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Abstract	

Recent	research	into	play	describes	it	as	a	context	in	which	children	are	not	

constrained	by	goals	external	to	their	activities	(i.e.,	their	activities	are	open-

ended),	and	in	which	children	explore	and	learn	about	their	environment.	Yet	

research	into	children’s	social	learning	often	underemphasises	such	open-ended	

contexts	in	favour	of	close-ended	tasks	in	which	children	may	or	may	not	copy	

specific	strategies	to	achieve	pre-specified	goals.	I	therefore	examined	two	

predictions,	that:	(1)	children’s	copying	behaviour	will	exhibit	differences	

between	close-ended	and	open-ended	tasks,	and	(2)	in	the	open-ended	task,	

children	will	flexibly	combine	microstructural	and	macrostructural	information	

learnt	either	‘socially’	or	‘asocially’.	The	second	prediction	did	not	find	support	

in	the	data:	data	indicated	that	children	given	the	open-ended	task	showed	no	

differences	between	copying	of	microstructure	design	and	copying	of	

macrostructure	design.	However,	the	thesis	presents	results	in	support	of	the	

first	prediction.	Compared	to	the	close-ended	task,	in	which	a	successful	rather	

than	unsuccessful	social	model	increased	children’s	copying	behaviour,	data	did	

not	give	reliable	support	for	the	same	effects	in	the	open-ended	task.	Counter	to	

expectations	drawn	from	literature	using	close-ended	tasks,	data	from	the	open-

ended	task	also	gave	no	support	to	the	hypothesis	that	children	who	encounter	

greater	evidence	of	failure	in	their	own	building	would	rely	more	on	social	

information.	I	suggest	the	explanation	for	these	results	is	that	incentives	for	

instrumental	copying	are	different	when	children	are	given	a	specific	goal	to	

achieve	compared	to	when	they	have	greater	freedom	to	determine	the	aims	of	

their	activities.	This	study	thus	extends	existing	research	by	investigating	an	

ecologically	relevant,	yet	currently	understudied,	context	for	children’s	copying	

behaviour.	
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Chapter	1:	Introduction	

There	is	a	common	problem	in	the	study	of	humans’	evolution,	which	Frans	de	

Waal	describes	in	his	2016	best	seller	(Are	we	smart	enough	to	know	how	smart	

animals	are?):	it	is	obvious	that	humans	have	a	very	different	set	of	capabilities	

to	other	animals,	and	yet	each	of	our	species-wide	capabilities,	when	examined	

closely,	is	arguably	less	exceptional	than	it	appears.	Two	examples	are	the	

acquisition	of	skills	such	as	language	(often	spoken,	sometimes	signed,	and	also	

written),	and	the	use	of	increasingly	complex	and	mechanically	opaque	tools.	

Many	abilities	required	for	language	use,	for	example,	are	now	widely	thought	to	

have	evolutionary	histories	far	deeper	than	Homo	(Fitch	2017;	Seyfarth	&	

Cheney	2016).	There	is	no	single	component	of	language	cognition	which	

researchers	can	agree	makes	the	crucial	difference	to	make	human	language	

different	(e.g.,	Hauser	et	al.	2014).	The	same	is	true	for	the	manipulation	of	

ecological	conditions	through	tool	use	(Kabadayi	&	Osvarth	2017;	Vale	et	al.	

2017a;	Fausto	&	Valentina	2017),	which	is	now	observed	in	various	forms	

across	a	large	array	of	phylogenetically	diverse	animals	(Botting,	van	der	Waal	&	

Rendell	2018).	The	solution	to	this	problem	of	the	source	of	the	‘human	

difference’	is	at	once	obvious:	there	are	no	doubt	countless	small	changes	which	

humans	accumulated	over	their	evolutionary	past,	and	which	probably	

interacted	with	each	other	to	produce	our	current	state	of	affairs	(see	Sterelny	

2012).	This	is	an	unsatisfying	answer	though;	it	amounts	to	stating	that	human	

evolution	is	complex,	and	we	already	suspected	that.	But	embrace	of	the	

piecemeal	approach	to	understanding	human	complexity	(e.g.,	Stout	&	Hecht	

2017)	can	create	a	starting	point	with	interesting	opportunities	for	research,	by	

tracing	how	humans’	capabilities	interact	and	rely	on	one	another.	I	examine	one	

such	interaction	here:	between	children’s	social	learning	and	open-ended	play.	

	

Learning	facilitated	by	other	individuals,	known	as	‘social	learning’	(Kendal	et	al.	

2018;	citing	Heyes	1994),	has	received	attention	from	researchers	for	over	a	

century	(Woodward	1982).	Humans’	capacity	for	social	learning	has	been	

described	as	‘the	secret	of	our	success’	(Henrich	2016),	and	the	importance	of	

this	transmission	of	information	has	led	children	to	be	described	as	‘cultural	

magnets’	(Flynn	2008).	Many	researchers	argue	this	human-unique	capacity	for	
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social	learning	is	neccessary	for	the	cultural	‘ratchet’	effect	(also	called	

‘cumulative	cultural	evolution’),	which	provides	humans	with	a	means	of	

improving	on	cultural	traits	so	that	they	become	more	beneficial	for	their	users	

(Mesoudi	&	Thornton	2018).	Meanwhile,	recent	research	describes	‘play’	as	a	

developmental	context	in	which	children	explore	novel	solutions	to	future	

ecological	problems	(Pellegrini	2009).	Play	can	be	defined	as	a	context	in	which	

children	do	follow	some	rules	but	also	have	a	degree	of	freedom	in	both	

interpretation	of	the	rules	and	choice	of	the	activity’s	constituents	(e.g.,	its	goals)	

(van	Oers	2013).	In	educationalist	literature,	researchers	tout	play	as	the	

lynchpin	for	children’s	learning	and	development	(e.g.,	Golinkoff,	Hirsh-Pasek	&	

Singer	2006;	also	see	Frost,	Wortham	&	Reifel	2012).	It	is	even	argued	that	play	

was	foundational	for	the	evolution	of	human	learning	(Palagi,	Stanyon	&	

Demuru	2015).	Nevertheless,	the	otherwise	wide-ranging	literature	on	social	

learning	pays	little	attention	to	a	crucial	condition	of	play:	its	open-endedness	

(Rook	2008).	Thus	there	is	currently	little	data	on	whether	the	degree	to	which	a	

social	learning	experiment	is	open-ended,	versus	close-ended,	affects	the	

copying	behaviour	of	participants.	Even	Rook	(2008),	whose	study	makes	

progress	in	illuminating	adults’	treatment	of	socially	provided	information	in	an	

open-ended,	“creative”	task,	does	not	experimentally	compare	copying	between	

open-ended	and	close-ended	conditions,	and	does	not	explore	the	specific	

importance	of	play	for	children’s	learning	and	development	(e.g.,	see	Bateson	

2014).	I	posit	that	overlooking	open-ended	play	may	be	masking	variation	in	

children’s	flexible	use	of	information	derived	from	social	and	so-called	‘asocial’	

learning.	I	therefore	present	my	research	in	which	children’s	building	with	

building	blocks	was	used	as	a	context	to	explore	how	children	use	information	

provided	by	other	agents	when	the	children	are	given	relative	freedom	in	the	

means	and	the	ends	of	their	activities.	

	

In	Chapter	5	I	explore	children’s	use	of	socially	provided	information	when	the	

task	given	to	them	was	close-ended	(i.e.,	when	children	were	given	more	

detailed	instruction).	To	identify	variation	in	children’s	use	of	socially	provided	

information,	I	employed	a	distinction	between	‘macrostructure’,	the	overall	

design	of	what	is	being	built,	and	‘microstructure’,	the	means	by	which	‘what	is	
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being	built’	is	achieved	by	patterns	in	arranging	building	blocks.	These	two	

aspects	of	structural	complexity	are	useful	for	making	predictions	about	what	

information	children	may	copy	in	some	contexts	rather	than	others.	In	Chapter	6	

I	explore	how,	in	an	open-ended	task,	children	used	information	learnt	socially	

in	their	building	in	some	contexts	but	not	others.	To	do	this,	I	required	stimuli	

which	would	elicit	differential	copying	of	macrostructure	versus	microstructure.	

I	therefore	turned	to	‘evidence	of	failure’,	the	fact	that	children’s	building	often	

involves	instances	of	collapse.	Previous	research	indicates	that	children	

recognise	when	copying	from	an	unreliable	‘model’	(i.e.,	an	unreliable	

individual)	is	non-beneficial,	incentivising	greater	reliance	on	‘asocial’	learning	

(Pinkham	&	Jaswal	2011;	Birch,	Vautheir	&	Bloom	2008;	Bandura	1986;	Carr,	

Kendal	&	Flynn	2015;	Turner,	Giraldeau	&	Flynn	2017).	However,	previous	

studies	also	indicate	that	children	can	attempt	to	recreate	what	a	failed	model	

tried	to	achieve,	or	that	children	copy	the	model	despite	the	evidence	of	failure	

(Meltzoff	1995;	Want	&	Harris	2001,	2002;	Sanefuji	et	al.	2004;	Huang	&	

Charman	2005;	Carr,	Kendal	&	Flynn	2015).	Thus,	the	current	thesis	tries	

breaking	a	dichotomy	between	‘to	copy’	versus	‘not	to	copy’	down	into	contexts	

in	which	children	may	copy	macrostructure	alongside	‘asocial’	learning	of	

microstructure,	or	may	copy	microstructure	alongside	‘asocial’	learning	of	

macrostructure.	

	

The	research	presented	in	this	thesis	extends	existing	research	in	two	ways.	

First,	the	thesis	presents	data	from	controlled	experimental	conditions	which	

enable	comparison	of	copying	between	open-ended	and	close-ended	tasks.	

Second,	the	thesis	explores	how	children’s	play	behaviour	could	involve	flexible	

combination	of	‘socially	copied’	alongside	‘individually	learnt’	information,	

across	two	aspects	of	structural	complexity.	While	data	presented	below	do	not	

give	support	for	children’s	increased	flexibility	in	copying	microstructure	design	

relative	to	macrostructure	design	in	the	open-ended	task,	data	do	give	support	

for	differences	in	children’s	copying	behaviour	between	the	close-ended	and	

open-ended	tasks.	(1)	Children	in	the	open-ended	task	did	not	reliably	copy	

social	information	more	when	the	social	model	was	successful	rather	than	

unsuccessful,	which	children	in	the	close-ended	task	did.	(2)	Children	in	the	
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open-ended	task	did	not	copy	social	information	more	when	they	encountered	

greater	evidence	of	failure	in	their	own	task,	as	prior	literature	from	close-ended	

tasks	indicates	they	would.	Given	the	sample	size	and	experimental	controls,	

these	results	are	interesting	and	deserve	further	research	in	order	to	

understand	them.	
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Chapter	2:	Theoretical	context	

Chapter	2	outlines	previous	work	conducted	on	the	two	topics	which	my	study	

aims	to	combine:	(1)	social	learning	and	(2)	children’s	play	and	creativity.	In	this	

chapter	I	argue	that	much	contemporary	social	learning	research	relies	on	

participants’	performance	in	close-ended	tasks,	in	which	the	goals	of	their	

activities	are	predetermined.	I	then	argue	that	these	close-ended	tasks	can	lead	

to	the	impression	that	copying	and	creativity	work	competitively	rather	than	

collaboratively.	Eight	hypotheses,	split	between	Chapters	5	and	6,	are	then	

introduced	to	test	for	differences	between	children’s	building	between	close-	

and	open-ended	tasks,	and	between	children’s	copying	of	microstructure	and	

macrostructure	design.	

	

2.1:	Copying	and	the	social	learning	literature	

A	fundamental	question	for	this	study	is:	what	is	‘copying’?	I	define	it	for	the	

present	thesis	as	the	similarity	of	a	learner’s	building	outcomes	to	those	of	a	

model,	when	a	learner	is	exposed	to	the	activities	of	a	model	in	some	way.	This	

recalls	what	is	referred	to	as	‘imitation’	in	older	literature	(e.g.,	Baer,	Peterson	&	

Sherman	1967),	where	it	is	used	in	a	broader	manner	than	the	term	is	normally	

used	today.	This	exposure	of	a	learner	may	be	to	the	activities	of	a	model,	or	the	

effects	of	the	model’s	activities	(see	Heyes	2001).	Since	a	learner’s	building	

outcomes	can	be	more	or	less	similar	to	that	of	a	model,	it	is	conceptually	

plausible	to	say	that	copying	can	occur	to	greater	and	lesser	extents.	When	a	

learner	is	exposed	to	the	activities	of	a	model,	the	extent	of	copying	thus	

depends	on	how	similar	the	learner’s	outcomes	are	to	the	model’s.	So	while	‘not	

to	copy’	refers	merely	to	a	relatively	lesser	degree	of	similarity	of	an	observer’s	

build	to	a	model’s,	‘asocial	learning	conditions’	here	refers	to	the	absence	of	a	

specific	social	cue,	the	absence	of	which	makes	it	more	difficult	to	copy	the	

model.	While	the	term	‘asocial	learning’	is	used	here,	since	it	is	the	standard	

term	in	the	literature	(Kendal	et	al.	2005;	Kendal	et	al.	2018),	these	conditions	

are	never	actually	‘asocial’	in	that	they	do	provide	social	cues	which	can	

influence	children’s	building.	This	means,	however,	that	because	a	learner	can	

have	greater	or	lesser	exposure	to	the	model’s	activities,	it	is	thus	also	

conceptually	plausible	to	say	that	the	possibility	to	engage	in	copying	can	be	



17	 	

present	to	greater	and	lesser	extents.	The	extent	to	which	copying	is	viable,	even	

if	it	is	desirable,	is	dependent	on	the	information	provided	by	the	model	(see	

Whiten	&	Ham	1992).	

	

It	is	thus	important	to	emphasise	that	the	difference	between	‘to	copy’	and	‘not	

to	copy’,	as	used	in	the	present	study,	is	not	synonymous	with	the	difference	

between	‘to	learn’	and	‘not	to	learn’.	If	a	child	“decides”	that	a	social	model	does	

not	provide	them	with	useful	information	and	“chooses”	not	to	copy	the	model,	

the	child’s	‘not	to	copy’	behaviour	may	appear	similar	to	how	children	in	an	

‘asocial	learning’	condition	will	‘not	copy’.	However,	learning	induced	by	a	

model’s	evidence	of	failure	(i.e.,	learning	‘not	to	copy’)	is	still	a	response	to	a	

social	cue.	Learning	‘not	to	do’	is	not	the	same	as	‘not	learning’	(see	Darby	&	

Riopelle	1959).	It	is	also	important	to	note	that	the	quotation	marks	used	above	

indicate	that	the	“choices”	of	a	child	may	not	be	explicit,	in	that	a	child’s	

“decision”	to	copy	or	not	may	be	subconscious	(Kendal	et	al.	2018).	In	sum,	the	

choice	between	‘to	copy’	and	‘not	to	copy’	is	a	choice	between	two	social	

learning	options.	Furthermore,	the	‘asocial	learning	condition’	is	only	asocial	

insofar	as	it	provides	less	(or	vaguer)	social	information	than	the	‘social	learning	

condition’.	Additionally,	and	as	argued	below,	a	learner’s	judgment	of	a	model’s	

usefulness	is	not	necessarily	uniform	across	microstructure	and	macrostructure	

(see	Table	1).	

	

Since	copying	is	thus	defined	irrespective	of	the	processes	of	social	learning,	it	

has	no	bearing	on	whether	the	similarity	in	building	outcomes	is	achieved	via	

specific	social	learning	processes	like	‘imitation’	or	‘emulation’	(Wood,	Kendal	&	

Flynn	2013b).	In	accordance	with	definitions	of	social	learning	processes	used	
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by	Heyes	(2001;	Huang	&	Charman	2005),	imitation	is	the	copying	of	activities	

(i.e.,	motor	patterns)	and	emulation	is	the	copying	of	effects	of	activities.	In	the	

past,	some	researchers	(e.g.,	Tomasello	1996;	Call	&	Tomasello	1995)	upheld	a	

clear	division	between	imitation	(underpinned	by	a	human-specific	ability	to	

understand	the	psychological	causes	of	others’	behaviours;	see	Tomasello	1990;	

Wellman,	Cross	&	Watson	2001)	and	other,	lower	fidelity,	social	learning	

processes	(also	available	to	non-humans).	However,	many	researchers	argue	

that	both	imitation	and	emulation	can	be	augmented	by	an	understanding	of	

others’	intentions	(e.g.,	Whiten	&	Ham	1992;	Subiaul,	Patterson	&	Barr	2016;	

Whiten	et	al.	2004),	it	is	now	accepted	that	chimpanzees	are	capable	of	

understanding	others’	psychological	states	to	the	extent	of	a	false-belief	task	

(Krupenye	et	al.	2016),	and	there	is	some	evidence	that	cumulative	cultural	

elaboration	can	take	place	in	the	absence	of	imitation	(Reindl	et	al.	2017;	

Caldwell	&	Millen	2009).	

	

Since	it	is	possible	to	imagine	both	the	microstructure	and	macrostructure	of	a	

build	being	copied	using	either	or	both	processes,	whether	information	is	copied	

via	imitation	or	emulation	is	thus	immaterial	to	the	research	question.	Indeed,	it	

has	proven	difficult	to	separate	the	roles	of	emulation	and	imitation	in	

experimental	conditions	(Call	&	Carpenter	2002).	Even	under	‘ghost’	conditions,	

emulation	can	only	be	compared	to	the	combination	of	imitation	and	emulation	

(Thompson	&	Russell	2004).	Some	researchers	go	further	by	rejecting	such	a	

distinction	between	imitation	and	emulation.	Stout	and	Hecht	(2017)	argue	that	

a	dichotomy	between	information	learnt	imitatively	and	information	learnt	

emulatively	is	not	sufficient	to	document	the	complex	differences	between	

information	learnt	at	different	levels	of	goal	organisation,	or	skills	which	entail	

various	relations	between	ends	and	means	depending	on	the	specific	context.	

Rather	than	a	dichotomy,	Stout	(2011;	citing	Bekkering	&	Prinz	2002)	instead	

describes	a	continuous	hierarchy	of	goal-oriented	actions,	whereby	children	can	

copy	(or	not	copy)	a	range	of	actions	which	are	to	varying	degrees	

superordinate	and	subordinate	to	each	other.	Differences	between	imitation	and	

emulation	do	not	therefore	already	demarcate	the	microstructure-
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macrostructure	division,	and	are	not	necessarily	best	placed	for	assessing	the	

information	children	may	or	may	not	copy	from	a	model’s	building.		

	

Instead,	the	main	distinction	I	make	in	children’s	copying	of	information	is	

between	‘macrostructure’,	associated	with	what	is	built,	and	‘microstructure’,	or	

the	way	it	is	built.	This	is	a	rather	crude	outline.	There	are	clearly	many	ways	to	

specify	structural	complexity,	different	intentions	that	go	into	building,	and	

different	information	a	learner	might	use	from	observing	that	building	(Stout	

2011).	Nevertheless,	the	reason	these	two	units	of	macrostructure	and	

microstructure	are	adopted	here	is	that	they	are	already	used	implicitly	in	social	

learning	literature.	Moreau	and	Engeset	(2016)	categorise	tasks	as	either	more	

well-defined	or	ill-defined	based	on	the	degree	of	knowledge	a	participant	has	of	

(a)	the	aim	of	the	activity,	(b)	the	strategies	available	to	achieve	this	aim,	and	(c)	

the	initial	state	of	the	activity.	Close-ended	tasks	distinguish	microstructure	

from	macrostructure	by	pre-determining	this	aim,	or	ultimate	goal,	of	the	

learners’	activities	(i.e.,	resticting	variation	in	macrostructure),	thus	leaving	

learners	only	with	variability	in	the	way	to	achieve	this	goal	(i.e.,	the	

microstructure	variants	available	to	them).	

	

Macrostructure	copying	is	consequently	associated	with	copying	a	model’s	

‘ultimate’	goal	(whether	or	not	a	learner	realises	the	model’s	ultimate	goal	with	

the	same	microstructure,	similar	to	how	‘goal	emulation’	is	sometimes	

distinguished	from	‘imitation’;	see	Whiten	&	Ham	1992;	Subiaul,	Patterson	&	

Barr	2016;	Whiten	et	al.	2004).	In	the	absence	of	a	predetermined	goal,	selection	

of	macrostructure	design	is	an	open-ended	problem,	as	there	is	no	predefined	

end-state	which	is	correct,	or	even	optimal.	In	the	absence	of	parameters	to	

define	optimality,	the	child	is	faced	with	an	axiological	problem	to	invent	such	

parameters	themselves	(Moreau	&	Engeset	2016).	Microstructure	can	thus	often	

be	seen	as	a	proximate	goal.	Once	some	sort	of	macrostructure	is	being	worked	

towards,	selection	of	microstructure	is	a	close-ended	task.	This	is	because	

microstructure	designs	are	more	or	less	expedient	for	accomplishing	a	given	

macrostructure	design.	A	child	has	a	limited	set	of	microstructure	variants,	that	

is,	ways	of	putting	blocks	on	top	of	each	other.	There	are	thus	several	different	
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microstructure	variants	which	a	child	could	use	to	achieve	a	macrostructure	

which	is	similar	to	a	model’s.	Therefore,	a	key	point	is	that	the	social	learning	

strategies	applied	to	macrostructure	do	not	specify	the	same	learning	strategies	

applied	to	microstructure.	The	macrostructure/microstructure	distinction	can	

thereby	be	used	to	explore	beyond	mere	presence	or	absence	of	copying	

behaviour,	towards	an	approach	which	emphasises	degree	and	variation	in	

participants’	copying	(see	Barrett,	Peterson	&	Frankenhuis	2016).	

	

Many	contemporary	social	learning	studies	use	close-ended	tasks.	This	means	

that	they	give	participants	a	problem	with	a	number	of	solutions,	and	study	how	

participants	are	able	to	achieve	the	goal	set	for	them	(e.g.,	Flynn,	Turner	&	

Giraldeau	2016;	Rendell	et	al.	2011;	Wood	et	al.	2013a,	2013b).	This	means	that	

much	contemporary	social	learning	literature	explores	participants’	copying	of	

proximate	techniques	to	achieve	predetermined	ultimate	goals.	For	example,	

Caldwell	and	Millen’s	(2010)	spaghetti	task	determines	a	type	of	structure,	a	

tower,	and	the	aim,	to	build	the	tallest.	By	constraining	macrostructure,	this	

experiment	investigates	microstructural	differences	between	participants’	

towers.	Even	tasks	referred	to	as	‘open-ended’	in	the	literature	(see	Reindl	&	

Tennie	2018)	provide	participants	with	a	definite	goal	to	achieve,	against	which	

they	are	judged	more	or	less	successful.	

	

Ecological,	or	external,	validity	is	the	degree	to	which	experimental	results	index	

conditions	which	exist	beyond	the	experimental	setup,	in	the	‘real	world’	

(Henrich,	Heine	&	Norenzayan	2010).	This	lack	of	studies	with	open-ended	

setups	creates	a	deficiency	of	ecological	validity	in	the	child	social	learning	

literature	(Rook	2008),	since	the	contexts	in	which	children	learn	and	explore	

their	environment	are	often	without	an	imposed	direction	to	structure	their	

activities	(Bateson	&	Martin	2013;	Gopnik	2012).	However,	some	social	learning	

studies	do	control	the	activities	of	learners	less.	For	example,	Meltzoff	(1995;	see	

also	Bellagamba	&	Tomasello	1999;	Carpenter,	Call	&	Tomasello	2005	for	

similar	studies	with	children	of	similar	age)	uses	a	more	open-ended	setup	by	

allowing	18-month-old	children	to	play	with	objects	after	adults	performed	

evidence	of	failure	(without	ostensive	cues	such	as	vocalisation	or	facial	
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expression),	and	by	not	rewarding	them	or	reacting	specifically	positively	if	they	

succeeded	in	transforming	the	object.	However,	this	experiment’s	open-

endedness	is	still	limited	as	the	tasks	they	use	do	constrain	the	children’s	

activities,	in	that	the	materials	children	are	given	to	explore	have	specific	goals	

built	into	them.	Nevertheless,	they	found	that	children	reproduced	what	the	

adults	were	attempting	to	do	rather	than	simply	copying	their	actions.	This	

result	indicates	processes	in	children’s	learning	in	open-ended	settings	which	

are	not	explained	by	a	simple	distinction	between	copying	a	model	versus	not	

copying	a	model.	

	

Research	into	‘creativity’	has,	at	least	until	recently,	demonstrated	a	comparable	

lack	of	attention	given	to	the	role	copying	takes	in	solving	open-ended	tasks,	

with	only	scarce	consideration	of	the	roles	that	copying	behaviours	could	play	in	

creative,	open-ended	task	performance	(Rook	2008).	Rook	(2008)	explains	that	

the	reason	for	this	is	that	most	researchers	in	the	field	diametrically	oppose	

copying	with	creativity	(e.g.,	Sternberg	1999;	Amabile	1996);	i.e.,	copying	and	

creativity	compete	and	do	not	collaborate.	I	argue	that	the	close-ended	setup	of	

many	experiments	can	help	to	reinforce	this	dichotomy	between	‘to	copy’	versus	

‘not	to	copy’	in	the	social	learning	literature	too.	

	

To	understand	the	dichotomy,	it	is	useful	to	look	at	Morin’s	(2016)	description	

of	two	approaches	to	learning	‘biases’,	which,	in	this	context,	describe	the	

tendency	of	an	individual	to	copy	one	thing	but	not	another	(see	also	Kendal	et	

al.	2018).	The	‘strong’	interpretation	of	social	learning	biases	employs	a	strong	

distinction	between	‘to	copy’	versus	‘not	to	copy’.	This	is	because	this	strong	

perspective	views	biases	as	cognitive	decision	rules	activated	in	the	presence	of	

formal	domains.	These	formal	domains	are	specific	cues	in	a	learner’s	

environment,	which	operationalise	latent	social	learning	strategies	to	best	fit	the	

context	(Laland	2004).	Biases	thus	denote	a	heuristic	system	of	hereditarily	

canalised	social	learning	strategies	(e.g.,	Henrich	2016;	Richerson	&	Boyd	2005).	

An	analogy	would	be	a	lock-and-key	mechanism,	with	the	correct	key	(i.e.,	

environmental	cue)	opening	the	appropriate	door	(i.e.,	genetically	specified	

social	learning	strategy).	Cues	in	the	learner’s	environment	either	activate	one	of	
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the	specified	social	learning	strategies	or	they	do	not.	Thus,	in	this	strong	

interpretation,	biases	work	on	a	strong	dichotomy	between	‘to	copy’	and	‘not	to	

copy’	(e.g.,	Whiten	&	Flynn	2010).	This	can	arguably	lead	to	oversimplified	

understandings	of	copying	behaviour	(Nurmsoo,	Robinson	&	Butterfill	2010),	

which	may	prematurely	oppose	‘copying’	to	‘not	copying’.	Specifically,	in	social	

learning	studies	which	focus	solely	on	microstructure	copying	(i.e.,	studies	

which	predetermine	macrostructure	design	with	a	close-ended	task)	and	

participants	do	not	appear	to	copy	this	microstructure,	the	researcher	may	then	

assume	that	copying	in	general	is	not	exhibited	in	response	to	the	given	stimuli	

or	context.	Thus,	a	central	concern	of	the	present	study	is:	are	the	cues	that	

disincentivise	copying	at	the	microstructural	level	also	capable	of	incentivising	

copying	at	the	macrostructural	level,	and	vice	versa?	

	

In	contrast	to	the	‘strong’	interpretation,	Morin	(2016)	describes	the	‘weak’	

interpretation	of	learning	biases	in	which	‘biases’	merely	denote	the	statistically	

common	responses	of	human	cognition	to	different	types	of	ecological	

information.	Biases,	in	this	interpretation,	do	not	entail	claims	as	to	their	

developmental	origins	or	cognitive	processes	underpinning	them	(see	Kendal	et	

al.	2018).	For	example,	biases	would	not	have	to	adhere	to	a	strict	division	

between	information	from	‘social’	versus	‘asocial’	sources.	While	useful	

information	may	be	provided	directly	by	social	models,	such	as	demonstrating	

an	effective	way	to	build	with	blocks,	this	is	not	necessarily	the	case.	Models	

may,	equally,	offer	information	in	indirect	ways.	In	Caldwell	and	Millen’s	(2009;	

see	also	Reindl	et	al.	2017)	paper	plane	experiment,	they	examine	children’s	

social	learning	through	their	interaction	with	merely	the	effects	of	a	model’s	

activities	–	without	any	contact	with	the	models	themselves.	In	fact,	any	

interaction	with	any	environment	is	‘social’	in	as	far	as	the	environment	is	

shaped	by	the	activities	of	others	(see	Lewontin	1983).	Sterelny	(2012)	calls	this	

the	‘downstream	effects	of	niche	construction’.	In	the	present	study,	even	in	the	

absence	of	a	model,	the	blocks	children	play	with	do	not	occur	‘naturally’.	

Children,	even	in	so-called	‘asocial	learning	conditions’,	interact	with	a	social	

environment	constructed	by	the	activities	of	conspecifics.	Indeed	the	difference	

between	more	‘open-‘	versus	‘close-ended’	tasks	is	a	prime	example	of	the	social	
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framing	of	ecological	conditions.	A	simple	distinction	between	‘social’	and	

‘asocial’	information	is	thus	complicated.	

	

Correspondingly,	a	clear	psychological	difference	between	‘social’	and	‘asocial’	

learning	also	becomes	fuzzy.	Modelling	work	indicates	that	the	adaptive	value	of	

the	information	gained	from	social	learning	is	vulnerable	to	ecological	change	

(Rogers	1988;	Boyd	&	Richerson	1995).	Truskanov	and	Prat	(2018;	see	also	

Enquist,	Eriksson	&	Ghirlanda	2007;	Fogarty	2018)	thus	introduce	‘trial	and	

error’	as	a	cognitive	strategy	to	keep	cultural	traditions	relevant	to	their	

contexts.	The	implication	is	that	cognitive	mechanisms	for	‘asocial’	learning	be	

considered	intrinsic	to	the	evolutionary	success	of	social	learning.	Indeed	Morin	

(2016)	does	not	assume	that	the	hypothesised	cognitive	mechanisms	for	the	

faithful	transmission	of	cultural	information	are	different	from	those	for	

individual	reinvention	(e.g.,	Heyes	2017,	2012;	Perreault,	Moya	&	Boyd	2012;	

citing	Heyes	1994;	Plotkin	1988).	In	this	perspective	the	difference	between	‘to	

copy’	and	‘not	to	copy’	in	any	given	context	is	weak,	in	that	the	difference	

between	the	two	is	not	necessarily	cognitively	profound.	Instead,	the	difference	

between	copying	and	not	copying	may	merely	be	a	matter	of	the	direction	of	the	

same	cognitive	mechanisms	toward	different	targets.	This	is	not	to	say	that	a	

weaker	interpretation	of	social	learning	biases	espouses	a	non-modular	mind,	

but	that	modules	(however	defined)	are	organised	around	types	of	activity	

rather	than	a	strict	division	between	‘social’	versus	‘asocial’	cues	(Morin	2016;	

see	Kalish,	Griffiths	&	Lewandowsky	2007).	There	is	currently	no	conclusive	

evidence	for	the	extent	to	which	the	cognitive	mechanisms	for	‘social’	and	

‘asocial’	learning	are	different	or	the	same	(perhaps	excluding	those	for	

language	and	teaching;	Kendal	et	al.	2018).	In	any	case,	the	weaker	version	of	

the	social	learning	bias	framework	is	useful	as	a	critique	of	the	assumptions	of	

some	social	learning	research,	and	particularly	this	research’s	reliance	upon	the	

premise	of	a	clear	opposition	between	copying	and	not	copying.	

	

2.2:	Play	and	creativity	

I	have	argued	that	issues	of	ecological	validity,	caused	by	the	lack	of	open-ended	

children’s	social	learning	studies,	mean	that	social	learning	research	might	
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overlook	important	features	of	children’s	copying	behaviour.	This	is	because	

play	behaviour	is	widely	acknowledged	to	be	an	important	scaffold	in	the	

ontogeny	of	various	animals	(Bateson	&	Martin	2013),	especially	humans	

(Gopnik	2012),	and	especially	in	contexts	of	tool	use	and	traditional	(i.e.,	

informal)	education	(Lancy	2017).	Furthermore,	contemporary	definitions	of	

play	specifically	emphasise	a	relative	lack	of	externally	imposed	constraints	on	

activity:	they	emphasise	open-endedness.	van	Oers	(2013)	employs	activity	

theory	to	describe	human	play	as	a	recognisable	form	of	activity.	They	typify	

play	through	highly	involved	agents,	who	(implicitly	or	explicitly)	follow	some	

rules,	but	who	have	a	degree	of	freedom	in	(a)	interpretation	of	the	rules	and	(b)	

choice	of	the	activity’s	constituents	(e.g.,	its	goals).	Open-endedness	is	thus	not	a	

lack	of	rules	or	goals	for	activity,	but	a	context	in	which	such	rules	and	goals	can	

be	more	readily	re-interpreted	by	the	activity’s	participants.	Definitions	of	

human	play	from	Garvey	(1990),	Gray	(2013),	Pellegrini	(2009),	Stuart	Brown	

(2010),	and	Weisberg	et	al.	(2013)	each	also	emphasise	play	as	a	child-led	

activity	or	one	which	is	not	prescribed	by	goals	external	to	the	activity	(Zosh	et	

al.	2018).	Play	is	thereby	described	as	a	social	niche,	or	institution,	in	that	it	is	a	

context	defined	by	(a	relative	lack	of)	external	constraints	and	incentives	on	

activity	(van	Oers	2013;	Leont’ev	2009;	Vygotsky	1967;	see	Sinha	2015,	citing	

Goodwin	&	Goodwin	2004;	Yamagishi	2011).	

	

While	people	have,	at	times,	considered	play	a	diversion	with	little	benefit	for	

individuals’	development,	this	is	no	longer	the	case	among	researchers	(Athey	

1984;	see	Golinkoff,	Hirsh-Pasek	&	Singer	2006	for	a	discussion	of	the	history	of	

ideas	about	play).	Bateson	(2014)	describes	the	prevailing	opinion	of	play	as	a	

context	for	fine-tuning	of	motor	skills	and	neuromuscular	systems,	and	outlines	

play	contexts	as	safe	spaces	for	experimentation	in	behavioural	responses	to	

environmental	stimuli	(see	also	Gopnik	2012;	Cook,	Goodman	&	Schultz	2011).	

Bateson	(2014)	further	explains	play	as	a	probing	device	to	explore	beyond	

‘locally	optimal’	solutions	to	ecological	problems.	If	this	experimentation	took	

place	outside	of	play,	children	could	suffer	if	their	novel	solutions	were	non-

beneficial.	If,	in	play,	they	did	not	suffer	such	consequences,	then	eventually	

behavioural	solutions	with	greater	optimality	than	the	local	optima	could	be	
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found	and	deployed	in	non-play	contexts	(Pellegrini,	Dupuis	&	Smith	2007;	

Pellegrini	2009).	Thereby,	play	may	be	seen	as	a	social-developmental	niche	in	

which	affordances	for	activity	are	manipulated	to	help	scaffold	childhood	

ontogeny	(Zosh	et	al.	2018;	see	Vygotsky	1978;	Leont’ev	1978;	Flynn	et	al.	2013;	

Whiten	&	van	de	Waal	2018).	An	experimental	setup	that	is	close-ended	is	thus	

not	reflective	of	childhood	play	(see	Bateson	&	Martin	2013)	in	which	children	

may	copy	not	only	microstructural	solutions	to	problems,	but	also	the	

macrostructural	aims	which	produce	those	problems.	For	example,	a	child	may	

copy	either	the	overall	structure	of	a	tower,	or	the	way	building	blocks	are	put	

together	in	building	the	tower,	or	they	may	copy	both	the	tower	and	the	

structure	by	which	the	tower	is	built.	Therefore,	it	is	necessary	to	study	

explicitly	how	manipulating	the	open-	or	close-endedness	of	social	learning	

tasks	affects	children’s	copying	of	microstructure	and	macrostructure.	

	

Research	into	creativity	has	recently	made	some	progress	in	exploring	the	gap	

between	copying	and	innovation	(e.g.,	Rook	&	van	Knippenberg	2011;	Mecca	&	

Mumford	2013;	Moreau	&	Engeset	2016;	Bonawitz	et	al.	2011;	Rook	2008).	The	

most	crucial	feature	of	‘creative’	tasks	is	their	open-endedness	(Amabile	1996),	

or	a	relatively	lesser	degree	of	clarity	with	which	participants	know	the	

structure	and	aims	of	their	activity	(Moreau	&	Engeset	2016).	This	relative	

degree	of	open-endedness	corresponds	well	to	the	recent	recognition	that	

children’s	play	constitutes	a	spectrum	from	the	absence	of	any	kind	of	goal,	as	in	

‘free	play’,	to	more	structured	and	goal-oriented	play,	as	found	with	children’s	

games	(Zosh	et	al.	2018).	In	these	creative	tasks,	‘creativity’	is	usually	

considered	to	be	the	production	of	innovative	(i.e.,	in	some	way	original)	and	

elegant	solutions	(Mecca	&	Mumford	2013;	citing	Besemer	&	O’Quin	1999;	

Christiaans	2002).	Copying,	meanwhile,	is	often	dealt	with	through	social	

comparison	theory	(Festinger	1954;	Bandura	1986),	in	which	models	act	as	

comparison	standards	which	influence	agents’	activities	(Rook	2008).	It	would	

thus	seem	apparent	that	the	greater	the	degree	to	which	a	participant	does	not	

copy,	the	more	original,	and	thus	creative,	the	product	of	their	activities	will	be	

(Marsh,	Landau	&	Hicks	1996).	This	is	the	opposition	between	copying	and	

creativity	Rook	(2008)	describes.	However,	again	paralleling	the	social	learning	
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literature,	research	actually	provides	a	mixed	picture	of	how	exemplar	copying	

relates	to	creative	problem	solving	(Mecca	&	Mumford	2013).	Some	studies	do	

indicate	that	copying	inhibits	creativity	(e.g.,	Smith,	Ward	&	Schumacher	1993;	

Smith	&	Blankenship	1991;	Weisberg	1986).	Yet	others	indicate	that	copying	of	

exemplar	solutions	contributes	to	creativity	(e.g.,	Rich	&	Weisberg	2004;	

Weightman	2007).	This	would	further	indicate	that	individuals	may	not	merely	

choose	to	copy	or	to	not	copy	given	a	context,	but	that	there	are	interesting	

questions	to	be	explored	in	how	copying	behaviour	is	deployed	within	given	

contexts	(see	Marsh,	Landau	&	Hicks	1996).	

	

Specifically,	the	‘creativity’	of	an	artefact	cannot	be	defined	merely	by	the	degree	

to	which	it	is	different	from	the	artefacts	that	came	before	it.	If	the	artefact	is	not	

fit	for	purpose,	or	is	much	more	‘inelegant’	than	what	came	before,	then	it	

cannot	be	called	a	truly	‘creative’	solution	(Biro,	Haslam	&	Rutz	2013).	Mecca	

and	Mumford	(2013)	address	this	by	positing	that	creative	solutions	could	be	

found	through	modification	of	existing	solutions,	producing	solutions	which	are	

both	informed	by	the	prior	work	of	others,	and	yet	extend	their	work	by	

manipulating	it	in	certain	ways.	They	thus	focus	on	(and	find	support	for)	

strategies	by	which	adults	modify	information	presented	to	them,	and	the	

patterning	of	these	strategies	according	to	the	type	of	information	presented.	

This	ties	in	with	research	by	Carr,	Kendal	and	Flynn	(2016;	Reader	&	Laland	

2003)	on	‘innovation	by	modification’.	The	study	of	individuals’	use	of	social	

information	in	open-ended	creative	tasks	thus	appears	to	be	a	developing	area	

of	research.	The	current	study	therefore	brings	research	on	the	topic	of	

creativity	into	a	closer	synthesis	with	child	social	learning	studies	so	that	the	

role	of	social	information	in	open-ended	tasks	can	be	better	understood.		

	

In	the	primate	literature,	juveniles	are	thought	responsible	for	the	majority	of	

innovations,	and	technical	innovations	in	particular	(Perry,	Barrett	&	Godoy	

2017;	Whiten	&	van	de	Waal	2018;	though	see	Reader	&	Laland	2001).	However,	

it	is	generally	held	within	the	human	creativity	literature	that	children	under	the	

age	of	around	8	years	are	not	competent	innovators	of	creative	solutions	to	

problems	(Carr	2016),	a	finding	with	wide	support	from	studies	of	‘WEIRD’	and	
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‘non-WEIRD’	children	(Sheridan	et	al.	2016;	e.g.,	Cutting,	Apperly	&	Beck	2011;	

Chappell	et	al.	2013;	Nielsen	et	al.	2014).	For	example,	roughly	half	of	8-year-

olds	tested	can	fashion	a	hook	to	retrieve	a	basket,	and	very	few	children	of	5	

years	of	age	are	able	to	(Carr	2016).	It	is	a	surprising	finding	given	that	children	

of	the	same	age	range	are	demonstrably	able	to	selectively	copy	the	very	same	

solutions	from	models,	compared	to	less	effective	solutions.	Children	of	this	age	

range,	even	as	young	as	4	years	old,	can	understand	the	mechanics	that	mean	a	

bent	pipe	cleaner	is	a	more	suitable	tool	than	a	straight	one,	since	when	they	are	

presented	with	both	they	regularly	choose	the	hook	(Beck	et	al.	2011).	While	a	

couple	of	studies	(Subiaul	et	al.	2015;	Tennie	et	al.	2014)	do	arguably	present	

some	evidence	for	young	children’s	innovation,	these	studies	employ	less	

stringent	definitions	of	‘novel	behaviour’	(Carr	2016).	

In	an	attempt	to	solve	this	dilemma,	Sheridan	et	al.	(2016)	find	evidence	that	

children’s	creativity	is	influenced	by	contextual	factors	including	the	

experimental	setting	and	setup.	They	suggest	that	in	environments	in	which	

children	are	given	greater	freedom	to	experiment	with	materials,	children	of	4	

to	7	years	showed	higher	levels	of	tool	innovation	than	reported	in	previous	

studies.	These	results	suggest	that	contextual	factors	are	important	influences	

on	children’s	creative	problem	solving.	If	creativity	is	linked	with	social	learning,	

as	many	researchers	suggest	(e.g.,	Legare	&	Nielsen	2015;	Morin	2016;	Heyes	

2012),	then	this	degree	of	task	open-endedness	may	well	be	an	important	factor	

in	children’s	copying	behaviour.	Indeed,	Riede	et	al.	(2018;	citing	Palagi,	Stanyon	

&	Demuru	2015)	argue	that	children’s	play	provides	space	for	creativity	and	

innovation	which	contrasts	with	other	research	findings	of	a	high	degree	of	

conformity	and	conservatism	when	children	are	exposed	to	social	information.	

However,	to	my	knowledge	the	extent	to	which	children’s	reliance	on	social	

information	in	open-ended	tasks	resembles	or	differs	from	that	in	close-ended	

tasks	has	not	been	established	experimentally.	The	experimental	setup,	

described	below	in	Chapter	3,	therefore	aims	to	test	this	by	comparing	children’s	

copying	between	close-ended	and	open-ended	tasks.	
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2.3:	Encounters	with	evidence	of	failure	

Acquisition	of	information	about	the	physical	world	is	not	the	only	purpose	

social	learning	behaviours	are	thought	to	serve	(others	include,	for	example	

social	affiliation	and	communication;	Clay,	Over	&	Tennie	2018;	Nielsen	&	

Slaughter	2007).	However	this	‘instrumental’	purpose	is	widely	considered	

important	(see	Legare	&	Nielsen	2015;	Tennie	et	al.	2009;	Užgiris	1981).	One	

facet	of	the	child	social	learning	literature	thus	explores	how	children	learn	

about	the	world	through	interaction	with	an	environment	which	does	not	align	

with	either	their	intentions	or	those	of	an	individual	they	observe	(e.g.,	Horner	&	

Whiten	2007;	Want	&	Harris	2001).	‘Intention’	is	here	taken	to	mean	the	

hypothesised	cognitive	causes	of	a	given	bodily	action	(see	Searle	1983).	These	

unintended	dissonances	between	intention	and	realisation	are	here	termed	

‘evidence	of	failure’.	

	

If	two	children	are	playing	with	building	blocks,	there	is	a	good	chance	that	at	

some	point	one	of	their	constructions	will	accidentally	collapse.	This	collapse	

demonstrates	to	the	child	that	some	aspect	of	their	building	has	failed,	due	to	the	

dissonance	between	whatever	they	were	trying	to	do	and	the	fallen	blocks	

surrounding	them.	This	is	‘internal’	evidence	of	failure;	the	dissonance	is	

between	the	perception	of	the	material	environment	and	the	child’s	intentions.	

When	their	own,	non-copied	solutions	are	shown	to	be	ineffective	in	close-ended	

experiments,	children	have	an	increased	propensity	to	copy	from	others	

(Williamson,	Meltzoff	&	Markman	2008;	Wood,	Kendal	&	Flynn	2013a).	In	close-

ended	tasks,	when	risk	of	failure	is	artificially	increased	relative	to	a	control	

baseline,	children	engage	in	greater	copying	(Caldwell	&	Millen	2010).	This	

makes	evolutionary	sense,	since	learning	directly	from	conspecifics	only	

produces	benefits	when	it	can	increase	an	individual’s	ability	to	accomplish	

something	in	a	given	task	relative	to	asocial	learning	(Boyd	&	Richerson	1985).	

So	if	non-copied	information	is	shown	to	fail,	relative	risks	of	relying	on	copied	

information	decrease	(Feldman,	Aoki	&	Kumm	1996).	Thus,	prior	literature	

using	close-ended	tasks	expects	that	children	exposed	to	internal	evidence	of	

failure	should	copy	more.	
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‘External’	evidence	of	failure	represents	a	similar	dissonance,	but	this	time	

between	the	learner’s	perception	of	the	material	environment,	and	the	learner’s	

inferences	of	a	model’s	intentions.	By	at	least	five	years	of	age,	children	

recognise	when	copying	a	model	is	not	expedient	(Want	&	Harris	2001;	Bijovet-

van	den	Berg	2013;	Rakoczy,	Tomasello	&	Striano	2004).	Children	rely	on	more	

non-copied	information	when	a	model’s	information	is	shown	to	be	inaccurate	

or	inefficient,	or	the	model	has	an	‘unreliable’	reputation	(Clement,	Koenig	&	

Harris	2004;	Ma	&	Ganea	2010;	Pinkham	&	Jaswal	2011;	Carr,	Kendal	&	Flynn	

2015;	Turner,	Giraldeau	&	Flynn	2017;	Birch,	Vautheir	&	Bloom	2008;	Bandura	

1986).	This	also	accords	with	evolutionary	theory,	which	expects	copying	to	be	

beneficial	to	individuals,	and	sustainable	at	a	population-level,	only	when	a	

learner	can	select	to	copy	information	which	is	useful	(Giraldeau,	Valone	&	

Templeton	2002;	Kendal	et	al.	2005;	Truskanov	and	Prat	2018;	Enquist,	

Eriksson	&	Ghirlanda	2007;	Whitehead	&	Richerson	2009).	There	is	clear	

evidence	that	children	are,	at	least	in	some	contexts,	“optimal-“	rather	than	

“over-“	imitators	(Evans	et	al.	2017).	

	

However,	children	still	use	information	provided	when	an	experimental	model’s	

performance	displays	evidence	of	failure	(Meltzoff	1995;	Want	&	Harris	2001,	

2002;	Sanefuji	et	al.	2004;	Huang	&	Charman	2005;	Carr,	Kendal	&	Flynn	2015).	

Moreover,	existence	of	the	phenomenon	of	‘over-imitation’	itself	suggests	that	

children	(and	adults)	can	be	surprisingly	oblivious	to	the	risks	of	copying.	‘Over-

imitation’	is	defined	as	the	copying	of	information	which	is	redundant	to	the	

instrumental	goal	(Whiten	et	al.	2016).	Explanations	of	the	phenomenon	often	

invoke	the	social	role	of	copying	behaviour	introduced	above	(see	Clay,	Over	&	

Tennie	2018;	Over	&	Carpenter	2012).	A	lack	of	causal	understanding	of	the	task	

(on	the	part	of	the	learner)	also	seems	to	have	an	influence,	suggesting	that	

over-imitation	serves	to	transmit	information	which	is	useful	but	not	

understood	(Lyons	et	al.	2011;	see	Burdett	et	al.	2018	for	evidence	of	interaction	

between	both	‘social’	and	‘causal	understanding’	explanations).	There	is	also	a	

long	history	of	findings	from	other	animals	that	social	learning	can	actually	be	

enhanced	through	exposure	to	unsuccessful	models	(Templeton	1998;	citing	

Herbert	&	Harsh	1944;	John	et	al.	1968;	Beauchamp	&	Kacelnik	1991).	It	
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therefore	appears	that	whether	children	copy	or	do	not	copy	under	a	given	

condition	can	be	formulated	as	a	more	nuanced	question:	what	information	is	it	

that	children	copy	and	what	information	is	it	that	they	do	not	copy?	The	

experiment	described	below	in	Chapter	3	therefore	employs	the	distinction	

between	microstructure	and	macrostructure	to	test	for	children’s	copying	of	

different	kinds	of	information	under	experimentally	manipulated	conditions.	

