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Abstract

Carbon capture and storage (CCS) is a potentially very useful way of reducing anthro-

pogenic CO2 emissions whilst continuing to be able to use fossil fuels. In CCS, CO2 is

prevented from entering the atmosphere by being captured from power plants and stored

long-term, most commonly by being injected into rock formations deep underground.

Saline aquifers have been strongly considered as target formations for CO2 storage due to

their common occurrence, large storage volumes and suitable depths. However, injecting

CO2 into a saline aquifer can remove liquid water from the site of injection, both by the

water being displaced immiscibly by the advancing gas and by some water evaporating

into the carbon dioxide-rich gas phase, which can cause formation dry out, leading to salt

precipitating in the pores of the rock around the injection well. This salt precipitation

can be enhanced by high capillary pressure gradients in the dry out zone of the formation,

which provide a driving force for brine to flow back towards the site of injection in a

process called counter-current imbibition, hence providing additional salt that can also

precipitate. There is a concern that the loss in permeability and injectivity caused by this

salt precipitation may be a limitation in the use of saline aquifers for carbon sequestration.

This work aims to simulate the build-up of salt precipitation in a saline formation when

CO2 is injected, in order to investigate the effects that various parameters have on salt

precipitation and, ultimately, whether storing CO2 in saline aquifers is a feasible method of

CCS. To do this, finite difference methods and MATLAB’s ordinary differential equation

(ODE) solvers are used to form numerical models of both two and three phase flow within

an aquifer. Pseudospectral methods are also used to find a similarity solution for three

component and three phase flow. All models and solutions incorporate the effects of partial

miscibility between phases and capillary pressure, both of which have been neglected in

some previous studies on this subject.

It is concluded that there are several factors that affect the volume fraction of salt

precipitation around the injection well of a saline formation caused by CO2 injection, C30,

including the salinity of the brine, the storage depth and the relative permeabilities, but the

value is largely controlled by a capillary number, Ca. This takes into account the effects of

the thickness, permeability and air-entry pressure of the formation and the injection rate

and dynamic viscosity of CO2. As Ca decreases, the value of C30 superlinearly increases.

In one scenario studied, reducing the CO2 injection rate from 15 kg s−1 to 0.9 kg s−1 led

to a tenfold increase in the volume fraction of precipitated salt.
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Nomenclature

This is a list of the symbols used in this thesis. Some symbols have been used to represent

different things in different contexts, but the intended meaning of the symbol should always

be clear. The referenced page number is the page on which the symbol first appears.

Symbol Definition Units Page

No

ami activity of a solvent i on the molality scale [-] 54

axi activity of a solvent i on the mole fraction scale [-] 54

A area [L2] 35

Amix a measure of intermolecular attraction [ML−5T−2N−2Θ0.5] 58

Bmix a measure of intermolecular repulsion [L3N−1] 58

cij the constant equilibrium volume fraction of compo-

nent i in phase j

[-] 181

C the vector containing the corresponding values of C1

to the solution vector for F1, F

[-] 191

C10 the volume fraction of CO2 in the dry out zone of a

formation

[-] 189

C30 the volume fraction of precipitated salt in the dry out

zone of a formation

[-] 171

Ca the capillary number, which is a dimensionless con-

stant

[-] 166

Ci the volume fraction of component i in the combined

mixture

[-] 180

Ci0 the constant boundary value of Ci at the injection well [-] 184

CiI the uniform initial value of Ci in the saline formation [-] 184

D a differentiation matrix [-] 176

D(d) the dth order Chebyshev differentiation matrix [-] 178

E a Chebyshev differentiation matrix that has been

transformed to the required solution space

[-] 190

fi fugacity of component i [ML−1T−2] 52

fj fractional flow of phase j [-] 67

F the total mass of all components within a given volume

of fluid mixture

[ML−3] 101

18



F the solution vector for the dependent variable F1 [-] 191

Fi a parameter related to the volume fraction of compo-

nent i present

[-] 183

g gravity [MT−2] 41

G Gibb’s free energy [ML2T−2] 50

G a term used within the parameter Fi [-] 186

Gi mass of component i within a given volume of fluid

mixture

[ML−3] 40

GiD dimensionless form of Gi [-] 66

H enthalpy of the system [ML2T−2] 50

H formation thickness [L] 99

Hi mass flow rate per unit area of component i [ML−2T−1] 40

HiD dimensionless form of Hi [-] 66

Hij mass flow rate per unit area of component i in phase

j

[ML−2T−1] 117

J a term used in the partial differential equations

of McWhorter and Sunada (1990) to represent

the capillary-hydraulic properties of the fluid-porous

medium system

[L2T−1] 175

k permeability [L2] 41

K the equilibrium constant of a chemical reaction [-] 55

Ki the equilibrium constant of the component i [-] 55

krj relative permeability of phase j [-] 41

krj0 endpoint permeabilities for the phase j [-] 42

lc the length of a cylinder [L] 35

lk the length of a cell k in a discretised axis [L] 76

L an arbitrary length [L] 67

m a parameter that depends on pore geometry [-] 45

mi the molality of component i [NM−1] 53

M0 the rate of injection into a reservoir [MT−1] 99

MH2O the molecular mass of water [MN−1] 56

n a parameter that depends on pore geometry and is

equal to 1
1−m

[-] 45

n number of moles in the system as a whole [N] 50

ni number of moles of component i [N] 50

nj power law exponents for the phase j [-] 42

19



N the number of nodes or interpolation points used [-] 75

Nc number of components [-] 40

Np number of phases [-] 40

p a Chebyshev polynomial of the second kind [-] 177

P global pressure [ML−1T−2] 44

P 0 a reference pressure [ML−1T−2] 51

Pc capillary pressure [ML−1T−2] 35

Pc0 van Genuchten parameter that represents the air entry

pressure of the porous medium. It is equal to 1
α

[ML−1T−2] 45

Pc,e the capillary entry pressure in the Brooks-Corey model [ML−1T−2] 44

Pcd capillary pressure at oven dry conditions [ML−1T−2] 46

Pcm the capillary pressure at the critical effective satura-

tion, Sem

[ML−1T−2] 47

Pi the partial pressure of component i [ML−1T−2] 51

P ∗i the vapour pressure of the pure component i [ML−1T−2] 53

Pj phase pressure of phase j [ML−1T−2] 41

qD a dimensionless flow velocity [-] 67

qinj the volumetric flux of the injected fluid [LT−1] 67

qj volumetric flux of phase j [LT−1] 40

qt total volumetric flux [LT−1] 67

Q0 the rate of injection into a formation [L3T−1] 68

r radial distance [L] 40

r0 the radial extent of the dry out zone [L] 192

rc the radius of a cylinder [L] 35

re an arbitrary reference length within a radial system [L] 183

rE the radial extent of a reservoir [L] 99

rI the radial extent of the injected CO2 plume [L] 192

rw the radius of the injection well [L] 99

R the universal gas constant, equal to 8.31447 J· mol−1·

K−1

[ML2T−2N−1Θ−1] 51

R the residual vector, representing the error in the

matrix approximation from the exact solution

[-] 191

S entropy of the system [ML2T−2Θ−1] 50

20



Sam aqueous saturation matching point, at which the capil-

lary pressure function changes from the van Genuchten

function to a linear extension on a semilog plot. Note

that this is denoted as S2m in Chapter 6
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t time [T] 40

T temperature [Θ] 50

v the stoichiometric number of ions in the dissolved salt [-] 60

v the wave velocity at a certain point [LT−1] 77

V volume [L3] 35

Vb the volume of brine [L3] 192

Vc the volume of CO2 dissolved in the brine [L3] 192

Vd the volume of the dry out zone [L3] 192
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time

[L3] 192

Vg the volume of the compressed gas phase [L3] 58
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rates the effect of chloride salts in the aqueous phase

and the departure from solubility in pure water

[-] 58

η a dimensionless form of time, related to the radial

system used in Chapter 6

[-] 183
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λ a new variable, equal to ω
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in equation (6.30) to an ODE by application of a

similarity transform

[-] 188

Λab the shock wave velocity of the leading shock [-] 93

Λcd the shock wave velocity of the trailing shock [-] 92

µi chemical potential of the component i [ML2T−2N−1] 49

µ0i the chemical potential of the component i at temper-

ature T and pressure P 0

[ML2T−2N−1] 52

µj dynamic viscosity of phase j [ML−1T−1] 41

ξ a dimensionless form of linear space [-] 67

ρinj the density of the injected fluid [ML−3] 67

ρij the density of the component i in the phase j [ML−3] 101

ρj density of the phase j [ML−3] 40

ρjD dimensionless form of ρj [-] 67
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σ the interfacial tension between the gaseous and aque-

ous phases in a porous medium

[MLT−2] 35

σij the volume fraction of component i in phase j [-] 181

τ a dimensionless form of time, related to the linear

system used in Chapter 3

[-] 67

τb the earliest value of τ at which a breaking point occurs [-] 82

φ porosity of the medium [-] 40

Φi fugacity coefficient [-] 52

ψ a dimensionless form of capillary pressure [-] 183

ψd a dimensionless form of Pcd [-] 186

ψm a dimensionless form of Pcm [-] 187
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Chapter 1

Introduction

Carbon capture and storage (CCS) is a promising method of reducing anthropogenic

carbon dioxide (CO2) emissions, which scientific evidence indicates would be a major factor

in slowing the warming of the planet. Deep saline aquifers are thought to have the most

storage capacity for CO2 from the possible storage options, but there is a concern that high

capillary pressure values will enhance the precipitation of solid salt close to the injection

zone of the aquifer. This could dramatically reduce its injectivity: the rate at which it

is possible to inject CO2 into the aquifer without the pressure becoming so high that the

formation is fractured. In this thesis, various numerical models and analytical solutions

have been used to simulate the salt precipitation that occurs when CO2 is injected into

a saline aquifer, taking into account the effects of both capillary pressure and the partial

miscibility of the phases.

1.1 Introduction to Carbon Capture and Storage and Saline

Aquifers

Scientific evidence suggests that the planet has been warming at a much higher rate in

recent years than was previously observed decades ago. Figure 1.1 shows that the mean

annual global temperature increased by approximately 1.4◦F (or 0.8◦ C) from 1880 to

2009, with the majority of this increase occurring since the late 1970s. It should also

be noted from the graph that the twenty warmest years have all been since 1981, and

the ten warmest are all in the most recent twelve years (NOAA, 2010). This increase in
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temperature could have many potential negative effects for the planet and for mankind,

including changes in weather such as heat waves and more severe floods and hurricanes, sea

levels rising to cause coastal flooding, and extinction of certain plant and animal species

(Riebeek, 2010). Figure 1.1 also shows the change in carbon dioxide (CO2) concentration

from 1880 to 2009, which follows a similar pattern to the change in temperature; it

has increased over the entire time period, but particularly rapidly from the late 1970s

onwards. The evidence suggests that this correlation between CO2 concentration and

global temperature is not a coincidence. Almost all of the increase in CO2 concentration

is due to anthropogenic emissions (Celia et al., 2015), which are considered to be largely

responsible for global warming due to the greenhouse effect, in which greenhouse gases

such as CO2 absorb and re-radiate the infrared radiation reflected by the surface of the

Earth, and hence cause the planet to heat up (Kessel, 2000).

Figure 1.1: A graph to show the variation in both global annual average temperature and CO2

concentration from 1880 to 2009. The grey line represents the mean global temperature from

1901 to 2000, while red bars indicate years with an average temperature above this line and blue

bars indicate years with average temperatures below the line. The black line shows the change in

atmospheric CO2 concentration in parts per million (NOAA, 2010).

Over the decade 2005-2014, 91% of global anthropogenic CO2 emissions were caused by

fossil fuels and industry (Le Quéré et al., 2015). Therefore, a promising way to reduce

these CO2 emissions is carbon capture and storage (CCS). This is a process in which

CO2 is captured from power stations or other industrial sources, compressed, and then

transported by pipeline or ship for injection into rock formations either deep underground
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or beneath the sea surface (Cavanagh and Hazeldine, 2014). It also has the added benefit of

being the only viable technology that reduces emissions of CO2 released to the atmosphere

while continuing to allow large scale use of fossil fuels (Celia et al., 2015). There are many

potential storage options for CO2 within CCS, using both physical and chemical trapping

mechanisms for the CO2 storage (Celia et al., 2015). One option involves injecting CO2

into coal beds, where the CO2 adsorbs preferentially to the coal and displaces the methane

that was previously attached to the coal surface, and in another, CO2 is injected into

reactive rock formations such as periodotite, so that it will react with the silicate in the

rock and form carbonate minerals for long term storage (Bickle, 2009). However, the most

well understood storage options are those that simply involve storage of CO2 underground

in saline aquifers or depleted oil and gas reservoirs, with no additional chemical reactions

(Bickle, 2009). Of these, storage in saline aquifers is considered to be the most feasible

option for CCS on a large scale, as the cumulative global capacity estimates of saline

aquifers are extremely high, vastly exceeding those of depleted oil and gas reservoirs, and

comprising greater than 90% of the storage resource in most regions (Hosa et al., 2011).

Globally, there is enough capacity in saline aquifers to store CO2 emissions from large

stationary sources for at least a century (Celia et al., 2015).

CCS on a large scale has not yet been implemented, but there are some industrial-scale

injection operations into saline aquifers, as well as a number of demonstration or pilot-scale

injections (Celia et al., 2015). The oldest of these industrial-scale operations is Sleipner,

where injection of CO2 began in 1996 and has been occurring at a rate of approximately

1 Mt per year. Other industrial-scale operations include In Salah, where injection of CO2

occurred from 2004 until 2011 at a rate of approximately 0.5 Mt per year, and Snøhvit,

where injection began in 2008 and has also been at a rate of approximately 0.5Mt per

year (Celia et al., 2015). Between them, these sites have stored millions of tons of CO2,

suggesting that CCS by injection into saline aquifers may be a feasible option (Eiken et

al., 2011). Pilot-scale injections generally have a short duration and inject a relatively

small amount of CO2 (0.0016Mt-1Mt) and tend to focus on specific areas and concerns

about CCS (Celia et al., 2015). For example, the Frio CO2 injection project in Texas,

USA, concentrated on measuring the evolution of the CO2 plume, and provided validation

of the conceptual model of CO2 migration over short space and time scales (Celia et al.,

2015).

Generally, the saline aquifers that will make the most successful storage formations have

both high porosity (a large percentage of the total rock volume available for storage)
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and high permeability (a good ability to transmit fluids), as this is likely to lead to high

injectivity of CO2 (Celia et al., 2015). It must also be possible for the CO2 to be injected

into the saline aquifer at a depth at which it will be in a supercritical state (i.e. at a

temperature and pressure above its critical point of 31.1◦ C and 7.38MPa (Celia et al.,

2015), where distinct liquid and gas phases no longer exist) in order to increase the density

of the CO2 and therefore enable much more to be stored, as a high storage capacity is also

a necessity for a saline aquifer to be favourable for CCS (Bickle, 2009). However, the CO2

will still be less dense than the surrounding brine and so will rise. It is therefore necessary

for it to be contained by an impermeable cap rock which will prevent it from migrating

upwards any further and escaping (Bickle, 2009). For these reasons, sedimentary basins

with layer-type successions of permeable rocks such as sandstones, overlain by caprocks

such as shales or anhydrites, are generally the most suitable for CO2 storage (Celia et al.,

2015).

It must be considered, however, that even a saline aquifer with these features will not

necessarily be successful for CCS. Leakage of CO2 through faults and fractures of the rock

is a possibility, and so the fluid pressure within the rock must be monitored to ensure that it

does not increase above certain thresholds, as this could induce fracturing of the caprock

and damage to wellbores in the reservoir (Chadwick et al., 2009). A geomechanically

determined storage pressure, called the fracture pressure, can be established for a given

aquifer (Chadwick et al., 2009), and there are often regulatory constraints on maximum

allowable pressures relative to the fracture pressure. One example of this is that in Alberta,

Canada, the maximum pressure that is allowable is 90% of the estimated fracture pressure

(Celia et al., 2015). Another factor to consider when thinking about the feasibility of

saline aquifers for CCS, and one that has not received as much focus until now, is the

impact on CO2 storage of the dissolved salt within the brine of a saline aquifer.

1.2 Introduction to Numerical Modelling for Saline Aquifers

It has been very useful to be able to monitor the behaviour of the CO2 and saline aquifer at

the injection operations that are already under way. Seismic reflection surveys at Sleipner

have enabled us to track the movement of the CO2 plume (Cavanagh and Hazeldine,

2014), and, at several of the industrial-scale injection projects, seismic reflection surveys

among other geophysical monitoring methods including gravity and satellite data have

been effective in showing some unpredicted geological factors as well as following changes
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in fluid saturation and pressure (Eiken et al., 2011). Down-hole measurements of pressure

and temperature have also been helpful in revealing changes that occur both during and

after injection of CO2 (Eiken et al., 2011). However, these observations are all specific to

the conditions and geology at the site at which they were taken, and do not cover the time

or length scales we would need to look at if CCS were to be implemented worldwide as a

primary method of CO2 mitigation. Therefore, to gain insight into what would occur if

CCS were to be carried out over longer time periods and larger lengths, and so in order

to reach a conclusive decision on whether CCS is a viable on a large scale, it is necessary

to use numerical modelling.

Numerical modelling allows us to address specific problems and questions that arise in the

context of CO2 storage, over realistic time and length scales. It gives a clear idea of the

movement of the CO2 plume, the build-up of pressure in the formation, the possibility

of CO2 leakage and many other potential issues, and can therefore clarify the safety,

feasibility and likely cost of CCS into saline aquifers (Class et al., 2009). Indeed, the legal

framework that allows for CCS to be implemented on a large scale would be likely to

require such numerical models (Class et al., 2009).

At first thought, numerical modelling of CO2 injection into a saline aquifer may seem

extremely complicated due to the number of different processes involved. The CO2 and

the water are partially miscible, which means that when they are mixed they form two

phases that each contain some fraction of both CO2 and water. A small percentage of the

mass of CO2 can dissolve into the liquid brine, while an even smaller fraction of the water

from the brine can evaporate into the supercritical CO2 (Celia et al., 2015). In addition

to this, it is possible for the salt dissolved in the brine to precipitate to form a solid phase.

Therefore, a multicomponent, multiphase (MCMP) system is created. Considering this in

three dimensions, as well as the effects of capillary pressure (the pressure difference between

the gaseous and aqueous phases, which is described in more detail in Section 1.4), the

geological features of a particular aquifer, geochemical reactions, variations in temperature

and energy, and many other aspects, all of which are coupled and affect and depend upon

each other, makes the numerical modelling of the system seem almost impossibly complex.

A model of this intricacy would involve solving a set of highly nonlinear, coupled partial

differential equations and be extremely computationally demanding, as well as having

practical limitations such as a lack of data to define the relevant parameters and a shortage

of information on exactly how the processes and parameters relate to each other in the

nonlinear feedback loops (Celia et al., 2015). Therefore, almost all simulations decouple
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certain processes and disregard the effects of others, as well as simplifying the equations

based on the physics of the system (Celia et al., 2015). This is often justified based on the

questions being asked of a specific model (Celia et al., 2015). Examples of simplifications

include the assumption of vertical equilibrium. This can be assumed when looking at

a large time scale, as density differences between the gaseous and aqueous phases lead

to buoyant segregation occurring rapidly, such that it occurs on a very small time scale

relative to the overall time scale of the model (Celia et al., 2015). Other simplifications

used in numerical models include treating the capillary pressure as negligible, and the

assumption of immiscible flow (Celia et al., 2015). In some cases, the equations used to

model the system can be simplified to the extent that they can be solved analytically and

given an exact answer, whereas in others it is still necessary to use numerical methods

to give a solution. The next chapter will go into much more detail about the governing

equations of the numerical models and the assumptions and simplifications that we make,

and future chapters will explain the various methods that we use to solve the equations.

It is not possible to check the reliability of any numerical models we create that cover very

large time or length scales using real-life injection, as even the industrial-scale projects

currently running do not inject on a scale that would be necessary to significantly reduce

CO2 emissions, and so Class et al. (2009) have looked into the accuracy of current models

by formulating benchmark problems for model intercomparisons. The results show that

the models are capable of accounting for the processes, parameters and properties involved

in CCS reasonably, only varying with minor quantitative deviations.

1.3 Salt Precipitation after CO2 Injection

If we consider one-dimensional injection of CO2 into a radially symmetric, infinitely large

saline aquifer, Figure 1.2 shows a simplified version of how gas saturation, Sg [-], will vary

with distance from the point of injection within the aquifer, which is considered to be the

left hand axis of the graph. The saturation of a phase j is defined as (Marle, 1981, p.16):

Sj =
Volume of pore space occupied by phase j

Total volume of pore space in the rock
. (1.1)

Although these conditions are a drastic simplification of injection into a saline aquifer in

field-scale, they are adequate to illustrate the pattern of gas saturation over the length of

an aquifer. Near the wellbore in particular, viscous forces dominate gravitational forces,

and so flow can be reasonably approximated as one-dimensional (Zeidouni et al., 2009).
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As was mentioned in Section 1.2, CO2 and water are partially miscible. This means that

the supercritical phase (referred to as the gaseous phase for the rest of the thesis) is

able to contain a small amount of evaporated water, and the aqueous phase is soluble to

a small amount of dissolved CO2. CO2 dissolving in the formation water is one of the

primary mechanisms for the trapping of CO2 in saline aquifers (Zeidouni et al., 2009). This

miscibility means that as well as CO2 displacing the brine that was previously resident in

the pores of the aquifer upon injection, the water in the brine can also be evaporated into

the gaseous phase.

The effects of these physical mechanisms can be seen from Figure 1.2. Discontinuities

or ‘shocks’ in the gas saturation develop that effectively separate the aquifer into three

different regions (Zeidouni et al., 2009). The region furthest from the point of injection

is just fresh brine that has not yet been in contact with the advancing CO2 plume, and

this brine is still in the aqueous state it was in before the injection of CO2. Upstream of

this is a region in which there is both an aqueous and gaseous phase, and both phases are

made up of CO2 and water, as well as dissolved salt being present in the aqueous phase.

The assumption of equilibrium is made in this region: the composition of the phases is

set to what it would be at equilibrium for the specified temperature and phase pressure

at all times. This is because the compositions reach equilibrium very quickly relative to

the time scale we are looking at, and would then not change with time, so this is a helpful

simplifying assumption to make. Finally, the region nearest to the point of injection is

referred to as the dry out zone, and it contains the gaseous and solid phases, with no

aqueous phase. This is due to a combination of the mechanisms CO2 has for removing

liquid water from the site of injection. Firstly, brine is displaced by the advancing gas.

Any residual brine that is left behind in the vicinity of the injection site will then be

flowing so slowly that the water can be fully vaporised by the CO2-rich gaseous phase

(Zeidouni et al., 2009). This vaporisation of water can cause formation dry out, and due

to the fact that salt is considered to flow with the aqueous phase as a part of liquid brine,

can leave behind immobile solid salt to precipitate in the pores of the rock in the region of

the injection well (Pruess and Müller, 2009). There is a concern that the loss in injectivity

that could be caused by this salt precipitation may be a limitation in the use of saline

aquifers for carbon sequestration.

As mentioned earlier, a saline aquifer that is effective for CCS will generally have both

high porosity and high permeability. Figure 1.3 shows how the permeability of a rock is

affected by changes in the porosity. It indicates that a relatively small reduction in porosity
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Figure 1.2: A cartoon to show how gas saturation varies from the point of injection. Adapted

from Hosseini et al. (2012)

can lead to a dramatic reduction in permeability: if the porosity is reduced by only 30%,

the permeability can reduce by approximately 80%, and the porosity being reduced by

as little as 60% can result in a permeability of zero. Figure 1.3 therefore illustrates that

even a very small amount of salt precipitation that may not have much of an effect on

porosity can have a huge effect on the permeability of an aquifer. This is likely to be due

to the way that pore channels can converge and diverge (Pruess and Müller, 2009); salt

precipitation can reduce rock permeability by clogging pores or by pore throat restriction

(Peysson et al., 2014). Figure 1.4 is a schematic of a pore configuration in two dimensions,

and shows how pore bodies are connected by pore throats with a much smaller radius.

It is clear that salt precipitating in the throat of a pore would restrict the potential fluid

flow, and therefore reduce the permeability of the aquifer, much more than if the same

amount of salt had precipitated in the body of the pore, and that it would only take a

small volume of salt to precipitate in the pore throat to restrict fluid flow entirely due to

its narrow radius. The variability in pore radius and the impact of pore throat effects are

often included in models through the use of the ‘tubes in series’ model (Verma and Pruess,

1988), which is illustrated in Figure 1.5. Reduced permeability leads to increased pressure

build-up when injecting CO2 (Pruess and Müller, 2009), and CO2 injection needs to be

terminated as pressures reach the fracture pressure. Therefore, salt precipitation can have

a significant effect on the amount of CO2 that can be stored in a given aquifer.
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Figure 1.3: A graph to show how permeability reduction factor varies as the porosity reduction

factor changes (Mathias et al., 2013).

Figure 1.4: A schematic of a two-dimensional pore body and pore throat configuration (Zhao and

Wen, 2017). rBody and rThroat represent the radius of the pore body and pore throat respectively.

Many earlier studies, including Zeidouni et al. (2009), concluded that the amount of

salt precipitation formed in a saline aquifer upon injection of carbon dioxide should be

sufficiently small not to significantly affect porosity, permeability or injectivity. However,

these studies make the simplifying assumption of neglecting the capillary pressure, and

the inclusion of this could potentially have a considerable effect on the amount of salt

precipitation formed.

1.4 Capillary Pressure and Counter-Current Imbibition

When two fluid phases are present in a porous medium, their arrangement in contact with

each other and the solid walls of the medium is controlled locally by an energy balance

34



Figure 1.5: A figure to illustrate the ‘tubes in series’ model that is used to represent pore throat

effects and the variability of the radius of the cross-section of a flow channel (Verma and Pruess,

1988).

(Blunt, 2017, p.4). The non-wetting phase (in this case, the gaseous phase primarily made

up of CO2) has less of a preference to reside next to the solid phase than the wetting phase

(here, the aqueous phase primarily composed of brine), hence leading to a curved interface

between the two phases and a difference in pressure between them (Blunt, 2017, p.4). This

pressure difference is called the capillary pressure. The Young-Laplace equation relates

the capillary pressure to the curvature of the interface between the two phases, and helps

to determine how fluids are configured in the pore space and how they move (Blunt, 2017,

p.4). It is found by considering that the work done against the pressure difference will be

equal to the change in interfacial energy, and hence:

Pc dV = σ dA (1.2)

where Pc [ML−1T−2] is the capillary pressure, σ [MLT−2] represents the interfacial tension

between the phases, dV [L3] is an infinitesimal change in volume and dA [L2] is the

corresponding change in surface area (Blunt, 2017, p.5). This means that, using the

‘tubes in series’ model illustrated in Figure 1.5 and hence considering the porous medium

to be made up of cylinders of a fixed length, the capillary pressure can be found by taking

the derivatives of the volume and area of a cylinder, i.e. the derivatives of πr2c lc and 2πrclc

respectively, where rc is the radius and lc is the length of the cylinder being considered,

and substituting the results into equation (1.2) to give:

Pc =
σ

r
(1.3)

This shows that the capillary pressure is inversely proportional to the radius of the cylinder.
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One significant consequence of capillary pressure is that high capillary pressure gradients

will occur particularly in the dry out zone of a saline aquifer, as the evaporation of water

will lead to low wetting saturations (Carpita et al., 2006). This causes a reversal of

the direction of the wetting pressure gradient, and therefore will provide a driving force

for drawing water towards regions that have higher gas saturations. Consequently, an

additional flow component of brine back towards the point of injection that opposes the

generally outward flow caused by the injection of CO2 is added (Pruess and Müller, 2009),

in a process called counter-current imbibition. Without it, only the salt that is initially in

the dry out zone can precipitate, but when counter-current imbibition occurs, additional

brine is fed back into the dry out zone, carrying with it additional salt (Zeidouni et al.,

2009), potentially leading to much higher volumes of precipitated salt and associated losses

in permeability. Figure 1.6 illustrates the process of counter-current imbibition in a saline

aquifer, showing the backflow of brine and the increased precipitation of salt in the dry

out zone.

Figure 1.6: A schematic of CO2 injection in a saline aquifer, showing the possible configuration

of phases and the backflow of brine (Miri and Hellevang, 2016).

1.5 Project Objective

The main objective of this project is to investigate the amount of salt precipitation that

is likely to occur within a saline aquifer upon injection of CO2, and in particular the

effect of the inclusion of capillary pressure and therefore counter-current imbibition on

salt precipitation, in order to provide further insight into whether CCS by injection into

saline aquifers is a feasible method of greenhouse gas mitigation on a large scale. In order
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to do this, both numerical and analytical solutions of mathematical models will be used to

look into the effects that changing various different parameters has on the rate of counter-

current imbibition and the amount of salt precipitate formed, including the injection rate

of CO2, the porosity and permeability of the aquifer, and the relative permeabilities of

the fluids concerned.

1.6 Thesis Overview

Chapter 2 introduces the fluid properties to be calculated, and shows how they link

together in the governing equations that are key to forming the models. It will also go

further into the concept of partial miscibility, which has been briefly mentioned earlier in

this chapter, and describe the composition of the different phases within the fluid mixture.

Chapter 3 introduces two established techniques for solving the problem of two component,

two phase incompressible flow in porous media in the absence of capillary pressure. The

two techniques studied are the method of characteristics (MOC) and the method of lines

(MOL). The developed solutions are compared to each other and are subsequently used

as a benchmark for results from the more sophisticated models developed later on in the

thesis.

Chapter 4 extends the method of lines solution developed in the previous chapter by

incorporating compressible fluids and by allowing for capillary pressure.

Chapter 5 develops the work in Chapter 4 further by accounting for salt, and therefore

forming a numerical model that can simulate the conditions in a saline aquifer: three

components (CO2, water and salt) and three phases (gaseous, aqueous and solid).

Chapter 6 introduces pseudospectral methods, and explores the McWhorter and Sunada

equation, which accounts for two phase immiscible flow with capillary pressure effects

included. The similarity solution of McWhorter and Sunada is then extended to account

for partial miscibility and for three components and three phases, therefore enabling us to

study the effect that capillary pressure has on counter-current imbibition and the build-up

of salt precipitation in a saline aquifer.

Chapter 7 brings the previous chapters together to provide a summary and a set of

conclusions.
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Chapter 2

Governing Equations and Phase

Equilibrium

This chapter presents the governing equations that are necessary in order to form a

mathematical model to illustrate the dynamic processes involved when CO2 is injected

into a saline formation. The different components and phases to be considered, how

components can move between certain phases due to the effects of partial miscibility and

the concept of phase equilibrium are also explained.

2.1 The Multicomponent, Multiphase System

In Chapter 1, the concept of partial miscibility and how it leads to a multicomponent and

multiphase (MCMP) system upon the injection of CO2 into a saline aquifer was explained.

The dissolution, evaporation and precipitation of components into other phases will result

in a three component, three phase system. In order to form governing equations and

mathematical models that accurately represent the conditions within the aquifer, it is

necessary to clearly define what the three phases and three components are, and which

components can exist in which phases.

The three possible phases within the system are gaseous (recall from Chapter 1 that what

we refer to as the gaseous phase is actually in a supercritical state), aqueous and solid,

denoted by g, a and s, respectively, in the equations that follow. The three components

are CO2 (denoted by c) which can exist in the gaseous phase or dissolve into the aqueous
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phase, water (denoted by w) which can also exist in the aqueous phase or evaporate into

the gaseous phase, and salt (denoted by n) which can either be dissolved in the aqueous

phase or can precipitate to form a solid phase.

In the following equations, i is used to represent a component and j to represent a phase.

Due to the transfer of components between phases, the amount of each component in each

phase can vary with space and time. Let Xij [-] denote the mass fraction of component i

in phase j, and xij [-] denote the mass fraction of component i in phase j at equilibrium.

Further details about the concept of equilibrium and methods for determining xij are

provided in Section 2.3.

2.2 Governing Equations

The following equations are used throughout the thesis to model multiphase, multicom-

ponent flow. It should be noted, however, that the system is assumed to be isothermal

such that the equations do not take into account the effects of variation in temperature.

2.2.1 Mass Balance Equation

The starting point of forming a mathematical model to describe MCMP flow and transport

in porous media is to formulate a mass conservation statement. The basis of this is that,

considering a control volume, V , the rate of change of mass of a component i within V

must be equal to the net rate of flow of component i into V minus the net rate of flow of

component i out of V . Figure 2.1 shows this concept in diagrammatic form.

Figure 2.1: A diagram to illustrate the mass balance equation. Here, the cube represents the

control volume V , and the diagram considers only one component i.
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Let Gi [ML−3] represent the mass of the component i within a given volume of fluid

mixture, such that:

Gi = φ

Np∑
j=1

ρjXijSj (2.1)

where φ [-] is the porosity of the medium, ρj [ML−3] is the density of the phase j, Xij [-]

is the mass fraction of component i in phase j, Sj [-] is the saturation of phase j, and Np

[-] is the number of phases that component i can appear in.

Now let Hi [ML−2T−1] be the mass flow rate per unit area of component i, hereafter

referred to as the mass flux, given by:

Hi =

Np∑
j=1

ρjXijqj (2.2)

where qj [LT−1] is the volumetric flux of phase j.

It is assumed that flow is convection-dominated, and hence molecular diffusion and hy-

drodynamic dispersion can be considered to be negligible. Under these conditions, mass

conservation requires that:

∂Gi
∂t

= −∇ ·Hi i = 1, ..., Nc (2.3)

where Nc [-] denotes the number of components within the system .

In equation (2.3), ∇ · () is the divergence operator. Within this thesis, the main systems

considered are one-dimensional linear and one-dimensional radial systems. In a one-

dimensional linear system using Cartesian coordinates, where x [L] is the linear distance

from the point of injection, equation (2.3) reduces to:

∂Gi
∂t

= −∂Hi

∂x
i = 1, ..., Nc (2.4)

whereas for a one-dimensional radial system using cylindrical coordinates, where r [L] is

the radial distance from the point of injection, it will be:

∂Gi
∂t

= −1

r

∂(rHi)

∂r
i = 1, ..., Nc (2.5)

2.2.2 Darcy’s Law for Multiphase Flow

The volumetric flux of a phase j, qj, is defined by Darcy’s Law:

qj = −kkrj
µj

(∇Pj + ρjg) (2.6)
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where k [L2] is the permeability of the system, assumed here to be an isotropic scalar

quantity, krj [-] is the relative permeability of phase j (this will be explained fully in

Section 2.2.3), µj [ML−1T−1] is the dynamic viscosity of phase j, Pj [ML−1T−2] is the

phase pressure for phase j, and g [MT−2] represents gravity.

In equation (2.6), ∇() is the gradient operator. For a one-dimensional linear system, the

volumetric flux will be given by:

qj = −kkrj
µj

∂Pj
∂x

(2.7)

and for a one-dimensional radial system it will be:

qj = −kkrj
µj

∂Pj
∂r

(2.8)

2.2.3 Relative Permeability

As well as the absolute permeability of the system, the relative permeability of different

phases in a multiphase system must also be considered. If more than one phase is present,

the permeability of a given fluid phase will be less than the absolute permeability of

the system due to the pore space being occupied by other phases. Relative permeability

therefore depends on saturation, and is formally defined as the ratio of the permeability

of one phase in a multiphase system to the overall permeability of the system. It allows

us to examine how easily certain fluid phases flow in the presence of others.

An effective way to think of relative permeability is to imagine that each fluid establishes

its own path through the porous medium, and a unique set of channels corresponds to

every degree of saturation. As the saturation of a phase decreases, the channels begin

to break down and eventually become discontinuous. When this happens throughout the

whole domain, the fluid can no longer flow, despite the fact that some may still be present

(Bear, 1988, p.458). The saturation at which a phase becomes discontinuous is generally

referred to as the critical, or residual, saturation, Sjc [-].

For immiscible systems, the relative permeability of a phase j, krj , can be defined using

power laws, such that (Corey, 1954):

krj = krj0

(
Sj − Sjc

1− Sgc − Sar

)nj
(2.9)

Here, Sgc [-] is the critical gas saturation, which is the gas saturation below which the

gaseous phase can no longer flow, and Sar [-] is the residual aqueous saturation, which
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represents the aqueous saturation below which the aqueous phase cannot flow. nj [-] are

power law exponents for the phase j. krj0 [-] represent endpoint permeabilities, which are

the largest experimentally obtained value of krj for each phase j. These will be the value

of krj at the saturation Sj when Sj = 1 − Shc, i.e. at the point where the saturation of

the phase j is equal to one minus the critical saturation of the phase h, where h 6= j.

Figure 2.2 shows how the relative permeabilities of CO2 and brine in several different

sandstone cores vary as the gas saturation increases. It can be seen that the nonlinearity

of the curves (controlled by the power law exponent, nj) have wide variations, and there

are also differences in the values of the endpoint permeabilities and critical saturations

for the different formations. The endpoint gas phase permeability, krg0, and the residual

aqueous saturation, Sar, are highlighted on the figure for Otway and Berea #1, and it can

be seen that krg0 reduces hugely from 0.6594 in Otway to 0.007 in Berea #1, while Sar

increases from 0.4370 in Otway to 0.5890 in Berea #1. It should also be noted that only

the gas and aqueous phases are present here, so the aqueous saturation (Sa) is equal to

1− Sg.

However, equation (2.9) assumes that the residual water is immobile and has to remain

in the aqueous phase, which is not the case in a partially miscible system such as for CO2

injection into a saline formation (Zhang et al., 2016). When partial miscibility can occur,

the saturation of the aqueous phase can reduce all the way to zero due to residual water

evaporating into the gaseous phase, in contrast to the immiscible system in which the

minimum saturation of the aqueous phase is the residual aqueous saturation. It would

also be inaccurate to describe the residual water as immobile in the situation of the saline

formation, due to the process of counter-current imbibition. This is when brine flows back

to the injection point of the formation, against the general direction of flow of the CO2.

It is caused by the evaporation of residual water leading to very low aqueous saturations

in the dry out zone of the aquifer, which therefore causes high capillary pressure gradients

and a driving force for brine to flow towards regions with higher gaseous and lower aqueous

saturations, i.e. those near the injection point of the aquifer. This means that, in order

to define relative permeability across the full range of saturations possible in a partially

miscible system, it is necessary to add an extension to equation (2.9). As the simplest

alternative to reality, it is assumed that the relative permeability of a phase j, krj , linearly

increases with saturation to one beyond residual saturations (Oostrom et al., 2016), such

that:
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krg0
Sar

Sar

krg0

Figure 2.2: Relative permeability curves for various different sandstone rocks when two phases are

flowing, constructed using the power law functions in the second row of equation (2.10) (Adapted

from Mathias et al. (2013)). The relative permeability of the gaseous phase is represented by a solid

line and the relative permeability of the aqueous phase is shown by a dashed line. The endpoint

relative permeability (krg0) and the residual aqueous saturation (Sar) for Otway are shown in

purple, and for Berea #1 are shown in green. The data used to construct these curves came from

Perrin and Benson (2010) and Krevor et al. (2012).

krj =


0, Sj ≤ Sjc

krj0

(
Sj − Sjc

1− Sgc − Sar

)nj
, Sjc < Sj < 1− Shc

krj0 + (1− krj0)
(
Sj − 1 + Shc

Shc

)
, Sj ≥ 1− Shc

, h 6= j (2.10)

2.2.4 Capillary Pressure

In order to form a numerical model, the partial differential equations (PDEs) are solved

for certain dependent variables, referred to as primary dependent variables (PDVs). The

variables chosen as PDVs will vary for different models described within this thesis, but

one PDV which is consistent across all of the models in the thesis is global pressure, P
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[ML−1T−2]. This is defined as:

P =

Np∑
j=1

SjPj (2.11)

P is convenient as a PDV compared to phase pressures as it is persistent for all time and

space, unlike the phase pressures which are only defined at points at which the respective

phases are present.

It can be seen from Section 2.2.2 that it is necessary to define the phase pressure Pj

within a model in order to find the associated volumetric flux, qj . Phase pressures are

found from the global pressure, P , the capillary pressure, Pc [ML−1T−2], which is defined

as the difference between the gaseous and aqueous pressure:

Pc = Pg − Pa (2.12)

and the phase saturations, Sj , such that:

Pg =
P (Sg + Sa) + PcSa

Sg + Sa
(2.13)

and

Pa =
P (Sg + Sa)− PcSg

Sg + Sa
(2.14)

As was mentioned in Chapter 1, a pressure difference between the gaseous and aqueous

phases is caused by interfacial tension between the two phases. This interfacial tension is

caused by differences in the relative strength of inter-molecular forces between the phases,

which are in turn directly affected by the relative amount of each of the phases present,

i.e., the phase saturation Sj . It can therefore be seen that capillary pressure is solely a

function of Sj .

The Brooks-Corey and van Genuchten curves are the two main functions used to represent

capillary pressure within the literature. The difference between these models is that the

Brooks-Corey model represents a capillary entry pressure, Pc,e [ML−1T−2], meaning that

the capillary pressure is not equal to zero when the aqueous saturation is at zero, while the

van Genuchten function does not (Gershenzon et al., 2016). Instead, the van Genuchten

function assumes the existence of at least one pore connected pathway in the formation that

has pores large enough that the capillary pressure can be considered negligible (Gershenzon

et al., 2016). This leads to the Brooks-Corey curve being convex, and the van Genuchten

curve being S-shaped (Li et al., 2013), as can be seen in Figure 2.3.
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Figure 2.3: Pc vs Sa curves for (a) the van Genuchten model and (b) the Brooks Corey model

(Adapted from Li et al. (2013)). Note the S-shape of the van Genuchten model and the convex

shape of the Brooks-Corey model, caused by differences in the representation of the capillary entry

pressure, Pc,e. In the van Genuchten model, the region around the endpoint is termed the ‘entry

slope’ region, the height of which is the pressure difference between the plateau and the endpoint

of the curve at Sa = 1.

In the Brooks-Corey model (Brooks and Corey, 1964),

Pc = Pc,eS
− 1
λ

e for Pc > Pc,e (2.15)

where Se [-] is an effective aqueous saturation, found from:

Se =
Sa − Sar
1− Sar

(2.16)

and λ [-] is a Brooks-Corey pore geometry factor.

