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Abstract: Global Navigation Satellite System (GNSS) stations are a cornerstone of

modern geodetic surveys, providing high temporal-frequency, sub-centimetric three-

component measurements of surface displacement at fixed locations. However, the

high cost of each instrument limits both spatial resolution and access for small-scale

users.

Low-cost GNSS stations, in particular single-frequency instruments, provide

a cheaper alternative to conventional systems, enabling the deployment of larger

GNSS networks. Increased observation density around continental fault zones would

improve our ability to recover distributed aseismic slip, in particular afterslip, on

continental faults, which may be poorly constrained by other geodetic techniques

such as InSAR.

To best recover aseismic slip using low-cost GNSS stations, a method for the

estimation of optimal network layouts is required. For single-frequency GNSS sta-

tions, which present the greatest potential for increased GNSS network density, the

reduced positional accuracy as a result of ionospheric delay must also be addressed.

In this work, a method for the automated design of single- and dual-frequency

GNSS networks to recover distributed aseismic slip on continental faults is presented.

Network layouts are generated using particle swarm optimisation and a criterion

matrix technique to minimise the uncertainties on modelled slip values, relative to



“best possible” values. These are estimated through non-uniform fault discretisation,

in which a multi-objective genetic algorithm is utilised to explore the trade-off

between the complexity of the discretisation and the associated model uncertainties.

The reduced positional accuracy of single-frequency GNSS stations is mitigated

through the network design, and an understanding of the spatial structure of the

ionospheric delay.

Initial results demonstrate the potential of low-cost GNSS stations, in particular

single-frequency GNSS stations, to recover distributed aseismic slip on continental

faults. Future work should expand the methodology to included slip across multiple

faults, and the generation of mixed GNSS networks.
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Chapter 1

Introduction

1.1 Overview

Global Navigation Satellite System (GNSS) stations are a key component of geo-

detic monitoring, allowing high temporal-frequency, subcentimetric three-component

measurements of ground motion at fixed locations (Groves 2013). Deformation of

the Earth’s crust arising from a range of geophysical phenomena, such as earth-

quake and tectonic processes (Walker et al. 2004; Mazzotti et al. 2005; Reilinger

et al. 2006; Hill et al. 2012; Karakhanyan et al. 2013; Kreemer et al. 2014; Bekaert

et al. 2016; Metzger et al. 2017; Walters, England et al. 2017; Wilkinson et al. 2017;

Scognamiglio et al. 2018), landsliding (Eyo et al. 2014; Cina et al. 2015; Bellone

et al. 2016), and active volcanism (Janssen et al. 2002; Bartel et al. 2003) may be

measured.

The last few decades have seen the development of large permanent GNSS

networks such as the Plate Boundary Observatory (PBO) in the United States,

the GPS Earth Observation Network (GEONET) in Japan, and the Central Andean

Tectonic Observatory (CAnTO) Project in Chile and Peru. Temporal resolutions

are high due to a measurement rate of up to 1 Hz, although spatial resolutions are

commonly low relative to critical short-wavelength deformation processes such as
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localised fault slip (e.g. GEONET possesses an average station spacing of 20 km

(Sagiya 2004)).

Interferometric Synthetic-Sperture Radar (InSAR) is a complementary geodetic

technique that uses satellite-based radar to measure ground displacement (Elliott et

al. 2016; Hamling et al. 2017; Hussain et al. 2018). Spatial resolutions are significantly

higher than GNSS, with the newest Sentinel-1 satellites imaging at a 20 m resolution

over 250 km wide swaths as standard (Torres et al. 2012). However, the temporal

resolution is much lower, with a minimum repeat time of six days for Sentinel-1,

and in the order of months for older instruments such as Envisat (Roustaei et al.

2010; Walters, Elliott et al. 2013). Measurements are also one-dimensional, in the

satellite’s line-of-sight, which makes InSAR only weakly sensitive to the north-south

component of ground motion, as this is near-parallel to the satellite’s orbital path.

High instrument cost is a primary cause of low spatial resolutions in GNSS

networks. Low-cost GNSS stations, utilising “mass-market” receivers and antennas,

allow for larger and denser networks at an equivalent cost (Günther et al. 2008;

Biagi et al. 2016; Wilkinson et al. 2017). These devices suffer diminished accuracy

compared to the specialist GNSS systems that are conventionally used in permanent

and campaign networks, especially for single-frequency receivers (Takasu et al. 2008;

Rademakers et al. 2016). Low-cost GNSS instruments enable the deployment of

high-density networks to become practical, which provide higher spatial resolution

while retaining high temporal resolution and three-component measurements. This

is of particular interest for tectonic geodetic investigations, where measurements

of surface deformation are used to estimate slip distributions on tectonically-active

faults. Increased observation density around the fault allows estimated slip values

to be better constrained. This is true for both seismic and aseismic slip, the latter

of which cannot be observed using seismometers, and which may be poorly sampled

by InSAR if the slip occurs at a higher temporal frequency than the repeat time of

the satellite (Peng et al. 2010).

Single-frequency GNSS stations are the cheapest form of low-cost GNSS. The lack
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of a second frequency reduces software and hardware costs at the expense of positional

accuracy and the ability to correct for ionospheric delay within independent stations.

Instead, alternative methods such as pairing stations, ionospheric models (Bartel et

al. 2003), or correction terms from reference dual-frequency stations (Chen, Kuo et al.

2015; Janssen et al. 2002) must be used, resulting in larger data uncertainties. The

application of single-frequency GNSS stations to landslide (Tu et al. 2013; Eyo et al.

2014; Benoit et al. 2015; Cina et al. 2015; Bellone et al. 2016 and volcano monitoring

(Janssen et al. 2002; Bartel et al. 2003; Lee et al. 2015) is well documented, however,

their use in studying tectonic deformation is limited (Wilkinson et al. 2017). The

further cost reduction over low-cost dual-frequency GNSS stations would allow for

even denser networks than what can be practically achieved with conventional GNSS.

This could lead to further improvements in our ability to study tectonic deformation,

albeit with some limitations, if a method of mitigating positional accuracy can be

found.

Coseismic slip has previously been studied using low-cost single-frequency GNSS

stations. Wilkinson et al. (2017) used four stations, placed in pairs on either side of

the fault break, to observe the 2016 Vettore earthquake in Italy. The short duration

of coseismic slip means that many GNSS error sources have negligible impact on

the observations. For example, tropospheric and ionospheric effects, the temporal

variation of which contributes to positional uncertainties, may be considered static

for the duration of the seismic event. In contrast, aseismic slip may occur over days

or weeks. This requires a switch to average daily solutions for each station, so that

the smaller tectonic signal (relative to coseismic slip) may be better isolated from

the noise. Doing so introduces several error sources, of which ionospheric delay is

the most important for single-frequency stations, which must now be corrected for.

Daily solutions still provide a higher temporal resolution than InSAR, and so GNSS

is preferential for studying aseismic slip.

Distributed aseismic slip on a fault may be estimated from geodetic observations

of surface displacement using a discrete linear inversion (Aster et al. 2011). The
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inversion maps displacement measurements to estimated slip values by way of a

design matrix. The design matrix contains Green’s functions (e.g. Okada (1985))

that describe the relationship between slip on a fault plane and surface displacement.

Faults are commonly modeled as multiple slipping patches so that distributed slip can

be studied (e.g. Scognamiglio et al. (2018)). The data uncertainties, data locations,

and the dimensions of the slipping patches all contribute to the uncertainties on the

estimated slip values associated with these patches. The optimal design of both fault

discretisations and GNSS networks is therefore important to studies of aseismic slip.

To investigate the potential of (single-frequency) low-cost GNSS stations to

study aseismic slip on continental faults, we require a method of estimating optimal

network layouts that best recover distributed slip using daily measurements of surface

displacement. These are networks which produce the lowest model slip uncertainty

across the greatest number of patches. This can be done through geodetic network

design, a well-established technique within geophysics, originating from the work

of Baarda (1973) and Grafarend and Schaffrin (1974). A range of methods exist

depending upon the design context and the instruments involved, not being exclusive

to GNSS stations (Amiri-Simkooei 2004; Berné et al. 2004; Doma 2013; Mahapatra

et al. 2015; Sathiakumar et al. 2017; Klein et al. 2017). While network design

for dual-frequency GNSS stations has been well studied, the same cannot be said

for large-scale single-frequency GNSS networks, which are often deployed based on

intuition and in small numbers (e.g. Chen, Kuo et al. (2015)).

1.2 GNSS and Network Design

GNSS refers to the collection of satellites which provide satellite navigation ser-

vices, and their implementation. GNSS stations provided three-component spatial

locations through trilateration with GNSS satellites. Vertical positional accuracy

(altitude) is generally 1.5 to 3 times worse than horizontal positional accuracy

(latitude-longitude), a result of satellite-receiever geometry (Groves 2013). GPS
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signals are transmitted over multiple wavebands, with the encoded information vary-

ing between them. Wavelengths were chosen based upon availability and the trade

off between high (requires additional power, greater precipitation attenuation) and

low (greater delay, localised attenuation from atmosphere) frequencies. Conven-

tional survey GNSS stations are typically dual-frequency, meaning they contain the

hardware and software necessary to process both the L1 (1575.42 MHz, 190 mm

wavelength) and L2 (1227.60 Mhz, 244 mm wavelength) bands. This extends to

low-cost dual-frequency GNSS, but not to low-cost single-frequency GNSS stations,

which are only able to use the L1 band. The L2 band contains a greater amount

of information, providing increased positional accuracy. However, processing this

information requires proprietary algorithms, along with the hardware required to

process a second frequency, increasing instrument costs. A second frequency also

aids in mitigating certain errors, including ionospheric (described below), multipath,

and cycle slip. Single-frequency stations are more susceptible to these errors, have

decreased positional accuracy, and suffer more from carrier phase ambiguity (Brown

et al. 2006; Takasu et al. 2008).

The task of generating optimal single- and dual-frequency low-cost GNSS net-

works can be broken down into a number of sub-problems. First, the ‘best-possible’

amount of retrievable slip information must be established, assuming perfect data, to

provide a reference for the network design. This is achieved through discretisation of

the fault plane using an idealised network of dual-frequency GNSS stations. Optimal

GNSS networks can then be designed which attempt to mimic the results of the

idealised network. In the case of single-frequency GNSS, the impact of ionospheric

delay must also be mitigated and included within the network design.

Fault discretisation describes the splitting of the fault plane into the slip patches

that make up the model parameters of our linear inversion. Commonly, a uniform

grid is employed with interval size based upon the model resolution, observation

noise, or expected magnitude (Wright et al. 2003; Funning et al. 2005; Hill et al. 2012;

Sathiakumar et al. 2017; Scognamiglio et al. 2018). This method is sub-optimal as
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the displacement field decays proportional to the inverse square of the distance (Aki

et al. 2002), which reduces the resolving power of the observations at depth. Poor

sizing may also produce artifacts and sharp discontinuities, leading to unrealistic

slip distributions (Page et al. 2009). A non-uniform discretisation, where patch size

is proportional to depth, better represents the resolving power of the data. These

may be generated manually (Pritchard et al. 2002; Custódio et al. 2009; Page et al.

2009), although automated methods are more efficient and likely to produce better

results (Barnhart et al. 2010; Atzori et al. 2011; Hayes et al. 2014; Metzger et al.

2017). Regularisation, often in the form of smoothing, is commonly employed to

reduce the model slip uncertainty on each patch. However, this comes at the cost of

degraded model resolution (slip values become spread across multiple patches and

are poorly constrained spatially) and the biasing of the inversion.

In this thesis, a new method for automated fault discretisation is presented, using

a Multi-Objective Genetic Algorithm (MOGA) to minimise model error while maxim-

ising the number of slip patches in the discretisation. MOGAs function as an analogy

of natural selection, and are capable of solving nonlinear optimisation problems with

multiple objectives (Blum et al. (2003) and Konak et al. (2006)). Model error is

negatively correlated with the number of patches, and so the algorithm produces a

range of solutions based upon the relative weightings of these two objectives. By

using optimisation to fit patch dimensions to the resolving power of the data, the

use of regularisation and its associated problems may be avoided.

To estimate model uncertainty as part of the network design, knowledge of the

structure of the data uncertainties is required. For dual-frequency GNSS stations,

where the ionospheric delay may be removed in-station, common estimates of data

uncertainty are used and each station is treated as an independent measure of

surface displacement, with negligible covariance. For single-frequency stations the

ionospheric delay cannot be removed, requiring that the stations are treated as paired

relative observations of displacement, and that the structure of the ionospheric delay

in known.
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Ionospheric delay is caused by charged particles in the ionosphere interfering with

the electromagnetic waves transmitted by GNSS satellites. This causes ionospheric

divergence, where the signal information (ranging code, navigation data) is delayed

and the carrier phase advanced. The number of charged particles, quantified as the

total electron count, varies both spatially and temporally, with peaks in low- to mid-

latitudes and during dawn and dusk. Variograms, which describe the spatial variation

of ionospheric delay between two points, can be used to estimate the ionospheric

delay and therefore the data uncertainty for single-frequency GNSS stations (Chen,

Kuo et al. 2015; Huang et al. 2017).

