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Abstract 

Anthropogenic activities have imperilled not just global ecosystems, but also the 

ecosystem services they provide which are crucial for human livelihoods. To understand 

these changes, there is a need for effective monitoring over large spatial and temporal scales. 

This thesis will build on two proposed solutions. First, citizen science – defined here as the 

involvement of non-professionals in scientific enquiry – allows the crowdsourcing of data 

collection and classification to expand monitoring in ways that are logistically infeasible for 

ecologists alone. Second, motion-sensing camera traps can reduce the labour needed for 

monitoring since they can be deployed for long periods and provide continuous, relatively 

unbiased observations. In this thesis, I describe MammalWeb, a citizen science project in 

north-east England where I enlisted the aid of the local community in wild mammal 

monitoring. Motivated by the current unevenness of survey effort and data for mammals in 

Great Britain, MammalWeb involves citizen scientists in both the collection and 

classification of camera trap images, a novel combination. This is a multidisciplinary project, 

and in the following chapters I will begin, in Chapter 2, with a detailed reflection on the 

organisation of the MammalWeb citizen science project and approaches to evaluating its 

performance. I observe that the majority of contributions came from a small subset of citizen 

scientists. In Chapter 3, I develop an economical approach to deriving consensus 

classifications from the aggregated input of multiple users, which is a crucial part of many 

citizen science projects. This is followed in Chapter 4 by a case study of a partnership I 

initiated between MammalWeb and the local Belmont Community School, where we 

empowered a group of secondary school students to not only aid in collecting data for 

MammalWeb, but also design and deliver ecological outreach to their community. This is 

now the template for a wider network of school partnerships we are pursuing. Chapter 5 will 

examine common concerns around estimating species occupancy from camera trap data, 

including post-hoc discretisation of observations and effects of missing data. I also develop 

a resampling method to account for uncertain detections, a common issue when 

crowdsourcing data classifications. I show that, through resampling, the estimated 

parameters from occupancy models are robust against high uncertainty in the underlying 

detections. Lastly, Chapter 6 will discuss how my work on MammalWeb has laid the 

foundation for a wider citizen science camera trapping network in the United Kingdom and 

avenues for future work. Importantly, I show that MammalWeb citizen scientists have been 

empowered to be more than “mobile sensors” and act as independent researchers who have 

initiated ecological studies elsewhere. 
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Chapter 1 - General introduction 

1.1 Introduction 

Global ecosystems are in the midst of rapid change and experiencing biodiversity loss at 

rates comparable to mass extinction events (Butchart et al. 2010, Dirzo et al. 2014). These 

changes are heavily influenced by anthropogenic activity (Corlett 2015, Svenning et al. 

2016), and endanger ecosystem services crucial for human wellbeing (Millennium 

Ecosystem Assessment 2005, Díaz et al. 2006, Perrings et al. 2011a). The scale (both 

temporal and spatial) of these changes challenge existing methods for ecological monitoring, 

and camera trapping has been proposed as a solution with great potential (Burton et al. 2015, 

Steenweg et al. 2017) to enable quantities of data to be collected across wide spatial areas. 

Even then, large-scale ecological monitoring is costly and logistically challenging, and 

citizen science – the process of involving non-professionals in scientific enquiry – has 

become a popular way to scale up data collection and classification in ways ecologists cannot 

achieve on their own (Devictor et al. 2010, Amano et al. 2016). The combination of citizen 

science and camera trapping has been attempted in recent years with promising results 

(Swanson et al. 2015, McShea et al. 2015, Verma et al. 2016). Motivated by the above and 

a need for more comprehensive mammal monitoring in the United Kingdom (Croft et al. 

2017), this thesis describes my research on implementing a citizen science camera trapping 

programme in north-east England: MammalWeb (http://www.MammalWeb.org/). In 

addition to tangible outcomes that will be discussed throughout this thesis, MammalWeb is 

novel for expanding the boundaries of citizen scientists where participants are not merely 

passive sensors, but empowered citizens who partake in other steps of the scientific method. 

This introductory chapter explores the general background to mammals, camera trapping 

and citizen science and includes the motivations for the MammalWeb project. Chapters 2 

through 5 describe my work on organising MammalWeb; economically crowdsourcing data 

classification; partnering with a local school to enhance engagement; and exploring the 

potential of applying occupancy analysis to MammalWeb data. Chapter 6 is a general 

discussion reflecting on wider lessons learned from MammalWeb and their implications. 

1.2 The need for ecological monitoring 

Anthropogenic impacts on ecosystems are diverse and widespread. In a meta-analysis of 

global biodiversity loss, the majority of the 31 indicators studied showed steady declines 

since 1970 (Butchart et al. 2010). These declines were coupled with increases in measures 

of human influence such as invasive species, fish stock depletion, climate change (Butchart 

http://www.mammalweb.org/
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et al. 2010), and increased land use (Foley et al. 2005). Human impacts are often just as large 

as natural processes, and the corresponding time period has received its own geological 

epoch called the Anthropocene (Corlett 2015, Svenning et al. 2016). In fact, the current rate 

of biodiversity loss is comparable to past mass extinction events and has been termed the 

“defaunation” of this planet (Dirzo et al. 2014). 

Biodiversity loss impacts ecosystem services, which are functions provided by 

ecosystems that directly contributes to human livelihood such as food, water, air, or 

recreation (Millennium Ecosystem Assessment 2005, Perrings et al. 2011a). While there are 

concerns regarding the over-emphasis and monetisation of ecosystem services over nature’s 

intrinsic value (Kinzig et al. 2011, Silvertown 2015), it is nevertheless clear that 

anthropogenic impacts on ecosystems services can be detrimental to human wellbeing (Díaz 

et al. 2006). For example, light pollution from urban areas affects not only ecosystems 

(Longcore and Rich 2004, Gaston et al. 2012) including predator-prey relationships 

(Minnaar et al. 2014), but also the physical and mental wellbeing of humans living in that 

space (e.g. Karatsoreos 2012). Sometimes, human-wildlife interactions are mutually 

beneficial, and in one example, ecosystem engineers continued to maintain agricultural 

structures even after the departure of the humans who built them (McKey et al. 2010). In 

any case, there is a need for ecological monitoring to understand these complex interactions. 

It is important to note that biodiversity conservation often focuses on rare or endangered 

species, but common species – from the saiga antelope, cod, to certain grass species – are 

also of ecological importance (Gaston and Fuller 2008) and therefore they should be 

monitored as well. 

Considering the global scale of biodiversity loss, there is now extensive literature 

examining the need for large-scale monitoring (Yoccoz et al. 2001, Fischer et al. 2010, 

Stephens et al. 2015), including the value of establishing long-term baseline data (Magurran 

et al. 2010), practical advice for designing effective monitoring programmes (Lindenmayer 

and Likens 2010, Sergeant et al. 2012, Schmeller et al. 2015), and frameworks for 

consolidating these efforts (Vos et al. 2000). 

Methods for monitoring are diverse, such as direct counts, line transects (Sutherland 2006 

p. 145), acoustic studies (Conway et al. 2004), dung counts (Eggert et al. 2003), hair and 

dung sampling for DNA (Piggott and Taylor 2003), aerial surveys (Krebs 1999), mark-

recapture methods (Pollock et al. 1990), and many others. However, direct observations are 

limited to animals occurring in sufficiently high density in habitats with high visibility; tissue 

sampling requires expert lab work; aerial surveys are expensive and also limited by visibility; 

mark-recapture studies are time-consuming and intrusive; and acoustic studies are mainly 
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applicable to animals with loud and distinct vocalisations. In contrast, the use of motion-

sensing camera traps has been proposed as an effective method for large scale ecological 

monitoring (Steenweg et al. 2017). In the following section, I will provide an overview of 

the development of camera trap technology and its ecological applications. 

1.3 Camera trap ecology 

1.3.1 History of camera trapping 

Wildlife photography dates back to the beginnings of photographic technology itself. One 

of the earliest attempts was in 1863 by the German biologist Gustav Fritsch in South Africa 

(Guggisberg 1977). During the expedition of the HMS Challenger from 1872-1876, 

photography was used specifically for the study of wildlife such as rock-hopper penguins 

(Eudyptes chrysocome) and albatrosses (Diomedia spp.) (Kucera and Barrett 2011 p. 10). 

Animal-triggered photography first appeared in 1878, when British photographer Eadweard 

James Muybridge rigged a dozen cameras with fast shutters to photograph a galloping horse 

as it triggered trip wires, and showed that all four of a horse's feet are off the ground at certain 

times (Guggisberg 1977, Kucera and Barrett 2011 p. 10). Even at this early stage, 

photography aided the study of basic biology, in this case animal locomotion. 

The first of what may be considered “camera trap” photography was developed by George 

Shiras in the 1890s (Cutler and Swann 1999, Kucera and Barrett 2011 p. 10). With a trip 

wire and flash system, Shiras documented the diversity of North American wildlife, from 

squirrels (Sciurus carolinensis) to moose (Alces alces). His works won the gold medal at the 

1900 Paris World Exhibition and were published in National Geographic Magazine (Kucera 

and Barrett 2011 p. 10). This “flashlight trap photography” was used successfully across the 

world, and was given a detailed treatise by William Nesbit (1926). 

By the mid-twentieth century, the use of camera traps in ecological studies had become 

widespread. Advances included portable power sources such as car batteries and using a 

light beam as a trigger (Buckner 1964). Cameras carried large 35 mm film magazines 

allowing hundreds of exposures (Abbott and Coombs 1964), and some operated in 

temperatures as low as -35°C (Diem et al. 1973). Even video cameras were used as early as 

the late 1950s to take advantage of the large number of exposures (Pearson 1959). 

The subjects of camera trap studies were also diverse. In North America, Buckner (1964) 

used lightbeam triggered cameras to study mammals of Manitoba including, snowshoe hares 

(Lepus americanus), red squirrels (Tamiasciurus hudsonicus), and red-backed voles 

(Clethrionomys gapperi). Seydack (1984) estimated the population density for bushbuck 

(Tragelaphus scriptus), and tracked individual leopards (Panthera pardus) and honey 

badgers (Mellivora capensis) in South Africa, all with portable camera traps deployed in 100 
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ha survey blocks. Birds (Cowardin and Ashe 1965, Temple 1972, Diem et al. 1973) and 

Mediterranean monk seals (Hiby and Jeffery 1987, Kucera and Barrett 2011 p. 15) were 

studied, as were pollinators in Australia (Carthew and Slater 1991). 

Camera traps were instrumental in the documentation of rare, endangered, or even 

presumed-extinct animals. Karanth's (1995) seminal camera trap study on tigers (Panthera 

tigris) in India not only provided insight into the ecology of this elusive carnivore, but also 

led to advances in the camera trap sampling design and downstream population estimation 

(Karanth and Nichols 2002, Karanth et al. 2004). In the Atlantic Forest of Brazil, the 

distribution of the critically endangered buff-headed capuchin monkey (Cebus 

xanthosternos) was characterised with camera traps (Kierulff et al. 2004). In another case, 

the Vietnamese saola (Pseudoryx nghetinhensis), dubbed the “Asian unicorn” (Callaway 

2012) and previously only described by bone fragments, was rediscovered with camera traps 

(Whitfield 1998). 

1.3.2 Contemporary camera traps 

Modern camera traps take digital photos and generally fall into two categories (Swann et 

al. 2011): non-triggered and triggered. 

Non-triggered cameras either take time lapse photography or videos, and have been used 

for studying animal behaviour and bird nests (Cutler and Swann 1999). By definition, they 

eliminate false triggers or cases where the trigger threshold is too high, but require more 

power, and reviewing the captured data is time-consuming (Swann et al. 2011 p. 31). 

However, non-triggered cameras have proliferated as webcams for realtime monitoring of 

animals not only for research, but also educational use (Animal Cameras 2014, MacRae 

2014). 

Triggered cameras were traditionally activated mechanically by trip wires or pressure 

pads (Swann et al. 2011 p. 31), and now commonly use active or passive infrared triggers. 

Active infrared cameras are triggered when an animal passes through a continuous beam 

from a transmitter to receiver, much like an invisible trip wire. These systems are very 

sensitive, but are more complicated to set up, have a narrow detection zone, and are known 

for frequent false triggers (Swann et al. 2011 p. 32). 

Passive infrared triggered camera traps are by far the most common. Typically 

comprising two adjacent sensors that read background temperature, these cameras are 

triggered by the temperature change detected as an animal passes in front of the sensors 

(Swann et al. 2004). Practically all commercial models come in a single unit (as opposed to 

those with trip wires or an external power source), and are therefore easier to set up by just 

tying them to a tree or mounting on a tripod and arming them. While the size of detection 
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zones varies, they can generally monitor a much wider area than active infrared units. The 

cost of commercial camera traps ranges from less than US$100 to more than US$500 

depending on feature set. “Trigger time”, the lag between detection of motion and release of 

the camera shutter, is a crucial consideration. Fast moving animals such as leopards may 

require trigger times as fast as 1/4 seconds to acquire an image of the whole animal. Other 

components to consider may include (1) housing, (2) software and recording options, (3) 

power source, and (4) lighting options. 

Since camera traps operate without human intervention after deployment, they are often 

left in the field for months at a time, which underscores the importance of selecting a model 

with appropriate housing for the target environment. Sufficient weather proofing is critical 

for deployments in high temperature and/or high humidity environments. Placing a pack of 

silica gel within the camera housing, which changes colour from blue to red when moistened, 

is a good detector of water intrusion (Swann et al. 2011 p. 34). Appropriate camouflage is 

desirable to reduce visibility of the camera and the possibility of interfering with wildlife. 

Security measures are important to prevent theft and vandalism by humans, and also damage 

from animals. Most manufacturers such as RECONYX (https://www.reconyx.com/) and 

Cuddeback (https://www.cuddeback.com/) provide optional metal enclosures, cabling 

systems, and password software locks for these purposes. 

Modern commercial camera traps offer a plethora of software and recording features, 

such as image resolution adjustment, audio and video recording, on board memory, built-in 

GPS, environmental data logging, time lapse options, or sensitivity settings. These features 

may comprise a large part of the camera trap's cost, so it is important to consider which ones 

are needed while balancing flexibility with cost when planning a project. 

Electrical power outlets seldom exist in the field, and the majority of passive infrared 

camera traps operate on battery power (though most can be plugged into an outlet). Alkaline 

or lithium batteries are commonly used because of their low cost and uniform power output, 

but are not reusable and create waste. Rechargeable batteries may be a better option, since 

they are cost effective in the long run, and recent varieties such as nickel-metal-hydride 

(NiMH) or lithium ion batteries provide good performance. 

Illumination is another important factor if night time photography is planned. Strobe flash 

can provide colour images, but may disturb animals and may be of particular concern for 

behavioural studies (Wegge et al. 2004, Swann et al. 2011 p. 38, Meek et al. 2014). Infrared 

illumination (approximately 850 nm) reduces the possibility of startling an animal, and 

recently manufacturers have released “black flash” or “no glow” illumination with 940 nm 

light emitting diodes (LEDs) which may further minimise disturbance. 

https://www.reconyx.com/
https://www.cuddeback.com/
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The advantages of using camera traps for ecological monitoring over other methods such 

as direct observation, tagging, or indirect tracking are that they do not disturb the subject 

animals, can operate on their own for long periods without human intervention, and provide 

an auditable, unbiased dataset which can be reviewed by other researchers (Swann et al. 

2011 p. 29). 

The “set and forget” nature of camera traps is one of its greatest conveniences, but also 

one of the greatest risks to their use. When deployed in remote locales, equipment failures 

might go unnoticed for months, potentially an entire field season (Swann et al. 2011 p. 29). 

Most factors contributing to camera malfunction can be alleviated, however, through the 

selection of appropriate models (e.g. ones with weather proof housing), careful planning, 

and skilled set up. Additionally, theft or vandalism of field research equipment, including 

camera traps, is well documented (Bancroft 2010). Fortunately, simple solutions such as 

personal messages left on field equipment can reduce vandalism (Clarin et al. 2013). This is 

in addition to the use of security devices such as security posts (Meek et al. 2012) or 

manufacturer provided metal enclosures. 

1.3.3 Ecological applications of camera traps 

These benefits have contributed to the wide and varied used of camera traps in ecological 

research. In one review of more than 100 papers (Cutler & Swann 1999), camera traps were 

found to be used for studying nest predation, feeding ecology, nesting behaviour, animal 

activity patterns, population parameters, and the presence or absence of species. One 

exception is ectothermic animals, which proved to be a challenge for infrared camera traps 

to detect since their thermal signature often matches that of the background (Ariefiandy et 

al. 2013). 

Methodologies for ecological monitoring with camera traps are diverse. On a basic level, 

they are effective for species inventories and measuring richness (Tobler et al. 2008, Si et al. 

2014). Camera traps can also be used for distance sampling (Howe et al. 2017). If individual 

identification is possible, mark-recapture techniques have been adapted for camera traps and 

used extensively to monitor carnivores with unique fur patterns (Karanth 1995, Karanth and 

Nichols 2002). For most species, however, individual recognition is difficult, and one of the 

most widely used techniques in this case is occupancy modelling. At its most basic level, 

occupancy is defined as the probability of the target species being present at a site 

(MacKenzie et al. 2002), and is useful when absolute abundance is otherwise difficult to 

establish or not required. Occupancy is valuable when monitoring elusive species since it 

accounts for imperfect detection (missed detections of a species when it is present) and 

techniques have been developed to optimise survey effort as a trade-off between the number 
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of sites surveyed and the duration of those surveys (Eggert et al. 2003, Mackenzie and Royle 

2005, Bailey et al. 2007). In addition, the standard occupancy model has been extended to 

multispecies studies, including interactions between species (Steinmetz et al. 2013) and tying 

community dynamics to human activity (Burton et al. 2012). Another important method is 

the random encounter model (REM), which provides a means of estimating abundance from 

camera trap data without individual recognition (Rowcliffe et al. 2008) and is based on 

physical theory regarding rates of collision between gas molecules and its comparisons to 

animal movement (Hutchinson and Waser 2007). Accompanying methods have been 

developed to estimate two critical terms in REM, the zone of detection around a camera 

(Rowcliffe et al. 2011), and the target species’ movement rate (Rowcliffe et al. 2016). REM 

has been successfully applied, such as for estimating lion densities in Tanzania (Cusack et 

al. 2015). Concurrent with the development of camera trap ecological monitoring is the 

proliferation of software tools (Young et al. 2018), from image tagging and management 

(Krishnappa and Turner 2014, Ivan and Newkirk 2016, Niedballa et al. 2016, Nazir et al. 

2017, Gerum et al. 2017) to R packages for occupancy modelling (Fiske and Chandler 2011) 

or rarefaction analysis (Hsieh et al. 2016). 

As the popularity of camera traps grows, there is an increasing need for open standards 

on data sharing (Hampton et al. 2013, 2015, Forrester et al. 2016), and collating or 

coordinating studies to achieve large scale monitoring (Burton et al. 2015, Steenweg et al. 

2017). Examples of large-scale camera trapping efforts include the Global Biodiversity 

Information Facility (GBIF; https://www.gbif.org/) or the Tropical Ecology Assessment and 

Monitoring Network (TEAM; http://www.teamnetwork.org/). Camera trap data from the 

TEAM network has been incorporated into the Wildlife Picture Index (O’Brien 2010), which 

was used for measuring proportional change in occupancy for mammals from Mongolia 

(Townsend et al. 2014) to Costa Rica (Ahumada et al. 2013). Large-scale camera trapping 

results in large image datasets, and ecologists are increasingly turning to crowdsourcing – 

and more broadly, citizen science – to meet the challenge of classifying these images 

(Steenweg et al. 2017). 

1.4 Citizen science 

Since the first use of the term in the 1990s (Irwin 1995), the definition of citizen science 

most commonly used today is the process of involving non-professionals in scientific 

enquiry (Cohn 2008, Silvertown 2009, Bonney et al. 2009). While not the focus of this thesis, 

it should be noted that the definition of citizen science can be fluid (Resnik et al. 2015), and 

major scientific discoveries were sometimes not made by those professionally employed as 

researchers. Indeed, Albert Einstein was a patent examiner and Gregor Mendel was an 

https://www.gbif.org/
http://www.teamnetwork.org/
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Augustinian friar when their now-well-known scientific contributions were made 

(Silvertown 2009, Resnik et al. 2015). If we use the currently popular definition of involving 

non-professionals in science, then an early example of citizen science was the annual 

Christmas bird count held by the National Audubon Society in the United States since 1900, 

with over 60 million birds counted to date (Silvertown 2009). In fact, avian ecology has one 

of the longest histories of citizen science involvement, with thousands of annual participants 

collecting data since the mid-20th century via the North American 

(https://www.pwrc.usgs.gov/bbs) and United Kingdom (https://www.bto.org/volunteer-

surveys/bbs) breeding bird surveys. This crowdsourcing of data collection is one of the most 

common forms of ecological citizen science, and covers diverse themes from tracking 

invasive insects (Pocock and Evans 2014), anuran call surveys (Weir et al. 2005), mapping 

coral reefs (Loerzel et al. 2017, Lucrezi et al. 2018), or plant phenology (Tansey et al. 2017). 

Crowdsourced data collection has also been employed in other scientific fields from 

astronomy (Willett et al. 2013) to meteorology (Hennon et al. 2014). 

In addition to data collection, citizen scientists also aid in data classification (Kosmala et 

al. 2016). It began in the late 1990s with astronomy projects such as NASA Clickworkers 

(http://nasaclickworkers.com/classic.php) or the SETI@Home “volunteer computing” 

project (Anderson et al. 2002). In recent years, crowdsourced data classification has become 

a larger part of mainstream scientific discourse, likely due to the rapid development of digital 

tools which eased participation (Newman et al. 2012), and the requirement by many funding 

agencies for researchers to incorporate public outreach in their work (Silvertown 2009). A 

particularly successful example is Foldit (https://fold.it/) where citizen scientists are players 

in a game of modelling protein structures (Cooper et al. 2010) and the results of which have 

aided the design of antiretroviral drugs (Khatib et al. 2011b). There are now several online 

citizen science platforms such as Zooniverse (McMaster et al. 2014) or Scistarter (Cavalier 

et al. 2014) providing lists of projects volunteers can browse, participate in, or even fund. 

The current state-of-the-art is using user-contributed classifications to train machine learning 

and artificial intelligence algorithms for purposes ranging from protein folding (Khatib et al. 

2011a), subcellular microscopy (Sullivan et al. 2018), to voice recognition (e.g., the Mozilla 

Common Voice project; https://voice.mozilla.org/). 

Many data classification projects involve processing images, and they cover diverse 

subjects. An early web-based project, Galaxy Zoo (Schawinski and Lintott 2014), involved 

an online community in classifying stellar objects from telescope images. For ecological 

studies, there are successful projects on Zooniverse such as Invader ID for identifying non-

native marine invertebrates (https://www.zooniverse.org/projects/serc/invader-id) or 

https://www.pwrc.usgs.gov/bbs
https://www.bto.org/volunteer-surveys/bbs
https://www.bto.org/volunteer-surveys/bbs
http://nasaclickworkers.com/classic.php
https://fold.it/
https://voice.mozilla.org/
https://www.zooniverse.org/projects/serc/invader-id
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Rainforest Flowers categorising images of flowers 

(https://www.zooniverse.org/projects/tomomi/rainforest-flowers). Outside of Zooniverse, 

and with the rapid proliferation of cheap digital photography equipment such as mobile 

phones, even those with little scientific training can study the biodiversity of their 

surroundings. One notable example is iSpot (https://www.ispotnature.org/), where citizen 

scientists share photos they took of local wildlife and collaboratively identify and map them 

(Silvertown et al. 2015). A more recent project is BeeWatch, an online platform where 

citizen scientists submit and identify photos of bumblebees, and is notable for automated 

feedback that improves user accuracy and engagement (van der Wal et al. 2016). There is 

even research based on ecological data derived from tourist “selfies” taken at nature reserves 

(Richards 2014). 

Perhaps most relevant to this thesis are citizen science projects involving the deployment 

and collection of camera traps such as the eMammal project in the United States (McShea 

et al. 2014), or the classification of animals from the obtained images such as Snapshot 

Serengeti (Swanson et al. 2015) or Instant Wild (Verma et al. 2016). It has been argued that 

citizen science is an important tool in addressing the challenges of large-scale ecological 

monitoring (Devictor et al. 2010, Conrad and Hilchey 2011, Amano et al. 2016), and camera 

trapping projects such as those mentioned above could play a crucial role (Steenweg et al. 

2017). However, up to the time of my thesis research, there was no ongoing wildlife camera 

trapping project where citizen scientists were engaged in both the collection and 

classification of data. In addition, the loss of human-nature interactions in heavily developed 

landscapes – dubbed the “extinction of experience” (Soga and Gaston 2016) – is a strong 

reason for involving non-professional ecologists in ecology and conservation (Schuttler et 

al. 2018). It is with these considerations in mind that I now introduce MammalWeb, the 

citizen science project which is the focus of this thesis. 

1.5 The MammalWeb project 

The popular Zooniverse citizen science platform is based in the United Kingdom, which 

has a long history of citizen science and popular interest in natural history. At the beginning 

of the 20th century, there were already 500 local natural history societies with almost 100,000 

members across the country (McIntosh 1986). Their thorough records of natural history 

provide a baseline from which one could evaluate changes in Great Britain’s biodiversity, 

and led to the formation of the government-supported Biological Records Centre in 1964 

(Pocock et al. 2015). The Biological Records Centre currently coordinates the collection and 

archiving of biodiversity data from over 80 recording schemes, which is fed into the National 

Biodiversity Network (NBN; http://www.nbn.org.uk/) and the Global Biodiversity 

https://www.zooniverse.org/projects/tomomi/rainforest-flowers
https://www.ispotnature.org/
http://www.nbn.org.uk/
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Information Facility (GBIF; https://www.gbif.org/). Over the past decade, Open Air 

Laboratories (OPAL; http://www.opalexplorenature.org/), a network of academic 

institutions led by Imperial College London, has organised national citizen science 

biodiversity and environment surveys with great success (Davies et al. 2016, Lakeman-

Fraser et al. 2016). In addition, ornithology-focused citizen science projects are very popular. 

In addition to the annual Breeding Bird Survey organised by the British Trust for 

Ornithology (BTO), there is also the Nest Records Scheme (NRS), whose citizen scientist-

collected records since 1939 have provided valuable insight into long term ecological change 

(Crick et al. 2003) including the discovery that bird egg-laying has become earlier each year 

as a result of climate change (Crick and Sparks 1999). 

In contrast with birds, data availability and survey effort for wild mammals are uneven 

across the UK (Battersby and Greenwood 2004, Croft et al. 2017). One aim of my research 

is to tackle this problem through developing a novel method for assessing the diversity and 

distribution of Britain’s wild mammals, one which could be scaled up. Mammals are the 

focus not just for their ecological importance (Berger et al. 2001, Côté et al. 2004, Gill and 

Morgan 2010), but also their economic and cultural significance (Marboutin et al. 2003, 

Wardle and Bardgett 2004), conflict with human activities (Bruinderink and Hazebroek 

1996), and disease transmission (Anderson and Trewhella 1985, Cassidy 2012, Stokstad 

2017). 

I have contributed to a significant degree to the production of MammalWeb, an ongoing 

project which partners with citizen scientists across north-east England (centred around 

County Durham) to deploy camera traps for monitoring wild mammals. The project begun 

as a collaboration between our research group at Durham University and the Durham 

Wildlife Trust (https://durhamwt.com/), citizen scientists can choose to participate as one or 

both roles of data collectors (“Trappers”) or classifiers (“Spotters”). Informed by similar 

projects such as eMammal (McShea et al. 2015), Trappers are loaned (or can bring their own) 

camera traps and trained to deploy them following a standard protocol. They submit the 

camera trap images collected to our web platform (http://www.MammalWeb.org/) where 

registered Spotters collaboratively classify them using an interface similar to that of 

Zooniverse (Swanson et al. 2015), but designed to process entire sequences of images taken 

in quick succession. Since launching this project in mid-2015, more than 250,000 camera 

trap images have been submitted to MammalWeb from 234 sites mostly in the north-east of 

England. In the following section, I will outline the structure of the rest of this thesis with 

the summaries and aims of each chapter. 

https://www.gbif.org/
http://www.opalexplorenature.org/
https://durhamwt.com/
http://www.mammalweb.org/
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1.6 Thesis structure and aims 

1.6.1 MammalWeb organisation 

In addition to the challenges of large-scale ecological monitoring, the MammalWeb 

project was also faced with the task of recruiting, training, and sustaining a group of local 

citizen scientists to conduct effective camera trapping. In Chapter 2, I will describe the 

organisation of MammalWeb from pre-project-launch tests within Durham University; the 

logistics of initial and ongoing recruitment of citizen scientists; orchestrating the offline and 

online infrastructure of the project; metrics of project growth in terms of user activity; and 

reflections on evaluating project outcomes in terms of sustained engagement. 

1.6.2 Economical crowdsourcing for camera trap image classification 

As discussed above, there have been successful online citizen science projects which 

crowdsource data classifications including those for ecological monitoring. However, for 

projects that are more localised or monitoring less charismatic fauna, the demand for 

crowdsourced classifications (such as those for camera trap images) might surpass supply. 

