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Abstract

Suspensions are systems composed of particles dispersed in a fluid. This is an

industrially important set of materials, whose members are capable of exhibiting

a diverse range of phenomena. The behaviour of dense suspensions, where the

volume fraction of particles is close to the volume fraction of jamming at which the

suspension is unable to flow in the limit of vanishing imposed stress, is particularly

challenging to model and explain.

In this thesis, we report theoretical research on three dense athermal suspensions,

supported in each case by particle simulations. By studying systems in which par-

ticles do not undergo Brownian motion, we are able to identify behaviour generic

to both thermal and athermal suspensions, and provide insight into the underly-

ing cause. The particle simulations are found to be of great importance in chal-

lenging the assumptions of models, testing model predictions and providing direct

microstructural insight into the mechanisms by which dense suspensions evolve.

We first extend a model of discontinuous shear thickening in steady-state homo-

geneous dense suspensions under simple shear to a dynamical one-dimensional model

of the suspension, spatially resolved along the vorticity axis with periodic boundary

conditions. This model encapsulates a theory of shear thickening in which a sus-

pension of frictional particles transitions from frictionless to frictional rheology as

repulsive interparticle forces that prevent contact between particles at low stress are

overcome at high stress. We show that in our model, large homogeneous systems are

linearly unstable to perturbations along this axis at high volume fractions within

a range of imposed stresses. We characterise two long-time inhomogeneous states,

both of which are unsteady but periodic. We then test our predictions with parti-

cle simulations of a suspension of frictional particles with short-ranged repulsions,

finding both states at least transiently, according to parameter regime.

The second suspension we consider corresponds to the first in the limit of van-

ishing interparticle repulsion, after a reversal of the direction of shear from steady

state. This system is strongly dimensionally and symmetrically constrained: shear-



rate provides the only timescale, while the system is invariant under inversion of

the vorticity axis (or, equivalently, simultaneous inversion of the flow and flow gra-

dient axes). We leverage these constraints to develop a systematic approach to

modelling the evolution of the “fabric tensor”, a traceless and symmetric rank-2

tensor related to the second-order spherical harmonic expansion of the distribution

of (near-)contact pairs of particles commonly used in the literature to encode the

suspension microstructure, as a function of itself and the imposed velocity gradient

tensor. By fitting the models to data from particle simulations of the appropriate

system, we show that such models are unsuccessful at linear order in the fabric tensor

components, and are unlikely to contain any physical insight at higher orders. We

then test the suitability of the fabric tensor as a description of the microstructure

directly using the particle simulations, and conclude that a second-order spherical

harmonic description captures the pair distribution poorly shortly after reversal. We

find that a fourth-order description captures the pair distribution well.

Finally, we study a suspension of soft elastic particles close to and above jam-

ming using particle simulations with periodic boundary conditions. We prepare

the suspension at a non-zero temperature and then allow it to relax athermally

to the global system’s local minimum. We observe non-trivial dynamics, such as

slow power-law decay of the root mean squared velocity of particles, and coarsening

with a power-law growth of velocity correlation lengths. This suggests that generic

athermal physics may in fact underlie non-trivial dynamics commonly associated to

thermal effects.
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Chapter 1

Introduction

Suspensions are materials made up of particles dispersed in a fluid, where the fluid

can be treated as continuous on the length scale of the particles. This broad category

includes wet granular matter [1], smoke [2], blood [3], foam [4] and cornstarch in

water [5], as well as many more substances. Unsurprisingly, given the diversity of

materials that fit the definition, the question of how suspensions behave, particularly

under flow, is industrially important. For instance, suspensions of hard particles at

high solid volume fraction can solidify in strong flows, leading to the failure of mixing

motors and damage to mixing blades in industrial processes [6]. By contrast, other

suspensions, such as melted chocolate [7], flow more easily in strong flows, which

also influences their processing [8].

As well as their industrial significance, suspensions are of physical interest. His-

torically, Einstein’s calculation of the influence of particle concentration on the vis-

cosity of dilute suspensions [9] led to an estimate of Avogadro’s constant, important

in the context of the atomic theory of matter. More recently, colloids—suspensions of

small particles which undergo Brownian motion—have proved useful as model crys-

tals, allowing scientists to study defect motion [10] and the melting transition [11]

in an easy-to-image [12] system. Dense amorphous colloidal systems, for their part,

are useful in the study of the glass transition [13], an apparent phase transition from

a fluid to a solid with no obvious structural signature.

The behaviour of a given suspension will depend on the size [14,15], shape [16,17],

hardness [18], polydispersity [19], inertia [20], and concentration of the particles [21],

1



as well as the material properties of the suspending fluid [22, 23]. In this thesis, we

will be chiefly concerned with dense suspensions of spherical particles of radius

& 1µm [15] whose density is matched with that of the suspending fluid, which

we take to be Newtonian, so as to be neutrally buoyant and which do not, on

experimental timescales (e.g. ∼ 70h [24]), experience Brownian motion, yet are

small enough (radius . 102µm [25]) for particle inertia to be negligible. Many

properties of suspensions linked to shape [26] or thermal effects [27] are shared by

non-colloidal suspensions of spheres, so we can study these as a minimal system with

which to hopefully probe the underlying physics. (The assumptions of negligible

inertia and density matching are further simplifications to increase the tractability

of the study.) This idea, of exploiting the minimal nature of athermal suspensions of

spheres to study generic behaviour also seen in other systems, is one of the two major

themes of this thesis. The other is the power of particle simulations of suspensions

to aid in this endeavour.

1.1 Layout of thesis

We will explore these themes in the context of three different systems, which will

be discussed across four chapters, with a preliminary chapter covering the prereq-

uisite fluid dynamical and rheological background for the following chapters and a

conclusion chapter in which we discuss the particular and overall conclusions of the

results in this thesis.

1.1.1 Ch. 2: Background

Suspensions encountered in nature, industry or daily life usually contain a large

number of particles (e.g. 1 litre of a suspension of 10µm-diameter spheres at a

volume fraction φ = 0.4 contains ∼ 1011 particles), so it is necessary to “coarse-

grain”, or average out details at the microscopic (particle-scale) level, and obtain a

description of the suspension on a scale closer to that seen in applications. In Ch. 2,

we will describe the approaches to doing so that we will use in this thesis.

The mediating fluid is a defining feature of a suspension, and so Ch. 2 will
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introduce the fluid mechanical concepts necessary to understanding the following

chapters of the thesis. We will cover the Navier-Stokes equations, key dimensionless

quantities, the Stokes limit of vanishing inertia and the resulting Stokes equations,

and key objects such as the stress tensor.

Much of this thesis will rely on the particle simulations of Dr. Romain Mari. We

will therefore describe the basics of his approach in Ch. 2.

We will, in this thesis, be exclusively interested in the dense regime, in which the

volume fraction of particles is so high that the suspension is close to (Chs. 3–5) or

above (Ch. 6) the point at which it acts like a solid at low stresses. This “jamming

transition” will be also be introduced in Ch. 2.

Finally, the majority of this thesis involves rheology—the study of flow—and so

Ch. 2 will also briefly review experimental approaches to rheology in the context

of a particularly simple type of flow, shear flow, which we will be studying in this

thesis.

1.1.2 Ch. 3: Vorticity banding in dense suspensions

A suspension of cornstarch in water can, at high cornstarch concentration, become

hard enough upon impact to run across. This is a manifestation of a phenomenon

known as shear thickening, in which the viscosity of a fluid increases as it is de-

formed at a higher rate. The precise mechanism through which shear thickening

occurs in cornstarch has been controversial, but recent research supports a view

in which shear thickening results from frictional contact between particles. Given

short-ranged repulsive interactions between particles which prevents contact at low

imposed stress, the suspension rheology can interpolate between that of frictionless

particles to one of frictional particles as stress is increased, and it is this interpolation

which is thought to result in the shear thickening observed in suspensions.

A recent model encapsulates this mechanism in a scalar, steady-state description

of the suspension rheology. In particular, it explains discontinuous increases in stress

as shear rate is increased by the existence of an underlying S-shaped constitutive

curve of stress against shear rate. However, homogeneous flow in negatively-sloped

regions of stress versus strain constitutive curves is expected to be unstable to small

March 28, 2019



perturbations.

In Ch. 3, we consider a dense, non-Brownian suspension of hard particles with

short-ranged interparticle repulsive forces and frictional contact interactions under

an imposed shear flow. Using a minimal extension of the aforementioned scalar

model to a dynamical model in one-dimension, we show that homogeneous flow in

large systems of this type is unstable to perturbations. We identify two limiting

states that such perturbations can grow into, and, at least transiently, find both of

these states in particle simulations of this system, according to parameter regime.

We also use the particle simulations to directly test the equations that make

our model, determining which equations work well and which would be the most

profitable equations to seek improvements of.

1.1.3 Ch. 4: Fabric tensor dynamics of dense non-Brownian

suspensions: phenomenological modelling

Having had some success with a one-dimensional model, we next seek to under-

stand the scope for developing a full, three dimensional model for the rheology of

dense suspensions. A strategy employed with success in liquid crystal and poly-

mer contexts is to, implicitly or otherwise, express the stress as a function of a

conformation tensor which encodes the microstructure of the material. A model of

the microstructural evolution of the material then yields a constitutive equation.

We follow previous authors in emulating this approach in the suspensions context

by defining a rank-2 traceless and symmetric “fabric” tensor, the detraced second

moment of the distribution of near-contact orientations, whose evolution we then

attempt to model.

We test our models using Dr. Mari’s particle simulations. To ensure that the

test is sufficiently stringent for a successful model to require physical insight, we

adopt a protocol in which the direction of shear is reversed from steady state at

a time defined as t = 0. At early strains after this point, structure formed by the

pre-reversal flow is broken up. At later strains, the post-reversal flow forms new

structure as a new steady state is approached. We model the evolution of the fabric

tensor across this transition.
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To minimise the number of complicating ingredients to account for, we study the

case of a suspension without short-ranged repulsive interactions between particles,

in simple shear flow. We show that the symmetries and lack of ingredients of such

a system can be exploited to develop three-dimensional models for the evolution of

the fabric tensor in a modular way.

In the end, however, we conclude that any fabric tensor model of this kind is

unlikely to be physically meaningful.

1.1.4 Ch. 5: Fabric tensor dynamics of dense non-Brownian

suspensions: microstructural insights

The results of the previous section lead us to query the assumptions underlying the

use of a fabric tensor model to describe the suspension microstructure. By directly

studying data from Dr. Mari’s particle simulations, we find that the second-order

spherical harmonic expansion of the distribution of near-contact orientations, in

terms of which the fabric tensor can be defined, captures the distribution poorly

at early strains after reversal, while the fourth-order term dominates during these

early strains, and retains a significant size up to steady state. A description involving

tensors related to both the second- and fourth-order spherical harmonic expansion

terms may thus prove more successful at modelling the microstructural evolution of

suspensions.

1.1.5 Ch. 6: Ageing in a frictionless soft suspension

Having up to this point considered hard particle suspensions under shear, we switch

tack in Ch. 6 and consider a frictionless soft non-Brownian suspension at a volume

fraction high enough that the system cannot relax into a state without particle

overlaps. Suspensions of this type, such as foams, exhibit interesting dynamics

under shear or at finite temperature, such as slow “glassy” relaxation and localised

plastic deformations. The dynamics of a quiescent soft suspension relaxing towards

its local equilibrium have not been previously reported, having presumably been

assumed trivial.
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In Ch. 6, we perform such a study, quenching a soft suspension from a highly

colloidal to an athermal state. We find slow power-law relaxations of quantities

such as the mean squared speed, as well as evidence of coarsening as the system

relaxes. Finally, we also see displacement fields around plastic events suggestive of

the quadrupolar displacements seen in thermal or sheared systems, though we are

unable to isolate any quadrupoles. We thus demonstrate that the dynamics of a

relaxing quiescent soft suspension can be unexpectedly interesting.

1.1.6 Ch. 7: Conclusions

Finally, in Ch. 7 we summarise the results of the previous chapters, and the overall

conclusions that can be drawn with respect to the themes of the thesis, namely

the usefulness of the study of athermal systems and the application of particle

simulations in probing the physics of suspensions. We also give an outlook on

possible directions for future work suggested by these chapters.

1.2 A note on notation

In this thesis, symbols denoting vectors or tensors, such as the position vector r

or the stress tensor Σ, are written in bold. Scalars, such as the volume fraction φ,

are not. Given a bold symbol representing a vector, such as r, the corresponding

non-bold symbol, in the absence of a sub- or superscript specifying a component,

denotes its magnitude, i.e. r := |r|. Furthermore, given positions ri and rj of

particles i and j, we use the shorthand rij := rj − ri, with the relative velocity vij

defined similarly. The force on particle i due to particle j is denoted Fij. Adjacent

vectors or tensors, such as pppp for a unit vector p, denote a dyadic product, so

(pppp)ijkl = pipjpkpl. Contractions over indices are indicated using dots, so e.g.

Q · D contracts over the last index of Q and the first of D, while 〈pppp〉 : D

contracts over the last two indices of 〈pppp〉 and the first two of D. We also note

that this thesis adopts the column-vector convention, so that (∇v)ij ≡ ∂jvi. Finally,

given a function f (r, s) of position r and some vector quantity s = (s1, s2, . . . , sd),

we write ∇sf := (∂s1f, ∂s2f, . . . , ∂sdf).



Chapter 2

Background

2.1 Coarse-graining

When describing the material properties of a macroscopic fluid, it is convenient to

adopt the continuum hypothesis [28]. Here, the value of a material quantity, such

as the density ρ, at a point r in space (in a given coordinate system) is defined

as an average over (effectively) a small volume [29], over a time interval [30] or

over ensembles of particle configurations [31], in a process known as coarse-graining.

Each approach to coarse-graining has its own advantages, and all three will be

used at some point in this thesis as demanded by the situation when discussing

continuum models of suspensions and calculating averaged quantities from particle

simulation data. We will mainly adopt the first convention, treating the suspension

as one continuous material consisting of volume elements, as illustrated for a two-

dimensional suspension in Fig. 2.1. Each volume element must be small enough

that coarse-grained quantities are approximately constant on their length scale, but

consist of many constituents, so that small-scale fluctuations (noise) are small.

Sometimes, there are too few constituents (particles, or “events” such as the

formation of a contact between particles) to avoid noise, given volume elements of

a desired size. In homogeneous systems, we can address this by averaging each

volume element over an ensemble: the coarse-grained value of e.g. the velocity at

a box centred at r at time t is obtained by averaging over all particles within the

box at time t for multiple different choices of initial condition consistent with the

7



Figure 2.1: Illustration of coarse-graining over a volume, in which space is divided

up into volume elements—boxes bounded by dashed lines. One might obtain, for

instance, a coarse-grained velocity at the centre of a box by taking the average

velocity of all particles within the box.

macroscopic state of the system at the initial time. Similarly, we will, in the course

of this thesis, need to average over events that occur at discrete points in time. We

must then average over a finite time interval in order to obtain enough events per

volume element to reduce the noise to acceptable limits. Fig. 2.2 illustrates these

two additional approaches to coarse-graining.

2.2 The Navier-Stokes equations

To model the dynamics of our fluid, we apply the laws of classical mechanics. The

assumption of incompressibility and Newton’s 2nd law lead, respectively, to the

equations [28]

∇ · v = 0,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ∇ ·Σ + f ,

(2.2.1)

where ρ is the local density of the fluid, and v is the local velocity. External forces

(e.g. gravity) per unit volume are included via the variable f . The suspensions
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〈 + + 〉
Figure 2.2: Illustration of coarse-graining over ensembles or a period of time. The

three grids correspond to the same volume elements at different times, or the same

time but a different initial condition. The coarse-grained value of a quantity in a

volume element is averaged over particles in that volume element in all three grids.

we study in this thesis are density-matched and have no other external forces, so

f ≡ 0 in our case. To model internal forces, we define the stress tensor Σ, which

represents the forces acting on a volume element by contiguous volume elements,

such as momentum exchange between particles at the boundaries of the elements.

The stress tensor is a second-rank tensor which, when contracted with a unit vector

n yields the force per unit area acting on a surface element (of a volume element)

with outward normal n. Splitting the stress tensor into its isotropic and traceless

parts, Σ = −pI + Σ′, we call p the pressure and Σ′ the deviatoric stress. When Σ′

is of the particularly simple form Σ′ = η
(
∇v +∇vT

)
, we say the fluid is Newtonian

and call η the viscosity. Eqs. 2.2.1 are then known as the Navier-Stokes equations.

A few dimensionless quantities are particularly important when determining

what contributions to the motion of a suspension need to be considered [25]. A

simple shear flow is one in which the velocity field can be written v = (γ̇y, 0, 0) in

some inertial frame, as illustrated in Fig. 2.3. We can then define the Péclet number,

Pe ≡ 6πηf γ̇a
3/kBT , where ηf is the viscosity of the suspending fluid, a is the particle

diameter, kB is the Boltzmann constant and T is the suspension temperature. This

characterises the relative importance of the shear rate γ̇ and of Brownian motion.

Thus, in our athermal case, we are in the limit Pe −→∞. Other dimensionless num-

bers describe the relative sizes of different terms in Eq. 2.2.1 with respect to one an-

other. One important example is the Stokes number, St ≡ ργ̇a2/ηf ∼ ρ∂tv/ (∇ ·Σ),

where ρ is the particle-phase density, which, due to density matching, is also that

of the bulk suspension. For our µm-sized particles, in typical experimental set-ups
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Figure 2.3: A simple shear flow v = (γ̇y, 0, 0) imposed by moving walls.

(see §2.6), this is approximately zero, except at very large shear rates. The Reynolds

number Re ≡ ρa2γ̇/ηf ∼ ρ (v · ∇)v/ (∇ ·Σ), where ρ is the bulk suspension den-

sity, is another important example. This too, thanks to the small size of particles

in the suspension and large fluid viscosities, is approximately zero in most regimes

we consider.

2.3 The Stokes equations

Taking the limits Re −→ 0 and St −→ 0 in Eq. 2.2.1, we arrive at the Stokes

equations

∇ · v = 0,

∇ ·Σ + f = 0.
(2.3.2)

Given a model for the evolution of Σ in flow, called a constitutive model, and a set

of initial and boundary conditions, we can solve Eqs. 2.3.2 for the unknowns v and

Σ [32].

We now consider Stokes flow of a Newtonian fluid in which hard particles are

suspended. In a Newtonian fluid, the Stokes equations are linear and homogeneous.

The flow is therefore time-reversible, with consequences such as symmetry in the

approach and retreat trajectories of particle pairs [25]. Frankel and Acrivos [33] cal-

culated the hydrodynamic interactions between particles of radius a moving relative
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to one another with relative speed u⊥ along the line of the particles’ centres and u‖

in the tangent plane, in the limit of vanishing separation h. They found that the

force along the particle centres is

F⊥ ∼
3

2
πaηu⊥

2a

h
, (2.3.3)

while the tangential force is

F‖ ∼ 2πηu‖a log

(
2a

h

)
. (2.3.4)

One can then add these pairwise hydrodynamic forces, called lubrication forces,

to the Stokes drag F Stokes = 6πηau on particles with velocity u relative to the

imposed background flow field, to obtain an approximate total hydrodynamic force

F H on each particle. At high volume fractions, such as those we will consider in

this thesis, lubrication forces are the dominant hydrodynamic interactions [34], so

this approximation should hold. Linearity of the Stokes equation implies that these

forces are linear in the particle velocities and angular velocities. Furthermore, the

Stokes equation requires the sum of all forces on each particle to vanish. So long as

non-hydrodynamic forces do not break the linearity with respect to relative velocity

and angular velocity, this then yields a linear system of equations which can be

solved to obtain the velocities and angular velocities of each particle [35]. Pairwise

non-hydrodynamic forces F NH
ij on particle i due to particle j contribute a stress

SNH
ij = rijF

NH
ij to the system, where rij is the position of particle j relative to that

of particle i. The calculation of the hydrodynamic contribution to the stress is more

complicated; the details can be found in Appendix A of [36].

Beyond simplifying Eq. 2.2.1, taking the limit of no inertia has one other im-

portant consequence: frame indifference. This is the constraint that non-inertial

systems must be invariant under time-dependent rigid rotations. One important

consequence of this is that any function F of the flow gradient ∇v and a second-

order tensor T must be of the form [37]

F (∇v,T ) = Ω · T − T ·Ω + F̃ (D,T ) , (2.3.5)

where D and Ω are the symmetric and anti-symmetric parts of ∇v respectively,

and F̃ corresponds to F in a frame in which Ω ≡ 0.
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2.4 Critical Load Model

In much of this thesis, we will be discussing data from particle simulations, provided

by Dr. Mari, that use the lubrication approach described in the previous section

with one caveat [36]. This is due to work by Ball and Melrose [38] which showed

that particles in dense suspensions under an imposed shear flow get sufficiently

close for the continuum approximation to break down, and for something akin to

solid contact between particles to emerge. To account for this possibility given

the divergence of lubrication forces as h −→ 0, Dr. Mari’s simulations introduce

a regularisation length δ/(a1 + a2) which is added to the non-dimensionalised gap

h/(a1 + a2) when calculating lubrication interactions [39]. Dr. Mari’s simulations

also cut off the lubrication interactions above an interparticle gap h/(a1 + a2) > 0.2

since these are small, and since the lubrication approximation is only valid at small

gap sizes. Doing so also means ∼N interactions need to be considered, rather than

∼N2, given a system of N particles at a set volume fraction.

Dr. Mari’s simulations employ a model for contact friction adopted from granular

physics [40,41], described in detail in [36], which enforce Coulomb’s law

∣∣F C
‖
∣∣ ≤ µ

∣∣F C
⊥
∣∣ . (2.4.6)

Here, F C
⊥ is the component of the contact force between two particles in contact along

their centre-to-centre vector, F C
‖ is the component in their mutual tangent plane, and

µ is the Coulomb friction coefficient. The simulations model short-ranged repulsive

forces preventing contact between particles at low stresses using the Critical Load

Model [36] (CLM) for the behaviour of µ: µ vanishes below a critical value F∗ of
∣∣F C
⊥
∣∣, and takes a constant value above it. This makes it convenient for describing

the “frictional state” of a suspension, a concept that will be needed in Ch. 3, since it

can in this case be defined as the fraction of particles in contact that interact with a

non-zero µ. We can also study a system without short-ranged repulsive interactions

between particles, as will be considered in Chs. 4 and 5 in the context of the CLM

by taking F∗ ≡ 0.
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2.5 Jamming

At high concentrations of particles, it can become impossible for particles to flow

past one another without deforming. The suspension behaves like a solid, with non-

zero bulk and shear elastic moduli, and is said to be jammed [42]. The transition

is characterised by critical behaviour on either side of φJ, despite the absence of

any obvious structural change in the amorphous system. As φJ is approached from

below, for instance, the shear viscosity diverges with a power law η ∼ (φJ − φ)−ν [21,

36]. O’Hern et al. [42] also report power-law behaviour in a number of quantities

in a granular system of frictionless spheres without interstitial fluid and at local

equilibrium as φJ is approached from above.

The volume fraction, φJ, at which this fluid-to-solid transition occurs is not

unique, but rather depends on the details of the suspension as well as the prepa-

ration protocol of the jammed configuration. For instance, a protocol in which a

granular system of hard spheres is equilibrated at an initial volume fraction φ0 < φJ

before being expanded at high rate until expansion is no longer possible yields a

φ0-dependent continuous range of φJ in the thermodynamic limit [43]. Equilibrat-

ing a three-dimensional system of monodisperse soft spheres at infinite temperature

before quenching to T = 0 yields the value φJ ≈ 0.64 in the thermodynamic limit,

consistent with historical measurements of “random close packing”, φRCP [44].