For the van Genuchten function (van Genuchten, 1980),

Pc = Pc0

(
S
− 1
m

e − 1

)− 1
n

(2.17)

where Pc0 [ML−1T−2] is a van Genuchten parameter, equal to 1
α , in which α [M−1LT2] is

a scaling parameter related to the inverse of Pc,e, m is a parameter that depends on pore

geometry (Pruess and Müller, 2009), and:

n =
1

1−m
(2.18)

Both the van Genuchten and Brooks-Corey models can be easily fitted to experimental

data (Oostrom et al., 2016), and which is more realistic will vary depending on numerous

factors including the relative permeability relations used and the permeability of the

individual rock. However, the van Genuchten function is more widely used in reservoir

simulation packages such as TOUGH2, and generally has a faster calculation time and

fewer convergence problems (Gershenzon et al., 2016), and so for all work done in this

thesis, the van Genuchten model will be used.
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One drawback of existing capillary pressure functions, including both the van Genuchten

and Brooks-Corey functions, is that they do not describe the changes in capillary pressure

that occur as the residual aqueous phase is evaporated. In the current functions, as the

aqueous saturation approaches its residual value, the capillary pressure approaches infinity,

as can be seen in Figure 2.3. This can cause serious issues in numerical simulators (Webb,

2000). A considerable proportion of the work in this thesis focuses on the dry out zone, in

which the aqueous saturation has gone all the way down to zero, so this could have had a

significant effect on the numerical models produced.

However, several methods have been derived to avoid this problem, the most commonly

used (and one of the easiest to implement) of which was formed by Webb (2000). Campbell

and Shiozawa (1992) observed from dry region capillary pressure data that in the dry out

zone, capillary pressure plots as a linear function of aqueous saturation on a semilog plot,

on which aqueous saturation is plotted against log10 Pc. Webb (2000) used this idea to

conclude that a capillary pressure function for all aqueous saturations can be found by

using the van Genuchten function above a certain aqueous saturation matching point,

Sam[−] (in what is termed the capillary flow region), and a linear extension of the van

Genuchten curve on a semilog plot to zero aqueous saturation for aqueous saturations

below this matching point (in the dry region). Figure 2.4 shows these extensions for

several different values of Sam. It can be seen that the capillary pressure at zero aqueous

saturation increases superlinearly as the value of Sam decreases.

The appropriate value of Sam is the one at which the extension of the van Genuchten

capillary pressure curve results in the desired capillary pressure at zero aqueous saturation,

taken by Webb (2000) to be 109 Pa, and referred to as the capillary pressure at oven

dry conditions, Pcd [ML−1T−2]. Webb (2000) defined Sam as the value of Sa where the

derivatives of the van Genuchten function and the linear-log relationship are equal. Such

a value must be found by iteration.

Mathematically this leads to the following extension of equation (2.17):

Pc =


Pc0

(
S
− 1
m

e − 1

) 1
n

, Sa > Sam

Pcd exp

[
ln

(
Pcm
Pcd

)
Sa
Sam

]
, Sa ≤ Sam

(2.19)

The matching point Sam can be given as:

Sam = (1− Sar)Sem + Sar (2.20)
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Figure 2.4: A representative van Genuchten capillary pressure function including linear extension.

Adapted from Webb (2000).

and Pcm [ML−1T−2] as

Pcm = Pc0

(
S
− 1
m

em − 1

) 1
n

(2.21)

where Sem [-] is the critical effective saturation at which the switch over between the van

Genuchten function and Webb’s extension takes place.

Differentiation of equation (2.19) with respect to Sa leads to

∂Pc
∂Sa

=


Pc

(1− Sar)mnSe(S
1
m
e − 1)

, Sa > Sam

Pc
Sam

ln

(
Pcm
Pcd

)
, Sa ≤ Sam

(2.22)

Considering equation (2.22), Webb (2000) defines Sem as the effective saturation at which

Pcm

(1− Sar)mnSem(S
1
m
em − 1)

=
Pcm
Sam

ln

(
Pcm
Pcd

)
(2.23)

Substituting equation (2.21) and equation (2.20) into equation (2.23) and rearranging

leads to

Sem =
Sem + Sar(1− Sar)−1

mn(S
1
m
em − 1) ln

[
(S

1
m
em − 1)

1
n

(
Pcd
Pc0

)−1] (2.24)

which must be solved iteratively. Webb (2000) suggests that four to five iterations are

sufficient. However, this will be strongly dependent on the value used for the initial

estimate of Sem, Sem0.
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In order to find an accurate value for Sem0, Kelly and Mathias (2018) showed that it is

possible to use the Lambert W function, which is defined as the inverse of the function

w 7→ wew. W (z) is therefore the function that satisfies (Corless et al., 1996):

W (z)eW (z) = z (2.25)

This can be shown as follows. For cases in which Sar > 0, firstly assume that Sem0 � 1

such that equation (2.24) reduces to

Sem0 =
Sar(1− Sar)−1

ln
[
Sem0

(
Pcd
Pc0

)nm] (2.26)

This can be rearranged to give:

z = W exp(W ) (2.27)

where

z =
Sar

(
Pcd
Pc0

)nm
(1− Sar)

(2.28)

and

W =
Sar

(1− Sar)Sem0
(2.29)

By comparing equation (2.27) to equation (2.25), it can be seen that the functional inverse

of z(W ) in equation (2.27), W (z), is given by the Lambert W function. Furthermore,

because z is always positive and real, W (z) = W0(z), otherwise referred to as the zero

branch. This has the following asymptotic expansion (Corless et al., 1996):

W0(z) = L1 − L2 +
L2

L1
+O

([
L2

L1

]2)
(2.30)

where L2 = lnL1 and L1 = ln z.

Once a value for W has been found using equation (2.30), a good initial estimate for Sem,

Sem0 can be found by rearranging equation (2.29) to give:

Sem0 =
Sar

W (1− Sar)
(2.31)

Sem, Pcm and Sam can then be found iteratively using equations (2.20), (2.21) and (2.24),

providing all necessary terms to find the capillary pressure, Pc, for all values of aqueous

saturation from equation (2.19).
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2.3 Mass Fractions at Equilibrium

As was explained in Section 2.1, the injection of CO2 into a saline formation leads to

a three phase, three component system, in which each of the components can exist in

two different phases. It is assumed that if more than one phase is present, the phases

are in equilibrium, which means that the maximum solubility of each component in each

phase has been reached. This assumption can be made because the diffusion timescale

is very short relative to the convection timescale, and hence the solubility limits, or

equilibrium concentrations, are reached very quickly. The equilibrium concentrations

will vary with pressure, temperature and brine salinity. It is important to know these

equilibrium concentrations to enable us to track the phases present in the system and their

composition. For example, if CO2 is injected into an aqueous phase, it can only dissolve

in the aqueous phase up to its equilibrium concentration. Beyond this, the aqueous phase

has reached its maximum solubility for CO2, so a higher concentration of CO2 will result

in the formation of a separate gaseous phase.

Spycher et al. (2003) and Spycher and Pruess (2005) present a methodology to estimate

the mutual solubilities of CO2 and H2O in coexisting phases. Spycher et al. (2003) looked

at these solubilities for a two component, two phase system of water and CO2, both able

to exist in gaseous and aqueous phases, while Spycher and Pruess (2005) extended this

work to account for the effects of chloride salts in the aqueous phase. Within the models

used in this thesis, the work of Spycher et al. (2003) and Spycher and Pruess (2005) is

used to find the solubility of CO2 in the aqueous phase and H2O in the gaseous phase,

while the solubility of NaCl in the aqueous phase is found using an equation by Potter

et al. (1977). The following subsections will explain the thermodynamics of systems at

equilibrium, before using this to explain further the work of Spycher et al. (2003), Spycher

and Pruess (2005) and Potter et al. (1977).

2.3.1 Chemical Potential and Gibbs Energy

When a system is in chemical equilibrium, the chemical potential of each component, µi

[ML2T−2N−1], must be equal in all parts of the system (Smith, 2004, p.49). Therefore, for

a component i distributed between two phases g and a, it must be that µi(g) = µi(a) at

equilibrium. The chemical potential of a component i, µi, represents the force that drives

chemical systems to equilibrium, and is formally defined as the increase in the free energy
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of a system when one mole of component i is added to an infinitely large quantity of the

mixture, so that it does not significantly alter the overall composition of the system, and

the temperature, pressure and amounts of all other components are held constant (Smith,

2004, p.49). Writing this mathematically:

µi =

(
∂G

∂ni

)
T,P,nk

(2.32)

Here, ni [N] is the number of moles of component i, T [Θ] is temperature and G [ML2T−2]

represents the Gibbs free energy, which is the maximum amount of non-expansion work

that can be done by a closed system. Mathematically, this is defined as (Smith, 2004,

p.38):

G = H − TS (2.33)

where H [ML2T−2] is the enthalpy and S [ML2T−2Θ−1] is the entropy of the system.

When the system is capable of doing no work and is at equilibrium, G is at a minimum

and dG = 0 (Smith, 2004, p.38).

2.3.2 Chemical Potential for Ideal Gas Mixtures

Using equation (2.33) and the relation dH = TdS + V dP , where V [L3] is the volume

of the system, the total derivative of G for a pure substance is found to be (Cengel and

Boles, 2002, p.697):

dG = V dP − SdT (2.34)

In a mixture, the Gibbs free energy is a function of two independent properties (pressure

and temperature) as well as the composition of the mixture. Therefore (Cengel and Boles,

2002, p.697):

G = G(T, P, ni, nk, ...) (2.35)

where nk [N] is the number of moles of component k. The total derivative of G for a

mixture is therefore found from:

dG =

(
∂G

∂P

)
T,n

dP +

(
∂G

∂T

)
P,n

dT +
∑
i

(
∂G

∂ni

)
P,T,nk

dni (2.36)

where n [N] is the number of moles in the system as a whole. Equation (2.36) is also

valid for pure substances, except that the final term would be equal to zero because the

composition of a pure substance is constant.
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Comparing equation (2.34) and equation (2.36), it can be seen that for a mixture (Cengel

and Boles, 2002, p.697):

dG = V dP − SdT +
∑
i

µidni (2.37)

where (
∂G

∂P

)
T,n

= V (2.38)

and (
∂G

∂T

)
P,n

= −S (2.39)

Differentiating both sides of equation (2.38) with respect to ni gives:

∂

∂ni

(
∂G

∂P

)
T,nk

=

(
∂V

∂ni

)
T,P,nk

(2.40)

which is equivalent to: (
∂µi
∂P

)
T,n

= Vi (2.41)

where Vi [L3N−1] is the partial molar volume of component i.

An ideal gas is an imaginary substance that does not take into account the effect of any

intermolecular forces or the sizes of molecules. A real gas behaves similar to an ideal gas

at relatively low pressures and high temperatures (Cengel and Boles, 2002, p.153). The

ideal gas equation of state is (Cengel and Boles, 2002, p.137):

PV = nRT (2.42)

and so
V

n
=

∑Nc
i=1 niVi∑Nc
i=1 ni

= Vi =
RT

P
(2.43)

Here, R [ML2T−2N−1Θ−1] is the universal gas constant, equal to 8.31447 J· mol−1· K−1.

It should be noted from this equation that Vi is the same for all components i, as Vi can

be written solely as a function of the terms V and n, both of which depend on the system

as a whole rather than an individual component (Denbigh, 1966, p.116). Substituting

equation (2.43) into equation (2.41) gives that, for an ideal gas mixture at temperature T

and pressure P:

dµi =
RT

P
dP (2.44)

Integrating both sides of equation (2.44) with respect to P between a reference pressure,

P 0 [ML−1T−2], and the partial pressure of component i, Pi [ML−1T−2], gives (Denbigh,

1966, p.115):

µi = µ0i +RT ln

(
Pi
P 0

)
(2.45)
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where the partial pressure, Pi, is defined as:

Pi = yiP (2.46)

and yi [-] is the mole fraction of component i in the gas and µ0i [ML2T−2N−1] represents

the chemical potential of the component i at temperature T and pressure P 0. It is often

assumed that the reference pressure, P 0, is equal to 1 bar, and so equations are sometimes

written as though this is the case.

Equation (2.45) gives an expression for chemical potential in terms of measurable quanti-

ties.

2.3.3 Chemical Potential for Non-Ideal Gas Mixtures

Equation (2.45) only holds for ideal gas mixtures. For non-ideal gas mixtures, the partial

pressure of a component i, Pi, should be replaced with the fugacity of that component, fi

[ML−1T−2], which is an effective partial pressure for a non-ideal gas, such that (Denbigh,

1966, p.125):

µi = µ0i +RT ln

(
fi
P 0

)
(2.47)

Fugacity and partial pressure of a component i are linked by the fugacity coefficient Φi [-]

of the component i such that:

Φi =
fi
Pi

(2.48)

and it is the case that (Denbigh, 1966, p.125) :

Φi =
fi
Pi
→ 1 as P → 0 (2.49)

so that the fugacity is equal to the partial pressure under conditions where the gas obeys

the ideal gas equation of state.

Fugacity can therefore be defined in terms of pressure by rearranging equation (2.48) and

substituting in equation (2.46) to give:

fi = ΦiPi = ΦiyiP (2.50)
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2.3.4 Chemical Potential of Ideal Solutions

Ideal solutions are analogous to ideal gas mixtures, with the difference being that the

intermolecular interactions in ideal solutions are assumed to be equal between all molecules

of the solution rather than neglected entirely as in ideal gases.

A solution is ideal if it obeys Raoult’s Law, which is that the partial pressure of a

component i is equal to P ∗i [ML−1T−2], the vapour pressure of the pure component i,

multiplied by xi [-], the mole fraction of component i in the solution. Mathematically, this

is written as (Denbigh, 1966, p.223):

Pi = P ∗i xi (2.51)

As was explained in Section 2.3.1, at equilibrium the chemical potential of component i

in the gaseous and aqueous phases will be equal. Therefore, the chemical potential of a

component i in an ideal solution can be found by substituting equation (2.51) into the

equation for chemical potential of component i in an ideal gas mixture, equation (2.45),

to give:

µi = µ0i +RT ln

(
P ∗i
P 0

)
+RT lnxi (2.52)

which can also be written as (Denbigh, 1966, p.249):

µi = µ∗i +RT lnxi (2.53)

2.3.5 Chemical Potential of Non-Ideal Solutions

Again, equation (2.53) is only valid for ideal solutions. However, as for gas mixtures, a

similar equation can be used to give the chemical potential for component i for non-ideal

solutions (Denbigh, 1966, p.270):

µi = µ∗i +RT ln γxixi (2.54)

It can be seen that equation (2.54) is identical to equation (2.53) except that an activity

coefficient, γxi [-], has been introduced to account for the deviation from ideality.

It should also be noted that the activity coeffcient can be expressed in terms of the molality

of component i, mi [NM−1], rather than in terms of its mole fraction. This convention is
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often used when the component i is a solute in the solution. The molality of a solute i is

a measure of concentration and is defined as the number of moles of component i in the

solution per kilogram of solvent.

In the case of the solvent in a solution (Denbigh, 1966, p.276):

γxi → 1 as xi → 1 (2.55)

whereas for the solute:

γmi → 1 as mi → 0 (2.56)

Note that γxi indicates an activity coefficient given in terms of the mole fraction xi, whereas

γmi [-] indicates an activity coefficient in terms of the molality mi. These expressions

indicate that the activity coefficient approaches unity, and so the deviation from ideality

reduces and the behaviour of component i within the solution becomes similar to within

the ideal solution, as either the mole fraction of component i tends towards unity if i is a

solvent, or as the molality of component i tends towards infinite dilution if i is a solute.

The activity of component i is a measure of the ‘effective concentration’ of a component

in a mixture. The activity of a solvent i on the mole fraction scale, axi [-], is defined as

(Denbigh, 1966, p.287):

axi = γxixi (2.57)

while the activity of a solute i on the molality scale, ami [-] is:

ami = γmimi (2.58)

Equation (2.54) can be equivalently written on the mole fraction scale as:

µi = µ∗i +RT ln axi (2.59)

or on the molality scale as:

µi = µ2i +RT ln ami (2.60)

2.3.6 Expressions for yH2O and xCO2

This subsection explains how Spycher et al. (2003) and Spycher and Pruess (2005) estimate

the mutual solubilities of H2O and CO2, including the effect of chloride salts in the aqueous

phase.
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The equilibrium constant of a chemical reaction, K [-], gives the relationship between the

amounts of reactants and products that are present at equilibrium. In general, a large

value of K tells us that mostly products are present at equilibrium and so the reaction is

at a position close to completion, whereas a small K value means that mainly reactants

are still present, so the reaction has not gone far before enough products have been formed

to stop it (Anderson, 2005, p.240).

In a two phase region in which CO2 and H2O exist, the following reactions can be written

at equilibrium, with their corresponding equilibrium constants:

H2O(l) ⇀↽ H2O(g) KH2O =
fH2O(g)

aH2O(l)

(2.61)

CO2(aq) ⇀↽ CO2(g) KCO2(g)
=

fCO2(g)

aCO2(aq)

(2.62)

If a component i is in phase equilibrium, the chemical potentials of i in the gaseous and

aqueous phases should be equal. This means that, using equations (2.47) and (2.59)

µ0i +RT ln

(
fi
P 0

)
= µ∗i +RT ln axi (2.63)

Assuming that P 0 is equal to 1 bar, this simplifies to:

µ0i +RT ln fi = µ∗i +RT ln axi (2.64)

which can be rearranged to give:

ln

(
fi
axi

)
= lnKi =

(µ∗i − µ0i )
RT

(2.65)

where Ki [-] is the equilibrium constant of the component i.

Differentiating both sides of this equation with respect to pressure P , and recalling

equation (2.41) gives:
∂ lnKi

∂P
=

Vi
RT

(2.66)

which can be integrated with respect to P between the values of P 0 and P to give the

pressure correction for Ki:

Ki(T,P ) = Ki(T,P 0) exp

(
(P − P 0)Vi

RT

)
(2.67)

Recall from equation (2.50) that:

fi = ΦiyiP (2.68)
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Combining equation (2.68) with equations (2.61) and (2.62) gives:

fH2O = ΦH2OyH2OP = KH2OaH2O(l) (2.69)

and

fCO2 = ΦCO2yCO2P = KCO2aCO2(aq) (2.70)

Rearranging equation (2.69) to give the mole fraction of H2O in the gaseous phase, yH2O:

yH2O =
KH2OaH2O

ΦH2OP
(2.71)

Equation (2.67) can now be substituted in to this to obtain:

yH2O =
K0
H2O

aH2O

ΦH2OP
exp

(
(P − P 0)VH2O

RT

)
(2.72)

where K0
H2O

is shorthand for K(T,P 0) for the component H2O.

It is also necessary to find an expression for the mole fraction of CO2 in the aqueous phase,

xCO2 . Recalling the definition of molality given in Section 2.3.5, and assuming for now

that only CO2 and H2O are present, the molality of CO2 in solution, mCO2 , can be given

by (Denbigh, 1966, p.274):

mCO2 =
1000nCO2

MH2OnH2O
(2.73)

where MH2O [MN−1] is the molecular mass of water.

The mole fraction of CO2 in the aqueous phase, xCO2 , is found by (Denbigh, 1966, p.275):

xCO2 =
nCO2

nH2O + nCO2

(2.74)

Therefore, using equations (2.73) and (2.74), the ratio of molality to mole fraction of CO2

is found to be (Denbigh, 1966, p.275):

mCO2

xCO2

=
1000(nH2O + nCO2)

MH2OnH2O
=

1000

MH2OxH2O
(2.75)

In a very dilute solution, xH2O → 1. Therefore, in this case, it can be taken that:

mCO2

xCO2

≈ 1000

MH2O
(2.76)

Recall from Section 2.3.5 that chemical potential can be given on either the mole fraction or

molality scales. Regardless of the scale that is used, the chemical potential of a component
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i will be the same, and so equating equations (2.59) and (2.60) for the component CO2

leads to (Denbigh, 1966, p.277):

µCO2 = µ∗CO2
+RT ln axCO2

= µ2CO2
+RT ln amCO2

(2.77)

or equivalently:

µ∗CO2
+RT ln(γxCO2

xCO2) = µ2CO2
+RT ln(γmCO2

mCO2) (2.78)

which can be rearranged to get:

RT ln

(
γmCO2

mCO2

γxCO2
xCO2

)
= µ∗CO2

− µ2CO2
(2.79)

In a very dilute solution, γmCO2
→ 1 as mCO2 → 0 and γxCO2

→ 1 as xCO2 → 0, which

means that equation (2.79) reduces to:

RT ln

(
mCO2

xCO2

)
= µ∗CO2

− µ2CO2
(2.80)

which, using equation (2.76), becomes:

RT ln

(
1000

MH2O

)
= µ∗CO2

− µ2CO2
(2.81)

The quantities µ∗ and µ2 are independent of composition, so the difference between them

in equation (2.79) is the same as the difference between them in equation (2.81), despite

the fact that equation (2.81) only applies in limiting conditions of high dilution (Denbigh,

1966, p.277). This means that:

RT ln

(
γmCO2

mCO2

γxCO2
xCO2

)
= RT ln

(
1000

MH2O

)
(2.82)

and so:
γmCO2

γxCO2

=
1000xCO2

MH2OmCO2

(2.83)

Spycher et al. (2003) find the activity of CO2 using a molality to mole fraction correc-

tion, which gives a unit activity coefficient on the mole fraction scale. Therefore, using

equations (2.58) and (2.83):

amCO2
= γmCO2

mCO2 =
1000xCO2γxCO2

MH2O
= 55.508xCO2 (2.84)

as MH2O is equal to 18.015g/mol.

This can be substituted into equation (2.70) to give:

ΦCO2yCO2P = KCO255.508xCO2 (2.85)
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which can be rearranged to make xCO2 the subject:

xCO2 =
ΦCO2yCO2P

55.508KCO2

(2.86)

Only CO2 and H2O can be present in the gaseous phase, regardless of whether or not

salts are in the system, meaning that yCO2 = 1− yH2O. Substituting in both this and the

equation for KCO2 from equation (2.67) gives the expression that Spycher et al. (2003)

found for xCO2 when only CO2 and H2O were present in the system:

xCO2 =
ΦCO2(1− yH2O)P

55.508K0
CO2

exp

(
−(P − P 0)VCO2

RT

)
(2.87)

Spycher and Pruess (2005) took this further and introduced an activity coefficient for

aqueous CO2, γ
′
x, which incorporates the effect of chloride salts in the aqueous phase

and the departure from solubility in pure water. Several different literature sources have

different techniques for calculating γ′x, but the best results are obtained when using the

formulation of Rumpf et al. (1994) and Duan and Sun (2003).

Incorporating γ′x into equation (2.87) gives the overall expression for xCO2 in a three

component system:

xCO2 =
ΦCO2(1− yH2O)P

55.508γ′xK
0
CO2

exp

(
−(P − P 0)VCO2

RT

)
(2.88)

Note that γ′x is on a mole fraction scale and γ′x → 1 as xsalt → 0, where xsalt is the

mole fraction of fully ionized salt dissolved in the aqueous phase. This means that

equation (2.88) reduces to equation (2.87) when no salt is present in the system.

2.3.7 Solving for yH2O and xCO2

It should be noted that equations (2.72) and (2.88) depend on each other. In order to solve

these equations and find the mutual solubilities of CO2 and H2O in a saline formation, it

is necessary to be able to define all other terms in the equations.

The Redlich-Kwong equation of state is of the form (Redlich and Kwong, 1949):

P =

(
RT

Vg −Bmix

)
−
(

Amix
T 0.5Vg(Vg +Bmix)

)
(2.89)

where the parameters Amix [ML−5T−2N−2Θ0.5] and Bmix [L3N−1] represent measures of

intermolecular attraction and repulsion, respectively, and Vg [L3] is the volume of the

compressed gas phase at pressure P and temperature T .
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Within the Redlich-Kwong equation, Amix and Bmix are calculated using the following

mixing rules (e.g. Prausnitz et al., 1999):

Amix =

Ni∑
i=1

Nk∑
k=1

yiykAik (2.90)

and

Bmix =

Nk∑
i=1

yiBi (2.91)

which, for the mixture of CO2 and H2O in the gaseous phase, become:

Amix = y2H2OAH2O + 2yH2OyCO2AH2O−CO2 + y2CO2
ACO2 (2.92)

and

Bmix = yH2OBH2O + yCO2BCO2 (2.93)

Once Amix and Bmix have been found, Vg can be calculated from these values and the

inputted values of P and T into the Redlich-Kwong equation. The fugacity coefficient

Φk of a component k in a mixture with other components i can then be found from the

equation (e.g. Prausnitz et al., 1999):

ln(Φk) = ln

(
Vg

Vg −Bmix

)
+

(
Bk

Vg −Bmix

)
−

(
2
∑Ni

i=1 yiAik
RT 1.5bmix

)
ln

(
Vg +Bmix

Vg

)
+

(
AmixBk

RT 1.5B2
mix

)[
ln

(
Vg +Bk
Vg

)
−
(

Bmix
Vg +Bmix

)]
− ln

(
PVg
RT

) (2.94)

However, it can be seen from this equation that the fugacity coefficients Φk depend on the

composition of the mixture, which means that both the rearranged version of the Redlich-

Kwong equation to find Vg and equation (2.94) need to be solved simultaneously with

equations (2.72) and (2.88), therefore requiring an iterative solution scheme. However, if

an assumption of infinite H2O dilution is made in the gaseous phase in equations (2.92)

to (2.94), such that yH2O = 0 and yCO2 = 1, it can be seen that Amix and Bmix reduce to:

Amix = ACO2 (2.95)

and

Bmix = BCO2 (2.96)

This means that the fugacity coefficients for both components, ΦCO2 and ΦH2O can

be found in a direct way, and an iterative solution scheme is not required. The non-

ideal mixing behavior is still captured, despite the simplification of Amix and Bmix, by

the molecule interaction parameters AH2O−CO2 and BH2O. These molecule interaction
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parameters, as well as the equilibrium constants K0
i and the partial molar volumes Vi,

were found from the literature, where available, and by being fitted to P -V -T and P -T -X

data.

All terms in equations (2.72) and (2.88) have now been defined, so they can be solved to

find the mutual solubilities xCO2 and yH2O. This is done in Spycher and Pruess (2005) by

setting:

C =
K0
H2O

ΦH2OP
exp

(
(P − P 0)VH2O

RT

)
(2.97)

and

D =
ΦCO2P

55.508γ′xK
0
CO2

exp

(
−(P − P 0)VCO2

RT

)
(2.98)

and approximating the activity of H2O as the mole fraction of H2O, such that equa-

tions (2.72) and (2.88) are written as:

yH2O = C(1− xCO2 − xsalt) (2.99)

and

xCO2 = D(1− yH2O) (2.100)

Equation (2.100) can now be substituted into equation (2.99) and rearranged to give:

yH2O =
(1−D − xsalt)(

1
C −D

) (2.101)

xsalt is defined in terms of molalities as:

xsalt =
vmsalt

55.508 + vmsalt +mCO2

(2.102)

where v [-] is the stoichiometric number of ions in the dissolved salt. In the case of a saline

formation in which the salt present is assumed to be NaCl, the stoichiometric number will

be 2.

xCO2 can also be expressed in terms of molalities as:

xCO2 =
mCO2

mCO2 + 55.508 + vmsalt
(2.103)

which can be rearranged to define mCO2 as:

mCO2 =
xCO2(vmsalt + 55.508)

1− xCO2

(2.104)

As msalt is independent of CO2 solubility, it is more practical to use as an input parameter

than xsalt. Therefore, equation (2.100) can be substituted into equation (2.104), and the
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resulting expression for mCO2 can then be put into equation (2.102) to give:

xsalt =
vmsalt − vmsaltD + vmsaltDyH2O

vmsalt + 55.508
(2.105)

Finally, this equation for xsalt in terms of salt molality is substituted into equation (2.99),

which after rearrangement gives:

yH2O =
(1−D)55.508(

1
C −D

)
(vmsalt + 55.508) + vmsaltD

(2.106)

Equation (2.106) no longer depends on xCO2 , so can be solved independently. Its result

can then be substituted into equation (2.100) to give the corresponding value of xCO2 .

This method gives the values for the mutual solubilities of CO2 and H2O, xCO2 and yH2O,

in a saline formation for inputted temperature, pressure and molal conditions of between

12-100◦C, up to 600 bar and up to 6 molal NaCl, without the need for an iterative solution

scheme.

2.3.8 Solubility of Salt in the Aqueous Phase

As well as the mutual solubilities of CO2 and H2O, it is also necessary to define the

solubility of salt, assumed to be NaCl in saline formations, in the aqueous phase, xNaCl.

Beyond this solubility, a separate solid phase consisting of only salt will form. In the

models used in this thesis, xNaCl is found using the following equation (Potter et al.,

1977):

xNaCl = 26.218 + 0.0072T + 0.000106T 2 (2.107)

This equation is thought to be valid over the temperature range 0-800◦C, and it should

be noted that it only considers the effect of temperature on NaCl solubility, and does not

take into account the effect of changes in pressure.

2.3.9 Phase Diagrams

A phase diagram is a chart to show the different conditions at which different phases exist

at equilibrium. Figure 2.5 shows a phase diagram for the two component system of CO2

and H2O by Spycher et al. (2003), using data from several different sources. It illustrates

the different phase combinations that can exist for varying compositions, shown on the
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x-axis by the mole fraction of H2O, plotted against a full range of pressures, at a fixed

temperature of 25◦C. Within this figure, V represents a vapour phase, L1 is the H2O-rich

liquid phase (referred to as the aqueous phase elsewhere in this thesis), and L2 is the

CO2-rich supercritical phase (referred to as the gaseous phase in this thesis). It should be

noted that for the pressures and temperatures associated with geological sequestration,

CO2 will always be above the critical pressure and temperature at which distinct gaseous

and liquid phases become indistinguishable, meaning that it will be in a supercritical state,

and hence the vapour phase shown in Figure 2.5 will not be present in any of the models

produced in this thesis.

Figure 2.5: A phase diagram, plotting the mole fraction of H2O against pressure, to illustrate

the different phase combinations that occur for a two component (CO2 and H2O) system at a

temperature of 25◦C. Note that within this figure, V represents the vapor phase, L1 is the H2O-

rich liquid phase and L2 is the CO2-rich supercritical phase. The data points show CO2 solubility

in the H2O-rich phase (open circles) and H2O solubility in the CO2-rich phase (open squares), using

data from Wiebe and Gaddy (1940), Wiebe and Gaddy (1941), Coan and King (1971), Gillepsie

and Wilson (1982) and King et al. (1992). The inset of the figure shows the region in which all

three phases can coexist in greater detail (Spycher et al., 2003).

The open circles and squares represent data points from the literature, with the circles

showing CO2 solubility in the H2O-rich phase and the squares representing H2O solubility

in the CO2-rich phase. These data points are used to create lines that show the solubility

of the components for the full range of required compositions and pressures, and therefore
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separate the diagram into different phase combinations. This can be illustrated by an

example. If we are at a point for which the H2O mole fraction is 0.002 and the pressure

is 100 bar, we are below the solubility limit of H2O in the CO2-rich phase, and to the

left of the line that represents this solubility limit. Therefore, all H2O present can be in

the CO2-rich phase, meaning that only a CO2-rich phase is present and we are in the L2

region as shown by the diagram. However, if more H2O is added to the system, the mole

fraction of H2O increases, and so the point we are at in the diagram will move to the right.

If it reaches a point where it has crossed the line that represents the solubility of H2O in

the CO2-rich phase, there will be more H2O than can be accommodated in the CO2-rich

phase at the given pressure and temperature, and hence a separate H2O-rich phase must

also form. Crossing this line therefore means moving into the region of L1+L2, where both

phases are present. Figure 2.5 hence illustrates that, at 25◦C and above approximately

64.5 bar, there will solely be a CO2-rich supercritical phase (L2) present for mole fractions

of H2O below the solubility limit of H2O in the CO2-rich phase, and solely a H2O-rich

liquid phase (L1) present for H2O mole fractions above the solubility limit of CO2 in the

H2O-rich phase. For mole fractions of H2O between these solubility limits, both the L1

and L2 phases will be present.

When a system is comprised of three components, it is clearer to use a ternary phase

diagram, which shows phase behaviour information for varying compositions at a fixed

pressure and temperature. As the fractions of composition at any point in the diagram

will always sum to one, the equilibrium phase compositions can be plotted on an equilateral

triangle (Orr, 2007, p.52). Each corner of the triangle represents 100% of the component

with which it is labelled, and the opposite side represents 0% of that component. The

fraction of each component at any given point within the triangle can therefore be read

from the perpendicular distances from the point to the three sides (Orr, 2007, p.52).

Figure 2.6 shows a ternary phase diagram for the three component CO2-H2O-NaCl system

at a pressure of 10 MPa and 60◦C, which are realistic pressure and temperature figures for

geological sequestration, and Figure 2.7 illustrates the zoomed in corners of Figure 2.6 to

show the different phase combinations on a scale for which they can be more easily seen.

Note that in these figures, V represents the supercritical CO2-rich phase (referred to as

the gaseous phase elsewhere in this thesis), L is the H2O-rich liquid phase (referred to as

the aqueous phase elsewhere), and S is the solid phase. Z-i refers to the mole fraction of

component i. The bubble, precipitation and dew lines represent the lines for which the

gaseous, solid and liquid phases, respectively, emerge.

63



Figure 2.6: A ternary phase diagram showing the structure of phases within the three component

system of CO2, H2O and NaCl for a fixed pressure of 10 MPa and a fixed temperature of 60◦C.

Note that Z-i refers to the mole fraction of component i. The bubble, precipitation and dew lines

have been highlighted in green, blue and red respectively in this figure. Adapted from Fuller et al.

(2006).

Figure 2.7: Subfigures to illustrate Figure 2.6 zoomed in, in order to show the different phase

combinations that are too small to be seen clearly in the original figure. Adapted from Fuller et

al. (2006).
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Chapter 3

Solutions for Incompressible Two

Component and Two Phase Flow

In order to form simulations of salt precipitation in saline aquifers, various methods can

be used to solve the governing equations in Chapter 2. One useful method, in particular

for forming analytical solutions, is the method of characteristics (MOC). This method is

used for solving hyperbolic partial differential equations (PDEs), and can hence be used

to solve the mass conservation equation given in equation (2.3) if it can be assumed that

the fluid properties are constant with pressure and temperature, no diffusion or dispersion

takes place and the capillary pressure is negligible. One of the main implications of these

assumptions is that all flow will be considered to be in an outward direction, as without

high capillary pressure gradients there will be no counter-current imbibition, in which the

aqueous phase flows back to the injection point of the formation, against the general flow

of CO2.

Another method for solving partial differential equations is the method of lines (MOL).

This method is not limited to hyperbolic PDEs, and so can be used to solve equations

representing more complex systems in which the fluid properties vary with pressure and

temperature and capillary pressure effects are included, but it is a numerical method that

uses approximations, and so can be generally considered to be less accurate than the MOC.

It should be noted that both the MOC and the MOL are mass conservative.

This chapter will introduce both the MOC and the MOL, and will look at the outputs of

both methods for a two phase and two component system with constant fluid properties
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and negligible capillary pressure in order to investigate how effective they are at solving

the relevant PDEs and how well they compare.

3.1 Dimensionless Transformation

For a one-dimensional, linear system, the mass conservation equation in equation (2.3)

reduces to:
∂Gi
∂t

+
∂Hi

∂x
= 0 (3.1)

where it should be recalled from equations (2.1) and (2.2) thatGi [ML−3] andHi [ML−2T−1]

represent the mass of component i within a given volume of fluid mixture and the mass

flux of component i, respectively, such that:

Gi = φ

Np∑
j=1

ρjXijSj (3.2)

and

Hi =

Np∑
j=1

ρjXijqj (3.3)

and x [L] and t [T] refer to space and time, respectively.

However, equation (3.1) can also be written in a dimensionless form, in which the units

are removed from each of the terms in the equation by substitution of other variables. The

advantages of converting the equation to this form are that it enables us to look at the

trends and patterns of the output of a system without the issue of units, and helps us to

identify the strength of various parameters in governing the behaviour of the system by

comparing the variables against each other (Younis, 2011, p.157). In this chapter, we are

considering a one-dimensional, linear system with constant fluid properties and negligible

capillary pressure, for which the dimensionless version of the mass conservation equation

is: (Orr, 2007, p.84):
∂GiD
∂τ

+
∂HiD

∂ξ
= 0 (3.4)

where GiD [-] and HiD [-] denote the dimensionless forms of Gi and Hi, respectively, such

that:

GiD =

Np∑
j=1

ρjDXijSj (3.5)

and

HiD = qD

 Np∑
j=1

ρjDXijfj

 (3.6)
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where:

fj =
qj
qt

(3.7)

ρjD =
ρj
ρinj

(3.8)

qD =
qt
qinj

(3.9)

τ =
qinjt

φL
(3.10)

and

ξ =
x

L
(3.11)

Within these equations, fj [-] represents the fractional flow of phase j, qt [LT−1] is the

total volumetric flux, ρinj [ML−3] is the density of the injected fluid, qinj [LT−1] is the

volumetric flux of the injected fluid and L [L] is an arbitrary length.

It can be immediately seen by comparing equation (3.2) and equation (3.5) that Gi and

GiD are related by a constant ratio, such thatGiD = Gi
φρinj

, but at first glance it may appear

that the relationship between Hi and HiD is not straightforward. However, equation (3.7)

can be rearranged to show that:

qj = fjqt (3.12)

and this can be substituted into equation (3.3) to show that an alternative representation

of Hi is:

Hi = qt

 Np∑
j=1

ρjXijfj

 (3.13)

It can then be understood that HiD = Hi
qinjρinj

.

3.2 The Two Component, Two Phase System

Firstly, assume that only two components (CO2 and H2O) and two phases (gaseous and

aqueous) are present in a one-dimensional, linear system, with constant fluid properties

and negligible capillary pressure. This means that, in the two phase region, the non-

dimensionalised mass of component i, GiD, can be written as (Orr, 2007, p.84):

GiD = ρgDxigSg + ρaDxia(1− Sg) (3.14)
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and the non-dimensionalised mass flux of component i, HiD, can be written as (Orr, 2007,

p.84):

HiD = qD[ρgDxigfg + ρaDxia(1− fg)] (3.15)

Note that the mass fractions of component i in phase j, Xij , are assumed to be at constant

equilibrium values, xij , due to the presence of both phases and the assumption of constant

fluid properties.

Equation (3.14) can be rearranged to give:

Sg =
GiD − ρaDxia
ρgDxig − ρaDxia

(3.16)

which shows that the saturation of the gaseous phase, Sg, is a function of only GiD, as all

other variables in the equation are constant.

Because of the assumption of negligible capillary pressure, Pg = Pa = P . This means

that:

qt = qg + qa = −k
(
krg
µg

+
kra
µa

)
∂P

∂x
(3.17)

and so the fractional flow of phase j, fj [-], can be found to be:

fj =
qj
qt

=
−kkrj

µj
∂P
∂x

−k
(
krg
µg

+ kra
µa

)
∂P
∂x

=

krj
µj

krg
µg

+ kra
µa

(3.18)

It should be noted that, in this case with constant fluid properties, qt is a constant term,

equal to Q0

A , where Q0 [L3T−1] is the constant rate of injection of CO2 into the formation

and A [L2] is the cross-sectional area of the formation. This means that qt = qinj and so

qD = 1.

Equation (3.15) illustrates that HiD is solely a function of fg. In turn, because of the

fixed viscosities, equation (3.18) shows that fg depend only on the relative permeabilities,

which themselves depend only on the fluid saturations. It is also the case that Sa = 1−Sg,

and Sg is a function of only GiD, as was shown in equation (3.16). Therefore, it can be

seen that, under these conditions, HiD is solely a function of GiD.

This is also true if only one phase, j, is present. If this were the case:

GiD = ρjDXij (3.19)

and

HiD = qDρjDXijfj (3.20)
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In this single phase system, fj = 1, and, as explained above, it is always the case in this

system that qD = 1. Therefore, equation (3.20) can also be written as:

HiD = ρjDXij (3.21)

and so:

HiD = GiD (3.22)

showing again that HiD is a function of only GiD.

As it is always the case that HiD is solely a function of GiD, regardless of the phases

present, it must be that equation (3.4):

∂GiD
∂τ

+
∂HiD

∂ξ
= 0 (3.23)

can be alternatively written as a partial differential equation (PDE) which is solely a

function of GiD (Orr, 2007, p.85):

∂GiD
∂τ

+
dHiD

dGiD

∂GiD
∂ξ

= 0 (3.24)

3.3 Solving PDEs using the Method of Lines

The method of lines (MOL) is a numerical method in which PDEs are discretised in

space, in this case using finite differences. This reduces them to a coupled set of ordinary

differential equations (ODEs), which can then be solved simultaneously using one of the

ODE solvers in MATLAB (Goudarzi et al., 2016).

3.3.1 Finite Difference Approximations

One numerical method that can help to approximate solutions to differential equations by

discretisation is the finite difference method. The idea behind this is that derivatives of

a general function f within differential equations are replaced by approximations based

on the differences between f at known discrete values of space and time as required, i.e.

replaced by appropriate finite difference approximations (LeVeque, 1992, p.98). There are

several different forms of finite difference approximation, but Figure 3.1 illustrates the

general idea of the method to approximate the derivative df
dx . Because we know the value

of the function f at two discrete points in x, xleft and xright,
df
dx can be approximated by
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using the differences between these values of f and x, such that:

df

dx
=

∆f

∆x
=
fright − fleft
xright − xleft

(3.25)

Figure 3.1: An illustration of how the finite difference method can be used to approximate the

derivative df
dx .

If the point x is the point at which we wish to approximate the derivative of the function

f , there are several different choices of finite difference approximation to make, depending

on the points available near x. One option would be to use x and the point x+h, for some

small value of h. This is called the forward difference method, and the approximation for

these points, D+f(x), is written as (LeVeque, 2007, p.3):

D+f(x) =
f(x+ h)− f(x)

h
(3.26)

Alternatively, it is possible to use the points x and x−h, which is known as the backward

difference method. This approximation, D−f(x), is (LeVeque, 2007, p.3):

D−f(x) =
f(x)− f(x− h)

h
(3.27)

These approximations are both known as one-sided, because f is evaluated at points only

for which x ≥ x for the forward difference method, or for which x ≤ x for the backward

difference method. Another common finite difference approximation, which this time uses

points either side of x, is the central difference approximation, denoted as D0f(x). This
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is written as (LeVeque, 2007, p.4):

D0f(x) =
f(x+ h)− f(x− h)

2h
(3.28)

x

slope D+f(x)

slope D-f(x)

slope D0f(x)

f(x)

slope f'(x)

+hxx -h

x

x

x

Figure 3.2: A diagram to show various finite difference approximations of f ′(x) interpreted as

the slope of secant lines. (Adapted from LeVeque (2007, p.4)).