Once a fault discretisation has been chosen and the best possible model uncer-

tainties estimated from the idealised network, the layouts of optimal GNSS networks

may be estimated. The quality of a given network is determined using a criterion

matrix method (Mahapatra et al. 2015) paired with a distance metric (e.g. Förstner

et al. (2003)). This expresses, as a single number, the difference in the model un-

certainties and covariances between the designed network and the idealised network.

A smaller distance metric value indicates that the network is approaching the “best

possible” model uncertainty values than can be achieved.

Optimal networks are designed using particle swarm optimisation, a metaheur-

istic Evolutionary Algorithm (EA) inspired by swarm theory (Eberhart and Kennedy

1995). The locations of any fixed number of GNSS stations are optimised for simul-

taneously, both for single- and dual-frequency receivers, by minimising the distance

metric. Previous works have utilised a grid search technique, where stations are

tested in a discrete number of locations (Mahapatra et al. 2015; Klein et al. 2017;

Sathiakumar et al. 2017). While simple to implement, this method is unable to

test for optimal locations that lie between these points and can be time intensive.

As a continuous function, PSO is not limited to gridded locations, which improves

its ability to find true optimal solutions. It is also capable of handling the strong

non-linearity and localisation of the design problem.
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1.3 Thesis Aims

The aims of this thesis work are summarised as follows:

1. Implement a method for automated fault discretisation, utilising a MOGA

to avoid the use of regularisation. Combined with a network of idealised

“best possible” observations, this will be used to produce the lowest model

uncertainties possible, that will act as the target values for optimally designed

networks.

2. Estimate the spatial structure of the single-frequency GNSS data through the

understanding of the spatial variability of the ionospheric delay.

3. Develop a method for estimating the optimal layout of low-cost single- and dual-

frequency GNSS networks to recover distributed aseismic slip on continental

faults.



Chapter 2

GNSS Network Design

Geodetic network design, for the purpose of recovering distributed aseismic slip on

continental faults, is underpinned by the relationship between surface displacement

and slip on a fault. This relationship takes the form of a discrete linear inverse

problem, which is described below.

A range of methods for the optimal design of geodetic networks exist, depending

upon the context of the design problem. Several of these methods, including both

network objectives and optimisation algorithms, are summarised in the following

Chapter.

2.1 Discrete Linear Inverse Problems

In general terms, the relationship between some data, d and a model, m can be

described

G(m) = d (2.1.1)

where G is a function based upon an understanding of the underlying physics relating

d and m. As noise is inherent to physical observations, we expand Equation (2.1.1)

G(mtrue) + η = d (2.1.2)
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where η is the data noise and mtrue is the true model parameters.

Equation (2.1.1) may also be expressed as a discrete linear inverse problem

d = Gm (2.1.3)

where G is the m × n design matrix that describe the relationship between the

m-vector of observations, d and the n-vector of model parameters, m (Aster et al.

2011).

The expanded matrix notation for Equation (2.1.3), which highlights the discrete

nature of the inverse problem, is given below.

d1

d2

...

dm


=



f(d1, m1) f(d1, m2) · · · f(d1, mn)

f(d2, m1) f(d2, m2) · · · f(d2, mn)
... ... . . . ...

f(dm, m1) f(dm, m2) · · · f(dm, mn)





m1

m2

...

mn


In the context of aseismic slip occurring on a fault plane, d is a vector of surface

displacement values observed at discrete locations, m is a vector of slip values that

describe the distributed slip on the fault plane, and G is a series of Green’s functions

that describe the linear relationship between each slip value, and the observed surface

displacement. These functions are dependent upon the geometry of the fault model,

and the locations of the data.

2.1.1 Fault Model

The fault is modelled as a finite rectangular half-space, as describe by Okada (1985).

The Green’s functions, which are used to build G, describe the surface deformation

generated by slip of a fixed rake and magnitude on a rectangular fault plane. Multiple

rectangular half-spaces may be mosaiced to define a single fault (e.g. Metzger et al.

2017; Sathiakumar et al. 2017), to model distributed slip. Going forward, each

rectangular half-space in the model is referred to as a slip patch.
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We desire a method for generating optimal GNSS stations layouts to model slip

at any point on the fault plane. The location and magnitude of distributed slip

is now known, and so G is generated by assuming a slip with a uniform rake and

magnitude of 1 m. The tensile component of fault slip is assumed to be negligible,

as is common with tectonically-driven earthquakes, and the ground surface to be a

flat plane at z = 0.

The strike-slip components of the surface displacement are given as

ux = −U1

2π

[
ξq

R(R + η) + tan−1 ξη

qR
+ I1sin δ

]
(2.1.4)

uy = −U1

2π

[
ỹq

R(R + η) + q cos δ

R + η
+ I2sin δ

]
(2.1.5)

uz = −U1

2π

[
d̃q

R(R + η) + q sin δ

R + η
+ I4sin δ

]
(2.1.6)

(2.1.7)

and the dip-slip components of the surface displacement as

ux = −U2

2π

[
q

R
− I3sin δ cos δ

]
(2.1.8)

uy = −U2

2π

[
ỹq

R(R + ξ) + cos δ tan−1 ξη

qR
− I1sin δ cos δ

]
(2.1.9)

uz = −U2

2π

[
d̃q

R(R + ξ) + sin δ tan−1 ξη

qR
+ I5sin δ cos δ

]
(2.1.10)

(2.1.11)

where

I1 = µ

λ + µ

[
−1

cos δ

ξ

R + d̃

]
− sin δ

cos δ
I5 (2.1.12)

I2 = µ

λ + µ
[−ln(R + η)] − I3 (2.1.13)

I3 = µ

λ + µ

[ 1
cos δ

ỹ

R + d̃
− ln(R + η)

]
− sin δ

cos δ
I4 (2.1.14)

I4 = µ

λ + µ

1
cos δ

[
ln(R + d̃) − sin δ ln(R + η)

]
(2.1.15)

I5 = µ

λ + µ

2
cos δ

tan−1 η(X + q cos δ) + X(R + X) sin δ

ξ(R + X) cos δ
(2.1.16)
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(2.1.17)

and

p = y cos δ + d sin δ (2.1.18)

q = y sin δ − d cos δ (2.1.19)

ỹ = η cos δ + q sin δ (2.1.20)

d̃ = η sin δ + q cos δ (2.1.21)

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2 (2.1.22)

X2 = ξ2 + q2 (2.1.23)

ux, uy, and u3 are the components of displacement relative to the slipping patch,

as shown in Figure 3.1, and caused by U1, U2, and U3, which are the dislocations

corresponding to the strike-slip, dip-slip, and tensile components of a dislocation at

(ξ1, ξ2, ξ3). L and W are the stike-parallel length and dip-parallel widths respectively,

while δ is the dip angle of the fault, and λ and µ are the lameṕarameters of the

elastic half-space, which are both assigned a value of 3.23 × 1010.

2.1.2 Data and Model Uncertainties

The error and joint variability of both the observations, d and the model parameters,

m can be quantified through two statistical properties: variance, and covariance.

The variance of a random variable, X describes the spread of the variable around

it’s expected value, E[X] (i.e. the mean)

V ar(X) = E [(X − E [X])] (2.1.24)

= σ2
X (2.1.25)

where σ is the standard deviation of the variable.

The covariance of two random variables, X and Y is a measure of the joint
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variability

Cov(X, Y ) = E [(X − E [X])(Y − E [Y ])] (2.1.26)

= ρX,Y

√
V ar(X)V ar(Y ) (2.1.27)

where ρX,Y is the correlation coefficient, also known as the normalised covariance,

which is a dimensionless measure of the linear relationship between X and Y. If

both variables are independent, then ρX,Y = 0 and Cov(X, Y ) = 0. The variance of

a variable can also be expressed as the covariance with itself, where ρX,Y = 1 and

V ar(X) = V ar(Y ).

Expanding X to a set of n independent random variables, the variances and

covariances for each can be expressed as a Variance-Covaraince Matrix (VCM)

QX =

X1 X2 . . . Xn



V ar(X1) Cov(X1, X2) . . . Cov(X1, Xn) X1

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xn) X2

... ... . . . ... ...

Cov(Xn, X1) Cov(Xn, X2) . . . V ar(Xn) Xn

(2.1.28)

where QX is a square symmetrical matrix, as Cov(X, Y ) = Cov(Y, X).

We establish two main VCMs of interest: the data VCM Qd, which describes

the uncertainties on our observations, and the model VCM Qm, which describes the

uncertainty on the slip values associated with each slip patch. Qd is created from

an a priori understanding of the GNSS positional uncertainties, which will differ

between the single- and dual-frequency instruments.

Qm may be derived from the design matrix and the data uncertainties

Qm = (GTWeG)−1 (2.1.29)

where We = inv(Qd), which is termed the weight matrix. This is derived from the
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weighted least squares solution to the discrete linear inverse problem:

mLS = (GTWeG)−1GTWed (2.1.30)

where mLS is the estimated model parameters. This is one method of solving a

lienar inverse problem where no model perfectly fits the observations, and where the

magnitude of the data uncertainties vary.

The data uncertainties are propagated through to the model uncertainties, based

upon the geometry of the fault model and data locations. This is fundamental to

the network design, as it means that model uncertainty can be minimised by finding

the optimal locations for the GNSS stations. The fault discretisation will also affect

the model uncertainties due to the propagation of the data errors through the model

geometry.

2.1.3 Ill-posed and Ill-conditioned Inverse Problems

When calculating Qm, there are two problems that may be encountered with

the structure of the discrete linear inverse problem itself: ill-posedness, and ill-

conditioning.

Illl-posedness, also known as non-uniqueness, describies the situation where mul-

tiple solutions are able to exactly satisfy Equation (2.1.3). This occurs when the

number of model parameters is greater than the number of independent observations

(n > m). In this case, the data cannot uniquely constrain each model parameter, and

so variations in one parameter may be offset by changes in other parameter. This

results in an infinite number of solutions. However, ill-posedness can still occur when

the number of observations is greater than the number of model parameters (m > n),

if the equations within G are not linearly independent (i.e. G is rank-deficient). In

this case, some observations may be linearly dependent, and so the true number of

independent observations in less than m.

Ill-posed inverse problems may be uniquely solved by applying regularisation,
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often in the form of smoothing, and which is common in geodetic studies of aseismic

slip (Barnhart et al. 2010; Atzori et al. 2011; Hayes et al. 2014; Metzger et al. 2017).

Regularisation provides additional data and constrains the model parameters. This

reduces the model uncertainties, but can also degrade the model resolutions, which

is expressed

R = G−gG (2.1.31)

where R is the model resolution matrix, and G−g is the MoorePenrose pseudoinverse

of the design matrix. R expresses how well the observations resolve the model

parameters. An example resolution matrix for a model with three parameters is

given below.

R =

m1 m2 m3


1 0 0 m1

0 0.8 0.2 m2

0 0.2 0.8 m3

For m1, the only non-zero value in the column and row that it is associated with is a

1 on the main diagonal. This expresses that the model parameter is fully resolved by

the data. For m2 and m3, there exists non-zero values in the off-diagonal elements,

showing that the values for both model parameters are a weighted average of each

other. For slip patches on a fault plane, this is seen as slip values becoming smeared

over multiple patches. If regularisation is used, and the model resolution degraded,

then this can be corrected by scaling the size of the model parameters to match

the resolution length of the data, which is the smallest dimension that the data can

perfectly resolve. It is desired that R = I, where I is an n × n identify matrix, in

which case all model parameters are perfectly resolved. R may also be poor if G

is non-invertable, which can occur if there is a high degree of linear dependency

between rows or columns.

The condition of a inverse problem describes how sensitive the model is to errors

in the data. A problem that is ill-conditioned with be highly sensitive to any changes
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in the data, so that random noise may lead to significantly different results. This

is expressed through high model uncertainties. As with ill-posed inverse problems,

regularisation may be used to improve the condition of the problem.

In most cases, we can expect our inverse problem to be well-posed, as both the

number of independent observations and the number of model parameters can be

controlled. Therefore, the condition that m > n can always be enforced, by either

increasing the number of GNSS stations in the network, or by decreasing the number

of slip patches in the discretisation.

