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quality control system in oesophageal 

adenocarcinoma 

 

Jack Christopher Peter Worfolk 

 

Abstract: Disulphide bonds covalently linking cysteine residues, intramolecularly or 

intermolecularly, are often essential in ensuring the stability of secreted and cell 

surface proteins as well as facilitating correct spatial positioning of protein active 

sites. The protein disulphide isomerase (PDI) family of proteins catalyse the 

oxidation, reduction and isomerisation of these disulphide bonds. PDI proteins are 

vital for protein quality control and most are found ubiquitously. Anterior gradient-2 

(AGR2) is an unusual tissue-restricted member of the PDI family that has gained 

considerable attention in the last 15 years because of its overexpression in a variety 

of different cancer types, including oesophageal adenocarcinoma. In this thesis it has 

been demonstrated that the OE19 late stage oesophageal adenocarcinoma cell line 

strongly expresses AGR2, and that in this cell line AGR2 can form redox-inducible, 

disulphide bond dependent complexes. It has also been shown, through the 

development and use of a novel, unbiased trapping and immunoprecipitation 

approach, that these AGR2 interacting proteins can be identified and compared. This 

approach has identified mucin isoforms that AGR2 preferentially binds as its primary 

clients and has revealed a host of ER chaperones involved in this quality control 

complex. This thesis lays the groundwork for the elucidation and definition of an 

AGR2-mucin quality control system within oesophageal adenocarcinoma and 

provides biomarkers and potential therapeutic targets for identification and 

treatment of AGR2-positive cancers.  
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1. Introduction 

1.1 The endoplasmic reticulum and chaperones 

The major defining feature of eukaryotic cells, distinguishing them from prokaryotic 

cells, is the presence of organelles - membrane bound compartments which allow 

our cells to organise themselves and provide specialised microenvironments for 

specific purposes. While the textbook examples of organelles described them as 

individual and sperate compartments each with their own microenvironment, 

research in recent years has shed light on the importance of membrane contact sites 

(MCSs) (Wu et al., 2018). MScs are sites where organelles do not fuse but tether to 

one another, allowing highly regulated interorganelle communication and facilitating 

such complex processes as lipid and ion transfer as well as organelle division. These 

recent developments have highlighted the dynamic nature of organelles and the 

importance of interorganelle communication for regulating homeostasis. The 

secretory pathway within eukaryotic cells is comprised of a series of these organelles 

that process and transport a wide variety of products to various locations, including 

secretion outside of the cell. The secretory pathway provides a sophisticated 

processing and delivery system for complex protein structures to a variety of target 

locations. Proteins processed through the secretory pathway include secreted 

proteins, membrane bound proteins, lysosomal enzymes and proteins residing with 

the secretory pathway itself. 

The endoplasmic reticulum (ER) is located at the start of the secretory pathway and 

is involved in a variety of different processes including lipid synthesis, Ca2+ handling 

as well as protein synthesis, folding, modification and transport (Baumann and Walz, 

2001). While protein folding and maturation does occur in the cytosol, it is not 

optimized to the same extent as the lumen of the ER. Upon translation into the ER 

lumen, proteins must acquire the correct folding conformation if they are to function 

properly. Proteins which are persistently incorrectly folded are not transported to 

their correct destination and are instead degraded. This process of protein quality 

control is essential as not only are misfolded proteins unlikely to function properly, 

they are prone to aggregation. Aggregated proteins are involved in a range of 

neurodegenerative diseases such as ALS, Alzheimer’s, Huntington’s, Parkinson’s and 

prion diseases (Ross and Poirier, 2004). 

Assisting in the process of protein quality control are the protein chaperones. These 

proteins reside in the ER at high concentrations and recognise misfolded proteins, 

either promoting folding to the correct conformation, or directing improperly folded 

proteins for destruction. The chaperone proteins are vital for protein quality control, 

and ensuring only native conformers are allowed to exit the ER is essential as protein 

quality control takes place within the ER, but not in the ER-Golgi intermediate 
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compartment or the Golgi complex itself (Mezzacasa and Helenius, 2002). Several 

processes involved in protein folding occur only in the ER. These include signal 

peptide cleavage, GPI-anchor attachment, N-linked glycosylation and, most 

importantly for this thesis, disulphide bond oxidation, isomerisation and reduction. 

1.2 Disulphide bonds, bridges and isomerases 

Disulphide bonds play a pivotal role in protein maturation and are often essential for 

the stability and function of final protein structures. Disulphide bond formation takes 

place within the oxidising environment of the ER when two free thiol (SH) groups 

from the side chains of cysteine residues are covalently linked, either 

intramolecularly or intermolecularly, through an oxidation reaction. This process is 

known as oxidative protein folding and is often prone to error, resulting in non-native 

disulphide bonds. When this occurs the disulphide must be reduced before the 

correct bond can be formed. Catalysing the oxidation, reduction and isomerisation 

of these disulphide bonds are the protein disulphide isomerase (PDI) family of 

proteins.  

PDI family members are defined by the presence of one or more thioredoxin-like 

domains, similar to the small 10 kDa oxidoreductase thioredoxin, and an active site 

CXXC motif (or similar) from which transient disulphide bonds are formed with their 

interaction partners. In humans, there are 21 known members of the PDI family. 

Some of these proteins are ubiquitous and essential for normal cellular function, such 

as Protein Disulphide Isomerase (PDI) (crystal structure shown in Figure 1), while 

others are tissue-restricted and adapted to catalyse the correct folding and secretion 

of specific client proteins, such as Anterior gradient-2.  

 

 

 

 

 

 

 

 

 

Figure 1: Crystal structure of Yeast Protein Disulphide Isomerase (2B5E from the 

protein databank (PDB) database). The four thioredoxin domains of PDI are displayed, 

as well as a Ba2+ barium ion shown as a circle to the right of the structure. 
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1.3 Anterior gradient-2 (AGR2) 

Anterior gradient-2 (AGR2) is an unusual member of the PDI family of proteins but 

has gained considerable attention in the last 15 years due to its derepression and 

oncogenic properties in a variety of different cancer types. The first discovery of the 

anterior gradient proteins came when studying the embryogenesis of Xenopus laevis, 

where Xenopus anterior gradient-2 (XAG-2) was found to be a secreted protein 

expressed in the cement gland, an ectoderm-derived organ aiding anteroposterior 

development (Aberger et al., 1998). Shortly after, the human homologue hAG-2 (later 

referred to as AGR2) was found to be coexpressed with the estrogen receptor in 

several breast cancer cell lines, suggesting a possible role for AGR2 in breast tumour 

biology (Thompson and Weigel, 1998). Since then overexpression of AGR2 has been 

found in a variety of other types of adenocarcinomas including prostate (Zhang et al., 

2005), oesophageal (Pohler et al., 2004), pancreatic (Ramachandran et al., 2008), 

ovarian (Park et al., 2011) and lung (Zhu et al., 2007). The exact role of AGR2 in 

tumour cell biology is slowly being elucidated, but already it has been shown to play 

key roles in cell growth, proliferation (Pohler et al., 2004), adhesion and metastasis 

(Liu et al., 2005). 

As well as its role in cancer progression, AGR2 performs a physiological role as a 

protein chaperone, and is natively expressed in tissue such as lung, prostate, bladder, 

as well as the gastro-intestinal tract (Fagerberg et al., 2014). In these tissues it has 

been shown to be required for the correct folding and secretion of mucins, the large 

gel-forming glycoproteins that give mucus its viscoelastic properties (Park et al., 

2009; Schroeder et al., 2012). Mucins contain large numbers of cysteine residues that 

form intra and interchain disulphide bonds which give mucus its structure. AGR2 is 

required for the correct synthesis of these disulphide bonds, although the exact 

mechanism by which it performs its function is unknown.  

As mentioned previously, PDI family members are classified by the presence of at 

least one thioredoxin-like domain, whether it be enzymatically active or not. Unlike 

most other PDI family members AGR2 contains only one thioredoxin-like domain 

with an unusual CXXS motif. The primary structure of AGR2 is displayed in Figure 2. 

This motif has been shown to lack the catalytic oxidase activity found in other 

members of the PDI family (Nørgaard and Winther, 2001). The absence of oxidase 

activity in this motif suggests that AGR2 is not a typical PDI and leads to the possibility 

that it relies on other interacting partners to perform its biological function. 
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Additionally, AGR2 contains a non-optimal KTEL ER localisation signal, removal or 

alteration of which will affect its localisation and function (Gupta et al., 2012). 

Normally, ER resident proteins possess a KDEL ER localisation signal at their C 

terminal which is recognised by the KDEL receptors in the cis Golgi. Proteins with this 

KDEL motif that have travelled to the cis Golgi are recognised by the KDEL receptors 

and are transported back to the ER, thus maintaining their concentrations without 

the need for fast translation rates. The presence of the non-optimal KTEL ER 

localisation signal at the C terminal of AGR2 prompts the question of where exactly 

within the cell it is localised. Multiple studies have shown that AGR2 is primarily 

localised to the ER (Gupta et al., 2012; Higa et al., 2011; Park et al., 2009; Zhao et al., 

2010), however the non-optimal KTEL motif still may allow AGR2 to travel beyond 

the ER. 

More recently a substrate binding loop has also been identified in AGR2 (Maslon et 

al., 2010). This was shown to be involved with its interaction with the nuclear DNA 

binding protein Reptin and is a possible route for AGR2 interactions to take place. 

This will be expanded upon later in section 1.5. 

1.4 The physiological role of AGR2 

As mentioned previously, one of the more significant roles of AGR2 involves its 

interaction with the mucin proteins, a major component of mucus. A study by Park 

et al., (2009) showed that Agr2-/- mice lacked intestinal mucus and had undetectable 

levels of the MUC2 protein and little to no MUC2 synthesis in the small intestine. It 

was also shown in this study that AGR2 deficient mice had increased susceptibility to 

intestinal disease, and with aging these mice often developed symptoms of colitis, 

including rectal prolapse. Knockout studies with other PDI family members such as 

ERp57 have resulted in embryonic lethality (Garbi et al., 2006). Although AGR2 

knockout in mice produces a disease prone phenotype, it does not result in 

embryonic lethality and demonstrates AGR2’s role as a highly specific PDI member 

primarily involved in mucus production. 

Figure 2: The primary structure of AGR2.  

Shaded boxes indicate identified domains and motifs involved in the function and 

regulation of AGR2. Taken from Chevet et al. 2013 doi:10.1038/onc.2012.346.  
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AGR2 has also been shown to interact with airway mucins MUC5AC and MUC5B, as 

demonstrated by Schroeder et al., (2012). Co-immunoprecipitation experiments 

showed that AGR2 interacts with immature MUC5AC in airway cells, and analysis of 

airway epithelial gene expression showed a correlation between AGR2 and MUC5AC 

expression. In this study they also demonstrated that germline Agr2-/- mice had a 

greater than 50% reduction in MUC5AC and MUC5B protein levels compared to wild 

type mice, suggesting AGR2 plays a crucial role in the processing of MUC5AC and 

MUC5B. Taken together, these studies highlight the crucial role of AGR2 in the 

synthesis of certain mucin isoforms and opens up the question of how exactly it 

mediates this role. 

Another study, this time using germline and inducible Agr2-/- mice, demonstrated the 

importance of AGR2 in both the goblet and Paneth cells of the intestinal crypts (Zhao 

et al., 2010). It was observed that in both germline and inducible Agr2-/- mice goblet 

cell lineage remains; however, they lose their normal morphology and intestinal 

mucus is decreased. In the same Agr2-/- mice they showed several abnormalities in 

Paneth cells. An enlargement of the Paneth cell compartment was observed as well 

as mislocalized Paneth cells in the upper crypt and villi. Agr2-/- mice were also found 

to be highly susceptible to experimentally induced ileitis and colitis. The phenotype 

observed in this study was compared to Crohn’s disease, and in another study genetic 

variants of the Agr2 gene that decrease its mRNA expression induce the ulcerative 

colitis phenotype (Zheng et al., 2006) suggesting AGR2 plays a key role in regulating 

inflammatory bowel disease. These knockout mice studies have shown the 

importance of AGR2 in mucus secretion and demonstrated the vital role it plays in 

regulating gastrointestinal diseases. 

1.5 Interacting partners for AGR2 

Through the use of yeast two-hybrid screens and a variety of other studies AGR2 has 

been shown to interact, directly or indirectly, with a large number of other proteins 

in the human body. The first and perhaps the most important for determining its 

direct role in humans, previously mentioned in section 1.4, was the discovery of its 

interaction with mucin 2 (MUC2) (Park et al., 2009). It was shown that MUC2, an 

integral component of intestinal mucus, requires AGR2 to fold properly and therefore 

function. In co-immunoprecipitation experiments AGR2 was shown to co-

immunoprecipitate with MUC2, an interaction that disappeared when the single 

cysteine residue in AGR2 was mutated. From this they concluded AGR2 forms mixed 

disulphide bonds with MUC2, establishing AGR2 as a highly specific PDI family 

member. 

The ability of AGR2 to interact with itself to form homodimers was first shown by Ryu 

et al., (2013) who provided evidence that this ability is facilitated by the formation of 
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an intermolecular disulphide bond, and that the dimerization is required for 

interaction with BiP. Paradoxically, shortly afterwards Patel et al., (2013) showed 

AGR2 existed in a monomer-dimer equilibrium within the ER at a K(d) of 8.83 µM, 

but provided data suggesting that the only cysteine residue within AGR2 was not 

necessary for dimer formation. They instead provided evidence that the dimer 

interaction was provided by salt bridges connecting the antiparallel arrangement of 

the alpha1 helices of the two molecules. If the dimer interaction does not require the 

CXXS motif cysteine residue it opens the possibility that the dimer conformation is 

used in interactions involving intermolecular disulphide bonds, such as MUC2 folding. 

Using yeast two-hybrid screening in breast tumour tissues it was found that both 

metastasis-associated GPI-anchored C4.4a protein and extracellular alpha-

dystroglycan (DAG-1) acted as binding partners for AGR2 (Fletcher et al., 2003). With 

both proteins involved in interactions with the extracellular matrix this has been 

suggested as a possible route for AGR2 to affect tumour cell metastasis, migration 

and invasion. Another protein found to interact with AGR2 through the use of yeast 

two-hybrid screening was the nuclear DNA binding protein Reptin (Maslon et al., 

2010). With the use of site directed mutagenesis, a small substrate binding loop in 

AGR2 was determined to be the docking site for its interaction with Reptin and two 

ATP binding motifs on Reptin were found to be involved in regulation of the 

AGR2:Reptin complex. As Reptin can act as a regulator of tumour suppressor genes, 

this interaction suggests that a possible route for AGR2 as a prometastatic factor 

could be through gene regulation.  

Almost all cancers, when they reach a certain stage, have either a mutated 

dysfunctional p53 gene or p53 activity is suppressed in one way or another. It is 

therefore not surprising that in 2003 AGR2 was shown to suppress p53 activity 

(Pohler et al., 2004). Cells transfected with AGR2 showed distinctly less p53 

phosphorylation at both Ser15 and Ser392, after UV-induced DNA damage, 

compared to cells without AGR2. This was determined later to be mediated through 

AGR2’s upregulation of DUSP10, a phosphatase that inactivates p53 along with 

another regulator of apoptosis, p38 MAPK (Hrstka et al., 2016). AGR2’s ability to 

suppress p53 activity gives strong evidence towards its role as a regulator of tumour 

growth. 
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A wide variety interacting partners for AGR2 have been discovered and even more 

processes and pathways have been shown to be regulated by AGR2 (Figure 3) 

indicating the importance of AGR2 in the environments in which it is expressed.  

