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Creation of a strontium microtrap: Towards a

spin-squeezed atomic clock

Ryan Keith Hanley

This thesis details the development of the pre-requisite experimental tools to create

a proof-of-principle spin-squeezed atomic clock based upon an array of individual

strontium atoms using Rydberg-dressed interactions. We experimentally and the-

oretically study Rydberg-dressing in a strontium narrow-line MOT, demonstrating

that it is possible to coherently admix a Rydberg state into the narrow intercombina-

tion transitions of strontium. This work is based upon a quantitative semi-classical

Monte-Carlo model of a strontium narrow-line MOT, where the combination of a

quantum treatment of the light scattering process with a Monte-Carlo simulation

of the atomic motion leads to a quantitative description of the spatial, thermal and

temporal dynamics of the narrow-line MOT. By performing calculations of the dy-

namic polarisability of all the states relevant to laser cooling strontium, we have

designed and constructed a new experimental apparatus to facilitate the creation of

a microtrap of strontium. We observe and characterise the first known microtrap

of strontium and outline the next steps towards the creation of an array of single

atoms.

Due to the creation of Rydberg atoms in the strontium microtrap, understanding

ionisation and interaction mechanisms may be of significant importance. We there-

fore study Rydberg ionisation mechanisms in a thermal beam of strontium atoms

using simultaneous measurements of Rydberg EIT and spontaneously created ions

or electrons. By connecting the optical and electrical signals using the optical Bloch

equations, we are able to determine the dominant ionisation mechanisms of Ryd-

berg atoms in the thermal beam. We also report the first observations of optical

and electrical bistability, which may shed further light onto the origin of bistability

in atom vapours.
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Chapter 1

Introduction

Advances in the precision of atomic clocks has recently opened the door to ‘table-top’

test of fundamental physics [1], such as measurements of fundamental constants [2,3]

and searches for physics beyond the standard model [4–6]. The pursuit of increased

precision in atomic clocks is ongoing. However, with technological advances, the

fundamental limit of precision is readily approaching. Therefore, new methods to

reach beyond this fundamental limit are of current interest. The goal of this thesis

is to develop the pre-requisite experimental tools to create a proof-of-principle spin-

squeezed atomic clock based upon an array of individual strontium atoms using

Rydberg-dressed interactions [7], which will lead to quantum-enhanced precision

measurements. The experimental overview is illustrated in figure 1.1.

In recent times, the frontier of clock technology has moved to atomic clocks

operating on electric-dipole transitions in the optical regime, where the transition

frequencies are of the order of hundreds of THz. These optical atomic clocks typically

use ions (Al+, Sr+, Hg+ etc.) trapped in radio-frequency traps or divalent atoms

(Sr, Yb, Ca, Mg etc.) trapped in optical lattices, where there are atomic transitions

in the optical domain which are spectrally narrow. The current state of the art is a

strontium optical lattice clock with a precision of 2.5× 10−19 after an averaging time

of six hours [8], three orders of magnitude more precise than the current definition

of the SI second.

The increasing precision of atomic clock technology is fundamentally limited by

1



Sr array
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array

Rc

High NA lens

Imaging

Dressing
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Figure 1.1: (a) A high numerical aperture lens is used to create an array of stron-

tium atoms, and enables site resolved readout of the array using an array of single

photon avalanche detectors (SPAD). (b) Single atoms are loaded into the array and

imaged on a broad dipole-allowed transition. The clock state |e〉 is coupled to a

Rydberg state |r〉 with long range dipole-dipole interactions Vd−d which induces an

effective interaction between atoms in |e〉 (Rydberg dressing). The length scale of

the interactions is Rc.

quantum projection noise (QPN) [9]. QPN is the fundamental source of noise for

population measurements of a fixed number of uncorrelated atoms. By introducing

quantum correlations between atoms however, it is possible to beat the QPN limit

[10, 11]. The uncertainty relationship between orthogonal measurements of a spin
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system obeying the cyclic commutation relation [Si, Sj] = i~εijkSk is given by [12]〈
∆S2

i

〉 〈
∆S2

j

〉
≥ ~2

4
|〈Sk〉|2 , (1.0.1)

where εijk is the Levi-Cevita symbol and the suffixes i, j, k denote the components in

any three orthogonal directions. The introduction of quantum correlations facilitates

the redistribution of quantum fluctuations between two orthogonal observables. This

allows one to reduce or ‘squeeze’ the uncertainty in one observable, at the expense

of increasing the uncertainty in the other. The correct use of a squeezed state in an

atomic clock would improve the precision of the clock beyond the fundamental QPN

limit. This has been previously demonstrated on microwave transitions [13,14].

The extension of spin squeezing into optical clocks is an ongoing challenge. The

creation of correlations from initially uncorrelated atoms relies upon a suitable and

controllable inter-atomic interaction. There are a variety of proposals which typ-

ically fall into one of two categories [15]. The first relies upon elastic collisions

in Bose-Einstein condensates. The second is based upon quantum nondemolition

measurements by coupling atoms into an optical resonator. Applying these tech-

niques to optical lattice clocks presents many challenges. The majority of optical

lattice clocks operate using fermionic isotopes where Bose-Einstein condensation is

not possible. Bosonic isotopes can be used, however significant losses from the clock

state have been previously observed [16]. Quantum nondemolition measurements

typically require the atoms to be placed into an optical resonator. The introduction

of an optical resonator into the atomic clock raises the risk of uncontrollable electric

fields, which would limit the ultimate precision of the atomic clock.

An ideal squeezing scheme is one in which the preparation of the atomic squeezed

state is reasonably simple and does not alter the ‘standard’ clock sequence or exper-

imental apparatus. A proposal of such a scheme has been outlined by Gil et al. [7].

They propose to use an additional laser to make use of strong Rydberg-Rydberg

interactions (see figure 1.1(b)). By off-resonantly coupling the clock state to a high-

lying Rydberg state, it has been shown that it is possible to utilise Rydberg-dressed

interactions to create a squeezed state. An advantage of this scheme is that it only

requires one additional laser, which is switched off after the squeezing is performed,

enabling the atomic clock to operate in its standard form. The use of an additional



laser coupling atoms to a Rydberg state has previously been shown to be compatible

with a strontium optical lattice clock [17].

The verification and optimisation of such a squeezing scheme requires low-noise

measurements of the spin-state of each atom in the atomic clock. This is technically

very challenging in optical lattice clocks as the spacing between adjacent lattice sites

is typically of the order of 400 nm. We therefore propose a novel approach where

the optical lattice is replaced with a controllable array of optical tweezers, with

each tweezer loaded with a single atom. This has been realised in the alkali-metal

atoms [18–21], where it is now possible to create arbitrary three-dimensional arrays

of individual atoms. A pre-requisite of the project is therefore the extension of this

technique to divalent atoms.

The extension of configurable single atom arrays to divalent atoms also creates

opportunities in the field of quantum simulation. The ability to trap both ground

and Rydberg state atoms in a common optical trap is a pre-requisite for many

quantum state manipulations without significant loss or heating involving Rydberg

states [22, 23]. Due to the single valence electron of alkali-metal atoms, the num-

ber of methods available to simultaneously trap both ground and Rydberg state

atoms is limited to the use of static electric [24] and magnetic fields [25], and the

ponderomotive force [26]. Divalent atoms such as strontium offer a novel approach

to this problem as the remaining valence electron of a singly-excited Rydberg state

provides an additional degree of freedom to probe and manipulate the atom. It has

been shown by Mukherjee et al. [27] that there exists regimes where the dynamic

polarisability of both the ground and singly-excited Rydberg state have the same

sign as well as similar magnitude, due to the core transitions of the remaining va-

lence electron. It is therefore possible to create an all optical trap where the sign

and magnitude of the force experienced by both ground and Rydberg state atoms is

similar, opening avenues to improving quantum logic gates using ultracold atoms.
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1.1 Thesis outline

This thesis is separated into three parts. Part I focusses on the study of Rydberg

dressing in an ultracold sample of strontium, as well as the design, construction

and characterisation of a strontium microtrap. We experimentally and theoretically

study Rydberg-dressing in a strontium narrow-line MOT, demonstrating that it

is possible to coherently admix a Rydberg state into the narrow intercombination

transitions. We then design and construct a new experimental apparatus to facilitate

the creation of a microtrap of strontium. We observe and characterise the first known

microtrap of strontium and outline the next steps towards the creation of an array

of single atoms.

Part II explores ionisation mechanisms of Rydberg atoms in a thermal beam

of strontium. Due to the creation of Rydberg atoms in the strontium microtrap,

understanding these ionisation and interaction mechanisms [28–31] may be of sig-

nificant importance in future work. In this part, we demonstrate a novel method for

probing interaction effects in a thermal beam of strontium atoms using simultaneous

measurements of Rydberg EIT and spontaneously created ions or electrons.

Finally, part III draws these results together and discusses the next steps towards

the creation of a squeezed state using Rydberg-dressed. The outline of this thesis is

as follows:

Part I: Towards a spin-squeezed atomic clock

• Chapter 2 details the theoretical basis upon which this thesis rests.

• Chapter 3 details the Monte-Carlo simulation of the cooling dynamics of a

strontium narrow-line MOT. This model is then extended to model Rydberg-

dressed interactions in a strontium narrow-line MOT, as well as the loading

of ultracold strontium into a far-off-resonance dipole trap.

• Chapter 4 describes the design and construction of a new experimental appa-

ratus used to create a strontium microtrap.



• Chapter 5 describes the first observation of a strontium microtrap. The micro-

trap is characterised and progress towards single atom detection is discussed.

Part II: Probing interactions of thermal Sr Rydberg atoms using

simultaneous optical and ion detection

• Chapter 6 shows a novel method for probing Rydberg ionisation mechanisms

in a thermal beam of strontium.

Part III: Conclusions and Outlook

• Finally, chapter 7 summarises the main results of this thesis and discusses

the next steps towards the creation of a squeezed state using Rydberg-dressed

interactions.

1.2 Publications

Below are the publications arising from this work:

R. K. Hanley, A. D. Bounds, P. Huillery, N. C. Keegan, R. Faoro, E. M. Bridge, K.

J. Weatherill and M. P. A. Jones (2017). Probing interactions of thermal Sr Rydberg

atoms using simultaneous optical and ion detection, Journal of Physics B: Atomic,

Molecular and Optical Physics, 50 115002, DOI:10.1088/1361-6455/aa6e79.

R. K. Hanley, P. Huillery, N. C. Keegan, A. D. Bounds, D. Boddy, R. Faoro and

M. P. A. Jones (2018). Quantitative simulation of a magneto-optical trap op-

erating near the photon recoil limit, Journal of Modern Optics, 65:5-6, 667-676,

DOI:10.1080/09500340.2017.1401679.

A. D. Bounds, N. C. Jackson, R. K. Hanley, R. Faoro, E. M. Bridge, P. Huillery,

and M. P. A. Jones (2018). Rydberg-Dressed Magneto-optical Trap, Physical Review

Letters 120, 183401, DOI:10.1103/PhysRevLett.120.183401.



Chapter 2

Atom-Light Interactions

The results presented in this thesis are based upon the interaction of strontium

atoms with coherent laser radiation. These interactions lead to a variety of physical

phenomena. Here we detail the theoretical background upon which this thesis rests.

We initially detail the properties and energy level diagram of 88Sr which is used

throughout this thesis. We discuss laser cooling, trapping, and Rydberg-dressing

which are three crucial pre-requisites to creating a spin-squeezed atomic clock. We

also present electromagnetic-induced transparency (EIT) which is used in chapter 6

to characterise Rydberg ionisation mechanisms.

2.1 Sr energy level structure

Strontium is a divalent atom with two distinct series of atomic transitions, namely

spin-singlet and spin-triplet transitions (see figure 2.1). These series of transitions

give rise to spectrally-narrow intercombination transitions, between spin-singlet and

spin-triplet states, ranging from 2π× 7.4 kHz to ∼ 2π× 1 mHz. Due to the divalent

nature of strontium there are two relevant cooling transitions; the 5s2 1S0 → 5s5p 1P1

and 5s2 1S0 → 5s5p 3P1 transitions. These are shown in figure 2.1. Due to

dipole selection rules, the 5s2 1S0 → 5s5p 1P1 singlet transition is dipole allowed

which results in a broad transition. The transitions to the triplet manifold however

(5s2 1S0 → 5s5p 3PJ) are spin forbidden. Nevertheless, due to state mixing [32], the

7
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Figure 2.1: Energy levels and transition rates in strontium. Figure modified from

[33].

5s2 1S0 → 5s5p 3P1 is weakly allowed, resulting in a narrow transition with linewidth

Γ/2π = 7.4 kHz.

The singlet transition is not completely closed as there is a decay path to the

5s4d 1D2 state, with a branching ratio of 1:50000. The 5s4d 1D2 state decays to the

triplet manifold with a branching ratio of 1:2 to the 5s5p 3P2 and 5s5p 3P1 states

respectively. Atoms in the 5s5p 3P1 state decay back to the ground state at at rate

of Γ/2π = 7.4 kHz. As the 5s5p 3P2 is metastable, atoms do not decay from this

state in a time comparable to experiments. This ‘leak’ can be closed by pumping

atoms to the 5s6s 3S1 state at 707 nm, from which they can decay to the 5s5p 3P1
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state and finally back to the 5s2 1S0 state. It is also possible for atoms to decay

from the 5s6s 3S1 state to the 5s5p 3P0 state. The 5s5p 3P0 is also metastable, and

therefore an additional repumping laser at 679 nm is required to drive population

back to the ground state.

The existence of both singlet and triplet Rydberg states gives rise to both

isotropic attractive and repulsive interactions [34], a degree of freedom which is

not accessible in the alkali-metal atoms. This degree of freedom enables one to ar-

bitrarily choose the type of interactions required for a particular experiment. The

divalent nature also creates an alternative detection method of singly-excited Ryd-

berg atoms. The ‘spare’ inner-electron can be excited to form a doubly excited state

where the total energy of the state is greater than the ionisation threshold, leading

to rapid ionisation. This method is typically labelled ‘auto-ionisation’ and has been

shown to be a formidable tool in detecting Rydberg atoms with spatial, temporal

and atomic-state resolution [35,36].

2.2 The two-level atom

In terms of atom-light interactions, the simplest system to consider is that of a

two-level atom interacting with a coherent light field with Rabi frequency Ω and

detuning from resonance ∆ ≡ ωL − ω0, where ωL is the angular frequency of the

light field and ω0 is the transition frequency. This is depicted in figure 2.2.

The upper state |e〉 can decay back to the ground state |g〉 with a rate Γ. One

can describe the state of the atoms using the density matrix formalism [37]. The

density matrix ρ̂ of the two-level atom is given by

ρ̂ =

 ρgg ρge

ρeg ρee

 , (2.2.1)

where ρii is the population of state i, and ρij is the coherence between states i and

j. The dynamics of the density matrix are governed by the von Neumann equation,

˙̂ρ =
i

~
[ρ̂, Ĥ] + L̂ (ρ̂) , (2.2.2)

where ˙̂ρ is the derivative of the density matrix with respect to time. Ĥ is the



Ω

Γ

|e〉

|g〉

h̄∆

Figure 2.2: Energy level of a two-level atom interacting with light with detuning ∆

and Rabi frequency Ω. Γ is the decay rate between |e〉 → |g〉.

Hamiltonian describing the system and L̂ (ρ) is the Lindblad operator

L̂ (ρ) =

 Γρee −1
2
Γρge

−1
2
Γρeg −Γρee

 . (2.2.3)

The Lindblad term describes the interaction of the system with the environment,

leading to spontaneous decay and decoherence mechanisms. The appropriate Hamil-

tonian, in the rotating wave-approximation [37], to describe the atom-light system

shown in figure 2.2 is given by

Ĥ =
~
2

 0 Ω

Ω∗ −2∆

 , (2.2.4)

and the resulting equations are named the optical Bloch equations. In the following

sub-sections, we will explore different regimes of this Hamiltonian and how this

leads to a variety of physical phenomena; namely laser cooling, dipole trapping and

Rydberg-dressed interactions.

2.2.1 Laser cooling

When |∆| / Ω, the laser field leads to significant excitation of the upper state

|e〉. This significant excitation can be used to laser cool atoms to sub-millikelvin

temperatures. The principle behind laser cooling arises from the idea that radiation

carries momentum. It therefore follows that when an atom absorbs radiation, the

momentum of the atom must change to obey conservation laws. A monochromatic
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h̄ωL − kv

v

Figure 2.3: Energy levels and laser frequencies in the atomic frame of a (a) stationary

and (b) moving atom interacting with counter-propagating laser beams.

laser incident on an atom exerts a scattering force given by

F = ~kR , (2.2.5)

where ~k is the momentum of a single photon and R is the atomic scattering rate.

The scattering rate can be calculated using the density matrix (R = Γρee), as

F = ~k
Γ

2

S

1 + S + 4 (∆ + k · v)2 /Γ2
, (2.2.6)

where S = I/ISat is the intensity of the cooling light I normalised by the saturation

intensity ISat [38], and k ·v is the Doppler shift an atom experiences when travelling

at a velocity v. To cool an atomic sample in all three dimensions, three orthog-

onal counter-propagating laser beams are required. This is the so called ‘Optical

Molasses’. Figure 2.3 shows an energy level diagram along an axis of one pair of

cooling laser beams. At first glance, one may expect that due to the symmetry of

the system there is no effect on the atom as there are equal and opposite forces in

all directions (figure 2.3(a)). However, this is only the case for a stationary atom.

Due to the Doppler shift of a moving atom, if one chooses the frequency of the

cooling laser to be lower than the atomic transition frequency (red-detuned) then

atoms moving towards a laser beam experience a Doppler shift closer to resonance

and therefore a larger scattering rate, as shown in figure 2.3(b). This effect leads

to cooling in that dimension [39]. This technique does not lead to an atomic trap

however as when the atoms are sufficiently cold, the Doppler shift of the cooling

laser is too small and the atomic scattering rate decreases.
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Figure 2.4: (a) Diagram showing the atomic energy levels along the one axis of

the quadrupole field, along with the laser helicity and spin projections. (b) Three-

dimensional diagram detailing the conventions used in this thesis.

Addition of a quadrupole field

An ingenious solution to this problem was discovered by Raab et al. [40] by intro-

ducing a quadrupole magnetic field and using circularly polarised laser light. The

role of the quadrupole magnetic field is to use the Zeeman effect to create spatially

varying atomic energy levels, leading to a scattering force which is not only velocity

dependent but also spatially dependent.

Here we consider a simple J = 0 → J = 1 transition, as shown in figure 2.4(a).

The magnetic field B splits the upper state into three Zeeman levels with split-

ting ∆ωz = gµB |B| /~ where g is the g-factor and µB is the Bohr magneton. The

handedness of the laser beams is chosen such that atoms travelling away from the

quadrupole centre are pushed back. This is because the spin projection of pho-

tons propagating in the same direction as the local magnetic field for left-hand

(right-hand) circularly polarized light is +~ (−~) onto the axis, and drives σ+ (σ−)

transitions. The combination of the quadrupole magnetic field and the helicity of

the orthogonal laser beams, leads to a situation where atoms are both laser cooled

and trapped.
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2.2.2 Far-off resonance dipole trap (FORT)

When |∆| � Ω, the laser field does not lead to significant excitation, but acts as a

perturbation of the bare energy levels. By direct diagonalisation of the Hamiltonian

shown in 2.2.4 in the limit of |∆| � Ω, the perturbation of the energy levels from

that of the bare states is given by

U =
~Ω2

4∆
=

1

4
|E|2 |deg|2

~ (ωL − ω0)
. (2.2.7)

Here we have used the definition of Rabi frequency Ω = deg · E/~ and deg is the

transition dipole moment. Up until now, we have used the rotating wave approxi-

mation. This is valid when ωL ≈ ω0. However, this is not the case for a FORT. We

must therefore include the co-rotating term [41], leading to

U =
1

4
|E|2 |deg|2

~

(
1

ωL − ω0

+
1

ωL + ω0

)
. (2.2.8)

Experimentally, one normally measures the intensity I of an applied laser field.

Therefore, using the definition |E|2 = 2I/ε0c, we write the perturbation of the

energy levels as

U = −|E|
2 |deg|2
2~

ω0

ω2
0 − ω2

L

= − 1

2ε0c
αI , (2.2.9)

where ε0 is the permittivity of free space, c is the speed of light and α is the dynamic

polarisability. From this, the definition of α is

α =
2 |deg|2

~
ω0

ω2
0 − ω2

L

. (2.2.10)

In reality, an atom cannot be treated as a simple two-level atom and a multitude

of atomic states must be included. The definition of the polarisability αi for a state

i is therefore1

αi =
2

~
∑
k

|dik|2
ωik

ω2
ik − ω2

L

, (2.2.11)

where ωik is the angular transition frequency between state i and state k. To calcu-

late the polarisability in equation 2.2.11, one requires the transition dipole moments

1Note that this is a perturbative treatment and that a full diagonalisation of all atomic states

and couplings is required for an exact solution.



dik. In practice, one usually measures the transition decay rate Aik as this is linked

to the transition dipole moment via [38]

Aik =
ω3
ik

3πε0~c3
|dik|2 . (2.2.12)

We finally arrive at the expression

αi = 6πε0c
3
∑
k

Aik
ω2
ik (ω2

ik − ω2
L)

, (2.2.13)

which is dependent only on experimental measurables. From hereon, the derivation

is relevant to 88Sr in particular. Equation 2.2.13 relies on the measured values

of Aik. However, as each excited state has Zeeman degeneracy, one must take

into consideration the trap polarisation and the relative coupling strength to each

Zeeman level. This is a standard problem in angular momentum theory and there

are a range of mathematical tools to solve this [42]. The relevant value of Aik for

an initial state with quantum numbers Ji and mi, and a final state with quantum

numbers Jk and mk is

Aik → Aik

Jk∑
mk=−Jk

(2Jk + 1)

 Ji 1 Jk

mi q −mk

2

, (2.2.14)

where q represents the polarisation of the FORT in the spherical basis [42, 43] and

the matrix in the round brackets is the Wigner 3-j symbol. Equation 2.2.14 is only

valid for the singlet states where S = 0, as there is no fine or hyperfine structure.

The correction to Aik is more complicated for the triplet states where S = 1, as

the literature typically reports the total decay rate from an excited state to a fine-

structure manifold below, or a lifetime of an excited state τ = 1/AT . For an excited

state with quantum numbers S, Lk, Jk and lifetime τ , the value of Aik used in the

calculation is given by [32,44]

Aik → ξikAT

(2Ji + 1)
Jk∑

mk=−Jk

 Ji Jk 1

Lk Li S


2

|Li+S|∑
J=|Li−S|

(2J + 1)

 Ji Jk 1

Lk Li S


2

Jk∑
mk=−Jk

(2Jk + 1)

 Ji 1 Jk

mi q −mk

2

,

(2.2.15)
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where the matrices in the curly brackets are the Wigner 6-j symbol, and ξik is

a correction factor [32] which takes into account the fact that the fine structure

manifold is not degenerate in energy. To calculate the polarisability, we simply

combine equations 2.2.14 and 2.2.15 with 2.2.13.