The points used in all of these approximations and the resultant slopes are shown in

Figure 3.2, as well as the actual slope that the approximations are trying to find, f ′(x). It

can be seen from the figure that the slope found from the central difference approximation

is significantly more accurate than those found by the forward and backward difference

approximations. The accuracies of different finite difference approximations vary hugely,

and the error of a particular approximation can be analysed by looking at the appropriate

Taylor series expansion. For example, Taylor expansion shows that (LeVeque, 2007, p.5):

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +O(h4) (3.29)

and

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(x) +O(h4) (3.30)

Substituting equation (3.29) into equation (3.26) shows that:

D+f(x) =
f(x+ h)− f(x)

h
= f ′(x) +

h

2!
f ′′(x) +

h2

3!
f ′′′(x) +O(h3) (3.31)

meaning that the error associated with the forward difference method is:

E+f(x) = D+f(x)− f ′(x) =
h

2!
f ′′(x) +

h2

3!
f ′′′(x) +O(h3) (3.32)

It should be noted that x is a fixed point, meaning that the derivatives of f at point x

are fixed constants that are independent of the value of h (LeVeque, 2007, p.6). When

h is set to a sufficiently small value, the value of E+f(x) is dominated by the first term,
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h
2!f
′′(x), which is equivalent to a constant value multiplied by h, and all other terms are so

small that they can be considered negligible (LeVeque, 2007, p.6). Therefore, the forward

difference method can be considered to be first order accurate, as its error is proportional

to h.

Similarly, equation (3.30) can be substituted into equation (3.27) to give the error for the

backward difference method, E−f(x), as:

E−f(x) = D−f(x)− f ′(x) = − h
2!
f ′′(x) +

h2

3!
f ′′′(x) +O(h3) (3.33)

which shows that the backward difference method is also first order accurate, with a

dominant error term proportional to h.

Using both equations (3.29) and (3.30), the central difference approximation can be

expressed as:

D0f(x) =
f(x+ h)− f(x− h)

2h
= f ′(x) +

h2

3
f ′′(x) +O(h4) (3.34)

meaning that its error is (LeVeque, 2007, p.6):

E0f(x) = D0f(x)− f ′(x) =
h2

3
f ′′(x) +O(h4) (3.35)

As the error E0f(x) has a dominant term that is proportional to h2, the central difference

approximation can be considered to be second order accurate. This explains its higher

accuracy at estimating the slope of f ′(x) than the forward and backward difference

schemes, as illustrated in Figure 3.2.

It should be noted that the possible finite difference approximations are in no means

limited to the ones mentioned here. Many more approximations using varying numbers

of points and with differing degrees of accuracy can be found; the ones included here are

those thought to be among the simplest and most commonly used.

Although only finite difference approximations to first order derivatives have been outlined

here, it is also possible to use finite difference methods to find approximations of higher

order derivatives. Among the most straightforward ways to do this is to repeatedly

difference approximations to lower order derivatives (LeVeque, 2007, p.9).

Once a PDE has been discretised in space using the finite difference method, and therefore

reduced to an ODE with derivatives depending only on time, it can then be solved using

one of the ODE solvers in MATLAB as part of the MOL.
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3.3.2 Ordinary Differential Equation Solvers

The ODE solvers in MATLAB are a set of finite difference codes that solve first order

systems of N ODEs that are of the form (Ashino et al., 2000):

∂y

∂t
= g(y, t) y(t0) = y0 (3.36)

where y = [y1, y2, ..., yN ]T and represents the set of primary dependent variables (PDVs)

that the ODEs are being solved for, and g(y, t) is a function that depends on y and time.

The ODE solvers are able to vary the time step size, ∆t, used in their calculations, such

that the maximum possible value is used to compromise the speed, accuracy and stability

of the solver (Goudarzi et al., 2016).

In order to reduce the initial PDEs to the format shown in equation (3.36), it is necessary

to use a scheme such as the finite difference method to discretise them with respect to

space and hence find an expression for the derivative of each PDV with respect to time

that depends solely on the PDVs and time. It is also necessary to define the initial value

of the PDVs, y0, and provide the ODE solver with both of these expressions.

There are several different ODE solvers within MATLAB that are designed for different

types of problem and have different levels of accuracy. The most commonly used of these,

and the most useful for modelling the problem of injecting CO2 into an aqueous formation,

are ode45 and ode15s.

ode45 uses an explicit method to solve equation (3.36), which means that the terms

within g(y, t) are defined at the current point in time, tn. This means that in an explicit

scheme, the value of y at the later time, tn+1, depends explicitly on the value of y at time

tn. Explicit schemes are therefore relatively simple and generally computationally fast.

However, they do have the disadvantage of having limited stability due to the Courant-

Lewy-Friedrichs (CFL) condition (Goudarzi et al., 2016), which relates the length of the

time step (∆t) to the interval length (∆x) and the speed with which it is physically possible

for a wave to travel. Use of a time step that is too large to meet this condition will result

in incorrect and unstable solutions, meaning that ODE solvers such as ode45 that use

explicit schemes can be limited to very small time steps for certain problems. This can

lead to the ODE solver taking an extremely long time or being forced to use a time step

so small that machine precision causes it to fail, and therefore be unable to produce a

solution. This is most likely to happen for problems that are stiff, which means that some

terms in the equation change very rapidly as the independent variable (in this case, time)

73



changes, and others vary slowly with the independent variable (Goudarzi et al., 2016).

However, some ODE solvers are specifically designed to deal with stiff problems, such as

ode15s (Ashino et al., 2000). This solver uses an implicit method, meaning that at least

some of the terms in g(y, t) are defined as being at a later time than the current time,

tn. Due to this, the implementation of the scheme requires the solution of a linear system

of equations, involving terms that are defined at both the current time and a later time,

which makes it more challenging to find a solution than if an explicit method is used. It

does, however, have the advantage of being unconditionally stable, regardless of the size

of the time step used (Goudarzi et al., 2016).

The simplest explicit finite difference method is the one-step forward Euler method. The

forward Euler expression needed to solve equation (3.36) would be:

yn+1 = yn + ∆tg(yn, tn) (3.37)

Note that this is an explicit solution due to the terms in g(y, t) being defined at the current

point in time, tn.

The simplest implicit finite difference method is the one-step backward Euler method. In

the form to solve equation (3.36), this would be:

yn+1 = yn + ∆tg(yn+1, tn+1) (3.38)

Here, the terms within g(y, t) are defined at the later time point, tn+1, due to the solution

scheme being implicit.

The ODE solvers do not use the forward or backward Euler methods; they are simply

shown here to illustrate the difference between explicit and implicit solution schemes.

More accurate finite difference methods have been developed from Euler’s method, which

combines values of yn−1, yn, yn+1,... and g(yn−1, tn−1), g(yn, tn) and g(yn+1, tn+1),...

in either linear or nonlinear ways to achieve a higher level of accuracy (Ashino et al.,

2000). A linear combination (the use of which is referred to as a linear multistep method)

makes it easier to estimate the local error of the approximation used, but sacrifices the

one-step format. This will make it more difficult to change the time step as appropriate

to the problem during the simulation. The reverse is true of the nonlinear combinations,

which are called Runge-Kutta methods: the one-step format is maintained, but it is more

challenging to estimate the local error (Ashino et al., 2000).

The method of lines, using finite differences to discretise in space followed by one of MAT-
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LAB’s ODE solvers, was chosen as a method to solve this multicomponent, multiphase

system for reasons of stability, accuracy and ease of use. Other methods are sometimes

used for spatial discretisation, including finite volume, which makes use of the fact that the

flux entering a small volume surrounding a node point has to be equal to the flux leaving

the volume around the previous node, and the finite element method, in which the system

is divided into smaller subdomains and the simpler equations that represent each of these

parts are put together into a larger equation system for the whole domain. However, these

can lead to either stability issues or numerical diffusion due to truncation terms linked to

Taylor’s expansion (Goudarzi et al., 2016), as can many methods of higher order. The

temporal term can be treated with alternative fully implicit or semi-implicit methods, but

these can be significantly more complicated to implement, and can again lead to additional

numerical diffusion (Goudarzi et al., 2016). It is also necessary to choose time steps with

care in a semi-implicit method as the system is not unconditionally stable (Doster et al.,

2014). The ODE solvers are easily available, extremely useful algorithms that maintain a

specific time integration error while maximising the time step size (Goudarzi et al., 2016),

and are hence the method of choice here. For the particular problem being investigated

within this thesis, the most appropriate ODE solver to use is ode15s, despite only being

first order accurate. This is because, upon injection of CO2 into a saline aquifer, the

pressure waves move through the system at a much faster rate than the compositions

(Goudarzi et al., 2016), meaning that the problem is stiff and hence the higher order

solver, ode45, would be extremely slow. This illustrates that efficiency must be considered

when choosing the best methods to solve problems, and that it is not always the case that

the most accurate method is the most appropriate.

3.3.3 Solving Equation (3.4) using the Method of Lines

In order to use the MOL to solve equation (3.4), it is necessary to firstly discretise the ξ

axis into a block centered grid with N nodes, as shown in Figure 3.3. The ODE solver

then needs to be provided with a vector giving the initial value of GiD at all nodes, which

will be zero for all points for GcD and one for all points for GwD because there is initially

only water present in the system, and an expression for ∂GiD
∂τ at each node k along the

discretised ξ axis. Using equation (3.4), this will be:

∂GiD
∂τ

∣∣∣∣
k

= −∂HiD

∂ξ

∣∣∣∣
k

(3.39)
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Figure 3.3: A diagram to show the discretisation of the ξ axis. ξk represents the node at the

centre of a particular cell k, while ξk−1 and ξk+1 represent the nodes at the centres of the cells to

the left and right of k, cells k− 1 and k+ 1, respectively. ξk− 1
2

and ξk+ 1
2

represent the boundaries

between cells k and k − 1, and cells k and k + 1, respectively. lk is the length of the cell k, and

there are N nodes in total.

∂HiD
∂ξ

∣∣∣∣
k

can be found by defining HiD in the code using equation (3.15), and then using

finite difference to give:

∂HiD

∂ξ

∣∣∣∣
k

=
HiD

k+1
2

−HiD
k− 1

2

ξk+ 1
2
− ξk− 1

2

(3.40)

An issue with this equation, however, is that HiD is required to be defined at the cell

boundaries, k+ 1
2 and k− 1

2 , when, without any intervention, it will actually be calculated

by the numerical code to be at the nodes k, as this is where the terms that it is made up

from are defined. Upwinding is considered to be an accurate method of approximating

the value of HiD at the cell boundaries in order to use equation (3.40). This is because

it interpolates using values at the two nearest grid points, as well as avoiding adding

additional dissipation to the system (LeVeque, 1992, p.136).

3.3.4 Upwinding

The principle behind upwinding is that there are two values that could possibly be chosen

to represent HiD
k+1

2

. These are the values of HiD at the nodes on either side of the

boundary: HiDk and HiDk+1
. In the system being considered, capillary pressure is assumed

to be negligible. This means that no counter-current imbibition will occur, and so the

direction of the propagating front can be considered to be outwards from the point of

injection at all points. HiDk must therefore be chosen to represent HiD
k+1

2

because HiDk+1

is further from the injection point than HiD
k+1

2

, and so has not yet felt the effects of the

advancing front. This means that choosing it to represent HiD
k+1

2

would ignore the effects
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of the injection of CO2, which are essential to the model. This is illustrated in Figure 3.4.

v

vL

vR

k-1 k+1k

Propagating wave

Figure 3.4: A diagram to show the propagation of a wave in the positive ξ direction at a given

instant of time. It illustrates that choosing the value of HiD at node k+ 1 to approximate HiD
k+1

2

would be inaccurate, because the propagating wave has not yet reached this point. v represents

the velocity of the advancing wave, where vL denotes the velocity to the left of the propagating

front, and vR denotes the velocity to the right. Adapted from Goudarzi (2017).

However, in other, more complex systems in which capillary pressure effects are taken into

account, not all flow will be in an outwards direction. High capillary pressure gradients

near the injection point of a formation can cause a reversal in the wetting pressure gradient,

leading to counter-current imbibition, in which some of the aqueous phase flows back

towards the point of injection, opposing the outward flow of the injected CO2. Therefore,

if capillary pressure effects were included in this system, the issue of whether it is more

appropriate to use HiDk or HiDk+1
to represent HiD

k+1
2

within upwinding becomes far

more complicated, and the wave velocity at each individual point must be considered.

The appropriate value of HiD
k+1

2

at each point can therefore be found by:

HiD
k+1

2

=

 HiDk , v > 0

HiDk+1
, v ≤ 0

(3.41)

where v represents the wave velocity at each point.

Within this chapter, equation (3.4) will be solved by the MOL and the MOC, and the

solutions found by the two methods compared. This will highlight the effectiveness of both

methods and illustrate the need to have analytical solutions to compare to those solutions
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found from numerical methods.

3.4 Solving PDEs using the Method of Characteristics

The idea of using the MOC to find a solution to a PDE is to find curves, called char-

acteristic curves or characteristics, along which the PDE reduces to an ODE (Knobel,

2000, p.128). Once these have been found, the ODE can be solved along the characteristic

curves, and this solution can be transformed into a solution for the original PDE.

3.4.1 The Method of Characteristics for an Immisible System

The MOC will first be illustrated to solve equation (3.4) for very simple conditions,

in which two phases and two components with constant fluid properties and negligible

capillary pressure flow horizontally, as described previously, but the miscibility of the

fluids is not taken into account. This means that they are considered to be immiscible and

so all of the gas phase is made up of CO2, while all of the aqueous phase is made up of

water. This problem was originally solved by Buckley and Leverett (1942), and hence the

resulting analytical solution is sometimes referred to as the Buckley-Leverett solution. The

solution was originally intended to model the displacement of oil by either gas or water,

but can be easily applied to the problem concerned in this thesis of the displacement of

water by CO2. The elimination of phase miscibility simplifies the problem considerably,

as the component mass fractions, Xij , no longer need to be considered, because they will

be equal to either zero or one depending on the component and phase in question. Under

the conditions relevant to gaseous CO2 displacing aqueous water, Xcg = 1 and Xca = 0,

meaning that equations (3.23) and (3.24) can be reduced to be given purely in terms of

phase saturation, Sj , and fractional flow, fj , such that:

∂Sg
∂τ

= −∂fg
∂ξ

(3.42)

or equivalently:
∂Sg
∂τ

+
dfg
dSg

∂Sg
∂ξ

= 0 (3.43)

Equation (3.43) can be solved by the MOC by firstly considering that Sg is a function of

both ξ and τ , and thinking about the curve (ξ(τ), τ) as a curve in the ξ − τ plane that

begins from the point (ξ0, 0), as shown in Figure 3.5 (Knobel, 2000, p.128).
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Figure 3.5: A curve (ξ(τ), τ) in the ξ − τ plane. Adapted from (Knobel, 2000, p.128).

As (ξ(τ), τ) moves along this curve, the value of Sg(ξ(τ), τ) changes at a rate of d
dτ Sg(ξ(τ), τ).

Using the chain rule, this derivative can be expressed as:

d

dτ
Sg(ξ(τ), τ) =

∂Sg(ξ(τ), τ)

∂ξ

dξ

dτ
+
∂Sg(ξ(τ), τ)

∂τ

dτ

dτ
(3.44)

or, alternatively:
dSg
dτ

=
∂Sg
∂ξ

dξ

dτ
+
∂Sg
∂τ

(3.45)

The right-hand side of equation (3.45) closely resembles the left-hand side of equation (3.43)-

the equation that we are attempting to solve. By comparing the two equations, it can be

seen that if we choose the curve (ξ(τ), τ) so that:

dξ

dτ
=

dfg
dSg

(3.46)

then equations (3.43) and (3.45) can be combined to show that:

dSg
dτ

=
dfg
dSg

∂Sg
∂ξ

+
∂Sg
∂τ

= 0 (3.47)

therefore indicating that the value of Sg is constant along this particular curve (Knobel,

2000, p.128). This means that at every point along the curve, Sg must have the the value

that it has at its initial point of (ξ0, 0), denoted by Sg0(ξ0). It follows that
dfg
dSg

is also

constant along this curve.

An expression for ξ(τ) to represent the special curve (ξ(τ), τ) beginning at the point (ξ0, 0)

can be found by integrating equation (3.46) with respect to τ , to find that:

ξ =
dfg
dSg

τ + ξ0 (3.48)
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Equation (3.48) gives the equation of the characteristic curves (or characteristics) of

equation (3.43). As
dfg
dSg

is constant along the curves, the characteristic curves are therefore

represented by parallel, straight lines in the ξ−τ plane, all of which with the slope 1
dfg
dSg

, but

with different initial points (ξ0, 0) on the ξ axis (Knobel, 2000, p.129). The characteristic

curves for the initial composition in the formation, at which Sg = 0 and so
dfg
dSg

= 1, are

shown in Figure 3.6.
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Figure 3.6: Characteristic curves for the initial composition of the fluid in the system, Sg = 0.

As we know that Sg is constant along the characteristic curves, the lines ξ =
dfg
dSg

τ + ξ0, it

is possible to find the value of Sg at any point (ξ, τ) (Knobel, 2000, p.129). For a given

point (ξ, τ), a characteristic curve goes from the point to the point (ξ0, 0) on the ξ axis,

where ξ0 can be found by rearranging equation (3.48) to give:

ξ0 = ξ − dfg
dSg

τ (3.49)

The fact that Sg is known to be constant along characteristic curves can then be used to

conclude that the value of Sg at (ξ, τ) is the same as the value of Sg at (ξ0, 0) (Knobel,

2000, p.129). Therefore:

Sg(ξ, τ) = Sg(ξ0, 0) = Sg0(ξ0) = Sg0

(
ξ − dfg

dSg
τ

)
(3.50)

The solution Sg(ξ, τ) = Sg0(ξ − dfg
dSg

τ) of equation (3.43) is a travelling wave with initial

profile Sg = Sg0 , which moves through the formation with velocity
dfg
dSg

(Knobel, 2000,

p.129).
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3.4.2 Discontinuities and Shocks

Solving a PDE in the way described above assumes that, for any point (ξ, τ), there is only

one characteristic curve extending from the ξ-axis to (ξ, τ). In fact, this is not necessarily

the case for nonlinear PDEs such as equation (3.43), and it is possible for two or more

characteristic curves to intersect at a point (ξ, τ) (Knobel, 2000, p.137). An example of

characteristic curves intersecting is shown in Figure 3.7.

Figure 3.7: An example of how characteristics for a particular PDE can intersect at a point (ξ, τ).

Adapted from (Knobel, 2000, p.137).

The reason that the characteristic curves will intersect for equation (3.43) is that their slope

in the ξ − τ plane is equal to
dfg
dSg

, which, although constant along a characteristic curve,

will vary as Sg changes, meaning that characteristics corresponding to different values of

Sg will have different slopes. The relative permeabilities, krj , in this system are assumed

to be the power law expressions used in equation (2.9).
dfg
dSg

can be found by substituting

these expressions for relative permeability into the equation for fg, equation (3.18), and

then differentiating with respect to Sg to give (Mathias et al., 2011b):

dfg
dSg

= fg(1− fg)
[
ng(1− Sg − Sar) + na(Sg − Sgc)

(Sg − Sgc)(1− Sg − Sar)

]
(3.51)

The differing values of
dfg
dSg

found from using this equation for the constant fluid properties

in Table 3.1 are shown in Figure 3.8, and the characteristic curves for a selection of

compositions as they form at the origin are shown in Figure 3.9. It can be clearly seen

that all of these characteristic curves have different gradients,
dfg
dSg

, and also have different

gradients from the gradient of one that the characteristic curves for Sg = 0 have in

Figure 3.6. This therefore indicates that the characteristics are not parallel and there will

be some points of intersection between them (Knobel, 2000, p.138).
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Parameter Value Parameter Value

µg (Pa s−1) 8.47x10−5 ng (-) 2

µa (Pa s−1) 9.63x10−4 na (-) 2

krg0 (-) 0.3 Sar (-) 0.5

kra0 (-) 1 Sgc (-) 0

Table 3.1: Constant parameters used to find the values of
dfg
dSg

in Figure 3.8.
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Figure 3.8: The gradients of the characteristic curves of equation (3.43),
dfg
dSg

, for every possible

value of Sg.

Two or more characteristic curves intersecting at a point (ξ, τ) is incompatible with the

MOC, as, due to the value of Sg being constant along a particular characteristic curve,

it indicates that two or more values of Sg are present at a particular point within the

formation, which is physically impossible. The intersection of characteristic curves along

which the value of Sg is different will also lead to the slope
∂Sg
∂ξ becoming infinite as τ

approaches the value at which the characteristic curves cross. This is called a gradient

catastrophe (Knobel, 2000, p.138), and the earliest value of τ at which it occurs is referred

to as the breaking time, τb (Knobel, 2000, p.141).

The MOC as previously described can only construct the solution to a PDE until the

breaking time, τb. However, it is possible to extend the solution beyond τb by allowing the

solution Sg to be a piecewise smooth function, rather than being a continuous function at

all points (Knobel, 2000, p.145). A function Sg can be described as a piecewise smooth

function if it can be broken into distinct regions, and within each region the function itself
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Figure 3.9: Characteristic curves for a small number of compositions as they travel through the

formation from the point of injection.

is continuous, as well as having continuous first derivatives. The only discontinuities that

may be present are a finite number of jump discontinuities, or shocks: a dramatic change

in the nature of Sg at which the limits of the function to the left and right both exist but

are not necessarily equal to each other (Knobel, 2000, p.146). Shocks must form due to the

gradient catastrophes present in the solution, and are formed by a curve, (ξs(τ), τ), being

drawn through the region of crossing characteristic curves on the ξ − τ axes to separate

the characteristic curves approaching from the left and right (Knobel, 2000, p.148).

When gaseous CO2 is injected into aqueous water, a shock will form at any point at which

the number of phases present changes (Orr, 2007, p.75). In order to solve a problem using

the MOC, it is necessary to have prior knowledge of the structure of the solution, i.e. the

number of shocks that will be present in the solution. For the problem we are currently

solving, in which the phases are considered to be immiscible, just one shock will develop,

separating the aqueous only region which has not yet been in contact with the approaching

CO2, and the two phase region closer to the point of injection. Therefore, to solve this

problem using the MOC, we need to know that one shock will be present, and then, as

is done later in this subsection, look at how the discontinuity will propagate through the

system to find the location of this shock. In contrast, solving the problem using the MOL

does not require knowledge of the solution structure.

As explained above, to find the curve ξs(τ) that separates the characteristics while con-
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tinuing the satisfy the conservation laws, and therefore find the location of a shock, it is

necessary to find the compositions that form on either side of the shock and determine

how the shock propagates. Consider the situation shown in Figure 3.10. The shock is

Figure 3.10: A diagram showing the motion of a shock (Adapted from Orr (2007, p.70)).

located at distance ξ at time τ , and moves to its new position, ξ + ∆ξ, over a period of

time, ∆τ . It can be seen from the diagram that Sg has a value of SIIg on the upstream

side of the shock and a value of SIg on the downstream side. As there is no accumulation

of material at the shock, the change in the fractional volume of CO2 present in a control

volume that includes the porous medium between the positions ξ and ξ + ∆ξ is balanced

by the fractional inflow of CO2 (Orr, 2007, p.70). Therefore:

∆ξ(SIIg − SIg ) = ∆τ(f IIg − f Ig ) (3.52)

and so, as ξ and τ tend towards zero:

dξ

dτ
=
f IIg − f Ig
SIIg − SIg

(3.53)

Equation (3.53) is called a jump condition or Rankine-Hugoniot relation, and is an integral

version of the original conservation equation (Orr, 2007, p.71). It illustrates that volume

is conserved across the shock, and also that the velocity at which a shock propagates is

set by the gradient of the line connecting the two states on either side of the shock on a

plot of fg against Sg (Orr, 2007, p.71).

There will be several different shock constructions that can satisfy the Rankine-Hugoniot

condition. Therefore, in order to find the shock that is part of the unique solution to
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the flow problem, it is necessary to use two additional constraints that are based on

physical ideas (Orr, 2007, p.71). Firstly, it must be that slower compositions within a

system have travelled a shorter distance than faster compositions, and will therefore be

upstream of these faster compositions and hence closer to the point of injection (Helfferich,

1981). If this were not the case, then the downstream compositions would have been

overtaken by the faster-moving compositions further upstream. This idea gives us the so-

called velocity constraint, which states that wave velocities in the two phase region must

decrease monotonically for zones in which compositions continuously vary as the solution

composition path moves from downstream compositions to upstream compositions (Orr,

2007, p.71). The second constraint is called the entropy condition. It focuses on the fact

that, in order for the shock to be stable to perturbations and be able to form again if it

was smeared from a sharp jump, which could be caused by a small amount of dispersion,

it is necessary that the characteristics are going into the shock as time advances, rather

than coming out of it. For this to be the case, the speed of the shock must be greater

than or equal to the characteristic speed upstream of it, and smaller than or equal to the

characteristic speed downstream of it (LeVeque, 2004, p.218). Shocks that satisfy this

condition, and are therefore stable, are referred to as self-sharpening.

In order to satisfy the Rankine-Hugoniot condition, the velocity constraint and the en-

tropy condition, it must be that the line drawn between the initial composition and the

composition immediately upstream of the shock on the plot of fg against Sg is a tangent

to the curve, as shown in Figure 3.11, where the initial composition and the composition

immediately upstream of the shock are labelled as points a and b respectively (Orr, 2007,

p.74).

This line on the plot of fg against Sg is equivalent to ξs(τ) on a ξ − τ plot. As explained

above, the velocity of the shock is given by the gradient of the line between points a and

b, but, as this is a tangent to the curve at point b, this is the same as
dfg
dSg

at point b.

This means that the wave velocity at point b is the same as the shock velocity, and so the

entropy condition must be satisfied in a special way- by the shock velocity being equal to

the wave velocity immediately upstream of the shock. A shock such as this, for which the

wave velocity on one side of the shock is the same as the velocity of the shock, is often

called a semishock. The composition of the fluid upstream of the shock, SIIg can therefore

be found by solving (Orr, 2007, p.74):

dfg
dSg

∣∣∣∣II =
f IIg − f Ig
SIIg − SIg

(3.54)
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Figure 3.11: A tangent drawn between point a (the initial value of Sg) and point b (the value of

Sg immediately upstream of the shock) as part of the construction of the shock.

When this problem was originally solved by Buckley and Leverett (1942), the location

of the shock in their system was found graphically, in a method equivalent to choosing a

shock such that the two areas enclosed by the curve and the shock, denoted by A and B

in Figure 3.12, have an equal area. Welge (1952) improved on this by finding the shock

location using a method equivalent to that described above and shown in Figure 3.11.

Figure 3.13 shows both the MOC and MOL solutions for Sg, plotted against ξ for several

values of τ . Both methods give very similar solutions, and the shock separating the

two phase region from the aqueous only region, at which Sg drops to zero, is clear in

both solutions. The only noticeable difference between the solutions is that the start

of the shock is less pronounced in the MOL solution, and this is due to the numerical

approximations necessary within this method. It should be noted that Sg only goes up to

a maximum value of 1−Sar in the solutions to this problem. This is due to the assumption

of the phases being immiscible, meaning that the lowest possible aqueous phase saturation

will be the residual saturation. In later problems, when partial miscibility between the

phases is assumed, the aqueous saturation will be able to drop all the way to zero as it

will be possible for the water in the aqueous phase to evaporate into the gaseous phase,

in addition to being forced out of the pores by the advancing CO2.
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Figure 3.12: A plot of
dfg
dSg

against Sg to illustrate the method used by Buckley and Leverett

(1942) to find the location of the shock. The dotted line represents the shock while the letters A

and B denote the two areas that should be equal.

3.4.3 The Method of Characteristics for a Partially Miscible System

The MOC can also be used to solve equation (3.24) for the CO2 component:

∂GcD
∂τ

+
dHcD

dGcD

∂GcD
∂ξ

= 0 (3.55)

to find how GcD varies with time and space for a two phase, two component, partially

miscible system with constant fluid properties and negligible capillary pressure. This can

be done in a way very similar to that described in Section 3.4.1.

Considering again the curve (ξ(τ), τ) in the ξ−τ plane shown in Figure 3.5, it can be seen

that the value of GcD will vary at a rate of d
dτGcD(ξ(τ), τ) as (ξ(τ), τ) moves along the

curve. Using the chain rule:

d

dτ
GcD(ξ(τ), τ) =

∂GcD(ξ(τ), τ)

∂ξ

dξ

dτ
+
∂GcD(ξ(τ), τ)

∂τ

dτ

dτ
(3.56)

or, equivalently:

dGcD
dτ

=
∂GcD
∂ξ

dξ

dτ
+
∂GcD
∂τ

(3.57)

Comparing equations (3.55) and (3.57) illustrates that choosing:

dξ

dτ
=
dHcD

dGcD
(3.58)
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Figure 3.13: A graph to show Sg plotted against ξ for several different values of τ , as found by

both the MOC and the MOL, for the parameter values shown in Table 3.1. The MOL solution is

shown by the solid lines, and the MOC solution by the dashed lines.

means that:
dGcD
dτ

=
∂GcD
∂τ

+
dHcD

dGcD

∂GcD
∂ξ

= 0 (3.59)

showing that GcD is constant along this curve (Knobel, 2000, p.128), and therefore must

have the same value that it has on its initial point on the curve, GcD0(ξ0).
dHcD
dGcD

is also

constant along this curve.

Therefore, equation (3.58) can be integrated with respect to τ to give the equation of the

characteristic curves of equation (3.55):

ξ =
dHcD

dGcD
τ + ξ0 (3.60)

As GcD has to be constant along these curves, equation (3.60) can be used to find the

solution:

GcD(ξ, τ) = GcD(ξ0, 0) = GcD0(ξ0) = GcD0

(
ξ − dHcD

dGcD
τ

)
(3.61)

which again gives a travelling wave, which this time moves through the formation with

velocity dHcD
dGcD

.

In the single phase regions, equation (3.22) can be used to show that the wave velocity

of a particular composition, dHcD
dGcD

, is equal to one. It is possible to find dHcD
dGcD

for the

compositions in the two phase region by considering that fg depends only on Sg, which

depends only on GcD, as was proved in Section 3.2. By also recalling that qD = 1 due to
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the total flow rate being equal to the injection flow rate in this case, it can be seen that

in the two phase region:

HcD = fg(ρgDxcg − ρaDxca) + ρaDxca (3.62)

from which it follows that:

dHcD

dGcD
= (ρgDxcg − ρaDxca)

dfg
dGcD

= (ρgDxcg − ρaDxca)
dfg
dSg

dSg
dGcD

(3.63)

which, evaluating
dSg
dGcD

from the expression for Sg in terms of GcD given in equation (3.16),

gives:
dHcD

dGcD
=

dfg
dSg

(3.64)

dfg
dSg

can be found from equation (3.51). By again considering the differing values of

dfg
dSg

shown in Figure 3.8, it can again be seen that many different compositions will

have different wave velocities, resulting in the intersection of characteristic curves for the

partially miscible system. This will lead to gradient catastrophes which must be solved

by making the solution for GcD a smooth piecewise function, with the regions separated

by discontinuities. In this case, as partial miscibility can occur between the phases, there

will be two points within the formation at which the number of phases present changes,

meaning that two discontinuities will be necessary, rather than just one as in the immiscible

system. These two discontinuities will separate the formation into three separate regions,

as shown in Figure 3.14.

Distance from injection well
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Fresh water 
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Aqueous (water)

Dry out zone

Gaseous (carbon 
dioxide)

Gaseous (carbon dioxide, water)

Equilibrium region

Aqueous (carbon dioxide, water)

Figure 3.14: Schematic diagram illustrating the variation in gas saturation, including the

discontinuities, from the point of injection for a two phase, two component system with constant

fluid properties and partial miscibility.
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The first region in Figure 3.14, on the left hand side, represents a dry out zone, where

all the water has been evaporated by the CO2. Moving to the right, the second region

represents a two phase region where both phases are present and are in equilibrium. The

third region, on the right hand side, represents the initial formation fluid, unperturbed

by the injected CO2. The discontinuity that separates regions 1 and 2 (the dry out zone

and the equilibrium region) is referred to as a ‘trailing shock’, while the discontinuity

separating regions 2 and 3 (the equilibrium region and the fresh water region) is referred

to as a ‘leading shock’.

The constant fluid properties used for this system are the same as those given in Table 3.1,

but the additional parameters of the dimensionless phase densities and the mass fractions

at equilibrium are also needed. These are chosen to be ρgD = 1, ρaD = 1.2704, xcg = 0.9979

and xca = 0.0318.

The solutions for GcD as found by both the MOL and the MOC are shown in Figure 3.15.

It should be noted that the ξ-axis is plotted on a logarithmic scale rather than linear,

as was the case in Figure 3.13 to show the solutions for Sg in an immiscible system. A

logarithmic scale has been chosen for this figure in order to ensure that both shocks and

all three regions are easily visible. It can be seen from the figure that the trailing shock

occurs at a value of less than ξ = 10−2 for all values of τ , meaning that the trailing shock

and dry out zone may not be easily seen if a linear scale is used, and so the difference

between the immisicble and partially miscible systems may not be as obvious. As with

Figure 3.13, it can be seen from Figure 3.15 that the MOL and MOC solutions match

very well for the two phase region, the leading shock and the aqueous only region, with

the only noticeable difference between the solutions being the less pronounced edges of

the MOL solution at the leading shock, due the increased numerical dispersion present in

this method. However, it appears from first glance that the position of the trailing shock

is noticeably different between the two solutions. This may be misleading in part due to

the logarithmic scale; the positions of the trailing shocks are actually only a maximum of

6.52x10−4 apart in ξ, a very small difference that would be almost indistinguishable on a

linear scale. The inequality of the shocks may also be partly related to the approximations

necessary in the numerical MOL method.
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Figure 3.15: A graph to show GcD plotted against ξ for several different values of τ , as found by

both the MOC and the MOL, for the parameter values shown in Table 3.1 as well as those given

above. The MOL solution is shown by the solid lines, and the MOC solution by the dashed lines.

Note that the ξ-axis is plotted on a logarithmic scale.

3.5 Volume Change on Mixing

The earlier sections in this chapter have focused on examples with constant fluid properties.

A consequence of this is that there is no volume change on mixing, i.e. the volume occupied

by a given amount of a component is constant, regardless of which phase it is in. However,

the MOC can also be used to solve the partial differential equations for a two component,

two phase system with negligible capillary pressure, but in which volume change on mixing

is accounted for, and so the volume occupied by a given amount of a component will change

as it moves between phases.

As can be seen from equation (3.6), the local flow velocity, qD, appears in the definition

of HiD. If volume change on mixing is accounted for, however, it will no longer be a

constant value throughout the system, as qD will change when components change volume

as they transfer between phases or as the composition of a phase changes (Orr, 2007,

p.84). However, in the two phase region of a binary system such as this, the assumption of

equilibrium means that the values of xij remain constant even when the effects of volume

change on mixing are considered, and as ρjD is calculated using a mixing rule based on the

values of Xij (see equation (4.29)), these values will also be constant in this region. This

means that the local flow velocity, qD, will remain constant for composition variations in

91



the two phase region (Orr, 2007, p.85).

Due to the constant values of xij and ρjD, and therefore qD, it is still the case in the two

phase region for a system including the effects of volume change on mixing that HiD is

a function of GiD only. Therefore, the MOC can be used for the two phase region in the

same way as it was for the system with constant fluid properties in Section 3.4.3, giving

equation (3.58) as applied to both components, i:

dξ

dτ
=
dHiD

dGiD
(3.65)

However, qD must be assumed to be a constant, currently unknown value, as opposed to

being equal to one as was the case for the system with constant fluid properties. This

means that, following the method used in equations (3.62) to (3.64) but without the

assumption that qD = 1, dHcD
dGcD

is found to be:

dHcD

dGcD
= qD

dfg
dSg

(3.66)

Therefore, by comparing equation (3.66) to equation (3.64), it can be seen that the wave

velocity of a composition in the two phase region of a system accounting for volume change

on mixing is simply the wave velocity of the composition in the system with no volume

change on mixing scaled by the local flow velocity in the two phase region (Orr, 2007,

p.86).

Although the value of qD does not change when compositions vary in the equilibrium

region, it does change at shocks entering or leaving the two phase region (Orr, 2007, p.86).

It is therefore necessary to look at how flow velocity varies across the shocks.

Firstly, we will consider the trailing shock. Let the superscript d represent the point

upstream of the shock, nearer the point of injection, and let the superscript c represent

the point downstream of the shock. This means that the injection composition will be

GdcD and the composition downstream of the shock will be GccD. The Rankine-Hugoniot

condition can be applied to give the shock wave velocity, Λcd (Orr, 2007, p.86):

Λcd =
Hd
iD −Hc

iD

GdiD −GciD
i = c, w (3.67)

This equation can be solved to give both the downstream compositions, GciD, and down-

stream shock velocity, qcD. In order to show this, it is easier to let:

ΩiD =

Np∑
j=1

ρjDXijfj (3.68)
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so that HiD can be written in the form (Orr, 2007, p.87):

HiD = qD

Np∑
j=1

ρjDXijfj = qDΩiD (3.69)

Considering equation (3.67) for both components and eliminating the shock wave velocity,

Λcd, it can be seen that:

qdDΩd
cD − qcDΩc

cD

GdcD −GccD
=
qdDΩd

wD − qcDΩc
wD

GdwD −GcwD
(3.70)

As qdD is the injection flow velocity, it must be equal to 1. In this case, pure, gaseous

CO2 is being injected, which means that GdcD = 1, GdwD = 0, Ωd
cD = 1 and Ωd

wD = 0.

Equation (3.70) can therefore be simplified to:

1− qcDΩc
cD

1−GccD
=
qcDΩc

wD

GcwD
(3.71)

which can be rearranged to give an expression for qcD in terms of the compositions down-

stream of the shock:

qcD =
GcwD

Ωc
wD(1−GccD) +GcwDΩc

cD

(3.72)

In order to satisfy the Rankine-Hugoniot condition, the velocity constraint and the entropy

condition, it must be that the trailing shock is a semishock, such that the wave velocity

on the downstream side of the shock is the same as the shock wave velocity (Orr, 2007,

p.87). Therefore, it must be that:

qcD
dfg
dSg

=
Hd
iD −Hc

iD

GdiD −GciD
=

Ωd
iD − qcDΩc

iD

GdiD −GciD
(3.73)

This can be applied to both components, and the resulting equations solved simultaneously

with equation (3.72) to give the values of the compositions downstream of the trailing

shock, GccD and GcwD, and the flow velocity, qcD.

We can now consider the leading shock in a similar way. Let a represent the point

downstream of the shock, where the composition is as it was initially, and let b represent

the point upstream of the shock. Therefore, the initial composition will be GacD and the

composition upstream of the shock will be GbcD. The wave velocity of the leading shock,

Λab, can be found to be (Orr, 2007, p.87):

Λab =
Hb
iD −Ha

iD

GbiD −GaiD
(3.74)
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Therefore:
qbDΩb

cD − qaDΩa
cD

GbcD −GacD
=
qbDΩb

wD − qaDΩa
wD

GbwD −GawD
(3.75)

Initially in the formation is pure, aqueous water. This means that GacD = 0, Ωa
cD = 0,

GawD = 1 and Ωa
wD = ρaaD, where ρaaD is the constant, dimensionless ratio of the density of

the pure, aqueous water in the fresh water region to the density of the injected fluid. As

qD is constant within the two phase region, it must also be the case that qbD=qcD, which

will be known if it has already been calculated from the trailing shock. Equation (3.75)

can therefore be simplified to:

qcDΩb
cD

GbcD
=
qcDΩb

wD − qaDρaaD
GbwD − 1

(3.76)

which can be rearranged to show that:

qaD
qcD

=
GbcDΩb

wD − Ωb
cD(GbwD − 1)

GbcDρ
a
aD

(3.77)

Again, applying the velocity constraint and entropy condition, it must be that the leading

shock is a semishock, such that the wave velocity upstream of the shock is equal to the

shock wave velocity (Orr, 2007, p.87). Therefore:

qbD
dfg
dSg

=
Hb
iD −Ha

iD

GbiD −GaiD
=
qbDΩb

iD − qaDΩa
iD

GbiD −GaiD
(3.78)

or equivalently:

qcD
dfg
dSg

=
qcDΩb

iD − qaDΩa
iD

GbiD −GaiD
(3.79)

which can be applied to both components, i.

GbiD and qaD can then be found by solving equations (3.77) and (3.79). It can be seen

from the calculation of the flow velocities and compositions that, in a two phase and two

component system such as this, there are only three different flow velocities, qD. These

are the flow velocity ahead of the leading shock, the flow velocity in the two phase region,

and a value of qD = 1 behind the trailing shock, as the total flow rate, qt, in this region

will be the same as the injection velocity, qinj .

Figure 3.16 illustrates the differences that including volume change on mixing make to a

solution. It compares the behaviour of a system in which gaseous CO2 is injected into

a formation containing aqueous decane, C10, in one case when volume change on mixing

is accounted for and another case in which it is not, by plotting the analytical, MOC

solutions in both cases. It also plots the MOL solution for values of τ ranging from 0
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to 30 for the scenario in which volume change on mixing is included. It was taken that

both critical saturations were equal to zero. Figure 3.16a plots ξ/τ against zcD, the non-

dimensionalised mass fraction of CO2, which is equal to (Orr, 2007, p.88):

zcD =
GcD

ρgDSg + ρaDSa
(3.80)

Figure 3.16b shows how the gas saturation varies with ξ/τ , while Figure 3.16c plots ξ/τ

against the flow velocity, qD.
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Figure 3.16: Plots showing the displacement of C10 by CO2 (Adapted from Orr (2007, p.91)).

Solutions found using the MOC are shown with and without volume change as components transfer

between phases, and a MOL solution is plotted for values of τ ranging from 0 to 30, in which the

effects of volume change on mixing are included. (a) plots ξ/τ against the non-dimensionalised

mass fraction of CO2, zcD (b) plots ξ/τ against the gas saturation, Sg (c) plots ξ/τ against the

flow velocity, qD (d) plots the values of τ against the value of qD at the final point in space.

Focusing firstly on the two MOC solutions, it can be seen from subfigures (a)-(c) that the

composition profiles are very similar in shape for the two different situations, but when

volume change on mixing is taken into account, flow proceeds more slowly (Orr, 2007,

p.89). This is particularly noticeable when looking at the wave velocity of the leading

shock. The reason for this change in flow velocity is that when CO2 is dissolved in the

aqueous phase, it occupies a much lower volume than when it is in the gaseous phase.

Therefore, when a proportion of CO2 saturates the aqueous decane in the two phase

region, the volume of CO2 is lower than it would be if all of the CO2 was in the gaseous

phase, which causes flow to slow down (Orr, 2007, p.88). It can be seen from Figure 3.16c

that the flow velocity, qD, ahead of the leading shock is only about half of the flow velocity
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at injection.

In this particular example, the trailing shock is very slow, due to the low solubility of

C10 in CO2 (Orr, 2007, p.88). It can be seen from the subfigures that the change in flow

velocity at the trailing shock is small, and this is again because of the low solubility of C10

in CO2. The small amount of C10 in the gaseous phase has very little effect on the change

in volume in the dry out zone, and therefore also has very little effect on the flow velocity

(Orr, 2007, p.88). It should also be noted from Figure 3.16c that qD remains constant for

compositions within the two phase region, as was stated earlier in this section.

