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Abstract

A class of novel models for sediment transport, for which multilayer fluid models are combined

with a multi-sediment method, is developed and analysed. Turbulent effects in both water flow

and sediment transport are also accounted for in the presented models. The aim of this thesis

is to advance fast and accurate techniques that overcome some of the assumptions limiting

current sediment transport models of this type. To the best knowledge of the author, this is

the first time a two-dimensional multilayer model has been used for modelling and simulation of

sediment transport. Sediment transport methods using the Shallow Water Equations (SWEs)

are reviewed and some of the limiting assumptions are highlighted. Fast methods for modelling

sediment transport with multiple sediments are developed in both one space dimension (1D)

and two space dimensions (2D). A new formulation for multilayer SWEs is expanded in 1D

and 2D to also include sediment transport. Turbulence modelling with the well-established k-ε

model is also evolved to deal with a multilayer formulation. Each development is tested by

itself to quantify its effects and then combined with all the other developments to create the

final model. Two second-order accurate solvers are in this thesis: namely a Roe-type solver

and a novel Eulerian-Lagrangian formulation. The latter is favoured and is used to solve the

complete model, including turbulence and multiple sediment types. This creates a fast and

easy-to-implement method that can handle complex flows and irregular bed topographies. The

methods are compared to other shallow water systems along with Navier-Stokes results and data

obtained from experiments performed in the Department of Engineering at Durham University.

Overall, this thesis provides interesting and highly applicable results that add a new avenue of

applications to sediment transport in shallow water flows.

Keywords: Sediment transport, Multilayer shallow water equations, Multi-sediments,

Turbulence modelling, Eulerian-Lagrangian method, Dam-break problems.
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Nomenclature

Latin

b% Bed height (of the %th sediment) L m

B Bed height L m

c Depth-averaged concentration - -

cB Near bed depth averaged concentration - -

CB Coefficient of bed friction - -

CD Coefficient of drag - -

Cwi Coefficient of wind induced shear stress - -

d Sediment diameter L m

d50 Sediment diameter of 50th fraction L m

d∗ Dimensionless sediment diameter L m

D Deposition rate LT−1 m/s

E Erosion rate LT−1 m/s

fc Coriolis parameter - -

ff Darcy-Weisbach friction factor - -

Fr Froude number - -

g Gravitational acceleration LT−2 m/s2

hα Water height of the αth layer L m

H Water height L m

k Turbulent kinetic energy L2T−2 m2/s2

p Pressure ML−1T−2 kg/ms2

PR Rouse number - -

qT Solid transport rate MT−1 kg/s

qs Suspended sediment load MT−1 kg/s

qb Bedload MT−1 kg/s

Q Volumetric flow rate L3T−1 m3/s

vi



vii

nm Manning’s roughness coefficient TL−1/3 s/m1/3

Re Reynolds number - -

Rep Particle Reynolds number - -

sg Submerged specific gravity - -

t Time T s

u, v, w Rectangular velocity components LT−1 m/s

u∗,cr Critical velocity for the initiation of motion LT−1 m/s

Up Characteristic particle speed LT−1 m/s

Uwi Wind speed LT−1 m/s

U∗ Friction/Shear speed (1D) LT−1 m/s

Greek

ϑ Perturbation in water height M m

γ Sediment diffusion coefficient - -

ε Turbulent energy dissipation rate L2T−3 m2/s3

εc Vertical sediment diffusion coefficient L2T−1 m2/s

κvK von Karman constant - -

µ Viscosity ML−1T−1 kg/m · s

µt Turbulent viscosity ML−1T−1 kg/m · s

ϕ Erosion coefficient - -

Ψ Porosity - -

ρ Density ML−3 kg/m3

ρs Density of sediment ML−3 kg/m3

ρw Density of water ML−3 kg/m3

ρ0 Density of bed (saturated) ML−3 kg/m3

τ Shear stress ML−1T−2 kg/m · s2

τij Shear stress on the ij plane ML−1T−2 kg/m · s2

τcr Critical shear stress ML−1T−2 kg/m · s2

τ∗ Dimensionless shear stress - -

ν Kinematic viscosity L2T−1 m2/s

νH Effective horizontal kinematic viscosity L2T−1 m2/s

νmol Molecular kinematic viscosity L2T−1 m2/s

νt Turbulent kinematic viscosity L2T−1 m2/s

νv Effective vertical kinematic viscosity L2T−1 m2/s



viii

ω Settling velocity LT−1 m/s

ωs Hindered settling velocity LT−1 m/s

ωs,i Impact law settling velocity LT−1 m/s

Ωs Angular velocity of the earth - -

Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

CFL Courant-Friedrichs-Lewy

DNS Direct Numerical Simulation

ELFV Eulerian-Lagrangian Finite Volume

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

HLL Harten-Lax-van Leer

HLLC Harten-Lax-van Leer-Contact

LES Large Eddy Simulation

MoC Method of Characteristics

PDE Partial Differential Equation

RaNS Reynolds-averaged Navier-Stokes

SWE Shallow Water Equation

TVD Total Variation Diminishing
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Chapter 1

CH1 Introduction

1.1 Project background

The boundaries of water and land have determined the location of settlements for millennia.

Coastal and river systems were vital to ancient civilisations, generating wealth and prosperity,

and industry, agriculture, and transportation have historically been dependant on these systems

[195]. However, they are not a static resource: the borders are constantly changing as a result

of sedimentation and erosion. The limited supply of viable locations for development has forced

modern civilisation to encroach more and more upon natural waterways. The past century has

seen rapid increases in the habitation of flood prone-areas and the creation of artificial waterways

and dams [71]. This has allowed for much greater expansion but it has come with huge risks [95].

Globally, flooding has become the most common and destructive natural hazard in high-

risk areas with under-engineered infrastructure, and climate change has significantly raised the

probability of these hazards becoming catastrophes [130]. From 1975 to the turn of the century

more than 170, 000 people lost their lives due to floods [91]. Between 1980 and 2012 the global

economy has averaged a loss of over $23 billion per annum as a result of flood damage [98].

Climate change and further socio-economic development may see the number of extreme floods

double by 2050 [97]. Strategic development and improvement of coastal and river systems has

been proven to minimise the risks whilst allowing use of their boundaries to be maximised, for

example [99]. Techniques such as sea walls, diversion spillways, and bank reinforcement are

just a few of the methods employed to mitigate danger [156]. These methods are dependent

on understanding the impact of the interaction of water with soil. Historically, trial and error

has been used to produce rudimentary formulae for insight into waterworks [72]. The advent of

modern scientific techniques, combined with the more recent advances in computing has led to

mathematical modelling replacing trial and error.

Mathematical models are simplifications of real world situations that enable future events to

1
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be predicted. Water is a fluid medium, making it computationally expensive to model accurately

over long time periods as multiple iterations are required. High computing power requirements

combined with limited data availability make such analyses a trade-off between accuracy and

expense. Coarse analysis, whilst useful in certain situations, often neglects sedimentary effects

(such as erosion, deposition and transport) which can fundamentally change the course of the

water and the landscape around it. These hydrogeomorphic changes can occur over long time

frames, making them extremely computationally expensive and difficult to model [7]. They are,

however, increasingly important to understand given the ever-ambitious projects of the modern

age. The Three Gorges Dam is one of the most notable examples of coarse analysis failing [216].

The dam, completed in 2008, altered the sedimentation pattern of the Yangtze river which

carries 520 million tons of silt annually. With much of the silt trapped behind the dam, the

cleaner water flowed faster scouring the river bed downstream and lowering it by more than

2 m between Hubei and Hunan, whilst washing away around 150 million cubic metres of sand.

This caused riverbank collapses downstream, increasing the flooding hazards and forcing further

investments in bank reinforcements and flood defences.

One of the most commonly used models in hydrodynamics is a set of partial differential

equations, called the Navier-Stokes equations, which detail the movement of water in three

dimensions (3D). This study will look at the Shallow Water Equations (SWEs) - derivatives

of the Navier-Stokes equations - in their one (1D) and two-dimensional (2D) forms. The 2D

form will be developed to capture 3D effects using a multilayer approximation. The effects of

turbulence are also modelled in this work for the first time in a multilayer formulation. The

1D SWEs are used to test and verify novel methods (multilayer sediment transport, multilayer

diffusion and multi-sediment handling). These advances in sediment modelling are then used in

conjunction with advances in shallow water modelling to create a more complete approach to

complex sediment flow interaction.

There are many different sediment transport models. Varying types of sediments are treated

with different formulae depending on their characteristics. Challenges exist in successfully inte-

grating these relations with the SWEs, as they introduce further instabilities and complications

to the system. The current generation of sediment transport models are specialised for specific

types of scenarios and lack universal applicability, as they do not overcome limiting assumptions.

One of the objectives of the current work is to create a fast and modular method for sediment

transport modelling that can be easily optimised for specific problems.
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1.2 Sediment transport modelling

Water moving over an erodible bed in either steady or unsteady conditions can scour particles

off the bed and transport them some distance [87]. These particles can either travel as bedload,

where sediment tumbles across the bottom of the bed, or as suspended sediment which is im-

mersed in the flow of water itself. Approximately 20 − 22 trillion tonnes of sediments a year

are discharged into the oceans (75% from Asian mainland rivers) [170], thus understanding this

process has been a subject of great importance as it effects everything from harbour sedimenta-

tion to irrigation system design, causing congestion and channel narrowing due to deposition of

sediment. Many methods and models for sediment transport exist in the literature and accord-

ing to [84] these can be split into four categories: empirical, conceptual, physically-based, and

hybrid models.

Empirical models use existing data either in further analysis or in equilibrium based mod-

elling, see for example [34,163,204]. In equilibrium based models, a balancing equation is formed

that takes into account all relevant variables. When the user changes a variable, the sedimenta-

tion rates (and therein the bathymetry) are altered to compensate. Data analysis uses historical

trends or sediment-based predictions to enable the forecast of sedimentary rates. Empirical

models predicate other classes of models and are typically used to make morphological predic-

tions over long time periods, with an annual temporal scale. Their relative simplicity makes

them efficient and widely employed, though they require data on the area to be collected and

are often coarse in their results with poor capture of small scale effects.

Conceptual models are the step between empirical and physically-based models, combining

a statistical approach with a sediment continuity equation, see for example [96, 101, 118, 211].

They are mainly used to predict sediment yield through the calibration of variables against

measured data. This class of model tends to consider general trends in catchment areas and wa-

tersheds without examining specific flow interactions. This factor, combined with the problems

of identifiability of their parameter values, limits their abilities especially when considering more

complex structure interactions and effects. This type of model can be easily scaled in complexity

to best capture the problem at hand and typically has a daily time-scale.

Physically-based models, in which hydrodynamic modelling (such as SWEs) are coupled

with sediment transport equations, can be used to simulate a wide range of situations includ-

ing waves, shocks and steady flows [55, 58, 139, 205]. This work concentrates on examining this

category of models, specifically focussing on how best to integrate sediment transport and mor-

phological bathymetry equations into the SWEs. Physically-based models are most suited to

small scale, short-term simulations. These models are ideal for capturing relatively small effects



4 Introduction

like structure interaction (such as bridge and pier foundations). Historically, in comparison to

empirical models, they are extremely computationally expensive for long-term simulations. Thus

one of the key features in their development is the creation of more efficient methods, which this

body of work will concentrate on.

Hybrid is the final category of model, in which elements of the previous classes are combined

to make the most practical approach for modelling some long-term problems [93,123,124]. This

method normally uses a variety of 1D and 2D hydrodynamic models, together with a statistical

or rules-based approach. This class of model can vary widely depending on formulation, but

suffers all of the issues of the classes of models that it utilises. The time-scale for this type

of model can vary depending on formulation. It has the advantage though of being the most

flexible, and can incorporate different features as pertinent to the situation under review.

It should be mentioned that of the four categories, physically-based sediment transport

models are comparatively underdeveloped due to their reliance on computationally expensive

modelling, progress on which has only really begun in the last few decades. The trade off between

accuracy and computational power has meant that overly simplistic models are often employed,

and these fail to predict real-world events accurately. Sediment is generally defined by density,

shape, size (including distribution and/or diameter), and cohesiveness. Though much work has

been done to gain experimental data, there are still large numbers of untested conditions and

sediments. Due to the size of the required experiments and the limitations of measurement

equipment, testing under ideal conditions is expensive and complex, though in recent decades a

good number of benchmark tests have developed and become standard in the field.

1.3 Project objectives

The primary objective of this project is to develop techniques to remove limiting assumptions

from SWE sediment transport models without substantially increasing computational cost. In

order to realise this goal, it is necessary to develop a number of 1D and 2D methods for sediment

transport. The individual effects of each modification are developed separately, so that their

impact on the model can be quantified. This will be achieved by a critical assessment of cur-

rent sediment transport models and three developments: multi-sediment handling, a multilayer

shallow water formulation and turbulence modelling. The multi-sediment handling tackled in

this work enables multiple sediment types to be considered in both homogeneous and hetero-

geneously formed beds. This removes the homogeneous assumption that limits other models in

this field. A multilayer shallow water formulation is also developed in this work, enabling the

capture of 3D effects by treating fluid bodies as a series of vertically stacked fluid layers that
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interact with each other. This formulation enables a more accurate capture of 3D effects which

is crucial to accurate modelling of sediment transport. Finally, the introduction of turbulence

modelling enables complex flow features to be better captured and complex situations further

understood. This work is, to the knowledge of the author, the first time that turbulence has

been combined with a multilayer formulation. The specific goals of this study are:

• To give a critical assessment of current physically-based sediment transport models and

their limitations.

• To create and validate a multi-sediment bed model that is capable of tracking and mixing

sediments in both one and two space dimensions.

• To develop a multilayered (in flow) method for sediment transport in order to deliver

vertically stratified velocity advantages.

• To create a 2D multilayer method for flow which includes exchange between the layers.

• To devise and test a SWE formulation for a multilayered flow in 2D which incorporates

turbulence modelling.

• To combine all the previously detailed advances into a single sediment transport model.

Each of the specific goals are developed separately to ensure that their effects on the models

are fully understood. The goal is to create a modular system whereby features can be included

as required. As is seen in the previous section, the creation of tools for multi-sediment handling

or turbulence may not always be required and can add un-necessary complexity. Consequently,

sediment transport models are adjusted for different situations to ensure the best return on

computational expenditure.

1.4 Thesis structure

This thesis is structured as follows:

• Chapter 1 introduces the subject matter and sets out the objectives of the thesis. It

details the motivation for the work conducted and the historical and current significance

of the problems encountered. A brief overview of the classes of techniques available is

given. The objectives of this study area are also listed with a brief explanation of the

advances made. Finally, the structure of this thesis is detailed with the advances and

contributions highlighted.
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• Chapter 2 reviews current literature, evaluating different models within the physically-

based class as well as overviewing the mathematics and methods used to solve the problems

arising. First, the SWEs are detailed with major features and additions listed. A brief

derivation is also given in order to expound the basis for some of the limiting assumptions.

Sediment transport in physically-bases models is then reviewed from basic principals to

current studies. The assumptions made and the reliance on empirically gained entrainment

functions are expounded, with the principal models reviewed. The third section reviews the

numerical methods used to solve this class of problem. The Finite Volume Method (FVM),

which is used in this work, is covered. Next, the various approximation methods used to

solve this class of problems are highlighted, with relative advantages and disadvantages

discussed. Finally, a range of existing sediment transport models (mostly in the physically-

based class) are reviewed, with interesting developments and features discussed. This

chapter provides all the background material and details the research conducted to enable

the developments of this study.

• Chapter 3 develops the multi-sediment model, determining its potential and verifying it

against benchmark tests. As there is no homogeneous bed in the natural world, it is im-

portant to be able to capture and collate the effects of the various sediment types. A novel

technique is developed from base principles (similar to the Saint-Venant-Hirano model)

incorporating a fully discretised bed capable of modelling both vertically and horizontally

stratified bed layers for the first time. Computation is kept minimal by considering the

sediment in suspension as an averaged value for the hydrodynamic parts of the model and

as separate fractions for the entrainment functions. This novel formulation is found to

be conservative and is tested against two benchmark simulations, presenting accurate and

interesting results as new features like sediment tracking are possible.

• Chapter 4 investigates a novel multi-layered 1D model for sediment transport, testing

it against its single-layer counterpart and showcasing its adaptability. This multilayered

model is able to capture vertically stratified flow speeds which helps in the computation

of erosion and suspended load, as the slower moving highly concentrated bedload can now

be modelled as part of the flow. Combined with a fast finite volume of characteristics

solver, this method does not incur the usual increase in computational expense associated

with adding a dimension. The method is found to be fast and accurate and reduces the

over-scouring problem usually found in simulations of this nature. It also allows for new

problems (such as recirculation) to be simulated that previously were not within the ability

of shallow water sediment transport modelling.
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• Chapter 5 presents a 2D multi-sediment model, using multiple methods for sediment

handling. The model is trialled against complex high-shear situations, including experi-

mental data. Building on the work presented in Chapter 3, this chapter details the projec-

tion method used to solve the 2D model, as part of the conservative Eulerian-Lagrangian

method. This work is the first time that a 2D model has been formulated capable of

handling the multi-layered bed simulations. The effects of various bed assumptions are

detailed and the performance of the model is evaluated against experimental data from the

Université de Louvain. Overall this method is found to be consistent, though experimental

data to assess the multi-sediment abilities of this formulation does not yet exist.

• Chapter 6 introduces the 2D multilayered model without sediment transport, evolving

the method into 3D. This is tested against specially developed scenarios. The model

presented is a significant advancement, in that it is the first to solve a multi-layer shallow

water system with exchange terms. This is achieved by using a projection FVM for the

Eulerian stage and a method of characteristics to approximate the numerical fluxes for

the Lagrangian stage. The multilayer shallow water formulation is capable of delivering

vertically stratified velocities, creating 3D results with a level of computational expense

usually associated with two dimensions. This method is tested against Navier Stokes

formulations and found to provide excellent results.

• Chapter 7 extends the 2D multilayered model for flow to include turbulence modelling

without sediment transport. The model is tested against experimental data as well as 3D

Navier-Stokes simulations. Through the adaptation of the popular k-ε model, the model

developed in Chapter 6 is enhanced to give better resolution to some of the most complex

situations, including the back-step and partial dam-break problems. This is the first time

to the knowledge of the author that turbulence has been incorporated in this way. The

presented model offers a deeper insight into flow structures and is significantly faster than

comparable 3D formulations.

• Chapter 8 combines the work of all the previous chapters, in order to build a 2D multilayer

model for sediment transport that includes heterogeneous sediments and turbulence mod-

elling. This model is tested against experimental data and 3D Navier-Stokes simulations.

It is found to be fast, well-balanced and stable. The model is also tested against some

new experimental data gathered as part of this study (at the Engineering Department in

Durham University) to assess the vertical distribution of sediment in 1D dam-break flows.

This is the first time data of this nature has been collected and it offers a new method

of assessment for models of this type. The presented model is found to have good agree-
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ment with the experimental data. The model is also used to compute the horizontally

packed composite bed partial dam-break problem - a problem that has, to the knowledge

of the author, never been simulated before. Overall this model successful combines all the

previous work to create an advanced sediment transport modelling tool.

• Chapter 9, concludes the thesis, evaluating the limitations and benefits of the models

that have been developed. A brief summary of each of the developments is given, outlining

the work completed and the various merits and costs of this class of models. It goes on

to outline further areas of interest and highlights possible new fields of interest, based

on the research conducted. Four areas of possible development for this work are briefly

mentioned: differential sediment transport rates for bedload and sediment types, wet-dry

fronts, steady state optimisation, and asymptotic analysis.

Each chapter is designed to be as self-contained as possible. Although a general background to

the work presented in each chapter is given in Chapter 2, each subsequent chapter also contains

a more specific background and explanation of the motivation behind the work conducted in

it. This structure is adopted to ensure that the relevant information and review is as close as

possible to the work that builds on it. The chapters are further structured to detail the presented

models and any numerical techniques developed for the presented work, though for the sake of

brevity any repeated material is excluded.



Chapter 2

Literature review

This chapter is divided into five sections, each assessing an area upon which this thesis builds,

together with a summary. The first section examines the shallow water equations, and covers

some of the associated notations and useful modifications (such as the Exner equation, the k-ε

turbulence model, etc.) that are used in conjunction with the shallow water equations. The

second section delineates the work done to date on sediment transport, focusing on the variety

of methods used to solve this problem with a physically-based approach. The third section of

this chapter discusses numerical methods used to solve the shallow water equations. The fourth

section provides an overview of flux estimation approaches. Finally, in the fifth section, a few of

the existing sediment transport models are reviewed.

2.1 Shallow water equations

This section deals with the Shallow Water Equations (SWEs) and alternative fluid concepts,

with attention focussing on the characteristics and categorization of one-dimensional (1D) and

two-dimensional (2D) forms of the equations. This lays out the mathematical base for the

thesis. Ideally all simulations would use an un-approximated system, like the three-dimensional

(3D) Navier-Stokes equations. The most detailed solution is the Direct Numerical Simulation

(DNS) [132], which captures the smallest flow features using a very fine mesh, however it is

highly computationally expensive. Cheaper approaches can be used: Large Eddy Simulations

(LES) [59], where only large eddies and flow features are captured and Reynolds-averaged Navier-

Stokes (RaNS) simulations [141], where the equations are time averaged, i.e. instantaneous

quantities are split into averaged and fluctuating quantities. The RaNS and LES models save

considerable amounts of computational time compared to DNS models. The SWEs however, are

able to produce larger computational savings by further simplifying the governing equations. The

SWEs were first derived by Saint-Venant in 1871 [154]. They are the simplest form of equations

that can be used to model the flow of water and other incompressible or near incompressible

9
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fluids. The SWEs enable both gravitational and rotational accelerations to be modelled (Coriolis

effect, etc.). Derivations can be drawn from many different sources including the Navier-Stokes

equations.

2.1.1 Derivation of 2D shallow water equations

The Navier-Stokes equations are a system of five partial differential equations that can be used

to relate the density, velocity and temperature fields of a fluid to each other. At the turn of

the 19th century, M. Navier and G. Stokes originally derived these from the Euler equations

to incorporate viscosity effects. They form the basis for most Computational Fluid Dynamics

(CFD) models and are used in various forms. In this derivation of the SWEs, the following

assumptions are made:

• The fluid is incompressible such that the fluid density is constant in all directions.

• Viscosity and thermal conductivity are uniform across the fluid it is also considered a

Newtonian fluid.

• The fluid is isothermal, decoupling the velocity field from energy conservation.

These initial assumptions reduce the Navier-Stokes equations from a 5-equation system to the

following 4-equation system

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p
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∂τxx
∂x

+
∂τxy
∂y

+
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∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1.1d)

where (u, v, w) are velocities in the x, y, and z directions, p is pressure, ρ is the density of the

fluid, ρav is the average density of the fluid, g is acceleration due to gravity, and τij is the shear

stress on the ijth plane. There are four main steps to the derivation of the SWEs.

1. The hydrostatic balance reaction must be incorporated.

2. The boundary conditions at the top and bottom of the water column are specified.

3. The depth-averaged integration is determined.

4. The specified boundary conditions must be applied to the integrated equations.
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Figure 2.1: Typical water column over a non-flat bathymetry.

Let us consider the water column shown in Figure 2.1. It is bounded by the surface z = B and

the free-surface z = B +H. Here, ϑ(t, x, y) is the perturbation in the water surface, and Hs is

a water datum height, with H(t, x, y) being the total depth H = Hs − ϑ−B. Two methods of

notation for water height exist, both shown in Figure 2.1. Either the more standard notation

H, or the less common ϑ, is used in the derivation. Thus (2.1.1c) reduces to

0 = − 1

ρav

∂p

∂z
− g.

As the fluid is incompressible it is assumed that the density is constant ρ = ρav and hence

ρg =
∂p

∂z
,

this may be integrated along the vertical to show

p = ρgz + cte.

where cte is an (integration) constant. This is the hydrostatic pressure distribution. The follow-

ing boundary conditions are developed based on the parameters of the free-surface and of the

topography. As in [175] at the interface of the bed with the bottom of the water column, the

following conditions are considered:

• No-slip in either direction

u = v = 0.
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• There is no normal flow

u
∂B

∂x
+ v

∂B

∂y
+ w = 0.

• The bottom shear stress is expressed as

τB,x = τxx
∂B

∂x
+ τxy

∂B

∂y
+ τxy.

At the free-surface (where z = B +H) the following boundary conditions apply:

• No relative normal flow
∂ϑ

∂t
+ u

∂ϑ

∂x
+ v

∂ϑ

∂y
+ w = 0.

• Pressure is assumed to be atmospheric only i.e.

p = 0.

• Surface shear stress is defined by

τfs,x = −τxx
∂ϑ

∂x
− τxy

∂ϑ

∂y
+ τxy.

The next step is to integrate the continuity equation (2.1.1d) from the bed to the free-surface.

Using Leibniz’s integral rule the following is attained
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z=H+B

− w
∣∣∣
z=B

,

=
∂

∂x

∫ z=H+B

z=B
u dz +

∂

∂y

∫ z=H+B

z=B
v dz −

(
u
∣∣∣
z=H+B

∂ϑ

∂x
+ u
∣∣∣
z=B

∂B

∂x

)

−
(
v
∣∣∣
z=H+B

∂ϑ

∂x
+ v
∣∣∣
z=B

∂B

∂x

)
+ w

∣∣∣
z=H+B

− w
∣∣∣
z=B

. (2.1.2)

We also define the depth-averaged velocities as

ū =
1

H

∫ z=H+B

z=B
u dz, v̄ =

1

H

∫ z=H+B

z=B
v dz.
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Applying the boundary conditions and substituting in the depth-averaged velocities into (2.1.2),

the following is gained
∂H

∂t
+
∂(Hū)

∂x
+
∂(Hv̄)

∂y
= s1.

Integration of the x and y momentum equations (2.1.1a) and (2.1.1b) over depth yields

∫ z=H+B

z=B

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
dz =

∫ z=H+B

z=B

(
− 1

ρav

∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
dz,

∫ z=H+B

z=B

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
dz =

∫ z=H+B

z=B

(
− 1

ρav

∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
dz.

After applying the boundary conditions and substituting in the equations for depth-averaged

velocity, we obtain

∂(Hū)

∂t
+

∂

∂x

(
Hū2 +

1

2
gH2

)
+

∂

∂y

(
Hūv̄

)
= −gH ∂B

∂x
+

1

ρav

[
τsx − τbx +

∂

∂x

∫ z=H+B

z=B
τxx dz

+
∂

∂x

∫ z=H+B

z=B
τxy dz

]
,

∂(Hv̄)

∂t
+

∂

∂x

(
Hūv̄

)
+

∂

∂y

(
Hv̄2 +

1

2
gH2

)
= −gH ∂B

∂y
+

1

ρav

[
τsy − τby +

∂

∂x

∫ z=H+B

z=B
τxy dz

+
∂

∂y

∫ z=H+B

z=B
τyy dz

]
.

We further simplify the source terms by equating:

τττ b
ρ

= gHSf ,
τττ s
ρav

= τττwi,


1

ρav

[
∂

∂x

∫ z=H+B

z=B
τxx dz +

∂

∂y

∫ z=H+B

z=B
τxy dz

]
1

ρav

[
∂

∂x

∫ z=H+B

z=B
τxy dz +

∂

∂y

∫ z=H+B

z=B
τyy dz

]
 =

 BFx

BFy

 .

Where Sf is the horizontal bed friction and BFx, BFy are used to include body forces on a case

appropriate basis. For ease in further notation the bars over the u and v are neglected and from

this point on they are assumed to be the depth-averaged velocities. Here, s1, s2, and s3 are all

source terms and vary on a case-to-case basis. This brief derivation encompasses all of the basic

assumptions (negligible depth scale, averaged velocities, incompressibility, and an homogeneous

fluid at constant temperature). The SWEs may be rewritten in a vector form as

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= S, (2.1.3)



14 Literature review

where

W =



H

Hu

Hv


, F(W) =



Hu

Hu2 +
1

2
gH2

Huv


, G(W) =



Hv

Huv

Hv2 +
1

2
gH2


,

S =



s1

s2

s3


=



0

−gH ∂B

∂x
− gHSfx + τwi,x +BFx

−gH ∂B

∂y
− gHSfy + τwi,y +BFy


. (2.1.4)

Here the vector of conserved variables is W, F(W) and G(W) are the flux vectors in the x- and

y-directions and S is the source vector. The conserved variables are employed when formulating

a numerical scheme (as shown above) as they are inherently conservative with physical and

meaningful quantities being used throughout. In this formulation of the source terms, only the

effects of bottom topography in the x and y direction are shown.

Various initial conditions and boundary conditions must next be added to this formulation.

Initial conditions require the assignment of water height, bed height and velocities (as well as

concentration and turbulence variables in more complex formulations). Boundary conditions

are tackled through the use of ghost cells, as in [193]. There are four main types of boundary

conditions used in this work: (i) inlet conditions, where the volumetric rate of inlet flow is

defined through the manipulation of water height and velocities, (ii) outlet conditions, where

the gradient of conserved variables in the outflow direction is set to zero, (iii) physical boundary

conditions, where a wall is defined in a direction and there is no flow perpendicular to it, walls can

be slip or non-slip (with tangential velocities either allowed or set to zero), and (iv) symmetric

conditions, where all variables are mirrored by the ghost cells. A major disadvantage of these

configurations is the lack of stratified velocities. As a result, faster moving flow at the top of

the water column is assumed to be consistent with the slower flow at the bottom. In reality,

sediment species travel through different modes and at different speeds. This is one of the main

challenges when modelling sediment transport using the SWEs. This work tackles this problem,

through the use of multilayer formulations, developed in later chapters, which provide a more

accurate description of the flow.
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2.1.2 Derivation of the source terms

There are five other main effects on the momentum equations that should be considered when

using sediment transport with movable beds. This section examines the first four namely:

bed geometry, bed friction, wind, and the Coriolis effect. The effects of the concentration and

movable beds will be introduced later alongside their governing equations. Hence the momentum

parts of vector S can be rewritten
s2

s3

 = −gH∇B − gHSf + fcH ∧ u + τττwi,

where Sf is the horizontal bed friction, fc is the Coriolis parameter, ∧ is the exterior product,

the horizontal velocity components are denoted by u = (u, v)T , and τwi is the force due to wind.

Bed geometry: Simulations involving sediment transport rarely consider flat beds. This

undulating topography affects the momentum as shown in equation (2.1.5). It is important to

note that these undulations may change during the course of the simulation, as the beds are

often movable. Hence,

−gH∇B =


−gH ∂B

∂x

−gH ∂B

∂y

 . (2.1.5)

Bed friction: Bed friction generally uses the Manning’s roughness coefficient nm whose

values range from 0.075−0.009 m−1/3s (describing the typical variants from a heavy bush scrub

on a flood plain to a smooth plastic pipe). The equation for bed friction may be expressed

as [119]

Sf = CBu|u|,

where

CB = nm
2H−4/3,

where nm is the Manning coefficient. Other friction relations include the Chezy coefficient, the

Manning-Strickler formula [173], and the White-Colebrook (Thysse) equation [51].

Wind effects: Wind can apply a shear stress at its interface with water, creating currents.

Over large bodies of water this interaction can build into waves; however, at wind speeds less
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than 10 m/s, it can be assumed to be a constant force. The effect of wind is [94]

τττwi =

 τwi,x

τwi,y

 =

 CwiU
2
wi cos θ

CwiU
2
wi sin θ

 ,

where Uwi is the wind speed, θ is the angle between direction of flow of the wind and the x-axis,

and Cwind is the wind friction coefficient typically of order 0.001.

Coriolis effect: Coriolis effects are the forces exerted by the rotation of the earth on a free

body (in this case bodies of water on the surface of the earth). As the reference frame is moving,

a force is exerted, and on earth this force is calculated using latitude such that

fcH ∧ u =

 −fcHv
−fcHu

 ,

where fc = 2Ωs sin(φ), Ωs is the angular velocity of the Earth, and φ is the latitude. This term

is only included to demonstrate that the model and numerical method can handle body forces.

It is generally neglected in any flow considered in this field.

2.1.3 Models for turbulence effects

When considering any fluid motion it is important to make accurate assumptions about the flow.

It is often appropriate to assume that the turbulent features of the flow may be neglected. This

is the basis for the standard three-equation model of the SWEs. However, many shallow water

flows have prominent turbulent features that require modelling in order to simulate the flow

accurately. The quantity of chaotic variation of velocity and pressure within a fluid is caused by

excess kinetic energy in the fluid that overcomes its viscosity. It is difficult to model as it occurs

on many length scales and, with the exception of the DNS model, a quantity of turbulent flow

features are not captured by the simulation. This produces a closure problem, which is arrived

at by time-averaging the Navier-Stokes equations to produce the RaNS equations [141]. As the

fluctuating velocities (known as Reynolds stresses) are still present in the formulation, a method

of modelling the Reynolds stress is required. In 1877 Boussinesq proposed the first solution to

this problem by devising eddy viscosity which relates the Reynolds (turbulent) stresses to the

mean velocity. This concept has enabled over 200 RaNS models to be created and these can be

categorized by the number of equations that they add to the system:

• Zero-equation/algebraic models: (for example Baldwin-Lomax model [15]). This cat-
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egory of models is simple and ideal for start-up flow and basic situations. They are of

limited use however, as they only consider instantaneous turbulence production, rather

than the evolution of turbulence through diffusion and convection.

• One-equation models: (for example Spalart-Allmaras [168], k-model). These models

were widely used in the early development of turbulence modelling. The issue with these

models is that one-equation is not sufficient to compute the eddy viscosity.

• Two-equation models: (for example k-ε [108], k-ω). Still actively developed to this day,

the two-equation models allow the user to quantify both the turbulent kinetic energy k

and a second value that defines the scale (length or time) of the turbulence.

It should be noted that other more complex models (like the k-ε-A and the v2-f [109]) with

more than two equations do exist. In this study, the k-ε model is adopted as it has the most

research behind it and offers reasonable execution times.

Table 2.1: Coefficients used in the k-ε as in [205].

Cµ Cε1 Cε2 σk σε CεΓ

0.09 1.44 1.92 1.0 1.3 1.8

The k-ε model

The standard k-ε model, that was first proposed by [108] in 1974, overcomes some of the diffi-

culties of the exact k-ε equations. Developed to improve upon the mixing-length model, it adds

two transport variables to the system, namely k the turbulent kinetic energy and ε the rate of

dissipation of turbulent kinetic energy. This method requires the use of wall functions to recon-

cile the boundary conditions imposed on a system by solid walls. If we consider the Reynolds

stresses, which are neglected in the derivations of the standard SWEs outlined in Section 2.1.1,

we gain

−u′iu′j = µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
kδij , i, j = 1, 2, 3.

The quantification of these stresses, as they contain the fluctuating terms ūiūj , has provided

many solutions. Two-equation models have prevailed as they allow for the accounting of turbu-

lent kinetic energy k and its dissipation rate ε in both the current time step and historically. The

k-ε model was designed to improve on the mixing length for exactly this purpose. By defining

k =
1

2

∣∣uuu′∣∣ ε =
νmol

2
〈
∣∣∇uuu′ + (∇uuu′)T

∣∣2〉,
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where νmol is the molecular viscosity; the turbulent viscosity may be equated thus

µt =
ρCµk

2

ε
,

where, as with many parts of this model, Cµ is dependent on the case and formulation under

consideration.

2.1.4 The k-ε model for depth-averaged flow

Turbulence modelling was largely designed for 3D flows and turbulence modelling in shallow

water flow has developed slowly as often its effects are less pertinent than other assumptions

made when using Shallow Water models. There are generally two types of flow effect that are

important to consider in shallow water flow. Firstly the vertical effects of turbulence, caused by

shear at the top and bottom of the fluid column. Secondly the horizontal effects of flow mixing

and boundary effects.

The development of turbulence modelling in shallow water has required the adaptation of

the k-ε model, notably [62, 128, 198]. This normally involves flow mixing and boundary effects.

Unfortunately any vertical effects of turbulence for depth-averaged flow is hard to approximate

due to the lack of vertically stratified velocities.

The Vertical effects of flow are well accounted for in the k-ε model developed by [108]. The

vertical flow effects are usually neglected because in most shallow water flows there is only one

velocity considered within the depth of the column. Both the extended [48] and RNG [209]

based k-ε models only consider these vertical effects Though in recent times there have been

some noticeable developments including the WAQUA model developed recently in [75]. Which

uses a multiple stacked shallow water layers to provide vertically-stratified velocity data. This

is along the lines of the approach adopted in this thesis, though the work here will include

transport of quantities between the layers.

The k-ε model has been implemented for sediment transport in [205] with great success. The

depth-averaged k-ε equations read

∂(Hk)

∂t
+

∂

∂x

(
Hku

)
+

∂

∂y

(
Hkv

)
=

∂

∂x

(
H(νt + ν)

σk

∂k

∂x

)
+

∂

∂y

(
H(νt + ν)

σk

∂k

∂y

)
+ Ph,

∂(Hε)

∂t
+

∂

∂x

(
Hεu

)
+

∂

∂y

(
Hεv

)
=

∂

∂x

(
H(νt + ν)

σε

∂ε

∂x

)
+

∂

∂y

(
H(νt + ν)

σε

∂ε

∂y

)
+ Pε,

where ν is kinematic viscosity, and Ph and Pε are the source terms which depend on the model
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formulation and are generally expressed as

Ph = Pk + C
−1/2
B U3

∗ −Hε,

Pε = Cε1
ε

k
Pk +

1

H

(
CεΓCε2C

1/2
µ C

−3/4
B U4

∗

)
− Cε2H

ε2

k
,

where

Pk = Hνt

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
)
,

and νt is the effective turbulent kinematic viscosity, and U∗ is the bed friction velocity which is

defined as

νt = Cµ
k2

ε
, U∗ =

√
CB(u2 + v2).

This model relies on several empirical parameters and these are given in Table 2.1.

2.2 Sediment transport in shallow water flows

Sediment can be both eroded and deposited by flowing water. Sediment transport is the process

of movement between these two actions. This process alters the morphology of sediment beds. In

this body of work concentration is placed on physically-based (numerical rather than statistical)

models and the advances made in this area, especially in terms of computational speed. Due to

the long-term modelling required for many projects (for example forecasting the scour around

a bridge foundations over its lifetime or the silting of an estuary between dredges), any savings

in computational speed are to be welcomed.

2.2.1 The characteristics of sediments

Sediments can be categorised as cohesive or non-cohesive, but all have the same general charac-

teristics: diameter (mean diameter) d across the particle, grading (the size distribution) often

summarised with d10, d90 (where d10 represents the diameter of the 10th percentile), density ρ,

and porosity Ψ (when in a packed bed). Cohesive sediment is defined as having a significant

proportion of clays (or other organic matter) whose electromagnetic properties cause the sed-

iment to bind together and act as a putty, rather than as sand. This category includes silt,

clay, and any other organic matter that has gelatinous properties. Cohesive sediments are also

able to adsorb pollutants, such as heavy metals and organic chemicals. This characteristic is

useful when tracking contamination spills from tailings (mining waste) and other harmful chem-

ical pools. Non-cohesive sediment, which does not have electromagnetic properties, is primarily

1https://sites.agu.org/
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Table 2.2: A classification of particles according to the American Geophysical Union1.

Type of particle Grading Cohesive Diameter d [mm]

Gravel

Very coarse No 64-32
Coarse No 32-16
Medium No 16-8
Fine No 8-4
Very fine No 4-2

Sand

Very coarse No 2-1
Coarse No 1.0-0.5
Medium No 0.5-0.25
Fine No 0.25-0.125
Very fine No 0.125-0.062

Silt

Coarse No 0.062-0.031
Medium No 0.031-0.016
Fine No 0.016-0.008
Very fine No 0.008-0.004

Clay

Coarse Yes 0.004-0.002
Medium Yes 0.002-0.001
Fine Yes 0.0010-0.0005
Very fine Yes 0.0050-0.00024

made up of fine and medium grade sands. Table 2.2 shows the classification of soils by size

(according to the American Geophysical Union). Particle size is one of the most important

characteristics in sediment transport as it directly affects the erosion, deposition, and transport

rates. In most models diameter d is used in calculations and is approximated to d50, this helps

classify sediments as shown in in Table 2.2. Sediments are classified as follows:

Gravel: is comprised of unconsolidated rock fragments that may or may not have been

smoothed by the flow of water or ice. It can be divided into granular (very fine) at 2 − 4 mm

and pebble gravel 4 − 64 mm, as shown in Table 2.2. Two types of gravel are of particular

interest:- (i) bank gravel which is found mixed into the sand or clay of river and estuary beds

and (ii) creek rock which is found on the bed surface of streams and rivers. This becomes

important when studying phenomena like armouring. Note that a typical density for gravel

is ∼ 1800 kg/m3.

Sand: is a granular material made up of finely divided rock and/or mineral particles. It

is usually composed of silica in the form of quartz or calcium carbonate (aragonite). Sand

is normally produced from the grinding down of larger parts, such as gravel, and is typically

between 2− 0.062 mm as shown in Table 2.2. Particles of older sand tend to be more spherical

in shape, while geologically newer sand is more irregular.

Silt: is also a granular material originating from mineral quartz and feldspar. It is often

mixed in with sand and/or clay and it is typically more spherical in shape. Though its size range
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Figure 2.2: Illustration of the four principal modes of sediment transport.

may overlap with clay, according to the Udden-Wentworth scale, it is known not to be cohesive.

Clay: is a very fine-grained natural rock that combines clay minerals with metal oxides and

organic matter. This unique composition gives rise to cohesive properties, whereby the clay will

become sticky due to the electromagnetic forces between its particles. The clay minerals are the

crucial distinguisher between clay and silt. This, together with its water content, gives rise to

the plastic nature of clay. Any grain with a composition smaller than 0.004 mm, as in Table 2.2,

and with a cohesive mineral make-up is considered clay.

Often in sediment transport modelling, the material being transported is generalised to a

single equivalent quantity which does not take into account the sediment mix (or even natural

sediment layers). This often causes models to over-estimate erosion and fail to display the

correct characteristics of these sediment types. Multi-sediment handling is one of the advances

developed in this work. With a better ability to model the complex mixes and properties of

sediment, the accuracy of the sediment transport model will be increased.

2.2.2 Modes of sediment transport

In sediment transport, sediment moves in one of four possible ways as shown in Figure 2.2. Each

transport category has different interactions with the water causing a diverse range of behaviour.

Wash load: Particles are held in suspension by Brownian motion, which is a random

agitation at a molecular level. Wash load particles are impossible to distinguish from the rest of

the suspended load with current sampling methods. Wash load is normally uniformly distributed
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Table 2.3: Modes of sediment transport and their Rouse numbers [150].

Mode of Transport Rouse Number

Initiation of motion PR >7.5

Bedload 2.5 <PR <7.5

Intermittently suspended load ( 50 % suspended) 1.2 <PR <2.5

Suspended Load 0.8 <PR <1.2

Wash Load PR <0.8

throughout the fluid.

Suspended load: Suspended sediments (mainly silt and sand) are kept in suspension by

localised turbulence. Maintaining suspension requires the turbulent (or upward) currents to

exceed the settling velocity of the particle. The diameter and concentration of particles tends

to vary logarithmically with the height above the bed. Generally, larger sediments cluster at

bed height, while finer sediments are more evenly distributed through the water column. This

is the most commonly modelled type of sediment transport and is often simulated with erosion

and deposition equations. Here, the erosion is characterised with a critical shear stress and

deposition with a critical settling velocity.

Intermittently suspended load: This is a subclass between bed and suspended load:

partially supported by the bed and partially supported by the fluid. This type of transport is

rarely modelled as it can usually be approximated by the in-bedload calculations. However, it is

of use in recognising turbulence as, particles too large for suspended load are excited and lifted

by turbulent currents and settle slowly.

Bedload: Here, particles tumble along the bed floor and are entirely supported by it. As

a rule, bedload is made up of the largest sediments (sand and gravel) that can be mobilised

by shear stress acting on the bed. Bedload is often modelled by capacity-limiting sediment

transport equations. It can be computed by examining excess shear stress, discharge or stream

power.

Rouse Number: is a dimensionless variable used to determine which mode of transport

an entrained sediment particle is most likely to be carried in. The Rouse number PR is defined

as [150]

PR =
ws

κvKU∗
,

where ws is the settling velocity of the sediment (which will be discussed later in this section),

the von Karman constant κvK = 0.4, and U∗ is the bed shear velocity. Table 2.3 shows the
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approximate Rouse numbers for each mode of transport. In real world situations the exact mode

will vary due to turbulence and sediment-to-sediment contact.

2.2.3 Modelling erosion in sediment transport problems

Erosion is the process by which bed material is stripped away by a fluid moving over the surface

of the bed. A unifying formulation of both erosion and deposition has still not been found. As a

result, various different models exist. The analysis performed by White [202] gives a simplistic

view of erosion which assumes that particles will move when their submerged weight is exceeded

by a force. Examination of the top particle is shown in Figure 2.3.

The critical shear stress τcr for this example is assumed to be

τcr =
ηp

tanφ
g(ρs − ρw)d,

where ηp = nsd
2 is the packing coefficient, ns is the number of particles per unit area, ρs is

the density of the sediment, ρw is the density of the water, d is the diameter of the particle,

and φ is the contact angle. This approach is useful for a basic understanding but it greatly

oversimplifies the problem as other forces are considered. The principal forces acting to lift the

sediment particles are:

1. Shear Stress: the force (τ/ns) as applied by the water to the particles at rest. This

is considered the most important force acting on the particles of sediment as, from a

mechanical standpoint, it approximates many of the others.

2. Impact Forces: the transfer of momentum from the column of water upstream to the

particles. This force is nearly impossible to calculate as it depends on the mean speed of

the water, the area presented by the particles and the density of the fluid, though it has

been investigated in [133]. It is one of the principal causes of disparity between theoretical

approaches and experimental data.

3. Lift Forces: these are mainly comprised of three effects: (i) buoyancy, (ii) vertical

velocity-gradient pressure forces (as shown in Figure 2.4) caused by the pressure of ar-

rested water creating a pressure gradient at the base of the particles, and (iii) upward

turbulence (eddying forces) formed by the profile of the grains creating eddies behind the

particles and effectively lifting them.

Opposing the erosion of the particles are many forces and effects that add to the inertia of the

sediment. The prominent ones are:
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Figure 2.3: A typical sediment particle under water flow considered in [202].

1. Submerged weight of the grain: generally considered the most important factor in

erosion and deposition.

2. Armouring: as real world sediments are non-uniform in size there is a size distribution

in the bed. Larger sediments left on bed surface require greater fluid velocities in order

to be moved and consequently protect smaller sediments under them from scour. These

larger sediments build up at the surface of the bed over time.

3. Packing: frictional forces caused by well-packed beds where voids between larger particles

are filled with smaller particles. This packing is not accounted for in the analysis conducted

by White, but is considered by Shields later in this section.

4. Grain fabric effects: over time particles will organise themselves into interlocking struc-

tures. This is caused by the non-spherical nature of most sediment types, where odd and

elongated shapes come together to form an imbrication pattern. This configuration of

particles makes them hard to shift.

5. Adhesion forces: (cohesive sediments only) these are the electromagnetic effects that

are seen in clay-based beds, where particles are attracted to each other and thereby less

mobile.

6. Organic mats: algae or slime that build up over time in conditions of low flow can be

hard to break down as they are comprised of interlocking cells and organic chains. This

organic matter can also cause particles to bind together when in the flow.

These extra forces and effects add too much complexity for models to quantify from basic
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Figure 2.4: Typical sediment particles under water flow.

principles. Thus, a semi-empirical approach is almost always adopted. The most common semi-

theoretical analysis for the initiation of motion is the Shields criterion. Proposed in 1936 and

reported in [160], it was the first use of semi-theoretical analysis in sediment transport. Shields

related the dimensionless shear stress τ∗ to the critical shear stress τcr

τ∗ =
τcr

g(ρs − ρw)d
,

to the dimensionless particle Reynolds number (originally attributed to [171])

Rep =
Upd

ν
,

where Up is the characteristic particle velocity, and ν is the kinematic viscosity. This allowed

Shields to generate one of the earliest sediment motion graphs, shown in Figure 2.5, which is

still in use today. This plot, whilst very useful, has a number of limitations as it only covered

grains of small sizes over a limited range of Reynolds numbers. Shields also noted that the

initiation of motion was not always full entrainment but often merely the formation of ripples.

As a consequence, further work was required to refine the relationships. This has been studied

in [32,135,186] amongst others. These, together with many other bodies of work over the years,

have refined and modified the Shields diagram as shown in Figure 2.6.

2https://ascelibrary.org/doi/book/10.1061/9780784408230
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Figure 2.5: A Shields diagram courtesy of the American Society of Civil Engineers2 [190].

While the modified Shields parameter is very useful for predicting sediment entrainment,

it still does not accurately predict real world situations. Consequently, the Shields parameter

is often used in combination with other empirical formulae to model a more realistic erosion

function that compensates for varying soil properties.

2.2.4 Modelling deposition in sediment transport problems

Deposition occurs when a flow of water transporting sediment no longer has the required condi-

tions (turbulence and/or velocity) to maintain the particles in suspension or motion. Sediment

will then move to the bottom of the water column and settle on the bed. Whilst deposition is

less complex to model than erosion, simulating this phenomenon still presents challenges. The

settling velocity, the terminal speed at which a particle will settle in water, is used in most em-

pirical formulae that deal with deposition. Assuming a spherical particle, the settling velocity

ω is calculated as

ω =
g(ρs − ρw)

µ
d2,

where µ is the viscosity, ρw is the density of the water, ρs is the density of the particle, g

is acceleration due to gravity, and d is the diameter of the particle. This formula, presented

in [151], is useful but fails to take into account fluid speed around the particle. A hindered
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Figure 2.6: Updated Shields diagram courtesy of Michigan Institute of Technology3.

settling velocity ωs can be calculated using

ωs =

√
2

3
gρw(ρs − ρw)d3 + 36µ2 − 6µ

ρwd
. (2.2.6)

This considers the friction between the sediment particle and the fluid, but does not allow

for the partial momentum exchange that occurs as the fluid deviates around the particle. The

impact law settling velocity ωs,i presents a solution for this

ωs,i =

√
4

3

1

CD
gd

(
ρs − ρw
ρw

)
,

where CD is the drag coefficient. A lack of experimental data has resulted in equation (2.2.6)

becoming a common formula for erosion and deposition. However, its limited scope does not

allow for other effects, such as cohesive sediment flocculation (where two or more clay particles

combine spontaneously due to their electromagnetic attraction) forming a larger particle or floc.

Thus, when possible experimental data is used to define the settling velocity.

2.2.5 Equations for sediment transport

Recent work has focussed on developing methods and models for sediment transport, producing

an array of techniques. Consequently, there is now a variety of spatial and temporal permutations

in 1D, 2D, and 3D models. For a 2D shallow water model a species conservation equation is

generally employed
∂(Hc)

∂t
+
∂(Huc)

∂x
+
∂(Hvc)

∂y
= E −D, (2.2.7)

3https://doi.org/10.1111/j.1365-3091.1977.tb00136.x
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Table 2.4: Some of the explicit empirical equations for the Shields diagram.

Reference Equations developed

Brownlie [32]
τcr = 0.22R−0.6

b + 0.06exp(−17.77R−0.6
b )

where Rd =
d(∆gd)0.5

ν

Van Rijn [186]

τc(D∗ 6 4) = 0.24/D∗

τcr(4 < D∗ 6 10) = 0.14/D0.64
∗

τcr(10 < D∗ 6 20) = 0.04/D0.1
∗

τcr(20 < D∗ 6 150) = 0.013/D0.29
∗

τcr(D∗ > 150) = 0.055

where D∗ = d

(
∆g

ν2

)1/3

Soulsby and Whitehouse [167] τcr = 0.24/D∗ + 0.055[1− exp(−0.02D∗)]

Paphitis [135]
τcr(10−2 < R∗ 6 104) = 0.273/(1 + 1.2D∗)

+0.046[1− 0.57exp(−0.02D∗)]

where erosion rate is denoted as E, the deposition rate as D, and where c is the depth-averaged

concentration, such that

c =
ρ− ρw
ρs − ρ

,

where ρ is the mixture density, ρs is the sediment density, and ρw is the density of water. This

approach does not consider bedload separately. The following source terms are added to the

SWE equations to account for the effects of the entrained sediment.



E −D
1− Ψ

−(ρs − ρw)gH2

2ρ

∂c

∂x
− (ρ0 − ρ)(E −D)u

ρ(1− Ψ)

−(ρs − ρw)gH2

2ρ

∂c

∂y
− (ρ0 − ρ)(E −D)v

ρ(1− Ψ)


,

where Ψ is the porosity of the sediment. Methods and notation for describing the modes of

transport vary in the literature. Total sediment transport can be represented as qT , this solid

transport rate can also be divided further into

qT = qs + qb,

where qs is the suspended sediment load and qb is the bedload. The need for multiple modes
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of sediment transport stems from the SWEs formulation that gives only one value for fluid

speed. This formulation cannot take into account the slower moving bed level flow. This study

is addresses this problem with a multilayer formulation that can simulate the bedload and the

suspended sediment by having multiple vertically stratified fluid speeds. Sediment entrainment

models (of which some verge on transport models) are categorised helpfully into two types:

empirical and hybrid models [134].

Empiric equations for entrainment: empirically derived models for entrainment rates can

be effective, however their scope is limited to simulation of the conditions and sediment types

they were based on. For the sake of brevity only a few of these are detailed below, for a more

complete list we refer to [134].

du Boys formula [61] : this early sediment flux model was detailed by du Boys in 1879.

Although now largely out-dated, features of the formula are still prevalent in later models. This

method is notable as it divides the upper stream into layers by depth h, with M being the

number of layers. Balancing the shear stress in each layer of the stream produces

M =
τl
τu
,

where τl is the shear stress at the lower side and τu is the shear stress on the upper side. The

velocity field decreases with depth, and setting u∗ = max(u) gives

qT =

(
hu∗

2τ2
u

)
τl(τl − τu).