	

The	child,	an	active	participant	(Flynn	et	al.	2013)	in	the	social-developmental	

niche	of	play,	may	combine	different	information	from	copying	and	‘asocial’	

learning	in	flexible	ways.	Presented	with	a	model’s	external	evidence	of	failure,	a	

child	may	be	disincentivised	to	copy	some	aspects	of	the	model’s	building	but	

also	incentivised	to	use	other	information.	Imagine	two	children	playing	with	

blocks;	one	begins	to	build	a	tower,	but	the	tower	falls	down.	The	other	child	

may	then	try	to	build	a	similar	tower	because	there	are	no	disadvantageous	

consequences	of	failure,	and	therefore	manipulation	of	environmental	

affordances	in	this	way	becomes	a	playful	challenge.	Since	the	first	child	

demonstrates	external	evidence	of	failure	in	the	way	they	go	about	the	task,	the	

second	child	may	try	to	achieve	the	tower	using	a	different	microstructure	

design	(similar	to	what	some	social	learning	literature	refers	to	as	‘goal	

emulation’;	Whiten	&	Ham	1992;	Subiaul,	Patterson	&	Barr	2016).	

Macrostructure	may	thus	be	copied	independently	of	microstructure.	This	

flexibility	could	also	be	observable	in	children’s	playful	responses	to	internal	

evidence	of	failure.	Bateson	and	Martin	(2013)	argue	that	play	is	about	finding	

more	optimal	solutions	to	ecological	problems.	After	the	child’s	tower	collapsed,	

they	may	therefore	not	give	up	on	their	goal.	This	is	because	evading	the	

problem	would	not	find	a	solution	to	it.	Instead,	they	may	copy	different	

information	from	their	friend,	such	as	a	more	stable	way	to	put	the	blocks	

together	(i.e.,	copy	their	microstructure	design)	so	as	to	achieve	their	original	

goal	by	different	means.	In	this	case,	microstructure	may	be	copied	

independently	of	macrostructure.	
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2.4:	Rationale	for	hypotheses	

To	introduce	the	hypotheses,	it	is	useful	to	have	an	understanding	of	the	eight	

conditions	under	which	data	was	collected	from	participants.	The	participants	

were	aged	between	5	and	11	years	old.	Table	2	describes	these	conditions:	the	

model	was	either	‘social’	or	‘asocial’,	and	either	‘successful’	or	‘unsuccessful’,	

whilst	the	task	was	either	‘close-ended’	or	‘open-ended’.	While	an	‘asocial	model’	

may	seem	anachronous,	it	is	‘asocial’	in	line	with	the	definitions	introduced	

above.	While	the	social	model	provided	information	of	use	to	a	participant,	the	

asocial	model	did	not.	Builds	produced	in	the	‘asocial’	condition	could	then	be	

compared	with	those	built	in	the	presence	of	a	‘social’	model,	enabling	me	to	

judge	the	degree	of	similarity	between	participant	and	model	builds	that	arose	

in	the	definite	absence	of	copying.	Furthermore,	in	addition	to	these	conditions,	

each	participant	demonstrated	lower	or	higher	‘internal	evidence	of	failure’	in	

their	own	building.	

	

The	purpose	of	Chapter	5	is	to	explore	how	microstructure	and	macrostructure	

copying	is	affected	by	a	close	ended	task,	as	used	in	previous	social	learning	

studies.	This	aim	is	addressed	by	comparing	the	similarity	of	children’s	buildings	

to	the	social	model	across	various	sources	of	variation.	The	first	hypothesis	

concerned	how	macrostructure	copying	varied	between	the	close-ended	and	

open-ended	tasks.	In	the	close-ended	task,	children	were	given	a	specific	aim	to	

achieve:	they	were	told	to	build	the	tallest	tower	they	could.	In	the	open-ended	
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task,	however,	children	were	not	given	a	specific	goal	to	achieve:	children	were	

told	to	build	the	‘best	building’	they	could.		

	

Hypothesis	1										I	predicted	that	children,	given	the	close-ended	task,	would	

build	macrostructure	designs	which	were	more	similar	to	that	

of	the	social	model	than	when	they	were	given	the	more	open-

ended	task.	This	effect	should	be	observed	irrespective	of	

whether	or	not	children	had	access	to	the	social	model	(which	

demonstrated	this	macrostructure	design).	See	Carr	(2016)	

and	Legare	et	al.	(2015)	for	prior	examples	of	the	effectiveness	

of	such	verbal	instruction.	

	

Two	more	hypotheses	were	made	about	how	microstructure	copying	is	affected	

when	macrostructure	is	constrained	by	the	close-ended	task.	This	replicates	

studies	discussed	above	which	use	close-ended	experiments.	Hypothesis	2	

investigates	whether	children	built	differently	when	a	‘social’	model	was	present	

(i.e.,	a	model	who	built	with	building	blocks)	rather	than	an	‘asocial’	model	(i.e.,	

a	model	who	performed	an	irrelevant	activity).	Hypothesis	3	investigated	

whether	children	copied	this	social	model	more	when	the	model	built	

successfully	compared	to	when	the	social	model’s	building	frequently	collapsed	

	

Hypothesis	2										When	given	a	close-ended	task,	I	predicted	that	children	who	

had	access	to	a	relevant	‘social’	model	would	build	

microstructure	designs	which	were	more	similar	to	that	of	the	

social	model	than	children	who	observed	an	irrelevant	

‘asocial’	model.	I	expected	this	to	hold	true	also	when	the	

social	model	was	unsuccessful	in	building.	This	would	be	

compatible	with	the	previous	finding	that	people	undertaking	

creative	tasks	conform	to	exemplar	types	even	unconsciously	

(Smith,	Ward	&	Schumacher	1993),	called	‘design	fixation’	

(Rook	2008;	Shalley	&	Perry-Smith	2001).	
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Hypothesis	3										When	given	a	close-ended	task,	I	predicted	that	children	who	

had	access	to	a	successful	social	model	would	build	

microstructure	designs	more	similar	to	the	social	model	than	

children	who	observed	an	unsuccessful	social	model.	This	is	

because	the	successful,	but	not	unsuccessful,	model	showed	

the	microstructure	design	to	be	useful	in	tower	building	

(Pinkham	&	Jaswal	2011;	Carr,	Kendal	&	Flynn	2015;	Turner,	

Giraldeau	&	Flynn	2017).	

	

The	fourth	hypothesis	of	Chapter	5	investigated	the	effect	of	the	close-ended	

task	on	how	similar	participants’	macrostructure	designs	were	to	the	social	

model’s	macrostructure	design.	

	

Hypothesis	4										When	children	were	given	a	close-ended	task	and	a	social	

model,	I	predicted	that	children	would	not	show	increased	

macrostructure	similarity	to	the	model	when	the	social	model	

was	successful	rather	than	unsuccessful.	This	is	because	it	was	

expected	that	the	close-ended	task	would	constrain	

macrostructure	diversity.	

	

The	purpose	of	Chapter	6	is	then	to	investigate	how	children	balance	copying	of	

microstructure	and	macrostructure	within	open-ended	task	–	a	more	play-like	

context.	I	aimed	to	create	conditions	in	which	children	combined	social	learning	

of	microstructure	with	so-called	‘asocial’	learning	of	macrostructure,	and	

conditions	in	which	children	combined	social	learning	of	macrostructure	with	

‘asocial’	learning	of	microstructure.	The	first	two	hypotheses	used	the	success	of	

the	social	model	to	predict	variation	in	the	similarity	of	children’s	builds	to	the	

social	model’s	build.	

	

Hypothesis	1										I	predicted	that	when	children	built	in	an	open-ended	task	

and	observed	a	social	model	(i.e.,	a	model	which	was	relevant	

to	their	task),	children	would	show	greater	microstructure	

similarity	to	the	social	model	when	this	model	was	successful	
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rather	than	unsuccessful.	This	would	be	the	same	effect	as	

found	in	prior	studies	using	close-ended	tasks,	which	indicate	

that	children	react	to	unreliable	or	inaccurate	models	by	

relying	less	on	social	information	(Pinkham	&	Jaswal	2011;	

Carr,	Kendal	&	Flynn	2015;	Turner,	Giraldeau	&	Flynn	2017).	

	

Hypothesis	2										I	predicted	that	children	building	in	an	open-ended	task	with	

a	social	model	would	not	show	increased	macrostructure	

similarity	to	the	social	model	when	the	model	was	successful	

rather	than	unsuccessful.	This	is	because	children	may	infer	

the	unsuccessful	model’s	macrostructure	intentions	and	try	to	

emulate	them	(Meltzoff	1995;	Huang	&	Charman	2005;	Carr,	

Kendal	&	Flynn	2015).	External	evidence	of	failure	was	

expected	to	be	associated	with	no	weaker	macrostructure	

similarity	to	the	social	model	because	the	open-ended	task	

approximated	playful	conditions.	Since	research	indicates	that	

children	use	play	to	experiment	with	solutions	to	ecological	

problems	(Bateson	2014;	van	Oers	2013;	Pellegrini	2009),	the	

failure	of	the	model	may	well	have	incentivised	the	children	to	

explore	different	solutions	to	achieve	the	goal	that	the	model	

did	not.	

	

The	final	two	hypotheses	of	Chapter	6	then	used	participants’	internal	evidence	

of	failure	to	predict	variation	in	the	similarity	of	children’s	builds	to	the	social	

model’s	build.	

	

Hypothesis	3										I	predicted	that	in	an	open-ended	task,	children	who		

encountered	more	failure	in	their	own	building	(i.e.,	greater	

‘internal	evidence	of	failure’)	would	copy	the	microstructure	

of	the	social	model	more	than	those	with	less	internal	failure.	

This	would	be	the	same	effect	observed	in	prior	close-ended	

experiments,	in	which	encounters	with	failure	in	their	task	

cause	children	to	defer	to	a	social	model	(Williamson,	Meltzoff	
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&	Markman	2008;	Wood,	Kendal	&	Flynn	2013a;	Caldwell	&	

Millen	2010).	

	

Hypothesis	4									I	predicted	that	internal	evidence	of	failure	should	have	had	no	

effect	on	degree	of	macrosructure	similarity	to	the	model	in	

the	open-ended	task.	In	open-ended	conditions,	in	which	

children	‘choose’	not	only	the	means	of	a	given	activity	but	the	

ends	(van	Oers	2013),	children	may	appropriate	a	social	

model’s	microstructure	for	their	own	macrostructure	designs.	

This	is	because	open-ended	play	is	about	experimentation	

(Bateson	&	Martin	2013;	Gopnik	2012).	When	internal	

evidence	of	failure	is	encountered,	to	copy	a	model’s	

macrostructure	would	be	merely	to	avoid	the	problem	rather	

than	solve	it.	Children	exhibiting	higher	internal	evidence	of	

failure	may	therefore	‘choose’	to	build	macrostructure	designs	

which	are	different	from	the	social	model.	

	

Furthermore,	there	are	three	additional	factors	which	may	have	influenced	each	

child’s	microstructure	and	macrostructure	similarity	scores:	age,	sex,	and	their	

degree	of	attention	to	the	experimental	video.	First,	younger	rather	than	older	

children	were	predicted	to	show	higher	microstructure	and	macrostructure	

similarity	scores	with	a	social	(rather	than	asocial)	model,	since	literature	

indicates	that	they	are	more	limited	in	their	capacity	for	innovation	than	older	

children	(Carr	2016;	Beck	et	al.	2011;	Chappell	et	al.	2013),	that	younger	

children	are	more	faithful	copiers	than	older	children	(Carr	2016),	and	that	

younger	children	display	greater	social	conformity	compared	to	older	children	

(Walker	and	Andrade	1996).		

	

Second,	Brand,	Brown	and	Cross	(2018)	find	that	when	asocial	learning	was	

risky,	females	but	not	males	were	more	likely	to	rely	on	social	information.	

Furthermore,	there	is	some	evidence	from	non-human	animals	pointing	to	

greater	reliance	on	social	learning	by	females:	Vale	et	al.	(2017b)	find	female	

chimpanzees	adopt	socially	provided	task	solutions	more	readily	than	males,	
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Reader	and	Laland	(2001)	find	males	apes	more	likely	to	engage	in	innovative	

activities	than	females	(though	see	Hopper	et	al.	2014	on	chimpanzees),	while	

tests	with	rodents	suggest	females	engage	in	greater	social	learning	than	males	

(Ervin	et	al.	2015).	Also,	sex	differences	between	what	children	build	may	also	

be	apparent	due	to	different	expectations	of	what	girls	and	boys	should	play	

with	and	achieve	(Freeman	2007;	Brahms	&	Crowley	2016;	see	also	Ehrlinger	&	

Dunning	2003).	I	therefore	adopted	the	tentative	hypothesis	that,	with	a	social	

model,	males	would	demonstrate	lower	microstructure	and	macrostructure	

similarity	scores	than	females.	

	

Thirdly,	there	is	evidence	that	stimuli	which	are	more	“attention	grabbing”	are	

copied	more	than	other	stimuli	(Berger	2011;	Mesoudi,	Whiten	&	Dunbar	2006;	

also	see	Whitehouse	2004;	Davenport	&	Beck	2001).	I	therefore	predicted	that	

children	with	higher	scores	of	‘attendance	to	the	experimental	video’	would	

show	higher	microstructure	and	macrostructure	similarity	scores	when	the	

model	was	social	(rather	than	asocial).	
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Chapter	3:	Methods	of	data	collection	and	analysis	

Chapter	3	presents	an	overview	of	and	justification	for	the	methods	used	to	

collect	experimental	data	in	a	non-laboratory	setting.	It	then	moves	on	to	discuss	

procedures	of	data	coding	and	the	Bayesian	methods	used	to	analyse	these	data.	

	

3.1:	Data	collection	

Data	collection	was	conducted	in	the	Centre	for	Life,	a	science	centre	in	

Newcastle	upon	Tyne	(UK).	This	allowed	me	to	make	use	of	Durham	

Anthropology	Department’s	relationship	of	collaborative	research	with	the	

nearby	Centre	(see	Kendal	et	al.	2016).	Over	school	holidays	and	weekends	from	

23	October	2017	until	18	February	2018,	I	recruited	659	participants	from	

family	visits,	of	which	data	were	usable	for	565	samples.	Ninety-four	

participants	were	excluded	after	data	collection	either	because	they	were	too	

old	or	too	young	for	the	primary	school	age	range	(i.e.,	younger	than	5	or	older	

than	11	years	old),	or	because	they	observed	the	building	of	other	children	

taking	part	in	the	experiment.	The	non-laboratory	experimental	setup	breaks	

down	distinctions	between	controlled	experiments	and	‘real-world’	

observations	(see	Rudman	et	al.	2017;	Sheridan	et	al.	2016).	It	thus	attempts	to	

maximise	and	balance	both	internal	and	external	(i.e.,	ecological)	validity.	I	could	

therefore	experimentally	manipulate	several	variables,	and	assess	my	

hypotheses	by	comparing	children’s	behaviour	across	these	manipulations.	Yet	

from	the	perspective	of	the	child	participants,	their	participation	represents	

interaction	with	just	one	science	centre	exhibit	out	of	many	other	non-data	

collecting	exhibits.	This	provides	my	study	with	an	insight	into	children’s	playful	

interaction	with	such	a	science	centre	exhibit,	an	example	of	children’s	‘real	

world’	playful	learning	(Kendal	et	al.	2016).	Non-laboratory	settings,	such	as	

science	centres	and	museums,	thus	offer	opportunities	to	balance	experimental	

control	with	‘real-world’	behaviour	(see	Rudman	et	al.	2017;	Sheridan	et	al.	

2016).	As	there	were	entrance	fees	for	the	Centre	for	Life,	£8	for	adults	and	£6	

for	children	aged	between	5	and	17,	there	may	have	been	certain	demographic	

biases,	as	well	as	the	geographic	bias	of	situating	the	experiment	in	northeast	

England	with	its	WEIRD	participants	(Nielsen	et	al.	2017;	Henrich,	Heine	&	

Norenzayan	2010).	Nonetheless,	by	taking	the	experiment	to	the	participants,	
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this	study	was	able	to	reach	people	who	would	be	less	likely	to	volunteer	their	

children	for	laboratory-based	experiments.	Written	consent	was	provided	for	

children	by	the	parent/guardian	to	confirm	that	they	understood	and	agreed	to	

the	experiment	(see	Appendix	1	for	an	example	of	the	information	and	consent	

forms).	The	child	could	withdraw	from	the	task	at	any	time.	The	Durham	

Anthropology	Department	Research	Ethics	Committee	granted	permission	for	

the	experiment	to	go	ahead	on	26	June	2017,	with	final	ethics	permission	

granted	on	25	January	2018.	

	

The	research	reported	in	this	thesis	relied	on	the	eight	experimental	conditions	

displayed	in	Table	2	(page	31).	All	conditions	involved	children	who	were	given	

building	blocks	to	play	with.	The	children,	tested	individually,	were	told	they	

would	watch	a	video	five	minutes	long,	during	which	time	they	could	build	with	

the	blocks.	The	children	knelt	at	a	low	table,	which	enabled	children	to	build	tall	

structures	without	them	being	limited	by	how	high	they	could	reach	(see	Figure	

1	for	a	photograph	of	the	experimental	setup).		
	

Figure	1.	Photograph	of	the	experimental	setup.	Children	built	on	the	blue	tables	using	the	wooden	
blocks.	They	observed	the	experimental	video	on	the	laptop	on	the	left	of	the	photograph,	and	their	
activities	were	recorded	by	video	camera	on	the	right.	Another	photograph,	from	a	slightly	different	
angle,	can	be	found	in	Appendix	2.	
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One	variable	which	differentiated	the	conditions	was	the	extent	to	which	

children	were	verbally	constrained	in	their	building.	276	children	(49%	of	

participants)	were	given	a	‘close-ended’	task	in	which	they	were	told	to	build	the	

tallest	tower	that	they	could.	This	was	intended	to	restrict	their	use	of	the	

blocks’	affordances	in	macrostructure	building.	Children	given	the	close-ended	

task	were	told:	

“I’m	going	to	show	you	this	video.	The	video	lasts	about	five	minutes.	In	

those	five	minutes,	I	want	you	to	build	the	tallest	tower	you	can.	You	can	

build	it	any	way	you	like,	but	the	aim	is	to	build	something	as	high	as	

possible	[gesturing	with	hands].	The	only	thing	is:	you	do	have	to	watch	

the	video,	because	you	can	only	build	for	as	long	as	the	video	is	playing.	So	

when	the	video	stops,	it	means	you	have	to	stop	building,	and	so	you	have	

to	keep	an	eye	on	the	video	so	that	you	know	when	to	finish.	Does	that	

make	sense?”	

The	italics	indicate	particular	stress	placed	on	the	words.	Where	children	could	

not	speak	English	(fewer	than	ten	children	in	total),	their	guardians	translated	

the	information	and	the	children’s	answers.	This	approximates	other	social	

learning	setups	which	give	learners	a	specific	goal	to	accomplish	with	specific	

resources	(e.g.,	Caldwell	&	Millen	2009).	Such	verbal	instructions,	followed	by	

visual	observation,	have	previously	been	found	able	to	influence	children’s	

copying	behaviour	(Carr	2016;	Legare	et	al.	2015;	see	further	citations	in	Clay,	

Over	&	Tennie	2018).	

	

The	‘open-ended’	task,	meanwhile,	did	not	verbally	constrain	the	child	to	

building	a	given	macrostructure.	Instead,	289	children	(51%	of	participants)	

were	told:	

“I’m	going	to	show	you	this	video.	The	video	lasts	about	five	minutes.	In	

those	five	minutes,	I	want	you	to	build	the	best	building	you	can;	you	can	

build	anything	you	want;	you	have	total	freedom.	The	only	thing	is:	you	do	

have	to	watch	the	video,	because	you	can	only	build	for	as	long	as	the	video	

is	playing.	So	when	the	video	stops,	it	means	you	have	to	stop	building,	and	

so	you	have	to	keep	an	eye	on	the	video	so	that	you	know	when	to	finish.	

Does	that	make	sense?”	
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Therefore	the	open-ended	task	still	provided	a	problem	for	the	children;	they	

had	to	build	the	‘best	building’.	But	they	had	to	decide	not	only	how	to	achieve	

this	goal,	but	also	what	the	goal	–	the	‘best	building’	–	would	be.	This	was	a	

relatively	more	open-ended	condition	than	the	‘close-ended’	task,	in	that	

children	had	a	greater	role	in	interpreting	the	aims	of	their	activities.	The	variety	

of	things	which	the	children	said	they	built	indicates	that	they	did	not	only	take	

‘building’	or	‘tower’	to	mean	a	copy	of	a	real	building,	though	the	wording	

conceivably	had	some	influence	since	various	kinds	of	towers	and	buildings	

accounted	for	68%	of	the	things	children	said	they	built	(386	out	of	563	

responses).	However,	there	was	no	control	group	to	compare	this	with	what	

children	would	say	they	built	when	given	instructions	which	do	not	mention	

terms	like	‘tower’	or	‘building’.	

	

These	two	tasks	thus	represent	two	points	on	a	continuum	from	more	close-

ended	to	more	open-ended	(see	Moreau	&	Engeset	2016;	Zosh	et	al.	2018).	

Indeed	it	can	be	considered	that	the	mere	presence	of	a	model,	even	including	

the	so-called	‘asocial’	model,	reduces	the	open-endedness	of	an	experiment	by	

influencing	the	participants’	activities.	Moreover,	it	is	important	these	

conditions	did	approximate	a	‘playful’	environment	in	order	to	encourage	the	

children	to	behave	playfully	(Bateson	2014).	While	the	actual	extent	of	open-

endedness	did	experimentally	vary,	other	parameters	of	the	playful	

environment	were	held	constant.	Children	in	the	close-ended	condition	were	

still	presented	with	a	relatively	playful	context	in	that,	beyond	internal	

dissatisfaction	of	failing	to	achieve	the	specific	goal,	there	were	no	external	costs	

to	failure.	This	created	a	more	conservative	test	of	my	predictions.	

	

So	that	no	specific	type	of	play	was	rewarded	and	incentivised,	there	was	no	

prize	which	unsuccessful	children	were	deprived	of,	as	there	is	in	some	

experiments	(e.g.,	Caldwell	&	Millen	2009).	In	addition,	children	may	well	have	

associated	the	building	blocks	themselves	with	playful	contexts.	A	questionnaire	

was	administered	to	guardians	(N=68)	of	children	at	the	Centre	for	Life	between	

February	and	March	2017.	Fifty	four	percent	of	the	children	(N=37)	had	

reportedly	played	with	physical	blocks	in	the	past	week,	16%	(N=11)	in	the	past	
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month,	and	15%	(N=10)	in	the	past	year.	The	children	aged	between	4	and	13	

years	old	(mean=7.7,	standard	deviation=2.45),	with	38%	female	and	62%	male.	

These	data	indicate	building	blocks	were	a	common	toy	for	children	for	this	age	

range	visiting	the	Centre	for	Life.	The	structure	of	the	building	blocks	allowed	

the	children	to	use	them	in	a	large	variety	of	ways,	offering	a	range	of	

affordances	for	building	which	they	could	choose	between	(see	Gibson	1986).	

The	building	blocks	were	also	causally	transparent	–	they	contained	no	hidden	

‘traps’	to	surprise	the	children,	as	sometimes	seen	in	social	learning	experiments	

(e.g.,	Dean	et	al.	2012).	This	is	significant	since	a	lack	of	causal	transparency	is	

thought	to	contribute	to	‘over-imitation’	(Lyons	et	al.	2011).	

	

Another	variable	that	distinguished	the	experimental	conditions	was	the	nature	

of	the	model.	Of	565	children,	149	participants	(26%)	observed	a	model	who	

built	a	tall	tower	without	any	evidence	of	failure.	The	model	completed	the	

tower	at	the	five-minute	mark,	after	building	steadily	and	consistently	

throughout	the	video.	148	participating	children	(26%)	observed	the	same	

model	attempt	to	build	a	tower	but	encounter	multiple	instances	of	severe	

evidence	of	failure.	Throughout	the	five	minutes	the	model	built	the	tower	up,	it	

collapses,	they	try	again	and	fail	repeatedly.	Both	of	these	conditions	were	

therefore	‘social’	model	conditions,	the	sample	size	of	which	adds	up	to	297	

participants	(53%	of	the	usable	dataset).	Finally,	268	children	(47%	of	the	

usable	dataset)	observed	the	same	model	bounce	a	table	tennis	ball	on	a	table	

tennis	paddle.	These	were	the	‘asocial	model’	conditions,	since	the	children	

could	derive	no	information	of	use	to	tower	building	from	them.	The	children	

thus	had	to	build	a	tower	without	immediate	social	cues	about	how	to	go	about	

it.	The	reason	this	‘asocial’	condition	also	contained	a	social	agent	is	to	account	

for	the	possibility	that	children’s	building	could	be	affected	merely	by	the	

presence	of	a	video	displaying	another	social	agent.	Furthermore,	to	account	for	

the	possibility	that	children’s	building	could	be	influenced	by	the	success	of	the	

model	even	in	‘asocial’	conditions,	participants	were	either	placed	into	an	

‘asocial	successful’	(124	children,	22%)	or	‘asocial	unsuccessful’	(144	children,	

25%)	condition,	in	which	the	model	either	bounced	the	ball	without	evidence	of	

failure	or	with	evidence	of	failure,	respectively.	
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The	model’s	identity	and	dress,	and	the	method	of	filming	were	held	constant	

between	the	different	conditions,	and	the	videos	for	each	condition	filmed	on	the	

same	day.	To	obscure	the	view	of	the	model’s	body	and	face,	the	videos	were	all	

shot	from	an	angle	roughly	90°	from	the	model’s	face	of	direction	and	the	videos	

focused	only	on	the	model’s	hands	and	bare	forearms.	This	lack	of	information	

about	the	model’s	face	and	body	language	also	minimised	the	risk	that	children	

took	the	model’s	activities	to	be	pedagogical	(see	Csibra	&	Gergely	2011;	Heyes	

2016).	The	true	identity	of	the	model	was	a	25-year-old	woman.	Out	of	559	

respondents,	53%	(N=294)	said	the	model	was	a	girl,	39%	(N=220)	said	the	

model	was	a	boy,	and	8%	(N=45)	said	they	did	not	know.	This	trend	holds	in	

seven	out	of	eight	conditions,	with	only	participants	in	the	Unsuccessful	Open	

condition	saying	the	model	was	a	boy	(53%,	N=39)	more	frequently	than	a	girl	

(35%,	N=26).	Out	of	559	respondents,	47%	(N=262)	thought	the	model	was	15	

years	old	or	younger,	while	42%	(N=232)	thought	the	model	was	over	16.	This	

leaves	12%	of	respondents	(N=65)	saying	that	they	did	not	know	the	model’s	

age.	There	were	three	conditions	for	which	the	difference	between	the	

percentage	of	participants	saying	the	model	was	over	15	and	the	percentage	

saying	the	model	was	not	over	15	was	greater	than	15%:	participants	in	both	

Unsuccessful	Close	with	63%	(N=44)	and	Unsuccessful	Open	with	58%	(N=42)	

saying	the	model	was	15	years	old	or	younger,	and	Asocial	Successful	Close	with	

45%	(N=31)	saying	the	model	was	older	than	15	years	old.	Given	the	spread	of	

sex	and	age	guesses,	I	believe	it	is	fair	to	assume	that	participants	did	not	have	a	

clear	idea	of	the	model’s	sex	or	age,	with	a	slight	tendency	to	guess	the	model	

was	younger	than	the	reality.	

	

Children	were	encouraged	to	observe	the	video	but	were	not	specifically	

encouraged	to	either	copy	or	not	copy	the	model.	This	was	accomplished	by	

telling	the	children	that	they	had	to	“keep	an	eye	on	the	video	so	you	know	when	

to	finish	[building].”	Of	565	participants,	63%	(N=358)	played	for	at	least	295	

seconds	(4	minutes	55	seconds).	The	mean	length	of	time	for	which	children	

played	was	268	seconds,	with	a	standard	deviation	(henceforth	‘SD’)	of	63	

seconds.	There	was	little	variation	between	conditions:	from	Unsuccessful	Open	
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with	the	greatest	mean	time,	286	seconds	(SD=45	seconds),	to	Asocial	

Unsuccessful	Close	with	the	lowest	mean	time,	of	255	seconds	(SD=73	seconds).	

The	lack	of	variation	in	the	time	children	spent	building	is	important,	as	it	

indicates	that	testing	time	and	exposure	to	the	model	were	relatively	constant	

between	the	various	social	and	asocial	conditions	(see	Reindl	&	Tennie	2018	for	

the	importance	of	this).	Although	children	were	also	told	that	the	video	would	

last	about	five	minutes,	data	presented	below	indicates	that	this	technique	did	

encourage	children	to	attend	to	the	video.	This	attendance	to	the	video	stimulus	

can	be	measured	by	counting	the	frequency	of	glances	children	made	at	the	

laptop	playing	the	video	(which	was	positioned	on	the	tabletop	which	children	

were	building	on).	For	this	purpose,	the	participants	were	themselves	

videotaped	whilst	building	(see	Figure	1	and	Appendix	2	for	photographs	of	the	

positions	of	the	laptop	and	video	camera).	The	frequency	of	eye	gaze	direction	

towards	the	stimulus	video	was	not	intended	to	measure	directly	children’s	

degree	of	social	learning;	for	instance,	children	could	monitor	the	video	in	their	

peripheral	vision.	Instead	this	measure	merely	suggests	the	degree	of	interest	

which	children	demonstrated	towards	each	video	stimulus.	Limitations	of	the	

eye	gaze	direction	data	are	that	it	did	not	record	the	duration	of	children’s	eye	

gaze	direction	towards	the	video,	and	occasionally	children’s	faces	became	

obscured	from	the	camera.	Gaze	duration	was	not	measured	due	to	limitations	

in	time,	and	because	this	measure	is	likely	to	result	in	greater	error	in	coding	

since	it	was	sometimes	unclear	for	exactly	how	long	a	child	looked	towards	the	

laptop.	

	

However,	as	a	rough	measure	of	children’s	attention	to	the	video	stimuli,	Table	3	

displays	the	relatively	invariable	degree	of	attendance	shown	to	the	video	model	

between	the	different	conditions	(both	social	and	asocial)	across	mean	scores,	

standard	deviations,	and	ranges.	The	video	to	which	the	highest	degree	of	

attention	was	given	was	‘Unsuccessful	Close’,	with	a	mean	of	7.69	glances	given	

per	minute,	while	‘Unsuccessful	Open’	was	the	video	with	the	lowest	attention	

score,	at	5.91	glances	per	minute.	The	standard	deviations,	however,	of	these	

two	means	overlapped	substantially,	at	4.21	and	3.65	glances	per	minute	

respectively.	
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This	demonstrates	the	success	of	the	time	limit	strategy	to	encourage	attention	

to	the	video	stimulus,	since	it	was	able	to	encourage	children	to	pay	equal	

attention	to	useful	and	non-useful	videos.	Differences	between	the	similarity	of	

children’s	builds	to	the	model	builds	under	the	different	conditions	are	thus	

unlikely	to	be	due	to	some	videos	being	more	eye-catching	or	engaging	than	

others,	though	the	possibility	for	this	was	included	in	the	modelling	strategy	

outlined	below.	

	

The	measure	of	‘internal	evidence	of	failure’	was	collected	at	the	time	of	

children’s	building,	by	tallying	the	frequency	of	collapse	in	each	child’s	building	

across	three	categories	of	severity.	I	thus	measured	both	the	prevalence	of	

collapse	and	the	extent	to	which	each	collapse	was	catastropic.	It	was	thus	

assumed	that	both	a	greater	prevalence	of	collapse	and	a	greater	severity	of	

collapse	contributed	to	children’s	judgement	of	the	degree	to	which	they	were	

doing	well	in	the	task.	Category	1	severity	was	defined	as	a	collapse	in	which	less	

than	a	third	of	the	total	number	of	blocks	were	moved	from	the	positions	they	

were	put	by	the	participant.	As	the	total	number	of	blocks	available	to	the	child	

was	100,	a	category	1	collapse	affects	less	than	33	blocks.	Accordingly,	category	

2	severity	was	defined	as	a	collapse	affecting	between	34	and	66	blocks,	and	

category	3	severity	affecting	more	than	66	out	of	the	100	blocks.	Since	not	all	

children	were	given	the	stated	goal	to	build	the	tallest	tower,	I	could	not	use	the	
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height	of	their	builds	to	measure	the	degree	of	internal	evidence	of	failure.	The	

collapse-based	measure	of	internal	evidence	of	failure	is	thus	useful	since,	

assuming	that	children	did	not	build	with	the	intention	to	create	collapse,	it	is	

universal	across	various	building	styles	and	goals.	

	

To	create	a	singular	measure	of	the	degree	of	internal	evidence	of	failure,	the	

frequency	of	collapses	were	summed	together	in	a	method	in	which	a	category	1	

collapse	confered	one	point,	category	2	collapse	confered	two	points,	and	

category	3	collapse	confered	three	points.	This	created	an	ordinal	range	of	

positive	integers	that	reflected	both	the	frequency	and	severity	of	collapses	

across	all	of	the	participants.	This	number	was	then	divided	by	the	length	of	

time	for	which	each	participant	built	for,	to	account	for	the	fact	that	one	

participant	may	have	a	greater	internal	evidence	of	failure	score	merely	for	

building	for	a	longer	time.	Inter-coder	analyses	were	performed	by	a	

postgraduate	student	familiar	with	quantitative	methods	on	a	sample	of	113	

participants’	video	recordings	(re-coding	20%	of	the	565	original	internal	

evidence	of	failure	samples	in	the	usable	dataset).	To	assess	the	difference	

between	the	two	coders’	internal	evidence	of	failure	scores	I	used	a	weighted	

quadratic	Cohen’s	Kappa,	a	variant	of	the	Kappa	designed	for	ordinal	data	and	in	

which	a	greater	distance	between	the	two	coders’	ratings	is	penalised	more	than	

a	lesser	distance	(Cohen	1968).	This	returned	a	statistic	of	κ=0.71	(standard	

error=0.07),	with	the	98%	confidence	interval	ranging	from	0.56	to	0.86.	Thus	

the	greatest	probability	for	the	agreement	between	the	two	raters	fell	into	the	

‘substantial’	agreement	category	(from	0.61	to	0.8)	of	Cohen’s	original	(1960)	

framework	(see	McHugh	2012).	This	provides	confidence	in	this	variable,	as	

McHugh	(2012)	recommends	that	data	for	medical	clinical	studies	can	be	

accepted	with	a	Cohen’s	Kappa	above	0.60.	They	(McHugh	2012)	also	

recommend	reporting	the	standard	percentage	agreement	between	coders,	as	

the	Kappa	can	excessively	lower	the	agreement	estimate.	Taking	only	exact	

matches	between	the	two	raters’	scores,	61.1%	of	ratings	were	in	agreement.	

This	rises	to	77%	agreement	if	a	difference	of	two	steps	is	tolerated,	and	85%	of	

each	coder’s	ratings	were	within	3	ordinal	steps	of	each	other.	
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I	counterbalanced	for	sex	across	the	conditions.	Participants’	sexes	were	

identified	by	their	guardians,	who	were	asked	to	state	whether	the	child	was	

‘Male’,	‘Female’,	‘Other’,	or	otherwise	there	was	an	option	to	decline	to	state	the	

child’s	sex	(see	Appendix	1	for	a	copy	of	the	questions).	One	child’s	guardian	

declined	to	state	the	child’s	sex,	which	I	coded	as	‘N/A’;	no	guardian	identified	

their	child’s	sex	as	‘Other’.	The	total	number	of	male	participants	was	305,	

accounting	for	54%	of	the	usable	samples,	while	females	numbered	259,	

accounting	for	46%	of	the	usable	dataset.		

	

There	was,	however,	some	variation	among	experimental	conditions	in	the	

numbers	of	males	and	females.	This	is	displayed	in	Table	4.	The	condition	with	

the	fewest	number	of	females	relative	to	males	was	with	the	successful	social	

model	and	close-ended	task	(‘Successful	Close’	in	Table	4),	in	which	females	

numbered	25	out	of	71	participants	(i.e.,	35%	of	participants).	The	condition	

with	the	highest	relative	number	of	females,	meanwhile,	was	with	the	asocial	

successful	model	and	open-ended	task	(‘Asocial	Successful	Open’	in	Table	4),	in	

which	females	numbered	36	out	of	64	participants	(56%	of	participants).	

Nevertheless,	such	variation	can	be	accounted	for	if	it	is	included	in	statistical	

analysis.	Even	the	conditions	with	the	greatest	imbalance	across	sexes	have	

adequate	sample	sizes	of	both	males	and	females.	This	permits	any	differences	
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in	behaviour	between	sexes	to	be	assessed	statistically.	A	variable	was	therefore	

included	in	statistical	analyses	which	represented	‘male’	with	a	‘0’	and	‘female’	

with	a	‘1’.	This	enabled	any	effects	of	being	female,	rather	than	male,	on	the	

outcome	variable	to	be	accounted	for.		

	

I	also	ensured	a	range	of	participant	ages	across	the	UK	primary	school	age	

range	(i.e.,	5-	to	11-year-olds).	I	chose	to	study	children	of	primary	school	age	

because	they	are	old	enough	to	understand	and	manipulate	causal	relationships	

in	their	physical	surroundings.	Horner	and	Whiten	(2007)	note	that	by	the	age	

of	3	years	children	can	understand	the	physical	principles	of	contact	(Bates,	

Carlson-Lunden	&	Bretherton	1980),	force	(von	Hofsten	et	al.	1998),	and	gravity	

(Hood	1995).	3-year-olds	are	also	able	to	combine	these	principles	to	predict	the	

outcome	of	causal	events	(Bullock,	Gelman	&	Baillargeon	1982).	However,	

Horner	and	Whiten	(2007)	also	note	that,	according	to	their	experiment,	it	

appears	that	while	3-	and	4-year-olds	have	knowledge	of	these	complex	causal	

relationships	they	find	it	difficult	to	apply	them	consistently	in	practice.	Instead,	

Horner	and	Whiten	say	that	it	is	by	the	age	of	5	or	6	years	that	children	could	

successfully	navigate	their	experiment’s	causal	relations	consistently.	Since	the	

experiment	I	use	here	was	dependent	on	children’s	understanding	of	physical	

causality	and	effects	of	principles	such	as	friction	and	gravity,	I	required	

participants	with	the	cognitive	abilities	to	deal	with	the	challenges	that	arise	in	

building.	By	the	age	of	5	years,	children	also	have	a	well-developed	ability	to	

reason	about	others’	intentions.	Carpenter,	Akhtar	and	Tomasello	(1998)	found	

that	infants	even	between	14	and	18	months	old	were	able	to	discriminatively	

imitate	a	model’s	intentional	actions	in	preference	to	their	accidental	actions,	

signposted	by	the	model’s	verbal	exclamations.	By	five	years	of	age,	children	are	

able	to	understand	both	the	‘prior	intentions’	and	‘intentions	in	action’	of	a	

model	(Astington	1991;	see	Searle	1983;	Astington	&	Gopnik	1991;	all	cited	in	

Meltzoff	1995).	Moreover,	by	the	age	of	five	years,	children’s	proclivity	to	copy	is	

widely	reported	(Clay,	Over	&	Tennie	2018;	e.g.,	Clay	&	Tennie	2017).	After	each	

child	completed	the	building	task,	I	asked	them	to	say	how	old	they	were	(in	

years).	Guardians	also	gave	each	child’s	date	of	birth,	which	could	be	used	to	

corroborate	the	children’s	answers	if	required.	The	mean	age	of	participants	in	
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the	usable	dataset	was	7.8	years,	with	a	standard	deviation	of	1.79,	and	a	range	

between	5	and	11	years	old.	The	condition	with	the	lowest	mean	age,	

Unsuccessful	Close,	at	7.5	years	old	(SD=1.83),	has	a	standard	deviation	which	

overlaps	the	condition	with	the	highest	mean	age,	Asocial	Unsuccessful	Close,	at	

8.4	years	old	(SD=1.85).	Furthermore,	the	similar	standard	deviations	for	these	

mean	ages	indicate	a	similar	spread	of	ages	between	the	conditions.	

	

A	photo	was	taken	of	each	child’s	build	after	the	five	minutes	for	building	had	

elapsed,	or	when	the	child	themselves	wanted	to	stop	building.	When	a	photo	

could	not	be	taken,	for	example	the	building	collapsed	at	the	end	of	the	five	

minutes	or	in	the	moments	after	it,	a	still	image	was	taken	from	the	video	

recording.	This	means	that	some	of	the	photos	used	to	compare	the	similarity	of	

children’s	buildings	represent	a	stage	of	the	building	process	prior	to	the	end	of	

the	five	minutes.	This	practice	was	adopted	since	an	unfinished	building	is	a	

more	useful	piece	of	data	than	a	mess	of	fallen	blocks,	which,	by	my	definition	of	

evidence	of	failure,	does	not	reflect	what	the	child	was	trying	to	do.	If	I	had	

excluded	those	buildings	that	collapsed,	I	would	have	biased	the	sample	towards	

children	who	built	more	stable	structures.	These	photos	were	then	used	to	code	

the	degree	of	similarity	each	child’s	build	had	to	either	the	successful	or	

unsuccessful	social	model	builds,	across	the	two	levels	of	microstructure	and	

macrostructure.	

	

3.2:	Data	coding		

I	now	move	on	to	discuss	the	methods	employed	for	data	coding,	starting	with	

the	microstructure	similarity	score.	A	microstructure	score	of	relative	similarity	

to	the	model	was	assigned	to	each	child’s	build.	A	microstructure	similarity	

score	of	0	represents	no	microstructure	variants	in	common	between	a	child’s	

build	and	the	model’s	build,	and	a	score	of	16	represents	all	microstructure	

variants	in	common	between	a	child’s	build	and	the	model’s	build.	The	

microstructure	similarity	score	for	a	given	child’s	build	was	created	by	

comparing	the	microstructure	variants	it	shares	with	a	model	build,	from	a	list	

of	16	variant	types	(see	Appendix	3	for	the	list	of	microstructure	variants,	with	

some	further	explanation).	For	example,	a	participant’s	build	could	incorporate	
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blocks	positioned	on	their	long/broad	side,	their	long/thin	side,	or	their	

short/thin	side.	Furthermore,	the	participant’s	build	could	incorporate	blocks	

overlapping	each	other	at	a	roughly	90°	angle,	a	roughly	180°	angle,	or	a	roughly	

diagonal	angle.	The	microstructure	variants	employed	by	the	two	social	model	

builds	were	the	same	regardless	of	condition;	the	differences	between	the	

‘successful’	and	‘unsuccessful’	social	models	were	only	in	the	frequency	of	

evidence	of	failure,	not	in	the	microstructure	variants	employed.	Simply,	the	

microstructure	similarity	of	the	successful	social	model	build	to	the	unsuccessful	

social	model	build	was	16	–	there	were	no	microstructure	variants	one	had	

which	the	other	did	not.	This	same	set	of	model	microstructure	variants	could	

therefore	be	applied	for	microstructure	similarity	scoring	of	children’s	builds	in	

the	‘asocial’	conditions.	The	microstructure	similarity	scores	of	participants’	

builds	in	the	asocial	conditions	thus	measure	the	similarity	of	children’s	builds	

to	a	model	they	did	not	see:	they	measure	the	similarity	that	arises	between	

builds	in	the	absence	of	the	possibility	of	direct	copying.	The	microstructure	

‘similarity’	scores	of	builds	in	the	‘asocial’	model	conditions,	therefore,	are	a	

crucial	baseline	since	microstructure	similarity	can	plausibly	occur	two	ways:	

(1)	children	directly	copying	what	they	see	in	a	model,	(2)	indirect	convergence	

towards	the	same	variants	through	interaction	with	similar	environmental	

conditions.	Such	environmental	conditions	may	include	the	affordances	of	the	

blocks	(Gibson	1986),	prior	experience	with	building	blocks	(see	Carr	2016),	

verbal	instruction	to	achieve	a	pre-specified	goal	(Carr	2016;	Legare	et	al.	2015),	

as	well	as	other	more	indirect	social	cues	(see	Lewontin	1983;	Sterelny	2012;	

Morin	2016).	Therefore,	if	significant	differences	were	observed	in	the	degree	of	

microstructure	similarity	between	the	‘social’	conditions	compared	with	the	

‘asocial’	conditions,	it	would	suggest	that	these	greater	similarities	would	be	due	

(at	least	in	part)	to	copying	behaviour.	

	

This	microstructure	coding	procedure	represents	an	improvement	on	similar	

procedures	used	by	previous	literature.	Rook	(2008)	codes	structures	which	

adult	participants	built	from	Lego	blocks.	One	shortcoming	of	the	coding	

procedure	they	employ	is	that	they	list	a	number	of	“random”	features	of	the	

model	structure,	and	then	look	for	how	many	of	these	features	are	present	in	
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each	of	the	participants’	builds,	without	recording	the	number	of	features	

participants	included	that	were	not	features	of	the	model.	This	means	that,	in	

their	study,	a	participant’s	build	which	only	uses	the	features	demonstrated	by	

the	model	is	only	coded	as	similar	to	the	model	as	another	participant’s	build	

which	combines	all	of	the	model	features	with	several	different	ones	of	their	

own.	My	study	improves	this	by	counting	the	total	number	of	differences,	in	a	

list	of	microstructure	variants,	between	each	participant’s	build	and	the	model’s	

build.	While	representing	a	step	forward,	the	microstructure	coding	technique	

used	here	has	its	own	shortcomings.	One	is	that	it	coded	microstructure	variants	

as	discrete	types	each	equally	different	from	each	other.	This	may	not	always	be	

the	case,	however,	as	some	microstructure	variants	could	be	considered	more	

similar	than	other	variants.	Also,	this	coding	procedure	did	not	take	into	account	

the	frequency	by	which	a	build	uses	a	specific	microstructure	variant.	For	

example,	a	participant’s	build	which	mostly	used	blocks	on	their	broad	edges	

except	for	one	block	on	its	long	thin	edge,	was	as	similar	to	a	model	which	only	

used	blocks	on	their	long	thin	edges	as	another	participant’s	build	which	used	

blocks	on	their	long	thin	edges	for	all	except	one	block	on	its	broad	edge.	Such	a	

within-build	frequency	measure	of	microstructure	variants	was	not	possible	due	

to	limitations	imposed	by	time,	though	this	sort	of	frequency	measure	could	be	

applied	in	future	studies.	

	

A	student	with	experience	in	quantitative	methods	conducted	inter-observer	

reliability	analysis	for	19.82%	of	the	microstructure	similarity	score	data	(112	

samples),	using	the	same	techniques	as	described	above	for	the	internal	

evidence	of	failure	variable.	The	microstructure	similarity	scores	showed	even	

less	variation	across	the	two	coders	than	the	scores	for	internal	evidence	of	

failure.	The	Cohen’s	Kappa	statistic	was	κ=0.88	(standard	error=0.02),	with	a	

98%	confidence	interval	ranging	from	0.82	to	0.94.	This	indicates	‘strong’	

agreement	(McHugh	2012).	In	terms	of	simple	percentage	agreement,	85.7%	of	

the	112	cases	had	exactly	the	same	value	between	the	two	coders,	97.3%	of	the	

cases	had	values	separated	by	at	most	a	difference	of	two	steps,	and	there	were	

no	cases	with	values	separated	by	more	than	three	steps.	
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Each	participant’s	build	was	also	given	a	score	of	macrostructure	similarity	to	

the	model’s	build.	The	overall	shape	of	the	things	which	children	built	whilst	

observing	a	successful	model	(social	and	asocial)	were	compared	with	the	image	

of	the	successful	social	model’s	build,	and	all	of	the	things	children	built	whilst	

observing	the	unsuccessful	model	(social	and	asocial)	were	compared	with	the	

image	of	the	unsuccessful	social	model’s	build.	This	allowed	the	degree	of	

relative	macrostructure	similarity	of	participant	builds	to	model	builds	to	be	

compared	between	the	conditions.	Since	overall	similarity	is	a	relatively	

subjective	measurement	(simply,	individuals’	assessments	of	the	

macrostructure	of	a	given	build	are	likely	to	vary	even	when	the	build	itself	is	

the	same),	macrostructure	scores	must	take	account	of	multiple	individuals’	

assessments.	The	final	macrostructure	similarity	score	was	therefore	an	average	

of	multiple	coders’	similarity	scores.	I	used	the	website	Prolific	Academic	

(Prolific	Academic	Ltd.	2016)	to	recruit	adult	participants	to	code	

macrostructure	similarity	scores	for	each	build	online,	an	online	research	

platform	with	advantages	over	alternative	websites	(Peer	et	al.	2017)	and	

laboratory-based	research	(Woods	et	al.	2015).	The	Durham	Anthropology	

Research	Ethics	Committee	granted	permission	for	this	online	experiment	to	go	

ahead	on	25	January	2018.	Participants	rated	the	similarity	of	pairs	of	child	and	

model	builds	on	a	Likert	scale	from	1	(more	different)	to	7	(more	similar).	In	

order	to	limit	bias	in	the	coding,	the	sequence	of	images	to	be	compared	was	

randomised	for	each	participant,	and	the	side	of	the	screen	occupied	by	model	

versus	child	build	was	varied.	Due	to	a	technical	issue,	two	builds	were	not	

coded	for	macrostructure:	one	from	Asocial	Successful	Open,	and	one	from	

Asocial	Unsuccessful	Open.	Participants	could	only	complete	the	online	

experiment	after	giving	explicit	consent	that	they	agreed	to	take	part,	and	that	

they	understood	the	data	would	be	kept	confidential,	information	identifying	

individuals	would	not	be	stored	in	the	data,	and	that	they	would	be	free	to	

withdraw	at	any	time	for	any	reason	(see	Appendix	4	for	information	and	

consent	forms).	Of	128	macrostructure	coders,	50	(39%)	were	female	and	78	

(61%)	male.	Each	participant	coded	130	child	builds,	resulting	in	a	mean	sample	

size	for	each	build	of	30.3	(SD=5.1).	For	each	build,	the	macrostructure	

similarity	score	was	found	by	taking	the	modal	Likert	score	from	the	range	of	
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ratings.	There	were	30	cases	where	a	build	had	more	than	one	modal	score,	and	

in	most	of	these	cases	the	two	modal	scores	were	consecutive.	In	these	30	cases,	

the	mode	closest	to	the	mean	Likert	score	for	that	case	was	chosen	for	analysis.	