Figure 3.16 also plots the MOL solutions for varying values of τ and accounting for volume

change on mixing. Figure 3.16a and Figure 3.16b show that the lines representing the

differing values of τ are not so alike that they are indistinguishable from each other, but

they do have very similar shapes and converge to almost the same points. They also

compare well to the analytical solution representing the inclusion of volume change on

mixing, such that the numerical solution could be considered to be a good approximation

of both zcD and Sg. However, this is not the case for Figure 3.16c. Although the numerical

solutions follow the same pattern as the analytical solution, with the flow velocities, qD,

remaining at values very close to one in both the dry out and two phase regions, before

dropping to a smaller value for the aqueous only region, this subfigure illustrates extreme

instability for the value of qD for different values of τ , with the flow velocity value beyond

the leading shock varying wildly between 0.3 and 1. Figure 3.16d plots the flow velocity,

qD at the final point in space for each value of τ , and shows further the huge oscillations

that occur within the flow velocity as τ varies. These indicate that, although the MOL is

clearly a very useful method of approximating solutions to PDEs, and has compared very

well to the outputs of the MOC in figures throughout this chapter, it can in some cases

be severely affected by issues with numerical instability.

3.6 Chapter Summary and Conclusions

It can be seen from Figure 3.13 that the MOC and MOL produce very similar saturation

outputs for two phase immiscible flow with constant fluid properties. The values of GcD

outputted for the two methods when partial miscibility was introduced also compared very

well, in particular when an aqueous phase was still present, as shown by Figure 3.15. The

inclusion of volume change on mixing meant that the MOL still gave reliable results for
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zcD and Sg as compared to the MOC solutions, but the MOL was not able to produce the

true value of the flow velocity, qD, with the value it gave varying wildly due to numerical

instabilities, as illustrated by Figure 3.16. It can therefore be concluded that the numerical

MOL, which, unlike the MOC, is not limited to solving hyperbolic PDEs, could be a very

useful method for approximating the solutions to PDEs that incorporate compressibility,

capillary pressure and other complexities, and hence could ultimately be used to simulate

salt precipitation in saline aquifers using models with more realistic conditions. It is,

however, important to be aware of the potential issue of numerical instabilities when

using this method.

In order to test how accurate the numerical models we create are and to determine whether

they can be relied upon, it is necessary to compare them to either real-life data or existing

analytical solutions. For the situation of CO2 being injected into a saline formation, the

real-life data is limited, especially for the long time scales it is necessary to test for to

determine whether CCS will be a feasible method for reducing greenhouse gas emissions.

Therefore, it is very important to form analytical solutions to verify the output of our

numerical models, and the MOC is highly useful for this.
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Chapter 4

Method of Lines Solution for

Compressible Two Component

and Two Phase Flow with

Capillary Pressure

Although the method of characteristics (MOC) is extremely useful, it is limited to rel-

atively simple partial differential equations (PDEs) in which no dispersion or capillary

pressure terms are included. If we wish to include these terms to make the PDEs more

applicable to real-life situations, the MOC can no longer be used and it is necessary to

move on to using approximate methods to solve our systems of PDEs. One possible

method is the method of lines (MOL), which was shown in Chapter 3 to produce outputs

that compare well to the MOC outputs for both immiscible and partially miscible two

component and two phase flow with constant fluid properties and negligible capillary

pressure. When volume change on mixing was introduced, the MOL gave very similar

values as the MOC for how the non-dimensionalised mass fraction of CO2, zcD [-], and the

gas saturation, Sg [-], varied throughout the system. However, the non-dimensionalised

flow velocity, qD [-], calculated by the MOL suffered from severe numerical instabilities.

Recall from Section 3.3 that the basis of the MOL is that PDEs are discretised in space

to form a set of coupled ordinary differential equations (ODEs) that have derivatives

purely with respect to time, which can then be solved by one of MATLAB’s ODE solvers

(Goudarzi et al., 2016). This chapter will describe how the MOL can be used to find
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the global pressure and composition of a formation at any point in space and time whilst

supercritical CO2 is being injected into aqueous water, i.e. a two component, two phase

system that does not yet take into account the effects of solid salt. The system is assumed

to be isothermal, but does incorporate both volume change on mixing and capillary

pressure. Chapter 5 will explain how this method can be extended to include the effects

of salt and model a formation containing three components and three phases, as is needed

to fully investigate the impact of counter-current imbibition and salt precipitation.

4.1 Conceptual Model

In Chapter 3, the systems that were looked at were considered to be linear. However,

in order to gain a more realistic idea of the processes happening within the formations

in the field and a more accurate picture of the composition and pressure at different

points in space and time, this two component, two phase system will be modelled with

radial coordinates. The formation is considered to be a homogeneous, radially-symmetric

reservoir with radial extent rE [L] and formation thickness H [L], which is initially filled

with pure, aqueous water. At the centre of the formation is a fully penetrating injection

well of radius rw [L], into which supercritical CO2 is injected at a constant rate of M0

[MT−1] for a period of time t [T]. This is illustrated in Figure 4.1. The permeability

of the formation is considered to be horizontally isotropic, but a necessary simplifying

assumption is that the vertical permeability is considerably smaller than the horizontal

permeability, to the extent that the effects of gravity can be neglected. This means that,

during the injection phase, it is possible to treat the flow of fluid as one-dimensional and

radially symmetric (Kelly and Mathias, 2018).

4.2 Numerical Grid

In order to use finite difference within the MOL in order to solve the two component, two

phase problem, it is necessary to discretise the r-axis into a block centred grid with N

nodes, as illustrated in Figure 4.2. In the figure, a point denoted by rk represents the node

at the centre of a particular cell k, while rk−1 and rk+1 represent the nodes at the centres

of the cells to the left and right of k, cells k − 1 and k + 1, respectively. rk− 1
2

and rk+ 1
2

represent the boundaries between cells k and k − 1, and cells k and k + 1, respectively.
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Figure 4.1: A schematic diagram showing the radial conceptual model of two component, two

phase displacement. As is shown, pure CO2 is injected into a formation initially filled with pure,

aqueous H2O at the constant rate M0. (Adapted from Zeidouni et al. (2009)).

For this particular problem, a logarithmically spaced grid has been used. This means that

the nodes are more closely spaced near the point of injection, where there are higher flow

gradients, and gradually become more coarse as the nodes move away from the injection

well, and therefore gives an accurate solution for the pressure and composition within the

formation for fewer nodes N than would be needed if a linear discretisation had been used,

as well as increasing the stability of the formation (Goudarzi et al., 2016). The length of

a particular cell, lk, will hence vary for each cell; it will increase for each cell k that is

further away from the point of injection. Within the MATLAB code used to solve this

problem, rk− 1
2

is defined as being logarithmically spaced between the well radius rw and

the radial extent rE . rk can then be found using:

rk =
1

2

(
rk+ 1

2
+ rk− 1

2

)
(4.1)

The sizes of the time steps used will be determined by the ODE solver ode15s. As was

explained in Section 3.3.2, this solver has been chosen due to the stiffness of the problem,

which is caused by the fact that the pressure waves move through the formation at a

significantly higher rate than the compositions, which propagate very slowly (Goudarzi et

al., 2016).
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Figure 4.2: A diagram to show the discretisation of the r axis. Note that because the nodes are

logarithmically spaced, lk will vary for each cell. It will be smaller for cells nearer the point of

injection and will increase logarithmically as the radial distance from the injection well increases.

4.3 Primary Dependent Variables

The primary dependent variables (PDVs) that have been chosen for this system, and hence

the variables that it is necessary to produce partial derivatives with respect to time for to

give to the ODE solver, are the global pressure, P [ML−1T−2], and the mass fraction of

CO2, zc [-]. zi [-], where i represents the component CO2 (denoted by c) or water (denoted

by w) is defined as:

zi =
Gi
F

(4.2)

It can be recalled from equation (2.1) that:

Gi = φ

Np∑
j=1

ρjXijSj (4.3)

and F [ML−3], the total mass of all components within a given volume of fluid mixture,

can be found to be:

F =

Nc∑
i=1

Gi = φ

Np∑
j=1

ρjSj (4.4)

As was explained in Section 2.2.4, global pressure is often chosen as a PDV because it

is defined at all points, regardless of which phases are present, in contrast to the phase

pressures, Pj [ML−1T−2], whose definitions are more limited and can only be given when

the relevant phase is present. zc was chosen as a primary variable because it is independent

of pressure, unlike Gi [ML−3] and F , which may change with pressure depending on how

the densities of the component i in the phase j, ρij [ML−3], vary with pressure (Goudarzi

et al., 2016). Due to the assumption of equilibrium in the two phase region, all other

values can be deduced from these PDVs.
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Therefore, in order to solve this problem by the MOL, expressions for ∂zc
∂t and ∂P

∂t must

be found from the governing equations and the finite difference method. These can then

be integrated with respect to time by the ODE solver ode15s, giving the values of the

variables zc and P , from which any other value can be found.

The basis of this problem is defined by the governing equations given in Section 2.2,

as appropriate for a two component, two phase, one-dimensional, radial system that

incorporates capillary pressure.

4.4 Defining Regions

As has been explained in previous chapters, discontinuities or ‘shocks’ develop in the gas

saturation, Sg [-], when supercritical CO2 is injected into aqueous water, which effectively

separate the formation into three regions. The region nearest to the point of injection,

referred to as Region 1, is made up of a gaseous phase only, as any water that was left

behind residually by the advancing CO2 plume has evaporated into the gaseous phase.

Further out is Region 2, a region in which both a gaseous and an aqueous phase are

present. Within this region, the phases are considered to be in equilibrium, meaning that

the maximum solubility of each component in each phase has been reached, and so the

mass fraction of each component in each phase can be considered to be at its equilibruim

value, xij [-]. The values of xij are found using the method described in Section 2.3,

which is based on work by Spycher et al. (2003) and Spycher and Pruess (2005). The

region furthest away from the point of injection, Region 3, has not yet been reached by

the injected CO2, and so is comprised solely of an aqueous phase.

The assumption of equilibrium, and the mass fraction of the component i in the phase

j, Xij [-], are key to determining which region each point is in. If only a gaseous phase

is present, then it must be the case that the mass fraction of CO2 in the gaseous phase,

Xcg, is greater than the equilibrium mass fraction of CO2 in the gaseous phase, xcg, and

so, as
∑Np

j=1Xij = 1 and
∑Np

j=1 xij = 1, it must also be that the mass fraction of water in

the gaseous phase, Xwg, is less than the equilibrium mass fraction of water in the gaseous

phase, xwg. xwg represents the maximum solubility of water in the gaseous phase so, if

this were not the case and Xwg > xwg, a separate aqueous phase must form in order to

accommodate this additional water. Similarly, if only an aqueous phase is present, it must

be that both Xca is less than xca and Xwa is greater than xwa.
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Which region a particular point is in can be determined simply by the values of zc and

the equilibrium mass fractions, xcg and xca, at this point. Using equations (4.2) to (4.4)

and the fact that the phase saturation, Sj , will be equal to one when only that phase is

present, and zero when the phase is not present, zc can be expressed for each region to be:

zc =
ρgXcgSg
ρgSg

= Xcg Sg = 1 Sa = 0 Region 1- Gas Only (4.5)

zc =
ρgxcgSg + ρaxcaSa

ρgSg + ρaSa
0 < Sg < 1 0 < Sa < 1 Region 2- Two Phases (4.6)

zc =
ρaXcaSa
ρaSa

= Xca Sg = 0 Sa = 1 Region 3- Aqueous Only (4.7)

As was explained above, in Region 1, Xcg ≥ xcg. It therefore follows from equation (4.5)

that in this region, zc ≥ xcg. Similarly, in Region 3 it must be that Xca ≤ xca, and so

from equation (4.7), it must be that zc ≤ xca within this region.

The solubility of CO2 in the aqueous phase is small, meaning that xca < xcg. This means

that, looking at the expression for zc in Region 2 in equation (4.6):

zc =
ρgxcgSg + ρaxcaSa

ρgSg + ρaSa
<
ρgxcgSg + ρaxcgSa

ρgSg + ρaSa
=
xcg(ρgSg + ρaSa)

ρgSg + ρaSa
= xcg (4.8)

Similarly:

zc =
ρgxcgSg + ρaxcaSa

ρgSg + ρaSa
>
ρgxcaSg + ρaxcaSa

ρgSg + ρaSa
=
xca(ρgSg + ρaSa)

ρgSg + ρaSa
= xca (4.9)

from which it follows that, within Region 2, xca < zc < xcg.

To summarise, the three regions within the two component, two phase formation can be

defined by:

zc ≥ xcg Region 1- Gas Only (4.10)

xca < zc < xcg Region 2- Two Phases (4.11)

zc ≤ xca Region 3- Aqueous Only (4.12)

Other variables can be derived much more easily when it is clear which region a particular

point is in, and therefore which phases are present.
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4.4.1 Finding Expressions for ∂zc
∂t

and ∂P
∂t

Finding an Expression for ∂zc
dt

Recall from equation (4.2) that:

zc =
Gc
F

(4.13)

This can be directly differentiated using the quotient rule, giving an overall derivative of

zc, dzc of:

dzc =
FdGc −GcdF

F 2
(4.14)

which can be simplified to:

dzc =
1

F
(dGc − zcdF ) (4.15)

From this, the partial derivative of zc with respect to time can be found to be:

∂zc
∂t

=
1

F

(
∂Gc
∂t
− zc

∂F

∂t

)
(4.16)

In order to define ∂zc
∂t in such a way that it can be solved by the ODE solver, ∂Gc

∂t and ∂F
∂t

must also be defined. It follows from equation (4.4) that:

∂F

∂t
=

Nc∑
i=1

∂Gi
∂t

(4.17)

∂Gi
∂t can be found by recalling equation (2.5), which states that:

∂Gi
∂t

= −1

r

∂(rHi)

∂r
(4.18)

thus meaning that:

∂F

∂t
= −1

r

Nc∑
i=1

∂(rHi)

∂r
(4.19)

for all components i, which in this case are CO2 and water. Given that the derivatives on

the right hand side of equations (4.18) and (4.19) are all with respect to radial distance,

the derivatives ∂Gi
∂t and ∂F

∂t can be approximated using finite differences. Further details

about how best to do this accurately, ensuring that the derivatives are defined at the

appropriate points, are given in Section 4.6, using upwinding as described in Section 3.3.4.
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Finding an Expression for ∂P
∂t

The variable F depends on both PDVs, zc and P . Therefore, its overall derivative, dF ,

can be found using chain rule, such that:

dF =
∂F

∂zc
dzc +

∂F

∂P
dP (4.20)

Accordingly, an equally valid expression for ∂F
∂t as equation (4.19) is:

∂F

∂t
=
∂F

∂zc

∂zc
∂t

+
∂F

∂P

∂P

∂t
(4.21)

This can be rearranged to express ∂P
∂t as:

∂P

∂t
=

[
∂F

∂t
− ∂F

∂zc

∂zc
∂t

](
∂F

∂P

)−1
(4.22)

∂F
∂t and ∂zc

∂t can be found by equation (4.19) and equation (4.16), respectively. However,

finding expressions for ∂F
∂zc

and ∂F
∂P is significantly more challenging.

4.5 Derivatives of F

4.5.1 Finding the Overall Derivative of F, dF

The first step to finding ∂F
∂zc

and ∂F
∂P is to express the overall derivative of F , dF . Recall

from equation (4.4) that:

F = φ

Np∑
j=1

ρjSj (4.23)

Using chain rule on this equation leads to:

dF =

 Np∑
j=1

ρjSj

 dφ+ φd

 Np∑
j=1

ρjSj

 (4.24)

The first term of equation (4.24) can be alternatively written as:

F
dφ

φ
(4.25)

Product rule can be used on the second term of equation (4.24) to give:

φ

Np∑
j=1

(ρjdSj + Sjdρj) (4.26)
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or, equivalently:

φ

Np∑
j=1

ρjSj

(
dρj
ρj

+
dSj
Sj

)
(4.27)

leading to the overall derivative of F :

dF = F
dφ

φ
+ φ

Np∑
j=1

ρjSj

(
dρj
ρj

+
dSj
Sj

)
(4.28)

Within this model, the phase densities ρj are given by the following mixing rule:

ρj =

(
Nc∑
i=1

Xij

ρij

)−1
(4.29)

The overall derivative of ρj , dρj , can therefore be found by letting gj =
∑Nc

i=1
Xij
ρij

, such

that:

ρj = g−1j (4.30)

and then using chain rule, to give:

dρj = −g−2j dgj (4.31)

The derivative of gj , dgj can be found using quotient rule:

dgj =

Nc∑
i=1

ρijdXij −Xijdρij
ρ2ij

(4.32)

or equivalently:

dgj =

Nc∑
i=1

Xij

ρij

(
dXij

Xij
− dρij

ρij

)
(4.33)

Therefore, going back to equation (4.31):

dρj = −g−2j
Nc∑
i=1

Xij

ρij

(
dXij

Xij
− dρij

ρij

)
(4.34)

and so:

dρj = ρ2j

Nc∑
i=1

Xij

ρij

(
dρij
ρij
− dXij

Xij

)
(4.35)

This means that the expression needed for equation (4.28) is:

dρj
ρj

= ρj

Nc∑
i=1

Xij

ρij

(
dρij
ρij
− dXij

Xij

)
(4.36)
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In order to find dSj , it is necessary to mathematically define the phase saturation, Sj .

This can be done by considering the definition of zi from equations (4.2) to (4.4), in a

system in which only two phases, gaseous and aqueous, can exist:

zi =
ρgXigSg + ρaXiaSa

ρgSg + ρaSa
(4.37)

As a maximum of two phases can be present at any point within the system, it must be

the case that Sa = 1 − Sg, and so finding an expression for Sg will also enable Sa to be

easily found. Therefore:

zi =
ρgXigSg + ρaXia(1− Sg)

ρgSg + ρa(1− Sg)
(4.38)

which can be rearranged to give:

Sg =
hia

hia − hig
(4.39)

where:

hig = ρg(zi −Xig) (4.40)

and

hia = ρa(zi −Xia) (4.41)

It should also be noted that:

Sa = 1− Sg = − hig
hia − hig

(4.42)

The derivative of Sg, dSg, can then be found using quotient rule on equation (4.39), to

give:

dSg =
(hia − hig)dhia − hia(dhia − dhig)

(hia − hig)2
(4.43)

Dividing equation (4.43) by equation (4.39) gives the term needed in equation (4.28),
dSg
Sg

:

dSg
Sg

=
(hia − hig)dhia − hia(dhia − dhig)

hia(hia − hig)
(4.44)

which reduces to:

dSg
Sg

=
hiadhig − higdhia
hia(hia − hig)

(4.45)

or equivalently, from rearranging and substituting in equation (4.42):

dSg
Sg

= −Sa
(
dhig
hig
− dhia

hia

)
(4.46)
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The values of
dhig
hig

and dhia
hia

can be found by using product rule on equations (4.40)

and (4.41), respectively, to find that:

dhig
hig

=
d(zi −Xig)

(zi −Xig)
+
dρg
ρg

(4.47)

and

dhia
hia

=
d(zi −Xia)

(zi −Xia)
+
dρa
ρa

(4.48)

Equations (4.47) and (4.48) can be substituted into equation (4.46) to give:

dSg
Sg

= −Sa
(
d(zi −Xig)

(zi −Xig)
+
dρg
ρg
− d(zi −Xia)

(zi −Xia)
− dρa

ρa

)
(4.49)

or, in the more succint form used in Goudarzi et al. (2016):

dSg
Sg

= Sa

2∑
j=1

(−1)j
[(

dzi − dXij

zi −Xij

)
+
dρj
ρj

]
(4.50)

in which the gaseous phase can be denoted as phase 1, and the aqueous phase as phase 2.

It should be noted that these expressions can also easily be adapted to find dSa
Sa

. As

Sa = 1− Sg, it is also the case that:

dSa = −dSg (4.51)

and

dSa
Sa

= −dSg
Sg

Sg
Sa

(4.52)

4.5.2 Finding an Expression for ∂F
∂zc

An expression for ∂F
∂zc

can now be found from equation (4.28), as appropriate for a system

with two components and two phases. All derivatives in equation (4.28) need to be partial

derivatives with respect to zc, such that:

∂F

∂zc
=
F

φ

∂φ

∂zc
+ φ

[
ρgSg

(
1

ρg

∂ρg
∂zc

+
1

Sg

∂Sg
∂zc

)
+ ρaSa

(
1

ρa

∂ρa
∂zc

+
1

Sa

∂Sa
∂zc

)]
(4.53)

For this particular model, the porosity, φ, is not considered to vary with composition, and

therefore will be constant with zc. Thus:

∂φ

∂zc
= 0 (4.54)
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It follows from this that the first term of equation (4.53) is also equal to zero, and ∂F
∂zc

can

be written as:

∂F

∂zc
= φ

[
ρgSg

(
1

ρg

∂ρg
∂zc

+
1

Sg

∂Sg
∂zc

)
+ ρaSa

(
1

ρa

∂ρa
∂zc

+
1

Sa

∂Sa
∂zc

)]
(4.55)

Using equation (4.50):

1

Sg

∂Sg
∂zc

= Sa

[
− 1

(zc −Xcg)

(
1− ∂Xcg

∂zc

)
− 1

ρg

∂ρg
∂zc

+
1

(zc −Xca)

(
1− ∂Xca

∂zc

)
+

1

ρa

∂ρa
∂zc

]
(4.56)

and from equation (4.52):

1

Sa

∂Sa
∂zc

= −Sg
Sa

(
1

Sg

∂Sg
∂zc

)
(4.57)

1
ρg

∂ρg
∂zc

can be found from equation (4.36) to be:

1

ρg

∂ρg
∂zc

= ρg

[
Xcg

ρcg

(
1

ρcg

∂ρcg
∂zc
− 1

Xcg

∂Xcg

∂zc

)
+
Xwg

ρwg

(
1

ρwg

∂ρwg
∂zc

− 1

Xwg

∂Xwg

∂zc

)]
(4.58)

The densities of a particular component, i, in a phase, j, ρij , are determined by equations

derived by Spycher et al. (2003), Batzle and Wang (1992) and Garcia (2001) that depend

on pressure and temperature rather than composition. Therefore, ρij does not depend

on zc, and hence it can be assumed that
∂ρij
∂zc

= 0. This means that equation (4.58) will

reduce to:

1

ρg

∂ρg
∂zc

= −ρg
[

1

ρcg

∂Xcg

∂zc
+

1

ρwg

∂Xwg

∂zc

]
(4.59)

As there are only two components in this system, it must be that Xwg = 1 −Xcg. This

means that dXwg = −dXcg and
∂Xwg
∂zc

= −∂Xcg
∂zc

, from which it follows that:

1

ρg

∂ρg
∂zc

= ρg

(
1

ρwg
− 1

ρcg

)
∂Xcg

∂zc
(4.60)

Similarly:

1

ρa

∂ρa
∂zc

= ρa

(
1

ρwa
− 1

ρca

)
∂Xca

∂zc
(4.61)

Many of the terms included in ∂F
∂zc

involve Xij or
∂Xij
∂zc

. As was shown when determining

regions in Section 4.4, Xij is a piecewise function that will have differing values depending

on which phases are present. Therefore, ∂F
∂zc

is also piecewise, and thus expressions for ∂F
∂zc

in each region must be determined separately.
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∂F
∂zc

in Region 1- Gas Only

When only a gaseous phase is present, Sg = 1 and Sa = 0. This means that equation (4.55)

can be reduced to:
∂F

∂zc
= φρg

(
1

ρg

∂ρg
∂zc

)
(4.62)

where, from equation (4.60):

1

ρg

∂ρg
∂zc

= ρg

(
1

ρwg
− 1

ρcg

)
∂Xcg

∂zc
(4.63)

As was calculated in equation (4.5), in Region 1, Xcg = zc. It therefore follows that, in

this region:
∂Xcg

∂zc
= 1 (4.64)

and so:
1

ρg

∂ρg
∂zc

= ρg

(
1

ρwg
− 1

ρcg

)
(4.65)

This means that the overall expression for ∂F
∂zc

in Region 1 is:

∂F

∂zc
= φρ2g

(
1

ρwg
− 1

ρcg

)
(4.66)

∂F
∂zc

in Region 2- Two Phases

If both phases are present, 0 < Sg < 1, 0 < Sa < 1 and the values of Xij can be assumed

to be at their equilibrium values, xij . As was shown in Section 2.3, the values of xij

are calculated using methods described by Spycher et al. (2003) and Spycher and Pruess

(2005), and depend upon the pressure and temperature within the system, and not the

composition. It can therefore be assumed that
∂xij
∂zc

is equal to zero.

From this, it can be seen from equation (4.60) and equation (4.61) that, in Region 2:

1

ρg

∂ρg
∂zc

= ρg

(
1

ρwg
− 1

ρcg

)
∂xcg
∂zc

= 0 (4.67)

and
1

ρa

∂ρa
∂zc

= ρa

(
1

ρwa
− 1

ρca

)
∂xca
∂zc

= 0 (4.68)

Therefore, using equation (4.55):

∂F

∂zc
= φ

[
ρgSg

(
1

Sg

∂Sg
∂zc

)
+ ρaSa

(
1

Sa

∂Sa
∂zc

)]
(4.69)
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where:
1

Sg

∂Sg
∂zc

= Sa

(
1

(zc − xca)
− 1

(zc − xcg)

)
(4.70)

and
1

Sa

∂Sa
∂zc

= −Sg
Sa

(
1

Sg

∂Sg
∂zc

)
= Sg

(
1

(zc − xcg)
− 1

(zc − xca)

)
(4.71)

Equations (4.70) and (4.71) can be substituted into equation (4.69) to show that, when

both phases are present:

∂F

∂zc
= φSgSa(ρa − ρg)

(
1

(zc − xcg)
− 1

(zc − xca)

)
(4.72)

∂F
∂zc

in Region 3- Aqueous Only

In Region 3, only an aqueous phase is present, meaning that Sg = 0 and Sa = 1. Therefore,

from equation (4.55):
∂F

∂zc
= φρa

(
1

ρa

∂ρa
∂zc

)
(4.73)

where, using equation (4.61):

1

ρa

∂ρa
∂zc

= ρa

(
1

ρwa
− 1

ρca

)
∂Xca

∂zc
(4.74)

Equation (4.7) illustrates that Xca = zc in Region 3. This means that:

∂Xca

∂zc
= 1 (4.75)

from which it follows that:
1

ρa

∂ρa
∂zc

= ρa

(
1

ρwa
− 1

ρca

)
(4.76)

Therefore, in Region 3, ∂F
∂zc

can be expressed as:

∂F

∂zc
= φρ2a

(
1

ρwa
− 1

ρca

)
(4.77)

4.5.3 Finding an Expression for ∂F
∂P

An expression for ∂F
∂P for a two component and two phase system can also be found from

equation (4.28). All derivatives should be partial derivatives with respect to P , giving the

equation:

∂F

∂P
=
F

φ

∂φ

∂P
+ φ

[
ρgSg

(
1

ρg

∂ρg
∂P

+
1

Sg

∂Sg
∂P

)
+ ρaSa

(
1

ρa

∂ρa
∂P

+
1

Sa

∂Sa
∂P

)]
(4.78)
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A more convenient way to write this equation is in terms of rock and fluid compressibility.

As more fluid is injected into a formation, the fluid pressure increases. This leads to the

rock grains within the formation being pushed closer together, which increases the available

volume and therefore also increases the porosity of the formation. Rock compressibility, αr

[M−1LT2], illustrates how the porosity changes with increasing pressure, and is expressed

as:

αr =
1

φ

∂φ

∂P
(4.79)

As well as increasing the formation porosity, an increase in fluid within the formation,

and therefore an increase in fluid pressure, also leads to the particles of a particular phase

being closer together. This means that the volume occupied by a phase is smaller, and

consequently that the density of the phase will increase. Fluid compressibility for a phase

j, αj , [M−1LT2] can be written as:

αj =
1

ρj

∂ρj
∂Pj

(4.80)

Using the phase compressibilities and chain rule:

1

ρj

∂ρj
∂P

= αj
∂Pj
∂P

(4.81)

and hence, by incorporating both the phase and the rock compressibilities, ∂F
∂P can be

written as:

∂F

∂P
= Fαr + φ

[
ρgSg

(
αg
∂Pg
∂P

+
1

Sg

∂Sg
∂P

)
+ ρaSa

(
αa
∂Pa
∂P

+
1

Sa

∂Sa
∂P

)]
(4.82)

For this particular model, the rock compressibility, αr, is given a set value by the user.

However, the phase compressibilities, αj , can be found from equation (4.36) by giving the

derivatives with respect to Pj , such that:

αj =
1

ρj

∂ρj
∂Pj

= ρj

Nc∑
i=1

Xij

ρij

(
αij −

1

Xij

∂Xij

∂Pj

)
(4.83)

where the compressibility of component i in phase j, αij [M−1LT2], is given by:

αij =
1

ρij

∂ρij
∂Pj

(4.84)

The values of αij are found by using differentiation on various equations of state, including

equation (2.89) by Redlich and Kwong (1949), and the equations for water and brine

density found by Batzle and Wang (1992).
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Within equation (4.82), the expression 1
Sg

∂Sg
∂P can be found from equation (4.46) to be:

1

Sg

∂Sg
∂P

= −Sa
(

1

hcg

∂hcg
∂P
− 1

hca

∂hca
∂P

)
(4.85)

Using chain rule to incorporate the phase pressures, this becomes:

1

Sg

∂Sg
∂P

= −Sa
(

1

hcg

∂hcg
∂Pg

∂Pg
∂P
− 1

hca

∂hca
∂Pa

∂Pa
∂P

)
(4.86)

where:
1

hcg

∂hcg
∂Pg

=
1

(zc −Xcg)

(
∂zc
∂Pg

− ∂Xcg

∂Pg

)
+

1

ρg

∂ρg
∂Pg

(4.87)

and
1

hca

∂hca
∂Pa

=
1

(zc −Xca)

(
∂zc
∂Pa

− ∂Xca

∂Pa

)
+

1

ρa

∂ρa
∂Pa

(4.88)

As was explained in Section 4.3, zc does not depend upon pressure, meaning that ∂zc
∂Pj

= 0.

Incorporating both this and equation (4.83) into equations (4.87) and (4.88) means that:

1

hcg

∂hcg
∂Pg

= αg −
1

(zc −Xcg)

∂Xcg

∂Pg
(4.89)

and
1

hca

∂hca
∂Pa

= αa −
1

(zc −Xca)

∂Xca

∂Pa
(4.90)

Within equations (4.83), (4.89) and (4.90), the derivatives
∂Xij
∂Pj

are needed. As Xij is a

piecewise function, and varies depending on which phases are present, this is also the case

for
∂Xij
∂Pj

. As was illustrated in Section 4.4, the value of Xij will be:

Xij =


0, Sj = 0

xij , 0 < Sj < 1

zi, Sj = 1

(4.91)

Taking into account that zi does not depend on pressure, it follows that:

∂Xij

∂Pj
=


0, Sj = 0

∂xij
∂Pj

, 0 < Sj < 1

0, Sj = 1

(4.92)

where
∂xij
∂Pj

can be approximated by finite difference.

Recall from equations (2.13) and (2.14) that:

Pg =
P (Sg + Sa) + PcSa

Sg + Sa
(4.93)
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and

Pa =
P (Sg + Sa)− PcSg

Sg + Sa
(4.94)

For a two phase system such as this, Sg + Sa = 1, from which it follows that:

Pg = P + PcSa (4.95)

and

Pa = P − PcSg (4.96)

Using product rule, equations (4.95) and (4.96) can be used to find that:

∂Pg
∂P

= 1 + Pc
∂Sa
∂P

+ Sa
∂Pc
∂P

(4.97)

and
∂Pa
∂P

= 1− Pc
∂Sg
∂P
− Sg

∂Pc
∂P

(4.98)

As was shown in equation (2.19), the capillary pressure, Pc, depends solely on the phase

saturations. It is therefore possible to use chain rule to conclude that:

∂Pc
∂P

=
∂Pc
∂Sg

∂Sg
∂P

(4.99)

which, along with the extrapolation from equation (4.51) that:

∂Sa
∂P

= −∂Sg
∂P

(4.100)

can be substituted into equations (4.97) and (4.98) to give the expressions:

∂Pg
∂P

= 1 +

(
Sa
∂Pc
∂Sg
− Pc

)
∂Sg
∂P

(4.101)

and
∂Pa
∂P

= 1−
(
Sg
∂Pc
∂Sg

+ Pc

)
∂Sg
∂P

(4.102)

Within these equations, ∂Pc∂Sg
= − ∂Pc

∂Sa
, using the expressions for ∂Pc

∂Sa
given in equation (2.22).

Substituting in equations (4.101) and (4.102) to equation (4.86) gives:

1

Sg

∂Sg
∂P

= −Sa
[

1

hcg

∂hcg
∂Pg

(
1 +

(
Sa
∂Pc
∂Sg
− Pc

)
∂Sg
∂P

)
− 1

hca

∂hca
∂Pa

(
1−

(
Sg
∂Pc
∂Sg

+ Pc

)
∂Sg
∂P

)]
(4.103)

which can be rearranged to give a final expression for
∂Sg
∂P of:

∂Sg
∂P

=

(
1

hcg

∂hcg
∂Pg

− 1

hca

∂hca
∂Pa

)[
− 1

SgSa
− 1

hcg

∂hcg
∂Pg

(
Sa
∂Pc
∂Sg
− Pc

)
− 1

hca

∂hca
∂Pa

(
Sg
∂Pc
∂Sg

+ Pc

)]−1
(4.104)
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From equation (4.100), ∂Sa
∂P can also be found from this, as:

∂Sa
∂P

= −∂Sg
∂P

(4.105)

Using equation (4.82), ∂F
∂P can therefore be rewritten as:

∂F

∂P
= Fαr + φ

[
ρgSgαg

∂Pg
∂P

+ ρg
∂Sg
∂P

+ ρaSaαa
∂Pa
∂P

+ ρa
∂Sa
∂P

]
(4.106)

into which the outputs of equations (4.83), (4.101), (4.102), (4.104) and (4.105) can be

substituted.

However, in many numerical codes, the values of αij are approximated using the value of

the global pressure, P , rather than the phase pressures, Pj , such that αij can be assumed

to be:

αij =
1

ρij

∂ρij
∂P

(4.107)

This means that the overall phase compressibilities can also be assumed to vary with

respect to P rather than Pj , meaning that they are taken to be:

αj =
1

ρj

∂ρj
∂P

= ρj

Nc∑
i=1

Xij

ρij

(
αij −

1

Xij

∂Xij

∂P

)
(4.108)

in which:

∂Xij

∂P
=


0, Sj = 0

∂xij
∂P

, 0 < Sj < 1

0, Sj = 1

(4.109)

This also means that the expressions for 1
Sj

∂Sj
∂P are significantly simplified, such that they

can be found from equation (4.50) and equation (4.52) to be:

1

Sg

∂Sg
∂P

= Sa

[
1

(zc −Xcg)

∂Xcg

∂P
− αg −

1

(zc −Xca)

∂Xca

∂P
+ αa

]
(4.110)

and

1

Sa

∂Sa
∂P

= −Sg
Sa

(
1

Sg

∂Sg
∂P

)
(4.111)

Therefore, when the global pressure rather than phase pressure is used to approximate

the compressibilities, ∂F
∂P can be found to be:

∂F

∂P
= Fαr + φ

[
ρgSg

(
αg +

1

Sg

∂Sg
∂P

)
+ ρaSa

(
αa +

1

Sa

∂Sa
∂P

)]
(4.112)

into which equations (4.108), (4.110) and (4.111) can be substituted.
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4.6 Use of Upwinding

Once the equations needed to find ∂zc
∂t and ∂P

∂t have been derived, it is necessary to ensure

that all equations are giving their solutions at the appropriate points in space within the

numerical model. The final derivatives to be given to the ODE solver, ∂zc
∂t and ∂P

∂t , need

to be defined at the nodes k, and therefore all terms within the equations defining these

derivatives, whether the terms themselves are derivatives or individual parameters, must

also be at k. The most difficult terms to ensure are defined at k are the derivatives for

which no exact expression has been found, and hence require the use of finite difference,

which, in the expressions for ∂zc
∂t and ∂P

∂t , are ∂Gi
∂t and ∂F

∂t . Ensuring that the output of

∂Gi
∂t , for all components i, is given at k will also mean that ∂F

∂t is at k, because, as can be

recalled from equation (4.17):

∂F

∂t
=

Nc∑
i=1

∂Gi
∂t

(4.113)

Discretising equation (4.18) to find the value of ∂Gi
∂t at node k using the central difference

approximation gives:

∂Gi
∂t

∣∣∣∣
k

= − 1

rk

rk+ 1
2
Hi

k+1
2

− rk− 1
2
Hi

k− 1
2

rk+ 1
2
− rk− 1

2

(4.114)

Upwinding, as described in Section 3.3.4, is used here to ensure that Hi is defined at the

cell boundaries, k + 1
2 and k − 1

2 . In this system, the effects of capillary pressure are

included, causing counter-current imbibition and meaning that it cannot be assumed that

all flow is in an outwards direction from the point of injection. Therefore, it is not always

the case that Hik should be the point chosen to represent Hi
k+1

2

. Using equation (3.41),

upwinding can define Hi
k+1

2

at each point as:

Hi
k+1

2

=

 Hik , v > 0

Hik+1
, v ≤ 0

(4.115)

where v represents the wave velocity at each point.

As can be seen from equation (2.2):

Hi =

Np∑
j=1

ρjXijqj (4.116)

Recall from equation (2.8) that, for a one-dimensional radial system such as this:

qj = −kkrj
µj

∂Pj
∂r

(4.117)
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It is therefore possible to say that for a system comprising of two components and two

phases, equations (4.116) and (4.117) can be combined to give expressions of the form:

Hi = −ρgXig
kkrg
µg

∂Pg
∂r
− ρaXia

kkra
µa

∂Pa
∂r

(4.118)

which can also be written as:

Hi = Hig +Hia (4.119)

where

Hig = −ρgXig
kkrg
µg

∂Pg
∂r

(4.120)

and

Hia = −ρaXia
kkra
µa

∂Pa
∂r

(4.121)

The two separate terms that make up Hi, Hij [ML−2T−1], are each comprised of a

discontinuous term, ai, which is equal to −ρjXij
kkrj
µj

, and the derivative with respect

to r of a smooth function, bi, which is equal to Pj . It should be noted that both ai and

bi ultimately depend upon the value of Gi. Because bi is a continuous function, its Taylor

series expansion is valid at all points within the system, including the cell boundaries.

This means that the derivative ∂bi
∂r can be found regardless of the direction of flow, and

can be given directly at the cell boundary, k + 1
2 , using:

∂bi
∂r

∣∣∣∣
k+ 1

2

=
bik+1

− bik
rk+1 − rk

(4.122)

However, ai is discontinuous, and so its Taylor series is not valid at the point of the

discontinuity, meaning that upwinding is necessary (Goudarzi, 2017).

Upwinding can be used to find the appropriate value of Hi at each cell boundary from:

Hi
k+1

2

=
[
vuaik + vdaik+1

] ∂bi
∂r

∣∣∣∣
k+ 1

2

(4.123)

where

vu =
v + |v|

2v
(4.124)

and

vd =
v − |v|

2v
(4.125)

An example of upwinding being used to determine which value of ai is used at the cell

boundaries is shown in Figure 4.3. The figure illustrates that the wave velocity was

negative at the cell boundary k − 3
2 , giving values of vu = 0 and vd = 1, and therefore

meaning that the value of ai at this boundary was approximated to be as it was at the
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point to the right, ak−1. At all other cell boundaries, however, the wave velocity was

positive, leading to vu = 1 and vd = 0, and the values of ai at the cell boundaries being

approximated by the value at the node to the left of the boundary. It should be noted

that upwinding can only be used to determine values of a variable at the internal cell

boundaries. The values at the external boundaries, denoted by k − 5
2 and k + 5

2 in the

system shown in Figure 4.3, must be set separately by the user.

Figure 4.3: A diagram to illustrate how upwinding can be used to approximate the values of

parameters at the cell boundaries. In this system, the wave velocity is negative at the cell boundary

k − 3
2 , but positive elsewhere.

4.7 Model Output

Figure 4.4 shows the MOL solution that the numerical model outputted for the global

pressure and the gas saturation plotted against the radial distance, r, at several different

times, alongside the analytical solution found by Mathias et al. (2011b) that does not take

into account the effects of capillary pressure. The initial parameters inputted into the

model are given in Table 4.1. It should be noted that, although zc was chosen as a PDV

and so, along with the global pressure, P , was outputted from the ODE solver, Sg has

been instead chosen to be plotted here to show the composition of the fluid mixture at

different points in space and time. Once the PDVs are known, any parameter within the

model can be easily outputted and plotted.
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Parameter Value Parameter Value Parameter Value

rw (m) 0.25 krg0 (-) 0.3 H (m) 30

rE (m) 2.5x105 kra0 (-) 1 Pc0 (Pa) 19600

P0 (Pa) 107 ng (-) 3 m (-) 0.5

αr (Pa−1) 3.54x10−10 na (-) 3 M0 (Mt/year) 0.3

k (m2) 10−13 Sar (-) 0.3 T (◦C) 40

φ (-) 0.2 Sgc (-) 0 Pcd (Pa) 106

Table 4.1: Constant parameters inputted into the two component and two phase model, to give

the output in Figure 4.4.
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Figure 4.4: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 4.1, for the times shown in the legend. The solid lines represent the solution

found by the MOL, while the dashed lines represent the analytical solution of Mathias et al.

(2011b), which assumes negligible capillary pressure. The model was run for 1000 points in space.

From the bottom graph in Figure 4.4, which looks at how gas saturation varies with

radial distance, it can be seen that, for all times, there are points at which all three

possible phase combinations are present: gaseous phase only, both gaseous and aqueous,

and aqueous phase only. The three possible ‘regions’ of different phase combinations

within the formation are separated by the leading and trailing shocks. The CO2 plume

extends further into the formation as time progresses, as well as there being more time for

water to evaporate into the gaseous phase, meaning that the curves representing the longer

time scales have a larger dry out zone and smaller aqueous only region than the curves

representing earlier times. The figure also indicates that the MOL solution compares

very well with the analytical solution of Mathias et al. (2011b), with the only noticeable
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differences between them being that the edges of the MOL solution at the shocks are less

pronounced than the analytical solution, due to the increased dispersion in the numerical

solution, and that the position of the trailing shock in the MOL solution is very slightly

further out. This is caused by the inclusion of the effects of capillary pressure in the MOL

solution.
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Figure 4.5: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 4.1, for the times shown in the legend, with the exception that Pcd is now

equal to 107 Pa. The model was again run for 1000 points in space.