It may be the case that our inverse problem is ill-conditioned with high model

uncertainties. As previously stated, regularisation may then be used to improve

the condition of the inverse problem and the model uncertainties, at the cost of

degrading the model resolution and imposing an arbitary bias on the results. Instead

of applying regularisation, we improve the condition of the inverse by adjusting the

number and dimensions of the slip patches in the discretisation. This is done through

optimisation, to minimise the model uncertainties by fitting the slip patches to the

variable resolving power of the data.

2.2 Network Design

In this Section, a summary of network design theory is provided. Three potential

network objectives are described; reliability, economy, and precision, alongside a

range of potential optimisiation techniques.

2.2.1 Background

Geodetic network design originates from the work of Baarda (1973) and Grafarend

and Schaffrin (1974), with a summary of the early development of the field provided

by Schmitt (1982) and Grafarend (1985). The primary types of network design
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Order Fixed Parameters Free Parameters
ZOD G, Qd m, Qm

FOD Qd, Qm G
SOD G, Qm Qd

THOD Qm G, Qd(partlyfree)

Table 2.1: Free and fixed parameters for each order of network
design problem.

problems, along with three commonly employed optimality criteria, are summarised

below.

Geodetic network design problems may be divided into four Orders of Design

(Grafarend and Schaffrin 1974; Schmitt 1982)

1. Zero-order design (ZOD): selection of a datum for a free network of relative

measurements (Teunissen 1985).

2. First-order design (FOD): finding of optimal measurement locations (Ma-

hapatra et al. 2015).

3. Second-order design (SOD): selection of observations and their weights in

an established network (Xu et al. 1995; Amiri-Simkooei 2004; Doma 2013).

4. Third-order design (THOD): improvement of an existing network through

design of an optimal densification network (Chen, Rizos et al. 2001; Klein et al.

2017; Sathiakumar et al. 2017).

The free and fixed parameters for each order of design are summarised in Table

2.1.

In the following methodology, it is assumed that no existing GNSS stations are

included as part of the network, making the network design problem one of THOD.

2.2.2 Reliability

Reliability is a measure of a network’s ability to detect and resist model imperfec-

tions, such as outliers, and can be catagorised into internal reliability and external
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reliability (Amiri-Simkooei 2004; Amiri-Simkooei et al. 2012; Grafarend and Sansò

2012; Mahapatra et al. 2015). Internal reliability refers to the network’s ability

to detect gross errors in the observations, and can be measured by the Minimum

Detectable Bias (MDB), which describes the size of the smallest model error that

can be detected through appropriate statistical testing (Teunissen 1998)

|∇di| =
√

λ0

(WeZ)ii

(2.2.1)

where λ0 is the lower bound of the noncentrality parameter, and Z is the reliability

matrix. Z is defined as

Z = I − G(GTWeG)−1GTWe (2.2.2)

where I is an identity matrix of equal dimensions to We. External reliability refers

to the maximum effect of undetected gross errors on the model parameters m, and

is expressed

∇m =
(
GTWeG

)−1
GTWe|∇di| (2.2.3)

It can be seen that both types of reliability are primarily based upon the model

geometry (G) and the quality of the observations (We).

Both types of reliability may be expressed through Z, the main diagonal of

which contains the redundancy numbers, zi. zi expresses the level of detectable

gross error in the ith observation, with zi = 1 meaning that any gross error in

the observation can be detected, and vice versa for zi = 0. Redundancy values in

the range 0.3 ≤ zi ≤ 0.7 are desired, representing reasonable controllability of the

network observations (Mahapatra et al. 2015). Observations where zi ≥ 0.7 are

over-controlled, and could be omitted from the network in the context of network

reliability (Staudinger 2000). In more practical terms, an observation will have

a high z value if multiple other observation measure the same model parameters,

meaning any error can be detected through comparison with the other observations.

Similarly, an observation which is alone in measuring a given parameter will posses

a low z value as errors cannot be detected by comparison. Combined, these values
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express the sensitivity of a network to each individual observation.

Geodetic networks may be designed to maximise network reliability (e.g. Seemkooei

(2001)). Reliability is not used as an objective in the following methodology, however,

it is revisited in the discussion chapter to provide additional analysis of example

networks.

2.2.3 Economy

Economy refers simply to the cost of operating a geodetic network. This includes

purchasing of devices, deployment, maintenance, and potentially manual data col-

lection. Generally, a network of fewer stations will have a lower cost, although there

may be some minimum required expenditures such as traveling to the work area.

Economy may be included simply as a maximum number of stations, or as a more

complex cost function (Staudinger 2000; Amiri-Simkooei et al. 2012).

Economy will be a deciding factor when deploying GNSS networks in real life,

however, it is not directly included in the following methodology. Instead, the

performance returns from increasing the number of stations in a network are explored

in Chapter 4.

2.2.4 Precision

Precision reflects the performance of a network in estimating the desired model

parameters. Two different precision objectives are explored: model resolution, and

model uncertainty.

As explain in Section 2.1.3, model resolution describes how well the observations

resolve the model parameters. Poor model resolutions results in model slip values that

are “smeared” across multiple slip patches, and so are poorly constrained spatially.

GNSS networks may be designed for high model resolution by maximising the main

diagonal of R, or the number of patches above a given threshold (e.g. Sathiakumar
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et al. (2017)). Model uncertainty must then be controlled by other means, such as

regularisation.

To use model uncertainty as a measure of network precision, the model VCM

defined in Section 2.1.2 is returned to. An optimal GNSS network may be found by

minimising the model variance and covariance values, found in Qm, to improve the

precision of the estimated fault values.

Mahapatra et al. (2015) employs a criterion matrix method to minimise the

model uncertainty in a network of coherent targets of InSAR studies. A criterion

matrix is a model VCM that posses an idealised or desired structure (Qm,ref ). This

is created either manually, or through the use of a network of idealised “best possible”

observations. In the latter case, Qm,ref will then contain the best possibe model

variance and covariance values than can be achieved.

To summarise the difference between the model VCM from the design network

(Qm,des) and the criterion matrix (Qm,ref ) as a scalar value, Mahapatra et al. (2015)

employs a distance metric. This may then be minimised through optimisation

to reduce the difference between Qm,des and Qm,ref , which in turn maximises the

precision of the estimated slip values on the model fault. The advantage of this

method when designing GNSS networks to recover aseismic slip on a fault is that

the variable resolving power of the observations, and therefore the minimum possible

model uncertainty that may be achieved, is accounted for in the distance metric.

Network precision, expressed in terms of model uncertainty, is used in the network

design described in this thesis. Further detail is provided in Section 3.2.

2.2.5 Optimisation Techniques

The optimisation of geodetic networks can be achieved through a range of different

techniques and algorithms. I begin this section by providing a brief summary of

the background theory, and then describing several previously used optimisation

methods.



2.2. Network Design 21

A simple optimisation problem consisting of a set of variables, x, and an objective

function f, can be defined as

min f(x) subject to lb ≤ x ≤ ub and x ∈ Rn (2.2.4)

where lb and ub are the upper and lower bounds on the variables x. For a given

solution x? that has an objective function value f(x?), it may be defined as a local

solution if

f(x?) ≤ f(x) ∀ x ∈ N (2.2.5)

where N is a neighbourhood of solutions around f(x?). In addition, the solution is

the global optimum if

f(x?) ≤ f(x) ∀ x (2.2.6)

The problem may be defined as nonlinear if there is not a linear relationship between

x and f, or if there exists some equality or inequality constraints on f(x) that are

nonlinear.

In the case where the optimisation is complex, possessing many local minima,

nonlinearities, and an inability to calculate derivatives (non-smooth), heuristic al-

gorithms may be employed to find solutions. These are a class of algorithms designed

to solve problems where classical methods are either too slow, or fail to find exact

solutions, often termed hard optimisation problems. The trade-off is that heuristic

algorithms are not guaranteed to find the global optimum, meaning the solution

is often an approximation, and establishing the true nature of the solution can be

difficult. However, for many real-world applications a local minimum close to the

global optimum is sufficient to solve the problem, and considered an acceptable

compromise for the ability to efficiently solve complex problem where heuristcs may

be the only viable option.

Metaheuristics are higher-level processes that may be used to guide or generate

heuristic algorithms for solving a range of hard optimisation problems with minimum

changes (Boussá’id et al. 2013). They are often inspired by some aspect of the natural
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world, such as physics or biology, and like heuristic algorithms do not use gradients

of the objective function. The field saw rapid development throughout the 1980’s

and 90’s, with the development of Simulated Annealing (Kirkpatrick et al. 1983;

Berné et al. 2004), Ant Colony optimisation (Dorigo and Gambardella 1997; Dorigo

and Birattari 2011), Genetic Algorithms (Goldberg et al. 1988; Holland 1992; Koza

1994; Mitchell 1998), and Particle Swarm optimisation (Eberhart and Kennedy 1995;

Eberhart and Shi 1998; Bonyadi et al. 2017), the latter of which is used to perform

the network optimisation in this thesis.

Grid search

Grid search optimisation employs a discrete, finite set of instrument locations which

are then explored sequentially using a given objective function (Mahapatra et al.

2015; Klein et al. 2017). Uniformly-spaced grids of locations are common as they are

simple to generate. Instruments may be placed one at a time, with previously add

instruments retested to identify if they have been made redundant by later additions

(Sathiakumar et al. 2017).

Grid search methods are sub-optimal for designing GNSS networks. The discrete

set of station locations means that they are not able to test all possible network

configurations and will likely miss the true optimal station locations. Placing stations

individually, even with the ability to remove previously added stations when they

become redundant, is also sub-optimal as it will not capture the full interplay between

the networked stations. For these reasons, a grid search method is not used in this

thesis.

Simulated annealing

Simulated annealing is an iterative metaheuristic optimisation algorithm that oper-

ates as an analogy of cooling metal, where freely moving particles will settle into

the lowest energy configuration available (global minimum) if the cooling period is
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sufficiently long (Metropolis et al. 1953; Kirkpatrick et al. 1983). The algorithm

will converge to the global optimum, if the optimisation is performed for a sufficient

period of time (Geman et al. 1984). However, the required duration may be beyond

practical limits, especially in the case of complex design problems with large numbers

of local minima. Berné et al. (2004) demonstrates how simulated annealing can be

used for simple geodetic network design.

Simulated annealing was tested as a potential optimisation algorithm for the

network design problem described in this thesis. However, it proved less efficient

than PSO, described below. Simulated annealing optimises a single solution at once,

and so is less effective at exploring the solution space than PSO, which processes a

population of solutions simultaneously.

Particle swarm

Particle Swarm Optimisation is an stochastic population-based optimisation al-

gorithm designed to solve continuous nonlinear problems. The technique was de-

veloped by Eberhart and Kennedy (1995) as an analogy of swarms in nature, such as

shoals of fish and flocks of birds, with foundations in swarm theory. PSO is classified

as a evolutionary algorithm, much like MOGAs, due to its use of a population of

solutions, although it does not employ analogies of natural selection. Bonyadi et al.

2017 provides an up-to-date summary of the algorithm and its uses. The Matlab

Optimisation Toolbox contains the PSO function ‘particleswarm’, based upon the ori-

ginal algorithm by Eberhart and Kennedy (1995) with modifications from Pedersen

2010 and Mezura-Montes et al. 2011.

PSO is chosen to solve to network optimisation problem described in this thesis,

with further details as to its use provided in Section 3.2.
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Methodology

To begin designing optimal low-cost GNSS networks to recover distributed aseismic

slip on continental fault zones, it is first necessary to discretise the fault plane

and estimate the “best possible” model uncertainties for each slip patch. The

discretisation is performed using a multi-objective genetic algorithm, which is then

be used to generate the design matrix G by treating each slip patch as a finite

rectangular half-space (Okada 1985). An idealised network of dual-frequency GNSS

stations, where each observation is treated as an independent absolute measurement

of displacement, provides Qd,ref , from which the criterion matrix Qm,ref is derived.

Once the discretisation and Qm,ref have been fixed, the question of how to design

optimal low-cost GNSS networks to recover slip on a modeled fault may be addressed.

In the case of dual-frequency stations, the data VCM for the designed networks Qd,des

is generated based on independent absolute measurements of displacement, as with

Qd,ref . For single-frequency GNSS stations, the effects of ionospheric delay must be

included. Qm,des may then be created using Qd,des, and GNSS networks designed so

as to minimise the difference between Qm,des and Qm,ref .
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3.1 Fault Discretisation

Discretisation describes the splitting of the fault plane into slip patches, each of

which is then modeled as a finite slipping fault plane. Slip patches form the model

parameters of the discrete linear inverse problem described by Equation (2.1.3).

Discretisation enables slip to be constrained to smaller spatial scales than the fault

plane, and the varying slip uncertainty across the fault to be estimated. Rectangular

patches are commonly adopted (e.g. Page et al. (2009), Atzori et al. (2011), Metzger

et al. (2017) and Sathiakumar et al. (2017)) as they are simple to generate. An

alternative choice is that of a triangular mesh, as described by Barnhart et al. (2010)

and used in Hayes et al. (2014).