1.6 Barrett’s oesophagus and oesophageal adenocarcinoma 

The development of oesophageal adenocarcinomas is often preceded by a condition 

called Barrett’s oesophagus. Repeated gastro-oesophageal reflux and chronic 

exposure of the normal squamous oesophageal epithelium to gastric and duodenal 

contents can result in an adaptive response in some individuals. A metaplasia and 

dysplasia of the oesophageal epithelium can occur, activating glycoprotein synthesis 

machinery to produce mucus as a defence mechanism against the change in 

environment. This transition to a mucus secreting columnar epithelium results in a 

condition known as Barrett’s oesophagus, or Barrett’s epithelium. Although not 

cancerous, Barrett’s oesophagus is considered a pre-malignant condition as there is 

a high chance (estimated between 0.5-2% per year) patients with Barrett’s will 

develop oesophageal adenocarcinoma (Nancarrow et al., 2011). Patients with 

Barrett’s oesophagus are estimated to have a 30-fold higher chance of developing 

oesophageal adenocarcinoma when compared to the general population 

(Solaymani-Dodaran et al., 2004). 

The transition to Barrett’s oesophagus is accompanied by a whole host of changes to 

gene expression, including the elevated expression of mucins such as MUC2 and 

MUC5AC (DiMaio et al., 2012). Along with mucins, AGR2 has been shown to be 

universally upregulated in Barrett’s oesophagus (Pizzi et al., 2012; Pohler et al., 

Figure 3: Major interacting partners for AGR2. 

A diagram summarizing the major known interacting partners for AGR2 described in 

sections 1.4 and 1.5. Straight lines indicate binding interactions (whether direct or 

indirect), arrows indicate upregulation of activity and flat ended lines indicate inhibition 

of activity. 
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2004). Unlike other cancers that overexpress and secrete AGR2, the overexpression 

of AGR2 in Barrett’s oesophagus is assumed to be involved in the glycoprotein 

synthesis machinery. This aberrant expression of AGR2 has been proposed as a 

biomarker for Barrett’s oesophagus (DiMaio et al., 2012). 

1.7 Thesis Aims 

Previous work by Simpson and Benham (unpublished data) showed that AGR2 is 

strongly expressed in the OE19 late stage oesophageal adenocarcinoma 

immortalised cell line, used as a model for Barrett’s oesophagus. Their work 

suggested AGR2 complex formation was affected by treatment with the reductant 

dithiothreitol (DTT), visible through non-reducing western blotting. The aims of this 

thesis are to determine whether these changes observed were the result of an 

altered redox state, or due to the ER stress induced by DTT. Additionally, through the 

use of immunoprecipitation and mass spectrometry, the interactions AGR2 makes to 

form these complexes and the interacting partners involved will be investigated. 
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2. Materials and methods 

2.1 Chemicals 

Chemicals were from Sigma-Aldrich unless otherwise stated. 

2.2 Antibodies 

Rabbit polyclonal PDI antibody from our laboratory has previously been described 

(Benham 2000). Rabbit polyclonal calnexin antibody was a gift from Prof. Masuru 

Okabe, Osaka University. Rabbit monoclonal anti-AGR2 (D9V2F) XP (13062), rabbit 

polyclonal anti-Phospho-eIF2α (Ser51) (9721), rabbit polyclonal anti-BiP (3183), 

rabbit polyclonal anti-ERp57 (G117), rabbit monoclonal anti-ERp44 (D17A6) XP 

(3798) and mouse monoclonal anti-Myc-Tag (9B11) were purchased from Cell 

Signaling Technologies. Rabbit monoclonal anti-AGR2 (EPR3278/ab76473), mouse 

monoclonal anti-β-actin (ab8224), rabbit monoclonal anti-MUC5AC 

(EPR16904/ab198294), rabbit polyclonal anti-ERp29 (ab11420), mouse monoclonal 

anti-PrdxIV (7A1) (ab16943) and rabbit monoclonal anti-GAL4 

(EPR12710(B)/ab175185) were purchased from abcam. Mouse monoclonal anti-PDI 

RL-90 (MA3-019) was purchased from ThermoFisher Scientific. Mouse monoclonal 

anti-PAUF/ZG16B (817310) was purchased from Nous Biologicals. Rabbit polyclonal 

anti-PDI was produced in our laboratory and has previously been described (Benham 

2000). Secondary antibodies used in western blotting were swine anti-rabbit HRP 

(SARPO P0217) and goat anti-mouse HRP (GAMPO P0447) conjugates from DAKO. 

Donkey anti-rabbit Alexa Fluor 488 (A21206) and donkey anti-rabbit Alexa Fluor 594 

(A21207) from ThermoFisher Scientific were used in immunofluorescence. 

Antibody dilutions for western blotting were as follows: anti-AGR2 (D9V2F), 1:1000; 

anti-BiP, 1:1000; anti-β-actin, 1:10,000; anti-CNX, 1:2000; anti-ERp29, 1:1000; anti-

ERp44, 1:1000; anti-ERp57, 1:1000; anti-GAL4, 1:1000; anti-MUC5AC, 1:10,000; anti-

Myc, 1:1000; anti-PAUF/ZG16B, 1 µg/ml; anti-PDI pAb, 1:1000; anti-PDI (RL-90), 

1:1000; anti-PrdxIV, 1:2000; anti-P-eIF2α, 1:500. Secondary antibody dilutions for 

western blotting were as follows: swine anti-rabbit HRP, 1:3000; goat anti-mouse 

HRP, 1:3000. Antibody dilutions for immunofluorescence were as follows: anti-PDI 

pAb, 1:200; anti-AGR2 (D9V2F), 1:200; anti-PrdxIV, 1:200. Secondary antibody 

dilutions for immunofluorescence were as follows: donkey anti-rabbit Alexa Fluor 

488, 1:1000; donkey anti-rabbit Alexa Fluor 594, 1:1000. Antibody dilutions for 

immunoprecipitation were as follows: anti-AGR2 (EPR3278/ab76473), 1:20; anti-PDI 

pAb, 1:25; anti-ERp29 (ab11420), 1:500.  
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2.3 Cell culture 

OE19 (JROECL19) and OE33 (JROECL33) cells were obtained from ECACC, both at 

passage number p6. The OE19 cell line was established from an adenocarcinoma of 

gastric cardia/oesophageal gastric junction from a 72-year-old male patient. The 

tumor was identified as pathological stage III (UICC) and showed moderate 

differentiation. The OE33 cell line was established from an adenocarcinoma of the 

lower oesophagus (Barrett’s metaplasia) from a 73-year-old female patient. The 

tumor from which the cells were taken was identified as pathological stage IIA (UICC) 

and showed poor differentiation. The OE cell lines were subcultured twice weekly in 

Rosewell Park Memorial Institute medium (RPMI) 1640 (Invitrogen) supplemented 

with fetal bovine serum (FBS) to a final concentration of 8%, 2mM glutamax 

(Invitrogen) and 100 µg/mL Penicillin/Streptomycin (Invitrogen).  

HT0180 cells were subcultured twice weekly in Dulbecco’s Modified Eagle’s Medium 

(DMEM, Gibco, Thermofisher Scientific) supplemented with with fetal bovine serum 

(FBS) to a final concentration of 8%, 2mM glutamax (Invitrogen) and 100 µg/mL 

Penicillin/Streptomycin (Invitrogen).  

All cell lines were kept in a humidified incubator at 37°C and 5% CO2. Treatments 

were carried out when the cells reached ~70% confluence, in 6 cm dishes. 

2.4 Immunofluorescence 

OE19 cells grown on coverslips were fixed with 4% paraformaldehyde (PFA) (agar 

scientific) in phosphate buffered saline with magnesium and calcium (PBS++) for 10 

min, free aldehyde groups were quenched with 50 mM ammonium chloride in PBS++ 

for 10 min then the cells were permeabilised with 0.1% Triton X-100 in PBS++ for 10 

min. Samples were then blocked in 0.2% bovine serum albumin (BSA) in PBS++ twice 

for 5 min each then incubated with 25 µL primary antibody solution, diluted in 0.2% 

BSA in PBS++, for either 1 hour (PDI) or overnight (AGR2, PrdxIV). Following primary 

incubation, samples were washed three times with PBS++ then incubated with 

secondary antibody solution, diluted in 0.2% BSA in PBS++, for 25 mins in the dark. 

Following secondary incubation, samples were washed twice with BSA, twice with 

PBS++ then incubated with 50 µL 5 µg/mL DAPI solution for 5 mins, rinsed briefly in 

PBS++ and dH2O then mounted on microscope slides with Vectashield mounting 

medium (vectorlabs). Before imaging slides were left at 4°C overnight to allow the 

Vectashield to set. The slides were imaged on either a brightfield fluorescence 

microscope (Zeiss ApoTome) or a confocal microscope (Zeiss 880). When using two 

primary antibodies for co-staining both were applied simultaneously.  
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2.5 Preparation of cell culture medium for treatment 

Stock solids of the chemicals, diamide, bile acids and thapsigargin were dissolved in 

dH2O to produce stock solutions that were aliquoted and frozen at -20°C. 

Immediately prior to treatment stock solutions were defrosted and an appropriate 

volume was added to an aliquot of sterile RPMI media to give the desired final 

concentration. If media was required at a specific pH then media was aliquoted, 

adjusted to the desired pH dropwise with HCl or NaOH and tested with a calibrated 

pH meter. The pH-adjusted media was then sterilised by filtration through a 0.22 µm 

syringe filter (MILLIPORE) and stored at 4°C until needed. 

2.6 Cell treatments 

Cells were treated with fresh RPMI media (as described above) supplemented with 

the desired chemical and concentration and returned to the 37°C incubator for the 

required time course. Following treatment cells were washed twice with phosphate 

buffered saline (PBS) for 5 minutes. The first PBS wash was supplemented with 20 

mM N-ethylmaleimide (NEM) in experiments using NEM. Cells were lysed 

immediately after treatment. 

2.7 Cell lysis 

Cells were lysed on ice in 300 µl of MNT lysis buffer (20 mM 4-

morpholineethanesulfonic acid, 30 mM Tris, 100 mM NaCl, pH 7.4) with 1% Triton X-

100, supplemented with 10 µg/ml each of the protease inhibitors chymostatin, 

leupeptin, antipain, and pepstatin A. Lysis buffer also contained 20 mM NEM in 

experiments using NEM. Lysed cells were scraped and the lysates were collected in 

Eppendorf tubes. The cell nuclei were removed by centrifugation at 16,100g 

(Eppendorf microcentrifuge) for 10 min at 4°C and the supernatants were collected 

in fresh Eppendorf tubes and flash frozen in liquid nitrogen and stored at -20°C. 

2.8 Protein determination 

Protein concentrations for equal loading were determined using the Bio-Rad Protein 

Assay procedure with BSA used as a standard. Standards were produced by 

combining the Bradford dye with dH2O, HCl, BSA and lysis buffer. A 1 mg/mL stock 

solution of BSA was diluted in lysis buffer to produce final concentrations ranging 

from 0-10 µg/mL. Samples were produced by combining the Bradford dye with dH2O, 

HCl, lysis buffer and 2 µL of lysate. Mixtures were left for 10 minutes then vortexed 

and their absorbances measured at 595 nm in an Eppendorf Biophotometer. 

 



26 
 

2.9 SDS-PAGE 

For protein detection, samples were analysed under either reducing or non-reducing 

conditions in SDS-PAGE. Samples for SDS-PAGE were prepared by adding 2x Laemmli 

sample buffer to cell lysates. For samples ran under reducing conditions 50 mM DTT 

was also added. To denature the proteins within the sample they were heated at 

95°C for 5 mins, then centrifuged at 16,100 g for 5 mins to collect the liquid at the 

bottom of the tube. Prepared samples were analysed using either 8%, 10% or 12% 

acrylamide gels. The resolving gel was comprised of: acrylamide (variable 

percentage) (Severn Biotech), 0.375 M Tris (pH 8.8), 0.1% SDS, 0.1% ammonium 

persulphate (APS) and 0.04% N,N,N’,N’-Tetramethylethylenediamine (TEMED). The 

stacking gel was comprised of: 5% acrylamide, 0.125 M Tris (pH 6.8), 0.1% SDS, 

0.075% APS, 0.1% TEMED. 

Acrylamide gel were cast in the Hoefer mini gel casting system. The resolving gel was 

first cast and left to polymerise, with water to cover the gel. The water was then 

removed and replaced with the stacking gel, followed by insertion of either a 10 well 

or a 15 well comb. Once the gel fully polymerised samples were loaded alongside a 

protein stained marker (Bio-Rad). Gels were run at 10-50 mA for approximately one 

hour in a Hoefer mighty small II mini vertical electrophoresis unit containing 1x Tris-

Glycine buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3). Analysis was done 

either via western blotting or Coomassie blue staining. 

2.10 Coomassie gel staining 

After SDS-PAGE, gels were fixed in a fixing solution (7% acetic acid and 40% methanol 

in dH2O) for 10 minutes. To stain the gels, fixing solution was removed and the 

Coomassie stain was applied (80% Brilliant blue G-colloidal concentrate in methanol). 

Staining took place overnight with gels placed on a rocker. To destain the gels, the 

first destaining solution (25% methanol, 10% acetic acid in dH2O) was applied for 10 

minutes, followed by the second destaining solution (25% methanol in dH2O) which 

was applied for another 10 minutes. Gels were scanned into an office computer. 

2.11 Western blotting 

Following SDS-PAGE separation, proteins were transferred to polyvinylidene fluoride 

(PVDF) membrane. For transfer, membranes were first submerged in methanol for 

20 seconds to activate them, then placed in transfer buffer (25 mM Tris base, 190 

mM glycine and 20% methanol in dH2O) and transferred at either 150 mA for 2 hours 

or at 30V overnight. Membranes were then blocked in 5% non-fat dry milk in TBS-T 

(Tris-buffered saline (10 mM Tris base, 70 mM NaCl, 1.34 mM KCl) containing 0.1% 

Tween 20) for 1h at room temperature. Membranes were washed 5 times with TBS-
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T before either a 1-hour incubation at RT or an overnight incubation at 4°C with 

primary antibody (dependent on antibody), followed by another 5 washes and 

incubation for 1 hour at room temperature with either swine anti-rabbit HRP (SARPO) 

or goat anti-mouse HRP (GAMPO). Antibody concentrations are listed in section 2.2. 

To visualise protein localisation, 500 µL of enhanced chemiluminescence (ECL) 

solution per membrane was used. Membranes were exposed to photographic light 

sensitive film in a dark room and subsequently developed in an X-ray developer 

machine (XOMAT). 

Western blot quantification through densitometry was performed on scanned 

immunoblot images with the ImageJ image processing program.  

2.12 Immunoprecipitation 

Immunoprecipitation of target proteins was performed using Protein A-Sepharose 

beads (Sigma). Protein A-Sepharose beads were incubated with the indicated 

antibodies (concentrations in section 2.2) for 1h at 4°C followed by three washes with 

lysis buffer (20 mM 4-morpholineethanesulfonic acid, 30 mM Tris, 100 mM NaCl, pH 

7.4) with 1% Triton X-100. The bead-antibody mixture was then incubated with 200 

µl cell lysate overnight at 4°C and washed with lysis buffer another five times, keeping 

the supernatant from the first wash for Western blotting analysis. The last four of 

these washes were performed without 1% Triton X-100 when preparing samples for 

mass spectrometry. Samples were eluted using either 50 µl Laemmli 2x sample buffer 

if intended for Western blotting or 30 µl elution buffer (4% SDS, 100 mM DTT, 100 

mM Tris-Cl) if intended for mass spectrometry. In each experiment an IgG control 

was performed where Protein A-Sepharose beads and antibody were incubated 

together without cell lysate to identify any signal arising that was not directly 

resulting from the cell lysate, such as antibody-antibody interactions. 

2.13 Proteomics 

Immunoprecipitated samples, eluted in elution buffer as described above, require 

digestion in short peptides before they are suitable for analysis by mass 

spectrometry. The Filter Aided Sample Prep (FASP) Protein Digestion Kit from 

expedeon (44250) was used for this purpose. Of the 30 µL of elute sample produced 

from the IP, 2 µL was used in a Bradford protein determination assay as information 

about the amount of total protein in each sample was required for MS analysis. 

