau at small halo

masses in the BSI model with respect to ΛCDM. This different behaviour of the

halo mass function at small halo masses for BSI and thermal inflation is expected

from the differences at large wavenumbers in the linear power spectra of these two

models. Indeed the BSI transfer function follows that of thermal inflation up to

k ∼ 20hMpc−1. However, at larger wavenumbers, the BSI transfer function does

not decrease further and oscillates around a constant non-zero value, as discussed in

Section 5.2 (see e.g. Figure 5.1).
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Figure 5.5: Ratios of the halo mass function at z = 0 for the damped models with respect
to that for ΛCDM. Symbols show the results from cleaned halo catalogues, while black
lines show the results for the analytical PS approach with: smooth-k space (solid), sharp-k
space (dashed-dotted) and top-hat real space (dashed) filter respectively.

5.4.2 Analytical predictions

As discussed in Chapter 4, some aspects of the non-linear evolution of structure can be

captured using semi-analytical methods, such as the PS analytical approach. We test

here which of the three filters (top-hat real space, sharp-k space and smooth-k space)

introduced in Chapter 4 gives the best match to the halo abundances extracted from

N-body simulations (note that we choose the same free-parameters as in Chapter 4

for the smooth-k and sharp-k space filters). In Figure 5.5, we display as lines the

results using the three filters (symbols show the results from N-body simulations).
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From all the panels in this figure we can see that the smooth-k space filter gives better

matches than the other two filters for all the models considered here (in particular the

top-hat real space filter predicts an excess in the halo abundance at small halo masses

of a factor of ∼ 4 larger than that actually measured from simulations). Moreover,

the smooth-k space filter predicts reasonably well the position of the enhancement

in the halo mass function of both thermal inflation models and BSI (with deviations

< 5% in the ratios). In the case of BSI, we can also see that the ratio with respect to

ΛCDM predicted by our filter reaches a constant non-zero value at small halo masses.

However, as pointed out in the previous subsection, our simulations cannot resolve

properly these mass scales, so high-resolution simulations are needed to confirm

such behaviour. We can extend the conclusions found in Chapter 4 by noting that

the smooth-k space filter is still a good choice when considering models of thermal

inflation or BSI (at least for mass scales well resolved by our simulations). Here we

have only considered two thermal inflation models. However, at least for all thermal

inflation models with kb ≥ 3 Mpc−1, our filter is expected to give good predictions.

This is because such models are equally or less damped (more similar to ΛCDM)

at the wavenumbers probed by our analysis than those considered here, so the halo

abundances are less reduced at the scales relevant for structure formation.

5.5 Halo statistics at high redshifts

In the previous section we presented the halo abundances at z = 0. However,

in [190] the authors show that the magnitude of the peak in the halo mass function

for thermal inflation models increases at high redshifts. In this section we investigate

this aspect by measuring the halo mass function from our N-body outputs at redshifts

z = 5, 3, 1 and compare them with the analytical predictions from the PS approach

with the smooth-k space filter.

As in the case of z = 0, halo catalogues from simulations at higher z need to

be cleaned from spurious haloes. However, our method of cleaning (considered in
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Figure 5.6: Ratios of the halo mass function for the thermal inflation with kb = 5 Mpc−1

with respect to that for ΛCDM at different redshifts as labelled. Symbols show the
results from (a) uncleaned and (b) cleaned halo catalogues. Lines show the results for the
analytical PS approach with the smooth-k space filter.

Chapter 4) uses the value in [144], slim = 0.165, for the sphericity limit, which is

valid only for halo catalogues at z = 0. For higher redshifts, one needs to find the

appropriate sphericity limit (see e.g. the discussion in [147]). Since the purpose of

this section is to understand the evolution of the enhanced peak with z, we will not

undergo a thorough study on finding the sphericity limit at z > 0. Instead, we use a

conservative estimation of the spurious haloes at high redshifts based on the haloes

removed in catalogues at z = 0. This method is illustrated below.

For a given halo catalogue at z̃ 6= 0, we first remove all the haloes with masses

Mhalo < 0.5Mlim. This is justified because we found in Chapter 2 that the upturn

in the halo mass function due to the spurious haloes appears at roughly the same

masses irrespective of the redshift. To remove further spurious haloes among those

remaining after this first cleaning step, we proceed as follows. We identify all the

simulation particles belonging to spurious haloes at redshift z = 0 (they are identified

using the cleaning process explained in Chapter 4). We call these particles “spurious”

particles, just because they are in spurious haloes at z = 0. We locate the position

of the spurious particles at z̃ and find if these particles are bound in haloes at this

redshift. If an halo at z̃ contains more than 70% of these spurious particles, we
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consider this halo as spurious and we remove it from the catalogue.

In Figure 5.6 we show the halo mass function extracted from our simulations of

thermal inflation with kb = 5 Mpc−1 at high redshifts (the uncleaned catalogue results

are shown in Figure 5.6(a), while the cleaned ones are in Figure 5.6(b)). From this

figure we see that although the position of the enhancement in the ratio with respect

to the ΛCDM remains almost invariant with the redshift, its magnitude increases

with z. Indeed, at z = 1 FTI/FΛCDM ' 1.19 for massesM200 ' 3×1010 h−1 M�, while

it increases to ' 1.25 at z = 3 and reaches ' 1.40 at z = 5 and for the same mass bin.

We note that the differences in the halo mass function near the peak between z = 1

and z = 0 (see Figure 5.5(a) for the results at z = 0) are instead smaller, with an

enhancement in the latter of around FTI/FΛCDM ' 1.17 at M200 ∼ 3× 1010 h−1 M�

(to be compared with FTI/FΛCDM ' 1.19 at z = 1). In Figure 5.6, we show also

the predictions from the PS approach with the smooth-k space filter. Although the

smooth-k space filter parameters were calibrated using halo statistics at z = 0 (see

Chapter 4), we can see that this filter gives reasonably accurate predictions of the

halo mass function at high redshifts.

5.6 Summary and conclusions

In this chapter, we have studied how structures grow in the thermal inflation models

described in [73] by using N-body simulations. These models are characterised by

a matter power spectrum which is damped on small scales but with a peak in the

power (compared to ΛCDM) located at a wavenumber just below the damping scale.