The fault plane is discretised into rectangular patches based upon horizontal

boundaries, which define rows of patches, with an integer number of patches per

row. The dimensions of each patch are uniform within each row, but differ between

rows. Patch dimensions are allowed to vary with depth so that they better fit

the resolving power of the observations, which generally decreases with increasing

depth. Maintaining uniform patch size along each row means that slip sensitivity is

consistent along strike. It is assumed that the fault geometry is perfectly constrained,

but that the location of the slip on the fault plane is not known. Figure 3.1 shows a

schematic diagram of a non-uniformly discretised fault plane. The fault itself is a

fracture surface within some medium, with slip values that are relative displacements

across the fault plane.

The quality of a discretisation can be assessed using two characteristics: the

number of slip patches, and the uncertainties on the model slip associated with

each patch. A high number of patches allows the spatial distribution of slip to be

represented more smoothly, while lower model uncertainty increases the precision

of modelled slip values for the same fixed data. A trade-off exists between the

two characteristics, with greater numbers of patches (and thus smaller patch sizes)

correlating with higher model uncertainty. These characteristics are used as fitness
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Figure 3.1: Schematic diagram of a discretised fault plane. L and
W are the length and width of the slip patch, σ is the
dip angle, and u1,u2, and u3 are the components of slip
on each patch.

functions in the optimisation.

Consider two extreme cases:

• For a discretisation with only a single patch, the associated variance value

will be low. However, slip may only be constrained to the scale of the entire

fault plane, and so no distinction can be made between slip events in different

locations.

• For a discretisation where the number of patches tends to infinity, slip events

may be discerned from each other and constrained to very small scales. How-

ever, in practice variance on the model parameters will also tend to infinity

and effectively invalidate any modelled slip values.
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Optimal fault discretisations will exist as a trade-off between these two charac-

teristics, where neither characteristic can be improved without degrading the other.

Generating these discretisations requires an optimisation algorithm capable of hand-

ling two objectives simultaneously, and efficiently exploring the possible solution

space.

3.1.1 Idealised Network

Model uncertainty is used as a fitness function in the fault discretisation, and so it

is necessary to define Qd,ref before beginning the optimisation so that Qm,ref may

be estimated for each discretisation.

An idealised network of dual-frequency GNSS stations, which recovers the max-

imum practical amount of slip information about the fault, is used to generate

Qd,ref . Two zones are defined within the idealised network - a high density area

(small station separation) and a low density area (high station separation), with

stations uniformly spaced within these zones (Fig. 3.2). This reduces processing

requirements while ensuring that the short-wavelength deformation signal close to

the fault is well sampled. The high density area may be rotated to remain parallel

to the projected fault line, so that the observations are uniform along strike.

All observations within the network are assumed to be independent absolute

measurements of surface displacement. Variance values equivalent to a 1σ positional

error of 2 cm in the North and East components, and 4 cm in the Up component,

are used to produce Qd,ref . These are reasonable average positional accuracies for

dual-frequency GNSS stations (Groves 2013).

An example idealised network is shown in Figure 3.2.

3.1.2 Algorithm

We chose a multi-objective genetic algorithm to perform the discretisation, specific-

ally the ‘gamultiobj’ function from the Matlab Optimisation Toolbox. MOGAs are a



3.1. Fault Discretisation 29

0 20 40 60 80 1000

20

40

60

80

100

X-coord (km)

Y
-c

oo
rd

(k
m

)

Figure 3.2: An example idealised network centred around a
westward-dipping normal fault. Station spacings are
2 km for the high density area, and 4 km for the low
density area. The bold red line indicates the fault trace,
while the red area shows the vertically projected fault
plane
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metaheuristic optimisation technique, as described in Section 2.2.5, that are capable

of solving complex optimisation problems with multiple objectives. The algorithm

is provided model parameters and fitness functions that describe the structure and

quality of each discretisation. Multiple discretisations, which define a population of

solutions, are iteratively varied until a range of optimal solutions are found.

Model parameters are provided to the algorithm as a vector

mGA =
[
z1 z2 . . . zr−1 c1 c2 . . . cr

]
(3.1.1)

where mGA is the vector of parameters, z is vertical row boundary depths, c is the

number of patches in each row, and r is the number of rows. As both the top and

bottom depths of the fault plane are fixed, there is one less row boundary than the

number of rows. The patch boundary depths are projected into dip-parallel depths

using the dip angle of the fault plane. The algorithm is provided starting values

for mGA consisting of uniformly spaced row boundaries with a single patch on each

row. This is done to ensure that the starting model does not contain an unrealistic

number of slip patches, and to encourage the algorithm to explore discretisations

with low model uncertainties.

The previously described measures of discretisation quality, those being model

uncertainty and the number of slip patches, must be expressed as scalar values

so that they may be used as fitness functions by the algorithm. For the model

uncertainties, the algorithm is provided the maximum value of any model slip value

in the discretisation. Using the maximum value observed encourages the generation of

discretisations with uniform model uncertainties across all slip patches, an advantage

when the location of slip on the fault plane is not know. The number of slip patches in

maximised by minimising the inverse of the number of patches in the discretisation.

Discretisations are generated as a population of solutions. G is generated for each

discretisation assuming each slip patch is a rectangular elastic half-space, as described

in Section 2.1.1. Qm is then estimated using G and Qd,ref . Each discretisation is

tested for dominance and sorted. A solution (m1) is said to dominate another
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solution (m2) if:

• m1 is at least equal in all objective functions compared to m2.

• m1 is better in at least one objective compared to m2

The highest ranked discretisations are selected, randomly modified (mutation), and

mixed together (crossover) to produce a new population that retains positive charac-

teristics from the parent discretisations. The algorithm attempts to minimise both

fitness functions, with lower values indicating a more optimal solution. Dominance

between solutions is evaluated so as to define the estimated Pareto front, an example

of which is provided in Figure 3.3.

The number of model parameters that the algorithm can handle is fixed during

the optimisation, and so discretisations with different numbers of rows cannot be

generated simultaneously .To overcome this limitation, the optimisation is performed

multiple times, each time with a different number of rows in the discretisation. The

solutions from each optimisation are than re-tested for dominance to define a new

estimated Pareto front. An example of this combined Pareto front is shown in Figure

3.4.

It can be seen that for different ratios of the two fitness functions, different

numbers of row boundaries dominate the Pareto front. A higher number of row

boundaries leads to higher model uncertainty as patches are forced to smaller widths,

and vice versa. This also indicates that patch aspect ratios are kept relatively

consistent throughout the range of solutions.

A discretisation is chosen from the combined Pareto front based upon the mag-

nitude of the target aseismic slip. The range of discretisations produced by the

optimisation means that a wide range of slip magnitudes can be studied, as long as

surface displacement above the minimum magnitude detectable of GNSS stations

is produced. This selected discretisation is fixed, and the criterion matrix Qm,ref is

estimated using Qd,ref and G.
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Figure 3.3: An example Pareto front for discretisations with four
rows, where each point is a solution. A log axis is used
for the model error, as this increases exponentially with
decreasing patch size, for which the number of patches
is a proxy. The front itself is not uniform, as this is only
an estimate of the true Pareto front and is limited by
the performance of the algorithm.

3.2 Network Design

Once a discretisation is chosen, and Qm,ref has been estimated, it is possible to begin

generating optimal GNSS networks. The network design is performed using the

‘particleswarm’ function from the Matlab Optimisation Toolbox, a PSO algorithm

that is similar to the MOGA used in the fault discretisation.

The algorithm defines a population of particles, each of which is a GNSS network

defined by a set of x and y coordinates that describe the location of each station.

Starting values are provided randomly, within predefined bounds that define a rect-

angular region around the fault. Station locations are able to vary continuously in
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Figure 3.4: Combined Pareto front produced for a synthetic normal
fault. Each circle is a discretisation, with the colour
indicating the number of rows in the discretisation, with
the red circles indicating the combined Pareto front.

this area, as opposed to at discrete intervals as is common in grid search methods.

A distance metric (e.g. Förstner et al. (2003)) is employed as a fitness function

to express the quality of each network as a scalar value:

d (Qm,des, Qm,ref ) =
√√√√ n∑

i=1
ln2λi (Qm,des, Qm,ref ) (3.2.1)

where λ are the eigenvalues of Qm,des and Qm,ref . The distance metric expresses in the

difference in all variance and covariance values between Qm,des and Qm,ref . A lower

distance metric value expresses that the designed network is approaching the “best

possible” model uncertainties. If both VCMs are identical, then d (Qm,des, Qm,ref ) =

0.

Estimating Qm,des requires Qd,des and G. G is again generated as described
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in Section 2.1.1. It is necessary to recalculate G for every network layout as it

is dependent upon the observation locations. For dual-frequency GNSS networks,

Qd,des is generated in the same manner as Qd,ref . For single-frequency GNSS stations,

the effects of ionospheric delay must be included. This is explored further in the

next section.

The assumption that covariance values between dual-frequency GNSS stations are

negligible can cause the optimisation algorithm to “stack” stations. This describes

the behaviour where multiple GNSS stations are placed with little distance between

adjacent stations (10’s of m) to minimise model uncertainty on a specific patch,

with alternative locations proving less optimal . At very short separation distances,

significant covariance would be present between adjacent stations due to localised

error sources. To account for this, a bias is added to the Qd,des for stations that are

placed within 200 m of another station. This negatively impacts stations located

within close proximity, forcing a different location to become optimal once the first

has been filled. This is only performed for the dual-frequency GNSS stations, as the

inclusion of ionospheric delay in the single-frequency stations also prevents stations

from “stacking”.

Each particle is defined by four properties:

• Position - the position of the particle at a given iteration (current model

parameter values).

• Velocity - the direction and length of movement of the particle at a given

iteration (change in model parameter values).

• Personal best - the position of the best solution (minimum distance metric

value) found so far by the particle.

• Global best - the position of the best solution observed by any particle in the

swarm.
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The movement of each particle, which controls how station locations change each

iteration, is controlled by these four properties and an additional random component.

Particles will on average move towards the global best while exploring the solution

space. The global best at the end of the optimisation is considered the optimal

solution. The optimisation finishes when either a maximum number of iterations is

reached, or the change in the distance metric value of the global best solution over

a given number of iterations decreases below a threshold.

3.3 Single Frequency GNSS

Qd,des is required to estimate Qm,des, which itself describes the ability of a network

to recover distributed aseismic slip on a fault. Accurate estimation of the variance

and covariance values within Qd,des is therefore critical to the network design. For

dual-frequency GNSS stations, estimating Qd,des is relatively simple because each

observation can be assumed to be an independent absolute measurement of surface

displacement. For single-frequency GNSS stations this is not the case because of

ionospheric delay. Ionospheric delay is a major source of positional uncertainty for

single-frequency GNSS stations. For dual-frequency stations, it is possible to mitigate

this uncertainty by differencing estimates of the magnitude of the ionospheric delay

from both frequencies. This is not possible for single-frequency, and so alternative

methods must be used.

As the ionospheric delay has high spatial correlation over hundreds of kilometres,

a simple way to mitigate this source of uncertainty is to consider relative differences

in displacement between pairs of stations, rather than absolute measurements. The

data uncertainty is then dependent upon the variation in ionospheric delay between

pairs of stations, rather than the absolute magnitude.

If single-frequency GNSS stations are treated independently, then the effect of

the ionospheric delay will be large. As a simple example, consider a vector of four
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observations

d =
[
d1 d2 d3 d4

]
(3.3.1)

each of which is an absolute measurement of surface displacement in a given compon-

ent (e.g. North, East, or Up), taken from four independent single-frequency GNSS

stations. A VCM may be created in the same form as Equation (2.1.2):

Qd =

d1 d2 d3 d4



V ar(d1) Cov(d1, d2) Cov(d1, d3) Cov(d1d,4) d1

Cov(d2, d1) V ar(d2) Cov(d2, d3) Cov(d2, d4) d2

Covd(3, d1) Cov(d3, d2) V ar(d3) Cov(d3, d4) d3

Cov(d4, d1) Cov(d4, d2) Cov(d4, d3) V ar(d4) d4

(3.3.2)

If all other error sources are assumed to be negligible, then

V ar(d) = σ2
d,max (3.3.3)

where σ2
x,max is the maximum variance of the ionospheric delay. This may be several

squared metres in magnitude (Huang et al. 2017) and will propagate through to

Qm,des, producing large model uncertainties and covariances.

