
Durham E-Theses

Investigating transcription factors in wheat defence

against Zymoseptoria tritici fungus.

MILLYARD, LINDA

How to cite:

MILLYARD, LINDA (2019) Investigating transcription factors in wheat defence against Zymoseptoria

tritici fungus., Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/13002/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13002/
 http://etheses.dur.ac.uk/13002/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


	 i	

	

	

Investigating	transcription	factors	in	wheat	defence	against	

Zymoseptoria	tritici	fungus.	
	
	

	
	
	

Linda	Millyard	
	

	

	

	

Department	of	Biosciences	

Durham	University	
	
	

Submitted	for	the	Degree	of	Doctor	of	Philosophy	
by	Research	

	
2018	
	
	



	 ii	

	

	

Abstract	

	
Zymoseptoria	tritici	(Septoria)	is	a	devastating	fungal	pathogen	of	wheat,	

causing	yield	losses	of	up	to	50%.	It	is	classed	as	a	major	pathogen	threat	

within	the	EU.	Finding	new	resistance	breeding	targets	is	of	upmost	

importance	due	to	Septoria’s	ability	to	evolve	resistance	quickly.		

	

During	this	project	I	used	Virus	Induced	Gene	Silencing	(VIGS)	to	study	

WRKY	transcription	factors.	I	identified	two	that,	when	silenced,	caused	a	

change	in	Septoria’s	infection	phenotype,	TaWRKY19	and	TaWRKY9.	

TaWRKY19	is	a	resistance	factor	whereas	TaWRKY9	is	a	susceptibility	factor.		

	

To	further	study	the	defence	network	I	performed	a	Yeast	1	Hybrid	(Y1H)	

experiment	to	identify	TFs	that	bound	to	TaWRKY19’s	and	TaWRKY9’s	

promoter.	Through	this	screen	I	found	multiple	potential	binders.	I	focussed	

on	one,	TabZIP2,	which	bound	to	TaWRKY19’s	promoter.	Further	silencing	

and	infection	experiment	revealed	TabZIP2	to	be	a	susceptibility	factor.	qRT-

PCR	experiments	were	used	to	study	the	relationship	between	TaWRKY19	

and	TabZIP2,	these	showed	that	TabZIP2	appears	to	be	a	negative	regulator	

of	TaWRKY19	expression.		

	

Results	from	this	thesis	offer	three	potential	breeding	targets	for	Septoria	

resistant	wheat,	with	further	TFs	also	identified	for	further	experimentation.		
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1.	Introduction	

1.1	Triticum	aestivum	and	Septoria	fungus	interaction	

Triticum	Aestivum	(bread	wheat)	is	one	of	the	major	food	sources	in	many	

parts	of	the	world	and	has	been	cultivated	for	more	than	9,000	years	2.	It	is	

the	second	most	cultivated	food	crop	in	the	world	behind	Orysa	sativa	(rice)	

adding	around	£2,000million	to	the	UK	economy	per	year	(based	on	sales	in	

2013)3.	To	meet	current	demands	and	future	population	increases	it	is	

predicated	that	wheat	production	needs	to	grow	by	>1.7%	annually,	well	

above	the	<1%	currently	being	achieved4.	

1.1.1	Wheat	

Bread	wheat	is	a	hexaploid	genome	(AABBDD),	which	originates	from	the	

inter	species	hybridization	of	T.	urartu	(AA)	and	a	close	unknown	relative	of	

Aegilops	speltoides	(BB).	This	tetraploid	wheat	(T.	turgidum)	then	hybridized	

with	A.	tauschii	(DD)	giving	the	hexaploid	T.	aestivum	5,6.	Domesticated	wheat	

has	several	morphological	advantages	over	its	wild	relatives.	Firstly	the	grain	

size	has	changed	dramatically	from	long	and	thin	to	short	and	fat.	These	

changes	are	thought	to	be	due	to	two	independent	traits	–	size	and	shape	–	

which	have	evolved	separately	and	are	under	the	influence	of	separate	

genetic	components.	Current	domesticated	wheat	has	a	vastly	reduced	

genetic	variation	for	grain	size/shape	in	comparison	to	the	wild	relatives	so	

there	is	likely	to	be	few	further	drastic	changes7,8.	The	new	grains	are	

advantageous	as	they	have	increased	germination	rates	and	produce	larger	

plants8.		The	second	major	morphological	change	relates	to	the	lack	of	seed	

shattering	in	current	domesticated	wheat.	Analysis	of	ancient	wheat	remains	

indicates	that	it	may	have	taken	as	long	as	2,000	years	for	this	trait	to	

develop,	much	slower	than	grain	size	changes8,9.	Unsurprisingly	lack	of	seed	

shattering	trait	is	thought	to	have	evolved	after	changes	to	grain	size.	It	is	

advantageous	as	harvesting	becomes	less	labour	intensive	for	the	farmer10.		

In	2016,	world	wheat	production	was	predicted	to	be	around	749.5	million	

tonnes11	with	the	average	amount	of	wheat	consumed	per	capita	in	2013	
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(last	data	point)	calculated	at	65.43kg12.	From	the	cereals,	wheat	production	

is	second	only	to	maize11.	Wheat	consumption	is	highest	when	compared	to	

other	cereals.	After	maize,	wheat	has	the	second	highest	usage	for	animal	

feed	in	2013,	546	million	tonnes	of	maize	were	used	for	animal	feed	

compared	to	130	million	tonnes	of	wheat12.	This	shows	wheat’s	importance	

as	a	crop,	both	directly	and	indirectly	on	food	production.	It	is	also	used	in	

alcohol	distillation	and	for	non-food	applications	such	as	biofuels,	thatch	

roofs	and	livestock	bedding3.	

1.1.2	Zymoseptoria	tritici	
	

	

Figure	1.1:	Disease	severity	for	wheat	pathogens	across	the	UK.	Modified	

from	ADHB	recommend	list	2017/201813	

	

Zymoseptoria	tritici	is	the	main	threat	to	UK	wheat	production	(figure	1),	

with	an	average	potential	loss	in	yield	of	50%	for	untreated	crop	populations	

and	an	average	loss	in	treated	crops	of	5-10%3.	In	Europe	(2014)	it	is	

estimated	that	£1.1billion	was	spent	on	fungicides	to	treat	wheat	crops,	with	

around	70%	of	this	specifically	aimed	at	preventing	Septoria	14,15.	Most	of	

these	fungicides	were	used	in	just	three	countries,	France,	Germany	and	the	

UK	due	to	the	temperate	and	humid	climate	being	perfect	for	Septoria	to	

thrive.	Although	these	multiple	fungicide	applications	come	with	a	great	

initial	cost	they	lead	to	a	greater	reward	through	enhanced	yield	(normally	

reduced	by	the	high	disease	pressure)..	Farmers	can	expect	an	average	of	

four	times	more	profit	through	extra	yield,	which	is	a	vast	increase	even	
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when	the	cost	of	the	three	fungicide	applications	throughout	the	growing	

season	is	taken	into	account15.	

Wheat	is	particularly	vulnerable	when	sown	upon	straw	debris	and	among	

early	sown	susceptible	varieties.	Septoria	has	become	more	devastating	since	

the	1960’s	with	the	wider	use	of	commercial,	early	maturing,	semi	dwarfing	

and	higher	yielding	wheat	cultivar	varieties	that	are	more	susceptible	to	

Septoria	fungus	16.		

Septoria	leaf	blotch	mould	is	an	ascomycete	fungus	caused	by	Mycosphaerella	

graminicola	(teleomorph	stage)	in	bread	wheat	in	temperate	regions.	The	

first	visible	symptoms	of	Septoria	infection	are	irregular	brown	chlorotic	

spots,	which	expand	as	the	infection	progresses,	developing	into	necrotic	

lesions	on	either	side	of	the	leaf.	Developing	with	the	lesions	are	the	pycnidia,	

small	brown	raised	fruiting	bodies	produced	on	the	leaf	at	the	stomata,	which	

release	pycnidiospores	when	mature	16,17.	A	sticky	medium	containing	sugars	

and	proteins	is	produced	to	protect	the	spores	from	drying	out.	The	spores,	

in	the	sticky	medium,	are	only	exuded	from	pycnidia	on	sufficient	humidity	

and	appear	through	an	ostiole.	Septoria	infection	relies	on	water	and	

humidity	to	progress	16.		

The	fungus	spreads	its	spores	by	either	wind	or	within	rain	splashes	18	

infecting	the	bottom	leaves	of	the	wheat	plant	and	potentially	going	onto	

infect	upper	leaves	16.	Over	winter	or	when	wheat	crops	are	not	present	

Septoria	survives	in	plant	debris	as	mycelium,	in	pycnidia	and	mainly	as	

pseudothecia,	which	are	activated	to	release	the	spores	upon	wetting	14.	It	

infects	in	temperate	regions	with	high	rainfall,	ideally	needing	moisture	for	

>24	hours	and	a	temperature	of	10-20OC	19.	Twenty	four	to	forty	eight	hours	

after	the	spores	come	into	contact	with	the	leaf	the	Septoria	hyphae	infiltrate	

the	leaf	through	the	stomata,	entering	the	apoplastic	space,	where	it	remains	

throughout	its	life	cycle.	During	the	early	symptomless	phase	of	infection,	the	

first	12-14	days,	the	Septoria	grows	as	a	biotroph	using	nutrients	from	the	

apoplastic	space	to	grow	hyphae	throughout	the	mesophyll	tissue.		
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The	Septoria	genome	contains	few	genes	encoding	for	enzymes	that	break	

down	the	plant	cell	wall,	unlike	other	fungal	pathogens.	Instead	there	is	an	

increase	in	the	protein	families	for	peptidases	and	alpha	amylases20.	It	has	

been	suggested	that	the	fungus	relies	more	on	the	breakdown	of	proteins	

from	the	apoplast	as	opposed	to	carbohydrate	degradation	to	avoid	detection	

in	the	biotrophic	phase20.	The	next	stage	of	the	Septoria	life	cycle	is	the	

necrotrophic	growth	phase	where	the	host’s	mesophyll	cells	collapse	and	die	

releasing	nutrients,	leading	to	leaf	surface	lesions14,16,21.	The	fungal	mycelium	

rapidly	proliferate	upon	host	cell	death,	with	an	up	regulation	in	genes	

encoding	for	the	proteins	involved	in	energy	production	within	the	fungal	

cells	occurring	at	the	same	time	as	the	release	of	intracellular	nutrients17.	The	

cue	for	Septoria’s	switch	between	biotrophic	to	necrotrophic	growth	stages	is	

unknown	as	of	yet.	The	reduction	in	grain	yield	is	due	to	the	loss	of	

photosynthetically	active	tissue	caused	by	the	fungal	infection	during	

necrotrophic	growth22.	

Current	methods	of	controlling	the	infection	include	the	use	of	chemical	

fungicides	and	resistant	wheat	varieties.	Current	chemical	treatments	for	

Septoria	include	azoles,	SDHIs	(Succinate	DeHydrogenase	Inhibitors)	and	

multi-site	fungicides	(e.g.	chlorothalonil),	with	a	mix	of	all	of	these	

recommended	to	protect	against	resistance	development23.	Resistance	by	

some	fungi	species	has	already	been	observed	in	laboratory	and	field	studies	

for	all	different	classes.	Septoria	has	already	evolved	resistance	(through	

single	point	mutations)	against	the	first	two	types	in	either	field	or	

laboratory	experiments24.	Quinine	outside	inhibitors	(QoIs)	fungicides	were	

widely	used	until	wide	spread	resistance	was	reported.	Fraaije	et	al	25	

showed	that	a	single	point	mutation	in	the	S.	tritici	cytochrome	b	gene	led	to	

resistance	against	QoIs	quickly,	possibly	due	to	QoIs	only	having	one	target	

for	their	mode	of	fungicide	action.	Torriani	et	al	15	showed	at	least	4	

independent	evolutions	of	the	G143A	resistant	mutation	are	currently	

present	in	Europe.	Timing	of	treatment	is	also	very	important	as	there	are	

few	fungicides	(e.g.	azoles)	that	can	kill	Septoria	once	it	has	switched	into	its	

necrotrophic	lifestyle	(when	the	disease	becomes	visible	to	the	farmers)	and	
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resistance	is	quickly	becoming	more	prevalent	for	these.	Therefore	farmers	

need	to	have	pre-treated	their	crops	to	prevent	the	initial	infection3.		

The	Stb	gene	family	has	been	identified	in	various	wheat	varieties	resistant	to	

several	Septoria	isolates.	So	far	21	major	STB	resistance	genes	have	been	

identified	in	wheat,	with	resistance	compatible	to	different	isolates	of	

Septoria.	Of	these	Stb	genes	only	one	has	been	cloned,	Stb6.	The	gene	

associated	with	this	resistance	locus	is	TaWAKL4	(Wall-Associated	Receptor	

Kinase	Like	4)26.		

Resistance	to	Stb	loci	can	be	overcome,	for	example	Stb4	expressing	wheat	

varieties	(which	were	used	for	>15	years	in	California)	have	been	shown	to	

become	susceptible	to	Septoria27.	It	was	also	shown	that	Stb4	resistance	was	

overcome	even	faster	(5	years)	in	Oregon,	therefore	resistance	depends	on	

both	the	environment	and	the	Septoria	isolates	present28.	A	much	more	

important	point	for	breeders	regarding	resistant	varieties	is	the	potential	

genetic	linkage	between	high	yielding	genes	and	susceptibility	factors,	with	

current	breeding	techniques	struggling	to	disconnect	this	linkage15.	Yield	is	

the	primary	target	of	any	breeder,	so	if	a	resistance	gene	has	a	negative	

impact	on	yield	it	will	not	be	continued	in	the	breeding	pipeline.		It	was	also	

observed	that	Septoria	infection	became	prevalent	at	the	same	time	as	the	

major	boost	in	wheat	yields	during	the	1970’s15.	

The	rapid	evolution	of	Septoria	resistance	is	potentially	due	to	high	levels	of	

genome	plasticity	within	the	fungus	as	it	undergoes	high	frequencies	of	both	

sexual	(ascospore)	and	asexual	(conidia)	reproduction14,17.	Septoria	also	has	

the	potential	to	go	through	6	growth	cycles	in	a	single	wheat	growth	season3,	

potentially	infecting	each	new	leaf	as	it	emerges.	It	contains	13	core	

chromosomes	and	an	extra	8	whose	loss	appears	to	have	no	effect	on	the	

fungus	so	are	dispensable	to	the	fungi.	Over	the	course	of	the	growing	season	

around	24%	of	the	final	isolates	originated	from	sexual	reproduction,	which	

allows	gene	transfer	more	readily	therefore	decreasing	the	evolution	time	

needed	for	the	population	as	a	whole	29.	Evolution	in	the	8	dispensable	

chromosomes	occurs	more	rapidly	than	in	the	core	chromosomes.	They	
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appear	different	to	the	core	chromosomes	in	that	although	they	contain	12%	

of	the	genomic	DNA	they	represent	only	6%	of	total	genes.	They	are	also	

made	up	of	around	50%	more	repetitive	DNA	and	half	the	density	of	genes	

compared	to	the	core	chromosomes.	There	are	also	major	differences	

between	the	genes,	with	the	core	chromosomal	genes	being	longer,	more	

unique	to	each	other	and	having	different	codon	usage	when	compared	to	

those	in	the	dispensable	chromosomes.	Genes	are	repeated	in	both	the	core	

and	dispensable	chromosomes	as	well	although	it	is	unknown	which	section	

of	the	chromosomes	these	genes	originated.	Many	of	the	annotated	genes	

from	the	dispensable	chromosomes	appear	to	be	transcription	factors,	

functioning	in	signal	transduction	or	gene	regulation.	These	factors	show	

major	differences	between	the	dispensable	chromosomes	of	Septoria	when	

compared	to	other	fungal	pathogens20.	Further	studies	need	to	be	performed	

to	fully	elucidate	the	function	of	the	dispensable	chromosomes.		

Wheat	varieties	have	been	bred	to	be	resistant	to	different	pathogens	but	

these	varieties	do	not	yet	have	resistance	to	all	the	economically	important	

diseases	so	the	use	of	fungicides	is	still	needed	to	prevent	infection	30.	Rather	

than	breeding	in	one	major	resistance	gene	that	could	easily	be	overcome	by	

Septoria	the	approach	of	gene	stacking	multiple	minor	resistance	genes	that	

culminate	in	a	majorly	improved	resistance	is	now	the	focus	of	some	of	the	

major	wheat	breeding	companies15.		

Although	many	partial	and	fully	Septoria	resistant	wheat	varieties	have	been	

bred,	their	method	of	resistance	is	still	unknown.	Currently	there	are	no	

model	pathogen-plant	systems	similar	to	the	Septoria-wheat	infection,	which	

makes	it	harder	to	study	17.	

1.2	Plant	defence	

1.2.1	Background	
	
Plants	have	several	physical	barriers	that	act	to	defend	the	plants	against	

pathogens;	these	are	the	waxy	cuticle	and	the	plant	cell	wall.	Their	roles	are	

not	limited	to	defence	however,	also	being	involved	in	water	loss	reduction,	

protection	against	UV	radiation	and	structural	support31,32.		
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If	a	pathogen	makes	it	past	the	physical	barriers	the	plant	has	other	defence	

responses	it	can	use.	Basal	resistance	to	fungal	pathogens	occurs	when	

pathogen/microbe	associated	molecular	patterns	(PAMPs/MAMPs)	such	as	

flg22	or	chitins	are	recognised	by	pattern	recognition	receptors	(PRRs)	on	

the	cell	surface	(FLS2	and	CERK1	respectively	in	Arabidopsis	thaliana)33,34.	

This	recognition	causes	a	cascade	of	events	that	help	arm	the	plant	for	

defence	and	is	known	as	PAMP/MAMP	triggered	immunity	(PTI/MTI).	Once	

the	PRRs	perceive	a	pathogen	a	cascade	of	phosphorylation	occurs,	leading	to	

transcriptional	changes.	The	first	step	in	the	cascade	is	the	actvation	of	a	

Mitogen-activated	protein	(MAP)	kinase	kinase	kinase	(MEKK	or	MAP3K).	

This	activation	can	come	directly	or	indirectly	from	the	PRR.	The	MEKK	then	

phosphorylates	and	activates	a	MAP	kinase	kinase	(MEK	or	MAP2K).	Next	the	

MEKK	phosphorylates	and	activates	a	MAP	kinase	(MAPK).	Activated	MAPK	

can	then	go	onto	phosphorylate	other	targets	such	as	TFs,	leading	to	global	

transcription	changes	(reviewed	in35,36).	The	MAPK	cascade	is	not	only	

involved	in	plant	defence,	it	can	also	be	activated	in	growth,	hormone	

signalling	and	abiotic	stresses	(reviewed	in	37,38).	In	Arabidopsis	there	are	60	

MEKKs,	10	MEKs	and	20	MAPKs39,	it	is	not	a	straightforward	linear	cascade,	

with	different	MAPKs	etc	being	involved	in	different	stress	activation.		

Some	pathogens	have	evolved	resistance,	via	suppression	or	evasion,	leading	

to	successive	rounds	of	evolution	by	both	the	plant	and	pathogen	that	result	

in	specific	plant	defences	to	certain	pathogens	known	as	a	gene-for-gene	

relationship	40,41.	Pathogens	such	as	Cladsporium	fulvum	(a	pathogen	of	

tomato,	Solanum	lycopersicum)	defend	themselves	by	releasing	effector	

proteins	such	as	the	tomato	(Solanum	lycopersicum)	plant	pathogen	

Cladsporium	fulvum,	which	can	protect	against	plant	defence	by	avoiding	

detection	by	the	plant.	C.	fulvum	releases	different	effectors,	such	as	

ExtraCellular	Protein	6	(Ecp6),	which	is	a	Lysine	Motif	(LysM)	containing	

protein	that	binds	to	the	chitin	released	from	the	fungal	cell	walls	therefore	

preventing	the	plant	PRRs	from	perceiving	the	pathogen42,43.	Ecp6	acts	to	

prevent	the	pathogen	from	being	perceived	by	the	plant,	however	some	

effectors	attack	the	plants	defence	response	directly,	such	as	the	



	 8	

Pseudomonas	syringae	bacterial	pathogen	effector	HopAI1.	HopAI1	directly	

interacts	with	the	MAPKs	MPK3	and	MPK6.	These	are	essential	for	

transducing	the	pathogen	perception	signal	leading	to	many	changes	such	as	

global	transcriptional	changes.	HopAI1	dephosphorylates	MPK3	and	MPK6	

therefore	deactivating	the	proteins	and	halting	the	signal	transduction44.		

Although	little	is	known	about	Septoria’s	early	infection	processes	some	

genes	have	been	found	to	be	involved.	Wheat	homologues	of	the	PRRs	Chitin	

Elicitor	Response	Kinase	1(CERK1)	and	Chitin	Elicitor	Binding	Protein	

(CEBiP)	which	recognise	the	PAMP	fungal	chitin	have	been	identified45.	

Septoria	has	evolved	effector	proteins	designed	to	block	the	receptors	from	

perceiving	its	presence.	

Two	proteins	(Mg1LysM	and	Mg3LysM)	were	first	identified	based	on	their	

similarity	to	the	previously	studied	LysM	effector	Ecp6	from	C.	fulvum46.	

Although	both	are	homologous	to	Ecp6	effector	only	Mg3LysM	Septoria	

knockout	mutants	led	to	impaired	and	reduced	infection	in	wheat	leaves46.	

Moreover	when	the	two	wheat	receptors	(CERK1	and	CEBiP	homologues)	

where	silenced	and	infected	with	Septoria	knockouts	of	Mg3LysM	they	were	

able	to	infect	the	plant,	showing	the	interaction	between	the	two45.	

Specific	resistance	to	plant	pathogens	at	a	species	level	involves	a	gene-for-

gene	interaction41	where	a	pathogen	avirulence	protein	(Avr	such	as	Ecp6	

and	HopAI1)	is	recognized	by	a	plant	resistance	protein	(R).	After	this	

recognition	the	plant	activates	a	hypersensitive	defence	response	(HR)	in	

which	the	plant	kills	off	its	own	tissue	surrounding	the	infection	point	in	an	

attempt	to	contain	the	infection47.		Susceptible	plant	species	do	not	have	an	R	

gene	that	corresponds	with	the	pathogens	Avr	gene	and	therefore	cannot	

mount	an	R-gene	defence,	as	it	does	not	recognise	the	pathogen.	This	is	

known	as	Effector	Triggered	Immunity	(ETI).		

Brading	et	al48	first	studied	a	potential	R	gene	in	the	Septoria	resistant	wheat	

variety	cv.	Flame,	which	they	designated	Stb6.	It	recognised	a	single	gene	of	

the	M.	graminicola	isolate	IPO323..Stb6	has	also	been	identified	as	a	Wall	

Associated	Receptor	Kinase	(WAK)-like	protein26.	Wheat	varieties	expressing	
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this	gene	have	increased	resistance	to	Septoria	isolates	expressing	the	

effector	AvrStb6	(AvirulenceStb6)	but	without	the	classical	hypersensitive	

response	(HR)	of	killing	off	the	tissue	surrounding	the	infection	through	

programmed	cell	death	(PCD).	Instead	the	wheat	leaves	show	some	minor	

symptoms	of	leaf	chlorosis,	but	this	is	not	always	the	case.	The	defence	

mechanism	that	is	triggered	after	the	recognition	of	AvrStb6	is	unknown.	One	

potential	mechanism	is	the	plant	limiting	the	availability	of	nutrients,	

therefore	containing	Septoria	to	the	apoplastic	space	and	preventing	it	from	

forming	pycnidia49.		The	AvrStb6	gene	was	studied	further.	It	is	located	in	a	

highly	dynamic	region	in	Septoria’s	genome,	being	surrounded	by	many	

transposable	elements50	It	encodes	a	small	cysteine	rich	secreted	protein,	

consistent	with	a	role	as	an	effector.	Whilst	a	direct	interaction	between	

AvrStb6	and	Stb6	was	not	seen	in	yeast	2	hybrid	experiments	a	link	was	

shown	through	genetically	modifying	expression	levels.	They	overexpressed	

and	knockdowned	(reduced	expression	but	not	a	complete	knockout)	Stb6	

expression	in	both	susceptible	and	resistant	wheat	varieties	respectively.	

Infection	assays	on	the	transformed	wheat	lines	showed	an	opposite	

resistance	phenotype	to	the	unmodified	wheat,	thereby	showing	Stb6	is	a	

resistance	gene	26.		

1.2.1	Transcription	factors	in	defence	responses	
	
Transcription	factors	make	up	an	important	part	of	a	plant	genome.	It	is	

predicated	that	more	than	5%	of	the	Arabidopsis	genes	are	TFs51.	In	general	

plants	have	a	much	higher	percentage	of	TF	in	their	genome	compared	to	

animals.	Of	the	19	families	of	TFs	that	are	shared	between	plants	and	

animals,	14	families	are	larger	in	plants	than	animals.	It	should	also	be	noted	

that	this	is	not	due	to	higher	levels	of	expansion	across	the	entire	plant	

genomes,	but	more	specifically	an	increase	in	the	percentage	of	genes	

represented	by	TFs.	This	is	not	the	only	group	of	genes	to	undergo	an	

expansion;	MAPK	kinases	and	defence	responsive	genes	have	also	increased.	

This	leads	to	the	theory	that,	due	to	plants	sessile	nature,	they	had	to	evolve	a	

greater	number	of	genes	to	regulate	stress52.		
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The	main	families,	which	are	defined	based	on	the	similarity	of	their	protein	

sequences	and	binding	preferences53,	of	TFs	in	plants	are,	in	no	order,	WRKY,	

NAC,	MYB,	MADS	box,	bZIP,	AP2/ERF,	C2H2	zinc	fingers	and	bHLH.	WRKY,	

NAC,	MYB,	bZIP,	AP2/ERF	and	bHLH	families	seem	to	have	a	greater	focus	on	

immune	response	regulation	compared	to	other	families54.	

TFs	have	been	incredibly	important	in	the	domestication	of	many	crop	

plants.	Doebley	et	al55	investigated	the	differences	between	domesticated	

crops	and	their	wild	relatives,	during	this	they	found	6	major	genes	that	are	

involved	in	the	morphological	differences	between	the	crops	and	their	

progenitors.	Of	the	6	genes,	five	are	TFs55	showing	single	TF	genes	can	have	

major	effects	when	modulated.		

Once	the	plants	PRRs	are	activated	the	cell	initiates	a	rapid	defence	response.	

The	earliest	responses	include	a	Ca2+	burst,	Reactive	Oxygen	Species	(ROS)	

production,	MAPK	cascade	and	Nitrogen	Oxide	(NO)	production	(reviewed	in	
56,57).	Nearly	50%	of	the	validated	targets	of	MAPK	cascade	are	represented	

by	TFs58,	leading	to	a	big	change	in	the	transcriptome	post	pathogen	

perception.		

TFs	are	targeted	in	all	aspects	of	the	defence	response,	starting	from	direct	

activation	by	the	receptors.	R	proteins	perceive	pathogen	effector	proteins.	

Nucleotide-Binding	site/Leucine-Rich	repeat	(NLR)	proteins	fall	into	this	

category	of	proteins.	One	such	NLR	from	barley,	Mildew	Locus	A10	(MLA10)	

can	directly	interact	with	two	WRKY	genes	–	HvWRKY1	and	HvWRKY2.	

HvWRKY1	and	HvWRKY2	act	as	negative	regulators	of	defence	against	

powdery	mildew	infection59.	MLA10	also	interacts	with	another	TF,	HvMYB6,	

whose	activation	leads	to	an	increase	in	resistance	against	powdery	mildew.	

Without	a	pathogen	perceived,	HvWRKY1	represses	HvMYB6.	Upon	infection	

MLA10	becomes	activated	after	recognising	the	Avr	protein	A10	from	

powdery	mildew	fungus,	this	allows	the	release	of	HvMYB8	from	HvWRKY1’s	

repression.	HvMYB6	can	then	activate	the	expression	of	defence	genes,	

leading	to	an	increase	in	resistance60.		
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The	Arabidopsis	thaliana	TF	WRKY33	has	been	well	studied	in	its	role	in	the	

early	defence	response.	MPK3	and	MPK6	directly	phosphorylate	WRKY33	

upon	pathogen	detection61.	This	then	allows	WRKY33	to	bind	to	the	

promoter	of	PAD3	(PhytoAlexin	Deficient	3)62	leading	to	an	induction	in	

camalexin	biosynthesis,	which	is	also	a	phytoalexin.	Mutation	experiments	

showed	that	the	phosphorylation	of	WRKY33	by	MPK3/6	is	needed	for	full	

induction	of	the	camalexin	biosynthesis	gene	expression	and	that	this	occurs	

after	infection	with	the	necrotrophic	fungus	Botrytis	cinerea61.		Mao	et	al61	

also	showed	self-activation	by	WRKY33,	proving	the	defence	response	can	be	

rapidly	enhanced	once	it	has	been	activated.		

1.2.1.1	WRKY	transcription	factors	

WRKY	TFs	represent	the	7th	largest	family	of	TFs	in	flowering	plants63.	They	

are	defined	by	having	one	or	more	WRKY	domains.	These	highly	conserved	

WRKY	domains	are	60	amino	acids	in	length.	The	C	terminal	of	the	WRKY	

domain	contains	a	zinc	finger	motif	and	the	N	terminal	has	the	conserved	

distinctive	heptapeptide	WRKYGQK	amino	acid	sequence.	There	are	some	

variants	of	this	sequence	found	in	plants	(such	as	WRKYGEK	and	

WRKYGKK)64,65.	TFs	with	variants	of	the	core	WRKY	sequences	have	also	

been	found	mostly	replacing	the	middle	two	amino	acids65-67,	however	it	is	

speculated	that	these	changes	may	have	an	effect	on	their	ability	or	affinity	to	

bind	to	DNA68.		

There	are	3	different	groups	of	WRKY	transcription	factors,	I,	II	and	III.	Group	

I	have	two	WRKY	domains,	group	II	have	one	WRKY	domain.	Both	group	I	

and	II	have	a	zinc	finger	with	the	structure	C-X4-5-C-X22-23-H-X1-H.	Group	III	

contain	1	WRKY	domain	however	with	a	different	variant	of	the	zinc	finger	

structure	domain	(C-X7-C-X23-HX1-C)69.	Group	II	have	been	further	

subdivided	into	IIa-e,	differentiated	by	their	phylogenetic	relationships	in	

arabidopsis70.		

WRKYs	bind	to	W	boxes,	(C/T)TGAC(T/C),	in	the	promoters	of	their	target	

genes.	W	box	elements	are	prominent	in	plant	genomes.	WRKY	TFs	bind	to	

the	GAC	core	whilst	the	surrounding	bases	of	the	W	box	determine	
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recognition	for	specific	WRKY	TFs68.	Some	WRKY	TFs	require	a	cluster	of	

multiple	W	boxes	before	binding,	for	example	barley	WRKY38	binds	to	two	

adjacent	W	boxes71.	Many	WRKYs	have	W	boxes	in	their	own	promoters	and	

can	be	cross	or	autoregulated61,72,73.	W	boxes	are	also	highly	present	in	many	

defence	related	genes	70,74.	WRKY	TFs	do	not	just	bind	to	W	boxes;	there	have	

been	examples	of	binding	to	other	promoter	elements,	such	as	WT	boxes	

(GGACTTTC)75,76,	Pathogen	Responsive	Element	4	(PR4,	TGCGCTT)77,	SUgar	

REsponive	(SURE)	element78	and	WK	boxes	(TTTTCCAC)79.		

There	are	only	a	few	examples	of	WRKYs	outside	the	plant	kingdom,	with	

ancient	lateral	gene	transfer	predicted	as	the	most	likely	source80.	For	

example,	Rhizopus	microspores	(a	soil	fungus)	and	some	mycorrihizae	fungi	

species	(e.g.	R.	irregulris),	which	both	infect	plant	cells,	are	some	of	the	non-

plant	organisms	with	WRKY	genes.	Hence	why	gene	transfer	is	thought	to	be	

the	source	of	the	unexpected	WRKYs80.		

It	is	predicated	that	there	are	72,	109	and	72	individual	(199	including	A,	B	

and	D	homologues)	WRKY	transcription	factors	in	arabidopsis,	rice	and	

wheat	respectively74.	Different	WRKYs	can	act	as	positive	and	negative	

regulator,	and	sometimes	one	WRKY	can	act	differently	in	different	

pathways.	They	can	also	form	homo/heterodimers	to	function	in	different	

roles81.	WRKY	TFs	do	not	appear	to	favour	forming	heterodimers	within	their	

groups,	as	many	examples	of	heterodimerisation	have	been	experimentally	

shown	across	the	groups82.	The	formation	of	different	dimers	can	also	allow	a	

switch	in	the	TFs	function,	in	rice	OsWRKY62	homodimers	are	negative	

regulators	of	the	defence	gene	DiterPenoid	Phytoalexin	Factor	(DPF),	

however	when	it	forms	a	heterodimer	with	OSWRKY45	it	leads	to	a	strong	

induction	of	PDF	gene	expression81.	This	can	potentially	affect	studies	in	

which	just	one	WRKY	gene	is	focussed	on,	including	this	thesis,	as	most	of	the	

heterodimers	between	WRKYs	are	unknown.	Results	from	studies	that	

change	the	expression	of	one	WRKY	gene	may	be	misinterpreted,	as	this	may	

mean	heterodimers	are	not	formed,	leading	to	a	change	in	the	function	of	an	

unknown	WRKY	that	would	have	been	part	of	a	heterodimer.		
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Another	example	of	a	WRKY	having	opposing	effects	in	different	pathways	is	

AtWRKY70.	It	is	thought	to	be	involved	in	defining	the	balance	between	the	

defence	hormones,	jasmonic	acid	(JA)	and	salicylic	acid	(SA)	(to	nectrophic	

pathogens	and	biting	insects	or	biotrophic	pathogens	respectively)	that	

generally	act	antagonistically	towards	each	other	(reviewed	in	83,84).	Li	et	al	85	

studied	AtWRKY70	and	its	role	in	defence	against	the	necrotrophic	fungal	

pathogen	Alternaria	brassicicola	and	the	biotrophic	fungal	pathogen	Erysiphe	

cichoracearum.	They	found	overexpression	mutants	of	AtWRKY70	caused	

increased	resistance	to	E.	cichoracearum	but	decreased	resistance	to	A.	

brassicicola.	They	suggest	that	AtWRKY70	is	involved	in	the	regulation	

between	JA	and	SA	mediated	resistance	hence	the	opposing	defence	results.		

AtWRKY70	can	also	work	in	partnership	with	AtWRKY53	and	AtWRKY46	to	

positively	regulate	defence	against	the	bacterial	pathogen	P.	syringae.	The	

functional	redundancy	of	these	WRKYs	was	studied	through	mutant	lines.	

Double	and	triple	knockout	mutants	caused	enhanced	disease	susceptibility	

to	P.	syringae	compared	to	wild	type	and	single	knockout	mutants72.	

AtWRKY48	however	is	an	example	of	a	negative	regulator	of	basal	defence	

against	P.	syringae.	Xing	et	al86	used	both	T-DNA	insertion	mutants	and	

AtWRKY48	OX	mutants	to	study	the	effects	of	AtWRKY48	on	P.	syringae	

infection	growth.	Data	from	this	study	showed	enhanced	growth	on	the	

everexpressing	lines	and	decreased	growth	on	the	knockout	mutants.	They	

also	examined	the	expression	levels	of	PR	defence	related	genes,	finding	

again	enhanced	expression	on	overexpressing	lines	and	decreased	

expression	on	the	knockout	mutant	lines.	

WRKY	genes	have	also	been	studied	in	crop	plants,	however	less	extensively	

than	Arabidopsis.	Here	are	some	examples	of	WRKY	genes	in	crops	and	their	

involvement	in	defence	against	pathogens.		

Rice	blast	fungus	caused	by	Magnaporthe	oryzae	is	a	hemibiotroph	(similar	to	

Septoria)	however	M.	oryzae	simultaneously	undergoes	both	biotrophic	and	

nectrophic	growth.	OsWRKY53	has	been	studied	for	its	effects	on	rice	

defence	against	rice	blast.	Overexpression	of	OsWRKY53	can	induce	higher	
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expression	of	defence	related	genes	and	causes	enhanced	resistance	to	M.	

oryzae	87.	

Another	example	of	a	crop	WRKY	TF	is	from	Capsicum	annuum	(Peppers).		

CaWRKY1	was	discovered	to	be	a	negative	regulator	of	defence	against	the	

bacterial	pathogen	Xanthomonas	axonopodis88.		

Expression	levels	of	15	out	of	the	85	identified	WRKY	TFs	of	Brachypodium	

distachyon	(Purple	false	broom	grass)	were	upregulated	after	infection	with	

Fusarium	graminearum	(also	a	devastating	fungal	disease	of	wheat)	and	M.	

grisea,	indicating	a	role	in	defence	against	these	fungal	pathogens89.		

Within	wheat	there	has	been	more	studies	looking	at	the	WRKY	TFs	

involvement	in	abiotic	stress90-93	however	some	initial	work	has	been	done	

studying	expressional	changes	under	different	infections.	For	instance	4	

WRKYs	were	found	to	have	differential	expression	post	infection	with	leaf	

rust	(Puccinia	triticina)	fungus65.	Another	study	investigated	expression	

changes	after	SA	treatment,	finding	9	TaWRKYs	whose	expression	changed	at	

varying	time	points	post	treatment93.		

	

1.3	Techniques	for	genetic	studies	in	wheat	

Studies	of	wheat	are	made	harder	due	to	its	large	(16,000Mb)	hexaploid	

genome94,	which	is	5	times	larger	than	the	human	genome	and	35	times	

larger	than	the	rice	genome95.	The	hexaploid	genome	is	made	up	from	three	

genomes	designated	A,	B	and	D	that	are	all	closely	related.	For	wheat	genes	

there	are	three	or	n*three	copies.	This	causes	a	problem	with	functional	

redundancy	as	many	of	these	homologous	genes	are	expressed.	Therefore	a	

mutation	must	be	made	across	each	of	the	three	genomes	to	allow	the	study	

of	the	gene	function96,97.	

Reverse	genetic	techniques	are	used	when	the	gene	sequence	is	known	but	

the	protein	function	is	unknown.	Since	the	rise	of	sequenced	genomes,	

reverse	genetics	has	become	a	useful	tool	in	molecular	biology.	It	usually	

involves	modifying	the	gene	or	expression	of	the	gene,	which	can	cause	a	
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phenotype	change	to	be	studied.	Reverse	genetic	techniques	including	knock	

downs	act	by	reducing	gene	expression	(e.g.	virus	induced	gene	silencing	

(VIGS)	or	RNAi),	insertions	into	the	gene	sequence	(e.g.	T-DNA	or	

transposons)	or	chemical	mutagenesis	(using	ethylmethane	sulphonate	or	

ethyl	nitrosourea)	98.	Targeting	Induced	Local	Lesions	In	Genomes	

(TILLING)99	lines	in	bread	wheat	and	durum	wheat	(cv.	Cadenza	and	cv	

Kronos	respectively)	have	been	developed	in	a	collaboration	between	John	

Innes	Centre,	Earlham	Institute,	University	of	California	Davis	and	

Rothamsted	Research.	The	plants	have	been	sequenced	and	are	available	to	

buy100.	However	each	mutant	only	has	a	mutation	in	one	of	the	

chromosomes,	therefore	extensive	backcrossing	and	crossing	with	the	WT	

wheat	are	needed	before	a	gaining	a	true	knockout	or	knockdown.	

Transforming	wheat	involves	a	more	complex	and	precise	transformation	

process	than	rice	or	maize	and	so	it	has	lagged	behind	other	major	crop	

plants	in	terms	of	transformation	efficiency101.	

	

1.3.1	Virus	Induced	Gene	Silencing	

VIGS	uses	the	posttranscriptional	gene	silencing	(PTGS)	system	used	by	

plants	to	defend	themselves	against	viral	pathogens.	It	allows	the	silencing	of	

homologous	genes97,	which	is	advantageous	in	wheat	with	the	3	genomes.	At	

the	nucleotide	sequence	level,	wheat	genes	can	share	up	to	99%	similarity	

between	homologous	genes	across	the	three	genomes	102.	VIGS	can	silence	

genes	that	have	>85%	sequence	homology,	allowing	silencing	across	the	

three	wheat	genomes	1,103.		

When	the	virus	infects	the	cell	it	releases	its	single	stranded	RNA	into	the	

cytoplasm.	The	virus	then	replicates	its	RNA	using	a	viral	encoded,	RNA-

dependent	RNA	polymerase,	producing	sense	and	anti-sense	RNA.	The	sense	

and	anti-sense	RNA	may	hybridise	to	form	a	double	stranded	viral	RNA	

(dsRNA)	molecule,	which	is	recognised	by	the	plant	protein	DICER	(an	

RNaseIII-type	enzyme).	DICER	then	cleaves	the	dsRNA	into	small	interfering	

RNA	(siRNA),	21-23	nucleotides	long	104,105.	These	siRNA	are	then	
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incorporated	into	the	plant	RNAi	silencing	complex	(RISC	complex).	If	the	

RISC	complex	comes	into	contact	with	any	mRNA	that	are	complementary	to	

the	siRNA	associated	with	the	complex	it	cleaves	these	mRNA,	leading	to	

mRNA	silencing	of	the	viral	genes.	This	slows	viral	replication	and	can	give	

the	plant	immunity	to	any	following	infections	from	this	virus	106,107.		

VIGS	studies	can	be	used	to	discover	the	function	of	a	plant	protein	whose	

DNA	sequence	is	known	by	silencing	and	then	studying	for	any	effects	108.	By	

cloning	a	small	fragment	of	the	selected	plant	gene	into	a	modified	virus	

vector	the	plants	own	viral	defence	mechanisms	can	be	used	to	transiently	

silence	endogenous	mRNA	109.	Cloning	additional	fragments	into	the	viral	

RNA	does	not	affect	the	virus	infectivity	106.	As	the	modified	virus	spreads	

throughout	the	plant	so	does	the	endogenous	mRNA,	leading	to	silencing	of	

the	gene109.	Bruun-Rasmussen	et	al	110	showed	that	the	fragment	inserted	

into	the	virus	was	better	maintained	and	more	abundant	with	smaller	

inserts,	particularly	if	the	insert	is	around	120-500	nucleotides.	Fragments	

smaller	than	this	are	less	effective	silencers	and	larger	fragments	are	more	

likely	to	be	lost	during	viral	replication110,111.	The	vector	chosen	must	be	

from	a	virus	that	naturally	infects	the	host	plant.	Barley	Stripe	Mosaic	Virus	

(BSMV),	a	member	of	the	Hordeiviruses	family112,	naturally	infects	some	

monocot	species	such	as	barley,	wheat,	oats	and	maize	113.	Haupt	et	al	114	

showed	that	BSMV	can	spread	across	barley	leaves	using	GFP	expressing	

BSMV,	this	indicates	that	BSMV	can	be	used	to	silence	genes	across	the	leaf.		

Strain	ND18	of	BSMV	is	currently	used	for	

the	VIGS1.	It	is	comprised	of	3	RNA	

molecules	designated	α,	β	and	γ.	They	are	

each	single	stranded,	positive	sense	RNAs,	

which	among	them	encode	for	7	major	

proteins.	The	viral	replicase	proteins,	that	

are	essential	for	replication,	(αa	and	γa)	

are	encoded	for	in	the	α	and	γ	RNAs.	βa,	the	viral	capsid	protein,	is	encoded	

for	on	the	β	RNA,	however	this	protein	is	not	essential	for	infection	in	barley.	

Figure	1.2:	A	schematic	diagram	of	
BSMV	αRNA,	βRNA	and	γRNA.	
Figure	modified	from	Holzberg	et	
al1.	
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The	Triple	Gene	Block	proteins	(TGB)	genes,	TGB1,	TGB2	and	TGB3	are	all	

required	for	viral	movement.	They	are	encoded	for	on	the	β	RNA	strand115,116.	

The	final	major	gene	in	BSMV	is	located	on	the	γ	RNA	strand	and	is	named	γb.	

It	is	a	cysteine	rich	protein	involved	in	pathogenicity,	although	it	is	not	

essential	mutations	can	cause	severe	changes	in	infection	process	in	barley	

and	leads	to	differing	expression	levels	of	some	of	the	other	major	genes	of	

BSMV115-117.		

Holzberg	et	al	1	were	the	first	to	use	BSMV	to	silence	genes.	The	researchers	

modified	the	virus	to	ensure	increased	silencing	efficiency	and	virulence.	To	

increase	silencing	efficiency	the	βa	coat	protein	was	deleted.	Around	200bp	

of	the	gene	to	be	silenced	are	cloned	into	the	γ	RNA	downstream	of	the	γb	

gene	in	both	sense	and	antisense	orientation.	To	ensure	the	gene	fragment	is	

not	translated	by	the	plant	post	infection	a	stop	codon	was	inserted	in	the	γb	

gene.	This	stops	any	interference	of	the	γb	genes	pathogenesis	activity.	Initial	

experiments	used	gene	fragments	designed	against	genes	that	when	silenced	

lead	to	visible	phenotypes,	such	as	Phytoene	DeSaturase	(PDS)	which	is	

needed	for	carotenoid	synthesis	for	the	protection	of	chlorophylls	from	

photo	bleaching1.		

Before	silencing	wheat	with	the	modified	BSMV	vector,	the	BSMV	vector	is	

amplified	by	infection	into	N.	benthamiana.	It	offers	a	quick,	inexpensive	and	

simple	way	to	increase	the	amount	of	modified	virus	for	infection	into	many	

wheat	plants.	The	insert	(of	the	gene	to	be	silenced)	has	been	shown	to	be	

stable	in	N.	benthamiana	and	levels	of	silencing	from	the	N.	benthamiana	sap	

were	comparable	to	primary	infection	of	wheat	with	BSMV	118.		

VIGS	has	successfully	been	applied	using	all	these	changes	in	many	wheat	

studies	investigating	pathogens26,45,111,119-121,	insects122,	abiotic	stresses123-125	

and	yield	related	genes126.	

VIGS	can	be	more	useful	than	gene	knockouts,	for	example	insertional	

mutagenesis,	for	a	number	of	reasons.	Firstly	gene	expression	silencing	does	

not	occur	until	the	plant	is	infected	with	the	virus,	therefore	any	genes	

involved	in	cell	growth	or	development	can	be	studied.	It	also	does	not	cause	
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full	gene	expression	silencing	as	low	amounts	of	residual	mRNA	are	left	

therefore	essential	genes	may	be	studied	without	being	lethal	to	the	plant.	

This	can	be	a	negative	point	as	the	phenotype	seen	after	silencing	may	be	due	

to	the	residual	levels	of	gene	expression	97,105.	The	viral	construct	can	be	

generated	quickly	and	the	phenotype	of	PDS	silencing	through	VIGS	appears	

1-2	weeks	post	infection.	As	only	a	small	fragment	of	the	gene	to	be	silenced	

is	cloned	into	the	BSMV	vector	full	knowledge	of	the	target	gene	is	not	

required127,	which	is	of	high	advantage	in	wheat	as	the	genome	has	yet	to	be	

fully	assembled128,129.		

1.4	Aims	

The	aim	of	this	PhD	project	is	to	find	potential	breeding	targets	for	use	in	

wheat	defence	against	Septoria,	with	a	focus	on	WRKY	transcription	factors.	

Finding	multiple	breeding	targets	is	desired	as	gene	stacking	leads	to	a	

decrease	in	Septoria	resistance	evolution.	The	targets	will	ideally	be	

integrated	into	the	breeding	pipeline	for	KWS	and	patented	for	their	use	in	

wheat	defence	against	Septoria.		

	

1.5	Objectives	

To	identify	WRKYs	potentially	involved	in	wheat	defence	against	Septoria	

through	expression	changes..	

To	successfully	silence	the	identified	WRKY	genes	using	VIGS	experiments.	

Investigate	the	WRKYs	role	in	defence	against	Septoria	using	seedling	

infection	assays.	

Start	to	build	up	a	network	of	regulation	for	these	WRKY	genes	through	yeast	

1	hybrid	(Y1H)	studies.	

Study	best	candidate	TFs	identified	from	the	Y1H	to	elucidate	if	they	have	a	

role	in	wheat	defence	through	VIGS	and	Septoria	seedling	infection	assays.	

Begin	to	determine	a	defence-signalling	pathway	of	TFs	based	on	the	Y1H	

targets	and	WRKY	genes	using	the	silenced	plant	lines.		
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2.	Methods	

2.1	RNA	extraction	

75mg	of	frozen	wheat	leaf	tissue	was	ground	to	a	powder	and	then	750µl	of	

trizol	(Zymo	Research,	Irvine,	USA)	was	added	before	vortexing	to	mix	

thoroughly.	The	RNA	was	extracted	using	Direct-zolTM	RNA	miniprep	kit	

(Zymo	Research)	including	the	In-column	DNase	I	digestion	and	eluted	in	

30µl	of	DNase/RNase	free	water.	RNA	concentration	was	then	measured	

using	Nanodrop	ND-1000	spectrophotometer	(Labtech,	Uckfield,	England).	

The	RNA	was	stored	at	-80OC.	

2.2	cDNA	synthesis	

1-4ng	of	RNA	was	used,	with	sterile	distilled	water	added	to	make	a	final	

volume	of	10µl.	To	amplify	the	mRNA	1µl	of	oligo	dT	(10mM)	(VWR,	Radnor,	

USA)	was	added	to	the	RNA	mixture	and	then	heated	at	65OC	for	5	minutes	

before	placing	on	ice.	Then	4µl	of	5x	strand	buffer	(Invitrogen,	Grand	Island,	

USA),	2µl	of	DTT	(Invitrogen),	1µl	of	dNTP	(10mM	each)	(VWR)	and	1µl	of	

RNase	OUT	(Invitrogen)	were	added	to	the	RNA	mixture.	This	was	then	

heated	to	42OC	for	2	minutes	before	the	addition	of	1µl	of	Superscript	II	

(Invitrogen).	The	mixture	was	then	heated	at	42OC	for	50	minutes	and	then	

70OC	for	15	minutes.	The	cDNA	was	then	stored	at	-20OC.	

2.3	PCR	

All	primers	were	ordered	from	Eurofins	(Huntsville,	USA)	and	used	at	a	

concentration	of	10pmol/µl.	All	primers	used	in	this	thesis	are	listed	in	

supplemental	table	1.		

2.4	Polymerase	chain	reaction	(PCR)	

2.4.1	Taq	polymerase	PCR	

Each	20µl	PCR	reaction	comprised	of	10µl	of	reddy	mix	(Bioline,	London,	

England),	1µl	gene	specific	forward	primer	(10mM),	1µl	gene	specific	reverse	

primer	(10mM),	1µl	of	cDNA*	(100ug/ul)	and	7µl	of	sterile	distilled	water,	

which	were	spun	down	before	PCR.	These	were	then	run	on	a	PCR	program	

(TC-3000G	Techne	machine),	initially	at	94OC	for	5	minutes.	Then	25-35	
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cycles	of	94OC	for	30	seconds,	XOC	for	30	seconds	(where	X	is	the	annealing	

temperature,	~3	degrees	lower	than	the	primers	melting	temperature)	and	

72OC	for	Y	seconds	(where	Y	is	calculated	from	60	seconds	per	1Kb	of	gene	to	

be	amplified)	were	carried	out,	followed	by	5	minutes	at	72OC.	

To	test	PCR	primers	they	were	firstly	run	on	a	gradient	PCR	with	the	

annealing	temperature	set	at	~-6	to	+2OC	degrees	of	the	Tm.	The	highest	

temperature	that	showed	a	band	was	selected	as	the	annealing	temperature.	

The	PCR	products	were	analysed	and	separated	on	an	agarose	gel	(gel	

electrophoresis)	

For	colony	PCR	a	single	colony	was	taken	and	resuspended	in	20µl	of	sterile	

distilled	water,	1µl	of	this	then	replaced	the	1µl	cDNA	used.		