The	rationale	for	this	was	that	where	more	than	mode	was	present,	the	data	did	

not	clearly	dictate	which	value	to	use.	Therefore,	analysis	should	make	use	of	the	

datum	which	reflected	best	the	spread	of	the	other	scores	in	each	case,	in	

preference	to	the	datum	which	was	further	from	the	spread	of	the	other	scores.	

	

3.3:	Data	analysis	

Both	macrostructure	and	microstructure	scores	were	therefore	ordinal	outcome	

variables.	Liddell	and	Kruschke	(2018;	see	also	Burkner	and	Vuorre	2018)	

outline	the	problems	of	analysing	ordinal	variables	with	metric	models,	i.e.	

models	that	assume	data	are	on	an	interval	or	ratio	scale.	Problems	include	both	

false	positive	and	false	negative	errors,	as	well	as	the	inversion	of	the	ordering	

of	means,	leading	to	systematic	inversions	of	effects.	I	therefore	used	a	strategy	

of	multilevel	ordinal	categorical	Bayesian	analysis.	The	various	benefits	of	a	

Bayesian	analysis	are	described	by	McElreath	(2016).	The	process	of	Bayesian	

analysis	consists	of	updating	the	relative	probabilities	of	ways	in	which	data	

could	have	been	created	by	parameters,	as	new	data	are	presented	to	the	model	

(McElreath	2016).	An	ordinal	categorical	model	pairs	a	categorical	likelihood	

function	with	a	cumulative	link	function,	allowing	estimation	of	the	effects	of	

predictor	variables	across	multiple	levels	of	the	outcome	variable	(McElreath	

2016).	Multilevel	modelling	thus	allowed	me	to	make	the	effects	of	variables	

dependent	on	the	effects	of	other	variables	(McElreath	2016).	Modelling	was	

conducted	in	R	Version	3.4.1	(R	Core	Team	2015)	and	Stan	(Carpenter	et	al.	

2017)	via	the	RStudio	interface	(see	Racine	2012),	using	the	function	‘map2stan’	

in	McElreath’s	(2016)	‘Rethinking’	package.	For	all	parameters	of	the	models	

presented	below,	I	used	a	generic	weakly	informative	prior:	Normal(0,1).	I	used	

this	prior	so	as	to	rule	out	unreasonable	parameter	values,	whilst	allowing	

variation	in	parameter	values	which	are	more	plausible	(McElreath	2016).	For	

all	of	the	models,	I	checked	Rhat	and	n_eff	values	as	indicators	of	successful	

model	convergence,	measuring	the	degree	of	chain	convergence	and	the	chains’	

effective	sample	size	respectively	(McElreath	2016).	All	models	used	for	
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graphing	of	data	had	n_eff	values	of	at	least	800	for	each	parameter	(McElreath	

2016	states	that	good	estimates	of	posterior	distribution	can	be	taken	with	an	

n_eff	value	as	low	as	200).	All	models	used	for	graphing	also	showed	Rhat	values	

for	each	parameter	of	1,	indicating	full	convergence	(McElreath	2016).	

	

Each	of	the	models	presented	below	was	the	product	of	a	process	of	model	

comparison	in	which	various	combinations	of	predictor	variables	were	tested	to	

ascertain	which	combination	provides	the	most	useful	way	of	understanding	the	

data.	Adding	variables	can	add	information	which	helps	inform	predictions	

about	the	data.	Models	with	too	little	information	to	make	useful	predictions	are	

said	to	be	‘underfit’	to	the	data.	However,	models	can	also	‘overfit’	the	data	

(McElreath	2016).	An	overfit	model	is	one	that	is	so	well	fit	to	the	present	data	

that	it	becomes	less	useful	for	predicting	new	data.	McElreath	(2016)	outlines	

Akaike	weight	and	the	difference	in	WAIC	(‘Widely	Applicable	Information	

Criterion’)	scores	as	a	useful	way	to	discriminate	between	different	models	

which	contain	different	combinations	of	parameters.	Weight	can	be	understood	

as	an	estimate	of	the	probability	that	a	model	will	make	the	best	predictions	on	

new	data,	relative	to	the	other	models	being	compared	(McElreath	2016;	

Burnham	&	Anderson	2002).	A	smaller	WAIC	score	also	indicates	better	out	of	

sample	deviance,	or	the	better	a	model	is	at	predicting	similar	data	it	has	not	

been	fit	to	(McElreath	2016).	The	models	below	therefore	represent	the	

combination	of	predictor	variables	which	produce	the	highest	Akaike	weight	

and	lowest	WAIC	values.	

	

For	each	hypothesis	of	Chapters	5	and	6,	I	report	the	Bayesian	model’s	estimates	

for	the	posterior	distribution	of	the	hypothesised	predictor	variable.	These	

figures,	while	useful	in	deciphering	the	positive	or	negative	direction	of	a	

predictor’s	effect	on	the	outcome,	are	problematic	in	inferring	anything	more.	

This	is	because,	in	an	ordered	categorical	model,	they	describe	changes	on	the	

level	of	log-odds	across	cumulative	probability	distributions	(McElreath	2016).	

This	is	in	turn	because	the	model	includes	not	just	one	‘intercept’	parameter,	but	

several	–	one	for	each	of	the	thresholds	separating	the	ordinal	categories	of	the	

outcome	variable.	When	microstructure	similarity	was	the	outcome	variable	
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there	were	16	ordinal	categories,	in	which	each	step	away	from	‘1’	and	closer	to	

‘16’	represents	increasing	microstructure	similarity	of	a	participant’s	build	to	

the	social	model’s	build.	When	macrostructure	similarity	was	the	outcome	

variable	there	were	7	ordinal	categories:	the	product	of	the	seven-grade	Likert	

scale	(a	low	number	denoting	low	similarity,	a	high	number	denoting	high	

similarity)	which	was	administered	to	online	participants.	The	effects	of	the	

predictor	variables,	and	interactions	between	the	predictor	variables,	on	the	

outcome	variable	must	therefore	instead	be	visualised	across	all	of	the	ordinal	

categories	of	the	microstructure	or	macrostructure	similarity	scales.	This	was	

accomplished	using	variations	on	the	triptych	plot.	These	plots	are	predicted	

effects	in	that	they	are	what	the	model	expects	new	data	to	show	if	more	data	

were	gathered	from	the	same	experimental	process.	These	predictions	allow	

inference	of	trends	in	past	data	because	the	model	creates	these	predictions	by	

iteratively	interacting	with	the	data	collected	from	the	real	experiment,	through	

the	Bayesian	updating	process.	

	

As	an	example	of	interpreting	the	cumulative	probability	graphs,	take	Figure	2a.	

The	blue	lines	represent	100	samples	from	a	given	model’s	posterior	

distribution.	They	illustrate	the	estimated	effects	of	changing	the	predictor	

variable	(represented	on	the	horizontal	axis)	from	a	value	of	‘0’	(on	the	left	of	

the	horizontal	axis)	to	a	value	of	‘1’	(on	the	right	of	the	horizontal	axis).	The	blue	

lines	thus	lose	height	as	they	go	from	a	value	of	‘0’	(left)	to	‘1’	(right).	To	

understand	what	this	means	for	the	outcome	variable	(i.e.,	the	similarity	of	a	

child’s	build	to	the	model’s	build),	we	first	must	understand	what	the	vertical	

axis	describes.	So	look	now	only	at	the	left-hand	side	of	Figure	2a,	where	the	

blue	lines	meet	the	vertical	axis.	At	the	bottom	of	the	vertical	axis	is	‘0’,	with	‘1’	

at	the	top.	These	values	refer	to	cumulative	probability,	which	starts	from	zero	

and	sums	to	one	at	the	top.	

	

	

	

	

	



55	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	vertical	axis	thus	represents	how	the	cumulative	probability	is	spread	

across	the	total	number	of	ordinal	categories	of	the	outcome	variable.	When	the	

outcome	variable	is	microstructure	similarity,	there	are	16	categories	which	the	

cumulative	probability	is	spread	across.	When	the	outcome	variable	is	

macrostructure	similarity,	there	are	7	categories	over	which	the	cumulative	

probability	is	distributed.	The	aim	of	this	analysis	is	to	examine	sources	of	

variation	between	how	much	cumulative	probability	is	allocated	to	the	different	

Figure	2a.	Example	graph	A.	It	
illustrates	the	predicted	effects	of	
turning	a	predictor	variable	from	‘0’	
(on	the	left	of	the	horizontal	axis)	to	
‘1’	(on	the	right	of	the	horizontal	
axis).	This	effect	is	registered	on	the	
distribution	of	cumulative	
probability	(on	the	vertical	axis,	from	
‘0’	to	‘1’)	across	the	ordinal	
categories	of	the	outcome	variable.	
This	effect	is	represented	by	100	blue	
lines,	each	of	which	is	a	sample	from	
the	posterior	distribution	of	a	
Bayesian	model.	

Figure	2b.	Example	graph	B.	Graph	B	
also	shows	the	predicted	effects	of	
turning	a	predictor	variable	from	‘0’	
(on	the	left	of	the	horizontal	axis)	to	
‘1’	(on	the	right	of	the	horizontal	
axis)	on	the	distribution	of	
cumulative	probability	(vertical	axis,	
‘0’	to	‘1’)	across	the	ordinal	
categories	of	the	outcome	variable	
(represented	by	100	blue	lines,	each	
a	sample	from	the	posterior	
distribution	of	a	Bayesian	model).	
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categories:	whether	greater	cumulative	probability	was	taken	up	by	the	lower	

ordinal	categories	(i.e.,	builds	were	rated	as	less	similar	to	the	model)	or	

whether	greater	cumulative	probability	was	taken	up	by	the	higher	ordinal	

categories	(i.e.,	builds	were	rated	more	similar	to	the	model).	This	job	is	done	by	

the	blue	lines,	which	illustrate	the	Bayesian	model’s	predictions	for	what	would	

happen	if	the	predictor	variable	on	the	horizontal	axis	was	turned	from	0	to	1.	

The	100	blue	lines	are	thus,	more	accurately,	100	predictions	from	the	Bayesian	

model	of	where	the	thresholds	between	the	ordinal	categories	lie	in	terms	of	

cumulative	probability.	

	

Both	Figures	2a	and	2b	thereby	represent	the	effect	of	a	change	in	the	predictor	

variable	(horizontal	axis)	on	the	distribution	of	cumulative	probability	across	

the	ordinal	categories	of	the	outcome	variable	(vertical	axis).	In	Figure	2a,	the	

blue	lines	descend	as	the	predictor	variable	is	changed	from	‘0’	to	‘1’.	In	an	

ordinary	correlation	graph,	this	would	indicate	a	negative	correlation.	However,	

in	this	kind	of	graph,	the	descent	of	the	lines	represents	a	positive	correlation.	

This	is	because	the	blue	lines	bunched	at	the	bottom	of	the	vertical	axis	mean	

that	the	outcome	variable’s	lower	ordinal	categories	take	up	relatively	less	

cumulative	probability.	Figure	2a	thus	describes	a	change	in	the	distribution	of	

cumulative	probability	from	‘predictor	variable=0’,	where	more	of	the	

cumulative	probability	is	taken	up	by	the	lower	ordinal	categories,	to	‘predictor	

variable=1’	where	more	of	the	cumulative	probability	is	taken	up	by	the	higher	

categories	of	the	ordinal	scale.	In	other	words,	the	Bayesian	model	predicts	that	

the	change	in	the	predictor	variable	causes	cumulative	probability	to	shift	up	

towards	the	higher	categories	of	the	ordinal	scale,	with	participants’	builds	rated	

more	similar	to	the	social	model’s	build	when	the	predictor	variable	has	the	

value	‘1’.	Contrast	this	with	Figure	2b,	which	differs	from	Figure	2a	in	two	

obvious	ways.	First,	the	blue	lines	in	Figure	2b	intersect	with	the	vertical	axis	on	

the	left	of	the	graph	much	further	towards	the	top	(further	towards	‘1’).	This	

indicates	that	most	of	the	cumulative	probability	is	taken	up	by	the	lowest	of	the	

ordinal	categories:	when	the	predictor	variable=0,	participants’	builds	are	

mostly	given	low	scores	of	similarity	to	the	social	model.	Second,	the	blue	lines	

ascend	as	they	plot	the	change	from	‘predictor	variable=0’	to	‘predictor	
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variable=1’.	In	a	standard	correlation	graph,	this	would	indicate	a	positive	

correlation	between	variables.	However,	since	the	vertical	axis	measures	the	

cumulative	probability	of	the	outcome	variable’s	ordinal	categories,	rather	than	

values	of	the	outcome	variable	itself,	this	is	not	the	case.	The	blue	lines’	ascent	

instead	implies	that	by	changing	‘predictor	variable=0’	into	‘predictor	

variable=1’,	participants’	builds	are	rated	as	even	less	similar	to	the	social	

model’s	build.	With	this	introduction	to	data	interpretation,	I	will	now	move	on	

to	the	first	of	the	results	from	data	analysis.	
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Chapter	4:	Investigating	effects	of	age,	sex,	and	attendance	to	social	

information	

Chapter	4	presents	the	results	of	Bayesian	data	analysis	for	the	effects	of	

participant	age	(section	4.1),	participant	sex	(section	4.2),	and	participant	

attendance	to	the	experimental	video	(section	4.3).	I	will	therefore	start	my	

analysis	by	assessing	the	degree	to	which	these	variables,	and	interactions	

between	them,	can	predict	variation	in	participants’	microstructure	and	

macrostructure	similarity	scores	across	all	conditions	of	the	experiment.	Since	

these	variables	are	not	the	main	focus	of	my	research,	I	will	provide	less	of	the	

details	of	data	analysis	than	I	will	for	Chapters	5	and	6.	However,	more	detail,	as	

well	as	descriptions	of	the	models	used,	can	be	found	in	Appendix	6.	Summaries	

of	the	model	comparison	processes	for	these	models	can	be	found	in	Appendix	5.	

The	data	for	the	microstructure	analyses	comprised	561	cases,	while	data	for	

the	macrostructure	analyses	comprised	559	cases.	Four	cases	were	dropped	

because	they	had	missing	values	of	‘age’	and	‘attendance	to	the	video’	in	them,	

which	causes	problems	for	the	statistical	software	(McElreath	2016),	with	two	

further	cases	dropped	for	macrostrucure	analyses	due	to	the	issue	in	the	

macrostructure	coding	procedure	described	in	Chapter	3.	

	

4.1:	Participant	age	

Across	both	microstructure	and	macrostructure	variation,	older	children	were	

shown	to	have	created	structures	more	similar	to	the	social	model	than	younger	

children.	Copying	appears	to	have	played	an	important	role	in	this	difference	

between	older	and	younger	children	since	the	positive	effect	of	age	on	

microstructure	and	macrostructure	similarity	scores	was	visibly	strengthened	

by	the	presence	of	the	social,	rather	than	asocial	model.	Data	thus	challenge	

findings	of	prior	literature	that	younger	children	display	greater	conformity	to	

social	stimuli	than	older	children	(e.g.,	Carr	2016;	Walker	&	Andrade	1996).	

	

The	predicted	real	effect	of	participant	age,	in	interaction	with	three	other	

variables,	on	microstructure	similarity	scores	are	shown	in	Figures	3	and	4.	The	

influence	of	the	social	model	strengthened	the	positive	effect	of	increased	age	on	

microstructure	similarity	scores.	In	all	of	the	conditions	with	a	social	model	
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(graphs	C	and	D	in	Figures	3	and	5),	the	difference	between	younger	and	older	

children’s	microstructure	similarity	scores	was	greater	than	with	the	asocial	

model	(graphs	A	and	B	in	Figures	3	and	4).	Across	both	low	and	high	internal	

evidence	of	failure	(Figures	3	and	4),	the	change	from	an	asocial	to	a	social	

model	intensifies	the	already	positive	relationship	between	age	and	

microstructure	similarity	in	the	asocial	close-ended	condition	(i.e.,	between	

graphs	A	and	C).	Across	both	low	and	high	internal	evidence	of	failure	(Figures	3	

and	4),	the	change	from	the	asocial	to	the	social	model	also	reverses	the	negative	

relationship	between	age	and	microstructure	similarity	found	in	the	asocial	

open-ended	condition	(between	graphs	B	and	D).	This	is	the	opposite	effect	to	

what	was	predicted	by	prior	literature	(e.g.,	Carr	2016).	More	detailed	

description	of	the	results	of	this	statistical	analysis,	and	the	structure	of	the	

statistical	model	which	generated	it	(Model	1),	can	be	found	in	Appendix	6.1.	

	
Figure	3.	Four	graphs	(A,	B,	C,	and	D	from	left	to	right)	illustrating	Model	1’s	predicted	effects	of	increased	
participant	age	on	microstructure	similarity	scores.	The	‘low’	age,	on	the	left	of	each	graph’s	horizontal	axis,	was	
set	one	standard	deviation	below	the	mean	age	of	the	entire	usable	dataset	(mean=7.81),	while	the	‘high’	age	
was	set	one	standard	deviation	above	this	mean	and	can	be	seen	on	the	right	of	each	graph’s	horizontal	axis.	
Graphs	A	and	B,	on	the	left,	show	the	effect	of	increasing	participant	age	when	the	model	was	asocial,	while	
graphs	C	and	D,	on	the	right,	show	the	effect	of	increasing	participant	age	when	the	model	was	social.	Graphs	A	
and	C	(far	left	and	second	from	right)	show	the	effect	of	increasing	participant	age	when	the	task	was	close-
ended,	while	graphs	B	and	D	(on	the	far	right	and	second	from	left)	show	the	effect	of	increasing	participant	age	
when	the	task	was	open-ended.	For	all	four	of	these	graphs,	the	degree	of	internal	evidence	of	failure	of	the	
participant	was	set	at	0.69:	one	standard	deviation	below	the	mean	score	for	the	entire	usable	dataset	(4.62).	
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Figures	5	and	6	show	the	effect	of	participant	age	on	macrostructure	similarity	

scores	to	have	been	more	uniform	than	that	of	the	effect	of	participant	age	on	

microstructure	scores	(in	Figures	3	and	4).	In	all	of	the	eight	interactions	

graphed	there	was	a	positive	relationship	between	age	and	macrostructure	

similarity.	The	influence	of	the	social	rather	than	asocial	model	appears	to	have	

again	strengthened	the	positive	effect	of	age	on	macrostructure	similarity.	In	the	

asocial	conditions	(graphs	A	and	B	of	Figures	5	and	6),	there	was	a	visibly	

positive	effect	of	age	on	macrostructure	similarity,	but	this	was	significantly	

increased	across	the	four	social	model	conditions	(graphs	C	and	D	of	Figures	5	

and	6).	This	again	contradicts	the	stated	hypothesis	that	younger	children	

should	show	increased	macrostructure	similarity	scores	with	a	social	model.	

More	detailed	description	of	the	results	of	this	statistical	analysis,	and	the	

Figure	4.	Four	graphs	(A,	B,	C,	and	D	from	left	to	right)	illustrating	Model	1’s	predicted	effects	of	increased	
participant	age	on	microstructure	similarity	scores.	The	‘low’	age	was	set	one	standard	deviation	below	the	
mean	age	of	the	entire	usable	dataset	(which	was	7.81	years	old),	while	the	‘high’	age	was	set	one	standard	
deviation	above	this	mean.	The	interactions	described	in	the	four	graphs,	between	the	asocial	(graphs	A	and	B)	
and	social	models	(graphs	C	and	D),	and	close-	(graphs	A	and	C)	and	open-ended	tasks	(graphs	B	and	D)	were	the	
same	as	the	graphs	in	Figure	3.	However,	for	all	of	these	graphs,	the	degree	of	internal	evidence	of	failure	of	the	
participant	was	instead	set	at	8.54:	one	standard	deviation	above	the	mean	score	for	the	entire	usable	dataset	
(4.62).	
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structure	of	the	statistical	model	which	generated	it	(Model	2),	can	be	found	in	

Appendix	6.2.	

	

Figure	5.	Four	graphs	(A,	B,	C,	and	D	from	left	to	right)	illustrating	Model	2’s	predicted	effects	of	participant	age	
on	macrostructure	similarity	scores.	The	‘low’	age	was	set	one	standard	deviation	below	the	mean	age	of	the	
entire	usable	dataset	(7.81),	while	the	‘high’	age	was	set	one	standard	deviation	above	this	mean.	Graphs	A	and	
B,	on	the	left,	show	the	effect	of	increasing	participant	age	when	the	model	was	asocial,	while	graphs	C	and	D,	
on	the	right,	show	the	effect	of	increasing	participant	age	when	the	model	was	social.	Graphs	A	and	C,	on	the	far	
left	and	second	from	right	respectively,	show	the	effect	of	increasing	participant	age	when	the	task	was	close-
ended,	while	graphs	B	and	D,	on	the	second	from	left	and	far	right	respectively,	show	the	effect	of	increasing	
participant	age	when	the	task	was	open-ended.	For	all	four	graphs,	the	degree	of	internal	evidence	of	failure	of	
the	participant	was	set	at	0.69:	one	standard	deviation	below	the	mean	score	for	the	entire	usable	dataset	
(4.62).	
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4.2:	Participant	sex	

The	tentative	hypothesis	that	females	would	show	increased	microstructure	and	

macrostructure	similarity	scores	appears	to	have	been	supported	in	older	but	

not	younger	children.	Across	eight	microstructure	and	macrostructure	graphs	

with	a	social	model	and	older	participant	age	(Figures	9,	10,	13,	and	14),	only	

one	graph	did	not	show	a	reliably	positive	effect	of	being	female.	Across	eight	

microstructure	and	macrostructure	graphs	with	an	asocial	model	and	older	

participant	age	(Figures	9,	10,	13,	and	14),	seven	graphs	did	not	show	reliably	

positive	effects	of	being	female.	This	would	be	in	line	with	the	hypothesis.	

However,	the	effect	of	being	female	was	more	varied	amongst	younger	children,	

across	microstructure	and	macrostructure	scores.	This	seems	related	to	the	

findings	above,	which	revealed	the	positive	effect	of	age	itself	on	microstructure	

and	macrostructure	similarity	in	this	dataset.	

	

Figure	6.	Four	further	graphs	(A,	B,	C,	and	D	from	left	to	right)	illustrating	Model	2’s	predicted	effects	of	
increased	participant	age	on	macrostructure	similarity	scores.	The	‘low’	age	was	set	one	standard	deviation	
below	the	mean	age	of	the	entire	usable	dataset	(7.81),	while	the	‘high’	age	was	set	one	standard	deviation	above	
this	mean.	The	interactions	described	in	the	four	graphs,	between	the	asocial	and	social	models,	and	close-	and	
open-ended	conditions,	were	the	same	as	the	graphs	in	Figure	5.	However,	for	all	of	these	graphs,	the	degree	of	
internal	evidence	of	failure	of	the	participant	was	instead	set	at	8.54:	one	standard	deviation	above	the	mean	
score	for	the	entire	usable	dataset	(4.62).	
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The	effect	of	being	female,	rather	than	male,	often	appears	to	have	increased	

microstructure	similarity	scores.	This	was	the	case	in	11	out	of	the	16	graphs	

between	Figures	7,	8,	9,	and	10.	However,	there	were	also	five	graphs	in	which	

the	change	from	male	to	female	seems	to	have	had	a	negative	effect	on	

microstructure	similarity.	The	effect	of	being	female	thus	seems	to	have	

depended	on	other	conditions	which	the	participant	was	building	under.	The	

influence	of	the	social	model	(graphs	A	and	B	across	Figures	7	to	10),	rather	than	

the	asocial	model	(graphs	C	and	D	across	Figures	7	to	10),	on	the	effect	of	a	

female	participant	on	microstructure	similarity	appears	to	have	been	complex.	

There	were	examples	of	the	social	model	reversing	the	effect	of	the	‘female’	

variable	on	microstructure	with	the	asocial	model,	as	well	as	examples	of	the	

social	model	maintaining	the	effect	of	‘female’	with	an	asocial	model.	It	appears	

that	the	tentative	hypothesis	of	females	showing	higher	microstructure	

similarity	scores	than	males,	when	the	model	is	social,	was	upheld	among	older	

but	not	younger	children.	The	hypothesis	appears	contradicted	(i.e.,	where	there	

was	a	social	model	females	showed	lower	microstructure	similarity	scores	than	

males)	when	participant	age	was	low	and	the	task	was	close-ended.	

Furthermore,	where	participant	age	was	low	and	the	task	open-ended,	the	

positive	effect	on	microstructure	similarity	of	being	female	with	a	social	model	

was	no	different	to	that	with	an	asocial	model.	More	detailed	description	of	the	

results	of	this	statistical	analysis,	and	the	structure	of	the	statistical	model	which	

generated	it	(Model	3),	can	be	found	in	Appendix	6.3.	
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Figure	7.	Four	graphs	(A,	B,	C,	and	D	from	left	to	right)	each	showing	Model	3’s	predicted	effects	of	turning	a	
male	participant	(left,	Female=0)	into	a	female	participant	(right,	Female=1).	Graphs	A	and	B,	on	the	left,	
show	the	result	of	this	change	when	the	model	was	asocial,	rather	than	social	as	shown	in	graphs	C	and	D	on	
the	right.	Graphs	A	and	C,	on	the	far	left	and	second	from	right	respectively,	show	the	effect	of	the	variable	
‘female’	when	the	task	was	close-ended,	as	opposed	to	open-ended	as	shown	in	graphs	B	and	D	on	the	second	
from	left	and	far	right	respectively.	All	four	graphs	set	participant	age	at	‘low’	(i.e.,	6.01,	one	standard	
deviation	below	the	mean	age	of	the	entire	usable	dataset)	and	degree	of	internal	evidence	of	failure	at	‘low’	
too	(i.e.,	0.69,	one	standard	deviation	below	the	mean	score	of	the	entire	usable	dataset).	

Figure	8.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	3’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	social	and	asocial	models,	and	close-	and	
open-ended	tasks	were	the	same	as	in	Figure	7.	These	four	graphs	also	set	participant	age	at	‘low’	(i.e.,	6.01,	
one	standard	deviation	below	the	mean	age	of	the	entire	usable	dataset).	However,	the	degree	of	internal	
evidence	of	failure	was	set	at	‘high’	(i.e.,	8.54,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	
dataset).	
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Figure	9.	Four	graphs	(A,	B,	C,	and	D,	from	left	to	right)	each	showing	Model	3’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	social	and	asocial	models,	and	close-	and	
open-ended	tasks	were	the	same	as	in	Figure	7.	These	four	graphs	set	participant	age	at	‘high’	(9.61,	one	
standard	deviation	above	the	mean	age	of	the	entire	usable	dataset).	The	degree	of	internal	evidence	of	failure	
was	kept	‘low’	(i.e.,	0.69,	one	standard	deviation	below	the	mean	score	of	the	entire	usable	dataset).	

Figure	10.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	3’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	social	and	asocial	models,	and	close-	and	
open-ended	tasks	were	the	same	as	Figure	7.	These	four	graphs	set	both	participant	age	at	‘high’	(9.61,	one	
standard	deviation	above	the	mean	age	of	the	entire	usable	dataset)	as	well	as	the	degree	of	internal	evidence	
of	failure	at	‘high’	(i.e.,	8.54,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	dataset).	
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It	is	noteworthy	that	of	five	graphs	in	which	macrostructure	was	recognisably	

less	similar	to	the	social	model	in	females	than	in	males	(graphs	B	and	C	in	

Figure	12,	graph	A	in	Figure	13,	and	graphs	A	and	B	in	Figure	14),	only	one	

included	a	social	model	(which	was	Figure	12’s	graph	C).	This	suggests	that	the	

social	model	made	a	negative	effect	of	being	female	on	microstructure	similarity	

scores	less	likely.	More	often,	with	a	social	model,	the	effect	of	‘female’	was	to	

increase	macrostructure	similariy	scores:	in	arguably	4	of	the	8	graphs	which	

did	have	a	social	model.	However,	this	effect	was	not	present	in	younger	

children	exhibiting	lower	internal	evidence	of	failure	(in	either	the	open-	or	

close-ended	task;	Figure	11’s	graphs	C	and	D),	in	younger	children	exhibiting	

higher	internal	evidence	of	failure	with	the	close-ended	task	(as	already	

discussed,	Figure	12’s	graph	C),	or	in	older	children	exhibiting	lower	internal	

evidence	of	failure	with	a	close-ended	task	(Figure	13’s	graph	C).	A	more	

detailed	description	of	the	results	of	this	statistical	analysis,	and	the	structure	of	

the	statistical	model	which	generated	it	(Model	4),	can	be	found	in	Appendix	6.4.	

Figure	11.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	4’s	predicted	effects	of	turning	a	
male	participant	(left,	Female=0)	into	a	female	participant	(right,	Female=1).	Graphs	A	and	B	(on	the	left)	show	
the	result	of	this	change	when	the	model	was	asocial,	rather	than	social	as	shown	in	graphs	C	and	D	(on	the	
right).	Graphs	A	and	C	(on	the	far	left	and	second	from	right,	respectively)	show	the	effect	of	the	variable	
‘female’	when	the	task	was	close-ended,	as	opposed	to	open-ended	as	shown	in	graphs	B	and	D	(on	the	far	right	
and	second	from	left	respectively).	All	four	graphs	set	participant	age	at	‘low’	(i.e.,	6.01,	one	standard	deviation	
below	the	mean	age	of	the	entire	usable	dataset),	and	the	degree	of	internal	evidence	of	failure	at	‘low’	too	(i.e.,	
0.69,	one	standard	deviation	below	the	mean	score	of	the	entire	usable	dataset).	
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Figure	12.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	4’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	social	and	asocial	models	(graphs	A	and	B	
versus	C	and	D,	respectively),	and	the	close-	and	open-ended	task	(graphs	A	and	C	versus	B	and	D,	respectively)	
were	the	same	as	in	Figure	11.	These	four	graphs	also	set	participant	age	at	‘low’	(i.e.,	6.01,	one	standard	
deviation	below	the	mean	age	of	the	entire	usable	dataset).	However,	the	degree	of	internal	evidence	of	failure	
was	set	at	‘high’	(i.e.,	8.54,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	dataset).	

Figure	13.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	4’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	asocial	and	social	models	(graphs	A	and	B	
versus	C	and	D,	respectively),	and	the	close-	and	open-ended	task	(graphs	A	and	C	versus	B	and	D,	respectively)	
were	the	same	as	in	Figure	11.	These	four	graphs	set	participant	age	at	‘high’	(9.61,	one	standard	deviation	
above	the	mean	age	of	the	entire	usable	dataset).	The	degree	of	internal	evidence	of	failure	was	kept	‘low’	(i.e.,	
0.69,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	dataset).	
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4.3:	Participant	attendance	to	the	video	

The	‘attendance	to	the	video’	variable	did	not	appear	to	conform	to	the	

hypothesis	that	it	would	be	associated	with	higher	microstructure	and	

macrostructure	similarity	scores.	Participants’	attendance	to	the	experimental	

video	did	appear	to	have	directional	relationships	with	the	two	outcome	

variables;	most	of	the	relationships	are	not	null	or	insignificant.	However	these	

relationships	varied	widely	between	different	conditions	such	that	any	

consistent	effect	of	increased	attendance	to	the	video	was	lost.	This	was	true	

also	for	its	interactions	with	the	social	versus	asocial	model.	The	data	thus	

indicated	that	attendance	to	the	video	was	generally	not	an	important	factor	in	

creating	the	similarity	of	a	participant’s	microstructure	or	macrostructure	

design	via	copying	behaviour.	

Figure	14.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	4’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	asocial	and	social	models	(graphs	A	and	B	
versus	C	and	D,	respectively),	and	the	close-	and	open-ended	task	(graphs	A	and	C	versus	B	and	D,	respectively)	
were	the	same	as	in	Figure	11.	These	four	graphs	set	both	participant	age	at	‘high’	(9.61,	one	standard	
deviation	above	the	mean	age	of	the	entire	usable	dataset)	as	well	as	the	degree	of	internal	evidence	of	failure	
at	‘high’	(i.e.,	8.54,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	dataset).	
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In	interaction	with	three	other	variables,	the	effect	of	higher	attendance	to	the	

video	on	microstructure	similarity	scores	appears	to	have	been	positive	in	just	

two	out	of	eight	conditions	graphed:	with	the	asocial	model	and	close-ended	

task	among	younger	children	(graph	A,	Figure	15),	and	the	social	model	and	

close-ended	task	among	older	children	(graph	C,	Figure	16).	There	appears	to	

have	been	a	somewhat	negative	relationship	between	attendance	scores	and	

microstructure	similarity	in	four	out	of	the	eight	conditions:	with	the	asocial	

model	and	open-ended	task	(graph	B),	the	social	model	and	close-ended	task	

(graph	C),	the	social	model	and	open-ended	(graph	D)	in	Figure	15,	and	the	

asocial	model	and	open-ended	task	(graph	B)	in	Figure	16.	In	most	of	these	six	

cases,	any	effect	attendance	to	the	video	has	on	microstructure	similarity	was	

weak.	The	two	conditions	where	any	effect	was	strongest	were	found	in	Figure	

16	(i.e.,	with	older	children):	with	the	asocial	model	and	open-ended	task	(graph	

B),	and	with	the	social	model	and	close-ended	task	(graph	C).	In	two	of	the	

Figure	15.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	describing	Model	5’s	predictions	for	the	effect	on	
microstructure	similarity	scores	of	turning	low	participant	attendance	to	the	experimental	video	into	high	
participant	attendance	to	the	experimental	video.	Graphs	A	and	B	(on	the	left)	show	the	result	of	this	
change	when	the	model	was	asocial,	rather	than	social	as	shown	in	graphs	C	and	D	(on	the	right).	Graphs	A	
and	C	(on	the	far	left	and	second	from	right)	show	the	effect	of	the	variable	‘attendance	score’	when	the	task	
was	close-ended,	as	opposed	to	open-ended	as	shown	in	graphs	B	and	D	(on	the	second	from	left	and	far	
right).	All	four	graphs	set	participant	age	at	‘low’	(i.e.,	6.01,	one	standard	deviation	below	the	mean	age	of	
the	entire	usable	dataset).	
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conditions	with	older	children	(i.e.,	in	Figure	16)	there	appears	to	have	been	a	

neutral	effect	of	turning	low	attendance	into	high	attendance:	with	the	asocial	

model	in	the	close-ended	task	(graph	A)	and	with	the	social	model	in	the	open-

ended	task	(graph	D).	The	effect	of	attendance	to	the	video	was	thus	mostly	

weak,	more	often	negative	on	microstructure	scores	than	positive,	though	with	

variation	in	its	effects	across	different	conditions.	More	detailed	description	of	

the	results	of	this	statistical	analysis,	and	the	structure	of	the	statistical	model	

which	generated	it	(Model	5),	can	be	found	in	Appendix	6.5.	

The	effect	of	participants’	attendance	to	the	video	on	macrostructure	similarity	

scores	appears	to	have	varied	across	conditions.	Across	most	conditions,	the	

change	from	low	to	high	attendance	to	the	video	had	little	predicted	effect	on	

macrostructure	similarity.	It	had	a	clearly	positive	effect	on	macrostructure	

similarity	scores	in	perhaps	five	out	of	the	sixteen	conditions	graphed:	graph	A	

in	Figure	17	(i.e.,	younger	children	exhibiting	lower	internal	evidence	of	failure),	

Figure	16.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	describing	Model	5’s	predictions	for	the	effect	on	
microstructure	similarity	scores	of	turning	low	participant	attendance	to	the	experimental	video	into	high	
participant	attendance	to	the	experimental	video.	The	interactions	between	social	(graphs	C	and	D)	and	asocial	
models	(graphs	C	and	D),	and	close-ended	(graphs	A	and	C)	and	open-ended	tasks	(graphs	B	and	D)	were	the	
same	as	Figure	15	above.	These	four	graphs	set	participant	age	at	‘high’	(9.61,	one	standard	deviation	above	
the	mean	age	of	the	entire	usable	dataset).	
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graphs	A,	C,	and	D	in	Figure	18	(younger	children	exhibiting	higher	internal	

evidence	of	failure),	and	graph	C	in	Figure	20	(older	children	exhibiting	higher	

internal	evidence	of	failure).	It	had	a	somewhat	negative	effect	on	

macrostructure	similarity	in	another	seven	of	the	conditions:	graphs	C	and	D	in	

Figure	17,	graph	B	in	Figure	18,	graphs	A	and	B	in	Figure	19,	and	graphs	A	and	B	

in	Figure	20.	However,	the	real	effects	of	this	negative	relationship	on	

macrostructure	scores	were	small.	This	leaves	5	of	the	16	conditions	in	which	

there	seems	to	have	been	no	particularly	directional	effect	of	attendance	scores	

on	macrostructure	similarity	scores.	This	indicates	that	the	effect	of	‘attendance	

to	the	video’	was	dependent	on	other	factors,	including	the	experimental	

condition,	and	that	across	most	conditions	it	was	not	a	particularly	strong	

influence	on	macrostructure	similarity	score	variation.	See	Appendix	6.6	for	

further	detail	of	the	results	presented	between	Figures	17	and	20,	and	the	

structure	of	the	statistical	model	which	generated	it	(Model	6).	

	

Figure	17.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	6’s	predicted	effects	of	turning	a	
participant	with	low	attendance	to	the	video	(left)	into	one	with	high	attendance	(right).	Graphs	A	and	B	(on	
the	left)	show	the	result	of	this	change	when	the	model	was	asocial,	rather	than	social	as	shown	in	graphs	C	and	
D	(on	the	right).	Graphs	A	and	C	(on	the	far	left	and	second	from	right)	show	the	effect	of	the	variable	
‘attendance	score’	when	the	task	was	close-ended,	as	opposed	to	open-ended	as	shown	in	graphs	B	and	D	(on	
the	second	from	left	and	far	right).	All	four	graphs	set	participant	age	at	‘low’	(i.e.,	6.01,	one	standard	deviation	
below	the	mean	age	of	the	entire	usable	dataset),	and	degree	of	internal	evidence	of	failure	at	‘low’	too	(i.e.,	
0.69,	one	standard	deviation	below	the	mean	score	of	the	entire	usable	dataset).	
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	Figure	19.	Four	graphs	each	showing	Model	6’s	predicted	effects	of	turning	a	male	participant	into	a	female	
participant.	The	interactions	between	social	and	asocial	models,	and	close-	and	open-ended	conditions	were	
the	same	as	Figure	17.	These	four	graphs	set	participant	age	at	‘high’	(9.61,	one	standard	deviation	above	the	
mean	age	of	the	entire	usable	dataset).	The	degree	of	internal	evidence	of	failure	was	kept	‘low’	(i.e.,	0.69,	one	
standard	deviation	below	the	mean	score	of	the	entire	usable	dataset).	

Figure	18.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	each	showing	Model	6’s	predicted	effects	of	turning	a	
male	participant	into	a	female	participant.	The	interactions	between	social	(graphs	C	and	D)	and	asocial	
models	(graphs	A	and	B),	and	close-ended	(graphs	A	and	C)	and	open-ended	tasks	(graphs	B	and	D)	were	the	
same	as	in	Figure	17.	These	four	graphs	also	set	participant	age	at	‘low’	(i.e.,	6.01,	one	standard	deviation	below	
the	mean	age	of	the	entire	usable	dataset).	However,	the	degree	of	internal	evidence	of	failure	was	set	at	‘high’	
(i.e.,	8.54,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	dataset).	
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Figure	20.	Four	graphs	each	showing	Model	6’s	predicted	effects	of	turning	a	male	participant	into	a	female	
participant.	The	interactions	between	social	and	asocial	models,	and	close-	and	open-ended	conditions	were	
the	same	as	Figure	17.	These	four	graphs	set	both	participant	age	at	‘high’	(9.61,	one	standard	deviation	above	
the	mean	age	of	the	entire	usable	dataset)	as	well	as	the	degree	of	internal	evidence	of	failure	at	‘high’	(i.e.,	
8.54,	one	standard	deviation	above	the	mean	score	of	the	entire	usable	dataset).	
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Chapter	5:	Results	and	discussion	of	the	effects	of	the	close-ended	task	

In	Chapter	5	I	ask:	‘How	is	microstructure	and	macrostructure	copying	affected	

by	close-ended	conditions	as	used	in	previous	social	learning	studies?’	This	

question	was	addressed	by	statistically	comparing	the	similarity	of	children’s	

buildings	across	the	eight	conditions	outlined	in	Chapter	3.	I	then	discuss	the	

results	for	each	of	the	four	hypotheses	in	order	to	make	sense	of	the	information	

presented	in	terms	of	its	implications	for	the	current	thesis.	In	broad	terms,	I	

argue	data	indicated	that	(1)	in	the	close-ended	task	there	was	greater	similarity	

of	macrostructure	designs	to	the	social	model	than	in	the	open-ended	task,	(2)	

that	in	close-ended	conditions	there	was	greater	microstructure	similarity	to	the	

social	model	when	the	model	was	social	rather	than	asocial,	and	(3)	that	in	

close-ended	conditions	the	successful	social	model	(rather	than	the	unsuccessful	

social	model)	caused	greater	microstructure	similarity	to	the	social	model.	

However,	I	also	argue	(4)	that	data	gave	only	the	weakest	support,	among	

younger	children,	to	the	prediction	that	social	model	success	would	not	be	a	

useful	predictor	of	macrostructure	similarity	in	the	close-ended	task.	

Furthermore,	a	predominant	theme	of	the	results	was	variation	and	

interdependence.	The	hypothesised	effects	of	the	main	predictor	variables	were,	

in	most	cases,	supported	by	data;	yet	these	effects	varied	in	strength,	as	well	as	

sometimes	direction,	dependent	on	the	status	of	other	variables	included	in	each	

model.	

	

5.1:	Hypothesis	1	

In	Hypothesis	1	I	predicted	that,	across	all	conditions,	the	close-ended	task	

(versus	the	open-ended	task)	would	be	a	positive	predictor	of	macrostructure	

similarity	scores,	since	only	in	close-ended	conditions	were	participants	verbally	

instructed	to	build	the	tallest	tower.	The	model	for	this	first	hypothesis	had	

access	to	559	cases,	with	the	6	cases	removed	being	the	same	as	those	above	for	

the	macrostructure	data	in	Chapter	4.	As	for	Chapter	4,	I	compared	models	with	

many	permutations	of	interactions	between	different	predictor	variables.	

Descriptions	of	these	various	models,	and	an	account	of	the	comparisons	

between	the	models,	can	be	found	in	Appendix	7.1.	
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(Model	7)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βNNi	+	βGGi	+	βCSCSi	+	βCNCNi	+	βCGCGi	+	βCSNCSNi	+	

βCSGCSGi	+	βCNGCNGi	+	βCSNGCSNGi	

The	main	predictor	is	the	variable	‘close’	(C,	as	opposed	to	O,	the	variable	used	in	

Chapter	4	to	denote	the	presence	of	the	open-ended	task),	which	interacted	with	

the	other	predictor	variables:	the	social	rather	than	asocial	model	(S),	the	degree	

of	the	participant’s	internal	evidence	of	failure	(N),	and	the	age	of	the	participant	

(G).	Adding	interactions	with	any	more	variables,	such	as	the	sex	of	the	

participant	or	the	success	of	the	model,	or	swapping	these	variables	for	the	ones	

in	the	above	model,	resulted	in	worse	estimates.	I	look	first	at	the	posterior	

mean	for	‘close’.	The	influence	of	‘close’	on	the	outcome	variable	appears	to	have	

been	strong:	its	mean	posterior	main	effect	was	2.36.	However,	large	variation	in	

the	posterior	distribution	(SD=1.52;	HDPI=0.89,	between	-0.05	and	4.76)	

indicates	that	the	effect	of	the	close-ended	task	may	have	been	dependent	on	

other	sources	of	variation	in	the	model.	The	marginal	effect	of	‘close’,	as	

calculated	by	Model	7,	is	illustrated	in	Figure	21.	Since	Model	7	had	four	

variables,	each	interacting	with	each	other	in	various	combinations,	it	is	

necessary	to	use	graphs	to	understand	how	the	effects	of	each	of	them	are	

dependent	on	the	effects	of	the	others.	While	Figure	21	illustrates	the	marginal	

effect	of	the	‘close’	variable,	to	grasp	the	real	effect	of	‘close’	on	the	outcome	

variable	it	must	be	considered	at	the	same	time	as	the	effects	of	the	other	

predictor	variables	in	Model	7.	
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Figures	22	and	23	show	the	predicted	effects	of	close-ended	conditions	on	

macrostructure	similarity	scores,	when	participants	observed	either	a	social	or	

asocial	model,	experienced	either	a	high	or	low	degree	of	internal	evidence	of	

failure,	and	were	either	younger	or	older.	Under	a	number	of	conditions,	the	

predicted	effect	of	‘close’	was	to	increase	macrostructure	similarity	scores.	This	

was	consistent	with	the	indications	of	Figure	21	and	Hypothesis	1.	However,	this	

positive	effect	of	‘close’	on	macrostructure	similarity	varied	with	the	influence	of	

other	variables.	There	was	a	clearly	positive	effect	of	‘close’	in	at	least	four	of	the	

eight	conditions:	(1)	the	asocial	model	and	low	internal	evidence	of	failure	

(graph	A,	Figure	22)	and	(2)	the	asocial	model	and	high	internal	failure	in	

younger	children	(graph	B,	Figure	22),	and	(3)	the	asocial	model	and	high	

internal	failure	(graph	B,	Figure	23)	and	(4)	the	social	model	and	high	internal	

failure	in	older	children	(graph	D,	Figure	23).	

Figure	21.	1000	samples	from	the	posterior	distribution	for	the	marginal	effect	of	‘close’,	produced	by	Model	7.	
This	graph	shows	the	range	of	values	(-5	to	positive	10,	on	the	horizontal	axis)	which	the	effect	of	‘close’	could	have	
on	the	outcome	variable,	and	the	posterior	probability	(on	the	vertical	asxis)	that	Model	7	assigned	to	these	values.			
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This	is	a	less	consistent	effect	than	what	was	predicted	in	Hypothesis	1.	

Interestingly,	the	two	conditions	in	which	‘close’	seems	to	have	had	the	greatest	

effect	were	opposite	of	one	another:	younger	children	in	asocial	conditions	with	

low	internal	evidence	of	failure	(graph	A,	Figure	22),	and	older	children	in	social	

conditions	with	high	evidence	of	failure	(graph	D,	Figure	23).	The	effect	of	‘close’	

among	the	younger	children	with	the	asocial	model	and	low	internal	evidence	of	

failure	(graph	A,	Figure	22)	disappeared	for	older	children	in	the	equivalent	

condition	(graph	A,	Figure	23).	The	effect	of	‘close’	in	older	children	with	a	social	

model	and	high	internal	evidence	of	failure	(graph	D,	Figure	23)	appeared	to	

diminish	with	younger	children	(graph	D,	Figure	22)	too.	Two	conditions	

appeared	to	show	no	real	change	at	all	in	macrostructure	similarity	scores.	

These	two	conditions	were	also	quite	different	from	one	other:	in	younger	

Figure	22.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	describing	Model	7’s	predicted	effects	of	‘close’	on	
macrostructure	similarity	scores.	Graphs	A	and	B	(on	the	left)	show	the	effect	of	‘close’	with	a	model	irrelevant	
for	children’s	building	(i.e.	the	‘asocial’	model),	while	graphs	C	and	D	(on	the	right)	show	the	effect	of	‘close’	with	
a	social	model.	Graphs	A	and	C	(on	the	far	left	and	the	second	from	right)	describe	the	effect	of	‘close’	with	low	
internal	evidence	of	failure.	‘Low’	internal	evidence	of	failure	was	set	at	one	standard	deviation	below	the	mean	
of	4.62.	Graphs	B	and	D	(the	second	from	left	and	far	right)	show	the	effect	of	‘close’	with	high	internal	evidence	of	
failure:	one	standard	deviation	above	the	mean.	The	participants’	age	was,	in	these	four	graphs,	set	at	6.01	years	
old.	This	was	one	standard	deviation	below	the	mean	age	of	the	participants	across	all	conditions	(7.8	years	old).	
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children	with	a	social	model	and	low	internal	evidence	of	failure	(graph	C,	Figure	

22),	and	in	older	children	with	an	asocial	model	and	also	low	internal	evidence	

of	failure	(graph	A,	Figure	23).	The	hypothesis	was	thus	generally	supported,	but	

with	exceptions.	See	Appendix	8.1	for	some	further	detail	of	the	results	

presented	in	Figures	22	and	23.	