Immediately prior to FASP digestion DTT was added to samples for a final 

concentration of 5 mM. FASP digestion was performed by adding 28 µL of protein 

extract to a spin filter followed by washing in urea to reduce the concentration of 

SDS in the filter. Samples were then alkylated with iodoacetamide and transferred to 
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ammonium bicarbonate for enzymatic digestion with trypsin (used at a 1:100 

enzyme-to-protein ratio) and acidified with trifluoroacetic acid (TFA).  

Peptides generated by FASP digestion were analysed by data-dependent LC-MS/MS 

on a TripleTOF 6600 mass spectrometer (Sciex) linked to an Eksigent 425 liquid 

chromatography system via a Sciex Nano-spray III source. The peptide mass in each 

of the final FASP-eluates was assumed to be the same as the mass of protein 

digested. Final eluates were freeze-dried and the residue re-suspended at 1 µg/µl in 

2% ACN, 0.1% formic acid. Nano-flow chromatographic separation of peptides used 

a trap-and-elute method with an Acquity M-class Symmetry C18 Trap column, 100Å, 

5 µm, 180 µm x 20 mm (Waters), and a PicoFrit packed emitter column 75 µm x 250 

mm - 10 µm tip - containing Reprosil-PUR 3µm (New Objective). One microgram 

peptide samples were transferred onto the trap column within a 25 µL volume of 

0.1% formic acid at 5 µL/min before injection-valve-switching and running of the 

following gradient at 300 nL/min. Buffer A = 0.1% formic acid in water, buffer B 0.1% 

formic acid in ACN. Sequential linear gradients of 1 to 28% B over 50 minutes and 28 

to 80% B over 5 minutes were followed by a 5-minute column wash in 80% B. Return 

to 1% B was over 3 minutes and the column was then re-equilibrated in this buffer 

for 27 minutes. 

Data-dependent top-30 MS-MS acquisition started immediately upon gradient 

initiation and was for 80 minutes. Throughout this period, precursor-ion scans (400 

to 1600 m/z) of 250 ms enabled selection of up to 30 multiply-charged ions for CID 

fragmentation and MS/MS spectrum acquisition (m/z 100-1600) for 33 ms. Rolling 

precursor exclusion of 15 seconds was applied throughout to limit multiple 

fragmentation of the same peptide. 

Precursor- and fragment-ion lists in mgf format were generated from wiff format raw 

MS data-files using MSConvert, available as part of the ProteoWizard software suite. 

Protein identification used the database search engine Mascot 2.5.1. and a database 

containing Uniprot human db download (6-4-17) plus 9 protease/GFP/YFP 

sequences. The peptide false discovery rate from a target decoy database was set at 

≤1% and a filter of >1 unique peptide sequence per protein applied.  

2.14 Transfection 

Transfection of OE19 cells with Myc-tagged ERp29 cDNA (OriGene, CAT#: RC210918) 

was performed following the Lipofectamine 3000 Reagent Protocol from 

ThermoFisher Scientific. OE19 cells were grown to ~70% confluence and 

transfections were performed under sterile conditions within a flow hood. Ero1α 

cDNA was used as a positive control as this had previously been tested in our 

laboratory and a mock transfection without cDNA added was used as a negative 
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control. Prior to transfection, 5 µL of lipofectamine was added to 125 µL of Opti-MEM 

and vortexed to mix. Additionally, 5 µL of P3000 and either 12.5 µL or 25 µL of ERp29 

cDNA (1.25 µL for Ero1α cDNA, 0 µL for mock) was added to another 125 µL of Opti-

MEM. These two solutions were mixed together and allowed to incubate at RT for 10 

minutes, during which time the cells were washed with 2 mL PBS twice. The DNA-

lipofectamine-Opti-MEM mixture was then added to the cells, followed by an 

additional 250 µL of Opti-MEM and incubation for 1 hour at 37°C. Following this, an 

extra 1 mL of Opti-MEM was added to each dish and cells were incubated at 37°C for 

24 hours to allow the transfection to take place. Cells were then washed in PBS twice 

and lysed in MNT lysis buffer as described previously. 

 

 

 

 

 

 

 

 

 

 

2.15 Deglycosylation 

Deglycosylation was attempted as a method for more clearly visualising mucins on 

an SDS-PAGE gel. To achieve this the New England Biolabs PNGase F protocol was 

used. Lysates were prepared as described previously, without treatment with NEM, 

and protein concentrations were determined via Bradford assay. Both denaturing 

reaction conditions and non-denaturing reaction conditions were tested to allow 

comparison and to determine the extent of reaction completion.  

Figure 4: Circular map for the RC210918 cDNA construct.  

Transfection of OE19 cells was attempted through the use of the RC210918 cDNA 

construct containing a ERp29 sequence with a Myc-tag at its C-terminal and a 

kanamycin resistance gene. 
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Denaturing deglycosylation was achieved by combining cell lysates and Glycoprotein 

Denaturing Buffer, heating the mixture at 100°C for 10 minutes followed by chilling 

on ice and centrifuging to collect the solution. This was then supplemented with 

GlycoBuffer 2, 10% NP-40 and PNGase F and incubated at 37°C for 1 hour. Non-

denaturing deglycosylation was achieved by combining cell lysate, GlycoBuffer 2 and 

PNGase F and incubating the reaction at 37°C for 4 hours. Samples were then 

analysed by reducing western blotting as described previously. 

2.16 Alcian Blue gel staining 

The Alcian Blue gel staining method was used in an attempt to visualise mucins on an 

SDS-PAGE gel. After samples were separated on an SDS-PAGE gel, as described 

previously, gels were moved to a pH 2.5, 0.5% Alcian Blue solution in 2% aqueous 

acetic acid and left to stain for 45 minutes. This was followed by a destain in 2% 

aqueous acetic acid for 15 minutes. Gels were scanned into an office computer. 

2.17 Partial trypsinisation 

OE19 lysates were subjected to limited proteolysis through the addition of varying 

trypsin concentrations. A stock solution of trypsin was added to each lysate to 

achieve final trypsin concentrations of 0, 0.25, 1.25 and 2.5 µg/mL. Lysates were 

incubated for 30 minutes at 4°C to allow for digestion, followed by digestion 

termination with the addition of soybean trypsin inhibitor (SBTI) for a final 

concentration of 200 µg/mL. Lysates were then analysed on 8% acrylamide gels by 

SDS-PAGE and western blotting as described previously.  

2.18 Mouse stomach lysis 

Male mice aged 8-12 weeks were sacrificed in accordance with the Animals (Scientific 

Procedures) Act (1986) by trained personnel in the Life Sciences Support Unit at 

Durham University. 

After removal from the body of the mouse the stomach was cut into four similarly 

sized pieces and thoroughly cleaned in PBS. Each piece of the mouse stomach was 

treated in either RPMI media containing 5 mM diamide or diamide free media for 5 

minutes, and subsequently washed in either PBS or PBS supplemented with 20 mM 

NEM for 5 minutes. This produced four different conditions. All pieces were then 

washed in PBS for 5 minutes and cells were scraped from the tissue with the use of a 

scalpel. Solutions containing the cells were centrifuged at 1200 rpm for 5 minutes to 

pellet the cells. The PBS supernatant was removed and replaced with 300 µL MNT 

lysis buffer (containing 20 mM NEM in NEM treated samples). This solution was left 

for 5 minutes at 4°C, centrifuged at 16,100 g for 10 min at 4°C and the supernatants 

were collected in fresh Eppendorf tubes and flash frozen in liquid nitrogen and stored 
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at -20°C. Samples were analysed by SDS-PAGE and western blotting as described in 

sections 2.9 & 2.11. 

2.19 Immunohistochemistry 

Paraffinized oesophageal tissue sections were provided by YKS Viswanath and Julie 

Walker, James Cook University Hospital, Middlesbrough and stained for AGR2 using 

the 3,3’-dianimobenzidine (DAB) staining method.  

Tissue sections embedded in paraffin were incubated at 50°C overnight prior to 

staining. Sections were deparaffinised with two 7-minute washes in Histoclear, one 

7-minute wash in 100% ethanol, one 5-minute wash in 95% ethanol and finally one 

5-minute wash in 70% ethanol. Sections were then hydrated in dH2O for 3 minutes. 

Antigen retrieval was achieved by treating the sections with 3% H2O2 in MeOH for 15 

min followed by 20 min in 10 mM Na-citrate (pH 6.0) at 90°C. Slides were then cooled 

on ice, followed by a 5-minute wash in 0.2% BSA in PBS and a 30-minute blocking 

incubation in 0.2% BSA + 5% normal goat serum (DAKO, X0907) in PBS. Long 

incubations such as this blocking step were performed in a moist chamber to reduce 

evaporation. Sections were then incubated with an AGR2 mAb (ab76473) at a 1:250 

dilution in PBS + 0.2% BSA + 2% normal goat serum for 1-hour RT. After primary 

incubation, sections were washed in 0.2% BSA in PBS for 5 minutes, followed by a 45-

minute RT incubation with secondary antibody goat anti-mouse/rabbit biotin (made 

by mixing 2 mL PBS with 20 µL reagent C from Dako kit, K0492). After which they 

were again washed in 0.2% BSA in PBS for 5 minutes and then incubated with a 

reagent A/B mixture (made by mixing 2 mL PBS with 20 µL reagent A and 20 µL 

reagent B) for 30 minutes RT. This mixture required making 15 minutes before use. 

For the next step a DAB solution was required, comprising of 5 mL PBS, a H2O2 tablet 

and a DAB tablet. This solution was applied to the sections and they were allowed to 

develop before submersion in dH2O to stop development. Slides were then stained 

with haematoxylin for 4 minutes, followed rinsing in dH2O, 1% HCl in MeOH, dH2O 

again, tap water, 70% EtOH, 95% EtOH, a 5-minute wash in 100% EtOH, two 7-minute 

washes in Histoclear and finally mounting in DPX (Agar Scientific, R1340). Slides were 

imaged with a Leica ICC50 microscope. 

2.20 Alcian Blue tissue section staining 

Alcian Blue was also used on the paraffinized oesophageal tissue sections as a stain 

for mucin. Tissue sections embedded in paraffin were incubated at 50°C overnight 

prior to staining. Sections were deparaffinised with two 7-minute washes in 

Histoclear, one 7-minute wash in 100% ethanol, one 5-minute wash in 95% ethanol 

and finally one 5-minute wash in 70% ethanol. Sections were then hydrated in dH2O 

for 3 minutes, rinsed in dH2O, washed in 3% acetic acid for 3 minutes then stained 
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with a pH 2.5, 0.5% Alcian Blue solution in 2% aqueous acetic acid for 30 minutes. 

Following staining, sections were rinsed in a gentle flow of tap water for 10 minutes 

and then rinsed briefly in dH2O. Slides were then stained with haematoxylin for 6 

minutes, then subsequently rinsed in dH2O, 1% HCl in MeOH, dH2O again, tap water, 

70% EtOH, 95% EtOH, a 5-minute wash in 100% EtOH, two 7-minute washes in 

Histoclear and finally mounting in DPX (Agar Scientific, R1340). Slides were imaged 

with a Leica ICC50 microscope. 
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3 Results 

3.1 AGR2 expression and localisation in OE19 cells 

Barrett’s Oesophagus is a pre-malignant condition leading to oesophageal 

adenocarcinoma in which the appearance of the oesophageal epithelium changes to 

more resemble that of the stomach. With this metaplasia comes the induction of 

mucin synthesis, mucous production and the derepression of the mucin specific 

protein disulphide isomerase AGR2 (Pohler et al., 2004). In order to study AGR2’s role 

within Barrett’s Oesophagus, the OE19 oesophageal adenocarcinoma immortalised 

cell line was chosen. Previous work in the laboratory had suggested that AGR2 was 

expressed in this oesophageal cell line (Simpson and Benham, unpublished data). 

To check expression of AGR2 in this cell line and to determine the subcellular 

localisation of AGR2 within OE19 cells, immunofluorescence was performed. Cells 

were grown on coverslips, fixed with 4% PFA in PBS++, permeabilised with Triton X-

100 and stained with either the AGR2 D9V2F rabbit mAb or a PDI pAb, and co-stained 

with DAPI. The secondary antibody used was the donkey anti-rabbit Alexa Fluor 594 

(red). Images were taken on a Zeiss Apitome Brightfield microscope. As PDI is known 

to be localised and retained in the ER, a polyclonal PDI antibody was used to stain 

the ER of the OE19 cells. This visualisation of the ER can then be used as a point of 

reference when observing the localisation of other proteins via immunofluorescence, 

for example AGR2. 

PDI localisation in OE19 cells is shown in Figure 5 as a ring around the DAPI (blue) 

stained nuclei. Cells stained with the AGR2 mAb shown in Figure 5 demonstrate the 

strong expression of AGR2 in this cell line. These cells had a similar pattern of AGR2 

localisation to the PDI stained cells, implying they are both localised to the ER, 

although higher resolution images and co-staining would be required to confirm this 

observation. 
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Figure 5: PDI expression and localization in OE19 cells. 

OE19 cells were stained with a polyclonal PDI antibody and anti-rabbit Alexa Fluor 594 in 
order to observe expression and ER localization. DAPI (blue) was used to stain the nuclei 
of cells. Perinuclear expression of PDI (red) indicates ER localisation. Images were taken 
on a Zeiss ApoTome brightfield microscope. (A) x20 magnification. (B) x63 magnification. 

Figure 6: AGR2 expression and localization in OE19 cells. 

OE19 cells were stained with the D9V2F AGR2 mAb and anti-rabbit Alexa Fluor 594 in 
order to observe expression and subcellular localization. DAPI (blue) was used to stain the 
nuclei of cells. Similarly to PDI expression, AGR2 expression displays perinuclear 
localisation, indicating ER localisation. Images were taken on a Zeiss ApoTome brightfield 
microscope. (A) x20 magnification. (B) x63 magnification. 
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Figure 7: No primary antibody on OE19 cells. 

OE19 cells only stained with anti-rabbit Alexa Fluor 594. No primary antibody was used. 
Images were taken on a Zeiss ApoTome brightfield microscope. (A) x20 magnification. 
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Although images taken on the Zeiss ApoTome microscope indicate perinuclear 

expression of AGR2, this could not be confirmed due to low image resolution. 

Therefore, it was decided to switch the microscope to a laser-scanning confocal 

microscope. Confocal microscopy makes use of a pinhole between the sample and 

detector, blocking out-of-focus light and allowing the image to be acquired from a 

single focal plane. This technique allows much higher resolutions than standard 

brightfield imaging and is better suited to the OE19 cells as they tend to adhere to 

each other and form masses of cells rather than spreading out and creating a flat 

monolayer.  

The Zeiss LSM 880 Confocal Microscope was used to obtain higher resolution images, 

as shown in Figure 8. In a separate experiment to the one described previously, cells 

were again grown on coverslips, fixed with 4% PFA in PBS++, permeabilised with 

Triton X-100 and stained with either the AGR2 D9V2F rabbit mAb or a PDI pAb, and 

co-stained with DAPI. The secondary antibody used was donkey anti-rabbit Alexa 

Fluor 594 (red). Perinuclear staining can be observed clearly when staining for PDI 

(Figure 8A), and AGR2 (Figure 8B), which again shows a similar profile of expression 

localisation when compared to PDI, indicating that in OE19 cells AGR2 is found within 

the ER. 
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Figure 8: Expression and localization of PDI and AGR2 in OE19 cells. 

(A) Cells stained with polyclonal PDI show the typical ER expression within OE19 cells. (B) 
Cells stained with the D9V2F AGR2 mAb showed subcellular localisation of AGR2 within 
OE19 cells. (C) OE19 cells stained with only anti-rabbit Alexa Fluor 594 (no primary 
antibody). Images were taken on a Zeiss LSM 880 confocal microscope at x63 
magnification. 



38 
 

3.2 The effect of redox on AGR2 complex formation 

Experimental work performed in the lab previously by Simpson and Benham 

(unpublished data) showed evidence that, in the OE19 oesophageal adenocarcinoma 

cell line, treatment of the cells with DTT (5 mM) - a reducing agent and ER stress 

inducer – altered the ability of AGR2 to form protein complexes. In these experiments 

the alkylating agent N-ethylmaleimide (NEM) was used to sequester free thiol groups 

and therefore trap disulphide bonds in their native conformation, allowing 

visualisation of disulphide bond dependent complexes through non-reducing 

western blotting. These observations indicated that AGR2, in oesophageal 

adenocarcinoma, forms complexes that are either redox dependent, indicating that 

these interactions require disulphide bonds, ER stress dependent and the changes 

observed are due to the extra stress put on the ER by the addition of DTT, or a 

combination of the two. 

