
Durham E-Theses

Parallel Multiscale Contact Dynamics for Rigid

Non-spherical Bodies

KRESTENITIS, KONSTANTINOS

How to cite:

KRESTENITIS, KONSTANTINOS (2018) Parallel Multiscale Contact Dynamics for Rigid

Non-spherical Bodies, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/13035/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13035/
 http://etheses.dur.ac.uk/13035/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Parallel Multiscale Contact Dynamics for
Rigid Non-spherical Bodies

by
Konstantinos Krestenitis

A thesis presented for the degree of
Doctor of Philosophy

Innovative Computing Group,
Department of Computer Science

Durham University
United Kingdom

November, 2018



This thesis is dedicated to
my family



A Thesis Presented for the Degree of
Doctor of Philosophy

Konstantinos Krestenitis

Submitted on
November, 2018

Abstract

The simulation of large numbers of rigid bodies of non-analytical shapes or vastly
varying sizes which collide with each other is computationally challenging. The
fundamental problem is the identification of all contact points between all particles
at every time step. In the Discrete Element Method (DEM), this is particularly
difficult for particles of arbitrary geometry that exhibit sharp features (e.g. rock
granulates). While most codes avoid non-spherical or non-analytical shapes due
to the computational complexity, we introduce an iterative-based contact detection
method for triangulated geometries. The new method is an improvement over a
naive brute force approach which checks all possible geometric constellations of
contact and thus exhibits a lot of execution branching. Our iterative approach has
limited branching and high floating point operations per processed byte. It thus is
suitable for modern Single Instruction Multiple Data (SIMD) CPU hardware. As
only the naive brute force approach is robust and always yields a correct solution,
we propose a hybrid solution that combines the best of the two worlds to produce
fast and robust contacts. In terms of the DEM workflow, we furthermore propose a
multilevel tree-based data structure strategy that holds all particles in the domain
on multiple scales in grids. Grids reduce the total computational complexity of
the simulation. The data structure is combined with the DEM phases to form a
single touch tree-based traversal that identifies both contact points between particle
pairs and introduces concurrency to the system during particle comparisons in one
multiscale grid sweep. Finally, a reluctant adaptivity variant is introduced which
enables us to realise an improved time stepping scheme with larger time steps than
standard adaptivity while we still minimise the grid administration overhead. Four
different parallelisation strategies that exploit multicore architectures are discussed
for the triad of methodological ingredients. Each parallelisation scheme exhibits
unique behaviour depending on the grid and particle geometry at hand. The fusion of
them into a task-based parallelisation workflow yields promising speedups. Our work
shows that new computer architecture can push the boundary of DEM computability
but this is only possible if the right data structures and algorithms are chosen.
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CHAPTER 1

Introduction

Discrete Element Methods (DEM) are techniques that model granular flows, the

break-up of brittle material, ice sheets and many dynamic other phenomena that

occur during particle collisions. The method describes the medium of interest as a

set of rigid bodies that interact through collisions and contact points. The expres-

siveness of such a simulation is determined on the one hand by the accuracy of the

physical interaction model. On the other hand, it relies on the accuracy of geometric

scale. The more rigid bodies (particles) that can be simulated the more accurate

and realistic is the outcome.

DEM is found in a wide range of engineering applications where the better under-

standing of a medium’s behaviour is important. Granular rock aggregates, sediments

or powders can be found in many disciplines such as bio-medicine, manufacturing,

process engineering, tribology, machinery design. The models applied to simulate

the aforementioned engineering applications focus on the simulation of contact be-

haviour between particles within a process (e.g. hopper, conveyor belt, shaking

table, powder mixing). Successful simulation of particle processing supports the

understanding of phenomena like landslides, avalanches, engine design (i.e. moving

components that interact), aggregate processing, powder technology, rock blasting,

planetary rover mobility (i.e. wheel-soil interaction). Non-engineering applications

of DEM is commonly found in video game programming and animations.

The DEM simulation is often designed as a three-phase algorithm. The first

part is the collision detection phase, interactions between particles are defined. The

second part is the force derivation phases where the interaction forces are updated
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CHAPTER 1. INTRODUCTION

according to the Newton’s law. Lastly, particle positions are updated according

to the interaction forces at hand. Most DEM simulations stick to explicit time

integrator (cmp. [5] and references therein). A DEM model defines each of these

algorithmic phases, within these phases we describe the behaviour of a system of

particles for a given engineering scenario.

The improvement of DEM models and the reduction of simulation time matters

in engineering applications. Advancement of the model promises to increase phys-

ical accuracy and a reduction to the time-to-solution for a given setup. Physical,

geometric accuracy and the total number of particles utilised within a system are

the determinant factors for computational complexity. For the physical represen-

tation, the appropriate mechanics are applied to simulate interactions of interest

(e.g. lubrication, contact elasticity, friction). Realistic geometric representation of

the mediums at hand is vital and inseparable to the choice of contact models (physi-

cal accuracy). A betterment of the represented geometry supports the case of a real-

istic simulation. Finally, as granular engineering applications require large number

of particles to simulate certain dynamic phenomena (e.g. land slides), the increase of

particles adds to the complexity of the simulation. Subsequently, any reduction in

computational complexity increases an engineer’s capacity to run a growing number

of case studies at higher degrees of accuracy.

There are two important shortcomings in DEM interaction models: particle ge-

ometry and particle scales. For the particle geometry most simulation codes use

only spheres and particles, uniformly sized and too few of them [3, 98]. The sphere

based geometries minimise contact complexity requirements by employing a sim-

plistic contact model. Most of the time spheres form the simplest form of granular

representation. DEM codes restrict themselves to analytical shape models where

particles are described by some analytical function. As simulations are constrained

by the computational cost that comes with increased levels of complexity, interac-

tion phenomena are only approximated according to the computational resources

at hand. Therefore, the use of spheres to resemble physically non-spherical parti-

cles is a compromise between physically accuracy and computational cost. In large

scale simulations it is common to neglect the underlying geometric error found in

sphere-based geometries in favour of computational feasibility [65, 101]. Such design

decision is reasonable for applications where users are interested in general macro-

scopic and statistical quantities. In these cases it is anticipated that geometric

error is controlled by some alternation of the contact model. For example, spheres

need to exhibit higher degrees of friction to simulate non-spherical particle contact

(i.e. non-spherical particles can have more than one contact point). Although ef-
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CHAPTER 1. INTRODUCTION

forts to decrease geometric approximation errors do increase the number of physical

phenomena that can be represented, they are occurring at the expense of computa-

tion. The challenge is to increase physical realism to do better engineering but also

manage the computational cost that comes with it.

The second shortcoming is found in the difference in particle size. Particle dy-

namics of geometries at different orders of magnitude in scale are more complex to

implement than those that are uniformly sized. The scale difference in geometries

has an impact in both the model (e.g. density difference) and in the data administra-

tion which can translate more complex interactions (i.e. a large particle spans over

a larger area of interaction than a small particle). Multiscale particles distributions

impose special design decisions over space discretisation which furthermore adds to

the computational complexity [11, 36] of the algorithm.

It is important to tackle the shortcomings as they represent a significant subset

of engineering applications (e.g. rock aggregate analysis). The introduction of both

multiscale particles and non-spherical particles increases the realism of the model

which can lead to representative particle behaviours. Whenever particles are close

to each other (i.e. their distance under runs a given threshold), they are assumed to

be in contact. The distance between two particles depends on their geometry. For

spheres a single contact is created while in arbitrary geometries this not necessary

true. Sphere-based models mitigates the fact that real particles are not sphere-

based [41, 52, 66, 97]. Once explicit time-stepping is used, exact contact becomes

impossible as we have to discrete time. Collision between different particle scales

require more sophisticated interaction models in place.

Collision detection is a critical DEM phase, during this phase the code com-

putes the distances between particles to determine if there is a contact. The use

of spheres for contact detection in high performance computing environments is

widely understood and implemented [3, 5, 7, 28, 33, 54, 66]. Whereas algorithms

that do describe surfaces as polyhedrons fail to perform contact point generation

robustly [38, 101]. Moreover there is lack of work on non-spherical elements that

is include on non-convex geometries. The reason for this, is the requirement for

additional computational costs and interaction models [28, 38, 63, 72, 74] to suit the

underlying geometry. Contact point generators that rely on analytical polyhedron

shapes often use variants of the Gilbert Johnson Kerthi (GJK) [101]. The GJK al-

gorithm notoriously requires the interpenetration of the shapes which causes contact

divergence issues [38]. Therefore we find reason to investigate the contact problem,

by employing triangulated meshes to describe geometries and define contacts during

collisions.
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CHAPTER 1. INTRODUCTION

Triangulated meshes in terms of geometry are ideal for contact mechanics simula-

tions because complex multi-facade shapes can be described using triangles. Spheri-

cal object representations are an exception because they are best described as sphere-

based elements instead. Multi-facade objects are reduced to triangular descriptions

that make up a mesh-based geometry. Since triangles are chosen as the primary

element in meshes, we investigate the contact model based on triangles. A single

contact point between two triangulated particles is the middle point of the minimum

distance between all pairs of triangles. The state-of-the-art interaction potentials

(forces) of two particles are parameterised over particle distances. Thus collision

detection in DEM is reduced to the computation of the minimum distances between

elements (triangles).

Faced by the challenges of geometric and computational complexity, time-to-

solution in a simulation increases. A common practice to decrease the time-to-

solution in DEM is to develop parallel DEM routines that exploit higher throughput

of modern computational hardware. Parallel computation through classic domain

decomposition is well understood and the codes scale [44], but most codes refrain

from modelling particles as irregularly shaped objects. They eliminate the second

role of the interaction model — geometric accuracy — and spend the majority of

compute time in collision detection. Iglberger et al. [44] report 31–34% within a

multi-physics setting, while Li [55] for example reports even 90%. Collision detec-

tion becomes significantly more complicated once we switch from sphere-to-sphere

or ellipsoid-to-ellipsoid contacts to the comparison of thousands of triangles that

represent meshed geometries. Notably, contact complexity is increased when no

constraints are imposed on sharp featured particles or compounds of simpler convex

shapes.

The injection of meshed particles into DEM is a single node challenge. Up-scaling

a DEM code with respect to particle count and machine size is a non-trivial [44, 48]

task. Computation between triangle pairs costs more than sphere pairs. Moreover,

multiscale simulations that use triangle-based particles face additional complexity

in coarse-fine scale interactions that arise of the auxiliary data structures and data

communication. Thus the computation increases remarkably with any increase of

particle count. The scalability of this is in turn not given by construction.

Recent developments in central processing unit architecture [25, 32, 67, 79, 85]

enable the support for Single Instruction Multiple Data (SIMD) [85] data level par-

allelism. SIMD parallelisation in principle allows for four (double precision) and

eight (single precision) times speedup on compatible CPU cores. These speedups

are possible on modern architecture cores that support wide registers (256, 512
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CHAPTER 1. INTRODUCTION

bits) with new hardware instruction sets (SSE, AVX2). In addition to single core

speedups, processors nowadays host multiple cores. It is vital to exploit all up-to-

date resources to maximise the number of particles we can afford to handle. In this

project we propose techniques that exploit such modern hardware motivated by the

handling of triangular DEM meshes.

Research conducted in the area of DEM contact detection — to the best of my

knowledge — does not comprise studies on data parallelism of triangle-to-triangle

distance computation for contact detection. Neither is there work that uses non-

analytic methods to this geometric problem. We propose a new set of methods for

the computation of the minimum distance between triangles.

Our proposal on computing the minimum distance between two triangles com-

bines two strategies; one is the naive or brute force approach where the geometric

primitives of the triangles are exhaustively compared. Geometric primitives of tri-

angles include segments, points and the triangle plane. The alternative approach

is to analytically describe the triangles based on their barycentric coordinates and

then to create a non-linear minimisation. The alternative iterative method is more

favourable in terms of its computational complexity. Compared to the brute force

method, the iterative method is less prone to data dependency and due to its itera-

tive nature, it is possible to avoid logical branching during computation.

The iterative approach is the vectorisable and ideal for exploiting the available

architecture. However brute force approach is the robust method. It always yields

correct results. Iterative variants may not converge because of ill-posed triangle

configurations. Both strategies exhibit different memory footprints which led to the

contribution of a new hybrid approach that is both robust and fast.

We additionally contribute to multiscale grid based DEM. The computational

domain is discretised based on a Cartesian grid and a spacetree hierarchical depth

first traversal. We propose a new scheme that promises to map DEM algorithmic

phases onto a multiscale grid traversal. The grid give rise to four types of morpholo-

gies that exhibit various computational behaviours over time.

We show that the distinct morphological behaviour of the adaptive grids is vital

to a grid based approach in DEM. Adaptive grids significantly reduce particle to

particle comparisons. We introduce a new type of grid that is reluctant adaptive. We

show that the reluctant adaptive grid variant minimises the required morphological

grid changes as the particles move around the domain. This in effect reduces the

adaptivity overhead per time step as we only refine when it is absolutely necessary

based on the dynamics.

Moreover we show that the reluctant grid when combined with an adaptive time
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CHAPTER 1. INTRODUCTION

stepping can yield better performance than the regular adaptive grid scheme. This

is because the adaptive time stepping scheme makes use of grid information to both

refine step size and coarsen it. As such we propose a simple scheme that minimises

the number of steps required to reach the termination condition.

In terms of shared memory parallelisation we propose a novel task-based algo-

rithmic scheme that is derived from three separate levels of abstraction. At the finest

level, we base our computation on the proposed triangle-to-triangle comparison con-

tact detection model where computation is issued as standalone tasks. At a coarser

level, a particle-to-particle parallelisation level at clusters of grid vertices help us

launch pairwise particle comparisons. The particle-to-particle level parallelisation

is proven counter-intuitive as grid adaptivity is introduced to minimise particle-

to-particle comparisons. So we utilise cell-to-cell concurrency to both launch and

consume task-based workload in parallel. The launched contact detection tasks are

intermixed with grid traversal task routines. We finally discuss scalability results

for various runs.

The presented research contributes to areas of HPC DEM and we propose several

new methods for contact interaction between rigid bodies. The proposed method

differs from existing methods found in literature in terms of computational complex-

ity, the implementation methodology, geometry and numerical output. We do not

focus on several aspects of DEM due to both time constraints but also to minimise

the overall complexity. We do not contribute in numerical approximation techniques

neither in DEM contact mechanics or numerical validations against physical exper-

iments. In terms of the methodological limitations, we clearly identify errors and

possible alternative routes to be explored in the future.

The thesis is organised as follows: In Chapter 2 (Physical Model), we sketch the

physical model used in DEM to represent bodies, generate contacts and forces. We

pinpoint the importance of contact detection and discuss geometric representation

of physical bodies found in mainstream DEM simulations. An enhanced meshing

method using a boundary layer is discussed which promises to improve contact point

definition and contact robustness. In Chapter 3, we present a preliminary study of

DEM. The study showcases that for standard benchmarks the underlying geometry

of the interacting bodies impact the end result of a simulation. Small changes to

the particle shapes and size distributions conditions lead to different results. We

use the example of particles flowing through a hopper. In Chapter 4, we discuss the

recent developments in computer architecture and global trends towards exascale

computing. According to HPC roadmaps, these developments create new challenges

for developers. In terms of DEM we extract challenges that affect development and
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CHAPTER 1. INTRODUCTION

the realisation of large-scale particle simulations on large machines. We showcase

opportunities that do arise in contact dynamics simulations and methods that ex-

ploit new hardware architectures. In Chapter 5 (Algorithm Outline), we discuss the

outline of our novel DEM algorithm. The chapter covers a brief overview of explicit

time integration and collision detection routines for non-spherical particles. In Col-

lision Detection we discuss the algorithm that defines contact points between two

particles and the derivation of interaction forces from collision points. We cover the

analytical contact detection approach for non-spherical particles and discuss in de-

tail our contribution towards a new set of iterative contact detection methods. New

hybrid methods are introduced that exhibit the advantages of both iterative and

exact, comparison based solvers. Moreover we study the memory layout required

by such new solvers according to new trends in hardware. We discuss optimisa-

tion techniques and performance benchmarks for comparison of the new algorithms.

In Chapter 6 (Grid Meta Data Structure), a grid meta data structure for DEM is

introduced [92]. The grid discretises space to reduce the overall complexity of colli-

sion detection. The grid data structure is coupled with the DEM algorithm phases

and maps particles into a cascade of grid cells. The mapping of particles into a grid

structure provides better access locality and out of the box parallelisation of particle

traversals events. The morphology of the grid depends on the underlying dynamics

and can be adaptive. Two types of space adaptivity are introduced and compared.

Multiscale grids resulting from the cascades of cells give rise to new implementation

challenges in DEM. We discuss techniques that implement a functional multiscale

collision detection and topology in three dimensions. In Chapter 7 (A Dynamic

Time Step Scheme), we propose a new algorithm for time-based adaptivity. We

discuss a time stepping routine that dynamically refines or coarsens time step sizes

as particles are approaching or separating. The adaptive time stepping significantly

reduces the overall time-to-solution. Moreover the algorithm introduces stability to

the system as a dynamic step size ensures that no particle collision is omitted. In

Chapter 8 (Manycore Concurrency), we discuss four new variants of DEM paralleli-

sation: mesh level, particle level, grid level and grid-task level. We present results

of shared memory measurements as well as the best mix of variants. We use all

algorithmic ingredients to run benchmarks that reveal the potential and impact on

the hardware. Finally, the thesis closes with the conclusion of lessons learned and

the future outlook.
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Introduction. A DEM (Discrete Element Method) physical model in principle

is given by the geometric representation of different particles and a contact model.

Then a differential equation of motion is subject to a numerical scheme. The DEM

geometry comprises the geometric elements (e.g. spheres, triangles) that represent

the real bodies in a simulation. In a DEM context, there are three major types

of errors that occur: the numerical, the precision, and the geometric error. The

numerical error is dominated by the stiffness in the explicit time integration scheme

which is typically used in DEM codes [39, 81]. The precision error originates from

the finite precision in computer hardware. Lastly, the geometric error which that

is produced from the discrete geometric description of the real world. This thesis

tackles the geometric error.

Literature review. The choice of the geometry is critical to simulate any dy-

namic interaction between objects as most for the computation and modelling is

derived from the geometry [33, 39, 41, 46, 52, 66, 81, 97]. The collision model imple-

ments the contact points detection. The contact points are fed into the force model

to yield the actual interaction forces and therefore motion dynamics. In accordance

to Newtons’ laws of motion the force decomposes into repulsive and frictional forces.

All critical phases of the DEM simulation are driven by the geometry.

For this project, we use triangulated geometries to approximate granular and

non-smooth objects that feature sharp edges. This is a pivotal choice compared

to models that use spheres as it adds significant computational and modelling over-

head [83, 88]. To render the simulation nevertheless feasible we design a new contact

detection algorithm for these geometries. While we make a contribution on the ge-

ometry side, we restrict ourselves to an explicit Euler time integration scheme for

simplicity.

Chapter Outline. The physical model lays the theoretical base of the Discrete

Element Method. The Chapter breaks down the method into the following sections:

Geometric Representation, Contact Point Generation and Contact Forces. We start

with an overview of geometric representations found in DEM. The Contact Point

Generation section discusses a newly proposed method to generate contact points

between two triangulated bodies. Lastly, the section Contact Forces provides an

overview of the rigid body force model that naturally arises from these contact

points.
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2.1 Geometric Representation of Rigid Bodies

The geometric approximation of a body defines the surface features of particles

that are used in a simulation. In particle engineering the most widely used geometric

primitive is the sphere and analytical shapes [40, 52, 53, 72, 101]. Bodies with sharp

corners are best described as polygons [53]. In DEM-based particle simulations

the employed geometric element is the determinant factor for geometric error. The

geometric error is defined as the general geometric discrepancy between reality and

simulation. The choice of elements that approximate a rigid body surface directly

affects the realistic surface representation, the choice of contact model, the dynamics

and the cost in computational complexity to simulate all of the above.

Different case studies dictate different choices of geometric shapes. At the

molecular level spheres and ellipsoid shapes are predominately used in chemistry

and biological studies. Spherical shapes at the molecular level commonly represent

objects like blood cells, micro-organisms or micro-structures. At the macroscopic

scale, spherical geometries lose their dominance as real geometries feature sharpness.

Buildings, ridges, rock formations, organisms, minerals and many more objects give

rise to complex non-spherical geometries. The discrete element method is found

applied to a range of engineering fields (e.g. milling, granulation, blending, seismic

analysis, tribology) where bodies are predominately irregular and non-smooth. In

many cases, multi-body structures (e.g. robots, engines, assemblies) and surfaces of

particles like rock aggregates, structural rods and grains particles are characterised

by sharp features that are difficult to capture with smooth spherical elements. It

is vital to accurately represent shapes in order to reproduce realistic behaviour and

capture kinetic phenomena (e.g. rotation).

The focus of this project is to simulate contact dynamics of particle geometries
and structures at the macroscopic scale.

Macroscopic particles are nevertheless often simulated with spherical shapes be-

cause these are computationally cheaper than polygons [88]. Codes that employ

sphere shapes can approximate non-spherical shapes by an assembly of spheres. In

a sphere-based scenario, there are two critical considerations: firstly the geometric

approximation error is to be kept under control, secondly interaction models are

necessary to anticipate physical phenomena that occur in non-spherical geometries.

Unlike perfect spheres, non-spherical particles’ geometries can be classified by a

variety of shape factors (e.g. sphericity, crosswise sphericity, lengthwise sphericity,

1By US Department of Energy [public domain], via Wikimedia Commons
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Figure 2.1: Photographs of granulate examples. Soil granulates can be found in
nature in many shapes. Top: Gravel aggregate frequently used in construction.
Left: A Tunnel boring machinery shield. Rock jamming can occur during phases
of drilling, crushing, extraction. Right: Movement of rover Curiosity on Martian
soil granulates. Non-spherical particle interaction (rolling resistance, particle dis-
placement, bulldozing effect) with rover wheels is an important research area in the
field of terra-mechanics and robotics where soil samples are not widely available for
laboratory experiments. 1

particle circularity, corey shape factor, drag shape factor, volumetric shape factor

roundness, aspect ratio, particle shape factor) [101]. Depending on these factors,

non-spherical particles require special interaction models [101] such as friction co-

efficients which then take into account that the real geometry has flat surfaces and

sharp features. The surface area under contact in non-spheres can be larger than

that of sphere-based interactions, as a pair of spheres can only collide at a single

point. As such sphere-based contact models that model non-spherical collisions are

altered to exhibit the analogous mechanical behaviour of particles with sharp fea-

tures. To increase physical accuracy and to enable the simulation of sharp edged

particles, we employ triangulated particles instead of spheres. The change in the

DEM geometry promises to increase the simulation realism while relying on first

principle physics. This aspect of geometry forms the basis of my DEM contribution.
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Particle Shape Pros Cons

Sphere

Simplest to implement;
requires the minimum
CPU resources to
describe a particle so it
allows a maximum
number of simulated
particles.

Particle behaviour is unrealistic
because of simplified shape.

Rigid sphere
cluster

Relatively simple to
implement.
Approximates real
particle shapes.

In order to approximate a real
particle shape, many spheres of
various sizes are required, signifi-
cantly increasing CPU resources.

Ellipsoid

Better matches real
particle shapes. Contact
force detection has some
similarities to that of a
sphere. CPU resources
required are comparable
to that of a sphere.

Contact force detection is more
complicated than that of a
sphere. The ability to match real
particles is much better than that
of a sphere but is still limited.
Contact detection is more diffi-
cult than for a sphere.

Superquadric

There are more
simulated particle
parameters in a closed
form description which
can better describe
shapes. The particle
parameters are
analytically computed.

Similar difficulties found as in
ellipsoids and contact detection
and force derivation is difficult,
in particular for concave descrip-
tions.

Poly-ellipsoid

It is a subset of a
eight-quadrant
superquadric. No
surface gradient
discontinuities as such
no sharp ridges/edges.

Contact detection problems are
more severe than that of ellip-
soids.

Polyhedra

The polyhedron-based
shape is the most
general and the most
applicable to describe
complex geometries.

Analytical contact detection
methods are very difficult. Con-
tact force derivation at edges is
non-trivial.

Table 2.1: Comparison table of commonly employed geometric shapes to specify the
physical geometry of particles [53]
.
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DEM simulation codes that feature complex geometries take into account several

considerations regarding the geometry representation. As specified by the particle

shape overview Table 2.1 found in literature [2, 40, 46, 52, 53] there are pros and

cons in the choice of a geometric shape. The most simplistic form, the sphere-

based model utilises minimal resources as both the mathematical contact model

and geometry is simplified. The reduction in model complexity exhibits unrealistic

simulations. More complex shapes (see superquadrics, polyhedras in Table 2.1)

offer more accurate physics but at the cost of computational complexity. The choice

of shape has a direct implication to geometric approximation error, computational

resource utilisation and contact model.

There are several unique properties in non-spherical particle. Polygonal elements

that represent non-spherical granulates improve the volumetric approximation error

which is important to compute the precise body mass. This allow the dynamics

to display a range of kinematic phenomena that would otherwise be impossible to

capture. A important feature of non-spherical particles is the location of the centre

of mass. The centre of mass in a non-spherical particle affects the simulated notion

of rotational phenomena. If a rotating object is asymmetric around its principal axis

of rotation (i.e. centre of mass), then the moment of inertia towards each coordinate

direction changes over time as angular velocities slow down with gravitational forces.

A change in the principal axis of rotation creates a wobbling effect that is not possible

to capture in a spherical particle because of its symmetrical mass distribution. A

non-spherical particle allows for one or more arbitrary number of contact points

to occur per interaction. Thus the coexistence of flat surfaces and non-smooth

geometries allows capturing the effects of sliding and rolling frictional forces which

could in principle utilise more than one contacts.

Figure 2.2: A non-spherical triangulated particle approximating a granular material
(i.e crushed gravel aggregate).
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The focus of this project is to create algorithms that allow users to work with
triangulated non-spherical particles of arbitrary shape.

A second important aspect of DEM granular particles is their variation in scale.

Extreme variation in particle scales occur in engineering applications (e.g. filtering,

rock crushing, milling) [58]. Particles in some applications are not equally sized and

there are cases of interaction where a larger structure (e.g. hopper, floor, machin-

ing, crusher) interacts with smaller particles. So a simulation should accommodate

both coarse and fine particle sizes. Coarse-fine particle interactions yield important

engineering phenomena like clogging, blocking, void filling, and granular flow rate

variation. In terms of computation, heterogeneity in particle scales create hetero-

geneity in the data handling. The intermix of various scales of particles length add

to the complexity of computation.
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Figure 2.3: The relationship between computational cost and physical accuracy of
geometries. Particles that are constructed using spherical shapes are more compu-
tationally feasible to simulate than those using triangulated shapes.

The geometry choice determines both the computational cost and physical accu-

racy of a DEM algorithm. As shown in Figure 2.3 and Table 2.1, the more geometric

accuracy the more computationally complex and slow would be the DEM simula-

tion. Geometric representation plays a crucial role in the representation of actual

real world physics. The choice of geometry for a particular body affects both the
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physics and the computational cost (Figure 2.3). With triangulation of particles

we increase complexity in favour of geometric and model realism. Spherical par-

ticles are commonly used in DEM applications for algorithmic simplicity and the

lower computational cost. Yet spherical particles cannot represent sharp edges with-

out adding significantly larger number of spheres to approximate irregularities (e.g.

sharp edges). The geometric approximation error that occurs with spheres that at-

tempt to represent non-spherical particles does not allow the capture of important

physics like granular rotation, non-smooth particle contact without fundamentally

changing the spherical physical model to adapt to the requirements. It is there-

fore logical to employ triangulated bodies of particles to represent the non-spherical

surface instead of spheres. Another dimension in DEM geometry is that multiscale

interactions add additional complexity in order to enhance geometric realism.

2.2 Contact Point Model

Contact point generation. Collision detection and collision point generation

are the prerequisite phases to derive the interaction force between two bodies. A

collision is detected when two particles are in a ”touch” state. The definition of

”touch” or collision varies per DEM contact model. Contact detection for non-

spherical particles varies widely [43, 100, 101]. It is also not uncommon to utilise

clusters of spheres to approximate sharp featured geometries [2, 3, 5, 15, 66, 81, 101].

Rigid bodies collision detection algorithms distinguish themselves in overlapping

and non-overlapping schemes. The codes that implement overlapped bodies allow

geometries to cuddle over their real shape, GJK (Gilbert Johnson Keerthi) is found

to be the predominantly used method for non-spherical particle collision detection

in literature [27, 55, 88] (See Appendix Section GJK). Non-overlapping codes use a

virtual geometry such that the real geometry is not allowed to overlap. In the latter

case particles are in contact once they are closer than a prescribed critical threshold.

The critical threshold is formed by an Minkowski sum around each particle (Figure

2.4) that creates a virtual or halo extension of the real geometry.

Contact models that do allow geometries to overlap over the real geometry make

sure that the overlap gap is minimised [37, 64]. An explicit check of penetration

rate or a fall back scheme is often put in place to control critical overlap. For

non-overlapping schemes, the extra margin acts as a safe-guard area and allows for

robust resolution of contact without relying on a fall back. Even if the real geometries

do not overlap in a halo extension scheme, the halo extension does overlap. The

minimisation of the gap in both cases goes hand in hand with the time step size
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n

Figure 2.4: Three particles with their ǫ environment. The particles do not penetrate
each other, but two particles plus their ǫ Minkowski sum penetrate and create one
contact point with a normal.

and the force parameters. The infinitely short contact event thus is never resolved

exactly.

Figure 2.5: Contact divergence due to interpenetration. Convex bodies A, B with
x1, x2 contact points and d1, d2 penetration depths. In the next time step object A
will move upwards to the right and object B downwards left.

When a collision is detected, the collision overlap region is extracted and a unique

contact point is defined. The extraction of the overlap region assume no mesh-based

redundancies and thus should produce a single contact point. It is important that

for each pair-wise collision the contact model produces unique contact points to

avoid collision jitters and divergence [38]. Collision divergence occurs when particle

geometries overlap and this can create contact normal’s that are inconsistent (Figure

2.5. Due to discretisation errors (i.e. meshing) and geometric symmetries, contact

point inconsistencies may arise [38], these need to be explicitly resolved by contact

filtering or clustering [28, 49, 60]. Such models apply constraints at contact point

generation or resolve mesh errors a priori to the simulation. Instead, in this project

we choose to implement a contact detection model that uses virtual layer halo to

detect collision [38] to increase contact robustness. In our scheme real geometries

do not overlap, yet an extended geometry does overlap.