Experimental Realisation

In order to create a trap for ultra-cold atoms, one requires a spatially varying per-

turbation of the energy levels. The simplest experimental method of creating such a

perturbation is to tightly focus a laser beam with a Gaussian intensity profile. The

intensity of a Gaussian laser beam is given by

I (r, z) = I0

(
w0

w (z)

)2

e−2r2/w(z)2 , (2.2.16)

where r and z are the radial and axial co-ordinates respectively, I0 is the peak

intensity, w0 and w (z) are the 1/e2 radius of the beam at the focus and at a distance

z respectively. This is given by

w (z) = w0

(
1 +

(
z

zR

)2
)1/2

, (2.2.17)

where zR is the Rayleigh length, defined as zR = πw2
0/λ where λ is the wavelength

of the laser beam. As the gradient of the laser intensity with respect to position is

non-zero, the atoms feel an associated dipole force Fd given by

Fd (r, z) = − 1

2ε0c
α∇I (r, z) . (2.2.18)

If α > 0, the atoms feel a force which pushes them towards regions of high intensity,

leading to confinement of the atoms. For an atom to be trapped in the FORT, the

kinetic energy of the atom must be less than the potential energy. However, as the

dipole potential is conservative, the atom must lose its initial kinetic energy whilst

in the FORT. This dissipation is typically induced by laser cooling techniques.

2.2.3 Rydberg Dressing

Rydberg dressing has been proposed as a way to introduce controllable long-range

interactions into low-lying atomic states. Here we will briefly explore the physics of



r/Rc

V
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)
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Figure 2.5: Dressed potential (blue-solid line) as a function of separation between

two Rydberg-dressed atoms. The purple-dotted line shows the Van der Waals 1/r6

potential.

Rydberg dressing, however for a more detailed explanation see the theses of A. D.

Bounds [45] and N. C. Jackson [46]

We will consider the atom-light interaction of the two-level atom shown in figure

2.2. However, we consider coupling to a high-lying Rydberg |r〉 instead of a low-

lying excited state |e〉. In the limit of ∆� Ω, the dressed ground state |g′〉 can be

approximated by

|g′〉 ≈ |g〉 − Ω

2∆
|r〉 . (2.2.19)

The ground state of the system now contains a small, tunable fraction of the state

|r〉, given by ε2 = Ω2/4∆2.

Due to the Rydberg character of the dressed state, there exists a distance depen-

dent interaction between two dressed-state atoms. The interaction energy between

two Rydberg-dressed atoms V (r) is given by [47–49]

V (r) = V0

[
1 +

(
r

Rc

)6
]−1

, (2.2.20)

where the peak magnitude V0 = ~Ω4/8 |∆|3 and length scale Rc = |C6/2~∆|1/6.

Here, C6 is the van der Waals coefficient of the Rydberg state |r〉. This interaction
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has the form of a long-range potential with a soft core, as shown in figure 2.5. If

one however considers an ensemble of Rydberg-dressed atoms, there is a collective

enhancement to this interaction. The collective energy shift experienced byNc atoms

within a range r < Rc to first order approximation is given by

Vc =
Nc (Nc − 1)

2
V0 , (2.2.21)

where Nc = ρ4πR3
c/3 and ρ is the atomic density of the ensemble.

2.3 Three-level atom

The addition of a third energy level gives rise to coherent phenomena such as EIT

[50–52], where a medium becomes transparent to an incident light-field, only in the

presence of another light-field. Figure 2.6(b) shows the case of an additional coupling

beam with Rabi frequency Ωc which couples the state |e〉 to the state |r〉 which is

detuned from the transition resonance by a frequency ∆c. The density matrix for

the three level system shown in figure 2.6(b) is given by

ρ̂ =


ρgg ρge ρgr

ρeg ρee ρer

ρrg ρre ρrr

 , (2.3.22)

and the appropriate Hamiltonian for this system in the rotating wave approximation

is

Ĥ =
~
2


0 Ωp 0

Ω∗p −2∆p Ωc

0 Ω∗c −2 (∆p −∆c)

 . (2.3.23)

If one first considers the Hamiltonian in (2.3.23) and neglects the Lindblad terms,

the effect of EIT can be readily seen [52]. The eigenstates of this Hamiltonian for

the case of resonance (∆p = ∆c = 0) are given by

|+〉 =
Ωp

Ωc

|g〉+

√
Ω2

p + Ω2
c

Ωc

|e〉+ |r〉 , (2.3.24)

|0〉 =
Ωc

Ωp

|g〉 − |r〉 , (2.3.25)

|−〉 =
Ωp

Ωc

|g〉 −
√

Ω2
p + Ω2

c

Ωc

|e〉+ |r〉 . (2.3.26)
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Figure 2.6: Energy level of a three-level atom interacting with two light fields with

detunings ∆p and ∆c, and Rabi frequencies Ωp and Ωc. Γe and Γr are the decay

rates between |e〉 → |g〉 and |r〉 → |e〉 respectively.

In the EIT regime, where Ωc � Ωp, the eigenstates reduce to |±〉 = 1√
2

(|r〉 ± |e〉)
and |0〉 = |g〉. As the probe laser only couples to |e〉, neither the probe nor the

coupling fields interact with |0〉 and this is named the dark state. The probe laser

couples to the |e〉 component of |±〉, however, these components for the two eigen-

states are π out of phase with each other and the transition probability amplitudes

interfere destructively. This results in a transparency window on resonance where

the probe beam is not absorbed. This is demonstrated in figure 2.7 which shows

that ρeg → 0 as ∆p → 0 when ∆c = 0.

One must however consider decay and decoherence in this system. This has the

effect of reducing the resonant transmission of the probe from unity. The Lindblad

term has two contributions, the first is due to spontaneous emission and the second

is due to the finite laser linewdiths of the probe and coupling beams. The Lindblad

term due to spontaneous emission is given by

L̂spon =


Γeρee −1

2
Γeρge −1

2
Γrρgr

−1
2
Γeρeg −Γeρee + Γrρrr −1

2
(Γe + Γr) ρer

−1
2
Γrρrg −1

2
(Γe + Γr) ρre −Γrρrr

 , (2.3.27)
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∆p/Γe

ρ
eg

Figure 2.7: Example probe transition coherence as a function of probe detuning for

the case when ∆c = 0. Here Γe = 103Γr and Ω2
c/ΓeΓr = 90.

and the Lindblad term due to the finite laser linewidths is given by

L̂laser =


0 −Γpρge −Γrelρgr

−Γpρeg 0 −Γcρer

−Γrelρrg −Γcρre 0

 , (2.3.28)

where Γp and Γc are the linewidths of the probe and coupling laser respectively

and Γrel is the relative linewidths between the lasers which is a convolution of the

two lineshapes. Therefore, Γrel = Γp + Γc due to the properties of the convolution

operation for Lorentzian lineshapes.

2.3.1 Macroscopic dynamics

The above formalism deals with the microscopic dynamics. However, one can link

these microscopic dynamics to the macroscopic dynamics of a thermal vapour con-

taining many atoms. With the full solution to the OBE’s, one can calculate the

complex electric susceptibility χ of a medium which contains N two-level atoms.

This allows one to calculate the absorptive and dispersive properties of the medium.



The absorption coefficient µ is simply given by2

µ = kpχIm , (2.3.29)

where kp is the wavenumber of the probe beam and χIm is the imaginary part of

χ [53]. χ is given by

χ = −2 |deg|2 n
~ε0Ω∗p

ρeg , (2.3.30)

where deg is the transition dipole moment and n is the atomic number density [54].

This equation shows that the absorption coefficient is directly proportional to ρeg.

Up to now, we have neglected the fact that a thermal ensemble of atoms has a

velocity distribution. This results in a measured optical response which is averaged

over all atomic velocity classes. Doppler averaging can be included in this formalism

by calculating the density matrix for altered probe and coupling beam detunings

∆p → ∆p + kp · v and ∆c → ∆c + kc · v where the range of velocities v is taken

from a Boltzmann distribution with a temperature T . The density matrices for all

values of ∆p and ∆c are then integrated over a Maxwell Boltzmann distribution of

velocities.

2.4 Summary

We have introduced the properties of 88Sr, in particular the two distinct laser cooling

schemes on the broad dipole-allowed and the narrow dipole-forbidden transitions.

We have discussed the physics of laser cooling and the operation of a magneto-

optical trap, both of which are required for chapter 3. We have shown how strong

Rydberg-Rydberg interactions can be mapped onto a lower lying state, which is a

technique which will employed for engineering interactions between atoms. We have

detailed how to perform calculations of the dynamic polarisability, a tool which is

needed in chapter 4 for the design of the new experimental apparatus. We finally

discussed how the coupling between three atomic energy levels can lead to coherent

phenomena such as EIT. This formalism is critical in coupling both optical and

electrical signals in chapter 6.

2Only true in a dilute regime where dipole-dipole interactions are negligible.
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Chapter 3

Quantitative simulation of a

narrow-line MOT

In order to implement the spin-squeezing protocol outlined by [7], it is imperative to

be able to load atoms into a FORT and coherently admix a Rydberg state into the

narrow intercombination transitions. Recent experiments have explored Rydberg

dressing in a variety of ordered settings. Rydberg-dressed interactions have been

measured between two atoms in optical tweezers [55] and in an array of atoms con-

fined in an optical lattice [56, 57]. The observation of Rydberg-dressed interactions

in disordered systems however seems to be more challenging due to uncontrolled loss

mechanisms [58–61].

The current experimental apparatus facilitates the creation of a strontium MOT

on the 88Sr 5s2 1S0 → 5s5p 3P1 transition (nMOT), as well as the excitation from the

5s5p 3P1 state to both the 5sns and 5snd Rydberg series. Here we explore Rydberg

dressing in a nMOT, where the interactions between Rydberg-dressed atoms are

large compared to both the kinetic energy and transition linewidth. The laser cooling

and Rydberg dressing scheme is shown in figure 3.1. The upper state of the nMOT

cooling transition is coupled to a Rydberg state with Rabi frequency Ω and detuning

∆D using a home-built UV laser system [62]. This results in a dressed excited state

of the cooling transition.

Before one can study Rydberg dressing in a nMOT however, one must fully

22
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∆

∆D

5s2 1S0

5s5p 1P1

5s5p 3P1

5s36d 3D1

Imaging
461 nm

Dressing
319 nm

nMOT
689 nm

Figure 3.1: Energy level diagram showing the dressing scheme used in the experi-

ment.

understand the dynamics of a nMOT in the absence of Rydberg dressing. To ad-

dress this, we create a quantitative model of a nMOT operating on the narrow

5s2 1S0 → 5s5p 3P1 transition, by combining a quantum treatment of the light

scattering process with a Monte-Carlo simulation of the atomic motion. By com-

paring this model to experimental measurements, we are able to quantitatively re-

produce the spatial, thermal and temporal dynamics of the nMOT. This quantitative

agreement creates a solid theoretical foundation upon which we are able to study a

Rydberg-dressed nMOT.

The work in this chapter is based upon the publications:

R. K. Hanley, P. Huillery, N. C. Keegan, A. D. Bounds, D. Boddy, R. Faoro and

M. P. A. Jones (2018). Quantitative simulation of a magneto-optical trap op-

erating near the photon recoil limit, Journal of Modern Optics, 65:5-6, 667-676,

DOI:10.1080/09500340.2017.1401679.

A. D. Bounds, N. C. Jackson, R. K. Hanley, R. Faoro, E. M. Bridge, P. Huillery,

and M. P. A. Jones (2018). Rydberg-Dressed Magneto-optical Trap, Physical Review

Letters 120, 183401, DOI:10.1103/PhysRevLett.120.183401.



3.1 Narrow-line MOT (nMOT)

The experimental configuration for a nMOT is the same as that for a conventional

MOT [40] (see section 2.2.1), with atoms cooled and confined by a combination of

a quadrupole magnetic field and laser beams with the appropriate helicity. What

makes nMOTs distinctive is the ratio η = Γ/ωR, where Γ is the natural linewidth

of the cooling transition, and ωR = (4~π2)/(2mλ2) is the frequency shift due to the

atomic recoil following the absorption or emission of a photon. In a conventional

MOT η � 1, whereas η ≈ 1 in a nMOT. In this limit, individual scattering events

significantly alter the subsequent probability of absorption, and the ultimate limit

of laser cooling is set by the recoil temperature rather than the Doppler temperature

[63].

Loftus et al. [64] showed that the behaviour of atoms in a nMOT is governed by

the scaled detuning δ = |∆|/Γ′ (S), where Γ′ (S) = Γ
√

1 + S is the power-broadened

linewidth. Three regimes can be identified.

The regime that is closest to a conventional MOT occurs when δ ≈ 1 and S >> 1.

This is illustrated in figures 3.2(a) and (b). Here the power-broadened linewidth

dominates and the cloud forms close to the quadrupole centre as atoms are resonant

with all three pairs of laser beams. In this “Doppler” regime (I) the power-broadened

linewidth determines the temperature, and the atoms are comparatively hot.

If ∆ is increased such that δ � 1 but S > 1, the trap no longer forms at

the quadrupole centre, but is displaced to where the Zeeman shift ∆ωz = ∆. The

resulting resonance condition forms an elliptical ‘shell’ around the quadrupole centre.

Since gravity is strong compared to the light-induced forces, the atoms fall under

gravity until the resonance condition is met, forming an elliptically-shaped nMOT

(shown in figure 3.2(c)) where the atoms predominantly interact with the beam that

directly opposes gravity. This is seen by the clearly separated force peaks displaced

from the quadrupole zero in figure 3.2(d). We refer to this as the “power-broadened”

regime (II).

Finally, the recoil dominated “quantum” regime (III) occurs when δ � 1, and

S ≤ 1. As in the power-broadened regime, the MOT position is determined by
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Figure 3.2: Absorption images of the nMOT along with their associated force curves.

(a) and (b) correspond to S = 250 and ∆ = −2π × 110 kHz whilst (c) and (d)

correspond to S = 20 and ∆ = −2π × 200 kHz. The force curve associated with

S = 1 is also shown in (d) for comparison. The dashed ellipse in (a) and (c) shows

where ∆ωz = ∆ in the quadrupole field with a gradient of 8 G/cm.

∆ and the magnetic field gradient. However since a photon recoil is sufficient to

tune an atom out of resonance with the nMOT beams, recoil effects dominate the

scattering behaviour of the atoms. This regime enables the lowest temperatures,

ultimately reaching half the photon recoil limit, which for 88Sr is 460 nK [64].

3.2 Numerical models

One approach typically used to simulate MOT dynamics is to make simplifying

assumptions about the atomic system and perform a Monte-Carlo [65] integration

of the classical equations of motion. This assumes that the atoms experience an

average force from the laser beams. Wohlleben [66] and Chaudhuri [67] have used

this method to accurately simulate the atomic trajectories of rubidium atoms in a

2D+ MOT. This method has also been used to simulate loading into optical traps

[68, 69]. For more complex systems where optical pumping must be included, such



as molecular MOTs, this model breaks down. A more accurate model is produced

using the optical Bloch equations [37]. By performing an adiabatic elimination of

the density matrix coherences, one is left with a series of rate equations. Atutov [70]

has shown this model to be accurate at modelling a sodium MOT involving optical

pumping whilst both Comparat [71] and Tarbutt [72] have utilised this method to

study the formation of molecular MOTs. However, as the transition linewidth in

a nMOT is so small, the transition is often power broadened, which precludes the

conventional adiabatic elimination of the density matrix coherences [71,72].

To circumvent this problem, we develop a Monte-Carlo model which is based

upon the steady-state solution of the optical Bloch equations. This model is appli-

cable not only to the 88Sr 5s2 1S0 → 5s5p 3P1 transition, but also to the lowest-lying

intercombination lines in other divalent atoms. These J = 0 → J = 1 transitions

are completely closed1, and there is no optical pumping or dark states, as shown

in figure 3.3(a). Despite this apparent simplicity, it is still very challenging to fully

model the interaction of this four-level system with the spatially varying quadrupole

field and laser polarisation, since one must keep track of complex spatially varying

phases between the laser beams that appear in the off-diagonal terms in the atomic

density matrix. Therefore, we make a significant simplification and treat each Zee-

man transition as an independent two-level system, as shown in figure 3.3(b). This

amounts to non-conservation of population in the limit of S � 1 and also neglects

absorption and stimulated emission events from laser beams with differing k vectors,

which is related to coherences between Zeeman sub-levels. We expect that this is a

good approximation in regimes (II) and (III). In these regimes, the atoms fall under

gravity until the resonance condition is met and predominantly interact with the

laser beam that opposes gravity. The Zeeman splitting between the mj sublevels is

much greater than the transition linewidth, effectively isolating the three Zeeman

sublevels, of which the mj = −1 state is most strongly driven due to the helicity of

the laser beams. However we expect the model to fail in the “Doppler” regime (I),

and we show that this is indeed the case.

1This is only true for the bosonic isotopes.
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Figure 3.3: (a) Energy level structure of the nMOT. ∆ωz is the Zeeman splitting due

to the quadrupole field. (b) Simplified energy level structure used in the simulation.

3.2.1 Mathematical Formalism

We simulate the 88Sr 5s2 1S0 → 5s5p 3P1 nMOT using the conventions and defini-

tions shown in figure 2.4(b). The nMOT is constructed from three retro-reflected

orthogonal laser beams in the laboratory co-ordinate system r = (x, y, z) where the

unit vector directions x̂, ŷ and ẑ are shown in figure 2.4(b), and the origin of the

coordinate system is taken to be the zero of the quadrupole magnetic field. Each

circularly-polarised laser beam i has angular frequency ωi and wave-vector ki. The

helicity of each beam is illustrated in figure 2.4(b). The nMOT quadrupole field B

is defined as B = γ (xx̂+ yŷ − 2zẑ) where γ is the gradient of the magnetic field

along the radial (x̂, ŷ) directions. The magnetic field splits the 5s5p 3P1 state into

three Zeeman levels j with splittings ∆ωz = gµB |B| /~ where g = 3/2 is the g-factor

and µB is the Bohr magneton.

To reproduce the macroscopic dynamics of the nMOT, the simulation is per-

formed for ∼ 5000 atoms. Initially, the atoms are uniformly, randomly placed into



a user-defined ellipsoid in the laboratory frame with position r. The atoms are also

assigned random velocity vectors v taken from a 3D-Boltzmann distribution with a

user defined initial temperature. These initial conditions are chosen to be similar to

the final nMOT to reduce the processing time2. Typically, an initial temperature of

T = 1 µK is used.

The total simulation time ttot is broken into time-steps of length δt. At each time-

step, the probability that each atom scatters a photon from laser i via a transition

j is given by

Pij = Γeρ
ij
eeδt (3.2.1)

=
Γe
2

WjSδt

1 +WjS + 4
(
∆i − ki · v −∆ωjz

)2
/Γ2

e

, (3.2.2)

where ρijee is the steady state excited state population derived from standard two-level

optical Bloch equations [37], Wj is a dimensionless coupling strength and δt = 0.1/Γe

such that Pij � 1.

The coupling strength Wj is dependent on the local magnetic field and the polar-

isation of the nMOT laser beam. Due to the spatial inhomogeneity of the magnetic

field, Wj must be calculated as a function of position for each laser beam. This is

most easily performed by entering a local atomic frame for the calculation. This

frame is defined such that the local z-axis ẑ′ is directed along the local magnetic

field vector. Firstly, the total electric field for each laser beam E is defined in the

laboratory frame in the spherical basis ε̂q [42, 43] as

E =
∑
q

Eqε̂q , (3.2.3)

where E = (E1, E0, E−1) and

E1 = − 1√
2

(Ex + iEy) , (3.2.4)

E0 = Ez , (3.2.5)

E−1 =
1√
2

(Ex − iEy) , (3.2.6)

2The simulation is written in Python and makes use of parallelisation packages (psutil) in order

to reduce the computation time. A typical running time using a standard desktop computer with

an Intel Core i5-4690 Processor with 5000 atoms up to a time of 15 ms is ≈ 1 hour.
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where Ex,y,z is the electric field defined in Cartesian coordinates in the laboratory

frame. A rotation is then performed to enter the local co-ordinate system of each

atom to determine which transitions can be driven along with the associated tran-

sition coupling strengths. The rotation matrix is given by

Mq (θ) = UR (θ)U † , (3.2.7)

=
1

2


1 + cos (θ) −

√
2 sin (θ) 1− cos (θ)

√
2 sin (θ) 2 cos (θ) −

√
2 sin (θ)

1− cos (θ)
√

2 sin (θ) 1 + cos (θ)

 , (3.2.8)

where R (θ) is the rotation matrix which maps k̂i onto B by an angle θ, and U is

the transformation from the Cartesian basis to the spherical basis and is given by

U =
1√
2


−1 i 0

0 0
√

2

1 −i 0

 . (3.2.9)

This leads to a new polarisation vector E ′ = MqE where Wj = |E j′|2.

Once Pij is known, random sampling from an uniform distribution is used to

determine whether a scattering event occurs or not. If no scattering event occurs,

the atom follows its initial trajectory defined in the laboratory frame as

v′ = v + gδt (3.2.10)

r′ = r + v′δt+
1

2
gδt2 , (3.2.11)

where g = g (0, 0,−1) is the acceleration due to gravity and the prime notation

represents the final atom position or velocity after a time step δt. If a scattering

event does occur, the atom evolves as

v′ = v +
~ |ki|
M

(
k̂i + k̂s

)
+ gδt , (3.2.12)

where ki is the wavevector of the laser from which the atom initially absorbed a

photon with k̂i its associated unit vector, and k̂s is a random unit vector representing

the direction of spontaneous emission.

During each time step, the atomic positions and velocities are recorded, yielding

a complete trajectory of each atom. A simulated absorption image of the nMOT is



constructed by histogramming the atomic positions in the x̂−ẑ plane and calculating

the column density along ŷ. This is then normalised such that comparisons between

theory and experiment can be made. A vertical and horizontal temperature (Tz and

Tx) is associated with the motion in the z and x directions by fitting a Maxwell-

Boltzmann distribution to the vertical and horizontal components of v. This allows

us to obtain the spatial, thermal and temporal dynamics of the atom cloud.

3.3 Comparisons to experiment

The experimental apparatus used in this section is described in detail elsewhere

[33, 73–75] and later on in this thesis (see chapter 4), so it is not discussed here.

Comparisons to experiment are performed with a strontium nMOT formed on the

5s2 1S0 → 5s5p 3P1 transition.

3.3.1 Spatial distribution

As discussed in section 3.1, the properties of a nMOT are significantly dependent

on ∆ and S. This strong parameter dependence allows us to test the accuracy of
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m
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Figure 3.4: Experimental (top row) and theoretical (bottom row) absorption image

as a function of nMOT beam detuning with S = 9, where ∆/2π = (a) −200 kHz,

(b) −400 kHz, (c) −600 kHz and (d) −800 kHz. The dashed purple line shows the

resonance condition where ∆ = ∆ωz.
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Figure 3.5: Experimental (purple circles) and theoretical (blue diamonds) vertical

position of the nMOT as a function of nMOT beam detuning. The dashed black

lines show the residuals normalised to their estimated uncertainties Rν = ±2.

the model in a wide variety of nMOT regimes. Firstly, we test the model operating

in regime (II) where the width and position of the nMOT are strongly dependent on

∆. The top row of figure 3.4 shows experimental absorption images of the nMOT at

four different values of ∆. It is clear that the MOT ‘sags’ under gravity and forms at

lower positions as ∆ is decreased. The lower row of figure 3.4 shows the theoretical

absorption images obtained from the simulation. We qualitatively observe excellent

agreement in position and shape of the nMOT in the absence of fitting parameters.