The graph at the top of Figure 4.4 shows the variation of global pressure with radial

distance. It illustrates that the pressure is highest near the point of injection, and falls

further along the formation, as well as showing that as time goes on and more CO2 is

injected into the formation, the pressure increases, as would be expected. As was the

case with the graph that looked at gas saturation varying with distance, the numerical

and analytical solutions compare very well. This is particularly true for the aqueous only

region, in which the numerical and analytical solutions are almost indistinguishable. The

solutions can be separated in the two phase region, in which the lines representing the

pressure begin to curve slightly more, but are still very close. However, close to the

boundary between the two phase and gaseous only regions, a small step can be seen in the

MOL solution, while the analytical solution remains smooth. This is due to a significant

difference in capillary pressure between the first and second points of the two phase region,

and did not affect the analytical solution as it does not take capillary pressure into account.

It should be noted that this difference in turn leads to a peak in the value of ∂Pa
∂r . Using
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equation (4.117), it can be seen that in this radial system, the flux of the aqueous phase

can be found from Darcy’s Law to be:

qa = −kkra
µa

∂Pa
∂r

(4.126)

from which it follows that an increase in ∂Pa
∂r leads to a more negative value of qa and

hence increased backflow of the aqueous phase, i.e. counter-current imbibition.
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Figure 4.6: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 4.1, for the times shown in the legend, with the exception that Pcd is now

equal to 108 Pa. The model was again run for 1000 points in space.

However, the change in pressure close to the boundary between the two phase and gaseous

only regions becomes considerably more pronounced as the value of Pcd increases, as can

be seen from Figures 4.5 and 4.6, which show the pressure and gas saturation outputs of

the model for the same parameters as Figure 4.4, but taking the value of Pcd to be the

higher values of 107 Pa and 108 Pa, respectively. For these higher values of Pcd, the change

in pressure appears to be a dip that affects only one point in space. This suggests that

the large difference in capillary pressure between the first and second points of the two

phase region that seem to be the ultimate cause of the change in pressure may be at least

in part due to a numerical instability within the code. The model will not run at all for

a significant number of points when Pcd is set to 109 Pa, which is the value that Webb

(2000) took to be the desired capillary pressure at zero aqueous saturation, because of this

instability. Numerical instabilities similar to this are one of the main disadvantages of the

use of a numerical model to simulate real-life processes.
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The pressure and gas saturation outputs of the model when Pcd is set to 108 Pa, the

value of Pcd for which the instability is at its most extreme, are also given in Figures 4.7

and 4.8 for 200 and 500 points in space, respectively. As would be expected, the numerical

solutions are noticeably further away from the analytical solutions for the lower numbers

of points in space. The dip in pressure between the gaseous only and two phase regions is

still present for all times in both figures, and still seems to affect only one point in space,

but by comparing Figure 4.6 to Figures 4.7 and 4.8 it can be seen that there does not

appear to be a pattern between the size of the dip and the time that the model has been

running for; the sizes of the dip vary for the different numbers of points. For example, in

Figure 4.6 for 1000 points, it largely appears that the size of the dip in pressure grows for

longer periods of time, whereas almost the opposite is true in Figure 4.7 when the model is

run for 200 points. This only serves to emphasise that the dip is caused by an instability,

and does not mean anything physically, as it seems almost impossible to predict how large

the dip will be.
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Figure 4.7: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 4.1, for the times shown in the legend, with Pcd equal to 108 Pa and for 200

points in space.

For comparison, the output of the model when no capillary pressure is included is given

in Figure 4.9. It can be seen that the numerical instability is not present at all in this

case, as there is no change in capillary pressure between the first two points of the two

phase region due to the capillary pressure being set to zero at all points, and the solutions

for both pressure and gas saturation are smooth curves that compare very well with the

analytical solutions at all points.
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Figure 4.8: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 4.1, for the times shown in the legend, with Pcd equal to 108 Pa and for 500

points in space.
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Figure 4.9: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 4.1, for the times shown in the legend, with the exception that the capillary

pressure is now set to zero. The model was again run for 1000 points in space.

It should be noted that the output for gas saturation is not affected by the instability, and

a smooth curve close to the analytical solution is produced regardless of the value of Pcd,

or if the effects of capillary pressure are not included in the model.
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Chapter 5

Method of Lines Solution for

Compressible Three Component

and Three Phase Flow with

Capillary Pressure

This chapter extends the method of lines (MOL), as explained in the previous chapter

for two phase and two components, to be applicable to a three component and three

phase system, comprised of CO2, water and salt and in which gaseous, aqueous and solid

phases can be formed. The inclusion of the salt component and a solid phase means

that this model has the capability to investigate the impact that capillary pressure has

on counter-current imbibition and the amount of salt precipitation formed within the dry

out zone, and how these are affected by varying the input parameters of the system.

The principle of the MOL for a three component and three phase system is the same

as previously described for two phases and two components: finite difference is used

to discretise governing equations and form ordinary differential equations (ODEs) with

respect to time, which are subsequently solved by the ODE solver ode15s. However, the

involvement of three phases and three components means that it is necessary to have

three primary dependent variables (PDVs) rather than two, and there are more possible

combinations of phases that could be present at any one point in the system, meaning

that it becomes considerably more complicated to find the required ODEs.
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5.1 The Three Component, Three Phase System

The three component and three phase system consists of CO2 (c), water (w) and salt

(n), within gaseous (g), aqueous (a) and solid (s) phases, as was mentioned above. The

assumptions of the model are similar to those for the two phase system, as illustrated in

Figure 4.1: supercritical CO2 is injected at a constant rate of M0 [MT−1] for time t [T]

into an injection well with radius rw [L], which is at the centre of a radially-symmetric

reservoir with radial extent rE [L]. In this case, however, the aqueous phase that initially

fills the reservoir is not pure water, but also contains dissolved salt, meaning that the

CO2 is being injected into brine. Again, the permeability of the reservoir is assumed

to be horizontally isotropic, and the vertical permeability to be so much smaller than

the horizontal value that the effects of gravity can be considered to be negligible, such

that fluid flow can be treated as one-dimensional and radially symmetric. The system is

assumed to be isothermal, and the effects of both capillary pressure and volume change

on mixing are included.

As was also the case when only two phases were involved, the radial axis is discretised into a

block centred grid in which the points are spaced logarithmically, as shown by Figure 4.2.

This means that the nodes are more closely spaced in the dry out zone, the region in

which salt will precipitate, than in the regions further away from the point of injection,

such that the model will give an accurate illustration of the amount of salt precipitation

that has taken place within the system for fewer nodes than would be needed if a linear

discretisation had been used (Goudarzi et al., 2016).

5.2 Primary Dependent Variables (PDVs)

Three PDVs are required for this system, and those used in this model are the global

pressure, P [ML−1T−2], the mass fraction of CO2, zc [-], and the mass fraction of water,

zw [-]. These parameters were chosen due to the global pressure being defined regardless

of which phases are present, and the independence of zi from pressure. The ODE solver

therefore requires expressions for ∂zc
∂t , ∂zw∂t and ∂P

∂t , in order to find values for the PDVs at

all points in time and space.
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5.3 Phases Present

The first step to finding the appropriate expressions for the derivatives of the PDVs

with respect to time is to define the possible phase combinations that can occur, and

subsequently determine which phases are present at different points in space and time.

Within a three phase and three component system, either one, two or three different

phases could be present at each point. In order to find which phase combination is at

a particular point, it is necessary to use the governing equations to define conditions for

when certain phases are either present or missing.

5.3.1 No Gaseous Phase

Recall from equations (4.2) to (4.4) that:

zi =
Gi
F

(5.1)

where

Gi = φ

Np∑
j=1

ρjXijSj (5.2)

and

F =

Nc∑
i=1

Gi = φ

Np∑
j=1

ρjSj (5.3)

Therefore, when no gas phase is present:

zc =
ρaXcaSa

ρaSa + ρsSs
(5.4)

and

zn =
ρaXnaSa + ρsSs
ρaSa + ρsSs

(5.5)

Note that it is not necessarily the case that both the aqueous and the solid phases are

present: the condition that this subsection will derive is based only on the absence of the

gaseous phase, and will hold regardless of whether both an aqueous and solid phase are

present, or just one of them.

As there is no gaseous phase at this point, it must be that Ss = 1 − Sa. This can be

substituted into equation (5.5) to give:

zn =
ρaXnaSa + ρs(1− Sa)
ρaSa + ρs(1− Sa)

(5.6)
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which can subsequently be rearranged to show that:

Sa =
ρs(1− zn)

ρs(1− zn) + ρa(zn −Xna)
(5.7)

It follows from this that:

Ss = 1− Sa =
ρa(zn −Xna)

ρs(1− zn) + ρa(zn −Xna)
(5.8)

The expressions for the phase saturations, equations (5.7) and (5.8), can then be substi-

tuted into the expression for zc under these conditions, equation (5.4), which will reduce

to:

zc =
Xca(1− zn)

1−Xna
(5.9)

As was explained in Section 2.3, the equilibrium mass fractions of a component i in a

phase j, xij [-], represent the maximum solubility of component i in phase j. Therefore,

it must be that, at points at which no gaseous phase exists, the mass fraction of CO2 in

the aqueous phase, Xca [-], is less than the equilibrium mass fraction, xca [-]. If this were

not the case, a separate gaseous phase would have formed to accommodate the additional

CO2, as no CO2 is able to dissolve into the aqueous phase once it has reached its maximum

solubility of xca. Substituting Xca ≤ xca into equation (5.9):

zc ≤
xca(1− zn)

1−Xna
(5.10)

As the equilibrium mass fractions represent the maximum solubility of a component in

a phase, it must also be that the maximum value of Xna [-] is xna [-]. This is the case

regardless of whether or not a solid phase is present at this point in the system, as whether

or not there is additional salt that could not dissolve into the aqueous phase and has thus

formed a separate solid phase, the mass fraction of salt in the aqueous phase would still

not go beyond the solubility limit, xna. Hence:

xca(1− zn)

1−Xna
≤ xca(1− zn)

1− xna
(5.11)

and so the condition for there being no gaseous phase present at a particular point in

the formation, relating the mass fractions of a component, zi, and the equilibrium mass

fractions of a component in a particular phase, xij , can be given as:

zc ≤
xca(1− zn)

1− xna
(5.12)
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Note that zc and zw, as PDVs of the system, are found by the ODE solver, ode15s. Recall

that:
Np∑
i=1

zi = 1 (5.13)

which means that zn can then be easily defined as zn = 1− zc− zw. The equilibrium mass

fractions for CO2 and water are found using work by Spycher et al. (2003) and Spycher

and Pruess (2005), while the value of xna comes from an equation by Potter et al. (1977).

5.3.2 No Aqueous Phase

If there is no aqueous phase, then:

zc =
ρgXcgSg

ρgSg + ρsSs
(5.14)

and

zn =
ρsSs

ρgSg + ρsSs
(5.15)

Due to the absence of an aqueous phase, it must be that: Ss = 1 − Sg, which can be

substituted into equation (5.15) and rearranged to give:

Sg =
ρs(1− zn)

ρs(1− zn) + ρgzn
(5.16)

from which it follows that:

Ss = 1− Sg =
ρgzn

ρs(1− zn) + ρgzn
(5.17)

If these saturation expressions, equations (5.16) and (5.17), are substituted into equa-

tion (5.14), we obtain:

zc = Xcg(1− zn) (5.18)

At a point in the formation at which there is no aqueous phase, it must be that Xwg ≤ xwg,

because there is no aqueous phase to hold any additional water that cannot evaporate into

the gaseous phase. As Xwg = 1 −Xcg and xwg = 1 − xcg, it follows that Xcg ≥ xcg, and

hence the condition for there to be no aqueous phase at a particular point can be described

as:

zc ≥ xcg(1− zn) (5.19)
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5.3.3 Both Gaseous and Aqueous Phases Present

It follows from equation (5.12) and equation (5.19) that if both a gaseous and an aqueous

phase are present at a point in the system, and hence neither of the two conditions

previously stipulated apply, then:

xca(1− zn)

1− xna
< zc < xcg(1− zn) (5.20)

It should be noted that this condition in zc holds regardless of whether or not a solid phase

is present.

5.3.4 Presence or Absence of a Solid Phase

While the presence or absence of the gaseous and aqueous phases can be determined purely

by the value of zc, the question of whether or not there is a solid phase requires analysis

of the values of both zc and zn. The value of zc can be used to determine whether gaseous

and aqueous phases are present, which can in turn simplify the condition in zn that is

required to look into the presence or absence of a solid phase.

Firstly, if no aqueous phase is present, then any salt must be in the solid phase. Therefore,

if there is no aqueous phase, and hence zc ≥ xcg(1− zn), a solid phase must be present if

zn > 0, and absent if zn = 0.

However, if an aqueous phase is present it becomes more complicated to determine the

presence or absence of a solid phase. If there is no solid phase, then:

zc =
ρgXcgSg + ρaXcaSa

ρgSg + ρaSa
(5.21)

and

zn =
ρaXnaSa

ρgSg + ρaSa
(5.22)

As the only phases that could be present are gaseous and aqueous, Sg = 1 − Sa. Substi-

tuting this into equation (5.21):

zc =
ρgXcg(1− Sa) + ρaXcaSa

ρg(1− Sa) + ρaSa
(5.23)

which can be rearranged to give:

Sa =
ρg(Xcg − zc)

ρg(Xcg − zc) + ρa(zc −Xca)
(5.24)
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and hence:

Sg = 1− Sa =
ρa(zc −Xca)

ρg(Xcg − zc) + ρa(zc −Xca)
(5.25)

These phase saturations can be substituted into equation (5.22) to show that, when there

is no solid phase:

zn =
Xna(Xcg − zc)
Xcg −Xca

(5.26)

If an aqueous phase is present with no solid phase, then it must be the case that Xna ≤ xna,

because no solid phase has formed to accommodate any additional salt, meaning that the

amount of salt in the system cannot be above the maximum solubility of the aqueous

phase. Therefore, substituting this into equation (5.26), as well as using the opposite of

equation (5.19) to define when an aqueous phase is present rather than when it is absent,

gives the conditions for an aqueous phase being present but a solid phase being absent as:

zc < xcg(1− zn) and zn ≤
xna(Xcg − zc)
Xcg −Xca

(5.27)

and therefore both an aqueous and solid phase will be present if:

zc < xcg(1− zn) and zn >
xna(Xcg − zc)
Xcg −Xca

(5.28)

It should be noted that these conditions hold whether or not a gaseous phase is present.

However, one issue is that we have not yet defined the values of Xcg and Xca.

5.4 Xij Values

The mass fractions of the component i in the phase j, Xij , are piecewise functions that

will have different values depending on which phases are present.

Xcg

The expressions for Xcg are unaffected by the presence of a solid phase, and are based solely

on whether gaseous and aqueous phases are present. Now that the boundary conditions for

the appearance and disappearance of the gaseous and aqueous phases have been defined,

it is also possible to find the values of Xcg.

If no gaseous phase is present, then there can be no CO2 in a gaseous phase, so Xcg = 0.

If both a gaseous and an aqueous phase are present, the two phases that CO2 can appear
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in, then Xcg will be at its equilibrium value, xcg. When there is no aqueous phase, it was

found from equation (5.18) that:

zc = Xcg(1− zn) (5.29)

This can be rearranged to show that, when no aqueous phase is present:

Xcg =
zc

1− zn
(5.30)

Therefore, using the phase boundaries in equations (5.12), (5.19) and (5.20), Xcg can be

summarised as:

Xcg =



0, zc ≤
xca(1− zn)

1− xna

xcg,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

zc
1− zn

, zc ≥ xcg(1− zn)

(5.31)

Xca

The values of Xca can be found in a similar way. Again, when no aqueous phase is present,

Xca = 0, and Xca must be at its equilibrium value, xca, when there are both gaseous and

aqueous phases. It was seen from equation (5.9) that, when no gaseous phase is present:

zc =
Xca(1− zn)

1−Xna
(5.32)

which can be rearranged to give:

Xca =
zc(1−Xna)

1− zn
(5.33)

such that Xca can be summarised as:

Xca =



zc(1−Xna)

1− zn
, zc ≤

xca(1− zn)

1− xna

xca,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

0, zc ≥ xcg(1− zn)

(5.34)

However, an issue with this definition is that Xna has not yet been defined, and its values

will vary depending on whether or not a solid phase is present, rather than just gaseous
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and aqueous. The expression for Xca that involves Xna is for when an aqueous phase is

present, and no gaseous phase, so it is necessary to find and substitute into the expression

the values of Xna for when both an aqueous and a solid phase are present, and when there

is solely an aqueous phase.

If there are both an aqueous and a solid phase at a particular point, then it must be that

Xna is at its equilibrium value, xna, because both phases that the salt can appear in are

present. It follows that, for this phase combination:

Xca =
zc(1− xna)

1− zn
(5.35)

If only an aqueous phase is present, then:

zn =
ρaXnaSa
ρaSa

= Xna (5.36)

and Xna = zn can be substituted into the expression for Xca to give:

Xca =
zc(1− zn)

1− zn
= zc (5.37)

In order to differentiate between Xca = zc, which occurs when there is only an aqueous

phase at a particular point, and Xca = zc(1−xna)
1−zn , which is the case when both an aqueous

and a solid phase are present, it is necessary to define conditions in zc and zn that

differentiate between solely an aqueous phase, and an aqueous and solid phase. It was

found in equation (5.27) that the necessary conditions for an aqueous phase but no solid

are:

zc < xcg(1− zn) and zn ≤
xna(Xcg − zc)
Xcg −Xca

(5.38)

However, these conditions can be reduced further. In this case, there is no gaseous phase,

and only an aqueous phase, meaning that Xcg = 0 and Xca = zc. Substituting this in, as

well as using equation (5.12) as the condition for zc for no gaseous phase, the condition

for solely an aqueous phase becomes:

zc ≤
xca(1− zn)

1− xna
and zn ≤ xna (5.39)
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The complete definition of Xca can therefore be understood to be:

Xca =



zc, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna

zc(1− xna)
1− zn

, zc ≤
xca(1− zn)

1− xna
, zn > xna

xca,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

0, zc ≥ xcg(1− zn)

(5.40)

Xna

As has been previously explained, if the phase j is not present, then Xij = 0. This means

that if no aqueous phase is present, then it must be that Xna = 0. As has also been

previously explained, if both aqueous and solid phases are present, regardless of whether

or not there is a gaseous phase, then Xna must be at its equilibrium value, xna. It was

found from equation (5.26) that, when an aqueous phase is present but no solid phase:

zn =
Xna(Xcg − zc)
Xcg −Xca

(5.41)

This can be rearranged to give the value of Xna for this phase combination as:

Xna =
zn(Xcg −Xca)

Xcg − zc
(5.42)

It should also be noted that, when only an aqueous phase is present with no gaseous phase,

this expression reduces to Xna = zn.

The conditions from equation (5.27) and equation (5.28) can be used to separate the values

of Xna when a solid phase is present alongside the aqueous phase, and when there is no

solid phase, such that the full range of values for Xna can be understood to be:

Xna =



zn(Xcg −Xca)

Xcg − zc
, zc < xcg(1− zn), zn ≤

xna(Xcg − zc)
Xcg −Xca

xna, zc < xcg(1− zn), zn >
xna(Xcg − zc)
Xcg −Xca

0, zc ≥ xcg(1− zn), zn ≥ 0

(5.43)
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5.5 Phase Saturation Values

The values of phase saturations will again be piecewise functions that vary depending on

which phases are present. In calculating the boundaries at which certain phases appear

and disappear, some of the phase saturation values for certain combinations of phases have

already been found. This section will give a full description of the phase saturation values

for each phase combination, and how they are derived.

5.5.1 Solid Saturation (Ss)

No Solid Phase

If no solid phase is present, then it must be that Ss = 0. Using equation (5.26), it can be

seen that this will be the case when zn ≤ Xna(Xcg−zc)
Xcg−Xca , regardless of the value of zc.

No Gaseous Phase (Aqueous and Solid Only)

When calculating the phase boundary in zc for no gaseous phase being present in Sec-

tion 5.3.1, it was found in equation (5.8) that, when no gas is present:

Ss =
ρa(zn −Xna)

ρs(1− zn) + ρa(zn −Xna)
(5.44)

If both an aqueous and a solid phase are present, then, using equation (5.43), it must be

that Xna = xna. Therefore:

Ss =
ρa(zn − xna)

ρs(1− zn) + ρa(zn − xna)
(5.45)

or, written in an alternative way:

Ss =

[
1 +

ρs(1− zn)

ρa(zn − xna)

]−1
(5.46)

As no gaseous phase is present, it must be that the boundary in zc for this condition is

equation (5.12): zc ≤ xca(1−zn)
1−xna . As there is an aqueous phase, the same method as was

used to derive the conditions in equation (5.39) can be used, leading to the conclusion

that, in this case, there must be a solid phase if zn > xna.
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No Aqueous Phase (Gaseous and Solid Only)

In a similar way to the expressions found when determining the phase boundary for no

gaseous phase being present, when calculating the phase boundary in zc for no aqueous

phase being present in Section 5.3.2, an expression was defined to represent the solid

saturation when there is no aqueous phase in equation (5.17). This was:

Ss =
ρgzn

ρs(1− zn) + ρgzn
(5.47)

It can also be written as:

Ss =

[
1 +

ρs(1− zn)

ρgzn

]−1
(5.48)

This expression will represent the solid saturation when there is no aqueous phase, and so,

from equation (5.19), when zc ≥ xcg(1− zn). As there is no aqueous phase, any salt that

is present must be in a solid phase, so the only condition necessary to be on zn is zn > 0.

All Three Phases Present (Gaseous, Aqueous and Solid)

If all three phases are present, then all of the mass fractions of a component i in a phase

j, Xij , must be at their equilibrium values, xij . Therefore:

zc =
xcgρgSg + xcaρaSa
ρgSg + ρaSa + ρsSs

(5.49)

and

zn =
xnaρaSa + ρsSs

ρgSg + ρaSa + ρsSs
(5.50)

Due to the presence of all three phases, it must be that Sg = 1 − Sa − Ss. Substituting

this into equation (5.49):

zc =
xcgρg(1− Sa − Ss) + xcaρaSa
ρg(1− Sa − Ss) + ρaSa + ρsSs

(5.51)

This can be rearranged to show that Sa can be written in terms of Ss and zc, as well as

the phase densities and equilibrium mass fractions, to be:

Sa =
Ss(zcρg − xcgρg − zcρs) + xcgρg − zcρg

ρa(zc − xca) + ρg(xcg − zc)
(5.52)

The fact that Sg = 1− Sa − Ss can also be substituted into equation (5.50). This gives:

zn =
xnaρaSa + ρsSs

ρg(1− Sa − Ss) + ρaSa + ρsSs
(5.53)
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which can be rearranged to give an alternative expression for Sa, this time in terms of zn,

as well as the solid saturation, the phase densities and the equilibrium mass fractions:

Sa =
Ss(ρs + znρg − znρs)− znρg

ρa(zn − xna)− znρg
(5.54)

The two expressions for Sa must be equal. This means that, using equations (5.52)

and (5.54):

Ss(zcρg − xcgρg − zcρs) + xcgρg − zcρg
ρa(zc − xca) + ρg(xcg − zc)

=
Ss(ρs + znρg − znρs)− znρg

ρa(zn − xna)− znρg
(5.55)

which, when rearranged, gives an expression for Ss when all three phases are present:

Ss =
ρgρa[zn(xcg − xca)− xna(xcg − zc)]

ρsρa[zc(1− xna)− xca(1− zn)]− ρgρs[zc − xcg(1− zn)] + ρgρa[zn(xcg − xca)− xna(xcg − zc)]
(5.56)

This can be alternatively written as:

Ss =

[
1 +

ρsρa[zc(1− xna)− xca(1− zn)]− ρgρs[zc − xcg(1− zn)]

ρgρa[zn(xcg − xca)− xna(xcg − zc)]

]−1
(5.57)

As was found in equation (5.20), for both the gaseous and aqueous phases to be present,

it must be that xca(1−zn)
1−xna < zc < xcg(1−zn). Using equation (5.28), the condition in zn for

both an aqueous and a solid phase being present is zn >
xna(Xcg−zc)
Xcg−Xca . However, as we know

that in this case there is also a gaseous phase, and all the Xij expressions can be assumed

to be at their equilibrium values, this condition can be simplified to zn >
xna(xcg−zc)
xcg−xca .

Overall Expression for Ss

Putting together all of the above, the overall expression for Ss can be given as:

Ss =



0, zc ≥ 0, zn ≤
Xna(Xcg−zc)
Xcg−Xca

[
1 +

ρs(1−zn)
ρa(zn−xna)

]−1
, zc ≤ xca(1−zn)

1−xna
, zn > xna

[
1 +

ρsρa[zc(1−xna)−xca(1−zn)]−ρgρs[zc−xcg(1−zn)]

ρgρa[zn(xcg−xca)−xna(xcg−zc)]

]−1
,

xca(1−zn)
1−xna

< zc < xcg(1− zn), zn >
xna(xcg−zc)
xcg−xca

[
1 +

ρs(1−zn)
ρgzn

]−1
, zc ≥ xcg(1− zn), zn > 0

(5.58)
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5.5.2 Aqueous Saturation (Sa)

No Aqueous Phase

If no aqueous phase is present at a particular point, then Sa = 0. This will be the case if,

as found in equation (5.19), zc ≥ xcg(1− zn), regardless of the value of zn.

Aqueous Phase Only (No Gaseous or Solid Phases)

If only an aqueous phase is present, then it must be that Sa = 1. The conditions for this to

be the case can be given by zc ≤ xca(1−zn)
1−xna , which is the inequality from equation (5.12) that

eliminates the gaseous phase, and zn ≤ xna, which, as can be seen from equation (5.39),

is the condition for the absence of a solid phase while an aqueous phase is present.

No Gaseous Phase (Aqueous and Solid Phases Only)

In the case of no gaseous phase, it must be that Sa = 1−Ss, using the expression for Ss as

calculated in equation (5.46), when there were also only aqueous and solid phases present.

The conditions for this to be the case are also as they were described for equation (5.46):

zc ≤ xca(1−zn)
1−xna and zn > xna.

No Solid Phase (Gaseous and Aqueous Phases Present)

When calculating the boundary for a solid phase being absent in Section 5.3.4, it was

found by equation (5.24) that, when only aqueous and gaseous phases are present, the

aqueous saturation can be expressed as:

Sa =
ρg(Xcg − zc)

ρg(Xcg − zc) + ρa(zc −Xca)
(5.59)

As CO2 can only be found in either the gaseous or the aqueous phases, both of which

are present, Xcg and Xca must be at their equilibrium values of xcg and xca, respectively.

Therefore:

Sa =
ρg(xcg − zc)

ρg(xcg − zc) + ρa(zc − xca)
(5.60)
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or, alternatively:

Sa =

[
1 +

ρa(zc − xca)
ρg(xcg − zc)

]−1
(5.61)

The conditions for both gaseous and aqueous phases being present are given by equa-

tion (5.20), such that xca(1−zn)
1−xna < zc < xcg(1 − zn). Using equation (5.27) and the fact

that Xcg and Xca can be understood to be at their equilibrium values, the condition to

ensure that no solid phase is also present is zn ≤ xna(xcg−zc)
xcg−xca .

All Three Phases Present (Gaseous, Aqueous and Solid)

When finding the solid saturation for the case in which all three phases are present, two

expressions were found for Sa for this phase combination that depend on Ss. As Ss has

already been defined for this region, either equation (5.52) or equation (5.54) are adequate

definitions for Sa when all three phases are present, with Ss being taken as is given in

equation (5.57). The conditions needed for three phases to be present were also found

when calculating Ss:
xca(1−zn)
1−xna < zc < xcg(1− zn) and zn >

xna(xcg−zc)
xcg−xca .

Overall Expression for Sa

Putting together Sa as defined for the various different phase combinations, an overall

expression for Sa can be given as:

Sa =



0, zc ≥ xcg(1− zn), zn ≥ 0,

1, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna,

[
1 +

ρa(zc − xca)
ρg(xcg − zc)

]−1
,

xca(1− zn)

1− xna
< zc < xcg(1− zn), zn ≤

xna(xcg − zc)
xcg − xca

1− Ss, zc ≤
xca(1− zn)

1− xna
, zn > xna

Ss(ρs + znρg − znρs)− znρg
ρa(zn − xna)− znρg

,
xca(1− zn)

1− xna
< zc < xcg(1− zn), zn >

xna(xcg − zc)
xcg − xca

(5.62)
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5.5.3 Gaseous Saturation (Sg)

As the solid and aqueous saturations have already been defined for all possible phase

combinations, the gaseous saturation, Sg, can be found by using Sg = 1 − Sa − Ss at all

points. However, this can be simplified slightly depending on which phases are present.

When there is no gaseous phase, Sg = 0, regardless of which other phases are present, and

when gas is the only phase present, Sg = 1. If gas is present alongside only one of the

other phases (i.e. either an aqueous or a solid phase is absent), then Sg = 1 − Sh, where

the subscript h represents the other phase that is present (either the aqueous or the solid

phase). Therefore, the gaseous saturation can be defined as:

Sg =



0, zc ≤
xca(1− zn)

1− xna
, zn ≥ 0,

1, zc ≥ xcg(1− zn), zn = 0,

1− Sa,
xca(1− zn)

1− xna
< zc < xcg(1− zn), zn ≤

xna(xcg − zc)
xcg − xca

1− Ss, zc ≥ xcg(1− zn), zn > 0

1− Sa − Ss,
xca(1− zn)

1− xna
< zc < xcg(1− zn), zn >

xna(xcg − zc)
xcg − xca

(5.63)

5.6 Finding Expressions for ∂zc
∂t , ∂zw

∂t and ∂P
∂t

As was explained in Section 5.2, it is necessary to give the ODE solver expressions for the

derivatives of all of the PDVs (zc, zw and P ) with respect to time in order to find their

values at all points in space and time.

5.6.1 Expressions for ∂zc
∂t

and ∂zw
∂t

Again, recall from equations (4.2) to (4.4) that the mass fraction of component i, zi [-], is

given by:

zi =
Gi
F

(5.64)

where:

Gi = φ

Np∑
j=1

ρjXijSj (5.65)
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and F [ML−3], the total mass of all components within a given volume of fluid mixture,

can be given by:

F =

Nc∑
i=1

Gi = φ

Np∑
j=1

ρjSj (5.66)

As was illustrated in equations (4.13) to (4.15), expressions for dzi can be found by using

quotient rule on equation (5.64), such that:

dzi =
FdGi −GidF

F 2
(5.67)

or equivalently:

dzi =
1

F
(dGi − zidF ) (5.68)

From this, the partial derivative of zi with respect to time is:

∂zi
∂t

=
1

F

(
∂Gi
∂t
− zi

∂F

∂t

)
(5.69)

meaning that ∂zc
∂t and ∂zw

∂t can be found from:

∂zc
∂t

=
1

F

(
∂Gc
∂t
− zc

∂F

∂t

)
(5.70)

and
∂zw
∂t

=
1

F

(
∂Gw
∂t
− zw

∂F

∂t

)
(5.71)

respectively.

Within these equations, ∂Gi
∂t can be defined, as it was in equation (4.18) as:

∂Gi
∂t

= −1

r

∂(rHi)

∂r
(5.72)

where:

Hi =

Np∑
j=1

ρjXijqj (5.73)

where qj [LT−1] is the volumetric flux of phase j and Np is the number of phases.

Subsequently, it can be seen that:

∂F

∂t
=

Nc∑
i=1

∂Gi
∂t

= −1

r

Nc∑
i=1

∂(rHi)

∂r
(5.74)

where Nc is the number of components.

The derivatives on the right hand side of equation (5.72) and equation (5.74) are all with

respect to radial distance. They can therefore be approximated by finite difference, which
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was fully explained in Section 3.3.1. More details on using upwinding to ensure that the

approximations are given at the correct points in space were given in Section 3.3.4 and

Section 4.6.

5.6.2 An Expression for ∂P
∂t

In a three component and three phase system, the variable F depends on all three PDVs:

zc, zw and P . This means that dF could be found using chain rule as:

dF =
∂F

∂zc
dzc +

∂F

∂zw
dzw +

∂F

∂P
dP (5.75)

Therefore, an equally valid expression for ∂F
∂t as equation (5.74) is:

∂F

∂t
=
∂F

∂zc

∂zc
∂t

+
∂F

∂zw

∂zw
∂t

+
∂F

∂P

∂P

∂t
(5.76)

This can be rearranged to be in terms of ∂P
∂t , giving the following expression:

∂P

∂t
=

[
∂F

∂t
− ∂F

∂zc

∂zc
∂t
− ∂F

∂zw

∂zw
∂t

](
∂F

∂P

)−1
(5.77)

However, in order to use this expression for ∂P
∂t it is also necessary to define ∂F

∂zc
, ∂F
∂zw

and

∂F
∂P , which is significantly more complicated than finding ∂Gi

∂t and ∂F
∂t .

5.7 Derivatives of F

5.7.1 Finding the Overall Derivative of F, dF

The first step to finding the derivatives ∂F
∂zc

, ∂F
∂zw

and ∂F
∂P is to find an overall expression

for the derivative, dF . This was found in Section 4.5.1 by using chain rule and product

rule on equation (5.66), giving the expression in equation (4.28):

dF = F
dφ

φ
+ φ

Np∑
j=1

ρjSj

(
dρj
ρj

+
dSj
Sj

)
(5.78)

Within this equation,
dρj
ρj

was also found in Section 4.5.1 by using chain rule and quotient

rule on equation (4.29), to give equation (4.36):

dρj
ρj

= ρj

Nc∑
i=1

Xij

ρij

(
dρij
ρij
− dXij

Xij

)
(5.79)
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In Chapter 4, when only two phases were involved in the system, it was also possible to

produce an exact expression for
dSj
Sj

. However, this becomes significantly more complicated

in the three phase and three component system, and it becomes easier to consider the

combination of phases present before evaluating the derivative of the saturations. It is

possible to find the piecewise function
dSj
Sj

by expressing each of the terms given in the

piecewise function Sj in the form:

Sj =
v11

v11 + v12
(5.80)

where v11 and v12 are terms involving zi, Xij and ρj .

Quotient rule can be used on this expression to show that:

dSj =
dv11(v11 + v12)− v11(dv11 + dv12)

(v11 + v12)2
(5.81)

and so:
dSj
Sj

=
dv11(v11 + v12)− v11(dv11 + dv12)

(v11 + v12)2
· v11 + v12

v11
(5.82)

which simplifies to:
dSj
Sj

=
v12dv11 − v11dv12
v11(v11 + v12)

(5.83)

It should also be recalled that in parts of the system in which only one phase is present,

dSj = 0, and when only two phases are present:

Sj + Sh = 1 (5.84)

where j and h represent the subscripts of two different phases.

This means that:

dSh = −dSj (5.85)

and so:
dSh
Sh

= − dSj
1− Sj

(5.86)

5.7.2 Finding an Expression for ∂F
∂zc

Using equation (5.78), ∂F
∂zc

can be seen to be:

∂F

∂zc
=
F

φ

∂φ

∂zc
+φ

[
ρgSg

(
1

ρg

∂ρg
∂zc

+
1

Sg

∂Sg

∂zc

)
+ ρaSa

(
1

ρa

∂ρa
∂zc

+
1

Sa

∂Sa

∂zc

)
+ ρsSs

(
1

ρs

∂ρs
∂zc

+
1

Ss

∂Ss

∂zc

)]
(5.87)
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For this model, porosity is not considered to vary with composition. Therefore, it can be

said that:
∂φ

∂zc
= 0 (5.88)

and hence equation (5.87) reduces to:

∂F

∂zc
= φ

[
ρgSg

(
1

ρg

∂ρg
∂zc

+
1

Sg

∂Sg
∂zc

)
+ ρaSa

(
1

ρa

∂ρa
∂zc

+
1

Sa

∂Sa
∂zc

)
+ ρsSs

(
1

ρs

∂ρs
∂zc

+
1

Ss

∂Ss
∂zc

)]
(5.89)

Finding the Derivatives 1
ρj

∂ρj
∂zc

Within this expression, 1
ρg

∂ρg
∂zc

can be found from equation (5.79), and by considering which

components can exist in each phase, can be written as:

1

ρg

∂ρg
∂zc

= ρg

[
Xcg

ρcg

(
1

ρcg

∂ρcg
∂zc
− 1

Xcg

∂Xcg

∂zc

)
+
Xwg

ρwg

(
1

ρwg

∂ρwg
∂zc

− 1

Xwg

∂Xwg

∂zc

)]
(5.90)

Similarly:

1

ρa

∂ρa
∂zc

= ρa

[
Xca
ρca

(
1

ρca

∂ρca
∂zc

− 1

Xca

∂Xca
∂zc

)
+
Xwa
ρwa

(
1

ρwa

∂ρwa
∂zc

− 1

Xwa

∂Xwa
∂zc

)
+
Xna
ρna

(
1

ρna

∂ρna
∂zc

− 1

Xna

∂Xna
∂zc

)]
(5.91)

and
1

ρs

∂ρs
∂zc

= ρs

[
Xns

ρns

(
1

ρns

∂ρns
∂zc

− 1

Xns

∂Xns

∂zc

)]
(5.92)

As has been previously explained, the values of ρij depend on pressure and temperature,

but do not vary with composition. This means that
∂ρij
∂zc

= 0, and therefore equations (5.90)

to (5.92) can be simplified to:

1

ρg

∂ρg
∂zc

= −ρg
[

1

ρcg

∂Xcg

∂zc
+

1

ρwg

∂Xwg

∂zc

]
(5.93)

1

ρa

∂ρa
∂zc

= −ρa
[

1

ρca

∂Xca

∂zc
+

1

ρwa

∂Xwa

∂zc
+

1

ρna

∂Xna

∂zc

]
(5.94)

and
1

ρs

∂ρs
∂zc

= −ρs
[

1

ρns

∂Xns

∂zc

]
(5.95)

respectively.

Equation (5.95) can be simplified as salt is the only component that can be present in the

solid phase, meaning that Xns = 1, and this will not change with zc. Therefore, ∂Xns
∂zc

=0,
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and:

1

ρs

∂ρs
∂zc

= 0 (5.96)

Equation (5.93) can be simplified further using the fact that only two components can

exist in the gaseous phase, and hence Xwg = 1−Xcg. This means that:

∂Xwg

∂zc
= −∂Xcg

∂zc
(5.97)

and hence equation (5.93) can be written as:

1

ρg

∂ρg
∂zc

= ρg

(
1

ρwg
− 1

ρcg

)
∂Xcg

∂zc
(5.98)

It should be recalled from equation (5.31) that:

Xcg =



0, zc ≤
xca(1− zn)

1− xna

xcg,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

zc
1− zn

, zc ≥ xcg(1− zn)

(5.99)

As was shown in Section 2.3, the values of the equilibrium mass fractions xij are calculated

using the methods of Spycher et al. (2003) and Spycher and Pruess (2005), and depend

on pressure and temperature rather than composition. It can therefore be assumed that

∂xij
∂zi

= 0 for all components i and phases j. Using this assumption and noting that ∂zi
∂zk

= 0

when i 6= k and zi and zk are PDVs, it can be found from equation (5.99) that:

∂Xcg

∂zc
=


0, zc < xcg(1− zn)

zw
(1− zn)2

, zc ≥ xcg(1− zn)

(5.100)

This expression can be substituted into equation (5.98) to illustrate that 1
ρg

∂ρg
∂zc

is also a

piecewise function. Its value will vary with the value of zc.

It can be seen from equation (5.94) that ∂Xca
∂zc

, ∂Xwa
∂zc

and ∂Xna
∂zc

need to be evaluated in

order to find an expression for 1
ρa

∂ρa
∂zc

. Recall from equation (5.40) that:
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Xca =



zc, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna

zc(1− xna)
1− zn

, zc ≤
xca(1− zn)

1− xna
, zn > xna

xca,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

0, zc ≥ xcg(1− zn)

(5.101)

Again using the assumptions that
∂xij
∂zi

= 0 and ∂zi
∂zk

= 0 when i 6= k and zi and zk are

PDVs, it follows that:

∂Xca

∂zc
=



1, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna

zw(1− xna)
(1− zn)2

, zc ≤
xca(1− zn)

1− xna
, zn > xna

0, zc >
xca(1− zn)

1− xna

(5.102)

Similarly, it can be recalled from equation (5.43) that:

Xna =



zn(Xcg −Xca)

Xcg − zc
, zc < xcg(1− zn), zn ≤

xna(Xcg − zc)
Xcg −Xca

xna, zc < xcg(1− zn), zn >
xna(Xcg − zc)
Xcg −Xca

0, zc ≥ xcg(1− zn), zn ≥ 0

(5.103)

Use of the same assumptions as when finding the previous derivatives
∂Xij
∂zc

, as well as

quotient rule, gives that:

∂Xna

∂zc
=



zn
[

∂Xcg
∂zc

(Xca−zc)+ ∂Xca
∂zc

(zc−Xcg)
]
+(Xcg−Xca)(zn+zc−Xcg)

(Xcg−zc)2 , zc < xcg(1− zn), zn ≤ xna(Xcg−zc)
Xcg−Xca

0, zc < xcg(1− zn), zn >
xna(Xcg−zc)
Xcg−Xca

0, zc ≥ xcg(1− zn), zn ≥ 0

(5.104)
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Finally, as Xca +Xwa +Xna = 1, it must be that:

∂Xwa

∂zc
= −∂Xca

∂zc
− ∂Xna

∂zc
(5.105)

Therefore, all of the terms in equation (5.94) have been evaluated for every possible

combination of phases present, and thus 1
ρa

∂ρa
∂zc

can be expressed.

Finding the Derivatives 1
Sj

∂Sj
∂zc

As was explained in Section 5.7.1, it is much more difficult to find exact expressions for
dSj
Sj

when three phases are involved than only two phases, as was the case in Chapter 4. This

means that it is fairly complicated to find expressions for 1
Sj

∂Sj
∂zc

, as is needed to evaluate

∂F
∂zc

in equation (5.87). However, the necessary expressions can be found by writing the

saturations in the format given in equation (5.80).