In the case of relative measurements of displacement between pairs of stations,

the variance may be expressed:

V ar(d1, d2) = V ar(d1)max + V ar(d2)max − 2 Cov(d1, d2) (3.3.4)

Assuming that V ar(d1)max = V ar(d2)max, Equation (3.3) can be written as

V ar(d1, d2) = σ2
d1,max + σ2

d2,max − 2ρd1,d2σd1,maxσd2,max (3.3.5)

where ρ is the correlation between any two stations. The left two terms represent

the maximum variance of the ionospheric delay, with the right term acting to reduce

this based upon the separation distance between the two stations. Two cases are

considered, where l is the baseline distance between two stations, and x and y are

the observations:



3.3. Single Frequency GNSS 37

• if l → inf , then ρ = 0 (observations are uncorrelated), and V ar(x, y) =

2V armax, which will dominate the signal.

• if l = 0, then ρ = 1 (observations are perfectly correlated), V ar(x, y) = 0, and

the observation will be unaffected by ionospheric delay.

In practice, separation distances between these extremes are desired. Shorter

baselines result in lower data uncertainty, which is then propagated through to

Qm,des, at the cost of higher covariance and poorer network coverage.

The covariance between two relative measurements (two pairs of single-frequency

stations), can be expressed as

Cov(d1, d2 & d3, d4) = Cov(d1, d3) + Cov(d2, d4) − Cov(d2, d3) − Cov(d1, d4)

= ρd1,d3σd1σd3 + ρd2,d4σd2σd4 − ρd2,d3σd2σd3 − ρd1,d4σd1σd4

(3.3.6)

As another example, two cases are considered for baseline distance in a setup

of four stations as shown in Figure 3.5. For two pairs of stations arranged to form

a rectangle, as the separation between the two pairs increases (L1), the covariance

decreases, and vice versa. The rate at which this occurs depends upon the pair

separation (L0) and the spatial autocorrelation function of the ionosphere, which

describes the correlation between any two measurements of the ionospheric delay for

a given separation distance. If the two pairs are separated to infinity, then the two

relative measurements are independent. As the distance between the two pairs goes

to zero, then the two relative measurements become perfectly correlated, and the

resulting covariance value is the variance of either pair, as described by equation 3.3.

Using Equations (3.3) and (3.3.6), Qd,des may be created for the relative meas-

urements between the four observations in d, assuming d1 is paired with d2, and d3



38 Chapter 3. Methodology

Figure 3.5: Diagram of four single-frequency GNSS stations (red
dots) arranged in a rectangle and paired (black lines).
Blue lines indicate separation distances.

with d4 (Fig. 3.5)

Qd =

d1, d2 d3, d4



V ar(d1) + V ar(d2) − 2Cov(d1, d2)
Cov(d1, d3) + Cov(d2, d4)

−Cov(d2, d3) − Cov(d1, d4)
d1, d2

Cov(d3, d1) + Cov(d4, d2)

−Cov(d3, d2) − Cov(d4, d1)
V ar(d3) + V ar(d4) − 2Cov(d3, d4) d3, d4

(3.3.7)

This can be expanded for any network size, with each row and column corresponding

to a different pair of observations from single-frequency stations.

A inherent problem with relative measurements is that columns of the Qd,des

which share a common station will be linearly dependnent. This results in a VCM

of rank n − 1, where n is the number of single-frequency stations, which causes the

inversion to become ill-conditioned unless it is stabalised using regularisation. To

avoid the use of regularisation, the rows and columns associated with certain pairs

of stations are removed from the VCM until it once again full rank.

To select which pairs of stations to keep, and which to remove, a minimum

spanning tree algorithm is employed (Moret et al. 1991; Neumann et al. 2007).
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Station locations are converted to vertices on a graph, with weighted edges connecting

each vertices to every other vertices. A minimum spanning tree is a subset of all

possible edges that connects all vertices together without cycles (i.e. loops of stations).

Multiple trees will exist, and so the tree with the lowest total weight is defined as

the optimum. Edges are weighted using the separation distance between paired

stations, which is roughly proportional to the data uncertainty resulting from the

ionospheric delay. The optimal tree will therefore produce the Qd,des with the lowest

data uncertainties for any given station layout. Examples of minimum spanning

trees are presented in Chapter 4.

3.3.1 Characterising the Spatial Structure of the

Ionosphere

The difference in the ionospheric delay between paired single-frequency stations may

be estimated from the average spatial structure of the ionosphere. It is assume that

the ionospheric delay is isotropic and stationary for the duration of the observations,

and so the difference in ionospheric delay between any two single-frequency GNSS

stations is dependent only upon the separation distance between the two stations,

and not the locations of the stations themselves.

The spatial structure of the ionospheric delay is best expressed as a variogram,

which describes how separation distance affects the measurements of a spatial random

field made in two locations. In terms of the ionosphere, the variogram provides the

likely difference in value of two measurements of the ionospheric delay made by two

GNSS stations. Measurements of the ionospheric delay from two stations at a large

separation distance will differ more than those from two stations at a small separation

distance. To avoid confusion between the terms variogram and semivariogram, which

are sometimes used interchangeably, the work of Bachmaier et al. (2011) is followed,

in which the function itself if referred to as the variogram, and the values taken from

it as gammavariance, or just gamma for short. The term semivariogram is not used.
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Huang et al. (2017) provides variograms for the ionospheric delay measured by

the Crustal Movement Observation Network of China (CMONOC) (Fig. 3.6). The

GNSS stations within this network were used to sample the ionosphere every two

hours, with experimental variograms produced by differencing measurements across a

range of separation distances . The shape of each variogram is defined by a Gaussian

function.

Figure 3.6: Experimental variograms taken from Huang et al.
(2017).

The long-wavelength ionospheric delay varies on a scale of thousands of kilometers,

and up to magnitudes of several metres. The short-wavelength trend is of greater

interest, as the network design is primarily intended for continental faults that do

not exceed one to two hundred kilometres in length. Due to the limited number of

data points at these distances, additional information is required to constrain the

short-wavelength ionospheric delay. It is worth noting that while these variograms

provide a good example of how ionospheric delay varies throughout the day, they do
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not show longer timescale variations, which can be significant (Janssen et al. 2002).

Chen, Kuo et al. (2015) describes methods for reducing ionospheric errors in

mixed networks of low-cost single- and dual-frequency GNSS stations. The positional

uncertainties caused by the ionospheric delay for both corrected and uncorrected

single-frequency GNSS stations are provided, up to a maximum baseline distance of

30 km. Two methods of correcting single-frequency GNSS data are described. The

first is a local one-layer ionospheric model, generated from reference dual-frequency

GNSS stations. For the second, station specific corrections terms are produced for

each single-frequency GNSS stations, using a combination of information from both

station types.

Returning to Huang et al. (2017), at short baseline distances it can be seen that

the Gaussian curve is convex upwards, and so it is possible to approximate the curve

using a second order polynomial. Chen, Kuo et al. (2015) shows that the short-

wavelength ionospheric delay is linear when expressed as the standard deviation,

measured in millimeters, which becomes quadratic when converted to m2. Therefore,

non-negative quadratics are fit to the squared data uncertainties provided by Chen,

Kuo et al. (2015) to produce variograms for the short-wavelength ionospheric delay.

The quadratics are constrained to only positive values because negative variance

does not make physical sense. Figure 3.7 shows the squared positional uncertainties

taken from Chen, Kuo et al. (2015), and the quadratic fits to these data. The

corrected variograms share the same quadratic shape as the uncorrected varigorams,

an observation that will be returned to further on in this chapter.

Variance values are measured between a single-frequency GNSS station, and a

dual-frequency reference GNSS station. The variance of the dual-frequency station is

assumed to be zero, and so the positional uncertainties provided are solely dependent

upon the single-frequency station. It is therefore necessary to double any values of

gamma taken from Figure 3.7 when using two single-frequency GNSS stations, so that

the variance of both stations is accounted for. Only the uncorrected single-frequency

data is used to produce Qd,ref .
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Figure 3.7: Variograms fitted to squared positional uncertainties
taken from Chen, Kuo et al. (2015), with non-negative
quadratic fits, for the North (top), East (middle), and
Up (bottom) components. Corrected1 and Corrected2
refer to the data corrected with the ionospheric model
and with the correction terms, respectively.
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From these variograms, the required variance and covariance values needed to

produce Qd,ref can be derived. The covariance at distance h can be expressed

C(h) = σ2 − γ(h) (3.3.8)

= γ(∞) − γ(h) (3.3.9)

where γ(∞) is the gamma value at infinite distance, which is the sill of the

variogram. The correlation at h can be expressed

ρ(h) = C(h)
σ2 = γ(∞) − γ(h)

γ(∞) (3.3.10)

rearranging for variance

V ar = 2γ(∞)(1 − ρ(h))

= 2γ(∞)(γ(∞)
γ(∞) − γ(∞) − γ(h)

γ(∞)

= 2γ(∞)( γ(h)
γ(∞))

= 2γ(h) (3.3.11)

It can be seen that the variance is independent of the sill (σ2 = γ(∞)) assuming

that h is less than the range (the distance to the sill).

Covariance may also be expressed in terms of γ

Cov(d1, d2 & d3, d4) = γ(∞)
γ(∞) [(γ(∞) − γ(hd1,d4)) + (γ(∞) − γ(hd2,d3))

− (γ(∞) − γ(hd1,d3)) − (γ(∞) − γ(hd2,d4))]

= γ(hd1,d4) + γ(hd2,d3) − γ(hd1,d3) − γ(hd2,d4) (3.3.12)
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Again, it can be seen that the covariance is independent of σ2, assuming that all

station separation distances are less than hmax.

To produce Qd,des, the data VCM for the ionospheric delay is produced using

Equations (3.3.11) and (3.3.12). Additional variance values, equivalent to twice the

estimated dual-frequency station variance, are then added. This represents additional

error sources associated with the observations from each single-frequency GNSS

stations, and which aren’t otherwise included in the ionospheric delay uncertainties.

As with the dual-frequency stations, it is assumed that these errors are independent

to each station (zero correlation), and so the covariance values within the VCM are

unaffected.

3.3.2 Removal of Long-Wavelength Ionospheric Trends

The convex upward shape of the variograms shown in Figure 3.7 indicates that the

ionospheric delay contains a long-wavelength planar trend (i.e. is not stationary).

This results in high covariance between pairs of stations that are aligned parallel

to each other, and low correlation between pairs aligned perpendicular. High data

covariance is propagated through to high model covariance, degrading the ability of

the network to resolve distributed slip. It was previously noted that both corrected

and uncorrected single-frequency data sets share this convex upward shape, indicating

that the long-wavelength trend is not removed by local ionospheric delay corrections.

The Chen, Kuo et al. (2015) and Huang et al. (2017) data sets are combined

by fitting Gaussian functions to the short-wavelength data from Chen, Kuo et al.

(2015), and constraining the range, sill, and nugget of these functions using the

long-wavelength trends from Huang et al. (2017). Minimum and maximum values

for each are provided in Table 3.1. These curves are shown in Figures 3.8 and 3.9. It

can be seen that the fit to the Chen, Kuo et al. (2015) is worse than when using an

otherwise unconstrained non-negative quadratic (Fig. 3.7), which is a trade-off to

have the long-wavelength trend constrained by the values provided by Huang et al.



3.3. Single Frequency GNSS 45

Range (km) Sill (m2) Nugget (m2)
Min 0 0 0
Max 5000 10 0.5

Table 3.1: Constraints for the Gaussian functions shown in Figures
3.8 and 3.9.

(2017). If the curves are unconstrained, a better fit is achieved, but with unrealistic

values for the sill, indicating that it is poorly constrained by the short-wavelength

data.

These variograms are then used to generate one hundred random spatial fields,

over a 100 km by 100 km area. An example field is shown in Figure 3.10. Each field

is a synthetic ionospheric delay map, where the spatial structure of the delay can

be characterised by the provided variogram. A planar trend is then removed from

each of these fields, and a experimental variogram is then fit to the residual delay.

Finally, a spherical model is fit to experimental variograms for each component, to

produce updated variograms with the long-wavelength ionospheric delay removed

(Fig. 3.11).

Figure 3.12 shows the correlation values calculated from the data VCMs of a

four station single-frequency network. The first is from a VCM generated using

the original non-negative quadratic variograms, and the second using the spherical

variograms with the long-wavelength trends removed. The values in the former are

significantly higher than the latter, which posses near-zero correlation values for

all but the main diagonal. High correlation values will propagate to high model

correlation, and so removal of the planar trend before the network design is a

necessity.

The new variograms may now be used to produce Qd,des, and so Qm,des may be

estimated for the network design. Removal of the planar trend from the variograms

significantly reduces the correlation between pairs of stations. The magnitude of

the data uncertainties are also reduced, which propagates through to lower model

uncertainties.
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Figure 3.8: Gaussian fit to the squared standard deviation er-
ror (variance) for uncorrected single-frequency stations
provided by Chen, Kuo et al. (2015), for the North
(top), East (middle) and Up (bottom) components of
displacement. The corrected variance values, along with
the dual-frequency variance values, are provided for ref-
erence. Each component is shown separately so that
the quality of the fit to the data is more easily seen.
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Chapter 4

Results

The methodology described in Chapter 3 is now applied to a range of synthetic model

faults. Optimal networks of low-cost dual-frequency GNSS stations are generated

first, to act as a reference for the more complicated single-frequency GNSS networks.