The N-body simulations used here were performed in a cubic box of length L =

25h−1 Mpc using 5123 simulation particles, the simulation particle mass is around

107 h−1 M�. We have investigated two thermal inflation models with kb = 5 Mpc−1

and kb = 3 Mpc−1 respectively. The N-body results from such models have been

compared with those from thermal WDM, BSI and standard ΛCDM model. The

thermal WDM model has been chosen with the same half-mode wavenumber as
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in thermal inflation with kb = 5 Mpc−1. In the case of the BSI inflation, we have

constructed the model to have an enhanced peak at the same position and of the

same magnitude as that in thermal inflation with kb = 5 Mpc−1. However, at large

wavenumbers the linear P (k) for BSI is less suppressed than that from thermal

inflation.

For each model, we have measured the non-linear power spectrum and the halo

mass function from the N-body simulation outputs at different redshifts. We sum-

marise below the main results. Regarding the nonlinear power spectrum, our findings

can be summarised as follows.

• The peak in the linear power spectrum for both thermal inflation models

persists in the nonlinear regime, but is shifted to higher wavenumbers and has

a reduced amplitude at progressively lower redshifts.

• Although the thermal inflation linear P (k) for k > 3 kb is suppressed by a factor

∼ 1/50 with respect to ΛCDM, due to the peak shift, the non-linear power

spectrum at low redshifts is enhanced at these wavenumbers with respect to

that in ΛCDM. At z = 0, the ratio w.r.t. the ΛCDM is of the order of unity

for all the wavenumbers k < kNy, where kNy is the Nyquist frequency of our

simulations. This is true for both thermal inflation models considered here.

• The WDM non-linear power spectrum behaves differently than that from

thermal inflation. Indeed, we find that although the transfer of power enhances

the power at small scales, the non-linear power spectra at low z always have

less power than the standard ΛCDM P (k).

• The BSI non-linear power spectrum shows similar behaviour to that in thermal

inflation. Indeed, the peak in BSI is shifted to higher wavenumbers and has

a reduced amplitude at low redhsifts as in the case of thermal inflation with

kb = 5 Mpc−1. In the linear regime, PTI/PBSI ∼ 0.09 at k � kb. However,

the non-liner evolution (almost completely) washes out the differences at large

wavenumbers present in the two initial power spectra, so that at low redshifts
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the two non-linear power spectra are very similar to each other, e.g. PTI/PBSI ∼

0.98 at k ∼ kNy.

Regarding the halo mass function, we find the following results.

• In general, the differences in the halo mass function between the different

models studied here follow those in the linear matter power spectra (rather

than those in the non-linear power spectrum). Indeed, in both the thermal

inflation models we find that the halo mass function has an enhanced peak

before dropping to negligible values at small masses (as in the case of the

linear power spectrum). The BSI and thermal inflation with kb = 5 Mpc−1

halo mass functions are roughly the same for masses M200 > 1.5× 109 h−1 M�.

At lower masses, the BSI decreases slower than thermal inflation and eventually

reaches a plateau. In the case of WDM, the halo mass function presents no

enhancements and is always equal or less than that from the standard ΛCDM

model.

• The enhancement in the halo mass function is around M200 ∼ 3× 1010 h−1 M�

for thermal inflation with kb = 5 Mpc−1 and BSI models, while it appears at

higher masses, M200 ∼ 1.5× 1011 h−1 M�, for kb = 3 Mpc−1. The enhancement

in all these models with respect to the ΛCDM is around ∼ 20% at z = 0.

• At higher redshifts and in the case of thermal inflation, we find that the halo

mass function has an enhancement at the same mass as z = 0. However, the

magnitude of this enhancement with respect to ΛCDM increases from ∼ 20%

at z = 0 to ∼ 40% at z = 5.

• We have used these numerical results to test the predictions from the PS

approach with three filters: top-hat real space, sharp-k space and smooth-k

space. From this analysis, we find that the predictions from a smooth-k space

filter agree with the simulation results over the widest range of halo masses.

This is true for all the models and at all the redshifts considered here.
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We note that here we have considered the simplest WDM model, the so-called

thermal WDM. However, as mentioned in Chapter 2 and 3, this model does not

exhaust all the possibilities inside the nCDM scenarios. Other well-motivated models,

such as sterile neutrinos [80–89], axion-like particles [94–96] or models suggested by

effective theory of structure formation (ETHOS) [192, 193], can produce different

effects on structure formation than those found in the case of thermal WDM (see

e.g. [75, 95,96,194,195] and Chapter 3 of this thesis). We note that our simulations

do not take into account the effects of baryon physics that can modify the matter

distribution and the properties of haloes measured from DM-only simulations, see

e.g. [118,127,196–200].

As in nCDM models, the thermal inflation model predicts fewer low-mass haloes

and sub-haloes than standard ΛCDM, but without involving any modification to

the dark matter sector. However, differently from nCDM, the model presents an

enhancement in the power spectrum at wavenumbers just shorter than the damping

scale. This is a unique feature in the power spectrum which could leave an imprint

on the large-scale structure of the Universe which can be used to distinguish this

model from nCDM scenarios. For example, in [190] the authors have shown how

future 21-cm observations could be able to distinguish between thermal inflation

and WDM because of the different shapes of their power spectra. The recent results

from the EDGES experiment [201], which claim a detection of a 21-cm absorption

line at z ∼ 20, could indicate that star formation was happening at high redshifts

(an early onset of the so-called cosmic dawn). An early cosmic dawn can be used

to constrain the suppression of the matter power spectrum in damped models (as

was done e.g. for nCDM models in [202,203]) and these constraints can be applied

to thermal inflation power spectra. Moreover, Lyman-α observations could be used

to constrain the values of kb as was done for the mass of thermal WDM candidates

in [132,133]. Regarding halo abundances, the halo mass function in thermal inflation

is characterised by an enhanced abundance at halo masses just above the suppression

mass scale, so in principle, these models can be distinguished from nCDM using halo
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statistics. Indeed, galaxy probes (see e.g. [204,205]) at high redshift could be able to

give some information on the massive objects near the peak (which is enhanced in

magnitude for z > 0 as we have found here), while future strong lensing observations

(see e.g. [206]) will be able to constrain the number of low-mass DM sub-haloes.

Results from these future observations could shed some light on the shape of the

underlying matter power spectrum and could indirectly constrain the nature of the

processes that produce a damping in the matter fluctuation from very early epochs

in the history of the Universe.