In order to quantitatively compare the model to the experimental data, the

mean vertical position z̄ and full width at half maximum (FWHM) of the nMOT

were extracted numerically from the experimental and theoretical data. The results

are plotted as a function of ∆ in figures 3.5 and 3.6 respectively. The residuals

normalised to their estimated uncertainties Rν [76], are shown below each figure.

The vertical FWHM saturates as a function of ∆ as the width is determined by the

temperature of the atoms. The horizontal FWHM however continually increases

as the radius of the resonant ellipse is proportional to ∆. We observe excellent

agreement between experiment and theory with no adjustable parameters.
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Figure 3.6: Experimental (purple circles) and theoretical (blue diamonds) vertical

(a) and horizontal (b) FWHM of the nMOT as a function of nMOT beam detuning.

The dashed black lines show the normalised residuals Rν = ±2.

3.3.2 Thermal properties

A more stringent test of the model is provided by the atomic temperature. Unlike

the position, which is largely determined by the resonance condition, the nMOT

temperature is strongly dependent on the intensity of the cooling beams. As S

varies, the nMOT crosses between the different regimes identified in section 3.1.

The dependence of the nMOT temperature on ∆ for two different values of S is

shown in figure 3.7(a). Firstly we consider a nMOT operating close to the quantum

regime with S = 1.9. The temperature is essentially independent of ∆, since the

position of the nMOT just tracks the resonance condition. In this regime, our model

is again in excellent agreement with the measurements.

At higher intensity (S = 60) the nMOT operates in the power-broadened regime

(II). As expected the cloud is hotter, and the temperature is once again largely

independent of detuning. The model is in excellent agreement for |∆|/2π > 140 kHz,

but begins to deviate significantly from experiment close to resonance. Here, the

power-broadened linewidth approaches the Zeeman splitting in the excited state.

Thus the nMOT crosses over into the conventional “Doppler” regime (I) where the
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Figure 3.7: (a) The purple circles(squares) and blue diamonds(triangles) represent

the measured and simulated nMOT temperatures for S = 1.9(60). (b) and (c) are

the theoretical absorption images for nMOT beam detunings of −2π× 220 kHz and

−2π × 40 kHz respectively.

linewidth is dominant, forming near the quadrupole zero, as shown in figure 3.7(c).

Our key assumption that the atoms scatter independently on each of the three

Zeeman transitions no longer holds, and the model breaks down.

3.3.3 Temporal dynamics

As well as the equilibrium properties, we have also considered whether the model

can reproduce the out-of-equilibrium dynamics of the nMOT. To do this, we looked

at the response of the temperature to a sudden increase or decrease in the power of

the nMOT beams. Initially, the nMOT was allowed to reach equilibrium at S = S0.

At t = 0, S was suddenly decreased (increased). Experimental measurements of

the subsequent cooling (heating) are shown in figure 3.8, along with the results of

the simulation. The reduced chi-squared statistics [76] were χ2
ν = 0.7 and 1.8 re-

spectively, illustrating that our technique quantitatively reproduces both the steady

state and dynamic properties of the nMOT.
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Figure 3.8: Experimental (purple circles) and theoretical (blue diamonds) nMOT

temperatures as a function of time after a decrease (a) or increase (b) in nMOT

laser beam power. The two nMOT beam powers used here were S = 14 and 31.

The dashed lines show Rν = ±2.

.

3.4 A Rydberg dressed nMOT

The work detailed above shows that we are able to quantitatively reproduce the

spatial, thermal and temporal dynamics of a nMOT. This therefore creates a solid

theoretical understanding upon which we are able to study more complicated physi-

cal systems, relevant to the goal of this work. The addition of the dressing laser gives

rise to two distinct effects. The first is an AC Stark shift associated with the appli-

cation of the dressing laser, and the second is the effect of the strong dipole-dipole

interactions between the Rydberg states. We initially neglect the dipole-dipole in-

teractions between the Rydberg states and focus on the AC Stark shift induced by

the dressing laser.

We extend the Monte-Carlo model presented earlier to include the Rydberg se-

ries. Each mj Zeeman level is connected independently to a Rydberg series, resulting

in three, three-level systems. The three-level optical Bloch equations, detailed in
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2.3.23, are solved in the steady state using Mathematica. This gives rise to the AC

Stark shift of the nMOT transition as well as facilitating the inclusion of an atomic

loss rate. The probability of loss due to direct excitation to the Rydberg state |ri〉
is given by

P = Γrρ
i
rrδt , (3.4.13)

where Γr is the Rydberg state decay rate, ρirr is the Rydberg state population for

a given transition i and δt is the simulation time-step. This simulates the event

that the direct excitation of a Rydberg atom leads to the loss of that atom from the

nMOT.

To test the accuracy of the model in the absence of interactions, we compared

the simulation to a Rydberg-dressed nMOT coupled to the 5s36d 3D1 state, in a

low density nMOT where the Rydberg-dressed interactions are negligible. The ex-

periments began with the formation of a nMOT. The 5s5p 3P1 was coupled to the

Rydberg state |r〉 = 5s36d 3D1, for which the interactions are weakly attractive [34],

using a horizontally propagating dressing laser. This was linearly polarized in the ẑ

direction. The 1/e2 beam radius was 120 µm (160 µm) in the horizontal (vertical) di-

rection, and the Rabi frequency Ω was measured using Autler-Townes splitting [45].

After dressing for a time td, the cloud was imaged at an angle of 30◦ to the coupling

beam via absorption on the 5s2 1S0 → 5s5p 1P1 transition.

3.4.1 AC-Stark Shift of the nMOT

As discussed in 3.1, the force on the atoms due to the nMOT beams are weak

compared to gravity. Therefore the atoms in the nMOT fall under gravity until the

Zeeman shift, induced by the nMOT quadrupole field, matches the nMOT beam

detuning. The resulting resonance condition forms an elliptical ‘shell’ around the

quadrupole centre. The addition of the dressing beam causes a spatially-dependent

AC Stark shift (with a maximum shift of ∆AC) of the nMOT cooling transition, due

to its Gaussian intensity profile. This causes a distortion of the energy contours

and therefore a distortion of the nMOT shape. An example of the distortion of the

contours of constant energy are shown in figure 3.9(a). The distortion is strikingly

dependent on the sign of ∆D. For the case of ∆D < 0, the resonance condition
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Figure 3.9: (a) Contours of constant energy of the mj = −1 state in the presence of

the magnetic quadrupole field, with a vertical gradient of 8 Gcm−1, for the case of

no dressing and dressing with Ω/2π = 4 MHz for ∆D/2π = −12 MHz or ∆D/2π =

12 MHz. (b) The top (experimental) and bottom (theoretical) rows show absorption

images of the nMOT coupled to the 5s36d 3D1 Rydberg state with detunings and

Rabi frequencies of Ω/2π = 2.1 MHz, ∆/2π = −400 kHz and ∆D/2π = (i) −12 MHz,

(ii) −6 MHz, (iii) 6 MHz and (iv) 12 MHz.

becomes shallower and ‘double-welled’, leading to a spreading of the nMOT and

a weakening of the confinement. Conversely, for ∆D > 0, the resonance condition

becomes more deeply furrowed, resulting in an increased confinement of the nMOT.

A comparison between experimental images and the adapted Monte-Carlo model

is shown in figure 3.9(b). The top row shows experimental images of the nMOT in

the presence of the dressing beam. For ∆D < 0, the nMOT forms in two separate

locations, in agreement with the ‘double-welled’ distortion of figure 3.9(a). For
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∆D > 0, the nMOT forms in lower positions, creating a vertically elongated nMOT.

This is once again in qualitative agreement with figure 3.9(a). The bottom row of

figure 3.9 shows the results of the adapted Monte-Carlo nMOT model. Here the

only fit parameter is the position of the dressing beam with respect to the nMOT,

in this case 185 µm below and 45 µm left of the quadrupole centre. We observe

qualitative agreement between the experimental and theoretical absorption images,

demonstrating that the adapted Monte-Carlo model is able to accurately predict the

nMOT dynamics in the presence of the dressing beam. It is critical to understand

this effect in the non-interacting regime before one can look for Rydberg-dressed

interactions.

3.4.2 Compensated nMOT

As illustrated in figure 3.9, a consequence of applying the dressing beam is a position

shift of the nMOT. When the nMOT is smaller than the dressing beam, this tends to

drive atoms out of the region of highest intensity of the dressing beam. This limits

the magnitude of the Rydberg-dressed interaction effect one is able to observe. This

effect is shown in figure 3.10(a) and (b). Figure 3.10(a) shows the nMOT in the

absence of the dressing beam and figure 3.10(b) shows the nMOT in the presence of

the dressing beam. The dashed line indicates the vertical position of the undressed

nMOT and clearly shows that the nMOT has moved. A solution to this problem

is to compensate the AC Stark shift of the cooling transition so that the atoms in

the nMOT remain in their initial position. By adjusting the detuning of the nMOT

beams when the dressing beam is applied to ∆ → ∆ − ∆AC, the AC Stark shift

of the cooling transition induced by the dressing beam is compensated, and the

nMOT remains at its original position (figure 3.10(c)). The vertical shift shown

in figure 3.10(b) is eliminated for a detuning compensation of +300 kHz, close to

the calculated peak AC Stark shift of ∆AC/2π = +325 kHz. Note, that the nMOT

cooling beams are now blue-detuned with respect to the bare transition. Therefore

the compensated nMOT only traps Rydberg-dressed atoms. Atoms which are not

at the centre of the dressing beam do not experience the correct detuning of the

cooling light and are observed falling away under gravity (figure 3.10(c)).
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Figure 3.10: Images of (a) the undressed nMOT with ∆/2π = −110 kHz, (b) after 5

ms of dressing with ∆/2π = −110 kHz (c) after 5 ms of dressing with the detuning

altered to ∆/2π = +190 kHz. The nMOT is coupled to the 5s36d 3D1 Rydberg state

with Ω/2π = 4 MHz and ∆D/2π = 12 MHz. The dashed line indicates the position

of the undressed nMOT.

An important question is whether the Rydberg-dressed atoms in the compen-

sated nMOT are undergoing continuous laser cooling. To test this, the temperature

of the atoms was measured as a function of dressing time using the ballistic expan-

sion technique. This is shown by the blue diamonds in figure 3.11. We initially

observe heating in the first millisecond, however the temperature returns to that of

the initial undressed nMOT after a period of ∼ 3 ms. This is direct evidence that

Rydberg-dressed atoms are being actively cooled. These temporal dynamics can be

simulated using the adapted Monte-Carlo model above. This is shown by the purple

circles in figure 3.11. We observe excellent quantitative agreement between theory

and experiment, where the only fit parameter is the position of the dressing beam

relative to the centre of the quadrupole magnetic field, in this case 20 µm below

and 60 µm right of the quadrupole centre. The simulation suggests that the initial

heating is caused by the spatial dependence of the AC Stark shift induced by the

dressing beam, which causes an increased scattering rate in particular regions of

the cloud as the atoms find themselves at a non-equilibrium position. Subsequent

cooling then occurs as the cloud shape adapts to match the new spatially-dependent

resonance condition.

We have shown in this section that we are able to accurately model the spatial

distribution of atoms in the Rydberg-dressed nMOT. This now allows us to incor-
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Figure 3.11: Measured (purple circles) and simulated (blue diamonds) temperature

in the vertical (z) direction Tz versus dressing time td for the nMOT coupled to the

5s36d 3D1 Rydberg state with Ω/2π = 4 MHz, ∆D/2π = 12 MHz and ∆MOT/2π =

190 kHz. Errorbars are the standard error on the mean.

porate density dependent interactions into the model. However, as the Rydberg-

dressed interactions only occur between atoms in the dressed state, we must first

estimate the fraction of atoms in the dressed-state ηd. Naively, one may expect that

the steady-state of the three-level Bloch equations would lead to an accurate value

of ρee. However, due to the motion of the atoms in the quadrupole field, this is not

the case. We estimate ηd by taking the average value of ρee calculated from the sim-

ulation. Fig. 3.12 shows ηd as a function of S for two experimental configurations.

The first (blue diamonds) is where the power in all MOT beam directions is equal.

The second (purple circles) is where the power of the MOT beam in the vertical

direction is three times that of the other MOT beams. One would expect that as S

is increased, the population in the excited should saturate to ρee = 0.5. The model

suggests however that this regime is not immediately achievable. This is due to the

frequency shift due to the atomic recoil following the absorption or emission of a

photon, and the fact that the atoms mainly interact with the nMOT beam which

opposes gravity.
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Figure 3.12: The average 3P1 population as a function of nMOT beam power for

beam powers in a ratio of 1:1:1 (blue diamonds) and 1:1:3 (red circles) where the

ratio is between x̂ : ŷ : ẑ laser beam axes. The error bar shows the standard error

on the mean.

3.4.3 Inclusion of a mean-field interaction

Common approximations used in simulating interacting many-body systems [77–82]

are not able to be fully utilised in the simulation of a Rydberg-dressed nMOT, as it

operates in a complex regime where the interaction strength, dissipation and kinetic

energy are all comparable in scale. A full theoretical model must include correla-

tions between atoms as the Rydberg-dressed interactions correlates the scattering

dynamics of neighbouring atoms. The coupling of these scattering correlations to

atomic motion is a formidable theoretical challenge and beyond the scope of this

work. For this reason, we consider a first-order mean-field approximation to the

Rydberg-dressed potential. The collective energy shift Vc of Nc atoms within a

range r < Rc is given by 2.2.21. We therefore define an average energy shift per

atom as V̄ = Vc/Nc, which is the mean-field interaction. We also approximate the
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Rydberg-dressed potential to that of a step-function, given by

V̄ (N (r′) , r) =
N (r′)− 1

2
ηdV0 for |r − r′| < RC , (3.4.14)

V̄ (N (r′) , r) = 0 for |r − r′| > RC , (3.4.15)

where N (r′) = πR2
cρ2D (r′) [83, 84]. Here the two dimensional density ρ2D (r′) is

used as the simulation is reduced to two-dimensions to reduce the computation time.

The consequence of 3.4.14 is an additional energy shift V̄ (N (r′)) /~ of the cooling

transition that depends on the local atomic density ρ2D (r′).

This density-dependent interaction is added in to the model as follows. At each

time-step, the atomic positions are histogrammed in both dimensions using a bin

width of 2Rc. This creates a grid of the local density distribution, with a charac-

teristic length-scale Rc. The local atomic density is then used to calculate V̄ for

each atom at a given spatial co-ordinate. At each time-step, the local mean-field

interaction V̄ is added to the local detuning of each atom. This process is repeated,

resulting in a density distribution in the presence of interactions and one-body loss

from the Rydberg state.

The achievable interaction strength of Rydberg-dressed interactions in the nMOT

is currently limited by the non-uniform spatial profile of the dressing beam causing a

reduction in atomic density [46,85]. This is because it is only possible to compensate

a small fraction of the nMOT due to the non-uniform AC Stark shift of the cooling

transition. However, this can be overcome by creating a flat-top beam. With a

flat-top beam, it should be possible compensate the whole nMOT, and therefore

retain sufficient atomic density to observe interaction effects. In this section, we

discuss the possible observables of Rydberg-dressed interactions. We also add a

mean-field interaction to the Monte-Carlo model above as an attempt to simulate a

Rydberg-dressed nMOT in the presence of strong interactions.

We simulate the effect of Rydberg-dressed interactions on a nMOT using achiev-

able experimental parameters outlined in [85]. The results are shown in figure 3.13(a)

and (c) for a uniform intensity 300 × 100 µm dressing beam with power 1 W, cou-

pling the upper state of the nMOT cooling transition to the 5s36d 3D2 state. The

upper plot shows a vertical slice through the centre of the simulated nMOT for a
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Figure 3.13: (a) Vertical slices through the centre (x = 0) of the simulated density

distribution for parameters: non-interacting (V̄c = 0 (purple circles)), ε2 = 0.007,

V̄c = 2.3 (blue diamonds) and ε2 = 0.014, V̄c = 3.4 (red triangles). The lines

are a guide to the eye. Images show the full 2D density distribution for the (b)

non-interacting (V̄ /~Γ = 0) (c) interacting (V̄ /~Γ = 3.4) clouds.

non-interacting nMOT (purple circles), an interacting nMOT with dressed Rydberg

fraction ε2 = 0.007 (blue diamonds) and an interacting nMOT with dressed Rydberg

fraction ε2 = 0.014 (red triangles). The interaction causes a density-dependent shift

in the vertical position of the cloud. As the Rydberg-dressed interactions are depen-

dent on the local atomic density, the nMOT seems to ‘bend’, since the interaction

effect is larger in the dense central region than in the wings of the nMOT. These

changes in the atomic distribution are comparable to those used to study strong

interactions in superfluid systems [86,87].

3.4.4 Outlook

Since the mean field interaction is greater than the transition linewidth
(
V̄ /~Γ > 1

)
,

one would expect to observe beyond mean-field effects. The Rydberg-dressed inter-

action leads to strong correlations in the scattering dynamics of neighbouring atoms.
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These are are mapped to and from the motional state of the atoms by the atomic

recoil shift, which exceeds the linewidth Γ. These correlations may lead to novel

spatial and dynamical effects not captured by our model. There are a variety of

possible beyond mean-field signatures of Rydberg-dressed interactions. One possible

consequence could be the semi-crystallisation of the nMOT, where the suppression

of scattering in dense regions induces a spatially correlated system. Another pos-

sible example could be Sisyphus-like cooling [46] induced by the Rydberg-dressed

potential.

3.5 Loading into a FORT

Having shown the success of extending the Monte-Carlo model to simulating a

Rydberg-dressed nMOT, we now turn our attention to the loading of a FORT.

We include the effect of FORT beams in our model by considering the conservative

optical dipole force experienced by atoms in the ground state. We therefore include

an additional acceleration in the Newtonian dynamics part of the model, given by

aDT = − 1

M
∇U (x, y, z) . (3.5.16)

This assumption is valid when the time-scale for the atom to experience a significant

change in potential is comparable to 1/Γ. To ensure the validity of this assumption,

we simulate the loading of a FORT where w > 15 µm.

In order to compare this adaptation to experimental results, we simulated the

experiment performed by Ido et al. [88]. Their FORT consisted of two crossed laser

beams with 1/e2 radius of 28 µm, operating at 800 nm. The differential AC Stark

shift between the ground and excited states at this wavelength is negligible, which

allows the simultaneous use of trapping and Doppler cooling. The FORT was loaded

by first forming a single-frequency nMOT operating at ∆ = −200 kHz with a total

beam intensity of S = 18. While the nMOT was running, the FORT beams were

overlapped with the nMOT for a total time of 35 ms before the nMOT beams were

switched off. The temperature of the atoms in the FORT was subsequently measured

using time-of-flight expansion.
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Figure 3.14: Theoretical nMOT dynamics of the simulated crossed FORT with a

trap depth of 5 µK. The top and bottom row shows a theoretical absorption image

in the x̂ − ẑ and x̂ − ŷ plane respectively. All images in each row have the same

colour-scale in order to show particle dynamics.

The geometry of the dipole-trapping beams used in the experiment results in a

dipole potential of

U (x, y, z) = U0

(
e−2[(x−x0)2+(z−z0)2]/w2

+ e−2[(y−y0)2+(z−z0)2]/w2
)
, (3.5.17)

where U0 is the trap depth, x0, y0 and z0 are linear offsets in the x̂, ŷ and ẑ

directions respectively and w is the 1/e2 radius of the FORT beams. Figure 3.14

shows the simulated effect of applying the crossed FORT beams to the nMOT as

a function of time. The atoms clearly move into the high intensity region where

the FORT beams intersect. We also observe a small number of atoms leaking into

each individual FORT beam which is in qualitative agreement with experimental

observations. Ido et al. typically capture ≈ 20 % of the atoms from the nMOT into

the FORT. However, the model predicts a value of approximately double this. We

attribute this difference to the lack of collisional losses in the model.

To make a quantitative comparison with experiment, we simulate the tempera-

ture of atoms trapped in the FORT as a function of U0, assuming the only cooling

mechanism is laser cooling. The experimental measurements shown in figure 3.15

exhibit a linear dependence, with the temperature varying in the range 0.1−0.2 U0.

Also shown is the simulated temperature of the atoms captured in the FORT. The
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Figure 3.15: Experimental (blue triangles) and theoretical (purple circles) temper-

atures of the atoms in the crossed FORT as a function of trap depth. The dashed

line is a linear fit to the simulated atom temperature. Experimental data taken

from [88].

error bars on the simulated temperature are estimated from the statistical error

in the fit of the Maxwell-Boltzmann distribution to the velocity distribution. We

clearly observe excellent agreement between theory and experiment, once again in

the absence of any adjustable fitting parameters.

Unfortunately, we are not able to use this model to gain further insight into the

loading of microtraps, as our approximation to the dynamics of the system break

down. This is because 1/Γ ≈ tdip, where tdip is the time required for an atom to

travel a distance 2w0. This simulation does however demonstrate that it is the

interplay between the optical dipole force and laser cooling that sets the atomic

temperature in the FORT



3.6 Summary

In this chapter, we have shown that it is possible to quantitatively simulate the

spatial, thermal and temporal dynamics of a nMOT. This has allowed us to study

a Rydberg-dressed nMOT, where we have shown that is is possible to coherently

admix a Rydberg state into the narrow intercombination transitions, a vital tool for

the engineering of Rydberg-dressed interactions. We have also briefly discussed the

loading dynamics of a FORT, and are now in a position to develop the technology

to create a strontium microtrap.



Chapter 4

Designing a microtrap for

ultracold Sr

Having demonstrated the coherent admixture of a Rydberg state into the 5s5p 3P1

state, we are now faced with the challenge of trapping a single strontium atom

in an optical microtrap. The pioneering work by Schlosser et al. [89] demon-

strated that if the trapping volume of a microtrap is small enough, then two-body

collisions dominate the loading process and one can enter a ‘Collisional Block-

ade’ regime where it is only possible to load one atom into the microtrap. This

experiment utilised a nine-element in-vacuo objective made from spherical lenses

to focus the dipole trap light to approximately 0.7 µm. It should be possible to

enter this collisional blockade regime in strontium as the two-body light-assisted

collision loss rate β ≈ 1× 10−9 cm3s−1 [90] is comparable to that of rubidium

β = (3.1± 0.2)× 10−8 cm3s−1 [91]. Although the experiment produced ground-

breaking results, the objective was expensive and technically challenging to con-

struct. More recently, due to advances in manufacture, it has been possible to

replace cumbersome multi-lens objectives with single aspheric lenses [92].

The previous experimental apparatus was designed and constructed by J. Millen

and M. P. A. Jones [73], and is shown schematically in figure 4.1. The experiment

is constructed from three main sections. The first section is a strontium oven which

is filled with strontium metal and heated to ∼ 700 K. Inside the oven is an array of

47
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Figure 4.1: Sketch of the current experimental vacuum chamber showing the main

constituents. Diagram adapted from [74].

capillary tubes which produces a tightly collimated jet of strontium atoms. The jet

of strontium atoms pass through a gate valve and into a Zeeman slower. The cooled

atoms then enter the main chamber which is a DN200 pancake chamber with twelve

horizontal DN40 flanges and two vertical flanges. The ‘innards’ of the main chamber

consists of a pair of MOT coils and four pairs of electrodes in a split-ring geometry

which are mounted onto the top flange of the main chamber. A micro-channel plate

(MCP) is also mounted on a horizontal flange of the main chamber.