	

I	now	move	on	to	discuss	the	implications	of	these	results	for	the	current	study.	

Hypothesis	1	concerned	how	macrostructure	copying	varied	between	the	close-	

and	open-ended	conditions.	It	predicted	that	across	all	conditions	the	close-

ended	task	(versus	the	open-ended	task)	should	be	a	positive	predictor	of	

macrostructure	similarity	scores.	It	justified	this	by	arguing	that	only	in	close-

ended	conditions	were	participants	verbally	instructed	to	build	the	tallest	tower,	

so	they	should	be	more	constrained	to	building	something	akin	to	a	tower	than	

children	who	were	not	given	these	instructions.	This	hypothesis	seems	to	have	

found	some	support	in	the	data,	as	nearly	all	conditions	showed	at	least	a	

Figure	23.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	the	effects	of	‘close’	on	macrostructure	
similarity.	The	interactions	between	the	social	model	(graphs	C	and	D)	versus	asocial	model	(graphs	A	and	B)	
and	low	(graphs	A	and	C)	versus	high	internal	evidence	of	failure	(graphs	B	and	D)	were	the	same	as	Figure	22,	
except	that	in	these	four	graphs,	the	children	were	9.6	years	old,	one	standard	deviation	above	the	mean	age	for	
all	usable	samples	(7.8	years	old).	
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weakly	positive	effect	of	the	close-ended	task	on	macrostructure	similarity.	This	

means	that	Model	7	predicted,	through	its	encounters	with	the	data,	that	by	

exposing	a	participant	to	the	close-ended	task	their	build	would	likely	exhibit	

greater	macrostructure	similarity	to	the	model	than	if	they	had	been	exposed	to	

the	open-ended	task.	This	is	in	line	with	the	argument	made	above,	that	close-

ended	tasks	restrict	participants’	building	(see	Carr	2016;	Legare	et	al.	2015	for	

examples	of	the	effectiveness	of	such	verbal	instruction).	

	

It	is	important	that	Model	7	should	predict	that	the	positive	effect	would	not	be	

restricted	to	conditions	with	a	social	model,	since	the	verbal	instructions	to	

participants	may	merely	incentivise	copying	of	the	social	model,	thus	having	a	

lesser	effect	when	the	model	is	irrelevant	to	children’s	building	(i.e.,	when	the	

model	is	‘asocial’).	Indeed	Model	7	indicated	that	three	out	of	four	conditions	

with	an	asocial	model	showed	a	clearly	positive	effect	of	close-ended	conditions	

on	macrostructure	similarity.	However,	only	half	of	the	eight	conditions	in	total	

showed	that	this	positive	relationship	was	strong	enough	for	the	close-ended	

task	to	have	had	a	meaningful	impact	on	macrostructure	similarity	scores.	Thus,	

the	effect	of	the	close-ended	task	on	macrostructure	similarity	did	seem	

dependent	on	the	effects	of	other	variables	in	interesting	ways.	

	

Three	of	the	four	conditions	in	which	a	positive	effect	of	the	close-ended	task	

was	harder	to	observe	were	found	when	participants	observed	the	social	model.	

One	explanation	could	be	that	the	effect	of	the	social	model	increased	

macrostructure	similarity	to	such	a	degree	in	the	open-ended	task	that	changing	

the	task	into	a	close-ended	one	had	little	effect	on	increasing	macrostructure	

similarity	further.	This	is	given	support	by	observing	how	much	further	the	blue	

lines	spread	towards	the	bottom	of	the	left	hand	side	of	graphs	C	and	D	in	

Figures	22	and	23,	when	the	model	was	social,	rather	than	asocial	as	in	graphs	A	

and	B	(respectively),	and	even	more	so	when	the	participants	were	older	and	

internal	evidence	of	failure	was	lower.	This	would	not	explain,	however,	the	lack	

of	effect	of	the	close-ended	task	on	macrostructure	similarity	amongst	older	

children	exhibiting	low	internal	evidence	of	failure	and	observing	the	asocial	

model	(Figure	23’s	graph	A).	Furthermore,	it	does	not	explain	how	maybe	the	
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strongest	effect	of	the	close-ended	task	was	found	with	older	children	exhibiting	

higher	internal	evidence	of	failure	and	with	the	social	model	(Figure	23’s	graph	

D).	Perhaps	the	encounter	with	internal	evidence	of	failure	led	participants	to	

copy	the	model	more	closely,	and	stick	to	their	instructions	more	rigidly.	This	

would	be	in	line	with	previous	evidence	that	greater	uncertainty	in	a	task	

incentivises	greater	reliance	on	social	information	(Wood,	Kendal	&	Flynn	

2013a).	In	fact,	higher	internal	evidence	of	failure	seems	predicted	to	increase	

the	positive	effect	of	the	close-ended	task	in	all	conditions,	including	with	the	

asocial	model.	The	inverse	interpretation	thus	appears	more	plausible:	that	

participants	engaging	with	the	instructions	to	build	a	tower	perhaps	

encountered	less	internal	evidence	of	failure	than	participants	building	other,	

more	‘experimental’	structures.	However,	this	would	not	explain	why	the	effect	

of	the	close-ended	task	with	younger	children	did	not	show	the	same	influence	

of	high	versus	low	internal	evidence	of	failure.	Overall,	a	positive	effect	of	the	

close-ended	task	on	macrostructure	similarity	appears	present	under	several	

conditions,	but	it	was	also	influenced	by	other	variables	which	could	severely	

dampen	its	effect.	Thus	Hypothesis	1	found	support	particularly	where	the	

model	was	asocial	(especially	so	in	younger	children)	and	where	participant	

internal	evidence	of	failure	was	high	(especially	so	with	older	children).	

	

5.2:	Hypothesis	2	

In	Hypothesis	2	I	predicted	that,	across	the	close-ended	conditions,	the	presence	

of	the	‘social’	model	would	be	a	positive	predictor	of	variation	in	microstructure	

similarity	scores,	with	higher	scores	than	when	participants	observed	the	

‘asocial’	model.	The	data	used	here	numbered	273	cases.	This	was	due	to	the	

four	cases	dropped	for	the	reasons	discussed	above,	and	the	nature	of	the	

hypothesis,	which	did	not	make	a	prediction	about	the	effects	of	social	versus	

asocial	models	in	open-ended	conditions.	The	model	comparison	procedure	was	

also	undertaken	for	this	hypothesis,	an	account	of	which	can	be	found	in	

Appendix	7.2.	The	description	of	the	resulting	model	is:	
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(Model	8)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βUUi	+	βNNi	+	βGGi	+	βSUSUi	+	βSNSNi	+	βSGSGi	+	βSNGSUNi	+	

βSUNSUGi	+	βSUGSNGi	+	βSUNGSUNGi	

In	this	model,	the	main	predictor	variable	was	‘social’	(S).	This	variable	

interacted	with	three	others:	model	success	(U),	internal	(i.e.	participant)	

evidence	of	failure	(N),	and	participant	age	(G).	The	marginal	effect	of	‘social’,	as	

calculated	in	Model	8,	is	illustrated	in	Figure	24.	This	first	evidence	appears	to	

have	contradicted	Hypothesis	2,	with	the	greater	posterior	probability	lying	

over	the	negative	values.	Indeed	the	mean	effect	of	‘social’	was	-1.39.	However,	

there	was	posterior	probability	for	a	positive	effect	of	‘social’	as	well.	The	mean	

effect	had	a	large	standard	deviation	of	1.71,	and	the	0.89	HPDI	reached	from						

-4.26	to	positive	1.19.	This	indicates	that	the	effect	of	‘social’	may	have	been	

dependent	on	the	effects	of	other	variables.	To	see	whether	there	was	a	

difference	between	the	effects	of	‘social’	in	interaction	with	these	other	

variables,	more	graphs	are	required.	

	

Figure	24.	Graph	showing	the	posterior	distribution	for	the	marginal	effect	of	the	variable	‘social’	on	
microstructure	similarity	scores.	
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Figures	25	and	26	illustrate	Model	8’s	predictions	for	the	effect	of	a	social	model,	

in	contrast	to	an	asocial	model,	on	microstructure	similarity	scores.	Hypothesis	

2’s	prediction	of	a	positive	effect	of	‘social’	on	microstructure	similarity	was	

clearly	supported	in	six	out	of	the	eight	conditions	graphed	below.	There	thus	

appear	to	have	been	two	exceptions	to	the	prediction.	In	young	children	with	

unsuccessful	models	and	high	internal	evidence	of	failure	(graph	B,	Figure	25),	

the	social	model	appears	to	have	decreased	microstructure	similarity	scores.	In	

young	children	with	unsuccessful	models	and	low	internal	evidence	of	failure	

(graph	A,	Figure	25),	any	positive	effect	of	the	social	model	appears	to	have	been	

small.	With	these	two	concessions,	therefore,	Hypothesis	2	appears	to	have	been	

supported.	

	

	

Figure	25.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	Model	8’s	predicted	effects	of	changing	an	
asocial	model	into	a	social	model	on	microstructure	similarity	scores.	The	effect	of	a	social	model	was	here	in	
interaction	with	the	success	of	the	model,	and	participants’	internal	evidence	of	failure	and	age.	Graphs	A	and	B	
(on	the	left)	show	the	impact	of	a	social	model	when	the	models	(both	social	and	asocial)	were	unsuccessful,	
while	graphs	C	and	D	(on	the	right)	show	the	impact	of	a	social	model	when	the	models	were	successful.	Graphs	A	
and	C	(on	the	far	left	and	second	from	right)	show	the	impact	of	a	social	model	when	a	participant’s	internal	
evidence	of	failure	was	one	standard	deviation	below	the	mean	score,	while	graphs	B	and	D	(second	from	left	and	
on	the	far	right)	show	the	impact	of	a	social	model	when	a	participant’s	internal	evidence	of	failure	was	one	
standard	deviation	above	the	mean.	For	all	four	graphs,	the	participant’s	age	was	set	at	6.01,	one	standard	
deviation	below	the	mean	of	the	entire	usable	dataset.	
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In	Figure	25,	with	younger	children,	a	successful	(graphs	C	and	D)	rather	than	

unsuccessful	social	model	(graphs	A	and	B)	was	predicted	to	cause	greater	

microstructure	similarity	scores	with	both	low	and	high	internal	evidence	of	

failure.	With	older	children,	in	Figure	26,	the	effect	of	a	successful	social	model	

(graphs	C	and	D)	made	the	already	positive	effect	of	an	unsuccessful	social	

model	even	stronger,	across	both	low	and	high	internal	evidence	of	failure.	

When	younger	participants	were	more	unsuccessful	(graphs	B	and	D	in	Figure	

25)	the	effect	of	a	social	model	on	microstructure	similarity	was	reduced	

compared	to	when	they	demonstrated	less	internal	evidence	of	failure	(graphs	A	

and	C).	The	effect	of	increasing	participant	age	appears	to	have	strengthened	the	

positive	effect	of	a	social	model	across	all	conditions	(graphs	A	to	D	between	

Figures	25	and	26).	More	detailed	description	of	the	results	of	this	statistical	

analysis	can	be	found	in	Appendix	8.2.	

	

Figure	26.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	Model	8’s	predicted	effects	of	changing	an	
asocial	model	into	a	social	model	on	microstructure	similarity	scores.	The	interactions	between	the	successful	
(graphs	C	and	D)	versus	unsuccessful	models	(graphs	A	and	B)	and	low	(graphs	A	and	C)	versus	high	internal	
evidence	of	failure	(graphs	B	and	D)	are	the	same	as	in	Figure	25,	except	for	participant	age.	In	these	four	graphs,	
the	participant	age	was	instead	set	at	one	standard	deviation	above	the	mean,	at	9.61	years	old.	
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I	now	consider	the	implications	of	these	results	for	the	current	thesis.	The	

second	hypothesis	moved	from	macrostructure	to	microstructure,	exploring	

how	microstructure	similarity	scores	were	affected	when	macrostructure	was	

constrained	by	the	close-ended	task	(as	seen	in	Hypothesis	1).	In	doing	this,	I	

aimed	to	replicate	findings	from	previous	social	learning	studies	conducted	with	

close-ended	tasks.	Specifically,	I	predicted	that	the	microstructure	of	

participants’	builds	would	be	more	similar	to	the	microstructure	of	the	model	

when	the	participants	observed	the	relevant	model	(i.e.,	the	‘social’	model)	

rather	than	the	irrelevant	model	(the	‘asocial’	model).	The	effect	was	predicted	

to	be	observable	whether	the	social	and	asocial	models	were	successful	or	

unsuccessful	(see	Smith,	Ward	&	Schumacher	1993;	Rook	2008;	Shalley	&	Perry-

Smith	2001).	Generally	this	prediction	held	true,	with	most	data	supporting	

Hypothesis	2.	

	

In	older	children,	Model	8	predicted	that	the	social	model	would	cause	greater	

similarity	in	participants’	microstructure	scores	regardless	of	whether	the	

model	was	successful	or	unsuccessful,	or	whether	the	participants	were	

successful	or	unsuccessful	in	building.	The	younger	participants	did	show	more	

variation,	however.	When	the	model	was	successful,	they	did	show	greater	

microstructure	similarity	to	the	model.	However	when	the	model	was	

unsuccessful,	this	relationship	was	not	present.	Instead,	when	younger	children	

exhibited	less	internal	evidence	of	failure	there	appeared	to	be	little	effect	of	an	

unsuccessful	social	model	on	microstructure	similarity	scores	at	all,	and	when	

the	younger	children	showed	greater	internal	evidence	of	failure	it	appeared	

that	Model	8	predicted	that	the	unsuccessful	social	model	would	cause	lower	

microstructure	similarity	scores.	In	other	words,	younger	children	who	

exhibited	greater	internal	evidence	of	failure	were	less	likely	to	build	with	a	

microstructure	similar	to	the	social	model	when	they	observed	the	unsuccessful	

social	model.	This	could	be	interpreted	as	younger	children	being	more	selective	

of	the	social	information	they	copied	than	the	older	children.	

	

However,	it	is	also	true	that	(1)	the	positive	effect	of	a	social	model	on	older	

children’s	microstructure	similarity	scores	was	stronger	when	the	model	was	
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successful,	and	that	(2)	older	children	showed	a	greater	positive	relationship	

between	the	successful	social	model	and	microstructure	similarity	than	the	

younger	children.	Therefore	the	explanation	of	the	effect	may	partly	be	that	

younger	children	simply	copied	the	model	less,	so	that	when	they	too	reduced	

their	reliance	on	the	unsuccessful	model,	this	was	expressed	as	no	influence	of	

the	model	on	microstructure	similarity.	This	would	not	explain,	however,	the	

negative	relationship	between	the	presence	of	an	unsuccessful	social	model	and	

microstructure	similarity	for	younger	children	with	high	internal	evidence	of	

failure.	

	

It	is	noteworthy	that	higher	internal	evidence	of	failure	was	associated	with	

greater	dissimilarity	between	participant	and	model	microstructure.	This	same	

trend	was	more	weakly	visible	amongst	the	older	children,	too.	It	would	seem	at	

odds	with	the	findings	of	the	Hypothesis	1,	and	thus	challenges	both	

explanations	given	above:	(A)	that	greater	internal	evidence	of	failure	caused	

more	reliance	on	social	information,	and	(B)	that	in	this	experimental	context	

greater	reliance	on	social	information	caused	lower	internal	evidence	of	failure.	

However,	while	Hypothesis	1	dealt	with	variation	in	macrostructure,	Hypothesis	

2	dealt	with	microstructure,	so	it	is	plausible	(indeed	hypothesised	for	Chapter	

6)	that	the	microstructure/macrostructure	division	accounts	for	differences	in	

internal	evidence	of	failure’s	effects.	Data	thus	far,	therefore,	has	indicated	that	

higher	internal	evidence	of	failure	was	associated	with	both	greater	and	lesser	

similarity	scores,	depending	on	whether	the	outcome	variable	was	participants’	

macrostructure	or	microstructure.	Moreover,	Hypothesis	2	was	generally	

supported,	with	reservations	for	younger	children	who	observed	the	

unsuccessful	model.	

	

5.3:	Hypothesis	3	

Hypothesis	3	stated	that	across	close-ended	social	model	conditions,	the	success	

of	the	model	would	be	a	positive	predictor	of	variation	in	microstructure	

similarity	scores.	This	is	because	the	successful,	but	not	unsuccessful,	social	

model	would	show	the	microstructure	design	to	be	useful	in	tower	building.	

After	removing	cases	of	missing	data,	and	of	participants	building	in	open-ended	
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conditions,	the	sample	size	used	for	Model	9	numbered	273.	The	account	of	the	

process	of	model	comparison	can	be	found	in	Appendix	7.3.	The	model	resulting	

from	this	process	is	described	as	such:	

(Model	9)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βSSi	+	βUNUNi	+	βUGUGi	+	βUSUSi	+	βUNGUNGi	+	

βUNSUNSi	+	βUGSUGSi	+	βUNGSUNGSi	

Model	9’s	main	predictor	variable	was	the	success	of	the	model	(U),	which	

interacts	with	three	other	variables:	internal	evidence	of	failure	(N),	participant	

age	(G),	and	the	sociality	of	the	model	(S).	

		

Addition	of	more	variables,	such	as	participant	sex,	reduced	the	ability	of	the	

model	to	make	predictions	about	the	data.	This	reduction	indicates	these	other	

variables	did	not	add	enough	information	to	make	them	useful	enough	to	

overcome	the	risk	of	overfitting,	so	were	probably	not	as	important	for	

understanding	the	effect	of	model	success	on	microstructure	similarity	score	

variation.	The	marginal	effect	of	model	success	in	Model	9	was	largely	positive.	

The	mean	effect	was	2.86	(SD=1.82;	HPDI=0.89,	between	0.06	and	5.80;	see	

Figure	27).	However,	I	predicted	in	Hypothesis	3	that	model	success	would	be	a	

positive	predictor	of	microstructure	score	variation	in	social	conditions.	If	model	

success	were	also	a	positive	predictor	of	microstructure	score	variation	in	

asocial	conditions,	then	it	would	appear	that	the	observed	similarity	was	due	to	

factors	other	than	copying.	

	

To	answer	this	question,	I	present	graphs	that	go	beyond	the	marginal	effect	of	

the	main	predictor	variable.	Figures	28	and	29	illustrate	the	predicted	real	

effects	of	a	successful	versus	unsuccessful	model,	dependent	on	interactions	

with	the	other	variables	of	Model	9.	Overall,	Hypothesis	3	seems	to	have	been	

supported	more	in	older	children	than	younger,	though	all	conditions	with	the	

social	model	show	a	positive	relationship	between	the	successful	model	and	

microstructure	similarity	scores.	The	strongest	predicted	effect	of	model	success	

on	microstructure	similarity	appears	to	have	been	in	older	children	with	a	social	

model	and	low	internal	evidence	of	failure	(Figure	29’s	graph	C).	The	second	
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strongest	predicted	effect	of	model	success	appears	to	have	been	younger	

children	also	with	a	social	model	and	low	internal	evidence	of	failure	(Figure	

28’s	graph	C).	Nevertheless,	younger	children	with	low	internal	evidence	of	

failure	and	an	asocial	model	(graph	A,	Figure	28)	also	displayed	a	positive	

relationship	between	model	success	and	microstructure	similarity	scores.		

For	older	children	(Figure	29)	there	was	a	clear	difference	between	participants	

in	the	social	and	asocial	model	conditions:	building	with	low	internal	evidence	of	

failure	the	direction	of	the	slope	even	reversed	between	the	social	and	asocial	

models	(graphs	A	and	C	respectively).	The	difference	between	social	(graphs	C	

and	D)	and	asocial	(graphs	A	and	B)	models	in	younger	children	(Figure	28)	was	

less	clear.	In	asocial	conditions	(graphs	A	and	B),	especially	with	low	internal	

evidence	of	failure	(graph	A),	the	positive	relationship	between	model	success	

and	microstructure	similarity	remained.	This	suggests	that	copying	may	not	

have	been	the	only	factor	in	generating	the	positive	trend	in	social	conditions	for	

younger	children.	However	it	should	be	noted	that	the	social	model	conditions	

(graphs	C	and	D)	do	display	stronger	positive	relationships	with	microstructure	

similarity	than	the	equivalent	asocial	conditions	(graphs	A	and	B),	indicating		

Figure	27.	Graph	showing	the	posterior	distribution	of	the	marginal	effect	on	microstructure	similarity	of	the	
variable	(‘U’)	that	indicates	whether	the	model	was	successful	rather	than	unsuccessful	(in	Model	9).	
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Figure	28.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	the	effect	on	microstructure	similarity	scores	
of	changing	an	unsuccessful	model	into	a	successful	model.	The	effect	of	model	success	is	shown	in	interaction	
with	the	asocial	(graphs	A	and	B	on	the	left)	versus	social	(graphs	C	and	D	on	the	right)	model,	and	low	(graphs	
A	and	C	on	the	far	left	and	second	from	right,	respectively)	and	high	(graphs	on	the	second	from	left	and	far	
right,	respectively)	internal	evidence	of	failure.	‘Low’	internal	evidence	of	failure	was	set	at	one	standard	
deviation	below	the	mean,	and	‘high’	at	one	standard	deviation	above	the	mean.	For	all	four	of	these	graphs,	
participant	age	was	set	at	6.01	years	old,	one	standard	deviation	below	the	mean	age	of	the	usable	dataset.	

Figure	29.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	the	effect	on	microstructure	similarity	scores	
of	changing	an	unsuccessful	model	into	a	successful	model.	The	graphs	illustrate	the	interactions	between	the	
asocial	(graphs	A	and	B)	versus	social	model	(graphs	C	and	D)	and	low	(graphs	A	and	C)	versus	high	internal	
evidence	of	failure	(graphs	B	and	D)	like	Figure	28	above.	However,	for	these	four	graphs,	the	participant’s	age	
was	set	at	9.61	years	old,	one	standard	deviation	above	the	mean	age	of	the	usable	dataset.	
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that	copying	of	the	successful	model	did	have	some	role	to	play	for	younger	

children.	The	influence	of	high	rather	than	low	internal	evidence	of	failure	

(graphs	B	and	D)	appears	to	have	reduced	the	influence	of	the	main	predictor	

variable	on	microstructure	similarity.	Hypothesis	3	therefore	seems	to	have	

been	supported	by	Figure	29’s	data	for	older	children,	whilst	the	effect	of	the	

successful	model	in	Figure	28’s	younger	children	was	less	clear.	See	Appendix	

8.3	for	more	detailed	description	of	the	results	of	this	statistical	analysis.	

	

Hypothesis	3	therefore	continued	to	explore	variation	in	microstructure	

similarity	scores	under	close-ended	conditions	by	focusing	on	the	effects	of	

model	success.	Hypothesis	3,	and	prior	literature	(Kendal	et	al.	2005;	Carr,	

Kendal	&	Flynn	2015;	Turner,	Giraldeau	&	Flynn	2017),	predicts	the	successful	

social	model	to	cause	increased	similarity	to	the	social	model	in	participants’	

microstructure	designs,	and	that	this	effect	should	be	recognisably	different	

from	the	effect	of	successful	asocial	models	on	participants’	microstructure	

similarity.	The	positive	relationships	between	model	success	and	microstructure	

similarity	across	all	conditions	with	a	social	model	provided	evidence	in	support	

of	Hypothesis	3.	This	was	bolstered	in	older	children	since,	where	the	model	was	

asocial,	model	success	had	negative	effects	on	microstructure	similarity.	Older	

children	thus	conformed	to	Hypothesis	3’s	predictions,	though	high	internal	

evidence	of	failure	appears	to	have	made	this	relationship	messier	than	with	low	

internal	evidence	of	failure.	

	

For	younger	children	the	picture	was	less	clear	due	to	the	somewhat	positive	

relationships	between	model	success	and	microstructure	similarity	when	the	

model	was	asocial.	Nevertheless,	the	effect	of	model	success	was	predicted	to	be	

clearer	and	stronger	when	the	model	was	social,	indicating	that	the	positive	

relationship	is	at	least	partially	explained	by	younger	children’s	increased	

reliance	on	a	social	model	when	the	model	was	successful	rather	than	

unsuccessful.	For	younger	children,	as	for	the	older	children,	high	internal	

evidence	of	failure	appears	to	have	made	the	positive	relationships	between	

model	success	and	microstructure	similarity	less	clear.	
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The	association	of	high	internal	evidence	of	failure	with	lower	microstructure	

similarity	scores	thus	appears	to	corroborate	the	findings	of	Hypothesis	2,	both	

of	these	hypotheses	being	concerned	with	variation	in	microstructure	similarity	

scores.	One	simple	explanation	for	the	positive	relationship	between	

microstructure	similarity	and	the	successful	asocial	model	in	younger	children	

exhibiting	lower	internal	evidence	of	failure,	therefore,	is	that	internal	evidence	

of	failure	was	more	a	product	of	a	child’s	building	style	than	a	cause	of	it,	in	

which	high	internal	evidence	of	failure	was	caused	by	both	a	macrostructure	

similar	to	the	social	model	(see	Hypothesis	1)	and	a	microstructure	dissimilar	to	

the	social	model	(Hypotheses	2	and	3).	However,	it	does	not	explain	why	only	

younger	children	showed	this	positive	relationship	between	asocial	model	

success	and	microstructure	similarity	scores,	while	older	children	showed	a	

negative	relationship	between	the	same	variables.	Overall,	then,	Hypothesis	3	

seems	to	have	support	from	the	data,	albeit	in	a	clearer	way	from	older	rather	

than	younger	children,	and	from	participants	exhibiting	lower	rather	than	

higher	internal	evidence	of	failure.	

	

5.4:	Hypothesis	4	

Hypothesis	4	stated	that	across	close-ended	social	model	conditions,	the	success	

of	the	model	would	not	be	a	good	predictor	of	variation	in	macrostructure	

similarity	scores.	This	is	because	macrostructure	diversity	should	be	

constrained	by	the	close-ended	setup.	The	sample	size	of	the	data	for	Model	10,	

below,	also	numbered	273.	This	number	was	reached	by	subtracting	the	two	

builds	for	which	macrostructure	were	not	coded,	the	cases	for	which	other	data	

were	absent,	and	those	participants	who	built	open-ended	conditions	(since	the	

hypothesis	did	not	make	a	prediction	about	these	cases).		

(Model	10)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βSSi	+	βUNUNi	+	βUGUGi	+	βUSUSi	+	βUNGUNGi	+	

βUNSUNSi	+	βUGSUGSi	+	βUNGSUNGSi	

In	this	model,	variation	in	the	macrostructure	similarity	score	outcome	variable	

was	predicted	by	the	main	predictor,	the	successful	(versus	unsuccessful)	model	

(U),	in	interaction	with	three	other	predictor	variables:	internal	evidence	of	
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failure	(N),	participant	age	(G),	and	the	social	versus	asocial	model	(S).	As	above,	

the	addition	of	further	predictor	variables	and	interactions	led	to	worse	

predictions	(see	Appendix	7.4	for	greater	detail).	Figure	30	illustrates	the	

centring	of	the	mean	effect	of	‘successful’	on	-0.06	(SD=2.37;	HPDI=0.89,	

between	-3.82	and	3.61).	However,	Model	10	includes	a	variable	which	

describes	the	difference	between	social	and	asocial	models.	This	variable	may	

contribute	to	the	wide	standard	deviation	and	HPDI,	if	the	effect	of	model	

success	varied	between	the	social	and	asocial	models.	This	can	be	explored	

further	through	graphing	the	effects	of	the	variables	on	the	outcome	variable	in	

interaction	with	one	another.	

Figures	31	and	32	illustrate	Model	10’s	predicted	effects	of	changing	an	

unsuccessful	model	into	a	successful	model,	in	interaction	with	the	other	

variables	of	the	model:	participant	internal	evidence	of	failure,	participant	age,	

and	the	social	versus	asocial	model.	Hypothesis	4	initially	seems	to	have	been	

supported	in	younger	children	(Figure	31)	but	challenged	in	older	children	

(Figure	32).	In	Figure	31,	the	younger	children’s	macrostructure	similarity	

scores	showed	an	effect	of	the	social	successful	model	(graphs	C	and	D)	which	

was	no	more	positive	than	that	of	the	asocial	successful	model	(graphs	A	and	B).	

Figure	30.	Graph	showing	the	posterior	distribution	of	the	marginal	effect	of	the	variable	for	model	
success	in	Model	10.	
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For	younger	children	exhibiting	high	internal	evidence	of	failure,	there	was	a	

negative	relationship	between	asocial	model	success	and	macrostructure	

similarity	(graph	B)	which	seems	to	have	been	made	neutral	when	the	model	

was	social	(graph	D).	In	contrast,	the	older	children	(Figure	32)	showed	a	clearly	

positive	effect	of	a	social	successful	model	(graphs	C	and	D),	while	the	effect	of	

an	asocial	successful	model	on	macrostructure	similarity	was	weaker	(graphs	A	

and	B).	Hypothesis	4	therefore	appears	to	have	been	supported	only	amongst	

the	younger	children.	Some	further	discussion	of	results	displayed	in	Figures	31	

and	32	can	be	found	in	Appendix	8.4.	

	

	

Figure	31.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	describing	Model	10’s	predicted	effects	on	
macrostructure	similarity	scores	of	changing	an	unsuccessful	model	into	a	successful	model.	The	effect	of	
model	success	is	shown	in	interaction	with	the	asocial	(graphs	A	and	B,	on	the	left)	versus	social	(graphs	C	and	
D,	on	the	right)	model,	and	low	(graphs	A	and	C,	on	the	far	left	and	second	from	right	respectively)	versus	high	
(graphs	B	and	D,	the	graphs	second	from	left	and	on	the	far	right	respectively)	internal	evidence	of	failure.	
‘Low’	internal	evidence	of	failure	was	set	at	one	standard	deviation	below	the	mean,	and	‘high’	at	one	standard	
deviation	above	the	mean.	For	all	four	of	these	graphs,	participant	age	was	set	at	6.01	years,	one	standard	
deviation	below	the	mean	age.	
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The	fourth	hypothesis	returned	to	macrostructure	similarity	scores	to	compare	

how	the	success	of	the	model	affected	variation	in	this	measure	of	structural	

similarity,	rather	than	in	microstructure.	In	Hypothesis	4	I	predicted	that	across	

close-ended	social	model	conditions,	the	success	of	the	social	model	would	not	

be	a	good	predictor	of	variation	in	macrostructure	similarity	scores,	due	to	the	

constraints	of	the	close-ended	task.	If	macrostructure	variation	were	

constrained	by	the	close-ended	task,	there	should	have	been	little	to	no	effect	of	

changing	an	unsuccessful	social	model	into	a	successful	one.	This	prediction	

appeared	to	have	been	supported	by	data	from	younger	but	not	older	children.	

	

Younger	children	showed	no	positive	effect	of	social	model	success	when	

internal	evidence	of	failure	is	high,	and	no	more	positive	an	effect	of	a	successful	

social	model	compared	to	a	successful	asocial	model	when	internal	evidence	of	

failure	was	low.	Simply,	when	younger	children	observed	the	successful	social	

Figure	32.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	describing	Model	10’s	predicted	effect	on	
macrostructure	similarity	scores	of	changing	an	unsuccessful	model	into	a	successful	model.	The	
graphs	illustrate	the	interactions	between	the	asocial	(graphs	A	and	B)	versus	social	model	(graphs	
C	and	D)	and	low	(graphs	A	and	C)	versus	high	internal	evidence	of	failure	(graphs	B	and	D)	like	
Figure	31	above.	However,	for	these	four	graphs,	the	participant’s	age	was	set	at	9.61	years	old,	one	
standard	deviation	above	the	mean	age.	
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model	they	showed	no	increase	in	the	macrostructure	similarity	of	their	builds	

to	this	successful	social	model	build	compared	to	when	the	model	was	successful	

yet	irrelevant	to	their	building	(i.e.,	when	the	model	was	‘asocial’).	This	was	not	

the	case	for	older	children,	who	did	show	more	positive	effects	of	a	successful	

model	when	the	successful	model	was	social	(i.e.,	relevant)	rather	than	asocial	

(i.e.,	irrelevant).	Macrostructure	constraints	imposed	by	the	close-ended	task	

thus	seemed	to	affect	younger	children’s	macrostructure	similarity	more	than	

older	children’s.	This	may	be	because	younger	children	could	have	paid	greater	

hindrance	to	the	instructions	given	to	them.	

	

However,	if	this	were	the	case,	we	would	expect	to	see	the	blue	lines	on	the	left	

hand	sides	(i.e.,	with	the	unsuccessful	rather	than	successful	model)	of	each	of	

Figure	31’s	graphs	spread	out	more	than	the	lines	of	Figure	32’s	graphs,	which	is	

not	the	case.	Indeed	when	the	model	was	unsuccessful,	the	older	children	

showed	greater	macrostructure	similarity	scores	than	the	younger	children.	The	

answer	may	thus	lie	with	young	children	having	been	less	influenced	by	social	

information	than	older	children	in	all	conditions.	Hypotheses	2	and	3	both	found	

that	older	children	more	consistently	and	strongly	supported	predictions	

concerning	increased	copying	of	a	social/successful	model	than	younger	

children.	It	is	thus	perhaps	less	surprising	that	in	Hypothesis	4	younger	children	

more	readily	supported	a	prediction	of	decreased	similarity	in	macrostructure	

than	older	children.	

	

Nevertheless,	it	is	worth	noting	that	the	predicted	positive	effects	of	a	successful	

social	model	on	macrostructure	similarity	scores	in	a	close-ended	task	(Figures	

31	and	32,	Hypothesis	4)	were	weaker	than	the	predicted	positive	effects	of	a	

successful	social	model,	also	in	a	close-ended	task,	on	microstructure	similarity	

scores	(Figures	28	and	29,	Hypothesis	3).	This	suggests	that,	when	the	task	was	

close-ended,	microstructure	similarity	was	more	positively	affected	by	changing	

a	social	model	from	unsuccessful	to	successful	than	macrostructure	similarity	

scores.	This	gives	only	weak	support	to	Hypothesis	4,	with	the	effect	having	

been	less	than	what	Hypothesis	4	originally	predicted.	The	effects	of	model	
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success	on	macrostructure	similarity	scores	in	an	open-ended	task,	rather	than	

the	close-ended	one,	are	explored	in	Chapter	6.	
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Chapter	6:	Results	and	discussion	for	the	effects	of	the	open-ended	task	

In	Chapter	6	I	ask:	‘How	do	children	balance	copying	of	microstructure	and	

macrostructure	within	open-ended	play?’	I	aimed	to	create	conditions	in	which	

children	combined	social	learning	of	macrostructure	with	so-called	‘asocial’	

learning	of	microstructure,	and	conditions	in	which	children	combine	social	

learning	of	microstructure	with	‘asocial’	learning	of	macrostructure.	After	

describing	results	for	the	four	hypotheses,	I	interpret	the	results	for	each	of	the	

hypotheses	to	understand	the	results	in	terms	of	their	implications	for	the	

current	thesis.	In	broad	terms,	I	argue	the	data	indicated	(1)	that	in	the	open-

ended	task	the	success	of	the	model	only	increased	the	similarity	of	participants’	

microstructure	designs	when	the	participants	themselves	did	not	show	high	

levels	of	failure	in	the	task,	(2)	that	in	the	open-ended	task	the	effect	of	model	

success	on	macrostructure	similarity	was	varied	and	more	so	than	in	its	effect	

on	microstructure	similarity,	(3)	that	participants	demonstrating	greater	

internal	evidence	of	failure	did	not	rely	on	greater	copying	of	the	social	model’s	

microstructure	design,	and	(4)	that	participants	demonstrating	greater	internal	

evidence	of	failure	did	not	rely	on	greater	copying	of	the	social	model’s	

microstructure	design.	Again	a	predominant	theme	throughout	these	results	

was	variation	and	interdependence.	The	hypothesised	effects	of	the	main	

predictor	variables	in	each	of	the	four	hypotheses	varied	in	strength,	as	well	as	

sometimes	direction,	dependent	on	the	status	of	other	variables	included	in	each	

model.	

	

6.1:	Hypothesis	1	

Hypothesis	1	stated	that	across	the	open-ended	social	model	conditions,	the	

success	of	the	model	should	positively	predict	variation	in	microstructure	

similarity	scores,	since	the	unsuccessful	model	showed	the	microstructure	

design	to	fail.	The	sample	size	for	this	hypothesis	numbered	288	cases.	Cases	

were	excluded	if	data	were	missing	or	if	participants	built	under	close-ended	

conditions.	As	in	Chapters	4	and	5,	for	each	of	Chapter	6’s	hypotheses	a	process	

of	model	comparison	was	completed	to	find	the	model	containing	interactions	

between	the	variables	which	best	balances	risks	of	underfitting	and	overfitting.	
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An	account	of	the	comparison	process	for	Hypothesis	1	can	be	found	in	

Appendix	9.1.	The	model	used	for	this	hypothesis	is	described	as:	

(Model	11)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βUSUSi	+	βUNUNi+	βUSNUSNi	

This	model	described	variation	in	microstructure	similarity	scores	through	

interactions	between	the	main	predictor	variable,	model	success	(U),	and	two	

other	predictor	variables:	the	social	versus	asocial	model	(S),	and	internal	(i.e.	

participant)	evidence	of	failure	(N).	Adding	any	further	interactions	with	more	

predictor	variables	resulted	in	worse	model	predictions	of	future	data.	Figure	33	

shows	the	posterior	distribution	for	the	marginal	effect	of	successful	models	on	

microstructure	similarity	scores.	The	mean	effect	of	the	variable	‘successful’,	as	

calculated	by	Model	8,	was	-0.22,	with	a	standard	deviation	of	0.43	and	0.89	

HPDI	between	-0.86	and	0.49,	straddling	the	positive-negative	divide.		

	

	
	

	

	

Figure	33.	Posterior	distribution	of	the	marginal	effect	of	the	variable	‘successful’	in	Model	11.		
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Once	again	I	used	variations	on	the	triptych	plot	to	examine	the	effect	of	the	

main	predictor	variable	on	the	outcome	variable,	in	interaction	with	the	effects	

of	the	other	predictor	variables.	Figure	34	illustrates	Model	8’s	predicted	effects	

of	turning	an	unsuccessful	model	into	a	successful	model	across	social	(graphs	C	

and	D)	versus	asocial	models	(graphs	A	and	B),	and	low	(graphs	A	and	C)	versus	

high	internal	evidence	of	failure	(graphs	B	and	D).	The	results	were	not	all	in	line	

with	the	predictions	of	Hypothesis	1.	There	was	some	support	for	the	hypothesis	

from	results	for	the	effect	of	the	successful	model	in	conditions	of	low	internal	

evidence	of	failure	(graphs	A	and	C).	In	the	asocial	condition	with	low	internal	

evidence	of	failure	(graph	A),	there	appears	to	have	been	a	weakly	negative	

relationship	between	turning	an	unsuccessful	model	into	a	successful	one	and	

microstructure	similarity	scores.	This	changed	into	a	weakly	positive	

relationship	when	the	model	was	social	rather	than	asocial	(graph	C).	But	for	

participants	exhibiting	high	internal	evidence	of	failure	(graphs	B	and	D),	this	

comparison	between	asocial	and	social	conditions	did	not	hold.	There	was	a	

similarly	weak	positive	relationship	in	children	exhibiting	high	internal	evidence	

of	failure	between	asocial	model	success	and	microstructure	similarity	scores	

(graph	B).	This	was	also	inverted	in	the	social	model	condition	with	high	

internal	evidence	of	failure,	meaning	that	Model	8	predicts	that	when	there	was	

a	social	model	and	high	internal	evidence	of	failure	(graph	D),	model	success	

would	create	less	similarity	in	participants’	builds	to	the	model	build.	This	is	

contrary	to	what	I	had	predicted	in	Hypothesis	1.	

	
The	effects	of	model	success	on	microstructure	similarity	appeared	dependent	

on	the	effects	of	other	variables.	The	influence	of	changing	an	asocial	model	

(graphs	A	and	B)	into	a	social	model	(graphs	C	and	D)	inverted	the	effect	of	a	

successful	model	on	microstructure	similarity	scores.	The	influence	of	changing	

a	participant’s	internal	evidence	of	failure	from	low	(graphs	A	and	C)	to	high	

(graphs	B	and	D)	appears	to	have	also	inverted	the	effect	of	a	successful	model	

on	microstructure	similarity	scores.	More	detailed	description	of	the	effects	of	

these	interdependencies	can	be	found	in	Appendix	10.1.	
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In	Hypothesis	1	I	predicted	that	across	open-ended	conditions	with	a	social	

model,	the	success	of	the	model	should	positively	predict	variation	in	

microstructure	similarity	scores,	since	the	unsuccessful	model	showed	the	

microstructure	design	to	fail.	This	was	therefore	the	same	hypothesis	as	

Hypothesis	3	of	Chapter	5,	except	here	the	children	participated	in	an	open-

ended	task	rather	than	a	close-ended	task.	Nevertheless,	in	this	open-ended	

context	similar	positive	relationships	were	expected	between	social	model	

success	and	microstructure	similarity	as	were	found	in	Chapter	5.	Since	

participants	building	with	an	asocial	model	were	included	also,	changes	

between	the	successful	and	unsuccessful	social	models	could	be	compared	

between	the	equivalent	asocial	models	to	assess	the	significance	of	any	effect.		

	

Figure	34.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	illustrating	Model	11’s	predictions	for	the	effect	on	
microstructure	similarity	of	turning	an	unsuccessful	model	into	a	successful	model.	Graphs	A	and	B	(on	the	left)	
show	the	effect	of	‘successful’	when	the	model	was	asocial,	while	graphs	C	and	D	(on	the	right)	show	the	effect	of	
‘successful’	when	the	model	was	social.	Graphs	A	and	C	(on	the	far	left	and	second	from	right)	show	the	effect	of	
‘successful’	when	the	participant	exhibited	low	internal	evidence	of	failure,	and	graphs	B	and	D	(on	the	second	
from	left	and	far	right)	show	the	effect	of	‘successful’	when	the	participant	exhibited	high	internal	evidence	of	
failure.	‘Low’	internal	evidence	of	failure	was	set	one	standard	deviation	below	the	mean	evidence	of	failure	for	
the	entire	usable	dataset,	while	‘high’	was	set	one	standard	deviation	above	this	mean	evidence	of	failure.	
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The	hypothesis	was	supported	only	when	participants	exhibited	low	levels	of	

internal	evidence	of	failure.	When	participants	did	show	low	internal	evidence	

of	failure,	asocial	model	success	was	predicted	to	cause	children	to	build	

structures	with	slightly	less	microstructure	similarity	to	the	model	they	did	not	

observe	(i.e.,	the	social	model).	When	the	model	was	social,	however,	

participants	with	low	internal	evidence	of	failure	demonstrated	slightly	greater	

microstructure	similarity	in	their	builds	to	the	social	model	when	that	model	

was	successful	rather	than	unsuccessful.	This	is	the	relationship,	albeit	in	a	very	

weak	form,	predicted	in	Hypothesis	1.	It	therefore	corroborates	the	findings	of	

Chapter	5’s	Hypothesis	3	in	the	close-ended	task,	and	is	in	line	with	previous	

literature	indicating	(1)	that	copying	should	be	beneficial	to	individuals,	and	

sustainable	at	a	population-level,	only	when	a	learner	can	copy	information	

which	is	useful	(Giraldeau,	Valone	&	Templeton	2002;	Kendal	et	al.	2005;	

Truskanov	and	Prat	2018;	Enquist,	Eriksson	&	Ghirlanda	2007)	and	(2)	that	

children	are	able	to	alter	their	reliance	on	social	information	to	copy	more	when	

the	model	is	reliable	rather	than	unreliable,	and	efficient	rather	than	inefficient	

(Pinkham	&	Jaswal	2011;	Birch,	Vautheir	&	Bloom	2008;	Bandura	1986;	

Clement,	Koenig	&	Harris	2004;	Ma	&	Ganea	2010;	Carr,	Kendal	&	Flynn	2015;	

Turner,	Giraldeau	&	Flynn	2017).	

	

However,	this	finding	was	not	the	case	for	participants	that	exhibited	high	

internal	evidence	of	failure.	In	fact,	participants	demonstrating	high	internal	

evidence	of	failure	showed	the	reverse	effects	of	model	success	across	both	

asocial	and	social	models.	Model	11	(see	Figure	34)	predicted	that	the	success	of	

the	asocial	model	causes	participants	exhibiting	high	internal	evidence	of	failure	

to	show	increased	microstructure	similarity	to	the	model	which	these	

participants	did	not	observe.	This	was	not	the	same	finding	as	reported	in	

Hypotheses	2	and	3	of	Chapter	5,	which	found	higher	internal	evidence	of	failure	

associated	with	lower	microstructure	similarity	scores	in	the	close-ended	task.	

This	new	data,	from	the	open-ended	task,	thus	challenges	the	simple	explanation	

given	in	Chapter	5,	where	internal	evidence	of	failure	was	considered	the	

product	of	a	microstructure	which	was	dissimilar	to	that	demonstrated	by	the	
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social	model.	Either	this	explanation	is	merely	unhelpful,	or	it	is	in	some	way	

inverted	by	the	change	from	a	close-ended	to	an	open-ended	task.	

	

This	inversion	idea	is	itself	challenged	by	the	finding	that	when	the	model	was	

social	and	participant	evidence	of	failure	was	high,	model	success	was	negatively	

related	to	microstructure	similarity	scores.	This	result	does	fit	the	internal	

evidence	of	failure	explanation	from	Chapter	5,	that	internal	evidence	of	failure	

was	made	more	likely	by	a	microstructure	which	less	resembled	that	used	by	

the	social	model.	This	result	also	contradicts	the	literature	cited	above,	since	it	

suggests	that	participants	who	saw	their	own	building	to	be	more	ineffective	

than	others	relied	less	on	social	information.	It	can	be	argued	that	this	could	

make	sense	if	the	internal	evidence	of	failure	score	were	treated	only	as	an	

outcome	of	how	similar	a	child’s	building	was	to	the	model’s:	that	participants	

who	attempted	to	do	something	different	from	the	model	encountered	greater	

internal	evidence	of	failure	than	participants	who	copied	the	model.	However,	

existing	literature	informs	us	that	children	theoretically	should	(Feldman,	Aoki	

&	Kumm	1996)	and	actually	do	(Williamson,	Meltzoff	&	Markman	2008;	Wood,	

Kendal	&	Flynn	2013a)	rely	on	copying	a	social	model	more	when	their	own	

solutions	are	shown	to	be	ineffective	in	a	given	task.	Why	this	should	not	be	the	

case	here	is	currently	unclear.	The	role	of	internal	evidence	of	failure	is	

investigated	further	in	Hypotheses	3	and	4	below.	Overall	it	appears	that	in	the	

open-ended	task,	when	participants	encountered	low	internal	evidence	of	

failure,	model	success	increased	microstructure	similarity	scores	only	weakly,	

and	that	when	participants	demonstrated	higher	levels	of	internal	evidence	of	

failure	model	success	reduced	microstructure	similarity	scores.	

	

6.2:	Hypothesis	2	

In	Hypothesis	2	I	predicted	that	across	open-ended	social	model	conditions,	

model	success	would	not	be	a	positive	predictor	of	macrostructure	similarity	

scores.	For	this	hypothesis,	the	dataset	numbered	286	cases:	excluding	those	

with	missing	values	and	those	collected	from	the	close-ended	task.	Model	12,	

described	below,	was	the	product	of	the	same	process	of	model	comparison	
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described	above.	A	fuller	description	of	this	process	for	Hypothesis	2	can	be	

found	in	Appendix	9.2.	

(Model	12)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βGGi	+	βTTi	+	βUSUSi	+	βUNUNi	+	βUGUGi	+	

βUTUTi	+	βUSNUSNi	+	βUSGUSGi	+	βUSTUSTi	+	βUNGUNGi	+	βUNTUNTi	+	

βUGTUGTi	+	βUSNUSNi	+	βUSNGUSNGi	+	βUSNTUSNTi	+	βUSGTUSGTi	+	

βUNGTUNGTi	+	βUSNGTUSNGTi	

Model	9	describes	interactions	between	the	main	predictor	variable,	a	successful	

rather	than	unsuccessful	model	(U),	and	three	other	predictor	variables:	the	

social	rather	than	asocial	model	(S),	internal	evidence	of	failure	(N),	the	age	of	

the	participant	(G),	and	the	degree	of	the	participant’s	attendance	to	the	video	

(T).	Model	12’s	predicted	marginal	effect	of	model	success	on	macrostructure	

similarity	scores	had	a	quite	strongly	positive	mean	effect	of	3.83,	though	with	a	

standard	deviation	of	3.64	and	wide	0.89	HPDI	between	-2.16	and	9.38.	Figure	

35	visualises	its	wide	marginal	distribution	over	both	sides	of	zero.	