Chapter 6

Neutral hydrogen and modified

gravity

6.1 Introduction

In the previous chapters, we looked at alternatives to ΛCDM that introduce a

cut-off in the matter power spectrum at small scales. We investigated how these

alternatives leave features in the non-linear DM structures by measuring e.g. the

halo mass function from N-body simulations. In this chapter, we focus instead on

the effects of modified gravity (MG) models on structure formation, with particular

attention to how future 21 cm intensity mapping experiments in the post-reionisation

epoch can be used to probe the nature of gravity.

In recent years, tests of general relativity (GR) on cosmological scales have

become possible and commonplace [104] although until now these tests have primarily

focused on comparatively high-mass objects and low redshift (see e.g. [207–216]).

Nevertheless, due to the screening mechanisms (see below), which many MG models

employ to pass stringent Solar System tests, it is challenging to detect deviations

from GR in these objects.

In this chapter, we propose a novel test of gravity at intermediate scales and

high redshifts using the distribution of neutral hydrogen in our Universe which is
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observable in 21 cm experiments. Indeed, 21 cm mapping of neutral hydrogen can

be used to trace the underlying matter distribution and clustering [217–220] (as

suggested also in [221]). In order to determine how possible deviations from GR

would affect the HI distribution, we employ a set of full-physics hydrodynamical

simulations of chameleon f(R) modified gravity. Comparing the f(R) simulations to

their ΛCDM counterparts allows us to quantify the size of the effects due to MG in

the overall neutral hydrogen abundance and the HI power spectrum, and to assess

if these effects can be observed with future 21 cm intensity mapping experiments

such as SKA [102]. HI clustering has been proposed as a probe for a number of

non-standard cosmological models, e.g. massive neutrinos, warm DM, dark energy

and modified gravity [222–226], but this study reveals new features and promising

constraining power thanks to the high resolution of our simulations.

The chapter is organised as follows. In Section 6.2 we review the MG models

chosen for the analysis. In Section 6.3 we describe the hydrodynamical simulation set-

up and how we extract information on the neutral hydrogen distribution from these

simulations. In Section 6.4 we present the results for the overall neutral hydrogen

energy density at different z. In Section 6.5 we show the neutral hydrogen power

spectra measured from simulations together with some additional tests, which are

aimed to better understand the features found in the MG HI power spectra. Finally,

we discuss the implications of our study on HI in Section 6.6

6.2 Chameleon f(R) gravity

The chameleon f(R) gravity is a popular family of MG models that modify the

Einstein-Hilbert Lagrangian density by replacing the Ricci scalar R with some func-

tion f(R) [105]. In these models, a cosmological constant is still implicitly needed

to achieve the late-acceleration expansion [227–229], so they do not offer a real solu-

tion to the problems of the cosmological constant. Nevertheless, they represent an

interesting opportunity to study the effects of deviations from GR on cosmological
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and astrophysical scales.

The action in f(R) gravity is

S =
∫

d4x
√
−g

[
R + f(R)

16πG + Lm
]
, (6.2.1)

where G is the gravitational constant, g is the determinant of the metric gµν and Lm is

the matter Lagrangian density. In the cosmological simulations used here (see [108])

all gravity force computations are performed within the Newtonian limit [230]. In

this limit, the MG equations from the action (6.2.1) reduce to a modified Poisson

equation and an equation for the scalar degree of freedom (the so-called scalaron

field), fR ≡ df(R)/dR,

∇2Φ = 16πG
3 δρ− 1

6δR, ∇2fR = 1
3 (δR− 8πGδρ) , (6.2.2)

where δρ ≡ ρ(x)−ρ̄ is the matter density perturbation, while δR ≡ R−R̄ is the Ricci

scalar perturbation. These modifications to Newtonian gravity can be considered as

a fifth force mediated by fR. Here, we study the Hu-Sawicki variant [107] of this

model, where

f(R) = −m2 c1
(
R
m2

)n
c2
(
R
m2

)n
+ 1

. (6.2.3)

m is given by m2 ≡ ΩmH
2
0 and we also choose n = 1. In the limit c2R/m

2 � 1 and

for c1/c2 = 6ΩΛ/Ωm the scalar function (6.2.3) features an expansion history which

is very close to that of a ΛCDM universe. In the above limit and for n = 1, we can

simplify the expression for the background scalar field, f̄R, as (see e.g. [215])

f̄R = −c1

c2
2

1[(
R̄
m2

)
+ 1

]2 ≈ −c1

c2
2

(
m2

R̄

)2

, (6.2.4)

in which,

R̄ = 3m2
(
a−3 + 4 ΩΛ

Ωm

)
≈ 3m2

(
a−3 + 2 c1

3 c2

)
, (6.2.5)

and
c1

c2
2

= −
[
3
(

1 + 4 ΩΛ

Ωm

)]2

f̄R0, (6.2.6)
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where f̄R0 is the background value of the scalaron today. As can be seen from the

above equations, the model is fully specified by the value of f̄R0.

In order to not violate the very stringent constraints on gravity in our local

environment [231], the theory employs the so called chameleon screening mechanism

[232,233], to suppress modifications to gravity in high density environments, restoring

GR within these regions. The characteristic onset of the screening depends on

the choice of the free parameter of the theory, f̄R0. In f(R) gravity the speed

of gravitational wave (GW) is equal to the speed of light and the model passes

recent constraints from GW observations [234], making it one of the leading viable

alternatives to GR. f(R) gravity models have been widely studied using numerical

simulations [213, 235–241], and their effects on structure and galaxy formation are

representative for the wider class of chameleon-type MG models.

For our analysis, we consider what we call the F5 and F6 variants of f(R) gravity,

where the parameter f̄R0 is equal to −10−5 and −10−6, respectively. An interesting

characteristic of the chameleon screening is that this mechanism becomes inefficient

first for small structures and then moves to massive objects and dense environments.

This suggests that we should look at low-mass objects, which are less screened and so

deviate more from GR, in order to obtain strong constraints in cosmology. However,

a major challenge here is the difficulty to accurately detect and trace such objects

in observations even at low redshifts. As found in [221] for GR, 21-cm intensity

mapping is sensitive to the abundance of haloes down to 108 M�, making it a very

promising probe of differences in the low-mass end of the halo mass function (as we

will show below in the case of f(R) gravity), without requiring to detect individual

haloes.