As suggested by the example of an Apollonian packing [45], polydispersity allows

for higher jamming fractions, with small spheres able to fit into volumes excluded

to larger spheres. The jamming volume fractions of a polydisperse system of hard

frictionless spheres is in general affected by the shape of the distribution of particle

radii, and not just its width [46]. In order to avoid crystallisation, we will in this

thesis consider bidisperse systems in two and three dimensions, with large particles

of radius 1.4 times that of the small particles. We will consider systems in which

small and large particles are equally numerous, as well as systems in which their total

volumes are approximately equal. While jamming fractions of frictionless spheres

are preparation protocol-dependent, it is useful to state values for them as a rough

guide to where the jamming point is located. We thus list literature values for these

jamming points in Table 2.5.
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equal volume equal population

d = 2 – 0.842 [47]

d = 3 0.66 [36] 0.646 [derived from Fig. 8 of [47]]

Table 2.1: Literature values for random close packing from the literature for bi-

disperse systems with size ratio 1:1.4 in two and three dimensions at equal number

and equal volume, where such values could be found.

Systems of frictional spheres jam at lower volume fractions [36]. This is best

understood by counting the constraints required to jam a system of particles. In a

frictionless system, each contact contributes one constraint to the motion of particles

in the system. Writing Z for the coordination number, or mean number of contacts

per particle, this translates to NZ/2 constraints for a system of N particles. In d di-

mensions, there are dN degrees of freedom, so that providing at least one constraint

per degree of freedom means Z ≥ 2d, with Z ≈ 2d at the jamming threshold, ex-

cluding rattlers—particles that have space to move around within a cage of jammed

neighbours (see Fig. 2.4). (Strictly speaking, additional contacts are required in

order to obtain finite bulk and shear moduli in a finite system [48], but this result

holds true in the thermodynamic limit.) Friction additionally constrains motion

tangential to the contact orientation, so that systems of frictional particles can jam

at lower coordination numbers (see Fig. 2.4), which in turn increases the number of

configurations at lower volume fractions that are jammed.

2.6 Experimental shear flows

Rheology is the term used to refer to the behaviour of fluids under flow, as well as

the study of this behaviour. The only flows we shall study in this thesis are simple

shear flows of periodic systems. However, such flows are not experimentally possi-

ble. Rheologists instead have a variety of types of rheometer which can impose an

approximate shear flow. These can record components of the stress response of the

material to an imposed shear rate, or, conversely, the shear rate signal resulting from

an imposed shear stress. In the remainder of this section, we assume a homogeneous
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Figure 2.4: A collection of elastic particles. The pale yellow (pale grey) particle is

a rattler: it is underconstrained and able to move at no energy cost. The orange

(dark grey) particle is underconstrained in a frictionless system, but unable to move

in the limit of infinite friction. This illustrates the mechanism by which friction can

lead to jamming at lower coordination numbers, and hence volume fractions, than

in frictionless systems.

system without wall slip.

Experimental geometries related to simple shear flow include the plate-plate

geometry, in which the material is sheared between a stationary base and a rotating

disc separated by a gap h, as shown in Fig. 2.5, left. Adopting cylindrical coordinates

centred on the axis of rotation of the upper plate, this imposes a flow field v =

rωz
h
θ̂, where ω is the angular velocity of the rotating plate. This corresponds to a

radially-varying shear rate γ̇ = rω/h. By measuring the forces on the upper plate,

rheologists are able to measure the shear stress Σθz and the normal stress difference

Σθθ − Σrr [49, 50], where Σ is the total stress of the sheared material.

The cone-plate geometry, in which the rotating disc of a plate-plate rheometer

is replaced by a cone pointing into the material (Fig. 2.5, centre), provides a better

approximation of a simple shear flow, imposing a velocity field v = rωz
δ+r sinϕ

θ̂, where

ϕ is the angle between the cone and the base, and δ is the minimum gap size. This

corresponds to a uniform shear rate γ̇ = ω/ sinϕ in the limit of vanishing δ. The

forces on the cone yield in this case shear stress Σθz and the normal stress difference
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Figure 2.5: Diagrams illustrating three common experimental geometries that ap-

proximate a simple shear flow.

Σθθ − Σzz [49, 50].

The Couette cell provides a third common example of an experimental shearing

geometry. Here, the material is placed in between two concentric cylinders, with the

inner cylinder of radius Ri rotated while the external cylinder of radius Re is fixed,

as shown in Fig. 2.5, right. The resulting flow is v = R2
eRi

R2
e−R2

i

(
Ri

r
− Rir

R2
e

)
ωθ̂ [49],

approximating a shear rate ω(R2
iR

2
e)/(R2

e − R2
i ) for Re − Ri � Ri. This time, the

rheometer measures only the shear stress Σrθ [50].



Chapter 3

Vorticity banding in dense

suspensions

3.1 Introduction

A demonstration sometimes seen at scientific outreach events involves filling a large

container with a dense suspension of cornstarch in water and having volunteers

run across it [5, 51]. That these volunteers don’t simply sink into the fluid (so

long as they are running) is a consequence of shear thickening [6, 14, 51]. This is

a phenomenon in which the steady-state viscosity of a fluid under shear increases

with increasing shear rate γ̇. One may distinguish three different kinds of shear

thickening, seen at different volume fractions φ. At lower volume fractions (e.g.

0.4 . φ . 0.55 [6,36,52,53]), one typically finds continuous shear thickening (CST),

in which the viscosity increase is gradual. Discontinuous shear thickening (DST), in

which viscosity undergoes a discontinuous jump as shear rate is increased, is found in

a narrow band above this range (e.g 0.55 . φ . 0.58 [6,36,52,53]). Finally, at higher

volume fractions (e.g. 0.58 . φ . φRCP ≈ 0.64 [36,52]) and high enough stress, the

suspension may solidify after a finite strain [54], a phenomenon known as shear

jamming (SJ). General shear-thickening systems may have complicated constitutive

behaviour, with both shear thinning and shear thickening regimes [51, 55], but this

chapter will consider the simplest case, in which the system is Newtonian at low and

high stresses. Fig. 3.1 shows representative examples of flow curves for a strain-rate
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Figure 3.1: Representative flow curves of viscosity η against shear rate γ̇ for an

upward sweep in shear rate of a Wyart-Cates model fluid (evolving Eqs. 3.2.1 to

steady-state in homogeneous shear flow, using φµJ = 0.58 and φ0
J = 0.64) at volume

fractions φ = 0.540, 0.545, . . . , 0.590. These contain examples of continuous shear

thickening (thick blue curves), discontinuous shear thickening (thin purple curves)

and shear jamming (dotted black curves).

controlled experiment.

A number of mechanisms have been proposed to explain these phenomena [5,51,

56]. In some systems, shear thickening is seen to coincide with a transition from an

ordered to a disordered state [57–59]. However, such a transition is absent in other

shear thickening systems [60, 61], ruling it out as a generic mechanism for thick-

ening. An alternative physical picture is prompted by experimental [60–62] and

simulation [63,64] studies of dense colloids under shear, which find that shear thick-

ening coincides with the formation of “hydroclusters”: transient, high-concentration

aggregates of particles. In this picture, shear thickening is a result of large lubrica-

tion forces within these clusters [5], which can form at high imposed stress but are

broken up by Brownian motion at low stress. This is, however, inconsistent with the

zero strain-rate at finite stress seen in shear jammed systems, and simulations based

on it have not shown this mechanism to yield the orders-of-magnitude viscosity in-

creases seen in DST [51]. Dilatancy—the tendency of systems of particles to spread

out when under shear so that particles can flow past one another—provides a third
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explanation [6, 65–69]. This, however, predicts thickening in attractive systems,

which are not found to exhibit shear thickening when the attraction is large [70–72],

as well as in frictionless suspensions with hard particle-particle interactions, which

are constrained by dimensional analysis to being Newtonian at fixed φ [21].

One theory that has a growing body of supporting evidence [36,39,52,69,73–83]

explains shear thickening as a consequence of repulsive interparticle forces that pre-

vent contact between particles at low stress but are overcome at high stress. These

forces are sometimes introduced as a means of stabilising suspensions which would

otherwise flocculate [78,79,83,84], or are naturally present (e.g. in cornstarch [79]).

As stronger flows are imposed, pairs of particles are able to overcome their mutual

repulsion, and the rheology evolves from one of frictionless spheres to one of fric-

tional particles in contact. (Though lubrication forces between particles diverge at

vanishing interparticle separation [14, 25], Ball and Melrose [38] show that sheared

systems of particles come within ångströms of contact, at which length scale the

continuum approximation would not be expected to work.) These systems have

different critical volume fractions, φJ, at which their viscosities diverge due to par-

ticles no longer being able to slide past one another [36,85,86]. Given a scaling law

for the divergence of this viscosity as φ −→ φJ, Wyart and Cates [56] showed that

interpolating φJ between its frictionless value, φ0
J, and its lower, frictional value, φµJ ,

with an interpolation parameter increasing sigmoidally with stress, leads to a tran-

sition from Newtonian curves at the φ −→ 0 limit, to increasingly (continuously)

shear thickening curves as φ is increased. Above a critical volume fraction φ∗ less

than but close to φµJ , the constitutive curves for shear stress against strain rate be-

come S-shaped (see Fig. 3.2). Increasing γ̇ from zero will then eventually require a

homogeneous system to discontinuously transition from the lower positively-sloped

branch of the curve to the upper one [56, 68, 74]. Additionally, when φµJ < φ < φ0
J,

the curves collapse onto the line γ̇ = 0 for Σ above a finite value ΣJ, meaning that

flow is no longer possible above this stress. The theory thus explains CST, DST and

SJ. Examples of the constitutive curves proposed by Wyart-Cates theory are shown

in Fig. 3.3 (black curves), with CST for φ < 0.57, DST for 0.57 ≤ φ < 0.58 and SJ

for φ > 0.58 (φ = 0.58 is a special case corresponding to SJ with ΣJ =∞).
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γ̇

Σ

Figure 3.2: Example S-shaped constitutive curve. Solid black: linearly stable region.

Dotted black: linearly unstable region. Dashed grey: line at constant shear rate γ̇.

Any such line that crosses the constitutive curve in the unstable region will also

cross at two points in stable regions.

The success of Wyart-Cates theory has led to much recent activity uncovering

the microscopic physics—particularly the nature of surface-to-surface contacts be-

tween particles, and their role in shear thickening [79–82, 87–92]—as well as the

macroscopic picture. It is one aspect of this macroscopic picture, concerning the

stability of uniform flow [68, 74, 93–98], that this chapter will address. In simple

shear, large, homogeneous systems at a negatively-sloped point Σ′ (s) /γ̇′ (s) < 0 on

the constitutive curve s 7→ (Σ (s) , γ̇ (s)) of steady-state total shear stress, Σ, against

shear rate, γ̇, are known—for a broad class of constitutive models—to be unstable

to small perturbations [99]. These perturbations are sometimes seen to grow into

locally-homogeneous regions, or shear bands, parallel to the flow direction. The

flow can separate along the flow gradient direction (gradient banding) or the vor-

ticity direction (vorticity banding). The flow curve of steady-state stress against

shear rate observed in a stress- or shear rate-controlled experiment or simulation

then deviates from the constitutive curve for a system that remains homogeneous.

S-shaped constitutive curves are among the two canonical examples of constitutive

curves capable of supporting steady vorticity bands identified by Olmsted [100]. In

simple shear flow, γ̇ is imposed by boundary conditions in the flow gradient direc-
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tion (e.g. no-slip at walls at y = ±L travelling at velocity v = ±γ̇Lx̂). These

boundary conditions don’t vary along the vorticity axis (ẑ in this example), and we

therefore expect γ̇ to also be constant along this axis. Consequently bands should

lie on the constitutive curve at the same value of γ̇. This constraint is compatible

with S-shaped constitutive curves: a line of constant γ̇ that crosses the constitutive

curve at a negatively-sloped point will also cross at two positively-sloped points

(see Fig. 3.2). A system initially at an unstable point can therefore separate into

locally-homogeneous bands at the same γ̇ but on different stable branches of the

constitutive curve. Added to this is a constraint imposed by the Stokes equation

requiring the normal vorticity component of the total stress (Σzz in this example)

to be constant [100]. In the case of gradient banding, by contrast, γ̇ may vary, but

the Stokes equation requires both the normal flow gradient component of the total

stress and Σ to be constant [100], the latter constraint specifying a unique point

on the S-shaped flow curve for any Σ (any horizontal line in Fig. 3.2 will cross the

constitutive curve exactly once).

In dense suspensions, this picture is complicated by two factors. The first is

concentration coupling: bands may have different volume fractions, and therefore

lie on different constitutive curves. This has consequences for flow curves, which

would otherwise be expected to be vertical at unstable imposed bulk shear stress

Σ̄, a phenomenon known as shear-rate selection [100, 101]. Instead, concentration-

coupled systems are expect to have tilted flow curves [102,103], since varying Σ̄ will

vary which values of φ and hence which constitutive curves the bands sit on. The

second factor is the impossibility of static banding, as suggested by Hermes et al. [95]:

because the solvent phase of a suspension is much more mobile than the solid phase,

any gradient in the solvent phase pressure will induce a flow of the solvent phase.

Thus, solvent and particle pressures would have to be separately balanced at the

interface between two static bands. Hermes et al. [95] show that the particle pressure

balance condition is essentially impossible to satisfy in a dense suspension, so that

banding can’t be steady, and must be accompanied by particle migration. Consistent

with the suggestion of Hermes et al., experiments on suspensions have revealed an

unsteady strain rate signal under conditions of constant imposed macroscopic shear

March 28, 2019



stress in the DST regime, with complicated time dependence [95–97, 104]. Particle

simulations, however, had not previously succeeded in finding flow instabilities in

dense suspensions [93].

In this chapter, we introduce a dynamical one-dimensional model allowing for

inhomogeneities along the vorticity direction. The model is a generalisation the

Wyart-Cates model [56] incorporating a finite response strain for the evolution of

the frictional state of a volume element after a change in the local stress as well as

a “suspension balance model” [29,105–108] for particle migration. Through a linear

stability analysis, we determine conditions under which homogeneous flow is unsta-

ble to arbitrarily small perturbations along the vorticity axis, finding homogeneous

flow in an infinite system to be linearly unstable whenever our constitutive curve has

negative slope. We then numerically integrate our model, identifying two character-

istic long-time inhomogeneous behaviours, which we term “travelling bands” (TBs)

and “locally oscillating bands” (LOBs). We also calculate flow curves which capture

the maximal extent of the metastability of our TB and SB states. Finally, by choos-

ing parameters predicted by our model to yield unstable flow, Dr. Mari successfully

finds TBs and, transiently, LOBs, in a simulated CLM suspension, providing the

first observation of unstable flow in a particle simulation of a dense suspension. We

compare the TB profiles seen in these particle simulations with those predicted by

our model, and explore extensions to our model to see if our fit can be improved.

The results in this chapter expand on those published in [98].

3.2 Model

Here and in the rest of this chapter, we assume an imposed velocity field v̄ =

(γ̇y, 0, 0), so that the flow, flow gradient and vorticity directions are x̂, ŷ and ẑ

respectively. We only consider variations along ẑ, adopting the simplifying assump-

tion that fluctuations in particle concentration, stress and velocity gradient along

x̂ and ŷ can be neglected. We take a flow cell of size L along ẑ, with periodic

boundary conditions.
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The development of our model begins with that of Wyart and Cates [56]:

Σ = ηγ̇, (3.2.1a)

η =

{
η0 (φJ − φ)−2 if φ < φJ

∞ otherwise,
(3.2.1b)

φJ = (1− f)φ0
J + fφµJ , (3.2.1c)

f = e−Σ∗/|Σ|. (3.2.1d)

Eqs. 3.2.1 represent the Wyart-Cates model broken down into its constituent ingre-

dients. Eq. 3.2.1a is simply the definition of the shear viscosity, η, as the ratio of

the (total) shear stress Σ to the shear rate γ̇. Eq. 3.2.1b describes how this viscosity

scales as the volume fraction φ approaches a critical value φJ, the volume fraction

of jamming. Here, η0 is the power law coefficient for the divergence of the viscosity.

This scaling law is based on experiments by Boyer et al. [21], who find the same

scaling for both η and the ratio of the particle pressure to the shear rate. Eq. 3.2.1c

interpolates φJ between its frictionless value φ0
J and its frictional value φµJ using a

parameter, f , which represents the frictional state of the system. Finally, Eq. 3.2.1d

models the dependence of f on Σ based on a fit to a simulation study of this de-

pendence for the CLM [36], where f is defined as the fraction of contacts for which

friction is turned on.

Since we are interested in vorticity-axis physics, our first modification is to model

the normal vorticity component of the particle-phase stress, σp
zz, instead of the total

shear stress, Σ. To achieve this, we decompose the total stress into a fluid and a

particle phase stress. We note that the normal components of the particle-phase

stress σp scale similarly to one another [95] and thus to the particle pressure. This

was found by Boyer et. al [21] to scale in the same way as Σ, enabling us to take

Σ 7→ |σp
zz| and γ̇ 7→ |γ̇| in Eq. 3.2.1a and so write

|σp
zz| = µ−1

z η|γ̇|, (3.2.2)

with µz := |Σ/σp
zz| taken to be constant. For the range of φ considered in this

chapter, µ−1
z η0 lies within an order of magnitude of the solvent viscosity ηf , and so

we simplify our model by taking µ−1
z η0 7→ ηf .
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Our second modification is to add dynamics to the evolution of f . Specifically,

we take f 7→ f ∗ in Eq. 3.2.1d, with f ∗ a target value towards which f undergoes a

linear relaxation, with relaxation strain γ0:

∂tf = −|γ̇|
γ0

[f − f ∗] . (3.2.3)

As well as being a minimal dynamics, this relaxation is consistent with that found

in simulations of a homogeneous system [93]. The choice of a relaxation strain, as

opposed to a relaxation time, reflects the fact that the dynamics of f relate to the

opening and closing of contacts via advection [93].

Our final modification is to allow for concentration flux. We model particle

migration using the suspension balance model [29,105]

∇ · (φσp) + φF h = 0, (3.2.4)

a two-fluid model [29, 105–108] in which the hydrodynamic drag force per particle

phase unit volume, φF h, acts like an external force on the particle phase. Using a

lubrication approximation for interparticle interactions, the hydrodynamic drag is in

general a configuration-dependent linear combination of relative velocities, vp − v̄,

relative angular velocities, ωp − ω̄, and the symmetrised velocity gradient. We

simplify this model considerably, first taking∇·(φσp) 7→ φ∇·σp, and then taking the

Stokes drag force per unit volume due to one particle, F h = −ζ (vp − v̄). Recalling

that we are imposing v̄z ≡ 0 and neglecting variations in the x̂ and ŷ directions,

this leaves us with a relation

∂zσ
p
zz = ζvz. (3.2.5)

Simulations [109] suggest a value for ζ varying with φ from 9
2
ηfa

−2 for φ ≈ 0 to

225ηfa
−2 when φ ≈ 0.64, where ηf is the solvent viscosity and a is the particle radius,

but the small (of order 10−3) size of variations in φ seen in our study motivates us to

adopt the simplification that ζ is a constant. Finally, conservation of particle mass

requires that ∂tφ+∇ · (φvp) = 0. This suggests a further approximation, similar in

nature to our previous one: φvp ≈ φ̄vp. Defining a rescaled drag constant α := ζ/φ̄,

which we take as a model parameter, this gives us

∂tφ = −α−1∂2
zσ

p
zz. (3.2.6)
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We now non-dimensionalise the model, choosing dimensionless units in which

our unit of stress is σ∗, our unit of viscosity is ηf and our unit of length is L. To this

end, we define non-dimensional quantities σ̃ := σp
zz/σ∗, η̃ := η/ηf , ˜̇γ := γ̇/

(
η−1
f σ∗

)
,

t̃ := t/ (σ−1
∗ ηf ), z̃ := z/L and α̃ := α/ (L−2ηf ), where L is the size of our system

along ẑ and σ∗ := µ−1
z Σ∗. This yields the non-dimensionalised form of the model

∂t̃f = −
∣∣˜̇γ
∣∣

γ0

[
f − e−1/|σ̃|] , (3.2.7a)

∂t̃φ = −α̃−1∂2
z̃ σ̃, (3.2.7b)

|σ̃| =
[
(1− f)φ0

J + fφµJ − φ
]−2 ∣∣˜̇γ

∣∣ . (3.2.7c)

Multiplying both sides of Eqs. 3.2.7a and 3.2.7b by γ0, changing variable from t̃ to

˜̃t := t̃/γ0, and changing parameter from α̃ to ˜̃α := α̃/γ0 has the effect of rescaling

the strain γ := |γ̇|t, since
∣∣˜̇γ
∣∣ ˜̃t =

∣∣˜̇γ
∣∣ t̃/γ0 = γ/γ0.

For the rest of this chapter, except where explicitly noted, we will simplify our

notation, neglecting the tildes above our non-dimensionalised quantities, and the

double-tildes above ˜̃t and ˜̃α. We will also write σ for |σ| and γ̇ for |γ̇|, leaving us

with equations

∂tf = −γ̇
[
f − e−1/σ

]
, (3.2.8a)

∂tφ = α−1∂2
zσ, (3.2.8b)

σ = ηγ̇, (3.2.8c)

η =
[
(1− f)φ0

J + fφµJ − φ
]−2

, (3.2.8d)

γ̇ =
σ̄

η̄
, (3.2.8e)

where the apparent sign change on the RHS of Eq. 3.2.8b is a consequence of the

negative sign of σp
zz in dense suspensions [14]. We set φµJ = 0.58 (corresponding to

Coulomb friction with a coefficient µ ≈ 1 [21, 36]) and φ0
J = 0.64 [44, 110], after

which our model has three free parameters: σ̄, φ̄ and α.

To find vorticity bands, we will consider a stress-controlled protocol in which

we impose a volume-averaged stress σ̄ := L−1
∫ L

0
σdz and allow the shear-rate to

evolve in response. (A shear rate-controlled system initially at rest would remain

on the linearly stable lower branch of the constitutive curve until γ̇ is raised above
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Figure 3.3: Black curves: homogeneous constitutive curves for linearly spaced vol-

ume fractions φ = 0.550, 0.555, · · · , 0.600. These constitutive curves are identical to

those of the Wyart-Cates model [56] for particle pressure or shear stress. Coloured

curves: Neutral stability contours, surrounding the region in which homogeneous

flow is linearly unstable, for linearly spaced α−
1
2 = 0.00000, 0.00003, · · · , 0.00045.

the maximum shear rate of that branch, at which point the system would jump to

the linearly stable upper branch.) We will also impose a volume-averaged volume

fraction φ̄ := L−1
∫ L

0
φdz, which will remain constant in time thanks to mass con-

servation. Writing η̄ := L−1
∫ L

0
ηdz, Eq. 3.2.8c gives us γ̇ = σ̄/η̄, a consequence of

the invariance of γ̇ along ẑ.

3.3 Instabilities

3.3.1 Linear stability analysis

A system in an initially homogeneous state is linearly unstable if arbitrarily small

spatial perturbations get larger with time. For our simple model, Eqs. 3.2.8, this is

something we can determine analytically. We consider an initially steady, homoge-



3.3. Instabilities 27

neous system at imposed bulk stress σ̄ and bulk volume fraction φ̄, so that

φ = φ̄, (3.3.9)

σ = σ̄, (3.3.10)

f = e−1/σ̄, (3.3.11)

γ̇ =
[
φ0

J −
(
φ0

J − φµJ
)
f − φ̄

]2
σ̄. (3.3.12)

We then perturb the profiles of our dynamical variables f and φ with zero-mean

small-amplitude perturbations δf and δφ, so that f = e−1/σ̄ + δf (z, t) and

φ = φ̄+ δφ (z, t). We assume that these perturbations are small enough that we

can take the linear-order Taylor expansion of Eqs. 3.2.8a and 3.2.8b about the ho-

mogeneous steady state to be exact,

∂tδf = −γ̇δf + 2σ̄−
1
2 γ̇

1
2 e−σ̄

−1 [(
φ0

J − φµJ
)
δf + δφ

]
,

∂tδφ = 2α−1σ̄
3
2 γ̇−

1
2∂2

z

[(
φ0

J − φµJ
)
δf + δφ

]
.