The previous apparatus was not capable of creating a microtrap as a high numer-

ical objective is required. Due to the diameter of the main chamber, it is not possible

to create a microtrap with the objective placed outside vacuum. We therefore re-

quire a new experimental innards which facilitates the production of microtraps of

the order of 1 µm. Here we focus on the creation of microtraps at three wavelengths;

813 nm, 914 nm, and 532 nm. The reason for this is two-fold. The magic wavelength

of the 5s5p 3P0 and 5s5p 3P1 states are at 813 nm [93] and 914 nm [94] respectively.

We therefore wish to work towards microtraps at these wavelengths as the reduction

in differential AC Stark shift is critical for the spin squeezing protocol [7]. Secondly,
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it is predicted that it is possible to optically trap Rydberg atoms for trapping wave-

lengths less than 580 nm [27]. We consider microtraps operating at 532 nm as lasers

operating at this wavelength are readily available and offer large power outputs.

In this chapter, we will calculate the polarisability of all the relevant states of

strontium, after which we detail the design and construction of the experimental

innards. We also detail improvement to the rest of the experimental apparatus,

which have made the experiment significantly more reliable.

4.1 Strontium polarisability calculations

In order to create a suitable microtrap for the manipulation of single atoms, the

wavelength of the trap must be such that the direct excitation from the microtrap

light is minimised as well as providing deep enough potentials for reasonable amounts

of laser power. One must also take into consideration the differential shift between

cooling transitions as this is what limits the loading of atoms into the microtrap.

To analyse what wavelengths are best for trapping strontium, we have calculated

the polarisability of the four most relevant states (5s2 1S0, 5s5p 1P1, 5s4d 1D2, and

5s5p 3P1) using the formalism detailed in 2.2.2. The first state is the ground state

of strontium, the next two are relevant to laser cooling of strontium on the broad

dipole-allowed transition and the last state is relevant to laser cooling strontium on

the narrow inter-combination line. The transitions which couple most strongly to

these four states are summarised in figure 4.2.

To calculate the polarisability, we simply combine equations 2.2.14 and 2.2.15

with 2.2.13. We are therefore left with the task of finding all the relevant energies

and transition rates. The transitions from the 5s2 1S0 and 5s5p 3P1 states have been

studied in detail and are well documented [32, 44], due to the study of strontium

lattice clocks. For the 5s5p 1P1 and 5s4d 1D2 states however, there is no compilation

of relevant transitions. We therefore tabulate the available transitions and rates from

both the 5s5p 1P1 and 5s4d 1D2 states. These are shown in table 4.1. The asterisk

denotes where the only available information is a theoretical prediction.

With the full set of state energies and transition rates, we can now calculate the
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Figure 4.2: Transitions from the relevant states in this experiment. (a) the ground

state; (b) upper-state of the broad cooling transition; (c) upper-state of the narrow

cooling transition; (d) intermediate state to which the upper-state of the broad cool-

ing transition decays. The stacked lines in the diagram represent a series of energy

levels with the same orbital angular momentum but different principal quantum

number. Data taken from [32,44,95–97].
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State Energy AT

5s5p 1P1 (cm−1) (106 s−1)

5s5p 1P1 21698.482(4) -

5s2 1S0 0 190.01(1)

5s6s 1S0 30591.83(2) 19(2)∗

5s7s 1S0 38444.022(7) 47(4)∗

5s8s 1S0 41052.33(2) 7.4(7)∗

5s9s 1S0 42596.57(2) 3.3(3)∗

5s10s 1S0 43512.166(1) 1.9(2)∗

5s11s 1S0 44097.122(1) 1.2(1)∗

5s4d 1D2 20149.685(3) 0.017(7)∗

5s5d 1D2 34727.447(5) 7(3)

5s6d 1D2 39733.067(9) 22(2)∗

5s7d 1D2 41831.45(2) 6.6(7)∗

5s8d 1D2 43021.06(2) 2.1(2)∗

5s9d 1D2 43755.76(3) 0.56(6)∗

5p2 1D2 36960.842(5) 89(2)

5p2 1S0 37160.234(5) 29(3)∗

State Energy AT

5s4d 1D2 (cm−1) (106 s−1)

5s4d 1D2 20149.685(3) -

5s5p 1P1 21698.482(4) 0.017(7)∗

5s6p 1P1 34098.404(6) 9.4(2)

5s7p 1P1 38906.86(1) 17(3)

5s8p 1P1 42462.14(1) 19(4)

5s9p 1P1 43328.04(7) 13(4)

4d5p 3F2 33266.851(3) 7.8(5)

4d5p 3F3 33589.709(7) 0.5(3)

4d5p 1D2 33826.899(3) 39(8)

4d5p 3P2 37336.591(4) 0.30(2)

4d5p 1F3 38007.74(2) 0.30(8)

4d5p 1P1 41172.05(1) 21(4)

5s6p 3P1 33868.317(6) 1.6(3)

5s6p 3P2 33973.065(4) 6(1)

5s4f 1F3 39539.013(7) 27(9)

5s5f 1F3 41519.0(2) 19(5)

5s6f 1F3 42839.59(3) 12(3)

5s7f 1F3 43656.22(3) 7.7(2)

Table 4.1: The tables show the energy of the each state, as well as the transition

rate between the state of interest shown in bold in the table title, and the state in

a particular row. The left and right tables show the transitions from the 5s5p 1P1

and 5s4d 1D2 states respectively. The asterisk denotes where the only available

information is a theoretical prediction. Data taken from [32,44,95–98]



polarisability for the four different states. Figure 4.3 shows the polarisability of both

the 5s2 1S0 (purple-dashed line) and 5s5p 3P1 |mj| = 1 (blue-solid line) states, for a

linearly polarised trapping beam, in atomic units. The sub-plots in figure 4.3 show

zooms over the regions 490 nm→ 550 nm and 800 nm→ 950 nm.

Plotting the polarisability of both the ground state and excited state on the same

graph enables us to predict the position of the magic wavelengths. The well-studied

5s2 1S0 → 5s5p 3P1 is a good tool to check for computational errors. The measured

magic wavelength on the 5s2 1S0 → 5s5p 3P1 transition is at 914± 1 nm [94]. The

predicted magic wavelength from our calculations is 914.4 nm, in excellent agreement

with the measured value. This gives us confidence in our calculation method, and

limits us to the accuracy of transition energies and rates.

There is also a predicted magic wavelength at 499.7 nm, however this has not

been experimentally measured. This magic wavelength occurs at a point where

the gradient of the polarisability for the 5s2 1S0 and 5s5p 3P1 states is drastically

different, resulting in a very steep crossing (unlike the crossing at 914 nm) and

is dominated by the transitions near 475 nm. Any inaccuracy in these transition

energies or strengths will therefore have a large impact on the position of the magic

wavelength.

The polarisability of the 5s5p 1P1 state is critical as the 5s2 1S0 → 5s5p 1P1

transition is the transition on which the atoms would be imaged1. Figure 4.4 shows

the polarisability of both the 5s2 1S0 (purple-dashed line), 5s5p 1P1 mj = 0 (green-

dashed-dotted line) and |mj| = 1 (blue-solid line) states as a function of wavelength,

for a linearly polarised trapping beam, in atomic units. The polarisabilities for the

different trapping wavelengths are summarised in table 4.2, along with the shift in

the 5s2 1S0 → 5s5p 1P1 transition frequency. The polarisability of the 5s2 1S0 and

5s5p 1P1 states have opposing signs at 532 nm. This not only causes atoms in the

5s5p 1P1 state to be anti-trapped, but also results in a very large frequency shift

of the transition. The fact that the excited state is anti-trapped is not a limiting

factor however, as other microtrap experiments using 87Rb where the polarisability

1It is possible to image on the 5s2 1S0 → 5s5p 3P1, however due to the much lower scattering

rate, this is experimentally challenging.
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Figure 4.3: Polarisability of the 5s2 1S0 (purple-dashed line) and 5s5p 3P1 mj = −1

(blue-solid line) states as a function of wavelength, for a linearly polarised trapping

beam, in atomic units.

of the upper state results in anti-trapping are able to simultaneously image and trap

their atoms [89]. The polarisability of the 5s2 1S0 and 5s5p 1P1 states at 813 nm

and 914 nm have the same sign of polarisability and therefore both the ground and

excited states are trapped. The large transition shifts at all trapping wavelengths

must be considered however, as off-resonant light may lead to heating of the atomic

sample.

Another state to consider when imaging the atoms on the 5s2 1S0 → 5s5p 1P1

transition is the 5s4d 1D2 state, as atoms decay to this state with a branching ratio

of ∼ 1 : 50000 (see figure 2.1). If this state is anti-trapped, then the number of

imaging scattering events one could perform would be limited to ∼ 50000 before

the atom is lost. Figure 4.5 shows the polarisability of the 5s4d 1D2 mj = 0 (green-

dashed-dotted line), |mj| = 1 (blue-solid line) and |mj| = 2 (red-dashed line) states

as a function of wavelength, for a linearly polarised trapping beam, in atomic units.

Interestingly, there is a transition from 5s4d 1D2 → 5s7p 1P1 at 533 nm for atoms

in the |mj| = 0, 1 states. Therefore, the system may be self-repumping, as the most

likely decay from the 5s7p 1P1 is back to the ground state. The |mj| = 2 state is

very weakly trapped with a polarisability of α = 23 a.u., and therefore atoms which



532 nm 813 nm 914 nm

α1S0 mj=0 (a.u) 749 279 254

α1P1 mj=0 (a.u) -1254 933 319

α1P1 mj=−1 (a.u) -583 791 498

1P1 −1S0 mj = 0 (MHz/mK) 57 -49 -5

1P1 −1S0 mj = −1 (MHz/mK) 37 -38 -20

Table 4.2: Polarisabilities and differential shifts of the 5s2 1S0 → 5s5p 1P1 transition

at a variety of trapping wavelengths. The unit of MHz/mK refers to the transition

shift as a function of microtrap depth.

Trap wavelength (nm)

α
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π
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a
3 0
(a
.u
.)

Figure 4.4: Polarisability of the 5s2 1S0 (purple-dashed line), 5s5p 1P1 mj = 0

(green-dashed-dotted line) and |mj| = 1 (blue-solid line) states as a function of

wavelength, for a linearly polarised trapping beam, in atomic units.
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Figure 4.5: Polarisability of the 5s4d 1D2 mj = 0 (green-dashed-dotted line), |mj| =
1 (blue-solid line) and |mj| = 2 (red-dashed line) states as a function of wavelength,

for a linearly polarised trapping beam, in atomic units.

arrive in this state may or may not be lost, depending on the ratio of the trap

depth to the atomic temperature. At 813 nm and 914 nm, the polarisability of all

the mj states is greater than the polarisability of the 5s2 1S0 state. Therefore, at

these wavelengths, atoms which decay to the 5s4d 1D2 should not be spatially lost.

Atoms in this state can either decay back to the ground state via the 5s5p 3P1 state,

or decay to the metastable 5s5p 3P2 state. If atoms decay 5s5p 3P2 state, a repump

laser is required to pump the atoms back to the ground state. However, as all these

states are trapped, the atoms should not be spatially lost, but only remain dark for

a time which it takes to pump the atoms back to the ground state.

In summary, it should be possible to create and image a strontium microtrap

at the wavelengths of 813 nm, 914 nm and 532 nm. Microtraps at 813 nm are the

optimal solution for experiments working with the 5s5p 3P0 state, and the calcula-

tions suggest that the differential AC Stark shift of the other relevant transitions

are compatible.



4.2 UHV compatible experimental apparatus

design

The false colour CAD drawing shown in figure 4.6 gives an overview of the changes

to the innards of the main chamber. There are four major changes compared to that

designed by J. Millen [75]. The first is the addition of a pair of in-vacuo aspheric

lenses. These are mounted in a large stainless steel lens mount with a separation

of 2WD = 74.86 mm where WD is the working distance. This provides the ability

to focus light to a size of approximately 1 µm. The second change is an increase in

the diameter of the wire used to create the MOT coils to increase the magnitude of

the magnetic quadrupole field gradient which can be generated from the MOT coils.

Electrode
Lens mount

Top plate
MOT coil

MCP

Wire guide
Spacer

Figure 4.6: Flase colour CAD drawing showing the new experimental innards. This

is bolted to the top flange of the main chamber via the top plate. Note that the

wires connecting the electrodes and the vacuum feed-throughs are not shown for

clarity.
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This is to make it possible to produce deep magnetic traps for atoms in the 5s5p 3P2

state [99]. Thirdly, the MCP position has been moved from the flange on the main

chamber and has been mounted between two flanges. This increases optical access

into the main chamber. The final change is the electrode configuration. As shown

in the CAD drawing, the electrodes are in a hexagonal split-ring geometry. This

not only improves our ability to reduce stray fields due to the increased degrees of

freedom, but also improves our ability to create a quantisation axis along any optical

axis, which was previously limited. We will now explore in more detail each of the

changes to the experimental apparatus.

4.2.1 Custom lenses and holders

Following the success of microtrap experiments using single aspheric lenses [92], we

have designed our microtrap system based upon two single aspheric lenses separated

by a distance of twice the focal length. The lenses focus the trapping light as well

as collect the fluorescence from the atoms.

Aspheric Lenses

There are a variety of experimental constraints which must be considered when

designing such a system. Typically, experiments of this kind work with small as-

pheric lenses (∼ 10 mm diameter) and a short working distance (∼ 6 mm diame-

ter) [92,100]. This is in order to produce a high numerical aperture (NA) lens which

is small enough to fit inside the vacuum chamber. One of the challenges of such a

short working distance is the ability to pass orthogonal MOT beams through the

centre of the experimental chamber. An additional challenge which is considered in

our experimental apparatus is the detection of charges. In order to detect charges

from ionised Rydberg atoms, there must be a clear line of sight between the trapping

region and the MCP2. This drastically increases the minimum permissible distance

between the two lenses. Increasing the working distance however reduces the numer-

ical aperture. Therefore, the lens diameter must also be increased. The geometrical

2It is possible to use guiding electrodes, however this becomes significantly more challenging.



constraints associated with this are illustrated in figure 4.7. To maintain orthogo-

nal MOT beams with a diameter of 15 mm, the minimum lens separation for lenses

with diameter 25 mm is ∼ 75 mm3. Based upon this geometrical constraint, we now

analyse the achievable microtrap parameters.

For a clear aperture of 20 mm and a working distance of 37 mm, the NA of

the lens is 0.26 which leads to an associated collection efficiency of 1.7 %. This

collection efficiency is approximately four times smaller than the typical collection

efficiency of lenses used in rubidium microtrap experiments (6.7 %) [101]. Although

a reduction in NA may seem catastrophic for the detection of single atoms, the

88Sr 5s2 1S0 → 5s5p 1P1 transition which will initially be used for imaging, has a

scattering rate which is approximately five times larger than the imaging transition

used in rubidium. It is therefore possible to increase the working distance of our

lenses and maintain a count rate on our detector which is comparable to other

single-atom experiments.

One of the challenges of using a single aspheric lens is the ability to focus a va-

riety of different wavelengths. As discussed in the previous section, the wavelengths

3This is the tightest crossing angle.

(a) (b)

MOT beams Lens mount

Figure 4.7: Diagram showing the crossing of orthogonal MOT beams (red) of diam-

eter 15 mm for a lens separation of ∼ 80 mm and a lens diameter 25 mm. (a) and

(b) show a top and isometric view respectively.
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Wavelength (nm) Focal distance (mm) w0 (µm) zR (µm)

461 37.029 - -

532 37.402 1.1 5.9

813 38.106 1.57 9.4

914 38.247 1.73 10.6

Table 4.3: Predicted focal distance, 1/e2 radii and Rayleigh ranges for the possible

trapping wavelengths.

of interest for the microtrap are 532 nm, 813 nm and 914 nm, and 461 nm for imag-

ing. The lens must therefore perform well at all of these wavelengths. The physical

optics package in Zemax was used to optimise the surface of the aspheric lens to

produce a diffraction limited focus for a Gaussian input beam at all wavelengths.

The optimised predicted focal shifts, 1/e2 radii and Rayleigh ranges for the differ-

ent wavelengths are summarised in table 4.3. The predicted waists of all trapping

wavelengths are small enough to facilitate a two-dimensional array with a lattice

spacing of ∼ 3 µm, a length scale over which Rydberg-dressed interactions can be

achieved [46]. The relatively long Rayleigh length at 813 nm and 914 nm however

does limit the applicability of this lens design to three dimensional arrays operating

at the clock magic wavelength, but given that we are striving for a proof-of-principle

experiment, this is acceptable.

The suitability of the proposed lens is dependent on the number of microtraps

we are able to generate with the available laser power. The microtrap light is

provided by a titanium-sapphire laser4 (Ti:Sa). The Ti:Sa laser is pumped using

a diode-pumped solid-state laser at 532 nm5. A pick-off unit is installed before the

Ti:Sa cavity which facilitates the simultaneous production of ∼ 2.7 W at 813 nm or

∼ 1.8 W at 914 nm and 5 W at 532 nm. Assuming an efficiency from the laser to the

atoms of 70 % and that the temperature of the atoms in the microtrap can be cooled

to the Doppler temperature on the 5s2 1S0 → 5s5p 1P1 transition of T = 0.7 mK,

4M2 Squared SolsTiS
5Lighthouse Photonics, Sprout-G 15W



Wavelength (nm) Available traps

532 89

813 9

914 5

Table 4.4: Number of available microtraps for the possible trapping wavelengths,

assuming an efficiency from the laser to the atoms of 70 %.

table 4.4 shows the number of microtraps which can be created using a trap depth

U0 of U0/kBT = 5. This indicates that we are able to create a two-dimensional array

at all wavelengths, and therefore the lens design is suitable for the proof-of-principle

experiment.

The lenses were manufactured by Thorlabs from NBK-7 glass. Diffraction limited

performance was guaranteed using magnetorheological finishing (MRF). To test the

quality of manufacture of the aspheric lenses, an interferometric measurement of the

lens surface was performed using a Zygo Verifire, to measure the surface deviation

of the lenses from their designed shape. All lenses had an rms deviation of < 12 nm

across the clear aperture of the lens. The lenses were coated with an anti-reflection

coating on the aspheric side to minimise Fresnel reflections. The reflection losses

from this surface are < 1 % at wavelengths of 408, 461, 532, 689, 813 and 914 nm.

The planar side of the aspheric lens is coated with a 15 nm thick layer of conductive

indium-tin-oxide (ITO)6 with a sheet resistance of 160 Ω/2. This is to minimise

the risk of patch charge build-up on the lenses [101]. Due to the high refractive

index of the ITO layer, there are significant losses from this surface. The calculated

transmission through the lenses are summarised in table 4.2.1.

Upon further analysis of the lens performance using Zemax post lens produc-

tion, the optimisation of the aspheric surface for the trapping light led to a less

than optimal performance of the lens when imaging a point source at 461 nm, re-

sulting in a diffraction limited performance for a clear aperture of 17 mm. In future

experiments, it may be required to re-design the aspheric surface to optimise the

6Diamond coatings: https://www.diamondcoatings.co.uk/
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Wavelength (nm) Transmission (%)

408 91.0

461 91.5

532 92.5

689 93.0

813 94.0

914 95.0

Table 4.5: Calculated transmission of the aspheric lenses at relevant wavelengths.

diffraction-limited performance at 461 nm and improve the imaging resolution of the

experiment.

Having manufactured the aspheric lenses, we now design the rest of the experi-

mental innards around them.

Lens Holders

The two main requirements of the lens holders are alignment and stability. The

lens holder must be constructed in such a way that the two aspheric lenses share

Baseplate
Lens Holder Retaining ring

PEEK ring

ITO surface

Lens

(a) (b)

Figure 4.8: CAD drawing of the lens holders used in the experiment. (a) shows a

top view of the whole lens mount. (b) shows a side view of the lens holder.



a common focal point and that under baking of the vacuum system and general

day-to-day use, the lenses are unlikely to move. To achieve this, the lens holder is

based on a locating trapezoid design whereby each lens is mounted in a holder which

is then located and affixed into a trapezoid cut section base plate. The purpose of

using a trapezoid cut section is to ensure the precise centration of the lens pair.

An overview of the lens holder is shown in figure 4.8. The lens holder is con-

structed of 316LN stainless steel, for its strong mechanical and low magnetic prop-

erties. It consists of three sections, as shown in figure 4.8. Each lens (blue) sits

inside a holder which has a bore that is 0.2 mm wider than the outer lens diameter.

The planar side of the aspheric lens makes contact with a lip at the front of the lens

holder, creating an electrical contact with the ITO layer. A 1 mm thick ring (red)

of polyether-ether-ketone (PEEK)7 is placed on top of the aspheric side of the lens

before a stainless steel threaded retaining ring (green) is used to secure the lens in

place. The PEEK ring acts as a malleable material to absorb any potential strain

on the lenses under baking. The two lens holders are aligned via the base plate with

respect to a trapezoid cut section (figure 4.8(b)). The small face plates of the lens

holders locate the holder into the trapezoid cut section. The holders are then fixed

to the base plate via four M4 screws. The precision grinding8 of the trapezoid cut

section and the small face plates ensures that the two lenses share a common focal

point. The separation of the lenses is such that collimated 532 nm light entering

from one lens is re-collimated by the other lens.

Before mounting the lens holder into the vacuum chamber, the centration of the

lens pair was tested. The test configuration is shown in figure 4.9. Initially, a ‘pencil’

beam parallel to the table was aligned onto the centre of the first lens by overlapping

all reflections from the lens. Then the second lens was added such that the retro-

reflected beam from the far mirror passed through both irises. We initially aligned

the system such that the back reflection from the first lens and the retro-reflected

beam passed through the first iris. The back reflection from the second lens passed

through the first iris also, and therefore indicated that the lenses were co-axial.

7PEEK is a UHV compatible plastic.
8This has a tolerance of ±5 µm.
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7 cm 2m

Iris Iris

Figure 4.9: Schematic of the experimental configuration used for testing the align-

ment of the aspheric lens pair. Note that this diagram is not to scale.

The collimation of the beam was also measured to test the separation of the lens

pair. One must take note however, that the refractive index difference between air

and vacuum is sufficient to change the collimation of the lens pair. We therefore used

a combination of divergence predictions from Zemax and divergence measurements

to estimate the separation of the lens pair. Initially, the input beam with 1/e2 radius

10.35± 0.02 mm was collimated using a shear plate interferometer and aligned onto

the lens pair. The output beam was measured as a function of distance from the

second lens. If the lens separation is correct, one would expect the output beam to

be slightly diverging as the refractive index of vacuum is smaller than that of air.

The beam was measured to be converging with a convergence of 8.6 mRad. Using

calculations from Zemax, this indicates that the lens separation was 220 µm longer

than the optimal position. The trapezoid cut section was re-ground to reduce the

separation of the lenses to the correct distance.