28



CHAPTER 2. PHYSICAL MODEL

Figure 2.6: Example of triangles that intersect without boundary layers; the direc-
tion of shortest retraction is not consistent. The contact points are not robust as
they diverge the collision.

An alternative collision detection approach is proposed where individual triangles

of the mesh are used to determine collision between two bodies. Equipped with this

method, non-overlapping collision detection contact divergence is avoided and a

new contact model for unstructured meshed particles is proposed. Unstructured

meshes represent geometries and are combined with an non-overlapping triangle-to-

triangle contact detection approach. The idea of unstructured meshes for contact

detection in DEM is inspired from robotics simulations [38]. In such an approach, a

robust contact generation technique is possible when the boundaries of the bodies are

fattened with a margin around them. This is especially useful for meshes that include

features with noise. The boundary layer margin acts as a restriction constraint to

the penetration depth during contact. The method is applied to rigid-bodies with

the primary goal of producing stable (Figure 2.7) contact estimates for mesh-to-

mesh collisions while tolerating the numerical error that comes with the introduced

margin. However if triangles do penetrate, the simulator loses robustness (Figure

2.6). That is because of the undefined contact point, that can no longer be defined

due to the penetration contact divergence problem, rendering impossible to pass the

required contact normal information to the next time step of the simulation.

The boundary layer is created by extending the surface geometry by an epsilon

value. For example, a set of triangles TA in a mesh mA, is covered at the boundary

by the union of spheres of radius equal to epsilon ǫ, this forms a Minkowski sum

and results to fattened triangles (Figure 2.8) at the edges. The extended bodies

mA and mB (or their sets of triangles TA, TB) are in contact when the ǫ extended

area of a pair of triangles Ti, Tj (of bodies mA, mA) overlaps. A function d(Ti, Tj)

is used to compute the exact minimum distance d between triangles, thus we check

if d(Ti, Tj) ≤ ǫA + ǫB. All possible pairwise triangles within distance ǫA + ǫB are
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Figure 2.7: Contact divergence is avoided by introducing boundary layers in the
two bodies, prohibiting penetration making contact point generation robust. Left:
figure show contact points on A,B. Right: figure show contact normal caused by
contact. d1, d2 are the boundary margin penetration depths. [38]

then used to produce contact points C. Such an algorithm has the complexity

O(|TA| · |TB|).

Figure 2.8: Contact points (left) and contact normal (right) with a boundary margin
layer applied on triangles produces robust contacts.

The closest points on the triangles correspond to the deepest penetrating points

of the extended triangles (Figure 2.8). The triangles are in contact when for all pairs

of triangles there is a pair whose distances are less than the sum of the extended

margin. This contact detection method is reduced to calculating the minimum

distance between all pairs of triangles. To our knowledge there is only one strategy

to obtain the distance between a pair of triangles robustly: a brute force method

checks the distances of the triangles primitives, vertices and segments to determine

a contact (Section 5.4).

The contact point is the centre of the overlap region (Figure 2.4). The distance d

between a particle A and its contact point with a second particle is 0 < d ≤ ǫ. Each

contact point is equipped with a normal n pointing from the contact point to the

surface of the contacting body’s surface. As the distance is positive, we have |n| ≤ ǫ.

Note that the normal direction depends on whether we read particle A is being hit

by particle B or the other way round, each normal associated with a particle points

along the outer normal of the body. Despite the fact that we employ a rigid body

model, multiple contact points between two bodies may exist as particles can be

concave and their Minkowsi sum may overlap in several places.
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The Minkowski sum margin around the geometry allows the contact model to
shift the penetration test onto a virtual boundary layer. A virtual boundary
layer ensures that no real penetration is allowed and as a result prevents
contact divergence found in penetration-based models [38]. A contact point is
defined as the middle point of the minimum distance between two particles.
Contact normal’s point opposite to the particles. They are perfectly aligned
along the triangle distance line.

2.3 Contact Forces

Force model. In a simple DEM setup two types of forces predominate the simula-

tion when a contact is detected, repulsive forces to represent the third law of motion

and frictional forces that capture aspects of the surface according to Coulomb’s

law of friction. In literature different models based on the spring-dash-pot elastic

repulsion force has been already studied in depth (Zhong et. al. and references

within [101]), there is no new finding or contribution there. In this project, we im-

plement a linear visco-elastic particle model with spring-dash-pot forces where the

actual particles are in-compressible.

2.3.1 Repulsive Force

We apply the linear spring-dash-pot force model from Cundall and Strack [13] to

study the DEM and an efficient non-spherical implementation. In such DEM code, I

chose to follow the simplest contact mechanics model following the Hertzian contact

model. For a Hertzian type model there are few assumptions taken to the con-

tact problem: The strains are small and within the elastic limit. The surfaces are

continuous and non-conforming (implying that the area of contact is much smaller

than the characteristic dimensions of the contacting bodies). Each body can be

considered an elastic half-space.

The code follows the Hertzian theory but with the addition of friction and spring-

dash-pot forces. So per particle A, the algorithm accumulates all contact points

in CA into one translational (ftrans) and one rotational repulsive force (frot) with

some dissipation (damping). We make CA subject to a post-processing stage which

eliminates all collision point duplicates which are all duplicates that are closer than

min(hA,min, hB,min), where h is the smallest length of the triangles that represent

A and B (collision partner). No contact point may be closer than this value. The

contact normal n of particle A is always opposite of B and vice versa. The normal

vector shows the contact direction (opposite direction per body) and the distance
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between the colliding bodies. On the preprocessed contact point set CA we then

determine

f(A,B)trans =
∑

c∈CA

min

(

0,−ks · (ǫ− |n|) + (kd · 2.0 · (
√

1.0
1.0
mA

+ 1.0
mB

) · ks · vAB)

)

· n|n|

f(A,B)rot = lA × f(A,B)trans

the single contact of collision per element per body where ks and kd are stiffness and

dissipation coefficients, m is the mass. We use the normal’s’ norm to determine the

model’s penetration depth, while the change rate of this depth is derived from the

projection of the relative velocity between the two particles onto the normal vector.

We use the particles’ velocities vA and vB here to get relative velocity vAB. The min

function ensures that the force always pulls particle away from each other. There

is no particle attraction to model adhesive contact. The rotational force torque

(f(A,B)rot) is perpendicular to distance and is determined by the lever arm of A’s

centre of mass to the contact point. The halo size ǫ is set to 0.001, ks to 1000, kd to

0.1.

Figure 2.9: A spherical particle in contact with a floor, the contact normal is along
the line defined by the distance. Contact forces point to the direction opposite to
each particle according to the Newton’s first law of motion (blue arrows). Friction
is the green arrow and it is tangent to the contact normal.

2.3.2 Frictional Force

Friction is modelled at the contact point using Coulomb damping. A Coulomb

friction model applies a friction coefficient to the force depending on the material

parameters of the interacting objects. The applied friction is applied tangent and

opposite to the relative velocities direction of particle pair during contact. The
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frictional model captures the phenomena of stiction, sliding and rolling. Stiction is

initiated at the first instance of contact and the collision trajectories can be opposite

to each other. During contact sliding and rolling may emerge later on due to stiction,

geometry, centre of mass, torque or with introduction of more contact points.

ffriction = −vt ·mat · fcontact (2.1)

As friction (2.1) is applied per contact point, per contact point there is a unique

contact force. In sphere particles only one contact force can exist per particle pair

interaction. Taking the opposite of the relative velocity tangent −vt I can obtain the

right direction to apply friction. For pure stiction (static friction) where particles

are in contact with opposite directions (e.g. object on a table) it is straightforward

as friction acts similarly to damping. Material parameters mat are included to take

into account friction coefficient among different types of surface materials. Static

friction also behaves to some extend like adhesion but is disabled during contact

separation (see Johnson-Kendall-Roberts model of elastic contact).

2.3.3 Sliding Motion

Moving non-static friction occurs when an interaction overcomes stictional (or ad-

hesive traction) forces. When two particles are sliding on one another, sliding fric-

tion occurs in opposite directions. Sliding friction coefficients model sliding contact

between rough surfaces (corrosion, wearing, surface geometry), lubricated surfaces

(oils, powders) and pseudo-elastic resistance (jelly on rough surface) of motion while

undergoing deformation. The sum of frictional forces along an area of contact can be

zero due to frictional forces annihilation or due to friction coefficients. When sliding

friction is annihilated or disabled, slippage occurs. Slippage continues forever unless

a new contact is introduced to the interaction.

2.3.4 Rolling Motion

Pure rolling occurs in sphere-based particles once initial static frictional forces are

overcome by other kinetic forces. Rolling is the superposition of two motions, linear

and angular translational motion. By definition, pure rolling of a axially symmetric

object occurs along a reference frame in which a particle axis is parallel to a flat

rolling surface at rest once linear velocities reach zero. The kinetic and contact

force vector then initiate torque forces that instantaneously trigger angular velocity

acceleration to the particle. The instantaneous angular velocity of all points of the
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Figure 2.10: A cube particle on top of a table moving with a drilling motion creates
friction vectors that apply resistant forces to the stationary (horizontal axis along
centre of mass is not changing location) particle. The small vertical vectors are the
forces that the particle exert towards the floor.

rolling object is the same as if it was rotating around an axis that passes through the

point of contact with the same angular velocity. Due to small deformations near the

contact area, sliding and energy dissipation occurs during rolling creating rolling

resistance. Rolling resistance is important when modelling non-spherical particle

with spheres in order to anticipate the non-existence of rough corners that exist in

non-spherical particles. Without rolling friction, sphere particles can roll forever. In

non-spherical particles rolling occurs naturally as axial asymmetric bodies induce

both torque and bi-linear repulsive forces.
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Preliminary Study on the Impact of Triangulated Particles

Introduction. This chapter validates a fundamental claim about the impact of

spherical and non-spherical geometries on the physical dynamics of simulation. We

showcase by experiment and comparison to results found in literature that the geo-

metric element employed to represent a non-spherical particle in DEM applications

makes a difference in the output of a simulation. The hypothesis is that non-spherical

particles and spherical particles do not produce the same output for a given engineer-

ing setup. This hypothesis can be experimentally validated in a granulates-based

hopper flow simulation. We compare the flow of sphere and triangle-based bodies.

We show that varying the degree of geometrical approximation in the simulation

makes a qualitative and quantitative difference to the simulation output. The com-

parison of a hopper flow setup (Figure 3.1) is fair only and only if as a prerequisite

equal material parameters are used for computing the mass. The preservation of

equal total mass in the domain is enforced in both scenarios.

Literature review. Relevant studies of shape impact in DEM simulations have

been well documented in literature [12, 57, 63, 74, 102]. Specifically the hopper gran-

ulate flow is studied in many papers. Available studies observe motion differences

between sphere, compounds of spheres, ellipsoid or polyhedral-based particles. The

flow becomes increasingly concentrated in the narrow funnel above the hopper open-

ing. DEM is able to predict important problems such as bridging and rat-holing.

Increasing the blockiness or angularity of geometry of the particles also increases re-

sistance to flow and reduces flow rates. According to Rigway [74] circular particles

are a particularly special case that does not represent well real materials. Circular
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particles have little resistance to shear or frictional forces. These forces cause the

particle micro-structure to yield prematurely via a rolling mode of failure. This

causes the flow rates to be over-estimated and always leads to excessively fluid-like

mass flow in the hoppers. An extension of DEM to use non-circular particles is

thus one amongst many important steps that are required before DEM can confi-

dently predict all the phenomena that occur in hoppers [74]. Other effects still to

be understood include the locking of three-dimensional micro-structures, the effect

of particle asymmetry, the effect of cohesion, the effects of differing wall-particle to

particle-particle friction properties and the effect of micro-roughness on the walls of

the hopper [74].

Hopper experiments serve as benchmarks for many DEM codes. Reasonable par-

ticle counts yield insights on the flow behaviour, these range from 100 [42], 800 [64],

over 3, 125 [12] to 6, 000 [81]. In contrast, experiments with spherical or analytical

particle descriptions work with 100, 000 particles [56, 65, 72] and can even reach

2 · 109 particles in total with more than 15, 000 particles per rank/node [44]. How-

ever, triangulated particles of in-homogeneous sizes performance data for single node

experiments is to the best of our knowledge new.

DEM or related codes that support arbitrary shapes and sizes are rare, and

many papers omit the runtime impact discussion [8, 31, 42, 43, 101]. Notably, there

is no mainstream code or study that examines arbitrarily shaped and sized triangu-

lated particles. In particular concave meshed shapes are not commonly found [98].

Instead, most codes model complex geometries via assemblies (composites) of sim-

pler/convex primitives [52, 53, 71, 101]. We instead attempt to make use of arbitrary

shaped models straight from CAD models which are imported as triangulated ob-

jects.

Another dimension of geometry is size and particle scales variation within a sin-

gle simulation [11, 15, 36, 82, 86]. Multiscale studies for short-range DEM-based

simulations demonstrate that geometric representation of scale plays an important

role in the dynamics [11, 15, 36]. In particular for milling processes the interac-

tion of coarse particle with interstitial powders composed of fine particles allows

predictions to be made of the effect of the local grinding environment [11]. Multi-

scale scenarios in DEM-based industrial grinding processes demonstrate the impor-

tance of the cushioning effects of high powder loads on the flow of coarse particles.

Another study [15] demonstrates the importance of multiscale DEM-based porous

non-spherical particles in hydrodynamics. Particles heterogeneity directly affects

inter-particle interactions, the interstitial spaces (voids) as well as streamline flow if

the material is porous. In the field of rock mechanics in general, literature highlights
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the importance of shape plus size in various applications [53, 100].

In a hopper flow scenario, there are three major phases: firstly the initial drop

configuration condition (Figure 3.1) where particles are above the hopper ready

to be dropped by gravity, secondly, the flow dynamics phase resulting in particle-

to-particle and particle-to-hopper walls interactions during the drop. Lastly, the

simulation is said to be at its termination phase when particles come to rest on the

floor (Figure 3.2). In the subsequent section we benchmark hopper flows with spheres

against flows where the same number of particles is represented by triangulations.

The aim of a flow comparison is to showcase that there is qualitative and quantitative

difference, although this study does not prove which approach is the most realistic.

Figure 3.1: Depiction of the two hopper experiments at the starting point. Three
types of particles dominate the simulation, a hopper, a floor and the particles.
Gravity acceleration is applied to the particles to force them flow through the hopper
top and bottom openings. Left: Sphere particles. Right: Triangulated particles
(1000 particles made of 5 to 10 triangles).

Symmetries and asymmetries. In this study of geometry we focus on tracking

positional symmetries of particles as they flow through the hopper structure, to

determine that shape geometry influences the physics. The symmetries experiment

is run using a set of scenarios where we use a fixed number of particles, a fixed given

mass total of wood material, a fixed range of numbers of triangles for the granulates
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(ten triangles for coarsest particle to forty triangles for smoothest particle). These

scenarios are then further split into two categories: uniform distributed mass, and

non-uniformly distributed mass.

In the uniformly distributed material mass case, the total mass is equally dis-

tributed across all homogeneously positioned particles. For the spheres scenario, the

prescribed size and mass density are equal, i.e. the total mass is uniformly divided by

the number of particles. In such a setup, the hypothesis is that the flow in principle

should fall symmetrically along the centre of the domain across the x axis. Contrary

to spheres, arbitrary non-spherical shaped triangulated particles of same volume but

of random features with uniform mass, should would create a skewed asymmetry

due to the irregular shape and non-uniform distribution of contacts. In both cases

the hypothesis is that although the same physical phenomena are simulated the

employed geometry produces a different output.

In the non-uniformly distributed mass case, the total mass is randomly dis-

tributed across homogeneously positioned particles. For the spherical particle sce-

nario, particle sizes are different due to the random distribution of mass while pre-

serving equal material density. In such scenario studies determine whether varying

size make a difference compared to equally sized particles. In principle the varia-

tion in sizes for both spheres and triangulated non-spherical particle hypothetically

would yield similar dynamic behaviour and both fundamentally create asymmetries

but not due to geometry surface features but due to the variation in sizes.

Measurement formulation. Symmetry studies require metrics to quantify

skewness relative to the mass and position of particles. Firstly, the mean position

along the central X axis of the domain is computed by

IEx =
N
∑

n=1

xn/N.

where xn is the centre of mass (with frame of reference to the centre of the domain)

of each particle on the X axis and N is the number of particles simulated. The

weighted IEx mean by mass is computed as

IEmass =
N
∑

n=1

xn ·mn/
N
∑

n=1

mn.

where mn is the mass of each particle n. The maximum width in both directions

from the mean centre of the pile to the pile edge is
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Mx = max(|IEx − xn|).

The weighted maximum width in both directions from the mean centre is

Mm = max(|IEmass − xn|).

The variance value from the mean position of the pile is

V arx =
N
∑

n=1

(xn − IEx)
2/N.

The weighted variance from the mean position of the pile is

V arm =
N
∑

n=1

(xn − IEmass)
2/N.

Type IEx IEm Mx Mm Varx Varm
Sphere -0.000000 -0.000000 0.064117 0.000032 0.001059 0.000000
Triangle -0.000277 -0.000734 0.079463 0.000772 0.000489 0.000001

*Sphere 0.002276 0.004271 0.070529 0.004289 0.000799 0.000018
*Triangle -0.002392 -0.006890 0.126990 0.006944 0.001674 0.000047

Table 3.1: Uniform and non-uniform (* starred) mass distribution of sphere and
triangle runs of a thousand granulates. A thousand particles are used for all four
cases.

Spherical particles with uniformly distributed total mass. The experi-

ment begins by dropping a thousand uniformly distributed mass particles over the

hopper funnel (Figure 3.3, top left). The particles are dragged down by gravity.

During the drop phase, the particles follow the shape of the hopper structure as

they collide with the walls and they are mixed (Figure 3.3, top right, bottom left).

During the mixing and compression phases the particles are interacting with each

other. Particles are pushed towards the centre of the horizontal axis of the domain

while at the same time particle interactions fill the voids through the funnel exit.

In this set-up the first particles hit the ground structure around the centre of the

domain axis with subsequent particles falling on top of the initial particles on their

39



CHAPTER 3. PRELIMINARY STUDY ON THE IMPACT OF
TRIANGULATED PARTICLES

Figure 3.2: Left: A hopper with a thousand equally sized sphere particles flowing
through it during the discharge phase. Right: A hopper with equally sized particles
at the end of of the discharge phase, resting on top of the floor structure.

left and their right side. At this stage it is critical to observe that a pile is created

as sliding and rolling friction coefficients are high enough to prevent rolling over the

floor or rebounds.

At the end of the simulation, particle positions along the x axis indicate the

degree of symmetry produced by the dynamics (Table 3.1). For equally massed and

sized spheres, the mean position of the centre of mass of each particle along the x

axis is zero. From the initial dropping up until the resting state all particles behave

symmetrically left and right of the y axis, generating not only contact points at the

same time but also equal repulsive forces. The mean position weighted with mass

is also low as particles are equally massed. This scenario is the baseline of our next

steps.

Non-spherical particles with uniformly distributed total mass. The

same hopper experiment is executed on non-spherical triangulated particles. The

geometry of triangulated particles are randomly generated using the convex hull

algorithm (See Appendix) using ten triangles for a coarse surface. The radius of each

triangulated particle closely resembles the uniformly distributed radii of spheres of

the previous experiment. Although the surface of each particle is not exactly the

same, the volume of each particle is preserved across all particles. As the geometries

are arbitrary shaped, the centre of mass is not necessarily the same as the centre

of geometry as in the case of spheres. For spheres the geometric center is the

middlepoint whereas for arbitrary shapes it is the the point that is equidistant

from each vertex (centroid). Due to rotational behaviour that non-spheres exhibit,

formation patterns differ to spheres. Particle-to-particle contacts initiate rotations

before the clogging/compression phase as any contact generated at a corner initiates

torque forces. On top of the floor non-spherical particles pile up as long as there is
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Figure 3.3: Schematic depiction of the two hopper experiments at the starting point.
Three types of particles dominate the simulation, a hopper, a floor and the particles.
Gravity applied to the particles forces them to flow through the hoppers top and
bottom openings.

enough friction.

Type IEx IEm Mx Mm Varx Varm
Triangle 10 0.000120 -0.000159 0.075062 0.000193 0.000339 0.000000
Triangle 60 -0.000029 -0.000004 0.037941 0.000023 0.000272 0.000001

Table 3.2: Symmetry measurements of non-spherical particles of approximately ten
and sixty triangles per particle respectively. A thousand particles are used. Increas-
ing the number of triangles approximates the geometry and behaviour of a sphere.

At the end of the simulation (Table 3.1) the centre of mass positions are not

as symmetric as in the uniform distributed mass spheres. The total mean mass

position of the particle pile is skewed and its bisection along the x axis creates an

asymmetry. The distance from the mean position (Table 3.1 is also slightly shorter

than in the uniform sphere experiment. Non-spherical particles become slightly more

symmetric and approach the uniform distributed mass of spheres behaviour when

the geometry becomes more spherical. The sphericity of the geometry is increased
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with the increase in the the triangle number which represent the mesh density at

the surface (Table 3.2). When the mesh density is increased from 10 triangles to

more, the geometry is becoming more spherical (there are still some random surface

features) and the contact dynamics of the experiment exhibit a sphere-like behaviour.

Figure 3.4: Multiscale particles of varying mass per particle. Left: A hopper flow
simulation of sphere particles with non-uniform masses. Right: A hopper flow sim-
ulation with triangulated particles that have non-uniform mass values.

Sphere particles with non-uniformly distributed total mass. For the

second category of experiments we investigate the effect of varying particle sizes.

The experiment starts with particles falling off a drop zone above the hopper (Figure

3.4). The same total mass is used as in previous experiments to preserve similarly in

the simulation. The interaction dynamics follows the one of spherical particles. As

because mass is not distributed equally across the domain, the resulting interaction

forces create an asymmetric dynamic interaction (Table 3.1). The spread around

the pile bisection is also larger compared to the uniform mass experiment (Table

3.1). Heavier particles are less prone to be moved by lighter particles.

Non-spherical particles with non-uniformly distributed total mass. Fi-

nally, multi-scale non-spherical particles are tested. The total mass is non-uniformly

distributed on top of the hopper similarly to aforementioned experiments. Non-

spherical particles of varying scales inherit the physical characteristics of non-spherical

dynamics but also the effects exhibited by multi-scale spheres due to the variation in

sizes. Particles of varying scales are not creating a uniform pile (Table 3.1) and the

spread is increased as in multi-scale spheres. Although triangle-based and sphere-

based particles behave similarly due to varying sizes, they fundamentally differ due

to the geometry. Non-uniformly distributed triangulated particles are asymmetric

along the mean particle position on the x axis (Table 3.1).

Particle Shape Overview. We see from the preliminary experiment and liter-

ature review that the geometry plays an important role in the dynamic behaviour of
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Figure 3.5: Multiscale non-spherical triangulated particles of varying size flowing
through the hopper. The sizes vary significantly (up to 5x magnitude) among the
dropped particles thus there are varying magnitudes of contact forces and angular
velocities during the particle condensation phases.

a simulation. The geometric representation is the basis for the contact model. Both

the scale and sharp features affect the employed contact model. For sphere-based

models that represent geometries with sharp features, it is up to the contact model

to anticipate for dynamic phenomena that inherently cannot exist (e.g. rotations,

torques, more than one contact per particle pair) in spheres. Moreover the variation

of scales add another dimension in the complexity of the simulation.

Macro-scale effects on large particle scenarios. At the macroscopic scale,

minor perturbations in both sphere and non-sphere based geometries do fade way.

This is observed in scenarios where small disturbances caused by either geometry or

force irregularity (e.g. artificial force injection) do not affect the whole system. At

the micro-scale level sphere-based contact models need to exhibit forces that simulate

non-sphere-based geometries in order to exhibit on average identical flow behaviours

as in non-sphere based geometries. Depending on the application, a compromise

between geometry, contact model and computational complexity is reasonable. In

this project, we attempt to handle multiscale shapes within a single simulation.

This preliminary experiment shows the effects produced in a hopper flow sim-
ulation given a specific amount of mass (kg) to simulate granular materials
and surface geometries (sphere, triangulated). The original hypothesis is val-
idated, to reveal that there are fundamental differences between sphere-based
and triangulated-based non-spherical particles that both approximate granu-
lar material.

In sphere-based particles it is essential to manually find a friction coefficient that

realistically attempts to simulate frictional forces of sharp edged, flat faced granu-

43



CHAPTER 3. PRELIMINARY STUDY ON THE IMPACT OF
TRIANGULATED PARTICLES

lates. Without these frictional parameters, sphere-based particles cannot behave as

non-spherical particles neither during the flow phases nor during the piling phases.

Without the required friction spherical particles even roll away on the floor. It is

non-trivial to numerically anticipate the behaviour of non-spherical granulates using

a sphere based model.

Another physical property difference is the phenomenon of non-spherical particles

to rotate around an asymmetric centre of mass where axis of rotation is not at

the centre of geometry. Contact points per particle pair is the primal cause for

further interactions and energy exchange compared to a single point of contact that

is the main characteristic of sphere-based particle pairs. These are all causes for

the asymmetries observed on non-spherical particles of uniformly distributed mass.

Lastly, size variations of particles is another source of difference that affect both

sphere and triangle based models. Larger particles dominate in contact interaction

and the variations in mass lead to variation in forces, dynamics, and then to the

final settlement of the particles during the simulation.

All experiments have been conducted with my code base. The code and con-

tact model employed makes a difference in the simulated physics. However, the

differences in particles behaviour based upon geometry configuration is acceptable

only if and only if compute work remains manageable. This is where we position

our major contribution. In order to under to understand the trade off between the

computational complexity and DEM dynamics we first have to review the computer

architecture trends.
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Computer Architecture

Recent developments in High Performance Computing (HPC) research and future

requirements drive the computer technology. The increased levels of parallelism in

HPC hardware combined with the quest to solve larger and more accurate research

problems shapes is the major challenge of HPC. New trends in hardware shape

the best practices in application codes. It is critical that researchers are aware of

architectural diversity and transitions in order to adopt early. Yet, the upcoming

computation and scientific trends become drivers of HPC algorithm research and

promise greater computational throughput.

Chapter Outline. In this Chapter we discuss technology and science drivers

that underpin HPC technologies. At the first section Recent HPC Developments

we discuss recent developments in HPC. In the second section The Path to Exas-

cale Computing, we follow the exascale roadmap [17, 21, 26, 93] and we lay out

implementation techniques and challenges towards the path to exascale. Lastly,

section The Challenges and Opportunities in Discrete Element Method juxtaposes

HPC trends with issues and opportunities that arise within the context a Discrete

Element Method (DEM) implementation. They mark areas worth of algorithmic

contributions.

4.1 Recent HPC Developments

Over the last decade, semiconductor technology obeyed Moore’s law. Empirically,

the density of transistors on a chip doubles every two years. The shrinkage of
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semiconductors has been an important driver of global societal and economic change

over decades. Chip architectures have been shrinking since the 1970s up to the

recent length (as of 2017) of 10 nanometer, a length classification set by ITRS

(International Technology Roadmap for Semiconductors) [1]. The shrinking size

of components over time increases the computational performance in floating point

operations per second as signals are processed faster in denser transistors. Shrinkage

of the semiconductor technology is expected to continue but not at the same rate

as in early the 1990s and 2000s. The transistor number continues to grow but at a

decreasing rate, this is attributed to the limiting factors found in the semiconductor

technology. There are manufacturing limits (e.g. modelling, manufacturing errors),

physical density limits (e.g. issues with electrochemical components at nano-scale)

and thermal side effects that need to be resolved before production.

Stagnation of silicon shrinkage has triggered the development of technologies

that allow more floating point computations per chip, per socket and per machine

nevertheless. In the HPC community, several parallel flavours have evolved and it is

up to the computational scientists to utilise them. Modern computer architectures

force scientific users to adapt simulation codes to new system configurations. Large

scale simulations that rely on computer architecture goes in par with the underlying

hardware evolution.

At the single chip level, a new parallelism paradigm has emerged with the intro-

duction of new CPU instruction sets. Data level parallelism is classified as Single

Instruction Multiple Data (SIMD) in the Flynn taxonomy [30] and it was first in-

troduced in vector processors in the 70s. Vector processors gradually faced a decline

as the supercomputing community turned into massively parallel commodity su-

percomputers at the time. Today SIMD/vector processing on the single chip has

re-emerged [26] in commodity hardware and it is widely available on machines that

expose wide registers in Arithmetic Logic Unit (ALU) through the latest instruction

set commands (e.g. Advanced Vector Extensions (AVX)).

At the core data level, SIMD allows users to process data from memory with

a single operation. From an implementation perspective, SIMD speedup doesn’t

come for free as data is required to be streamlined into the core and to be already in

memory. Likewise, codes are subjected to fundamental data structure and data-to-

memory mapping changes to operate. The code transformation is contradictory to

common software readability and maintainability practices. The number of simul-

taneous operations performed by vector instructions depends on the width of the

SIMD register and the binary size of each element that is processed. For example,

vectors of 32 bit single precision elements can simultaneously be loaded or stored in
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a 256 bit long register on a SIMD machine. This results in a automatic 256/32 = 8

times speedup. Memory alignment and padding are important factors to streamline

data to/from memory layers to fill the ALU registers. Vectorisation on a 256 bit

SIMD machine theoretically yields 4 or 8 times speedup on single and double pre-

cision respectively. Vector lanes (i.e. register widths) become wider with the new

generation of processors and new instruction sets AVX256, AVX512. In practice

speedup however varies according to user optimisations and hardware. Heat protec-

tion within the chip can under-clock the core at different executions and registers

may spill data into the cache when arithmetic intensity is too high.

At the intra-core level parallelism, a single chip can exhibit Simultaneous Multi-

threading (SMT) parallelism. This technique is also called hyper-threading. On

a superscalar processor, a process is allowed to run two threads simultaneously to

exploit otherwise inactive chip components. SMT does not always yield significant

difference in computational throughput as memory resources are limited per core and

often both threads require the same chip components. Due to single core limitations,

manufacturers now increasingly design processors that accommodate more than one

core at a single socket.