6.3 Modelling the neutral hydrogen

The 21-cm mapping is based on measuring the 21-cm flux emitted from the hyperfine

splitting of the ground state of the neutral hydrogen. If an hydrogen atom is in
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the upper energy state, it can decay to the lower state, emitting a photon of rest

wavelength ∼ 21 cm. Since the neutral hydrogen distribution, which traces the

matter distribution, is inhomogeneous due to the growth of the matter perturbations,

it produces fluctuations in the 21-cm signal that can be used to constrain the

underlying matter clustering. After re-ionisation, the majority of the hydrogen is

in the ionised phase, but in the over-density regions self-shielding effects preserve

neutral hydrogen, so the post-ionisation signal gives information on the clustering

of collapsed haloes [217–221].

In order to understand how modifications to standard gravity affect the 21 cm

signal, we analyse the shybone simulations [108] (introduced in Subsection 1.3.2).

They include roughly 2 × 5123 resolution elements in 62h−1Mpc side-length simu-

lation box for the F6, F5 and ΛCDM model, reaching a mass resolution of mDM =

1.28 × 108 h−1M� for DM-particles and roughly mgas = 2.5 × 107 h−1M� for gas

cells. The simulation suite features also DM-only N-body counterparts for the runs,

which will be used here to assess the differences in the halo mass function between

hydrodynamical and N-body simulations.

To calculate the neutral hydrogen fraction in each simulated gas (Voronoi) cell,

we follow the prescription in [221]. For non star-forming gas, we use the distinction

between ionised and neutral hydrogen calculated on-the-fly in the simulations and

that is included in the outputs. For star-forming gas, we instead post-process the

outputs, recalculating the equilibrium neutral hydrogen fraction in each cell using

the approach in [242] (and reviewed below).

We derive the total neutral fraction of hydrogen in ionisation equilibrium for

each star-forming cell in post-processing by solving the equation,

nNH Γtot = αne nprot, (6.3.1)

where we equate the total number of ionisations with the total number of recombin-

ations per unit time per unit volume. ni with i ∈ {NH, e, prot} is the non-ionised

hydrogen, free electron and free proton number density respectively. α is the recom-
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bination rate (the rate at which free electrons and protons combine to form neutral

elements), calculated using the approximation proposed in [243],

α = 1.269× 10−13 λ1.503(
1 + (λ/0.522)0.47

)1.923 cm3 s−1, (6.3.2)

where λ = 315614 K/T and T is the gas temperature (see below). Finally, we assume

that two mechanisms are responsible for possible ionisation effects of the hydrogen.

One is the photo-ionisation process due to the UV background, while the other

considers ionisation via collisional interactions among the neutral hydrogens. The

total ionisation rate Γtot is then the sum of these two components: Γtot = Γphot +Γcol.

Γphot is calculated from the rate of UV background photons, ΓUVB, taking into

account the fact that some neutral hydrogen is in dense environments, so self-

shielding effects prevent it to be ionised. To implement these effects we use the

fitting function in [242] (and used in [244]) based on accurate radiative transfer

simulations,

Γphot

ΓUVB
= 0.98

1 +
(

nH

nH,SSh

)1.64
−2.28

+ 0.02
[
1 + nH

nH,SSh

]−0.84

, (6.3.3)

where nH is the total (ionised and non-) hydrogen number density and nH,SSh is the

self-shielding density threshold analytically predicted by [245],

nH,SSh = 6.73× 10−3 cm−3
(

σ̄νHI

2.49× 10−18 cm−2

)−2/3
×
(

ΓUVB

10−12 s−1

)2/3

. (6.3.4)

As can be seen from the above equations, the photo-ionisation rate is fully captured

by specifying the UV background rate, ΓUVB, and the hydrogen absorption cross-

section, σ̄νHI for which we use the UVB model in [246]. On the other hand, the

collisional rate, Γcol, depends on the temperature of the gas (which we fix to be

T = 104 K, the temperature typically observed in the warm-neutral interstellar

medium, see [221,242]) and is calculated using the approximation in [247],

Γcoll = ΛT (1− η)nH, (6.3.5)

where η = nNH/nH, i.e. it is the fraction of hydrogen which is in non-ionised form,
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and

ΛT = 1.17× 10−10 (T/1 K)1/2 exp (−157809 K/T )
1 +

√
T/105 K

cm3 s−1. (6.3.6)

The post-processing for star-forming cells described above gives the total mass

fraction of hydrogen that is non-ionised (MNH): atomic (HI) and molecular hydrogen

(H2), so MNH = MHI +MH2 . As we are interested only in HI, we need to remove the

fraction of non-ionised hydrogen that is in molecular form, i.e. fH2 = MH2/MNH. To

do so, we follow the approach in [221] based on the KMT model [248–250], that is

sketched below. We estimate fH2 in each star-forming Voronoi cell as

fH2 =


1− 0.75 s

1+0.25 s if s < 2

0 if s ≥ 2
, (6.3.7)

where s is

s = log (1 + 0.6χ+ 0.01χ2)
0.6 τc

, (6.3.8)

and

χ = 0.756
(
1 + 3.1Z0.365

)
, τc = Σσd/µH. (6.3.9)

Z is the gas metallicity in units of solar metallicity, σd is the dust cross-section

(estimated as σd = Z × 10−21 cm2), µH is the mean mass per hydrogen nucleus

(' 2.3× 10−24 g) and Σ is the surface density of the gas, Σ = ρg RV, with ρg the gas

density and RV the radius of the Voronoi cell for which we calculate the fraction of

H2 [221]. The fraction of H2 is then removed from the total non-ionised hydrogen

mass (MNH) in each gas cell, to obtain the mass in atomic HI hydrogen.