4.2.2 MOT coils under vacuum

To produce a quadrupole field at the centre of the chamber, we mount a pair of

coils, made from Kapton-dipped single-strand copper wire9, on OFHC (Oxygen-free

high thermal conductivity) copper formers. A CAD drawing of the MOT coils and

former are shown in figure 4.10. The copper formers have a centre bore to allow

the vertical MOT beams to pass into the chamber, and have a slot cut to minimise

9Allectra 311-KAP-180-5M



the production of eddy currents in the former. There are also small pedestals at

the base of the former to minimise the contact area of the former with the base

plate which reduces the likelihood of trapped gases. The wire has a core diameter

of 1.8 mm and total thickness d = 2.0 mm. This is a much larger core size than

the previous generation of the experiment and should allow larger currents to pass

through the coils at a similar heating rate10. We calculate the number of turns

required to produce the quadrupole field by assuming the field produced by the coil

is a linear summation of multiple single turns of wire at varying distances and radii.

The on axis magnetic field Bz produced at a distance z is given by

Bz =
µ0

2

zf∑
zi

Rf∑
Ri

IR2[
(z − z0)2 +R2

]3/2 − IR2[
(z + z0)2 +R2

]3/2 , (4.2.1)

where zf = zi + (νax − 1) d where νax is the number of turns axially and zi is half the

distance between the top turn of the two MOT coils, Ri is the radius of the inner

most turn and Rf = Ri + (νrad − 1) d where νrad is the number of turns radially.

We optimise the number of turns both axially and radially, along with the coil

separation to produce a field gradient greater than 50 G/cm, but also at a total

power dissipation similar to the old MOT coils. The final parameters are νrad = 7,

νax = 9, Ri = 14.5 mm and zi = 13.5 mm which produces a theoretical quadrupole

gradient along ẑ of κq = 9.2 Gcm−1A−1.

The current through the MOT coils is controlled via a servo circuit which sta-

bilises the current through the coils using a 0.7 Ω sense resistor and a MOSFET [45].

In the previous experiment, a quantisation axis was provided by a single external

coil. There are several limitations of this system; the single coil does not produce a

uniform field and the application of a field externally induces eddy currents in the

main chamber. A solution to this problem is to use the internal MOT coils. The

MOT coils are wired in an anti-Helmholtz configuration. However, by implementing

a relay circuit (see Appendix B), we are able to change the polarity of one of the

10We observe a negligible pressure increase in the vacuum chamber when running successive

experiments with a power of 1.4 W (corresponding current of 3.2 A) through the MOT coils. Note

that there is no active cooling of the MOT coils.
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(a) (b)

Figure 4.10: CAD drawing of the MOT coils used in the experiment. (a) shows an

orthographic projection of the MOT coils wrapped onto the former. (b) shows a

side view of the former.

coils to change to a Helmholtz configuration, producing a uniform magnetic field in

the centre of the main chamber. This typically takes 8 ms to switch.

4.2.3 MCP charge detector

The previous MCP was mounted onto one of the horizontal flanges of the main

chamber. To improve optical access, we have mounted the MCP on the new innards.

The MCP is mounted such that it is located as close to the main chamber housing as

possible, and in between two of the horizontal flanges. This reduces the obscuration

of the optical access from adjacent viewports.

One of the main technical challenges of moving the MCP is shielding the atoms

from high voltages. The final design of the MCP mount is shown in 4.11. The

MCP11 (blue) is mounted on a 1 mm thick stainless steel substrate (green) via three

M1.6 screws. This substrate is connected to a stainless steel bracket (red) which is

connected to the top plate of the innards (see figure 4.6). The substrate is electrically

isolated from the main chamber by a Macor spacer (beige). The MCP is a covered

with a wire mesh12 (orange) which shields the atoms from the high voltage on

11Hamamatsu F4655-14
12Goodfellow FE228710
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Figure 4.11: CAD drawing showing the mounting configuration of the MCP from

the front, side and back.

the MCP, as well as increasing the collection efficiency. The MCP is mounted

approximately 3 mm from the main chamber wall to maximise the optical access.

Due to this close proximity to the walls of the main chamber, it is not possible to

use insulated wire as dielectric breakdown is likely to occur. Therefore, the electrical

connections to the MCP are made via 1 mm thick stainless wire (yellow), which are

spot welded into a cylindrical, threaded tab connector (pink). M1.6 screws are used

to create a strong electrical contact between the tabs of the MCP and the connector.

The mesh is connected to the wires via spot-welding. The wires are guided through

Macor wire guides (beige) to ensure that there is a minimal risk of electrical shorts

during baking. The wires are guided behind the MCP mount and up to the top plate

of the innards to protect the atoms from voltages supplied to the MCP. As shown

in figure 4.6, the MCP wires are shielded by a grounded plate once they emerge

in-front of the MCP. The wires are then connected to a feedthrough to the outside

of the vacuum chamber. The connections are shown in appendix A.1.
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4.2.4 Control electrodes

The electrodes in the experiment have two purposes; to push charges towards the

MCP and to apply electric fields in arbitrary directions. The previous electrodes

were in a four-quadrant split-ring geometry. A limitation of this system is that it is

not possible to apply a homogenous electric fields along all optical axes. To improve

upon this design, we have created a hexagonal split-ring geometry, as shown in

figure 4.12(a). As this configuration has the same symmetry as the main chamber,

it is possible to apply electric fields along each optical axis. The MCP is placed in

between two flanges and hence offset by an angle of 15◦ from the symmetry of the

main chamber flanges. To simplify the electrode pulses required to send charges to

the MCP, the electrodes are also rotated by an angle of 15◦ so that only two-pairs of

electrodes are required to push charges towards the MCP. A consequence of this is

that it requires four pairs of electrodes to produce an electric field along an optical

axis.

In the previous generation of the experiment, the electrodes were glued to a

Macor spacer which was glued to the copper MOT coil former. During baking,

the differential expansion of the material caused the electrodes to detach from the

former [102]. To avoid this, the electrodes were designed to be situated 1.5 mm above

the MOT coil formers. The electrodes are made from 1 mm thick stainless steel sheet,

Wire

Macor

Ring connector

(a) (b)

Figure 4.12: CAD drawing showing the mounting configuration of the (a) electrodes

on the baseplate and (b) a single electrode.

.



machined and hand polished to a good finish. The electrodes are mounted onto a

Macor block (figure 4.12(b)), which provides electrical isolation from the rest of the

chamber. Electrical contact to the electrodes is made via a crimped ring connector13

and Kapton-coated wire14. The wires are fed through wire guides and into a multi-

pin UHV connector15. The electrical connections to each electrode are detailed in

appendix A.2.

4.2.5 Viewports and pumping

Viewports

Due to the multitude of wavelengths used in an ultracold strontium experiment, it is

not feasible to have anti-reflection coatings on all viewports for all wavelengths. We

therefore have particular anti-reflection coatings on each viewport. The viewports

and their respective coatings which are placed on each flange of the main chamber

are shown in A.3. There are four uncoated fused silica viewports on the chamber.

This is to allow ultraviolet light into the chamber as NBK-7 glass absorbs strongly

in the ultraviolet range.

Reaching UHV conditions

Before placing the experimental chamber under vacuum, each component was cleaned

to UHV standard (see figure 4.13). To reach UHV conditions, the experiment was

attached to a turbo pump with all other pumps switched off. The experiment was

baked using resistive heaters for approximately one week at a temperature of 130 ◦C.

The limiting component for the maximum baking temperature was the MCP which

is limited to a temperature of 150 ◦C. Towards the end of the baking procedure, a

current of 5 A was passed through the MOT coils for one day to locally heat the coils

and help clear contaminants. Upon cooling and activation of both the ion pumps

and the getter pump, the main chamber was at a pressure of ∼ 5× 10−11 mbar.

13Allectra 360-RING-1.0-M2
14LewVac KAPW1X061, Kapton wire, 0.6 mm, 2 kV DC, 7 A.
15LewVac FH-MSC19-40CF, MS circular feedthrough, 1 kV, 3 A, 19 pin DN40CF ASC/VSC.
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Figure 4.13: Picture showing the final constructed innards before being placed under

vacuum.

.



4.3 Laser systems

Strontium can be laser cooled on both the broad 5s2 1S0 → 5s5p 1P1 and narrow

5s2 1S0 → 5s5p 3P1 transitions (see figure 2.1). The laser systems involved in

laser cooling on these transitions are vastly different from one another due to the

drastically different linewidths of the transitions. In this section we discuss changes

to the laser systems detailed in the thesis of N. Jackson [46], which are used to

create an ultracold sample of strontium atoms on both transitions. We also detail

the optical configuration for the creation of a strontium microtrap.

4.3.1 461 nm laser system

The 461 nm light is produced using a frequency-doubled diode-laser system16. This

laser system uses a non-linear crystal inside a ring cavity to frequency-double 922 nm

light, producing up to 280 mW of 461 nm light. The full laser system is shown in fig-

ure 4.14. The output of the laser passes through two cylindrical telescopes to reshape

the laser beam. This is then coupled into a single-mode polarisation-maintaining

(SM/PM) fibre, with a coupling efficiency of ∼ 70 % to remove the astigmatism of

the laser beam. Approximately 1.2 mW of the light is picked-off using a glass-plate

and sent through AOM 2 to lock the laser 240 MHz below resonance using modula-

tion transfer spectroscopy. Approximately 80 mW is doubled passed through AOM

1 to produce the Zeeman beam which is ∼ −500 MHz from resonance. The zeroth-

order light is picked-off using a small prism, and coupled down a SM/PM fibre.

This light is sent to another optical table where it is used to beat lock an additional

461 nm laser17. AOM 3 produces a resonant probe beam which is used for imaging,

with a power of ∼ 4 mW. The rest of the light is single-passed through AOM 4 and

into a SM/PM fibre to produce the MOT beams with a linear detuning of −40 MHz

from resonance. The AOM frequencies and diffracted orders are summarised in table

4.3.1.

16Toptica Photonics DL-SHG frequency-doubled system.
17MOGLabs ECDL. This won’t be used during the rest of this thesis.
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Figure 4.14: Full optical layout of the blue laser system used in the experiment. The

dotted box shows a key to the diagram.

AOM Drive Frequency Diffracted Pass

Number (MHz) Order Number

1 130.5 -1 2

2 120 +1 2

3 120 +1 2

4 200 +1 1

Table 4.6: AOM settings used in the 461 nm optical set-up. The AOM number refers

to the labelling shown in figure 4.14.



Observation of a ‘Blue’ MOT

Strontium atoms are slowed in the Zeeman slower and caught in a MOT operating

on the 5s2 1S0 → 5s5p1P1 transition. A picture of the first ‘Blue’ MOT using the new

innards is shown in figure 4.15(a). This MOT contains ∼ 5× 107 atoms at a density

of ∼ 4× 109 cm−3, measured by absorption imaging on the cooling transition at a

predicted field gradient of ∼ 33 G/cm. The power in the MOT and Zeeman beams

were 12 mW and 60 mW respectively, and the current supplied to the strontium oven

was 1.5 A. The temperature of the atoms in the horizontal and vertical directions

was measured using a ballistic expansion method. Figure 4.15(b) and (c) show the

width of the cloud as a function of ballistic expansion time. From the gradient, we

derive a temperature of Tx = 4.2± 0.1 mK and Tz = 2.9± 0.1 mK in the horizontal

and vertical directions respectively. This is much hotter than the Doppler limited

temperature one would expect for the blue MOT. This result is similar to other

experiments however [103], where it seems that the heating rate in the blue MOT

is approximately 20 times larger than one would expect.

Time2 (ms2)

w
2
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m

2
)

(a)
(b) (c)

Figure 4.15: (a) Photograph of the first ‘Blue’ MOT using the new innards. (b)

and (c) show the width of the cloud as a function of ballistic expansion time for

the horizontal and vertical directions respectively. The calculated horizontal and

vertical temperatures are Tx = 4.2± 0.1 mK and Tz = 2.9± 0.1 mK.

.
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4.3.2 689 nm laser system: A narrow linewidth laser for

cooling

It is not possible to load directly into a nMOT due to the narrow linewidth of the

transition. Typically, atoms from a blue MOT are transferred into a nMOT. After

initial cooling, the blue-MOT light is removed and cooling light at 689 nm, which

addresses the 5s2 1S0 → 5s5p 3P1 transition, is applied. This light is artificially

broadened to match the Doppler-broadened profile of the atoms in the blue-MOT.

After sufficient cooling, the broadening of the 689 nm light is removed, leaving single-

frequency light, and a cold, dense nMOT. This transference process is discussed in

more detail in [33].

As with the formation of a blue MOT, the cooling laser frequency has to be

stabilised. This becomes a technical challenge when working with such a narrow

transition as typically, diode lasers have a frequency spectrum of several hundred

kHz, which is much broader than the transition linewidth. To solve this problem,

the laser frequency is locked to a high-finesse optical cavity using the Pound-Drever-

Hall (PDH) locking technique [104, 105], which narrows the laser linewidth to the

order of a few tens of Hz. We will now explore the changes made to this laser system

compared with previous work [33,45,46,102].

Ultra-stable ECDL laser

One of the limitations of the previous 689 nm laser system was the stability of the

laser. Due to stability issues, the mode-hop free range of the laser would drift too

far for the laser to stay locked to the high-finesse cavity, limiting the laser lock

to several hours. To solve this problem, we have built an ultra-stable ECDL laser

based upon the design of Cook et al. [106]. The entire laser is machined from a

single aluminium block which lowers the susceptibility of the laser to temperature

changes and mechanical vibrations. The diffraction-grating arm is stiff and light,

and has its pivot point in an optimum position for tuning a laser diode at 689 nm.

The laser is surrounded by fibre-glass insulation to improve the temperature stability

and reduce acoustic noise. Another improvement to the laser system is the use of
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Figure 4.16: (a) and (c) show the laser frequency (purple circles) and humidity (blue

diamonds) as a function of time for the laser with and without the addition of silica

beads in the laser cavity. (b) and (d) is a plot of laser frequency against humidity

for the two cases.

.

an AR coated laser diode18. Although this makes it more challenging to initially

align the feedback into the diode, it improves the mode-hop-free range of the laser,

which in turn should increase the length of time the laser remains locked to the

high-finesse cavity. When optimised, the threshold of the laser is 70 mA and has

a mode-hop-free range of ±1.1 GHz when scanning the laser current, and > 8 GHz

when scanning the angle of the diffraction grating.

The frequency drift of the laser in the absence of feedback has a range of

∼ ±0.65 GHz over a time-scale of 24 hours, which is much smaller than the pre-

vious current limited mode-hop-free range. To investigate the cause of the laser

frequency drift, a miniature weather station was installed next to the laser to mea-

sure temperature, humidity and pressure changes. The most striking correlation

is shown in figure 4.16(a) where the laser frequency (purple circles) and humidity

18Eagleyard, 675-692 nm, EYP-RWE-0690-00703-1000-SOT02-0000
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(blue diamonds) are plotted as a function of time. To evaluate the strength of the

correlation, the laser frequency is plotted against humidity (figure 4.16(b)), and the

Pearson correlation coefficient R [107] is calculated. Here, R = 0.91 indicating that

the laser frequency is strongly correlated with the local humidity. This is most likely

due to a change in refractive index of the air in the laser cavity and hence the effec-

tive cavity length. To reduce the effect of the humidity on the laser cavity, the laser

was sealed with an epoxy resin and a bag of silica beads was inserted into the laser

cavity. Figure 4.16(c) shows the laser drift as a function of time after these changes

were made. There is a clear reduction in the range of laser frequency drift over the

same time period. Figure 4.16(d) shows that the correlation between humidity and

laser frequency has been removed, resulting in R = −0.01.

High-finesse cavity

The high-finesse cavity used previously in the experiment was a home-built system

with a finesse of F = (41.3± 0.6)× 103. The cavity length was actively stabilised

to the transition frequency of the 5s2 1S0 → 5s5p 3P1 transition using piezoelectric

actuators [33]. A technical problem with this configuration was the stability of

piezoelectric actuators. Typically, the drift rate of the cavity was too high for the

laser to remain locked for more than a few hours. Also, the shot-to-shot frequency

fluctuations of the laser were of the order of ∼ 20 kHz. To improve upon this system,

we have replaced it by a commercial ultra-stable passive cavity19. The cavity has a

free spectral range ∆νFSR = 1.5 GHz and is made from two high-reflectivity mirrors

with an expected finesse of F = 250× 103. The cavity is machined from ultra-

low expansion glass (ULE), a material with an extremely low thermal expansion

coefficient. The cavity is housed in a vacuum chamber at 7× 10−8 mbar, which is

then housed in an aluminium can which is thermally stabilised20 using thermoelectric

heaters. The expected laser linewidth is of the order of ∼ 50 Hz with a specified

absolute drift rate of < 15 kHz/day. The absolute frequency drift is caused by the

creep of the cavity length.

19Stable Laser Systems, Fabry-Perot Cavity
20Stanford Research Systems, PTC10 Programmable Temperature Controller



An important characteristic of the cavity is the finesse, as this sets the linewidth

of the cavity resonances and hence the achievable laser linewidth. For a cavity

where the cavity resonance is broader than the linewidth of the laser, the simplest

way to measure this is to scan the laser frequency and measure the width of the

transmitted light as a function of frequency. However, when the cavity resonance is

narrower than the laser linewidth, this method is not possible as the transmission

becomes unstable. A way to measure the finesse of a such a cavity is via a ring-

down measurement. This measures the lifetime of the photons inside the cavity. To

perform this measurement, the laser is locked to the cavity TEM00 mode (described

later) and the transmitted light measured on a fast-photodiode21. When the light

into the cavity is suddenly turned off, the exponential decay of the light inside the

cavity is measured. The ring-down measurement for the ultra-stable cavity is shown

in figure 4.17, along with an exponential decay fit. The fitted 1/e decay rate τ is

measured to be τ = 25.05± 0.05 µs. From this, we calculate the finesse using the

relation [108]

F = 2π∆νFSRτ , (4.3.2)

to be F = (236.0± 0.5)× 103 and a full-width at half-maximum resonance width of

∆νc = 6.35± 0.01 kHz. This is slightly below specification, most likely due to the

estimation of scattering and absorption losses of the mirrors. This is still however,

much greater than the previous home-built cavity.

The 689 nm laser frequency is locked to the cavity using the PDH technique [104,

105] and is shown schematically in figure 4.18(a). The 689 nm light is passed through

an optical isolator and phase modulated at 10.11 MHz using an EOM. The light is

then sent through a polarising beamsplitter cube to create clean linear polarisation.

Approximately 100 µW of light is then focussed into the cavity using a f = 400 mm

lens to improve the mode matching into the cavity. The mode matching is measured

to be ∼ 12 % by measuring the transmission of the light when locked to the cavity.

The reflected component of the light is detected on a fast-photodiode and sent to

a frequency mixer. The signal sent to the EOM is also sent to the mixer with a

21Thorlabs PDA10A-EC
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Figure 4.17: Normalised transmission of the light inside the cavity after a sudden

turn off of the input light. The solid line is an exponential fit to the data.

phase shift set by a length of SMA cable. The demodulated signal is then used to

frequency lock22 the laser to the cavity.

The in-loop error signal was used to optimise the lock performance, following

the procedure detailed in [33]. Whilst the laser was locked to the cavity, a direc-

tional coupler was attached to the fast-photodiode and the signal sent to a spectrum

analyser. The goal is to reduce the frequency components near to the origin and

maximise the bandwidth of the signal. Figure 4.18(b) shows the optimised in-loop

error signal as a function of detuning ∆f from the EOM drive frequency, 10.11 MHz.

Here, the bandwidth of the lock is ∼ 1.4 MHz.

To truly evaluate the lock performance and measure the laser frequency spec-

trum, one needs to perform an Allan deviation [46]. However, this requires another

laser system of similar linewidth to the laser of interest, which we currently do not

have available. Another method to infer the quality of the laser lock is to use the

cold gas of strontium. As described in chapter 3, the atomic spatial and thermal

distribution are extremely sensitive to the frequency of the laser light. Therefore,

22Vescent Photonics D2-125 Laser Servo
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Figure 4.18: (a) Schematic of the optical configuration to lock the frequency of

the laser to the high finesse cavity. OI refers to an optical isolator and all other

components follow the key shown in figure 4.14. (b) In loop error signal as a function

of detuning, centred at 10.11 MHz.

the spatial stability and temperature of the atoms in a nMOT is a good measure of

the stability of the laser system. This is explored in section 4.3.4.

Optical layout

The frequency of the 5s2 1S0 → 5s5p 3P1 transition is in the middle of two cavity

modes. This means that the locked laser must be frequency shifted by almost

750 MHz in order to form a nMOT. To accomplish this large frequency shift, we

employ a series of AOMs. The optical layout is shown in figure 4.19. The ultra-

stable laser discussed earlier (Master) is double-passed through AOM 1 where it

is frequency shifted by 560 MHz. This light is then sent to the ultra-stable cavity

and the laser locked to a TEM00 mode. The master light is then split between

two SM/PM fibers to a wavemeter23 and the optical frequency comb. A flipper

mirror in the wavemeter beam path allows the creation of a resonant probe beam.

This light is double passed through AOM 3 and coupled into a SM/PM fibre. The

amount of power produced by the master laser is not sufficient to create a nMOT.

We therefore inject an additional laser diode (slave) with 1 mW of light from the

23HighFinesse WS7
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master, to produce laser light with a narrow linewidth and a power of ∼ 50 mW.

To monitor the injection of the slave, ∼ 1.5 mW are coupled into a scanning Fabry-

Perot etalon24 and 1 mW are sent to the HighFinesse wavemeter. The rest of the

light from the slave is double passed through AOM 2 and coupled into a SM/PM

fibre for delivery to the experimental chamber.

4.3.3 Creation of a nMOT

The previous laser system used to create a nMOT was locked to an atomic refer-

ence on the 5s2 1S0 → 5s5p 3P1 transition. However, the new laser system is not

referenced to the atomic transition and therefore the transition frequency must be

found. To find the transition frequency, a ‘shelving’ experiment was performed. The

689 nm MOT beams were shone onto a blue MOT and the frequency of AOM 2 was

24Coherent laser spectrum analyzer
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laser system.
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Figure 4.20: Blue MOT atom number as a function of 689 nm MOT beam AOM

frequency.

varied. When the 689 nm MOT beams are on resonance with the 5s2 1S0 → 5s5p 3P1

transition, atomic population becomes ‘shelved’ in the 5s5p 3P1 state and one ob-

serves a reduction in fluorescence on the 5s2 1S0 → 5s5p 1P1 transition. An example

of the observed depletion is shown in figure 4.20. The blue line is a Gaussian fit to

the data and the centre frequency is 78.23± 0.05 MHz25.

From this, we are able to set the correct frequency of the 689 nm MOT beams.

Naively, one may expect that it is trivial to transfer the atoms from the blue MOT

to a nMOT by simply overlapping both of the MOT beams. This is not the case

however. The temperature of the atoms in the blue MOT induces a Doppler shift

which is too large and the 689 nm MOT beams do not provide a sufficient capture

efficiency. To circumvent this problem, the 689 nm MOT beams are initially fre-

quency modulated at 50 kHz, with a deviation of 2 MHz. This creates a comb of

frequencies, which enables the 689 nm MOT beams to interact with the vast major-

ity of velocity classes [33]. A MOT formed using the artificially broadened light is

25Note that the actual frequency shift is double this as the light performs a double-pass through

the AOM.
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Figure 4.21: Fluorescence images of the first (a) broadband MOT and (b) nMOT

in the new experimental chamber.

called a ‘Broadband MOT’. Additionally, the g-factor of the 5s5p 3P1 state is larger

than the 5s5p 1P1 state, and therefore a smaller field gradient must be used.