(3.3.13)

This can be solved by taking the Fourier expansions δf =
∞∑

k=−∞
δf̂k e

2πikz and

δφ =
∞∑

k=−∞
δφ̂k e

2πikz, yielding, for each k-mode (except the k = 0 mode which van-

ishes for δf and δφ),

∂t


 δf̂k

δφ̂k


 =


 −γ̇ + 2 (φ0

J − φµJ) e−σ̄
−1
σ̄−

1
2 γ̇

1
2 2 e−σ̄

−1
σ̄−

1
2 γ̇

1
2

−8π2 (φ0
J − φµJ)α−1σ̄

3
2 γ̇−

1
2k2 −8π2α−1σ̄

3
2 γ̇−

1
2k2


 ·


 δf̂k

δφ̂k




(3.3.14)

with solution eWkt · (δf̂k, δφ̂k)T, where Wk is the matrix in Eq. 3.3.14. We note that

the quantisation of the Fourier modes of the perturbations seen here is a consequence

of the finite size of our periodic box.

Our perturbation will grow if, for some non-zero k, some eigenvalue of Wk has a

positive real part. Being a 2 × 2 matrix, Wk has eigenvalues T ±
√
T 2 −D, where

T := Tr[Wk]/2 and D := det[Wk]. If T 2 ≤ D, both eigenvalues have positive

real part iff T > 0. If T 2 > D and D > 0, both eigenvalues will be real, with

one being positive and the other negative, iff T > 0. Were D < 0, we would in

principle have two real eigenvalues with opposing sign irrespective of the sign of

T . In our case, however, D = 8π2α−1σ̄
3
2 γ̇

1
2k2 > 0, so the D < 0 case does not

apply. We thus see that the perturbation will grow iff T > 0. Noting that on the
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constitutive curve γ̇ (σ) for the unperturbed state with volume fraction φ, −σ dγ̇
dσ

=

−γ̇ + 2 (φ0
J − φµJ)σ−

1
2 γ̇

1
2 e−1/σ, we therefore obtain the instability criterion

dγ̇

dσ
< −8π2α−1η

1
2k2. (3.3.15)

Recalling that α here refers to ˜̃α = L2η−1
f γ−1

0 φ̄−1ζ, we see that the L −→∞ limit

gives us our usual instability criterion for large systems, dσ/dγ̇ < 0. The neutral

stability contours, corresponding to equality in Eq. 3.3.15 for the most unstable

mode, k = 1, are shown in Fig. 3.3. These show that, for every S-shaped flow curve,

there exists a critical value of α, and hence L, below which no linearly unstable

points exist on the curve. This explains the absence of linear instabilities in some

previous particle simulation studies [93].

A physical picture of how this instability works can be obtained by initially

neglecting variations in φ, noting that, as seen on the RHS of Eq. 3.3.15, concen-

tration coupling has a stabilising influence on the dynamics. In this case, Eq. 3.2.8a

shows us that a small local increase δf in f will lower the jamming fraction φJ

at that point, leading to an increase in local viscosity and thus stress, which will

in turn increase the target value f ∗ = e−1/σ that f is relaxing towards. If the in-

crease in f ∗ caused by the increase in f is larger than δf itself, the rate at which

f grows, determined by the now greater distance between f and f ∗, will increase.

Formally, δf evolves at a rate ∂tδf = −γ̇
[
δf − df∗(σ(f))

df

∣∣
f=f∗

δf
]
, and so will grow

if df∗(σ(f))
df

∣∣
f=f∗

> 1. The connection with the negative-slope criterion for the con-

stitutive curve γ̇ (σ) = σ/η (σ) comes from the fact that the inequality dγ̇/dσ < 0

requires the viscosity increase induced by a stress increase to outweigh the stress

increase itself, i.e. δσ < γ̇ dη
dσ
δσ (since a+α

b+β
< a

b
iff α

β
< a

b
, where b > |β| > 0). As

before, the viscosity is increased via an increase in f (noting that f ≡ f ∗ on the

constitutive curve), and it is this shared mechanism that yields our criterion, since it

means that locally, df∗(σ(f))
df

∣∣
f=f∗

= γ̇ df∗(σ)
dσ

dη(f)
df

∣∣
f=f∗

(since dσ(η)
dη

= γ̇), while on the

constitutive curve, γ̇ dη
dσ

= γ̇ dη(f∗)
df∗

df∗(σ)
dσ

. Negatively-sloped regions on the constitu-

tive curve thus correspond exactly to the regions in which a small increase δf in the

local frictional state f is able to create a destabilisingly large increase in the target

frictional state f ∗. The role of the volume fraction dynamics, Eq. 3.2.8b, is then

to create a concentration flux in response to spatial variations in σ. This stabilises
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the system against inhomogeneities by reducing (increasing) φ, and thus the local

viscosity, around stress peaks (troughs). This emerges from the fact that, within

our model, stress gradients imply particle migration.

At volume fractions φ̄ > φµJ , there is a critical stress σJ = −1/ log
(
φ0J−φ̄
φ0J−φ

µ
J

)
above

which the viscosity diverges and the only homogeneous flows possible are ones with

vanishing shear rates, i.e. jammed flows. It is not obvious that the previous discus-

sion applies to this regime, so we treat this separately here. We first consider the

stability of systems at stresses σ̄ / σJ. The slope dσ/dγ̇ is discontinuous at σJ, so

Eq. 3.3.15 does not immediately imply linear stability. Instead, we use the instabil-

ity criterion in the form Tr[Wk] > 0, where it is clear that as γ̇ −→ 0 from above,

Tr[Wk] −→ −∞ for any mode k. This shows that, for any finite α, the system is

linearly stable within some neighbourhood of σJ. Taking γ̇ −→ 0 in Eq. 3.3.14 also

gives us insight into the linear stability of the system for σ̄ ≥ σJ. We see that in

this limit, perturbations δf neither shrink nor grow, while

δφ = −
(
φ0

J − φµJ
)
δf. (3.3.16)

Small perturbations will not change η̄, and thus γ̇, up to first order. A small non-zero

γ̇ might, however, be created by higher-order effects, so we must consider whether

this would lead to the growth or shrinkage of the otherwise frozen δf . Applying

Eq. 3.3.16 to the top row of Eq. 3.3.14 for each mode k, we obtain the result

∂tδf = −γ̇δf, (3.3.17)

allowing us to conclude that the jammed homogeneous state is always linearly stable.

3.3.2 Large-strain behaviour

We numerically solve Eqs. 3.2.8, and report the details of the numerical method

in §3.6. Evolving systems whose initial conditions are homogeneous states subject

to small perturbations at linearly-unstable points on the constitutive curve leads

to the identification of two limiting (t −→ ∞) unsteady behaviours. In the most

common case, field-variable profiles consist of pulses of fixed shape travelling at a

constant speed c in a given direction (Fig. 3.4, left). We call this a “travelling band”
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Figure 3.4: Large-strain stress (green) and volume fraction (red) profiles of the model

(Eqs. 3.2.8) at
(
α, σ̄, φ̄

)
= (9× 108, 3, 0.575) (left) and

(
α, σ̄, φ̄

)
= (9× 108, 7, 0.575)

(right). The left-hand plots show a travelling band (TB) state, in which a pulse

travels at a constant speed in a spontaneously chosen direction. The right-hand

plots show a locally oscillating band (LOB) state, in which two pulses seem to

travel in opposite directions, leading to an interference pattern in which a peak

oscillates between two points half a box-width apart every T/2 time units, where T

is the period.

(TB) state. This state necessarily has a steady shear rate, since γ̇ = σ̄/
∫ 1

0
ηdz and

the viscosity profile η (z) does not change shape over time. We also characterise a

second large-strain behaviour in which profiles correspond to two pulses travelling in

opposite directions to one another and interfering, creating a standing pattern with

a peak that oscillates between two points half a box-width apart from one another

(Fig. 3.4, right). Systems in this second state, which we refer to as a “locally

oscillating band” (LOB) state, have an oscillating shear-rate, a behaviour that has

also been seen in experiments [95,96].

TB and LOB states are also usefully characterised by the behaviours of the

Fourier modes φ̂k and f̂k. In the case of TB states, any scalar field A in our model,

such as σ, f or φ, will satisfy A (z, t) = A (z − ct, 0). This in turn satisfies the

transport equation ∂tA + c∂zA = 0 and we see that Âk (t) = Â (0) e−2πickt, so that∣∣∣φ̂k
∣∣∣ and

∣∣∣f̂k
∣∣∣ must be constant for each k. For LOB states, by contrast, we find

that
∣∣∣φ̂k
∣∣∣ and

∣∣∣f̂k
∣∣∣ oscillate in time, but that arg

(
φ̂k

)
and arg

(
f̂k

)
are constant.

Of note, too, is that the difference in phase angle between subsequent k-modes is
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also constant. By looking at the time-evolution of the amplitudes and phases of

the Fourier modes φ̂k and f̂k, these characteristics, illustrated in Fig. 3.5, provide a

convenient way to determine how close a system is to its limiting TB or SB state.

Choosing a representative α = 109, we obtain metastable flow curves, shown in

Fig. 3.6, for stress sweeps of TB and LOB states at two volume fractions, φ̄ = 0.575

and φ̄ = 0.582, chosen so as to straddle the frictional jamming fraction φµJ = 0.58.

These show that at certain values of the bulk parameters φ̄ and σ̄, the system is able

to support both TB and LOB states, depending on the initial conditions used when

evolving Eqs. 3.2.8. To obtain these curves, we start by finding a TB or LOB state

with which to begin our sweep. By selecting appropriate values of σ̄, we are able

to do this by perturbing a state on the constitutive curve and evolving it until the

dynamic long-time state is reached. Specifically, TB states are found by perturbing

the homogeneous systems at
(
φ̄, σ̄

)
= (0.575, 3) and

(
φ̄, σ̄

)
= (0.582, 3), while LOB

states are found by perturbing
(
φ̄, σ̄

)
= (0.575, 7) and

(
φ̄, σ̄

)
= (0.582, 8). Starting

from a profile obtained in this way, we quasi-statically sweep σ̄ both up and down

from these starting values, waiting at each step for the long-time state to be attained

before incrementing the stress again. We characterise the state in Fourier space, as

per the previous paragraph. By choosing sufficiently small stress increments, we

hope to explore the maximum range in σ̄ at which TB states and LOB states can

exist. The points at which the black and turquoise curves in Fig. 3.6 collapse onto

the grey homogeneous curve occur after a stress increment ∆σ̄/σ̄ ∼ 10−2, at which

point the state was judged to have reached the limit of its metastability range. We

do not find any significant differences in the behaviours below and above frictional

jamming, in contrast to experiments, which have found chaotic strain-rate dynamics

in the φ̄ > φµJ regime [95].

The profiles of the TB and LOB states, shown in Fig. 3.7, provide some insight

into what determines the limits of the metastability ranges for TB and LOB states

shown in Fig. 3.6. For TB profiles, we see that the high-stress band widens with

increasing σ̄, with the width of the flat low-stress band almost vanishing at the

highest σ̄ in which TB states are still metastable. At the lowest metastable σ̄, we see

that the high-stress band is becoming narrow. LOB states show similar behaviour,
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Figure 3.5: Trajectories in the Argand plane of φ̂k (top row) and f̂k (bottom row)

for k = 1, · · · , 6 (darker colour denotes higher k) for a TB state (left column) and an

LOB state (right column) at the same
(
φ̄, σ̄

)
= (0.575, 10). For a given trajectory,

the curve gets thicker and less faded with increasing strain. We see that travelling

bands are characterised by Fourier modes that attain a constant amplitude, while

locally oscillating bands are characterised by Fourier modes that attain a constant

phase.



3.4. Comparison with particle simulations 33

10−5 10−4 10−3 10−2

ηf γ̇/σ
∗

10−1

100

101

102

σ̄
/σ
∗ φ̄ = 0.582 φ̄ = 0.575

TBLOB

Figure 3.6: Black (blue) curves: metastable flow curves showing the maximum

extent in σ̄ at which the TB (LOB) state can exist for α = 109 at φ̄ = 0.575 and

φ̄ = 0.582. Solid blue: mean shear rate. Dashed blue: shear rate extrema. Grey

curves: the underlying constitutive curves at those volume fractions; dotted sections

correspond to linearly unstable regimes. Shaded region: region in which the k = 1

mode has eigenvalues with non-vanishing imaginary components.

with vanishing low-stress band widths at shear rate maxima and narrowing high-

stress band widths at shear-rate minima. This suggests that band width as a fraction

of box size is the constraint that determines the metastability range of both TB and

LOB states. We also note that the entire dynamics of the LOB state lies within

the region in which the most unstable mode, k = 1, has eigenvalues with a non-zero

imaginary part, and thus an oscillatory component to the growth of perturbations,

which may form an additional constraint for LOB states.

3.4 Comparison with particle simulations

We test the predictions of our model against a particle simulation of 8000 bi-disperse

spheres of radius a and 1.4a, with both species taking up an equal total volume.

These are contained within a triperiodic box with size Lx = 10.2a in the x-direction,

Ly = 10.2a in the y-direction, and Lz = 815a in the z-direction, so that the bulk

volume fraction of particles is φ̄ = 0.58. In these simulations, Dr. Mari imposes

a simple shear flow using Lees-Edwards periodic boundary conditions [111] and
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Figure 3.7: Profiles of TB and LOB states on the metastable flow curve at φ̄ shown

in Fig. 3.6 for bulk stresses σ̄ spanning the full metastability range of the given state.

Left: TB stress profiles. Right: LOB stress profiles at shear rate minima. Right,

inset: LOB stress profiles at shear rate maxima. Lighter colour means a higher

imposed σ̄. [We note that numerical artifacts are evident at the peaks of certain TB

profiles, a consequence of the finite size of our grid spacing (c.f. §3.6). These are

small enough not to impact our conclusions about the TB profiles, and do not have

a noticeable effect on the flow curves in Fig. 3.6.]

control the bulk shear stress Σ̄. While the model controls for σ̄ rather than Σ̄,

these behave similarly and so this should not matter. Particles interact through

short-ranged lubrication forces as well as contact forces modelled using the Critical

Load Model [36], in which contacts are frictionless below a critical normal force F∗,

and frictional with coefficient µ above it. The simulations use µ = 1, a value that

leads to steady-state homogeneous behaviour consistent with Eq. 3.2.8c for the same

choices of φµJ = 0.58 and φ0
J = 0.64 as we use when exploring our model [112]. A

regularisation length δ = 10−3 is chosen to cut off the divergence of the lubrication

forces between particles (c.f. §2.4). We set γ0 = 0.023, based on a simulation study

for the stress relaxation of a homogeneous system [93]. Finally, because the particle

simulations only consider short-ranged lubrication (c.f. §2.4), the appropriate choice

of drag coefficient ζ is that of the dilute limit (i.e. the limit in which many-body

hydrodynamics is neglected), ζ = 9
2
ηfa

−2. Thus, α = L2η−1
f γ−1

0 φ̄−1ζ = 1.3× 108.

These parameter values are, according to our model, capable of supporting TB

and LOB states. Our particle simulations confirm this prediction, finding TBs at
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Figure 3.8: Space-strain colour plots of local stress and local volume fraction against

strain at a bulk volume fraction φ̄ = 0.58 and rescaled drag parameter α = 1.3×108

for the inhomogeneous large-strain states of the continuum model (left) and direct

particle simulations (right). We show a TB generated from our model for σ̄ =

6.525 (bottom left), and a LOB generated from our model for σ̄ = 7.25 (top left).

We compare this to particle simulation data for σ̄ = 11.8 (top right), which show

TB behaviour, and particle simulation data for σ̄ = 13.2 (bottom right), which

transiently show LOB behaviour between strains γ = 2.75 and γ = 9.35 (dashed

white lines). We also plot the strain rates (line graphs, bottom row of each block)

during this evolution.
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σ̄ = 11.8, and, transiently, LOBs at σ̄ = 13.2. We show the space-strain plots of the

σ, φ and f profiles that we find at these σ̄ values in Fig. 3.8 (right), and compare

them with TB and LOB profiles generated from our model in Fig. 3.8 (left). We also

compare their shear rate dynamics (bottom row). We use different σ̄ for evolving our

model than were used in the particle simulations to obtain the TB and LOB states:

at
(
α, φ̄

)
= (1.3× 108, 0.58), the bulk stresses σ̄ = 11.8 and σ̄ = 13.2 are well outside

the linearly unstable region predicted by our model. Indeed, our metastability study

at the more unstable α = 109 (Fig. 3.6) suggests that these stresses are outside the

metastable TB and LOB regions too. We instead use σ̄ = 6.525 to obtain a TB

state in our model, and σ̄ = 7.25 to obtain a LOB state. We see that at σ̄ = 11.8,

our particle simulations show σ, φ and f profiles that are similar in shape to the

TB state we find in our model, and likewise travel at a constant speed in a given

direction. At σ̄ = 13.2, the behaviour between strains γ = 2.75 and γ = 9.35, though

transient, has dynamics that are clearly similar to what is seen in the LOB states

of our model. The γ̇ dynamics, by contrast, do not show the steady or oscillatory

behaviour seen in TB or LOB states produced by our model, though this may be due

to the large amount of noise in the shear rate signal, masking any such behaviour.

We nonetheless have, overall, strong qualitative evidence that we have found our

predicted instabilities in our particle simulations, albeit not at the values of σ̄ we

expected.

The successful prediction of TB and LOB states, as well as the differences be-

tween the TB and LOB states predicted in the model and seen in the particle

simulations, are likely to be a consequence of the minimal nature of our model. One

might hope that behaviour generated from a simplified model will be due to generic,

underlying physics which should still be present in a more sophisticated model. In

the case of our model, we have built it out of ingredients which are generic in them-

selves. The Wyart-Cates model, for instance, should hold to some extent in any

suspension which undergoes a transition between non-frictional and frictional parti-

cle interactions as stress is increased. Our frictional state dynamics provide a second

example, as they could be considered a leading-order description of a more general

dynamics ḟ = −γ̇ g(f), expanded around the fixed point f ∗. However, the minimal
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nature of the model means that factors that could have a significant impact on the

observed behaviour in our particle simulations are not taken into account. Most sig-

nificantly, we take no account of shear plane details. These include features linked to

the thickening transition, such as the appearance of local stress fluctuations [53] or

force-chain networks [36,39,113] which may buckle [114] with an out-of-plane com-

ponent, thus coupling shear-plane physics to the vorticity axis. Finite-size effects

in the shear plane caused by the small area of this plane in our particle simulations

constitute another example of shear plane physics our model cannot account for.

One important source of error to consider is our proximity to the critical volume

fraction in the Wyart-Cates model [112]. Consider the Wyart-Cates viscosity in its

general form [56], η = η0 [(1− f)φ0
J − fφµJ − φ]

−ν
. Any error in the values of η0, φ,

φµJ , or φ0
J, or an underestimate of ν, leads to a relative error |δη/η| ∼ 1 as η −→∞.

(An overestimate of ν by an amount ε induces a relative error that scales as ηε.)

Thus, even a best case scenario in which the form of our model is correct would

not guarantee a viscosity accurate to better than an order of magnitude. This could

explain the factor-two discrepancy in the σ̄ values at which TB and LOB states were

found in the model and simulations. This would, in turn, explain the shear rate and

strain scale mismatch between the particle simulations and model in Fig. 3.8.

We can gain further insight into the potential sources of disagreement between

our model and the particle simulations by testing the equations that comprise the

model separately in Fig. 3.9, using the particle simulation data of Fig. 3.8 for a TB

state and an LOB state at a representative strain γ = 6. This figure directly tests

Eqs. 3.2.5, 3.2.8b, 3.2.8a and 3.2.8c, though the second row tests Eq. 3.2.8b only

after integrating both sides from 0 to z in order to avoid noise from differentiating

σ twice. The first two rows of Fig. 3.9 provide strong support for the concentration

dynamics we adopt in our model, justifying the simplifications in Eqs. 3.2.5 and 3.2.6

that neglect variations in φ. We also see, in the third row of Fig. 3.9, remarkable

qualitative similarities between the profiles of ∂tf and − γ̇
γ0

[
f − e−1/σ

]
. However,

variations in − γ̇
γ0

[
f − e−1/σ

]
are larger than those in ∂tf , which is also shifted to

lower values as compared to − γ̇
γ0

[
f − e−1/σ

]
, and able to change sign (e.g. in the

trough at z ≈ 0.55). Thus, Eq. 3.2.8a appears to be approximately an affine trans-
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Figure 3.9: Direct testing of Eqs. 3.2.5, 3.2.8b, 3.2.8a and 3.2.8c using particle sim-

ulation data exhibiting TB behaviour at σ̄ = 11.8 (left column) and LOB behaviour

at σ̄ = 13.2 (right column), as in Fig. 3.8, at a representative strain γ = 6. First row:

∂zσ (violet) and −αv (turquoise). Second row: ∂tΦ (violet) and [∂zσ]z0 (turquoise),

where Φ(z) :=
∫ z

0
φ (z′) dz′ and [∂zσ]z0 := ∂zσ (z)− ∂zσ (0). Third row: ∂tf (vio-

let) and − γ̇
γ0

[f − f ∗], where f ∗ := e−1/σ (turquoise). Fourth row: σ (violet) and

1
10
ηWCγ̇ (turquoise), where ηWC := [(1− f)φ0

J − fφµJ − φ]
−2

. Annotation “×10ν”:

scale factor for the corresponding row (e.g. the TB snapshot has ∂zσ (0) ≈ 2× 102).
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formation away from the true equation for the dynamics of f , suggesting a tweak

to our estimate of γ0 and the form of f ∗ (σ) could improve our description. When

testing Eq. 3.2.8c in the fourth row of Fig. 3.9, however, we see little correspondence

between the local Wyart-Cates viscosity, ηWC := (φJ − φ)−2, and the true viscosity

η (z) = σ (z) /γ̇. This discrepancy is likely exaggerated by the fact that since we

are near jamming, a small amount of noise in f and φ can lead to arbitrarily large

overestimates of ηWC.

One assumption of our model is that, aside from the volume fraction dynamics,

variables depend only on a local description of the system. This is reasonable if all

variables depend on microstructural details at the same scale, which can then be

taken as the infinitesimal length of a coarse-grained system, but works less well if

this is not the case. One important large-scale phenomenon known to play a role

in the thickening of suspensions is, as previously mentioned, the formation of force

chains. These are composed of particles in frictional contact with each other, making

f a strong candidate for inducing non-local effects on the suspension behaviour. We

therefore consider an extended model which accounts for small non-local effects due

to f ,

∂tf = −γ̇
[
f − e−σ−1 − l2∂2

zf
]
, (3.4.18a)

∂tφ = α−1∂2
zσ, (3.4.18b)

σ =
[
(1− f)φ0

J + fφµJ −m2∂2
zf − φ

]−2
γ̇. (3.4.18c)

Eqs. 3.4.18a and 3.4.18c may be viewed as minimal phenomenological implemen-

tations of physics that shrinks local extrema in f (Eq. 3.4.18a) and reduces their

effect on η (Eq. 3.4.18c). More explicitly, the modifications can arise by taking f

in φJ (f) and f ∗ (σ (f, φ)) to the non-local (w ∗ f) (z) :=
∫ L

0
w (z − ζ) f (ζ) dζ for a

zero-centred weight function w. Assuming w to be highly peaked and step-like, we

can approximate

(w ∗ f) (z) ≈ 1

2δ

∫ z+δ

z−δ
f (ζ) dζ

≈ f (z) +
1

3
δ2∂2

zf (z)

for δ � 1, where the second approximation comes from Taylor expanding around
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Figure 3.10: TB profiles for a system with φµJ = 0.585, φ0
J = 0.646, φ = 0.58 and

σ̄ = 2.9. Left: TB profiles for varied α, l = m = 0. Centre: TB profiles for varied l,

α = 9× 108, m = 0. Right: TB profiles for varied m, α = 9× 108, l = 0.