On the MammalWeb website, our interface for classifying images is built such that the same 

sequence of camera trap images is shown to multiple Spotters. In Chapter 3, I develop a 

novel method for deriving consensus classifications from aggregated Spotter inputs for each 

image sequence via a logistic regression model. I discuss how these consensus classifications 

fit into an algorithm for prioritising which images to show classifiers, and its wider uses for 

citizen science-based wildlife monitoring. 

1.6.3 School students conducting, contributing to and communicating 

ecological research — experiences of a school-university partnership 

One goal of MammalWeb is to engage citizen scientists on a higher level, rather than the 

simple crowdsourcing of data collection. As part of that effort, I obtained funding from the 

British Ecological Society (BES) to pilot a partnership with our local Belmont Community 

School. This entailed working with a group of secondary school students so that they were 

not just MammalWeb citizen scientists, but also ecological ambassadors who deliver 

ecological outreach to their community. Chapter 4 describes this part of the MammalWeb 

project and discusses the lessons learned for pairing citizen science with education, including 

impact on the students which was documented in a professionally made video. 

1.6.4 Handling uncertain detections and discretising data in camera 

trap-based occupancy modelling 

Much of the effort since launching MammalWeb in 2015 has been organising citizen 

scientists, ensuring sustained monitoring across time and space, and economically working 
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with our userbase for crowdsourced data collection and classification. There is now a need 

to investigate the analytical tools with which we can use MammalWeb data. As noted earlier 

in this chapter, there are various methods for analysing camera trap data, of which occupancy 

is a frequently estimated parameter when direct measurements of abundance are not 

necessary. Modelling occupancy requires a dataset comprised of detection and non-detection 

records from surveys conducted across sampling sites within a region of interest. For citizen 

science projects that crowdsource data classification, uncertainty is introduced into these 

detections due to inaccuracies inherent across classifiers. In Chapter 5, I begin with 

simulations to examine this issue along with two others common to camera trapping studies: 

How to discretise continuous camera trap observations into discrete detection events for 

occupancy; and the impact of missing data on the accuracy of estimated occupancy. I then 

explore the incorporation of uncertain detections into occupancy modelling through a 

resampling approach. 

1.6.5 General discussion 

In the final chapter, I will put my work on the MammalWeb project in the wider context 

of citizen science and ecological monitoring. Specifically, I will focus on lessons learned 

that can be applied to sustaining citizen science engagement (such as the gamifying citizen 

science, partnering with libraries and museums, and further discussion on how to evaluate 

project outcomes), managing the crowdsourcing of data classification (such as A/B testing 

of different online user experiences and developing machine learning algorithms), and 

making ecological inferences from the results (such as the current limitations of, and ways 

to improve upon, the occupancy modelling I did, and the potential of using random encounter 

models). It concludes with a reflection on how MammalWeb is taking citizen science from 

a centralised to distributed topology where citizen scientists are empowered to do their own 

research and communicate results.



 

13 

 



 

14 

 

Chapter 2 - MammalWeb organisation 

2.1 Introduction 

Ecosystems across the world are experiencing rapid biodiversity loss strongly related to 

human activities (Butchart et al. 2010). The defaunation of the planet (Dirzo et al. 2014) has 

adverse impacts on ecosystem services, which are important for human livelihoods 

(Millennium Ecosystem Assessment 2005, Díaz et al. 2006, Perrings et al. 2011b). To 

understand these changes, there is a need for large-scale ecological monitoring (Fischer et 

al. 2010, Stephens et al. 2015). Of the solutions proposed, two are of particular interest in 

this chapter (and this thesis): The use of motion-sensing camera traps (Burton et al. 2015, 

Steenweg et al. 2017), and scaling up their reach by involving citizen scientists (Kosmala et 

al. 2016, Steenweg et al. 2017). Indeed, this has been attempted where citizen scientists have 

helped professional ecologists deploy camera traps (McShea et al. 2015) or classify images 

(Swanson et al. 2015). In the United Kingdom, there is a long history of citizen science 

projects for ecological monitoring (Pocock et al. 2015), including the highly successful 

annual Breeding Bird Survey and Nest Record Scheme (e.g., Crick and Sparks 1999). 

However, the monitoring effort for wild mammals remains uneven (Croft et al. 2017). 

In this chapter, I will describe the organisation and management of the MammalWeb 

citizen science project (http://www.MammalWeb.org/) which I have been piloting since 

2015. This project enlists the help of citizen scientists in the collection and classification of 

camera trap data (a rare combination), with an aim to develop a model that is suitable for 

large-scale monitoring of wild mammals in Britain while engaging citizen scientists on a 

level beyond the collection and classification of data. In the following sections, I will provide 

an overview of MammalWeb including the recruitment and organisation of citizen scientists; 

the online infrastructure of our web platform; and data outputs for downstream analyses and 

archiving. I believe documenting the organisation of citizen science projects is important but 

not well represented in literature, and the contents of this chapter will be of value to other 

citizen science practitioners. 

In addition, I will explain the metrics used to measure project growth and citizen science 

engagement since the inception of MammalWeb through the end of 2018. This includes 

quantitative analyses on impacts to those metrics from “intervention” events such as public 

outreach events, talks, media coverage, competitions, or newsletters. I also explored the 

temporal patterns of this data in the form of a weekend versus weekday comparison. 

Qualitatively, I will characterise the email correspondence between us and citizen scientists 

http://www.mammalweb.org/
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to derive practical recommendations on how to better understand participant needs to guide 

project development. 

This chapter concludes with a discussion on the results of those efforts, possibilities for 

improving project evaluation, and improvements to the project “user experience” that we are 

implementing or could in the future. 

2.2 Methods 

 

Figure 2.1. MammalWeb project organisation. Citizen scientists were recruited from Durham University, 

members of the Durham Wildlife Trust, and local schools. They could be one or both of Trappers, who deploy 

camera traps, and Spotters, who classify images MammalWeb. The web platform is hosted on the Amazon 

Web Services (AWS) Elastic Compute Cloud (EC2) with interfaces for camera trap image upload (Trappers 

page) and classifications (Spotter page). This is tied into image storage on AWS Elastic Block Store (EBS) 

while image classifications and other data are stored in a MySQL server on the AWS Relational Database 

Service (RDS). We provide an expert classified “gold standard” set of photos from which consensus 

classifications could be calculated from user classifications. These consensus classifications are used for 

downstream analyses and submission to public data repositories. 

Before MammalWeb, there was a short-term trial organised in early 2014 where 30 

students from Durham University were recruited to deploy camera traps. These students, in 

groups of three, were lent Reconyx HC500 camera traps for monitoring wildlife on 

university grounds. Through informal dialogue with the students, we derived qualitative 

guidance for MammalWeb, such as that camera traps deployed in the area need to have their 

batteries replaced and images downloaded at least once a month, or experience with the 

logistics of organising engagement meetings. 

With this initial experience, we launched MammalWeb as a collaboration between us at 

Durham University with the local Durham Wildlife Trust. Partially funded by a United 

Kingdom Heritage Lottery Fund (grant Number: OH‐14‐06474) and my PhD scholarship 
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from Durham University, we began a full-scale roll-out of the project to those living in or 

near County Durham, England. In the following sections, I describe the process of recruiting 

MammalWeb citizen scientists, the roles of data collectors (“Trappers”) and classifiers 

(“Spotters”), the project web platform’s online infrastructure, and the data outputs from this 

process. The relationship between these project components is visualised in Figure 2.1. This 

section concludes with a description of the quantitative analyses performed on participant 

engagement metrics to gauge impacts from intervention events and temporal patterns. 

2.2.1 Initial recruitment 

Since its inception, the MammalWeb project has relied on citizen scientists for two tasks, 

the capture and classification of camera trap photos. Each citizen scientist can participate in 

one or both roles, which are called Trapper and Spotter, respectively (Figure 2.1). 

Our first recruitment drive for Trappers and Spotters was in May 2015 when we 

advertised MammalWeb to members of the Durham Wildlife Trust and the Durham 

University community. Within the University, we posted a call for citizen scientists through 

the internal Dialogue Signposts (https://www.dur.ac.uk/dialogue/signposts/) and 

Greenspace sustainability newsletters (https://www.dur.ac.uk/greenspace/). These 

newsletters should reach all with a University email address. In these postings, we noted that 

anyone could participate as a Trapper, Spotter, or both. 

2.2.2 Trappers 

At Durham University, we received 45 responses to the initial call for participants, the 

majority of which were staff members in non-academic roles. Email was the primary means 

of communication with this group. I trained the University-based citizen scientists through 

two engagement meetings in June 2015. During each meeting, I began with a presentation 

on the operation of camera traps and its application to ecological monitoring where I 

emphasised the importance of closely following the camera trapping protocol (see 

supplementary material section 2.5 below). Each Trapper could select their own monitoring 

sites if they followed the protocol. The training sessions always included hands on tutorials 

where all participants could try setting up a camera trap and ask questions. They were 

reminded that for MammalWeb, a camera trap deployment is defined as any recorded time 

period during which a Trapper set up a camera trap to take photos. This means even if there 

was no wildlife presence at a site and subsequently no photos were obtained, this still counted 

as a valid deployment. This is important because the absence of detection during a 

deployment is itself useful data (such as for estimating occupancy, e.g., MacKenzie et al. 

2002), and the length of a deployment is a measure of survey effort. At the end of the meeting, 

each citizen scientist was lent a camera trap and the appropriate locking mechanism. The 

https://www.dur.ac.uk/dialogue/signposts/
https://www.dur.ac.uk/greenspace/
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cameras included 20 Browning Strikeforce BTC-5, 17 Reconyx HC500, two Reconyx 

HC600, two Little Acorn Ltl-5211A, two Scoutguard SG550V-31B, and two Bushnell 

NatureView Cam HD. Citizen scientists could also use any camera traps they own to 

participate. For those who couldn’t attend the engagement meetings or responded after the 

original call, we met with each individually and provided the same training. 

The Durham Wildlife Trust loaned camera traps to 49 of its members whose primary 

means of communication was also email. Thirty-three of those attended group training 

sessions held at the Durham Wildlife Trust office in their Rainton Meadows reserve. The 

rest were trained through individual visits. The training process was the same as that at 

Durham University as described above. The camera traps loaned by the Durham Wildlife 

Trust include Bushnell Nature View, Bushnell Nature View Live, Bushnell HD Trophy, Ltl 

Acorn (Ltl 6310 MC), and Minox DTC-650. The MammalWeb project proved popular, and 

there was a waiting list for camera traps from the Durham Wildlife Trust during the two 

years examined in this chapter. 

In addition to email, communication to citizen scientists was done through social media 

platforms including Twitter (@MammalWeb on https://www.twitter.com/) and Facebook 

(https://www.facebook.com/MammalWeb). 

From email communications with the Trappers, we learned that once they have identified 

a deployment site, it was best to first set up the camera trap for just a few days and check it. 

If the photos obtained were level and taken at the desired angle, then the camera trap would 

be deployed for a longer time, usually up to a month. 

At the end of each deployment, we asked Trappers to upload their camera trap photos to 

the MammalWeb website. Each registered Trapper on MammalWeb has access to a 

dedicated page where they could define camera trapping sites and upload photos (Figure 

2.2). 

https://twitter.com/mammalweb
https://www.twitter.com/
https://www.facebook.com/MammalWeb
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Figure 2.2. MammalWeb Trapper page for citizen scientists to define camera trap sites and upload photos. 

When reaching this page for the first time, a registered MammalWeb Trapper would see 

an empty table. Their task when preparing photos to upload would be defining a camera trap 

site with the following attributes: 

• Site Name – This is a unique name for the Trapper’s record and to distinguish it 

from others. 

• OS grid reference – The user can use an embedded Google Maps view (reachable 

by clicking on the red pin icon) to specify the location of their camera trap at this 

site. It is recorded as an eight-digit United Kingdom Ordnance Survey Grid 

Reference. Alternatively, there is a text box with which the user can manually 

enter the grid reference at up to ten-digit resolution. 

• Habitat – A list of habitat types for the Trapper to choose from. This refers to the 

camera trap’s immediate surroundings within 10 m. See Table 2.1 for the list, 

accompanying definitions shown to users, and corresponding habitat types in 

other classification systems. 

• Purpose of Study – This list includes “private use” (which applies to MammalWeb 

citizen scientists) or “part of scientific study”. The latter option is for cases where 

other camera trapping research projects wish to contribute to MammalWeb. 

• Camera Type – For specifying the brand and model of the camera trap(s) used at 

this site. This list is occasionally updated when participants use camera traps that 

are not already on it. 
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• Can you/the camera see water? – This is for the Trapper to indicate whether a 

permanent body of water (stream, river, pond, or ocean) is visible in the camera 

trap’s field of view. 

• Camera Height (cm) – Distance between the camera trap and the ground. 

• Notes – Any additional notes by the Trapper. 

Once defined, each site will be shown as a row in the Trapper page table. 

 

Table 2.1. MammalWeb habitat types and corresponding types in other classification systems. 

Habitat Definition LCM 2007 
classes 

LUCS 
categories 

BTO Breeding 
Bird Survey 

forest High density forest 

>60% canopy 

cover. 

Broadleaved 

woodland; 

Coniferous 

Woodland 

Forestry and 

woodland 

Woodland 

woodland Low density forest 

<60% canopy 

cover. 

Broadleaved 

woodland; 

Coniferous 

Woodland 

Forestry and 

woodland 

Woodland 

scrubland Dominated by 

shrubs, i.e. small to 

medium woody 

plants <8 m high. 

Heather Rough 

grassland and 

bracken; 

Natural and 

semi-natural 

land 

Scrubland 

heath A kind of scrubland 

characterised by 

open, low-growing 

woody plants < 2 m 

high. 

Heather; 

Heather 

grassland 

Rough 

grassland and 

bracken; 

Natural and 

semi-natural 

land 

Heathland and 

bogs 

grassland Dominated by 

grasses. 

Improved 

grassland; 

Rough 

grassland; 

Neutral 

grassland; 

Calcareous 

grassland 

Rough 

grassland and 

bracken; 

Natural and 

semi-natural 

land 

Semi-natural 

grassland/Marsh 

marsh A wetland 

dominated by 

herbaceous, i.e. 

non-woody plants. 

Fen, Marsh and 

Swamp 

Natural and 

semi-natural 

land 

Semi-natural 

grassland/Marsh 

bog A wetland with 

few/no trees, some 

shrubs, with lots of 

peat accumulation. 

Bog Natural and 

semi-natural 

land 

Heathland and 

bogs 
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Habitat Definition LCM 2007 
classes 

LUCS 
categories 

BTO Breeding 
Bird Survey 

swamp A forested wetland. Fen, Marsh and 

Swamp 

Natural and 

semi-natural 

land 

Semi-natural 

grassland/Marsh 

rocky Lots of bare rocks 

with little 

vegetation. 

Inland rock Natural and 

semi-natural 

land 

Inland rock 

coastal Right on the coast, 

beach. 

Salt water; 

Supra-littoral 

rock; Supra-

littoral 

sediment; 

Littoral rock; 

Saltmarsh 

Natural and 

semi-natural 

land; Water 

Coastal 

riverbank Right on the 

riverbank. 

Freshwater Natural and 

semi-natural 

land; Water 

Waterbodies 

farmland Pasture, etc. Arable and 

horticulture 

Agricultural 

land 

Farmland 

garden Like a backyard 

garden, probably 

right next to a 

residence. 

Urban; 

Suburban 

Residential Human sites 

park Recreational place. Urban; 

Suburban 

Leisure and 

recreational 

buildings 

Human sites 

residential Houses, 

apartments, etc. 

Urban; 

Suburban 

Residential Human sites 

commercial Stores and offices. Urban; 

Suburban 

Offices Human sites 

industrial Factories and 

warehouses. 

Urban; 

Suburban 

Industry Human sites 

 

After a camera trap deployment, a MammalWeb Trapper will upload photos from the 

camera trap by clicking on the “Upload” button corresponding to the site of the deployment. 

This button takes the user to a page where they must enter the start and end timestamps of 

the deployment. These timestamps represent when the camera trap was set up and taken 

down, and are not for when the first and last images were taken. After entering the 

deployment time period, the Trapper can then upload the camera trap photos. Since the 

deployment time is a critical measure of sampling effort, the upload mechanism checks the 

timestamps of the uploaded photos fall within the deployment period. Photos taken outside 

of that time (if any) are rejected and would require manual review. After uploading photos, 

the corresponding entry for that site will display the number of photos uploaded for it thus 

far. 
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Approximately once every hour, the MammalWeb system will process new uploads and 

group photos into sequences. For MammalWeb, sequences are defined as photos with 

timestamps within 10 seconds of each other. Typically, this means that photos taken with a 

camera traps burst mode will fall within the same sequence. When registered users classify 

– or “Spot” – MammalWeb photos, they are shown an image sequence, by default, randomly 

drawn from the global pool, and are encourage to classify an entire sequence before moving 

to another. We believe that this design is of convenience to users since adjacent images 

within the same sequence may provide contextual information which aids classification. 

2.2.3 Spotters 

MammalWeb citizen scientists can also be Spotters by classifying the wildlife depicted 

in contributed camera trap images. Anyone with Internet access can register to be a Spotter, 

and don’t have to be respondents to the initial call for participants. 

After logging in, the user is presented with basic statistics on the total number of photos 

on MammalWeb, the number which the user has classified, number of animals classified, 

and the number of species they represent. Before proceeding, if the user has uploaded photos, 

they can choose to classify those first. 

The MammalWeb Spotter page (Figure 2.3) is dominated by a camera trap image 

sequence randomly selected from the global pool or, if specified when logging in, the user’s 

uploaded photos. This photo is always part of a sequence which the Spotter can move 

through with the navigation buttons (“Start”, “Previous”, “Next”, and “Next sequence”) 

above it (Figure 2.3). As of April 2018, in response to Spotter feedback, the interface has 

been updated such that arrows for moving backwards and forwards through a photo sequence 

are located on the two sides of an image, and the user only needs to provide a classification 

for the entire sequence rather than its individual constituent photos. 
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Figure 2.3. MammalWeb Spotter page for classifying camera trap photo sequences. 

On the right is a three-page list of species the Spotter can choose from. For MammalWeb, 

a “species” could mean an individual species, a general group named “small rodent”, or 

“Don’t Know” and “Other”. Once the Spotter has identified the animal(s) depicted in the 

photo, they would click on the corresponding button in this list. This will open a popup 

window with example photos and a brief description of the animal. In this window, the 

Spotter will then specify the number of individuals of the species that are present, and their 

sex and age (juvenile or adult). Note that for cases where there is more than one 

“combination” of sexes and ages of the same species in a photo, the Spotter will need to 

classify them separately. For example, if there is one adult female roe deer and two juvenile 

roe deer in a photo, the user needs to click on the “Roe Deer” button twice: Once to specify 

one “Adult” “Female”, and the other to indicate two “Juvenile[s]” with “Unknown” sex. All 

animals currently classified for the image are listed on the bottom of the page. 

Once a Spotter has classified all animals in an image, they can click on “Next” to move 

to the next photo in the sequence. Because the photos in a sequence are taken closely together, 

the list of animals classified in one image will carry over to the next. This way, if there are 

no changes in the composition of photos, the Spotter can simply click on “Next” again until 

they reach the end of the sequence. 

The presence of the “Next” and “Previous” buttons allows Spotters to rapidly move back 

and forth through a sequence. While an individual photo may be difficult to classify (due to, 

for example, motion blur or only part of an animal being visible), contextual information 

provided by adjacent photos can aid classification. 



 

23 

 

At any point, the user can click on “Next sequence” to classify camera trap photos from 

another sequence. While this can be done even before all images in the current sequence are 

fully classified, we encourage Spotters to complete a sequence before moving to another. 

Photo sequences with classifications are not removed from the global pool and will be 

presented again to other Spotters. This way, we can accumulate multiple classifications per 

photo (and sequence) from which to calculate consensus classifications as described in the 

next chapter. On 7 December 2018, MammalWeb was updated so that sequences without 

any classifications are prioritised for classification. 

There are two additional buttons with a different behaviour: “Nothing” and “Human”. If 

a photo is “blank” and contains no wildlife, the Spotter can click on “Nothing” to classify it 

as such. This immediately takes the user to the next photo in the sequence without needing 

to click “Next”, but the “Nothing” classification will not carry over as with the other species. 

The “Human” button behaves the same way, except photos classified as “Human” will be 

taken out of the global pool of images so that they will not be displayed again for privacy. 

2.2.4 Ongoing recruitment 

MammalWeb was promoted several times during the span of the project. This included 

academic conferences such as the annual meetings of the British Ecological Society, the 

Ecological Society of America, the Society of Conservation Biology, the European Citizen 

Science Association, or the Ecological Society of Germany, Austria, and Switzerland. Non-

academic outreach events included activities at local events – Belmont Community Fair and 

Celebrate Science – in March 2016 and October 2017 designed by school students with 

support from a British Ecological Society Outreach Grant. MammalWeb also had a 

dedicated tent for outreach during the June 2016 Glastonbury music festival in Somerset, 

England. 

During the period covered in this chapter, we held two competitions to stimulate Spotter 

engagement. In April-May 2017, we held a competition for the most photos classified that 

month and best photo uploaded where winners received camera traps. The second 

competition was in November 2018, where each classification counted as one entry in a prize 

draw for vouchers redeemable on the online retailer Amazon. 

The project was also promoted through social media during this time, and we 

disseminated printed flyers to local schools and wildlife groups. From these efforts, the 

number of MammalWeb Spotters continued to grow. And when we were contacted by 

prospective MammalWeb Trappers, we would train them individually. After the initial 

recruitment period, we also partnered with a local school in north-east England to not only 

involve students as Trappers and Spotters, but also as ecological ambassadors to their 



 

24 

 

community as a way to take citizen science engagement to the higher, “collaborative science” 

level as postulated by Haklay (2013). This will be discussed in Chapter 5. 

2.2.5 Online infrastructure 

The online infrastructure of the MammalWeb project is hosted on Amazon Web Services 

(AWS) (Figure 2.1). The primary user-facing frontend at http://www.MammalWeb.org/ 

was built on top of the open source Joomla! 3.4.5 (The Joomla Project Team 2015) content 

management system (CMS), and includes the Trapper and Spotter pages previously 

described. This is run from on instance of the AWS Elastic Compute Cloud (EC2) 

(https://aws.amazon.com/ec2/). Photos uploaded through the Trapper page are stored in an 

AWS Elastic Block Store (EBS) (https://aws.amazon.com/ebs/) filesystem attached to the 

EC2 instance. All data, including photo metadata, user information, camera trap sites, 

deployment information, and photo classifications are stored in a MySQL 5.6 database 

(MySQL AB et al. 2015) (Figure 2.4) running on the AWS Relational Database Service 

(RDS) (https://aws.amazon.com/rds/) and administered with phpMyAdmin 4.0.10.20 (The 

phpMyAdmin Project 2015). 

http://www.mammalweb.org/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/
https://aws.amazon.com/rds/
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Figure 2.4. Primary tables in the MammalWeb MySQL database. Coloured columns are those shared by more 

than one table. The “Options” table stores values that other tables and the website interface can choose from, 

such as the list of species on the Spotter page, or list of habitat types on the Trapper photo upload page. 

When a MammalWeb Trapper uploads camera trap photos to a defined site, the 

timestamps of when the photos were taken (“taken” in the database Photo table, Figure 2.4) 

are recorded in the database and associated with the photos. There are mechanisms to check 

that each uploaded file is indeed an image, and each photo is renamed to its checksum (e.g. 

c09038f027c64e1eb744dc6d37964734.jpg) in addition to being assigned a unique photo ID 

and sequence ID (“photo_id” and “sequence_id” in the database). A checksum is a piece of 

data (in this case, an alphanumeric string of characters) computationally derived from a file 

to uniquely identify it. With checksums acting as “fingerprints” for each image, duplicate 

uploads can be identified and prevented. A sequence is defined in MammalWeb as all photos 

taken within 10 seconds of each other. This was designed as a convenience for Spotters, so 

that by viewing images taken together, contextual information (such as the movement of an 

animal between images in the sequence) will aid classification. 
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When classifying photo sequences, the Spotter page pulls photos from the global pool 

which are stored on the EBS filesystem (a Spotter can also choose to classify their own 

photos first). Metadata collected with each classification from the Spotter page, including 

species, sex, age, and number of individuals (“species”, “gender”, “age”, “number”, and 

“timestamp” in the database) are stored in the MySQL database. 

2.2.6 Analyses and data archiving 

2.2.6.1 Analysing citizen science engagement 

As described above, we have been promoting the MammalWeb project through various 

channels since launch. To understand the impacts of these “intervention” events on citizen 

science engagement, I collated the history of MammalWeb interventions of the following 

types: blog posts, competitions, events (such as outreach events or festival presences), news 

coverage, email newsletters, and public talks. For each intervention, I derived three 

engagement metrics from the MammalWeb MySQL database – the number of new users 

registered, number of active Spotters, and the median number of sequence classifications per 

Spotter (all three are per day) – for a period spanning from five days before to five days after 

the intervention. I then calculated the proportional change in these metrics before and after 

each intervention. This was based on the mean of the classifications metric and sums of the 

two Spotter metrics across the five-day before and after periods. For example, if the mean 

of the median daily classifications per Spotter was 4 before and 6 after an intervention, then 

the proportional change would be 6 ÷ 4 = 1.5. Therefore, each intervention event would 

have one set of corresponding proportional changes in the three metrics. Of the interventions, 

the two competitions in 2017 and 2018 lasted more than a day, and their start times were 

used for the purpose of this analysis. I also created a group of 10 non-intervention events 

randomly selected such that their before and after periods would not overlap with any other 

intervention. Proportional changes in the three metrics were also calculated for this group. 

For each group (all interventions and the non-interventions group, total seven groups), I 

performed a one-sample Wilcoxon signed rank test with a null hypothesis of the data being 

centred around 1.0 (i.e., no proportional change before and after an event). 

The two competitions we held (from 1 April to 15 May 2017, and from 12 to 26 

November 2018) were substantially longer than other interventions, none of which lasted 

more than a day. Therefore, I conducted a separate analysis using the raw, daily values of 

the three metrics group into those from during the competition and the periods five-days and 

before the competition. The length of the before and after periods were chosen to minimise 

possible overlap with effects from other interventions. Here, I performed pair-wise tw-
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sample Wilcoxon signed rank tests (null hypothesis of no difference) between the three 

groups of data to explore possible changes in engagement resulting from the competitions. 

The final quantitative analysis was an exploration of temporal patterns in the three 

engagement metrics. This was done by grouping them into weekend and weekday categories 

where they were also compared with the two-sample Wilcoxon signed rank test (null 

hypothesis of no difference). 

In addition to the above, and because email has been the primary form of communication 

because us and MammalWeb citizen scientists, I qualitatively reviewed the history of our 

email correspondence. I will characterise the primary types of these email exchanges and 

extract practical lessons learned on the broader impact of MammalWeb and considerations 

for running citizen science projects in general. 

2.2.6.2 Gold standard and consensus classifications 

Each camera trap photo (except those with humans) in MammalWeb’s global pool are 

shown to multiple Spotters for classification. This acts as a voting system from which we 

can calculate consensus classifications on a sequence level. Once a confident consensus has 

been reached for a sequence, all of its constituent photos could be retired from the pool so 

that Spotter effort can be focused on those needing more classifications. The potential 

benefits of implementing this retirement scheme is discussed in the next chapter. 

To determine what constitutes sufficient confidence in consensus classifications, we 

require expert classifications in addition to those by the citizen scientists. We did this through 

a combination of classifying photos as Spotters on MammalWeb and classifying photos 

downloaded manually. Photo sequences with consensus classifications that have confidence 

levels above a set threshold (e.g., 99%) can then be considered individual (though not 

necessarily independent, as discussed in Chapter 5) observations of wildlife. This is the set 

of data used for downstream analyses and archiving in public data repositories (see Chapter 

3). 

2.2.6.3 Data archiving and accessibility 

All camera trap photos on MammalWeb are shared under the Creative Commons 

Attribution-ShareAlike 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/). 

Chapter 3 describes the data that has been submitted to online repositories, which includes 

the UK’s Environmental Records Information Centre (ERIC) North East 

(http://www.ericnortheast.org.uk/home.html) and the Open Science Framework (OSF; 

https://osf.io/). 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.ericnortheast.org.uk/home.html
https://osf.io/
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2.3 Results 

Since its inception in May 2015, MammalWeb has involved community members in 

north east England in monitoring local wildlife. This section describes measures of the 

project’s growth and performance in terms of engagement with citizen scientists based on 

data as of 31 December 2018. I will also present analyses of impacts from intervention events 

on three of those metrics: the daily median number of sequence classifications per Spotter, 

the number of new users registered, and number of active Spotters. Possible temporal 

patterns were also examined, namely weekend versus weekday differences in the three 

metrics. Ecologically meaningful measures are based on consensus classifications, which 

will be addressed in Chapters 3 and 5. 

2.3.1 Project growth 

There were 489 active users registered on the MammalWeb website as of the end of 31 

December 2018, of which 101 were Trappers who had uploaded camera trap images at least 

once (Figure 2.5). Most Trappers (>50) registered during the first six months of the project. 

While user growth has slowed since 2016, it has been steady including a major uptick in late 

2018 comprised mainly of new Spotters. This uptick was concurrent with the second 

competition held among MammalWeb participants. 

 

Figure 2.5. Registered MammalWeb users over time. Solid line is total number of users (Spotters and Trappers), 

dashed line is number of Trappers. 