Exner model [105]: in 1925, Exner simplified his original conservation sediment equation,

with the following observations: (i) the mass flow rate is constant (ii) the waves are lower than

the water level and (iii) the fluid flux is less than fluid velocity. Thus the Exner bed equation

model becomes only a function of bed slope

(1− Ψ)
∂B

∂t
+
∂Q(B)

∂x
= 0,

where

Q(B) =
αHu

H −B
,

where α is the ratio between fluid speed and sediment speed. Further simplifying the equation,

using a non-dimensional seabed slope, produces B̄ = B
D0

, where D0 is the typical length of the
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water scale, thus
∂B̄

∂t
+ Cc

∂(B̄)

∂x
= 0,

where Cc ia a non-dimensional migration speed for the bed

Cc =
m

(1− n̄m)m+1

A∗s
1− Ψ

Fr ,

where A∗s and m are problem dependant variables, V0 is a velocity-scale, nm is the Mannings

coefficient, Ψ is the porosity, and Fr is the Froude number expressed as

Fr =
V0√
gD0

.

One of the limitations is the use of A∗s and m, which are difficult to determine and often lead to

error when not correctly calibrated. This method is still used as it is simple to implement and

accurate for some cases.

Meyer-Peter-Muller (MPM) model [122]: in 1948, following extensive experimenta-

tion, Meyer-Peter and Muller devised the follow relation between sediment flux and shear stress

qb =

√(
ρs − ρ
ρ

)
g d3

50 8 sgn(u)
(
τ − τcr

)3/2
,

where τ is the bed level non-dimensional shear stress, and τcr is the critical bed level non-

dimensional shear stress. Designed for use in rivers with abundant creek rock, it is still used

today for calculating bedload (though improvements have been added over the years). However,

if modelling sediment in suspension, it still requires two modes for sediment transport.

Grass model [78] : develops relations for both suspended and bedloads (qs and qb), using

a non-linear expression for qs

qs = βum ,

where β and m are empirical coefficients. The model does not use Shields theory for the bedload

relation such that

qb = Ag
Q

H

∣∣∣∣∣∣∣∣QH
∣∣∣∣∣∣∣∣mg−1

,

where Ag and mg are experimentally determined coefficients, and Q is the volumetric flow

rate. This relation is interesting as it also contains both an exponent and a linear coefficient,

that can easily be used with experimentation to model sediment entrainment. This model was

largely designed for sands, for which it provides good results, beyond that it requires further

modification.
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Semi-theoretical equations for entrainment: hybrid models expand on empirical models

by including theoretical elements. This decreases the limitations placed on the simulations by

the original data. One of the main advantages is the separation of sediment transport as an

individual function.

Einstein model [64]: proposed a new approach to sediment transport, using probabilities

based on work from the Mississippi basin. This probabilistic approach means that the bed and

suspended loads are considered as one. Avoiding Shields theory, it considers the ratio between

particles entering and leaving a domain, the chance of them settling, and the probabilities that

sediment transport is initiated. Thus

qT = Φ′
Is
Ib
ρsg

√(
ρs − ρ
ρ

)
g d3

50 . (2.2.8)

The author uses various relations to form his method, key amongst them is the term Φ′, which

is supposed to be constant for a given particle size (graphs of ‘transport-intensity functions’ are

produced to find the required values). In equation (2.2.8), Is is the portion of particles di which

passes over the area considered, and Ib is the percentage of particles detaching from it. This

approach is still used for discrete sediment grain sizes, under the assumption that each particle

moves independently.

Engelund-Hansen model [65]: this formula was derived from energy balance equations

and is designed to look at tidal and wave currents. It is expressed as

qT = 0.05ûCτ
τ2
B,c(

ρs
ρ
− 1

)2

d50ρ
2g5/2

(
1 +

1

2

(
ξ
Uwave
û

)2
)
,

where Cτ is the linear coefficient relating shear stress and the square of velocity, the average

velocity of the water is û, Uwave is the velocity of the waves, shear stress due only to current

effect is τB,c, and ξ is a dampening coefficient. The shear stress due to current and wave effect

is

τB,wc = τB,c

(
1 +

1

2

(
ξ
Uwave
û

)2
)
.

While this relation is useful due to the reliance on wave factors, it goes beyond the purview of

this investigation.

Bijker model [27]: this formula also uses a probabilistic approach, though sediment load

is divided into bed and suspended load. It is designed for coastal regions with coefficients for
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wave structures and shapes. Hence

qb = Ad50
ū

Cτ

√
g exp

−0.27(
ρs
ρ
− 1)d50ρg

βwaveτB,wc

 ,

where A and βwave are coefficients depending on waves type, and βw is conditional on wave

type and sediment properties [18]. The bedload is assumed to be a thin layer resting on the

bed surface with a constant concentration. The suspended sediment may be expressed using

Einstein integrals I1 and I2 as

qs = 1.83qb

(
I1ln

(
33H

κr

)
+ I2

)
,

where κr is a bed roughness coefficient.

Van Rijn model [185,187,188]: as one of the most popular models for sediment transport,

the Van Rijn model includes the Shields parameter such that

qb =

√(
ρs
ρ

)
gd3

50

0.005

β1.7
d

(
d50

H

)0.2 (√
τ −
√
τcr
)2.4√

τ ,

where βd is an empirically calibrated value. This formulation is easy to implement and has been

proven to be accurate [18,41]. Suspended sediment can be expressed as

qs = cuavHF,

where uav is a mean velocity in the field, c is the depth-averaged concentration, and F is an

empirical coefficient [33]. These are some of the most popular formulae for sediment transport.

Although they consider the velocity of the fluid flow, as shown, the lack of stratified velocities

does lead to the need for a bedload calculation which is inefficient and makes it less accurate than

some 3D formulations. This problem is addressed by vertically stratified horizontal velocities

used later in this study.

2.3 Overview of numerical methods for hyperbolic systems of

conservation laws

Numerical methods for the solution of Partial Differential Equations (PDEs) including the SWEs,

have been extensively studied, going back to Euler [67] and his system for ordinary differential

equations. Many methods exist for the solution of PDEs, including the extensive work done
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by [52,74]. Such developments have been aided by the advent of modern computing, leading to

a wide range of numerical solutions for PDEs. The systems used in this thesis are hyperbolic

(unless otherwise stated) and the solutions of hyperbolic equations are wave-like. If there is

a perturbation in a system, it will incur a delay in its transmission effects, i.e. there is a

transmission speed (in the SWEs, this is wave speed). This attribute distinguishes hyperbolic

systems from elliptic and parabolic systems.

A set of equations is said to be strictly hyperbolic if the Jacobian of its system has a number of

distinct real eigenvalues and is diagonalizable. There are two crucial properties of a hyperbolic

system [175] that any accurate numerical scheme should capture: first, there is an inherent

direction of wave propagation and, secondly, there can be discontinuities in the solutions.

2.3.1 Well-established approximate methods

There are many methods for solving PDEs, five of the principal ones are detailed here. The

differences outlined below show why the proposed method is chosen to solve the SWEs.

Finite Difference Method (FDM): The FDM approximates the PDEs and then solves

them [79]. The domain is regularly discretised into a grid (with the appropriate number of

dimensions). The partial derivatives are approximated using Taylor expansions. It can be

solved implicitly, explicitly, or using a Crank-Nicolson scheme. This method is very quick to

set up and simple to run (with a lower computational expense than other methods), though

the requirement for a regular grid makes it unsuitable for many real world domains (due to the

complications incurred when modelling complex geometry). As it approximates the differential

equations, the formulation is not conservative, often making it unsuitable for problems in CFD

(it is however often used in astrology and meteorology).

Finite Element Method (FEM): The FEM formulates the problem into a set of algebraic

equations, and yields approximate values of the unknowns of the system at a number of points

over the domain [220]. When solving, the problem is divided into simpler parts called finite

elements. The simplified equations are then assembled into larger systems of sparse matrix

equations that model the entire system. The FEM works well for diffusion systems and is

generally stable. It is usually convergent, as the variational forms are normally consistent

with the governing equations, and widely used for mechanical problems. Although it is often

use complications arise when considering domains with irregular boundaries. It can be made

conservative, but these formulations are often unstable. Despite this there has been some very

powerful code developed in this area including TELEMAC4. Discontinuous Galerkin methods

4www.opentelemac.org/index.php/publications
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have also been adapted to offer new advantages to FEM models.

Finite Volume Method (FVM): The FVM breaks the domain down into cells on a

structured or unstructured mesh [126]. The FVM integrates the PDEs over the small volume of

each cell in the mesh. Divergence terms are evaluated as fluxes on the surfaces of each cell and,

as the flux exiting one cell into the adjacent is identical, the method is conservative. The FVM

is quick to implement and simple to program, like the FDM, but it is also more efficient than the

FEM. Its major strength is that it only needs to evaluate fluxes for the cell boundaries; this is

very advantageous for non-linear problems (e.g. conservation laws in transport problems). The

FVM is now widely used for CFD problems, due to its simplicity, accuracy, ability to compute

irregular boundaries, and conservative nature.

Method of Characteristics (MoC): The MoC reduces PDEs to a group of ordinary

differential equations [53]. Combined with the solution, it can be integrated on a suitable hyper

surface. This method requires the original problem to be stated analytically. The MoC suffers

from slow convergence and is often cumbersome in capturing shock waves in complex flows.

Consequently, the MoC has largely been superseded by other methods, like the FVM. That

said, it is used by some in the predictor stages of more complex solutions as it is suitable for

obtaining an initial predictor stage solutions. Due to its slow nature, lack of conservation and

complications around boundary conditions, this method is rarely used in CFD.

Spectral Methods: Spectral Methods are very similar to FEM, in that they break the

differential (or partial differential) equations into a set of basis functions that approximate the

governing equations [214]. This is often achieved with a Fourier series and consequently uses

a set of trigonometric functions. The main difference between this method and FEM is that

the functions used are non-zero over the whole domain, rather than only small areas. The

Spectral Method has the advantage of being quick, especially when utilising the fast Fourier

transform, but the transformation and multiplication can cause aliasing problems. It is also

difficult to apply to non-linear problems with complex boundary conditions or geometries. For

these reasons (lack of conservation, poor shock capture and model limitations), it is infrequently

used in CFD.

2.3.2 Hyperbolic systems of conservation laws

As shown, the SWEs (and additional governing equations for concentration, turbulence mod-

elling and bed morphology) are conservation laws and fall into the class of hyperbolic PDEs that

can be written as
∂W

∂t
+∇ ·H(W) = 0, (2.3.9)
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where W is a set of conserved quantities, where H(W) is a vector containing the fluxes of the

system such that H(W) = (F1(W), . . . , (FR(W)) and where there are R number of dimensions

in the system. Fα(W) is the physical fluxes of the conserved quantities in the αth dimension

(where α ∈ (1, . . . , R)). Equation (2.3.9) is a conservation law defined by the arbitrary domain Ω

with smooth boundary ∂Ω, it is possible to derive the integral of the equation using divergence

theorem which is
d

dt

∫
Ω

W dA+

∫
∂Ω

H(W)n dσ = 0, (2.3.10)

where n is a vector of the unit normal vectors to the boundaries ∂Ω. The equation (2.3.10)

states that the variation in time of the conserved quantities is solely dependant on the flux at

the boundaries. It is worth noting that equation (2.3.9) has no source terms as, due to the

nature of source terms, these can and often are treated in a separate step or part of the solver

in order to accelerate simulations.

Both equations represent the conservation laws; the difference lies in the solutions they can

exhibit. The equation (2.3.9) is known as the strong form, and equation (2.3.10) is the integral

form of the conservation law. This form is able to capture discontinuities; these discontinuities

give rise to the Riemann problem and can exist in the global sense as shock or rarefaction waves

in the solution or, in the case of the FVM, more locally at the interfaces between cells.

2.3.3 Definition of the Riemann problem

The Riemann problem exists in hyperbolic PDEs where there is piecewise data. For conservation

laws in 1D with initial piecewise data, the problem can be expressed as

∂W

∂t
+
∂F(W)

∂x
= 0,

W(0, x) =

 Wl, if x > 0,

Wr, if x < 0,

where Wl is the left-hand state and Wr is the right-hand state of conserved variables about the

point x = 0. This problem exists in a local manner in the FVM, as the FVM gives one value over

the entire cell, meaning there is a jump or discontinuity between it and the neighbouring cells.

As fluid may be moving at different speeds and in different directions, this discontinuity causes

problems when calculating fluxes between two cells and estimating the values at the interface.

The Riemann problem is one of the main sources of complication in the FVM [126], and

much work is being done to solve it either exactly or approximately [179]. Three types of

Riemann problems exist: shocks, rarefactions, and contact discontinuities. These discontinuities
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Figure 2.7: Wave diagram for the structure of the Riemann problem.

are normally seen in fluids as variations of pressure and velocity. A shock wave is where density

increases and velocity decreases very suddenly. For a fluid with a free-surface, similar to the

SWEs, this can be a variation in height. A rarefaction wave occurs when a fluid moves faster

and becomes less dense. Contact discontinuities are interfaces that separate zones of different

densities or heights, but there is no flow across these interfaces.

This problem can have three quantifiable waves as shown in Figure 2.7. The left and right

waves are either shocks or rarefaction waves, while the middle wave is always a contact discon-

tinuity. All three must be considered when selecting the correct method to estimate interface

values. In this type of study, the Riemann problem is usually solved with either a Roe approxi-

mate Riemann solver [147] or the Harten-Lax-van Leer-Contact (HLLC) [86] type approximate

Riemann solver.

2.3.4 Formulation of finite volume methods

In this section, the FVM is outlined and some of the characteristics that arise from its use are

discussed. The important steps that are required to build a FVM formulation are detailed in

this section.

Space discretisation: The first step is to discretise the domain into a number of cells

(control volumes) which can be in the form of either structured or unstructured grids. Structured

grids have a discernible pattern that is indexable: neighbouring cells can be found by adding

or subtracting one from the index. Unstructured grids, however, have no indexable pattern and

therefore when, implementing them in a code, pointers containing neighbouring cell numbers

must be stored. This makes unstructured grids slower to compute, as the index of structured

grids makes for faster algorithms. For simple problems like aerofoils or isolated wings, structured

grids are generally more accurate, but for more complex flows the adaptivity of unstructured

grids allows for greater accuracy. Crucially, unstructured girds allow for more complex geometry



2.3 Numerical methods for conservation laws 37

Figure 2.8: Examples of structured and unstructured meshes: a 2D Cartesian structured mesh
(left) and a 2D triangular unstructured mesh (right).

Figure 2.9: A typical 1D grid of cells showing fluxes (left) and a depiction of the 1D local
Riemann problem (right).

and are consequently more useful for real world problems, where the domain can rarely be divided

accurately into a structured grid. Figure 2.8 depicts example meshes, where the indexing problem

for unstructured grids can be seen. Element 6 is surrounded by elements 1, 5, 17, while in the

structured grid any element like i, j can easily index to its neighbours. A Cartesian grid is not the

only type of structured mesh, indeed elements do not have to be of regular size to be structured

(though this does introduce further complications when implementing the method). Rectilinear

and curvilinear grids can also be used to produce structured meshes. It is also possible to have

vertex centred cells, where the control volume is centred around a vertex point rather than the

centre of a volume bounded by vertex to vertex points. This method has more complicated

volume shapes during calculation but can ease post-processing visualisation techniques.

Time discretisation: The FVM requires the discretisation of time into discrete time-steps.

This is relatively straight forward, but it should be noted that various methods of calculation

(as seen later when schemes are discussed) use different approaches to achieve the solution at

time tn+1, given time tn. Time is divided into these discrete time-steps (tn+1 and tn) such that

∆t = tn+1− tn. Time-stepping schemes can either be explicit (using only date from the current
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time-step to solve for the next) or implicit (where data from both the next and current time-step

are used to compute the next time-step) [79]. In this work only explicit time-steps are used, as

they are easy to implement and parallelize, and have a lower computational cost per time-step.

Implicit schemes are avoided as they have higher computational cost and are hard to parallelize.

One of the great challenges for explicit schemes is steady state or stationary flows. Thus this is

one of the standard tests used to evaluate the solvers in this study.

Integrating the conservation equations

Once the basic discretisation has been defined, we are able to integrate the system under study.

We begin by integrating our system using the discretisation shown in Figure 2.9. The governing

equations may be written as
∂W

∂t
+
∂F(W)

∂x
= 0 . (2.3.11)

In Figure 2.9, xi−1/2 = i∆x and xi = (i+ 1/2)∆x is the centre of the control volume, such that

we can define the cell average as

Wn
i =

1

∆x

∫ xi+1/2

xi−1/2

W(tnx) dx . (2.3.12)

In this way an average for the cell is obtained. If it is assumed that the cell average of the

conserved variables Wn
i at time-step tn are known, then the conservation equations can be

integrated in space and time over the domain [xi−1/2, xi+1/2] × [tn, tn+1], thus

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂W

∂t
dxdt+

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂F(W)

∂x
dxdt = 0 .

This yields

Wn+1
i −Wn

i +
1

∆x

[∫ tn+1

tn
F
(
W(xi+1/2, t)

)
dt−

∫ tn+1

tn
F
(
W(xi−1/2, t)

)
dt

]
= 0 .

As the cell averages defined in (2.3.12) create a Riemann problem at the interface, making the

evaluation of W(xi±,1/2, t) complex. Thus we define an approximation for the average flux along

x = xi−1/2 such that

FFF i−1/2(t) ≈ F
(
W(xi−1/2, t)

)
dt.

As the time integration in (2.3.13) still poses a problem, we require a method of time-stepping.

This can either be implicit (requiring only values from the current time-step) or explicit (where

values from the next time-step are required). If we employ the first-order accurate forward Euler
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method, where fluxes are estimated using the initial state Wn, we achieve

Wn+1
i = Wn

i −
∆t

∆x

(
FFF i+1/2(tn)−FFF i−1/2(tn)

)
.

In the field of shallow water flow, a second-order accuracy is generally a minimum.

Higher order time-stepping procedures for FVM

One of the more complex time-stepping procedures is the MUSCL-Hancock scheme [184], which

is second-order accurate in time and uses a two-step predictor-corrector method. Again we

consider the 1D domain shown in Figure 2.9. The non-conservative predictor step uses a inter-

mediate value at tn+1/2 = tn +
1

2
∆t, such that

Wn+1/2 = Wn − ∆t

2

(
FFF i+1/2(tn)−FFF i+1/2(tn)

)
,

this step allows us to calculated the left and right-hand Riemann states Wl,n+1/2 and Wr,n+1/2.

Thus we are able to create a Riemann solver such that

Wn+1 = Wn −∆t
(
FFFMUSCL
i+1/2 −FFFMUSCL

i−1/2

)
,

where the fluxes are calculated using the approximation

FFFMUSCL
i+1/2 = FFF

(
W

l,n+1/2
i+1/2 ,W

r,n+1/2
i+1/2

)
.

Another popular group of time-stepping schemes are the Runge-Kutta family [107, 152]. The

second-order two-step scheme can be written as

W∗ = Wn + ∆tLLL(Wn),

Wn+1 =
1

2
Wn +

1

2
W∗ +

∆t

2
LLL(W∗),

where LLL(Wn) is an operator including flux and source terms. For our approximated 1D

system (2.3.11) this means that

LLL(Wn) =
1

∆x

(
FFF i+1/2(tn)−FFF i+1/2(tn)

)
.

This two-stage method is second-order accurate, but is prone to the creation of spurious oscilla-

tions (i.e. it is not Total Variation Diminishing). Thus we wish to expand this method to create
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a strong stability preserving Runge-Kutta method which is

W∗ = Wn + ∆tLLL(Wn),

W∗∗ =
3

4
Wn +

1

4
W∗ +

∆t

4
LLL(W∗),

Wn+1 =
1

2
Wn +

2

3
W∗∗ +

2∆t

3
LLL(W∗∗).

This method requires the three steps shown, but is stable and does not produce spurious oscil-

lations. The explicit Runge-Kutta method used here is stable, so long as the simulation remains

within the stability region for the method [158]. Which in the case of the explicit Runge-Kutta

method is expressed in a polynomial function. The Runge-Kutta family of methods is popular

for modelling of SWEs due to its accuracy and speed.

2.3.5 Reconstruction of numerical fluxes

This discontinuity at each cell interface creates the local Riemann problem. The main complica-

tion for solving the FVM is estimating the fluxes across cell boundaries. As shown in Figure 2.9,

the local Riemann problem must be solved at each cell interface. The solution presented in [74]

is to equate

FFFni+1/2 ≈
1

∆t

∫ tn+1

tn
F(W(xi+1/2, t)) dt .

Centring the grid about the boundary, for example xi+1/2, and choosing a suitably small time-

step ensures that waves from different boundaries do not interact. The solution to the Riemann

problem can be defined as Wi(x, t). We relate

ξ =
x− xi+1/2

t− tn
,

thus Wi(x, t) can be written as a function of ξ, Wi(ξ) such that

Wi(x, t) = Wi

(
x− xi+1/2

t− tn

)
,

which means that the solution is constant when ξ is constant. When ξ = 0 at the cell interface,

the flux across the interface may be given as

F
(
W(xi+1/2, t)

)
= F

(
Wi(0)

)
. (2.3.13)



2.4 Approximate Riemann solvers 41

The function Wi (ξ) is either continuous or discontinuous when ξ = 0. When the former case

occurs we gain

F
(
Wi(0

+)
)

= F
(
Wi(0

−)
)
.

When Wi is discontinuous at ξ = 0, a stationary shock occurs at the cell interface. The

discontinuity must satisfy the Rankine-Hugoniot condition (detailed in [17]), enabling us obtain

the following

F
(
Wi(0

+)
)
− F

(
Wi(0

−)
)

= 0 ·
(
Wi(0

+)−Wi(0
−)
)

= 0.

It should be noted that (2.3.13) also holds in this case. Thus the term F
(
Wi(0)

)
is well defined

and the edge-centred flux value can be described as

FFFni+1/2 := F
(
Wi(0

+)
)

= F
(
Wi(0

−)
)
.

Thus the approximate flux may be explicitly computed, as it is constant in time

FFFni+1/2 =
1

∆t

∫ tn+1

tn
F(W(xi+1/2, t)) dt,

= FFFni+1/2.

Finally, this FVM scheme can be rearranged to

Wn+1
i = Wn

i −
∆t

∆x

(
FFFni+1/2 +FFFni−1/2

)
. (2.3.14)

The next stage is to estimate the numerical flux. Various possible schemes can be implemented

for the approximation of fluxes.

2.4 Approximate Riemann solvers

The most high profile methods are reviewed in [6] with a brief discussion of benefits and short-

comings. In broad terms, Riemann solvers fall into one of two categories: linearized systems

or Harten-Lax-van Leer (HLL) type schemes [112]. Specifically, interest is focused on how the

schemes handle the solution of the Riemann problem and how they estimate numerical flux.

Godunov solver [112]: Godunov flux can be written as

FFFni+1/2 = FFFGodu(Wn
i ,W

n
i+1) =


min

Wn
i ≤θ≤Wn

i+1

F(θ), if Wn
i ≤Wn

i+1,

max
Wn

i+1≤θ≤Wn
i

F(θ), if Wn
i > Wn

i+1.



42 Literature review

When this is combined with a FVM formulation (equation (2.3.14)), it results in a Godunov

scheme. That said, it has a number of other drawbacks as it relies on explicit formula for the

solution of the Riemann problem, and these are rarely available for scalar conservation laws

(especially for more complicated systems). Furthermore, the method is fairly computationally

expensive. This difficulty is compounded when more elaborate multi-dimensional systems with

a greater number of unknowns are involved, as a complex optimisation problem must then be

solved.

Linearized Roe solvers [147]: The Roe approximate Riemann solver, developed in

1981, is an approximate method based on the Godunov scheme. It enables the user to find

the flux between two cells, Wi and Wi+1, in some space and time discretised domain. The

non-conservative form of the system (2.3.11) can be written as

∂W

∂t
+ A(W)

∂W

∂x
= 0,

where

A(W) =
∂F

∂W

is the Jacobian matrix of the flux vector F(W). This is calculated using the derivatives of the

system. An approximation matrix AAA(W) is utilised that can be approximated from A(W) but

must satisfy the following conditions:

• The eigenvalues are real and Jacobian diagonalizable, ensuring that the approximated

system is truly hyperbolic.

• It must be consistent with the exact Jacobian matrix, thus when Wl,Wr →W then

AAA
(
Wl,Wr

)
= A(W).

• It satisfies the following condition

Fl − Fr =AAA
(
Wl −Wr

)
.

A way to linearize the system is achieved by

F(W) = F′(W)W ≈ A(W)W,

where AAA ≈ F′. Through the use of a Roe average, when A(W) is applied to the local Riemann
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problem (2.3.11), we obtain

AAA(W) =


F(Wr)− F(Wl)

Wr −Wl
, if Wr 6= Wl,

F′(Wl), if Wr = Wl.

(2.4.15)

Using an explicit time-step we can write the fluxes as

FFFni+1/2 = FFFRoe(Wn
i ,W

n
i+1) =


F(Wn

i ), if AAA(Wn
i+1/2) ≥ 0,

F(Wn
i+1), if AAA(Wn

i+1/2) < 0.

The Roe solver is effective in capturing shocks but it is poor in resolving rarefaction waves.

Consequently, they are only used for limited flow problems.

2.4.1 Central finite volume schemes

As Roe solvers fail in solving rarefactions (where two waves move in different directions), a new

approach must be adopted. This problem is highlighted in Figure 2.7. The solution of the local

Riemann problem can be expressed as

W(t, x) =



Wn
i , if

∆x

∆t
< sli+1/2,

W∗
i+1/2, if sli+1/2 <

∆x

∆t
< sri+1/2,

Wn
i+1, if

∆x

∆t
> sri+1/2.

This method is the basis of many schemes including Engquist-Osher [66], the second order

Lax-Wendroff [111], and some two-step methods like Richtmyer-Morton method [142] and Mac-

Cormack [120]. This review examines two schemes that estimate wave speed differently: the

Lax-Friedrichs method and the Rusanov method.

Lax-Friedrichs scheme [110]: This method was first proposed in 1954. It has many uses

including the approximation of scalar conservation laws. It has provided a good baseline for

comparison of more evolved schemes and can be expressed as

FFFLaxFrii+1/2 =
1

2

(
F(Wn

i ) + F(Wn
i+1)

)
− ∆x

2∆t

(
Wn

i + Wn
i+1

)
.

It is often seen as an introductory method as it does not involve the solution of the Riemann
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problem, only using flux evaluations. The scheme is consistent, conservative and monotone, con-

sequently it is also Total Variation Diminishing (TVD). Thus it captures sharp shocks neglecting

any spurious oscillations. The downside of the Lax-Friedrichs method is its diffusive nature. It

is often prone to numerical diffusion, which distorts waves making them unrecognisable (lost

peaks, smoothed functions etc.). This is likely to be due to the choice of wave speeds. These

are set at maximums and do not necessarily take into account the speed of propagation of the

problem at hand.

Rusanov scheme: the Rusanov scheme improves on the Lax-Friedrichs scheme by more

correctly estimating the propagation speed of the left and right shock waves such

sri+1/2 = si+1/2 , sli+1/2 = −si+1/2 ,

where

si+1/2 = max
(
|A′(Wn

i )|, |A′(Wn
i+1)|

)
.

Thus, the scheme reduces to

FFFRusi+1/2 =
1

2

(
F(Wn

i ) + F(Wn
i+1)

)
−
si+1/2

2

(
Wn

i+1 + Wn
i

)
.

This scheme is sometimes called the local Lax-Friedrichs scheme, as it takes into account local

variations in wave speed. It offers significant improvement over the Lax-Friedrichs method in

both accuracy and numerical diffusion.

Harten-Lax-van Leer (HLL) scheme [85]: The HLL method falls into the second cat-

egory of schemes, as it does not linearise the flux terms. This solver is designed to resolve

the intermediate state problem presented in Figure 2.7. Instead of linearisation, the solution is

assumed to be made of two discontinuities moving respectively at speeds sli+1/2 and sri+1/2 that

separate the left and right state of the Riemann problem. Thus for a boundary where xi+1/2 = 0

it estimates the states thus

W(t, x) =



Wi, if 0 ≤ sli+1/2,

WHLL, if sli+1/2 ≤ 0 ≤ sri+1/2,

Wi+1, if 0 ≥ sri+1/2.

Given estimates for sli+1/2, s
r
i+1/2, the Rankine-Hugoniot conditions can be written across the
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Figure 2.10: Riemann problem showing the intermediary stage split into two regions as in the
HLLC scheme.

two waves, which yield

FFFHLLi+1/2 = F(Wi) + (WHLL −Wi)s
l
i+1/2, FFFHLLi+1/2 = F(Wi+1) + (WHLL −Wi+1)sri+1/2.

Using these two relations it is possible to describe the HLL flux as

FFFHLLi+1/2 =



F(Wi), if 0 ≤ sli+1/2,

srF(Wi)− slF(Wi+1) + slsr (F(Wi)− F(Wi+1))

sr − sl
, if sli+1/2 ≤ 0 ≤ sri+1/2,

F(Wi+1), if 0 ≥ sri+1/2.

This method is useful but is prone to errors if there is any form of intermediate wave.

Harten-Lax-van Leer Centred (HLLC) scheme [180]: The HLLC scheme is an exten-

sion of the HLL scheme and is designed to restore the missing contact and shear waves (from

the Euler Equations) not captured by the HLL scheme. The innovation here is the estimation

of the Riemann problem with three wave-speeds sli+1/2, s
r
i+1/2, and s∗i+1/2. This means that

the star region is divided into two parts, Wl∗
i+1/2, and Wl∗

i+1/2 , as shown in Figure 2.10. By

integrating as before we obtain

F∗,l(W) = F(Wi) + sli+1/2

(
Wi −W∗,l

)
,

F∗,r(W) =


F(W∗,l) + s∗i+1/2

(
W∗,r −W∗,l) ,

F(Wi+1) + sri+1/2 (W∗,r −Wi+1) .
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These equations hold four unknowns and the switch condition for the second one is case depen-

dant. Using these two relations it is possible to solve for the values of F∗ such that, the HLL

flux can be calculated as

FFFHLLi+1/2 =



F(Wi), if 0 ≤ sli+1/2,

F∗,l(W), if sli+1/2 ≤ 0 ≤ s∗i+1/2,

F∗,r(W), if s∗i+1/2 ≤ 0 ≤ sri+1/2,

F(Wi+1), if 0 ≥ sri+1/2.

Both the HLL and HLLC schemes require wave speed estimations to be made, and many methods

exist for doing this. One of the most popular is the direct wave speed estimate, the most simple

of which was devised in [57], though a range of methods exists including [147].

2.4.2 Upwind finite volume schemes

So far attention has been focused on centred schemes, where the method is symmetric around

the point of interest, i.e. information for the solution comes equally from both the left and

the right of the cell being solved. As hyperbolic systems have waves that propagate in certain

directions (different directions and speeds for different waves), it is possible to formulate a

different family of schemes: the Upwind scheme, where information comes from the direction of

propagation of the wave. Upwind schemes may be preferable to centred ones in order to ensure

stability and for the capture of the correct wave propagation speed. These upwind schemes

were originally designed for other applications in 1952 [54], but were later adapted for SWEs in

studies like [25,210]. The first-order formulation of the upwind-method can be expressed as

Fi+1/2 = ulWn
i + urWr

i ,

where ul and ur are the speeds of the fluid wave in question defined by

ul = min(ui+1/2, 0), ur = max(ui+1/2, 0).

For the solution of complex systems of equations, where information may be coming from both

directions, a characteristic decomposition is typically implemented to select which information

to use from each side of the boundary.
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2.4.3 High resolution finite volume schemes

High-resolution schemes are used when high accuracy is needed, especially around shocks and

discontinuities. They achieve a minimum of second-order accuracy. Once again, a considerable

amount of work has been undertaken to create these schemes see [179], among others.

Lax-Wendroff scheme [111]: One of the first second-order schemes is based on the Taylor

expansion of the linear system (qt + Aqx = 0) thus

q(x, tn+1) = q(x, tn) + ∆tqt(x, tn) +
1

2
(∆t)2qtt(x, tn) + . . .

Keeping only the first three terms of the expansion, and using a central finite difference approach,

the following is obtained

Wn+1
i = Wn

i −
1

2

(
∆t

∆x

)
A

(
Wn

i−1 −Wn
i+1

)
+

1

2

(
∆t

∆x

)2

A2

(
Wn

i−1 − 2Wn
i + Wn

i+1

)
.

This is a finite difference interpretation but it can be re-interpreted to give a FVM with a flux

function given by

FFFLaxWen
i+1/2 =

1

2
A

(
Wn

i + Wn
i+1

)
+

1

2

∆t

∆x
A2

(
Wn

i+1 −Wn
i

)
.

This method is still in use today as it offers a good trade-off between speed and accuracy.

Beam-Warming scheme [19]: The above is a three-point centred scheme. By manip-

ulating the derivatives used, and assuming the eigenvalues of A are positive, it is possible to

generate an upwind scheme. Replacing the cell centred scheme for derivatives enables

qx(xi, tn) =
1

2∆x

(
3q(xi, tn)− 4q(xi−1, tn) + q(xi−2, tn)

)
,

qxx(xi, tn) =
1

∆x2

(
q(xi, tn)− 2q(xi−1, tn) + q(xi−2, tn)

)
.

Thus, the approximation used for the characteristics becomes

Wn+1
i = Wn

i −
∆t

2∆x
A

(
3Wn

i − 4Wn
i−1 + Wn

i−2

)
+

1

2

(
∆t

∆x

)2

A2

(
Wn

i − 2Wn
i−1 + Wn

i−2

)
.

This allows the extraction of the Beam-Warming flux differencing FVM

FFFBeami−1/2 = AWn
i−1 +

1

2
A

(
1− ∆t

∆x
A

)
(Wn

i−1 −Wn
i−2).
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Both the Lax-Wendroff and Beam-Warming methods entail poor shock capture and often pro-

duce spurious oscillations around shocks. They are second or higher order accurate in smooth

regions but do not present acceptable results around discontinuities. As a result, limiters are

often utilised.

Total Variation Diminishing (TVD) property: the aim of most schemes is to reduce the

spurious oscillations found around discontinuities especially in high-order schemes. To measure

this effect, a mathematical notion called total variation is implemented, producing

TV (W) =

∞∑
i=−∞

|Wi −Wi−1|.

For the simple solution of a wave propagating at a set speed without distortion, the total variation

will remain constant; if some diffusion is included, the total variation will decrease. Only when

the solver introduces spurious oscillations does the total variation increase. Accordingly solvers

are employed to reduce it such that

TV (Wn+1) ≤ TV (Wn).

This is called the Total Variation Diminishing (TVD) property [85], which is a standard measure

of the stability and accuracy of a scheme. The TVD property is a very desirable feature (if not

a requirement) in calculations of this nature.

2.4.4 Flux and slope limiters for numerical schemes

Limiters combine the first order accuracy around shocks with a higher order accuracy scheme

for smooth regions. This is achieved by calculating both a high order and low order flux, then

placing limits on their contribution to the flux solution (where the limits sum to one). This

method was first introduced by Harten and Zwas [86] (and Boris and Book a year later [28]).

Two types of limiters exist: slope limiters, where the limit is applied based on the slope of the

solution, and flux limiters.

Slope limiters: the slope limiter differs from the flux limiter in that (based on the slope)

it will adjust the value of a certain cell (or cells) in order to prevent oscillations and overshoot.

This is achieved in piecewise linear schemes like that of the advection equation, for the numerical

flux we have

FFFni−1/2 =
1

∆t

∫ tn+1

tn
uWn

i−1/2 dt

= uWn
i−1 +

1

2
u (∆x− u∆t)σni−1
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Figure 2.11: The problem of overshoot in piecewise solutions of continuous systems.

which combined with equation (2.3.14) gives

Wn+1
i = Wn

i −
u∆t

∆x

(
Wn+1

i −Wn
i−1

)
− u∆t

∆x

1

2

(
σni − σni−1

)(
∆x− u∆t

)
. (2.4.16)

where u is the wave speed. The choice of slope σni is crucial. Three popular methods are

Centred slope: σni =
Wn

i+1 −Wn
i−1

2∆x
, Froom method,

Upwind slope: σni =
Wn

i −Wn
i−1

∆x
, Beam-Warming method,

Downwind slope: σni =
Wn

i+1 −Wn
i

∆x
, Lax-Wendroff method.

All of these slope calculation options supply second-order accurate results. This is ideal for

smoothing linear solutions, but for non-linear high order methods, where overshoot can be a

problem, a new choice of slope is required. Consider Figure 2.11, as the solution progresses the

nodes are forced to overshoot realistic values thus causing spurious oscillations. This can be

countered by utilising slope limiter methods. When the slope limiter method is applied to high

order schemes, the slope parameters are modified to avoid this overshoot problem. Three of

the most commonly used are the minmod slope, the super bee and the MC slope limiters. The

minimum of the modulus (minmod) selects the lesser of two slopes thus

σni = minmod

(
Wn

i −Wn
i−1

∆x
,
Wn

i+1 −Wn
i

∆x

)
,

where

minmod(a,b) =


a, if |a| < |b| and ab > 0,

b, if |b| < |a| and ab > 0,

0, if ab ≤ 0.

The superbee limiter was introduced by Roe in 1985 [148]. The limiter compares the slopes to
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twice the slope on the other side of the node in question, selecting the smaller. It then chooses

the maximum of those two slopes. It is implemented thus

σni = max
(
σ

(1)
i , σ

(2)
i

)
,

σ
(1)
i = minmod

(
Wn

i −Wn
i−1

∆x
, 2

Wn
i+1 −Wn

i

∆x

)
,

σ
(2)
i = minmod

(
2
Wn

i −Wn
i−1

∆x
,
Wn

i+1 −Wn
i

∆x

)
.

The superbee limiter has better shock capturing (it holds vertical wave-fronts in SWE calcula-

tions more precisely) but can ’harden’ or steepen some wave-fronts. One of the most popular

limiters is the Monotonized Central-difference limiter (MC Limiter) scheme. Proposed by van

Leer [183], it aims to avoid the steepening of the superbee and the rounding of the minmod. It

achieves this with the following slope selection

σni = minmod

(
Wn

i+1 −Wn
i

∆x
, 2

Wn
i −Wn

i−1

∆x
, 2

Wn
i+1 −Wn

i

∆x

)
.

Flux limiters: the second class of limiters is the flux limiter. In this method the flux is

altered according to gradient of the slope, rather than the quantity. This is implemented using

FFFni−1/2 = FFFL + φni−1/2(FFFL −FFFH).

The limiting functions have evolved steadily and though many limiters exist, including (HQUICK

[218], Koren [103], Osher [43] and Sweby [174]), the four most commonly used are:

minmod: φ(θ) = minmod(1, θ),

superbee: φ(θ) = max(0,min(1, 2θ),min(2, θ)),

MC: φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)),

van Leer: φ(θ) =
θ + |θ|
1 + |θ|

,

where

θni−1/2 =


∆Wn

i−3/2

∆Wn
i−1/2

, if u > 0,

∆Wn
i+1/2

∆Wn
i−1/2

, if u < 0.
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Where ∆Wn
i−1/2 is the jump in W observed at xi−1/2, as shown in Figure 2.11.

∆Wn
i−1/2 = Wn

i −Wn
i−1.

2.5 Existing shallow water sediment transport models

The usual classification of models is based on their number of dimensions. It should be noted that

partial dimensionality can occur in quasi-2D and 3D models. Early examples of 1D models can

be found in [55,138,139,206] and 2D and 3D models can be found in [58,116,205]. A good general

overview of sediment transport modelling is presented in [197], containing a good summary of

1D, 2D, and 3D methods is a very useful starting point. The report discusses many of the

main considerations such as turbulence model closure, channel roughness, and non-equilibrium

adaptations. Interestingly, it also outlines cohesive sediment transport equations which are often

avoided. The report further details the various methods for real world applications, such as

coupling with different dimensional models and multi-block equations. The following references

are a few examples of sediment transport configured with erodible beds.

Analysis of wave, tidal, long-shore transport, total transport, and bed level change relations

are all incorporated by the authors of [131] in their paper looking at dune formation on beaches.

They solve real world situations over small domains and compare the results with experimental

data over long time periods. They utilise the Proudman Oceanographic Laboratory Coastal

Ocean Modelling System (POLCOMS)5, which combines the effects of high frequency wind

with a long-shore sediment transport model. They develop the 2D numerical tidal and wave

relations to model the hydrodynamic forces that move sediment over long time-scales.

In [69] a paper modelling multilayer polydisperse sedimentation is presented; one of the

only papers to date to deal with multiple sediment types in 1D using the Masliyah-Lockett-

Bassoon (MLB) method. They devise a novel algorithm for dealing with the many complications

presented by such a complex system. Utilising the fact that concentration is a scalar quantity

in the hyperbolic system, they use a two-step predictor method in which a largely simplified

system is solved. Then, the approximate concentrations are developed using an upwind scheme

related to the concentration flux. The model can also handle multiple sediment types. Though

no comparable experimental data exists, their results appear reasonable.

The paper [22] presents an interesting model of sediment transport in 1D based on a flux

limiter method, utilising a non-homogeneous Riemann solver coupled with the Lax-Wendroff

5http://cobs.noc.ac.uk/modl/polcoms/
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method and flux limiters. A two-step approach, using a discretisation of the gradient terms

followed by the treatment of the source terms, provides a well-balanced conservative scheme. The

methodology adheres well to benchmark tests and presents a fast and flexible solver. Notably,

this model captures the hydraulic jump which is often lost with other models.

Advances in the field of bank failure are presented in [4], where the authors couple a 2D

sediment transport model with a novel algorithm for bank failure. This is innovative, as failed

material is not immediately discarded into the flow for transport. The algorithm compares

each cell in the unstructured grid to an angle of repose for the bank. Any material that is not

found to be at equilibrium is redistributed into lower cells. Their model achieves good results

in comparison with experimental data in both 1D and 2D.

A classical dam-break over a movable bed is modelled in [208] using a Godunov upwind

solver. Unusually, although their model is 1D in nature, they consider the other two dimensions

and work in terms of volumetric discharge and bed area, rather than flow speed and bed height.

The method is tested against the Taipei and Louvain experiments and returns reasonable results.

The alterations to the formula presented by Van Rijn on equilibrium bedload transport appears

to improve upon the work done in [38].

A detailed model for 2D sediment transport is developed in [162]. It includes features for both

cohesive and non-cohesive sediment transport, utilising the FVM in the solver in combination

with a Godunov-type method. This is enabled by the assumption that the left and right hand

waves of the Riemann problem are rarefactions. The model also includes 2D concentration

diffusion. Although it is only a single layer (and does not take into account bedload) it still

has good agreement with benchmark dam-break problems. It also proposes novel uses for the

model, including simulations of Tsunamis over erodible beds, and the creation and distortion of

rills (small sediment ripples) in sedimentary flows.

Comparisons between coupled and un-coupled models for sediment transport are drawn

in [37]. This paper highlights the need for coupled models. It concludes that decoupling sediment

transport equations from bathymetric evolution equations can lead to substantial errors. The

study presents the importance of not making these generalisations for the sake of deposition,

though interestingly the standard simplifications do not cause inaccuracies in erosion. It is

also shown that the asynchronous solution procedure has further ill effects on both erosion and

deposition. They conclude that, for accurate results, a coupled and complete set of governing

equations must be solved simultaneously.

A new method for calculating water depth and velocities in a shear wave is presented by [140].

This model, a Saint-Venant equation coupled with Grass’s Exner equation [78] for concentration

and bed evolution, is adequate for their applications. This novel method for approximating



2.5 Existing shallow water sediment transport models 53

values on the shear wave includes the use of vertex values together with reconstructed values

(from the predictor stage of the HLLC solver). Evaluated against several situations, including

the Louvain set of tests, this model obtains very satisfactory results.

A classic 2D sediment transport and bed evolution model is created in [113]. They developed

a model that can be utilised on both small-scale and large domains over a range of time periods.

This model uses a standard upwind approximate Riemann solver for unstructured grids, and in-

corporates some useful features like linear reconstruction and slope limiting. The model is tested

for accuracy in both dam-breaks (where it is compared with Louvain and Taipei experiments

in 2D) and rainfall run-off experiments, for both it provides encouraging results.

A coupled sediment dynamic model for GEOtop is developed in [219]. GEOtop6 is not

strictly in the class of models being reviewed but their work provides a useful comparison for

other methods of sediment transport. GEOtop solves the Richards equation to account for

rain, surface run-off, infiltration, and saturation, as well as flow routing using water and energy

balance equations.

A physical model which makes fewer assumptions about the flow, it is a good way to perform

scaled calculations for complex 3D flows and structure interaction is detailed in [3]. The challenge

with this class of model is correct scaling. The authors relax the Reynolds number but ensure

the Froude scaling remained correct, resulting in a satisfactory undistorted model. The model

is able to handle multiple-sized sediments making it fairly robust, though it does simplify the

Shields criterion and the particle Reynolds number to enable larger particles to be moved. The

authors also give a good review of physical modelling up to 2013, and discuss in depth some of

the drawbacks of physical methods around scaling.

A notable set of experiments are written up in [45]. The authors use a flume filled with

coloured fine gravels, from which they perform multiple bedload experiments enabling a com-

parison of a probabilistic model for bedload dispersion with a more novel dispersion. Their work

shows very good results for the non-equilibrium dispersion model.

There are a wide variety of models with various advantages and shortcomings. One of

the most apparent limitations for shallow water modelling is the reliance on depth-averaged

velocities. Suitable for some applications, it adds complexity to entrainment and deposition

functions for both suspended sediment and bedload transport. This is because near bed velocities

must be estimated.

Another important constraint is that the effects of turbulence on sediment transport are

overlooked in most models (with some notable exceptions). As shown in the previous section,

6http://geotopmodel.github.io/geotop/
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this is a crucial factor in the initiation and continuation of sediment transport. Addressing

both of these problems, as well as the single sediment assumption mentioned earlier, will be

the contributions of the current work through the development of a multilayer formulation with

turbulence and the inclusion of multi-sediment methods.

2.6 Summary

In this literature review, work relevant to the creation of sediment transport models is divided

into five areas of study based on the different aspects of model and method creation. Attractive

characteristics and implementation problems encountered in each area are considered. The first

area of evaluation focuses on the Shallow Water Equations (SWEs) that are used for fast and

stable simulations of systems which can be depth-averaged. A brief derivation from the Navier-

Stokes equations is given, as well as some of the basic characteristics that are encountered. The

limiting assumption of the basic shallow water derivation is the lack of stratified velocities and

turbulent kinetic energy, which produces inaccuracies in the model. Solutions to both of these

problems are developed in later chapters of this study. Specifically a multilayer formulation for

flow is developed for the first time for sediment transport incorporating a novel approach to

turbulence modelling. The second section details sediment transport modelling methods. The

basic processes of erosion and deposition are also expanded upon. Particular attention is given

to the many assumptions required in sediment transport equations, and the fact that they lead

to large inaccuracies. One particular assumption highlighted: the requirement for the use of

a single sediment type in almost all simulations, which reduces the accuracy of these models,

as the effects of varying sediment types and sizes can have profound effects on the bed-forms

produced. It is particularly difficult to demonstrate the effects of armouring when modelling an

homogeneous sediment. In this study, this assumption is removed through the use of a multi-

sediment formulation in both the fluid and the bed. This formulation enables the user to not

only gain more detailed results but also to track sediment types, without significant increases in

computational speed.

The numerical methods used to solve the SWEs are overviewed in the third section. The

SWEs are classified and their general properties are briefly detailed. An overview of approximate

methods used to solve the SWEs is then given, with a brief analysis of the advantages and

disadvantages of each. The Finite Volume Method (FVM) is chosen and a synopsis of the

formulation of the FVM is detailed in order to explain its limiting assumptions. Crucially, the

Riemann problem is examined both in general and local terms with reference to the FVM. The

particular problems around the basic solutions to the SWEs and how they relate to sediment
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transport are also highlighted. The fourth section summaries the approximate Riemann solvers.

It underlines the complexity of many of these solvers and mentions some of the methods required

to improve stability. Through the review of central, upwind and high order schemes a baseline for

complexity is set. This baseline will be used to assess a new scheme that enables the multilayer

SWEs to be developed. A new method, presented in later chapters, allows problems to be

computed with a greater speed and comparable accuracy to three-dimensional Navier-Stokes,

simulations even with a multi-layer formulation.

Finally, in the fifth section, current sediment transport models are briefly reviewed. Models

of particular interest are highlighted in order to establish the essential qualities required by the

model developed in this study. This section also looks at models outside the physically-based

approach to underline advantages that physically-based models should aspire to. This section

elucidates the problems found in previous sections: lack of stratified velocities, single sediment

assumptions and the rarity of turbulence modelling in shallow water sediment transport. All

of these problems will be addressed in this study. Overall, this chapter produces an overview

of previous works that is vital to the understanding of shallow water and sediment transport

simulations. It details the fundamental ideas and their positive and negative attributes that

this thesis hopes to develop in order to produce a superior method for SWE sediment transport

modelling.



Chapter 3

Modelling and numerical simulation
of shallow water flows over
multi-sediment beds in one space
dimension

In this chapter, the first limiting assumption of sediment transport modelling in shallow water

is tackled, namely the single sediment assumption. The aim is to develop a method for handling

multiple sediments in the model without significantly increasing its computational expense. In

order to achieve this, the standard governing equations for such a model must not be radically

expanded. The model consists of the one-dimensional shallow water equations for the flow, a

species conservation equation for suspended sediments, and a bed Exner-type equation. The

model also comprises a set of empirical equations for erosion and deposition terms. Multilayer

beds composed of different erodible soils and the exchange conditions between them are consid-

ered in this chapter. The coupled system employs a non-homogeneous Riemann solver equipped

with interface-tracking tools to resolve discontinuous soil properties in the bed. The accuracy

of the model is verified against several test examples in evolving and steady-state flow domains.

The results demonstrate the ability of the method to preserve the conservation property whilst

avoiding numerical oscillations and dissipation in the approximated solutions.

This chapter is organized as follows: Section 3.1 gives background and explains the motiva-

tion for the work conducted in greater depth than in the previous chapter. In Section 3.2, the

governing equations for shallow water flows over sedimentary topography are presented. Mod-

elling exchange terms between multilayer beds is discussed in Section 3.3. In Section 3.4, the

Riemann solver for both the discretisation of gradient fluxes and the treatment of source terms

is formulated. Numerical results and examples are presented in Section 3.5. Finally, Section 3.6

summarizes the chapter.

56
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3.1 Motivation for modelling multiple sediments in shallow wa-

ter flow

The primary intention of sediment transport analysis is to determine the evolution of bed levels

for hydrodynamic systems such as rivers, estuaries, bays, and other near-shore regions where

water flows interact with the bed topography. Examples of engineering applications include:

beach profile changes due to severe wave actions, seabed response to dredging procedures or

imposed structures, and harbour siltation [3, 36, 113,215]. In general, suspended sediments and

bedload transport in shallow water flows are determined by the characteristics of the hydraulic

flow and the properties of the suspended sediments. Dynamics of the water flow and dynamics

of the sediments must be studied using a mathematical model formed of at least three different

but dependent model variables:

• A set of hydraulic variables defining the dynamics of the water flow.

• A sediment variable defining the transport and dispersion of the sediments.

• A topography variable defining the dynamics of the bedload.

Most existing models for this class of problems consider either the three-dimensional (3D) Navier-

Stokes equations or Shallow Water Equations (SWE)s for the hydrodynamics, coupled to equa-

tions for sediment transport and/or bed morphology [1, 39, 177]. The difficulties in the first

approach are seen by the re-meshing required to deal with moving boundaries for free-surface

and bottom topography, due to the hydrostatic pressure and erosion/deposition forces. Because

of its high computational cost, this approach is rarely used in practical applications. Thus, a

more simple SWE model is often used as it is less computational expensive and is easily adapt-

able to most situations. One of the main advantages of this approach is that no re-meshing is

required, as the SWE mesh has no vertical component. The drawback in the second approach

lies in the failure of the coupled SWE and sediment equations to capture vertical effects in

soil-superposed packed beds as an homogeneous assumption about the bed is often made (due

to the nature of model and inherent complications of adding multiple sediment types).

Understanding morphological evolution due to shallow water flows is crucial to the develop-

ment of river defences and flood control [102,192]. The ability to simulate a range of situations

accurately, from near steady-state bed degradation to dam-break conditions, is important to

the design and maintenance of hydro-infrastructure [3]. Precise modelling of entrainment and

deposition rates allows for a good understanding of the interaction between water flows and

movable beds. A set of formulae for entrainment was first proposed in [160]. Although good
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Figure 3.1: A photograph of natural soil layers courtesy of Science Stock Photos1.

categorizations have been introduced, a unified theory has yet to be found [32, 135]. For mod-

elling morphodynamics in shallow water flows, the three most popular models are the Grass

model [78], the Meyer-Peter & Muller model [122] and the Van-Rijn model [186]. In this chap-

ter, the erosion and deposition formulae proposed in [36,186] are used, as they are best suited to

the problems considered. One of the most complicated aspects of simulating sediment transport

is the accurate modelling of the bed given the assumptions required; these include the levels

of armouring, vegetation, composition, and compaction. They often lead to a large disconnect

between laboratory simulations and real-world events. Recently, corrections have been investi-

gated in [47,155,196] to improve these assumptions. However, homogeneous assumptions on the

erodible beds are one of the severe limitations in these models, as there is no real-world situation

where the bed is truly homogeneous.

In the current study, a new-coupled model for hydraulics over multilayer erodible beds is

presented. The bed is assumed to be heterogeneous and formed with multiple layers of different

soil, similar to that shown in Figure 3.1. The structure of soil-superposed packed beds and

the total number of layers to be considered in the analysis are fixed a priori. The governing

equations consist of a coupled system of SWEs for the hydraulics, a transport equation for

suspended sediments, an Exner-type equation for the bed, and a series of exchange terms for the

mass transfer between the bed layers due to erosion and/or deposition effects. These equations

form a non-linear hyperbolic system of conservation laws with source terms to be solved for the

time interval, the horizontal space coordinate, and the vertical bed depth. Such practical coupled

1http://www.sciencestockphotos.com/free/geology/soil_layers.jpg
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hydrodynamic and morphodynamic problems are not trivial to simulate, since the soil deposition

can be irregular. It should be pointed out that other mathematical models for sediment transport

have also been studied in [104], among others. In these systems, the SWEs have been coupled

to an Exner-type equation for the bedload, which does not account for suspended sediments as

shown in the current study. In this chapter, a fully coupled model for shallow water flows over

multilayer and mixed sediment erodible beds is presented. The Exner equation for the bed is

modified to allow for inter-cellular flux in the vertical discretisation of the bed depth. The bed

layers can be assumed to be heterogeneous and composed of multiple layers of different sediment

mixtures. The structure of the soil-superposed packed beds is known, along with the number of

layers in the model. Combined with the sediment handling tools and a two-dimensional (2D)

discretised bed, multiple sediments can be eroded, deposited or remain stationary within the

same cell, depending on the properties of the studied sediments.