To test whether the complexes previously observed are redox dependent, the 

oxidising agent diamide was chosen. As an oxidising agent diamide will alter the 

redox state of a living cell it is added to, inducing a change to more oxidising 

conditions and therefore promote the formation of disulphide bonds. If the 

complexes AGR2 forms with partner proteins are redox dependent, as was theorised 

by Simpson and Benham, then diamide should promote AGR2 interactions and 

induce complex formation, and these complexes should be visible through non-

reducing western blotting. 

Diamide treatments were performed on the OE19 cell line using 5 mM diamide in 

RPMI medium for either 0, 5 or 10 minutes, followed by washing with PBS 

supplemented with 20 mM NEM to trap disulphide bonds. Lysates were made using 

an MNT lysis buffer supplemented with 20 mM NEM and the lysates were analysed 

by SDS-PAGE and western blotting using the D9V2F AGR2 mAb. The results of this 

experiment (Figure 9) show an immediate induction of AGR2 complexes under non-

reducing conditions when diamide is present in the treatment. Multiple overlapping 

bands appear at higher molecular weights along with a clear band appearing at ~37 

kDa which is assumed to be AGR2 in its homodimeric form; this is consistent with the 

literature (Ryu et al., 2013). This result clearly shows that AGR2 can form redox 

dependent and therefore disulphide bond dependent complexes, and that these 

complexes can be trapped with NEM for later analysis. 

The combination of diamide to induce disulphide bond formation and NEM to trap 

and prevent disulphide bonds reshuffling demonstrates a method for trapping 

disulphide dependent interactions that will be used later in this project. 
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After inducing AGR2 complexes with diamide, the question was asked whether these 

complexes are stable or transient. To determine whether the induction of AGR2 

complexes by diamide could be reversed, a recovery experiment was performed. 

Following a 5-minute treatment with diamide, OE19 cells were exposed to diamide-

free media for varying lengths of time before NEM treatment and lysis as previously 

described. Figure 9C shows a western blotting analysis of these treatments.  

Complexes were again induced rapidly after the addition of diamide to the media. A 

possible transfer inefficiency of higher molecular weight complexes from the 

acrylamide gel to the PVDF membrane may be the reason why bands appear fainter 

in the 5-minute recovery lane (labelled 5r in Figure 9C). Despite that, it is still clear 

that some bands disappeared after recovery and some persisted. Most notable is the 

single well-defined band that appeared above the dimer band in the 5-minute 

treatment but was then absent in the recovery lanes. This is likely to be the same 

band seen in the 5-minute treatment but absent from the 10-minute treatment in 

Figure 9A.  
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Figure 9: Diamide treatment promotes AGR2 complex formation in OE19 cells. 

(A) OE19 cells, treated with 5mM diamide for either 0, 5 or 10 minutes, were lysed and run on a 12% poly-acrylamide gel, transferred to a PVDF membrane 
and probed using the D9V2F AGR2 mAb. Complexes appear in diamide treated lanes under non-reducing conditions. (B) β-actin loading control for diamide 
treatment samples. (C) OE19 cells treated with diamide as before, but also allowed to recover for 5, 10 and 20 minutes prior to lysis. Recovery lanes show 
most complexes persist, however some (*) were reduced after recovery. (D) β-actin loading control for diamide treatment and recovery samples. Dia = 
diamide treatment. Molecular weight markers were used, as marked on the left of the gels, and were in kDa. 
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3.3 The effect of ER stress on AGR2 complex formation 

Previous work by Simpson and Benham showed evidence that AGR2 complex 

formation, in OE19 cells, is affected by DTT treatment (unpublished). DTT is a known 

inducer of ER stress so one possibility is that the change in AGR2 complex formation 

observed after DTT treatment could be due to the ER stress caused by DTT treatment 

on OE19 cells. In order to test the effect ER stress had on AGR2 complex formation, 

independent of the redox changes induced by DTT, other non-redox-active inducers 

of ER stress were tested. Thapsigargin was chosen as it is a potent inducer of ER stress 

and it is also not redox-active. 

OE19 cells were treated with media containing 2 µM thapsigargin for 0, 30 and 60 

minutes and 6 hours, treated with 20 mM NEM in PBS and lysed in MNT lysis buffer 

containing 20 mM NEM. Lysates were analysed via SDS-PAGE and western blotting 

using the D9V2F AGR2 mAb (Figure 10A). A diamide treated OE19 sample was loaded 

onto the gel as a positive control for AGR2 complexes. Reducing samples were also 

probed with a P-eIF2α antibody to test for the induction of ER stress (Figure 10C). 

After 60 minutes thapsigargin treatment a signal could be seen when using a P-eIF2 

antibody, and a stronger signal seen after 360 minutes, indicating ER stress was being 

inducted. 

No complexes were observed in any of the thapsigargin treated samples when 

immunostaining for AGR2, indicating that there was no strong induction of AGR2 

complexes. However, the diamide treated sample also did not show the same strong 

induction of higher molecular weight bands as shown in previous experiments. This 

may be due to an issue in transferring higher molecular weight complexes to the 

PVDF membrane. Therefore, it cannot be said definitively whether thapsigargin has 

an effect on AGR2 complex formation. 

It was speculated that the conditions known to induce the transition from normal 

oesophageal epithelium to Barrett’s epithelium may also play a role in AGR2 complex 

formation. During the transition into Barrett’s epithelium, gastric reflux exposes 

oesophageal cells to low pH and a plethora of stomach bile acids. These conditions 

have previously been shown to induce oxidative stress and oxidative DNA damage in 

Barrett’s oesophagus cells, and are theorised to be behind the development of 

Barrett’s oesophagus and subsequent tumour progression (Dvorak et al., 2007). 

Therefore, it was decided to test the effect of low pH in combination with bile acids 

on AGR2 complex formation in OE19 cells. 

A bile acid cocktail, as described in Dvorak et al., 2007 and also the materials and 

methods section of this thesis, was added to RPMI media and acidified to pH 4. OE19 

cells were treated with this media for 0, 5 and 10 minutes as well as a longer 6-hour 
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time course before treatment with NEM in PBS and lysis with an MNT lysis buffer 

supplemented with NEM. Lysates were analysed by SDS-PAGE and western blotting 

using the D9V2F AGR2 mAb. A diamide treated OE19 sample was loaded onto each 

gel as a positive control for AGR2 complexes. Coomassie gel staining was also 

performed on separate gels alongside western blots as a secondary loading control. 

Coomassie stained gels are shown in Figure 11A and B. 

Western blotting results from samples treated with low pH media only (Figure 11C) 

showed no evidence of AGR2 complex formation. Samples treated with low pH media 

supplemented with bile acids (Figure 11D) did however show some evidence of AGR2 

complex formation despite excessive background signal on the blot that obscured 

some of the non-reducing samples in the 5 and 10 min lanes. Some, complexes also 

appeared in the reducing lane of the 10 min sample, possibly due to ineffective 

reducing agent or contamination from the diamide treated lane. Overall, low pH and 

bile acid treatments suggest that the bile acid environment does not promote the 

formation of disulphide dependent-complexes between AGR2 and itself or partner 

proteins; however, if more time was available, it would be worth extending this 

analysis to a wider range of bile acid combinations with additional controls. 

 

 

 



43 
 

 

 

 

 

 

 

Figure 10: The effect of thapsigargin on AGR2 complex formation in OE19 cells.  
(A) OE19 cells treated with 2 µM thapsigargin for 0, 30, 60 and 360 minutes showed no 
visible changes in disulphide-dependent complex formation under non-reducing 
conditions. An OE19 lysate treated with 5mM diamide for 5 minutes (as described in Figure 
9) and ran under non-reducing conditions was used as a positive control for complexes 
(central lane). (B) β-actin loading control for thapsigargin treated samples. (C) Reducing 
thapsigargin treated samples were probed with an antibody for PeIF2α as this is a marker 
for ER stress. Weak bands appeared in lanes with longer treatments indicating the 
thapsigargin caused ER stress in the cells. R = gel ran under reducing conditions. NR = gel 
ran under non-reducing conditions. Molecular weight markers were used, as marked on 
the left of the gels, and were in kDa. 
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Figure 11: The effect of low pH and bile acids on AGR2 complex formation in OE19 cells.  
OE19 cells were treated with pH 4 RPMI media supplemented with a cocktail of bile acids to test their effect on AGR2 complex formation. Coomassie 
stained SDS-PAGE gels showed that protein composition was not grossly altered by the treatments and serve as a protein recovery control. A single diamide 
treated sample was loaded onto each gel as a positive control for AGR2 complexes. (A) Coomassie gel showing samples treated with low pH media without 
bile acids. (B) Coomassie gel showing samples treated with low pH media and with bile acids. (C) Western blot showing samples treated with low pH media 
without bile acids probed for AGR2. (D) Western blot showing samples treated with low pH media with bile acids probed for AGR2. Some complexes 
appeared, although they were obscured by background signal. (E) β-actin loading control for samples treated with low pH media. (F) β-actin loading control 
for samples treated with low pH media supplemented with bile acids. R = gel ran under reducing conditions. NR = gel ran under non-reducing conditions. 
Molecular weight markers were used, as marked on the left of the gels, and were in kDa. 
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3.4 Identification of novel AGR2 interacting proteins 

The western blotting results shown in Figure 9 demonstrate results obtained from 

using a trapping approach for retaining disulphide bonded complexes in the presence 

of diamide and NEM. Having demonstrated the effectiveness of this trapping 

approach through western blotting it was decided to use proteomic analysis to 

determine the identity of the proteins with which AGR2 interacted. 

Immunoprecipitation was used to separate AGR2 and its interactors from the 

remaining cell lysate, and mass spectrometry was employed to identify the proteins 

isolated by immunoprecipitation. However, before carrying out mass spectrometry 

analysis, immunoprecipitation was validated in our system with western blotting 

analysis. 

An independent AGR2 antibody, the rabbit monoclonal anti-AGR2 

(EPR3278/ab76473) antibody, was acquired for immunoprecipitation for two 

reasons. Firstly, the D9V2F AGR2 antibody did not support IP applications, and 

secondly, two different species of AGR2 antibodies are required to verify the 

presence of AGR2 in an AGR2 immunoprecipitated sample analysed by western 

blotting. 

Immunoprecipitation was first carried out on fresh OE19 lysates, without treatment 

with diamide or NEM. This was to test the capability and efficiency of the AGR2 

antibody to retain the AGR2 protein in our system. Two separate 

immunoprecipitations were performed, one with PDI and the other with AGR2. Both 

of these immunoprecipitations were then analysed via western blotting for both PDI 

and AGR2. 

OE19 cells were grown to ~90% confluency before lysis to ensure there were 

sufficient protein concentrations for immunoprecipitation. Immunoprecipitation was 

performed by incubating Protein A-Sepharose beads with either the AGR2 mAb 

ab76473 or the in-house generated PDI pAb to allow the antibodies to associate with 

the beads, followed by washing in MNT lysis buffer with 1% Triton X-100. The 

beads/antibody mix was then incubated with 200 µL of OE19 cell lysate for an 

appropriate period of time to allow the protein in the lysate to associate with the 

antibody. To serve as a negative control, one sample was immunoprecipitated with 

lysis buffer (added instead of lysate) at this step. Supernatant removed after 

incubation with the lysate was stored and ran on the SDS-PAGE gel alongside 

immunoprecipitate samples. The mixture was then washed again and eluted in 2x 

sample buffer. Samples were run on 12% SDS-PAGE gels under reducing conditions 

and analysed via western blotting using both the D9V2F AGR2 mAb and the PDI mAb 

RL90 (MA3-019). Results are shown in Figure 12. 
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Both blots showed strong staining in the 50 kDa region. This was due to the HRP-

conjugated secondary antibodies used in western blotting interacting with the IgG 

heavy chains of the antibodies used for immunoprecipitation. Supernatant samples 

taken after incubation with the lysate serves to show the effectiveness and efficiency 

of the immunoprecipitation. OE19 lysates immunoprecipitated with the ab76473 

AGR2 mAb and blotted back with the D9V2F AGR2 mAb showed a single band in the 

20 kDa region (Figure 12A). This band is the AGR2 monomer and its presence in both 

the OE19 lysate and the AGR2 immunoprecipitated eluate verifies that the AGR2 

immunoprecipitation was successful in retaining the AGR2 protein. Samples 

immunoprecipitated with a PDI pAb and blotted back with an AGR2 mAb (Figure 12A) 

showed no band in the 20 kDa AGR2 monomer region indicating that the PDI 

immunoprecipitation did not pull down the AGR2 protein and therefore an 

interaction was not observed. 

Figure 12B shows both immunoprecipitations blotted back with a PDI mAb. The PDI 

protein runs at ~50 kDa, similar to the IgG heavy chain. This overlapping range caused 

issues when interpreting the dense bands of the IgG heavy chain, which obscured the 

PDI signal. No clear PDI signals could be observed in Figure 12B and therefore no 

conclusion could be made as to the effectiveness of the immunoprecipitation. The 

identity of the dense bands that appeared in the OE19 lysate lane is uncertain but 

could be cross-linked PDI protein, or contamination from nuclear material. 

Having demonstrated the ability of the AGR2 mAb ab76473 to bind and retain AGR2 

during immunoprecipitation, it was decided to test AGR2 immunoprecipitation once 

more, this time in the presence of diamide and NEM. There is a possibility that 

diamide and/or NEM may interfere with the interaction between the AGR2 mAb and 

the AGR2 protein, therefore these conditions were tested first with western blotting 

before committing to mass spectrometry analysis. 

Cells grown to ~90% confluency were treated either with media containing 5 mM 

diamide or control media for 5 minutes, treated with 20 mM NEM and lysed in MNT 

lysis buffer containing 20 mM NEM. Immunoprecipitation was performed on these 

lysates as described previously. Immunoprecipitated samples were analysed via 

reducing western blotting with the D9V2F AGR2 mAb. 

Clear AGR2 monomer bands in the 20 kDa region could be seen in both the input and 

the AGR2 immunoprecipitated lanes and were entirely absent in the IgG lanes (Figure 

13), demonstrating that immunoprecipitation with the ab76473 AGR2 mAb in the 

presence of diamide and NEM was successful. AGR2 bands in the supernatant 

samples appeared weaker than those in the immunoprecipitated lanes, showing that 

the majority of the AGR2 protein in the lysates was retained throughout the 

immunoprecipitation. 
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Figure 12: OE19 cell lysates immunoprecipitated with PDI and AGR2 antibodies, blotted back for PDI and AGR2. 
OE19 cells were lysed and immunoprecipitated using either the AGR2 mAb ab76473 or an in-house generated PDI pAb. (A) Immunoprecipitated samples 
were blotted back with the D9V2F AGR2 mAb. Bands appearing in the 19 kDa range are the AGR2 monomer. The presence of the AGR2 monomer band in 
the OE19 positive IP:AGR2 eluate (black arrow) and absence in the OE19 negative eluate (white arrow) signifies that the immunoprecipitation was 
successful in extracting the AGR2 protein from the OE19 lysate. (B) Immunoprecipitated samples blotted back with the PDI mAb RL90. The PDI bands were 
obscured by IgG heavy chain. + = IP performed with OE19 lysate, - = IP performed without OE19 lysate, SN = supernatant (see IP method in section 2.12). 
Molecular weight markers were used, as marked on the left of the gels, and were in kDa. 
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Figure 13: OE19 immunoprecipitation with an AGR2 mAb in the presence of diamide 

and NEM. 

