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Abstract 

Ephemeral resource and productivity peaks are characteristic of temperate woodland 

ecosystems. An ecological model system, which both exhibits and exploits these ephemeral 

peaks, and is the focus of this thesis, is the deciduous tree-herbivorous caterpillar-insectivorous 

bird food chain. Phenological synchrony within food chains, displaying ephemeral peaks, is crucial 

to maximise fitness of higher trophic levels. In the well-studied oak-winter moth-insectivore 

system, the phenology of all levels are highly temperature sensitive, and given atmospheric 

warming since the mid-20th century has been, and is predicted to continue, occurring at an 

unprecedented rate, this tri-trophic system is at risk of phenological mismatch. The effects of 

climate change on this system have been well studied in oak (Quercus spp.) dominated woodlands 

across Europe, as oak supports a wide variety of invertebrates. However, little is known about the 

importance of other deciduous tree species, which also support a variety of invertebrate species  

that are likely to be important to nesting blue tits (Cyanistes caeruleaus). Understanding the 

predictors of phenology and productivity across multiple trophic levels is required to understand 

the pressures on this food chain with a changing climate. 

The overarching aim of this thesis is to explore the effects of both climate and habitat on the 

phenology and productivity of both blue tit and herbivorous caterpillars. The effect of tree leafing 

phenology and air temperature on herbivorous caterpillar phenology was investigated at a local 

scale, across an extensive woodland site in Durham (UK) through collecting fallen frass. Frass fall 

phenology was not predicted by temperature or tree phenology, and did not differ across four 

common deciduous tree species. However, frass fall was most abundant under oak trees, 

corroborating the importance of oak for Lepidoptera. Across the same Durham study site , nestling 

blue tits faecal sacs were collected, with a view of using next-generation sequencing to elucidate 

nestling diet and resource usage, to expand the food chain into a more complex food web. Due to 

difficulties extracting and amplifying DNA from blue tit nestling faecal sacs, sequencing was 

unable to be undertaken. However, I provide a method for extracting DNA from difficult faecal 

samples, which are likely inhibitor-rich and contain highly degraded DNA. The effects of climate 

and habitat on blue tit phenology and productivity were then considered, by combining bird 

nesting data from 34 sites across the UK with local temperature and habitat variables. Overall, 

climatic factors were more important predictors of blue tit phenology and productivity than 

habitat. Decreased clutch size and earlier breeding phenology, but decreased risk of nest failure, 

is predicted at higher temperatures. These results, combined, depict a mixed picture for how blue 

tits may fare with changing climate. To further work presented in this thesis, the effects of climate 

and habitat on recruitment need to be explored to understand the full implications of the results 

presented here on blue tit population dynamics.
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Chapter 1: General introduction 

1.1 Motivation 

Climate change is occurring at an unprecedented rate, with global surface temperature having 

increased, on average, by 0.12°C per decade between 1951 and 2012 (IPCC, 2014). Temperatures 

are forecast to have warmed by an additional 0.3 to 4.8°C by 2100 compared to 1900 

temperatures (IPCC, 2014). Additionally, changes in precipitation are occurring with the frequency 

of intense rainfall now more probable, though spatially variable in the likelihood of occurrence 

(IPCC, 2014). Changes to annual mean precipitation are also forecast to increase at high latitudes 

and decrease in mid-latitude regions (IPCC, 2014). Due to rapid recent climate change, ecological 

responses to climate change are now one of the most widely researched areas in ecology. There is  

now a large body of evidence indicating recent changes in global climate are affecting a wide 

variety of organisms from all major ecosystems (Walther et al., 2002). Changes have been 

documented, and further changes predicted, in relation to a wide variety of biological processes, 

including: phenology (e.g. Crick et al., 1997; Dell et al., 2005; Jonsson and Jonsson, 2009), 

physiology (e.g. Bozinovic and Pörtner, 2015; Portner and Farrell, 2008), life history (e.g. Coulson 

et al., 2001; Pinceel et al., 2016; Wegge and Rolstad, 2017), community structure (Walther, 2010; 

Walther et al., 2002), morphology (e.g. Guerin et al., 2012; McCauley et al., 2018), population 

dynamics (e.g. Clark et al., 2003; Sillett et al., 2000; Thompson and Ollason, 2001) and spatial 

distributions (e.g. Chen et al., 2011; Parmesan, 2006; Wilson et al., 2007).  

In addition to climate change, other anthropogenic factors are also exerting pressures on 

ecological systems. For example, land-use changes, through the destruction, fragmentation and 

disturbance of habitats, are one of the most important drivers of current species extinctions 

(Hoffmann et al., 2010). However, climate change is predicted to become equally, or potentially 

even more, important for species losses over the next few decades (Newbold, 2018).  

Investigating the impacts of anthropogenic activities on ecological systems has become 

particularly pertinent in light of recent biodiversity loss (Butchart et al., 2010). Sixty percent of 

total biodiversity decline (biodiversity decline was calculated as a sum of all the decline fractions 

from IUCN red list status of birds and mammals between 1996 and 2008), has occurred in only 

seven countries (Indonesia, Malaysia, Papua New Guinea, China, India, Australia and the USA 

(mostly Hawaii); Waldron et al., 2017). Most biodiversity loss has been attributed to local-scale 

processes such as habitat loss and/or degradation, overexploitation or effects of invasive species 

(Pearce-Higgins and Green, 2014). However, climate and land-use occur at a wider, less local, 

scale and are now believed to be the two largest threats to global biodiversity (Bellard et al., 

2012). 
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To date, research into the impacts of climate on biological systems has mostly focussed on 

species’ spatial distributions or phenology (Chen et al., 2011; Walther et al., 2002). However, in 

order to understand how climate change will impact ecosystems at local scales, a better 

understanding of the processes and changes in community structure are needed, in order to make 

informed conservation decisions (Mace et al., 2008; McLean et al., 2016).  

Common species provide a rich opportunity to investigate the effects of environmental changes 

(Gaston, 2010; Gaston and Fuller, 2008) and such species are integral to the provision of many 

ecosystem services (Gaston, 2010). The effects on ecosystems of loss, or decline, of previously 

common species are often the most pronounced, due to the cascade of reductions and loss of 

other species reliant on common species, altering many biotic interactions (Gaston, 2010). In 

European temperate woodland ecosystems, blue tits (Cyanistes caeruleus) are one such common 

species, with a distribution across the Western Palearctic (Stenning, 2018) and are the focus of 

the research presented in this thesis. In the UK blue tits occupy approximately 3.4 million 

territories during the breeding season, making them the most abundant UK woodland bird 

(Musgrove et al., 2013). Consequently, the blue tit has been widely used as a model organism for 

research in woodland systems, with several long term studies across Europe investigating aspects 

of the species life history and behaviour, as well as population responses to changing climate (e.g. 

UK - Wytham Woods, Oxfordshire and Nagshead, Gloucestershire; the Netherlands - Hoge Veluwe 

and Wageningen). 

1.2 Outline of the introduction 

The remainder of this introduction is split into four sections. In the fi rst section I will provide a 

brief overview of the influence of climate change on ecological systems, focussing on phenology, 

range shifts and biotic interactions. In the second section I will describe the model system 

deciduous tree-herbivorous caterpillar-blue tit, which forms the basis of the research presented in 

this thesis. I will then discuss previous research, concerning both life history and the impacts of 

climate change, on the tree-caterpillar-insectivorous bird model system. In the third section, I will 

explore the current limitations and knowledge gaps in the tree-caterpillar-insectivorous bird 

system. Finally, I will outline the aims of this thesis.  

1.3 Influence of climate change on ecological systems 

1.3.1 Phenological changes 

Phenology, the timing of seasonal processes in animals and plants, has been widely studied 

particularly in temperate systems with marked seasonality, possibly due to it being one of the 

easiest ecological processes to track (Walther et al., 2002). Generally, the phenology of spring 

activities across Europe, such as breeding (e.g. Beebee, 1995; Both et al., 2004; Crick et al., 1997), 
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the return of migratory species to breeding grounds (e.g. Hüppop and Hüppop, 2003; Jonsson and 

Jonsson, 2009) and the emergence of butterflies (Dell et al., 2005) have advanced in recent 

decades. There is some evidence that autumn phenological events, such as leaf colour change 

across Europe has delayed by approximately 4.8 days during 1959 to 1993 (Menzel and Fabian, 

1999). However, the timing of autumn migration in birds, shows a less uniform response, for 

example, long-distance migrants are leaving breeding grounds earlier, whereas short-distance 

migrants are delaying their departure (Jenni and Kéry, 2003). Phenological changes are not limited 

to terrestrial systems, with seasonal peaks of meroplankton, some classes of holozoplankton and 

dinoflagellates in the North Sea having advanced significantly between 1958 and 2002 (Edwards 

et al., 2004). In addition to advancements and delays to phenology, there is also evidence for 

changes in the duration of events. For example, a lengthening of the vegetative growing season in 

the Northern Hemisphere of between 1.1 – 4.9 days per decade has been observed, since the 

1950s (Menzel, 2000; Menzel et al., 2003; Menzel and Fabian, 1999). Extended flight periods have 

also been documented in invertebrate taxa, such as aphids and butterflies in the UK (Bell et al., 

2015; Roy and Sparks, 2000). Of 55 aphid species in the UK, 85% have extended their flight 

periods (Bell et al., 2015). Across Europe, butterflies have not only extended their flight periods, 

but have also altered the number of generations they have in a year, with increased frequency of 

second and subsequent generations in warmer years (Altermatt, 2010). All of these processes 

have been shown to exhibit strong correlates with climatic conditions (Altermatt, 2010; Bell et al., 

2015; Both et al., 2004; Parmesan, 2006; Walther et al., 2002).  

Phenological changes, such as those previously discussed, can occur through two mechanisms, 

evolution or plasticity. Evolutionary adaptation occurs through climate-induced selection pressure 

on traits with genetic variance (Hoffmann and Sgrò, 2011). For example, there are adaptive 

optima for breeding phenology in systems with ephemeral peaks in resources, such as laying date 

in passerine birds, leading to differences in selection pressure between early and late breeders 

(Marrot et al., 2018). In contrast, phenotypic plasticity is when an organism changes its phenotype 

e.g. breeding phenology, in response to changes in their environment. Unlike evolutionary 

responses plastic responses are not genetical ly based, although plasticity itself is a selectable, 

heritable and variable trait (Nussey et al., 2005), and allows populations to respond rapidly to 

environmental change (West-Eberhard, 1989). In practice, responses are unlikely to be reliant on 

just one mechanism alone and are likely a combination of both local -adaption and plasticity 

(Phillimore et al., 2010). 

1.3.2 Range shifts 

Species distributions are heavily influenced by climatic suitability, with suitability based upon 

species-specific environmental requirements determined by physiology, as well as abiotic and 
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biotic requirements of other species in the food chain. Changing climate alters the location of 

these climatically suitable regions, which, in temperate regions are generally shifting poleward or 

to higher altitudes (Walther et al., 2002). Many species across a number of taxa have exhibited 

such range shifts (Hickling et al., 2005; Moiseev and Shiyatov, 2003; Parmesan, 1996; Thomas and 

Lennon, 1999) with evidence that these range changes are due to changing climate. Shifts to 

higher latitudes and elevations have occurred at a median rate of 16.9 kilometres and 11 metres 

per decade, respectively across Europe, North America, Chile, Malaysia and Marion Islands, across 

a number of taxonomic groups (Chen et al., 2011). For example, in the UK, between 1960 and 

2000, 275 species range margins have shifted northwards, 52 species southwards and 2 species 

range margins have not changed, out of 329 species from 16 different taxa (Hickling et al., 2006). 

In the same study, when changes in elevation were considered, 227 species have moved to higher 

altitudes, and 102 species to lower altitudes over the same time period (Hickling et al., 2006). 

Unless species are highly mobile, or able to migrate, they may lag behind the rapidly changing 

climate (Devictor et al., 2008; La Sorte and Jetz, 2012). This could be as a result of poor dispersal 

ability (Schloss et al., 2012) or long generation times but could ultimately result in reduced ranges 

and population sizes, which could lead to extinction (Pearce-Higgins and Green, 2014). This 

highlights the need for a good understanding of life history parameters, as well as distributions, to 

elucidate the effects of climate change on species ranges. 

1.3.3 Biotic interactions 

Responses to climate change by individuals and species will have implications for communities as 

a whole, due to intra- and inter-species interactions (Harrington et al., 1999; Van Der Putten et al., 

2010; Walther, 2010). Ecosystem functioning requires biotic interactions, which are reliant on 

spatial and temporal overlap of two or more species, with many such interactions being highly 

influenced by climate (Parmesan, 2006; Walther et al., 2002). To be able to accurately predict 

species responses to climate change, it is imperative that species interactions are incorporated 

into predictions (Gilman et al., 2010). 

Biotic interactions can be disrupted when nodes in a network respond to climate change 

differently, and therefore put strain upon existing linkages, create new species combinations or 

change dominance within communities (Walther, 2010). One example of where strains on existing 

linkages occur has been termed the match-mismatch hypothesis. The match-mismatch hypothesis 

is where resource users time key events, such as breeding, to coincide with ephemeral resource 

peaks (Cushing, 1969), with consumer fitness being reliant on resource and consumer phenology 

matching temporally (Cushing, 1990). If resource and consumer phenology mismatch (resource 

phenology is earlier or later than consumer demand), consumer fitness will be reduced as a result 

(Durant et al., 2007). Many species’ phenology’s are changing as a result of climate change, and 
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the changes are not uniform within and between species (Parmesan and Yohe, 2003), which can 

lead to an uncoupling of once synchronous trophic interactions (Both et al., 2009; Winder and 

Schindler, 2004). Evidence of such uncoupling has already been documented in marine systems, 

where primary, secondary and tertiary producers in the North Sea, which many fish species are 

reliant on, have demonstrated marked differences temporally in phenological responses (Edwards 

et al., 2004). The primary producers, diatoms and dinoflagellates, have shifted their summer 

phenology by 0 and 23 days respectively, whereas the secondary and tertiary producers, 

copepods, non-copepod holozooplankton and meroplankton, have shifted their phenology by 10, 

10 and 27 days, respectively. Phenological changes in plankton, as well as range changes and 

overfishing, have been linked to declines in cod stocks in the North Sea (Beaugrand et al., 2002). 

Phenological mismatch has also been reported In terrestrial systems, with evidence of 

phenological mismatch in predator prey interactions (e.g. insectivorous woodland birds and 

caterpillar prey (Burgess et al., 2018); marmots emerging earlier, before snow has melted and 

plant growth has resumed, in the Colorado Rocky Mountains (Inouye et al., 2000)) and plant-

pollinator interactions (Parmesan, 2007). Generally, in terrestrial, marine and freshwater systems, 

there is evidence that secondary consumers are less sensitive and responsive to climate change 

than primary consumers or producers (Thackeray, 2016) and these differing responses to 

temperature are likely driving observed mismatch.  

In addition to disruption between predator and prey phenology, there is evidence that host-

parasite interactions may also be disrupted due to climate change. For example, across Europe 

the common cuckoo (Cuculus canorus), a migratory brood parasite, is becoming increasingly 

mismatched with some of its host species (Saino et al., 2009). Across Europe, cuckoos are arriving 

back to their breeding grounds, on average, 5.3 days earlier (between 1947 and 2007), whereas 

their host species are returning 14.6 days earlier, if they are short distance migrants, and 6.0 days 

earlier if they are long-distance migrants (Saino et al., 2009). This apparent mismatch between the 

cuckoo and some of its host species has been suggested as a contributing factor to the recent 

observed cuckoo declines (Saino et al., 2009). 

1.4 A simple food chain as a model system 

The simplified food chain of deciduous tree-herbivorous caterpillar-insectivorous bird has become 

a model system in temperate woodlands for exploring life history, predictors of phenology and 

impacts of climate change on trophic interactions (Both et al., 2009; Charmantier et al., 2008; 

Visser et al., 1998), and is the focus of the research presented in this thesis. This highly 

synchronous system relies upon correctly timed phenology across all trophic levels to maximise 

fitness, with all levels exploiting ephemeral peaks resources. The primary producers in this 

system, deciduous trees, produce new leaves annually after lying dormant over winter to avoid 
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frost damage, whilst simultaneously exploiting increasing photoperiod to maximise growth 

(Linkosalo et al., 2000). Lepidopteran larvae, primary consumers in this food chain, utilise these 

newly emerged leaves to support their own growth. The optimal foraging period for Lepidopteran 

larvae is when leaves are young, where protein content is maximal and tannin build-up, which 

inhibits larval growth, is minimal (Feeny, 1970). Finally, secondary consumers, passerine birds 

such as tit (Paridae) and flycatcher (Muscicapidae) species time their breeding such that peak 

nestling demand coincides with the ephemeral peak in Lepidopteran larval availability. Most tit 

and flycatcher species are single brooded (Lundberg and Alatalo, 2010; Perrins, 1979; Stenning, 

2018), therefore correctly timed breeding phenology is essential to maximise productivity (Burger 

et al., 2012; Wilkin et al., 2009). Many woodland tit and flycatcher species are hole-nesting, 

relying on pre-excavated cavities to breed in and readily utilised man-made nestboxes (Stenning, 

2018). This, along with their abundance, make them model species for studying phenology and 

the consequences of varying environmental parameters on life history and fitness.  

The environmental cues, or conversely physiological constraints, underpinning trophic 

interactions in this system, along with a knowledge of life histories, need to be well understood to 

make informed predictions about how this food chain will respond to climate change.  

For the primary producers, leaf development is temperature sensitive and temperature is 

responsible for inter-annual variation in the timing of first leafing, referred to as leaf-out date 

(Linkosalo et al., 2006). Most temperate trees require a period of winter chilling followed by 

warming to facilitate bud development (Hunter and Lechowicz, 1992; Tansey et al., 2017), with 

specific thermal requirements varying by species (Morin et al., 2009). Some species also use 

seasonal changes in photoperiod as a cue to initiate leaf development, but not all populations 

have the same requirements, with photoperiod ecotypes across latitudinal gradients in some 

species (Partanen, 2004). The addition of photoperiod in the regulation of leaf-out phenology 

prevents species from leafing early in response to an unusually warm period in early spring when 

a frost risk remains (Caffarra and Donnelly, 2011), but limits their ability to respond to early 

springs. Although all species in a given area likely experience similar environmental conditions, 

interspecific differences in leaf-out phenology remain, explained in part by differences in stem 

anatomy (Lechowicz, 1984). However, individual trees are highly repeatable in their phenology 

among years e.g. early leafing trees are always early leafing (Cole and Sheldon, 2017; Crawley and 

Akhteruzzaman, 1988; Hinks et al., 2015; Wesołowski and Rowiński, 2006a) , which could be 

attributable to either genetics or consistent environmental and developmental conditions. There 

is evidence that trees have responded to recent climatic change, with earlier bud-burst occurring 

in warmer springs (Parmesan and Yohe, 2003), but with interspecies variability in the mechanisms 

and ability to track optimal phenological timing (Tansey et al., 2017). In the UK, it is predicted that 
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many tree species will be able to advance their phenology to track optimal climatic conditions 

(Tansey et al., 2017). However, not all species will advance at the same rate, which could lead to a 

change in the order species leaf-up in temperate woodland systems (Roberts et al., 2015). In turn, 

this could alter woodland composition, due to new combinations of species competing for light 

(Roberts et al., 2015). 

The primary consumers, Lepidopteran larvae, developmental requirements are less well 

understood in comparison to the tree primary producers. Temperature exhibits a positive 

relationship with caterpillar growth and feeding rates, until a thermal limit is reached af ter which 

both growth and feeding rate reduces (Kingsolver, 2000). Ephemeral Lepidopteran larval peaks 

occur during spring, in temperate deciduous woodlands, and are typically dominated by a few 

species (Hunter and Lechowicz, 1992; Shutt, 2017). In Europe and America, green oak tortrix 

(Tortrix viridana) and winter moth (Operophtera brumata) larvae contribute substantially to such 

peaks (Hunter and Lechowicz, 1992; Shutt, 2017; Wesołowski and Rowiński, 2006b) . In an oak 

dominated UK woodland, green oak tortrix and winter moth contributed 46% and 26% to the 

ephemeral peak (Hunter and Lechowicz, 1992). However, in mixed woodlands across Scotland, 

green oak tortrix was not detected, but winter moth still accounted for 33% of the caterpillar peak 

and three species (winter moth, Operophtera fagata and Agriopos aurantiaria) accounted for 

over 50% of the peak (Shutt, 2017).  Winter moth has been found to be responsible for high levels 

of defoliation on host trees, Quercus spp., across Europe and in Nova Scotia (Crawley, 1985; 

Cuming, 1961; Wesołowski and Rowiński, 2006b) and can even outcompete sympatric species, 

such as the green oak tortrix, in some instances (Hunter and Willmer, 1989). Due to winter moth’s 

abundance and its ability to reach pest status (Embree, 1971; Speight, 1979), more is known 

about the effects of environmental conditions on its lifecycle than many other Lepidopteran 

species. Winter moth is polyphagous (Cuming, 1961; Tikkanen et al., 2000; Vanbergen et al., 2003; 

Wint, 1983) but is most likely to use oak (Quercus spp.) or willow (Salix spp.) as host species 

(Shutt, 2017). Temperature is important during all life stages, exerting different effects during 

each stage (Holliday, 1985). During the larval stage, caterpillars emerge earlier and grow faster 

when reared under warmer temperatures (Buse et al., 1999). However, humidity also influences 

larval phenology with eggs hatching three days later when reared under 50%, as opposed to 70%, 

relative humidity (Embree, 1970). Larvae need to synchronise their hatching phenology with leaf -

out of their host tree, as young leaves are most nutritious and once the leaves mature they 

become unpalatable to caterpillars (Feeny, 1970). Peak caterpillar abundance and oak leafing are 

highly correlated in the field (Burgess et al., 2018; Hinks et al., 2015). Both caterpillars and trees 

respond at a similar rate to warming spring temperatures, with oak (Quercus robur) bud-burst and 

winter moth egg hatching predicted to remain synchronous in the future (van Asch et al., 2013; 

Buse and Good, 1996). In the UK, caterpillar phenology and the duration of availability is later and 
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longer, respectively, in the north and west (Smith et al., 2011).  However, little is known about 

whether their development period in the field i.e. time between hatching and pupating, has 

varied with changing climate. Experimentally, development time is shorter when caterpillars are 

reared at warmer temperatures (Holliday, 1985). 

Passerine birds, secondary consumers in this food chain, are thought to use a combination of cues 

to initiate breeding, including both temperature and photoperiod (Visser and Lambrechts, 1999), 

to ensure nestling demand coincides with the period when caterpillars are available. Lengthening 

photoperiod initiates photo-stimulation and secretion of gonadotropin-releasing hormone, which 

controls gonadal growth and maturation (Dawson et al., 2001; Sharp, 2005). However, 

photoperiod alone does not explain inter-annual variation in breeding phenology, as photoperiod 

is consistent inter-annually. A combination of other factors are believed to fine  tune breeding 

phenology, once transition into a reproductive state has been induced through photoperiod 

(Visser and Lambrechts, 1999). Spring temperature is one such factor, altering the rate of gonadal 

growth, with more rapid growth at higher temperatures (Engels and Jenner, 1956). However, the 

sensitivity to temperature may differ within and between species, with an experimental study in 

house finches (Haemorhous mexicanus) and some field populations of great tits (Parus major) 

reporting no effect on the timing of reproduction (Visser and Lambrechts, 1999; Watts et al., 

2018). Close correlation between bud-burst, in oak and silver birch, and first egg dates of tits have 

been reported in the field (Bourgault et al., 2010; Burgess et al., 2018; Cole et al., 2015; Hinks et 

al., 2015; Slagsvold, 1976), with local scale oak phenology predicting breeding phenology of great 

tits (Hinks et al., 2015). However, experimentally the same result has not been proven (Schaper et 

al., 2011; Visser et al., 2002). Tree phenology and avian food availability at the time of breeding 

may influence avian breeding phenology, by providing information as to when food may be 

abundant for nestlings (Visser and Lambrechts, 1999). However, the causal mechanisms for how 

these cues may be used by the birds are unclear. Chemical cues from the trees, which indicate 

bud-burst is imminent, have been hypothesised as one mechanism for how birds may process 

local phenological cues (Bourgault et al., 2006). This would require scale buds to be ingested for 

the birds to receive the cue, however scale bud consumption is low, and therefore phenological 

cues from trees are unlikely to operate through this pathway (Bourgault et al., 2006).  

Generally, birds in the UK have been exhibiting advancements in breeding phenology since 1970s 

(Crick et al., 1997), which has been attributed to warming springs (McCleery and Perrins, 1998). 

Across Europe, passerine woodland birds are no exception (Visser et al., 2003), and have 

advanced breeding by approximately 3.5-5 days for each 1°C rise in spring temperature 

(Phillimore et al., 2016; Thorley and Lord, 2015; Vedder et al., 2013; Visser et al., 1998). However, 

the responses have not been uniform across populations, and are not fully explained by 
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temperature alone (Visser et al., 2003). The advancement of tit breeding phenology with warming 

temperature is likely to have occurred through phenotypic plasticity (Charmantier et al., 2008; 

Phillimore et al., 2016; Thorley and Lord, 2015), and with selection strongly favouring early 

breeding individuals (Marrot et al., 2018). Phenological advancement has also been linked to the 

North Atlantic Oscillation index, suggesting winter temperature and precipitation may also 

influence breeding phenology (Sanz, 2002). In the UK, tit species have been continuously 

monitored in Wytham Woods (Oxfordshire, UK) since 1947 (Perrins, 1979), and much of the 

understanding of finer scale predictors of breeding phenology comes from this site. Topographical 

variables, such as aspect and altitude, as well as nesting habitat have been shown to further fine 

tune breeding phenology (Wilkin et al., 2007). Altitudinal differences are likely to be due to 

bioclimatic factors, with temperature decreasing as height above sea level increases and 

therefore breeding being delayed at higher altitudes (Wilkin et al., 2007). Phenology has been 

shown to vary in a counterintuitive way with nest site orientation, with north facing slopes having 

earlier breeding phenology than warmer south facing slopes, possibly due to increased 

invertebrate availability in damp and humid conditions allowing females to reach breeding 

condition quicker (Wilkin et al., 2007). 

Factors unrelated to climatic conditions also influence breeding phenology. For example, birds 

breeding at high densities exhibit delayed first egg dates, with the causal mechanism of this 

unproven, but postulated to be due to increased competition for resources (Wilkin et al., 2006). 

Phenology also varies due to habitat, for example birds nesting in areas with high oak density 

breed earlier than those with lower oak density, at a single site in the UK (Wytham Woods, 

Oxfordshire; Wilkin et al., 2007). At this site, birds nesting at woodland edges, in 20th century 

woodland plantations or grassland, exhibit delayed breeding phenology in comparison to birds 

nesting in the centre of woodlands and in older woodland habitats (such as ancient, semi-natural 

woodlands), independent of the number of oak trees (Wilkin et al., 2007). Due to phenological 

variation existing between habitats, independent of oak, the presence of other (unidentified) 

species or woodland structure may be important in determining breeding phenology (Wilkin et 

al., 2007). 

Birds must not only correctly time the initiation of breeding, so nestling demand coincides with 

food availability, but also subsequent events such as hatching. Hatching phenology can be 

modulated through a number of mechanisms such as egg pauses, variable incubation length 

and/or clutch size (Cresswell and Mccleery, 2003). All of these adjustments, first egg date 

included, have to occur prior to the individual experiencing the optimal conditions and therefore 

are reliant on cues to indicate when these optimal conditions may occur. The cues used to elicit 

modulations post egg laying phenology are, in comparison to first egg date, relatively poorly 
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understood. Temperature during egg laying, as opposed to pre-egg laying for first egg date, 

influences decisions such as when to commence incubation (Cresswell and Mccleery, 2003). 

However, experimental increases in nest temperature does not decrease the duration of 

incubation in great tits (Vaugoyeau et al., 2017), which given embryonic development is more 

rapid at higher incubation temperatures  (DuRant et al., 2013) is counterintuitive. Clutch size 

decreases as the breeding season progresses, in typically single-brooded species such as tits (Crick 

et al., 1993; Perrins, 1979; Stenning, 2018), but there is no evidence seasonal declines are 

temperature mediated with no relationship between temperature and clutch size being reported 

(Dolenec, 2007). Instead, seasonal declines in clutch size could be due to reduced resource 

availability later on in the breeding season (Perrins and McCleery, 1989), or due to later breeding 

individuals being of lower quality or inexperienced. There has been a suggestion that the focus of 

phenological studies should shift from first egg date to hatching date, which may be more 

biologically relevant when considering the effects of climate change (Tomás, 2015). Similarly to 

first egg date, local oak tree phenology predicts the timing of hatching (Hinks et al., 2015), 

suggesting birds are using oak as a reliable predictor of food availability for nestlings, or that both 

trees and birds are using similar cues. Experimentally it has also been shown that hatching date 

advances with warmer temperatures (Vedder, 2012). However, to my knowledge, there is no 

indication whether this stands in field studies, although hatching date of blue tit, great tit and 

pied flycatcher have shown similar temporal advancement to first egg date (Both et al., 2009).  

It is clear phenology has advanced in the oak-herbivorous caterpillar-insectivorous bird tri-trophic 

system, and the changes, at least in part, have been temperature driven. For food chains to 

remain synchronous, the advancements in phenology at each trophic level need to occur at the 

same rate. Thackeray et al., (2016) showed that consumers, across many taxa and species, 

advanced their phenology less than the producers they are reliant on, and work on this tri-trophic 

system corroborates these findings (Both et al., 2009). Bud-burst and peak caterpillar availability 

have remained synchronous with elevated spring temperatures (Both et al., 2009; Burgess et al., 

2018). However, whether bud-burst and moth egg hatching has remained synchronous is less 

clear, with both synchrony (Buse et al., 1999) and disruptions to synchrony (van Asch and Visser, 

2007; Visser and Holleman, 2001) being reported. Secondary avian consumer, and primary 

caterpillar consumer phenology have not remained as synchronous, with secondary consumers 

responses being weaker than those of primary consumers (Both et al., 2009; Buse et al., 1999). In 

the UK, resident tit species, both blue and great tit, appear to be remaining more synchronous 

(Burgess et al., 2018; Vatka et al., 2014) than the migratory pied flycatcher (Burgess et al., 2018). 

Asynchrony is greater in warmer springs and, therefore, mismatch is predicted to increase 

between secondary consumers and caterpillars with continued spring warming, even those 

secondary consumer species that are currently synchronising with caterpillar peaks (Burgess et al., 
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2018). Data from a single UK study site corroborates the national findings, suggesting that tit 

breeding phenology is currently synchronised with tree phenology, and most synchronised in 

areas dominated by tree species used for foraging (Cole et al., 2015). In addition, passerine 

phenology was best predicted when vegetation phenology was considered at a local scale (Hinks 

et al., 2015). Insectivorous birds mismatching with their prey has consequences for their 

individual fitness, but does not necessarily have negative effects on demography (Reed et al., 

2013), despite producing fewer fledglings per female. Demography has been buffered by the 

number of fledglings recruiting into the population only being weakly affected by mismatch (Reed 

et al., 2013).  

1.5 Limitations and knowledge gaps in the simple deciduous tree-herbivorous 

caterpillar-insectivorous bird food chain 

A wealth of research has been conducted on the simple oak-herbivorous caterpillar-tit food chain, 

across Europe, leading to a good understanding of natural history and the effects of climate 

change on phenology. However, a number of unanswered questions remain.  

To date, the majority of research on the tree-tit food chain has been conducted in woodlands 

dominated by mature oak, due to its dominance across much of Europe (Ozenda and Borel, 2000), 

despite being a relatively uncommon habitat type in the UK (Forestry Commission, 2011, 2013). 

Blue and great tits are not exclusively oak woodland specialists; they thrive in many different 

habitat types, from mixed deciduous woodland to urban and wetland areas (Stenning, 2018). To 

date, there has been limited research into the implications of climate change on tits breeding in 

habitats not dominated by oak, despite previous work showing blue tits nesting in urban and 

suburban areas have lower breeding success than woodland counterparts (Pollock et al., 2017). 