Recall from equation (5.58) that:

Ss =



0, zc ≥ 0, zn ≤
Xna(Xcg−zc)
Xcg−Xca

[
1 +

ρs(1−zn)
ρa(zn−xna)

]−1
, zc ≤ xca(1−zn)

1−xna
, zn > xna

[
1 +

ρsρa[zc(1−xna)−xca(1−zn)]−ρgρs[zc−xcg(1−zn)]

ρgρa[zn(xcg−xca)−xna(xcg−zc)]

]−1
,

xca(1−zn)
1−xna

< zc < xcg(1− zn), zn >
xna(xcg−zc)
xcg−xca

[
1 +

ρs(1−zn)
ρgzn

]−1
, zc ≥ xcg(1− zn), zn > 0

(5.106)

It can immediately be seen from this that when no solid phase is present, i.e. when

zn ≤ Xna(Xcg−zc)
Xcg−Xca , that Ss = 0, and hence ∂Ss

∂zc
= 0. Additionally, it should be recalled that

in Section 5.5.1, in which the values in equation (5.106) were calculated, the saturations

were initially expressed in the format described in equation (5.80). Focusing firstly on the

case in which there is no gaseous phase, and only aqueous and solid phases are present

(i.e. when zc ≤ xca(1−zn)
1−xna and zn > xna), it can be seen from equation (5.45) that the

expression for solid saturation can also be written as:

Ss =
ρa(zn − xna)

ρs(1− zn) + ρa(zn − xna)
(5.107)

This can be expressed as:

Ss =
v11

v11 + v12
(5.108)
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where:

v11 = ρa(zn − xna) (5.109)

and

v12 = ρs(1− zn) (5.110)

From equation (5.83):

dSs
Ss

=
v12dv11 − v11dv12
v11(v11 + v12)

(5.111)

and hence:

1

Ss

∂Ss
∂zc

=
v12

∂v11
∂zc
− v11 ∂v12∂zc

v11(v11 + v12)
(5.112)

where:

∂v11
∂zc

= (zn − xna)
∂ρa
∂zc
− ρa (5.113)

and

∂v12
∂zc

= ρs + (1− zn)
∂ρs
∂zc

(5.114)

Within these derivatives,
∂ρj
∂zc

can be found by from the density derivatives evaluated earlier

in this section.

The same can be done to evaluate the derivative of the solid saturation when there is no

aqueous phase, and only gaseous and solid phases are present. When this is the case, it

must be that zc ≥ xcg(1− zn) and zn > 0. Equation (5.47) shows that the solid saturation

in this situation can be written as:

Ss =
ρgzn

ρs(1− zn) + ρgzn
(5.115)

Therefore:

v11 = ρgzn (5.116)

and

v12 = ρs(1− zn) (5.117)

As with the previous case in which there was no gaseous phase present, 1
Ss

∂Ss
∂zc

can be

found by use of equation (5.112):

1

Ss

∂Ss
∂zc

=
v12

∂v11
∂zc
− v11 ∂v12∂zc

v11(v11 + v12)
(5.118)
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In this case:

∂v11
∂zc

= zn
∂ρg
∂zc
− ρg (5.119)

and

∂v12
∂zc

= ρs + (1− zn)
∂ρs
∂zc

(5.120)

When all three phases are present, and hence xca(1−zn)
1−xna < zc < xcg(1 − zn) and zn >

xna(xcg−zc)
xcg−xca , it can be seen from equation (5.56) that:

Ss =
ρgρa[zn(xcg − xca)− xna(xcg − zc)]

ρsρa[zc(1− xna)− xca(1− zn)]− ρgρs[zc − xcg(1− zn)] + ρgρa[zn(xcg − xca)− xna(xcg − zc)]
(5.121)

from which it follows that, when all three phases are present, the solid saturation can be

expressed as:

Ss =
v11

v11 + v12
(5.122)

with

v11 = ρgρa[zn(xcg − xca)− xna(xcg − zc)] (5.123)

and

v12 = ρsρa[zc(1− xna)− xca(1− zn)]− ρgρs[zc − xcg(1− zn)] (5.124)

and hence the derivatives that must be substituted into equation (5.112) to find 1
Ss

∂Ss
∂zc

are:

∂v11
∂zc

=

[
ρa
∂ρg
∂zc

+ ρg
∂ρa
∂zc

]
[zn(xcg − xca)− xna(xcg − zc)] + ρgρa(xca + xna − xcg) (5.125)

and

∂v12
∂zc

=

[
ρs
∂ρa
∂zc

+ ρa
∂ρs
∂zc

]
[zc(1− xna)− xca(1− zn)] + ρsρaxwa

−
[
ρg
∂ρs
∂zc

+ ρs
∂ρs
∂zc

]
[zc − xcg(1− zn)]− ρgρsxwg

(5.126)

By expressing each piecewise component of Ss in terms of v11 and v12, the full piecewise

expression for 1
Ss

∂Ss
∂zc

has therefore been found.
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Recall from equation (5.62) that the aqueous saturation is given by:

Sa =



0, zc ≥ xcg(1− zn), zn ≥ 0,

1, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna,

[
1 +

ρa(zc − xca)
ρg(xcg − zc)

]−1
,

xca(1− zn)

1− xna
< zc < xcg(1− zn), zn ≤

xna(xcg − zc)
xcg − xca

1− Ss, zc ≤
xca(1− zn)

1− xna
, zn > xna

Ss(ρs + znρg − znρs)− znρg
ρa(zn − xna)− znρg

,
xca(1− zn)

1− xna
< zc < xcg(1− zn), zn >

xna(xcg − zc)
xcg − xca

(5.127)

It can be instantly seen from this expression that when the aqueous saturation is constant,

either by there being no aqueous phase present, and so Sa = 0, or the aqueous phase being

the only phase present, and so Sa = 1, it must be that ∂Sa
∂zc

= 0. It can also be seen that

when there is no gaseous phase, and only the aqueous and solid phases are present (and so

zc ≤ xca(1−zn)
1−xna and zn > xna),

∂Sa
∂zc

can be found from the derivative of the solid saturation

in this region that has already been calculated, such that:

∂Sa
∂zc

= −∂Ss
∂zc

(5.128)

or
1

Sa

∂Sa
∂zc

= − 1

1− Ss
∂Ss
∂zc

(5.129)

However, when only aqueous and gaseous phases are present in the system, it is nec-

essary to return to equation (5.80) in order to calculate 1
Sa

∂Sa
∂zc

. It can be recalled

from equation (5.60) that when only aqueous and gaseous phases are present, and hence

xca(1−zn)
1−xna < zc < xcg(1 − zn) and zn ≤ xna(xcg−zc)

xcg−xca , the aqueous saturation can also be

expressed as:

Sa =
ρg(xcg − zc)

ρg(xcg − zc) + ρa(zc − xca)
(5.130)

or, equivalently:

Sa =
v11

v11 + v12
(5.131)

where:

v11 = ρg(xcg − zc) (5.132)

and

v12 = ρa(zc − xca) (5.133)
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From equation (5.80), it must be that:

1

Sa

∂Sa
∂zc

=
v12

∂v11
∂zc
− v11 ∂v12∂zc

v11(v11 + v12)
(5.134)

where:
∂v11
∂zc

= (xcg − zc)
∂ρg
∂zc
− ρg (5.135)

and
∂v12
∂zc

= (zc − xca)
∂ρa
∂zc

+ ρa (5.136)

The aqueous saturation when all three phases are present, and hence xca(1−zn)
1−xna < zc <

xcg(1 − zn) and zn >
xna(xcg−zc)
xcg−xca , has been calculated in terms of Ss, the derivative of

which has already been found. It is best to express Sa in this case as it is written in

equation (5.54):

Sa =
Ss(ρs + znρg − znρs)− znρg

ρa(zn − xna)− znρg
(5.137)

Quotient rule can then be used to calculate ∂Sa
∂zc

, such that:

∂Sa
∂zc

=
v ∂u∂zc − u

∂v
∂zc

v2
(5.138)

where:

u = Ss(ρs + znρg − znρs)− znρg (5.139)

and

v = ρa(zn − xna)− znρg (5.140)

and so:

∂u

∂zc
= (ρs+znρg−znρs)

∂Ss
∂zc

+Ss

[
(1− zn)

∂ρs
∂zc

+ zn
∂ρg
∂zc

+ ρs − ρg
]

+ρg−zn
∂ρg
∂zc

(5.141)

and
∂v

∂zc
= (zn − xna)

∂ρa
∂zc

+ ρg − zn
∂ρg
∂zc
− ρa (5.142)

The derivative of the gas saturation with respect to zc,
∂Sg
∂zc

, can now be found from:

∂Sg
∂zc

= −∂Sa
∂zc
− ∂Ss
∂zc

(5.143)

as ∂Sa
∂zc

and ∂Ss
∂zc

have been defined for all possible phase combinations.

In all cases, the value of 1
Sj

∂Sj
∂zc

can be found from
∂Sj
∂zc

by simply dividing by the relevant

saturation value, Sj .

It is now possible to give an expression for ∂F
∂zc

, as all terms within equation (5.89) have

been defined.
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5.7.3 Finding an Expression for ∂F
∂zw

An expression for ∂F
∂zw

can be found using a very similar method to that used to find ∂F
∂zc

.

Using equation (5.78) and again taking into account that porosity does not vary with

composition, and hence ∂φ
∂zw

= 0, ∂F
∂zw

can be calculated to be:

∂F

∂zw
= φ

[
ρgSg

(
1

ρg

∂ρg
∂zw

+
1

Sg

∂Sg
∂zw

)
+ ρaSa

(
1

ρa

∂ρa
∂zw

+
1

Sa

∂Sa
∂zw

)
+ ρsSs

(
1

ρs

∂ρs
∂zw

+
1

Ss

∂Ss
∂zw

)]
(5.144)

Finding the Derivatives 1
ρj

∂ρj
∂zw

In the previous subsection, expressions for 1
ρj

∂ρj
∂zc

were found by use of equation (5.79),

which gives the general derivative
dρj
ρj

. The assumption was then made that ρij does not

vary with composition and so
∂ρij
∂zi

= 0, and consideration was made of which components

can exist in which phases in order to simplify the equations as much as possible. By

following the same steps to find 1
ρj

∂ρj
∂zw

, the following equations can be found:

1

ρg

∂ρg
∂zw

= ρg

(
1

ρwg
− 1

ρcg

)
∂Xcg

∂zw
(5.145)

1

ρa

∂ρa
∂zw

= −ρa
[

1

ρca

∂Xca

∂zw
+

1

ρwa

∂Xwa

∂zw
+

1

ρna

∂Xna

∂zw

]
(5.146)

and

1

ρs

∂ρs
∂zw

= 0 (5.147)

In order to fully evaluate these expressions, the derivatives
∂Xij
∂zw

must be calculated. Recall

from equation (5.31) that:

Xcg =



0, zc ≤
xca(1− zn)

1− xna

xcg,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

zc
1− zn

, zc ≥ xcg(1− zn)

(5.148)

Again using the assumptions that
∂xij
∂zi

= 0 and ∂zi
∂zk

= 0 when i 6= k and zi and zk are
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PDVs, it follows that:

∂Xcg

∂zw
=


0, zc < xcg(1− zn)

− zc
(1− zn)2

, zc ≥ xcg(1− zn)

(5.149)

This derivative can be substituted into equation (5.145) to give the complete equation for

1
ρg

∂ρg
∂zw

.

The derivatives ∂Xca
∂zw

, ∂Xwa
∂zw

and ∂Xna
∂zw

must be calculated in order to find 1
ρa

∂ρa
∂zw

. It can

be seen from equation (5.40) that:

Xca =



zc, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna

zc(1− xna)
1− zn

, zc ≤
xca(1− zn)

1− xna
, zn > xna

xca,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

0, zc ≥ xcg(1− zn)

(5.150)

which means that:

∂Xca

∂zw
=



0, zc ≤
xca(1− zn)

1− xna
, zn ≤ xna

−zc(1− xna)
(1− zn)2

, zc ≤
xca(1− zn)

1− xna
, zn > xna

0, zc >
xca(1− zn)

1− xna

(5.151)

Xna was found by equation (5.43) to be:

Xna =



zn(Xcg −Xca)

Xcg − zc
, zc < xcg(1− zn), zn ≤

xna(Xcg − zc)
Xcg −Xca

xna, zc < xcg(1− zn), zn >
xna(Xcg − zc)
Xcg −Xca

0, zc ≥ xcg(1− zn), zn ≥ 0

(5.152)
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from which it follows that:

∂Xna

∂zw
=



zn
[

∂Xcg
∂zw

(Xca−zc)+ ∂Xca
∂zw

(zc−Xcg)
]
+(Xcg−zc)(Xca−Xcg)

(Xcg−zc)2 , zc < xcg(1− zn), zn ≤ xna(Xcg−zc)
Xcg−Xca

0, zc < xcg(1− zn), zn >
xna(Xcg−zc)
Xcg−Xca

0, zc ≥ xcg(1− zn), zn ≥ 0

(5.153)

Finally, as Xca +Xwa +Xna = 1, ∂Xwa
∂zw

can be found from:

∂Xwa

∂zw
= −∂Xca

∂zw
− ∂Xna

∂zw
(5.154)

All terms in equations (5.145) to (5.147) have now been evaluated, and therefore 1
ρj

∂ρj
∂zw

can be fully expressed for each phase j.

Finding the Derivatives 1
Sj

∂Sj
∂zw

It was shown in Section 5.7.1 that by writing saturations in the form given in equa-

tion (5.80), the derivative
dSj
Sj

can be found from equation (5.83). The previous subsection,

in which the derivative ∂F
∂zc

was found, has already expressed the saturations in the required

format.

Looking first at solid saturation, it can be seen from equation (5.58) that when no solid

phase is present and hence Ss = 0, it must also be the case that ∂Ss
∂zw

= 0. When no

gaseous phase is present, and the only phases present in the system are aqueous and solid

(i.e. when zc ≤ xca(1−zn)
1−xna and zn > xna), it was illustrated in equations (5.107) to (5.110)

that the solid saturation can be written as:

Ss =
ρa(zn − xna)

ρs(1− zn) + ρa(zn − xna)
(5.155)

which can also be expressed as:

Ss =
v11

v11 + v12
(5.156)

where:

v11 = ρa(zn − xna) (5.157)

and

v12 = ρs(1− zn) (5.158)
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From equation (5.83):

dSs
Ss

=
v12dv11 − v11dv12
v11(v11 + v12)

(5.159)

and hence:

1

Ss

∂Ss
∂zw

=
v12

∂v11
∂zw
− v11 ∂v12∂zw

v11(v11 + v12)
(5.160)

where:

∂v11
∂zw

= (zn − xna)
∂ρa
∂zw

− ρa (5.161)

and

∂v12
∂zw

= ρs + (1− zn)
∂ρs
∂zw

(5.162)

Similarly, when there is no aqueous phase and only the gaseous and solid phases are

present, and therefore the conditions in the system are that zc ≥ xcg(1− zn) and zn > 0,

equations (5.116) and (5.117) illustrated that to write Ss in the form of equation (5.80)

the necessary terms will be:

v11 = ρgzn (5.163)

and

v12 = ρs(1− zn) (5.164)

This means that the derivatives that need to be substituted into equation (5.160) in order

to find 1
Ss

∂Ss
∂zw

for this phase combination are:

∂v11
∂zw

= zn
∂ρg
∂zw

− ρg (5.165)

and

∂v12
∂zw

= ρs + (1− zn)
∂ρs
∂zw

(5.166)

When all three phases are present, and so xca(1−zn)
1−xna < zc < xcg(1−zn) and zn >

xna(xcg−zc)
xcg−xca ,

equations (5.123) and (5.124) showed that Ss can be written in the form of equation (5.80)

with:

v11 = ρgρa[zn(xcg − xca)− xna(xcg − zc)] (5.167)

and

v12 = ρsρa[zc(1− xna)− xca(1− zn)]− ρgρs[zc − xcg(1− zn)] (5.168)

Therefore, in order to find 1
Ss

∂Ss
∂zw

for the condition in which all three phases are present,

the derivatives that need to be substituted into equation (5.160) are:

∂v11
∂zw

=

[
ρa
∂ρg
∂zw

+ ρg
∂ρa
∂zw

]
[zn(xcg − xca)− xna(xcg − zc)] + ρgρa(xca − xcg) (5.169)
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and

∂v12
∂zw

=

[
ρs
∂ρa
∂zw

+ ρa
∂ρs
∂zw

]
[zc(1− xna)− xca(1− zn)]− ρsρaxca

−
[
ρg
∂ρs
∂zw

+ ρs
∂ρs
∂zw

]
[zc − xcg(1− zn)] + ρgρsxcg

(5.170)

The full piecewise expression for 1
Ss

∂Ss
∂zw

has now been found, as it has been calculated for

every possible combination of phases present.

Referring back to equation (5.62), it can be seen that, as was the case when taking

derivatives with respect to zc,
∂Sa
∂zw

= 0 when Sa is constant. This occurs in the aqueous

only zone, in which Sa = 1, and when there is no aqueous phase present, and so Sa = 0.

Equation (5.62) shows that when no gaseous phase is present, and hence zc ≤ xca(1−zn)
1−xna

and zn > xna, Sa = 1− Ss. This means that ∂Sa
∂zw

can be calculated from the value of ∂Ss
∂zw

for this zone that has already been found, such that:

∂Sa
∂zw

= −∂Ss
∂zw

(5.171)

When xca(1−zn)
1−xna < zc < xcg(1−zn) and zn >

xna(xcg−zc)
xcg−xca , which corresponds to only gaseous

and aqueous phases present in the system, equations (5.130) to (5.133) showed that the

aqueous saturation can be written as:

Sa =
ρg(xcg − zc)

ρg(xcg − zc) + ρa(zc − xca)
(5.172)

or:

Sa =
v11

v11 + v12
(5.173)

where:

v11 = ρg(xcg − zc) (5.174)

and

v12 = ρa(zc − xca) (5.175)

Therefore, using equation (5.80), it must be that:

1

Sa

∂Sa
∂zw

=
v12

∂v11
∂zw
− v11 ∂v12∂zw

v11(v11 + v12)
(5.176)

in which:
∂v11
∂zw

= (xcg − zc)
∂ρg
∂zw

(5.177)

and
∂v12
∂zw

= (zc − xca)
∂ρa
∂zw

(5.178)

155



As was shown when calculating the saturation derivatives with respect to zc, when all

three phases are present (i.e. when xca(1−zn)
1−xna < zc < xcg(1− zn) and zn >

xna(xcg−zc)
xcg−xca ), the

aqueous saturation has been expressed in terms of Ss. In order to calculate the derivative

of Sa in this scenario, it is best to express it as it is written in equation (5.54), such that:

Sa =
Ss(ρs + znρg − znρs)− znρg

ρa(zn − xna)− znρg
(5.179)

∂Sa
∂zw

can then be calculated using quotient rule, where:

∂Sa
∂zw

=
v ∂u
∂zw
− u ∂v

∂zw

v2
(5.180)

in which:

u = Ss(ρs + znρg − znρs)− znρg (5.181)

and

v = ρa(zn − xna)− znρg (5.182)

and hence:

∂u

∂zw
= (ρs+znρg−znρs)

∂Ss
∂zw

+Ss

[
(1− zn)

∂ρs
∂zw

+ zn
∂ρg
∂zw

+ ρs − ρg
]

+ρg−zn
∂ρg
∂zw

(5.183)

and
∂v

∂zw
= (zn − xna)

∂ρa
∂zw

+ ρg − zn
∂ρg
∂zw

− ρa (5.184)

The derivative of the gas saturation with respect to zw,
∂Sg
∂zw

can now be found at all points

using:
∂Sg
∂zw

= −∂Sa
∂zw

− ∂Ss
∂zw

(5.185)

A full expression for ∂F
∂zw

can now be calculated, as all terms within equation (5.144) have

been defined.

5.7.4 Finding an Expression for ∂F
∂P

The expression for dF given in equation (5.78) is also needed to find the derivative ∂F
∂P .

Taking the derivatives in this equation to be with respect to P gives:

∂F

∂P
=
F

φ

∂φ

∂P
+φ

[
ρgSg

(
1

ρg

∂ρg
∂P

+
1

Sg

∂Sg

∂P

)
+ ρaSa

(
1

ρa

∂ρa
∂P

+
1

Sa

∂Sa

∂P

)
+ ρsSs

(
1

ρs

∂ρs
∂P

+
1

Ss

∂Ss

∂P

)]
(5.186)
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As was explained in Section 4.5.1 when looking at the two component and two phase

system, it is often more convenient to write the equation for ∂F
∂P in terms of rock and fluid

compressibility. It should be recalled that the rock compressibility, αr [M−1LT2], shows

how porosity changes with varying pressure, and is equal to:

αr =
1

φ

∂φ

∂P
(5.187)

Fluid compressibility for a phase j, αj [M−1LT2], illustrates how phase density changes

with pressure, and is expressed as:

αj =
1

ρj

∂ρj
∂Pj

(5.188)

The compressibility of a component i in a phase j, αij [M−1LT2], is similarly given by:

αij =
1

ρij

∂ρij
∂Pj

(5.189)

However, as was described in Section 4.5.1, many numerical codes approximate the value

of αij by taking derivatives to be with respect to the global pressure, P , rather than the

phase pressure, Pj , which in turn means that the overall phase compressibility, αj , also

uses derivatives with respect to P as opposed to Pj . This approximation is adopted here,

as it makes the code significantly easier to implement and makes very little difference to

the final output. Therefore, within this model, αij is approximated as:

αij =
1

ρij

∂ρij
∂P

(5.190)

and αj can be assumed to be:

αj =
1

ρj

∂ρj
∂P

(5.191)

By incorporating both the rock and phase compressibilities, equation (5.186) can be

written as:

∂F

∂P
= Fαr + φ

[
ρgSg

(
αg +

1

Sg

∂Sg
∂P

)
+ ρaSa

(
αa +

1

Sa

∂Sa
∂P

)
+ ρsSs

(
αs +

1

Ss

∂Ss
∂P

)]
(5.192)

Finding the Compressibilities αj

Within this model, αr and αs are both given a set value by the user. The value used for αs is

4.17x1013 Pa−1. This was found by assuming the system to be at the constant temperature

of 40◦C and interpolating from the compressibilities of NaCl at varying temperatures given

by Robertson et al. (1958).
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The compressibilities of the gaseous and aqueous phases, αg and αa respectively, can be

calculated using equation (5.79), such that:

αj =
1

ρj

∂ρj
∂P

= ρj

Nc∑
i=1

Xij

ρij

(
1

ρij

∂ρij
∂P
− 1

Xij

∂Xij

∂P

)
(5.193)

or, equivalently:

αj = ρj

Nc∑
i=1

Xij

ρij

(
αij −

1

Xij

∂Xij

∂P

)
(5.194)

As was stated in Section 4.5.1, the values of αij are found by differentiation of several

different equations of state.

Taking into account the components that can exist in the gaseous and aqueous phases,

equation (5.194) can be used to conclude that:

αg = ρg

[
Xcg

ρcg

(
αcg −

1

Xcg

∂Xcg

∂P

)
+
Xwg

ρwg

(
αwg −

1

Xwg

∂Xwg

∂P

)]
(5.195)

and

αa = ρa

[
Xca

ρca

(
αca −

1

Xca

∂Xca

∂P

)
+
Xwa

ρwa

(
αwa −

1

Xwa

∂Xwa

∂P

)
+
Xna

ρna

(
αna −

1

Xna

∂Xna

∂P

)]
(5.196)

It is clear from equations (5.195) and (5.196) that in order to evaluate expressions for the

compressibilities αj it is necessary to calculate
∂Xij
∂P for all required combinations of i and

j.

Recalling the piecewise expression for Xcg, equation (5.31), and that composition does not

depend on pressure, from which it follows that ∂zi
∂P = 0, it can be calculated that:

∂Xcg

∂P
=



0, zc ≤
xca(1− zn)

1− xna

∂xcg
∂P

,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

0, zc ≥ xcg(1− zn)

(5.197)

The values of
∂xij
∂P can be found using finite difference, with the exception of ∂xna

∂P which

is assumed to be equal to zero, as its value is calculated using an equation by Potter et

al. (1977) that does not take pressure into account.
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The derivative
∂Xwg
∂P can also be found from equation (5.197) as:

∂Xwg

∂P
= −∂Xcg

∂P
(5.198)

Similarly, recalling the full piecewise expression for Xca from equation (5.40) and using

the same assumptions for taking derivatives with respect to pressure gives that:

∂Xca

∂P
=



0, zc ≤
xca(1− zn)

1− xna
,

∂xca
∂P

,
xca(1− zn)

1− xna
< zc < xcg(1− zn)

0, zc ≥ xcg(1− zn)

(5.199)

Additionally, taking pressure derivatives of the expressions in equation (5.43) leads to:

∂Xna

∂P
=



zn

[
(Xca − zc)∂Xcg∂P + (zc −Xcg)

∂Xca
∂P

]
(Xcg − zc)2

, zc < xcg(1− zn), zn ≤
xna(Xcg − zc)
Xcg −Xca

∂xna
∂P

, zc < xcg(1− zn), zn >
xna(Xcg − zc)
Xcg −Xca

0, zc ≥ xcg(1− zn), zn ≥ 0

(5.200)

∂Xwa
∂P can subsequently be found from:

∂Xwa

∂P
= −∂Xca

∂P
− ∂Xna

∂P
(5.201)

meaning that all necessary values of
∂Xij
∂P have been defined, and hence expressions can be

given for all compressibilities αj .

Finding the Derivatives 1
Sj

∂Sj
∂P

The only remaining terms left to express in order to fully define ∂F
∂P from equation (5.192)

are the saturation derivatives with respect to pressure, 1
Sj

∂Sj
∂P . These derivatives can again

be calculated by writing the saturation expressions in the form given in equation (5.80),

from which it follows that the derivatives can be found using equation (5.83).

By looking at equation (5.58), it can be seen that when no solid phase is present, Ss = 0

and so ∂Ss
∂P will also be zero. When it is the case that zc ≤ xca(1−zn)

1−xna and zn > xna, and
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so no gaseous phase is present but both aqueous and solid phases are, equations (5.107)

to (5.110) illustrated that the solid saturation can be written as:

Ss =
ρa(zn − xna)

ρs(1− zn) + ρa(zn − xna)
(5.202)

which can also expressed as:

Ss =
v11

v11 + v12
(5.203)

where:

v11 = ρa(zn − xna) (5.204)

and

v12 = ρs(1− zn) (5.205)

Using equation (5.83):
dSs
Ss

=
v12dv11 − v11dv12
v11(v11 + v12)

(5.206)

and so:
1

Ss

∂Ss
∂P

=
v12

∂v11
∂P − v11

∂v12
∂P

v11(v11 + v12)
(5.207)

Taking the derivatives with respect to pressure of v11 and v12, using the assumptions that

∂xna
∂P = 0 and ∂zi

∂P = 0, gives:
∂v11
∂P

= (zn − xna)
∂ρa
∂P

(5.208)

and
∂v12
∂P

= (1− zn)
∂ρs
∂P

(5.209)

Recall from equation (5.191) that:

αj =
1

ρj

∂ρj
∂P

(5.210)

which can be rearranged to show that:

∂ρj
∂P

= αjρj (5.211)

Given that the compressibilities αj have already been calculated, it is more convenient to

write the derivatives
∂ρj
∂P in this form. Therefore, ∂v11

∂P and ∂v12
∂P can be written as:

∂v11
∂P

= (zn − xna)αaρa (5.212)

and
∂v12
∂P

= (1− zn)αsρs (5.213)
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In the situation when both gaseous and solid phases are present without an aqueous phase,

which means that zc ≥ xcg(1− zn) and zn > 0, equations (5.116) and (5.117) showed that

the solid saturation can be expressed in the form of equation (5.80) with:

v11 = ρgzn (5.214)

and

v12 = ρs(1− zn) (5.215)

and hence 1
Ss

∂Ss
∂P can be found using equation (5.207) with:

∂v11
∂P

= znαgρg (5.216)

and
∂v12
∂P

= (1− zn)αsρs (5.217)

Finally, if all three phases are present and so xca(1−zn)
1−xna < zc < xcg(1 − zn) and zn >

xna(xcg−zc)
xcg−xca , the solid saturation can be written in the format given by equation (5.80)

with:

v11 = ρgρa[zn(xcg − xca)− xna(xcg − zc)] (5.218)

and

v12 = ρsρa[zc(1− xna)− xca(1− zn)]− ρgρs[zc − xcg(1− zn)] (5.219)

as illustrated by equations (5.123) and (5.124).

Using these terms, 1
Ss

∂Ss
∂P for this zone can be calculated by using equation (5.207) with:

∂v11
∂P

= ρgρa

[
(αg + αa)[zn(xcg − xca)− xna(xcg − zc)] + (zn − xna)

∂xcg
∂P
− zn

∂xca
∂P

]
(5.220)

and

∂v12
∂P

= ρaρs

[
(αa + αs)[zc(1− xna)− xca(1− zn)]− (1− zn)

∂xca
∂P

]
−ρgρs

[
(αg + αs)[zc − xcg(1− zn)]− (1− zn)

∂xcg
∂P

] (5.221)

A piecewise function for 1
Ss

∂Ss
∂P can now be expressed, as terms have been calculated for

every possible combination of phases.

It is now necessary to calculate derivatives with respect to pressure for the aqueous satura-

tion. The values of Sa for different phase combinations were expressed in equation (5.62).

Again, in situations where the aqueous saturation is constant, i.e. Sa = 0 due to no
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aqueous phase being present or Sa = 1 as both the gaseous and solid phases are absent,

∂Sa
∂P = 0. Additionally, if only aqueous and solid phases are present, and so zc ≤ xca(1−zn)

1−xna

and zn > xna, it must be that ∂Sa
∂P = −∂Ss

∂P . Within this equation, the expression for ∂Ss
∂P

that was previously calculated for these conditions can be used.

When xca(1−zn)
1−xna < zc < xcg(1 − zn) and zn ≤ xna(xcg−zc)

xcg−xca , and hence only aqueous and

gaseous phases are present, it is necessary to return to the use of equation (5.80) and

equation (5.83) to find an expression for 1
Sa

∂Sa
∂P . Equations (5.130) to (5.133) illustrated

that in this case, the aqueous saturation can be given as:

Sa =
ρg(xcg − zc)

ρg(xcg − zc) + ρa(zc − xca)
(5.222)

or, equivalently:

Sa =
v11

v11 + v12
(5.223)

where:

v11 = ρg(xcg − zc) (5.224)

and

v12 = ρa(zc − xca) (5.225)

Using equation (5.83), it must be that:

1

Sa

∂Sa
∂P

=
v12

∂v11
∂P − v11

∂v12
∂P

v11(v11 + v12)
(5.226)

in which:
∂v11
∂P

= ρg

[
αg(xcg − zc) +

∂xcg
∂P

]
(5.227)

and
∂v12
∂P

= ρa

[
αa(zc − xca)−

∂xca
∂P

]
(5.228)

As was shown in equation (5.54), the aqueous saturation when all three phases are present

is expressed in terms of the solid saturation, such that:

Sa =
Ss(ρs + znρg − znρs)− znρg

ρa(zn − xna)− znρg
(5.229)

The quotient rule can now be used to find ∂Sa
∂P , such that:

∂Sa
∂P

=
v ∂u∂P − u

∂v
∂P

v2
(5.230)

where:

u = Ss(ρs + znρg − znρs)− znρg (5.231)
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and

v = ρa(zn − xna)− znρg (5.232)

and hence:

∂u

∂P
= (ρs + znρg − znρs)

∂Ss
∂P

+ Ss[ρsαs(1− zn) + znρgαg]− znρgαg (5.233)

and

∂v

∂P
= (zn − xna)ρaαa − znρgαg (5.234)

Finally, the derivative of the gaseous saturation with respect to pressure,
∂Sg
∂P can be found

by:

∂Sg
∂P

= −∂Sa
∂P
− ∂Ss
∂P

(5.235)

All terms in equation (5.192) have now been defined, and so a full, piecewise expression

for ∂F
∂P can now be found by substituting all of the necesary terms into equation (5.192).

It follows that the derivatives ∂F
∂zc

, ∂F
∂zw

and ∂F
∂P have now all been fully defined. This means

that all terms within ∂P
∂t have now been found, and hence an expression for ∂P

∂t can be

given to the ODE solver, alongside those for ∂zc
∂t and ∂zw

∂t . The values of the PDVs, zc, zw

and P , can therefore be found at all times and all points in space.

5.8 Model Output

The first output of the three phase model is the global pressure and gas saturation plotted

against the radial distance, r, at several different times up to 100 years, as shown in

Figure 5.1. As was the case with the output of the two phase model in Chapter 4, both

the pressure and gas saturation are compared to the analytical solution found by Mathias

et al. (2011b), which does not take into account the effects of capillary pressure. The

parameters inputted into the model to produce Figure 5.1 and the figure illustrating the

variation in solid saturation with radial distance for up to 100 years, Figure 5.2, are:
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Parameter Value Parameter Value Parameter Value

rw (m) 0.25 krg0 (-) 0.3 H (m) 30

rE (m) 2.5x105 kra0 (-) 1 Pc0 (Pa) 19600

P0 (Pa) 107 ng (-) 3 m (-) 0.5

αr (Pa−1) 3.54x10−10 na (-) 3 M0 (Mt/year) 0.3

k (m2) 10−13 Sar (-) 0.5 T (◦C) 40

φ (-) 0.2 Sgc (-) 0 Pcd (Pa) 108

αs (Pa−1) 4.17x10−13 Xnb (-) 0.15

Table 5.1: Constant parameters inputted into the three component and three phase model, to

give the output in Figures 5.1 and 5.2.

Note that Xnb [-] represents the initial mass fraction of salt dissolved within the brine.

The model again appears to be unstable, because, like the two phase model, it will not run

for a significant number of points when Pcd is set to the desired value of capillary pressure

at zero aqueous saturation of Webb (2000), which was 109 Pa. It should be noted from

Table 5.1 that Pcd is therefore set to 108 Pa, in order to use a value as close as possible

to Webb’s desired value that the model will run for. However, the addition of an extra

component and phase seems to have also added to the instability of the model, as it failed

to run for up to 100 years when the number of spatial points went over 150. Figure 5.1

and Figure 5.2 have therefore been created using a model that was run for 150 points in

space, which is the maximum spatial accuracy possible over the desired time period.

Despite the model now incorporating three components and phases, Figure 5.1 illustrates

that the wave structure for the gas saturation has been preserved, with the leading and

trailing shock dividing the aqueous only and equilibrium regions, and the equilibrium

region and dry out zone, respectively. In this particular model, it can be seen by looking

at both the gas satuation in Figure 5.1 and the solid saturation in Figure 5.2 that no

points in space are in the three phase or aqueous and solid phase regions. It should be

noted, however, that the gas saturation in the dry out zone does not reach one. This is

due to the presence of the solid salt in this region, as illustrated in Figure 5.2. Taking into

account the lower resolution of Figure 5.1 relative to the figures of the two phase model in

Chapter 4 that were created using 1000 points in space, the gas saturation output of the

model compares well to the analytical solution. Again, the main difference between the

numerical and analytical solutions is the sharper edges of the analytical solution, which is
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Figure 5.1: A graph to show the pressure and gas saturation output of the model for the initial

parameters in Table 5.1 and for the times shown in the legend. The model was run for 150 points

in space.

not replicated in the MOL solution due to increased dispersion. The edge of the leading

shock is also slightly further forward in the numerical solution due to the inclusion of the

effects of capillary pressure.

Figure 5.1 also shows that global pressure is at its highest near the point of injection, and

that pressure increases as time goes on. The numerical and analytical solutions compare

well in the aqueous only region and the majority of the equilibrium region, but the dip in

pressure near the boundary of the dry out zone and the equilibrium region is noticeable in

the numerical solution. As was explained in Section 4.7, this dip is a numerical instability

caused by a large drop in capillary pressure between the first two points at which an

aqueous phase is present, and becomes larger as the value of Pcd increases. The inclusion

of capillary pressure effects in the numerical solution also means that the global pressure

in the dry out zone is underestimated by the analytical solution.

Figure 5.2 has clear instabilities, as illustrated by the very small variations in solid

saturation across the dry out zone and the sharp rise near to the injection point. It is,

however, still a very useful figure for its illustration that salt only forms behind the trailing

shock where the liquid water has evaporated, and for making it clear that the dry out zone

grows as time passes. The variations in solid saturation are so small, especially when the

scale that the graph is plotted on is considered, that they seem to be caused purely by

numerical instability, which would suggest that the solid saturation can be assumed to be
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Figure 5.2: A graph to show the solid saturation output of the model for the initial parameters

in Table 5.1 and for the times shown in the legend. The model was run for 150 points in space.

constant throughout the dry out zone. This assumption cannot be relied upon from this

model alone, however.

In order to assist in gaining a good idea of the processes and parameters that can increase

salt precipitation in a saline aquifer, a phase saturation can be plotted against the varying

capillary number, Ca [-]. This is a dimensionless constant, found from:

Ca =
Q0µg

4πHkPc0
(5.236)

where Q0 [L3T−1] is the rate of injection of CO2 into the saline formation, µg [ML−1T−1]

is the dynamic viscosity of the gaseous phase, H [L] is the formation thickness, k [L2] is

the permeability of the formation and Pc0 [ML−1T−2] is a reference “air-entry” pressure

of the formation.

It can therefore be seen that the capillary number represents the ratio of the CO2 injection

rate to the product of the CO2 mobility and the air-entry pressure of the porous medium,

and hence it compares the relative effect of the frictional resistance associated with fluid

movement with the surface tension that acts across the interface between the gaseous and

aqueous phases. Small values of Ca imply that capillary processes are important (Kelly

and Mathias, 2018).

Figures 5.3 and 5.4 show how varying the value of Ca in the three phase numerical

model affects the gas saturation pattern in the formation. Any of the parameters in

equation (5.236) could be changed in order to obtain the different values of Ca, but in this
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case it was the rate of injection, Q0, that was altered. The remaining parameters were

kept at their values in Table 5.1, and the corresponding rates of injection calculated for

each of the values of Ca modelled in Figures 5.3 and 5.4. The time taken to inject 4.73Mt

of CO2 was then calculated for each injection rate, and the model run for this amount of

time for the associated injection rates and values of Ca. This measure ensures that the

same amount of CO2 has been injected in each simulation, and hence the effects of the

different values of Ca can be legitimately compared.

Figure 5.3 plots gas saturation against radial distance for various values of Ca for 50

points in space, while Figure 5.4 does the same for 80 points in space. It should be noted

that Pcd has been lowered to 107 Pa for increased stability for these simulations, and that

the output of the numerical reservoir simulator, TOUGH2 (Pruess and Spycher, 2007)

is also plotted for verification. Both figures clearly illustrate that decreasing the value

of Ca, which is analogous to decreasing the injection rate into the formation, result in

a lower value of gas saturation in the dry out zone, which corresponds to increased salt

precipitation. This is due to high capillary pressure gradients causing increased backflow

of brine towards the site of injection in counter-current imbibition, therefore providing

additional salt that is then also able to precipitate in the dry out zone of the aquifer.

The lower the injection rate, the higher the relative effect of counter-current imbibition

on flow within the formation. However, comparision of Figures 5.3 and 5.4 reveals that,

although they both show the same pattern in that the gas saturation values decrease as

Ca decreases, the actual values of gas saturation do not correlate for the same values of Ca

across the figures. It appears that the drop in gas saturation as Ca decreases is noticeably

less for 80 points in comparision to for 50 points, in particular for values of Ca below 0.13.

This indicates that the instabilities within the model are also having an effect here, and

the actual gas saturation values given cannot be relied upon as the drop in gas saturation

appears to reduce considerably as the number of points in space increases.

In addition, both Figure 5.3 and Figure 5.4 show that the output for Ca = 1.7 and the

TOUGH2 output, which is equivalent to Ca→∞, match very well. This illustrates that

the value of Ca has very little effect on solid saturation as it falls through the higher

numbers, but, as can be seen from the figures, it has an increasingly larger impact as Ca

falls below 1.7. Finally, it can be seen that the leading shock reaches further out in the

formation as Ca decreases. This is again due to the increasing importance in capillary

processes as the value of Ca falls.
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Figure 5.3: A graph to show gas saturation varying with formation radius for several different

values of Ca, alongside the output from the numerical reservoir simulator, TOUGH2. To create

this, the model was run for 50 points in space and it was assumed that Pcd = 107 Pa
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Figure 5.4: A graph to show gas saturation varying with formation radius for several different

values of Ca, , alongside the output from the numerical reservoir simulator, TOUGH2. To create

this, the model was run for 80 points in space and it was assumed that Pcd = 107 Pa

Although all of the figures produced from models formed using the MOL and ODE solver

ode15s in Chapters 4 and 5 are useful in that they compare well to the analytical solutions
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and allow us to vary different parameters in order to investigate their effects on counter-

current imbibition and salt precipitation, they clearly suffer from numerical instability. It

is therefore necessary to consider other methods of finding solutions to the three phase

flow problem that lessen this instability. Most simulations in fluid dynamics attempt to

reduce numerical diffusion to the lowest level possible in order to achieve a high level of

accuracy in the solution produced, and the lack of numerical diffusion added to the solution

is one of the reasons that the ODE solvers were chosen to solve this problem over other

possible methods, as discussed in Section 3.3.2. However, numerical diffusion can also be

an advantage in that it can smooth out instabilities, and hence using a method that has

a higher level of numerical diffusion may reduce the instability in the current figures. The

possibility of solving the problem using the semi-implicit method is discussed as a part of

the future work that could be done on this project in Section 7.2, but Chapter 6 will look

into another alternative: the use of pseudospectral methods.
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Chapter 6

Self-Similar Pseudospectral

Solution for Incompressible Three

Component and Three Phase Flow

As was explained at the end of Chapter 5, the method of lines (MOL) solutions described

in Chapters 4 and 5 have been very useful, but they still appear to have some numerical

issues. Therefore, it is necessary to consider other methods that can be used to accurately

study partially miscible three component and three phase flow and the build-up of salt

precipitation in the dry out zone of a saline aquifer.

One useful mathematical solution for two phase flow in porous media is the McWhorter and

Sunada solution (McWhorter and Sunada, 1990). This, like the Buckley-Leverett solution

(Buckley and Leverett, 1942), looks at the immiscible flow of two phases but, in contrast to

the Buckley-Leverett solution, does incorporate the effects of capillary pressure, meaning

that it cannot be solved by the method of characteristics (MOC) as the Buckley-Leverett

solution was in Chapter 3. The McWhorter and Sunada solution was commonly solved by

iterative integrals, which often led to convergence problems, until Bjørnar̊a and Mathias

formed a different, more robust solution using a pseudospectral Chebyshev differentiation

matrix (Bjørnar̊a and Mathias, 2013). This chapter introduces the McWhorter and Sunada

solution and pseudospectral methods, and uses the method of Bjørnar̊a and Mathias (2013)

to extend the similarity solution of McWhorter and Sunada (1990) to incorporate the

partial miscibility of phases and account for three component and three phase flow. This

gives a solution that can accurately study the control that capillary pressure and other
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parameters have on salt precipitation when CO2 is injected into a saline aquifer.

A version of this chapter is published in the following article:

Kelly, H.L. and Mathias, S.A. (2018). Capillary processes increase salt precipitation during

CO2 injection in saline formations. Journal of Fluid Mechanics, 852, 398-421.