The novelty of this work lies in the bed discretisation and bed flux function building on

methods, like the Saint-Venant-Hirano model [169] to deliver a model capable of handling dis-

cretely layered beds. Crucially, the approach is designed to impact the complexity of the model

as little as possible and therein the computational expense. The development and design of nu-

merical methods that are able to predict the hydraulics over multilayer erodible beds have clear

real -world applications. Effort has been put into the implementation of numerical schemes for

sediment transport models capable of resolving all hydrodynamics and morphodynamics scales.

A class of Riemann solvers is proposed for the numerical simulation of transient flows involving

erosion and deposition of sediments in the multilayer beds. The method consists of a predictor

stage, where the numerical fluxes are constructed, and a corrector stage, to recover the con-

servation equations within the framework of finite volume methods. The sign of the Jacobian

matrix is used in the reconstruction of the numerical fluxes. Most of these techniques have been

recently investigated in [22] for solving sediment transport models, but do not resolve erosion

and deposition effects within the bed. The current work presents an extension of this method to

transient flows over erodible beds that are subject to erosion and deposition of sediments as well

as the exchange between the bed layers. The proposed method also satisfies the well-established

C-property by balancing the discretisation of flux gradients and source terms in the system. This

allows for the comparison of initial sediment assumptions, as shown in this chapter. To analyse

the effectiveness of the proposed techniques, the computational results of the model are first

compared to experimental data for the test examples of a dam-break flow over an erodible bed

as reported in [39], and for the degradation of a dyke studied in [81]. Next, similar flow problems

over erodible multilayer beds are simulated and the performance of the proposed techniques is

examined using different numbers of layers in the sediment topography. These examples also
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highlight the ability of the method to handle multiple sediment erosion and deposition equations.

Results presented in this chapter demonstrate the high resolution of the proposed method, and

confirm its ability to provide accurate and efficient simulations for sediment transport by water

flows including erosion and deposition effects in heterogeneous beds.

3.2 A model for multi-sediment handling in one space dimension

The conventional governing equations of sediment transport in shallow water flows are obtained

by balancing the net inflow of mass, momentum, and species, through boundaries of a control

volume. This is achieved during an infinitesimal time interval while accounting for the accumu-

lation of mass, resultant forces, and species within the control volume [1, 35]. These equations

can be formulated in a conservative form as

∂H

∂t
+
∂ (Hu)

∂x
=

E −D
1− Ψ

,

∂ (Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
= −gH ∂B

∂x
− (ρs − ρw)

2ρ
gH2 ∂c

∂x
−

(ρ0 − ρ)(E −D)u

ρ(1− Ψ)
− gHSf , (3.2.1)

∂(Hc)

∂t
+

∂

∂x

(
Huc

)
= E −D,

∂B

∂t
= −E −D

1− Ψ
,

where u(t, x) is the depth-averaged water velocity, H(t, x) the water depth, B(t, x) the bottom

topography, ρ(t, x) is the density of the water sediment mixture, ρ0(t, x) is the density of the

saturated bed, g the gravitational acceleration, Ψ the porosity of the sediment, ρw the water

density, ρs the sediment density, and E(t, x) and D(t, x) represent the total entrainment and

deposition terms in upward and downward directions, respectively. The density of the water-

sediment mixture ρ(t, x) and the density of the saturated bed ρ0(t, x) are defined as

ρ = ρw(1− c) + ρsc, ρ0 = ρwΨ + ρs(1− Ψ).

The depth-averaged concentration of the suspended sediment c(t, x) is defined as

c =
ρ− ρw
ρs − ρ

.

Here, Sf is the friction slope defined as

Sf =
n2
mu|u|
H4/3

,
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Figure 3.2: A system of shallow-water flow over a multilayer bed.

where nm is the Manning roughness coefficient. Notice that equations (3.2.1) have been widely

used to model sediment transport [1,22,38,90]. These equations can be rewritten in a canonical

vector form as
∂W

∂t
+
∂F(W)

∂x
= S(W) + Q(W), (3.2.2)

where
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The system (3.2.1) can also be rearranged in a non-conservative form as

∂W

∂t
+AAA(W)

∂W

∂x
= S(W) + Q(W), (3.2.3)

where

AAA(W) =
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It is easy to verify that the system (3.2.1) is hyperbolic in nature with four real and distinct

eigenvalues, as found in [22], of the matrix AAA given by

λ1 = 0, λ2 = u, λ3 = u−
√
gH, λ4 = u+

√
gH, (3.2.4)

and their corresponding eigenvectors are

eee1 =



−gH

0

−gHc

gH − u2



, eee2 =



ρs − ρw
2ρ

ρs − ρw
2ρ

u

ρs − ρw
2ρ

c− 1

0



, eee3 =



1

u−
√
gH

c

0



, eee4 =



1

u+
√
gH

c

0



.

Note that in all the studies cited above, the sediment transport system (3.2.2) is solved for

homogeneous beds formed of a single type of soil. However, for many realistic applications in

sediment transport by shallow water flows the topography is composed of multiple soils and in

many cases superposed in layers. Therefore, situations of shallow water flows over multilayer

beds as shown in Figure 3.2 are of interest in the current study. Thus, the bed topography

depends also on the vertical direction z. In this work, a system is considered where multiple

species of sediments (% = 1, 2, . . . , N) exist in a number of layers (l = 1, 2, . . . , L), where N

and L refer to the total number of sediment species and the total number of layers in the bed,

respectively. Note that two layers may contain the same sediment species, or a single layer may



3.2 A model for multi-sediment handling in one space dimension 63

Figure 3.3: Vertical discretisation of the bed into control volumes
[
zk+1/2, zk−1/2

]
.

contain multiple sediment species. For simplicity, the cumulative sediment concentration is used

c =

N∑
%=1

c%.

Subsequently, the averaged variables are also introduced

ρs =

N∑
%=1

c%
c
ρs,%, ρ = ρw(1− c) +

N∑
%=1

c%
c
ρs,%, D =

N∑
%=1

c%
c
D%.

For the remaining variables ρ0, E, and p, the equivalent averaging is used with respect to

sediments in the bed associated with the active cell. The active cell is defined as the cell that

contains sediment and is in contact with the water (i.e. contains the bed surface). To ascertain

the composition of the bed, it is discretised in the vertical direction into a set of control volumes[
zk−1/2, zk+1/2

]
(k = 1, 2, . . . ,K) with uniform size ∆z. In this study the size is kept uniform to

enable us to accurately assess the effects of the bed discretisation. When modelling real world

situations where the bed layers are known a priori it is a simple adjustment to modify the bed

cell heights to most accurately capture any discrete layers present. Each control volume may

contain a variety of sediment species. The active top cell has a height Bk, formed of three

sediments with effective height in the cell of bk,1, bk,2, and bk,3, respectively. The bed-dependent

variables are then calculated using the weighted averaging procedure [177] as

Ψ =
N∑
%=1

bk,%
Bk

Ψ%, ρ0 = ρw(1− Ψ) +
N∑
%=1

bk,%
Bk

ρs,%, Ψ%, E =
N∑
%=1

bk,%
Bk

E%.

Balancing the exchange forces in each control volume shown in Figure 3.3 the following bedload

equation is obtained
∂B

∂t
+
∂G(B)

∂z
= −E −D

1− Ψ
,
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where G(B) is a flux function which depends on the exchange terms between the bed cells as

discussed below in Section 3.3. Note that each cell only interacts with its two neighbouring cells,

whilst erosion and deposition only occur in the active top cell. Thus, the equations considered

in the present study for modelling shallow water flows over multilayer beds read

∂H

∂t
+
∂ (Hu)

∂x
=

E −D
1− Ψ

,

∂ (Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
= −gH ∂B

∂x
− (ρs − ρw)

2ρ
gH2 ∂c

∂x
−

(ρ0 − ρ)(E −D)u

ρ(1− Ψ)
− gHSf , (3.2.5)

∂ (Hc)

∂t
+

∂

∂x

(
Huc

)
= E −D,

∂B

∂t
+
∂G(B)

∂z
= −E −D

1− Ψ
.

Next, a description of the equations used to model the erosion terms E% and the deposition terms

D% is given. Most formulae for models of suspended sediments obtained from experiments are

empirical to differing extents, and detailed discussions on the mathematical and physical aspects

of the considered sediment formulae are given in [36,37,162]. To determine the entrainment and

deposition terms in the above equations, the empirical relations reported in [35, 113] are used.

Thus, for a given sediment

D% = ωs,%(1− cB,%)2cB,%, % = 1, 2, . . . , N, (3.2.6)

where cB,% is a coefficient larger than unity to ensure that the near-bed concentration does not

exceed the value of (1− Ψ). Here, the coefficient cB,% is computed as in [38] by the relation

cB,% = min

(
2,

1− Ψ
c%

)
, % = 1, 2, . . . , N.

In equation (3.2.6), ωs,% is the settling velocity of a single particle in tranquil water defined as

ωs,% =

√(
36ν

d%

)2

+ 7.5ρs,%gd% − 36

(
ν

d%

)
2.8

, % = 1, 2, . . . , N,
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where ν is the kinematic viscosity of the water and d% is the average diameter of the sediment

particles. For the erosion term E%, the equations proposed in [36] are employed

E% =


ϕ%
τ% − τcr,%

H
ud−0.2

% , if τ% ≥ τcr,%,

0, otherwise,

% = 1, 2, . . . , N, (3.2.7)

where ϕ% is a coefficient to control the erosion forces, τcr,% is a critical value of Shields parameter

for the initiation of sediment motion, and τ% is the Shields coefficient defined by

τ% =
u2
∗,%

sg%gd%
, % = 1, 2, . . . , N,

the submerged specific gravity of sediment sg% is calculated by sg% = ρs,%/ρw − 1, and u∗,% is

the friction velocity defined using the Darcy-Weisbach friction factor ff,% as

u2
∗,% =

√
ff,%
8
|u| , % = 1, 2, . . . , N.

It should be stressed that the erosion terms (3.2.7) are not suitable for problems with low shear

sediment transport. In this case, the system can be assumed to be at equilibrium and the

following erosion terms, as suggested in [186], are considered

E% =


0.0033ρs,%

√
∆gd%d

0.3
∗,%β

1.5
t,% , if u∗,% > u∗,cr,%,

0, otherwise,

% = 1, 2, . . . , N, (3.2.8)

where d∗,% is the dimensionless diameter of the particle and τt,% is a transport-stage parameter

defined as

d∗,% = d50,%

(
∆g

ν2

)1/3

, βt,a =
(u2
∗,%)− (u2

∗,cr,%)

(u2
∗,cr,%)

, % = 1, 2, . . . , N,

where d50,% is the average size of sediment particle, and u∗,cr,% is the critical friction velocity for

the initiation of motion. Note that the equations (3.2.5) can also be rearranged in the compact

vector form (3.2.3), and other empirical formulae for the erosion and deposition terms can also

be used in this analysis without major conceptual modifications. Since the flux function added

in the bedload is only differentiated with respect to z, the hyperbolic parts in the system (3.2.5)

are not changed from those appearing in its conventional counterpart (3.2.1). Therefore, the

eigenvalues and eigenvectors associated with the system (3.2.5) are also given by the set of

expressions (3.2.4), which enables us to use them to approximate the required time-steps in



66 Modelling multisediment shallow flows in 1D

order to ensure stability.

3.3 Modelling the exchange terms for multilayer beds

The bottom topography is discretised into control volumes [zk+1/2, zk−1/2] with same length

∆z as shown in Figure 3.3. The time interval is also divided into subintervals [tn, tn+1] with

uniform size ∆t. Here, tn = n∆t, zk+1/2 = k∆z and zk = (k − 1/2)∆z is the centre of the

control volume. Following the standard finite volume formulation, the bedload equation (3.2.5)

is integrated with respect to time and space over the domain [tn, tn+1]× [zk+1/2, zk−1/2] to obtain

the following discrete equation

Bn+1
k = Bn

k +
∆t

∆z

(
Gnk+1/2 − G

n
k−1/2

)
+ ∆tPnk , (3.3.9)

where Bn
k is the space depth-averaged bed B in the control volume [zk+1/2, zk−1/2] at time tn,

Bn
k (x) =

1

∆z

∫ zk+1/2

zk−1/2

B(tn, x, z) dz,

and Gnk±1/2 = G(Bn
k±1/2) are the numerical fluxes at z = zk±1/2 and time tn. Since erosion and

deposition take place only in the top active cell, the source term in (3.3.9) is defined as

Pnk =


−E

n
k −D

n
k

1− Ψk
, if zk+1/2 < Bn

k ≤ zk−1/2,

0, elsewhere.

It should be noted that, as 0 ≤ Bn
k ≤ ∆z, only four possible cases illustrated in Figure 3.4 may

occur for erodible beds. These cases are:

1) Cell growth: where erosion and deposition rates in the cell do not exceed the cell bounds.

The net movement of sediment together with the original amount of sediment remains

within the bounds of the cell.

2) Cell depletion: where the cell is entirely eroded and the cell below becomes active. All

sediment within the cell is removed so that the sediment in the cell below is now in contact

with the water.

3) Cell overfill: where the cell is overfilled and the cell above becomes the active cell. The

deposition of sediment plus the initial quantity of sediment is so great that the cell is no

longer in direct contact with the water but the cell above it is now partially filled and

consequently becomes the active cell.
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Figure 3.4: Illustration of different cell alterations for shallow water flows over erodible beds.
Here the active cell - the one in which soil is eroded from or deposited into - is the jth cell.

4) Cell armouring: where the cell holds out against total erosion. One or more sediment

types have been totally eroded from the cell, but one or more other sediment types remain

in the cell protecting the cell beneath from contact with the water.

To derive the flux functions Gnk±1/2 in (3.3.9), the boundary conditions for the first three cases of

homogeneous sediments are applied. For example, in the case of cell overfill, we have Bn+1
k = ∆z

and Gnk+1/2 = 0. Hence,

∆z = Bn
k +

∆t

∆z

(
−Gnk−1/2

)
+ ∆tPnk ,
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Algorithm 1: Reconstruction of the bed in the homogeneous multilayer model.

if Bn+1
∗,k > ∆z then

Bn+1
k = ∆z

Bn+1
k−1 = Bn

k −∆z −∆t
Enk −Dn

k

1− Ψk
else if Bn+1

∗,k ≤ 0 then

Bn+1
k = 0

Bn+1
k+1 = Bn

k + ∆z −∆t
Enk −Dn

k

1− Ψk
else

Bn+1
k = Bn+1

∗,k
end

which can be rearranged as

Gnk−1/2 =
∆z

∆t

(
Bn
k −∆z −∆t

E
n
k −D

n
k

1− Ψk

)
. (3.3.10)

For the case of cell depletion, we have Bn+1
k = 0 and Gnk−1/2 = 0. Hence,

0 = Bn
k +

∆t

∆z

(
Gnk+1/2

)
+ ∆t Pnk ,

which can be rearranged as

Gnk−1/2 =
∆z

∆t

(
−Bn

k−1 + ∆t
E
n
k−1 −D

n
k−1

1− Ψk−1

)
.

For the case of cell growth, both upper and lower fluxes vanish, as the cell bounds are not

exceeded, and

Gnk−1/2 =



∆z

∆t

(
Bn
k −∆z −∆t

E
n
k −D

n
k

1− Ψk

)
, if Bn

k −∆t
E
n
k −D

n
k

1− Ψk
> ∆z,

∆z

∆t

(
−Bn

k−1 + ∆t
E
n
k−1 −D

n
k−1

1− Ψk−1

)
, if Bn

k −∆t
E
n
k−1 −D

n
k−1

1− Ψk−1

< 0,

0, otherwise.

Note, this approach requires only the evaluation of bed height in the three neighbouring cells

and it can be implemented for homogeneous beds using the test bed height

Bn+1
∗,k = Bn

k −∆t
E
n
k −D

n
k

1− Ψk
.
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Given the bed Bn
k at time tn, the bed Bn+1

k at time tn+1 is updated using Algorithm 1. This

algorithm first checks for cell overfill by comparing the test bed height to the height of the cell.

In the case of cell overfill, the cell is filled to its maximum bed height and the cell above it is filled

with any excess, this second cell then becomes the active cell. If the conditions for cell overfill

are not present, then the cell depletion is tested for. If the cell depletion has occurred then the

active bed height is set to zero, and the cell beneath it is made the active cell and depleted

as required. If neither of the first two cases have occurred then the cell growth is selected and

the active bed height becomes the test bed height. For the cell armouring, the sediment mixes

between the bed and the flow and, in order to handle this, it is assumed that the cell height can

be expressed as the sum of the heights of sediments inside the cell, as shown in Figure 3.4. For

this case, the proposed bed factional height b∗,k,% is calculated at each time-step as

bn+1
∗,k,% = bnk,% + ∆bnk,% = bnk,% + ∆t

(
Enk,% −Dn

k,%

1− Ψk,%

)
, % = 1, 2, . . . , N,

where bk,% are the corresponding heights of sediment contained within the cell. The ∆b−∗,k and

∆b+∗,k are defined as the sum of all the negative and all the positive ∆bk,% sediment height changes

in the cell, respectively. The procedure to update the bed cell Bn
k to Bn+1

k for these cases is

described by Algorithm 2, where the four options are evaluated and the correct flux outcome

is chosen. This is achieved by first checking for overfill, if this has occurred each sediment is

evaluated and the correct quantity of each sediment is assigned (allowing for varying erosion

and deposition rates) to the active cell as the cell above it. Next, if overfill has not occurred

then cell armouring is evaluated, so if any of the sediments have held out against erosion then

they are preserved and all other cell sediment heights are set to zero. If neither of the previous

two have been activated then the cell is checked for erosion; if it is found that this has place

then the cell height is set to zero and the cell beneath it is depleted as required and becomes

the active cell. Finally, if none of the first three options are chosen, then cell growth is activated

and the sediment test bed heights become the sediment bed heights.

It should be stressed that the case of cell armouring, inappropriate discretisation of the bed

may have a direct effect on the morphodynamic results. Hence, a lower limit on the vertical dis-

cretisation is set using the largest particle size for the %th sediment d%. Therefore, for multilayer

discretisation, where armouring is possible, the following constraint is recommended

∆z ≥ 10 max
%=1,...,N

(d%).

The composition of beds should be known in advance, but the number of discretised layers in
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Algorithm 2: Reconstruction of the bed in the non-homogeneous multilayer model.

if
N∑
%=1

bn+1
∗,k,% ≥ ∆z then

for % = 1 : N do

if b∗,k,% ≥ 0 then

bn+1
k,% = bnk,% + (∆z −Bn

k −∆b−∗,k)
∆bn∗k,%

∆b+∗,k −∆b−∗,k

bn+1
k−1,% = ∆bn+1

∗,k,% − (∆z −Bn
k −∆b−∗,k)

∆bn∗,k,%

∆b+∗,k −∆b−∗,k

else

bn+1
k,% = bn+1

∗,k,%

end

end

else if any % ∈ {1, . . . , N} bn+1
∗,k,% ≥ 0 and

N∑
%=1

bn+1
∗,k,% ≤ 0 then

for % = 1 : N do

if b∗,k,% > 0 then

bn+1
k,% = bn+1

∗,k,%

else

bn+1
k,% = 0

∆bn∗,k,% = −bnk,%
end

end

else if all bn+1
∗,k,% ≤ 0 then

for % = 1 : N do

if bn+1
∗,k+1,% > 0 then

bn+1
k+1,% = bnk,% + bnk+1,% −∆bn∗,k,%

else
∆bn∗,k,% = −bnk,%

end

bn+1
k,% = 0

end

else

for % = 1 : M do

bn+1
k,% = bn+1

∗,k,%

end

end
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the algorithm can be set by the user, and multiple layers may be formed with the same soil.

3.4 A Riemann solver for 1D multi-sediment model

For the finite volume discretisation of the system (3.2.1), the spatial domain is discretised into

control volumes [xi−1/2, xi+1/2] with uniform size ∆x for sake of simplicity. This solver is adapted

from the work presented in [22]. Here, xi−1/2 = i∆x and xi = (i+ 1/2)∆x defines the centre of

the control volume. Integrating the system (3.2.5) with respect to time-space over the domain

[tn, tn+1]× [xi−1/2, xi+1/2], the following discrete system is obtained

Wn+1
i = Wn

i −
∆t

∆x

(
FFF(Wn

i+1/2)−FFF(Wn
i−1/2)

)
+ ∆tS (Wn

i ) + ∆tQ (Wn
i ) , (3.4.11)

where Wn
i is the space averaged solution of W in the control volume [xi−1/2, xi+1/2] at time tn,

defined as

Wn
i =

1

∆x

∫ xi+1/2

xi−1/2

W(tn, x) dx,

and F(Wn
i±1/2) are the numerical fluxes at the interfaces x = xi±1/2 and time tn. The treatment

of source terms S and Q in (3.4.11) is dealt with using the standard splitting procedure detailed

in [179]

W∗
i = Wn

i −
∆t

∆x

(
FFF(Wn

i+1/2)−FFF(Wn
i−1/2)

)
+ ∆tS (Wn

i ) ,

(3.4.12)

Wn+1
i = W∗

i + ∆tQ (W∗
i ) .

To complete the spatial discretisation of the equations (3.4.12), a reconstruction of the numer-

ical fluxes F(Wn
i±1/2) and source term S (Wn

i ) must be selected. In general applications, this

reconstruction requires a solution of Riemann problems at the interfaces xi±1/2. Here, the self-

similar solution to the Riemann problem, formed of the equation (3.2.2) and subject to the

initial condition

W(0, x) =


WL, if x < 0,

WR, if x > 0,

is given by

W(t, x) = Rs

(x
t
,WL,WR

)
,

where Rs is the Riemann solution which can be evaluated analytically for the SWEs over fixed

beds. Note, we refer to [8] for the exact expression of Rs. Thus, the intermediate state Wn
i+1/2
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in equation (3.4.12) at the cell interface xi+1/2 is defined as

Wn
i+1/2 = Rs

(
0,Wn

i ,W
n
i+1

)
.

This procedure is computationally demanding, and it may restrict the applications where ex-

act Riemann solvers are not available. Furthermore, the discretisation of the source terms in

equation (3.4.11) may suffer from singular values raised from the Riemann solver at the inter-

faces. These difficulties are typical in the numerical solution of SWEs over erodible sediment

beds and they will be retained for shallow water flows over sedimentary topography. In order to

avoid these difficulties and reconstruct an approximation of Wn
i+1/2, an adaptation of the finite

volume non-homogeneous Riemann solver proposed in [153] is used in the present study.

The Riemann solver has also been extended in [22] for solving dam-break problems over

homogeneous erodible beds. In the present work, the performance of the Riemann solver for

solving shallow water flows over multilayer sedimentary beds is examined. In the splitting

form (3.4.12), the Riemann solver results in a predictor-corrector scheme of the form

Wn
i+1/2 =

1

2

(
Wn

i+1 + Wn
i

)
− 1

2
sgn
[
AAA
(
Ŵn

i+1/2

)] (
Wn

i+1 −Wn
i

)
,

(3.4.13)

Wn+1
i = Wn

i −
∆t

∆x

(
F
(
Wn

i+1/2

)
− F

(
Wn

i−1/2

))
+ ∆tS (Wn

i ) ,

where the averaged state Ŵn
i+1/2 is calculated as

Ŵn
i+1/2 =



Hn
i +Hn

i+1

2√
Hn
i u

n
i +

√
Hn
i+1 u

n
i+1√

Hn
i +

√
Hn
i+1√

Hn
i c̄

n
i +

√
Hn
i+1 c̄

n
i+1√

Hn
i +

√
Hn
i+1

Bn
i +Bn

i+1

2


, (3.4.14)

and the sign matrix in (3.4.13) is given by

sgn
[
AAA
(
Ŵn

i+1/2)
)]

=RRR
(
Ŵn

i+ 1
2

) ∣∣∣ΛΛΛ(Ŵn
i+ 1

2

)∣∣∣−1
ΛΛΛ
(
Ŵn

i+ 1
2

)
RRR−1

(
Ŵn

i+ 1
2

)
. (3.4.15)

The determination of the sign matrix sgn
[
AAA
(
Ŵ
)]

is carried out using the eigenvalues in (3.2.4)

as

sgn
[
AAA
(
Ŵ
)]

=RRR
(
Ŵ
)

sgn
[
ΛΛΛ
(
Ŵ
)]
RRR−1

(
Ŵ
)
,
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where

sgn
[
ΛΛΛ
(
Ŵ
)]

=



sgn
(
λ̂1

)
0 0 0

0 sgn
(
λ̂2

)
0 0

0 0 sgn
(
λ̂3

)
0

0 0 0 sgn
(
λ̂4

)


,

and λ̂k (k = 1, 2, 3, 4) are the eigenvalues in (3.2.4) calculated at the averaged state (3.4.14).

The right and left eigenvector matrices in (3.4.15) are defined by

RRR
(
Ŵ
)

=



−ŝ2 r̂ 1 1

0 r̂û λ̂3 λ̂4

−ŝ2ĉ r̂ĉ− 1 ĉ ĉ

−λ̂3λ̂4 0 0 0


,

RRR−1
(
Ŵ
)

=



0 0 0
−1

λ̂3λ̂4

ĉ 0 −1 0

λ̂4 − ĉr̂ŝ
2ŝ

−1

2ŝ

r̂

2

−ŝ
2λ̂3

− λ̂3 + ĉr̂ŝ

2ŝ

1

2ŝ

r̂

2

ŝ

2λ̂4


,

where ŝ =

√
gĤ is the wave speed and r̂ =

ρ̄s − ρw
2ρ̂

is a density ratio. Using the above matrices,

the averaged state Wn
i+1/2 can be easily obtained from the predictor stage in (3.4.13). Once

these states are computed, the solution Wn+1
i is recovered using the corrector stage in (3.4.13).

For the discretisation of the source terms S and Q in (3.4.12) a well-balanced method is

used as reported in [22]. Here, the discretisation of the source terms produces a scheme that

is well-balanced with the discretisation of the flux gradients using the concept of C-property.

Recall that a numerical scheme is said to satisfy the still-water equilibrium (C-property) for the

equations (3.2.5) if the condition

E −D = 0, u = 0, Bn = B̄(x), H +B = cte1, ρ = cte2, (3.4.16)

holds for stationary flows at rest, cte1 and cte2 are non-negative constants. Therefore, the treat-

ment of source terms in (3.4.13) is reconstructed such that the condition (3.4.16) is preserved
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at the discretised level. Note that, since the density is constant, the concentration is also a

constant. By applying the conditions of zero velocity and a fixed bed to the system (3.2.5),

results in

∂

∂t


H

0

B

+
∂

∂x


0

1

2
H2

0

 =


0

−gH ∂B

∂x

0

 . (3.4.17)

The matrices RRRni+1/2,ΛΛΛ and
(
RRRni+1/2

)−1
, are expressed as

RRRni+1/2 =


1 1 −σ2

−σ σ 0

0 0 σ2

 , ΛΛΛni+1/2 =


−σ 0 0

0 σ 0

0 0 0

 ,

(
RRRni+1/2

)−1

=
1

2


1 −1

σ 1

1 1
σ 1

0 0 2
σ2

 ,

where σ =

√
g
Hn
i +Hn

i+1

2
is the wave speed at the cell interface. When applied to the predictor

step of (3.4.13), the system (3.4.17) becomes

Wn
i+1/2 =



Hn
i +Hn

i+1

2

−
σni+1/2

2

(
Hn
i +Bn

i −Hn
i+1 −Hn

i+1

)
Bn
i +Bn

i+1

2


, (3.4.18)

and the corrector stage updates to

Wn+1
i = Wn

i − g
∆t

2∆x


0(

Hn
i+1/2

)2
−
(
Hn
i−1/2

)2

0

−∆t


0(

gH
∂B

∂x

)n
i

0

 . (3.4.19)

For the stationary solution Wn+1
i = Wn

i . Thus the discretised flux gradients and source terms

in equation (3.4.19) should sum to zero, therefore

g
1

2∆x

((
Hn
i−1/2

)2 − (Hn
i+1/2

)2)
=

(
gH

∂B

∂x

)n
i

. (3.4.20)

Hence we combineHn
i+1/2 =

Hn
i +Hn

i+1

2
andHn

i+1−Hn
i−1 = Bn

i+1−Bn
i−1, and thus equation (3.4.20)
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becomes (
gH

∂B

∂x

)n
i

= g
Hn
i+1/2 +Hn

i−1/2

2

Bn
i+1 −Bn

i−1

2∆x
. (3.4.21)

The source terms in the corrector stage of (3.4.13) are discretised as

S (Wn
i ) =



0

−g
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i−1/2

2
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i−1

2∆x
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g

(
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i+1/2 +Hn

i−1/2

2

)2
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2∆x

0

0


,
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
.

It should be stressed that well-balanced discretisation is key for accurate predictions of sediment

transport by shallow water flows. In practice, if the C-property is not satisfied by the numerical

method then non-physical oscillations may appear in its numerical solutions. Failure to capture

shocks and the presence of instability problems may also occur if the discretisation of the flux

gradients and the discretisation of the source terms are not adequately balanced. This method

is implemented as shown in Figure 3.5.

3.5 Numerical results

This section considers test examples for evolving and steady-state simulations of homogeneous,

non-homogeneous, and graded erodible sediment beds, using the sediment properties presented

in Table 3.1. These parameters have been used in many sediment transport applications, see for

example [151,189,207]. For all results presented in this section ρw = 1000 kg/m3, g = 9.81 m/s2

and ν = 1.2 × 10−6 m2/s. The main goal here is to illustrate the performance of the proposed

Riemann solver coupled with the discretised bed in modelling these situations. The later two

simulations are first tested against experimental data for which only homogeneous single-layered

beds are solved and then extended to show the effects of varying the bed composition. In all

computations, the Courant number Cr = 0.7 is used to vary the time-step ∆t according to the
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Figure 3.5: A flowchart demonstrating the Predictor Corrector steps in the proposed Riemann
Solver. The bed register is highlighted.
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Table 3.1: Sediment characteristics used in the present study [151,189,207].

Type d [mm] Ψ ϕ ωs [m/s] ρs [kg/m3] nm [s/m1/3]

Sand 1 0.0625 0.5 0.015 0.00014 1650 0.012

Sand 2 0.25 0.35 0.015 0.001 1650 0.013

Sand 3 0.20 0.4 0.015 0.0015 1600 0.013

Sand 4 0.16 0.4 0.075 0.019 2650 0.01

Sand 5 0.20 0.4 0.075 0.019 2700 0.01

Sand 6 0.25 0.4 0.075 0.020 2800 0.01

Sand 7 0.16 0.4 0.00004 0.5 1500 0.011

Sediment 1 0.5 0.42 0.00015 0.2 2630 0.01

Sediment 2 1.61 0.42 0.00015 0.2 2630 0.01

Sediment 3 2 0.42 0.00015 0.2 2630 0.01

Sediment 4 2 0.4 0.015 0.2 2650 0.011

Clay 0.07 0.51 0.012 0.0001 1200 0.010

Silt 0.016 0.55 0.01 0.0001 1250 0.010

Pearls 6.1 0.4 0.000015 0.0001 1048 0.025

stability condition

∆t = Cr min

 ∆x

max
k=1,2,3,4

(|λnk |)

,
where λk (k = 1, 2, 3, 4) are the four eigenvalues of the sediment transport system given in system

(3.2.4). Lambdas are used here to enable the reader to track their evolution through chapters.

Note that the above stability condition takes into account the rate of vertical changes and it

ensures that the bed information never jumps more than one vertical cell as long as ∆z ≤ ∆x.

The sediment parameters for all sediments used in this work are listed in Table 3.1.

3.5.1 Verification of C-property

The lake at rest problem is one of the well-established tests for verifying the C-property. Intro-

duced in [25], it requires that a flow at rest should remain at rest for a 1000 s over the uneven

domain shown in Figure 3.6. A period of 1000 s is used as so long as the error remains within

the machine precision, the simulation can be assumed to be indefinitely stable. The simulation

is run with no sediment and over a fixed bed. The water was initially at rest and the free-surface

height was set at 15 m (i.e. H +B = 15 m). As is shown in Figure 3.6, the errors from the sim-

ulation are equivalent to the machine precision. Therefore it can be concluded that the method

is well-balanced and retains the C-property.
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Figure 3.6: The free-surface of the lake at rest flow problem (left) and the associated error in
the water free-surface (right) at t = 1000 s.

3.5.2 Dam-break problems

Dam-break problems over erodible beds formed with homogeneous single-layered sand, hetero-

geneous three-layered sands, and gradually varying sand composition, are depicted in Figure 3.9

and considered in this section. For this evolving problem, the erosion term is given by the

formula (3.2.7). Initially, the bottom topography is assumed to be flat (i.e. B(0, x) = 0) and

at t = 0 the dam breaks and the flow problem yields a shock wave travelling downstream and

a rarefaction wave travelling upstream. To validate the numerical results obtained using the

presented Riemann solver, the dam-break experiment detailed in [39] is considered. In this ex-

periment, the channel is 1.2 m long and the bed is assumed to be homogeneously formed by

spherical pearls with the sediment properties given in Table 3.1. The initial conditions used are

H(0, x) =


0.1 m, if x ≤ 0,

0.01 m, if x > 0,

B(0, x) = 0 m, u(0, x) = 0 m/s, c(0, x) = 0.

The spatial domain is discretised into 150 control volumes, and results for bed and free-surface

are presented. Figure 3.7 shows a comparison of the computed results and measurements ob-

tained for the bed and the water free-surface at time t = 0.505 s. The agreement between

the simulations and measurements is reasonably good. The erosion magnitude and wave-front

location are well predicted by this Riemann solver. As expected an hydraulic jump is formed

near the initial dam place (x = 0 m) and propagates upstream along the channel. However, the

location of the hydraulic jump is less accurately predicted by the numerical model. This may

be attributed to the fact that 3D effects from the experimental set-up have not been accounted
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Figure 3.7: Comparison between numerical results and experimental data for a dam-break prob-
lem over a single-layered bed at time t = 0.505 s.

Figure 3.8: Time evolution of the bed profile (left) and the sediment concentration (right) for a
dam-break problem over the single-layered Taipei experiment bed.

for in the simulation. Time evolutions of the bed profile and the sediment concentration are

presented in Figure 3.8. As the time evolves, the erosion acts on an ever-growing portion of the

bed and the eroded material contributes to the sediment concentration. The proposed Riemann

solver performs very well for this dam-break problem since it does not diffuse the moving bed

and no spurious oscillations have been observed when the water flows over the erodible bed.

Furthermore, the results compare favourably with those reported in [38,162] for the similar test

problems of dam-break flows over erodible beds. Next, the model is tested with a dam-break

problem in a rectangular channel with an heterogeneous bottom initially assumed to be flat.

The channel length is 1000 m and the initial conditions are given by

H(0, x) =


5 m, if x ≤ 500 m,

0.0001 m, if x > 500 m,

B(0, x) = 0 m, u(0, x) = 0 m/s, c(0, x) = 0.0001.
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Figure 3.9: Illustration of a dam-break problem over a single-layered bed (left), a three-layered
bed (middle) and a gradually varying bed (right), all three before discretisation.

Highlighting the effect of making different assumptions on the bed, three situations are modelled:

(i) an homogeneous single-layer bed of Sand 2, (ii) an heterogeneous three-layered bed of Sand

1, Sand 2, and Sand 3, and (iii) a gradually varying bed from Sand 1 to Sand 3. The depth of

the bed is 4 m and for the three-layered situation it is initially formed by

B(0, x, z) =



Sand 1, if − 1.25 m ≤ z < 0 m,

Sand 2, if − 2.5 m ≤ z < −1.25 m,

Sand 3, if − 4 m ≤ z < −2.5 m.

For a gradually varying bed, the initial bed is formed by a gradual variation from Sand 1 to

Sand 3 as

B(0, x, z) =

(
2.5 + z

2.5

)
Sand 1 +

(
z

−2.5

)
Sand 3.

First, a convergence study is performed for the spatial and bed discretisations in order to quantify

the errors and to check the effectiveness of the proposed techniques. To this end, the dam-

break problem over an homogeneous single-layered bed of Sand 2 is considered: this could be

interpreted as an average between the two other situations considered in this test example.

In order to quantify the errors in this example, a reference solution computed using a fine

discretisation with ∆x = 2 m and ∆z = 0.015 m is used as an exact solution. The solutions are

calculated at time t = 20 s, using different spatial and bed discretisations.

Table 3.2 summarizes the errors in the concentration, the bed profiles, and the computational

times for each discretisation combination (∆x,∆z). As can be seen from the results presented

in this table, increasing the number of control volumes in the horizontal spatial discretisation

produces an increase in the accuracy and also in the computational cost of the Riemann solver.

The largest numerical errors are produced by the coarse discretisation (∆x = 3.33 m,∆z =

0.12 m). Table 3.2 shows that, when compared to the horizontal discretisation, the vertical
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Table 3.2: CPU times, error in the concentration, and error in the minimum values of the bed
profile using different spatial and bed discretisation steps ∆x and ∆z.

Horizontal discretisation

∆x = 3.33 m ∆x = 2.86 m ∆x = 2.50 m ∆x = 2.22 m ∆x = 2.00 m

V
er

ti
ca

l
d

is
cr

et
is

at
io

n

∆z =
0.12 m

203 s 262 s 346 s 438 s 540 s

9.17 % 6.62 % 3.08 % 1.95 % 0.69 %

1.79 % 1.27 % 0.92 % 0.52 % 0.17 %

∆z =
0.060 m

205 s 261 s 349 s 446 s 553 s

9.57 % 6.32 % 5.15 % 2.16 % 0.26 %

1.75 % 1.31 % 0.81 % 0.46 % 0.18 %

∆z =
0.030 m

205 s 268 s 351 s 455 s 567 s

9.05 % 7.63 % 4.19 % 2.21 % 1.07 %

1.79 % 1.23 % 0.84 % 0.52 % 0.17 %

∆z =
0.020 m

208 s 280 s 363 s 458 s 567 s

7.96 % 6.40 % 4.11 % 1.76 % 0.71 %

1.83 % 1.25 % 0.66 % 0.52 % 0.15 %

∆z =
0.015 m

208 s 280 s 365 s 461 s 571 s

7.66 % 6.41 % 4.44 % 2.23 % 0.62 %

1.83 % 1.28 % 0.82 % 0.51 % 0.17 %

discretisation has small effects on both efficiency and accuracy. For example, using (∆x =

2.86 m,∆z = 0.12 m) the computational time and the variance in the suspended load error

are respectively 262 s and 1.10 %, whereas using (∆x = 2.22 m,∆z = 0.020 m) these results

are 458 s and 0.34 %. A spatial convergence is clearly achieved in the proposed Riemann

solver for both horizontal and vertical discretisations. For the considered flow and sediment

conditions, a balance between accuracy and efficiency in this method favoured the discretisation

using (∆x = 2.22 m,∆z = 0.020 m).

The performance of the model in situations of dam-break flows over heterogeneous multilayer

beds is assessed. The Riemann solver is run for the three-layered beds, and the gradually

varying beds, using (∆x = 2.22 m,∆z = 0.020 m). Other multilayer simulations with higher

number of layers can also be computed using this model. Figure 3.10 presents water heights,

bed profiles and sediment concentrations for the dam-break problem over a three-layered bed at

four different instants t = 5, 10, 15 and 20 s. Those results obtained for the dam-break problem

over a gradually varying bed are presented in Figure 3.11. Dark and light colours in this figure

are used for the bed of Sand 3 and Sand 1, respectively. As can be observed from these results,

the dam-break flow over the movable bed can build up a heavily concentrated wave-front which
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Figure 3.10: Water heights and bed profiles (left) and sediment concentrations (right) for a
dam-break problem over a three-layered bed at four different instants.

is bounded by the wave forefront and a contact discontinuity of the sediment transport, and it

depresses over the course of the simulation. The bed mobility can strongly modify the water free-

surface profiles and may have considerable implications for flood predictions. As in the previous

simulations, an hydraulic jump in the water free-surface is initially formed around the dam site,

it depresses progressively as it propagates upstream and eventually disappears. It is evident that

the movable bed can be significantly scoured and the dimensions of the scour hole are of a similar

order of magnitude to those of the water flow itself. Therefore, the rate of bed deformation is not

negligible compared to that of the flow change, characterizing the need for coupled modelling

of the strongly interacting flow-sediment-morphology system, as considered in the present work.

From the presented results it can be concluded that the proposed Riemann solver performs

very well for this dam-break problem, since it does not diffuse the moving water-fronts and no

spurious oscillations have been detected when the dam breaks over the sedimentary bed. Finally,

Figure 3.12 shows a comparison of the bed profiles obtained, using the three bed configurations.

It is interesting to note that while all of these cases are approximations of the same situation,

very different final bed profiles are developed. Unfortunately, there is no experimental data to

validate these results, but the proposed method captures the morphodynamic features accurately.
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Figure 3.11: Water heights and bed profiles (left) and sediment concentrations (right) for a
dam-break problem over a gradually varying bed at t = 5 s, 10 s, 15 s, and 20 s.

3.5.3 Stream-flow problems

The performance of the proposed numerical techniques for stream-flow problems over erodible

beds is then examined, and the numerical results are validated against measurements for single-

layered homogeneous beds. The problem of a stream-flow over a dyke studied in the Delft

hydraulics laboratory [81] is a similar test example. Here, the experiment is carried out in

a channel with sides of a 1:10 slope, as sketched in the left plot of Figure 3.13. The bed is

assumed to be single-layered formed with Sand 4, the sediment properties of which are listed in

Table 3.1. Initially the flow is at rest with a water height H(0, x) = 0.39 m, and a velocity of

u(t, x) = 0.51 m/s is set as an upstream boundary condition. For this steady-state problem the

erosion term is given by the formula (3.2.8).

As in the previous example, a study of mesh convergence is performed. Table 3.3 summarizes

the minimum value of the bed profile B, the location (x, z) where this minimum is reached, and

the computational cost obtained at simulation time t = 27000 s. For this steady-state problem,

the mean velocity is slow compared to the previous test example and therefore longer simula-

tion times are required to obtain well-developed morphodynamics. It is clear from the obtained

results that using fine grids yields larger CPU times. Based on the results shown in Table 3.3, a

spatial discretisation with ∆x = 0.2 m is considered for this test example, as the differences in
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Figure 3.12: Comparison of bed profiles obtained for a dam-break problem over single-layered,
three-layered and gradually varying bed at time t = 20 s.

Figure 3.13: Schematic description of the stream-flow problem over a single-layered dyke (left)
and a three-layered dyke (right).

the accuracy between this discretisation and the refined ones using ∆x = 0.15 m or ∆x = 0.1 m

are very small, but the difference in the computational cost is substantial. A comparison be-

tween the computational results and experimental data has also been carried out for this test

problem. Figure 3.14 compares the numerical results for the bed profile at time t = 27000 s to

measurements reported in [81]. In this figure, the initial bed profile is also
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Table 3.3: Convergence results for the stream-flow problem over single-layered dyke.

Discretisation
∆x [m]

Minimum
B [m]

Location of the
minimum B [m,m]

CPU time
[min]

0.6 −0.1250 (16.15,−0.1250) 126

0.5 −0.1173 (16.36,−0.1173) 254

0.2 −0.1103 (16.38,−0.1103) 928

0.15 −0.109 (16.38,−0.1090) 1736

0.1 −0.1083 (16.39,−0.1083) 3774

Figure 3.14: Comparison between numerical results and experimental data for the stream-flow
problem over a single-layered dyke at time t = 27000 s.

Figure 3.15: Time evolution of bed profile (left) and sediment concentration (right) for the
stream-flow problem over a single-layered dyke.

included for comparison reasons. It is clear that the numerical and experimental results

demonstrate similar morphodynamic patterns, and the presented Riemann solver is capable of

accurately capturing both hydrodynamic and morphodynamic features. Both erosion and depo-

sition effects have been numerically resolved using this approach without introducing excessive

numerical diffusion or non-physical oscillations. These effects can be clearly seen in the time

evolution of the bed profile and the sediment concentration shown in Figure 3.15. The minimum
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Figure 3.16: Bed profiles (left) and sediment concentrations (right) for the stream-flow problem
over a three-layered dyke at four instants t = 6750 s, 13500 s, 20250 s, and 27000 s. The
blue and dashed lines in the left plots refer to the water free-surface and the initial bed profile,
respectively.

Figure 3.17: Bed profiles at time t = 27000 s obtained using a single-layered bed (left) and
a three-layered bed (right). The blue and dashed lines in the left plots refer to the water
free-surface and the initial bed profile, respectively.
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values of the bed profiles and their locations obtained using the proposed Riemann solver, are

shown to be similar to the measurements.

It should also be pointed out that in the previous test examples of large-scale dam-break

problems the obtained results do not demonstrate large amounts of deposition, mainly due to

their high levels of scouring. Therefore, the aim of this test example is to demonstrate the effects

of deposition and showcase the phenomenon of armouring. Hence, a new test case is devised

using three discrete sediment layers, The computed results for the bed profiles and sediment

concentrations are illustrated in Figure 3.16 at four different instants t = 6750, 13500, 20250,

and 27000 s, using a spatial discretisation with (∆x = 0.2 m,∆z = 0.002 m). The bed layers

are defined as

B(0, x, z) =



Sand 4, if − 0.05 m ≤ z < 0 m,

Sand 5, if − 0.1 m ≤ z < −0.05 m,

Sand 6, if − 0.2 m ≤ z < −0.1 m,

where the associated sediment properties for Sand 4, Sand 5 and Sand 6 are summarised in

Table 3.1. The deposition effects on the dyke are clearly visible over the time frame. The

variation of the bed sediments creates a very active sediment exchange between the water flow

and the bed. This produces a sharp spatial gradient of sediment concentration presented in

Figure 3.16. As can also be seen, the water free-surface remains almost constant during the

simulation times. It seems that, for the considered sediment conditions, erosion effects are more

pronounced for the first layer of Sand 4 than for the second layer of Sand 5 and third layer of

Sand 6. Figure 3.17 presents a comparison between simulations for the single-layer bed (using

Sand 4 only) and the three-layered bed (using Sand 4, Sand 5, and Sand 6) at time t = 27000 s.

This clearly shows the effects of armouring, as ripples of sediment are created behind the dyke.

This effect varies greatly with the discretisation of the bed and sediment selected, the key lies

not in the individual rills but the area that they cover which was found to be consistent. It

is interesting to see how this finely tuned setup can be altered by the smallest change in the

sediment distribution properties. Again, for the considered sediment properties, both simulations

deliver similar top bed profiles, but using the single-layer bed would not reveal the intermediate

profiles for sedimentary beds.
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3.6 Concluding remarks

A model for handling the sediment transport of multiple particle types from multilayered and

heterogeneously mixed soil beds is presented. The governing equations consist of the shallow

water system for the water flow, a transport equation for the sediments, and a bed Exner-type

equation for the bed. The model avoids a complicated expansion of the governing equations by

treating the sediment as an average for flow calculations, whilst at the same time handling each

sediment separately when considering erosion and deposition. To model erosion and deposition,

empirical equations for high and low shear conditions are used. The vertical exchanges between

the bed layers have been accounted for using a balance law for the bed elevation. The proposed

model is fully coupled and can handle an arbitrary number of layers within the bed topography.

In addition, the governing equations can be formulated as an hyperbolic system of conservation

laws with source terms.

A finite volume Riemann solver has been proposed for the numerical solution of shallow water

flows over multilayer beds. The numerical method uses a class of predictor-corrector procedures

for which the numerical fluxes are reconstructed in the predictor stage using the Jacobian matrix

of the fluxes in the system, followed by a corrector stage to update the solution. A conservative

vertical discretisation of finite volume type for the multilayer bed is considered to allow for

different soil properties. The combined techniques offer an accurate and stable numerical solver

with a well-balanced discretisation of the flux gradient and the source term.

The numerical performance of the proposed solver is examined for several test examples, in-

cluding the lake at rest problem, which verifies the well-balanced property of the method. Then,

a dam-break flow problem over homogeneous, heterogeneously mixed and multilayer erodible

beds is simulated. Next, a stream-flow problem over homogeneous and multilayer erodible

dykes is considered. This test case is first validated using experimental data and then used to

demonstrate the effects of armouring. In these later two problems the model is tested against

experimental data, and found to have good agreement. In all presented results, the proposed

solver has exhibited accurate predictions of both the water free-surface and the bed topography,

with correct conservation properties and stable representations of free-surface response to the

multilayer erodible beds. The advantages of this method is that they do not expand the number

of partial differential equations to be solved, meaning it is very efficient whilst at the same time

offering substantial new features and capabilities for the modeller.



Chapter 4

Modelling and simulation of
multilayer shallow water flows over
erodible beds in one space dimension

This chapter extends the work of one-dimensional methods for sedimentary models to quasi-

two-dimensional. It introduces the Eulerian-Lagrangian Finite Volume (ELFV) method which

is the focus of this thesis. The aim is to develop a fast and accurate numerical method for

multilayer shallow water flows with mass exchange and an erodible bed. The governing equations

consist of the multilayer shallow water equations for the hydraulic variables, a set of transport

equations for the suspended sediments in each layer, a bed Exner-type equation and empirical

equations for erosion and deposition terms. Mass exchange terms between layers account for

both fluid flow and suspended sediment inter-layer exchange. The coupled model for each layer

has been reformulated as a single system of conservation laws with source terms, and a simple

two-step Eulerian-Lagrangian method is presented for its numerical solution. In the first step,

the governing equations are rewritten in a non-conservative form and the numerical fluxes are

calculated using the methods of characteristics. In the second step, the numerical solutions are

updated in a conservative form. Numerical results are presented for a multilayer dam-break

problem over an erodible bed and for a wind-driven recirculation problem over an erodible

non-flat bed. The obtained results for these test examples demonstrate the capabilities of the

combined multilayer flow model and ELFV method to accurately simulate shallow water flows,

including suspended sediments, over erodible beds.

This chapter is structured as follows: Section 4.1 details the background to the sediment

transport limiting assumption tackled in this chapter. In Section 4.2, the model for multilayer

shallow water flows over erodible beds is presented. The ELFV method for solving the governing

equations is formulated in Section 4.3, together with the reconstruction of numerical fluxes using

the modified method of characteristics and the discretisation of the source terms in the model.

89
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The novel experimental method used to obtain data for a one-dimensional dam-break is detailed

in Section 4.4. Section 4.5 examines the numerical performance of the proposed model using two

test examples. The numerical results for both a dam-break flow and a wind-driven flow over

erodible beds are then presented. Finally, a summary of this chapter is given in Section 4.6.

4.1 Modelling sediment transport flows using the multilayer ap-

proach

Due to their three-dimensional (3D) nature and algorithmic complexity, most free-surface flows in

real-world domains with complex and movable geometry require huge computational expenditure

[116]. If the vertical scale of these problems is much smaller than the two horizontal scales, it can

be averaged out to form the Shallow Water Equations (SWEs). These can be derived from the

non-stationary 3D incompressible Navier-Stokes equations. This method allows for the modelling

of many real-world flows (channels, rivers, estuaries, reservoirs, and coastal regions, together with

a variety of wave and steady flow conditions). The depth-averaged velocity assumptions have

been a limiting factor to wider adoption of the SWEs. Thus, two classes of multilayer models

have been developed over the last two decades: one in which the layers of separate fluids are

immiscible, see for example [29, 82], whilst the other is based on a single fluid and allows for

fluid exchange, examples of this can be found in [13,70]. The advantage of both methods is that

they avoid highly computationally expensive Navier-Stokes formulations and, at the same time,

obtain vertically stratified horizontal velocities. The modelling of the sediments along with the

water flows that transport them is a non-trivial problem: their interaction and spacing in a fluid

is not accurately represented by the single-layer SWEs. For most entrainment and deposition

equations a bed level concentration factor is used. By contrast, this study presents a model

which, through the calculation of multiple fluid layers, allows for sediment concentration to vary

with depth. Although much work has been done on vertical diffusion [92,164], this study differs

in that different layers are able to capture different concentrations without relying on vertical

velocities. There are four main modes of sediment transport: (i) bedload, which is completely

supported by the bed; (ii) intermittently suspended load, where the bed and water support

the weight of the sediment; (iii) suspended sediment, where the fluid completely supports the

sediment, and (iv) wash load, which is kept suspended by the Brownian motion of the fluid.

One of the more complex challenges in sediment transport modelling is correctly accounting

for these different modes of transport, especially the bedload and suspended load as they form

a multi-scale problem due to their differences in characteristic speeds. This is tackled by the

multilayer method through the use of different speeds for different layers, combined with a
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vertical distribution of sediment.

A large amount of work has been done on the effects of flows on sediment beds, see for

example [177,192]. Almost all models rely on the experimental data for sediments that form the

basis of an empirical formula, such as those reported in [151] among others. Many methods of

modelling sediment transport exist: from particle tracking [63] to sediment balance models such

as ESTMORPH [199]. In this chapter, a suspended load flux is calculated by empirical erosion

and deposition formulae. The formulae employ flow characteristics and sediment properties to

calculate erosion and deposition separately. An increasing number of models use both bedload,

and suspended load equations. The presented model does not require this, as it considers multiple

fluid layers and can easily model the bedload in the slower moving bottom layer. Over the years

many sediment transport functions have been developed [64, 105]. Over time, three of these

have become popular: (i) the Grass model [78], (ii) the Meyer-Peter and Muller model [122] and

(iii) the Van Rijn model [186]. In this chapter, the Van Rijn style relations are used. This set

of expressions are selected because of the accurate results they provide for various test cases,

as well as the fact that they are easily able to be modified for different sediment types. The

accuracy of the model is verified against several test examples in evolving and steady-state flow

domains and a comparison to new experimental data for a dam-break problem in one space

dimension.