Recent computer generations increase cores per processor and it is not uncommon

to see more than a dozen cores per compute node today. The expansion of cores per

processor has made it necessary to multiple sockets on-board that are connected via

an on-board socket interconnect. The scaling of problems to large number of cores

requires significant effort by developers (i.e. latency, bandwidth, development and

other constraints).

In recent years, compute nodes often start to incorporate co-processor units that

are machines external to the main processors but connected to the main memory.

These co-processors typically support higher core counts than standard main nodes

and feature a separately owned layer of memory on a single socket. They promise

high throughput manycore parallelism and give rise to hybrid computation. However

as in vectorisation, speedups are only realised if the code is tailored properly to

the architecture’s compute units. A limiting factor in such systems is the data

latency and bandwidth to and from main memory. It is up to the application to

employ offload schemes that minimise latency and arithmetic intensity. Host core

and co-processors together realise a hybrid HPC environment. The most prominent

co-processor type is graphics cards (GPGPUs).
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Significant developments in the architecture of processor design result in new
challenges that programmers have to face. Recent developments in cores tech-
nology give rise to three type of parallelism: SIMD vectorisation, manycore
multi-threading, hybrid CPU and co-processor computation. All these com-
putational concepts are important to implement codes that run efficiently.

4.2 The Path to Exascale Computing

The HPC community charts a path to exascale [17] and clarifies that experiments

through simulations will require higher resolutions on time scales that are infeasible

at the moment. As such, the path to exascale is challenged by three general areas.

Firstly, in the area of code development through which users program, debug and op-

timise code (i.e. frameworks, compilers, libraries, debuggers, performance analysis,

fault tolerance). Secondly, in the area where application specific challenges happen

(i.e. visualisation, data analysis, large data management, coupling techniques, al-

gorithms). Thirdly, the cross cutting dimensions that affect HPC usage in general

(i.e. resilience, power management, performance optimisation, programmability). In

this section we focus on trends and challenges that affect modern DEM codes.

Development Environment. Exascale systems are expected to consist of large

number of compute nodes incorporating a mix of conventional multicore CPUs,

many-core chips and accelerator hardware [17]. Therefore, heterogeneity in com-

putation will be the source of increasingly complex memory management. It is

expected that applications will combine distributed and shared memory computa-

tional phases. The maximisation of data locality by the programmer will be a vital

design decision during code development.

Frameworks provide a common interface which exhibit modular components that

can be used independently in more than one applications. These framework codes

become increasingly meaningful as they provide the means to standardise software

in application. Modularity of software components provide separation of concern

to users and they make it easier for developers to isolate bugs. Multidisciplinary

applications benefit from frameworks as less time is spent on development and re-

invention of functionalities. Libraries offer users the potential to use computer sys-

tems without the need to understand the technicalities of the architecture. Frame-

works promise at least to speed up scientific software development and increase

reliability of execution.

Applications. Algorithms will be developed in line with the new architectural

realities (such as wider vector lanes, NUMA). Scalability of algorithms on large sys-
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tems is a key technological driver but it is faced with problems. Due to the required

amount of threads per program, the creation of sufficient concurrency for one ap-

plication is a major challenge. Non-Uniform Memory Access (NUMA) awareneness

is necessary in code design. It is critical that future algorithms hide latency by

overlapping computation with communication. Load balancing is a major issue that

makes dynamic load balancing prominent [17]. Modelling in terms of data acquisi-

tion and storage technologies will produce large amounts of data as higher scalability

becomes achievable [17].

Cross Cutting Dimensions. Exascale systems are expected to utilise hundreds

of millions of cores and it is a challenge to achieve programmability. Key factors

that affect the programmability of research codes include:

i. Parallelism: it is vital to expose the code to sufficient parallelism to sustain
exascale operations. But at the same time, scalable concurrency has to be in
par with latency, bandwidth and compute bounds.

ii. Distributed Resource Allocation and Locality Management: an algorithm must
balance scattered workload and at the same time localise execution to suffi-
ciently maximise resource utilisation. Task partition and execution has to be
coupled with data locality to minimise latency, bandwidth and maximise oper-
ational ALU units.

iii. Latency Hiding: the computation needs to overlap communication in order to
avoid blocked tasks and under-utilisation of resources.

iv. Hardware Idiosyncrasies: properties specific to computing resources such as
memory hierarchies, instruction sets, accelerator design must be managed in a
way that circumvents negative impacts. Adoption of architectural opportunities
is necessary but without increasing the demands for explicit user control.

v. Portability: programs need to be portable across machine scales, generations
and architectures. Developers have to minimise portability effects caused by
small code perturbations.

vi. Synchronisation Bottlenecks: communication barriers and control procedures
are required to exhibit lightweight synchronisation phases that overlap/pipeline
computational phase. Data coherency bottlenecks in both shared and dis-
tributed memory need to be minimised.

4.3 The Challenges and Opportunities in Discrete

Element Method

An understanding of the developments towards exascale is vital for the design of

proper DEM-based particle simulations. We are confronted with machines that
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feature the highest degree of concurrency, which is both a scalability challenge and a

problem size up-scaling opportunity. These will enable DEM to incorporate higher

number of particles, higher resolution surfaces and more complex geometries in

contact dynamics simulations. To achieve this in practice the scientific community

has to turn challenges into opportunities.

In this section we discuss the challenges and opportunities in the context of DEM.

Table 4.1 lays out per challenge the problems and the opportunities. We categorise

the challenges according to scalability, data migration, architectural complexity, pro-

grammability and higher resolution physics. For each of the challenges we cover the

global issues, we discuss how problems could be tackled by DEM implementations

and lastly we cover contributions by this thesis.

Challenges Problems Opportunities/Tasks

Scalability

very high concurrency,

arithmetic intensity,

communication and

cache access tuning

Create models that increase

arithmetic intensity, multicore

runs, kernel fine tuning and

vectorisation.

Data Migration

large volume of data,

data locality, high

latency and

communication patterns

Introduce streamlined/vectorised

data structures reduce latency,

minimisation of data access.

Architectural

Complexity

new CPUs, manycores,

multi-socket, hybrid

systems

Use established standards

(OpenMP, TBB, OpenMPI,

SIMD pragmas), load balancing,

new models that exploit SIMD,

manycore architectures.

Programmability

software modularity,

algorithmic robustness,

interoperability of

libraries/frameworks

Creation of a modular library

with minimal dependencies, inter-

changeable use of contact models

and geometry manipulators.

Higher

Resolution

Physics

new and faster

algorithms are required

Dense non-spherical geometries,

new algorithmic model for DEM

and a modern data storage

scheme.

Table 4.1: The universal challenges, the specific problems and the opportunities that
arise in the development of DEM codes.
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DEM codes are faced both with challenges and opportunities. It is impor-
tant to understand and adopt codes according to hardware changes in order
to maintain high levels of throughput. The interoperability of software and
exploitation of resources is critical to support better and faster physics.

The first challenge in terms of scalability of DEM codes (Table 4.1) is the adap-

tation of core routines to SIMD-enabled CPUs. The introduction of wide vector

registers pushes developers to transform scalar-based operations into vector-based

algorithms. High memory-to-core throughput is only possible when latency is min-

imised. The analytical and geometric computation found in DEM contact detection

phase prohibit high arithmetic intensity as branching (i.e. poor streaming behaviour)

or little floating points operations are required [51], whereas an iterative alternative

method would typically exhibit higher arithmetic intensity. Ideally, an iterative

contact detection method that exhibits the property of locally streamlined memory

access along with lots of floating point operations per second would utilise the ALU

resources. In addition to the contact detection which is common to take a high

percentage of runtime [55], phases that benefit from SIMD are the particle position

update and force derivation.

In this project we utilise SIMD parallelism to increase floating point operations

per core. We create a novel set of iterative contact detection methods for non-

spherical particles. To our knowledge this is the first attempt to create a vectorised

non-spherical model and implementation with triangles. The employed memory

layout allows for streamlined computation of contact points between meshed ge-

ometries. With vectorisation the contact detection phase runtime is reduced by

magnitudes when compared to serial runs. We pack more floating point operations

per core at lower latencies and it allows us to create a DEM code that is capable to

simulate complex geometries at a larger scale.

An effective SIMD implementation that computes on more than one core is

mandatory. DEM algorithms need to exploit the expanding concurrency levels. Par-

ticularly, DEM work phases for contact detection need to be shared among cores.

We investigate various parallelisation concepts for clusters of particles and propose

different parallelisation schemes. It is clear that it is critical to multi-thread the

DEM. This is rather straightforward for localised particles in memory. Sparse parti-

cle clusters however are a challenge as data locality has to be ensured dynamically.

Standalone DEM algorithmic phases (i.e. contact, force derivation, position up-

date and plotting) cannot always exploit all resources due to lack of work, latency,

non-local memory accesses or branching. Resource allocation cannot be uniform

throughout the whole simulation if the underlying geometry is very dynamic and
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therefore affects the computational intensity. It is important to balance, intermix

and partition algorithmic phases to achieve both spatial and temporal homogeneity

for maximum throughput.

We propose a novel mix of parallelism for shared memory that tackles more than

one DEM phase at a time. We pipeline contact detection, particle position update

and force derivation phases following the work stealing model. Tasks are deployed

intermixed to a work queue that then is used to execute work on various cores. The

proposed multi-threading model realises a decoupled granularity at the triangle-to-

triangle and particle-to-particle level. Futhermore, the tasked-based parallelisation

is coupled with a parallel grid traversal. The concept of pipelined phases when

combined with a grid finally allows us to read data only once per step.

An emerging challenge in HPC particle n-body simulations is the gradual adop-

tion of co-processors. Co-processors raise new challenges in algorithmic design where

offload routines become major phases of parallel computation. Hybrid computations

give rise to computational phase segmentation, intra-node load balancing, CPU-co-

processor communication and further fine tuning for algorithms. Offload incorpora-

tion between algorithmic phases and intermixing main core and co-processor cores

introduces further complexity.

A challenge with respect to data migration can be found in multi node com-

putation and communication too. The challenge in DEM is the reduction of com-

munication latency and minimisation of data exchange volumes. Data exchange

occurs during contact detection where halo particles that are located on neighbour-

ing nodes need to derive interface contacts. The amount of data being exchanged

is proportional to the data of pairwise halo particles. Moreover, a communication

initiation overhead is imposed by data exchange. This contributes to the latency.

In distributed memory DEM codes node level data structures finally are required

to be moved into MPI buffers. The critical factor for overhead minimisation is the

locality of particle data. There is no contribution here because this is an traditional

challenge that is well understood [71].

Faced by implementation challenges, the current project contributes new
methods and implementation techniques at the single node level. We in-
troduce new novel contact detection methods for non-spherical particles that
promise to increase the physics possible per core. We propose a new shared
memory scheme that is based on a meshed-based contact detection coupled
with pipelined DEM and grid traversal phases.

In terms of software development, productivity increases through the utilisa-
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tion of modular frameworks. As our DEM implementation realises a grid-based

approach, we rely on the Peano grid framework [92]. We use its mesh traversal and

merge multiple computational phases into one DEM-grid mesh run-through. Such a

formulation allows us to realise locality of particle data access, coarse-grained par-

allelism and dynamic load balancing. The modularity in software components and

phases allow for loosely integrated functionality, localised errors in algorithms and it

is an opportunity to create interchangeable codes within specialised research fields.

In accordance to exascale roadmap, we propose a code design that is modular. The

modularity allows our DEM code snippets to become a inter-operable library. As

the project does not mean to re-invent space discretisation frameworks we focus on

the DEM-grid interplay. Our abstract use of a grid and its interoperability with

DEM algorithmic phases can be used a template example for other projects.

We propose a novel particles-in-grid scheme that support various scales of
arbitrary shaped particles. The space decomposition scheme produces various
grid morphologies that when combined with the contact model produce unique
properties. Likewise, by exploiting the grid morphology we support bigger
time steps.
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Algorithm Outline and Vectorisation

Introduction. In its basic form, a Discrete Element Method (DEM) algorithm is

based on mainly three computational phases: collision detection, force derivation

and time integration. The simulation starts from a geometry setup before time inte-

gration updates the position of particles and collision detection update interaction

forces. A sequence of routines define the phases and update the physical properties

of the geometry (position, velocities).

Chapter outlook. In this Chapter we discuss the mapping of DEM phases onto

a general algorithmic outline. Section Time Integration discusses the employed time

integration scheme executed at each time step. In the Particle Collision Detection

Problem section we discuss the implementation of collisions i.e a set of new contact

detection methods for triangulated geometries. Section Force Derivation discusses

the generation of forces from the list of collisions. Lastly, we discuss vectorisation

and memory layout of the contact detection methods. Although important for a im-

plementation, we do not discuss preprocessing and post-processing in this Chapter.

5.1 Time Integration

Our time integration implements a simple scheme where the velocities are updated

by the interaction forces before the positions are updated. This integration model

is chosen for algorithmic simplicity. No contribution is made here.

Linear position updates using explicit time integration are straightforward. Po-

sitions are updated according to a force f , mass m and step size dt and the velocity
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v. According to Newton’s second law the velocity v is computed as ∆v = dt · f/m.

In interactions that include collisions the total interaction force fij per particle pair

i, j is computed based on contact points generated. If there are no collisions, then

the velocities remain the same as no new forces are applied. Positions p at centre of

mass of particles are then updated by ∆p = dt · v.
Rotational position updates work similar to linear position update but utilise

angular velocities, torque and an inertia matrix. During collisions, contact points

generate torque forces frot that contribute to the direction of the total acting force

f on the bodies. Given a torque we update the angular velocity and position by

step dt. We then construct the inertia matrix and mass using a material parameter

(rho) and adding up a series of simplices composed by all the triangle points in the

geometry. With an inertia matrix i, spatial position x (current position), referential

position X (previous position), mass, angular velocity ω, a rotation operator R

is constructed [48, 49]. All the triangle points on a particle are then updated as

x(X, dt) = R(dt)·(X−X)+x(dt) where x, X are the spatial and the referential points

on the geometry, and x, X are the spatial and the referential mass centres. The

current position is mapped into the next position by our timestep dt. The rotation

specification is well documented in existing literature [48, 49], no contribution is

made here.

Explicit time integration in DEM simulations is problematic in terms of numeri-

cal stability (it is a stiffness problem). The choice of step size dt is a critical factor in

explicit time step simulations. Small time steps sizes allow the safe detection of colli-

sion events whereas simulations that employ a large step size risk skipping a collision

event. The step size determines the degree of stability as well as the total number

of time steps (i.e. cost required to reach termination). As such, two strategies are

generally used: an optimistic and a pessimistic scheme. An optimistic scheme de-

fines a constant dt time step size throughout the duration of the simulation. If the

optimistic scheme fails it is possible to rollback to a previous step refine the step,

the error is discarded and the simulation is repeated with a smaller step size. In a

pessimistic approach a dynamic strategy is employed that adopts the time step size

based on events within the simulation (i.e. chooses dt during runtime). Generally a

dynamic dt minimises the number of iterations required [59] and subsequently the

time to solution is shortened.

The explicit time integration is a naive approach to DEM implementation. More-

over the nature of particle collision dynamics enforces finer step sizes as collision

occur regardless of the employed integration scheme. While the extension to im-

plicit schemes is beyond scope, a more sophisticated adaptive time step scheme
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combined with implicitly time integration could convert a time-driven scheme into

an event-driven algorithm [59].

5.2 Force Derivation

Per contact, there’s a shortest line between the two bodies. The line’s midpoint

is the contact point. Any contact point thus falls into the ǫ environment of the

involved particles, and it is equipped with an outer normal vector n. Technically,

we represent each contact point as two points with opposite normal directions. The

normal vector’s length is the distance from the contact point to the surface of the

neighbouring particle. Its direction depends on the point of view: from which par-

ticle do we look at the contact point. We have |n| ≤ ǫ where ǫ − |n| is the (halo

layer) penetration depth.

The penetration depth determines the force arising from a contact. Its spatial

position relative to the particles’ centres of mass clarifies whether the contact induces

rotation or translation or both. In the present experiments, we rely on spring-dash-

pot’s force model with pseudo-elastic damping [13] between two particles (Chapter

Physical Model Section Contact Forces).

5.3 The Particle Collision Detection Problem

Most DEM code spend a majority of their compute time in collision detection.

Iglberger et al. [24] report 31-34% within a multiphysics setting, while Li [55] for

example reports even 90%. Detection becomes significantly more complicated once

we switch from sphere-to-sphere or ellipsoid-to-ellipsoid checks to the comparison of

billions of triangles; notably if no constraints on convexity are made and if explicit

time stepping stops us from modelling complex particle shapes as compound of

simpler convex shapes subject to a non-decomposable constraint.

The basic DEM implementation is illustrated with Algorithm 1. For rigid body

dynamics the main body of the algorithm consists of one outer time integration

loop that host two inner particle traversal loops. The first inner loop consist of the

collision detection phase (at line 2). The collision detection is an O(n2) operation

where n is the number of particles. Contact points are detected and defined between

particle triangles that come into contact. During collision detection (lines 2-9), all T

triangles of TA and TB of two bodies A and B are compared to determine collision

points (i.e. a O(n2) operation). If the distance between two particles is closer than

a defined margin epsilon then the particles are in contact (Chapter 2). A second
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Algorithm 1 Blueprint of the Discrete Element Method algorithm.

1: for t < T do ⊲ T Total Simulated T ime
2: for i← 0 . . .TA ∃ particlesn do
3: for j ← i+ 1 . . .TB ∃ particlesn do
4: δ ← TTD(i, j) ⊲ Triangle-to-Triangle Detection (TTD)
5: if (δ ≤ ε) ∧ Particle(i)¬Particle(j) then
6: contact(PID(i)).add(point, normal) ⊲ Particle ID (PID)
7: end if
8: end for
9: end for
10: for z ← 0 . . . particlesn do ⊲ Force Update
11: for k ← 0 . . . contacts(z)n do
12: fz ← granular(velocity(z), position(z), contacts(z).getcontact(k))
13: end for
14: updatePosition(position(z), fz) ⊲ Position Update
15: end for
16: t← t+∆t
17: end for

loop runs over detected contact points and converts them into contact forces. While

contact points in principle could be translated into forces straight-away it makes

sense to outsource the force derivation into a separate algorithm phase just before

time integration.

Our DEM codes rely solely on pair-wise interactions. The complexity of force

computation depends solely on contact point generation and the geometry. The

number of contacts per particle typically is very small if particles are of reasonably

similar size. If particle sizes vary dramatically, comparably large particles experience

contact forces from many small particles. In this case, there are however few large

particles compared to the overall number of particles.

It is therefore very important to create an efficient and flexible algorithm to re-

solve contacts. The fundamental problem in such DEM codes is the computation

of the minimum distance between a pair of triangles in three dimensions. Given

the minimum distance between two triangles and the corresponding closest points,

a unique contact point can be generated. In the following sections I give a de-

tailed overview of three triangle-to-triangle distance algorithms. The first algorithm

is brute force, a naive approach to the triangle-to-triangle distance problem. The

second algorithm is an iterative approach that promises to achieve better computa-

tional performance. It is however not robust, i.e. can yield wrong results. Lastly a

hybrid approach is proposed. It combines both worlds into one solution.
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An efficient collision detection algorithm co-determines performance in a DEM
code. In triangulated non-spherical particle dynamics, the computation of
distances between particles is reduced to computing the distances between
triangle pairs. Alternative methods for collision detection do not allow for
non-convex meshes.

5.4 The Brute Force Geometric Comparison

The computation of the minimum distance between two triangles is reduced into

simpler geometric sub-problems. Since a triangle is composed by line segments

and three vertices, it is sufficient to compare the distance between line segments

to line segments and the distance between vertices to the triangle plane. This

method is a brute force approach as it involves computing all possible combinatorial

configurations. At the end of the series of checks, the solution is deterministically

known. The algorithm is compiled with basic primitive geometric checks found in

literature [19, 20, 28].

Algorithm 2 Brute Force Distance Computation Algorithm.

1: function BF(A,B,C,D,E, F ) ⊲ A . . . F Triangle Points
2: TA ← [A;B;C; ];
3: TB ← [D;E;F ; ];
4: list[0]← PT (TB, TA[0]);
5: list[1]← PT (TB, TA[1]);
6: list[2]← PT (TB, TA[2]);
7: list[3]← PT (TA, TB[0]);
8: list[4]← PT (TA, TB[1]);
9: list[5]← PT (TA, TB[2]);
10: ptmin ← min(list);
11: list[0]← SEGSEG(TA[0], TA[1], TB(0], TB[1]);
12: list[1]← SEGSEG(TA[0], TA[1], TB[1], TB[2]);
13: list[2]← SEGSEG(TA[0], TA[1], TB[2], TB[0]);
14: list[3]← SEGSEG(TA[1], TA[2], TB[0], TB[1]);
15: list[4]← SEGSEG(TA[1], TA[2], TB[1], TB[2]);
16: list[5]← SEGSEG(TA[1], TA[2], TB[2], TB[0]);
17: list[6]← SEGSEG(TA[2], TA[0], TB[0], TB[1]);
18: list[7]← SEGSEG(TA[2], TA[0], TB[1], TB[2]);
19: list[8]← SEGSEG(TA[2], TA[0], TB[2], TB[0]);
20: ssmin ← min(list);
21: pqmin ← min(ssmin, ptmin);
22: P ← pmin;Q = qmin;
23: end function
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Our brute force solver is shown in Algorithm 2. At line 1 the function accepts two

triangles TA and TA with vertex points A,B,C and D,E, F respectively, in three

dimensions. Function PT (lines 4-9) is the point-to-triangle distance algorithm (see

Algorithm 4) that computes all distances between each vertex point one triangle

against the pairwise partner triangle. As soon as the PT algorithmic phase is

complete, the output is reduced into a ptmin which is the minimum of all point-

to-triangle comparisons. The second phase starts with the execution of segment-

to-segment (SEGSEG, lines 11-19) algorithm (Algorithm 3) which compares line

segments of one triangle to line segments of the other triangle. At the end of the

code (line 20,21) the minimum of both phases is the minimum distance between two

triangles in three dimensions defined by vertices P and Q.

The brute force implementation runs per triangle pair and checks all possible

minimum distance configurations (Algorithm 2). The method yields 15 geometric

comparisons in total and it is a robust approach as it always yields the correct answer

to the problem. A fusion of multiple steps is not possible as all geometric scenarios

have to be evaluated separately and naively. The algorithmic (Algorithm 2) and

the brute force character does not allow computational fusion of procedures as each

geometric is evaluated separately in a naive scheme. The brute force method cannot

be optimised for SIMD due to the branching that exists in its analytical solution of

the distance (BF) routine.

The brute force approach, is a robust solution that involves rigorously checking
every primitive of two triangles to determine the minimum distance. The main
characteristic of the algorithm is that it always arrives to a correct solution
but the drawback of that is that there are redundant checks. Redundancy in
computation and logical branching renders the brute force method incapable
to exploit SIMD hardware.

5.4.1 The Distance Between Two Line Segments

The calculation of the distance between line segments [19, 28] in three dimensions

identifies the closest points by extending the line that they lie on until intersection.

If the two lines intersect, then the closest point on the two segments is also within the

boundaries of the line segments. The line segment S1 = [P0, P1] can be formulated as

P (s) = P0+s · (P1−P0) = P0+s ·u with a constraint on s, 0 <= s <= 1. Similarly,

the second segment S2 = [Q0, Q1] is written as Q(t) = Q0+ t · (Q1−Q0) = Q0+ t ·u
with a constraint 0 <= t <= 1. Let sc and tc be the closest points on the extended

segments lines L1 and L2. If sc and tc are within the boundaries of the line segments
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then they are also the closest points on the respective segments. Whereas if sc and

tc are located on points that are outside the range of either S1 and S2 then they do

not also define a closest points. So it is necessary to determine points that minimise

w(s, t) = P (s) − Q(t) over the ranges of the segments using the corresponding

constraints. The problem is formalised into a minimisation equation where w is the

same as minimising |w|2 = w · w = (P0 + s · u − t · v) · (Q0 + s · u − t · v), w is a

quadratic function of s and t. The relation of |w|2 define a parabolic equation over

a (s, t)-plane (see Figure 5.1) with a minimum at C = (sc, tc), it is strictly growing

along the (s, t)-plane with starting point from C. But because segments S1 and

S2 are concerned and not their respective extended lines L1 and L2, the required

minimum region is not C but it is located over a sub-region G of the (s,t)-plane. The

global minimum at C may lie outside of G, however, in these cases, the minimum

always occurs on the boundary of G, and in particular, on the part of G’s boundary

that is visible to C. That is, there is a line from C to the boundary point which is

exterior to G, and it can be said that C can ”see” points on this visible boundary

of G (See Figure 5.1).

s

t0

1

1

GC

Figure 5.1: (s,t) parameter space with G boundary box C for global minimum

Suppose that we want the minimum distance between two finite segments S1 and

S2, then G = {(s, t) ‖ 0 ≤ s ≤ 1, 0 ≤ t ≤ 1} = [0, 1] × [0, 1] is a unit square in (s,t)

space. The four edges of the square are given by point at s = 0, s = 1, t = 0, t = 1.

If C = (sc, tc) is outside the G area, then it can ”see” at most two edges of G. If

sc < 0, C can see the s = 0 edge, if sc > 1, C can see the s = 1 edge, and similarly

for tC, so in this way there is an enforcement of the required constraints. When C

is not in G, at minimum 1 and at maximum 2 of constraints are active, and they

determine which edges of G are candidates for a minimum of |w|2.
For each candidate edge, to compute where the minimum that occurs on that

edge, either in its interior or at an endpoint, it is possible to solve for the other
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Algorithm 3 Line Segment to Line Segment Distance Algorithm.

1: function SEGSEG(S1, S2)
2: if S1 and S2 are parallel then

return any point P on S1 and any point Q on S2

3: else
4: Get the closest points sc and tc on the infinite lines L1, L2
5: if sc < 0 then ⊲ the s = 0 edge is visible
6: s← 0
7: end if
8: if sc > 0 then ⊲ the s = 1 edge is visible
9: s← 1
10: end if
11: if tc < 0 then ⊲ the t = 0 edge is visible
12: t← 0
13: end if
14: if tc > 0 then ⊲ the t = 1 edge is visible
15: t← 1
16: end if
17: end if

return P, Q points on two segments
18: end function

unknown parameter since at minimum one is to be found (either t or s). So using the

derivative of the |w2| equation it is always possible to solve for the parameter that is

in the interior of G. For example when s = 0, |w|2 = ((P0−Q0)−tv)·((P0−Q0)−t·v).
Taking the derivative with t it possible to get a minimum when 0 = d

dt
|w|2 =

−2 · v · ((P0 − Q0) − t · v). This gives a minimum on an edge at (0, t0) where

t0 =
(v·(P0−Q0))

(v·v)
. If 0 <= t0 < 1, then this would be the minimum of |w|2 on G, and

P(0) and Q(t0) are the two closest points of the two segments. But in the case where

t0 is outside G, then either (0, 0) or (0, 1) would be the minimum along that edge

(since s = 0). Using this method it is possible to perform only a couple of checks to

find the minimum of w(s,t) that correspond to the minimum distance between the

segments.

5.4.2 The Distance Between a Point and a Triangle

The second part of the naive triangle-to-triangle minimum distance is the point-

to-triangle distance [20] computation. The minimum distance between a point P

and a triangle T can be described by its barycentric coordinates such that any

point on its plane is defined by two parameters. We choose s and t such that
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T (s, t) = Pa + s · E0 + t · E1 where E0 = Pb − Pa, E1 = Pc − Pa for

(s, t) ∈ D = {(s, t) : s ∈ [0, 1], t ∈ [0, 1], s+ t ≤ 1}.

To solve the problem we need to find (s, t) values in a domain D.

The minimum distance is computed by determining the values (s, t) in the dis-

tance equation Q(s, t) = |T (s, t) − P |2 where T (s, t) corresponds to a point on the

triangle closest to P. The function is quadratic written as

Q(s, t) = as2 + 2bst+ ct2 + 2ds+ 2et+ f

where a = E0 · E0, b = E0 · E1, c = E1 · E1, d = E0 · (Pa − P ), e = E1 · (Pa − P ),

and f = (Pa − P ) · (Pa − P ). Quadratics are classified by the sign of ac− b2 so for

function Q, ac− b2 = (E0 ·E0)(E1 ·E1)− (E0 ·E1)
2 =|E0 ·E1|2 > 0. The positivity

is based on the assumption that the two edges E0, E1 are linearly independent, so

their cross product is a nonzero vector. The minimum occurs at the interior where

the gradient Q = 2(as + bt + d, bs + ct + e) = (0, 0) or at the boundary of D. The

gradient of Q is zero only when s = (be− cd)/(ac− b2) and t = (bd− ae)/(ac− b2).

If (s, t) is in region zero (Figure 5.2), then the point on the triangle closest to P is

interior to the triangle, not on its edge. Otherwise, if the minimum is not in D then

it resides on the boundary of the triangle. If (s, t) is in region one then the elliptic

level curves of Q are those curves in the s, t plane for which Q is constant.

Region 0

Region 1

Region 2

Region 3

Region 6
Region 5Region 4

S

t

1

1

0

Figure 5.2: Regions based on the (s, t) parameters plane

The global minimum of Q = (0, 0) occurs in a level area Vmin and levels V are

growing from (s, t). There is a level value V0 for which the corresponding ellipse is

tangent to the triangle domain D edge s + t = 1 at a value s = s0 ∈ [0, 1], t0 =

1 − s0. So for any level values V < V0, the corresponding ellipses do not intersect

D. However, any portion of D that intersect levels V must be V > V0. Therefore,
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in this case, point (s0, t0) gives the minimum distance between P and the triangle

where t0 = 1− s0 and s0 is the only unknown to be solved. When the minimisation

is happening at ∇Q(s, 1s) = 0 there are three cases where s > 1 and s have to be

restricted to s = 1 and the minimum occurs at ∇Q(1, 0) because of the barycentric

triangle constraints, if s < 0 then the minimum occurs when ∇Q(0, 1) otherwise

s ∈ [0, 1] and has to be solved for a minimum at ∇Q(s, 1− s).