6.1 Introduction

A number of numerical modelling studies have been undertaken to investigate important

controls on salt precipitation in the dry out zone, some of which have been introduced

in previous chapters of this thesis. Zeidouni et al. (2009) derived an analytical solution

using the MOC to estimate the volume fraction of precipitated salt in the dry out zone

(hereafter referred to as C30) due to CO2 injection in saline formations. They concluded

that the distribution of precipitated salt was uniform within the dry out zone. However,

an important limiting assumption in their study is that the capillary pressure, i.e. the

difference between the pressures of the non-wetting phase and the wetting phase (the CO2-

rich and aqueous phases, respectively, in this context), is assumed to be negligible. Pruess

and Müller (2009) explored the same problem using the numerical reservoir simulator,

TOUGH2, with the CO2 storage module, ECO2N (Pruess and Spycher, 2007). When

capillary pressure is set to zero, C30 is found to be insensitive to injection rate. However,

when capillary pressure is accounted for, C30 is found to increase with reducing CO2

injection rate.

As was described in Section 1.4, the physical explanation for this is is that the capillary

pressure is significantly increased as the wetting saturation is reduced (Pruess and Müller,

2009). This can lead to a reversal of the direction of the wetting pressure gradient, which

in turn results in counter-current flow, whereby brine flows in the opposite direction to

the injected CO2. The counter-current flow provides additional brine to the dry out zone

leading to an increased availability of salt for precipitation. The counter-current flow rate

is driven by phase saturation gradients. As the injection rate increases, the counter-current

flow becomes less significant in comparison (Pruess and Müller, 2009).

Kim et al. (2012) extended the work of Pruess and Müller (2009) by performing a wider

sensitivity analysis. They found that the value of C30 was significantly increased for
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scenarios involving high permeability and low injection rates. Furthermore, contrary to

Zeidouni et al. (2009), they found that C30 was non-uniform, with the highest values

present at the edge of the dry out zone. This localised increase in salt precipitation is

attributed to the combined effects of gravity and capillary pressure driven counter-current

flow.

Li et al. (2013) found that smoother capillary pressure curves lead to faster dissolution

of CO2 into the aqueous phase. This is presumably because smoother capillary pressure

curves lead to more capillary diffusion of the CO2-rich phase and hence greater interfacial

area between the CO2-rich phase and the aqueous phase.

The suite of numerical simulations described by Pruess and Müller (2009) and Kim et al.

(2012) have provided significant insight into the processes that control salt precipitation

during CO2 injection in saline formations. However, probably due to the perceived

computational expense of numerically simulating this problem to an adequate accuracy, a

more widespread sensitivity analysis has not been undertaken to further understand this

process.

Analytical solutions have been developed to better understand many other aspects of the

CO2 storage process. Nordbotten and Celia (2006) developed a similarity solution to study

the propagation rate of a CO2 plume and its associated dry out zone during injection of

CO2 into a cylindrical saline formation. Hesse et al. (2007, 2008) and MacMinn et al.

(2010, 2011) developed MOC solutions to study the migration of CO2 plumes following

the cessation of injection. Mathias et al. (2011a) extended the analytical solution of

Nordbotten and Celia (2006) to estimate the resulting pressure buildup within an injection

well. Mathias et al. (2011b) combined the work of Mathias et al. (2011a) and Zeidouni et

al. (2009) to study the role of partial miscibility between the CO2 and brine on pressure

buildup. More recently, Mathias et al. (2014) derived a MOC solution to estimate the

temperature distribution around a CO2 injection well in a depleted gas reservoir. There

are many other such examples in the literature. However, all the analytical solutions

presented to date revolve around the CO2 transport problem reducing to a hyperbolic

partial differential equation (PDE), such that MOC or some variant can be used for the

solution procedure. The difficulty of accounting for capillary pressure is that this leads to

a diffusive component within the equations, rendering the MOC inadequate in this regard.

However, as was explained at the beginning of the chapter, McWhorter and Sunada (1990)

derived a similarity solution to look at two-phase immiscible flow around an injection
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well, which explicitly captures the counter-current flow associated with capillary pressure

effects. In the past, their solution has not been commonly used due to difficulties with

evaluating the necessary nonlinear multiple integrals associated with their equations (Fuč́ık

et al., 2007). More recently, however, Bjørnar̊a and Mathias (2013) have provided a more

efficient evaluation procedure by applying the equations as a boundary value problem,

which they then solve using a Chebyshev polynomial differentiation matrix (Weideman

and Reddy, 2000).

This chapter will begin by describing the work of McWhorter and Sunada (1990) and

the process that they went through to form their similarity solution in more detail.

Then, the pseudospectral methods used by Bjørnar̊a and Mathias (2013) to solve the

boundary value problem of McWhorter and Sunada (1990) and the advantages of these

methods are explained. The process of McWhorter and Sunada (1990) is then applied

to find a similarity solution for partially miscible, three component and three phase

flow. This begins with the formation of a PDE to describe multiphase flow under these

conditions. This is then reduced to an ordinary differential equation (ODE) by application

of a similarity transform, and the resulting boundary value problem is solved using a

Chebyshev polynomial differentiation matrix. The necessary equations are then presented

to determine the volume fraction of precipitated salt in the dry out zone. A set of verifi-

cation examples are presented based on a gas-displacing-oil scenario, previously presented

by Orr (2007). A CO2-injection-in-a-saline-formation scenario is then presented, which

is compared with simulation results from TOUGH2 for verification. Finally, a wider

sensitivity analysis is conducted to better understand the main controls in this context.

6.2 The McWhorter and Sunada Solution

As was explained above, McWhorter and Sunada (1990) formed a solution for the one-

dimensional immiscible flow of two incompressible fluids, in which one is a ‘wetting’ phase

and one is a ‘non-wetting’ phase. This solution was not originally intended to be solely for

the injection of CO2 into water, but can easily be applied to this situation by assuming

the supercritical CO2 to be the non-wetting phase and the water to be the wetting phase.

It can be considered to be analogous to the Buckley-Leverett solution, with the difference

between the two solutions being that the McWhorter and Sunada solution incorporates

the effects of capillary pressure, while the Buckley-Leverett solution does not. Therefore,

comparisons between the two solutions can be used to evaluate the impact of capillary
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pressure (Bjørnar̊a and Mathias, 2013).

McWhorter and Sunada (1990) found solutions to the linear displacement of both wetting

and non-wetting phases by injection of the other phase, looking at both unidirectional and

counter-current flow. They also found a solution to the radial, unidirectional displacement

of a non-wetting phase by injection of a wetting phase. These solutions were found by

considering the mass conservation equation (equation (2.3)) as applicable to the one-

dimensional flow of two immiscible, incompressible fluids in a rigid, homogeneous, porous

medium. This means that, by considering equations (2.1) to (2.3), the mass conservation

equation will reduce to:

φ
∂Sj
∂t

= −∇ · qj j = 1, 2 (6.1)

where, as can be recalled from Chapter 2, φ [-] represents the porosity of the medium, Sj

[-] is the volume fraction or saturation of the phase j, qj [LT−1] is the volumetric flux of

the phase j, t [T] represents time and phases 1 and 2 represent the gaseous and aqueous

phases, respectively.

It is also necessary to consider equation (2.6), which uses Darcy’s Law for multiphase flow

to give an expression for qj , as adapted for one-dimensional flow:

qj = −kkrj
µj

(∇Pj) (6.2)

Here, k [L2] is the permeability of the system, krj [-] is the relative permeability of phase j,

µj [ML−1T−1] is the dynamic viscosity of phase j and Pj [ML−1T−2] is the phase pressure

for phase j.

Also needed is equation (2.12), which expresses the capillary pressure, Pc [ML−1T−2], in

terms of the two phase pressures, P1 and P2:

Pc = P1 − P2 (6.3)

By rearranging equation (6.3) to be in terms of the phase pressure of the phase being

injected, Pj , and substituting this expression into equation (6.2), and in turn substituting

the resulting equation for qj into equation (6.1), McWhorter and Sunada (1990) formed a

partial differential equation (PDE), as appropriate to the linear or radial system and the

phase that was being injected into the porous medium in each particular solution. For the

linear system when a wetting phase is injected into a non-wetting phase, this PDE was:

φ
∂S2
∂t

=
∂

∂x

(
J
∂S2
∂x

)
− qt

df2
dS2

∂S2
∂x

(6.4)
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where f2 [-] is the fractional flow of the aqueous phase, represented by:

f2 =

(
1 +

kr1µ2
kr2µ1

)−1
(6.5)

and J [L2T−1] is a term that represents the capillary-hydraulic properties of the system,

given by:

J = −kkr1f2
µ1

dPc
dS2

(6.6)

In addition, x [L] is the linear distance and qt [LT−1] represents the total volumetric flux.

For the linear system in which a non-wetting phase is being injected into a wetting phase,

the PDE formed was:

φ
∂S2
∂t

=
∂

∂x

(
J
∂S2
∂x

)
+ qt

d(1− f2)
dS2

∂S2
∂x

(6.7)

Finally, for the radial system, in which only the injection of a wetting phase into a non-

wetting phase was looked into, the PDE was:

φ
∂S2
∂t

=
1

r

∂

∂r

(
rJ
∂S2
∂r
− f2Qt

2πH

)
(6.8)

where r [L] is the radial distance, H [L] is the thickness of the formation, and Qt [L3T−1]

is the total volumetric flow rate. Note that McWhorter and Sunada (1990) give all PDEs

in terms of the saturation of the wetting phase, S2, but as they are considering a two

phase system in which S1 = 1−S2, the PDEs can be easily adapted to be written in terms

of S1 if required.

Unfortunately, it is not possible to solve the PDEs formed by McWhorter and Sunada

(1990) by the MOC, as was done for the Buckley-Leverett equation in Chapter 3, as

the PDEs are no longer hyperbolic due to the highly nonlinear term resulting from the

inclusion of capillary pressure (McWhorter and Sunada, 1990). It would be possible to use

the MOL, as was shown in Chapters 4 and 5, to discretise the equations in space and hence

reduce the PDEs to ordinary differential equations (ODEs), which could subsequently be

solved using an ODE solver in MATLAB, but this is a numerical rather than an exact

method and its accuracy can vary. Instead, McWhorter and Sunada (1990) used the

property of self-similarity to reduce the PDEs to ODEs.

The property of symmetry within a system is the property of remaining unchanged or

invariant when certain transformations are performed (Gratton, 1991). Self-similarity is

when the symmetry of a physical problem means that it is possible to reduce the number

of independent variables within the problem, thus leading to a considerable simplification

(Gratton, 1991). McWhorter and Sunada (1990), using the work of Chen (1988), noticed
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that their PDEs became self-similar when the injection rate was inversely proportional to

the square root of time for the linear systems, and when the injection rate was constant

for the radial systems. When this is the case, it is possible to group the space and time

variables into one new variable, λ [LT−
1
2 ], which is equal to xt−

1
2 for the linear systems

and rt−
1
2 for the radial systems. This means that λ is the only independent variable

within the problem, and thus all other terms depend on λ rather than space and time.

Consequently, all derivatives within the PDEs must be written with respect to λ rather

than space and time, and hence the PDEs have been reduced to ODEs. The initial and

boundary conditions of the problem, which give the initial values of the phase saturations

as well as their values at the boundaries of the porous medium, are also converted to be

written in terms of λ rather than space and time. This method is also known as applying

a similarity transform.

McWhorter and Sunada (1990) then solved the resulting ODEs using iterative integrals.

However, this solution involves the difficult evaluation of nonlinear multiple integrals, and

also has issues with convergence as the injection saturation approaches unity (Bjørnar̊a

and Mathias, 2013). Bjørnar̊a and Mathias (2013) focused on the linear version of the

problem in which a wetting phase is injected into a porous medium to displace a non-

wetting phase. They initially formed a PDE, which they then reduced to an ODE in

a similar way to the work of McWhorter and Sunada (1990), albeit that the equation

was written in a normalised form and used a slightly different notation. However, they

subsequently solved the ODE using a pseudospectral Chebyshev differentiation matrix,

forming a more robust and accurate solution to the equation of McWhorter and Sunada.

The use of pseudospectral methods will be fully explained in Section 6.3, and will also

form the basis of the solution formed in this chapter that looks at three phase, partially

misible flow in a radial system.

6.3 Pseudospectral Methods

Matrix notation is extremely useful in mathematics due to its conciseness and flexibility.

Using matrices, it is possible to reduce complicated formulae to just a few symbols,

therefore gaining a better insight into the essential properties of mathematical models and

facilitating algebraic manipulations (Piché and Kanniainen, 2009). One area in which it

can be helpful is in the discretisation of differential equations using differentiation matrices,

D (Piché and Kanniainen, 2009). The idea behind the use of these matrices is that the
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dth derivative of a univariate scalar function y can be calculated at certain, distinct nodes

x using:

y(d)(x) = D(d)y(x) (6.9)

and this forms the basis of the pseudospectral method that Bjørnar̊a and Mathias (2013)

used to solve the boundary value problem (the ODE with boundary conditions) found by

McWhorter and Sunada (1990), rather than using direct integration.

The pseudospectral method is also known as the spectral collocation method or the

‘interpolating’ spectral method (Boyd, 2001, p.12). It is a form of the spectral method, in

which the solution of the differential equation is written in the form of a sum of certain

basis functions and then the coefficients of the sum are chosen to be the best fit to satisfy

the differential equation as well as possible. The best basis functions to use will vary

depending on the problem, and the technique used to find the appropriate coefficients

will also differ depending on the type of spectral method (Boyd, 2001, p.1). Within the

pseudospectral method, the coefficients are chosen such that the differential equation is

exactly satisfied at the set of points x, known as the collocation or interpolation points. As

the solution given by the pseudospectral method is exact at these points, it will converge

to the exact solution at all points within the domain as the number of interpolation points,

N , increases (Boyd, 2001, p.12).

The boundary conditions of the ODE being considered here are non-periodic, which

suggests that Chebyshev polynomials are the most appropriate basis functions to use in

this case (Boyd, 2001, p.10). The Chebyshev polynomial of the second kind, p, interpolates

a function, y, at the interpolation points (which in this case are the Chebyshev points)

(Weideman and Reddy, 2000):

xk = cos

(
(k − 1)π

N − 1

)
k = 1, 2, ..., N (6.10)

such that p(x) = y(x) (Bjørnar̊a and Mathias, 2013). It should be noted that x1 = 1 and

xN = −1. The spacing of the Chebyshev points is shown in Figure 6.1.

The differentiation matrix, D, will have dimensions NxN , while the differentiated Cheby-

shev polynomial, p′(x), will have N terms. The terms of the Nth column of D can be

found by substituting the values of xk into the coefficient of the Nth term of p′(x). In

other words, the number in position (i, j) in the matrix D (which from now on will be

referred to as D(i,j)) is equal to the coefficient of the jth term in p′(x) when xk = xi

(Trefethen, 2000, p.52).
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Figure 6.1: A figure to illustrate the spacing of the Chebyshev points. They are the projections

onto the x-axis of equally spaced points on the unit circle (Adapted from Trefethen (2000, p.43)).

The value of the Chebyshev polynomial’s dth derivative at the Chebyshev points is given

by (Weideman and Reddy, 2000):

p(d)(x) = D(d)y(x) (6.11)

Here, D(d) represents the dth order Chebyshev differentiation matrix, which can be found

from
(
D(1)

)d
(Weideman and Reddy, 2000).

The interpolating polynomial is only required to satisfy the differential equation at the

interior nodes (Bjørnar̊a and Mathias, 2013). At these interior nodes, the values of the

interpolating polynomial and the derivatives are, respectively (Bjørnar̊a and Mathias,

2013):

p(x2:N−1) = y(x2:N−1) = I2:N−1,:y (6.12)

and

p(d)(x2:N−1) = D
(d)
2:N−1,:y (6.13)

where I2:N−1,: and D
(d)
2:N−1,: represent the interior rows of a NxN identity matrix and a

NxN dth order Chebyshev differentiation matrix, respectively.

Boundary conditions are given for the end nodes, which correspond to the first and last

rows of the differentiation matrix. The form that the boundary conditions are written in

will depend on whether they are Dirichlet or Neumann boundary conditions. Dirichlet

conditions will be given as a constraint while Neumann conditions will be written as a

derivative, such that (Bjørnar̊a and Mathias, 2013):

Dirichlet:

p(x = 1) = y1 = I1,:y (6.14)
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p(x = −1) = yN = IN,:y (6.15)

where I1,: and IN,: correspond to the first and last rows of the NxN identity matrix,

respectively.

Neumann:

p(d)(x = 1) = D
(d)
1,: y (6.16)

p(d)(x = −1) = D
(d)
N,:y (6.17)

where D
(d)
1,: and D

(d)
N,: correspond to the first and last rows of the NxN dth order Chebyshev

differentiation matrix, respectively.

One of the key advantages of the use of the pseudospectral method is its high level of

accuracy. If the finite difference method was written in matrix form, the matrices would

be extremely sparse, as only the immediately surrounding nodes are involved in calculating

the derivative at a certain point, as was shown in Section 3.3.1. In contrast, the matrices

used in the pseudospectral method are very dense, and the method will achieve as much

as ten digits of accuracy in a situation in which using a finite difference method would

give only two or three (Trefethen, 2000, p.x). It can be considered that the pseudospectral

error is of order
(
1
N

)N
, meaning that it decreases exponentially as N increases, and the

method therefore has exponential convergence (Boyd, 2001, p.8).

The ease of use of pseudospectral methods has improved significantly since merging of

matrix-based modelling and matrix-based coding of problems involving differential equa-

tions was established by Weideman and Reddy (2000) and Trefethen (2000). They found

numerical solutions for boundary value and eigenvalue problems in only 4-10 lines of

MATLAB code (Piché and Kanniainen, 2009). Particularly useful to this problem is the

‘chebdif.m’ code of Weideman and Reddy (2000), which is used within this chapter to find

the Chebyshev points, x, and the differentiation matrix, D.

Pseudospectral methods are therefore considered to be a more robust and accurate, and

hence preferable, method to finding a solution for boundary value problems with smooth

solutions, such as the ODE found by McWhorter and Sunada (1990). The remainder of

this chapter is dedicated to using the methods of McWhorter and Sunada (1990) to find

an ODE with boundary conditions to represent three component, three phase partially

miscible flow when CO2 is injected into a radial saline aquifer, and using pseudospectral

methods, in a similar way to Bjørnar̊a and Mathias (2013), to subsequently find a solution.

This is then analysed in order to investigate the control that capillary pressure and other
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parameters have on salt precipitation when CO2 is injected into a saline aquifer.

6.4 Mathematical Model

A homogenous, cylindrical and porous saline formation is invoked with a thickness of H

[L] and an infinite radial extent. The pore space is initially fully saturated with a brine of

uniform NaCl concentration. Pure CO2 is injected at a constant rate of Q0 [L3T−1] into

the centre of the saline formation via a fully penetrating injection well of infinitesimally

small radius. The permeability of the saline formation is horizontally isotropic. However,

a necessary simplifying assumption is that the vertical permeability is significantly smaller

than the horizontal permeability such that gravity effects can be neglected. In this

way, during the injection phase, fluid flow can be treated as a one-dimensional radially

symmetric process.

Now we will describe the material mixture that resides within the pore space. Consider

a mixture of three components: i = 1, 2 and 3. Components 1 and 2 are mutually

soluble and can reside within both a non-wetting fluid phase and a wetting fluid phase,

denoted hereafter as j = 1 and 2, respectively. Component 3 can dissolve into phase 2

and precipitate to form a solid phase, denoted hereafter as j = 3. However, component 3

is assumed not to be able to reside in phase 1 and components 1 and 2 are assumed not

to be able to reside in phase 3. In the context of a CO2-H2O-NaCl system, i = 1, 2 and

3 for CO2, H2O and NaCl, respectively, and j = 1, 2 and 3 for the gaseous, aqueous and

solid phases, respectively. Note that letter notation has generally been used in previous

chapters to denote the components i and phases j (i.e. i = c, w and n and j = g, a and

s). Within this chapter, however, numerical notation will be used for easier application

to systems that do not necessarily use the components CO2, H2O and NaCl, such as the

gas-displacing-oil problem from Orr (2007), which the pseudospectral solution is applied

to in Section 6.5.1.

All components are assumed to be incompressible and not to experience volume change

on mixing, such that component densities can be treated as constant throughout.

The volume fraction of component i for the combined mixture, Ci [-], is defined by:

Ci =

3∑
j=1

σijSj (6.18)
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where σij [-] is the volume fraction of component i in phase j and, as was mentioned

in Section 6.2, Sj [-] is the volume fraction of phase j for the combined mixture, often

referred to as the saturation of phase j.

With no additional assumptions, it can be said that:

3∑
i=1

Ci =
3∑
i=1

σij =
3∑
j=1

Sj = 1 (6.19)

By considering the information above about which components can exist in which phases,

and applying the concept of equilibrium from Chapter 2 in a similar way to how it was

used in Chapters 4 and 5 to find of the mass fraction of component i in phase j, Xij [-],

to the volume fractions, the piecewise function, σij , can be found to be:

σij =



Ci/(1− S3), C1 /∈ (c12(1− S3), c11(1− S3)), i ∈ {1, 2}, j ∈ {1, 2}

cij , C1 ∈ (c12(1− S3), c11(1− S3)), i ∈ {1, 2}, j ∈ {1, 2}

0, C1 ∈ [0, 1], i ∈ {1, 2}, j = 3

0, C3 ∈ [0, 1], i = 3, j = 1

C3/S2, C3 ∈ [0, c32S2), i = 3, j = 2

c32, C3 ∈ [c32S2, 1], i = 3, j = 2

1, C3 ∈ [0, 1], i = 3, j = 3

(6.20)

where cij [-] is the constant equilibrium volume fraction of component i in phase j.

It further follows that:

S1 =


0, C1 ≤ c12(1− S3)
C1 − c12(1− S3)

c11 − c12
, c12(1− S3) < C1 < c11(1− S3)

1− S3, C1 ≥ c11(1− S3)

(6.21)

and

S3 =



0, 0 ≤ C1 ≤ 1, C3 < c32S2
C3 − c32
1− c32

, C1 ≤ c12(1− S3), C3 ≥ c32S2
(c11 − c12)C3 − (c11 − C1)c32

(1− c32)c11 − c12
, c12(1− S3) < C1 < c11(1− S3), C3 ≥ c32S2

C3, C1 ≥ c11(1− S3), C3 ≥ c32S2
(6.22)

It should be noted that within equations (6.20) to (6.22), the value of C1 is used to

determine the presence of the gaseous and aqueous phases, and the value of C3 determines

whether or not there is a solid phase. C1 ≤ c12(1− S3) denotes the absence of a gaseous
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phase and C1 ≥ c11(1− S3) denotes the absence of an aqueous phase, while c12(1− S3) <

C1 < c11(1−S3) means that both gaseous and aqueous phases are present. If C3 < c32S2,

this means that no solid phase has yet formed and all salt in the system is in the aqueous

phase, whereas if C3 ≥ c32S2, the salt has reached its equilibrium and maximum volume

fraction within the aqueous phase, which has led to the formation of a separate solid phase.

Under the above set of assumptions, fluid flow is controlled by the following set of one-

dimensional radially symmetric mass conservation equations, adapted from equation (2.3)

to be in terms of volume fractions:

φ
∂Ci
∂t

= −1

r

∂

∂r

r 2∑
j=1

qjσij

 , i ∈ {1, 2, 3} (6.23)

As was explained in Section 6.2, the volumetric flux, or flow per unit area, of phase j, qj ,

can be found from Darcy’s Law. When applied to one-dimensional, radial flow, this is in

the form it was given in equation (2.8):

qj = −kkrj
µj

∂Pj
∂r

, j ∈ {1, 2} (6.24)

A detailed discussion with regards to justification for the above set of assumptions is

provided in Section 6.6 below.

The capillary pressure, Pc, is the difference between the pressures of the wetting and

non-wetting phases, as given by equation (6.3) as:

Pc = P1 − P2 (6.25)

Because the component densities are assumed to be constant, the system of equations is

divergence free and:

2∑
j=1

qj =
Q0

2πHr
(6.26)

Substituting equation (6.24) and equation (6.25) into equation (6.26), solving for the

partial derivatives of Pj and then substituting these back into equation (6.24) leads to:

qj =
Q0fj
2πHr

+
(−1)jkkr1f2

µ1

∂Pc
∂r

(6.27)
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where, with further consideration of equation (6.21):

fj =



[
1 + (−1)j

]
/2, C1 ≤ c12(1− S3)

krj
µj

 2∑
j=1

krj
µj

−1 , c12(1− S3) < C1 < c11(1− S3)

[
1 + (−1)j−1

]
/2, C1 ≥ c11(1− S3)

(6.28)

Also note that there is no capillary pressure gradient when only one fluid phase is present,

i.e.,

∂Pc
∂r

= 0, C1 /∈ (c12(1− S3), c11(1− S3)) (6.29)

Substituting equation (6.27) into equation (6.23) therefore leads to:

∂Ci
∂η

= −∂Fi
∂ω

(6.30)

where:

Fi =



σi2, C1 ≤ c12(1− S3)
2∑
j=1

fjσij +

kr1f2
Ca

2∑
j=1

(−1)jσij

ω
∂ψ

∂ω
, c12(1− S3) < C1 < c11(1− S3)

σi1, C1 ≥ c11(1− S3)
(6.31)

and

η =
Q0t

πφHr2e
(6.32)

ω =
r2

r2e
(6.33)

ψ =
Pc
Pc0

(6.34)

where re [L] is an arbitrary reference length and Pc0 [ML−1T−2] is a reference “air-entry”

pressure for the porous medium of concern. Recall from equation (5.236) that Ca [-] is a

dimensionless constant often referred to as the capillary number, found from:

Ca =
Q0µ1

4πHkPc0
(6.35)

The capillary number represents the ratio of the CO2 injection rate to the product of the

CO2 mobility and air-entry pressure of the porous medium. It compares the relative effect

of the frictional resistance associated with fluid movement with the surface tension, which
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acts across the interface between the CO2-rich phase and the aqueous phase. Small values

of Ca imply that capillary processes are important.

With regards to the initial condition and boundary conditions, let CiI [-] represent a

uniform initial value of Ci in the saline formation and Ci0 [-] represent a constant boundary

value of Ci at the injection well for i ∈ {1, 2, 3}.

6.4.1 Writing Capillary Pressure in Terms of C1

As CO2 is injected into the saline formation, H2O evaporates from the brine leaving NaCl

behind as a precipitate in a dry out zone that develops around the injection well. Following

the commencement of CO2 injection, there are therefore three distinct zones within the

saline formation that should be considered (see Figure 6.2):

1. The dry out zone, which surrounds the injection well and contains only precipitated

salt and CO2 in the non-wetting fluid phase.

2. The full mixture, or equilibrium, zone, which surrounds the dry out zone and contains

CO2, H2O and NaCl, distributed between the wetting and non-wetting fluid phases.

3. The initial saline formation fluid zone, which surrounds the full mixture zone and

contains only H2O and NaCl in a wetting fluid phase.

More details as to why these partcular zones develop were given in Section 1.3.

Inspection of equation (6.30) and equation (6.31) reveals that the problem is hyperbolic for

C1 /∈ (c12(1−S3), c11(1−S3)) and not hyperbolic for C1 ∈ (c12(1−S3), c11(1−S3)), because

of the ∂ψ/∂ω term. For the CO2 injection scenario described above, both Zones 1 and 3

are hyperbolic. In contrast, Zone 2 is not hyperbolic. The discontinuities that separate

the three zones are shock waves, which must satisfy the Rankine-Hugoniot condition (e.g.

Orr, 2007, p.71). This was further explained in Section 3.4.2.

Within Zone 2, the displacement of a wetting phase by a non-wetting phase represents a

continuous drainage cycle such that ψ can be treated as a unique function of S2. Further-

more, because S3 = 0 and S2 = 1 − S1 within this zone, it follows, from equation (6.21),
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Figure 6.2: A schematic diagram illustrating the distribution of CO2, water and salt around a

CO2 injection well in a saline formation.

that:

S2 =


1, C1 ≤ c12
c11 − C1

c11 − c12
, c12 < C1 < c11

0, C1 ≥ c11

(6.36)

and
∂S2
∂C1

=
1

(c12 − c11)
, C1 ∈ (c12, c11) (6.37)

such that it can be said that, using chain rule:

∂ψ

∂ω
=

1

(c12 − c11)
∂ψ

∂S2

∂C1

∂ω
(6.38)

In this way, equation (6.31) can be substantially simplified to obtain:

Fi = αi − βiω
∂C1

∂ω
(6.39)

where

αi =


Ci, C1 /∈ (c12, c11), i ∈ {1, 2}
2∑
j=1

fjcij , C1 ∈ (c12, c11), i ∈ {1, 2}

f2σ32, C1 ∈ [0, 1], i = 3

(6.40)

βi =


0, C1 /∈ (c12, c11), i ∈ {1, 2, 3}

G
2∑
j=1

(−1)jcij , C1 ∈ (c12, c11), i ∈ {1, 2}

Gσ32, C1 ∈ (c12, c11), i = 3

(6.41)
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and

G =
f2kr1

Ca(c11 − c12)
∂ψ

∂S2
(6.42)

Within these equations, αi [-] looks at the fractional flow of the component i without

considering capillary pressure, while βi [-] is a term that represents the capillary-hydraulic

properties of the system. When Ca → ∞ and σ32 = 0, the above problem reduces to

the hyperbolic problem solved by Orr (2007) using the MOC. When c11 = 1, c12 = 0

and σ32 = 0, the above problem reduces to the immiscible two-phase flow problem with

capillary pressure, previously solved by McWhorter and Sunada (1990) and Bjørnar̊a and

Mathias (2013). The G term in equation (6.42) is analogous to the G term in equation

(16) of Bjørnar̊a and Mathias (2013), and the J term from equation (6.6) that was from

the PDEs found by McWhorter and Sunada (1990).

6.4.2 Relative Permeability and Capillary Pressure Functions

Relative permeability is calculated from Corey curves but with relative permeability

assumed to linearly increase with saturation to one beyond residual saturations, as was

explained in Section 2.2.3 and by equation (2.10).

Dimensionless capillary pressure, ψ, is calculated using the empirical equation of van

Genuchten (1980) in conjunction with the dry-region extension of Webb (2000), in the

same way as Pc was found in Section 2.2.4. It therefore follows from equation (2.19) that:

ψ =


(S−1/me − 1)1/n, S2 > S2m

ψd exp

[
ln

(
ψm
ψd

)
S2
S2m

]
, S2 ≤ S2m

(6.43)

where Se [-] is an effective saturation found from:

Se =
S2 − S2c
1− S2c

(6.44)

and S2c [-], m [-] and n [-] are residual aqueous saturation and empirical exponents

associated with van Genuchten’s function, respectively. ψd [-] can be taken to be:

ψd = Pcd/Pc0 (6.45)

where Pcd [ML−1T−2] is the capillary pressure at which “oven-dry” conditions are said to

have occurred, which is assumed by Webb (2000) to be 109 Pa.
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S2m [-] is the aqueous saturation matching point, which is the aqueous saturation at which

ψ can be assumed to change from being calculated by van Genuchten’s function to being

found by Webb’s linear extension. It is found by:

S2m = (1− S2c)Sem + S2c (6.46)

Finally:

ψm = (S−1/mem − 1)1/n (6.47)

where Sem [-] is a critical effective saturation at which the switch over between van

Genuchten’s function and Webb’s extension take place.

Differentiation of equation (6.43) with respect to S2 leads to:

∂ψ

∂S2
=


ψ

(1− S2c)mnSe(S1/m
e − 1)

, S2 > S2m

ψ

S2m
ln

(
ψm
ψd

)
, S2 ≤ S2m

(6.48)

6.4.3 Determination of Sem

As was described in Section 2.2.4, by considering equation (6.43), Sem can be defined as

the effective saturation at which:

ψm

(1− S2c)mnSem(S
1/m
em − 1)

=
ψm
S2m

ln

(
ψm
ψd

)
(6.49)

Substituting equation (6.47) and equation (6.46) into equation (6.49) and rearranging

leads to

Sem =
Sem + S2c(1− S2c)−1

mn(S
1/m
em − 1) ln

[
(S
−1/m
em − 1)1/nψ−1d

] (6.50)

which must be solved iteratively. Webb (2000) suggests that four to five iterations are

sufficient. However, this will be strongly dependent on the initial estimate of Sem0 applied.

For S2c > 0, a good initial estimate of Sem, Sem0, can be obtained by assuming Sem0 � 1

such that equation (6.50) reduces to:

Sem0 =
S2c(1− S2c)−1

ln
[
Sem0ψnmd

] (6.51)

which can be rearranged to get:

W exp(W ) = z (6.52)
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where

z =
S2cψ

nm
d

(1− S2c)
(6.53)

and

W =
S2c

(1− S2c)Sem0
(6.54)

Note that the functional inverse of z(W ) in equation (6.52), W (z), is given by the Lambert

W function, which was explained in more detail in Section 2.2.4. Furthermore, because z

is always positive and real, W (z) = W0(z), otherwise referred to as the zero branch, which

has the following asymptotic expansion (Corless et al., 1996):

W0(z) = L1 − L2 +
L2

L1
+O

([
L2

L1

]2)
(6.55)

where L2 = lnL1 and L1 = ln z.

In this way, it can be said that:

Sem0 =
S2c

(1− S2c)W0(z)
(6.56)

where z is found from equation (6.53).

Examples of the iterative calculation of Sem from initial guesses obtained from equa-

tion (6.56) are presented in Table 6.1. When S2c ≤ 0.3, it can be seen that convergence is

achieved after just two iterations. When S2c = 0.5, three iterations are required, whereas

when S2c = 0.7, six iterations are required. The increase in the number of iterations

required with increasing S2c is due to reducing validity of the Sem � 1 assumption.

6.4.4 Application of a Similarity Transform

The PDE in equation (6.30) can be reduced to an ODE by application of a similarity

transform. For this problem, the new variable, λ, is equal to:

λ =
ω

η
(6.57)

Substituting equation (6.57) into equation (6.30) and equation (6.39) leads to:

dFi
dCi

= λ (6.58)
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Iteration / S2c 0.1 0.3 0.5 0.7

0 0.016496 0.054104 0.11525 0.2472

1 0.018951 0.061087 0.13012 0.29011

2 0.018927 0.061082 0.1305 0.29695

3 0.018927 0.061082 0.13051 0.29825

4 0.018927 0.061082 0.13051 0.29850

5 0.018927 0.061082 0.13051 0.29855

6 0.018927 0.061082 0.13051 0.29856

7 0.018927 0.061082 0.13051 0.29856

Table 6.1: Examples of the iterative calculation of Sem for different values of S2c (as indicated

in the top row) using equation (6.50) with m = 0.5, Pc0 = 19.6 kPa and Pcd = 109 Pa. The initial

guess, Sem0, is calculated using equation (6.56).

and

Fi = αi − βiλ
dC1

dλ
(6.59)

Differentiating both sides of equation (6.58) with respect to Ci yields:

d2Fi
dC2

i

=
dλ

dCi
(6.60)

which on substitution into equation (6.59), along with equation (6.58), and rearranging

leads to:

d2F1

dC2
1

+
β1

(F1 − α1)

dF1

dC1
= 0 (6.61)

In the event that the boundary and initial values of C1, C10 and C1I , respectively, are /∈

(c12, c11), the boundary conditions for equation (6.61) must satisfy the Rankine-Hugoniot

conditions (similar to Orr, 2007, p.75):

dF1

dC1
=
α10 − F1

C10 − C1
, C1 ≥ c11 (6.62)

dF1

dC1
=
α1I − F1

C1I − C1
, C1 ≤ c12 (6.63)

where α10 and α1I represent the boundary and initial values of α1 associated with C10

and C1I , respectively. Alternatively, when C10 and C1I are ∈ (c12, c11):

F1 = α10, C1 = C10

F1 = α1I , C1 = C1I

(6.64)
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An efficient way of expressing both equation (6.63) and equation (6.64) simultaneously is

to state instead:

(C10 − C1)
dF1

dC1
+ F1 = α10, C1 = C̃10

(C1I − C1)
dF1

dC1
+ F1 = α1I , C1 = C̃1I

(6.65)

where

C̃10 = H(C10 − c11)c11 +H(c11 − C10)C10 (6.66)

C̃1I = H(c12 − C1I)c12 +H(C1I − c12)C1I (6.67)

and H(x) is a Heaviside function. This is a function that gives a value of one for a positive

x and a value of zero for a negative x.

6.4.5 Pseudospectral Solution

Following Bjørnar̊a and Mathias (2013), the boundary value problem described in the pre-

vious section is solved using a Chebyshev polynomial differentiation matrix, D (Weideman

and Reddy, 2000).

The coordinate space for the Chebyshev nodes is x ∈ [−1, 1]. However, the solution space

for F1 is C1 ∈ [C̃1I , C̃10]. Therefore the Chebyshev nodes, xk, need to be mapped to the

C1 space by the following transform:

C1 =
C̃10 + C̃1I

2
+

(
C̃10 − C̃1I

2

)
x (6.68)

Consequently, it is necessary to introduce an appropriately transformed differentiation

matrix, E, where:

E =
dx

dC1
D (6.69)

and from equation (6.68):
dx

dC1
=

2

C̃10 − C̃1I

(6.70)

By applying the Chebyshev polynomial on the internal nodes and the Robin boundary

conditions in equation (6.65) on the end nodes, equation (6.61) can be written in matrix

form (similar to Piché and Kanniainen (2009) and Bjørnar̊a and Mathias (2013)) as:

R(F) =


E

(2)
2:N−1,:F + I2:N−1,:diag

[
β1

F1 − α1

]
E(1)F

(CN − C1I)E
(1)
N,:F− IN,:F + α1I

(C1 − C10)E
(1)
1,: F− I1,:F + α10

 (6.71)
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where F is the solution vector for the dependent variable F1, C is the vector containing

the corresponding values of C1, N denotes the number of Chebyshev nodes to be solved

for and R is the residual vector, which represents the error in the matrix approximation

from the exact solution, and should be minimised. It will be equal to zero if the solution

is exact. The two last rows on the right-hand side of equation (6.71) impose the Robin

boundary conditions. Also note that E(n) can be obtained from En.

Newton’s method can now be used to find F. This is a method for successively finding

closer approximations for a root, and in the case of finding closer approximations, yn+1,

for a root y, would use the equation (Hoffman and Frankel, 2001, p.158):

yn+1 = yn −
g(yn)

g′(yn)
(6.72)

where g(y) is a function of y. In this case of finding the solution vector F, new iterations,

F(n+1), are hence obtained from:

F(n+1) = F(n) −
(
∂R/∂F(n)

)−1
R
(
F(n)

)
(6.73)

for each iteration n, where ∂R/∂F is the Jacobian matrix defined as:

∂R

∂F
=


E

(2)
2:N−1,: + I2:N−1,:diag

[
β1

F1 − α1

]
E(1) − I2:N−1,:diag

[
diag

[
β1

(F1 − α1)2

]
E(1)F

]
(CN − C1I)E

(1)
N,: − IN,:

(C1 − C10)E
(1)
1,: − I1,:


(6.74)

Note that F1 is bounded by α1 and α10. Therefore, a good initial guess is to set F1 = α10.

Following Bjørnar̊a and Mathias (2013), an additional correction step should be applied

in the Newton iteration to force the solution, F1, to be less than α1. The Newton iteration

loop is assumed to have converged when the mean absolute value of R ≤ 10−9. With

100 Chebyshev nodes (i.e., N = 100), convergence is typically achieved with less than 200

iterations.

6.4.6 Dealing with Salt Precipitation in the Dry Out Zone

Now consider the case where pure CO2 is injected into a porous medium (i.e., α10 = 1)

initially fully saturated with brine (i.e., α1I = 0). Let σ32 be the volume fraction of NaCl

in the aqueous phase throughout the system. In this way, the volume fraction of H2O in

the aqueous phase prior to CO2 injection is (1− σ32).
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Let r0 [L] and rI [L] be the radial extents of the dry out zone and injected CO2 plume

respectively. At any given time, the volume of H2O evaporated by the CO2, Ve [L3], can

be found from:

Ve = 2πφH(1− c11)
∫ rI

r0

rS1dr (6.75)

Ve can be alternatively expressed as:

Ve = (1− σ32)Vb (6.76)

where Vb [L3] is the volume of brine. The volume of salt precipitated in the dry out zone,

Vs [L3], is given by:

Vs = σ32Vb (6.77)

Rearranging equation (6.76) to be in terms of Vb and substituting this into equation (6.77)

gives an expression for Vs in terms of Ve and σ32:

Vs =
σ32Ve

1− σ32
(6.78)

The volume of the dry out zone where the salt is precipitated, Vd [L3], is found from

Vd = πφHr20 (6.79)

Another quantity of interest is the volume of CO2 dissolved in the brine, Vc [L3], which

can be calculated using:

Vc = 2πφHc12

∫ rI

r0

r(1− S1)dr (6.80)

Considering the definition of λ in equation (6.57) in conjunction with equation (6.32) and

equation (6.33):

r20 =
Q0tλ0
πφH

and r2I =
Q0tλI
πφH

(6.81)

where, recalling equation (6.58) and equation (6.65), λ0 and λI can be found from:

λ0 =
dF1

dC1

∣∣∣∣
C1=c11

and λI =
dF1

dC1

∣∣∣∣
C1=c12

(6.82)

In this way it can be understood that:

Ve = (1− c11)Q0t

∫ λI

λ0

S1dλ (6.83)

Vd = Q0tλ0 (6.84)
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Vc = c12Q0t

∫ λI

λ0

(1− S1)dλ (6.85)

Noting that the rates at which Vs and Vd grow with time are constant, it can also be

understood that the volume fraction of precipitated salt, C3, will be both uniform within

the dry out zone and constant with time. The value of C3 within the dry out zone,

hereafter denoted as C30, can be found from:

C30 =
Vs
Vd

=
(1− c11)σ32
(1− σ32)λ0

∫ λI

λ0

S1dλ (6.86)

Given that C10 = 1 − C30, C1I = 0, α10 = 1 and α1I = 0, the boundary conditions in

equation (6.65) reduce to:

dF1

dC1
=

1− F1

1− C30 − c11
, C1 = c11

dF1

dC1
=
F1

c12
, C1 = c12

(6.87)

Values of C30 can be obtained iteratively by repeating the procedures outlined in Section

6.4.5 with successive estimates of C30 obtained from equation (6.86). Using an initial guess

of C30 = 0, this process is found to typically converge after less than 60 iterations. The

integrals in equation (6.85) and equation (6.83) can be found by trapezoidal integration.

6.5 Sensitivity Analysis

6.5.1 Gas Displacing Oil

As a first example, the gas-displacing-oil scenario previously presented in Figures 4.13 and

4.15 of Orr (2007) is adopted. The parameters describing the scenario include c11 = 0.95,

c12 = 0.20, σ32 = 0, µ2/µ1 = 2, S1c = 0.05, S2c = 0.1, kr10 = kr20 = 1 and n1 = n2 = 2,

where Sjc [-] represents the critical or residual saturation for the phase j, krj0 [-] represents

the relative permeability endpoint for phase j and nj [-] is the power law exponent for

phase j. For the pseudospectral solution, a value for the van Genuchten (1980) parameter,

m, is set to 0.5.