First sighting of a nMOT

The initial attempt to load into the broadband MOT involved using ∼ 10 mW of

689 nm MOT light and a frequency modulation of 50 kHz and a deviation of 2 MHz.

The centre frequency of the nMOT was ∆/2π = −3.6 MHz. The current through

the MOT coils was dropped to 0.36 A, one tenth of the current used for the blue

MOT, to increase the capture volume. Figure 4.21(a) shows a fluorescence image

of the first broadband MOT, imaged on the 5s2 1S0 → 5s5p 1P1 transition. Even in

the broadband MOT, we are able to see the atoms forming a more elliptical shape,

similar to that shown in 3.1. The temperature of the atoms in the broadband MOT

was measured using the ballistic expansion technique to be Tz = 11.5± 0.4 µK and

Tx = 19.5± 0.5 µK. The difference between the vertical and horizontal temperatures

is due to power imbalances in the MOT beams. With no optimisation however,

we still observe a reduction in temperature of almost three orders of magnitude

compared to the blue MOT.

Once the atoms are cooled in the broadband MOT, they interact most strongly

with the sideband on the 689 nm light which is closest to resonance. To transfer

atoms from the broadband MOT to the nMOT, we suddenly switch off the frequency

modulation and jump the 689 nm light frequency to that of the highest frequency

sideband. We also reduce the total power in the MOT beams to 250 µW. This is



not the most efficient way to transfer atoms from a broadband MOT to a nMOT; a

discussion of this can be found in [45]. Nevertheless, we are able to transfer atoms

from the broadband MOT into the nMOT. Figure 4.21(b) shows a fluorescence image

of the first nMOT, imaged on the 5s2 1S0 → 5s5p 1P1 transition. The nMOT clearly

takes the form of the elliptical resonance condition described in 3.1. We once again

measured the temperature of the atoms using the ballistic expansion technique, and

measured Tz = 0.85± 0.03 µK and Tx = 1.04± 0.04 µK. This is another order of

magnitude colder than the broadband MOT.

4.3.4 Ultracold atoms as an experimental diagnostic

The extreme sensitivity of the nMOT with respect to detuning makes it an ideal

tool for characterising the new experimental chamber. Here we use the nMOT to

characterise both the magnetic quadrupole field and the 689 nm laser stability.

Calibration of the magnetic quadrupole gradient

As discussed in 3.1, the atoms in the nMOT fall under gravity until the Zeeman

shift induced by the magnetic quadrupole field is equal in magnitude to the detuning

of the nMOT beams. This makes the position of the nMOT extremely sensitive to

the Zeeman shift and hence the local magnetic field. By measuring the change in

vertical centroid of the nMOT as a function of nMOT beam detuning, we are able to

calibrate the magnetic field gradient. This is shown in figure 4.22 where the current

passing through the MOT coils was 0.65 A and the solid blue line is a linear fit to

the data, giving a fitted gradient of κ = 0.822± 0.004 µm kHz−1. The splitting of

the Zeeman levels is given by

∆ωz =
gµB |B|

~
. (4.3.3)

Assuming that the change in vertical centroid of the nMOT is equal to the change

in Zeeman shift and hence |B| = γz, then

γ =
~κ
gµB

. (4.3.4)



4.3. Laser systems 83

∆/2π (kHz)

z
(µ

m
)

R
ν

Figure 4.22: The upper plot shows the nMOT vertical centroid as a function of ∆.

The lower plot shows the residuals between the data and the fit, normalised to the

error bars. The dashed lines show Rν = ±2.

From this, the quadrupole gradient measured in figure 4.22 is 5.80± 0.02 Gcm−1

and κq = 8.92± 0.03 Gcm−1A−1. The predicted gradient is κq = 9.2 Gcm−1A−1.

The discrepancy is most likely due to imperfections in the winding of the coils26.

Laser Stability

The nMOT can be used to infer the quality of the laser lock to the ultra-stable cavity.

If the linewidth of the nMOT beams is larger than the linewidth of the cooling

transition, then it is not possible to cool atoms in the nMOT to the fundamental

limit of the photon recoil temperature [33]. By reducing the total nMOT beam

power to 50 µW where power-broadening become negligible, we are able to create

a nMOT with temperatures Tz = 0.49± 0.03 µK and Tx = 0.57± 0.03 µK which

is very close to the fundamental photon recoil limit of 460 nK, indicating that the

linewidth of the laser is less than the transition linewidth.

Another diagnostic is to observe the shot-to-shot variations in the vertical cen-

troid of the nMOT. As the position is very sensitive to the detuning of the nMOT

beams, any changes in frequency should appear as a vertical position shift. Figure

26The magnification of the imaging systems is measured using gravitational free-fall.
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Figure 4.23: The mean position of the nMOT using the new (purple circles) and old

(blue diamonds) 689 nm laser systems. The dotted lines are guides to the eye.

4.23 shows the vertical centroid of the nMOT for both the previous (blue diamonds)

and new ULE (purpler circles) cavities when forming a nMOT with a detuning of

∆/2π = −100 kHz. The shot-to-shot fluctuations in position for the previous cavity

have a standard deviation of 19.1 µm, whilst the standard deviation for the new

cavity is 0.8 µm. This is a vast improvement on the shot-to-shot fluctuations of the

laser an indicate an improved linewidth of the laser system.

4.4 Microtrap configuration

An overview of the main experimental configuration for the creation and detection

of atoms in the microtrap is shown in figure 4.24. From hereon, the wavelength of

the microtrap used is 532 nm.

4.4.1 Laser system

The microtrap light is provided by a Ti:Sa laser. The microtrap light is focused

through an AOM and the first diffracted order is aligned into a SM/PM optical

fibre to enable quick switching (typically ∼ 200 ns) of the microtrap. The light
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Figure 4.24: Optical schematic for the microtrap. The elements labelling are as

follows: L1 - f = −50 mm; L2 - f = 200 mm; L3 - f = 400 mm; DM - dichroic

mirror; F1 - 532 nm notch filter; F2 - 461 nm bandpass filter.

is linearly polarised and a half-waveplate is used to align the polarisation of the

microtrap parallel to gravity. To create a microtrap of the order of 1 µm, the whole

aperture of the in-vacuo high NA lens must be used. We therefore expand the

beam out of the fibre to a 1/e2 radius of ∼ 12 mm. The beam expander is a cage

mounted system comprising of f = −50 mm and f = 200 mm achromatic doublets.

Achromatic doublets are used to minimize aberrations. The expanded beam is sent

through both in-vacuo lenses and impinges on a beam dump on the other side of

the chamber.

4.4.2 Imaging

Atoms trapped in the microtrap will scatter light on the broad 5s2 1S0 → 5s5p 1P1

transition at 461 nm. This scattered light is separated from the microtrap light using

a dichroic mirror27. The microtrap light is transmitted through and the scattered

27Semrock DI03-R473-T3-50.8-D
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Figure 4.25: Collection efficiency of the SPAD camera as a function of the semi-angle

of the input beam. Simulated data provided by Micro Photon Devices.

light is reflected off the dichroic mirror. This configuration was chosen as the trans-

mitted wavefront error is significantly less than the reflected wavefront error due

to mechanical stress between the multiple layers of the dichroic mirror [109]. The

461 nm light is focused using a f = 400 mm achromatic doublet onto a SPAD array

camera28. The camera is an array of 64 × 32 individual single-photon avalanche

detectors (SPAD) with integrated counting electronics. The quantum efficiency is

optimised for ‘blue’ wavelengths with a peak of 50% at 420 nm. One of the downsides

of this product is that each pixel has a size of 150 µm× 150 µm but the active area

is only 30 µm × 30 µm, limiting the detection efficiency. However, the camera used

in the experiment is a research-grade product which has an integrated micro-lens

array in front of the SPAD’s. The collection efficiency as a function of the incident

beam angle is shown in figure 4.25. For incident beam angles of < 4◦, the collection

efficiency increases to ∼ 75 %, much greater than the 4 % which one would expect

without the micro-lens array.

28MPD-SPC3, a commercially available SPAD array camera (Micro Photon Devices), whose

SPAD imager is described here [110].
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Figure 4.26: Count rate of the SPAD in the presence of 50 mW of microtrap light and

the absence of atoms. (a-c) show the individual pixel count rates, the cumulative

distribution function of count rate, and the histogram of count rates respectively.

The front of the SPAD camera is enclosed with a 100 mm lens tube, containing a

532 nm notch filter29 and a 461 nm bandpass filter30. The notch filter has an optical

depth > 6 at 532 nm and a spectral width of 17 nm. This attenuates any microtrap

photons which are incorrectly reflected into the imaging path. The band-pass filter

has a transmission of 98 % at 461 nm with a FWHM of 10 nm, and an optical depth

> 4 for the wavelength range 270 nm → 1200 nm. This reduces the collection of

unwanted photons. Figure 4.26 shows the count rate across the SPAD camera in

29Thorlabs NF533-17
30Edmund 88-010



Component Efficiency (%)

In-vacuo lens collection 1.7

In-vacuo lens transmission 92

Viewport transmission 99.5

Dichroic reflectance 99.8

f = 400 mm lens transmission 99.6

Mirrors ×3 99.6

Notch filter transmission 96.7

Band-pass filter transmission 98

SPAD camera detection 38.0± 0.2

Total 0.55± 0.04

Table 4.7: Collection efficiency of the imaging system.

the presence of 50 mW of microtrap light and the absence of atoms. There are a few

‘hot’ pixels, but the count rate for the majority of the pixels is limited by the dark

count rate of the camera.

Based on the description of the imaging system above, we are able to estimate the

total detection efficiency of the imaging system at 461 nm. The collection efficiency

of the in-vacuo lens is 1.7 %, based on a working distance of 37 mm and a clear

aperture of 20 mm. The transmission through the lenses is limited by the absorbency

of the ITO coating on the lens. This limits the transmission of the lenses to 92 %.

The dichroic mirror has a high reflectance of 99.8 %. The rest of the standard

optics contribute little to the loss of 461 nm photons. The final limiting factor is the

detection efficiency of the SPAD camera. With the microlens array, the detection

efficiency of the camera is approximately 38 %. The total detection efficiency of the

imaging system is estimated to be 0.55± 0.04 %, where the dominant error is the

detection efficiency of the SPAD array. The total detection efficiency of the imaging

system is summarised in table 4.7.
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4.5 Summary

In this chapter, we have calculated the polarisability of the relevant states of stron-

tium at a variety of wavelengths, and shown that it should be possible to create a

microtrap at wavelengths of 813 nm, 914 nm and 532 nm. We have discussed and

detailed upgrades to the experimental innards which will facilitate the creation of a

strontium microtrap, as well as upgrades to the laser systems.



Chapter 5

Loading and imaging a microtrap

of Sr atoms

In the previous chapter, we discussed the new experimental innards and laser systems

which will facilitate the creation of a strontium microtrap. At the time of submission,

to the best of our knowledge the smallest FORT of strontium was approximately

15 µm [111]. Therefore, an initial goal was the loading and characterisation of a single

strontium microtrap. However, more recently arrays of single strontium atoms in

FORT’s have been demonstrated by Cooper et al. [112] and Norcia et al. [113] in a

FORT of w0 ∼ 0.5 µm.

5.1 Loading the microtrap

As discussed in section 2.2.2, for an atom to be trapped in the microtrap, its kinetic

energy must be less than the potential energy. We therefore require a situation where

the scattering rate of the atoms in the microtrap is high enough and the transit time

is long enough, such that the atoms lose their initial kinetic energy whilst in the

microtrap.

There are a multitude of loading schemes available to load atoms into the micro-

trap. The simplest option is to load the microtrap directly from a MOT as this is a

sample of trapped, cold atoms which are undergoing laser cooling. However, due to

90
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the existence of multiple laser cooling transitions in strontium, there are a range of

loading possibilities. These options are summarised below:

• Direct loading from a blue MOT with a deep trap,

• Direct loading from a broadband red MOT (bMOT),

• Direct loading from a nMOT.

To test the feasibility of these loading schemes, we compare the time it takes for an

atom to cross the microtrap tdip against the time taken for atoms to scatter enough

photons from the cooling light to remove the initial kinetic energy Ei
k. We analyse

the loading mechanisms for a microtrap operating at 532 nm, as this has the largest

transition shifts (see table 4.2).

By making some simple assumptions, we are able to qualitatively analyse the

different loading schemes. For a given atomic temperature, we calculate the cumu-

lative Maxwell-Boltzmann distribution (CDF) and the time it takes for an atom to

travel a distance of 2w0 = 2 µm. If we assume that the cooling light directly opposes

the atomic velocity, then the number of scattering events Ns required for an atom

to be trapped is given by

Ns =
Ei

k

Er

, (5.1.1)

where Er = ~2k2/2m is the recoil energy of the absorbed photon with wavenumber

k. The time ts required to scatter Ns photons for a given scattering rate R is then

calculated by

ts =
Ns

R
. (5.1.2)

We calculate this for two scattering rates. The first is where there is no light shift

of the atomic states and the detuning from resonance is the MOT beam detuning.

The second is the maximal light shift one would expect for a given trap depth, in

addition to the MOT beam detuning. By comparing the velocities at which tdip = ts,

we are able to estimate the fraction of atoms which can be trapped in the microtrap.

Figure 5.1 illustrates the above calculations for loading the microtrap from a blue,

bMOT and nMOT. Naively, one may expect that loading from the blue MOT is the

best option due to the large transition scattering rate. However the calculations
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Figure 5.1: 532 nm microtrap loading possibilities from a blue (a), bMOT (b) and

nMOT (c). The red (solid) curve shows the cumulative Maxwell-Boltzmann dis-

tribution for a temperature of (a) 5 mK, (b) 20 µK, (c) 1 µK. The microtrap trap

depths are (a) 10 mK, (b) 100 µK, (c) 10 µK. The dark purple (dotted) curve shows

the scattering time required for ∆/2π = (a) 410 MHz, (b) 50 kHz, (c) 50 kHz. The

light purple (dot-dashed) curve shows the scattering time required for ∆/2π = (a)

40 MHz, (b) 7.4 kHz, (c) 7.4 kHz. The power of the cooling light is S = (a) 0.4,

(b) 20, (c) 1. The blue curve (dashed) shows the time taken for an atom to travel

2 µm. The light blue (vertical-dashed) lines show the maximum velocity which can

be captured into the microtrap for a given scattering rate.
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MOT Type CDF Range Typical MOT Density (cm−3)

Blue 8× 10−6 → 7× 10−4 1× 109

bMOT 1× 10−3 → 8× 10−3 1× 1010

nMOT 3× 10−3 → 7× 10−1 1× 1012

Table 5.1: Maxwell-Boltzmann CDF range for loading from a blue, bMOT or nMOT.

The typical MOT densities are also tabulated.

suggest that for an initial MOT temperature of T = 5 mK, only 8×10−6 → 7×10−4

of the number of atoms in the MOT can be trapped in the microtrap. This makes it

very challenging to load the microtrap from a blue MOT. If we consider loading the

microtrap from a red MOT, one may expect the scattering rate to be too low to load

atoms into the microtrap, given that tdip ≈ 1/Γ. However, plots (b) and (c) suggest

that it should be possible to load directly from both the bMOT and nMOT, due to

the ‘slow tail’ of the Maxwell-Boltzmann distribution. One factor which isn’t taken

into consideration in this figure is the atomic density. The density of the nMOT

is almost three orders of magnitude larger than that of the blue MOT, making the

loading from a nMOT the best option by far. This is summarised in table 5.1.

5.2 First sighting of the microtrap

The loading scheme with the highest propensity for success is direct loading from a

nMOT. One of the challenges of this method however is the initial alignment of the

microtrap beam onto the nMOT, due to a typical nMOT size of 100 µm. Here we

detail the initial alignment procedure of the microtrap beam onto the nMOT.

Initially the microtrap beam was apertured using an iris to create a ‘pencil

beam’, and aligned onto the centre of the in-vacuo lens using the back reflections

from the lens surfaces. Once the microtrap was centred on the first lens, a 461 nm

resonant probe beam was counter-propagated and overlapped with the microtrap

beam by sending it through the second in-vacuo lens. By filling the main chamber

with ultracold atoms, we were able to observe the the profile of the resonant probe

beam. Figure 5.2 shows a false colour fluorescence image of the probe beam, using



the PixelFly QE camera with a long-exposure time of 10 ms. We are able to clearly

observe the focussing of the probe beam through the chamber. Although this doesn’t

provide the axial location of the microtrap waist due to the imaging angle, it does

facilitate the vertical alignment of the nMOT with respect to the microtrap. The

nMOT was positioned to the same vertical position as the observed focus by applying

a shim magnetic field using an additional set of orthogonal coils [33]. The x and

y positions of the nMOT were also varied using the shim coils, such that we could

observe the probe beam destroying the nMOT.

The 461 nm probe was also used to align the imaging system. The SPAD camera

was set to a distance of 365 mm from the f = 400 mm lens used for imaging, based

upon calculations performed in Zemax. An iris was placed in front of the SPAD

camera and the camera was positioned so that the probe light hit the centre of the

iris, ensuring that the SPAD camera was centred on the imaging focus. To position

the nMOT at the correct axial location, the y-shim coil was varied such that the

nMOT image was at the optimum focus on the SPAD camera.

Initially, we created a larger microtrap by aperturing the microtrap beam to

a diameter of 3 mm. From Zemax calculations, this produced a microtrap with

w0 ∼ 6.2 µm which increased the ease of detection of the microtrap. The power of
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Figure 5.2: Fluorescence image of the probe beam with the PixelFly QE camera,

from the side.
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Figure 5.3: Fluorescence image of the first sighting of the microtrap imaging with

the (a) PixelFly QE camera and the (b) SPAD camera.

the microtrap beam after the aperture was 5 mW, with an estimated trap depth of

14 µK. We attempted to load the microtrap by shining the microtrap light into an

actively cooled nMOT for 100 ms. To distinguish atoms trapped in the microtrap

from those in the nMOT, the nMOT light and the quadrupole field were turned off,

whilst the microtrap light remained on. This allowed the nMOT atoms to fall away

under gravity but allowed the trapped atoms to remain. After a time of 15 ms, the

blue MOT light was used to image the atoms on both the PixelFly QE and SPAD

cameras. Figure 5.3(a) shows the first sighting of the microtrap loaded with atoms,

imaged from the side with the PixelFly QE camera with an exposure time of 100 µs.

The trapped atoms are clearly visible above the un-trapped falling nMOT atoms.

Figure 5.3(b) shows the microtrap imaged using the SPAD camera and an exposure

time of 10 µs. Due to the large waist of the microtrap, the Rayleigh length of the

microtrap is much larger than the depth of field of the in-vacuo lens and therefore

the image of the microtrap spreads over a larger number of pixels.



5.3 In situ imaging

Removing the aperture from the microtrap allows the in-vacuo lens to be fully

illuminated, creating the smallest possible microtrap. The imaging system detailed

in section 4.4.2 has a magnification of 10. Therefore a microtrap of size ∼ 1 µm is

mapped onto one pixel of the SPAD camera. By lowering the atomic density, we

are able to enter a regime where the microtrap is loaded with few atoms. We now

analyse the distribution of counts one would expect when operating in this regime,

the optimum experimental parameters for imaging single atoms and the current

limit of detection.

5.3.1 Composite Poisson distribution

This is based upon the work of [20]. The distribution of counts detected by the SPAD

camera is a composite of three Poisson distributions (Π (µ, n)); the atomic distri-

bution, the distribution of scattered photons and the distribution of background

counts. The probability to detect nb background counts is given by

Pb (nb) = Π (n̄b, nb) , (5.3.3)

where n̄b is the mean number of background counts. The probability to trap Nat

atoms in the microtrap is given by

Pat (Nat) = Π
(
N̄at, Nat

)
, (5.3.4)

where N̄at is the mean number of atoms in the microtrap. The probability to detect

n counts due to scattered photons from a fixed number of atoms in the microtrap

is given by

Ps (n) |Nat = Π (εsNat, n) , (5.3.5)

where εs is a constant of proportionality which is dependent on the experimental

imaging parameters. However, as there is a distribution of atoms in the microtrap,

one must perform a sum over all possibilities. This results in a distribution for the
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number of counts ns due to scattered photons from the atoms of

Ps (ns) |Nat =
∞∑

Nat=0

Pat (Nat)× Ps (ns) |Nat (5.3.6)

=
∞∑

Nat=0

Π
(
N̄at, Nat

)
Π (εsNat, ns) . (5.3.7)

Equation 5.3.6 in its current form does not include the detection of background

counts nb. The probability of the SPAD camera to detect ntot counts is given by

ntot = nb + ns. Therefore, for a given number of detected counts, the number of

those which are due to scattered photons and due to background counts range from

ns = 0→ ntot (5.3.8)

nb = ntot − ns = ntot → 0 . (5.3.9)

The total probability Ptot (ntot) to detect ntot counts on the SPAD camera, given

that we detect both background counts and counts from atom fluorescence, is given

by

Ptot (ntot) =
n∑
k=0

Pb (k)Ps (ntot − k) . (5.3.10)

This probability distribution includes terms which involve an infinite sum. In reality,

performing an infinite sum is not possible. We therefore calculate the probability

distribution until convergence at the 0.1% level. Based upon this composite Poisson

distribution, we require ∼ 80 counts per atom per imaging frame to enter the regime

of single atom distinguishability (see figure 5.4).

5.3.2 Imaging with MOT beams

Typically in single atom experiments involving the alkali-metal atoms, the microtrap

is loaded continuously from an optical molasses and the fluorescence of atoms in the

microtrap caused by the MOT beams is used to detect single atoms [89]. As the

strontium microtrap is loaded on the narrow 5s2 1S0 → 5s5p 3P1 inter-combination

transition, this method is not experimentally feasible due to the low scattering rate.

We therefore propose to load the microtrap from a nMOT using a shallow microtrap

of the order of a few µK, then linearly increase the microtrap depth to > 5 mK
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Figure 5.4: Simulated probability mass function as a function of detected counts for

a microtrap with a mean atom number of N̄at = 1, n̄b = 1 and εs = 80. Note that

the y-scale is truncated to clarify the peaks associated with atomic scattering.

and image the microtrap using the 461 nm MOT beams. The two most important

parameters to consider are the ratio of the atomic temperature to the trap depth

kBT/U0, and εs which is an interplay between atomic scattering rate, exposure time,

and detection efficiency.

Naively, the final microtrap depth should be sufficiently deep given that it is

nearly an order of magnitude greater than than the Doppler temperature. In reality

however, the AC Stark shift of the imaging transition must be taken into consider-

ation. Due to the lack of hyperfine structure in 88Sr, sub-Doppler cooling doesn’t

apply and the atomic temperature is limited by Doppler theory. The temperature

is dependent on the detuning of the light as [114,115]

kBT =
~Γ

2

1 + S + (2∆/Γ)2

4 |∆| /Γ . (5.3.11)

This is shown by the blue-solid line in figure 5.5. The differential AC Stark shift

is not detrimental in the alkali-metal atoms as sub-Doppler cooling largely removes

the detuning dependence. The purple-dashed line shows a sketch of the expected

behaviour if sub-Doppler cooling were to exist.