OE19 cells were treated with 5mM diamide and 20 mM NEM prior to lysis, 
immunoprecipitated with the AGR2 mAb EPR3278 and immunoblotted with the AGR2 
mAb D9V2F. Bands appearing at 19 kDa in the IP:AGR2 diamide positive (grey arrow) and 
negative lane (black arrow) demonstrates the retrieval of AGR2 was successful. + = IP 
performed with OE19 lysate, - = IP performed without OE19 lysate and dia = diamide 
treatment. Molecular weight markers were used, as marked on the left of the gel, and 
were in kDa. 
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After demonstrating that AGR2, in the presence of diamide and NEM, could be 

detected by immunoprecipitation, the next step was to prepare samples for mass 

spectrometry analysis. Inducing and retaining these AGR2 complexes and then 

subsequently isolating these complexes from the OE19 lysate provides a sample that 

in theory only contains AGR2 and the proteins it is interacting with. Proteomic 

analysis of the proteins contained within that sample should then reveal proteins 

involved in these AGR2 complexes, first observed in Figure 9. 

The immunoprecipitation conditions chosen for analysis by mass spectrometry were 

identical to those shown in Figure 13. The samples taken for analysis were: an OE19 

lysate treated with 5 mM diamide for 5 minutes prior to lysis, an OE19 lysate without 

diamide treatment and one immunoprecipitation with only lysis buffer to serve as a 

negative control. All samples were immunoprecipitated with the AGR2 mAb 

ab76473, all samples were supplemented with 20 mM NEM prior to lysis and all lysis 

buffer used contained 20 mM NEM. To prepare samples for mass spectrometry 

analysis the immunoprecipitation approach required slight adjustments. Removal of 

Triton X-100 from the final washes was required as it is not compatible with mass 

spectrometry. After immunoprecipitation, a Bradford protein determination assay 

was performed to divulge the protein concentrations in each sample and to check 

the success of the elution, followed by digestion with trypsin to produce peptide 

fragments suitable for detection by MS. This full process is detailed in Figure 14. 

Data received from the Protein Pilot software were in the form of protein summaries 

detailing the proteins peptides could be matched with reasonable confidence. In 

initial experiments, samples contained high quantities of keratins, a common 

contaminate detected in mass spectrometry analysis, although these numbers were 

significantly reduced after a more careful approach was adopted in a second round 

of sample preparation. As mentioned previously, one sample analysed by mass 

spectrometry was immunoprecipitated with lysis buffer instead of OE19 lysate to 

serve as a negative control. Any proteins detected in this control sample were 

immediately discounted from the protein summaries of samples 

immunoprecipitated with OE19 lysates. These proteins included keratins, 

immunoglobulins and cytoskeletal components. 

After subtracting hits also detected in the control sample and any extra keratins and 

obvious contaminants, proteins were selected that were deemed likely to be 

interacting with AGR2. These included proteins known to reside in the ER or secretory 

pathway and therefore would share the same intracellular localisation as AGR2. The 

most notable interactors were the mucins MUC5AC and MUC5B, which are known to 

be clients of AGR2, and lectins such as GAL4 and ZG16B, which may be involved in 

the AGR2-mucin interactions. Factors considered when evaluating the potential of a 

protein hit as a real AGR2 interactor included the peptide count – the number of 
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Figure 14: Schematic diagram describing a trapping and immunoprecipitation approach for detecting interacting proteins. 

OE19 cells grown to ~90% confluency were treated with or without diamide to induce disulphide bond formation and alkylated with NEM to trap disulphide 
bonds. Cells were lysed and the lysate were immunoprecipitated with an AGR2 mAb (ab76473) and protein was eluted in an SDS elution buffer. Samples 
were digested with trypsin via the FASP digestion method and analysed by ESI mass spectrometry to identify the peptide fragments present in the sample. 

These peptide fragments contained AGR2 and proteins locked in complex with AGR2. 
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peptides detected that matched the protein database sequence, and the unused 

value – a description of the uniqueness of the peptide sequences detected. All of the 

proteins described above had two or more peptide hits as well as unused values 

above zero, indicating that they were unlikely to be similar sequences of a different 

protein. Non-human sequences were screened out by the software. 

A curated list of proteins for each sample analysed by mass spectrometry are 

displayed in Tables 1-4. The unused score for a protein is a measure of the peptides 

detected during analysis that are unique to that protein, whereas the total score is a 

measure of the total peptides detected. Therefore, if a protein has an unused score 

lower than its total score it is possible that the peptides detected originated from 

another similar protein. Although included in the table, proteins with unused scores 

of 0 were not picked for further analysis. Percentage coverage (%Cov) was also 

displayed in the tables showing the percentage of the protein sequence that was 

covered by peptide matches. %Cov(50) and %Cov(95) refer to percentage coverage 

at 50% and 95% confidence respectively. %Cov was used as a measure of confidence 

that the protein was present in the sample, although ultimately proteins will low 

scores, such as calnexin (CNX), were investigated. Peptide counts were also used to 

determine protein confidence and initially a lower limit of 2 peptides was set. 

However, due to its known lectin binding abilities, ZG16B was investigated despite its 

peptide count of 1. 

AGR2 was successfully detected in all but the control samples providing a crucial 

point of verification that the immunoprecipitation was successful and specific. 

Several known AGR2 interacting proteins were also detected at high peptide counts, 

including the mucins MUC5AC and MUC5B, known clients of AGR2 (Schroeder et al., 

2012), as well as the ER resident chaperone BiP (Ryu et al., 2013). The presence of 

both MUC5AC and MUC5B at high peptide counts in the MS data suggests these are 

the primary clients of AGR2 in OE19 cells.  

Additionally, several other ER resident chaperones were detected, including: ERp29, 

PrdxIV, Ero1α, ERp44, ERp57, Calnexin, PDIA3 and P5. These proteins are all ER 

resident chaperones and therefore are highly likely to be involved in the interactions 

of AGR2. Also detected were the lectins GAL4 and ZG16B. Lectins are of particular 

interest as they may be involved in the AGR2-mucin interactions. MUC1, PDI and 

Prdx1 were all also returned in the protein summaries although all had unused values 

of zero indicating the peptides detected could be similar peptides from related 

proteins. Prdx1 is also not an ER resident protein and therefore is unlikely to be 

interacting with AGR2. 

To test and validate these interactions, antibodies specific to a selection of the 

proteins of interest were acquired where they were not already available and AGR2 



52 
 

immunoprecipitated samples were analysed by reducing western blotting using 

these new antibodies. MUC5AC was chosen as the mucin to test as it appeared at 

higher peptide counts overall, although MUC5B would also have been a suitable 

candidate.
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Table 1: List of protein identifications from the mass spectrometry analysis of 

an AGR2 immunoprecipitated, untreated OE19 lysate. 
 

Table 2: List of protein identifications from the mass spectrometry analysis of 

an AGR2 immunoprecipitated, diamide treated OE19 lysate. 
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Table 3: List of protein identifications from mass spectrometry analysis of an 

AGR2 immunoprecipitated, untreated OE19 lysate replicate. 

Table 4: List of protein identifications from the mass spectrometry analysis of 

an AGR2 immunoprecipitated, diamide treated OE19 lysate replicate. 
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3.5 Verification of the expression of AGR2 interactors 

Newly acquired antibodies for ERp29, GAL4, ZG16B and MUC5AC were tested with 

reducing western blotting of OE19 lysates to determine antibody effectiveness and 

protein expression (Figure 15). The ERp29 pAb (ab11420) showed a band in the 29 

kDa region in both lanes which was assumed to be monomeric ERp29, as well as other 

higher molecular weight bands, which are likely to be non-specific (Figure 15A). The 

GAL4 mAb (ab175185) showed strong expression in both lanes in the expected 36 

kDa region (Figure 15B). The ZG16B mAb (817310) did not show a band in the 

expected 22 kDa range yet did show a range of bands appearing at ~30-80 kDa (Figure 

15C). These signals were assumed to be caused by cross-reactivity and thus further 

analysis with this protein was halted. The MUC5AC mAb (ab198294) yielded a non-

distinct, smeary signal in the 250+ kDa, which was expected as MUC5AC is a large 

glycoprotein with many glycosylation sites and a high number of possible 

glycosylation variants (Figure 15D). These signals appeared in all OE19 lanes except 

the reducing diamide treated lane for unknown reasons. HT1080 cell lysates were 

used as a negative control as they are known to have little to no expression of mucins. 

3.6 Validation of AGR2 interactors by immunoprecipitation and 

western blotting 

In order to validate the results seen in the mass spectrometry data, AGR2 

immunoprecipitated lysates were tested by immunoblotting with antibodies specific 

to the new potential interacting proteins. AGR2 Immunoprecipitated OE19 lysates 

were prepared as described previously with and without diamide treatment and with 

NEM trapping. Samples were run under reducing western blotting conditions and 

immunoblotted back for the protein of interest. 

MUC5AC was successfully detected in AGR2 immunoprecipitated OE19 lysates 

analysed by western blotting (Figure 16A). Similar to results seen in Figure 15D, the 

MUC5AC signal again appeared as a smear in all lanes it was observed in. These 

included both the untreated and diamide treated lanes of the IP, appearing stronger 

in the diamide treated IP lane. Faint bands in the 50 kDa region of the IP lanes are 

assumed to be IgG heavy chain cross-reactivity. These results show clearly that 

MUC5AC is being retained after AGR2 immunoprecipitation of OE19 lysates. An AGR2 

immunoprecipitation probed with a BiP pAb successfully detected a signal in the 78 

kDa region in the diamide treated AGR2 IP lane (Figure 16B). This signal was very 

weak compared to the input and supernatant lanes, however it is clearly visible when 

compared to the untreated and IgG only IP lanes. 

Like previous proteins, detection of ERp29 was first attempted after AGR2 

immunoprecipitation using an ERp29 pAb (ab11420) in western blotting (Figure 17A). 
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Figure 15: Verification of expression of ERp29, GAL4, ZG16B and MUC5AC in OE19 

cells. 

The expression of AGR2 interacting proteins detected from mass spectrometry was tested 
with reducing western blotting of OE19 lysates. (A) ERp29 pAb (ab11420) tested against 
OE19 lysates treated with and without diamide and with NEM. Bands in the 29 kDa region 
represent the ERp29 monomer. (B) GAL4 mAb (EPR12710(B)) tested against OE19 lysates 
treated with and without diamide and with NEM. Strong bands in the 36 kDa region 
represent the GAL4 protein. (C) ZG16B mAb (817310) tested against OE19 lysates treated 
with and without diamide and with NEM. No band appeared in the expected 22 kDa range 
and other bands are assumed to be unintentional cross-reactivity. (D) MUC5AC mAb 
(ab198294) tested against OE19 lysates, treated with and without diamide and with NEM. 
Non-distinct signals appeared at high molecular weights in almost all OE19 lanes. HT1080 
lysates used as negative controls. 
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However, this attempt was unsuccessful and no ERp29 signal could be seen in the 

AGR2 IP lanes, partially due to excessive background on the blot. This experiment 

was attempted multiple times, with persistent background issues, without 

successfully detecting an ERp29 band in an AGR2 IP lane (data not shown). As the 

ERp29 pAb described as suitable for IP by the supplier, it was decided to 

immunoprecipitate with the ERp29 pAb and analyse through western blotting with 

the AGR2 mAb (D9V2F). The immunoprecipitation conditions used previously were 

applied to the ERp29 IP and the results of this experiment can be seen in Figure 17B. 

Signals were detected in the AGR2 monomer range, however, they were present in 

all IP lanes including the immunoprecipitate without lysate added, therefore it was 

concluded that the signal present was due to cross-reactivity with the IgG light chain 

and the interaction between ERp29 and AGR2 could not be independently verified. 

After AGR2 immunoprecipitation, GAL4 could not be detected by western blotting 

(Figure 18A). Strong monomer bands could be seen in both the input and supernatant 

lanes but was entirely absent in the AGR2 IP lanes. Considering this data and the low 

peptide count observed in the MS data it was concluded that there was any 

interaction between AGR2 and GAL4 was weak, and further experiments on the 

putative interaction between GAL4 and AGR2 were discontinued. When probing an 

AGR2 IP with an ERp57 pAb it was observed that the ERp57 signal appeared at almost 

exactly the same height on the acrylamide gel as the IgG heavy chain (Figure 18B). 

This resulted in a similar issue to that observed in the ERp29 IP probed back for AGR2; 

the IgG cross-reactivity obscured any ERp57 signal and rendered the results 

inconclusive. 

Probing an AGR2 IP with a PrdxIV mAb 7A1 revealed a signal in the diamide positive 

lane providing further evidence that an interaction occurred between AGR2 and 

PrdxIV (Figure 19A). The reason for the lack of heavy chain cross-reactivity on this 

blot is that the PrdxIV mAb was raised in mice and does not readily react with the 

AGR2 IP mAb ab76473 raised in rabbits. ERp44 was also successfully detected after 

AGR2 immunoprecipitation, as represented by a band in the expected 44 kDa region 

(Figure 19B). Again, this was most prominent in the diamide treated IP lane, although 

it could be argued that a very faint signal was present in the corresponding location 

of the untreated IP lane. Finally, probing an AGR2 IP for calnexin (CNX) produced a 

distinct band in the 90 kDa range where CNX migrates on an acrylamide gel (Figure 

20). This was also only visible in the diamide treated AGR2 IP lane, however CNX was 

detected in both untreated and diamide treated MS samples indicating that this 

interaction may be strengthened by diamide but still occurs in its absence. Successful 

detection of PrdxIV, ERp44 and calnexin by western blotting analysis of AGR2 

immunoprecipitated lysates supports the claim that these proteins are all involved in 

the interactions of AGR2. 
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Figure 16: Validation of AGR2 interactions with MUC5AC and BiP. 

OE19 lysates treated with and without diamide and with NEM were immunoprecipitated 
with the AGR2 mAb ab76473 and immunoblotted back for the protein of interest. (A) 
AGR2 immunoprecipitation probed with the MUC5AC mAb EPR16904. Strong signals in 
the IP:AGR2 lanes showed that MUC5AC was retained after AGR2 immunoprecipitation. 
(B) AGR2 immunoprecipitation probed back with BiP pAb 3183. A faint signal in the 
diamide treated AGR2 IP lane showed BiP was retained after AGR2 immunoprecipitation. 
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Figure 17: Validation of AGR2-ERp29 interactions. 

OE19 lysates treated with and without diamide and with NEM were immunoprecipitated 
with the AGR2 mAb ab76473 and immunoblotted back for the protein of interest. (A) 
AGR2 immunoprecipitation probed back with the ERp29 pAb ab11420. High background 
and an overall weak ERp29 signal resulted in no interaction being observed. (B) ERp29 
immunoprecipitation probed back with the AGR2 mAb D9V2F. Results inconclusive as 
bands appeared in all IP:ERp29 lanes including the IgG only and were therefore assumed 
to be the IgG light chain. 
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Figure 18: Validation of AGR2 interactions with GAL4 and ERp57. 

OE19 lysates treated with and without diamide and with NEM were immunoprecipitated 
with the AGR2 mAb ab76473 and immunoblotted back for the protein of interest. (A) 
AGR2 immunoprecipitation probed back with the GAL4 mAb EPR12710(B). No signal was 
detected in the expected 36 kDa region of either AGR2 IP lane indicating that GAL4 was 
not retained after AGR2 immunoprecipitation. (B) AGR2 immunoprecipitation probed 
back with an ERp57 pAb G117. The IgG heavy chain obscured the signal in the expected 
57 kDa region rendering the results inconclusive. 
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Figure 19: Validation of AGR2 interactions with PrdxIV and ERp44. 

OE19 lysates treated with and without diamide and with NEM were immunoprecipitated 
with the AGR2 mAb ab76473 and immunoblotted back for the protein of interest. (A) 
AGR2 immunoprecipitation probed back with the PrdxIV mAb 7A1. The clear band 
appearing in the diamide treated AGR2 immunoprecipitated lane shows PrdxIV was 
retained after AGR2 immunoprecipitation. (B) AGR2 immunoprecipitation probed back 
with an ERp44 mAb D17A6. The band appearing in the expected 44 kDa region of the 
diamide treated AGR2 IP lane shows ERp44 was retained after AGR2 
immunoprecipitation. 
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Figure 20: Validation of an AGR2-CNX interaction. 