2.4.2	Q5	polymerase	proof	reading	PCR	

Each	50µl	PCR	reaction	comprised	of	10µl	of	5X	Q5	reaction	buffer	(NEB,	

Ipswich,	USA),	1µl	dNTP’s	(10mM),	2.5µl	gene	specific	forward	primer	

(10mM),	2.5µl	gene	specific	reverse	primer	(10mM),	2.5µl	of	cDNA	

(100ug/ul),	0.5µl	Q5	high-fidelity	DNA	polymerase	(NEB)	and	31µl	of	sterile	

distilled	water,	which	were	then	spun	down	before	PCR.	These	were	then	run	

on	a	PCR	program	98OC	for	5	minutes.	Then	25-35	cycles	of	98OC	for	30	

seconds,	XOC	for	30	seconds	(~3	degrees	lower	than	the	primers	melting	

temperature)	and	72OC	for	Y	seconds	(30	seconds	per	1Kb	of	gene	to	be	

amplified).	Followed	by	5	minutes	at	72OC..	

The	PCR	products	were	analysed	and	separated	on	an	agarase	gel	(gel	

electrophoresis)	

2.4.4	Real	time	PCR	

For	a	10µl,	50µl	of	SYBR	green	(Agilent),	0.5µl	forward	primer,	0.5µl	reverse	

primer,	0.5µl	of	cDNA	(100ng/μl),	0.15μl	ROX	(agilent)	and	3.35µl	of	sterile	

distilled	water	were	added	together	before	being	spun	down.	This	was	then	

run	on	a	real	time	PCR	program	(StepOne	plus	Applied	Biosystems	real	time	

PCR	machine)	94OC	for	1	minute.	Then	40	cycles	of	96OC	for	6	seconds,	60OC	

for	10	seconds	and	72OC	for	10	seconds.	Followed	by	a	melting	curve	step.	
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The	cycle	threshold	(Ct)	values	were	then	normalised	to	the	housekeeping	

reference	gene	CDC4845	and	Ef1a.		

To	test	the	real	time	PCR	primers	serial	dilutions	of	cDNA	(x1,	x2	and	x4)	

were	performed	and	the	Ct	values	compared.		

2.5	Gel	electrophoresis	

Different	percentage	agarose	gels	were	made	depending	on	the	size	of	the	

fragment	to	be	visualized.	The	gels	were	between	0.8-1.2%,	with	the	higher	

concentrations	being	used	for	PCR	where	smaller	sized	fragments	were	

expected.	Per	100ml	of	1x	Tris-Acetate-EDTA	(TAE)	buffer	(Biorad,	West	

Berkeley,	USA)	between	0.8-1.2g	of	agarose	(Melford,	Ipswich,	England)	was	

added	and	then	heated	in	a	microwave	until	the	agarose	had	dissolved.	Per	

100ml	of	solution	0.75µl	of	ethidium	bromide	(Fischer	Scientific,	Waltham,	

USA)	was	then	added.	This	was	left	to	set	for	30	minutes	or	until	set.	The	gel	

tank	contained	1x	TAE	buffer,	which	filled	the	tank	to	above	the	level	of	the	

gel.	Five	µls	of	the	appropriate	hyperladder	(either	50bp	or	1Kb	depending	

on	size	of	fragment)	(Bioline)	was	pipetted	into	the	first	well.	Subsequent	

wells	were	then	filled	with	9µl	of	the	PCR	reaction*.	The	gel	tank	was	run	at	

~100	volts	until	the	dye	was	over	half	way	through	the	gel.	The	fragments	

were	visualized	under	a	UV	using	a	Gene	Flash	machine	and	Quantity	One	

program	on	the	computer.		

*For	PCR	reactions	using	Q5	5µl	of	10x	loading	dye	(0.2mg	bromophenol	

blue,	6ml	50%	glycerol	and	4ml	Millipore	water)	was	added	before	loading	

into	the	gel	wells.		

2.6	Gel	extraction	

The	fragment	to	be	extracted	was	first	run	using	the	method	as	described	in	

Q5	polymerase	proof	reading	PCR	and	Gel	electrophoresis	(2.4.2	and	3.5	

respectively).	Then	the	gel	was	placed	on	a	UV	light	box	and	the	excess	gel	

removed	using	a	blade.	Using	the	UV	light	the	band	was	excised	and	put	into	

a	pre	weighed	1.5ml	tube.	The	tube	was	then	reweighed	to	get	the	weight	of	

the	gel.	The	gel	extracted	was	done	following	the	instructions	in	the	QIAquick	
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gel	extraction	kit	(Qiagen,	Limburg,	Netherlands).	At	the	elution	stage	30µl	of	

sterile	distilled	water	was	used.			

2.7	Cloning	

2.7.1	Vector	ligation	

D-TOPO	(gateway	vector)	

To	1µl	of	D-TOPO	(Invitrogen)	5µl	of	PCR	product	was	added	and	shook	

gently.	This	was	then	left	to	stand	for	30	minutes	at	room	temperature	and	

put	onto	ice	before	transformation.		

2.7.2	Miniprep	

10ml	of	LB	(Luria	Broth)	with	appropriate	antibiotic	(Melford)	(50µg/ml	of	

kanamycin	for	D-TOPO,	pEarleyGate104	and	BSMV)	and	bacterial	colony	was	

grown	overnight	at	37OC	(E.	coli)	or	28OC	(Agrobacterium).	The	culture	was	

spun	down	in	the	morning	for	10	minutes,	at	5,000rpm	and	4OC	and	the	

supernatent	discarded	leaving	the	bacterial	pellet.	The	vector	was	then	

isolated	from	the	bacteria	using	QIAprepR	spin	miniprep	kit	(Qiagen)	eluting	

in	30µl	of	DNase	free	water.	The	concentration	of	vector	was	measured	using	

a	Nanodrop	ND-1000	spectrophotometer	and	stored	at	-20OC.		

2.7.3	LR	reaction	(into	gateway	donor	vector)	

To	transfer	a	fragment	between	a	donor	vector	and	a	destination	vector,	

0.5µl	of	donor	vector	(50-150ng),	0.5µl	of	destination	vector	(150ng)	and	1µl	

of	Tris-EDTA	(TE)	buffer	(pH	8.0)	were	added	together.	LR	clonase	II	enzyme	

(Invitrogen)	was	thawed	on	ice	for	2	minutes	and	then	vortexed	for	2	

seconds	twice.	0.5µls	of	the	enzyme	was	then	added	to	the	vector	mixture	

and	vortexed	twice	briefly	before	a	brief	centrifugation.	The	mixture	was	

then	incubated	at	25OC	for	1	hour.	To	stop	the	reaction	0.5µl	of	Proteinase	K	

solution	(Invitrogen)	was	added,	vortexed	briefly	and	then	incubated	at	37OC	

for	10	minutes.	This	was	then	placed	on	ice	before	transformation.	

2.7.4	BSMVγ 	

First	the	BSMVγ	vector	was	digested	with	Apa1	(Promega,	Madison,	USA).	2µl	

of	10x	Promega	buffer	A,	2µl	of	acetylated	BSA	(1/10),	1µg	of	BSMVγ	and	up	
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to	19.5µl	were	mixed	together	by	pipetting.	0.5µl	of	Apa1	enzyme	(Promega)	

was	then	added	to	the	reaction	mixture	and	incubated	for	4	hours	at	37OC.	To	

inactivate	the	Apa1	enzyme	it	was	incubated	at	65OC	for	15	minutes.		

Next	two	reactions	were	set	up	at	the	same	time,	a	vector	mixture	and	a	

fragment	mixture.	The	vector	mixture	consisted	of	1µl	of	fragment	DNA,	0.5µl	

of	dATP	(100mM),	1µl	of	BSA	(1/10	diluted),	1µl	of	10x	T4	buffer,	2µl	of	T4	

DNA	polymerase	(1/10	diluted)	and	4.5µl	of	sterile	distilled	water.	The	

digestion	mixture	consisted	of	4µl	of	digested	BMSVγ	mixture,	1µl	of	dTTP	

(100mM),	2µl	of	BSA	(1/10	diluted),	2µl	of	10x	T4	buffer,	2µl	of	T4	DNA	

polymerase	(1/10	diluted)	and	9µl	of	sterile	distilled	water.	Both	the	vector	

mixture	and	the	digestion	mixture	were	incubated	at	room	temperature	for	

30	minutes	before	inactivation	of	the	enzyme	at	75OC	for	15	minutes.	2µl	of	

the	vector	mixture	was	then	added	to	the	20µl	of	digestion	mixture	before	

being	incubated	at	65OC	for	2	minutes	and	then	incubated	at	room	

temperature	for	10	minutes.	This	mixture	was	then	transformed	into	

chemically	competent	DH5α	E.	coli.		

2.8	Transformation	

2.8.1	E.	coli	(DH5α)	

200µl	of	chemically	competent	cells	(DH5α)	were	thawed	on	ice	(20	

minutes)	before	the	addition	of	1µl	of	the	vector	(either	from	D-TOPO,	LR	

reaction	or	BSMV	cloning).	The	cells	were	then	heat	shocked	at	42OC	for	30	

seconds	before	placing	on	ice.	250µl	of	S.O.C.	medium	(Super	Optimal	broth	

with	Catabolite	repression)	was	added	and	incubated	with	shaking	at	37OC	

for	1	hour.	The	cells	were	then	spread	onto	LB	(lysogeny	broth)	agar	plates	

containing	the	appropriate	antibiotic	for	the	vector	(50µg/ml	of	kanamycin	

for	D-TOPO,	pEarleyGate104	and	BSMV)	and	left	overnight	to	incubate	at	

37OC.	
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2.8.2	Agrobacterium	

The	Agrobacterium	strain	GV3101,	pMP90	that	is	resistant	to	both	rifampicin	

(25µg/ml)	and	gentamycin	(25µg/ml)	was	used	for	all	Agrobacterium	

transformations.		

200µl	of	chemically	competent	cells	were	thawed	on	ice	(30	minutes)	before	

the	addition	of	1µg	of	vector.	This	was	then	incubated	for	5	minutes	on	ice,	

liquid	nitrogen	for	5	minutes	and	then	37OC	for	5	minutes.	To	this	mixture	1	

ml	of	LB	was	added	before	being	incubated	for	2	hours	at	37OC.	The	cells	

were	then	spread	out	onto	LB	agar	plates	containing	the	appropriate	

antibiotic	for	the	vector	(50	µg/ml	of	kanamycin	for	BSMV	and	

pEarleygate104)	and	left	to	incubate	for	48	hours	at	28OC.		

2.9	Protein	extraction	

1g	of	N.	benthamiana	leaf	tissue	was	collected	and	frozen	on	liquid	nitrogen.	

At	4OC	the	tissue	sample	was	ground	to	a	powder	before	the	addition	of	1.6ml	

of	total	protein	extraction	buffer	(150mM	NaCl	(VWR),	1%	Igepal	CA-630	NP	

40	(Sigma	Aldrich),	0.5%	Sodium	deoxycholate	(VWR),	0.1%	SDS	(VWR),	

50mM	Tris	HCl	pH	8	(VWR),	1mM	EDTA	(Sigma	Aldrich)	and	1	protease	

inhibitor	tablet	per	10ml	(Roche))		This	was	ground	until	homogenous	with	

the	thick	consistency.	A	pinch	of	1.5w/v	of	PVPP	(PolyVinylPolyPyrrolidone,	

Sigma	Aldrich)	was	added	and	mixed	in	by	grinding	to	inhibit	any	phenolics	

in	the	N.	benthamiana	plant	tissue.	The	mixture	was	then	spun	down	for	12	

minutes	at	8,500g,	4OC	and	the	supernatent	transferred	to	a	new	pre	cooled	

2ml	epindorf	tube.	The	pellet	was	discarded.	Four	times	SDS	page	loading	

buffer	(50mM	Tris	HCl	pH	8,	10%	glycerol	(VWR),	12.5mM	EDTA,	2%	SDS,	

1%	β-mercaptoethanol	(Sigma	Aldrich)	and	0.02%	bromophenol	blue	(Sigma	

Aldrich))	was	mixed	in	by	pipetting	and	then	heated	for	5	minutes	at	98OC	

before	being	loaded	onto	a	SDS	PAGE	gel	for	protein	separation.		

2.10	SDS	PAGE	gel	

Gels	of	12%	were	made	based	on	the	molecular	weight	of	the	proteins	(10-

70kDa	for	a	12%	gel).	For	10ml	of	12%	gel	4ml	H2O,	3.3ml	30%	acrylamide	

(Sigma	Aldrich),	2.5ml	Tris.HCl	(1.5M	pH	6.8),	100µl	SDS	(10%),	4µl	TEMED	
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(Fischer	Scientific)	and	100µl	of	APS	(10%,	Sigma	Aldrich)	were	added	

together	for	the	running	gel.	7ml	of	this	mixture	was	pipetted	into	a	15mm	

gel	mould	and	100%	isopropanoyl	(Fischer	Scientific)	was	syringed	on	top	to	

create	a	level	gel.	This	was	left	for	30	minutes	to	set	before	pouring	off	the	

isopropanyl	and	making	the	stacking	gel.	For	5ml	of	stacking	gel	3.4ml	H2O,	

830µl	acrylamide,	630µl	Tris.HCl	(1M	pH	6.8),	50µl	SDS	(10%),	5µl	TEMED	

and	50µl	of	APS	(10%)	were	added	together.	3ml	of	the	stacking	gel	mixture	

was	pipetted	on	top	of	the	running	gel	and	a	15	well	comb	was	placed	into	

the	mould.		This	was	allowed	to	set	for	30	minutes.	The	comb	was	removed	

from	the	gel	and	the	gel	placed	into	the	gel	tank	with	1x	running	buffer	(for	1	

litre,	3g	Tris	Base,	14.4g	glycine,	1g	SDS	and	water	up	to	1	litre	after	adjusting	

pH	to	8.3)	.	Up	to	30µl	of	protein	was	loaded	into	the	wells	with	the	first	lane	

loaded	with	5µl	of	PAGE	ruler	protein	ladder	(Thermo	Scientific).		

The	gel	tank	was	run	at	60	volts	for	3	hours	or	until	the	loading	dye	reached	

the	bottom	of	the	gel.	The	protein	gel	was	either	stained	with	Coomassie	blue	

or	western	blotting	was	used	to	visualise	the	proteins	bands.		

2.11	Comassie	staining	

The	protein	gel	was	stained	in	Coomassie	dye	(for	1	litre,	500ml	methanol,	

100ml	glacial	acetic	acid,	400ml	deionised	water	and	1g	Coomassie	brilliant	

blue	(Bio-Rad),	stirring	for	3-4	hours	before	use)	on	a	horizontal	shaker	for	

30	minutes	before	destain	was	added.	The	gel	in	destain	was	left	overnight	

shaking	and	a	photo	taken	of	the	gel	in	the	morning.		

2.12	Western	blotting	

The	PolyVinylidene	DiFluoride	(PVDF)	membrane	(thermo	fisher)	was	

activated	by	soaking	and	shaking	in	methanol	for	5	minutes.	The	membrane	

was	then	soaked	and	shook	in	1x	transfer	buffer	(for	1	litre,	14.4g	glycine,	3g	

tris	base,	800ml	deionised	water	and	100ml	methanol	added	just	before	use)	

for	5	minutes	before	assembly	of	the	transfer.	Each	of	the	components	for	the	

transfer	was	first	soaked	in	1x	transfer	buffer	for	5	minutes.	Starting	from	the	

black	side	of	the	clamp	(which	faced	black	side	of	the	electrophoresis	

holder):	sponge,	western	blotting	filter	paper	(Thermo	Scientific),	gel,	
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activated	membrane,	western	blotting	filter	paper	and	finally	sponge.	The	gel	

tank	was	then	filled	with	1x	transfer	buffer	and	an	ice	pack	placed	into	the	

tank	along	with	the	clamp	containing	the	gel	and	membrane.	This	was	run	at	

30	volts	overnight.		

The	following	day	the	membrane	was	then	blocked	with	shaking	for	an	hour	

in	5%	milk	solution	in	TBST	(for	1	litre,	2.4g	Tris	base,	8.8g	NaCl,	1ml	

Tween20	and	up	to	1	litre	deionised	water	after	adjusting	pH	to	7.6)	at	room	

temperature.	The	membrane	was	washed	in	TBST	to	remove	any	excess	milk	

(1	minute).	The	membrane	was	incubated	with	shaking	in	the	primary	

antibody	(anti	YFP	with	a	concentration	of	1:10000)	for	1-3	hours	at	room	

temperature.	Three	thorough	washes	of	5	minutes	with	TBST	were	then	

performed	at	room	temperature.	The	membrane	was	then	incubated	with	the	

secondary	anti	body	1:10,000	(rat	for	anti	YFP)	for	1	hour	with	shaking	at	

room	temperature.	To	wash	away	any	unbound	and	non-specifically	bound	

antibodies	the	membrane	was	washed	thoroughly	5	times	for	5	minutes	in	

TBST	at	room	temperature.	Then	2ml	of	ECL	solution	was	washed	over	the	

membrane	for	1	minute.	After	this	the	excess	ECL	solution	was	removed	by	

dabbing	the	membrane	on	tissue	and	the	membrane	placed	in	between	

transparency	film	(Nice	Day).	Photographic	film	(Fujifilm,	Tokyo,	Japan)	was	

then	exposed	to	the	membrane	for	differing	time	depending	on	the	antibody	

(30	seconds	to	5	minutes).	The	film	was	then	developed	to	visualize	the	

protein	bands.		

2.13	Plant	growth	conditions	

The	wheat	variety	Avalon	was	grown	in	long	day	conditions,	16	hours	at	24OC	

and	8	hours	at	24OC.	Wheat	seeds	were	germinated	and	grown	in	John	Innes	

number	2	soil.	The	N.	benthamiana	plants	were	grown	in	long	day	conditions,	

16	hours	at	24OC	and	8	hours	at	24OC.	N.	benthamiana	seeds	were	

germinated	and	grown	in	John	Innes	number	2	soil.		

2.14	Virus	Induced	Gene	Silencing	(VIGS)	

To	silence	wheat	the	BSMV	(Barley	Stripe	Mosaic	Virus)	expressing	the	

wheat	gene	fragment	(modified	γ	BSMV)	and	transformed	in	Agrobacterium	
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tumefaciens	was	first	infiltrated	into	N.	benthamiana	to	allow	the	virus	to	

multiply.	The	A.	tumefaciens		was	grown	in	an	overnight	10ml	LB	culture	and	

spun	down	in	the	morning	to	get	the	bacterial	pellet.	The	pellet	was	

resuspended	in	10mM	MgCl2	to	an	OD600	of	1.5.	Acetosyringone	

(0.1mM)(Sigma	Aldrich)	was	then	added	to	the	mixture,	with	volume	needed	

being	1/1000	of	the	total	volume	of	the	A.	tumefaciens	mixture	and	incubated	

for	2	hours	at	RT..	An	equal	amount	of	α,	β	and	modified	γ	BSMV	were	mixed	

together	and	then	infiltrated	into	the	4-8th	leaf	of	a	4	week	old	N.	

benthamiana	plant.		This	was	left	to	grow	for	a	week.	The	infiltrated	leaf	was	

then	ground	up	with	water	and	rubbed	onto	a	wheat	leaf	(2	weeks	old)	that	

had	been	previously	sprinkled	with	carborundum	powder	(Fischer	

Scientific).		All	the	wheat	plant	leaves	were	infiltrated	and	left	to	grow	for	2	

weeks	to	allow	the	silencing	to	take	effect	(successful	silencing	was	seen	in	

the	PDS	silenced	plant).		

2.15	Septoria	infection	

The	plants	to	be	infected	were	trimmed	so	that	only	the	leaf	to	be	infected	

was	left.	The	remaining	leaves	were	then	stuck	down	flat	onto	black	card,	

leaving	~5cm	of	leaf	to	be	infected.		The	Septoria	strain	IPO323	was	revived	

from	glycerol	stocks		onto	YPD	(1%	yeast,	2%	peptone,	2%	dextrose	and	

1.5%	agar)	plates	containing	no	antibiotics	and	left	for	4	days	to	grow	at	

18OC.	A	few	streaks	of	the	Septoria	were	taken	from	the	plate	and	dissolved	

into	10ml	of	distilled	water.	To	measure	the	concentration	of	the	Septoria	

spores	10µl	of	Septoria	mixture	was	pipetted	onto	a	haemocytometer	slide.	

Using	an	Axkiospop	microscope	at	x20	magnification	the	spores	were	

counted.	The	concentration	was	then	adjusted	to,	on	average,	4	spores	

0.05*0.05mm	square	(1,000,000	spores	per	ml).	0.1%	Tween	20	was	added	

to	the	Septoria	mixture.		

Silenced	wheat	plants	were	prepared	by	cutting	off	all	leaves	except	4-5th.	

The	leaves	were	then	secured	onto	black	cardboard	so	that	a	section	of	

roughly	10cm	of	leaf	was	available	for	infection.	Using	a	cotton	bud	the	

Septoria	was	infected	onto	the	leaves	by	rubbing	the	mixture	onto	the	leaves	

(abaxial	and	adaxial).	A	new	cotton	bud	was	used	for	each	new	silenced	line	



	 28	

of	wheat.	The	tray	under	the	plants	was	filled	with	water	and	the	plants	were	

covered	with	a	lid	to	generate	a	high	humidity	for	the	Septoria	to	infect.	The	

lids	were	removed	after	4	days.	The	plants	infected	with	IPO323	were	left	for	

28	days	with	pictures	taken	daily	(2pm)	and	samples	taken	weekly	to	check	

for	silencing.	The	final	infected	leaves	were	collected	for	the	spore	count,	

pycnidia	count.		

2.16	Spore	and	pycnidia	counts	

The	infected	leaves	were	cut	away	and	suspended	in	a	sealed	box	containing	

damp	tissue	to	increase	the	humidity	and	cause	the	fungus	to	produce	spores.	

This	was	left	at	18OC	for	4	days.	The	pycnidia	were	counted	over	a	2cm	length	

of	each	leaf	and	averaged	for	5	leaves.	5	leaves	were	then	submerged	in	10ml	

of	distilled	water,	vortexed	for	2	minutes	and	left	to	stand	for	3	hours.	The	

leaves	were	vortexed	again	for	2	minutes	and	10µl	of	the	water	loaded	onto	a	

haemocytometer	slide.	The	spores	were	counted	for	4	of	the	0.2*0.2mm	

squares	on	the	Akioskop	light	microscope	at	x20	magnification	and	an	

average	taken	from	these	4	numbers	for	the	spore	count.		

2.17	Transient	expression	in	Nicotiana	benthamiana	

For	transient	assay	in	N.	benthamiana	the	gene	to	be	expressed	was	cloned	

into	a	vector	containing	an	YFP	N	terminal	fusion	(pEarleyGate104)	and	

transformed	into	Agrobacterium.	A	10ml	LB	culture	of	this	and	P19	(RNAi	

silencing	inhibitor)	with	the	appropriate	antibiotics	(kanamycin,	gentamycin	

and	rifamacin)	was	shaken	overnight	at	28OC.	The	culture	was	then	

centrifuged	for	10	minutes	at	4,500rpm,	20OC.	The	supernatant	was	then	

poured	away	leaving	the	bacterial	pellet.	The	pellet	was	washed	by	

resuspending	in	10ml	of	MgCl2	and	centrifuged	again	for	10	minutes	at	

4,500rpm,	20OC.	then	resuspended	in	10mM	MgCl2	to	an	OD600	of	0.4	and	

0.1mM	of	acetosyrine	(0.1M	stock	in	DMSO)	was	added.	The	mixture	was	left	

for	2	hour	at	room	temperature.	A	50:50	mixture	of	the	gene	to	be	expressed	

and	P19	was	made	and	then	infiltrated	into	N.	benthamiana	leaves	using	a	

1ml	syringe.	The	plants	were	watered	and	left	for	3	days	before	a	small	

section,	0.5cm2,	was	used	to	visualize	the	YFP	on	a	SP5	confocal	microscope	

or	whole	leaves	were	weighed	until	1.5g	and	collected	for	protein	extraction.		
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2.18	Confocal	microscopy	

A	section	of	leaf	0.5cm2	was	mounted	onto	a	slide	(Fischer	Scientific)	in	water	

and	a	22x22mm	cover	slip	(Menzel-Glaser,	Waltham,	USA)	was	tightly	

secured	over	with	micropore	tape.	Either	the	YFP	or	GFP	setting	was	used	on	

the	LASII	software	and	the	x60	OIL	objective	was	selected.	A	small	drop	of	oil	

was	put	onto	the	objective	and	the	slide	was	loaded	upside	down	with	the	

coverslip	on	the	side	of	the	objective.	Firstly	the	eyepiece	was	used	to	

roughly	focus	the	sample	using	a	TLF-GFP	light.	Then	using	the	software	the	

image	was	focused	fully	before	capturing	it.	During	the	focusing	and	scanning	

for	an	image	the	speed	was	set	at	700,	resolution	at	512x512,	1	line	average,	

pinhole	airy	1	and	bidirectional	scanning.	To	capture	a	high	resolution	image	

the	speed	was	set	at	100,	resolution	at	1024x1024	5	line	average	and	pinhole	

airy	1.		

2.19	Yeast	transformation	

Two	yeast	strains	(Saccharomyces	cerevisiae)	were	used	–	AH109A130		and	

Y187α132	for	transcription	factors	cloned	into	the	vector	pDEST22	

(Invitrogen)(prey)	and	promoters	cloned	into	the	vector	PTUY1H133(bait)	

respectively.	The	same	protocol	was	used	for	both	transformations.		

Fresh	(<1	month)	yeast	colonies	(from	YPD	media	plates	grown	at	30OC)	

were	used	to	inoculate	10ml	overnight	cultures	of	YPD	liquid	media	and	

grown	at	30OC,	200rpm	overnight.	These	were	then	used	to	inoculate	50ml	

YPD	liquid	media	cultures	to	an	OD600	of	0.2-0.3.	The	cultures	were	left	to	

grow	at	30OC,	200rpm	for	4-5	hours	or	until	reaching	an	OD600	of	0.4-0.6.	

The	cells	were	then	pelleted	by	centrifugation	at	RT,	4,000rpm	for	20	

minutes.	The	pellet	was	then	washed	with	25ml	of	sterile	distilled	water	and	

centrifuged.	The	resulting	pellet	was	then	resuspended	in	1ml	of	100mM	

sterile	LiAC	pH7.5	and	100μls	was	aliquoted	into	sterile	epindorf	tubes,	1	per	

construct.	These	were	centrifuged	for	at	RT	for	30	seconds,	11,000g	before	

washing	with	another	100μl	of	100mM	sterile	LiAC	pH7.5.	The	cells	were	

centrifuged	again	at	RT	for	5	minutes	at	4,000rpm.	The	cells	were	

resuspended	in	340μl	of	PEG4000/LiAC	solution	(240μl	50%	sterile	PEG	

4000,	36μl	1M	sterile	LiAC	pH7.5,	25μl	2mg/ml	ssDNA	from	salmon	sperm	
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(thermo	scientific)	and	50μl	sterile	H20)	and	2μl	of	plasmid	(75-150ng/μl).	

This	was	then	incubated	at	RT	for	25	minutes	without	shaking	before	heat	

shocking	at	42OC	for	a	further	25	minutes	without	shaking.	The	cells	were	

then	pelleted	by	centrifugation	at	42OC,	4,000rpm	for	5	minutes.	The	cells	

were	resuspended	in	100μl	of	1M	sterile	sorbitol	and	spread	onto	the	

appropriate	selection	media	plates	(-L	for	PTUY1H	vector	in	Y187α	and	–W	

for	pDEST22	vector	in	AH109A).	Colonies	were	expected	after	2-4	days	of	

growth	at	30OC.		

2.20	Yeast	mating	

A	fresh	colony	(<1	month)	from	both	Y187α	(prey	yeast)	and	AH109A	(bait	

yeast)	transformed	yeast	was	resuspended	together	in	0.5ml	of	YPD	liquid	

media.	The	cells	were	vortexed	briefly	to	ensure	they	were	resuspended	and	

then	incubated	at	30OC	with	shaking	(200rpm)	for	20-24hours.	100μl	of	each	

mated	culture	was	then	spread	onto	selection	media	plates	(-L-W,	-L-W-H,	-L-

W-H+3AT	at	10mM,	20mM,	40mM,	60mM,	80mM	and	100mM)	and	allowed	

to	grow	for	2-4	days	to	see	positive	interactions.		

2.21	Yeast	1	Hybrid	

Yeast	library	(NASC)	containing	1,500	Arabidopsis	thaliana	transcription	

factors	(prey)	was	revived	from	glycerol	stocks	using	a	96-pin	replicator	onto	

–W	minimal	base	media,	simultaneously	the	wheat	promoters	in	PTUY1H,	

Y187α	(bait)	were	grown	on	–L	minimal	media	selection	media.	Both	were	

left	to	grow	for	3	days	at	30OC.	96	well	plates	containing	100μl	of	YPAD	liquid	

media	were	then	inoculated	with	the	transcription	factors	whilst	the	bait	was	

inoculated	into	200ml	YPAD	liquid	media.	Both	were	incubated	at	30OC	for	

24	hours	shaking	at	200rpm.	The	mating	was	then	performed	by	using	100μl	

of	the	bait	culture	to	inoculate	each	of	the	wells	of	the	prey	culture	and	left	to	

incubate	at	30OC	for	48	hours.	The	mated	cultures	were	then	used	to	

inoculate	new	96well	plates	containing	200μl	of	–L-W	liquid	selection	media.	

These	were	incubated	for	24	hours	at	30OC.	The	cultures	were	then	plated	

onto	plates	containing	selection	media	to	test	for	mating	and	interactions	(-L-

W,	-L-W-H,	-L-W-H+3AT	at	10mM,	20mM,	40mM,	60mM,	80mM	and	100mM)	

and	allowed	to	grow	for	2-4	days.		
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3.	TaWRKY19	is	a	resistance	factor	against	Septoria	

3.1 Introduction	

Transcription	factors	(TFs)	offer	useful	breeding	tools.	As	previously	

mentioned	many	of	the	largest	advancements	in	crop	domestication	came	

from	modulations	of	TFs.	One	such	example	from	wheat	is	the	Q	allele,	which	

was	identified	as	an	AP2	TF134.	The	gene	appears	to	have	undergone	a	minor	

mutation	(one	amino	acid)	between	cultivated	and	wild	wheat.	It	is	also	more	

highly	expressed	in	domesticated	wheat.	The	effect	of	these	changes	has	led	

to	domesticated	wheat	having	shorter	stockier	spikes	that	are	less	likely	to	

shatter.	It	is	also	known	to	affect	other	growth	features	such	as	plant	height	

and	spike	emergence	timing.	These	changes	ensure	that	farmers	can	easily	

mass	produce	grain	and	allow	mechanical	harvesting135.		

WRKY	TFs	are	one	of	the	larger	gene	families	within	plants	and	have	been	

implicated	within	defence	in	many	different	crops,	including	wheat.	

TaWRKY49	and	TaWRKY62	have	opposing	roles	in	defence	against	Puccinia	

striifomris	f.	sp.	tritici	(Pst),	the	fungal	pathogen	that	causes	wheat	stripe	rust.	

TaWRKY49	silencing	lead	to	enhanced	resistance	and	increased	expression	

of	defence	related	genes	whereas	the	opposite	was	true	for	TaWRKY62	

silenced	wheat136.		

To	my	knowledge	there	are	no	examples	of	WRKY	TFs	having	a	role	in	

defence	against	Zymoseptoria	tritici.		

VIGS	has	previously	been	used	within	our	lab	to	silence	genes	that	were	

found	to	be	involved	in	wheat	defence	against	Septoria	119,137.	The	technique	

is	useful	due	to	its	speed	and	ease	when	compared	to	the	generation	of	

transgenic	wheat.	It	allows	silencing	across	the	three	homologous	genomes	

simultaneously	when	the	correct	silencing	fragment	is	designed.		
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3.2	WRKY	transcription	factors	and	candidate	identification	

A	link	between	WRKY	TFs	and	Septoria	was	first	identified	through	a	

microarray	screen	performed	at	Newcastle	University	data	not	provided138.	

In	this	experiment	healthy	and	Septoria	infected	wheat	samples	were	

compared	to	identify	genes	and	gene	families	whose	expression	changed.	

Along	with	BZIP	and	BHLH	TFs,	WRKYs	showed	a	large	change	in	

transcription,	both	down	and	upregulated,	after	Septoria	infection	(data	not	

shown).	WRKY	TFs	have	been	studied	previously	in	other	plant	species	and	

linked	to	defence.	This	led	as	the	basis	for	the	project	to	further	investigate	

individual	WRKY	genes	that	could,	in	turn,	be	used	as	future	breeding	targets	

for	resistant	wheat	varieties.	Septoria	is	a	major	threat	to	wheat	production	

in	the	U.K.	therefore	is	a	major	target	for	seed	production	companies	and	

their	breeders.		

Although	the	wheat	genome	has	been	fully	sequenced,	a	final	sequence	

assembly	has	yet	to	be	produced.	Therefore	not	all	genes	have	been	

identified	within	the	wheat	genome.	After	an	extensive	database	screen	of	

the	most	up-to-date	assembly	of	the	wheat	genome,	72	individual	WRKY	

genes	were	identified139,	including	homologues	across	the	3	genomes	this	

number	goes	up	to	199.	For	comparison	Arabidopsis	has	72	WRKY	genes	and	

rice	has	109.		

WRKYs	are	arranged	into	3	main	groups	based	on	the	number	of	WRKY	

domains	and	their	zinc	finger	domain	structure.	These	groups	are	defined	as	

I,	II	and	III,	with	group	II	being	further	subdivided	into	5	groups	(IIa-IIe)	

based	on	Arabidopsis	WRKY’s	phylogeny70.	A	phylogenetic	tree	comparing	

the	protein	sequences	of	the	TaWRKYs	was	prepared	using	MEGA7	software.	

Only	one	homologue	from	the	three	chromosomes	was	used	due	to	the	sheer	

number	and	time	it	would	take	for	the	software	to	align	them	all.	The	A	

genome	homologue	was	chosen	if	available,	although	not	all	genes	have	

homologues	across	the	3	genomes	hence	why	B	and	D	genome	sequences	

were	also	included.	

Firstly	the	protein	sequences	were	aligned	using	MUSCLE	software,	

performed	on	the	MEGA7	platform140.	Then,	after	using	a	prediction	tool	to	

determine	the	most	suitable	conditions	to	produce	the	tree,	a	phylogenetic	
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tree	was	produced	with	the	JTT	+	Gamma	model,	using	partial	deletions	and	

500	bootstraps.	Figure	3.1	shows	the	tree	and	is	annotated	with	the	WRKY	

groups,	this	phylogenetic	tree	in	unrooted.	This	was	determined	by	blast	

searches	and	comparison	against	the	Arabidopsis	tree	and	group	definition	

from	Eulgem	et	al70.	Some	of	the	protein	sequences	did	not	fit	into	a	known	

group,	although	they	do	have	a	close	Arabidopsis	homologue.	The	middle	

section	of	the	tree	appeared	to	be	homologous	to	Group	IIc	(TaWRKY49,	51	

and	48),	Group	III	(TaWRKY64)	and	Group	I	(TaWRKY80),	so	I	did	not	define	

them	into	a	group.	TaWRKY44	also	did	not	fall	into	a	group	nearby	on	the	the	

phylogenetic	tree,	being	most	closely	related	to	Arabidopsis	Group	I	WRKYs.	

Group	III	is	the	largest,	with	20	members;	this	is	not	the	case	in	Arabidopsis	

with	Group	I	and	IIc	being	the	largest	(14	members	each).	Group	IIb	is	much	

smaller	in	wheat	than	Arabidopsis	having	only	2	wheat	members	compared	

to	7	in	Arabidopsis.		
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Figure	3.1:	Phylogenetic	tree	of	all	

wheat	WRKY	proteins.	The	

evolutionary	history	was	inferred	by	

using	the	Maximum	Likelihood	

method	based	on	the	JTT	matrix-

based	model141.	The	tree	with	the	

highest	log	likelihood	(-13924.89)	is	

shown.	Initial	tree(s)	for	the	

heuristic	search	were	obtained	

automatically	by	applying	Neighbor-

Join	and	BioNJ	algorithms	to	a	

matrix	of	pairwise	distances	

estimated	using	a	JTT	model,	and	

then	selecting	the	topology	with	

superior	log	likelihood	value.	A	

discrete	Gamma	distribution	was	

used	to	model	evolutionary	rate	

differences	among	sites	(5	

categories	(+G,	parameter	=	

0.7246)).	The	tree	is	drawn	to	scale,	

with	branch	lengths	measured	in	the	

number	of	substitutions	per	site.	The	

analysis	involved	74	amino	acid	

sequences.	All	positions	with	less	

than	95%	site	coverage	were	

eliminated.	That	is,	fewer	than	5%	

alignment	gaps,	missing	data,	and	

ambiguous	bases	were	allowed	at	

any	position.	There	were	a	total	of	

120	positions	in	the	final	dataset.	

Evolutionary	analyses	were	

conducted	in	MEGA7140.	The	tree	is	

unrooted.		
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Due	to	the	number	of	TaWRKY	genes	the	first	step	was	to	narrow	down	this	

number	so	I	could	test	just	those	most	likely	to	be	involved	in	wheat	defence	

against	Septoria.	This	was	done	by	searching	for	previously	studied	

Arabidopsis	and	rice	WRKY	genes	that	are	involved	in	pathogen	defence	and	

some	involved	in	abiotic	stress,	then	finding	their	wheat	homologues	(table	

3.1)68.	A	mixture	of	abiotic	and	biotic	responsive	WRKY	genes	were	chosen	as	

previous	work	on	WRKY	genes	has	shown	some	are	involved	in	both	types	of	

stress,	as	shown	in	table	1.	OsWRKY53	studies	show	this	WRKY	functions	in	

both	abiotic	and	biotic	stress	conditions.This	is	potentially	beneficial	as	one	

WRKY	could	defend	against	multiple	different	stresses	through	a	centralised	

pathway	or	could	defend	against	stresses	and	have	a	positive	role	in	growth.	

For	instance	rice	plants	overexpressing	OsWRKY53	have	increased	grain	size	

(both	length	and	width)142	and	have	increased	resistance	against	rice	blast	

fungus	(Magnaporthe	grisea)87.	Yield	is	the	main	priority	for	breeding	

companies,	so	genes	that	produce	advantages	in	both	grain	size	and	pathogen	

defence	are	of	particular	interest.		

As	rice	is	the	model	crop	more	WRKY	genes	from	rice,	rather	than	

Arabidopsis,	were	chosen.	However	some	Arabidopsis	genes	were	still	

investigated	as	the	species	has	generally	been	studied	in	greater	depth,	

therefore	having	more	background	and	ideas	to	follow	on	from	than	rice.		
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Wheat	
gene	 Stress	 Homologue	from	

Arabidopsis	or	rice	
Expression	change	in	

Septoria	infected	wheat	
TaWRKY2	 Biotic/Abiotic	 OsWRKY53	 Upregulated	
TaWRKY3	 Abiotic	 AtWRKY12	 No	change	
TaWRKY9	 Biotic	 AtWRKY11	 Upregulated	
TaWRKY11	 Biotic	 OsWRKY45	 No	change	
TaWRKY16	 Abiotic	 AtWRKY39	 No	change	
TaWRKY19	 Abiotic/Biotic	 OsWRKY11	 Upregulated	
TaWRKY21	 Biotic	 AtWRKY11	 No	change	
TaWRKY22	 Biotic	 OsWRKY13	 No	change	
TaWRKY28	 Biotic	 OsWRKY3	 No	change	
TaWRKY29	 Abiotic	 AtWRKY6	 Upregulated	
TaWRKY30	 Abiotic	 AtWRKY65	 No	change	
TaWRKY31	 Biotic	 OsWRKY64	 No	change	
TaWRKY36	 Biotic	 OsWRKY13	 No	change	
TaWRKY43	 Biotic	 OsWRKY3	 No	change	
TaWRKY79	 Biotic	 OsWRKY3	 No	change	
Table	3.1:	List	of	TaWRKY	genes	to	be	tested	and	their	Arabidopsis	or	rice	

homologue.	Arabidopsis	and	rice	WRKY	genes	were	selected	based	on	their	

published	roles	within	either	abiotic	or	biotic	stress.	The	wheat	homologues	

were	then	identified	using	blast	database	searches	(KWS).		

	

	

To	investigate	whether	any	of	these	WRKYs	are	involved	in	wheat	defence	

against	Septoria	the	expression	profiles	of	the	genes	in	healthy	and	infected	

wheat	were	studied.	Four-week-old	wheat	seedlings	were	trimmed	so	that	

only	the	4th	and	5th	leaves	were	left.	Half	of	these	plants	were	then	allowed	to	

grow	without	infection	and	the	other	half	were	infected	with	1*106	Septoria	

spores	per	ml.	The	infected	plants	were	placed	into	high	humidity	for	3	days	

to	allow	the	Septoria	to	germinate	and	infect	through	the	stomata.	Leaf	

samples	were	then	taken	every	2	days	from	both	sets	over	the	next	20	days,	

with	day	0	set	on	the	day	of	infection.	The	RNA	was	extracted	and	cDNA	

synthesised	from	these	samples	for	analysis	in	semi	quantitative	and	qRT-

PCR.	A	sample	period	limit	of	20	days	was	chosen	as	after	this	time	point	

samples	have	vastly	reduced	RNA	quality	and	quantity,	leading	to	poor	

results.	This	is	due	to	the	leaf	tissue	dying	during	the	infection	process.	This	

experiment	was	repeated	3	times,	resulting	in	3	independent	cDNA	time	
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courses.	All	tissue	samples	were	taken	between	2-3pm	(8	hours	into	the	16	

hour	daylight	cycle)	to	ensure	the	circadian	clock	machinery	was	not	

controlling/influencing	any	differences	in	expression.		

Primers	were	designed	for	each	of	the	15	identified	wheat	WRKYs	for	use	in	

semi	quantitative	PCR.	The	healthy	and	Septoria	infected	time	courses	were	

used	to	study	15	wheat	WRKYs	(supplemental	figure	1)	by	semi	quantitative	

PCR.	Of	these	15,	4	showed	a	change	in	expression	in	infected	cDNA	

compared	to	healthy	cDNA	in	the	initial	screen.	These	were	TaWRKY2,	

TaWRKY9,	TaWRKY19	and	TaWRKY29.	These	genes	were	all	seen	to	be	

upregulated	after	Septoria	infection	around	the	time	of	Septoria’s	switch	to	

necrotrophic	growth,	which	is	indicated	by	the	onset	of	visible	symptoms	at	

12dpi.		

After	preliminary	silencing	and	Septoria	infection	experiments	were	

performed	on	these	4	genes	I	again	narrowed	down	the	targets	to	just	

TaWRKY19	and	TaWRKY9	(discussed	in	Chapter	5).	I	did	continue	to	study	

TaWRKY2	as	the	initial	experiments	showed	no	differences	in	Septoria	

infected	when	TaWRKY2	was	silenced.	TaWRKY29	experiments	were	

stopped	due	to	sequence	identification	errors	on	my	part.	These	errors	were	

not	corrected	and	TaWRKY29	studies	were	ceased	as	I	already	had	two	

targets	and	due	to	time	constraints	it	was	decided	to	stop	any	further	efforts	

to	correct	them.		

	

3.3 TaWRKY19		

Through	preliminary	rounds	of	experiments	TaWRKY19	was	identified	as	

having	a	potential	role	in	wheat	defence	against	Septoria.	To	further	

investigate	this,	a	more	detailed	experiment	to	study	the	expression	changes	

after	Septoria	infection	using	qRT-PCR	was	performed.	This	involved	using	

the	3	healthy	and	infected	time	courses	(used	previously	in	the	initial	

screens).	

Firstly,	primers	for	two	housekeeping	genes	for	qRT-PCR	whose	expression	

did	not	change	after	infection	with	BSMV	or	Septoria	were	identified.	One	set	

of	primers	designed	against	TaEF1a	(translation	elongation	factor	1a)	came	
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from	KWS	(industrial	partner)	who	have	previously	thoroughly	tested	the	

gene	primers	under	these	conditions	to	ensure	their	expression	does	not	

vary.	The	other	set	of	primers	(TaCDC48,	cell	division	protein	48)	was	

identified	from	a	previously	published	paper45.	The	primers	were	used	in	

qRT-PCR	on	samples	that	had	been	treated	with	BSMV	and	Septoria45.	EF1a	is	

part	of	the	EF1	complex,	which	catalyses	the	delivery	of	the	correct	amino	

acid	carrying	tRNA	into	the	ribosome	for	translation143.	CDC48	was	first	

identified	in	yeast	as	being	essential	for	cell	division144	however	it	is	now	

known	to	be	involved	in	many	other	plant	cellular	processes145-149.		

Multiple	primer	pairs	for	use	in	qRT-PCR	against	TaWRKY19	were	designed	

and	tested.	The	first	test	was	to	ensure	the	primers	were	target	specific	and	

only	amplified	the	TaWRKY19	fragment,	this	was	done	using	semi	

quantitative	PCR	and	looking	for	a	single	band	after	separation	using	gel	

electrophoresis.	The	second	test	was	for	efficiency.	This	involved	using	three	

dilutions	of	cDNA	in	a	qRT-PCR	reaction.	As	the	genes	are	not	highly	

expressed	cDNA	dilutions	of	1,	½	and	¼	were	used	of	Septoria	infected	cDNA	

(10dpi).	Primer	pairs	were	selected	which	showed	90-110%	efficiency.		

After	designing	a	suitable	pair	of	primers	for	TaWRKY19,	qRT-PCR	was	

performed	on	the	healthy	and	Septoria	infected	time	courses	(Figure	3.2).	In	

the	conditions	used	in	these	experiments	Septoria	switches	from	biotrophic	

to	a	necrotrophic	growth	around	12dpi,	indicated	by	the	onset	of	visible	

symptoms.	In	healthy	leaf	tissue,	TaWRKY19	expression	levels	are	low	and	

show	no	sign	of	significant	change	over	the	20	days	of	the	time	course.	In	

Septoria	infected	tissue	the	expression	of	TaWRKY19	is	induced	from	6dpi	

with	a	peak	at	10-12dpi	(just	before	the	switch	to	necrotrophic	growth).	On	

average,	the	highest	fold	change	is	3	times	higher	compared	to	the	healthy	

sample	(12dpi).	The	expression	is	still	induced	(when	compared	to	the	

healthy	samples)	after	these	time	points	but	not	as	highly.	At	20dpi	

expression	is	highly	upregulated	but	this	may	be	due	to	the	cDNA	quality	

obtained	from	the	diseased	leaf	tissue.	From	this	it	can	be	said	that	Septoria	

infection	induces	TaWRKY19	expression	so	I	can	postulate	its	involvement	in	

wheat	defence	response	against	Septoria.		



	 39	

	

Figure	3.2:	TaWRKY19	expression	in	healthy	and	Septoria	infected	time	

course.	RNA	samples	were	collected	every	2	days	from	healthy	(dark	grey)	

and	Septoria	infected	(light	grey)	seedlings	of	4-weeks-old.	Leaves	from	three	

separate	plants	were	collected	per	sample.	qRT-PCR	was	performed	using	

TaCDC48	and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	

3	times.	Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	

Error	bars	represent	+/-	1	standard	error.		

	

As	previously	mentioned,	WRKY	TFs	are	classified	into	3	different	groups	–	I,	

II	and	III.	The	groups	are	defined	based	on	the	number	of	WRKY	domains	

(one	domain	for	group	II	and	III	and	two	domains	for	group	I)	and	the	zinc	

finger	domain	structure	(C-X4-5-C-X22-23-H-X1-H	in	group	I	and	II	and	C-X7-C-

X23-HX1-C	in	group	III)	70,69	that	the	protein	contains.	The	protein	sequence	

and	cartoon	structure	for	TaWRKY19	can	be	seen	in	figure	3.3.	TaWRKY19	is	

468	amino	acids	long,	with	a	molecular	weight	of	50.8kDa.	

Figure	3.4a	shows	the	protein	sequence	with	the	WRKY	domains	highlighted,	

The	WRKY	sequence	(red)	and	zinc	domain	(blue)	have	been	highlighted	

separately.	TaWRKY19	is	a	group	I	WRKY	TF	as	it	contains	two	WRKY	
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domains	(figure	3.4b).	The	WRKY	domains	are	located	towards	the	C	

terminal	of	the	protein	(figure	3.4b).		

	

A.	

MAAGQWSGIGDGGGLWAPPALDSLFPDDQPSPAASALGFFGGSLAQLPSPPPLCG
TALLGYPQDNFDVFHERDLAQLAAQVAQKKELREKQGAGLHHKIGPQLAFSKYSI
LDQVDNSSSFSLATSVLTPQHVSSSVGAALMQGRTLPSHTGSGSVNTGPTGVLQAL
QDSSTTLDSINTGSTGVLEALQGSSITLDRPADDGYNWRKYGQKAVKGGKYPRSY
YKCTLNCPARKNVEHSADRRIIKIIYRGQHCHEPPSKRFKDCGDLLNELNDFDDAK
EPSTKSQLGCQGYYGKPITPNGMMTDVLLPTKEEGDEQLSSLSDIREGDGEIRTVD
GDDGDADANERNAPGQKIIVSTTSDADLLDDGYRWRKYGQKVVRGNPHPRSYYK
CTYQGCDVKKHIERSSEEPHAVITTYEGKHTHDVPESRNRSQATGQHHCKEQTYS
EQSAASFCSSSEKRKYGTAILNDLAF	
	
B.		

	
	

Figure	3.3:	Protein	sequence	of	TaWRKY19.	A.	Protein	sequence	of	

TaWRKY19	(468aa).	Highlighted	in	red	are	the	WRKY	sequences	of	the	

WRKY	domain.	Highlighted	in	blue	are	the	zinc	finger	sequences	of	the	WRKY	

domains.	B.	Cartoon	representation	showing	the	position	of	the	WRKY	

domains	relative	to	the	protein.	This	was	generated	using	NCBI	protein	blast	

tool150.	

	

WRKY	TFs	have	high	levels	of	sequence	similarity	across	the	family.	This	can	

be	a	problem	for	VIGS	experiments	as	fragments	with	>85%	homology	can	

silence	genes1,103.	This	is	due	to	DICER	cleaving	the	fragments	into	siRNA	of	

21-23nt.	These	fragments	are	then	incorporated	into	the	RISC	complex.	

When	the	complex	comes	across	mRNA	sequences	that	match	the	

incorporated	siRNA	it	degrades	it,	ensuring	it	is	not	translated.	This	means	

there	only	needs	to	be	stretches	of	21-23nt	long	that	are	identical	between	

closely	related	WRKYs	for	silencing	to	occur	across	both.	In	order	to	avoid	off	

target	silencing	of	TaWRKY19,	the	plan	was	to	design	the	silencing	fragments	

against	the	5’	and	3’	UnTranslated	Regions	(UTRs)121.	However,	at	the	time,	

there	was	a	lack	of	fully	assembled	genome	unfortunately	meaning	that	the	
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sequences	for	the	UTRs	were	unknown	for	each	of	the	identified	WRKYs.	To	

overcome	this,	Rapid	Amplification	of	cDNA	Ends	(RACE)	experiments	were	

employed.	RACE	allows	the	sequences	of	the	UTRs	to	be	identified	by	adding	

universal	primer	binding	sites	to	the	ends	of	the	mRNA	during	cDNA	

preparation.	Using	primers	against	these	sites	and	internal	primers	at	the	

ends	of	the	known	sequences	allows	amplification	of	the	UTRs	using	PCR.	

Once	a	PCR	band	has	been	obtained	it	can	be	sent	for	sequencing	(using	the	

internal	primer)	to	give	the	UTR	sequence.		

The	first	step	is	to	decide	which	RNA	sample	is	most	suitable.	As	can	be	seen	

in	figure	3.2,	TaWRKY19	is	upregulated	after	Septoria	infection,	just	before	

the	switch	to	necrotrophic	growth.		Therefore	I	chose	an	RNA	sample	from	

Septoria	infected	tissue	at	8dpi	(just	before	the	switch).		