δ = 0. We then see that

φJ (w ∗ f) ≈ φJ (f) +
dφJ

df
(f) δf,

f ∗ (σ (w ∗ f, φ)) ≈ f ∗ (σ (f, φ)) +
∂f ∗

∂f
(f, φ) δf,

where in this case δf = 1
3
δ2∂2

zf (z). This leaves us with modifications

f ∗ 7→ f ∗ +
2

3

(
φ0

J − φµJ
)
δ2σ−

1
2 γ̇−

1
2f ∗∂2

zf

φJ 7→ φJ −
1

3
δ2
(
φ0

J − φµJ
)
∂2
zf.

Following the simplifying assumption that for any given system we can treat the

coefficients of ∂2
zf as approximately constant during the evolution, we can finally

absorb these coefficients into the parameters l2 and m2 of Eqs. 3.4.18.

We summarise the effect on our stress profile of our non-local parameters l and

m, as well as that of α (which is also a non-local parameter), in Fig. 3.10. This shows

how TB profiles generated by our model (coloured curves) at
(
φ̄, σ̄

)
= (0.58, 2.9) vary

as each parameter is separately varied, with the unchanged parameters being set to

zero in the cases of l and m, and 9× 108 in the case of α. We see that, as expected,

increasing l or m reduces the height and curvature of the stress peak. Increasing α,

by contrast, localises the stress peak within an increasingly narrow region of the box,

resulting in a higher and sharper peak. This makes physical sense, since a higher
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value of α means a slower migration of particles in response to stress gradients which

are therefore able to build up more easily. This discussion leads us to expect that l2

and m2 have the effect of stabilising homogeneous states. Indeed, the effect of m in

the linear stability analysis of Eqs. 3.4.18 is to take (φ0
J − φµJ) 7→ (φ0

J − φµJ −m2k2)

in Eq. 3.3.14, while that of l is to add a term −l2k2 to W 11
k , where Wk is the matrix

in Eq. 3.3.14. Increasing l or m therefore strictly decreases the trace of Wk without

affecting the sign of its determinant, thus stabilising the homogeneous state.

3.5 Conclusion

In this chapter, we have presented a model that predicts dynamic instabilities at

negatively-sloped regions on the constitutive curve, so long as the flow cell is large

enough along the vorticity direction. Using Dr. Mari’s particle simulations, we were

able to successfully confirm this prediction, although significant quantitative dis-

crepancies between, e.g., the bulk stress σ̄ at which the model predicts one should

find TB and LOB states, and the σ̄ at which particle simulations actually find these

states, exist. Direct testing of the ingredients of our model on particle simulation

data shows that our model captures φ dynamics extremely well, and f dynam-

ics qualitatively well. We see less support for the Wyart-Cates expression for the

stress itself, though this might be due to proximity to the jamming point, which can

amplify the effects of noise by an arbitrarily large amount. More generally, the quan-

titative mismatch between our model predictions and the particle simulations could

be due to our proximity to the jamming point, coupled with the uncertainty inherent

in the values chosen for constants such as frictional jamming, φµJ . Nonetheless, our

ability to predict and find TB and LOB states in a particle simulation suggests that

our model successfully captures the generic physics that underlies shear thickening.

This provides further support for the Wyart-Cates model of shear thickening, and

further emphasises and clarifies the role of particle migration in the DST regime:

small concentration fluctuations play a significant role in the rheology of suspen-

sions close to jamming, something previously reported for colloidal glasses in pipe

flow [115].
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Experimental evidence of instabilities provided part of the motivation for this

chapter. This consisted, in particular, of observations of unsteady shear rates [95,96].

The shear rate dynamics of the LOB state is consistent with one kind of unsteady

flow observed in such experiments, in which γ̇ is seen to oscillate periodically [95,96].

However, stress profiles in the LOB state evolve in a manner suggestive of a pair of

solitons travelling in opposite directions at constant speed and interfering with one

another, a behaviour dependant on the adoption of periodic boundary conditions.

It is therefore unlikely that LOB states could exist in an experimental system. We

are also unable to obtain with our model the chaotic flow seen above φµJ and σJ

by Hermes et al., even by considering the effect of non-zero inertia in the system

(see §3.7). Part of the explanation for this could lie in coupling between the inertia

of the rheometer and the suspension [96]. More fundamentally, suspensions can jam

into a solid, particularly at the high volume fractions and stress at which Hermes et

al. find chaos, but our model is only able to approach jamming asymptotically. If

chaos involves, for instance, coupling between a jammed and a flowing band, this

could explain our inability to find it with our model.

Encouragingly, a recent paper by Saint-Michel et al. [97] describes observations

strongly suggestive of TB behaviour in a suspension of cornstarch. Using ultrasound

imaging, they observe inhomogeneous behaviour in the flow-component vx of the

particle-phase velocity, with low-velocity bands travelling at a constant speed along

the vorticity axis. This is reminiscent of the vz behaviour seen in our model and

in particle simulations (Fig. 3.11), and could be interpreted as a consequence of

coupling between a vz band and the boundary of the suspension. Furthermore, we

see in the top-right of Fig. 3.8 that bands cross the simulation box, of size 815.34

particle radii, six times between strains γ ≈ 2.75 and γ ≈ 9.35. This corresponds

to a band speed csim = 741 particle radii per units of strain. At applied shear stress

Σ̄ = 12 Pa, Saint-Michel et al. [97] find a band with velocity c ≈ 14 mm s−1 at a

shear rate γ̇ ≈ 1.5 s−1. With particle radii of size 0.015 mm, this corresponds to a

speed of cexp ≈ 622 particle radii per units of strain, a value similar to that of csim.

Saint-Michel et al. [97] also find evidence of weak concentration banding, further

strengthening the argument that their observations correspond to the TB states we
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Figure 3.11: Vorticity component v of the particle-phase velocity from the model

and particle simulations for the TB data shown in Fig. 3.8.

see in our model and simulation data.

The work in this chapter raises a number of interesting questions. Perhaps the

most urgent of these, if we wish to relate this work to experimental systems, is the

need to understand what the consequences of more realistic boundary conditions

would be for the instabilities we find. It is not clear what such conditions would be,

and whether it would be possible to implement them without needing a constitutive

model for the full three-dimensional system, the development of which is still an

open problem for dense suspensions [116], as discussed in the next two chapters.

As such, particle simulations may be a more promising approach to tackling this

question than further modelling.

Another open question concerns gradient banding. Static gradient banding is not

expected to be possible in dense suspensions [95], but experimental evidence [117]

exists of gradient banding involving particle migration. Due to the large system sizes

required for linear instability, such questions may be difficult to address through

particle simulations, particularly if coupling between the vorticity axis and shear

plane is involved. As such, continuum models could prove useful for exploring this

question, building on previous work [68] for the high-inertia regime.

It might also be worth considering a recent extension to the Wyart-Cates model

that allows for more complicated constitutive behaviour [55], particularly involving

shear thinning at low and high stresses. By extending that model in the same way

as we extended the Wyart-Cates model in this chapter, it might be possible to find

dynamical behaviours not seen in the current study.
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3.6 Appendix I: Time integration of the contin-

uum model

We numerically solve Eqs. 3.2.8 using the forward Euler method [118] on 512 regularly-

spaced gridpoints. Our time-stepping is done in real space, except for that due to

the ∂2
zσ term in Eq. 3.2.8b, which is done in Fourier space. The discrete Fourier

transform was performed using the FFTW package [119]. We set an initial time-step

∆t = 10−6, and determine subsequent time-steps using step-doubling [118] with an

error term ε := max
zi∈grid

|η2(zi)− η1(zi)| / 〈η〉, where the η2(zi) (resp. η1(zi)) is the

viscosity at gridpoint zi after a single forward Euler step across a time interval 2∆t

(resp. two forward Euler steps across a time interval ∆t). We choose a parameter-

dependent upper bound on ε such that halving the error tolerance does not change

the t −→ ∞ profiles. For TB states, we check this by shifting the final state in z

to get a best match between the two profiles, and for LOB states we check this by

shifting in both z and t.

All numerical results presented in this chapter adopted values φµJ = 0.58 and

φ0
J = 0.64. When preparing the initial condition for a system on the constitutive

curve at time t = 0, perturbations to homogeneous states were of the form δf =

10−3
2∑

k=1

cos (2π [kz + χk]) and δφ = 10−4
2∑

k=1

cos (2π [kz + ξk]), where the χk and ξk

are uniformly distributed random numbers in [0, 1).

Finally, we note that the numerical artifacts seen in Fig. 3.7 are a consequence

of our finite grid size. Time-series of γ̇, f̂k and φ̂k show these states to be steady,

implying that they do not result from a lack of convergence in time. As seen in

Fig. 3.7, the artifacts are not systematically present at all points on a given stress

sweep. Since they have no visible impact (e.g. adding noise) on our results in

Fig. 3.6, we are confident in the reliability of our results despite the occasional

presence of the artifacts.
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3.7 Appendix II: Inertial model

As seen in §3.3.1, homogeneous flow is linearly stable in our model for all (finite)

parameter values as we approach or pass the jamming stress σJ. We check here if

including inertia in our model allows us to find a Reynolds number above which ho-

mogeneous jamming is linearly unstable, in line with some other models of unsteady

flow [68,96]. We do this by adding an inertial term to Eq. 3.2.5,

Re (∂tv + v∂zv) = − (∂zσ + αφv) , (3.7.19)

where Re := ρL2σc
γ20η

2
0

is the Reynolds number, which corresponds to the non-dimensionalised

particle density. This gives us an inertial model in the form

∂tφ = − [φ∂zv + v∂zφ] , (3.7.20)

∂tf = −γ̇ [f − f ∗ (σ)] , (3.7.21)

∂tv = −
[
Re−1 (∂zσ + αφv) + v∂zv

]
. (3.7.22)

We perturb this system and linearise our evolution equations, yielding the dispersion

relation

∂t




δf̂k

δφ̂k

δv̂k


 =




−γ̇ + 2σ̄−
1
2 γ̇

1
2 e−σ̄

−1
(φ0

J − φµJ) 2σ̄−
1
2 γ̇

1
2 e−σ̄

−1
0

0 0 −2πikφ̄

−4πik (φ0
J − φµJ) σ̄

3
2 γ̇−

1
2 Re−1 −4πikσ̄

3
2 γ̇−

1
2 Re−1 Re−1αφ̄







δf̂k

δφ̂k

δv̂k


 .

(3.7.23)

To see if this modification allows us to destabilise a jammed state, we take the limit

γ̇ −→ 0, leaving us with the system of equations

∂tδf = 0, (3.7.24)

∂tδφ = −φ̄∂zδv, (3.7.25)

0 =
[(
φ0
J − φµJ

)
δf + δφ

]
. (3.7.26)
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We see that Eq. 3.3.16 holds, as in the non-inertial case, and that therefore Eq. 3.3.17

holds. The system is still linearly stable above jamming when inertia is included in

this way.



Chapter 4

Fabric tensor dynamics of dense

non-Brownian suspensions:

phenomenological modelling

4.1 Introduction

In the previous chapter, we were able to develop a one-dimensional model for the

dynamics of shear-thickening suspensions that, at least qualitatively, held up well

when tested against a particle simulation. It is therefore natural to ask what the

scope is for a more general, three-dimensional suspension model. Such a model

would require one to account for features that are necessarily absent in a model of

the vorticity axis physics, particularly the evolution and impact of microstructural

anisotropy. In suspensions under shear or extension, this anisotropy shows up in the

pair-distribution of particles, which has a peak near contact along the compressional

axis and a trough near contact along the extensional axis [36, 120–127]. This has

consequences for the constitutive behaviour of suspensions [24, 124, 128–130], such

as the presence of non-zero normal stresses [21,90,131–137], or the mechanical tun-

ability of viscosity [138,139]. Frictional contact and short-ranged repulsion between

particles, which play a crucial role in shear thickening (c.f. Ch. 3), also affect the

microstructure, leading, for instance, to fore-aft asymmetry [36, 122, 124, 140, 141].

Further influences on the microstructure include finite temperatures [77, 130, 142]

47



and mismatching between the particle and suspending fluid densities [143,144].

Many of these complicating effects can be avoided by considering a neutrally-

buoyant non-Brownian hard-sphere suspension with neither inertia nor repulsive

forces keeping particles apart, so that particles interact only through hydrodynam-

ics or frictional contact. Such a system lacks any intrinsic time scale, so that

material variables such as viscosity evolve as a function of material deformation

only [24, 70, 123, 145–147]. This system also lacks the concentration coupling and

frictional state dynamics that enabled the instabilities seen in Ch. 3, and so should

remain homogeneous under flow. In simple shear, the same dimensional constraint

implies that the stress tensor, Σ, must have shear stress proportional to the shear

rate, γ̇, and normal stresses N1 and N2 proportional to |γ̇|. (The sign dependence is

determined by the requirement of symmetry under simultaneous reflection along the

flow and flow gradient axes.) This does not imply a Newtonian rheology: experi-

ments [131–135,148–150] and simulations [87,137] find N2 to be large and negative in

sufficiently dense systems of this type. For its part, the sign of N1 remains controver-

sial, with experimental evidence existing for N1 < 0 [131,132,134,148], N1 ≈ 0 [133],

and N1 > 0 [135], all for a similar volume fraction range, 0.2 < φ < 0.55. Fewer sim-

ulation measurements of N1 in non-Brownian hard-sphere suspensions exist, but two

studies [87,151] find N1 < 0, while a third [137] finds the sign of N1 to vary with φ.

In the absence of friction, Hinch and Leal [152] have shown how the sparsity of

ingredients in this system can be harnessed to develop phenomenological constitutive

models [152]. By releasing the constraint of linearity, which is broken by the exis-

tence of frictional contacts, we might similarly hope to model frictional suspensions.

Successfully applied constitutive models of polymer solutions and melts [153] pro-

vide instructive examples. Typically, such models (e.g. the Johnson-Segalman [154]

or Giesekus [155] models) are directly or implicitly composed of a model for the

evolution of the polymer microstructure paired with an expression for the polymer

stress as a function of said microstructure. Finite time scales in these models lead

to a continuous response of the polymer stress to changes in the imposed flow. Non-

Brownian suspensions of hard particles, by contrast, have contact chains that can

break instantly if the direction of shear changes [24, 89, 145, 146, 156], and an im-
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plicit relationship is unlikely to capture the resulting particle stress discontinuities.

Accordingly, constitutive models of this system [152,157–162] follow instead the ex-

plicit route, encoding the microstructure in a symmetric rank-2 “fabric tensor” Q

representing the distribution of near-contacts.

The proposed microstructural models are rarely tested against experimental or

simulated suspensions (with Stickel et al. [159] a notable exception [159, 163]). In-

stead, usually only the resulting stress tensor is tested, or even just the shear compo-

nent of the stress [158,161,162]. Experimentally, one explanation for this lies in the

difficulty of obtaining data on the near-contact distribution of dense non-Brownian

suspensions. Such data requires imaging suspensions under viscometric flows at

high spatial resolution, a task made difficult at high density due to opacity of the

suspension. For confocal imaging, this requires accurate refractive index match-

ing [124, 164]. Alternatively, Deboeuf et al. [165] have recently obtained detailed

measurements of the pair-distribution function using X-ray tomography. Particle

simulations, for their part, can test the assumptions of a model if the microscopic

assumptions upon which they are built are consistent with the assumptions of the

model, but cannot test the validity of the model unless these microscopic assump-

tions have themselves been shown to be valid. As discussed in Ch. 3, only recently

has the importance of frictional contacts to the rheology of dense suspensions been

appreciated [166], and have simulations capable of quantitatively matching experi-

ments on dense suspensions been developed [78,87,93].

In this chapter, we harness these new numerical capabilities to test the suitability

of fabric models for the evolution of dense non-Brownian suspension microstructure.

Using a general result due to Hand [167] for the evolution of a tensor as a function

of itself and the velocity gradient tensor, we build a series of increasingly high-order

polynomial models for the fabric tensor evolution. We then fit these models against

data generated by Dr. Mari for nearly-hard, frictional, non-Brownian particles with

no particle-particle interactions other than short-ranged lubrication and frictional

contact.

The simulated suspension is equivalent to a CLM suspension with a vanishing

critical load F∗ = 0, as described in §2.4. Dr. Mari simulates 500 particles in a
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periodic cube of volume fraction-dependent edge length. As before, the simulated

suspension is bi-disperse, with particle populations of radius a and 1.4a taking up

an approximately equal total volume of suspension. The results presented here

are averaged over 250 realisations of the flow reversal. This system, lacking the

size and interpolating frictional state that generated the instabilities in Ch. 3, is

homogeneous.

We adopt shear reversal as our flow protocol, imposing a velocity vector field

v = (γ̇y, 0, 0) for γ̇ > 0 on an initially isotropic suspension until steady-state is

reached (requiring in practice five units of strain in our particle simulation), then

instantaneously inverting the direction of shear, γ̇ 7→ −γ̇, at a time we define as

t = 0. Shear reversal preserves the simplicity of shear flow, such as the linear

dependence of the microstructural evolution on γ̇ and |γ̇| imposed by dimensional

constraints, or the vanishing of xz and yz components of rank-2 tensors due to

(x, y, z) 7→ (−x,−y, z) symmetry. Shear reversal is also, however, a severe test

of the ability of a given model to capture the microstructural response to flow. As

hydrodynamic forces instantaneously change direction upon reversal, some frictional

contacts will immediately break, leading to a rebalancing of load in the frictional

contact networks formed in steady state [36, 39, 168]. There will therefore be a

corresponding instantaneous change in the contribution of interparticle contacts

to the total stress [168]. A suspension under shear reversal will experience both

lubrication-dominated and friction-dominated regimes, since the contact network

requires a finite amount of strain to rebuild in response to the new direction of

shear, during which period hydrodynamic interactions dominate [78,89,168]. Shear

reversal is also a prototype for more common rheological set-ups. In our system with

no intrinsic time scale, smooth oscillatory shear, for instance, is fully equivalent as

a function of strain to a series of shear reversals. Studying shear reversal may also

shed light on other, more complicated flows, such as biaxial shear [138, 139] or the

flow around a sphere sinking into a sheared dense suspension [54, 169, 170]. Shear

reversal therefore constitutes a simultaneously simple, stringent and generic flow

protocol with which to test microstructural models.

In this chapter, we find that no linear model can fit our particle simulation data
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for shear reversal, and that, though higher-order polynomial models can succeed,

such models are unlikely to be physically meaningful. We discuss the implications of

our result for fabric tensor models of dense suspension microstructure and stress. A

detailed interrogation of the microstructural assumptions inherent in fabric tensor

models of the microstructure follows in Ch. 5.

4.2 Fabric tensor

The divergence of hydrodynamic lubrication forces between particles at vanishing

separation and the long-range decay of perturbations to the velocity field induced

by the presence of a hard sphere [33] mean that, even allowing for lubrication break-

down and a regularising cut-off of the lubrication forces [38], pair-wise interactions—

contact and lubrication—will dominate the dynamics of the suspension. Indeed, our

particle simulations neglect long-range interactions for this reason, cutting off the

lubrication interaction when the normalised interparticle gap size h is above 0.2

(c.f. §2.4), where h := 2r/(ai + aj)− 2 for a pair of particles with radii ai and aj

a centre-to-centre distance r apart. The pair-distribution g (r) is therefore the key

microstructural characteristic. In a dense suspension, g (r) is sharply peaked at or

near contact [36,142,165,168,171,172], so we expect the forces due to particle pairs

close to or within contact to dominate. Indeed, the median gap size h̃ for pairs

with separation within the lubrication cut-off in Dr. Mari’s particle simulation stays

roughly below 10% of mean particle radius across the reversal for the representa-

tive volume fractions we will use in this study, φ = 0.4, 0.5 and 0.55, as shown in

Fig. 4.1. Given the high density of pairs near contact, and the fact that the closest

of these dominate the forces in the system, we may reasonably hope that the dis-

tribution P (p) of near-contact orientations p ∈ S2 contains all the microstructural

information needed to describe the rheology and dynamics of a dense suspension.

Directly modelling the evolution of P (p) (let alone g (r) [142, 172]) is difficult.

It is also likely to be more than is necessary to describe the stress tensor Σ, which,

as a symmetric rank-2 tensor, contains far less information than P (p). Instead,

we follow the lead of previous researchers, both in the context of suspensions [152,
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Figure 4.1: Median interparticle gap h̃ as a function of post-reversal strain |γ̇|t for

three volume fractions φ = 0.4, 0.5 and 0.55, from numerical simulations.

157–160] and more broadly (e.g. in granular [173–175], polymeric [153] or liquid

crystalline [176, 177] contexts), who instead model the de-traced second moment

of the orientational distribution, Q := 〈p⊗ p〉 − 1
3
I, or an equivalent object. In

suspensions and granular contexts where p is a (near-)contact orientation, Q is

called a fabric tensor. Since every pair with normalised centre-to-centre vector p

also has centre-to-centre vector −p, P (p) = P (−p) and all odd moments of the

orientational distribution vanish. The second moment is therefore the lowest non-

trivial moment of the distribution, so one may interpret Q as a measure of the

lowest-order anisotropy of P (p). In line with this interpretation, Q appears as the

second-order term in the spherical harmonic expansion of P (p) in tensor form [178]

(see also Appendix 4.5),

P (p) =
1

4π

(
1 +

15

2
Q : pp+ . . .

)
. (4.2.1)

Having chosen our structure tensor [152] with which to encode the microstruc-

ture, we can apply symmetric and dimensional constraints to build a general phe-

nomenological model for the microstructural evolution. Frame indifference (c.f. §2.3)

implies that any function F of a tensor T and the velocity gradient ∇v with sym-

metric and anti-symmetric parts D and Ω respectively must be of the the form [37]

F (∇v,T ) = Ω · T − T ·Ω + F̃ (D,T ) , (4.2.2)

where F̃ corresponds to F in a frame in which Ω ≡ 0. Pairing this result with a

generalisation of the Cayley-Hamilton theorem to pairs of symmetric tensors [179],
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Hand [167] showed that one can write a general equation for the evolution of a tensor

T whose rate of change is a function of itself and ∇v,

Ṫ = Ω · T − T ·Ω + α0I + α1T + α2D + α3T
2 + α4D

2

+ α5 (D · T + T ·D) + α6

(
D · T 2 + T 2 ·D

)

+ α7

(
D2 · T + T ·D2

)
+ α8

(
D2 · T 2 + T 2 ·D2

)
, (4.2.3)

where the scalar coefficients αi are analytic functions of the joint invariants I1 :=

Tr[T ], I2 := Tr[T 2], I3 := Tr[T 3], I4 := Tr[D], I5 := Tr[D2], I6 := Tr[D3], I7 :=

Tr[T ·D], I8 := Tr[T 2 ·D], I9 := Tr[T ·D2], and I10 := Tr[T 2 ·D2].

We apply Hand’s result to our system, supplemented by the additional con-

straints of tracelessness and proportionality of rates-of-change to γ̇ and |γ̇|. We

then non-dimensionalise our model, choosing |γ̇|−1 as our time unit, so that the

strain γ := |γ̇|t is our non-dimensionalised time variable. We obtain, in these units,

Q̇ = Ω̂ ·Q−Q · Ω̂ + α̂1Q+ α̂2D̂ + α̂3Q
2 + α̂4D̂

2

+ α̂5

(
D̂ ·Q+Q · D̂

)
+ α̂6

(
D̂ ·Q2 +Q2 · D̂

)

+ α̂7

(
D̂2 ·Q+Q · D̂2

)
+ α̂8

(
D̂2 ·Q2 +Q2 · D̂2

)

− 1

3

(
α̂3Î2 + α̂4Î5 + 2α̂5Î7 + 2α̂6Î8 + 2α̂7Î9 + 2α̂8Î10

)
I, (4.2.4)

where Ω̂ := Ω/|γ̇| and D̂ := D/|γ̇|, and where the α̂i and Îj are to D̂ what

the αi and Ij are to D. This is a general equation, in our reference frame where

v = (γ̇ (t) y, 0, 0), for the rate-independent fabric evolution Q̇ as a function of Q

and ∇v analytic in its arguments. Eq. 4.2.4 is not analytic about γ̇ = 0. This

is unavoidable. Taking γ̇ 7→ −γ̇ in our reference frame is equivalent to taking

x 7→ −x, which doesn’t affect the Txx component of any second-order tensor T , or

taking y 7→ −y, which doesn’t affect the Tyy component. This, combined with the

proportionality constraint, implies that Q̇xx and Q̇yy are proportional to |γ̇|. This

is acceptable, however, because γ̇ is the only source of a time scale in our system.