OE19 lysates treated with and without diamide and with NEM were immunoprecipitated 
with the AGR2 mAb ab76473 and immunoblotted back for CNX. AGR2 
immunoprecipitation probed back with a CNX mAb. A single clear band was present in the 
diamide treated AGR2 immunoprecipitated lane indicating that CNX was retained after 
AGR2 immunoprecipitation. 
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3.7 Transfection of OE19 cells with a Myc-tagged ERp29 cDNA 

construct 

Peptides corresponding to the ERp29 protein were detected in two of the four 

samples analysed by MS (Tables 1-4), providing convincing evidence that an 

interaction was taking place between AGR2 and ERp29. Attempts to validate this 

observation through western blotting of AGR2 and ERp29 immunoprecipitated 

lysates (Figure 17A & B) were unsuccessful. Therefore, a transfection experiment was 

initiated attempting to transiently express Myc-tagged ERp29 in OE19 cells. Once 

OE19 cells are expressing Myc-tagged ERp29 it will then be possible to use an anti-

Myc antibody in place of the ERp29 antibody. Blotting an AGR2 immunoprecipitation 

with an anti-Myc antibody should remove the issues with excessive background 

signal previously encountered. Alternatively, immunoprecipitating with an anti-Myc 

antibody and probing back with an AGR2 antibody may reduce the issues with IgG 

light chain cross-reactivity as a different antibody will be used. 

As the transfection protocol had not yet been fully optimised for Myc-tagged ERp29 

cDNA, transfection of OE19 cells was tested with two different concentrations of 

cDNA. A mock transfection was also performed as well as an Ero1α transfection 

which had previously been optimised and therefore served as a positive control. 

After transfection, cells were lysed and run on a western blot probed with an anti-

Myc mAb (Figure 21). Unfortunately, no signal was detected in either ERp29 

transfected lane, showing that the OE19 cells did not express Myc-tagged ERp29. A 

band was detected in the Ero1α lane indicating that the transfection protocol was 

carried out successfully. A faint band also appeared in the mock treated lane, possibly 

due to some non-specific cross-reactivity. Transfection with Myc-tagged ERp29 cDNA 

was unsuccessful and it was decided to focus on other potential interacting partners. 
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Figure 21: Transfection of OE19 cells with Myc-tagged ERp29 cDNA. 
OE19 cells were transfected with a Myc-tagged ERp29 cDNA construct using the 
Lipofectamine 3000 Reagent. Ero1α cDNA served as a positive control. Western blotting 
with an anti-Myc mAb show a band in the Ero1α lane which was entirely absent in both 
ERp29 lanes, showing that the transfection was unsuccessful.  
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3.8 Co-localisation of AGR2 and PrdxIV in OE19 cells 

PrdxIV was successfully detected in mass spectrometry analysis of AGR2 

immunoprecipitated OE19 lysates and subsequently detected through western 

blotting analysis of AGR2 immunoprecipitated OE19 lysates. To provide further 

evidence that an interaction takes place between these two proteins a co-

immunofluorescence experiments were set up. Utilising two different fluorophore-

conjugated secondary antibodies it was possible to observe two different proteins 

simultaneously and from this determine their degree of co-localisation. 

Cells were grown on coverslips, fixed in PFA, permeabilised in Triton X-100 and 

stained with either the AGR2 D9V2F rabbit mAb, the PrdxIV 7A1 mouse mAb or both. 

Fluorophore-conjugated secondary antibodies donkey anti-rabbit Alexa Fluor 594 

(red) and donkey anti-mouse Alexa Fluor 488 (green) were applied to all coverslips, 

along with DAPI. Images were taken on the Zeiss LSM 880 Confocal Microscope. Both 

AGR2 (red) and PrdxIV (green) showed a similar perinuclear staining to the AGR2/PDI 

immunofluorescence presented in Figures 1-5. These results indicate that AGR2 and 

PrdxIV are both localised to the ER of OE19 cells. When merging both AGR2 and 

PrdxIV channels (Figure 22D), a very strong correlation between the AGR2 signal and 

the PrdxIV signal (yellow) was observed. This high degree of overlap between these 

two proteins supports the claim that AGR2 and PrdxIV are appropriately localised to 

interact with each other. 
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Figure 22: AGR2 and PrdxIV co-localise in OE19 cells. 
Immunofluorescence was performed on OE19 cells with either the D9V2F AGR2 mAb, the 
7A1 PrdxIV mAb or both. All slides were stained with both anti-rabbit ALEXAFluor 594 and 
anti-mouse Alexa Fluor 488. (A) Secondary antibody only. (B) 7A1 PrdxIV mAb. (C) D9V2F 
AGR2 mAb. (D) both 7A1 PrdxIV mAb and D9V2F AGR2 mAb. Strong co-localisation was 
observed when combining both AGR2 and PrdxIV (D) supporting the claim that these two 
proteins co-localise in the ER. White scale bars represent 10 µm. 
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3.9 Mucin visualisation 

Western blotting is typically optimal for proteins between 20-200 kDa and therefore 

high molecular weight proteins such as the mucins can be difficult to visualise 

through standard gel electrophoresis and western blotting. Although a strong signal 

was observed previously when probing an AGR2 immunoprecipitation for MUC5AC 

(Figure 16A), this gave smeary and inconsistent results, so it was decided that other 

methods for visualising mucins should be explored. 

3.9a Deglycosylation of mucins 

During synthesis, secreted mucin proteins travel through the secretory pathway 

where they undergo extensive glycosylation before being ejected from the cell. These 

glycosylation events occur to varying extents on each molecule and result in a mucin 

population with variable molecular weights. When analysing MUC5AC after western 

blotting, this resulted in large non-distinct smears as seen in Figure 16A. The theory 

behind this experiment was that by deglycosylating an OE19 lysate it would be 

possible to remove some of the variation in mucin molecular weight and 

subsequently observe more distinct bands after western blotting analysis, allowing a 

clearer picture of the expression of mucins within a sample. 

The New England Biolabs PNGase F protocol was chosen as the method for 

deglycosylation. Both denaturing reaction conditions and non-denaturing reaction 

conditions were tested. Under denaturing conditions, the sample is heated to 100°C 

for 10 minutes to remove the secondary structure of the folded protein and allow 

full deglycosylation. By comparing denaturing conditions to non-denaturing 

conditions, a comparison can be made to determine the extent of reaction 

completion. OE19 cell lysates without diamide or NEM treatment were subjected to 

protein determination using the Bradford assay and deglycosylated as per the New 

England Biolab protocol. Samples were then analysed by reducing and non-reducing 

western blotting (Figure 23). 

After probing with a MUC5AC mAb distinct bands appeared in both the untreated 

OE19 lysate and the OE19 lysate treated under non-denaturing reaction conditions, 

under non-reducing western blotting conditions. Distinct bands were observed in the 

denaturing deglycosylated sample, indicating that the glycosylation was successful. 

However, these bands were also observed in the untreated sample and therefore 

these distinct bands were unlikely to be a product of the deglycosylation steps taken. 

Non-distinct smears could also still be seen at the top of the blot. The absence of any 

signal including background noise on the non-reducing denaturing sample and the 

lysate and non-denaturing samples run under reducing conditions was likely due to 

a transferring issue. Under reducing conditions, the majority of the denaturing 

sample lane could still be seen and the absence of any signal shows that the 
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deglycosylation was not successful. Overall, experiments to improve the detection of 

MUC5AC by deglycosylation were not successful. 
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Figure 23: MUC5AC deglycosylation using PNGase F.  

OE19 lysates were subjected to either denaturing or non-denaturing 
deglycosylation with PNGase F. Deglycosylated samples were run on 8% 
acrylamide gels and analysed by western blotting with a MUC5AC mAb. Distinct 
bands appeared in the lysate and non-denaturing non-reducing lanes but were 
absent from all other lanes. L = untreated lysate, ND = non-denaturing 
deglycosylated lysate, D = denaturing deglycosylated lysate. 
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3.9b Alcian Blue staining of mucins 

Alcian Blue is a polyvalent basic dye used to stain acidic polysaccharides and has 

widely been used as a stain for mucins (Steedman, 1950). Use of the Alcian Blue stain 

in SDS-PAGE applications has previously been demonstrated as a method for 

visualising mucins separated on a gel (Cowman et al., 1984).  It was therefore decided 

to test this visualisation method on OE19 and OE33 lysates. 

OE19 and OE33 lysates were separated by 8% acrylamide SDS-PAGE, as described 

previously, followed by staining in 0.5% Alcian Blue plus 2% aqueous acetic acid for 

45 minutes. Gels were then destained in 2% aqueous acetic acid for 15 minutes and 

an image of the gel was taken with a standard office scanner (Figure 24). It could be 

argued that the Alcian Blue stain was localised more towards the top of the gel in 

lanes OE19 and OE33 lysates were loaded – the location mucins have previously been 

observed. However, nothing more than diffuse non-specific staining was achieved in 

this and subsequent experiments. 

Although through mass spectrometry analysis glycoproteins were detected in the 

OE19 cell line, if the experiment was to be repeated again it would benefit from the 

inclusion of a cell line with a high mucin content, or even a purified glycan, to serve 

as a positive control. 
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Figure 24: OE19 and OE33 lysates separated by SDS-PAGE and stained with 

Alcian Blue. 
Duplicate OE19 and OE33 lysates were run on an 8% acrylamide gel and then stained for 
acidic polysaccharides with 0.5% Alcian Blue in 2% aqueous acetic acid. Alcian Blue stain 
did not stain specific proteins in the gel. Staining at the top of the gel could be due to the 
presence of mucins, however it is very non-specific.  
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3.9c Partial trypsinisation of mucins 

Another method used to attempt to visualise MUC5AC was limited proteolysis 

through limited trypsin digestion. Trypsin is a serine protease which can be applied 

to cell lysates to digest the proteins into smaller peptide fragments (Dias-Gunasekara 

et al., 2006; Magnuson et al., 2005). As traditional western blotting is optimized for 

proteins in the 20-200 kDa range, this method can be applied to large proteins such 

as mucins, fragmenting them into peptides more easily detectable by western 

blotting analysis. 

To test partial trypsinisation on OE19 lysates, trypsin concentrations of 0, 0.25, 1.25 

and 2.5 µg/mL were used. After a 30-minute incubation digestion was terminated 

through the addition of soybean trypsin inhibitor (SBTI). Lysates were run on an 8% 

acrylamide gel and analysed by reducing western blotting. Probing the membrane 

with a MUC5AC mAb resulted in no signal being detected (data not shown). The 

membrane was then re-probed with a PDI pAb to test for trypsinisation (Figure 25). 

It is expected that trypsin would reduce the size of the 60 kDa band of PDI and 

produce new bands at lower molecular weights in the 35-45 kDa range (Wang et al., 

2010). When probing with a PDI pAb no additional bands were observed at lower 

molecular weights. The only difference observed was in the 2.5 µg/mL lane where 

the band was reduced in size, however this band remained defined in the 60 kDa 

region. As an 8% acrylamide gel was used, it is possible that some PDI fragments may 

have migrated off the bottom of the gel and are therefore not visible. From these 

experiments we were not able to determine whether or not trypsinisation was 

successful, but due to time pressures we were forced to move on. 
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Figure 25: Limited proteolysis of OE19 lysates through partial trypsinisation. 

OE19 lysates were subjected to limited proteolysis through the addition of varying 
concentrations of trypsin to digest samples. Lysates were separated by SDS-PAGE and 
western blotting and initially probed with a MUC5AC mAb. When no signal appeared, the 
membrane was re-probed with a PDI pAb. PDI bands did not show the expected 
fragmentation expected after trypsinisation. 
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3.10 In vivo AGR2-PrdxIV interaction testing using mouse stomach 

tissue 

The OE19 cell line has provided a convenient cell culture model to test the 

interactions AGR2 makes with other proteins and has revealed multiple AGR2 

interactions for follow up. However, an immortalised cell line does not replicate the 

complex environment of a tissue. Therefore, to provide further evidence to support 

the claim that AGR2 interacts with PrdxIV, and to test this claim in an in vivo system, 

a mouse model was chosen. Mouse stomach tissue was chosen to test this 

interaction as AGR2 and PrdxIV are both known to be expressed in stomach tissue. 

Male mice aged 8-12 weeks were sacrificed in accordance with the Animals (Scientific 

Procedures) Act (1986) by trained personnel in the Life Sciences Support Unit at 

Durham University. After removal from the body of the mouse, the stomach was cut 

into 4 similarly sized pieces and thoroughly cleaned in PBS. These stomach sections 

were treated with or without diamide and with or without NEM creating four 

separate treatment conditions. After treatment cells were scraped into PBS, pelleted 

and transferring to lysis buffer (with or without NEM). Lysates were analysed by 

western blotting with an AGR2 mAb and then subsequently re-probed with a β-actin 

mAb (Figure 25). OE19 lysates were run as a positive control for AGR2. 

Clear AGR2 bands were detected in two of the four mouse stomach lysates 

(+diamide, +NEM and -diamide, -NEM) and a faint band appeared in one of the other 

lanes (+diamide, -NEM), although this may have been due to sample over-spill. 

Reprobing for β-actin revealed there was limited protein in the two lanes lacking 

AGR2 signal (-diamide, +NEM and +diamide, -NEM). Lower molecular weight bands 

in the OE19 lanes of the β-actin reprobe were assumed to be persisting AGR2 signal. 

A positive AGR2 signal in two of the lanes demonstrated that lysates contained AGR2 

and therefore it was decided to immunoprecipitate these lysates with an AGR2 mAb 

and attempt to detect PrdxIV within that AGR2 immunoprecipitate. 

Immunoprecipitation was carried out as previously described for OE19 lysates using 

the EPR3278 AGR2 mAb and a western blot probed with a PrdxIV mAb was used to 

detect a PrdxIV signal. When probing back with a PrdxIV mAb, background signal on 

the blot obscured any evidence of a signal in the immunoprecipitated lanes (data not 

shown). The lack of trapped complexes in the non-reducing stomach samples 

suggested that the procedure for isolating AGR2 complexes from tissues requires 

further optimisation. Taken together with the limited protein recovery that was 

achieved after tissue lysis, it was decided to focus on expression studies of AGR2 in 

cancer tissues. 
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Figure 26: AGR2 expression in lysates recovered from mouse stomach tissue. 
Stomach tissue was treated with and without diamide and NEM and lysed. Lysates were 
run under reducing and non-reducing conditions and probed for both AGR2 (A) and β-
actin (B). OE19 lysates were run alongside mouse lysates as a positive control. Bands 
appearing in the +/+ and -/- lanes (A) show AGR2 is present in the mouse stomach. 
Reprobing for β-actin showed limited protein in -/+ and +/- lanes as well as AGR2 signal 
persisting (B). 
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3.11 Immunohistochemical analysis of oesophageal tissue sections 

As explained previously the transition from normal oesophageal tissue to Barrett’s 

oesophagus and eventually oesophageal adenocarcinoma is accompanied by 

changes in tissue morphology and mucin expression. Previous histological studies of 

Barrett’s oesophagus and normal oesophageal tissue provided the basis for 

differentiating between the two tissue types (Hao et al., 2006). Normal oesophageal 

tissue is characterised as a simple squamous epithelium, homogeneous in nature and 

lacking glandular structures, whereas metaplasia induced in Barrett’s oesophagus 

results in histology resembling that of the stomach, with glandular structures 

present. We sought to demonstrate this transition through staining of various 

paraffinized tissue sections, including both immunohistochemical staining for AGR2 

as well as Alcian Blue staining of mucins. The following four different tissue sections 

were chosen: normal oesophagus, Barrett’s oesophagus, oesophageal junction 

tumour and oesophageal tumour. These provide a range of cancer progression to 

test for both AGR2 and mucin expression. 

Paraffinized sections on slides were provided by YKS Viswanath and Julie Walker, 

James Cook University Hospital, Middlesbrough. Slides were deparaffinized with 

xylene and ethanol, hydrated and either stained for AGR2 using the D9V2F AGR2 mAb 

through the DAB immunohistochemical staining method or stained for mucins with 

Alcian Blue.  