Habitat variables, such as woodland age and local oak density have been shown to influence the 

breeding phenology of some woodland insectivores (Wilkin et al., 2007), but such habitat effects 

have been largely ignored in wider scale studies, and, to date have only been investigated at a few 

single sites. Therefore, little is known as to whether habitat may be able to buffer the negative 

effects of climate change on breeding parameters detected in oak dominated woodlands.  

In addition to the research focus on oak woodland, there is also a disproportionate balance in 

knowledge concerning different levels of this woodland food chain. Insectivorous secondary 

consumers, such as blue and great tits, have received more research attention than primary 

consumers or primary producers, for example. This is possibly due to the ease with which each 

level can be studied. Relative to birds, little is known about the response of insects to climate 

change, and most research to date (in this system) has focussed upon winter moth larvae, due to 

their abundance in oak woodlands (Kennedy and Southwood, 1984). Most insights into the 

ephemeral peak in caterpillar abundance comes from indirect sampling methods such as 
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collecting fallen frass (e.g. Smith et al., 2011). Caterpillar frass cannot be attributed to a specific 

species, providing a representation of more general invertebrate availability but only under a 

single tree. To date, studies of frass fall have been heavily focussed upon oak trees, despite 

Lepidopteran larvae, and other invertebrates, being found in good numbers on other tree species 

(Kennedy and Southwood, 1984). 

Much of the knowledge on the tree-tit food chain has arisen from research conducted at single 

sites, especially Wytham Woods, UK and Hoge Veluwe, the Netherlands. Both sites have been 

monitored over long-time periods (in ecological research terms), however the results are difficult 

to extrapolate out to other populations, as effects of climate change differ at small geographical 

scales (Visser et al., 2003).  

Examining a tri-trophic food chain (deciduous tree-herbivorous caterpillar-insectivorous 

passerine), further simplified to oak-caterpillar (winter moth)-passerine (tit or flycatcher) has 

allowed an understanding of the drivers of change within and between different trophic levels. 

However, tri-trophic interactions are, of course, an oversimplification of a more complex 

ecosystem and its associated food webs. Both tits and flycatchers are predominantly 

insectivorous during the breeding season (Betts, 1955; Lundberg and Alatalo, 2010; Perrins, 1979; 

Stenning, 2018), with adults and nestlings consuming large numbers of Lepidoptera but also 

Araneae, Hymenoptera, Coleoptera, Diptera and Hemiptera (Betts, 1955; Cowie and Hinsley, 

1988; Shutt, 2017). Each species within these invertebrate orders have their own suite of host 

species and are found on a wide variety of deciduous trees (Kennedy and Southwood, 1984). 

Further knowledge of the trophic interactions insectivorous birds rely on would offer potential 

insights into, for example, whether mismatch can be buffered through habitat or prey switching. 

This thesis provides an opportunity to expand knowledge of the oak-caterpillar-blue tit system, by 

investigating the broader role of non-oak trees and to explore the effects of climate change on 

this tri-trophic system.  

1.6 Thesis aims 

The overarching aims of this thesis are to explore: 

1) The effects of both climate and habitat on the phenology of two trophic levels, 

invertebrates and blue tit, of the deciduous tree-herbivorous caterpillar-blue tit tri-

trophic system. 

2) To expand the impacts from 1) into the productivity of the secondary consumers, blue 

tits.  

I have four data chapters that I outline below. 
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In Chapter 2, I will explore the variation in caterpillar frass fall phenology, at a single site in 

Northern England, over three years and under four tree species that are common in UK 

woodlands. This is with the view to helping identify tree species that are likely to be important 

sources of Lepidopteran prey for nestling blue tits, and expanding our knowledge of the must 

understudied level of the tree-tit system. The novelty here lies in the comparison between the 

relative role (in terms of abundance and phenology of frass fall) of oak and other common tree 

species for insectivorous woodland birds. 

In Chapter 3, I aimed to explore the potential of using next generation sequencing to elucidate the 

diet of nestling blue tits. Previous research has highlighted Lepidopteran abundance within 

nestling diets, however taxonomic resolution is poor through standard methods, and through 

using molecular techniques this could be addressed. In this chapter I test DNA e xtraction 

methods, and primer pairings to efficiently amplify prey DNA from blue tit nestling faecal sacs. 

However, due to difficulties discussed in the chapter, I was unable to sequence the extracted DNA 

during the duration of this thesis, and so this chapter focuses on comparing different DNA 

extraction methods, within and between species, to try and elucidate why blue tit samples are 

difficult to obtain high levels of DNA amplification from.  

Next, in Chapter 4, I investigate the predictors of blue tit phenology across the UK expanding 

previous findings, from single study sites, to a multi -site (34 site) scale and include the effect of 

local tree species composition, through utilising a long-term citizen science dataset. This work 

enables trends between different populations to be explored, to find general patterns for the role 

of different tree species on blue tit phenology and investigate whether the detailed studies from 

individual sites (e.g. Wytham Woods) are generalizable. 

Finally, in Chapter 5, I continued to examine the effects of climate and habitat, across the UK, 

using the same long-term dataset (from Chapter 4), on blue tit productivity and whether 

environmental variables influence the risk of nest failure. 
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Chapter 2: Caterpillar phenology: variation and drivers 

2.1 Abstract 

In temperate systems many insectivorous passerines have a lifecycle that tracks ephemeral peaks 

in insect availability. Caterpillars of Lepidoptera are vital prey for insectivorous woodland birds, 

and as such birds time their breeding to coincide with peaks in caterpillar availability. Broadleaved 

woodland covers 1.3 million hectares in the UK, with 18% being covered by oak trees, which host 

a large number of larval Lepidopteran species. Previous phenological research of caterpillars has 

been oak-focussed, despite non-oak species hosting Lepidopteran larvae. Environmental factors, 

such as temperature and leafing phenology have previously been shown to impact caterpillar 

development and, in light of warming springs is a key area for field research.  

Here I investigate the drivers of phenology, duration and magnitude of caterpillar frass (faecal 

pellet) fall, as a proxy for caterpillar availability, under four common UK tree species in a 

woodland in Northern England. Seventy percent of total frass fall  was produced under oak trees 

and therefore reinforces oaks importance for Lepidopteran larvae, and insectivorous woodland 

birds.  

Frass fall phenology was not predicted by temperature (either within site or between year), or 

leafing phenology, which could have effects on bird populations reliant on this resource. No 

interspecies variation in peak frass fall phenology was observed, providing no evidence of the 

potential for non-oak species to provide Lepidopteran food resources to breeding birds that have 

mistimed breeding events. These findings further strengthen the importance of oak within UK 

woodlands, and the need to ensure oak trees are not disadvantaged in future woodland 

management. 
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2.2 Introduction 

In temperate systems many insectivorous passerines have a lifecycle that tracks insects annually, 

either through migration (e.g.swifts (Apus spp., swallows and martins Hirundininae) or through 

timing breeding, to exploit ephemeral insect peaks (e.g. tit specie, Paridae). Birds are a major 

predator of insects, and caterpillars are an important part of the diet of many breeding woodland 

birds, especially in temperate regions (Perrins, 1991). For example, both tit and flycatcher species 

(Paridae, resident and Muscicapidae, migrant species, respectively) in the UK, breed 

predominantly in woodlands, and are reliant on invertebrates (mostly Lepidoptera (Betts, 1955) 

and Araneae (Grzędzicka, 2018)) to feed their chicks during their short breeding seasons. Birds 

and caterpillars often form part of a tri-trophic food chain (trees-caterpillars-birds), which is a 

well-studied biological system, and the subject of several long-term research projects (e.g. 

Wytham Woods, UK (e.g. Betts, 1955; McCleery and Perrins, 1998; Perrins, 1991) and Hoge 

Veluwe, Netherlands (Visser et al., 1998, 2006; Visser and Holleman, 2001). A key area of research 

in such tri-trophic systems is focused upon understanding the phenology of the three levels in 

relation to each other. The resource peaks of caterpillars usually occur as a narrow peak during 

spring, just after leaves have fully opened on deciduous trees. Due to this, birds aim to time their 

breeding, so peak demand from nestlings corresponds with peak availability of their food 

resource. In recent decades, the phenology of many species has been changing in relation to 

climate change (Walther et al., 2002), and this tri-trophic system has also been experiencing 

advancement (Buse et al., 1999; Crick et al., 1997). However, not all levels have advanced at the 

same rate, with secondary consumers advancing more slowly than producers (Burgess et al., 

2018; Thackeray et al., 2010). This highlights the need for further research, to fully understand the 

effects of warming springs on each trophic level and the system as a whole.  

Typically, European tit species feed their chicks mainly on larvae of moths of the families 

Noctuidae, Totricidae and Geometridae (Grzędzicka, 2018; Perrins, 1979, 1991). In temperate 

European woodland, winter moth (Operophtera brumata, family Geometridae) larvae make up a 

large proportion of the diet of nestlings and are a key source of important nutrients for nestlings 

(Arnold et al., 2010; Perrins, 1991). 

Winter moth imagos typically emerge in November and December in the United Kingdom, laying 

their eggs (which then overwinter) in bark crevices in the tree canopy. The eggs hatch, into their 

larval stage, when leaves first emerge on their host trees (Holliday, 1985). The time it takes for 

the larvae to fully develop, before dropping to the ground and pupating in the soil depends on the 

air temperature, with development time being shorter when the temperature is warmer (Buse et 

al., 1999; Holliday, 1985). 
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Broadleaved woodland covers 1.3 million hectares in the UK, with wide ranges in woodland age 

and species composition (Forestry Commission, 2013). The five most dominant species in the UK, 

by area, are oak (Quercus spp.), birch (Betula spp. and Carpinus betulus), ash (Fraxinus excelsior), 

sycamore (Acer pseudoplatanus) and beech (Fagus spp.) (Forestry Commission, 2013). Despite UK 

woodlands comprising a mixture of species, and oak and birch combined comprising 36% 

(approximately 18% each; Forestry Commission 2012) of total woodland area, typically oak has 

been the focus for bird and caterpillar research (Perrins, 1979; Smith et al., 2011). Partially due to 

invertebrate, especially Lepidoptera, abundance being highest on oak trees (Kennedy and 

Southwood, 1984). The phenology and abundance of winter moth, a key resource for nestlings, is 

typically only investigated in relation to oak (e.g. Burgess et al., 2018; Buse et al., 1999; Perrins, 

1991; Smith et al., 2011). However, the larvae are polyphagous found on a wide range of other 

tree species (Cuming, 1961; Shutt, 2017; Tikkanen et al., 2000; Vanbergen et al., 2003; Wint, 

1983), and little is known about larval phenology and abundance across non-oak species. 

Although, it is worth noting that individual larvae will typically be monophagous, consuming the 

first host species it can become established on after hatching (Wint, 1983). Female winter moths 

are flightless, and are thought to have little control in selecting the host plant, or oviposition site, 

and this decision will depend more on pupation site and orientation at emergence, as well as 

what trees are locally available (Wint, 1983). 

Many sampling techniques for canopy dwelling caterpillars are time intensive (e.g. branch 

beating), logistically challenging, and require excellent identification skills of larvae, which can be 

difficult. Branch beating is a common direct invertebrate sampling technique, however only gives 

an indication of the species present lower down in the canopy and samples are often removed 

off-site for identification at a later date. If samples are removed, and not replaced, and the study 

is at a large scale, this could bias observations being undertaken of higher trophic levels by 

artificially depleting the food resource. An indirect sampling approach to record phenology of 

arboreal caterpillars is frass sampling (Burgess et al., 2018; Glądalski et al., 2017; Sisask et al., 

2010; Smith et al., 2011; e.g. Veen et al., 2009; Wesołowski and Rowiński, 2014) , which cannot be 

used to identify Lepidopteran larvae present, but can provide insights into their phenology and 

abundance. To date, studies employing frass sampling have tended to focus only on oak species 

(Burgess et al., 2018; Smith et al., 2011), a mixture of species (Sisask et al., 2010; Wesołowski and 

Rowiński, 2014), or not explicitly specified the species sampled (Glądalski et al., 2017). However, 

Veen et al. (2009) investigated a suite of species (ash, birch, hazel, oak, pine, spruce) and found 

strong peaks under all deciduous species. 

This study aims to assess the importance of four common tree species in UK woodlands (beech, 

Fagus sylvatica; silver birch, Betula pendula; sycamore, Acer pseudoplatanus and oak, Quercus 

robur) for Lepidopteran larvae, and therefore indirectly insectivorous woodland birds. I will assess 
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the potential importance of each species by comparing the total frass fall produced under each 

species, as a proxy for caterpillar availability. I will also investigate whether temperature (both 

within and between years) and/or tree phenology can be used to predict frass fall phenology 

(timing and duration of frass peaks), and to establish whether phenology varies spatially and/or 

temporally. I will also explore whether increased oak density surrounding the tree being 

monitored influences frass fall detection, and whether this is likely due to sampling 

contamination.  I hypothesise peak frass fall phenology will be driven by both temperature and 

leafing phenology (Buse et al., 1999), and differ between species due to interspecies differences 

in leafing phenology (Roberts et al., 2015). Previous research has focussed heavily on oak, 

therefore I cannot predict the differences that will be found between species. However, due to 

oak likely hosting the greatest variety of Lepidopteran species, I predict oak will be important for 

caterpillars, and inter-annual variation in phenology will likely be driven by temperature and tree 

phenology.  
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2.3 Methods 

2.3.1 Study site 

This study was conducted in a near contiguous area of mixed semi-natural woodland, and 

suburbia, to the south of Durham City (covering 1 km grid squares NZ2740, NZ2741, NZ2840, 

NZ2841, NZ2641; Figure 2.1), owned by Durham University. The woodlands receive little 

management, apart from the removal of dangerous trees overhanging public right of ways. The 

woodlands are mostly comprised of sycamore (Acer pseudoplatanus), beech (Fagus sylvatica), 

english oak (Quercus robur) and silver birch (Betula pendula) with an understory of hazel (Corylus 

avellana) and hawthorn (Crataegus monogyna) in places. At ground level the woodlands are 

dominated by bluebells (Hyacinthoides non-scripta), alongside a mixture of other species typical 

of semi-natural woodland. The suburban parts of the study sites, mostly surrounding university 

accommodation and college buildings, are a mixture of native and non-native species. These 

receive more management, and the understory is generally grass species, with little or no dead 

wood or leaf litter, as opposed to woodland floor. 

 

Figure 2.1: Map depicting woodland and suburban sampling area (red shaded area) in Durham, United 

Kingdom. 

2.3.2 Frass sampling 

Frass (caterpillar faecal pellets) sampling is a common method used for phenological studies of 

caterpillar availability, especially when coupled with observations of other trophic levels 

phenology e.g. birds (Glądalski et al., 2017; Sisask et al., 2010; Tremblay et al., 2003; Veen et al., 

2009). Frass fall has been shown to highly correlate with results obtained through branch beating, 

giving reliable estimates of caterpillar availability (Fischbacher et al., 1998). The sampling method 

used here was based upon a method from Smith et al. (2011), described in brief below. Traps to 
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collect frass (caterpillar faecal pellets) were placed under beech, english oak, silver birch and 

sycamore trees, from 26th April until 1st July in 2015, 2016 and 2017, with the number of traps 

under each species detailed in Table 2.1. 

Table 2.1: The number of each tree species monitored for frass fall in each year of the study 

Species 

Number of traps in given 

year 

2015 2016 2017 

Beech 13 15 15 

Oak 8 15 15 

Silver Birch 5 15 15 

Sycamore 9 15 15 

Frass traps consisted of single black plastic seed tray (approximately 37 x 22 cm, with drainage 

holes) lined with permeable white horticultural fleece (17 gsm thickness), which was fitted to line 

the tray so it sat flat on the base of the tray and up the sides to prevent frass being lost on 

collection. Trays were placed level on the ground (levelling those on sloping ground), directly 

under the canopy of the tree being sampled. Traps were held in place by pegged black plastic 

anti-butterfly netting (LBS Horticultural Supplies, mesh size: 7 x 6 mm), stretched tightly over the 

top of the tray. As well as preventing the trap from being dislodged, netting also prevented larger 

debris being caught in the liner. Liners were collected and replaced every five days. However, on a 

few occasions liners were left for slightly longer, or shorter, periods before collection (min: 4 days, 

max 6 days between collection, 32 (out of 2075) traps were not collected at the 5 day interval). 

On collection, liners were temporarily stored in labelled polythene bags prior to dryi ng. Liners 

were air-dried after collection, for a minimum of 24 hours, and then, after sorting, the frass 

contents weighed. To separate the frass from debris, each liner was brushed (using a 50 mm 

paintbrush) to remove all frass and debris. Particles were sieved through metal 1 mm mesh to 

remove larger, non-frass debris. As frass is cylindrical and uniform in shape, when placed onto 

folded paper it can be ‘rolled’ off, as frass will tend to roll faster than non-frass debris. Resultant 

collected frass was placed under a low power dissection microscope (at 2x magnification; Nikon), 

and any non-frass material was removed using fine pointed tweezers. The total frass sample was 

then weighed (Kern EG 300-3M, ±1 mg).  

Frass mass was converted into frass fall, defined as mg frass per m2 per day. For analyses, the date 

associated with the frass fall mass was the mid-point between the start and end date of the 

collection period. 

2.3.3 Smoothing raw frass fall data 

Raw frass fall data (Figure 2.2) were smoothed using methods adapted from Soulsby and Thomas 

(2012). Raw data were smoothed to clearly define single smooth peaks, reducing the noise in the 
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data. This method was originally used to describe butterfly eclosion and flight periods. However, 

it can be applied to any curvilinear phenomenon that starts and ends with zero data. 

The curve is a function of four parameters: N (maximum detectable frass fall), t0 (the start of peak 

frass fall), TE (duration of frass fall) and T (mean life span of caterpillar) whose values are fitted, to 

maximise log-likelihood, to each trap in each year: 

𝑛(𝑡) =  0, 𝑓𝑜𝑟 𝑡′ < 0 

𝑛(𝑡) =  
3𝑁

4(𝑎2 + 9)
[𝑎 𝑠𝑖𝑛3𝑋 − 3𝑠𝑖𝑛2𝑋. 𝑐𝑜𝑠𝑋 +  

6

𝑎2 + 1
(𝑎 𝑠𝑖𝑛𝑋 − 𝑐𝑜𝑠𝑋 + 𝑒−𝑎𝑋)] , 𝑓𝑜𝑟 0 ≤  𝑡′  ≤ 𝑇𝐸 

𝑛(𝑡) =  
9𝑁 𝑒−𝑎𝑋(1 + 𝑒𝑎𝜋)

2(𝑎2 + 9)(𝑎2 + 1)
, 𝑓𝑜𝑟 𝑡′  >  𝑇𝐸  

Where: 

n(t) is the frass fall  at time, t 

N is the maximum detectable frass fall 

T is the mean life span of a caterpillar – fixed at the mean time from hatching to pupation for Winter Moth, 

17 days (Holliday, 1985) 

t0 is the date of the beginning of the fras s peak  

t’ = T – t0 , where t’ is a time parameter, which is negative prior to the start of the frass peak 

𝑎 =  
𝑇𝐸

(𝜋 .𝑇)
 , and  𝑋 =  𝜋 

𝑡′

𝑇𝐸
  are dimensionless parameters  

TE is the duration of the frass peak (days) 

These models were fitted in ‘R’  v.3.5.1 using box-constrained optimisation (‘L-BFGS-B’, using 

‘optim’ from the ‘stats’ package (R Core Team, 2017)), which constrained each of the variables to 

a minimum and maximum value. As many of these variables cannot be negative, box constraining 

improves model performance and keeps variables within plausible ranges. The following 

constraints were used: N, min: 1, max: 75; t0, min: 1 (1st April), max: 50 (20th May); TE, min: 5, max: 

70.  

Model performance was assessed using relative root error (RRE) , to give model fit on a 

percentage scale, calculated as: 

RRE = (root mean square error) / (root mean square count) * 100  

Traps where model fitting failed were classed as not having a frass peak (coded 0), all others were 

defined as having a frass peak (coded 1). A summary of the RRE and number of trees being 

classed as having a frass peak are shown in Table 2.3.  

Peak frass fall was taken as the date where modelled frass fall was maximal.  The duration of the 

frass peak was taken as the fitted TE value (following Soulsby and Thomas (2012)).  
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Figure 2.2: Temporal patterns of raw frass fall in 2015 (a, b, c, d), 2016 (e, f, g, h) and 2017 (i, j, k, l) under four tree species, beech (a, e, i), silver birch, (b, f, j), sycamore (c, g, k) and oak (d, 

h, l). Colours are consistent in columns for trees monitored in multiple years. Lines between points are to aid interpretation only, and do not represent any statistical relationship between 

points.
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2.3.4 Temperature data 

Temperature data were collected using iButtons (DS1921G-F5 thermochrons; HomeChip), which 

recorded ambient air temperature, at hourly or two hourly intervals; the latter schedule was 

adopted outside of the blue tit breeding season. iButtons were affixed, below nest boxes (to 

provide shading), using butterfly netting to create a ventilated hammock. Nest boxes were 

located on a tree close to each frass monitoring site. The mean temperature during March and 

April was then calculated for each logger. This time period was selected due to it being shown to 

best predict tree phenology for three out of the four tree species investigated here (Tansey et al., 

2017), and tree phenology is typically highly correlated with caterpillar phenology (Both et al., 

2009; Burgess et al., 2018). Two temperature variables were then calculated, allowing both within 

and between year effects of temperature to be explored, following van de Pol and Wright, (2009). 

The first temperature variable was the mean temperature across the site for each year, and the 

second a measure of how much each frass traps microclimate varied from the site mean by 

subtracting the local mean March/April temperature from the site mean.  

2.3.5 Tree phenology 

The trees monitored for frass fall, were also monitored to record tree phenology. Phenology d ata 

collected were: date of bud-burst - the first record of a leaf bursting through the bud; first leaf 

date - when the first fully formed leaf was observed and full leaf – when all the leaves were fully 

formed. Bud-burst was used for tree phenology as oak bud-burst and peak caterpillar abundance 

has been shown to be highly correlated previously (Both et al., 2009; Burgess et al., 2018)  

2.3.6 Habitat  

The total number of oak trees within 400 m2 of each temperature logger were counted (with each 

logger at the centre of a 20 x 20 m quadrat). 

2.3.7 Statistical Analyses 

Temporal and species differences in mean phenological values or total frass fall per year were 

investigated through constructing mixed models with the phenological or total frass fall variable 

as the dependent variable, either year or species as a categorical fixed effect and trap ID as a 

random (intercept) effect to account for any trap variation not accounted for in the fixed effects. 

When investigating whether temperature or tree phenology could predict frass fall  phenology, 

both a within year (across site) and between year measure of temperature and bud-burst were 

included as fixed effects, along with trap ID and year as random (intercept) effects to allow for 

variation between traps and years which were not accounted for in the fixed effects. In all 

analyses investigating frass fall phenology or total frass fall, derived variables (from model fitting, 

such as date of peak frass fall, or duration of frass fall) were only used when smoothed curves 
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could be successfully fitted. When frass peak detection was investigated in relation to the number 

of oak trees in the vicinity of the trap, frass traps from under oak trees were excluded from the 

dataset. For all models, normality and heteroscedasticity of residuals were checked, and 

continuous variables were scaled (through dividing by standard deviation) and mean centred 

(column mean subtracted). Individual model structures are described in Table 2.2, with all 

implemented as linear mixed models, using the package ‘lme4’ (Bates et al., 2015), in ‘R’ v.3.5.1 (R 

Core Team, 2017). Full models were constructed, and no model simplification was undertaken. P 

values were generated through ‘lmerTest’ (Kuznetsova et al., 2017), which are calculated using 

Satterthwaite’s degrees of freedom method (Satterthwaite, 1946). 

Table 2.2: Model responses, predictor variables and error distributions used in analyses. 

Response Fixed Random Observation 
Family and 

link function 

Date of peak 
 

TE 

 

Log(total frass fall) 

Year (factor, 3 levels) 

Trap ID 
(random 

intercept, 
factor, 40 

levels) 

86 
Gaussian, 

identity 

Date of peak 
 

TE 

 

Log(total frass fall) 

Species (factor, 4 
levels) 

Trap ID 
(random 

intercept, 
factor, 40 

levels) 

86 
Gaussian, 

identity 

Date of peak 
 
 

TE 

Bud burst date 
(continuous) 

 

Mean site March 
April  temperature 

(per year) 
(continuous) 

 
Observations 

deviation from mean 
March April  site 

temperature 
(continuous) 

Trap ID 
(random 

intercept, 
factor, 40 

levels) 
 

Year (random 
intercept, 
factor, 3 

levels) 

86 
Gaussian, 

identity 

Binomial response, 1 
= defined peak, 0 = no 

peak 

- peaks under oak 
trees excluded 

Number of oak trees 

(continuous) 

Trap ID 
(random 

intercept, 

factor: 39 
levels 

117 
Binomial, 

logit 
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2.4 Results 

In total 155 traps, from under 60 individual trees, were monitored over the three-year period of 

this study, with a slightly smaller sample size in the first year compared with subsequent years  

(N2015 = 35, N2016 = 60, N2017 = 60). Equal numbers of each of the four tree species were monitored 

in 2016 and 2017 (15 of each species), but differing numbers of each species in 2015 (N Beech = 13, 

NSilver Birch = 5, NSycamore = 9, NOak = 8). Over the three years, 86 out of the total 155 traps (55.5%) 

produced an identifiable frass peak with 35% of beech, 54% silver birch, 36% sycamore and 100% 

of oak trees producing a frass peak (Figure 2.3, Table 2.3). The smoothed data are shown in Figure 

2.3, predicted on a daily basis for each trap for the duration of sampling period to produce 

smoothed curves. 

Table 2.3: Model fits (relative root error) of the smoothed frass fall data, along with the number of trees 

where frass peaks could be identified or not. 

Species Peak No peak Min RRE (%) 
Max RRE 

(%) 
Mean RRE (%) 

Beech 15 28 24.39 84.55 67.27 

Silver birch 19 16 52.98 87.98 68.34 

Sycamore 14 25 47.19 98.47 71.09 

Oak 38 0 18.43 86.09 58.47 

All species 86 69 18.43 98.47 64.24 
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Figure 2.3: Smoothed temporal frass fall in 2015 (a, b, c, d), 2016 (e, f, g, h) and 2017 (i, j, k, l) under four species, beech (a, e, i), silver birch, (b, f, j), sycamore (c, g, k) and oak (d, h, l). 

Colours are consistent in columns for trees monitored in multiple years. Data are only shown from traps where a frass peak could successfully be detected . 
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2.4.1 Frass fall phenology 

2.4.1.1 Timing of peak frass fall 

The timing of peak frass fall differed among years, being earliest in 2017 and latest in 2016 ( Figure 

2.4, Table 2.4). After controlling for inter-annual differences, there was no difference in the timing 

of peaks among species (Figure 2.5, Table 2.5; ANOVA – analysis of deviance, Species: χ2 = 1.85, 

DF = 3, p = 0.61). Peak frass fall phenology was not predicted by temperature, neither within nor 

between years (Table 2.6, Figure 2.6). Peak frass fall phenology was also not predicted by host 

tree phenology (Table 2.6). 

 
Figure 2.4: Timing of peak frass fall, between years. Each point represents a single tree (either beech, silver 

birch, oak or sycamore) in a given year. The points have been jittered on the horizontal axis to aid 
interpretation, as many overlay each other. The horizontal line represents the fitted intercepts for each year, 

after controlling for individual trap effects.  

Table 2.4: Variable estimates for the fixed and random effects, from a general linear mixed model exploring 

whether the timing of peak frass fall differs between years. Rows in bold denote significant effects. 

Fixed effects Estimate Standard error 
Degrees of 

freedom 
T value P value 

Intercept (2015) 89.43 1.71 83 52.26 < 2 x 10-16 

2016 4.92 2.12 83 2.32 0.02 
2017 -9.34 1.95 83 -4.78 7.5 x 10-6 

Random effects Variance 
Standard 
deviation Number of observations: 86 

Number of groups (traps): 49 
 

Trap ID 0.00 0.00 

Residual  41.71 6.46 
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Figure 2.5: The timing of peak frass fall between species. Each point represents a single tree, coloured by 

sampling year. All points have been jittered on the horizontal axis to aid interpretation. The horizontal black 
line represents the fitted intercept for each species, after inter-annual and inter-trap differences have been 
accounted for, and the shaded area surrounding the fitted intercept denotes the standard error. Note that 

the number of peaks recorded for each species varied (see Table 2.2). 

Table 2.5: Variable estimates for the fixed and random effects, from a general linear mixed model exploring 

whether the timing of peak frass fall differs between species. 

Fixed effects Estimate 
Standard 

error 
Degrees of 

freedom 
T value P value 

Intercept (Beech) 88.82 4.38 3 20.27 5.3 x 10-4 

Oak -0.66 2.00 80 -0.33 0.74 
Silver Birch -1.00 2.25 80 -0.45 0.66 
Sycamore -2.85 2.44 80 -1.17 0.25 

Random effects Variance 
Standard 
deviation Number of observations: 86 

Number of groups (traps): 49 
Number of years: 3 

Year 48.38 6.96 
Trap ID < 0.0001 < 0.0001 

Residual  41.81 6.47 
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Table 2.6: Variable estimates for fixed and random effects, from the general linear mixed model, exploring 
the effect of both spatial and temporal variation in temperature and tree phenology on the timing of peak 

frass fall. 

Fixed effects Estimate Standard error 
Degrees of 
freedom 

T value P value 

Intercept 128.51 23.25 1 5.23 0.12 

Bud burst 0.68 0.84 1 -1.77 0.33 
Between year 
temperature 

-5.84 0.85 81 0.47 0.64 

Within year 
temperature 

0.72 1.55 81 0.67 0.50 

Random Effects Variance 
Standard 
deviation Number of observations: 86 

Number of groups (traps): 49 
Number of years: 3 

Year 22.21 4.71 

Trap ID < 0.0001 < 0.0001 

Residual  41.71 6.46 

 

 

 
Figure 2.6: The relationship between within site temperature and peak frass fall phenology. Temperature is 

representative of microclimate deviations (°C) from the mean temperature across the site at each trap 

location. A negative value represents cooler temperatures and positive, warmer.  

2.4.1.2 Duration of frass fall 

The duration of frass fall differed significantly between years, with 2015 and 2017 being 

significantly different from one another (Figure 2.7; Analysis of Deviance: χ2 = 7.34, DF = 2, p = 

0.03). On average, the duration of frass fall was shorter in 2017, than in 2015 (Figure 2.7, Figure 

2.7). Frass fall duration was not different between any of the four tree species ( Table 2.8, Figure 

2.8). Leafing phenology of the host tree, temperature between years, nor local temperature 

predicted the duration of frass fall (Table 2.9). 
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Figure 2.7: The difference in the duration of the frass fall between years. The horizontal black line represents 

the fitted intercept for each year, after controlling for inter-trap variation, with the shaded grey area 
depicting the standard error. Each point represents an individual tree; the points have been jittered on the 

horizontal axis to aid interpretation. 

 
Table 2.7: Variable estimates for the fixed and random effects, from a general linear mixed model exploring 

whether the duration of frass fall differs between years. Rows in bold denote significant effects. 

Fixed effects Estimate Standard error 
Degrees of 

freedom 
T value P value 

Intercept (2015) 43.35 4.84 77 8.96 < 1.37 x 10-13 

2016 -8.12 5.59 50 -1.45 0.15 
2017 -13.59 5.16 51 -2.63 0.01 

Random Effects Variance 
Standard 
deviation Number of observations: 86 

Number of groups (traps): 49 
 

Trap ID 113.1 10.63 

Residual  246.4 15.70 
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Figure 2.8: The difference in the duration of the frass fall between species. The horizontal lines represent the 

fitted intercepts, after controlling for inter-annual variation and inter-trap variation, with the shaded grey 
areas showing the standard error of these fitted values. Each point represents a single tree, coloured by 

year. All points have been jittered on the horizontal axis, to aid interpretation. 