6.4 Overall neutral hydrogen density

In this section we show the results from the overall neutral hydrogen density at

different redshifts. We follow the definition for the overall HI abundance, ΩHI(z) =

ρ̄HI(z)/ρc0, used in [221], where ρ̄HI(z) is the mean HI density measured from simula-

tions and ρc0 is the present-day critical density. The results are given in Figure 6.1,
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Figure 6.1: Top panel: Overall HI abundance, ΩHI(z) = ρ̄HI(z)/ρc0, where ρ̄HI(z) is the
mean HI density, from GR (black line), F6 (blue line) and F5 (green line) simulations, com-
pared with observational measurements (symbols). Bottom panel: the relative differences
in the simulation predictions from F6 (blue) and F5 (green) w.r.t. GR.
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where we also show some observational measurements of the HI abundance at dif-

ferent redshifts from [251–253]. As we can see from this figure, the HI abundance

from our simulations is lower than observations at all redshifts as was also found

in [221]. This is because the neutral hydrogen in the post-reionisation epoch is

concentrated in haloes where the shielding effects screen them from ionisation. It

was shown in [221] by comparing low- and high-resolution simulations that there is

an appreciable amount of HI in haloes down to 109 M�. However, our simulations

do not resolve these masses accurately and consequently we miss the HI that is

inside such haloes. Although this affects the absolute values of the HI found in our

simulations, we do not expect it to affect appreciably our results on the relative

differences among the models considered here (see discussions in [222–224]). As we

will see below, the differences between the HI distributions for MG and GR are

related to the differences in the halo abundances among these models. F5 and F6

produce more haloes in the low-mass end of the halo mass function, being able to

cool the gas more efficiently, and a higher-resolution simulation able to resolve haloes

down to ∼ 109 M� will probably detect the model differences at that mass scale

(which are expected to be larger due to weaker screening for low-mass haloes).

The ratios of ΩHI(z) in F5 and F6 wrt GR are shown in the lower panel of

Figure 6.1. We notice a similar trend in F6 and F5 when compared to GR, both

showing more HI than GR at z > 1, while at lower redshifts they present less HI

than GR. Overall, we find that HI is ∼ 20% (30%) less abundant in F6 (F5) than

GR at z = 0, and at z = 3 there is ∼ 10% (30%) more HI in F6 (F5) than GR.

6.5 HI power spectra

We calculate the HI power spectrum PHI(k) in real and redshift space from the

simulation outputs using a cloud-in-cell (CIC) density assignment scheme (using the

code [175]), with the shot noise subtracted following the prescription in [118]. In

the upper panels of Figure 6.2, we demonstrate the measured power spectra for the
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Figure 6.2: Upper panels: Neutral hydrogen power spectra PHI at z = 2.0, 2.5, 3.0 (left to
right) for the three models considered in the analysis (as labelled). The solid lines show the
results in redshift space, and the dashed lines in real space (the latter will appear in our
work [108]). The shaded areas in the lower sub-panels represent the expected errors from
SKA1-MID measurements for GR, assuming 100 (yellow) and 1000 (green) observing hours.
Lower panels: Differential halo mass functions at z = 2.0, 2.5, 3.0 (left to right) for the
same models. Dashed (solid) lines show the results from full-physics (DMO) simulations.
The lower subpanels show the relative differences from GR.
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HI overdensity, ρHI/ρ̄HI, where ρ̄HI is the mean HI density as mentioned above. At

z = 3, we find the largest deviations in PHI among the models. Indeed, F5 and F6

show less clustering in both real and redshift space, e.g., for F5 we find a difference

w.r.t. GR of ∼ 35% in real space and ∼ 25% in redshift space at k ∼ 2hMpc−1 and

they increase at larger k. At z = 2.5, we see that the HI P (k) for F5 is still lower

than that for F6 at all the k-values shown, although the difference between these

two models are smaller than at z = 3. Interestingly, at z = 2, we find an inversion

of the trend between F5 and F6, with F6 displaying less power than F5.

In the lower panels of Figure 6.2, we compare the differential halo mass functions

(HMF), dN/d log(Mhalo), for main haloes from the full-physics (dashed lines) and

DMO (solid) simulations. The haloes are identified using the Friends-of-Friends

algorithm with a linking length of b = 0.2 [254]. The halo mass Mhalo is defined as

M200, the mass contained in a sphere of radius r200, within which the average density

is 200 times the critical density at the specified redshift.

From Figure 6.2 we see that at z & 2.5 F5, F6 are characterised by more low-

mass haloes (Mhalo . 1012 M�) than GR. As HI can survive only in haloes where

the shielding effects prevent it from ionisation, in MG there are more hosts for HI

than GR. Therefore, our interpretation of the behaviour of the HI power spectra in

the different models is that it primarily reflects the differences in the HMFs of these

models (though these models have also different halo density profiles which could

impact on the HI distribution as well), with f(R) gravity being able to turn more

low initial density peaks into haloes in the low-mass end. Given that low initial

density peaks have less clustering, HI, as a tracer of the haloes, has a lower clustering

amplitude in f(R) models than in GR. At z = 2, the behaviour of HMFs is similar

to z = 3, but we find more low-mass haloes in F6 than in F5 because in F5 smaller

haloes merge more rapidly to form larger haloes – this can explain the inversion

of the trend in the HI power spectra between F5 and F6 seen above. At z = 0

(not shown here) we find that the low-mass end of the HMF is strongly affected by

galaxy formation and can no longer be explained solely by the difference in gravity;
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S/N z = 3.0 z = 2.5 z = 2.0
F6 4.3 6.7 18.3
F5 10.0 10.9 9.6

Table 6.1: The integrated S/N ratios for distinguishing a MG model from
GR using redshift-space PHI(k) with kmax = 2hMpc−1, with (S/N)2 ≡∑kmax
kmin

[
PMG

HI (k)− PGR
HI (k)

]2
/σ2(k); σ(k) is the expected 1σ error from SKA1-MID for

1000 hours (see [224, 255]), while kmin is set by the value of the box length L in our
simulations, kmin = 2π/L.
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Figure 6.3: Left panels: Ratios of F5 (green) and F6 (blue) wrt GR for the actual real-
space HI power spectrum (dashed lines) and the PHI,halo defined in the text (solid lines)
at z = 2.0, 2.5, 3.0 (top to bottom). Right panels: histograms of the number of haloes with
HI mass ≥ M?

HI = 106 M�, for GR (black), F6 (blue) and F5 (green) at z = 2.0, 2.5, 3.0
(left to right). The vertical grey lines show haloes with 50 particles.

at this redshift the model differences in both PHI and HMF are smaller, implying

weak constraining potential of f(R) gravity at low redshifts.