	

Figure	35.	Graph	showing	Model	12’s	posterior	distribution	for	the	marginal	effect	of	the	variable	
‘successful’.	
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Figures	36,	37,	38,	and	39	illustrate	Model	12’s	predicted	effects	on	

macrostructure	similarity	scores	of	turning	the	unsuccessful	model	into	the	

successful	model.	Within	each	of	the	graphs,	the	effect	of	‘successful’	was	

mediated	by	conditions	of	either	a	social	or	asocial	model,	and	low	or	high	

internal	evidence	of	failure.	Figures	36	and	38	show	the	effect	of	these	

interactions	when	the	participants	were	younger,	while	Figures	37	and	39	show	

the	effect	of	these	interactions	when	the	participants	were	older.	Figures	36	and	

37	show	the	effect	of	all	of	these	interactions	when	the	participants	exhibited	

low	attendance	to	the	experimental	video,	while	Figures	38	and	39	show	the	

effect	of	all	of	these	interactions	when	the	participants	exhibited	high	

attendance	to	the	experimental	video.	

	

Figure	36.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	Model	12’s	predicted	effects	on	
macrostructure	similarity	scores	of	turning	an	unsuccessful	model	into	a	successful	model.	Graphs	A	
and	B	(on	the	left)	show	the	effect	of	‘successful’	when	the	model	was	asocial,	while	graphs	C	and	D	
(on	the	right)	show	the	effect	of	‘successful’	when	the	model	was	social.	Graphs	A	and	C	(on	the	far	
left	and	second	from	right)	show	the	effect	of	‘successful’	when	the	participant	exhibited	low	
internal	evidence	of	failure,	and	graphs	B	and	D	(on	the	second	from	left	and	far	right)	show	the	
effect	of	‘successful’	when	the	participant	exhibited	high	internal	evidence	of	failure.	‘Low’	internal	
evidence	of	failure	was	set	one	standard	deviation	below	the	mean	evidence	of	failure	of	the	entire	
usable	dataset,	while	‘high’	was	set	one	standard	deviation	above	the	mean	evidence	of	failure.	For	
this	set	of	graphs,	the	participant	age	was	set	at	6.01,	one	standard	deviation	below	the	mean	
participant	age	of	the	entire	usable	dataset.	Also,	for	these	graphs,	participant	attendance	to	the	
video	was	set	at	2.44,	one	standard	deviation	below	the	mean	score.	
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Figure	37.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	Model	12’s	predicted	effects	on	
macrostructure	similarity	scores	of	turning	an	unsuccessful	model	into	a	successful	model.	The	
interactions	between	social	(graphs	C	and	D)	versus	asocial	models	(graphs	A	and	B)	and	low	
(graphs	A	and	C)	versus	high	internal	evidence	of	failure	(graphs	B	and	D)	are	the	same	as	Figure	36	
above.	However	for	this	set	of	graphs,	while	participant	attendance	to	the	video	was	again	set	to	
‘low’,	participant	age	was	set	to	9.61,	one	standard	deviation	above	the	mean	age	of	the	entire	usable	
dataset.	

Figure	38.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	showing	Model	12’s	predicted	effects	on	
macrostructure	similarity	scores	of	turning	an	unsuccessful	model	into	a	successful	model.	The	
interactions	between	social	(graphs	C	and	D)	versus	asocial	models	(graphs	A	and	B)	and	low	
(graphs	A	and	C)	versus	high	internal	evidence	of	failure	(graphs	B	and	D)	are	the	same	as	Figure	36	
above.	However	for	this	set	of	graphs,	while	participant	age	was	set	to	‘low’,	participant	attendance	
to	the	video	was	set	to	11.53,	one	standard	deviation	above	the	mean	score	for	the	entire	usable	
dataset.	
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Two	out	of	the	eight	conditions	with	a	social	model	appeared	to	uphold	

Hypothesis	2,	where	the	transformation	of	an	unsuccessful	model	into	a	

successful	model	resulted	in	no	real	change	in	macrostructure	similarity	scores:	

in	Figure	36’s	graph	C	with	younger	children	exhibiting	low	attendance	to	the	

video	and	low	internal	evidence	of	failure,	and	in	Figure	38’s	graph	C	with	

younger	children	exhibiting	high	attendance	to	the	video	and	low	internal	

evidence	of	failure.	Furthermore,	there	were	another	two	conditions,	with	a	

social	model,	where	there	was	a	negative	effect	on	macrostructure	similarity	of	

turning	an	unsuccessful	model	into	a	social	model:	in	Figure	36’s	graph	D	with	

younger	children	exhibiting	low	attendance	to	the	video	and	high	internal	

evidence	of	failure,	and	in	Figure	39’s	graph	D	with	older	children	exhibiting	

high	attendance	to	the	video	and	also	high	internal	evidence	of	failure.	There	

were	then	four	conditions,	with	a	social	model,	where,	contrary	to	Hypothesis	2,	

the	transformation	of	an	unsuccessful	social	model	into	a	successful	social	model	

results	in	increased	macrostructure	similarity	scores:	in	Figure	37’s	graph	C	and	

D	with	older	children	exhibiting	low	attendance	to	the	video	and	both	low	and	

Figure	39.	Four	graphs	showing	Model	12’s	predicted	effects	on	macrostructure	similarity	scores	of	
turning	an	unsuccessful	model	into	a	successful	model.	The	interactions	between	social	(graphs	C	
and	D)	versus	asocial	models	(graphs	A	and	B)	and	low	(graphs	A	and	C)	versus	high	internal	
evidence	of	failure	(graphs	B	and	D)	are	the	same	as	Figure	36	above.	However	for	this	set	of	graphs,	
both	participant	age	and	participant	attendance	to	the	video	were	set	to	‘high’:	one	standard	
deviation	above	their	mean	scores	for	the	entire	usable	dataset.	
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high	internal	evidence	of	failure,	in	Figure	38’s	graph	D	with	younger	children	

exhibiting	high	attendance	to	the	video	with	high	internal	evidence	of	failure,	

and	in	Figure	39’s	graph	C	with	older	children	exhibiting	high	attendance	to	the	

video	and	low	internal	evidence	of	failure.	Results	thus	give	a	mixed	picture	of	

the	effect	of	a	successful	model	on	macrostructure	similarity	scores.	When	in	

interaction	with	other	variables,	model	success	did	not	reliably	increase	the	

macrostructure	similarity	of	participants’	builds,	and	in	Figure	36,	with	young	

children	exhibiting	low	attendance	to	the	video	and	high	internal	evidence	of	

failure	(i.e.,	between	graphs	B	and	D),	the	successful	social	model	reverses	the	

apparently	positive	effect	of	a	successful	asocial	model	on	macrostructure	

similarity	scores.	

	

The	influence	of	turning	an	asocial	model	into	a	social	model	on	the	effect	of	

model	success	on	macrostructure	similarity	was	also	mixed.	There	were	four	out	

of	eight	conditions	in	which	the	social	model	seems	to	have	strengthened	the	

effect	on	macrostructure	of	whatever	the	effect	of	the	successful	asocial	model	

already	was:	in	Figure	37’s	graphs	C	and	D	with	older	children	exhibiting	low	

attendance	to	the	video	and	both	low	and	high	internal	evidence	of	failure,	and	

in	Figure	39’s	graphs	C	and	D	with	older	children	exhibiting	high	attendance	to	

the	video	and	both	low	and	high	internal	evidence	of	failure.	There	were	then	

also	two	conditions	in	which	the	change	from	the	asocial	to	social	model	

reversed	the	effect	of	a	successful	model	on	macrostructure	similarity	scores:	

between	Figure	36’s	graphs	B	and	D	with	young	children	exhibiting	low	

attendance	to	the	video	and	high	internal	evidence	of	failure,	and	between	

Figure	38’s	graphs	B	and	D	with	young	children	exhibiting	high	attendance	to	

the	video	and	also	high	internal	evidence	of	failure.	The	two	remaining	

conditions	showed	the	influence	of	a	social	rather	than	an	asocial	model	to	be	to	

make	a	relatively	strong	effect	of	a	successful	model	on	macrostructure	scores	in	

the	asocial	condition	become	weaker.	This	is	true	between	Figure	36’s	graphs	A	

and	C	with	younger	children	exhibiting	low	attendance	to	the	video	and	low	

internal	evidence	of	failure,	and	between	Figure	38’s	graphs	A	and	C	with	

younger	children	exhibiting	high	attendance	to	the	video	and	low	internal	

evidence	of	failure.	
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The	influence	of	high	internal	evidence	of	failure,	rather	than	low	internal	

evidence	of	failure,	on	the	effect	of	changing	an	unsuccessful	model	into	a	

successful	model	appears	to	have	been	various,	across	social	versus	asocial	

models,	lower	and	higher	internal	evidence	of	failure,	and	younger	and	older	

children.	The	influence	of	participant	age	on	the	effect	of	model	success	on	

macrostructure	also	appears	to	have	been	variable,	and,	while	the	effect	of	

internal	evidence	of	failure	appears	to	have	been	quite	uniform	with	the	asocial	

model,	this	variability	returned	when	the	model	was	social.	Overall,	therefore,	

the	picture	of	the	effect	of	social	model	success	on	macrostructure	similarity	

scores	is	difficult.	There	appear	to	have	been	many	important	factors,	the	

independent	effects	of	which	are	difficult	to	understand.	A	more	detailed	

account	of	the	complexities	of	the	interactions	between	the	variables	can	be	

found	in	Appendix	10.2.	

	

The	second	hypothesis	used	all	of	the	same	variables	as	Hypothesis	1,	except	the	

outcome	variable	was	changed	from	variation	in	microstructure	to	variation	in	

macrostructure.	In	Hypothesis	2	I	predicted	that	across	open-ended	social	

model	conditions,	model	success	would	not	be	a	positive	predictor	of	

macrostructure	similarity	scores.	Out	of	eight	conditions	with	a	social	model	

graphed	between	Figures	36,	37,	38,	and	39,	four	did	not	display	a	positive	

relationship	between	model	success	and	macrostructure	similarity	scores.	

However	Figure	39’s	graph	D,	with	older	children	exhibiting	higher	attendance	

to	the	video,	shared	its	negative	relationship	between	model	success	and	

macrostructure	similarity	with	Figure	39’s	asocial	model	too	(graph	B),	though	

with	the	social	model	it	was	stronger.	The	presence	of	negative	relationships	

between	model	success	and	macrostructure	similarity	scores	in	the	open-ended	

task	was	different	from	the	relationships	observed	between	model	success	and	

microstructure	similarity	scores	in	Chapter	5’s	close-ended	task	(Hypothesis	3).	

Furthermore,	of	the	four	conditions	in	which	a	positive	relationship	existed	

between	social	model	success	and	macrostructure	similarity	scores,	three	

shared	this	positive	relationship	with	the	equivalent	asocial	model	conditions.	
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This	may	be	considered	evidence	in	support	of	a	difference	between	how	

children	copy	macrostructural	information	in	close-ended	tasks	whilst	not	

copying	macrostructure	in	an	open-ended	task.	However,	the	aim	of	Chapter	6’s	

Hypotheses	1	and	2	was	to	create	conditions	in	which	the	same	children,	in	an	

open-ended	(i.e.	more	playful;	Bateson	2014;	Bateson	&	Martin	2013)	task,	

copied	the	successful	model’s	microstructure	and	the	unsuccessful	model’s	

macrostructure.	Results	in	line	with	this	prediction	would	support	the	argument	

that	children	do	copy	information	from	models	demonstrating	failure	(Meltzoff	

1995;	Huang	&	Charman	2005;	Carr,	Kendal	&	Flynn	2015).	But	this	is	

confounded	by	the	lack	of	strongly	positive	relationships	found	in	Chapter	6’s	

Hypothesis	1,	above,	between	model	success	and	microstructure	similarity.	

Indeed	there	was	no	difference	between	the	negative	effects	of	model	success	in	

older	children	demonstrating	high	internal	evidence	of	failure	on	microstructure	

and	macrostructure	similarity.	The	effects	predicted	by	Hypothesis	2	were	

therefore	only	present	under	specific	conditions.	

	

In	fact,	the	overriding	impression	from	Hypothesis	2’s	results	is	the	large	degree	

of	interdependence	between	all	of	the	variables.	It	appears	that	children’s	

building,	under	these	conditions,	was	influenced	by	a	large	number	of	factors	

which	determined	whether	the	difference	between	a	successful	and	

unsuccessful	model	(social	or	asocial)	had	a	positive	effect,	negative	effect,	or	

neutral	effect	on	how	similar	their	macrostructure	design	was	to	a	model	they	

may	or	may	not	have	seen.	This	variation	was	even	greater	among	conditions	

with	the	social	model	than	conditions	with	the	asocial	model.	For	example,	the	

strongly	positive	relationship	between	model	success	and	macrostructure	

similarity	scores	in	Figure	37’s	graph	A	could	be	turned	into	a	strongly	negative	

relationship	by	changing	participant	age	from	high	to	low,	could	be	turned	into	a	

messy	relationship	with	both	positive	and	negative	signals	by	making	the	model	

asocial	rather	than	social,	could	be	turned	into	an	even	stronger	positive	

relationship	by	turning	internal	evidence	of	failure	from	high	to	low,	and	could	

be	turned	into	another	strongly	negative	relationship	by	changing	attendance	to	

the	experimental	video	from	low	to	high.	In	fact	the	need	to	have	such	a	number	

of	graphs	illustrating	predicted	interactions	between	these	variables	lies	in	
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Appendix	9.2’s	model	comparisons,	which	showed	that	the	predictions	of	the	

model	could	be	improved	by	adding	further	variables	to	a	point	beyond	which	

addition	of	variables	to	the	other	models	of	Chapters	5	and	6	showed	similar	

improvements.	None	of	the	other	models	in	Chapters	4,	5,	or	6	had	the	number	

of	variables	as	did	Model	12.	It	therefore	appears	that	the	effects	of	model	

success	on	macrostructure	similarity	scores	were	more	dependent	on	the	effects	

of	other	variables	than	for	microstructure	similarity	scores	in	Hypothesis	1’s	

open-ended	task,	or	for	either	macrostructure	or	microstructure	similarity	

scores	in	Chapter	5’s	close-ended	task.		

	

6.3:	Hypothesis	3	

Hypothesis	3	stated	that	across	open-ended	conditions,	the	rate	of	children’s	

internal	evidence	of	failure	would	be	a	positive	predictor	of	microstructure	

similarity	scores.	Like	the	first	hypothesis	of	Chapter	6,	which	also	dealt	with	

microstructure	similarity,	the	sample	size	here	numbered	288	cases.	

Model	13,	below,	described	the	interaction	of	the	main	predictor	variable,	

internal	evidence	of	failure	(N),	with	one	other	predictor	variable:	the	social	

versus	asocial	model	(S).	This	model	is	the	product	of	the	process	of	model	

comparison	which	can	be	found	in	Appendix	9.3.	Like	for	the	other	models	

above,	addition	of	further	parameters	weakened	the	ability	of	the	model	to	make	

predictions.	

(Model	13)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βNSNSi	
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Samples	from	the	posterior	distribution	of	the	parameter	for	the	marginal	effect	

of	‘internal	evidence	of	failure’	are	displayed	in	Figure	40.	Notice	the	very	

different	scale	of	the	graph	compared	to	Figure	35	in	Hypothesis	2.	This	

posterior	distribution	was	much	more	compact,	with	a	higher	maximum	

posterior	density.	The	mean	effect	of	the	‘internal	evidence	of	failure’	parameter	

was	-0.03,	with	a	standard	deviation	of	0.03,	and	0.89	HPDI	from	-0.08	to	0.03.	

Figure	41	shows	Model	13’s	predicted	effects	on	microstructure	similarity	

scores	of	changing	a	participant’s	internal	evidence	of	failure	from	one	standard	

deviation	below	the	mean	internal	evidence	of	failure	score	to	one	standard	

deviation	above	the	mean	score.	The	two	graphs	show	the	effect	of	this	change	

on	microstructure	across	two	conditions:	with	either	an	asocial	or	a	social	

model.	

	

Figure	40.	Graph	displaying	samples	from	the	posterior	distribution	of	the	parameter	for	the	
marginal	effect	of	the	variable	‘internal	evidence	of	failure’	in	Model	13.	
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Graph	B	(on	the	right	of	Figure	41),	where	the	model	was	social	instead	of	

asocial,	does	not	support	Hypothesis	3.	This	is	because	the	effect	of	transforming	

low	internal	evidence	of	failure	into	high	internal	evidence	of	failure	was	

predicted	to	decrease	microstructure	similarity	scores.	This	was	further	

supported	by	Figure	41’s	graph	A,	which	predicts	the	effect	of	changing	low	to	

high	internal	evidence	of	failure,	when	the	model	was	asocial,	to	be	much	

weaker.	There	does	appear	to	be	some	slight	negative	relationship	between	

higher	internal	evidence	of	failure	and	higher	microstructure	similarity	scores	in	

graph	A,	but	this	is	so	weak	an	effect	as	to	be	nearly	insignificant.	

Figure	41.	Two	graphs	(from	left	to	right:	A	and	B)	illustrating	Model	13’s	predicted	effects	on	
microstructure	similarity	scores	of	increasing	participant	evidence	of	failure	from	‘low’	to	‘high’.	
‘Low’	internal	evidence	of	failure	was	set	at	one	standard	deviation	below	the	mean	internal	
evidence	of	failure	for	the	entire	usable	dataset	(4.62),	while	‘high’	internal	evidence	of	failure	was	
set	at	one	standard	deviation	above	this	mean.	Graph	A	(on	the	left)	shows	the	effect	of	this	change	
when	the	model	was	asocial,	while	graph	B	(on	the	right)	shows	its	effect	when	the	model	was	social.	
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Hypothesis	3	moved	from	model	success	(i.e.,	external	evidence	of	failure)	as	the	

primary	predictor	of	variation	in	the	outcome	variable	to	the	success	of	the	

participants	(i.e.,	internal	evidence	of	failure).	Prior	literature	indicates	(at	least	

in	close-ended	experiments)	that	high	internal	evidence	of	failure	should	cause	

children	to	defer	to	a	model	(e.g.,	Williamson,	Meltzoff	&	Markman	2008;	Wood,	

Kendal	&	Flynn	2013a;	Caldwell	&	Millen	2010).	As	prior	literature	uses	close-

ended	tasks,	I	predicted	in	Hypothesis	3	that	across	open-ended	conditions,	the	

rate	of	children’s	internal	evidence	of	failure	would	be	a	positive	predictor	of	

microstructure	similarity	scores.	The	role	of	internal	evidence	of	failure	in	the	

results	so	far,	through	Chapters	5	and	6	with	both	close-	and	open-ended	tasks,	

has	appeared	complex.	Yet	the	lack	of	other	variables	for	this	hypothesis	in	

Model	13	indicates	that	the	effect	of	transforming	low	internal	evidence	of	

failure	into	high	was	relatively	invariable	across	conditions.	When	the	model	

was	asocial,	the	effect	of	internal	evidence	of	failure	on	microstructure	similarity	

was	weakly	negative.	When	the	model	was	social,	the	effect	of	increased	internal	

evidence	of	failure	was	more	strongly	negative.	

	

This	was	contrary	to	what	I	predicted	in	Hypothesis	3	and	to	the	prior	literature	

on	which	Hypothesis	3	was	based	(e.g.,	Feldman,	Aoki	&	Kumm	1996;	

Williamson,	Meltzoff	&	Markman	2008;	Wood,	Kendal	&	Flynn	2013a).	However,	

it	supports	the	interpretations	of	the	role	of	the	‘internal	evidence	of	failure’	

variable	in	Chapters	5	and	6:	that	high	internal	evidence	of	failure	was	

associated	with	lower	microstructre	similarity	scores.	If	the	effect	of	internal	

evidence	of	failure	on	microstructure	similarity	were	neutral,	then	the	argument	

could	be	made	that	children	had	no	incentive	to	copy	from	others	in	the	open-

ended	task.	However,	the	effect	of	internal	evidence	of	failure	became	more	

strongly	negative	with	a	social	model.	This	suggests	that	rather	than	higher	

internal	evidence	of	failure	being	exhibited	merely	due	to	microstructure	

designs	which	were	more	dissimilar	to	the	social	model’s,	that	instead	

participants	who	were	exposed	to	the	social	model’s	microstructure	and	who	yet	

built	with	a	different	microstructure	encountered	greater	internal	evidence	of	

failure.	
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6.4:	Hypothesis	4	

In	Hypothesis	4	I	predicted	that,	in	open-ended	conditions,	the	rate	of	children’s	

internal	evidence	of	failure	would	not	be	a	positive	predictor	of	macrostructure	

similarity	scores.	The	sample	size	for	this	hypothesis	numbered	286	cases,	after	

excluding	those	participants	who	built	under	close-ended	conditions	and	those	

for	whom	data	were	missing.	Model	14,	described	below,	was	once	again	the	

product	of	a	model	comparison	process	and	this	is	summarised	in	Appendix	9.4.	

(Model	14)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βGGi		+	βTTi	+	βNSNSi	+	βNGNGi		+	βNTNTi	+	βNSGNSGi	

+	βNSTNSTi	+	βNGTNGTi	+	βNSGTNSGTi	

Model	14	predicts	variation	in	macrostructure	similarity	scores	by	computing	

interactions	between	four	variables:	the	main	predictor	variable,	‘internal	

evidence	of	failure’	(N),	and	the	other	predictor	variables	of	‘social’	(S),	‘age’	(G),	

and	‘attendance	to	the	video’	(T).	Figure	42	describes	samples	from	the	

posterior	distribution	of	the	marginal	effect	of	‘internal	evidence	of	failure’	on	

macrostructure	similarity	scores.	The	mean	effect	of	this	‘internal	evidence	of	

Figure	42.	Graph	showing	samples	drawn	from	the	posterior	distribution	produced	by	Model	14	for	
the	marginal	effect	of	‘internal	evidence	of	failure’	on	macrostructure	similarity	scores.	
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failure’	parameter,	as	estimated	by	Model	14,	was	positive,	at	0.71	(SD=0.61)	

though	with	a	0.89	HPDI	which	stretched	into	negative	values:	from	-0.21	to	

1.73.	

	

Figures	43	and	44	illustrate	Model	14’s	predicted	effects	on	macrostructure	

similarity	scores	of	changing	low	internal	evidence	of	failure	into	high	internal	

evidence	of	failure,	when	this	effect	was	present	in	conditions	of	asocial	versus	

social	models,	low	and	high	participant	age,	and	low	and	high	attendance	to	the	

experimental	video.	It	appears	that	the	change	from	low	to	high	internal	

evidence	of	failure	did	not	cause	greater	macrostructure	similarity	scores.	In	

none	of	the	four	social	model	conditions,	across	Figures	43	and	44’s	graphs	C	

and	D,	was	there	a	visibly	positive	effect	of	increased	internal	evidence	of	failure.		

	

	
Figure	43.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	illustrating	Model	14’s	predicted	effects	on	
macrostructure	similarity	of	changing	‘low’	internal	evidence	of	failure	into	‘high’	internal	evidence	of	failure.	
‘Low’	internal	evidence	of	failure	was	set	at	one	standard	deviation	below	the	mean	score	for	the	entire	usable	
dataset,	while	‘high’	was	set	at	one	standard	deviation	above	this	mean.	Graphs	A	and	B	(on	the	left)	show	the	
effect	of	this	change	when	the	model	was	asocial,	and	graphs	C	and	D	(on	the	right)	show	the	effect	of	this	change	
when	the	model	was	social.	Graphs	A	and	C	(on	the	far	left	and	second	from	right)	show	the	effect	of	the	change	in	
internal	evidence	of	failure	when	the	participant’s	age	was	‘low’,	and	graphs	B	and	D	(on	the	second	from	left	and	
far	right)	show	this	effect	when	the	participant’s	age	was	‘high’.	‘Low’	age	was	set	one	standard	deviation	below	
the	mean	age	of	the	entire	usable	dataset,	while	‘high’	age	was	set	one	standard	deviation	above	this	mean	age.	
For	all	four	of	these	graphs,	the	‘attendance	to	the	experimental	video’	score	was	set	to	2.44:	one	standard	
deviation	below	the	mean	attendance	score	for	the	entire	dataset.	
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However,	this	appears	to	have	been	more	consistently	true	in	the	four	asocial	

model	conditions,	which	all	demonstrated	strong	negative	relationships	

between	increased	internal	evidence	of	failure	and	macrostructure	similarity	

scores.	In	fact	it	appears	that	a	social	model	in	combination	with	either	(a)	older	

children	with	lower	attendance	to	the	video	(Figure	43’s	graph	D)	or	(b)	

younger	children	with	higher	attendance	to	the	video	(Figure	44’s	graph	C)	

reduced	the	negative	effect	of	changing	internal	evidence	of	failure	from	low	to	

high.	Meanwhile,	the	influence	of	higher	participant	age	on	the	effect	of	higher	

internal	evidence	of	failure	appears	to	have	been	complex,	as	does	the	influence	

of	participant	age.	More	detailed	analyses	of	the	effects	of	these	other	variables	

can	be	found	in	Appendix	10.4.	

	

Figure	44.	Four	graphs	(from	left	to	right:	A,	B,	C,	and	D)	illustrating	Model	14’s	predicted	effects	on	
macrostructure	similarity	of	changing	‘low’	internal	evidence	of	failure	into	‘high’	internal	evidence	of	failure.	
‘Low’	internal	evidence	of	failure	was	set	at	one	standard	deviation	below	the	mean	score	for	the	entire	usable	
dataset,	while	‘high’	was	set	at	one	standard	deviation	above	this	mean.	Graphs	A	and	B	(on	the	left)	show	the	
effect	of	this	change	when	the	model	was	asocial,	and	graphs	C	and	D	(on	the	right)	show	the	effect	of	this	
change	when	the	model	was	social.	Graphs	A	and	C	(on	the	far	left	and	second	from	right)	show	the	effect	of	the	
change	in	internal	evidence	of	failure	when	the	participant’s	age	was	‘low’,	and	graphs	B	and	D	(on	the	far	right	
and	second	from	left)	show	this	effect	when	the	participant’s	age	was	‘high’.	‘Low’	age	was	set	one	standard	
deviation	below	the	mean	age	of	the	entire	usable	dataset,	while	‘high’	age	was	set	one	standard	deviation	
above	this	mean	age.	For	all	four	of	these	graphs,	the	‘attendance	to	the	experimental	video’	score	was	set	to	
11.53:	one	standard	deviation	above	the	mean	attendance	score	for	the	entire	dataset.	
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The	fourth	and	final	hypothesis	explored	the	effect	of	internal	evidence	of	failure	

on	variation	in	macrostructure	similarity	scores.	A	key	part	of	defining	‘play’	is	

the	activity’s	open-endedness,	in	which	children	have	greater	freedom	not	only	

in	the	means	of	the	activity	but	in	the	ends	(van	Oers	2013).	In	this	playful	and	

unthreatening	context,	children	can	explore	previously	untested	solutions	to	

ecological	problems	(Bateson	2014).	When	internal	evidence	of	failure	is	

encountered,	children	may	therefore	not	attempt	to	replicate	the	

macrostructure	of	a	social	model	since	this	would	not	solve	the	problem	but	

merely	avoid	it.	If	play	is	about	experimentation,	children	exhibiting	higher	

internal	evidence	of	failure	may	thus	build	macrostructure	designs	which	are	

different	from	the	social	model.	In	Hypothesis	4	I	therefore	predicted	that	the	

rate	of	children’s	internal	evidence	of	failure	would	not	be	a	positive	predictor	of	

macrostructure	similarity	scores.	While	it	is	true	that	none	of	the	conditions	

showed	a	positive	effect	of	high	internal	evidence	of	failure	on	macrostructure	

similarity	scores,	this	cannot	be	taken	as	evidence	in	support	of	Hypothesis	4	

since	internal	evidence	of	failure	had	a	visibly	stronger	negative	effect	on	

macrostructure	similarity	scores	when	the	model	was	asocial	rather	than	social	

(the	reverse	of	Hypothesis	3).	

	

The	lack	of	a	positive	effect	of	internal	evidence	of	failure	when	the	model	was	

social	therefore	appears	to	have	been	less	the	product	of	children	‘deciding’	not	

to	copy	the	social	model’s	macrostructure	design	than	it	appears	higher	internal	

evidence	of	failure	was	caused	by	a	macrostructure	dissimilar	to	the	social	

model.	This	interpretation,	however,	is	not	fully	in	line	with	the	previous	

evidence	from	Chapter	5	for	the	relationship	between	internal	evidence	of	

failure	and	macrostructure	similarity,	which	indicated	that	in	close-ended	tasks,	

while	lower	microstructure	similarity	scores	were	associated	with	high	internal	

evidence	of	failure,	higher	internal	evidence	of	failure	was	associated	with	

higher	macrostructure	similarity	scores.	From	Figures	43	and	44,	it	appears	that	

with	the	social	model,	at	least,	participant	age	and	attendance	to	the	video	

interacted	to	play	a	key	role	in	the	effect	of	internal	evidence	of	failure	on	

macrostructure	similarity	scores.	In	any	case,	it	appears	that	the	internal	

evidence	of	failure	measure	did	constitute	an	interesting	source	of	information	
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for	understanding	children’s	copying	behaviour	in	this	experiment.	Its	

relationships	with	microstructure	and	macrostructure	similarity	scores	indicate	

that	the	degree	of	participant	failure	in	the	task	was	related	to	the	children’s	

building	styles	and	aims.	These	associations	are	often	best	explained	by	

interpreting	internal	evidence	of	failure	as	a	product	of	a	child’s	building	style	

and	goal	(see	Hypothesis	3	also).	The	question	to	be	answered	is,	therefore,	why	

children	often	did	not	change	building	styles	or	goals	(for	example,	copy	from	

the	social	model)	when	their	building	styles	and	aims	seem	to	have	created	such	

increases	in	internal	evidence	of	failure.	
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Chapter	7:	General	discussion,	implications	for	future	research,	and	impact	

In	this	chapter,	I	synthesise	the	results	from	Chapters	4,	5,	and	6	to	outline	the	

main	findings	from	my	thesis.	I	compare	these	results	with	those	from	previous	

literature	to	highlight	points	of	convergence	and	difference,	and	use	theory	

introduced	in	Chapter	2	to	suggest	explanations	for	these	patterns.	This	leads	

into	the	implications	of	the	thesis	for	future	studies.	I	conclude	the	thesis	by	

evaluating	(a)	its	impact	on	research	into	children’s	social	learning	and	(b)	the	

relevance	of	such	a	contribution	for	wider	society.	

	

7.1:	General	discussion	

In	total,	data	gave	reasonable	support	to	three	of	the	eight	hypotheses,	leaving	

five	in	which	the	predicted	effects	were	not	reliably	visible.	There	is	interesting	

variation	in	which	hypotheses	found	reasonable	support	and	which	did	not.	A	

summary	of	all	of	the	results,	from	Chapter	4	as	well	as	Chapters	5	and	6	is	

provided	in	Table	5.	Firstly,	Table	5	shows	data	supported	more	of	Chapter	5’s	

hypotheses	than	Chapter	6’s.	While	Hypotheses	1,	2,	and	3	of	Chapter	5	found	

reasonable	support	in	the	data,	none	of	Chapter	6’s	hypotheses	did.	Secondly,	

this	pattern	may	be	linked	to	whether	the	task	was	open-	versus	close-ended.	

Chapter	5	consisted	of	three	hypotheses	about	outcome	variable	variation	in	the	

close-ended	task,	and	one	hypothesis	about	outcome	variable	variation	across	

both	open-ended	and	close-ended	tasks.	Chapter	6’s	four	hypotheses,	

meanwhile,	all	focused	on	variation	in	the	outcome	variable	when	the	task	is	

open-ended.	This	indicates	that	the	hypotheses	were	better	able	to	predict	the	

two	outcome	variables’	variation	when	the	task	was	close-ended	rather	than	

open-ended.	Thirdly,	the	pattern	may	also	be	linked	to	whether	the	outcome	

variable	was	microstructure	or	macrostructure	similarity	scores.	Of	four	

hypotheses	predicting	variation	in	microstructure	similarity	scores,	two	

received	reasonable	support.	Meanwhile,	of	four	hypotheses	predicting	variation	

in	macrostructure	similarity	scores,	only	one	was	supported	by	the	data.	Overall,	

therefore,	there	are	several	results	requiring	explanation.	
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I	start	the	discussion	with	the	hypotheses	which	received	reasonable	support	

from	the	data.	Chapter	5’s	Hypotheses	2	and	3	used	data	from	the	close-ended	

task	to	test	previous	findings	about	the	positive	effect	of	(a)	a	social	model	and	

(b)	a	successful	social	model	on	microstructure	similarity	scores.	The	results	

reliably	corroborated	previous	studies	such	as	Smith,	Ward	and	Schumacher	

(1993),	Shalley	and	Perry-Smith	(2001),	and	Rook	(2008)	in	that	children’s	

builds	showed	increased	levels	of	microstructural	similarity	to	the	social	

model’s	build	when	children	could	observe	the	social	model	compared	to	when	

children	could	not	observe	the	social	model,	when	the	models	were	either	

successful	or	unsuccessful.	These	results	also	reliably	corroborated	previous	

findings	from	Kendal	et	al.	(2005),	Carr,	Kendal	and	Flynn	(2015),	and	Turner,	

Giraldeau	and	Flynn	(2017)	that	children	demonstrate	greater	microstructure	

copying	when	the	social	model	is	successful	compared	to	when	the	social	model	

is	unsuccessful.	This	indicates	that	the	experimental	setup	and	context	was	able	

to	produce	the	same	behaviours	in	children	that	previous	social	learning	

experiments	could.	Other	results	that	contradict	expected	findings	should	not	

therefore	be	disregarded	out	of	hand.	Chapter	5’s	Hypothesis	1,	which	predicted	

that	macrostructure	designs	would	display	greater	similarity	to	the	social	model	

when	the	task	was	close-	(rarther	than	open-)	ended,	also	found	reasonable	

support	in	the	data.	This	indicates	that	the	close-	versus	open-ended	task	did	

have	some	influence	on	children’s	copying	behaviour:	the	close-ended	task	often	

caused	children’s	builds	to	show	greater	microstructure	similarity	to	the	social	

model	regardless	of	whether	the	children	observed	the	social	model.	This	

provides	support	for	the	argument,	made	in	Chapter	2,	that	close-ended	social	

learning	studies	constrain	variation	in	children’s	activities.	

	

I	now	move	on	to	the	hypotheses	which	did	not	receive	reliable	support	from	

the	data.	Chapter	5’s	Hypothesis	4	aimed	to	provide	further	support	to	the	

argument	that	close-ended	conditions	constrain	children’s	copying	behaviour	by	

predicting	that	the	success	of	the	social	model	would	not	be	a	good	predictor	of	

variation	in	macrostructure	similarity	scores	in	the	close-ended	task.	However,	

model	success	did	have	a	positive	effect	on	macrostructure	similarity	scores	

with	older	children,	who	were	shown	to	copy	more	than	younger	children	in	
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Chapter	4’s	analyses.	Hypothesis	4	thus	appears	to	have	been	too	tough	a	test	for	

the	constraining	effects	of	the	close-ended	task;	the	effect	of	a	successful	social	

model	on	many	children’s	copying	behaviour	remained	relatively	clear	when	

macrostructure	was	the	outcome	variable.	This	indicates	that	the	role	of	social	

information	remained	important	for	older	children’s	macrostructure	building,	

despite	the	constraints	imposed	by	the	close-ended	task	(see	Hypothesis	1	of	

Chapter	5).	

	

Chapter	6’s	four	hypotheses	were	given	little	support	from	the	data.	Given	the	

sample	sizes,	balance	between	experimental	control	and	ecological	validity,	and	

range	of	variables	data	were	collected	for,	these	are	interesting	results	deserving	

of	explanation.	Hypothesis	1,	which	predicted	that	in	the	open-ended	task	a	

successful	(rather	than	unsuccessful)	social	model	would	increase	children’s	

microstructure	similarity	scores,	gained	only	the	weakest	support.	In	the	open-

ended	task,	children	only	showed	greater	similarity	in	their	microstructure	

designs	to	the	successful	social	model	rather	than	the	unsuccessful	social	model	

when	they	also	exhibited	low	internal	evidence	of	failure.	Even	when	this	was	

the	case,	the	positive	effect	of	model	success	was	so	weak	as	to	be	nearly	

meaningless;	indeed	it	was	no	stronger	than	the	positive	effect	of	asocial	model	

success	when	participants	demonstrated	high	internal	evidence	of	failure.	When	

children	did	show	high	internal	evidence	of	failure,	the	successful	(rather	than	

unsuccessful)	social	model	had	no	discernable	effect	on	microstructure	

similarity	scores.	

	

This	is	surprising	on	two	counts.	(1)	High	internal	evidence	of	failure	is,	in	the	

literature,	associated	with	greater	reliance	on	social	information	(Williamson,	

Meltzoff	&	Markman	2008;	Wood,	Kendal	&	Flynn	2013a;	Caldwell	&	Millen	

2010).	This	first	point	is	discussed	further	below,	for	Chapter	6’s	Hypotheses	3	

and	4.	(2)	The	open-ended	task	appeared	to	induce	less	microstructure	copying	

of	the	successful	social	model	than	in	the	close-ended	task.	This	means	that	

social	model	success	was	associated	with	weaker	similarity	to	the	social	model	

in	children’s	microstructure	designs	when	the	task	was	open-ended	rather	than	

close-ended.	This	could	be	taken	as	evidence	that	the	children	exhibited	less	
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copying	behaviour	in	the	open-ended	tasks	compared	with	the	close-ended	

tasks,	if	model	success	did	not	induce	as	great	a	reliance	upon	social	information	

when	the	task	was	open-ended	as	it	did	when	the	task	was	close-ended.	This	

maybe	fits	evidence	from	creativity	research	that	reliance	on	social	models	is	

exacerbated	by	stressful	conditions	(Festinger	1954;	cited	by	Rook	2008),	if	we	

assume	that	the	open-ended,	playful	context	induces	less	anxiety	than	the	close-

ended	task.	

	

Hypothesis	2,	meanwhile,	sought	to	examine	whether	children	in	the	open-

ended	task	would	emulate	the	macrostructure	goal	of	the	unsuccessful	social	

model.	This	did	not	find	convincing	support,	as	half	of	conditions	with	a	social	

model	did	show	some	kind	of	positive	effect	of	model	success	on	macrostructure	

similarity	scores.	The	results	showed	considerable	variation	in	children’s	

responses,	with	examples	where	the	successful	model	had	positive,	negative,	

and	neutral	effects	on	macrostructure	similarity	scores.	There	was	therefore	no	

evidence	that	a	successful	social	model	either	reliably	increased	or	reliably	

decreased	children’s	copying	of	macrostructure	when	the	task	was	open-ended.	

This	was	a	different	result	from	Chapter	5’s	Hypothesis	4,	which	examined	

children’s	macrostructure	copying	in	response	to	a	successful	model	but	close-

ended	task.	This	result	therefore	supports	the	interpretation	above	of	Chapter	

6’s	Hypothesis	1,	and	indicates	that	in	the	open-ended	task	children	were	not	

incentivised	to	copy	the	successful	social	model	more	than	the	unsuccessful	

social	model	as	they	were	in	the	close-ended	task.	This	pattern	also	appears	

related	to	Sheridan	et	al.’s	(2016)	findings	that	children,	given	a	more	open-

ended	context,	exhibit	higher	rates	of	innovation	than	reported	in	previous	

studies.	

	

Chapter	6’s	third	and	fourth	hypotheses	show	essentially	no	support	from	the	

data.	While	Hypothesis	3	posited	that	participants	exhibiting	higher	internal	

evidence	of	failure	should	rely	on	social	information	about	microstructure	

design	to	a	greater	extent	than	participants	encountering	less	of	a	challenge	in	

the	task,	the	results	indicated	the	opposite:	that	participants	exhibiting	higher	

internal	evidence	of	failure	copied	the	model’s	microstructure	design	less.	
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Hypothesis	4	predicted	that	high	internal	evidence	of	failure	would	be	

associated	with	high	macrostructure	similarity	scores	when	the	model	was	

social.	However,	when	the	model	was	social,	I	found	a	weakly	negative	

relationship	between	high	internal	evidence	of	failure	and	macrostructure	

similarity,	and	this	was	less	negative	than	the	same	relationship	when	the	model	

was	asocial.	The	likely	cause	of	these	results	is	that	participants	who	built	a	

structure	less	like	the	model’s	structure	encountered	greater	instances	of	

collapse.	However,	this	does	not	explain	why,	when	they	encountered	this	

internal	evidence	of	failure,	they	did	not	address	this	evidence	of	failure	by	

copying	the	model.	An	explanation	could	be	that	in	the	open-ended	task	there	

was	no	incentive	to	avoid	internal	evidence	of	failure,	since	there	was	no	

external	goal	which	participants	failed	to	achieve.	The	explanation,	in	the	

literature,	for	reliance	on	social	information	when	internal	evidence	of	failure	is	

encountered	is	that	the	relative	risks	of	the	social	information	not	being	useful	

are	reduced	(Feldman,	Aoki	&	Kumm	1996;	Boyd	&	Richerson	1985).	The	

studies	in	which	this	effect	is	documented	employ	close-ended	tasks	in	which	it	

is	obvious	when	a	participants	does	not	succeed	(e.g.,	Caldwell	&	Millen	2010;	

Williamson,	Meltzoff	&	Markman	2008;	Wood,	Kendal	&	Flynn	2013a).	In	the	

open-ended	context	employed	in	the	present	study,	such	reliance	on	social	

information	was	not	incentivised	in	this	way.	This	open-ended	context,	in	which	

success	was	not	incentivised,	is	in	line	with	definitions	of	play	in	Chapter	2,	

which	describe	it	as	a	safe	space	for	experimentation	in	which	there	are	no	

ramifications	of	failure	(Bateson	&	Martin	2013;	Gopnik	2012;	Cook,	Goodman	&	

Schultz	2011).	The	data	therefore	perhaps	suggest	that	copying	is	less	

widespread	in	open-ended	and	playful	conditions,	since	children’s	internal	

evidence	of	failure	does	not	motivate	copying	behaviour.	

	

In	Rook’s	(2008)	open-ended	task,	however,	adult	participants	were	observed	to	

increase	their	reliance	on	copying	when	they	found	the	task	harder	and	when	

the	model	performed	better.	This	perhaps	suggests	that	the	effects	of	open-

ended,	playful	conditions	reported	here	might	be	limited	to	children.	An	

argument	could	also	be	made	that	these	results	were	caused	by	a	task	in	which	

causation	was	transparent,	and	by	participants’	likely	prior	familiarity	with	
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building	towers	from	blocks	(Want	&	Harris	2002).	Neldner,	Mushin	and	Nielsen	

(2017),	for	instance,	find	that	the	degree	of	task	opacity	can	inhibit	the	ability	of	

children	to	produce	innovative	solutions	in	an	asocial	task,	and	Whalley,	Cutting	

and	Beck	(2017)	find	evidence	of	improved	performance	in	an	asocial	task	when	

children	had	prior	experience	with	the	task.	These	arguments	do	not	diminish	

the	significance	of	the	results	reported,	however,	since	greater	signs	of	

children’s	copying	of	the	social	model	were	evident	when	the	task	was	close-

ended,	meaning	that	the	difference	between	the	close-	and	open-ended	

conditions	remains	to	be	explained.	Nevertheless,	it	cannot	be	ruled	out	that	

these	specific	properties	of	the	building	block	task	may	have	been	factors	in	

permitting	such	a	difference	in	children’s	copying	between	the	close-	and	open-

ended	conditions.	

	

The	data	also	exhibited	interesting	results	about	the	role	of	participant	age	on	

copying	behaviour.	The	effect	of	age	is	particularly	interesting	as	it	was	the	

reverse	of	some	previous	findings.	Carr	(2016)	found	that	younger	children	

were	more	faithful	copiers	than	older	children,	while	Walker	and	Andrade	

(1996)	found	that	younger	children	displayed	greater	social	conformity	

compared	with	older	children.	The	present	data,	meanwhile,	show	that	it	was	

older	children	who	copied	the	social	model	to	the	greater	extent.	Furthermore,	

this	effect	held	true	across	both	open-	and	close-ended	conditions,	and	across	

microstructure	and	macrostructure	outcome	variables.	In	the	present	data,	

therefore,	it	was	the	younger	children	who	demonstrated	build	structures	which	

were	more	different	from	the	social	model,	and	this	difference	between	younger	

and	older	children’s	similarity	scores	was	much	clearer	when	they	observed	the	

social	rather	than	asocial	model.	One	explanation	for	this	effect	may	be	

‘functional	fixedness’	(German	&	Defeyter	2000;	Carr	2016),	in	which	knowledge	

of	an	object’s	function	reduces	a	child’s	ability	to	repurpose	it	for	a	different	use,	

the	effect	of	which	is	known	to	increase	from	the	age	of	five	years	old	(Defeyter,	

Avons	&	German	2007).	This	could	lead	to	younger	children	adapting	the	social	

model’s	information	to	a	greater	degree	than	older	children,	causing	their	builds	

to	resemble	the	social	model’s	less.	Older	children	have	also	been	found	to	

demonstrate	increasing	‘over-imitation’	when	presented	with	causally	opaque	
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tasks	(DiYanny,	Nini	&	Rheel	2011;	Flynn	&	Whiten	2008),	or	when	tasks	are	

framed	as	being	normative	rather	than	instrumental	(or	communicative;	Clay,	

Over	&	Tennie	2018).	However,	this	would	not	appear	to	explain	the	present	

findings	from	a	causally	transparent	building	blocks	task	with	both	open-	and	

close-ended	instruction.	Furthermore,	the	setup	of	the	experiment	was	designed	

to	provide	little	which	could	be	interpreted	as	a	normative	cue.	

	

The	data	also	indicated	a	sex	difference	in	older	but	not	younger	children’s	

builds.	Across	both	microstructure	and	macrostructure	similarity	outcome	

variables,	all	but	one	condition	showed	that	older	females	generally	built	

structures	more	similar	to	the	model	(when	they	observed	the	social	model)	

than	male	participants.	When	the	model	was	asocial,	females	did	not	show	

reliably	higher	microstructure	and	macrostructure	similarity	scores.	This	

indicates	that	the	effect	of	being	female	is	in	copying	behaviour	rather	than	

simply	building	style.	This	effect	is,	however,	much	messier	among	the	younger	

children.	This	effect	of	being	female	is	broader	than	that	found	by	Brand,	Brown	

and	Cross	(2018),	who	observed	it	only	in	participants’	use	of	social	information	

when	asocial	learning	was	riskier.	The	association	of	females	with	greater	

copying	behaviour	appears	to	tally	with	some	evidence	from	apes	that	males	

exhibit	greater	innovative,	‘asocial’	learning	than	females	(Reader	&	Laland	

2001;	Vale	et	al.	2017b;	and	Ervin	et	al.	2015’s	rodents).	However,	an	

explanation	drawn	from	differences	in	what	males	and	females	are	expected	to	

play	with	and	how	they	play	(see	Freeman	2007;	Brahms	&	Crowley	2016;	see	

also	Ehrlinger	&	Dunning	2003)	should	not	be	overlooked.	Nevertheless,	while	

participant	age	carried	enough	predictive	value	to	be	included	in	several	of	the	

models	used	for	data	analysis	(e.g.,	Model	7	on	page	74,	and	Model	14	on	page	

113),	participant	sex	did	not	carry	enough	predictive	value	to	be	included	in	any	

models	apart	from	the	two	directly	addressing	its	effects	on	microstructure	and	

macrostructure	similarity	scores	(Models	3	and	4	in	Chapter	4).	This	suggests	

that	participant	sex	does	not	play	a	significant	role	in	understanding	variation	in	

either	microstructure	or	macrostructure	similarity	scores	according	to	any	of	

the	other	factors	tested.	
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A	predominant	theme	throughout	the	results	is	variation	and	interdependence.	

Even	where	the	hypothesised	effects	of	a	predictor	variable	were	supported	by	

data,	these	effects	varied	in	strength,	as	well	as	sometimes	direction,	dependent	

on	the	status	of	other	variables	included	in	each	statistical	model.	Even	strong	

positive	effects	of	variables,	such	as	social	model	success	on	macrostructure	

similarity	scores	(Figure	39,	graphs	C	and	D;	page	105),	could	be	reversed	by	

changing,	for	example,	internal	evidence	of	failure	from	one	standard	deviation	

below	the	mean	to	one	standard	deviation	above	the	mean.	The	observable	

variation	in	the	results	indicate	that	children’s	copying	behaviour	was	

contingent	on	several	factors,	including	the	open-	versus	close-ended	task,	the	

social	versus	asocial	model,	the	success	of	both	the	social	and	asocial	model,	

degree	of	internal	evidence	of	failure,	as	well	as	participant	age,	sex,	and	

attendance	to	the	experimental	video	(as	included	in	Model	12	on	page	102).	

Furthermore,	there	are	slight	differences	between	how	children	copied	

microstructure	versus	macrostructure	under	the	same	experimental	conditions.	

For	example,	model	success	was	a	slightly	more	consistent	positive	predictor	of	

variation	in	microstructure	similarity	scores	than	macrostructure	similarity	

scores	in	the	open-ended	task,	as	was	the	case	also	in	the	close-ended	task	(see	

Flynn	&	Whiten	2008	for	a	related	finding	in	a	complex	puzzle	box	task).	All	of	

this	contributes	to	arguments	made	in	the	social	learning	literature	that	

children’s	copying	is	context-sensitive	and	flexible	rather	than	indiscriminate	

(Over	&	Carpenter	2012;	Evans	et	al.	2017;	Legare	et	al.	2015;	Kendal	et	al.	

2018;	see	also	Whitehead	&	Richerson	2009).	