MammalWeb Trappers have uploaded 98,318 photo sequences of which 83,755 have 

been classified at least once (Figure 2.6). The growth in sequences has been largely steady 
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throughout the project. This is matched by the growth in the number of sequences that have 

been classified at least once, which is steady at about 70% (Figure 2.7). The large swings in 

the proportion of classified photos before 2016 is likely due to the relative dearth of photos 

in the system at that time. 

Of note are two large step increases in the number of sequences uploaded (and associated 

decrease in proportion classified) in July and November 2018. The first was a contribution 

of images of the Highland Red Squirrel Project by the University of the Highlands and 

Islands based in Scotland, and the second was due to the incorporation of images from a 

systematic camera trap survey of County Durham conducted by us during the summer of 

2018. 

The proportion of sequences classified increased sharply at the end of 2018. This 

coincided with an upgrade of the MammalWeb backend infrastructure (on 7 December 2018) 

where sequences that have not received any classifications are now prioritised for Spotters. 

 

Figure 2.6. Photo sequences in the MammalWeb database by time. Solid line is number of contributed 

sequences, dotted line is the number that has been classified (Spotted) at least once. 
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Figure 2.7. Proportion of MammalWeb sequences that have been classified (Spotted) at least once. 

Since inception, the 101 MammalWeb Trappers have deployed camera traps at 427 sites 

(Figure 2.8). They are primarily in north east England, but also include relatively distant 

locations from south-west England to northern Scotland. These deployments have 

accumulated 23,778 days of observations, which on average produced 4.13 sequences per 

day. 

 

Figure 2.8. Most MammalWeb camera trap sites (black dots) are near County Durham, England. 
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2.3.2 Spotter efficiency 

Of the 83,755 camera trap photo sequences on MammalWeb with at least one 

classification, the median number of classifications is 1 (mean: 1.99; interquartile range: 1-

2; maximum: 35). Notably, 75.8% of classified sequences (63,505 sequences) have two or 

less classifications (Figure 2.9). 

 

Figure 2.9. Cumulative proportions of all photo sequences that have been classified a certain number of times 

or less. The number over each bar is the number of sequence which have been classified that many times. Red 

vertical dashed line indicates that 75.8% of all classified sequences have been classified twice or less. 

The majority of MammalWeb Spotters have contributed relatively few classifications 

while a small number have classified at a high intensity. This can be measured by the 

quantity and frequency of their contributions. Over half (69.6%) of registered Spotters have 

classified 100 or less sequences, while 7% have classified over 1000 (Figure 2.10). In terms 

of frequency, 83% have classified sequences on seven or less different days but a small but 

active minority (6%) have classified photos on 30 or more (Figure 2.11). 
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Figure 2.10. More than half (69.6%) of MammalWeb Spotters have classified <100 sequences while a minority 

(7.5%) have classified >1000. 

 

Figure 2.11. Most (83%) of Spotters have classified on <7 days, while 6% have classified on 30 or more. 

From 2015 through 2018, the monthly number of Spotters who contributed classifications 

varied between 8 and 55, plus an exceptionally high number of 114 during November 2018 

(Figure 2.12). Notably, the highest intensities (up to 147 classifications/day/Spotter in 

November 2016) occurred when relatively few Spotters logged in (November 2016 and 

September 2017). 
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Figure 2.12. Monthly classification intensity (median classifications/day/user) and number of Spotters who 

classified each month (solid line). 

2.3.3 Trapper efficiency 

The median camera trap deployment duration is 2 days (mean 15.8 days). The monthly 

mean deployment duration varies between 3.2 and 18.9 days, appears to have decreased 

through 2017 but have since increased considerably (Figure 2.13). 

 

Figure 2.13. The monthly mean camera trap deployment durations for MammalWeb Trappers. 
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The number of Trappers who have uploaded photos decreased (Figure 2.14) from the 

peak of 23 in October 2015 to six in November 2017. This is matched by a small but overall 

decrease in the number of camera trapping sites from which they uploaded photos (Figure 

2.15). However, the number of uploads per Trapper increased during the same period. These 

measures suggest that the number of monthly active Trappers has gone down, but those who 

remain upload photos more frequently even if their mean deployment durations are shorter. 

This trend has reversed since the beginning of 2018. The larger number of camera traps sites 

November 2018 was due to the upload of photos from our systematic survey across County 

Durham during the summer of that year. 

 

Figure 2.14. Monthly upload frequency per Trapper (uploads/month/user, grey bars) and number of Trappers 

who uploaded photos each month (solid line). 
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Figure 2.15. The monthly number of camera trapping sites monitored by Trappers over time. The large number 

of sites in November 2018 were from our systematic survey conducted earlier that year. 

2.3.4 Effects of intervention events 

For this analysis, I grouped MammalWeb intervention events since project launch until 

the end of 2018 into seven types (number of each type in parentheses): blog posts (8), 

competitions (2), public events (7), news coverage (7), email newsletters (10), and public 

talks (26). Data on the number of people reached for each intervention was not available. 

And as described, I added a non-intervention type of 10 randomly selected time periods 

which did not overlap with any other intervention event. 

Relative to intervention events and regardless of their type, the random non-intervention 

group was consistently lower across all three engagement metrics (proportional change in 

the mean number of new users, number of active Spotters, and median number of 

classifications) (Figure 2.16). However, this difference was not statistically significant. 

While the distribution of the three metrics were mostly above 1.0 for all intervention types, 

none of them were significantly so except the median number of classifications in response 

to blog posts (𝑝 = 0.035). Exceptionally, the median of the mean number of active Spotters 

was less than 1.0 in the news coverage group. 

Also of note is that all types of interventions had a generally positive effect on the mean 

number of new users except for newsletters. The distribution of the other two metrics were 

more varied across intervention types and showed no clear pattern. 
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Figure 2.16. The distribution of three engagement metrics (before and after ratios of mean number of new 

users, mean number of active Spotters, and median number of classifications; data folded from daily values for 

five days before and five days after an intervention) from randomly selected time periods (which do not overlap 

with those of interventions) were consistently lower than that of intervention events regardless of type. None 

of the distributions were significantly different from 1.0 except median classifications in response to blog posts 

(one-sample Wilcoxon signed rank test, 𝑝 = 0.035). 

The number of active Spotters and their median number of classifications were visibly 

higher during the two competitions in 2017 and 2018 but not the number of new users 

(Figure 2.17). Of the pairwise comparisons between all groups, only the number of Spotters 

were significantly higher than before the beginning of the second competition (𝑝 = 0.021). 

Notably, the rate at which new users registered did not change and even decreased for the 

period immediately following competition two. 
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Figure 2.17. Engagement metrics increased significantly during competitions except the daily number of new 

users. 

When these metrics were compared on weekdays versus weekends, the median number 

of classifications increased for weekend days ( 𝑝 = 0.012 ) (Figure 2.18). The other 

measures did not differ significantly in this case. 
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Figure 2.18. The volume of classifications increased during weekends (two-sample Wilcoxon signed rank test, 

𝑝 = 0.012), but not the number of new users or active Spotters. 

2.3.5 Email interactions with citizen scientists 

After recruiting citizen scientists, we maintain contact with them in ways from face-to-

face engagement meetings, Twitter, Facebook, or email. Here I will focus on email 

correspondences as it has been the most consistent way in which we have communicated 

with participants, and they primarily consist of the following types. 

First, a large volume of emails we receive were from those expressing interest in 

becoming MammalWeb Trappers or Spotters. This was especially true earlier during the 

project (2015 and 2016) when our social media presence was smaller. We were also 

contacted by school teachers (mostly from primary schools) who learned about 

MammalWeb through contacts with the Durham Wildlife Trust. An obvious gap in data 

revealed when reviewing these emails is that we did not explicitly record how each 

prospective citizen scientist heard about MammalWeb. 

The second type of emails were feature requests for the MammalWeb website, and they 

were heavily focused on the Spotter page user experience. This feedback led directly to a 

more sequence-focused interface where buttons taking the user forwards and backwards 

through a sequence are placed directly on the sides of an image, and simplifying the process 

so that classifications apply to the entire sequence instead of its constituent photos. 
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The third group of correspondence was about technical issues, mostly centred around 

camera trapping. This could include questions on the specifics of deploying camera traps, 

such as clarifying the definition of a deployment, whether images depicting humans (or 

empty images) should be removed before upload, and other details. This process was 

important in refining the instructions we give to new Trapper during initial training. Existing 

Trappers also provide feedback on the online Trapper page user experience, such as a desire 

to more easily their camera trap deployment sites and manage the data and images associated 

with each upload. At this time, we have not had the resources to act on most of this feedback. 

Lastly, we receive ad-hoc feedback from citizen scientists regarding notable or surprising 

observations and spin-off projects. For example, MammalWeb Trappers alerted us to the 

presence of non-native raccoons and coatis in north-east England, and with their help local 

authorities were able to track and capture those animals. We were also struck by citizen-

initiated science such as independent camera trapping surveys for red squirrels in Galloway, 

Scotland and otters in Durham. In addition, we receive emails with general praise of the 

MammalWeb experience such as: 

“…especially loved the squirrel fight and the fox’s in Deerness this year…” 

Or, from a Spotter willing to be identified as Julia: 

“Firstly, I can say what a delight and privilege I have found it; many of the 

species I have seen are normally so fleeting in the wild, and I have never so 

much as glimpsed a live badger. Ever. So these sometimes close-up, unguarded 

insights have been wonderful. Hard to choose favourites – perhaps the family 

groups of deer, or the stoats’ interactions. But, sadly, secondly, I really must 

apologise. Despite approaching the spotting conscientiously and armed with 

references, I very much fear to my embarrassment that I am guilty of 

misidentification of grey partridges on a number of occasions…” 

Notably, no emails of complaint or negative feedback were received. 

There were fewer emails outside of the above categories, but given the recent (late 2018) 

partnership with a local network of schools (described in Chapter 4), we now engage in 

considerably more email contact with teachers on how to integrate MammalWeb into the 

classroom. 

2.4 Discussion 

In this chapter, I described the process of launching and maintaining the MammalWeb 

citizen science project. In its current state, the organisation of the project and its online 

infrastructure achieves our aim of enabling citizen scientists to contribute and classify 

camera trap images of local wildlife. Because of this success, other UK-based wildlife 

organisations, including NatureSpy (https://www.naturespy.org/), Scottish Wildcat Action 

https://www.naturespy.org/
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(http://www.scottishwildcataction.org/), or the University of the Highlands and Islands 

(https://www.uhi.ac.uk/) have now partnered with us to expand this camera trapping network, 

which ties into our goal of large scale citizen science monitoring of wild mammals. In 

addition, as will be discussed in Chapter 4, we have successfully piloted a partnership with 

a local school. Students at Belmont Community School were not only involved as citizen 

scientists who deployed camera traps, but also empowered as ecological ambassadors who 

delivered outreach to their community. is now expanding into a wider network of schools 

mediated through the Great North Museum: Hancock in Newcastle 

(https://greatnorthmuseum.org.uk/). For the rest of this discussion, I will focus on the 

implications of the measures of project growth, the quantitative and qualitative analyses on 

engagement metrics, and a need to formally evaluate project outcomes. 

2.4.1 Tracking project growth and sustainability 

The MammalWeb citizen science project has experienced stable growth from 2015 

through 2018 in terms of the number of photo sequences contributed by Trappers, and the 

number of sequences classified by Spotters. Our reach has expanded by the inclusion of other 

conservation projects such as the Highland Red Squirrels Project which corresponds with 

the increase in uploaded photos in autumn 2018. Recently, members of the MammalWeb 

team, through a partnership with the Great North Museum: Hancock in Newcastle, met with 

representatives from a network of 50 local schools. We are now actively building on our 

experience engaging one school (described in Chapter 4) and developing a partnership 

strategy with these schools. All of this will continue the growth of MammalWeb and aid in 

sustaining it. Effective monitoring requires a sustained effort, which in MammalWeb is 

analogous to maintaining a “minimum viable population” (MVP) of citizen scientists and 

investigating avenues for growth. However, despite the after-mentioned success, several 

challenges the sustainability of MammalWeb have become evident. 

First, we are reliant on a core group of Trappers for camera trapping. These citizen 

scientists contribute photos to MammalWeb at a high intensity, but – at any given time – 

they deploy their cameras at a small number of sites, limiting the spatial and temporal 

coverage of the project’s monitoring effort. The implications of this for occupancy analysis 

will be discussed in Chapter 5. 

A similar pattern can be seen in MammalWeb Spotters, where most classifications were 

contributed by a small group. And while the proportion of sequences with at least one 

classification has been stable and increased near the end of 2018, relatively few sequences 

have more than two classifications. This makes calculating consensus classifications, and 

the downstream analyses which rely on them, more difficult. 

http://www.scottishwildcataction.org/
https://www.uhi.ac.uk/
https://greatnorthmuseum.org.uk/
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These observations are in line with what’s observed in other citizen science projects 

(Sauermann and Franzoni 2015), but can be overcome with enhanced, sustained engagement. 

On the MammalWeb Spotter page, we have implemented a button to take the user back to 

the beginning of an image sequence. This simple change greatly eased navigation within a 

sequence, and was one of the most-requested features from user feedback. Other 

improvements to the Spotter page include an easier way to navigate between images within 

a sequence via left and right arrows on the currently shown image, and that the Spotter only 

needs to provide on classification for the whole sequence instead of for its constituent images 

individually (both implemented since April 2018). Another effective example was the 

MammalWeb competition in March-April 2017 for best uploaded photo and the most 

number of classifications by a Spotter. This likely led to the high monthly classification 

intensity (median 126 classifications/day/Spotter) during that time. 

Since October 2016, we have partnered with the Smart Earth Network 

(http://www.smartearthnetwork.com/), a conservation non-profit organisation, and the web 

development firm Monterail (https://www.monterail.com/) to revamp the MammalWeb 

website with an improved user experience (UX) including interactive data visualisations. A 

new “Explore” page featuring an interactive map of MammalWeb-related camera traps and 

observations is now being tested. We hope this form of dynamic feedback can not only 

sustain motivation but also attract new participants. 

2.4.2 Evaluating project performance 

To track growth and maintain the sustainability of MammalWeb, there is a need to more 

formally study engagement metrics. In this chapter, I attempted this with the data available 

through the end of 2018. 

For the three metrics used here (the number of new registered users, number of active 

Spotters, and median number of classifications), their proportional change before and after 

intervention events were – even if not statistically significant – visibly greater than 1.0 and 

considerably higher than that of randomly chosen periods outside of interventions. One 

limitation of this analysis is that the length of the before and after periods for an intervention 

(five days) was arbitrarily chosen. A separate analysis is needed to optimise the period length, 

which may also be a function of the type of intervention. Many interventions also overlap in 

time, and interactions between events and types of events will need to be modelled (as will 

be described below). The number of active Spotters and volume of classifications were 

visibly higher during the two competitions in 2017 and 2018. Strikingly, while the daily rate 

of new user registrations did not differ significantly from before and after competitions, the 

cumulative number of new Spotters increased considerably during the second competition. 

http://www.smartearthnetwork.com/
https://www.monterail.com/
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With our current knowledge, I believe this is because the reach of MammalWeb 

communications (email, Twitter, and partner organisations) have grown greatly since the 

first competition. And while it was not statistically significant, classification rates were not 

maintained after the end of the competitions. To sustain engagement, we will need a better 

understanding of citizen scientists’ motivations. Finally, higher volumes of classifications 

on weekends is reasonable given that users will likely have more disposable time to invest 

during days off. Future work should investigate temporal patterns on other levels, from 

diurnal to seasonal. A detailed understanding of these patterns will aid the timing of 

intervention events to maximise impact. 

Email correspondence suggests that our interventions and outreach were at least partially 

successful in recruiting and motivating citizen scientists. In addition to the positive feedback, 

some participants actively provided suggestions on the user experience, and questions 

regarding the technicalities of camera trapping were valuable data on which we based 

improvements to the new Spotter and Trapper on-boarding process. Emails indicate that 

MammalWeb citizen scientists were engaged with their local environment in ways they 

previously would not have, and this is consistent with existing research on the need and 

benefits of such engagement in light of the “extinction of experience” in nature (Soga and 

Gaston 2016, Schuttler et al. 2018). However, shortcomings of how we manage 

communications were also revealed. First, we did not explicitly track how MammalWeb 

participants learned of the project and reached their level of engagement. We should, as part 

of a standard communications protocol, always ask for this information in all correspondence. 

Second, for most of the duration of the project, emails to us were often directed to our 

personal email accounts rather than the official MammalWeb email. As a result, it was 

exceedingly difficult for me to collate MammalWeb’s email history for the current analysis. 

Starting in mid-2018, we have actively promoted MammalWeb’s official lines of 

communication including the email info@mammalweb.org and the Twitter account 

@MammalWeb, and began sorting incoming email into several categories such as technical 

support, feedback, or school correspondence. Third, as could be seen in Julia’s email, while 

they were positively impacted by the Spotting experience, there was concern about the 

accuracy of classifications. This highlights the importance of managing data quality 

(discussed in Chapter 3) and providing feedback to users in realtime to reinforce engagement. 

This feedback could take the form of automatically generated messages about accuracy and 

positive reinforcement, achieved through natural language generation algorithms (van der 

Wal et al. 2016). Finally, I noted a lack of specifically negative feedback or complaints 

received through email. I hypothesise that such sentiments may be present, but users are 

mailto:info@mammalweb.org
https://twitter.com/mammalweb
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more hesitant in actively communicating them. This is another reason for a more active 

approach to understanding our userbase through surveys or focus groups, as will be 

discussed later in this section. 

The types of interventions examined in this chapter did not include MammalWeb’s social 

media activity, such as that on Twitter. By the end of 2018, the @MammalWeb Twitter 

account has posted 907 Tweets which accumulated more than 1,000 likes from 523 followers. 

These Tweets were not included in the current analyses because they occurred on more than 

half of the days across MammalWeb’s project lifetime and overlap greatly in time, therefore 

the before and after analysis performed on other types of interventions would not be practical. 

Rather than considering Tweets as “interventions”, I believe Twitter and associated activities 

(from Tweets to re-Tweets, likes, or followers) can be considered as passive engagement 

based on outreach and dissemination of information. 

Passive engagement takes on other forms such as visitors to the MammalWeb website 

(who may not register as users), newsletter readers or audiences at in-person outreach events 

and talks. Within the MammalWeb framework, I believe this is an intermediate level of 

engagement between interventions and scientific engagement, the latter being defined as the 

direct participation in citizen science. That is, many people engaged on this passive, 

intermediate level may be the recipient of outreach and stay informed on MammalWeb but 

not proceed to capturing or classifying photos. Therefore, there are two possible paths to 

citizen science from interventions to scientific engagement: Those who directly become 

Trappers or Spotters, or a subset of the passively engaged group who later decide to actively 

participate. 

Even with the analyses described above, sustaining the growth of MammalWeb requires 

a more nuanced understanding of (1) how the two pathways to scientific engagement are 

related to interventions, (2) possible interaction effects between interventions in close 

temporal proximity, and (3) lag times between interventions and engagement metrics, which 

may be especially true for Trappers as there may be substantial time between a successful 

intervention and uploading photos. These understandings can be achieved through both 

quantitative and qualitative means. 

Quantitatively, a modelling approach could be utilised in addition to the current method 

of deriving proportional changes in engagement data folded into those before and after 

interventions. For example, a generalised linear mixed effects model of the Poisson family 

can be fitted to engagement metrics such as the number of active Spotters. This model would 

include fixed effects such as the type of intervention (newsletter, talks, news coverage, etc.), 

week of day, or the total number of registered users at the time of intervention, and random 

https://twitter.com/mammalweb
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effects may be the intervention events and the dates on which they occurred. Importantly, 

generalised linear models can be used to discern interaction effects as well. In addition, more 

quantitative data should be gathered other than the three engagement metrics on which 

intervention impacts were examined. For interventions, useful data that can also be terms in 

this model may include the number of people reached and other measures of breadth of reach. 

In the future, we should also explicitly record related – that is, non-independent – 

interventions, such as blog posts and media coverage associated with a public talk. This 

information can then be a grouping variable included as an additional term in the model. 

It will also be beneficial to implement web analytics for the MammalWeb website. 

Analytics software can be easily integrated with our existing IT infrastructure, and it records 

data such as the number of website impressions and even how “deep” a visitor explored the 

web platform. For example, analyses could be performed on the proportion of website 

visitors who browsed past the landing page and tried classifying photo sequences on the 

Spotter page. Privacy is of paramount importance, and proprietary services for web analytics 

such as Google Analytics need to be studiously avoided. Instead, a fully open source solution 

– inherently open to external scrutiny and under our control – such as Matomo 

(https://matomo.org/) or Open Web Analytics (http://www.openwebanalytics.com/) should 

be adopted. Social media analytics are also available for most platforms including those used 

by MammalWeb such as Twitter (https://analytics.twitter.com/) and others including 

Mastodon (https://github.com/tootsuite/mastodon-api). 

For qualitative research, I believe there are two approaches which are applicable to 

MammalWeb and other citizen science projects. The more straightforward approach is the 

deployment of surveys to those (1) directly reached by intervention events, (2) engaged on 

the passive level (such as newsletter subscribers or Twitter followers), and (3) active Spotters 

or Trappers. At the first stage, the survey should assess changes in knowledge about 

MammalWeb and behaviour (such as interest in staying informed versus deciding to actively 

participate as a citizen scientist). Surveys on the second stage can track changes in 

engagement and act as reminders for those surveyed to participate. For Trappers and Spotters, 

we could learn about their motivations (which can inform the design of future interventions) 

and receive feedback on user experience. This is especially useful considering – as suggested 

by email correspondence – negative feedback is often not expressed unless specifically 

solicited. At all stages, surveys should ascertain how participants reached that level of 

engagement (e.g., “How did you hear about MammalWeb”, “Why did you follow us on 

Twitter?”, or “Why did you decide to become a Spotter?”). The second approach is 

organising focus groups and applying the Q methodology. This method has been used 

https://matomo.org/
http://www.openwebanalytics.com/
https://analytics.twitter.com/
https://github.com/tootsuite/mastodon-api
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extensively to measure stakeholders’ beliefs and opinions on biodiversity conservation 

(Sandbrook et al. 2011, Rastogi et al. 2013, West et al. 2016, Hamadou et al. 2016). Q 

methodology is a qualitative technique for characterising patterns in subjective perspectives 

held by a group of interviewees on a given topic (Stephenson 1975). This is done by asking 

interviewees to sort a group of statements regarding a given topic, on a numbered grid, in 

order of how much they identify with each one. These rankings, called “Q sorts”, are fed 

into a factor analysis (such as that implemented in the R package qmethod, Zabala 2014) 

which clusters the opinions into shared framings of the topic in question. This is a more 

intensive but comprehensive method for exploring the needs and motivations of 

MammalWeb citizen scientists, and may be especially important in understanding the 

temporal changes, with substantial lags after interventions, in Trapper activity such as that 

described in the results section. This method can also help explore the differences between 

the few, but very active “super users” who contribute at high intensity, and the majority of 

users who contribute relatively little. To my knowledge, Q methodology has not been used 

in a citizen science context and would be a novel avenue for further exploration. 

However a citizen science project is executed, it needs robust measures of growth and 

performance. The results presented in this chapter – including those on project growth, 

Spotter and Trapper efficiency, and the analyses on quantitative and qualitative data – 

showed practical lessons learned which can be generalised to other citizen science projects, 

and highlight the challenges to be overcome. 

On a broad level, performance measurement methodologies (e.g., “key performance 

indicators”) have been developed specifically for businesses (Parmenter 2007), but they have 

not been successfully and widely applied to citizen science (or ecology and conservation) 

initiatives. Instead, a comprehensive evaluation framework for citizen science was recently 

proposed by Kieslinger et al. (2017). It was built upon an extensive review of evaluations 

for past citizen science projects, broad “expert” consultations, and informed by the quality 

criteria for Responsible Research and Innovation (Wickson and Carew 2014). This 

framework proposes evaluation criterion along three dimensions: scientific, citizen scientist, 

and socio-ecological/economic. Each criterion includes specific questions to guide the 

evaluation of a project. This framework would be useful for MammalWeb to identify gaps 

in the monitoring of performance and outcomes. 

In summary, with the ongoing recruitment of citizen scientist Trappers and Spotters, the 

MammalWeb project has demonstrated stable growth with respect to the influx of camera 

trapping data (photos). An analysis on user engagement showed that the majority of 

contributions came from a minority of users, and that we are challenged to sustain a core 
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group of citizen scientists who can provide wide a representative temporal and spatial 

coverage for effective mammal monitoring. These challenges could be overcome with 

thoughtful, sustained engagement – informed by reflection on quantitative and qualitative 

insights from the analyses described above – while implementing a more comprehensive 

citizen science evaluation framework. 

2.5 Supplementary material 

The following is the camera trapping guidelines provided to each MammalWeb Trapper 

during the original engagement meetings and individual training in 2015: 

 

When operating the camera trap, please: 

• Turn the camera off before inserting or removing the memory card – failure to do 

so will corrupt valuable data! 

• Double check that the time and date are correctly set on the camera – the time and 

date format may be different depending on camera, please be extra careful! 

• Set the camera to take three photos every time it is triggered. 

When picking a location for your camera trap, please: 

• Avoid places with lots of human activity – the camera might be stolen, and we 

don't want countless photos of people walking by! 

• Ensure the camera's field of view is unobstructed, and consider future plant growth. 

• Make sure you attach the camera to something substantial like a tree trunk or fence 

post that will not wave around in the wind. 

• Set the camera between 30 and 40 cm above ground – this is usually sufficient to 

photograph animals of all sizes, but please make a judgement based on the specific 

circumstances of your location. Carefully record the height of your camera. 

• Do not place the camera too close to a track, hole, or fence. It should be at least 2 to 

3 m away from where animals are likely to pass. 

• Angle the camera parallel to the ground. You might need to wedge a stick or small 

rock behind the top of the camera. 
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• Do not angle the camera upwards! 

• Avoid pointing the camera directly east or west so it won't get glare from the sun. 

• Don't place the camera on the bank of a beck or river that may flood – the cameras 

are water-resistant against rain but not submersion! 

Once you have set up the camera, before you leave please: 

• Confirm fully charged batteries are used. 

• Confirm the memory card is empty. 

• Confirm the camera is active, and is not in motion test or walk test mode. 

• Make sure all fastenings are tightly closed so water/moisture don't get in. 

• Ensure the camera is fully secured/locked whenever possible. 

• Carefully record the exact time and date when you deployed the camera. This is 

likely not when the first photo gets taken. 

When you check on your camera, please: 

• Take fully charged batteries and an empty memory card with you, so you can swap 

them on the spot and you won't have to make two trips. 

• Double check that the time and date are still correct on the camera – the time and 

date format may be different depending on camera, please be extra careful! 

• Carefully record the exact time and date you checked the camera and changed the 

memory card/batteries. This is likely not when the last photo was taken. 

When downloading photos to your computer and uploading them to MammalWeb, 

please: 

• Delete photos from the memory card after they have been transferred to your 

computer. 

• Format your memory card regularly, but make sure you get all the photos first! 

• Upload a maximum of a couple hundred photos at a time. You can upload more, 

but it might slow down your computer.
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Chapter 3 - Economical crowdsourcing for 

camera trap image classification 

Please note that this chapter (with the exception of this paragraph) has been published in 

the journal Remote Sensing in Ecology and Conservation. Full citation: Hsing, P.-Y., S. 

Bradley, V. T. Kent, R. A. Hill, G. C. Smith, M. J. Whittingham, J. Cokill, D. Crawley, and 

P. A. Stephens. 2018. Economical crowdsourcing for camera trap image classification. 

Remote Sensing in Ecology and Conservation. DOI: 10.1002/rse2.84 

3.1 Abstract 

Camera trapping is widely used to monitor mammalian wildlife but creates large image 

datasets that must be classified. In response, there is a trend towards crowdsourcing image 

classification. For high‐profile studies of charismatic faunas, many classifications can be 

obtained per image, enabling consensus assessments of the image contents. For more local‐

scale or less charismatic communities, however, demand may outstrip the supply of 

crowdsourced classifications. Here, we consider MammalWeb, a local‐scale project in North 

East England, which involves citizen scientists in both the capture and classification of 

sequences of camera trap images. We show that, for our global pool of image sequences, the 

probability of correct classification exceeds 99% with about nine concordant crowdsourced 

classifications per sequence. However, there is high variation among species. For highly 

recognizable species, species‐specific consensus algorithms could be even more efficient; 

for difficult to spot or easily confused taxa, expert classifications might be preferable. We 

show that two types of incorrect classifications – misidentification of species and 

overlooking the presence of animals – have different impacts on the confidence of consensus 

classifications, depending on the true species pictured. Our results have implications for data 

capture and classification in increasingly numerous, local‐scale citizen science projects. The 

species‐specific nature of our findings suggests that the performance of crowdsourcing 

projects is likely to be highly sensitive to the local fauna and context. The generality of 

consensus algorithms will, thus, be an important consideration for ecologists interested in 

harnessing the power of the crowd to assist with camera trapping studies. 

3.2 Introduction 

For several centuries (Greenwood 2007, Ratcliff 2008), citizen science projects have 

engaged non‐professionals in the scientific process (Bonney et al. 2014). While ecological 

research has spearheaded the development of citizen science (Dickinson et al. 2010, Bonney 

et al. 2014), there are successful projects across a variety of disciplines from meteorology 
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(Hennon et al. 2014) to astronomy (Willett et al. 2013). Typically, these initiatives 

crowdsource data capture (i.e. volunteers as “sensors”, Goodchild 2007), data classification 

(interpreting collected data) or, occasionally, a combination of both (Kosmala et al. 2016). 