A very interesting observation is that galaxy formation has a non-negligible

impact on the HMF, but a comparison of the dashed and solid curves in the lower

subpanels shows that the relative difference in the F6/F5 and GR HMFs is unaffected

by baryonic physics forMhalo & 1010∼10.5 M� at z = 2 ∼ 3. It implies that the impacts

of baryons and MG can be separated [108], and the DMO simulations can be useful

to study the PHI (see [221]) even for MG models such as f(R) gravity.

To further check the above explanation for the different behaviour of PHI, we

have carried out two more tests. The left panel of Figure 6.3 compares the HI power

spectrum (the actual PHI) in real space with a power spectrum, PHI,halo, calculated

by assuming that for each halo all the HI contained in it is at its centre. Up to

k ∼ 2hMpc−1, the ratios of PHI, halo are very similar (within a few %) to those from
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actual PHI, confirming that the model differences in PHI at large scales are governed

by halo clustering. However, at larger k, the PHI, halo results start to deviate from

the actual PHI because the former do not account for the spatial distribution of HI

inside the halos [221]. The histograms in the right panels of Figure 6.3 display the

numbers of haloes with HI mass MHI ≥ 106 M� (and thus contribute more to PHI).

We can see that at z & 2.5 there are more small HI-rich haloes in F5 than F6 and

GR, confirming that HI is distributed in a less clustered way in F6/F5 than in GR.

At z = 2, F6 and F5 are very similar, both having more small HI-rich haloes than

GR; for Mhalo & 1.3× 1010 M�, F6 has indeed slightly more HI-rich haloes than F5,

which may explain the inversion of the PHI for F6 than F5 at this redshift.

To understand to what extent future experiments can distinguish F6/F5 from

GR by using the PHI measured in redshift space, we have estimated the 1σ errors

on the power spectrum expected from the instrumental noise of SKA1-MID radio

telescope [102] for GR, following the method in [224, 255] and using the realistic

baseline densities computed in [219]. We calculate the expected 1σ errors for 100 and

1000 observing hours, as shown by the shaded areas in the upper lower-subpanels of

Figure 6.2. Comparing the errors with the PHI ratios wrt GR in redshift space (solid

lines), we find that F5 can be distinguished from GR at z = 3 and for k < 2hMpc−1

by using a 1000-hour integration. F6 can be distinguished from GR at z = 2

and for k < 2hMpc−1 with just 100 observing hours. The integrated S/N ratios

for the distinguishability of the MG models from GR are shown in Table 6.1 for

k < 2hMpc−1.

Figure 6.3 shows that the HI host halo mass peaks at 1010 M� at z = 2 ∼ 3.

Due to their resolution, our simulations have few host haloes with masses . 109 M�.

Future higher-resolution runs can tell what happens to the HMFs at . 109 M�:

if the models differ less there, our conclusions will not be significantly affected; if

– in the more likely scenario – they differ more, we expect to see stronger model

differences in PHI and HMF, and probably the difference can be seen at even higher

redshifts.
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6.6 Summary and conclusions

Chameleon-type MG models such as f(R) gravity have the particular property that

chameleon screening becomes inefficient first for small structures (and underdense

environments), and then move to massive objects (and dense environments). As a

consequence, the HMF is enhanced early on at the low-mass end (cf. Figure 6.2) while

the high-mass end is boosted by the fifth force at low redshift. To date, cosmological

probes proposed to test such models are primarily at low z, focusing on either

large objects [207–210] or low-density regions [211–215]. Due to the more efficient

screening, the constraining power from massive objects is limited, and stronger

constraints can be achieved if we are able to identify and trace low-mass objects

in observations, which is more challenging. [256] shows that high-density galaxy

catalogues, such as the main galaxy sample from SDSS [257] or the bright galaxy

sample from DESI [100] can be used to probe the clustering of small (sub)haloes,

offering a potentially stringent test of this class of models, but still at low z.

The fact that the low-mass end of the HMF can be modified by MG at high z

(z ∼ 3) suggests that strong constraints could be achieved by tracing the abundance

and clustering of small haloes at high z. 21-cm intensity mapping is a very promising

probe, which is sensitive to the abundance of haloes down to ∼ 108M� [221] while

not requiring to detect individual haloes. We showed that, thanks to the strong

effect of chameleon MG on haloes . 1012M�, the redshift-space HI power spectrum

is modified by & 20% (& 35%) for F6 (F5) at z = 3, which is stronger than or

comparable to the model differences from ΛCDM in other low-z probes. This implies

that future 21 cm intensity experiments can be used to test f(R) gravity, and could,

in principle, push the observational bounds on |fR0| to . 10−6. Measurements of the

21 cm signal can also give accurate information on the expansion history [258–260] –

this can be used to break potential degeneracy between modified expansion history

and structure growth, e.g. viable f(R) models have practically identical expansion

history as ΛCDM, but structures grow differently at high z as we have seen in this

chapter.
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As a final remark, we note that the HI distribution in the simulations is regulated

by baryonic effects such as the galactic wind feedback. It is therefore to be determined

in a future work how robust the predictions on PHI are against changes in the feedback

implementation. We note also that the simulations used here cannot resolve the HI

in haloes < 109 M� accurately, and this can affect the HI power spectrum results at

high wavenumbers, k > 2hMpc−1. High-resolution hydrodynamical simulations will

clarify the behaviour of the HI power spectrum in GR and MG at these scales.





Chapter 7

Conclusions

Although the standard ΛCDM model has successfully passed almost all the avail-

able observational tests, the model still faces some challenges. For example, we

still do not know the true nature of dark matter particles. Moreover, due to the

lack of accurate observational data on how matter clusters on dwarf galaxies scales

and below (together with the possible small-scale controversies faced by ΛCDM)

we have little firm information on the shape of the underlying matter power spec-

trum at large wavenumbers. Many alternative scenarios to ΛCDM predict damped

matter fluctuations on galactic and sub-galactic scales, potentially introducing new

phenomenology on those scales. Independently of whether these alternatives can

provide real solutions to the challenges experienced by ΛCDM, it is interesting to un-

derstand how features in the linear-theory power spectra imprint effects on non-linear

structures.