The goal of this chapter is to extend [12] to include sediment transport. For the predic-

tor stage, the SWEs are rewritten in a non-conservative form and then integrated along the

characteristic curves. From here it is possible to reconstruct the fluxes required for the second

stage which is reached by integrating the governing equations (including an Exner-type equa-

tion for the bed) in Eulerian time and space. This forms the conservative corrector stage in the

Eulerian-Lagrangian Finite Volume (ELFV) method.

4.2 Multilayer shallow water flows with sediment transport

Multilayer flow systems are usually obtained through the simplifications of 3D Navier-Stokes

equations which include the shallow water assumptions, compare [12–14] among others. This

study presents a one-dimensional (1D) version of the SWE model for each of the layers of fluid,

including species conservation for sediment transport. A bed Exner-type equation is added

to model the bed. The system includes terms for both mass exchange between the layers, and

between the erodible bed and the water flow. This derivation is based on work conducted in [11],

but developed to include exchange terms for sediment and a moveable bed. In order to derive

this model we begin with the incompressible form of the Navier-Stokes equations (2.1.1) (in
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Chapter 2 on page 10), for which we then remove the y-dimension as

∂u

∂x
+
∂w

∂z
= 0,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+
∂p

∂x
=

∂Σxx

∂x
+
∂Σxz

∂z
, (4.2.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+
∂p

∂z
= −g +

∂Σzx

∂x
+
∂Σzz

∂z
,

where p denotes pressure and g is acceleration due to gravity. The chosen form of the viscosity

tensor is symmetric and defined by

Σxx = 2ν
∂u

∂x
, Σzz = 2ν

∂w

∂z
, Σxz = Σzx = ν

(
∂u

∂z
+
∂w

∂x

)
,

where ν is the viscosity coefficient. The kinematic boundary condition at the water surface can

be written thus
∂ϑ

∂t
+ ufs

∂ϑ

∂x
− wfs = 0, (4.2.2)

where ufs and wfs are the velocity components at the surface. As we are modelling a sedimentary

system, erosion and deposition can occur, and therefore we consider the bed level kinematic

boundary condition to be
∂B

∂t
+ uB

∂B

∂x
− wB = 0, (4.2.3)

where uB and wB are the velocity components at bed level and B is the bed height. Next, we

consider the boundaries of the flow domain: we define nfs as the unit normal to the surface and

nB as the unit normal to the bed by

nfs =
1√

1 +

(
∂ϑ

∂x

)2


−∂ϑ
∂x

1

 , nB =
1√

1 +

(
∂B

∂x

)2


−∂B
∂x

1

 .

We also use ΣT to denote the total stress tensor

ΣT = −pId +


Σxx Σxz

Σzx Σzz

 .
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Figure 4.1: A simple illustration of multilayer shallow water flows over erodible beds.

Including the effects of wind, we describe the stresses at the free-surface boundary as

ΣTnfs = −panfs, (4.2.4)

where pa = pa(t, x) is the atmospheric pressure function. Thus,

nfs · ΣTnfs = −pa, tfs · ΣTnfs = 0,

where tfs is orthogonal to nfs. For the fluid stresses at the bed we consider a wall law in the

form

ΣTnB − (nB · ΣTnB)nB = κ(vB, H)vB, (4.2.5)

where

vB = uB −


0

∂B

∂t

 ,

is the relative velocity between the bed and the bottom of the fluid. Thus

κ(vB, H) = κl + κtH|vB|,

where κl is the laminar and κt is the turbulent friction coefficient. As a result of thermomechan-

ical considerations we denote κ(vB, H) ≥ 0 and we denote κ(vB, H) = κ. As with the surface
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boundary condition, the bed surface conditions are

tB · ΣTnB = κvB · tB, vB · nB = 0.

Next, we rescale the system using the quantities h and Λ as the characteristic dimensions along

the z and x dimensions. We denote afs as the typical wave amplitude, aB as the typical bed

variation, and C =
√
gh as the typical horizontal wave speed. Two basic relations for our system

are created

ε =
h

λ
, δ =

afs
h
.

For the bathymetry we find
aB
h

= O(0). For the shallow water system we are considering, we

also use the characteristic quantities λ = TC for speed, W =
afs
T

= εδC for the vertical velocity,

U =
W

ε
= δC for the horizontal velocity, and PP = C2 for pressure. From there, we obtain the

following dimensionless quantities

x̃ =
x

Λ
, z̃ =

z

h
, ϑ̃ =

ϑ

afs
, t̃ =

t

T
, p̃ =

p

P
, ũ =

u

U
, w̃ =

w

W
. (4.2.6)

It is important to note that from this it can be implied that δ = U
C so δ corresponds to the

Froude number. If δ = O(1), then U ≈ C and the classic rescaling used for the shallow water

system is gained. For the bed height B we consider B(t, x) = ZB(x) + zB(t), from this the

following dimensionless quantities are also produced

B̃ =
ZB
h
, z̃B =

zB
aB

.

Thus,
∂B

∂t
= εδC

∂z̃B

∂t̃
,

∂B

∂x
= ε

∂B̃

∂x̃
.

Further we use

ν̃ =
ν

λC
, κ̃ =

κ

C
.

It is also assumed that the regime is asymptotic and therefore

κν = εκ0, ν̃ = εν0,

where

κ0 = κl,0 + εκt,0(ṽB, H̃),
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where κl,0 is constant. When the non-dimensional relations are applied to Navier-Stokes system

in (4.2.1) we gain

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0, (4.2.7a)

εδ
∂ũ

∂t̃
+ εδ2∂ũ

2

∂x̃
+ εδ2∂(ũw̃)

∂z̃
+ ε

∂p̃

∂x̃
= ε2δ

∂

∂x̃

(
2ν0

∂ũ

∂x̃

)
+

∂

∂z̃

(
δν0

∂ũ

∂z̃
+ ε2δν0

∂w̃

∂x̃

)
, (4.2.7b)

ε2δ

(
∂w̃

∂t̃
+ δ

∂(ũw̃)

∂x̃
+ δ

∂w̃2

∂z̃

)
+
∂p̃

∂z̃
= −1 + εδν0

∂

∂x̃

(
∂ũ

∂z̃
+ ε

∂w̃

∂x̃

)
+ εδ

∂

∂z̃

(
2ν0

∂w̃

∂z̃

)
. (4.2.7c)

Now by applying the divergence free condition, we can re-write equations (4.2.7b) and (4.2.7c)

and applying the boundary conditions (4.2.2) - (4.2.5) we gain

∂ϑ̃

∂t̃
+ δũfs

∂ϑ̃

∂x̃
− w̃fs = 0, (4.2.8a)

2εδν0
∂w̃

∂z̃

∣∣∣∣
fs

− p̃fs − εδ2ν0
∂ϑ̃

∂x̃

(
∂ũ

∂z̃

∣∣∣∣
fs

+ ε2 ∂w̃

∂x̃

∣∣∣∣
fs

)
= −δp̃a, (4.2.8b)

δν0

(
∂ũ

∂z̃

∣∣∣∣
fs

+ ε2 ∂w̃

∂x̃

∣∣∣∣
fs

)
− εδ∂ϑ̃

∂x̃

(
2εδν0

∂ũ

∂x̃

∣∣∣∣
fs

− p̃fs

)
= εδ2∂ϑ̃

∂x̃
p̃a, (4.2.8c)

∂z̃B

∂t̃
+ ũB

∂B̃

∂x̃
− w̃B = 0, (4.2.8d)

δν0

(
ε2 ∂w̃

∂x̃

∣∣∣∣
B

+
∂ũ

∂z̃

∣∣∣∣
B

)
− ε∂B̃

∂x̃

(
2εδν0

∂ũ

∂x̃

∣∣∣∣
B

− pB
)

+

ε
∂B̃

∂x̃

(
2εδν0

∂w̃

∂z̃

∣∣∣∣
B

− pB − εν0
∂B̃

∂z̃

(
δ
∂ũ

∂z̃

∣∣∣∣
B

+ ε2δ
∂w̃

∂x̃

∣∣∣∣
B

))
=

εδκ0

√√√√1 + ε2

(
∂B̃

∂x̃

)2(
ũBε

2∂B̃

∂x̃

(
w̃B −

∂z̃B

∂t̃

))
. (4.2.8e)

At this point, some of the viscosity tensor terms are very small and can be neglected. At this

stage we also drop the “ ˜ ” notation. By only preserving high order terms we arrive at

∂u

∂x
+
∂w

∂z
= 0, (4.2.9a)

εδ
∂u

∂t
+ εδ2∂u

2

∂x
+ εδ2∂(uw)

∂z
+ ε

∂p

∂x
= ε2δ

∂

∂x

(
2ν0

∂u

∂x

)
+

∂

∂z

(
δν0

∂u

∂z

)
, (4.2.9b)

ε2δ

(
∂w

∂t
+ δ

∂(uw)

∂x
+ δ

∂w2

∂z

)
+
∂p

∂z
= −1 +

∂

∂x

(
εδν0

∂u

∂z

)
+

∂

∂z

(
2εδν0

∂w

∂z

)
. (4.2.9c)
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Thus it is possible to neglect the ε2∂w

∂x
term. By only considering high-order terms and the

same boundary conditions we arrive at

∂ϑ

∂t
+ δufs

∂ϑ

∂x
− wfs = 0, (4.2.10a)

2εδν0
∂w

∂z

∣∣∣∣
fs

− pfs − εδ2ν0
∂ϑ

∂x

∂u

∂z

∣∣∣∣
fs

= −δpa, (4.2.10b)

δν0
∂u

∂z

∣∣∣∣
fs

− εδ∂ϑ
∂x

(
2εδν0

∂u

∂x

∣∣∣∣
fs

− pfs

)
= εδ2∂ϑ

∂x
pa, (4.2.10c)

∂B

∂t
+ uB

∂B

∂x
− wB = 0, (4.2.10d)

δν0
∂u

∂z

∣∣∣∣
B

− ε∂B
∂x

(
2εδν0

∂u

∂x

∣∣∣∣
B

− pB
)

+ ε
∂B

∂x

(
2εδ ν0

∂w

∂z

∣∣∣∣
B

− pB − εδν0
∂ZB
∂x

∂u

∂z

∣∣∣∣
B

)

= εδκ0

(
1 + ε2

(
∂B

∂x

)2
)3/2

uB. (4.2.10e)

Next, our focus turns to the hydrostatic and non-hydrostatic pressure terms. The integration of

equation (4.2.10d) from z to ∂ϑ gives

ε2δ

∫ δϑ

z

(
∂w

∂t
+ δ

∂(uw)

∂x

)
dz + ε2δ2(w2

fs − w2) + pfs − p = z − δϑ+ εδ

∫ δϑ

z

∂

∂x

(
ν0
∂u

∂z

)
dz −

2εδν0
∂w

∂z
+ 2εδν0

∂w

∂z

∣∣∣∣
fs

. (4.2.11)

By combining equations (4.2.8b) and (4.2.8c) we arrive at

∂u

∂z

∣∣∣∣
fs

= O(ε2),

then (4.2.8b) yields

pfs = δpa + 2εδ
∂w

∂z

∣∣∣∣
fs

+O(ε3δ2). (4.2.12)

By combining the boundary condition (4.2.8a) with (4.2.11) we arrive at

ε2δ

(
∂

∂z

∫ δϑ

z
w dz + δ

∂

∂x

∫ δϑ

z
(uw) dz

)
− ε2δ2w2 + δpa − p = εδ

∫ δϑ

z

∂

∂x

(
ν0
∂u

∂z

)
dz +

2εδν0
∂w

∂z
+O(ε3δ)− (δϑ− z).

We also use the classical relation used in [11]

∂ufs
∂x

=
∂u

∂x

∣∣∣∣
fs

+ δ
∂ϑ

∂x

∂u

∂z

∣∣∣∣
fs

=
∂u

∂x

∣∣∣∣
fs

+O(ε2δ). (4.2.13)



4.2 Multilayer shallow water flows with sediment transport 97

By combining (4.2.9a) and (4.2.13) and using the Leibniz rule we obtain

εδ

∫ δϑ

z

∂

∂x

(
ν0
∂u

∂z

)
dz − 2εδν0

∂w

∂z
= εδν0

∂u

∂x
+ εδν0

∂u

∂x

∣∣∣∣
fs

+O(ε3δ).

Thus, the pressure can be expressed as

p = ph + pnh +O(ε3δ).

As we are considering a shallow water system, we have a hydrostatic pressure assumption

p = ph +O(ε2δ), (4.2.14)

where the hydrostatic pressure is given by

ph = δpa + (δϑ− z)− 2εδν0
∂u

∂x
. (4.2.15)

By considering (4.2.8c), (4.2.8e) and (4.2.12) we arrive at

∂u

∂z

∣∣∣∣
fs

= O(ε2),
∂u

∂z

∣∣∣∣
B

= O(ε). (4.2.16)

By combining (4.2.15) and (4.2.14), we gain

∂p

∂x
= O(δ),

and this combined with (4.2.9b) yields

ν0
∂2u

∂z2
= O(ε).

Combining the equation (4.2.16) with the above relation leads to

u(x, z, t) = u(x, 0, t) +O(ε).

Next we define an averaged velocity and water height

ū =
1

δϑ−B

∫ δϑ

B
u dz, H = ϑ−B.
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This allows us to form the following relation in which the system (4.2.9) with the hydrostatic

pressure (4.2.14) and (4.2.15) results in

∂H

∂t
+
∂(Hū)

∂x
= 0, (4.2.17a)

∂(Hū)

∂t
+
∂(Hū2)

∂x
+

1

2
g
∂H2

∂x
= −H∂pa

∂x
− gH ∂B

∂x
+

∂

∂x

(
4νH

∂ū

∂x

)
− κ(v̄H)

1 +
κ(v̄, H)

3ν
H

ū.

The fluid layer is then divided into M vertically stacked layers, where each layer has a height

hα. Where

hα = Hlα,

and lα is the proportional height of the αth layer. Thus, we need a new notation for u, and we

therefore relate

umc(x, z, {zα}, t) =

M∑
α=1

1[zα−1/2,zα+1/2](z)uα(x, t),

where uα, α ∈ {1, . . . ,M} are the velocities of each layer as shown in Figure 4.1. Next,

it is important to quantify the error between u and the piecewise approximation umc. By

considering (4.2.16) we arrive at

∂u

∂z
= O(ε2), for z ≥ z3/2.

Thus, for all layers where α > 1

u(w, z, t)− uα(x, t) = O(ε2). (4.2.18)

For α = 1 we have

u(w, z, t)− u1(x, t) = O(ε).

Through a parabolic correction it can be shown [31, 73] that we obtain a good approximation

for velocity with

u =

(
1 +

εκ0

ν0

(
z −B − (z −B)2

2H
− H

3

))
u1 +O(ε2). (4.2.19)

Next, we consider the horizontal velocity equation (4.2.9b) and integrate it over the vertical

dimension in the interval [zα−1/2, zα+1/2], and using approximations along the lines of (4.2.19)

we can obtain
1

hα

∫ zα+1/2

zα−1/2
u2(x, z, t) dz = u2

α +O(ε2). (4.2.20)
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We can also consider the gravitational part of the pressure as

∫ zα+1/2

zα−1/2

∂

∂x
(δϑ− z) dz =

1

2lα

∂h2
α

∂x
+
hα
lα

∂B

∂x
, (4.2.21)

and the viscous part of pressure leads to

∫ zα+1/2

zα−1/2

∂

∂x

(
2ν
∂u

∂x

)
dz =

∂

∂x

(
2νhα

∂uα
∂x

)
+ 2ν

[
∂zj
∂x

∂uj
∂x

]j=α+1/2

j=α−1/2

+O(ε2δ). (4.2.22)

Finally, we must account for the viscous terms of the right hand side of the equation (4.2.9b)

which gives us

∫ zα+1/2

zα−1/2

∂

∂z

(
ν0
∂u

∂z

)
dz = ν0

∂u

∂z

∣∣∣∣
zα+1/2

− ν0
∂u

∂z

∣∣∣∣
zα−1/2

,

≈ 2ν
uα+1 − uα
hα+1 + hα

− 2ν
uα − uα−1

hα + hα−1
. (4.2.23)

Thus, by combining (4.2.18)-(4.2.23) with the system (4.2.9) we gain the system

∂H

∂t
+

M∑
α=1

∂(hαuα)

∂x
= 0,

∂(h1u1)

∂t
+
∂(h1u

2
1)

∂x
+

1

2

g

l1

∂h2
1

∂x
= −h1

∂pa

∂x
− gh1

∂B

∂x
+ u3/2Ex3/2 +

∂

∂x

(
4νh1

∂u1

∂x

)
−

4ν
∂z3/2

∂x

∂u3/2

∂x
+ 2ν

u2 − u1

h2 + h1
− κ(v̄, H)u1,

∂(hαuα)

∂t
+
∂(hαu

2
α)

∂x
+

1

2

g

lα

∂h2
α

∂x
= −hα

∂pa

∂x
− ghα

∂B

∂x
+ uα+1/2Exα+1/2 − uα−1/2Exα−1/2 +

2ν

(
∂

∂x

(
2hα

∂uα
∂x

)
+
uα+1 − uα
hα+1 + hα

−uα − uα−1

hα + hα−1
− 2

[
∂zj
∂x

∂uj
∂x

]j=α+1/2

j=α−1/2

)
, α = 2, . . . ,M− 1,

∂(hMuM)

∂t
+
∂(hMu

2
M)

∂x
+

1

2

g

lM

∂h2
M

∂x
= −hM

∂pa

∂x
− ghM

∂B

∂x
− uM−1/2ExM−1/2 +

∂

∂x

(
4νhM

∂uM

∂x

)
+

4ν
∂zM−1/2

∂x

∂uM−1/2

∂x
− 2ν

uM − uM−1

hM + hM−1
.

Note that we have also dropped the O(ε2δ) terms, neglected horizontal viscosity and set pa = 0.

We combine the equations above into the simplified system

∂hα
∂t

+
∂ (hαuα)

∂x
= Exα+1/2 − E

x
α−1/2,

(4.2.24)
∂ (hαuα)

∂t
+

∂

∂x

(
hαu

2
α +

1

2lα
gh2

α

)
= −ghα

∂B

∂x
+ Fα.
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In (4.2.24), Fα includes the inter-layer forces as defined below and Exα±1/2 are mass exchange

terms between the layers, including erosion and deposition in the lower layer, as

Exα−1/2 =



−E1 −D1

1− Ψ
, if α = 1,

α∑
β=1

(
∂(hβuβ)

∂x
− lβ

M∑
γ=1

∂(hγuγ)

∂x

)
, if α = 2, . . . ,M,

0, if α > M,

where Ψ is the porosity and E1 and D1 represent the entrainment and deposition terms between

the flow and bottom layer. This chapter considers both bedload and suspended sediments as one

variable within the multilayer shallow water system (4.2.24). This is reasonable as the bedload

is accounted for in the bottom layer moving at a different speed to the main fluid flow. To this

end, the depth-averaged concentration cα for the αth layer is defined as

cα =
ρα − ρw
ρs − ρα

,

where ρα is the density of the fluid-sediment mixture in the αth layer. Hence, the governing

equations considered are

∂H

∂t
+

M∑
α=1

∂(hαuα)

∂x
=

E1 −D1

1− Ψ
,

∂ (hαuα)

∂t
+

∂

∂x

(
hαu

2
α +

1

2
ghαH

)
= −ghα

∂B

∂x
− (ρs − ρw)

2ρα
gh2

α

∂cα
∂x

+ Fα,

∂(hαcα)

∂t
+

∂

∂x

(
hαuαcα

)
= Eα −Dα + cα+1/2Exα+1/2 − cα−1/2Exα−1/2 + (4.2.25)

εc

(
∂2c∆,α−1/2

∂z2
−
∂2c∆,α+1/2

∂z2

)
,

∂B

∂t
= −E1 −D1

1− Ψ
,

where the external force Fα acting on the αth layer accounting for friction and momentum

exchange effects, is

Fα = F (u)
α + F (b)

α + F (w)
α + F (µ)

α , (4.2.26)

with F
(u)
α related to the momentum exchanges between the layers. Extra momentum correction
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terms are applied to account for the movement of sediment between the bed and the layers.

F (u)
α = uα+1/2Exα+1/2 − uα−1/2Exα−1/2 −

1

lα

(ρ0 − ρα)(Eα −Dα)uα
ρα(1− Ψ)

−

(ρs − ρw)

2ρα
gh2

α

(
εc
∂2c∆,α−1/2

∂z2
− εc

∂2c∆,α+1/2

∂z2
+ cα+1/2Exα+1/2 − cα−1/2Exα−1/2

)
,

where ρ0 is the density of the saturated bed related to the porosity as

ρ0 = ρwΨ + ρs(1− Ψ),

and the intermediate velocity uα+1/2 and concentration cα+1/2 is reconstructed using an upwind

method based on the sign of the mass exchange term as

uα+1/2 =


uα, if Exα+1/2 ≥ 0,

uα+1, otherwise,

cα+1/2 =


cα, if Exα+1/2 ≥ 0,

cα+1, otherwise.

It should be stressed that another method used in [14]

uα+1/2 =
uα+1 + uα

2
,

is also possible. The vertical kinematic eddy viscosity term F
(µ)
α in (4.2.26) takes into account

the friction between neighbouring layers as

F (µ)
α =



−2ν
uα−1 − uα

(lα−1 + lα)H
, if α = M,

2ν
uα+1 − uα

(lα+1 + lα)H
− 2ν

ul−1 − uα
(lα−1 + lα)H

, if α = 2, . . . ,M− 1,

2ν
ul+1 − uα

(lα+1 + lα)H
, if α = 1,

where ν is the eddy viscosity. The external bed friction term F
(b)
α in (4.2.26) is given as

F (b)
α =


− gn

2
m

H1/3
u1|u1|, if α = 1,

0, otherwise,

where nm is the Manning roughness coefficient. The surface wind force F
(w)
α in (4.2.26) is defined



102 Modelling multilayer shallow water flows over beds in one dimension

as

F (w)
α =


−σ

2ρa
H

(Uwi − uM)|(Uwi − uM)|, if α = M,

0, otherwise,

where Uwi is the wind velocity at 10 m above the water surface and σ is the wind stress

coefficient. Note that for the bottom layer an equation that relates the effects of an erodible

bed is included in the model (4.2.25). These equations are presented in a general form such that

appropriate erosion and deposition equations can be substituted with ease. Thus, to determine

the entrainment and deposition terms in (4.2.25), the empirical relations reported in [35] are

used

Dα =


ws(1− cB)2cB, if α = 1,

0, otherwise,

where ws is the settling velocity of the sediment and cB is a near bed concentration factor as

used in the previous chapter. For the entrainment of the material, the following relation is used

Eα =


ϕ
τ − τcr
h1

u1d
−0.2, if τ ≥ τcr and α = 1,

0, otherwise,

where the erosion coefficient is denoted by ϕ, τcr is the critical shear stress and d is the diameter

of the sediment particle. Note that these equations for the entrainment and depositions have

been widely used in the literature for the conventional single-layer shallow water flows over

erodible beds, see [22] and further references therein.

No vertical velocities are calculated in this model, but vertical sediment diffusion is a major

problem for a formulation of this type. Thus, a sediment diffusion coefficient εc is introduced

in this study. Research has been undertaken to both measure [191] and compute [83, 92] the

vertical diffusion of sediment in flows. Figure 4.2 shows a typical sediment distribution in a

water flow. As the shape, size, and precise sediment distribution for various sediments types

has been categorised, a simplistic method for vertical distribution is proposed. Calculating the

diffusion for each cell boundary is computationally expensive, consequently a distribution curve

for the quantity of diffusion is implemented. The curve is calculated by comparing the sediment

to be diffused to the portion that should be diffused, for example C0 =
1

z
. Then, by applying

the limits for each layer, the curve yields

C0,α =

(
ln(zα+ 1

2
)− ln(zα− 1

2
)

ln(h+ λc)− ln(h0.05 + λc)

)
M∑
α=1

(cαhα) ,
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Figure 4.2: Typical sediment distribution in a water flow [115].

where zα is the height of the αth layer, h0.05 is the effective bottom (i.e. where bedload takes

over) and λc is a empirically measured coefficient used to describe the concentration curve. The

quantity of diffusible material at each layer interface is defined as

∂2c∆,α+ 1
2

∂z2
=



0, if α ≤ 0.

1

hα
(C0,α+1 − cα+1hα+1 − C0,α + cαhα) , if α = 1, . . . ,M− 1

0, if α ≥ M.

Note that this method is easily adaptable to any sediment distribution curve and, as the dis-

tribution curve can be calculated in advance of any time-stepping procedure, it is efficient. For

ease of presentation, the above equations are re-arranged into a compact vector form as

∂W

∂t
+
∂F(W)

∂x
= Q(W) + R(W), (4.2.27)

where W is the vector of conserved variables, F(W) is the vector of flux functions, Q(W) and
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R(W) are the vectors of source terms.

W =



H

Hu1

Hc1

Hu2

Hc2

...

HuM

HcM

B



, F(W) =



M∑
α=1

lαHuα

Hu2
1 +

1

2
gH2

Hu1c1

Hu2
2 +

1

2
gH2

Hu2c2

...

Hu2
M +

1

2
gH2

HuMcM

0



, Q(W) =



0

−gH ∂B

∂x
− (ρs − ρw)

2ρ1
gl1H

2∂c1
∂x

0

−gH ∂B

∂x
− (ρs − ρw)

2ρ2
gl2H

2∂c2
∂x

0

...

−gH ∂B

∂x
− (ρs − ρw)

2ρM

glMH
2∂cM
∂x

0

0



,

R(W) =



E1 −D1

1− Ψ

− 1

l1

(
F

(u)
1 + F

(b)
1 + F

(µ)
1

)
E1 −D1 − Ex3/2c3/2 − εc

∂2c∆,3/2

∂z2

− 1

l2

(
F

(u)
2 + F

(µ)
2

)
+Ex5/2c5/2 − Ex3/2c3/2 + εc

∂2c∆,3/2

∂z2
− εc

∂2c∆,5/2

∂z2

...

− 1

lM

(
F

(u)
M + F

(w)
M + F

(µ)
M

)
−ExM−1/2cM−1/2 + εc

∂2c∆,M−1/2

∂z2

−E1 −D1

1− Ψ



.

The novelty of this formulation as compared to previous models is the inclusion of a moveable

bed and exchange terms between layers. This is done in order to accurately capture and predict

the distribution of sediment in the fluid flow. It should be stressed that the source term Q

contains the first-order differential terms, while the remaining forces are included in the source

term R. This structure is useful as it allows for a time splitting operator in (4.2.27), for which

the source terms Q and R are treated separately in different stages of the splitting.



4.3 The ELFV method for a multilayer system 105

4.3 Eulerian-Lagrangian finite volume method for the multi-

layer system

To integrate the system (4.2.27) in time, the time domain is divided into subintervals [tn, tn+1]

with length ∆t = tn+1 − tn and the notation Wn is used to denote the value of a generic

function W at time tn. Here, a second-order splitting procedure, reported in [172] is considered

and carried out in three stages as:

Stage 1: Solve for W∗

∂W∗

∂t
= R(W∗), t ∈ (tn, tn+1/2],

(4.3.28)

W∗(tn) = W(tn).

Stage 2: Solve for W∗∗

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
= Q(W∗∗), t ∈ (tn, tn+1],

(4.3.29)

W∗∗(tn) = W∗(tn+1/2).

Stage 3: Solve for W∗∗∗

∂W∗∗∗

∂t
= R(W∗∗∗), t ∈ (tn+1/2, tn+1],

(4.3.30)

W∗∗∗(tn+1/2) = W∗∗(tn+1).

To complete the time integration the explicit third-order Runge-Kutta method [161] is used.

This is to ensure that only the space interpolation in the Method of Characteristics (which is

1st or 2nd depending on whether linear or quadratic interpolation is used) is the limiting factor.

By going an order of accuracy further with the time integration we ensure this.

For example, to advance the solution of (4.3.28) from time tn to time tn+1 the following is

used

W(1) = Wn + ∆tR (Wn) ,

W(2) =
3

4
Wn +

1

4
W(1) +

1

4
∆tR

(
W(1)

)
, (4.3.31)

Wn+1 =
1

3
Wn +

2

3
W(2) +

2

3
∆tR

(
W(2)

)
.



106 Modelling multilayer shallow water flows over beds in one dimension

The asterisk is dropped off the vectors of conserved variables for ease in the notation. The

method is stable under the usual Courant-Friedrichs-Lewy (CFL) condition using the eigenvalues

of the system under study.

Explicit expressions of the eigenvalues for the system (4.2.27) are not trivial to find and,

as with multilayer SWEs over fixed beds, complex eigenvalues can occur. In these cases, the

multilayer system (4.2.27) ceases to be hyperbolic and yields to the so-called Kelvin-Helmholtz

instabilities at the interfaces between the flow layers. As a consequence, most FVMs based on

Riemann solvers would fail to resolve the multilayer SWEs over erodible beds. The present

study considers the ELFV method introduced in [24]. In this section, the Eulerian-Lagrangian

formulation for the system (4.2.27) is described.

The spatial domain is discretised into control volumes [xi−1/2, xi+1/2] centred at xi with a

step size ∆x. For the space discretisation of the equations (4.2.27), the following notations are

used

Wi± 1
2
(t) = W(t, xi± 1

2
), Wi(t) =

1

∆x

∫ x
i+1

2

x
i− 1

2

W(t, x) dx,

to denote the point-values and the approximate cell-average of the variable W at the gridpoint

(t, xi± 1
2
) and (t, xi), respectively. Integrating the equations (4.3.29) with respect to space over

the control volume, the following semi-discrete equations are obtained

dWi

dt
+
FFF i+1/2 −FFF i−1/2

∆x
= Qi, (4.3.32)

where FFF i±1/2 = F(Wi±1/2) are the numerical fluxes at the cell interfaces x = xi±1/2. In

equation (4.3.32), Qi is a consistent discretisation of the source term Q in (4.2.27). In order to

reconstruct the numerical fluxes FFFni∓1/2, the Method of Characteristics (MoC) is applied to the

advective components of the system shown in stage (4.3.29). In order to reconstruct the fluxes

FFFni∓1/2, the MoC is applied to the advective form of the system. Without accounting for the

source term R(W), the equations in (4.2.25) are reformulated into advective form,

∂H

∂t
+

( M∑
α=1

lαuα

)
∂H

∂x
= −

M∑
α=1

lαH
∂uα
∂x

,

∂(Huα)

∂t
+ uα

∂(Huα)

∂x
= −Huα

∂uα
∂x
− gH ∂(H +B)

∂x
− (ρs − ρw)

2ρα
glαH

2∂cα
∂x

, (4.3.33)

∂(Hcα)

∂t
+ uα

∂ (Hcα)

∂x
= −H∂(uαcα)

∂x
.

The proposed ELFV method does not require the calculation of the eigenvalues for the multilayer

system, and the selection of time-steps can be carried out using the eigenvalues associated with
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the single-layer shallow water counterparts defined as

λ±α = uα ±
√
gH, α = 1, 2 . . . ,M.

This is because the eigenvalues estimate the maximum wave speed thus ensuring that shock-

waves do not cross cell boundaries. As each individual layer’s wave speed is effected by its

neighbours during the second step of the calculation this assumption is found to be reasonable

The maximum stable step size, as with all explicit time-stepping methods, is dictated by the

CFL condition using the equivalent eigenvalues

∆t = Cr
∆x

max
α=1,...,M

(
|λnα|

) ,
where Cr is the Courant number (to be chosen less than unity).

4.3.1 Discretisation of the flux gradients

In order to reconstruct the fluxes FFFni∓1/2, the Method of Characteristics (MoC) is applied to the

advective version of the system, as in [12]. Note that the fourth governing equation in (4.2.25)

is not advective and therefore is not accounted for in the advective form. System (4.3.33) can

be rearranged to

DH

Dt
= −

M∑
α=1

lαH
∂uα
∂x

,

D(Huα)

Dt
= −Huα

∂uα
∂x
− gH ∂(H +B)

∂x
− (ρs − ρw)

2ρα
glαH

2∂cα
∂x

,

D(Hcα)

Dt
= −H∂(uαcα)

∂x
,

where
D

Dt
is the total derivative defined by

D

Dt
=

∂

∂t
+ Uβ

∂

∂x
,

Uβ =



M∑
γ=1

lγuγ , if β = 0,

uβ, if β = 1, 3, 5, 7, . . . ,

uβ−1, if β = 2, 4, 6, 8, . . . .

The aim of the MoC is to impose a new grid at the next time level tn+1 by interpolating from
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Figure 4.3: A schematic of the quantities used in the calculation of the departure points. The
dotted lines show the interpolated trajectory, while the solid lines show the actual trajectory.
Here, an Eulerian gridpoint xi+1/2 is traced back in time to Xi+1/2 where the intermediate

solution W̃n
i+1/2 is interpolated.

tn. This enables the evaluation of the characteristic curves shown in Figure 4.3

dXα,i+1/2(s)

ds
= Uα,i+1/2(s,Xα,i+1/2(s)), s ∈ [tn, tn+1].

Integrating with respect to t the following is gained

Xα,i+1/2(tn) = xi+1/2 −
∫ tn+1

tn

Uα,i+1/2(s,Xα,i+1/2(s))ds,

= xi+1/2 − δα,i+1/2. (4.3.34)

To facilitate the integral in (4.3.34) the method proposed in [23] is used. Figure 4.3 tells us that

δα,i+1/2 = xi+1/2 −Xαi+1/2(tn).

Through the use of the mid-point rule, equation (4.3.34) becomes

δα,i+1/2 =
∆t

2
Uα,i+1/2

(
tn+1, Xαi+1/2(tn + 1)

)
. (4.3.35)

Via second-order extrapolation we obtain

Uα,i+1/2(tn+1, xi+1/2) =
3

2
Uα,i+1/2

(
tn, xi+1/2

)
− 1

2
Uα,i+1/2

(
tn−1, xi+1/2

)
, (4.3.36)
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which can be approximated

Xα,i+1/2(tn+1) = xi+1/2 −
1

2
δα,i+1/2.

Thus an implicit formula for δα,i+1/2 is obtained

δα,i+1/2 =
∆t

2

[
3

2
Uα,i+1/2

(
tn, xαi+1/2 −

1

2
δα,i+1/2

)
− 1

2
Uα,i+1/2

(
tn−1, xi+1/2 −

1

2
δα,i+1/2

)]
.

In order to solve for δα,i+1/2, a successive iteration procedure is used

δ
(0)
α,i+1/2 =

∆t

2

[
3

2
Uα,i+1/2

(
tn, xαi+1/2

)
− 1

2
Uα,i+1/2

(
tn−1, xi+1/2

)]
,

δ
(k)
α,i+1/2 =

∆t

2

[
3

2
Uα,i+1/2

(
tn, xαi+1/2

1

2
δ

(k−1)
α,i+1/2

)]
−

∆t

2

[
3

2
Uα,i+1/2

(
tn−1, xαi+1/2

1

2
δ

(k−1)
α,i+1/2

)]
, k = 1, 2 . . . (4.3.37)

The iterative procedure in (4.3.37) are terminated when

||δ(k)
α − δ(k−1)

α ||
||δ(k−1)
α ||

≤ tol,

where tol is a given tolerance. Thus the convergence of iterations (4.3.37) is sufficient when it

satisfies

max
α=0,1,...,2M

∣∣∣∣∂Uα∂x
∣∣∣∣ ∆t

4
≤ 1. (4.3.38)

Once the characteristic curves Xα,i+1/2(tn) are known, the solution

U
n+1/2
α,i+1/2 =



Hn+1
i+1/2

(Hu)n+1
α,i+1/2

(Hc)n+1
α,i+1/2


is reconstructed as

U
n+1/2
α,i+1/2 = Uα(tn+1, xi+1/2) = Ũα

(
tn, Xα,i+1/2(tn)

)
,
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where Ũα

(
tn, Xα,i+1/2(tn)

)
is the solution found through interpolation from the previous time-

step

Ũα(tn, Xα,i+1/2(tn)) = P
(
Uα(tn, Xα,i+1/2(tn))

)
,

where P is the interpolating polynomial. Many different polynomials are possible (including

hermite, spine, and cubic) see [12]. The solutions at the characteristic footXα,i+1/2 are computed

by interpolation from the departure points Xα,i+1/2(tn) and the numerical fluxes FFF i±1/2 are

calculated from the intermediate states of the predictor stage. The characteristic solutions are

Hn+1
i+1/2 = H̃n+1

i+1/2 −
∆t

∆x
H̃n+1
i+1/2

M∑
α=1

lα

(
un+1
α,i+1 − u

n+1
α,i

)
,

(Huα)n+1
i+1/2 = (̃Huα)

n+1

i+1/2 −
∆t

∆x

(
(̃Huα)

n+1

i+1/2

(
un+1
α,i+1 − u

n+1
α,i

)
+

gH̃n+1
i+1/2

((
Hn+1
i+1 +Bn

i+1

)
−
(
Hn+1
i +Bn

i

))
+

(ρs − ρw)

2ρα
gH2

(
cn+1
α,i+1 − c

α,n+1
i

))
,

(Hcα)n+1
i+1/2 = (̃Hcα)

n+1

i+1/2 −
∆t

∆x
H̃n+1
i+1/2

(
(uc)n+1

α,i+1 − (uc)n+1
α,i

)
,

where

H̃n+1
i+1/2 = H(tn, X0,i+1/2(tn)), (̃Huα)

n+1

i+1/2 = (Huα)(tn, X0,i+1/2(tn)),

(̃Hcα)
n+1

i+1/2 = (Hcα)(tn, X0,i+1/2(tn)).

Thus, the corrector stage reduces to

Hn+1
i = Hn

i −
∆t

∆x

M∑
α=1

(
(lαHuα)n+1

i+1/2)− (lαHuα)n+1
i−1/2)

)
,

(Huα)n+1
i = (Huα)ni −

∆t

∆x

((
Huα +

1

2
gH2

)n+1

i+1/2

−
(
Huα +

1

2
gH2

)n+1

i−1/2

)
−

∆t

∆x
gĤn+1

i (Bn
i+1 −Bn

i−1) +
(ρs − ρw)

2ρα
g
(
Ĥn+1
i

)2
(cn+1
α,i+1 − c

n+1
α,i−1),

(Hcα)n+1
α,i = (Hcα)ni −

∆t

∆x

(
(Huαcα)n+1

i+1/2 − (Huαcα)n+1
i−1/2

)
.

Note that, in order to satisfy the c-property and as in the previous chapter (3.4.21), the source

terms are discretised

Ĥn+1
i =

Hn+1
i+1 + 2Hn+1

i +Hn+1
i−1

4
.

This discretisation ensures the ELFV method satisfies the C-property. This procedure is imple-

mented as shown in Figure 4.4.
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Start

ICs

t = t + dt

Solve source terms

Update inter-layer
terms (inc. c)

Estimate fluxes with MoC

Recover to conser-
tative equations

Solve source terms

Update inter-layer
terms (inc. c)

t = tend?

End

Stage 1

Stage 2

Stage 3

t ∈ [tn, tn+1/2]

t ∈ [tn, tn+1]

t ∈ [tn+1/2, tn+1]

yes

no

Figure 4.4: A flowchart demonstrating the stages in the proposed Eulerian-Lagrangian proce-
dure.
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Figure 4.5: A picture of the design of the experimental rig showing a fixed bed.

4.4 One-dimensional dam-break experimental method

This section details the experimental method, namely the physical methods used to create a

1D dam-break flow over an erodible bed, as well as the digital methods used to extract the

data. This section also discusses the design process and how parts are developed to improve the

accuracy of results. MATLAB is used, as this provides a good basic image toolbox that can be

quickly customized to the required method. Beyond the constraints of the possible, great care

must be taken when deciding the size of the experiment to be undertaken. Many small-scale

1D dam-breaks have been carried out at various length scales, from the Taipei experiment at

1.2 m [39] to the Hanyang University experiments at 6 m [140]. Longer sedimentary experiments

have also been performed, including the 30 m Delft trench experiment [27]. The camera has

a 1080 p resolution at a frame rate of 100 fps, and the aim is to achieve a 0.5 mm to pixel

precision. The well-graded soil has a range from 1 mm to 0.16 mm with an average particle size

d = 0.25 mm, thus the domain is set at 900 mm in length. For easy access and to minimize edge

effects, the width of the domain is set at 75 mm. The height of the dam-break was originally

set at 100 mm; after testing it was revised to 120 mm to maximize erosion. The mechanism is

designed for a dam-break to take less than 0.02 s. To reduce human error and increase opening

time, an electronic valve is utilized. The line pressure available is 20 bar and initially a small

tracking cylinder was thought advisable. A variety of designs were trialled, and eventually a

directly mounted linear actuator (in its simplest configuration) was found to be the fastest and

most repeatable, offering an average opening time of 0.011 s. In order to seal the edges (and
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Figure 4.6: A sketch of the scour after an apron domain.

Figure 4.7: A photo of the experimental domain

without effecting the flow) a bead of sealant is added to the grove on the side of the dam break.

This reduces the average opening speed to 0.018 s which is still within the target. One fact that

became obvious during the simulation runs is that, even if compacted, the bed seeps. A variety

of tests performed from pearls at 6 mm to fine sand at 0.25 mm are undermined by seepage

under the dam before a differential height of 100 mm is reached. Thus, a solid apron as shown

in Figure 4.6 is adopted, providing a solid seal. Due to the requirement of specialized high

intensity lighting, a high-sided tank with fixed ends is used. This differs from the standard open

ended or re-circulating tanks normally used in experiments of this type. In order to maximize

the dam-break run time, the dam is located at 330 mm from the left hand side, leaving 640 mm

for it to run over. The design is as shown in Figure 4.5. It offers a 0.42 s dam-break run without

sediment (on a low slip surface) and 0.48 s dam-break run over the higher friction of a sand bed.

The camera available is able to correct for photographic concerns such as white balance, and
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Figure 4.8: A sketch detailing the problem of parallax error (left) and a screen-shot of the
automated program (right).

these factors are checked (and modified if required) during post processing. Beyond that, all

conditions were kept as identical as possible. As the camera produces an image from one point of

view, the first step in post-processing is to calibrate the image. The first issue is that of parallax

error, as shown in Figure 4.4: the greater the angle of Θ from the normal, the less accurate the

camera is in capturing the sediment. Three steps are taken to reduce this: firstly, a tele-centric

lens is used which reduces parallax error; secondly, the camera is centred at 450 mm, not at

the dam-break; finally, a simple calculation is performed to average across neighbouring cells.

This error also occurs in the vertical dimension, though to a lesser extent than in the horizontal

dimension. Since the water is at a maximum of 120 mm above the camera, it has the added

problem of bed interference. Mapping pixels of the bed into the image would inadvertently

increase the measured concentration. It is also important not to remove bedload, which is hard

to separate from the bed, and this poses a complex problem. Two steps are taken to eliminate

this, while retaining any bedload in the measurement. Firstly, the camera is placed on a level

with the bed and, as erosion is minimal, this nearly removes the error. Secondly, the bed is

measured at the light change with user inspection; as bedload is less disperse than packed bed,

there is a noticeable light change. Algorithms trialled to perform this were found to be less

accurate and more time consuming than doing it manually. It should be noted that vertical

averaging is not used, as the angles in the sedimentary flow (often only 50 mm in height) are

not considered necessary.

Once the images are captured and the timing assessed, the following procedures are followed

in order to address these problems in turn:

1. Correct the white balance by ensuring that background colour and exposure is consistent

in every frame.
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2. Map the bed and water surfaces using a point-click and interpolation algorithm and com-

pute scales and parallax error.

3. Remove irrelevant background colours and correct for lighting using multiple HSI masks.

4. Create a colour chart for sediment using known high and low sediment areas (i.e. bed and

zero sediment cell)

5. Cut the image down into sub-cells and calculate the depth-averaged concentration by

comparison of the pixel average to the colour chart.

6. Normalize according to quantity of erosion. This step also allows for an error measure to

be taken.

This procedure was coded into a 5-step program where step 1 and step 6 could be fully auto-

mated. A screen-shot of this simple program is shown in Figure 4.4.

4.5 Numerical results

In this section, the results obtained for two case studies are presented. Here we present results

for a standard dam-break situation (an erosion-based problem) and a more complex recirculation

situation (a deposition based problem). In order to compare the rates of erosion, a comparison

is made between the average speed (across the layers) in a multilayer dam with just the bottom

layer. The dam-break situation is also computed with a varying number of fluid layers in order

to investigate the effect of adding layers. It is expected that more layers will yield a decreased

bottom layer velocity and therein less erosion. The effects of the inter-layer exchange terms

are also investigated for the dam-break simulation to highlight their necessity. The vertical

sediment diffusion coefficient εc = 0.01 m2/s. Vertical velocities are reconstructed from the

results of the simulations, using the method outlined in [12,13]. In order to recover the vertical

velocity components w, methods similar to those used in [12, 13] are employed. Hence, the

vertical velocity w is recovered from the divergence-free condition

∂u

∂x
+
∂w

∂z
= 0. (4.5.39)

Integrating the equation (4.5.39) over a control volume yields

wnα+1,i,j = wnα,i,j + ∆z

(
unα,i+1/2,j − u

n
α,i−1/2,j

∆x

)
, (4.5.40)
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Figure 4.9: Results from a 20-layer dam-break simulation: velocity (left) and concentration
(right) plots.

where ∆z =
hα+1 + hα

2
. The bed is assumed to be impenetrable (for these calculations) as

in [70].

4.5.1 Dam-break simulations

In the dam-break situation, the domain is 50 m long and has a flat bottom. The initial conditions

are

H(0, x) =

 2 m, x < 0,

1 m, x ≥ 0,
c(0, x) = 0.01 u(0, x, y) = 0 m/s .

The dam-break is considered to be instantaneous and the resultant wave is allowed to develop

for 4 s. The bed material is a non-cohesive sand (Sand 2 from Table 3.1). Prior to running

experiments it is important to compare the effects of discretisation in both the x-dimension and
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Figure 4.10: Comparison of sediment transport velocity functions for a multilayer dam-break
simulation, with varying numbers of layers (left) and a comparison of averaged and bottom
layered velocity in calculating erosion (right).

the number of layers used in the z-dimension. The results are displayed in Table 4.1 for the

calculation of suspended sediment results; the y-dimension of the domain is assumed to be 1 m.

The results show that the number of fluid layers has a profound effect on the bathymetry and

total suspended sediment. For example, if a 2-layer simulation with 200 gridpoints is considered

the total suspended sediment is 3.792 m3 and the deepest point of the bed is −0.3174 m.

Whereas in a 20-layer simulation, the total suspended sediment drops to 1.899 m3 and the

deepest point rises to −0.1877 m. This underlines the importance of correctly selecting the

number of layers and, although the CPU time rises from 1.003 s to 7.231 s, this appears a

worthwhile trade off. As postulated in [11] if an infinite number of layers is used then the

solution should recover to a 3D form, but as with all simulations of this nature it does become

a question of CPU expenditure and complexity in post-processing. Thus to realised the benefit

it is proposed that the user increase the number of layers used until no meaningful resolution or

flow features are realised. The number of gridpoints also has an effect: if a 20-layer model is used,

but only 50 gridpoints, then 1.964 m3 is the total suspended sediment and the deepest point

is increased to −0.1900 m. By including 400 gridpoints, the total suspended sediment drops

to 1.900 m3 and the deepest point of the bed becomes −0.1881 m, but there is a much higher

computational time increase of 17.15 s as compared to 1.037 s. Thus, it can be concluded that

20-layer model is a worthwhile cost, but that only 200-gridpoints are required for this problem.

These values are adopted for this section. Figure 4.5 shows the progression of the dam-break

simulation at different times. The concentration profile and velocity profiles are displayed at the

four stages. It is interesting to note how the flow develops from its initial position, as can be seen

in Figure 4.5. The multilayer formulation used allows for variation in flow velocities and thus

the bed-level velocities calculated are more realistic. Figure 4.10 shows the comparison between

1, 5, 10, and 20-layer simulations. It is interesting to note the wide disparities between these

simulations. As expected, multiple layers reduce the bottom velocity and lower the quantity of

erosion shown. This highlights the importance of selecting the most appropriate number of fluid
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Table 4.1: Results for maximum bed depth, maximum bottom layer velocity, total volume of
entrained sediment and CPU times for varying numbers of fluid layers and domain discretisa-
tions.

No. of
layers

No. of
gridpoints

Max bed
depth [m]

Max bed depth
x-coordinate [m]

Max speed
(u1) [m/s]

Volume of
sediment [m3]

CPU
Time [s]

2

50 -0.3132 0.4902 1.084 3.551 1.003
100 -0.3167 0.2475 1.097 3.660 1.916
200 -0.3174 0.1244 1.104 3.792 3.762
400 -0.3172 0.0623 1.110 3.770 9.812

5

50 -0.2402 0.4902 1.020 2.744 1.094
100 -0.2433 0.2475 1.034 2.797 1.903
200 -0.2439 0.1244 1.046 2.827 4.921
400 -0.2435 0.0623 1.071 2.849 11.94

10

50 -0.2009 0.4902 0.9510 2.271 0.873
100 -0.2033 0.2475 0.9714 2.290 1.894
200 -0.2038 0.1244 0.9861 2.302 6.546
400 -0.2036 0.0623 1.036 2.310 14.95

20

50 -0.1900 0.4902 0.9007 1.964 1.037
100 -0.1892 0.2475 0.9180 1.902 2.579
200 -0.1877 0.1244 0.9353 1.899 7.231
400 -0.1881 0.0623 0.9864 1.900 17.15

Figure 4.11: Comparison of the effect of inter-layer force terms on a dam-break simulation
showing the effects of viscosity (left) and the effects of exchange terms (right).

layers for this type of simulation. Figure 4.10 highlights the advantages of the model presented

in (4.2.25).

Figure 4.10 shows the comparison of 20-layer bed profile results, where only bottom layer

velocity is used in the calculation of bed flux, and where an average of all the layers is computed.

As expected the simulation using the average shows a substantial increase in erosion. This adds

to the conclusions that are drawn from Figure 4.10, underlining the importance of choosing the

correct bed interface velocities. As shown in the dam-break flows demonstrated here, bottom

layer velocities can become greatly stratified. The effects of the exchange terms between the

layers are then compared. The exchange terms are shown to have a varied effect on the bottom

layer velocities and the morphologic results, as shown in Figure 4.11. This demonstrates the

importance of the exchange terms F
(u)
α in this sediment transport model. It is interesting to
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Figure 4.12: Comparison of dam-break simulations on a fixed bed, using a single layer (left) and
20 layers (right).

Figure 4.13: Comparison of dam-break simulations on an erodible bed, using a single layer (left)
and 20 layers (right).

note the subtle effects of these terms; the viscosity term F
(µ)
α for example greatly increases the

bottom velocity, leading to a far greater quantity of erosion, as seen in Figure 4.11. Variations

in the exchange terms have a smaller impact; this is due to the effects of slower moving sediment

and loss of momentum to other layers, as also shown in Figure 4.11. To underline the advantages

of the new model, Figure 4.12 and Figure 4.13 compare the single layer to 20-layer velocity plots

on erodible and fixed beds. Figure 4.12 shows the results of fixing the bed in order to isolate the

impact of varying erosion rates from the morphological effects of multiple layers. Figure 4.12

and Figure 4.13 clearly show the advantage of the stratified velocities gained using the multilayer

system, and demonstrate in detail the effect this has on the bed. Figure 4.12 shows that the

multilayer formulation causes a decrease in distance travelled, but a more stratified (in the

x-direction) velocity profile. It is further interesting to note that in Figure 4.13 an hydraulic

jump is seen in the single layer formulation. Therefore it is assumed that this not an increase

in accuracy but a feature of the evolving bed. As can clearly be seen in Figure 4.13, the single

layer model noticeably increases the quantity of material scoured away. This is the classic over-

prediction of scour seen in a lot of simulations of this type. This run of simulations has clearly

shown the advantages and features of the multilayer formulation presented .
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4.5.2 Dam-break downstream of an apron problem

The next test is conducted on a dam-break beyond an apron, and is chosen as it is possible to

test in the laboratories at Durham University. Details on the experimental method used are

given in Section 4.4, and the domain is shown in Figure 4.6. The aim is to assess the ability of

the model to capture sediment distribution in both the x and z-dimensions.

The domain size (0.9 m in length) is selected to enable a high speed, ultra high definition

camera to capture the vertical sediment distribution as well as the evolving bed at high speed

(100 fps). This small domain provides around 0.4 − 0.5 s of capture-able footage of the dam-

break. This is enabled by a high pressure pneumatic linear actuator for the dam-break which

achieves a dam-break opening of 0.02 s. This is ideal, as the dam-break is modelled to be near

instantaneous, and the characteristics of the sediment used (Sand 7) are detailed in Table 3.1.

Although arguably the most developed sediment transport tool in OpenFOAM, sedFOAM is

not equipped for a free-surface and consequently cannot be used for this domain. Therefore, a

dam-break over a fixed bed is considered before sediment is added to the domain. The IcoFOAM

solver with the k-ε turbulence model disabled is utilized and the simulation parameters are set

up as

v(0, x, y, z) = 0 m/s u(0, x, y, z) = 0 m/s, c(0, x, y, z) = 0.0001 B(0, x, y) = 0.005 m,

H(0, x, y) =


0.10 m, if x ≤ 0.33 m,

0.016 m, if x > 0.33 m.

The simulation is allowed to run to t = 0.42 s time and the results are presented in Figure 4.14.

As shown in the Figure 4.14, the OpenFOAM solver demonstrates a large degree of wall effect,

as well as oscillations downstream of the dam-break. This is likely to be due to its considerations

of two-phase flow, which create more turbulence and demonstrate more complex features.

The aim of adding sediment to this domain is to demonstrate the presented method’s ac-

curacy in capturing sediment distribution. To this end, the sediment distribution and depth-

averaged concentration are captured by considering each frame in both the Hue Saturation and

Intensity (HSI) and Red Blue Green (RGB) colour domains. In the HSI domain, it is easy to
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Figure 4.14: Comparison between the OpenFOAM simulation and the presented model (left)
and waveform produced by the OpenFOAM simulation (right) at t = 0.42 s.

Figure 4.15: Comparison of waveforms (left) and concentrations for the simulation (right) and
the experimental data (middle) at t = 0.12 s, 0.24 s, 0.35 s and 0.46 s.
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Table 4.2: Comparison of errors in H, B, and c̄ between 10-layer and 1-layer simulations and
the experimental data, for t = 0.12 s, 0.24 s, 0.35 s and 0.46 s.