4.1 Dual-Frequency GNSS

Dual-frequency examples are presented first, starting with a run through of the full

network design method for a simple normal fault. The affects of varying network

size and fault geometry are then explored.

4.1.1 Idealised Network Structure

The idealised network is used to derive Qd,ref , which is used to estimate Qm,ref as

part of the fault discretisation. The idealised network consists of two regions of

uniformly-spaced GNSS stations; a high station density area centred on the fault

trace, and a low station density area that extends to the limits model. To ensure

consistency across the results, we define two fixed station separations for these

regions; 2 km for the high-density area, and 4 km for the low density area. An

idealised network possessing these station separation values in shown in Figure 4.1.
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Figure 4.1: An idealised network of dual-frequency GNSS stations
that is used to produce Qd,ref in the following examples.
The bold red line indicates the fault trace, while the red
area shows the vertically projected fault plane.

These values are chosen as a trade-off between run time, as a higher density of

stations contains more observations to process, and the model error values that the

idealised network is able to achieve. The structure and variance values of Qd,ref are

given in Section 3.1.1.

4.1.2 An Example Normal Fault

The fault discretisation and network design methods are first tested on a synthetic

normal fault. The model fault geometry is described in Table 4.1.

Qd,ref is produced using the idealised network shown in Figure 4.1. The fault



4.1. Dual-Frequency GNSS 53

Parameter Value
Strike 180°
Dip 60°

Rake −90°
Fault length 20 km
Top depth 1 m

Bottom depth 15 km

Table 4.1: Parameters for a normal fault. The top depth of the
fault is set to 1 m rather than 0 m, as a value of zero
causes the half-space equations to fail.

discretisation is ran three times with varying numbers of rows. The resulting solutions

are re-tested for dominance to produce the combined estimated Pareto front, and

an optimal fault discretisation is selected (Fig. 4.2). The chosen discretisation was

picked based upon the desire for a maximum model error value of 5 cm. As expected,

patch size increases with depth, and model uncertainty is close to uniform across

the fault plane, ranging from roughly 3.55 - 4 cm. These values do vary along rows,

a result of the station separation which means that the proximity of stations to each

patch varies by a small amount within each row.

With a discretisation selected, the network optimisation is performed with seven

dual-frequency GNSS stations, taking a total of 206 iterations to achieve acceptable

convergence. The designed network, along with the model uncertainties for both the

idealised network and the designed network, are shown in Figure 4.3.

The lowest model uncertainty achieved by the designed network is 5 cm for the

top left patch, with the majority possessing values that are between two to five

times larger than was observed by the idealised network. The largest values are

observed on the deepest patches, as the network does not contain enough stations in

the far-field of the region to provide resolving power at depth. A maximum model

uncertainty of 18 cm is still be considered a success, however, when considering that

this is achieved using only seven stations compared to the 917 stations present in

the idealised network.

The correlation between uncertainties on either observations or model parameters
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Figure 4.3: The 1σ model uncertainties (m) for both the idealised
(top) and designed networks (bottom), with the final op-
timal network of seven single-frequency GNSS stations.

can be calculated using

ρa,b = Cov(a, b)
V ar(a)V ar(b) (4.1.1)

This can be repeated for a full VCM to produce a correlation matrix. Figure 4.4

shows the correlation matrices produced from Qm,ref and Qm,des. Both matrices

show similar patterns, however, the designed network has multiple adjacent patches

with high positive correlation, shown by the sets of four adjacent squares along the

main diagonal. While correlation values are lower for the idealised network, there

are still non-zero values.

This demonstrates the ill-conditioned nature of the inverse problem. Given

perfect data, it would be possible to recover the slip distribution perfectly with the

current network of stations, as we have 21 observations (three components for each

station) and 10 model parameters. However, real-world data will always contain some

amount of measurement uncertainty, which is mapped through to model parameters

by the linear inversion.

Figure 4.5 shows the correlation values betweeen the middle patch (coloured
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Figure 4.4: Full correlation matrix for the idealised network (left)
and designed network (right).

grey) of the discretisation and every other slip patch, again for both the idealised

and designed networks.

Both networks result in entirely non-zero correlation values, as expected. These

values are overall higher for the designed network, especially in the case of the right

adjacent patch which is near to fully correlated with the centre patch. This is likely

caused by a lack of stations measuring displacement from these patches, with those

that do lying fully in a the region deformed by both patches, and so it is difficult

to discern between the displacement caused by either patch. Also of interest is that

some patches, specifically some of those on the top row, have lower correlation values

for the designed network than the idealised network. This is a potential benefit

of having few stations, as fewer observations in regions of maximum displacement

overlap will lead to lower correlation. The downside is that the model error increases,

as seen in Figure 4.2.

Given the magnitude of the correlations observed in Figure 4.4, it is important

that the model VCM is fully examined for any optimal generated networks. While

covariance values will be minimised during the optimisation, as they are included

in the distance metric, they may still be problematically high, despite the network

producing acceptable variance values.
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Figure 4.5: Model correlation between the selected fault patch
(grey) and all other patches, for the idealised network
(top) and the design network (bottom).

4.1.3 Network size

Following on from the previous example, the effects of network size on both the

layout of optimal GNSS networks, and the magntiude of the model uncertainties

estimated by these networks, are explored. Increasing the number of GNSS stations

in a network is expected to reduce the model uncertainties estimated on the fault.

The normal fault geometry described in Table 4.1 is repeated, although with a

new discretisation (4.6). The new discretisation consists of 17 slip patches with a

maximum model uncertainty of 20 cm, an increase from the 10 patches and 5 cm

maximum uncertainty observed in the previous discretisation. The new discretisation

is selected so that the affects of increasing network size are clearer.

Figure 4.6 shows three optimal networks consisting of five, ten, and twenty dual-

frequency stations. The maximum model error ranges from 1.2 m for the five station

network, down to 30 cm for the twenty station network. Increasing the number of

stations in the network leads to a reduction in the average model uncertainty across

the discretisation. Note that the five station network is an ill-posed problem, as the
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Figure 4.6: Three optimal dual-frequency GNSS networks consist-
ing of five, ten, and twenty stations, with the model un-
certainties derived from Qm,des for each network shown
on the discretisation.
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number of model parameters (17) is greater than the number of observations (15),

which will contribute to the high model uncertainties. Model resolution may also be

degraded.

Similarities in design exist between all three networks. Each is close to sym-

metrical about a line perpendicular to the fault top, which is to be expected given

that the discretisation is itself symmetrical about the vertical centre line of the fault

plane. Four to five stations are placed parallel to the projected fault top, at on offset

of several kilometers. These stations lie above the first two rows of fault patches,

lowering the model error across them. Both the ten and twenty stations networks

posses a second row of stations beyond these, and over the second and third rows

of the discretisation. When not enough stations are available (10 station network),

this second row is placed over the midpoints of both halves of the discretisation.

With more stations available, a more uniform spacing is achieved similarly to the

first parallel row.

For deeper patches, stations are located increasingly centrally and further out.

In the twenty station network, we see that the algorithm begins to place stations

very close together as opposed to uniformly spaced lines. This reflects the decreasing

number of patches at depth, and the need to reduce the model error by attempting

to minimise the data error at a given point, by placing multiple observations in the

same location. This demonstrates the effect of the artificial variance curve for close

together stations. Without this there stations would become very densely packed,

with separations of tens to hundreds of meters, which in the real-world would be

begin to cause issues with short-wavelength correlated errors such as multipath.

However, it does still suggest that for sensing deep slip on fault planes, there is some

benefit for locating a number of stations within relatively close proximity, as opposed

to spacing them further out.

The end result of this is networks that are triangular in shape, pointing towards

the deepest end of the fault plane, and mirroring the decreasing number of patches

with depth in the discretisation. Within each network, stations are also placed in
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triangular arrangements due to the decreasing number of slip patches with decreasing

row depth.

Klein et al. (2017) generates optimal GNSS locations to support an existing

network of dual-frequency GNSS stations for the study of aseismic slip on the

Marmara fault. The fault is discretised manually, with increasing slip patch size

with depth. The network design is performed using a grid search and swapping

method, as described in Section 2.2.5, to maximise model resolution across the

discretisation. The optimal GNSS networks presented by Klein et al. (2017) show

similar features to the dual-frequency GNSS networks shown in Figure 4.6. The

majority of the GNSS stations are placed close to the fault trace, with a small

number located at a greater distance from the fault trace. This creates a triangular

structure of stations, as observed in Figure 4.6.

As described in Section 2.2.3, network economy refers to the costs associated

with deploying a geodetic network. Economy is not directly included in the network

design, however, the trade-off between network size and distance metric value is of

interested for assessing the returns given by deploying more GNSS stations. Figure

4.7 shows the trade-off between the distance metric and the number of dual-frequency

stations in the designed network. Increasing the number of stations in the network

decreases the distance metric value achieved, bringing Qm,des closer to Qm,ref . The

change in the distance metric value decreases with increasing network size. The

reduced return in how well distributed aseismic slip can be resolved by the network

will therefore impact the size of deployed networks.

4.1.4 Fault geometry

Both Qm,des and Qm,ref are dependent upon G, which is a function of the fault

geometry and observation locations. It is therefore expected that changing the fault

geometry will alter the layout of the optimally generate GNSS networks. Four fault

parameters are selected to vary fault geometry: the stike angle, the dip angle, the
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Figure 4.7: Distance metric vs the number of dual-frequency GNSS
stations in the optimally designed network.

rake angle, and the bottom depth of the fault plane. All other fault parameters are

fixed, so that the impact of varying any one parameter may be better isolated.

Orientation

Figure 4.8 shows three networks, each containing 20 dual-frequency stations, used

to model the same normal fault at three different strikes. The model fault geometry

is otherwise as described in Table 4.1. Qd,ref is generated using the three idealised

networks shown in Figure 4.1, with the alignment of the high-station-density area

matched to the respective fault strike.

All three networks show very little change in model error based on fault ori-

entation, with the exception of a high-valued slip patch in the shallowest row that

occurs in different locations for two networks, although this has a lower error in the

third. This patch may be lacking in the east-west striking fault due to a small shift

in the locations of two stations. As the data VCM is not affected by fault orienta-
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Figure 4.8: Optimal networks of 20 dual-frequency GNSS stations
generated for the normal fault geometry described in
Table 4.1 and rotated to strikes of 180° (Top), 90°
(Middle), and 135° (Bottom). Estimated model uncer-
tainties (m) are shown on the discretisation.

tion, and so no effect is expected on the model VCM, it is likely that this network

achieved a slightly more optimal state than the other two, likely due to random

chance within the optimisation. These results are as expected for the dual-frequency

GNSS stations.

Depth and fault type

We next explore the effects of fault depth and fault plane area, and the type of fault

slip. When creating the fault model, it is not required that the dimensions match



4.1. Dual-Frequency GNSS 63

Parameter Normal Strike-slip
Dip 60° 90°

Rake −90° 0°

Table 4.2: Table showing the change in rake and slip values required
to alternate between a normal and stike-slip fault geo-
metry.

those of the real-world fault it is attempting to replicate. Instead, the fault model

can be created to target slip on a given part of the fault plane, for example to target

shallow afterslip following an earthquake vs afterslip anywhere on the fault plane.

Changing the depth and surface area of the fault plane may affect the layout of

optimal networks, as this will change the displacement field around the fault. The

same is true for the type of faulting, whether that be normal faulting, strike-slip, or

thrust faulting.

Previously we have used a normal fault geometry, as described in Table 4.1,

which we now modify to create a strike-slip fault. This is done by varying the dip

and rake angles. The values used are given in Table 4.2. The depth of the fault is

varied by changing the bottom depth to 3 km, while fixing the top depth.

Figure 4.6 shows four networks, generated for four different fault geometries. The

top two rows are from a normal fault and a strike-slip fault, both with a bottom

depth of 15 km. The bottom two rows are the same, but with a bottom depth of 3

km.

As previously shown in Figure 4.6, the networks for normal faults show a degree

of symmetry about a line that intersects the fault trace at it’s centre, and with a

perpendicular orientation. For strike slip faults, this symmetry is also present about

a line that runs along and parallel to the fault trace, as can be seen in Figure 4.9.