5.3. In situ imaging 99

∆/Γ

T
(µ

K
)

Figure 5.5: Doppler limited atomic temperature (blue-solid line) and sub-Doppler

temperature (purple-dashed line) as a function of imaging beam detuning. Note that

the sub-Doppler temperature is a sketch of the expected behaviour if sub-Doppler

cooling were to exist.

The differential frequency shift of the 5s2 1S0 → 5s5p 1P1 transition for the

mj = −1 state (see table 4.2) is 37 MHz/mK. Figure 5.6(a) shows the Doppler

limited temperature of the atoms (solid purple line) in the microtrap as a function

of the microtrap depth, given that they are scattering photons from the blue MOT

beams with intensity S = 0.4. The dashed blue line shows where the temperature

of the atoms is equal to the microtrap depth. This figure indicates that a microtrap

depth of the order of 1 K is required to enter a regime where the microtrap depth is

approximately an order of magnitude greater than the Doppler temperature, which

is practically infeasible. This is because the gradients of both of the lines are similar.

To explore this parameter space further, figure 5.6(b) shows a two-dimensional plane

of the Doppler limited temperature of the atoms in the microtrap as a function of

both microtrap depth and power of the MOT beams. The dashed line shows where

U0/kBT = 1, which indicates that even for a large parameter space, there is not a

regime where U0 � kBT .
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Figure 5.6: (a) The solid purple line shows the Doppler limited temperature of the

atoms (solid purple line) in the microtrap. The dashed blue line shows where the

temperature of the atoms is equal to the microtrap depth. (b) Doppler limited

temperature of the atoms in the microtrap as a function of microtrap depth and

MOT beam intensity. The dashed black line shows where U0/kBT = 1.

The differential frequency shift of the 5s2 1S0 → 5s5p 1P1 transition also has

a significant impact on εs. Figure 5.7 shows the expected number of counts per

atom per microsecond, as a function of microtrap depth and imaging beam power.

The white dashed line also shows where the trap depth is equal to the Doppler

limited temperature. The background count rate εb when using the MOT beams is

εb ∼ 1× 10−2 cts µs−1. This is much larger than the dark count rate of the SPAD

camera and is caused by diffusive scatter from the viewports and from inside the

chamber. Given that the maximum intensity of the MOT beams is S = 0.4, it is

impossible to enter a regime where εs > εb. We can enter a regime where εs > εb

however by using a focused imaging beam. When using a focused imaging beam,

we are able to reduce the background count rate to εb ∼ 1× 10−4 cts µs−1.

One would assume that it is not possible to continually image atoms in a micro-

trap when the atomic temperature is approximately equal to the microtrap depth.

To test this conjecture, we imaged the atoms in a microtrap of depth ∼ 10 mK as a

function of time using a probe beam with S = 15 and ∆ = −Γ from the unperturbed
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Figure 5.7: Expected number of counts per atom per microsecond, as a function

of microtrap depth and imaging beam power. The dashed white line shows where

U0/kBT = 1.

5s2 1S0 → 5s5p 1P1 transition. Figure 5.8 shows the estimated1 mean atom number

after an exposure time of 1 ms (a), and the statistics of the detected counts (b) in the

low atom number regime, over 500 realisations of the experiment. The density was

controlled by varying the load time of the blue MOT. A loading time of 150 ms was

used here. We clearly observe a rapid loss in the mean number of detected atoms

as a function of time. This rapid loss reduces the total number of photons we are

able to detect per atom and therefore prevents us from distinguishing between single

atoms, as shown in the statistics of (b-d). It is also not possible to combine the data

shown in (b-d) as the mean of the distributions vary significantly as a function of

time. If we assume that the heating rate of the imaging beam is given by ErR where

Er is the recoil energy of the emission of a 461 nm photon, then one would expect a

heating rate of ∼ 2 mK/ms, which is compatible with the loss rate observed.

1The atom number is estimated from the detected count rate, given the calculated atomic

scattering rate and the detection efficiency of the imaging system.
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Figure 5.8: (a) Mean number of atoms, estimated from the number of counts, as a

function of time when imaging with a probe beam with S = 15 and ∆ = −Γ from

the unperturbed 5s2 1S0 → 5s5p 1P1 transition. (b-d) Histogram of the detected

counts after 1 ms, 3 ms, and 5 ms respectively.

5.3.3 Stroboscopic Imaging

A possible solution to this problem has been demonstrated by Hutzler et al. [116].

They showed that by stroboscopically pulsing on and off the MOT and trapping

light, they were able to mitigate the effect of detrimental light shifts. We imple-

mented this solution with a retro-reflected one dimensional imaging beam with 1/e2

radius of 3 mm, detuned from the bare resonance by ∆ = −Γ. Initially, the effect

of pulsing the microtrap light at a frequency of 500 kHz in the absence of any other

light on the atoms in the microtrap was measured. We were able to perform 5× 104

cycles with no detriment to the atom number in the microtrap. The microtrap

pulses were then interleaved with the imaging beam, as shown in the inset of figure

5.9. Figure 5.9 shows the lifetime of the atoms in the microtrap as a function of

imaging power for a modulation frequency of 500 kHz (purple circles) and 1 MHz

(blue diamonds). To enter a regime where εs ≈ 80, we would require a lifetime of

∼ 10 ms for a probe power of approximately 1 mW. The data clearly suggests that

this is not possible.
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Figure 5.9: The main figure shows the lifetime of the atoms in the microtrap as

a function of the power used for imaging. The purple circles and blue diamonds

correspond to a stroboscopic frequency of 500 kHz and 1 MHz respectively. The

inset shows the timing sequence between the microtrap and imaging light.

We believe the reason for this short lifetime is due to the one-dimensional nature

of the probe beam and the modulation rate. The method demonstrated by Hutzler

et al. [116] relies on the fact that during the time when the trapping light is switched

off, the atoms do not move sufficiently far outside of the trapping region that they

are lost. Hutzler et al. used the MOT beams for imaging and a modulation rate of

3 MHz. Although the probe beam used in our experiments was red-detuned from the

bare-resonance, and therefore provided Doppler cooling in one dimension, the atoms

experienced heating in the other two dimensions due to spontaneous emission and

the lack of laser cooling. This could cause the atoms to gradually move away from

the trapping region and be lost. Strontium also has a larger decay rate than that of

Na and Cs, which are used in [116], meaning that a modulation rate of ∼ 10 MHz

is required to enter a similar experimental regime. This interpretation is supported

by the data as we are able to observe a longer lifetime when using an increased

modulation cycle. Increasing the modulation frequency further is not possible with

an AOM however, and therefore an alternative solution to this problem is required.



5.3.4 Alternative imaging techniques

There are a variety of possible solutions to the problem of imaging the atoms in the

microtrap. Here we detail several proposals which should alleviate the problem.

Tunable imaging

The Doppler induced heating of the atoms in the microtrap could be solved by

using a tunable imaging laser. This would allow us to spectroscopically determine

the 5s2 1S0 → 5s5p 1P1 transition frequency in the microtrap. Once the transition

frequency in the microtrap is known, it is possible to lock the laser Γ/2 below the AC

Stark shifted resonance. This would not only improve the scattering rate of atoms

in the microtrap, but would also allow the atoms to be cooled to the Doppler limit

of 0.7 mK in the microtrap, whilst arbitrarily increasing the microtrap depth. There

are several possible locking tunable locking schemes, such as a beat-lock [117, 118]

or a wavemeter lock to name but a few.

Imaging on the 5s5p 3P1 → 5s6s 3S1 transition

A limitation of the large scattering rate of the 5s2 1S0 → 5s5p 1P1 transition is

the comparatively large Doppler temperature due to the large differential polaris-

ability. Although the 5s2 1S0 → 5s5p 3P1 transition facilitates significantly colder

temperatures and magic wavelengths, the reduction in scattering rate makes it ex-

perimentally infeasible to image single atoms on this transition. An alternative

possibility is to image atoms on the 5s5p 3P1 → 5s6s 3S1 transition at 688 nm (see

figure 2.1), where the transition rate of Γ = 2π × 4.3± 0.3 MHz [95] leads to a

Doppler temperature of T ∼ 100 µK, which is comparable to the alkali-metal atoms.

Imaging on this transition would also facilitate the production of approximately five

time more microtraps.

The imaging scheme would work as follows. Both the 689 nm and 688 nm light

would simultaneously illuminate the atoms. When population is shelved into the

5s5p 3P1 state, it can then undergo many scattering events on the 5s5p 3P1 →
5s6s 3S1 transition before decaying back to the ground state. The differential po-
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larisability of the 5s5p 3P1 → 5s6s 3S1 transition is likely to be smaller than the

5s2 1S0 → 5s5p 1P1 transition as the sign of the polarisability of both the upper

and lower states is the same, however this is yet to be fully calculated. This may

therefore lead to a situation where the Doppler limited temperature is significantly

less than the microtrap depth.

Using 87Sr

In alkali-metal single atom experiments, sub-Doppler cooling maintains a low atomic

temperature even for large detunings from resonance. Throughout this work, we

have only considered working with 88Sr. However the 87Sr fermionic isotope has

hyperfine structure, and therefore sub-Doppler cooling is achievable [103]. Temper-

atures as low as 300 µK have been experimentally measured, and it has been shown

that the temperature of the atoms is vastly independent of the detuning of the laser

beams from resonance. This would therefore solve the problem of a large atomic

temperature when imaging in the microtrap concomitant with 88Sr. One point to

note however is that an additional ‘stirring’ laser is required when working with 87Sr,

operating between the 1S0 |F = 9/2〉 → 3P1 |F = 9/2〉 states [119] to re-distribute

atoms among the many Zeeman levels to achieve efficient cooling.

5.4 Microtrap characterisation

Having discussed the limit of detection of the microtrap, we now move on to its

characterisation. Here we use many atoms in the microtrap to improve the signal-to-

noise ratio. Three quantities of particular interest here are the microtrap size, atomic

temperature and lifetime. These were measured via a variety of methods and are

explained below, along with measurement pitfalls. There are several idiosyncrasies

related to these characterisation measurements. In particular, it is only possible to

load into shallow microtraps (∼ 30 µK, ∼ 1 mW). Unless stated otherwise in this

section, to perform measurements in deep microtraps the atoms were first loaded

into shallow traps and then the microtrap depth was linearly increased. The reason

for this is explored in detail in section 5.5.



5.4.1 Microtrap waist measurement

The atoms trapped in the microtrap oscillate due to the conservative nature of the

dipole potential. If one is able to measure the frequency of the oscillations, it is

possible to infer the microtrap size. Near the bottom of the microtrap, one can

approximate the Gaussian profile to that of a parabola by performing a Maclaurin

expansion of the Gaussian trapping potential. By equating this expansion to the

energy of a particle in a harmonic oscillator potential, we are able to derive a radial

ωr and an axial ωa microtrap frequency. To lowest order, these are given by

ωr =

√
4U0

mw2
0

, (5.4.12)

ωa =

√
2U0

mz2
R

. (5.4.13)

A common technique to measure these frequencies in larger dipole traps is to

induce parametric excitations in the atoms, and detect resonances in either heating

or loss of the atoms. One typically observes resonances at ω and 2ω, the stronger

being at 2ω. The parametric excitations are normally induced by modulating either

the intensity or the position of the dipole trap beam [120].

In more recent times, another method for measuring oscillation frequencies in a

microtrap [121, 122] has come to the fore. The experimental sequence is a series of

release and recapture events, and is shown in figure 5.10(i). The rationale behind

this sequence is best illustrated in phase-space. Figure 5.10(a) shows the initial

Gaussian distribution of atoms in the microtrap. The microtrap is turned off for a

very short amount of time ∆ti, which allows the atoms to expand ballistically which

results in an elliptical distribution in phase-space (figure 5.10(b)). The microtrap is

turned back on for a time ∆t, during which the ellipse in phase-space rotates at a

frequency ω. During the second turn off period of length ∆tf , atoms are lost. The

probability of loss from the microtrap is dependent on the position of the atom in

phase-space. If the phase-space distribution is elongated along x (figure 5.10(c)),

the atoms have minimal velocity and therefore are less likely to move from the

trapping centre during the second release-recapture period. However, if the phase-

space distribution is elongated along v (figure 5.10(d)), the atoms have maximal
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Figure 5.10: (i) Depth of the microtrap as a function of time. One-dimensional

phase-space atomic distribution in the microtrap: (a) initially, (b) after first release,

(c) minimal loss for second release-recapture, (d) maximal loss for second release-

recapture.

velocity and are likely to be lost from the microtrap. The result is an oscillating

recapture probability as a function of ∆t. Note, that due to the symmetry of the

system, the recapture probability oscillates at 2ω. It is typically only possible to

observe the radial frequency oscillations ωr as ωr > ωa.

Typical experimental parameters for experiments in rubidium are ∆ti = 4 µs

and ∆tf = 12 µs [101]. However, as the strontium microtrap is loaded from a nMOT

with a temperature of ∼ 1 µK, the atoms in the microtrap are approximately 50

times colder than those loaded from a rubidium optical molasses. We therefore find

empirically that the best contrast in oscillations are observed for ∆ti = 25 µs and
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Figure 5.11: Number of atoms as a function of delay ∆t for a trap power of 0.3 mW.

The solid line is a fit to the data using the function P = y0 + A exp (2ω′rt+ φ).

∆tf = 60 µs. An example of these oscillations are shown in figure 5.11. The observed

oscillations are severely damped. This is because the simplified picture above as-

sumes that the atoms are experiencing a harmonic potential. In reality, the trapping

potential is not harmonic and therefore atoms at different spatial co-ordinates in the

microtrap oscillate at different frequencies. This leads to a de-phasing of the atomic

oscillations in the microtrap and a damping of the measured recapture probability

oscillation [122]. In this damped regime, the measured frequency ω′r differs from the

actual frequency ωr by

ω′r =
√
ω2

r − ι2 , (5.4.14)

where ι is the damping rate. This result can be derived by solving the equations of

motion for a classical damped harmonic oscillator. By re-arranging equation 5.4.12

and substituting the definition of U0, it can be shown that

ω′2r = ω2
r − ι2 =

4αP

mπε0cw4
0

. (5.4.15)

Figure 5.12 shows a graph of ω2
r as a function of P . It is possible to extract the

microtrap waist from the gradient κ, which is independent of the damping rate ι.
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Figure 5.12: Fitted microtrap frequency as a function of microtrap power. The error

bars are statistical errors from the fit to the oscillations. The line is a best fit of the

form y = mx + c. Note that the y-offset is due to the damping of the oscillations,

and therefore c = ι2.

This is simply given by

w0 =

(
4α

mπε0cκ

)1/4

. (5.4.16)

The fitted waist from this data is w0 = (1.65± 0.002stat ± 0.01syst) µm, where σstat is

the statistical error from the fit to the data, and σsyst is the systematic error caused

by the 3 % error in the measurement of the microtrap power.

This is much larger than the predicted waist from Zemax of w0 = 1.1 µm. There

may be several causes of this large microtrap waist, such as

• Incorrect polarisability or power measurements,

• System aberrations,

• Poor alignment onto the lens,

• Accuracy of the microtrap frequency measurement method,

We will explore each of these possibilities in succession.



Polarisability and power

The trap frequency measurements rely upon accurate measurements of both the

ground state polarisability and the microtrap power. The ground state polarisabil-

ity is strongly dominated by the broad 5s2 1S0 → 5s5p 1P1 transition which is well

known [98]. Due to the study of optical lattice clocks in strontium, the ground state

polarisability is of significant importance and has also received significant attention.

The polarisability calculated in section 4.1 is in agreement with the available lit-

erature, and therefore we believe that this is not the cause of the large measured

microtrap waist.

An additional source of error is the measurement of the microtrap power which

the atoms perceive. The microtrap power was measured using a Thorlabs PM100D

power meter, taking into account measured power losses at each optical surface. The

power meter was recently calibrated and therefore systematic uncertainties are min-

imised to ±3 %. The systematic uncertainty of the microtrap power is significantly

smaller than the systematic shift required to explain the large microtrap waist.

Aberration measurements

It is unlikely that there is a problem with the manufacture of the lens given that an

interferometric measurement of the lens surface was performed using a Zygo Verifire,

indicating that the RMS deviation from the calculated surface was < 12 nm. How-

ever, by measuring the wavefront of the microtrap beam which has passed through

the chamber and both in-vacuo lenses, it is possible to infer some information about

the lens performance.

In order to measure the beam quality entering and exiting the chamber, we

measured the beam aberrations using a Shack-Hartmann interferometer2 (SH) [123].

The active area of the SH is approximately 3 mm. Therefore, the microtrap beam

was focussed onto the SH using a 2 inch, f = 200 mm achromatic doublet lens. A

limitation of focussing onto the SH is that the measured wavefront is dominated by

the curvature induced by the focussing lens. However, by measuring the wavefront in

2Thorlabs WFS150C
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terms of Zernike polynomials [124,125], a set of orthogonal basis polynomials defined

on a unit disk, it is possible to extract the important aberrations of the system,

such as coma, astigmatism and spherical aberration. All Zernike coefficients for the

input beam were < 0.015λ, indicating that there wasn’t significant aberration on the

input beam. The significant Zernike coefficients of the beam exiting the chamber

were vertical coma Z1
3 = 0.04λ and spherical aberration Z0

4 = 0.02λ. The large

coma aberration could be caused by either poor alignment onto the first lens or bad

centration of the two in-vacuo lenses. The spherical aberration must be caused by

the in-vacuo lenses themselves, or an undesired curvature of the viewports.

Lens alignment

As discussed, there was a significant amount of coma on the microtrap beam exiting

the chamber. To improve the alignment onto the lens, the microtrap frequency was

measured as a function of angle of the input beam. Figure 5.13 shows the measured

microtrap frequency as a function of fractions of full turns of the fine adjustment

screw of the mirror directly before the in-vacuo lens. The thread of the mirror

adjustment screw is 170 threads per inch, from which we also calculate the change

in angle of the incident beam. The origin of these graphs are the original positions

of the mirror adjustments screws.

We clearly see that the microtrap frequency, and hence the microtrap waist, is

very sensitive to the incident angle of the microtrap beam. We were not able to

increase the microtrap frequency by changing the horizontal angle. However, a sig-

nificant increase was measured when varying the vertical angle of the incident beam.

This supports our interpretation of the coma aberration measured using the SH. The

re-aligned microtrap waist was measured to be w = (1.42± 0.004stat ± 0.01syst) µm

using the same measurement procedure as that shown in figure 5.12. This is signif-

icantly smaller than the waist measured previously, however it is still much larger

than the expected waist size.
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Figure 5.13: Trap frequency as a function of incident beam angle for the (a) hori-

zontal and (b) vertical directions. The origin of the graphs are the original positions

of the mirrors before adjustment.

Accuracy of the microtrap frequency measurement method

The approximation made when deriving the expressions for microtrap frequencies

in equation 5.4.12 is only valid when the amplitude of the atomic oscillations are

small compared to the microtrap depth, such that the harmonic approximation to

the trapping potential is valid. The data shown in figure 5.12 is strongly damped,

indicating that the validity of this regime is put into question. To investigate the

effect of microtrap depth on the measured microtrap waist, we measured the mi-

crotrap frequency at a variety of different powers. It is only possible to load into

shallow microtraps (∼ 30 µK), with powers up to ∼ 1 mW (this is explained later in

section 5.5). Therefore, after the initial load of atoms in the microtrap at 10 µK, the

power of the microtrap was linearly increased over a time of 300 ms. Figure 5.14(a)

shows an example microtrap frequency measurement at a final microtrap depth of

∼ 1.2 mK, using the technique outlined in 5.4. However, as the atomic temperature

increases whilst increasing the microtrap depth, the optimum release times in the

experimental sequence were ∆ti = 5 µs and ∆tf = 20 µs. The microtrap frequency
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Figure 5.14: (a) Detected atoms as a function of delay ∆t. The solid line is a

fit to the data using the function P = y0 + A exp (2ω′rt+ φ). (b) Fitted microtrap

frequency as a function of microtrap depth. The green dotted line is a linear fit to all

data points. The red dashed-dotted line is a linear fit to the first six data points and

the solid blue line is a linear fit to the data, neglecting the first six data points. (c)

Horizontal (blue diamonds) and vertical (purple circles) temperatures as a function

of final microtrap depth, measured using the ballistic expansion technique.

oscillations are significantly less damped than the oscillations shown in figure 5.11,

indicating that the atoms are oscillating in a more harmonic manner.

Figure 5.14(b) shows the fitted microtrap frequency as a function of final micro-

trap power. The green dotted line is a linear fit to all data points. The reduced

Chi-squared statistic [76] is χ2
ν = 22, indicating that this is a poor fit to the data. A

linear fit to the first six data points is shown by the red dashed-dotted line. This is a

fit to data taken in the regime of significant damping, similar to that of figure 5.11.

Here, χ2
ν = 2.2 which is indicative of a reasonable fit. However, this fit clearly does

not agree with data taken at much higher powers. The solid blue line is a linear fit

to the data, neglecting the first six data points. Here χ2
ν = 0.97 which indicates an

excellent fit, however this line does not pass through the measurements measured at

lower microtrap powers. We hypothesize that at lower microtrap powers, the ratio of

the atomic temperature to the microtrap depth is too small, which invalidates the

harmonic approximation and returns an inaccurate result of the microtrap waist.



The microtrap frequency measurements at higher powers are less critically damped,

and the linear fit is in agreement with the data over a larger range of microtrap

powers, providing more confidence in these measurements than those taken at low

microtrap powers.

Figure 5.14(c) shows the ratio of the microtrap depth to the atomic temper-

ature as a function of final microtrap power. Here the atomic temperature was

measured using the ballistic expansion technique (see section 5.4.3). For the range

of measurements where we believe the harmonic approximation to the microtrap

potential is valid, kBT/U0 is approximately an order of magnitude smaller than at

the lower microtrap power measurements. This data would indicate that a ratio of

kBT/U0 ≈ 0.01 is required for accurate measurements of the microtrap frequency

and hence the microtrap waist. The microtrap waist size extracted from these mea-

surements is (1.28± 0.004stat ± 0.01syst) µm. This is significantly smaller than the

previous measurement, however it is still larger than the predicted microtrap waist

using Zemax ‘Physical Optics’ calculations.

Lens testing

To test the quality of the in-vacuo lens, we measured the microtrap waist as a

function of apodisation, as the waist size is critically dependent on the aperture

of the lens. Figure 5.15 shows the measured microtrap waist (purple circles) as a

function of the aperture size. The solid blue line is the prediction from Zemax.

The measured microtrap waist is systematically larger than the predicted size. The

theoretical prediction is obtained by fitting a Gaussian profile to the centre of the

predicted intensity profile. The systematic shift may indicate that this method of

predicting the waist is inaccurate, and that the measured waist is what one would

truly expect.
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Figure 5.15: Measured microtrap waist (purple circles) as a function of lens clear

aperture. The solid line is the predicted waist size using Zemax.