Algorithm 4 Point to Triangle Distance Algorithm.

1: function pt(T, P )
2: if Point projection in region 0 then
3: evaluate value of Q
4: end if
5: if Point projection in region 1 then
6: determine (s, t) parametric space values
7: end if
8: if Point projection in region 2 then
9: determine (s, t) parametric space values
10: end if
11: if Point projection in region 3 then
12: determine (s, t) parametric space values
13: end if
14: if Point projection in region 4 then
15: determine (s, t) parametric space values
16: end if
17: if Point projection in region 5 then
18: determine (s, t) parametric space values
19: end if
20: if Point projection in region 6 then
21: determine (s, t) parametric space values
22: end if

return Q point on triangle
23: end function

Similarly we follow the same method to determine whether the minimum occurs

at the endpoints or at the interior of the constraints. For this we search region three

and region five (Figure 4). In the case where (s, t) occur in region three then the

minimum has to occur at (0, t0). If (s, t) is located in region five (Figure 4), then

the minimum occurs at (s0, 0) where s0 ∈ [0, 1].

When (s, t) is located inside region two, there are three possibilities for the level

to contact or intersect the boundaries:

1. edge where s+ t = 1

2. edge where s = 0
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3. at point where t = 0 and s = 1.

Although the global minimum is in region two, there is a level of Q that contacts

the D but the contact point and the region inside of the level curve does not overlap.

At these occurrences then the negative of the contacting level curve of Q cannot point

inside D. For example for region two there could be the direction of −∇Q(0, 1),

−∇Q(s, 1 − t) and −∇Q(0, t), which points towards the inside of the level curve

instead of inside D.

To determine which of the three cases occur, it is possible to check which areas are

negative by eliminating area where contact doesn’t occur. If ∇Q = (Qs,Qt) and Qs

and Qt are the partial derivatives of Q, it should be the case where (0,−1) ·∇Q(0, 1)

and (1,−1) · ∇Q(0, 1) are not both negative. The two vectors (0, 1) and (1, 1) are

directions that correspond to the edges s = 0 and s+ t = 1, respectively. The choice

of edge s + t = 1 or s = 0 is decided based on the signs of (0,−1) · ∇Q(0, 1) and

(1,−1) · ∇Q(0, 1). Similarly as for region three, the same technique is used for the

regions four and six.

5.5 An Iterative Method

An alternative approach to solve the triangle-to-triangle distance problem is pa-

rameterise the triangles such that the distance between them is formulated as a

quadratic function. The overall scheme then is an iterative solution that approxi-

mates the minimum distance between two triangles using the Newton method.

Let x and y be two points belonging to triangle TA and TB. Assuming that

points A,B,C span TA and that points D,E, F are points of TB, x and y can be

defined using the following equations over their barymetric parameters:

TA : x(a, b) = A+ (B − A) · a+ (C − A) · b

and

TB : y(g, d) = D + (E −D) · g + (F −D) · d.

To find the minimum distance between TA and TA we minimise

f (a, b, g, d) = ‖x (a, b)− y (g, d)‖2 .

It is important that x and y stay within the area of the two triangles. The four

parameters of the function f have to thus comply with six inequality constraints
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Figure 5.3: Example of minimum distance and the corresponding barycentric points
(parameters of objective function) on a pair of triangles in 3D. Triangle X:TA has
points A, B, C where barycentric parameters a,b correspond to point x on the trian-
gle. Triangle Y:TB has points D,E,F where barycentric parameters g,d correspond to
a point x. The two defined barycentric points define the minimum distance between
the two triangles in 3D.

such that

{a ≥ 0, b ≥ 0, a+ b ≤ 1, d ≥ 0, g ≥ 0, g + d ≤ 1}

.

The iterative method finds the minimum distance not primitive-wisely but
rather using nonlinear constrained optimisation. A point on a triangle can be
defined using triangle barymetric coordinates.

5.5.1 Penalty-Based Formalism

The penalty method enforces the constraints to the problem f using the penalising

method. This approach adds a penalty term to the objective function to penalise

the solution when outside of the feasible region:

P (x) = f(x) + r ·
∑

i=1...6

max(0, c(xi))
2 (5.1)

where r > 0 is the penalty parameter and x is a, b, g, d. Newton iterations always

converge to a solution but this solution might be slightly outside of the feasible

region. Speed and ”outsideness” can be controlled by the r parameter that controls

the sharpness of the curve for the constraints. One aspect that requires care however

is the invertibility of the Hessian ∇∇P .

The problem is ill-conditioned, as the problem is based on the orientation of the
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Figure 5.4: Illustration of a 2D problem showing the penalty function (red line)
penalising the objective function (black line) f(x) under a constraint a (dash line)
to create the feasible region (blue line).

two triangles and there can be more than one solution. As the Hessian matrix is not

invertible, it is not possible to compute the Hessian and gradient. This illustrates

the fact that f has multiple minima and ∇∇f is singular. Consequently, ∇∇P
is also singular inside the feasible region. Because of the ill-conditioning, we use a

quasi-Newton approach, where the Hessian is approximated by a perturbed operator

∇∇P + eps · I. I is an identity matrix and eps is suitably small.

The penalty algorithm as shown in Algorithm 5 accepts A,B,C,D,E, F vectors

of triangles TA(A,B,C) and TB(D,E, F ) as well as the required parameters for the

algorithm to be solved. The penalty parameter r controls the steepness the P(x)

function (5.1), eps is the perturbation parameter for the Hessian matrix, Tol is the

tolerance for convergence (floating point accuracy). At line 23 of Algorithm 5 initial

guess is chosen to be the centre of the two triangles, then the for loop initiates the

Newton iterations to find the points on the triangle planes under the constraints

c. For each of the six constraints (line 12) the max function of the penalty is

determined so that every possible active constraint is detected. In line 17 and line

18 the gradient and Hessian of P is evaluated. Then the Gaussian elimination direct

solver yield the Newton direction DX.

My optimised C implementation exploits matrix symmetries to reduce repeti-

tions of calculations for matrix elements, for this reason hf in Algorithm 5 utilises

symmetry. For the same reason, X-Y is only calculated once and stored into a vari-

able XY so that its value is accessed instead of being repetitively calculated. Inside

of the Newton loop, the optimised algorithm is totally different from the prototype.
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Algorithm 5 Penalty Solver Algorithm.

1: function Penalty(A, B, C, D, E, F, rho, tol)
2: BA ← B − A; CA ← C − A; ED ← E −D; FD ← F −D;
3: hf ← [2 · BA · BA′, 2 · CA · BA′,−2 · ED · BA′,−2 · FD · BA′;
4: 2 · BA · CA′, 2 · CA · CA′,−2 · ED · CA′,−2 · FD · CA′;
5: 2 · BA · ED′,−2 · CA · ED′, 2 · ED · ED′, 2 · FD · ED′;
6: 2 · BA · FD′,−2 · CA · FD′, 2 · ED · FD′, 2 · FD · FD′];
7: x = [0.33; 0.33; 0.33; 0.33];
8: for i← 1 : 99 do
9: X ← A+BA · x(1) + CA · x(2);
10: Y ← D + ED · x(3) + FD · x(4);
11: gf ← [2 · (X − Y ) · BA′;
12: 2 · (X − Y ) · CA′;
13: −2 · (X − Y ) · ED′;
14: −2 · (X − Y ) · FD′];
15: h ← [− x(1); −x(2); x(1) + x(2)− 1; −x(3); −x(4); x(3) + x(4)− 1];
16: dh ← [− 1, 0, 1, 0, 0, 0; 0, −1, 1, 0, 0, 0;
17: 0, 0, 0, −1, 0, 1; 0, 0, 0, 0, −1, 1];
18: mask ← h′ >= 0;
19: dmax ← dh. · [mask; mask; mask; mask];
20: gra ← gf + ρ · dmax · max(0, h(:));
21: hes ← hf + ρ · dmax · dmax′ + I(4, 4)/ρ2;
22: dx ← hes \ gra;
23: DX ← BA · dx(1) + CA · dx(2);
24: DY ← ED · dx(3) + FD · dx(4);
25: error ← sqrt(DX ·DX ′ +DY ·DY ′);
26: if error < tol then
27: BREAK;
28: end if
29: x ← x − dx;
30: end for
31: end function

The derivatives of the constraints are stored in an array instead of the sparse ma-

trix, so only the non-zeroes are used. Operator max(0, h(:)) is calculated without

the use of the std library function max() which is too generic for the code. It is pos-

sible to replace it with if statements and directly assign values to an array of active

derivatives of constraints dmax, avoiding the masking operations in lines 10-11. The

gradient gra is calculated so that any redundant operations are removed. The same

techniques are used for the Hessian matrix hes. The point here is to end up with as

few assignments as possible. The most significant aspect of the optimised algorithm

is the linear solution in line 18. Unlike MATLAB which exploits a separate direct

solver, our implementation merges individual operations of a 4x4 Gaussian elimina-
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tion with the rest of the algorithm in a monolithic manner. This means that with

Gauss elimination, calculation of the gradient and calculation of the Hessian are

fused together into one compute kernel. Such solution streamlines the requirement

of temporary variables assignments and floating point operations per iteration.

Operations like division are limited because of their computational latency, op-

erations like addition, subtraction and multiplication are preferred. Divisions are

slow because they are solved iteratively in hardware (floating point unit of a general

purpose processor), although the actual hardware-based method may vary by pro-

cessor manufacturers [62]. The penalty method is well-suited for SIMD optimisation

because I can concurrently determine the distance between multiple triangle pairs as

long as we use the same number of Newton steps: Up to four or eight triangle pair

distances can be determined at the same time; depending on the vector width. Such

a speed-up statement however has to be read carefully. While the concurrency is

high, it is not clear a priori how many Newton steps are required. A high number of

Newton steps can render the penalty method slower than the brute force approach.

In the case of two parallel triangles in three dimensions brute force and the
iterative scheme may produce different points that define the same distance.
When two triangles are parallel to each other the iterative scheme is ill con-
ditioned as multiple solutions exist. Our novel iterative implementation fuses
the direct Gaussian elimination phase with the Newton solver into a single
monolithic algorithm, thus removing all computational redundancy.

5.5.2 Penalty Method Parameter Tuning

The serial penalty-based algorithm forms the baseline our optimised implementation.

For this reason, it is important to identify correlations between the optimisation

parameters and individual triangle sizes. Such a relationship between the penalty

parameter and output error is identified and exploited (Figure 5.5). The error is

defined as the degree of difference in the solution of the penalty solver over the brute

force solver.

For an optimum penalty parameter we decided to tune the calculation on random

triangles sizes that reside in boundary boxed domain. To maintain consistency in

the randomness of the triangle sizes, various length of triangles are tested with

random rotations. A wide spectrum of cases is thus examined for the purpose of

parameter tuning. Using different scales of boundary boxes, a linear relationship

is found between the size of the boundary space and the size of triangle and the

penalty parameter. Figure 5.5 shows that for different sizes of triangles, the penalty

68



CHAPTER 5. ALGORITHM OUTLINE AND VECTORISATION

Figure 5.5: Tuning data for the penalty method to find a scaling relationship between
the size (upper left to lower right figure) of problem, penalty parameter and error -
using logarithmic scales

parameters correlate linearly with respect to the optimal equation that is derived

based on the triangles size:

roptimal = s · 10(log10(s)+10) (5.2)

where s is the size of the triangle boundary (average side length). The error shows

results for a hundred thousand of pairs of triangles.

The eps Hessian matrix regularisation parameter is tuned with respect to its

effects on the failure rate at specific sizes of triangles but also the number of Newton

iterations. To achieve a low on average 4-5 iterations ( 400,000-500,000 total iteration

on average for 100,000 triangle pairs), eps parameter has to be small for small

triangles. While the size of triangles increases, eps linearly increases. Using a low

epsilon parameter doesn’t mean optimal number of iterations, eps is adjusted using

a coefficient of boundary size.

Debugging and experiments of the prototype code show that the first and sec-

ond Newton iterations often oscillate around the convergence point, and the third

converges to the solution (unless the point on the triangle is at a corner). The

eps perturbation along the diagonal Hessian is increased at this point to complete
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Figure 5.6: Relationship between eps and number of iterations for different lengths
of triangles. Optimal eps should be low and increased depending on the r parameter.

Figure 5.7: Histogram retrieved when tuning thousands of triangle pairs with op-
timal penalty parameters and epsilon perturbation of the problem. It shows that
most problems converge within six iterations.

the convergence since it is known that the search is close to the convergence area.

Statistically, the error is at the minimum at four iterations (Figure 5.7). Because

penalty is used, it is inevitable that the solution has to be in a position spatially

70



CHAPTER 5. ALGORITHM OUTLINE AND VECTORISATION

outside (difference seen by the error values, see Figure 5.6). Epsilon initially cannot

be too high but also not low because the solver cannot get the right direction (eps-

r-iteration graph, Figure 5.6). The perturbation eps is increased after three steps

for convergence with minimum error and minimum iterations.

The penalty parameters that act as a spring to the Newton step to keep it in-
side the feasible region is tuned against the error. Epsilon (eps) regularisation
parameters are also tuned accordingly.

5.6 A Hybrid Method

The penalty-based triangle distance computation method is fundamentally not ro-

bust as it is an iterative solver approach. Our assumption is that there can be particle

configuration cases where the penalty-based method under-perform in terms of nu-

merically accuracy and time to solution (oscillations). As such, we propose a new

method that combines both brute force and penalty methods into a single hybrid

solution. The motivation is create a hybrid that is both robust and fast.

To create a hybrid solver I first assume that on average there are for a triangle

pair only a few iterations required to arrive at a solution. Based on empirical studies

and tuning of the penalty parameter and the regularisation variable, the majority

of triangle pairs are solved within six iterations as shown in histogram Figure 5.7. I

thus allow the algorithm to skip excessive iterations without convergence and carry

on with the simulation. Secondly I introduce a user-defined tolerance of error, it

acts as the switching point for the falling-back to brute force solver. If the number of

brute force method fall-backs does not exceed the number of penalty-based solutions

then our hybrid achieves a balance in terms of computational performance but also

in error at the solution.

There are two variants of my hybrid method; the first is the hybrid-on-triangle-

pairs and the second one is hybrid-on-triangle-batches. Both variants are developed

to exploit the robustness of brute force while keeping the arithmetic intensity of

the penalty method. The implementation of both methods takes into account the

potential for shared memory scaling as well as data access continuity. In addition

SIMD vectorised performance of the underlying methods and memory alignment are

critical for the execution of both methods.

In a parallel execution setup the total number of pair-wise triangles are assigned

to compute units (i.e CPU core). As the error already exists in the prescribed geom-

etry configuration, the fall back frequency per core also depends on the distribution
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of error in the geometry per triangle pair that located in memory. The frequency of

fall-backs has to be uniform per core otherwise it can create execution imbalance in

a manycore system. Imbalance can be solved with more sophisticated distribution of

work (i.e. dynamic scheduling/allocation of computation), by optimising the granu-

larity of computation (splitting the workload into finer assignments) and minimising

the error.

Hybrid on Triangle Pairs. The first variant of hybrid is the hybrid-on-

triangle-pairs. The hybrid-on-triangle-pairs method runs first through the penalty

solver. If the solution is not within a user specified tolerance afterwards, it falls back

to the brute force solution. The hybrid solver tolerance can be manually adjusted

but in this implementation it is set to 1E − 16. The tolerance determines the dis-

tribution of error over a given set of triangle pairs. The input geometry and error

tolerance are critical to parallel execution and load balancing.

Algorithm 6 Hybrid On Triangle Pairs

1: function hybridOnTrianglePairs(A, B, tol)
2: for i← 0 . . .TA do
3: for j ← 0 . . .TB do
4: triangleError ← penalty(A[i], B[j])
5: if batchError < tol then
6: bruteForce(A[i], B[j])
7: end if
8: end for
9: end for

return P,Q ⊲ points on the two triangles
10: end function

Hybrid on Triangle Batches. The second variant is the hybrid-on-batches.

A hybrid method that is based on a per triangle batch comparison checks the error

less frequently than the previous variant and uses an error for the whole batch. As

in the hybrid-on-triangle-pairs variant, we run the penalty method on one batch of

triangles and then fall back to brute on the whole batch if the error tolerance is not

satisfied. A batch is a chunk of triangles that we decide to group to together to

decrease the frequency of error checks. The batch size can be set by the user (batch

size is also called granularity). For the current implementation the batch size is set

to the number of triangles of the partner particle.

Both hybrid methods suffer by their nature by the granularity of the grain size

whether that is singular size (triangle pair) or greater (batches of pairs). The mem-

ory distribution of pairs of triangles that do not converge within the mean number

of Newton iterations are not known a priori because the solution depends on the
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Algorithm 7 Hybrid On Triangle Batches

1: function hybridOnTrianglePairs(A, B, tol)
2: for i← 0 . . .TA do
3: for j ← 0 . . .TB(batchSize) do
4: batchError ← penalty(A[i], B[j])
5: end for
6: if batchError < tol then
7: for j ← 0 . . . B.TB do
8: bruteForce(A[i], B[j])
9: end for

10: end if
11: end for

return P,Q ⊲ points on the two triangles
12: end function

underlying geometry. Triangle pairs or triangle batches that do not converge within

the set tolerance skew the overall error distribution margin, potentially creating the

worse case scenario where the method becomes a worse than brute force solver with

both penalty and brute force being executed in sequence. It is not possible to predict

the sparsity distribution of non-convergent triangle pairs/batches during run-time so

the tolerance value, penalty, regularisation parameters are vital. In our experiments

those parameters are set based on empirical tuning and trial and error.

Various triangle distance methods are proposed, the brute force, the iterative
penalty method, and a hybrid. The brute force method relies on geometric
primitive computations, it is robust and a reliable solver. On the other hand
the iterative scheme creates an non-linear optimisation problem that promises
to deliver fast distance computation but lacks numerical robustness. The hy-
brid combines the two worlds into two hybrid variants that ensure robustness
and a robust output.

5.7 Memory Organisation

The DEM algorithm implementation uses three sets of data types: geometric, be-

havioural and domain meta data. Geometric data handles particle properties and

the physical geometry of the simulation. Behavioural data store pair-wise particle

collision information. These additional data structures are required to support the

contact detection, force and position update routines of the simulation. The DEM

Grid Meta Data Chapter discusses the data structure optimisation in depth. In this

section we discuss the geometric data and how to hold it into memory efficiently to
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leverage SIMD hardware (i.e cache coherency, immediate addressing modes, locality

of reference). The rest of the Section further discuss optimisation techniques and

measurements.

Particle

x

y

z

2nd triangle

...

...

...

Figure 5.8: The two layer data layout of our DEM code with an AoS on the particle
level but SoA for the vector entries with replicated vector entries.

We propose to realise the geometric data in two layers (Figure 5.8). A hull struct

holds all particle properties such as velocities, rotation, mass, geometric centre and

mass centre. Hulls link with pointers to the actual geometric data. This data

is realised as structure of array (SoA), i.e. there is a sequence of x-coordinates, a

sequence of y-coordinates and a sequence of z-coordinates, data sequences are not

interleaved. These sequences are blown up with redundant data. The first three

entries in the x array hold the x coordinates of the three vertices of the first triangle

of the particle mesh. The entries four through six hold the coordinates of the second

triangle and so forth. The degree of redundancy is determined by the particle mesh.

To leverage SIMD hardware and exploit the wide vector-based CPU registers

structures of arrays are preferred. While counter intuitive for scalar programming

it is an important design decision in vectorisation. A single triangle (three 3D

vectors) stored in a single array (AoS) requires the execution of three separate load

operators to transfer data to a CPU registers, while the same single triangle can

also be stored in main memory as a set of arrays for each dimension (SoA, Figure

5.9). As such each, in SoA required data points fill SIMD vector registers with

chunks of sequentially adjacent data. Streamlined data access exhibits a one-to-one

(non-interleaved access) data access. We sketch the difference between the two AoS

and SoA layouts in Figure 5.9 with the single triangle particle example.

We also present a detailed sketch of the data layout with respect to geometric

data on Figure 5.10. It is noteworthy that we accept the increased memory consump-

tion of such a structure. In return, we are able to avoid any indirect addressing. It

is then possible to process all geometry data during the collision checks in a stream-
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Figure 5.9: Top: Arrays of Structures (AoS) - Particle position data is interleaved
(i.e. x,y,z coordinates are not sequential) so loads into CPU registers are not always
streamlined. Bottom: Structures of Arrays (SoA) - Particle data is stored in separate
arrays in memory (x,y,z dimensions), so CPU performs a streamlined load on a chuck.
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Figure 5.10: Two instances of triangulated particles A and B represented by points
both on the real geometric Cartesian space (bottom section) and computational
memory space (top section). Both particles are bisected by a separator line for
illustration purposes. In both particles we highlight only two triangles out of the
total triangles that their mesh is composed. Arrows to/from computational and
physical space mark the the one-to-one point-wise correspondence relationship.
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like fashion and we can align all vector entries. SoA data are notoriously difficult to

handle if subsets of a data-set are to be transferred or data is to be reordered. In our

particle handling, a particle is an atomic unit, it is never teared apart or resorted

during the simulation run. A particle mesh is topologically invariant.

Behavioural data structure is accessed only throughout the phase of contact de-

tection and force derivation. Behavioural data are composed of short length vectors

(contact position) and scalars (distance, particle identities). Operations on these

data are usually short because the information is required only temporary for scalar

operations. Particle property-specific data like velocity and position are also loaded

on short vectors.

5.8 Loop Footprint Optimisation

For the remainder of the chapter we discuss the execution of the DEM routine

findCollisionPoint (Algorithm 8) which is utilised to identify contact points be-

tween two particles A and B. The identification of contacts between a pair of parti-

cles is the most computationally challenging step in DEM as the contact detection

phase consumes the majority of the total runtime [44, 55, 72].

The quadratic complexity contact detection check is often wrapped into an ad-

ditional check that compares bounding spheres or bounding boxes as a pre-check

and thus may skip pair-wise comparisons all together. The sphere-to-sphere and

box-to-box comparison is computationally cheaper than a mesh-to-mesh (triangles-

to-triangles) comparison. Therefore, the pre-checks reduce the runtime when parti-

cles are not in collision. If the bounding areas overlap then we enter the phase of

mesh-based collision check.

The mesh-based compute kernel is formed by a double nested loop (see Algorithm

8) in addition to an all-to-all n particle comparison. The outermost layer loop

sweeps through all triangle vectorised points TA of A and the inner loop runs over

all triangles points TA of B. Within the innermost loop the contact detection is a

SIMD operation.

Algorithm 8 Blueprint for Contact Definition Compute Kernel

1: for i← 0 . . .TA∃particlesn do
2: for j ← i . . .TB∃particlesn do
3: findCollisionPoint(A[i]x, A[i]y, A[i]z, B[j]x, B[j]y, B[j]z)
4: end for
5: end for

The contact detection functions (findCollisionPoint, Algorithm 8) is available
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(Peel Loop Overhead)

Aligned Access

Figure 5.11: Data structures (arrays) are required to be aligned on specific mem-
ory locations as specified by the chip manufacturer. Data alignment and padding
enable streamlined memory accesses as data is positioned at the natural hardware
alignments.

as part of my delta library routines (i.e. brute force, penalty, hybrid on batches, hy-

brid on triangles pairs). Triangle vertices are passed as vectorised arrays which corre-

spond to each x, y, z dimension. These are accessed continuously by findCollisionPoint

with a stride-three iterator. The routine then returns the shortest distance between

the two triangles A and B (Algorithm 8, line 3).

Streamlined and vectorised contact detection is enabled by our memory layout.

Within a vector lane (i.e. SIMD inner loop) output vectors are stored at a equally

sized vectors. As they carry the distance, we avoid SIMD reduction or scatter/gather

operations, strided accesses between input and output vectors only in the end. The

output vectors that store distances are then used to define unique pair-wise contacts

within an ε margin.

Another aspect of loop optimisation is the explicit alignment of memory by

padding accessed data to equally sized chunks, 32 or 64 bits depending on chip

architecture (Figure 5.11). Within vector loops logical branching has to be avoided

otherwise vectorised/streamlined memory access becomes unpredictable and often

compilers are unable to switch on vectorisation.

We conclude with preliminary performance characteristics of the proposed algo-

rithms. In Table 5.1, we show flops/s, cache miss rate, memory bandwidth of each

proposed method. The measurement are taken by reading the hardware performance

counters using Likwid [87]. The tests are performed on a single core Broadwell CPU

E5-2650 v4, 2.20GHz. Our baseline is Stream [61], a matrix-vector multiplication
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Table 5.1: Hardware counter results for characteristic single-core runs on the Broad-
well chip. ”BF” is brute force, ”Hybrid T” is hybrid on triangle pairs, ”Hybrid B”
is hybrid on triangle batches.

Metric Stream BF Penalty Hybrid T Hybrid B
Runtime (s) 6.71 0.906 0.917 0.894 0.907
MFLOPS/s 828.27 1094.59 1393.02 1293.26 1334.43
L2 Miss 0.1978 0.0001 0.0001 0.0001 0.0001
L3 Miss 0.1008 2.90E-08 5.53E-07 4.36E-07 1.32E-07
Bandwidth MB/s 8329.92 85.8905 96.081 78.2327 64.4084

Table 5.2: Hardware counter results for characteristic single-core runs on the Broad-
well chip with SIMD enabled.

Metric BF Penalty Hybrid T Hybrid B
Runtime (s) 0.906 0.320 0.48 0.56
MFLOPS/s 1087.90 3529.57 2151.71 2410.75
L2 Miss 0.0001 0.0004 0.0002 0.0002
L3 Miss 8.28E-08 3.16E-06 2.40E-07 1.89E-07
Bandwidth MB/s 67.815 60.0901 44.6671 65.5665

benchmark that is memory bound (maximum memory bandwidth). For all methods

the pressure on the memory subsystem is minimalistic when compared to the Stream

baseline. AVX SIMD optimisations are visible via the higher levels of MFLOPS/s

performed. We observe around three times speed up for the iterative penalty-based

variant, and around two times for the hybrid methods (Table 5.2). Our penalty

method exhibits high locality and high MFLOPS/s and is the fastest method while

the hybrid methods are slower than the penalty iterative method, they are faster

than the brute force method. All methods in SIMD version show increased MFLOP-

S/s except the brute force, this is due to the branching (if statements) that exist in

the algorithm.
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Grid Meta Data Structure

Introduction. Space discretisation methods attempt to reduce the quadratic com-

plexity of particle interaction from O(n2) to O(n) where n is the particle count.

Complexity reduction is possible through data storage schemes such as arrays, trees,

hash tables, graphs. Various space discretisation techniques exist such as linked-cell

lists [23] and Verlet lists [34]. Complexity reduction that use grid structures mirrors

ideas in space discretisation that is commonly found in the molecular dynamics [23].

A grid divides the space domain into sub-domain cells, each sub-domain then han-

dles its own local simulation information, this space discritisation strategy allows

the decomposition of the interactions into local interaction areas.

For our DEM algorithm implementation, we rely on a generalised multilevel

tree-based data structure that allows treating particles of a range of diameter sizes

efficiently by exploiting a superimposed Cartesian grid. A tree data structure ex-

hibits a tree-based hierarchical order (e.g. binary, quad, oct trees) within the grid.

There are three observations that support the design decision of our grid.

First, particles that collide with one another are in close proximity in DEM

simulations. It is thus sufficient to scan a certain environment around each particle

for potential collision partners. We do not have to run through all possible particles

pairs. Instead, for every particle we split up the domain into control volumes. The

control volumes are cubic (in three dimensions) as it is a simpler implementation

compared to alternative control volumes of other shapes.

Second, we make these control volumes no larger than the biggest particle di-

ameter. It is sufficient to check the 3d − 1 (where d is the dimension) neighbouring
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cells. Then through the traversal it is determined whether neighbouring cells host

particles that might collide with the local particle.

Third, the previous decision is problematic if the particles in the domain are of

extremely different size. The cell size determines the largest particle diameter. If we

use a uniform cell size, many unnecessary collision checks are performed for small

particles. If we use an adaptive grid, it is tricky to design the grid so that only

direct neighbouring cells have to be studied. We thus propose to use a cascade of

grids. If we have several grids embedded into each other then each particle is stored

at different levels of the grid based on their suitable diameter. Particles of one grid

cell then have to be checked against particles in their neighbouring cell as well as

neighbouring cells on coarser grid resolution levels. There is no need to check that

a particle of one grid resolution is in contact with particles of a finer grid resolution.

If a particle A collides with a particle B, particle B also collides with particle A and

such relations are thus already detected.

Literature review and alternative schemes. In grid-based space discreti-

sation, when each particle is checked for possible collisions with other particles,

in-homogeneous particle sizes pose challenges. As one particle might have to be

compared to many other potential collision partners; the bigger the area a particle

covers, the bigger the area we have to search for potential collision partners. This

imposes significant throughput needs which might not necessarily translate into high

computational load [9]. The state-of-the-art approach is to rely on a regular grid to

check a particle within a cell only against particles residing in neighbouring (linked)

cells, i.e. the regular grid yields the areas to be searched for collision partners. Such

a linked-cell approach can be used as base for Verlet lists [35, 70] or more sophisti-

cated check volumes [9]. Despite the fact that regular grids deteriorate for extremely

in-homogeneous particle distributions [98] the largest particle dominates the chosen

cell size, only [84] seem to use multiple meshes. Here, each particle is hosted within

its ”fitting” cell and cells are then compared to each other. Dynamically adap-

tive grids based upon recursive space decomposition also reduce the search area

for collision partners. However, as long as particles reside on the finest resolution

level [29, 34, 98], the deterioration around large particles is only localised but not

eliminated. To the best of our knowledge, the combination of grid adaptivity with

a hierarchical multilevel approach is not found in literature.

Alternative approaches found in literature select the grid cell length to accommo-

date the minimal particle diameter [55]. In this case, larger particles overlap multiple

cells. Such an approach requires more sophisticated bookkeeping of particle-to-cell

relationship. Another variant relies on unstructured grid space decomposition where
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the domain is sliced non-equidistantly every-time, this strategy may also allow do-

main cuts to slice through particles. In unstructured grids, the depth of the tree

hierarchy (depth of cell cascades) is shallower as the grid is tailored to particle shape

and distribution [6]. In such variant, the mesh administration and communication

scheme requires to merge or split objects during particle movement. The program-

ming of such implementation becomes difficult and to our knowledge there is no

clear design benefit. Instead for this project, we choose to employ a structured grid

approach which prioritise algorithmic simplicity, a property that is notably enabled

by structured tree-based decomposition.