Since	the	WRKY	genes	are	not	highly	expressed	nested	PCR	was	performed	to	

ensure	a	high	concentration	of	DNA	was	available	for	sequencing.	This	

involved	using	three	different	internal	gene	primers,	with	each	subsequent	

primer	being	further	towards	the	start	(for	5’	UTR	RACE)	or	end	(for	3’	UTR	

RACE)	of	the	known	sequence	and	3	subsequent	rounds	of	PCR.	In	between	

each	PCR	the	previous	PCR	product	was	diluted	1/10	times	in	water	

(deionised)	before	being	used	as	the	sample	template	for	the	next	PCR.	

Conditions	were	kept	the	same	across	the	3	PCR	experiments.		

Figure	3.4	shows	the	sequence	extensions	gained	from	performing	the	RACE	

experiments.	An	additional	192bp	of	sequence	information	was	identified	for	

the	3’	UTR	of	TaWRKY19	(highlighted	in	grey).	Unfortunately	amplicons	for	

the	5’	UTRs	were	not	obtained	through	PCR	even	with	nested	PCR.		

With	this	new	sequence	knowledge,	2	independent	non-overlapping	silencing	

fragments	were	designed	for	TaWRKY19	(99bp	and	83bp),	which	can	be	seen	

in	figure	3.4	(highlighted	in	blue).	With	two	silencing	fragments	for	

TaWRKY19	it	was	hoped	that	they	both	show	the	same	phenotype	and	

therefore	the	assumption	is	that	the	phenotype	is	due	to	the	silencing	of	the	

TaWRKY19	gene	and	not	any	off	target	silencing.	The	silencing	fragments	

were	slightly	small,	however	they	are	still	within	an	acceptable	range.	From	

here	on	in	I	will	refer	to	these	silencing	fragments	as	TaWRKY19A	and	
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TaWRKY19B,	this	does	not	have	any	relation	to	the	genomes	of	wheat,	

merely	a	naming	system.		

	

atggcggcggggcagtggtcaggcatcggcgacggcggcggcctctgggccccgcccgcgctcgacagcctc
ttccccgacgaccagccgtcgccggccgcctcggcgctgggcttcttcggtggatccctcgcgcagctcccttcc
cctccgccgctctgcggcaccgcgctcctcgggtacccccaggacaactttgatgtgttccatgaacgagacct
agcacagctggcagcacaagtggctcaaaagaaagagttgcgggaaaaacaaggggcgggattgcatcaca
agattggacctcaactagctttttctaaatacagtatacttgatcaagtggacaactcctcttctttctcattggca
acttcagtgctgacacctcagcatgtcagttcttccgtaggcgcggcattaatgcagggacggactttgccatca
cacactggtagtggtagtgtcaacactggaccaactggagttttacaagcgctccaagattcatccaccactctg
gacagtatcaacactggatcaactggagttctggaagcactccaaggttcatccatcactctggatagacctgc
tgatgatggatacaactggcgtaagtatggacaaaaggcagtcaagggtgggaagtatccaaggagctatta
caaatgtaccctgaattgcccggccaggaaaaatgtagagcactctgcagatagacgaattattaaaataattt
atagaggtcagcactgccatgaacccccctcaaagaggtttaaagattgtggtgatttattgaatgagttaaatg
atttcgatgatgccaaggagccttcaactaaatcacaattaggttgtcaaggttattatggaaaacctataacgc
caaatggaatgatgacggatgttttattgccaacgaaggaagagggggatgagcaattatctagtttaagtgat
atccgggaaggtgatggtgaaataagaactgttgatggagatgatggtgatgccgatgcaaatgaaaggaat
gcaccaggtcaaaagattatcgtgagtacaacgagcgatgctgatcttttggacgacggctataggtggcgca
agtatggacagaaagtggtgagaggaaatcctcacccaaggagctattacaagtgcacttaccaaggatgcg
acgtcaagaagcatatcgagagatcttccgaggaaccacatgctgtgataactacatacgaagggaagcatac
gcatgacgtgcctgagtctaggaacagaagccaagccacaggtcaacaccactgcaaagagcagacttattc
agaacaatcagctgcaagcttctgcagtagctcggaaaagagaaaatatggaacagccattctgaacgatctc
gccttctagtttggtccccgtgtcttctttaccgaccacggtggtggctcgcgaaagaaagaaagaaacacaat
tcgattggttcttcggtgacgggctgttattgctcatgctctgtttgctgtatattccccactccagtaataactctt
gcatatgcagaaattgtaactgttgaacatgatgggtggtccattgttggaaaaaaaaaaaaaaaaaaaaaa
aaaaaa	
	

Figure	3.4:	DNA	sequence	of	TaWRKY19.	TaWRKY19	CDS	sequence	is	

1,407bp	long.	RACE	PCR	was	used	to	identify	the	3’UTR	of	TaWRKY19	

(highlighted	in	grey),	adding	an	extra	192bp	sequence.	Highlighted	in	bold	

are	the	start	and	stop	codon.	Silencing	fragments	for	TaWRKY19	are	

highlighted	in	blue.		

	

3.4	TaWRKY19	silencing	using	VIGS	

Once	the	silencing	fragments	had	been	designed	it	was	possible	to	test	them	

computationally	to	predict	their	silencing	potential.	Although	the	software	is	

not	100%	accurate	it	provides	an	indication,	before	cloning	the	silencing	

fragments,	as	to	their	TaWRKY19	silencing	ability.	The	software	was	made	

available	to	me	by	KWS	through	access	to	their	databases.	It	calculates	each	

of	the	potential	22nt	fragments	(produced	by	DICER	cutting	and	
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incorporated	into	the	RISC	complex)	possible	and	ranks	them	on	their	

silencing	potential,	with	higher	number	having	higher	potential	silencing	

ability	(0-10	scale).	The	values	for	each	of	the	silencing	fragments	are	shown	

in	table	3.2	and	3.3	for	TaWRKY19A,	TaWRKY19B	respectively.	The	software	

predicted	one	siRNA	with	a	high	score	of	8	and	a	further	six	and	eight	

medium	strength	silencing	siRNAs	for	TaWRKY19A	and	TaWRKY19B	

respectively.	I	therefore	continued	with	both	of	these	silencing	fragments.		

	

	

	

	

	

	

	

	

	

	

	

Table	3.2:	TaWRKY19A	silencing	fragment	efficiency	analysis.	Software	

analysis	of	the	potential	22nt	fragments	incorporated	into	the	RISC	complex	

ability	to	silence.	Scored	0-10,	with	10	representing	a	high	level	of	silencing	

efficiency	and	1	a	low	level.		

	

	

	

	

	

	

	

	

	

	

	

Start	(bp)	 End	(bp)	 Score	 GC%	
60	 82	 8	 45	
33	 55	 5	 35	
36	 58	 5	 35	
15	 37	 4	 40	
17	 39	 4	 40	
24	 46	 4	 40	
59	 81	 4	 40	
35	 57	 3	 35	
53	 75	 3	 30	
54	 76	 3	 30	
32	 54	 2	 35	
44	 66	 1	 35	
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Table	3.3:	TaWRKY19B	silencing	fragment	efficiency	analysis.	Software	

analysis	of	the	potential	22nt	fragments	incorporated	into	the	RISC	complex	

ability	to	silence.	Scored	0-10,	with	10	representing	a	high	level	of	silencing	

efficiency	and	1	a	low	level.		

	

	

To	test	whether	there	was	a	chance	of	silencing	off	target	genes,	I	blasted	

both	of	the	silencing	fragments	against	the	most	up-to-date	version	of	the	

wheat	genome	available	(The	Earlham	Institue151)	(figure	3.5).	Although	

TaWRKY19A	does	have	some	off	target	sequence	homology	on	other	genes	

they	are	not	as	strong	as	across	the	3	genomic	versions	of	TaWRKY19	(A,	B	

and	D	genomes).	The	largest	stretch	of	potential	off	target	silencing	also	does	

not	correspond	with	any	of	the	predicted	stronger	silencing	siRNAs	(table	

3.2).	TaWRKY19B	fragment	only	has	homology	with	TaWRKY19,	again	across	

each	of	the	3	genomes.	This	is	one	aspect	in	which	VIGS	is	highly	useful;	even	

though	each	of	the	genomes	may	have	a	slightly	modified	version	of	

TaWRKY19	gene	it	is	still	possible	to	silence	each	homologue	in	one	

experiment	due	to	the	flexible	nature	of	VIGS.		

	

	

	

Start	(bp)	 End	(bp)	 Score	 GC%	
62	 84	 8	 45	
52	 74	 6	 35	
53	 75	 5	 35	
56	 78	 5	 35	
57	 79	 5	 35	
67	 89	 5	 55	
48	 70	 4	 30	
59	 81	 4	 40	
61	 83	 4	 40	
49	 71	 3	 30	
55	 77	 3	 35	
27	 49	 2	 65	
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A.	

	
B..		

	
Figure	3.5:	Blast	search	of	TaWRKY19A	and	TaWRK19B	silencing	fragments.	

The	Earlham	Institute’s	wheat	genome151	was	used	to	blast	search	the	DNA	

sequences	of	A.	TaWRKY19A	and	B.	TaWRKY19B.	Parameters	were	set	to	

identify	homology	of	sequences	over	16bps	long	against	the	cv.	Chinese	

Spring	wheat	genome	sequence.	This	is	based	on	the	size	of	siRNA	produced	

by	DICER	cleavage104,105.	

TaWRKY19	
chromosome	2BS

TaWRKY19	
chromosome	2AS

TaWRKY19	
chromosome	2DS

Non	coding	region	
chromosome	3AL

Gene	of	unknown	function	
chromosome	7DS

TaWRKY19	
chromosome	2BS

TaWRKY19	chromosome	
2DS

TaWRKY19	
chromosome	2AS

Non	coding	region	
chromosome	2BS



	 46	

BSMV	is	made	up	of	3	different	single	stranded,	positive	sense	RNA	

molecules,	designated	α,	β	and	γ.	Previous	studies	have	modified	the	virus	by	

deleting	the	βa	coat	protein	gene	to	increase	silencing	efficiency1.	They	also	

introduced	cloning	sites	so	that	a	gene	fragment	(from	the	gene	to	be	

silenced)	can	be	introduced	downstream	of	the	γb	gene.	Holzberg	et	al1	

introduced	a	stop	codon	at	the	end	of	the	γb	gene	to	ensure	the	plant	does	

not	translate	the	gene	fragment	after	infection	and	stopping	any	interference	

to	the	γb	genes	pathogenesis.		

Primers	were	designed	to	amplify	the	silencing	fragments.	The	primers	

contain	extensions	on	the	5’	end	for	use	in	restriction	enzyme	cloning.	To	

clone	the	silencing	fragments	I	used	cDNA	from	8dpi	and	Q5	high	fidelity	

DNA	polymerase.	The	PCR	was	performed	following	the	protocol	as	seen	in	

chapter	2.4.2	with	the	following	condition	for	the	variable	steps,	an	annealing	

temperature	of	55OC,	an	extension	time	of	20	seconds	and	30	cycles.	The	PCR	

product	was	then	run	on	a	1%	agarose	gel	for	DNA	size	separation.	Figure	3.6	

shows	the	resulting	band	from	this	PCR.	The	band	sizes	expected	were	99bp	

and	83bp	for	TaWRKY19A	and	TaWRKY19B	silencing	fragments	

respectively.	The	bands	were	then	isolated	from	the	gel	and	extracted	using	a	

gel	extraction	kit.		
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Figure	3.6:	Gel	of	cloning	PCR	for	TaWRKY19A	and	TaWRKY19B	silencing	

fragments.	PCR	products	were	run	on	a	1%	agarose	gel	in	1xTAE	buffer	for	

size	separation	and	visualised	using	UV	light	with	quantity	one	software.	A	

1kb	hyperladder	was	used	for	size	indication	(lane	1).	The	expected	size	for	

TaWRKY19A	(lane	2)	and	TaWRKY19B	(lane	3)	was	99bp	and	83bp	

respectively.		

	

The	DNA	was	then	cloned	into	the	modified	γ	strand	of	RNA	using	restriction	

enzymes	before	being	transformed	into	DH5α	E.	coli	cells.	The	transformed	

cells	were	grown	on	kanamycin	selection	plates	(the	selection	marker	was	

also	introduced	by	Holzberg	et	al	1)	and	colonies	checked	for	presence	of	the	

γb	RNA	molecule	containing	the	silencing	fragment.	This	check	was	

performed	by	PCR,	using	primers	previously	designed	for	sequencing1.	The	

primers	amplify	either	side	of	the	inserted	fragment,	therefore	when	PCR	is	

performed	on	the	colonies	and	on	the	empty	BSMV	γ	vector	a	shift	in	the	size	

of	the	band	should	be	seen	for	colonies	containing	the	silencing	fragment	

corresponding	to	the	size	of	the	fragment.	This	can	be	seen	in	figure	3.7,	with	

a	slight	increase	in	size	for	colony	5	in	BSMV:TaWRKY19A	and	colonies	3,	4,	

and	6	in	TaWRKY19B	when	compared	to	the	BSMV	empty	vector	(lane	14).		
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TaWRKY19B 
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800 
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Figure	3.7:	Gel	of	colony	PCR	for	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B.	

Primers	against	either	side	of	the	site	of	insert	for	the	silencing	fragment	

were	used	in	the	PCR	(BSMV	sequencing).	PCR	products	were	run	on	a	0.8%	

agarose	gel	in	1xTAE	buffer	for	size	separation	and	visualised	using	UV	light	

with	quantity	one	software.	BSMV:00	was	used	as	a	positive	control	for	the	

PCR	(lane	14)	and	a	negative	control	for	the	insert.	Positive	inserts	show	an	

increase	in	size	as	seen	in	Lanes	6,	10,	11,	13.	A	1kb	hyperladder	was	used	to	

indicate	the	size	of	the	DNA	fragments	(lane	1).		

	

I	proceeded	to	grow	colony	5	for	BSMV:TaWRKY19A	and	colonies	3	and	4	for	

BSMV:TaWRKY19B	overnight	in	LB	media	with	kanamycin.	I	then	isolated	

the	vector	from	the	cultures	and	sequenced	the	insert,	using	the	BSMV	

sequencing	primers	to	confirm	correct	DNA	insertion	sequence.	After	the	

sequence	was	confirmed,	the	constructs	were	transformed	into	A.	

tumefaciens	ready	for	infiltration	into	N.	benthamiana	plants.		

Now	the	silencing	constructs	had	been	generated	they	were	used	to	silence	

wheat	WRKY19	before	the	Septoria	infection	experiments.	Silencing	occured	

within	2	weeks	of	treatment.	To	ensure	the	growth	conditions	were	suitable	

for	silencing	a	positive	control	was	also	performed	at	the	same	time	on	a	

separate	wheat	plant.	The	positive	control	involved	silencing	of	Phytoene	

DeSaturase	(PDS)	gene,	which,	when	silenced,	has	a	distinctive	

photobleaching	phenotype	(figure	3.8).	The	silencing	construct	for	this	gene	

(185bp	of	PDS	gene)	was	obtained	from	Rothamsted	Research	(Dr.	Kostya	

Kanyuka)	and	has	successfully	been	used	previously	in	our	laboratory119,137.	
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Even	though	the	growth	conditions	for	silencing	were	already	set	up	in	our	

growth	rooms	a	PDS	silencing	control	was	used	to	ensure	the	conditions	had	

not	changed	unexpectedly	and	caused	a	lack	of	silencing,	therefore	saving	

time	processing	RNA,	cDNA	synthesis	and	qRT-PCR.		

	

	

	

Figure	3.8:	PDS	silencing	photobleaching	

phenotype.	2-week-old	seedlings	were	treated	

with	BSMV:PDS	and	left	for	two	weeks	to	allow	

silencing	of	the	PDS	gene.	Silencing	leads	to	a	

photobleached	phenotype.		

	

	

	

	

	

	

	

	

	

	

	

	

	

Two	weeks	after	the	silencing	treatment	leaf	tissue	samples	were	collected	

for	RNA	extraction	and	cDNA	synthesis	to	test	the	expression	levels	of	the	

TaWRKY19	in	BSMV:00,	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B	treated	

wheat.	qRT-PCR	was	used	to	measure	the	gene	expression	of	TaWRKY19,	this	

is	shown	in	figure	3.9.	The	results	are	from	three	independent	silencing	

experiments.	TaWRKY19	expression	in	wheat	treated	with	TaWRKY19A	and	

TaWRKY19B	showed	a	38%	and	45%	reduction	in	expression	compared	to	

the	BSMV:00.	These	reductions	are	statistically	significant	to	90%	and	95%	

BSMV:
00

BSMV:P
DS
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for	TaWRKY19A	and	TaWRKY19B	respectively	(p	values	of	0.094	and	0.011	

respectively).	TaWRKY19	expression	is	low	without	infection;	therefore	it	

may	be	possible	that	the	level	of	silencing	increases	when	TaWRKY19	is	

more	highly	expressed	after	infection.	Silencing	relies	on	the	RISC	complex	

coming	into	contact	with	the	mRNA;	hence	if	there	is	an	increase	in	

TaWRKY19	mRNA	then	the	levels	of	silencing	may	increase.	Also	since	I	am	

working	on	transcription	factors	a	small	difference	in	expression	can	lead	to	

a	large	difference	in	downstream	gene	expression.	Similar	levels	of	silencing	

have	been	previously	published	and	led	to	differences	in	Septoria	infection45,	

hence	I	continued	with	the	experiment	and	silencing	fragments	selected.		

	

Figure	3.9:	qRT-PCR	to	show	silencing	of	TaWRKY19	in	wheat.	Shown	are	the	

fold	changes	of	TaWRKY19	in	wheat	silenced	with	BSMV:TaWRKY19A	and	

BSMV:TaWRKY19B	compared	to	BSMV:00	control.	RNA	was	extracted	two	

weeks	post	silencing	treatment	(4-week-old-seedlings).	One	leaf	from	three	

separate	plants	was	collected	per	sample.	qRT-PCR	was	performed	using	

TaCDC48	and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	

3	times.	Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	

Error	bars	represent	+/-	1	standard	error.	Asterisks	are	used	to	denote	a	

results	difference	from	the	control	of	p<0.05.	
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3.5	TaWRKY19s	role	in	Septoria	infection	defence	

To	test	whether	TaWRKY19	has	a	role	in	defence	against	Septoria	the	

silenced	wheat	seedlings	(4-weeks-old)	were	infected	with	Septoria.	The	

Septoria	strain	IPO323	was	used.	Seedlings	were	then	prepared	by	cutting	off	

all	leaves	except	the	4-5th	(based	on	age,	i.e.	first	leaf	to	grow	=	1st).	The	

wheat	seedlings	that	have	been	silenced	with	PDS	always	show	the	most	

severe	photobleaching	symptoms	(figure	3.8)	on	the	4-5th	leaves	hence	why	

they	were	chosen	for	the	infection	assays	in	other	silenced	wheat	lines.		

The	silenced	wheat	leaves	were	then	infected	with	Septoria.	The	infection	

process	was	followed,	with	photos	taken	daily	(2-3pm)	to	assess	for	initial	

onset	of	visible	symptoms.	The	onset	of	symptoms	offers	one	assessment	of	

infection	progression.	Figure	3.10	shows	a	representation	of	the	average	

progression	of	symptoms	in	wheat	treated	with	BSMV:00,	

BSMV:TaWRKY19A	and	BSMV:TaWRKY19B.		

Infection	symptoms	for	TaWRKY19	silenced	plants	are	earlier	onset	than	

BSMV:00	treated	plants	(figure	3.10).	Visible	symptoms	for	BSMV:00	appear	

at	12dpi	whereas	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B	silenced	plants	

show	symptoms	after	11	days.	The	infection	follows	a	similar	time	scale	for	

both	treatments,	with	the	wheat	leaves	showing	full	necrosis	after	20dpi	for	

BSMV:00	and	after	19dpi	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B	treated	

plants.	The	timescale	of	infection	progression	is	important	as	during	wheat’s	

growth	season	the	Septoria	goes	through	multiple	life	cycles,	with	each	

subsequent	infection	occurring	on	the	newly	emerging	leaves.	It	is	most	

important,	for	yield,	to	protect	the	flag	leaf	(final	leaf	to	emerge).	Therefore	

changes	in	infection	speed	can	have	a	big	effect	on	overall	yield	and	severity	

of	the	infection	on	the	farmer’s	crop.		
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Figure	3.10:	Septoria	infection	symptoms	on	TaWRKY19	silenced	wheat.	

Four-week-old-seedlings,	which	had	undergone	silencing	treatment	

(BSMV:00,	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B)	were	stuck	down	

onto	black	card	and	infected	with	Septoria	(abaxial	and	adaxial	sides	of	the	

leaf).	The	seedlings	were	grown	under	high	humidity	conditions	to	

encourage	Septoria	infection.	The	infection	was	then	followed	daily,	with	

photos	taken	between	2-3pm.	In	this	figure	the	initial	stages	of	the	infection	

symptoms	are	shown,	from	11dpi	until	21	dpi.	Photos	are	representative	of	

the	symptoms	seen	in	3	independent	experiments.		
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After	the	onset	of	visible	symptoms	the	seedlings	were	kept	in	the	same	

conditions	until	28dpi	when	the	infected	leaf	section	was	cut	away.	These	

were	then	incubated	in	high	humidity	(>90%)	for	a	further	4	days	to	

encourage	the	Septoria’s	pycnidia	to	form.	The	pycnidia	were	then	counted	

over	a	2cm	leaf	length	(figure	3.11).	TaWRKY19	silenced	leaves	have,	on	

average,	more	pycnidia	than	BSMV:00	silenced	plants	with	26,	41,	and	37	for	

BSMV:TaWRKY19A,	BSMV:TaWRKY19B	and	BSMV:00	on	average	

respectively.	There	is	a	55%	and	40%	increase	for	BSMV:TaWRKY19A	and	

BSMV:TaWRKY19B	respectively	when	compared	to	the	BSMV:00	control.	

These	numbers	are	statistically	significant	to	99%	confidence	(p	values	

6.62E-04	and	2.07E-03	for	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B	

respectively).		

	

Figure	3.11:	Pycnidia	count	from	Septoria	infected,	TaWRKY19	silenced	

wheat	leaves.	Pycnidia	were	counted	over	a	2cm	leaf	length	per	leaf.	Error	

bars	correspond	to	+/-	1	standard	error.	The	experiment	was	repeated	

independently	3	times	with	5	leaves	per	experiment	counted.	Double	

asterisks	are	used	to	denote	a	results	difference	from	the	control	of	p<0.01.	
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The	leaves	were	then	collected	into	15ml	centrifuge	tubes	(5	leaves	per	tube)	

and	submerged	in	10ml	of	deionised	water.	The	spores	were	washed	off	by	

vortexing	the	tubes	for	2	minutes,	leaving	for	3	hours	and	vortexing	again	for	

another	2	minutes.	10μl	of	this	solution	was	then	loaded	onto	a	

haemocytometer	and	counted	under	a	light	microscope,	x20	magnification.	

Wheat	with	TaWRKY19	silenced	shows	an	increase	in	Septoria	sporulation	

compared	to	BSMV:00	silence	wheat	(figure	3.12),	with	a	statistically	

significant	increase	of	66%	and	60%	for	BSMV:TaWRKY19A	and	

BSMV:TaWRKY19B	respectively	compared	to	the	BSMV:00	control.	Student	

T-tests	comparing	the	BSMV:00	to	BSMV:TaWRKY19A	spore	counts	have	a	

value	of	0.0132,	making	it	statistically	significant	with	over	95%	confidence.	

A	students	T-test	comparing	BSMV:00	to	BSMV:TaWRKY19B	spore	counts	

have	a	value	of	0.0185,	showing	a	confidence	of	over	95%.		
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Figure	3.12:	Septoria	spore	counts	from	TaWRKY19	silenced	and	infected	

leaves.	Five	leaves	were	submerged	in	10ml	of	water	and	vortexed	to	wash	

the	spores	from	the	pycnidia.	Spores	were	then	counted	using	a	

haemocytometer	under	a	light	microscope	(x10	magnification).	Four	spore	

counts	across	independent	4x4	squares	on	the	haemocytometer	were	

performed	per	spore	suspension.	Error	bars	represent	+/-	1	standard	error.	

This	experiment	was	repeated	independently	3	times.	Asterisks	are	used	to	

denote	a	results	difference	from	the	control	of	p<0.05.	

	

Considering	VIGS	treatment	merely	reduces	gene	expression	(as	opposed	to	a	

full	knockout	in	which	there	is	no	target	gene	expression)	the	differences	in	

the	pycnidia	and	spore	count	may	be	higher	if	the	gene	was	fully	knocked	out.	

Therefore	I	extrapolated	the	data	to	assess	the	effect	of	modulating	the	

expression	of	TaWRKY19.	This	is	important	as	different	varieties	may	have	

different	levels	of	WRKY19	gene	expression	therefore	working	out	the	level	

of	expression	could	then	be	used	to	predict	Septoria	infection	severity.		

Per	1%	of	silencing	the	pycnidia	count	for	BSMV:TaWRKY19A	increases	by	

1.10%	and	the	spore	count	increases	by	1.20%.	For	BSMV:TaWRKY19B	

silenced	wheat	the	pycnidia	count	increases	by	0.93%	and	the	spore	count	

increases	by	1.10%	per	1%	of	silencing.		
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Through	these	silencing	and	infection	experiments	I	can	now	say	that	

TaWRKY19	has	a	role	in	defence,	acting	as	a	positive	quantitative	regulator.		

3.6	TaWRKY19	RNA	sequencing		

Towards	the	end	of	the	project	RNA	sequencing	was	performed	using	the	

TaWRKY19	and	BSMV:00	(control)	silenced	wheat	lines,	with	and	without	

Septoria	infection.	The	aim	was	to	identify	genes	whose	expression	changed	

in	TaWRKY19	silenced	plants,	and	to	see	if	this	changes	post	infection.	Three	

RNA	samples	from	each	of	the	four	conditions	were	used.	RNA	from	

BSMV:TaWRKY19B	treated	plants	were	used	due	to	the	higher	levels	of	

silencing	(figure	3.9).	Infected	samples	12dpi	were	chosen	due	to	the	timing	

of	the	switch	from	biotrophic	to	necrotrophic	growth	and	it	being	the	time	

point	in	which	TaWRKY19s	expression	is	high	(figure	3.2).		

The	RNA	samples	were	tested	for	their	quality,	libraries	prepared	and	run	by	

the	sequencing	laboratory	in	Department	of	Biosciences,	University	of	

Durham.	The	data	from	the	RNA	sequencing	was	then	mapped	and	aligned	to	

the	most	up	to	date	version	of	the	wheat	genome	by	KWS	(Einbeck).	I	was	

advised	that	the	results	from	this	experiment	were	preliminary,	with	extra	

quality	control	checks	needed.	A	heatmap	comparing	the	samples	is	shown	in	

supplemental	figure	2.	It	shows	a	clear	expression	difference	between	the	

healthy	and	Septoria	infected	wheat	in	both	the	control	and	TaWRKY19	

silenced	plants,	although	it	should	be	noted	one	of	the	control	Septoria	

infected	samples	does	cluster	with	the	uninfected	samples.		

The	most	differentially	expressed	genes	between	BSMV:00	and	

BSMV:TaWRKY19B	silenced	plants	were	calculated	(by	KWS).	120	genes	

were	downregulated	strongly	(factor	of	two	difference	or	more)	in	

TaWRKY19	silenced	wheat.	More	genes	were	upregulated	in	TaWRKY19	

silenced	wheat,	with	210	showing	a	differential	expression	of	higher	than	a	

factor	of	two.		

Comparing	the	uninfected	samples	to	the	infected	samples,	there	are	172	

genes	downregulated	and	356	genes	upregulated	(by	more	than	a	factor	of	

two).	Unfortunately	other	comparisons	(for	instance	looking	at	genes	that	are	

differentially	regulated	in	TaWRKY19	silenced	plants	between	uninfected	
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and	infected	samples)	were	not	performed.	Further	work	looking	at	these	

data	sets	needs	to	be	performed	in	order	to	identify	specific	genes	and	gene	

families	whose	expression	changes	between	the	treatments	(supplemental	

table	2	and	3).	This	may	help	to	identify	how	silencing	TaWRKY19	leads	to	

increased	Septoria	infection.		

3.7	TaWRKY19	localisation	

Now	it	has	been	confirmed	that	TaWRKY19	does	indeed	have	a	role	in	

wheat’s	defence	response	against	Septoria,	the	next	step	was	to	try	and	

further	describe	the	mechanism	behind	its	role	in	defence	response.		

This	first	involved	cloning	the	full	length	CDS	of	TaWRKY19.	TaWRKY19	is	

1,407bp	long	(figure	3.4).	Primers	were	designed	to	amplify	from	the	ATG	

until	the	TAG	stop	codon.	PCR	using	Q5	proof	reading	DNA	polymerase	

enzyme	was	used	to	clone	TaWRKY19.	Multiple	different	PCR	conditions	

were	tested	before	a	band	of	the	correct	size	was	produced,	including	

changing	cDNAs,	annealing	temperatures,	addition	of	DMSO	and	betaine.	In	

the	end	touchdown	PCR	was	employed	with	an	extension	time	of	1	minute.	

From	a	previously	published	paper152	and	RNA	sequencing153	it	is	known	that	

TaWRKY19	is	also	upregulated	in	abiotic	stress,	such	as	cold	stress	(24-24	

hours)152.	Therefore	I	put	wheat	seedlings	(2-weeks-old)	into	cold	conditions	

(4OC)	for	24	hours	and	collected	leaf	samples	for	RNA	extraction	and	cDNA	

synthesis.	I	had	also	previously	collected	samples	from	wheat	roots	and	

processed	them	into	cDNA.	As	seen	in	figure	3.2,	TaWRKY19	is	upregulated	

after	Septoria	infection;	I	chose	12dpi	cDNA,	as	this	sample	had	a	high	level	of	

expression.	To	ensure	one	sample	showed	high	levels	of	TaWRKY19	

expression	I	used	all	three	cDNA	samples	to	try	and	amplify	the	CDS,	this	is	

shown	in	figure	3.13.	These	cDNA	concentrations	had	not	been	amended	to	

ensure	they	were	the	same	so	no	assumptions	can	be	made	about	expression	

levels	in	each	of	the	cDNAs.	All	3	cDNA	samples	show	a	band	of	the	right	size	

and	so	all	three	bands	were	collected	for	gel	extraction	and	D-TOPO	cloning	

procedure.		
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Figure	3.13:	Gel	of	cloning	PCR	for	TaWRKY19	CDS.	PCR	products	were	run	

on	a	0.8%	agarose	gel	in	1xTAE	buffer	for	size	separation	and	visualised	

under	UV	light	with	quantity	one	software.	Hyperladder	1kb	plus	was	used	to	

assess	DNA	fragment	size	(lane	1).	Different	cDNAs	were	used	in	the	PCR	to	

clone	TaWRKY19.	Primers	were	designed	to	clone	TaWRKY19	from	it’s	start	

codon	until	the	stop	codon	(1,407bp).		

	

After	cloning	the	gel-extracted	band	into	the	D-TOPO	entry	vector	the	

construct	was	transformed	into	E.	coli	and	grown	overnight	on	LB	agar	media	

plates	containing	kanamycin	for	selection.	Colonies	were	tested	using	PCR	

with	the	M13	forward	primer	(which	primes	to	a	region	on	D-TOPO	before	

the	insertion	site)	and	a	gene	specific	reverse	primer	(which	primes	to	an	

internal	region	before	the	stop	codon).	The	PCR	was	then	run	on	a	0.8%	

agarose	gel	for	size	separation.	Positive	colonies	were	selected	as	those	who	

had	a	band	around	1.29kb	(1,152kb	gene	band	+	140bp	vector)	(figure	3.14).	

All	the	colonies	tested	were	positive	for	an	insert.	Two	of	these	positive	

colonies	were	selected	and	grown	overnight;	these	were	colonies	1	and	3.			
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Figure	3.14:	Gel	of	colony	PCR	for	TaWRKY19	in	D-TOPO	entry	vector.	A	PCR	

to	test	for	successful	TaWRKY19	cloning	was	run	using	M13	forward	primer	

and	a	TaWRKY19	specific	reverse	primer.	PCR	products	were	run	on	a	0.8%	

agarose	gel	in	1xTAE	buffer	for	size	separation	and	visualised	under	UV	light	

with	quantity	one	software.	A	1kb	hyperladder	was	used	for	size	indication	

(lane	1).	The	expected	size	for	positive	cloning	of	TaWRKY19	into	the	entry	

vector	D-TOPO	was	1,290bp.		

	

The	overnight	cultures	were	then	used	for	plasmid	extraction	and	sent	for	

sequencing	using	the	M13	F	and	R	primers.		A	single	clone	containing	the	

correctly	sequenced	CDS	was	selected.	D-TOPO	is	an	entry	vector;	the	

destination	vector	chosen	for	this	experiment	was	pEARLEYGATE104.	This	is	

because	the	localisation	of	TaWRKY19	was	to	be	studied	within	the	plant	cell	

through	confocal	microscopy.	pEARLEYGATE104	uses	the	35S	promoter	to	

express	TaWRKY19.	I	first	had	to	use	MluI	restriction	enzyme	to	disable	the	

kanamycin	resistance	within	the	D-TOPO	construct.	This	enzyme	cuts	the	D-

TOPO	vector	twice	disabling	it,	it	does	not	cut	within	TaWRKY19s	CDS.	Once	

cut,	I	ran	the	product	on	a	0.8%	agarose	gel,	excising	a	fragment	of	3,055bp	

(1407bp	+	1,648bp)before	gel	extracting	the	DNA.	The	product	was	then	put	

into	an	LR	reaction	(which	facilitates	the	transfer	of	TaWRKY19	CDS	from	the	

entry	vector	to	the	destination)	along	with	LR	clonase	and	

pEARLERYGATE104	destination	vector.	This	was	then	transformed	into	E.	

coli	DH5α	cells	and	grown	overnight	on	LB	agar	plates	with	kanamycin	

selection.	Again	colonies	were	tested	for	positive	transformation	using	PCR	
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with	YFP	forward	primers	and	a	gene	specific	reverse	primer.	A	positive	

colony	was	chosen	to	grow	up	and	transform	into	A.	tumefaciens.		

It	was	expected	that	TaWRKY19	would	localise	to	the	nucleus	being	a	TF	but	

I	decided	to	check	to	see	if	it	localised	elsewhere,	which	would	potentially	

indicate	a	method	of	regulation.	Also	the	idea	was	to	potentially	use	this	

system	to	study	whether	introducing	a	pathogen	or	other	stress	causes	a	

change	in	the	localisation	of	TaWRKY19.	This	would	add	weight	to	current	

evidence	that	TaWRKY19	is	involved	in	defence.	Other	WRKY	genes	have	

been	shown	to	localise	to	the	nucleus154,155.	AtWRKY40s	localisation	was	

found	to	change	after	treatment	with	abscisic	acid	(ABA),	but	not	after	

treatment	with	NaCl,	flg22	or	MeJA155.	

	A.	tumefaciens	expressing	P19	(which	supresses	silencing	within	the	plants),	

YFP	and	YFP:TaWRKY19	were	grown	up	overnight	and	then	resuspended	in	

10mM	MgCl2	until	an	0.4	O.D.600.	0.1nM	of	acetosyringone	was	then	added	

to	the	mixtures	and	incubated	for	2-3	hours.	Two	mixes	of	1:1	P19:YFP	and	

1:1	P19:YFP:TaWRKY19	were	prepared	and	infiltrated	into	the	middle	leaves	

of	4-week-old	N.	benthamiana	plants.	The	plants	were	allowed	to	grow	for	3	

days	before	being	used	for	experiment.	The	middle	leaves	were	chosen	as	

they	are	fairly	easy	to	infiltrate,	unlike	the	newest	leaves,	whilst	also	having	

higher	levels	of	expression	than	the	oldest	leaves.		

Small	sections	of	infiltrated	leaf	(0.3*0.3cm)	were	placed	onto	microscope	

slides	and	submerged	in	PP11	(perfluoroperhydrophenanthrene).	P11	enters	

the	plant	leaf	pushing	the	air	pockets	out	of	the	mesophyll	spaces.	It	also	has	

a	refractive	index	similar	to	the	plant	cells,	leading	to	clearer	pictures,	deeper	

into	the	plant	tissue156.		

As	can	be	seen	in	figure	3.15	YFP	localises	all	throughout	the	cell,	as	

expected,	whereas	TaWRKY19	only	localises	to	the	nucleus.	This	is	not	

unsurprising	being	a	TF.	I	only	repeated	this	experiment	once,	however	

another	published	paper	has	also	looked	into	the	localisation	of	TaWRKY19	

and	found	the	same	results152.	If	I	were	to	do	it	again	I	would	also	ensure	I	

used	dyes	that	stain	cellular	components,	such	as	DAPI	that	stains	the	cell	

nucleus.		
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Figure	3.15:	Localisation	of	TaWRKY19.	A.	tumefaciens	expressing	P19,	YFP	

and	YFP:TaWRKY19	were	diluted	in	10mM	MgCl2	to	an	O.D.	600	of	0.4.	Four-

week-old	N.	benthamiana	plants	were	infiltrated	with	equal	amounts	of	

P19:YFP	and	P19:YFP:TaWRKY19	and	allowed	to	grow	3	days.	An	SP5	

confocal	microscope	was	used	to	visualise	YFP	and	YFP:TaWRKY19	within	

the	leaf.	A.	YFP	only	filter.	B.	Bright	field.	C.	YFP	and	bright	field	overlap.	

3.7	TaWRKY	promoter	

The	first	step	was	to	identify	TaWRKY19’s	promoter	region.	Multiple	

databases	were	used	(KWS’s	internal	and	Earlham	Institute151)	to	find	the	

region	upstream	of	the	ATG	start	codon	of	TaWRKY19.	Unfortunately	I	could	

not	find	a	previously	identified	TaWRKY19	promoter	so	the	plan	was	to	clone	
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2kb	upstream	of	the	ATG	start	codon.	Although	the	wheat	genome	has	been	

sequenced	it	had	yet	to	be	fully	assembled	(at	the	time	of	writing).	Therefore	

there	are	some	stretches	of	the	genome	that	are	not	completely	annotated;	

N’s	represent	these	sections	in	the	database.	Unfortunately	1497bp	upstream	

(Supplemental	figure	3)	of	the	ATG	start	codon	there	was	a	run	in	which	the	

genome	was	not	fully	assembled,	hence	I	could	only	obtain	the	promoter	

sequence	data	for	1497bp.		

I	then	used	an	online	database	(PlantPAN157,158)	to	analyse	the	promoter,	

allowing	the	prediction	of	potential	TF	binding	sites.	These	are	based	on	

previously	studied	TF/promoter	interactions	in	Arabidopsis,	Rice	and	Maize.	

The	results	are	summarised	in	table	3.4,	each	hit	represents	a	unique	TF	

(from	Arabidopsis,	rice	and	maize)	that	binds	to	a	region	in	the	promoter	of	

TaWRKY19	(based	on	known	binding	sites	for	each	of	the	TFs).	Some	TFs	

have	multiple	binding	sites	over	the	promoter.	The	top	predicted	hit	is	TFs	

from	the	AP2/ERF	family,	which	are	involved	in	the	regulation	of	a	broad	

range	of	stresses159.	In	wheat	there	are	predicted	to	be	117	AP2	genes,	with	

47	of	these	in	the	AP2/ERF	subfamily.	This	is	less	than	in	Arabidopsis	and	

rice	(147	and	164	total	and	65	and	79	AP2/ERF	subfamily	respectively)160.	

The	lower	number	of	identified	wheat	genes	may	increase	once	the	genome	

has	been	fully	assembled	and	reanalysed.	They	are	most	highly	expressed	in	

the	wheat	leaves	(18%	of	AP2/ERFs	identified)160,	this	is	interesting	based	

on	the	nature	of	Septoria’s	infection	process.		

The	next	family	highly	represented	is	the	bZIP	family;	this	family	were	

highlighted	in	the	original	microarray	experiment138	as	one	of	the	families	

that	had	large	changes	in	expression	after	Septoria	infection.	Interestingly	

only	one	WRKY	binding	site	was	predicted.		
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Table	3.4:	List	of	predicted	TFs	that	bind	

to	TaWRKY19	promoter.	DNA	sequence	

for	TaWRKY19	promoter	was	input	into	

PlantPAN	software	157,158.	TFs	from	the	

plant	species	Arabidopsis,	rice	and	

maize	were	selected	for	the	analysis.	

Binding	sites	for	the	TFs	are	in	

supplemental	table	3.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Family No.	of	TFs
AP2;ERF 62
bZIP 30
Dof 18

NAC;NAM 16
TCP 11

AP2;B3;RAV 10
AP2;RAV;B3 10

bHLH 9
GATA;tify 9
AT-Hook 8
Others 8

Homeodomain;HD-ZIP 6
B3 5

Homeodomain;TALE 5
MADF 5

Myb/SANT 5
Myb/SANT;MYB 5

Myb/SANT;MYB-related 5
Myb/SANT;trp;MYB 5

SBP 4
Storekeeper 4

B3;ARF 3
CG-1;CAMTA 3
Alpha-amylase 2

AP2 2
C2H2 2
FAR1 2
GATA 2

Homeodomain;bZIP;HD-ZIP 2
LEA_5 2

MADF;Trihelix 2
MYB-related 2
MYB;ARR-B 2

Myb/SANT;MYB;ARR-B 2
TCR;CPP 2
BES1 1
bZIP;B3 1
Dehydrin 1

E2F 1
E2F/DP 1

E2F/DP;E2F 1
EIN3;EIL 1
HD-ZIP 1

Homeodomain;bZIP;HD-ZIP;WOX 1
LFY 1

LOB;LBD 1
MADS	box;MIKC;M-type 1

MYB 1
Myb/SANT;trp;MYB;NF-YC 1

NF-YB;NF-YA;NF-YC 1
TBP 1

Trihelix 1
VOZ 1
WRKY 1
ERF 1
NAC 1
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Primers	were	designed	to	amplify	from	the	beginning	of	the	identified	

promoter	region	until	just	before	the	ATG	start	codon	of	TaWRKY19.	At	the	5’	

end	of	the	forward	and	reverse	primer	restriction	enzyme	sites	for	XmaI	and	

XbaI	were	included	respectively.	These	sites	are	needed	for	cloning	into	

PTUY1H	destination	vector,	which	is	used	for	the	Y1H	experiment.	Wheat	

DNA	was	extracted	for	use	as	a	template	in	cloning	the	promoter.	Multiple	

PCR	conditions	were	tested	before	a	band	of	the	correct	size	was	seen	(some	

of	these	can	be	seen	in	figure	3.16).	The	final	PCR	conditions	that	produced	

the	promoter	band	were	an	annealing	temperature	of	52OC,	HiFi	polymerase	

and	an	extension	time	of	2:15	minutes	with	the	addition	of	DMSO	and	30	PCR	

cycles.	I	also	had	to	perform	a	nested	PCR,	diluting	the	first	PCR	product	1/10	

in	water,	using	this	mix	as	the	template	for	the	second	PCR.	The	PCRs	were	

then	run	on	a	0.8%	gel	(figure	3.16).	As	can	be	seen,	the	addition	of	betaine	

and	DMSO+betaine	to	the	PCR	did	not	produce	any	amplified	products	in	

either	of	the	PCRs.	However	the	addition	of	DMSO	led	to	a	band	in	both	the	

first	PCR	and	the	nested	PCR,	with	a	band	size	reduction	corresponding	to	the	

size	difference	of	the	amplicon.		

The	DNA	from	the	band	highlighted	in	figure	3.16	(nested	PCR)	was	extracted	

and	cloned	into	pJET1.2	(for	blunt	ended	PCR	fragments),	before	being	

transformed	into	DH5α	E.	coli	cells	and	left	to	grow	overnight	on	LB	agar	

with	ampicillin	for	selection.	PCR	using	a	pJET	specific	sequencing	primer	

and	a	promoter	specific	reverse	primer	were	used	to	test	the	colonies	for	

positively	cloned	colonies	(similar	to	the	previously	shown	colony	PCR	in	

figure	3.14).	Two	of	the	positive	colonies	were	then	grown	up	and	plasmid	

DNA	extracted	to	check	the	DNA	sequence,	the	sequencing	reactions	used	

forward	and	reverse	pJET	specific	sequencing	primers.	Once	the	sequence	

had	been	confirmed	the	next	step	was	to	clone	the	promoter	into	PTUY1H133	

vector	using	restriction	enzyme	cloning	(XmaI	and	XbaI).	The	PTUY1H	vector	

and	pJET	with	TaWRKY19	promoter	were	both	incubated	with	XmaI	and	

XbaI	overnight	(cutsmart	buffer)	and	run	on	a	0.8%	agarose	gel.	Fragments	

around	the	size	of	1,409kb	and	6,500kb	were	isolated	from	the	gel	for	

TaWRKY19	promoter	and	PTUY1H	vector	respectively.	These	fragments	
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were	extracted	from	the	gel	using	a	gel	extraction	kit	before	being	ligated	

together	overnight	with	T4	DNA	ligase.	The	resulting	ligation	product	was	

transformed	into	DH5α	E.	coli	cells	and	grown	up	overnight	on	LB	agar	plates	

with	kanamycin	for	resistance	selection.	The	colonies	were	again	screened	

for	PTUY1H	vectors	containing	the	TaWRKY19	promoter.	This	was	done	

using	PCR	with	a	forward	primer	specific	to	PTUY1H	and	a	reverse	primer	

against	TaWRKY19	promoter.	One	of	the	positive	colonies	was	grown	up	

overnight	and	the	plasmid	isolated	from	the	resulting	culture.	The	final	step	

was	to	transform	this	vector	into	Y187α	yeast	ready	for	the	yeast	1	hybrid	

assay	(chapter	4).		

	

	

	

	

	

	

	

	

	

Figure	3.16:	Gel	of	TaWRKY19	promoter	cloning	PCR.	PCR	products	were	run	

on	a	0.8%	agarose	gel	for	size	separation	and	visualized	under	UV	light	with	

quantity	one	software.	A	1kb	hyperladder	was	used	for	size	indication	(lane	

1).	The	expected	size	for	TaWRKY19	promoter	(lane	2)	was	1,409kb.		

3.8	Conclusion	

The	aim	of	this	chapter	was	to	identify	WRKY	TFs	that	are	involved	in	wheat	

defence	against	Septoria.		

WRKY	TFs	were	focused	upon	based	on	previous	microarray	experiments	

looking	for	changes	in	expression	after	Septoria	infection.	The	initial	

screening	focussed	on	15	TaWRKYs	that	were	homologues	of	previously	

published	WRKY	genes	from	Arabidopsis	and	rice.	Healthy	and	Septoria	
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infected	time	courses	were	used	to	investigate	the	expression	profiles	of	the	

15	TaWRKYs.	From	this	four	TaWRKYs	were	found	that	were	all	upregulated	

after	Septoria	infected.	After	initial	experiments	the	list	was	again	narrowed	

down	to	two	TaWRKYs	–	TaWRKY19	and	TaWRKY9.	The	focus	of	this	chapter	

was	TaWRKY19.	It	is	worth	noting	that	although	TaWRKY2	was	upregulated	

during	initial	infection	assays	it’s	silencing	did	not	affect	wheat’s	ability	to	

defend	against	Septoria	either	positively	or	negatively161.	This	made	for	a	

good	negative	control,	showing	that	although	some	WRKYs	expression	

changes	after	infection,	not	all	WRKYs	are	involved	in	defence.	It	also	shows	

that	the	process	of	silencing	WRKYs	does	not	always	lead	to	a	change	in	

Septoria	infection.		

Through	RACE	experiments	the	3’	UTR	was	sequenced,	allowing	for	

generation	of	2	specific	VIGS	fragments.	Average	silencing	levels	of	38%	and	

45%	were	achieved	for	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B.	Whilst	

these	may	not	be	as	high	as	previously	published	the	small	modulation	in	

TaWRKY19	expression	still	led	to	wheat	becoming	more	susceptible	to	

Septoria.	Ideally	silencing	levels	would	have	been	studied	when	TaWRKY19’s	

expression	was	highest	between	8-14dpi.	This	is	when	I	assume	TaWRKY19	

silencing	would	have	the	most	effect	however	that	was,	unfortunately,	an	

after	thought	and	not	considered	at	the	time.	The	most	accurate	way	of	

measuring	silencing	levels	would	be	to	measure	the	amount	of	TaWRKY19	

protein	translated.	Protein	levels	could	be	measured	by	generating	an	anti-

body	against	TaWRKY19,	however	this	can	be	a	difficult	process	so	was	not	

undertaken	during	this	project.		

Wheat	lines	silenced	with	TaWRKY19	did	show	an	increase	in	Septoria	

infection,	with	symptoms	beginning	a	day	earlier,	an	increase	in	pycnidia	and	

spores.	Although	these	increases	may	not	be	as	drastic	as	previously	

published	VIGS/Septoria	infection	work	there	is	still	a	statistically	significant	

difference	that	may	be	useful	for	breeders.	This	is	particularly	true	when	

looking	at	work	done	previously	on	TaWRKY19,	in	which	overexpresing	

TaWRKY19	in	Arabidopsis	led	to	increased	tolerance	to	

osmotic/dehydration,	salt	and	freezing	stresses90,91.	A	breeding	target	that	

can	offer	an	increase	in	abiotic	and	biotic	stresses	must	be	of	significant	
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benefit.	It	is	also	the	first	case	in	our	laboratory	of	gene	silencing	leading	to	

an	increase	in	Septoria	infection	and	therefore	identification	of	a	positive	

regulator	of	defence.	Work	presented	in	this	chapter	based	on	TaWRKY19	

silencing	and	Septoria	infection	led	to	TaWRKY19	being	patented	for	use	in	

resistance	variety	wheat	breeding	in	collaboration	with	KWS162.		

TaWRKY19	is	located	in	the	nucleus	of	the	cell.	However	this	is	under	the	

control	of	a	35S	promoter	and	in	‘normal’	conditions.	There	are	examples	of	

TFs	subcellular	localisation	changing	under	stress	responses163,164.	Further	

repeats	and	experiments	looking	into	the	localisation	during	infection	may	

result	in	interesting	insights	into	the	regulation	of	TaWRKY19.		

To	begin	building	up	a	network	of	defence	against	Septoria	I	decided	to	go	

upstream	of	TaWRKY19.	This	was	in	the	hope	of	finding	multiple	breeding	

targets	that	can	be	stacked	to	reduce	the	likeliness	of	Septoria	evolving	

resistance	as	has	happened	before.	The	second	aim	was	to	find	a	target	that	

was	further	up	the	chain,	closer	to	the	perception	of	the	pathogen.	These	TFs	

may	have	more	control	over	defence	related	genes,	leading	to	a	more	

pronounced	effect	when	silenced	and	infected	with	Septoria.	The	first	step	

was	to	clone	the	promoter	of	TaWKRY19.	The	sequence	1,493bp	upstream	of	

TaWRKY19’s	start	codon	was	identified.	I	proceeded	to	amplify	this	region	

using	PCR	with	DMSO	as	a	PCR	additive,	and	clone	the	promoter	into	the	Y1H	

bait	vector	PTUY1H	ready	for	the	Y1H	experiment	(chapter	4).		
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4.	TabZIP2	binds	TaWRKY19	promoter	and	acts	as	a	susceptibility	

factor	against	Septoria	

4.1	Introduction	

Yeast	1	hybrid	(Y1H)	assays	allow	protein-DNA	interactions	to	be	tested	in	

the	context	of	the	nucleus165.	In	this	case,	the	interaction	of	TFs	on	promoter	

sequences	although	other	DNA	binding	proteins	lacking	transcriptional	

activating	domains	can	also	be	tested.	Other	advantages	of	a	Y1H	screen	

include	the	ability	to	study	many	TFs/DNA	interactions	and	the	speed	of	the	

process166.	