Thus, γ̇ = 0 corresponds to a singular regime in which nothing evolves, and it is

reasonable to define analyticity on a domain that excludes this point. Finally, we
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note that Eq. 4.2.4 can be written in component form (see §4.6) as

Q̇− = P−
[
Q+, sgn(γ̇)Qxy, Q

2
−
]
Q− + 2 sgn(γ̇)Qxy,

Q̇+ = P+

[
Q+, sgn(γ̇)Qxy, Q

2
−
]
,

Q̇xy = Pxy
[
Q+, sgn(γ̇)Qxy, Q

2
−
]

sgn(γ̇)− 1

2
sgn(γ̇)Q−,

(4.2.5)

for functions P−, P+ and Pxy analytic in their arguments, where Q± := Q11 ±Q22.

From Eqs. 4.2.5, one sees that (Q−, Q+, Qxy) is the natural basis in which to examine

models for the evolution of Q [160].

We have at this point defined the fabric tensor Q in terms of a distribution

of near-contacts P (p). To complete the definition, we must specify what particle

pairs are included in the set of near-contacts that P (p) describes. One might,

for instance, adopt the set of orientations of edges in a Delaunay triangulation

connecting the centres of particles. We instead use the computationally simpler

criterion that near-contacts are within a gap h ≤ ε for some “coarse-graining length”

ε ≥ 0. The dominant forces are due to pairs at or near contact. We might therefore

hope to find a value of ε large enough to include these dominant pairs, but small

enough to exclude pairs that contribute little to the total stress of the suspension

and mask the orientational distribution of the pairs that contribute a lot. Given

such an ε, we should arrive at a microstructural object capable of describing the

stress in the suspension and, by the same token, informing its own evolution.

Writing Qε for the fabric tensor corresponding to a given choice of ε, we further

illustrate the connection between the fabric tensor and the stress in Fig. 4.2, in which

we plot the stress Σ against the contact fabric Q0 as seen in our particle simulations

at volume fraction φ = 0.5 across the reversal at t = 0. We see qualitative similarities

between the two, such as the discontinuities in all components at the moment of

reversal. (Strictly speaking, because we are simulating nearly-hard spheres, rather

than true hard spheres, the discontinuities are rapid continuous changes over a strain

of roughly 1%, as seen in the insets to Fig. 4.2.) We also see that the sign reversal

of the xy component occurs over a similar strain scale for Σ and Q0.

Though these qualitative similarities are encouraging, modelling discontinuities

in the components of Q upon reversal through ODEs such as Eqs. 4.2.5 is not

possible. so we must instead consider a finite coarse-graining length ε > 0 which,
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Figure 4.2: Stress and fabric data from numerical simulations for a shear reversal

from a shear rate γ̇ > 0 before reversal at t = 0 to a post-reversal shear-rate −γ̇ < 0

at volume fraction φ = 0.5. Left: Stress tensor components Σxy (green, dash-dotted),

N1 = Σxx−Σyy (orange, solid) and N2 = Σyy−Σzz (purple, dashed) divided by |γ̇|.
Thick dark-shaded lines are the averaged data, while the light shaded area around

each curve is the standard deviation obtained from the individual shear reversals.

Right: Components of the contact fabric tensor Q0, with averages in thick lines and

standard deviation in shaded areas. Insets: zoom in on strains near the point of

reversal.
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Figure 4.3: Evolution of the fabric Qε for the same data as in Fig. 4.2, but for a

variety of coarse-graining lengths ε = 0 (left), 0.02 (centre) and 0.1 (right), demon-

strating how choosing ε > 0 removes the discontinuity in Qε at the moment of shear

reversal.
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Figure 4.4: Post-reversal (at t = 0) evolution of the fabric tensor components Qxx

(orange, dashed), Qyy (violet, solid) and Qxy (green, dash-dotted) for three volume

fractions φ = 0.4 (left), 0.5 (centre) and 0.55 (right) and for three coarse-graining

lengths ε = 0.01 (top), 0.02 (middle) and 0.1 (bottom), from numerical simulations.

as shown in Fig. 4.3, removes the discontinuity. In the limit of hard particles, few

particles will remain in contact an instant after reversal, so we in any case require

a finite ε to account for the dominant lubrication interactions due to particles just

out of contact. The stress, which is necessarily discontinuous upon reversal [168],

might then be modelled as a function Σ (Q,∇v), with discontinuities arising via

instantaneous changes in ∇v. In principle, modelling the stress in this way will

involve experimenting with the value of ε. However, as shown in Fig. 4.4 for three

volume fractions φ = 0.4, 0.5 and 0.55, varying ε across an order of magnitude does

not lead to significant qualitative changes in the post-reversal evolution of Qε. We

therefore choose a representative value ε = 0.02 in the rest of this chapter, except

where explicitly stated.
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Figure 4.5: Anisotropy A as a function of post-reversal strain for three volume

fractions φ = 0.4, 0.5 and 0.55, from numerical simulations.

4.3 Polynomial Hand equations

We consider dense suspensions at volume fractions φ not too far below the jam-

ming point φJ at which particles are unable to move due to overcrowding. Above

φJ, motion in any direction is prevented by contact with a particle. Since our sus-

pension is amorphous, we would expect the limiting microstructure at jamming to

be isotropic or near-isotropic, and that volume fractions close to jamming should

be at most weakly anisotropic. We confirm this expectation by quantifying the

anistropy as A := (4π)−1 ∫
S2 [4πP (p)− 1]2 dΩ, whose post-reversal evolution we

show in Fig. 4.5.

From Eq. 4.2.1, we also see that Q is a measure of the anisotropy of P (p). We

thus expect our weakly anisotropic suspension to have a correspondingly small size

of Q. This is supported by Fig. 4.4, which shows that larger coarse-graining lengths

(which correspond to more isotropic near-contact orientation distributions) have fab-

ric tensor components of smaller magnitude. More precisely, we see that the norm

|Q| :=
√

Tr[Q2] has approximate values 0.01, 0.048 and 0.0022 at respective vol-

ume fractions φ = 0.4, 0.5 and 0.55, for the most anisotropic coarse-graining length

shown, ε = 0.01. This is in comparison to the maximal value |Q| =
√

2/3 ≈ 0.816,

calculated for a unaxial distribution, such that e.g. 〈pp〉 = x̂⊗ x̂. We therefore ex-

pect that the analytic functions P−, P+ and Pxy in Eqs. 4.2.5 are well-approximated

by low-order Taylor expansions in their arguments. This in turn suggests a modular

approach of building phenomenological models for the evolution of Q, taking the
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analytic functions in Eqs. 4.2.5 to be polynomials of increasingly high degree until

a satisfactory model is obtained.

4.3.1 Linear models

Expanding the analytic functions in Eqs. 4.2.5 to linear order, we obtain

P− = a−,

P+ = a+ + b+Q+ + c+ sgn(γ̇)Qxy,

Pxy = axy + bxyQ+ + cxy sgn(γ̇)Qxy,

(4.3.6)

where the a’s, b’s and c’s are fitting parameters. Adopting this choice for the dy-

namics of P−, P+ and Pxy in Eqs. 4.2.5 yields the 7-parameter general (for our choice

of reference frame) linear model for Q̇ as a function of itself and ∇v,

Q̇− = a−Q− + 2 sgn(γ̇)Qxy,

Q̇+ = a+ + b+Q+ + sgn(γ̇)c+Qxy,

Q̇xy = sgn(γ̇)axy + sgn(γ̇)bxyQ+ + cxyQxy −
1

2
sgn(γ̇)Q−.

(4.3.7)

We adopt a method, described in an article by Cheng et al. [180], to obtain fits of

this model to data from Dr. Mari’s simulations. We calculate Q̇−, Q̇+ and Q̇xy from

numerical data via numerical differentiation, and then use linear least squares [118]

on our model with Q data taken from the particle simulation to obtain a set of

coefficients that minimise the cost function

X1 :=

∫ γ=3

γ=0

[(
Q̇data
− − P−

[
Qdata

+ , sgn(γ̇)Qdata
xy , Q2 data

−
]
− 2 sgn(γ̇)Qdata

xy

)2

+
(
Q̇data

+ − P+

[
Qdata

+ , sgn(γ̇)Qdata
xy , Q2 data

−
]

sgn(γ̇)
)2

+

(
Q̇data
xy − Pxy

[
Qdata

+ , sgn(γ̇)Qdata
xy , Q2 data

−
]

+
1

2
Qdata
−

)2
]

dγ, (4.3.8)

where γ := |γ̇|t. Increasing the upper limit of the integral in the definition of X1

decreases the weighting of the early post-reversal regime in the fit while increasing

that of the steady state. We choose the value γ = 3 for this upper limit as a com-

promise capable of yielding accurate fits to both regimes. Having obtained an initial
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Figure 4.6: Fit of the linear model described by Eq. 4.3.6 to simulation data for the

three components of Q (respectively Q−, Q+ and Qxy from top to bottom) against

post-reversal strain for φ = 0.4 (left), φ = 0.5 (center) and φ = 0.55 (right).

set of coefficients in this way, we perform a gradient descent, minimising the cost

function

X2 =

∫ γ=3

γ=0

[(
Qfit
− −Qdata

−
)2

+
(
Qfit

+ −Qdata
+

)2
+
(
Qfit
xy −Qdata

xy

)2
]

dγ, (4.3.9)

where the Qfit
ij (γ) data are obtained for each set of coefficients by numerically in-

tegrating the resulting ODE. The set of fit parameters obtained from the gradient

descent are at least a local minimizer of X2, and we adopt these as our “best fit”

parameters.

Fig. 4.6 shows the fit thus obtained of Eqs. 4.3.7 to particle simulation data for

three volume fractions φ = 0.4, 0.5 and 0.55. It is clear from Fig. 4.6 that the linear

model does a poor job of fitting the evolution of Q−, even if it yields good fits to

Q+ and Qxy. This is not a product of our fitting methodology, but a consequence

of the highly-constrained form of P− in the linear model, as we now show.

Eqs. 4.3.7 give us

Q̇− = a−Q− + 2 sgn(γ̇)Qxy. (4.3.10)

We write Q−SS and Q+SS for the pre- and post-reversal steady-state fabric tensor
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Figure 4.7: Simulation data for ∆Q− and ∆Qxy against post-reversal strain for

volume fractions φ = 0.4 (left), φ = 0.5 (centre) and φ = 0.55 (right). Eq. 4.3.14

implies that ∆Q− cannot change sign after reversal until ∆Qxy. This condition is

unambiguously violated for all of our simulation data. Insets: zoom in on the region

where the condition is violated.

Q respectively, and note that Eq. 4.3.10 implies that

0 = a−Q
+SS
− + 2 sgn(γ̇)Q+SS

xy . (4.3.11)

We then define ∆Q := Q−Q+SS and subtract the RHS of Eq. 4.3.11 from Eq. 4.3.10

to get

∆Q̇− = a−∆Q− + 2 sgn(γ̇)∆Qxy. (4.3.12)

Since Q− (γ = 0) = Q−SS
− = Q+SS

− , we see that ∆Q− (γ = 0) = 0 so that Eq. 4.3.12

has solution

∆Q− (γ) = 2 sgn(γ̇)

∫ γ

0

ea−[γ−γ′]∆Qxy (γ′) dγ′. (4.3.13)

Writing γ∗ := inf {γ : ∆Qxy (γ) = 0}, and noticing that ∆Qxy (0) = 2Q−SS
xy , we ob-

tain the result

sgn(∆Q−) = sgn(γ̇) sgn
(
Q−SS
xy

)
∀ γ ∈ (0, γ∗) . (4.3.14)

Eq. 4.3.14 gives us a necessary criterion for the ability of linear fabric tensor

models to fit shear reversal data: ∆Q− cannot change sign after reversal until ∆Qxy

does so. In Fig. 4.7, we see that this criterion is unmet for all three volume fractions

we consider. This yields the first important conclusion of this chapter: no linear

model for Q̇ as a function of Q and ∇v can fit the simulation data for shear reversal.
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4.3.2 Sources of non-linearity

One common source of non-linearity in models of microstructural evolution, seen

for instance in the liquid crystals literature [177], is the “closure approximation”

used to express 〈pppp〉 : D as a function of 〈pp〉 (or, equivalently, Q). This term

arises from the fact that two points advecting in a velocity gradient ∇v with vector

r pointing from one to the other have squared separation growing at a rate (in

Einstein notation) 2riṙi = 2riDijrj. Subtracting this term off for the case of a unit

vector p pointing from one advecting point to another, we note that −piDijpj =

−pipipjpkDjk, which corresponds to an evolution equation

ṗ = ∇v · p− ppp : D, (4.3.15)

so that advection contributes a term 〈pppp〉 : D to the evolution of 〈pp〉. The

closure approximation is then required so that the evolution of 〈pp〉 can be described

without the need for an additional equation for the evolution of 〈pppp〉. (In general,

the evolution of the nth moment of the distribution of p will depend on the n+ 2th

moment, so some type of closure approximation will inevitably be required in order

to obtain a closed set of equations for the evolution of a finite list of moments.)

We consider four closures for the rheology of rigid oriented particles, a subset of

those considered in the detailed study by Feng et al. [181] in the context of liquid

crystals. The first of these is the linear closure proposed by Hinch and Leal [182],

〈pppp〉 : D ≈ 2

15
Q+

2

7
(Q ·D +D ·Q) +

1

7
(Q : D) I. (4.3.16)

This is obtained by taking the lowest-anisotropic-order spherical harmonic expansion

of P (p),

P (p) ≈ 1

4π

(
1 +

15

2
Q : p⊗ p

)
, (4.3.17)

when calculating 〈pppp〉. Hinch and Leal [182] provide two more closures,

〈pppp〉 : D ≈ 1

5

[
6 〈pp〉 ·D · 〈pp〉 − (〈pp〉 : D) 〈pp〉 − 2

([
〈pp〉2 − 〈pp〉

]
: D
)
I
]

(4.3.18)
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Figure 4.8: Post-reversal evolution of 〈pppp〉 : D from simulation data (thick,

coloured) compared against closure approximations from the literature (thin, black)

for volume fractions φ = 0.4 (left), 0.5 (centre) and 0.55 (right). Solid: Eq. 4.3.16.

Cross-hatched: Eq. 4.3.18. Dash-dotted: Eq. 4.3.19. Dashed: Eq. 4.3.20.

and

〈pppp〉 : D ≈ (〈pp〉 : D) 〈pp〉+ 2

[
〈pp〉 ·D · 〈pp〉 − 〈pp〉

2 : D

Tr[〈pp〉2]
〈pp〉2

]

+ exp

[
2
(
1− 3 Tr[〈pp〉2]

)

1− Tr[〈pp〉2]

] [
52

315
D − 8

21
(D · 〈pp〉+ 〈pp〉 ·D)

− 16

63
(〈pp〉 : D) I

]
,

(4.3.19)

based on interpolating between 〈pppp〉 : D calculated for a highly-isotropic and

highly-uniaxial distribution P (p) expanded up to lowest (Eq. 4.3.18) and second-

to-lowest (Eq. 4.3.19) order. Finally, we also consider a closure due to Doi [183],

〈pppp〉 : D ≈ (Q : D)

(
Q+

1

3
I

)
, (4.3.20)

obtained through “trial and error” in the context of liquid crystals.
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In Fig. 4.8, we plot the evolution of 〈pppp〉 : D after shear reversal from our

particle simulations, and compare it to the closures found in the literature, with

〈pp〉 also obtained from simulation data. We see that the linear approximation pro-

vides excellent quantitative agreement with the (pipjpkplDkl)+ data and qualitative

agreement with the (pipjpkplDkl)xy data, but yields (pipjpkplDkl)− ≡ 0, in disagree-

ment with the simulation data. This is similar to the situation seen in Fig. 4.6,

and reinforces the significance of the Q− component as the hardest-to-fit compo-

nent of Q. That said, (pipjpkplDkl)− is of small magnitude, and the linear closure,

Eq. 4.3.16, provides the best agreement with the simulation data of the closures we

consider in this chapter. A linear closure might thus be “good enough” to capture

the advection of near-contact orientations.

We can test this claim directly, using the simulation data to show that advection

is not the source of non-linearities in our fabric evolution. The fabric tensor Q

evolves between γ and γ+dγ through three distinct processes: the advection of near-

contacts, consisting of particle pairs with separation h (γ) ≤ ε and h (γ + dγ) ≤ ε;

the birth of near-contacts when a pair of particles has h (γ) > ε but h (γ + dγ) ≤ ε;

and the death of near-contacts when h (γ) ≤ ε but h (γ + dγ) > ε. Writing rb and

rd for the number of near-contact births and deaths per near-contact per unit strain

respectively, Qb and Qd for the near-contact birth and death fabric tensors, and

Q̇a for the advective contribution to Q̇ from near-contacts neither instantaneously

being born nor dying, we have (see §4.6)

Q̇ = Q̇a + rbQb − rdQd. (4.3.21)

We can then attempt to fit (using linear least squares) the linear model, Eq. 4.2.5,

separately to each of Q̇a, rbQb and rdQd. The fit to Q̇a, shown in the top three

rows of Fig. 4.9, is excellent. This confirms our expectation that advection of near-

contact orientations, and specifically the choice of a closure approximation, is not

the reason for the unsuitability of linear fabric models. Instead, the bottom two

blocks of Fig. 4.9 show that it is the birth and death of near-contacts that are

responsible for this. A particularly poor correspondence between fit and data is

seen when the birth and death contributions take their largest values in amplitude,

which is precisely when good accuracy matters most.
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Figure 4.9: Fit (coloured lines) of the linear model, Eq. 4.3.6, to simulation data

(black lines) for the components of Q̇a (top row), rbQb (middle row) and rdQd

(bottom row) for volume fractions φ = 0.4 (left column), 0.5 (middle column) and
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4.3.3 Higher-order Hand equations

Having shown that linear models cannot fit the reversal data, we consider the 15-

parameter general quadratic model

P− = a− + b−Q+ + c− sgn(γ̇)Qxy,

P+ = a+ + b+Q+ + c+ sgn(γ̇)Qxy + d+Q
2
+ + e+Q

2
xy + f+Q

2
−,

Pxy = axy + bxyQ+ + cxy sgn(γ̇)Qxy + dxyQ
2
+ + exyQ

2
xy + fxyQ

2
−.

(4.3.22)

Our previous approach to obtaining fits to simulation data, using linear least squares

to minimise Eq. 4.3.8 and obtain an initial set of best-fitting parameters from which

to launch a gradient-descent and minimise Eq. 4.3.9, frequently fails for the gen-

eral quadratic model described by Eqs. 4.3.22. The initial parameter sets obtained

from minimising Eq. 4.3.8 can cause Q to grow unbounded when used to evolve Q

from its initial condition. This can be understood by viewing the general quadratic

model through the prism of the overdamped dynamics of a three-dimensional vec-

tor s := {Q−, Q+, Qxy} in a cubic potential, ṡi = −∂si [Ajklsjsksl +Bjksjsk +Cksk],

with tensors A, B and C determined by the coefficients in Eq. 4.3.22. A cubic

potential is generically non-confining, so unless the initial conditions lie within the

basin of attraction of a local potential minimum, s will grow unbounded. Finding a

well-behaved quadratic fabric evolution model then involves identifying parameters

such that {Q−SS
− , Q−SS

+ , Q−SS
xy } lies within such a basin, an unsatisfactory approach

at best.

By setting some parameters of Eq. 4.3.22 to zero, we can restrict the parame-

ter space enough to find a model with a bounded evolution, for which our fitting

methodology succeeds. The best quadratic model we could find in this manner takes

the 11-parameter form

P− = a− + b−Q+ + c− sgn(γ̇)Qxy,

P+ = a+ + b+Q+ + c+ sgn(γ̇)Qxy + e+Q
2
xy,

Pxy = axy + bxyQ+ + cxy sgn(γ̇)Qxy + exyQ
2
xy.

(4.3.23)

As seen in Fig. 4.10, this model yields for the most part excellent fits, though we

observe a decreasing quality of fit for Q− as φ increases. This may be due to lower
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Figure 4.10: Fit to simulation data of the quadratic model described by Eqs. 4.3.23

for Q− (top), Q+ (middle) and Qxy (bottom) against post-reversal strain for φ = 0.4

(left), φ = 0.5 (centre) and φ = 0.55 (right).

volume fractions having smaller rb and rd values across the evolution (see Fig. 4.11),

yielding flatter, easier-to-fit curves.

We have had to constrain our parameter space in order to find a model for

which our fitting methodology works, and so it is likely that a quadratic model

allowing for better fits than that represented by Eq. 4.3.23 exists. We can nonetheless

conclude that quadratic models are capable of being well-fit to the shear-reversal

fabric evolution data from particle simulations. However, the generic blow-up we

have seen raises doubts concerning the physical content of such a model.

These doubts are reinforced when we consider the post-reversal fabric evolution

of a two-dimensional suspension. In two dimensions, the tensorial spherical harmonic

expansion of P (p) is (c.f. §4.5)

P (p) =
1

2π
(1 + 4Q : pp+ · · · ) . (4.3.24)

We can adapt the three-dimensional rate-independent Hand model for simple shear

to cover the two-dimensional case by enforcing the tracelessness condition for a

two-dimensional fabric, Q+ ≡ 0, in Eqs. 4.2.5 (see also §4.7 for a more rigorous
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Figure 4.11: Simulation data for the fractional birth rate rb (blue) and death rate

rd (red) against post-reversal strain for φ = 0.4 (left), 0.5 (centre) and 0.55 (right).

derivation). The two-dimensional equivalent of Eqs. 4.2.5 is

Q̇− = P−
[
sgn(γ̇)Qxy, Q

2
−
]
Q− + 2 sgn(γ̇)Qxy

Q̇xy = Pxy
[
sgn(γ̇)Qxy, Q

2
−
]

sgn(γ̇)− 1

2
sgn(γ̇)Q−,

(4.3.25)

where Q := 〈pp〉− 1
2
I and P− and Pxy are analytic in their arguments. We see that

the linear criterion of Eq. 4.3.14 still holds.

We test such hand-type models against particle simulation data for shear reversal

provided by Dr. Mari for a two-dimensional square monolayer of 4000 discs at area

fractions φ = 0.65, 0.7 and 0.75. The particles are bi-disperse with equal-area

populations of radius 1 and 1.4. These simulations otherwise share the specifications

of the three-dimensional simulations. The data presented here are averaged over 100

realisations.

The evolution of the independent components of Q are presented in Fig. 4.12.

The qualitative similarities with the three-dimensional case presented in Fig. 4.4 are

clear: Qxy flips over a strain interval γ ∼ 1 and overshoots its steady-state value,

Qxx is negative and has a post-reversal trough, and |Q| shrinks with increasing φ.

We therefore expect the same underlying physics to determine the fabric evolution

in both two and three dimensions. Since in two dimensions, tracelessness implies

that Q− = 2Qxx, we already see that the data violate the criterion of Eq. 4.3.14,

so cannot be fit by linear fabric models. We therefore instead consider the general
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quadratic model, in which

P− = a− + c− sgn(γ̇)Qxy,

Pxy = axy + cxy sgn(γ̇)Qxy + exyQ
2
xy + fxyQ

2
−.