This is caused by the symmetrical nature of deformation around strike-slip faults.
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Figure 4.9: Optimal networks of ten dual-frequency GNSS stations
designed around a normal fault with a 15 km bottom
depth (top), a 3 km bottom depth (second from the top),
and a strike-slip fault with the a bottom depth of 15 km
(second from the bottom), and a 3 km bottom depth
(bottom). Estimated model uncertainties are given in
metres.
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4.2 Single-Frequency GNSS

4.2.1 Example networks

The starting fault geometry is that of the normal fault described in Table 4.1, with a

manually generated discretisation of three patches over two rows. This is to provide

a very simple discretisation to begin with, while still possesing enough complexity

to require proper design of the network. Qd,ref is generated by the idealised network

shown in Figure 4.1 and used to estimate Qm,ref .

Figure 4.10 shows the the estimated layout of an optimal four station single-

frequency GNSS network. Qm,ref contains very low model uncertainties of 1 - 2

cm, which is expected given the sizes of the slip patches. The designed network

produces model uncertainties that are several times larger, but with a maximum

value of 11 cm. A discernible structure is present within the designed network, with

the centre-points of the baselines between pairs of stations positioned directly above

the boundary between the two rows of fault patches. While the slip patches in the

discretisation are very large, the model uncertainties achieved are promising.

The number of slip patches in the discretisation is now increased, from three to

seven slip patches, and the number of stations in the designed network are increased

from four to ten. Qd,ref is unchanged, however, a new Qm,ref is generated because

the change in discretisation affects G. Figure 4.11 shows the estimated layout of the

optimal single-frequency GNSS network.

Qm,ref again contains very low model uncertainties at a uniform 3 cm across all

slip patches in the discretisation. The designed network achieves roughly double

that at 5 - 7 cm on the top row of patches, with model uncertainty then increasing

with depth. A return to the triangular stations layouts previously identified in the

dual-frequency GNSS networks (Fig. 4.6) is observed, where two stations are placed

close to the fault trace with a third station placed over the deeper fault patches. Four

stations are not located directly over the fault plane, three of which are at a significant
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Figure 4.10: Ten station optimal single-frequency network for a nor-
mal fault, with the model uncertainties (m) estimated
by the idealised (top) and designed (bottom) networks
shown on the discretisation. The dotted lines indicate
the pairs of stations between which relative measure-
ments of ground displacement are made.
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Figure 4.11: Ten station optimal single-frequency network for a nor-
mal fault, with the model uncertainties (m) estimated
by the idealised (top) and designed (bottom) networks
shown on the discretisation. The dotted lines indicate
the pairs of stations between which relative measure-
ments of ground displacement are made.

distance ( 30 km) away from the fault. These stations sample the displacement in

the far-field of the region, where the greatest difference between the displacement

contributions from the deep and shallow patches is observed. Displacement from

the shallow patches is still present, but at a significantly lower magnitude than the

displacement from the deep patches.

Figure 4.12 shows from nine evenly-spaced iterations throughout the network

design optimisation. The optimisation allows iterations where the network neither

improves or declines as the solution space is explored, and so these have been

removed to smooth out the optimisation process and to avoid exactly repeated

network layouts.

The distance metric improves rapidly at the start of the optimisation, decreasing

by 39.6% in the first 13 iterations and by 51.6% by the end of the inversion (96

iterations). The final structure of the network is recognisable by the 37th iteration,
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with only the locations of the far-field stations varying significantly for the remainder

of the optimisation. The final third of the optimisation consists of small station

movements which are not visible at this scale, and which produce changes to the

distance metric on the order of 10−3 .

4.2.2 Alternative Fault Geometries

As demonstrated by the dual-frequency GNSS results, the geometry of the fault

will impact the layout of the optimal GNSS networks. This is expected to hold

true for the single-frequency GNSS stations. The normal fault from Table 4.1 is

again modified to give a strike-slip fault with rake and dip values given in Table 4.2.

Qd,ref and the fault discretisation are retained from the previous example. Qm,ref

is re-estimated because the changes to the fault geometry affect G.

Figure 4.13 shows the the estimated layout of an optimal ten station single-

frequency GNSS network. Qm,ref contains values equivalent to model uncertainties

of 2 - 7 cm and which increase with depth. The increase in model uncertainty

compared to Figure 4.11 demonstrates the increased difficulty in resolving slip on

strike-slip faults, both due to the high dip angle and the surface-parallel slip direction.

Similarly, the model uncertainties estimated by the designed network are higher,

especially at depth, with a maximum value of 59 cm on the deepest slip patch.

The network again contains triangular layouts of stations which now wrap around

the fault plane at either end. Far-field stations are also present, and the network

shows a high degree of symmetry about a line that extends perpendicular from the

midpoint of the fault trace. In contrast to the network shown in Figure 4.11 which

was designed for a normal fault geometry, GNSS stations are located on both sides

of the fault trace.

The fault model is now returned to that of the normal fault geometry described in

Table 4.1, with the bottom depth adjusted to 3 km as previously shown in Figure 4.9.

The fault is discretised using the automated discretisation method. Qd,ref is retained
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Figure 4.12: The network at nine evenly spaced iterations through-
out the inversion, with iterations where the distance
metric did not change removed. The final plot (itera-
tion 96) is the optimal network. Iteration number and
distance metric value for each network layout is given.
Dotted lines indicate station pairings.
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Figure 4.13: Ten station optimal single-frequency network for a ver-
tical strike-slip fault, with the model uncertainties (m)
estimated by the idealised (top) and designed (bottom)
networks shown on the discretisation.

and Qm,ref remade to account for the modified fault geometry and discretisation.

Figure 4.14 shows the the estimated layout of an optimal ten station network.

Qm,ref contains values equivalent to a uniform model uncertainty of 5 cm across all

slip patches. Model uncertainties estimated by the design single-frequency network

range from 6 - 9 cm, generally increasing with depth. Values are also overall higher on

the northern half of the fault plane compared to the southern half, which is caused by

a greater number of stations being located directly above the southern half the fault

plane. Estimated model uncertainties are similar in magnitude to those observed in

the top row of the discretisation in Figure 4.11, but achieved over a greater number of

slip patches. This reflects the greater number of observations directly above the fault

plane, as no far-field stations are required to measure displacement from deeper slip

patches. This highlights the importance of designing networks only for the section

of the fault that is of interested (e.g. only modeling the top of the fault plane if only

shallow slip is desired).
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Figure 4.14: Ten station optimal single-frequency network for a shal-
low (3km bottom depth) normal fault, with the model
uncertainties (m) estimated by the idealised (top) and
designed (bottom) networks shown on the discretisa-
tion. Note that the x-axis of the network has been
stretched so as to make the layout clearer.

The structure of the design network varies from those shown in previous examples.

Stations located over the northern half of the fault plane are placed at right angle

to each other. Stations over the southern half of the fault plane are roughly placed

in two strike-parallel lines either side of the fault trace. As previously stated, no

far-field stations are present due to the lack of deeper slip patches. The change

from triangular layouts of stations may be caused by the similarity in the number

of patches between both rows, and also due to a greater clustering of stations over

the fault plane.

For the final fault geometry variation, the normal fault geometry described in

Table 4.1 is reused with the strike changed to 90°. The discretisation shown in Figure

4.11 is retained, along with Qd,ref . Qm,ref is estimated again due to the change in

fault geometry, although the resulting model uncertainties are almost identical to

those shown in Figure 4.11.
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Figure 4.15: Ten station optimal single-frequency network for an
east-west striking normal fault, with the model un-
certainties (m) estimated by the idealised (top) and
designed (bottom) networks shown on the discretisa-
tion.

Figure 4.15 shows the optimal network layout with ten stations. The structure of

the network is markedly similar to the network shown in Figure 4.11, both possessing

triangular layouts of stations directly above the fault plane and additional stations

in the far-field. The primary difference between the two networks is the relocation

of a previously far-field station to be directly over the fault plane. The estimated

model uncertainties have improved slightly, with a maximum change of 3 cm on the

middle left patch (14 cm vs 17 cm). This improvement is likely the result of chance

in the optimisation finding a more optimal solution on this run. The difference may

also be the result of the different variograms for the north and east components of

the ionospheric delay.
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4.2.3 Dual-Frequency Comparison

The normal fault geometry described in Table 4.1 is returned to again to provide

a comparison between the single- and dual-frequency network designs. The fault

discretisation and optimal dual-frequency network shown in Figure 4.2 are reused.

A new single-frequency network of seven stations is generated for comparison.

Figure 4.16 shows the two optimal networks and their respective estimated model

uncertainties. Model uncertainties estimated by the single-frequency network are

higher on all slip patches except for two in the shallowest row, which are 1 - 2 cm

lower. The difference in model uncertainties between the two networks becomes

larger with increasing depth.

The same triangular layout of stations that has been observed in previous ex-

amples is again present in both networks. The single-frequency network contains

fewer stations placed directly over the lowest patches which contributes to the larger

model uncertainties on the deeper slip patches. This is a result of having fewer

observations in the single-frequency network, and indicates that the shallower slip

patches have a greater impact on the distance metric than the deeper slip patches.

The model uncertainties estimated by the dual-frequency network can be achieved

by an optimal single-frequency network of 12 stations (Fig. 4.16). The triangular

layout of stations above the fault plane is again repeated, with the addition of two

stations in the far-field that constrain slip on the deepest patches.

Figure 4.17 shows the model correlation values derived from Qm,des for both

the single- and dual-frequency networks. While the overall correlation between

fault patches appears to be higher for the single-frequency network, the correlation

values for some adjacent patches are actually lower than those observed from the

dual-frequency network.

Figure 4.18 is a graphic comparison of Qd,des for both networks. Variance values

are higher for the single-frequency network, with very low covariance values observed

for both networks.
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Figure 4.16: Optimal networks and estimated model uncertainties
for a 7 station dual-frequency network (top), a 7 station
single-frequency network (middle), and a 12 station
single-frequency network (bottom).
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Chapter 5

Discussion

In this Chapter, the previous results are summarised and further examined. Sev-

eral limitations of the methodology are explored, and potential solutions provided.

Finally, future expansions of the methodology are described.

5.1 Summary of Results

5.1.1 Potential of Single-Frequency GNSS

Through Chapters 3 and 4, a method for the estimating the optimal layouts of low-

cost GNSS networks to recover distributed aseismic slip on continental faults has

been provided and demonstrated. Of particular interest is the use of single-frequency

GNSS stations, for which a method for correcting the ionospheric delay has been

presented and included within the network design. Single-frequency GNSS stations

present the largest potential for improvement in network size and density.

The examples presented in Chapter 4 demonstrate that average model uncertain-

ties of 5 - 25 cm may be achieved by relatively small networks of single-frequency

GNSS stations, depending upon the fault geometry and the discretisation. Increasing

network sizes further would allow for lower model uncertainties on estimated slip

values, and a greater number of slip patches in the discretisation. If the number of
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stations is fixed, then the number of slip patches in the discretisation can be varied

until the model uncertainties are reasonable for the expected magnitude of aseismic

slip. This flexability means that single-frequency stations may be used to study any

magnitude of aseismic slip thta produces surface deformation above the observation

uncertaintiy, although potentially with a very coarse discretisation. If the number

of observations is kept above the number of slip patches, so that the inverse problem

is not ill-posed, then all slip values will be perfectly resolved by the observations.

5.1.2 Optimisation Repeatability

A key characteristic of the metaheuristic optimisation algorithms used to perform

the fault discretisation and the network design, is that it cannot be guaranteed that

the final solution is the true global optimum. It is also not possible to definitively

prove that a solution is the global optimum, only that it is more optimal than all

other observed local minima. The final solution may also vary for over multiple runs

of the optimisation, due to the randomised components inherent to both algorithms

(e.g. starting model parameter values). It is therefore desirable that, while the model

parameters that define the final solution may change, the quality of the solution is

repeatable.

The MOGA used to discretise the fault plane estimates a range of solutions that

define the pareto front. Given that the pareto front defines a continuous spectrum

between the two fitness functions, the generated discretisations are able to vary

along this curve while remaining optimal. Figure 5.1 shows the solutions from five

runs of the MOGA. Solutions are repeated for much of the pareto front, with the

greatest variation where discretisations have the highest number of slip patches.

Where solutions are not perfectly repeated, variation is commonly along the pareto

front, representing equally optimal solutions with a different weighting of the fitness

functions. Some solutions are fully dominated by solutions found in different runs.

In the context of the network design, it is desired that the distance metric value,
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Figure 5.1: Results from five runs of the MOGA for a two row
discretisation of a normal fault with bottom depth of 3
km (e.g. Figure 4.14). Solutions are grouped by colour,
with marker size varying so that overlapping solutions
are visible.



80 Chapter 5. Discussion

and therefore the model uncertainties, is repeatable even if the exact network layout

is not. Repeated structures within optimal networks are also desired, both as proof

that the network design is working, and for the deployment of stations, which will

be discussed further in this section.