AGR2 expression can be clearly seen in Barrett’s tissue, OG junction tumour and 

oesophageal tumour tissue, visible as a brown stain (Figures 27 & 28). This staining is 

entirely absent from the normal oesophagus demonstrating the strong induction of 

AGR2 derepression in malignant and pre-malignant oesophageal tissue.  

Similar to the distribution of AGR2 staining, mucin staining, visible as a blue 

colouration, was present in all tissue sections except the normal oesophagus (Figure 

29 & 30). Alcian Blue staining was highly localised to clusters of secretory granules of 

varying size and shape, with little to no specific staining in the surrounding tissue. 

When comparing these Alcian Blue stained clusters to the same clusters on slides 

stained for AGR2 it is clear that they also contain AGR2 expression.  
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Figure 27: Immunohistochemical staining of AGR2 in normal oesophagus and Barrett’s oesophagus tissue sections. 
Human tissue sections from normal oesophagus (OE) and Barrett’s oesophagus (BO) were immunohistochemically stained for AGR2 using the D9V2F AGR2 
mAb (brown). Tissue was also stained with haematoxylin for cell nuclei. Controls were performed without the D9V2F AGR2 mAb. Barrett’s oesophagus 
tissue sections show strong brown AGR2 staining (black arrow) representing strong AGR2 expression, which is entirely absent in normal oesophagus. Black 
squares on x4 magnification show areas magnified to x10. Scale bars represent 1 mm. 
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Figure 28: Immunohistochemical staining of AGR2 in oesophageal junction tumour and oesophageal tumour tissue sections. 
Human tissue sections from oesophageal junction tumour (OJ) and oesophageal tumour (OT) were immunohistochemically stained for AGR2 using the 
D9V2F AGR2 mAb (brown). Tissue was also stained with haematoxylin for cell nuclei. Controls were performed without the D9V2F AGR2 mAb. Both tissue 
types show strong brown AGR2 staining (black arrows) representing strong AGR2 expression. Black squares on x4 magnification show areas magnified to 
x10. Scale bars represent 1 mm. 
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Figure 29: Alcian Blue staining of mucins in normal oesophagus and Barrett’s oesophagus tissue sections. 
Human tissue sections from normal oesophagus (OE) and Barrett’s oesophagus (BO) were stained for mucin with Alcian Blue. Tissue was also stained with 
haematoxylin for cell nuclei. Highly localised Alcian Blue staining can be seen in glandular clusters in BO but is entirely absent in OE sections. Control 
sections displayed are Alcian Blue negative, but DAB stained for AGR2 as in Figures 27 & 28. Glandular structures in BO display both Alcian Blue staining 
as well as DAB-AGR2 staining showing similarities in expression localisation. Scale bars represent 1 mm. 
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Figure 30: Alcian Blue staining of mucins in oesophageal tumour tissue sections. 
Human tissue sections from oesophageal tumour (OT) were stained for mucin with Alcian Blue. Tissue was also stained with haematoxylin for cell nuclei. 
Similarly to Barrett’s oesophagus in Figure 29, Alcian Blue staining can be seen in glandular clusters in oesophageal tumour tissues sections. Control 
oesophageal tumour sections displayed are Alcian Blue negative, but DAB stained for AGR2 as in Figures 27 & 28. Again, similar to BO in figure 29, glandular 
structures in OT display both Alcian Blue staining and DAB-AGR2 staining (brown) showing similarities in expression localisation. Scale bars represent 1 
mm. 
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3.12 ER chaperone expression in OE19 vs OE33 cells 

The OE19 oesophageal adenocarcinoma cell line was identified as pathological stage 

III (UICC) and showed moderate differentiation while the OE33 oesophageal 

adenocarcinoma cell line was identified as pathological stage IIA (UICC) and showed 

poor differentiation. This difference in cancer progression between these two cell 

lines allows the opportunity to study their differences and from that infer changes 

that may be brought about by cancer progression in human tissue.  

Expression levels of a variety of ER chaperones were tested in both OE19 and OE33 

cell lines by SDS-PAGE and western blotting (Figure 31). These included AGR2, PrdxIV, 

ERp29, PDI and calnexin, with β-actin used as a loading control. Quantification of 

western blotting signals was performed with ImageJ with densities being calculated 

relative to the cell line’s β-actin density. These relative densities (OE19/OE33) can be 

seen in Table 5. AGR2 expression was significantly higher in OE19 cells. Looking at the 

western blotting results it may be possible there was over-spill from the OE19 lane 

into the OE33 lane, causing an increase in the OE33 signal. It also appears that the 

AGR2 band in OE19 was oversaturated and will therefore likely give an 

underestimation of AGR2 expression. Even considering this it is clear OE19 cells 

express AGR2 much stronger than OE33 cells. 

PrdxIV levels were almost two-fold higher in OE19 cells and ERp29 saw an almost 

50% increase when compared to OE33 cells. As a further progressed cancer cell line, 

OE19 may be overexpressing ER chaperones to keep up with the extra demand from 

a highly proliferating cell, which may be why we see increased levels of PrdxIV and 

ERp29. PDI levels were slightly but not significantly lower in OE19 and calnexin levels 

in OE19 were less than two thirds that of OE33 cells. As stated earlier it would be 

expected that the OE19 further progressed cancer cell line would have higher 

expression of ER chaperones when compared to the less progressed OE33 cancer cell 

line. From this data this appears not to be the case with PDI and calnexin. Calnexin 

does appear to have much lower expression in OE19 cells, however this may be due 

to the unusual shape of the band detected. 

Overall it appears that chaperone expression is either increased in OE19 cells when 

compared to OE33 cells or the expression levels are relatively similar. This data serves 

to illustrate differences between these two cell lines, however, this was only one 

experiment, and only after repeating it multiple times would any significant 

conclusions about relative protein expression levels be deducible between these two 

cell lines. 
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Figure 31: Expression of ER chaperones in OE19 vs OE33 cells. 
Cell lysates made from OE19 and OE33 cells were analysed by SDS-PAGE and western 
blotting for the ER chaperones AGR2, PrdxIV, ERp29, PDI and calnexin. β-actin was used 
as a loading control. 

Table 5: Calculated relative densities of ER chaperone expression OE19 vs OE33 cells. 
Western blotting results show in Figure 31 were analysed and quantified using ImageJ 
and relative densities between OE19 and OE33 cells were calculated. ER chaperones 
expression was similar between the two cell lines with only AGR2 showing much greater 
expression in OE19 cells. 
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4 Discussion 

4.1 The intracellular localisation of AGR2 

The presence of a signal sequence in the primary sequence of AGR2 (Figure 2 from 

introduction) dictates that it is translated into the ER lumen; the question of what 

happens to it after that is still up for debate. A sophisticated system of protein 

retrieval from the cis-Golgi compartment maintains levels of specific ER-resident 

proteins such as the chaperones within the ER. This is mediated by the C-terminal 

target peptide sequence KDEL, which is recognised by KDEL receptors in the cis-Golgi, 

after which retrograde transport is initiated and proteins are transported back to the 

ER lumen (Lewis and Pelham, 1990). AGR2 contains a non-optimal KTEL ER 

localisation signal which may allow localisation outside of the ER. 

Immunofluorescence experiments performed in this study focused on OE19 

oesophageal adenocarcinoma cells stained for both PDI and AGR2. PDI is a known 

ER-resident protein and therefore allowed visualisation of the ER in these cells. AGR2 

staining within these cells showed a similar perinuclear profile of localisation to PDI 

supporting the claim that AGR2 is retained within the ER (Figures 5-8). A similar 

profile of immunofluorescence AGR2 expression was noted by (Dong et al., 2011) 

although they did not use an ER marker for comparison. Another experiment 

performed for this thesis involved co-staining of OE19 cells for both AGR2 and PrdxIV. 

Both proteins showed an almost identical pattern of localisation, which was again 

perinuclear. As PrdxIV is known to be an ER-resident protein (Tavender et al., 2008), 

this supports the claim that AGR2 is localised to the ER in OE19 cells. The ER 

localisation of AGR2 has been shown in other studies (Gupta et al., 2012; Higa et al., 

2011; Park et al., 2009; Zhao et al., 2010) and therefore this observation is consistent 

with the literature. The question of whether AGR2 also leaves the ER to perform 

some of its functions remains possible. To answer this question higher resolution 

microscopy would be required.  

4.2 AGR2 forms disulphide dependent complexes 

AGR2 is a small member of the PDI family of proteins containing only one 

thioredoxin-like domain and one “active site” CXXS motif. Lacking the second 

cysteine residue, this motif does not allow for catalysed oxidase activity, as seen in 

PDI (Nørgaard and Winther, 2001). The presence of only one cysteine residue 

prompts the question of how this cysteine is involved in the interactions AGR2 makes 

with clients, co-chaperones and other interacting proteins. Through this cysteine 

residue, AGR2 can form disulphide bonds with itself, creating homodimers (Patel et 

al., 2013), as well as with client proteins, including MUC2 (Clarke et al., 2016).  
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The oxidant diamide was chosen to induce a change in the redox potential of the cells 

and promote disulphide bond formation. Diamide was initially discovered as an 

oxidiser of the intracellular pool of reduced glutathione (GSH), converting it to the 

glutathione disulphide (GSSG) (Kosower et al., 1969). As GSH reduces disulphide 

bonds, depletion of GSH promotes disulphide bond formation. Depletion of this GSH 

pool has been shown to result in cross-linking of certain proteins, such as PDI to IgM 

in lymphocytes (Roth and Pierce, 1987). Another early study showed that diamide 

may not be entirely specific to GSH and could also oxidise protein-SH groups resulting 

in non-specific modifications (Harris and Biaglow, 1972). These are all points to 

consider when using diamide to monitor protein-protein interactions as it moves 

cells away from physiological conditions. Other effects of diamide have also been 

noted, including depressed DNA synthesis and respiration (Harris and Biaglow, 1972). 

However, changes in protein expression due to these effects will not be noticeable 

for the short treatment time scales used in this thesis. 

Through the use of diamide, in combination with the chemical NEM to alkylate free 

thiol groups and prevent disulphide bond reshuffling, it was possible to trap AGR2 

complexes, visible through non-reducing western blotting (Figure 9). Induction of 

AGR2 complexes was rapid, occurring after only 5 minutes of treatment with 

diamide. Multiple bands were visible in the diamide treated non-reducing lanes in 

addition to smearing at the higher molecular weights representing a variety of AGR2 

complexes. A distinct band appeared at ~34 kDa in the diamide treated non-reducing 

lanes which, due to its molecular weight, was assumed to be AGR2 in its homodimeric 

form, which is in line with the literature (Ryu et al., 2013). Determining the nature of 

the other complexes observed would require more advanced experimental 

techniques and was addressed by the mass spectrometry experiments described in 

section 3.4. A diamide recovery experiment was also performed to investigate the 

stability of these AGR2 complexes (Figure 9B). In the recovery experiments the 

majority of the induced AGR2 complexes persisted for 20 minutes with only one band 

clearly disappearing after recovery. Other studies have shown recovery of diamide 

induced loss of protein-SH groups occurs after just 15 minutes (Harris and Biaglow, 

1972), in contrast to the results in this study. This may be due to differences in 

diamide concentrations used, the alkylation strategy, the cell type, or the cell-specific 

client range of AGR2 compared to other proteins. 

Side by side comparison of reducing and non-reducing conditions clearly showed that 

the AGR2 complexes in OE19 cells are redox (disulphide) dependent as they are 

entirely absent under reducing conditions. As these AGR2 complexes are only visible 

under non-reducing condition they are very likely to occur through the single cysteine 

residue on AGR2. 
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4.3 The effect of ER stress on AGR2 complex formation 

Previous experiments by Simpson and Benham (unpublished data) showed DTT 

modulated AGR2 complex formation. As DTT induces ER stress, one possibility was 

that these complexes may be induced by ER stress. 

To test whether redox independent, ER stress-induced changes in AGR2 dependent 

complex formation could be detected, OE19 cells were treated with thapsigargin as 

well as a bile acid cocktail in low pH media. From western blotting results, 

thapsigargin treated samples did not show any sign of complex formation when 

probing for AGR2 (Figure 10A). Low pH media alone did not have an effect on AGR2 

complexes (Figure 11C). When treating OE19 cells with low pH media supplemented 

with bile acids (Figure 11D), some additional bands were observed, although 

background signal partially obscured the results and bands also appeared in the 

reducing lanes. Overall these experiments indicated that ER stress, bile acids and pH 

did not affect AGR2 complex formation. This would suggest that the AGR2 complexes 

observed through non-reducing western blotting are not dependent on the redox 

state of the ER but not on ER stress. 

It is, however, possible that prolonged ER stress may induce changes in gene 

expression, not visible in these experiments due to the short time scales. The 

chaperone BiP is one such protein that is induced after ER stress. As AGR2 has been 

shown to interact with BiP, it is possible that the AGR2-BiP interaction could be 

induced by elevated levels of the BiP protein resulting from ER stress. However, a 

series of experiments would need to be carried out over longer time scales to verify 

this. 

4.4 AGR2 associates with mucins and other ER chaperones 

Although it is well known that AGR2 plays an important role in a variety of different 

types of cancer and that it is required for correct synthesis and secretion of multiple 

mucin isoforms, the exact mechanism through which AGR2 performs these functions 

remains elusive. Previous interactions studies involving AGR2 have involved the use 

of yeast two-hybrid screens to detect potential novel interacting proteins. Proteins 

discovered through this technique include the DNA-binding protein Reptin (Maslon 

et al., 2010) along with the metastasis-associated GPI-anchored C4.4a protein and 

extracellular alpha-dystroglycan (DAG-1) (Fletcher et al., 2003). Due to the nature of 

these interacting proteins, these interactions are assumed to be involved in AGR2’s 

oncogenic functions. However, the yeast two-hybrid approach does not take account 

of the topological issue imposed by the ER membrane. 
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The mechanisms though which AGR2 carries out its physiological function are less 

well known. Through knockout studies in mice, AGR2 has been shown to be essential 

for MUC2 synthesis and co-immunoprecipitation experiments have shown MUC2 is 

retained after AGR2 immunoprecipitation. Removal of the single cysteine residue in 

AGR2 prevents the interaction between AGR2 and MUC2 (Park et al., 2009). Further 

knockout studies showed that loss of AGR2 also resulted in a greater than 50% 

reduction in the levels of airway mucins MUC5AC and MUC5B (Schroeder et al., 

2012). AGR2 has also been shown to associate with BiP through its dimeric form (Ryu 

et al., 2013). Although AGR2 has widely been described as an important part of the 

mucin synthesis machinery, the mechanism through which AGR2 is involved in mucin 

production are largely unknown. 

Here we have demonstrated a trapping and immunoprecipitation approach for 

detecting AGR2 interacting proteins. The oxidising agent diamide was used to induce 

oxidising conditions and promote disulphide bond formation, and the alkylating 

agent NEM was used to alkylate free thiol groups on proteins and prevent disulphide 

bonds reshuffling. Additionally, cells were lysed using the non-ionic detergent Triton 

X-100, which was chosen as it is considered non-denaturing and generally less 

destructive to protein interactions when compared to harsher detergents. Through 

these conditions we have been able to preserve interactions of AGR2 and isolate 

AGR2 with its interacting partners. 

Mass spectrometry analysis revealed both mucins MUC5AC and MUC5B were co-

immunoprecipitated with AGR2 in all immunoprecipitated samples (Tables 1-4), 

consistent with the literature (Schroeder et al., 2012). Consistently high peptide 

counts for both of these mucin isoforms suggests that they are the primary clients 

for AGR2 in OE19 cells. Proteomic and western blotting analysis also revealed 

multiple ER chaperones were retained after AGR2 IP including: ERp29, ERp44, ERp57, 

PrdxIV, CNX, Ero1α and P5, as well as the previously known interactor BiP. The lectins 

GAL4 and PAUF/ZG16B were also detected in the MS data. Lectins bind to 

carbohydrates like those found on the highly glycosylated mucins and therefore hold 

the potential to be involved in AGR2/mucin interactions. However, low confidence in 

the MS results due to low peptide counts and negative results from immunoblotting 

of AGR2 immunoprecipitates meant that an interaction between AGR2 and GAL4 or 

ZG16B could not be confirmed. 