DEM-based data structure schemes differ in terms of data decomposition. Codes

are either based on the fixed assignment of particles to compute entities, either nodes

and cores, or based upon the decomposition of the domain. In the latter approach,

compute nodes or cores own domain fragments and implicitly own all particles resid-

ing within domains [34, 69, 99]. Studies on domain decomposition with multiscale,

dynamically adaptive grids do — to the best of our knowledge — not exist for DEM.

While a parallelisation of force contributions (i.e. check of particle pairs through pair-

wise interactions) is convenient in the molecular dynamics community [9, 69], DEM

seems to be dominated by spatial parallelisation: different cells (sub-domain areas)

are compared to each other concurrently. Our present work goes beyond selecting

one parallelisation strategy as it compares spatial decomposition to particle-pair

parallelisation. The latter is the equivalent parallelisation of forces in molecular

dynamics codes.

While most approaches implement regular grids [71] or derive communication-

minimising techniques from regular grids [9], such approaches can break down for

strongly in-homogeneous particle distributions. Motivated by this, we emphasise on

a realisation that relies on Peano [92] for which excellent memory and multi-node

communication behaviour is validated [91]. We also emphasise that the particle ad-

ministration is inspired from [95] where further communication-avoiding techniques

are introduced. All paradigms proposed here however apply to any octree, quadtree,

forest (clusters for trees) or spacetree data structure.

Chapter outline. In Chapter Grid Meta Data Structures we discuss the use

of a Cartesian grid data structure within phases of the DEM algorithm. The Chap-

ter is divided into four sections: Space Discretisation, Multiscale Grid Traversal,

Multiscale Grid Morphology and Multilevel Data Inheritance. We start off with a

discussion of Space Discretisation. Discretisation of space and the creation of hier-

archies is the fundamental concept in grids. We show how a grid structure is applied

to particle simulations. The Multiscale Grid Traversal section discusses the traversal

82



CHAPTER 6. GRID META DATA STRUCTURE

algorithm that sweeps through all cells. Grid Morphology defines the type of grid

behaviour that arise from specific scenarios. The morphology give rise to proper-

ties that are at our disposal due to the grid dynamics. Multilevel Data discusses

methods to keep information between different resolutions consistent.

6.1 Space Discretisation

A regular grid cuts the computational grid into cells (Figure 6.1). Every cell of the

grid acts as a bucket for the particles. A bucket cell is the host cell that overlaps a

particle’s centre. Every cell has eight vertices in three dimensions (a cubic cell). Each

vertex is traversed as part of the grid traversal algorithm. We then assign particles to

their closest vertex. This assignment creates a particle-to-vertex association which

is automatically inherited due its storage location in the data structure. We choose

vertex-based association instead of cells as these allows us to further group particles

within a cell but also exhibit better communication memory throughput during grid

traversal [95]. Our grid-based space discretisation cuts space into sub-regions/sub-

cells. To find potential collisions, it is sufficient to check solely against particles that

are within the local and adjacent area of neighbour cells. The premise is that the

search locality reduces the overall search cost. The space cuts effectively implicitly

propagate sub-domain boundary information. Sub-domain information is used to

infer the locality of particles.

cut-off area

vertex host

A

B

real geometry

bounding sphere halo

host cell

Figure 6.1: Two particles in 2D without hierarchical multiscale levels. In this con-
figuration, the two particles are not compared, only if the two vertices are adjacent
are the particles compared for collision.
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Following the cell-based scheme it is then possible to extend this into a multiscale

grid. A multiscale grid is a set of regular Cartesian grids that are embedded into

each other. The embedded cells yield a hierarchical tree-based order, a parent cell

has children cells. The cascade of cells allow us to treat particles of varying scales

by placing them on different levels of the grid structure. We base the construction

scheme on the unit cell, this is cut into three equidistant pieces along each coordi-

nate axis which yield 3 · 3 = 9 cells in 2D. The nine cubes form the first level of

elements/sub-domains/cells. The partitioned cells are called children of the bound-

ing box cube which is the root, parent or coarse cube. For each of the children, the

discretisation algorithm recursively splits again the cells if required. A leaf cell is a

cube that is not refined further and it is locally the smallest in size in the hierarchy.

The decision to cut into three parts is based upon the default three-partitioning

design of the grid framework [92] at hand. Bi-partitioning also works on such setup

which yields a binary tree in two dimensions.

The spacetree order of the discretisation exhibits a parent to child relationship

property analogous to tree structures. Each cell besides the root has a reference to

a unique parent cell. While cells could hold particles, we propose a vertex-based

scheme [95]. A vertex is uniquely identified by its spatial position and the level it

resides. The level of a cell indicates the number of refinement steps required to at

least create one of its adjacent cells.

With the creation of the spacetree we superimpose a meta data structure [92]

that run a space filling curve (SFC), a linearised array that runs through cells and

vertices. By design, we choose each vertex to hold a list of particle associations.

A particle is always stored at the finest grid level where the cells’ edge length is

still larger than its diameter. A particle is always associated to the vertex closest

to its geometric centre. Links from the vertices to the particles are realised as

pointers. If a particle migrates (i.e. position update) to a different vertex we update

the associated vertex-to-particle pointers. Thus, there is no movement of geometric

data in memory.

Our multi-scale definition exploits the hierarchical relationship between grid ver-

tices (Figure 6.2). A vertex a is a child of a vertex b if all adjacent cells of a are

children of adjacent cells of b. b is the parent vertex of a. A vertex a is a child of b

if at least one adjacent cell of a is a child of an adjacent cell of b. b is an parents of

a. This hierarchy of vertex links is vital throughout the simulation because it main-

tains consistent exchange of information between levels and particle scales. Just

like in tree data structures our coarse particles are ”inherited” by children vertices

at finer levels via pointers. We name these particles ”virtual particles” and their
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Figure 6.2: Particles are dropped from the coarse levels into the fine grid if new cell
levels are added (inheritance). The bright round vertices are children of the marked
dark coarse grid vertex. The smaller dark round markers’ vertices are part of the
children cells but may also belong to more than one parent/coarse cell.

hierarchical vertex-to-particle association links ”virtual links” as they are inherited.

Particle associations within a level are named ”real links” and ”real particles”. We

implement a list of actual held real particles and a list of virtual particles at every

vertex. A local vertex is always read for the first time before any of its children and

we loop through the virtual particle list first. We compare the locally held real par-

ticles with all other adjacent real particles and then those with all virtual particles.

This scheme realises our multiscale particle-to-vertex association scheme.

The introduction of a grid over the computational domain in a DEM particle
simulation pays off (Figure 6.1). The grid implicitly provides a cut off radius
for the collision search of each particle. The discretisation allows a simulation
to reduce its overall complexity to linear. A multiscale scheme allow us to
position particles of varying scales on different levels of the grid. Grid cells
form a cascade a sub-regions that map a hierarchical tree structure that can
be traversed top down. The spacetree provides us with meta data (particle-
to-vertices associations) that follow the hierarchical order of vertices. Every
particle is stored at an associated vertex based on its size and position.

6.2 Multiscale Grid Traversal

With a grid at hand, the serial DEM algorithmic steps are translated into a top

down grid traversal (Algorithm 9). We implement this strategy by running through

the grid spanned by the spacetree, we combine a depth-first order with a space-filling

85



CHAPTER 6. GRID META DATA STRUCTURE

curve [90, 93] (Figure 6.3).

0 1

5

76

4

2 3

Figure 6.3: The Peano space filling curve is used by the grid to linearise the compu-
tational space. The traversal of the grid domain follows the curve as shown. Each
sub-cell is located on the path of the curve.

The DEM algorithm is written down as a set of events [91, 94]. The set of events

are based on traversal operations and specify which operations are to be performed.

If a vertex is read for the very first time we invoke touchVertexFirstTime. If a

cell is entered we invoke enterCell and so forth. The grid meta data structure

hosts the particles. Hence, we make use of the traversal events to superimpose the

DEM algorithmic phases. As shown in Algorithm 9 the DEM operations follow the

grid sweeps and we build and maintain a set of collision points to implement the

dynamics.

We start off with traversing the grid depth first. The traversal triggers some

events. In those events we implement the DEM algorithm. On touchVertexFirstTime

we derive all forces associated to each particle that reside at the vertex and we update

the particle position. At this point we also inherit particles that reside on coarser

levels with respect to the local vertex. Then on enterCell we reassign particle-

to-vertex association locally once, re-assignment is performed only once locally but

re-assignment checks may be performed more than once globally by neighbouring

cells as vertices within the grid are shared with more than one cell. On enterCell we

compare all pairs of each local vertex to detect possible contacts (inter-vertex com-

parison). Finally, contact detection is again performed on touchVertexLastTime,

all pairs of local particles associated to the vertex are compared (intra-vertex com-

parison). The traversals continue until the termination condition is reached.
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Algorithm 9 Grid-Based DEM Implementation.

1: function traverseGrid(C)
2: Cold ← C
3: C ← ∅
4: while traversal continues do
5: if touchVertexFirstTime then
6: for all particles p associated to vertex do
7: for all contact points c ∈ Cold associated to p do
8: Update ftrans(p) through c
9: Update frot(p) through c
10: end for
11: end for
12: for all particles p associated to vertex do
13: Update particle incl. its triangles
14: end for
15: end if
16: if enterCell then
17: for all 2d vertices do
18: for all particles p associated to vertex do
19: if particle should be associated to different vertex then
20: Reassign particle
21: end if
22: end for
23: end for
24: for all (pi, pj) particle pairs of vertex pairs (i, j) do
25: C ← C∪ findCollisions(pi, pj)
26: end for
27: end if
28: if touchVertexLastTime then
29: for all particle pairs (pi, pj) associated to single vertex do
30: C ← C∪ findCollisions(pi, pj)
31: end for
32: end if
33: end while
34: end function
35: function main(T )
36: C ← ∅
37: t← 0
38: for t < T do
39: traverseGrid(C)
40: t← t+∆t
41: end for
42: end function
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The grid-based realisation is characterised by few properties:

• When a vertex is loaded for the very first time, all particles associated to this

vertex move if a force acts on them.

• Afterwards, all particles that are associated to a vertex are compared with each

other and this implements the local collision detection that identifies possible

contact points.

• The comparison of particles associated to different vertices is realised as we

enter a cell event. All particles at this stage already have an updated position.

All vertices at this point have been loaded already as they have been subject

to touchVertexFirstTime.

• A particle may move at most one cell of its level at a time. Cell tunnelling

occurs when a particle position is updated and a cell pass is skipped entirely,

this is an issue that can potentially lead to missed contacts. Cell tunnelling [96]

is prohibited. Tunnelling is possible when particles move fast. For some setups

we experimentally do not allow jumping to non-neighbouring cells and vertices

by manually setting a small time step size. However, this is not explicitly

enforced but it is ensured by the proper time step choice (see Chapter 7).

Vertex traversal per cell. On the enterCell event, we perform pair-wise

neighbouring vertex-to-vertex checks. As cell vertices may be adjacent to more than

one cells, it is vital to avoid the redundant pair-wise vertex checks within a group

of cells in the domain (Figure 6.4). Per cell, the maximum number of vertices that

are checked is 27 (Figure 6.5). When a cell is visited then all its adjacent vertices

are available to be checked. Yet, we avoid that vertex-pairs are checked twice by

their left and right adjacent cells. Traversal of all cells and vertices realise a global

linked-cell propagation along the domain and ensures that all particle pairs are

evaluated.

The grid traversal yields a set of collision points that book-keeps case of pair-

wise particle contacts. The collision point set is kept persistent for the subsequent

traversal as one time step of the scheme is realised per two total grid traversals. The

amortised cost however still is one time step per grid traversal. Such a scheme picks

up the idea of pipelining [93]. By implementing a pipelined algorithm, we shift the

DEM phases relative to the traversal to ensure that particles are accessed only once.

Forces are derived from a single hash table of contact points using unique global

particle identifiers. Force derivation is followed by position update at the following
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Figure 6.4: For the purpose of reference and debugging we group pairwise checks into
vertex traversal groups; A traversal cell (no. 1), diagonal cell (no. 2), top boundary
cell (no. 3), back boundary cell (no. 4), right cell (no. 5). The majority of cells visits
perform the traversal cell vertex checks while the minority of cells are positioned at
the boundary of the domain. At the end of a whole grid traversal all vertices are
checked.

grid traversal (Figure 6.6). Collision data is mapped onto the particles when we

read a particle for the first time in the subsequent traversal.

We maintain implementation simplicity by refraining from storing each contact

point between two particles twice with inverse normals. Each contact is augmented

with a copy of the corresponding partner particles’ global data (mass, velocity, mo-

mentum). Otherwise, we would have to search for this data and build up global

indices in addition to data being subject to a write constraint as particle’s data

already might have been subject to the next time step. Immediately after determin-

ing the forces that act on a particle, the physical and geometric properties of the

particle are updated due to translation and rotation.
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Figure 6.5: The sum of all unique vertex comparison minus the three comparisons
that are left only for the last cell in the domain (6-7, 3-7, 5-7).

Grid Traversal Grid Traversal

Determine Contacts Compute Forces Update Positions

Figure 6.6: The contact forces are derived on the next traversal following the concept
of pipelining.

The grid traversal exploits the space-filling curve to traverse all cells at all
levels using a depth first traversal. Particles are stored at the vertices and all
vertices need to be visited and compared against each other through a single-
touch cell policy (single grid traversal). Our grid-DEM traversal follows the
concept of pipelining, this allows our to pass visit particles for force derivation
only once. It is important to detect pairwise redundancies in order to prevent
more than one checks of the same particle pair.

6.3 Multiscale Grid Morphology

The formalism allows us to realise at least four grid variants: no-grid, regular,

adaptive and reluctant adaptive grids. These grid variants form four types of mor-

phologies that exhibit different properties for different particle setup scenarios. A

deteriorated space grid (Figure 6.8) is the mono-cell grid which constitutes of a sin-

gle cell of eight vertices in three dimensional space. All the remaining grids form

hierarchies.

Regular grid. The regular grid version recursively refines all spacetree nodes

until all children cell lengths are just larger than the smallest particle diameter

90



CHAPTER 6. GRID META DATA STRUCTURE

1

0

2

Figure 6.7: A single particle is dropped from a coarse cell into a fine cell. All fine
cell are uniformly refined along the fine levels. The grid refined up until the particle
is hosted at a cell no smaller than its diameter.

(Figure 6.7). This grid strategy yields a multiscale regular grid as every refinement

is applied uniformly on all grid cells at each level. Each particle is assigned to the

correct grid level as we drop and reassign them downwards the hierarchy levels until

they fit into the correct cell length (Figure 6.8).

A regular grid is a naive approach to grid refinement as we allow the creation of

large numbers of uniformly sized cells where no particles reside. The regular grid

is a multiscale grid that refines every cell. The configuration of a regular grid is

advantageous when the engineering scenario that defines a composition of particles

that are equally distributed and sized.

The large number of cells become problematic when some particles are very small

relative to the biggest one. If the simulation scenario exhibits clusters of particles of

varying sizes then the regular grid by design realises redundant particle-to-particle

comparisons. This is because the regular grid discretises space uniformly and it

disregards particle scale and movement during runtime. When particles are not

uniformly sized and distributed in clusters then an adaptive grid scheme is desirable.

Another major disadvantage is the high number of particle comparisons (× triangle

counts) required when particles cluster (Figure 6.10) into one region of the domain.

Adaptive grid. The dynamically adaptive grid variant is characterised by two

elements, the mesh refinement control and inter-grid particle treatment as shown in

Figure 6.9. The algorithm successively drops particles down the spacetree hierarchies
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Figure 6.8: Left: A single cell hosting particles that are positioned on top of a
hopper structure. All particles are associated to a cell vertex (blue line) at the root
level. Middle: A regular grid that is refined uniformly across the finest level. Right:
An adaptive grid adopts the grid around particles but does not refine cells that hold
no particles. Both regular and adaptive grid types hold the hopper structure at a
coarser level.

Figure 6.9: Two particles approach each other. As they are of different size they
might be held at different spacetree resolution levels.
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and it simultaneously refines coarse cells to match particles (Figure 6.8). The drop

is performed during the first vertex visit on touchVertexFirstTime (Algorithm

9). The algorithm determines the smallest diameter of all the particles held by the

vertex host. If the particle diameter is smaller than 1/3 of the mesh edge at the

level of the vertex then the region around the vertex is refined. At each gird vertex,

we check whether there are spatially coinciding vertices on a coarser level. If such

vertices do exist, the particles that they hold are moved one level down as long as

their diameter permits. The opposite hierarchical movement occurs when a cell is

coarsened, this happens when particles move towards a neighbouring cell that is

coarse, it is ”lifted” and dropped to its level again.

In adaptive grids, we vary the morphology according to the dynamics of the

particles under a set of conditions and rules. If we delete a vertex a that holds

particles, its particles are moved to the next coarser level and reassigned. Each

vertex holds a Boolean marker that is set ⊥ before the vertex is read for the first

time. If a vertex holds a particle, all the markers of the vertices where they are

descendants of are set to ⊤. If a vertex whose adjacent cells are all refined holds ⊥
at the end of the multi-scale traversal, we coarsen these refined adjacent cells. We

rely on a top-down tree traversal. The refinement/coarsening procedure is evaluated

on-the-fly and it is analogous to an analysed tree grammar [47].

A cascade of uniformly refined cells create a regularly refined grid. When we

make changes to the refinement criteria then we can vary the refinement strategy

from cell to cell. The selection of criteria per cell triggers refinement and coarsening

events that form dynamically varying adaptive grids. The combined behaviour of

criteria based on moving particles and grid rules can create a very dynamic grid

morphology. To avoid undefined behaviour, it is important that particle-to-vertex

associations are consistent with the grid behaviour at all times. From here on we

do not discuss the mono-cell and we treat it as a no-grid variant that only holds the

root cell.

The dynamic adaptive grid is a great improvement over the regular grid, as the

number of particle-to-particle comparisons is reduced (Figure 6.10) and thus com-

putation during contact detection is minimised. Particle sizes per level dynamically

influence the space discretisation at this stage. The inheritance of particles from

coarse to fine vertices becomes the key concept that enable such grid. We can

construct and adopt the adaptive grid on the fly at every time step. However the

adaptive grid only pays off when particle dynamics surpass grid administration over-

head at every time step. The adaptive grid is great for reducing the total number of

comparisons but it is also significantly more complex to implement and debug when
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Figure 6.10: Particle comparisons of the hopper (1k particles) flow simulation using
regular and adaptive grids. The regular grid make use of more cells/vertices than
the adaptive variant and it refined uniformly on the whole domain. The adaptive
grid refines only on the areas of particles thus the number of grid vertices is reduced
significantly (and grid overhead), this also reduces the number of comparisons re-
quired as there are fewer vertices to compare at collisions areas. During the peak of
hopper flow particle clustering phase (step 1200), the regular grid performs 850,000
comparisons while the adaptive grid only 25,000, this translates to 34 million versus
1 million triangle comparisons for granulates of 20 triangles for around 2000 actual
collision points.
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Figure 6.11: Two particles collide into each other. The adaptive grid refining around
each particle while its diameter constrains the mesh size (left column - top and
bottom left figure). The reluctant adaptive grid works with a coarser resolution as
long as particles are far away from each other (right column - top and bottom right
figure). Just before they collide, the grid is refined and particles are dropped down
the resolution levels.

compared to the regular grid.

A reluctant adaptive grid. The dynamic adaptive grid refines aggressively,

when a particle is smaller than the length of the cell that they are associated with we

refine the grid and the particles are dropped to the finest refinement level. Adaptive

grid regions follow particles (Figure 6.11) and the empty cells are coarsened. The

downside of aggressive refinement is that it can create a larger number of fine cells

than the minimum number of cell required for contact detection, this translates to

grid administration overhead. Thus employing a relaxed-reluctant grid refinement

strategy gives us the twin benefit of a minimal grid refinement administration and

the minimal particle comparisons required from an adaptive grid.

The spacetree hierarchy allow us to realise four types of grids: no-grid, regular
grid, adaptive grid and reluctant adaptive grid. These grids are subject to
flag rules over time to maintain consistent multiscale morphological changes
between levels.

The reluctant adaptive grid alters the behaviour of the standard adaptive grid
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through two modifications of the refinement criterion. If only one particle is held

by a vertex then no refinement is triggered as long as its particular diameter length

is smaller than the cell size. Moreover, the refinement is triggered only if the vertex

visited holds at least two particles that approach each other. Two particles A and

B at dt step are approaching each other when the relative velocity difference

vBA = (vA · dBA)− (vB · dBA).

along a particle distance line dBA is less than zero. The distance line is defined as

dBA = cB − cA where cA and cB are the centres of the two particles. A relative

velocity difference vBA that is greater than zero indicates particle separation. When

particles move away from each other no refinement is required.

The reluctant adaptive variant ensures that the adaptivity is not as aggressive

and the morphology behaves reluctantly with respect to the particle movement. The

reluctant adaptive grid refines only when two particles are in close enough proximity

(they exist in neighbouring cells) and the particles are approaching towards each

other. An important property of reluctant adaptivity is that small particles are

allowed to reside in coarse cells when they are lifted. Fine particles that are lifted

and reside on coarse cells are not allowed to be dropped to finer cells unless the

refinement criterion around their associated vertex is fulfilled (i.e. there are potential

collision candidates at adjacent locations).

We present a novel use of the spacetree with the implementation of an adaptive
and reluctant adaptive scheme. The adaptive grid premise is the reduction of
the number of particle comparisons. Grid adaptivity pays off (Figures 6.11,
6.10) when particles of different size exist and when particles are irregularly
distributed over the domain space. We employ a reluctant adaptive grid that
aims at reducing the overhead associated with aggressive refinement and we
show that the association of particles to coarser levels reduces grid adminis-
tration overhead.

6.4 Multilevel Data

To implement complex grid morphologies, it is vital to rigorously address the multi-

scale data organisation between levels. We thus discuss the multilevel data hierarchy

with respect to DEM particle data movement from fine to coarse vertices and vice

versa. Particles relocate their data association within a cell to another vertex due

to particle position updates and preserving consistency is important to avoid unde-
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fined behaviour. Particle associations are dropped and lifted within levels of the grid

as the grid morphology changes around them. Adaptive mesh refinement combined

with multiscale collision dynamics add another dimension of complexity to the DEM

design.

In this section we discuss the four components that define major data structure

schemes within a DEM setup. Firstly, the particle vertex transition through the grid.

Secondly, the transient virtual particle links. Thirdly, a geometry decomposition

strategy. Fourthly, the filtering mechanism we have in-place to preserve robustness.

6.4.1 Particle Hierarchy Transition

Particles are dropped and lifted to and from specific vertices due to refinement and

coarsening of sectors of the spacetree. On simulation initiation all particles placed

in the hierarchy are dropped down to reside at vertices of cells whose side length fit

the particle diameter. This initial drop ensures that the particles are fitted into the

correct level of the grid. Then the simulation starts and the morphology start to

change according to the dynamics.

1

0

2

Figure 6.12: A particle is dropped down the grid levels due to its size.

In Figure 6.12, a particle is dropped from level zero to level one (pink circular

particle). Its vertex association is reassigned to a different level because it fits into

the next level of refinement. At level one the particle (light blue) is reassigned to

a different Cartesian location due to vertex proximity. Eventually, the particle is

dropped to the finest level (level two) and resides there.
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When there is grid movement due to adaptivity, a lift call on a particle may be

issued. In Figure 6.12 a particle at level two has to be lifted to level one if finer

cells at level two are destroyed. A particle has to be lifted due to the destruction of

hanging vertices. The lifted particle then need to be associated with a coarser vertex.

A hanging vertex is a vertex that is required to form complete cell at the interface of

adjacent cells of different refinement levels. Each vertex of a cell can accommodate

unlimited number of particles as long as every particle rightfully belongs to the

parent cell and remains within the physical constraints of non-penetrability enforced

by DEM dynamics.

6.4.2 Virtual Particles

Our multiscale collision detection works top down. The top level coarse particles

can only collide with equivalent level particles, while finer particles can collide with

coarser particles. This approach removes the redundancy of a two way data exchange

(downwards and upwards). We employ only a single way (downwards) data transfer

which is coupled with the spacetree traversal. We derive coarse particle information

at finer levels of the grid [89] on the fly.

1

0

2

Figure 6.13: A virtual particle is a particle that is pointed by a vertex at a finer
level. A virtual particle is inherited following the tree hierarchy of the grid.

The coarse particle set is derived at finer levels by the inheritance of coarse

associations to the local vertex. Inherited particles are called ”virtual particles” and
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multiscale links between vertices are called virtual links. All virtual particle links are

computed on-the-fly. The links are implemented with pointers. The virtual multi-

level links to virtual coarse particles are important to multiscale contact detection as

the links define the multiscale contact detection scheme (Figure 6.13). All vertices

within the grid follow the hierarchical tree-like order which by design provides the

coarse cell inheritance links to fine levels similar to a 3D tree structure where parent

and children nodes exist.

Collision detection and inheritance between real and virtual particles in a grid

traversal is realised as described by Algorithm 10 in touchVertexFirstTime and

enterCell events. Both events summarise the collision detection phase of the whole

DEM algorithm.

At touchVertexFirstTime, we derive the forces from the contact points that we

defined during the previous iteration. We then use those forces to update the new

particle positions for all particles associated at that vertex. Furthermore, we inherit

virtual particles via pointers to coarser levels once per traversal at this point.

At enterCell traversal event, real and virtual particles associated to different

vertices are checked for collisions. Every cubic cell in three dimensions require at

most 28 vertex-to-vertex pairwise comparisons of real particle sets. The number

of vertex-to-vertex comparisons rises when virtual particles of coarser vertices are

inherited. For every cell the max number of real-to-virtual vertex comparisons is

RealParticlesn + V irtualParticlesn ·RealParticlesn + V irtualParticlesn.

The neighbouring vertex-to-vertex pair-wise checks are required to inherit and

retrieve lists of particles and perform particle-to-particle comparisons. For each

vertex of a cell, it is not a necessarily required to inherit all virtual particles from

all coarser vertices. Virtual particles are not always associated with the fine vertex

closest to their centre. This may become possible when multiple virtual particles

represent one real particle exist on a particular mesh level.

Another reason of misalignment of coarse to fine link associations is the possibil-

ity that the actual geometric shape and dimensions of the coarser particle disallows

a fine vertex overlap. Fine vertices inherit all virtual particles that exist in coarser

levels that overlap the fine vertices. Such inheritance realises a partial cell vertex

inheritance. A detailed description of this scenario is discussed in sub-Section 6.4.4.

At touchVertexLastTime collision detection is performed pairwise between all

real particles and virtual particles associated to a fine grid vertex. This step realises

solely vertex-based particle-to-particle comparisons. All vertices within the grid that

hold links to more than one particle perform collision detection.
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Algorithm 10 Multiscale Grid-Based DEM Implementation.

1: function traverseGrid(C)
2: Cold ← C
3: C ← ∅
4: while traversal continues do
5: if touchVertexFirstTime then
6: for all particles p associated to vertex do
7: for all contact points c ∈ Cold associated to p do
8: Update ftrans(p) through c
9: Update frot(p) through c
10: end for
11: end for
12: for all particles p associated to vertex do
13: Update particle incl. its triangles
14: end for
15: Inherit pointer links to virtual particles from coarser levels

16: end if
17: if enterCell then
18: for all 2d vertices adjacent of the cell do
19: for all particles p associated to vertex do
20: if particle should be associated to different vertex then
21: Reassign particle
22: end if
23: end for
24: end for
25: for all real and virtual (pi, pj) particle pairs of vertex pairs i, j do
26: C ← C∪ findCollisions(pi, pj)
27: end for
28: end if
29: if touchVertexLastTime then
30: for all real and virtual particle pairs (pi, pj) at vertex do
31: C ← C∪ findCollisions(pi, pj)
32: end for
33: end if
34: end while
35: end function
36: function main(T )
37: C ← ∅
38: t← 0
39: for t < T do
40: traverseGrid(C)
41: t← t+∆t
42: end for
43: end function
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6.4.3 Geometry Decomposition

A major overhead to the grid management arises when there is large variation in

particle scales. When variations in particle scales are extreme, the number of virtual

links becomes high. One solution is to decompose massive geometries into smaller

particles so that the real-to-virtual link distance is minimised. For example, a hopper

can be read either as one whole body or as individual composites that make up the

original geometry of the hopper structure. We propose two variants of rigid body

decomposition.

The first variant decomposes a coarse particle based on a cubic oct-section (Fig-

ure 6.14). This is a recursive uniform subdivision that decomposes portions of orig-

inal particle mesh into smaller particles. Every sub-particle is the sum of mesh ele-

ments contained within the subdivision cube boundary. As it is a recursive method,

the minimum sub-particle length is specified a-priori to produce sub-divisions of

specific length.

Figure 6.14: A particle is decomposed into smaller particles by recursive oct-sections.
Each sub-particle holds a group of sub-elements of the original particle. Left: original
structure, Middle: subdivision boundaries, Right: finer subdivision.

The alternative decomposition is based on triangle-based decomposition (Figure

6.15). A particle mesh is refined to fit certain scale ratios of the simulation and

then each component is decomposed into smaller particles. The smaller particles

copy the physical properties of the parent particle and forms virtual extensions of

the original particle composition.

In both decomposition schemes, inseparability is implicitly ensured. All contact

points of a decomposed particle are reduced at the end of the iteration in a hash

table. Since we follow the idea of pipelining, we derive the total forces for every

sub-particle at the next time step and perform the position update. Thus position

updates are global to the whole particle while contact detection and contact point

generation are local to each sub-particle.

The realisation of a particle decomposition scheme does not necessarily reduce

computational cost. The finer virtual sub-particles reduce the multiscale overhead
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A

A

B
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D

Figure 6.15: A particle can be decomposed into smaller particles or elements that
are automatically dropped to finer levels like any other particle.

as the particle components of the original coarse particle is dropped into the fine

level. The advantage of the scheme is a reduction of particle-to-particle comparisons

in extreme scenarios when sizes between particles vary significantly. The drawback

of these approaches is that memory footprint and particle count increase.