10-Layer Simulation
B H c

Time [s] L∞-error L2-error L∞-error L2-error L∞-error L2-error

0.12 1.314E-06 1.060E-04 2.081E-03 3.042E-02 1.328E-02 8.885E-02

0.24 4.741E-06 9.660E-04 1.426E-03 1.592E-02 9.626E-02 1.807E-01

0.35 7.854E-06 1.309E-03 9.674E-04 8.287E-03 1.656E-01 2.143E-01

0.46 1.371E-05 2.027E-03 1.077E-03 1.276E-02 5.118E-01 2.234E-01

1-Layer Simulation
B H c

Time [s] L∞-error L2-error L∞-error L2-error L∞-error L2-error

0.12 2.896E-07 6.913E-05 3.278E-02 1.376E-02 8.887E-01 1.798E+00

0.24 4.687E-04 3.157E-05 1.983E-02 1.605E-02 9.225E-01 3.859E+00

0.35 8.699E-04 2.834E-05 1.267E-02 1.807E-02 1.472E+00 9.924E+00

0.46 1.904E-03 5.054E-05 8.043E-03 2.645E-02 1.146E+00 1.651E+01

rid the picture entirely of green pixels, with the result that only the sediment dominated pixels

are left. The remaining pixels are considered using the R and B scales from known quantities

to deliver the distributions shown in Figure 4.15.

As shown in Figure 4.15, the simulation has slightly more acceleration than the experimental

data. At t = 0.12 s the model does not capture the up motion of the dam being removed, as

seen in the small peak at x = 0.32 m. This, along with the complex near wall effects which may

be underestimated, results in an over acceleration of flow by the simulation. Beyond this, the

progression of the simulated wave-front is accurate and the bed deformation is also reasonable.

Figure 4.15 and Table 4.2 show that the simulation offers a good agreement with the ex-

perimental concentration data. These simulations were conducted on a grid of 200× 10 control

volumes. Here the multilayer simulation is compared to a single-layer simulation, and the results

show that the multilayer simulation is more accurate, capturing features not possible with the

single-layer simulation. This is because the results for the 10-layer simulations are generally an

order of magnitude smaller. This demonstrates that the model is able to account for sediment

erosion correctly, in that the L∞ and L2 errors in concentration grow only slightly from 0.0133

and 0.5118 to 0.0889 and 0.234. The high level of initial error, when compared to the growth in

error over the time period, indicates that the errors are largely caused during the initial 0.12 s.

Furthermore it is not unreasonable to suppose that some of this error is caused by suction and

viscous forces, as the dam-break occurs in those initial 0.018 s. Overall, this is seen to be a very

positive result for the proposed model, as it (in line with all other models in circulation to the

knowledge of the author) does not consider the physical effects of the dam breaking. Also shown
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Figure 4.16: Recirculation flow problem over a dyke.

in Table 4.2 the differences in accuracy are small yet noticeable, with the L2 and L∞-errors

in the bed B rising respectively from 8.747E-06 and 1.581E-03 to 1.371E-05 and 2.027E-03 at

t = 0.46 s, when turbulence modelling is removed. The current simulation demonstrates the

accuracy of the proposed method.

This is the first time, to the knowledge of the author, that sediment distribution has been

compared to a simulation in both the vertical and the horizontal planes. There is a relatively

low level of error in these simulations, which is encouraging for the model.

4.5.3 Recirculation flow problem over a dyke

As no recirculation problems with erosion and deposition have yet been published, to the best

knowledge of the author, a novel situation is developed and designed to show the flexibility and

features of the presented formulation. It is not normally possible to simulate this problem with

SWEs (or software packages available to this study). Thus unfortunately it is not possible to

provide a reference solution. The problem is detailed in Figure 4.16 and bounded in a domain of

1 km created with a 5 m - 7 m depth and 200 m long trench in the middle, the sides of the trench

are banked with gradients of 0.02 and −0.02 respectively. A wind speed of 10 m/s is applied to

the top of the water. Initially, there is a section of dirty water with a concentration of 0.4 of

suspended sediment between 400 m < x ≤ 600 m and between depths of −2 m < z ≤ 1.5 m.

This uses the same sediment as the bed, with the same characteristics as the previous experiment.

The simulation was run with a Cr = 0.5 for 30 000 s. 100 nodes are used along the x-axis of

the domain with 10 and 20-layers. The results of the simulations are shown in Figures 4.17

and Figure 4.19. It is interesting to note that two routes of recirculation are developed in

this simulation. A dominant inner layer of recirculation occurs, this is likely to be due to the

topography which ranges between 300 m and 700 m. This inner recirculation is more graded

than the outer, as it is less direct (in terms of inter-layer transfer) due to the boundary conditions.

The results also demonstrate the diffusion of the back current, which is equal (in terms of
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Figure 4.19: Recirculation over a dyke results: a comparison of 10 (left) and 20-layer (right)
concentration profiles.

volumetric flow) to the current induced by the wind, though the back current is spread over

more layers and therefore is comprised of lower velocities. This example demonstrates a depo-

sition dominant test case, highlighting the ability of the model to handle complex and evolving

topography. As shown in Figure 4.19, the inter-layer diffusion term is crucial to this model, as

sediment is able to transit between layers and obtain a more natural distribution. The same

simulation with 20-layers is run, as shown in Figure 4.18 and Figure 4.19. The differences are

subtle beyond the higher resolution: the centre of rotation has migrated deeper in the fluid. No

other large advantage is shown, thus it may be concluded that the 10-layer model is acceptable

for this simulation.
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4.6 Concluding remarks

This chapter presents a novel model that combines a one-dimensional multilayer flow model

with sediment transport and bed morphodynamics. The derivation of a multilayer formulation

of the shallow water equations is given. The new formulation is modified with the assignment

of sediment variables to each layer in the formulation and the inclusion of their effects on the

conservation of momentum equation. The model tackles the problem that arises from this

formulation, namely the lack of vertical diffusion in the system, and this is overcome with the

addition of capacity driven diffusion. This new model formulation is found to offer new insights

into existing problems and even the solution of problems that are unsolvable with other shallow

water equation formulations. This new model works without incurring large increases in the

computational cost.

A novel experimental method is also detailed in this chapter and it is used to gather new

experimental data on vertical stratification of suspended sediments. With a high-speed camera

and a cellular post-processing method identifying sediment through image intensity and colour,

it is possible to capture sediment concentrations in two space dimensions. It’s low cost and

simplistic nature make this experimental method robust and easily repeatable, and the data it

provides is a new tool in the assessment of sediment transport models.

This model relies on a recently created Eulerian-Lagrangian finite volume method. This

method uses a splitting approach: followed by a predictor to estimate the flow, and then a

corrector stage to reconstruct the numerical fluxes. This method is able to provide stable results

for both evolving and steady-state flows. The use of multilayer flow is of particular interest

in the dam-break situation, which relies on bed-level velocities to predict erosion. Often other

models overestimate these bed level velocities as they rely on a single depth-averaged speed.

This is not the case with the presented multilayer model, as it produces a separate speed for

the bottom layer. It should be noted that the number of layers used must be appropriately

selected to represent a reasonable sediment load. The effects of the exchange terms included

in this formulation are also examined. The inter-layer exchange terms are found to have a

measurable and large effect on the results gained with this formulation. This demonstrates the

huge importance of correct formulation in the model in order to capture the small effects of

dividing the fluid column into multiple layers.

The second example presented shows the ability of the model to deal with uneven and

developing bathymetry, as the floor of the bed develops under large amounts of deposition. It

also demonstrates the ability to track sediment and (as relevant to both this and dam-break

experiments) how sediment can move at differing speeds depending on its layer. This is a
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factor that is not captured by a single-layer formulation. Overall, this novel formulation for

multilayer shallow water flows with sediment transport has been developed from the Navier-

Stokes equations, and analysed for the new features it contains. It offers a more accurate

method of capturing flow velocities while not incurring huge additional computational expense.

It has been shown that these stratified vertical velocities offer a substantial advantage when

modelling sediment transport.



Chapter 5

Modelling and numerical simulation
of shallow water flows over
multi-sediment beds in two space
dimensions

This chapter extends the work conducted in Chapter 3 into two dimensions and tests the method

against some novel and benchmark simulations. The same approach as Chapter 3 is adopted

for the treatment of multiple sediment types, both in packed beds and suspended sediment.

An interface tracking tool is developed and utilized on various different bed types in order to

demonstrate its capabilities. The governing equations consist of the three two-dimensional shal-

low water equations for flow, a species conservation equation for suspended sediment, a bed

Exner-type equation for evolving bathymetry, and empirical equations for sediment erosion and

deposition. The Eulerian-Lagrangian finite volume method, detailed in Chapter 4, is extended

from one-dimension to two-dimensions to handle the problems posed in this chapter. The aim of

this chapter is twofold: Firstly, to develop a model that can handle multiple sediments in both

the bed and the flow. Secondly, to implement a method for solving this new model that is both

fast and accurate. In the current work, the bed is reformulated as a function of three-dimensional

variables and its discretisation is carried out using control volumes. When interacting with the

bed, the solver considers each sediment separately so that the entrainment and deposition ac-

curately reflect the sediments being considered. In flow calculations are performed using the

average values for the entrained sediment, this means that the equation system is not unnec-

essarily expanded. This simplicity is combined with a splitting method to ensure second-order

accuracy with a fast implementation.

The chapter is organized as follows: Section 5.1 describes the background and gives an

overview to the problem. Section 5.2 introduces the two-dimensional governing equations for

128
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shallow water flows over multilayer movable sedimentary beds. Modelling mass-exchange terms

between multilayer beds is described in Section 5.3. In Section 5.4, the Eulerian-Lagrangian

finite volume method is formulated for the numerical solution of the developed system. This

includes the reconstruction of the numerical fluxes and the discretisation of source terms. Section

5.5 presents numerical results and examples. The performance of the proposed model for several

examples of shallow water flows over multilayer movable beds, together with comparisons to

experimental data, are also detailed here. A summary of the chapter is given in Section 5.6.

5.1 Overview of modelling multiple sediments in two space di-

mensions

Recently attention has turned to both the simulation of sediment transport in rivers [192], and

the modelling and numerical simulation of sediment transport in coastal regions have also been

subject of research in [27, 104]. Predictions for sediment transport, using the well-established

Shallow Water Equations (SWEs) coupled with a species conservation equation and a bed Exner-

type equation, have also been investigated in [30, 117, 166], among others. Until recently un-

coupled models, for which the hydrodynamics were solved first and then the effects on the bed

were calculated, were well established. However, the coupled approaches are more accurate for

stronger and higher energy interactions between water flows and sediment transport, such as

those in dam-break problems. The main limitation of the models referenced above lies in the

number of assumptions needed for their validation, including the levels of armouring, vegeta-

tion, composition, and compaction. These assumptions often lead to a large disconnect between

measurements and simulations when compared with real-world applications. Recently many

corrections have been proposed to improve these problems [47, 196]. Nonetheless, the assump-

tions on the homogeneous nature of the beds remain a limitation of these models, as naturally

deposited soils are mixed and incorporate multiple soil types. Modelling sediment sizes accu-

rately in order to reflect the constituents of both anthropogenic and natural landscapes has been

carried out in [3,196]. Man-made banks, flood, and coastal defences are often layered with finely

graded soils deposited on top of each other (due to geotechnical properties, permeability, fertil-

ity, cost, and other considerations). This leads to the complex case where the different sediment

types have different erosion and deposition rates, creating intricate bed forms. Although the

most modern models are able to deal with complex water flows, the area of complex sediments

remains relatively unresolved, compare [104, 117]. In the present study, a new coupled model

is proposed for two-dimensional (2D) shallow water flows over multilayer erodible beds. It is

assumed that the bed is heterogeneous and made up of multiple layers of different sediment
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properties. The structure of the soil-superposed packed beds and the total number of layers to

be considered in the analysis are fixed a priori. To the best knowledge of the author, simulation

of 2D shallow water flows over multilayer erodible beds is presented for the first time.

In the current work, the bed is reformulated as a function of three-dimensional (3D) variables

and its discretisation is carried out using control volumes. A fill factor is assigned for each control

volume, which can be either fully filled by a single-sediment type or partially filled by multiple

sediments of different types. The top filled control volume is then treated as the bed floor and

surpassed when it is overfilled or totally eroded. At the same time, a margin of empty control

volumes is incorporated above the initial active cell to allow for morphological variation. Sedi-

ment types and their concentrations are set in suspension by storing individual concentrations

for each control volume. Modelling multiple sediment types would normally require reformulat-

ing the conventional methods of sediment transport to include more equations for conservation

of species. In this study introducing cumulative functions for the sediment concentration, sedi-

ment density, porosity, and other sediment variables, mitigates this complication. The resulting

system consists of four equations for conservation of mass, momentum and species, as well an

Exner-type equation for the bed. For entrainment and erosion, the empirical equations reported

in [36] are considered together with modifications to allow for the discretised beds. To improve

the accuracy in the erosion and deposition terms, each sediment is evaluated separately when

considering bed level flux, and the proportions of sedimentary flux in the shallow water system

are updated. The procedure leads to an accurate and fast model for both hydrodynamics and

morphodynamics. Furthermore, the proposed model allows for several further functions to be

incorporated into the system, including tracking the origin and transport of a particular type

of sediment in the water flow. This is particularly useful for dam-break problems involving

dangerous or contaminated sediments, such as tailings dam collapses investigated in [125].

Numerical solutions of the sediment transport models often present difficulties due to a

combination of their non-linear form, the presence of the source terms, the coupling between

the species conservation equation, and the equations governing the water flow [20]. Here, the

main difficulty in the proposed model comes from the coupling terms involving derivatives of the

unknown physical variables for the bed profile and sediment concentration. Due to the presence

of these terms in the governing equations, a numerical method originally designed for solving

shallow water flows over single-layer beds will lead to errors when applied separately to each bed

layer. In the current work, the Eulerian-Lagrangian Finite Volume (ELFV) method, developed

in [23], is implemented to solve the formulated system. The ELFV method avoids the solution

of Riemann problems and it can be viewed as a predictor-corrector solver. The predictor step

employs the Method of Characteristics (MoC) to reconstruct the numerical fluxes, whilst the
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Figure 5.1: A two-dimensional system of a shallow water flow over a multilayered bed.

corrector step recovers the conservation equations in the finite volume framework. The Riemann

problem is avoided by projecting the shallow water system in the local coordinates and using the

MoC. In the first step, the newly formulated SWE system is integrated over an Eulerian control

volume. In the predictor step, a non-conservative formulation of the SWE system is projected

and integrated along the characteristic curves formed by the velocity of the flow. These non-

conservative solutions are used to reconstruct the fluxes and solve the system integrated in

the first step, which completes the corrector stage. The flux gradients and source terms are

well-balanced and the method satisfies the C-property [23,24].

Several numerical examples are presented to verify the ability of the proposed model to

solve accurately the 2D shallow water flows over multilayer sedimentary beds. Prior to this,

the simulations are compared to experimental data for test examples of dam-break flows over

single-layer erodible beds. As no experimental data exists for multi-sediment experiments, new

test cases are devised to test the abilities of the method. Four test cases are presented in this

chapter: First, a one-dimensional (1D) dam-break problem is used to test for convergence in

the discretisation of the flow in 2D and the bed in 3D. Then, a circular dam-break problem in

2D is tested. This is also used to evaluate other solvers and showcase the advantages of the

one presented. Next, a large-scale partial dam-break problem is formulated and used to show

the effects of sediment bed assumptions. Finally, experimental data from a smaller scale partial

dam-break flow problem is used to assess the accuracy of the model and then showcase the effects

of small changes in the sedimentary make-up of the bed. All these simulations are designed to

assess the ability and illustrate the features of the proposed solver.
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5.2 A model for shallow water flow over multi-sediment beds

As in [36], the governing equations used to formulate the model are in conservative form as

below

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
=

E −D
1− Ψ

,

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
+

∂

∂y

(
Huv

)
= −gH ∂B

∂x
− (ρs − ρw)gH2

2ρ

∂c

∂x
+Kx,

∂(Hv)

∂t
+

∂

∂x

(
Huv

)
+

∂

∂y

(
Hv2 +

1

2
gH2

)
= −gH ∂B

∂y
− (ρs − ρw)gH2

2ρ

∂c

∂y
+Ky, (5.2.1)

∂(Hc)

∂t
+

∂

∂x

(
Hcu

)
+

∂

∂y

(
Hcv

)
= E −D,

∂B

∂t
=

D − E
1− Ψ

,

whereH(t, x, y) is the water depth, u(t, x, y) and v(t, x, y) are the depth-averaged water velocities

in the x and y-directions, B(t, x, y) the bottom topography, c(t, x, y) the averaged concentration

of the suspended sediment, g the gravitational acceleration, Ψ the porosity, ρw the water density,

and ρs the sediment density. In (5.2.1) E and D represent the total entrainment and deposition

terms, respectively. In (5.2.1), the source terms Kx and Ky account for friction slopes and

sediment reaction such that

Kx = −gH n2
mu
√
u2 + v2

H1/3
− (ρ0 − ρ)(E −D)u

ρ(1− Ψ)
, Ky = −gH n2

mv
√
u2 + v2

H1/3
− (ρ0 − ρ)(E −D)v

ρ(1− Ψ)
,

where nm is the Manning roughness coefficient, ρ(t, x, y) the density of the water-sediment flow,

and ρ0 the density of the saturated bed related to the sediment concentration and porosity by

ρ = ρw(1− c) + ρsc, ρ0 = ρwΨ + ρs(1− Ψ).

It is easy to verify that the system (5.2.1) is hyperbolic with real and distinct eigenvalues, as

in [20]

λ1 = 0, λ2 = u, λ3 = u, λ4 = u−
√
gH, λ5 = u+

√
gH,

µ1 = 0, µ2 = v, µ3 = v, µ4 = v −
√
gH, µ5 = v +

√
gH.

(5.2.2)

Most of the research on equations (5.2.1) assumes that the suspended sediments and bed are

homogeneous. However, for many applications in realistic sediment transport, the topography

is formed with multiple soils that are often superposed in layers. The present work focuses on
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shallow water flows over multilayer beds, as illustrated in Figure 5.1. Thus, the bed topography

B in equations (5.2.1) depends also on the vertical direction z, thus B = B(t, x, y, z). Here, a

system with multiple species of sediments (% = 1, 2, . . . , N) that can exist in a number of bed

layers (l = 1, 2, . . . , L) is considered, where N and L are the total number of sediment species

and the total number of layers in the bed, respectively. Notice that two or more layers may

contain the same sediment species and a layer may also contain multiple sediment species. In

Figure 5.2: Vertical discretisation of a single-layer bed into 3D control volumes.

order to extend equations (5.2.1) to model sediment transport with multiple sediment types, the

cumulative sediment concentration is used

c =

N∑
%=1

c%,

and the averaged sediment variables are defined as

ρs =
N∑
%=1

c%
c
ρs,%, ρ = ρw(1− c) +

N∑
%=1

c%
c
ρs,%, D =

N∑
%=1

c%
c
D%.

Hence, the bed-dependent variables are calculated using the weighted averaging procedure [177]

nm =
N∑
%=1

bk,%
Bk

nm,%, Ψ =
N∑
%=1

bk,%
Bk

Ψ%,

ρ0 = ρw(1− Ψ) +
N∑
%=1

bk,%
Bk

ρ%Ψ%, E =
N∑
%=1

bk,%
Bk

E%.

Note that each control volume interacts only with its two neighbouring control volumes in the

vertical direction. Erosion and deposition only occur in the active top control volume. Hence,
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the equations considered for modelling shallow water flows over multilayer beds are

∂H
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∂x
+
∂(Hv)
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+
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(
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)
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2ρ
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∂(Hc)

∂t
+

∂

∂x

(
Hcu

)
+

∂

∂y

(
Hcv

)
= E −D,

∂B

∂t
+
∂G(B)

∂z
=

D − E
1− Ψ

,

where G(B) is a flux function which depends on the exchange terms between the bed control

volumes, as formulated below in section 5.3. In (5.2.3),

Kx = −gH n2
mu
√
u2 + v2

H1/3
− (ρ0 − ρ)(E −D)u

ρ(1− Ψ)
,

Ky = −gH n2
mv
√
u2 + v2

H1/3
− (ρ0 − ρ)(E −D)v

ρ(1− Ψ)
.

To determine the entrainment and deposition rates, the semi-empirical relations reported in [36]

are used

D% = ws,% (1− cB,%)2 cB,%,

where cB,% is a coefficient larger than unity to ensure that the near-bed concentration does not

exceed the value of (1− Ψ̄). Here, the coefficient cB,% is computed as in [38] by the relation

cB,% = min

(
2,

1− Ψ
c%

)
.

For the entrainment of sediments, the following empirical relation is employed

E% =


ϕ%
τ% − τcr,%

H

√
u2 + v2d−0.2

% , if τ% ≥ τcr,%,

0, otherwise.

Note that equations (5.2.3) can also be rewritten in a compact vector form as

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= Q(W) + R(W), (5.2.4)



5.3 Exchange terms for multilayered beds 135

where

W =
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, R(W) =
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.

It should be pointed out that since the flux function added in the bed is only differentiated with

respect to z, the hyperbolic parts in the system (5.2.3) are not changed from those appearing in

its conventional system (5.2.1). Therefore, the eigenvalues and eigenvectors associated with the

system (5.2.4) are also given by the expressions in (5.2.2).

5.3 Exchange terms for multilayered beds

To formulate the exchange terms G(B) for multilayer beds in (5.2.3), the control volumes

[zk+1/2, zk−1/2] shown in Figure 5.2 are used. We begin with the Exner-type bed equation

in system (5.2.3). We define the unbounded bed height change as

Pni,j =
E
n
i,j −D

n
i,j

1− Ψ i,j
. (5.3.5)
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The vertical exchange terms for a homogeneous bed are defined by equation (3.3.9) (on page

66) as

Gnk−1/2 =



∆z

∆t

(
Bn
k −∆z −∆t

E
n
k −D

n
k

1− (Ψ)k

)
, if Bn

k −∆t
E
n
k −D

n
k

1− (Ψ)k
> ∆z,

∆z

∆t

(
−Bn

k−1 + ∆t
E
n
k−1 −D

n
k−1

1− (Ψ)k−1

)
, if Bn

k −∆t
E
n
k−1 −D

n
k−1

1− (Ψ)k−1

< 0,

0, otherwise.

(5.3.6)

The top control volume (or the active cell) is the one in contact with the fluid and is the only

one which requires evaluation. In order to calculate the total bed height change we must first

consider the separate erosion and deposition processes of each sediment type. This adds a fourth

option as armouring must be considered where larger sediments can protect other sediments from

erosion in the active cell. Thus, for the heterogeneous bed case there are four possible options:

i) Volume growth: erosion and deposition rates in the cell do not exceed the cell bounds.

Though there maybe a change in bed height, it is small enough that the active cell does

not change.

ii) Volume depletion: all the sediment is removed and the cell is entirely eroded. The cell

below then becomes the active cell.

iii) Volume overfill: the cell is overfilled and the cell above becomes the active cell. During

this time-step the original control volume is filled and the one above also starts to fill.

iv) Volume armouring: the cell holds out against total erosion. One or more sediment

types remain in the active cell protecting the cell beneath it from being eroded.

These four options are shown in Figure 5.3. One of the two crucial aspects of this method is the

correct choice of control volume size, as this will affect the bed formations created. One restric-

tion on vertical discretisation is the size of the sediment: the cell must be able to accommodate

the largest sediment fraction (often defined as d99), thus

∆z ≥ d99.

However, as most sediment is computed with its average sediment particle size d50 which is

approximately ten times smaller than d99 [121], we can use the relation.

∆z ≥ 10d50. (5.3.7)
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Figure 5.3: Illustration of the different evolutionary options in a control volume for shallow
water flows over multilayer beds.
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Consequently, the simulation should always be tested for convergence to ensure that the restric-

tions on discretisation do not affect the accuracy of the simulation. It should be noted that the

bed cell height does not have to be uniform, if the situation arises where the bed description

would be improved it is easy to implement a variable cell height. The other main consideration

is the time-step which should not be restricted unnecessarily but must not allow the solver to

skip over bed cells, thus

∆t <
∆z

Pn
, (5.3.8)

where Pn is defined in (5.3.5). These two constraints (5.3.7) and (5.3.8) allow for a reasonable

Courant-Friedrichs-Lewy (CFL) condition to be chosen and, as beds nearly always develop far

slower than fluid surfaces, have a minimal effect on the simulation.

5.4 The 2D Eulerian-Lagrangian finite volume method

To integrate the system (5.2.3), the method utilizes an operator splitting function, similar those

used in first-order splitting [149, 172]. The presented method uses second-order splitting, pro-

posed in [217]. To integrate equations (5.2.3) with respect to time, time is divided into sub-

intervals [tn, tn+1] with length ∆t = tn+1 − tn. The selected splitting method uses the following

three stages:

Stage 1: Solve for W∗

∂W∗

∂t
= R(W∗), t ∈ [tn, tn+1/2],

(5.4.9)

W∗(tn) = W(tn).

Stage 2: Solve for W∗∗

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
+
∂G(W∗∗)

∂y
= Q(W∗∗), t ∈ [tn, tn+1],

(5.4.10)

W∗∗(tn) = W∗(tn+1/2).

Stage 3: Solve for W∗∗∗

∂W∗∗∗

∂t
= R(W∗∗∗), t ∈ [tn+1/2, tn+1],

(5.4.11)

W∗∗∗(tn+1/2) = W∗∗(tn+1).
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Figure 5.4: Control volume Vi,j (shaded) used for the spatial discretisation.

Once a time-stepping scheme has been applied to the three stages above, the time integration

of the system is complete. For the first and third steps, an explicit third-order Runge-Kutta

method is utilised, as detailed in [161]. Thus time advances from time tn to tn+1 by

W(1) = Wn + ∆tR(Wn),

W(2) =
3

4
Wn +

1

4
W(1) +

1

4
∆tR(W(1)), (5.4.12)

Wn+1 =
1

3
Wn +

2

3
W(2) +

2

3
∆tR(W(2)).

Note the asterisks have been removed for ease of notation. Unfortunately, especially in complex

flow situations, the solutions of the eigenvalues are non-trivial and can yield complex solutions.

The model can therefore quickly lose the hyperbolic property and may yield Kelvin-Helmholtz

instabilities. Consequently, a ELFV method is utilised that does not require the calculation of

the eigenvalues.

5.4.1 The Eulerian step

The spatial domain is divided into control volumes [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] as shown in

Figure 5.4. As detailed, the volumes are centred at (xi, yj) with uniform sizes ∆x and ∆y.

The following notations are used

Wi± 1
2
,j(t) = W(t, xi± 1

2
, yj), Wi,j± 1

2
(t) = W(t, xi, yj± 1

2
),

and Wi,j(t) =
1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

W(t, x, y) dydx, (5.4.13)
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Figure 5.5: The projected velocities on the control volume Vi,j .

to denote the point-values and cell-average of the variable W at the gridpoint (t, xi± 1
2
, yj),

(t, xi, yj± 1
2
), and (t, xi, yj), respectively. By integrating equation (5.4.10) in space over the

control volume Vi,j , as shown in Figure 5.4, the following semi-discrete equations are obtained

dWi,j

dt
+

Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y
= Qi,j ,

where Fi±1/2,j = F(Wi±1/2,j) and Gi,j±1/2 = G(Wi,j±1/2) are the numerical fluxes at the cell

interfaces (xi±1/2, yj and (xi, yi±1/2). By using divergence theorem to integrate (5.2.1) over the

control volume Vijwe obtain

∂

∂t

∫
Vi,j

H dV +

∮
Si,j

(Hunx +Hvny) dσ = 0,

∂

∂t

∫
Vi,j

Hu dV +

∮
Si,j

((
Hu2 +

1

2
gH2

)
nx +Huvny

)
dσ = −gH

∮
Si,j

Bnx dσ −∮
Si,j

(ρ̄s − ρ̄w)gh2

2ρ̄
c̄nx dσ,

∂

∂t

∫
Vi,j

Hv dV +

∮
Si,j

((
Hv2 +

1

2
gH2

)
ny +Huvnx

)
dσ = −gH

∮
Si,j

Bny dσ −∮
Si,j

(ρ̄s − ρ̄w)gH2

2ρ̄
c̄ny dσ,

∂

∂t

∫
Vi,j

Hc̄ dV +

∮
Si,j

(Huc̄nx +Hvc̄ny) dσ = 0,

∂

∂t

∫
Vi,j

B dV = 0,

where ηηη = (nx,ny)
T denotes the unit outward normal to the surface Si,j of the control volume

Vij . Using the local cell outward normal ηηη and tangential τττ = ηηη⊥ depicted in Figure 5.5, the
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above equations can be projected as

∂

∂t

∫
Vi,j

H dV +

∮
Si,j

(Huηηη) dσ = 0, (5.4.14a)

∂

∂t

∫
Vi,j

Hu dV +

∮
Si,j

(
Huuηηη +

1

2
gH2nx

)
dσ = −gH

∮
Si,j

Bnx dσ − (5.4.14b)∮
Si,j

(ρ̄s − ρ̄w)gh2

2ρ̄
c̄ dσ,

∂

∂t

∫
Vi,j

Hv dV +

∮
Si,j

(
Hvuηηη +

1

2
gH2ny

)
dσ = −gH

∮
Si,j

Bny dσ − (5.4.14c)∮
Si,j

(ρ̄s − ρ̄w)gH2

2ρ̄
c̄ dσ,

∂

∂t

∫
Vi,j

Hc̄ dV +

∮
Si,j

(Huηηη c̄) dσ = 0, (5.4.14d)

∂

∂t

∫
Vi,j

B dV = 0, (5.4.14e)

where the normal projected velocity uηηη = unx + vny and the tangential projected velocity

uτττ = vnx − uny. In order to simplify the system (5.4.14), first equation (5.4.14b) multiplied by

nx is summed to the equation (5.4.14c) multiplied by ny, then equation (5.4.14b) multiplied by

ny is subtracted from the equation (5.4.14c) multiplied by nx. These operations result in

∂

∂t

∫
Vi,j

H dV +

∮
Si,j

(Huηηη) dσ = 0,

∂

∂t

∫
Vi,j

Huηηη dV +

∮
Si,j

(
Huηηηuηηη + gH2nηηη

)
dσ = −gH

∮
Si,j

(
Bnηηη +

(ρ̄s − ρ̄w)H

2ρ̄
c̄nηηη

)
dσ,

∂

∂t

∫
Vi,j

Huτττ dV +

∮
Si,j

(Huηηηuτττ ) dσ = 0,

∂

∂t

∫
Vi,j

Hc̄ dV +

∮
Si,j

(Huηηη c̄) dσ = 0,

∂

∂t

∫
Vi,j

B dV = 0.

This system can be rewritten in a differential form as

∂H

∂t
+ uηηη

∂H

∂ηηη
+H

∂uηηη
∂ηηη

= 0,

∂uηηη
∂t

+ uηηη
∂uηηη
∂ηηη

+ g
∂H

∂ηηη
= −g∂B

∂ηηη
− (ρ̄s − ρ̄w)gH

2ρ̄

∂c̄

∂ηηη
,

∂uτττ
∂t

+ uηηη
∂uτττ
∂ηηη

+ uτττ
∂uηηη
∂ηηη

= 0,

∂c̄

∂t
+ uηηη

∂c̄

∂ηηη
+ c̄

∂uηηηa

∂ηηη
= 0,
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and at this stage the bed Exner-type equation is neglected as it has no further bearing on the

system. The system can also be reformulated in a non-conservative form as

DH

Dt
+H

∂uηηη
∂ηηη

= 0,

Duηηη
Dt

+ g
∂H

∂ηηη
= −g∂B

∂ηηη
− (ρ̄s − ρ̄w)gH

2ρ̄

∂c̄

∂ηηη
, (5.4.15)

Duτττ
Dt

+ uτττ
∂uηηη
∂ηηη

= 0,

Dc̄

Dt
+ c̄

∂uηηη
∂ηηη

= 0,

where
D

Dt
is the total material derivative defined as

D

Dt
=

∂

∂t
+ uηηη

∂

∂ηηη
.

System (5.4.15) can also be written as

DU

Dt
= S(U), (5.4.16)

where

U =



H

uηηη

uτττ

c̄


, S(U) =



−H∂uηηη
∂ηηη

−g∂H
∂ηηη
− g∂B

∂ηηη
− (ρ̄s − ρ̄w)gH

2ρ̄

∂c̄

∂ηηη

−uτττ
∂uηηη
∂ηηη

−c̄∂uηηη
∂ηηη


.

Note that the projection technique simplifies the 2D SWEs in (5.4.10) to the solution of an

equivalent 1D system on each surface of the control volume Vi,j . A comparable procedure has

been proposed by [24]. Note that the projected system implemented is only used to reconstruct

the fluxes for the conservative ELFV method solution.

5.4.2 The Lagrangian step

As detailed in Chapter 4, the modified MoC is applied to the projected system in order to solve

for the numerical fluxes Fi±1/2,j and Gi,j±1/2. A regular grid is imposed at the next time-step

and the flow trajectories are backtracked to the previous time levels, as with [144, 157]. The
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Figure 5.6: A sketch of the method of characteristics used to trace a water particle at gridpoint
(xi+1/2, yj) back through the time-step to (Xi+1/2, Yj), so that the intermediate solution Ûn

i+1/2,j
can be interpolated.

solutions for the characteristic foot are calculated using interpolation from the known grid at

the prior time-step. Thus a solution can be found at gridpoint (xi+1/2, yj): the characteristic

curves Xi+1/2,j(s) associated with the equations (5.4.15) are produced by solving the initial-value

problems

dXi+1/2,j(s)

ds
= uηηη

(
s,Xi+1/2,j(s)

)
, s ∈ [tn, tn+1],

Xi+1/2,j(tn+1) = xi+1/2,
(5.4.17)

with equivalent initial-value problems for the characteristic curves Yi,j+1/2(s) related to the

gridpoint yi,j+1/2

dYi,j+1/2(s)

ds
= uηηη

(
s, Yi,j+1/2(s)

)
, s ∈ [tn, tn+1],

Yi,j+1/2(tn+1) = yj+1/2.
(5.4.18)

The curves are calculated by considering a particle travelling along them from one time-step to

another. Therefore (Xi,i+1/2(s), Yj) and (Xi, Yi,j+1/2(s)) are the departure points at time s of a

particle that will arrive in the time tn+1, at the gridpoints (xi+1/2, yj) and (xi, yj+1/2) respec-

tively, as shown in Figure 5.6. In the simulations, the third-order Runge-Kutta method (5.4.12)

is used for the solution of the initial value problems (5.4.17) and (5.4.18). As the characteris-

tic curves Xi+1/2,j(tn) and Yi,j+1/2(tn) have no relation to the known grid at time s, once the

departure points are known, the intermediate solutions Wn
i+1/2,j and Wn

i,j+1/2 of a function W

are reconstructed using

Wn
i+1/2,j = Ŵn

i+1/2,j , Wn
i,j+1/2 = Ŵn

i,j+1/2, (5.4.19)
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where Ŵn
i+1/2,j = W

(
tn, Xi+1/2,j(tn), Yj

)
and Ŵn

i,j+1/2 = W
(
tn, Xi, Yi,j+1/2(tn)

)
are the solu-

tions at the departure points obtained by interpolation from the gridpoints of the control volume,

see Figure 5.6. For example, a Lagrange-based interpolation polynomial can be formulated as

Ŵn
i+1/2,j =

∑
k,l

Lk,l
(
Xi+1/2,j , Yj

)
Wn

k,l, Ŵn
i,j+1/2 =

∑
k,l

Lk,l
(
Xi, Yi,j+1/2

)
Wn

k,l, (5.4.20)

with Lk,l, that are Lagrange polynomials, defined as

Lk,l(x, y) =
∏
p=0
p 6=k

∏
q=0
q 6=l

x− xp
xk − xp

y − yq
yl − yq

.

Other high-order interpolation methods can also be used in (5.4.20). Assuming that the depar-

ture points (Xi+1/2, Yj) and (Yi, Yi,j+1/2) at time tn are accurately approximated, the predictor

stage in the Eulerian-Lagrangian method applied to the SWEs is defined by the solution of the

system (5.4.16) as

Un
i+1/2,j = Ûn

i+1/2,j + ∆tS
(
Ûn
i+1/2,j

)
. (5.4.21)

Through a difference discretisation of the source terms of equations (5.4.21) we gain

Hn
i+1/2,j = Ĥn

i+1/2,j −
∆t

∆x
Ĥn
i+1/2,j

(
(uηηη)

n
i+1,j − (uηηη)

n
i,j

)
,

(uηηη)
n
i+1/2,j = (ûηηη)

n
i+1/2,j − g

∆t

∆x

(
(H +B)ni+1,j − (H +B)ni,j +

(ρ̄s − ρ̄w)

2ρ̄
Ĥn
i+1/2,j

(
c̄ni+1,j − c̄ni,j

))
,

(uτττ )ni+1/2,j = (ûτττ )ni+1/2,j −
∆t

∆x
(ûτττ )ni+1/2,j

(
(uτττ )ni+1,j − (uτττ )ni,j

)
,

c̄ni+1/2,j = ĉni+1/2,j −
∆t

∆x
ĉni+1/2,j

(
(uηηη)

n
i+1,j − (uηηη)

n
i,j

)
,

where

Ĥn
i+1/2,j = H

(
tn, Xi+1/2(tn), yj

)
, (ûηηη)

n
i+1/2,j = uηηη

(
tn, Xi+1/2(tn), yj

)
,

(ûτττ )ni+1/2,j = uτττ
(
tn, Xi+1/2(tn), yj

)
, ĉni+1/2,j = c̄

(
tn, Xi+1/2(tn), yj

)
.

The intermediate states in the y-direction Hn
i,j+1/2, (uηηη)

n
i,j+1/2, and (uτττ )ni,j+1/2 are calculated in

the same way. When the projected states calculations are complete, the states Wn
i±1/2,j and

Wn
i,j±1/2 are determined by using v = (uτττ , uηηη) · ηηη and u = (uτττ , uηηη) · τττ . Using the concept of

C-property, the discretisation of the source terms Qi,j is carried so that the discretised source

terms are well-balanced with the discretised flux gradients, for further explanation see [23]. A
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numerical scheme is said to satisfy the C-property for the equations (5.4.10) if the condition

Bn = B(0), Hn +Bn = cte1, un = vn = 0, Ē = D̄ = 0, ρ̄ = cte2, (5.4.22)

is correct for flows at rest, and cte1 and cte2 are constants. Thus, the source terms are recon-

structed such that the condition (5.4.22) is preserved. The predictor stage (5.4.16) provides the

following useful relations at the interface (xi±1/2,j , yj)

Hn
i+1/2,j =

Hn
i,j +Hn

i+1,j

2
, c̄ni+1/2,j =

c̄ni,j + c̄ni+1,j

2
. (5.4.23)

By considering a flow at rest, the system (5.2.3) becomes

∂

∂t



H

0

0

Hc̄

B



+
∂

∂x



0

1

2
gH2

0

0

0



+
∂

∂x



0

0

1

2
gH2

0

0



=



0

−gH ∂B

∂x

−gH ∂B

∂y

0

0



.

Thus, the corrector stage reduces to

Hn+1
i,j = Hn

i,j ,

1

2
g

∆t

∆x

((
Hn
i+1/2,j

)2
−
(
Hn
i−1/2,j

)2
)

= ∆tg

(
H
∂B

∂x

)n
i,j

,

1

2
g

∆t

∆y

((
Hn
i,j+1/2

)2
−
(
Hn
i,j−1/2

)2
)

= ∆tg

(
H
∂B

∂x

)n
i,j

, (5.4.24)

(
Hc̄
)n+1

i,j
=

(
Hc̄
)n
i,j
,

Bn+1
i,j = Bn

i,j .

By combining (5.4.23) and (5.4.24) it is possible to form

g
1

8∆x

(
Hn
i+1,j + 2Hn

i,j +Hn
i−1,j

)(
Hn
i+1,j +Hn

i−1,j

)
= g

(
H
∂B

∂x

)n
i,j

,

g
1

8∆y

(
Hn
i,j+1 + 2Hn

i,j +Hn
i,j−1

)(
Hn
i,j+1 +Hn

i,j−1

)
= g

(
H
∂B

∂y

)n
i,j

.
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As for a stationary solution where Hn
i+1,j − Hn

i−1,j = Bn
i+1,j − Bn

i−1,j and Hn
i,j+1 − Hn

i,j−1 =

Bn
i,j+1 −Bn

i,j−1, the above equations become

(
gH

∂B

∂x

)n
i,j

= g
Hn
i+1/2,j +Hn

i−1/2,j

2

Bn
i+1,j −Bn

i−1,j

2∆x
,

(5.4.25)(
gH

∂B

∂y

)n
i,j

= g
Hn
i,j+1/2 +Hn

i,j−1/2

2

Bn
i,j+1 −Bn

i,j−1

2∆y
,

where the averaged solutions are defined by

Hn
i+1/2,j =

Hn
i+1,j +Hn

i,j

2
, Hn

i,j+1/2 =
Hn
i,j+1 +Hn

i,j

2
.

This allows for a well-balanced and conservative method. This procedure is implemented as

shown in Figure 5.7.

5.5 Numerical results

Several test examples for shallow water flows over multilayer movable beds are presented in this

section to ascertain the accuracy and adaptability of the proposed techniques. Dam-break flow

problems are presented to illustrate the performance of the proposed numerical solver combined

with the discretised bed to resolve non-homogeneous erodible sediment beds. Computational

results for both single-layer and three-layer beds are presented, using the sediment characteristics

listed in Table 3.1 (on page 77). These sediment parameters have been recommended in many

experimental studies on sediment transport applications [151, 189, 207]. In these simulations,

ρw = 1000 kg/m3, g = 9.81 m/s2, and ν = 1.2 × 10−6 m2/s. In addition, the Courant number

Cr = 0.7 is used to adjust the time-step ∆t according to the stability condition

∆t = Cr
min (∆x,∆y)

max
k=1,...,5

(∣∣λnk ∣∣, ∣∣µnk ∣∣) , (5.5.26)

where λk, µk (k = 1, . . . , 5) are the eigenvalues of the sediment transport system given in (5.2.2).

It should be pointed out that the stability condition (5.5.26) accounts for the rate of vertical

changes and ensures that the bed height never travels more than one control volume as long as

the vertical discretisation step ∆z ≤ min (∆x,∆y).

5.5.1 Rectangular dam-break problem

In this class of flow problems, a dam-break problem is considered in a squared channel of length

20 m with a three-layer bed initially assumed to be flat. At time t = 0 s, the flow is assumed to
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ICs

t = t + dt

Solve source terms

Update inter-layer
terms (inc. c)

Estimate fluxes
with MoC

Recover to conser-
tative equations

Solve source terms

Update inter-layer
terms (inc. c)

t = tend?

End

Stage 1

Stage 2

Stage 3

t ∈ [tn, tn+1/2]

t ∈ [tn, tn+1]

t ∈ [tn+1/2, tn+1]

yes

no

Figure 5.7: A flowchart demonstrating the stages in the proposed 2D Eulerian-Lagrangian pro-
cedure, including bed register is highlighted.
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Table 5.1: CPU times, error in the entrained sediment, and error in the minimum values of
the bed profile using different spatial and bed discretisation steps ∆x, ∆y, and ∆z, for the test
example of a rectangular dam-break over a three-layer bed.

Lateral discretisation

∆x = ∆y =
0.8 m

∆x = ∆y =
0.4 m

∆x = ∆y =
0.2 m

∆x = ∆y =
0.1 m

∆x = ∆y =
0.05 m

V
er

ti
ca

l
d

is
cr

et
is

at
io

n

∆z =
0.2 m

9.268 s 69.09 s 656.6 s 8381 s 21720 s

7.68 % 6.84 % 7.17 % 7.58 % 7.63 %

5.15 % 7.13 % 6.92 % 6.65 % 6.28 %

∆z =
0.1 m

8.539 s 69.47 s 656.5 s 8387 s 21650 s

7.17 % 6.44 % 6.30 % 6.59 % 6.98 %

5.32 % 7.19 % 6.98 % 6.69 % 6.38 %

∆z =
0.05 m

8.540 s 69.16 s 656.7 s 8388 s 25260 s

2.36 % 1.58 % 1.50 % 1.99 % 2.56 %

1.83 % 3.59 % 3.25 % 3.06 % 2.84 %

∆z =
0.025 m

8.530 s 69.10 s 657.3 s 8384 s 24180 s

1.27 % 2.31 % 2.20 % 1.65 % 1.19 %

0.79 % 0.38 % 0.21 % 0.10 % 0.29 %

∆z =
0.0125 m

10.84 s 74.03 s 664.7 s 8413 s 23110 s

4.07 % 2.61 % 3.48 % 1.98 % 0.92 %

2.50 % 1.08 % 0.54 % 0.26 % 0.08 %

be at rest and

H(0, x, y) =


2 m, if x ≤ 0 m,

0.2 m, if x > 0 m,

c(0, x, y) = 0.0001, u(0, x, y) = 0 m/s,

v(0, x, y) = 0 m/s, B(0, x, y) = 0 m.

The depth of the bed is 0.6 m with three layers initially formed by

B(0, x, y, z) =



Sand 1, if − 0.15 m ≤ z < 0 m,

Sand 2, if − 0.25 m ≤ z < −0.15 m,

Sand 3, if − 0.6 m ≤ z < −0.25 m.

The sediment properties of Sand 1, Sand 2, and Sand 3 are listed in Table 3.1. This example is

considered to perform a mesh convergence study for the proposed multilayer model using differ-
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Figure 5.8: Water height (left) and bed profile (right) at y = 0 m obtained for the test example
of a rectangular dam-break over a three-layer bed at time t = 2 s using different meshes.

ent number of control volumes in the spatial discretisation. Figure 5.8 depicts the computational

results for the water height and bed profile obtained at time t = 2 s, using ∆z = 0.1 m and

different values of (∆x,∆y). It is clear from these results that refining the horizontal mesh leads

to an increase in the accuracy of both water heights and bed profiles obtained using the ELFV

method. In order to quantify the errors in these results, Table 5.1 summarises the errors in the

entrained sediment, the errors in the bed profiles, and the computational times for different mesh

discretisations of (∆x,∆y,∆z). Here, a reference solution is computed using a fine discretisation

with ∆x = ∆y = 0.025 m and ∆z = 0.001 m. The L1-norm is used to compute the errors, and

results are presented at the final time t = 2 s. It is clear from the results presented in Table 5.1

that increasing the number of control volumes in the horizontal spatial discretisation yields an

increase in the accuracy and also in the computational cost of the ELFV method for this test

example. Using the coarse discretisation (∆x = ∆y = 0.8 m, ∆z = 0.2 m), the computed errors

for the water height and the bed profile are more pronounced than for the other discretisations. It

should also be noted that, when compared to the lateral discretisation, the vertical discretisation

has small effects on both the convergence and the efficiency of the proposed model. For instance,

for a simulation using (∆x = ∆y = 0.4 m, ∆z = 0.1 m) the computational time and the errors

in the sediment concentration and the bed profile are 69.47 s, 6.44 %, and 7.19 %, respectively.

By contrast, a discretisation of (∆x = ∆y = 0.1 m, ∆z = 0.025 m) reduces the errors in the sed-

iment concentration and the bed profile respectively to 1.65 % and 0.10 %, which is a substantial

step towards convergence. For this later simulation with (∆x = ∆y = 0.1 m,∆z = 0.025 m),

the computational time increases to 8384 s. It is evident that a mesh convergence is achieved

for this method, also that vertical bed discretisation has no effect on computational efficiency.

For the considered flow and sediment conditions, a balance between convergence and efficiency

in the ELFV method favours the vertical discretisation ∆z = 0.025 m.
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Figure 5.9: A comparison of cross-sections of the water height obtained using different solvers
for the test example of a circular dam-break over a fixed single-layer bed at time t = 2 s using
∆x = ∆y = 0.4 (left) and ∆x = ∆y = 0.2 (right).

5.5.2 Circular dam-break problem

Next, test examples are considered for circular dam-break flows over erodible beds formed of

single-layer and three-layer sediments. The circular dam-break problem is solved in a squared

domain [−10, 10]× [−10, 10] with a flat bed, and is subject to the following initial conditions

H(0, x, y) = 1 + 2
(

1− tanh
(

10
(√

0.4x2 + 0.4y2 − 1
)))

m, B(0, x, y) = 0 m,

u(0, x, y) = 0 m/s, v(0, x, y) = 0 m/s.

A similar problem has been considered in [106] for the standard circular dam-break problem over

a fixed bed. Hence, as a first run for this class of problems, the same example is solved on a fixed

bed and the results obtained using the ELFV method are compared to other well-established

solvers. Here, a Riemann-based Roe solver and the Rusanov method are considered. Figure 5.9

presents the radial cross-sections of the water height at y = 0, using the considered methods

at time t = 2 s on two meshes with 50 × 50 and 100 × 100 horizontal cells. For comparison, a

reference solution obtained with the Roe scheme on a fine mesh with 500× 500 is also included

in this figure. It is clear from these results that the numerical diffusion is very pronounced in the

solutions computed using the Rusanov scheme. This excessive numerical dissipation has been

partially removed in the water heights using the Roe method, but the results obtained using the

ELFV method remain the best. In terms of computational cost, the ELFV method is about 150

times faster than the Roe scheme for the same simulation, though it is slightly slower than the

Godunov scheme (having just over double the run time). It also relies on a quadratic or linear

interpolation in the Eulerian step, this comes with the respective in-accuracies and tendency to
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Figure 5.10: Circular dam-break over a single sediment bed: we display the water free-surface
(left), bed surface (middle), and concentration profile at y = 0 m (right), at two different times
t = 1 s and 2 s.

non TVD behaviour associated with both. For this test example, the ELFV method accurately

solves the front propagation without generating non-physical oscillations or excessive numerical

dissipation in the computed results.

The next step is to simulate a circular dam-break flow over an erodible bed. To this end, the

same simulation is run over a single-layer bed of depth 0.25 m and formed of Sand 2, the sediment

properties of which are given in Table 3.1. The initial conditions are the same as the previous

example and the sediment concentration is set to c1(0, x, y) = c(0, x, y) = 0.01. Figure 5.10

depicts the results obtained for the water height, bed, and sediment concentration obtained on a

mesh with 100×100, at t = 1 s and 2 s. Here, only radial cross-sections at y = 0 of the sediment

concentration are displayed in Figure 5.10. It is clear that allowing for a movable bed in circular

dam-break flows results in a radial erosion of the bed. From the presented results, it is also clear

that the water flows away from the central region as the rarefaction wave propagates outwards.

Note that the ELFV method has accurately resolved this dam-break flow, and it preserves the

radial symmetry (within the Cartesian grid) in all flow and sediment variables. To emphasis the

effects of a multilayer bed on this dam-break problem, the same simulations are performed on a

bed 0.25 m deep and comprised of three layers as
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Figure 5.11: Circular dam-break over a three-layered sediment bed: we display the water free-
surface (left), bed surface (middle), and concentration profile at y = 0 m (right), at two different
times t = 1 s and 2 s.

B(0, x, y, z) =



Sand 1, if − 0.05 m ≤ z < 0 m,

Sand 2, if − 0.1 m ≤ z < −0.05 m,

Sand 3, if − 0.25 m ≤ z < −0.25 m,

and the initial sediment concentrations are c(0, x, y) = c1(0, x, y) = 0.01. The sediment pa-

rameters for Sand 1, Sand 2, and Sand 3 are given in Table 3.1. Notice that, since the highly

erodible Sand 1 is used in this test example, more scour is expected in the bed as well as a

different concentration profile compared to the previous test example. The central bed peak

should also be retained in this case, along with a bed that reflects the differences in erosion pro-

files of the multiple sedimentary sands. Figure 5.11 displays the water height, bed profile, and

radial cross-section of the sediment concentrations obtained with a mesh of 100×100 gridpoints

using vertical discretisation ∆z = 0.005 m at t = 1 s and 2 s. Again, symmetry (within the

constrains of a Cartesian grid) is obtained using the ELFV method for this dam-break problem

over a three-layer sedimentary bed. Compared to the results obtained for the single-layer bed

in Figure 5.10, the results for the three-layer bed in Figure 5.11 show a comparable quantity

of scour, though the notable difference lies in the erosion rate for each simulation (compare the
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c profiles in Figure 5.10 and Figure 5.11). For instance, it is noticeable that Sand 1, with its

higher erosion rate, causes a greater net scour, whilst Sand 2 has a roughly constant sediment

concentration rate from t = 0.5 s onwards. This implies that only the initial wave speed is

large enough to cause the scour of Sand 2 in the bed. The computed results for this example of

circular dam-break flows over erodible beds have demonstrated the ability of the ELFV method

to handle multiple sediments in the beds. Here, the proposed system formulation combined with

the ELFV method is able to resolve the erosion effects in multilayer sedimentary beds accurately,

as well as capturing the multiple sediment concentrations, which are vital to the understanding

of sediment transport in these types of dam-break problems.

5.5.3 Partial dam-break problem

The aim of these test examples is to investigate the effects of multiple sediment layers on partial

dam-break flows over movable beds. The system (5.2.3) is solved in a 200 m long and 200 m

wide flat reservoir with two different constant levels of water separated by a dam. At t = 0 s

part of the dam breaks instantaneously. The dam is 4 m thick and the breach is assumed to be

between y = 90 m and y = 140 m. The initial conditions are

H(0, x, y) =


5 m, if x ≤ 100 m,

0.5 m, if x > 100 m,

B(0, x, y) = 0 m c(0, x, y) = c1(0, x, y) = 0.0001,

u(0, x, y) = 0 m/s, v(0, x, y) = 0 m/s.