The	DNA	promoter	region	(bait)	is	cloned	upstream	of	the	GAL4	promoter	

and	reporter	gene	(HIS3)	into	a	vector	that	contains	a	leucine	selection	

marker.	The	vector	is	then	transformed	into	Y187α	yeast	strain	(figure	4.1).	

Positively	transformed	yeast	cells	can	be	selected	for	by	growing	on	minimal	

Synthetic	Defined	(SD)	base	media	with	all	the	amino	acids	minus	leucine.		

The	TFs	(prey)	are	cloned	into	a	vector	upstream	of	a	GAL	activating	domain	

(GALAD)	into	a	vector	containing	a	tryptophan	selection	marker.	The	vector	

is	then	transformed	into	AH109A	yeast	(figure	4.1).	Selection	is	similar	to	

that	of	the	promoter	containing	yeast	except	with	an	amino	acid	mixture	

lacking	tryptophan.	Having	the	GALAD	domain	allows	for	DNA	binding	

proteins	that	do	not	activate	transcription	to	be	tested,	such	as	chromatin	

remodelling	and	DNA	repair	proteins.	Having	transformed	the	yeast	(of	

opposing	mating	strains)	they	are	next	mated,	bringing	the	prey	and	bait	

together.	If	the	TF	binds	to	the	DNA	bait	in	vivo	the	GALAD	will	come	into	

contact	with	the	GAL	promoter,	leading	to	transcriptional	activation	of	the	

HIS3	reporter	gene	(figure	4.1).	HIS3	is	a	imidazoleglycerol-phosphate	

dehydratase	involved	in	the	6th	step	of	histadine	synthesis167.	Activation	of	

HIS3	allows	the	yeast	to	grow	on	triple	drop	out	media	(-L,	-W	and	–H),	

indicating	to	the	experimenter	a	positive	interaction.	However	the	system	

can	be	leaky,	with	yeast	transcription	factors	binding	to	the	DNA	bait	domain,	

therefore	3-amino-trizole	(3AT)	in	increasing	concentrations	is	included	to	

test	the	strength	of	the	interactions.	3AT	is	a	competitive	inhibitor	of	the	

HIS3	enzyme,	hence	if	there	is	a	small	amount	of	activation	by	yeast	TFs	or	a	
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weak	binding	of	the	prey	to	the	bait	promoter	growth	will	only	happen	on	

media	containing	no	or	low	concentrations	of	3AT.	One	thing	to	note	is	that	

Y1H	experiments	do	not	determine	whether	the	TF	will	be	a	positive	or	

negative	regulator	of	the	promoter	region	to	be	tested133,166,168-170.	Y1H	

screens	also	will	not	pick	up	any	TFs	that	need	to	be	post	translationally	

modified	or	bind	as	homo/heterodimers171.	There	can	also	be	false-positives	

interactions	identified	even	with	the	selection	pressures,	meaning	further	

binding	experiments	may	need	to	be	performed166.		

Figure	4.1:	Yeast	1	Hybrid	schematic.	The	top	panel	shows	a	positive	

interaction	leading	to	HIS3	reporter	gene	transcription.	The	bottom	panel	

shows	no	interaction	between	TF	and	target	promoter,	leading	to	no	HIS3	

transcription.	Figure	modified	from	170	

Basic	(DNA	binding	region)	leucine	zipper	(bZIP)	transcription	factors	are	a	

highly	diverse	family,	which,	unlike	WRKYs,	are	found	throughout	the	

eukaryotic	kingdom.	The	basic	(N-X7-R/K)	and	leucine	zipper	(L-X6-L-X6-L)	
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regions	form	two	adjacent	alpha	helixes	(X9	separating	the	two	domains),	

with	two	bZIPs	interacting	(through	the	leucine	zipper)	to	bind	DNA	

(through	the	basic	region)	in	a	zipper	like	action172.	As	they	primarily	

function	in	dimers	through	the	leucine	zipper173,	many	different	dimer	

combinations	can	be	formed	allowing	high	levels	of	regulatory	flexibility174.	

In	Arabidopsis	and	wheat	there	are	78	and	187	identified	bZIPs	

respectively172,174,175,	which	are	classified	into	13	groups	depending	on	their	

bZIP	and	other	domains	structure174.	The	largest	class	is	the	S	class,	the	most	

studied	of	which	are	in	the	S1	subdivision.	These	bZIPs	are	noted	by	their	

small	size	(roughly	20kDa)	containing	the	bZIP	domain,	with	an	extended	

leucine	zipper,	and	a	lack	of	introns.	This	class	have	been	found	to	form	

dimers	with	the	C	class,	which	are	similar	in	structure.	

Plant	bZIP	TFs	tend	to	bind	to	DNA	promoter	regions	with	a	core	ACGT,	such	

as	A-box	(TACGTA),	C-box	(GACGTC)	and	G-box	(CACGTG),	with	different	

bZIPs	having	different	affinities	for	the	different	boxes176.			

Both	WRKY	and	bZIP	transcription	factors	have	been	shown	to	be	involved	in	

a	wide	range	of	biological	processes,	including	pathogen	defence.		

4.2	Arabidopsis	TF	library	for	yeast	1	hybrid	

Castrillo	and	Turck	et	al133	generated	a	library	of	Arabidopsis	TFs,	adding	to	a	

previous	library	(REGIA	project177).	In	total	their	library	has	around	1,200	

unique	TFs.	They	also	generated	a	vector,	PTUY1H,	for	cloning	promoter	

sequences	into	for	use	in	the	Y1Hs.	The	library	can	be	purchased	from	the	

Nottingham	Arabidopsis	Stock	Centre	(NASC),	who	sends	glycerol	stocks	of	

the	TFs	in	yeast	(AH109A)	on	15	separate	96	well	plates.	Within	in	Castrillo	

and	Turck	et	al133	paper	they	have	also	conveniently	written	an	easy	to	follow	

protocol	for	the	mating	of	the	bait	promoter	containing	yeast	with	the	

library,	including	time	frames	for	each	step.	

My	supervisor	(Ari	Sadanandom)	decided	that	the	use	of	this	library	to	find	

TFs	that	bind	to	TaWRKY19’s	promoter	would	be	a	useful	next	step	for	the	

project.	The	idea	was	to	find	other	TFs	that	may	be	involved	in	defence	

against	Septoria.	Using	a	TF	library	allows	for	many	interactions	to	be	tested	
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rapidly166	and	it	was	readily	available	as	it	had	previously	been	used	in	our	

laboratory.		

The	first	step	was	to	revive	the	library	onto	minimal	SD	base	media	with	–W	

amino	acid	mixture.	This	was	performed	using	a	96-pin	replicator	that	

transfers	5μl	of	liquid	on	the	end	of	each	pin	to	allow	transfer	onto	the	new	

plates.	These	were	then	grown	at	28OC	for	3	days.	As	not	all	the	colonies	

initially	grew,	a	second	set	of	plates	was	stamped	out	and	used	to	fill	any	gaps	

from	the	first	set.	Even	between	the	two	sets	not	all	of	the	wells	grew.	Figure	

4.2	shows	a	cartoon	representation	of	which	wells	grew	(highlighted	in	grey).	

The	figure	also	has	additional	information	I	will	discuss	later.	Overall	68%	of	

the	library	grew,	with	some	plates	growing	better	than	others.	Two	plates	

contain	the	majority	of	the	WRKY	TFs,	these	are	plate	4	(16	WRKYs)	and	

plate	10	(43	WRKYs).	Whilst	plate	4’s	revival	was	fairly	successful	(86%	

coverage),	plate	10’s	was	not,	with	only	17%	coverage.	By	far	the	worst	

revival	was	of	plate	14,	where	only	2	of	the	96	wells	grew.	There	are	a	few	

families	represented	on	this	plate	including	(but	not	limited	to)	AP2/ERF	(12	

wells),	bZIP	(3	wells),	NAC	(11	wells)	and	bHLH	(27	wells),	which	are	in	the	

top	10	hits	from	the	plantPAN	promoter	predication	software	(table	3.4).	

However,	between	the	plates,	there	is	still	a	good	coverage	of	TFs	from	each	

of	the	families.		
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Plate	1 1 2 3 4 5 6 7 8 9 10 11 12 Plate	9 1 2 3 4 5 6 7 8 9 10 11 12
a X a
b X b
c c
d d
e X X X e
f f
g X X X g
h X h

Plate	2 1 2 3 4 5 6 7 8 9 10 11 12 Plate	10 1 2 3 4 5 6 7 8 9 10 11 12
a X a
b b
c c
d d
e e
f f
g X g
h h

Plate	3 1 2 3 4 5 6 7 8 9 10 11 12 Plate	11 1 2 3 4 5 6 7 8 9 10 11 12
a a
b b
c c
d X d
e X e
f X f
g g
h h

Plate	4 1 2 3 4 5 6 7 8 9 10 11 12 Plate	12 1 2 3 4 5 6 7 8 9 10 11 12
a a X
b b
c c X
d d
e e
f f
g g
h h

Plate	5 1 2 3 4 5 6 7 8 9 10 11 12 Plate	13 1 2 3 4 5 6 7 8 9 10 11 12
a X a X
b b
c X X c
d X X d X
e e X
f f
g g X
h X X h X

Plate	6 1 2 3 4 5 6 7 8 9 10 11 12 Plate	14 1 2 3 4 5 6 7 8 9 10 11 12
a a
b b
c c
d X X d
e e
f X f
g g
h h

Plate	7 1 2 3 4 5 6 7 8 9 10 11 12 Plate	15 1 2 3 4 5 6 7 8 9 10 11 12
a a X
b b
c c
d X d
e e
f X f
g g
h h

Plate	8 1 2 3 4 5 6 7 8 9 10 11 12
a
b
c
d
e
f
g
h 	

	

Figure	4.2:	Y1H	TF	library	revival	and	TaWRKY19	promoter	binders.	A	

representation	of	the	fifteen	96-well	plates	from	the	Arabidopsis	Y1H	

library133	(approx.	1,200	different	TFs)	showing	the	wells	that	were	

successfully	revived	from	glycerol	stock	(highlighted	in	grey).	Wells	marked	

with	an	X	represent	the	TFs	that	bound	to	TaWRKY19	promoter	identified	

through	a	Y1H	experiment	grown	upon	minimal	SD	base	media	with	amino	

mix	–L-W-H	+	20mM	3AT	for	selection.		
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4.3	Positive	interactions	between	Arabidopsis	TFs	and	TaWRKY19	

promoter	

After	reviving	the	TF	library,	the	next	step	was	to	mate	it	with	TaWRKY19	

promoter	(in	PTUY1H	vector,	Y187α	yeast	strain).	To	do	this	a	large	culture	

of	YPAD,	inoculated	with	AH109A	expressing	PTYU1H:TaWRKY19	promoter	

construct	was	grown	overnight	at	28OC.	Simultaneously	the	TF	yeast	library	

was	inoculated	into	fifteen	96-well	plates	containing	YPAD	liquid	media	

before	being	grown	overnight	at	28OC.	The	next	step	was	to	mate	the	two	

yeast	strains.	To	do	this	each	well	of	the	TF	library	was	inoculated	with	a	set	

amount	(100μl)	of	the	TaWRKY19	promoter	construct	yeast	and	incubated	

for	48	hours	at	28OC.	Using	a	96-pin	replicator	fresh	media	(SD	minimal	base	

with	–L-W	amino	acid	mixture)	was	inoculated	with	the	previous	cultures	

before	being	grown	for	24	hours	at	28OC.	This	step	was	performed	for	

selection	of	the	mated	yeast	cultures.		

To	determine	the	concentration	of	3AT	needed	for	the	final	selection	phase	of	

the	experiment,	Y187α	yeast	containing	TaWRKY19	promoter	in	PTUY1H	

with	mated	with	AH109A	yeast	containing	pDEST22.	The	TFs	in	the	Y1H	

library	are	all	in	pDEST22	vector,	hence	its	use	as	a	control.	It	is	regularly	

used	in	both	Y1H	and	Y2H	hybrid	experiments.	After	the	mating	process	the	

resulting	cultures	out	spread	onto	minimal	SD	base	agar	media	plates	with	–

L-W	amino	acid	mix	(to	ensure	mating),	-L-W-H	amino	acid	mix	and	–L-W-H	

amino	acid	mix	with	increasing	amounts	of	3AT	(10,	20,	40,	60,	80	and	

100mM).	From	this	experiment	it	was	determined	that	using	20mM	of	3AT	

was	enough	to	negate	any	residual	activation	of	the	HIS3	reporter	gene	by	

yeast’s	own	TFs	(data	not	shown).		

Now	the	3AT	concentration	had	been	worked	out,	the	final	step	in	the	Y1H	

library	assay	was	to	stamp	out	the	mated	library+TaWRKY19	promoter	onto	

selection	media.	This	involved	using	the	96-pin	replicator	to	stamp	out	each	

of	the	wells	onto	3	different	sets	of	minimal	SD	base	media	plates	containing		

–L-W	amino	acid	mix,	-L-W-H	amino	acid	mix	and	–L-W-H	amino	acid	mix	+	

20mM	3AT.	The	plates	were	then	grown	at	28OC	for	3	days,	with	pictures	

taken	after	this	time	to	enable	me	to	analyse	the	growth.		
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Figure	4.2	shows	a	cartoon	representation	of	the	15	96-well	plates.	

Highlighted	in	grey	are	the	colonies	that	grew	on	the	initial	revival.	Wells	

with	an	X	represent	those	that	grew	on	each	of	the	selection	medias,	showing	

successful	mating	and	a	positive	TF/TaWRKY19	promoter	interaction.	Of	the	

974	revived	TF	wells	(68%),	34	grew	on	all	three	selection	media.	This	

represents	3.5%	of	the	successfully	revived	wells.			

	

The	next	step	was	to	test	the	strength	of	the	interactions	between	the	TFs	

and	TaWRKY19	promoter	that	grew	during	Y1H	library	screen.	The	34	TFs	

were	remated	with	TaWRKY19	promoter	containing	yeast,	and	mated	yeast	

selected	for	using	–L-W	media	(minimal	SD	base	+	amino	mix).	Three*5μls	of	

each	mated	culture	was	pipetted	onto	plates	containing	minimal	SD	base	

with	amino	acids	mix	lacking	–L-W,	-L-W-H	and-L-W-H	+	3AT	(20,	40,	60	80	

and	100mM).	These	plates	were	grown	at	28OC	for	3	days	(supplemental	

figure	4).	The	3AT	concentrations	were	chosen	for	testing	based	on	

information	gained	by	reading	previously	published	papers178	who	used	Y1H	

assays,	including	Castrillo	and	Turck	et	al133.	Figure	4.3	shows	a	

representation	of	the	growth,	and	therefore	binding,	of	the	34	TFs	to	

TaWRKY19	promoter.	Four	of	these	transcription	factors	show	strong	

binding,	still	growing	on	the	highest	concentration	of	3AT	(100mM).	There	

are	some	other	TFs	that	also	bound	strongly	(up	to	80mM	3AT),	however	due	

to	time	constraints	I	decided	to	focus	upon	the	top	four	(highlighted	in	light	

grey,	figure	4.3).	Some	of	the	colonies	also	did	not	mate	in	this	experiment,	

however	since	I	had	four	targets	it	was	decided	not	to	follow	these	up.		
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Well Gene	ID Gene	description No. -L-W +20mM+40mM+60mM +80mM +100mM
p1	a8 At4g37940 MADS	(AGL21) 1
p1	b9 At5g51870 MADS	(AGL71) 2
p1	e3 At3g12890 CO-like	(ASML2) 3
p1	e4 At4g27900 CO-like 4
p1	e8 At2g46790 CO-like	(APRR9) 5
p1	g3 At1g74410 C3HC4	(ATL24) 6
p1	g5 At3g61550 C3HC4	(ATL68) 7
p1	g7 At2g18670 C3HC4	(ATL56) 8
p1	h5 At1g21960 C3HC4	(RING/U-Box) 9
p2	a1 At5g49450 bZIP	(bZIP1) 10
p2	g5 At3g10480 NAC	(NAC50) 11
p3	d4 At1g50420 GRAS	(SCL3) 12
p3	e7 At2g45680 TCP	(TCP9) 13
p3	f4 At3g27010 TCP	(TCP20) 14
p5	a4 At5g05410 DREB	(DREB2A) 15
p5	c6 At3g12720 MYB	(MYB67) 16
p5	c8 At1g56160 MYB	(MYB72) 17
p5	d1 At2g01060 G2-like	(PHL7) 18
p5	d6 At3g13040	 G2-like	(PHL6) 19
p5	h4 At3g11440 MYB	(MYB65) 20
p5	h5 At1g26780 MYB	(MYB117) 21
p6	d1 At5g43270 SBP	(SPL2) 22
p6	d5 At2g47070 SBP	(SPL1) 23
p6	f3 At3g07740 SWI/SNF	(ADA2A) 24
p7	d2 At4g37790 Homeobox	(HAT22) 25
p7	f3 At3g50260 AP2/ERF	(DEAR1/CEJ1) 26
p12	a3 At2g13150 bZIP	(bZIP31) 27
p12	c5 At2g32950 WD-40	(COP1) 28
p13	c5 At1g28160 AP2/ERF	(ERF87) 29
p13	d6 At5g44210 AP2/ERF	(ERF9) 30
p13	e12 At5g60830 bZIP	(bZIP70) 31
p13	g12 At1g35460 bHLH	(bHLH1) 32
p13	h2 At1g66470 bHLH	(RDH6) 33
p15	a3 at4g36990 HSF	(HSFB1/HSF4) 34
-ve	control TaWRKY19	promoter 35 	
	
	
Figure	4.3:	A	representation	of	34	TFs	binding	onto	TaWRKY19	promoter	

through	a	Y1H	experiment,	with	increasing	selection.	34	TFs,	identified	

through	the	initial	Y1H	experiment,	were	re-mated	with	TaWRKY19	

promoter	yeast	and	grown	in	liquid	culture	overnight.	5μl	of	this	overnight	

was	pipetted	onto	plates	with	minimal	SD	base	media	with	an	amino	acid	mix	

of	either	–L-W,	-L-W-H,	-L-W-H	+3AT	(20,	40,	60,	80	and	100mM).	The	plates	

grown	for	3	days	at	28OC.	Yeast	that	grew	are	highlighted	in	dark	grey.	TFs	

that	grew	on	each	selection	are	highlighted	in	light	grey.	
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Figure	4.4	shows	the	growth	of	the	mated	yeast	from	the	selection	plates.	We	

(Ari	Sadanandom	and	myself)	also	chose	to	include	one	TF	that	did	not	bind	

as	strongly	(up	to	40mM)	but	was	part	of	the	bZIP	family.	We	chose	to	

continue	studying	this	based	on	the	original	microarray	experiment	findings	

that	members	of	the	bZIP	family	show	large	expression	changes	post	Septoria	

infection138.	Also,	of	the	34	TFs	that	bound	to	TaWRKY19	promoter	in	the	

initial	Y1H	assay	(figure	4.2	and	4.3),	three	were	bZIPs	so	we	wanted	to	study	

a	member	of	this	family.	Finally,	PlantPAN	promoter	analysis	software	

predicted	the	bZIP	TF	family	to	be	the	second	highest	binders	to	TaWRKY19	

promoter	(table	3.4).	So	we	wanted	to	follow	up	on	one	of	these	bZIP	TFs.	

AtbZIP1	was	chosen	out	of	the	four	based	on	published	papers	showing	it	has	

a	potential	link	to	nitrogen	regulation179.	This	is	important,	as	there	have	

been	observations	by	KWS	that	crops	treated	with	more	nitrogen	showed	

higher	levels	of	Septoria	infection.	AtbZIP70	does	bind	the	strongest	(up	to	

80mM	3AT),	however	this	TF	has	not	been	studied	as	much	at	the	time,	hence	

why	AtbZIP1	was	chosen,	which	binds	up	to	40mM	3AT	and	has	been	studied	

in	multiple	different	papers179-184.	Another	consideration	was	that	

PostTranslational	Modifications	(PMTs)	might	increase	the	binding	of	

AtbZIP1	to	TaWRKY19	promoters,	which	has	been	seen	in	other	bZIP	

TFs185,186.	My	laboratory	specialises	in	PMTs,	particularly	SUMOylation	which	

has	been	shown	to	change	the	binding	capacity	of	TFs	to	DNA	in	plants187,188.		
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Figure	4.4:	Y1H	of	strongest	TFs	binders	to	TaWRKY19	promoter.	TFs	that	

showed	binding	in	the	initial	screen	were	re-mated	with	TaWRKY19	

promoter	and	grown	minimal	SD	base	with	amino	mix	–L-W-H	and	

increasing	3AT	selection	(20mM,	40mM,	60mM,	80mM	and	100mM).	

Colonies	were	grown	at	28OC	for	3	days.	Pictures	of	the	34	targets	were	

taken,	included	in	the	figure	are	the	five	strongest	TF	binders	to	TaWRKY9	

promoter.	

	

As	a	secondary	look	the	binding	of	another	AtbZIP	from	the	library,	

AtbZIP53,	was	also	investigated.	They	are	both	S1	bZIP	family	members.	It	is	

closely	related	to	AtbZIP1	(both	DNA	and	protein	sequence),	showing	similar	

modes	of	regulation	that	are	not	shared	by	other	S1	bZIPs	and	also	regulates	

a	similar	set	of	pathways	and	genes189,190.		

There	is	published	evidence	showing	AtbZIP1	is	involved	in	salt	and	drought	

stress183,190	and	is	regulated	in	response	to	changes	in	nitrogen	and	light	

levels179,191-193.	Due	to	AtbZIP1	and	AtbZIP53s	shared	regulation	and	targets	I	

decided	to	look	back	at	the	original	library	screen	and	if	there	was	any	
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interaction.	AtbZIP53	is	represented	in	plate	12	well	E03,	as	can	be	seen	in	

figure	4.2	this	well	did	not	grow	upon	after	revival	from	the	glycerol	stocks.	

Therefore	primers	were	designed	to	clone	AtbZIP53’s	CDS,	amplifying	from	

the	start	to	stop	codon.		

I	used	PCR	to	amplify	the	CDS	using	the	method	as	described	in	2.4.2	(Q5	

proof	reading	DNA	polymerase	PCR),	with	the	following	conditions	for	the	

variable	steps;	55OC	annealing	temperature,	20	seconds	extension	time	and	

30	cycles.	I	used	cDNA	from	Col-0	wildtype	plants.	I	then	ran	the	PCR	on	a	1%	

agarose	gel	to	separate	the	DNA	bands	by	size	(figure	4.5).	AtbZIP53	CDS	is	

441bp	long;	a	DNA	band	around	this	size	can	be	seen	in	figure	4.5.	I	used	both	

a	1kb	ladder	(lane	1)	and	50bp	ladder	(lane	2)	due	to	the	small	size	expected,	

however	the	50bp	ladder	is	not	very	clear	so	I	relied	on	only	the	1kb	ladder	

for	size	estimation.	There	are	two	bands	(lanes	3	and	4)	for	AtbZIP53	due	to	

the	large	PCR	reaction	volume	not	being	able	to	fit	into	one	well,	so	it	was	

spread	across	two	wells.		

The	gel	extract	was	then	cloned	into	p-DOPO	as	previously	described	in	

chapter	3,	and	cloned	into	the	destination	vector	pDEST22	before	being	

transformed	into	the	yeast	strain	AH109A,	using	minimal	SD	media	with	

amino	acid	mix	–W	for	selection.	
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Figure	4.5:	Gel	of	cloning	PCR	for	AtbZIP53	CDS.	PCR	products	were	run	on	a	

1%	agarose	gel	in	1xTAE	buffer	for	size	separation	and	visualised	under	UV	

light	with	quantity	one	software.	A	1kb	and	50bp	hyperladder	were	used	for	

size	indication	(lane	1	and	2	respectively).	The	expected	size	for	AtbZIP53	

(lane	3	and	4)	was	441bp.	

	

The	AtbZIP53	TF	was	mated	with	the	TaWRKY19	promoter	yeast	to	test	for	

binding	and	binding	affinity.	The	mated	yeast	was	spread	onto	minimal	SD	

base	media	with	amino	acid	mix	–L-W	for	selection.	One	colony	was	selected	

to	grow	up	overnight	in	liquid	culture	before	pipetting	three	5μl	spots	onto	

the	selection	plates	(figure	4.6).	This	is	why	I	have	not	included	a	control	–L-

W	column	in	this	figure,	as	the	colonies	were	all	taken	from	a	mated	plate.	In	

future	experiments	I	would	have	included	the	controls.	I	also	repeated	the	

experiment	with	AtbZIP1	for	binding	strength	comparison.	AtbZIP53	binds	to	

TaWRKY19	promoter	much	stronger	than	AtbZIP1,	up	to	100mM	3AT	(figure	

4.6).	Again	AtbZIP1	binds	up	to	40mM	3AT.		
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Figure	4.6:	AtbZIP53	Y1H	with	TaWRKY19	promoter.	AtbZIP1	and	AtbZIP53	

TFs	mated	with	TaWRKY19	promoter	and	grown	on	increasing	minimal	SD	

base	with	amino	mix	–L-W-H	and	3AT	selection	(20mM,	40mM,	60mM,	

80mM	and	100mM).	Colonies	were	grown	at	28OC	for	3	days	before	pictures	

were	taken.	

4.4	Identification	of	wheat	homologues	of	targets	

The	TF	library	was	made	up	of	Arabidopsis	TFs,	therefore	the	next	step	was	

to	find	the	wheat	homologues	for	the	final	targets	identified.	To	do	this	the	

blast	tools	on	both	the	KWS	databases	and	the	publicly	available	database	on	

EnsemblPlants194	were	used.	An	alignment	of	the	closest	wheat	homologue	

for	each	of	the	six	targets	is	seen	in	figure	4.7.	The	alignments	were	made	

using	Clustal	Omega	software195,196.		Papers	identifying	bZIP175	and	HSF197	

families	in	wheat	have	been	published.	Therefore	I	adopted	their	

nomenclature	for	the	wheat	homologues	of	AtbZIP1,	AtbZIP53	and	

AtHSFB1/4.	Although	some	MYB-like	genes	have	been	identified	in	wheat	the	

homologue	of	AtPHL6	has	not	so	therefore	was	numbered	after	the	

Arabidopsis	homologue.	For	both	TCP	and	RING	C2H2	TF	families	I	could	not	

find	a	definitive	list	and	numbering,	so	again	it	was	numbered	after	the	

Arabidopsis	homologue	(table	4.1).	The	identity	score	and	expect	value	for	

each	of	the	homologues	can	be	seen	in	table	4.1.	Identity	scores	are	the	

percentage	of	amino	acids	in	each	position	that	are	the	same	in	both	

sequences.	Expected	values	calculate	the	likelihood	of	an	alignment	occurring	



	 81	

by	chance	elsewhere	in	a	genome	of	a	set	size,	the	smaller	the	number,	the	

more	homology.	

	
	
A.	
	

	
B.	
	

	
	
C.	
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D.	

	
E.	
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F.	

Figure	4.7:	Protein	alignments	of	Arabidopsis	Y1H	targets	with	wheat	

homologues.	Alignments	are	between	the	Arabidopsis	targets	and	their	

closest	wheat	homologues,	which	were	identified	through	database	searches.	

The	alignments	were	made	using	Clustal	Omega195,196.	A.	AtbZIP1	B.	AtbZIP53	

C.	AtHSFB1/4	D.	AtATL56	E.	AtTCP20	F.	AtPHL6.	Sequences	from	the	A	

genome	were	chosen	for	the	wheat	homologues.		

	
	
Arabidopsis	gene	 Wheat	homologue	 Identity	score	 Expect	

value	
AtbZIP1	 TabZIP2	 52%	 2e-17	
AtbZIP53	 TabZIP98	 45%	 1e-38	
AtHSFB1/4	 TaHSFB1	 43%	 1e-63	
AtATL56	 TaATL56	 32%	 6e-22	
AtTCP20	 TaTCP20	 51%	 3e-53	
AtPHL6	 TaPHL6	 52%	 1e-89	
	
Table	4.1:	Identity	score	and	expect	values	for	Y1H	targets	wheat	

homologues.	Identity	scores	and	expect	values	of	the	Arabidopsis	and	wheat	

homologues	were	determined	aligning	the	protein	sequences	using	NCBI	

blast	tool150.		
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4.5	TabZIP2	binds	to	TaWRKY19	promoter	

Once	the	wheat	homologues	had	been	identified	I	had	to	show	that	the	wheat	

homologues	also	bound	to	TaWRKY19	promoter.	The	targets	were	narrowed	

down	based	on	their	publications	in	Arabidopsis,	which	left	me	with	four	

targets	to	experiment	with,	TabZIP2,	TabZIP98,	TaTCP20	and	TaHSFB1.		

Primers	were	designed	for	the	four	genes	amplifying	the	CDS	of	each	gene,	

starting	from	the	ATG	start	codon	until	the	stop	codon.	After	multiple	

attempts,	with	differing	conditions	the	CDS	for	TabZIP2	was	cloned	(figure	

4.8)	using	cDNA	from	Septoria	infected	wheat	samples	(12dpi).	It	has	a	DNA	

sequence	length	of	453bp,	which	corresponds	to	the	size	of	the	band	in	the	

figure.		

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
Figure	4.8:	Gel	of	cloning	PCR	for	TabZIP2	CDS.	PCR	products	were	run	on	a	

1%	agarose	gel	in	1xTAE	buffer	for	size	separation	and	visualised	under	UV	

light	with	quantity	one	software.	A	1kb	hyperladder	was	used	for	size	

indication	(lane	1).	The	expected	size	for	TabZIP2	(lane	2)	was	453bp.	

	

Following	the	same	method	as	previously	mentioned	the	DNA	was	cloned	

into	pDEST22	to	be	tested	for	binding	to	TaWKRY19	promoter	through	a	Y1H	

experiment.	Firstly	the	two	yeast	strains	were	mated	and	then	screened	for	
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mating	progeny	by	growing	the	cultures	on	minimal	SD	base	media	

containing	amino	acid	mix	–L-W.	Colonies	from	these	plates	were	then	grown	

up	in	liquid	media	and	pipetted	onto	the	selection	plates.	As	can	be	seen	in	

figure	4.9	TabZIP	does	bind	to	TaWRKY19	promoter,	if	slightly	weakly,	up	to	

60mM	of	3AT.	This	binding	is	stronger	than	the	empty	vector	pDEST22	

binding	on	TaWRKY19	promoter.		

	

	
Figure	4.9:	Y1H	experiment	for	TabZIP2	TF	and	TaWRKY19	promoter.	

TabZIP2	TF	and	pDEST22	(negative	control)	were	mated	with	TaWRKY19	

promoter	and	grown	on	increasing	minimal	SD	base	with	amino	mix	–L-W-H	

and	3AT	selection	(20mM,	40mM,	60mM,	80mM	and	100mM).	Colonies	were	

grown	at	28OC	for	3	days	before	pictures	were	taken.	

4.6	TabZIP2	

The	original	aim	of	the	Y1H	experiment	was	to	find	TFs	that	potentially	had	a	

greater	influence	in	defence	against	Septoria.	Since	the	wheat	homologue	of	

AtbZIP1	also	bound	to	the	TaWRKY19	promoter,	we	were	hopeful	that	it	

would	have	a	role	in	defence.	

To	determine	a	possible	role,	the	structure	of	TabZIP2	was	investigated.	It	is	

a	small	protein	of	16.3kDa,	which	belongs	to	the	S1	family,	along	with	

AtbZIP1.	This	family	is	generally	small,	containing	just	the	bZIP	domain,	with	

an	extended	leucine	zipper	region.	The	bZIP	domain	is	highlighted	in	red	on	

the	protein	sequence	(figure	4.10).		
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A.	
MSSPSRRSSSPESNIDGGSGSGSAGDERKRKRMLSNRESARRSRARKQQRMEELIA
EASRLQAENKRVEAQIGAYTTELTKVDGENAVLRARHGELAGRLQALGGVLEIFQ
VAGAPVDIPEIPDPLLRPWQSPFAPQLATAGGMPDAFQF	
	
B.	

	
Figure	4.10:	Protein	sequence	of	TabZIP2.	A.	Protein	sequence	of	TabZIP2	

(150aa).	Highlighted	in	red	is	the	bZIP	domain.	B.	Cartoon	representation	

showing	the	position	of	the	bZIP	domains	relative	to	the	protein.	This	was	

generated	using	NCBI	protein	blast	tool150.	

	

As	with	TaWRKY19,	testing	the	expression	of	TabZIP2	over	a	time	course	of	

healthy	and	Septoria	infected	tissue	can	give	an	insight	into	a	potential	link	to	

defence.	The	same	three	independent	replicates	of	the	time	courses	were	

used	in	this	experiment.	qRT-PCR	primers	for	TabZIP2	were	designed	and	

tested	to	ensure	they	only	bound	to	TabZIP2	and	tested	for	the	appropriate	

efficiency	levels	in	qRT-PCR.	Once	a	suitable	primer	pair	was	designed,	I	ran	

the	qRT-PCR	using	duplicate	wells.	The	results	can	be	seen	in	figure	4.11.	

There	is	higher	variation	in	TabZIP2	expression	than	TaWRKY19	expression	

in	the	healthy	samples.	After	Septoria	infection	the	expression	increases	

above	the	expression	level	in	the	healthy	samples.	This	occurs	between	10-

14dpi,	with	the	highest	peak	being	at	14dpi.	Like	TaWRKY19	expression,	this	

change	coincides	with	the	switch	from	biotrophic	to	necrotrophic	growth	at	

12dpi.	At	the	highest	point	(10dpi)	the	expression	is	five	fold	higher	than	in	

the	healthy	samples	of	the	same	time	point.	Compared	to	TaWRKY19,	

TabZIP2’s	expression	increases	later	(10dpi)	post	infection,	and	decreases	

earlier	(16dpi).		
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Figure	4.11:	TabZIP2	expression	in	healthy	and	Septoria	infected	time	course.	

RNA	samples	were	collected	every	2	days	from	healthy	(light	grey)	and	

Septoria	infected	(dark	grey)	seedlings	of	4-weeks-old.	Leaves	from	three	

separate	plants	were	collected	per	sample.	qRT-PCR	was	performed	using	

TaCDC48	and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	

3	times.	Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	

Error	bars	represent	+/-	1	standard	error.	

4.7	TaBZIP2	silencing	using	VIGS	

Since	TabZIP2	also	showed	a	difference	in	expression	pattern	after	Septoria	

infection,	we	(Ari	Sadanandom	and	myself)	decided	to	further	investigate	its	

role.	To	do	this	two	silencing	fragments	were	designed	against	TabZIP2	gene.	

Unlike	TaWRKY19,	the	two	fragments	were	designed	to	bind	to	the	CDS	

region	of	the	gene.	The	fragments	are	205bp	and	214bp	long,	they	can	be	

seen	in	figure	4.12,	which	shows	the	CDS	sequence	with	the	two	silencing	

fragments	highlighted	in	blue.		
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atgtcgtcgccgtcgcgccggagctccagccccgagagcaacatcgacggcggcagcggcagcggctccgcc
ggtgacgagcgcaagcgcaagaggatgctgtccaacagggagtcggcgaggcggtcccgcgctcgcaagca
gcagcggatggaggagctcatcgccgaggccagccgcctccaggccgagaacaagcgcgtggaggcccaga
tcggcgcctacacgaccgagctgaccaaggtggacggcgagaacgccgtgctccgcgcgcgccacggcgag
ctcgccggccggctgcaggcgctcggcggcgtcctggagatcttccaggtggccggcgcgcccgtggacatcc
cggagatccctgacccgctgctccgcccatggcagtccccgttcgcgccccagctggccaccgccggcggcat
gcctgacgcgttccagttctga	
	
Figure	4.12:	DNA	sequence	of	CDS	of	TabZIP2.	TabZIP2	CDS	(453bp)	with	

ATG	start	codon	and	TGA	stop	codon	highlighted	in	bold.	Silencing	fragments	

TabZIPA	and	TabZIP2B	are	highlighted	in	blue	

	

Unfortunately,	at	the	time	of	performing	this	experiment,	I	did	not	have	

access	to	KWS	database	to	test	the	silencing	fragments	for	efficiency.	

However,	due	to	their	size	(over	double	that	of	TaWRKY19A	and	

TaWRKY19B	fragments),	there	was	less	of	a	concern	about	testing	their	

silencing	efficiency	compared	to	TaWRKY19	silencing	fragments.		

A	blast	search151	was	performed	for	each	silencing	fragment	against	the	most	

up-to-date	wheat	genome	assembly	(figure	4.13).	For	TabZIP2A,	there	is	

some	potential	off	target	silencing,	as	there	is	some	homology	to	TabZIP98.	

TabZIP2B	is	more	specific;	potentially	showing	some	minor	off	target	

silencing	against	two	regions	of	the	genome.		
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A.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

TabZIP2	chromosome	1DS 

TabZIP2	chromosome	1AS 

TabZIP2	chromosome	1BS 

TabZIP98	chromosome	5DL	(off	target) 

Predicted	protein	phosphatase	2C	(off	target) 
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B.	

	
	
	
	
Figure	4.13:	Blast	searches	of	TabZIP2	silencing	fragments.	The	Earlham	

Institute’s151	blast	function	was	used	to	test	off	target	silencing	of	A.	

TabZIP2A	and	B.	TabZIP2B	silencing	fragments.	Parameters	were	set	to	

identify	homology	of	sequences	over	16bps	long,	against	the	cv.	Chinese	

Spring	wheat	genome	sequence.	This	is	based	on	the	size	of	siRNA	produced	

by	DICER	cleavage104,105.	

	

	

TabZIP2	chromosome	1AS	

TabZIP2	chromosome	1DS	

TabZIP2	chromosome	1BS	

Gene	of	unknown	function	unscaffolded	(off	target)	

Gene	of	unknown	function	chromosome	2DS	(off	target)	
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Primers	were	designed	to	clone	each	of	the	silencing	fragments.	A	PCR	

reaction	was	performed	(55OC	annealing	temperature,	30	cycles	and	10	

seconds	extension	time),	using	Septoria	infected	cDNA(12dpi)	and	Q5	DNA	

polymerase	to	amplify	the	silencing	fragments.	The	PCR	products	were	the	

run	a	1%	agarose	gel	for	separation,	this	was	then	visualised	using	UV	light.	

This	can	be	seen	in	figure	4.14.	As	described	in	chapter	3.4,	these	fragments	

were	then	cloned	into	BSMVγ	RNA	containing	vector	and	eventually	

transformed	into	A.	tumefaciens,	ready	for	infiltration	into	N.	benthamiana	

and	silencing.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	4.14:	Gel	of	cloning	PCR	for	TabZIP2A	and	TabZIP2B	silencing	

fragments.	PCR	products	were	run	on	a	1%	agarose	gel	in	1xTAE	buffer	for	

size	separation	and	visualised	using	UV	light	with	quantity	one	software.	A	

1kb	hyperladder	was	used	for	size	indication	(lane	1).	The	expected	size	for	

TabZIP2A	(lane	2)	and	TabZIP2B	(lane	3)	was	205bp	and	214bp	respectively.	

	

Two-week-old	wheat	seedlings	were	then	silenced	with	both	of	these	

fragments,	BSMV:PDS	and	BSMV:00.	Two	weeks	after	silencing	treatment,	

and	after	the	development	of	PDS	photobleaching	phenotype	in	BSMV:PDS	

treated	plants,	leaf	tissue	samples	were	collected.	The	RNA	was	extracted	and	

cDNA	synthesised	ready	for	qRT-PCR	to	check	the	levels	of	TabZIP	

expression	and	therefore	silencing.	Three	independent	repeats	were	

performed,	pooling	three	leaf	samples	each	time,	with	two	well	replicates	in	

each	qRT-PCR.	Figure	4.15	shows	the	results	of	this	experiment.	Silencing	
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levels	were	similar	for	both	silencing	fragments.	Wheat	silenced	with	

BSMV:TabZIP2A	had	40%	less	expression	than	BSMV:00	(on	average)	and	

wheat	silenced	with	BSMV:TabZIP2B	had	41%	less	expression	than	BSMV:00	

(on	average).	Unfortunately	the	differences	are	not	significant,	with	p	values	

of	0.15	and	0.16	for	BSMV:TabZIP2A	and	TabZIP2B	respectively.		

	

	
Figure	4.15:	qRT-PCR	to	show	silencing	of	TabZIP2	in	wheat.	Fold	change	of	

TabZIP2	in	wheat	silenced	with	BSMV:TabZIP2A	and	BSMV:TabZIP2B	

compared	to	BSMV:00	control.	RNA	was	extracted	2	weeks	post	silencing	

treatment.	Leaves	from	three	separate	plants	were	collected	per	sample.	

qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	housekeeping	genes.	

This	experiment	was	repeated	3	times.	Two	replicate	wells	for	each	sample	

were	performed	in	the	qRT-PCR.	Error	bars	represent	+/-	1	standard	error.	

	

4.8	TabZIP2	in	wheat	defence	against	Septoria	

After	confirming	TabZIP2	could	be	silenced	using	the	two	silencing	

fragments,	the	silenced	wheat	(4-weeks-old)	was	used	to	test	whether	

Septoria’s	infection	changes	when	compared	to	the	control	silenced	wheat.		
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Figure	4.16	shows	the	infection	symptoms	that	developed	from	11dpi	to	

21dpi.	Pictures	were	taken	everyday	between	2-3pm	with	the	pictures	in	

figure	4.16	showing	an	average	symptom	development	across	the	3	

experiments.	Symptoms	for	wheat	silenced	with	TabZIP2	have	later	onset	of	

Septoria	symptoms,	beginning	at	13dpi,	whereas	symptoms	on	BSMV:00	

treated	wheat	begin	at	12dpi.	Symptoms	develop	at	the	same	rate	for	both	

the	control	and	TabZIP2	silenced	wheat,	taking	9	days	from	onset	of	infection	

symptoms	until	complete	leaf	death	(20dpi	for	BSMV:00	and	21dpi	for	

BSMV:TabZIP2A	and	BSMV:TabZIP2B).		
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Figure	4.16:	Septoria	infection	symptoms	on	TabZIP2	silenced	wheat.	Four-

week-old-seedlings,	which	had	undergone	silencing	treatment	(BSMV:00,	

BSMV:TabZIP2A	and	BSMV:bZIP2B)	were	stuck	down	onto	black	card	and	

infected	with	Septoria	(abaxial	and	adaxial).	The	seedlings	were	grown	under	

high	humidity	conditions	to	encourage	Septoria	infection.	The	infection	was	

then	followed	daily,	with	photos	taken	between	2-3pm.	In	this	figure	the	

initial	stages	of	the	infection	symptoms	are	shown,	from	11dpi	until	21	dpi.	

Photos	are	representative	of	the	symptoms	seen	in	3	independent	

experiments.	
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After	the	infection	cycle	was	complete	the	pycnidia	were	counted	on	each	leaf	

over	a	2cm	leaf	length.	The	results	of	this	are	shown	in	figure	4.17.	

BSMV:TabZIP2B	silenced	wheat	have,	on	average,	fewer	pycnidia	than	

BSMV:00,	however	this	number	is	not	statistically	different.	BSMV:TabZIP2A	

silenced	wheat	has,	on	average,	slightly	more	pycnidia,	but	again	this	number	

is	not	statistically	significant.	Therefore	it	should	be	said	that	there	is	no	

difference	in	the	amount	of	pycnidia	in	wheat	silenced	with	TabZIP2.		

	

	
Figure	4.17:	Pycnidia	count	from	Septoria	infected,	TabZIP2	silenced	wheat	

leaves.	Pycnidia	were	counted	over	a	2cm	leaf	length	per	leaf.	Error	bars	

correspond	to	+/-	1	standard	error.	The	experiment	was	repeated	

independently	3	times	with	5	leaves	per	experiment	counted.	

	

After	counting	the	pycnidia,	the	spores	were	also	counted.	The	results	of	this	

can	be	seen	in	figure	4.18.	Although	the	pycnidia	count	showed	little	

difference	between	the	control	and	TabZIP2	silenced	wheat,	this	is	not	the	

same	for	the	spore	count.	BSMV:TabZIP2A	and	BSMV:TabZIP2B	silenced	

wheat	both	have	a	reduction	in	Septoria	sporulation	with	23%	and	33%	less	

spores	respectively	when	compared	to	BSMV:00.	Both	of	these	differences	

are	statistically	significant	with	over	99%	confidence	(1.12E-03	and	1.75E-05	

for	BSMV:TabZIP2A	and	BSMV:TabZIP2B	respectively).		
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Figure	4.18:	Septoria	spore	counts	from	TabZIP2	silenced	and	infected	

leaves.	Five	leaves	were	submerged	in	10ml	of	water	and	vortexed	to	wash	

the	spores	from	the	pycnidia.	Spores	were	then	counted	using	a	

haemocytometer	under	a	light	microscope	(x10	magnification).	Four	spores	

counts	across	independent	4x4	squares	on	the	haemocytometer	were	

performed	per	spore	suspension.	Error	bars	represent	+/-	1	standard	error.	

This	experiment	was	repeated	independently	3	times.	Double	asterisks	are	

used	to	denote	a	results	difference	from	the	control	of	p<0.01	respectively.	

	

Combining	the	effects	silencing	TabZIP2	has	upon	the	infection	symptom	

progression	and	spore	count,	it	can	be	said	that	TabZIP2	does	have	a	role	in	

wheat	defence	against	Septoria.	Potentially	by	reducing	the	capacity	of	the	

pycnidia	to	produce	spores.		

4.9	Investigating	TabZIP2s	regulation	of	TaWRKY19		

According	to	the	Y1H	performed	(figure	4.9),	TabZIP2	binds	to	TaWRKY19	

promoter,	potentially	regulating	its	expression.	It	was	decided	to	investigate	

this	further,	with	the	aim	of	finding	out	whether	TabZIP2	was	a	positive	or	

negative	regulator	of	TaWRKY19	expression.		

Initial	investigations	were	based	on	looking	at	different	varieties	of	wheat	

and	seeing	if	there	was	any	correlation	between	resistance	to	Septoria,	
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TaWRKY19	expression	and	TabZIP2	expression.	Seven	different	winter	

wheat	varieties	were	chosen.	Septoria	resistance	is	defined	in	a	1-9	scale,	

with	one	having	no	resistance	and	nine	high	resistance.	In	the	current	

recommended	list	the	highest	resistance	level	is	7.4	(LG	Sundance),	with	no	

other	varieties	over	7	on	the	list13.	The	seven	varieties	I	have	chosen	(out	of	

those	available	to	me	at	the	time)	cover	the	lower	end	of	the	scale	(Santiago,	

4)	and	increase	towards	the	higher	levels	of	resistance	(Gator	and	Lili,	6)	as	

shown	in	figure	4.19.	More	specific	numbers	were	hard	to	find	for	each	of	the	

varieties	therefore	they	were	each	rounded	to	the	nearest	whole	number.			

	
Figure	4.19:	Septoria	disease	score	for	7	winter	wheat	varieties.	Scores	were	

obtained	from	ADHB	winter	wheat	recommended	list13.	

	

Three	seedlings	of	each	variety	were	grown	until	they	were	4-week-old,	at	

which	point	leaf	samples	were	collected	from	each	variety	(three	leaves	from	

three	different	seedlings	per	sample)	for	RNA	extraction	and	cDNA	synthesis.	

This	was	repeated,	independently	3	times.	Once	these	samples	had	been	

processed	qRT-PCR	was	performed	to	measure	the	expression	of	TaWRKY19	

and	TabZIP2	in	the	different	varieties.	Each	well	was	repeated	twice	and	the	

housekeeping	genes	TaCDC48	and	TaEF1a	were	used.		
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The	results	comparing	TaWRKY19	expression	are	shown	in	figure	4.20.	

Across	5	of	the	varieties	there	appears	to	be	a	correlation	between	

expression	and	resistance,	with	the	more	resistant	wheat	having,	on	average,	

higher	levels	of	TaWRKY19	expression.	However	Beluga	and	Lili	break	this	

trend,	with	Beluga	having	the	same	expression	level	as	Gator,	which	is	1	

point	higher	in	the	resistance	scale.	Lili	has	the	lowest	expression	of	

TaWRKY19	but	has	one	of	the	highest	resistant	scores.		There	is	little	

variation	in	TaWRKY19	expression	across	the	varieties.	Between	the	highest	

and	the	lowest	there	is	only	is	a	doubling	in	expression,	with	most	of	the	

varieties	having	a	similar	expression	level.		

	
Figure	4.20:	qRT-PCR	of	TaWRKY19	expression	in	7	different	winter	wheat	

varieties.	RNA	was	extracted	from	4-week-old	seedlings.	Leaves	from	three	

separate	plants	were	collected	per	sample.	qRT-PCR	was	performed	using	

TaCDC48	and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	

3	times.	Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	

Error	bars	represent	+/-	1	standard	error.	
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TabZIP2	expression	(figure	4.21)	is	much	more	varied	across	the	varieties;	

with	3	fold	difference	between	the	highest	and	the	lowest	(Grafton	and	

Santiago	respectively).	There	appears	to	be	no	correlation	between	the	

resistance	scores	for	the	varieties	and	TabZIP2s	expression	levels.	Santiago	

does	have	the	lowest	expression	level	and	the	lowest	resistance	score,	but	

after	that	there	is	little	correlation	with	varieties	at	score	5	all	having	higher	

expression	than	the	two	varieties	with	a	score	of	6.		

	

Figure	4.21:	qRT-PCR	of	TabZIP2	expression	in	7	different	winter	wheat	

varieties.	RNA	was	extracted	from	4-week-old	seedlings.	Leaves	from	three	

separate	plants	were	collected	per	sample.	qRT-PCR	was	performed	using	

TaCDC48	and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	

3	times.	Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	

Error	bars	represent	+/-	1	standard	error.	

	

As	well	as	looking	into	the	correlation	between	the	varieties	resistance	score	
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investigate	any	potential	correlation	between	TaWRKY19	and	TabZIP2.	

Unfortunately	there	appears	to	be	no	correlation	between	the	two	TFs.	
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expression	levels	in	the	middle	of	the	range	compared	to	the	other	varieties	

and	vice	versa	with	the	varieties	expressing	TaWRKY19	the	highest	having	a	

medium	expression	level	of	TabZIP2.		

To	further	investigate	whether	there	is	a	correlation,	wheat	with	higher	and	

lower	scores	should	also	be	investigated	and	tested	at	older	growth	stages.	

The	scores	are	determined	in	the	field	on	adult	plants	so,	in	the	future	the	use	

of	older	plants	would	have	allowed	a	more	field	relevant	scenario,	however	

my	time	scale	and	growth	space	did	not	allow	this	to	be	carried	out.	

Alternatively	independent	verification	of	the	Septoria	resistance	scores	

through	the	seedling	infection	assays	previously	performed	could	also	be	

used.		

	

Next	the	TabZIP2	silenced	wheat	samples	were	used	to	test	TaWRKY19	

expression.	This	can	be	seen	in	figure	4.22.	Wheat	silenced	with	

BSMV:TabZIP2A	has,	on	average	higher	levels,	of	TaWRKY19	(1.45	times	

higher)	but	is	not	statistically	significant	(p	value	=	0.11)	with	the	error	bars	

almost	crossing	with	the	BSMV:00	control.	BSMV:TabZIP2B	treated	wheat	

has	a	significantly	higher	expression	of	TaWRKY19	(p	value	=	0.022),	with	a	

fold	change	of	1.96	(on	average)	compared	to	the	BSMV:00	control.	As	seen	

in	figure	4.16,	BSMV:TabZIPA	and	BSMV:TabZIPB	treated	wheat	samples	

have	very	similar	levels	of	TabZIP2	silencing	(40%	and	41%	respectively),	so	

I	would	have	expected	similar	levels	of	TaWRKY19	in	both	of	these	samples.	