6.4.4 Multiscale Filter Mechanisms

The realisation of a multiscale grid in DEM introduces redundant pointers by design.

The root of the problem is the pointer inheritance that is associated vertices between

hierarchy levels. We categorise link redundancies into vertex-based and cell-based.

Vertex-based redundancies. On touchVertexFirstTime event we inherit

particles from all coarser vertices using pointers. At this stage there are two types

of inheritance. The inheritance of all real particles of coarser vertices and the inher-

itance of all virtual particles of the coarser vertices. The fundamental property of

vertex inheritance is that all vertices of a coarser cell are associated with all vertices

of the finer cell. This creates duplicate particle pointers.

To alleviate redundancies in vertex pointers (Figure 6.16), we filter out the du-

plicates of coarser vertices after each vertex inheritance phase. Multiscale vertex-

to-vertex links are minimised by utilising particle size information. Virtual particle

inheritance occurs if and only if the radius of a coarse particle residing at a coarser

vertex overlaps the vertex of a finer vertex. A radius of a virtual particle is defined

as

R = r + 2 · ǫ+ fineGridH ·
√
dimensions

where r is the radius of the coarse particle, ǫ is the DEM halo margin, fineGridH

is the H length of the fine cell side, dimensions is the dimensions of the cell. The

square root portion of the equation defines the diagonal of the fine cell, thus R covers

an the area around the particle by one fine cell. If d is the distance between the

coarse particle centre and the fine vertex then if d ≤ R then the fine vertex overlaps
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1

0

2
Multiscale Link

Vertex-Particle Link

Figure 6.16: Every vertex residing on a finer level inherits all virtual particles resid-
ing on the coarser levels. Particle inheritance duplicates on a per vertex basis.

the virtual particle radius and thus it is inherited.

Cell-based redundancies. On enterCell we check every vertex with its neigh-

bours to determine collision between particles. At this stage, all vertices of a cell

have already inherited unique links to coarser virtual particles. These virtual parti-

cles are unique per fine vertex but not unique to the cell as shown on Figure 6.17.

Therefore, it is important to remove duplicate links to particles at a cell-basis. All

virtual particles per vertex are reduced to unique sets of virtual particles and as-

signed to a local virtual vertex that is then compared against all vertices of the cell

to determine real to virtual particle contacts.

Filled cells, empty cells and ghost cells. Cells can be categorised into three

types depending on what type of particles they host (Figure 6.18). Filled cells host

real and virtual particles and empty cells host neither real nor virtual particles.

Ghost cells are cells that support cells at finer levels by providing the virtual links

to coarse particles.

Ghost cells exist to support the hierarchical order between coarse and fine levels.

When the grid is traversed these ghost cells are also traversed. As these particular

cells do not hold any real particles, nothing is to be calculated on them. There is

no need to invoke any computation between regions that hold virtual particles. We

reserve DEM computational phases for cells that hold at least one real particle.
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Figure 6.17: Every vertex residing on a finer level inherits all virtual particles resid-
ing on the coarser levels. Particle inheritance creates collision detection redundancies
on a per a cell basis.
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Figure 6.18: In terms of collision detection and inheritance, there are four types of
cells: a. yellow cells where real particles reside, b. light blue cells that are empty
cells with neither real nor virtual particles, c. dark blue cells that are partially linked
to virtual particles, d. pink cells store no particles but exist between cells that store
real particles at different levels.
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CHAPTER 7

A Dynamic Time Step Scheme

Introduction. To realise global adaptive time stepping for particle collisions, we

exploit both the grid properties and the particle dynamics to adjust the time step

size. Step adjustment allows us to speed up the simulation’s time-to-solution. When

combined with Adaptive Mesh Refinement (AMR) schemes, a dynamic step exploits

the morphology of the grid which yields a cut-off radius for the neighbour collision

check and dictates the maximum step size. The study of the interplay between

the adaptivity criteria with an admissible time step sizes are to the best of our

knowledge not available. Reluctant adaptivity provides the opportunity to adjust

particle time step constraints but reduce the grid overhead per traversal. Given the

one-cell-per-time-step constraint on the particle velocity, we restrict the maximum

step. While we preserve a global step size, we coarsen the grid when possible which

allow us to facilitate larger time step sizes.

In this adaptive space and time scheme, when two particles that are within close

proximity we trigger grid refinement and immediately reduce time step ∆t. When

a pair of particles are within a critical close distance we explicitly restrict ∆t such

that there is no interpenetration. Similarly, during collision separation our grid/step

flags allow the incremental increase of ∆t up to a set ∆tmax step.

Chapter outlook. In this chapter we discuss the concept of a global dynamic

time step scheme that derives information from two relationships. We therefore split

the discussion into Particle-to-Grid Relationship and Particle-to-Particle Relation-

ship sections. In Particle-to-Grid Relationship, we discuss the interplay between the

grid and a particle that can be exploited to determine a suitable step size locally.
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The local grid morphology varies over time based on particle movements and colli-

sion states. In section Particle-to-Particle Relationship, we discuss the information

exchange that define three collision states within a pairwise interaction. We de-

fine the ”non-critical approach”, ”critical approach” and ”separation” states. Each

state is triggered based upon pairwise relative velocity direction. Finally in section

Particles that Reside on Different Grid Levels, we show a working example of a

two-particle-collision of different scale.

We design a dynamic mesh refinement criterion that fuses the traditional
AMR advantages (reduction of computational cost) with the maximisation
of the admissible time step size. Such scheme allows us to utilise large step
sizes while minimising the total number of steps required to simulate particle
interactions.

7.1 Particle-to-Grid Relationship

Within the grid, every particle is subject to spatial and temporal restrictions to

preserve numerical stability and reduce computational complexity while at the same

time we want to utilise large time steps. The principal rule is that particles are not

allowed to tunnel through neighbouring cells to safeguard against contact misses.

Every particle updates its position given an initial step size ∆t. Our simulation is

given an arbitrary set ∆tmin while a maximum step size ∆tmax is determined by the

global maximum velocity and the minimum cell side length.

h/2

Figure 7.1: A particle residing within a cell is associated with a vertex and is not
allowed to update its position more than the length of its cell.

We define the particle-to-grid relationship based upon three points:

i. In an adaptive grid, a cell side cannot be smaller than the particle diameter
that it holds.

ii. Particles are hosted within cells as long as their radius fit, we do not force
particles to reside at the finest level, instead particles are allowed to travel
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within coarser levels.

iii. A particle may not update its position along step size ∆t further than half its
cells’ length.

It is a precondition that no particle resides in a cell with a side length smaller

than the particle itself. A cell may hold more than one particle at a given time.

Particles are dropped to finer cells as long as their diameter permits. Particles

are not always pushed to a finer level, with a reluctant grid we allow particles to

reside on coarse levels as long as they are not in a collision course with another

particle. The grid refines and drops particles to finer levels only when there are

two particles that approach each other. Such constraint allows us keep the grid as

coarse as possible. Large time steps are enabled when particles reside on a coarser

cell relative to their diameter length. The step size is incremented by ∆t = ∆t · 1.1
up until the maximum ∆tmax = hmax/(2.0 · 1.1 · Vmax) where hmax is the maximum

cell length in the grid and Vmax is the maximum current velocity among all particles.

7.2 Particle-to-Particle Relationship

The dynamic step scheme adheres to the collision detection phase of particles. In-

crements and decrements depend on three collision states. These three configuration

states ”non-critical approach”, ”critical approach” and ”separation” of a local parti-

cle pair determines the global variation in step size when collisions occur. Collision

states are defined by the sign of the relative velocity direction of a particle pair. For

an ’non-critical approach’ state two particles are moving towards each other but are

sufficiently away to not trigger ’critical approach’ (Figure 7.2). A critical approach is

activated when during the following iteration, the virtual halo of the particles might

overlap. If two particles are within the critical approach state then ∆t is explicitly

restricted such that there is no interpenetration and undefined behaviour. Finally

the separation state is the flag that safely increments ∆t up to the ∆tmax step.

When there is no contact detection between a pair of particles then we define

no collision state. The step size increases over time by our constant factor ×1.1 but

constrained by the reluctant grid. All dynamically defined ∆t are smaller than a

max step size

∆tmax = hmin/(2.0 · inc · Vmax)

where inc is the increment factor 1.1 and hmin is the minimum cell length. The

global step size is kept constant at ∆tmax and is decreased only and only if at least
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Figure 7.2: Two particles A and B are on approach when their velocities point
towards each other and relative velocity is negative. When two halos overlap then
there within critical approach, otherwise approach is non-critical.

one particle pair trigger an ”approach” collision state.

Particles in critical and non-critical approaches. The non-critical ap-

proach proceeds the critical collision state and step increments are continued up un-

til a critical approach is triggered (Figure 7.2). During all non-critical approaches,

we preserve the global maximum collision velocity ∆tmax. The maximum collision

velocity together with cell size sets the global upper limit for step size which pre-

serves global robustness of pair-wise position updates. A critical approach triggers a

”particles are too close” condition which explicitly dictates the maximum step that

doesn’t trigger real interpenetration. Bounding spheres of particles are sufficient to

trigger collision states and implement the dynamic time stepping. Step computation

is performed during the halo sphere-to-sphere pre-check. This is an explicit filter

check before the expensive triangle-to-triangle collision detection.

We determine approach states a priori to contact detection by using the following

quantities:

i. Vector dAB is the line segment between the centres of mass of two particles A
and B.

ii. Distance ‖dAB‖ is the scalar distance between the two particles from the centres
of mass.

iii. The relative velocities vAB = (vB ·dAB)−(vA·dAB) define the approach velocities.
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Based on the vAB sign we determine whether the particles move towards an
approach or a separation trajectory.

For two particles A and B, the halo radius is rA, rB, the centre of mass is cA

and cB respectively. The halo radii rA and rB is defined as 1.1 · eA|B where eA|B

is the epsilon margin. The distance vector from the two centres of mass points is

dAB = cB−cA, while the scalar distance d is ‖dAB‖. The minimum distance between

two sphere particles is d− rA − rB. The velocities of two particles A and B are vA

and vB respectively. The difference between the two vectors is then projected to the

distance line dAB so that the relative velocity is defined as

vBA = (vA · dAB)− (vB · dAB).

The relative velocity vBA sign indicates the collision direction. When positive, vBA

indicates separation, particle pairs are ignored for the time stepping. If the direction

is negative then the particles are moving towards each either in non-critical or critical

approach states.

During a non-critical approach, it is crucial to trigger the critical condition to pause

step increments. In order to identify critical approach, we predict halo overlap at

a future step. We use the predicted relative velocities pvBA, predicted distances of

particle pairs pdBA and predicted step sizes pdt = ∆t+∆t · inc to safely extrapolate

particle movement along the velocities direction.

A critical approach is triggered when particle are virtually updated by pdt and

their halo’s overlap (Figure 7.2 right). In critical approach, the local step size is set

to

∆tAB = (‖dAB‖ − rrA − rrB − eA − eB)/2 · vBA

where rrA, rrB are the real geometry boundary radii. The global minimum of all

pair-wise ∆t is then used as the global time step size.

When pair-wise velocities point away from each other, vBA is positive and the pair

is regarded in a separation phase. Particles in separation are safely ignored.

The algorithm of dynamic time stepping is divided into critical approach and

the rest time stepping types (Algorithm 11). At the start of the simulation we

initialise ∆t with a small number. When two particles meet the precondition of

comparison (i.e. adjacent positions in the grid), we determine their approach state.

To capture a critical approach state (Algorithm 11), we predict particle movement

using the current constant step increment. The current position is extrapolated

by pdt (Algorithm 11). We derive the predicted relative velocity pvBA, predicted
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Algorithm 11 Multiscale Grid-Based DEM Dynamic Time Step Algorithm.

1: ∆t = initial step size
2: inc← 1.1
3: ∆tmin ← 1E − 4
4: for i← 0 . . . numberOfsteps do
5: if contact detection phase entered between particle A and B then
6: if vBA ≥ 0.0 - indicates separation then
7: Trigger Separation
8: end if
9: if −vBA ≥ 0vmax - indicates non-critical approach then
10: Set vmax to max( −vAB )
11: ∆tmax ← hmin/(2.0 · inc · Vmax)
12: end if
13: pdt← ∆t+∆t · pdt
14: Predict next particle position using predicted step size pdt.
15: pdmin ← (pdBA − rA − rB)
16: pdPerStep← pdmin/pdt
17: if −pvBA ≥ (pdPerStep) - trigger critical approach then
18: ∆tlocalMax ← (d− rrA − rrB − eA − eB)/2 · vBA

19: if ∆tlocalMax<0.0 then
20: ∆tlocalMax ← −1 ·∆tlocalMax;
21: end if
22: Trigger Critical Approach
23: end if
24: end if
25: Update current particle position by ∆t.
26: Enter Update ∆t.
27: end for

distance ‖pdBA‖, and predicted minimum distance pdmin = pdBA − rA − rB where

rA|B are the prescribed halo radii. If the relative velocity is greater or equal to

the predicted distance per predicted step size then the particle critical approach

is triggered. As soon as the critical approach state is triggered, our step size is

shortened to ∆tlocalMax the remaining distance is divided by the relative velocities.

If all relative velocities in the domain indicate separations then we increment the

global step by ∆t.

Our dynamic evaluation of ∆t is only set at the end of the simulation (Algorithm

12. First we check if ∆t has fallen below our constant minimum ∆t else we decre-

ment ∆t to the critical ∆tlocalMax we’ve logged during the simulation. Otherwise, if

the global state is non-critical approach or in separation, we increment ∆t by inc

constant factor. If ∆t exceeds ∆tmax then we reset it back to ∆tmax.
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Algorithm 12 Dt Variance & Bookkeeping Pseudocode.

1: ∆tmin ← 1E − 4
2: if Critical Approach then
3: if ∆t ≥ ∆tmin then
4: ∆t← ∆tlocalMax

5: end if
6: else
7: ∆t← ∆t+∆t · inc;
8: end if
9: if ∆t >∆tmax then
10: ∆t← ∆tmax

11: end if

The presented adaptive time step scheme increases the step size when there
are no collisions and decreases the step size when particles are approaching.
This reduces the total number of iterations required to simulate an interaction.

7.3 Particles that Reside on Different Grid Levels

We begin with an experiment for the subsequent observations. We take two particles

and start the behavioural study of the grid and step size. For this experiment the two

particles are placed at (0.2 0.2 0.2)T and (0.8 0.8 0.8)T over the unit cube domain.

The velocities are set to (0.1 0.1 0.1)T and (−0.1 − 0.1 − 0.1)T . Trajectories are

set towards collision. The two particles have different sizes, i.e. a diameter of 0.02

vs. a diameter of 0.2.

The experiment compares runtimes between the three grid types. For the regular

grid since two particles vary in size they reside on different levels. All particle-to-

particle comparisons result from virtual links. Once the two particles are close, a

large spike in comparisons is seen (Figure 7.3, top). There are more comparisons as

the bigger particle induces multiple virtual particles associations towards more than

one fine grid vertex, we thus end up with up to 2d = 8 comparisons. During particle

comparisons, we check to determine whether the two particles approach or move

away from each other. These comparisons are persistent throughout the duration

of the collision. We thus observe a small plateau of comparisons before and after

collision.

The adaptive grid yields a similar spike of particle comparisons which is preceded

by a fewer comparisons as the grid refines towards the collision area. The compar-

isons do not coincide with the actual collision around t ≈ 2.5, this is a result of

aggressive adaptivity and an implementation property which makes support/hang-
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Figure 7.3: Zoom into collision behaviour for two particles and different grid types.
We present number of collisions over simulated time (top). The time step sizes creeps
towards the maximum time step size and then goes close to zero when the two fast
particles collide (middle). Regular grids yield the same time step size pattern as the
adaptive mesh. The compute time on a single core is given for all three grid choices
(bottom).
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ing vertices always inherit all parent particle data [95]. The reluctant grid yields

a slightly higher comparison count from the start as it utilises a coarse grid and

triggers comparisons only to find out that it has to refine. These additional com-

parisons are cheap as they only indicate a sphere-to-sphere pre-check comparison

which indicate no overlap.

All setups start with a small time step size (Figure 7.3, middle). The regular grid

variant reaches the constraint imposed by the finest grid so there is no increment

of its step size. Adaptive and reluctant grids slightly increase the initial step size

during the first few steps. The reluctant grid starts from a way coarser mesh width

thus its time step size constraint it more relaxed than the adaptive variant. All

approaches reduce the time step size once the approach collision state is triggered,

the time step size is then relaxed again after collision.

In terms of computational runtime, we see that our adaptive time step scheme

pays off (Figure 7.3, bottom). All adaptive grid variants exhibit a faster runtime

than the regular grid. The reluctant grid variant in particular performs the best as

it employs larger time step sizes. Although the reluctant has an increased number of

comparisons it makes up in terms of time. When a collision is detected the reluctant

grid shifts the performance curve. However, the reluctant variant when compared

to the adaptive grid only makes a difference in performance if particles are spread

away from each other i.e. they are not grouped in clusters. While for sparse particle

configurations, we assume the performance improvement is significant.

The choice of grid dynamics plays an important role in DEM. The size of the
cell that particles are allowed to reside in is directly related the maximum
admissible time step size. We propose a reluctant grid that benefit from non-
aggressive adaptivity and allow us to set a larger time step sizes that reduce
the total simulation runtime.
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Manycore Concurrency

Introduction. Given the dominance of spatial decomposition schemes in the reali-

sation of MPI parallelisation (distributed memory) in DEM, it is well-understood in

literature [12, 29, 44, 45, 49, 71, 72, 75, 77, 99, 101]. Roadmaps [18] predict that the

gain of simulation performance in future supercomputers will be derived from the

increasing number of shared memory cores. However, current literature on shared

memory parallelisation in the context of DEM is rare. Shared memory is where

we make a contribution, though this impacts distributed memory parallelisation de-

signs. Papers found in HPC DEM particle-based simulations literature [72, 88, 99]

point out that distributed memory parallelisation is not the big challenge anymore,

instead methods are required to minimise or overlap the communication [9] ex-

changed between node ranks. Thus to aid this, our adaptive grid variants motivates

this purpose, we exclude as early as possible in the simulation all redundant particle

collision checks. In addition, our DEM-grid traversal data movement is minimised

through the single-touch algorithm where each particle is only read once per time

step. This implies that particle data has to be exchanged only once in a distributed

memory DEM scheme. We propose a shared memory strategy that could exist in

existing DEM distributed memory algorithmic models.

114



CHAPTER 8. MANYCORE CONCURRENCY

Algorithm 13 Parallel Multiscale Grid-Based DEM Implementation.

1: function traverseGrid(C)
2: Cold ← C
3: C ← ∅
4: while traversal continues do
5: if touchVertexFirstTime then ⊲ Grid-based Concurrency
6: for all particles p associated to vertex do
7: for all contact points c ∈ Cold associated to p do
8: Update ftrans(p) through c
9: Update frot(p) through c
10: end for
11: end for
12: for all particles p associated to vertex do
13: Update particle incl. its triangles
14: end for
15: Inherit pointer links to virtual particles from coarser levels
16: end if
17: if enterCell then ⊲ Grid-based Concurrency
18: for all 2d vertices adjacent to cell do
19: for all particles p associated to vertex do
20: if particle should be associated to a different vertex then
21: Reassign particle
22: end if
23: end for
24: end for
25: end if
26: if LeaveCell then ⊲ Grid-based Concurrency
27: for all 2d vertices adjacent to cell do ⊲ Particle-based Concurrency
28: for all real, virtual (pi, pj) particle pairs of vertex pairs i, j do
29: C ← C∪ findCollisions(pi, pj) ⊲ Triangle-based Conc.
30: end for
31: end for
32: end if
33: if touchVertexLastTime then ⊲ Grid-based Concurrency
34: for all real, virtual particles (pi, pj) do ⊲ Particle Concurrency
35: C ← C∪ findCollisions(pi, pj) ⊲ Triangle-based Concurrency
36: end for
37: end if
38: end while
39: end function
40: function main(T )
41: C ← ∅
42: t← 0
43: for t < T do
44: traverseGrid(C)
45: t← t+∆t
46: end for
47: end function 115
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The DEM algorithm mapped to a grid traversal presents the potential for a three-

fold cascade of shared memory parallelisation. At the finest level of concurrency we

exploit the triangle-based tessellation between each meshed particle pairs. Within

each grid-cell’s vertex, a particle-to-particle collision detection phase realises the

local all-to-all O(n2) sweep on an intra and inter-vertex basis. At the coarsest level,

sections of the grid are traversed and processed independently in parallel on a set

of pre-allocated threads. We finally combine all these layers into a unified parallel

task-based DEM scheme.

The presented algorithm realises three layers of multicore parallelisation:

i. Triangle-to-triangle concurrency.

ii. Particle-to-particle concurrency.

iii. Grid traversal concurrency.

We present a combination of manycore setups using the hybrid solver and a

variation of the grid-based DEM algorithm from Chapter 6. As shown in Algo-

rithm 13 each grid traversal event (enterCell, leaveCell, touchVertexFirstTime,

touchVertexLastTime) is run concurrently and forms our grid-based parallelisation

layer. Enclosed within these events we have the particle-based and the triangle-based

parallelisation layers. Each distinct layer of computation does not affect other con-

currency levels as they are completely independent. In this Chapter, we discuss each

individual parallelisation layer as well as we propose a intermixed scheme where all

layers combined into a task-based parallel algorithm.

We base our performance experiments on the simulation of particles flowing

through a hopper structure. We represent each rock granular particle with 10 ,

20 and 40 triangles. The geometries are created using a Delaunay triangulation [16]

based upon a random point cloud (see Appendix for particle construction). Mesh

density and thus computational grain density is controlled by the variation in cloud

points employed during the creation of the geometry. We scale the contact problem

in terms of number of non-spherical particles and number of triangles over number

of cores.

Chapter outline. This Chapter is organised based upon our proposed levels

of concurrency. We start off the discussion with the innermost triangle-based, the

particle-based parallelisation and the grid-based parallel traversal. Then we bench-

mark the performance of the proposed methods on the multicore system. At the

end of the Chapter, we finish the discussion with the impact of grain size to the

performance and the limitations of each method.
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8.1 Triangle Mesh-Based Parallelisation

At the the innermost loop when a pair of particles pi and pj approach each other and

are reasonably close we execute FindCollisions(). A O(T2
max) triangle comparison

is performed in Algorithm 13, lines 27, 33. The invoked call is executed at vertices

where there are particle associations throughout the spacetree traversal.

These triangle comparisons can be parallelised via a plain parallel for in

OpenMP [14]. Let |Ti| and |Tj| be the number of triangles of two particles pi and

pj. The collision detection between pi and pj has a concurrency level of |Ti| · |Tj|.
It is convenient to check the first triangle of particle pi against all triangles from pj

while we run concurrently the checks for the second triangle of pi. We refer to this

intra-triangle concurrency as triangle-based parallelism.

When two particles’ boundary spheres augmented by ǫ overlap, then the triangles

are closer than 2 · ǫ. This yields a list of contact points. Every contact point per

particle pair per traversal is inserted into a collision set which is protected by a

thread lock. For this standalone phase, the concurrency level is determined by the

number of triangles per particle pair and the number of contact points.
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Figure 8.1: Scaling of the various methods. Particles with 20 (left) or 40 (right)
triangles each.

In Figure 8.1 we compare our contact methods runtime over a two-socket Broad-

well chip. As expected the penalty-based method is leading as in the serial version.

The performance of all methods is acceptable on low triangle counts (Figure 8.1, left)

on at least the first six core of one socket. The performance gets better for higher

triangle counts (Figure 8.1, right) as higher levels of arithmetic intensity exist there.

The hybrid on triangles variant performs better than the hybrid on batches.
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Figure 8.2: Collision behaviour of two particles that are discretised with different
triangle counts. Left: we track the scalability of a non-vectorised code. Right:
scalability graph with vectorisation and triangle-based parallelism switched on.

For the vectorisation benchmark we run a two-particle setup with the hybrid con-

tact solver (Figure 8.2). We focus solely on the contact event where there are actual

triangle-based operations. There is minimal interference from the remaining DEM

algorithmic phases; contact detection takes the majority of the total scalar/vector

computation and memory bandwidth. We vary the mesh density over 10, 20, 40

triangles and see a runtime improvement through vectorisation (Figure 8.2) of up to

a factor of two, if a sufficient number of triangles exists per particle. Even though

we have validated that the compiler does vectorise all triangle-to-triangle compar-

isons and does align all geometric data structures properly, the fewer triangles the

lower the speedup. Larger triangle counts are required but in practice granulates

are composed with less than forty triangles. The higher the number of triangles

per particle in a geometry setup the better the arithmetic intensity (Flop’s/Bytes

processed) and eventual exploitation of the whole register width.

The contact detection code benefits from vectorisation (AVX) of modern mi-

croprocessors, but when combined with our grid data structures that minimise the

redundant computation and a collision pre-check which minimises actual mesh-to-

mesh contact detection, we also reduce the available floating point operations. To-

gether, these properties imply that a very limited shared memory up-scaling poten-

tial does exist on the triangle level. Scalability has to stem from other approaches.

Yet, once two particles are compared, more than one core should be used. Unless

we omit vectorisation, it does not make sense to exploit more than four cores solely

for contact detection comparisons. Beyond this, strong scaling is not efficient any

more. For the end-to-end simulation, four core is even too optimistic as only very

few particle pairs actually become subject to triangle-to-triangle comparisons due to

the grid discretisation. The triangle-to-triangle concurrency benefits from increased
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number of triangles per particle, but this improvement does not translate into the

whole simulation as the number of collision detection invocations are not necessarily

constant throughout a simulation run.

8.2 Particle-to-Particle Parallelisation

The second layer of concurrency, particle-based parallelisation, arises when multiple

particles are associated to a single vertex. A single vertex associated to a single

particle with no neighbouring vertices that hold particles does not yield a particle-

to-particle comparison (Figure 8.3). If a vertex holds more than two particles, the

collision check between these particles is parallelised. Neighbouring vertices that

hold at least one particle yield local particle comparisons. Adjacent vertices may

hold more than two particles in total as they include particles associations located

at coarser scale levels.

Figure 8.3: The initial particle arrangement of a hopper flow scenario. Each line
segment of each particle indicates the association between the particle itself and the
grid vertex. Grid vertices may be associated with one or more particles at a time.

Parallelisation at the particle level starts if a single vertex holds or if a pair

of neighbouring vertices hold more than one particle. Parallel contact detection

at a vertex is triggered when the vertex is touched throughout a grid sweep (see

Algorithm 13). When we enter a cell and compare different neighbouring vertices’

particles with each other, particle-to-particle comparisons are triggered in parallel,

too. The concurrency level is determined by the number of particles associated with

a vertex or adjacent vertices.

Concurrency at this level is affected by two factors: grid scheme and simula-

tion scenario. The simulation scenario (initial parameters, geometry arrangement,
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scales) sets the degree of particle clustering/disparity in the domain. Then geo-

metric data locality is determined by the employed grid scheme (no-grid, regular,

adaptive, reluctant grid). Geometric data of particles that are clustered yield higher

particle-to-particle concurrency at the cost of redundant computation. Particle-

based parallel computation and grid adaptivity is mutually opposed. The adaptive

grid variants minimise the number of particles that are held within a cell. So they

are not in favour of particle-to-particle parallel contact detection.

A different strategy is to combine particle and triangle parallelism in a parallel

loop nest. Both particle and triangle-based shared memory threads are launched

simultaneously when particle comparisons are triggered. In such variant the runtime

to solution is slightly slower than particle-based parallelism alone due to the thread

overhead proportional to arithmetic intensity in the granulate particle geometry

scenario (low triangle count). Nevertheless, it has an impact on brute-force contact

detection method as it scales smoother than particle-based only parallelism due to

the aforementioned overhead. Since particle comparison counts vary throughout

different simulation scenarios, we do not rely on this scheme.

8.3 Grid-Based Producer-Consumer Parallelisation

Poor performance at the particle level calls for a coarser level parallelisation model

at the grid level. As the grid owns the particles through particle association pointers

and since the traversal triggers particle comparisons, we choose to parallelise the grid

traversal itself with (grid-based parallelism). The actual particle position updates

(Algorithm 13) are performed in parallel during the touchVertexFirstTime event.

Vertices are visited concurrently so are the updates of velocities and configurations

of the corresponding particles. Concurrent contact detection routines are invoked

in ttouchVertexLastTime and enterCell lines (Algorithm 13).

The particle to grid association maintenance exhibits a lower concurrency level

due to the on-the-fly particle-to-vertex re-assignments which are driven by position

updates. A particle is allowed to move at most within the list of a cell-connected

vertices. We realise these moves while the algorithm traverses through the grid in

parallel. Particle reassignments modify records at associated vertices. We may not

run the particle-grid maintenance on two vertex-connected cells concurrently due to

thread safety. Instead, we run through the cells per tree level in a red-black Gauß-

Seidel fashion. Multiscale traversal thread safety is ensured with the colouring of

every second cell to demarcate multilevel cell inter-dependencies. The colouring

along every coordinate axis ensures that particle re-assignments do not induce read-
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write race conditions at our vertices. Along with particle position updates, collision

checks per vertices and per vertices pairs (Algorithm 13) are executed in parallel,

the collision points are safeguarded in a shared memory container.

Similarly, the evaluation of the adaptivity criteria requires additional synchroni-

sation and colouring. Grid coarsening phases rely on data movement restrictions to

ensure the consistency of the grid morphology over time. No two children vertices

properties (associated particles, refinement control parameters) are lifted into their

parent concurrently on cell coarsening as this triggers undefined behaviour. These

events are safeguarded with atomic lock operators. Nevertheless, these meta data

operations are negligible in terms of computational cost. During grid morphology

changes, we continue to traverse the grid in serial mode up until the grid geome-

try becomes stationary. Although we run in parallel the lift and drops of particles

through the grid levels, the updates of virtual particles links, the initialisation of

data structures, the allocation of memory, many of these operations contain synchro-

nisation constraints through operating system calls. Thus it is convenient to wait

until part of the grid geometry becomes stationary and skip the parallel treatment

of the affected grid regions by one grid sweep. This results in a pipelined parallel

DEM-grid traversal that is thread-safe.