Some may even include citizen scientists in data analyses (Haklay 2013). 

In the field of ecology, technological developments (Newman et al. 2012) and increasing 

recognition of the need for monitoring over large spatial and temporal scales (Conrad and 

Hilchey 2011, Stephens et al. 2015) have led to a proliferation of ecological citizen science 

projects (Kosmala et al. 2016). Concurrent with this is growing concern over “volunteer” 

skill and the resultant quality of data (Cohn 2008, Dickinson et al. 2010, 2012, Lukyanenko 

et al. 2016). Data capture can be improved through iterative protocol refinement or intensive 

training (Kosmala et al. 2016). In one case of community‐managed resource monitoring, 

regular follow‐up training for volunteers enabled them to produce data of quality comparable 

to that collected by professional scientists (Danielsen et al. 2014). 

For data classification, quality can be improved by aggregating inputs from multiple users, 

especially when processing large datasets. For example Snapshot Serengeti is an ecological 

research project utilizing crowdsourced classifications to identify the contents of images 

taken by motion sensing camera traps deployed in Serengeti National Park. Researchers 

attracted over 28,000 online volunteers who, within 3 days, cast one million “votes” for what 

they thought was in the camera trap photos, equivalent to processing an 18‐month backlog 

of images (Swanson et al. 2015). For each photo, a consensus classification was determined 

from votes cast by an average of 27 volunteers. They were then validated against almost 

4,000 “gold standard” images, classified by experts, to show that consensus classifications 

typically had an accuracy exceeding 97% (Swanson et al. 2015, 2016). 

The considerable success of Snapshot Serengeti might be due, in part, to project‐specific 

factors. These include: (1) the presence in images of highly charismatic and diverse African 

megafauna which are novel to largely European and American audiences; (2) the low image 

to volunteer ratio (approximately 1.2 million images for 28,000 volunteers, or ~43:1); and 

(3) the long‐established platform (https://www.zooniverse.org/) on which the project was 

hosted, with a large and dedicated international userbase. 

In contrast, many citizen science projects focus on less charismatic faunas in areas of 

lower species diversity. Despite their lower diversity, focal communities may include species 

of conservation concern, as well as species that are locally common and, therefore, important 

contributors to ecosystem function (Geider et al. 2001, Gaston and Fuller 2008). The local 

relevance and lower charisma of these studies might make it harder to mobilize a large 

https://www.zooniverse.org/
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international userbase. As a result, it may be necessary to determine image contents with 

fewer user classifications by crowdsourcing more economically. 

An example of this is MammalWeb, a project in North East England that pilots the 

approach of involving local citizen scientists in monitoring mammals with camera traps. 

Participants engage in both data capture and data classification (camera trapping and 

classification of images) as defined by Kosmala et al. (2016). MammalWeb has a high image 

to classifier ratio (~550:1) and monitors mammals that are less diverse and may be 

considered less charismatic (Lorimer 2007) than their African counterparts. Preliminary 

indications from the pilot period are that the deployment of camera traps by MammalWeb's 

citizen scientists can yield useful data. Examples include the identification of a raccoon 

(Procyon lotor), an invasive non‐native species, subsequently trapped and re‐homed by the 

United Kingdom's (UK) Department for the Environment, Food and Rural Affairs (DEFRA) 

and the contribution of thousands of new mammal records to the Environmental Records 

Information Centre (ERIC) for the North East of England. 

Using data collected in the MammalWeb study, we investigated economical approaches 

to aggregating user input into consensus classifications. This included analysing species‐

level variations in the number of classifications (including different combinations of correct 

and incorrect classifications) needed to achieve consensus at various confidence levels, and 

differentiating between two types of incorrect classifications: misidentification of a species 

or missing the presence of an animal altogether. 

Relative to applying a generic consensus algorithm to all images, we showed that images 

of certain species could be retired more rapidly because (1) consensus was achieved with 

fewer classifications or (2) referral to expert classification may be preferable. Since 

MammalWeb combines data collection and classification in one citizen science project, we 

also examined whether this increased engagement affected the accuracy of classifications. 

3.3 Methods 

3.3.1 Project background and citizen scientist recruitment 

MammalWeb focuses on North East England, addressing a general dearth of mammal 

monitoring in an area (Croft et al. 2017) with a relatively limited fauna (14 wild mammal 

species cf. 40 in the Snapshot Serengeti data base; Swanson et al. 2015). Between March 

2015 and March 2018, we recruited 79 citizen scientists across the region (centred around 

County Durham) to deploy camera traps for the MammalWeb project. They consisted mainly 

of Durham University staff and members of the Durham Wildlife Trust (a local non‐

governmental organization focused on environmental conservation, education and 
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engagement). Recruiting and training citizen scientists from local community groups such 

as the Durham Wildlife Trust is comparable to projects such as eMammal (Forrester et al. 

2017). Many participants were retirees, and most reported curiosity about local wildlife as 

their motivation for joining. A small number of contributors were local primary and 

secondary school teachers using camera traps in their teaching. 

3.3.2 Camera trap data capture and classification 

After training the citizen scientists to use a standard protocol, they were lent camera traps 

(primarily Browning Strikeforce, Reconyx Hyperfire and Bushnell cameras) and self‐

selected sites on which to deploy them. During deployment, all cameras were set to burst 

mode and would typically take three images in quick succession per trigger. By default, most 

cameras included a 30 second pause before the next trigger. Volunteers uploaded their 

camera trap images to the MammalWeb website (http://www.MammalWeb.org/), and also 

submitted metadata such as the deployment time period, location, make and model of camera 

trap and height of camera above ground. 

Anyone with an Internet connection can register on MammalWeb to classify images (i.e. 

to be a “Spotter”), including those who deployed camera traps and uploaded photos (i.e. 

“Trappers”). Spotters were recruited through the same channels as Trappers, plus at public 

events and schools. Spotter classification effort varied from tens to thousands of images. 

Consequently, to characterize the distribution and skewness of classification intensity by 

individual Spotters, we calculated the proportions of those who classified fewer than 100 

images and greater than 1,000 images. We also determined the relative contribution from the 

top 10% of Spotters in terms of classifications. 

Uploaded camera trap photos taken less than 10 seconds apart were grouped into 

sequences, which typically (c. 84% of sequences) consisted of the three images taken in one 

burst (indeed, 94% of sequences are of length 2 or 3). The contextual information provided 

by adjacent images in a sequence should aid classifications that would otherwise be 

problematic (supplementary Figure 3.6). Therefore, MammalWeb's classification interface 

is such that the “next photo” button takes a Spotter to the next photo in the sequence rather 

than to another randomly selected one in the global pool of images (supplementary Figure 

3.7). By going backwards and forwards through a sequence, Spotters may show greater 

accuracy in classifying the animals depicted since there is a greater chance of at least one 

clear image within the sequence. Users were encouraged to proceed only after they have 

classified all images in a sequence. Upon clicking “next sequence”, they were shown a 

randomly selected sequence from the global pool (or, optionally, the user's own pool of 

uploaded photo sequences). 

http://www.mammalweb.org/
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The classifications for each image in a sequence were aggregated into the classification 

for that sequence. For example a three‐image sequence where the images are sequentially 

classified as “blank”, “rabbit” and “grey squirrel” will have “rabbit and grey squirrel” as its 

classification. We treated each sequence as the base unit of animal detection, and all analyses 

for classification accuracy and consensus classifications were conducted at the sequence 

level. 

3.3.3 Determining classification accuracy 

We determined the accuracy of MammalWeb citizen scientists and assessed how the 

nature of a classification – correct and incorrect – may influence the calculation of a 

consensus. This was done by comparison with a “gold standard” set of classifications created 

by us, consisting of 10,483 sequences (35,417 images). 

We calculated the probabilities of a user classification being correct for each species. For 

incorrect classifications, we examined, for each species, the proportions of classifications 

that were for another species or for the absence of any animal. With this information we also 

constructed a confusion matrix breaking down cases of mistaken identifications by species, 

and calculating false‐negative (missing the presence of a species) and false‐positive (stating 

a species is present when it is not) rates. 

We also compared classification accuracies of citizen scientists who deployed camera 

traps and uploaded images (“Trappers”) and those who did not. Within the Trapper group, 

we also investigated whether they were more accurate when classifying their own images 

versus those uploaded by others. Both comparisons used generalized linear mixed effects 

models, with a binary response (correct or incorrect), spotter type (spotter or trapper, or 

uploader or other trapper) as a fixed effect, and spotter identity as a random effect. 

3.3.4 Evaluating consensus classifications 

For consensus classifications, we determined the following for each sequence, j: 𝑇𝑗 (“total 

classifications”), the total number of unique classifications for the sequence; 𝑃𝑠,𝑗 (“present”), 

the number of unique classifications indicating species s is present in one or more photos 

within the sequence; 𝑂𝑠,𝑗  (“other”), the number of unique classifications indicating that 

species not including s are present in the sequence; 𝐵𝑗  (“blank”), the number of unique 

classifications indicating that the sequence is devoid of animals. The total number of 

classifications for a sequence is thus: 𝑇𝑗 = 𝑃𝑠,𝑗 + 𝑂𝑠,𝑗 + 𝐵𝑗. These numbers allowed us to 

determine the number of classifications indicating a species” presence in a sequence (𝑃𝑠,𝑗) 

and the number indicating its absence (“absence”: 𝐴𝑠,𝑗 = 𝑂𝑠,𝑗 + 𝐵𝑗 ). We then used this 

information for four separate analyses. 
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First, using all sequences in our gold standard set that were identified as containing 

species s, we asked what proportion of classifiers (“Spotters”) agreed with this designation 

∑𝑃𝑠,𝑗 ∑𝑇𝑗
𝑗

⁄

𝑗

 

This parameter, which we designate as Pr(s) (the probability that species s is correctly 

identified in a sequence), serves as a crude indicator of which species are typically most (or 

least) readily identified within our focal fauna. For each gold standard species s, we also 

examined classifiers” incorrect classifications to determine the relative proportions of those 

that were misclassifications (given by 𝑂𝑠,𝑗 ) versus failed detections (given by 𝐵𝑗 ). This 

comparison serves to indicate how the potential for classifiers to overlook or misclassify 

varies among species. 

Second, we used binary logistic regression to assess how the presence of a species in an 

image sequence is related to the number of classifications indicating its presence and absence. 

We conducted this analysis both for the full data set (across all species) and then separately 

for different species. Specifically, we determined whether the number of classifications 

indicating presence (𝑃𝑠,𝑗) and absence (𝐴𝑠,𝑗 = 𝑂𝑠,𝑗 + 𝐵𝑗) of a given species (or no species at 

all) in a sequence was related to its true presence in, or absence from, the sequence. This 

model can be represented as 𝑉𝑠,𝑗 ∼ 𝑃𝑠,𝑗 + 𝐴𝑠,𝑗, where Vs,j is a binomial indicator that species 

s is truly present in (Vs,j = 1) or absent from (Vs,j = 0) sequence j (and the error has a binomial 

distribution). Where multiple species have been identified to occur in sequence j, there may 

of course be multiple species in the image. This would not be a problem, as both users and 

gold-standard classifiers can classify multiple species in any image (and so, for two species 

a and b that occur in sequence j, 0 ≤ 𝑃𝑎,𝑗 + 𝑃𝑏,𝑗 ≤ 2𝑇𝑗). Far more commonly, however, 

where multiple species have been identified to occur in sequence j, one or more of those 

species has been designated in error. Here, using the entire data set would include non-

independent data points (because, where species a and b are both identified as being in 

sequence j, even though only one of them is actually in the sequence, model 𝑉𝑎,𝑗 ∼ 𝑃𝑎,𝑗 +

𝐴𝑎,𝑗 is necessarily the converse of model 𝑉𝑏,𝑗 ∼ 𝑃𝑏,𝑗 + 𝐴𝑏,𝑗). To avoid this issue, we created 

1,000 random bootstrap samples of the data set, stratified by sequence, in which all 

sequences were represented only once. We analysed each bootstrap sample as described 

above, and report mean and standard deviations of their Akaike information criteria (AICs; 

Akaike 1974). Analyses of the (bootstrapped) full data set suggested strong support (based 

on AIC scores; see Results) for an influence of the pictured species s on the relationship 

between confidence in classifications and 𝑃𝑠 and 𝐴𝑠. To determine the effect of this variation 
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among species, we analysed data on the more commonly occurring species using only the 

subset of sequences for which at least one user has indicated the presence of the focal species. 

Third, we investigated whether, for a given species s in sequence j, the impact on 

confidence of classifications for other species (“false positives”, 𝑂𝑠,𝑗) differs from that of 

blanks (“false negatives”, 𝐵𝑗). This analysis recognises the fact that species differ in both 

their detectability and their recognisability; thus, classifications representing confusion over 

a species” identity might reduce confidence in the species” presence to a different extent to 

classifications suggesting that no animal species occurred in the sequence. This analysis used 

binary logistic regression, as described above; this time, the focus was on comparing the 

performance of the model 𝑉𝑠,𝑗 ∼ 𝑃𝑠,𝑗 + 𝑂𝑠,𝑗 + 𝐵𝑗  with that of the simpler model 𝑉𝑠,𝑗 ∼

𝑃𝑠,𝑗 + 𝐴𝑠,𝑗. 

Fourth, we determined the rate at which we can retire sequences of species from the pool 

of sequences to be classified, given a target confidence threshold. This was based on two 

sources of information. Specifically, we used Pr(s) from our first analysis as an estimate of 

the probability that any new classification would be for the pictured species. We also used 

fitted models of the form 𝑉𝑠,𝑗 ∼ 𝑃𝑠,𝑗 + 𝐴𝑠,𝑗 to estimate the number of classifications needed 

(𝑅) to achieve a given level of confidence 𝐶. For a given number of classifications indicating 

absence of a species in a sequence (𝐴𝑠,𝑗 = {0,1,2,3}), it is possible to identify the number of 

classifications for the species” presence (𝑃𝑠,𝑗) which would be required to give the desired 

confidence that the species is present: 

𝑅𝐶,𝑠,𝑗 ∼ 𝑃𝑠,𝑗 + 𝐴𝑠,𝑗 

The probability that this combination of classifications will be obtained is then: 

𝑃𝑟 (𝐴𝑠,𝑗 , 𝑃𝑠,𝑗|𝑃𝑟(𝑠)) = (
𝐴𝑠,𝑗 + 𝑃𝑠,𝑗

𝑃𝑠,𝑗
)𝑃𝑟(𝑠)𝑃𝑠,𝑗(1 − 𝑃𝑟⁡(𝑠))

𝐴𝑠,𝑗
 

The average number of classifications needed before a sequence containing a given 

species can be retired from the pool for classification is then given by the average sum of 

As,j + Ps,j for 𝐴𝑠,𝑗 = {0,1,2,3}, weighted by the probability with which each is obtained, plus 

the probability that none of these criteria are satisfied, multiplied by the number of 

classifications we would accept before removing the sequence from the classification pool. 

We can then compare the implications of different approaches and target confidence 

thresholds for the speed at which sequences can be considered classified. 

All data processing, analyses, and modelling was conducted in R 3.4.1 (R Core Team 

2017) with the packages dplyr (Wickham et al. 2017), ggplot2 (Wickham 2016), lubridate 

(Grolemund and Wickham 2011), lme4 (Bates et al. 2015) and EnvStats (Millard 2013). 
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3.4 Results 

As of 7 March 2018, MammalWeb citizen scientists had cumulatively deployed camera 

traps at 261 unique sites in North East England for 15,238 camera trap days. This yielded 

173,315 images uploaded to our website. Since project inception, 265 Spotters (including 

those who deployed camera traps, i.e. Trappers) had contributed, via the MammalWeb 

website, 249,425 classifications of the content of 115,944 images (40,709 sequences). For 

the images with at least one classification, the median number of classifications was 2 (IQR: 

1–3, maximum: 33). The majority of classifications were submitted by a small number of 

Spotters (supplementary Figure 3.8). More than half (58.9%) of MammalWeb users (n = 

156) classified less than 100 photos, whereas 11.3% of the users (n = 30) each classified 

more than 1,000 photos (supplementary Figure 3.8). The top 10% of Spotters (n = 27, 15 of 

whom were Trappers) contributed 84.9% of all classifications. 

 

Figure 3.1. (A) Proportional accuracy of submitted classifications across the whole pool of sequences with 

gold standard classifications. Sample sizes (n) represent the number of classifications provided for sequences 

in which the gold standard indicates that the named species is present. Vertical lines show (from left to right) 

80, 90 and 95% accuracy across all classifications of these sequences. (B) Proportions of incorrect 

classifications (classifications indicating absence of the true species in a sequence) that were for another species 

(green) or the absence of any animal (blue). Vertical line is 50%. Sample sizes (n) are the number of incorrect 

classifications. 

At the sequence level, 21 species have been classified in our dataset. For most of the 

species in sequences with a gold standard, >90% of user‐provided classifications were 

correct (Figure 3.1A). Badgers (Meles meles) were recognized by more than 95% of 

classifiers and only four species were correctly classified by <80% of users. Species vary 

markedly in whether incorrect classifications are due to missing the presence of an animal 

(𝐵𝑗) or mistaking it for another species (𝑂𝑠,𝑗) (Figure 3.1B). For instance, most of the 

erroneous classifications of sequences containing brown hares (Lepus europaeus) were due 
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to mistaken identification (59 out of 66 incorrect classifications; Figure 3.1). In contrast, 

96% of misclassifications of small rodents (a shared designation in MammalWeb for species 

of <500 g in body mass, principally rats, Rattus norvegicus; mice Apodemus sylvaticus and 

Mus musculus; and voles, Microtus agrestis) were due to them being missed altogether (473 

out of 494 incorrect classifications where small rodents were present according to the gold 

standard; Table 3.1). 

Table 3.1. Shaded cells are true positive rates representing the probability of a user classification being correct 

given an image of a certain species. False negative rates are the inverse (including stating there is nothing when 

an animal is present), and false positive rates are how often a species is identified when it is not there. Numbers 

of classifications are in parentheses. E.g. For badgers, there are 1,680 user classifications indicating their 

presence of which 0.8% are incorrect (false positives). There are 1,745 classifications where badgers are truly 

present, of which 95.5% were correct identified (true positives), and 4.5% where they were not identified (false 

negatives). 
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Badger (1680) .955    .003  .001 .001 .001  .000 .008 

Blackbird (773)  .858 .001 .000  .001 .001  .000 .001 .003 .048 

Domestic cat (886) .001  .951    .001 .007   .001 .026 

Grey squirrel (2379) .001 .005 .001 .926 .003 .004 .012   .002 .004 .039 

Hedgehog (578) .001  .006 .001 .798  .002   .008 .001 .059 

Pheasant (773)      .945 .002    .001 .016 

Rabbit (2905) .002 .003  .003 .019 .002 .877 .003 .002 .001 .002 .037 

Red fox (968) .002 .001 .008 .000   .001 .923 .003 .002 .001 .042 

Roe Deer (4513) .002 .002  .000   .003 .004 .932  .003 .012 

Small rodent (836)   .001 .001 .016  .003 .001  .613 .004 .063 

Nothing (7770) .035 .124 .026 .065 .161 .046 .063 .058 .054 .370 .975 .203 

False negative rate .045 .142 .049 .074 .202 .055 .123 .077 .068 .387 .025  
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Figure 3.2. Of the citizen scientists who classified at least 10 sequences, (A) those who deployed camera traps 

(30 “Trappers”, 13,446 classifications) were marginally more accurate at image classification than those who 

did not (102 “Spotters”, 12,100 classifications) but this effect was not supported (ΔAIC = −1.49, model weight 

= 0.32, relative to a model that did not account for the Spotter type). (B) There was strong support for the 

finding that 26 Trappers who classified images they uploaded (“Uploaders”, 2578 classifications) were more 

accurate than Trappers who classified images uploaded by other Trappers (“Other Trappers”, 10,136 

classifications) (ΔAIC = 66.28, model weight = 1.00, relative to a model that did not account for the Spotter 

type). In both panels, each data point represents a different individual; point size reflects relative numbers of 

classifications. Boxes and whiskers summarize predicted accuracy levels across individuals (line across each 

box indicates the median and the box boundaries indicate the interquartile range, IQR; whiskers identify 

extreme data points that are not more than 1.5 times the IQR on both sides; dots are more extreme outliers). 

Among Spotters, those who also deployed camera traps and uploaded photos (“Trappers”) 

were slightly more accurate in their classifications (Figure 3.2A). In addition, Trappers were 

more accurate when classifying images they had obtained than those uploaded by other 

Trappers (Figure 3.2B). 

Analyses of the data across species showed that both the number of classifications 

indicating presence and the number indicating absence of a species provide important 

information about the probability with which that species is actually in a sequence (Figure 

3.3). On the global level, when a single classification has been submitted indicating a species’ 

presence, it is about 95% likely that the species in question does appear in the sequence. 

Predictably, more classifications for the species being present increase the likelihood that it 

is there, whereas more classifications for its absence have the opposite effect (Figure 3.3). 
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Figure 3.3. Global‐level relationship between the number of classifications for the presence (P) and absence 

(A) of a given species in a sequence and the probability that it is indeed in the sequence. Solid lines show the 

mean relationship (over 1,000 bootstrapped samples) between the probability (predicted by the fitted model) 

that a species is present in the sequence and the number of classifications for that species (P), for 0 (orange 

line), 1 (blue line), 2 (green line) and 3 (red line) classifications indicating the species is absent (A). Polygons 

around the lines show ± mean SE across the bootstrapped samples. Dashed horizontal lines show probabilities 

of 0.975 and 0.99. Corresponding dashed vertical lines show the number of classifications for the species 

required to give a confidence of 97.5%. 
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Figure 3.4. Species‐level relationship between the number of classifications indicating the presence (P) and 

absence (A) of a given species, and the probability that it appears in a sequence. Solid lines show the mean 

relationship between the probability (predicted by the fitted model) that a species is present in the sequence 

and the number of classifications for that species, for 0 (orange line), 1 (blue line), 2 (green line) and 3 (red 

line) classifications indicating the species is absent. Polygons around the lines show ± mean SE. Dashed 

horizontal lines show probabilities of 0.975 and 0.99. Corresponding dashed vertical lines show the number of 

classifications for the species that are required to give a confidence of 97.5%. 

The above analysis is based on a model of the form 𝑉𝑠,𝑗 ∼ 𝑃𝑠,𝑗 + 𝐴𝑠,𝑗. However, models 

that included, also, the pictured species (s*) as a fixed factor, outperformed the simpler 

model (∆AIC = 196.74, SD = 19.99). Consequently, we also analysed the relationship 

between image contents and numbers of classifications for individual species. Twelve 

species (including “nothing”, or blank (B), that is where no image in the sequence contained 

an animal) appeared in more than 200 gold standard sequences and so were analysed at the 

species level. For the different species, there was marked variation in the meaning of 

different combinations of classifications indicating presence and absence (Figure 3.4). In 

particular, some designations (e.g. small rodents) require larger numbers of classifications 
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for their presence to confer confidence in their appearance in the sequence (e.g. P = 3 for 

97.5% confidence), but classifications for their absence (A) make relatively little difference 

(Figure 3.4). Other species, such as badgers, need few classifications for their presence to 

instil confidence that they are truly present but small numbers of differing classifications 

substantially undermine that confidence (Figure 3.4). Notably, increases in the number of 

classifications indicating that the sequence contains “nothing” do not materially increase the 

likelihood of consensus being correct (Figure 3.4). Even with 5 classifications indicating 

that the sequence contains “nothing”, the level of confidence does not rise above 97.5%. Any 

dissenting classifications, indicating that there is “something” in the sequence, have a very 

high impact on confidence that the sequence is indeed devoid of animals. 

 

Figure 3.5. Implications of distinguishing between different types of classifications indicating that a species is 

absent (A). For some typically highly detectable species, such as the badger, classifications suggesting that no 

animal is present in the sequence (“false negatives”, B) are more damaging to confidence than are 

classifications suggesting that the pictured species is some other species (“false positives”, O). For visually 

distinctive species, such as the grey squirrel, the converse is true. For species that are seldom overlooked or 

misclassified, classifications indicating their absence count equally, regardless of whether they are for other 

species or no animals at all. 
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Models for individual species differed when separating classifications for absence (A) 

into those for other species (O) and those for no animals (B) (supplementary Figure 3.9). 

For eight species, doing so produced a better‐supported model (supplementary Table 3.2). 

Coefficient values suggest the relative reduction in confidence resulting from classifications 

for no animals (B) and those for other species (O) (supplementary Figure 3.10). 

Classifications for other species (O) have a particularly strong effect on confidence for 

badgers, red foxes, and domestic cats (Figure 3.5 and supplementary Figure 3.10). 

Globally (without regard to specific species), 42.9% of sequences can be retired with 

97.5% confidence after four classifications and a further 21.4% of sequences could be retired 

after seven (supplementary Table 3.3). At the 99% confidence level, 34.7% of sequences 

can be retired after five classifications (supplementary Table 3.3). The implication of these 

analyses is that, on average, 7.2 classifications would be needed per sequence to retire them 

with 97.5% confidence, while an average of 9.1 classifications are required for 99% 

confidence. If algorithms for sequence retirement are sensitive to the species most likely to 

be pictured, 88.1% or more of sequences containing highly recognizable species, such as 

badgers, could be retired after just two classifications (with 97.5% confidence) 

(supplementary Table 3.4). However, less recognizable species would need many more 

classifications to instil confidence (supplementary Table 3.4). For example, only about 85% 

of sequences classified as small rodents can be retired at 97.5% confidence even after six 

classifications (supplementary Table 3.4). 

3.5 Discussion 

There is a trend for citizen science projects to crowdsource data classification. The 

question of how proliferating projects can obtain confident classifications from a finite group 

of contributors suggests that more economic ways of utilizing user input would be beneficial. 

Data from the MammalWeb project suggest that individual classifiers are typically highly 

accurate and that a reliable consensus could be reached with approximately nine 

classifications per sequence. Moreover, we show that greater economy could be obtained by 

treating different species separately, and by discriminating between classifications that 

conflict over the identity of the pictured species, and classifications suggesting no species is 

present. Here, we discuss our results and their implications for crowdsourced image 

classification, increasing the classification rate and large‐scale mammal monitoring. 

3.5.1 Implications for crowdsourced image classifications 

The majority of MammalWeb's camera trap image classifications originated from 

relatively few contributors (supplementary Figure 3.8), a pattern common among scientific 

crowdsourcing efforts (Sauermann and Franzoni 2015). That the top 10% of MammalWeb 
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classifiers (“Spotters”) contributed 84.9% of all classifications is comparable to the average 

of 79% from a survey of seven projects on the Zooniverse citizen science platform 

(Sauermann and Franzoni 2015). 

Notably, Spotters who also helped to deploy camera traps (“Trappers”) were slightly 

more accurate in their classifications (Figure 3.2A). This might be assumed to occur because 

citizen scientists involved in both the data capture and classification stages of the project are 

engaged to a higher level (Haklay 2013) than those involved only in classification. 

Alternatively, it could reflect the fact that many Trappers are nature enthusiasts since they 

were recruited from a local nature‐based organization (similar to Forrester et al. 2017). 

However, the data show that this difference arises principally because Trappers were more 

accurate in classifying images captured by themselves (Figure 3.2B). This is possibly due 

to direct access to those images on their own computers, where they can be scrutinized to a 

greater extent than on our website. It is also possible that these Trappers are simply more 

familiar with the fauna at sites where they deployed camera traps, although the vertebrate 

biota across North East England shows limited spatial variation. 

We showed that the accuracy of volunteer‐contributed classifications is generally high 

(Figure 3.1). With only one classification indicating the presence of a species, the likelihood 

is about 95% that the species is indeed present (Figure 3.3). For a given sequence where the 

species present is known, true‐positive rates are generally high, which also suggests high 

accuracy (Table 3.1). In spite of this accuracy, to confer higher confidence in consensus 

classifications, multiple classifications are required per sequence. Specifically, without an 

algorithm that distinguishes between species, sequences in our dataset can be retired from 

the classification pool after an average of 7.2 classifications (for an accuracy of ≥97.5%) or 

9.1 classifications (for ≥99% accuracy) (supplementary Table 3.3). Given that there is some 

evidence that different types of classifications against the presence of a species may carry 

different weight (and, in particular, that classifications for the absence of any species of 

interest are generally less damaging to confidence than classifications for a different species; 

Figure 3.5), more elaborate approaches accounting for the nature of dissent might 

substantially improve these figures. 

For some species, the number of classifications can be substantially reduced (e.g. 97.5% 

confidence with just two classifications indicating the presence of a badger, Figure 3.4); for 

other species, however, larger numbers would be required and an early transfer to expert 

classification might be preferable (supplementary Table 3.4). Species‐level differences were 

also evident when differentiating the impacts from misidentification (i.e. the false‐positive 

identification of a species) or mistakenly stating that no animal was present (i.e. false 
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negative) (Figure 3.5, supplementary Figure 3.10 ,and Table 3.1). A good example of the 

complications around false positives is given by brown hares. We found that brown hares 

are relatively poorly recognized in our dataset. In fact, they are commonly confused with 

rabbits (Oryctolagus cuniculus), the more frequently occurring lagomorph in the region. 