 
Table 2.8: Variable estimates for the fixed and random effects, from a general linear mixed model exploring 

whether the duration of the frass fall differs between species. 

Fixed effects Estimate 
Standard 

error 
Degrees of 

freedom 
T value P value 

Intercept (Beech) 27.27 6.05 14 4.51 <0.001 
Oak 12.34 6.53 36 1.89 0.07 

Silver Birch 8.09 8.09 42 1.13 0.27 

Sycamore 4.96 4.96 52 0.66 0.51 

Random effects Variance 
Standard 
deviation Number of observations: 86 

Number of traps: 49 

Number of years: 3 
Year 21.36 4.62 

Trap ID 108.17 10.40 
Residual  249.28 15.79 
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Table 2.9: Variable estimates for fixed and random effects, from a general linear mixed model exploring the 

effect of various predictors on the duration of frass fall. 

Fixed effects Estimate Standard error 
Degrees of 
freedom 

T value P value 

Intercept 55.98 46.64 1 1.2 0.45 
Bud burst -4.30 2.51 52 -1.71 0.09 

Between year 
temperature 

-2.59 5.98 1 74 0.64 

Within year 

temperature 
-2.83 4.48 74 -0.63 0.53 

Random effects Variance 
Standard 
deviation Number of observations: 86 

Number of groups (traps): 49 

Number of years: 3 

Year 83.57 9.14 

Trap ID 118.32 10.88 

Residual  237.95 15.43 

2.4.2 Total frass fall 

Total frass fall varied inter-annually (Table 2.10; Analysis of deviance: year χ2 = 11.70, DF = 2, p = 

0.003) and was significantly lower in 2016 than 2015 and 2017 (Table 2.10 and Figure 2.9). Oak 

produced significantly more frass fall (69.72% of total frass fal l) than any of the other three tree 

species (Table 2.11 and Figure 2.10), with beech producing the least (6.19% of total frass fall) and 

silver birch and sycamore producing, on average, similar quantities (14.34 and 9.75% of total frass 

fall, respectively; Figure 2.10). 

Table 2.10: Variable estimates for the fixed and random effects, from a general linear mixed model 

exploring whether the total amount of frass fall differs between years, controlling for species and trap ID. 

Fixed effects Estimate 
Standard 

error 
Degrees of 

freedom 
T value P value 

Intercept (2015) 3.91 0.37 4 10.59 5.38 x 10-4 

2016 -0.42 0.16 54 -2.62 0.01 

2017 -0.04 0.15 53 -0.30 0.77 

Random effects Variance 
Standard 

deviation Number of observations: 86 
Number of traps: 49 

Number of species: 4 
Species 0.46 0.68 
Trap ID 0.10 0.32 

Residual  0.20 0.45 
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Table 2.11: Variable estimates for the fixed and random effects, from a general linear mixed model 
exploring whether the total amount of frass fall differs between species, controlling for year and trap ID. 

Rows in bold denote significant effects. 

Fixed effects Estimate 
Standard 

error 
Degrees of 

freedom 
T value P value 

Intercept (Oak) 4.66 0.16 4 28.59 6.53 x 10-6 

Beech -1.67 0.19 44 -8.76 3.14 x 10-11 

Silver Birch -0.99 0.18 41 -5.56 1.75 x 10-6 

Sycamore -1.03 0.19 55 -5.37 1.64 x10-6 

Random effects Variance 
Standard 
deviation Number of observations: 86 

Number of traps: 49 
Number of species: 4 

Year 0.46 0.68 
Trap ID 0.10 0.32 

Residual  0.20 0.45 

 

 

Figure 2.9: The differences in the total amount of frass fall between years. The horizontal black line 
represents the fitted intercept for each year, after controlling for species and trap variation, with the shaded 

grey area depicting the standard error. Each point represents an individual tree. The points have been 
jittered on the horizontal axis to aid interpretation. Note that the model was fitted on the log scale, and 

transformed for plotting. 
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Figure 2.10: The differences in the total frass fall between species. The horizontal lines represent the fitted 
intercepts, after controlling for inter-annual and inter-trap variation, with the shaded grey areas showing 
the standard error of these fitted values. Each point represents a single tree, coloured by year. All points 
have been jittered on the horizontal axis, to aid interpretation. Note that the model was fitted on the log 

scale, and transformed for plotting. 

2.4.3 Probability of a frass peak occurring 

The probability of a frass peak occurring increased as the density of oak trees in the immediate 

vicinity of the host tree increased (Figure 2.11, Table 2.12). 

Table 2.12: Variable estimates from a generalised mixed model (with a binomial, logit link function) 
exploring the effect of the density of oak trees in the immediate area surrounding the tree being sampled on 

the likelihood of a frass peak occurring. In this model all oak traps have been removed and only traps from 

under the other three tree species (beech, silver birch, and sycamore) are included. 

Fixed effects Estimate Standard error Z value P value 

Intercept -0.23 0.21 -1.13 0.26 

Number of Oak 
trees 

0.82 0.29 2.83 0.005 

Random effects Variance 
Standard 
deviation 

Number of observations: 117 

Number of groups (traps): 46 
Trap ID <0.001 <0.001 
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Figure 2.11: The probability of a frass peak (1) occurring or not (0) given the number of Oak trees. Each point 
represents a single tree, with the oak records removed, of either Beech, Silver Birch or Sycamore, with darker 

points having more points at the same position than lighter points. The black line represents the fitted line 

from the generalised mixed model, and the shaded grey area the 95% confidence interval. 

  



42 

 

 

2.5 Discussion 

This study is among the first to investigate in detail the timing and duration of caterpillar 

availability, at an intra-site level, and to focus on multiple potential host tree species. Here, I 

aimed to assess the importance of four common tree species in UK woodlands (beech, silver 

birch, sycamore, and oak) for Lepidopteran larvae, and therefore indirectly insectivorous 

woodland birds. All species produced detectable frass peaks, in all years, although not all 

individual trees produced peaks. Of the four species, oak is the most important species for 

Lepidopteran larvae, due to producing significantly more frass fall. All species produced 

detectable frass peaks under at least one tree in each year. However, the probability of frass fall 

being detected under non-oak species significantly increased as surrounding oak density 

increased, suggesting wind-blown contamination could be an issue. Contrary to my hypotheses, 

neither temperature nor tree phenology predicted frass fall phenology. 

2.5.1 Frass fall phenology 

2.5.1.1 Timing of peak frass fall 

Caterpillar phenology was monitored for three consecutive years and varied significantly inter-

annually, with the timing of peak frass fall being earliest in 2017 and latest in 2016 (Figure 2.4, 

Table 2.6). Previous research suggested caterpillar phenology is driven by temperature with moth 

egg hatch being delayed when temperatures are cooler (Buse et al., 1999), and peak frass fall 

exhibiting the same trends (Smith et al., 2011). However, the results presented here are not 

consistent with these findings, as caterpillar phenology is not predicted by temperature between 

years or within the site (Table 2.6, Figure 2.6). Due to sampling only being undertaken in three 

years, there will have been a lack of power to detect between year relationships with 

temperature. There is more power to detect a within site relationship between peak frass fall 

phenology and temperature, however, temperature did not explain differences in frass fall 

phenology within the site. This may be due to the temperature window used, which was selected 

based upon being informative for tree bud-burst (Tansey et al., 2017), which is typically highly 

correlated with caterpillar phenology, however may not be informative when used as a predictor 

for frass fall. The temperature window used, mean March-April temperature, will not have been 

indicative of overwintering temperatures or any extreme variation in temperature experienced 

during spring. Overwintering temperature may be important as caterpillars spend a large 

proportion of their life cycle in the egg stage. For example, winter moth caterpillars are in the egg 

stage for approximately six months of the year as opposed to only two months in the larval stage 

(Holliday, 1985). However, the relationship between temperature and development during egg 

stage is relatively complex, as eggs pass through up to three distinct stages, making hatching 
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phenology difficult to predict using field measured temperature (Holliday, 1985). A combination 

of temperature and humidity influence the timing of egg hatching (Embree, 1970), and it is 

unclear whether temperature or humidity is more important, but eggs reared under lower 

humidity have been shown to hatch out later (Embree, 1970). It was not possible to measure 

humidity in this study, but may serve as an explanation as to why no relationship with 

temperature was found, as humidity may be more important for controlling hatching, and may 

not have varied across this site. Peak frass fall phenology did not differ among species (Figure 2.5, 

Table 2.5) or with tree phenology (Table 2.6), contrary to my hypotheses. This is surprising as the 

presence of young leaves are imperative for larval survival and, experimentally, hatching is 

typically highly correlated with host tree phenology (Both et al., 2009; Buse et al., 1999; Embree, 

1965). In addition, peak frass fall has been shown to be highly correlated with first leaf date in 

oaks across the UK, in a nationwide study (Burgess et al., 2018). The lack of correlation between 

host tree phenology and peak frass fall, detected here, could suggest an uncoupling of a 

reportedly synchronous relationship, at this site, with predicted peak frass fall typically occurring 

approximately 35 days after bud-burst of the host tree. However, the measure of tree phenology 

used here may have been too sensitive, as bud-burst date represented the date at which new 

leaves were seen protruding from the bud on one or more buds. Caterpillars may not be highly 

synchronised with the first bud-burst, but more synchronised to when the majority of buds are 

bursting. At the broad UK scale caterpillars are tracking earlier, warmer, springs (Burgess et al., 

2018) and this is consistent with findings from the Netherlands (Both et al., 2009). The caterpillar-

oak relationship is predicted to remain synchronous, as both levels are believed to use the same 

cues and will therefore continue to track changing climate at the same rate (Buse et al., 1999). 

Due to peak frass fall phenology not differing amongst host tree species, this suggests that non-

oak tree species would be unable to offer Lepidopteran resources to insectivorous birds that may 

have mistimed breeding with Lepidopteran resources on oak trees.  

All raw frass fall data were smoothed, following Soulsby and Thomas (2012), to account for any 

extreme weather events, such as rainfall, that happened during sampling that weren’t accounted 

for in the models. For example, raw frass fall data from under oak trees in 2017 appear to display 

a bimodal distribution (two peaks in frass fall; Figure 2.2), however this coincides with a heavy 

rainfall event. Rainfall can cause frass to disintegrate and become difficult to detect (Fischbacher 

et al., 1998). Smoothing data also accounts for the five day interval between sampling, allowing 

for phenological variables to be estimated at a finer resolution. 

This study highlights the need for long term, more in-depth, local scale monitoring to establish 

whether there are finer scale processes, which are not apparent when generalised to large spatial 

scales, and to validate nationwide extrapolation.  
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2.5.1.2 Duration of frass fall 

Similarly to peak frass fall phenology, duration of frass fall was also significantly different among 

years, however only between 2015 and 2017 (Figure 2.7, Figure 2.7). I hypothesised this would be 

due to temperature as caterpillars develop quicker when exposed to warmer temperatures (Buse 

et al., 1999; Holliday, 1985), taking less time to reach pupation. Therefore, a decrease in the 

duration of frass fall would be expected under warmer temperatures, due to shorter 

development times. However, when tested no relationship with between year temperature and 

the duration of frass fall was found (Table 2.9), which is surprising given caterpillars develop more 

rapidly at warmer temperatures (Buse et al., 1999; Holliday, 1985). The lack of relationship is 

likely due to the small sample size in this study, due to only three years of monitoring. Although, 

temperature differences across the site, within a year, also did not predict the duration of frass 

fall (Table 2.9), despite increased sample size. The duration of the peak may not be defined by the 

time it takes for caterpillars to develop, but how synchronously larvae hatch out. If caterpillars 

hatch out synchronously they will all develop at roughly the same rate, leading to a potentially 

shorter and sharper peak. However, if they hatch asynchronously the  time taken for them to 

reach pupation will be more drawn out, and could lead to a longer and shallower peak. Limited 

research has been undertaken investigating hatching synchrony, but at warmer temperatures 

hatching is suggested to be more synchronous (Embree, 1970), which may explain the shorter 

duration of peak observed in 2017 in this study.  

There was no difference in duration of frass fall between tree species (Figure 2.8, Table 2.8), or 

the leafing phenology of the host tree (Table 2.9). Given timing of peak frass fall did not vary with 

any of these variables it is not overly surprising there was no effect of these variables on the 

duration of frass fall either, suggesting that neither host tree phenology nor tree species 

influences caterpillar phenology at this site.  

2.5.2 Total frass fall 

Previous research into caterpillar phenology, using frass fall, has typically focused on oak trees 

(e.g. Burgess et al., 2018; Smith et al., 2011). This focus has been justified through because the 

largest number of Lepidopteran species have been show to reside on oak trees (Kennedy and 

Southwood, 1984), and Lepidoptera typically form a large part of insectivorous birds, such as blue 

tits, diets (Betts, 1955; Shutt, 2017). The findings here support this focus on oak, due to the 

highest amount of frass fall being observed under oak trees (Table 2.11, Figure 2.10). However, 

frass fall was detected under all species investigated here (Figure 2.3, Figure 2.10), which suggests 

that four of the five most common broadleaved tree species in UK woodlands play a role in 

insectivorous birds feeding behaviour (with ash being unable to be tested in this study, due to 

there being a lack of suitable trees at this site). These findings suggest that none of the non-oak 
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tree species investigated here could provide Lepidopteran resources on the scale of oak, for birds 

nesting in oak-poor habitats, for example. Oak currently occupies the largest area in UK 

woodlands of any broadleaved species, but heterogeneous oak woodlands are uncommon 

(Forestry Commission, 2013). Due to the importance of oak for Lepidopteran larvae, 

demonstrated here, any changes to woodland composition in the future which would 

disadvantage oaks could lead to reduced breeding success and/or populations of insectivorous 

birds, due to reduced Lepidoptera larvae availability.  

2.5.3 Probability of detecting a frass peak 

In this study, 100% of oaks sampled produced a detectable frass peak, whereas in non-oak species 

between 35 and 54% produced a detectable frass peak, lower than stated by Veen et al. (2009). 

Here, I have shown the probability of a frass peak being detected significantly increased as oak 

density increased (Table 2.12, Figure 2.11). Taken in combination with the fact that there was no 

difference in the timing of peak frass fall between species, peaks detected under non-oak species 

could be as a result of windblown frass from nearby oaks being collected in traps, and therefore 

creating ‘false positives’. Theoretically, all tree species investigated here could produce frass 

peaks (true positives) as they have all been shown to host Lepidopteran species (Kennedy and 

Southwood, 1984; Shutt, 2017). Therefore, further validation is required to clarify whether these 

peaks are true positives. 

2.5.4 Conclusions 

In conclusion, the results presented here support the oak focus of previous work, when 

Lepidopteran larvae are being investigated, due to oaks consistently producing the highest levels 

of frass fall. Lepidopteran larvae form a large proportion of insectivorous woodland birds’ diets and 

these findings suggest birds are likely to be heavily reliant upon oak trees when foraging. Especially 

as frass fall detected under non-oak species could be due to contamination from nearby oaks. These 

findings also highlight that insectivorous woodland birds may face problems finding sufficient 

Lepidopteran food resources, if oaks are disadvantaged in UK woodlands in the future.  

Temperature, either between years or across the site, was also shown here to not predict the timing 

of peak frass fall or frass fall duration, which is particularly pertinent given predicted future climate 

trends and insectivorous birds’ reliance on this resource. The lack of intra-species variation in peak 

frass fall phenology, prevents non-oak species from providing a lepidopteran resource to breeding 

birds that have mistimed breeding events with Lepidopteran peaks on oak trees, reaffirming oaks 

importance within UK woodlands. 
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Chapter 3: Refining and comparing DNA extraction and amplification 
methods from avian adult and nestling faecal samples 

3.1 Abstract 

Advances in DNA technology, such as next generation sequencing (NGS), provide new 

opportunities to understand trophic interactions, and dependencies, to answer ecological 

questions. An essential pre-requisite of NGS is the ability to extract and amplify high quality 

DNA. Extracting DNA from environmental samples is often challenging due to DNA degradation 

and the presence of complex inhibitors. Faecal samples have the potential to provide a simple 

and non-invasive method to investigate species’ resource usage. However, faecal samples 

contain highly degraded DNA, and high concentrations of substances that inhibit polymerase 

chain reactions (PCR), making DNA extraction and amplification difficult. Here, I provide details 

of methods developed to extract and amplify DNA from faecal samples of three bird species 

(nestling blue tit (Cyanistes caeruleus), nestling meadow pipit (Anthus pratensis) and adult 

starling (Sturnus vulgaris)), with the final goal of evaluating the diet of blue tit nestlings 

through NGS. DNA of sufficient quality for NGS was unable to be extracted from blue tit 

nestling faecal sacs with an off-the-shelf extraction kit (MO-BIO PowerSoil extraction kit). 

Improvements in DNA extraction were achieved through modifications to the off-the-shelf 

extraction kit, followed by a secondary extraction using solid phase reversible immobilisation 

with magnetic beads.  

DNA extracted from nestling faecal sacs were tested with four invertebrate primer pairings to 

amplify invertebrate prey DNA during PCR. mICOIintF and jgLCO1490 (from Leray et al., 2013) 

provided the highest amplification success, but also likely amplified bird DNA. Amplification of 

DNA was much more readily obtained from adult starling and meadow pipit faecal sampl es, 

than from nestling blue tit faecal samples. Further work to increase amplification success, with 

specific invertebrate primers, would be required to sequence DNA from blue tit faecal 

samples, but this was not possible within the timeframe available. In conclusion, faecal 

samples can be highly variable both within and between species and, as such, a DNA extraction 

and amplification approach, which may be appropriate for one species may not be for another. 

Future work could investigate ways of increasing starting DNA concentration, such as through 

whole genome amplification, and further ways of removing chemicals which may be degrading 

DNA or inhibiting PCR.  
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3.2 Introduction 

Recent climate change has altered species distributions, both spatially and temporally, putting 

pressure on existing species interactions and providing opportunities for new interactions to 

occur (Parmesan, 2006; Walther, 2010; Walther et al., 2002). An understanding of the 

interactions between species is essential to fully understand the implications of climate change 

(Walther, 2010). However, trophic interactions between species, such as predator-prey 

interactions, are challenging to study, due to foraging locations often being spatially extensive 

and difficult to observe. As a result, our understanding of food webs is often simplistic, with 

many missing interactions.  

In temperate woodlands, the deciduous tree-herbivorous caterpillar-insectivorous bird  

tri-trophic system is often used as a model for understanding the effects of climate change on 

both individual trophic levels and their interactions (Burger et al., 2012; Burgess et al., 2018; 

Buse et al., 1999). Lepidoptera make up a large proportion of insectivorous nestling birds’ 

diets, such as blue tits (Cyanistes caeruleus), however they are not the sole prey group (Betts, 

1955). Therefore, in reality, this food chain is a more complex food web with multiple 

interactions. Nestling diet is important in maximising offspring fitness, which depends on the 

quality and quantity of prey items delivered (Wilkin et al., 2009). However, the specifics of diet 

composition, and the importance of specific prey groups are not well understood. Despite its 

importance, to date, studies of nestling diet in avian insectivores have typically only been able 

to be resolve prey items to a family level, with many prey items unable to be identified (e.g. 

Betts, 1955; García-Navas and Sanz, 2011; Grzędzicka, 2018; Wilkin et al., 2009). Traditional 

methods for elucidating diet are often labour intensive and require expert identification skills 

(e.g. microscopic analysis of prey remains in faecal matter, identification of prey from video 

footage), are invasive (e.g. ligatures (Johnson et al., 1980)) or require dead specimens (e.g. 

gizzard analysis (Bourgault et al., 2006)). These reasons combined, offer reason as to why diet 

composition often goes unstudied.  

Technological advances, such as DNA based techniques, provide new opportunities to 

elucidate species interactions at a higher taxonomic resolution, and also through non-invasive 

methods. The most recent advance has been in next-generation sequencing (NGS, or parallel 

sequencing). NGS can sequence many individual DNA fragments within a sample, allowing the 

identification of the contents of complex mixtures, such as dietary samples (Shokralla et al., 

2012). Due to recent advancements in technology, reduced costs and the increased number of 

plant and animal reference sequences available, NGS has widened potential to answer 

ecological questions (Valentini et al., 2009). Using this method, it is possible to assemble 
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detailed food webs, for the first time in some systems. NGS has been widely used to elucidate 

mammal diets (e.g. De Barba et al., 2014; Clare et al., 2009; Razgour et al., 2011) and is 

beginning to be used for avian diets (e.g. Jedlicka et al., 2013, 2016; Shutt, 2017; Trevelline et 

al., 2018).  

NGS requires high quality DNA to be extracted and successfully amplified using an appropriate 

primer pairing of a ‘barcode’ region, through polymerase chain reaction (PCR) (King et al., 

2008). During PCR, individual samples can be tagged, allowing samples to be tracked and more 

complex interactions, such as food webs, to be inferred (nested metabarcoding, see Kitson et 

al., 2018 for details). NGS of PCR products result in large numbers of sequences that must be 

matched to reference sequence libraries for species identification. Ecological samples often 

prove difficult to produce DNA of sufficient quality for NGS applications, as DNA is often 

degraded, or contain high concentrations of PCR inhibitors (Schrader et al., 2012).  

Faecal samples can be used for molecular dietary studies, as the methods used to elucidate 

diet from faeces are non-invasive, non-destructive and samples are relatively easy to collect. 

Despite being easy to collect, faecal samples are challenging to extract and amplify DNA of 

sufficient quality for NGS. This is due to excrement being chemically complex, with many 

chemicals inhibiting PCR as well as creating a hostile environment that can lead to further DNA 

degradation (McInnes et al., 2017; Monteiro et al., 1997; Oehm et al., 2011; Schrader et al., 

2012). DNA recovery can be optimised through collection protocols, such as by collecting fresh 

samples from hard surfaces e.g. rock as opposed to soil (McInnes et al., 2017), through DNA 

extraction method (Braid et al., 2003; Schrader et al., 2012) and/or modifications in PCR 

protocol (e.g. additives (Kreader, 1996), dilution of template or polymerase selection (Schrader 

et al., 2012)). 

Barcoding loci vary by taxon, and influences primer selection for PCR amplification. Typically in 

avian diet analyses cytochrome C oxidase subunit I (COX1) is selected (e.g. Trevelline et al., 

2018) due to the large reference database available for this loci, which frequently permits 

sequence identification to species level (Hebert et al., 2003). A combination of loci may be 

used to elucidate diets for generalist species (Pompanon et al., 2012). PCR primers are barcode 

region specific, and can be species/taxa specific or universal (amplify multiple phyla or taxa). 

Universal primers are typically used in dietary studies due to not knowing a priori what the diet 

is likely to include. However, primer selection will introduce biases in terms of prey species 

returned, as different primers favour certain phyla or taxa. For example, the universal primers 

described by Leray et al., (2013) amplify approximately 88 % of taxa within Arthropoda, which 

will affect the species recovered post-sequencing. 
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The aim of this chapter is to develop and test DNA extraction methods to extract DNA from 

nestling blue tit faecal sacs and to compare amplification success with universal invertebrate 

primers. The second aim is to sequence the extracted DNA, to evaluate nestling dietary 

composition and to relate this to local habitat components and nestling survival.   
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3.3 Methods 

3.3.1 Sample collection and storage 

3.3.1.1 Field collected faecal samples  

3.3.1.1.1 Blue tit 

Nest boxes containing active blue tit nests in Durham University woodlands (latitude: 54.7629, 

longitude:-1.5692) were monitored during March to July in both 2016 and 2017. Post-hatching, 

active nest boxes were checked every 2-4 days, until chicks were 15 days old, and a final check 

made once when nestlings were 20+ days old to ascertain assumed number of fledged chicks 

(i.e. last chick count minus any subsequent fatalities left in the nest) and approximate fledging 

date (estimated as the midpoint between the last day activity was detected and the final nest 

check. Activity refers to the date chicks’ presence in nest boxes were detected audibly, without 

visual inspection, between days 15-20). Nests were not visually checked between 15 and 20 

days post hatching to minimise the risk of premature fledging.  

During each visit post-hatching (day 1 to 15), all chicks were removed from the nest and placed 

in the same cotton bird bag, lined with a clean paper bag, prior to sampling. Contamination 

between broods was minimised by lining cotton bird bags with a clean paper bag for each 

brood. Nitrile gloves were not used when handling small chicks; therefore alcohol gel was used 

to decontaminate hands after each brood was handled. Each chick was individually weighed, 

and in 2016 a unique combination of toes marked, using a non-toxic marker pen, allowing 

individuals to be identified prior to being large enough to metal ring (British Trust for 

Ornithology metal ring; under license to CJB). Faecal samples were collected opportunistically 

during routine handling, either from the bag, directly off hands or the floor or, most 

commonly, (once chicks were approximately five to seven days old) holding the chick directly 

over the tube, which often resulted in defecation. All faecal sacs were stored individually in  

5 mL Eppendorf tubes (clip top for 2016 and screw top for 2017 samples) pre-filled with 4 mL 

100% ethanol. Once in the ethanol, faecal sacs were broken up using stainless steel tweezers, 

decontaminated with ethanol and fire. Samples were stored at -20°C, within six hours of 

collection, for up to eight months.  

3.3.1.2 Samples from captive birds 

3.3.1.2.1 Starling 

Faecal samples were collected from captive adult starlings (Sturnus vulgaris) at Newcastle 

University, which are fed a mixture of cat food, fruit, cereals and mealworms. Faecal samples 

were collected during routing cleaning of the birds’ cages, using a disposable spatula to scrape 
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the solid portion of excrement from paper lining the cages. Faecal samples were stored in 5 mL 

screw top Eppendorf tubes, and were between zero and twelve hours old at collection. All 

samples originated from multiple individuals and were homogenised after collection, with 

more than one faecal sample being stored in the same tube. Samples were stored at -20°C for 

up to 24 hours after collection.  

3.3.1.3 Tissue samples  

Breast muscle from frozen puffin (Fratercula arctica) and kingfisher (Alcedo atthis), which both 

died of natural causes, and a toe from frozen coal tit (Periparus ater) and great tit (Parus 

major), which had both been previously kept for experimentation by Newcastle University and 

euthanised at the end of the study, were used to obtain positive bird DNA from known species.  

Invertebrate DNA was also extracted from three known species of moth (common wave 

(Cabera exanthemata), purple bar (Cosmorhoe ocellata) and silver ground carpet (Xanthorhoe 

montanata)); Geometridae larvae, Noctuid larvae, a tipulid (Tipulidae spp.), blue mussel 

(Mytilus edulis), ramshorn snail (Planorbidae spp.) whitefly (Aleyrodidae spp.) and thrip 

(Thysanoptera spp.), to obtain positive invertebrate DNA from known species. This allowed 

primers to be tested for both bird and invertebrate DNA amplification. 

3.3.2 DNA extraction  

Multiple DNA extraction methods were tested on nestling and adult faecal samples. The 

names used for each extraction method are referred to throughout this chapter, and any 

modifications made within the method described. All extracted DNA was stored at -20°C.  

Prior to DNA extraction being undertaken, faecal samples were defrosted and storage ethanol 

removed. Samples were heated to approximately 60°C for 30 minutes to remove residual 

ethanol and, a partially dry weight obtained (Mettler AE 166, ± 0.01 g) . 

Faecal samples from starlings were homogenized (to prevent individual biases e.g. specific 

inhibitors, differences in diet preferences) before adding to tubes to create samples of 

differing weights in the following classes, <0.01 g, 0.05 g, 0.2 g and 0.4 g.  This allowed 

comparisons of the effects of modifications to DNA extraction methods on DNA recovery of 

different sizes of samples. The weight classes were representative of the weights of blue tit 

nestling faecal sacs obtained during field collection. 

3.3.2.1 PowerSoil extraction kit 

DNA from faecal samples were extracted using the MO-BIO PowerSoil DNA isolation kit 

following manufacturer’s instructions (instruction manual Version 07272016, Qiagen, Valencia, 

CA.).  
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3.3.2.2 Chemical lysis extraction method  

This is an optimised DNA extraction method for faecal samples, based on the MO-BIO 

PowerSoil extraction kit. All extraction buffer components are described in Table 3.1, and 

referred to throughout by the names used in the table. The chemical compositions of each 

solution, and the original extraction protocol, were devised by G. Sellers (original protocol in 

supplementary material, 3.6). 

3.3.2.2.1 Cell lysis 

Each blue tit nestling faecal sac, collected in 2016, was removed from the storage tube post 

drying and added to a new 5 mL tube that was prefilled with 2.4 g of sterile garnet ( 1 – 1.4 mm 

diameter) and 1460 µL lysis solution one. 530 µL of lysis solution two was subsequently added 

and the sample placed in SPEX SamplePrep Geno/Grinder 2010 at 1750 RPM for two minutes 

to fully lyse cells. This mixture was centrifuged (Thermo Scientific Heraeus megafuge 40R) at 

4,000 xg for 1 minute at room temperature. Up to 1000 µL of supernatant was transferred to a 

clean 2 mL tube. 

To simplify sample preparation in 2017, blue tit nestling faecal sample processing was slightly 

modified. 2200 µL lysis solution one, and 2.4 g garnet were added directly to the dried sample 

tube. This mixture was then ground at 1750 RPM for four minutes, centrifuged briefly for 30 s, 

and 800 µL lysis solution two added, and centrifuged at 4,000 xg for 1 minute with up to 1500 

µL of supernatant removed and centrifuges at 10,000 xg for 1 minute (at room temperature, 

with centrifuging conditions remaining constant in all subsequent steps, unless stated 

otherwise). 500 µL of supernatant was retained for purification and any excess stored at -20°C. 

Lysing volumes were modified in some experiments, with the following volumes also being 

tested: 2555 µL lysis solution one and 945 µL of lysis solution two, or 974 µL lysis solution one 

and 353 µL lysis solution two, but the rest of the lysis procedure remained the same.  

3.3.2.2.2 DNA purification 

200 µL of protein flocculant was added, briefly vortexed, and incubated on ice for 10 minutes 

before centrifuging. 500 µL of supernatant was removed and placed in a fresh tube with either  

84 µL (2016 samples) or 200 µL (2017 samples) of a 1:1 mix of inhibitor flocculant 1 and 2 and 

the mixture centrifuged. Supernatant was transferred to a new 2 mL tube and 1568 µL of 

binding solution added. In a further test, binding solution volume was reduced to 1000 µL. A 

silica spin column (Biobasic EZ-10 DNA Mini Spin Column) was filled and flow through 

discarded until all the binding mixture had passed through. 392 µL of wash solution (or 375 µL 

of wash solution with 1000 µL of binding solution was also tested) was added directly to the 
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silica membrane and after being centrifuged, flow through was discarded and the spin column 

centrifuged again to dry the silica membrane. A new collection tube was provided, and 100 µL 

(313 µL and 50 µL also tested) of elution buffer, heated to 70°C, was applied directly to the 

silica membrane and left at room temperature for two minutes prior to centrifuging. DNA was 

collected in the new tube and stored at -20°C until use. 

Half volumes for the whole DNA purification stage (based on original 2016 volumes) were also 

tested with all steps carried out as written above, or with a reduction to 750 µL binding 

solution. 

Due to the chemical lysis extraction method, and solutions, being a modified version of the 

MO-BIO PowerSoil extraction kit, the modified solutions were also tested following the 

manufacturers protocol both for full DNA extraction, and just for DNA purification (step 8 

onwards of manufacturer’s protocol).  

DNA extracted from meadow pipit faecal sacs, was provided by Lisa Malm who extracted it 

using the 2016 chemical lysis extraction method or the MO-BIO PowerSoil extraction kit. 
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Table 3.1: Descriptions of the chemical components, and concentrations, of each solution used during 
DNA extraction using the chemical lysis extraction method, modified from MO -BIOs PowerSoil DNA 

extraction kit. The names of the solutions here are used throughout the protocol descriptions. 