This	experiment	indicates	that	TabZIP2	is	a	negative	regulator	of	TaWRKY19	

expression,	either	by	direct	binding	(as	the	Y1H	results	show)	or	indirectly	

through	an	unknown	TF.		
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Figure	4.22:	TaWRKY19	expression	in	TabZIP2	silenced	wheat.	qRT-PCR	to	

measure	TaWRKY19	expression	in	TabZIP2A	and	TabZIP2B	silenced	wheat	

compared	to	BSMV:00	control.	RNA	was	extracted	two	weeks	post	silencing	

treatment	(4-week-old	seedlings).	Leaves	from	three	separate	plants	were	

collected	per	sample.	qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	

housekeeping	genes.	This	experiment	was	repeated	3	times.	Two	replicate	

wells	for	each	sample	were	performed	in	the	qRT-PCR.	Error	bars	represent	

+/-	1	standard	error.	Asterisks	are	used	to	denote	a	results	difference	from	

the	control	of	p<0.05.	

	

As	well	as	looking	into	the	expression	of	TaWRKY19,	the	potential	for	

TabZIP2	to	regulate	other	TaWRKYs	genes	was	also	investigated.	The	

expression	levels	of	TaWRKY2,	TaWRKY9,	TaWRKY41	and	TaWRKY63	were	

measured.	However	results	for	TaWRKY2	and	TaWRKY9	were	not	conclusive	

so	they	are	not	included	in	this	thesis.	TaWRKY41	and	TaWRKY63	are	WRKY	

proteins	that	also	have	NBS-LRR	domains	before	the	WRKY	domain.	These	

proteins	are	important	in	the	detection	of	pathogen	effectors	hence	why	I	

chose	to	study	them.	So	far	they	are	the	only	two	NBS-LRR-WRKY	proteins	

identified	in	wheat.	qRT-PCR	primers	were	designed	for	both	of	these	genes	
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and	tested	for	their	ability	to	only	amplify	TaWRKY41	and	TaWRKY63	and	to	

ensure	they	were	adequately	efficient.	These	were	then	used	to	measure	the	

expression	levels	of	TaWRKY41	(figure	4.23)	and	TaWRKY63	(figure	4.24)	in	

the	TabZIP2	silenced	wheat	lines	(3	repeats).	

On	average	TaWRKY41	has	slightly	reduced	expression	in	wheat	silenced	

with	TabZIP2,	but	it	is	not	significantly	different	to	the	expression	levels	in	

BSMV:00	treated	wheat.	It	appears	that,	with	this	level	of	silencing,	there	is	

not	a	significant	difference	in	TaWRKY41	expression	when	TabZIP2	is	

silenced	(p	values	=	0.82	and	0.59	for	BSMV:TabZIP2A	and	TabZIP2B	

respectively).			

	

Figure	4.23:	TaWRKY41	expression	in	TabZIP2	silenced	wheat.	qRT-PCR	to	

measure	TaWRKY41	expression	in	TabZIP2A	and	TabZIP2B	silenced	wheat	

compared	to	BSMV:00	control.	RNA	was	extracted	two	weeks	post	silencing	

treatment	(4-week-old	seedlings).	Leaves	from	three	separate	plants	were	

collected	per	sample.	qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	

housekeeping	genes.	This	experiment	was	repeated	three	times.	Two	

replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	Error	bars	

represent	+/-	1	standard	error.	
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TaWRKY63,	however,	shows	a	significant	increase	in	expression	in	both	the	

wheat	samples	treated	with	BSMV:TabZIP2A	and	BSMV:TabZIP2B	(figure	

4.24)	(p	values	=	0.037	and	0.039	respectively).	There	is	an	increase,	on	

average,	of	2	and	2.6	times	in	BSMV:TabZIP2A	and	BSMV:TabZIP2B	

respectively.		

Figure	4.24:	TaWRKY63	expression	in	TabZIP2	silenced	wheat.	qRT-PCR	to	

measure	TaWRKY63	expression	in	TabZIP2A	and	TabZIP2B	silenced	wheat	

compared	to	BSMV:00	control.	RNA	was	extracted	two	weeks	post	silencing	

treatment	(4-week-old	seedlings).	Leaves	from	three	separate	plants	were	

collected	per	sample.	qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	

housekeeping	genes.	This	experiment	was	repeated	3	times.	Two	replicate	

wells	for	each	sample	were	performed	in	the	qRT-PCR.	Error	bars	represent	

+/-	1	standard	error.	Asterisks	are	used	to	denote	a	results	difference	from	

the	control	of	p<0.05.	

	

TabZIP2	appears	to	act	a	negative	regulator	of	both	TaWRKY19	and	

TaWRKY63,	although	it	does	not	regulate	all	TaWRKY	genes.	

WRKY	genes	are	known	to	self	regulate	and	regulate	other	WRKYs.	With	this	
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silenced	wheat	samples	were	used	in	qRT-PCR	to	measure	the	expression	

TabZIP2.	This	was	to	see	if	TaWRKY19	regulated	TabZIP2,	and,	since	

previous	data	has	shown	that	TabZIP2	regulates	TaWRKY19,	therefore	itself	

(indirectly).	Three	repeats	of	the	silenced	wheat	were	used,	repeating	each	

sample	twice	in	the	qRT-PCR.	The	results	of	this	can	be	seen	in	figure	4.25.	

There	is	a	slight	increase	in	expression	of	TabZIP2	in	BSMV:TaWRKY19A.	

However	it	is	not	significantly	different	(p	value	=	0.69)	and	the	error	bars	do	

cross	over	with	the	BSMV:00	control	so	there	is	no	difference	in	the	

expression.	TabZIP2	expression	in	BSMV:TaWRKY19B	silenced	wheat	is	no	

different	to	that	in	the	BSMV:00	treated	wheat	control	(p	value	=	0.79).	This	

shows	that	although	TabZIP2	regulates	TaWRKY19,	TaWRKY19	does	not	

regulate	TabZIP2.		
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Figure	4.25:	TabZIP2	expression	in	TaWRKY19	silenced	wheat.	qRT-PCR	to	

measure	TabZIP2	expression	in	TabZIP2A	and	TabZIP2B	silenced	wheat	

compared	to	BSMV:00	control.	RNA	was	extracted	two	weeks	post	silencing	

treatment	(4-week-old	seedlings).	Leaves	from	three	separate	plants	were	

collected	per	sample.	qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	

housekeeping	genes.	This	experiment	was	repeated	3	times.	Two	replicate	

wells	for	each	sample	were	performed	in	the	qRT-PCR.	Error	bars	represent	

+/-	1	standard	error.	

4.10	Investigating	other	TFs	that	potentially	regulate	TaWRKY19	

The	main	focus	was	on	TabZIP2	due	to	early	results	indicating	that	it	was	

involved	in	wheat	defence	and	the	speed	of	cloning.	This	meant	the	other	

TaWRKY19	targets	from	the	Y1H	experiments	were	not	investigated.		

Ideally	it	would	have	been	informative	to	have	silenced	these	other	genes	in	

wheat	to	test	whether	they	were	positive	or	negative	regulators	of	

TaWRKY19.	I	would	also	have	liked	to	investigate	if	they	had	a	role	in	

defence	against	Septoria.	However	due	to	time	constraints	and	cloning	

problems	I	was	not	able	to	perform	these	experiments.		
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Instead,	as	a	preliminary	investigation	into	the	network	of	regulation	of	these	

TFs,	qRT-PCR	was	used	to	elucidate	whether	TaWRKY19	regulates	the	

targets	therefore	forming	a	potential	feedback	loop	of	regulation	within	the	

defence	pathway.	As	before,	primers	were	designed	for	each	of	the	targets	

and	tested	to	ensure	they	only	amplified	the	gene	of	interest	and	tested	their	

efficiency.	Out	of	the	five	other	targets,	only	two	genes	produced	appropriate	

primers,	TaTCP20	and	TaHSFB1.	Three	repeats	of	TaWRKY19	silenced	wheat	

samples	were	used	with	two	well	replicates	in	the	qRT-PCR	plate	per	sample.		

TaTCP20	expression	does	not	show	any	significant	difference	in	either	of	the	

TaWRKY19	silenced	wheat	lines	when	compared	to	BSMV:00	(figure	4.26).	

There	is	a	slight	reduction	in	the	average	expression	in	TaWRKY19A	silenced	

wheat,	however	it	is	not	significant	(p	values	of	0.28	and	0.98	for	

BSMV:TaWRKY19A	and	BSMV:TaWRKY19B	respectively).		
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Figure	4.26:	TaTCP20	expression	in	TaWRKY19	silenced	wheat.	qRT-PCR	to	

measure	TaTCP20	expression	in	TaWRKY19A	and	TaWRKY19B	silenced	

wheat	compared	to	BSMV:00	control.	RNA	was	extracted	two	weeks	post	

silencing	treatment	(4-week-old	seedlings).	Leaves	from	three	separate	

plants	were	collected	per	sample.	qRT-PCR	was	performed	using	TaCDC48	

and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	3	times.	

Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	Error	

bars	represent	+/-	1	standard	error	across	the	2	biological	replicates.	

	

TaHSFB1,	however,	does	show	a	difference	in	expression	in	TaWRKY19	

silenced	wheat	lines	(figure	4.27).	In	both	TaWRKY19	silenced	lines	TaHSFB1	

is,	on	average,	more	highly	expressed	than	in	the	control	line,	however	

neither	are	significantly	different	compared	to	the	control.	In	

BSMV:TaWRKY19A	silenced	wheat,	TaHSFB1	expression	is	upregulated	(1.8	

times	on	average,	p	value	=	0.34).	The	expression	of	TaHSFB1	in	

BSMV:TaWRKY19B	is	not	significantly	upregulated	(p	value	=	0.12),	but	has	

an	average	increase	of	4.7	times	over	BSMV:00.	This	may	reflect	the	levels	of	

silencing	across	the	two	different	samples	(figure	3.9),	with	

BSMV:TaWRKY19A	have	38%	reduction	whereas	BSMV:TaWRKY19B	has	a	

45%	reduction.	Ideally	a	full	knockout	transgenic	line	would	be	used	to	
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confirm	all	these	results,	but	as	previously	mentioned	these	are	difficult	to	

generate.	

	

Figure	4.27:	TaHSFB1	expression	in	TaWRKY19	silenced	wheat.	qRT-PCR	to	

measure	TaHSFB1	expression	in	TaWRKY19A	and	TaWRKY19B	silenced	

wheat	compared	to	BSMV:00	control.	RNA	was	extracted	two	weeks	post	

silencing	treatment	(4-week-old	seedlings).	Leaves	from	three	separate	

plants	were	collected	per	sample.	qRT-PCR	was	performed	using	TaCDC48	

and	TaEF1a	as	housekeeping	genes.	This	experiment	was	repeated	3	times.	

Two	replicate	wells	for	each	sample	were	performed	in	the	qRT-PCR.	Error	

bars	represent	+/-	1	standard	error	across	the	2	biological	replicates.	

	

4.11	Conclusions	

The	aim	of	this	chapter	was	to	begin	to	elucidate	the	pathway	upstream	of	

TaWRKY19.	To	do	this	I	used	an	Arabidopsis	TF	Y1H	library133	(approx.	

1,200	TFs)	to	identify	TFs	that	bound	to	TaWRKY19	promoter.	The	initial	

experiment	showed	34	potential	binding	targets.	After	further	experiments	

on	higher	levels	of	3AT	selection	this	was	reduced	to	six	TFs	from	five	

different	families	(HSF,	TCP,	bZIP,	RING/U-box	and	Myb-like).	Interestingly	
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two	of	these	genes	have	a	role	in	nitrogen	(regulation	and	foraging	for	

AtbZIP1179	and	AtTCP20	respectively).	AtbZIP1	knockouts	unusually	show	an	

inversion	of	gene	expression	in	light	and	nitrogen	conditions	compared	to	

WT.	This	indicates	a	genome	wide	regulation	of	genes	involved	in	light	and	

nitrogen	by	AtbZIP1179.	Knockout	mutants	of	AtTCP20	grow	normal	roots	on	

none	stressed	media.	However	when	placed	on	split	media	(half	high	nitrate,	

half	low	with	the	lateral	root	split	over	both	media)	the	mutants	showed	no	

preference	for	high	nitrate	media,	unlike	WT	plants	that	had	preferential	

lateral	root	growth	on	high	nitrate	media.	This	indicates	AtTCP20’s	

involvement	in	nitrate	foraging198.	Nitrogen	is	regularly	applied	to	crops	to	

improve	their	growth	and	yield,	however	there	is	anecdotal	evidence	that	the	

more	nitrogen	available,	the	more	disease	present	upon	the	crop.	Therefore,	

if	a	link	between	nitrogen,	TabZIP2	and	TaWRKY19	could	be	identified	it	may	

be	useful	for	future	breeding.	This	was	one	of	the	reasons	TabZIP2	was	

focussed	on	for	the	rest	of	the	work.	TabZIP2	was	also	the	first	of	the	wheat	

homologues	I	managed	to	successfully	clone	allowing	me	to	test	TabZIP2s	

ability	to	bind	to	TaWRKY19	promoter.	Both	the	Arabidopsis	and	wheat	

homologues	bound	to	TaWRKY19	up	to	40/60mM	of	3AT	selection	pressure.	

They	are	not	the	strongest	promoter	interactors;	however	potential	links	to	

growth	and	PMT	regulation	meant	TabZIP2	was	focussed	on.		

After	showing	TabZIP2	could	bind	to	TaWRKY19’s	promoter,	we	(Ari	

Sadanandom	and	myself)	decided	to	investigate	whether	TabZIP2	had	a	

stronger	effect	on	wheat	defence	against	Septoria.	This	was	the	original	idea	

behind	the	Y1H	experiment,	looking	to	find	a	TF	that	had	a	larger	effect	on	

defence	by	going	further	upstream	in	the	defence	pathway	towards	pathogen	

perception.	After	successfully	managing	to	silence	TabZIP2,	the	silenced	

wheat	was	infected	with	Septoria.	This	experiment	showed	the	opposite	

phenotype	to	TaWRKY19	silencing,	with	a	delay	in	the	onset	of	visible	

symptoms	and	a	reduction	in	Septoria	sporulation.	There	appeared	to	be	no	

difference	in	the	amount	of	pycnidia	the	Septoria	produced.	This	could	mean	

that	whilst	the	Septoria	was	able	to	produce	enough	pycnidia	they	were	not	

able	to	produce	spores	as	efficiently	when	TabZIP2	is	silenced,	potentially	

using	TabZIP2	in	this	process	somehow.	Further	investigation	with	full	
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knockout	plants	should	further	elucidate	the	mechanism,	by	potentially	

allowing	a	subtler	phenotype	to	be	noticed.			

TaWRKY19	and	TabZIP2	have	opposing	roles	in	defence	(positive	and	

negative	regulator	respectively).	TabZIP2	also	binds	to	TaWRKY19’s	

promoter	region.	Therefore	the	next	step	was	to	determine	if	TabZIP2	is	a	

negative	or	positive	regulator.	To	do	this	I	used	the	TabZIP2	silenced	wheat	

samples	and	measured	expression	of	TaWRKY19.	Based	on	this	experiment	I	

can	postulate	that	TabZIP	negatively	regulates	TaWRKY19	expression,	either	

directly	or	indirectly.	Further	experiments	including	Chromatin	

Immunopreciptation	sequencing	(ChIP-seq)	assay	and	DNA	electrophoretic	

mobility	shift	(EMSA)	assay	would	enhance	the	evidence	from	the	Y1H	

experiment	of	TabZIP2s	ability	to	bind	TaWRKY19s	promoter.			

To	investigate	other	potential	targets	of	TabZIP2,	I	also	measured	the	

expression	levels	of	other	TaWRKYs	–	TaWRKY41	and	TaWRKY63.	I	had	

originally	planned	on	including	measurements	for	TaWRKY2	and	TaWRKY9	

expression,	however	the	results	were	inconclusive,	with	further	

experimentation	needed.	TaWRKY41	and	TaWRKY63	are	potential	effector	

targets	and	(based	on	the	guard	hypothesis)	have	the	ability	to	these	

perceive	effectors	and	initiate	a	defence	response,	hence	why	I	chose	to	study	

them.	TaWRKY41	had	no	significant	expression	change	in	TabZIP2	silenced	

wheat.	TaWRKY63,	however,	does	change	in	expression	when	compared	to	

the	control,	with	higher	expression	when	TabZIP2	is	silenced.	These	genes	

offer	more	potential	breeding	target,	consequently	further	experiments	

focussing	on	these	genes	would	be	highly	interesting.		

The	final	experiments	in	this	chapter	focus	back	on	the	other	targets	

identified	through	the	Y1H	experiments.	The	aim	was	to	see	if	there	was	a	

feedback	loop	in	the	TFs	that	bound	to	TaWRKY19,	therefore	beginning	to	

identify	a	network	of	wheat	defence.	Unfortunately	I	only	managed	to	design	

suitable	primers	for	two	of	the	five	other	targets,	TaTCP20	and	TaHSFB1.	In	

TaWRKY19	silenced	wheat	TaTCP20	showed	no	difference	in	expression,	so	

no	feedback	loop.	However	TaHSFB1	did	appear	to	be	regulated	by	

TaWRKY19.	With	TaWRKY19	silenced	wheat	having	higher	levels	of	

TaHSFB1	expression.	Further	experiments	focussing	on	TaHSB1	and	
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TaWRWKY63	would	be	highly	interesting	and	potentially	offer	more	wheat	

defence	breeding	targets.		
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5.	TaWRKY9	is	a	susceptibly	factor	against	Septoria	

5.1	Introduction	

TaWRKY9	was	chosen	as	target	to	investigate	based	on	its	homology	towards	

AtWRKY11	(figure	5.1).	Aligning	the	proteins	using	NCBI	blast150	shows	they	

have	high	homology	with	an	expected	value	of	5e-93	and	an	identity	score	of	

49%.		In	knockout	AtWRKY11	plants	there	is	enhanced	resistance	against	the	

bacterial	pathogen	Pseudomonas	syringae	pv	tomato	(Pst).	AtWRKY11	is	

upregulated	early	in	infection	(0-4	hours	post	infection)199.	

AtWRKY11	expression	response	to	chitin	(PAMP	from	fungi)	has	been	

studied.	This	study	is	more	relevant	to	my	research	being	a	fungal,	rather	

than	bacterial,	pathogen	response.	Its	expression	was	upregulated	after	

treatment	with	chitin	(30	minutes	post	infiltration).	Interesting	different	

splice	variants	of	AtWRKY11	had	differences	in	expression	during	early	

treatment,	with	the	authors	suggesting	that	the	differential	splicing	is	due	to	

AtWRKY11	potentially	being	a	key	regulator	of	defence200.		

	

Figure	5.1:	Figure	5.12:	Protein	alignments	of	AtWRKY11	and	TaWRKY9.	The	

alignments	were	made	using	Clustal	Omega195,196.	

	

	



	 113	

I	performed	initial	experiments	to	study	TaWRKY9s	expression	in	healthy	

and	Septoria	infected	tissue	using	semi-quantitative	PCR	(figure	5.2).	

TaWRKY9	was	upregulated	in	these	experiments,	with	the	highest	expression	

(8dpi)	occurring	around	Septoria’s	switch	from	biotrophic	to	necrotrophic	

growth.		

	
Figure	5.2:	Gel	of	PCR	showing	TaWRKY9	expression	in	healthy	and	Septoria	

infected	wheat	over	a	time	course	of	0-18dpi.	A	housekeeping	gene	(18S	

RNA)	was	also	run	to	assess	concentration	and	quality	of	cDNA.	A	negative	

control	containing	no	DNA	is	present	in	lane	2.		

PCR	products	were	run	on	a	1%	agarose	gel	in	1xTAE	buffer	for	size	

separation	and	visualised	under	UV	light	with	quantity	one	software.	A	1kb	

plus	hyperladder	(bioline).		

	

From	this	we	(Ari	Sadanandom	and	myself)	decided	to	further	study	

TaWRKY9	in	the	hope	that,	like	its	arabidopsis	homologues,	it	would	be	

involved	in	defence,	therefore	making	it	a	good	breeding	target.		

5.2	TaWRKY9	

The	NCBI	protein	blast	tool150	was	used	to	determine	any	protein	domains	

present	in	TaWRKY9.	The	results	of	this	blast	can	be	seen	in	figure	5.3.	

TaWRKY9	is	328	amino	acids	long,	with	a	weight	of	34.64kDa.	TaWRKY9	is	a	

member	of	IId	group	of	WRKYs	(figure	3.1).	The	WRKY	domain	is	located	

near	the	C	terminal	region	of	the	protein.	Babu	et	al201	defined	the	other	

domain	present,	Plant_zn_clust,	noting	that	this	particular	Zinc	finger	is	

associated	with	WRKYs	TFs	but	also	has	high	folding	similarity	to	certain	

other	TFs	(Glial	Cell	Missing	1	and	potentially	transposases	with	the	MudR-

type	transposase	domain)	across	the	animal	and	fungal	kingdoms.	They	used	

WRKY	TFs	zinc	finger	region	as	a	model	to	study	the	evolutionary	history	of	
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other	TFs,	hence	why	this	domain	has	been	defined	separately	in	NCBI.	I	am	

not	sure	why	it	is	located	before	the	WRKY	domain	since	the	zinc	finger	of	a	

WRKY	domain	is	located	towards	the	N	terminal.	This	zinc	finger	is	the	most	

similar	domain	to	a	WRKY	TFs	in	the	animal	kingdom201.			

	
	
A.	
MAVDPMGCYTPRRADDQLAIQEAATAGLRSLELLVSSLSGAAPSKAPQQHLQQPF
GEIADQAVSKFRKVISILDRTGHARFRRGPVQSPTPPPPAPVAPPPPPPRPLAVVEP
ARPAPLTAVAPVSVAAPVPLPQPQSLTLDFTKPNLTMSGATSVTSTSFFLSVTAGE
GSVSKGRSLVSAGKPPLSGHKRKPCAGAHSEANTTGSRCHCSKRRKNRVKTTVRV
PAVSAKIADIPPDEYSWRKYGQKPIKVSPYPRGYYKCSTVRGCPARKHVERALDDP
AMLVVTYEGEHRHSPGPMPMQMAPSPVPIPMPMGAPVAVASVSAGNGHV	
	
B.		

	
	
Figure	5.3:	Protein	sequence	of	TaWRKY9.	A.	Protein	sequence	of	TaWRKY9	

(328aa).	Highlighted	in	red	are	the	WRKY	sequences	of	the	WRKY	domain.	

Highlighted	in	blue	are	the	zinc	finger	sequences	of	the	WRKY	domain.	B.	

Cartoon	representation	showing	the	position	of	the	WRKY	domains	relative	

to	the	protein.	This	was	generated	using	NCBI	protein	blast	tool150.	

	

As	with	TaWRKY19,	a	full	DNA	sequence	data	was	not	available	for	

TaWRKY9,	only	the	CDS	from	the	start	codon	until	the	stop	codon	was	

defined.	The	plan	was	to	perform	silencing	experiments	leading	to	Septoria	

infection	experiments.	Therefore,	the	first	step	was	to	sequence	the	5’	and	3’	

UTR	to	ensure	the	generation	of	silencing	fragments	that	were	specific	to	

TaWRKY9121.		

Since	both	TaWRKY19	and	TaWRKY9	were	upregulated	after	Septoria	

infection,	the	same	5’	and	3’	RACE	cDNA	produced	using	RNA	isolated	from	

Septoria	infected	wheat	leaves	8dpi	was	used.	Three	sets	of	nested	primers	

were	designed	against	the	CDS	region	of	TaWRKY9	so	that	they	would	

amplify	outwards	from	the	gene,	using	the	Universal	primer	mix	(Clonetech)	

as	the	opposing	primer.	Using	Q5	high	fidelity	DNA	polymerase	multiple	
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nested	PCR	reactions	were	performed	(diluting	the	previous	PCR	1/10	to	be	

used	as	a	template	for	the	next	PCR	reaction).	The	PCR	reactions	were	run	on	

a	1%	agarose	gel	(data	not	shown)	and	any	resulting	DNA	bands	were	

isolated.	The	DNA	was	extracted	from	the	gel	and	sequenced.	Unfortunately	

the	PCR	reactions	for	the	5’	UTR	failed,	however	the	sequence	for	the	3’	UTR	

was	obtained.	The	results	of	the	sequencing	reaction	can	be	seen	in	figure	

5.4,	which	shows	the	DNA	sequence	of	TaWRKY9	from	the	start	codon	until	

the	poly	A	tail	of	the	mRNA.	The	3’	UTR	is	highlighted	in	grey	with	the	

silencing	fragment	highlighted	on	top	of	this	in	blue.	The	3’	UTR	is	132bps	

long.	A	potential	sequence	for	the	5’	UTR	was	eventually	identified	using	

JBrowse202	and	tracks	from	published	RNA	sequencing	experiments.	This	is	

also	highlighted	in	grey,	with	a	size	of	47bps.		

	
Agcgagccaagatctgcagagtcacaggcgacctcacaccggcgaccatggccgtggaccccatgggctgct
acacccctcgccgcgccgacgaccagctcgccatccaggaggccgccaccgccggcctccgcagcctggagc
tcctcgtctcctccctctccggcgcggcgccgtccaaggcgccgcagcagcacctgcagcagccgttcggcga
gatcgccgaccaggccgtctccaagttccgcaaggtgatctccatcctcgaccgcaccggccacgcccgcttcc
gccgcggccccgtccagtcgcctaccccgcctcctccggctccggtcgctcctccgccgcccccaccgcgccct
ctggccgtcgtcgagccggccaggcccgctcccttgaccgccgtggcgccggtgtcggtggccgccccggtcc
ctctcccgcagccgcagagcctgacgctggacttcaccaagccgaacctgaccatgtcaggcgcgacgtccgt
gacgtccacgtccttctttctctcggtgaccgccggcgagggcagcgtgtccagagggccgcagcctggtctcc
gccggcaagccgccgctgtccgggcacaagagaaagccgtgcgccggcgcgcactcggaggccaacaccac
cggcagccgatgccactgctccaagagaaggaagaaccgcgtgaagacgacggtgagggtgcccgcggtga
gcgcgaagatcgccgacatcccgccggacgagtactcgtggaggaagtacggccagaagcccatcaaggtat
ccccttacccacggggctactacaagtgcagcacagtgcgagggtgcccggcgcggaagcacgtggagcgcg
ccctggacgacccggcgatgctggtggtgacgtacgagggcgagcaccgccactcgccggggccgatgccga
tgcagatggcgccgtcgccggtgccgattccgatgccgatgggcgcgcccgtagccgtagctagtgtgtccgcc
ggcaacgggcacgtctgacttagttaaattttttctttctttccccatttggttgggggtgcttcgttcgttcgctcg
caatctgtctgatgtccgtgtaaagaagaagaaagatcgtagagagacggagagggaaacttaatgccagag
atttttactacctcccgaaaaaaaaaaaaaaaaaaaaaaaaaaa	
Figure	5.4:	DNA	sequence	of	TaWRKY9.	TaWRKY9	CDS	sequence	is	988bp	

long.	Sequence	data	was	extended	using	RACE	experiments	and	database	

searches	with	RNA	sequencing	experiments	integrated.	The	3’	UTR	identified	

is	132bps	long.	A	section	of	the	5’	UTR	was	identified	(47bps).	The	ATG	start	

codon	and	TGA	stop	codon	are	in	bold,	UTR	sequences	highlighted	in	grey	

and	silencing	fragment	TaWRKY9A	highlighted	in	blue.		
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5.3	TaWRKY9	silencing	using	VIGS	

After	sequencing	the	5’UTR,	a	silencing	fragment	was	designed	for	the	VIGS	

and	Septoria	infection	experiments	to	study	TaWRKY9.	Ideally	two	silencing	

fragments	would	be	designed	per	construct,	however	since	TaWRKY9’s	UTRs	

are	so	small	only	one,	against	the	3’	UTR,	was	designed.	It	can	be	seen	in	

figure	5.4,	highlighted	in	blue.	It	is	80bp	in	length,	a	little	shorter	than	the	

optimal	length	but	still	long	enough	to	silence	TaWRKY9.		

	
Table	5.1	shows	the	results	of	the	KWS	silencing	fragment	prediction	

software.	It	works	by	assessing	each	22bp	fragment	potentially	produced	by	

DICER	cleavage	for	their	silencing	potential,	assigning	them	a	score	from	1-

10	with	10	being	the	highest.	TaWRKY9	has	two	fragments	with	a	score	of	9,	

and	a	further	3	with	high	scores	(over	7).	Therefore	even	though	it	is	a	small	

fragment	it	had	potential	to	silence	TaWRKY9	well.		

	
	
	

	

	

	

	

	

	

	

	

	

	

	

Table	5.1:	TaWRKY9A	silencing	fragment	efficiency	analysis.	Software	

analysis	of	the	potential	22nt	fragments	incorporated	into	the	RISC	complex	

ability	to	silence.	Scored	0-10,	with	10	representing	a	high	level	of	silencing	

efficiency	and	1	a	low	level.		

	

Start	(bp)	 End	(bp)	 Score	 GC%	
44	 66	 9	 50	
45	 67	 9	 50	
14	 36	 8	 45	
41	 63	 8	 45	
38	 60	 7	 40	
52	 74	 6	 55	
54	 76	 6	 50	
13	 35	 5	 45	
34	 56	 5	 35	
35	 57	 5	 35	
43	 65	 5	 45	
47	 69	 5	 55	
56	 78	 5	 45	
23	 45	 4	 40	
40	 62	 4	 40	
37	 59	 2	 35	
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As	well	as	testing	the	silencing	efficiency	of	the	TaWRKY9A	fragment,	I	also	

used	the	Earlham	Institute	blast	tool151	to	assess	the	ability	of	TaWRKY9A	

fragment	to	only	silence	TaWRKY9.	TaWRKY9	is	located	on	the	long	arm	of	

chromosome	2.	As	can	be	seen	in	figure	5.5,	all	three	TaWRKY9	homologues	

(across	the	A,	B	and	D	genomes)	can	be	silenced	using	TaWRKY9A	silencing	

fragment.	Only	two	other	genes	were	identified	in	the	blast	search,	however	

there	homology	(<21bp	length	homology)	is	not	high	enough	to	be	silenced	

via	the	wheat	hosts	natural	defence	system.	One	thing	to	note	is	that	the	

silencing	fragments	and	UTR	sequence	data	were	obtained	from	the	wheat	

variety	cv.	Avalon,	whereas	this	blast	search	is	against	cv.	Chinese	spring.	

This	explains	the	single	nucleotide	polymorphism	(SNP)	being	present	in	all	

three	of	the	blast	searches	(C	to	T,	position	50).	All	the	experiments	were	

performed	on	cv.	Avalon.	
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Figure	5.5:	Blast	search	of	TaWRKY9A	silencing	fragment.	The	Earlham	

Institute’s	wheat	genome151	was	used	to	blast	search	the	DNA	sequences	of	

TaWRKY9A.	Parameters	were	set	to	identify	homology	of	sequences	over	

16bps	long,	against	the	cv.	Chinese	Spring	wheat	genome	sequence.	This	is	

based	on	the	size	of	siRNA	produced	by	DICER	cleavage104,105.	

	

Once	I	had	designed	the	silencing	fragment,	the	net	step	was	to	clone	it	into	

the	BSMVγ	vector.	I	used	cDNA	from	Septoria	infected	wheat	(8dpi)	to	clone	

the	fragment	since	this	had	been	used	in	the	RACE	experiments	to	identify	

the	3’	UTR.	Primers	to	amplify	the	silencing	fragment	were	designed	and	

used	in	a	PCR	reaction	with	Q5	high-fidelity	DNA	polymerase.	The	PCR	

program	consisted	of	30	cycles,	55OC	annealing	temperature	and	30	seconds	

for	the	extension	step	for	the	variable	conditions.	The	PCR	product	was	run	

on	a	1%	agarose	gel	with	a	1kb	and	50bp	ladder	(lanes	1	and	2)	to	separate	

the	DNA	bands	based	on	size.	A	band	around	80bp	(figure	5.6)	was	cut	from	

the	gel	and	extracted	using	a	gel	extraction	kit.		

TaWRKY9	chromosome	2DL 

TaWRKY9	chromosome	2AL 

TaWRKY9	chromosome	2BL 

Gene	of	unknown	function	unscaffolded 

Gene	of	unknown	function	chromosome	3DL 
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Figure	5.6:	Gel	of	cloning	PCR	for	TaWRKY9	silencing	fragment.	PCR	products	

were	run	on	a	1%	agarose	gel	in	1xTAE	buffer	for	size	separation	and	

visualised	under	UV	light	with	quantity	one	software.	A	1kb	and	50bp	

hyperladder	were	used	for	size	indication	(lane	1	and	2	respectively).	The	

expected	size	for	TaWRKY9A	(lane	3)	was	80bp.		

	

As	in	chapters	3	and	4,	the	fragment	was	cloned	into	the	BSMVγ	vector,	

sequenced	and	eventually	transformed	into	A.	tumefaciens.	Two-week-old	

wheat	plants	were	silenced	with	BSMV:TaWRKY9A.	After	two-weeks	leaf	

samples	from	three	plants	were	then	collected	and	RNA	extracted	to	check	

for	silencing	efficiency	in	TaWRKY9	plants.	cDNA	was	synthesised	from	the	

RNA	and	diluted	to	100ng	ready	for	qRT-PCR.	This	experiment	was	repeated	

independently	three	times.	Each	well	was	replicated	twice	in	the	qRT-PCR.	

The	results	of	the	qRT-PCR	to	test	the	expression	levels	of	TaWRKY9	in	

BSMV:00	and	BSMV:TaWRKY9A	are	shown	in	figure	5.7.	TaWRKY9	is	

silenced	on	average	by	46%	across	the	three	experiments	in	wheat	treated	

with	BSMV:TaWRKY9A.	There	were	higher	levels	of	variation	across	the	

three	experiments	when	compared	to	the	previous	silencing	experiments.	

However	the	silencing	is	still	statistically	significant	to	a	confidence	of	95%	

(p	=0.011).		

	

600 

1000 

400 

200 

800 

TaWRKY9A 

Lane	1							Lane	2						Lane	3				 
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Figure	5.7:	qRT-PCR	to	show	silencing	of	TaWRKY9	in	wheat.	Fold	change	of	

TaWRKY9	in	wheat	silenced	with	BSMV:TaWRKY9A	compared	to	BSMV:00	

control.	RNA	was	extracted	2	weeks	post	silencing	treatment	(4-week-old-

seedlings).	Leaves	from	three	separate	plants	were	collected	per	sample.	

qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	housekeeping	genes.	

This	experiment	was	repeated	3	times.	Two	replicate	wells	for	each	sample	

were	performed	in	the	qRT-PCR.	Error	bars	represent	+/-	1	standard	error.	

Asterisks	are	used	to	denote	a	results	difference	from	the	control	of	p<0.05.	

	

5.4	TaWRKY9	in	wheat	defence	against	Septoria		

After	successful	silencing	of	TaWRKY9	in	wheat	seedlings,	the	next	step	was	

to	infect	the	plants	with	Septoria.	Figure	5.8	shows	a	representative	leaf	from	

the	three	experimental	repeats.	Visible	symptoms	began	at	12dpi	in	the	

control	samples	(BSMV:00),	whereas	in	BSMV:TaWRKY9A	treated	plants	the	

symptoms	begin	at	13dpi,	a	one	day	delay.	Symptoms	develop	at	the	same	

rate	within	both	sets	of	plants,	taking	9	days	for	the	plant	tissue	to	die	along	
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the	whole	length	of	the	leaf.	These	experiments	were	performed	along	side	

experiments	on	TaWRKY19	silenced	wheat.	Thus	I	have	used	the	same	

pictures	for	BSMV:00	symptom	development	as	they	were	all	performed	at	

the	same	time.		
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Figure	5.8:	Septoria	infection	symptoms	on	TaWRKY9	silenced	wheat.	Four-

week-old-seedlings,	which	undergone	silencing	treatment	(BSMV:00,	

BSMV:TaWRKY9A)	were	stuck	down	onto	black	card	and	infected	with	

Septoria	(abaxial	and	adaxial).	The	seedlings	were	grown	under	high	

humidity	conditions	to	encourage	Septoria	infection.	The	infection	was	then	

followed	daily,	with	photos	taken	between	2-3pm.	In	this	figure	the	initial	

stages	of	the	infection	symptoms	are	shown,	from	11dpi	until	21	dpi.	Photos	

are	representative	of	the	symptoms	seen	in	3	independent	experiments.	
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The	pycnidia	were	then	counted	along	a	2cm	leaf	length	for	each	of	the	

infected	leaves.	Figure	5.9	shows	the	results	of	the	pycnidia	counts.	Wheat	

with	TaWRKY9	silencing	had,	on	average,	a	35%	reduction	in	pycnidia	

compared	to	the	control	samples.	The	difference	is	statistically	significant	to	

95%	confidence	with	a	p	value	of	0.019.		

	
	

	
Figure	5.9:	Septoria	pycnidia	count	from	infection	upon	TaWRKY9	silenced	

wheat.	Pycnidia	were	counted	over	a	2cm	leaf	length.	This	experiment	was	

repeated	3	times,	with	5	leaves	per	experiment	counted.	Asterisks	are	used	to	

denote	a	results	difference	from	the	control	of	p<0.05.	

	

The	spores	were	then	counted.	Unsurprisingly	there	is	also	a	reduction	

(51%)	in	the	number	of	spores	Septoria	produced	on	wheat	with	TaWRKY9	

silenced	compared	to	the	BSMV:00	treated	control	(figure	5.10).	This	is	

statistically	significant	with	over	99%	confidence	(p	=	1.33E-05).	
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Figure	5.10:	Septoria	spore	counts	from	TaWRKY9	silenced	and	infected	

leaves.	Five	leaves	were	submerged	in	10ml	of	water	and	vortexed	to	wash	

the	spores	from	the	pycnidia.	Spores	were	then	counted	using	a	

haemocytometer	under	a	light	microscope	(x10	magnification).	Four	spores	

counts	across	independent	4x4	squares	on	the	haemocytometer	were	

performed	per	spore	suspension.	Error	bars	represent	+/-	1	standard	error.	

This	experiment	was	repeated	independently	3	times.	Double	asterisks	are	

used	to	denote	a	results	difference	from	the	control	of	p<0.01.		

	
To	determine	the	potential	influence	that	modulating	TaWRKY9	expression	

could	have	on	plant	defence,	the	relative	pycnidia	and	spore	reduction	per	

1%	of	silencing	was	calculated.	Per	1%	of	silencing	there	is	a	0.39	reduction	

in	the	pycnidia	count.	For	the	spore	count	it	is	more	marked,	with	each	1%	of	

silencing	leading	to	a	0.65	(*106)	reduction	in	the	average	spore	count	per	ml.		

Together	these	results	indicate	that	TaWRKY9	is	a	negative	regulator	of	

defence	with	silencing	either	leading	to	increased	defence	response	or	a	

decrease	in	Septoria’s	ability	to	infect.		

5.5	TaWRKY9	promoter	

To	further	investigate	TaWRKY9	and	build	up	a	network	of	defence	I	planned	

to	perform	a	Y1H	against	the	same	Y1H	TF	library	as	used	in	chapter	4.	Y1H	
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assays	allow	for	the	identification	of	TFs	that	potentially	regulate	TaWRKY9,	

leading	to	possible	breeding	targets.		

Firstly,	TaWRKY9’s	promoter	region	was	identified	using	databases	provided	

by	KWS	and	the	Earlham	Institute151..	The	aim	was	to	identify	the	sequence	

2kb	upstream	of	the	ATG	start	codon	(supplemental	figure	6).	Using	the	

databases	and	primer	design	tools203,204,	I	designed	primers	to	amplify	a	

region	of	1,973bp	just	upstream	of	the	start	codon	(partially	including	the	

predicted	5’	UTR	sequence).		

I	used	PlantPAN	promoter	analysis	software158	to	predict	potential	TFs	that	

would	bind	to	TaWRKY9	promoter.	This	program	utilises	information	from	

previously	published	interactions	in	different	plant	species	(I	used	

Arabidopsis,	rice	and	maize)	to	predict	the	binding	sites	on	the	input	

sequence.	Table	5.2	shows	the	results	of	this	search.	The	most	represented	

binding	site	is	for	WRKY	TFs.	It	is	known	that	WRKYs	can	regulate	

themselves	and	other	WRKYs	therefore	this	result	is	not	surprising.	

The	At-Hook	TF	domain	binds	to	the	minor	groove	of	AT	rich	DNA	regions205	

and	is	present	in	many	DNA	binding	proteins206.			

DNA-binding	with	One	Finger	(Dof)	TFs	are	plant	specific,	they	are	mostly	

involved	in	growth	and	development	(reviewed	in	207)	and	has	been	

implicated	in	defence	against	pathogens208.		

The	final	TF	with	high	numbers	of	predicted	binding	sites	is	the	Squamose-

promoter	Binding	Protein	(SBP)	family209.	This	is	another	plant	specific	TF	

family	involved	in	developmental	processes210,211	and	defence212.		
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Table	5.2:	List	of	predicted	TF	that	bind	to	

TaWRKY9	promoter.	DNA	sequence	for	

TaWRKY19	promoter	was	input	into	

PlantPAN	software	157,158.	TFs	from	the	

plant	species	Arabidopsis,	rice	and	maize	

were	selected	for	the	analysis.	Specific	

binding	sites	can	be	seen	in	supplemental	

table	5.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Family
No.	of	
TFs

WRKY 28
AT-Hook 25
Dof 23
SBP 20

Myb/SANT 17
AP2;ERF 16
bZIP 11

GATA;tify 10
NAC;NAM 10
Others 8

Homeodomain	;HD-ZIP 8
AP2;B3;RAV 7

bHLH 7
TBP 7

Myb/SANT;MYB 6
SRS 6
TCP 6
B3 5
C2H2 5

Homeodomain	;	bZIP	;HD-ZIP 5
Homeodomain	;HD-ZIP	;bZIP 5
Myb/SANT;MYB-related 5

B3;ARF 4
MYB-related 4

Myb/SANT;MYB;ARR-B 4
Alpha-amylase 3

GATA 3
Homeodomain	;TALE 3

MYB 3
MYB;ARR-B 3
AP2;B3 2

AP2;RAV;B3 2
bZIP;Homeodomain;HD-ZIP 2

Homeodomain 2
Homeodomain	;bZIP	;HD-ZIP	;WOX 2

HSF 2
Myb/SANT;ARR-B 2

AP2 1
AP2;RAV 1
BES1 1

CG-1;CAMTA 1
Dehydrin 1
E2F/DP 1
EIN3;EIL 1
ERF 1
FAR1 1

GATA;Dof 1
GRAS 1
HB-PHD 1

Homeodomain	;WOX 1
Homeodomain	;ZF-HD 1

LEA_5 1
LFY 1
MADF 1

Myb/SANT;G2-like 1
NF-YB;NF-YA;NF-YC 1

PsaH 1
Sox;YABBY 1
TCR;CPP 1
Trihelix 1
trp 1
VOZ 1
ZF-HD 1
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Using	the	designed	primers,	a	PCR	to	clone	the	promoter	was	performed	

using	HiFi	DNA	polymerase,	55OC	annealing	temperature	and	1-minute	

extension	time	for	the	PCR	variables.	The	resulting	PCR	was	run	on	a	0.8%	

agarose	gel,	which	can	be	seen	in	figure	5.11.	The	ladder	(lane	1)	is	not	overly	

clear,	however	sequencing	checks	were	performed	confirming	this	to	be	the	

correct	DNA	band.	

	
	
	
	

	

	

	

	

	

	

	

	

	

	

Figure	5.11:	Gel	of	TaWRKY9	promoter	cloning	PCR.	PCR	products	were	run	

on	a	0.8%	agarose	gel	in	1xTAE	buffer	for	size	separation	and	visualised	

under	UV	light	with	quantity	one	software.	A	1kb	hyperladder	was	used	for	

size	indication	(lane	1).	The	expected	size	for	TaWRKY9	promoter	(lane	2)	

was	1,973kb.	

	

The	band	was	excised	from	the	gel	and	DNA	extracted	using	a	gel	extraction	

kit	before	eventually	transforming	into	PTUY1H	(after	confirming	the	

sequence).	Positive	transformants	were	selected	for	by	growing	on	minimal	

SD	base	media	with	amino	acid	mix	–W.		

5.6	Identifying	TFs	that	bind	to	TaWRKY9	promoter	

The	same	library	was	used	for	this	experiment	as	in	chapter	3.	I	did	not	

succeed	in	reviving	all	the	colonies	from	the	glycerol	stocks.	The	colonies	that	
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grew	can	be	seen	in	figure	4.1,	with	a	68%	revival.	Unfortunately	the	plate	

containing	a	large	number	of	WRKY	TFs	(plate	10,	43	WRKYs)	had	a	low	level	

of	revival	(17%).	As	seen	in	table	5.2,	WRKY	TFs	are	predicted	to	be	the	most	

likely	to	bind	to	TaWRKY9	promoter	so	some	strong	interactors	may	have	

been	missed	due	to	the	poor	level	of	plate	revival.	

To	measure	the	appropriate	concentration	of	3AT	to	include	in	the	initial	Y1H	

library	screen	the	TaWRKY9	promoter	yeast	was	mated	with	pDEST22	yeast.	

The	mated	culture	was	plated	onto	minimal	SD	base	agar	media	with	the	

following	amino	acid	mix	selection;	–L-W,	-L-W-H	and	–L-W-H	+3AT	(10,	20,	

40,	60,	80	and	100mM).	The	plates	were	then	incubated	for	3	days	in	28OC.	

Following	this	experiment	20mM	3AT	was	chosen	for	the	library	screen	as	

this	concentration	was	the	cut	off	for	growth	of	the	negative	control	mated	

yeast.		

The	Y1H	library	was	mated	with	the	TaWRKY9	promoter	containing	yeast,	

following	the	same	procedure	as	in	chapter	4.3,	and	allowed	to	grow	in	

selection	media	(minimal	SD	base	media	with	an	amino	acid	mix	–L-W).	The	

mated	cultures	were	then	stamped	(5μl	each)	onto	minimal	SD	base	agar	plus	

amino	acid	mix	plates	with	the	following	selection	–L-W,	-L-W-H	and	–L-W-H	

+20mM	3AT.		

On	these	plates	62	wells	grew	across	each	of	the	selection	pressures.	The	

wells,	gene	ID	and	a	brief	description	of	the	wells	that	grew	are	seen	in	figure	

5.10.	The	family	most	represented	in	this	screen	are	from	the	MADS	family	

(table	5.3).	There	are	number	of	WRKY	TFs	that	have	also	bound.	These	were	

the	most	predicted	TF	from	the	software	and	may	have	been	more	

represented	had	the	colonies	on	plate	10	been	successfully	revived.	There	

were	almost	double	the	amount	of	TFs	bound	to	TaWRKY9	as	opposed	to	

TaWRKY19	promoter	(34	TFs)	(supplemental	figure	7).		
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well Gene	ID Gene	description No. -L-W +20mM+40mM+60mM +80mM +100mM
p1	a1 At2g45650 MADS	(AGL6/RSB1) 1
p1	a2 At4g11880 MADS	(AGL14/XAL2) 2
p1	a4 At3g57230 MADS	(AGL16) 3
p1	a5 At2g22630 MADS	(AGL17) 4
p2	a6 At3g57390 MADS	(AGL18) 5
p1	b2 At5g23260 MADS	(AGL32/TT16) 6
p1	c12 At1g60300 NAC 7
p1	d1 At3g54990 AP2/ERF	(SMZ) 8
p1	d4 At4g36920 AP2/ERF	(AP2/Fl1/FLO2) 9
p1	d5 At5g41315 bHLH	(GL3/MYC6.2) 10
p1	e5 At5g53420 CO-like 11
p1	f9 At5g66160 RING-H2	(RMR1) 12
p1	g7 At2g18670 C3HC4 13
p1	h6 At2g31220 bHLH	(BHLH010) 14
p2	a7 At4g35040 bZIP	(bZIP19) 15
p2	c7 At1g12980 AP2/ERF	(ESR1) 16
p2	d5 At3g56980 bHLH	(bHLH39/ORG3) 17
p2	e1 At3g15170 NAC	(NAC054) 18
p4	a1 At1g75510 IIF	factor	beta	subunit 19
p4	a2 At5g43290 WRKY	(WRKY49) 20
p4	a3 At3g52270 IIF	factor	beta	subunit 21
p4	a4 At4g08250 GRAS	(SCL26) 22
p4	b1 At2g29060 GRAS	(SCL33) 23
p4	b3 At1g66350 GRAS	(RGL1) 24
p4	b4 At1g66350 GRAS	(RGL1) 25
p4	b5 At3g50650 GRAS	(SCL7) 26
p4	c3 At3g13840 GRAS	(SCL29) 27
p4	c5 At4g31800 WRKY	(WRKY18) 28
p4	d2 At5g43290 WRKY 29
p4	d7 At1g29280 WRKY 30
p4	g3 At4g17920 C3HC4	(ATL29) 31
p4	g5 At5g03510 C2H2	type	zinc	finger 32
p5	a1 At4g17490 AP2/ERF	(ERF6) 33
p5	a2 At2g38340 AP2/ERF	(DREB2E/DREB19) 34
p5	d4 At1g18710 MYB	(MYB47) 35
p5	d6 At3g13040 G2-like	(PHL6) 36
p5	e1 At3g09230 MYB	(MYB1) 37
p5	g6 At1g73410 MYB	(MYB54) 38
p6	a1 At2g31380;At3g21890CO-like	(BBX25/STH1;BBX31/MIP1B) 39
p6	a6 At2g31380 CO-like	(BBX25/STH1) 40
p6	b2 At5g05770 Homeobox	(WOX7) 41
p6	c1 At5g53980 Homeobox	(HB52) 42
p6	c2 At1g26960 Homeobox	(HB23) 43
p6	c4 At2g36610 Homeobox	(HB22) 44
p6	c5 At2g18550 Homeobox	(HB21) 45
p6	c6 At2g18550 Homeobox	(HB21) 46 	
p6	d4 At1g02065 SBP	(SPL8) 47 	
p6	e4 At1g78600 CO-like	(BBX22/STH3) 48
p6	e7 At4g39070 CO-like	(BBX20) 49 	
p6	e9 At2g46830 MYB	(CCA1) 50 	
p6	f1 At4g24060 DOF	(DOF4.6) 51 	
p6	f4 At2g28920 C3HC4 52 	
p6	h5 At1g29160 DOF	(DOF1.5/COG1) 53 	
p7	e1 At3g16500 AUX/IAA	(IAA26/PAP1) 54 	
p7	g2 At4g01550 NAC	(NAC69/NTL13) 55
p7	h1 At3g04420 NAC	(NAC046) 56
p7	h3 At3g56530 NAC	(T5)19_180/NAC064) 57
p8	a5 At1g35515 MYB	(MYB8) 58
p8	b8 At2g24840 MADS	(AGL61) 59
p8	b12 At5g63470 CCAAT-HAP5	(NFYC4) 60
p8	c6 At2g03710 MADS	(AGL3/SEP4)	 61
p8	d8 At5g38620 MADS	(AGL73/MBB18.17) 62
-ve	control TaWRKY68	promoter	only 63 	
Table	5.3:	A	representation	of	62	TFs	binding	onto	TaWRKY9	promoter	

through	a	Y1H	experiment,	with	increasing	selection.	62	TFs,	identified	

through	the	initial	Y1H	experiment,	were	re-mated	with	TaWRKY9	promoter	

yeast	and	grown	in	liquid	culture	overnight.	5μl	of	this	overnight	was	

pipetted	onto	plates	with	minimal	SD	base	media	with	an	amino	acid	mix	of	

either	–L-W,	-L-W-H,	-L-W-H	+3AT	(20,	40,	60,	80	and	100mM).	The	plates	

grown	for	3	days	at	28OC.	Yeast	that	grew	are	highlighted	in	dark	grey.	TFs	

that	grew	on	each	selection	are	highlighted	in	light	grey.	
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TF	family	 No.	in	Y1H	
MADS	 9	
GRAS	 6	
Homeobox	 6	
NAC	 5	
Co-like	 5	
WRKY	 4	
MYB	 4	
AP2/ERF	 3	
bHLH	 3	
C3HC4	 3	
IIF	factor	beta	
subunit	 2	
DOF	 2	
RING-H2	 1	
bZIP	 1	
C2H2	type	zinc	finger	 1	
G2-like	 1	
SBP	 1	
AUX/IAA	 1	
CCAAT-HAP5	 1	
	
Table	5.4:	TF	family’s	represented	in	initial	Y1H	screening	with	TaWRKY9	

promoter.	A	list	of	the	families	the	62	TFs	that	bind	to	TaWRKY9	promoter	

fall	into.		