In Chapter 4, it was noted that similar structures appeared in many of the

example networks. These primarily consisted of triangular layouts of stations posi-

tioned directly over the fault plane, and far-field stations, which were observed for

both types of GNSS station. This strongly implies some logic to the network design,

and that the optimisation is working as intended.

Figure 5.2 shows six single-frequency GNSS networks designed around an east-

west striking normal fault. The highest ranked network is also shown in Figure

4.15. Both the distance metric and the maximum estimated model uncertainty are

provided, with a reasonable degree of positive correlation present between both

values as expected.

The smallest variation in location is observed for stations placed directly over

the fault plane. These as again arranged in triangular shapes in all six networks,

although the exact positions do vary. All six networks also contain stations in the

far-field of the region, which show the greatest variation in locations, and the three

highest-ranked networks contain at least one station placed within 20 km of the

fault trace but not directly over the fault plane itself. The presence of stations

directly above the fault, arranged in similar layouts, in all six networks indicates

the importance of these stations to reducing the distance metric. The variability in

far-field locations shows that these stations have a smaller impact on the distance

metric, and that their effect is less dependent upon the exact location. However,

these far-field stations are still present in all six networks, reflecting their importance

for constraining slip on the deeper slip patches.

The ability to vary exact station locations while maintaining network quality

is beneficial for the deployment of real-world GNSS networks. The optimisation

estimates optimal station locations assuming that all positions around the fault are
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Figure 5.2: Optimal single-frequency networks designed around

a east-west striking normal fault. The maximum
model uncertainty σmax and distance metric values are
provided. Networks are ordered from worst to best by
distance metric, where one is the best and six the worst.
Note that markers for two stations overlap in networks
3 and 4.
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equally valid. This is not true in a real world setting where the ability to deploy

GNSS stations may be limited, for example by private property, lack of suitable

instrument foot (e.g. steep terrain, bodies of water), or poor access. Therefore,

it may be necessary to manually modify optimal GNSS networks, or to purposely

deploy sub-optimal networks, so that the maximum number of stations may be

deployed.

5.1.3 Network Redundancy

As described in Section 2.2.2, the redundancy values of a network can be calculated

using Equation 2.2.2. Each value expresses the level of detectable gross error in the

associated observation, ranging from all gross errors being fully detectable (zi = 1)

through to no gross errors being detectable (zi = 0).

Returning to Figure 4.16, the redundancy values for both designed networks are

calculated using Equation 2.2.2, which are shown in Figure 5.3. These are the mean

values for the redundancy of the north, east, and up components for each station.

In the case of single-frequency stations, the mean redundancy values are for each

pair of stations.

For the dual-frequency GNSS network, average redundancy decrease with prox-

imity to the fault trace, and with increasing separation distance between stations.

Stations in closer proximity will measure similar parts of the displacement field, and

so errors in one observation may then be identified by comparison to another. As

separation distance increases the difference between the observed displacement also

increases, and so changes in the observation due to gross error become harder to

distinguish. The decreasing redundancy trend towards the fault trace, although the

most northern station is an anomaly to this trend, is likely the result of increasing

slip patch density towards the top of the fault plane. Higher slip patches density

results in more tightly overlapping displacement fields and increasing the difficulty of

isolating an error. This exasperates the problem of increasing station separation de-
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Figure 5.3: A comparison of the redundancy values for the dual-
(left) and single-frequency (right) optimal networks
shown in Figure 4.16. Values are for each station
(circles) for dual-frequency, and each pair of stations
(lines) for single-frequency.

scribed above. All values are greater than 0.3, representing reasonable controllability

of the network observations (Staudinger 2000; Mahapatra et al. 2015).

The trend of increasing redundancy away from the fault trace is reversed in the

single-frequency network. Redundancy values also increase towards the southern end

of the fault as a result of higher station density. Values are overall lower than those

observed in the dual-frequency network, although all but one pair remain above 0.3.

This may be the result of having one less set of observations (north, east, up), and

the layout of the network itself. The northern most pair of stations, where z = 0.17,

are a weakness in the network that would need to be addressed if the network were

to be deployed, so that significantly amount of undetectable error are not propagated

to the model parameters. This would most easily be done by adding an additional

station in the same region.
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5.2 Methodological Limitations

The presented methodology is is reliant upon a number of simplifications and as-

sumptions, that limit the real-world applications. These are explored, and potential

solutions suggested.

5.2.1 Single Rectangular Fault

Three assumptions are currently made about the model fault: that the geometry is

perfectly constrained, that only a single fault is present, and that the relationship

between fault slip and surface displacement may be accurately represented by a

rectangular elastic half-space (Okada 1985).

The focus of this work has been the design of GNSS networks for the recovery of

distributed aseismic slip on a fault, in particular postseismic slip. When deploying a

GNSS network to capture postseismic slip following an earthquake, it is a reasonable

assumption that other geodetic data sets (e.g. InSAR, seismic) have already been

analysed. Therefore, the geometry of the fault may already be constrained to a

reasonable degree of accuracy.

As part of the fixed fault geometry, it is assumed that the rake angle is uniform

across all slip patches. In reality, the rake may be poorly constrained and vary

across the fault plane, which would alter the surface displacement and therefore

the model uncertainties. The rake for each slip patch could be included as a model

parameter, which would result in an uncertainty on the rake angle for each slip patch.

Care must be taken that that the problem does not become ill-posed (more model

parameters than observations), by either decreasing the number of slip patches in

the discretisation, or by increasing the number of stations in the designed network.

All example presented so far have focused on a single fault plane, where all

surface displacement is the result of slip on this one fault. Aseismic slip may occur

over multiple adjacent faults, especially in the case of postseismic afterslip where
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multiple faults have ruptured (e.g. Walters, Gregory et al. (2018)). Overlapping

surface displacement fields from multiple slipping faults would be expected to impact

the optimal layout of GNSS networks, requiring an increase in the number of stations

needed to produce comparable model uncertainties across multiple faults. Attempt-

ing to represent a system of slipping faults as a single fault plane would result in

sub-optimal networks and model uncertainties that may deviate significantly from

their true values. Expansion of the methodology to explore multi-fault setups is

considered in Section 5.3.2.

The fault model used to produce G consists of a number of rectangular elastic

half-spaces with uniform stress properties and no tensile component (Okada 1985).

This model under-represents the complexity of the Earth and fault slip, resulting

in surface deformation that does not exactly reflect reality. This will impact the

network design, which is reliant upon the fault model and surface displacement.

However, Sathiakumar et al. (2017) demonstrates a method for the optimal design of

dual-frequency GNSS stations, using model resolution as a design criteria. While an

elastic half-space is used as the primary fault model, a more complex layered earth

model is also explored, using velocity and density values taken from the Preliminary

Reference Earth Model (Dziewonski et al. 1981). The impact of the more complex

fault model on the network design is minimal, with similar results achieved with

networks of equal size. The network design is therefore only weakly sensitive to the

fault model.

5.2.2 Removal of Long-Wavelength Ionospheric Trends

In Section 3.3, it was shown that a planar trend must be removed from the single-

frequency observations before they can utilised. This is to mitigate long-wavelength

ionospheric trends that result in high correlations between single-frequency GNSS

station pairs aligned with similar orientations. High data correlation will propagate

through to high model correlation as a result of the linear inverse.
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North East Up
X 0.0977 0.0942 0.3824
Y 0.0902 0.0868 0.3524

Table 5.1: Gradient variances for each component of the linear plane
resolved by the network in Figure 5.4. Units are m2km−1.

The single-frequency network design is performed assuming that the observations

have been corrected for the ionospheric delay a priori. This is a reasonable assump-

tion when studying aseismic slip on major continental faults, as regional GNSS data

will be available. However, if the observations cannot be corrected a priori, then the

removal of the planar trend can instead be included in the linear inversion. Including

the planar trend adds an additional six model parameters, those being the x and y

gradients of the planar trend for each components (north, east, and up).

The single-frequency network optimisation shown in Figure 4.15 is repeated,

with the planar trend parameters included in both Qm,ref and Qm,des. The model

uncertainty on each gradient is minimised as part of the network design. The updated

optimal network is shown in Figure 5.4.

The updated optimal network contains five stations placed at the extremes

of the region, as the network design attempts to constrain the gradients. Model

uncertainties have increased across all slip patches, with the biggest changes observed

on the deepest patches, due to the relocation of the far-field stations. The variance

values for the planar trend are given in Table 5.1, which are also poorly constrained.

The increase in the model uncertainties as a result of the inclusion of the planar

trend in the model parameters highlights the importance of correcting the single-

frequency GNSS data a priori.

5.3 Future Work

A number of expansions to the current methodology, to increase its practicality and

accuracy in design optimal GNSS networks, are presented below.
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Figure 5.4: A repeat of the network optimisation shown in Figure

4.15 for ten single-frequency GNSS stations around a
east-west striking normal fault. The model uncertain-
ties derived from Qm,ref (Top) and Qm,des (bottom) are
displayed on the discretisation.
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5.3.1 Mixed GNSS Networks

The current methodology assumes that all stations within the designed network are

of uniform type (i.e. all single- or all dual-frequency stations). This was done so as

to simplify the design problem so that a method could be devised within the time

constraints of the project.

When studying aseismic slip on a major continental fault, in particular postseis-

mic deformation, it is reasonable to assume that other conventional GNSS stations

will be present. The designed network may then be generated to support these

existing GNSS stations, which is a third-order design problem. Mixed-frequency

networks may also be generated with no existing GNSS stations present. In both

cases, the structure of Qd,des will change to includes both levels of data uncertainty,

which will propagate to Qm,des.

Mixed-frequency networks are of special interest for single-frequency GNSS sta-

tions. Mitigating the increased data uncertainties associated with single-frequency

stations is a key problem in their use for studying aseismic slip. Dual-frequency

GNSS stations could be used to support single-frequency stations, providing ref-

erence measurements of surface displacement that possess low data uncertainties,

and ionospheric delay corrections. Mixed-frequency networks would combine the

advantages of both station types, with dual-frequency GNSS stations providing more

accurate reference measurements of surface displacement, and single-frequency sta-

tions allowing for more observations relative to a dual-frequency only network due

to their lower instrument cost. An example is provided by Chen, Kuo et al. (2015),

who uses of a mixed network of 17 single- and 10 dual-frequency stations to monitor

active faults in Taiwan.

5.3.2 Multi-Fault Systems

The current assumption that aseismic slip occurs only on a single fault plane limits

the application of the network design to many real-world fault zones that may consist
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of multiple slipping faults (e.g. Walters, Gregory et al. (2018)). Expansion of the

methodology to include multiple fault planes would be relatively minor, requiring

the modification of G to include the geometry of each fault plane, so that the

surface deformation can be modelled for all faults. The more complex surface

dispalcement field would complicate the network design, however, this may result

in more interesting and less intuitive network layouts that may better constrain the

aseismic slip.





Chapter 6

Conclusion

Low-cost GNSS stations, in particular single-frequency instruments, offer the po-

tential for increased ability to resolve distributed aseismic slip on continental fautls

zones, through the deployment of larger and denser GNSS networks. To fully utilise

the increased number of stations, and to mitigate teh reduced positional accuracy

of single-frequency GNSS stations, a method for the estimation of optimal GNSS

network layouts is required.

In this thesis, a method for the automated design of optimal GNSS networks has

been presented. Networks are generated using a PSO algorithm and a criterion matrix

method, where model uncertainties are minimised relative to their “best possible”

values. PSO enables the efficient optimisation of complex non-linear problems, and

allows stations to be placed in a continuous region, rather than at discrete points.

To generate the “best possible” model uncertainties, a method for automated

fault discretisation is also presented. The use of a MOGA allows a range of optimal

solutions to be generated, based upon the trade-off between the number of slip

patches and the model uncertainty. The use of optimisation to minimise model

uncertainty means that no regularisation is required, which would otherwise bias the

results.

For the design of single-frequency GNSS stations, the structure of the ionospheric

delay is modeled using variograms, and long-wavelength trends removed. This
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mitigates the high observations correlations associated with single-frequency GNSS

stations and reduces the data uncertainty, allowing the layouts of optimal single-

frequency GNSS networks to be estimated.

In Chapter 4, it is shown that optimal low-cost GNSS networks can be estimated

that provide low model uncertainties across varying fault geometries and discretisa-

tions. The flexability of the fault discretisation means that all magnitudes of aseismic

slip can be resolved, given that the magnitude is above the minimum detection level

of the observations. Estimated networks show repeated structures and resilience to

varying fault geometry. Single-frequency GNSS networks may be generated that

provide similar results to dual-frequency GNSS stations, with a reasonable increase

in the number of stations deployed.

Further expansions of the methodology should include the estimation of mixed

GNSS networks that benefit from the advantages of both station types, and the

inclusion of multiple slipping fault plane so that real fault zone may be better

represented.
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