First, the problem is solved over a single-layer bed 6 m deep formed of Sand 2; see Table 3.1

for the sediment parameters associated with the bed. The water height, entrained sediment,

and cross-sections of the sediment concentration at y = 115 m are presented in Figure 5.12 at

t = 3.6 s and 7.2 s. Under these flow and sediment conditions, the results show that as the

flow evolves downstream and the rarefaction wave propagates upstream, a deep scour hole is

generated at the dam breach. These results are similar to others presented in [20]. As can

be observed, the dam-break flow over the movable bed can build up a heavily concentrated

wave-front. The bed mobility can strongly modify the water free-surface profiles and may have

considerable implications for flood predictions. As in the previous simulations, an hydraulic jump

in the water free-surface is initially formed around the dam site. It becomes less pronounced

and propagates upstream over time, and eventually disappears. It is evident that the movable

bed can be significantly scoured and the dimensions of the scour hole are of a similar order

of magnitude to those of the water flow itself. Therefore, the rate of bed deformation is not
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Figure 5.12: Partial dam-break over a single sediment bed: we display the water free-surface
(left), bed surface (middle), and concentration profile at y = 115 m (right), at two different
times t = 3.6 s and 7.2 s.

Figure 5.13: Partial dam-break over a three-layered sediment bed: we display the water free-
surface (left), bed surface (middle), and concentration profile at y = 115 m (right), at two
different times t = 3.6 s and 7.2 s.
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negligible compared to the time-scale of the flow, characterising the need for coupled modelling

of the strongly interacting flow-sediment-bed system. The presented results show that the

proposed solver performs well for this dam-break problem since it is non-diffusive and no spurious

oscillations have been detected.

The next concern in this test example is to demonstrate the capability of the proposed model

in dealing with a multilayer bed for this partial dam-break problem. Here, the same simulations

are considered on a 2 m deep bed formed with three layers

B(0, x, y, z) =



Sand 1, if − 0.25 m ≤ z < 0 m,

Sand 2, if − 0.5 m ≤ z < −0.25 m,

Sand 3, if − 2.0 m ≤ z < −0.5 m,

and the initial sediment concentrations are c(0, x, y) = c1(0, x, y) = 0.001. The sediment pa-

rameters for Sand 1, Sand 2, and Sand 3 are given in Table 3.1. The three-layer sediment

model provides good results and a clear difference in the bathymetry is detected, as shown in

Figure 5.13, compared to Figure 5.12. This ability to handle multiple sediments allows analysis

of erosion over a greater area, highlighting the more easily eroded Sand 1 while capturing the

limitation on net erosion caused by the base layer (of less easily eroded Sand 3). As Sand 2 is an

average of Sand 1 and Sand 3, it is possible to compare the results and note the differences. It

is easy to see, as shown in Figure 5.12, the excess erosion caused by a single sediment assump-

tion, which is a common problem in models that over simplify the sediment bed. It should also

be noted that the discretisation of the bed adds no error, as the un-discretised and discretised

homogeneous bed results are identical.

The differences between the three simulation types are further inspected in Table 5.2. In

this table, three variables are presented. First, the total discharge measured as the quantity

of water evacuated from the east side to the west side of the dam is presented. Second, the

disturbed area, where the water height varies from the initial level owing to disturbance from

the dam-break, is calculated. Third, the total suspended sediment, which is the volume taken up

by the suspended sediments in the whole domain, is displayed. The total suspended sediment,

is the volume of all entrained sediment in the domain. The table also provides a breakdown of

these values at four intervals over the time period.

Erodible beds have a greater discharge than fixed beds (as shown in Table 5.2), even though

they lose momentum by picking up sediments. This is due to the evolving bathymetry both in

front and behind the dam-break, as more water is accelerated through the dam. The pertur-
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Table 5.2: A comparison of the discharge volume, the area disturbed by the dam-break, and the
volume of suspended sediment (for single and 3-layer simulations) for the three partial dam-break
simulations at t = 1.8 s, 3.6 s 5.4 s and 7.2 s.

Simulation Observed quantity t = 1.8 s t = 3.6 s t = 5.4 s t = 7.2 s

Fixed
Total discharge [m3] 1788 3204 5012 6493

Disturbed area [%] 4.69% 8.97% 14.71% 21.22%

Single layer

Total discharge [m3] 1877 3589 5884 8488

Total suspended sediment [m3] 260 1435 3570 6312

Disturbed area [%] 7.19% 13.42% 21.00% 29.62%

Three layer

Total discharge [m3] 2005 3463 5058 6681

Total suspended sediment [m3] 413 1150 2203 3471

Sand 1 [%] 66.8 61.3 58.2 56.3

Sand 2 [%] 31.7 26.6 22.5 20.4

Sand 3 [%] 1.6 12.1 19.3 23.2

Disturbed area [%] 7.82% 14.78% 22.93% 32.10%

Figure 5.14: The domain of the Louvain experiment, showing the relative positions of the water
height gauge points as reported in [165].

bation caused by the dam-break spreads over a far greater area than the fixed bed simulation.

This is likely to be due to the diffusive effects of the sediment breaking down the wave-front.

Table 5.2 also shows the evolution of sediment proportions for the three-layered erodible bed, it

is interesting to see how they change over time as the various layers are uncovered.

5.5.4 Louvain partial dam-break experiment

This section models the experiment conducted at the Université Catholique de Louvain, as

reported in [165]. The experiment consists of a 2D partial dam-break over a movable sediment

bed consisting of Sediment 2, see Table 3.1 for the characteristics of this sediment. A variety of
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Figure 5.15: Bed surfaces at t = 20 s for the Louvain wet bed (top) and dry bed (bottom).

Figure 5.16: A comparison of water height results for the Louvain dry bed experiment and the
presented model: gauge UG1 (left) and gauge UG6 (right)

measurements were taken and reported in [165], these included final bed height plots in 2D and

water gauge heights at eight points. The experimental domain is shown in Figure 5.14 where all

measurements are given in metres. Both wet and dry dam experiments are conducted to test

the twelve computational models in [165]. The dry and wet cases had the following initial depth

conditions:

• For Case 1 (dry bed): H1 = 0.47 m, H2 = 0.085 m.

• For Case 2 (wet bed): H1 = 0.51 m, H2 = 0.15 m.

For these water conditions the twelve well-developed models are used to run simulations using a

variety of mesh sizes (0.2−0.01 m), centring around about 0.1 m. Data from two gauges is used in
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Figure 5.17: A comparison of water height results for the Louvain wet bed experiment and the
presented model: gauge UG1 (left) and gauge UG5 (right).

both simulations as a benchmark. For Case 1, gauge UG1 is positioned at (0.640 m,−0.500 m),

and gauge UG6 is positioned at (1.940 m,−0.330 m). For Case 2, gauge UG1 is positioned at

(0.640 m,−0.500 m), and gauge UG5 is positioned at (2.340 m,−0.990 m).

As shown in Figure 5.15, the model over-predicts the scour caused by the dam-break in the

dry bed experiment (as seen by the error in Gauge UG6), though a good result is gained for the

prediction of the water heights initially at gauges UG1 & UG6, as seen in Figure 5.5.4. It should

be noted that a discreteised bed has no effect on this simulation, as the results when compared

to a undiscretised bed are identical. The loss of accuracy for gauge UG6, in Figure 5.5.4, is

possibly due to the over erosion at that point as, if the bed height is assumed constant, a near

true approximation is achieved. The wet bed results give a good agreement with the model

presented, as shown in Figure 5.15: the scour is centred a little too far downstream and lacks

lateral deposition, but it is still reasonably accurate as compared to other methods. The flow

results, shown in Figure 5.17, on the other hand, have a strong likeness to the experimental data,

which is a positive result for the presented method. The ELFV method appears to give a fast and

accurate flow prediction. This model could be improved with a more sensitive sediment pick-up

function giving a more accurate bed profile. As stated in the paper [165], previous models appear

give either good flow or good bed predictions. Consequently, these results are encouraging as

they demonstrate both reasonable bed results and good flow prediction. Now that a baseline

result has been established, the bed profile is varied to see the effects of differing sediments.

The bed in the laboratory experiment consisted of well-graded sediment of average diameter

1.61× 10−3 m (Sediment 2). In this simulation, two variants are added to the sediment mix by

varying the sediment diameter d while keeping all other variables the same. Having created a

bed using one third d = 0.5 × 10−3 m (Sediment 1), one third d = 2 × 10−3 m (Sediment 2),

and one third d = 1.61 × 10−3 m (Sediment 3), the simulation is rerun with the same initial

conditions. The aim is to show how a small variation in the sediment characteristics (for this

case d), has a large effect on the sediment entrainment functions. As shown in Figure 5.18,
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Figure 5.18: Louvain partial dam-break over a three-sediment mixed bed: we display the water
free-surface (top), bed surface (middle), and concentration profile at y = 0 m (bottom), at two
different times t = 5 s, 10 s and 20 s.

greater net erosion is gained due to the smaller diameter sediment fraction, as well as more

net deposition as compared to the single sediment result. It is interesting to note that the

suspended sediment fractions are very dependent on the sediment mixtures. As the sediment is

well-balanced and the erosion rates are comparable, there is no ripple formation or any other

visible effect of armouring. With a more detailed study of the sediment used, it should be

possible to represent the fractions more accurately by the sediment size. This simulation shows

high levels of erosion but also an appreciable level of deposition, which is rare in simulations of

this nature, especially with experimental data. The previous two simulations have shown how

a small change to the sediment composition of the bed can cause a large difference in the final

bed profile. The effects of armouring and the creation of ripples are demonstrated by modifying

the bed. Therefore the erosion and deposition are no longer balanced and bed variation takes

hold. Using the same sediment as the last simulation, it is arranged into three layers

B =



Sediment 1 if 0.065 m ≤ z < 0.085 m,

Sediment 2 if 0.035 m ≤ z < 0.065 m,

Sediment 3 if 0 m ≤ z < 0.035 m.
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Figure 5.19: Louvain partial dam-break over a three-layered bed: we display the water free-
surface (top), bed surface (middle), and concentration profile at y = 0 m (bottom), at two
different times t = 5 s, 10 s and 20 s.

As Figure 5.19 shows that the armouring occurs due to the unbalanced rates of erosion and

deposition of the three sediment types and the finely tuned parameters of this simulation. It

is interesting to note that the total rate of erosion is higher than in the previous simulations

which could be attributed to the high initial rate of erosion of Sediment 1. As a consequence

this creates a much more complex flow and bed profile.

5.6 Concluding remarks

A class of fast and accurate numerical models has been proposed for the modelling and simulation

of two-dimensional shallow water flows over multi-sediment erodible beds. A hyperbolic system

of five equations for balance laws with source terms is presented for coupled hydrodynamics,

morphodynamics and suspended sediments. To close the system, a set of empirical equations

for entrainment and deposition terms, along with flux terms for the mass exchange between the

multiple layers in sedimentary beds, are proposed. A splitting approach is adopted to manage the

complications arising from handling multiple sediments. This minimises computational expense,

and it does not add further species conservation equations to the governing system. Although

averaged variables have been used in the equations of suspended sediments, each sediment is still

handled separately for erosion and deposition in the proposed model. A conservative vertical
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discretisation of the finite volume type is considered for the multilayer bed, to allow for different

sediment properties forming the bed. This is combined with bed flux added to the Exner-type

equation for bed height. This allows for any deficit or excess in entrained sediment (due to

erosion or deposition) to be transferred to the cell beneath or above as appropriate.

For the numerical solution, a Eulerian-Lagrangian Finite Volume (ELFV) method is consid-

ered, which combines the advantages of a conservative finite volume method formulation and

with the speed of the method of characteristics. The proposed method can be interpreted as a

predictor-corrector procedure for which the numerical fluxes are reconstructed in the predictor

stage, using the method of characteristics applied to the projected system in the local normal

and tangential coordinates. The presented solver satisfies the conservation property and achieves

excellent numerical balance between the gradient fluxes and the source terms for the coupled

system. No Riemann-problem solvers are needed in the proposed method to compute the nu-

merical fluxes; this greatly increases the efficiency of simulations as compared to conventional

finite volume methods.

To examine the performance of the proposed models, a variety of two-dimensional shallow

water flows are simulated over single and multi-sediment movable beds. First, a one-dimensional

dam-break problem is considered, this example is used to show the convergence of the discretisa-

tion of the bed. Next, a circular dam-break problem is considered over a single and a multilayer

bed; this example is used to compare the affects of bed composition. It is also used (over a fixed

bed) to compare the proposed ELFV method with two other well established numerical solvers.

The ELFV method is found to be highly accurate as well as more efficient than the other solvers

considered. A partial dam-break problem is then simulated over three cases using: a fixed, a

single sediment, and a three-layered bed. This simulation further highlights the importance of

the correct modelling of the bed, as there is a wide variation in fluid discharge depending on the

bed used. Finally, the proposed formulation is used to simulate a partial dam-break experiment;

it is found to offer good results (as compared to similar models). This experiment is also varied

upon to show the effects of bed assumptions with a mixed three sediment bed and a three-layered

bed. The results obtained have exhibited accurate predictions of both the hydrodynamics and

morphodynamics, with correct conservation properties and stable representations of the water

free-surface response to the multilayer erodible beds. It can be concluded that both the model

and method proposed offer notable advantages to this field.



Chapter 6

Modelling and simulation of
multilayer shallow water flows in two
space dimensions

This chapter examines a fast, efficient and conservative method for solving two-dimensional

multilayer flows with mass exchange allowed between vertically superposed layers. The model

considers the shallow water equations for each layer and combines them to create a formulation

that offers stratified vertical velocities. These modelled layers can interact because exchange

terms that facilitate the movement of mass and momentum between the layers are included in

the formulation. The effects on the flow of non-flat bathymetry, forces acting on the free-surface

(including accounting for wind) and body forces (such as the Coriolis effect), are also included

in the model in order to demonstrate that it is able to handle all external forces and effects.

To solve the model, a Eulerian-Lagrangian finite volume method is used. A projection finite

volume method is used for the Eulerian stage, then the method of characteristics is employed to

approximate the numerical fluxes for the Lagrangian stage. This method is fast and offers new

insights for shallow water flow modelling, with vertically stratified velocities and new simula-

tions (such as recirculation) available for the first time. The presented formulation shows good

correlation against both benchmark tests and novel simulations. The model is also assessed

against the three-dimensional incompressible Navier-Stokes equations, providing faster results

with minimal differences in accuracy. To this end, a lake at rest, a one-dimensional dam-break

flow, a circular dam-break flow, and recirculation flow problems are all considered to illustrate

the features and advantages of the proposed method.

This chapter is organised into five sections: Section 6.1 outlines the problem to be tackled

and provides an overview of the work conducted to remedy it. Section 6.2 formulates the model,

incorporating the crucial mass exchange terms. The numerical method used to solve the system

is detailed in Section 6.3. Section 6.4 presents the numerical results from benchmark testing
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and novel simulations. A summary of the work is given in Section 6.5.

6.1 Motivation and background to a multilayer approach to

modelling shallow water flows

Incompressible Navier-Stokes equations have been widely used in the literature to simulate water

flows including eddy diffusion and Coriolis forces, see for example [50, 137, 176]. However, for

free-surface flows these models frequently become complicated due to the presence of moving

boundaries with the flow domain and the hydrostatic pressure. Under certain assumptions these

models can be replaced by the well-established Shallow Water Equations (SWEs). The depth-

averaged nature of the SWEs produces an advantage in terms of simplification and therein

computational expense. However, they estimate flow less accurately than the three-dimensional

(3D) Navier-Stokes equations, especially when considering changing bathymetry. The aim of

this chapter is to develop a third option that lies between the traditional two-dimensional (2D)

SWEs and the 3D Navier-Stokes equations.

As shallow water models have been well developed, attention has shifted to the shortcomings

of this type of modelling, namely the use of single velocity profile for the entire depth of the

fluid. A notable area of recent development is the creation of multilayer non-hydrostatic models

for wave dynamics, see [60,143] among others. This work takes a different formulation route as

we aim to develop sediment transfer in later chapters and therefore must have terms that can

accommodate the properties required to handle sediment transport. This has been solved with

the recent introduction of multilayer SWEs for geophysical flows. The first variety of these mod-

els dealt with immiscible shallow fluids, handling their basic interactions. These fluids were able

to be modelled with unique characteristics in each layer, see for example [5,29,82]. The attrac-

tive attribute of this class of models is that they avoid the computationally expensive methods

required to solve the 3D Navier-Stokes equations, at the same time as providing stratified flow

velocities. This has led to the development of the second class of model where the same principal

has been applied to a single fluid, see for example [11, 13, 70]. Both classes of multilayer model

are strongly linked, but it is the second class of model that obtains a more accurate solution

to classical SWE problems. Through key choices, such as the number of layers, the single fluid

multilayer model can be related to the isopycnal coordinates that are often used when solving

the Navier-Stokes equations. What makes these models unique is the use of modified finite vol-

ume schemes for hyperbolic systems, which were originally adapted for classical SWEs. For the

single fluid models, the hypothesis of the shallowness of the flow is overcome by the shallowness

of the individual layers and the hydrostatic characteristics of the flow. Thus, as the number of
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layers becomes sufficiently large, the model tends to the hydrostatic Navier-Stokes equations.

This chapter develops a method in the second category that is able to handle fluid exchange as

well as the complex inter-layer interactions. By considering any flow as a system of individual

flow layers, it is possible to generate a more accurate view of the flow at various depths. This

overcomes the depth-averaged velocity assumption and allows for more accurate bottom layer

speed estimation which is crucial to sediment transport. The inclusion of mass exchange and

varying bathymetry allows for an estimate (at the post processing stage) of vertical velocities.

A fast Eulerian-Lagrangian Finite Volume (ELFV) method is used in 2D form and it is

reformulated for use in multilayer problems. This is achieved by using a predictor-corrector

method: in the predictor stage the Method of Characteristics (MoC) is used to reconstruct the

numerical fluxes, and then the corrector stage recovers the conservative equations; furthermore

it is fast due to its simplicity and it is also conservative. This numerical method is crucial to

the viability of the model, as it does not require the solution of the Riemann problem. Note

that the model is very complex and the estimation of its eigenvalues make it impossible to solve

using most conventional methods. This approach results in some new considerations, including

the number of layers to be used and the variables for inter-layer forces. The number of layers

used to describe the fluid is of great importance: too few threaten the vertical resolution of the

model, and too many will increase the computational expense unnecessarily. The coefficients

used for the momentum exchange terms are also vital. If the velocity difference between any

given two layers is too large, the whole momentum exchange term can threaten the hyperbolic

nature of the system and even cause Kelvin-Helmholtz type instabilities. The results from four

problems are presented to verity the considered multilayer shallow water model with varying

bathymetry and flow conditions. In these examples, the method is verified against a Navier-

Stokes simulation of the benchmark for a dam-break simulation and a 2D lake at rest problem

over non-flat bathymetry. The novel ability of the shallow water system to demonstrate wind-

driven circulation is also shown in this work. To the best knowledge of the author, simulation

of 2D multilayer SWEs with exchange terms is presented for the first time.

6.2 Formulation of a two-dimensional multilayer shallow water

model

A fluid column in a 3D domain over a variable bed is modelled, as shown in Figure 6.1. Multi-

layer SWEs have been derived from the 3D hydrostatic incompressible Navier-Stokes equations

with unknown free-surface by considering the vertical P0-type discretisation of the horizontal

velocity. This vertical discretisation defines a series of layers in the flow domain and the equa-
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Figure 6.1: Sketch of the 2D fluid domain divided into M fluid layers.

tions are vertically integrated on each layer separately, compare [11, 13, 70] for more details on

the steps used to derive these models. Here, we consider the 2D version of the model written in

a conservative form as

∂hα
∂t

+
∂(hαuα)

∂x
+
∂(hαvα)

∂y
= 0,

∂(hαuα)

∂t
+

∂

∂x

(
hαu

2
α +

1

2
ghαH

)
+

∂

∂y

(
hαuαvα

)
= −ghα

∂B

∂x
+ ωchαvα + Fα, (6.2.1)

∂(hαvα)

∂t
+

∂

∂x

(
hαuαvα

)
+

∂

∂y

(
hαv

2
α +

1

2
ghαH

)
= −ghα

∂B

∂y
− ωchαuα +Gα,

where hα(t, x, y) is the height of the αth layer, uα(t, x, y) and vα(t, x, y) are the depth-averaged

velocities in the x and y-directions for the αth layer, g is the gravitational acceleration, ωc is

the Coriolis parameter resulting from rotation of the earth, and the bed height B(t, x, y) is the

topography of the basin. The water height of the whole flow system is denoted by H(t, x, y) and

lα is the relative size of the αth layer, with

lα > 0,

M∑
α=1

lα = 1.

The water height hα(t, x, y) of the αth layer is defined as

hα = lαH, α = 1, 2, . . .M,

where M is the total number of layers in the flow domain, see Figure 6.1 for a simplified
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illustration of a multilayer shallow water flow system. In (6.2.1), the source term Fα is the

external force in the x-direction acting on the αth layer and accounting for the friction and

momentum exchange effects. Thus

Fα = F (u)
α + F (ν)

α + F (b)
α + F (w)

α + F (µ)
α , α = 1, . . . ,M. (6.2.2)

The external force in the y-direction Gα is accounted for similarly

Gα = G(u)
α + G(ν)

α + G(b)
α + G(w)

α + G(µ)
α , α = 1, . . . ,M, (6.2.3)

where:

• F (u)
α and G(u)

α estimate the momentum exchange between the layers

• F (ν)
α and G(ν)

α are due to the horizontal diffusion between layers

• F (b)
α and G(b)

α estimate the effects of bed friction on the system

• F (w)
α and G(w)

α add the effects of wind on the top layer to the system

• F (µ)
α and G(µ)

α are due to the effects of friction between the layers

For the sake of brevity, this section only details the force terms in the x-direction. Hence the

x-direction momentum exchange term is defined as

F (u)
α = uα+1/2Exα+1/2 − uα−1/2Exα−1/2, (6.2.4)

where the mass exchange terms Exα+1/2 are computed as

Exα+1/2 =



0, if α = 0,

α∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , if α = 1, . . . ,M − 1,

0, if α = M,

and the interface velocity uα+1/2 in (6.2.4) is computed by a simple upwind method using the

sign of the mass exchange term i.e.

uα+1/2 =


uα, if Exα+1/2 ≥ 0,

uα+1, if Exα+1/2 < 0.
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The vertical kinematic eddy viscosity term F (µ)
α takes into account the friction between neigh-

bouring layers and it is defined as

F (µ)
α =



2ν
u2 − u1

(l2 + l1)H
, if α = 1,

2ν
uα+1 − uα

(lα+1 + lα)H
− 2ν

uα − uα−1

(lα + lα−1)H
, if α = 2, . . . ,M − 1,

−2ν
uM − uM−1

(lM + lM−1)H
, if α = M,

where ν is the eddy viscosity. Note that a generalized derivation of the viscous tensor in mul-

tilayer SWEs has also been reported in [70]. The external friction terms in (6.2.2) are given

by

F (b)
α =


−τ

x
B

ρ
, if α = 1,

0, if α = 2, . . . ,M,

F (w)
α =


0, if α = 1, . . . ,M − 1,

τxwi
ρ
, if α = M,

where ρ is the water density, and τxB and τxwi are respectively the bed shear stress and the

shear of the blowing wind. These are defined by the water velocity and the wind velocity

Uwi = (Uwi,x, Uwi,y)
T as

τxB = ρCBu1

√
u2

1 + v2
1, τxwi = ρCwi(Uwi,x − uM )

√
(Uwi,x − uM )2 + (Uwi,y − vM )2,

where CB is the bed friction coefficient, which may either be set as a constant or estimated using

the Manning equation as

CB =
gn2

m

H1/3
, Cwi =

σ2ρa
H

,

where nm is the Manning roughness coefficient of the bed, and the wind friction coefficient Cw

is defined as in [159]. The wind stress coefficient is designated by σ, and ρa is the air density.

The horizontal diffusion terms F (ν)
α in (6.2.2) are defined as

F (ν)
α = νH

∂

∂x

(
hα
∂uα
∂x

)
+ νH

∂

∂y

(
hα
∂uα
∂y

)
, α = 1, 2, . . . ,M, (6.2.5)

where νH is the horizontal viscosity coefficient. To aid in the manipulation of the equations (6.2.1),

they are presented in compact vector form

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= Q(W) + R(W), (6.2.6)
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where W is the vector of conserved variables, F(W) and G(W) are the vectors of the flux

functions, Q(W) and R(W) are the vectors of the source terms, such that

W =



H

h1u1

h2u2

...

hMuM

h1v1

h2v2

...

hMvM



, F(W) =


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1

2
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, G(W) =
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2
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,

Q(W) =


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∂x
+ ωch1v1
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−ghM
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− ωch2u2
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−ghM
∂B
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− ωchMuM



, R(W) =
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1 + F (w)
1 + F (µ)

1 + F (ν)
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F (u)
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2 + F (w)
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2 + F (ν)
2

...

F (u)
M + F (b)

M + F (w)
M + F (µ)

M + F (ν)
M

G(u)
1 + G(b)

1 + G(w)
1 + G(µ)

1 + G(ν)
1

G(u)
2 + G(b)
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2

...

G(u)
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

.
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6.3 The Eulerian-Lagrangian method for multilayer flow

To solve the system (6.2.6) the method uses a second-order splitting, proposed in studies like

[217]. To integrate with respect to time, the time interval is divided into sub-intervals [tn, tn+1]

with length ∆t = tn+1 − tn. The notation Wn is used to denote the value of a generic function

W at time tn. A splitting method as considered in (5.4.9) - (5.4.11) detailed on page 138 is

implemented. In complex flow situations, the solutions of the eigenvalues are non-trivial and

can yield complex results. Thus, the model can quickly become non-hyperbolic and even yield

Kelvin-Helmholtz instabilities. Consequently, a Eulerian-Lagrangian method is utilized which

does not require the calculation of the eigenvalues. The size of the time-step can be refined using

the eigenvalues associated with the single-layer shallow water counterparts, defined by

λ±α = uα ±
√
gH, µ±α = vα ±

√
gH, α = 1, 2 . . . ,M. (6.3.7)

The time-step estimation can be further improved by using the maximum wave speed for the

multilayer shallow water system.

6.3.1 The Eulerian step

In order to discretise the stage (5.4.10) the spatial domain is divided into control volumes

Vij = [xi−1/2,j , xi+1/2,j ]× [yi,j−1/2, yi,j+1/2] as shown in Figure 5.5. As detailed, the volumes Vij

are centred at (xi,j , yi,j) with uniform sizes ∆x and ∆y. We use the following notations

Wi± 1
2
,j(t) = W(t, xi± 1

2
, yj), Wi,j± 1

2
(t) = W(t, xi, yj± 1

2
),

and

Wi,j(t) =
1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

W(t, x, y) dydx,

to denote the point-values and cell-average of the variable W at the gridpoint (t, xi± 1
2
, yj),

(t, xi, yj± 1
2
) and (t, xi, yj), respectively. By integrating the equation (5.4.10) in space over the

control volume Vi,j shown in Figure 5.5, the following semi-discrete equations are obtained

dWi,j

dt
+

Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y
= Qi,j , (6.3.8)

where Fi±1/2,j = F(Wi±1/2,j) and Gi,j±1/2 = G(Wi,j±1/2) are the numerical fluxes at the cell

interfaces x = xi±1/2 and y = yi±1/2. By using divergence theorem to integrate the control
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volume Vij , the basic equations of the Finite Volume Method (FVM) are recovered thus

∂

∂t

∫
Vi,j

H dV +
M∑
α=1

∮
Si,j

(
hαuαnx + hαvαny

)
dσ = 0,

∂

∂t

∫
Vi,j

hαuα dV +

∮
Si,j

((
hαu

2
α +

1

2
ghαH

)
nx + hαuαvαny

)
dσ = −ghα

∮
Si,j

Bnx dσ+∫
Vi,j

ωchαvα dV,

∂

∂t

∫
Vi,j

hαvα dV +

∮
Si,j

(
hαuαvαnx +

(
hαv

2
α +

1

2
ghαH

)
ny

)
dσ = −ghα

∮
Si

Bny dσ−∫
Vi,j

ωchαuα dV,

where ηηη = (nx,ny)
T denotes the unit outward normal to the surface Si,j of the control volume

Vij . Using the local cell outward normal ηηη and tangential τττ = ηηη⊥ depicted in Figure 5.5 on page

140, the above equations can be projected as

∂

∂t

∫
Vi,j

H dV +
M∑
α=1

∮
Si,j

hαuα,ηηη dσ = 0, (6.3.9a)

∂

∂t

∫
Vi,j

hαuα dV +

∮
Si,j

(
hαuαuα,ηηη +

1

2
ghαHnx

)
dσ = −ghα

∮
Si

Bnx dσ +

∫
Vi,j

ωchαvα dV, (6.3.9b)

∂

∂t

∫
Vi,j

hαvα dV +

∮
Si,j

(
hαvαuα,ηηη +

1

2
ghαHny

)
dσ = −ghα

∮
Si

Bny dσ −

∫
Vi,j

ωchαuα dV, (6.3.9c)

where the normal projected velocity uα,ηηη = uαnx + vαny and the tangential projected velocity

uα,τττ = vαnx − uαny. In order to simplify the system (6.3.9), first equation (6.3.9b) multiplied

by nx is summed to the equation (6.3.9c) multiplied by ny, then equation (6.3.9b) multiplied

by ny is subtracted from the equation (6.3.9c) multiplied by nx. These operations result in

∂

∂t

∫
Vi,j

H dV +
M∑
α=1

∮
Si,j

hαuα,ηηη dσ = 0,

∂

∂t

∫
Vi,j

hαuα,ηηη dV +

∮
Si,j

(
hαuα,ηηηuα,ηηη +

1

2
ghαH

)
dσ = −glαH

∮
Si

B dσ +

∫
Vi,j

ωchαuα,τττ dV,

∂

∂t

∫
Vi,j

hαuα,τττ dV +

∮
Si,j

hαuα,τττuα,ηηη dσ = −
∫
Vi,j

ωchαuα,ηηη dV,
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which can be rewritten in a differential form as

∂H

∂t
+

M∑
α=1

∂ (hαuα,ηηη)

∂ηηη
= 0,

∂ (hαuα,ηηη)

∂t
+

∂

∂ηηη

(
hαu

2
α,ηηη +

1

2
ghαH

)
= −ghα

∂B

∂ηηη
− ωchαuα,τττ , (6.3.10)

∂ (hαuα,τττ )

∂t
+

∂

∂ηηη
(hαuα,ηηηuα,τττ ) = ωchαuα,ηηη.

The system (6.3.10) can also be reformulated in a non-conservative form as

D0H

Dt
+

M∑
α=1

hα
∂uα,ηηη
∂ηηη

= 0,

Dαuα,ηηη
Dt

+ g
∂H

∂ηηη
= −g∂B

∂ηηη
− ωcuα,τττ , (6.3.11)

Dαuα,τττ
Dt

+ uα,τττ
∂uα,ηηη
∂ηηη

= ωcuα,ηηη,

where
Dζ

Dt
is the total material derivative defined as

Dζ

Dt
=

∂

∂t
+ Uζ

∂

∂ηηη
, ζ = 0, 1, . . . ,M,

with

Uζ =



M∑
α=1

lαuα,ηηη, if ζ = 0,

uζ,ηηη, if ζ = 1, 2, . . . ,M.

Notice that the above projection techniques simplify the solution of 2D SWEs (6.2.6) in the

control volume Vi,j to the solution of one-dimensional (1D) system (6.3.11) on each surface

Si,j of this control volume. A similar projection procedure has been proposed in [24] among

others. It should be stressed that the projected system (6.3.11) is used in our approach only to

reconstruct the numerical fluxes in the ELFV solution of the conservative system (6.2.6).

6.3.2 The Lagrangian step

The modified MoC is applied to the projected system (6.3.8) in order to solve for the numerical

fluxes Fi±1/2,j and Gi,j±1/2. A regular grid is imposed at the next time-step and the flow

trajectories are backtracked to the previous time levels, as with [144,157]. The solutions for the

characteristic foot are calculated using interpolation from the known grid at the prior time-step.

Thus, a solution can be found for each layer ζ at the gridpoint (xi+1/2, yj). The characteristic
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curves Xζ,i+1/2(s) associated with the equations (6.3.11) are produced by solving the initial-value

problems

dXζ,i+1/2(s)

ds
= Uζ

(
s,Xζ,i+1/2(s), Yj

)
, s ∈ [tn, tn+1],

(6.3.12)
Xζ,i+1/2(tn+1) = xζ,i+1/2,

with equivalent initial-value problems for the characteristic curves Yζ,j+1/2(s) related to the

gridpoint (xi, yj+1/2), which may be expressed as

dYζ,j+1/2(s)

ds
= Uζ,

(
s,Xi, Yζ,j+1/2(s)

)
, s ∈ [tn, tn+1],

(6.3.13)
Yζ,j+1/2(tn+1) = yζ,j+1/2.

The curves are calculated by considering a particle travelling along them from one time-step

to another. Therefore (Xζ,i+1/2(s), Yζ,j) and (Xζ,i, Yζ,j+1/2(s)) are the departure points at time

s of a particle that will arrive in the time tn+1 at the gridpoint (xi+1/2, yj) and (xi, yj+1/2)

respectively, as shown in Figure 5.6. Once the characteristic curves Xζ,i+1/2(tn) and Yζ,j+1/2(tn)

are known for all layers, the intermediate solutions Wn
i+1/2,j and Wn

i,j+1/2 of a function W are

reconstructed using

Wn
i+1/2,j = Ŵn

i+1/2,j , Wn
i,j+1/2 = Ŵn

i,j+1/2, (6.3.14)

where Ŵn
i+1/2,j represents the combined solutions at the departure points obtained for each

layer by interpolation from the gridpoints of the control volumes, see Figure 5.6. For example,

a Lagrange-based interpolation polynomial can be formulated as

Ŵn
i+1/2,j =

∑
k,l

Lk,l
(
Xi+1/2, Yj

)
Wn

k,l, Ŵn
i,j+1/2 =

∑
k,l

Lk,l
(
Xi, Yj+1/2

)
Wn

k,l, (6.3.15)

where Lk,l are the Lagrange polynomials defined as

Lk,l(x, y) =
∏
p=0
p 6=k

∏
q=0
q 6=l

x− xp
xk − xp

y − yq
yl − yq

.

Other high-order interpolation methods can also be used in (6.3.15). Assuming that the depar-

ture points (Xζ,i+1/2(tn), Yζ,j) and (Xζ,i, Yζ,j+1/2(tn)) are accurately approximated, the predic-

tor stage in the Eulerian-Lagrangian method applied to the multilayer SWEs is defined by the
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solution of the system (6.3.11) as

Hn
i+1/2,j = Ĥn

i+1/2,j −
∆t

∆x
ĥnα,i+1/2,j

(
(uα,ηηη)

n
i+1,j − (uα,ηηη)

n
i,j

)
,

(uα,ηηη)
n
i+1/2,j = (ûα,ηηη)

n
i+1/2,j − g

∆t

∆x

(
(H +B)ni+1,j − (H +B)ni,j

)
−∆tωc (ûα,τττ )ni+1/2,j , (6.3.16)

(uα,τττ )ni+1/2,j = (ûα,τττ )ni+1/2,j −
∆t

∆x
(ûα,τττ )ni+1/2,j

(
(uα,ηηη)

n
i+1,j − (uα,ηηη)

n
i,j

)
+ ∆tωc (ûα,ηηη)

n
i+1/2,j ,

where

Ĥn
i+1/2,j = H

(
tn, Xα,i+1/2(tn), yj

)
, (ûα,ηηη)

n
i+1/2,j = uα,ηηη

(
tn, Xα,i+1/2(tn), yj

)
,

(ûα,τττ )ni+1/2,j = uα,τττ
(
tn, Xα,i+1/2(tn), yj

)
.

The intermediate states in the y-direction Hn
i,j+1/2, (uα,ηηη)

n
i,j+1/2 and (uα,τττ )ni,j+1/2 are evaluated

in the same manner. Once the projected states are calculated in the predictor stage (6.3.16),

the states Wn
i±1/2,j and Wn

i,j±1/2 are recovered by using the transformations vα = (uα,τττ , uα,ηηη) ·ηηη

and uα = (uα,τττ , uα,ηηη) · τττ . Finally, the discretisation of source terms Qi,j in (6.3.8) is carried out

such that they are well-balanced with the discretisation of flux gradients using the concept of

C-property, see for example [12,23,24]. A numerical scheme is said to satisfy the C-property for

the equations (6.2.6) if the condition

B(0) = Bn, Hn +B = cte, unα = vnα = 0, α = 1, 2, . . . ,M, (6.3.17)

is satisfied for stationary flows at rest and cte is a constant. Therefore, the treatment of source

terms Qi,j in (6.3.8) is reconstructed such that the condition (6.3.17) is preserved at the discre-

tised level. Following the same steps as in [12,24], and similar to that carried out in Chapter 5

(on page 138), the discretisation of the terms in (6.3.8) is carried out as

(
ghα

∂B

∂x

)n
i,j

= g
(hα)ni+1/2,j + (hα)ni−1/2,j

2

Bn
i+1,j −Bn

i−1,j

2∆x
,

(
ghα

∂B

∂y

)n
i,j

= g
(hα)ni,j+1/2 + (hα)ni,j−1/2

2

Bn
i,j+1 −Bn

i,j−1

2∆y
,

where the averaged solutions are defined by

(hα)ni+1/2,j =
(hα)ni+1,j + (hα)ni,j

2
, (hα)ni,j+1/2 =

(hα)ni,j+1 + (hα)ni,j
2

.

This formulation employs the projection of the shallow water model into a local system for each

layer.This procedure is implemented as shown in Figure 6.2.
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Start

ICs

t = t + dt

Solve source terms

Update inter-layer
terms (inc. c)

Estimate fluxes
with MoC

Recover to conser-
tative equations

Solve source terms

Update inter-layer
terms (inc. c)

t = tend?

End

Stage 1

Stage 2

Stage 3

t ∈ [tn, tn+1/2]

t ∈ [tn, tn+1]

t ∈ [tn+1/2, tn+1]

yes

no

Figure 6.2: A flowchart demonstrating the stages in the proposed 2D Eulerian-Lagrangian pro-
cedure, including bed register is highlighted.
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6.4 Numerical results

In this section, numerical results for several test problems in 2D multilayer shallow water flows

are presented to check the accuracy and the performance of the proposed ELFV method. First,

this study examines the conservation property of the method and then compares the obtained

results for a dam-break problem to those using the 3D Navier-Stokes equations. A class of

wind-driven recirculation problems in closed water domains are also solved, and the simulated

velocity profiles are compared to those analytically calculated in [159]. In all the computations,

the water heights hα of the layers are defined using equal fractions such that

hα = lαH, with lα =
1

M
, α = 1, . . . ,M.

In addition, a fixed Courant number Cr = 0.8 is used, the time-step ∆t varies according to the

stability condition

∆t = Cr
min (∆x,∆y)

max
α=1,...,M

(∣∣λ±α ∣∣, ∣∣ µ±α ∣∣) .
In this chapter, the 3D velocity fields are generated from the 2D results using a similar post-

processing procedure to that reported in [12, 13]. Hence, the vertical velocity w is recovered

from the divergence-free condition

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (6.4.18)

Integrating the equation (6.4.18) over a control volume yields

wnα+1,i,j = wnα,i,j + ∆z

(
unα,i+1/2,j − u

n
α,i−1/2,j

∆x
+
vnα,i,j−1/2 − v

n
α,i,j+1/2

∆y

)
, (6.4.19)

where ∆z =
hα+1 + hα

2
. At bed-level, an impenetrable boundary condition is implemented. A

similar procedure has also been used in [70] for 1D multilayer SWEs.

6.4.1 Lake at rest flow problem

Lake at rest flow has been introduced in [25] to check the well-balanced property of a FVM

for single-layer 1D SWEs. In this example we reconstruct a similar test problem but use 2D

shallow water flows instead. The idea relies on using the Kronecker tensor product of the 1D

bed proposed in [25] in the x and y-direction. Hence, we solve the SWEs (6.2.1) with source
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Figure 6.3: Water free-surface and interfaces for the multilayer flow at rest problem, at time
t = 10800 s using different layers in the model.

terms associated with the bed only, i.e. ωc = 0 and Fα = Gα = 0 and the bed is defined as

B(x, y) =
2

7
B(x)⊗ B(y),

where B is the 1D bed defined in [25] and ⊗ is the Kronecker (or tensor) product of the two

vectors

AAA
(m×p)×(n×q)

= CCC
m×n
⊗ DDD
p×q

with elements defined by

cαβ = aijbkl,

where

α = p(i− 1) + k, β = q(j − 1) + l.

The problem is solved in a squared domain with a length of 1500 m and the results are

presented at time t = 10800 s, as in [25]. In practice, the total water free-surface must remain
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Figure 6.4: Cross-sections at time t = 10800 s along the main diagonal (y = x). The water
free-surface and interfaces for the 20-layer flow problem at rest (left) and the associated error
in the water free-surface (right).

constant and the water velocity should be zero at all times. However, many numerical methods

fail to preserve these conditions at the discrete level. In Figure 6.3 we present the results

obtained for water free-surface and interfaces using a mesh with 100 × 100 gridpoints and 5-

layer, 10-layer, and 20-layer models. We also include results obtained using the conventional

single-layer SWEs. As expected, the water free-surface remains constant along the simulations

times for all considered models and no disturbances have been detected over the irregular 2D

bed. In addition, increasing the number of layers in the model has not led to a deterioration

of the response of the water free-surface in the lake. Figure 6.4 presents the cross-section along

the main diagonal (y = x) of the results obtained for the 20-layer model, as well as the error in

the water free-surface as a difference between the numerical and analytical solutions. It is clear

from the results presented in Figure 6.4 that the ELFV method preserves the constant water

free-surface and the errors are practically zero to the machine precision. This confirms that the

proposed method is well-balanced and able accurately to resolve 2D multilayer shallow water

flows over a non-flat bottom without relying on complex techniques to balance the discretisations

of source terms and flux gradients.

6.4.2 Dam-break problem on a fixed bed

Dam-break problems have been mainly modelled using single-layer SWEs, but recently in [11,12]

1D multilayer shallow water formulations have been used to simulate a dam-break over a flat

bottom. In this example we consider the 2D version of this problem in order to compare our

results to those obtained using its 1D counterpart. Thus, we solve the multilayer shallow water

system (6.2.1) in a flat rectangular channel of length 100 m and width 10 m subject to the
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following initial conditions

H(0, x, y) =


2 m, if x ≤ 0 m,

1 m, if x > 0 m,

B(0, x, y) = 0 m, u(0, x, y, z) = v(0, x, y, z) = 0 m/s.

Wind effects and Coriolis forces are neglected in this test example and the same parameters

as those used for the 1D case in [12, 13] are implemented. The viscosity coefficient ν = 0.01,

acceleration due to gravity g = 2 m/s2, and the friction coefficient κ = 0.1 are used, and

the results are presented at time t = 14 s. The results obtained for this problem, using the

ELFV method, are also compared to those calculated with the 3D Navier-Stokes equations with

free-surface conditions as published in [73].

Figure 6.5 presents the water free-surface and interfaces for the 5-layer, 10-layer and 20-layer

models are compared to a 1-layer model, at time t = 14 using a mesh with 100× 20 grid-points.

This demonstrates the advantages of the multilayer model, as it is clear to see in 6.5 the multilayer

models offer a huge advantage in flow fidelity. As in all dam-break problems, at t = 0 the dam

breaks and the flow problem consists of a shock wave propagating downstream and a rarefaction

wave propagating upstream. The proposed ELFV method captures these flow patterns without

generating spurious oscillations around the shock. Under the considered dam-break conditions,

it seems that the number of layers in the model has little effect on the flow features; compare

the water free-surface profiles obtained for 5-layer and 20-layer models in Figure 6.5. To further

emphasis these effects, we display in Figure 6.6 horizontal cross-sections of the water free-surface

and water velocity at y = 5 for the 5-layer, 10-layer and 20-layer models. For comparison reasons

we also include in Figure 6.6 the results obtained using the 1D counterparts. As can be seen

from these results there is a difference between 2D results and their 1D counterparts. It seems

that the 2D results are more diffusive than the 1D results at the rarefaction zone, but that at the

shock zone the 2D results look sharper than their 1D counterparts. We observe the fluctuation

at the hydraulic jump in the results presented in Figure 6.6 which has also been detected in the

3D results obtained using the full Navier-Stokes simulations in [12].

Following the same ideas reported in [12], in Figure 6.7 the results obtained using the pre-

sented 2D multilayer shallow water model are compared to those obtained using the 3D Navier-

Stokes equations. In this figure, the velocity profiles at the location (x = 8, y = 5) at time

t = 14 s are presented for the 5-layer, 10-layer, and 20-layer models on a mesh with 100 × 20

gridpoints. In this comparison, the results obtained using the 1D multilayer shallow water model

are included in this figure. It is clear from the results presented in Figure 6.7 that an increase in

the number of layers in both 1D and 2D models produces an increase in the accuracy compared
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Figure 6.5: Water free-surface and interfaces for the multilayer dam-break problem on a flat
bottom at time t = 14 s using a: 5-layer model (left), 10-layer model (middle), and 20-layer
model (right).

Figure 6.6: Horizontal cross-sections of the water free-surface (top) and water velocity (bottom)
for the multilayer dam-break problem on a flat bottom at time t = 14 s using different numbers
of layers in the model.

Figure 6.7: Water velocities in the z-dimension at (x, y) = (8, 5) for the multilayer dam-break
problem on a flat bottom at time t = 14 s using different numbers of layers in the model.
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Figure 6.8: Lateral cross-section of the velocity field in the xy-plane at z = 1 m (left) and
vertical cross-section of the velocity field in the xz-plane at y = 0 m for the multilayer circular
dam-break on a flat bottom using 10-layers at t = 1 s.

to the full 3D results. Under the considered flow conditions, the 2D results are slightly more

accurate than those in 1D.

6.4.3 Circular dam-break problem

A multilayer circular dam-break problem in a squared domain [−10, 10]× [−10, 10] is considered.

A similar problem has been considered in [106] for the standard single-layer circular dam-break

problem. Here, the computational domain is discretised into 100× 100 gridpoints and obtained

results for water heights and velocity fields are presented for different instants. The domain is as-

sumed to be flat, the viscosity of water is set to ν = 0.05 m2/s, ρ = 1025 kg/m3, g = 9.81 m/s2,

the Coriolis coefficient is ωc = 1, and the bed friction coefficient is set to nm = 0.001 s/m1/3.

Initially,

H(0, x, y) = 1 +
1

2

(
1− tanh

(√
ax2 + by2 − 1

c

))
m, B(0, x, y) = 0 m,

u(0, x, y) = 0 m/s, v(0, x, y) = 0 m/s,

where a =
5

2
, b =

5

2
and c = 0.1. In Figure 6.8 we display the water heights and the velocity

fields obtained using 10-layers at time t = 0.1, 0.4, 0.7 and 1 s. It is clear from the presented

results that the water flows away from the deep central region as the rarefaction wave progresses

outwards.

The Coriolis effect adds an extra rotational velocity to the results, though they remain
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Figure 6.9: Vertical cross-sections at y = 0 m of water heights (left) and velocities (right) for
the multilayer circular dam-break on a flat bottom using 10-layers at t = 1 s.

symmetric, as well as retaining a strongly distinguishable wave-front which is to be expected.

To emphasis the Coriolis effects on this dam-break problem, we present in Figure 6.8 the lateral

and vertical cross-sections of the velocity fields at z = 1 m and y = 0 m, respectively. The

results are shown at the final simulation time t = 1.0 s. The proposed method is able to

accurately resolve the Coriolis effects and to capture the vertical velocities which are vital to

the understanding of complex flows presented by this class of dam-break problems. Figure

6.9 further demonstrates the effects of the Coriolis term on this multilayer circular dam-break

problem. Here we display the vertical cross-sections at y = 0 m of water heights and velocity

profiles at time t = 1 s. As can be seen, the symmetry is well preserved in the obtained water

heights and mixing vertical velocities are also detected in the presented velocity profiles. Note

that the velocity profiles in Figure 6.9 are not symmetric because of the Coriolis terms included

in the multilayer model. Again the obtained results demonstrate the ability of the considered

multilayer models to capture the vertical flow features without relying on the 3D free-surface

flow equations. Next, attention is turned to multilayer circular dam-break problems on non-flat

beds. To this end, the previous problem is solved over a non-flat bottom defined by

B(x, y) =
1

2
Bx(x)⊗ By(y),

where

Bx(x) =


sin
(π

4
x
)
, if − 4 m ≤ x < 4 m,

0, elsewhere,

By(y) =


− cos

(π
4
y
)
, if − 2 m ≤ y < 2 m,

0, elsewhere.
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Figure 6.10: Lateral cross-section of the velocity field in the xy-plane at z = 1 m (left) and
vertical cross-section of the velocity field in the xz-plane at y = 0 m for the multilayer circular
dam-break on a non-flat bottom using 10-layers at t = 1 s.

Figure 6.11: Vertical cross-sections at y = 0 m of water heights (left) and velocity plot (right)
for the multilayer circular dam-break on a non-flat bottom using 10-layers at t = 1 s.

The initial conditions and the flow parameters are the same as in the previous simulations. The

capabilities of the proposed ELFV method to solve multilayer circular dam-break problems on

a non-flat bed are evaluated here. Figure 6.10 exhibits the water heights and the velocity fields

obtained using 10-layers at time 0.4 s and 1 s. Figure 6.10 displays the lateral and vertical

cross-sections of the velocity fields at z = 1 m and y = 0 m, respectively. The vertical cross-

sections at y = 0 of water heights and velocity profiles at time t = 1 s are presented in Figure

6.11. Under the actual flow conditions, it is clear from the presented results that the non-flat

bathymetry has direct effects on the flow structure. As the dam breaks over the bump, the
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Figure 6.12: Water heights (left), streamlines at y = 8.0 m (middle), and velocity fields at
y = 8.0 m (right) obtained for the wind circulation flow at time t = 50 s using a 5-layer model
(top), a 10-layer model (middle), and a 20-layer model (bottom).

rarefaction wave progresses and both Coriolis and bathymetric terms change their behaviour.

For example, when results in Figure 6.11 are compared to those in Figure 6.9 obtained for a

flat bottom, it is easy to see the effect that the bathymetry has on the vertical velocity and the

high level of variation caused. In addition, Figure 6.10 shows the asymmetry in the flow caused

by the varying topography, though it is interesting to note that the rarefaction still progresses

at the same speed over the non-flat bottom. The multilayer SWEs handle this complex flow

problem well for both the flat and non-flat beds, and deliver new insights into vertical velocity

for shallow water flows. The proposed ELFV method performs very satisfactorily for this flow

problem, since it does not diffuse the moving fronts and no spurious oscillations have been

detected near the steep gradients of the water heights in the computational domain.

6.4.4 Wind-driven recirculation flow

In this last test example we consider a flow problem for wind-driven circulations originally

proposed in [159] and widely used to verify the results obtained from multilayer shallow water
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Table 6.1: Values of the u [×10−1 m/s] along the z-dimension at (x, y) = (8 m, 8 m)for the wind
circulation flow with and without viscous terms using a 10-layer model at time t = 50 s.

Layer 1 2 3 4 5 6 7 8 9 10

With -0.006 -0.022 -0.030 -0.033 -0.029 -0.020 -0.003 0.19 0.48 0.83

Without -0.003 -0.116 -0.116 -0.116 -0.116 -0.116 -0.116 -0.116 -0.116 0.920

Figure 6.13: The velocity field in the xz-plane for the wind circulation flow using a 20-layer
model with viscous terms (left) and without viscous terms (right) at time t = 50 s.

models, see for instance [12,181]. Using the same flow parameters as in these references, we solve

the multilayer SWEs (6.2.6) in a squared 2D domain, 16 m long, filled with 2 m of water, under

a 2D wind blowing with an angle of 45◦ and a speed of Uwi = 10 m/s, with slip walls. In our

simulations, the Coriolis coefficient ωc = 0, the viscosity coefficient ν = 0.05 m2/s, the Manning

roughness coefficient nm = 0.001 s/m1/3, the wind stress coefficient σ = 0.0015 N/m2, the water

density ρ = 1025 kg/m3, the air density ρa = 1.2 kg/m3 and the gravity g = 9.81 m/s2. The

bed is assumed to be flat, non-slip boundary conditions are used and we present results for water

heights, streamlines and velocity fields at time t = 50 s, using a mesh with 100×100 gridpoints.

Figure 6.12 presents the results obtained using 5-layer, 10-layer, and 20-layer models. The

velocity plots show that the steady cavity flow within closed streamlines consists of a central

inviscid core of nearly constant vorticity with viscous effects confined to thin shear layers near the

walls. These plots also give a clear view of the overall flow pattern and the effect of the number

of layers on the structure of the recirculating eddy in the cavity. As expected, a recirculation

flow is generated in the computational domain and the proposed ELFV method resolves the flow

features for this test example without relying on the computationally demanding 3D flow models.

Next, this study examines the effect of the coupling terms in the multilayer model (6.2.1) on

the flow structures for this test example. To this end, the method first provides a solution for
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Figure 6.14: Water velocities in the z-dimension at (x, y) = (8 m, 8 m) for the wind circulation
flow with and without viscous terms using a 10-layer model (left) and a 20-layer model (right)
at time t = 50 s.

the system (6.2.1) without kinematic eddy viscous terms (i.e. F (u)
α = F (ν)

α = G(u)
α = G(ν)

α = 0)

and with the viscous terms. The obtained velocity fields in the xz-plane at fixed lateral location

y = 8 m for both cases are shown in Figure 6.13. The effects of the kinematic eddy viscous

terms in the multilayer SWEs can be clearly seen in these results. Observe the flow patterns at

the domain walls and at the bed bottom in the results with and without kinematic eddy viscous

terms in Figure 6.13. Accounting for kinematic eddy viscosity in the multilayer model intensifies

the recirculation in the flow domain, and reproduces a well-developed eddy vortex in its centre

which is not visible in the case of multilayer models without kinematic eddy viscous terms. The

centre vortex counter-rotating eddies of a much weaker strength develop in the cavity for the

simulation without viscous terms F (u)
α = F (ν)

α = G(u)
α = G(ν)

α = 0. Figure 6.14 presents the

water velocities at the location (x, y) = (8 m, 8 m) for the 10-layer and the 20-layer models,

with and without viscous terms. The associated values for the velocity in the 10-layer figure

are summarized in Table 6.1. It is clear from these values that simulations that do not include

viscous terms overestimate the velocity of the flow, whereas, accounting for viscous terms in

the simulations predicts more accurate flow velocities. The inclusion of these viscous terms is

important for simulation of wind-driven recirculation using the multilayer SWEs.