Although our analyses suggest that the majority of sequences containing rabbits could be 

removed after only three or four classifications (depending on the desired confidence level), 

this overlooks the possibility that brown hares might be of more interest, would need many 

more classifications to compel confidence, and could be overlooked if apparent rabbit 

sequences are retired rapidly. More data would be required to assess this problem, especially 

in relation to the specific probability with which hares are classified as rabbits (and the 

resultant probability that a sequence could achieve consensus on a rabbit being pictured, 

even if a hare is the actual subject). 

With these analyses, we illustrated the importance of considering (1) the entire 

combination of classifications for the presence and absence of a species when calculating 

consensus classifications, and (2) the potential usefulness of a species‐specific approach to 

doing so rather than applying a single algorithm to the entire dataset. An additional benefit 

is that even though an animal may be more or less evident in different images, achieving 

consensus for a sequence would let us retire all of its constituent images without needing 

consensus on each one. 

One finding that might be very general to crowdsourced classifications is that far more 

classifications are required to classify with confidence a sequence having no subjects of 

interest, than to classify with confidence a sequence that does contain animals. Indeed, five 

or more uncontested classifications suggesting that a sequence is devoid of animals is needed 

to impart 97.5% confidence in that designation (Figure 3.4). That contrasts with the other 

species considered in Figure 3.4, which require between two and three uncontested 

classifications to give high confidence that they are actually present. As we noted above, 

more efficient algorithms for crowdsourcing reliable classifications should probably 

discriminate between the weight attributed to disagreements over whether a species is 

present and disagreements over the identity of a pictured species. 

3.5.2 Increasing the classification rate 

Our analyses suggest that a higher ratio of classifiers to images will be necessary before 

MammalWeb can be expanded and expected to contribute to timely and informative 

ecological analyses. In particular, our analyses suggest that, without distinguishing species, 

at least four or an average of 7.2 classifications will be required per sequence for 97.5% 

confidence in consensus. In the first 120 weeks of the project, we accumulated new 
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sequences at a rate of approximately 370 per week, and new sequence classifications at a 

rate of approximately 1,324 per week; this yields a ratio of approximately 3.6 classifications 

per sequence. This suggests that one option to ensure that classifications keep pace with 

accumulating image data is to increase our classifier pool by a factor of approximately 2.5, 

relative to the number of camera trappers. At present, we have approximately 3.5 classifiers 

to every trapper, so this would need to increase to approximately 9:1. Such an increase 

should inform any efforts to extend the reach of the MammalWeb project and can be built 

on existing work that seeks to understand citizen scientist motivations and to promote their 

continued involvement (Eveleigh et al. 2014, Jennett et al. 2016, Wald et al. 2016, Everett 

and Geoghegan 2016). 

One alternative to increasing the relative size of the classifier pool is to encourage higher 

classification effort from existing users. Species‐specific algorithms for sequence retirement 

could be problematic in this regard. For example some of the more recognizable species in 

our dataset are also some of the more charismatic. If these sequences are removed more 

rapidly than others, the dataset could rapidly become biased towards less charismatic species, 

more indistinct photos and images devoid of animals. Preliminary evidence from Snapshot 

Serengeti suggests that moderate numbers of images devoid of wildlife can actually increase 

classifier‐engagement, by ensuring the relative rarity and novelty of wildlife images (Bower 

et al. 2015). In contrast, MammalWeb participants routinely cite animal‐free images (about 

41% of all sequences, based on gold standard classifications) as a deterrent to classification. 

It would be useful to investigate the source of this difference in the reported impacts of blank 

images on motivation. This may be related to the charisma of the animals being monitored, 

whether a project involves citizen scientists in both data capture and classification, user 

interface design or inaccuracies in self‐reporting. 

The importance of sequences devoid of animals is clear (Figure 3.4). Given the high 

proportion (31.4% according to the gold standard) of blank sequences in our dataset (and 

many other camera trap datasets), it is clear that the relatively low confidence with which 

blank sequences can be classified will have a major impact on the overall speed at which 

sequences can be retired without a species‐specific classification algorithm. Options for 

reducing the proportion of blanks in the dataset include asking Trappers – who are more 

accurate at classifying their own images (Figure 3.2) – to pre‐screen their data and remove 

blanks before upload, or using an automated algorithm to do so (see further below). 

One further possibility for overcoming limitations to classification effort is to use the 

dataset to identify classifiers who have very high accuracy, giving a higher weighting to their 

votes, or preferentially tasking them with classifying more difficult images. User skill level 
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was accounted for in one of the Bayesian consensus models by Siddharthan et al. (2016), 

requiring 3.2 classifications per image to achieve 91% confidence. Some crowdsourcing 

platforms (e.g., van der Wal et al. 2016) include automated checking and training 

functionality with computer‐generated structured feedback for volunteers, which could help 

to increase individual accuracy and reduce required numbers of classifications. 

3.5.3 Implications for large‐scale mammal monitoring 

In contrast to some other taxa, mammals have not been routinely monitored at a 

community level in the UK (Battersby and Greenwood 2004, Croft et al. 2017). Over the 

past two decades, mammals have been recorded by many of the volunteers who conduct the 

British Trust for Ornithology's (BTO) Breeding Bird Survey (BBS) (Harris et al. 2016). 

However, given the nocturnal habits and generally low detectability of many mammals, the 

relatively short period during which the daytime‐only BBS is carried out means that many 

species will be missed where they occur, and site‐specific changes could be highly subject 

to stochasticity. Camera trapping would deliver a substantially richer picture of mammal 

occurrence in space and time and, ultimately, an approach like MammalWeb could be used 

to monitor mammals at a national level. In spite of this, MammalWeb was deliberately 

implemented at a local level to determine the feasibility of the approach. Our analyses 

suggest that the approach taken by MammalWeb should be feasible with modest efforts to 

increase the engagement or accuracy of existing classifiers, or the ratio of classifiers to 

images. The system could, consequently, be extended – but, at least given the current 

approach, it would be important to increase recruitment of classifiers to a greater extent than 

recruitment of camera trappers. 

More generally, mammal monitoring using camera traps continues to grow globally 

(Rowcliffe and Carbone 2008), and there are increasing calls for more systematic and 

widespread approaches to the challenge (Steenweg et al. 2017). Crowdsourcing image 

classification is one solution to this challenge, and MammalWeb is one of several platforms 

that engages citizens for wildlife image classification. Others include Instant Wild (Verma 

et al. 2016), Zooniverse (Simpson et al. 2014), eMammal (McShea et al. 2015), iSpot 

(Silvertown et al. 2015) and BeeWatch (van der Wal et al. 2016). While our findings 

regarding accuracy for specific species might not generalize to other platforms, the approach 

to crowdsourcing classifications should. 

There are several reasons why our approach might compare favourably to previous 

algorithms, especially on a species‐by‐species basis. As previously discussed, our classifiers 

are largely local to North East England and so are likely to be highly familiar with the small 

number of species commonly occurring on camera traps in the area. This can be seen in the 
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high accuracy of their classifications (Figure 3.1), especially from those who do the camera 

trapping (Figure 3.2). Moreover, classifiers on MammalWeb are shown entire sequences of 

images, potentially benefiting from contextual information across the sequence. Whether 

this provides a measurable benefit and, if so, to what extent, would be straightforward to 

determine with a platform that can easily be adjusted to show photos either individually or 

in sequence. Overall, our requirement for as few as four classifications per sequence for 

97.5% confidence (if an animal is present) shows greater achievable efficiency than 

consensus algorithms employed where efficiency is not a strong requirement (Swanson et al. 

2016). 

Researchers frequently point to image classification as a major barrier to making best use 

of their camera trapping data. As camera trapping increases in scope, the demand for citizen 

scientists to assist with image classification is also likely to increase. Whether supply can 

keep pace with demand is unclear but it is likely that more and larger projects will compete 

for a finite pool of classifiers, with projects focused on less charismatic or conservation‐

relevant faunas struggling to meet demand. More refined approaches to training volunteers 

and making use of their data (e.g., van der Wal et al. 2016) should help. In addition, 

automated techniques to assist with image recognition may become necessary to alleviate 

the classification challenge. This need will be even more pronounced as those running 

camera trapping studies embrace more complex forms of analysis, such as those requiring 

animal speed and distance detection (Rowcliffe et al. 2016, Howe et al. 2017). Automated 

solutions are starting to emerge but, so far, have been proprietary (Kays pers. comm.), require 

manual image pre‐processing (Yu et al. 2013), or yield very high false‐positive rates (Price 

Tack et al. 2016). Whilst there is likely to be low transferability of species‐detection 

algorithms among studies, experience at MammalWeb provides a strong motivation for 

change detection algorithms (Radke et al. 2005) simply to highlight (and remove) photos 

unlikely to contain wildlife; as discussed above, this process could substantially reduce the 

average number of classifications required to retire sequences. Knowing the presence and 

identity of wildlife within sequences could provide a dataset useful for training machine 

learning algorithms that are under development (Thom 2017, Norouzzadeh et al. 2018). 

In summary, we believe MammalWeb has demonstrated the viability of a local citizen 

science camera trapping project that can sustainably monitor wildlife. Importantly, we have 

shown the benefits of considering species level differences when calculating consensus 

classifications including the relative impacts from false‐positive and false‐negative 

classifications. Our findings regarding the importance to retirement rates of reducing the 

proportion of “blank” sequences in the dataset are highly likely to generalize across projects. 
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Other differences from past citizen science projects, including involving citizen scientists in 

data capture and classification, the methods we used for crowdsourcing data classifications, 

and our insights into the use of sequence‐level classifications to improve retirement rates of 

photos, are also of value to future monitoring initiatives. 
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3.8 Supplementary information 

 

Figure 3.6. A sequence of camera trap images taken in burst mode of a red fox (Vulpes vulpes). When shown 

in isolation, the left‐hand and middle images in this sequence might achieve high levels of consensus regarding 

their content. By contrast, the right‐hand image would be hard to classify and might be subject to considerable 

uncertainty regarding its focal subject. 

https://osf.io/znm6k/
https://gitlab.com/penyuan/consensus_classifications_MammalWeb/
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Figure 3.7. MammalWeb camera trap image classification (“Spotter”) interface. 

 

Figure 3.8. The majority of classification effort was contributed by relatively few users. 
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Figure 3.9. Relationship between classification confidence and the number of classifications for the presence 

(P) and absence (A) of certain species, with the classifications for absence split into those for other species (O) 

and blank (i.e. containing no vertebrates) (B). 
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Figure 3.10. Coefficient values (± mean SE) for models that distinguish between the effects on classification 

confidence of those for “other species” (O) and “blank” (B). 
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Table 3.2. Impact of separating classifications for absence (A) model term into those for other species (O) and 

blank (B). Positive ΔAICs (bold font) indicate that increasing the number of parameters by having separate O 

and B terms is justified by the improved model fit. 

 model terms, ΔAIC  

Species P + A P + O + B ΔAIC 

Badger 68.22 59.61 8.61 

Blackbird 151.82 140.13 11.69 

Domestic cat 57.52 52.97 4.55 

Grey squirrel 348.5 320.61 27.89 

Hedgehog 134 134.94 -0.94 

Pheasant 65.79 66.84 -1.05 

Rabbit 418.04 411.34 6.69 

Red fox 122.1 96.05 26.05 

Roe Deer 213.79 197.37 16.43 

Small rodent 277.19 221.14 56.05 

Wood pigeon 71.29 73.28 -1.99 

 

Table 3.3. Calculations for numbers of sequences-level classifications needed (CN) to achieve target 

confidence level across the global pool of image sequences. 

Target 
confidence 
threshold 

Classifications 
for absence (A) 

Needed 
classifications for 
presence (P) 

Total 
classifications 
needed (CN) 

Expected proportion 
of sequences 

0.975 0 4 4 0.429 

 1 6 7 0.214 

 2 7 9 0.149 

 3 9 12 0.072 

 Didn't match previous criteria 13 0.136 

 Weighted average number of votes 7.2  

0.990 0 5 5 0.347 

 1 7 8 0.217 

 2 9 11 0.135 

 3 10 13 0.109 

 Didn't match previous criteria 14 0.192 

 Weighted average number of votes 9.1  
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Table 3.4. Calculations numbers of sequence-level classifications needed (CN) to achieve target confidence 

level for commonly-pictured species. 

Species 
Target 
confidence 
threshold 

Classifications 
for absence 
(A) 

Needed 
classifications 
for presence (P) 

Total 
classifications 
needed (CN) 

Expected 
proportion 
of 
sequences 

Badger 0.975 0 2 2 0.881 

  1 2 3 0.108 

  2 3 5 0.009 

  3 4 7 0.001 

   
Didn't match 

previous criteria 8 0.0002 

      

Weighted 
average number 

of votes 2.1   

Blackbird  0 3 3 0.488 

  1 4 5 0.245 

  2 4 6 0.157 

  3 5 8 0.055 

   
Didn't match 

previous criteria 9 0.055 

      

Weighted 
average number 

of votes 4.6   

Domestic 
cat  0 2 2 0.827 

  1 2 3 0.150 

  2 2 4 0.020 

  3 2 5 0.002 

   
Didn't match 

previous criteria 6 0.000 

      

Weighted 
average number 

of votes 2.2   

Grey 
squirrel  0 3 3 0.679 

  1 4 5 0.217 

  2 5 7 0.069 

  3 6 9 0.023 

   
Didn't match 
previous criteria 10 0.012 

      

Weighted 
average number 
of votes 3.9   

Hedgehog  0 2 2 0.605 

  1 4 5 0.163 

  2 5 7 0.098 

  3 7 10 0.043 

   
Didn't match 
previous criteria 11 0.090 

      

Weighted 
average number 
of votes 4.1   

Pheasant  0 2 2 0.845 

  1 2 3 0.137 

  2 3 5 0.015 

  3 3 6 0.003 

   
Didn't match 

previous criteria 7 0.000 
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Weighted 
average number 

of votes 2.2   

Rabbit  0 3 3 0.618 

  1 4 5 0.234 

  2 5 7 0.089 

  3 6 9 0.035 

   
Didn't match 

previous criteria 10 0.025 

      

Weighted 
average number 

of votes 4.2   

Red fox  0 2 2 0.595 

  1 3 4 0.210 

  2 4 6 0.093 

  3 5 8 0.046 

   
Didn't match 

previous criteria 9 0.057 

      

Weighted 
average number 

of votes 3.5   

Roe Deer  0 2 2 0.818 

  1 2 3 0.156 

  2 3 5 0.020 

  3 3 6 0.005 

   
Didn't match 

previous criteria 7 0.001 

      

Weighted 
average number 

of votes 2.2   

Small 
rodent  0 2 2 0.380 

  1 3 4 0.180 

  2 3 5 0.172 

  3 3 6 0.119 

   
Didn't match 

previous criteria 7 0.149 

   

Weighted 
average number 

of votes 4.1  

      

Species 
Target 
confidence 
threshold 

Classifications 
for absence 
(A) 

Needed 
classifications 
for presence (P) 

Total 
classifications 
needed (CN) 

Expected 
proportion 
of 
sequences 

Badger 0.990 0 2 2 0.881 

  1 3 4 0.102 

  2 4 6 0.015 

  3 4 7 0.003 

   
Didn't match 

previous criteria 8 0.0003 

      

Weighted 
average number 

of votes 2.3   

Blackbird  0 4 4 0.384 

  1 5 6 0.257 

  2 5 7 0.192 

  3 6 9 0.078 

   
Didn't match 

previous criteria 10 0.089 
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Weighted 
average number 

of votes 6.0   

Domestic 
cat  0 2 2 0.827 

  1 2 3 0.150 

  2 2 4 0.020 

  3 2 5 0.002 

   
Didn't match 

previous criteria 6 0.000 

      

Weighted 
average number 

of votes 2.2   

Grey 
squirrel  0 4 4 0.597 

  1 5 6 0.254 

  2 6 8 0.095 

  3 7 10 0.035 

   
Didn't match 

previous criteria 11 0.020 

      

Weighted 
average number 

of votes 5.2   

Hedgehog  0 3 3 0.471 

  1 5 6 0.190 

  2 7 9 0.102 

  3 8 11 0.081 

   
Didn't match 

previous criteria 12 0.157 

      

Weighted 
average number 

of votes 6.2   

Pheasant  0 2 2 0.845 

  1 3 4 0.126 

  2 3 5 0.025 

  3 4 7 0.003 

   
Didn't match 

previous criteria 8 0.001 

      

Weighted 
average number 

of votes 2.3   

Rabbit  0 4 4 0.526 

  1 5 6 0.266 

  2 6 8 0.118 

  3 7 10 0.051 

   
Didn't match 

previous criteria 11 0.040 

      

Weighted 
average number 

of votes 5.6   

Red fox  0 3 3 0.459 

  1 4 5 0.243 

  2 5 7 0.128 

  3 6 9 0.071 

   
Didn't match 

previous criteria 10 0.099 

      

Weighted 
average number 

of votes 5.1   

Roe Deer  0 3 3 0.740 
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  1 3 4 0.212 

  2 3 5 0.041 

  3 3 6 0.006 

   
Didn't match 

previous criteria 7 0.001 

      

Weighted 
average number 

of votes 3.3   

Small 
rodent  0 3 3 0.234 

  1 3 4 0.270 

  2 3 5 0.207 

  3 4 7 0.081 

   
Didn't match 

previous criteria 8 0.208 

   

Weighted 
average number 

of votes 5.0  
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Chapter 4 - School students conducting, 

contributing to and communicating ecological 

research — experiences of a school-university 

partnership 

Please note that this chapter (with the exception of this paragraph) has been submitted to 

the journal School Science Reviews, received two positive peer reviews, and is undergoing 

minor revisions. Full citation: Hsing, P.-Y., L. Coghill, J. Ryder, M. Austin, S. Dooley, A. 

Ellison, C. Fenwick, M. Garland, P. Humphrey, H. Proudlock, A. Robson, C. Steer, L. 

Turnbull, R. Ascroft, and P. Stephens. 2018. Citizen scientists: School students conducting, 

contributing to and communicating ecological research—experiences of a school-university 

partnership. School Science Reviews, in review. 

4.1 Abstract 

Started in north-east England in 2015, MammalWeb aims to improve our knowledge of 

British mammals through the use of motion-sensing “camera traps”. Fundamental to the 

project is the involvement of local communities and individuals who act as citizen scientists. 

They contribute to the collection and analysis of the camera trap photographic data. Here, 

we jointly describe our experiences as a partnership between Belmont Community School 

and Durham University. School students became citizen scientists and ecological 

ambassadors who took part in research and designed outreach materials for their local 

community. We discuss what we learned and the resulting mutual benefits.  

4.2 Introduction 

Providing opportunities for school students to experience authentic science in an 

academic research environment has been suggested to have positive impacts (Holman et al. 

2016). They include developing students’ learning and research skills and other transferrable 

proficiencies such as independence, self-esteem, resilience, decision-making and 

communication skills (European Union and SOCIENTIZE Consortium 2014, Holman et al. 

2016, Archer 2016). Students’ attitudes towards science are observed to improve and, as 

they become aware of STEM (science, technology, engineering, and mathematics) career 

options, more consider pursuing a science career (Jones et al. 2016, Holman et al. 2016). 

Such improvements are often more marked in students from traditionally under-represented 

groups (Jones et al. 2016, Holman et al. 2016). In addition, although practical work in general 

is not associated with any increase in science test scores (Organisation for Economic Co-
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operation and Development 2016, Hamlyn et al. 2017), higher science test scores have been 

noted for students who reported doing more of their own design and execution of 

experiments than for their peers who had not engaged in such self-led experimentation (Jones 

et al. 2016, Hamlyn et al. 2017). As such, several organisations, including the Wellcome 

Trust (https://www.wellcome.ac.uk/), Nuffield Foundation 

(https://www.nuffieldfoundation.org/), and Research in Schools 

(http://www.researchinschools.org/), advocate such independent research programmes. In 

addition, a survey of 4,000 14-18 year-olds at state-funded schools in England identified that 

58% would like to do more practical work (rising to 76% of those on a single science 

programme 1 ) and 53% would be interested in hearing more about scientists’ research 

(Hamlyn et al. 2017). This suggests that there is also an appetite among students for more 

practical experiences. 

Giving school students the opportunity to become citizen scientists, where they become 

involved in the scientific process and actually contribute to research, is a means of enabling 

people to become active participants in, and co-creators of, authentic science (Irwin 1995, 

Bonney et al. 2009, European Union and SOCIENTIZE Consortium 2014). Indeed, 

academic research is increasingly turning to citizen science for aid in data collection, 

classification, or even analyses (Kosmala et al. 2016). Crowdsourcing data collection is just 

one form of citizen science, but it could be a way of involving people, making research more 

democratic and potentially reducing the lag time between discovery and education (e.g., the 

Foldit project; Khatib et al. 2011). 

Here, we present an example of school students as citizen scientists, who, through a 

collaborative partnership between Belmont Community School and Durham University 

(both in Durham in north-east England), contributed to real research while engaging their 

local community in the science. Belmont Community School 

(http://www.belmontschool.org.uk/) is a mixed-sex, state-funded secondary school for 11-

16-years-olds, while Durham University (https://www.durham.ac.uk/) is a highly-selective 

collegiate research university, consistently ranked in the top 10 in the United Kingdom (UK), 

and top 100 worldwide. 

North-east England has the lowest student participation in higher education in the UK 

(Higher Education Funding Council for England 2017), and we wanted this partnership to 

(1) expose students to real-world science at a university and become aware of STEM career 

options; (2) let teachers gain first-hand experience to reignite a passion for their subjects and 

                                                      
1 In England and Wales, where students take an examined course (usually at around age 16) 

combining Biology, Chemistry and Physics and achieving one result at the end. 

https://www.wellcome.ac.uk/
https://www.nuffieldfoundation.org/
http://www.researchinschools.org/
http://www.belmontschool.org.uk/
https://www.durham.ac.uk/
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increase confidence and knowledge when discussing real research in the classroom; (3) 

allow researchers to crowdsource their science and broaden the impact of their work. 

We believe our citizen science approach to a school-university partnership not only fulfils 

those goals, but also empowers students – through enhanced science learning and outreach 

– to be engaged citizens. 

4.3 Citizen science ecological monitoring 

The ecology-based citizen science project, MammalWeb (http://www.MammalWeb.org/), 

was founded in 2015 by a team of ecologists in the Department of Biosciences at Durham 

University and the local Durham Wildlife Trust (https://www.durhamwt.co.uk/). This was 

in response to gaps in the monitoring of British wild mammals (Croft et al. 2017) and as an 

investigation into whether the success of citizen science surveys for other taxa (such as the 

UK Annual Breeding Bird Survey: https://www.bto.org/volunteer-surveys/bbs/) could be 

replicated for mammals. 

Mammals are elusive and often nocturnal, making them difficult to track. As such, the 

project uses motion-sensing “camera traps” to photograph different mammals as they pass. 

These cameras are set up and monitored by more than 70 citizen scientists, including 

members of the public and schools. The citizen scientists upload the resultant images to the 

online MammalWeb platform where anyone with an Internet connection can register to help 

classify the animals (Figure 4.1). As of March 2018, more than 250,000 images have been 

submitted from 230 sites in the region, representing 42 camera-years of cumulative 

monitoring. Of those, over 120,000 images have been classified at least once by the 273 

active users on MammalWeb. We aim to aggregate input from multiple users for each image 

into consensus classifications on which further ecological analyses can be based (Hsing et 

al. 2018). These records are then also submitted to repositories including the Environmental 

Records Information Centre for the North-east of England (ERIC North-east: 

http://www.ericnortheast.org.uk/) and so contribute to national databases. MammalWeb’s 

growing dataset could enhance understanding of our natural heritage by allowing analyses 

of wildlife diversity and its changes across space and time, which is of critical importance 

in light of rapid global environmental change. 

http://www.mammalweb.org/
https://www.durhamwt.co.uk/
https://www.bto.org/volunteer-surveys/bbs/
http://www.ericnortheast.org.uk/
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Figure 4.1. MammalWeb web interface for camera trap photo classification. Users choose from a scrollable 

list of options representing which animals they think are in each image. 

In addition to quantitative analyses, the data (in the form of classified camera trap photos) 

collected by MammalWeb citizen scientists has led to civic engagement with tangible 

management outcomes. For instance, Mr Roland Ascroft used camera traps on a reclaimed 

colliery site at New Brancepeth (in County Durham, England), gathering over 20,000 images 

by the end of 2017. In addition to submitting these images to MammalWeb, he found 12 

species of land mammals including roe deer (Capreolus capreolus). Camera-trap images 

showed that roe deer are present year-round and reproduce on the site. The site has been 

proposed as a Local Nature Reserve, and the camera-trapping results can inform its 

management. 

On another occasion, a series of camera trap photos revealed the presence of a raccoon 

(Procyon lotor, which is not native to Britain) in nearby Sunderland (Figure 4.2). Since 

MammalWeb citizen scientists follow a specific camera trapping protocol that includes 

careful recording of metadata (such as the precise date, time, and location of camera 

deployments), the UK Department for Environment, Food and Rural Affairs (DEFRA) used 

MammalWeb data to locate the raccoon and transferred it to a local zoo. 

Through the partnership between Belmont Community School and MammalWeb, we 

hoped that students would experience contributing to tangible scientific outcomes like these, 

and more importantly, take ownership of sharing this experience with their community. 
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Figure 4.2. A non-native raccoon (Procyon lotor) as imaged by a motion-sensing camera trap operated by a 

MammalWeb citizen scientist. 

4.4 Student citizen scientists 

Several schools across England worked with MammalWeb researchers in deploying 

camera traps and classifying photos. For example, the Durham Wildlife Trust engaged with 

several schools both at primary and secondary levels on the project and it was welcomed as 

an extremely valuable method of engagement for the students in terms of the natural 

environment and technology curriculum. However, in collaborating with Belmont 

Community School, we were able to build a deeper, sustained relationship both for long-

term ecological monitoring, and in providing distinct experiential learning opportunities to 

a team of ten Year 9 students (aged 13–14). The goal was to train, support and empower the 

students as seed “ambassadors” who not only contributed to data collection, but also 

conducted their own ecological outreach within their community. 

Throughout the academic year 2016, MammalWeb PhD student, Pen-Yuan Hsing 

(supported by Durham University’s outreach specialist, Dr Lorraine Coghill, and Belmont 

School’s science teacher and lead practitioner, Mrs Julie Ryder), made bi-weekly visits to 

the school. These after-school, extra-curricular sessions were initially focused on widening 

participation in the research, enabling the young people to gain an understanding of real-life 

science, including basic training on the deployment of camera traps for wildlife monitoring 

(Figure 4.3). Students were encouraged to consider factors including location, set-up and 

security, developing ownership over the trapping. In tandem, they researched local wildlife 

and investigated already-captured images on the MammalWeb platform. Support from a 

British Ecological Society Outreach Grant 

(https://www.britishecologicalsociety.org/funding/outreach-grants/) enabled the team to 

https://www.britishecologicalsociety.org/funding/outreach-grants/
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visit a range of potential camera trapping sites beyond the school’s immediate location and 

broaden the students’ exposure to nature. This included the Durham Wildlife Trust’s Rainton 

Meadows Nature Reserve (County Durham) where, crucially, the students took control and 

ownership of camera trap deployment. Other field trips included one to camera trapping sites 

at the Durham University Botanic Gardens. A timeline of the above activities are shown in 

Table 4.1. 

Table 4.1. Timeline of work with Belmont School students. 

Dates Activity 

11 October 2015 Outreach Grant received from the British Ecological Society. 

Late 2015 – end of spring 

2016 

Bi-weekly visits to Belmont School to work with student MammalWeb 

citizen scientists. Camera trap deployments occurred near the school during 

this time. 

19 March 2016 Student-designed MammalWeb and ecology outreach activities delivered at 

the local Belmont Community Easter Fair. 

4 – 5 July 2016 Field visits to the Durham Wildlife Trust Rainton Meadows nature reserve 

and the Durham University Botanic Garden. 

May – July 2017 Multiple visits to Belmont School for further camera trapping. Filming of 

camera trapping work at Rainton Meadows (June – July 2017). 

September 2017 Designing outreach activities for Celebrate Science Festival. 

24 October 2017 Delivered outreach at Celebrate Science Festival. 

 

 

Figure 4.3. Student citizen scientists deploying motion-sensing camera traps in Rainton Meadows nature 

reserve. 
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4.5 What the student citizen scientists learned 

This section is an edited account written by the students – who are co-authors of this 

article – regarding their experiences deploying camera traps at the Rainton Meadows Nature 

Reserve where they obtained approximately 1,000 wildlife photos. 

4.5.1 Finding a location for camera traps 

During the first visit to Rainton Meadows, we scouted the reserve for suitable locations 

for deploying our two camera traps. To make sure scientifically useful photos can be 

obtained for MammalWeb, we set the following criteria for the environment in which we 

position the camera traps: 

• Avoid places with substantial human activity which could disturb the monitoring 

and since thefts of cameras were known to occur. 

• Consider which animals we were likely to observe in the area. 

• Ensure the camera’s field of view is not obstructed by foliage or low branches. 

We selected a location in the woods near a stream and not viewable from the pedestrian 

paths. Animal tracks and remains were spotted nearby including bones, faeces, tracks and 

bird eggs. The cameras needed to be low to the ground because we believed most mammals 

here are small and the camera’s limited range means placement is important. Although the 

camera is water resistant, we placed it under the canopy of trees to minimize exposure to the 

elements. 