	

To	further	reduce	the	targets,	I	repeated	the	experiment	with	the	62	targets	

but	with	increasing	3AT	selection	pressure	(0-100mM).	I	began	by	mating	

the	targets	with	TaWRKY9	promoter	Y187α	yeast,	incubating	them	overnight	

at	28OC	before	growing	them	in	mating	selection	media	(as	in	chapter	4).	

Pictures	of	the	plates	were	then	taken	(supplemental	figure	8)	to	assess	the	

growth.	The	TFs	with	the	highest	binding	strength	(eight	TFs)	are	shown	in	

figure	5.11.	They	are	also	highlighted	in	light	grey	on	table	5.3.	I	chose	the	

eight	strongest	binders;	these	are	(in	no	order)	RMR1,	bHLH10,	IIF	factor	β	

subunit,	SCL26,	DREB19,	MYB8,	AGL3	and	AGL73.	All	8	of	the	TF’s	bind	to	

TaWRKY9	promoter	across	each	of	the	3AT	concentrations,	indicating	strong	

interactions.	As	can	be	seen	in	table	5.3,	there	are	18	other	TFs	that	also	

bound	strongly	throughout	the	increasing	3AT	concentrations.	However	to	
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reduce	the	number	I	chose	the	TFs	that	had	the	most	growth	across	the	three	

spots.		

AmaGous-Like	(AGL)	3	showed	the	strongest	interaction,	with	multiple	

colonies	in	each	of	the	spots	across	all	the	3AT	concentrations	(figure	5.12).	

The	next	strongest	interactor	was	the	AGL73,	which	again	has	strong	colony	

growth	across	all	the	concentrations	of	3AT.		

AGL3	and	AGL73	are	both	members	of	the	MADS	box	TF	family.	AGL3	is	also	

known	as	SEPtallata4	(SEP4).	AGL3/SEP4	is	known	to	be	involved	in	floral	

meristem	regulation.	Quadruple	knockouts	of	SEP1/2/3/4,	which	are	all	

closely	related,	have	issues	with	their	floral	structure	development213.	Y1H	

do	not	indicate	whether	the	TF	binding	would	lead	to	activation	or	

repression	of	the	gene.	However	it	is	interesting	to	note	that	TaWRKY9	is	

regulated	by	TF	involved	in	growth	and	development	particularly	those	

involved	in	floral	development,	which	may	potentially	have	an	effect	on	

wheat	grain	yield.		
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Figure	5.12:	Y1H	of	strongest	TFs	binder	to	TaWRKY9	promoter.	TFs	that	

showed	binding	in	the	initial	screen	were	re-mated	with	TaWRKY9	promoter	

and	grown	on	increasing	minimal	SD	base	with	amino	mix	–L-W-H	and	3AT	

selection	(20mM,	40mM,	60mM,	80mM	and	100mM).	Colonies	were	grown	at	

28OC	for	3	days.	Pictures	of	the	62	targets	were	taken,	included	in	the	figure	

are	the	eight	strongest	TF	binders	to	TaWRKY9	promoter.	
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As	previously	mentioned	the	Y1H	library	only	contained	Arabidopsis	TFs.	

Therefore	the	next	step	was	to	identify	the	wheat	homologues	of	the	eight	

main	targets.	I	used	the	KWS	and	Ensembl214	databases	to	do	this,	using	the	

blast	functions	on	both	databases	to	find	the	most	up-to-date	wheat	genome	

sequence	information.		

Unfortunately	I	did	not	find	homologues	for	each	of	the	genes,	this	was	

partially	due	to	time	limitations	using	KWS	database	access.	However,	I	was	

successful	in	finding	homologues	for	DREB19,	RMR1,	SCL26	and	bHLH010.	

When	searching	for	a	homologue	for	AGL3/SEP4	I	ran	into	difficulties,	I	was	

able	to	find	many	homologues	for	SEP3	but	none	that	were	more	closely	

related	to	SEP4	over	SEP3.	In	Arabidopsis	these	genes	do	have	strong	

homology,	with	similar	expression	patterns	and	functional	redundancy	

however	they	do	have	some	non-overlapping	target	genes213,215.	An	

alignment	of	the	closest	wheat	homologue	for	each	of	the	four	targets	is	seen	

in	figure	5.13.	The	alignments	were	made	using	Clustal	Omega	software195,196.	

The	identity	score	and	expect	value	for	each	of	the	homologues	can	be	seen	in	

table	5.4.	Identity	scores	are	the	percentage	of	amino	acids	in	each	position	

that	are	the	same	in	both	sequences.	Expect	values	calculate	the	likely	hood	

of	an	alignment	occurring	by	chance	elsewhere	in	a	genome	of	a	set	size,	the	

smaller	the	number,	the	more	homology.		
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A.	

	

B.		
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C.	

D.	

Figure	5.13:	Protein	alignments	of	Arabidopsis	Y1H	targets	with	wheat	

homologues.	Alignments	are	between	the	Arabidopsis	targets	and	their	

closest	wheat	homologues,	which	were	identified	through	database	searches.	

The	alignments	were	made	using	Clustal	Omega195,196.	A.	AtDREB19	B.	

AtSCL26	C.	AtRMR1	and	D.	AtbHLH010.	A	genome	copies	were	chosen	for	the	

wheat	homologues.		
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Arabidopsis	

homologue	

Wheat	homologue	 Identity	score	 Expect	

value	

AtDREB19	 TaDREB19	 60%	 1e-37	

AtRMR1	 TaRMR1	 39%	 2e-68	

AtSCL26	 TaSCL26	 43%	 2e-126	

AtbHLH010	 TaBHLH010	 34%	 3e-51	

Table	5.5:	Identity	score	and	expect	values	for	Y1H	targets	wheat	

homologues.	Identity	scores	and	expect	values	of	the	Arabidopsis	and	wheat	

homologues	were	determined	aligning	the	protein	sequences	using	NCBI	

blast	tool150.	

	

Ideally	the	next	step	would	have	been	to	clone	the	wheat	homologues	to	see	

if	they	also	bound	to	TaWRKY9s	promoter	and	to	what	strength.	I	also	

planned	to	eventually	design	and	clone	silencing	fragments	for	each	of	these	

genes,	leading	to	silencing	and	Septoria	infection	experiments.	However,	I	

ran	out	of	time	to	perform	either	of	these	experiments,	instead	focussing	on	

the	TaWRKY19	Y1H	target	TabZIP2	(chapter	4).		

I	did	however	begin	investigating	the	network	surrounding	TaWRKY9.	qRT-

PCR	primers	were	designed	for	each	of	the	four	wheat	homologues.	The	plan	

was	to	study	whether	TaWRKY9	regulated	these	genes,	showing	a	feedback	

loop	in	the	system.	These	results	are	preliminary,	having	only	been	repeated	

twice.	Two	of	the	genes	did	not	show	any	expression	in	either	the	BSMV:00	

control	plants	or	the	BSMV:TaWRKY9A	silenced	plants	(bHLH10	and	SCL26).	

Figure	5.14	shows	the	results	from	the	qRT-PCR	for	the	wheat	homologue	of	

AtDREB19.	From	the	two	repeats	it	appears	that	TaDREB19	is	highly	

upregulated	in	TaWRKY9	silenced	wheat.	This	indicates	that	there	may	be	a	

feedback	loop	within	this	interaction.		
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Figure	5.14:	TaDREB19	expression	in	TaWRKY9	silenced	wheat.	Fold	change	

of	TaHSFB1	in	wheat	silenced	with	BSMV:TaWRKY9A	compared	to	BSMV:00	

control.	RNA	was	extracted	two	weeks	post	silencing	treatment	(4-week-old	

seedlings).	Leaves	from	three	separate	plants	were	collected	per	sample.	

qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	housekeeping	genes.	

This	experiment	was	repeated	2	times.	Two	replicate	wells	for	each	sample	

were	performed	in	the	qRT-PCR.	Error	bars	represent	+/-	1	standard	error.	

	
Figure	5.15	shows	the	qRT-PCR	results	looking	into	the	expression	of	

TaRMR1	in	TaWRKY9	silenced	plants.	Although	there	is	a	slight	reduction	in	

expression	I	do	not	think	it	will	be	significant	after	the	third	repeat	is	

performed.		
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Figure	5.15:	TaRMR1	expression	in	TaWRKY9	silenced	wheat.	Fold	change	of	

TaRMR1	in	wheat	silenced	with	BSMV:TaWRKY9A	compared	to	BSMV:00	

control.	RNA	was	extracted	two	weeks	post	silencing	treatment	(4-week-old	

seedlings).	Leaves	from	three	separate	plants	were	collected	per	sample.	

qRT-PCR	was	performed	using	TaCDC48	and	TaEF1a	as	housekeeping	genes.	

This	experiment	was	repeated	2	times.	Two	replicate	wells	for	each	sample	

were	performed	in	the	qRT-PCR.	Error	bars	represent	+/-	1	standard	error.	

5.7	Conclusions	

TaWRKY9	was	first	identified	through	investigating	select	WRKYs	expression	

change	after	Septoria	infection,	with	TaWRKY9	becoming	upregulated	

around	the	onset	of	visible	symptoms	(12dpi).	Previously	studied	

Arabidopsis	homologues	of	TaWRKY9	show	a	role	in	defence	against	

bacterial	pathogens	through	overexpressor	and	knockout	studies199,216.	This	

was	the	basis	for	studying	TaWRKY9	in	wheat	defence	against	Septoria.	

The	first	step	was	to	design	silencing	fragments	against	TaWRKY9,	however	

after	performing	RACE	experiments	to	determine	the	UTR	sequences,	I	could	

only	design	one	fragment	against	the	3’	UTR	(due	to	sequence	length).	Ideally	

two	silencing	fragments	are	needed	per	gene,	however	blast	studies	of	the	

silencing	fragment	showed	it	to	be	very	specific	towards	TaWRKY9.		

Through	VIGS	experiments	I	managed	to	silence	TaWRKY9	in	wheat	

seedlings,	these	plants	were	then	used	in	Septoria	infection	assays.	Infection	
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on	TaWRKY9	silenced	wheat	led	to	a	delay	in	the	onset	of	visible	symptoms,	

and	a	reduction	in	both	Septoria	pycnidia	and	spore	production.	These	

results	imply	that	TaWRKY9	is	a	negative	regulator	of	defence,	with	silencing	

increasing	resistance	against	Septoria.	Work	presented	in	this	chapter	based	

on	TaWRKY9	silencing	and	Septoria	infection	led	to	TaWRKY9	being	

patented	for	use	in	resistance	variety	wheat	breeding	in	collaboration	with	

KWS162.	

To	help	understand	the	mode	of	action	for	TaWRKY9	and	build	up	a	defence	

network,	I	performed	a	Y1H	experiment	with	TaWRKY9	promoter	against	an	

Arabidopsis	TF	library.	From	this	initial	experiment	62	TF	binders	were	

identified	from	multiple	different	TF	families.	Further	selection	pressure	

resulted	in	this	number	being	reduced	to	eight	TFs,	although	a	further	18	TFs	

also	showed	strong	interactions.	This	is	a	greater	number	of	TF	binders	when	

compared	to	TaWRKY19’s	promoter	(chapter	4).	Both	experiments	were	

carried	out	concurrently	so	there	were	no	differences	in	the	technical	aspects	

of	the	experiment.	A	number	of	these	TFs	are	involved	in	growth	and	

development	rather	than	defence.	This	is	interesting,	as	the	balance	between	

growth	and	defence	and	decoupling	this	has	been	a	strong	research	focus	in	

my	research	group	and	others.		

Ideally	I	would	have	followed	up	on	each	of	the	four	wheat	homologues	

identified	for	AtDREB19,	AtRMR1,	AtSCL26	and	AtbHLH10,	however	my	

primary	focus	was	on	TaWRKY19	promoter	binding	TF,	TabZIP2	(homologue	

of	AtbZIP1,	chapter	4).	Preliminary	investigations	into	the	potential	for	a	

feedback	loop	between	the	four	genes	and	TaWRKY9	were	performed.	I	

found	that	TaWRKY9	did	appear	to	regulate	the	expression	of	TaDREB19	

negatively;	with	TaWRKY9	knockdown	plants	having	higher	TaDREB19	

expression	compared	to	the	control.	This	was	not	the	case	for	TaRMR1,	

whose	expression	was	unchanged	in	TaWRKY9	silenced	plants.	

Unfortunately,	until	I	can	modulate	the	expression	of	each	of	these	genes	I	do	

not	know	whether	they	positively	or	negatively	regulate	TaWRKY9.		

Through	this	chapter	I	have	identified	multiple	potential	breeding	targets,	

with	particular	focus	on	TaWRKY9.	Further	experiments	are	needed	to	study	

the	TFs	identified	through	the	Y1H	assay.	However	the	potential	to	discover	
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multiple	defence	breeding	targets	that	can	be	stacked	to	reduce	Septoria	

resistance	evolution	is	highly	exciting.		
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6.	Discussion	

6.1	Introduction	

Many	WRKY	TFs	show	differential	expression	after	Septoria	

infection138,217,218.	Other	TFs	families	that	also	have	expression	changes	post	

Septoria	infection	include	bZIP	and	bHLH	TFs138.	Some	well	used	

Quantitative	Trait	Loci	(QTLs)	have	been	studied	and	linked	to	TFs219,	

including	a	WRKY219	and	bHLH	genes220	involved	in	defence	against 

Fusarium	graminearum	(causal	agent	of	fusarium	head	blight).	This	

knowledge	led	as	the	basis	for	the	project,	with	an	aim	to	find	defence	related	

breeding	targets.	The	focus	of	the	project	was	on	WRKY	TFs,	with	an	aim	to	

begin	unlocking	the	wheat	defence	pathway	against	Septoria.		

WRKY	TFs	are	important	in	plants,	not	only	defence	but	also	other	plant	

processes	(reviewed	in	68,221,222.	The	wheat	WRKY	family	is	expanded	in	

comparison	to	Arabidopsis	(199	and	7274	respectively).	There	is	an	uneven	

distribution	of	group	expansion	in	the	wheat	WRKYs	compared	to	

Arabidopsis	WRKYs,	with	an	increase	in	group	III	WRKYs	but	a	decrease	in	

group	I	WRKYs.	Currently	there	does	not	appear	to	be	a	clear	trend	between	

the	structure	of	WRKYs	and	their	function152.	It	is	interesting	that	the	groups	

have	not	expanded	in	the	same	proportions,	in	the	future,	after	further	

investigation,	a	correlation	may	become	clearer.		

Preliminary	experiments	looking	at	the	expression	changes	of	15	TaWRKYs	

in	Septoria	infected	samples,	lead	to	the	identification	of	two	genes	whose	

expression	were	upregulated	post	infection,	TaWRKY19	(chapter	3	and	4)	

and	TaWRKY9	(chapter	5).		

Whilst	expression	changes	do	show	an	indication	of	involvement	in	defence,	

protein	levels	and	the	expression	levels	of	downstream	gene	targets	of	these	

WRKYs	would	offer	more	of	an	insight	of	how	the	change	in	WRKY	

expression	levels	effects	the	cell,	and	the	defence	response.	Changes	in	

expression	are	not	the	only	level	of	regulation	a	cell	can	perform,	with	PTMs	

offering	a	rapid	and	dynamic	method	of	control	(reviewed	in	223-226).	

However	the	study	of	these	concepts	would	involve	the	generation	of	

transgenic	wheat,	which,	in	wheat,	takes	a	considerable	amount	of	time.	Also	
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at	the	start	of	the	study	the	targets	of	each	of	the	WRKYs	were	unknown,	

hence	why	expression	changes	of	the	WRKYs	were	used	in	this	study.		

6.2	TaWRKY19	

TaWRKY19	expression	begins	to	become	upregulated	from	6dpi	in	the	

Septoria	infected	samples.	The	visible	onset	of	symptoms	occurs	around	

12dpi	in	my	experiments,	this	occurs	when	the	Septoria	fungus	begins	to	kill	

the	leaf	tissue	as	it	switches	from	biotrophic	to	necrotrophic	growth.		

RNA	sequencing	experiments	have	shown	a	distinct	difference	in	wheat	gene	

expression	patterns	across	the	biotrophic	and	necrotrophic	Septoria	

infection	phase.	It	appears	that	Septoria	actively	attempts	to	down	regulate	

defence	related	genes	in	early	infection218,227.	It	would	be	interesting	to	see	if	

TaWRKY19s	expression	pattern	during	infection	differs	across	different	

wheat	varieties	and	Septoria	isolates.	TaWRKY19’s	expression	may	become	

upregulated	earlier	or	stronger	in	resistance	varieties,	which	would	enhance	

evidence	of	its	involvement	in	the	defence	response.	

Little	is	known	about	the	trigger	for	Septoria’s	switch	from	biotrophic	to	

necrotrophic	growth.	There	are	two	current	potential	hypotheses,	first	that	

the	switch	occurs	once	the	Septoria	has	reached	a	critical	mass	within	the	

apoplastic	space.	This	ensures	the	fungus	is	widespread	enough	to	fight	any	

defence	response	and	rapidly	kill	the	plant	cells4.	The	other	hypothesis	

implicates	a	balance	of	evading	detection	and	necrotrophic	infection;	

Septoria	continues	to	grow	until	it	senses	that	the	host	has	detected	it.	Then	

before	the	host	has	a	chance	to	mount	an	immune	response,	the	fungus	

enters	its	necrotrophic	phase	and	kills	the	cells228.	The	results	in	this	thesis	

would	suggest	the	former	hypothesis	to	be	true,	with	symptoms	for	wheat	

silenced	with	TaWRKY19	showing	a	day	earlier	than	the	control	and	

increased	susceptibility	to	Septoria.	Indicating	that	somehow	Septoria	can	

grow	faster	without	TaWRKY19.		

However	data	from	the	infection	time	course	would	suggest	that	Septoria	is	

detected	before	the	onset	of	visible	symptoms	(figure	3.2).	TaWRKY19’s	

expression	starts	to	become	upregulated	around	6dpi	when	compared	to	the	

healthy	samples,	with	the	expression	continuing	to	increase	up	until	12dpi,	
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corresponding	with	the	growth	phase	switch.	So	TaWKRY19	appears	to	be	

involved	in	early	defence	against	Septoria,	potentially	working	during	early	

detection	to	fend	off	Septoria,	hence	why	silencing	causes	an	increase	in	

susceptibility.	Septoria	can	be	measured	by	quantifying	the	total	amount	of	

Septoria	DNA	in	the	leaf.	Whilst	I	did	initial	experiments	to	find	suitable	qRT-

PCR	primers,	I	did	not	follow	up	on	this	method.	It	would	be	useful	to	see	if	

there	is	a	correlation	between	the	amount	of	Septoria	infection	and	the	

switch	to	necrotrophic	growth	in	different	silenced	and	WT	lines.		

Wheat	WRKY	genes	can	have	high	homology	towards	each	other,	therefore	it	

was	decided	that	the	silencing	fragments	should	be	designed	against	the	

UTRs	of	each	gene121.	Through	RACE	experiments	I	managed	to	sequence	

TaWRKY19s	3’	UTR	(192bps,	figure	3.4),	allowing	the	design	of	two	silencing	

fragments	against	TaWRKY19.	Ideally	these	silencing	fragments	would	have	

been	longer110,111,	however	reports	of	fragments	as	small	as	78bp	have	still	

shown	high	levels	of	silencing229.	I	also	checked	for	the	efficiency	of	the	

silencing	fragments,	with	both	showing	at	least	one	fragment	with	high	levels	

of	silencing	potential	(tables	3.2	and	3.3).		

As	well	as	predicting	an	acceptable	level	of	silencing	I	also	tested	the	

silencing	fragments	in	a	blast	search	for	any	potential	off	target	silencing.	

From	this	2	off	target	genes	were	found	with	homology	towards	TaWRKY19A	

and	one	non-coding	off	target	region	found	with	homology	towards	

TaWRKY19B.	Further	qRT-PCRs	testing	the	expression	levels	of	these	off	

target	genes/sequences	is	needed	to	fully	ensure	the	infection	phenotype	is	

not	due	to	the	down	regulation	of	these	genes.	However	it	should	be	noted	

that	the	genes	that	may	have	been	silenced	differed	between	the	two	

fragments	so,	since	plants	silenced	with	both	silencing	fragments	showed	

similar	infection	phenotypes,	it	indicates	that	the	phenotype	is	due	to	

TaWRKY19.	Also	neither	fragment	silenced	each	of	the	three	homologues	of	

any	of	the	off	target	genes	(although	not	all	genes	have	copies	across	each	

genome).		

VIGS	was	performed	on	2-week-old	seedlings	using	the	two	silencing	

fragments	from	TaWRKY19.	The	levels	of	silencing	for	the	two	fragments	

were	38%	and	42%	for	BSMV:TaWRKY19A	and	BSMV:TaWRKY19B	
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respectively.	TaWRKY19	expression	was	measured	after	two	weeks	of	

silencing	treatment,	however	without	Septoria	infection	TaWRKY19	has	

fairly	low	levels	of	expression	(figure	3.2).	On	reflection	it	would	have	been	

better	to	measure	TaWRKY19	expression	in	the	Septoria	infected	leaves	

between	10-14dpi,	giving	a	more	accurate	level	of	silencing.	This	would	

coincide	with	when	TaWRKY19s	expression	was	highest	(figure	3.2)	and	give	

a	more	insightful	view	of	the	effect	of	TaWRKY19	has	on	Septoria’s	ability	to	

infect	wheat	with	TaWRKY19	modulated.	Adding	to	this,	papers	have	been	

published	with	similar	levels	of	silencing	so	I	was	not	discouraged	by	these	

knockdowns45,119,137.	

Resistance	is	categorised	into	qualitative	and	quantitative	resistance.	

Qualitative	resistance	loci	have	a	stronger	phenotype	(such	as	the	QTL,	

Stb626,48,50),	however	Septoria	is	more	likely	to	evolve	resistance	towards	the	

QTLs.	They	are	also	more	likely	to	be	variety	and	isolate	specific166.	Septoria	

is	less	likely	to	evolve	resistance	to	quantitative	resistance	(which	can	be	

controlled	by	many	genes	in	the	same	chromosomal	location),	but	they	only	

lead	to	small	or	moderate	gains	in	resistance.	Of	the	known	qualitative	QTL’s	

there	are	none	that	cover	the	2BS	chromosome230,	the	chromosomal	location	

of	TaWRKY19.	There	is	a	quantitative	QTL	located	on	2BS	(QTL3),	which	

causes	a	20%	increease	in	resistance	to	Septoria	and	has	yet	to	be	assigned	to	

a	gene	or	set	of	genes166.	Neither	KWS	nor	myself	investigated	whether	

TaWRKY19	was	the	gene	associated	with	QTL3.		

During	the	PhD	TILLING	lines	for	TaWKRY19	and	TaWRKY9	were	acquired	

from	NIAB.	Lines	were	first	selected	based	on	the	mutations	ability	to	form	a	

premature	stop	codon,	leading	to	a	knock	out	in	the	gene	expression,	

however	this	was	not	always	possible.	KWS	were	working	on	crossing	these	

lines	so	that	there	was	a	mutation	across	the	A,	B	and	D	genome	homologues.	

The	hope	was	to	use	these	plants	in	Septoria	seedling	infection	assays,	

exactly	the	same	as	the	VIGS	lines,	therefore	confirming	the	VIGS	and	

potentially	seeing	a	stronger	phenotype	due	to	the	reduced	or	knocked	out	

expression	of	TaWRKY19	and	TaWRKY9.	However,	due	to	the	lengthy	

process	of	crossing	and	backcrossing,	these	lines	were	not	available.	I	assume	
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that	KWS	will	still	use	the	lines	in	field	trials	to	see	if	the	results	I	have	found	

in	my	laboratory	experiments	carry	across	to	the	field.		

To	further	investigate	TaWRKY19,	I	cloned	the	protein	into	

pEARLEYGATE104,	which	produces	recombinant	protein	with	a	YFP	tag.	The	

results	showed	that	TaWRKY19	localises	to	the	nucleus	whereas	YFP	

localises	throughout	the	cell.	Staining	of	the	nucleus	and	other	key	cell	

components	would	enhance	the	validation	of	this	experiment.	TaWRKY19	

nuclear	localisation	is	unsurprising	with	it	being	a	TF.	Further	work	is	

needed	to	fully	ensure	that	TaWRKY19	was	expressed	in	the	N.	benthamiana	

plants	and	that	the	signal	seen	in	these	plants	was	due	to	TaWRKY19.	Partial	

deletions	and	amino	acid	substitutions	of	the	TaWRKY19	protein	could	show	

a	difference	in	localisation.	This	is	shown	with	AtWRKY6	whose	novel	

nuclear	localisation	signal	was	identified	after	deletions	and	then	

substitutions	of	a	region	of	37	amino	acids	caused	AtWRKY6	to	localise	

throughout	the	cell	as	opposed	WT,	which	localised	to	just	the	nucleus231.	

The	nuclear	localisation	signal	(NLS)	found	in	AtWRKY6	is	not	present	in	

TaWRKY19	(based	on	a	blast	search150	of	the	NLS	protein	sequence	against	

TaWRKY19	protein	sequence).		

On	reflection	I	would	have	also	liked	to	study	TaWRKY19’s	expression	with	

expression	driven	by	it’s	own	promoter	as	opposed	to	35S	promoter.	

However,	due	to	TaWRKY19’s	low	expression	level,	this	may	have	led	to	little	

or	no	visualisation.	I	also	only	repeated	the	experiment	once	so	cannot	infer	

too	much	from	this	result,	however	TaWRKY19	expression	has	been	seen	in	

another	paper	in	the	nucleus152.	Other	studies	on	WRKY	localisation	have	

previously	used	the	35S	promoter	to	drive	expression232,233.	

Localisation	changes	under	stress	conditions	have	been	previously	seen	in	

other	TFs234,235.	Therefore	I	would	be	interested	to	see	if	there	are	any	

TaWRKY19	localisation	changes	after	fungal	infection,	potentially	using	

Botrytis	cinerea	fungus,	which	has	been	used	in	our	laboratory	previously	to	

infect	N.	benthamiana	leaves	(which	were	used	in	the	localisation	study).		

TaWRKY19	has	been	previously	studied152	using	Arabidopsis	plants	that	

overexpressed	TaWRKY19.	The	study	concerned	abiotic	stresses,	finding	

TaWRKY19	to	be	upregulated	in	cold,	drought,	salt	and	ABA	treatments.	
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Plants	overexpressing	TaWRKY19	also	conferred	a	tolerance	to	these	

stresses.	In	cold	and	salt	stress	there	was	an	increase	in	soluble	sugar	

content.	Sugar	is	important	in	both	abiotic	and	biotic	stresses	(reviewed	in	
236,237).	High	sugar	levels	(as	seen	in	Arabidopsis	overexpressing	

TaWRKY19152)	have	been	associated	with	an	increase	in	defence	related	

compounds238.	Sugar	is	also	an	important	signalling	molecule	(reviewed	in	
236,237)	and	in	priming	defence	(reviewed	in	236).		

I	did	initial	experiments	to	measure	the	levels	of	soluble	sugar	in	the	

TaWRK19	silenced	wheat	leaves	but	I	was	unsuccessful.	Ideally	I	would	have	

followed	up	on	this	to	see	if	the	results	from	Can-Fang	et	al90,	who	studied	

TaWRKY19	in	Arabidopsis	plants,	could	be	replicated	in	wheat	plants.	

Experiments	investigating	the	expression	of	sugar	reporter	genes	such	as	β	

amylase,	whose	expression	is	reduced	in	high	sugar	levels239,	in	TaWRKY19	

knockdown	plants	would	also	offer	an	insight	into	any	potential	link.		

I	identified	the	region	1,497bp	upstream	of	TaWRKY19’s	ATG	start	codon	

and	cloned	this	for	use	in	a	Y1H	experiment.	Selecting	a	set	number	of	bps	

upstream	is	a	suggested	method	for	promoter	analysis	when	the	promoter	

has	not	been	identified	previously240.	I	aimed	for	2,000bp	upstream,	however	

1,500bp	was	satisfactory.	At	that	point	in	time	the	wheat	genome	had	not	

been	fully	assembled	hence	why	I	could	only	obtain	the	sequence	1,500bp	

upstream	of	the	ATG	for	TaWRKY19.			

I	used	the	Arabidopsis	RR	TF	library133.	The	TF	library	contained	

approximately	1,200	different	TFs.	I	tried	to	revive	the	entire	library,	

however	some	of	the	plates	did	not	grow	very	well	(figure	4.2).	This	included	

a	large	number	of	WRKY	TFs	on	plate	10.	Other	members	of	my	lab	also	work	

on	WRKY	TFs,	with	the	Y1H	experiments	hvaing	potentially	identified	the	

Arabidopsis	homologues	of	these	WRKYs,	giving	a	clear	link	between	two	

WRKYs	studied	within	the	group.	Hwoever	this	was	less	likely	due	to	the	

poor	revival	of	yeast	expressing	WRKY	TFs.	Overall	68%	of	the	library	was	

revived,	with	all	TF	families	represented	across	these	wells.		

During	the	Y1H	I	found	six	TFs	that	bound	to	TaWRKY19	promoter	strongly;	

AtbZIP1,	AtbZIP53,	AtTCP20,	AtHSFB1/4,	AtPHL6	and	AtATL56.	Ideally	I	

would	have	used	a	wheat	TF	library,	however,	at	the	time,	this	was	the	
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easiest	option.	After	performing	the	experiment	I	learnt	of	a	Y1H	library	

made	up	of	wheat	TFs	that	are	responsive	to	Septoria	infection.	Using	this	

library	instead	would	have	multiple	benefits,	with	the	obvious	benefit	being	

that	they	are	wheat	TFs.	Also,	since	they	were	cloned	from	Septoria	infected	

leaf	tissue,	I	could	have	assumed	they	would	be	more	likely	to	have	a	role	in	

defence	against	Septoria241.	However	using	an	Arabidopsis	TF	library	also	

had	some	benefits,	for	instance	the	genes	were	much	more	likely	to	have	

been	previously	studied,	offering	insights	into	their	potential	function.		

HSFB1is	involved	in	attenuation	of	the	heat	response,	repressing	heat	

responsive	genes	in	moderate	heat	stress242.	It	also	controls	the	balance	

between	growth	and	defence,	regulating	the	expression	of	many	defence	and	

growth/development	genes.	Pajerowska-Mukhtar	et	al243	showed	that	

knockout	mutants	could	not	mount	a	defence	response	to	the	PAMP	elf18	(N	

terminal	of	the	bacterial	peptide	elongation	factor	Tu244),	but	could	respond	

to	flg22	(N	terminal	of	bacterial	peptide	flagellin245).	Ef18	and	flg22	trigger	

different	receptors,	activating	different	pathways	in	response	to	bacterial	

infections243.	As	well	as	responding	to	direct	pathogen	challenges,	HSFB1/4	

also	helps	prime	the	plants	against	future	attacks	through	systemic	acquired	

resistance	(SAR)246.	If	the	wheat	homologue	acted	in	a	similar	manner	it	

could	make	a	very	interesting	breeding	target,	particularly	when	combined	

with	TaWRKY19,	which	appears	to	be	a	resistance	factor.		

As	previously	mentioned	nitrogen	is	very	important	in	wheat	growth,	with	

multiple	rounds	of	additional	nitrogen	(from	fertilisers	and	manure)	added	

by	farmers	throughout	the	growth	season247.	Farmers	need	to	apply	enough	

nitrogen	for	the	crop	without	over	applying	and	therefore	wasting	money	

(after	reaching	yield	maximum	potential).	This	makes	nitrogen	a	very	

interesting	area	of	study	for	breeding	companies.	One	role	of	AtTCP20	is	in	

nitrate	foraging;	with	knockout	mutant	studies	showing	a	need	for	AtTCP20	

in	preferential	lateral	root	growth	into	nitrate	rich	soil198.	AtTCP20	is	also	

involved	in	defence,	downregulating	expression	of	LOX2,	a	jasmonic	acid	

biosynthesis	gene248.	Jasmonic	acid	(JA)	is	an	important	plant	hormone	with	

involvement	in	defence	against	necrotrophic	pathogens	(reviewed	in	249).	

Salicylic	acid	(SA)	is	another	plant	hormone	vital	to	defence.	SA	is	involved	in	
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the	defence	against	biotrophic	pathogens	and	SAR	(reviewed	in	250,251).	

AtTCP20	interacts	with	AtTCP8,	which	is	a	strong	inducer	of	IsoChorismate	

Synthase	1	(ISC1)	expression	(involved	in	SA	biosynthesis252),	implying	it	

may	regulate	ISC1.	The	authors	theorised	the	TCP	genes	may	work	to	

regulate	the	balance	between	JA	and	SA	mediated	defence253.	

AtTCP20	offers	an	interesting	breeding	target	if	the	wheat	homologue	were	

to	act	the	same.	It	could	potentially	increase	nitrate	foraging	efficiency	and	

increase	resistance	towards	biotrophic	pathogens,	including	early	Septoria	

infection.	There	is	anecdotal	evidence	of	a	link	between	high	levels	of	

nitrogen	and	increased	infection;	hence	further	studies	around	AtTCP20	and	

its	wheat	homologue	may	offer	an	interesting	breeding	target	with	the	ability	

to	increase	nitrogen	uptake	and	decrease	biotrophic	pathogen	infection.	One	

more	thing	to	note	about	AtTCP20	is	its	potential	expression	regulation	by	

SUMO	under	stress	conditions.	RNA	sequencing	performed	by	fellow	

laboratory	members,	Dr.	Beatriz	Orosa	and	Dr.	Mark	Bailey,	on	SUMO	

protease	knockout	plants	(Overly	Tolerant	to	Salt	1	and	2	(OTS1/2))	

revealed	a	reduction	in	AtTCP20	expression	after	JA	treatment	when	

compared	to	Col-0	plants.	PMT	control	can	fine	tune	responses	to	stress	

(reviewed	in	254).	The	possibility	of	somehow	exogenously	inducing	

SUMOylation	events	and	therefore	TCP20	expression	when	needed	is	an	

interesting	area	for	future	crop	protection.		

AtbZIP1	is	involved	in	abiotic	stress	responses;	it	is	a	resistance	factor	

towards	salt,	drought	and	osmotic	stresses180.	It	is	also	involved	in	the	

regulation	of	light	and	nitrogen	responses.	AtbZIP1	knockouts	unusually	

show	an	inversion	of	gene	expression	in	light	and	nitrogen	conditions	

compared	to	WT	plants179.	As	previously	mentioned	genes	involved	in	

nitrogen	responses	are	of	high	interest,	particularly	those	that	appear	to	

regulate	the	nitrogen	response	so	drastically	as	AtbZIP1.	

AtbZIP1	and	AtbZIP53	are	known	to	act	redundantly.	They	have	been	

implicated	together	in	abiotic	stress	responses,	with	mutant	studies	

(knockout	and	overexpressing)	showing	an	involvement	in	salt183	and	light	

stresses184.	Under	salt	and	light	stresses	they	regulate	carbohydrate	and	

amino	acid	metabolism	for	plant	survival183,184.		
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As	well	as	abiotic	stress	regulation,	AtbZIP53	is	also	involved	in	

developmental	control,	particularly	the	promotion	of	seed	maturation255	and	

germination256.	Seed	quality	is	important	in	wheat	crop	production,	with	low	

quality	seeds	having	a	negative	effect	on	yield257.	If	TabZIP98	(AtbZIP53’s	

wheat	homologue)	acts	in	a	similar	way	it	could	make	another	useful	

breeding	target,	offering	improved	abiotic	stress	tolerance	and	seed	

maturation	(faster	or	increased	quality).	

AtPHL6	and	AtATL56	have	not	been	studied	to	the	same	extent	therefore	I	

cannot	infer	any	potential	role	in	defence	for	their	wheat	homologues	due	to	

lack	of	evidence.		

The	wheat	homologues	for	the	Y1H	targets	were	identified	using	blast	

searches.	I	then	ordered	primers	with	the	intention	of	cloning	each	of	the	

wheat	homologues	to	test	their	ability	to	bind	to	TaWRKY19	promoter.	After	

trying	different	PCR	conditions,	cDNAs	and	polymerases	I	only	managed	to	

successfully	clone	TabZIP2	(AtbZIP1	homologue).	TabZIP2	and	AtbZIP1	had	

similar	TaWRKY19	promoter	binding	strengths	(up	to	40/60mM,	figures	4.4,	

4.6	and	4.9).		

After	some	discussion	I	think	I	should	analyse	the	Y1H	results	differently,	at	

the	time	of	the	experiment	I	believed	the	yeast	to	have	grown	strongly	based	

on	multiple	colonies	growing.	However	these	do	not	necessarily	indicate	a	

strong	interaction,	as	only	a	few	cells	need	to	have	evolved	mutations	in	

either	the	promoter	sequence	or	have	some	errant	yeast	TFs	bind	to	the	

promoter	to	cause	growth170.	If	there	was	a	true	interaction	there	should	be	

many	colonies	growing	within	each	of	the	5μl	spots	(as	seen	with	AtbZIP1	in	

figure	4.6),	or	a	lawn	of	growth	(as	seen	with	AtbZIP53	in	figure	4.6).	There	

appears	to	be	some	of	this	growth	between	AtTCP20	and	TaWRKY19	

promoter.	Another	problem	with	this	experiment	that	I	did	not	consider	at	

the	time	is	that	there	is	very	little	growth	of	any	of	the	colonies	in	–L-W-H	

media.	On	reflection	I	should	have	also	included	–L-W	media	in	this	

experiment	to	ensure	the	yeast	had	mated.	Instead	I	relied	on	the	fact	that	

the	protocol133	included	a	step	in	which,	post	mating,	the	yeast	was	incubated	

in	liquid	selection	media	(-L-W).	Having	this	in	the	figure	as	well	would	

indicate	the	level	of	mating	and	growth	at	a	baseline	level,	rather	than	what	I	
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did	at	the	time,	setting	the	baseline	to	a	condition	that	already	included	a	

selection	pressure	(-L-W-H).		

Another	aspect	that	I	did	not	consider	at	the	time	is	that	with	increasing	3AT	

concentrations	the	levels	of	growth	should	decrease	gradually	(as	in	figure	

4.6).	As	is	shown	in	figure	4.3	this	is	not	always	the	case	in	my	experiments	

as	there	are	multiple	cases	in	which	growth	can	be	seen	on	higher	

concentrations	of	3AT	but	not	in	lower	concentrations.		

When	I	repeated	these	experiments	with	just	AtbZIP1	and	AtbZIP53	the	

results	were	much	more	satisfactory.	Again	I	did	not	include	the	mated	

selection	pressure,	which	I	would	if	I	were	to	do	it	again.	AtbZIP53	binds	to	

TaWRKY19	promoter	more	strongly	than	AtbZIP1.	AtbZIP1	still	has	some	of	

the	errant	colonies	however	there	is	also	a	high	number	of	smaller	colonies,	

which	indicates	a	weak	binding	of	AtbZIP1	to	TaWRKY19	promoter.		

Further	experiments	are	needed	to	validate	these	results.	Particularly	for	

AtTCP20,	AtHSFB1/4,	AtPHL6	and	AtATL56.	Y1H	do	have	problems	with	high	

occurrence	of	false	positives258.	They	are	useful	however	as	a	starting	point	

due	to	their	low	cost,	speed	and	ability	to	screen	many	different	

interactions133,259.		These	experiments	could	include	performing	ChIP-seq	or	

EMSA.	These	experiments	would	confirm	the	binding	of	the	TF	to	TaWRKY19	

promoter	and,	with	ChIP-seq,	also	provide	the	sequences	of	the	other	

promoters	regulated	by	the	TF.	This	would	help	to	enhance	the	network	

surrounding	TaWRKY19	and	TabZIP2.	ChIP-seq	has	been	performed	on	

rice260,261	and	barley.	To	my	knowledge	there	are	currently	no	examples	of	

ChIP-seq	being	performed	in	wheat.		

	

6.3	TabZIP2	

Since	TabZIP2	was	the	only	wheat	homologue	I	could	clone	and	therefore	

confirm	its	ability	to	bind	to	TaWRKY19’s	promoter	I	focussed	on	this	gene	

for	silencing	and	infection	studies,	similar	to	the	studies	performed	on	

TaWRKY19.		

First	an	experiment	investigating	TabZIP2	expression	in	healthy	and	Septoira	

infected	wheat	was	performed.	Like	TaWRKY19,	TabZIP2	is	also	upregulated	
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during	Septoria	infection,	with	the	increase	slightly	delayed	in	comparison	to	

TaWRKY19	(10dpi	compared	to	6dpi	respectively).	The	older	healthy	

samples	also	have	increased	expression.	It	is	known	that	AtbZIP1	(TabZIP2s	

arabidopsis	homologue)	is	regulated	by	light,	which	may	have	contributed	to	

the	increase	in	expression.	However	the	samples	were	taken	at	the	same	time	

point	each	day	to	mitigate	any	circadian	rhythm	effects	therefore	light	should	

not	have	an	effect	in	this	upregulation.		

I	proceeded	to	design	and	clone	two	silencing	fragments	for	TabZIP2,	leading	

to	successful	silencing	in	wheat.	The	levels	of	silencing	were	similar	to	that	in	

TaWRKY19	silencing	experiments	at	40%	and	41%	for	TabZIP2A	and	

TabZIP2B	respectively.	As	mentioned	before,	I	would	have	liked	to	

investigate	the	levels	of	silencing	at	TabZIP2’s	highest	expression	point	

(10dpi)	to	get	a	true	assessment	of	the	silencing.		

The	silenced	wheat	was	then	tested	in	Septoria	infection	seedling	assays.	

Wheat	silenced	with	TabZIP2	have	the	opposite	phenotype	to	TaWRKY19	

silenced	wheat,	with	the	onset	of	visible	symptoms	delayed	compared	to	the	

BSMV:00	control	wheat	(figure	4.16).	The	Septoria	infection	was	impaired,	

with	a	reduction	in	spore	production	on	TabZIP2	silenced	wheat	(figure	

4.18).	These	results	indicate	that	TabZIP2	is	a	negative	regulator	of	wheat	

defence	against	Septoria,	opposite	to	TaWKRY19.		

Many	papers	have	used	infection	symptoms,	pycnidia	counts	and	spore	

counts	as	an	indication	for	Septoria’s	infection	ability26,119,120,262	with	more	

reliance	on	spore	counts	and	infection	symptoms	rather	than	pycnidia	

counts26,50,230.	Infection	symptoms	can	either	be	scored	by	assessing	the	

onset	of	visible	symptoms	or	by	assessing	the	percentage	of	leaf	covered	with	

necrosis	and	pycnidia	at	a	certain	time	point	after	infection.	The	second	

method	takes	into	account	pycnidia	but	does	not	count	them	directly,	instead	

setting	a	minimum	pycnidia	concentration	for	when	the	area	should	be	

counted	as	diseased45.	

Further	experiments	using	qRT-PCR	to	measure	fungal	biomass	(after	DNA	

extraction	from	infected	wheat)	can	also	be	performed	to	enhance	results.	I	

did	begin	to	work	on	performing	these	experiments	but	did	not	complete	

this.		
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Ideally	I	would	have	tested	the	TabZIP2	knockdown	plants	ability	to	defend	

against	abiotic	stresses	to	see	if	it	functioned	the	same	as	AtbZIP1.	

Unfortunately	I	did	not	have	time	to	do	this	and	abiotic	stress	was	not	the	

main	focus	of	my	project.	Abiotic	stresses	cause	major	crop	losses263,264	and	

since	AtbZIP1	positively	defends	against	abiotic	stresses180	there	is	a	

possibility	that	TabZIP2	could	also	be	a	positive	regulator	against	abiotic	

stress.	This	would	not	be	ideal	with	my	results	indicating	a	negative	

regulation	against	Septoria	infection.		

After	showing	TabZIP2	binds	to	TaWRKY19s	promoter	(via	the	Y1H),	the	

next	step	was	to	see	whether	TabZIP2	controls	TaWRKY19	expression	

positively	or	negatively.	To	do	this	I	used	TabZIP2	silenced	wheat	samples	to	

measure	the	expression	of	TaWRKY19.	The	results	of	this	indicate	that	

TabZIP2	may	be	a	negative	regulator	of	TaWRKY19	(figure	4.22).	Through	

the	Y1H	experiment	I	found	at	least	5	other	TFs	that	potentially	regulate	

TaWRKY19s	expression.	This	can	be	seen	through	TaWRKY19	and	TabZIP2’s	

expression	profiles	in	healthy	and	Septoria	infected	wheat.	TabZIP2	

expression	sharply	rises	at	10dpi	(figure	4.11),	but	this	does	not	cause	a	

decrease	in	TaWRKY19	expression	(figure	3.2),	in	fact	TaWRKY19’s	highest	

expression	point	is	at	12dpi.	Further	confirmation	of	other	TFs	regulating	

TaWRKY19	expression	comes	from	investigating	the	expression	of	both	

genes	in	different	wheat	varieties	(figures	4.20	and	4.21).	There	appears	to	

be	no	correlation	between	the	expression	levels	of	TaWRKY19	and	TabZIP2	

across	the	wheat	varieties.	This	experiment	was	performed	on	seedlings	(4-

weeks-old);	older	leaves	(such	as	the	flag	leaf)	may	show	a	different	

correlation.		

Although	TabZIP2	was	one	of	the	weaker	interactors	from	the	TaWRKY19	

promoter	binders	list	it	is	known	that	bZIP	TFs	are	regulated	by	

phosphorylation265.	My	research	group	is	highly	focussed	upon	PTMs,	

another	reason	for	focussing	on	AtbZIP1.	Other	studies	have	postulated	to	

the	ability	of	PTMs	to	change	binding	capacity	of	AtbZIP1181.	Ideally	I	would	

have	liked	to	investigate	whether	mutations	in	the	phosphorylation	site	

change	the	binding	strength	of	AtbZIP1	and	TabZIP2	towards	TaWRKY19	

promoter.	Phosphorylation	is	important	in	defence,	the	MAPK	cascade	is	
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activated	once	a	pathogen	is	perceived	(reviewed	in	35,36).	Activation	of	this	

pathway	leads	to	successive	rounds	of	phosphorylation,	the	outcome	of	

which	may	be	the	potential	phosphorylation	of	TabZIP2.	My	experiments	

indicate	that	TabZIP2	is	actually	a	negative	regulator	of	defence	and	

TaWRKY19	(which	is	a	positive	regulator	of	defence).	Therefore	it	may	be	

activated	(potentially	through	phosphorylation)	to	ensure	a	defence	

response	is	not	activated	prematurely,	as	it	is	an	energy	costly	process266.		

As	previously	mentioned,	AtbZIP1	regulates	nitrogen	and	light	responses.	If	

the	same	is	true	for	TabZIP2	it	may	offer	an	interesting	link	between	the	

nitrogen	and	defence	paradigm267-269.	As	previously	mentioned,	Dr.	Jack	Lee	

performed	qRT-PCR	experiments	studying	expression	changes	of	TabZIP2	

after	watering	with	different	nitrogen	concentrations.	Unfortunately	there	

did	not	appear	to	be	any	difference	between	the	three	nitrogen	

concentrations	applied	and	TabZIP2’s	expression.	Interestingly,	TaWRKY19s	

expression	was	upregulated	in	low	nitrogen	concentrations;	potentially	

showing	TaWRKY19	is	regulated	by	nitrogen.	This	result	is	in	line	with	the	

high	nitrogen	=	high	infection	concept	as	TaWRKY19	is	a	positive	regulator	of	

defence;	therefore	as	nitrogen	is	increased,	TaWRKY19	expression	is	

decreased	leading	to	increased	susceptibility.	These	experiments	were	

performed	on	4-week-old	seedlings,	thus	do	not	necessarily	translate	to	the	

field.	A	large	field	trial	was	performed	by	KWS	during	this	project.	In	this	trial	

two	different	nitrogen	fertiliser	concentrations	as	well	as	two	fungicides,	one	

against	everything	but	Septoria	and	the	other	also	controlling	Septoria,	were	

applied	to	8	different	wheat	varieties.	As	of	writing,	flag	leaf	samples	from	

this	trial	were	being	processed	ready	for	use	in	qRT-PCR	to	measure	the	

expression	of	certain	genes,	including	TaWRKY19,	TaWRKY9	and	TabZIP2.	

This	could	confirm	TaWRKY19s	nitrogen	regulation	and	may	show	a	link	

between	TabZIP2,	nitrogen	(as	with	AtbZIP1)	and	defence.		

It	is	possible	to	silence	two	genes	at	the	same	time	using	VIGS270.	Since	

TabZIP2	appears	to	be	a	negative	regulator	of	TaWRKY19	and	they	have	

opposing	defence	roles	it	would	be	interesting	to	see	if	silencing	both	

concurrently	led	to	a	WT	phenotype	or	whether	one	of	the	genes	has	a	larger	

effect.		
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Interestingly,	AtbZIP1	(and	therefore	maybe	TabZIP2)	is	negatively	regulated	

by	 sugar182,271,272.	 With	 TaWRKY19	 potentially	 increasing	 sugar	 content152	

there	 may	 be	 a	 feedback	 loop	 towards	 TabZIP2.	 As	 TaWRKY19	 positively	

regulates	sugar	levels,	defence	increases	and	TabZIP2	translation	decreases,	

which	is	potentially	a	negative	regulator	of	TaWRKY19	leading	to	an	increase	

in	TaWRKY19	expression	(figure	4.22).		

I	also	investigated	whether	TabZIP2	regulates	other	TaWRKY	genes.	I	chose	

two	newly	identified	WRKY	genes;	TaWRKY41	and	TaWRKY63.	These	genes	

were	identified	by	Sarris	et	al273	who	searched	multiple	plant	genomes	for	

the	presence	of	NBS-LRR-fusion	proteins.	NBS-LRR	proteins	are	important	in	

pathogen	perception273-275.	TabZIP2	only	appears	to	regulate	TaWRKY63	

(negative	regulation)	but	not	TaWRKY41	(figures	4.23	and	4.24).	This	is	

interesting	as	the	assumption	is	that	these	genes	work	at	early	defence	

detection.	Therefore	TabZIP2	is	potentially	redirecting	resources	towards	

late	defence	or	growth	after	its	upregulation	post	pathogen	perception.	I	did	

perform	initial	silencing	and	infection	experiments	on	both	TaWRKY41	and	

TaWRKY63	but	they	were	unsuccessful.	This	was	disappointing	as	it	would	

be	useful	to	find	breeding	targets	which	focuses	on	early	perception,	

potentially	stopping	Septoria	infection	(by	increased	plant	perception)	

before	it	has	a	chance	to	switch	to	necrotrophic	growth	and	cause	damage.		

The	final	thing	I	focussed	on	in	chapter	4	was	the	potential	for	a	feedback	

loop	between	TaWRKY19	and	the	other	Y1H	targets	TaHSFB1	and	TaTCP20.	

Similar	to	TabZIP2,	TaTCP20	does	not	appear	to	be	regulated	by	TaWRKY19.	

TaHSFB1	however	does	appear	to	be	regulated	by	TaWRKY19	(figure	4.27),	

becoming	upregulated	in	both	TaWRKY19	silenced	lines.	Feedback	loops	are	

important	as	they	allow	a	rapid	increase	in	the	response,	or	they	can	dampen	

the	response	to	save	energy266.		