6.5 Concluding remarks

A fast and fully conservative Eulerian-Lagrangian finite volume method is developed for the nu-

merical solution of three-dimensional free-surface flows using two-dimensional multilayer shallow

water equations. The governing system consists of a set of two-dimensional hydrostatic multi-

layer shallow water equations, with mass exchange including eddy viscosity and Coriolis forces
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on both flat and non-flat beds. Two stages are considered in the procedure to update the so-

lution in time. In the first stage a projection finite volume of the system in local normal and

tangential coordinates is used, whereas a method of characteristics is used in the second stage

to approximate the numerical fluxes. A second-order splitting operator is also used to deal with

the gradient and source terms in the system, and a third-order explicit Runge-Kutta scheme

is implemented for the time integration process. This Eulerian-Lagrangian finite volume solver

employs the modified method of characteristics in a finite volume discretisation of the multi-

layer two-dimensional shallow water system. The method offers the advantage of solving steady

three-dimensional free-surface flows over non-flat bathymetry while only incurring errors of neg-

ligible magnitude. Thus, the presented scheme achieves excellent numerical balance between

the discretisation of gradient fluxes and the source terms for this multilayer system. On the

other hand, no Riemann-problem solvers are needed in the proposed method to compute the

numerical fluxes.

To examine the performance of the proposed Eulerian-Lagrangian finite volume method

and multilayer model we solved a wide application of two-dimensional multilayer shallow water

equations under contrasting flow conditions. The well-balanced nature of the scheme is pre-

sented in the free-surface flow at rest over a non-flat bathymetry problem. Comparisons to

three-dimensional results for incompressible hydrostatic Navier-Stokes equations have also been

presented. The results obtained show detailed shock capture with high accuracy in smooth re-

gions. There are also no non-physical oscillations in the regions of the shock which often hinder

high order schemes of this nature.



Chapter 7

Modelling and simulation of
multilayer turbulent shallow water
flows over fixed beds

This chapter introduce a new model developed from the work in Chapter 6, combining the

multilayer model formulated with the k-ε model for turbulence. The aim is to produce a novel

multilayer turbulence formulation that bridges the gap between two-dimensional (2D) and three-

dimensional (3D) models. The novel model allows for layers to affect each other through the

transfer of mass, momentum and kinetic energy. It uses an efficient and conservative Eulerian-

Lagrangian finite volume method to solve the multilayer system. This system is derived from the

incompressible Navier-Stokes equations and it incorporates the k-ε model for turbulence in 2D

shallow water flows. The inclusion of turbulence modelling increases the accuracy of the model

and enables it to capture flow features that would otherwise be neglected. While many situations

in which sediment transport is modelled do not require the inclusion of turbulence modelling, in

some (such as dam-breaks, near shore regions and imposed structures in waterways) turbulence

can play a significant role. This derivation is similar to previous models as studied in [14, 75],

but is 2D and incorporates transfer terms between the layers. These transfer terms improve

the accuracy of the model as the effects of complex and turbulent flow can now be transported

through the layers. The model provides substantial advantages over the single layer formulation

developed in [9, 68], as depth-stratified values for all variables are calculated. The numerical

method uses the projection finite volume method for the Eulerian step and the method of

characteristics to approximate the numerical fluxes for the Lagrangian stage. This creates a fast

and easy to implement method that can handle the complex flows and topography if required.

The method is compared to both conventional shallow water systems and to 3D Navier-Stokes

simulations in a variety of benchmark and novel problems.

In order to demonstrate the accuracy of the model as well as its novel features, three problems

187
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are examined in this chapter: a backward step flow, a 3D recirculation problem, and a partial

dam-break. Overall it can be seen that the model provides interesting and highly applicable

results that add a new array of applications to shallow water equations.

This chapter has the following structure: Section 7.1 introduces the importance of simulating

turbulence. The governing equations for both the fluid model and the empirical scour and

deposition processes are derived in Section 7.2. In Section 7.3, the Eulerian-Lagrangian finite

volume method is briefly described for the novel system. Numerical results are then presented

in Section 7.4. Finally, concluding remarks are given in Section 7.5.

7.1 Introduction

One of the greatest problems with simulating water flow is accounting for turbulence, the un-

steady and often violent movement of water. Many methods exist for modelling turbulent flows,

from Direct Numerical Simulation [132] where every effective length scale is calculated, to Large

Eddy Simulation [59]. However, all of these have individual drawbacks as well as advantages

when applied to specific situations. This chapter bridges the gap between fully two-dimensional

(2D) depth-averaged [9,68,114,212] and three-dimensional (3D) modelling [56,88], as the devel-

oped model can handle both types of simulations. The gap between the fully 3D and 2D models

has becomes smaller through by the introduction of 2D (i.e. quasi-3D) multilayer models. It

should be noted that two-layer models for fluid flow have been around for a while [194], though

they were limited in their applications. In more recent times, models reported in [14, 70, 181]

have been developed that are truly multilayer. Although some of these [5,29,40] are only able to

deal with immiscible fluid layers, more recent models have been developed that can handle fluid

mixing between layers [14,70,181]. It is to this later category that the presented model belongs.

3D turbulence modelling has been well developed, far more so than its 2D counterparts, and

many methods have been proposed such as: Large Eddy Simulation [59], Reynolds-averaged

Navier-Stokes (RaNS) [141], Mixing Length Model [44]. One of the best tools for this type

of simulation is the Open source Field Operation And Manipulation (OpenFOAM) software1.

It is not only an open-source but it also offers a wide variety of solvers that can handle most

problems. OpenFOAM has been widely tested and validated [89, 145, 201] and is used in the

current work to evaluate the presented model.

Turbulence modelling in shallow water flows is not new. Both the meshless model [9] and

the Finite Volume Method (FVM) formulation in [68] use the popular k-ε method to study

turbulence. Other turbulence models have been used in these kinds of shallow water simulations

1https://www.openfoam.com/



7.1 Introduction 189

and good comparisons are discussed in [2,68,205], among others. The well established 2D Shallow

Water Equation (SWE) formulations have two turbulent elements of note: the frictional source

terms and the turbulent diffusion terms. The frictional terms compute the effects of the bed

and boundaries (non-slip walls etc.) and quantify the vertical aspects of turbulent effects. The

turbulent diffusion terms account for the effects of horizontal transfer of momentum (i.e. the

turbulence in the x and y-dimensions). In order to solve the proposed model, the FVM is used

to discretise the domain. One of the prominent difficulties with this method is that the first-

order upwind discretisation dilutes the results with numerical diffusion. This can minimize the

turbulent viscosity and make it hard to appreciate the turbulence field. This problem is avoided

by utilizing a second-order method, the Eulerian-Lagrangian Finite Volume (ELFV) method.

This chapter formulates a multilayer shallow water approach to turbulence modelling using

the k-ε model for the first time (to the best knowledge of the author). This includes exchange

terms for turbulent energy k and dissipation rate ε between the layers as well as inter-layer

friction forces that account for the turbulent energy produced between the fluid layers. This

fully coupled model is solved using the ELFV method, avoiding the solution of the Riemann

problem and allowing for a fast and accurate estimation of numerical fluxes. These flux esti-

mations are then recovered to the conservative equations. Three problems are examined in this

chapter: firstly the backward step flow problem, then a 3D recirculation problem, and finally a

partial dam-break problem. The backward-step flow problem demonstrates the crucial nature of

turbulence modelling, as turbulence effects are vital to the development of major flow features.

This model is compared to experimental data to showcase its accuracy. Next, a recirculation

problem in 3D is examined to show the crucial effects of exchange terms. This problem is

adapted from the benchmark 2D recirculation problem and is compared to results from a 3D

Navier-Stokes simulation to assess the ability of the presented model and method. Finally, a

partial dam-break problem is considered and it is compared to 3D Navier-Stokes results. This

problem is also used to demonstrate the effects of variable bathymetry on the model, and to

show the gains in accuracy that are obtained from the use of more fluid layers.

The proposed model offers several advantages over other models widely used in this field.

Compared to 3D models it is much faster and it is able to deal with evolving surfaces with-

out re-meshing. The model also offers vertically stratified velocities, a feature which has a

great advantage over 2D shallow water simulations. The inclusion of turbulence and exchange

terms further improve the accuracy and ability of the model, as flow features that are normally

neglected can be captured and the simulation of a new range of situations is made possible.
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7.2 Modelling multilayer shallow water flows with turbulence

The 2D multilayer flow systems are usually obtained through the vertical integration of the 3D

Navier-Stokes equations, accounting for the shallow water assumptions; compare [12–14] among

others. The system includes terms for both external forces and mass exchange between the

layers. Before we can derive the multilayer system, we must give a full description of the model

to be depth-averaged. We begin with the incompressible RaNS equations

∂(ρui)

∂t
+

∂

∂xj

(
ρuiuj

)
= −∂ps

∂xi
− ∂

∂xj

(
ρu′av,iu

′
av,j

)
+
∂τij
∂xj

+ ρsi, (7.2.1)

where we have used the Cartesian tensor notation with i, j = 1, 2, 3 and coordinate directions

(x1, x2, x3)T = (x, y, z)T and velocity components (u1, u2, u3)T = (u, v, w)T . The Reynolds

decomposition means that the instantaneous velocity ui is split into mean uav,i and fluctuating

parts u′i such that ui = u′i+uav,i. The Reynolds stress tensor is ρ(u′av,iu
′
av,j) and τij is the mean

deviatoric stress tensor. For water, which is a Newtonian fluid, the stress tensor τij is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (7.2.2)

where µ is the dynamic viscosity of the fluid. Since the fluid is incompressible, the velocity field

is divergence-free
∂ui
∂xi

= 0.

The effects of turbulence on the momentum are part of the Reynolds stress terms. By comparing

these forces to viscous stresses, it is possible to relate the deformation rate to the mean flow.

For the fluctuating term, the Boussinesq equation relates

−ρu′av,iu′av,j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδi3, (7.2.3)

in this relation µt is the dynamic eddy viscosity, which is a characteristic of the flow. The

turbulent kinetic energy per unit volume is denoted as k. It should also be noted that µt � µ.

The Kronecker delta is defined as

δij =


0, if i 6= j,

1, if i = j.

The latter term in equation (7.2.3) enables the quantification of normal stresses. Through the

manipulation of equation (7.2.2) and equation (7.2.3) this latter term can be adsorbed by the
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pressure gradient term as ps = p+
2

3
k. The external stress on the ij plane is defined as

Σij = ν

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The kinematic eddy viscosity is νt =
µt
ρ

and the kinematic viscosity ν =
µ

ρ
. The source term

for external body and surface forces s = (s1, s2, s3)T maybe expressed as

s = ΣT + f ,

where f describes any external forces applied. The external tensor maybe written as

ΣT =



Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz


.

We can write the incompressible Navier-Stokes equations (7.2.1) in the RaNS form as

∂ui
∂t

+ uj
∂ui
∂xj︸ ︷︷ ︸

Advective terms

= −1

ρ

∂p

∂xi
+

∂

∂xj

((
ν + νt

)(∂ui
∂xj

+
∂uj
∂xi

))
︸ ︷︷ ︸

Diffusive terms

+ si + δi3g︸ ︷︷ ︸
Source term

. (7.2.4)

The transport equation for turbulent kinetic energy k, as proposed in [108], is given by

∂k

∂t
+
∂(uik)

∂xi
=

∂

∂xj

(
νt
σk

∂k

∂xi

)
+ Pk −Bk − ε, (7.2.5)

where the production of turbulent kinetic energy is given by

Pk = νt
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
,

and the loss of turbulent kinetic energy due to potential energy is defined as

Bk = δi3
νt
σc
N2,

where N2 is the Brunt-Vaisalla term or the buoyancy frequency. Further it is possible to relate

νt = Cµ
k2

ε
.
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Table 7.1: The expanded coefficients used in the k-ε model suggested in [146,205].

Cµ Cε1 Cε2 Cε3 CεΓ σk σε σc

0.09 1.44 1.92

{
1, if Bk < 0,
0, if Bk > 0,

1.8 0.5 1.3 1.8

This model relies on several empirical parameters
(
Cµ, Cε1, Cε2, Cε3, σk, σε, σc, CεΓ

)
which are

given in Table 7.1. The transport equation for the second k-ε model equation is

∂ε

∂t
+
∂uiε

∂xi
=

∂

∂xj

(
νt
σε

∂ε

∂xi

)
+
ε

k

(
Cε1

(
Pk + (1− Cε3)Bk

)
− Cε2ε

)
. (7.2.6)

The five equations (7.2.4) - (7.2.6) create the system we consider to integrate over the layers.

First, through the shallow water assumption (that vertical velocities are negligible i.e. w = 0),

the third equation in (7.2.4) (where i = 3 and j = 1, 2, 3) reduces to the hydrostatic pressure

assumption such that
∂p

∂z
= −ρg. (7.2.7)

Next, we consider the conditions for both the water surface and the bed. The normals for these

surfaces are

nfs =
1√(

∂ϑ

∂x

)2

+

(
∂ϑ

∂y

)2

+ 1



−∂ϑ
∂x

−∂ϑ
∂y

1


, nB =

1√(
∂B

∂x

)2

+

(
∂B

∂y

)2

+ 1



−∂B
∂x

−∂B
∂y

1


.

The kinematic boundary condition at the water surface can be expressed as

∂ϑ

∂t
+ ufs

∂ϑ

∂x
+ vfs

∂ϑ

∂y
− wfs = 0,

where ufs, vfs, and wfs are the velocity components at the surface. Air viscosity is assumed

negligible, therefore we can describe the stresses at the free boundary as

ΣTnfs = −panfs + τwitfs,

where pa = pa(t, x, y) is the atmospheric pressure function, and τwi is the wind stress coefficient.

Thus we can relate

nfs · ΣTnfs = −pa, tfs · ΣTnfs = τwi,
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Figure 7.1: A sketch of the multilayer flow domain in 2D.

where tfs is orthogonal to nfs. We consider a fixed impermeable bed thus

uB
∂B

∂x
+ vB

∂B

∂y
− wB = 0,

where uB, vB, and wB are the velocity components at bed level. For the fluid stresses at the

bed we consider a wall law in the form

ΣT · nB −
(
nB · ΣT · nB

)
· nB = κ(uB, H) · uB.

If κ(uB, H) is constant, then we recover the Navier friction condition detailed in [73]. Therefore

the friction function κ may be represented by the laminar κl and the turbulent κt friction

coefficients, thus

κ(uB, H) = κl + κtH |uB| .

By considering tB as orthogonal to nB we can obtain

tB · ΣT · nB = κ · uB · tB, and uB · nB = 0.

We now consider the system shown in Figure 7.1. We divide the domain into a number of layers
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each with height hα such that

hα = lαH,

where the proportion lα satisfies

lα ≥ 0,
M∑
α=1

lα = 1.

Note that the αth layer is bounded by zα+1/2 and zα−1/2. By applying Leibniz’s rule [136] at

the interface of zα+1/2, we gain exchange terms

Eα+1/2 = wα+1/2 −
∂zα+1/2

∂t
− uα+1/2

∂zα+1/2

∂x
− vα+1/2

∂zα+1/2

∂y
. (7.2.8)

By applying the bed and free-surface boundary conditions we get

E1/2 = 0, EM+1/2 = 0, (7.2.9)

where the velocity Eα+1/2 is orientated orthogonally to the layer interface. Since we divide the

water flow into M layers of thickness hα which lies between [zα−1/2, zα+1/2] we describe the

depth-averaged velocities and density as

uα =
1

hα

∫ zα+1/2

zα−1/2

u dz, vα =
1

hα

∫ zα+1/2

zα−1/2

v dz, ρα =
1

hα

∫ zα+1/2

zα−1/2

ρ dz. (7.2.10)

It is possible to obtain the continuity equation for the αth layer as

0 =

∫ zα+1/2

zα−1/2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz,

=
∂

∂x

∫ zα+1/2

zα−1/2

u dz +
∂

∂y

∫ zα+1/2

zα−1/2

u dz −
(
u
∂z

∂x
+ v

∂z

∂y

)∣∣∣∣zα+1/2

zα−1/2

− wα−1/2 + wα+1/2.

By summing (7.2.8) and (7.2.10) this equation becomes

∂hα
∂t

+
∂(hαūα)

∂x
+
∂(hαv̄α)

∂y
= Eα+1/2 − Eα−1/2. (7.2.11)

In order to solve for Eα+1/2 we sum together all the layers between 1 and α (7.2.8) and apply

the first relation of (7.2.9) and sum across the layers we obtain

Eα+1/2 =
∂

∂t

α∑
β=1

hβ +
∂

∂x

α∑
β=1

hβuβ +
∂

∂y

α∑
β=1

hβvβ, for α = 1, . . . ,M,



7.2 Modelling multilayer shallow water flows with turbulence 195

where β ≤ α. Through a similar process, but with all the layers between 1 and M , we obtain

∂H

∂t
+

∂

∂x

M∑
α=1

hαuα +
∂

∂y

M∑
α=1

hαvα = 0, α = 1, . . . ,M. (7.2.12)

Thus, by combining (7.2.12) with (7.2.8) and applying it to (7.2.11) we arrive at

Eα+1/2 = Exα+1/2+Eyα+1/2 =

α∑
β=1

∂hβuβ
∂x

− lβ
M∑
γ=1

(
∂hγuγ
∂x

)+

α∑
β=1

∂hβvβ
∂y

− lβ
M∑
γ=1

(
∂hγvγ
∂y

) .

Next, we consider the vertical integration of the u momentum equation in (7.2.4). Hence,

starting with the non-differential terms, we utilize the relations in (7.2.10), (7.2.7) and Leibniz’s

rule to obtain

∫ zα+1/2

zα−1/2

(
∂u

∂t
+

1

ρ

∂p

∂x
+ sx

)
dz =

∂(hαuα)

∂t
− u ∂z

∂t

∣∣∣∣zα+1/2

zα−1/2

+

∫ zα+1/2

zα−1/2

∂

∂x

(
g
(
∂ϑ−B

))
dz + hαsx,α,

=
∂(hαuα)

∂t
− u ∂z

∂t

∣∣∣∣zα+1/2

zα−1/2

+
∂

∂x

(
1

2
gHhα

)
− ghα

∂B

∂x
+ hαsx,α.

For the advection terms we obtain

∫ zα+1/2

zα−1/2

(
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z

)
dz =

∂

∂x

∫ zα+1/2

zα−1/2

u2 dz +
∂

∂y

∫ zα+1/2

zα−1/2

uv dz +

uα−1/2Exα−1/2 − uα+1/2Exα+1/2,

where the momentum exchange velocities uα+1/2 and uα−1/2 are defined by

uα−1/2 =


ūα−1, if Eα−1/2 ≥ 0,

ūα, otherwise,

uα+1/2 =


ūα+1, if Eα+1/2 ≤ 0,

ūα, otherwise,

in which (7.2.8) has been utilised. As we already know that

hαu
2
α =

∫ zα+1/2

zα−1/2

(
2uuα − u2

α

)
dz,

it is possible to show that

∂

∂x

∫ zα+1/2

zα−1/2

u2 dz =
∂
(
hαu

2
α

)
∂x

+
∂

∂x

∫ zα+1/2

zα−1/2

(
u− uα

)2
dz,

≈
∂
(
hαu

2
α

)
∂x

, (7.2.13)
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and that

∂

∂y

∫ zα+1/2

zα−1/2

uv dz =
∂

∂y

(
hαuαvα

)
+

∂

∂y

∫ zα+1/2

zα−1/2

(
u− uα

)(
u− vα

)
dz,

≈ ∂

∂y

(
hαuαvα

)
. (7.2.14)

The latter terms of (7.2.13) and (7.2.14) are dispersion terms, which are a product of the error

of the depth-averaged approximation. They are modelled as diffusion, and thus adsorbed into

the horizontal diffusion terms used below through the inclusion of molecular diffusion term νmol.

Next, we shall consider the integration of the viscous terms over the αth layer

∫ zα+1/2

zα−1/2

∂

∂x

(
2(ν + νt)

∂u

∂x

)
dz = 2(ν + νt)

∂

∂x

(
∂

∂x

∫ zα+1/2

zα−1/2

u dz − u ∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

)
−

(ν + νt)
∂u

∂x

∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

,

≈ 2νh,α

(
∂2hαuα
∂x2

− ∂

∂x

(
u
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

)
− ∂u

∂x

∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

)
.

The horizontal viscosity νh,α is the sum of three viscosity components νh,α = ν + νt,α + νmol,

where ν is the dynamic viscosity, and νt is the turbulent diffusion term. The final step in deriving

(7.2.15) is achieved by applying the shallow water assumptions to the internal fluid in the layer

such that

uα−1/2 ≈ uα, uα+1/2 ≈ uα.

In addition, for a thin layer hα we get

∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

=
∂hα
∂x

.

This allows the momentum equation to be developed using the chain rule

∫ zα+1/2

zα−1/2

∂

∂y

(
(ν + νt)

(
∂v

∂x
+
∂u

∂y

))
dz = νh,α

∂

∂y

(
∂

∂x

∫ zα+1/2

zα−1/2

v dz +
∂

∂y

∫ zα+1/2

zα−1/2

u dz

)
−

νh,α
∂

∂y

(
u
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

+v
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

)
− νh,α

(
∂v

∂x
+
∂u

∂y

)
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

,

≈ νh,α
(
∂2hαvα
∂y∂x

+
∂2hαuα
∂y2

)
−νh,α

(
∂

∂y

(
v
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

+ u
∂z

∂y

∣∣∣∣zα+1/2

zα−1/2

))
−

νh,α

(
∂v

∂x
+
∂u

∂y

)
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

,

≈ ∂

∂y

(
hανh,α

(
∂vα
∂x

+
∂uα
∂y

))
.
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For the diffusion term in the x-direction we obtain

∫ zα+1/2

zα−1/2

∂

∂x

(
2(ν + νt)

∂u

∂x

)
dz ≈ 2νh,α

∂

∂x

(
∂hαuα
∂x

)
.

For the diffusion term in the z-direction

∫ zα+1/2

zα−1/2

∂

∂z

(
(ν + νt)

(
∂w

∂x
+
∂u

∂z

))
dz = νv,α

(
∂w

∂x
+
∂u

∂z

)∣∣∣∣zα+1/2

zα−1/2

,

≈ 2νv,α
uα+1 − uα
hα+1 + hα

− 2νv,α
uα − uα−1

hα + hα−1
,

where νv,α is the effective viscosity in the vertical dimension assumed to take into account vertical

effects and it is selected as part of the turbulence model. Thus, we have

∂(hαuα)

∂t
+

∂

∂x

(
hαū

2
α +

1

2
gHhα

)
+

∂

∂y

(
hαūαv̄α

)
= −ghα

∂B

∂x
+

∂

∂y

(
νh,αhα

(
∂uα
∂y

+
∂vα
∂x

))
+

∂

∂x

(
2νh,αhα

∂uα
∂x

)
+ 2νv,α

ūα+1 − ūα
hα+1 + hα

−2νv,α
ūα − ūα−1

hα + hα−1
+ ūα−1/2Exα−1/2 − (7.2.15)

ūα+1/2Exα+1/2 + hαsx,α.

By applying the same treatment to the momentum equation in the y direction we obtain

∂(hαvα)

∂t
+

∂

∂x

(
hαv̄αūα

)
+

∂

∂y

(
hαv̄

2
α +

1

2
gHhα

)
= −ghα

∂B

∂y
+

∂

∂x

(
νh,αhα

(
∂uα
∂y

+
∂vα
∂x

))
+

∂

∂y

(
2νh,αhα

∂vα
∂y

)
+ 2νv,α

v̄α+1 − v̄α
hα+1 + hα

−2νv,α
v̄α − v̄α−1

hα + hα−1
+ v̄α−1/2E

y
α−1/2 − (7.2.16)

v̄α+1/2E
y
α+1/2 + hαsy,α .

Next, we depth-average the two species conservation equations of the k-ε model. First we

quantify a depth-averaged value for turbulent energy k and its dispersion rate ε in the αth layer

bounded by [zα+1/2, zα−1/2] such that

kα =
1

hα

∫ zα+1/2

zα−1/2

k dz, εα =
1

hα

∫ zα+1/2

zα−1/2

ε dz.

The integration of the left hand side of (7.2.5) yields

∫ zα+1/2

zα−1/2

(
∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
+ w

∂k

∂z

)
dz =

∂(hαkα)

∂t
+

∂

∂x

(
hαk̄αūα

)
+

∂

∂y

(
hαk̄αv̄α

)
+

Eα+1/2k̄α+1/2 − Eα+1/2k̄α+1/2,
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where

k̄α−1/2 =


k̄α−1, if Eα−1/2 ≥ 0,

k̄α, otherwise.

The dispersion terms produced by this integration

∫ zα+1/2

zα−1/2

(k − kα)(u− uα) dz,

∫ zα+1/2

zα−1/2

(k − kα)(v − vα) dz,

are handled in the same way as with the momentum terms, and are incorporated into the

horizontal diffusion terms. The integration of the source terms may be written as

∫ zα+1/2

zα−1/2

(
Pk +Bk − ε

)
dz =

∫ zα+1/2

zα−1/2

∂ui
xj

(
∂ui
∂xj

+
∂uj
∂xi

)
dz +

∫ zα+1/2

zα−1/2

νv,α
σc

g

ρ

∂ρ

∂z
dz + hαεα,

=

∫ zα+1/2

zα−1/2

νt

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2

+

2

(
∂w

∂z

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂w

∂x
+
∂u

∂z

)2
)
dz + hαεα,

≈ hα νt

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
)

︸ ︷︷ ︸
Pα,k

+

νt

(
∂v

∂z
+
∂u

∂z

)∣∣∣∣zα+1/2

zα−1/2

+ hαεα.

Here, we split the production of k term into three parts P k,α, the horizontal production term

and two layer interfaces production terms P k,α+1/2, P k,α−1/2. In order to derive P k,α+1/2 and

P k,α−1/2 we use

P k,α+1/2 + P k,α−1/2 = νt

(
∂v

∂z
+
∂u

∂z

)∣∣∣∣zα+1/2

zα−1/2

,

≈ νv

(
(uα − uα+1) + (vα − vα+1)

)
︸ ︷︷ ︸

Pk,α+1/2

−νv
(

(uα−1 − uα) + (vα−1 − vα)
)

︸ ︷︷ ︸
Pk,α−1/2

.
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The integration of the diffusion terms of (7.2.5) yields

∫ zα+1/2

zα−1/2

(
∂

∂xi

(
νt
σε

∂k

∂xi

))
dz =

∂

∂x

νt
σε

∫ zα+1/2

zα−1/2

∂k

∂x
dz +

∂

∂y

νt
σε

∫ zα+1/2

zα−1/2

∂k

∂y
dz +

νt
σε

∂k

∂z

∣∣∣∣zα+1/2

zα−1/2

−

νt
σε

∂k

∂x

∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

− νt
σε

∂k

∂y

∂z

∂y

∣∣∣∣zα+1/2

zα−1/2

,

=
∂

∂x

νt
σε

(
∂hαkα
∂x

+
νt
σε
k
∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

)
− νt
σε

∂k

∂x

∂z

∂x

∣∣∣∣zα+1/2

zα−1/2

+

∂

∂y

νt
σε

(
∂hαkα
∂y

+
νt
σε
k
∂z

∂y

∣∣∣∣zα+1/2

zα−1/2

)
− νt
σε

∂k

∂y

∂z

∂y

∣∣∣∣zα+1/2

zα−1/2

+
νt
σε

∂k

∂z

∣∣∣∣zα+1/2

zα−1/2

,

≈ ∂

∂x

(
hα

νt
σk

∂kα
∂x

)
+

∂

∂y

(
hα

νt
σk

∂kα
∂y

)
.

As in [14,75], the vertical non-uniformities are neglected. This means the depth-averaged version

of the k species conservation equation (7.2.5) is

∂(hαkα)

∂t
+

∂

∂x

(
hαk̄αūα

)
+

∂

∂y

(
hαk̄αv̄α

)
=

∂

∂x

(
hα

νt
σk

∂kα
∂x

)
+

∂

∂y

(
hα

νt
σk

∂kα
∂y

)
+ (7.2.17)

Eα+1/2kα+1/2 − Eα−1/2kα−1/2 + hαP k + P k,α+1/2 − P k,α−1/2 − hαε .

By applying the same steps to (7.2.6) we arrive at

∂(hαεα)

∂t
+

∂

∂x
(hαε̄αūα) +

∂

∂y
(hαε̄αv̄α) =

∂

∂x

(
hα
νt
σε

∂εα
∂x

)
+

∂

∂y

(
hα
νt
σε

∂εα
∂y

)
+ (7.2.18)

Eα+1/2εα+1/2 − Eα+1/2εα+1/2 +
hαε

k

(
Cε1P k,α − Cε2ε

)
+
εCε1

k

(
P k,α+1/2 − P k,α−1/2

)
.

7.2.1 Boundary conditions for the fluid column

Up to this point we have derived the governing equations for a single layer, now we must apply

the boundary conditions at the bed and the free-surface. For the top layer M we use (7.2.8) to

resolve the x and y-momentum conservation equations (7.2.15) and obtain

sx,MhM = F (w)
M =

τxwi
ρ
, sy,MhM = G(w)

M =
τywi
ρ
,

where the wind velocity is Uwi = (Uwi,x, Uwi,y)
T , and

τxwi = ρCwi(Uwi,x − uM )
√

(Uwi,x − uM )2 + (Uwi,y − vM )2,
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τywi = ρCwi(Uwi,y − vM )
√

(Uwi,x − uM )2 + (Uwi,y − vM )2,

with the wind friction coefficient Cwi defined as [159]

Cwi =
σ2ρa
H

,

where σ is the wind stress coefficient and ρa is the air density. Next, through the application of

equation (7.2.8) to the k-ε equations we arrive at

P k,M+1/2 = νv

(
∂v

∂z
+
∂u

∂z

)∣∣∣∣
zα+1/2

= νvC
−1/2
wi

(
(uN − Uwi,x)2 + (vN − Uwi,y)2

)
.

Subsequently, for the bottom layer (α = 1) it is possible to resolve (7.2.8) and the x and

y-momentum source terms in the conservation equations (7.2.15) and (7.2.16), which yields

(neglecting the turbulent part)

sx,1h1 = F (b)
1 =

τxB

ρ
, sy,1h1 = G(b)

1 =
τyB

ρ
,

where the bed shear is defined as

τxB = ρCBu1

√
u2

1 + u2
1 , τyB = ρCBu2

√
u2

1 + v2
1 ,

where CB is the bed friction coefficient, which may be either constant or estimated using the

Manning equation as

CB =
gn2

m

H1/3
,

where nm is the Manning roughness coefficient of the bed. Next, through the application of the

expression (7.2.8) to the k-ε equations it is possible to relate

P k,1/2 = νv

(
∂v

∂z
+
∂u

∂z

)∣∣∣∣zα+1/2

zα−1/2

= CB
−1/2

(
CB(u2

1 + v2
1)
)3/2

.

As all velocities are now depth-averaged, the overline notation is dropped. The source term Fα

is the external force in x-direction acting on the αth layer and accounting for the friction and

momentum exchange effects. Thus

Fα = F (u)
α + F (b)

α + F (w)
α + F (µ)

α , α = 1, 2, . . . ,M.

Gα = G(u)
α + G(b)

α + G(w)
α + G(µ)

α , α = 1, 2, . . . ,M,
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where Gα is the external force in the y-direction, and

• F (u)
α and G(u)

α estimate the momentum exchange between the layers

• F (b)
α and G(b)

α estimate the effects of bed friction on the system

• F (w)
α and G(w)

α add the effects of wind on the top layer to the system

• F (µ)
α and G(µ)

α are due to the effects of friction between the layers

For the sake of brevity, this section only details the force terms in the x-direction. The x-direction

momentum exchange is defined as

F (u)
α = uα+1/2Exα+1/2 − uα−1/2Exα−1/2,

where the mass exchange terms Exα+1/2 are computed as

Exζ+1/2 =



0, if ζ = 0,

ζ∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , if ζ = 1, 2, . . . ,M − 1,

0, if ζ = M.

The vertical kinematic eddy viscosity term F (µ)
α takes into account the friction between neigh-

bouring layers and it is defined as

F (µ)
α =



2νv,α
u2 − u1

(l2 + l1)H
, if α = 1,

2νv,α
uα+1 − uα

(lα+1 + lα)H
− 2νv,α

uα − uα−1

(lα + lα−1)H
, if α = 2, 3, . . . ,M − 1,

−2νv,α
uM − uM−1

(lM + lM−1)H
, if α = M.

Note that, a generalized derivation of the viscous tensor in multilayer SWEs has also been

reported in [70]. The external friction terms are given by

F (b)
α =


−τ

x
B

ρ
, if α = 1,

0, if α = 2, 3, . . . ,M,
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F (w)
α =


0, if α = 1, 2, . . . ,M − 1,

τxw
ρ
, if α = M.

We combine the source terms for k and ε such that

Ph,α = hα

(
Pk,α − εα

)
+ Pk,α+1/2 − Pk,α−1/2,

Pε,α =
hαεε
k

(Cε1Pk,α − Cε2εα) +
εαCε1
k

(
Pk,α+1/2 − Pk,α−1/2

)
.

By combining equations (7.2.12), (7.2.15), (7.2.16), (7.2.17) and (7.2.18) we obtain

∂H

∂t
+

M∑
α=1

∂

∂x

(
hαuα

)
+

M∑
α=1

∂

∂y

(
hαvα

)
= 0,

∂
(
hαuα

)
∂t

+
∂

∂x

(
hαu

2
α +

1

2
ghαH

)
+

∂

∂y

(
hαuαvα

)
=

∂

∂y

(
hανh,α

(
∂uα
∂y

+
∂vα
∂x

))
− ghα

∂B

∂x
+

∂

∂x

(
hανh,α

∂uα
∂x

)
+ Fα,

∂
(
hαvα

)
∂t

+
∂

∂x

(
hαuαvα

)
+

∂

∂y

(
hαv

2
α +

1

2
ghαH

)
=

∂

∂x

(
hανh,α

(
∂uα
∂y

+
∂vα
∂x

))
− ghα

∂B

∂y
+

∂

∂y

(
hανh,α

∂vα
∂y

)
+Gα,

∂
(
hαkα

)
∂t

+
∂

∂x

(
hαkαuα

)
+

∂

∂y

(
hαkαvα

)
=

∂

∂x

(
hανt,α
σk

∂kα
∂x

)
+

∂

∂y

(
hανt,α
σk

∂kα
∂y

)
+

Pk,α − Eα+1/2kα+1/2 + Eα+1/2kα−1/2,

∂
(
hαεα

)
∂t

+
∂

∂x

(
hαεαuα

)
+

∂

∂y

(
hαεαvα

)
=

∂

∂x

(
hανt,α
σε

∂εα
∂x

)
+

∂

∂y

(
hανt,α
σε

∂εα
∂y

)
+

Pε,α − Eα+1/2εα+1/2 + Eα+1/2εα−1/2.

Note that this system can be rewritten in compact vector form as

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
=
∂Dx(W)

∂x
+
∂Dy(W)

∂y
+ Q(W) + R(W), (7.2.19)
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W
=

                                                             

H

h
1
u

1

h
2
u

2

. . .

h
M
u
M

h
1
v 1

h
2
v 2 . . .

h
M
v M

h
1
k

1

h
2
k

2

. . .

h
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7.2.2 Boundary conditions for turbulence simulations

The k-ε model presents a complex problem when it comes to boundary conditions as turbulent

energy is created and dissipated at all solid boundaries. Calculating these rates accurately was

the focus of studies reported in [115,193,203]. In this study, the commonly utilized approxima-

tions for boundary conditions are implemented as in [9]. Hence,

• Boundary conditions on the walls: In this work non-slip walls are used. It is assumed

that each layer has an equivalent friction velocity, calculated using its mainstream velocity

and its height above the bed

∂H

∂n
= 0, uα = wα = 0, kα =

υ∗2α√
cµ
, εα =

υ∗3α
κvK s̄

,

where κvK is the Von Karman constant (κvK = 0.41), s̄ is the normal distance from

the wall, and n is the normal direction from the boundary. The friction velocity υ∗α is

calculated as

υ∗α =

√
cµk2

α

εα
|∇u · n|.

• Boundary conditions at the inlet: For the inlets it is assumed that the water height

has a zero gradient across the boundary, the volume of flow is set through the manipulation

of fluid velocity, and that other values can be calculated as

k = 2.06655υ∗2α , εα = 1.008687
εγυ
∗3
α

hα
,

where εγ = 9.8 for Reynolds numbers between 104 and 105 [9].

• Boundary conditions at the outlet: For the outlets it is assumed that the water height

and velocities have zero gradient at the boundary, thus the boundary conditions can be

expressed as
∂H

∂n
= 0,

∂uα
∂n

= 0,
∂vα
∂n

= 0,

this also leads to zero graident in the turbulence variables

∂kα
∂n

= 0,
∂εα
∂n

= 0.

It should be noted that other boundary conditions can easily be implemented but, for the flows

under study, these are most suitable.
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7.3 Eulerian-Lagrangian method for multilayer turbulent flows

In order to solve the presented system (7.2.19), a method of integration must be selected. In

this case a second-order splitting method is used, as in the previous chapter. To achieve this,

the time interval is divided into sub-intervals [tn, tn+1], where ∆t = tn+1 − tn. The conserved

variables W are written as Wn to denote their value at the time tn. The operator splitting

method is given in three stages:

Stage 1: Solve for W∗

∂W∗

∂t
=

∂Dx(W∗)

∂x
+
∂Dy(W∗)

∂y
+ R(W∗), t ∈ [tn, tn+1/2],

(7.3.20)

W∗(tn) = W(tn).

Stage 2: Solve for W∗∗

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
+
∂G(W∗∗)

∂y
= Q(W∗∗), t ∈ [tn, tn+1],

(7.3.21)

W∗∗(tn) = W∗(tn+1).

Stage 3: Solve for W∗∗∗

∂W∗∗∗

∂t
=

∂Dx(W∗∗∗)

∂x
+
∂Dy(W∗∗∗)

∂y
+ R(W∗∗∗), t ∈ [tn+1/2, tn+1],

(7.3.22)

W∗∗∗(tn+1/2) = W∗∗(tn+1).

This method is straightforward and fast to implement. It also avoids the complication incurred

from the source term R(W) when calculating fluxes and interpolating values. One problem

faced in this method is the calculation of eigenvalues, as they are not trivial and can often

become complex in certain flow cases. The proposed ELFV method does not need to compute

the eigenvalues of the system. When determining the time-step, an equivalent single-layer shal-

low water system without turbulence is considered so that the Courant-Friedrichs-Lewy (CFL)

condition is set correctly, as shown in [42, 76] this method is fast and stable. While it ignores

the turbulent diffusion terms, as they are velocity reducing, the non-diffusive eigenvalues are an

appropriate approximation. Here, the eigenvalues for each layer are defined as

λ±α = uα ±
√
gH, µ±α = vα ±

√
gH, α = 1, 2 . . . ,M.
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Thus the time-step is adjusted for the maximum wave speed in the shallow water system.

7.3.1 The Eulerian step

In order to discretise the stage (7.3.21) the spatial domain is divided into control volumes

Vij = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] as shown in Figure 5.4 (on page 139). As detailed, the volumes

Vij are centred at (xi, yj) with uniform sizes ∆x and ∆y. We use the following notations

Wi± 1
2
,j(t) = W(t, xi± 1

2
, yj),

Wi,j± 1
2
(t) = W(t, xi, yj± 1

2
),

and

Wi,j(t) =
1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

W(t, x, y) dydx,

to denote the point-values and cell-average of the variable W at the gridpoint (t, xi± 1
2
, yj),

(t, xi, yj± 1
2
), and (t, xi, yj), respectively. By integrating the equation (7.3.21) in space over the

control volume Vi,j shown in Figure 5.4, the following semi-discrete equations are obtained

dWi,j

dt
+

Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y
= ∆tQi,j , (7.3.23)

where Fi±1/2,j = F(Wi±1/2,j) and Gi,j±1/2 = G(Wi,j±1/2) are the numerical fluxes at the cell

interfaces x = xi±1/2 and y = yi±1/2. By using divergence theorem to integrate the control

volume Vij , we obtain

∂

∂t

∫
Vi,j

H dV +
M∑
α=1

∮
Si,j

(lαHuαnx + lαHvαny) dσ = 0,

∂

∂t

∫
Vi,j

lαHuα dV +

∮
Si,j

((
lαHu

2
α +

1

2
glαH

2

)
nx +Huαvαny

)
dσ = −glαH

∮
Si,j

Bnx dσ,

∂

∂t

∫
Vi,j

lαHvα dV +

∮
Si,j

(
Huαvαnx +

(
lαHv

2
α +

1

2
glαH

2

)
ny

)
dσ = −glαH

∮
Si

Bny dσ,

∂

∂t

∫
Vi,j

hαkα dV +

∮
Si,j

(hαkαuα) nx + (hαkαvα) ny dσ = 0,

∂

∂t

∫
Vi,j

hαεα dV +

∮
Si,j

(hαεαuα) nx + (hαεαvα) ny dσ = 0,

where ηηη = (nx,ny)
T denotes the unit outward normal to the surface Si,j of the control volume

Vij . Using the local cell outward normal ηηη and tangential τττ = ηηη⊥ depicted in Figure 5.5 (on
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page 140), the above equations can be projected as

∂

∂t

∫
Vi,j

H dV +
M∑
α=1

∮
Si,j

lαHuα,ηηη dσ = 0, (7.3.24a)

∂

∂t

∫
Vi,j

lαHuα dV +

∮
Si,j

(
lαHuαuα,ηηη +

1

2
glαH

2nx

)
dσ = −glαH

∮
Si

Bnx dσ, (7.3.24b)

∂

∂t

∫
Vi,j

lαHvα dV +

∮
Si,j

(
lαHvαuα,ηηη +

1

2
glαH

2ny

)
dσ = −glαH

∮
Si

Bny dσ, (7.3.24c)

∂

∂t

∫
Vi,j

hαkα dV +

∮
Si,j

hαkαuα,ηηη dσ = 0, (7.3.24d)

∂

∂t

∫
Vi,j

hαεα dV +

∮
Si,j

hαεαuα,ηηη dσ = 0, (7.3.24e)

where the normal projected velocity uα,ηηη = uαnx + vαny, and the tangential projected velocity

uα,τττ = vαnx−uαny. In order to simplify the system (7.3.24) , first equation (7.3.24b) multiplied

by nx is summed to the equation (7.3.24c) multiplied by ny, then equation (7.3.24b) multiplied

by ny is subtracted from the equation (7.3.24c) multiplied by nx. These operations result in

∂

∂t

∫
Vi,j

H dV +

M∑
α=1

∮
Si,j

lαHuα,ηηη dσ = 0,

∂

∂t

∫
Vi,j

lαHuα,ηηη dV +

∮
Si,j

(
lαHuα,ηηηuα,ηηη +

1

2
glαH

2

)
dσ = −glαH

∮
Si,j

B dσ,

∂

∂t

∫
Vi,j

lαHuα,τττ dV +

∮
Si,j

lαHuα,τττuα,ηηη dσ = 0, (7.3.25)

∂

∂t

∫
Vi,j

hαkα dV +

∮
Si,j

hαkαuα,ηηη dσ = 0,

∂

∂t

∫
Vi,j

hαεα dV +

∮
Si,j

hαεαuα,ηηη dσ = 0,

which can be rewritten in a differential form as

∂H

∂t
+

M∑
α=1

∂

∂ηηη
(lαHuα,ηηη) = 0,

∂

∂t
(lαHuα,ηηη) +

∂

∂ηηη

(
lαHu

2
α,ηηη +

1

2
glαH

2

)
= −glαH

∂B

∂ηηη
,

∂

∂t
(lαHuα,τττ ) +

∂

∂ηηη
(lαHuα,ηηηuα,τττ ) = 0, (7.3.26)

∂

∂t
(lαHkα) +

∂

∂ηηη
(lαHuα,ηηηkα) = 0,

∂

∂t
(lαHεα) +

∂

∂ηηη
(lαHuα,ηηηuα,τττ ) = 0,
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The system (7.3.26) can also be reformulated in a non-conservative form as

D0H

Dt
+

M∑
α=1

lαH
∂uα,ηηη
∂ηηη

= 0,

Dαuα,ηηη
Dt

+ g
∂H

∂ηηη
= −g∂B

∂ηηη
,

Dαuα,τττ
Dt

+ uα,τττ
∂uα,ηηη
∂ηηη

= 0, (7.3.27)

Dαkα
Dt

+ kα
∂uα,ηηη
∂ηηη

= 0,

Dαεα
Dt

+ εα
∂uα,ηηη
∂ηηη

= 0,

where
Dζ

Dt
is the total material derivative defined as

Dζ

Dt
=

∂

∂t
+ Uζ

∂

∂ηηη
, ζ = 0, 1, . . . ,M.

This method allows us to simplify the 2D system to a 1D system along each of the surfaces of

the control volume Vi,j . It should be noted that the projected system is only used to reconstruct

numerical fluxes; these are then used to solve the system in (7.3.21).

7.3.2 The Lagrangian step

The modified Method of Characteristics (MoC) is applied to the projected system (7.3.27) in

order to solve for the numerical fluxes Fi±1/2,j and Gi,j±1/2. A regular grid is imposed at the

next time-step and the flow trajectories are backtracked to the previous time levels to establish

the departure points, as with [144, 157]. Assuming that the departure points are accurately

approximated, the predictor stage in the ELFV method applied to the multilayer SWEs is

defined by the solution of the system (7.3.27) as

Hn
i+1/2,j = Ĥn

α,i+1/2,j −
∆t

∆x
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,(
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)n
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∆x

(
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)
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=
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ûα,τττ
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, (7.3.28)
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where

Ĥn
i+1/2,j = H

(
tn, Xα,i+1/2(tn), yj

)
,

(
ûα,ηηη

)n
i+1/2,j

= uα,ηηη
(
tn, Xα,i+1/2(tn), yj

)
,

(
ûα,τττ

)n
i+1/2,j

= uα,τττ (tn, Xα,i+1/2(tn), yj),
(
k̂α

)n
i+1/2,j

= kα

(
tn, Xα,i+1/2(tn), yj

)
,

(
ε̂α

)n
i+1/2,j

= εα
(
tn, Xα,i+1/2(tn), yj

)
.

The intermediate states in the y-direction Hn
i,j+1/2, (uα,ηηη)

n
i,j+1/2, (uα,τττ )ni,j+1/2, (kα)ni,j+1/2 and

(εα)ni,j+1/2 are evaluated in the same manner. Once the projected states are calculated in the

predictor stage (7.3.28), the states Wn
i±1/2,j and Wn

i,j±1/2 are recovered by using the transfor-

mations vα = (uα,τττ , uα,ηηη) · ηηη and uα = (uα,τττ , uα,ηηη) · τττ .

Next, the discretisation of source terms Qi,j in (7.3.23) is carried out in the same manner as in

Chapter 6. The C-property, as used in Chapter 5, is designed specifically for SWE formulations.

As this model includes turbulence we will assess the well-balanced property of the discretisation

again using the lake at rest problem [115]. This means that the discretised source terms should

satisfy

H +B = cte1, uα = vα = 0, ρα = cte2, (7.3.29)

where cte1 and cte2 are constants. As the velocities are set to zero there can be no turbulent

kinetic energy thus

kα = 0, εα = 0.

Therefore, the system reduces to

F(W) + G(W) = Q(W).

This enables us to perform a similar discretisation to Chapter 6, such that the discretised source

terms are well-balanced with the discretised flux terms which gives

(
ghα

∂B

∂x

)n
i,j

= g
(hα)ni+1/2,j + (hα)ni−1/2,j

2

Bn
i+1,j −Bn
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2∆x
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(7.3.30)(
ghα

∂B

∂y

)n
i,j

= g
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2
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2∆y
,

where the averaged solutions are defined by

(hα)ni+1/2,j =
(hα)ni+1,j + (hα)ni−1,j

2
,
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Figure 7.2: The staggered grid used for the space discretisation, showing control volume Vi,j .

(hα)ni,j+1/2 =
(hα)ni,j+1 + (hα)ni,j−1

2
.

It should be noted that the discretisation of source terms is achieved by projecting the original

shallow water model into the local system where a dimension-by-dimension discretisation is used.

Finally, we must consider the discretisation of the diffusion terms in steps (7.3.20) and (7.3.22).

We begin with the staggered grid used in this method, shown in Figure 7.2, and consider the

diffusion of some vector of variables W in a simple 2D manner such that

∇ ·
(
DDD∇W

)
= 0.

where DDD(t, x, y,W) is a function of space time and W means that a linear approximation is

not possible, therefore we employ the technique described in [178]. The space discretisation of

this problem in a control volume such as Vi,j , as shown in Figure 7.2, when split into x and y

components reads as

(
∂

∂x

(
DDD∂W

∂x

))
i,j

:=
DDDi,j +DDDi+1,j

2

Wi+1,j −Wi,j

(∆x)2
− D
DDi−1,j +DDDi,j

2

Wi,j −Wi−1,j

(∆x)2
,

(
∂

∂y

(
DDD∂W
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i,j

:=
DDDi,j +DDDi,j+1

2

Wi,j+1 −Wi,j

(∆y)2
− D
DDi,j−1 +DDDi,j

2

Wi,j −Wi,j−1

(∆y)2
.

This is then applied to all the diffusive terms in (7.2.19). This procedure is implemented as

shown in Figure 7.3.
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Start

ICs

t = t + dt

Solve source terms

Update inter-layer
terms (inc. c)

Estimate fluxes
with MoC

Recover to conser-
tative equations

Solve source terms

Update inter-layer
terms (inc. c)

t = tend?

End

Stage 1

Stage 2

Stage 3

t ∈ [tn, tn+1/2]

t ∈ [tn, tn+1]

t ∈ [tn+1/2, tn+1]

yes

no

Figure 7.3: A flowchart demonstrating the stages in the proposed 2D Eulerian-Lagrangian pro-
cedure, including bed register is highlighted.
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Figure 7.4: Configuration of the measurement zone and a 3D view of the backward-step flow
problem domain.

7.4 Numerical results

The aim of this section is two-fold: to validate the presented model and to investigate its

adaptability. The model is used to simulate three test cases. First the backward-step problem

is used to evaluate the model. This problem is one of the few with experimental data that the

model can be proved against and consequently provides an interesting benchmark, as in [9, 68].

It is theorized that the presented model will show some novel flow features due to its quasi-

3D nature. Secondly, the model is tested against a 3D recirculation flow problem. Here, it is

validated against a 3D simulation using the OpenFOAM software [200] in order to demonstrate

its ability to capture complex 3D flow and k-ε solutions. The turbulence production coefficients

are set to Cw = 0.001 and CB = 0.005 as in [42,46,75,182]. This test is similar in set-up to that

used in [75]. Finally, the method is compared to a complex dam-break situation over both flat

and variable topographies. This demonstrates the ability of the model to capture complex flows

while simulating an evolving free-surface and varying bathymetry.

It should be noted that a Courant number of Cr = 0.7 is implemented in all simulations and

thus the time-step varies in the simulation according to the condition

∆t = Cr
min (∆x,∆y)

max
α=1,...,M

(∣∣λ±α ∣∣, ∣∣ µ±α ∣∣) .
A variety of data is presented to describe the flow. In order to achieve this, the vertical velocity

w is calculated using the 2D results by implementing a similar post-processing method to that

used [12,13] and detailed in Chapter 6, see equation (6.4.19) on page 175.

7.4.1 Backward-step flow problem

The first problem addressed is the classical flow around a backward-step problem which creates

a recirculation in the flow. The experimental data presented in [68] is used to assess the validity
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Figure 7.5: Comparison of the k energy (top), velocity (middle), and velocity magnitude (bot-
tom) results in 2D between the experimental data (left) and the simulation data (right) form a
5-layer model.

of results. The domain is 4.5 m by 0.5 m, the step is 1 m by 0.297 m in size. The domain

and the measurement zone are shown in Figure 7.4. The flow rate is 24.2× 10−3 m3/s and the

water at rest has a height of 0.242 m. The Manning roughness coefficient is 0.01 s/m1/3 and

the eddy viscosity is set to 10−3 m2/s. For this simulation, the inlet boundary condition is set

using the flow rate, and the exit boundary condition is set at a water height of 0.242 m. Initial

turbulence values of k(0, x, y, z) = 0.1× 10−8 m2/s2 and ε(0, x, y, z) = 0.1× 10−8 m2/s2 are set

across the domain. We have used 5-layers for this simulation, to mirror the course discretization

used in similar simulations [9]. In which the steady state vertical velocity profile is measured

and implemented at the boundary.

First, a comparison is drawn between the k in the xy-plane for the experimental and simu-

lation results. As can be seen, in Figure 7.5 there is some variation between the experimental

and the results from the model. A highly turbulent region is created just after the step in the

simulation, this is likely to be due to the boundary conditions of the presented model being

set to non-slip walls, as seen in other papers. This creates regions of high velocity deviation as
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Figure 7.6: Comparison of the flow in terms of velocity u (top) and turbulent kinetic energy k
(bottom) at three horizontal cross-sections: x = 1.53 m , x = 2.03 m and x = 2.53 m.

Figure 7.7: Streamlines obtained for backward step flow simulation in the domain view (top
left), xy-plane view (top right), xz-plane view (bottom left) and zy-plane view (bottom right).

shown in Figure 7.5. Although the velocity field shown in Figure 7.5 shows a good agreement

between the two flows, the magnitude of the recirculation is different, but crucially the feature is

still captured. The shape of the area is correct, though the dissipation does not quite match as

there is more natural variation in the flow. As the simulation is multilayer and the experimental

measurements were taken on the top layer only, the top layer results are presented.

The velocity plots show a good agreement between the simulation and the experimental
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Figure 7.8: Cross-sections in the xz-plane of turbulent energy k (top), streamlines (middle) and
velocity fields (bottom) at y = 8 m, at t = 50 s OpenFOAM (left) and the multilayer model
(right).

data. The centre of rotation is slightly further upstream compared to the experimental results,

although the magnitude and distribution of the velocity is correct, as seen in Figure 7.5. This is

further backed up by the three cross-sections presented in Figure 7.6. These cross-sections show

a good agreement with the OpenFOAM data, though there is some degeneration, especially in

terms of k when moving downstream. This is likely to be due to the development of the vortex,

as although the flow evolves to the near steady state shown in the presented results, it fails

to capture the localised deviations shown in the experimental results. This is in-line with the

results presented in [9, 68] and appears to be a limitation of the k-ε when used with the mesh

resolution proposed by those authors.