The parallel DEM-grid promises a coarser level of parallelism based upon the

grid discretisation but this is often unnecessary when the majority of grid vertices

are unoccupied due to refinement or particle clustering. A better solution is to

utilise multiple layers of parallelism, this promises better computational granularity

as computational work/geometry is often not equality distributed in the domain.

For this we rely on a task-based realisation which follows a producer and con-

sumer model. Through Intel’s Threading Building Blocks (TBBs) [68, 73] unlike

traditional OpenMP-based [14] algorithms we do not assign stationary compute re-

sources to particular algorithmic steps. Instead the parallelisation model produces

and consumes jobs as tasks. We base our parallel formulation on the outermost grid

traversal routines to launch tasks using the peano-framework [91]. In our tasked-

based models, all our proposed shared memory parallelisation layers are combined.

Although the three levels are conceptionally different to each other, the computa-

tional efficiency of one level might depend on the others. With the layers combined,

the shared memory output (i.e. the storage of contact points) has to be protected

by global semaphores. The shared memory lock frequency depends on the physical

geometry configuration and dynamics at hand. The identification of unique con-

tact points occurs infrequently when compared to the total triangle count memory

accesses. As such, our total synchronisation penalty is negligible during a traversal.
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The parallel traversal runs through vertex/cell to evaluate all local refinement

criteria and identifies collision candidates. At this point the algorithm does not

trigger an actual particle-to-particle comparison but instead a task-producer model

wraps around each pair-wise collision candidate into tasks. The tasks are then

launched, the grid traversal continues immediately. Such an approach relies on task

stealing [73] to keep all cores that are not used by the grid traversal busy. A schedul-

ing subsystem consumes the actual particle-to-particle comparison tasks, executes

them, and eventually stores the output contact points. Cores on the machine act as

task consumers. At the end of a grid traversal we employ one global synchronisation

point, the traversing core waits until all of the launched tasks have completed.

The contact detection tasks that are produced during the parallel grid traversal

are marked based on execution priority. The traversal itself is set to the highest

priority but grid traversal is often computationally empty due to the underlying

geometry. Our algorithm has the capacity to intermix the traversal with contact de-

tection tasks to keep the machine busy. The contact detection tasks are launched as

lower priority background tasks and are invoked to be executed during the traversal

at no particular order. A high number of background tasks per core would indi-

cate task over-subscription and the stacking of tasks at the end of the traversal,

whereas an under-subscription would indicate lower task consumption. The number

of background tasks launched by the producer at a time can be specified by the user,

however we stick to backgrounds tasks that are equal to the number of hardware

cores which is the ideal setting for many applications [10].

A producer-consumer task-based parallelisation model allows us to utilise all
levels of parallelism. We treat computational work as independent task units
that are allowed to be intermixed and consumed by any thread unit. This
scheme allows the algorithm to execute both the efficient DEM collision phases
but also the traversal itself in parallel following a task stealing paradigm.

8.4 Impact of Grain Size on Resources, Limita-

tions and Side Effects

The parallelisation of the whole DEM pipeline is highly dependent on the geome-

try and simulation dynamics over time. Because of the dependency in the physical

geometry the impact on resource utilisation is significant. Grain size described as

an abstract unit of computation plays a vital role in every parallelisation layer in

algorithmic design. In the classic realisation, the grain size of triangle-based com-
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parisons in pair-wise particle checks define the arithmetic intensity (FLOPS/byte).

Whereas on the task-based implementation task grains are consumed intermixed on

demand by the system. High arithmetic intensity per thread maximises the utilisa-

tion of compute and communication channels and weak scaling over several sockets

and cores is straightforward. The remainder of the Section discusses the impact of

grain sizes and the limiting factors observed at runtime.

Classical particle-based parallelisation suffers from the idea of multiscale adaptive

meshes. The vision behind the spacetree construction is to obtain grid geometries

that morph around the hosted particles with the objective to spatially isolate as

many particles as possible. As a result, the number of particles per vertex and

the number of vertex neighbours that hold particles is limited. Furthermore, it is

convenient per cell to build up particle comparison lists prior to triggering any actual

comparison (sphere pre-check). Therefore, the impact of particle-based parallelism is

limited in dispersed dynamics. On the contrary, packed configurations with limited

grid adaptivity enforced show increased effectiveness of parallel computation. In

the dense scenario the total number of comparisons divided by the number of cores

define our grain size.

Triangle-based parallelism alone is promising for detailed particle meshes where

the number of comparisons is high. However it suffers when the high comparison

workload is raised infrequently when a grid is in place. A grid reduces the frequency

of triangle-based phases as they depend on the total number of particle comparisons.

The reduction in the total triangle comparisons minimises the total speedup gain

from vectorised contact detection phases. An excellent vectorisation efficiency [51]

relies upon the decent triangle count. Furthermore, if a particle decomposition

scheme is applied too aggressively then this also affects the concurrency level, as

vectors become smaller. In practice, the pay-off between parallelisation and vectori-

sation is balanced empirically by the granulate mesh density. The parallelisation

strategy that is most promising is also of limited availability in reduced particle

comparison configurations.

With respect to the granularity, batches of triangle pairs are statically distributed

over the threads. Heterogeneity in mesh density over a pair of particles does not

affect triangle-based shared memory load balance. Yet, thread imbalance occurs in

the particle-based setup as triangle heterogeneity propagates to the particle-based

parallelisation granularity. A dynamic load balancing for classic shared memory is

then applicable. Such case is not further studied as it is setup dependant and out

of our scope.

Naive mesh-based and particle-based parallel codes alone do not necessarily yield
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uniform speedup over the total duration of the simulation. In a regular grid setup

while space is discretised into equal parts, the corresponding computation within the

grid traversal is not. Adaptive grids outperform the regular counterpart in terms

of time-to-solution and weak scaling over the available cores is worse. Moreover in

Adaptive Mesh Refinement (AMR), despite high concurrency phases that are under

colouring constraints, the traversals are interrupted by tiny close-to-serial fractions

where grid refinement evaluations kick in at the end (Figure 8.7). The grain size of

computational workload equals a work task, we define the grain size statically over

the available threads. A machine learning scheme is available by the Peano grid

framework [91] that dynamically changes the granularity during runtime. This is

switched off in our experiments due to the scheduling overhead and CPU spinning

that can occur during performance measurements. A dynamic grain size balance is

useful when executed in repeated test runs (machine training approach) which then

yield empirical grain size information that is then applied on the same engineering

scenario.

In our task-based scheme where all layers are enabled computationally heavy

triangle-to-triangle steps take turns with the computationally cheap grid traversal

steps. The grid traversal steps tend to be solely bandwidth-bound and do not

yield lots of numerical operations per second. For the sustainable performance

of the model, we balance the two phases by launching contact detection phases

as standalone background tasks. The grain size of these background tasks vary

according to the geometry vector lengths. The number of background tasks executed

on a given processor is fixed to the allocated number of threads which yield the best

performance. The consumption of background tasks is intermixed with high priority

traversal task that coexist in the task queue. The grain size of contact detection

tasks is subject to automatic static division over the number of available cores.

Therefore it is critical to have uniform contact grain distribution over cores, this

is ensured in uniform geometries (i.e. no extreme mesh densities in the system).

For extremely heterogeneous geometry problems where few individual tasks take

magnitudes time longer to execute, the execution is performed in the waiting phase

at the end of the traversal. The proposed parallelisation scheme results in a DEM

simulation where most cores are busy with actual triangle-to-triangle checks while

the grid geometry is continuously traversed through the machine.
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8.5 Many-Particle Systems

We conclude our shared memory performance experiment study with the simulation

of the hopper flow scenario (Figure 8.4). We keep the hopper setup as simple as

possible and focus on the DEM behaviour, the grid and particle geometry. We

make use of 1, 000 to 10, 000 particles that are arranged in a lattice layout above a

hopper structure. The particles are dropped with the force of gravity into the hopper

geometry, they squeeze through it and eventually fall on top of a floor structure on

the bottom.

Figure 8.4: Depiction of the one thousand particles hopper flow experiment.

All single node experiments are ran on an Intel Xeon E5-2650 with two times 8

cores running at 2.0 GHz. On this system, we use Likwid [87] to read performance

counters. All manycore experiments are done on an 64 core Intel Xeon Phi 5110P

KNL (Knights Landing) with 8 GByte of memory running at 1053 GHz in native

mode. Parallel experiments are ran on Durham University Hamilton supercomputer

where per node there are 2 x Intel Xeon E5-2650 v2 (Ivy Bridge) 8 cores, 2.6 GHz

processors, 64 GB DDR3 memory, 1 x TrueScale 4 x QDR single-port InfiniBand

interconnect. We use Intel(R) MPI Library for Linux* OS, 64-bit applications,

Version 5.0 Update 3 Build 20150128. For performance statements, we rely on the

Intel 16 compiler.
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Figure 8.5: Scalability graph with different thread counts, a plain realisation of the
grid-based parallelism. We compare the regular (top) grid and adaptive grid types
(bottom).
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Figure 8.6: Scalability graph of an adaptive grid with high particle count. The higher
particle count does not reflect an improvement in shared memory performance in
the plain parallelisation scheme.

We start off the experiments with the classic grid-based parallelisation where

additional concurrency layers are disabled. This yields mixed results [51]. Experi-

ments with regular grids (Figure 8.5, top) give us timings that show the correlation

between triangle count and number of utilised threads; we see good scaling on all

triangle counts. However, grid adaptivity exhibits almost no scaling (Figure 8.5,

bottom), this is due to the reduction of redundancy. An increase in the number

of particles in the experiment in this grid variant does not improve the runtime

scalability (Figure 8.6). The reluctant grid does not yield any different results from

the adaptive grid, this behaviour is to be expected given the dense packing of all

particles in the hopper setup. This regular resource allocation forms our baseline

for the proposed task-based parallelisation variant.

Figure 8.7: Screenshot of Intel’s VTune validating that the task producer-consumer
pattern pays off after an initialisation phase of 9s where the grid is constructed and
the particle shapes are built up.
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By focusing on the combined scheme where all parallelisation levels are active,

a producer-consumer pattern changes the scalability characteristics (Figure 8.7). A

tasked-based scheme deploys the actual collision detection to a series of ”worker”

tasks which are stolen by idle threads of the processor, while a ”main” thread contin-

ues the grid traversal. At the end of the traversal, the main thread joins the worker

threads to complete all contact comparisons. Figure 8.7 shows measurements from

a four thread run; the green intervals indicate the sharp time discrepancy in tasks

ending towards the end of the traversal. The traversal ends and a brief serial phase

follows. Then we remove duplicate contact points, derive the forces from the colli-

sions, and kick off the subsequent mesh traversal. All worker threads continue to be

idle until new collision task is issued.
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Figure 8.8: Experiments from Figure 8.5 rerun with a task-based consumer-producer
realisation of the grid-based parallelism. The both grid types scale better over the
assigned number of threads. The adaptive variant shows a significant improvement.

We observe that a task-based realisation of the grid parallelism makes our algo-

rithm scale reasonably well (Figure 8.8). The task-based formalism pays off both

in the regular and adaptive grid variants. For the regular grid (Figure 8.8, left), we

observe better speedup at runs that utilise more than twelve threads. The runs be-

yond twelve threads are executed on the second CPU socket, arithmetic intensity per

thread is increased with task stealing. The full potential of the producer-consumer

scheme becomes apparent when adaptivity is switched on. Although with grid adap-

tivity the number of particle collisions is reduced, work stealing fills the allocated

threads with enough computation to scale over the first CPU socket.
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Figure 8.9: Experiments from Figure 8.8 with 10,000 particles on the Broadwell
(left) and a KNL - Knights Landing (right).

To stress the task formalism, these experiments process the actual triangle-to-

triangle comparisons concurrently [51]. The actual comparisons thus pass through

quickly as they are small due to triangle count. Although the actual particle-to-

particle comparisons are few in an adaptive grids, weak scaling behaviour remains

observable (see Figure 8.9, left). An increase in the number of particles does improve

the performance of the adaptive grid. The heavier the workload per particle pair

(the higher the triangle count) the better the scaling. We finally run the same

experiment on the Intel KNL and we see similar runtimes but with better scaling

over 24 threads due to the lower clock frequency. We conclude that the combined

three-layer task formalism brings together the advantages of adaptive grids with

multi-threading.

129



CHAPTER 9

Conclusion

In this thesis we’ve revisited the major steps of a classic DEM algorithm implemen-

tations from a HPC point of view and highlighted the importance of mesh-based

geometries in a simulation. We contributed to a new set of contact detection meth-

ods suitable for SIMD hardware. Furthermore we introduced three grid types that

go in par with the dynamics of a DEM simulation. We achieved to map tradi-

tional DEM algorithmic phases into a structured multiscale grid traversal. Lastly,

we demonstrated several shared memory strategies.

Chapter outlook. In this Chapter we conclude the discussion with the sum-

mary of what was achieved in this project. We split the areas of contribution by topic

and with respect to the simulation code. We highlight the difficulties encountered

over the duration of the research. Finally, we conclude with some open questions

and the future outlook.

9.1 Summary

Contact Methods. We described in-depth the motivation behind our focus on the

contact detection phase of the simulation. DEM algorithms found in literature report

that the majority of the runtime is spent on contact detection phases both in sphere

and non-sphere based geometries. It is clear that our challenge is to both increase

the physical approximation of real geometry and to minimise the total duration of

collision detection phases. The increased levels of geometric representation accuracy

promises to allow for more complex and realistic phenomena.
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We propose an iterative contact detection method which is designed to exploit

SIMD vector lanes found in modern computing hardware. The counter-part of the

iterative method is the numerically robust brute force approach which looks up

naively all possible distances of each geometric primitive of a triangle pair (line

segments, vertices, plane). The drawback of the naive method is the cost through

branching. We propose a hybrid version that combines the best of the two worlds.

The hybrid algorithm first solves the problem with the iterative solver but then falls

back to the brute force if the solution is not within the set ǫ error range.

Multiscale Grid. The complexity of collision detection between a set of particle

is O(n2) as each particle needs to be compared with all other particles. A grid is

employed to reduce the overall collision detection complexity. We achieve this by

mapping all DEM algorithmic phases (contact detection, particle position update,

force derivation, particle creation) into a grid traversal. The grid enforces a single

touch policy which allows us to reduce the redundant collision checks. Furthermore,

a cascade of grids allow us to accommodate different scales of particles within the

hierarchical levels of the Cartesian grid. Coarse and fine levels of the grid tree

communicate via parent-child relationships of the grid vertices.

Three types of grids are proposed: the regular, adaptive, and reluctant adaptive

variants. The naive regular grid uniformly refines across the whole domain up to the

length of the smallest particle diameter. An adaptive variant reduces the refinement

requirement across the domain by refining only the special regions of interests (where

there are particles there are contacts). Moreover the refinement and coarsening

policy is time dependent on the particle positions. We propose an improved version

of adaptivity, where we attempt to reduce any grid overhead by minimisation of the

number of grid changes per step. The reluctant adaptive scheme wraps around the

adaptive scheme and triggers refinement only when particles approach each other at

adjacent vertices. Similarly we trigger cell coarsening when two particles separate.

We can make certain on-the-fly assumptions about possible collisions and maxi-

mum step sizes based on their hierarchical position in the data structure. We make

use of the reluctant schemes’ refinement and coarsen policy to define local particle

pair-wises states: approach and separation. During the approach state the global

step size is reduced towards a contact critical length. When a particle pair separates

then both the grid and the time step size coarsens up to the maximum admissible.

The underlying contact dynamics of the simulation define the behaviour of both

the grid and step size during runtime. This scheme minimises the overall number

of particle comparisons as well as the number of steps, this results to a improved

time-to-solution.
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Parallel DEM. Equipped with a DEM routine mapped to a grid traversal,

we propose a novel three layer parallelisation scheme. The triangle, particle and

grid-based layers exploit several levels of granularity. At the innermost level a

triangle-based parallelisation exploits the tessellation density of the individual par-

ticle meshes. This shows excellent scaling behaviour when lots of triangles are com-

pared. At the vertex level, local particle pair comparisons are executed in parallel.

Since the grid is employed to minimise particle-to-particle comparisons this level of

parallelisation is counter-intuitive but it also act as a safeguard in clustered parti-

cle scenarios where refinement is skipped. Finally, at the coarsest level, a parallel

task producer/consumer scheme traverses the whole multiscale grid. The intermix

of all levels of parallelisation offers reasonable scaling on manycore machines and it

is suitable for a contact detection library.

9.2 Outlook

Throughout this project a few ideas for future research did arise. Future work will

expand in three areas: DEM geometry physical representation, the generalisation of

algorithmic ingredients and many-node HPC.

Figure 9.1: Complex geometries imported from CAD software would allow for more
realistic DEM simulations.

The current code supports spheres and triangle elements. The addition of fur-

ther geometric elements and the potential intermix of geometries would lead to new

contact models. Interesting interactions would include shapes of ellipsoids, clusters

of spheres/ellipsoids and Reuleaux triangles. Additional complex physical phenom-

ena could be simulated (e.g. lubrication models, advanced frictional forces) that are
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currently not available. These would allow us to expand the use of the software in

a variety of applications.

With respect to algorithmic features, we plan to separate the DEM core code

from the grid traversal. The underlying spacetree meta data is based upon tree-

partitioning as we rely on the AMR framework Peano [92]. The detachment from

the Peano grid framework makes the DEM code grid framework independent and

modular. The source code should be directly applicable for any tree-based data

structure without any dependencies (see Appendix). The whole DEM algorithm

should be designed as a single callable class. At the highest level of abstraction the

DEM workflow should be categorised into: geometry import (Figure 9.1) routines,

the world creation, simulation and post-processing.

The parallelisation strategies in our manuscript are studied by means of a many-

core shared memory. However, the grid-based parallelisation paradigm is also appli-

cable to distributed memory environments. The grid-based parallelism describes a

classic space domain decomposition. We could process cells in parallel by assigning

each tree region to a CPU. The grid partitioning yields a particle distribution and

we can ensure that all contact points are found per each domain chunk by augmen-

tation of the boundaries with one ghost cell layer. In such a scheme, computation of

particles within the ghost cells is replicated but global elimination of replication is

straight-forward. With such redundancy along sub-domain boundaries, it mandates

a balanced distributed memory rank communication and computation. A discussion

of the distributed particle administration which includes parallelised multiscale lifts

and drops can be found in [95]. Computation with lower numerical precision in

distributed memory environment would also be interesting to investigate; notably

following the scheme found in [22].

Further Application Areas. A generalised DEM library is potentially useful

for non-DEM codes too. for handling the preprocessing of geometries, to setup

particle positions, particle orientation and initial parameters of the simulation in

addition to contact detection routines. Moreover, a generalised code within the

context of structured grids is a useful tool for distance map definition between

the grid vertices and geometries (Figure 9.2). Wherever the distance map defines

values within the superimposed grid greater than zero then its cells represent the

voxelisation of the real geometry.

Voxelisation is a interesting research area for both DEM and Computational

Fluid Dynamics (CFD) studies. Voxels of the real geometry superimpose a ”shadow”

onto the underlying spacetree. This results in the pixelisation of a given real geome-

try (Figure 9.2, right). According to [101] there are several studies in literature where
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Figure 9.2: A complex geometry is used as a reference to create voxels.

pixelisation techniques realised by a contact detection method. It would interesting

to investigate contact detection as an add-on pre-check routine for non-spherical

meshed particles.

For CFD applications distance maps between mesh nodes and the triangulated

rigid body geometry would be useful. Fluid-structure interactions would benefit

from such interface data at the boundary. The integration of the DEM into CFD

codes comes out of the box, the DEM dynamics are completely separate by design

and they could be extended to accept additional inputs from the CFD code.

Contact detection between particles with dense triangulated geometries does

not make sense due to the increased triangle-to-triangle check redundancy. We

propose to reduce the redundancy by discretising the bodies into search areas that

are built upon hierarchical cubic cuts of an octree. Contact detection thus can be

augmented with group of octrees before the actual mesh-to-mesh contact detection.

This strategy is an improvement over a sphere-based pre-check based on cubes. A

preliminary example of the octree-based method is shown in Figure 9.3. The octree is

applied to every geometry separately. Both regular or adaptive cuts can be applied,

the adaptive variant refines along the edges/curves of mesh. At contact detection the

triangle group closest to a potential contact is extracted with a pre-check routine,

next the actual triangle-to-triangle distance computation is performed. The octree

acts as a on-the-fly adaptive bounding box pre-check phase.
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Figure 9.3: Two complex geometries are used to superimpose a octree bounding box
prior to the contact detection and voxelisation. The colours at the boundary of the
objects indicate the distance maps between the grid nodes and the body geometry.
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A.1 Software

All underlying software is free and open source C++ code, Delta ∆ is available

from [50] and offers all the functionality mentioned in this project. All spacetree

and adaptive mesh refinement routines (as mentioned in Chapter 6) used in the

present work rely on the framework Peano [90, 92, 93]. All geometric operations as

well as DEM-specific compute kernels however are independent of Peano and can

be used as standalone function in any other spacetree or simulation software.

We offer Delta ∆ with single (float) and double (double). The accuracy is

controlled via a compile flag -DiREAL=. Subject to studies conducted here we ex-

clusively set precision to double. Studies on reduced accuracy computations are

beyond the scope of the present work.

A.1.1 Make & Execute Delta

There are two source code folders delta and DEM. Delta holds the delta library code

while DEM holds the glue code is the interface between DEM and Peano instructions

calls to delta. Peano framework can be downloaded separately and be linked with

”ln -s ../../directory/peano/src/peano peano”. In addition to Peano the DEM code

also uses a c++ toolkit provided by Peano called tarch. The tarch directory can be

linked by doing ”ln -s ../../directory/peano/src/tarch tarch”.

Quick Make Command

cd g i t p a t hd i r e c t o r y / de l ta peano /

ln −s . . / . . / d i r e c t o r y /peano/ s r c /peano peano

ln −s . . / . . / d i r e c t o r y /peano/ s r c / tarch tarch

make dim3−i c c−r e l e a s e−vec

The make command follows the following format: make [dimensions]-[compiler]-

[release/debugl-[parallelism]. The dimensions component takes dim3 or dim2 for

two and three dimensions, currently only three dimensions is supported. The com-

piler components takes icc or gcc. The release/debug component switches between

optimisations for optimal performance and debug mode. The parallelism compo-

nent takes vec, novec, tbb, mpi, omp, omp-triangle, omp-particle, tbb-omp-triangle,

tbb-omp-particle. The Makefile contains all commands for all make combinations.

The execution command format is as follows:

./[dem-execname] [maxGridH] [scenario] [iterations] [gridType] [step size] [plot fre-

quency] [simulated time] [gravity] [scheme] [mesh density]

i. The [dem-execname] component is the executable file that is compiled with the
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make command.

ii. The [maxGridH] component specifies the maximum cell size.

iii. The [scenario] component specifies the predefined/build-in collision scenario.

iv. The [iterations] component specifies the number of time iterations that will take
place in the simulation.

v. The [gridType] component specifies the type of grid to be used (no-grid, regular-
grid, adaptive-grid, reluctant-grid).

vi. The [step size] component specifies the size of the time step.

vii. The [plot frequency] component specifies the frequency of plotting (every-iteration,
every-batch (50 iterations), never).

viii. The [simulated time] component specifies the maximum simulated time.

ix. The [gravity] component specifies a binary switch (true/false) for gravity.

x. The [scheme] component specifies the collision model (bf (brute force), penalty,
sphere, hybrid-with-triangles, hybrid-with-batches).

xi. The [mesh density] component specifies the number of points that are used to
generate non-spherical triangulated granulates. This option is only used when
non-sphere schemes are executed.

For example, running the executable produced by make dim3-icc-release-vec would

be:

. /dem−3d−r e l e a s e−vec 0 .1 hopperUniform 1500 no−g r id 0 .0001

never 1 true sphere 10

If there is an error within the execution command then a pop up appears with the

user manual with all scenarios, grid types, plot frequencies that are available.

A nested grid and particle hybrid parallelism setup can be exploited (12CELL THREADS* PAR THREADS

using the following openMP [14] affinity commands:

se tenv OMPNESTED true : n e s t i ng enabled

setenv OMPNUMTHREADS x : thread counter

setenv OMP PROC BIND c l o s e : a f f i n i t y binding
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A.1.2 Source Code Layout

The source code that is found in the ”delta” folder. All functions are documented

in the header files of the source code. The source code is structured as follows

within five main namespaces. Detailed information can be found in www.peano-

framework.org/delta/ and the source code.

• Contact (Contact Detection Routines and Collision Handlers)

• Core (Core Simulation Handlers, Trackers, Metrics, I/O)

• Dynamics (Physics Operators For Orientation Matrix)

• Geometry (Geometry Operators and Preprocess Body Manipulators)

• World (World Entities Layout, Scenario Creators)

Contact. In this namespace we define all functionality relevant to contact

detection between two meshes. We define contact points as a structure to con-

veniently summarise information per contact point. An additional sub-namespace

contact::detection defines all contact detection methods for meshes as well as spheres.

Core. In this namespace we define all the IO functionality of the code. We have

read/write namespaces to import and export the geometry. In order to support

multiple data formats, Assimp library is used. At its basic functionality the code

supports a simplified VTK [78] import and export routine. Moreover the core holds

a data structure that in the DEM context can hold all the data in one single SoA

data structure. Statistics and time measurements can be implemented here.

Dynamics. In Dynamics namespace we define the functionality that is relevant

to physics computations (inertia, mass, centre of mass, volume, energy) and energy.

Time integration routines are also included here to update angular velocities and

orientation matrices. This namespace is relevant to DEM implementations.

Geometry. In Geometry namespace we define all functionality that is relevant

to geometry. Here we define the triangle and mesh class as well as objects. A mesh

is composed of triangles and an object holds a mesh. Any geometry can be de-

scribed within a mesh object, that is position, bounding boxes. Routines of meshes

implement common procedures that is common to operate on meshes during the

initiation phase of the simulation (moveTo(), scale(), getBoundingBox(), etc.). The

object construct builds an object that holds in addition to mesh object physical prop-

erties (inertia, mass, velocities, etc.). Lastly the namespace holds sub-namespace

geometry::operators that hold routines that operate on an unstructured mesh, these
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are required to setup the scene of the initial geometry. The geometry::hardcoded

holds predefined geometries (hopper, blender, granulates, cube).

World. The world namespace defines the ”world. That is all particles that

are involved in the simulation. In this namespace we include routines to create

assembles of particles. Layout sub-namespace routines define function that align a

set dimensional array of particles at a position. The layout routine can be used to

stack a group of 10x10x10 particles above a hopper structure. The configuration sub-

namespace is used to preconfigure geometry into place and scenario sub-namespace

define hardcoded simulation scenarios using the imported or pre-defined geometries.

General remarks.There are a few ways to use the library. Individual functions

can be called irrespectively of the DEM workflow as required by the user application.

Alternatively, a user can follow the workflow of DEM without looking into the

hierarchy of the DEM source code. Lastly, different phases of the DEM workflow

can be selected or opt out on demand with pragmas and comments either manually

or using the flags provided.

All DEM phases are derived from the basic namespaces that the source code is

based upon. Therefore each namespace (except the core) represents the algorithmic

phases. More specifically there are only four phases out of which three are repeated

per time step.

The DEM algorithm starts off by the creation of the geometric domain. In

this phase, the user can choose to either import a geometry or create it manually

by hard-coding each triangle. Then to run the simulation, it is required to call a

contact detection routine in order to define contact points. The contact points are

eventually used to derive a force and to update the position of the geometry utilised

per time step.

• World Creation (The geometry is created only once.)

• Contact Detection (Performed if collisions are enabled.)

• Force Derivation (Forces are derived from contacts.)

• Position Update (Particles are translated at every time step.)

World Creation. The library under world::scenarios namespace holds prede-

fined scenarios that can be called and run. For example, the ”two particle collision”

scenario is invoked by passing the epsilon parameter and mesh density. The func-

tion call returns a list of objects in which case the ”two particle collision” scenario

returns two objects. The list of objects are then passed to the simulation.

Contact Detection. All contact detection methods are implemented in atomic

functions that are selected according to the contact model used. Contact detection is
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performed between two particles and two primitive geometric elements. All collisions

are stored locally in a pair-wise map.

Forces. The contact points collision map is then used to define forces at the

contact point. These forces are then transferred to the bodies as velocities.

Position Update. The position of the particles is changed by delta x using the

velocities that are derived from the forces applied. The position update is performed

at every step of the simulation.

A.2 Randomised Granulate Particle Generation

For our particle generation, we rely on the convex hull algorithm [4]. We place

50 points random on the unit sphere They act as input to the computation of a

convex hull which yields around 60 triangles typically. Each vertex of the resulting

mesh then is scaled with a random scalar from [0.75, 1]. Thus, we obtain distorted

particles that do not resemble a sphere and have sharp features. The resulting mesh

is finally suitably dilated and scaled.

Figure A.1: Coarse and fine spherical particle triangulations using the convex Hull
and Delauney algorithms.

The convex particle can then be used in simulation scenarios to resemble a rock

granulate. Any large variation in number of points on the unit sphere controls the

surface smoothness. The more point are used the more triangles are created to

triangulate all points as we do not run a geometry simplification algorithm.
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A.3 Application Scenarios

Chapter Outline. In this section we discuss certain simulation scenarios that

proved crucial for the development of the DEM code. All simulation scenarios are

automatically instantiated during the preprocessing phases of the simulation. Since

we construct the object environment within a grid from the start it is convenient to

exploit the hierarchical traversal to assign particles to cells during the grid creation.

As such, at world creation we distinguish scenarios in two categories: particles only

(granulates) and structure-based (e.g. hopper, multi-body structures).

Each simulation scenario is constructed top-down (coarsest level) following the

hierarchical traversal. Object-to-vertex associations are automatically assigned by

our meta data algorithm as soon as they are instantiated in memory. We distinguish

particles based on scale, so coarse particles are created first. When fine particle

are created at the coarse level then as the traversal continues the particles fall

automatically into place. We instead refrain placing all particles at the coarsest

cell to avoid memory movement overhead. An efficient world creation requires as to

distinguish fine particles a priori and instantiate them last within the traversal. At

the end of the initial traversal all particles are placed in the simulation domain.