4.5.2 Setting up a camera traps 

Camera traps require a strong and freestanding object to attach to (usually a tree or fence 

post). In our case this was a strong tree about 3 m from a stream. Considering the height of 

the animals likely to be in the environment, we placed our camera traps just below knee 

height. 

To test the cameras’ positioning, we initially set them to do a “walk test”. While on this 

mode, a small red light on the camera flashes when an object moves in front of it — 

identifying when a picture would be taken. Once satisfied with the cameras’ angles, we 

armed them to take real photos. We then attached the cameras with a cable lock to the tree 

trunk. 

The camera traps we used (Reconyx HC500) employ an infrared motion sensor that 

triggers when an animal passes by. Upon each trigger, we set the camera traps to take three 

images in quick succession (“burst mode”). The camera resets within a minute after a trigger 

and is ready to take more pictures. We left the camera for three weeks between 13 June and 

04 July 2017. 
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4.5.3 Expected findings 

During the period of research in the weeks leading up to 13 June 2017 (the day in which 

the camera traps were set at Rainton Meadows), we used information from previous 

sightings and our knowledge of the type of environment found there (relating to the habitat 

certain species require to live) to predict what types of animals we would be able to 

photograph. Some examples of the species we predicted to find were: rabbits (Oryctolagus 

cuniculus), deer, hedgehogs (Erinaceus europaeus), grey squirrels (Sciurus carolinensis), 

and small rodents (e.g. rats, mice). 

4.5.4 Collecting the camera traps 

Upon collecting the cameras we uploaded their images onto a computer in order to 

observe our findings. We were delighted to discover that a large amount of animals had been 

photographed, some of which were predicted beforehand. Multiple photos of rabbits, 

hedgehogs and grey squirrels were captured on both of the cameras as well as some birds 

(Figure 4.4). In addition, we were excited to find that multiple images of a red fox cub 

(Vulpes vulpes) were taken on several different occasions (Figure 4.4). Even though it was 

known that red foxes lived in Rainton Meadows, it was surprising to find them captured on 

camera. The data can be used to predict the paths of the foxes, what times they use these 

routes and the activity they may be partaking in at these times. 

 

Figure 4.4. Animals observed with camera traps set up by Belmont Community School students. Clockwise 

from top left: Rabbit, grey squirrel, red fox, and hedgehog. These photos have been uploaded to MammalWeb 

for classification by other citizen scientists. The greyscale images were taken at night or low-light conditions 

using the camera’s infrared flash. 
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4.6 Students as ecological ambassadors 

Crucial to the project was the ambition to encourage the students to become ambassadors 

for their research, engaging their own community. As such, later after-school sessions 

focused on facilitating the students’ planning and design of ecological outreach. This took a 

student-led approach with school and university staff facilitating the process through a series 

of games, activities and training sessions that encouraged the students to develop their 

communication skills, taking consideration of different ‘audiences’, and exploring different 

engagement techniques. 

The students decided to concentrate engagement efforts in three areas: (1) the 

development and delivery of interactive activities suitable for community events; (2) the 

development of educational materials for schools and public; and (3) the production of a 

short video to illustrate the project. 

Commencing with the Belmont Easter Community Fair in March 2016 (Figure 4.5), the 

team (in self-designed t-shirts) ran a stall of activities aiming to engage visitors about their 

MammalWeb research and findings about local wildlife. The students demonstrated camera 

trapping and got people involved in classifying images on the MammalWeb platform. They 

found that an animal “poo” identifying game (with models of wildlife scat samples loaned 

from the British Ecological Society) was particularly successful in engaging people of 

different ages, whilst their mammal Easter egg hunt absorbed younger children and their 

peers. The team adapted their activities and have since contributed to several community 

events including engaging over 2,000 people in one day at Durham University’s public 

Celebrate Science festival in October 2017 (Figure 4.6). In addition to demonstrating the 

use of camera traps and running the poo game at this festival, the students debuted an activity 

they developed where participants learned about animals through using stamps representing 

their tracks. Evaluation from the festival highlighted the students’ contributions with several 

visitors naming it as their favourite activity, and multiple comments stating that it was “great 

to see young people who are so knowledgeable and enthusiastic about science”. 
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Figure 4.5. Student ecological ambassadors at the March 2016 Belmont Easter Community Fair. 

 

Figure 4.6. Student ecological ambassadors engaging visitors at the Celebrate Science festival in October 2017. 
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With support from the British Ecological Society, we worked with a local professional 

filmmaker to document these experiences, as well as illustrating the MammalWeb citizen 

science project to a wider audience. The resultant 10-minute video is shared in full 

(https://vimeo.com/237565215/) and 1.5-minute versions (https://vimeo.com/237771257/) 

under the Creative Commons Attribution-ShareAlike 4.0 license. 

4.7 Lessons learned from citizen science collaboration 

between schools and universities 

The core group of ten students who worked on the project were initially motivated by a 

general interest in wildlife and a desire to see them in their natural habitat. After nearly two 

years of working on MammalWeb-related outreach activities, the key outcomes reported by 

this group of students were: 

• Considerable surprise about the diversity of wildlife that they were previously 

“oblivious” to. 

• Excitement about participating in outdoors experiential learning, finally “learning 

outside the classroom”. 

• Satisfaction from contributing to a real and on-going citizen science project with 

broad impact. 

• Enjoyment from doing the above in their local community. 

Through conversations with Mrs Julie Ryder, teachers at Belmont School noted: 

• Involvement in the Mammal Web project has raised pupil awareness of the 

valuable contributions young people can make to research. The increased 

understanding of the distribution of animals in the local area has been shared with 

the school and the families of those involved, spreading the information through 

the local community and well beyond the core group of ten students. 

• Links made with Durham University – allowing pupils to work alongside and 

contribute to research – has opened up the idea of education beyond school and 

the prospect of studying science at university. 

• The pupils involved developed a real teamwork approach to solving problems, 

and showed that they are confident leaders and are able to interact with adults and 

students across the school and the wider community. 

• Pupils have an increased enthusiasm to pursue science-related subjects beyond 

school, having broadened their experience of science related work. They feel 

confident to take an active part in a range of community projects. 

https://vimeo.com/237565215/
https://vimeo.com/237771257/
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• Involvement in projects linked with Durham University is a vital part of the extra-

curricular provision they can provide for our students. Opening a window of 

opportunity for their students to work with the university is crucial if they are to 

increase the aspirations of their students. 

From the perspective of researchers at Durham University: 

• Crowdsourcing the collection and processing of data is just one form of citizen 

science, and it is very helpful to researchers whose time and resources are limited. 

• When ecologists work with multiple schools, they can expand the geographical 

reach of their surveys. Also, if there is buy-in from teachers, then school partners 

can sustain ecological monitoring over longer periods of time when compared to 

individual volunteers, building long-term capacity. 

• Citizen science projects such as MammalWeb – through education, outreach, and 

empowering citizen scientists – demonstrate the broader impact of research at 

universities. 

• In the UK, universities are subject to evaluation by the Research Excellence 

Framework (REF; https://www.ref.ac.uk/) with broad implications for funding. 

Citizen science projects allow scientists to demonstrate the impact of their 

research outside academia, which is one of the criteria in REF, whilst 

simultaneously collecting important research information. 

• Durham University has a stated goal of working more closely with the local 

community. MammalWeb is a successful case study of how Durham University 

researchers have achieved this with local citizens and students by joining them as 

co-creators of science. 

• Working in partnership with young people and teachers provides a different 

perspective on the research, opening up new ideas and opportunities. 

The project required a dedicated team to coordinate, and did experience delays and 

changes from the initial plans. From our experiences, we would advise the following if 

embarking upon a similar project: 

• Identify dedicated key contacts from the school and the university. Many 

universities have outreach specialists which a teacher can contact to initiate this 

process. 

• Take time to understand each other and get to know what everyone wants to 

achieve. Be honest and understand what can be achieved, including discussing 

barriers and limitations such as time, staffing, budget and resources (and possible 

solutions/ways to minimise). 

https://www.ref.ac.uk/
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• Agree how to communicate and maintain regular contact. Keeping each other 

updated and informed of changes to staffing and activities ensures that the 

programme can be adapted to suit all parties. 

• Carefully consider time implications. Running something like this does take 

additional time. We deliberately arranged our activities as an alternative science 

club in order to reduce time/work pressures, and we were able to pre-provide all 

documentation (e.g., risk assessments) to facilitate field visits. 

• Be aware of scheduling issues. The time pressures and academic schedules of 

schools and universities do not always align. Include substantial buffer time to 

deal with delays. 

• Be flexible. New opportunities can arise (such as our participation in the Easter 

fair) and unforeseen circumstances (such as sickness) can hamper involvement. 

• Think carefully about the how the project is set up - it is important that the students 

can take ownership of the project and feel confident and empowered to contribute 

to discussions and take action (within the limits of the project). It is important to 

emphasise regularly that the project is a collaboration between all participants, 

that it involves real-research and is not just a classroom exercise, and that their 

input is key. All involved adults should be made aware and supported with this 

too to prevent a more didactic approach, which alters the group dynamic and can 

impede full participation. 

• For both the students and the wider group of citizen scientists contributing to 

MammalWeb, a major motivator is that they are conducting ecological research 

directly connected to their communities. This suggests that for a large-scale 

research project to involve schools, it is important to investigate and emphasise 

local relevance in order to sustain interest. 

• Do consider what additional partners could contribute. For example, the British 

Ecological Society (BES) grant enabled the external visits by the school group 

(which we were not able to fund internally), but the BES was also keen to support 

through additional resources and training opportunities. Organisations like 

Research in Schools also promotes the integration of academic research in 

primary and secondary education. 

4.8 Conclusion and future plans 

We believe the MammalWeb citizen science project exemplifies the fruitful partnerships 

that can be formed between schools and universities. The mutual benefits and, in particular, 

the observed impact on the students as active, motivated, more confident learners, are felt to 
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outweigh the time and organisational commitment required. The students are already 

working on developing the project further and the school has activated new programmes for 

other groups with different organisations. Aspects of this project’s findings have been 

presented at international conferences of the European Citizen Science Association, the 

British Ecological Society, and the Ecological Society of America. Insights gained from the 

crowdsourcing of data collection and classification have been published in peer-reviewed 

ecological journals (Hsing et al. 2018). In addition, MammalWeb has made contact with 

interested schools in other areas of the UK and is working with the Great North Museum: 

Hancock in Newcastle, England on a schools outreach partnership. We hope to develop the 

learning from this project into a wider educational network for ecological monitoring to fill 

the current gap in knowledge. Any school or teachers interested in this can contact us (email: 

info@mammalweb.org) and potentially borrow a camera trap for use with their students. 

One challenge to tackle is how to integrate real-world science – such as the MammalWeb 

citizen science project – into the formal school curriculum if after-school, extracurricular 

activities are infeasible or not desired. This may involve a deeper discussion between 

researchers and teachers on where and how that science can fit in. In the case of 

MammalWeb, we believe it has the potential to complement the biology curriculum and 

possibly numerical skills (e.g., statistics) if data analyses are done as well. Through 

understanding the design of camera traps and MammalWeb platform there are also important 

technology and computing aspects to this work. We are currently developing activity guides 

for educators with this in mind. 

This partnership has also prompted broader contact between other schools and Durham 

University. For example, the Ustinov Global Citizenship Programme at the University ran 

an engagement event between postgraduate researchers and local teachers to develop joint 

programmes for school pupils. This has already led to several Masters and PhD students 

(with subjects from psychology to social sciences) visiting those schools to engage young 

learners in the cutting-edge research being conducted at Durham University. The benefits of 

initial partnerships may thus be far reaching. 

On the technical side, we are developing enhancements to the MammalWeb web platform 

to improve the user experience. One is the addition of interactive data visualisations allowing 

anyone to explore how observed wildlife changes over space and time. The other is a “project” 

feature allowing, for example, teachers to filter for and manage the photos and classifications 

contributed by their students. These features will be introduced from late-April 2018. 

We hope the MammalWeb case study can serve as a template for implementation of other 

successful school-university partnerships. 

info@mammalweb.org
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Chapter 5 - Handling uncertain detections and 

discretising data in camera trap-based 

occupancy modelling 

5.1 Introduction 

Reliably estimating animal populations is a key component of ecology and conservation 

(Kéry and Royle 2015). This often involves measures of abundance which are time and 

labour intensive to obtain, and may require the individual identification of animals (e.g., 

mark-recapture methods). For terrestrial mammals, measuring abundance can be difficult, 

since they are frequently elusive and nocturnal, and occur at low densities. 

Occupancy is a measure defined as the proportion of an area or group of sampling sites 

in which a species is present (also defined as the probability that a site is occupied) 

(MacKenzie et al. 2002). The process of estimating occupancy is based on repeated surveys 

across multiple sites of interest where each survey determines the presence or absence of a 

target species. Occupancy can be useful when determining species richness and distribution, 

or as a surrogate for abundance for many research questions, such as when investigating 

changes in a population, or the relationship between populations and spatial or temporal 

covariates (e.g., Ahumada et al. 2013, Burton et al. 2015, Rovero and Spitale 2016, Rich et 

al. 2017). Occupancy models account for the imperfect detection of a species, defined as its 

probability of detection (or “detectability”) at a site given its presence or other covariates 

(MacKenzie et al. 2002, 2003). While the goal of many studies is to estimate occupancy, 

detectability is itself sometimes of biological interest with regards to factors such as changes 

in the physiological states of the animals, seasonal changes in behaviour (e.g., hibernation, 

when an animal is presence but hard to detect), or as a function of climate (Guillera-Arroita 

et al. 2010). 

Data from camera trap surveys are frequently used for occupancy studies (Burton et al. 

2015, Steenweg et al. 2017). This is because camera traps are non-invasive and can be 

deployed with relative ease across multiple sites and for long durations. It is generally 

assumed that the presence of a species can be confirmed as soon as a photo of it is captured, 

while its absence can be ascertained if no photos are obtained during the survey. Combining 

camera-trapping with occupancy estimation is especially useful for monitoring terrestrial 

mammals (McCallum 2013, Burton et al. 2015, Rovero and Spitale 2016, Rich et al. 2017, 

Bowler et al. 2017). This is because occupancy analysis does not require individual 

recognition of animals (which is highly problematic for many mammals), long camera trap 
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deployments can detect rare or elusive species, and occupancy analyses considers the 

possibility that an animal is not detected when present (which addresses the common 

assumption that non-detection means absence when camera trapping). 

Citizen science projects have seen rapid growth as of late where, in their most common 

form, the collection and classification of data are crowdsourced to non-professionals 

(Silvertown 2009, Bonney et al. 2009). It has the potential to tackle large-scale ecological 

monitoring needs (Devictor et al. 2010), and there are now several citizen science camera-

trapping projects targeting mammals (Swanson et al. 2015, McShea et al. 2015, Forrester et 

al. 2017). MammalWeb is one such project where I partnered with local communities near 

County Durham, England to deploy camera trap surveys to monitor wild mammals. As 

reported in Chapter 3, MammalWeb citizen scientists have, as of March 2018, classified 

about 116,000 images out of 250,000 collected over more than 15,000 camera trap days 

across 261 sites in the region. The MammalWeb project is notable of involving citizen 

scientists in both data collection and classification, while empowering them to design and 

deliver outreach (Chapter 4) or even start their own ecological surveys (Chapter 6). 

Since MammalWeb began in mid-2015, the majority of my work has focused on 

recruiting and organising the citizen scientists to carry out camera trap deployments. In 

addition, I built on past work on crowdsourcing image classifications (Swanson et al. 2016) 

and developed a model which computes the probability a species is present in an image from 

aggregating user classifications (Hsing et al. 2018). These efforts have already produced 

tangible conservation outcomes – such as the capture of non-native species or informing the 

planning of a local nature reserve – there is a need to further explore the analytical tools to 

which we can apply these consensus classifications. Another important result is that we have 

taken citizen science participation to a higher level not just through school partnerships, but 

also members who have started their own ecological studies elsewhere in the country. Since 

MammalWeb data is essentially detection histories (absence and presence) for all the sites 

at which citizen scientists have deployed camera traps, in this chapter I will attempt to 

address issues arising from using MammalWeb data for occupancy analysis. They include 

how to discretise camera trap data into discrete sampling occasions and the handling of 

missing data in detection histories. Most importantly, I will explore the potential of utilising 

consensus classifications (as discussed in Chapter 3) as a measure of uncertain detection, an 

important topic when modelling occupancy (Miller et al. 2011, Clement 2016, Guillera-

Arroita et al. 2017) and increasingly pertinent in light of the popularisation of crowdsourced 

data classification and machine learning algorithms. For the rest of this introduction, I will 

briefly expand on how I plan to address these three issues in this chapter. 
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First, occupancy models assume repeated discrete presence-absence surveys – called 

sampling occasions – across multiple sites during a sampling season (MacKenzie et al. 2002). 

Camera trap deployments are inherently continuous surveys, and there is no established 

guidance for dividing a deployment into discrete sampling occasions. While they are often 

1-day long, some last for many weeks (Linkie et al. 2007, Ellis et al. 2014). Rovero and 

Spitale (2016) recommended that – as a general rule – discretising camera trap data into 1-

day sampling occasions would be sufficient to achieve independence of detections. That is, 

within each 1-day sampling occasion, a detection is recorded as long as there is at least one 

photo of the target species. They tested discretising camera trap data collected by the TEAM 

Network (Rovero et al. 2014) by dividing 30-day-long surveys into sampling occasions 

between one and ten days long and fitting occupancy models to each one (Rovero and Spitale 

2016). In this case, the estimated occupancy rates were not sensitive to different interval 

lengths. However, it remains to be seen how broadly this recommendation can be generalised. 

In addition, since MammalWeb camera trap detections are uncertain (i.e., the probability an 

animal is present derived from consensus classifications), discretising data into longer 

sampling occasions might be justified since aggregating multiple uncertain detections would 

increase the possibility that the species was indeed detected. 

Second, large-scale camera trap studies can be financially burdensome and logistically 

complex (Mackenzie and Royle 2005, Gálvez et al. 2016). These practical limitations may 

require, among several strategies (reviewed in Mackenzie and Royle 2005), deploying 

camera traps in a temporally staggered fashion where only a subset of sites are surveyed at 

a time (van Berkel 2014 p. 51). This is true in the case of MammalWeb, where only a small 

subset (up to ~20) of the 261 sites have citizen scientist-deployed camera traps on a given 

day. This means that for each site in a given study area, there will be missing data during the 

sampling season, when no camera trap was deployed. The standard occupancy model 

(MacKenzie et al. 2002) anticipates the possibility of missing data as defined here, and 

simply discounts those sampling occasions in a site’s detection history. Here I will explore 

its effects on estimated occupancy. 

Third, uncertain detections – e.g., the possibility of incorrect species identification – 

during surveys may impact the reliability of downstream occupancy analysis (Guillera-

Arroita et al. 2017). Uncertain detections might, for example, result from uneven observer 

expertise or identifying species from proxies (such as scat or tracks). To deal with this issue, 

in one case of utilising opportunistic, crowdsourced data for estimating wolf occupancy in 

France, the size of the area to which a detection applies is scaled by the corresponding 

observer’s level of expertise (Louvrier et al. 2017). This way, wolf detections reported by 
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untrained observers were effectively weighted less in the occupancy model than those from 

trained park rangers. However, this approach does not apply to uncertain detections from 

camera-trapping which, at the simplest level, results from the often indistinct images of 

animals that need to be identified. In addition, current attempts to extend the standard 

occupancy model to account for uncertain detections describe them using a discrete, multi-

state term (Miller et al. 2011). However, in the case of crowdsourced camera trap image 

classifications, uncertainty is measured as a continuous variable – the probability an animal 

is present – without an obvious, non-arbitrary way to discretise into an ordinal term. This is 

also true in light of recent advancements in machine learning algorithms for classifying 

camera trap images which gives probabilities for detection confidence (Norouzzadeh et al. 

2018). In this chapter, I test an approach where detection histories are resampled according 

to their level of uncertainty (i.e., probability of correct classification) to construct confidence 

intervals around occupancy estimates. This was done with both simulated data and that from 

selected species observed as part of the MammalWeb project to estimate, for example, the 

number of camera trap days needed to confidently ascertain the presence or absence of a 

species. 

5.2 Methods 

5.2.1 Occupancy models 

The analyses in this chapter are based on the standard, single-season, single-species 

occupancy model developed by MacKenzie et al. (2002) which I will briefly describe here. 

For a target species, we conduct an occupancy study across 𝑁 sites, where each site is visited 

on 𝑇 discrete sampling occasions where a given survey method is applied. The timespan 

encompassing all sampling occasions constitute the sampling season for occupancy analysis. 

The resulting detection history, 𝒉, for each site, 𝑖, is recorded as a vector of 1s and 0s (e.g., 

00101 for five sampling occasions with two detections and three non-detections), or more 

generally: 

𝒉 = ⁡ {ℎ𝑖,𝑡; 𝑡 = 1, 2, 3, … , 𝑇} 

where ℎ𝑖,𝑡 = 1⁡𝑜𝑟⁡0 corresponding to detection or non-detection, respectively, on sampling 

occasion 𝑡. Note ℎ𝑖,𝑡  as defined in the standard occupancy model is a binary variable which 

does not account for uncertainty in detections. 

It is assumed that true species presence or absence within each site does not change during 

the sampling season. That is, the sampling sites are closed to immigration, emigration, 

mortality, or reproduction. Additionally, it is assumed that the species is never erroneously 

detected (no false-positives) when absent, detections at one site are independent from those 
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at other sites, and detections within a site are also independent. Importantly, to account for 

possible non-detections of a species when it is present, its probability of detection (or 

“detectability”) is denoted by 𝑝. 

With the above, the likelihood of a given detection history 𝒉 of the target species at site 

𝑖 can be represented as: 

𝑃𝑟(𝒉⁡|⁡𝑂𝑖 = 1) ⁡= ⁡∏𝑝𝑖,𝑡
ℎ𝑖,𝑡(1 − 𝑝𝑖,𝑡)

1−ℎ𝑖,𝑡 , 𝑓𝑜𝑟⁡𝑖 = 1, 2, 3, … ,𝑁

𝑇

𝑡=1

 

And: 

𝑃𝑟(𝒉⁡|⁡𝑂𝑖 = 0) ⁡= ⁡1, ℎ𝑖,𝑡 = 0⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑖 

where 𝑂𝑖 = 1⁡𝑜𝑟⁡0 depending on the true presence or absence of the species at site 𝑖. 

The value of 𝑂𝑖 is decided by the true occupancy 𝜓 of the study area (encompassing all 

sites), which can be defined as the proportion of all sites occupied by the species, or the 

probability that site 𝑖 is occupied. Since the presence and absence of the species is assumed 

to be fixed within each site during the season, 𝜓 is therefore also assumed to be constant. 

The goal of occupancy modelling is to compute estimates of occupancy (denoted by 𝜓̂) 

and probability of detection (also referred to as detectability, denoted by 𝑝̂) for the target 

species across 𝑁 sites in the study area through 𝑇 sampling occasions. For this purpose, the 

primary dataset to be derived from the raw data collected is a detection matrix where each 

row represents the detection history 𝒉 at site 𝑖. 

Ecologically, it is reasonable that 𝜓  and 𝑝  can be a function of other physical and 

biological parameters. For occupancy analysis, they can be incorporated into the model as 

site-level (e.g., camera trap model, habitat type or distance to roads) and observation-level 

covariates (i.e., those which may vary between sampling occasions, such as temperature, 

precipitation, or the presence of other species) (MacKenzie et al. 2002). While important for 

certain ecological questions, they were not the focus of the current analyses. 

5.2.2 Discretisation of camera trap data 

To examine the effects of varying sampling occasion lengths when discretising data, I 

first simulated 200 detection matrices of 60 sampling occasions across 20 sites. During each 

simulation, I generated true occupancies at each site for three values of 𝜓 = {0.1, 0.2, 0.4} 

(e.g., if 𝜓 = 0.2 then four out of the 20 sites would be chosen at random to be occupied) 

followed by generating detections across the 60 sampling occasions given three values of 

detectability (𝑝 = {0.05, 0.1, 0.2}). For example, a simulated detection matrix with 𝜓 = 0.2, 

𝑝 = 0.2,  20 sites, and 30 sampling occasions would have approximately 20 × 0.2 × 30 ×

0.2 = 24 detections. 
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Next, the 60 sampling occasions were discretised by aggregating detections into “reading 

frames” of different sizes. For example, a reading frame size of five means five consecutive 

sampling occasions (i.e., five camera trap days) were aggregated into one to infer whether 

the species had been detected (hi,t for the reading frame was 1; this occurred if the animal 

was recorded as present during one or more of the five consecutive camera trap days) or not 

(hi,t for the reading frame was 0, indicating that the animal was not recorded on any of the 

five consecutive days). The resulting discretised detection matrix would have 
60

5
= ⁡12 

sampling occasions. This discretisation was done for reading frame sizes corresponding to 

all the positive factors of 60 excluding itself (i.e., 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30). This 

was applied to all 200 simulated detection matrices. Next, a single-species, single-season 

occupancy model (implemented by the occu() function provided by the “unmarked” package 

(Fiske and Chandler 2011) in R) was then fitted to each detection matrix to estimate 𝜓̂ and 

𝑝̂. In other words, the nine combinations of 𝜓  and 𝑝 each had 200 simulated detection 

matrices (total 1,800 simulations) from which 𝜓̂ and 𝑝̂⁡were calculated. 

5.2.3 Effect of missing data on model estimates 

To investigate the effect of temporally staggered camera trap deployments where only a 

subset of sites is sampled on a given sampling occasion, I introduced varying proportions of 

missing data (0.1 to 0.8) into a detection matrix of 60 sampling occasions across 20 sites 

with which to estimate 𝜓̂. For each proportion, this was done for four combinations of 𝜓 =

{0.1, 0.2}  and 𝑝 = {0.1, 0.2}  each with 200 simulated detection matrices (total 800 

simulations). 

5.2.4 Resampling from uncertain detections 

As described earlier, uncertain detections for the purpose of estimating occupancy may 

arise from the indirect signs on which detections are based or, in the case of camera traps, 

crowdsourced classifications or ambiguity in images. For this analysis, uncertain detections 

were introduced by replacing 1s (detections) with probabilities of true detection (i.e., values 

between 0 and 1 representing probability of correct classification) within a simulated 

detection matrix given 𝜓 = 0.3 and 𝑝 = 0.2 across 60 sampling occasions at 20 sites. This 

was done four times (resulting in four “uncertain” detection matrices) where, each time, the 

probabilities of correct classification were drawn from normal distributions with mean 𝑥̅ =

{0.4, 0.6, 0.8, 0.9}, standard deviation 𝜎 = 0.072, and capped at 1.0. The standard deviation 

was chosen to approximate the distribution of probabilities of correct species detections 

(derived from consensuses of crowdsourced classifications) in the MammalWeb citizen 

science camera-trapping project (as described below and in Hsing et al. 2018). 
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Each of the four uncertain detection matrices was resampled 200 times where each 

uncertain detection (probability of correct classification) was the probability that it would be 

converted to a “1” (otherwise it would be converted to “0”). For example, for an uncertain 

detection of 0.9, it would be expected to be converted to “1” in 180 samples (and “0” in 20 

samples). Occupancy model estimates of 𝜓̂ and 𝑝̂ were computed for each sample. 

This approach of resampling from uncertain detections was also applied to a real-world 

MammalWeb dataset. MammalWeb is an ongoing citizen science project in north-east 

England where participants deploy camera traps and submit the resultant photos to our web 

platform (http://www.MammalWeb.org/). We require citizen scientists who deploy camera 

traps to submit corresponding metadata indicating the time and location (among about 250 

sites where they have deployed camera traps) at which images were taken. In a sense, the 

dataset of MammalWeb consensus classifications could be considered as a large occupancy 

detection matrix of 250 sites with a continuous sampling “season” from March 2015 to 

March 2018. However, this would likely violate the assumption of closure for occupancy 

models, a point to which I shall return in the discussion. Registered users on the website are 

shown sequences of these images (grouped as those taken within 10 seconds of each other) 

to classify. Each sequence of images is classified by multiple users. Between March 2015 

and March 2018, 265 registered users contributed 249,425 classifications of 40,709 

sequences (115,944 images). A subset of 10,483 sequences were classified by us as a “gold 

standard” to assess user accuracy for different species given the number of correct and 

incorrect (which includes false-positives and false-negatives) classifications for each 

sequence (Hsing et al. 2018). 

These sequences (i.e., those with both user and gold standard classifications) were 

incorporated into a logistic regression model which was used to calculate consensus 

classifications from user classifications of 30,583 image sequences without a gold standard. 

Each consensus classification gives the probability that a certain species has been correctly 

detected in a sequence. “Nothing” (i.e., no animal present) is one of the possible “species”, 

and image sequences depicting the presence of more than one animal species were 

exceedingly rare and not included in this analysis (Hsing et al. 2018).  

For the current analysis, consensus classifications were first discretised into 1-day 

sampling occasions. This meant that classifications from partial camera trap days were 

excluded (e.g., if a camera trap was first deployed on an afternoon, classifications from that 

time until midnight were excluded) so that each sampling occasion represented a complete 

calendar day. For a given species, all sequences with consensus classifications indicating its 

http://www.mammalweb.org/
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presence were aggregated such that the uncertainty of its detection for that sampling occasion 

(i.e., camera trap day) is: 

Pr(𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 −∏(1 − 𝐶𝑗)

𝐽

𝑗=1

 

where 𝐶𝑗  is the consensus classification probability for image sequence 𝑗  of 𝐽  sequences 

taken during that day. 