Of the two mucin isoforms identified in the MS data MUC5AC was chosen for further 

analysis due to it having higher overall peptide counts. The presence of MUC5AC in 

the AGR2 immunoprecipitate was confirmed through western blotting of an AGR2 

immunoprecipitation with a MUC5AC mAb. These results suggest that AGR2, in OE19 

cells, is acting as a chaperone in the quality control of MUC5AC. The presence of 

MUC5AC in OE19 cells also suggests that this cell line has undergone the transition 
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similar to that found in Barrett’s oesophagus, as Barrett’s oesophagus is known to 

express MUC5AC (Arul et al., 2000). It is worth noting that the association between 

AGR2 and MUC5AC could be due to a direct interaction, or an indirect interaction 

with a third protein with which both AGR2 and MUC5AC interact. The high peptide 

counts obtained make the latter explanation unlikely, but this possibility could be 

resolved by performing re-immunoprecipitation studies. AGR2 may be part of a 

mucin folding complex, which has yet to be fully elucidated. 

In both AGR2 immunoprecipitates from diamide treated OE19 cells, ERp29 was 

detected by mass spectrometry (Tables 2 & 4). ERp29 is a small ubiquitous ER-

resident chaperone thought to play an important role in secretion. It is a component 

of the thyroglobulin folding complex; thyroglobulin being the major secretory 

product of the thyroid epithelial cells (Baryshev et al., 2006). ERp29 is not considered 

a protein disulphide isomerase as it does not contain an a domain and hence lacks 

the traditional thioredoxin motif found in PDI family members. Surprisingly, ERp29 

was found to be retained after AGR2 immunoprecipitation only in samples treated 

with diamide, suggesting its presence was due to induced disulphide bonds or a 

change in the redox poise of the ER. It is possible that ERp29 co-associates with 

another protein retained in the IP, and that this protein has a diamide-induced 

interaction with AGR2. 

Verification of MS results revealed several ER chaperones were retained after AGR2 

immunoprecipitation and detectable by western blotting, supporting an interaction 

with AGR2. These included: ERp44, PrdxIV and CNX. 

ERp44 is a chaperone protein preferentially binding client proteins in the acidic 

environment of the cis Golgi (Vavassori et al., 2013). It is known to forms mixed 

disulphide bonds with Ero1α, Ero1β and folding intermediates, including partially 

unfolded Ig subunits (Anelli et al., 2002, 2003). Through experiments with a truncated 

ribophorin mutant (Ri332) lacking cysteine residues, ERp44 has been shown to 

interact through formation of inter-chain disulphide bonds (Anelli et al., 2002). MS 

data from our study show ERp44 was only found in a diamide treated MS sample, 

suggesting that it was retained through interactions involving disulphide bonds, 

which is in line with the literature. ERp44 has also been shown to bind PrdxIV and 

Ero1α, retaining them in the ER as they lack the traditional KDEL ER localisation signal 

(Kakihana et al., 2013). As AGR2 does not contain a KDEL sequence, instead having a 

non-optimal KTEL ER localisation signal, it is possible that ERp44 also assists in 

retaining AGR2 in the ER compartments, which may be why we see it being retained 

after AGR2 immunoprecipitation. 

PrdxIV, was also detected after AGR2 immunoprecipitation (Table 4 & Figure 19). 

PrdxIV is the ER-resident peroxiredoxin enzyme in humans and is capable of 



88 
 

metabolising hydrogen peroxide produced by Ero1α, oxidising itself and in turn 

allowing transfer of a disulphide bond to PDI or other PDI family members. PrdxIV 

was detected in our MS data with relatively high confidence – a peptide count of 7 

and an unused value of 10.37, although only in the diamide treated sample of the 

second round. Validation of this result through western blotting of AGR2 

immunoprecipitates resulted in a clear PrdxIV signal detected, but again only in the 

diamide treated sample. This suggests the interaction is redox dependent. 

A concern when using an immortalised cell line to monitor protein-protein 

interactions is that interactions occurring in the immortalised cell line may not occur 

in tissues. To address this concern the PrdxIV and AGR2 interaction was tested in 

mouse stomach tissue as it is known to express both proteins. Unfortunately, testing 

this interaction in vivo was technically unsuccessful as the protein recovery method 

from mouse stomach tissue did not provide enough protein for the purposes of 

immunoprecipitation. This may have been partially due to stomach tissue not 

expressing AGR2 to the same degree as the OE19 adenocarcinoma cell line. Co-

localisation immunofluorescence experiments were performed on OE19 cells to 

determine any overlap in intracellular localisation of these two proteins. When co-

staining for both AGR2 and PrdxIV, an almost identical pattern of localisation 

occurred within OE19 cells, providing support to the claim that an interaction occurs 

between AGR2 and PrdxIV (Figure 22). 

CNX was also successfully detected through western blotting of AGR2 

immunoprecipitates (Figure 20). As a lectin chaperone known to assist in 

glycoprotein folding, it is possible that calnexin may play a role in the interactions 

and folding of mucins alongside AGR2. Previous studies have shown CNX does 

support mucin synthesis. Experiments in human colonic adenocarcinoma cells 

demonstrated CNX and the homologous lectin calreticulin (CRT) co-

immunoprecipitated with MUC2, although no interaction was detected with 

MUC5AC for either of these proteins (McCool et al., 1999). As MUC5B was also 

detected in our MS analysis, it is possible that CNX could be interacting with MUC5B. 

Together, CNX and CRT cooperate in what is known as the CNX/CRT cycle of 

glycoprotein folding along with a range of other co-chaperones. One of these co-

chaperones is ERp57, which was also detected in the MS data although could not be 

verified by western blotting due to technical issues. A direct interaction between 

ERp57/CNX and AGR2, if confirmed by immunoprecipitation, could imply that AGR2 

is involved in the calnexin cycle to assist the folding of MUC5AC. 

In summary, detection of proteins through MS analysis of diamide treated AGR2 

immunoprecipitated OE19 lysates provides an unbiased approach for identifying 

AGR2 interacting proteins. Several new interacting partners for AGR2 have been 

identified, including ERp44, PrdxIV, and CNX, as well as several others that require 
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confirmation, including ERp29, ERp57, Ero1α and P5. A diagram summarizing these 

new AGR2 interacting partners is displayed in Figure 32. Here we have taken the first 

steps towards identifying novel players involved in AGR2 function and mucin quality 

control. 

 

 

 

 

 

Figure 32: Summary of interacting partners for AGR2. 

A diagram summarizing the major known interacting partners for AGR2 including ones 

discovered through this thesis. Straight lines indicate binding interactions (whether direct 

or indirect), arrows indicate upregulation of activity and flat ended lines indicate 

inhibition of activity. ERp29, ERp44, ERp57, PrdxIV, Ero1α, P5 and Calnexin were all 

detected through IP/MS during this investigation, and of those, ERp44, PrdxIV and 

CNX were confirmed through western blotting using antibodies specific to these 

new proteins. 
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4.5 Immunohistochemical and Alcian Blue analysis of oesophageal 

tissue sections 

Oesophageal tissue, when transitioning into Barrett’s oesophagus or oesophageal 

adenocarcinoma, exhibits changes in mucin expression along with derepression of 

AGR2 (Hao et al., 2006). Oesophageal tissue sections including normal oesophagus, 

Barrett’s oesophagus, oesophageal junction tumour and oesophageal tumour were 

chosen to represent various stages of oesophageal tumour development and 

analysed for AGR2 and mucin expression. Staining for AGR2 with the AGR2 mAb 

D9V2F revealed strong AGR2 expression in Barrett’s oesophagus, oesophageal 

junction tumour and oesophageal tumour tissues, but little to no expression in 

normal oesophageal tissue (Figure 27 & 28). These results are consistent with the 

findings from Hao et al., (2006) and morphologies of AGR2 expressing regions of the 

tissue sections show similarities to immunohistochemical images published by Dong 

et al., (2011).  

Staining for mucins with Alcian Blue dye revealed large glandular structures in the 

tissue sections that appeared in all tissue types excluding normal oesophagus 

(Figures 29 & 30). Staining was very specific to these structures and did not occur to 

the same extent elsewhere in the tissue. These structures show similarities to Alcian 

Blue stained oesophageal gland ducts from patients with Barrett’s oesophagus, 

observed in a study by Johnson et al., (2015). However, this study and others show 

Alcian Blue staining of Barrett’s oesophagus with more even distribution than that 

observed in this project (Cabibi et al., 2014; Johnson et al., 2015; Voltaggio et al., 

2011). This may be due to tissue samples that only express mucin in highly localised 

structures. When comparing these structures in Alcian Blue stained tissue with AGR2 

stained tissue it was clear that these cells were also expressing AGR2. This 

overlapping localisation of AGR2 and mucins supports the co-immunoprecipitation 

data and is consistent with the assertion that AGR2 is a chaperone with mucin family 

proteins as its primary clients (Park et al., 2009; Schroeder et al., 2012). 

4.6 ER chaperone expression in OE19 vs OE33 cells 

There is increasing evidence that chaperone proteins play a pivotal role in 

maintaining cellular homeostasis in cancer cells. Gene expression microarray studies 

have shown increased expression of PDI in a variety of cancer types when compared 

to normal tissue (Xu et al., 2014), and cancer stem/progenitor cells from the bone 

marrow of breast cancer patients have shown overexpression of PDI, BiP and Grp94, 

demonstrating activation of the unfolded protein response (UPR) (Bartkowiak et al., 

2010). The UPR has been implicated in hypoxia, a common form of cellular stress 

experienced by growing tumours (Wouters and Koritzinsky, 2008), and both the PERK 
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arm (Bi et al., 2005) and the XBP1 arm (Romero-Ramirez et al., 2004) of the UPR have 

been implicated in cell survival and tumour growth. 

Considering the role ER chaperones have been shown to play in cancer cell 

progression, the expression levels of different ER chaperones were tested in both 

OE19 and OE33 cells. The OE19 cell line was derived from an oesophageal tumour 

classed as pathological stage III (UICC) while the OE33 cell line was derived from a 

tumour classed as pathological stage IIA (UICC). Therefore, by investigating 

expression levels between these two cell lines it was possible to observe differences 

in expression levels between two different stages in tumour progression (Figure 31 

& Table 5). Most notable was the difference in AGR2 expression. OE19 cells strongly 

express AGR2 as shown in the earlier sections of this thesis but was almost entirely 

absent in OE33 cells. This expression profile may have been due to the poor 

differentiation of the OE33 cell line as AGR2 expression has been shown to occur in 

the vast majority of oesophageal adenocarcinomas (DiMaio et al., 2012). Expression 

levels of PrdxIV and ERp29 showed slight increases in expression in the OE19 cell line, 

with calnexin showing decreased expression and PDI showing little difference, when 

compared to the OE33 cell line. Overall a slight increase in ER chaperone expression 

was observed in the further progressed OE19 cancer cell line, which is in line with the 

literature, however, these experiments would need to be repeated before any 

significant changes could be claimed. 

4.7 Future experiments 

Experiments presented in this thesis have made considerable progress towards 

identifying AGR2 interacting proteins, the nature of these interactions and 

identification of the players involved in mucin synthesis in oesophageal 

adenocarcinoma. However, due to its short time scale, there are still many 

unanswered questions.  

Early experiments in this thesis demonstrated AGR2 can form disulphide dependent 

complexes (Figure 9) and subsequently it was shown that AGR2 interacting partners 

could be identified through immunoprecipitation and mass spectrometry analysis 

(Tables 1-4). As the same conditions were used to trap these complexes in both sets 

of experiments, it is assumed that a large portion of the interactions seen were 

disulphide dependent. One possible way of determining whether or not these 

interactions were disulphide dependent would involve removal of the single cysteine 

residue in AGR2. This could be done by inserting a coding sequence representing 

AGR2, with the cysteine residue replaced with a serine, into an expression vector. 

This expression vector would then need to be transfected into OE19 cell with wild-

type AGR2 expression inhibited, likely through shRNA silencing. Immunoprecipitation 

and mass spectrometry experiments, as described in this thesis, carried out with a 
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cell line expressing an AGR2 protein lacking cysteine residues would reveal whether 

these interactions are disulphide dependent. Any proteins retained after 

immunoprecipitation with this cell line would be assumed to associate with AGR2 

independently of direct disulphide bonds with AGR2. 

In experiments in this thesis, mucin visualisation through western blotting proved 

difficult, as demonstrated by the multiple attempts to improve mucin visualisation 

(Figures 23-25). This was due to the large size of the mucin proteins and their variable 

molecular weights caused by varying patterns of glycosylation. Western blotting is 

optimised for proteins between 20-200 kDa and mucins typically migrate well above 

this range. One method not attempted here would be to use gradient gels for SDS-

PAGE separation. Gradient gels are harder to cast that traditional single 

concentration gels but provide much better separation for a wider range of protein 

molecular weights. These gels typically range from 4% to 20%, allowing larger 

proteins such as mucins to travel further into the gel as the initial acrylamide 

percentage is lower. Gradient gels may be an alternative method of visualising 

mucins and might allow for further experiments to be performed investigating 

mucins, such as determining expression levels between OE19 and OE33 cells to 

investigate the correlation between AGR2 expression and mucin expression. 

Although ERp44, PrdxIV and CNX were all detected through western blotting of AGR2 

immunoprecipitated lysates, several other proteins detected through mass 

spectrometry analysis were unable to be detected through western blotting. 

Identification of these proteins was hindered as the primary antibody used in 

western blotting would often react with the light and heavy chains of IgG used in 

immunoprecipitation, thus obscuring the signal of the protein of interest. These 

cross-reactivity issue would likely have been mitigated if the two antibodies used 

were raised in different species. For example, immunoprecipitation was carried out 

with an anti-rabbit AGR2 antibody. If western blotting detection of ERp29 was 

attempted with an anti-mouse ERp29 antibody it is possible the IgG light chain at ~25 

kDa would be absent and the ERp29 band at ~29 kDa would be visible. Alternatively, 

2D gel electrophoresis could have been implemented to further separate proteins 

before detection through immunoblotting. 

Another experiment attempted with limited success was investigation into the in vivo 

interaction between AGR2 and PrdxIV, though the use of a mouse model. These 

experiments were halted as protein recovery from mouse stomach sections was 

limited do to their small size. One way around this would be to move to a larger 

animal such as a rat or rabbit. The larger stomach size of these animals would allow 

more protein to be recovered and hopefully allow an interaction to be observed 

between AGR2 and PrdxIV.  
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4.8 Conclusion 

Experiments in this thesis have shown that AGR2 is strongly expressed in the OE19 

oesophageal adenocarcinoma cell line, and that in this cell line it can form disulphide 

bond dependent complexes, visible through non-reducing western blotting. These 

complexes also appear to not be dependent on ER stress. With this knowledge, a 

novel, unbiased trapping and immunoprecipitation approach was implemented, and 

peptide identification by ESI mass spectrometry has revealed a variety of ER-resident 

proteins that associate with AGR2. The mucins MUC5AC and MUC5B have been 

identified as primary clients of AGR2 in the OE19 cell line, and associations with ER 

chaperones including PrdxIV, BiP, calnexin and ERp44 have been demonstrated and 

verified. Immunohistochemical analysis of oesophageal tissue sections has displayed 

the strong induction of AGR2 expression in the progression to Barrett’s oesophagus 

and oesophageal adenocarcinoma and has revealed co-localisation between AGR2 

and mucin secreting glands. Finally, experiments into ER chaperone expression have 

shown differences in expression between two cell lines representing different stages 

of oesophageal adenocarcinoma. 

Identification of these novel AGR2 interactions has provided the basis for elucidation 

of a mucin quality control system within oesophageal adenocarcinoma and highlights 

potential therapeutic targets for AGR2-positive cancers. 
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