	

7.2:	Implications	for	future	research	

A	key	implication	of	the	present	study	for	future	research	is	that	more	attention	

must	be	paid	to	the	ecological	validity	of	the	experimental	task.	This	is	because	

the	data	presented	here	show	that	children’s	copying	behaviour	can	differ	

between	tasks	which	are	more	close-ended	and	tasks	which	are	more	open-

ended.	This	builds	on	Sheridan	et	al.’s	(2016)	finding	that	the	rate	of	children’s	

innovation	is	increased	by	an	open-ended,	creative	context.	Therefore,	

experimental	setups	which	focus	only	on	children’s	copying	in	a	close-ended	

task	should	be	cautious	in	applying	their	findings	to	children’s	copying	outside	
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of	such	close-ended	contexts,	and	especially	to	children’s	copying	in	open-ended	

or	playful	contexts.	Indeed	it	appears	that	amongst	contemporary	hunter-

gatherer	groups,	adults	(and	older	children)	limit	their	interventions	into	

children’s	learning	in	favour	of	greater	reliance	on	autonomous	and	child-led	

exploration	(Boyette	&	Hewlett	2018;	also	Lancy	2017).	More	research	would	

therefore	be	useful	in	comparing	children’s	copying	behaviours	across	various	

combinations	of	experimental	conditions,	whilst	systematically	varying	the	

extent	to	which	the	task	is	open-	versus	close-ended.	This	would	be	important	in	

understanding	the	extent	to	which	the	differences	between	children’s	copying	in	

close-ended	and	open-ended	conditions	were	made	possible	by	the	causally	

transparent	and	already	familiar	building	blocks	task.	

	

In	fact,	the	present	dataset	could	be	used	to	explore	this	question	further.	There	

are	comparisons	between	open-ended	and	close-ended	conditions	which	were	

not	analysed	here.	For	example,	data	already	exist	to	analyse	the	influence	of	

internal	evidence	of	failure	on	children’s	copying	with	a	close-ended	task.	This	

analysis	would	be	important	in	testing	whether	the	cause	of	children’s	lack	of	

copying	in	conditions	of	high	internal	evidence	of	failure	is	due	to	the	open-

endedness	of	the	task.	Furthermore,	data	already	exist	to	perform	the	analysis	of	

how	children’s	copying,	in	the	open-ended	task,	is	affected	by	the	‘social’	versus	

‘asocial’	model.	The	results	of	Chapter	5’s	Hypothesis	2	show	that,	in	the	close-

ended	task,	children	exposed	to	the	social	model	displayed	greater	

microstructure	similarity	scores.	Comparisons	between	Chapter	5’s	Hypotheses	

3	and	4	with	Chapter	6’s	Hypotheses	1	and	2	already	indicate	that	children’s	

microstructure	and	macrostructure	copying	reliably	increases	when	the	social	

model	is	successful	(rather	than	unsuccessful)	when	the	task	is	close-ended	but	

not	when	it	is	open-ended.	To	investigate	whether	this	is	true	also	of	a	

comparison	between	children’s	exposure	to	the	social	versus	asocial	model	

would	be	key	in	understanding	how	deeply	children’s	copying	is	affected	by	the	

close-	versus	open-endedness	of	the	task.	

	

A	limitation	of	the	present	research	is	that	I	did	not	consider	individual-level	

psychological	differences,	which	are	becoming	increasingly	recognised	in	the	
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social	learning	literature	(Rawlings,	Flynn	&	Kendal	2017).	A	strength	of	Rook’s	

(2008)	study	is	that	some	psychological	parameters	are	included	in	their	

analyses.	Their	work	suggests	individual-level	variation	is	present	in	

participants’	reliance	on	model	exemplars.	Rook	(2008)	specifically	focuses	on	

differences	in	individuals’	self-regulatory	focus	towards	either	risk	prevention	

or	reward	promotion,	and	differences	in	individuals’	attention	to	either	specific	

or	general	information.	The	former	of	these	parameters	appears	likely	related	to	

how	children	respond	to	internal	evidence	of	failure	in	their	own	building,	and	

the	latter	seems	relevant	for	the	distinction	between	microstructure	and	

macrostructure	copying.	Nevertheless,	while	such	differences	in	psychological	

disposition	may	be	interesting	avenues	for	further	research,	I	do	not	believe	that	

they	threaten	the	reliability	of	the	present	study’s	results,	since,	as	Rook	and	van	

Knippenberg	(2011)	write,	model	exemplars	do	incite	copying	from	both	

promotion-focused	and	prevention-focused	individuals.	Such	individual-level	

psychological	variation	thus	may	be	more	a	refinement	of	than	a	problem	for	the	

present	thesis.	

	

Another	avenue	for	further	research	will	be	to	analyse	with	greater	precision	the	

activities	of	the	child	in	the	context	of	play	building.	This	approach	would	ask	

questions	about	the	ways	in	which	children	approach	choices	of	what	and	when	

to	copy	a	model.	Work	on	action	phases	and	mindset	theory	(Moreau	&	Engeset	

2016;	Gollwitzer	2012;	Lewin	et	al.	1944)	indicates	that	there	may	be	different	

cognitive	processes	involved	in	how	people	respond	to	problems	of	goal-setting	

and	goal-striving.	These	may	be	useful	in	better	understanding	the	difference	

between	copying	macrostructure	versus	microstructure.	Furthermore,	the	

present	study	assumes	that	children	do	work	towards	a	preconceived	

macrostructural	goal,	which	is	not	an	uncontroversial	assumption.	Research	in	

embodied	cognitive	science,	or	in	situated	cognition	(e.g.,	Brown,	Collins	&	

Daguid	1989),	criticises	this	representationalist	account	of	behaviour	(see	

Wilson	&	Golonka	2013;	Dove	2015;	Barrett,	Henzi	&	Lusseau	2012;	influenced	

by	the	phenomenological	tradition	of	Merleau-Ponty	1962).	Wilson	and	Golonka	

(2013)	argue	it	is	problematic	to	assume	disembodied	‘states	of	the	mind’	which	

account	for	the	behaviour	of	an	agent,	and	that	instead	any	given	behaviour	can	
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be	considered	the	result	of	interactions	between	a	cognitive	system	and	the	

environment	it	is	embodied	within.	Future	work,	which	does	more	acutely	

analyse	children’s	copying	behaviour,	might	therefore	attempt	to	reconfigure	

the	microstructure-macrostructure	distinction	to	recognise	both	levels	as	

emergent	properties	of	children’s	interaction	with	the	building	stimulus,	and	to	

study	copying	behaviour	as	a	solution	to	a	task	(defined	from	a	first-person	

perspective)	in	which	the	agent	assembles	a	given	set	of	resources	(spanning	

brain,	body,	and	environment)	into	a	system	capable	of	solving	the	task	(also	see	

citations	28	to	33	in	Sheridan	et	al.	2016).	Such	a	situated	account	of	the	

cognitive	processes	of	copying	in	building	would	fit	well	with	the	activity	theory	

approach	of	van	Oers	(2013)	already	applied	in	the	present	thesis	to	describe	

the	developmental	niche	of	play.	See	Flynn	et	al.	(2013)	for	a	synthesis	of	

situated	cognition	with	activity	theory,	niche	construction,	and	developmental	

psychology.	

	

7.3:	Impact	of	current	research	

I	now	briefly	summarise	the	impact	of	the	current	research	on	the	social	

learning	literature.	I	created	experimental	conditions	which	succeeded	in	

replicating	prior	experiments	(Smith,	Ward	and	Schumacher	1993;	Shalley	and	

Perry-Smith	2001;	Rook	2008;	Kendal	et	al.	2005;	Carr,	Kendal	and	Flynn	2015;	

Turner,	Giraldeau	and	Flynn	2017)	which	found	that	children,	in	a	close-ended	

task,	are	incentivised	to	copy	microstructure	design	when	a	social	model	is	

present	and	when	the	social	model	is	successful	rather	than	unsuccessful.	I	

found	that	the	macrostructural	design	of	children’s	builds	was	constrained	by	

the	close-ended	task	(compared	with	a	more	open-ended	task	in	which	no	goal	

or	end-state	was	verbally	instructed).	However,	I	also	found	that	there	was	still	a	

positive	effect	on	copying	the	social	model’s	macrostructure	when	that	model	

was	successful	rather	than	unsuccessful.	

	

Contrary	to	expectations,	data	indicated	that	in	the	open-ended	task,	a	

successful	social	model	only	increased	children’s	copying	of	microstructure	

negligibly	when	the	child	encountered	low	internal	evidence	of	failure,	and	data	

did	not	demonstrate	evidence	that,	in	the	open-ended	task,	a	successful	social	
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model	reliably	increased	children’s	copying	of	macrostructure.	Further	contrary	

to	expectations,	data	from	the	open-ended	task	showed	no	positive	effects	of	

higher	internal	evidence	of	failure	on	children’s	copying	of	either	microstructure	

or	macrostructure.	The	suggested	explanation	for	these	results	is	that,	for	

children	at	least	(see	Rook	2008	for	adults),	copying	is	not	incentivised	in	

playful	conditions	as	it	is	in	close-ended	goal-focused	conditions.	This	supports	

research	into	play	as	social	niche	for	children’s	development	(Sheridan	et	al.	

2016;	Riede	et	al.	2018;	citing	Palagi,	Stanyon	&	Demuru	2015)	which	suggests	

that	open-ended	play	provides	a	context	in	which	children	do	not	display	such	

conservatism	towards	social	information	as	found	in	close-ended	experimental	

setups.	

	

This	suggestion	requires	further	experimental	work	to	understand	the	present	

results.	Firstly,	research	must	test	that	it	is	specifically	children	interacting	with	

an	open-ended,	playful	task,	rather	than	a	close-ended	task,	that	is	the	cause	of	

the	findings.	Secondly,	research	must	test	the	role	of	other	factors,	such	as	the	

lack	of	causal	opacity	in	the	task	and	children’s	prior	experience	with	building	

blocks,	which	may	be	important	in	permitting	the	difference	observed	in	

children’s	copying	between	close-	and	open-ended	conditions.	The	interaction	of	

‘over-imitation’	with	the	difference	between	close-ended	and	open-ended	tasks	

thus	remains	to	be	explored.	Furthermore,	this	difference	in	copying	between	

open-ended	versus	close-ended	tasks	may	be	especially	relevant	for	studying	

children’s	copying	in	‘WEIRD’	contexts,	since	an	absence	of	formal	schooling	

systems	(see	Sterelny	2012)	may	make	open-ended	tasks	more	abundant	in,	and	

perhaps	more	significant	to,	children’s	development	(Lancy	2017;	Boyette	&	

Hewlett	2018).	

	

It	is	widely	considered	today	that	the	impact	of	research	should	not	be	

restrained	to	the	academic	field,	but	instead	should	be	felt	in	the	lives	of	people	

outside	the	discipline	(Rudman	et	al.	2017;	citing	HEFC,	SFC,	HEFCW,	&	DELNI	

2012).	Research	on	topics	related	to	child	development,	learning,	and	play	have	

often	found	usefulness	in	informing	educational	policy	and	practice	(Siegler	

2016;	also	see	Frost,	Wortham	&	Reifel	2012;	Golinkoff,	Hirsh-Pasek	&	Singer	
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2006).	This	is	also	possible	for	the	current	findings:	interest	may	be	taken	in	the	

apparently	lesser	importance	of	copying	for	children	exposed	to	either	external	

or	internal	evidence	of	failure	in	the	open-ended	task.	This	could	have	

implications	for	under	what	contexts	it	is	useful	to	introduce	model	exemplars	

for	children	to	copy	from,	and	when	to	leave	children	to	experiment	by	

themselves	without	exemplars.	It	is	vital	to	recognise,	however,	that	in	

discussing	impact	on	wider	society	the	current	data	do	not	have	the	last	say,	and	

that	rash	confidence	in	these	findings	without	careful	consideration	of	their	

place	within	the	history	of	the	discipline	would	not	benefit	wider	society	(see	

McElreath	2016).	

	

One	way	in	which	the	current	study	makes	tangible	impact	is	in	bringing	the	

scientific	process	out	of	the	laboratory	(see	Rudman	et	al.	2017).	I	argued	in	

Chapter	3	that	this	balance	between	experimental	control	and	‘real-world’	

setting	allows	recruitment	of	participants	who	would	not	otherwise	have	taken	

part	in	research.	Several	guardians	indeed	said	that	their	children	were	excited	

to	have	taken	part	in	‘real-life’	research.	More	quantitatively,	I	asked	each	

participant’s	guardian	whether	they	would	like	to	receive	information	about	the	

study’s	final	results.	Of	580	guardians	asked,	425	(73.28%)	gave	an	email	

address	to	receive	more	information	about	children’s	social	learning	in	play.	A	

lay	summary	of	the	thesis,	which	the	425	guardians	will	have	access	to,	can	be	

found	in	Appendix	11.	This	helps	to	validate	the	research	topic	as	one	in	which	

non-specialists	have	interest,	and	to	validate	the	research	as	a	mutually	

beneficial	exercise	in	which	scientific	enquiry	can	progress	at	the	same	time	as	

enabling	research	transparency	and	greater	scientific	understanding	amongst	a	

non-specialist	audience.	I	therefore	conclude	that	this	thesis	has	impact	for	both	

specialist	and	non-specialist	audiences,	in	furthering	scientific	understandings	

of	children’s	social	learning	in	the	context	of	play	and	in	expanding	these	

scientific	understandings	beyond	the	laboratory.	
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Appendix	1:	Information	and	consent	form	examples	(Centre	for	Life)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Department	of	Anthropology	
Durham	University	

DH1	3LE	
Contact	Name:	Guy	Lavender	Forsyth	

Mobile:	07985	144078	
Email:	g.a.lavender-forsyth@durham.ac.uk	

Supervisors:	Dr	Rachel	Kendal,	Dr	Jeremy	Kendal	
	

Dear	Parent/Guardian,	
	
This	is	an	information	and	consent	form	about	your	child’s	participation	in	a	
study	that	I	(Guy	Lavender	Forsyth)	am	running	at	the	Centre	for	Life.	
	
My	project’s	title	is	‘Flexibility	in	social	and	asocial	learning’	(supervised	by	Drs	
Rachel	and	Jeremy	Kendal).	I	am	investigating	how	children	use	different	
information	when	they	learn	under	different	conditions.	I	want	to	find	out	if	they	
learn	differently	when	they	can	play	freely	compared	to	when	they	are	given	a	
task	to	achieve,	and	whether	their	experiences	in	play	and	in	observing	a	model	
to	learn	from	change	what	sorts	of	information	they	copy.	
	
Your	child’s	participation	will	take	approximately	5	minutes.	It	involves	them	
playing	at	a	permanent	exhibit	here	in	the	Brain	Zone.	The	exhibit	has	been	
designed	to	be	enjoyable	for	the	children.	The	children	can	decide	to	leave	the	
study	for	any	reason,	at	any	time.	
	
I	will	videotape	the	children	as	they	build	so	that	later	on	I	can	record	the	ways	
in	which	they	used	the	building	blocks.	These	videos	will	be	used	only	for	this	
purpose.	Data	collected	from	the	children	will	be	anonymised.	All	recordings	
made	will	be	stored	in	secure	locations,	and	will	be	destroyed	at	the	end	of	my	
study.	
	
I	have	undergone	a	full	DBS	(Disclosure	and	Barring	Service)	check,	and	have	
been	approved	for	working	with	children.	I	have	worked	with	children	in	the	
past	as	a	researcher	in	the	Centre	for	Life,	and	Durham	researchers	have	a	
positive	record	of	research	in	collaboration	with	the	Centre	for	Life.	
	
If	you	are	willing	for	your	child	to	participate	in	my	study	please	complete	the	
consent	form	below.	If	you	have	any	further	questions	about	my	study	I	would	be	
glad	to	answer	them	via	email.	
	
Many	thanks,	
	
Guy	Lavender	Forsyth	(postgraduate,	Durham	University)	
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Consent	form:	Flexibility	in	social	and	asocial	learning	
	
	
Parent/Guardian,	please	complete	these	questions	below	
	
	
	
1)	Child’s	name	(to	identify	which	children	have	been	given	consent):	
	
	
	
2)	Child’s	date	of	birth	(day/month/year):	
	
	
	
3)	Child’s	sex	(please	circle):	
	
								Female																	Male																Other																Prefer	not	to	say	
	
	
4)	Please	choose	whether	you	consent	to	your	child’s	participation	in	my	study	
					(please	circle)	

	
								I	consent	 				I	do	not	consent	
	
	
5)	Signature:	 																	Date:	
	
	
	
6)	Do	you	want	to	be	sent	a	summary	of	my	study’s	results	(please	circle)?	
	
								Yes																																									No	
	
	
						(If	‘yes’,	please	provide	an	email	address)	
	
								Email:	
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Appendix	2:	Photograph	of	the	experimental	setup	
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Appendix	3:	Microstructure	coding	procedure	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Microstructure	coding	

	

Below	is	a	list	of	characters	which	children’s	builds	may	exhibit.	When	coding	the	

presence	of	these	characters	in	a	build,	this	serves	as	a	checklist	to	see	which	

characters	a	child	has	used,	by	noting	each	character’s	presence	or	absence.	

Coding	therefore	does	not	include	frequency	counts	of	any	of	the	characters.		

	

1. Block	lying	on	thin	long	side	
2. Block	lying	on	thin	short	side	
3. Block	lying	on	broad	side	

	

4. Block	incline	on	edge	between	thin	long	and	broad	sides	
5. Block	incline	on	edge	between	thin	short	and	broad	sides	
6. Block	incline	on	edge	between	thin	long	and	thin	short	sides	

	

7. 90°	overlap	of	a	block	with	a	block	directly	above	
8. 180°	overlap	of	a	block	with	a	block	directly	above	
9. Diagonal	overlap	of	a	block	with	a	block	directly	above	

	

10. 90°	articulation	of	a	block	to	a	block	on	the	same	plane	
11. 180°	articulation	of	a	block	to	a	block	on	the	same	plane	
12. Diagonal	articulation	of	a	block	to	a	block	on	the	same	plane		

	

13. A	block	with	between	1	and	3	blocks	resting	directly	above	it	
14. A	block	with	between	3	and	7	blocks	directly	above	it	
15. A	block	with	between	7	and	15	blocks	directly	above	(15	being	the	

maximum	number	of	blocks	–	on	their	thin	edges	–	which	can	lie	on	a	

block	on	its	broad	edge)	

	

16. 2	blocks,	neither	more	nor	less,	touching	the	table	
	

Notes:	

⎯ This	scheme	comprises	five	groups	of	three	possibilities	each,	and	one	
extra	group	of	binary	presence/absence.		

⎯ The	first	five	groups	each	have	three	possibilities	because	these	
possibilities	are	not	mutually	exclusive.	So	one	build	can	plausibly	

have	all	three	possibilities	of	block	orientation	(e.g.,	lying	on	thin	long	

edge,	lying	on	thin	short	edge,	and	lying	on	broad	edge).	Therefore,	to	

stop	any	one	group	outnumbering	the	rest,	each	of	these	groups	has	a	

maximum	of	three	possibilities.	

⎯ The	one	extra	group,	however,	contains	options	which	are	mutually	
exclusive	(i.e.,	if	a	build	has	one	option,	it	does	not	have	any	of	the	

other	options	of	that	group).	A	participant	build	either	has	the	same	
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number	of	blocks	touching	the	table	of	the	model	build	or	a	different	
number.	

⎯ All	of	the	possibilities	are	positive	rather	than	negative.	Each	
possibility	is	an	attribute	that	a	build	can	have,	rather	than	the	
absence	of	an	attribute.	

⎯ The	‘diagonal’	articulation	and	overlap	of	blocks	is	not	a	category	for	
blocks	which	deviate	slightly	from	perfect	180’	or	90’.	A	diagonally	
oriented	block	will	stand	out	as	such.	

⎯ The	‘block	incline’	category	includes	blocks	which	are	on	a	slope	in	the	
direction	of	the	edge	pointing	downwards	but	where	this	edge	is	not	
actually	touching	the	table/another	block.	

⎯ If	a	block	is	inclined	along	the	‘thin	long–broad’	axis,	depending	on	the	
degree	of	incline,	the	block	could	either	be	in	the	‘broad’	or	‘thin	long’	
position.	If	the	block	is	angled	more	vertically	than	diagonally,	this	
would	be	the	‘thin	long’	position,	if	more	horizontally	than	diagonally,	
this	would	be	the	‘broad’	position.	In	most	cases	anyway,	a	build	has	
either	one	or	the	other	type,	rather	than	both,	with	both	types	equally	
different	from	the	model	build.	

⎯ Most	of	the	time,	the	limits	of	a	build’s	structure	are	clear.	However,	
the	precise	boundary	of	a	child’s	build	can	be	debatable.	In	this	case,	
use	common	sense	and	intuition	to	define	the	boundary	of	building.		

⎯ Occasionally,	when	images	are	taken	from	the	video	recordings,	they	
do	not	picture	the	build’s	base.	When	this	is	the	case,	I	checked	the	
corresponding	video	to	see	how	the	base	was	built.	

⎯ ‘On	the	same	plane’	means	when	two	or	more	blocks	are	lying	on	a	
surface	of	the	same	height.	This	is	regardless	of	the	position	of	the	
block	–	the	plane	is	the	surface	underneath	it.	

	
Example	of	microstructure	similarity	coding:	
	

Build	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 Differences	
(frequency)	

Percentage	
similarity	

Model	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0	 1	 0	 0	 1	 N/A	 N/A	
Participant	
1	(SC)	 1	 0	 1	 0	 0	 0	 1	 1	 0	 0	 1	 0	 1	 0	 0	 0	

	
3	 81.25%	

Participant	
2	(UO)		 1	 0	 1	 0	 0	 0	 1	 0	 0	 1	 1	 0	 1	 0	 0	 0	 3	 81.25%	
Participant	
3	(ASO)	 1	 1	 1	 0	 0	 0	 0	 1	 0	 1	 1	 1	 1	 0	 0	 0	

	
7	 56.25%	

	
The	numbers	in	bold	at	the	top	of	the	columns	correspond	to	the	list	of	16	
microstructure	characters.	
Differences	between	the	example	participant	and	model	builds	are	highlighted	in	
yellow.	
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Appendix	4:	Information	and	consent	form	examples	(Prolific	Academic)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

18/05/2018, 11:56Similarity

Page 1 of 1file:///Users/guyforsyth/Documents/Durham/CFL-Masters/MRes/Data/Prolific%20coding/GuyApp/Guy.html

I am Guy Lavender Forsyth, a Masters student from the Department of Anthropology at
Durham University. I am researching building behaviour in children.

I have asked individual children to build structures from blocks. I would like to know how they
build, specfically whether copying influences their building behaviour.

To do that I need your help. You will be asked to rate pairs of block structures based on how
similar the structures in the pictures are to each other. You need to focus on similarity between
the overall shapes of the structures, since details of how specific blocks are put together are
not important. You will have an option to answer on a scale from 1 (very different) to 7 (very
similar).

The rating will take approximately 15 minutes. Please answer based on your first impression
and do not think to much about how similar the structures are. Please complete this study in
one go.

The data consist of your responses (numbers from 1 to 7), consent, age, gender, the date and
time. If you have any more questions about my study you can reach me through email:
g.a.lavender-forsyth@durham.ac.uk.

Press any key to begin.

18/05/2018, 12:02

Page 1 of 1file:///Users/guyforsyth/Documents/Durham/CFL-Masters/MRes/Data/Prolific%20coding/GuyApp/consent/consent.html

Consent form

I consent to participate in this session, which will involve 130 pairs of pictures I will have to rate by
similarity on the Likert scale from 1 (very similar) to 7 (very different). Â 

I understand that all data will be kept confidential by the researcher. My personal information will not be
stored with the data.Â I am free to withdraw at any time without giving a reason. Â 

I consent to the publication of study results as long as the information is anonymous so that no
identification of participants can be made.Â  Â 

The study has received approval from the Research Ethics Committee by Department of Anthropology of
the University ofÂ Durham. Â Â 

 I have read and understand the explanations and I voluntarily consent to participate in this study.

Start
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Appendix	5:	Model	descriptions	and	comparisons	for	Chapter	4	

5.1:	Predicting	microstructure	similarity	scores	by	participant	age	

Model	0.1,	below,	used	‘age’	(G)	as	the	sole	predictor	of	variation	in	

microstructure	similarity	scores:	

(Model	0.1)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	

The	model	below	added	the	variable	‘female’	to	Model	0.1:	

(Model	0.2)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βFFi	+	βGFGFi	

A	comparison	of	the	two	models	revealed	that	Model	0.2	took	only	0.19	of	the	

Akaike	weight	compared	to	the	0.89	of	Model	0.1.	Model	0.1	had	a	WAIC	value	

2.9	units	lower	than	that	of	Model	0.2,	the	standard	deviation	of	this	difference	

being	2.55.	That	the	standard	deviation	of	the	difference	was	smaller	than	the	

size	of	the	difference	itself	was	relatively	strong	evidence	that	one	model	made	

better	predictions	than	another.	Model	0.3,	below,	thus	added	another	variable	

(‘attendance	to	the	video’,	T)	to	Model	0.1,	rather	than	Model	0.2.	

(Model	0.3)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βTTi	+	βGTGTi	

Compared	to	Model	0.1,	Model	0.3	gained	only	0.13	of	the	weight.	Its	WAIC	score	

was	3.8	units	lower	than	that	of	Model	0.1	(SD=1.54).	Thus	Model	0.4,	below,	

added	the	variable	‘open’	to	Model	0.1.	

(Model	0.4)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βGOGOi	

Model	0.4	improved	on	Model	0.1,	by	taking	100%	of	Akaike	weight.	The	WAIC	

difference	between	the	two	models	was	22.5	(SD=10.97).	Model	0.5,	below,	

added	interactions	with	the	variable	‘social’	(S)	to	Model	0.4.	

(Model	0.5)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi	+	βGOGOi	+	βGSGSi	+	βGOSGOSi	
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This	model	was	another	improvement.	Compared	to	Model	0.4,	Model	0.5	took	

100%	of	the	Akaike	weight.	The	difference	in	WAIC	values	was	54.3	(SD=16.14).	

Model	0.6,	below,	thus	added	the	variable	‘successful’	to	Model	0.5.	

(Model	0.6)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi		+	βUUi	+	βGOGOi	+	βGSGSi		+	βGUGUi	+	βGOSGOSi		+	

βGOUGOUi	+	βGSUGSUi		+	βGOSUGOSUi	

Model	0.6	was	not	an	improvement	on	Model	0.5.	Model	0.6	took	only	0.08	of	the	

weight.	The	difference	in	WAIC	scores	was	4.9,	with	a	standard	deviation	of	4.38.	

I	therefore	added	the	last	variable	to	be	considered,	internal	evidence	of	failure	

(N),	to	Model	0.5.	

(Model	0.7)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi		+	βNNi	+	βGOGOi	+	βGSGSi		+	βGNGNi	+	βGOSGOSi		+	

βGONGONi	+	βGSNGSNi		+	βGOSNGOSNi	

This	model	did	improve	on	Model	0.5.	In	a	comparison	between	the	two,	Model	

0.7	took	0.98	of	the	weight,	the	difference	in	WAIC	scores	between	the	two	being	

7.9,	albeit	with	a	standard	deviation	of	10.18.	Model	0.7	is	therefore	the	model	

used	for	assessing	the	influence	of	participant	age	on	microstructure	similarity	

scores.	

	

5.2:	Predicting	macrostructure	similarity	scores	by	participant	age	

Model	0.8,	below,	used	‘age’	(G)	as	the	sole	predictor	of	variation	in	

macrostructure	similarity	scores:	

(Model	0.8)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	

The	model	below	added	the	variable	‘female’	to	Model	0.8:	

(Model	0.9)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βFFi	+	βGFGFi	

Model	0.9	made	no	improvement	on	Model	0.8,	with	an	Akaike	weight	of	0.16	to	

Model	0.9’s	0.84.	The	difference	between	the	WAIC	scores	was	3.2	(SD=1.89).	
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Model	0.10,	below,	thus	added	the	‘attendance	to	the	video’	variable	to	Model	

0.8.	

(Model	0.10)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βTTi	+	βGTGTi	

Again	Model	0.8	was	not	improved	upon.	Model	0.10	took	0.15	of	the	weight,	

with	a	WAIC	score	3.5	units	higher	than	that	of	Model	3.8	(SD=1.19).	Model	0.11	

added	‘open’	to	Model	0.8.	

(Model	0.11)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βGOGOi	

The	comparison	measures	indicated	greater	likelihood	that	Model	0.11	provides	

more	useful	predictions	about	the	data	than	Model	0.8.	Model	0.11	achieves	the	

higher	Akaike	weight,	of	0.72,	and	the	lower	WAIC	value,	by	1.9	units,	though	the	

standard	deviation	of	this	difference	was	5.23.	To	side	with	the	higher	

probability,	I	continued	with	Model	0.11,	to	which	the	‘social’	variable	was	

added	below.	

(Model	0.12)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi	+	βGOGOi	+	βGSGSi	+	βGOSGOSi	

This	model	was	again	an	improvement.	Model	0.12	took	100%	of	the	weight	in	

relation	to	Model	0.11,	with	a	WAIC	difference	of	37	(SD=13.4).	Model	0.13,	

below,	added	‘successful’	(U)	to	Model	0.12.	

(Model	0.13)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi		+	βUUi	+	βGOGOi	+	βGSGSi		+	βGUGUi	+	βGOSGOSi		+	

βGOUGOUi	+	βGSUGSUi		+	βGOSUGOSUi	

The	addition	of	a	variable	for	model	success	did	not	improve	model	predictions.	

In	comparison	with	Model	0.12,	Model	0.13	took	just	0.03	of	the	weight,	and	had	

a	higher	WAIC	score	by	7	units	(SD=5.07).	Model	0.14,	below,	added	‘internal	

evidence	of	failure’	(N)	to	Model	0.12.	

(Model	0.14)	

Ai~Ordered(p)	
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logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi		+	βNNi	+	βGOGOi	+	βGSGSi		+	βGNGNi	+	βGOSGOSi		+	

βGONGONi	+	βGSNGSNi		+	βGOSNGOSNi	

This	was	again	an	improvement.	Compared	with	Model	0.12,	Model	0.14	took	all	

of	the	Akaike	weight.	The	WAIC	difference	between	the	two	was	24.3	

(SD=13.02).	

	

5.3:	Predicting	microstructure	similarity	scores	by	participant	age	

Model	0.15,	below,	used	the	variable	‘female’	to	predict	variation	in	

microstructure	similarity	scores.	

(Model	0.15)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	

The	model	below	added	the	variable	‘age’	to	Model	0.15:	

(Model	0.16)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+βFGFGi	

This	model	did	improve	on	Model	0.15.	Model	0.16	took	100%	of	the	Akaike	

weight,	the	difference	in	WAIC	scores	being	14.8	(SD=9.09).	Model	0.17,	below,	

thus	added	a	variable	for	participant	attendance	to	the	video	(T)	to	Model	0.16.	

(Model	0.17)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βTTi	+βFGFGi	+	βFTFTi	+	βFGTFGTi	

Model	0.17	made	no	improvement	on	Model	0.16,	which	gained	0.96	of	the	

weight	in	a	comparison	between	the	two.	The	difference	between	the	WAIC	

scores	of	the	two	was	6.5	(SD=1.35).	Therefore	‘open’	(O)	was	added	to	Model	

0.16	rather	than	Model	0.17.	

(Model	0.18)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+βFGFGi	+	βFOFOi	+	βFGOFGOi	

This	model	was	an	improvement	on	Model	0.16,	compared	with	which	it	

achieves	100%	of	the	weight.	The	WAIC	difference	between	the	two	was	22.2	

(SD=10.93).	I	thus	added	‘social’	(S)	to	Model	0.18.	

(Model	0.19)	
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Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFGOFGOi	+	

βFGSFGSi	+	βFOSFOSi	+	βFGOSFGOSi	

This	model	was	again	an	improvement.	Compared	with	Model	0.18,	Model	0.19	

took	100%	of	the	weight,	the	difference	in	WAIC	values	being	46.8	(SD=16.17).	

The	next	variable	to	be	added	was	the	one	for	model	success	(U).	

(Model	0.20)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βUUi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFUFUi	

+	βFGOFGOi	+	βFGSFGSi	+	βFGUFGUi	+	βFOSFOSi	+	βFOUFOUi	+	βFSUFSUi	+	

βFGOSFGOSi		+	βFGOUFGOUi		+	βFGSUFGSUi		+	βFOSUFOSUi		+	βFGOSUFGOSUi	

Compared	with	Model	0.19,	Model	0.20	gained	none	of	the	Akaike	weight.	The	

difference	in	the	WAIC	values	of	the	two	models	was	14.5	(SD=4.05).	Model	0.21,	

below,	thus	swapped	the	variable	for	model	success	with	one	for	participant	

internal	evidence	of	failure	(N).	

(Model	0.21)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFNFNi	

+	βFGOFGOi	+	βFGSFGSi	+	βFGNFGNi	+	βFOSFOSi	+	βFONFONi	+	βFSNFSNi	+	

βFGOSFGOSi		+	βFGONFGONi		+	βFGSNFGSNi		+	βFOSNFOSNi		+	

βFGOSNFGOSNi	

This	model	did	take	the	greater	part	of	the	Akaike	weight	in	a	comparison	with	

Model	0.19.	However	the	difference	was	narrow:	with	Model	0.19	on	0.43	and	

Model	0.21	on	0.57.	The	difference	between	their	WAIC	values	was	just	0.6,	with	

a	standard	deviation	of	9.46.	Essentially	there	was	no	difference	between	the	

models,	since	the	difference	calculated	between	the	two	was	overwhelmed	by	

the	degree	of	uncertainty	in	the	calculation.	However,	it	was	notable	that	Model	

0.21	achieved	as	good	a	WAIC	value	as	Model	0.19	despite	the	risk	of	overfitting	

with	so	many	parameters.	It	was	therefore	with	this	model	that	I	graphed	the		

effects	of	participant	sex	on	microstructure	similarity	scores.	
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5.4:	Predicting	macrostructure	similarity	scores	by	participant	sex	

Model	0.22,	below,	used	the	variable	‘female’	(F)	to	predict	variation	in	

macrostructure	similarity	scores.	

(Model	0.22)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	

The	model	below	added	the	variable	‘age’	to	Model	0.22:	

(Model	0.23)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+βFGFGi	

Model	0.23	took	all	of	the	weight,	with	a	WAIC	difference	of	38.5	(SD=12.65).	I	

thus	added	‘attendance	to	the	video’	(T)	to	Model	0.23.	

(Model	0.24)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βTTi	+βFGFGi	+	βFTFTi	+	βFGTFGTi	

This	model	was	not	an	improvement	on	Model	0.23,	in	comparison	with	which	it	

gained	only	0.07	of	the	Akaike	weight.	The	WAIC	score	difference	between	the	

two	models	was	5.2	(SD=2.69).	The	next	variable,	‘open’	(O),	was	added	to	Model	

0.23.	

(Model	0.25)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+βFGFGi	+	βFOFOi	+	βFGOFGOi	

There	was	greater	probability	that	Model	0.25	improved	on	Model	0.23	than	

that	was	did	not,	gaining	0.73	of	the	Akaike	weight.	The	difference	between	the	

two	models’	WAIC	scores	was	2,	with	a	standard	deviation	of	6.34.	To	side	with	

the	greater	probability,	I	continued	with	Model	0.25.	The	next	model	added	

interactions	with	‘social’	(S).	

(Model	0.26)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFGOFGOi	+	

βFGSFGSi	+	βFOSFOSi	+	βFGOSFGOSi	
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This	addition	did	resulted	in	an	improved	model,	with	Model	0.26	taking	100%	

of	the	weight,	and	a	WAIC	score	35.6	units	lower	than	that	of	Model	0.25	

(SD=13.31).	I	next	added	the	variable	‘successful’.	

(Model	0.27)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βUUi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFUFUi	

+	βFGOFGOi	+	βFGSFGSi	+	βFGUFGUi	+	βFOSFOSi	+	βFOUFOUi	+	βFSUFSUi	+	
βFGOSFGOSi		+	βFGOUFGOUi		+	βFGSUFGSUi		+	βFOSUFOSUi		+	βFGOSUFGOSUi	

This	model	gained	no	Akaike	weight	relative	to	Model	0.27.	The	WAIC	difference	

was	13.9,	with	a	standard	deviation	of	5.67.	I	therefore	swapped	out	‘success’	for	

‘internal	evidence	of	failure’	(N):	

(Model	0.28)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFNFNi	

+	βFGOFGOi	+	βFGSFGSi	+	βFGNFGNi	+	βFOSFOSi	+	βFONFONi	+	βFSNFSNi	+	

βFGOSFGOSi		+	βFGONFGONi		+	βFGSNFGSNi		+	βFOSNFOSNi		+	

βFGOSNFGOSNi	

This	model	did	improve,	taking	100%	of	the	weight	compared	to	Model	0.26.	

The	WAIC	difference	was	16.8	(SD=13.98).	It	was	this	model	that	was	therefore	

graphed.	

	

5.5:	Predicting	microstructure	similarity	scores	by	participant	attendance	to	the	

experimental	video	

Model	0.29,	below,	used	the	variable	‘attendance	to	the	video’	(T)	to	predict	

variation	in	microstructure	similarity	scores.	

(Model	0.29)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	

The	model	below	added	the	variable	‘age’	to	Model	0.29:	

(Model	0.30)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βTGTGi	
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This	model	took	all	of	the	weight	when	compared	with	Model	0.29.	The	

difference	in	WAIC	scores	was	15.8	(SD=9.35).	Model	0.31,	below,	added	‘female’	

to	this	model.	

(Model	0.31)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βFFi	+	βTGTGi	+	βTFTFi	+	βTGFTGFi	

Model	0.31	made	no	improvement	on	Model	0.30,	which	took	0.93	of	the	Akaike	

weight.	The	WAIC	difference	between	the	two	was	5.1	(SD=2.94).	Model	0.32	

swapped	‘female’	for	‘open’.	

(Model	0.32)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βTGTGi	+	βTOTOi	+	βTGOTGOi	

This	model	improved	on	Model	0.31,	with	a	weight	value	of	1.	The	difference	in	

WAIC	scores	was	21.9	(SD=11.24).	Model	0.33,	below,	added	interactions	with	

‘social’.	

(Model	0.33)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	βTGOTGOi	+	

βTGSTGSi	+	βTOSTOSi	+	βTGOSTGOSi	

This	model	was	again	an	improvement,	taking	100%	of	the	Akaike	weight	to	

Model	0.32.	The	model	below	added	‘successful’.	

(Model	0.34)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βUUi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	

βTUTUi	+	βTGOTGOi	+	βTGSTGSi	+	βTGUTGUi	+	βTOSTOSi	+	βTOUTOUi	+	

βTSUTSUi	+	βTGOSTGOSi		+	βTGOUTGOUi		+	βTGSUTGSUi		+	βTOSUTOSUi		+	

βTGOSUTGOSUi	

Model	0.34	did	not	improve	on	Model	0.33.	Comparing	the	two,	Model	0.33	took	

100%	of	the	weight,	and	had	a	WAIC	score	11.9	units	lower	than	Model	0.34	

(SD=6.06).	Model	0.35,	below,	replaced	‘successful’	with	‘internal	evidence	of	

failure’.	

(Model	0.35)	

Ii~Ordered(p)	
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logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	

βTNTNi	+	βTGOTGOi	+	βTGSTGSi	+	βTGNTGNi	+	βTOSTOSi	+	βTONTONi	+	

βTSNTSNi	+	βTGOSTGOSi		+	βTGONTGONi		+	βTGSNTGSNi		+	βTOSNTOSNi		+	

βTGOSNTGOSNi	

This	model	did	not	improve	on	Model	0.33,	taking	0.42	of	the	Akaike	weight.	The	

WAIC	difference	was	just	0.6,	with	a	standard	deviation	of	9.66,	indicating	

considerable	uncertainty	about	the	difference	between	the	two	models.	I	went	

forward	with	Model	0.33	since	it	was	able	to	achieve	a	nearly	identical	WAIC	

score	to	Model	0.35	despite	having	less	information	to	work	on.	This	indicates	

that	the	addition	of	the	new	‘internal	evidence	of	failure’	variable	was	not	useful	

enough	to	overcome	the	overfitting	risk	which	the	greater	number	of	

parameters	creates.	

	

5.6:	Predicting	macrostructure	similarity	scores	by	participant	attendance	to	the	

experimental	video	

Model	0.36,	below,	used	the	variable	‘attendance	to	the	video’	(T)	to	predict	

variation	in	macrostructure	similarity	scores.	

(Model	0.36)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	

The	model	below	added	the	variable	‘age’	to	Model	0.36:	

(Model	0.37)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βTGTGi	

This	new	model	took	all	of	the	Akaike	weight.	The	WAIC	difference	was	39.3	

(SD=12.78).	I	therefore	added	‘female’	to	Model	0.37.	

(Model	0.38)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βFFi	+	βTGTGi	+	βTFTFi	+	βTGFTGFi	

This	model	did	not	make	an	improvement,	with	only	0.11	of	the	weight	

compared	to	Model	0.37.	The	difference	in	WAIC	was	4.1	(SD=3.35).	In	the	next	

model,	I	substitute	the	variable	‘female’	for	‘open’.	

(Model	0.39)	
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Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βTGTGi	+	βTOTOi	+	βTGOTGOi	

Model	0.39	took	0.64	of	the	Akaike	weight	compared	to	Model	0.37.	The	

difference	between	their	WAIC	values	was	just	1.1,	with	a	standard	deviation	of	

5.74.	I	therefore	continued	with	the	Model	which	held	the	greater	probability	of	

useful	predictions,	by	adding	‘social’	to	Model	0.39.	

(Model	0.40)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	βTGOTGOi	+	

βTGSTGSi	+	βTOSTOSi	+	βTGOSTGOSi	

This	was	again	an	improved	model,	taking	100%	of	the	weight	to	Model	0.39.	

The	difference	in	WAIC	scores	was	29.3	(SD=12.63).	I	next	added	interactions	

with	the	variable	‘successful’.	

(Model	0.41)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βUUi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	

βTUTUi	+	βTGOTGOi	+	βTGSTGSi	+	βTGUTGUi	+	βTOSTOSi	+	βTOUTOUi	+	

βTSUTSUi	+	βTGOSTGOSi		+	βTGOUTGOUi		+	βTGSUTGSUi		+	βTOSUTOSUi		+	

βTGOSUTGOSUi	

The	model	including	model	success	again	failed	to	improve	predictions,	with	

Model	0.41	taking	none	of	the	Akaike	weight	compared	to	Model	0.40.	The	

difference	between	the	two	WAIC	scores	was	18.6	(SD=3.22).	Model	0.42,	below,	

substitutes	‘successful’	for	participant	‘internal	evidence	of	failure’.	

(Model	0.42)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	

βTNTNi	+	βTGOTGOi	+	βTGSTGSi	+	βTGNTGNi	+	βTOSTOSi	+	βTONTONi	+	

βTSNTSNi	+	βTGOSTGOSi		+	βTGONTGONi		+	βTGSNTGSNi		+	βTOSNTOSNi		+	

βTGOSNTGOSNi	

This	model	again	took	100%	of	the	Akaike	weight.	The	difference	between	the	

WAIC	scores	of	Models	0.40	and	0.42	was	16.6	(SD=13.76).	
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Appendix	6:	Further	detail	of	results	for	Chapter	4	

6.1:	Participant	age	and	microstructure	similarity	

I	deal	first	with	variation	in	microstructure	similarity	scores.	Model	1	used	

participant	age	(‘G’)	for	each	case	in	the	dataset	to	predict	variation	in	

microstructure	similarity	scores	across	cases.	Age	was	expected	to	increase	

microstructure	similarity	scores	when	the	social	model	was	present.	

(Model	1)	

Ii~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi		+	βNNi	+	βGOGOi	+	βGSGSi		+	βGNGNi	+	βGOSGOSi		+	

βGONGONi	+	βGSNGSNi		+	βGOSNGOSNi	

In	this	model,	Ii	stood	for	the	microstructure	score	of	each	individual	participant.	

‘p’	was	a	vector	of	probabilities	the	same	length	as	the	number	of	microstructure	

score	thresholds	(i.e.,	15	thresholds	between	16	ordinal	categories),	the	k	stood	

for	the	threshold	values	themselves,	defined	by	a	link	to	the	intercept	parameter	

αk.	Alongside	G,	the	predictor	variable	representing	the	effect	of	a	participant’s	

age,	O	was	a	1-0	predictor	variable	representing	whether	the	participant	built	in	

open-	rather	than	close-ended	conditions,	S	was	a	similar	1-0	predictor	

representing	whether	the	participant	observed	the	‘social’	model	rather	than	the	

‘asocial’	model,	and	N	was	a	predictor	variable	which	noted	each	participant’s	

degree	of	internal	evidence	of	failure.		

	

Model	1	included	some,	but	not	all	of	the	variables	which	were	measured	for	the	

experiment.	For	example,	the	model	did	not	include	interactions	with	the	sex	of	

the	participant	or	the	success	of	the	model.	This	was	because	it	was	found	that	

adding	these	variables	to	Model	1	lowered	its	Akaike	weight	and	raised	its	WAIC	

score.	A	full	account	of	the	model	comparison	process	can	be	found	in	Appendix	

5.1.	Model	1	predicted	that	the	marginal	(i.e.	without	interaction	with	other	

variables	in	the	model)	effect	of	the	‘age’	variable	on	microstructure	similarity	

scores	was	mostly	positive.	The	mean	effect	of	‘age’	was	estimated	at	0.13	

(SD=0.08).	The	0.89	HPDI	(Highest	Posterior	Density	Interval)	measures	the	

range	of	data	which	accounts	for	89%	of	the	posterior	probability	(McElreath	

2016).	For	the	variable	‘age’,	the	0.89	HPDI	ranged	from	-0.01	to	0.24.	
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A	descending	slope	indicates	that	Model	1	predicted	a	positive	relationship	

between	increased	participant	age	and	microstructure	similarity	scores.	This	

trend	seems	consistent	among	six	out	of	the	eight	interactions	modelled:	graphs	

A,	C,	and	D	in	both	Figures	3	and	4	(pages	58	and	59	respectively).	Whether	or	

not	the	children	observed	the	social	model,	older	children	tended	to	use	a	

microstructure	more	similar	to	it	than	younger	children.	The	exception,	

consistent	across	both	low	and	high	internal	evidence	of	failure,	was	the	

interaction	between	the	asocial	model	and	open-ended	task:	graph	C	in	both	

Figures	3	and	4.	Only	in	this	specific	condition	were	participants	with	older	ages	

predicted	to	display	lower	microstructure	similarity	than	younger	children.	

	

The	influence	of	open-ended	conditions	(graphs	B	and	D	in	Figures	3	and	4),	

rather	than	close-ended	conditions	(graphs	A	and	C	in	Figures	3	and	4),	

appeared	to	make	the	effect	of	age	on	microstructure	similarity	less	positive.	

When	the	model	was	asocial,	across	both	low	and	high	internal	evidence	of	

failure	(graphs	A	and	B	in	Figures	3	and	4),	the	change	from	the	close-	to	open-

ended	task	turned	a	positive	relationship	between	age	and	microstructure	

similarity	into	a	negative	relationship.	When	the	model	was	social,	across	both	

low	and	high	internal	evidence	of	failure	(graphs	C	and	D	in	Figures	3	and	4),	the	

strength	of	the	positive	relationship	between	age	and	microstructure	similarity	

scores	was	weakened	by	the	change	from	a	close-	to	an	open-ended	task.	

	

The	influence	of	the	difference	between	low	and	high	internal	evidence	of	failure	

(Figures	3	and	4	respectively)	on	the	effect	of	age	on	microstructure	similarity	

scores	appears	to	have	been	relatively	weak.	In	the	asocial	conditions	(graphs	A	

and	B	in	Figures	3	and	4),	there	seemed	to	have	been	essentially	no	difference	

between	low	and	high	participant	evidence	of	failure.	In	the	social	conditions	

(graphs	C	and	D	in	Figures	3	and	4),	the	relationship	between	age	and	

microstructure	similarity	appears	to	have	been	slightly	weaker	when	

participants	demonstrated	high	internal	evidence	of	failure.	
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6.2:	Participant	age	and	macrostructure	similarity	

I	then	turned	to	the	effects	of	the	‘age’	variable	on	macrostructure	similarity	

scores,	in	which	a	positive	relationship	was	again	predicted	when	the	social	

model	was	present.	The	macrostructure	similarity	data	used	here	numbered	559	

cases.	The	6	cases	dropped	include	the	four	also	excluded	from	the	

microstructure	data	above,	and	the	two	builds	not	coded	during	macrostructure	

score	data	collection	via	Prolific.	As	for	the	microstructure	data	above,	Model	2	

(below)	was	the	result	of	a	process	of	model	comparison.	An	account	of	this	

comparison	process	can	be	found	in	Appendix	5.2.	

(Model	2)	

Ai~Ordered(p)	

logit(pk)=αk	+	βGGi	+	βOOi	+	βSSi		+	βNNi	+	βGOGOi	+	βGSGSi		+	βGNGNi	+	βGOSGOSi		+	

βGONGONi	+	βGSNGSNi		+	βGOSNGOSNi	

Model	2	used	interactions	between	the	same	four	variables	(‘age’,	‘open’,	‘social’,	

and	‘internal	evidence	of	failure’)	to	predict	variation	in	the	outcome	variable:	

macrostructure	similarity	scores	(Ai	in	the	model	above).	The	predicted	

marginal	effect	of	‘age’	was	again	largely	positive.	The	mean	effect	of	‘age’,	as	

estimated	by	the	model,	was	0.10	(SD=0.10;	HPDI=0.89,	between	-0.06	and	

0.26).	However,	to	gauge	Model	2’s	predictions	of	the	real	effect	of	‘age’	on	

macrostructure	similarity	scores,	it	was	necessary	to	simultaneously	take	the	

effects	of	the	three	other	variables	into	account.	This	is	possible	in	Figures	5	and	

6	(pages	60	and	61	respectively).	