(4.3.26)

This 6-parameter model is far more constrained than its 15-parameter three-dimensional

counterpart, Eqs. 4.3.22. This model escapes the generic blow-up seen in three di-

mensions, and we are able to apply our linear-least-squares-plus-gradient-descent

strategy to obtain fits to the particle simulation data, which we show in Fig. 4.13.

We see that while the quadratic model is able to capture certain qualitative features,

such as the existence of a trough in Q− and, when φ > 0.65, the overshoot in Qxy,

the fit is quantitatively poor. The trough in Q− in particular is of the wrong ampli-

tude and occurs at the wrong strain. This strongly suggests that the success of the

three-dimensional quadratic model, Eqs. 4.3.23, does not reflect any physical mecha-

nism whose effects might be contained within that model. Such a mechanism would

be expected to apply equally well in two dimensions, particularly given the strong

qualitative resemblance in the fabric evolution in the two- and three-dimensional

cases. We instead conclude that the successful fits seen in Fig. 4.10 are due to the

large number of free parameters in Eqs. 4.3.23.

We are able to obtain a near-quantitative fit for the two-dimensional data using
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Figure 4.13: Fits to two-dimensional simulation data for shear reversal of the

quadratic model described by Eqs. 4.3.26 and the cubic model described by

Eqs. 4.3.27 for volume fractions φ = 0.65 (left), 0.7 (centre) and 0.75 (right).

a cubic model,

P− = a− + c− sgn(γ̇)Qxy + e−Q
2
xy + f−Q

2
−,

Pxy = axy + cxy sgn(γ̇)Qxy + exyQ
2
xy + fxyQ

2
−.

(4.3.27)

(The model includes the cubic terms e−Q2
xyQ− and f−Q3

− once P− and P+ in

Eqs. 4.3.25 are expanded according to Eqs. 4.3.27.) Even by setting terms in the gen-

eral cubic model to zero, our previously-described approach to obtaining an initial

set of parameter values inevitably leads to blow-up when we evolve the components

of Q according to the model. This is because higher-order polynomials are even

less confining than the quadratic model described by Eqs. 4.3.22. To fit Eqs. 4.3.27,

we instead use the values of a−, c−, axy, cxy, exy and fxy obtained from linear least

squares on the quadratic model described by Eqs. 4.3.26, and initially set the other

parameters in Eqs. 4.3.27 to zero, to obtain an initial guess from which we launch

a gradient descent. This process results in the cubic model fit shown in Fig. 4.13.

While the fit is quantitatively good, clear evidence of overfitting is seen in the evo-

lution of Q− at φ = 0.75, where kinks not present in the simulation data are seen

in the cubic fit at strains γ ≈ 0.1 and 0.5. This, and the generic blow-up, suggests

that this cubic model does not provide us with any more physical insight than the

quadratic model described by Eqs. 4.3.26.

March 28, 2019



−0.12

−0.09

−0.06

−0.03

0.00

Q
−

φ = 0.4 φ = 0.5 φ = 0.55

Cubic model fit

Sim. data

−0.064

−0.048

−0.032

−0.016

0.000

Q
+

Cubic model fit

Sim. data

0.0 0.5 1.0 1.5 2.0 2.5

γ

−0.08

−0.04

0.00

0.04

0.08

Q
x
y

0.0 0.5 1.0 1.5 2.0 2.5

γ
0.0 0.5 1.0 1.5 2.0 2.5 3.0

γ

Cubic model fit

Sim. data

Figure 4.14: Fit to three-dimensional simulation data for shear reversal of the cubic

model described by Eqs. 4.3.28 for volume fractions φ = 0.4 (left), 0.5 (centre) and

0.55 (right).

We can nevertheless use Eqs. 4.3.27 to create a three-dimensional cubic model

that is capable of quantitatively fitting the shear-reversal data from three-dimensional

particle simulations, and that is also compatible with a two-dimensional counterpart

which can fit data from two-dimensional simulations. We do this by supplement-

ing the Q− and Qxy dynamics of Eqs. 4.3.27 with the Q+ dynamics of Eqs. 4.3.23,

resulting in the 12-parameter model with equations

P− = a− + c− sgn(γ̇)Qxy + e−Q
2
xy + f−Q

2
−,

P+ = a+ + b+Q+ + c+ sgn(γ̇)Qxy + e+Q
2
xy,

Pxy = axy + cxy sgn(γ̇)Qxy + exyQ
2
xy + fxyQ

2
−.

(4.3.28)

We fit this using the same methodology as was used to fit the two-dimensional cubic

model, setting the same set of parameters to zero as in the two-dimensional case

when using linear least squares and initiating our gradient descent. The result of

this fit is shown in Fig. 4.14. Despite a decent quantitative agreement between our

fit and the simulation data, we see the same signs of overfitting in the evolution of

Q− as in Fig. 4.13, and are unable to obtain overshoots in the Qxy evolution of the

size seen in the particle simulations. This model—which contains a large number of
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free parameters, is highly susceptible to the divergence of fabric tensor components

outside of a small range of parameter values, and shows qualitative evidence of

overfitting (kinks in Q− (γ)) while simultaneously struggling to capture qualitative

features of the simulation data (the overshoot in Qxy (γ))—is unlikely to provide

any physical insight.

4.4 Conclusion

In this chapter, we have looked at models that encode the microstructure into a

symmetric second-rank fabric tensor Q whose evolution is prescribed by an ODE

Q̇ = F (∇v,Q) for an analytic function F defined on a domain on which ∇v 6= 0.

We have shown that no function F that is linear in the components ofQ can possibly

describe the fabric evolution under shear reversal. Quadratic models can fit the sim-

ulation data for a three-dimensional system, but fail in two dimensions despite the

strong qualitative similarities in the fabric evolution in two and three dimensions.

This suggests that the three-dimensional fit is due to the large number of fitting pa-

rameters in a three-dimensional quadratic model, and not any physical mechanism

contained within the quadratic model. Fits to cubic models show signs of overfitting,

while being highly non-confining for the components of Q when evolved over strain,

problems that would get exacerbated with any higher-order polynomial model. We

therefore conclude that any successful model for Q in dense non-Brownian suspen-

sions must be of a different and more complicated form than many models seen for

other non-Newtownian fluids [153,184].

This chapter has also highlighted the component Q− as a particularly challeng-

ing component to fit. In many models of polymer solutions or nematics [153],

the non-solvent stress contains a term proportional to the conformation tensor.

It might therefore not be a coincidence that the corresponding stress component,

N1 = Σxx − Σyy, has proved particularly challenging to accurately model, even in

the steady state [112].

More fundamentally, this chapter has shown the importance of testing the as-

sumptions of models against simulation or experimental data. Many fabric tensor
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models of suspension rheology exist, including recent linear models [161,162], which

model the evolution of the fabric tensor and then express the stress as a function of

this fabric. However, these models are rarely tested against microstructural data, or

even stress data for components other than the shear stress. Simulation data, such

as those reported in this chapter, or experimental data, such as the detailed mi-

crostructural data collected by Deboeuf et al. [165], can directly assess the validity

of the microstructural assumptions underpinning such models. It can also suggest

a direction for future modelling efforts.

4.5 Appendix I: Tensorial spherical harmonic ex-

pansion

The tensorial spherical harmonic expansion of a scalar function f (p), with p on the

d-dimensional unit sphere, Sd−1, corresponds to a power series expansion

f (p) =
1

Ad

(
α0 +

∞∑

k=1

αi1,i2,...,ikk pi1pi2 · · · pik

)
, (4.5.29)

where the im ∈ {1, 2, · · · , d} are component indices (e.g. im ∈ {x, y, z} in three

dimensions) that we are contracting over and Ad is the area of the d-dimensional

unit sphere. The tensors αk are contracted over products of p, and so should not

have more independent components than the product with which they are con-

tracted. This product is trivially symmetric under permutations of indices, so we

require that the αk share this symmetry. Choosing a permutation of the indices of

αk corresponds to choosing k indices out of a set of d symbols with replacement

but without order. We furthermore have the constraint p · p = 1, providing one

constraining equation

pi1 · · · pik−2
pjpj = pi1 · · · pik−2

per choice of k−2 indices out of d symbols with replacement without order. The kth

order tensor in the expansion thus has
(
d+k−1
k

)
−
(
d+k−3
k−2

)
independent components.

In two dimensions, this means two independent components for each k, whereas

there are 2k + 1 independent components in three dimensions. There is therefore
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a one-to-one correspondence between the kth order tensors in Eq. 4.5.29 and the

the kth order coefficients in the Fourier series and spherical harmonic expansions in

two and three dimensions respectively. Indeed, because sin kθ and cos kθ are sums

of kth-degree mononomials in sin θ and cos θ, the three-dimensional (scalar) real

spherical harmonic expansion of f can be converted to tensorial expansions of the

form of Eq. 4.5.29 by collecting into a tensor the coefficients of pkx = cosk θ sink φ,

pky = sink θ sink φ, and pkz = cosk φ in the nth-order term of the expansion. In two

dimensions, Fourier series coefficients can similarly be collected into tensors to get a

tensorial expansion of the form of Eq. 4.5.29. Spherical harmonic expansions can be

generalised to d-dimensions [185], so in principle one can calculate the d-dimensional

tensorial spherical harmonic expansion on a case-by-case basis in this way for any d.

It is, however, possible to calculate the d-dimensional spherical harmonic expansion

directly. In this appendix, we do so for the expansion of P (p) up to second order.

We consider a d-dimensional orientational distribution P (p). We then assume

that our tensors αk are defined such that the lth moment of P is independent of αk

for any k > l. It is helpful at this point to define P̂ := Ad P and 〈·〉0 := 1
Ad

∫
Sd−1 ·dΩ.

It immediately follows that α0 = 1, since

1 =

∫

Sd−1

PdΩ =
〈
P̂
〉

0
= α0,

where dΩ is the area element on the d-dimensional sphere and where we have used

the independence of the zeroth moment from higher-order α terms. Furthermore,

because P is an orientational distribution, meaning P (p) = P (−p), all odd-order

terms in the expansion must vanish, as well as all odd moments of P . The zeroth-

order moment also gives us Tr[α2] = 0, since 〈pipj〉0 = 1
d
δij and we must have

α2 : 〈pp〉0 = 0 to enforce the independence of
〈
P̂
〉

0
from α2.

In general, symmetry under permutation of indices and spherical symmetry im-

plies that

〈pi1pi2 . . . pi2k〉0 ∝
∑

σ∈P
δσ(i1)σ(i2)δσ(i3)σ(i4) . . . δσ(i2k−1)σ(i2k) (4.5.30)

where the sum is over distinct products of Kronecker deltas in which the indices

i1, . . . , i2k appear exactly once. There are

[
k∏
i=1

(
2j
2

)]
/k! distinct products of Kro-

necker deltas (( 2k
2 ) choices of indices for the first Kronecker delta, ( 2k−2

2 ) for the
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second, etc., and then k! ways of ordering k different Kronecker deltas). For 〈pppp〉0,

this means three distinct products, so that

〈pi1pi2pi3pi4〉0 = β (δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3) (4.5.31)

for some coefficient β. We can obtain the value of β from

〈(
d∑

i=1

pipi

)2〉

0

= 1

=

〈
d∑

i=1

pipipipi +
d∑

i=0

d∑

j=0
j 6=i

pipipjpj

〉

0

= d 〈pxpxpxpx〉0 + d (d− 1) 〈pxpxpypy〉0
= 3βd+ βd (d− 1)

= βd (d+ 2) ,

where the third line follows from the second after applying Eq. 4.5.31. We thus

obtain

β =
1

d (d+ 2)
. (4.5.32)

The second moment of the distribution gives us

〈
ppP̂

〉
0

= α0 〈pp〉0 + 〈pppp〉0 : α2, (4.5.33)

so that

〈
ppP̂ − 1

d
I

〉

0

= 〈pppp〉0 : α2

=
1

d (d+ 2)
(δijδkl + δikδjl + δilδjk)α

kl
2

=
1

d (d+ 2)

(
δijTr[α2] + αij2 + αji2

)

=
2

d (d+ 2)
αij2 ,

(4.5.34)

where we use the symmetry of α2 under permutation of indices. Noting that〈
ppP̂ − 1

d
I
〉

0
= Q, we see that this yields Eq. 4.2.1.



4.6. Appendix II: Decomposition of the fabric evolution 75

4.6 Appendix II: Decomposition of the fabric evo-

lution

The near-contact orientational distribution at a strain γ is defined as

Pγ(p) =
1

Nγ

∑

i

δ (p− pi(γ)) , (4.6.35)

where the sum is over the Nγ near-contact orientations pi(γ) at strain γ. Between

any two successive strain steps γ and γ + dγ, this distribution can evolve through

three kinds of events. A near-contact may appear at strain γ + dγ that was not

present at γ, a situation we refer to as a near-contact birth. Conversely, we also

have near-contact deaths when near-contacts present at strain γ disappear by strain

γ+ dγ. Finally, a near-contact may exist at both strains γ and γ+ dγ, having been

advected by the flow in the interim. We can therefore write

Pγ+dγ(p)− Pγ(p) =
∑

advected

[
1

Nγ+dγ

δ (p− pi(γ + dγ))− 1

Nγ

δ (p− pi(γ))

]

+
1

Nγ+dγ

∑

birth

δ (p− pi(γ + dγ))− 1

Nγ

∑

death

δ (p− pi(γ)) .

(4.6.36)

Writing Nb and Nd for the number of near-contacts being born and dying across

this strain interval respectively, we define

Ṗ a(p) :=
1

dγ

[ ∑

advected

1

Nγ+dγ

δ (p− pi(γ + dγ))− 1

Nγ

δ (p− pi(γ))

]
(4.6.37)

P b(p) :=
1

Nb

∑

birth

δ (p− pi(γ + dγ)) (4.6.38)

P d(p) :=
1

Nd

∑

death

δ (p− pi(γ)) (4.6.39)

so that

Ṗγ(p) = Ṗ a(p) + rbP b(p)− rdP d(p), (4.6.40)

where rb := Nbirth/(Nγ+dγdγ) is the birth rate and rd := Ndeath/(Nγdγ) is the death

rate. This is Eq. 5.2.6 in the main text.

We obtain the corresponding decomposition of the fabric tensor Q by taking the

traceless second moment of Ṗ a, P b and P d:

Q̇ = Q̇a + rbQb(p)−QdP d(p). (4.6.41)
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This is Eq. 4.3.21 in the main text.

4.7 Appendix III: Componentwise Hand equation

4.7.1 In three dimensions

We wish to simplify Eq. 4.2.4, removing any degeneracy in the equation. We first

note that Q and Ê are traceless in our system, due in the latter case to the incom-

pressibility of our system. We therefore immediately find that Î1 = Î4 = 0. Further-

more, after reversing shear, Ê doesn’t change in our shear protocol. Consequently,

neither do Î5 and Î6. They can therefore be absorbed into constant coefficients.

Indeed, in our case of simple shear flow v = (γ̇y, 0, 0) we have

Ê2 ·Q+Q · Ê2 =
1

2
Q+ 2Î9

(
I − 4Ê2

)
(4.7.42)

Ê2 ·Q2 +Q2 · Ê2 =
1

2
Q2 − 8Î2

9

(
I − 4Ê2

)
, (4.7.43)

so the parameters α7 and α8 can be set to zero without any loss of generality.

The fabric tensor components Qxz and Qyz vanish due to (x, y, z) 7→ (−x,−y, z)
symmetry. Q therefore has only three independent components, Q± := Qxx ± Qyy

and Qxy. The Hand equation, Eq. 4.2.3, then yields

Q̇− = [α1 + α3Q+]Q− + 2 sgn(γ̇)Qxy, (4.7.44)

Q̇+ =
1

6
α4 + α1Q+ +

2

3
α5 sgn(γ̇)Q12

+ α3

(
1

6
Q2
− −

1

2
Q2

+ +
2

3
Q2

12

)
+

2

3
α6 sgn(γ̇)Q+Qxy,

(4.7.45)

Q̇xy =
1

2
α2 sgn(γ̇)− 1

2
sgn(γ̇)Q− +

1

2
α5 sgn(γ̇)Q+ + α1Qxy

+ α6 sgn(γ̇)

(
1

4
Q2
− +

1

4
Q2

+ +Q2
xy

)
+ α3Q+Qxy.

(4.7.46)



4.7. Appendix III: Componentwise Hand equation 77

In our flow geometry,

Î2 =
1

2
Q2
− +

3

2
Q2

+ + 2Q2
xy (4.7.47)

Î3 =
3

4
Q2
−Q+ −

3

4
Q3

+ + 3Q+Q
2
xy (4.7.48)

Î7 = sgn(γ̇)Qxy (4.7.49)

Î8 = sgn(γ̇)Q+Qxy (4.7.50)

Î9 =
1

4
Q+ (4.7.51)

Î10 =
1

8
Q2
− +

1

8
Q2

+ +
1

2
Q2
xy. (4.7.52)

Since sgn(γ̇)Qxy = Î7, Q+ = 4Î9 and Q2
− = 8Î10− Î2

7 −16Î2
9 , we see that Î2, Î3 and Î8

are polynomials in Î7, Î9 and Î10, and that an analytic function in the invariants is

really an analytic function in sgn(γ̇)Qxy, Q+, and Q2
−. It is thus clear that Eqs. 4.2.5

hold true.

The Hand equation, Eq. 4.2.3, does not constrain Q̇−, Q̇+, and Q̇xy any further

than Eqs. 4.2.5. To see this, consider Eq. 4.2.3 after enforcing tracelessness and

proportionality to γ̇:

Q̇ = Ŵ ·Q−Q · Ŵ + β1Q+ 2
(
β2 − β1Î7

)
Ê

+ 6
(
β4 − 4β1Î9

)
Ê2 − 2

(
β4 − 4β1Î9

)
Î5I,

corresponding in our case to the coupled system

Q̇− = β1Q− + 2 sgn(γ̇)Q12, (4.7.53)

Q̇+ = β4, (4.7.54)

Q̇xy = β2 sgn(γ̇)− 1

2
sgn(γ̇)Q−. (4.7.55)

We have previously established that the only constraint the Hand equation imposes

on the tensor coefficients βi is that they are are analytic functions (except at γ̇ = 0)

of sgn(γ̇)Q12, Q+ and Q2
−. We therefore conclude that Eqs. 4.2.5 are the most

general allowed in three dimensions.
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4.7.2 In two dimensions

In two dimensions, the tensorial second-order spherical harmonic expansion (in this

case a Fourier series expansion) of a probability density P (p) for pairs with centre-

to-centre orientation p is

P (p) ≈ 1

2π
(1 + 4Q : pp) , (4.7.56)

where Q ≡ 〈pp〉 − 1
2
I.

We need to re-derive the Hand equation Eq. 4.2.3 in two dimensions. We first

note that the result from frame-indifference [37],

Q̇ = W ·Q−Q ·W + F (Q,E) , (4.7.57)

holds in two dimensions as it does in three. The two-dimensional case can therefore

be seen as a special case of the three-dimensional case with the axis of the rigid

rotation along the vorticity axis.

From equation (8.13) of Rivlin [179] (after applying equation (4.7)), any polyno-

mial in symmetric 2× 2 tensors A and B can be written in the form

ϕ0I + ϕ1A+ ϕ2B, (4.7.58)

where the ϕi are polynomials in the invariants (see paragraph in Rivlin [179] below

Eq. 13.3) TrA, TrB, TrA2, TrB2, and TrA ·B.

The rate-independent two-dimensional Hand equation for Q is therefore

Q̇ = Ŵ ·Q−Q · Ŵ + α1Q+ α2Ê, (4.7.59)

or in component form,

Q̇− = α1Q− + 2 sgn(γ̇)Q12

Q̇xy =
1

2
sgn(γ̇)α2 −

1

2
sgn(γ̇)Q− + α1Qxy,

(4.7.60)

with the αi analytic functions of the invariants Î1 ≡ Tr(Q), Î2 ≡ Tr(Q2), Î4 ≡
Tr(Ê), Î5 ≡ Tr(Ê2), and Î7 ≡ Tr(Q · Ê) (The labelling here is chosen so as to be

consistent with the three-dimensional case.)
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For an incompressible shear flow in two dimensions v = (γ̇y, 0), the invariants

are

Î1 = 0, (4.7.61)

Î2 =
1

2
Q2
− + 2Q2

12, (4.7.62)

Î4 = 0, (4.7.63)

Î5 =
1

2
, (4.7.64)

Î7 = sgn(γ̇)Q12. (4.7.65)

An analytical function of the invariants is therefore an analytical function of sgn(γ̇)Qxy

and Q2
−, so that the most general form of the two-dimensional Hand equation for

our system is

Q̇− = P−
[
sgn(γ̇)Qxy, Q

2
−
]
Q− + 2 sgn(γ̇)Qxy, (4.7.66)

Q̇xy = Pxy
[
sgn(γ̇)Qxy, Q

2
−
]
− 1

2
sgn(γ̇)Q−, (4.7.67)

where the Pij are analytical functions of their arguments.
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Chapter 5

Fabric tensor dynamics of dense

non-Brownian suspensions:

microstructural insights

5.1 Introduction

In the previous chapter, we considered phenomenological models for the microstruc-

tural evolution of dense, athermal suspensions of hard spheres. (See previous chapter

for precise definitions and specifications.) Adopting a widespread approach, we chose

a “fabric tensor” Q, the de-traced second moment of the orientational distribution

of near-contacts, to represent the microstructure. We then explored models in which

Q̇ is a polynomial in the components of Q and of the velocity gradient tensor, ∇v.

Linear models, we discovered, cannot fit data from particle simulations of a suspen-

sion under shear reversal. We found that higher-order polynomials can fit the data,

but in each case also found evidence that fits are a consequence of having many free

parameters, and not of any physical mechanism contained within the equations of

the model.

In this chapter, we look into why the approach of the previous chapter fails, chal-

lenging the fundamental assumptions inherent in fabric tensor models of suspension

microstructure. The key assumption is that Q contains enough microstructural in-

formation to assume the role of structure tensor, i.e., forQ to serve as a proxy for the

80



5.2. Lobality 81

full particle configuration when describing microstructure-dependent material vari-

ables. This includes Q’s own evolution: we are assuming that Q̇ can be expressed

as a function of Q and ∇v. If, for instance, higher-order terms in the spherical

harmonic expansion of P (p), or radial information in the pair distribution g (r),

have a significant impact on the rheology that cannot be modelled as a function of

Q and ∇v, this assumption will not hold.

5.2 Lobality

It is therefore instructive to ask ourselves how good a description Q is of P (p).

Specifically, how valid is the approximation (c.f. Eq. 4.2.1)

P (p) ≈ 1

4π

(
1 +

15

2
Q : pp

)
? (5.2.1)

If this approximation were poor, it would imply that some coefficients of higher-order

terms in the spherical harmonic expansion have a significant magnitude relative to

that of the second-order term, 15
2
Q. It would then be unlikely that these large

higher-order terms, and their effects on the suspension rheology, can be expressed

as a function of a comparatively diminutive Q.