6.4	TaWRKY9	

The	other	WRKY	gene	identified	as	a	candidate	in	the	initial	experiments	was	

TaWRKY9.	Unfortunately	due	very	low/zero	expression	levels	of	TaWRKY9	

in	the	healthy	samples	I	did	not	show	the	qRT-PCR	results	of	TaWRKY9	

expression	in	healthy	and	Septoria	infected	time	courses.	On	reflection	I	
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would	have	repeated	these	experiments	with	increased	cDNA	in	the	qRT-PCR	

for	both	healthy	and	infected	wheat	to	ensure	a	signal	is	detected.	Initial	

experiments	indicated	TaWRKY9	was	upregulated	in	infected	tissue,	this	was	

partially	confirmed	in	the	qRT-PCR	since	only	the	infected	tissue	samples	

were	detected	past	the	threshold	value.		

I	still	decided	to	perform	silencing	and	Septoria	infection	experiments	upon	

TaWRKY9,	even	without	solid	evidence	of	expression	changes.	In	order	to	

have	a	silencing	fragment	with	low	levels	of	off	target	silencing	I	performed	

RACE	PCR	experiments	to	sequence	the	UTRs	of	TaWRKY9.	The	3’	UTR	for	

TaWRKY9	was	sequenced,	with	one	silencing	fragment	designed	against	it	

due	to	its	small	size	(132bp)(figure	5.4).	UTRs	are	important	in	gene	

regulation,	with	18-19%	of	all	transcribed	DNA	in	Arabidopsis	and	rice	

encoding	for	UTRs276.	A	recent	review	by	Srivastava	et	al276	highlights	the	

importance	of	UTRs	in	gene	regulation	in	plants.	They	would	like	to	see	more	

studies	focussing	on	both	the	CDS	and	the	UTR,	particularly	in	crop	plants.	

After	designing	the	silencing	fragment	against	the	3’	UTR	I	then	blasted	it	to	

test	for	any	potential	off	target	silencing.	The	blast	was	performed	against	cv.	

Chinese	Spring,	whereas	I	identified	the	3’	UTR	sequence	from	cv.	Avalon.	

Interestingly	there	is	a	SNP	located	in	the	UTR,	potentially	causing	a	

difference	in	regulation	of	TaWRKY9	through	the	UTR	in	the	two	varieties.	

Both	varieties	may	show	similar	expression	levels,	but	have	different	protein	

levels	due	to	this	regulation.	Silencing	TaWRKY9	in	different	varieties	and	

infecting	them	with	Septoria	whilst	also	sequencing	the	full	coding	region	

may	give	insights	to	a	link	between	UTRs	and	defence.		

Silencing	of	TaWRKY9	was	successful,	with	an	average	decrease	in	

expression	of	46%	across	the	three	experiments	(figure	5.7).	These	plants	

were	then	used	in	Septoria	infection	experiments.	As	with	TaWRKY19,	if	I	

were	to	repeat	the	experiments	again	I	would	have	measured	silencing	levels	

in	Septoria	infected	leaf	tissue,	as	TaWRKY9	is	upregulated	after	infection.		

Septoria	infection	on	TaWRKY9	silenced	plants	is	impaired,	with	a	delay	in	

the	onset	of	necrotrophic	growth	(figure	5.8),	reduced	pycnidia	(35%,	figure	

5.9)	and	spore	(51%,	figure	5.10)	production.	These	results	indicate	that	

TaWRKY9	is	a	negative	regulator	of	defence.		
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After	determining	a	role	in	defence	for	TaWRKY9	the	next	step	was	to	

investigate	upstream	genes	in	the	hope	of	finding	another	TF	that	could	have	

a	larger	effect	in	the	defence	response	pathway.	It	also	gives	an	idea	of	the	

function	of	TaWRKY9.	A	1,973bp	region	upstream	of	TaWRKY9s	ATG	was	

identified	and	cloned	(figure	5.11)	ready	for	experimentation	through	a	Y1H	

screen.	The	same	library	was	used	as	with	TaWRKY19.	Through	the	initial	

screen	62	TFs	were	identified	(table	5.3).	This	was	later	reduced	to	eight	TFs	

after	increased	3AT	selection	pressure	was	applied	–	AtRMR1,	AtbHLH010,	

IIF	factor	beta	subunit,	AtSCL26,	AtDREB19,	AtMYB8,	AtAGL3	and	AtAGL73	

(figure	5.12).		

Interestingly	of	the	top	eight	TaWRKY9	promoter	binders,	AGL3,	AGL73,	

bHLH10	are	all	involved	in	floral	development213,215,277,278	or	fertility277.	Also	

DREB19	is	more	expressed	in	seedling	and	inflorescence	tissue	with	

overexpressers	flowering	sooner	than	WT	plants279.	The	Y1H	experiments	

did	not	indicate	whether	the	TFs	positively	or	negatively	regulated	TaWRKY9	

expression.	Since	it	is	a	negative	regulator	of	defence	and	TFs	involved	in	

development	bind	to	its	promoter,	TaWRKY9	may	be	involved	in	the	balance	

between	growth	and	defence.	I	did	perform	initial	experiments	testing	the	

growth	phenotypes	of	TaWRKY9	knockdown	plants.	There	were	some	

differences,	with	a	slight	decrease	in	leaf	length	compared	to	BSMV:00	

treated	control	plants.	However	there	were	no	differences	in	the	number	of	

tillers	and	I	did	not	measure	yield	due	to	time	limitations	and	the	small	size	

of	the	experiment.	Therefore	field	experiments	looking	into	the	growth,	

flowering,	flowering	time	and	yield	of	TaWRKY9	knockdown,	TILLING	or	

transgenic	knockout	lines	would	be	interesting.		

DREB19	expression	is	highly	upregulated	in	salt,	drought	and	heat	stress,	

with	overexpressers	having	enhanced	tolerance	to	salt	and	drought	stress279.	

Drought	and	salt	stress	are	important	abiotic	stresses	in	crop	production,	

leading	to	a	potential	50%	reduction	in	yield263,264.	Thus	making	it	another	

important	focus	for	plant	breeders,	particularly	if	there	is	a	link	to	defence	

responses	through	TaWRKY9.	

DREB19	is	not	responsive	to	the	plant	hormones	SA	and	JA,	which	are	

important	in	plant	defence.	Initial	experiments	investigating	the	potential	for	
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a	feedback	loop	indicate	that	TaWRKY9	is	a	negative	regulator	of	AtDREB19’s	

wheat	homologue	(figure	5.14).	In	TaWRKY9	knockdown	plants,	TaDREB19	

expression	is	increased	almost	7	fold.	Further	repeats	of	this	experiment	are	

needed	to	validate	this	result.	However	of	all	the	real	time	experiments	

performed	in	this	thesis	it	does	represent	the	highest	average	change	in	

expression.	Experiments	to	ensure	the	wheat	homologue	also	binds	to	

TaWRKY9	are	also	needed	before	more	in	depth	studies	into	the	interactions	

and	function	of	TaDREB19	are	to	be	performed.	Experiments	could	be	

performed	testing	the	ability	of	TaWRKY19	silenced	plants	to	deal	with	

abiotic	stresses	such	as	salt	and	drought	(as	overexpressing	AtDREB19	plants	

are	resistant),	which	may	be	due	to	the	increased	expression	of	TaDREB19.	

Simultaneously	silencing	both	genes,	as	well	as	each	individually,	would	

indicate	which	gene	is	dominant,	with	the	Y1H	experiments	indicating	

AtDREB19	binds	to	TaWRKY19’s	promoter	but	then	TaWKRY19	silenced	

plants	indicating	that	it	has	a	role	in	negatively	regulating	TaDREB19.		

After	looking	into	the	function	of	AtRMR1,	I	am	not	convinced	that	outside	of	

yeast	it	truly	binds	to	TaWRKY9	promoter.	Although	other	RING-H2	domain	

proteins	are	known	to	regulate	transcription280,281	(hence	why	it	was	

included	in	the	Y1H	library),	I	do	not	believe	this	particular	gene	does.	This	is	

based	on	the	fact	that	it	contains	a	transmembrane	domain	and	an	N	terminal	

protease-associated	domain	that	interacts	with	sequence	specific	vacuolar	

sorting	determinants282,283.	There	is	strong	evidence	of	its	cargo	receptor	

function,	trafficking	towards	the	protein	storage	vacuole284,285.		The	C	

terminal	domain	is	cytosolic	facing	and	containing	a	RING-H2	domain,	the	

function	of	which	is	unknown.	Also	it	does	not	appear	to	localise	to	the	

nucleus,	it	is	instead	localised	to	the	endoplasmic	reticulum282,286,287	and	

trans-golgi	network	(when	heterodimerised	with	AtRMR2)287.	Therefore	it	is	

not	surprising	that	the	wheat	homologues	expression	does	not	change	in	

TaWRKY9	knockdowns.		

6.5	Conclusion	

With	the	ever-changing	environment,	increase	in	population	and	decrease	in	

farming	land	there	is	a	need	to	ensure	our	crops	are	more	productive	in	a	
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smaller	space.	Septoria	can	cause	up	to	50%	losses	in	wheat	yield3.	Efforts	to	

control	Septoria	are	made	more	difficult	by	its	stealthy	growth	and	rapid	

resistance	evolution3,14,17,24.	TFs	are	ideal	candidates	for	breeding	targets55.	

They	have	the	ability	to	control	multiple	genes	and	lead	adaptation	against	

stresses288.	WRKY	and	bZIP	TFs	were	found	to	show	high	levels	of	

expressional	change	post	Septoria	infection,	they	have	also	been	shown	to	be	

involved	in	plant	defence	previously.	Throughout	this	project	I	have	

identified	two	WRKY	TFs	and	one	bZIP	TF	that	have	a	role	in	defence	against	

Septoria.	Further	field	experiments,	potentially	using	TILLING	lines,	are	

needed	to	validate	my	results.	However	my	hope	is	that	these	can	be	used	as	

breeding	targets	for	the	generation	of	new	Septoria	resistant	varieties.	The	

two	WRKY	genes	have	already	been	patented	(in	collaboration	with	KWS)	for	

this	very	function.	
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8.	Supplemental		

Supplemental	table	1	

Primer	name	 Sequence	

Melting	

temp	 Notes	

AtBZIP53	protein	

F	 CACCATGGGGTCGTTGCAAATGCA	 55	 Cloning	protein	

AtBZIP53	protein	

R	 TCAGCAATCAAACATATCAGCAGAAGC	 55	 Cloning	protein	

BSMV	seq	F	 GGTGCTTGATGCTTTGGATAAGG	 55	 Sequencing	

BSMV	seq	R	 TGGTCTTCCCTTGGGGGAC	 55	 Sequencing	

M13	R	 CAGGAAACAGCTATGAC	 		 Sequencing	

pJET1.2	R	 CGACTCACTATAGGGAGAGCGGC	 		 Sequencing	

RT	CDC48	F	 GTCCTCCTGGCTGTGGTAAAAC	 60	 real	time	

RT	CDC48	R	 AGCAGCTCAGGTCCCTTGATAC	 60	 real	time	

RT	EF1a	F	 A	CCTGAAGAAG	GTCGGCTACA	A	 60	 real	time	

RT	Ef1a	R	 ATCTGGTCAAGCGCCTCAAG	 60	 real	time	

RT	HSFB1/4	F	 GCACTGCAACTTCTCCTCCT	 60	 real	time	

RT	HSFB1/4	R	 GGTTTTGGAGGACTGGGGAG	 60	 real	time	

RT	TabZIP2	F	 CTACACGACCGAGCTGACC	 60	 real	time	

RT	TabZIP2	R	 TCAGAACTGGAACGCGTCA	 60	 real	time	

RT	TaDREB19	F	 TCCACGACAATCCCAACCTC	 60	 real	time	

RT	TaDREB19	R	 CGGGTACTTTCCTCTGCTCC	 60	 real	time	

RT	TaRMR1	F	 GGAACTGCCGACTTTTACGC	 60	 real	time	

RT	TaRMR1	R	 CCACTTTGTCAGCCAGGGAT	 60	 real	time	

RT	TaTCP20	F	 AGAATTCCCTCCGGTTCAGG	 60	 real	time	
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RT	TaTCP20	R	 GGGAGGATAAAATTGCCAGCC	 60	 real	time	

RT	TaWRKY19	F		 GTGATATCCGGGAAGGTGATGGTG	 60	 real	time	

RT	TaWRKY19	R		 GCTCCTTGGGTGAGGATTTCCTCTC	 60	 real	time	

RT	TaWRKY41	F		 CGGCTCCAGGAACCCAAGAG	 60	 real	time	

RT	TaWRKY63	F		 CCCACCTCCAGCATACAGTGT	 60	 real	time	

RT	TaWRKY63	R		 TCCTATGATTGTTGCTGCTGGA	 60	 real	time	

RT	TaWRKY9	F		 ACGGGGCTACTACAAGTGCA	 60	 real	time	

RT	TaWRKY9	R		 GGCGGACACACTAGCTACGG	 60	 real	time	

RT	TaWWRKY41	

R		 TCTGCTCATACCCAGGCTGTG	 60	 real	time	

TabZIP2	fragA	F	 AAGGAAGTTTAAGAGAGCAACATCGACGGCG	 55	

Cloning	silencing	

fragment	

TaBZIP2	fragA	R	

AACCACCACCACCGTTCAGCTCGGTCGTGTAG

GCG	 55	

Cloning	silencing	

fragment	

TabZIP2	fragB	F	

AAGGAAGTTTAACAAAGTGGACGGCGAGAAC

G	 55	

Cloning	silencing	

fragment	

TabZIP2	fragB	R	

AACCACCACCACCGTTCAGAACTGGAACGCGT

CAG	 55	

Cloning	silencing	

fragment	

TabZIP2	protein	F	 GGCGACGACATGTTTTTTTGTTC	 55	 Cloning	protein	

TaBZIP2	protein	

R	 GACTCTTAAGGAACTGGAACGCGTCAGG		 55	 Cloning	protein	

TaWRKY19	fragA	

F	

AAGGAAGTTTAATTGGTCCCCGTGTCTTCTT

T	 55	

Cloning	silencing	

fragment	

TaWRKY19	fragA	

R	

AACCACCACCACCGTGAGCAATAACAGCCCGT

CAC	 55	

Cloning	silencing	

fragment	

TaWRKY19	fragB	

F	

AAGGAAGTTTAATGCTCTGTTTGCTGTATAT

TCCC	 55	

Cloning	silencing	

fragment	

TaWRKY19	fragB	

R	

AACCACCACCACCGTGACCACCCATCATGTTC

AACA	 55	

Cloning	silencing	

fragment	

TaWRKY19	prom	 CACCAGGGCGTATTTCCTTCAGCG		 55	 Cloning	promoter	
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F	

TaWRKY19	prom	

R	 GGAGGGAGGGATGCTTTCTG	 55	 Cloning	promoter	

TaWRKY19	
protein	F	 CACCATGGCGGCGGGGCAGTGGTCA	

touchdo

wn	 Cloning	protein	

TaWRKY19	

protein	R	 CTAGAAGGCGAGATCGTTCAGAATGGCTG				

touchdo

wn	 Cloning	protein	

TaWRKY19	RACE	

3'	1	 CGTGAGTACAACGAGCGATGC	 50	 RACE	PCR	

TaWRKY19	RACE	

3'	2	 GGCGCAAGTATGGACAGAAAGTGGTG	 50	 RACE	PCR	

TaWRKY19	RACE	

3'	3	 	CGTGCCTGAGTCTAGGAACAGAAGCC	 50	 RACE	PCR	

TaWRKY19	RACE	

5'	1	 TCCCGCAACTGTTTGTTTTGAGCC	 50	 RACE	PCR	

TaWRKY19	RACE	

5'	2	 AGTTGTCCTGGGGGTACCCGAGGAG	 50	 RACE	PCR	

TaWRKY19	RACE	

5'	3	 TCCACCGAAGAAGCCCAGCGCCGA	 50	 RACE	PCR	

TaWRKY9	fragA	F	 AAGGAAGTTTAA	 55	

Cloning	silencing	

fragment	

TaWRKY9	fragA	R	 AACCACCACCACCGT	 55	

Cloning	silencing	

fragment	

TaWRKY9	prom	F	 CACCCGAAGCTCTGGTGTTGATTCC	 55	 Cloning	promoter	

TaWRKY9	prom	R	 CTGTGGCTCTGCAGATCTTG	 55	 Cloning	promoter	

TaWRKY9	RACE	

3'	1	 GTGACGTCCACGTCCTTCTTTCTC	 50	 RACE	PCR	

TaWRKY9	RACE	

3'	2	 ACCCGGCGATGCTGGTGGTGACG	 50	 RACE	PCR	

TaWRKY9	RACE	

3'	3	 GCCGTCGCCGGTGCCGATTCCGA	 50	 RACE	PCR	

TaWRKY9	RACE	 	TCAGGCTCTGCGGCTGCGGGAGA	 50	 RACE	PCR	
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List	of	primers	used	in	this	thesis,	including	name,	sequence,	melting	
temperature	used	in	PCR	and	notes	for	their	use.		
	
	
	
	
	
Supplemental	table	2	

gene	name	
healthy	vs	
infected	

TraesCS3D01G001500	 -12.46796895	
TraesCS1A01G165500	 -12.30460853	
TraesCS5D01G032000	 -11.80401412	
TraesCS1D01G083100	 -11.55048605	
TraesCS2B01G242600	 -11.37662775	
TraesCS6B01G185000	 -10.98053103	
TraesCS4B01G091700	 -10.84325901	
TraesCS1D01G444600	 -10.78844863	
TraesCS1D01G040300	 -10.72691213	
TraesCS2B01G608800	 -10.65981133	
TraesCS7A01G053400	 -10.65364691	
TraesCS4D01G073700	 -10.55872105	
TraesCS1B01G367500	 -10.55781121	
TraesCS3B01G457000	 -10.55446345	
TraesCS2D01G026900	 -10.51948996	
TraesCS3D01G513800	 -10.49518889	
TraesCS2A01G420200	 -10.46589682	
TraesCS4A01G037500	 -10.45461576	
TraesCSU01G160400	 -10.44675985	
TraesCS2B01G020200	 -10.40948745	
TraesCS4D01G154700	 -10.39350611	
TraesCS5A01G503300	 -10.33523956	
TraesCS3A01G019400	 -10.3211465	
TraesCS6B01G441800	 -10.30982594	
TraesCS3D01G519600	 -10.16062639	
TraesCS6B01G017500	 -10.14765296	
TraesCS2B01G416000	 -10.12267768	
TraesCS1A01G132000	 -10.08648112	
TraesCS7D01G159100	 -10.00823973	
TraesCS1B01G444600	 -9.975884608	
TraesCS3B01G320000	 -9.928858121	
TraesCS3B01G510100	 -9.89428376	
TraesCS5D01G120600	 -9.858715391	
TraesCS1A01G114600	 -9.833694213	
TraesCS7B01G449900	 -9.832497425	
TraesCS1B01G442700	 -9.767733787	
TraesCS2D01G573600	 -9.746187686	

5'	1	

TaWRKY9	RACE	

5'	2	 GCGATCTCGCCGAACGGCTGCTGCA	 50	 RACE	PCR	

TaWRKY9	RACE	

5'	3	 GCCGGTGTGAGGTCGCCTGTGA	 50	 RACE	PCR	

YFP	F	 GGTCCTTCTTGAGTTTGTAAC	 		 Sequencing	
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TraesCS5D01G528100	 -9.742050805	
TraesCS3D01G010300	 -9.733271849	
TraesCS2A01G586000	 -9.66083441	
TraesCS5A01G116200	 -9.564752448	
TraesCS3B01G456000	 -9.547019314	
TraesCS6A01G052200	 -9.517701149	
TraesCSU01G084200	 -9.451207618	
TraesCS3D01G513600	 -9.404360085	
TraesCS6A01G015300	 -9.398753573	
TraesCS1B01G450000	 -9.394549961	
TraesCS6D01G034900	 -9.392763847	
TraesCS1A01G189500	 -9.372629915	
TraesCS3A01G375500	 -9.370443785	
TraesCS3B01G366400	 -9.338199319	
TraesCS1D01G044300	 -9.299925968	
TraesCS7A01G002300	 -9.287906542	
TraesCS7A01G425700	 -9.285879865	
TraesCS6D01G005800	 -9.2505428	
TraesCS3A01G401800	 -9.226802334	
TraesCSU01G110100	 -9.223413541	
TraesCS7A01G002500	 -9.221368642	
TraesCS2D01G142200	 -9.219658347	
TraesCS4D01G186400	 -9.19926061	
TraesCS1B01G053200	 -9.197182227	
TraesCS5D01G032100	 -9.191324005	
TraesCS3B01G273100	 -9.182310245	
TraesCS6B01G238800	 -9.176544052	
TraesCS2D01G573800	 -9.160393152	
TraesCS7A01G432600	 -9.150957787	
TraesCS6A01G305000	 -9.120630335	
TraesCS6B01G442200	 -9.076482762	
TraesCS7B01G493000	 -9.076316597	
TraesCS5A01G412500	 -9.047494591	
TraesCS4A01G037600	 -9.016064961	
TraesCS2D01G397400	 -8.981945815	
TraesCS2A01G124200	 -8.973863566	
TraesCS2A01G024200	 -8.972223037	
TraesCS2D01G548100	 -8.968500611	
TraesCS6B01G370000	 -8.964026247	
TraesCS2A01G465300	 -8.955040088	
TraesCS5A01G470500	 -8.925632194	
TraesCS2A01G554400	 -8.8870697	
TraesCS6D01G364800	 -8.871366582	
TraesCS5B01G547300	 -8.860450629	
TraesCS5D01G067100	 -8.856059626	
TraesCSU01G084300	 -8.820206635	
TraesCS1B01G305800	 -8.808966263	
TraesCS1A01G051200	 -8.80152768	
TraesCS2B01G555700	 -8.786580425	
TraesCS5B01G044800	 -8.764159303	
TraesCS6B01G129000	 -8.764153726	
TraesCS7B01G114600	 -8.761670369	
TraesCS4A01G419100	 -8.759778335	
TraesCS5D01G525000	 -8.759488644	
TraesCS1D01G040500	 -8.740595736	
TraesCS2A01G333300	 -8.725775963	
TraesCS6B01G371700	 -8.70421942	
TraesCS3B01G056400	 -8.696128154	
TraesCS2D01G284700	 -8.679663409	
TraesCS3D01G006700	 -8.678388791	
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TraesCS2B01G357200	 -8.676386645	
TraesCS2D01G305300	 -8.672602674	
TraesCS6B01G228400	 -8.668605467	
TraesCS2B01G168500	 -8.181571132	
TraesCS7A01G110100	 -7.773402488	
TraesCSU01G063100	 -7.742510872	
TraesCS3B01G014800	 -7.495728664	
TraesCS1B01G352400	 -7.290089155	
TraesCS3D01G047200	 -7.181430849	
TraesCS6D01G386500	 -6.966704954	
TraesCS1A01G222500	 -6.92479527	
TraesCS3B01G496100	 -6.838328334	
TraesCS1B01G157200	 -6.820333314	
TraesCS4B01G177800	 -6.685419808	
TraesCS1D01G044400	 -6.587624469	
TraesCS1B01G115700	 -6.429718174	
TraesCS4B01G316400	 -6.400746092	
TraesCS1A01G136600	 -6.399746789	
TraesCS7D01G544300	 -6.384976999	
TraesCS2D01G230000	 -6.374098618	
TraesCS5B01G390000	 -6.217342724	
TraesCS1D01G238800	 -6.189090837	
TraesCS7B01G005900	 -6.175748428	
TraesCS7B01G296600	 -6.174631799	
TraesCS3B01G478400	 -6.174086691	
TraesCS5D01G068300	 -6.174040397	
TraesCS7A01G083500	 -6.159507584	
TraesCS6A01G115700	 -5.992989707	
TraesCS7B01G253600	 -5.971703418	
TraesCS2A01G371300	 -5.959079564	
TraesCS4B01G113500	 -5.944581385	
TraesCS7A01G359700	 -5.944168627	
TraesCS2B01G085600	 -5.901141926	
TraesCS5B01G357000	 -5.747534703	
TraesCS5B01G518100	 -5.70426809	
TraesCS7A01G089400	 -5.686603071	
TraesCS3A01G407900	 -5.686400888	
TraesCS3A01G363300	 -5.685866852	
TraesCS5A01G391500	 -5.642697143	
TraesCS2A01G345500	 -5.540905635	
TraesCS5A01G534100	 -5.374116709	
TraesCS6D01G366600	 -5.373972881	
TraesCS1B01G018200	 -5.348543348	
TraesCS5D01G525300	 -5.015322539	
TraesCS6A01G076500	 -5.011666404	
TraesCS2D01G371700	 -5.005430909	
TraesCS4B01G064600	 -4.974568504	
TraesCS1D01G293600	 -4.973001847	
TraesCS4D01G134900	 -4.679869708	
TraesCS6D01G339100	 -4.636675338	
TraesCS3A01G062200	 -4.341116458	
TraesCS4A01G005700	 -4.275945407	
TraesCS3D01G518500	 -3.673518364	
TraesCS4B01G070300	 -3.48555885	
TraesCS5D01G525400	 -3.434918187	
TraesCS4D01G280400	 -3.415116182	
TraesCS4A01G021700	 -3.396033115	
TraesCS7B01G250800	 -3.34755899	
TraesCS7A01G139200	 -3.342062018	
TraesCS5D01G525700	 -3.326778021	
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TraesCS3D01G416800	 -3.250028416	
TraesCS4A01G245100	 -3.245972387	
TraesCS5D01G216300	 -3.242582319	
TraesCS7A01G373400	 -2.990512104	
TraesCS5B01G208100	 -2.888895078	
TraesCS4D01G069100	 -2.790170716	
TraesCS6D01G048300	 -2.632023995	
TraesCS4B01G281800	 -2.601191861	
TraesCS2A01G512100	 -2.283052049	
TraesCS3D01G207600	 -2.274211167	
TraesCS3B01G233000	 -2.226566569	
TraesCS6D01G378000	 -2.197784402	
TraesCS3D01G030700	 -2.152259163	
TraesCS2B01G540100	 -2.102881342	
TraesCS6B01G432300	 -2.024205484	
TraesCS3B01G534300	 2.054144769	
TraesCS7B01G384300	 2.077272253	
TraesCS3A01G097600	 2.11217594	
TraesCS7D01G433000	 2.116010482	
TraesCS2D01G425200	 2.139473398	
TraesCS5A01G165400	 2.158545694	
TraesCS5A01G094700	 2.175100698	
TraesCS6B01G212000	 2.256906661	
TraesCS1A01G419800	 2.306379476	
TraesCS7A01G005900	 2.387412857	
TraesCS6A01G375100	 2.395042467	
TraesCS6D01G033500	 2.438866647	
TraesCS5D01G169900	 2.444537484	
TraesCS5B01G162600	 2.474029134	
TraesCS5D01G159000	 2.474589775	
TraesCS5A01G509100	 2.486927817	
TraesCS1A01G377300	 2.490975351	
TraesCS5D01G169600	 2.492197723	
TraesCS2B01G367000	 2.557317099	
TraesCS1D01G217300	 2.558579334	
TraesCS3D01G050100	 2.638084999	
TraesCS1D01G426300	 2.66138152	
TraesCS4D01G028900	 2.666958081	
TraesCS6D01G332900	 2.697810262	
TraesCS7D01G019000	 2.722723809	
TraesCS2D01G023100	 2.785661658	
TraesCS5B01G307600	 2.798815405	
TraesCS2A01G468000	 2.878647126	
TraesCS5B01G162800	 2.882827688	
TraesCS3D01G281300	 2.909841275	
TraesCS2D01G412900	 2.920698905	
TraesCS5A01G165700	 2.94520735	
TraesCS4A01G250500	 3.003266151	
TraesCS6D01G300600	 3.006114073	
TraesCS1D01G413400	 3.029138989	
TraesCS7A01G163200	 3.060670045	
TraesCS2B01G165300	 3.166189429	
TraesCS3A01G397100	 3.189023097	
TraesCS7D01G034500	 3.395634843	
TraesCS5A01G424800	 3.4549708	
TraesCS3D01G143200	 3.4549708	
TraesCS7D01G048700	 3.458280834	
TraesCS3B01G493900	 3.465047478	
TraesCSU01G243800	 3.472335676	
TraesCS6B01G285200	 3.473875758	
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TraesCS4B01G302200	 3.492331948	
TraesCS7B01G447200	 3.509551112	
TraesCS1B01G264600	 3.511815517	
TraesCS1B01G184600	 3.512160762	
TraesCS2A01G307000	 3.515609055	
TraesCS7D01G523000	 3.518503641	
TraesCS5B01G010100	 3.522488672	
TraesCS7B01G377700	 3.525387147	
TraesCS5B01G426700	 3.54928937	
TraesCS5A01G478800	 3.549341864	
TraesCS1A01G049100	 3.553847913	
TraesCS4B01G271600	 3.556315721	
TraesCS7A01G568400	 3.562405362	
TraesCS6A01G047200	 3.581710981	
TraesCS7A01G189000	 3.590386594	
TraesCS4D01G202400	 3.647495744	
TraesCSU01G209300	 3.975021809	
TraesCS3D01G483000	 4.111845022	
TraesCS1D01G292900	 4.46135008	
TraesCS1D01G412900	 4.475696123	
TraesCS6D01G255000	 4.47774025	
TraesCS3B01G271400	 4.479092089	
TraesCS1A01G405200	 4.492189165	
TraesCS2A01G057000	 4.512494488	
TraesCS6A01G137600	 4.518601463	
TraesCS4D01G238300	 4.5242871	
TraesCS5D01G145800	 4.527397069	
TraesCS7B01G490900	 4.559268028	
TraesCS3B01G455500	 4.575060951	
TraesCS2B01G284300	 4.576241232	
TraesCS7D01G185100	 4.580167715	
TraesCS4B01G344900	 4.580168937	
TraesCS6A01G181000	 4.582939578	
TraesCS3A01G509700	 4.614971951	
TraesCS2A01G022500	 4.62458884	
TraesCS4B01G237500	 4.682986006	
TraesCS5B01G217900	 5.048609611	
TraesCS1B01G435200	 5.053011126	
TraesCS1A01G405100	 5.055823247	
TraesCS2D01G581500	 5.074177211	
TraesCS7B01G420400	 5.078036956	
TraesCS1B01G435300	 5.078314194	
TraesCS2B01G030900	 5.085071139	
TraesCS4A01G100900	 5.112420564	
TraesCS2A01G025700	 5.125527075	
TraesCS2D01G033700	 5.133052908	
TraesCS2D01G029500	 5.13439123	
TraesCS3D01G522200	 5.134757069	
TraesCS3D01G183000	 5.137994615	
TraesCS3B01G520100	 5.155320182	
TraesCS7D01G078500	 5.156650256	
TraesCS3D01G090300	 5.20122264	
TraesCS1D01G240500	 5.204092186	
TraesCS5D01G026400	 5.204121067	
TraesCS2A01G585600	 5.204536134	
TraesCS6A01G350700	 5.211902791	
TraesCS1D01G131900	 5.449755209	
TraesCS3B01G266200	 5.452907204	
TraesCS1A01G314900	 5.474463391	
TraesCS3B01G161000	 5.480408271	
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TraesCS3A01G007400	 5.482775528	
TraesCS5D01G507600	 5.498100512	
TraesCS1D01G312600	 5.513606785	
TraesCS7B01G280500	 5.51378212	
TraesCS6B01G034900	 5.524813809	
TraesCS3B01G407000	 5.528163363	
TraesCS3B01G578800	 5.546242323	
TraesCS5B01G119100	 5.550895082	
TraesCS4B01G171600	 5.566591313	
TraesCS7B01G377000	 5.566822847	
TraesCS4A01G382500	 5.566862717	
TraesCS4A01G281900	 5.566862717	
TraesCS2A01G230500	 5.585350856	
TraesCS6B01G466900	 5.585741452	
TraesCS3B01G196600	 5.587243825	
TraesCS4A01G332900	 5.594958874	
TraesCS3B01G161300	 5.6006684	
TraesCS6D01G101400	 5.600813053	
TraesCS3B01G543800	 5.601826976	
TraesCS7B01G185800	 5.601826976	
TraesCS7B01G499300	 5.627504838	
TraesCS2B01G057800	 5.640534589	
TraesCS6A01G350600	 5.657256249	
TraesCS3D01G162800	 5.772924954	
TraesCS5A01G278300	 5.795085377	
TraesCS2B01G007000	 5.814515645	
TraesCS3D01G423800	 5.833501145	
TraesCS7B01G072400	 5.841595148	
TraesCS3B01G256500	 5.841738643	
TraesCS7A01G026900	 5.851822297	
TraesCS2A01G582600	 5.853526968	
TraesCS2A01G589100	 5.853526968	
TraesCS7B01G430400	 5.856722167	
TraesCS7A01G300900	 5.858434007	
TraesCS7A01G040900	 5.864882039	
TraesCS7A01G499200	 5.871224599	
TraesCS5B01G417200	 5.88399859	
TraesCS7A01G492200	 5.899668675	
TraesCS1A01G091500	 5.900213885	
TraesCS2B01G081200	 5.915534849	
TraesCS3B01G011500	 5.916657865	
TraesCS3A01G420300	 5.952960633	
TraesCS7A01G075600	 6.043290249	
TraesCS7A01G428900	 6.083468822	
TraesCS5B01G476300	 6.087439388	
TraesCS4A01G222100	 6.100991909	
TraesCS6A01G395400	 6.101582588	
TraesCS5B01G351600	 6.107407825	
TraesCS2B01G442500	 6.112321336	
TraesCS6B01G092800	 6.122625846	
TraesCS6B01G369800	 6.127936174	
TraesCS3A01G315400	 6.146158605	
TraesCS4D01G345500	 6.156634288	
TraesCS5A01G552800	 6.157781107	
TraesCS5D01G103400	 6.157947429	
TraesCS6B01G168200	 6.17271651	
TraesCS7D01G019200	 6.177885372	
TraesCS4A01G405100	 6.185128983	
TraesCS5D01G264600	 6.185411843	
TraesCS4A01G405200	 6.185953948	
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TraesCS1D01G065600	 6.259812826	
TraesCS6B01G383600	 6.265690894	
TraesCS7A01G022200	 6.276863956	
TraesCS2A01G186300	 6.286421664	
TraesCS3A01G274300	 6.303290338	
TraesCS5B01G038700	 6.316870734	
TraesCS2B01G624300	 6.327602382	
TraesCS2A01G295000	 6.329832871	
TraesCS4A01G344700	 6.340493287	
TraesCS3B01G366600	 6.342217084	
TraesCSU01G066000	 6.344184007	
TraesCS4A01G317100	 6.345645056	
TraesCS2A01G066500	 6.390547335	
TraesCS5D01G526800	 6.398678101	
TraesCS5D01G540000	 6.411983063	
TraesCS4A01G405000	 6.413128159	
TraesCS2B01G161500	 6.414696867	
TraesCS1B01G434700	 6.430288853	
TraesCS7A01G493500	 6.442641977	
TraesCS5D01G285400	 6.496044363	
TraesCS7D01G428800	 6.500749976	
TraesCS6B01G447100	 6.515099485	
TraesCS5A01G362600	 6.521515286	
TraesCS1B01G456200	 6.555195069	
TraesCS1B01G048500	 6.555695984	
TraesCS3D01G213900	 6.566661259	
TraesCS3D01G514700	 6.587008267	
TraesCS4D01G144100	 6.604453972	
TraesCS7A01G199100	 6.60735332	
TraesCS3D01G020800	 6.618677662	
TraesCS1D01G021600	 6.652454133	
TraesCS5D01G069500	 6.66285584	
TraesCS3D01G414900	 6.665440656	
TraesCS1A01G376800	 6.665623169	
TraesCS1A01G003100	 6.697822271	
TraesCS2D01G528900	 6.700520653	
TraesCS6D01G263300	 6.722485316	
TraesCS5B01G015800	 6.726637278	
TraesCS7D01G019100	 6.773625418	
TraesCS1A01G103100	 6.780546165	
TraesCS1A01G405000	 6.799073607	
TraesCS1A01G037700	 6.836597473	
TraesCS5B01G198700	 6.882842655	
TraesCS5A01G328700	 6.89698199	
TraesCS5B01G368400	 6.911283342	
TraesCS6A01G171800	 6.912712316	
TraesCS6D01G061000	 6.9236119	
TraesCS7B01G499900	 6.958301302	
TraesCS1A01G362900	 6.974375198	
TraesCS2A01G034500	 7.075183637	
TraesCS1A01G322000	 7.096905557	
TraesCS7A01G475200	 7.126202946	
TraesCS4A01G269500	 7.138746384	
TraesCS3B01G579800	 7.167959156	
TraesCS7B01G342600	 7.20732311	
TraesCSU01G102000	 7.23981898	
TraesCS4D01G293900	 7.273080327	
TraesCS1A01G404800	 7.298174379	
TraesCS2D01G459100	 7.309018381	
TraesCS2B01G566000	 7.32742645	
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TraesCS1D01G386000	 7.357971329	
TraesCS4B01G344800	 7.378400666	
TraesCS7A01G058400	 7.420587134	
TraesCS7D01G215700	 7.448166459	
TraesCS3B01G376900	 7.485366287	
TraesCS1B01G242000	 7.512345787	
TraesCS1A01G359100	 7.621230679	
TraesCS5A01G515000	 7.641712291	
TraesCS2D01G302600	 7.814471874	
TraesCS1A01G362800	 7.815483067	
TraesCS6B01G074900	 7.843372576	
TraesCS2B01G367500	 7.852435581	
TraesCS3A01G077300	 8.038212754	
TraesCS1D01G413200	 8.06306019	
TraesCS3A01G511500	 8.097281818	
TraesCS6B01G091500	 8.103793409	
TraesCS3A01G172400	 8.119216767	
TraesCS5D01G383500	 8.132101417	
TraesCS1D01G413100	 8.167435553	
TraesCS5B01G426300	 8.168369994	
TraesCS1A01G243900	 8.279791088	
TraesCS3A01G232300	 8.48887499	
TraesCS2D01G068500	 8.504059207	
TraesCS4A01G258600	 8.597132053	
TraesCS3B01G536100	 8.687394276	
TraesCS1D01G413300	 8.732217628	
TraesCS1B01G297100	 8.760770679	
TraesCS2A01G432300	 8.97191434	
TraesCSU01G116600	 9.317911989	
TraesCS7A01G000100	 9.901224499	
TraesCS1B01G440700	 10.03210423	
TraesCS1A01G304700	 10.25510384	
TraesCS5A01G482100	 10.25898613	
TraesCS4B01G364100	 10.31724155	
TraesCS6A01G199400	 10.31760644	
TraesCS1A01G166000	 10.32166316	
TraesCS4B01G275600	 10.3282607	
TraesCS5B01G444600	 10.33736252	
TraesCS6A01G036200	 10.36062276	
TraesCS7D01G475500	 10.36853551	
TraesCS2D01G297500	 10.41759686	
TraesCS7A01G042100	 10.42952719	
TraesCS4A01G373100	 10.43995195	
TraesCS2A01G395500	 10.49021869	
TraesCS3B01G010200	 10.49881208	
TraesCS4D01G160000	 10.50315737	
TraesCS7A01G184800	 10.52632007	
TraesCS5A01G107700	 10.53244007	
TraesCS7A01G161400	 10.54928853	
TraesCS3B01G044400	 10.55700509	
TraesCS3D01G525000	 10.57126321	
TraesCS2A01G361700	 10.59183573	
TraesCS7D01G457900	 10.61313142	
TraesCS2A01G054200	 10.62174608	
TraesCS7D01G421100	 10.62617875	
TraesCS6A01G179100	 10.62838483	
TraesCS5B01G274100	 10.76930721	
TraesCS6B01G154300	 10.8072548	
TraesCS2A01G057100	 10.81770982	
TraesCS3B01G091100	 10.82361498	



	 195	

TraesCSU01G233300	 10.85186741	
TraesCS1A01G009800	 10.85711554	
TraesCS2D01G027700	 10.85737883	
TraesCS7A01G136900	 10.90807131	
TraesCS5D01G398800	 10.91061219	
TraesCS1B01G457400	 10.9478934	
TraesCS6A01G144400	 10.97732255	
TraesCS4D01G163900	 11.0420608	
TraesCS6B01G424400	 11.05709451	
TraesCS3A01G012700	 11.075086	
TraesCS4A01G190700	 11.13640137	
TraesCS7B01G461900	 11.17709614	
TraesCS7D01G043800	 11.19211058	
TraesCS4D01G062600	 11.21904915	
TraesCS5B01G470300	 11.23256042	
TraesCS3B01G602400	 11.23995545	
TraesCS1B01G372800	 11.27684774	
TraesCS2D01G030500	 11.3041332	
TraesCSU01G046300	 11.32835193	
TraesCS2A01G295500	 11.33250265	
TraesCS3B01G005000	 11.33626641	
TraesCS5A01G016600	 11.33913927	
TraesCS6B01G389800	 11.35086927	
TraesCS3B01G348700	 11.36386657	
TraesCS2D01G576900	 11.37268207	
TraesCS2A01G574800	 11.39432778	
TraesCS3B01G604900	 11.40956393	
TraesCS4B01G091600	 11.43686686	
TraesCS2A01G036300	 11.44048417	
TraesCS4B01G103800	 11.45109687	
TraesCS6B01G171400	 11.53891135	
TraesCS6B01G092000	 11.54563531	
TraesCS7D01G457200	 11.59532819	
TraesCS7D01G456600	 11.5970991	
TraesCS2A01G257900	 11.60474478	
TraesCS3B01G450600	 11.62769807	
TraesCS6A01G403300	 11.6898489	
TraesCS2A01G364900	 11.69087449	
TraesCS2B01G521300	 11.70091752	
TraesCS3B01G516000	 11.72129025	
TraesCS1A01G009900	 11.75690589	
TraesCS4D01G038500	 11.7771202	
TraesCS7A01G022300	 11.83930017	
TraesCS6B01G389700	 11.8441176	
TraesCS4D01G153500	 11.849871	
TraesCS1A01G191200	 11.85328607	
TraesCS4B01G005900	 11.85502124	
TraesCS1B01G076800	 11.86599833	
TraesCS3B01G478000	 11.87221174	
TraesCS2B01G034700	 11.9291526	
TraesCS2A01G026700	 11.99966499	
TraesCS7D01G458000	 12.05361013	
TraesCS1A01G151400	 12.07193803	
TraesCS2D01G041700	 12.16866758	
TraesCS1A01G087800	 12.19319442	
TraesCS1B01G373100	 12.2108869	
TraesCS1B01G450300	 12.23204774	
TraesCS3B01G011300	 12.25089768	
TraesCS2A01G312400	 12.4701913	
TraesCS4B01G332300	 12.49235669	



	 196	

TraesCS2B01G121700	 12.50980144	
TraesCS2B01G038700	 12.52609103	
TraesCSU01G242100	 12.57252024	
TraesCS3A01G444100	 12.60456546	
TraesCS2B01G240300	 13.23030818	
TraesCSU01G159400	 13.5212329	
TraesCS6D01G169600	 13.89693787	
TraesCS6B01G035500	 13.99571664	
TraesCS7B01G440100	 14.2038186	
TraesCS2B01G038600	 20.15106981	
TraesCS5B01G277800	 20.8386173	

	
Table	to	show	the	differential	expression	and	gene	numbers	between	healthy	
vs	Septoria	infected	samples	from	an	RNA	sequencing	experiment.	Samples	
include	both	BSMV:00	and	BSMV:TaWRKY19B	silenced	wheat.		
	
Supplemental	table	3	
	

gene	name	
BSMV:TaWRKY19	vs	
BSMV:00	

TraesCS1D01G044400	 -7.214029502	
TraesCS2B01G478400	 -7.133173126	
TraesCS5D01G525700	 -7.111949241	
TraesCS6B01G226400	 -6.350290909	
TraesCS7B01G354900	 -6.331406733	
TraesCS2D01G023100	 -6.328473659	
TraesCS2B01G482800	 -6.313016841	
TraesCS2B01G627600	 -6.300502952	
TraesCS2B01G483600	 -6.294465814	
TraesCS5D01G448800	 -6.052748251	
TraesCS3D01G030700	 -6.023498465	
TraesCS1D01G413400	 -6.011520028	
TraesCS4B01G237500	 -6.01093553	
TraesCS4B01G023700	 -6.000494218	
TraesCS2D01G421700	 -5.982731621	
TraesCS6A01G239000	 -5.979763508	
TraesCS2A01G264900	 -5.977406789	
TraesCS3D01G169500	 -5.955709464	
TraesCS4B01G281800	 -5.883745644	
TraesCS2B01G038600	 -5.671295459	
TraesCS5B01G277800	 -5.669891762	
TraesCS6A01G122600	 -5.632102907	
TraesCS2A01G240800	 -5.628056383	
TraesCS6B01G207600	 -5.626143887	
TraesCS1D01G181100	 -5.62496194	
TraesCS7B01G118300	 -5.598418769	
TraesCS6A01G115200	 -5.595273216	
TraesCS5A01G333900	 -5.594604886	
TraesCS2A01G057000	 -5.580113671	
TraesCS6A01G047200	 -5.577833376	
TraesCS7A01G171600	 -5.571295362	
TraesCS3B01G493900	 -5.558621111	
TraesCS7B01G384300	 -5.549225273	
TraesCS5D01G120800	 -5.546986561	
TraesCS6D01G207900	 -5.544436468	
TraesCS5B01G365500	 -5.543630709	
TraesCS6D01G250000	 -5.539468742	
TraesCS6A01G235700	 -5.537964798	
TraesCS7D01G517700	 -5.534502542	
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TraesCS4A01G021700	 -5.079217297	
TraesCS1B01G219700	 -5.046987116	
TraesCS5A01G094700	 -5.046558198	
TraesCS2B01G536400	 -5.046409762	
TraesCS3D01G450100	 -5.045201208	
TraesCS6B01G147900	 -5.039826895	
TraesCS1D01G426300	 -5.035613408	
TraesCS4A01G234200	 -5.035520779	
TraesCS5B01G139200	 -5.032591436	
TraesCS1A01G377300	 -5.032199209	
TraesCSU01G209300	 -5.010779769	
TraesCS7D01G019200	 -5.007480246	
TraesCS7A01G089300	 -5.000066898	
TraesCS1B01G462600	 -5.000031547	
TraesCS3D01G166700	 -4.999821376	
TraesCS7A01G044900	 -4.999747979	
TraesCS5D01G030700	 -4.999696443	
TraesCS1D01G339300	 -4.999670657	
TraesCS1D01G339200	 -4.999670657	
TraesCS3A01G097600	 -4.999660704	
TraesCS3A01G230200	 -4.999650866	
TraesCS5D01G289700	 -4.999601971	
TraesCS7A01G189000	 -4.999404724	
TraesCS6B01G212000	 -4.999392435	
TraesCS7A01G005900	 -4.999362575	
TraesCS7A01G163200	 -4.999295922	
TraesCS2B01G165300	 -4.999249669	
TraesCS5D01G526800	 -4.999215998	
TraesCS5B01G015800	 -4.998759545	
TraesCS4D01G280400	 -4.99762998	
TraesCS7B01G420400	 -4.987469344	
TraesCS1A01G419800	 -4.9727055	
TraesCS4D01G028900	 -4.971977998	
TraesCS7D01G433000	 -4.967190911	
TraesCS2A01G091900	 -4.965283703	
TraesCS7D01G054800	 -4.964915487	
TraesCS7A01G335000	 -4.964489121	
TraesCS4A01G434300	 -4.963939294	
TraesCS2A01G129800	 -4.963663178	
TraesCS5D01G171200	 -4.961914155	
TraesCS1A01G301200	 -4.959286539	
TraesCS2B01G412100	 -4.954732252	
TraesCS6D01G339100	 -4.663031006	
TraesCS1B01G232700	 -4.174666609	
TraesCS2D01G238000	 -4.164127325	
TraesCS5D01G525300	 -4.154273896	
TraesCS4A01G043400	 -4.143847705	
TraesCS6D01G370000	 -4.090603706	
TraesCS5D01G525400	 -4.040068349	
TraesCS5A01G509100	 -4.038331049	
TraesCS1D01G226700	 -4.036889929	
TraesCS6B01G085500	 -4.036711376	
TraesCS1B01G255400	 -4.036436289	
TraesCS3D01G050100	 -4.035086361	
TraesCS7D01G019000	 -4.03083557	
TraesCS6A01G375100	 -4.030300759	
TraesCS2B01G367000	 -4.029258556	
TraesCS2D01G412900	 -4.02795228	
TraesCS3D01G281300	 -4.027864721	
TraesCS4D01G237900	 -4.027169546	
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TraesCS4B01G079600	 -4.026373158	
TraesCS3B01G461800	 -4.025050528	
TraesCS5D01G145800	 -3.992130727	
TraesCS7D01G034500	 -3.990625182	
TraesCS2D01G425200	 -3.981401656	
TraesCS2A01G025700	 -3.977631826	
TraesCS6B01G090500	 -3.975777056	
TraesCS3A01G447000	 -3.97524496	
TraesCS5A01G277200	 -3.97467733	
TraesCS2A01G468000	 -3.972615873	
TraesCS2A01G210500	 -3.968748672	
TraesCS1B01G115700	 -2.83590487	
TraesCS3D01G518500	 -2.72318568	
TraesCS1B01G367500	 -2.654588352	
TraesCS1D01G238800	 -2.610332043	
TraesCS6A01G115700	 -2.331207652	
TraesCS3B01G496100	 -2.299809468	
TraesCS1A01G136600	 -2.260444714	
TraesCS6B01G017500	 -2.084598014	
TraesCS4D01G073700	 -2.048821097	
TraesCS3B01G478400	 -2.038148474	
TraesCS3D01G416800	 2.347743724	
TraesCS1D01G217300	 2.380039572	
TraesCS5D01G159000	 2.518262258	
TraesCS6D01G033500	 2.627346444	
TraesCS2A01G483400	 2.707171921	
TraesCS3B01G534300	 2.724962196	
TraesCS7B01G490600	 2.750562498	
TraesCS4D01G293900	 2.888649172	
TraesCS7D01G523000	 2.907675285	
TraesCS2D01G030500	 2.911870441	
TraesCS5B01G010100	 2.916383183	
TraesCS5B01G444600	 2.92321452	
TraesCS3D01G525000	 2.926095983	
TraesCS2A01G257900	 2.926598238	
TraesCS2A01G057100	 2.928716972	
TraesCS6A01G036200	 2.93342208	
TraesCS7D01G457900	 2.933705354	
TraesCSU01G233300	 2.934280533	
TraesCS2A01G574800	 2.934716705	
TraesCS3B01G011300	 2.93495162	
TraesCS3B01G516000	 2.936146307	
TraesCS1A01G151400	 2.936387732	
TraesCS2B01G240300	 2.940463355	
TraesCS2A01G026700	 2.942867904	
TraesCS7D01G457200	 2.944141948	
TraesCS2A01G295500	 2.944809661	
TraesCS3B01G604900	 2.946351132	
TraesCS1A01G009800	 2.948177997	
TraesCS1B01G373100	 2.951824672	
TraesCS4B01G364100	 2.952351472	
TraesCS3B01G010200	 2.952580172	
TraesCS2D01G483300	 3.440059229	
TraesCS5B01G307600	 3.848393346	
TraesCS2D01G027700	 3.893738374	
TraesCSU01G116600	 3.905341642	
TraesCS3B01G044400	 3.93169206	
TraesCS1B01G457400	 3.932147711	
TraesCS2A01G312400	 3.93276475	
TraesCS6B01G171400	 3.934953201	
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TraesCSU01G159400	 3.935819714	
TraesCS2D01G041700	 3.935933762	
TraesCS3B01G348700	 3.939952845	
TraesCS4D01G160000	 3.941012173	
TraesCS2A01G036300	 3.941592466	
TraesCS1B01G450300	 3.944898652	
TraesCS4A01G190700	 3.948394581	
TraesCS6B01G424400	 3.955025174	
TraesCS3A01G330000	 3.967523974	
TraesCS6B01G092000	 3.972109509	
TraesCS6D01G284200	 4.118502249	
TraesCS5B01G198700	 4.443271227	
TraesCS2D01G528900	 4.455354283	
TraesCS4D01G062600	 4.512057652	
TraesCS7B01G461900	 4.530479616	
TraesCS5B01G470300	 4.531963374	
TraesCS4B01G005900	 4.537851951	
TraesCS2A01G066500	 4.593870596	
TraesCS1A01G376800	 4.60089227	
TraesCS2B01G566000	 4.655750654	
TraesCS7A01G373400	 4.733203665	
TraesCS3D01G020800	 4.871122221	
TraesCS2D01G459100	 4.883869164	
TraesCSU01G242100	 4.93250753	
TraesCS7A01G022300	 4.934108561	
TraesCS6A01G144400	 4.93755561	
TraesCS3B01G091100	 4.946075103	
TraesCS5D01G264600	 4.976408618	
TraesCS6B01G369800	 4.98253428	
TraesCS7B01G253700	 5.081694186	
TraesCS7A01G040900	 5.177810465	
TraesCS5D01G054300	 5.19314282	
TraesCS7A01G493500	 5.198954053	
TraesCS6D01G169600	 5.257595467	
TraesCS2B01G038700	 5.270981238	
TraesCS5B01G368400	 5.32098574	
TraesCS1D01G065600	 5.381976086	
TraesCS7B01G072400	 5.432505777	
TraesCS3B01G196600	 5.532706088	
TraesCS1A01G037700	 5.534504114	
TraesCS6A01G350600	 5.539043518	
TraesCS4A01G317100	 5.650762659	
TraesCS2A01G186300	 5.654998046	
TraesCS7A01G217500	 5.710224134	
TraesCS1A01G103100	 5.715617035	
TraesCS2A01G585600	 5.742976443	
TraesCS3B01G161300	 5.745175545	
TraesCS5D01G507600	 5.749733242	
TraesCS6D01G101400	 5.774954067	
TraesCS2B01G057800	 5.845649876	
TraesCS3B01G579800	 5.864996433	
TraesCS1D01G386000	 5.899442023	
TraesCS3D01G483000	 6.010661813	
TraesCS7D01G078500	 6.015820188	
TraesCS5A01G424800	 6.030640376	
TraesCS3D01G143200	 6.030640376	
TraesCS5B01G426700	 6.031130636	
TraesCS5A01G478800	 6.064517643	
TraesCS6B01G285200	 6.064531408	
TraesCS5B01G351600	 6.092096171	
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TraesCS5D01G398800	 6.103341082	
TraesCS2B01G624300	 6.117912987	
TraesCS7B01G377000	 6.169946939	
TraesCS6D01G263300	 6.171095125	
TraesCS3A01G420300	 6.203201769	
TraesCS1B01G297100	 6.225505978	
TraesCS4D01G202400	 6.234392397	
TraesCS1B01G242000	 6.235551096	
TraesCS4D01G144100	 6.259753274	
TraesCS5D01G069500	 6.312900422	
TraesCS7D01G421100	 6.313698227	
TraesCS7B01G448100	 6.348267076	
TraesCS6A01G137600	 6.362948459	
TraesCS4B01G302200	 6.374425459	
TraesCS7A01G000100	 6.395192479	
TraesCS1A01G359100	 6.395395427	
TraesCS1D01G312600	 6.395825432	
TraesCS7A01G199100	 6.397259589	
TraesCS2B01G001000	 6.414576548	
TraesCS4A01G250500	 6.436755251	
TraesCS6D01G300600	 6.442715047	
TraesCS3B01G005400	 6.445063154	
TraesCS7D01G048700	 6.445237864	
TraesCS2B01G029200	 6.44555437	
TraesCS3D01G213900	 6.456890316	
TraesCS3A01G172400	 6.463630193	
TraesCS7B01G342600	 6.468910739	
TraesCS6D01G370800	 6.472065889	
TraesCS2D01G581500	 6.473382175	
TraesCS1A01G243900	 6.477962808	
TraesCS3B01G271400	 6.484974451	
TraesCS4B01G271600	 6.488613025	
TraesCS7B01G280500	 6.492247159	
TraesCS3B01G520100	 6.495036569	
TraesCS1A01G362800	 6.50065258	
TraesCS1D01G240500	 6.505337671	
TraesCS1B01G440700	 6.515145865	
TraesCS3D01G090300	 6.515846347	
TraesCS3B01G256500	 6.516490641	
TraesCS1D01G282100	 6.516778802	
TraesCS3A01G459900	 6.516992124	
TraesCS1D01G439200	 6.518378051	
TraesCS2A01G432300	 6.531298485	
TraesCS2A01G307000	 6.556971065	
TraesCS5D01G383500	 6.57874911	
TraesCS5A01G353400	 6.584050847	
TraesCS3A01G428100	 6.584979272	
TraesCS4D01G345500	 6.590696547	
TraesCS2A01G542400	 6.606269894	
TraesCS1B01G264600	 6.606587254	
TraesCS5B01G417200	 6.608540807	
TraesCS6B01G074900	 6.62720802	
TraesCS6D01G255000	 6.628620217	
TraesCS2A01G022500	 6.653958547	
TraesCS5A01G515000	 6.66649824	
TraesCS2B01G255800	 6.667120825	
TraesCS2B01G521300	 6.673766899	
TraesCS2A01G230500	 6.681739348	
TraesCS7A01G387200	 6.689164607	
TraesCS4A01G332900	 6.695686002	
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TraesCS7B01G326200	 6.766521601	
TraesCS5D01G488600	 6.766521601	
TraesCS1D01G292900	 6.769266826	
TraesCS5B01G119100	 6.777375343	
TraesCS3B01G578800	 6.786974498	
TraesCS4B01G171600	 6.79466213	
TraesCS4A01G405200	 6.805571898	
TraesCS4A01G405100	 6.80616384	
TraesCS6D01G061000	 6.821409986	
TraesCS3D01G522200	 6.840304724	
TraesCS1A01G049100	 6.855700986	
TraesCS4A01G405000	 6.859957073	
TraesCS3B01G266200	 6.861684089	
TraesCS3A01G232300	 6.867463347	
TraesCS6B01G383600	 6.882330737	
TraesCS3D01G183000	 6.889447229	
TraesCS2A01G459800	 6.946869587	
TraesCSU01G243800	 6.948198495	
TraesCS2D01G302600	 6.948631318	
TraesCS1B01G184600	 7.094880977	
TraesCS6A01G350700	 7.213348663	
TraesCS4A01G061700	 7.251488125	
TraesCS5B01G457300	 7.254308387	
TraesCS2B01G367500	 7.285104911	
TraesCS3D01G323400	 7.361546311	
TraesCS7B01G377700	 7.373666396	
TraesCS7D01G428800	 7.401455518	
TraesCS2D01G068500	 7.416634749	
TraesCS3A01G315400	 7.440665973	
TraesCS6D01G332900	 7.443673343	
TraesCS3A01G509700	 7.45895185	
TraesCS3B01G450600	 7.524134721	
TraesCS3D01G423800	 7.540747981	
TraesCS2D01G029500	 7.571766432	
TraesCS6A01G181000	 7.584735869	
TraesCS2B01G442500	 7.607112879	
TraesCS7A01G075600	 7.615283033	
TraesCS3B01G536100	 7.719667365	
TraesCS3B01G539300	 7.778819979	
TraesCS4A01G258600	 7.784731853	
TraesCS5B01G426300	 7.78598567	
TraesCS1B01G107400	 7.821928817	
TraesCS1B01G456200	 7.835151605	
TraesCS2B01G284300	 7.99063054	
TraesCS6A01G171800	 8.007639811	
TraesCS1A01G362900	 8.197807048	
TraesCSU01G094800	 8.60757961	
TraesCS2D01G264400	 8.666056769	
TraesCS7A01G373300	 8.691582604	
TraesCS1B01G056900	 9.179916431	
TraesCS1D01G044300	 19.7863091	