	

The	influence	of	the	close-ended	(graphs	A	and	C)	versus	open-ended	task	

(graphs	B	and	D)	appeared	to	have	a	negligible	effect	in	Figure	5,	where	

participants	showed	low	internal	evidence	of	failure.	It	appeared	to	have	a	

greater	effect,	however,	in	Figure	6	where	participants	exhibited	greater	internal	

evidence	of	failure.	The	change	from	close-	to	open-ended	seems	to	have	shifted	

the	lines	up	towards	the	top	of	the	graph,	with	both	the	asocial	(graphs	A	and	B	

in	Figures	5	and	6)	and	social	model	(graphs	C	and	D	in	Figures	5	and	6).	This	

indicates	that	the	open-ended	task	made	macrostructure	similarity	scores	lower	

in	these	conditions.	
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The	influence	of	high	internal	evidence	of	failure	(Figure	6),	rather	than	low	

internal	evidence	of	failure	(Figure	5),	appeared	also	to	shift	the	lines	towards	

the	top	of	the	graphs,	decreasing	macrostructure	similarity	scores.	However,	it	

did	not	appear	to	change	the	positive	relationship	between	age	and	

macrostructure	similarity	which	was	found	in	the	graphs.	

	

6.3:	Participant	sex	and	microstructure	similarity	

I	next	turn	back	to	microstructure	similarity	scores,	and	the	role	that	the	sex	of	

the	participant	played	in	determining	their	variation.	Being	female,	rather	than	

male,	was	here	predicted	to	increase	microstructure	similarity	scores	with	the	

social	model.	The	sample	size	again	numbered	561	cases.	The	model	to	describe	

the	role	of	sex,	or,	more	specifically,	the	role	of	a	participant	being	female	rather	

than	male,	is	described	below.	It	was	once	again	the	product	of	a	process	of	

model	comparison,	an	account	of	which	can	be	found	in	Appendix	5.3.	

(Model	3)	

Ii~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFNFNi	

+	βFGOFGOi	+	βFGSFGSi	+	βFGNFGNi	+	βFOSFOSi	+	βFONFONi	+	βFSNFSNi	+	

βFGOSFGOSi		+	βFGONFGONi		+	βFGSNFGSNi		+	βFOSNFOSNi		+	

βFGOSNFGOSNi	

Model	3	used	interactions	between	five	variables	to	predict	variation	in	the	

microstructure	similarity	outcome	variable:	‘female’	(F),	‘age’	(G),	‘open’	(O),	

‘social’	(S),	and	‘internal	evidence	of	failure’	(N).	

	

The	mean	effect	of	a	participant	being	female,	rather	than	male,	on	

microstructure	similarity,	as	estimated	by	the	model,	was	1.40	(SD=1.45;	

HPDI=0.89,	between	-0.86	and	3.74).	The	effect	of	‘female’	thus	appears	to	have	

been	more	variable	than	that	for	‘age’,	with	posterior	probability	for	its	effects	

spread	widely	across	many	possible	values.	To	unravel	Model	3’s	predicted	

effects	of	being	female,	rather	than	male,	on	microstructure	similarity	scores	

under	different	conditions,	it	was	necessary	to	use	a	set	of	graphs.	These	are	

shown	in	Figures	7,	8,	9,	and	10	(pages	63	and	64	respectively).	
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The	influence	of	participant	age	on	the	effect	of	being	female	on	microstructure	

similarity	appeared	relatively	consistent.	Figures	7	and	8,	with	low	participant	

age,	showed	the	same	basic	trend	of	positive	relationships	between	being	female	

and	microstructure	similarity	scores	for	all	graphs	except	for	graph	C	where	

there	was	a	social	model	and	close-ended	task,	which	showed	negative	

relationships.	Figures	9	and	10,	with	high	participant	age,	also	showed	broadly	

the	same	pattern	as	each	other.	In	Figure	9	and	10’s	graphs	C	and	D,	when	the	

model	was	social,	there	were	positive	relationships	between	being	female	and	

microstructure	similarity	scores.	With	the	asocial	model	(graphs	C	and	D),	in	

both	Figures	9	and	10,	the	positive	effect	of	being	female	was	less	visible.	

	

The	influence	of	the	social	model	(graphs	A	and	B	across	Figures	7	to	10),	rather	

than	the	asocial	model	(graphs	C	and	D	across	Figures	7	to	10),	on	the	effect	of	a	

female	participant	on	microstructure	similarity	also	appears	to	have	been	

complex.	There	were	examples	of	the	social	model	reversing	the	effect	of	the	

‘female’	variable	on	microstructure	with	the	asocial	model,	such	as	between	

graphs	B	and	D	in	Figure	9	with	older	children	exhibiting	lower	internal	

evidence	of	failure	in	the	open-ended	task.	There	were	also	examples	of	the	

social	model	maintaining	the	effect	of	the	female	with	an	asocial	model,	such	as	

between	graphs	B	and	D	in	Figure	8	with	younger	children	exhibiting	higher	

internal	evidence	of	failure	in	the	open-ended	task.		

	

The	same	story	was	true	for	the	effect	of	the	open-ended	task	(graphs	B	and	D	

across	Figures	7	to	10)	rather	than	the	close-ended	task	(graphs	A	and	C	across	

Figures	7	to	10).	Between	graphs	C	and	D	in	Figure	7,	with	young	children	

exhibiting	low	internal	evidence	of	failure	with	a	social	model,	the	effect	of	

changing	open-ended	into	close-ended	conditions	appears	to	reverse	the	effect	

of	being	female	on	microstructure	similarity.	However,	between	graphs	A	and	B	

also	in	Figure	7,	when	the	model	was	asocial,	the	effect	of	close-	versus	open-

ended	conditions	did	not	seem	to	change	the	positive	relationship	between	

being	female	and	higher	microstructure	similarity	scores.		
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The	influence	of	internal	evidence	of	failure	also	appeared	to	have	complex	

influences	on	the	effect	of	being	female	on	microstructure	similarity	scores.	

Between	Figures	7	and	9,	where	participants	displayed	low	internal	evidence	of	

failure,	there	were	reversals	in	the	direction	of	the	relationship	between	being	

female	and	microstructure	similarity	in	three	out	of	the	four	graphs.	Between	

Figures	8	and	10,	with	high	internal	evidence	of	failure,	there	were	two	reversals	

in	the	relationships	between	being	female	and	microstructure	similarity	scores.	

	

6.4:	Participant	sex	and	macrostructure	similarity	

I	now	consider	the	effect	of	being	female,	the	same	variable,	on	variation	in	

macrostructure	similarity	scores.	The	effect	of	female	was	again	predicted	to	

increase	the	similarity	of	participants’	builds	to	the	social	model	when	the	social	

model	was	present.	Model	4,	below,	used	the	same	five	predictor	variables	as	

above	to	model	variation	in	macrostructure	similarity	scores	across	the	559	

cases.	See	Appendix	5.4	for	an	account	of	the	model	comparison	process.	

(Model	4)	

Ai~Ordered(p)	

logit(pk)=αk	+	βFFi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βFGFGi	+	βFOFOi	+	βFSFSi	+	βFNFNi	

+	βFGOFGOi	+	βFGSFGSi	+	βFGNFGNi	+	βFOSFOSi	+	βFONFONi	+	βFSNFSNi	+	

βFGOSFGOSi		+	βFGONFGONi		+	βFGSNFGSNi		+	βFOSNFOSNi		+	

βFGOSNFGOSNi	

The	mean	effect	of	‘female’	was	more	firmly	positive	than	in	Model	3	for	

microstructure	outcome	variable,	at	4.51	(SD=1.78;	HPDI=0.89,	between	1.69	

and	7.39).	Figures	11	to	14	(see	pages	65,	66,	and	67)	illustrate	the	effects	of	

being	female	in	interaction	with	the	other	variables.	

	

The	social	model	did	not	appear	to	have	a	totally	consistent	influence	on	the	

effect	of	being	female	on	macrostructure	similarity	scores.	In	Figure	11,	with	

younger	children	exhibiting	lower	internal	evidence	of	failure,	quite	strong	

effects	of	being	female	on	macrostructure	similarity	with	an	asocial	model	

(graphs	A	and	B)	were	made	much	weaker	with	a	social	model	(graphs	C	and	D).	

However,	in	Figure	14,	with	older	children	exhibiting	higher	internal	evidence	of	

failure,	the	change	of	the	asocial	(graphs	A	and	B)	to	the	social	model	(graphs	C	
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and	D)	appears	to	have	inverted	the	relationship	between	being	female	and	

macrostructure	similarity	scores.	

	

The	influence	of	an	open-ended	task	(graphs	B	and	D	in	Figures	11	through	14),	

rather	than	a	close-ended	task	(graphs	A	and	C	in	Figures	11	through	14),	was	

variable.	In	five	out	of	eight	conditions,	the	change	from	the	close-ended	to	the	

open-ended	task	made	the	effect	of	being	female	on	macrostructure	similarity	at	

least	as	positive	as	in	the	close-ended	task	(in	four	of	these	cases,	the	effect	of	

being	female	became	more	positive).	This	was	true,	for	example,	in	Figure	13	

with	older	children	demonstrating	lower	internal	evidence	of	failure.	Between	

graphs	A	and	B,	with	the	asocial	model,	the	influence	of	the	open-ended	task	was	

to	reverse	the	negative	relationship	between	being	female	and	macrostructure	

similarity	found	with	the	close-ended	task.	Between	graphs	C	and	D,	with	a	

social	model,	the	influence	of	the	open-ended	task	was	to	turn	a	neutral	

relationship	between	being	female	and	macrostructure	similarity	into	a	positive	

one.	However,	there	were	three	more	conditions	in	which	the	open-ended	

condition	was	associated	with	either	a	negative	or	neutral	relationship	between	

being	female	and	macrostructure	similarity	scores.	Between	graphs	A	and	B	in	

Figure	14,	with	older	children	demonstrating	higher	internal	evidence	of	failure	

and	an	asocial	model,	for	example,	the	influence	of	open-ended	conditions	

appeared	to	have	been	to	conserve	the	slightly	negative	relationship	between	

being	female	and	macrostructure	similarity	scores	in	the	close-ended	condition.	

This	indicates	that	the	effect	of	the	open-ended	task,	versus	close-ended	task,	

was	itself	dependent	on	the	influence	of	other	variables,	particularly	the	social	

versus	asocial	model.	

	

In	the	set	of	graphs	between	Figures	11	and	14,	the	influence	of	age	did	not	

appear	to	have	been	a	large	factor	in	the	effect	of	being	female	on	

macrostructure	similarity	scores.	Within	the	younger	and	older	age	groups	there	

was	a	large	degree	of	variation,	across	both	Figures	11	and	12	(younger)	and	

both	Figures	13	and	14	(older).	And	between	Figures	11	and	13,	and	12	and	14	

respectively,	there	was	a	surprising	degree	of	similarity.	This	suggests	that	

variation	in	internal	evidence	of	failure	may	have	been	a	strong	predictor	of	the	



155	 	

effect	of	being	female	on	macrostructure	similarity	scores.	However,	even	here,	

within	conditions	of	either	low	or	high	internal	evidence	of	failure,	there	was	a	

large	degree	of	variation.	For	example,	between	Figures	12	and	14,	where	

participants	showed	high	internal	evidence	of	failure,	the	effects	of	‘female’	on	

macrostructure	similarity	were:	inverted	from	positive	to	negative	in	graph	A,	

kept	negative	in	graph	B,	inverted	from	negative	to	positive	in	graph	C,	and	kept	

positive	in	graph	D.	The	influence	of	internal	evidence	of	failure	thus	also	

appeared	to	have	been	dependent	on	the	influences	of	other	variables.	

	

6.5:	Participant	attendance	to	the	video	and	microstructure	similarity	

The	final	variable	to	be	tested	in	Chapter	4	was	participants’	attendance	to	the	

video.	Higher	attendance	to	the	video	was	predicted	to	increase	microstructure	

similarity	scores	with	the	social	model.	Model	5,	below,	used	four	predictor	

variables	to	model	variation	in	microstructure	similarity	across	the	561	cases:	

‘attendance	to	the	video’	(T),	‘age’	(G),	‘open’	(O),	and	‘social’	(S).	

(Model	5)	

Ii~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	βTGOTGOi	+	

βTGSTGSi	+	βTOSTOSi	+	βTGOSTGOSi	

Model	5	did	not	include	interactions	with	the	‘internal	evidence	of	failure’	

variable,	since	adding	it	was	not	found	to	increase	model	predictions.	An	

account	of	these	model	comparisons	can	be	found	in	Appendix	5.5.	Model	5’s	

estimate	for	the	mean	effect	of	the	attendance	score	variable	(without	

interactions	with	other	variables)	was	0.04	(SD=0.11;	HPDI=0.89,	between	-0.13	

and	0.21).	Figures	15	and	16	(pages	68	and	69	respectively),	on	the	other	hand,	

plot	Model	5’s	predicted	real	effects	of	turning	participant	attendance	to	the	

video	from	low	to	high,	when	its	effect	was	dependent	on	the	influence	of	the	

three	other	variables	in	the	model:	the	close-	versus	open-ended	task,	the	asocial	

versus	social	model,	and	low	versus	high	participant	age.	

	

The	influence	of	the	social,	rather	than	asocial,	model	appeared	to	have	little	

change	amongst	younger	children	(Figure	15).	In	the	close-ended	task,	the	social	

model	(in	graph	C)	changed	the	weakly	positive	effect	of	attendance	scores	on	
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microstructure	similarity	with	the	asocial	model	(graph	A)	into	a	weakly	

negative	effect.	With	the	open-ended	task,	the	social	model	(graph	D)	merely	

conserved	the	already	weakly	negative	relationship	between	attendance	scores	

and	microstructure	similarity	visible	with	the	asocial	model	(graph	B).	In	older	

children	(Figure	16),	however,	the	effect	of	the	social	model	appeared	to	reduce	

the	negative	effect	of	attendance	to	the	video	on	microstructure	similarity	

scores.	With	the	close-ended	task,	the	social	model	(in	graph	C)	changed	the	

asocial	model’s	neutral	relationship	between	attendance	and	microstructure	

similarity	(graph	A)	into	a	positive	relationship,	and	with	the	open-ended	task,	

the	social	model	(in	graph	D)	appeared	to	nullify	the	negative	relationship	

between	attendance	and	microstructure	similarity	found	with	the	asocial	model	

(graph	B).	

	

The	influence	of	open-ended,	rather	than	close-ended,	conditions	appears	to	

have	been	to	make	the	effect	of	attendance	to	the	video	on	microstructure	

similarity	scores	more	negative,	or	at	least	less	positive.	In	Figure	15	(with	

younger	children),	both	open-ended	conditions	(graphs	B	and	D)	exhibited	

weakly	negative	relationships	between	attendance	to	the	video	scores	and	

microstructure	similarity	scores,	while	the	close-ended	conditions	showed	

either	an	even	more	weakly	negative	relationship	(with	the	social	model,	graph	

C)	or	a	weakly	positive	relationship	(with	the	asocial	model,	graph	A).	In	Figure	

16	(amongst	older	children),	with	an	asocial	model,	while	the	close-ended	

condition	(graph	A)	showed	a	neutral	relationship,	the	open-ended	condition	

(graph	B)	showed	a	negative	relationship.	With	a	social	model,	the	close-ended	

task	(graph	C)	showed	a	relatively	strong	positive	relationship	between	

attendance	to	the	video	and	microstructure	similarity,	which	was	nullified	in	the	

open-ended	task	(graph	D).	

	

The	influence	of	participant	age	appeared	flexible.	Figure	16,	with	the	older	

children,	presented	the	two	graphs	with	the	strongest	relationships	between	

attendance	scores	and	microstructure	similarity	scores,	as	well	as	the	two	

graphs	with	the	weakest	relationships	between	the	predictor	and	outcome	

variables.	Older	age	seemed	to	enhance	the	negative	effect	of	attendance	to	the	
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video	with	an	asocial	model	and	open-ended	task,	as	well	as	the	positive	effect	of	

attendance	to	the	video	with	a	social	model	and	close-ended	task.	Older	age	then	

seemed	to	nullify	the	effect	of	attendance	scores	on	microstructure	similarity	

with	an	asocial	model	and	close-ended	task,	and	with	a	social	model	and	open-

ended	task.	

	

6.6:	Participant	attendance	to	the	video	and	macrostructure	similarity	

Finally,	for	Chapter	4,	I	considered	the	effects	of	participants’	attendance	to	the	

video	on	macrostructure	similarity	scores.	The	effect	of	attendance	to	the	video	

was	again	predicted	to	be	positive	when	the	social	model	was	present.	The	

sample	size	was	561.	The	model,	below,	used	interactions	between	five	

variables:	‘attendance	to	the	video’	(T),	‘age’	(G),	‘open’	(O),	‘social’	(S),	and	

‘internal	evidence	of	failure’	(N).	See	Appendix	5.6	for	an	account	of	the	

comparisons	to	arrive	at	this	model.	

(Model	6)	

Ai~Ordered(p)	

logit(pk)=αk	+	βTTi	+	βGGi	+	βOOi	+	βSSi	+	βNNi	+	βTGTGi	+	βTOTOi	+	βTSTSi	+	

βTNTNi	+	βTGOTGOi	+	βTGSTGSi	+	βTGNTGNi	+	βTOSTOSi	+	βTONTONi	+	

βTSNTSNi	+	βTGOSTGOSi		+	βTGONTGONi		+	βTGSNTGSNi		+	βTOSNTOSNi		+	

βTGOSNTGOSNi	

Model	6’s	estimated	mean	effect	of	the	attendance	to	the	video	variable	was	

positive,	at	0.37	(SD=0.22;	HPDI=0.89,	between	0.04	and	0.74).	The	predicted	

effects	of	participant	attendance	to	the	video	on	macrostructure	similarity	

scores,	when	interacting	with	the	four	other	variables	in	Model	6,	are	shown	in	

Figures	17/23,	18/24,	19/25,	and	20/26	(see	pages	70	to	72).	

	

The	influence	of	internal	evidence	of	failure	again	appears	to	have	been	

relatively	minor.	The	direction	of	the	effects	of	‘attendance	to	the	video’	on	

macrostructure	similarity	scores	were	conserved	in	arguably	only	three	out	of	

the	eight	comparisons	between	low	and	high	internal	evidence	of	failure	

(between	Figure	17	and	18’s	graph	‘A’s,	Figure	19	and	20’s	graph	‘A’s,	and	Figure	

19	and	20’s	graph	‘B’s),	with	three	clear	reversals	of	the	effects	of	attendance	

scores	on	macrostructure	similarity	scores	(between	Figure	17	and	18’s	graph	
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‘B’s,	‘C’s,	and	‘D’s).	The	pattern	underlying	these	visible	differences	did	not	seem	

to	have	been	the	product	consistent	effects	of	the	other	predictor	variables.	This	

indicates	that	the	role	internal	evidence	of	failure	took	in	determining	the	effect	

of	attendance	scores	on	macrostructure	similarity	was	itself	dependent	on	the	

interaction	of	various	other	predictor	variables.	

	

The	influence	of	the	social,	rather	than	asocial,	model	appears	to	have	been	

different	where	participant	internal	evidence	of	failure	was	low	and	high.	Where	

internal	evidence	of	failure	was	‘low’,	across	open-	and	close-ended	conditions	

and	low	and	high	participant	ages,	the	graphs	with	the	social	model	(graphs	C	

and	D	in	Figures	17	and	19)	show	less	influence	of	attendance	scores	on	

macrostructure	similarity	than	with	the	asocial	model	(graphs	A	and	B	in	the	

same	two	Figures).	However,	where	internal	evidence	of	failure	was	high,	the	

effects	of	‘attendance	score’	appear	to	have	been	increased	with	a	social	model	

(graphs	C	and	D	in	Figures	18	and	20)	rather	than	an	asocial	one	(graphs	A	and	

D	in	the	same	two	Figures).	

	

The	influence	of	the	open-ended	task,	rather	than	the	close-ended	task,	appears	

to	have	had	little	impact	on	the	effect	of	attendance	to	the	video	scores	on	

macrostructure	similarity.	Between	all	of	the	eight	comparisons	between	close-	

and	open-ended	conditions	(between	graphs	A	and	B	and	between	graphs	C	and	

D	in	Figures	17,	18,	19,	and	20),	the	relationship	between	attendance	score	and	

macrostructure	similarity	appears	very	similar.	Perhaps	the	one	exception	to	

this	was	in	Figure	18,	with	younger	children	exhibiting	higher	internal	evidence	

of	failure	and	an	asocial	model	(graph	A),	where	a	positive	relationship	between	

attendance	to	the	video	and	macrostructure	similarity	was	made	negative	by	

changing	the	task	from	open-	to	close-ended.	

	

The	influence	of	participant	age	also	seems	to	have	been	a	factor	here,	though	

more	so	where	internal	evidence	of	failure	was	low,	and	more	so	with	the	asocial	

model.	Between	Figures	17	and	19	(with	low	internal	evidence	of	failure	and,	

respectively,	low	and	high	participant	age),	with	the	asocial	model	(i.e.,	graphs	A	

and	B),	the	direction	of	the	effect	of	‘attendance	to	the	video’	appears	to	reverse.	
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With	the	social	model	(graphs	C	and	D),	however,	lack	of	a	directional	influence	

of	attendance	scores	on	macrostructure	similarity	was	maintained	across	low	

and	high	participant	age.	The	greatest	difference	between	low	and	high	ages	

seems	to	have	been	with	the	asocial	model	and	close-ended	task	(graph	A),	

while	conditions	with	the	asocial	model	and	open-ended	task	(graph	B)	and	the	

two	conditions	with	the	social	model	(graphs	C	and	D)	show	less	change	

between	low	and	high	participant	age.	Between	Figures	18	and	20	(with	high	

internal	evidence	of	failure	and,	respectively,	low	and	high	participant	age),	the	

positive	effects	of	‘attendance	to	the	video’	were	maintained	in	graphs	C	and	D	

(with	the	social	model).	Meanwhile,	while	Figure	18	shares	graph	B’s	negative	

effect	of	‘attendance	to	the	video’	with	Figure	20,	the	effects	of	‘attendance	to	the	

video’	on	macrostructure	similarity	scores	in	graph	A	were	reversed	between	

Figures	18	and	20.	
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Appendix	7:	Model	descriptions	and	comparisons	for	Chapter	5	

7.1:	Hypothesis	1	

The	description	of	the	first	model,	using	only	‘close’,	here	labelled	C,	as	a	

predictor	of	variation	is:	

(Model	1.1)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	

In	the	next	model,	I	use	the	‘close’	variable	to	predict	variation	in	

macrostructure	similarity	scores	but	make	its	effect	dependent	on	whether	the	

participant	was	building	under	social	or	asocial	conditions	(the	variable	S	

below).	

(Model	1.2)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βCSCSi	

Comparing	these	two	models,	Model	1.2	captures	all	of	the	Akaike	weight,	

leaving	Model	1.1	with	none.	The	difference	between	their	WAIC	scores	was	

17.7,	with	a	standard	deviation	of	9.37	indicating	a	substantial	difference	in	the	

predictive	power	of	the	two	models.	Next,	I	added	a	variable	which	recognises	a	

difference	between	the	experimental	model	building	successfully	or	

unsuccessfully	(‘successful’,	variable	U).	

(Model	1.3)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βUUi	+	βCSCSi	+	βCUCUi	+	βCSUCSUi	

In	comparison	with	Model	1.2,	Model	1.3	receives	0.14	of	the	Akaike	weight,	and	

its	WAIC	score	was	3.6	units	higher	(SD=3.35)	than	Model	1.2’s.	This	indicates	

that	the	addition	of	the	‘successful’	variable	causes	overfitting	of	the	model,	

which	damages	its	ability	to	make	predictions	about	future	data.	This	would	

therefore	suggest	that	the	success	of	the	model	was	not	a	particularly	useful	

piece	of	information	for	making	predictions	about,	and	therefore	understanding	

the	variation	in,	macrostructure	scores	here.	This	was	further	supported	by	a	

model	similar	to	Model	1.3,	but	which	excludes	the	three-way	interaction	term	

between	‘close’,	‘social’,	and	‘successful’.	This	Model	1.4	gained	only	0.21	of	the	

weight	compared	to	Model	1.2,	with	a	difference	of	2.6	in	WAIC	values	
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(SD=2.54).	Model	1.5,	below,	thus	swapped	out	‘successful’	for	‘internal	evidence	

of	failure’	(N),	to	test	whether	this	variable	was	more	useful	in	understanding	

the	present	variation.	

(Model	1.5)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βNNi	+	βCSCSi	+	βCNCNi	+	βCSNCSNi	

This	time	the	addition	of	a	variable	was	decisively	positive.	The	new	model,	

Model	1.5,	gained	100%	of	the	Akaike	weight	in	comparison	to	Model	1.2.	Its	

WAIC	value	was	lower	than	Model	1.2’s	by	40.5	units	(SD=14.73).	However,	the	

success	of	the	participant	may	arguably	have	been	related	to	the	success	of	the	

model.	So	below,	Model	1.6	tests	hierarchical	interactions	between	all	four	of	the	

variables	considered	so	far.	

(Model	1.6)	

	Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βUUi	+	βNNi	+	βCSCiSi	+	βCUCiUi	+	βCNCiNi	+	βCSUCiSiUi	+	

βCUNCiUi	Ni	+	βCSNCiSiNi	+	βCSUNCiSiUiN	

This	model	did	appear	to	have	been	an	improvement	on	Model	1.4,	a	

comparison	with	which	showing	Model	1.6	to	have	a	lower	WAIC	value	by	38.4	

(SD=15.95)	and	to	take	100%	of	the	weight.	Yet	Model	1.6	also	appears	to	have	

made	poorer	out-of-sample	predictions	than	Model	1.5.	Compared	with	Model	

1.5,	Model	1.6	took	only	0.09	of	the	Akaike	weight.	The	difference	between	the	

two	WAIC	values	was	4.7,	with	a	standard	deviation	of	5.42.	This	large	standard	

deviation	indicates	there	was	uncertainty	about	which	model	made	the	better	

predictions.	Nevertheless,	the	greater	probability	was	that	Model	1.6	made	

worse	predictions	than	Model	1.5,	whilst	also	being	a	more	complicated	model.	

It	was	therefore	with	Model	1.5	that	I	proceeded	to	test	the	other	predictor	

variables:	age,	sex,	and	attendance	to	the	experimental	video.	In	Model	1.7,	

below,	I	added	a	predictor	variable	which	took	account	of	the	children’s	ages	(G),	

which	vary	from	5	to	11	years	old,	to	Model	1.5.	Its	description	is:	

(Model	1.7)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βNNi	+	βGGi	+	βCSCSi	+	βCNCNi	+	βCGCGi	+	βCSNCSNi	+	

βCSGCSGi	+	βCNGCNGi	+	βCSNGCSNGi	
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Model	1.7	took	100%	of	the	Akaike	weight	relative	to	Model	1.5,	with	a	WAIC	

lower	WAIC	score	by	34.3	(SD=12.43).	It	also	took	100%	of	the	Akaike	weight	

relative	to	Model	1.6,	with	a	larger	77.4	difference	in	WAIC	scores	(SD=18.25).	

Participant	age	thus	seems	to	have	been	an	important	contributing	factor	in	

assessing	the	influence	of	close-ended	conditions	on	macrostructure	similarity	

scores.	In	the	next	model,	I	tried	adding	the	variable	‘female’	to	Model	1.7,	and	

incorporating	it	into	the	interactions	between	other	variables.	

(Model	1.8)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βNNi	+	βGGi	+	βFFi	+	βCSCSi	+	βCNCNi	+	βCGCGi	+	βCFCFi	

+	βCSNCSNi	+	βCSGCSGi	+	βCSFCSFi	+	βCNGCNGi	+	βCNFCNFi	+	βCGFCGFi	+	

βCSNGCSNGi	+	βCSNFCSNFi	+	βCSFGCSFGi	+	βCSNFGCSNFGi	

The	addition	of	the	variable	‘female’,	and	interactions	with	it,	reduces	the	ability	

of	the	model	to	predict	future	data.	Compared	to	Model	1.7,	Model	1.8	took	none	

of	the	Akaike	weight.	The	WAIC	difference	between	the	two	was	13	(SD=6.76).	

However,	it	may	be	argued	that	this	model	failed	due	to	too	large	a	number	of	

parameters,	rather	than	the	specific	effects	of	including	‘female’	as	a	variable.	To	

test	this,	I	replaced	the	‘age’	variable	in	Model	1.7	with	the	‘female’	variable	and	

compared	the	new	model	(Model	1.9)	to	the	original	Model	1.7.	The	comparison	

reveals	that	the	original	Model	1.7	took	all	of	the	weight.	The	difference	in	WAIC	

scores	between	them	was	38.1,	with	a	standard	deviation	of	15.47.	This	

supports	the	claim	that	introducing	the	variable	‘age’	provides	useful	

information	for	examining	the	effect	of	social	conditions	on	macrostructure	

similarity	scores,	whilst	introducing	the	variable	‘female’	did	not.	Model	1.10	

below	was	the	same	as	Model	1.8,	except	used	the	variable	‘attendance	to	the	

video’	(T)	instead	of	‘female’.	

(Model	1.10)	

Ai~Ordered(p)	

logit(pk)=αk	+	βCCi	+	βSSi	+	βNNi	+	βGGi	+	βTTi	+	βCSCSi	+	βCNCNi	+	βCGCGi	+	

βCTCTi	+	βCSNCSNi	+	βCSGCSGi	+	βCSTCSTi	+	βCNGCNGi	+	βCNTCNTi	+	

βCGTCGTi	+	βCSNGCSNGi	+	βCSNTCSNTi	+	βCSTGCSTGi	+	βCSNTGCSNTGi	

Like	Model	1.8,	Model	1.10	had	an	Akaike	weight	of	zero	relative	to	Model	1.7.	

The	WAIC	difference	between	the	two	was	14.9	(SD=4.57).	And	like	Model	1.8,	
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the	same	argument	could	be	made:	that	the	model	failed	due	to	overfitting	with	

too	great	a	number	of	parameters.	Thus	I	also	swapped	out	the	‘age’	variable	

from	Model	1.7	and	replaced	it	with	‘attendance	to	the	video’	to	create	a	new	

model	(Model	1.11),	as	before.	Here	the	difference	between	either	including	

‘attendance	to	the	video’	or	including	‘age’	was	starker:	Model	1.7	took	100%	of	

the	weight,	and	the	WAIC	difference	between	the	two	models	was	42.7	

(SD=14.35).	These	comparisons	indicated	that	the	‘age’	variable	was	useful	for	

making	predictions	about	the	effect	of	close-ended	conditions	on	

macrostructure	similarity	scores,	that	adding	either	‘female’	or	‘attendance	to	

the	video’	to	the	model	results	in	worse	predictions	for	the	data,	and	that	

replacing	‘age’	with	either	‘female’	or	‘attendance	to	the	video’	also	results	in	

worse	predictions	for	the	data.	The	model	that	I	therefore	continued	my	

analyses	with	was	Model	1.7,	since	participants’	sex	and	attendance	to	the	video	

appears	to	have	been	relatively	less	useful,	and	therefore	relatively	less	

interesting,	in	considering	the	impact	of	close-ended	conditions.	In	Model	1.12,	

described	below,	I	remove	‘close’	as	the	main	predictor	variable	from	Model	1.7.	

(Model	1.12)	

Ai~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βNNi	+	βGGi	+	βSNSNi	+	βSGSGi	+	βNGNGi	+	βSNGSNGi	

Surprisingly,	a	comparison	between	Models	1.12	and	1.7	would	suggest	that	the	

close-ended	task	was	not	that	an	important	predictor	of	variation	in	

macrostructure	similarity	scores.	Model	1.12	gained	100%	of	the	Akaike	weight	

and	a	WAIC	score	which	was	12.3	units	lower	than	that	of	Model	1.7,	the	

standard	deviation	of	which	was	7.32.	This	indicates	that	adding	interactions	

with	the	‘close’	variable	decreases	the	ability	of	the	model	to	make	predictions	

about	new	data	from	the	same	experiment.	This	in	turn	indicates	that	the	effect	

of	the	‘close’	variable	may	not	have	been	very	significant.	

	

7.2:	Hypothesis	two	

The	first	model	used	only	‘social’	as	a	predictor	of	variation	in	microstructure	

similarity	scores.	Its	description	is:	

(Model	2.1)	

Ii~Ordered(p)	
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logit(pk)=αk	+	βSSi	

However,	Model	2.1	did	not	take	account	of	other	causes	of	variation	in	the	

microstructure	data.	The	effect	of	social	models	may	have	been	different	

depending	on	other	elements	of	the	experiment,	such	as	the	success	of	the	

model	in	question.	The	model	below	thus	added	the	variable	‘success’	to	Model	

2.1.	

(Model	2.2)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βUUi	+	βSUSUi	

A	comparison	between	the	two	models	reveals	that	Model	2.2	took	0.8	of	the	

Akaike	weight	to	Model	2.1’s	0.2.	The	difference	in	WAIC	scores	was	2.7,	but	

with	a	standard	deviation	of	5.54.	Thus	both	variables	appear	important	in	

predicting	the	variation	of	microstructure	similarity	scores	in	this	condition.	

Model	2.3	below	expands	on	this	by	adding	an	‘internal	failure’	variable	(N)	to	

Model	2.2,	and	interactions	with	‘social’	and	‘success’.	

(Model	2.3)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βUUi	+	βNNi	+	βSUSUi	+	βSNSNi+	βSUNSUNi	

Compared	to	Model	2.2,	Model	2.3	took	all	of	the	Akaike	weight.	The	difference	

in	WAIC	scores	between	the	two	was	12.2	(SD=8.33).	This	indicates	that	

‘internal	failure’	provides	a	parameter	useful	for	making	predictions	from	the	

data,	which	outweighs	its	effects	on	the	possibility	of	overfitting	the	model	to	the	

data	(McElreath	2016:166).	I	therefore	proceeded	with	Model	2.3.	There	may	

have	been	other	sources	of	variation	which	influence	the	effect	of	social	models	

on	microstructure	similarity	scores.	One	of	these	was	participant	age,	so	Model	

2.4	below	added	an	interaction	between	‘social’	(S)	and	‘age’	(G).	

(Model	2.4)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βUUi	+	βNNi	+	βGGi	+	βSUSUi	+	βSNSNi	+	βSGSGi	+	βSUNSUNi	

The	comparison	between	Models	H2.3	and	H2.4	reveals	that	H2.4	took	all	of	the	

weight,	with	the	difference	in	WAIC	scores	30.3	(SD=13.16).	Age	therefore	

seems	an	important	contributing	factor	in	how	a	social	model	impacts	
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microstructure	similarity	scores.	Model	2.5	below	thus	added	the	variable	

‘female’	to	see	whether	differences	in	sex	have	a	similarly	important	effect.	

(Model	2.5)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βUUi	+	βNNi	+	βGGi	+	βFFi	+	βSUSUi	+	βSNSNi	+	βSGSGi	+	βSFSFi	

+	βSUNSUNi	

Compared	to	Model	2.4,	Model	2.5	had	a	lower	Akaike	weight,	taking	0.15	to	

Model	2.4’s	0.85.	Model	2.5	also	had	a	higher	WAIC	value	than	Model	2.4,	the	

difference	being	3.4	units	(SD=2.54).	This	suggests	that	the	variable	‘female’	

causes	more	overfitting	than	its	contribution	to	prediction	was	worth,	which	

indicates	that	the	difference	between	male’s	and	female’s	scores	did	not	add	a	

great	deal	of	important	information	for	understanding	the	influence	of	social	

models	on	microstructure	similarity	score	variation.	The	same	finding	was	

found	when	‘female’	was	replaced	by	‘attendance	to	the	video’	(compared	to	

Model	2.4,	a	weight	of	0.13	and	WAIC	difference	of	3.8,	SD=1.09),	indicating	that	

this	measure	was	similarly	less	significant	for	understanding	the	impact	of	a	

social	model.	It	could	be	argued,	however,	that	Models	2.5	and	2.6	failed	due	to	

overfitting	too	many	parameters.	Therefore	I	also	calculated	comparisons	

between	Model	2.4	and	the	same	model	but	where	‘age’	was	replaced	first	by	

‘female’	(Model	2.7)	and	then	by	‘attendance	to	the	video’	(Model	2.8).	Neither	of	

these	models	take	any	weight	in	a	comparison	with	Model	2.4.	The	difference	

between	the	WAIC	scores	of	Model	2.4	and	Model	2.7	was	32.9	(SD=13.51),	

while	the	difference	with	Model	2.8	was	33.8	(SD=13.18).	Therefore	it	was	

Model	2.4	that	I	proceeded	with,	since	it	was	this	that	had	the	best	comparison	

scores	of	any	of	the	models	tested	for	this	data.	This	was	supported	by	a	

comparison	of	Model	2.4	to	a	similar	model	but	without	a	variable	for	‘social’	

(Model	2.9),	and	a	model	in	which	all	of	the	parameters	tested	so	far	interact	in	a	

hierarchical	pattern	with	the	‘social’	variable	(Model	2.10).	Model	2.9	gained	no	

weight	relative	to	Model	2.4	(with	a	WAIC	difference	of	36.5,	SD=12.72),	as	did	

Model	2.10	(with	a	WAIC	difference	of	44.2,	SD=11.81).	However,	to	fully	

understand	the	role	that	participant	age	plays	in	the	effect	of	social	models	on	

microstructure	similarity	scores,	I	need	to	more	fully	integrate	it	into	

interactions	with	other	variables.	When	this	was	done,	the	model	looks	like	this:	
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(Model	2.11)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βUUi	+	βNNi	+	βGGi	+	βSUSUi	+	βSNSNi	+	βSGSGi	+	βSNGSUNi	+	

βSUNSUGi	+	βSUGSNGi	+	βSUNGSUNGi	

	

7.3:	Hypothesis	3	

The	first	model	fitted	predicts	variation	in	microstructure	similarity	scores	

purely	with	the	success	of	the	model	(U).	

(Model	3.1)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	

The	model	below	added	the	variable	for	internal	evidence	(N)	of	failure	to	Model	

3.1.	

(Model	3.2)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βUNUNi	

Model	3.2	gained	0.99	of	the	Akaike	weight	relative	to	Model	3.1,	with	a	

difference	in	WAIC	scores	of	9.1	(SD=6.43),	indicating	a	better	ability	to	predict	

future	data	from	the	same	experiment.	Model	3.3	below	added	interactions	with	

the	variable	‘age’	(G)	to	this	model.	

(Model	3.3)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βUNUNi	+	βUGUGi	+	βUNGUNGi	

This	model	again	improved	on	Model	3.2’s	weight	value.	In	a	comparison	

between	Model	3.2	and	Model	3.3,	Model	3.3	took	100%	of	the	weight.	Model	3.3	

had	a	lower	WAIC	score	than	Model	3.2	by	21.3	units	(SD=11.92).	I	then	tried	

adding	the	other	predictor	variables	to	Model	3.3:	‘female’	and	‘video	attendance	

score’.	The	description	below	shows	the	addition	of	‘female’	(F).	

(Model	3.4)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βFFi	+	βUNUNi	+	βUGUGi	+	βUFUFi	+	βUNGUNGi	

+	βUNFUNFi	+	βUGFUGFi	+	βUNGFUNGFi	
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However,	each	of	the	new	predictor	variables	(‘female’	and	‘video	attendance	

score’)	lowered	the	Akaike	weight,	indicating	that	they	did	more	harm	than	good	

in	predicting	variation	in	microstructure	similarity.	These	scores	can	be	seen	in	

first	two	rows	of	Table	6.	It	could	be	argued,	however,	that	the	models	failed	

because	they	contained	too	many	parameters,	rather	than	the	usefulness	of	the	

variables.	The	bottom	two	rows	of	Table	6	thus	show	the	differences	in	Akaike	

weight	and	WAIC	scores	between	Model	3.3	and	two	models	when	the	‘age’	

variable	in	Model	3.3	was	swapped	out	for	either	‘female’	or	‘attendance	to	video	

score’.	When	the	addition	of	‘female’	was	found	to	lower	the	weight	value,	it	was	

not	kept	for	the	subsequent	model.	Therefore	each	row	of	Table	6	represents	an	

independent	test	of	the	variable	in	interaction	with	the	other	variables	of	Model	

3.3.	Since	it	appears	that	inclusion	of	either	‘female’	or	‘video	attendance	score’,	

the	model	comparison	implies	that	neither	of	these	variables	were	useful	

predictors	of	variation	in	microstructure	similarity	scores	in	these	conditions.	In	

other	words,	they	were	not	particularly	important	factors	in	explaining	the	

observed	variation.	Instead,	these	model	comparisons	indicated	that	the	key	

factors	to	consider	are:	model	success	(external	evidence	of	failure),	participant	

success	(internal	evidence	of	failure),	and	participant	age.	This	was	further	

supported	by	model	comparisons.	I	undertook	comparisons	between	Model	3.3	

and	a	model	(Model	3.8)	including	all	of	the	variables	in	the	various	models	

above	in	hierarchical	levels	of	interaction	with	one	another,	and	between	Model	

3.3	and	a	model	(Model	3.9)	including	just	interactions	between	participant	

success	(N)	and	participant	age	(G).	This	latter	model’s	description	is:	

(Model	3.9)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βGGi	+	βNGNGi	
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While	Model	3.8	had	a	weight	of	zero,	Model	3.9	gained	a	weight	of	0.43,	and	a	

WAIC	value	of	only	0.5	below	Model	3.3’s	(SD=5.87).	I	therefore	proceeded	with	

Model	3.3,	the	model	which	had	the	lowest	WAIC	value	and	highest	Akaike	

weight	of	any	of	the	models	tested.	However	the	closeness	of	Model	3.9	may	

indicate	that	the	effect	of	successful	models	on	participants’	microstructure	

similarity	scores	may	have	been	relatively	weak,	when	taking	other	relevant	

factors	into	account.	

	

In	testing	the	hypothesis	that	the	success	of	the	model	was	a	positive	predictor	

of	microstructure	similarity	score	variation,	it	was	necessary	to	have	a	control	

group	to	test	whether	higher	similarity	scores	were	the	product	of	children’s	

copying	rather	than	other	factors.	This	meant	including	the	‘asocial’	conditions	

into	the	dataset,	and	introducing	a	new	variable	to	indicate	the	‘social’	versus	

‘asocial’	status	of	cases.	The	data	for	the	hypothesis	therefore	now	numbered	

273	cases.	Model	3.3,	with	the	addition	of	a	‘social’	variable,	now	looks	like:	

(Model	3.10)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βSSi	+	βUNUNi	+	βUGUGi	+	βUSUSi	+	βUNGUNGi	+	

βUNSUNSi	+	βUGSUGSi	+	βUNGSUNGSi	

In	a	comparison	between	Models	3.10	and	3.3,	on	the	new	larger	dataset,	Model	

3.10	took	all	of	the	Akaike	weight.	The	difference	between	their	two	WAIC	

scores	was	27,	with	a	standard	deviation	of	12.05.	This	indicates	that	despite	the	

increased	number	of	parameters,	with	its	risk	of	overfitting,	the	larger	model	

still	made	better	predictions	about	the	data,	indicating	that	the	effect	of	model	

success	was	dependent	on	whether	the	model	was	social	or	asocial.	This	

constitutes	preliminary	evidence	supporting	the	idea	that	it	was	copying	by	

which	participants	have	increased	microstructure	similarity	scores	when	

observing	successful	social	models.	

	

7.4:	Hypothesis	four	

Hypothesis	4	states	that	across	close-ended	social	model	conditions,	the	success	

of	the	model	will	not	be	a	good	predictor	of	variation	in	macrostructure	

similarity	scores.	This	was	because	macrostructure	diversity	was	constrained	by	
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the	close-ended	setup.	The	sample	size	of	the	data	for	the	models	below	also	

numbered	144	participants.	This	number	was	reached	by	subtracting	the	two	

builds	for	which	macrostructure	were	not	coded,	the	cases	for	which	other	data	

were	absent,	and	those	participants	who	built	under	asocial	or	open-ended	

conditions.	The	model	described	below	used	only	the	success	of	the	model	to	

predict	macrostructure	score	variation.	

(Model	4.1)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	

I	then	ran	a	model	which	introduced	evidence	of	internal	(i.e.,	participant)	

failure	as	another	source	of	variation	in	macrostructure	similarity	scores,	which	

may	interact	with	the	effect	of	model	success.	

(Model	4.2)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βUNUNi	

This	model	improved	on	Model	4.1’s	WAIC	score,	at	6.8	units	down	(SD=8.11).	

The	comparison	between	the	two	reveals	that	Model	4.2	took	0.97	of	the	weight.	

This	indicates	that	the	interaction	of	‘successful’	with	‘internal	evidence	of	

failure’	was	useful	for	understanding	the	observable	variation	in	macrostructure	

similarity	scores.	I	now	test	whether	the	same	was	true	when	interaction	with	

‘age’.	

(Model	4.3)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βUNUNi	+	βUGUGi	+	βUNGUNGi	

Model	4.3	was	a	clear	improvement	on	Model	4.2.	It	took	all	of	the	Akaike	

weight,	and	had	a	WAIC	score	15.8	units	lower	than	Model	4.2	(SD=11.09).	

Participant	age	again	seems	to	have	been	a	key	auxiliary	variable	in	the	effect	of	

the	hypothesised	predictor	variable.	The	model	below	added	‘female’	to	Model	

4.3.	

(Model	4.4)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βFFi	+	βUNUNi	+	βUGUGi	+	βUFUFi	+	βUNGUNGi	

+	βUNFUNFi	+	βUGFUGFi	+	βUNGFUNGFi	
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Compared	to	Model	4.3,	this	model	had	a	weight	of	zero.	Model	4.4’s	WAIC	score	

was	12.2	units	above	that	of	Model	4.3’s,	with	the	standard	deviation	of	this	

difference	being	3.93.	The	model	below	(Model	4.5)	replaced	the	‘female’	

variable	in	Model	4.4	with	a	variable	for	‘attendance	to	the	video’.	

(Model	4.5)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βTTi	+	βUNUNi	+	βUGUGi	+	βUFUFi	+	βUNGUNGi	
+	βUNFUNFi	+	βUGFUGFi	+	βUNGFUNGFi	

In	comparison	to	Model	4.3,	this	model	also	gained	an	Akaike	weight	of	zero.	

Model	4.5’s	WAIC	score	was	11.8	units	above	that	of	Model	4.3’s,	with	the	

standard	deviation	of	this	difference	4.64.	However,	for	both	of	these	models,	as	

for	the	hypotheses	above,	this	difference	may	have	been	due	to	the	number	of	

parameters	rather	than	the	nature	of	the	variables	they	represent.	Thus	I	

computed	two	models	in	which	the	‘age’	variable	of	Model	4.3	was	replaced	by	

‘female’	and	‘attendance	to	the	video’,	respectively	named	Models	4.6	and	4.7.	

Both	of	these	new	models,	4.6	and	4.7,	resulted	in	Akaike	weights	of	zero	in	

comparison	to	Model	4.3.	The	difference	in	WAIC	values	between	Models	4.3	and	

4.6	was	21.5	(SD=11.49),	while	between	Models	4.3	and	4.7	it	was	21.8	

(SD=11.16).	These	results	show	that	neither	the	‘female’	or	‘attendance	to	the	

video’	variables	were	either	more	useful	than	‘age’	for	estimating	the	effect	of	

successful	models	on	macrostructure	similarity	scores,	and	that	neither	‘female’	

nor	‘attendance	to	the	video’	were	useful	for	estimating	the	effect	of	successful	

models	on	macrostructure	similarity	scores	interaction	with	‘age’.	Therefore,	

further	analyses	proceeded	with	Model	4.3,	the	model	with	the	highest	weight	

and	lowest	WAIC	scores	of	all	models	tested	for	this	hypothesis	thus	far.	