Finally, the main advantage that this model offers over the single layer model is shown

in Figure 7.7: the ability to capture 3D flow effects. The figure depicts the changing flux

and evolving vortex with a central point of revolution. This feature, novel to shallow water

simulations of this type, shows the detailed and complex nature of the flow and how the method

is able to capture the 3D effects of this problem. It goes further to demonstrate that the derived

model is able to capture and account for the vertical velocity components even though they

are not directly calculated in this model. This capturing of the key problem flow features is

only possible with the inclusion of turbulence, which shows the crucial nature of turbulence

modelling.
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Figure 7.9: Streamlines (top) and velocity fields (bottom) of the recirculating flow at t = 50 s
OpenFOAM (left) and the multilayer model (right).

7.4.2 Recirculation flow problem

Next, a vertical flow problem is considered in order to show the ability of the method to capture

the 3D flow and the effects of including a k-ε model accurately. The OpenFOAM software is

used to validate this model. In order to achieve this, the lid driven flow problem is modified

to a 3D equivalent of wind driven flow2. Wind speed Uwi is set to 10 m/s at 45◦ to the x-

dimension, the domain is altered to 16 m× 16 m× 2 m. The domain is discretised into control

volumes of ∆x = ∆y = 0.5 m, ∆z = 0.4 m. The flow is assumed to be at rest initially and can

be described as

u(0, x, y, z) = 0 m/s v(0, x, y, z) = 0 m/s H(0, x, y) = 2 m,

k(0, x, y, z) = 0.1× 10−8 m2/s2, ε(0, x, y, z) = 0.1× 10−8 m2/s2.

The walls are modelled as non-slip and implemented with the above boundary conditions. Other

variables are kept the same as the test example simulation. This coarse mesh highlights the

2https://cfd.direct/openfoam/user-guide/v6-cavity/
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Figure 7.10: Comparison of the x and y-direction velocities and k along the vertical dimension
at x = 8 m, y = 8 m and t = 50 s, between OpenFOAM and the multilayer model.

Figure 7.11: A comparison of wave forms at t = 7.2 s for the presented model (left) and reference
solution (right).

flexibility of the system while remaining close to the wind-driven flow model used in the previous

chapter and the well-documented lid-driven flow model in OpenFOAM software [200]. The

simulation is designed to show the ability of the model to capture 3D flow and is allowed to run

for 50 s.

Allowing for slight differences in the type of models, the streamlines shown in Figure 7.8

match the flow well. This is also born out in the Figure 7.8, which gives a cross-section of the

turbulent kinetic energy and 2D streamlines. There is a minuscule deviation in flow direction

shown in the streamlines but a larger variation in the flow turbulent energy, as the model does

not take into account the variation in the vertical direction when calculating turbulent kinetic

energy. Beyond this, the model is a good match showing the same formation of turbulent kinetic

energy. Figure 7.10 shows the concurrence is between the two models.

The minor disparity between the two flows is likely to be due to the difference in free/restrictive

surfaces used in the two solvers. The advantage of the proposed model is clear as it offers com-

parable accuracy, easier model formulation and is over five times faster to complete (requiring

only 71.54 s as compared to 378.16 s).
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Figure 7.12: Comparison of velocities along the vertical dimension at x = 115 m, y = 100 m at
t = 7.2 s, for the presented model and interFOAM

7.4.3 Partial dam-break flow problem

Finally, a partial dam-break problem is examined with and without a flat bed. First, a standard

partial dam-break domain with a flat bed is considered and compared to OpenFOAM results,

using the Volume of Fluid method (VoF) [200]. The aim of this step is to validate the model for

this class of flow of problems. The domain is then modified by adding in a varying bathymetry,

this demonstrates the ability of the model to handle even more complex flows. The effects of

varying the number of layers are then evaluated.

The domain is 200 m × 200 m with a 10 m wall (centred about y = 100 m) separating

the domain into two halves. The water on the west side of the domain has a height of 5 m,

and 2 m on the east side. A dam-break occurs between x = 90 m to x = 140 m at t = 0 s. The

simulation is allowed to run for 7.2 s. The initial conditions are expressed as

u(0, x, y, z) = v(0, x, y, z) = 0 m/s, k(0, x, y, z) = 0.1× 10−8 m2/s2,

ε(0, x, y) = 0.1× 10−8 m2/s2, H(0, x, y) =


5 m, if x ≤ 100 m,

2 m, if x > 0 m.

The domain is divided into 100× 100 control volumes and 10 layers are used. The results are

compared to an equivalent OpenFOAM simulation, using the interFOAM solver3, where the

domain is divided into 200× 200× 20. The waveforms created by all both simulations are then

compared in Figure 7.11.

There is a good convergence between the simulations, the reference solution waveform has

the most pronounced wave-front and hydraulic jump. The presented simulation is slightly less

accurate than the OpenFOAM method, this is likely to be due to the lack of z-dimension

velocities. Beyond this, the solution has very similar features to the interFOAM solver, including

3https://openfoamwiki.net/index.php/InterFoam
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Table 7.2: Errors in velocity and CPU times for the presented model, at points A (115 m, 75 m),
B (115 m, 100 m) and C (115 m, 125 m) at t = 7.2 s.

Velocity u Velocity v Velocity w CPU
Point L∞-error L2-error L∞-error L2-error L∞-error L2-error time [s]

A 7.994E-1 7.606E-1 4.149E-2 1.195E-2 2.881E-2 2.956E-3
B 3.793E-1 2.650E-1 5.619E-2 1.992E-2 8.052E-2 2.857E-2 30.01
C 1.751E-1 7.780E-2 1.452E-0 5.981E-0 1.638E-1 8.556E-2

Figure 7.13: Comparison of velocities produced through the inclusion and exclusion of turbulence
modelling along the vertical dimension at x = 115 m, y = 100 m at t = 7.2 s.

the presence of an hydraulic jump and the edge effects at the corners of the dam. It should

also be noted that the interFOAM solver includes the effects of fluid-air interaction, therefore

for the presented model the effects of wind have also been included. This effect is clearly seen

in Figure 7.12, where the velocities of the three simulations are compared along a vertical axis

located at (115 m, 100 m). These three figures show that there is a very good realization of

accurate flow in the presented model, as compared to the reference solution. It is interesting

to see that an OpenFOAM simulation of similar discretisation has a similar level of error. This

conclusion is supported by the data presented in Table 7.2, which shows a consistent image

across the three points viewed: the level of accuracy in the OpenFOAM 3D simulation and the

presented model are comparable. This is an encouraging result for the presented model and

allows modification of the domain in the next simulation type. It is also worth comparing the

CPU times. The presented model is over fifty times faster than the OpenFOAM simulation.

Now we consider the effects of the inclusion of the k-ε model in the presented formulation.

The formulation should affect the maximum velocities and the discharge rate, as potential energy

stored behind the dam will be converted to kinetic and turbulent energy. If the model does not

include turbulent energy then a discrepancy should be visible in the results.

The results of the simulation without turbulence, with turbulence and the reference sim-

ulation are shown in Figure 7.13. It is interesting to note that the non-turbulent simulation

under-estimates the mid body velocities in both the x and y-dimensions, while over-predicting
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Table 7.3: Comparison of the discharge, disturbed area, maximum velocity and CPU times at
four intervals (1.8 s, 3.6 s, 5.4 s, and 7.2 s) for a turbulent simulation (I) and a simulation
without turbulence modelling (II).

Sim. Time [s] Discharge [m3] Disturbed area [m2] Max velocity [m/s] CPU Time [s]

I

1.8 515.2 1893 3.599 11.35
3.6 1685 3126 4.676 23.50
5.4 2958 4277 5.019 34.33
7.2 3731 5334 5.145 47.87

II

1.8 498.9 1375 3.537 9.472
3.6 1600 2693 4.571 19.89
5.4 2810 4277 4.927 30.69
7.2 3545 5468 5.056 41.63

Figure 7.14: Comparison of volumetric discharge for partial dam-break simulations with and
without turbulence modelling.

the vertical velocity. This difference presents an interesting change: as shown in Figure 7.14 the

discharge profile for the two simulations varies widely, with the turbulent simulation accelerating

the discharge much faster initially but settling to a similar rate further on. These differences

will become crucial when considering sediment transport, as the changes in maximum velocity,

as shown in Table 7.3, and the initial differences in volumetric flow rate Q will effect bed mor-

phology. It is also worth noting that the computational expense for the turbulent simulation at

47.87 s compares to the laminar simulation at 41.63 s. This small discrepancy shows that the

inclusion of the k-ε model has a minimal effect on the speed of the simulation. Next, the effects

of the multilayer assumption in the system of equations is examined, specifically with regard to

the effect that varying the number of layers has on the simulation. In order to do this an uneven

bathymetry is introduced and the simulation is repeated with 2-layers, 5-layers , and 20-layers.

The results are presented in Figure 7.17, and the velocities at the central point of the dam-break

(100 m, 115 m) are evaluated. In order to demonstrate the ability of the proposed method to



222 Modelling of turbulent multilayer shallow water flows in two dimensions

Figure 7.15: Comparison of partial dam-break flow at t = 7.2 s for the flat (left) and non-flat
(right) bathymetry.

handle non-flat bathymetry, a partial dam-break over a dip is considered. This creates a more

complex flow situation. The bed is varied with the following equation

B(x, y) =
1

2
Bx(x)⊗ By(y),

where

Bx(x) =


cos
( π

50
(x+ 85)

)
, if 90 m ≤ x < 140 m,

0, elsewhere,

By(y) =


sin
( π

40
(y + 120

)
, if 80 m ≤ y < 120 m,

0, elsewhere.

This creates a trench 0.5 m deep in the centre of the dam-break. The aim of this simulation

is to show that the method can handle this uneven bathymetry and capture the crucial detail

that separates this situation from the last. The two simulations are then compared to observe

the differences captured. All parameters are kept the same, apart from the topography of the

bed. The results are presented in Figure 7.15 and Figure 7.16 and, as is shown, there are small

differences caused by the uneven bathymetry: the centre of the high speed portion of the wave

is moved further from the dam-break and, while the velocity profile remains similar, there is a

slight increase in the disturbed area and the maximum speed with the uneven bed. The dip

itself helps to accelerate the discharge.

These small differences demonstrate that the method is even able to capture the fine detail

that arises. Though these changes are small, it is important to note that when considering, for

example, a movable bed (as we shall see in the next chapter) a huge difference in flow can be

caused by even small changes in the wave speed. Thus the ability to account for small changes
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Figure 7.16: A comparison of velocity magnitudes in the yz-plane at x = 115 m (top) and in
the xy-plane for top layer, at t = 7.2 s for the flat (left) and non-flat (right) bathymetry.

in flow caused by a movable bed is a crucial feature of this model.

As Figure 7.17 shows, there is a growing convergence when moving from 2 to 20-layers and

a good agreement at 10-layers. This is further backed up by the results in Table 7.4 which show

there is a very small variation between the number of layers in terms of area disturbed. More

particularly, as the number of layers increases, the discharge drops. This implies that as the

number of layers is increased, a greater resolution and correction for viscous effects is achieved.

This implies that, as proposed in [14], if the number of layers becomes large enough, a truly

3D system is recovered; though as shown in Figure 7.17, an impractically large number is not

required in order to approach a 3D system. The most significant effect is on maximum velocities

which drop by over 10 % between the 2-layer and 20-layer simulation. This effect is small but

will become important when modelling sediment transport, as even small fluctuations in velocity

can have profound effects on bed and therefore flow patterns. This suggests that the number of

layers used in the simulation does not affect the discharge profile or wave-form directly, but does

impact the distribution of velocities therein. This is a useful result as it points to a convergence

of a more precise vertical velocity distribution when using more layers.
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Table 7.4: Comparison of the discharge, disturbed area, maximum velocity and CPU times at
four intervals (1.8 s, 3.6 s, 5.4 s, and 7.2 s for the different number of layers).

Number of
Layers Time [s] Discharge [m3]

Disturbed area
[m2]

Max velocity
[m/s]

CPU Time
[s]

2

1.8 1623 3179 3.515 12.35
3.6 2859 5012 4.848 23.50
5.4 4018 6954 5.322 28.33
7.2 5060 8575 5.556 30.87

5

1.8 1621 3179 3.516 7.580
3.6 1850 5012 4.805 14.81
5.4 3996 6954 5.236 22.18
7.2 5015 8591 5.433 29.85

10

1.8 1620 3179 3.498 11.00
3.6 2841 5012 4.706 22.91
5.4 3972 6967 5.066 36.26
7.2 4949 8611 5.209 47.61

20

1.8 1618 3179 3.499 27.63
3.6 2827 5012 4.582 87.04
5.4 3945 6987 4.845 133.4
7.2 4876 8632 4.8921 154.7

Figure 7.17: Comparison of velocities produced by varying the number of layers along the z-axis
at (x = 115 m, y = 100 m) at t = 7.2 s.

7.5 Concluding remarks

In this chapter, a novel method for turbulence modelling is presented, where a multilayer two-

dimensional shallow water model is coupled with the well established k-ε model for turbulence.

This new model is derived from the Reynolds-averaged Navier-Stokes equations and includes

some novel features. The derivation uses depth-averaged velocities and turbulent kinetic energy

variables (k and ε) for each layer, so that vertically stratified results can be obtained. Crucial

to this new formulation is the treatment of diffusive terms to incorporate inter-layer effects like

momentum transfer and friction. For the first time, the same treatment is given to turbulence

variables through their production terms, such that turbulent kinetic energy can be produced

or lost due to the effects of the fluid layers around it. This model is novel in formulation and it
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provides new insight into complex shallow turbulent flows.

In order to solve this model, the Eulerian-Lagrangian finite volume method, is developed

to include the effects of turbulent velocities in the Eulerian stage. Though these diffusive ef-

fects are generally small, it is important to include them to ensure a conservative method. The

method of characteristics used in the Eulerian step to approximate fluxes that are then recov-

ered to the conservative equations in the second step. As the Riemann problem is avoided, no

eigenvalues (as needed by a standard Roe solver etc.) are calculated. Consequently the method

provides stable second-order accurate results. These results are evaluated using three prob-

lems: the backward-step flow problem, the recirculation flow problem and a partial dam-break

problem. The backward-step flow problem demonstrates the model is accurate and able to cap-

ture turbulent effects (namely the creation of a vortex). The model is validated for this example

through the comparison with experimental data. Next a recirculation flow problem is considered,

adapted from the OpenFOAM standard test to be a three-dimensional problem. This problem

is compared to the OpenFOAM software, and used to demonstrate the ability of the model to

capture vertical dimension effects and, through post processing, vertical velocities. Finally, a

partial dam-break problem is considered, and is also compared to OpenFOAM to demonstrate

the speed and accuracy of the presented model. The effects of turbulence modelling are exam-

ined as well, with a comparisons drawn between turbulent and non-turbulent simulations. It

is interesting to note that the inclusion of the turbulence model only minimally increases the

computational expense. The partial dam-break problem is also used to showcase the effects of

the number of layers used in a simulation as well as the impacts of variable bathymetry. Though

the number of layers and variable bathymetry have a small effect, as we have seen in terms of

sediment transport, even minor variations in flow can cause large variations in bed morphology.

These simulations show a good agreement and are a strong indicator that a two-dimensional

multilayer shallow water system may be able to take on more complex flows in research and

commercial exploitation in the future. Overall it provides interesting results that hold great

promise for the development of sediment transport and other shallow water flow models.



Chapter 8

Modelling and simulation of
turbulent multilayer shallow water
flows over multi-sediment movable
beds

The study detailed here combines the multilayer k-ε model presented in Chapter 7 with sediment

transport (including multi-sediment tools). The aim is to develop an advanced multilayer sedi-

ment model capable of dealing with complex flows and bed situations. To the best knowledge of

the author, this is the first time a two-dimensional multilayer model has been used for sediment

transport with turbulence. The multilayer formulation allows for water, sediment, momentum,

and turbulent energy exchange between layers. The aim of this work is to develop a fast and ac-

curate model that overcomes some of the assumptions that limit the current sediment transport

models widely used in the literature.

The formulation developed in this chapter is a seven-equation system which is solved by the

multilayer Eulerian-Lagrangian finite volume method developed in previous chapters. The sys-

tem builds on the five-equation model of the previous chapter by including the two sedimentary

equations used in Chapter 5. The method used is fast, accurate and well-balanced, using similar

steps to those detailed in Chapter 7. Furthermore, the method is easy to implement and can

handle the complex flows and developing topography required. The method is used to simulate

a series of benchmark and novel problems including: the lake at rest problem, the scour over an

apron problem and a two-dimensional partial dam-break problem. The partial dam-break sim-

ulation is also further evolved to include vertically stratified and horizontally stratified layered

beds. The merits of this model compared to the standard shallow water models over erodible

beds are numerous. It has the ability to handle multiple sediments allowing for new levels of

accuracy. Compared to standard shallow water models, it offers new features such as depth strat-

226



8.1 Motivation for modelling turbulent multilayer sedimentary flows 227

ified results and turbulence effects. When compared to three-dimensional Navier-Stokes models,

the method can obtain comparably accurate results with far smaller computational expense (as

it does not require re-meshing like most three-dimensional Navier Stokes models). This final

model demonstrates all these new and useful features, and has a robust nature which should

improve the current trade-off between accuracy and cost for sediment transport simulations.

A basic introduction to the relevance of the problem is presented in Section 8.1. The gov-

erning equations for the model are given in Section 8.2.

The Eulerian-Lagrangian finite volume method used to solve the proposed model is briefly

overviewed in Section 8.3. In Section 8.4, numerical results are compared to benchmark tests.

Finally, conclusions are drawn in Section 8.5.

8.1 Overview of modelling turbulent flows over moveable beds

There are many methods for hydraulic modelling, from the three-dimensional (3D) Navier-Stokes

models to the one-dimensional (1D) Shallow Water Equations (SWEs) and the Boussinesq equa-

tion; each is applicable to a certain situation. While the 3D Navier-Stokes equations are nearly

universally applicable and are the most accurate, they are costly in terms of computation. Thus,

any simplifications in the model design result in substantial computational savings. This chapter

presents a two-dimensional (2D) multilayer shallow water model for use in solving 3D free-surface

problems. The method is faster and simpler than 3D Navier-Stokes equations and utilises strat-

ified horizontal velocities throughout, leading to significant gains in resolution over the standard

2D SWEs. The presented model is developed from [12] to include sediment transport methods.

Sediment transport can either be modelled statistically or deterministically [202]. This type

of model uses empirical relations that have been well tested and developed from experimental

data, combined with a deterministic approach to fluid modelling. Many different formulations

exist for sediment pick-up functions; the most popular of these are Meyer-Peter and Muller [122],

Grass [78], and van Rijn [186]. Research continues to be done to improve the empirical relations

to this day [16, 213]. Recently, focus has turned to multi-sediment models (like the composite

bed problem) where more than one sediment type is present and must be accounted for [69,196].

Some studies like [69] handle each sediment separately, while [196] takes a different approach and

finds the optimal average for representing the sediments. In this chapter, a quasi-3D approach is

used, where sediments are handled separately in the pick-up functions but as a single averaged

mass in the water. This has the advantage of not expanding the governing equations whilst still

treating the main characteristics of the sediments accurately.

Many 3D models exist for sediment transport, see [100,116,129,219] among others. Most of
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these models solve variations on the Navier-Stokes equations coupled with a bed Exner equation.

One of the most recently developed models is sedFOAM, which is an OpenFOAM sediment

modelling tool that has been developed and repeatedly validated, see for example [49]. This has

the advantage of being able to solve complex flow structures in 3D. However, these methods

have the notable disadvantage of being highly computationally expensive, as the solution of the

Navier-Stokes system is very complex and time demanding. Thus, any simplifications that can

be made to the system are very valuable. One simplification is the use of the 2D SWE system,

employed in conjunction with sediment transport equations. This has been widely developed

in [4, 21, 58, 80, 104, 127] among others. Two methods for obtaining solutions exist: the first is

an uncoupled approach, in which the bed Exner equation is solved as a latter step to the SWEs.

This is a useful method for low shear, near steady-state situations where the time-scale of the

bed evolution is much smaller than that of the flow. The second is the coupled approach where

the bed equation is coupled with the SWEs; this approach is significantly more accurate and is

used by almost all recent works, including [26,77,117,166].

For the numerical solution of these models most use Roe-type solvers. This works by gener-

ating approximate Jacobian matrices for flux and requires the calculation of Roe average values

and average wave-speed estimators. Consequently, the calculation of the eigenvalues of the Ja-

cobian matrices is required. This is very computationally expensive and limits the adaptability

of the models. These methods are further constrained by a lack of vertical velocity distributions,

due to their depth-averaged assumption. The presented method overcomes this by using mul-

tiple 2D layers, so that the velocity can vary with depth as well as enabling exchange between

the layers. The Eulerian-Lagrangian Finite Volume (ELFV) method is employed to mitigate the

complications caused by the formulation of the model. The projection finite volume method is

used for the Eulerian stage, and the method of characteristics for the Lagrangian stage. This

method is well-balanced and conservative as well as exhibiting good speed advantages compared

to 3D methods. In addition, the solution of the Riemann problem is avoided. As a result, the

presented method and model are able to deal with hydrogeomorphic problems that would be

impossible for many other models.

The gap between 2D and 3D models has recently been bridged by the introduction of mul-

tilayer models, though two-layer models for water flow have been developed for a while, see for

instance [194]. More recently, models like those investigated in [14, 69, 181] which are capable

of handling three or more layers have been developed. Some of these models [5, 29, 40] are con-

strained as they deal only with immiscible fluids. However, there is a second category of models

in which mass exchange is allowed between the layers as in [14,69,181] and this is the category

to which the model considered in the current study belongs.
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Two problems are posed for this model: scour over an apron problem, a comparison to new

experimental data for a 1D dam-break problem, and a partial dam-break problem. The scour

over an apron problem tests the model for speed and accuracy compared to an equivalent 3D

Navier Stokes formulation (the OpenFOAM solver sedFOAM). It should be noted that this is

not the most advanced scour model and, as there are significant differences between the two

models, only a partial comparison is possible. Nonetheless, the results gained are promising

for the presented model. Finally, a run of partial dam-break simulations are considered. These

are amongst the most complicated problems to model in sediment transport as they include

vertically and horizontally stratified layered beds, which are difficult for many formulations to

handle. Overall, the model demonstrates reliable and accurate results and illustrates all of the

advances made during this project.

8.2 Model for multilayer turbulent flow over erodible beds

In this section, a short overview of the governing equations is given. The standard domain is

discretised as shown in Figure 8.1. The fluid column is divided into multiple horizontal fluid

layers, and the bed contains multiple layers of heterogeneous and homogeneous sediments. This

means that there are concentrations of each sediment type in both the fluid and the bed to

consider. As a starting point, the turbulent multilayer system in 2D is used, as detailed in

Chapter 7. The flow is divided into M layers such that α = 1, . . . ,M . The αth layer is bounded

by zα+1/2 and zα−1/2 and has a height hα which is defined as

hα = lαH ,

where the proportion lα also satisfies

lα ≥ 0,

M∑
α=1

lα = 1.

In this layer (uα(t, x, y) vα(t, x, y) wα(t, x, y))T are the velocity components in the x, y, and z

directions. Each layer also has values for turbulent kinetic energy kα(t, x, y) and turbulent kinetic

energy dissipation εα(t, x, y). A bed containing L (l = 1, . . . , L) number of discrete layers with

N (% = 1, . . . , N) sediment types is also included in this model. A bed Exner-type equation for

the bed height B(t, x, y) and species conservation equations for the cumulative depth-averaged
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Figure 8.1: Illustration of a multilayer domain with a multilayer bed.

concentration of all sediments c̄α(t, x, y) in each layer are added to the formulation, where

cα =
N∑
%=1

cα,%,

and the averaged sediment variables are defined as

ρs,α =

N∑
%=1

cα,%
cα

ρs,%, ρα = ρw(1− cα) +

N∑
%=1

cα,%
cα

ρs,%, (8.2.1)

Using the same method as Chapter 5, the bed is also discretised such that

Ψ =
N∑
%=1

bk,%
Bk

(Ψ)%, ρ0 = ρw(1− Ψ) +
N∑
n=1

bk,%
Bk

ρs,%(Ψ)%.
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The governing equations may be expressed in a conservative form as

∂H

∂t
+

M∑
α=1

∂(hαuα)

∂x
+

M∑
α=1

∂(hαvα)

∂y
=

E1 −D1

1− Ψ
,

∂(hαuα)

∂t
+

∂

∂x

(
hαu

2
α +

1

2
ghαH

)
+

∂

∂y

(
hαuαvα

)
=

∂

∂x

(
hανh,α

∂uα
∂x

)
+

∂

∂y

(
hανh,α

(
∂uα
∂y

+
∂vα
∂x

))
−

ghα
∂B

∂x
+

(ρs,α − ρw)(hα)2

2ρα

∂cα
∂x

+ Fα,

∂(hαvα)

∂t
+

∂

∂x

(
hαuαvα

)
+

∂

∂y

(
hαv

2
α +

1

2
ghαH

)
=

∂

∂x

(
hανh,α

(
∂uα
∂y

+
∂vα
∂x

))
+

∂

∂y

(
hανh,α

∂vα
∂y

)
−

ghα
∂B

∂y
−

(ρs,α − ρw)g(hα)2

2ρα

∂cα
∂y

+Gα,

(8.2.2)

∂(hαcα)

∂t
+

∂

∂x

(
hαcαuα

)
+

∂

∂y

(
hαcαvα

)
=

∂

∂x

(
hανh,α

∂cα
∂x

)
+

∂

∂y

(
hανh,α

∂cα
∂y

)
+ Sc,α

∂(hαkα)

∂t
+

∂

∂x

(
hαkαuα

)
+

∂

∂y

(
hαkαvα

)
=

∂

∂x

(
hανt,α
σk

∂kα
∂x

)
+

∂

∂y

(
hανt
σk

∂kα
∂y

)
+ Pk,α −

kα+ 1
2
Eα+ 1

2
+ kα− 1

2
Eα− 1

2
,

∂(hαεα)

∂t
+

∂

∂x

(
hαεαuα

)
+

∂

∂y

(
hαεαvα

)
=

∂

∂x

(
hανt,α
σε

∂εα
∂x

)
+

∂

∂y

(
hανt,α
σε

∂εα
∂y

)
+ Pε,α −

εα+ 1
2
Eα+ 1

2
+ εα− 1

2
Eα− 1

2
,

∂B

∂t
+
∂G(B)

∂z
=

D1 − E1

1− Ψ
.

The source/sink terms for k and ε are

Ph,α = hα

(
Pk,α − εα

)
+ Pk,α+1/2 − Pk,α−1/2,

Pε,α =
hαεε
kα

(
Cε1Pk,α − Cε2εα

)
+
εαCε1
kα

(
Pk,α+1/2 − Pk,α−1/2

)
,

where production of turbulent kinetic energy is defined as

Pk,α = νt

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
)
,
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where

Pk,α+1/2 =



CB
−1/2

(
CB(u2

1 + v2
1)
)3/2

, if α = 1,

νv
(
(uα − uα+1) + (vα − vα+1)

)
, if α = 2, . . . ,M − 1,

νvC
−1/2
wi

(
(uM − Uwi,x)2 + (vM − Uwi,y)2

)
, if α = M.

The source term for concentration Sc,α is defined as

Sc,α =



E1 −D1 + c1.5E1.5 − εch1

(
∂2c∆,3/2

∂z2

)
, if α = 1,

−cα−1/2Eα−1/2 + cα+1/2Eα+1/2+

εch2

(
∂2c∆,α−1/2

∂z2
−
∂2c∆,α+1/2

∂z2

)
,

if α = 2, . . . ,M − 1,

−cM− 1
2
EM− 1

2
+ εchM

(
∂2c∆,M−1/2

∂z2

)
, if α = M.

To determine the entrainment and deposition rates the semi-empirical relations reported in [36]

are used

Dα =



N∑
%=1

c1,%

c1

(
ws,% (1− cB,%)2 cB,%

)
, if α = 1,

0, otherwise,

where

cB,% = c1,% min

(
2,

(
c1,%

1− Ψ

))
.

For the entrainment of sediments, the following empirical relation is employed

Eα =



N∑
%=1

bk,%
Bk

ϕ%
τ% − τcr,%

H

√
u2
α + v2

αd
−0.2
% , if τ% ≥ τcr,% and α = 1,

0, otherwise.

This model relies on several empirical parameters for turbulence (Cµ, Cε1, Cε2, Cε3, σk, σε, σc, CεΓ)

and these are given in Table 7.1. The source term Fα is the external force in x-direction acting
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on the αth layer and accounting for the friction and momentum exchange effects. Thus

Fα = F (u)
α + F (b)

α + F (w)
α + F (µ)

α , α = 1, 2, . . . ,M. (8.2.3)

The external force in the y-direction Gα is accounted for similarly as

Gα = G(u)
α + G(b)

α + G(w)
α + G(µ)

α , α = 1, 2, . . . ,M. (8.2.4)

Note that for (8.2.3) and (8.2.4):

• F (u)
α and G(u)

α estimate the momentum exchange between the layers

• F (b)
α and G(b)

α estimate the effects of bed friction on the system

• F (w)
α and G(w)

α add the effects of wind on the top layer to the system

• F (µ)
α and G(µ)

α are due to the effects of friction between the layers

For the sake of brevity, this section only details the force terms in the x-direction. The mass

exhange term is split into two parts

Exα+1/2 = Exα+1/2 + Eyα+1/2.

Therefore the x-direction momentum exchange is defined as

F (u)
α = uα+1/2Exα+1/2 − uα−1/2Exα−1/2,

where the mass exchange terms Exα+1/2 are computed as

Exα+1/2 =



0, if α = 0,

α∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , if α = 1, 2, . . . ,M − 1,

0, if α = M.

Furthermore, the interface velocities uα−1/2 and uα−1/2 and concentrations are calculated thus

uα−1/2 =


uα−1, if Exα−1/2 ≥ 0,

uα, otherwise.

cα−1/2 =


cα−1, if Exα−1/2 ≥ 0,

cα, otherwise.
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The vertical kinematic eddy viscosity term F (µ)
α takes into account the friction between neigh-

bouring layers and it is defined as

F (µ)
α =



2νv,α
u2 − u1

(l2 + l1)H
, if α = 1,

2νv,α
uα+1 − uα

(lα+1 + lα)H
− 2νv,α

uα − uα−1

(lα + lα−1)H
, if α = 2, 3, . . . ,M − 1,

−2νv,α
uM − uM−1

(lM + lM−1)H
, if α = M,

where νh,α is the horizontal eddy viscosity and νv,α is the vertical eddy viscosity. Note that a

generalized derivation of the viscous tensor in multilayer SWEs has also been reported in [70].

The external friction term for the bed in (8.2.3) is given by

F (b)
α =


−τ

x
B

ρ
, if α = 1,

0, if α = 2, 3, . . . ,M.

The external stress due to wind term in (8.2.3) is calculated using

F (w)
α =


0, if α = 1, 2, . . . ,M − 1,

τxwi
ρ
, if α = M,

where ρ is the water density, and τxB and τxwi are respectively the bed shear stress and the shear

of the blowing wind. These are defined by the water velocity in the top and bottom layers, and

the wind velocity Uwi = (Uwi,x, Uwi,y)
T as

τxB = ρCBu1

√
u2

1 + v2
1, τxwi = ρCwi(Uwi,x − uM )

√
(Uwi,x − uM )2 + (Uwi,y − vM )2,

where CB is the bed friction coefficient, which may either be set as a constant or estimated using

the Manning equation as

CB =
gn2

m

H1/3
, Cwi =

σ2ρa
H

,

where nm is the Manning roughness coefficient of the bed, and the wind friction coefficient Cwi

is defined as [159]. The wind stress coefficient is designated by σ, and ρa is the air density. The

system can also be rewritten in a compact vector form as

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
=
∂Dx(W)

∂x
+
∂Dy(W)

∂y
+ Q(W) + R(W), (8.2.5)
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where

W =


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8.3 Eulerian Lagrangian method for multilayer sediment laden

turbulent flows

In order to solve the presented system (8.2.5), a method of integration must be selected. In this

case a second-order splitting method is chosen, as presented in [149, 172]. To achieve this, the

time interval is divided into sub-intervals [0, . . . , tn, tn+1, . . . ], where ∆t = tn+1 − tn. Then the

same splitting method as detailed in Section 7.3 of Chapter 7 (on page 206) is implemented,

for the sake of brevity it is not detailed here. This method is computationally cheap and easy

to implement. It also avoids the complications incurred from the source matrix R(W) when

calculating fluxes and interpolating values. One problem faced in this method is the calculation

of eigenvalues, as they are non-trivial and can often become complex in certain flow cases. If

using a more standard Riemann solver (through exact or approximation techniques) in certain

flow cases the simulation becomes vulnerable to Kelvin-Helmholtz instabilities at the interfaces

of layers. Most solvers are unable to resolve this issue. However, the solver proposed in this

study, utilizing an ELFV method, does not need to compute the eigenvalues in the solution of

the system. When determining the time-step an equivalent single layer shallow water system is

considered. This ensures that the Courant-Friedrichs-Lewy (CFL) condition is set safely, using

equivalent eigenvalues (as in [42,76]) to overestimate the wave speeds as

λ±α = uα ±
√
gH, µ±α = vα ±

√
gH, α = 1, 2 . . . ,M. (8.3.6)

This overestimating approximation is used as the exact eigenvalues are complex and are more

computationally expensive than this small overestimation (as we neglect the diffusive terms).

Thus the time-step is adjusted for the maximum wave speed in the shallow water system,

guaranteeing the stability of the simulation. This procedure is implemented as shown in Figure

8.2.

8.4 Numerical results

This section validates the presented model and demonstrates its adaptability. The model is

used to simulate two test cases, both aiming to demonstrate a different facet of its abilities. The

model is compared to the most advanced open-source sediment model: the fully 3D sedFOAM

solver published by [49]. This aims to show the validity of the model and set a base line for it.

Finally, the recently conceived composite bed problem is solved in a partial dam-break situation

for the first time to the knowledge of the author. Both horizontally and vertically composite
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Figure 8.2: A flowchart demonstrating the stages in the proposed 2D Eulerian-Lagrangian pro-
cedure including the diffusion and bed register terms.
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beds are considered. The goal of these tests is to show that the model is an effective method for

quasi-3D modelling.

A Courant number of Cr = 0.7 is used in all the simulation runs. The vertical sediment

diffusion coefficient εc = 0.01 m2/s. The turbulence production coefficients are set at Cwi =

0.001 and CB = 0.005. The time-step ∆t is adjusted using the CFL condition as

∆t = Cr
min (∆x,∆y)

max
α=1,...,M

(∣∣λ±α ∣∣, ∣∣ µ±α ∣∣) .
It is also worth noting that linear interpolation is used in the predictor stage. In order to

describe the 3D nature of the flow, the vertical velocities w are calculated using the post-

processing techniques outlined in [14]. This is done using the same methods as the previous

chapter.

8.4.1 Scour downstream of an apron problem

A well-established test for this type of simulation, known as the scour downstream of an apron

problem, is used to compare the presented model with the OpenFOAM solver sedFOAM.

This problem is detailed in [10], and has also been used in the development of sedFOAM1 [49].

The test requires a vertical distribution of velocities as well as accurate sediment handling.

Although the domain reduces to a 2D problem, as one axis is in the vertical, it will test the 3D

nature of the presented model. The domain is as shown in Figure 8.3. The initial conditions are

u(0, x, y, z) =
1

0.41
ln

(
30z

0.25d

)
, v(0, x, y, z) = 0 m/s, k(0, x, y, z) = 0.1× 10−8 m2/s2,

c(0, x, y, z) = 0.0001, ε(0, x, y, z) = 0.1× 10−8 m2/s3, H(0, x, y) = 1 m B(0, x, y, z) = 0.

In this example, the sediment is Sediment 4 from Table 3.1. This domain is relatively basic

in nature but it will require the k-ε model in order to develop its interesting flow features.

The simulation is allowed to run for 10 s, with the aim of exhibiting the complex bed features

developed from the initial bed height of 0 m, as shown in Figure 8.4.

The model demonstrates good agreement with the sedFOAM solver and shows a scour hole

developing and shifting downstream. Figure 8.4 shows the concentration equilibrium and its

movement from left to right. The model is very capable of developing and continuing a scour

hole, though it is divergent from the sedFOAM model after 10 s, due to its free-surface na-

ture. This shows that, as far as possible, the presented model is comparable to the sedFOAM

1https://openfoamwiki.net/index.php/Contrib/sedfoam
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Figure 8.3: Configuration of the sour after an apron domain.

Figure 8.4: A comparison of the sour hole (left) and the concentration profile (right) at t = 10 s.

solver. Nonetheless further development of either model would be required for a more complete

comparison.

8.4.2 Partial dam-break flow problem

As Figure 8.5 shows, there is a steady evolution of the scour holes caused by the partial dam-

break. The velocity profile demonstrates the crucial effects of the multilayer system, with a

reduced bottom layer velocity. This is key as, especially in a complex flow situation like this

one, the bottom layer flow must be correctly estimated if it is to initiate motion in the sediment.

As can be seen in the concentration and velocity profiles, there is a varied vertical distribution of

both. This demonstrates the key value of the multilayer nature of the model in this simulation.

No turbulence data exists to compare to these results. The effects of turbulence modelling are

visible in the diffusion of both velocity and concentration cross-sections shown in Figure 8.5.

This simulation provides a good baseline for further tests.

Next, we introduce a vertical composite bed with three distinct layers of sediment. The

domain is 200 m by 200 m and is divided into 200 × 200 cells, the simulation is run with 10

fluid layers. As each layer has different erosion and deposition characteristics, a more complex

erosion profile is expected. The aim of this simulation is to demonstrate the abilities of the
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Figure 8.5: Results from the simulation of an partial dam-break over an homogeneous bed .
From left to right: a 3D view of the domain, 2D cross-section velocity profile (at y = 115 m),
2D cross-section concentration profile (at y = 115 m), and a top view of the bed at t =
1.8 s, 3.6 s, 5.4 s and 7.2 s.

multi-sediment handling tools when combined with this model, as detailed in Section 8.2. The

bed composition is such that

B =



Sand 1, if − 0.25 m ≤ z < 0 m,

Sand 2, if − 0.5 m ≤ z < −0.25 m,

Sand 3, if z < −0.25 m.

All other simulation parameters remain identical to the previous run. As shown in Figure 8.6,
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Figure 8.6: Results from the simulation of a partial dam-break over a horizontally composite
bed, with the same plots as Figure 8.5.

the proposed model and numerical method easily handle this situation. The bed is complex

in nature with its many inflection points, as shown in the concentration and velocity profiles,

nonetheless this does not adversely affect the stability of the simulations. In fact, the simulation

handles even the complex end of wall points, where deep scour holes are created. Figure 8.7 shows

the expected evolution of sedimentary ratios, as each of the layers is eroded away. Compared to

the previous simulation run there is a greater area of erosion, due to the prevalence of Sand 1.

The depth of erosion is constrained by the less erodible Sand 3 in the base layer. Sand 2 could

be used by other models as an approximation for these layers but, as shown in Figure 8.1, it

is not an appropriate simplification. This text case has demonstrated the ability of the model

not only to handle the complex flow situation of a partial dam-break, but also to capture the
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Figure 8.7: Results from the simulation of a partial dam break over a horizontal composite bed.
From left to right: total concentration, Sand 1 concentration, Sand 2 concentration, and Sand
3 concentration at t = 1.8 s, 3.6 s, 5.4 s and 7.2 s.

complex topography (and the effect of that topography on the flow) of a multilayer bed. The

multi-sediment nature of the domain with discretely layered beds would be impossible for a lot

of models to solve, but the nature of the bed discretisation used in this model allows for it to

be handled easily and efficiently. Overall, the test case lends validity and purpose to the model.

The final test considered is the partial dam-break over a horizontal composite bed, comprised
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Figure 8.8: Results from the simulation of a partial dam-break over a vertically composite bed,
with the same plot configuration as Figure 8.5.

of

B =



Sand 1, if ≤ x < 85 m,

Sand 2, if 85 m ≤ x < 115 m,

Sand 3, if x < 115 m.

This problem has an added level of difficulty owing to the horizontal step function in the sediment

bed. It cannot be solved by any Exner-based system that relies on continuous sediment pick-up

functions. The presented method does not have this problem, as the bed is discretised. This is

still a very complex simulation, as the bed should evolve into an even more complex form than

in the previous simulation.
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Figure 8.9: Results from the simulation of a partial dam-break over a the vertically composite
bed, with the same plot configuration as Figure 8.7.

As shown in Figure 8.8, this simulation presents a very similar waveform to the single sed-

iment bed simulation. This is largely due to the comparable quantity of erosion in the middle

section, and is the crucial factor for accelerating the discharge through the dam. It is clear

that the erosion profile is complex, causing ripples in the water surface and creating a very

disrupted flow, especially when the accelerating water reaches the banks of Sand 1 and Sand 3.

The developing concentration profiles are shown in Figure 8.9. This shows that, as the bottom

velocities are very small, the majority of entrained sediment does not move from where it is

sourced. This indicates how crucial the stratified velocities are when dealing with a situation of

this type. When comparing the concentration amounts in Table 8.1 between simulations I, II,

and III, it can be seen that although they all discharge similar quantities (5453 m3, 5514 m3,
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Table 8.1: Comparison of the discharge volume, the area disturbed by the dam-break, total
entrained sediment (by volume), the concentrations (by percentage) and CPU times for the
three partial dam-break simulations: single sediment bed (simulation I), vertical composite bed
(simulation II), and horizontal composite bed (simulation III).

Sim.
Time
[s]

Discharge
[m3]

Disturbed
area [m2]

Entrained
sed. [m3]

Sand 1
c [%]

Sand 2
c [%]

Sand 3
c [%]

CPU
Time [s]

I

1.8 1866 1286 262.5 100 0 0 42.32
3.6 3263 2396 605.3 100 0 0 88.62
5.4 5198 3824 1288 100 0 0 137.83
7.2 7469 5453 1775 100 0 0 189.82

II

1.8 1897 1318 294.9 91.20 8.279 0.6402 42.57
3.6 3049 2420 564.4 83.19 13.63 3.254 89.49
5.4 4419 3865 953.7 78.04 16.00 6.014 139.04
7.2 5895 5514 1429 74.83 17.04 8.161 186.18

III

1.8 1866 1286 262.9 58.81 41.26 0.1036 42.80
3.6 3256 2396 600.3 33.31 66.35 0.4060 88.80
5.4 4934 3824 1071 30.59 65.58 3.873 137.61
7.2 6813 5428 1662 33.91 58.39 7.696 188.34

and 5428 m3 respectively), the quantities of sediment vary more widely (1775 m3, 1429 m3,

and 1662 m3) at t = 7.2 s. This demonstrates that, although the first simulation I can be used

as an approximation to II and III (as Sand 2 is roughly an average of Sands 1 and 3), the map-

ping of bed composition is a vital component. It is also worth noting the great variance between

the last two simulations in terms of sediment concentrations. In simulation III the proportion of

Sand 1 moves from 58.81 % at t = 1.8 s to only 33.91 % at t = 7.2 s, whereas simulation II has

a more gradual concentration change of Sand 1, from 91.20 % at t = 1.8 s to only 74.83 % at

t = 7.2 s. This is also demonstrated in Figure 8.7 and Figure 8.9. This sediment tracking show-

cases another useful feature of this method. As in many dam-break problems, like tailings dam

failures, it is useful to know exactly which sediment is begin transported as certain sediments

may be contaminated or naturally too high in one kind of chemical to be safe for release into the

wider watercourse. Thus, this multi-sediment feature allows for not only a better description of

the erosion process but also a better understanding of where each type of sediment ends up, as

shown in Figure 8.9.

As Table 8.1 demonstrates, this multi-sediment method does not slow the simulation speed.

It therefore adds accuracy to a model without any appreciable computational cost. The effects

of all the elements of the model can be seen in this test case, as the inclusion of turbulence

modelling allows for more descriptive results. The multilayer model gives new insight into the

complex flow and velocity fields of this simulation, improving the accuracy of the eroded profile

of the bed. Furthermore, the multi-sediment formulation allows for a much more accurate
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description of the bed through the inclusion of heterogeneous layers. This simulation run has

demonstrated the ability of the method, not only to capture very complex flows over evolving

bathymetry, but also to utilise multiple sediment methods.

8.5 Concluding remarks

This chapter presents a novel model for sediment transport that includes turbulence, a nearly

three-dimensional (3D) formulation, and multi-sediment handling. It builds on previous multi-

sediment work and the quasi-3D methods to create a two-dimensional shallow water model

that is novel. Each layer has individual values for concentration, turbulence variables, and

velocities, allowing for a good capture of 3D effects. This allows for vertically stratified velocities,

concentrations and turbulence to be calculated for the first time. Using the novel derivation

shown in Chapter 7, the model is able to account for interlayer forces for not only momentum

and mass exchange but also for turbulence source functions. This provides a more accurate

description of the flow than previous models developed in this work and the literature. Vertical

velocity components are also post-processed from results, as they are accounted for in the model

though the exchange terms. As no vertical velocity components are used during the simulation,

the vertical distribution of sediment amongst the flow poses a problem. This problem is solved

using the capacity driven sediment diffusion function found in Chapter 4.

A Eulerian-Lagrangian finite volume method is implemented which solves the multilayer

system of equations and avoids the Riemann problem. Equivalent eigenvalues are used to ap-

proximate the time-step according to the Courant-Friedrichs-Lewy condition, providing stable

second-order accurate results. This method of solution is found to be far faster whilst still

offering comparable accuracy when compared to 3D Navier-Stokes solvers.

The model is tested for its well-balanced and conservative properties and it is found to have

negligible errors, using the benchmark of a lake at rest. It is then compared, as far as possible, to

the most advanced open-source sediment model, in the scour downstream of an apron problem.

This simulation is hampered by the free-surface included in the presented model, though it shows

promising results. It is also tested against the novel experimental data to assess its concentration

distribution tools. In this test, it is found to have a very strong agreement with experimental

data for a model of this type. This simulation is also used to assess the effects of the inclusion of

turbulence modelling on the accuracy of the formulation. It is found that turbulence modelling

slightly increases the precision of the model for this short-term simulation. It may be inferred

that, for longer and more complex simulations, turbulence may play a crucial role in problems

of this type. Finally, the model is used to compute a partial dam-break over a variety of bed
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compositions. A single-sediment, vertically layered heterogeneous bed and a horizontally layered

heterogeneous bed were all simulated. These variations in bed composition created challenging

flow and bed profiles, though the method was able to handle all the variations in the flow they

presented. These problems have been solved for the first time to the knowledge of the author.

This fully demonstrates the presented models multi-sediment handling tools and shows its ability

to capture complex flow coupled to sediment transport on erodible beds. Overall, the model

provides new abilities and insights for hydrogeomorphic simulations.



Chapter 9

Conclusions and recommendations

This thesis presents a detailed study on the development and validation of an improved class of

shallow water models for sediment transport. This is achieved by augmenting existing models to

include techniques for sediment handling, vertical sediment diffusion, and turbulence modelling

for multilayer flow. The resulting model has been verified as robust and computationally cheap,

achieving the goal of this thesis of improving the accuracy and accessibility of hydrogeomorphic

simulations. This is important, as it provides both a modular platform upon which further

advances can be based, as well as creating a current instrument for multilayer and multi-sediment

shallow water modelling. A number of advances have been established in this thesis to tackle

inaccuracies in shallow water sediment transport models, with each chapter investigating a

different area as follows:

• Modelling and numerical simulation of shallow water flows over multi-sediment beds in

one space dimension - Chapter 3

• Modelling and simulation of multilayer shallow water flows over erodible beds in one space

dimension - Chapter 4

• Modelling and numerical simulation of shallow water flows over multi-sediment beds in

two space dimensions - Chapter 5

• Modelling and simulation of multilayer shallow water flows in two space dimensions -

Chapter 6

• Modelling and simulation of multilayer turbulent shallow water flows over fixed beds -

Chapter 7

All these advances are then combined in Chapter 8 to develop the most complete model presented

in this thesis. In order to develop a more evolved model, three major challenges needed to be

250
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addressed. The first to be tackled in this thesis is the assumption of homogeneity in sedimentary

beds. As real-world beds are heterogeneous, this assumption leads to non-natural behaviour in

most hydrogeomorphic models. The techniques developed here overcome this limitation with-

out a notable increase in computational expense. They allow the modelling of heterogeneous

beds, composite beds, and even sediment tracking in both one (1D) and two (2D) space dimen-

sions. This work is presented in Chapter 3 for 1D, and is then expanded for 2D simulations in

Chapter 5. Although there is currently no experimental data for composite beds (to the knowl-

edge of the author), this model has been successfully tested against previous homogeneous bed

situations. This developed technique is robust in both 1D and 2D and provides an improved

tool for sediment transport modelling.

The second limitation challenged is the shallow water assumption of depth-averaged veloci-

ties. This is a weakness for most formulations, as sediment interactions are all velocity dependent

and, without stratified vertical velocities, models struggle to map morphological evolution ac-

curately. In Chapter 4, a novel 1D multilayer model for sediment transport is developed. A

new capacity driven diffusion term is added to the existing inter-layer terms for sediment. The

solution utilizes known sediment distribution curves to overcome the lack of simulated vertical

forces. The multilayer model distinguishes itself in several situations, offering greater accuracy

with vertically stratified results and minimal computational cost. The multilayer model is then

developed into a 2D model without sediment transport in Chapter 6. The multilayer model is

quasi-three-dimensional (3D) in nature, enabling it to assess increasingly complex flows. Ver-

tically stratified velocities are calculated at a significant speed improvement compared to 3D

Navier-Stokes simulations. In this chapter, the multilayer model is examined against various

situations that test its well-balanced nature and its ability to capture 3D flow elements. This

chapter produces a strong basis for future sediment transport models.

The final challenge, turbulence modelling in multilayer flows, is addressed in Chapter 7. A

multilayer turbulence formulation of shallow water flows in 2D has yet to be addressed (to the

knowledge of this author), but is a crucial component for the modelling of complex flows. To

this end, the turbulence k-ε model is part of the formulation introduced in Chapter 6. This

model is devised and developed to include interlayer exchange and the creation of turbulent

energy. It is compared to both experimental data and OpenFOAM, a 3D Navier-Stokes solver.

For the simulations presented, it is found not only to be faster than OpenFOAM, but also to

have a comparable degree of accuracy. This chapter produces a useful feature that is integrated

into the final model. In Chapter 8, the advancements from Chapters 3-7 are combined with the

aim of simulating a novel problem the composite bed partial dam-break. The resulting model is

capable of handling multiple sediments in multiple fluid layers whilst modelling turbulence. The
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final formulation is evaluated against various situations to confirm its adaptability and accuracy.

It is ultimately used to model the composite bed partial dam-break, the first simulation of its

type. Overall, this chapter demonstrates the ability of the model and showcases the advantages

of each of the modular developments when applied to a complex situation.

A novel class of numerical methods has been developed to enable the advances in mod-

elling of multilayer shallow water equations over movable multi-sediment beds. Initially, a

non-homogeneous Riemann solver is used in Chapter 3 for simulations; this method is found

to be highly accurate. Unfortunately, though this solver is well developed, it is unable to handle

the multilayer fluid formulations proposed. Therefore attention is turned to a class of Eulerian-

Lagrangian methods developed in this thesis. The Eulerian-Lagrangian Finite Volume (ELFV)

method is based on predictor-corrector style solvers. This class of methods employs the method

of characteristics to estimate the numerical fluxes, and then recovers them to the conservative

equations in the corrector step. In Chapter 4, the ELFV method is used for a multilayer flow

model. In this case the ELFV method avoids of the calculation of complex eigenvalues and

vectors of the system, which prevent most solvers from being able to handle these types of

multilayer models. In Chapter 5, this method is used for 2D problems through the use of a

projection technique which reduces the reconstruction of the numerical fluxes at any boundary

to a 1D problem, for which it works well. It is also developed for a multilayer model in 2D in

Chapter 6. This method is found to be fast and accurate, it also enables more complex problems

to be simulated using the shallow water equations through multilayer formulations. This is an

important step towards the inclusion of turbulence modelling in the final model.

Chapter 8 combines together all the developments of the previous chapters and presents a

final model for multilayer shallow water flow, including turbulence, over movable multi-sediment

beds. As part of this study, a novel method for recording sediment distribution is designed and

tested in the Engineering Department at Durham University. A novel experimental rig is devised

and built, enabling high-speed, highly accurate images to be collected and evaluated. The novel

aspect of this work is that the results are divided into cellular smaller images, which are then

processed for their colour contents. Each image is first refined to remove any background pixels

and to account for angle and lighting. The colour content of the image is then assessed, with

sensible tuning undertaken to remove the complex effects of ripples and air content. This method

allows the user accurately to assess the volume of sediment in a particular section of a fluid flow.

This novel experimental technique provides a new avenue for testing and evaluating sediment

transport models. The data gained from this example is used to test the model presented in

Chapter 8, and it is the first time, to the best knowledge of the author, that vertically stratified

sediment data has been used to assess the validity of a model of this class. The results are found
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to be consistent and it provides some benchmark validation for the final model.

For further works, the first area of development should be the multi-sediment model which

could be developed to include differential transport rates for layers and sediment types. By

having differential transport rates, the effects of sediment size and density could be taken into

account more accurately. The work conducted in this thesis has been mainly focused on high-

shear dam-break situations, as these are amongst the most pressing water management problems

with the largest resource of literature and data to validate against. This work could be extended

to look at longer-term simulations with constant water heights. Development of specific steady-

state code could substantially accelerate these models. Another key feature for real-world sim-

ulations is wet-dry fronts. This will enable the model to be employed on a new range of real

world problems. The addition of wet-dry fronts would greatly improve this model and should be

a key priority for future work. Finally, this study has focused on various groups of experimental

data, as sediment transport modelling is semi-empirical in its nature. Asymptotic analysis of

this model would be of great worth in assessing its limitations. This is vital in order to fully

exploit the potential of the model as a modular platform for hydrogeomorphic simulations.
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