As soon as particles are settled at the corresponding levels, we run a second

preprocessing phase to prepare the grid. This is mandatory as initial floating point

offsets of particle positions may be at the boundary of vertex-to-particle cut-off range

(centre of the cell) where any movement towards any direction triggers a vertex

association update. The first initial particle movement in a perfectly refined grid

triggers large movement in memory as vertex-to-particles associations are updated.

To avoid large memory shifts during the actual simulation, we perturbate the affected

particle positions towards one direction (e.g. gravity) and update vertex associations

in several sweeps. We ensure that positions are not too further away from the original

values at machine precision. When adaptivity is enabled, refinement sweeps are also

triggered at the same time to stabilise the grid morphology before the first step.

The preprocessing phase helps us shift data preparation time before the first time

step. We then finally run the DEM simulation.
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A.3.1 Particle Studies

The Single particle. To test the grid and the physics algorithms we start off

with the single particle setup. A single sphere particle is our baseline test to debug

position update routines, multiscale vertex association reassignments and material

parameters. Each granulate particle is created by an algorithm that places a random

number of points within the unit sphere. The convex hull algorithm [4] creates the

mesh that is shrinked to fit into our prescribed diameter size.

Figure A.2: The cube particle is falling vertically on to a floor. Red points indicate
the shortest distance between two triangles while the middle point indicates the
middle contact point.

We test single particle interaction against a floor structure (a triangulated box)

where gravity is added to the system (see Figure A.2). The floor unlike granular

particles is treated as a rigid obstacle object, it only exerts interaction forces but

does not update its position. For the floor-based interaction, both spheres and

meshed granulates are tested for physical and algorithmic behaviour at the single

contact (damping, force, margin parameters). Finally, the same single particle drop

setup is employed for more complex phenomena validations like sliding, rolling and

friction.
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Two particle crash. The next group of tests is the study of interaction between

the two granular particle setup. We place the two granulates at a close distance to

each other and apply opposite linear velocities. As in all cases, two particles are

assumed to collide as soon as they get closer than ǫ. This simple collision setup

provides the validation data for all interaction variants (single/multiple contacts)

but it also forms the basis of measurement for our algorithmic methods. The impact

of contact detection between a single pair of triangulated particles is measured in

this scenario. We categorise the algorithmic methods applied in this setup into three

parts: triangle-based contact, multiscale grid, dynamic time step.

Figure A.3: Two granular particles in collision course (left). At collision we ob-
tain the contact points and derive the forces (middle). The particle separate after
collision (right).

Firstly, the two particle crash (Figure A.3) at close proximity helps us remove

all meta-data overhead, computation is reduced only to the comparison of two gran-

ulates. This ideal setup allow us to isolate the benchmarks of contact detection

methods. The contact models are measured and validated both for the single core

and the shared memory (triangle-based parallelisation level) runs. Strong scaling is

possible with our granulate generation scheme which allow us to control the problem

size by varying the mesh density between runs.

Mesh-based parallelisation scalability tests reveal that on few triangles (e.g. 10)

per particle the computation does not scale more than 2-3 cores but this behaviour

changes as the number of triangles increases towards 40. In terms of contact method;

the penalty method is the fastest followed by hybrid-on-triangles, the slightly slower

hybrid on batches, and the slowest brute force method. The larger the triangle

number, the better and closer scalability towards perfect scaling we get.

Secondly, the two particle crash is an excellent demonstrator of our proposed

set of multiscale grid morphologies. The regular grid exhibits redundancy in vertex

comparisons and vertex-to-particle reassignments as the particle position is updated

through the grid. The uniformly refined grid disregards particle sizes and adaptive
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(c) 40 triangle mesh based parallelisation

Figure A.4: Mesh-based (triangle-to-triangle) parallelisation using OpenMP.
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behaviour is prohibited. The particles eventually collide within a static grid lattice.

Equipped with the adaptive grid, the setup is clearly distinguished from the regu-

lar variant. The adaptive morphological behaviour demonstrates reduced number of

collision comparisons as the grid applies the local maximum refinement per particle

that corresponds to their diameter length. The setup works as well for particles of

large scale ratio, they are by default sorted hierarchically in the tree. The drawback

of this setup is that the geometry follows both particles throughout and after the

collision phase, this induces an administration overhead. The same simulation setup

is optimal when the morphology changes only according to the collision dynamics.

The relaxed-reluctant variant invokes grid refinement only when there is at least one

neighbouring particle in collision course. The two particle crash setup allows us to

observe the behaviour of the proposed reluctant scheme.

Lastly, the same two particle setup forms the benchmark scenario for our adaptive

time step scheme. The multilevel hierarchy combined with the reluctant grid scheme

allows for large time steps in void areas while at same time it minimises morphology

changes. Both particles reside in cells that only refine or coarsen when particles are

in the state of approach or separation. We match grid refinement and coarsening

with the global time step variance. This results to a scheme that minimises the

number of total simulation steps which leads to a fast time-to-solution.

Particle freefall. Throughout this project the two particle crash case studies

form the basis all particle interactions. With the behavioural studies at hand we

create large granulate setups where the whole domain is filled. In our particle freefall

(Figure A.5) scenario granulates of various diameters between a given dmin and dmax

are randomly distributed in the unit cube. If particles bump into the unit cube wall,

we apply a velocity reflection to keep them within the system. This particular setup

is studied to evaluate the robustness of the grid meta data structure during multi-

level reassignments.
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Figure A.5: The freefall scenarios using cubes (left) and granulate (right) particles.

Two different setups are realised: In the first experiment, we do not imply any

external force. The particles fly through the unit cube and collide with each other. In

the second experiment, we apply uniform gravity. The first setup yields an estimate

on how our code performs if the particle collision on the long term is time invariant

while the particle distribution is stationary. The second setup yields an estimate on

how the code performs when particles cluster and run into a stationary setup. Both

experiments thus cover an extreme of the geometric challenge.

A.3.2 Two Particles Crash

The present experiments study two particles that bump into each other and then

move away because of the spring dash-pot forces. The two particles are represented

by 126 triangles. We simulate 15,000 time steps. A contact is detected first in

iteration 9,541 and introduces a force making the two particles to move away from

each other. The code however still needs another 5 iterations to make the particles

be away from each other more than ǫ = 10−4. If the two particles are compared,

this results in 3,944 triangle-triangle comparisons.

Regular grid. We obtain a grid with 1,032 vertices. The first 6,334 iterations,

we do not perform any contact detection. The subsequent grid traversals perform all

3,944 comparisons till iteration 12,503. Starting from time step 12,504, the particles

are far away from each other again and we do not compare anything any more.
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Adaptive grid. We obtain a grid with 747 vertices. Only few iterations (when

one particle enters a neighbouring region) make the number increase to 980, but

these grids are immediately after reduced to 747 again. The first 8,556 iterations,

we do not perform any contact detection. The subsequent grid traversals perform

all 3.944 comparisons. In iteration 9,539 we detect contact and the particles start

to move away from each other, but we continue to check for further contacts till

iteration 10,415. From here on, the particles are far away from each other again and

we do not compare anything anymore.

Reluctant adaptive grid. The reluctant adaptive grid behaves qualitatively

similar to the plain adaptive grid though yields quantitatively a smaller number of

vertices. We start from a grid with 498 vertices, i.e. we do not refine the grid down to

the same fine level as the adaptive approach. In iteration 6,334, both particles enter

the same coarse grid cell and we run 3,944 triangle-triangle comparisons. They

yield no contact yet. The reluctant criterion refines the grid that has now 980

vertices starting from iteration 6,338 on. The code continues to run without any

further comparisons till iteration 8,556 when the particles again are close to each

other (close this time w.r.t. finest grid level allowed by the particle diameters).

Between iteration 8,557 and 9,533 we continue to run with 980 vertices and 3,944

comparisons. The code decides to reduce the grid in iteration 9,536 to 747 vertices

when the particles approach each other within a single cube in a fine grid. We detect

contact in iteration 9,541 after which the particles move away from each other. The
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747 vertices are preserved and the code continues to run 3,944 comparisons. In

iteration 10,452, the particles are far away from each other. No more comparisons

are performed from here on. In iteration 14,556 the particles are far away from each

other, leaving the fine tessellation around the last contact point and we continue

with a coarser grid of 498 vertices.

A.3.3 Hopper-Particle Flow

Hopper structure. A more complex scenario is the hopper particle flow. This is an

interesting simulation as it is widely studied topic in engineering. The granular flow

through hopper structures is found in several industrial processes (manufacturing,

rock mechanics, particle processing, e.t.c). We therefore study a basic mock-up

scenario to test our methods and provide the ground for large simulations where we

can benchmark the proposed DEM algorithm. In this project we do not contribute to

the study of granular kinematics but instead we focus on the algorithmic behaviour

of the flow.
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Figure A.6: The hopper structure is composed of four main sides (left). The stack
of particles is placed above the structure (right).

The hopper structure (Figure A.6) is composed out of four planes that form

an elongated toroid shaped structure. The shape is hollow, which means particles

are allowed to move through the gap that intersect the structure. For visualisation

purposes we make the triangulated structure water-tight on both sides. Additional

triangles are added to the top and bottom of the walls to fill the gaps between the

internal and external wall faces. The dimensions of the hopper as well as upper and

lower hatches is fixed for our simulation scenarios.

Particles are positioned on the upper hatch of the hopper in a stack formation.

The stack size and dimensions is defined based on the number of particles used in

the system. At the preprocessing stage we enforce that no particle is positioned

above the hopper hatch boundary, we set a distance offset between the hopper

hatch wall and the boundary of the particle stack. The stack in formed in layers

of hundreds or thousands of particles depending on the given scenario. The shape

and sizes of the particles (granulate or spheres, uniformly sized or not) affect the

formation layout of the particle stack. The particle stack is always uniform as the

positions of the particles is equidistant. In order to have as equidistant formations as

possible the stack follows a grid structure where each stack cell element determines

the maximum length of a particle regardless of shape. All uniform sized spheres

in the stack are perfectly equidistant by default. Non-spherical particles due the

random irregularity on their surface are equidistant to each other from the centre

of geometry. Nevertheless, with our maximum particle size constraints in-place, the

initial setup yields a uniform positioned cluster of particles.

The initial conditions of our hopper-based scenarios vary based on the case study.

During the preliminary studies of shapes we vary particle size and shape as well as
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number of particles. In the performance studies we focus on the triangulation density

and total number of particles. In all scenarios gravity is the only initiating force

for the dynamics. Spring forces, damping, materials, epsilon parameters are set and

adjusted accordingly a priori. Time step size ∆t is chosen reasonably small such the

bodies do not inter-penetrate (along with ε) or move over one grid cell at a time.

Nevertheless, high velocities require more sophisticated collision models and a more

sophisticated vertex association [95].

A.4 The Gilbert Johnson Keerthi Method

Convex non-spherical particles with sharp features, simulation are commonly found

to employ the GJK (Gilbert Johnson Keerthi) method [27, 55, 88] to implement a

particle contact model. As there is no contribution in this method so we do not dis-

cuss multiple variants and models of contact point generation but instead we focus

on the generic form. Contact models that are based on the GJK method implement

contact point generation in two stages. At the first stage the method determines

whether two particles overlap, this is performed using an iterative algorithm. When

two particles are found to be in contact, the overlapped region is extracted and

often re-triangulated into a convex hull geometry. The extracted region then passes

through a secondary algorithm that defines unique contact points and normals. Of-

ten a postprocessing filtering phase reduces all redundant contacts [28, 49, 60]. The

GJK algorithm operates only on convex bodies and it assumes that both interacting

particles’ are convex during contact detection. Contact detection of unstructured

non-watertight triangles is not possible [38] with this method. Otherwise convex-

ity has to be pseudo-temporally-constructed [27] on run the fly a priori to contact

detection.

The GJK method relies on particle interpenetration to detect possible pair-wise

collisions. An overlap between two convex shapes is used to indicate a contact state.

Although an overlap is non-physical the nonphysical gap can be minimised or re-

solved explicitly. However in some contact configurations, interpenetration raise the

issue of contact divergence as shown in Figure A.7 [38]. Divergence in shapes arise

(Figure A.7) when the minimum penetration depths d1, d2 of two bodies A, B give

rise to one vertical and one horizontal contact. When this interaction is simulated,

this particular contact formation leads to a rightward rotation for object A. This

state subsequently cause an increased penetration on the next time step. Thus

creating an unpredictable outcome during the simulation. This interpenetration

problem that lead to undefined behaviour is found in simulation codes that make
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use of GJK-based variants [27, 55, 88].

Figure A.7: Contact divergence situation due to penetration. Where A,B are convex
bodies, x1, x2 contact points with normals, d1, d2 is the penetration depth. In the
next time step object A will move upwards to the right and object B downwards to
the left.

The GJK method primarily relies on the Minkowski sum operation to detect

when two particles overlap. For two shapes A and B, the Minkowski sum is all the

points in shape A added to all the points in shape B: A+B = a+ b | a ∈ A, b ∈ B.

If both shapes are convex, the resulting shape is also convex. The significance for

collision detection is not in the Minkowski summation but in the Minkowski sub-

traction: A−B = a− b. | a ∈ A, b ∈ B. because if two shapes are intersecting the

Minkowski difference will contain the origin. The origin inclusion into the produced

shape is used as an indicator for collision.

(0,0)

(0,0)

Figure A.8: Left: Two convex shapes are in a state of intersection because their
geometries overlap each other. Right: The Minkowski difference of the two bodies
enclose the origin which indicates that the bodies intersect and thus are in contact.

The computation of the Minkowski difference on two shapes as shown in Figure

A.8 is the fundamental concept behind the algorithm. In Figure A.8 the geometry

and position of two particles in 2D space. On the right depiction of Figure A.8

the computed Minkowski difference shape contains the origin. The enclosure of the

origin indicates that the two shapes are in contact or intersect. Performing the

Minkowski sum requires subtractions along the vertices but it is sufficient to per-

form the subtraction on selected vertices instead of computing the whole Minkowski
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difference. As long as it is possible to ensure enclosure or disclosure of the origin

within the Minkowski Difference, the algorithm can determine whether the shapes/-

particles are in contact. Executing the GJK algorithm iteratively, a polygon is build

in the Minkowski difference.

In order to build the polygon a support function is used. The support function

returns a point in the Minkowski difference given two shapes. Take a point from

shape A and shape B, take their difference, and obtain a corresponding point in the

Minkowski difference and progressively build the polygon. To reduce the steps of

the process of constructing the polygon, an origin direction support function can be

used so that the simplex is build around the origin faster.

It is important to take the farthest point towards a direction at each iteration

using the support function because the simplex creation should contain a maximum

area therefore increase the chance of quick convergence). All the points returned by

the support function should lie on the edge of the Minkowski Difference, therefore

any point that skip the origin along some direction, cannot contain the origin. Using

the shapes in Figure A.8 and performing the support function three times, the points

of the new simplex results to a triangle (Figure A.9.
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(2,6)

(4,2)
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(-8,4)
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(-1,2)

(-8,4)

(-8,2)

Figure A.9: left: Simplex where origin is not enclosed. right: Simplex including
origin. The best-case scenario is when only a triangle is created (three iterations,
three simplex points) allowing to determine whether there is an intersection between
two convex shapes.

If the third point in the simplex does not contain the origin, the algorithm has to

recalculate another point and use that next. It is not possible to guarantee that the

first formed triangle will contain the origin nor it is guaranteed that the Minkowski

difference contains the origin at all until the algorithm ends. Variants of the GJK

algorithm modify the iterative scheme accordingly to optimise the search direction

scheme to enclose points towards the origin from within the Minkowski difference

space.
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There are two conditions that the algorithm needs to meet to converge:

i. Simplex is containing the origin

ii. There is a direction d that encloses the origin by modifying the polygon.

Algorithm 14 Iterative GJK Pseudocode Algorithm.

1: function GJK(A, B, C, D, E, F, rho, tol)
2: d← initialguess
3: while true do
4: simplex.append(support(d))
5: if simplex.lastV ertex ḋ ≤ 0 then
6: return false
7: else
8: if simplex contains origin then
9: return true
10: else
11: d← newdirection(simplex)
12: end if
13: end if
14: end while
15: end function
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Figure A.10: Top left: First iteration. Top right: Second iteration. Bottom left:
Backtrack iteration, set simplex, direction. Bottom right: Third iteration; deter-
mined contact.
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The process of iteration starts off (see Algorithm 14) from a user defined initial
search direction guess d (line 1). The algorithm then progressively forms a simplex
geometry. To enhance the iterative process, the search for direction towards the
origin is performed by a series of plane checks. When the line segment is defined from
point A to point B where A is the last point added to the polygon, then both A and
B are on the edge of Minkowski difference and the origin cannot lie in either normal
direction (Algorithm 14). The origin can only lie in the rest uncovered area. Since a
line segment cannot contain the origin, a third point is required. The perpendicular
p of AB line segment towards direction of origin is p = ((B−A)×(O−A))×(B−A)
where O is the origin. If the origin is on the segment then the perpendicular will be
a zero vector. This occurs on two locations:

i. inside the Minkowski Sum

ii. on the edge of the Minkowski Sum.

We compute (AC×AB)×AB to yield the perpendicular vector of AB. The second

iteration turns the simplex into a triangle shape (Figure A.10). By computing

perpendicular p(AB)ȦO) it is determined that the origin is in covered region.

When contact is determined then the next step is to define contact points. The

overlappped region is extracted by constructing a new polygon. The overlap poly-

gon is created by determining and extracting the overlapping sides/triangles (line

segments, faces, vertices) of the two non-spherical particle pairs that intersect. In

three dimensions triangulation of the overlap polyhedron is usually performed using

a Delauney or convex hull triangulation algorithm [27]. The contact area of two

polyhedra is defined by the intersection line along the surfaces of the two particles

and the centre of mass of the overlap polyhedron. The normal direction of the con-

tact point is then defined as the weighted average of the normals to the triangles in

the triangulated surface [27].

The GJK algorithm for contact point generation is not favourable for contact

simulations for several reasons. Firstly it is only suitable for geometries composed

of convex polyhedrons that allow inter-penetration [27, 38]. In addition, contact de-

tection using GJK requires penetration which results in contact normal divergence

issues [38]. Contact divergence can be mitigated with additional checking mech-

anisms in place (contact clustering) [38]. Lastly, the GJK method that requires

additional algorithmic steps to contact detection (intersection extraction, triangula-

tion, overlap region extraction, contact clustering) to determine contact points and

normals.
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A.5 Distributed Memory Parallelisation

Unstructured Grid Parallelisation. To scale the performance of contact de-

tection simulation, the computational workload has to be processed in parallel by

splitting the domain into sub-domains, computational deployment is based upon the

sub-domain splitting, making the decomposition an important stage. Decomposition

affects load balancing and the communication patterns of the simulation. Commu-

nication is essential when sub-domains are inter-dependent since new boundaries

are introduced with decomposition. It is important to decompose evenly whilst also

reducing sub-domain communication. There are three types of decomposition that

are widely used in different contexts [21, 69] that apply in DEM. Decomposition by

particle, decomposition by force and spatial decomposition.

In domain decomposition by particle [49], the domain is divided such that all

sub-domains hold equal number of particles. For N particles we split the domain to N

parts and we assign them to P processors (N/P). The sub-domain boundary is always

located at the space between particles. In this method an all-to-all communication is

required to detect contact points because they are always located at the sub-domain

boundary. The global communication is a major disadvantage for small particles

as each processor communicates with all other processors, staggering the overall

parallel processing. Another disadvantage is the non-equal splitting (N/P) as some

particles may require more computation than others (i.e. more triangles). The main

advantage of particle-based decomposition is implementation simplicity [69].

An alternative decomposition approach found in literature is force-based decom-

position that is often applied in molecular dynamics (MD) and smoother particle

hydrodynamic (SPH) simulations [9, 34, 69, 80]. The method formulates an interac-

tion force matrix that solves the contact detection and the forces as a group of linear

equations. The matrix is decomposed into small blocks and shared on each process

to solve in parallel. Force based decomposition assume short-range interactions and

thus a dense force matrix to solve. In force based methods, the advantage is that

computation is decomposed without any spatial information from the particles. The

major disadvantage in DEM applications is the assumption of dense and uniform

sparse force matrices, the assumption can be wrong leading to imbalanced domains

on run-time.

According to N-body simulation literature [21, 29, 88] the state-of-the-art method

for supercomputing applications is the spatial decomposition. Our decomposition

is based on the spatial position of vertices using Recursive Coordinate Bisection

(RCB) [6]. In RCB, the computational domain is first divided into two regions by a

cutting plane orthogonal to one of the coordinate axes so that half the work load is in
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each of the sub-regions. The splitting direction is determined by computing in which

coordinate direction the set of objects is most elongated, based upon the geometric

locations of the objects. Each triangle vertex thus is owned and persistently stored

exclusively on one process/sub-domain for the whole duration of the timestep.

Figure A.11: Spatial domain decomposition using triangular elements on 32 MPI
processes, visible boundaries cut space/domain of each process.

Spatial decomposition creates boundaries that split space and computation into

sub-domains A.11. The contact detection complexity of N triangles that belong

to ni particles without bounding boxes is
n
∑

i=0

ni. With structured bounding boxes

splitting the domain then the total collision detection complexity is reduced. If C is

the maximum number of particles then there are 26 neighbouring cells and max(ni)

is the maximum number of triangles per particle i which leads to n1×26×C×max(ni)

triangles per particle i in the local cell neighbourhood. For all N triangles in the

domain there are N × 26 × C × max(ni) per neighbourhood. Boundary boxes

due to spatial decomposition reduce the overall computational complexity to O(n).

Similarly, in MD simulations a cut-off range set the range of interaction fields per
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particle to remove redundant computation. Equally spaced boundary boxes rely on

octree-based variants data structures that are great for recursive eight cell space

subdivision. Our decomposition relies on non-uniform recursive subdivisions that

rely on kd-tree-based data structure decomposition (i.e. RCB) and the number of

neighbours can be arbitrarily many as they are not equally spaced, but they are

equally vertex-sized.

The number of neighbours for both methods may have an implication on commu-

nication patterns between processes. It is an open question what are the performance

implications on uniform spaced octree-based decomposition versus the non-uniform

kd-tree based decomposition. It is an area of investigation since on an octree-based

approach information about the level of refinement is known a priori by the sub-

domain boundary size, which is an interesting application for multiscale simulations.

When spatial decomposition finishes we migrate the data to the processors (Al-

gorithm 15 line 2) with blocking synchronous communication. At each time step the

triangles migrate according to the DEM kinematics. In addition to migration, a local

area data exchange is required to communicate the boundaries of the sub-domains

that cut triangles at the boundary.

Unstructured Sub-domain Halo Data Exchange. The triangles that over-

lap into a remote sub-domain due to the decomposition cuts are copied to one or

more sub-domains in order to perform a complete contact detection. In this section,

we study MPI communication characteristics when we resolve data dependencies be-

tween the sub-domains caused by ghost triangles in order to maximise performance

of distributed contact detection. We explore the implication of inter-process commu-

nication and local computational performance using two communication strategies

that use asynchronous non-blocking communication.

Algorithm 15 Naive Asynchronous Data Exchange Pseudo-code.

1. Load balance triangles
2. Migrate triangles to MPI network using blocking communication
3. Initiate neighbourhood all-to-all asynchronous MPI send/receive
4. Wait for neighbourhood asynchronous communication to terminate
5. Contact detection
6. Derive contact forces from contact points generated
7. Explicit time integration

The first strategy exchanges local data to all neighbours (Algorithm 15 line 3).

The goal is to utilise the communication bandwidth while minimising communica-

tion administration overhead. If the exchange does not reach the upper bandwidth

limit then exchange of all data is faster than filtering out the ghost triangles, i.e.

doing any preprocessing that finds out which triangle from a sub-domain might be
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required from a neighbour. Alternatively, we can send out only triangles that over-

lap from one sub-domain into another sub-domain. This filtering of triangles is an

O(N) operation. As soon as MPI communication finishes, the algorithm invokes the

existing contact detection routines exploiting vectorised floating point operations

with a single contact detection routine. Exchange of all local data to all neigh-

bours significantly increases the number of triangles to be processed from Tlocal to

(Tlocal ·Nranks ·Tremote) where Nranks is the number of neighbours of neighbours. The

increase of triangles to be checked increases the total computation performed locally

because of the redundant triangles.

The disadvantage of such a naive method is that total MPI wait (figure A.12)

for an all-to-all neighbour data exchange increases with the number of processes.

The asynchronous communication wait time results to time wasted with idle proces-

sors. The method is potentially useful with decomposition schemes where all data

exchange can be processed in the background, i.e. enough bandwidth is available.

Figure A.12: Waiting time (s) per MPI rank/node for all to all neighbour data
exchange over 1000 time steps (25 mil triangles, 10k non-spherical particles).

Algorithm 16 Asynchronous Data Exchange Pseudo-code.

1 Load balance triangles
2 Migrate triangles to MPI network using blocking communication
3 Search overlapping ghost triangles to send
4 Initiate neighbours asynchronous MPI send/receive
5 Local contact detection
6 Retrieve required ghost triangles from neighbours
7 Local against to remote ghost triangle contact detection
8 Wait for neighbourhood asynchronous communication to terminate (No Real Wait)
9 Derive contact forces from contact points generated
10 Explicit time integration
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The second strategy filters out local ghosts from the data structure and sends

them to the overlapping neighbouring processes. Using the spatial decomposition

information, we find the specific processes/boundary cells that the triangle bounding

box overlaps. In this strategy we minimise data exchange at the cost of a filtering

overhead and the allocation of buffers in memory. The method aims to minimise the

waiting time of MPI processes by overlapping concurrent computation over commu-

nication. As shown in Algorithm 16 line 5 local contact detection is executed as soon

as asynchronous MPI communication is initiated, leading to overlapped communica-

tion. A second contact detection is initiated to determine contact between local and

remote ghost triangles at line 7. The strategy is advantageous as neighbour waiting

is always zero as long as local contact detection takes longer than the transmission

of the data. As shown in Figure A.12 the waiting time is increased proportionally to

the number of MPI ranks. The waiting time can be overlapped with computation.

Figure A.13: Normalised naive vs filtered contact detection performance per triangle
pair running on multiple nodes.

We measure both strategies to determine the performance of normalised com-

putation per triangle. The result in Figure A.13 shows for each rank and compute

node on the x axis, the time required to compute distance of a pair of triangles.

The blue bars show the average normalised time for the second strategy to process

a triangle (filtering approach). The red bars show the difference between the overall

naive communication time and the filtered method. The time is reduced linearly as

the number of ranks increase.

For the measurement set-up in A.13 we use Durham University Hamilton super-

computer that has per node 2 x Intel Xeon E5-2650 v2 (Ivy Bridge) 8 cores, 2.6 GHz
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processors, 64 GB DDR3 memory, 1 x TrueScale 4 x QDR single-port InfiniBand

interconnect.

A.6 The Newton Method

Barrier Method. The barrier method [76] exploits a logarithmic function to

incorporate the constraints into an extended objective function to solve:

B(x) = f(x) + r
∑

i=1...6

−log(c(xi)) (A.1)

cf. barrier figure, where r is the barrier parameter. The barrier method is charac-

terised by its requirement to arrive at the solution from within the feasible region

as B(x) is undefined outside of the feasible region.

Figure A.14: Illustration of a 2D problem where the logarithmic barrier function
(red line) is added to the objective function (black line) f(x) to define feasible region
(red line) under the constraint a (dash line).

The barrier method inherits the property to arrive to the solution from within

the feasible region. It is known [76] that there are cases that the use of barrier

method is not preferred because it is not always possible to have a initial guess

value that is within the feasible region. In the case of the distance problem an ideal

initial guess value for the Newton method is the triangle barycentric centre. The

method is prototyped on MATLAB, and then ported for C/C++ for performance

testing.

In practice the use of Barrier method for solving constrained problems faces

several computational difficulties [76]. The main performance downfall is due to the

structure of the logarithmic barrier function and for the small values of the barrier

parameter r that are required. The searching process is facing ill-conditioning effects
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and round-off errors [76] when the search is approaching the boundary of the feasible

region the logarithmic function becomes infinite. As the boundary of the feasible

region is approached and because the search is in discrete Newton steps, a step

may lead to a region outside the feasible region. An explicit check at every Newton

step has to ensure that the value of each of the constraints has to be applied such

that a re-positioning is guaranteed and the search always remains in the feasible

region. The extra explicit check and correction on each search step doesn’t help

in the creation of an efficient solver. By explicitly checking the search position an

increase of Newton iterations is unavoidable. Line searching algorithms [76] can

be deployed to minimise the step size but that is another overhead to the Newton

search.

Augmented Lagrange Method. The augmented Lagrange method is investi-

gated due to its similarity to the penalty method. The Lagrange method in addition

to a penalty-like function it also uses the Lagrange multipliers lambda. Augmented

Lagrange multipliers augments the objectives function f and creates a new function

that minimises L such that

L(x, λ) = f(x) + r ·
∑

i=1...6

λi ·max(c(xi))
2 (A.2)

where lambda is a vector of size six which is the number of constraints. This implies

that in order to minimise the problem it is required to solve ∇L(x, λ) = 0. The

multipliers lambda are updated using an additional iteration method at every set of

Newton iterations to make the Newton search arrive to the solution exactly.

On the hand it Lagrange multipliers method is a widely used solver for many in-

equality constraint minimisation problems, but for the triangle-to-triangle minimum

distance computation multipliers are not necessary required. Such a solver variant

is not preferable because there is no need to have lambda multipliers as the problem

is convex and simple to solve just by using penalty. The addition of extra unknown

values to solve (a lambda for each constraint) per iteration requires unnecessary

additional computation. On the other hand, the advantage of augmented Lagrange

when compared to the barrier and penalty methods is that it converges to a solution

always at the boundary of the constraints. Contradictory to the barrier method,

the barrier method may only arrive to a solution from within the feasible region and

constrained by a line search method to the solution. When the method is compared

to penalty, the penalty arrives to the solution externally to the constrains due to the

fact it uses a penalising function. The extra lambda solution required by augmented

Lagrange do not pay off. This approach is inevitably the slowest method because of

172



APPENDIX A. APPENDIX

the extra numerical operations.
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