Solution Contents 
Final 

concentration in 
solution 

pH 

Lysis solution 
one 

Guanidine thiocyanate 
 

147 mM 

9.0 
Adjusted using 

appropriate 

amount of 5M HCl  

Trisodium phosphate 
 

228 mM 

Sodium chloride 
 

26 mM 

Tris hydrochloride 

 

67 mM 

EDTA 27 mM 

Lysis solution 
two 

Aluminium ammonium sulphate 
dodecahydrate 

 

90 mM 
- 

Sodium dodecyl sulphate (SDS) 1.25 % - 

Protein 
flocculant 

Ammonium acetate 5 M - 

Inhibitor 
flocculant one 

Aluminium ammonium sulphate 
dodecahydrate 

180 mM - 

Inhibitor 

flocculant two 
Calcium chloride dihydrate 204 mM - 

Binding 
solution 

Guanidine hydrochloride 5.5 M - 

Wash solution Ethanol 80% - 

Elution buffer 
(2016 samples) 

Tris hydrochloride 10 mM 
8 

EDTA 1 mM 

Elution buffer 
(2017 samples) 

Tris hydrochloride 10 mM 8 

3.3.2.3 Proteinase K digestion and additional inhibitor removal: 

Enzymatic cell lysis, along with an additional inhibitor removal step, as described by Sokolov 

(2000), was tested on six great tit faecal samples. After samples were dried, and transferred to 

a 2 mL tube, 1 mL of enzymatic lysis solution (Table 3.2) was added to each sample, briefly 

vortexed and incubated at 55°C until fully digested (vortexed every 20 minutes, complete 

digestion in 1-2 hours). 100 µL of saturated potassium chloride was added to the lysate, mixed 

by repeated inversion, and incubated on ice for 5 minutes. After centrifuging at 10,000 xg for 

10 minutes 500 µL of supernatant was removed and DNA purification carried out as described 

in chemical lysis extraction method.  

This method was also tested on stored lysates from blue tit and meadow pipit faecal samples, 

from the chemical lysis extraction method. Either proteinase K (final concentration of 0.4 

mg/mL) was added to each stored lysate and the steps described above followed, or 100 µL of 

saturated potassium chloride solution was added to stored lysates from the chemical lysis 

extraction method, incubated on ice for 5 minutes, centrifuged and 500 µL of supernatant 
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removed. Subsequent DNA purification was as described in the chemical lysis extraction 

method. 

Table 3.2: Descriptions of the chemical components, and concentrations, of the lysis solution used during 

enzymatic cell lysis. 

Solution Contents Final concentration in solution 

Enzymatic lysis solution 

Tris hydrochloride (pH 7.5) 
 

50 mM 

Sodium chloride 
 

100 mM 

EDTA 
 

10 mM 

Sodium dodecyl sulphate (SDS) 

 

1 % 

Proteinase K 0.4 mg/ml 

3.3.2.4 Carboxylated paramagnetic bead clean up (SPRI, with magnetic beads) 

After DNA was extracted from blue tit nestling faecal sacs (irrespective of first extraction 

method) all underwent a second DNA extraction, to remove any PCR inhibitors that were co-

eluted, using solid-phase reversible immobilization with carboxylated paramagnetic beads. 

Magnetic bead solutions were made following Jolivet and Foley (2015), and were identical to 

AMPure XP and RNAClean XP beads (Beckman Coulter).  

All samples were processed on 96 well plates. 90 µL of SPRI bead solution (20% PEG 8000,  

10 mM Tris base, 1mM EDTA, 2.5 M sodium chloride, 0.05 % Tween 20) was added to 50 µL of 

extracted DNA solution and vortexed for 30 seconds. The mixture was incubated at room 

temperature for 5 minutes, placed on a magnetic plate and once supernatant had cleared, 

supernatant was removed and discarded. 200 µL of 70 % ethanol wash solution was added, 

left at room temperature for one minute, then removed and discarded. This step was 

repeated, and the beads left to air dry for 10-15 minutes on the magnetic plate, before 30 µL 

of 10 mM tris hydrochloride was used to elute DNA and magnetic beads removed. 

3.3.2.5 E.Z.N.A tissue DNA kit 

All DNA extracted from bird and invertebrate tissue was extracted using Omega bio-tek 

E.Z.N.A. tissue kit, following the manufacturer’s protocol (August 2016 version, Product 

Manual D3396 Tissue DNA Kit Combo). 

3.3.3 DNA amplification (PCR) 

Universal invertebrate primers targeting the COX1 mitochondrial region were selected from 

the literature, and used in the pairings defined in Table 3.3, to amplify DNA. These 
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combinations were selected due to their ability to amplify likely invertebrate prey items in blue 

tit nestling diets.  

mICOIintF/jgHCO2198 and ZBJ-ArtF1-deg/mICOIintF_revComp primers were modified to 

contain standard Illumina molecular identification tags (MIDs) and bridge sequences, as 

described in Kitson et al., 2018. All other pairings, and ZBJ-ArtF1-deg/mICOIintF_revComp in 

some instances, were tested in the untagged form with the sequences as written in Table 3.3.  

Table 3.3: Descriptions of primers used, and the combinations used, to amplify invertebrate and bacterial 

DNA extracted from avian faecal samples during PCR. 

Primer Name Paired with Sequence Reference 

mICOIintF jgHCO2198 GGWACWGGWTGAACWGTWTAYCCYCC Leray et al. 

2013 jgHCO2198 mICOIintF TAIACYTCIGGRTGICCRAARAAYCA 

mICOIintF_revComp 
ZBJ-ArtF1c or 

ZBJ-ArtF1c-deg 
GGRGGRTAWACWGTTCAWCCWGTWCC 

Modified from 
Leray et al. 

2013 

ZBJ-ArtF1c 
ZBJ-ArtR2c or 

ZBJ-ArtR2c-deg 
AGATATTGGAACWTTATATTTTATTTTTGG 

Zeale et al. 
2011 

ZBJ-ArtR2c 
ZBJ-ArtF1c or 

ZBJ-ArtF1c-deg 
WACTAATCAATTWCCAAATCCTCC 

ZBJ-ArtF1c-deg 
ZBJ-ArtR2c or 

ZBJ-ArtR2c-deg 
AGATATTGGAACWTTATATTTTATHTTYGG Modified from 

Zeale et al. 
2011 ZBJ-ArtR2c-deg 

ZBJ-ArtF1c or 
ZBJ-ArtF1c-deg 

WACTAATCAATTWCCAAAHCCHCC 

LepF1 
ZBJ-ArtR2c or 

ZBJ-ArtR2c-deg 
ATTCAACCAATCATAAAGATATTGG 

Brandon-Mong 

et al. 2015 

PCR amplification was undertaken in 20 µL reactions, with a high fidelity Taq polymerase mix 

(either MyTaq Red HS Mix or MyFi Mix (BioLine, both at 2X dilution factor)), varying primer and 

magnesium concentration and template DNA (1 - 7 µL). The optimal conditions for each primer 

pair are described in Table 3.4. 

PCR was undertaken on either an Applied Biosystems Veriti thermal cycler, or BIO-Rad T100 

thermal cycler, but was consistent for each primer pairing after optimization.  
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Table 3.4: Optimal PCR chemistry and cycling conditions for each primer pairing. 

Primer pairing 

Magnesium 

concentration 
(mM) 

Primer 

concentration 
(µM) 

Cycles 

Annealing 

temperature 
(°C) 

mICOIintF and 
jgLCO1490 

2.0 0.6 45 51 

ZBJ-ArtF1-deg (or ZBJ-

ArtF1) and 
mICOIintF_revComp 

 

ZBJ-ArtF1 and ZBJ-ArtR2 
 

ZBJ-ArtF1-deg and ZBJ-
ArtR2-deg 

 

LepF1 and ZBJ-ArtR2 

(ZBJ-ArtR2-deg) 

2.5 0.6 50 45 

3.3.4 Gel electrophoresis 

PCR products were visualized on 1.5% agarose gel, stained with ethidium bromide  

(3 µL/100 mL), under ultra-violet light, which had been run in 0.5x TBE buffer at 70 or 90V 

(dependent on the size of gel and tank being used) for 40 minutes. 5 µL of template DNA was 

used for visualization, along with bromophenol blue loading dye when MyFi Mix was used  

(1 µL/5 µL template). HS MyTaq Mix already contained loading dye, so no loading dye was 

added to template from reactions amplified with MyTaq. In each gel  a DNA positive (labelled 

‘pos’) and negative (‘neg’) are included to aid interpretation and to act as controls. The DNA 

positive shows successful DNA amplification with a band present in this lane and at the 

expected fragment length for the primers used. This acts as both a reference and a control to 

ensure that the PCR has been successful. The lane with the DNA negative should not have a 

band present, and is used as a control to ensure no contamination during PCR and PCR set-up. 

A DNA ladder (molecular weight marker) was also always included in the first lane of each gel, 

for reference, to establish the length of DNA fragment that is being expressed. EasyLadder I 

(Bioline) was used with each band representing 2000, 1000, 500, 250 and 100 base pairs (bp) 

from top to bottom of gel.  

3.3.5 Sequencing 

Although sequencing was originally planned to be undertaken, it was not possible within the 

timeframe of my PhD, due to issues with obtaining DNA and amplification success of suitable 

quality for NGS. 
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3.4 Results 

696 blue tit nestling faecal samples were collected during 2016 and 2017 breeding seasons 

(334, and 362, respectively). Opportunistic collection of great tit (Parus major) nestling faecal 

sacs resulted in six faecal samples being collected over the two years. Collection dates varied 

by year, due to inter-annual phenological variation in nesting, with the mean sample collection 

date in 2017 being 10 days earlier than in 2016 (24th May and 3rd June, respectively, Figure 

3.1). The earliest collection date in 2016 was 18th May, as opposed to 9th May in 2017, and the 

latest 15th June, 6th June in 2017 (Figure 3.1). Faecal samples were collected from blue tit 

nestlings from the day of hatching (referred to as day 1), until they were 18 days old (Figure 

3.2), with 53% of faecal samples being collected from 13 to 15 day old chicks. Faecal samples 

ranged in weight from less than 0.01 g (marked as 0 g in Figure 3.3) to a maximum of 0.6g 

(mean 0.12 g), with samples in 2017, on average, being heavier than 2016 samples (0.15 and 

0.08 g, respectively; Figure 3.3). Faecal sacs increased in weight with chick age (linear model: 

sample weight = 0.007 (± 0.0009) x chick age + 0.02 (± 0.01), F = 75.32, df = 694, adj. R2 = 0.10, 

p < 0.001; Figure 3.4). 

 

 

Figure 3.1: Number of samples collected on each calendar day (9 th May until 15th June), per year. 
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Figure 3.2: Total number of faecal samples collected at each different chick age (day 1 equals day of 

hatching) over the two collection years. 

 

 

 

 

Figure 3.3: The number of blue tit faecal samples in each 0.01g weight class, over both years. The weight 

is a partially dry weight, after the sample had been incubated at 60°C for 30 minutes.  
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Figure 3.4: The relationship between weight of collected faecal sample and chick age (day 1 equals first 

day of hatching) at time of collection. The red line represents the fitted values from a linear model 
(weight = 0.007 (± 0.0009) x chick age + 0.02 (±0.01)), grey shaded area 95% confidence intervals, and 

the raw data plotted as points with size and colour denoting how many samples are at that position. 

3.4.1 DNA extraction method 

The chemical lysis extraction method had better success than the MO-BIO PowerSoil 

extraction kit, or any attempt to recreate/modify the protocol (Table 3.5). It is worth noting 

that during these tests each extraction was a separate faecal sac, as it was not possible to test 

more than two methods on the same faecal sac, so there could be unavoidable variation in 

extraction success due to this. Drying the faecal sac in the oven prior to DNA extraction did not 

improve DNA recovery, with approximately 60 % of samples amplifying successfully in each 

treatment (Table 3.5). 
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Table 3.5: A comparison of DNA extraction methods and modifications on DNA amplification success of 

blue tit faecal samples, using different universal invertebrate primer pairings. 

Extraction 
method 

Modification 

Primer pairing amplification of blue tit faecal samples 
success rates (%) 

ZBJ-
ArtF1/ZBJ-

ArtR2 

mICOIintF/ 

jgLCO1490 

LepF1/ZBJ-

ArtR2_deg 

ZBJ-
ArtF1_deg/mICOIi

ntF_revComp 

Chemical 
lysis 

Half volumes from DNA 
purification stage 

 

< 1 - - - 

Eluted in 100 µL 10 mM tris 

hydrochloride 
 

50 67 25 63 

1.5 mL lysis volume and 
eluted in 100 µL TE 

 

< 1 - - - 

Increased inhibitor flocculant 

volume to 200 µL 
 

- 67 - - 

Addition of saturated 
potassium chloride as 

additional inhibitor removal 
step, eluted in 100 µL 10 mM 

tris hydrochloride 
 

- 53 - - 

Drying samples in oven 

before processing/not drying 
 

- Both 67 - - 

SPRI bead clean up on 
extracted template  

 
 79   

MO-BIO 
PowerSoil 

extraction 
kit 

 

Chemical lysis solutions 

following PowerSoil protocol 
throughout and standard 

solutions for DNA purification 
 

33 - - - 

Chemical lysis solutions for 
DNA purification steps, 

following PowerSoil protocol 
throughout and standard 

solutions for lysis 

< 1 - - - 

Increasing the amount of inhibitor flocculant solution added in the chemical lysis extraction 

method did not affect amplification success of blue tit faecal samples, but amplification was 

weaker (Table 3.5), likely due to doubling elution buffer volume (and therefore halving DNA 

concentration).  

Further inhibitor removal, by undertaking a second DNA extraction, post chemical lysis 

extraction, using SPRI beads, increased amplification success of DNA extracted from blue tit 

nestling faecal sacs from approximately 60% to 79% (Table 3.5). 

The success of DNA extraction methods varieed between species (Table 3.6). Enzymatic lysis of 

great tit faecal samples did not produce amplifiable DNA (Table 3.6). The addition of saturated 
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potassium chloride solution, as an additional inhibitor removal step in the chemical extraction 

method, and decreasing elution volume (from 313 µL to 100 µL) produced amplifiable DNA in 

meadow pipit nestling faecal samples (Table 3.6). However, when this modification was tested 

on blue tit faecal samples amplification success was much lower than obtained with meadow 

pipit and the original unmodified chemical lysis extraction method on the same blue tit 

samples (Table 3.6).  

Table 3.6: DNA amplification success of faecal samples from three nestling bird species extracted using 

two extraction methods, with or without modifications. 

Extraction method Species 
Modification to extraction 

protocol 

Amplification success 
(% samples) with 

mICOIintF/ 

jgLCO1490 

Chemical lysis 

Meadow pipit 
None – eluted in 313 µL of 

TE 
 

60 

 

Potassium chloride added 

to lysate and eluted in  
100 µL tris hydrochloride 

 

100 

Blue tit 
None – eluted in 100 µL of 

TE 
71 

 

Potassium chloride added 

to lysate and eluted in  
100 µL tris hydrochloride 

 

38 

Proteinase K digestion 
and chemical lysis 

DNA purification 

Great tit None <1 

Faecal samples from captive adult starlings, with known diets, amplified more successfully 

than blue tit samples with 86% and 66% amplification success rate, respectively, when 

extracted using the same extraction protocol . There was no difference in amplification success 

rates of starling faecal samples extracted using G. Sellars modified MO-BIO PowerSoil 

extraction protocol (supplementary material 3.6.1) or the chemical lysis method (Table 3.7). 

Starling samples lysed in a total volume of 3 mL had the best amplification success across all 

weight categories, in comparison to lysis in 2 and 3.5 mL (Table 3.8). Heavier faecal samples 

(0.4 g), when lysed in 3 mL, failed to amplify more often than lighter samples (<0.01 and 0.05 

g, 0.2 g) with 67% and 100% amplification success rate, respectively (Table 3.8). 
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Table 3.7: Amplification success of DNA extracted from adult starling faecal samples using the original 
modification of the MO-BIO PowerSoil extraction kit (by G. Sellers) and the modified chemical lysis 

method. 

Sample weight (g) 

Amplification success (% samples amplified) with mICOIintF/ 
jgLCO1490 with each extraction method 

G. Sellers modified MO-BIO 

PowerSoil extraction protocol 
Chemical lysis 

< 0.01 100 100 
0.05 100 100 

0.2 100 100 
0.4 67 67 

Table 3.8: Testing the interaction of lysis volume and sample weight on DNA amplification success of 

faecal samples from captive adult starlings. 

Sample weight (g) 

Amplification success (% samples amplified) with mICOIintF/ 
jgLCO1490 with different lysis volumes (mL) 

2 3 3.5 

< 0.01 67 100 67 

0.05 100 100 100 
0.2 100 100 67 
0.4 100 67 67 

3.4.2 DNA amplification (PCR) 

3.4.2.1 mICOIintF and jgLCO1490 

DNA amplification was stronger, at all primer and magnesium concentrations, when DNA was 

eluted in water rather than TE. Primer concentration was more important for DNA 

amplification than magnesium concentration, with high primer concentrations giving stronger 

amplification, but also non-specific binding (especially in samples eluted in TE) with the 

production of additional fragments around 1000 base pairs. The optimal chemistry for PCR was 

2.5 mM magnesium and 0.6 µM primer concentration. The optimal annealing temperature was 

51°C, consistent with Kitson et al., 2018, when all other factors remained constant  

mICOIintF and jgLCO1490 strongly amplified all bird DNA tested (Table 3.9). Amplification 

efficiency was stronger and cleaner in PCRs conducted with MyFi, as opposed to MyTaq, under 

optimal conditions, and as such was preferentially used. 

3.4.2.2 ZBJ-ArtF1 and ZBJ-ArtR2 

The ZBJ-ArtF1/ZBJ-ArtR2 primer pairing was more sensitive to magnesium concentration than 

primer concentration with optimal DNA amplification at 2.5mM magnesium and 0.6 µM 

primer concentration. This primer pairing did not amplify any bird DNA and only amplified DNA 

from Planorbidae spp. and Lepidoptera species (Table 3.9). 
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Table 3.9: Amplification success or failure of each bird or invertebrate species with each primer pairing 

tested. 

 

Species 

Primer pairing 

 
mICOIintF/ 
jgLCO1490 

ZBJ-
ArtF1/ZBJ

-ArtR2 

LepF1/ZBJ-
ArtR2(_deg

) 

ZBJ-
ArtF1/mICOIint

F_revComp 

Birds 

Kingfisher 
(Alcedo atthis) 

 
    

Great tit 
(Parus major) 

 

    

Coal tit 

(Periparus ater) 
 

    

Puffin 
(Fratercula arctica) 

 

    

Terrestrial 
invertebrates 

Geometridae larvae 
 

    

Common wave 

(Cabera 
exanthemata) 

 

    

Si lver ground carpet 

(Xanthorhoe 
montanata) 

 

    

Tipulid spp. 

 
    

Aquatic 
invertebrates 

Blue mussel  
(Mytilus edulis) 

 

    

Planorbidae spp 
 

    

 

3.4.2.3 LepF1/ZBJ-ArtR2 (and ZBJ-ArtR2-deg) 

LepF1 when paired with ZBJ-ArtR2 amplified DNA most successfully at intermediate 

magnesium concentration (2.5 mM), and mid to high primer concentrations (0.4-0.6 µM), with 

high magnesium concentration (3 mM) inhibiting DNA amplification. This primer pairing 

amplified a wide range of invertebrate DNA but did not amplify bird DNA well (Table 3.9). 

3.4.2.4 ZBJ-ArtF1-deg (or ZBJ-ArtF1)/mICOIintF_revComp 

Pairing ZBJ-ArtF1-deg and mICOIintF_revComp at 0.6 µM concentration and 2.5 mM 

magnesium concentration with MyFI Mix and 4 µL of template DNA produced a clean reaction 

with invertebrate DNA. When tested further, no improvements to amplification strength or 

specificity could be made by modifying either annealing temperature and/or annealing time.  
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This pairing amplified all moth species tested (unknown Geometridae larvae, common wave 

adult and silver ground carpet adult) but did not amplify bird DNA well, in comparison to the 

other primer pairings previously tested (e.g. mICOIintF and jgLCO1490,Table 3.9). 

The addition of unique identification tags to primers, to allow nested metabarcoding, caused 

disruptions in amplification with variation in amplification success dependent on tag 

combination (Figure 3.5).  

 

 
Figure 3.5: Amplification success of DNA extracted from carpet wave moth, with untagged primers (pos) 

and different combinations of tagged primers.  
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3.4.3 Comparing amplification success rates of DNA from blue tit faecal sacs with 

different primer pairings 

As all primer pairings successfully amplified a variety of Lepidopteran species, the  amplification 

success of DNA extracted from blue tit nestling faecal sacs could be compared. mICOIintF and 

jgLCO1490 amplified DNA from blue tit nestling faecal sacs the best out of all combinations 

tried, with 79% of faecal samples tested amplifying successfully (Table 3.5). However, 

mICOIintF and jgLCO1490 also strongly amplified bird DNA as well (Table 3.9). No other primer 

pairing tested amplified bird DNA as readily as mICOIintF and jgLCO1490 (Table 3.9). 

ZBJ-ArtF1/ZBJ-ArtR2 and mICOIintF/jgLCO1490 exhibited similar amplification success rates 

during small scale tests (Table 3.5) but amplification success rates dropped during wider 

testing. No improvement in amplification with ZBJ-ArtF1/ZBJ-ArtR2 was observed when 

template DNA volume was reduced (Figure 3.6 and Figure 3.7). Amplification success of DNA 

from blue tit faecal sacs was only 25% with LepF1/ZBJ-ArtR2-deg (Table 3.5). During small scale 

tests, ZBJ-ArtF1-deg (or ZBJ-ArtF1)/mICOIintF_revComp showed higher amplification success 

than LepF1/ZBJ-ArtR2-deg (Table 3.5), but the addition of unique identification tags to ZBJ-

ArtF1-deg (or ZBJ-ArtF1)/mICOIintF_revComp caused amplification success to reduce to 12.5%. 

Due to spending extended time testing and refining DNA extraction methods, testing primer 

pairings and none of the primer pairings that did not amplify bird DNA giving satisfactory levels 

of DNA amplification, sequencing was not undertaken.  

 

Figure 3.6: Visualising the effect of reducing template DNA volume (2 and 1 µL on left and right of each 
sample pair, respectively) on amplification success of DNA from blue tit nestling faecal sacs and 

amplified with ZBJ-ArtF1/ZBJ-ArtR2 primers at 0.4 µM concentration and 3.0 mM magnesium 

concentration. EasyLadder I is in the first well for reference. 

 

Figure 3.7: Serial dilutions (1, 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64, respectively) of DNA from two blue tit 
faecal sacs (333 and 335, diluted with TE) along with DNA from Planorbidae spp. eluted in TE (S1) and 

H2O (S5). PCR chemistry was as follows: 2 µL of template DNA, and ZBJ-ArtF1 and ZBJ-ArtR2 at 0.4 µM, 

with 3mM magnesium concentration. EasyLadder I is in the first well, for reference. 
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3.5 Discussion 

The results I have presented here highlight the difficulties of trying to obtain high quality DNA 

and high DNA amplification success from faecal samples, both of which are essential pre-

requisites for NGS. I extensively tested DNA extraction methods and PCR modifications, such 

as primer choice and cycling conditions, to maximise amplification success.  

3.5.1 Sample collection 

Faecal sample collection demonstrated a peak in collection date each year (Figure 3.1), with 

samples being more readily obtained from older chicks (Figure 3.2). This will need to be 

considered, in the future, when interpreting sequencing results as the dietary requirements of  

chicks may differ with age (Betts, 1955), but younger chicks will not be as well represented as 

older chicks in this dataset. Therefore, the species richness of younger chick’s diets may not 

highlight all important taxa.  

3.5.2 DNA extraction method 

The MO-BIO PowerSoil extraction kit did not reliably provide amplifiable DNA for PCR from the 

blue tit faecal samples, and as such was modified to improve results (Table 3.5). There was no 

difference in DNA extraction success between the original modifications to the MO-BIO 

PowerSoil protocol (supplementary material 3.6.1) and the chemical lysis method (Table 3.7). 

Due to the likelihood that DNA in faecal samples was present in low concentrations, further 

modifications were made to try to concentrate extracted DNA. Modifications such as eluting in 

smaller volumes and lysing in smaller volumes did not provide an improvement in DNA 

amplification success rates (Table 3.5). When concentrating DNA during extraction any 

inhibitors which are present in the sample, and may co-elute with DNA (such as 

polysaccharides, which behave like DNA (Schrader et al., 2012)), will simultaneously be 

concentrated.  

An oversight in the chemical lysis extraction protocol for 2016 samples was to elute DNA in TE 

buffer (tris hydrochloride and EDTA). EDTA prevents DNA degradation during storage, but 

reduces DNA amplification success during PCR by chelating metal ions (magnesium, in 

particular), which stabilise DNA and are cofactors for polymerase enzymes (Rossen et al. 

1992). The protocol was modified for samples processed in 2017, and all samples were eluted 

in 10 mM tris hydrochloride instead.  

Prior to extraction, removal of storage ethanol is required as ethanol carried through to PCR  

can reduce, or inactivate, polymerase enzymes (Rossen et al., 1992). There was no difference 

in amplification success between samples which had been dried at 60°C, to further remove any 
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residual ethanol, or processed without drying (Table 3.5). This suggests that ethanol was not a 

likely cause of inhibition in these samples, but as a precaution all samples were dried at 60°C 

prior to DNA extraction. 

Inhibitors can be removed in a number of ways during DNA extraction, such as through silica 

spin columns, chemical flocculation and/or enzymatic break down (Schrader et al., 2012). 

Here, I tested whether silica spin columns, chemical flocculation and/or enzymatic lysis could 

remove inhibitors sufficiently so that amplifiable DNA could be obtained from nestling faecal 

sacs. Silica spin columns have been shown to remove inhibitors co-extracted with DNA during 

chloroform extractions (Kemp et al., 2006), and are often used in commercial extraction kits 

designed for inhibitor rich samples (such as MO-BIO PowerSoil extraction kit), and as such spin 

columns were used in every DNA extraction method tested here. Chemical flocculation 

successfully removes inhibitors present in soil samples and is routinely used in drinking water 

purification (Braid et al., 2003). As some inhibitors found in water samples are also likely 

present in faecal samples chemical flocculation should improve amplifiable DNA recovery in 

faecal samples. Increasing the volume of inhibitor flocculant, to facilitate the removal of more 

inhibitor molecules, and simultaneously increasing elution volume, to dilute inhibitors carried 

through with eluted DNA, had no effect on PCR amplification success of the blue tit samples 

(Table 3.5). These two modifications reduced the strength of the bands when visualized on an 

ethidium bromide gel, which represent amplified DNA, due to concurrently diluting inhibitors 

and DNA. Therefore, an increased volume of inhibitor flocculant was used, but with a reduced 

elution volume for all faecal samples collected in 2017, and is recommended when using this 

method. Enzymatic cell lysis, using proteinase K, instead of chemical lysis can reduce inhibitor 

activity, when coupled with effective DNA purification (An and Flemming, 1991). However, 

using enzymatic cell lysis and DNA purification steps from the chemical lysis method, gave no 

detectable DNA from great tit nestling faecal sacs (Table 3.6). This could possibly have been 

due to enzyme inactivation by either storage ethanol or an inhibitor present in the samples , 

preventing lysis from occurring (Rossen et al., 1992).  

Polysaccharides are a common inhibitor present in faecal samples (Monteiro et al., 1997; 

Schrader et al., 2012), and behave in a similar way to nucleic acids (Monteiro et al., 1997; Peist 

et al., 2001; Schrader et al., 2012), with their concentration varying with time, even within the 

same individual due to variation in diet (Monteiro et al., 1997). A membranous sac encases 

nestling excrement, containing both faecal matter and uric acid, to facilitate the removal of 

excrement from the nest (Herrick, 1900; Weatherhead, 1984). The membranous sac itself may 

be comprised of polysaccharides (visual observation during DNA extraction and J. Nicholls, 

pers. comm. 2018). Satisfactory levels of amplification have been reported in blue tit nestling 
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faecal samples when the sac was removed prior to extraction (J. Nicholls pers. comm., 2018), 

suggesting the sac itself could be a potential source of inhibition. The storage method of the 

samples used in this study prevented this modification being tested, as faecal sacs were 

homogenised upon collection in an effort to prevent DNA degradation. Due to polysaccharides 

behaving in a similar way to nucleic acids (Schrader et al., 2012) they can compete with nucleic 

acids during extraction and be co-eluted with, or even instead of, DNA. Molluscan and plant 

tissue are rich in polysaccharides, and as such suggestions of methods to extract amplifiable 

DNA, whilst removing polysaccharides, are common in these fields (e.g. Sharma et al., 2002; 

Sokolov, 2000; Souza et al., 2012; Wang and Stegemann, 2010). Phenol-chloroform and cetyl 

trimethylammonium bromide (CTAB) extractions are often used for inhibitor rich samples 

(Schrader et al., 2012). However, phenol-chloroform extractions require the use of hazardous 

chemicals, and are not particularly suited to large scale studies, and as such this method was 

not used. DNA extracted using the CTAB method can be degraded during the extraction 

process (Fang et al., 1992), which could negate any benefits of inhibitor removal in faecal 

samples where DNA is already likely highly degraded. Another method for removing 

polysaccharides is through the addition of a saturated potassium chloride solution to lysates, 

to precipitate polysaccharides and proteins from the sample after cell lysis and before DNA 

elution (Sokolov, 2000). Removing polysaccharides prior to eluting DNA is preferable, due to 

polysaccharides behaving in a similar way to nucleic acids (Schrader et al., 2012). When tested 

with faecal samples, the addition of potassium chloride restored amplification of DNA 

extracted from meadow pipit nestling faecal sacs (Table 3.6). However, this approach reduced 

DNA amplification success in blue tit nestling faecal samples, with reduced amplification 

success observed in comparison to the chemical lysis extraction method (Table 3.5). This 

suggests that it was concentrating DNA, not additional inhibitor removal, which restored 

amplification in the meadow pipit samples. Being unable to restore amplification of DNA in 

both species tested highlights the differences encountered when extracting DNA from 

different species faeces, and that a one-size-fits all extraction approach is not possible. It also 

further suggests that inhibitors could be originating from specific prey items present in blue tit 

nestling diets, but not in meadow pipit, or variation in digestion physiology between the two 

species could be responsible for differing success between species.  

Blue tit faecal samples varied in weight from <0.01 up to 0.6 g (Figure 3.3), and faecal sac 

weight was positively related with age (Figure 3.4). Therefore, it was essential to ensure that 

the extraction protocol was optimised for all possible weights. Modifying lysis volume, and 

therefore diluting inhibitors, was tested using faecal samples from adult starlings. DNA from 

adult starling faeces amplified more successfully, at all weights and lysis volumes, than DNA 

from blue tit nestling samples. Only heavy samples (0.4 g or 0.2 g) lysed in large or small 
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volumes (3 ml or 2 ml), exhibited reduced amplification success (Table 3.8). This suggested 

lysing in 2.5 ml total volume sufficiently diluted any inhibitors present whilst maintaining DNA 

in a high enough concentration for amplification. The high DNA amplification success of adult 

starling faeces further suggests that the reduced success in blue tits may be due to prey items 

consumed or nestling physiology. 

A secondary DNA extraction can also further remove inhibitors which have been carried 

through the first extraction (e.g. Kemp et al., 2006). This presents increased costs (in both time 

and money), but can be the only solution for extremely complex samples, such as the blue tit 

nestling faecal sacs. SPRI beads are ideal in this situation as they reversibly bind DNA leaving 

inhibitors to be discarded and DNA eluted in a smaller volume to further concentrate extracted 

DNA. DNA from blue tit faecal samples that were extracted using the chemical lysis extraction 

method and underwent a secondary extraction using SPRI magnetic beads exhibited increased 

DNA amplification (Table 3.5), suggesting SPRI beads successfully removed inhibitors which 

had been co-eluted with DNA in the first extraction and further concentrated DNA. This 

secondary extraction method could be developed further (as in Vo and Jedlicka, (2014)) to be 

used as a single extraction method, maintaining the benefits for recovery of amplifiable DNA, 

but reducing the incurred time and monetary costs. 