Regarding the late-acceleration period, modified gravity models, though not

satisfactorily resolving all the problems of the cosmological constant, can provide a

useful testbed that can be used to test the theory of gravity on cosmological scales

with future surveys (such as DESI [99, 100], EUCLID [101] or SKA [102]). In this

thesis, we have addressed the question of how alternatives to ΛCDM affect structure

formation using high-resolution N-body and hydrodynamical simulations. The main

results of this study are summarised below.
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7.1 Thermal velocities and non-linear structure

In Chapter 2, we investigated the impact of thermal velocities in N-body simulations

of structure formation in warm dark matter models. The prescription used for

adding thermal velocities introduces numerical noise into the initial conditions, which

influences structure formation. At early times, the noise dramatically affects the

power spectra measured from simulations with thermal velocities, with deviations of

the order of ∼ O(10) (in the matter power spectra) and of the order of ∼ O(102) (in

the velocity power spectra) compared to those extracted from simulations without

thermal velocities. At late times, these effects are less pronounced with deviations

of less than a few percent. We also found that spurious haloes start to appear in

simulations which include thermal velocities at a mass that is ∼3 times larger than

in simulations without thermal velocities.

7.2 Growth of structures in damped models

In Chapter 3, using N-body simulations, we addressed the question of how much

information is retained from different scales in the initial linear power spectrum

of damped models following the nonlinear growth of structure. By using different

initial linear-theory matter power spectra we showed that, once the system undergoes

nonlinear evolution, the shape of the linear power spectrum at high wavenumbers

does not affect the non-linear power spectrum. Indeed, we found that linear power

spectra which differ from one another only at wavenumbers larger than their half-

mode wavenumber give rise to almost identical nonlinear power spectra at late

times, regardless of the fact that they originate from different models with damped

fluctuations. On the other hand, the halo mass function is more sensitive to the

form of the linear power spectrum. We identified a two parameter model of the

transfer function in generic nCDM-like damped scenarios, and showed that this

parametrisation works as well as the standard three parameter model found in [75].

However, we note that the 2- and 3-parameter model cannot be applied to the case of
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thermal inflation and BSI models, because they present an enhancement in the linear

power spectrum with respect to ΛCDM before the cut-off scale (see Chapter 5).

7.3 Smooth-k space filter

Following the above results, in Chapter 4 we proposed a new filter, a smooth-k space

filter, to use in the Press-Schechter approach to model the dark matter halo mass

function which overcomes shortcomings of other filters. We tested this against the

mass function measured in N-body simulations from Chapter 3 and found that, while

the commonly used sharp-k filter fails to reproduce the behaviour of the simulation

halo mass function at low masses for models with a sharp truncation in the linear

power spectrum, the predictions with our new filter agree with the simulation results

over a wider range of halo masses for both damped and undamped power spectra.

7.4 Thermal inflation

Thermal inflation models (which feature two inflationary stages) can display damped

primordial curvature power spectra on small scales which generate damped matter

fluctuations. Matter power spectra in these models are also characterised by an

excess of power (with respect to the standard ΛCDM power spectrum) just below

the suppression scale. In Chapter 5 we investigated the non-linear growth of structure

in models of thermal inflation. We measured the non-linear matter power spectrum

and extracted halo statistics, such as the halo mass function, and compared these

quantities with those predicted in the standard ΛCDM model and in other models

with damped matter fluctuations. We found that the thermal inflation models

considered here produce measurable differences in the matter power spectrum from

ΛCDM at redshifts z > 5 for wavenumbers k ∈ [2, 64]hMpc−1, while the halo

mass functions are appreciably different at all redshifts in the halo mass range

Mhalo ∈ [109, 1012]h−1 M� resolved by our simulations. The halo mass function at

z = 0 for thermal inflation displays an enhancement of around ∼ 20% with respect
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to ΛCDM and a damping at lower halo masses, with the position of the enhancement

depending on the value of the free parameter in the model. The enhancement in

the halo mass function (with respect to ΛCDM) increases with redshift, reaching

∼ 40% at z = 5. We also found that the analytical Press-Schechter approach with

the smooth-k filter gives the best matches to the simulation results.

7.5 21-cm physics and models of MG

Future 21 cm intensity mapping surveys such as SKA will provide precise information

on the spatial distribution of the neutral hydrogen (HI) in the post-reionisation

epoch (z < 6). As the HI abundance and distribution depends on the overall matter

distribution in our Universe and the strength of gravity, these surveys will allow us to

test the standard ΛCDM paradigm and, at the same time, the nature of gravity. In

Chapter 6, we employed full-physics hydrodynamical simulations in chameleon f(R)

modified gravity carried out with the Illustris TNG model in AREPO to quantify

the effects of modified gravity force on HI abundances and power spectra. We found

that the enhanced growth, which low-mass dark matter haloes experience in f(R)

gravity at high redshifts, alters the HI power spectrum. Our results suggest that

the HI power spectrum is suppressed by ∼ 20% on scales k . 2hMpc−1 for F6, a

model with a weak deviation from general relativity. These differences are detected

by SKA1-MID with an expected signal-to-noise level of S/N ≈ 18 at z = 2, making

HI clustering a powerful test of gravity at these redshifts.

7.6 Future directions

In this thesis, we have focused on a limited number of effects that alternatives to the

ΛCDM model produce on structure formation. In the following, we provide some

suggestions on how the results obtained so far can be extended.

Thermal velocities in composite DM models – In Chapter 2, we considered the

effects of thermal velocities in pure thermal WDM models. These models are charac-
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terised by strong cut-offs and WDM candidate masses around keV, both of these prop-

erties preventing significant physical effects of thermal velocities. Indeed, thermal

velocities only affect the inner-most parts of the haloes [149,150]. The situation may

change if we consider composite DM models (e.g. mixed DM or CDM + massive

νs), as such models have no strong cut-offs because of the remaining CDM influence

once the WDM component has died off [134]. This means that we can have haloes

down to very small scales, where the thermal motion can be important [151–153].

Analysing composite DM simulations with thermal velocities can then clarify the

physical role of thermal velocities in structure formation, and, for this reason, they

deserve further investigation.

Testing the accuracy of smooth-k space filter at low masses – In Chapter 4, we

introduced a smooth-k space filter, showing its superior accuracy in predicting the

halo mass function when compared with N-body simulations. However, in the case

of thermal WDM, we found that the smooth-k space and the sharp-k space filters

give approximately the same results at the halo masses that are well resolved by our

simulations (i.e. M > 108.5 h−1 M�). The next step would be to test even further the

accuracy of our filter in the region of masses, M < 108.5 h−1 M�, where the damping

effects are extreme and the predictions using our filter can differ from those expected

from other filters by orders of magnitudes (see e.g. Figure 4.3).