	
Table	to	show	the	differential	expression	and	gene	numbers	between	
BSMV:TaWRKY19B	vs	BSMV:00	samples	from	an	RNA	sequencing	
experiment.	Samples	include	both	healthy	and	Septoria	infected	(12dpi).		
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Supplemental	table	4	
Family	 No.	of	

TFs	 Hit	Sequence	

AP2;ERF	 62	

AACTA,	aggCGGCGg,	agGCGGCggg,	aggCGGCGgg,	ATCAA,	ATCCA,	ATCGA,	ATCTC,	ATCTG,	atgGCGGCgc,	
atggCGGCGc,	CAGAT,	catggCGGCG,	catgGCGGCg,	cCGCCGgc,	cCGCCGgc,	ccGCCGGcat,	ccgCCGGCat,	

ccgGCGGCga,	ccgGCGGCtc,	cgaggCGGCG,	cgCCGACa,	cgcCGACAca,	cgCCGACaca,	cgCCGACg,	cgCCGACgcg,	
cgCCGGCa,	cGCCGGca,	cgCCGGCt,	cGCCGGct,	cgCGCCGaca,	cgGCCGGcgg,	cggCCGGCgg,	cGGCGGcg,	cggCGGCG,	
cgGCGGCgaa,	cggCGGCGaa,	cGGCGGctc,	cgGCGGCtcc,	ctCCGACg,	CTCTA,	GAGAT,	gaggCGGCGg,	gagGCGGCgg,	
gCCGAC,	gcCGGCGa,	gcCGGCGg,	gcgCCGACa,	gCGCCGaca,	gcgCCGACac,	gCGCCGacac,	gCGCCGgc,	gcGCCGGcga,	

gcgCCGGCga,	gctCCGACga,	gGCCGGcg,	ggCCGGCg,	ggCGCCGgcg,	gGCGGCga,	ggCGGCGc,	ggGTCGGcg,	
ggGTCGGcgc,	gGTCGGcg,	gGTCGGcgc,	ggtCGGCGc,	ggtCGGCGcg,	GTCGGc,	GTCTA,	TAAAT,	TAAGAgcaact,	
TAGAA,	tCCGAC,	tcCGCCGgca,	tccggCGGCG,	tccgGCGGCg,	tcgCCGACg,	tcgCCGACgc,	TGGAT,	tggCCGCCg,	
tgGCCGCcgg	,tggCGGCG,	tgGCGGCg,	tGGCGGcgc,	tggCGGCGc,	tgGCGGCgcc,	tggCGGCGcc,	tggGTCGGcg	

bZIP	 30	

aaCACGTatg,	ACACCtgc,	ACACCtgg,	ACACGcgc,	ACACGtat,	acaCGTAT,	aCACGTat,	acgaaCACGTatg,	
acGACGTggc,	acgACGTGgc,	acgACGTGgca,	acgACGTGgcacg,	ACGTA,	ACGTG,	AGACG,	aGCGGT,	ATGACatgat,	
CACGT,	CATCA,	CCACGcga,	CCACGcgatc,	CCACGcgc,	CCACGcgctc,	CCGAGcgtcccacttg,	CCTCA,	CGACA,	CGACG,	
cgACGTGg,	cgaCGTGG,	cgaCGTGGc,	cgaCGTGGca,	cgACGTGgca,	CGGCA,	cggCGTCAcg,	cggCGTCAcga,	CGTAA,	

CGTCA,	CGTCC,	CGTCG,	CGTCT,	CGTGA,	CGTTA,	CTTCA,	gacgACGTGg,	gacgaCGTGG,	gacgACGTGgca,	
gacGACGTggca,	gacgACGTGgcacgagcca,	GACGT,	gCCACGcga,	ggacGACGTggc,	ggCCACGcgatc,	TCACG,	TGACA	

,tGACAGcaga,	TGAGG,	TGATG,	TGCCG,	TGGCG,	TGTCG,	TTACG	

Dof	 18	
aAAAAGc,	aAAAAGt,	aAAAAGttt,	AAAGA,	AAAGC,	AAAGCa,	AAAGG,	AAAGT,	AAGGA,	AAGGC,	AAGGG,	ACCTT,	
ACTTT,	caAAAAGctc,	caAAAGAgga,	caAAAGAggc,	cacAAAAGagg,	ccaaAAAGCtc,	CCCTT,	CCTTT,	cgaAAAAGt	

,gaAAAAG,	gaAAAAGt,	gaAAAAGttt,	gacAAAAGagg,	gaggAAAGCtc,	GCCTT,	TCCTT	

NAC;NAM	 16	 aaCACGCaag,	aacACGTAtg,	aCACGCaa,	aCACGCaag	,acaCGCAAgc,	aCACGCaagc,	acaCGCAAgca,	caacACGCAa,	
caaCACGCaa,	cACATG,	cCACGCgatc	

TCP	 11	
aATAAAta,	ACCCG,	ACCCGc,	ACCCGg,	AGCCC,	AGGCC,	cCGGGT,	CGACC,	CGCCC,	CGGCC,	CGGGC,	CGGGT,	

CGTCC,	CGTCCcac,	cgtgCCCACa,	ctGGACCagc,	gaaGGACC,	GAGCC,	GCACC,	GCCCC,	GCGCC,	GCTCC,	GCTCCgac,	
GGAAC,	GGACA,	GGACC,	GGACG,	GGACT,	GGAGC,	GGATC,	GGCAC,	GGCCA,	GGCCC,	GGCCG,	GGCCT,	GGCGC,	
ggcGGCCC,	GGCTC,	GGGAC,	GGGCC,	GGGCG,	GGGCT,	GGGGC,	gggGGACG,	GGGTC,	GGTCC,	GGTCCcgg,	GGTCG,	
GGTCT,	GGTGC,	GGTTC,	GTCCC,	GTGCC	,gtgCCCAC,	gtgCCCACaa,	GTTCC,	TGCCC,	tGGACCag,	TGGCC,	TGTCC	

AP2;B3;RAV	 10	 aacACCTGcaca,	ctgCAACAcaaa,	gacACCTGgcgc	,gCAACAca,	ggtcTGTTGgtt,	tccACCTGgggt,	tcTGTTGg,	
tcTGTTGgtt,	ttTGTTGc,	ttttTGTTGcct	

AP2;RAV;B3	 10	 CAACA,	CACCTg,	TGTTG	

bHLH	 9	

acaCCTGC,	ACACGcgc,	acaCGCGC,	ACACGtat,	acaCGTAT,	ATACTtga,	ATCCGggt,	CAAATg,	cAAATG,	CACATg,	
cACATG,	CACGAg,	cACGAG,	CACGCg,	cACGCG,	CACGTa,	cACGTA,	CACTTg,	cACTTG,	CAGTTg,	cAGTTG,	

CATTTg,	cATTTG,	CCACGcgc,	ccaCGCGC,	cccACTTGg,	GACGTg,	gACGTG,	gACGTGg,	GCACAtga,	GCACGagc,	
gcaCGAGC,	gccACTTGg,	GCGCGtac	,gcgCGTAC,	ggaCCTGC,	GGACGggc,	ggaCGGGC,	ggcCGTGC,	

ttggacgACGTGgcacg,	ttggacgACGTGgcacg	

GATA;tify	 9	
AATCA,	AATCT,	AGATA,	AGATG,	ATATC,	atgGATCTga,	CATCA,	CATCG,	CGATC,	CGATG,	CGATT,	CTATC,	
GATAA,	GATAT,	GATCC,	GATCG,	GATCG,	GATCT,	gatgGATCTg,	GGATC,	GGATC,	GGATG,	GGATT,	GTATC	

,TATCA,	TATCC,	TATCT,	TGATA,	TGATC,	TGATG,	tgGATCTga	

AT-Hook	 8	 aAAATAc,	aAAATAt	,acAAATAtct,	ATTGCaaaac,	ATTTTtg,	gggaATAAA,	ggggAATAAa,	TTTTTcctt,	
TTTTTccttc	

Others	 8	
ACCGAga,	cAACCG,	cAACGG,	CACGTa,	cACGTA,	CAGTTa,	cAGTTA,	CAGTTg,	CCGTTa,	CCGTTg,	CGGTTa,	
cgTTACA,	CTGTTg,	GACGAc,	gACGAC,	GACGGc,	gACGGC,	GACGTg,	gACGTG,	GCCGAca,	GGCGTc,	gGCGTC,	

tAACCG	,TCCACctggg,	tgCCGGT,	TGCGTa,	tGCGTA,	tgTCCGT,	tgTTGGT,	TTACCatgtttagaag	

Homeodomain;HD-ZIP	 6	 caAATCAtgt,	cAATCAttca,	caccAATCAt,	ccAATCAt,	ccAATCAttc	

B3	 5	
AATGC,	ACATG,	agCATGCtc,	aGCATGctc,	atGCATGa,	CAAGC,	CACGC,	CAGGC,	cagtTGTAGc,	CATCC,	CATGA,	
CATGC,	CATGG,	CATGT,	CATTC,	CCATG,	CCTGC,	CGTGC,	CTTGC,	GAATG,	gaGCATGct,	gagCATGCt,	GATGC,	

GCAAG,	GCACG,	GCAGG,	GCATA,	GCATC	,GCATG,	GCATT,	GCTTG,	GGATG,	GTATG,	TATGC,	TCATG	

Homeodomain;TALE	 5	 aaTGACAgta	,cggCGTCAcg,	CGTCA,	cTGACAgc,	ctTGACAggc,	tcTGACAgca,	TGACA,	tTGACAgg	

MADF	 5	 acccGGTTAa,	caGTAAAtaa,	tTAACCgttg	

Myb/SANT	 5	 aaaATATCcg	,aaaTATCCggg,	caaATATCtc,	caGATATttg,	ctACCGGtgc,	gTAGGGca,	tACCGGtg,	taCCGGTg	

Myb/SANT;MYB	 5	 cAACCGgc	,CAACCggc,	cacAACCGgc,	ccaAACCGcc,	ctcCGTTAcgg,	gggCGTTAcac,	TAACAag,	tAACCGtt	

Myb/SANT;MYB-related	 5	 aaaATATCc,	aaATATCc,	aaATATCcg	,aaATATCt,	aaATATCtc,	aGATATtt,	aGATATttg,	caaATATCt,	caGATATtt,	
gTAGGGca	

Myb/SANT;trp;MYB	 5	 cgcGCTGAgca	

SBP	 4	 aaCGAACaa,	cgCGGACaa,	cgCGTACtc	,CGTAC,	gcgcgCGTACtctact,	GTACT,	tgCGTAAaa,	tgGCACGaa,	
ttGGACGac,	ACTCTac	

Storekeeper	 4	
cgGCCGGcgg,	ctGCCGGtcc,	gcgCCGGCga,	tCGGCCgg,	tcGGCCGg,	tgGGTCGgc	

B3;ARF	 3	 gcgCCGACac,	gtGTCGAcgc,	gtgTCGACgc,	gcCGACAca	

CG-1;CAMTA	 3	
aacACGCGc,	ACGCGc,	aCGCGC,	ACGCGccga,	ACGCGcgcg,	ACGCGctcg,	ACGCGctga,	ACGCGg,	aCGCGG,	

ACGCGgcgc,	cagACGCGg,	cccACGCGc,	ccgACGCGc,	CCGCGg	,cCGCGG,	cgcgCGCGT,	gCGCGC,	GCGCGt,	gCGCGT,	
gCGCGTact,	tcaACGCGc	

Alpha-amylase	 2	 AATAAa,	TAACAag	

AP2	 2	 gcgCCGACac,	ggtGGCCGcc	
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C2H2	 2	 acttGAACT,	ctgAGCTGgg	

FAR1	 2	 aacACGCGctga,	CACGCga,	CACGCgc,	cccACGCGctcg,	gccACGCGatcg,	tcaACGCGccga	

GATA	 2	 acgcGATCGt,	cgcGATCGt,	cgTGATCga,	cgtGATCGa,	gCGATCgtg,	gCGATCgtga,	tcgtGATCGa	

Homeodomain;bZIP;HD-
ZIP	 2	 CAATCattc	

LEA_5	 2	 aacACGTA,	gatGCATG	

MADF;Trihelix	 2	 cGGTTAac,	GGTTAa,	gtTAACCg,	tTAACC,	tTAACCgttg	

MYB-related	 2	 aaaATATCcg,	caaATATCtc,	caGATATttg	

MYB;ARR-B	 2	 atGGATCtga,	tcGGATCcgg	

Myb/SANT;MYB;ARR-B	 2	 AATCT,	atGGATCtga,	GGATT,	tcgGATCCgg	

TCR;CPP	 2	 cacttAAATTtgc,	cctTCAAAtg	

BES1	 1	 cgaaCACGTatgca	

bZIP;B3	 1	 cggCGTCAcg	

Dehydrin	 1	
ACGAC,	ATCGG,	CAGAC,	CCAAC,	CCCAC,	CCGAA,	CCGAC,	CCGAG,	CCGCC,	CCGGC,	CCGTC,	CGGAC,	CTCGG,	
CTGAC,	GACGG,	GCCGG,	GGCGG,	GTAGG,	GTCCG,	GTCGA	,GTCGC,	GTCGG,	GTCTG,	GTGGG,	GTTGG,	TCGAC,	

TTCGG	

E2F	 1	 cgCGCGCgta,	tcgGCGCGga	

E2F/DP	 1	 gcaCGAAA	

E2F/DP;E2F	 1	 aCGCGCcgac,	gtcgGCGCGg	

EIN3;EIL	 1	 ggATGCAtga,	ggaTGCATga	

HD-ZIP	 1	 gtatgcAATGC	

Homeodomain;bZIP;HD-
ZIP;WOX	 1	 cacCAATCat	

LFY	 1	 acttgacaggCGGTCtacc	

LOB;LBD	 1	 gatCCGGGgc	

MADS	box;MIKC;M-type	 1	 aCAAAAgaggc	

MYB	 1	 tCCGTTacgg,	tgtTGGTTcg	

Myb/SANT;trp;MYB;NF-YC	 1	 cgCTGAG	

NF-YB;NF-YA;NF-YC	 1	 AATGG,	ATAGG,	ATCGG,	ATTGC,	ATTTG,	CAAAT,	CCAAA,	CCAAC,	CCAAT	,CCACT,	CCATT,	CCTAT,	CTTGG,	
GCAAT,	GTTGG,	TTTGG	

TBP	 1	
aATAAAta	

Trihelix	 1	 ATAAC,	CTTAC,	GAAAC,	GCAAC,	GGAAC,	GTAAA,	GTAGC	,GTATC,	GTCAC,	GTTAA,	GTTAC,	GTTGC,	GTTTC,	
TTAAC	

VOZ	 1	 acgaaaggggAACGC,	ccctccagccCACGC	,gaggaggctcAACGC,	gcatgctccaGACGC,	gcgcagccaaCACGC,	
GCGTActctactcac,	GCGTCacgacgatgg,	gctcgtcgccGACGC,	ggttttcggcCACGC	

WRKY	 1	 TTGACa	

ERF	 1	 gcCGGCT,	ggCGGCT	

NAC	 1	 aacGCCGT	

Table	showing	all	the	binding	sites	used	to	predict	the	TFs	which	bound	to	
TaWRKY19s	promoter.	Also	shown	are	the	number	of	unique	TFs	which	are	
predicted	to	bind	per	family.		
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Supplemental	table	5	
Family	 No.	of	

TFs	 Hit	sequence	

WRKY	 28	

aaaGTCAAct,	aaaGTCAActa,	aaaGTCAActatg,	aaGTCAAc,	aaGTCAAct,	aaGTCAActa,	AGTCA,	aGTCAA,	
aGTCAAct,	aGTCAActat,	aGTCAAtg,	attGTCAAca,	attGTCAAcaa,	attGTCAAcaata,	cccgTTGACg,	ccgTTGACgg,	

ccgTTGACgga,	cgaGTCAAtga,	cgTTGACg,	cgTTGACgga,	CGTTGacggac,	CGTTGcccctg,	gaGTCAAt,	
gaGTCAAtga,	gcccgTTGACgga	,TGACC,	tGTCAA,	tGTCAAca,	tGTCAAcaat,	TTGACg,	ttGTCAAc,	ttGTCAAcaa	

AT-Hook	 25	

aaaAAAAT,	aaAAAATg,	aaAAATT,	aAAATAt,	aaacATAAT,	aAATATatta,	aaataTATTA,	aagaATAAA,	
acatAATAAa,	agaATAAA,	atAAAATt,	ataATAAA,	atAATATttg,	ataTATTTaa,	ATTATatgc,	aTTATTgccg,	
ATTATttcc,	aTTATTtcct,	atTATTTt,	ATTATtttc,	attTAATAtttc,	attTATTT,	caAAAAT,	caaaTATATt,	

caaTATTTat,	cAATTAtttt,	cataATAAA,	cATTTTtt,	ccccAAAAA,	gagcAAAAA,	gcaaAAATT,	gttaTATTAata,	
taagAATAAa,	tATATAttta,	tattAATAAt,	tatTAATAatat,	tatTTAATat,	tcAAATAtat,	tcAATATtta,	tcaATATTta,	

ttAATATttc,	ttaATATTtc,	ttatTATATg,	ttatTTATTt,	TTATTttcc,	TTTATgcca,	TTTATtat	,TTTATtata,	
tTTATTatat,	TTTATttat,	tTTATTtatc,	TTTATttgt,	tTTATTtgtt,	TTTTTatctc	

Dof	 23	

aAAAAGc,	aAAAAGcgc,	aAAAAGt,	aAAAAGtgc,	AAAGA,	AAAGC,	AAAGCa,	AAAGCg,	AAAGG,	AAAGT,	
aacCTTTAttt,	AAGGA,	AAGGC,	AAGGT,	ACCTT,	ACTTT,	aCTTTTt,	aCTTTTtg,	aCTTTTtgg,	agaAAAAGt,	
agaAAAAGtgc,	ataaAAAGCgc,	ataAAAAGcgc,	ataCTTTTt,	ataCTTTTtg,	caAAAAGcat,	caAAAGAtgt,	
ccaaAAAGCat,	CCCTT,	CCTTT,	cGCTTT,	gaAAAAG,	gaAAAAGt,	gaAAAAGtgc,	gcCGTTAttg,	GCTTT,	

gtCGTTAttg,	gtGCTTTaccc,	gtgCTTTAttt,	gtGCTTTattt,	taAAAAGcgc	,TCCTT,	tcgCTTTTc,	tcgCTTTTcgg,	
tCGTTAtt,	TCTTT,	tGCTTT,	tttCTTTTgtt	

SBP	 20	

aaggtCGTACgtacaa,	aCGTACaac,	AGTAC,	caAGTACaa,	CGTAC,	cGTACGtac,	ctGGACGga,	ggtCGTACg,	
ggtCGTACgt,	ggtcGTACGt,	ggtcGTACGtac,	ggtCGTACgtac,	ggtcgtaCGTACaacatat,	GTACA,	GTACG,	gtaCGTACa,	

gtaCGTACaa,	gtaCGTACaaca,	gtCGTACg,	gtCGTACgt,	gtcGTACGt,	gtCGTACgta,	gtcGTACGta,	taCGTACa,	
taCGTACaa,	taCGTACaac,	tCGTACg,	tcGTACGta	,tcGTACGtac,	tcgtaCGTACaacata,	TGTAC,	ttCGAACag,	

ttCGTGCac,	ttCGTTCta,	ttGTAGGcc	

Myb/SANT	 17	
aaaATATCat,	aaCCCTAaac,	accgGAATCa,	acCTACCtt,	ccgGAATCa,	gaGATAAgat,	gGATTCcccc,	ggCCCTAa,	

gGGATAag	,ggGATAAga,	ggGGATAaga,	gggGATAAga,	taacCTACCtttc,	taagCCGTTa,	tggGGATAag,	
ttggGGATAagaa	

AP2;ERF	 16	

AACTA,	AAGAT,	ACCTA,	aCGCCGgc,	acgCCGGCtg,	aGCCGTcctc,	aGCCGTtatt,	ATATA,	ATCAA,	ATCCA,	ATCGA,	
ATCTA,	ATCTC,	ATCTG,	ATCTT,	ATTTA,	CACTTccc,	CAGAT,	caTGTCGacg,	cgCCGGCt,	cGCCGGct,	GAGAT,	

GTCGGg,	GTCTA,	TAAAT,	TACAT,	TAGAA,	TAGAC,	TAGAG,	TAGAT,	TAGCT,	TAGGT,	TAGTT,	TATAT,	TCGAT,	
tgcggCACCG,	TGGAT	,tGTCGGga,	TTCTA,	TTGAT,	ttGCCGCc,	ttgCCGCCa,	ttGCCGCcag,	ttGTCGGgac	

bZIP	 11	

AAGAAt,	ACACCagt,	ACAGCt,	ACAGGtgg,	ACCGCt,	acgCATGT,	ACGTA,	ACGTG,	ACGTT,	actACGTGcttta,	
ACTGCt,	agaAGTGT,	agaCAGCTcg,	aGACAGctcg,	AGACG,	agAGCTGgca,	aGCCGT,	aGCGGT,	AGTCA,	
ATGACatctt,	CATCA,	CCACGaga,	CCTCA,	CGACG,	CGCCA,	CGGCA,	CGTCC,	CGTCT,	CGTGA,	CGTTA,	

ctcgCTGTCc,	CTTCA,	gcaTGTGT,	gGACAGcgta,	gGACAGgtgg,	GGACG,	gtTGACGgac,	TACGT,	TCACG,	TGAAG,	
TGACA,	TGACC,	TGACG	,TGAGG,	TGATG,	TGCCG,	TGGCG,	TGTCA,	TGTCG,	TTACG	

GATA;tify	 10	

AATCA,	AATCC,	AATCG,	aatcGATCTg,	AATCT,	AGATA,	AGATC,	AGATG,	AGATT,	ATATC,	atcGATCTga,	
cAGATCaaaa,	caGATCTt,	caGATCTtg,	cAGATCttgg,	CATCA,	CATCC,	CATCT,	CGATA,	CGATC,	CGATG,	CGATT,	
CTATC,	GATAA,	GATAC,	GATAG,	GATAT,	GATCA,	GATCG,	GATCT,	gcAGATCaaa,	gcAGATCtt,	gcaGATCTtg,	
gcAGATCttg,	gcaGATCTtgg,	GGATA,	GGATC,	GGATG,	GGATT,	GTATC,	TATCA,	TATCG,	TATCT,	tcGATCTga,	
TGATA,	TGATC,	TGATG	,TGATT,	tgcaGATCTt,	tgcAGATCttg,	tgGATCTga,	TTATC,	ttgGATCTga,	tttgGATCTg	

NAC;NAM	 10	 aaGTCAAct	,CATGTg,	gaGTCAAtg,	ggtgGCGTGa,	gtgGCGTGa,	gtgGCGTGaa,	tgGCGTGaat,	tTTACTtca	

Others	 8	

ACCGAaa,	CCGTTa,	CCGTTg,	CGGTTa,	CGGTTg,	CTGTTa,	CTGTTa,	GACATc,	gACATC,	GACGAc,	gACGAC,	
GACGCc,	gACGCC,	GACGCc,	gACGCC,	GAGGTc,	gAGGTC,	GCCGTc,	gCCGTC,	GTCGTc,	gTCGTC,	TACGTa,	

tACGTA,	TACGTg,	tACGTG,	TACGTt,	tACGTT,	TAGGTa,	tAGGTA,	tatagGTGGA,	TCCACcggga,	TCCGTa,	tCCGTA,	
tcTCGGT,	TGCGTa	,tGCGTA,	tgctagACGGA,	tgTCGGG,	tgTCGTT,	tgTGGGT,	tgTTGGT,	ttTTACA	

Homeodomain	;HD-ZIP	 8	 caTTATTgc,	atgTGATTga,	cagTGATTgg,	atgTGATTga,	cagTGATTgg,	gTGATTga,	gTGATTgg,	gaAATCAtag,	
aATTATtt,	gTGATTgatt,	gTGATTggtt,	tggATTTA,	tatATTTA	

AP2;B3;RAV	 7	 aCAACAta,	ctttTGTTGgtt,	gaTGTTGc,	gggaCAGGTggc,	gtaCAACAta,	tattTGTTGgaa,	ttTGTTGt	

bHLH	 7	

aCAAGTtga,	actACGTGct,	ATACAagt,	ATACTttt,	ATAGGtgg,	ATGCGtat,	atgCGTAT,	ATGCGtgc,	CAATTg,	
cAATTG,	CACGAg,	cACGAG,	CACTTg,	cACTTG,	CAGGTg,	cAGGTG,	CATGTg,	cATGTG,	ctaCGTGC,	CTACGtgc,	
gaaCATGC,	GCACGccc,	GCACTtcc,	GCACTtgc,	gcaCTTGC,	GCATGtgt,	gccCCTGC,	gcgCTTGC	,GTACGtac,	

gtaCGTAC,	TACGTg,	tACGTG,	tcaCGCAT,	tcgACTTGa,	tgcACTTGc	

TBP	 7	 aaTATAT,	ATATAtt,	atattgtATATAtttaatatt,	gaTTTATa,	ggaTTTATagg,	gttaTAAAAa	,gttATAAAaaa,	
taTTTATc,	taTTTATg,	taTTTATt,	tggctggaTTTATag,	ttATAAAaaaatgca,		

Myb/SANT;MYB	 6	 aACCTAcc,	agcCGTTAttg,	ctaACCTAcct,	TAACAat,	taacCTACCt	

SRS	 6	 gaAGAGT,	ttAGAGT	

TCP	 6	

ACCCG,	ACCCGc,	ACCCGg,	AGCCC,	AGGCC,	CGACC,	CGCCC,	CGGCC,	CGTCC,	ctaGGCCC,	GAACC,	GACCC,	
gacGGACC,	GAGCC,	gagGGACA,	GCACC,	GCCCC,	GCCCG,	GCGCC,	gcgGCACC,	GCTCC,	GGAAC,	GGACA,	GGACC,	
GGACCcgc,	GGACG,	GGACT,	GGAGC,	GGATC,	GGCAC,	GGCCA,	GGCCC,	GGCGC,	GGCTC,	GGGAC,	GGGCG,	GGGCT,	

GGGGC,	GGTCC,	GGTCCttc,	GGTCG,	GGTCGtac,	GGTCT,	GGTGC,	GGTTC,	gtaGGCCC,	GTCCC,	GTGCC,	
gtgGGAAC,	gtgGGACA	,gttGAACC,	TGACC,	TGCCC,	TGGCC,	tggCCCACga,	tgGTGGGaca,	TGTCC	

B3	 5	
AATGC,	ACATG,	atatGCATGgt,	atGCATGg,	CAAGC,	CACGC,	CAGGC,	caGTGTAcag,	CATCC,	CATGA,	CATGC,	
CATGG,	CATGT,	CATTC,	CCATG,	CCTGC,	CGTGC,	CTTGC,	gagtTGTAGg,	GATGC,	GCAAG,	GCACG,	GCAGG,	
GCATA,	GCATC,	GCATG,	GCGTG	,GCTTG,	GGATG,	GTATG,	TATGC,	TCATG,	tCTACAccga,	ttcTACACcg	
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C2H2	 5	 aAGTGTc,	cACACTg,	cAGTGTa,	gagAGCTGgc,	gAGTGAg,	gtCAGCTtca	

Homeodomain	;	bZIP	;HD-
ZIP	 5	 cagTGATTgg,	gctcaATTATtttc,	cgaccATTATtgcc,	ccaTTATTt,	caaTTATTt,	ccaTTATTg,	ataTTAATaa,	

atATTAAtaa,	CAATGatgg,	cagtGATTG,	CAATTattt,	caaaAATTG,	CAATGcttg,	ccatTATTG	

Homeodomain	;HD-ZIP	;bZIP	 5	 caATTATt,	ggctcaaTTATTt,	acgaccaTTATTg,	ctcaaTTATTtt,	gaccaTTATTgc,	gctcaaTTATTttc,	
cgaccaTTATTgcc,	caaTTATTt,	ccaTTATTg	

Myb/SANT;MYB-related	 5	 aaaATATCa,	aaATATCa,	aaATATCat,	aaCCCTAa,	ggCCCTAa,	tGATATtgt	

B3;ARF	 4	 atGTCGAcgc,	ttGTCGGgac,	gAGACA,	gtTGTCGgg	

MYB-related	 4	 aaaATATCat,	aaaATATCat	,aAGATAtgca,	ccCTAAA,	ggcaTATCTc,	tccgTATCTt,	tcCTAAA,	TTTAGag,	TTTAGga	

Myb/SANT;MYB;ARR-B	 4	 AATCC	,AATCT,	AGATT,	gcAGATCttg,	gcaGATCTtg,	GGATT,	tccGTATCtt,	ttGGATCtga	

Alpha-amylase	 3	 AATAAa,	AATTAga,	acTGTTA,	TAACAat,	tcTAATT,	tTTATT	

GATA	 3	 cgTGATCag,	gtGATCAgg,	tCGATCtga,	tCGATCtgaa	

Homeodomain	;TALE	 3	 aaTGACAtct,	aaTGACAtct,	aTGACAtc,	AGTCA,	TGTCA,	TGACA,	AGTCA,	TGACG,	AGTCA,	TGACA,	TGTCA,	
TGACC	

MYB	 3	 aACCTAcctt,	gCCGTTattg,	taACCTAcct,	tgtTGGTTat	

MYB;ARR-B	 3	 ccgTATCTtc,	gcAGATCttg,	gcaGATCTtg,	taAGATAtgc,	ttGGATCtga	

AP2;B3	 2	 tttACGTTga	

AP2;RAV;B3	 2	 CAACA,	cAGGTG,	TGTTG	

bZIP;Homeodomain;HD-ZIP	 2	 caATTATttt,	ccATTATtgc,	ctaATTATga	

Homeodomain	 2	 agTTCATg,	taaTAATAtttgg,	tgattTATTAtat,	aaataTATTAtac,	acaTAATAaaatt	

Homeodomain	;bZIP	;HD-ZIP	
;WOX	 2	 gTGATTga,	gtGATTGatt,	gtGATTGgtt	

HSF	 2	 GGAACtttcc,	tGAAGCttcg,	tgaaGCTTCg	

Myb/SANT;ARR-B	 2	 ccgtATCTTc	,gAAGATgcga,	gaagTATCTgata,	gataAGATAtgca,	gcaGATCT,	ggcaTATCTccgg,	tccgTATCTtcca,	
ttagAGATAagat	

AP2	 1	 TCGTAcgtac	

AP2;RAV	 1	 aCAACAta,	gaTGTTGc	

BES1	 1	 CGTGCg	

CG-1;CAMTA	 1	 CCGCGc	

Dehydrin	 1	 ACGAC,	ATCGG,	CAGAC,	CCAAC,	CCCAC,	CCGAA,	CCGAT,	CCGCC,	CCGGC,	CCGTC,	CCTAC,	CGGAC,	CTCGG,	
GACGG,	GCCGG,	GTAGG,	GTCAG,	GTCGA	,GTCGG,	GTCGT,	GTCTG,	GTGGG,	GTTGG,	TCGAC,	TTCGG	

E2F/DP	 1	 TTTCCcac	

EIN3;EIL	 1	 ataTGCATgg	

ERF	 1	 AGCCGtc,	gcCGGCT	

FAR1	 1	 CACGCcc	

GATA;Dof	 1	 AGATCaa	

GRAS	 1	 cGTACGtac,	gtaCGTACa	

HB-PHD	 1	 CTAATcttttg,	CTAATtatgaa	

Homeodomain	;WOX	 1	 gTGATTga,	gTGATTgg	

Homeodomain	;ZF-HD	 1	 tcTAATCcca,	gcTAATCttt	

LEA_5	 1	 cacGCATG,	tatGCATG	

LFY	 1	 gtaggccctcCGGTCcttc,		

MADF	 1	 cTAACCcggc	

Myb/SANT;G2-like	 1	 ccgGAATCaa	

NF-YB;NF-YA;NF-YC	 1	
AATGG,	ACAAT,	AGTGG,	ATAGG,	ATCGG,	ATGGG,	ATTAG,	ATTCG,	ATTGA,	ATTGC,	ATTGG,	ATTGT,	ATTTG,	
CAAAT,	CCAAA,	CCAAC,	CCAAT,	CCACT,	CCATT,	CCGAT	,CGAAT,	CTAAT,	CTTGG,	GCAAT,	GTTGG,	TCAAT,	

TTTGG	

PsaH	 1	 tccctttGTTTA	

Sox;YABBY	 1	 ctAATTAtga	

TCR;CPP	 1	 taataAAATTtac	

Trihelix	 1	 ATAAC,	CTAAC,	GAAAC,	GATAC,	GCAAC,	GGAAC,	GTAGC	,GTATC,	GTTAC,	GTTAT,	GTTGC,	GTTTC,	TTTAC,	
tTTACC	
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trp	 1	 acCTACCtt	

VOZ	 1	 gagccatgtcGACGC,	gcgcttgcatCACGC,	GCGTAtgctagacgg	

ZF-HD	 1	 ATAAT,	ATTAA,	ATTAT,	CTAAT,	TTAAT	

	
Table	showing	all	the	binding	sites	used	to	predict	the	TFs	which	bound	to	
TaWRKY9s	promoter.	Also	shown	are	the	number	of	unique	TFs	which	are	
predicted	to	bind	per	family.		
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Supplemental	figure	1	
	

	
	

	
	
	

	
	

	
	

	
	
Gel	pictures	of	semi	quantative	PCR	showing	the	expression	levels	of	15	
WRKY	genes	in	healthy	and	infected	wheat	(0d,	8d	and	14d).	Negative	
controls	are	included	in	which	no	cDNA	was	added	to	the	PCR	mix.	The	
expected	size	of	the	DNA	fragment	is	also	shown.		
	
	
Supplemental	figure	2	
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Heatmap	representing	the	relationship	of	samples	based	on	genes	expressed	
obtained	from	RNA	sequencing.	Two	samples	were	removed	due	to	them	
being	outliers	(BSMV:TaWRKY19,	infected	and	BSMV:00	uninfected).	
Samples	are	labelled	on	the	right	hand	side.	Darker	blue	shades	represent	
higher	levels	of	the	same	genes	being	expressed	to	a	similar	level	between	
samples.	Samples	labelled	‘normal’	=	BSMV:TaWRKY19B,	‘EV’	=	BSMV:00,	
‘uninnoculated’	=	uninfected	and	‘inoculated’	=	infected.		
	
	
	
Supplemental	figure	3	
CAAATGAGGAGCGGTTTTCGGCCACGCGATCGTGATCGAACGACCGAGAG
CATGGAGGGGAGTTTGCTGGGTTTTTGGGCCACTTTGGAGGGGTGTTGGG
CTGCAACACAAAAGAGGCCTTTGCAGTTACCCGGTTAACCGTTGGAGTAT
CAAACGACCTTCAAATGGCACGAAACTTGACAGGCGGTCTACCGGTGCTA
TAACAAGGCCACTTGGCAAGCCTCGGGCCATTCCGAAAAAGTTTAACACC
TGCACACAACGAGAGACGAAAGGGGAACGCCGTAGGGCATAGGAGAGCCG
GATTGCAAAACGAACAACGGGGAAAAGGCTCGGATGCATGAGACGAACAC
GTATGCAATGCAATGCACATGATGACATGATAAAATGCAACACGCAAGCA
AATGACATGGCAATGACAGTAAATAACTAGCAGACACCTGGCGCATCGGA
TCCGGGGCGTTACACCCTTCCCCCCGGCACCGAACACAGAAGCTGGGGTT
CCGGCACTCCGCCGAGATGTGGCCATCATCCTTGCCACAGTTGTAGCAGC
AGCCAAAAAGCTCCGCCGGCATCCTGGACTCCGGCGGCGAACGGGGCGCA
GCCAACACGCGCTGAGCATGGCGGCGCCTCTGTGGGAAGGCAGGGCGAGC
AGGCGGCCCTCTCGGCCGGCGGCTCCTATCATCCAAACCGCCTCCACCTG
GGGTGAATGAGAAGGACCTGCAGCCCCGCCCTGGACCAGCGGACCGAAGG
CCGTGCCCACAACCGGCGTCACGACGATGGATCTGAGCTGGGGGCGGGGG
GGACGGCAGGACGGGCAGAGCATGCTCCAGACGCGGCGCCGGCGAGGAAG
TAGGGGAGGAAAGCTCCGACGAGGATGAGCCGGACAGAGAAACCCGCGAA
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GCCATGGCGAGGCGGCGGGGGAAGGGGTGGGGTGGGGTGGCTGCCGGTCC
CGGAGCGGAGCACGGCGCAAGGCTGGTGGCCGCCGGCTGTGTGGGAGAAA
GCACTGCGTAAAATACTTGAACTATAAGAGCAACTCCAATGGAGCGATCC
ATTTCGTCTGCCGCTGTTCGTTTGGGTCGGCGCGGACAAAAGAGGAGGCT
CAACGCGCCGACACAAACCAAATCATGTCCGCTTCGTGTCCGTGTCGACG
CATTTGCACTTAAATTTGCGCCCCAAAGTTACACACAGATATTTGGGTTC
GGTCTGTTGGTTCGGCTTACCATGTTTAGAAGGGGTGGACAAATATCTCC
GTTACGGTTTCGGAAAATATCCGGGTTTTTCCTTCCGCGGGGCTTCGCCT
CCGCTTGGACGACGTGGCACGAGCCACCAATCATTCAGCGCCCTCATTGC
GATTTTTGTTGCCTCGCCCACTCGCACTCCCGTCCGGGGGAATAAATACC
GAGCGTCCCACTTGGCAACCAATCTGACAGCAGAAAGCATCCCTCCCTCC
CTCCAGCCCACGCGCTCGTCGCCGACGCGCGCGTACTCTACTCACCC	
DNA	sequence	for	TaWRKY19	promoter	region,	identified	through	database	
searches	(KWS	and	the	Earlham	Institute151)	
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Supplemental	figure	4	
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Y1H	with	TaWRKY9	promoter	and	a	library	of	1,200	Arabidopsis	thaliana	
TFs.	After	mating	the	yeast	was	grown	in	liquid	culture	(with	mating	
selection)	before	being	stamped	onto	plates	containing	selection	media		
(20mM	3AT	in	–L-W-H	minimal	SD	media).	Plates	were	grown	for	4	days	at	
28OC	before	photos	were	taken.	
	
	
	
Supplemental	figure	5	
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Pictures	of	Y1H	plates	for	TaWRKY19	promoter	and	34	TFs	selected	based	on	
preliminary	screening.	After	mating	the	yeast	was	grown	in	liquid	culture	
(with	mating	selection)	before	being	pipetted	(in	5μl)	onto	plates	containing	
increasing	selection	pressures	(0-100mM	3AT	in	–L-W-H	minimal	SD	media).	
Plates	were	grown	for	4	days	at	28OC	before	photos	were	taken.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 219	

Supplemental	figure	6	
AGTTTAGTTTAGGGTTTTCTAGTCCTTGCAGGGGCAACGCTAGAACGAATGGTG
GCACTTTTTCTTTGAGTTGCTCTGCCAGCCCCGATCCTCCTCGAGTTTGCTTGTCT
GGATGGAGTCGTCGAAGCTCTGGTGTTGATTCCGGTCATCTCCTTGTCCCGACAA
CAAAGCTTTTGGTATCAGATACTTCAGATCGATTCAAGGGTTCAACAACGATAAC
CGCAGCCCCAGGGCCTAGTATTTAGGAGGGCGTGCACGAAGCTTCATGGCTATTG
TTGACAATGTGAGGACGGCTTCGGTAGGGAAGTGCCAATAACGACACCTCGACTC
GTTCTGGCGGCAATAATGGTCGTTTTGTGCTCCTAATACCTCAACGTAAATTTTA
TTATGTTTAGGATGAATTGTACTTGTCATGAACTTGTATAATATATTTGATGCT
TTTTGGGGTAAAGCACGTAGTTCAACTTGTGCTCAAGTCGAGCTGTCTCACCATG
CATATCTTATCTCTAAAATCAATTCGATTTTCTCTCACTCTTCCCTGACTCCATG
AAGTAAATTGGCGAGACGACCACCATGAAAGGTAGGTTAGGGCCTGTTCGAAGA
CACGATAGCGGTGCCGCATCGGCGTTGAAGAGAATTCCCACCTTTTCCTCAAATT
GTCCCTCTCTCCTAAAATCGTGAGAGGCGGAGGCGGCAAGCATTGGCCGGGTTAG
CGGGTCCGTCTAGCATACGCTGTCCATGGCTGCTAGGCACTATGATTTTCAACAA
ATAAATAAAGGTTCATAATTAGATAAATAAAGCACCGCTCAATTTTTGCTCTAC
CTAGAACATCAATTGCGCGGTCGTTGGTGTCTACTATGATTTCCAACAAATAAAT
AAAGGTTCGCAGTGAGATAAAAAACACATGCGTGATGCAAGCGCATGTTCTTCC
ATGAACCAAGCGGATGAGCACAGAGCGTTGAAATGTTTTTCTTATGGAGCAAGT
GCAACATCTTTTGATCTGCAAGAAAGCAGTCCAAAAAGTATTGTTATTCACGCCA
CCTGTCCCACCATTTCCAAAAGATTAGCACAATAGAACTAGCGCATATAATAAAT
CAATACAAGAAACAATTGTTCTCCCGGTGGAAGATACGGAAAATAATTGAGCCC
CTGATCACGCCGGAGATATGCCAGCTCTCGCAGCGCAGACAGTCCGTCAACGGGC
TAAACAAAGGGAGAGCGGAGGTGGTGGGAAAGTTCCCACAGCCGGCGTCGACAT
GGCTCGACCAAATATTATTAATATAACCAACAAAAGAAAGAAATATTAAATATA
TACAATATCATATCGCAAGGAGATAGTGCTGCTAGGGAGAGGAAATAATGGCGC
TTTTTATCATGGCCAACTTTGTTTCGGTGTAGAATAGAAACGCACGCATCATTAT
AGCCAGGGCGTCCATCGCCCATCCCATAGTTGACTTTGAAGCCAAGACACAGGAC
ACATACGCATACTATGATATTTTCTCTCCCTCTCTCTGCCTGCTTGTGATGCGAG
CAATAACGGCTTAAAGAAAACCCATTTATTCTTATCCCCAAAGTCCACTATCTCG
TGGGCCATGGCCAAGAAGATGTCATTATCACACCGCATTGGGCCTTTTTCCAAAG
AAGCCCCCGCAGCTACTATGCCTCACACCCACAGGTCCTCTGTAACAGTAAACAA
CCAATCACTGTACACTGGCATAAATATTGAAAACAAAATCTAGTAAAATCAAAT
CAATCACATGGAGTAGTTATATGTTGTACGTACGACCTTCAGTTCGGTGGCTGCA
TTTTTTTATAACAGTGTGAAACTAGACTGGTGTTCAGATCCAAACAGTGGGATT
AGACCGCTCATGTAAAAAATGTGAAGCTGACACTTCTCAAAGAAGGACCGGAGG
GCCTACAACTCTAATTCTGGGGGAATCCAGGGGGCTGCGCCGAAAAGCGAACACC
ATCATTGACTCGCATCTTCTCCCCTCACCCCGTTTCCACCTATAAATCCAGCCATG
GCCTCCGTCCAGACCTCCAACTCCCAACCAAACCGAGAGCGCAACCGGGACAGCG
AGCCAAGATCTGCAGAGCCACAGGCGACCTCACACCGGCGACC	
DNA	sequence	for	TaWRKY9	promoter	region,	identified	through	database	
searches	(KWS	and	the	Earlham	Institute151)	
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Supplemental	figure	7	
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Y1H	with	TaWRKY9	promoter	and	a	library	of	1,200	Arabidopsis	thaliana	
TFs.	After	mating	the	yeast	was	grown	in	liquid	culture	(with	mating	
selection)	before	being	stamped	onto	plates	containing	selection	media		
(20mM	3AT	in	–L-W-H	minimal	SD	media).	Plates	were	grown	for	4	days	at	
28OC	before	photos	were	taken.	
	
	
Supplemental	figure	8	
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Pictures	of	Y1H	plates	for	TaWRKY9	promoter	and	68	TFs	selected	based	on	
preliminary	screening.	After	mating	the	yeast	was	grown	in	liquid	culture	
(with	mating	selection)	before	being	pipetted	(in	5μl)	onto	plates	containing	
increasing	selection	pressures	(0-100mM	3AT	in	–L-W-H	minimal	SD	media).	
Plates	were	grown	for	4	days	at	28OC	before	photos	were	taken.		
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