3.5.3 DNA amplification (PCR) 

mICOIintF and jgLCO1490 primer pairing amplified 79% of nestling blue tit faecal samples, 

after undergoing a second extraction with SPRI beads, the highest success rate of all the 

primer pairings tested (Table 3.5). However, this pairing is a universal primer which amplifies 

all phyla, apart from Entoprocta (Leray et al., 2013), and successfully amplified all bird DNA 

tested (Table 3.9). The high amplification success with mICOIintF and jgLCO1490 could be due 

to blue tit DNA, which is likely to be present in most samples, being amplified over prey DNA.  

Amplification success with other primer pairings, which did not readily amplify bird DNA, such 

as ZBJ-ArtF1/ZBJ-ArtR2, LepF1/ZBJ-ArtR2 and ZBJ-ArtF1-deg/mICOIintF_revComp (Table 3.5) 

may be more representative of faecal sacs that contain prey DNA, or these primers may be 

more sensitive to inhibitors than mICOIintF/jgLCO1490. Prey DNA concentration has been 

shown to naturally vary within excrement and can be absent altogether when chicks are 

undergoing periods of fasting, as has been demonstrated in shy albatross (Thalassarche cauta) 

(McInnes et al., 2017). This may offer an alternative explanation for why amplification success 

exhibits no discernible patterns with primers that do not amplify bird DNA. However, chicks 

did not appear to be routinely starving, although brood reduction was common in most broods 

and faecal samples may have been obtained from these individuals, which may not have been 
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fed as frequently. A further set back with using ZBJ-ArtF1-deg/mICOIintF_revComp primer 

pairing was due to an apparent effect of the addition of unique MIDs and bridge sequences on 

amplification success (Figure 3.5), suggesting the unique MIDs were interacting and inhibiting 

amplification during PCR when used in certain combinations. 

3.5.4 Future work 

There is still additional work that could be undertaken to improve DNA extraction and 

amplification success, prior to sequencing, outlined here.  

DNA amplified with mICOIintF and jgLCO1490 could be sequenced as is, despite the likelihood 

a large proportion of reads would be blue tit. These effects could be minimised by using a 

sequencing platform with increased read depth (i.e. Illumina HiSeq as opposed to MiSeq) 

which may provide sufficient prey reads, in addition to blue tit reads, to elucidate trophic 

interactions. Even a sub-optimal approach would provide an advancement in knowledge, as to 

date NGS has not been used in this system, apart from to describe adult pre-breeding diet 

(Shutt, 2017). To try and maximise prey reads during sequencing of DNA amplified by 

mICOIintF/jgLCO1490, SPRI beads, used here in secondary DNA extraction, could be diluted to 

a lower concentration, therefore only allowing a predetermined amount of DNA to bind 

regardless of DNA concentration in the starting mixture This would normalise the amount of 

DNA from each sample that makes up each library (Hosomichi et al., 2014). Reducing the 

variation in DNA concentration between each sample within each library, may prevent prey 

reads being swamped during sequencing when bird reads are the dominant signal. 

Alternatively, blue tit blocking primers could be used, in addition to universal invertebrate 

primers, to prevent amplification of blue tit DNA whilst still allowing amplification of prey DNA 

during PCR (e.g. Vestheim and Jarman, 2008). 

New invertebrate primers could be designed, or sourced from the literature (e.g. Folmer et al., 

1994), that are likely to amplify prey items found in blue tit diets, but do not amplify bird DNA, 

and these primers tested to see if amplification of DNA from faecal samples improves. Testing 

primers that amplify a different locus e.g. 16S may also improve amplification success. 

However, using a different locus may not provide as much species level detail as COX1 due to a 

shorter barcoding region making species discrimination harder than with COX1 primers  

If low DNA concentration in extractions is what is preventing amplification, whole genome 

amplification could be undertaken to improve DNA quality, and concentration, prior to 

amplification with invertebrate primers (Cheung and Nelson, 1996).  
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Modifications to the faecal sac collection protocol could be made to try to reduce inhibitors at 

this stage. As previously discussed, the membranous sac itself may be a source of 

polysaccharides, and other PCR inhibitors, as wel l as likely containing a large amount of bird 

DNA. The faecal sac could be dissected and removed at time of collection to try and 

circumvent this. However, this does increase the risk of contamination.  

Finally, to further establish the effects of fasting and diet composition on amplifiable DNA 

recovery, feeding experiments on captive birds could be undertaken. In addition, the time it 

takes for prey items to be detected in faecal samples after consumption could also be 

established using this approach and could then be translated into field studies. This would 

allow prey phenology in the nesting environment to be deduced from faecal samples. 

3.5.5 Conclusion 

Using NGS to elucidate the diet of nestling blue tits still remains a promising approach, and 

would shed light on the trophic interactions which these birds depend on during the breeding 

season. Here, I have shown that despite faecal samples being hostile environments, with 

degraded DNA and high concentrations of inhibitors, DNA of sufficient quality for amplif ication 

by PCR can be extracted. However, the methods presented may not be directly applicable 

(without modification) from one species to another.  
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3.6 Supplementary material 

3.6.1 Modified MO-BIO PowerSoil extraction protocol (G. Sellers) 

Described here is the original chemical lysis extraction protocol, based on MO-BIO PowerSoil 

DNA extraction kit, devised by Graham Sellers. All extraction buffer components are described 

in Table 3.1, and referred to by names stated in the table throughout.  

3.6.1.1.1 Cell lysis: 

Samples are processed dry and volumes are based upon 1 g of starting material. Dried samples 

are added to a 5 mL Eppendorf tube, prefilled with 2 g of sterile garnet (1-1.4 mm diameter) 

and shaken briefly. 2200 µL of lysis solution one added and mixture briefly vortexed, followed 

by 800 µL of lysis solution two and the sample ground using appropriate apparatus (e.g. SPEX 

SamplePrep Geno/Grinder 2010 at 1750 RPM for two minutes). This mixture is then 

centrifuged (Thermo Scientific Heraeus megafuge 40R) at 4,000 xg for 1 minute at room 

temperature. Supernatant is then transferred to a clean tube, centrifuged (10,000 xg for 1 

minute – these conditions from now on) and supernatant removed.  

3.6.1.1.2 DNA purification: 

500 µL of supernatant is carried through for purification at all stages, however this volume can 

be modified, and all subsequent solution volumes should be modified accordingly if the 

starting volume is different. 200 µL of protein flocculant is added to the removed supernatant, 

briefly vortexed, and incubated on ice for a minimum of 10 minutes. The mixture centrifuged, 

supernatant removed and placed in a fresh tube with 125 µL total volume of a 1:1 mix of 

inhibitor flocculant 1 and 2, the mixture vortexed and incubated on ice for a minimum of 10 

minutes. The mixture centrifuged and supernatant transferred to a new 2 mL tube with 1000 

µL of binding solution. This solution is used to fill a silica spin column to capacity, which is 

centrifuged and flow through discarded, with this step repeated until all the binding mixture 

had passed through. 375 µL of wash solution is added directly to the silica membrane and after 

being centrifuged, flow through discarded and centrifuged again to dry the silica membrane. A 

new collection tube is used and 300 µL of elution buffer, applied directly to the silica 

membrane, centrifuged and DNA is now in the collection tube.  
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Chapter 4: The effect of climate and habitat on blue tit phenology in the 
United Kingdom 

4.1 Abstract 

Phenological synchrony between trophic levels in food webs is crucial to maximise fitness of 

higher trophic levels. The tri-trophic deciduous tree-herbivorous caterpillar-insectivorous bird 

food chain has become a model ecological system for investigating the impacts of climate change 

on phenology. Understanding the cues blue tits (Cyanistes caeruleus) use to correctly time their 

breeding is of great value in informing predictions on how bird species may fare in a changi ng 

climate. To date, the effect of climate on insectivorous birds’ phenology has largely been 

investigated without considering the effects of habitat. For insectivorous birds, nesting habitat 

defines the food resources available for chicks later in spring. Consequently, if warming springs 

affect the temporal patterns of food availability, differently across habitats, the impacts of 

climatic change may operate differently among habitats. Blue tits are thought to optimise their 

breeding to coincide with peaks in their main prey the winter moth caterpillar ( Operophtera 

brumata). I hypothesise that, after controlling for effects of spring temperature and latitude,  

birds nesting in areas with a high proportion of early leafing tree species would have early 

breeding phenology and vice versa. I use data from 34 long-term nest-recording sites across the 

UK to test this hypothesis.  

I found there has been a significant temporal advancement in both first egg and hatching date, 

since 1980, with blue tits at these sites laying their first eggs and hatching approximately 10 and 7 

days earlier, respectively. I found that the main driver in the advancement of breeding phenology, 

was mean spring temperature. There was no evidence for differences in blue tit breeding 

phenology in relation to local tree composition, i.e. there was no fine tuning of breeding to local 

tree phenology. This suggests that birds are using temperature cues as the proximate cue to time 

breeding, and not local habitat cues that may indicate when the local peaks in food are likely to 

occur. The lack of association between bird breeding phenology and habitat, suggest mismatch 

could become a problem. This will be especially problematic if resource peaks differ between 

habitats, as birds do not appear to be adapted to local habitat phenology, especially as birds and 

caterpillars already differ in their responses to climate change. 
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4.2 Introduction 

Phenology is defined as the timing of cyclic or periodic events. In living organisms this is usually in 

relation to the timing of cyclic life events, such as migration or reproduction, of which many 

coincide with meteorological seasons. Phenology is often finely tuned such that organisms can 

exploit seasonal pulses in resources, which may only occur for a short period of time , and/or in a 

specific location, and are characteristic of seasonal environments. For example the pied flycatcher 

(Ficedula hypoleuca) breeds in temperate Europe during spring, exploiting food resources and a 

moderate climate in which to reproduce, before migrating to Africa for the non-breeding season 

(Lundberg and Alatalo, 2010).  

In recent decades the phenology of many organisms has been changing (Walther et al., 2002), and 

in general spring activities such as breeding (e.g. Crick et al., 1997; Moyes et al., 2011), return of 

migrant species to their breeding grounds (e.g. Jonsson and Jonsson, 2009) and emergence of 

butterflies (Dell et al., 2005) have all advanced. Many of these phenological changes have been 

shown to be strongly temperature dependent and attributable to changes in climate (Thackeray 

et al., 2016; Walther et al., 2002). Similarly, the breeding phenology of many avian species has 

advanced in recent decades (Crick et al., 1997; McCleery and Perrins, 1998) and correlates 

negatively with temperature (McLean et al., 2016).  

Blue tits (Cyanistes caeruleus) are a small resident passerine species, with a distribution limited to 

the Western Palearctic (Birdlife International, 2014; Stenning, 2018). They are an obligate 

secondary cavity nesting species and are therefore reliant on the presence of natural cavities, 

such as disused woodpecker cavities or natural tree cavities, in which to breed (Perrins, 1979). 

Blue tits have received a lot of research attention due to their abundance and willingness to 

inhabit man-made nest boxes (Perrins, 1979), making it easy to monitor many aspects of their l ife 

cycle.  

Blue tits are a relatively short lived species, typically only living for three years, and breeding in 

their first year (Robinson, 2018). They are usually single brooded (Perrins, 1979), meaning the 

correct timing of breeding is vital. During the breeding season blue tits are insectivorous (Perrins, 

1991), and predominantly feed young on Lepidopteran larvae, typically winter moth (Operophtera 

brumata) larvae, and also other invertebrates including spiders and flies (Cowie and Hinsley, 

1988; García-Navas and Sanz, 2011; Serrano-Davies and Sanz, 2017). Winter moth are believed to 

be the preferred prey item and nestlings fed a higher proportion of winter moth larvae are 

generally in better condition at fledging (Wilkin et al., 2009). Winter moth larvae are only 

available for a short period during spring, with larvae feeding on newly emerged leaves of 

deciduous trees, predominantly oak (Quercus spp.) but occurring in lower numbers on other 
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species (Wint, 1983). Pupation takes place in the ground, at which point caterpillars become 

unavailable to foraging blue tits. Peak nestling demand for food must therefore coincide with the 

peak availability of winter moth caterpillars, and for this to occur timing the onset of breeding is 

crucial.  

Blue tits typically lay one egg per day and begin incubation after the penultimate or final egg, to 

ensure synchronous hatching. Incubation typically lasts 13 to 15 days (Perrins, 1979; Robinson, 

2018; Stenning, 2018) and nestlings usually hatch over one or two days. The mean clutch size in 

the UK is nine eggs (min-max, 2-16; Robinson, 2005), requiring adult birds to correctly predict, 

approximately 30 days in advance, when the peak in prey availability will occur. Once birds have 

begun laying eggs an opportunity remains to advance or delay hatching through a number of 

mechanisms. This may be required if their initial timing was sub-optimal or the environment 

changes after the onset of egg laying. Egg pauses, where an egg is not laid for one or more days 

after the first or subsequent eggs have been laid, can be used to delay breeding. Delaying or 

pausing during incubation, after clutch completion, is another mechanism to delay hatching. In 

contrast, birds can advance hatching by reducing their clutch size or by varying attentiveness 

during incubation. 

Adult blue tits have been shown to use a number of cues to initiate breeding, and to attempt to 

predict when the peak invertebrate availability will occur (Visser and Lambrechts, 1999). The 

proximal cue for the onset of breeding is thought to be the change in day length which triggers 

slow and then rapid gonadal growth (Visser and Lambrechts, 1999).  The rate of rapid gonadal 

growth increases with increased ambient air temperature during the onset of spring, the latter 

also acts as a predictor for the emergence of Lepidopteran larvae (Salis et al., 2016). There are a 

number of environmental cues that adult birds could use to fine tune breeding phenology, 

following the initial physiological response. Such cues might include local tree phenology and food 

availability at the time of laying. The strength of these cues, and the species they use  as a cue, 

varies by population and location. For example, the phenology of great tits (Parus major) in 

Norway is closely correlated with bud-burst in birch trees (Betuala spp.; Slagsvold, 1976) where as 

in England and Holland breeding phenology is closely correlated with oak bud-burst or leafing 

(Burgess et al., 2018; Cole et al., 2015; Visser and Lambrechts, 1999). In the UK, oak forms 18% of 

1.3 million hectares of broadleaved woodland (Forestry Commission, 2013) and is therefore likely 

to be vital to woodland birds. However, birch also covers a similar area to oak, with much of the 

woodland in the UK being a mix of broadleaved species (Forestry Commission, 2013). Assessing 

the importance of these species in providing food, and therefore cues, to breeding birds can help 

to inform future woodland management.  
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The tri-trophic deciduous tree-herbivorous caterpillar-insectivorous bird system, where blue tits 

are secondary consumers, has become a model ecological system for investigating the impacts of 

changing climate and phenology. In general, most long-term phenological studies of blue tits (and 

great tits, a sympatric species, with similar ecology), have demonstrated advancements in first 

egg date (FED) in relation to warming spring temperatures (Dolenec, 2007; Matthysen et al., 

2011; Perrins, 1991; Potti, 2009; Sanz, 2002; Thorley and Lord, 2015). With this advancement 

comes the risk of trophic mismatch, where one trophic level advances and lower level/s either do 

not change, or change at a different rate, resulting in an uncoupling of a once synchronous 

relationship (Durant et al., 2007). If the lower two trophic levels, in this tri-trophic system, do not 

advance, or advance at a different rate, blue tits may no longer be able to exploit the best food 

resource for their chicks (Buse et al., 1999; Wilkin et al., 2009). This could result in prey switching 

to a sub-optimal prey item and could result in lower productivity (Buse et al., 1999; Wilkin et al., 

2009). With elevated spring temperatures, caterpillar development will also occur more rapidly 

(Buse et al., 1999), as well as advancing the phenology of oak trees (Tansey et al., 2017). To date, 

different populations have exhibited differing evidence of mismatch, even within the same 

country, between trophic levels. Some populations in the UK (Charmantier et al., 2008; Cresswell 

and Mccleery, 2003) and Belgium (Matthysen et al., 2011) are maintaining synchrony with the 

peak in caterpillar abundance. However, in the Netherlands, and in a nationwide study i n the UK, 

some populations are not maintaining synchrony across the trophic levels (Both et al., 2009; 

Burgess et al., 2018; Visser et al., 1998, 2006). 

To minimize the potential for mismatch with local resources, it would be expected that birds 

would fine tune their breeding phenology to match local tree and caterpillar phenology. As the 

winter moth is polyphagous (Wint, 1983), blue tits could feasibly use a number of deciduous tree 

species as cues to time their breeding. Those few studies that have considered habitat cues 

mainly focused upon differences between deciduous versus coniferous woodlands, finding mixed 

evidence that birds are using local habitat cues (Amininasab et al., 2016; Blondel et al., 1993). 

Experimentally, the presentation of leafing branches earlier, to represent advancement in spring 

phenology, had no impact on FED in great tits (Schaper et al., 2011). 

The advancements in FED that populations have been exhibiting in response to warmer springs 

have occurred too rapidly to have been brought about by evolution, or natural selection alone 

(Charmantier et al., 2008). The relationship between phenology and temperature is the same at 

population and individual levels, further suggesting advancements in phenology are likely to be as 

a result of phenotypic plasticity (Charmantier et al., 2008). Phenotypic plasticity is where an 

organism changes its phenotype, in this case timing of egg laying, in response to changes in their 

environment without it being genetically fixed, allowing populations to rapidly respond to 
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environmental change (West-Eberhard, 1989). Although phenotypic changes themselves are not 

genetically fixed, plasticity itself is a selectable trait and can become fixed within populations 

(Nussey et al., 2005). 

The aim of this chapter is to investigate the impact of tree species, temperature and latitude on 

blue tit breeding phenology across the UK. To my knowledge, this is the first time fine-scale tuning 

of phenology, in regard to habitat, has been investigated across such an extensive range and 

across multiple populations. I hypothesise that as different tree species exhibit different leafing 

phenology (Roberts et al., 2015), blue tits breeding in areas with high proportions of late-leafing 

species such as ash (Fraxinus excelsior) and/or oak  will lay later, and therefore hatch later, than 

blue tits in areas with higher proportions of early leafing species, such as sycamore (Acer 

pseudoplatanus) and/or birch .  
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4.3 Methods 

4.3.1 Nest recording 

Nest records generated annually by volunteer nest recorders, across the UK, working as part of 

the British Trust for Ornithology’s (BTO) Nest Record Scheme (NRS) were used. Each record 

included the following data: species, year, grid reference, altitude, and for each visit: the date, 

number of eggs/young and stage of development of nest/eggs. Finally the outcome of  the nesting 

attempt (if known), was recorded. If precise records of first egg date (FED) are not recorded (due 

to visiting after the first egg has been laid), these dates are back calculated, assuming one egg is 

laid per day. Similarly, if hatching date was missed, it was back calculated based on the 

developmental stage of chicks when first observed. For the period 1962 – 2015 73,612 digitised 

blue tit nest records were available in the NRS database.  

4.3.2 Site and nest record selection 

The NRS blue tit database was cleaned to remove records 

containing submission and/or inputting errors (70,743 

records remained). Nest recorders submit the location of 

nests using a minimum accuracy of a four-figure grid 

reference (1 km x 1 km). Initially, all grid references were 

converted to four-figure grid references to highlight grid 

references where multiple records had been submitted 

over multiple years, aiding the identification of individual 

sites with long term datasets. Any four-figure grid 

references where the same observer had submitted 

records for a minimum of 10 years, and was active in 2015, 

were selected. These records were then used to identify 

focal sites, and the recorder contacted to confirm each 

such site was likely to be a single population. Thirty four 

sites, with records from 1979 – 2015, were identified and 

used in subsequent analyses (Figure 4.1).  

As citizen scientists collected these data, there was 

variation in the frequency of visits, leading to uncertainty in 

some of the FED and/or hatching date estimates, resulting in minimum and maximum estimates 

of date variables to be created. Consequently, a further clean-up step was undertaken. For 

records to be used in the FED analysis, records were removed if the difference between the upper 

and lower estimates of FED/hatching were greater than 10 days, leaving 10,406 FED records for 

Figure 4.1: Black circles represent 
the locations of sites with long 

running blue tit nest box schemes, 
selected from BTO NRS database, 

and that were included in this study. 
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the selected sites and time period aforementioned, and 5,944 hatching date records spanning 

1980-2015.  

4.3.3 Habitat 

Total tree density and species specific densities were estimated at each 

site using modified Point Centered Quarter Method (PCQM) (Khan et al., 

2016). PCQM has been shown to give similar species density estimates 

to other distance sampling approaches and quadrat sampling (Cottam 

and Curtis, 1956). This sampling approach was chosen as a way of 

sampling the current available habitat, which is unlikely to have changed 

dramatically over the period of the bird observations as al l sites were 

mature woodlands. Twenty five stratified random sampling points were 

selected at each site, stratified using the location of nest boxes to 

ensure the sampled habitat was likely to be used by nesting pairs. Each 

point was split into four equal quadrants and the distance to, and 

species of, the nearest tree recorded (using a digital laser rangefinder 

(Bosch PLR 25), Figure 4.2). Trees were only ever recorded in one point, to ensure each individual 

sampling point was independent. Saplings (any single stemmed tree with a diameter at breast 

height (DBH) of less than 5 cm) were not sampled and the next nearest tree with a DBH greater 

than 5 cm included. Sapling density is likely to change more rapidly than more mature tree 

density over the sampling period. 

Total tree density was estimated using the following equation (Khan et al., 2016): 

 

𝜌 = 4 (4𝑁 − 1) 𝜋 ∑ ∑ 𝑅(1)𝑖𝑗
2

4

𝑗=1

𝑁

𝑖=1
⁄  

Where: 

𝜌 is overall  tree density; 

𝑅𝑖𝑗  is the distance from 𝑖𝑡ℎ random point to the closest tree in the 𝑗 𝑡ℎ quadrant;  

𝑁 is the number of random points (always 25 in this study).  

Individual species were grouped into species categories following categorisation used in Forestry 

Commission (2012), and groupings used are outlined in Table 4.1.The density of a single species 

(𝜌𝑘) at each site was calculated in the following way (Mitchell, 2010):  

𝜌𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑘

4𝑁
 ×  𝜌  

 

 

Figure 4.2: X represents 
the sampling point and 

the dashed lines the 
quarters to be used for 

sampling. In each quarter 
the distance (black solid 

line) to the nearest tree 
(green filled circle), was 

measured. 
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Where: 

𝑘 is a single species category recorded at the site;  

𝜌 is the calculated total tree density of the site;  

𝑁 is the number of random points (always 25). 

Species densities were then converted to proportions of the total tree density at each site ( Figure 

4.3).   
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Table 4.1: Description of the species which comprise each general tree category, as referred to throughout 

this chapter 

Category Species 

Ash European ash Fraxinus excelsior 

Beech Common beech Fagus sylvatica 

Birch Downy birch Betula pubescens; Silver birch Betula pendula; Common hornbeam 

Carpinus betulus 

Oak English oak Quercus robur; Sessile oak Quercus petraea; Red oak Quercus rubra 

Sycamore Sycamore Acer pseudoplatanus 

Willow Bay willow Salix pentandra; Crack willow Salix fragilis; Goat willow Salix caprea 

Grey willow Salix cinerea oleifolia 

Other Alder spp. Alnus spp.  

Apple spp. Malus spp.  

Aspen Populus tremula 

Bird cherry Prunus padus; Blackthorn Prunus spinose; Wild cherry Prunus avium 

Purging buckthorn Rhamnus cathartica 

Caucasian fir Abies nordmanniana 

Cedar Cedrus libani; Japanese red cedar Cryptomeria japonica 

Corsican pine Pinus nigra laricio; Scots pine Pinus sylvestris 

Douglas fir Pseudotsuga menziesii 

Elder Sambucus nigra 

English elm Ulmus minor’Atinia’; Wych elm Ulmus glabra 

European larch Larix decidua 

Common hawthorn Crataegus monogyna 

Common hazel Corylus avellana 

Common holly Ilex aquifolium 

Horse chestnut Aeculus hippocastanum 

Leylandii Cupressocyparis leylandii 

Lime spp. Tilia spp. 

Field maple Acer campestre; Norway maple Acer platanoides 

Norway spruce Picea abies; Sitka spruce Picea sitchensis; Spruce spp. Picea spp. 

Poplar spp. Populus spp. 

Coast redwood Sequoia sempervirens 

Common rowan Sorbus aucuparia 

Spindle Euonymus europaeus 

Sweet chestnut Castanea sativa 

Tulip tree Liriodendron tulipifera 

Walnut Juglans regia 

Western hemlock Tsuga heterophylla 

Yew Taxus baccata 

 

4.3.3.1 Testing tree density estimates 

To ensure 25 sampling points per site was sufficient to estimate tree density accurately, the 

methodology was tested at three sites that were also used in the final analyses. The three sites 

used to test the methodology varied in area covered, 124 Ha (Highnam Woods, SO7819), 172 Ha 

(Minsmere, TM4667) and 510 Ha (Nagshead, SO6008). Each nest box within the site was used as a 

potential sampling point that resulted in 67, 89 and 407 points for Highnam, Minsmere and 
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Nagshead, respectively. The methodology was tested using 25, 30 or 35 random points at each 

site. Sampling points were randomly selected from the total points available at each site, and 

total tree density and individual species densities calculated, with 500 bootstraps of randomly 

selected points for each site-point combination. There was no significant difference in the mean 

total tree density calculated at each site with an increase in the number of sampling points (one 

way ANOVA: Highnam: DF = 2, SS = 26785, MS = 13392, F = 2.06, p = 0.13; Minsmere: DF = 2, SS = 

679, MS = 340, F = 0.37, p = 0.70; Nagshead: DF = 2, SS = 400, MS = 200, F = 0.07, p = 0.93). 

However, variance declined as the number of points sampled increased ( supplementary material 

4.6.1, Table S.1). 

 

Figure 4.3: Proportion of each tree genus present at each of the 34 sites included in the study, ordered from 

south to north. 

4.3.4 Climate 

Interpolated daily mean temperature, from across the UK, for the period spanning the bird data, 

at a resolution of 5 x 5 km (Perry et al., 2009; Perry and Hollis, 2005; 

https://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/)  was used to relate 

bird nesting traits to climate. Each nest record was associated with the climate data of the 

encompassing 5 x 5 km grid square. The mean daily temperature between day 75 and 128 (16th 

March to 8th May) was calculated for each nest record, as this period has previously been shown 

to best predict spatial and temporal variation in FED (Phillimore et al., 2016). In addition, the 

mean first egg date was 27th April (min: 29th March, max: 14th June), falling within the chosen time 

period for temperature, and mean hatching date 19th May (min: 22nd April, max: 21st June). It is 

likely this time period (day 75-128) influenced hatching phenology, as females would have been 

incubating, or deciding when to commence incubation, during this period. A within subject mean 

centring approach was taken to allow the spatial and temporal slopes to be explored, with a mean 
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yearly temperature for the aforementioned time period for each site derived, and also the 

deviation from this for each nest record at that site (van de Pol and Wright, 2009).  

4.3.5 Statistical Analysis 

In all models, phenology (either FED or hatching date) was used as the response variable with 

temperature and latitude as fixed effects along with the following cross-classified random effects: 

year, site and habitat (as random intercepts), and the within site temperature slope was also 

allowed to vary. All models were implemented as Bayesian mixed effects models, using 

‘MCMCglmm’ (Hadfield, 2010), in ‘R’ v.3.5.1 (R Core Team, 2017). All response variables were 

interval censored Gaussian responses, specifying that the response variable fell between a 

minimum and maximum value (either minimum or maximum FED or hatching date, for the 

respective models), and were assumed to follow a normal distribution. All continuous fixed 

effects were scaled and mean centred. Priors were defined as the default inverse-Wishart 

distribution for the residual term and flat, parameter expanded priors for the variance terms in all 

models. The burn in period was set to 20,000 in all models, with total number of iterations varying 

dependent on the model. Full model structures are described in Table 4.2, and models did not 

undergo any simplification. 

In all analyses habitat variables were included as a multiple membership random effect. Hence, a 

presence/absence matrix was created for each tree species categories with 1 denoting it was 

present at a site and 0 absent. The presence/absence matrix was then weighted by the proportion 

of each species present at each site and used cumulatively in the model. Weighting by proportion, 

rather than using raw species density data, was required in this modelling approach due to the 

assumption of summing to unity. Including habitat as a multiple membership random effect 

allowed the effect of each individual tree species, as well as the total habitat effect to be 

explored, as one species may contribute to the habitat effect more than another. To ensure the 

conversion from densities to proportions did not mask any habitat effects the same models were 

constructed, but the multiple-membership habitat variable removed, and replaced with oak 

density (as a fixed effect). Oak was chosen a priori for this test as I expected oak to exert the 

greatest effect on phenology, based on previous research (Wilkin et al., 2007) and results from 

Chapter 2. The oak model suggested no masking of habitat effects; hence I only present results 

using the multi-membership habitat variable in the main text. The results of the oak model, and 

further information on rationale, are presented in the supplementary materials ( supplementary 

material 4.6.2: Table S.2 and Table S.3).  
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Table 4.2: Summary of response, fixed and random effect variables and model structures used in the 

Bayesian general linear mixed models implemented in this study. All models were implemented using the ‘R’ 

package ‘MCMCglmm’ and after full models were created, no model simplification was undertaken.  
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First egg 
date 

         50,000 30 
         650,000 500 

Hatching 
date 

         50,000 30 

         650,000 500 

 

Model convergence was assessed visually from trace and posterior density plots. The number of 

iterations and the thinning interval used (stated for each model in Table 4.2) were defined to 

maintain an effective sample size above 1000, whilst ensuring autocorrelation between 

successively stored iterations did not exceed 0.1 (Hadfield, 2017). 

There was evidence for residual spatial autocorrelation in the first egg date model, but not in the 

hatching date model, with full methods and results presented in the supplementary material 

(supplementary material 4.6.3). 
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4.4 Results 

4.4.1 First egg date 

Across the 34 study sites, blue tits showed a significant temporal advancement in first egg date 

(FED) of 0.27 days per year, i.e. 2.7 days advance in FED per decade, which equates to an 

advancement of 9.7 days during the study period (1979-2015; Table 4.3). 

Blue tit FED was negatively related to mean spring temperature at a site level (Figure 4.4, Table 

4.4), and positively related to latitude (Figure 4.5, Table 4.4). For every degree Celsius increase in 

mean spring temperature, FED was on average 3.4 days earlier. After controlling for temperature, 

for each degree increase in latitude (heading north in the UK) blue tit FED was, on average, 1.6 

days later. Within site temperature did not predict FED (Table 4.4).  

No single tree species alone induced a significant advance or delay in FED in this study (Figure 4.6, 

Table 4.5). If a site was composed of a single species the advance or delay to FED is  unlikely to be 

greater than 15.2 days, interpreted from the upper variance limit from the habitat effect ( Table 

4.5).  

Table 4.3: Model estimates for the fixed and random effects, from Bayesian general linear mixed models, 
where either first egg date (FED) or hatching date was the response variable being investigated. Rows in 

bold denote significant effects. 