Next, I extracted ten 60-day detection matrices (i.e., 60-day long sampling seasons) where 

at least 20 camera trap sites were represented for three animals observed in MammalWeb: 

Grey squirrel (Sciurus carolinensis), red fox (Vulpes vulpes), and roe deer (Capreolus 

capreolus). These matrices were selected to avoid overlap in time and approximate the full 

duration for which MammalWeb classifications were available (March 2015 to March 2018). 

Each matrix was resampled 200 times to estimate mean 𝜓̂ and 𝑝̂ using the method described 

above, with consensus classifications acting as the measure of uncertainty. 

With the 𝑝̂ from each window and given that consensus classifications were discretised 

into 1-day-long sampling occasions, I also estimated the number of camera trap days needed 

to give a probability, P = 0.95, of detecting that species, given that it occurs in the area. This 

value can guide how long we ask MammalWeb citizen scientists to deploy camera traps, and 

was calculated by solving for the minimum number of days 𝐷 such that: 

1 − (1 − 𝑝̂)𝐷 > 𝑃 

To discern possible temporal patterns in MammalWeb data (which would suggest effects 

from temporal site-level covariates), I extracted 60-day detection matrices for badger (Meles 

meles) detections beginning from June and December in 2015, 2016, and 2017 (six matrices 

total). The spread of 𝜓̂ and 𝑝̂ from 200 samples of each matrix were compared for this 

species, which is known to be less active (and, hence, presumably less detectible) during 

winter. 

All analyses in this chapter were implemented in R 3.5 (R Core Team 2017) running in 

RStudio 1.1 (RStudio Team 2018) with the packages unmarked (for fitting occupancy 

models, Fiske and Chandler 2011), tidyverse (Wickham and RStudio Team 2017), lubridate 

(Grolemund and Wickham 2011), magrittr (Bache and Wickham 2014), and writexl (Ooms 

and McNamara 2018). The starting date, number of sites, and proportion of missing data for 

each window used for the above analyses on MammalWeb data can be found in 

supplementary Table 5.2. 
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5.3 Results 

5.3.1 Discretisation of camera trap data 

For each combination of simulation parameters (true 𝜓  and 𝑝 ), the mean estimated 

occupancy (𝜓̂) from 200 simulated detection matrices was congruent with the true value. 

This was true across all discretisation frame sizes (Figure 5.1). In addition, the variance of 

𝜓̂ and 𝑝̂ increased with frame size and for low values of true 𝜓 and 𝑝. Note that while 𝑝̂ 

appeared to diverge from 𝑝 at larger frame sizes, it was not inaccurate per se. Instead, this 

was the result of aggregating 𝑝 across many sampling occasions such that: 

𝑷̂ ≅ 1 − (1 − 𝑝)𝐷 

where 𝑷̂ is the estimated detectability for the reading frame and 𝐷 is the number of pre-

discretisation sampling occasions (e.g., camera trap days) that fall into each reading frame. 

Intuitively, this makes sense as the probability of detecting an elusive animal would be 

higher across many sampling occasions instead of one. For example, at 𝐷 = 10 and 𝑝 =

0.05 , the simulation results in 𝑷̂ ≅ 0.4  which is expected given the description above. 

Therefore, 𝑝̂ were accurate at each frame size. 

 

Figure 5.1. Mean estimated occupancies (𝜓̂ grey points) were robust against varying data discretisation frame 

sizes, while mean estimated detection probabilities (𝑝̂ black points) increased with frame size in line with 

expectation. However, the variance of both estimates was greater for low values of true 𝜓 and 𝑝 (e.g., 𝜓 = 0.1, 

𝑝 = 0.05) and increases with frame size. Vertical lines for each point are ±1 standard deviation. Data from 

nine combinations of true 𝜓 and 𝑝, each with 200 simulated detection matrices (total 1,800 simulations). 
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5.3.2 Effect of missing data on model estimates 

After introducing varying proportions of missing data in a detection matrix, the accuracy 

and variance of estimated occupancies (𝜓̂) were positively related to true 𝜓 and 𝑝 (Figure 

5.2). This was especially clear when true detection probability was low (𝑝 = 0.1), where 𝜓̂ 

would substantially diverge from 𝜓 with proportions of missing data higher than about 0.6. 

In cases where both 𝜓 and 𝑝 were greater than 0.1, 𝜓̂ remained accurate even with up to 

80% of data missing in the detection matrix. 

 

Figure 5.2. Mean estimates of occupancy (𝜓̂) were sensitive to high proportions of missing data when true 

occupancy and detection probability were low (e.g., 𝜓 = 0.1, 𝑝 = 0.1). Vertical lines crossing data points are 

±1 standard deviation. Data from 200 simulations of detection matrices for each proportion and combination 

of 𝜓 and 𝑝 (total 800 simulations). 

5.3.3 Resampling from uncertain detections 

Estimates of occupancy (𝜓̂) were clustered closely around the true value (𝜓 = 0.3) at all 

levels of uncertain detection in simulated data (Figure 5.3). However, there were more 

outliers when uncertainty was high (i.e., mean probability of correct classification is low). 

The variance of estimated detection probabilities ( 𝑝̂ ) was greater than that for 𝜓̂  but 

decreased with higher mean probabilities of true detection (Figure 5.3). Similar to when 

discretising simulated data, 𝑝̂  were also accurate given how the resampling approach 

incorporates uncertain detections. For example, 𝑝̂ ≅ 0.18  for when mean probability of 
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correct classification was 0.9 in Figure 5.3. Here, 𝑝̂ is, in effect, the true detectability (𝑝 =

2.0) multiplied by the mean probability of correct classification (0.9). Hence, the resampling 

method presented here was indeed accurate for 𝑝̂ given uncertain detections. 

 

Figure 5.3. Both estimated occupancy ( 𝜓̂ ) and estimated detection probability ( 𝑝̂ ) were robust against 

uncertain detections. Each box plot represents parameter estimates from 200 resamples of a detection matrix 

(generated from 𝜓 = 0.3 and 𝑝 = 0.2) with detections replaced by uncertain detections (i.e., probabilities of 

correct classification) drawn from normal distributions with means 𝑥̅ = {0.4, 0.6, 0.8, 0.9} and capped at 1.0. 

When the resampling approach was applied to MammalWeb consensus classifications 

(which are measures of the probability of correct classifications) of three species, mean 

estimated occupancies (𝜓̂) largely fell between 0.5 and 0.6, but were highly variable for red 

fox (Figure 5.4). For all three species, mean estimated detection probabilities (𝑝̂) were lower 

than 0.3 and the variances of 𝑝̂  were low (with standard deviations 𝜎 ≤ 0.061 ). The 

proportion of missing data for the detection matrices used here generally fell between 0.4 

and 0.6 (supplementary Table 5.2). 
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Figure 5.4. Box plots of mean occupancy model estimates of detection probability (𝑝̂) and occupancy (𝜓̂) for 

three species seen on MammalWeb. Each mean was derived from 200 resamples from an uncertain detection 

matrix made of MammalWeb consensus classifications. Ten detection matrices were drawn for each species 

across non-overlapping 60-day time windows. Standard deviations of the mean estimates (𝜎) are indicated 

above each box plot. 

With mean 𝑝̂ for each species and a desired confidence level of 𝑃 = 0.95, I calculated 

the number of days (𝐷) needed for a camera trap to detect the three species (Table 5.1). Grey 

squirrels need, on average, only a 12.3 day camera trap deployment for detection, while the 

red fox requires almost two months (𝐷 = 53.5 days). In addition, the standard deviation of 

the estimate for red fox is 28.4 days, far greater than that of the other two species. 

Table 5.1. Estimated mean number of camera trap days (𝐷) needed to detect a species at a confidence level of 

𝑃 = 0.95. Derived from estimated mean detection probabilities (𝑝̂) from resampling MammalWeb consensus 

classifications from 10 60-day-long detection matrices. 

Species Mean time to detection (𝑫) Standard deviation 

Grey squirrel 12.3 3.2 

Red fox 53.5 28.4 

Roe Deer 22.4 5.9 

 

When comparing occupancy model estimates based on badger consensus classifications, 

the proportion of missing data for the June 2015 window was deemed too high (0.809, see 

supplementary Table 5.2) and was excluded from analysis. For the other five detection 

matrices (beginning December 2015, and June and December in 2016 and 2017), there was 
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no clear seasonal pattern to 𝜓̂ (Figure 5.5). While estimated detection probabilities (𝑝̂) were 

slightly higher in June of 2016 and 2017 when compared to the winter months, all values of 

𝜓̂  and 𝑝̂  were generally low. Lastly, with the exception of 𝜓̂  for December 2015, the 

variances of all 𝑝̂ (≤ 0.1) and 𝜓̂ (mostly < 0.2) were very low after 200 resamples of their 

respective detection matrices. On average, the detection matrices of badger data represented 

28 camera trapping sites (supplementary Table 5.2). However, the number of sites 

represented in each detection matrix did vary considerably, from 17 to 42. 

 

Figure 5.5. Estimates of badger occupancy and detection probability (𝜓̂ and 𝑝̂) for detection matrices taken 

from 60-day windows starting in June and December of 2016, and 2017 plus December 2015. The horizontal 

axis is comprised of the starting dates (YYYY-MM-DD) of the six 60-day detection matrices from which 200 

samples were drawn. 

5.4 Discussion 

Camera-trapping surveys are often deployed to provide data for estimating occupancy 

(e.g., Burton et al. 2015, Gálvez et al. 2016, Rich et al. 2017). This chapter investigated three 

issues common to such studies: a lack of well-established guidelines on how to discretise 

camera trap observations into discrete sampling occasions; possible effects of missing data 

on model estimates; and handling uncertain detections, specifically when crowdsourcing 

image classifications. Through simulations I performed, I showed that the accuracy of 

estimated parameters (𝜓̂ and 𝑝̂) were generally robust against different discretisation frame 
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sizes and proportions of missing data, but their variances were not. I also showed that 𝜓̂ and 

𝑝̂ can be reliably estimated given uncertain detections via resampling, such as uncertainty 

arising from crowdsourced camera trap images classifications. In addition, I applied the 

resampling method to data collected by the MammalWeb citizen science project to estimate 

camera trap deployment times needed to confidently detect three species, plus observing a 

lack of clear seasonal variations in badger occupancy. For the rest of this chapter, I will 

discuss the findings with respect to occupancy modelling and practical considerations when 

conducting citizen science camera trapping. Specifically, (1) camera trap data should be 

discretised to 1-day long sampling occasions, which is especially important when there is a 

high proportion of missing data; (2) the resampling approach is useful for occupancy 

modelling especially when uncertainty in detections can be measured as a probability; and 

(3) citizen science camera trapping should, at least in the pilot phase, strive for longer 

deployments at fewer sites to more precisely estimate detectability, which would inform 

guidelines on minimum deployment durations for a wider roll-out. 

5.4.1 Discretisation of camera trap data 

There is currently a dearth of clear guidelines or studies on how to discretise continuous 

camera trap observations for occupancy modelling (Rovero and Spitale 2016). In this 

analysis, I simulated occupancy detection matrices using different input parameters (𝜓 and 

𝑝) and discretised using a wide range of “reading frame” sizes from which model parameters 

( 𝜓̂  and 𝑝̂ ) were estimated. These simulations supported, and generalised, the pattern 

observed by Rovero and Spitale (2016) in a camera trap dataset collected by the TEAM 

network. Namely, the precision of both 𝜓̂ and 𝑝̂ decreased with larger frames, and was 

especially pronounced when 𝜓  and 𝑝  were low (e.g., < 0.2 ). This result is reasonable 

because discretising data using larger reading frames reduces the effective number of 

sampling occasions on which estimates can be based. 

In contrast to large reading frames (e.g., two weeks, Linkie et al. 2007), Guillera-Arroita 

et al. (2011) proposed treating detection history as a continuous, rather than discrete, process. 

They successfully piloted this approach on data collected from line transects, and suggested 

the possibility of its application to camera trap data. However, I am not aware of this being 

tested with camera trapping, and given existing concern that many animals move back and 

forth in front of a camera trap (Rovero and Spitale 2016), no discretisation at all might result 

in clusters of non-independent detections. In other words, reading frames which are too short 

may also be problematic. This can be a venue for future investigations. 

Another motivation for this analysis was to explore the possibility of reducing uncertainty 

in detections – such as those from consensus crowdsourced image classifications – by 
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aggregating them into larger reading frames. In light of the above discussion, I do not 

recommend doing so. The probability of a consensus classification being correct is generally 

high for most species observed on MammalWeb (Chapter 3) and similar projects such as 

Snapshot Serengeti (Swanson et al. 2015, 2016). Throughout this thesis, I have discussed 

methods for increasing engagement to sustain crowdsourced classifications, including 

technical means, such as directing classifiers to image sequences needing more 

classifications (instead of randomly) to increase confidence (or to retire them for expert 

adjudication). I believe those methods would be more desirable than sacrificing the precision 

of 𝜓̂ with larger (and fewer) reading frames. Therefore, given the current analysis, I believe 

it is reasonable to maintain the common practise of 1-day-long reading frames when 

discretising camera trap data. 

5.4.2 Effect of missing data on model estimates 

Past work has addressed the optimal design of camera trap surveys in light of limited 

resources (Mackenzie and Royle 2005, Gálvez et al. 2016), and one strategy is to deploy 

camera traps in a temporally staggered fashion such that only a subset of sites are surveyed 

on any sampling occasion (van Berkel 2014 p. 51). The current work builds on that strategy 

by examining the effect of missing data in the resultant detection matrices. The analysis here 

revealed that unless the true detection probability of a species is low (e.g., 𝑝 = 0.1 ), 

estimates of mean occupancy (𝜓̂) remained largely accurate despite high proportions (i.e., 

up to 0.7 when 𝑝 ≥ 0.2) of missing data in a detection matrix. Effectively, missing data is 

analogous to reducing the number of camera trap days in a sampling season. For example, a 

60-day sampling season might be reduced to 24 effective camera trap days if 60% of the 

detection matrix is missing data. 

The reality of missing data, whether from temporally staggered camera trap deployments 

or other logistical constraints, has important implications for discretising camera trap data 

with large reading frames. This is because incomplete reading frames will need to be 

excluded from analysis when discretising data. For example, if a detection history of 00-110 

(where “-“ denotes a missed sampling occasion with no data) were to be discretised with a 

reading frame of size two, then the resulting detection history would be 0-1, and the detection 

on the original fourth sampling occasion would be excluded. This is another reason for 

keeping reading frames to one day for camera trap data. 

5.4.3 Resampling from uncertain detections 

The majority of existing work on using camera trapping data for occupancy analyses 

assumes detection as a binary variable: detection or non-detection. However, the reality is 

that detections are often uncertain and need to be addressed in order to produce unbiased 
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occupancy estimates (McClintock et al. 2010, Clement 2016, Guillera-Arroita et al. 2017). 

In this study, I built on the fact that data classification – specifically that of camera trap 

images – is now often crowdsourced (Swanson et al. 2016, Hsing et al. 2018). This process 

provides consensus classifications which can act as probabilities of true detection in an 

“uncertain” detection matrix. Resampling from these data enables fuller acknowledgement 

and utilisation of the uncertainty around estimated model parameters. In the simulations of 

this chapter, mean estimated occupancy rates (𝜓̂) remained accurate and precise even with 

low confidence in consensus classifications (i.e., low probability of correct classification). 

This is reassuring because even without calculating consensus classifications, the accuracy 

of MammalWeb user classifications is already above 90% for most species (Chapter 3). In 

addition, while estimated detectability (𝑝̂) has higher variances, they were also accurate 

given their corresponding levels of uncertainty.  

One limitation of the current simulations is that the possibility of false positives was not 

considered, i.e., the incorrect detection of an animal when it is absent (which could be 

misidentification or true absence). This is important, because it has been demonstrated that 

false positives can significantly bias estimates of occupancy (Royle and Link 2006, 

McClintock et al. 2010). Future work could usefully assess this by introducing detections 

with varying false-positive rates into the existing implementation of the standard occupancy 

model. For instance, consider a simulated 1,200-element occupancy detection matrix 

consisting of 40 sampling occasions (e.g., camera trap days) across 30 sites with 𝑛 = 60 

true-positive detections of the target species. The false positive rate for this species is 𝑓 =

0.3 (i.e., 30% of purported detections of the target species are incorrect). Of the 1,140 non-

detections in the matrix, randomly convert 𝑢 elements to possible detections where 𝑢 =

𝑛𝑓 = 60 ∗ 0.3 = 18 . Therefore, the total number of “possible” detections (including 

possible false positives) in this detection matrix is 𝑁 = 𝑛 + 𝑢 = 78. The value for each 

possible detection 𝑢  would be drawn from the distribution of confidences in consensus 

classifications from 𝑛. With this detection matrix, one could then apply the resampling 

approach as described earlier. This way, the current simulations can be expanded to explore 

the impact of varying probabilities of false-positives. Fortunately, the logistic regression 

model used to compute consensus classifications for MammalWeb data already incorporates 

the possibility of false-positive detections (i.e., mistaken identification, see Chapter 3). 

Therefore, false-positives should not have had an additional impact on the accuracy of 𝜓̂ in 

the analyses of MammalWeb data discussed below. 

Miller et al. (2011) developed an extension to the standard occupancy model with an 

additional ordinal term representing observational states corresponding to different levels of 
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uncertain detection (including false positives). This model was successfully tested against 

real-world data collected from anuran call surveys. However, the sampling protocol of the 

anuran call survey specifically categorised observations into discrete classes that directly 

mapped to Miller et al.’s multiple detection states. For crowdsourced camera trap image 

classifications, uncertainty is measured as a continuous variable and there is no clear, non-

arbitrary way to discretise it into discrete detection states. In comparison, the resampling 

approach studied here utilises the full range of uncertainty, and has the benefit of using just 

the standard occupancy model (MacKenzie et al. 2002). 

With regards to the real MammalWeb data used in this analysis, it was noted earlier that 

it is essentially one large detection matrix encompassing all sites at which citizen scientists 

have deployed camera traps between 2015 and 2018. Treating it as such would almost 

certainly violate the standard occupancy model’s fundamental assumption of site closure. 

However, this may be acceptable if the goal is to simply assess average occupancy across 

the region of interest (County Durham in the case of MammalWeb), allowing for changes in 

abundance, distribution, and behaviour within the region during that time period. Evidence 

for occupancy variations within this three-year dataset can be seen through the analysis (via 

resampling from uncertain detections) on the four species analysed. 

One example suggesting a role for covariates is the red fox. Most of the 60-day detection 

matrices for red fox used in this analysis had proportions of missing data less than 0.5 

(supplementary Table 5.2), which meant that the model estimates were generally reliable. 

These results showed that 𝜓̂  was highly variable from less than 0.4 to 1.0, suggesting 

substantial variation between the detection matrices. To investigate this variation, the next 

steps would be to consider site- and observation-level covariates in the occupancy model. 

Fortunately, collecting this data has been required of MammalWeb citizen scientists since 

the beginning of the project (as described in Chapter 2). In contrast, the variance of 𝜓̂ for 

the other three species, especially the grey squirrel, was small. This shows that even with 

these first steps towards applying MammalWeb data for occupancy analyses, we can already 

discern differences between species. Of these four species, I analysed badger data drawn 

from the summer and winter seasons between 2015 and 2017, but was unable to discern a 

clear temporal pattern despite very precise estimates of both 𝜓̂ and 𝑝̂. In this case, while 𝜓̂ 

was not highly variable, the number of sites each detection represented varied greatly 

between 17 and 42, but I did not track how many times each site was represented in each 

detection matrix. The badger example suggests to me that, with the current analyses, it may 

be difficult to conduct species-specific analyses without considering – in addition to the site- 

and observation-level covariates mentioned above – which sites are represented in each 
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detection matrix, how many are repeated between the matrices, and whether these sites are 

representative of the wider region in the context of a specific ecological question. 

One practical issue for a citizen science camera-trapping project such as MammalWeb is 

when the detectability of a species is very low. For the red fox, we can see that the standard 

deviation of the estimated number of days (𝐷) needed to confidently ascertain its presence 

(or absence) is more than four weeks. This is likely because the relationship between the 

estimated number of days and 𝑝̂ is not linear. For small values of 𝑝̂ (such as the case with 

red fox), small changes will have a disproportionally large impact on 𝐷. Therefore, for low 

detectability species, a more targeted and systematic camera trap survey should provide a 

more precisely estimate 𝑝̂. While 𝑝̂ is sometimes considered a “nuisance” parameter that is 

secondary to 𝜓̂ (Rovero and Spitale 2016), it can be of practical value when designing 

surveys (Guillera-Arroita et al. 2010). For example, precise 𝑝̂ would allow us to provide 

guidance on minimum camera trap deployment durations when training citizen scientists. 

This is important for the MammalWeb project since, as discussed in Chapter 3, the currently 

highly localised reach of our monitoring and relatively non-charismatic nature of the species 

observed require more economical use of resources, which include camera trap deployment 

time. Ecologically, 𝑝 may also be of interest as it could be a function of variables such as 

season, weather, or even reproduction (Best and Petersen 1982, Guillera-Arroita et al. 2010). 

5.4.4 Broader implications 

For the MammalWeb project, we can discern general occupancy statuses for the species 

analysed in this chapter on the level of Durham, England. For example, the mammal species 

in this region are not endangered or considered rare, which is reflected in 𝜓̂ for grey squirrels, 

red foxes, and roe deer. However, 𝜓̂ was lower for badgers, which is an important finding 

considering the long history of controversy regarding the badger’s role in the spread of 

bovine tuberculosis in Britain (e.g., Anderson and Trewhella 1985, Cassidy 2012, Stokstad 

2017). Another result was that 𝑝̂ were low for all four species considered. We also know that 

some of the other species observed in MammalWeb, such as hedgehogs, are easily missed 

even when present in an image (i.e., common false-negative detections implying low 𝑝). 

This is of practical importance, since it suggests that MammalWeb citizen scientists should 

be guided to prioritise longer camera trap deployments over deployments at more sites, the 

data from which can be used to estimate 𝑝̂ more precisely. And since MammalWeb species 

are not rare species, this is in line with the established recommendation that for more 

common species, it is more efficient to survey fewer sites on more sampling occasions 

(Mackenzie and Royle 2005). In addition, a clear next step for applying occupancy analysis 

to MammalWeb data would be to consider covariates (which are recorded by citizen 
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scientists). I hypothesise that such analyses will provide insight into developing guidance on 

site selection in this developed and patchy landscape, or reveal limits to the proposed 

resampling method not observed in this chapter. 

In addition to camera trapping, other survey methods also produce uncertain detections 

(Wilson and Delahay 2001, Sutherland 2011). This is especially true of methods relying on 

indirect signs. Species misidentification has been documented for approaches as diverse as 

detecting avian and anuran species from their calls (McClintock et al. 2010) to recording 

carnivore presence on the basis of scat samples (Karmacharya et al. 2012 p. 11). Thus, the 

analysis and proposed resampling approach described here could be more broadly applied 

to data collected via other means to incorporate uncertain detections into estimating 

occupancy. This would require methods to quantify uncertainty for a given survey method, 

such as by pairing it with another survey technique (Clare et al. 2017). Alternatively, the 

accuracy of indirect signs can be checked directly, such as through DNA sequencing of scat 

or hair samples (Eggert et al. 2003, Karmacharya et al. 2012, Clare et al. 2017). Once 

uncertainty has been determined as a continuous variable, then the resampling method 

described here could be applied. 

In summary, in this chapter I conducted a series of simulations to explore three issues 

pertaining to applying occupancy analysis to camera trap data: data discretisation, missing 

data, and uncertain detections. The results show that a 1-day window is likely appropriate 

when discretising camera trap data, missing data should be considered in terms of the number 

of effective sampling occasions, and a resampling approach can be useful when uncertain 

detections are measured as a continuous variable. When applied to the MammalWeb citizen 

science projects, the analysis so far showed general trends in occupancy for the County 

Durham region in which the project takes place, and that species-level and finer-scale 

analyses will require the inclusion of site- and observation-level covariates in the occupancy 

model. Importantly, occupancy estimates were resilient to a wide range of uncertain 

detections and the resampling method has the potential to be more broadly applied to other 

crowdsourced camera trap image classification efforts. This method will also be useful 

considering the increasing popularity of applying machine learning algorithms to 

automatically classify images, which measures uncertainty on the same continuous scale 

(Norouzzadeh et al. 2018, Sullivan et al. 2018). 

5.5 Supplementary information 

Table 5.2. Occupancy detection matrices extracted from MammalWeb consensus classifications for four 

species. Each represents a 60-day window starting on a given date between March 2015 and March 2018. The 

number of sites indicate the number of citizen scientist monitored sites with camera trap deployments during 
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that time window. Proportion missing data represents the amount of camera trap days (across all sites) during 

which no camera was deployed. 

Species 
Window start date 
(YYYY-MM-DD) 

Number 
of sites 

Proportion 
missing data 

Red fox 2015-12-25 36 0.517 
 2016-02-28 31 0.452 
 2016-05-02 39 0.522 
 2016-07-09 28 0.521 
 2016-09-15 31 0.472 
 2016-11-19 22 0.485 
 2017-01-19 33 0.432 
 2017-04-13 27 0.623 
 2017-09-14 23 0.387 
 2017-11-16 20 0.392 

Roe deer 2015-11-16 43 0.534 
 2016-01-30 37 0.568 
 2016-04-07 41 0.521 
 2016-06-09 28 0.533 
 2016-09-24 32 0.475 
 2016-12-09 29 0.571 
 2017-02-11 36 0.495 
 2017-05-02 27 0.66 
 2017-07-08 22 0.692 
 2017-09-13 23 0.388 

Grey squirrel 2015-11-03 48 0.58 
 2016-02-05 36 0.567 
 2016-04-07 41 0.521 
 2016-06-10 28 0.536 
 2016-09-14 31 0.475 
 2016-11-24 22 0.498 
 2017-02-01 37 0.477 
 2017-04-21 26 0.629 
 2017-07-16 21 0.625 
 2017-09-17 23 0.387 

Badger 2015-06-01 37 0.809 
 2015-12-01 42 0.537 
 2016-06-01 34 0.582 
 2016-12-01 28 0.592 
 2017-06-01 17 0.604 
 2017-12-01 20 0.454 
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Chapter 6 - General discussion 

As mentioned throughout this thesis, anthropogenic impact on global ecosystems 

(Butchart et al. 2010) have not only led to the defaunation of the planet (Dirzo et al. 2014), 

but also the loss of ecosystem services crucial to human livelihoods (Millennium Ecosystem 

Assessment 2005, Díaz et al. 2006, Perrings et al. 2011). Citizen science (Amano et al. 2016) 

and the use of motion-sensing camera traps (Burton et al. 2015, Steenweg et al. 2017) are 

two proposed methods to address the need for monitoring biodiversity on a large scale 

(Fischer et al. 2010, Stephens et al. 2015). Indeed, the combination of the two has been 

attempted where citizen scientists helped professional ecologists deploy camera traps 

(McShea et al. 2015) or classify images (Swanson et al. 2015). In the United Kingdom, a 

historically-prominent crowdsourced ecological data collection programme has been the 

Breeding Bird Survey organised by the British Trust for Ornithology 

(https://www.bto.org/volunteer-surveys/bbs, e.g., Harris et al. 2016). To our knowledge, 

there was no analogous initiative for monitoring wild mammals in Britain, but citizen science 

camera-trapping has been successfully trialled for that purpose in North America (e.g., the 

eMammal project, McShea et al. 2015). Motivated by examples such as these, we have been 

piloting – since 2015 – the MammalWeb citizen science project to crowdsource the 

collection and classification of camera trap data in north-east England. The ongoing influx 

of photographic data (more than 250,000 images) is collaboratively classified by registered 

users of our online platform (http://www.MammalWeb.org). This is not only to explore the 

potential of the MammalWeb model to achieve large-scale ecological monitoring, but also 

engaging citizen scientists in a larger part of the scientific process. The preceding chapters 

have highlighted some of the results, such as the capture of non-native species; developing 

a novel algorithm for more economically deriving consensus classifications from user input; 

empowering local students not as mere data collectors, but as ecological ambassadors to their 

community; and a resampling method that addresses uncertain detections in occupancy data, 

a common issue for camera trapping and crowdsourced data classification. Of the themes 

covered in this thesis, this chapter will discuss the following with consideration to lessons 

learned and how future work may proceed: 

• Engagement, school partnerships, and evaluation 

• Handling crowdsourced data classification 

• Population estimates from crowdsourced camera trap data 

http://www.mammalweb.org/
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6.1 Engagement, school partnerships, and evaluation 

Chapter 2 described the organisation of the MammalWeb project. The number of 

registered users has been growing throughout the period examined, and the classification of 

camera trap images has kept up with its influx. As observed in Chapters 2 and 3, there are 

two types of contributors to MammalWeb: a small, dedicated group of “super users” who 

make most of the contributions, and a far larger group of users who were engaged for short 

durations and contributed relatively little. While this is consistent with other citizen science 

projects (Sauermann and Franzoni 2015), I believe the progress of MammalWeb mammal 

monitoring can be better sustained by more effectively engaging both groups. 