To assess this, we consider the spherical harmonic expansion of P (p) up to fourth

order [178],

P (p) ≈ 1

4π

(
1 +

15

2
Q : pp+

315

8
C :: pppp

)
. (5.2.2)

Here, the rank-4 tensor C has components

Cijkl = 〈pipjpkpl〉 −
1

7
Hijkl +

1

35
Iijkl, (5.2.3)

where

Hijkl = 〈pipj〉δkl + 〈pipk〉δjl + 〈pipl〉δjk + δij〈pkpl〉+ δik〈pjpl〉+ δil〈pjpk〉 (5.2.4)

Iijkl = δijδkl + δikδjl + δilδjk. (5.2.5)

We can quantify the relative contributions of the second- and fourth-order terms by

comparing the largest eigenvalue, Λ2, of 15
2
Q with that of 315

8
C, Λ4. (See the paper

by Qi [186] for a reference on the eigenvalues of fully symmetric high-order tensors).
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Figure 5.1: Top two rows: Snapshots of P (p) and the second- (top row) and fourth-

order (second row) spherical harmonic approximations of it during numerical sim-

ulations of shear reversal for volume fractions φ = 0.4 (left), φ = 0.5 (centre), and

φ = 0.55 (right). Third row: components of Q across reversal from these simula-

tions. Fourth row: Largest eigenvalues Λ2 and Λ4 of resp. the second-rank Q and

the fourth-rankC (see main text for the definition) spherical harmonic contributions

to P (p).
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In the bottom row of Fig. 5.1, we show the time evolution of these eigenvalues under

shear reversal for volume fractions φ = 0.4, 0.5 and 0.55. In each case, we see strain

intervals across which Λ4 > Λ2. Furthermore, Λ2 and Λ4 are of the same magnitude

throughout the evolution, including at steady-state. The top two rows of Fig. 5.1

show polar plots of the shear-plane cross-section of P (p) (black) at the strain, γ,

which maximises Λ4 − Λ2 and at steady-state, γ = 3, for the same three volume

fractions. We compare each of these with a plot of the second-order expansion,

Eq. 5.2.1 (top row, green), and a plot of the fourth-order expansion, Eq. 5.2.2. We

see that P (p) deviates little from its expansion up to fourth order, but is poorly

captured by its expansion up to second-order. This is particularly true shortly after

reversal, when Λ2 takes its smallest values, and the shear-plane cross-section of P (p)

is seen to take on a distinctly four-lobed structure. The ratio Λ4/Λ2 can be thought

of as quantifying to what extent P (p) is four-lobed, rather than two-lobed, in the

shear plane.

The large four-lobed component of P (p) strongly suggests that a constitutive

model based on a closed ODE for the evolution of Q under flow cannot capture the

physics of near-contact network reconstruction after shear reversal. This is one of the

key outcomes of our analysis: a closed second-rank fabric evolution model, even if it

leads to good fits to simulation data, will necessarily evolve the fabric according to

the second-order expansion of the pair distribution, which we have shown in Fig. 5.1

to be subdominant. Indeed, where Λ4 > Λ2, we see that the principal shear-plane

axis of the second-order expansion is not a maximum of P (p) in this plane.

The rate of change of the pair distribution function, Ṗ (p), further reinforces

the view that four-lobed structures play an important role in the evolution of the

microstructure. As with Q, we can decompose Ṗ into advective, birth and death

contributions,

Ṗ (p) = Ṗ a (p) + rbP b (p)− rdP d (p) , (5.2.6)

by considering the evolution of the number of near-contacts in a surface element

on the unit sphere (see §4.6 for a derivation). This allows us to separately assess

the “lobality” of the evolutionary mechanisms of advection, birth and death. The

distribution of orientations of near-contact births, P b(p), and deaths, P d(p), are
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Figure 5.2: Top two rows: Polar plots of simulation data for P b(p) (left), P d(p)

(centre) and Ṗ a(p) (right), as defined in Eq. 5.2.6, in the shear plane for φ = 0.5

and for γ = 0.15 (top) and γ = 3 (centre), in black lines. These are compared

to their second-order spherical harmonic approximations (color lines). Bottom two

rows: Same Ṗ a(p), P b(p) and P d(p) data (black lines), compared to their and

fourth-order spherical harmonic approximations (color lines).
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positive quantities by definition. By contrast, the advective contribution, Ṗ a(p),

will in general take positive and negative values for different p. In Fig. 5.2, we

show the values of Ṗ a (p), P b (p) and P d (p) along the shear plane for φ = 0.5 at

strains γ = 0.15 and γ = 3 (as in Fig. 5.1), alongside their second- and fourth-

order spherical harmonic approximations. (The corresponding plots for φ = 0.4 and

φ = 0.55 show similar features, and are shown in Appendix 5.4.)

Though none of these distributions, except P d(p) at γ = 3, shows a marked

four-lobed structure, this data is consistent with the four-lobed structure of P (p)

shortly after reversal; it is enough that the contributions to Ṗ (p) create and destroy

near-contacts along different directions to get a P (p) with more than two maxima in

the shear plane. Moreover, the top rows of Fig. 5.2 show that key features of P b(p),

P d(p) and Ṗ a(p) are not captured in the second-order spherical harmonic approx-

imation of these quantities. Indeed, the second-order approximations correspond

most poorly to the full distributions when these contributions take large amplitudes

in the shear plane relative to the amplitudes of the other contributions. This occurs

at early strains for P b(p) and large strains for P d(p) and Ṗ a(p).

The simulation data for P (p) and Ṗ (p) therefore lead us to the unavoidable

conclusion that the structure of the orientational distribution of near-contacts can

only be captured by a spherical harmonic expansion of up to at least fourth order.

The fabric evolution cannot be expressed in terms of only the flow and Q itself,

since it depends on a microstructure which contains information from the fourth-

rank tensor C in a way that cannot be approximated by an adequate closure. Such

a closure would have to express C in terms of Q resulting in a two lobed outcome.

5.2.1 Bingham distributions

The success of the fourth-order spherical harmonic expansion in approximating P (p)

throughout its post-reversal evolution, as seen in Fig. 5.1, suggests that while Q is

an inadequate description of the microstructure, a successful strategy might be to

model evolution of both Q and C as functions of each other. Now, tracelessness and

symmetry under permutations of indices leavesC with nine independent components

(see §4.5), out of which four, e.g. Cxzzz, Cyzzz, Cxxxz and Cyyyz, must vanish due
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to the (x, y) 7→ (−x,−y) symmetry of our system. It is therefore clear that an

approach like that used in the previous chapter, expressing the fabric evolution

as a polynomial in the three independent components of Q and five independent

components of C, would lead to a prohibitive proliferation of free parameters, even

for low-order polynomial models.

A different approach to modelling the evolution of Q and C is therefore needed.

An alternative and more explicit characterisation of the many-lobed nature of the

distribution, using Bingham distributions [187], may prove useful in this context.

Bingham distributions are antipodal distributions

f (p) ∝ eT :pp, (5.2.7)

where T is a symmetric and (without loss of generality) traceless tensor. Expanding

T as a function of its orthonormal eigenvectors,

T =

(
κ− 1

2
λ

)
p‖p‖ +

(
−κ− 1

2
λ

)
p⊥p⊥ + λ ẑẑ,

with the last term due to the z 7→ −z symmetry of our system, and where

p‖ = (cosµ, sinµ, 0)

p⊥ = (− sinµ, cosµ, 0)

ẑ = (0, 0, 1) ,

we see that if p = (cos θ sinφ, sin θ sinφ, cosφ), then

f (p) =
1

Z
eκ cos[2(θ−µ)] sin2 φ+ 3

4
λ cos 2φ. (5.2.8)

The normalisation factor here is

Z (κ, λ) = 2π

∫ π

0

I0

(
κ sin2 φ

)
e

3
4
λ cos 2φ sinφ dφ, (5.2.9)

where In (x) := π−1
∫ π

0
ex cos θ cosnθ dθ is the modified Bessel function of order n.

This form corresponds in two dimensions to the von Mises distribution [188] on

the half-circle, and gives us explicit control over the width and orientation of this

two-lobed distribution via the parameters κ and µ. Defining g (θ, φ;µ, κ, λ) as the

right-hand-side of Eq. 5.2.8, we may then construct a four-lobed distribution

g2 (θ, φ;R, µ1, κ1, λ1, µ2, κ2, λ2) :=
1

1 +R
[g (θ, φ;µ1, κ1, λ1) +Rg (θ, φ;µ2, κ2, λ2)] .

(5.2.10)
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Figure 5.3: Snapshots of P (p) (black) and fits of the bi-lobed Bingham distribu-

tion g2 to P (p) (orange) during numerical simulations of shear reversal for volume

fractions φ = 0.4 (left), φ = 0.5 (centre), and φ = 0.55 (right).

We illustrate this in Fig. 5.3, where we show fits of g2 to the snapshots of Fig. 5.1,

obtained by the minimising squared difference between g2 and the snapshot, using

an initial parameter set (R, µ1, κ1, λ1, µ2, κ2, λ2) =
(
1, 0, 1,−1, π

2
, 1,−1

)
. We plot the

resulting best-fit parameters in Table 5.2.1. We see that both shortly after reversal

and at steady state, P (p) is well described by a bi-lobed Bingham distribution.

The three volume fractions show similar trends for the fit parameters shortly after

reversal and, with the exception of φ = 0.4, at steady state. This suggests that the

Bingham fit parameters may highlight important physics, such as the importance

of the flow and gradient directions: we see that one lobe is consistently roughly

along the flow direction, µ1 ≈ 0, and the other roughly along the gradient direction,

µ2 ≈ π
2
≈ 1.57.

Choosing parameters such that g2 (p) ≈ P (p), we can then express the second

and fourth moments of the distribution, and hence Q and C, as a function of these

parameters. The four-lobed Bingham distribution thus provides us with a path to

Q and C from an explicit specification of the angles and breadth of the lobes of

P (p). The function g2 also has the advantage of describing a four-lobed distribution

in terms of seven parameters, one fewer than the eight quantities needed to specify

Q and C. While a model explicitly couched in terms of angles µ1 and µ2 would

violate frame indifference, Bingham distributions may prove useful in translating

an intuition for the directions in which different mechanisms, such as the birth and

death of contacts, affect the microstructure into a model for Q and C.
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φ 0.4 0.4 0.5 0.5 0.55 0.55

γ 0.25 3 0.15 3 0.1 3

R 3.54 1.25 2.08 1.99 2.19 2.84

µ1 −0.123 0.016 −0.0437 0.211 −0.0265 0.149

κ1 3.73 −1.69 3.47 2.31 3.08 2.46

λ1 1.90 0.671 1.60 0.678 1.34 0.696

µ2 1.59 0.525 1.54 1.36 1.50 1.32

κ2 1.18 1.38 1.27 0.996 1.05 0.752

λ2 0.666 0.368 0.649 0.320 0.456 0.204

Table 5.1: Best-fit parameters for the bi-lobed Bingham distribution, g2, to the

snapshots of P (p) from Fig. 5.1.

5.3 Conclusion

In this section, we have tested the validity of two of the main assumptions on which

fabric tensor models of suspensions, studied in the previous chapter, are based.

We have shown that the orientational distribution of near-contacts (responsible for

stress generation) P (p), as well as its time derivative, strongly depart from the two-

lobed structures that can be directly described by a second-rank tensor. The fabric

tensor Q is thus neither an adequate description of P (p), nor does it contain the

microstrucutral information needed to inform its evolution via Ṗ (p). Indeed, our

investigation shows that no symmetric second-rank tensor, which would necessarily

have orthonormal eigenvectors, can adequately represent P (p). This is particularly

evident shortly after reversal during which period P (p) has a highly four-lobed

structure, and the fourth-order term in its spherical harmonic expansion is dominant.

On the other hand, we have also shown that P (p) and the contributions to

Ṗ (p) are well described by their spherical harmonic expansions up to fourth order.

This suggests that they can be successfully modelled by introducing the fourth-rank

tensor C, defined in Eq. (5.2.2), explicitly. One might then consider developing

Hand-type models for Q and C, though polynomials in the eight independent com-

ponents of Q and C would result in a very large number of free parameters, even
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Figure 5.4: Microstructural data from Deboeuf et al. [165] for a suspension of non-

Brownian particles in a yield stress suspending fluid under shear. Red data shows

the shear plane.

at low polynomial order.

One might alternatively attempt to base a model on a simplified micromechanical

‘kinetic’ theory, including only the terms suggested by that theory. This may have

the added benefit of avoiding the generic blowups seen in the non-linear polynomial

models explored in the previous chapter, since a judicious kinetic theory would be

expected to map onto parameters within a stable basin of attraction. Four-lobed

Bingham distributions could then serve as an aid in obtaining from such a theory

the fourth-order spherical harmonic terms that, as we have shown in this chapter,

are significant in the post-reversal microstructural evolution.

If the previous chapter showed the value of particle simulations against which

models may be tested, this chapter has highlighted their explorative value. Using

Dr. Mari’s simulation data, we were able to directly consider P (p), and, via Ṗ (p),

the mechanisms through which P (p) evolves.

Further physical insight might be gained by simulating suspensions in other flow

geometries, such as extensional flow [126,127]. It would also, again, be beneficial to

validate the conclusions of this study against experimental data for shear reversal.

Encouragingly, the steady-state microstructure observed by Deboeuf et al. [165] for

a suspension under shear, shown in Fig. 5.4, shows a striking resemblance to the
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steady-state data we show in Fig. 5.1.

5.4 Appendix I: Plots of advective, birth and death

components of Ṗ (p)

Polar plots of simulation data for P b(p) (top), P d(p) (middle) and Ṗ a(p)

(bottom), as defined in Eq. (5.2.6), in the shear plane (black lines) compared to

their second-order spherical harmonic approximations (color lines), for φ = 0.4 (left

column), φ = 0.5 (middle column), and φ = 0.55 (right column), and for the two

strain values after reversal indicated on top of each φ column. Below are the same

data compared to their fourth-order spherical harmonic approximations.



Chapter 6

Relaxation dynamics in an

athermal soft suspension

6.1 Introduction

The previous three chapters have shown us how particle simulations can confirm,

contradict and contest the predictions and underlying assumptions of models. In

each case, the context has been non-Brownian frictional suspensions of hard par-

ticles close to but below jamming, either with or without short-ranged repulsive

interactions. In this chapter, we will instead consider non-Brownian suspensions of

soft particles without short-ranged interactions, particularly at concentrations above

jamming. Following the theme of the previous chapters, we will show that behaviour

thought to require a finite temperature or an imposed shear can in fact be found in

some form in an athermal system, even in the absence of shear.

As the volume fraction φ of a hard non-Brownian suspension approaches the

jamming fraction, φJ, the viscosity diverges and the suspension is unable to flow at

any imposed stress. For a soft suspension, this will still be true below a critical shear

stress Σy called the yield stress, but a large enough stress will be able to deform

or compress the particles, allowing them to flow past one another. Such materials,

for which the shear stress Σ −→ Σy > 0 as the imposed shear rate γ̇ −→ 0+ (see

Fig. 6.1), are known as yield stress materials.

Yield stress materials are an active area of research with a vast literature (see [190]
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γ̇

0

Σ

Σy

Figure 6.1: Example constitutive curve of a yield stress fluid (specifically, a Bingham

fluid [189]) with yield stress Σy. Below the yield stress, the constitutive curve is

γ̇ (Σ) ≡ 0, as shown in purple.

and the references therein). In the context of hard-sphere colloids, the yield stress

is thought to emerge above a time scale-dependent volume fraction φG < φJ. When

φ > φG, particles under a small imposed stress are trapped in cages formed by

neighbouring particles, and are not, on experimental time scales, able to flow. In

the athermal suspensions studied in this thesis, by contrast, jamming is simply a

consequence of having more constraints than degrees of freedom for particle mo-

tion [48] (e.g. an infinitely large frictionless suspension is jammed if every particle

has 2d contacts constraining motion along each dimensional axis). A combination

of these two mechanisms has then been found to inform the rheology of soft thermal

suspensions [191].

Yielding has been associated with shear localisation, in which the flow of a

material occurs in small, isolated regions, and thixotropy, in which the viscosity

of the material is time- and strain history-dependent [192]. For glassy systems, such

behaviour has been explained using a model in which small groups of particles are

coarse-grained into volume elements, each with their own energy well [193,194]. Each

group can rearrange so as to hop, with a probability that depends on the depth of the

well, into a new energy well, randomly chosen from a given distribution. As a volume

element builds strain, its probability of hopping into a new well increases. A well hop
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corresponds to a local plastic rearrangement of particles within the volume element,

and thus to a relaxing of the built up strain, which is reset to zero after the hop.

Hops occur even in the absence of strain, and the distribution of well energies can

shift over time towards ever deeper well depths. This model therefore incorporates

both the shear localisation and thixotropy observed in yield stress fluids. The model,

however, depends on a temperature-like parameter whose interpretation is unclear,

and does not provide any mechanistic insight into the hopping events themselves.

The picture that has emerged for these local rearrangements views them as plastic

events in an elastic medium [195–197]. Such events induce a long-range quadrupolar

strain field in the material [195, 198], which can in turn instigate local rearrange-

ments in other regions, leading in athermal systems to an avalanche of local yield

events [196, 199, 200]. These local plastic events have also been identified in su-

percooled liquids [201]. The corresponding scenario in a quiescent soft athermal

suspension relaxing towards the local equilibrium of the system has not been stud-

ied until now, having presumably been assumed trivial.

In this chapter, we will show evidence that even in this system with neither

imposed shear nor Brownian motion to trigger rearrangements, the system exhibits

non-trivial relaxation dynamics. We identify unexpected interesting behaviour, such

as coarsening and slow dynamics for the relaxation towards equilibrium of the sys-

tem. We also find behaviour that may hint at relaxation through local plastic

rearrangements.

6.2 Methodology

We consider a d-dimensional, athermal, non-inertial system of N = 106 soft, friction-

less particles suspended in a quiescent fluid. We choose a large system size because

larger systems delay the onset of noise in the dynamics of the system, as shown

in §6.5.3. As in the previous chapters, we consider a bi-disperse system in order to

avoid crystallisation, setting half our particles’ radii to a, and the other half’s to

1.4a. These reside in a periodic cube of volume fraction-dependent edge length (or

the d-dimensional equivalent of this). The forces acting on a given particle i consist
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of a hydrodynamic force F H
i due to the ambient fluid and a contact force F C

i from

overlapping particles. The resultant force-balance condition is therefore

0 = F H
i + F C

i . (6.2.1)

We model contact forces between overlapping soft particles using a harmonic soft

repulsive potential,

F C
i = −

∑

j 6=i
∇rijV (rij) , (6.2.2)

where the pair potential is

V (rij) =
1

8
εu (rij)

2 Θ (u (rij)) (6.2.3)

given particle overlap u (rij) := 2− 2rij/ (ai + aj) (i.e. u = −h, where h is the gap

size defined in §4.2) and a spring constant ε with dimensions of energy. Here, Θ is

the Heaviside function. In this chapter, we will mainly be interested in systems with

volume fractions slightly above that at which contact forces do not vanish in steady

state, in regimes at which the dynamics are slow. In this regime, a system at or near

equilibrium will have a distribution of particle overlaps peaked at small overlap u, so

the pair potential, Eq. 6.2.3, may be considered the leading-order Taylor expansion

of a more general contact interaction potential, and therefore generic. We also choose

a particularly simple form for our hydrodynamics,

F H
i = −ζṙi, (6.2.4)

describing drag on particles travelling in a quiescent fluid.

We can then non-dimensionalise our system, choosing the small-particle radius

a as our length scale, ζ/a as our viscosity scale and ε as our energy scale. The force

scale is therefore ε/a, the stress scale is ε/a3 and the time scale is a2ζ/ε. Having

non-dimensionalised in this way, a = ζ = ε = 1, and our equation of motion is

ṙi =
∑

j 6=i

2uij
ai + aj

Θ (uij) r̂ij ∀ i. (6.2.5)

The hydrodynamic and contact force terms, Eqs. 6.2.2 and 6.2.4, are clearly a

gross simplification of a more realistic description of such terms. For instance, our
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contact interactions neglect rotational degrees of freedom and allow matter to over-

lap rather than explicitly modelling particle deformations. Our hydrodynamic inter-

actions, though of a commonly-chosen form [27, 191, 197, 202–205], violate Galilean

invariance, neglect lubrication forces and ignore the dependence of Stokes drag on

the radius of particles. We justify these simplifications because they allow us to sim-

ulate larger three-dimensional systems of particles in fluid, while still reproducing

characteristic features of glassy rheology when the system sheared [202]. We have

also checked that our dynamics are not qualitatively affected if we use a Galilean-

invariant drag in which the drag force on particle i is calculated based on the velocity

of particle i relative to those of neighbouring particles j, as seen in dissipative par-

ticle dynamics [206].

Our simulations draw the initial position of each particle from a uniform dis-

tribution on the d-dimensional cube [0, L)d, where we recall that L is determined

by the volume fraction φ we wish to impose. This volume fraction is calculated as

φ =
[
N
2

Vol(1; d) + N
2

Vol(1.4; d)
]
/Ld, where Vol(a; d) is the volume of the d-dimensional

solid sphere of radius a; we do not take particle overlaps into account. From this

initial configuration, we allow the system to evolve towards its local total potential

energy minimum (see §6.5 for numerical details), and analyse the dynamics of this

relaxation. Non-dimensionalising temperature according temperature scale ε/kB,

where kB is the Boltzmann constant, this initial condition corresponds to preparing

a system at temperature T =∞ before instantaneously quenching to T = 0 at time

t = 0.

In §6.6, we show evidence that the dynamics we obtain using this preparation pro-

tocol are consistent with those for a more experimentally-feasible protocol. Specifi-

cally, we consider a protocol in which the system is prepared at a finite temperature

T = 10−2 at a sub-jamming volume fraction φ = 0.5 before the quench, at which

point the particles are expanded until the target volume fraction is obtained. In

practice, given L0 such that the pre-quench volume fraction is φ0 and L such that

the post-quench volume fraction is φ, we get from φ0 to φ by taking ri 7→ (L/L0) ri

for the position vector ri of each particle i. This models experimental systems of

thermo-sensitive soft particles which swell as a function of temperature [207–209].
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6.3 Results

6.3.1 Relaxation Dynamics

The first result of this chapter is the discovery of evidence of slow dynamics in the

relaxation of the system towards local equilibrium. In Fig. 6.2, we show the post-

quench decay of the root mean squared speed (top) and the negative of the rate of

change of potential energy (bottom) of a two- (left) and three- (right) dimensional

system at a range of volume fractions φ straddling the jamming fraction φJ, which,

given a bi-disperse system of spheres of radius a and 1.4a at equal population, has

values φJ ≈ 0.842 and φJ ≈ 0.64 in two and three dimensions respectively [47].

We see that for φ < φJ, the decay appears to be exponential. For φ > φJ, there

appears to be a power-law decay after a time t ≈ 30. We obtain approximate

decays of
√
〈v2〉 ∼ t−0.95 in two dimensions and

√
〈v2〉 ∼ t−0.9 in three dimensions,

significantly slower than the
√
〈v2〉 ∼ t−1+ d

4 decay of a crystal lattice of springs

(see §6.7). For the rate of change of potential energy per particle, we find power-law

decays
〈
V̇
〉
∼ −t−1.8 in both two and three dimensions, consistent with a decay of〈

V̇
〉

towards a non-zero equilibrium value.

We obtain a more detailed understanding of how this slowing dynamics occurs by

plotting, in Fig. 6.3, the evolution of the distribution of the logarithm of the speed,

log10 v, over time for above-jamming volume fractions φ = 0.9 in two dimensions

(left) and φ = 0.7 in three dimensions (right). We see that the evolution approx-

imately corresponds to a shift of the distribution to lower speeds by a constant

amount per decade, though the high-speed tail broadens slightly over time.

6.3.2 Coarsening

The slow dynamics hint at the possible existence of a growing length scale in the

system [210]. To investigate this, we now explicitly consider the spatiotemporal

dynamics of the microstructural evolution of the system. It is useful, in this context,

to define two new particle-level quantities. We define the potential energy of particle
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Figure 6.2: Decay of the root mean squared speed (top) and of the negative rate

of change of potential energy per particle (bottom) against time t in two (left)

and three(right) dimensions. Data colour-coded by value of φ; lighter colour im-

plies larger φ. In two dimensions, φ ∈ {0.78, 0.8, . . . , 1}, while in three dimensions,

φ ∈ {0.4, 0.45, . . . , 1}. Insets: slope of the data in the log-log plot into which the in-

set is embedded against time. The transparent and opaque curves of a given colour

correspond to the same parameter set but a different random initial condition.
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Figure 6.3: Distribution P (log10 v) at logarithmically-spaced times t = 101, · · · , 104.