Fixed effects Posterior mean 
95% credible 

interval 

Effective sample 

size 
pMCMC 

 FED 
Hatch 
date 

FED 
Hatch 
date 

FED 
Hatch 
date 

FED 
Hatch 
date 

Intercept 

655.9  
 

567.3 

345.0-
972.0 

 
 

236.7-
931.5 

1000  
 

1000 

<0.001  
 

0.002 

Year 

-0.27  
 

-0.21 

-0.42 – 
-0.11 

 
 

-0.39- 
-0.04 

1000  
 

1000 

0.006  
 

0.012 

Random 
effects 

Posterior mean 
variance 

95% credible 
interval 

Effective sample 
size 

 

 FED 
Hatch 

date 
FED 

Hatch 

date 
FED 

Hatch 

date 

Year 

20.2  
 

18.6 

8.6-
31.4 

 
 

9.2-

29.4 

643  
 

299 

Year:Site 

20.8  
 

22.8 

17.7-
24.3 

 
 

19.1-
26.5 

1000  
 

1072 

Residual 

36.5  

 
25.7 

35.4-

37.5 

 

 
24.8-
26.7 

1000  

 
1000 
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Figure 4.4: Model prediction for change in blue tit first egg date (FED) with mean spring temperature (day 

75 – 128). Points represent single nest records from the BTO NRS data from the same sites in different years. 

The size and colour of the underlying point represents the number of data points at that position. The 

prediction line (red) is generated from the general linear mixed model, at the mean latitude and year, with 

the 95% credible interval shown surrounding the line. 
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Figure 4.5: Model predictions for blue tit first egg date (FED) in relation to latitude. Points represent single 

nest records, from the same sites in different years, with the size and colour of the point being indicative of 

the number of data points at that position. The prediction line (red) is generated from the general linear 

mixed model holding temperature and year at their mean value. The shaded area surrounding the line 

represents the 95% credible intervals.  
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Figure 4.6: Best Linear Unbiased Predictors (BLUPs) for each tree species, calculated using their posterior 

distributions, with the median BLUP from all stored iterations and 95% credible intervals (CI). BLUPs 

represent the effect of habitat on the response variable (either first egg date, or hatching date), on top of 

temperature and latitudinal effects. Credible intervals that cross zero do not depart from the main effect. 

For example, on average, first egg date when ash is present at a site is 1.8 days earlier than predicted given 

the temperature and latitude effects. However, as the 95% CIs cross zero, there is no significant effect of ash 

on first egg date. 

4.4.2 Hatching Date 

Hatching date and FED were highly correlated (Pearson’s correlation coefficient = 0.9). Hatching 

date exhibited a significant temporal trend during the period of study, with an advancement of 

0.2 days per year, which equates to a 7 day advancement over the period of this study (1980 – 

2015; Table 4.3). The advancement in hatching date is less than the advancement observed in 

FED. 

Blue tit hatching date was negatively related to temperature (Figure 4.7, Table 4.4) with blue tits 

hatching 4.1 days earlier for each degree Celsius increase in mean spring temperature at a site 

level i.e. comparing between sites. Temperature within a site did not predict hatching date ( Table 

4.4). Hatching date was positively related to latitude, consistent with the relationship between 

latitude and FED (Figure 4.8, Table 4.4), and was delayed by 1.8 days for each degree increase in 

latitude.  



90 

 

There was no effect of any individual tree species on blue tit hatching date (Figure 4.6). However, 

if a site was to comprise of a single species the advance or delay to hatching date is unlikely to be 

greater than 13.7 days, interpreted from the upper variance limit of habitat (Table 4.5). 

  

 

Figure 4.7: Model prediction for the change in blue tit hatching date with mean spring temperature (day 75 

– 128, red line) between sites in across 35 years. Underlying point size and colour represent the number of 

bird records at that temperature and hatch date. The prediction line (red) is from the general linear mixed 

model, with all other variables held at their mean value, with the 95% credible intervals shown by the 

shaded grey area. 
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Figure 4.8: Model predictions for change in blue tit hatching in relation to latitude (red line). Points 

represent single nest records, with colour and size indicating how many records are at this position. The 

prediction line (red) is generated from the general linear mixed model holding all other variables at their 

mean values. Ninety five percent credible intervals are denoted by the shaded area.  
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Table 4.4: Model estimates for the fixed effects, from the Bayesian general linear mixed models, where 

either first egg date (FED) or hatching date was the response variable being investigated.  Rows in bold 

denote significant effects. 

 

Posterior mean 95% credible interval 
Effective sample 

size 
pMCMC 

FED Hatch date FED 
Hatch 

date 
FED 

Hatch 

date 
FED 

Hatch 

date 

Intercept 

113.63  

 

137.91 

109.66-

117.11 

 

 

134.05-

140.90 

1260  

 

1260 

<0.001  

 

<0.001 

Between site 

mean 

temperature 

(oC) 

-3.44  

 

-4.09 

-4.35- 

-2.32 

 

 

-5.06- 

 -3.21 

1260  

 

1260 

<0.001  

 

<0.001 

Within site 

temperature 

(oC) 

-0.31  

 

-0.25 

-4.19-2.28  

 

-1.73-1.50 

1260  

 

1260 

0.62  

 

0.57 

Latitude 
1.58  

1.78 

0.63-2.50  

0.83-2.71 

1376  

1260 

<0.001  

<0.001 

Year 

-1.19  

 

-0.33 

-2.32- 

 -0.13 

 

 

-0.93-0.22 

1260  

 

1260 

0.03  

 

0.25 
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Table 4.5: Model estimates for the random effects from the Bayesian general linear mixed models, where 

either first egg date (FED) or hatching date was the response variable being investigated. Rows in bold 

denote significant effects. 

Group Type 

Posterior mean 

variance 
95% credible interval 

Effective sample 

size 

FED 
Hatch 

date 
FED 

Hatch 

date 
FED 

Hatch 

date 

Year:Site Intercept 
5.51  

4.79 

4.27-6.75  

3.49-6.01 

1260  

1533 

Year Intercept 

10.58  

 

6.85 

5.36-18  

 

3.29-

11.59 

1091  

 

1260 

Site 

Intercept 

7.32  

 

6.49 

3.12-11.74  

 

3.14 – 

10.63 

1160  

 

1260 

Slope 

17.77  

 

4.64 

1.4 x 10-5-

48.43 

 

 

3.7 x 10-6 

– 11.71 

1260  

 

1260 

Habitat Intercept 

13.46  

 

12.73 

1.4 x 10-5 – 

60.5 

 

 

2.2 x 10-5 

– 49.1 

999  

 

1066 

Residual  

36.5  

 

25.89 

35.55-

37.61 

 

 

24.81-

26.85 

1365  

 

1260 
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4.5 Discussion 

The aim of this study was to investigate the effect of habitat, in addition to temperature and 

latitude, on breeding phenology of blue tits in the UK. To my knowledge, this is the first study to 

investigate the effect of tree species composition on phenology at such a wide scale. Previous 

research has investigated the impact on blue tit phenology of single tree species, within single 

populations, or has contrasted phenology between two habitat types (e.g. Blondel et al., 1993).  

Overall, there was no evidence for differences in blue tit phenology, either in terms of FED or 

hatching date, in relation to the proportion of any single tree species present (Figure 4.6, Table 

4.5), after controlling for temperature and latitude. However, it should be noted that information 

about laying gaps and any variation in length of incubation, which ultimately delays or advances 

hatching dates, were not included in these analyses due to not being available in the dataset.  FED 

and hatching date were also highly, but not perfectly, correlated (Pearson’s corre lation coefficient 

= 0.9). This suggests that both the phenology analyses are similar in this dataset, and it is not 

surprising that variables that influenced FED also influenced hatching date. However, it is still 

important to consider both FED and hatching date when investigating changes in phenology, as an 

opportunity to adjust phenology still remains after egg laying (Tomás, 2015), so these two 

measures of phenology may not always be highly correlated in every dataset. 

I hypothesised phenology would be earlier when large proportions of early leafing species, such as 

sycamore or birch were present, and later when large proportions of later leafing species were 

present, such as ash and/or oak. This was expected as it has been shown that caterpillars emerge 

around the time of bud-burst, as younger leaves are more nutritious and contain less tannin than 

more mature leaves (Feeny, 1970). Therefore, peak food availability for blue tits is likely to be just 

after bud burst, and birds will need to time peak nestling demand to coincide with peak food 

availability. Winter moth, blue tits preferred prey item, are polyphagous and, therefore, any of 

the tree species considered in this study could act as a cue for birds to time reproduction to, as 

well as these species hosting a number of other invertebrate species (Kennedy and Southwood, 

1984).  

There are a number of possible reasons as to why no relationship between habitat and blue tit 

phenology was found. The first is that blue tits do not use local habitat as an additional cue to fine 

tune their breeding. An experimental study, in which leafing branches were presented to great 

tits earlier than usual, found that the presentation of early leafing branches did not advance 

breeding phenology (Schaper et al., 2011). Nor do birds consume buds or leaf scales regularly, or 

in high enough quantities, to obtain chemical signals from the trees (Bourgault et al., 2006). It 

may be that the birds are constrained by their physiology, and are unable to process or interpret 
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habitat cues. My findings, which are the first extensive examination of the potential role of 

habitat in modifying phenology, substantiate the experimental work that suggested habitat plays 

an insignificant role in breeding phenology of great tits (Schaper et al., 2011). Day length has been 

shown to be the proximal cue used to initiate breeding, starting gonadal growth, and temperature 

alters the rate of gonadal growth (Visser and Lambrechts, 1999). My results highlight that with 

warming spring temperatures blue tits are breeding earlier (Figure 4.4, Figure 4.7, Table 4.4). 

However, even after accounting for temperature, FED and hatching date are later in the north (at 

a higher latitude; Figure 4.8, Table 4.4) than in the south of the UK. If physiology is constraining 

FED phenology preventing birds from processing habitat cues, a difference in the response of 

hatching date to habitat would be expected. Hatching date is less constrained by physiology as 

birds can be flexible in incubation strategies to advance, or delay, hatching to ensure peak 

nestling demand coincided with peak prey availability (Vedder, 2012). However, hatching date 

was not found to vary with habitat (Table 4.5). 

A second potential explanation, for the lack of effect of individual tree species on phenology, 

could be due to habitat composition being relatively homogeneous across the 34 sites ( Figure 

4.3), resulting in small individual species effects that are difficult to detect. Although I tried to 

maximise the variation across the study sites, it is possible nest recorders preferentially chose to 

place nest boxes in particular habitats. As many of these sites were established to monitor pied 

flycatcher, which preferentially nest in oak dominated woodland (Lundberg and Alatalo, 2010), 

this could have inadvertently reduced habitat variation between sites. For example, a transect in 

Scotland, established to monitor blue tit phenology, randomly selected 40 woodland sites from 

the available woodland habitat, and these sites exhibited greater between site habitat variation 

than those in this study (Shutt et al., 2018). This suggests nest recorder bias in nest box locations 

could be an issue when investigating the effects of habitat with this dataset. Many of the study 

sites have a diverse tree community, which could result in cues from single tree species being 

diluted and not strong enough to tease apart from the overall effect of habitat. The spatial scale 

that habitat was recorded (at a site level) may also have been too broad to detect fine scale 

effects, with fine scale studies reporting that environmental variables sampled at between 25-75 

m of the nest showed the strongest associations with FED (Wilkin et al., 2007).  

Finally, in mixed deciduous, non-oak dominated, habitats; there may not be substantial enough 

caterpillar biomass or no difference in peak timing, as inferred from frass fall (Chapter 2), to 

warrant close cueing of individual tree species. However, resource peaks have been observed on 

non-oak tree species (Shutt, 2017), suggesting it is still possible that individual tree species could 

be likely cues. Although, caterpillars are more likely to be present, and in higher numbers, on oak 

trees (Kennedy and Southwood, 1984; Shutt, 2017). Blue tits have a varied diet (Cowie and 
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Hinsley, 1988; García-Navas and Sanz, 2011; Serrano-Davies and Sanz, 2017), and although 

nestlings fed a higher proportion of caterpillars are in better condition at fledging (Wilkin et al., 

2009), this fitness benefit may come at a cost to the parent in increased energy expenditure 

during foraging when oak is not abundant. In non-oak dominated woodlands it may be more 

beneficial to feed nestlings on a larger quantity of easy to find sub-optimal prey, such as spiders 

and aphids, which may be in higher abundance but not subject to such strong peaks in availability 

as caterpillars. Therefore, there may be no reliable cue which the birds can use to predict future 

availability of sub-optimal invertebrate prey.  

There being no detectable effect of individual tree species on blue tit breeding phenology 

suggests blue tits are not fine tuning their breeding phenology in relation to cues from their 

surrounding habitat. The implications of this could be great, if resource peaks also differ in 

phenology between habitats. Mismatch between trophic levels can occur when trophic levels 

respond to climate change at different rates (Cushing, 1990; Durant et al., 2007). Generally, blue 

tits are advancing their FED more slowly than caterpillars (Burgess et al., 2018; Buse et al., 1999). 

The lack of association between breeding phenology and habitat composition, demonstrated 

here, suggests mismatch could become more of a problem in the future, as blue tits are 

responding to temperature but not cueing into habitat to maintain synchrony with their food 

resources. There is evidence blue tit populations in the UK are showing signs of mismatch, more 

so in warm springs (early years) than in cold springs (Burgess et al., 2018). This again reinforces 

my findings here that temperature is the proximate cue blue tits use to time their breeding.  

Here I have demonstrated the effects of temperature and habitat on both FED and hatching date. 

Both FED and hatching date are subject to similar cues, such that temperature and latitude, but 

not individual tree species, influenced breeding phenology. Both measures of phenology have 

been presented here as blue tits may be able to make more decisions about fine tuning hatching 

date rather than FED, with FED potentially being more constrained by physiology and nutrient 

availability (e.g. Smith and Smith, 2013). Therefore, when looking at the effects of habitat on 

phenology, hatching date may be more informative (Tomás, 2015), as this could be more finely 

tuned to synchronise with local prey availability through egg pauses and changes to incubation 

strategies.  

Previous research has investigated whether responses of blue tit FED to temperature, and in a 

sympatric species the great tit, is a plastic response. In general, the conclusion has been that such 

responses can be attributed to plasticity (Charmantier et al., 2008; Cresswell and Mccleery, 2003; 

Nussey et al., 2005; Porlier et al., 2012) as the response is unlikely to have been able to become 

genetically fixed in such a short period of time (Charmantier et al., 2008). Therefore, the earlier 

breeding due to warmer spring temperatures observed in this study is also likely result from 
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phenotypic plasticity, despite within site temperature not predicting phenology (Table 4.4). This 

lack of association is likely to be due to the scale that temperature data were available (5 x 5 km 

resolution), and the spatial accuracy of nest records. Nest recorders often used the same four-

figure grid references for the majority of their site, for ease during data entry, despite in reality 

the site covering multiple grid references. Both of the factors combined, resulted in little across 

site variation in temperature, which is not likely to be representative of reality. Although, there is 

still variation in both FED and hatching date between sites, even after controlling for temperature 

and latitude that is not explained by habitat (Table 4.5). This could be due to other characteristics 

of these sites, which haven’t been accounted for in these models. One such characteristic could 

be the underlying geology of the site, which may influence, for example, calcium and other 

nutrient availability (Briggs and Mainwaring, 2017), constraining the female’s ability to commence 

egg laying or to sustain her through incubation.  

In conclusion, the results show that both temperature and latitude are predictors of blue tit 

breeding phenology across the UK, and temperature is likely to be the proximal cue for blue tit 

breeding phenology. However, I found no evidence to support the hypothesis that blue tit 

breeding phenology differs in relation to tree species composition, suggesting blue tits are not 

using habitat cues to fine tune their breeding phenology, leaving them at increased risk of trophic 

mismatch in light of warming springs.  
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4.6 Supplementary Material  

4.6.1 Validating habitat sampling method 

Table S.1 Variance in total tree density estimates from each methodology at each site 

Site 
25 random points; 500 

iterations (trees/ha) 

30 random points; 500 

iterations 
(trees/ha) 

35 random points; 500 

iterations 
(trees/ha) 

Highnam 8935.4 6426.1 4189.5 
Minsmere 1137.9 887.4 726.9 

Nagshead 3143.8 2659.6 2306.1 

 

4.6.2 Alternative model structures 

Here, I present results from alternative model structures (Table S.2 and Table S.3) than those 

presented in the main results section (Table 4.4). These alternative model structures were used to 

ensure converting habitat variables to proportions did not mask any habitat effects. Converting to 

proportions did not take into account that overall tree density varied between sites ( Figure S.1; 

min: 6.7, mean 462.03, max: 1075.3 trees per hectare), which may impact how birds use the 

available resources. For example, if two sites have different oak densities (e.g. 1 vs. 10 trees per 

hectare) this could become masked when converting to proportions as both sites may have 25% 

oak, depending on overall tree density. A site with a higher tree density of a particular species 

may provide a stronger cue to the bird, hence why it is necessary to ensure the results are 

consistent when investigated with oak density instead. It was decided a priori to only include oak 

density as this species is believed to provide blue tits with most of their food resources during the 

breeding season (Gibb and Betts, 1963; Peck, 1989) and their optimal habitat  (Perrins, 1979). In 

addition to this, oak is one of the most abundant species in UK woodlands (Forestry Commission, 

2013), therefore being a species blue tits are likely to use as a cue.  

The results do not differ from the models presented in the main text, with between sites mean 

spring temperature, latitude and year being significant predictors of blue tit breeding phenology 

(Table S.2). Blue tit breeding phenology (either FED or hatching date) is not predicted by within 

site temperature or oak density. As the results do not differ from those presented in the main text 

(Table 4.4 and Table 4.5) it suggests that, even though some information is lost when species 

density is converted into a proportion of all trees present, this does not impact the results and 

interpretation. 
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Figure S.1: Densities of each tree species category used in the main analyses at each of the 34 sites included 

in this study. The total height of each bar represents the overall tree density at each site. 
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Table S.2: Model estimates, from the Bayesian general linear mixed models, for the fixed effects from 

models including Quercus density instead of proportions of the seven most important genera for both first 

egg date (FED) and hatching date. Rows in bold denote significant effects. 

 

Posterior mean 95% credible interval 
Effective sample 

size 
pMCMC 

FED Hatch date FED 
Hatch 
date 

FED 
Hatch 
date 

FED 
Hatch 
date 

Intercept 

114.06  

 

138.26 

112.36-

115.69 

 

 

136.68-

139.84 

970  

 

1261.7 

<0.001  

 

<0.001 

Between site 
mean 

temperature 
(oC) 

-3.48  

 

-4.07 

-4.62- 

-2.40 

 

 

-5.12- 

-3.14 

970  

 

1000 

<0.001  

 

<0.001 

Within site 
temperature 

(oC) 

-0.31  

 

-0.17 

-3.38-1.92  

 

-12.26-

1.00 

970  

 

1097 

0.62  

 

0.61 

Latitude 

1.50  

 

1.74 

0.51-2.44  

 

0.84-2.72 

859  

 

899 

0.008  

 

0.002 

Oak density 

0.17  

 

0.34 

-0.61-0.93  

 

-0.59-1.17 

970  

 

1000 

0.65  

 

0.43 

Year 

-1.09  

 

-0.34 

-2.09- 

-0.11 

 

 

-0.94- 

-0.25 

1110  

 

1000 

0.03  

 

0.25 
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Table S.3: Model estimates for the random effects from both first egg date (FED) and hatching models, using 

the alternative structure where Quercus density is included as a fixed effect. Rows in bold denote significant 

effects. 

Group  

Posterior mean 95% credible interval 
Effective 

sample size 

FED 
Hatch 

date 
FED 

Hatch  

date 
FED 

Hatch 

date 

Year:Site Intercept 
5.53  

4.76 

4.40-6.79  

3.60-6.10 

970  

1000 

Year Intercept 

10.39  

 

6.93 

5.42-

16.69 

 

 

3.30-11.28 

849  

 

778 

Site 

Intercept 

7.84  

 

6.70 

4.09-

12.93 

 

 

3.20-10.93 

825  

 

833 

Slope 

14.17  

 

4.85 

4.3 x 10-

7-40.62 

 

 

1.62 x 10-7-

13.72 

970  

 

739 

Residual  

36.49  

 

25.91 

35.46-

37.57 

 

 

24.93-

26.98 

1177  

 

1000 

 

4.6.3 Checking for spatial autocorrelation  

Models were checked for spatial autocorrelation by computing Moran’s I on the residuals (using 

‘Moran.I’ from ‘ape’ R package (Paradis et al., 2004)) from a model with the same structure 

(minus the multiple membership random effects term) implemented using the R package ‘lme4’ 

(Bates et al., 2015), due to being unable to extract residuals from models fitted using 

MCMCglmm. There was evidence of spatial autocorrelation in the residuals of the first egg date 

model (First egg date: Observed = 0.005, Expected = -9.61 x 10-5, p = 0.02), suggesting, that 

despite the random effect structure implemented, there is still remaining spatial patterning that I 

have not accounted for. There was no evidence residual spatial autocorrelation in the hatching 

date model (Moran’s I: Hatching date; Observed = 0.008, Expected = -0.00017, p = 0.06). 
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Chapter 5: The impact of habitat and climate on blue tit productivity in the 
United Kingdom 

5.1 Abstract 

Understanding the drivers of reproductive success is vital to further our knowledge of population 

processes, especially in light of climate and habitat change and observed population declines in 

many avian species. In the UK, increasing spring temperatures have led to changes in blue tit 

(Cyanistes caeruleus) breeding phenology. Such changes in breeding phenology can lead to 

phenological mismatch between resources and users, and therefore impact upon productivity. 

However, to date, the influences of habitat in non-oak dominated woodlands on productivity is 

poorly understood. Understanding the drivers of reproductive success is important when 

predicting the possible impacts of environmental change. 

Here, I quantify the effect of habitat (canopy tree species), spring temperature and latitude on 

blue tit clutch size and the risk of nest failure, using breeding data spanning 1979-2015 from 

across the UK. Increasing spring temperature and later clutch initiation both reduced blue tit 

clutch size, supporting studies on other species. Clutch size was positively related to oak density, 

but no other tree species investigated. Increases in temperature reduced the risk of failure, at 

both egg and young stage, but clutches initiated later in the breeding season experienced higher 

failure risk than those initiated earlier. There was a latitudinal effect on nest success, with more 

northerly nests being less likely to fail than their southern counterparts. Despite increased clutch 

sizes at high oak densities, surprisingly, no effect of habitat composition on the risk of nest failure 

could be detected, suggesting failure may not be limited by food availability, but instead driven by 

climatic conditions and nesting phenology. When envisaging the effect of climate change on this 

system, the effects of mismatch also need to be considered, which may not be uniform across 

habitat. More information on resource usage is required to establish the full impact of mismatch  

in this system. The impacts of these results upon population size will depend on whether 

recruitment remains stable under climate change, and should be a priority for future research. 

  



103 

 

5.2 Introduction 

Understanding the drivers of reproductive success is crucial to track population level responses to 

environmental change, as well as to gain a better understanding of what influences population 

processes (McLean et al., 2016). Reproductive success is reliant upon resource availability 

throughout the reproductive cycle, as well as being proximally limited by environmental factors 

such as climatic conditions, habitat and predation. The importance of each of these factors is 

likely to differ during each reproductive stage, and as such each nesting stage needs to be 

considered independently before looking for overarching drivers of reproductive succe ss.  

The model system of deciduous tree-herbivorous caterpillar-insectivorous bird, is commonly used 

when investigating phenological change in temperate woodlands (Both et al., 2009; Burgess et al., 

2018), with most studies investigating the effects of climate on blue and great tits ( Cyanistes 

caeruleus and Parus major, respectively) phenology. Most research into the effects of climate 

change are conducted at single sites, which are typically oak dominated (Both et al., 2009; 

Charmantier et al., 2008; Hinks et al., 2015), making results difficult to extrapolate to populations 

in non-oak dominated woodlands. This is despite tits being habitat generalists and found across a 

variety of habitat and woodland types (Robinson, 2018; Stenning, 2018).  

The effect of habitat on tit productivity has previously focussed on comparisons between broad 

habitat types, such as deciduous vs. evergreen woodland (Atiénzar et al., 2010; Van Balen, 2002; 

Blondel et al., 1993; Gibb and Betts, 1963; Lambrechts et al., 1997), or urban vs woodland 

(Glądalski et al., 2017). Typically, birds nesting in deciduous areas have higher productivity (clutch 

size and number of fledglings) than birds nesting in evergreen or urban areas (Van Balen, 2002; 

Blondel et al., 1993; Glądalski et al., 2017). Smaller scale variation in habitat, such as at a territory 

scale, has been shown to influence productivity both within single sites (Amininasab et al., 2016; 

Perrins, 1979; Wilkin et al., 2009) and between sites (Marciniak and Nadolski, 2007; Tremblay et 

al., 2003). It is widely accepted that oak (Quercus spp.) is the optimal breeding habitat for nesting 

blue and great tits (Perrins, 1979), and rarely are the effects of other tree species considered 

(except Shutt et al., 2018). Shutt et al. (2018) demonstrated non-oak tree species, such as birch 

(Betula spp.), oak and sycamore (Acer pseudoplatanus) positively correlated with fledging success, 

but did not influence clutch size. Blue and great tits tend to forage mostly in oak trees (Gibb, 

1954; Peck, 1989). However, blue tits also forage in a range of other species, only showing 

avoidance of beech (Fagus sylvatica), spruce (Norway and sitka spruce, Picea abies and Picea 

sitchensis, respectively) and western hemlock (Tsuga heterophylla), but these results are 

confounded by oak being the most abundant tree species at these study sites (Gibb, 1954; Peck, 

1989). In the UK, oaks support a greater richness of Lepidoptera, and other invertebrate species, 

than any other native tree species (Kennedy and Southwood, 1984). This may explain birds’ 
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foraging preference for oak, when available, and the focus on oak in insectivorous bird studies. 

Woodland maturity also influences productivity with higher fledging success (Arriero et al., 2010), 

but lower hatching success (Atiénzar et al., 2010), in mature woodland territories.  

Climatic conditions also influence productivity, with warmer temperatures during May reducing 

the number of blue tit fledglings, in a single site study (Potti, 2009), but not affecting clutch size 

(Dolenec, 2007; Potti, 2009). If nestlings are exposed to extreme warm temperature, heat stress 

can lead to a reduction in appetite and a consequent reduction in growth rate and muscle mass, 

as shown in other species (Belda et al., 1995; Geraert et al., 1996). These findings are 

corroborated in blue tits, tested at a single UK site, with warmer temperatures leading to lower 

mass gain in nestlings than cooler temperatures (Mainwaring and Hartley, 2016). In recent 

decades, warming springs have led to an advancement in breeding phenology of many UK bird 

species (Crick et al., 1997) and concerns of nestling demand mismatching with peak resource 

availability (Burgess et al., 2018). With increased mismatch between demand and resources, both 

nestling condition and adult survival decreases due to additional foraging costs (Thomas et al., 

2001). Decreased adult survival can result in a reduction in the number of chicks successfu lly 

fledging, and can even ultimately cause complete brood failure, with recent findings at one site 

attributing nearly all complete brood failures to the predation of one parent (Santema and 

Kempenaers, 2018).  

Precipitation reduces the adults’ ability to find sufficient food to sustain chicks. Long periods of 

intense rainfall have been shown to reduce the quality of nestlings through reduced growth rates 

(Kelleri and Van Noordwijk, 1994). However, one study from the UK found that increased 

precipitation actually increased the mass gain of nestlings, (Mainwaring and Hartley, 2016) and 

hypothesised this could be due to caterpillars increasing in weight due to being porous and having 

a higher water content during periods of rainfall (Speight, 1979).  

In addition to climate and environmental effects, female age and breeding phenology influences 

clutch size with clutch size peaking around a female’s third year, and older females producing 

smaller clutches (Amininasab et al., 2017). The timing of nest initiation during the breeding season 

also impacts clutch size, with birds initiating nests later in the breeding season typically laying 

smaller clutches than earlier laying conspecifics (Crick et al., 1993). This is believed to be in an 

effort to correctly time breeding with seasonal resource peaks in prey availability, with later laying 

birds trying to speed up their reproductive cycle to ensure resource peaks are not missed, 

maximising their chances of successfully fledging young (Perrins and McCleery, 1989). 
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In this study I aim to use a long-term dataset of nesting attempts made by blue tits, across a 

network of 34 sites in the UK, to investigate whether environmental factors, such as temperature 

and precipitation, and/or habitat (a proxy for food availability) impact upon blue tit productivity.  

Here, I define productivity as the following: 

1. Clutch size: The number of eggs produced in a breeding attempt and therefore the 

potential maximum number of offspring that could be produced in a given nesting 

attempt.   

2. Risk of failure: the risk of the nest failing during two distinct nesting stages: (1) egg stage: 

from the date of the first egg being laid to that when the first chick hatches; and (2) young 

stage: from first hatching until fledging (when chicks leave the nest).  I also consider the 

risk of failure over the entire nesting period. Here, failure is defined as either no eggs 

hatching or chicks fledging, dependent on the nesting stage being investigated.  

Firstly, I hypothesise that blue tits nesting in areas with more oak trees will have larger clutch 

sizes, but clutch size will have a negative relationship with temperature. Secondly, I hypothesise 

that the risk of failure during egg and young stage is likely to be higher in non-oak dominated 

woodlands than oak dominated woodlands, and in cooler and/or wetter springs.  
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5.3 Methods 

5.3.1 Nest Recording 

All blue tit breeding data were collected by volunteer nest recorders and are collated annually by 

the British Trust for Ornithology (BTO) Nest Record Scheme (NRS). Each nest record included the 

following data: species, year, grid reference, altitude, and for each visit: the date, number of 

eggs/young and stage of development of nest/eggs, and finally the outcome of the nesting 

attempt (if known). Clutch size is taken as the maximum number of eggs recorded during a 

nesting attempt and first egg date (FED)/hatching date is the midpoint between minimum and 

maximum date estimates. Minimum and maximum FED is estimated where precise records of FED 

are not available (due to visiting after first egg has been laid) and FED is back calculated on the 

assumption of one egg being laid per day. Hatching date estimates (minimum and maximum 

hatching date) are back calculated based on the developmental stage of chicks when first 

observed. In total, 73,612 digitised blue tit nest records, for the period 1979 – 2015, were 

available in the NRS database. 

5.3.2 Site selection 

Identical site selection criteria were used as in Chapter 4. Sites were selected on the basis of 

having long term datasets available and for a full description of the criteria for inclusion in the 

study see Chapter 4. This resulted in the same 34 sites, from across the UK, being included in the 

study (Figure 5.1). 
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Figure 5.1: Locations of all sites included in this study, denoted by filled black circles, with names of sites, as 

labels. These names are used in reference to specific sites, when discussed in the results and discussion . 
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5.3.3 Habitat 

Habitat was recorded at all sites in the same way as described in Chapter 4. In short, a distance 

sampling technique was used to estimate individual tree species densities at each site. Species 

were categorised based upon groupings used in the National Forestry Inventory (Forestry 

Commission, 2013), where closely related species are combined as an aggregate taxa (Table 4.1). 

These aggregations were used as one of the species within the grouping often replaced each 

other at sites, and the species in each grouping can host a similar invertebrate community.  

Species densities were converted to the percentage of total species density at a given site for 

analyses that required habitat data to sum to unity.  

5.3.4 Climatic data  

Interpolated daily mean temperature and daily total precipitation data from across the UK, at a 

resolution of 5 x 5 km (Perry et al., 2009; Perry and Hollis, 2005; 

https://www.metoffice.gov.uk/climatechange/science/monitoring/ukc), for the period spanning 

the bird data were used to relate clutch size and risk of nest failure to climate. When investigating 

clutch size mean daily temperature was calculated for each record over March and April (mean 

March/April temperature). This period was used to relate clutch size and climate as the mean first 

egg date for this dataset was 28th April (min: 29th March, max: 14th June), therefore this time 

period is likely to influence the female’s condition and therefore inform clutch size. A within 

subject centring approach was undertaken (following van de Pol and Wright, 2009), with a mean 

site temperature for each year and a deviation from the site mean for each record being used as 

temperature variables, allowing within and between site effects to be investigated. For egg stage 

analyses a bespoke time period was used for each record, with total temperature and 

precipitation sums calculated for each record from the mid first egg date estimate, until the end 

of the egg stage (calculated as mid first egg date + clutch size + mean incubation time (14 days, 

(Robinson, 2018))). In analyses investigating young stage the time period used was from hatching 

until fledging (hatching date (mid-point of minimum and maximum hatching date until 20 days 

after this (mean time to fledging (Robinson, 2018)). In whole nesting stage analyses, both of the 

time periods previously described were summed and used (first egg date until 20 days after 

hatching date). 