To achieve the large-scale monitoring originally envisioned, I believe there is a need to 

attract more participants of the non-super user type. Since their retention rate is low for non-

super users, recruitment has to be ongoing. Here I will reflect on – with consideration to 

lessons for other citizen science projects – (1) avenues for improving MammalWeb 

community engagement offline and online, (2) the potential of school, library, and museum 

partnerships, and (3) methods for evaluating project performance. 

6.1.1 Improving community engagement 

The most intensive engagement activities occurred at the inception of MammalWeb in 

mid-2015. With few exceptions, later engagement with citizen scientists took place through 

occasional email contact, social media, and one-on-one meetings. There is a need for 

periodic engagement campaigns to attract and retain citizen scientists. I expect at least three 

benefits can be derived from this approach. 

First, regular engagement events may attract those who would eventually become super 

users, expanding the core group of dedicated contributors. Secondly, current super users can 

participate in regular refresher trainings, at which they will receive updates from us (such as 

updated protocols or presentations on the project’s ecological results) and aid the training of 

new citizen scientists. This point is important in light of the value of refresher trainings for 

maintaining citizen science data quality (Danielsen et al. 2014). Third, meeting existing 

citizen scientists can ease the introduction of new participants to MammalWeb, as social 

interaction is cited as one of the primary factors motivating citizen science participation 

(Reed et al. 2013). As of mid-2018, a monthly email newsletter has been used to update the 

MammalWeb userbase on project developments. It could be used to advertise these periodic 

meetings to increase engagement, among other lines of communication such as social media 

or partner organisations. 

The MammalWeb online user experience should also be improved to stimulate 

engagement. Chapter 2 already covered some of the improvements being implemented for 
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MammalWeb, namely an upgraded Spotter page for classifying photos, the “Projects” 

feature for organising photos, and upcoming user-facing interactive data visualisations. 

There are further improvements which can be applied to MammalWeb, or more generally to 

other online crowdsourcing projects as well. 

For example, the Spotter page could provide automated feedback. One embodiment of 

this is to “seed” the MammalWeb image pool with expert-classified gold standard images, 

which has been done for other crowdsourced image classification projects (Westphal et al. 

2010). Feedback on classification accuracy can be automatically generated via natural 

language generation (van der Wal et al. 2016) whenever a user classifies a seeded image, 

which may encourage them to improve their accuracy (Kosmala et al. 2016). 

Another possibility is a magnifying glass function, where the user would hover their 

mouse cursor over a camera trap image to zoom in on specific parts. This can be 

implemented with a simple combination of HTML (hypertext markup language), CSS 

(cascading style sheets), and Javascript (Rolich 2013, Refsnes Data 2018). Alternatively, the 

Chimp & See project (https://www.chimpandsee.org/) presents an image sequence as a grid 

of thumbnails, each of which can be clicked on for closer inspection to annotate chimpanzee 

camera trap photos collected in Cote d'Ivoire (McCarthy et al. 2018). A similar 

implementation may aid MammalWeb users in discerning animals as they move between 

images, and is worthy of future work. 

As suggested in Chapter 3, one difference between MammalWeb and similar projects – 

such as Snapshot Serengeti – is that the wildlife monitored by MammalWeb are generally 

not considered “charismatic”. While exactly what constitutes a charismatic nonhuman 

species is not universally defined (Lorimer 2007), there is a term – “flagship species”- which 

refers to “a species used as the focus of a broader conservation marketing campaign based 

on its possession of one or more traits that appeal to the target audience” (Veríssimo et al. 

2011). A global study has shown that African mammals, especially felids and primates, 

comprise most of the top ten highest regarded species worthy of being “flagships” 

(Macdonald et al. 2015). With the possible exception of primates, these are exactly the type 

of species often depicted in Snapshot Serengeti. 

Another aspect of charisma is how it might cause sampling bias. In at least one study, 

observations from citizen scientists at the Olare Motorogi Conservancy in Kenya were 

strongly biased towards charismatic species such as gazelles, giraffes, lions and elephants 

(Steger et al. 2017). Camera traps avoid this bias to a large degree, since they are unbiased 

in their observations during deployment. The challenge for MammalWeb and other camera-

trapping-based projects is avoiding this bias on the timing and site-selection levels. While 

https://www.chimpandsee.org/
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the protocol we asked our citizen scientists to follow was designed to avoid biases, the dearth 

of follow up engagement prevented us from knowing how closely those guidelines were 

followed. For example, informal conversations revealed that some MammalWeb citizen 

scientists – despite following our established protocol – strongly “hope” to catch certain 

species on camera or have placed cameras at sites where they “think” a certain species was 

present. This is another reason why periodic engagement events with refresher trainings 

would be of value. 

In any case, while the wild mammal species being monitored by MammalWeb are 

generally not rare and less charismatic than their African relatives, even common species are 

ecologically important (Gaston and Fuller 2008). Therefore, it is imperative that a citizen 

science project such as MammalWeb characterise the motivations of its citizen scientists – 

including the role of animal charisma (if any) – and design engagement based on them. 

One method of motivating citizen scientists to classify data is gamification. A noteworthy 

example is Foldit (https://fold.it/), where citizen scientists are players in a game of modelling 

protein structures (Cooper et al. 2010). The players collectively outperformed state-of-the-

art computational methods (Khatib et al. 2011a), and their results have aided the design of 

antiretroviral drugs (Khatib et al. 2011b). More recently, a microscopy image classification 

“mini-game” was built into the long-running massively multiplayer online role-playing 

game (MMORPG) EVE Online (CCP Games 2003). Over one year, more than 320,000 

players provided 33 million classifications to characterise subcellular protein distribution 

(Sullivan et al. 2018). In both examples, the crowdsourcing process was gamified because 

participants were incentivised with positive reinforcement: Score-based rankings on the 

Foldit website, and virtual credits to buy in-game items in EVE Online. 

It may be possible to replicate a gamified citizen science project outdoors. Pokémon Go 

is an augmented reality (AR) game for mobile devices where players navigate through real-

world landscapes to catch and battle game characters (Niantic and Nomura 2016). These 

characters are essentially virtual animals, and it has been proposed that a similar game could 

be developed to encourage players to engage with real-world nature including data collection 

(Dorward et al. 2017). By one estimate, the existing player effort invested in Pokémon Go 

is equivalent to 400 years of wildlife observations (August 2016). 

Incentives may also lead to unintended consequences. In one experimental project, 

“spammers” gamed the system by classifying as many images as possible at the expense of 

accuracy (Bohannon 2011). This was because the reward was proportional to the number of 

images classified. While the reward in this example was a small monetary compensation 

(instead of points or virtual currency), it suggests that the incentive structure needs to be 

https://fold.it/
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carefully crafted if a citizen science project is to be gamified. In another study, Mekler et al. 

(2013) observed that points-based gamification increased the quantity of work done, while 

creating “meaning” for players increased the quality of classifications. This meaning could 

be a “[compelling] narrative, supporting users’ personal goals and interests, or having a 

purpose that is deemed valuable” (Mekler et al. 2013). To my knowledge, however, this line 

of enquiry (distinguishing between the rewards offered and the meaning of the work) has 

not been applied to the successful gamification examples I cited above. This may, in part, be 

due to a perception that gamification is not a “serious” science (Treuille and Das 2014). 

If gamification were to be applied to MammalWeb or other ecological citizen science 

projects, the key would be to carefully develop an incentive system which ties the goals of 

the project with the motivations of citizen scientists. Since the objective of MammalWeb is 

to achieve sustainable monitoring of wild mammals across wide spatial and temporal scales, 

there is a need to attract and maintain citizen scientists outside of the super user group. I 

hypothesise that with gamification, MammalWeb will see the proportional distribution of 

effort (both in collection and classification of camera trap photos) move to a wider range of 

contributors, not just super users. Possible gamifications would be awarding points to those 

who deploy camera traps at under-recorded locations, or achievement badges for the 

cumulative number of days for which they have deployed cameras. In light of the above, I 

suggest investigating and implementing gamified elements into the MammalWeb user 

experience as a future step. 

6.1.2 Potential of school and library partnerships 

Chapter 4 described a successful partnership developed with Belmont Community School, 

where a group of students not only participated as citizen scientists in MammalWeb, but also 

acted as ecological ambassadors to their community. Tangible outputs included the 10 

students designing and delivering outreach activities at community events, and the creation 

of a professionally-made project video notable for being almost completely unscripted yet 

impactful. In this section, I explore the potential of working with schools and libraries as a 

way of enhancing the engagement and reach of MammalWeb and other citizen science 

projects. 

MammalWeb was not the first camera trap-based citizen science project to partner with 

schools. Successful partnerships have been established across the world, from Okinawa, 

Japan (OKEON: https://okeon.unit.oist.jp/) to North Carolina, United States (eMammal: 

https://emammal.si.edu/). In particular, the eMammal project has developed – in 

collaboration with local school teachers – a series of education materials adapted to the 

curriculum requirements of several US states (eMammal 2018). In one example, school 

https://okeon.unit.oist.jp/
https://emammal.si.edu/
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pupils deploy camera traps and are taught math skills to quantify their observations as 

required by state curriculum (Schuttler 2016). MammalWeb, however, was novel in that the 

students from Belmont School also acted as communicators of the science that they did. 

Building on the successful pilot with Belmont School, MammalWeb also aims to create 

a network of partner schools. To do this, the project is working with a natural history museum, 

the Great North Museum: Hancock in Newcastle upon Tyne, England 

(https://greatnorthmuseum.org.uk/), and a charitable trust, The Institute for Research in 

Schools (http://www.researchinschools.org/), to leverage their existing school connections 

to bring MammalWeb into more classrooms. In general, school partnerships could increase 

the geographical reach of a citizen science project, and in the case of MammalWeb, the 

number of camera trap deployment sites. If there is buy-in from dedicated teachers, camera 

trap monitoring would be sustained over long periods because the same deployment 

activities can be repeated by a new group of students each year. A longitudinal study could 

be conducted on this scheme to measure not just scientific output, but also student learning 

outcomes and empowerment as citizen scientists. 

In addition to schools, I believe partnering with libraries is another untapped opportunity. 

Local libraries often act as community centres with which residents are familiar, and libraries 

have experience organising events. In fact, Ignat et al. (2018) recently advocated for libraries 

to support citizen science by facilitating training, communication, recruitment, and acting as 

a repository of data and protocols. For a camera trap-based citizen science project such as 

MammalWeb, we could place camera traps at libraries. Visitors can loan the camera traps 

and “adopt” nearby sites that we have pre-selected for deployment. This scheme can be tied 

into a rewards system (i.e., gamified) where a citizen scientist receives recognition for 

adopting a camera trap and a monitoring site. Since MammalWeb already has a partnership 

with the Great North Museum: Hancock, I believe they can play a similar role. 

Whether it’s a school, library, museum, or gallery, we can enlist the help of super users. 

These dedicated citizen scientists can act as “seed trainers” at schools and libraries to assist 

in the recruitment and training of new participants. By empowering super users in this way, 

we can take MammalWeb citizen science to higher levels of participation (Haklay 2013). 

6.1.3 Evaluating project performance 

The MammalWeb project has achieved tangible positive outcomes such as engaging a 

network of citizen scientists across north-east England for mammal monitoring, aiding the 

capture of a non-native species, school partnerships, and observation data which has been 

submitted to the Environmental Records Information Centre North East. However, there is 

need for formal evaluations to characterise the growth and performance of this project. For 

https://greatnorthmuseum.org.uk/
http://www.researchinschools.org/
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example, there was no explicit measurement of changes in engagement after outreach events 

such as during the 2016 Glastonbury Festival, the 2017 camera trap photo competition, or 

those delivered by Belmont School students at community events. Nor did we measure the 

effects from user experience enhancements introduced to the MammalWeb Spotter page in 

mid-2018. 

In Chapter 2, I discussed existing frameworks for measuring project performance. This 

included the key performance indicator (KPI) concept frequently used by businesses 

(Parmenter 2007), evaluation frameworks for conservation projects (Dickson et al. 2017), or 

newly proposed sets of criteria for citizen science projects (Chase and Levine 2016, 

Kieslinger et al. 2017). While these solutions would benefit MammalWeb, they are 

comprehensive and their implementation may be costly and time-consuming. Therefore, 

rather than attempting an exhaustive treatment of how to implement each element of a 

particular framework, here I will focus on a few specific methods for (1) characterising 

citizen scientist motivations, and (2) measuring engagement outcomes. I believe this can 

improve engagement in all of the areas described in the previous sections. 

A simple method for evaluation is to deploy surveys for participants to complete after 

each engagement intervention. These interventions could be offline engagement events (such 

as follow up trainings, recruitment activities, or school lessons) or online changes such as 

the user experience improvements discussed previously. In addition, MammalWeb could 

also include a contact feedback form on its website for ad-hoc unsolicited feedback. Such 

surveys should at least aim to not only gauge the success of an intervention (e.g., whether a 

Spotter page upgrade has eased the classification of images), but also seek to understand a 

citizen scientist’s motivations for participating. 

More formally, the Q methodology has been applied extensively to measure stakeholders’ 

beliefs and opinions on biodiversity conservation (Sandbrook et al. 2011, Rastogi et al. 2013, 

West et al. 2016, Hamadou et al. 2016). Q methodology is a qualitative technique for 

characterising patterns in subjective perspectives held by a group of interviewees on a given 

topic (Stephenson 1975). This is done by asking interviewees to sort a group of statements 

regarding a given topic, on a numbered grid, in order of how much they identify with each 

one. These rankings, called “Q sorts”, are fed into a factor analysis (such as that implemented 

in the R package qmethod, Zabala 2014) which clusters the opinions into shared framings of 

the topic in question. I believe applying Q methodology to understand participant 

motivations is another avenue for future work that is not valuable just for MammalWeb, but 

citizen science in general. 
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Existing research provides a general view of what motivates citizen scientists. Positive 

motivators include interest in learning about a topic, an opportunity to contribute to science, 

enjoyment from the process, being part of a team, and being recognised (as extensively 

reviewed in Jennett et al. 2016). In contrast, negative motivations may include anxiety about 

making mistakes (Segal et al. 2015). However, as evidenced by informal conversations we 

have had with MammalWeb citizen scientists – such as a desire to explore “what’s near my 

garden”, hoping to see a rare species, or informing the planning of a nature reserve – there 

is value in identifying motivations specific to MammalWeb. To my knowledge, Q 

methodology has yet to be used in a citizen science context, and the need for understanding 

MammalWeb-specific motivators provide an opportunity to pilot this approach. 

Once we have achieved a higher resolution understanding of the motivations of 

MammalWeb citizen scientists (instead of generalities such as a desire to contribute to 

science), there is the potential to tailor engagement interventions accordingly. For example, 

Segal et al. (2015) successfully used email interventions to increase participation in 

Zooniverse crowdsourcing projects. In addition, a better understanding the motivations of 

MammalWeb citizen scientists will aid in framing the meaning (as defined by Mekler et al. 

2013) of this project if it is to be gamified. Communicating this meaning could be done in 

real time during the online image classification process (e.g., via natural language generation, 

van der Wal et al. 2016) or through our email newsletters. 

In addition to understanding specific motivators, there is a need to better evaluate 

engagement outcomes. When measuring changes in knowledge or attitudes, the Q 

methodology (Stephenson 1975) or Likert-scale surveys (Likert 1932) could be performed 

before and after interventions such as recruitment drives or refresher trainings. For online 

interventions such as updates to the online user experience, A/B testing is commonly used 

(Kohavi et al. 2009). This is where two versions of the website are created, one with and one 

without the update. When visiting the website, a user is randomly directed to one of them. 

By soliciting feedback from all users (of which about half would have visited the updated 

site), a website administrator could understand the effect of the update. 

The MammalWeb project also aims to partner with schools. Existing studies suggested 

that participation in citizen science increased students’ self-efficacy, i.e., a person’s belief in 

their ability to learn or perform (Hiller 2012), improved knowledge and deepened 

engagement with the natural environment (Zárybnická et al. 2017), or provided satisfaction 

from contributing to real scientific research (Silva et al. 2016). According to Schuttler et al. 

(2018), however, studies specifically looking at the impact of nature based citizen science 

on education outcomes are still very rare. In fact, learning outcomes are generally not 
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measured or unreported (Bela et al. 2016). This area of research could benefit from the 

MammalWeb experience if the evaluation of learning outcomes is incorporated into our 

upcoming school partnerships. 

6.2 Handling crowdsourced data classification 

Uncertainty is inherent to practically all scientific data. Crowdsourcing data classification 

is an increasingly popular way to process big data resulting from large scale scientific studies, 

including ecology. This has manifested in many online crowdsourcing platforms such as the 

Zooniverse (https://www.zooniverse.org/), SciStarter (https://scistarter.com/), Tomnod 

(specifically for digitising satellite imagery: https://www.tomnod.com/), or Amazon 

Mechanical Turk (https://www.mturk.com/). The crowdsourcing process introduces 

observation uncertainty (as defined by Milner-Gulland and Shea 2017) – such as the 

probabilities of false-positive or false-negative observations – resulting from the biases and 

errors of each user. It is therefore crucial to address observation uncertainty as part of any 

citizen science project (Cohn 2008, Dickinson et al. 2010, 2012, Kosmala et al. 2016). 

For projects which crowdsource the classification of camera trap photos, handling 

observation uncertainty is done through expert validation or replication and calibration 

across users (Kosmala et al. 2016). In the former, domain experts manually validate each 

user-contributed classification (McShea et al. 2015), while the latter approach gathers 

multiple classifications per image which are combined into a consensus answer (Swanson et 

al. 2016). Starting with the Snapshot Serengeti project, and further developed by 

MammalWeb as described in Chapter 3, the current approach is to combine a subset of the 

data which are expert-classified as a “gold standard” by which user classifications are 

compared against. For MammalWeb, we developed a model that produces consensus 

classifications, which is a measure of the probability that a species is indeed present in an 

image (Hsing et al. 2018). 

Now, we are running two studies to further investigate what may influence crowdsourced 

image classification performance. The first study is whether classifications of image 

sequences can more efficiently arrive at confidence consensus classifications and retire them, 

as opposed to classifying them individually. The second study is creating three versions of 

images, each at a different resolution. By randomly showing users, and asking them to 

classify images of different resolutions (and, hence, quality), we explore the practical issue 

of to what degree images can be downsampled to save storage space without sacrificing 

classification accuracy. Both of these studies are being trialled on the Zooniverse project 

beta test platform, and are being conducted similar to the A/B testing approach as described 

above. 

https://www.zooniverse.org/)
https://scistarter.com/
https://www.tomnod.com/
https://www.mturk.com/
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The long-term potential of crowdsourcing data classifications is to use the classifications 

to train machine learning algorithms which can automate classification without any human 

input (LeCun et al. 2015, Krizhevsky et al. 2017). Initial results from applying such 

techniques to detecting and identifying animals in camera trap photos are promising (Thom 

2017), and a deep neural network was able to, under certain conditions, classify Snapshot 

Serengeti images at close-to-human accuracy (Norouzzadeh et al. 2018). Machine learning 

algorithms require large training datasets (e.g., millions of classified images, Krizhevsky et 

al. 2017, Norouzzadeh et al. 2018), and I believe standard camera-trapping guidelines 

(Cadman and González-Talaván 2014, Wearn and Glover-Kapfer 2017) should include this 

as a need for increased data sharing from camera trap studies. Finally, the development of 

machine learning algorithms can itself be crowdsourced. The non-profit organisation, 

crowdAI (https://www.crowdai.org/), hosts competitions to develop machine learning 

solutions for data classification tasks. Classified camera trap photos from both MammalWeb 

and Snapshot Serengeti are available under open licenses, and could be hosted as a dataset 

on a platform such as crowdAI to solicit performant machine learning solutions. 

6.3 Population estimates from crowdsourced camera trap 

data 

Much of the work on the MammalWeb project has been focused on attracting and 

retaining a group of citizen scientists to monitor wild mammals in north-east England with 

motion-sensing camera traps. As discussed above and in Chapters 2 and 4, we have 

demonstrated the viability of a local-scale citizen science project while establishing the basis 

for large-scale monitoring through our web platform and growing organisational 

partnerships (including schools). Importantly, we developed a model (Chapter 3) which 

aggregates user-contributed classifications to form consensus classifications for camera trap 

photos. The bulk of my efforts since 2015 has been on achieving the above, and now we 

need to explore the most appropriate methods with which to derive ecological insights from 

the data that is our consensus classifications. 

In Chapter 5, I attempted to address three issues likely to arise from conducting occupancy 

analysis on citizen science-collected camera trap data: discretisation of data, missing data, 

and uncertain detections. In the case of MammalWeb, the uncertain detections arise from 

uncertainty inherent to the consensus classifications we derive for each camera trap 

observation. Using a resampling approach, I showed that estimated occupancy rates remain 

accurate across different levels of uncertainty. One benefit of this method is the ability to 

incorporate uncertainty (which, in this case, can be measured as a continuous variable) into 

https://www.crowdai.org/
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the modelling process without modifying the underlying standard occupancy model as 

developed by MacKenzie (2002). 

Whichever method is used to estimate populations using MammalWeb data, there is a 

need to ground truth the methodology with an independent population estimate. 

Unfortunately, the survey effort density for wild mammals is currently limited in north-east 

England (Croft et al. 2017), so a new survey will need to be conducted. With our existing 

set of camera traps, I believe there are two ways to achieve this. 

The first would be a systematic occupancy survey across the area currently covered. This 

can be done for one species at a time, perhaps selected from the more commonly sighted 

mammals on our website (e.g., grey squirrels or roe deer). In practice, we could select an 

area where citizen scientist-deployed camera traps have detected that species, and conduct a 

systematic occupancy survey there. In addition, since MammalWeb does not target specific 

species, we could also utilise community-level multi-species occupancy models developed 

by Dorazio and Royle (2005). 

To better estimate populations with camera traps without requiring individual recognition, 

there is the random encounter model (REM, Rowcliffe et al. 2008). Based on physical theory 

regarding rates of collision between gas molecules and its comparisons to animal movement 

(Hutchinson and Waser 2007), REM provides a factor which relates camera trapping rate to 

population density. Accompanying methods have been developed to estimate two critical 

terms in REM, the zone of detection around a camera (Rowcliffe et al. 2011), and the target 

species’ movement rate (Rowcliffe et al. 2016). As REM methodology matures with further 

refinements – such as consideration for animal staying time (the duration for which an 

animals remains in a camera’s field of view) (Nakashima et al. 2018) – it is becoming a 

practical and efficient approach for estimating animal density. 

Camera trapping surveys need to be done systematically for occupancy modelling 

(Rovero and Spitale 2016) and population density estimation with REM (Rowcliffe et al. 

2008). This was, in fact, the deployment strategy for collecting camera trap images for the 

Snapshot Serengeti citizen science project (Cusack et al. 2015). Specifically, camera traps 

should be randomly deployed along a regular grid of sites in the area of interest (Rovero et 

al. 2014). Since north-east England is a highly developed and patchy landscape (relative to, 

for example, Serengeti National Park), any survey (for occupancy or REM) could align and 

deploy the grid along a gradient of interest such as different habitat types or distance from 

roads. 
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6.4 Concluding remarks 

Motivated by a need for larger scale wild mammal monitoring in Britain and a desire to 

engage citizen scientists on a higher level, the MammalWeb project was developed to partner 

with local communities in deploying motion-sensing camera traps. Since 2015, we have 

established a core group of citizen scientists (“super users”) who have consistently 

contributed and classified more than 250,000 camera trap images. Image classification is 

assisted on our web platform by almost 300 registered users. This effort has led to diverse, 

tangible outcomes from the capture of a non-native species; enriching the local biodiversity 

data archive (Environmental Records Information Centre for the North East of England: 

http://www.ericnortheast.org.uk/home.html); and the development of a consensus 

classification algorithm for crowdsourced data. We successfully piloted a school partnership 

which empowered learners not only as citizen scientists, but also ecological ambassadors to 

their community. Our efforts continue in terms of involving more partner organisations, 

including conservation groups such as Nature Spy (https://www.naturespy.org/), Scottish 

Wildcat Action (http://www.scottishwildcataction.org/), and a network of schools via the 

Great North Museum: Hancock and The Institute for Research in Schools; and further studies 

on the nuances of crowdsourcing methods on classifier accuracy (i.e., sequence- versus 

individual-based image classification or the effects of image resolution). For future work, 

this chapter has discussed: 

• Enhancing the online user experience 

• Introducing gamified elements 

• Partnering not just with schools but also libraries and museums 

• Formally evaluate engagement, motivations, and learning outcomes with the Q 

methodology 

• Tying crowdsourced data classification into machine learning 

• Applying the random encounter model to camera trap data to measure abundance 

and ground-truth MammalWeb data 

I will end this discussion with an overview of general pitfalls to avoid and the potential 

of citizen science beyond crowdsourcing data collection or classification. 

Major research funding bodies are increasingly requiring the research they support to 

demonstrate “broader” impacts (e.g., the European Union Horizon 2020 programme or the 

United States National Science Foundation), and citizen science projects fulfil this criterion 

(Silvertown 2009). While such requirements are strong motivators for academic researchers 

developing their research projects, they should not supersede the underlying ethical concerns 

regarding citizen science (Resnik et al. 2015). In particular, while the crowdsourcing of data 

http://www.ericnortheast.org.uk/home.html
https://www.naturespy.org/
http://www.scottishwildcataction.org/
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processing is a popular form of citizen science, it is especially prone to the exploitation of 

participants, which can manifest in at least two ways: 

In an attempt to reduce spam and distributed denial of service attacks (DDOS), modern 

websites employ the reCAPTCHA system (Ahn et al. 2008) where a human visitor can be 

distinguished from a malicious, automated program by digitising a piece of scanned text or 

classifying photos. This proprietary program (which cannot be subject to external scrutiny) 

was acquired by Google and is now employed by the majority of websites on the Internet 

(Lung 2012). These crowdsourced classifications are used to train machine learning 

algorithms, the results of which are not shared; and there are legal and ethical concerns 

regarding reCAPTCHA since it effectively coerces Internet users into labourers without 

compensation or informed consent (Lung 2012). This form of exploitation should be avoided 

in citizen science projects. 

The second issue is common in the social and behavioural sciences. Research projects in 

these fields frequently crowdsource data processing via the Amazon Mechanical Turk web 

platform where participants are provided with small financial incentives (e.g., Buhrmester 

et al. 2011, Crowston and Prestopnik 2013). As of 2016, more than 1,200 studies have been 

conducted with contributions from users of that platform (Bohannon 2016). One problem is 

how little users are paid (as low as USD$0.15 per 10-minute commitment, Bohannon 2011), 

which raised concerns about labour exploitation (Fort et al. 2011) and objectification of users 

(Irani and Silberman 2013). 

In addition to these examples, there is concern that participants will be exploited in other 

ways (Resnik et al. 2015), such as financial conflicts of interest (Bunch et al. 2014, Macey 

et al. 2014) or conflicting expectations of access to final research outputs (e.g., 

pharmaceutical patents derived from indigenous knowledge, Hellerer and Jarayaman 2000). 

While some have been careful in distinguishing between paid “microtasking” (ala 

Amazon Mechanical Turk) versus “citizen science” (Tsueng et al. 2016), there is concern 

that the contribution of citizens is limited to a few narrowly defined tasks (del Savio et al. 

2016). Indeed, there is a tendency to refer to citizen scientists as mobile sensors (Goodchild 

2007) or even as “instruments” (Westphal et al. 2010). It is unlikely that such terms were 

used out of malice, but they reinforce the notion that citizen scientists are merely data 

collectors or processors, while neglecting the full potential of citizen science. 

In contrast to fully centralised citizen science projects started by academics, MammalWeb 

has empowered citizen scientists to conduct their own ecological research. One citizen 

scientist, Anne Kelly, worked with local landowners to conduct camera trap otter surveys, 

and now delivers camera trapping workshops to wildlife enthusiast groups. Another 
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MammalWeb member, Roland Ascroft, developed and implemented a camera trap survey 

in southern Scotland to monitor the expansion of invasive grey squirrels. He also collected 

camera trap data to inform the planning of a Local Nature Reserve (LNR) near his town. 

Citizen scientists such as Kelly and Ascroft are the super users who could decentralise the 

MammalWeb project by (1) running their own research, and (2) being seed trainers for new 

citizen scientists. This form of empowerment is not common in citizen science projects, and 

is another example of the broader impacts of MammalWeb. 

There is also a “distributed” form of citizen-initiated science. One example is the do-it-

yourself biology movement of non-professional citizens who pooled resources to conduct 

their own biological research (Landrain et al. 2013, Seyfried et al. 2014). In one notable 

success, concerned citizens living along the Gulf of Mexico organised their own aerial 

surveys of the 2010 Deepwater Horizon oil spill, which severely impacted economically 

important fisheries (Muhling et al. 2012) as well as near-shore (Unified Area Command 

2011) and deep-sea ecosystems (Hsing et al. 2013, Fisher et al. 2014). Now called Public 

Lab (https://publiclab.org/), this organisation develops their own research projects and 

facilitates citizen-initiated environmental studies in several countries. 

Interestingly, the centralised, decentralised, and distributed topologies of citizen science 

described here are analogous to computer network topologies (Baran 1964, Peeters 2014). 

As described above, citizen science, in its decentralised or distributed forms, has the 

potential to contribute not only to science or education, but civic participation as well. This 

“collaborative science” (Dillon et al. 2016) is the highest level of participation as described 

by Haklay (2013), and I believe it should be a goal for citizen science projects such as 

MammalWeb. 

 

https://publiclab.org/
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