Lighter colour means larger t.
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i to be

Vi :=
1

2

∑

j 6=i
V (rij) . (6.3.6)

This is defined such that sum of all particle-level potential energies corresponds to

the total potential energy of the system. We also define the non-affinity measure

D2
i := min

K

∑

j 6=i
||ṙij −K · rij||2 Θ (rcut-off − rij) , (6.3.7)

where the cut-off distance rcut-off = 3 is chosen so as to be slightly above the sep-

aration of two large particles in contact. Here, K is a rank-2 tensor representing

the velocity gradient tensor of an affine motion, and we are minimising over all such

tensors. This is an instantaneous version of Falk and Langer’s non-affinity mea-

sure [211], D2
min, and is evidence of plastic rearrangements occurring in the system.

Where Falk and Langer defined

D2
min (t,∆t; i) = min

E

∑

j 6=i
||rij (t+ ∆t)−E · rij (t)||2 Θ (rcut-off − rij) (6.3.8)

(E is a rank-2 tensor representing the strain tensor of an affine displacement), we

instead have

D2
i = lim

∆t→0
min
E

1

∆t2

∑

j 6=i
||rij (t+ ∆t)−E · rij (t)||2 Θ (rcut-off − rij) . (6.3.9)

For analysing our system, we prefer this instantaneous version to the original because

the lengthening time scales in our system mean that a fixed ∆t would sample a

decreasing slice of the microstructural evolution as t increases.

In Fig. 6.4, we plot snapshots of a two-dimensional system of particles at volume

fraction φ = 0.9, colouring the particles according to their speed, non-affinity mea-

sure and rate of change of potential energy. Cross-sections of a three-dimensional

system show similar behaviour, as shown in Fig. 6.5. At all times shown, we see that

outlier particles with large v, large D2 and large
∣∣∣V̇
∣∣∣ are concentrated in hotspots,

which grow in size with increasing time t. This apparent coarsening provides strong

evidence of spatial correlations growing in time, which may in turn help explain the

slow relaxation dynamics of the system.

We also see a good correspondence between the outliers of v, D2 and
∣∣∣V̇
∣∣∣, so that

a particle with e.g. exceptionally high speed is likely to have exceptionally rapidly
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Figure 6.4: Snapshot of particles in a two-dimensional system at φ = 0.9 at times

t = 103 (top), t = 104 (middle) and t = 105 (bottom). Particles are coloured

according to speed (left), non-affine measure D2 (centre) and rate of change of

particle energy relative to the average rate, V̇ /
∣∣〈V̇

〉∣∣ (right). The colour scales for

v and D2 are centred around the mode of their logarithms.

changing potential energy and live in an exceptionally non-affine neighbourhood.

We confirm this correspondence in Fig. 6.6, which shows the density of particles in

v-D2 space, D2-
∣∣∣V̇
∣∣∣ space and v-

∣∣∣V̇
∣∣∣ space. We see that each contour is stretched

in the direction of high-magnitude v, D2 and
∣∣∣V̇
∣∣∣, indicating a positive correlation

between these quantities in this region.
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Figure 6.5: Snapshot of a cross-section of particles in the plane {z = L/2}, where

L is the system width, for a three-dimensional system at φ = 0.7 at times t = 103

(top), t = 104 (middle) and t = 105 (bottom). Particles are coloured according to

speed (left), non-affine measure D2 (centre) and rate of change of particle energy

relative to the average rate, V̇ /
∣∣〈V̇

〉∣∣ (right). The colour scales for v and D2 are

centred around the mode of their logarithms.

6.3.3 Local plastic events

We have seen that the system relaxation is concentrated in hotspots in which the

local velocity field is non-affine and particle speeds are high. This is potentially
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Figure 6.6: Correlations between the speed v, non-affine measure D2 and magni-

tude of rate of change of particle potential energy
∣∣∣V̇
∣∣∣ at time t = 104 for φ = 0.9

in two dimensions (top) and φ = 0.7 in three dimensions (bottom). Contours show

level sets for the number of particles, N = 101.5, 101.7, · · · , 103.5, within bins of log v-

width wv, logD2-width wD and log
∣∣∣V̇
∣∣∣-width wV̇ in (logD2, log v)-space (left), in(

log
∣∣∣V̇
∣∣∣ , logD2

)
-space (centre) and

(
log
∣∣∣V̇
∣∣∣ , log v

)
-space (right). In two dimen-

sions, (wv, wD, wV̇ ) = (0.05, 0.05, 0.1), while in three dimensions, (wv, wD, wV̇ ) =

(0.05, 0.1, 0.1).

consistent with a picture in which stress in a soft particle system relaxes through

local plastic events (or “shear transformation zones” [211]). In our case the zones

get larger with time, suggesting that particles behave increasingly collectively to

relax their potential energy as the local minimum of the system is approached.

Such events have been extensively studied in the context of sheared amorphous

materials [196, 212–217]. Recently, studies have also observed them in (unsheared)

finite-temperature colloids [201, 218, 219] and soft amorphous solids subjected to

sound [220].

In these systems, in shear, it has been found that plastic events induce a quadrupo-

lar displacement field in the surrounding medium [196]. This is consistent with
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Figure 6.7: Displacement field of particles within a 100 × 100 particle radius box

from a two-dimensional system of N = 106 particles at volume fraction φ = 0.9.

The displacement occurs between times t = 1800 and t = 2200. Arrows have been

enlarged by a factor of ten to make them easier to see.

the expectation for a plastic event occurring within an infinite or periodic elas-

tic medium [195, 198]. In Fig. 6.7, we show a zoom-in on a square region of area

104 of the displacement of particles between times t = 1800 and t = 2200 in a

two-dimensional system at volume fraction φ = 0.9. We see clear evidence of the

characteristic swirling vortices associated with local plastic events. Indeed, Fig. 6.7

bears a striking resemblance to the displacement fields induced by plastic events in

the literature, particularly the displacement fields due to multiple, closely-packed

plastic events [196,201,212,213].

We can relate the coarsening seen in the hot spots of Fig. 6.4 to the spatial ve-

locity correlations evident in the swirls of Fig. 6.7 by plotting the two-dimension

velocity correlation function, 〈v(r) · v(r + ∆r)〉 normalised mean squared veloc-

ity in Fig. 6.8. As seen in the inset to this figure, which shows the growth of

l∗ := sup {∆r : 〈v(r) · v(r + ∆r)〉 > 0.1} against time, the correlation length grows
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Figure 6.8: Normalised spatial correlation function of the viscosity for φ = 0.9 in two

dimensions (left) and φ = 0.7 in three dimensions at times t = 101, 102, 103 and 104.

The average is taken over N/5 choices of particle at the origin and N second particles

at ∆r. Lighter colour corresponds to later time. Inset: Power-law (dotted line) fitted

to data (crosses) for the correlation length l∗ := sup {∆r : 〈v(r) · v(r + ∆r)〉 > 0.1}
against time.

with a power law l∗ ∼ t0.55. This behaviour is not seen in the velocity correlation

function in three dimensions. This is likely a consequence of the additional direc-

tional degree of freedom in three dimensions leading to the decorrelation of particle

velocities.

We also show one final piece of evidence that the relaxation mechanism we ob-

serve for our system is consistent with the plastic events picture proposed for thermal

or sheared systems. This is the intermittency of the dynamics: a given particle will

only transiently be part of a hot spot. We demonstrate this intermittency by show-

ing the time evolution of four particles in Fig. 6.9, where we clearly see that the

speed, non-affine measure and rate of change of potential energy show similar dy-

namics. In particular, we see spikes in these quantities for a given particle occurring

around the same time.
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Figure 6.9: Time signal of the speed (top), non-affine measure (middle) and rate of

change of potential energy (bottom) for four particles, labelled by colour. These were

chosen out of one hundred randomly selected particles such that their V̇ dynamics

is of a similar scale.

6.4 Conclusion

In this chapter, we studied the relaxation of a quiescent athermal soft suspension

towards the local equilibrium of the system. We have identified a slow power-

law relaxation of the system, and shown that this relaxation takes place within

local hotspots which grow in size as the system ages. We have also looked at the

displacement field across the lifetime of a hotspot, which bears a resemblence to

that seen for multiple closely-packed plastic events in soft suspensions under quasi-

static shear or at a finite temperature. We believe this to be the first report of local

plastic deformations, or interesting dynamics in general, in an unsheared athermal

soft suspension relaxing towards its local equilibrium (of the global system).

Having identified several interesting phenomena in the relaxation of our system,

the natural question is if we can identify a theoretical explanation. For instance,
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could one relate the coarsening of hotspots to the need to cross energy barriers

before a plastic rearrangement, given an ever-decreasing pool of potential energy

per particle available for doing so? It would also be interesting to see if the slow

relaxation of the microstructure has observable consequences for the rheology of the

suspension given a waiting time tw before the imposition of flow. Finally, we hope

that the behaviour we have identified here will lead to a better understanding of

soft glassy materials in general.

6.5 Appendix I: Numerical details

6.5.1 Evolving the system

Given a configuration for our N particles, we calculate the velocities of each particle

according to Eq. 6.2.5. We use cell structures [221] to conduct this calculation in

an amount of time that varies linearly with N . This involves dividing the system

into a grid of boxes of width bL/2.8c and calculating the total force on particle i

by iterating over particles in the same or neighbouring boxes. (The simulation was

coded (by the author of this thesis) in C++, so this iteration was achieved using

vectors of box objects rather than linked lists [221,222].)

When calculating interparticle interactions, periodic boundary conditions require

one to solve the “minimum image problem”, determining the distance between points

given the periodicity of the system. For instance, a particle i at position ri =

(x0, y0, 0) will overlap a particle j at position rj = (x0, y0, L− ε) where 0 < ε < 1,

but näıvely calculating their separation as |rj − ri| = L − ε would lead to the

erroneous conclusion that they are far from contact. For the simulations used in this

chapter, we adopt a refinement due to Welling and Germano [222] of an approach

due to Rapaport [223] in which we create copies of boxes at the extremities of the

grid, whose coordinates (and those of the particles they contain) are shifted by L

along one or more axes. In this way, particles in a cell at an edge of the grid can

interact with particles in cells at opposite edges via their copies.

After determining the velocities on all particles, we evolve their positions using
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a simple forward Euler method [118],

ri (t+ ∆t) = ri (t) + ∆t ṙi (t) , (6.5.10)

where the time-step ∆t = α/max
i
ṙi grows as the system dynamics slow down. We

find our results to be converged for α & 10−2, and so use α = 10−2 when evolving

our system.

6.5.2 Preparing the system

We prepare our system at T =∞ by selecting the position of each component of

each particle from a uniform distribution on [0, 1) and multiplying each component

by L. For the finite-temperature initial condition discussed in §6.6, we take this

T =∞ configuration of particles at φ0 = 0.5 and evolve the system using a Langevin

thermostat [221] at temperature T = 10−2. This involves adding a term
√

2T∆t χ,

with χ a Gaussian-distributed random number with zero mean and unit variance

(obtained, in our case, using the Box-Muller algorithm [118]), to Eq. 6.5.10 when

updating the particle positions. We evolve the system in this way for 1000 time

units, which we find to be long enough for the mean particle velocity, coordination

number and potential energy to reach their steady states. Having equilibrated our

system, we quench the system to T = 0 and swell our particles to obtain the target

post-quench volume fraction φ.
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6.5.3 Appendix II: Effect of system size
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Figure 6.10: Root mean squared speed against time t for a system quenched at time

t = 0 to temperature T = 0 from T =∞ for particle populations N = 103, 104, 105

and 106. A lighter curve corresponds to a larger population.

Increasing the number of particles in our system has little effect on the dynamics

except to push the time at which noise dominates the dynamics to later times, as

seen in Fig. 6.10. From Figs. 6.4 and 6.5, it appears that the point at which noise

begins to dominate the dynamics (t ≈ 2 × 104 for N = 106 particles in Fig. 6.10)

coincides with the hotspots attaining a size of the order of the system size.

6.6 Appendix III: Robustness checks
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Figure 6.11: Root mean squared speed against time t for a system quenched at time

t = 0 to temperature T = 0 from T = ∞ (black) compared to that for a system

equilibrated at volume fraction φ0 = 0.5 and temperature T = 10−2 before the t = 0

quench (green). We show both two-dimensional data for post-quench φ = 0.9 (left)

and three-dimensional data for post-quench φ = 0.7.
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In Fig. 6.11, we show that after a post-quench transient of around 102 time units,

systems prepared at T = ∞ show (within noise) the same power-law decay as

systems prepared at T = 10−2 and φ = 0.5.

6.7 Appendix IV: Velocity decay on an overdamped

lattice

We consider a d-dimensional system of Nd identical particles on a periodic lattice.

We take the system to be finite, with each particle labelled according to its position

vector n = (n1, n2, . . . , nd) ∈ {0, 1, . . . , N − 1}d in the primitive vector basis, i.e.,

each particle n has equilibrium position xn = A · n where A is the matrix whose

columns are the primitive vectors a1, . . . ,ad of the lattice. Writing Fn←m for the

force on particle n due to particle m and un for the displacement of particle n from

its equilibrium position, we assume spring-like interactions

Fn←m = ks (um − un) Θ (1− |m− n|) (6.7.11)

between particles, with ks a spring constant. We also assume a hydrodynamic drag

force

F H
n = −ζu̇n. (6.7.12)

The equation of motion for our system in the overdamped limit is then

0 =
∑

m 6=n
Fn←m + F H

n

= ks

(
d∑

i=1

[un+ei + un−ei ]− 2dun

)
− ζu̇n

(6.7.13)

for each n, where ei has components eji = δij. Choosing ζ/ks as our time scale, we

obtain, upon non-dimensionalisation,

u̇n =

(
d∑

i=1

[un+ei + un−ei ]− 2dun

)
. (6.7.14)

We see that the components uin are uncoupled from one another. For notational

simplicity, we will write uin as un for a generic, unspecified component i, unless

explicitly stated otherwise.
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To solve eq. 6.7.14, we use the multidimensional discrete Fourier transform

un =
1√
Nd

∑

k

ûke
2πik·n/N (6.7.15)

ûk =
1√
Nd

∑

n

une
−2πik·n/N , (6.7.16)

where k := (k1, k2, · · · , kd),
∑
k

:=
N−1∑
k1=0

N−1∑
k2=0

· · ·
N−1∑
kd=0

and
∑
n

:=
N−1∑
n1=0

N−1∑
n2=0

· · ·
N−1∑
nd=0

. Ap-

plying this to eq. 6.7.14 yields

1√
Nd

∑

k

˙̂uke
2πik·n/N = − 2√

Nd

∑

k

ûke
2πik·n/N

[
d−

d∑

i=1

cos (2πki/N)

]
,

so that

ûk(t) = ûk(0) exp

(
−2

[
d−

d∑

i=1

cos (2πki/N)

]
t

)
. (6.7.17)

We seek the mean squared speed, 〈u̇2
n〉. Applying the Plancherel theorem,

∑

n

|xn|2 =
∑

k

|x̂k|2 , (6.7.18)

we obtain

〈
u̇2
n

〉
=

1

Nd

∑

n

u̇2
n

=
1

Nd

∑

k

˙̂u2
k

=
4

Nd

∑

k

|ûk(0)|2
[
d−

d∑

i=1

cos (2πki/N)

]2

e
−4

[
d−

d∑
i=1

cos(2πki/N)

]
t

.

(6.7.19)

We want to average this over initial conditions {un(0)}n. Writing 〈·〉0 for this

average over initial conditions, we can assume that the un(0) (and thus un(0)2) are

independent and identically distributed, so that

〈〈
u2
n(0)

〉〉
0

=

〈
1

Nd

N−1∑

n=0

u2
n(0)

〉

0

=
1

Nd

∑

n

〈
u2
n(0)

〉
0

=
1

Nd

∑

n

〈
u2
n(0)

〉

=
〈
u2
n(0)

〉
,

(6.7.20)
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where eq. 6.7.20 uses the law of large numbers, and hence an assumption of large

N . We see that

〈
|uk|2

〉
0

=
1

Nd

∑

m=0

∑

n=0

〈umun〉0 e−2πik(m−n)/N

=
1

Nd

∑

n

〈
u2
n

〉
0

=
〈
u2
n

〉
,

(6.7.21)

where the second equality (eq. 6.7.21) is due to the independence of un and um, and

the assumption that they have zero mean. We may thus write

〈
u̇2
n

〉
=

4σ2

Nd

∑

k

[
d−

d∑

i=1

cos (2πki/N)

]2

e
−4

[
d−

d∑
i=1

cos(2πki/N)

]
t

, (6.7.22)

where σ2 := 〈u2
n〉. We convert this to an integral

〈
u̇2
n

〉
= 4σ2 lim

L1→∞

1

Ld

∫ L

0

∫ L

0

· · ·
∫ L

0

[
d−

d∑

i=1

cos (2πkia/L)

]2

×

e
−4

[
d−

d∑
i=1

cos(2πkia/L)

]
t

dk1dk2 . . . dkd. (6.7.23)

in the limit N −→∞, using N = a/L where a := |a1| and L := N |a1|.
Approximating d −

d∑
i=1

cos (2πki/N) ≈ 2π2 k ·k a2/L2 and changing coordinates

to κ = k
√
t gives us

〈
u̇2
n

〉
= 8π4σ2a4 lim

L→∞

1

Ld+4

∫ L

0

(k·k)2 e−8π2k·k(a2/L2)tdk1dk2 . . . dkd

= 8π4σ2a4t−(2+ d
2) lim

L→∞

1

Ld+4

∫ L

0

∫ L

0

· · ·
∫ L

0

(κ·κ)2 e−8π2κ·κ a2/L2

dκ1dκ2 . . . dκd,

(6.7.24)

giving us a scaling 〈u̇2
n〉 ∼ t−(2+ d

2) in d-dimensions.

The full mean squared displacement velocity, 〈u̇n · u̇n〉, will have an altered pre-

factor, but will share the same power-law decay exponent. We therefore write, for

the decay of the root mean squared velocity in a crystal,

√
〈v2〉 ∼ t−1+ d

4 . (6.7.25)



Chapter 7

Conclusions

In this thesis, we have studied amorphous athermal suspensions with few ingredients

in three different contexts, in each case with the support of particle simulations. In

general, exploring simple systems helps one to identify generic physics underlying

generic phenomena. For instance, the hydrocluster theory of shear thickening relies

on Brownian motion, yet non-colloidal suspensions, such as cornstarch in water, also

exhibit shear thickening. By considering the simpler case of a non-Brownian sys-

tem, one may find a mechanism of shear thickening that applies to both the simple,

non-Brownian case, and the colloidal case, such as the transition from frictionless to

frictional rheology outlined in Ch. 3. In the course of this thesis, we have further-

more shown how a sparsity of ingredients can be leveraged to develop rheological

models (Ch. 4 and, to some extent, Ch. 3). We also provide the example of a soft

suspension where removing most ingredients, including flow, preserves a surprising

amount of non-trivial dynamics (Ch. 6), further underlining the importance of con-

sidering minimal systems when studying generic behaviour. The extreme usefulness

of particle simulations, for their part, has been affirmed by the evidence of the pre-

vious chapters. We have employed them to test the assumptions (Chs. 3 and 5)

and predictions (Chs. 3 and 4) of models, as well as to study the microstructural

dynamics of suspensions in great detail (Chs. 5 and 6).
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7.1 Vorticity banding

In Ch. 3, we extended the scalar Wyart-Cates model [56] for the steady-state be-

haviour of a shear thickening suspension to a concentration-coupled one-dimensional

dynamical model for the vorticity-axis rheology. Using this model, we predicted the

linear instability of homogeneous flow for large systems at negatively sloped points

on the constitutive curve. We characterised two types of long-time solution to our

model, travelling bands (TBs) and locally oscillating bands (LOBs). Dr. Mari

subsequently identified qualitatively similar behaviour in particle simulations of a

shear-thickening suspension, though LOB behaviour was seen only transiently in

the simulations. This chapter showed that the generic thickening mechanism of the

Wyart-Cates model coupled with simple frictional-state and concentration dynamics

is sufficient to predict and explain some aspects of the bulk behaviour of suspensions,

lending further support to the shear thickening mechanism proposed by Wyart and

Cates [56], if not the precise form of the equations (see Fig. 3.9, and also [224]).

Perhaps the most important direction for future work related to the results of

Ch. 3 is to study how realistic boundary conditions affect the instabilities we have

found, though it is not clear what such conditions would be. The difficulty of finding

a three-dimensional constitutive model of suspension rheology (Ch. 4) suggests that

particle simulations may be the best way of undertaking such research.

Another direction is suggested by recent work by Guy et al. [55], which gener-

alises the Wyart-Cates mechanism, expressing the jamming fraction φJ in terms of

generically-defined constraints which are imposed or released as a function of stress.

This generalisation, which has received recent experimental support [26], might yield

new instabilities upon the development of models in the vein of those used in this

chapter.

7.2 Fabric tensor dynamics: modelling

In Ch. 4, we modelled the fabric tensor evolution of a dense, non-Brownian sus-

pension of hard particles with frictional contact and hydrodynamical interactions,

but no short-ranged repulsion. We considered a flow protocol of simple shear, with
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a reversal of shear at time t = 0. After enforcing dimensional and symmetry con-

straints, we used a result due to Hand [167] to systematically develop models for

the evolution of the fabric tensor Q as a function of itself and the velocity gradient

of increasingly high polynomial order in the components of Q. We then fit these

models to particle simulation data from Dr. Mari. We found that no linear fabric

tensor model of this kind can fit the simulation data after reversal, a significant re-

sult in light of recently proposed linear models of this type [161,162]. Furthermore,

we found that though higher-order polynomial models can fit the simulation data,

such models are unlikely to contain any physical insight.

The most important conclusion of this chapter is that thoroughly testing mi-

crostructural models against data is important when attempting to model suspen-

sions. One immediate direction for further work would be to see if experiments can

confirm the conclusions of our study with respect to the fabric tensor.

7.3 Fabric tensor dynamics: microstructure

This conclusion was reinforced in Ch. 5, where we found that the distribution P (p)

of near-contacts is strongly four-lobed in the shear plane shortly after reversal, and is

thus poorly described by an implicitly two-lobed object such asQ. Instead, we found

that introducing a rank-4 tensor C corresponding to the coefficients of the fourth-

order term in the spherical harmonic expansion of P (p) provides a significantly

better description.

The results of this chapter suggest that future efforts at modelling the microstruc-

ture of suspensions might need to take both two- and four-lobed details of the mi-

crostructure into account. Further insight might also be gained by considering other

flow geometries than shear flow, such as planar extensional flow. Taking a step back,

the key motivation for the research in this chapter was the need to test the assump-

tions underlying the fabric tensor description of the microstructure. Having tested

the adequacy of the rank-2 fabric tensor as a proxy for the near-contact orientation

distribution P (p), it might make sense to now ask to what extent P (p) is sufficient

as a description of the microstructure.
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7.4 Relaxation dynamics

Finally, in Ch. 6, we explored the dynamics of a soft suspension of spheres relaxing

towards the local energy minimum of the system. We found that the dynamics is

non-trivial, involving slow power-law decay and coarsening with, in two dimensions,

velocity correlations which grow as a power-law. Displacement fields reminiscent of

the quadrupolar displacement fields for a plastic event in an elastic medium observed

in, e.g., sheared [196,212–217] soft suspensions are seen.

One direction for future work would be to further probe the hotspots observed

in our system, and determine whether they are a manifestation of the same local

plastic events seen in thermal or sheared systems. In either case, it would also be

useful to gain a physical understanding of the phenomena we observe, which may

lead to insights on the physics of glassy materials in general.

7.5 Closing remarks

Going forward, the evidence of this thesis suggests that when trying to understand

a phenomenon in suspension dynamics, one should identify the simplest system that

displays the behaviour in question, and then thoroughly test any proposed model or

explanation against detailed particle simulation or experimental data. Furthermore,

surprising insights may be gained by using particle simulations to test what was

previously assumed, and by seeing if a phenomenon observed in one system can be

found in a simpler one.

Suspensions are conceptually simple systems with surprisingly rich behaviour,

with many open and interesting questions still to be answered. I hope that this

thesis has provided a flavour of this.
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