5.3.5 Quality control of datasets 

Due to nesting data being collected by citizen scientists, with no strict recording protocol 

regarding visit frequency, this can lead to uncertainty in some FED and hatching estimates, 
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resulting in minimum and maximum estimates being created based on information provided. 

Therefore, further quality control was undertaken. Described below for each dataset used.  

5.3.5.1 Clutch size 

Records were removed when maximum clutch size was less than 2, or greater than 16, and if the 

difference between minimum and maximum FED was greater than 10 days. Records where the 

maximum nest contents recorded by the observer was greater than the recorde d maximum clutch 

size were also removed, as this suggested the clutch was incomplete at the time of the maximum 

egg count. Due to being unable to ascertain whether small clutches were full clutches or 

potentially incomplete clutches, all clutches of two or above were used in analyses. There were 

8,290 records for the selected sites spanning 1979-2015. 

5.3.5.2 Risk of failure 

The BTO NRS uses an approach described by Mayfield (1961) to calculate the number of exposure 

days during each nesting stage (egg stage, nestling stage and both combined to give overall 

number of exposure days for the entire nesting period). An exposure day is defined as a day 

where the nest was observed to be active (i.e. egg laying has commenced for egg stage, chicks 

have hatched/are hatching for nestling stage) and therefore at risk of failure. Exposure day one 

refers to the first day a nest was observed during the corresponding nesting period, and does not 

necessarily indicate the first day an egg was laid, for example, as the nest may have been found 

part way through egg laying. This needs to be taken into account when interpreting the results, 

especially of the egg stage analyses, as many nests will have been found during egg laying and are 

likely to have an artificially short number of exposure days for this period. 

Records were removed if the maximum exposure days recorded during the nesting period under 

investigation (egg, young or whole nest stage) was 0 (indicating the nest had not been monitored 

during this stage), and/or the range of exposure days (calculated as the difference between the 

minimum and maximum exposure days) was greater than 10. The midpoint of the minimum and 

maximum exposure days was used in all analyses as the number of exposure days.  

A binary coding system was used to denote nest success (0) and nest failure (1), with a nest being 

classified as a success if it reached the end of the stage being monitored, even if it then 

subsequently failed during a later stage. These data sets spanned the time period 1980 – 2015. 

Records where the outcome of the nest was unknown were removed. These quality control steps 

left 5,887 records in the egg failure data set (262 that are egg failures), 4,723 records in the young 

failure data set (644 that are nestling failures) and 3,538 in the overall nest failure data set (781 

that are nest failures).   
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5.3.6 Statistical Analyses  

5.3.6.1 Clutch size  

Clutch size in relation to climatic, phenological and environmental variables was analysed through 

constructing a Gaussian Bayesian mixed effects model, in ‘MCMCglmm’ (Hadfield, 2010) using 

‘R’ v.3.5.1 (R Core Team, 2017), with clutch size as the response variable. The full model structure 

included temperature, FED and latitude as fixed effects with year, site and habitat as  cross-

classified random (intercept) effects, and the temperature slope was allowed to vary between 

sites. The full model structure, described in Table 5.1, was created a priori based upon biological 

reasoning, and no further model selection was undertaken. Flat, parameter expanded priors were 

used for all variance terms in the model, and the default inverse-Wishart distribution was used for 

the residual term (Hadfield, 2010). Habitat variables were included as a multiple membership 

random effect. For a full description of how the habitat multiple membership random effect was 

set up, see Chapter 4. In brief, a presence/absence matrix was created and weighted by the 

proportion of the total tree density each species represented. The species categories included 

were ash, beech, birch, oak, sycamore and willow, and were included due to being present across 

many sites, and also likely to be key foraging resources for blue tits during the breeding seas on as 

they are host to many invertebrate species (Kennedy and Southwood, 1984). An ‘other’ species 

category was also included, which represented every species present at the site not included in 

any of the aforementioned categories, due to the multiple membership weightings being required 

to sum to unity. To ensure converting habitat variables to percentage of each species did not 

mask any habitat effects, this model was re-run with oak density as a fixed effect instead of 

including the multiple membership habitat variable, as a priori oak was thought to be blue tits 

optimal habitat (Perrins, 1979). The model structures are described in Table 5.1. In all analyses, 

fixed effects were mean centred (mean is subtracted from each value) and scaled (after centring 

each value is divided by the standard deviation), prior to inclusion in the model.  Model 

convergence was assessed visually through trace and posterior density plots and autocorrelation 

between successive iterations was not allowed to exceed 0.1, whilst keeping effective sample 

sizes above ~1000 (Hadfield, 2017). These criteria determined the number of iterations and 

thinning interval needed (Table 5.1).  

Model residuals were checked for spatial autocorrelation, using the model with oak density, fitted 

using ‘lme4’ due to being unable to extract residuals from ‘MCMCglmm’ (Bates et al., 2015; 

Hadfield, 2017). There was no evidence for residual spatial autocorrelation (Moran’s I: observed = 

0.0005, expected = -0.0001, sd = 0.003, p = 0.83), suggesting spatial dependencies have been 

adequately accounted for in the model structure. 
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Table 5.1: Model structure with the response, fixed and random effect variables used in the Bayesian mixed 

effect models investigating differences in blue tit clutch size.  
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5.3.6.2 Risk of failure  

The risk of failure (at each stage: egg, nestling and overall) was investigated using mixed effects 

cox regression (survival) models, implemented through the ‘coxme’ package in R 3.5.1 (R Core 

Team, 2017; Therneau, 2018). The response variable is a survival matrix, with the number of 

exposure days (i.e. time monitored until failure) along with a binomial code for whether an event 

(failure) was observed. If the nest survived to the next nesting stage, or survived all of the stages, 

these records were denoted by a 0 and represent right-censored failure. The model structures 

used in each stage specific risk of failure model are described in Table 5.2. Cox’s regression uses 

cox proportional hazard function, and was selected on the basis that there is no assumption as to 

the distribution of survival times. One drawback of this approach is the assumption that the 

effects of the covariates are constant with time. However, as exposure days (number of days the 

nest has been monitored during the defined stage) is the only time metric available, it is 

reasonable to assume that the effect of these covariates are constant for each day  monitored, as 

this does not necessarily equate to nest/chick age.  
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Table 5.2:  Descriptions of model structures used to investigate the effects of environmental covariates on 

the risk of nest failure at three stages during blue tit breeding attempts. In all models the response variable 

was a survival matrix, with survival as a binomial outcome (1, failure, 0, success) and the number of 

exposure days (days the nest was monitored) for each record. 
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5.4 Results 

5.4.1 Clutch size 

The median clutch size, over the 36 year period investigated (1979 – 2015), was 9 eggs (SD: ± 2.2 

eggs).  

There was a negative relationship between clutch size and site level temperature, and for every 

degree Celsius increase in site level mean March/April temperature clutch size decreased by 0.65 

eggs (95% credible interval (CI): -0.83 to -0.50; Table 5.3, Figure 5.2). Temperature within a site 

did not, however, affect clutch size (Table 5.3). After controlling for temperature, clutch size 

decreased when breeding commenced later in the year, with a decrease of 0.14 eggs (95% CI: -

0.14 to -0.13) for each increase in calendar day (Table 5.3, Figure 5.3), between 29th March and 

14th June. However, there was no latitudinal effect on clutch size (Table 5.3).  

Clutch size did not vary significantly with habitat (effect of ash, beech, birch, oak, sycamore, 

willow and other combined), after accounting for the fixed effects (temperature, latitude and first 

egg date; Table 5.4), as the credible interval effectively crossed zero, despite having the largest 

posterior mean. No individual species alone exerted significant effects, although oak was the only 

species to have a median best linear unbiased predictor which departed from zero, however the 

effect was not significant as the credible intervals crossed zero (Figure 5.4). Clutch size varied 

significantly with year and site, with mean clutch sizes between 8 and 10 in 95% of years and in 

95% of sites (Table 5.4).  

 

Table 5.3: Model estimates, for the fixed effects, from the Gaussian Bayesian general linear mixed effects 
model, investigating the effects of climate, habitat and phenology on clutch size. Rows in bold denote 

significant predictors of blue tit clutch size. All continuous predictors were scaled, with their scaling factors 

denoted below the table, which needs to be considered when interpreting parameter estimates.  

 Posterior mean 
95% Credible 

Interval 
Effective Sample 

Size 
pMCMC 

Intercept 8.90 8.01 - 9.65 1050 <0.001 

Mean site Mar/Apr 

temperature (oC)  
-0.71 -0.91 – -0.55 1050 <0.001 

Temperature 
deviations from site 

mean (oC)  

0.005 -0.46 - 0.33 1050 0.83 

Latitude  0.04 -0.46 - 0.20 1050 0.66 

First egg date * -1.35 -1.40 – -1.29 1050 <0.001 

Scaling factors:   = 1.09,  = 0.04,  = 0.88, * = 9.88 
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Table 5.4: Parameter estimates for the random effects, from the Gaussian Bayesian linear mixed model, 
with clutch size as the response variable and ‘habitat’ referring to the percentage occurrence of ash, beech, 

birch, oak, willow and other within each site. Significant effects are marked in bold, and were considered 

significant if the credible interval did not cross zero.  

Group  Posterior Mean 95% Credible Interval 
Effective 

Sample Size 

Year:Site Intercept 0.17 0.11 – 0.24 1050 

Year Intercept 0.29 0.11 – 0.52 1050 

Site 
Intercept 0.23 0.1– 0.40 1050 

Slope 0.21 1.88 x 10-6– 0.53 1050 

Habitat Intercept 0.81 6.82 x 10-8 – 2.75 1050 

Residual  2.98 2.89 – 3.07 1244 

 

 

 

Figure 5.2: The relationship between site level mean March/April temperature and blue tit clutch size across 

the UK. The black line represents the fitted line from a Bayesian mixed effects model, controlling for the 

effects of latitude and first egg date, with the lighter shaded areas showing the 95% credible intervals. The 

points show the raw underlying data from which the model was fitted, with size and colour representative of 

the number of points at that position. 
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Figure 5.3: The relationship between clutch size and first egg date, after controlling for temperature and 

latitude. The solid black line depicts the fitted values from a Bayesian mixed effects model, with the shaded 

area representing the 95% credible interval. The underlying data are shown by the points, with the size and 

colour depicting how many records are at that position. 

 

 

Figure 5.4: The median best linear unbiased predictors from the multiple membership random effect from 
the Bayesian mixed effects model for each species category, depicted by a solid black circle. The error bars 

show the 95% credible intervals. This represents the change in clutch size, once the fixed effects have been 
accounted for, based on the presence of each species. Due to all the credible intervals crossing zero, none of 

the species categories included have any significant effect on clutch size. 
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Oak density, as opposed to percentage of total tree density that comprised oak, predicted clutch 

size with larger clutch sizes at higher oak densities (Table 5.5). All other effects remained, with 

similar effect sizes to when oak percentage was used (Table 5.3, Table 5.4 and Table 5.5) 

Table 5.5: Model estimates, for the fixed effects, from a Gaussian Bayesian general linear mixed effects 
model, with clutch size as the response variable and including oak density. Rows in bold denote significant 
predictors of blue tit clutch size. All continuous predictors were scaled, with their scaling factors denoted 

below the table, which needs to be considered when interpreting parameter estimates.  

 Posterior mean 
95% Credible 

Interval 
Effective Sample 

Size 
pMCMC 

Intercept 8.96 8.67 - 9.26 1000 <0.001 

Mean site Mar/Apr 

temperature (oC)  
-0.75 -0.92 – -0.59 1000 <0.001 

Temperature 
deviations from site 

mean (oC)  

0.01 -0.41 - 0.42 1000 0.96 

Latitude  0.04 -0.13 - 0.21 1000 0.64 

First egg date * -1.43 -1.50 – -1.38 1140 <0.001 

Oak density   0.15 0.02 - 0.29 1000 0.03 

Scaling factors:    = 1.09,  = 0.04,  = 0.88, * = 9.88,   = 61.76 

 
Table 5.6: Estimates for the random effects, from the Gaussian Bayesian linear mixed model, with clutch size 

as the response variable and including oak density as a fixed effect. Significant effects are marked in bold, 

and were considered significant if the credible interval did not cross zero.  

Group  Posterior Mean 
95% Credible 

Interval 

Effective 

Sample Size 

Year:Site Intercept 0.17 0.11 – 0.24 1130 

Year Intercept 0.26 0.11 – 0.44 1192 

Site 
Intercept 0.53 0.12– 0.45 901 

Slope 0.12 1.35 x 10-6– 0.50 885 

Residual  3.32 3.23 - 3.41 1000 

 

5.4.2 Risk of failure 

5.4.2.1 Egg stage 

The risk of the nest failure during the egg stage (from first egg date until the end of incubation) 

decreased when temperature sums increased, and all other parameters were held constant ( Table 

5.7). For each 1°C increase in temperature sum the risk of a nest failing was 0.82 times lower, 

between 116 and 464°C. For example a nest laid where the temperature sum was 126°C, was 8.2 

times less likely to fail during the egg stage than a nest where the temperature sum was 116°C. 

The risk of failure increased when breeding commenced later in the breeding season (Table 5.7).  

For each calendar day increase in first egg date the risk of failure during the egg stage was  
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1.89 times higher, between 29th March and 14th June, equating to an 18.9 times higher risk of egg 

failure for a nest laid on the 7th April compared to a nest laid on 29th March. Neither the total 

amount of precipitation, nor the density of oak within the nesting area influenced the risk of the 

nest failing during the egg stage (Table 5.7). There was also a large amount of variation in the risk 

of failure between years and sites, with between sites showing the greatest variation in risk ( Table 

5.7; year, Figure 5.5; site, Figure 5.6). Treswell Wood was predicted to have the greatest risk of 

failure (3.53 times higher than the average site) and Warburtons and Wells Woods the lowest risk 

(0.6 times lower), during the egg stage, of all the sites included in this study ( Figure 5.6). 

Table 5.7: Egg stage survival coefficients describing the risk of failure with covariates investigated in the 
mixed effects cox proportional hazard regression. The hazard ratio represents the risk of egg failure due to 

the covariate under investigation and all others held constant. A hazard ratio of 1 represents no effect of the 
covariate, > 1 an increased risk of failure and < 1 a decreased risk of failure. Significant covariates are 

denoted in bold. 

Fixed effects 

Variable Coefficient ± SE Hazard ratio Z P value 

Temperature sum -0.19 ± 0.08 0.82 -2.63 0.009 

Precipitation sum -0.02 ± 0.08 0.98 -0.25 0.81 

Oak density 0.19 ± 0.12 1.21 1.68 0.09 

First egg date 0.64 ± 0.08 1.89 8.39 <0.001 

Latitude -0.01 ± 0.13 0.99 -0.11 0.91 

Random effects  

Group 
Standard 

deviation 
Variance 

 

 

 

 

Year 0.46 0.21 

Site 0.56 0.31 
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Figure 5.5: The predicted risk of failure during the egg stage for each year against the number of egg failures per record submitted (to correct for years where there are a large number of 
records). The horizontal solid black line represents the average risk of failure, therefore any point above the line has a higher than average risk of failure, and any below a lower than 

average risk of failure. To interpret the risk, a risk of 2 is a 2 times higher risk of failure than the average site and a risk of 0.8 is a 0.8 times lower risk of failure than the average site. Note, 

the y axis is plotted on a logarithmic scale to avoid over plotting. 
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Figure 5.6: The predicted risk of failure during the egg stage for each site against the number of egg failures per record submitted (to correct for sites with higher number o f nest boxes, or 
an increased submission rate and therefore a large number of records). The horizontal solid black line represents the average risk of failure, therefore any point above the line has a higher 

than average risk of failure, and any below a lower than average risk of failure. To interpret the risk, a risk of 2 is a 2 times higher risk of failure than the average site and a risk of 0.8 is a 

0.8 times lower risk of failure than the average site. Note the logarithmic scale on the y-axis, to aid interpretation and avoid over plotting. 
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5.4.2.2 Young stage 

The risk of a nest failing during the young stage decreased when the temperature sum increased 

(Table 5.8), with the risk of nest failure 0.80 times lower for each 1 °C increase in temperature 

sum during the chick rearing period, between 185 and 370°C. The risk of failure also decreased 

when precipitation sums increased, as well as with latitude (i.e. higher latitude equals more 

northerly, in the UK). Risk of failure during nestling stage decreased by 0.88 times and 0.62 times 

for each millimetre increases in precipitation sums (between 0.6 and 147 mm) and degree of 

latitude (between 50.7 and 54.5 degrees), respectively (Table 5.8). The risk of failure during the 

nestling stage increased when chicks hatched later, with nests being 1.6 times more likely to fail 

for each calendar day increase between 24th April and 21st June (Table 5.8). The density of oak 

trees at the site did not affect the risk of young failure. Similarly to the risk of failure during the 

egg stage, there was a large variation in the estimated risk of failure with year and site. 2013 had 

the lowest risk of failure with nests being 0.26 times less likely to fail, and in 2007 nests were 3.92 

times more likely, than average, to fail (Figure 5.7). Similarly to the site level risk of failure during 

egg stage Treswell Wood had the greatest risk of failure, with nests 4.03 times more likely to fail 

than average (Figure 5.8). Young were least likely to fail in Hackfall Wood, with nests being 0.41 

times as likely to fail, than average (Figure 5.8).  

Table 5.8: Young stage coefficients describing the risk of failure for covariates investigated in the mixed 
effects cox proportional hazard regression, when each other covariate is held constant. The hazard ratio 

represents the risk of young failure due to the covariate under investigation and all others held constant. A 
hazard ratio of 1 represents no effect of the covariate, > 1 an increased risk of failure and < 1 a decreased 

risk of failure. Significant covariates are denoted in bold. 

 Coefficient ± SE Hazard ratio Z P value 

Temperature sum during 
nestling period 

-0.22 ± 0.07 0.80 -2.98 <0.001 

Precipitation sum during 
nestling period 

-0.13 ± 0.05 0.88 -2.33 0.02 

Oak density -0.18 ± 0.11 0.84 -1.57 0.12 

First hatching date 0.47± 0.07 1.60 6.62 < 0.001 

Latitude -0.47 ± 0.11 0.62 -4.27 < 0.001 

Random effects 
  

Group Standard deviation Variance  

Year 0.73 0.54   

Site 0.54 0.29   
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Figure 5.7: The risk of nest failure during young stage for each year versus the number of young failures per nest record submitted (to correct for years where there are a large number of 
records). The horizontal solid black line represents the average risk of failure, with any point above the line representing a higher than average risk of failure, and any below a lower than 

average risk of failure. To interpret the risk, 2 is a 2 times higher risk of failure than the average site and 0.8 is a 0.8 times lower risk of failure than the average site. Note the logarithmic 

scale on the y axis for plotting, to aid interpretation and avoid over plotting. 
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Figure 5.8: The predicted risk of nest failure during the young stage for each site, against the number of young failures per record submitted (to correct for sites with higher number of nest 
boxes, or an increased submission rate and therefore a large number of records). The horizontal solid black line represents the average risk of failure, therefore any point above the line 

has a higher than average risk of failure, and any below a lower than average risk of failure. To interpret the risk, 2 is a 2 times higher risk of failure than the average site and 0.8 is a 0.8 

times lower risk of failure than the average site. 
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5.4.2.3 Overall nest failure 

In contrast to when each nesting stage was considered individually, when failure at any point 

during the nesting stage was investigated, there was no effect of ei ther temperature or 

precipitation on the overall risk of nest failure (Table 5.9). There was also no effect of oak tree 

density on the risk of nest failure (Table 5.9). There was an increased risk of the nest failing when 

eggs were laid later during the breeding season, between 31st March and 28th May. For each 

calendar day increase, risk of nest failure increased 1.49 times (Table 5.9). However, there was a 

decreased risk of nest failure with increased latitude, with nests 0.79 times less likely to fail with 

each increase in latitude (between 50.7 and 54.6 degrees). There was large variation in the 

estimated risk of failure between years and sites (Table 5.9). The estimated risk of overall nest 

failure varied inter annually, with the risk of failure being lowest in 2013 (0.36 times less likely to 

fail than the average year) and highest in 2007 (2.31 times more likely to fail than the average 

year; Table 5.9). Nests in Treswell Wood had the highest risk of failure with the risk being 2.65 

times higher than the average site (Figure 5.8). Whittington had the lowest risk of failure, with the 

risk being 0.45 times than that of the average site (Figure 5.8). 

Table 5.9: Coefficients for the risk of nest failure at any point during the nesting period with each covariate 

investigated in the mixed effects cox proportional hazard regression, when each other covariate is held 
constant. The hazard ratio represents the risk of nest failure due to the covariate under investigation and all 
others held constant. A hazard ratio of 1 represents no effect of the covariate, > 1 an increased risk of failure 

and < 1 a decreased risk of failure. Significant covariates are denoted in bold. 

 Coefficient ± SE Hazard ratio Z P value 

Temperature sum during 
nesting period 

-0.07 ± 0.05 0.93 -1.65 0.10 

Precipitation sum during 
nesting period 

0.12 ± 0.07 1.12 1.77 0.08 

Oak density -0.10 ± 0.09 0.91 -1.17 0.24 

First egg date 0.40 ± 0.05 1.49 8.36 < 0.001 

Latitude -0.24 ± 0.08 0.79 -2.97 0.003 

Random Effects 
  

Group Standard Deviation Variance  

Year 0.50 0.25   

Site 0.41 0.17   
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Figure 5.9: The predicted risk of overall nest failure at any point during a nesting attempt for each year, versus the number of failures per record submitted (to correct for years where 

there are a large number of records). The horizontal solid black line represents the average risk of failure, with points above the line representing a higher than average risk of failure, and 

points below a lower than average risk of failure. To interpret the risk, 2 is a 2 times higher risk of failure than the average site and 0.8 is a 0.8 times lower risk of failure than the average 

site. Note the logarithmic scale on the y-axis, to aid interpretation and avoid over plotting. 
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Figure 5.10: The predicted risk of overall nest failure at any point during a nesting attempt for each site included in this study, versus the number of failures per record submitted (to 

correct for years where there are a large number of records). The horizontal solid black line represents the average risk of failure, with points above the line representing a higher than 

average risk of failure, and points below a lower than average risk of failure. To interpret the risk, 2 is a 2  times higher risk of failure than the average site and 0.8 is a 0.8 times lower risk 

of failure than the average site. Note the logarithmic scale on the y-axis, to aid interpretation and avoid over plotting.  
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5.5 Discussion 

High levels of productivity, and recruitment, are needed to maintain adequate population 

numbers and for populations to be resilient to environmental change. Here, I show that nesting 

habitat influences productivity but not survival, and that climatic variables such as temperature 

and precipitation exert complex effects. I discuss these findings in respect to the effect of climate, 

habitat and phenology on blue tit clutch size and risk of nest failure.  

5.5.1 Clutch size 

The average clutch size (calculated across all years and sites in this study) is in line with the 

national average (9 eggs, for both SD: ± 2.2, ± 2.14, this study and nationally (Robinson, 2018), 

respectively) suggesting the sites included here are representative of sites nationally.  

Here, I have shown that clutch size decreases as spring temperatures increase ( Figure 5.2 and 

Table 5.3), even after controlling for first egg date. This relationship has not previously been 

demonstrated in this species, or at a large scale. No relationship between temperature and clutch 

size has been found previously in the UK (Shutt, 2017) or Croatia (Dolenec, 2007). Ambient 

temperature is likely to exert effects upon the female during egg laying through influencing 

resource availability, as invertebrate prey phenology has been shown to be closely related to 

temperature (e.g. Buse and Good, 1996). Temperature could also act as a cue for when peak 

invertebrate availability may occur, and therefore influence bird breeding parameters to allow 

synchrony between nestling demand and resource availability. An example of such alterations 

could be to the onset of incubation, either through laying fewer eggs or commencing incubation 

prior to laying the final, or penultimate, egg which is most common in blue tits (Perrins, 1979). 

Alterations to the onset of incubation have been shown to help synchronise nestling demand and 

food resources (Simmonds et al., 2017). However, temperature within a site did not predict clutch 

size (Table 5.3). This is likely due to the spatial resolution of the temperature data, and nesting 

locations, being too course to accurately predict this relationship. Birds that commenced breeding 

later in the breeding season laid fewer eggs (Figure 5.3 and Table 5.3), supporting previous 

findings in single brooded species across the UK (Crick et al., 1993). Egg production, and therefore 

clutch size, is likely to be constrained by the female’s ability to gain the required resources (fat, 

protein, calcium and water) to successfully produce eggs (Boyce and Perrins, 1987). In Chapter 4, I 

showed that birds are commencing breeding earlier in warmer springs. Females may be resource 

limited earlier in the year, if ample food is not available and consequently may be unable to 

produce larger clutches (Boyce and Perrins, 1987), offering a potential explanation for the 

reduction in clutch size observed with temperature. Female age has also been shown to influence 

clutch size, with older females typically laying smaller clutches later in the breeding season 
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(Amininasab et al., 2017). Female age was unable to be included with this dataset and could be 

contributing to the negative effect of temperature on clutch size, and this should be noted when 

interpreting these results. However, the negative relationship between clutch size and 

temperature remains even when controlling for first egg date, so this analysis should adequately 

account for differences in clutch size due to differences in breeding phenology due to female age.  

Clutch size varied between both sites and years, even after controlling for temperature (Table 

5.4). This again provides support for clutch size being dependent upon resource availability, as 

resource availability will likely vary between sites and years. No differences in clutch size with 

latitude were observed (Table 5.3). Studies investigating clutch size differences over large 

geographical ranges (27 degrees of latitude, as opposed to approximately 4 degrees in this study) 

have found a non-linear relationship of clutch size and increasing latitude (Fargallo, 2004), with 

largest clutch sizes predicted in the central region of the latitudinal gradient. Fargallo (2004) 

showed these differences could be explained by habitat, with evergreen habitats coinciding with 

lower latitudes, for example. However, when percentage occurrence of individual species at each 

site were considered there were no significant effects of any of the tree species on clutch size 

(Figure 5.4and Table 5.4). Oak’s median best linear unbiased predictor (BLUP) was positive and 

was the only species that departed from zero, however the confidence interval overlapped zero, 

so the effect was non-significant. The inclusion of oak density, without any other species and not 

as a percentage occurrence, did predict clutch size showing a positive relationship between the 

two variables (Table 5.5), providing some support for Fargallo (2004). This suggests that 

converting to percentages decreases the power to detect relationships. However, as none of the 

other species median BLUPs depart from zero, it is unlikely they would exert an effect on clutch 

size, even if included as individual densities. The effect of oak density is still relatively weak, with 

the lower confidence interval approaching zero (Table 5.6). The lack of strong habitat effect may 

be due to birds being unable to predict nesting site quality during the initial nesting period (Shutt 

et al., 2018). 

The implications of reduced clutch sizes with warming spring temperature could be great, given 

future climate projections for warming (IPCC, 2014). However, how this translates into the effect 

on population size will depend whether recruitment remains stable (Reed et al., 2001). The 

reductions in clutch size due to temperature, could be buffered slightly by birds nesting in oak 

dominated woodland, due to increased clutch size with increasing oak density. However, the 

relationship with temperature is steeper than that of habitat, so habitat alone is unlikel y to be 

able to counteract the negative effects of temperature.  
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5.5.2 Risk of failure 

Climatic factors decreased the risk of nest failure when each nesting stage, egg and young, were 

considered independently. Increasing temperature sums decreased the risk of failure during both 

egg and young stage, whereas increases in precipitation sums only decreased the risk of failure 

during young stage (Table 5.7, Table 5.8).  

Complete nest failure, as opposed to brood reduction, has been shown to be linked to the 

disappearance of one, or both, parents due to predation (Santema and Kempenaers, 2018). In the 

dataset used here brood reduction could not be deduced, nor were the number of fledglings 

recorded, which prevented finer scale analyses of the effects of climate and habitat on 

productivity. Therefore, the results presented here mostly relate to the effects on egg and chick 

physiological requirements (e.g. thermal requirements for development) and the parents 

predation risk.  

Decreased risk of nest failure during egg stage with increasing temperature sums ( Table 5.7)  

corroborate experimental results, where blue tit eggs incubated at higher temperature had 

increased hatching success (Nord and Nilsson, 2011). Warmer temperatures require females to 

expend less energy on thermoregulation, coupled with less energy expenditure required during 

foraging (te Marvelde et al., 2011) and incubation, allowing greater energy investment in egg 

production and incubation. Eggs will also chill less rapidly whilst the female is absent from the 

nest at warmer temperatures, decreasing the likelihood of failure. Similarly, during the young 

stage decreased energetic demands are placed upon both adults and nestlings at warmer 

temperatures, with lower energy is requirements for thermoregulation, allowing nestlings to 

expend more energy on growth (Nord and Nilsson, 2011) and adults less energy on brooding and 

more on foraging. Experimentally, there is no evidence of differences in survival between nests 

when nest temperature was artificially raised (Andreasson et al., 2018), however hatching success 

did increase (Nord and Nilsson, 2011). Increased precipitation decreased the risk of failure during 

the young stage, but had no effect during egg stage (Table 5.7, Table 5.8). Increased rainfall has 

been shown to increase nestling mass (Mainwaring and Hartley, 2016) and therefore assumed 

survival, due to heavier mass at fledging being indicative of higher quality chicks (Wilkin et al., 

2006). This is the opposite to what has been found in closely related great tits, where nestling 

mass was reduced with increased rainfall (Kelleri and Van Noordwijk, 1994), showing the complex 

effects climatic variables can exert. These complex effects of climatic variables are highlighted in 

this study, where neither temperature nor precipitation had any detectable effects on the risk of 

survival when risk was considered over the entire nesting period (Table 5.9), despite their being 

detectable effects when nesting stages were considered independently. The effects of 
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precipitation are particularly hard to quantify, as a combination of intensity, duration and vol ume 

of rainfall are likely to be important. 

Contrary to the potential negative implications of warming temperatures on clutch size, the 

implications for the risk of failure are the opposite. With warmer and wetter springs, blue tits 

could see a reduced risk of nest failure, which should translate into more successful nests. 

However, the effects of temperature may become detrimental, by increasing energetic demand 

due to heat stress, after a certain point and therefore increase the risk of failure. 

Delays in breeding phenology, either FED or hatching date, resulted in increased risk of nest 

failure, at all nesting stages (Table 5.7, Table 5.8 and Table 5.9). Taking this result, and as clutch 

size exhibits a seasonal decline, I have consistently showed that productivity and success 

decreases as the breeding season progresses, which is consistent with findings in a number of bird 

species (Verhulst and Nilsson, 2008). During the egg stage this could be due to poorer quality 

females only being able to allocate enough resources to egg production later in the breeding 

season, reduced resource availability later in the season, or a combination of both. During the 

young stage, increased nest failure for nests initiated later could be indicative of mismatch, due to 

nestling demand missing the peak in resource availability. If the peak in resource availability is 

missed, nestlings will likely be fed on alternative, potentially sub-optimal, prey items and may be 

less able to assimilate the resources needed for growth and survival (Arnold et al., 2010; Pollock 

et al., 2017).  

Latitudinal effects on the risk of nest failure were complex, with no detectable effect during the 

egg stage (Table 5.7). There was, however, a reduction in the risk of nest failure during the young 

stage with increased latitude (Table 5.8). Suggesting northern populations are at a lower risk of 

failing than southern counterparts. Regional population trends have not been explored for blue 

tits, however have been documented in other species, such as the willow warbler ( Phylloscopus 

trochilus), suggesting that spatially variable trends are possibly due to local -scale drivers 

(Morrison et al., 2010). The latitudinal differences in the risk of blue tit nest failure may be due to 

longer photoperiod at higher latitudes during the breeding season, which may allow adults in the 

north to feed their chicks for longer than their southern counterparts, therefore reducing the risk 

of nests failing. The period of darkness, and therefore period of not feeding is also shorter in the 

north, meaning chicks may not lose as much mass overnight giving them an increased chance of 

survival. 