	

However,	in	testing	the	hypothesis	that	the	success	of	the	model	was	not	a	good	

predictor	of	macrostructure	similarity	score	variation,	it	was	necessary	to	have	a	

control	group	to	test	whether	the	higher	similarity	scores	were	the	product	of	

children’s	copying	rather	than	other	factors.	This	meant	including	the	‘asocial’	

conditions	into	the	dataset,	and	introducing	a	new	variable	to	indicate	the	

‘social’	versus	‘asocial’	status	of	cases.	The	data	for	the	hypothesis	therefore	now	
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numbered	273	cases.	Model	4.3,	with	the	addition	of	a	‘social’	variable,	now	

looks	like:	

(Model	4.8)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βNNi	+	βGGi	+	βSSi	+	βUNUNi	+	βUGUGi	+	βUSUSi	+	βUNGUNGi	+	

βUNSUNSi	+	βUGSUGSi	+	βUNGSUNGSi	

Compared	with	Model	4.3,	with	both	having	access	to	the	new	larger	dataset,	

Model	4.8	took	0.99	of	the	Akaike	weight,	with	the	WAIC	value	difference	

between	the	two	at	9.6	units	(SD=11.68).	The	overlap	of	the	standard	deviation	

in	the	difference	between	WAIC	scores	indicates	that	Model	4.8	may	have	

overfitted	the	data	slightly.	However,	the	order	of	the	WAIC	scores	and	the	

degree	of	difference	in	the	Akaike	weight	measure,	paired	with	the	fact	that	

Model	4.8	did	not	lose	any	of	the	information	which	Model	4.3	has,	means	that	

Model	4.8	appears	to	have	been	most	useful	for	the	purpose	of	testing	the	

current	hypothesis.	
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Appendix	8:	Further	analyses	of	data	for	Chapter	5	

8.1:	Hypothesis	1	

The	effect	of	older	(Figure	23,	page	77),	rather	than	younger	(Figure	22,	page	

76)	children	generally	appeared	to	enhance	the	positive	effect	of	close-ended	

conditions	with	a	social	model	(graphs	C	and	D),	while	dampening	the	positive	

effect	of	‘close’	with	an	asocial	model	(graphs	A	and	B).	Accordingly,	the	

influence	of	younger	children	(Figure	22)	appeared	to	enhance	the	positive	

effect	of	‘close’	in	asocial	conditions	(graphs	A	and	B)	whilst	dampening	its	

positive	effect	in	social	conditions	(graphs	C	and	D).	The	effect	of	the	social,	

rather	than	the	asocial,	model	thus	appeared	to	have	been	dependent	on	the	age	

of	the	participant.	In	younger	children	(Figure	22),	there	was	a	greater	positive	

effect	of	‘close’	on	macrostructure	similarity	when	the	model	was	asocial	

(graphs	A	and	B)	rather	than	social	(graphs	C	and	D).	However,	for	older	

children	(Figure	23),	while	there	appeared	to	have	been	little	increase	in	the	

strength	of	the	positive	effect	of	‘close’	on	macrostructure	similarity	when	

internal	evidence	of	failure	was	low	(graphs	A	and	C),	when	internal	evidence	of	

failure	was	high	(graphs	B	and	D)	the	positive	effect	of	‘close’	on	macrostructure	

similarity	was	strengthened.	Similarly,	the	influence	of	higher	internal	evidence	

of	failure	(graphs	B	and	D)	appeared	to	have	been	associated	with	a	greater	

effect	of	close-ended	conditions	on	macrostructure	similarity	scores	in	older	

children	(Figure	23)	but	not	younger	(Figure	22).	

	

8.2:	Hypothesis	2	

The	effect	of	model	success	appeared	to	increase	the	positive	effect	of	the	social	

model.	In	younger	children	(Figure	25,	page	81),	this	meant	that	the	successful	

model	(graphs	C	and	D,	rather	than	the	unsuccessful	model	in	graphs	A	and	B)	

made	the	difference	between	a	social	model	having	no	discernable	or	even	a	

negative	effect	on	microstructure	similarity,	and	a	social	model	having	a	clearly	

positive	effect	on	microstructure	similarity.	In	older	children	(Figure	26,	page	

82),	the	effect	of	the	successful	model	(graphs	C	and	D)	rather	than	the	

unsuccessful	model	(graphs	A	and	B)	made	the	positive	effect	of	a	social	model	

clearer,	which	held	true	across	both	low	(graphs	A	and	C)	and	high	internal	

evidence	of	failure	(graphs	B	and	D).	
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The	effect	of	high	internal	evidence	of	failure	(graphs	B	and	D)	appeared	to	

make	the	effect	of	a	social	model	on	microstructure	similarity	less	clearly	

positive	in	younger	children	(Figure	25).	In	younger	children	with	an	

unsuccessful	model	(graphs	A	and	B),	the	presence	of	high	internal	evidence	of	

failure	(graph	B)	even	appeared	to	change	the	effect	of	a	social	model	from	a	

negligible	effect	in	either	direction	into	a	notably	negative	influence	on	

microstructure	similarity	scores.	These	effects	of	internal	evidence	of	failure	did	

not	seem	present,	however,	amongst	older	children	(graphs	A	to	D	in	Figure	26).	

	

Whether	with	successful	(graphs	C	and	D)	or	unsuccessful	models	(graphs	A	and	

B),	and	whether	with	low	(graphs	A	and	C)	or	high	internal	evidence	of	failure	

(graphs	B	and	D),	older	children	(in	Figure	26)	were	predicted	to	have	a	

stronger	positive	effect	of	a	social	model	on	microstructure	similarity	than	

younger	children	(in	Figure	25).	For	children	building	in	conditions	with	an	

unsuccessful	model	and	experiencing	high	internal	evidence	of	failure	(graph	B),	

the	direction	of	the	influence	of	a	social	model	on	microstructure	similarity	was	

reversed	between	younger	and	older	children	(i.e.,	between	Figures	25	and	26).	

	

8.3:	Hypothesis	3	

High	rather	than	low	internal	evidence	of	failure	(graphs	B	and	D)	appeared	to	

reduce	the	influence	of	model	success	on	microstructure	similarity	seems	true	in	

every	condition	(Figures	28	and	29,	pages	86	and	87	respectively),	including	in	

older	children	with	an	asocial	model	(graph	B,	Figure	29).	When	these	children	

exhibited	low	internal	evidence	of	failure,	there	was	a	reliable	effect	of	model	

success	to	decrease	macrostructure	similarity.	This	became	messier	and	less	

clear	when	the	older	children	instead	exhibited	high	internal	evidence	of	failure	

(Figure	29’s	graph	D).	

	

The	influence	of	the	higher	children’s	age	on	the	effect	of	successful	models	

seems	to	have	been	greater	for	asocial	than	social	models.	Graphs	A	and	B	of	

both	Figures	28	and	29	appear	relatively	similar.	However,	the	slopes	of	graphs	

C	and	D	in	Figure	28	were	inverted	in	Figure	29.	Whereas	for	older	children	

(Figure	29)	asocial	model	success	caused	reduced	microstructure	similarity	
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(between	graphs	A	and	B),	in	younger	children	(Figure	28)	it	caused	increased	

microstructure	similarity.	This	was	clearer	with	low	internal	evidence	of	failure	

(in	graph	A),	but	the	same	trend,	albeit	in	a	much	weaker	form,	was	visible	for	

high	internal	evidence	of	failure	as	well	(in	graph	B).	

	

8.4:	Hypothesis	4	

The	influence	of	high	internal	evidence	of	failure	(graphs	B	and	D)	here	seemed	

to	make	the	effect	of	the	successful	model	on	macrostructure	similarity	less	

positive.	In	the	case	of	the	asocial	model,	in	both	younger	and	older	children	

(Figures	31	and	32,	on	pages	91	and	92	respectively),	high	internal	evidence	of	

failure	(graph	B)	made	the	effect	(on	macrostructure	similarity	scores)	of	

turning	an	unsuccessful	model	into	a	successful	model	negative.	In	the	case	of	

the	social	model,	in	both	younger	and	older	children	(Figures	31	and	32),	the	

effect	of	high	internal	evidence	of	failure	(graph	D,	relative	to	graph	C’s	low	

internal	evidence	of	failure)	was	to	lessen	the	positive	effect	of	a	successful	

model	on	macrostructure	similarity.	

	

In	asocial	model	conditions	with	low	internal	evidence	of	failure	(graph	A),	

neither	younger	children	(in	Figure	31)	nor	older	(in	Figure	32)	showed	a	

clearly	positive	effect	of	model	success.	Furthermore,	both	younger	and	older	

children	showed	a	negative	relationship	between	asocial	model	success	and	

macrostructure	similarity	when	internal	evidence	of	failure	was	high	(graph	B).	

When	the	change	in	model	success	occurred	with	a	social	model,	there	were	

much	clearer	differences	between	younger	and	older	children.	In	conditions	of	

both	low	and	high	internal	evidence	of	failure	(graphs	C	and	D),	older	children	

showed	a	more	clearly	positive	effect	of	model	success	on	macrostructure	

similarity.	
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Appendix	9:	Model	descriptions	and	comparisons	for	Chapter	6	

9.1:	Hypothesis	one	

The	first	model	fitted	used	just	model	success	as	a	predictor:	

(Model	1.1)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	

To	this	model,	I	introduced	another	variable	for	‘social’	(S),	which	discriminated	

between	participants	observing	a	social	model	(permitting	the	possibility	to	

copy)	and	those	observing	an	asocial	(i.e.	irrelevant)	model.	

(Model	1.2)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βUSUSi	

Adding	this	interaction	effect	increases	the	predictive	power	of	the	model	for	

these	data.	In	a	comparison	of	Models	1.1	and	1.2,	Model	1.2	took	100%	of	the	

Akaike	weight,	and	had	a	lower	WAIC	score	by	13.2	units	(SD=8.29).	The	model	

below	added	an	interaction	of	these	two	variables	with	a	new	variable,	‘internal	

evidence	of	failure’	(N):	

(Model	1.3)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βUSUSi	+	βUNUNi+	βUSNUSNi	

This	was	again	an	improvement	on	the	previous	model.	Model	1.3	took	0.96	of	

the	Akaike	weight	relative	to	Model	1.2,	with	a	WAIC	score	6.6	units	lower	than	

Model	1.1	(SD=7.69).	The	overlap	in	the	standard	deviation	indicates	that	Model	

1.3	overfits	the	data	slightly,	however	the	gap	in	Akaike	weight	shows	that	the	

addition	of	the	‘internal	evidence	of	failure’	variable	provides	more	benefits	than	

hindrances	in	making	predictions	about	the	data.	Model	1.4	below	added	

another	variable,	age	(G),	and	its	interactions	with	the	others.	

(Model	1.4)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βGGi	+	βUSUSi	+	βUNUNi	+	βUGUGi	+	βUSNUSNi	+	

βUSGUSGi	+	βUNGUNGi	+	βUSNGUSNGi	

This	model	did	not	improve	on	Model	1.3,	taking	only	0.24	of	the	weight,	and	a	

WAIC	score	2.3	units	higher	than	Model	1.3’s.	However,	the	standard	deviation	
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of	this	WAIC	difference	was	large:	6.54.	This	indicates	that	Model	1.4	overfit	the	

data.	This	may	have	been	because	the	parameter	added	–	‘age’	–	was	not	

informative	at	all,	or	because	‘age’	was	informative	but	not	enough	to	overcome	

the	overfitting	risk.	The	small	amount	of	weight	given	to	Model	1.4,	and	the	large	

standard	deviation	for	the	difference	in	WAIC	values,	would	suggest	the	latter.	

Therefore,	Model	1.5	below	replaced	the	‘internal	evidence	of	failure’	in	Model	

1.3	with	age,	to	see	which	variable	was	more	helpful	in	making	predictions	

about	the	data.	

(Model	1.5)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βGGi	+	βUSUSi	+	βUGUGi+	βUSGUSGi	

However,	it	appears	that	in	this	model	too	the	inclusion	of	‘age’	as	a	variable	

made	the	model	perform	worse	in	predicting	other	data	from	the	same	

experiment.	Compared	to	Model	1.3,	Model	1.5	took	only	0.04	of	the	weight.	

Model	1.5	had	a	higher	WAIC	value	by	6.3	units,	though	the	standard	deviation	

of	this	difference	was	8.76.	‘Age’	therefore	appears	to	reduce	the	ability	of	the	

model	to	make	predictions	about	the	data.	This	would	indicate	that	it	was	not	a	

particularly	important	source	of	variation	in	microstructure	similarity	score	

variation	under	these	conditions.	Subsequent	models	for	this	hypothesis	

therefore	did	not	include	the	variable	of	‘age’.	In	Model	1.6,	below,	I	swapped	out	

‘age’	in	Model	1.4	and	instead	introduced	‘female’	(F).	

(Model	1.6)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βFFi	+	βUSUSi	+	βUNUNi	+	βUFUFi	+	βUSNUSNi	+	

βUSFUSFi	+	βUNFUNFi	+	βUSNFUSNFi	

This	model	also	results	in	worse	out-of-sample	predictions	than	Model	1.3.	It	

had	an	Akaike	weight	of	0.04	relative	to	Model	1.3,	and	a	WAIC	value	higher	by	

6.5	(SD=5.83).	I	therefore	also	tested	replacing	‘failure	internal’	with	‘female’	

instead:	

(Model	1.7)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βFFi	+	βUSUSi	+	βUFUFi+	βUSFUSFi	
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This	results	in	even	worse	predictions:	an	Akaike	weight	of	0.02	relative	to	

Model	1.3,	though	with	a	difference	of	7.7	(SD=9.4)	in	WAIC	score	compared	to	

Model	1.3.	Therefore	sex	differences	also	seem	to	have	been	relatively	less	

helpful	in	predicting	the	effect	of	successful	models	on	participants’	

microstructure	similarity	scores.	The	final	predictor	to	be	tested	was	

‘attendance	to	the	video’	(T),	the	model	for	which	was	described	as:	

(Model	1.8)	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βTTi	+	βUSUSi	+	βUNUNi	+	βUTUTi	+	βUSNUSNi	+	

βUSTUSTi	+	βUNTUNTi	+	βUSNTUSNTi	

This	model	results	in	an	Akaike	weight	of	0.07	relative	to	Model	1.3,	with	a	

higher	WAIC	score	by	5.2	units	(SD=4.49).	I	therefore	also	tried	replacing	

‘internal	failure’	with	‘attendance	score’:	

Ii~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βFFi	+	βUSUSi	+	βUFUFi+	βUSFUSFi	

The	results	for	this	model	were	even	worse,	with	an	Akaike	weight	of	0.01,	and	

difference	in	WAIC	score	from	Model	1.3	of	10.5	(SD=8.66).	These	comparisons	

suggest	that	the	degree	of	a	participant’s	attendance	to	the	video	was	not	a	

useful	interaction	variable	to	include	in	investigating	the	effect	of	a	successful	

model	on	microstructure	similarity	scores.	The	model	I	therefore	proceeded	

with	was	Model	1.3,	which	had	the	best	out-of-sample	deviance	scores	of	any	

model	thus	far	attempted	for	this	hypothesis.	However,	Model	1.10,	described	

below,	removes	‘successful’	(U)	as	a	predictor	from	Model	1.3,	leaving	just	

interactions	between	‘social’	(S)	and	‘internal	failure’	(N).	Comparing	this	model	

to	Model	1.3	allows	me	to	gauge	the	degree	to	which	the	hypothesised	main	

predictor	variable,	model	success,	was	an	important	influence	on	variation	in	

microstructure	similarity	scores.	

(Model	1.10)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βNNi	+	βSNSNi	

Model	1.10	took	0.71	of	the	Akaike	weight,	leaving	Model	1.3	on	0.29.	Model	1.3	

had	a	WAIC	value	1.8	units	higher	than	that	of	Model	1.10,	though	the	standard	

deviation	of	this	difference	was	4.17.	These	scores	indicated	that	Model	1.3	was	
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itself	somewhat	overfit	to	the	data.	However,	the	degree	of	the	weight	which	

Model	1.3	took	does	indicate	that	it	contained	useful	information,	despite	the	

overfitting.	Whilst	I	did	not	exclude	the	‘success’	variable	from	the	model,	since	

it	was	the	variable	that	was	here	being	examined,	it	was	an	early	indicator	that	

its	effect	on	the	outcome	variable	was	not	terribly	strong.	

	

9.2:	Hypothesis	2	

The	first	model	used	just	the	variable	‘success’	(U)	to	predict	macrostructure	

similarity	score	variation.	

(Model	2.1)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	

In	the	model	below,	the	variable	‘social’	was	introduced	to	distinguish	successful	

and	unsuccessful	models	who	were	either	relevant	or	not	relevant	to	

participants’	building.	

(Model	2.2)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βSSi	

In	a	comparison	between	Models	2.1	and	2.2,	Model	2.2	took	0.99	of	the	Akaike	

weight.	In	WAIC	values,	the	difference	between	the	two	was	8.6	(SD=7.24).	

Model	2.3	below	added	the	‘internal	failure’	variable	(N)	to	this	model.	

(Model	2.3)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βUSUSi	+	βUNUNi	+	βUSNUSNi	

This	model,	in	comparison	with	Model	2.2,	took	100%	of	the	Akaike	weight.	The	

difference	between	the	two	models	in	WAIC	was	28.1	(SD=11.37).	This	indicates	

that	internal	evidence	of	failure	could	have	been	an	important	mitigating	factor	

in	the	effect	of	successful	models	on	macrostructure	similarity	scores.	I	then	

added	the	‘age’	variable	(G).	

(Model	2.4)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi		+	βGGi	+	βUSUSi		+	βUNUNi		+	βUGUGi	+	βUSNUSNi	

+	βUSGUSGi	+	βUNGUNGi	+	βUSNGUSNGi	
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This	model	again	improved	on	the	previous	one.	Compared	to	Model	2.3,	Model	

2.4	took	100%	of	the	weight,	and	the	difference	between	the	WAIC	scores	of	the	

two	was	14.1	(SD=10.66).	Model	2.5	below	then	added	‘female’	to	this	new	

model.	

(Model	2.5)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βGGi	+	βFFi	+	βUSUSi	+	βUNUNi	+	βUGUGi	+	

βUFUFi	+	βUSNUSNi	+	βUSGUSGi	+	βUSFUSFi	+	βUNGUNGi	+	βUNFUNFi	+	

βUGFUGFi	+	βUSNUSNi	+	βUSNGUSNGi	+	βUSNFUSNFi	+	βUSGFUSGFi	+	

βUNGFUNGFi	+	βUSNGFUSNGFi	

This	model,	however,	did	not	improve	on	Model	2.4	Compared	to	Model	2.4,	

Model	2.5	took	none	of	the	Akaike	weight.	Model	2.5	also	had	a	higher	WAIC	

score,	by	11.7	units	(SD=7.73).	I	therefore	tried	replacing	‘age’,	as	in	Model	2.4,	

with	‘female’:	

(Model	2.6)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi		+	βFFi	+	βUSUSi		+	βUNUNi		+	βUFUFi	+	βUSNUSNi	

+	βUSFUSFi	+	βUNFUNFi	+	βUSNFUSNFi	

Yet	still	this	model	gained	no	weight	compared	with	Model	2.4.	The	WAIC	

difference	between	the	two	was	20.1,	with	a	12.37	standard	deviation.	The	

model	I	continued	with	was	therefore	Model	2.4.	In	Model	2.7	below,	the	

variable	‘attendance	to	the	video’	was	added	to	Model	2.4.	

(Model	2.7)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi	+	βGGi	+	βTTi	+	βUSUSi	+	βUNUNi	+	βUGUGi	+	

βUTUTi	+	βUSNUSNi	+	βUSGUSGi	+	βUSTUSTi	+	βUNGUNGi	+	βUNTUNTi	+	

βUGTUGTi	+	βUSNUSNi	+	βUSNGUSNGi	+	βUSNTUSNTi	+	βUSGTUSGTi	+	

βUNGTUNGTi	+	βUSNGTUSNGTi	

This	model	did	slightly	improve	on	Model	2.4.	Model	2.7	had	a	higher	Akaike	

weight,	taking	0.71	to	Model	2.4’s	0.29.	The	difference	in	WAIC	scores	was	just	

1.8,	however,	with	a	standard	deviation	of	13.07.	This	indicates	that	Model	2.7	

did	just	enough	for	the	relative	probability	of	useful	prediction	to	have	been	

tilted	in	its	favour,	overcoming	the	overfitting	risk	associated	with	a	large	
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number	of	parameters.	To	see	if	predictions	could	be	improved	further,	I	

attempted	to	replace	‘age’	in	Model	2.4	with	the	‘attendance	to	the	video	

variable:	

(Model	2.8)	

Ai~Ordered(p)	

logit(pk)=αk	+	βUUi	+	βSSi	+	βNNi		+	βTTi	+	βUSUSi		+	βUNUNi		+	βUTUTi	+	βUSNUSNi	

+	βUSTUSTi	+	βUNTUNTi	+	βUSNTUSNTi	

However,	this	model	gained	no	Akaike	weight	in	comparison	with	either	Model	

2.4	or	Model	2.7.	‘Age’	seems	to	have	been	a	crucial	predictor.	The	model	with	

the	highest	WAIC	score	considered	so	far	for	this	hypothesis	was	Model	2.7.	It	

was	therefore	with	this	model	that	I	continue.	Model	2.9,	below,	describes	

interactions	of	variables	for	macrostructure	similarity	scores	in	this	condition,	

but	without	model	success	being	included	as	a	predictor	variable.	

(Model	2.9)	

Ai~Ordered(p)	

logit(pk)=αk	+	βSSi	+	βNNi	+	βGGi	+	βTTi	+	βSNSNi	+	βSGSGi	+	βSTSTi	+	βNGNGi	+	

βNTNTi	+	βGTGTi	+	βSNSNi	+	βSNGSNGi	+	βSNTSNTi	+	βSGTSGTi	+	

βNGTNGTi	+	βSNGTSNGTi	

This	model	attains	a	higher	Akaike	weight	than	Model	2.7	at	0.62.	The	difference	

between	the	two	models’	WAIC	scores	was	1	(SD=14.63).	This	indicates	that	

model	success	may	not	have	been	a	very	good	predictor	of	participants’	

macrostructure	similarity	scores	in	this	condition,	but	the	large	standard	

deviation	made	this	assessment	uncertain.	

	

9.3:	Hypothesis	3	

Model	3.1,	below,	used	internal	evidence	of	failure	(N)	alone	to	predict	variation	

in	microstructure	similarity	scores.	

(Model	3.1)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	

The	second	predictor	variable	I	added	to	this	model	was	model	sociality	(S),	

below.	

(Model	3.2)	
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Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βNSNSi	

This	marks	an	improvement	on	Model	3.1,	with	Model	3.2	taking	100%	of	the	

Akaike	weight	and	a	lower	WAIC	score	by	17.8	units	(SD=9.42).	I	thus	added	

another	variable	to	this	model:	model	success	(U).	

(Model	3.3)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βUUi	+	βNSNSi	+	βNUNUi	+	βNSUNSUi	

This	new	model	did	not	perform	as	well	as	Model	3.2.	Model	3.3	gained	only	0.04	

of	the	weight,	and	had	a	higher	WAIC	value	by	6.2	units	(SD=1.87).	This	indicates	

that	model	success	did	not	add	useful	information	in	predicting	microstructure	

similarity	scores	in	this	context.	To	further	test	this,	I	replaced	the	‘social’	

variable	in	Model	3.2	with	‘successful’:	

(Model	3.4)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βUUi	+	βNUNUi	

αk~Normal(0,10)	

βN~Normal(0,10)	

βU~Normal(0,10)	

βNU~Normal(0,10)	

In	comparison	with	Model	3.2,	Model	3.4	took	none	of	the	Akaike	weight.	It	had	

a	WAIC	score	21.6	units	higher	than	Model	3.2’s,	with	a	standard	deviation	of	

9.51.	Since	the	‘successful’	predictor	appears	to	reduce	the	inferential	power	of	

the	model	both	when	included	in	interaction	with	the	sociality	of	the	model	and	

when	replacing	the	sociality	of	the	model,	I	did	not	continue	adding	it	as	a	

predictor	to	other	models	for	this	hypothesis.	Model	3.5,	below,	thus	added	a	

variable	for	the	age	of	the	participants	to	Model	3.2.	

(Model	3.5)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βGGi	+	βNSNSi	+	βNGNGi	+	βNSGNSGi	

This	model	also	did	not	improve	on	Model	3.2.	In	a	comparison	between	the	two,	

Model	3.5	gained	just	0.34	of	the	weight,	to	Model	3.2’s	0.66.	However,	the	

difference	in	WAIC	scores	was	small,	at	1.3	and	with	a	standard	deviation	of	
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4.96.	This	indicates	uncertainty	about	which	model	provides	the	best	

predictions	of	future	data.	I	therefore	tried	replacing	‘social’	in	Model	3.2	with	

‘age’:	

(Model	3.6)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βGGi	+	βNGNGi	

Model	3.6	gained	no	weight	relative	to	Model	3.2,	and	the	difference	in	WAIC	

scores	was	20.8	(SD=10.2).	This	indicates	that	the	‘age’	predictor	only	had	value	

for	explaining	variation	in	the	data	once	the	‘social’	predictor	was	taken	into	

account.	However,	it	seems	the	value	that	the	‘age’	predictor	added	was	not	

enough	to	overcome	the	overfitting	which	the	addition	of	another	variable	

brings,	leading	the	greater	probability	of	useful	prediction	to	lie	with	Model	3.2.	

Despite	the	uncertainty	in	the	WAIC	comparison	between	Models	3.2	and	3.5,	I	

therefore	continued	with	Model	3.2:	the	simpler	model	which	nevertheless	

gained	the	greater	probability	of	better	predicting	new	results	from	the	same	

experimental	process.	Model	3.7	below	thus	added	‘female’	to	Model	3.2:	

(Model	3.7)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βFFi	+	βNSNSi	+	βNFNFi	+	βNSFNSFi	

Compared	to	Model	3.2,	Model	3.7	gained	only	0.22	of	the	Akaike	weight,	

compared	to	Model	3.2’s	0.78.	However,	the	difference	between	their	WAIC	

scores	(2.5)	was	not	greater	than	the	standard	deviation	of	the	difference	(4.3),	

indicating	uncertainty	in	the	relative	usefulness	of	the	models.	I	therefore	

replaced	‘social’	in	Model	3.2	with	‘female’.	

(Model	3.8)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βFFi	+	βNFNFi	

A	comparison	between	these	two	models	reveals	that	Model	3.8	took	none	of	the	

weight.	The	difference	between	their	WAIC	scores	was	also	large,	at	19.9	

(SD=10.44).	This	indicates	that,	in	interaction	with	‘internal	evidence	of	failure’	

only,	‘female’	was	far	less	useful	a	predictor	of	microstructure	similarity	score	

variation	than	was	‘social’.	Further,	the	comparison	with	Model	3.7	indicates	

that	there	was	likely	a	lower	probability	that	a	model	with	interactions	between	
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‘internal	evidence	of	failure’,	‘social’,	and	‘female’	made	better	predictions	than	a	

simpler	model	with	interactions	just	between	‘internal	evidence	of	failure’	and	

‘social’.	The	model	I	therefore	continued	with	was	still	Model	3.2.	Model	3.9	

below	added	interactions	with	‘attendance	to	the	video’	(T)	to	Model	3.2.	

(Model	3.9)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βTTi	+	βNSNSi	+	βNTNTi	+	βNSTNSTi	

However,	this	model	produced	a	similar	result	to	Models	3.5	and	3.7.	In	

comparison	with	Model	3.2,	Model	3.9	took	0.28	of	the	weight.	The	difference	in	

WAIC	scores	was	1.9	(SD=3.81).	Thus	again	there	was	uncertainty	in	which	

model	did	produce	the	better	predictions,	though	the	greater	probability	lies	

with	Model	3.2.	Thus	Model	3.10	swapped	‘social’	in	Model	3.2	for	‘attendance	to	

the	video’.	

(Model	3.10)	

Ii~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βTTi	+	βNTNTi	

The	comparison	between	these	two	reveals	that	Model	3.10	took	none	of	the	

Akaike	weight.	The	difference	between	the	two	models’	WAIC	scores	was	16.6,	

with	a	standard	deviation	of	10.44.	This	indicates	that	a	participant’s	attendance	

to	the	experimental	video	was	more	clearly	not	useful	as	a	predictor	when	it	was	

not	considered	in	interaction	with	the	participant’s	age.	I	therefore	continued	

with	the	model	that	combines	the	simplest	model	description	with	the	biggest	

probability	of	the	lowest	WAIC	and	highest	weight	values:	Model	3.2.	The	model	

below	removes	the	‘attendance	to	the	video’	variable	from	Model	3.2.	

(Model	3.11)	

Ii~Ordered(p)	

logit(pk)=αk	+	βSSi	

Model	3.11	took	only	0.02	of	the	weight,	compared	to	Model	3.2’s	0.98.	However,	

there	was	a	slight	overlap	of	the	standard	deviation	in	the	difference	in	WAIC	

scores:	7.8	(SD=7.83).	This	means	that	most	of	the	probability	was	for	Model	3.2	

making	better	predictions	than	Model	3.11.	This	therefore	suggests	that	the	

‘internal	evidence	of	failure’	variables	did	provide	some	useful	information	for	
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learning	about	variation	in	microstructure	similarity	scores.	I	therefore	still	

continued	with	Model	3.2.	

	

9.4:	Hypothesis	4	

Model	4.1,	below,	used	internal	evidence	of	failure	only	to	predict	variation	in	

macrostructure	similarity	scores.	

(Model	4.1)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	

I	next	added	the	‘social’	variable	to	this	model:	

(Model	4.2)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βNSNSi	

Model	4.2	took	100%	of	the	Akaike	weight,	the	difference	between	their	WAIC	

scores	being	17.9	(SD=9.03).	This	indicates	that	the	sociality	of	the	model	was	a	

useful	piece	of	data	for	understanding	the	effect	of	internal	evidence	of	failure	

on	macrostructure	similarity	scores.	Model	4.3	below	added	model	success	to	

this.	

(Model	4.3)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βUUi	+	βNSNSi	+	βNUNUi	+	βNSUNSUi	

Compared	to	Model	4.2,	Model	4.3	took	0.35	of	the	weight.	The	difference	in	

WAIC	scores	was	1.2,	with	a	large	4.84	standard	deviation.	This	indicates	

uncertainty	in	which	model	was	more	useful,	though	there	was	a	greater	

probability	that	it	was	Model	4.2	than	Model	4.3.	The	model	below	thus	swapped	

out	‘social’	in	Model	4.2	for	‘successful’.	

(Model	4.4)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi	+	βNSNSi	

Compared	with	Model	4.2,	Model	4.4	receives	no	Akaike	weight.	The	difference	

between	their	WAIC	scores	was	16.8	(SD=9.83).	Interactions	with	model	

success,	alone,	therefore	seems	relatively	unimportant	for	understanding	
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variation	in	macrostructure	similarity	scores	here.	I	therefore	continued	with	

Model	4.2,	to	which	I	added	a	variable	for	participant	age.	

(Model	4.5)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βGGi	+	βNSNSi	+	βNGNGi	+	βNSGNSGi	

Model	4.5,	in	comparison	with	Model	4.2,	took	all	of	the	Akaike	weight,	the	

difference	between	their	WAIC	values	being	12.8	(SD=9.43).	This	indicates	that	

the	participants’	ages	were	a	useful	source	of	information	for	understanding	the	

influence	of	internal	evidence	of	failure	on	macrostructure	similarity	ratings.	

I	therefore	continued	with	Model	4.5	by	adding	the	‘female’	variable	to	it.	

(Model	4.6)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βGGi		+	βFFi	+	βNSNSi	+	βNGNGi		+	βNFNFi	+	βNSGNSGi	

+	βNSFNSFi	+	βNGFNGFi	+	βNSGFNSGFi	

The	addition	of	interactions	with	‘age’	appears	to	reduce	the	effectiveness	of	the	

model.	In	comparison	with	Model	4.5,	Model	4.6	took	just	0.04	of	the	weight.	The	

difference	between	the	WAIC	values	of	the	two	models	was	6.6	(SD=5.62).	Model	

4.7,	below,	instead	tries	replacing	‘age’	in	Model	4.5	with	‘female’.	

(Model	4.7)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βFFi	+	βNSNSi	+	βNFNFi	+	βNSFNSFi	

In	a	comparison	with	Model	4.5,	Model	4.7	took	none	of	the	Akaike	weight.	The	

difference	in	WAIC	values	between	the	two	was	14.9,	with	a	standard	deviation	

of	10.67.	This	indicates	that	the	effect	of	adding	‘female’	reduces	the	ability	of	

the	model	to	predict	new	data	even	when	other	parameters	were	removed	to	

guard	against	overfitting.	I	therefore	continued	with	Model	4.5.	Model	4.8	added	

‘attendance	to	the	video’	to	Model	4.5.	

(Model	4.8)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βGGi		+	βTTi	+	βNSNSi	+	βNGNGi		+	βNTNTi	+	βNSGNSGi	

+	βNSTNSTi	+	βNGTNGTi	+	βNSGTNSGTi	

The	addition	of	this	variable	appears	to	increase	the	model’s	ability	to	make	

predictions	about	future	similar	data.	Compared	with	Model	4.5,	Model	4.8	took	
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0.98	of	the	weight,	the	difference	between	their	WAIC	scores	being	7.7	though	

with	a	standard	deviation	of	10.83.	This	suggests	some	uncertainty,	though	the	

greater	probability	for	better	predictions	lies	with	Model	4.8.	Compared	with	

another	model,	Model	4.9	(not	described	here),	in	which	‘age’	was	replaced	by	

‘attendance	to	the	video’,	Model	4.8	took	all	of	the	weight,	with	a	difference	in	

WAIC	scores	of	27.8	(SD=14.6).	Out	of	the	models	reviewed	so	far,	Model	4.8	

thus	remains	the	most	likely	to	make	useful	predictions	about	new	data	from	a	

similar	experimental	process.	However,	the	role	of	model	success	was	still	

unclear,	since	the	WAIC	difference	between	models	4.2	and	4.3	was	

overshadowed	by	the	standard	deviation	of	the	difference.	I	therefore	added	

‘success’	back	into	Model	4.8	to	see	whether	it	results	in	better	or	worse	

predictions.	

(Model	4.10)	

Ai~Ordered(p)	

logit(pk)=αk	+	βNNi	+	βSSi		+	βGGi		+	βTTi	+	βUUi	+	βNSNSi	+	βNGNGi		+	βNTNTi	+	

βNUNUi	+	βNSGNSGi	+	βNSTNSTi	+	βNSUNSUi	+	βNGTNGTi	+	βNGUNGUi	+	

βNTUNTUi	+	βNSGTNSGTi		+	βNSGUNSGUi		+	βNGTUNGTUi		+	βNSGTUNSGTUi	

Here	the	effect	of	adding	‘successful’	to	the	model	was	still	not	clearly	negative.	

Compared	to	Model	4.8,	Model	4.10	took	0.16	of	the	Akaike	weight.	But	the	

difference	in	WAIC	scores	between	the	two	was	3.3,	with	a	standard	deviation	of	

9.23.	The	model	that	I	continued	analysis	with	was	Model	4.8.	This	was	because	

the	comparisons	indicated	that	there	was	a	greater	probability	of	better	

predictions	with	this	model	than	Model	4.10,	and	because	Model	4.8	was	simpler	

and	can	explain	the	variation	in	the	data	with	as	much	reliability,	if	nor	more,	as	

Model	4.10	despite	having	fewer	parameters.	Model	4.11,	below,	removes	

‘internal	evidence	of	failure’	from	Model	4.8.	

(Model	4.11)	

Ai~Ordered(p)	

logit(pk)=αk	+	βSSi		+	βGGi		+	βTTi	+	βSGSGi	+	βSTSTi	+	βGTGTi	+	βSGTSGTi	

Compared	to	Model	4.8,	Model	4.11	gained	none	of	the	Akaike	weight.	The	

difference	between	the	WAIC	scores	of	the	two	models	was	17.4,	with	a	standard	

deviation	of	12.63.	This	indicates	that	the	main	predictor	variable,	the	degree	of	
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internal	evidence	of	failure,	did	have	an	interesting	influence	on	macrostructure	

similarity	scores.	
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Appendix	10:	Further	analyses	of	data	for	Chapter	6	

10.1:	Hypothesis	1	

Changing	an	asocial	model	(Figure	34’s	graphs	A	and	B,	page	98)	into	a	social	

model	(Figure	34’s	graphs	C	and	D)	inverted	the	effect	of	the	successful	model	

on	microstructure	similarity	scores	both	for	the	weakly	negative	effect	of	the	

successful	model	in	the	asocial	condition	with	low	internal	evidence	of	failure	

(graph	A),	and	the	weakly	positive	effect	of	the	successful	model	with	high	

internal	evidence	of	failure	(graph	B).	Both	of	these	negative	and	positive	

relationships	were	reversed	when	the	model	was	social	rather	than	asocial.	

	

Model	11	predicted,	in	Figure	34,	that	participants	with	the	asocial	model	and	

low	internal	evidence	of	failure	(graph	A)	would	show	a	slightly	negative	

relationship	between	the	success	of	the	model	and	microstructure	similarity	

scores.	However,	Figure	34	also	predicted	that	participants	with	the	asocial	

model	and	high	internal	evidence	of	failure	(graph	B)	would	show	a	slightly	

positive	relationship	between	model	success	and	microstructure	similarity	

scores.	The	same	inversion	effect	was	present	with	the	social	model,	except	

there	it	was	the	participants	with	low	internal	evidence	of	failure	(graph	C)	that	

showed	the	slightly	positive	relationship	between	model	success	and	

microstructure	similarity	scores,	and	participants	with	high	internal	evidence	of	

failure	(graph	D)	that	showed	the	slightly	negative	one.	

	

10.2:	Hypothesis	2	

The	influence	of	high	internal	evidence	of	failure,	rather	than	low	internal	

evidence	of	failure,	on	the	effect	of	changing	an	unsuccessful	model	into	a	

successful	model	appeared	variable.	In	Figure	36	(page	102),	among	younger	

children	exhibiting	low	attendance	to	the	video,	higher	internal	evidence	of	

failure	caused	a	lack	of	effect	of	social	model	success	on	macrostructure	

similarity	with	lower	internal	evidence	of	failure	to	become	a	negative	effect	of	

model	success	on	macrostructure	similarity	(between	graphs	C	and	D).	In	Figure	

37	(page	103),	among	older	children	exhibiting	low	attendance	to	the	video,	

higher	internal	evidence	of	failure	seemed	merely	to	conserve	the	positive	effect	

of	a	successful	model	on	macrostructure	similarity	from	participants	with	low	
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internal	evidence	of	failure	(between	graphs	C	and	D).	In	Figure	38	(page	103),	

with	younger	children	exhibiting	high	attendance	to	the	video,	higher	internal	

evidence	of	failure	caused	a	lack	of	effect	of	model	success	on	macrostructure	

similarity	in	graph	C	to	become	a	positive	effect	of	model	success	on	

macrostructure	similarity	in	graph	D.	In	Figure	39	(page	104),	with	older	

children	exhibiting	higher	attendance	to	the	video,	higher	internal	evidence	of	

failure	(graph	D)	appeared	to	reverse	the	positive	effect	of	a	successful	model	

with	low	internal	evidence	of	failure	(in	graph	C).	In	the	asocial	model	

conditions,	the	effect	of	higher	internal	evidence	of	failure	was	often	not	the	

same	as	in	the	social	conditions.	This	was	more	so	with	children	exhibiting	

higher	attendance	to	the	video.	In	Figure	38,	with	younger	children	exhibiting	

higher	attendance	to	the	video,	higher	internal	evidence	of	failure	appeared	to	

reverse	the	direction	of	the	effect	of	a	successful	asocial	model	on	

macrostructure	similarity	(between	graphs	C	and	D).	This	reversal	of	the	effect	

of	a	successful	asocial	model	was	also	visible	in	Figure	39’s	graphs	C	and	D,	with	

older	children	exhibiting	higher	attendance	to	the	video.	In	Figures	36	and	37,	

where	younger	and	older	children	both	exhibited	lower	attendance	to	the	video,	

then	the	impact	of	higher	internal	evidence	of	failure,	graph	D,	was	merely	to	

maintain	the	direction	of	the	relationship	between	model	success	and	

macrostructure	similarity	scores	found	in	the	‘C’	graphs.	

	

Comparing	the	conditions	with	low	participant	age,	Figures	36	and	38	had	very	

similar	effects	of	social	and	asocial	model	success	when	internal	evidence	of	

failure	was	low	(graphs	A	and	C	in	each	Figure).	When	internal	evidence	of	

failure	was	high	in	both	Figure	36	and	Figure	38	(graphs	B	and	D),	the	effects	of	

social	model	success	were	the	reverse	of	when	internal	evidence	of	failure	was	

low,	though	only	Figure	38	(with	higher	attendance	to	the	video)	showed	high	

internal	evidence	of	failure	to	reverse	the	effect	of	asocial	model	success	as	well.	

A	similar	pattern	can	be	found	also	in	Figures	37	and	39,	with	older	participant	

age.	The	difference	in	the	effects	of	the	successful	model	between	social	and	

asocial	conditions	appeared	very	similar	between	older	children	exhibiting	

greater	and	lesser	attendance	to	the	video,	when	internal	evidence	of	failure	was	

low	(i.e.,	in	graphs	A	and	C).	The	older	children	did	show	similar	effects	of	model	
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success	in	the	social	and	asocial	conditions	when	internal	evidence	of	failure	

was	high	(i.e.,	there	was	similarity	in	the	‘B’	graphs	of	Figures	37	and	39,	as	well	

as	similarity	in	the	‘D’	graphs	of	Figures	37	and	39).	However,	when	internal	

evidence	of	failure	was	low,	the	direction	of	the	effect	of	the	successful	model	on	

macrostructure	similarity	was	different	between	Figures	37	and	39.	In	Figure	

37,	with	low	attendance	to	the	video	(graphs	A	and	C),	the	effect	of	the	

successful	model	on	macrostructure	similarity	remained	positive	with	high	

internal	evidence	of	failure	(graphs	B	and	D),	whilst	in	Figure	39,	with	high	

attendance	to	the	video,	the	effect	of	the	successful	model	on	macrostructure	

similarity	became	negative	with	high	internal	evidence	of	failure.	The	influence	

of	age	on	the	effect	of	model	success	on	macrostructure	similarity	thus	appeared	

to	have	been	highly	dependent	on	the	influence	of	the	other	variables.	

	

The	influence	of	high	attendance	to	the	video,	contrarily,	appeared	quite	uniform	

in	the	asocial	conditions	(graphs	A	and	B).	Across	Figures	36	and	37,	with	lower	

attendance	to	the	video	and	lower	and	higher	participant	ages,	the	impact	of	the	

asocial	model	on	model	success’	effect	on	macrostructure	similarity	was	

consistent	across	both	lower	and	higher	internal	evidence	of	failure	(graphs	A	

and	B).	This	was	also	true	between	Figures	38	and	39,	with	high	participant	

attendance	to	the	video	and	lower	and	higher	participant	ages.	Conversely,	

between	Figures	36	and	38,	and	Figures	37	and	39,	the	direction	of	the	effect	of	

the	asocial	successful	model	where	participant	evidence	of	failure	was	high	was	

reversed	(i.e.,	between	graphs	A	and	B).	The	impact	of	higher	attendance	to	the	

video	on	the	effect	of	the	successful	model	was	again	more	variable	in	the	social	

model	conditions	(graphs	C	and	D).	The	effect	of	the	successful	social	model	was	

similar	for	participants	exhibiting	low	internal	evidence	of	failure	(graph	C)	

across	Figures	36	and	37,	with	lower	attendance	to	the	video	and	lower	and	

higher	participant	age.	However	the	effect	of	the	successful	model	was	also	

reversed	in	direction	for	children	with	higher	internal	evidence	of	failure	(graph	

D)	in	the	same	Figures.	The	same	story	held	true	in	comparing	the	effect	of	the	

successful	social	model	in	Figures	38	and	39,	with	higher	attendance	to	the	

video	and	lower	and	higher	participant	age	(graphs	C	and	D	respectively).		
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10.4:	Hypothesis	4	

The	influence	of	the	social,	rather	than	asocial,	model	on	high	internal	evidence	

of	failure’s	effect	on	macrostructure	similarity	scores	appears	to	have	been	to	

reduce	its	negative	effect	when	the	model	was	asocial.	In	the	asocial	conditions	

(graphs	A	and	B	of	Figures	43	and	44,	pages	116	and	117	respectively),	there	

was	a	reliably	negative	effect	of	high	internal	evidence	of	failure	on	

macrostructure	similarity.	While	this	negative	relationship	was	present	in	two	

social	model	conditions	(in	Figure	43’s	graph	C,	with	younger	children	exhibiting	

lower	attendance	to	the	video,	and	Figure	44’s	graph	D,	with	older	children	

exhibiting	higher	attendance	to	the	video),	in	the	two	other	social	conditions	this	

negative	effect	was	removed	by	the	apparent	influence	of,	on	the	one	hand,	high	

child	age	with	low	video	attendance	(graph	D	in	Figure	43),	and	on	the	other	

hand,	low	child	age	with	high	video	attendance	(graph	C	in	Figure	44).	The	social	

model	thus	enables	these	interactions	to	reduce	the	negative	relationship	

between	higher	internal	evidence	of	failure	and	macrostructure	similarity	with	

both:	(1)	an	asocial	model	with	high	child	age	and	low	video	attendance,	and	(2)	

an	asocial	model	with	low	child	age	and	high	video	attendance.	

	

The	influence	of	higher	participant	age	on	the	effect	of	higher	internal	evidence	

of	failure	appears	to	have	been	complex.	In	the	context	of	the	asocial	model,	

across	low	and	high	attendance	to	the	video	(Figures	43	and	44),	higher	

participant	age	(graphs	B	and	D)	appears	to	cause	greater	macrostructure	

similarity	with	both	low	or	high	internal	evidence	of	failure	(comparing	the	left	

and	right	hand	sides	of	each	graph),	though	it	appears	not	to	change	the	negative	

relationship	between	increased	internal	evidence	of	failure	and	macrostructure	

similarity	scores.	In	the	context	of	a	social	model	(graphs	C	and	D),	increased	age	

appears	to	have	two	opposite	influences	on	the	effect	of	internal	evidence	of	

failure	on	macrostructure	similarity.	When	demonstrating	low	attendance	to	the	

video	(Figure	43),	increased	age	in	graph	D	weakens	the	negative	effect	of	high	

internal	evidence	of	failure	on	macrostructure	similarity	(in	graph	C)	to	such	a	

degree	that	high	internal	evidence	of	failure	appears	to	have	no	directional	

influence	on	macrostructure	similarity	scores.	However,	when	demonstrating	

high	attendance	to	the	video	(Figure	44),	increased	age	appears	to	change	high	
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internal	evidence	of	failure	from	having	no	effect	on	macrostructure	similarity	in	

graph	C	to	having	a	clearly	negative	effect	on	macrostructure	similarity	scores	in	

graph	D.	

	

Higher	participant	attendance	to	the	experimental	video	appears	to	have	had	

little	impact	on	the	effect	of	higher	internal	evidence	of	failure	on	

macrostructure	similarity	scores	with	an	asocial	model	(graphs	A	and	B).	Across	

Figures	43	and	44,	with	the	asocial	model,	the	negative	effect	of	internal	

evidence	of	failure	on	macrostructure	similarity	was	consistent.	Yet	like	for	the	

impact	of	increased	participant	age	above,	the	role	of	increased	attendance	to	

the	video	was	variable	in	with	the	social	model	(graphs	C	and	D).	In	the	social	

condition	with	low	participant	age	(graph	C),	the	change	from	low	to	high	

attendance	to	the	video	causes	the	relationship	between	internal	evidence	of	

failure	and	macrostructure	similarity	to	change	from	negative	to	neutral.	In	the	

social	condition	with	high	participant	age	(graph	D),	the	change	from	low	to	high	

attendance	to	the	video	causes	the	relationship	between	internal	evidence	of	

failure	and	macrostructure	similarity	to	change	from	neutral	to	negative.	Thus	it	

appears	that	in	these	social	model	conditions,	the	relationship	between	internal	

evidence	of	failure	and	macrostructure	similarity	was	complex	and	dependent	

on	a	combination	of	other	variables.	
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Appendix	11:	Lay	summary	of	the	thesis	

The	purpose	of	my	research	was	to	study	how	children	copied	from	others	in	

play.	A	key	part	of	play	is	that	children’s	activities	are	open-ended	and	not	

determined	by	other	people.	I	ran	an	experiment	in	which	565	primary	school	

aged	children	built	with	wooden	blocks.	Some	of	these	children	had	the	

possibility	to	copy	from	someone	else	who	was	also	building.	I	then	tried	to	

manipulate	different	conditions	to	cause	children	to	build	things	which	were	

more	or	less	similar	to	what	this	other	person	built.	I	did	this	in	order	to	find	out	

two	things.	The	first	was	whether	children	copied	differently	when	the	task	was	

open-ended	(where	children	were	told	to	build	whatever	they	thought	was	best)	

compared	to	when	the	task	was	close-ended	(where	children	were	told	to	build	

the	tallest	tower).	I	found	that	there	were	some	differences.	For	example,	the	

children	who	were	told	to	build	a	tall	tower	copied	the	other	person	less	when	

this	other	person	was	worse	at	building	compared	to	when	this	other	person	

was	better	at	building.	However,	children	who	were	told	to	build	whatever	they	

liked	did	not	copy	the	other	person	less	when	the	other	person’s	building	was	

unsuccessful.	My	second	aim	was	to	see	whether	children’s	copying	was	more	

flexible	in	the	open-ended	task	than	it	was	in	the	close-ended	task.	The	data,	

however,	did	not	support	this	idea.	In	addition	to	these	results,	I	found	that	

children	who	were	older	than	seven	copied	the	other	person	more	than	children	

who	were	younger	than	seven,	and	that	girls	tended	to	copy	the	other	person	

slightly	more	than	boys.	Overall,	my	experiment	shows	that	the	way	in	which	

children’s	activities	are	framed,	as	either	more	close-	or	open-ended,	can	have	

effects	on	how	children	react	to	information	provided	by	others.	This	research	

therefore	indicates	that	play	may	be	a	special	context	for	children,	in	which	they	

react	to	social	information	differently	compared	to	how	they	copy	when	they	are	

given	a	specific	goal	to	achieve.	
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