Plots of C1 against dF1/dC1 (which, recall, is equal to ω/η) for this scenario are shown in

Figure 6.3. The different subplots show the effect of varying the boundary volume fraction,

C10, and the initial volume fraction, C1I . The different colours relate to different assumed
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values of Ca. Increasing Ca can be thought of as analogous to an increased injection

rate. The Ca → ∞ curves were obtained from the MOC solutions previously presented

in Figures 4.13 and 4.15 of Orr (2007). The finite Ca value solutions were obtained using

the pseudospectral solution described above, with 100 Chebyshev nodes.

When Ca = 100, the pseudospectral solution is virtually identical to the infinite-Ca-MOC

solutions. As Ca is decreased, the solution becomes more diffused. In Figure 6.3a, d, e and

f, the infinity Ca results exhibit a trailing shock, which represents a dry out zone where all

the liquid oil has been evaporated by the gas. Of particular interest is that decreasing Ca

leads to a reduction in the thickness of the dry out zone, ultimately leading to its complete

elimination.

6.5.2 CO2 Injection in a Saline Formation

Here the CO2-injection-in-a-saline-formation scenario, previously presented by Mathias et

al. (2013), is revisited. The example involves injecting pure CO2 at a constant rate via

a fully penetrating injection well at the centre of a cylindrical, homogenous and confined

saline formation, initially fully saturated with brine. Relevant model parameters are

presented in Table 6.2. In this case, components 1, 2 and 3 are CO2, H2O and NaCl,

respectively, and phases 1, 2 and 3 represent a CO2-rich phase, an H2O rich phase and

precipitated salt, respectively.

Mathias et al. (2011a) found that when using analytical solutions in this context, to

account for the relatively high compressibility of CO2, it is important to use an estimate

of the final pressure rather than the initial pressure for calculating the fluid properties

relating to CO2. Mathias et al. (2013) found that, for the scenario described in Table 6.2,

the well pressure increased by just over 5 MPa after ten years. Therefore, for the current

study, fluid properties are calculated using 15 MPa as opposed to 10 MPa.

As was shown in Chapter 2, the equations of state (EOS) of Spycher et al. (2003) and

Spycher and Pruess (2005) provide equilibrium mole fractions as opposed to volume

fractions. Pruess and Spycher (2007) show how mole fractions can be converted to mass

fractions, Xij [-], which can be converted to volume fractions, σij [-], using (similar to Orr,

2007, p.19):

σij =
ρjXij

ρij
(6.88)

where ρij [ML−3] is the density of component i in phase j and ρj [ML−3] is the composite
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Figure 6.3: Sensitivity analysis based on gas-displacing-oil examples. The infinite Ca value curves

were obtained from the method of characteristics solutions presented in Figures 4.13 and 4.15 of

Orr (2007). The finite Ca value curves were obtained using the pseudospectral solution documented

in this chapter.
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CO2 injection rate, 15 kg s−1

Porosity, φ 0.2

Initial pressure 10 MPa

Temperature 40 oC

Mass fraction of salt in brine, X32 0.15

Critical gas saturation, S1c 0.0

Residual water saturation, S2c 0.5

Endpoint relative permeability for CO2, kr10 0.3

Endpoint relative permeability for brine, kr20 1.0

Relative permeability exponents, n1, n2 3

Formation thickness, H 30 m

Permeability, k 10−13 m2

Table 6.2: Relevant model parameters used for the CO2 injection in saline formation scenario,

previously presented by Mathias et al. (2013).

phase density, which can be found from the mixing rule given in equation (4.29):

ρj =

(
Nc∑
i=1

Xij

ρij

)−1
(6.89)

where Nc [-] is the number of components present. Because the pseudospectral solution

above assumes component densities remain constant throughout, a decision is made that

ρ12 = ρ11, ρ21 = ρ22 and ρ32 = ρ33.

Table 6.3 shows how the various fluid properties vary with depth below sea level in this

context. Depth is related to pressure by assuming hydrostatic conditions and then adding

5 MPa to allow for pressure induced by CO2 injection. Depth is related to temperature by

assuming a geothermal gradient of 40oC per km. It can be seen that the volume fractions

are largely unaffected by depth. However, the variation in brine viscosity and CO2 density

are more noticeable.

A comparison of results from the pseudospectral solution with those from the TOUGH2

simulation reported by Mathias et al. (2013) is shown in Figure 6.4, alongside results for

when Ca → ∞, obtained using a MOC solution similar to that previously presented by

Zeidouni et al. (2009) and Mathias et al. (2011b). Mathias et al. (2013) assumed Pc0 = 19.6

kPa. Considering the other parameters in Table 6.2 and Table 6.3, this leads to a Ca value

of 1.7. There is excellent correspondence between the MOC solution, the TOUGH2 results
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Depth (m) 1000 1500 2000

Pressure (MPa) 15 20 25

Temperature (oC) 40 60 80

Density of CO2, ρ11 (kg m−3) 754 704 673

Density of H2O, ρ22 (kg m−3) 998 992 984

Density of NaCl, ρ33 (kg m−3) 2160 2160 2160

Volume fraction of CO2 in phase 1, c11 (-) 0.999 0.998 0.996

Volume fraction of CO2 in phase 2, c12 (-) 0.041 0.043 0.045

Volume fraction of NaCl in phase 2, σ32 (-) 0.075 0.074 0.073

Dynamic viscosity of CO2, µ1 (cP) 0.064 0.057 0.054

Dynamic viscosity of brine, µ2 (cP) 0.963 0.730 0.573

Table 6.3: Relevant model parameters used for the CO2 injection in a saline formation scenario

with a brine salinity of 150 ppt.

and the pseudospectral solution when Ca = 1.7.

A value of Pc0 = 19.6 kPa is often used to describe saline formations in a CO2 storage

context, e.g. (Mathias et al., 2013; Rutqvist et al., 2007; Zhou et al., 2008; Zhu et al.,

2015). Experimental analysis looking at four different sandstone reservoirs revealed a

range of Pc0 values from 1.3 to 7.1 kPa (Oostrom et al., 2016). Smaller values of Pc0 imply

larger pore diameters.

A hallmark of hyperbolic theory is that the problem can be reduced to a fundamental wave

structure which constitutes the solution. In Figure 6.4, it can be seen that such a wave

structure is largely preserved, despite the inclusion of capillary diffusion. Furthermore, the

wave velocity of the leading shock is virtually independent of Ca for the range of Ca values

studied. However, decreasing Ca leads to a more diffused spreading wave caused by the

increase in capillary diffusion, which in turn leads to a reduction in the wave velocity of the

trailing shock, as also seen in Figure 6.3a. The decrease in steady-state CO2 saturation

in the dry out zone is caused by an increase in the volume fraction of precipitated salt

(recall that C10 = 1− C30).

For the scenarios depicted in Figure 6.4, C30 is found to be insensitive to Ca for Ca values

greater than or equal to 1.7. However for Ca values less than 1.7, the volume of the dry out

zone is significantly reduced and the volume fraction of precipitated salt is significantly

increased. The value of C30 for Ca = 0.2 is almost double the value for Ca = 1.7. The
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Figure 6.4: Plots of CO2 saturation against radial distance after injecting 4.73 Mt of CO2 whilst

assuming a range of different capillary numbers, Ca. The TOUGH2 results are from the simulations

previously presented by Mathias et al. (2013). Other associated model parameters are presented

in Table 6.2. The results for Ca → ∞ were obtained using a method of characteristics solution,

also presented by Mathias et al. (2013). The results for finite Ca values were obtained using the

pseudospectral solution.

value of C30 for Ca = 0.1 is around ten times that of when Ca = 1.7. The Ca = 1.7

scenario described in Table 6.2 assumes an injection rate of 15 kg s−1. The results shown

in Figure 6.4 therefore suggest that reducing the injection rate down to 1.8 kg s−1 would

lead to a doubling of the volume fraction of precipitated salt around the injection well.

Furthermore, reducing the injection rate from 15 kg s−1 down to 0.9 kg s−1 would lead to

an almost ten times larger volume fraction of precipitated salt around the injection well.

Recall that the effect of Ca on the three phase numerical model in Chapter 5 was examined

in Figures 5.3 and 5.4. The output from the three phase numerical model for the param-

eters in Table 5.1, with the exception that Pcd = 107, is given in Figure 6.5, alongside

the output from the similarity solution found in this chapter for the same parameters.

It can be seen that the two solutions are comparable in that the wave structures for the

CO2-rich phase saturation are the same, and the outputs for Ca = 1.7 are very close.

However, although they follow a similar pattern in that the value of C10 drops for both

solutions as Ca decreases, the actual values for C10 given by the two solutions for the same
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Figure 6.5: Plots of CO2-rich phase saturation against formation radius for different values of Ca,

for both the similarity solution (indicated by the dashed lines) and the three phase numerical model

from Chapter 5 (indicated by the solid lines). Both solutions use the parameters in Table 5.1, with

the exception that Pcd is set to 107, and the three phase numerical model was run for 80 points in

space.

value of Ca become further and further apart as Ca falls. As was shown in Figures 5.3

and 5.4, the CO2-rich phase saturation values found for each value of Ca seem to increase

as the number of points in space increases in the three phase numerical model, so the

output shown in Figure 6.5, which is only for 80 points as this is the highest number of

points for which it is stable enough to run for for the full range of Ca values, cannot be

completely relied upon. It also shows evidence of numerical instability, due to the sharp

drop in CO2-rich phase saturation close to the point of injection.

For the hyperbolic case when Ca → ∞, it is common to study plots of F1 and C1 (Orr,

2007). Figure 6.6a shows plots of F1 against C1 for all the values of Ca presented in

Figure 6.4 along with a plot of α1. The MOC solution (i.e., with Ca → ∞), which sits

almost exactly underneath the Ca = 1.7 line, intersects the α1 line at tangents, which

is symptomatic of satisfying the shock waves satisfying the Rankine-Hugoniot condition.

To better visualize the results for finite Ca values, (1 − F1) is shown on a log scale in

Figure 6.6b. Here it can be seen that the models approach a value of F1 = 1 at different

C1 values depending on the volume fraction of precipitated salt. The volume fraction

of precipitated salt increases with decreasing Ca. Figure 6.6c shows a close-up view of

the trailing shocks on linear axes for further reference. For finite Ca values, the F1 lines
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Figure 6.6: Plots of F1, α1 and β1 against C1 for the simulation results presented in Figure 6.4.

never actually intersect the α1 line except at where C1 = 0. The reason for this is due

to β1, which is plotted in Figure 6.6d. The highest values of β1 are at the centre of the

two-phase region, C1 ∈ (c12, c11), and it can be seen that the lower the capillary number,

the higher the value of β1 reached, and hence the further away the F1 line from the α1 line

in Figure 6.6c. β1 smoothly grades down to zero as it reaches the single-phase regions,

C1 /∈ (c12, c11).

A further sensitivity analysis is presented in Figure 6.7. The three depth scenarios

presented in Table 6.3 are applied with three different brine salinities. Figure 6.7a shows

how the volume of the dry out zone decreases with decreasing Ca. The size of the dry out

zone increases with increasing depth. In contrast, brine salinity has very little impact on

dry out zone volume.
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Figure 6.7: Sensitivity analysis based around the scenario presented in Figure 6.4. The different

colours relate to different brine salinities, as indicated in the legend. The solid lines, dashed

lines and dash-dotted lines represent results obtained using fluid properties calculated assuming

the saline formation exists at a depth of 1000 m, 1500 m and 2000 m, respectively (based on

hydrostatic pressure conditions and a geothermal gradient of 40oC per km as in Table 6.3). a)

shows plots of the ratio of dry out zone volume (Vd) to injected CO2 volume (Q0t) against capillary

number (Ca). b) shows plots of the ratio of volume of evaporated water (Ve) to Q0t against Ca.

c) shows plots of the ratio of volume of dissolved CO2 (Vc) to Q0t against Ca. d) shows plots of

precipitated salt volume fraction in the dry out zone (C30) against Ca.
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Figure 6.7b shows that the volume of the evaporated water also reduces with decreasing

Ca. At first this seems surprising given that capillary pressure effects should bring more

water into the dry out zone. However, the effect of the capillary pressure is also to spread

the CO2 out further (see leading edge of CO2 plumes in Figure 6.4). As a consequence,

more CO2 is dissolved (see Figure 6.7c). Consequently, less of the CO2-rich phase is

available for water from the brine to evaporate into. The volume of evaporated water

increases with depth because the equilibrium volume fraction of water in the CO2-rich

phase increases with depth (see Table 6.3). The volume of dissolved CO2 is insensitive

to depth but decreases with increasing brine salinity. The latter is because the solubility

limit of CO2 in brine decreases substantially with increasing salinity (Spycher and Pruess,

2005).

Figure 6.7d shows how volume fraction of precipitated salt in the dry out zone, C30,

superlinearly increases with decreasing Ca. For Ca > 0.25, the quantity of precipitated salt

is mostly controlled by brine salinity. However, for Ca < 0.25, depth plays an increasingly

important role, with higher levels of salt precipitation in shallower formations. This is

because the dry out zone increases with depth, despite increasing water evaporation with

depth. Figure 6.8 shows the same results as Figure 6.7d but with C30 normalized by

dividing by the salinity of the brine, X32. Here it can be seen that C30 almost linearly

scales with X32.

The volume fraction of precipitated salt is also strongly controlled by the relative per-

meability parameters, krj0, Sjc and nj (Zhang et al., 2016). The analysis performed to

provide Figure 6.8 was repeated for the 1000 m depth scenario for each of the six groups

of relative permeability parameters presented in Table 6.4. These six parameter sets were

selected from a database of 25 core experiments previously compiled by Mathias et al.

(2013). The six cores were selected to provide a representative range of possible outcomes

given the wide variability generally observed in such data sets.

From Figure 6.9 it can be seen that the high Ca values of C30 range from 0.019 to 0.044.

Furthermore, the critical Ca value below which C30 superlinearly increases ranges from

0.025 to 10. Comparing these results with the parameter sets in Table 6.4 it can be seen

that when the relative permeability for brine is more linear, the value of C30 at high values

of Ca tends to be lower. However, this linearity also leads to the superlinearly increasing of

C30 with decreasing Ca to occur at a relatively low value of C30 (see for example Cardium

#1 and Basal Cambrian). Exactly the opposite happens when the relative permeability
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Figure 6.8: The same as Figure 6.7d except that salt volume fraction, C30, is divided by the

salinity of the brine, X32.

for brine is highly nonlinear (see for example Paaratte and Tuscaloosa). This is probably

due to counter-current flow of water being less efficient when relative permeability is highly

nonlinear.

6.6 Discussion of Key Modelling Assumptions

6.6.1 Incompressible Fluids

Fluid densities are assumed to be independent of pressure. The compressibilities of H2O

and NaCl are commonly ignored. Depleted gas reservoirs are often abandoned at pressures

below 1MPa, and for these pressures and the usual temperatures of the reservoirs, the

compressibility of CO2 is very high and has a significant impact on fluid movement

(Mathias et al., 2014). However, for CO2 injection in saline formations, fluid pressures

are expected to be hydrostatic or above. Under these conditions, providing a sensible

reference pressure is used to determine the fluid properties of CO2 (i.e., an estimate of

pressure towards the end of the injection cycle), the compressibility of CO2 has been found

to have a negligible effect in this context (Mathias et al., 2011a,b).
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Unit kr10 S2c n1 n2

Cardium #1 0.526 0.197 1.7 1.3

Basal Cambrian 0.545 0.294 5.0 1.8

Otway 0.332 0.558 3.2 2.9

Viking #1 0.659 0.437 6.5 2.5

Paaratte 0.328 0.389 3.0 4.6

Tuscaloosa 0.077 0.703 3.2 4.7

Table 6.4: Relative permeability parameters for six different sandstone cores (after Mathias et al.,

2013). Note that for each core kr20 = 1 and S1c = 0. Data for Cardium #1, Basal Cambrian and

Viking #1 was originally obtained by Bennion and Bachu (2008). Data for Otway was originally

obtained by Perrin and Benson (2010). Data for Paaratte and Tuscaloosa was originally obtained

by Krevor et al. (2012).

6.6.2 No Volume Change on Mixing

Component densities are assumed to be uniform across phases. In fact, the densities

of CO2 and H2O are both higher in the aqueous phase as compared to in the CO2-rich

phase. For a wide range of different CO2 injection scenarios, this volume change on mixing

is found to lead to an increase in volumetric flow rate of around 0.05% in Zone 2 and a

decrease in volumetric flow rate of around 5% in Zone 3 (see Table 2 of Mathias et al.,

2011b). See Section 6.4.1 above for an explanation of the zone numbers.

With regards to NaCl, the density of precipitated NaCl, ρ33, is 2160 kg m−3. Using

Equation (6.89) in conjunction with the EOS for brine given by Batzle and Wang (1992),

it can be shown that the density of NaCl dissolved in brine, ρ32, is around 2800 kg m−3.

In the above analysis we have set ρ32 = ρ33 such that the model precipitates the correct

volume of salt in the dry out zone. The consequence is that the volume fractions of water

and CO2 in the brine are underestimated by around 2%.

Figure 6.4 compares model results from TOUGH2 with those from the similarity solution.

TOUGH2 properly incorporates fluid compressibility and volume change on mixing and

there is negligible difference between the two models.
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Figure 6.9: Plot of precipitated salt volume fraction, C30, against capillary number, Ca, using

the 1000 m depth model scenario described in Tables 6.2 and 6.3 in conjunction with the different

relative permeability parameters given in Table 6.4.

6.6.3 Ignoring Gravity Effects

As stated earlier, another important assumption is that the vertical permeability of the

formation is sufficiently low that gravity effects can be ignored. Extreme changes in

density and/or viscosity can lead to instabilities and fingering phenomena, which cannot be

represented using one-dimensional models. Indeed, Kim et al. (2012) found that buoyancy

driven flow, associated with the different densities of brine and CO2, played an important

part in controlling the spatial distribution of precipitated salt around an injection well.

However, this was mostly after the cessation of injection. During the injection phase,

gravity segregation within the dry out zone was much less significant and no viscous

fingering was observed.

Mathias et al. (2011b) presented a comparison of simulation results where gravity was

accounted for and ignored using TOUGH2 and the MOC solution of Zeidouni et al. (2009),

respectively. For a 100 m thick isotropic saline formation, gravity was found to have a

strong effect on the leading edge of the CO2 plume. However, gravity effects were found to

be negligible on the dry out zone development and the associated volume fraction of the

precipitated salt. For a 50 m thick isotropic saline formation, gravity effects were found
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to be negligible throughout.

The dry out zone is generally unaffected by gravity segregation due to the larger velocities

situated close around the injection well, which are mostly horizontal due to the horizontal

driving force provided by the injection well boundary (Mathias et al., 2011b). From the

discussion above it is expected that gravity effects are unlikely to significantly affect the

dry out zone in the 30 m thick saline formations studied in this chapter, at least for the

higher capillary numbers studied. However, as the capillary numbers are decreased, the

horizontal injection velocities will become less significant and gravity will play a more

important role. However, the analysis within this chapter has shown that excessive salt

precipitation can also develop in the absence of gravity effects due to the counter-current

imbibition associated with capillary pressure.

6.7 Chapter Summary and Conclusions

A new similarity solution has been presented to study the role of capillary pressure on salt

precipitation during CO2 injection in a saline formation. Dimensional analysis has revealed

that the problem is largely controlled by a capillary number, Ca = Q0µ1/(4πHkPc0),

where H [L] is the formation thickness, k [L2] is permeability, Pc0 [ML−1T−2] is an air-

entry pressure associated with the porous medium, Q0 [L3T−1] is the injection rate and

µ1 [ML−1T−1] is the dynamic viscosity of CO2. The volume fraction of precipitated salt

around the injection well, C30 [-], is found to superlinearly increase with decreasing Ca.

Subsequent sensitivity analysis also reveals that C30 linearly scales with the salinity of

brine. C30 is found to reduce with increasing storage depth. This latter point is largely

attributed to the equilibrium volume fraction of water in the CO2-rich phase increasing

with depth. Relative permeability parameters are found to have a significant effect on

the value of Ca below which C30 superlinearly increases. For highly nonlinear relative

permeabilities, C30 remains stable for much lower capillary numbers.

The new similarity solution represents a significant extension of the work of Zeidouni et

al. (2009) by accounting for capillary pressure and an extension of the work of Bjørnar̊a

and Mathias (2013) by accounting for radially symmetric flow, partial miscibility and salt

precipitation.

In one scenario studied, reducing the CO2 injection rate from 15 kg s−1 to 0.9 kg s−1 led to
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almost a ten times larger volume fraction of precipitated salt. In the past, pressure buildup

in injection wells has been widely perceived to increase monotonically with CO2 injection

rate. However, these results clearly demonstrate that as injection rate is decreased the

volume fraction of precipitated salt around the injection well will significantly increase

leading to potentially significant loss of injectivity. It follows that below a critical thresh-

old, pressure buildup can be expected to increase with reducing injection rates as well.

The similarity solution presented in this chapter can serve as a useful tool to determine

the critical capillary number at which these effects are likely to take place.
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Chapter 7

Summary, Conclusions and Future

Work

This chapter will provide a summary of the earlier chapters in the thesis, before bringing

the points that they make together to give a conclusion. It will then explore options for

future work within this area.

7.1 Summary and Conclusions

This work aims to simulate the salt precipitation that occurs when CO2 is injected into

a saline aquifer. As was highlighted in Chapter 1, the geological storage of CO2 in

saline aquifers involves many different processes that all have an effect on each other and

occur on different scales. Forming either a numerical model or analytical solution that

accurately encompasses them all would be close to impossible. Therefore, simplifications

and assumptions have had to be made in order to create the models and solutions found

within this thesis. However, two aspects that are considered to be key to the volume

of salt precipitation formed, and hence are focused on within this work, are the partial

misciblity of the phases and the inclusion of the effects of capillary pressure. It is as

a result of partial miscibility that water is able to evaporate into the CO2-rich gaseous

phase and cause formation dry out, hence leading to there being no aqueous water for

the salt to dissolve in and it precipitating as a solid, and high capillary pressure gradients

can provide a driving force for the backflow of brine towards the site of injection, which

supplies additional salt to precipitate in the dry out zone.
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Chapter 2 introduces the governing equations that describe the physical processes within

the formation when CO2 is injected. These equations are the basis of all models and

solutions found, and are used in every chapter in the thesis, as appropriate to the co-

ordinates used and the phases and components present. The chapter also describes the

concepts of equilibrium and the maximum solubility of components in certain phases,

which are essential for fully understanding the mixing of components between phases in a

multicomponent and multiphase system.

Chapter 3 introduces two techniques for solving partial differential equations (PDEs), the

method of characteristics (MOC) and the method of lines (MOL), and illustrates how they

can be used to solve the mass conservation equation when fluid properties are assumed

to be constant with pressure and temperature and the capillary pressure is negligible,

and hence model two phase incompressible flow. It is shown that the outputs of the

two methods compare very well for both the immiscible and partially miscible two phase

systems when there is assumed to be no volume change on mixing, as well as for the

gas saturation and dimensionless mass fraction of CO2 when volume change on mixing

is introduced. However, extreme instability is seen in the MOL solution for the value of

the dimensionless flow velocity, qD, after the leading shock for the system incorporating

volume change on mixing. This instability highlights a potential issue to be aware of in

the use of a numerical method such as the MOL.

The MOC is limited to solving hyperbolic PDEs whereas the MOL uses approximations

and can be used for more complex systems, so this is the method that is chosen to model the

more realistic systems in Chapters 4 and 5 when compressibility and capillary pressure are

introduced. The MOC is, however, a very useful method for forming analytical solutions

for simplified conditions of injecting CO2 into a saline aquifer. These analytical solutions

are vital to have as they provide a benchmark to compare to the outputs of the numerical

models that are built in later chapters of the thesis, and therefore help to verify their

accuracy. This is particularly important to have when modelling a situation such as this,

when the real-life data, especially for the time scales needed, is limited.

Chapter 4 uses the MOL to create a numerical model for two component (CO2 and water)

and two phase (gaseous and aqueous) flow in a radial system, incorporating both capillary

pressure and compressibility. The first step to doing this is to choose appropriate primary

dependent variables (PDVs) to solve for (in this case, the global pressure, P , and the mass

fraction of CO2, zc). Expressions are then found using the governing equations for ∂zc
∂t and
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∂P
∂t , and the finite difference method is used to discretise in space, hence reducing these

expressions to ODEs in which the only derivatives are with respect to time. These ODEs

are solved by MATLAB’s ODE solver, ode15s, to give the values of the PDVs at all points

in time and space. Plots are then given of the global pressure and gas saturation at all

points in space for various times up to 100 years. These outputs are largely as expected, as

the graph for gas saturation shows the three different phase ‘regions’ that have been shown

on schematic diagrams in previous chapters (gaseous only, two phases, and aqueous only)

as well as a larger dry out zone as time passes, as water has had more time to evaporate

into the gas only region. The graph for pressure illustrates that pressure increases as more

CO2 is injected into the formation, and that the pressure is at its highest near the point

of injection. Both figures also compare very well with the analytical solution of Mathias

et al. (2011b), which shows the variation in pressure and gas saturation for the partially

miscible two phase system in which capillary pressure is neglected. However, as the value

of the capillary pressure at oven dry conditions is increased, a dip in the graph for pressure

close to the boundary between the gaseous only and two phase regions becomes clearer.

As this only seems to affect one point in space, it is thought that this may again be due

to a numerical instability. With the exception of this one point, the model appears to

simulate two phase flow very well.

Chapter 5 also uses the MOL, and very similar methods to Chapter 4, to form a numerical

model for three component (CO2, water and salt) and three phase (gaseous, aqueous and

solid) flow, which can therefore more accurately simulate the conditions in a real-life saline

aquifer. However, the additional component and phase make the model significantly more

complicated to form mathematically, as more possible combinations of phases need to be

considered and three PDVs (P , zc and zw) are required, as opposed to two for the two

phase model, meaning that it is necessary to form an additional ODE. Conditions are

derived in zc and zn to denote the presence and absence of certain phases, and piecewise

functions are given for the values of parameters depending on the phases present. The

output of the model again shows that the pressure and gas saturation compare well to

the analytical solution of Mathias et al. (2011b) for times up to 100 years, although the

instability causing the dip in pressure as an aqueous phase begins to appear is still present.

The solid saturation (the volume fraction of precipitated salt) for times up to 100 years

is also plotted, and, despite some instability, appears to be as expected. It is zero for

all points in space outside of the dry out zone, and is almost constant throughout this

region. The chapter also introduces the capillary number, Ca, which takes into account

the thickness, permeability and air entry pressure of the porous medium and the injection
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rate and viscosity of CO2. It illustrates that the gas saturation value in the dry out zone

decreases as Ca decreases, corresponding to an increase in solid saturation as Ca decreases.

A decrease in Ca corresponds to a decrease in the injection rate, and so this indicates that

reducing the rate that CO2 is injected into an aquifer can considerably increase the volume

of salt precipitation formed.

The MOL has been useful in allowing us to create a three component and three phase

numerical model which is able to show how the phase saturations and pressure would vary

with space and time in a saline aquifer, as well as give an idea of the parameters that

control the volume of solid saturation in the dry out zone. However, the resulting model

has numerical problems. Numerical instabilities have given rise to an unrealistic dip in

pressure at the end of the dry out zone. In addition to this, the MOL models predict

an unrealistic spike in solid saturation within the dry out zone. Furthermore, it is found

that the MOL scheme is unable to complete simulations of interest when appropriate grid

resolutions are applied, due to numerical convergence problems within the ode15s solver.

Therefore, Chapter 6 moves on to finding an alternative method of solution by extending

the McWhorter and Sunada equation (McWhorter and Sunada, 1990), which looks at

two phase immiscible flow with capillary pressure. In particular, the similarity solution

of McWhorter and Sunada (1990) is extended by providing an additional component and

phase and allowing for the effects of partial miscibilty, therefore producing a solution that

can simulate the three phase conditions with partial miscibility and capillary pressure

when CO2 is injected into a saline aquifer, and look into the effects that varying certain

parameters has on the volume of salt precipitation formed.

One of the key findings from this chapter is related to the capillary number, Ca, that was

introduced in Chapter 5. As was the case with the output of the three phase numerical

model, it was found that the volume fraction of precipitated salt in the dry out zone

(C30) is largely controlled by Ca, and that decreasing the value of Ca, which can be

seen as analogous to reducing the rate of injection of CO2 into the formation, leads to a

superlinear increase in the volume fraction of precipitated salt. The solution shows that

reducing the injection rate from 15 kg s−1 to 1.8 kg s−1 leads to a doubling of the volume

fraction of precipitated salt around the injection well, while reducing the rate of injection

from 15 kg s−1 to 0.9 kg s−1 means that the volume fraction of salt precipitated almost

multiplies by ten. It should also be noted that a decreasing Ca means that the thickness of

the dry out zone reduces, to the extent that it would eventually be completely eliminated.
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Both of these observations can be attributed to the increased effect of counter-current

imbibition bringing additional water and salt to the site of injection at a lower rate of

injection.

This chapter also looks at the effect of fluid property changes associated with changes in

aquifer formation depth. When the value of Ca is greater than 0.25, the main control

on C30 is the salinity of the brine, and the depth of the formation has very little effect.

However, as Ca decreases below 0.25, depth has an increasingly larger role. The shallower

the formation, the smaller the volume of the dry out zone, and so the higher the volume

fraction of precipitated salt around the site of injection.

Another area that the chapter investigates is the effect of the value of the relative per-

meability parameters, krj0, Sjc and nj , on salt precipitation. It is found that both the

maximum value of C30 and the critical Ca value below which the volume fraction of salt

precipitation begins to superlinearly increase vary considerably depending on these param-

eters, and in particular with n2, which controls the linearity of the relative permeability

of brine. When n2 is lower, and so the relative permeability of brine is more linear,

the value of C30 is lower at high values of Ca, but begins to superlinearly increase at a

relatively high value of Ca. For higher values of n2, and so a highly nonlinear relative

permeability of brine, the opposite happens, and the value of C30 remains stable for lower

capillary numbers. This is due to counter-current imbibition not being as efficient for

highly nonlinear relative permeability.

The main conclusions of this thesis can be summarised as follows. Several parameters have

a significant effect on the volume fraction of salt formed, including the depth of the aquifer,

the salinity of the brine and the linearity of the relative permeabilities, but the main

control is the dimensionless capillary number, Ca. Decreasing the value of Ca is analogous

to reducing the injection rate of CO2 into the formation, and leads to a superlinear increase

in the volume fraction of salt precipitation in the aquifer. This is mainly explained by

capillary pressure processes. High capillary pressure gradients in the dry out zone of a

saline aquifer provide a driving force for the backflow of brine towards the point of CO2

injection, resulting in additional salt in the dry out zone that can also precipitate. The

lower the rate of injection and hence the lower the value of Ca, the higher the relative

effect that this counter-current imbibition has, resulting in a higher volume fraction of

salt precipitation. The method of characteristics is not a suitable method for studying

this problem because capillary pressure effects give rise to a non-hyperbolic equation. The
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method of lines should be an appropriate framework for studying this problem. However,

the presence of salt gives rise to significant numerical stability that has prevented useful

MOL solutions to be developed during this project. Instead, improved understanding in

this area has been achieved by extending the similarity solution for immiscible two phase

flow of McWhorter and Sunada to account for three phases and partial miscibility.

7.2 Future Work

Future work on the simulation of salt precipitation as CO2 is injected into brine aquifers

could aim to improve the numerical models formed in Chapters 4 and 5, in particular

the three phase model in Chapter 5, as their outputs are strongly affected by numerical

instabilities. Due to the instabilities produced in the models with the finite difference

scheme currently used and the use of the MOL, it may be best to look into alternative

numerical schemes and methods to solve the partial differential equations (PDEs) in order

improve their accuracy. One possible way to do this would be to change the numerical

scheme to a higher order finite difference method, but a disadvantage would be that this

would mean more surrounding grid points would be used when approximating a solution

at a particular point, meaning that the model would be more computationally intensive

to run. It appears that the time stepping used in the models needs to be at a better

resolution, so it may be that the use of MATLAB’s ODE solvers was not the best option,

and alternative time stepping methods should be considered.

One potential method is the use of a semi-implicit ImPEM (Implicit Pressure Explicit

Mass) implementation, in which the pressure and transport equations are decoupled and

the pressure equation is firstly solved implicitly, followed by the transport equation being

solved explicitly (Doster et al., 2014). The pressure equation is typically of an elliptic or

parabolic nature and so must be discretised implicitly to avoid severe time step restrictions,

while the transport equations are often dominated by hyperbolic advection and so time

step restrictions are less severe. As the scheme is not fully implicit, it is not unconditionally

stable and time steps need to be chosen carefully, but it provides a reasonably accurate,

easy to implement and computationally efficient numerical scheme. Doster et al. (2014)

looked into implementing an ImPEM scheme on a system with two component and two

phase flow, including the effects of compressibility, capillary pressure and gravity, and so

extending this to a three component and three phase system so that it could be used to

simulate salt precipitation in a saline formation would be a promising possibility.
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It would also be interesting to extend the models in Chapters 4 and 5, as well as the

similarity solution found in Chapter 6, to two dimensions. Although Chapter 6 concluded

that the inclusion of the effects of gravity were unlikely to significantly influence the

dry out zone in the saline formations studied, especially for the lower capillary numbers,

it would still be beneficial to conduct a full investigation of saline formations in two

dimensions in order to more realistically model real-life saline aquifers and look further

into the phenomenons that can occur within them that will be strongly affected by gravity,

such as buoyancy driven flow and viscous fingering.

Another area to look into, and perhaps incorporate into models and solutions for the

build-up of salt precipitation in a saline aquifer, is potential ways to mitigate the salt

precipitation formed. The work that has been done on this was summarised by Miri and

Hellevang (2016). Hurter et al. (2008) and Pruess and Müller (2009) both simulated the

injection of CO2 into saline formations and found that the injection of fresh water, even

for a short time, before beginning CO2 injection delayed the onset of salt precipitation and

reduced its severity, as well as reducing the pressure build-up. Other potential mitigation

strategies involve the regular injection of a 90:10 mixture of methyl ethyl glycol and water,

which has been shown to be effective in improving injectivity at Snøhvit (Hansen et al.,

2013), and filling the perforation interval between the borehole and the aquifer with highly

permeable materials (Miri and Hellevang, 2016). Simulating potential methods for the

mitigation of salt precipitation would provide a more detailed insight into the level that

salt precipitation in a saline aquifer impacts on the viability of saline aquifers as a storage

option for CO2 as part of CCS.

214



Bibliography

Anderson, G.M. (2005) Thermodynamics of natural systems. Second Edition. New York:

Cambridge University Press.

Ashino, R., Nagase, M. and Vaillancourt, R. (2000) ‘Behind and beyond the MATLAB

ODE suite’ Computers and Mathematics with Applications, 40(4-5), pp.491-512.

Bacci, G., Korre, A. and Durucan, S. (2011) ‘Experimental investigation into salt

precipitation during CO2 injection in saline aquifers’, Energy Procedia, 4, pp.4450-4456.

Batzle, M. and Wang, Z. (1992) ‘Seismic properties of pore fluids’ Geophysics, 57(11),

pp.1396-1408.

Bear, J. (1988) Dynamics of Fluids in Porous Media. Rev. edition. New York: American

Elsevier Publishing Company, Inc.

Bennion, B. and Bachu, S. (2008) ‘Drainage and imbibition relative permeability relation-

ships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone,

carbonate, shale, and anhydrite rocks’, SPE Reservoir Evaluation and Engineering,

11(03), pp.487-496.

Bickle, M.J. (2009) ‘Geological carbon storage’, Nature Geoscience, 2(12), pp.815-818.

Bjørnar̊a, T.I. and Mathias, S.A. (2013) ‘A pseudospectral approach to the McWhorter

and Sunada equation for two-phase flow in porous media with capillary pressure’

Computational Geosciences, 17, pp.889-897.

Blunt, M.J. (2017) Multiphase flow in permeable media: a pore-scale perspective.

Cambridge: Cambridge University Press.

Boyd, J.P. (2001) Chebyshev and Fourier spectral methods. Second Edition. New York:

Dover Publications, Inc.

Brooks, R. and Corey, T. (1964) Hydraulic Properties of Porous Media. Hydrology Papers,

Colorado State University, 24.

215



Buckley, S.E. and Leverett, M. (1942) ‘Mechanism of fluid displacement in sands’

Transactions of the AIME, 146(01), pp.107-116.

Campbell, G.S. and Shiozawa, S. (1992), ‘Prediction of hydraulic properties of soils using

particle-size distribution and bulk density data’, International Workshop on Indirect

Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of

California, Riverside, October 1992. pp.317-328.

Carpita, M., Giorgis, T. and Battistelli, A. (2006) ’Modeling CO2 injection with

halite precipitation using an extended Verma and Pruess porosity-permeability

model’, Proceedings of the TOUGH Symposium, Berkeley, California, 15-17 May.

Available at: https://www.researchgate.net/profile/Alfredo Battistelli/publication/

260283819 Modeling CO2 injection with halite precipitation using an extended

Verma Pruess porosity-permeability model/links/0deec5309c013862d0000000.pdf

(Accessed: 28th March 2018).

Cavanagh, A.J. and Hazeldine, R.S. (2014) ‘The Sleipner storage site: Capillary flow

modeling of a layered CO2 plume requires fractured shale barriers within the Utsira

Formation’, International Journal of Greenhouse Gas Control, 21, pp.101-112.

Celia, M.A., Bachu, S., Nordbotten, J.M. and Bandilla, K.W. (2015) ‘Status of CO2

storage in deep saline aquifers with emphasis on modeling approaches and practical

simulations’, Water Resources Research, 51, pp.6846-6892, doi:10.1002/2015WR017609.

Cengel, Y.A. and Boles, M.A. (2002) Thermodynamics: an Engineering Approach. Fifth

Edition. New York: McGraw-Hill Higher Education.

Chadwick, R.A., Noy, D.J. and Holloway, S. (2009), ‘Flow processes and pressure evolution

in aquifers during the injection of supercritical CO2 as a greenhouse gas mitigation

measure’, Petroleum Geoscience, 15(1), pp.59-73.

Chen, Z.X. (1988) ‘Some invariant solutions to two-phase fluid displacement problems

including capillary effect (includes associated papers 18744 and 19037)’ SPE reservoir

engineering, 3(02), pp.691-700.

Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A.,... and

Wei, L. (2009) ‘A benchmark study on problems related to CO2 storage in geologic

formations. Summary and discussion of the results’, Computational Geosciences, 13,

pp.409-434, doi:10.1007/s10596-009-9146-x

216

https://www.researchgate.net/profile/Alfredo_Battistelli/publication/260283819_Modeling_CO2_injection_with_halite_precipitation_using_an_extended_Verma_Pruess_porosity-permeability_model/links/0deec5309c013862d0000000.pdf
https://www.researchgate.net/profile/Alfredo_Battistelli/publication/260283819_Modeling_CO2_injection_with_halite_precipitation_using_an_extended_Verma_Pruess_porosity-permeability_model/links/0deec5309c013862d0000000.pdf
https://www.researchgate.net/profile/Alfredo_Battistelli/publication/260283819_Modeling_CO2_injection_with_halite_precipitation_using_an_extended_Verma_Pruess_porosity-permeability_model/links/0deec5309c013862d0000000.pdf


Coan, C.R. and King Jr, A.D. (1971) ‘Solubility of water in compressed carbon dioxide,

nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide

in the gas phase’, Journal of the American Chemical Society, 93(8), pp.1857-1862.

Corey, A.T. (1954) ‘The interrelation between gas and oil relative permeabilities’,

Producers Monthly, 19(1), pp.38-41.

Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., and Knuth, D.E. (1996) ‘On the

Lambert W function’, Advances in Computational Mathematics, 5(1), pp.329-359.

Denbigh, K. (1966) The Principles of Chemical Equilibrium: With Applications in

Chemistry and Chemical Engineering. Second Edition. Cambridge University Press.

Doster, F., Keilegavlen, E., and Nordbotten, J. M. (2014) ‘Multi-phase multi-component

flow including capillary pressure and buoyancy: a robust implicit pressure explicit mass

finite volume method’, Computational Models for CO2.

Duan, Z. and Sun, R. (2003) ‘An improved model calculating CO2 solubility in pure water

and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar’, Chemical

Geology, 193(3-4), pp.257-271.

Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T.A. and Høier, L. (2011)

‘Lessons Learned from 14 years of CCS Operations: Sleipner, In Salah and Snøhvit’,

Energy Procedia, 4, pp.5541-5548.
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Mathias, S.A., Gluyas, J.G., González Mártinez de Miguel, G.J., Bryant, S.L. and Wilson,

D. (2013) ‘On relative permability data uncertainty and CO2 injectivity estimation for

brine aquifers’, International Journal of Greenhouse Gas Control, 12, pp.200-212.

Mathias, S.A., McElwaine, J.N. and Gluyas, J.G. (2014) ‘Heat transport and pressure

buildup during carbon dioxide injection into depleted gas reservoirs’ Journal of Fluid

Mechanics, 756, pp.89-109.

McWhorter, D.B. and Sunada, D.K. (1990) ‘Exact Integral Solutions for Two-Phase Flow’

Water Resources Research, 26(3), pp.399-413.

Miri, R. and Hellevang, H. (2016) ‘Salt precipitation during CO2 storage- A review’,

International Journal of Greenhouse Gas Control, 51, pp.136-147.

National Oceanic and Atmospheric Administration: National Centers for Environmental

Information (2010) Global Climate Change Indicators Available at: https://www.ncdc.

noaa.gov/monitoring-references/faq/indicators.php (Accessed: 13th March 2018).

Nordbotten, J.M. and Celia, M.A. (2006) ‘Similarity solutions for fluid injection into

confined aquifers’ Journal of Fluid Mechanics, 561, pp.307-327.

Oostrom, M., White, M.D., Porse, S.L., Krevor, S.C.M. and Mathias, S.A. (2016)

‘Comparison of relative permeability-saturation-capillary pressure models for simulation

of reservoir CO2 injection’, International Journal of Greenhouse Gas Control, 45, pp.70-

85.

Orr, F.M. (2007) Theory of Gas Injection Processes. Holte, Denmark: Tie-Line Publica-

tions.

220

https://www.ncdc.noaa.gov/monitoring-references/faq/indicators.php
https://www.ncdc.noaa.gov/monitoring-references/faq/indicators.php


Perrin, J.C. and Benson, S. (2010) ‘An experimental study on the influence of sub-core

scale heterogeneities on CO2 distribution in reservoir rocks’, Transport in Porous Media,

82(1), pp.93-109.
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