Oak density had no detectable effect on the risk of failure during any nesting stage (Table 5.7, 

Table 5.8 and Table 5.9), suggesting food availability, due to oak, may not be a limiting factor of 

nest success, and that birds may not be reliant upon oak trees to find adequate food. This also 
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suggests that habitat is not likely to be driving the observed latitudinal effect. Previously, at higher 

latitudes than this study, an effect of habitat on fledging success was detected, with increased 

success when more oak was present (Shutt et al., 2018). This may be due to fledging success 

being defined differently to this study, and highlights brood reduction, rather than all out failure, 

may be more common in habitat that supports sub-optimal prey items. Despite efforts to 

maximise habitat variation in this study, there is not large between site variation in habitat, 

possibly as an artefact of nest box schemes being established to primarily monitor pied 

flycatchers (Ficedula hypoleuca), which typically prefer oak-dominated woodlands. The limited 

habitat variation, in addition to the scale (site level) habitat was recorded at, should be noted 

when interpreting the results presented here.  

There is large variation in the risk of failure across years and sites in all stages of nesting, whether 

considered individually or as a whole (Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9 and 

Figure 5.10). Treswell Wood, a site in the east midland region of the UK (Figure 5.1), for example 

is consistently the site with the highest risk of failure. However, the site with the lowest risk of 

failure differs depending on which nesting stage is considered. Site differences could arise from 

variables that are unable to be explored using these data, such as densi ty dependent effects. 

From personal observation, Treswell Woods had a higher density of nest boxes than, for example, 

Warburtons and Wells Wood, which had the lowest risk of failure during egg stage, despite both 

sites being at similar latitude (Figure 5.1). Predation rates have been shown to be density 

dependent (Dunn, 1977), so differences in predation rates may explain some of the variation in 

failure risk between sites, that I have been unable to account for in this study.  

5.5.3 Conclusions 

In conclusion, the results presented here show that climate and breeding phenology exert the 

strongest effects on blue tit productivity. Both temperature and breeding phenology have 

negative effects on clutch size. However, warmer temperatures during egg and young stage lead 

to reductions in the risk of nest failure. This may counteract the negative effects of temperature 

on clutch size if fewer nests ultimately fail. In addition, populations at higher latitudes have a 

lower risk of failure than their southern counterparts. Despite increased clutch size at high oak 

densities, the risk of failure is uniform across oak densities. This suggests that with warming 

springs, blue tits nesting in woodlands with higher densities of oak may have larger clutch sizes, 

but failure risk remains constant, so may not lead to increased success. Investigation into the 

effects of mismatch and recruitment are needed to extend these findings into population effects. 
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Chapter 6: General discussion 

6.1 Overview 

Since the mid-20th century atmospheric warming has been occurring at an unprecedented rate, 

and temperatures are predicted to continue warming throughout the 21st century (IPCC, 2014), 

leading to alterations in many ecological processes (Parmesan, 2006; Walther et al., 2002). 

Changes in phenology are often regarded as an indicator of climate change (Edwards et al., 2004; 

Thackeray, 2016; Walther et al., 2002). Phenological change can impact trophic interactions, 

leading to a cascade of effects through food chains, such trophic mismatch, which can in turn alter 

population numbers and ecosystem functioning (Cushing, 1990; Durant et al., 2007). In temperate 

woodlands the tri-trophic deciduous tree-herbivorous caterpillar-insectivorous bird food chain 

has been used to explore the impacts of climate change (Burgess et al., 2018; Charmantier et al., 

2008; Hinks et al., 2015; Nussey et al., 2005; Visser et al., 1998, 2004). 

The overarching aim of my thesis was to explore the effects of both climate and habitat on the 

phenology and productivity of the deciduous tree-herbivorous caterpillar-insectivorous bird, 

woodland system. Throughout I have shown that climate influences the phenology and 

productivity of herbivorous caterpillars and blue tits more than the habitat with which they are 

residing in. I demonstrated this through analysing frass fall, from under four common UK 

woodland tree species at a single site in north east England, to establish the effect of temperature 

and host tree species on the phenology and productivity of herbivorous caterpillars. I also aimed 

to extend the tri-trophic food chain into a more complex food web, through utilising next-

generation sequencing (NGS). However, due to difficulties extracting DNA suitable for NGS I was 

unable to elucidate the trophic interactions within the time frame of my PhD, and instead offer 

methods to overcome the difficulties I encountered. To explore blue tit phenology and 

productivity, I combined nest records from the British Trust for Ornithology’s (BTO) Nest Record 

Scheme (NRS) with habitat data for 34 sites across the UK. This is the first time the effects of 

habitat on either phenology or productivity in blue tits have been investigated across such an 

extensive spatial and temporal scale.  

Under two broad headings (variation in resource availability and resource usage, and predictors of 

blue tit phenology and productivity), I will cover the main findings of each chapter and the 

possible wider implications of these results. Then I will discuss how the utility of datasets 

collected by citizen scientists could be extended, before finally suggesting how further questions 

raised during this research could be addressed.  
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6.2 Variation in resource availability and resource usage 

Phenological mismatch is believed to be one of the most important causes, and potential future 

cause, of species extinctions due to climate change (Cahill et al., 2013). To understand whether 

mismatch between trophic levels occurs, an understanding of how phenology varies across both 

space and time, and what drives any variation, is crucial (Thackeray, 2016). 

In the oak-caterpillar-blue tit tri-trophic system, caterpillars are the least researched trophic level; 

studies that have considered caterpillar phenology have usually only done so at a site level (Both 

et al., 2009; Marciniak and Nadolski, 2007; Schöll et al., 2016; Smith et al., 2011; Visser et al., 

2006) or at an even larger spatial scale (Burgess et al., 2018). To date, the phenology of frass 

peaks have most commonly been quantified under oak trees (Burgess et al., 2018; Smith et al., 

2011), a mixture of tree species (Glądalski et al., 2017; Sisask et al., 2010; Wesołowski and 

Rowiński, 2014) and rarely are multiple host species investigated (except see Veen et al., 2009), 

despite Lepidoptera using a wide range of deciduous, and coniferous, tree species (Kennedy and 

Southwood, 1984). In Chapter 2, I addressed this knowledge gap by investigating frass fall under 

four common deciduous tree species, in the UK (beech (Fagus sylvatica), silver birch (Betula 

pendula), oak (Quercus robur) and sycamore (Acer pseudoplatanus)), across a single site in North 

East England. This allowed within year variation of frass fall to be explored, but did not have 

sufficient power for between year variation, due to only three years of sampling.  

Lepidoptera were detected, through frass fall, under all four tree species sampled and the timing 

and duration of peak frass fall was consistent between species and across the site. However, not 

all species produced frass peaks under every tree sampled, with only oaks producing frass peaks 

under all trees sampled, in all three years. Frass peaks were only produced under 35% of beech 

trees, 36% of sycamore trees and 54% silver birch trees, across all three years. These caterpillar 

detection rates, between species, are similar to those from samples obtained through branch 

beating, described by Shutt (2017). Surprisingly, frass fall phenology was not predicted by either 

host bud-burst phenology or temperature, either within the site or between years, despite inter-

annual variation in frass fall phenology being detected. Previously, peak frass fall has been shown 

to be negatively correlated with temperature both in the UK and the Netherlands (Smith et al., 

2011; Visser et al., 2006). A negative relationship between frass fall and temperature would have 

been expected due to bud-burst, which also exhibits a negative relationship with temperature 

(Tansey et al., 2017), and caterpillars generally remaining synchronous (Both et al., 2009; Burgess 

et al., 2018). The duration of frass fall also varied inter-annually, and similarly to peak frass fall 

phenology, was not predicted by either yearly or within site temperature.  Due to caterpillars 

developing faster at warmer temperatures (Buse et al., 1999; Holliday, 1985) and previous 

findings suggest narrower peaks occur at higher temperatures (Visser et al., 2006), my findings 
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were not what I hypothesised. Although frass fall was detected under all four tree species, only 

oak reliably produced frass peaks and accounted for approximately 70% of the total frass fall 

collected. When considering phenology of frass fall, there were no differences in the timing of 

peak frass fall, or the duration of frass fall, between tree species. This suggests that caterpillar 

phenology is relatively synchronous across a site and between species, so site-level estimates of 

frass fall phenology should be representative of a conditions experienced by consumers across a 

site.  

The disproportionately high frass fall detected under oak reinforces the importance of oak trees 

as a host for Lepidopteran species (Kennedy and Southwood, 1984; Southwood et al., 2005). Due 

to the greater occurrence of Lepidopteran frass fall under oak, in comparison to other tree 

species, any management strategies that may disadvantage oak within UK woodlands could 

impact many insectivorous woodland birds. If Lepidoptera numbers were affected, not only tits 

(e.g. blue, great and coal tits (Periparus ater)), but also flycatchers (pied and spotted flycatchers 

(Ficedula hypoleuca and Muscicapa striata, respectively) and warblers (willow warbler and 

chiffchaff (Phylloscopus trochilus and Phylloscopus collybita, respectively) would be 

disadvantaged. The implications of the lack of variation in frass fall phenology between tree 

species would also mean that insectivorous passerine birds could not exploit caterpillars on 

different host tree species if they mistimed reproduction with Lepidoptera peaks on oak , and 

would heighten any subsequent effects on productivity of phenological mismatch. The lack of 

variation in frass fall phenology may have implications for insectivorous birds’ productivity, and 

drive selection towards breeding phenology that is highly synchronous with oak, leading to a 

habitat specialisation. If numerous species of insectivorous woodland birds, such tits, flycatchers 

and warblers, were negatively affected by reduced food availability, there could also be a 

devastating effect on biotic interactions within woodland ecosystems, which are required to keep 

the ecosystem functioning. 

Despite Chapter 2 increasing our understanding of Lepidopteran phenological variation, in both 

space and time, the diets of many insectivorous woodland birds, including blue tits, during the 

breeding season remains relatively unknown. Nestling diet has been shown to affect nestling 

quality in great tits (Wilkin et al., 2009) and blue tits (Pollock et al., 2017), with Lepidoptera, when 

available, making up a large proportion of nestling blue tit diets (Betts, 1955; García-Navas et al., 

2013; García-Navas and Sanz, 2011; Gibb and Betts, 1963; Grzędzicka, 2018) . To be able to 

elucidate the full impacts of climate change on blue tit productivity, and explore the full 

implications of potential phenological mismatch, there is a need to move from a simple food chain 

to a more realistic food web and to understand the phenology of multiple resources (Thackeray, 

2016). In Chapter 3, I make progress towards addressing this shortfall by developing techniques to 
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permit the application of next generation sequencing to blue tit nestling faecal sacs to more fully 

understand diet. Next generation sequencing, or metabarcoding, provides a new opportunity to 

define diet in a non-invasive way and at a higher resolution than more traditional methods 

(Pompanon et al., 2012). The latter includes the use of ligatures (Grzędzicka, 2018; Johnson et al., 

1980), gizzard analysis (Bourgault et al., 2006), identification of prey from video footage (García-

Navas and Sanz, 2011) or field observations (Betts, 1955; Gibb and Betts, 1963) and microscopic 

analysis of indigestible prey items. All of these techniques have biases and limitations, some of 

which are overcome by metabarcoding. An essential prerequisite of metabarcoding is the 

provision of high quality DNA, which has been successfully amplified through polymerase chain 

reaction (PCR) (King et al., 2008). The extraction of high quality DNA from faecal samples has 

sometimes proven problematic (McInnes et al., 2017; Oehm et al., 2011; Schrader et al., 2012). In 

Chapter 3, I showed the issues that were faced whilst trying to extract and amplify DNA from 

faecal sacs of nestling blue tits. It is likely these issues arose from a combination of PCR inhibitors, 

which are common in faecal samples (Monteiro et al., 1997; Schrader et al., 2012), and low DNA 

concentration. DNA was successfully extracted using a modified version of an off -the-shelf DNA 

extraction kit (MO-BIO PowerSoil) followed by a secondary extraction using solid-phase reversible 

immobilization, with carboxylated paramagnetic beads.  

In addition to problems with extractions, satisfactory DNA amplification success for sequencing 

could not be obtained with the universal invertebrate PCR primers tested. Unfortunately, due to 

these issues, sequencing was unable to be undertaken during the timeframe of my PhD, which 

means I was unable to provide a more complex food web and discuss the ecological implications 

of this. Once nestling diet has been able to be elucidated to a higher resolution, the next steps will 

be to relate diet composition to habitat and nestling success. It could also inform the exploration 

of other resources phenology in more detail, to understand how climate change may disrupt or 

impact the strength of current trophic interactions in the future. Information about resource 

usage within woodland systems could be used to inform management strategies to ensure that 

key resources for insectivorous birds are maximised. 

6.3 Predictors of blue tit phenology and breeding success 

To ensure ecological networks are resilient to climate change, a detailed understanding of 

responses to previous changes, and the drivers of any change, need to be fully understood. 

Typically, phenological studies are limited to single sites, only addressing responses to, and drivers 

of change, in specific geographic locations (Thackeray, 2016). In the case of the deciduous tree-

herbivorous caterpillar-blue tit food chain, the majority of studies to date are limited to single 

sites and typically in oak dominated woodlands (Both et al., 2009; Hinks et al., 2015; Visser and 

Holleman, 2001; Wilkin et al., 2009). Studies have extended to multiple sites, either at a national 
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level (Burgess et al., 2018; Phillimore et al., 2016) or across Europe (Samplonius et al., 2018; Sanz, 

2002) but the focus on oak dominated woodlands remains, despite blue tits being habitat 

generalists (Perrins, 1979; Robinson, 2018; Stenning, 2018). Rarely have differences in breeding 

phenology, and productivity, been investigated with habitat, other than broad comparisons 

between two habitat types (Atiénzar et al., 2010; Blondel et al., 1993; Glądalski et al., 2017; 

Pollock et al., 2017).  

Chapters 4 and 5 used a subset of the BTO NRS’ blue tit nesting records, in combination with 

information on tree composition, across a UK-wide network of 34 sites, to understand the 

relationships between blue tit phenology, productivity, climate and habitat. In Chapter 4, I 

showed breeding phenology, both first egg and hatching date, has advanced since 1979, and the 

advancement is explained by increasing spring temperatures. These finding corroborate findings 

in both small scale studies across Europe (Dolenec, 2007; Marrot et al., 2018; Potti, 2009) and 

nationwide UK studies (Burgess et al., 2018; Phillimore et al., 2016). Site level tree composition 

did not predict nesting phenology, contrary to expectations. Previous research has shown 

correlations between bud burst of oak and nesting phenology in blue tits and great tits, (Bourgault 

et al., 2010; Burgess et al., 2018; Hinks et al., 2015; Wilkin et al., 2007), and higher levels of 

synchronisation with local phenology when trees primarily used for foraging were at higher 

densities (Cole et al., 2015). The lack of relationship between habitat and blue tit breeding 

phenology may be due to the scale at which habitat was measured and that tree density, as 

opposed to a measure of tree phenology, was used as the habitat variable. Due to the spatial and 

temporal scale of this study, nest site specific tree phenology was not available. Instead the 

proportion, or density, of tree species at a site were used. The lack of relationship between 

habitat and blue tit phenology could also indicate that previous findings of correlation between 

tree phenology and nesting phenology do not imply direct causation, and occurs as a result of 

both phenological measures being temperature driven. Birds may not be using tree phenology as 

a cue, and therefore, once temperature is also considered, tree phenology does not predict blue 

tit breeding phenology (Shutt, 2017). Experimental work supports the theory that tree phenology 

and bird breeding phenology are correlated rather than one cueing the other, as a result of both 

being temperature driven, as the presentation of early leafing branches did not advance breeding 

in great tits (Schaper et al., 2011). The apparent lack of association between local habitat and 

nesting phenology, shown in Chapter 4, suggests that concerns about mismatch with continued 

warming (Burgess et al., 2018) are substantiated, as blue tits do not appear to use local habitat as 

a cue to time their breeding.  

In Chapter 5, I explored the effects of climate and habitat on productivity, measured through 

clutch size and the risk of nest failure. Understanding demography is vital when considering the 
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effects of potential stressors, such as climate change, on species, but is often a neglected area of 

research (Selwood et al., 2015). I found that clutch size decreases as spring temperature 

increases, which to the best of my knowledge is the first time this has been demonstrated in this 

species. Previously, correlates of temperature, such as elevation, or North Atlantic Oscillation 

index have shown no correlation with clutch size (Sanz, 2002; Shutt et al., 2018). Oak density and 

clutch size demonstrated a positive relationship, with increased oak density predicting increased 

clutch size, but only significantly when considered as density as opposed to proportion of oak 

trees present at a site. The positive relationship between oak density and clutch size strengthens 

the importance of oak in woodlands, and also suggests that oaks do provide increased resources 

for nesting birds, suggested in Chapter 2 due to increased frass fall under oaks. Previously, 

increased oak availability has not led to increases in clutch sizes, with only increased willow 

availability predicting an increase in clutch size in blue tits (Shutt et al., 2018). However, in 

sympatric great tits increased oak density has been shown to lead to increased clutch sizes (Sanz 

et al., 2010). These contrasting results between sympatric species and geographic locations 

suggest the effects of habitat may be complex and differ geographically and between bird species. 

This highlights that care should be taken when extrapolating results from single geographic 

locations and/or single species to wider population effects, as they may not be representative. 

How an increase in clutch size, with increased oak density, translates into population effects, such 

as abundance, will depend whether the increases in productivity continue into survival and 

recruitment (McLean et al., 2016).  

In Chapter 5, I showed that despite the positive relationship between oak density and clutch size, 

the positive association with oak did not continue into reducing the risk of nest failure. Oak 

density had no effect on the risk of nest failure, at either egg or young stage, nor when the two 

stages were combined. This suggests that food availability may not be limiting overall nest 

success, i.e. complete brood failure. However, birds nesting in sub-optimal habitats, defined by 

reduced food availability, may experience brood reduction (Slagsvold, 1985) as opposed to 

complete failure. With climate change both optimal (oak dominated) and sub-optimal (non-oak 

dominated) habitats may pose an equal risk of nest failure. This may be due to sub-optimal prey 

resources in non-oak dominated woodlands and mismatch between nestling demand and 

invertebrate availability in highly homogenous oak woodlands (Burgess et al., 2018). Therefore, 

counteracting any beneficial or detrimental effects each respective habitat may have historically 

provide. Despite oak woodlands being traditionally optimal habitat, recent phenological mismatch 

could be making these habitats sub-optimal and could offer an explanation as to why habitat did 

not modulate the risk of nest failure.  
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Climatic factors, however, decreased the risk of nest failure at both egg (FED until hatching) and 

young stages (hatching until fledging), shown in Chapter 5. Increased temperature sums during 

each respective stage decreased the risk of failure, suggesting with continued spring warming nest 

failure may decrease. During the egg stage of nesting, this reduced risk of failure may be due to 

females being in better condition during periods of warmer weather, as invertebrates are typically 

more active (Abram et al., 2017) and birds can forage more efficiently (Avery and Krebs, 2008). 

Under experimental conditions, artificially heating nests did not affect survival (Andreasson et al., 

2018). However, this may be due to the effects of temperature not acting directly upon the 

nestlings but upon the resources which they are reliant on, which were not manipulated in 

Andreasson et al. (2018). Precipitation reduced the risk of nest failure during the young stage, 

which may be related to increased nestling mass during periods of rainfall (Mainwaring and 

Hartley, 2016) and heavier nestlings typically being indicative of high quality chicks (Wilkin et al., 

2006). The opposite effects have been found in great tits, with reduced nestling mass with 

increased precipitation (Kelleri and Van Noordwijk, 1994). Future climate projections for northern 

temperate regions are for increased mean precipitation and likelihood of extreme precipitation 

(IPCC, 2014), which given the results presented here could lead to increased productivity in blue 

tits. The effects of precipitation are hard to quantify, as it is likely that the intensity and duration 

of rainfall is likely to be more important than total rainfall. However, rainfall duration and 

intensity is harder to quantify on a macro-scale, and is even difficult at a micro-scale, and as such 

could not be investigated here. 

Overall, I have demonstrated that climatic factors are more important than habitat for blue tit 

phenology and productivity. However, the effects of climate are likely to be complex in terms of 

whether they are beneficial or detrimental in light of predicted future climate change. Increased 

temperatures will likely further advance breeding phenology, increasing the chance of mismatch, 

with both higher and lower trophic levels, which could lead to alterations in trophic interactions. 

Alterations to trophic interactions may impact population sizes of both resources and consumers, 

and in turn could alter ecosystem functioning. Decreased clutch sizes but reduced risk of nest 

failure, were demonstrated with increased temperature, which may lead to an increased number 

of nests producing fledglings. Increased blue tit productivity will have implications for woodland 

trophic cascades. For example, by providing increased food resources, in terms of increased 

fledgling prey, for higher trophic levels such as sparrowhawks (Accipiter nisus), whilst concurrently 

reducing herbivorous caterpillar populations. A reduction in herbivorous caterpillar numbers 

could possibly even lead to woodlands acting as increased carbon sinks, due to reducing herbivory 

damage of young leaves. Under increased atmospheric CO2 levels, it is predicted that herbivory 

damage from caterpillars will increase (Couture et al., 2015), therefore insectivorous birds, such 
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as blue tits, could be used as a form of biological control, to control herbivorous insect 

populations, allowing more carbon to be fixed by woodland ecosystems. 

6.4 Improving the utility of citizen science datasets and considerations when designing 

ecological studies 

Citizen science, where volunteers collect and sometimes also analyse or process data, has 

revolutionised scientific data collection, and allowed data to be collected at geographical scales 

not previously possible by individual research teams (Bonney et al., 2014; Silvertown, 2009). 

Citizen science has contributed to the investigation of many of the recent big ecological questions, 

such as the effects of climate change, tracking of invasive species, and the effectiveness of 

ecological restoration, to name but a few (Silvertown, 2009). The BTO NRS was started in 1939, 

the oldest bird nest monitoring scheme globally, and data collected through the scheme has 

contributed to numerous scientific papers since its conception (Crick et al., 2003). NRS data has 

contributed to advancements in knowledge of basic breeding biology (e.g. Crick et al., 1993), 

population dynamics (e.g. Morrison et al., 2014; Siriwardena et al., 2000), highlighted species at 

risk due to poor breeding performance and the drivers of these trends and phenological changes 

(e.g. Crick et al., 1997; Crick and Sparks, 1999).  

In both Chapters 4 and 5 I used citizen science data from the BTO NRS to explore the effect of 

climate and habitat upon blue tit phenology and productivity. Without the dedication of the 

numerous volunteers who collected these data I would not have been able to begin to answer 

these questions. However, there are a number of limitations and biases associated with the 

dataset that could be addressed to extend the applications of these datasets.  

Despite efforts to maximise habitat variation a priori during site selection, habitat variation was 

limited between sites, which may have hindered my ability to detect the effects of specific tree 

species. Comparing the habitat variation between sites in Chapters 4 and 5 with a study where 

sites spanned a 220 km transect in Scotland (Shutt et al., 2018) showed the habitat variation 

between my 34 sites was less pronounced, and woodlands dominated by willow and alder were 

lacking. The lack of variation is likely to be as a result of the majority of long-running nest box 

schemes being initiated to monitor other cavity nesting species, such as pied flycatchers or 

redstarts (Phoenicurus phoenicurus). Pied flycatchers, and redstarts, are often deemed more 

interesting to monitor by nest recorders due to their recent declines and red and amber 

conservation status, respectively, within the UK (Eaton et al., 2015). Both pied flycatchers and 

redstarts are cavity nesters, like the blue tit, and preferentially nest in mature deciduous 

woodland (Buxton, 1950; Lundberg and Alatalo, 2010), with redstarts preferring slightly more 

open woodland than pied flycatchers (Droz et al., 2015). Due to pied flycatchers and redstarts 
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being more habitat specialists than blue tits, and pied flycatchers optimal habitat being 

considered as mature oak woodlands (Lundberg and Alatalo, 2010), this will likely have influenced 

nest recorders decisions about nest box placement, and woodlands to monitor, when setting up 

their studies. Within the 34 sites included in this study, only a few nest box schemes were 

established solely with the intention of monitoring either blue tits or great tits. These inherent, 

potentially unintentional, biases make it difficult to address questions relating to habitat with 

these data sets. These biases could be addressed in a number of ways, whilst still ensuring that 

the guidelines are not too prescriptive on what can and cannot be included to ensure 

participation levels remain high (Tweddle et al., 2012). One approach could be to further highlight 

the importance of common species, as well as rare and declining species, as common species are 

responsible for many ecosystem services, and the common status, is in fact relatively rare 

(Gaston, 2010). In addition to highlighting what can be deduced from common species, placing 

emphasis upon sampling all habitats where species may occur, even though it may not be their 

optimal habitat, would extend the questions which these datasets could address and increase 

their utility when considering how to mitigate anthropogenic effects.  

The spatial scale at which variables are collected at should also be considered when designing 

ecological studies. In Chapter 2 all variables were collected at a scale that was likely comparable 

to the scale at which the organism experienced it. However, when conducting macro-scale 

studies, such as Chapters 4 and 5, it is often not possible to obtain data spanning both the spatial 

and temporal extent required at a micro-scale. This can often lead to a need to decrease the 

resolution to answer large scale questions to depict trends at a lower resolution (Blackburn and 

Gaston, 2002). This leads to questions about the validity of results, due to different scales often 

elucidating different results, and difficulty in selecting the right scale and the right results 

(Blackburn and Gaston, 2002). Previous research has shown scale is important when considering 

blue tit phenology (Hinks et al., 2015; Wilkin et al., 2007), and often the best correlates are at a 

fine scale (25-75 m) (Wilkin et al., 2007). However, previous work has been limited to single site 

studies, where data were available at fine resolution, which is not usually the case with citizen 

science or macro-ecological datasets. This does not mean the patterns or processes deduced at a 

larger scale are not informative or should be disregarded due to the scale variables were collected 

at (Blackburn and Gaston, 2002), instead this should be borne in mind when interpreting the 

results and investigated in further studies.  

6.5 Further questions and future work 

I have highlighted that despite blue tits being common and a well -studied species, there are still 

considerable knowledge gaps. Due to their abundance, and resilience to monitoring, blue tits 
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offer many opportunities to answer ecological questions and expand research questions to a 

wider scale. 

Chapter 2 provided additional information on the most understudied trophic level of the tri-

trophic system, herbivorous caterpillars. However, it was still at a single site scale, only utilising 

one sampling method, for a single invertebrate order. Further work could be carried out with 

concurrent sampling for many invertebrate species, through methods such as branch beating, 

frass sampling and sticky traps, for example, on multiple host tree species, at multiple sites. This 

would give a more complete picture of the phenology and resource availability for blue tits during 

the breeding season, across different habitats. Invertebrate sampling could be extended into the 

recruitment period as well, to understand the resources that recently fledged nestlings may have 

access to, which may differ from what is available during the nestling period.  

For invertebrate sampling to be targeted most efficiently, an obvious area of future work would 

be to continue the work presented in Chapter 3 by sequencing the DNA extracted from nestling 

faecal sacs. This approach could then be extended out to a multi-site scale, possibly through using 

the network of 34 sites, which was used in Chapters 4 and 5, or through appealing to BTO nest 

recorders and bird ringers to collect samples during routine nest monitoring and ringing activities. 

This would have the benefit of sampling from a wide variety of habitats, geographical locations 

and if samples were collected over multiple years, could allow both spatial and temporal variation 

in prey choices and breeding success to be explored. The addition of fae cal samples from other 

sympatric woodland species could also inform us about niche differentiation, or overlap, that may 

be occurring, which could be influencing phenology or productivity through density or 

competitive effects not immediately apparent.  

In addition to elucidating diet, DNA from nestling faecal sacs could be tested for the presence of 

parasitic infection, such as Coccidian infection, as parasitic load has been shown to negatively 

affect breeding success (Gustafsson et al., 1994; Marzal et al., 2005) and survival (Lachish et al., 

2011; Sol et al., 2003). Although, a positive association between breeding success and malarial 

infection in blue tits has been reported, in experimentally manipulated broods, in a single Swedish 

population (Podmokła et al., 2014). In addition, starling (Sturnus vulgaris) nestlings heavily 

infected with Coccidian parasites have been reported to be, on average, heavier than less infected 

counterparts (Mazgajski and Kedra, 1998). This suggests that infection may lead to increased 

appetite, which may affect reproductive success if parental feeding effort cannot match nestling 

demand (Mazgajski and Kedra, 1998). The prevalence of parasitic infection may also be linked to 

climatic, or habitat, characteristics and with future climate change parasitic infections are 

predicted to become more prevalent (Garamszegi, 2011), which makes understanding the effects 

of parasites on productivity and trophic interactions important. 
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In Chapter 4 and 5 I showed that climate, but not habitat, was important in influencing blue tit 

phenology and productivity. However, how these changes translate into influencing population 

processes and numbers is still unknown, which makes assessing the impact of climate change 

particularly difficult. A major gap in our understanding is how climate and habitat affects 

recruitment success, as recruitment will define whether changes in phenology and nesting 

productivity are detrimental or not (McLean et al., 2016), and whether populations are likely to be 

resilient to climate change. This could be achieved by systematic monitoring post fledging, 

through mark-recapture/re-sighting techniques that do not influence success. These additional 

data could then be combined with NRS and other census data held by the BTO (such as ringing 

recoveries), to undertake further analyses to investigate population trends and demographic rates 

through Integral Projection Models (Metcalf et al., 2013), for example, which would allow the 

effects of continuous demographic variables e.g. first egg date, and any changes in these, to be 

explored in relation to their effects on population dynamics.  

Although Chapter 4 and 5 used a multi-site approach, the network of 34 sites included in this 

thesis could also be expanded. Sites which do not submit nesting records to the BTO NRS scheme 

could be targeted, and may increase habitat diversity between sites. Increasing the number of 

sites, and therefore sample size, would increase the power to detect relationships between 

breeding parameters and habitat, which appear to be relatively weak. Information about optimal 

habitats, for blue tits, could be used to inform future woodl and managements and identify areas 

that could benefit from nest box provisioning, for example. Optimal habitat for blue tits may not 

be optimal habitat for all woodland bird species. However a number of other insectivorous 

woodland bird species, where the data are not available to investigate such habitat effects, may 

also benefit. 

Finally, ensuring effective science communication occurs between scientists using citizen science 

data and the citizen scientists collecting the data is crucial to i) maintain high levels of 

participation, due to tangible results being presented from their data and ii) ensure that the 

importance of monitoring common species, across all of their possible range, is re -iterated to 

maximise the potential uses of these data sets.  

6.6 Conclusion 

Throughout this thesis I have demonstrated that climate is more important than habitat in 

influencing phenology and productivity of herbivorous caterpillars and blue tits. At a single site 

scale, I have provided important results on how Lepidopteran resource availability varies 

throughout the breeding season and across four common tree species in UK deciduous woodland. 

These results highlight the importance of oak as a host for Lepidopteran larvae, and could be used 
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to inform woodland management to ensure that oak is not disadvantaged the future. If oak were 

to be disadvantaged, this could impact upon numerous species of insectivorous woodland birds 

and lead to alterations in woodland food web dynamics. Despite being unable to sequence DNA 

from nestling blue tit faecal sacs, to elucidate nestlings’ diet within this thesis, the information 

gained on effective DNA extraction and amplification methods is useful in informing future 

studies. Expanding to a nationwide, 34 site scale, I showed that climate influenced blue tit 

phenology and productivity more than habitat, with increased spring temperatures leading to 

earlier breeding phenology, but mixed effects on productivity. These findings, combined, can be 

used to inform future predictions of how the deciduous tree-herbivorous caterpillar-insectivorous 

bird, tri-trophic food chain, and woodland ecosystems more generally, are likely to fare with 

continued climate change. This thesis, therefore, provides important novel insights into the effect 

of climate change on one of the most common bird species in the UK. 
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