Moreover, as found in Chapter 3 (for an oscillatory power spectrum) and pointed

out in [202], our results suggest that the oscillatory features appearing in the linear-

theory P (k) after the damping scale tend to be erased by structure formation. In

the halo mass function, we can still see oscillatory behaviour, but the amplitude

of the oscillations are extremely weakened by the non-linear effects (see e.g. the

halo mass function for the oscillatory power spectrum in Figure 4.2). In this case,

the differences in the results between our new filter and the sharp-k space filter

become more apparent than in thermal WDM: the sharp-k space filter predicts

larger oscillations (the same effects was found in the case of thermal inflation and

BSI, see e.g. Figure 5.5). Using high-resolution N-body simulations, able to probe
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the region M < 108.5 h−1 M�, we are planning to assess the effects of the oscillations

at the low-mass end of the halo mass function, clarifying the extent of the accuracy

of our new filter in predicting these features1.

Constraining damped models using 21-cm in pre-reionization epoch – The EDGES

experiment [201] claims a detection of a global 21-cm absorption line at z ∼ 20.

This seems to indicate that star formation was efficient even at such high redshifts.

[202, 203] have used the timing of this signal to constrain nCDM models. Indeed,

these models are characterised by a delay in structure formation (and consequently

in star formation) with respect to the ΛCDM due to the suppression of the power

spectrum at small scales. The constraints in [202, 203] are obtained under the

hypothesis that stars form in spherical haloes. However, it was suggested in [262]

(but see also [263]) that in damped models, such as WDM, the first stars can form

in massive filaments (or even sheets) instead of haloes. This scenario could modify

the constraints reported in [202, 203], because, in general, filaments form earlier

than haloes. If the stars forming inside these structures produce enough Lyman-

α photons, they could be able to give an early 21-cm absorption signal in WDM,

losening the constraints found in the literature. It is also interesting to note that

Lyman-α photons can be produced by the radiative cooling process (without the

need for star-formation) of the gas falling into the DM potential well of the filament.

Indeed, during gas accretion into the DM structure, part of the initial gravitational

binding energy is available to be radiated, a phenomenon which is well studied in

the context of the so-called Lyman-α “blobs” at z ∼ 3 [264,265]. We are addressing

these questions by running very high-resolution N-body simulations (able to probe

10 kpc-scale filaments) in WDM and thermal inflation cosmologies and by using a

semi-analytical approach to model star-formation and gas-cooling in these massive

structures. These results will help us to understand if filaments can light up the

1We note that a recent paper [261] has partially addressed this issue in the case of N-body
simulations of ETHOS models (which feature a similar oscillation pattern in the linear power
spectrum as that considered here), finding that the oscillations are extremely reduced in the halo
mass function at z = 0 and that our filter provides a better match to simulations than the sharp-k
space filter.
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Universe in WDM-like scenarios, inducing a 21-cm absorption signal in line with the

EDGES experiment.

Minkowski functionals and HI – Regarding the effects of modified gravity on

the 21-cm power spectrum in the post-reionization epoch, an interesting aspect to

develop is the use of Minkowski functionals (MF, see e.g. [266]) to study the HI

distribution in our simulations. MF can give information on the HI distribution

beyond the simple two-point correlation function (i.e. the power spectrum), and can

be used to understand how the entire morphology of the neutral hydrogen (and not

only the power spectrum) changes in MG with respect to GR.

7.7 Concluding remarks

Current and future experiments such as DES, DESI, EDGES, EUCLID, LSST and

SKA will give us very precise information on the clustering power spectrum and,

with that, the underlying matter distribution in our Universe. For these reasons,

accurate theoretical predictions are needed to interpret these new data. In this

thesis, we have presented some of these theoretical studies, both using numerical

and analytical approaches, focusing on understanding how alternatives to ΛCDM

models can imprint distinctive features on the non-linear Universe. We hope that

our results can be used in the near future to explore even further the nature of the

dark sectors and finally find an answer to the big cosmological questions.
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Appendix A

Numerical convergence
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Figure A.1: Ratios of the matter power spectrum measured from simulations of thermal
inflation with kb = 3 Mpc−1 with respect to that from standard ΛCDM at redshifts
z = 199, 5, 1, 0. Solid curves represent simulations with L = 25h−1 Mpc, while dashed
curves show simulations with L = 50h−1 Mpc. The solid blue line shows the linear theory
prediction and is mostly obscured by the orange symbols. Blue symbols show results from
ICs at z = 199 for simulations with L = 50h−1 Mpc, while orange symbols are from ICs
of simulations with L = 25h−1 Mpc.

In this appendix, we study the accuracy of simulations with box length and

particle number {L = 25h−1 Mpc, N = 5123} for the model of thermal inflation

studied in Chapter 5. We have run another set of simulations with parameters

{L = 50h−1 Mpc, N = 5123}, for both the standard ΛCDM and the thermal inflation

with kb = 3 Mpc−1. In Figure A.1 we show the ratio of the power spectrum measured
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Figure A.2: Ratio of the halo mass function measured from simulations of thermal inflation
with kb = 3 Mpc−1 with respect to that from standard ΛCDM at redshift z = 0. Blue
symbols show results from simulations with L = 50h−1 Mpc, while orange symbols show
results from the smaller box, L = 25h−1 Mpc.

from the thermal inflation model with respect to that from standard ΛCDM at

redshifts z = 5, 1 and 0 for simulations with L = 50h−1 Mpc (dashed curves) and

L = 25h−1 Mpc (solid curves). As can be seen from the figure, the power spectra

measured from the simulations with different box lengths are in good agreement at

small wavenumbers (up to the Nyquist frequency of the larger box simulation).

A similar analysis can be done for the halo mass function. In Figure A.2 we show

the results at z = 0 for this quantity measured from simulations with L = 50h−1 Mpc

and L = 25h−1 Mpc. As we can see, the numerical results from the two boxes

converge at large halo masses, M200 > 1010 h−1 M�. At lower masses the results from

the larger box are dominated by spurious structures as expected.
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