5.4.2 Microtrap Lifetime

An important microtrap statistic is the atomic lifetime, as this determines how long

on average one can manipulate the atoms in the microtrap before losing them. For a

typical experiment time of 50 ms, a lifetime of 5 s is required to limit loss rates to the

1 % level. To measure the lifetime of the atoms in the microtrap, atoms were loaded

into a microtrap of depth 8.5± 0.5 mK, after which all laser beams were switched

off for a time ∆t. The number of atoms in the microtrap was then measured using

fluorescence imaging on the 5s2 1S0 → 5s5p 1P1 transition. The number of counts

as a function of time are shown in figure 5.16. The fitted lifetime of the atoms in

the microtrap is τ = 5.2± 0.6 s, and is comparable to the observed nMOT lifetime.

The two main possible reasons for this lifetime are heating due to scattering

photons from the microtrap light, or due to collisions with strontium atoms produced

by the strontium oven. For the parameters above, one would expect a scattering

rate from the microtrap of Γs = 330 s−1. Assuming the heating rate is given by

ΓsEr/3, one would expect a temperature increase of ∼ 46 µKs−1. This heating rate

is not compatible with the lifetime of the atoms in the trap and therefore we believe
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Figure 5.16: The purple circles show the number of counts as a function of time

for atoms trapped in a microtrap of depth 8.5± 0.5 mK in the absence of any laser

beams. The solid blue line is an exponential fit to the data.

the lifetime of the trap to be limited by collisions with strontium atoms produced by

the strontium oven. However, this lifetime is sufficiently long to perform microtrap

experiments, and is indicative of a low background pressure.

5.4.3 Temperature measurements

There are two possible ways of measuring the temperature of the atoms in the

microtrap. The first is the ballistic expansion method which is typically used when

the atom number is� 1. The temperature of the atoms is inferred from the width of

the atomic distribution as a function of time. Figure 5.14(c) shows the temperature

of the atoms in the microtrap as a function of microtrap depth, measured using

the ballistic expansion method. At low microtrap depths (∼ 10 µK), the atom

temperature is approximately ∼ 1 µK, similar to that of the nMOT temperature.

As the microtrap depth is increased, we see an increase in the atomic temperature

as one would expect.

When the atom number is small however, the term temperature refers to the
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Figure 5.17: Recapture probability as a function of release time (purple circles). The

blue solid line is the Monte Carlo fit to the data with a temeprature of 24.0± 1.0 µK,

assuming a microtrap waist of w0 = 1.28 µm.

distribution of energies of many realisations of the same experiment. Tuchendler et

al. [126] demonstrated a method for inferring the temperature of a single atom using

a release-recapture method. The premise of this method is that the energy of the

atoms can be inferred by switching off the microtrap for a time ∆t, after which the

microtrap light is switched back on. If the atom has moved sufficiently far such that

its kinetic energy is greater than the potential energy, the atom is lost; otherwise

the atom remains trapped. By measuring the recapture probability as a function

of ∆t, a temperature is extracted by fitting a Monte-Carlo simulation to the data,

where the only free parameter is the atomic temperature. A full description of the

simulation is detailed in [126].

To confirm the accuracy of the ballistic expansion method, we also measured the

atomic temperature using the release-recapture method described above. Figure

5.17 shows the recapture probability as a function of release time for atoms in

a (5.2± 0.2)× 102 µK microtrap. The solid blue line is the result of the Monte-

Carlo simulation. The fitted temperature is 24.0± 1.0 µK, in agreement with the

measurement of T = 24.8± 0.4 µK measured using the ballistic expansion technique,



giving confidence in the accuracy of both measurement methods.

5.4.4 Shelving spectroscopy

To the best of our knowledge, the polarisability of the 5s5p 3P1 state at 532 nm has

never been measured. This wavelength is of interest due to the close vicinity to the

predicted magic wavelength point (see figure 4.3), as well as the possibility of per-

forming Rydberg trapping experiments. The predicted magic wavelength crossing

point is strongly dominated by transitions at approximately 480 nm to the 5s7s 3S1,

5p2 3P1,2,3 and 5s5d 3D1,2 states. Therefore, a measurement of the polarisability at

532 nm allows us to assess the accuracy of the predicted polarisability in this region.

The differential polarisability was inferred by measuring the differential AC Stark

shift of the 5s2 1S0 → 5s5p 3P1 transition as a function of microtrap power. This

was measured for both the mj = 0 and mj = −1 states. The AC Stark shift was

measured using the shelving technique described earlier in 4.3.3. Initially, the 532 nm

light was shone onto the nMOT to load the microtrap. The microtrap was linearly

polarised along ẑ, along which the quantisation axis was also defined. The cooling

light and magnetic field were switched off for 50 ms in order for the un-trapped

nMOT atoms to fall away under gravity. During this time, the MOT coil relay was

switched to set the coils into a Helmholtz configuration. A current of 0.28 A was

passed through the MOT coils, producing a uniform field of 3.3 G along ẑ, to define a

quantisation axis and to separate the mj-sublevels of the 5s5p 3P1 state. A linearly-

polarised, tunable 689 nm probe beam with 1/e2 radius of 1 mm was aligned onto

the microtrap. Approximately 1 µW was shone onto the microtrap for a period of

1 ms to ‘shelve’ atoms in the 5s5p 3P1 state. Following this, the 461 nm MOT beams

were shone onto the microtrap for 31.2 µs to measure the population difference.

A typical shelving spectrum is shown in figure 5.18. The resonance width is of the

order of 60 kHz and is limited by the Doppler temperature of the atoms. The solid

blue line is a Gaussian fit to the data, and is used to extract the centre frequency

of the resonance. A similar resonance curve was measured in the absence of the

microtrap light before and after the measurement in the microtrap to minimise the

effect of systematic errors caused by the drift of the ultra-stable cavity to which the
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Figure 5.18: Counts (purple circles) as a function of detuning of the 689 nm probe

beam with respect to the mj = 0 bare resonance. The error bars are the standard

error on the mean of 15 repeated experiments. The solid blue line is a Gaussian fit

to the data.

laser is locked. Figure 5.19 shows the differential AC Stark shift of the 5s2 1S0 →
5s5p 3P1 as a function of microtrap power, along with a linear fit, for the (a) mj = 0

and (b) mj = −1 states. The data shown in figure 5.19(b) is more scattered than

that in (a). This is due to the magnetic field sensitivity of the mj = −1 state.

For reference, a transition frequency shift of 1 kHz is induced by a magnetic field of

magnitude 0.5 mG. It can be shown that the gradient κ is related to the differential

polarisability by

κ =
α (1S0)− α (3P1)

ε0cπhw2
0

, (5.4.17)

where α (1S0) and α (3P1) are the polarisability of the 5s5p 3P1 and 5s2 1S0 states

at 532 nm respectively. We define the quantity

ξ =
α (1S0)− α (3P1)

α (1S0)
, (5.4.18)

as a measure of the ‘magicity’ of the transition. Table 5.4.4 details the theoretical

and experimental values. There is clearly a large discrepancy between the theoreti-

cal and experimental values, especially for the mj = −1 state. This discrepancy is
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Figure 5.19: Centre frequency of the shelving resonance (purple circles) as a function

of microtrap power of the (a) mj = 0 and (b) mj = −1 states. The error bars are

the standard error on the mean of 15 repeated experiments. The solid blue line is a

linear fit to the data.

either caused by systematic uncertainties in the experimental measurements, or in-

accuracies in the measurement of the transition strengths to the 5s7s 3S1, 5p2 3P1,2,3

and 5s5d 3D1,2 states. Errors is the microtrap power and waist could lead to discrep-

ancies between the theoretical and experimental differential polarisability. However,

one would require scaling factors of ∼ 4 and ∼ 2 respectively to explain this dis-

crepancy. Given the calibration of the power meter and the analysis of the trap

frequency measurements performed earlier, these large scaling factors are unlikely

to be the source of the discrepancy. Using the polarisability calculations detailed

in section 4.1, one would require a ∼ 10 % increase in the transition rate from the

5p2 3P1,2,3 and 5s5d 3D1,2 states, and therefore we believe this to be the source of

the discrepancy between the experimental and theoretical values.

The larger than predicted value of the polarisability of the mj = −1 state in-

creases the capture velocity of microtrap, improving the predicted loading ability

detailed in section 5.1. Although the transition to the mj = 0 state is almost magic,
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mj α (3P1) (a.u.), Th. α (3P1) (a.u.), Exp. ξ, Th. ξ, Exp.

0 625 (7.2± 0.2)× 102 0.17 0.035± 0.002

-1 366 (6.6± 0.2)× 102 0.51 0.118± 0.004

Table 5.2: Theoretical and experimental polarisabilities of the 5s5p 3P1 mj = 0 and

mj = −1 states. The error bar here is the dominant systematic uncertainty of the

measurement of the microtrap power.

this does not help with loading as the nMOT beams interact atoms most strongly

with the mj = −1 state. From this measurement, we are not able to directly in-

fer deviations to the full polarisability spectrum. In order to do this, polarisability

measurements at a variety of wavelengths are required. This data does however

suggest that the magic wavelength, predicted at 500 nm, is at a higher wavelength

than predicted.

5.5 Loading into deep microtraps

The Doppler temperature on the 5s2 1S0 → 5s5p 1P1 transition is ∼ 0.7 mK. There-

fore, we must be able to load atoms into a microtrap with depth U0/kB � 1 mK

to continually image atoms in the microtrap. In section 5.4.1, we stated that it is

not possible to load directly into a microtrap where the microtrap depth is larger

than ∼ 30 µK. This statement is based upon both spectroscopic and temperature

measurements, which are detailed in this section.

5.5.1 Temperature measurements

In section 5.4.3, we showed that the atoms are in thermal equilibrium by measur-

ing their temperature by both ballistic expansion and release-recapture techniques.

When loading directly into a deep microtrap, the ballistic expansion is not consis-

tent with a single thermal temperature distribution. An example ballistic expansion

of atoms loaded directly into a microtrap of depth (5.2± 0.2)× 102 µK is shown in

figure 5.20(a). There are two distinct regions to the data. At short times we observe
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Figure 5.20: Width of the atomic cloud as a function of ballistic expansion time for

the (a) directly loaded deep microtrap and (b) the ramped microtrap. In (a), the

blue solid line and red dashed-dotted lines are linear fits to the first 10 and last 10

data points respectively. In (b) the blue solid line is a linear fir to all data.

a rapid expansion of the cloud, which then curtails to a much slower expansion at

longer times. This data is consistent with two temperature distributions, as shown

by the linear fits to short (solid blue) and long (red dashed-dotted) times. These

fits correspond to a fitted temperature of 27± 3 µK and 3.9± 0.2 µK respectively.

The intensity profile of the microtrap at the focus is not a Guassian, but a

sinc function, which has a series of intensity maxima. When using large microtrap

powers, the intensity in the subsidiary maxima is sufficient to create regions where

the potential depth is of the order of a few µK. We therefore believe that the

different thermal distributions originate from atoms trapped in different regions of

the microtrap, and is only possible due to the very low initial temperature of the

atoms in the nMOT.

To test this theory, we performed a ramped microtrap experiment where atoms

were initially loaded into a shallow microtrap, which negates the possibility of load-

ing into subsidiary maxima, after which the microtrap power was linearly increased.
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The microtrap was loaded with an initial microtrap depth of 28± 1 µK. The MOT

atoms were allowed to fall away under gravity, after which the microtrap power was

linearly increased to a final microtrap depth of (5.2± 0.2)× 102 µK in the absence of

any other light, over a period of 300 ms. A ballistic expansion was then performed.

The results of the ballistic expansion in the ramped microtrap is shown in figure

5.20(b). This data is consistent with a single linear fit, resulting in χ2
ν = 2.1, and

a corresponding fitted temperature of 26.8± 0.4 µK. This temperature is in agree-

ment with the hotter temperature measured in figure 5.20(a), which supports our

interpretation of the data. We believe the cooler atomic temperature is from atoms

trapped in shallower regions of the microtrap, where the potential depth is smaller.

5.5.2 Spectroscopic measurements

To further investigate the loading process into deep microtraps, we performed shelv-

ing spectroscopy as a function of microtrap power. For microtrap depths greater

than ∼ 30 µK, we observed broadening of the shelving resonance towards higher

frequencies. An example of the broadened spectrum is shown in figure 5.21(a). The

solid blue line is a Gaussian fit to the first 16 data points. It is clear that a Gaus-

sian is a good fit to the left hand side of the resonance, but does not fit the data

at higher frequencies. This broadening cannot be explained by finite temperature

effects, as one would expect to observe the broadening towards lower frequencies.

The broadening of the feature to higher frequencies suggests that some atoms expe-

rience a greater AC Stark shift than others in the microtrap. Figure 5.21(b) shows

the centre frequency of the fitted Gaussian as a function of microtrap power. We

initially observe a steep gradient which is consistent with the data shown in figures

5.18 and 5.19(a). However, as the microtrap power is increased, the shift in centre

frequency is curtailed and a severe flattening is observed. This is in conjunction with

an increase in the width of the resonance feature. This suggests that some atoms

do not observe an AC Stark shift as large as one would expect, which supports our

interpretation of the data in the previous section.

To further test this theory, we once again performed a ramped microtrap experi-

ment. The microtrap was loaded with an initial microtrap depth of 28± 1 µK. The
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Figure 5.21: (a) Detected atoms (purple circles) as a function of detuning of the

689 nm probe beam with respect to the bare resonance. The solid blue line is a

Gaussian fit to the first 16 data points. The microtrap depth is (5.6± 0.2)× 102 µK.

(b) Centre frequency of the Gaussian fit as a function of microtrap power.

nMOT atoms were allowed to fall away under gravity, after which the microtrap

power was increased linearly to a final microtrap depth of (5.6± 0.2)× 102 µK in

the absence of any other light, over a period of 300 ms. Shelving spectroscopy was

then performed following the same method as mentioned above. Figure 5.22 shows

that we recover the Gaussian lineshape measured for shallow microtraps, and ob-

serve a much greater shift in the centre frequency, as one would expect. This data

also supports our interpretation of the data presented in this section.

In conclusion, loading atoms directly from a nMOT directly into a deep microtrap

is possible but not useful, due to the large distribution of temperatures and AC Stark

shifts of the atoms in the microtrap. We have shown however, that by loading into a

shallow microtrap of the order of 30 µK and linearly increasing the microtrap depth,

it is possible to trap atoms in a deep microtrap.
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Figure 5.22: Detected atoms (purple circles) as a function of detuning of the 689 nm

probe beam with respect to the bare resonance. The solid blue line is a Gaus-

sian fit to the data. The initial and final microtrap depths were 28± 1 µK and

(5.2± 0.2)× 102 µK respectively.

5.6 Summary

In summary, we have demonstrated the first known strontium microtrap, which

is loaded directly from a nMOT. We are currently unable to image atoms in the

microtrap at the single atom level due to atomic loss associated with the large

differential AC Stark shift of the 5s2 1S0 → 5s5p 1P1 transition. We have however

proposed several solutions to this problem, and a tunable imaging laser is currently

under construction.

We have made the first spectroscopic measurements of the polarisability of the

5s5p 3P1 state at 532 nm, which indicates that the predicted magic wavelength at

∼ 500 nm is in fact at a larger wavelength. We have also shown that it is not possible

to directly load atoms into a deep microtrap from a nMOT, as the combination of

low atomic temperature and subsidiary maxima in the trapping potential leads to a

non-Gaussian atomic distribution. This problem has been solved by initially loading

atoms into a shallow microtrap of the order of < 30 µK and then linearly increasing



the microtrap depth. Using this method, we have shown that we are able to achieve

atomic temperatures in the microtrap of the order of kBT/U0 ≈ 0.01, which is much

smaller than achievable in the alkali-metal atoms. This low atomic temperature

should make it relatively simple to cool to the ground state of the microtrap, which

will aid in the formation of a spin-squeezed state.



Part II

Probing interactions of thermal Sr

Rydberg atoms using simultaneous

optical and ion detection
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Chapter 6

Ionisation mechanisms in a

thermal beam of Sr

Since the first observations of Rydberg EIT in a thermal vapour, it has been known

that charged particles are produced [127]. There are a variety of possible mechanisms

which are responsible for the apparent spontaneous ionisation of Rydberg atoms

[128]. An important step forward to understanding these mechanisms was provided

by Barredo et al. [129], who combined Rydberg EIT with the detection of ions using

electrodes placed in a Rb vapour cell.

Due to the creation of Rydberg atoms in the strontium microtrap, understanding

these ionisation and interaction mechanisms may be of significant importance in

future work. To study these ionisation mechanisms, A. Bounds created a strontium

beam apparatus which facilitates the simultaneous detection of optical and electrical

signals produced from a thermal beam of strontium atoms. By using a model based

on the Doppler-averaged optical Bloch equations (see section 2.3) we are able to

quantitatively connect the optical and electrical signals, which allows us to deduce

the origin of the spontaneous ionisation process.
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6.1 Experimental Design

A. Bounds designed and constructed a compact strontium beam apparatus adapted

from [132] with the addition of electrodes that enable the simultaneous application

of electric fields and detection of charged particles. Figure 6.1(a) shows the inter-

rogation and detection regions of the beam apparatus. A weakly divergent atomic

beam of Sr atoms is produced using a resistively heated dispenser [132]. The atomic

beam diameter at the interrogation region is ≈ 30 mm. Optical access to the atomic

beam is provided orthogonally by two fused silica viewports. Rydberg atoms or

ions can be excited using the energy level scheme shown in figure 6.1(b). A pair

of electrodes (electrodes 1 and 2) which are orthogonal to both the atomic beam

and the laser beams, are made from stainless steel mesh and facilitate the applica-

tion of electric fields in the interrogation region. The mesh design also enables the

collection of emitted fluorescence. The separation between the electrodes is 21 mm.

Beyond the interrogation region, the atomic beam is incident on an additional elec-

trode (electrode 4), which functions as a Faraday cup [133]. Charges present in the

beam are neutralised at this electrode, causing a current I to flow in an external

1.3 MΩ sense resistor. A further ring electrode (electrode 3) is provided in front of

the Faraday cup to provide extra control of the charge detection.

5s47d 1D2

5s5p 1P1

5s2 1S0

Continuum

Γr = 2π × 14 kHz

Γe = 2π × 30.2 MHz

Electrode 1

Electrode 2
Electrode 4

Electrode 3

Vbias

PD DM

(a) (b)

Figure 6.1: (a) Experimental schematic of the interrogation and detection regions of

the beam apparatus. PD and DM refer to photodiode and dichroic mirror respec-

tively. (b) Energy level diagram showing the excitation scheme [130,131].
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The probe beam1 was locked resonantly to the 5s2 1S0 → 5s5p 1P1 transition at

461 nm using polarisation spectroscopy [134] in the same beam apparatus. The probe

beam was focused to a 1/e2 radius of wx ≈ wy = 115± 1 µm at the centre of the

interrogation region and overlapped with a tunable, counter-propagating coupling

beam2 at 413 nm using a dichroic mirror. The coupling beam was focused to a

measured waist of wx ≈ wy = 166± 1 µm at the centre of the cell. Both laser beams

were circularly polarised in order to drive the strongest transitions; |mj| = 0 →
|mj| = 1 → |mj| = 2. The coupling beam was amplitude modulated using an

optical chopper at a frequency of 2 kHz and lock-in detection used to improve the

signal-to-noise ratio on both the probe transmission and the current I.

6.1.1 Faraday Cup Calibration

The Faraday cup (electrode 4) detects charges created in the Sr atomic beam. A

bias voltage Vbias can be applied to the Faraday cup in order to attract or repel

positive or negative charges. Since the cup is conductive, charges arriving on the

cup are neutralised by a current that flows through the external resistor. The sign

of the measured current depends on the sign of the incident charges. In this thesis,

we use the convention that positive (negative) current correspond to the detection

of negative (positive) charges. In all of the experiments discussed here, the cell body

and ring electrode were grounded.

In order to characterise the charge detection system, charges were created in

the strontium beam using resonant two-photon photo-ionisation (figure 6.1(b)), by

tuning the coupling laser 5 GHz above the ionisation threshold. As long as the

probability of photo-ionisation is far from saturated, the ionisation rate is directly

proportional to the coupling beam power. Therefore, measuring the dependence of

the current on the coupling laser beam power provides a test of the linearity of the

detection system. Figure 6.2 shows the measured current I as a function of coupling

laser power for a variety of Vbias. A linear fit to the data yields a reduced chi-squared

1MOGLabs ECDL laser.
2Toptica SHG system.



statistic [76] of χ2
ν < 1.5 for all values of Vbias, and in each case the fit passes through

the origin within the error bar. Our charge detector is therefore linear for currents

|I| < 2 nA.

The effect of varying Vbias at constant coupling laser power is shown in figure 6.3.

There are two clear regions. The first is about the origin, where a small change

in Vbias results in a large change in current. We attribute this variation to the

attraction or repulsion of charges in the atomic beam. The average kinetic energy

of the beam is estimated to be ∼ 0.1 eV by spectroscopically measuring the atomic

flux and inferring the thermal distribution. As the kinetic energy is ∼ 0.1 eV, only

a relatively small voltage is required to modify the trajectory of charges in the

beam such that they do or do not hit the detector. The effect of Vbias is greater for

electrons than for ions due to their much lower mass. This asymmetry is apparent in

figure 6.3(b). A negative current (corresponding to the detection of ions) is visible

even for Vbias = 0 V.

Coupling Laser Power (mW)

I
(n
A
)

Figure 6.2: Measured current as a function of coupling laser power. The four curves

(top to bottom) correspond to Vbias = +5 V (purple squares), +1.5 V (red circles),

−1.5 V (green triangles) and −5 V (blue diamonds). The dotted lines are a linear

fit to each data set.
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Figure 6.3: (a) Current as a function of Vbias. The probe and coupling powers were

3.5 mW and 33.5 mW respectively. (b) shows a zoom about the origin.

At larger voltages (|Vbias| ' 1 V) the magnitude of the current increases linearly

with the magnitude of Vbias. We attribute this increase to secondary ionisation

processes [135,136]. Incoming charges with energies greater than the work function

of the target material can release a charge from the surface which is either re-

captured or ejected from the Faraday cup depending on the value of Vbias. This can

lead to an effective gain of the detector.

6.2 Rydberg spectroscopy using EIT

In order to perform Rydberg spectroscopy in the cell, the coupling laser was tuned

close to resonance with the 5s5p 1P1 → 5s47d 1D2 transition. Figure 6.4(a) shows

the transmission of the probe beam as a function of the probe laser frequency relative

to the 5s2 1S0 → 5s5p 1P1 transition. When the resonance condition for both lasers

shown in figure 6.1 is met, an EIT feature is observed within the Doppler-broadened

absorption profile. Note that the Doppler-broadened background is not symmetric

about zero detuning. This is due to a baffle in the beam apparatus altering the
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Figure 6.4: (a) Probe transmission T as a function of the probe detuning ∆p for a

fixed coupling beam detuning ∆c. (b) Probe transmission as a function of coupling

beam detuning for fitted coupling Rabi frequency of Ωc/2π = 3.1± 0.2 MHz and

coupling laser linewidth Γc/2π = 0.6± 0.1 MHz. The blue dashed line is the theo-

retical model and the residuals are shown below. ∆T is the change in transmission

of the probe beam at the EIT resonance. T0 is the transmission of the probe away

from EIT resonance. (c) and (d) are the corresponding ion and electron signals.

transverse velocity distribution of the strontium beam [132].

A Doppler-free spectrum was obtained by locking the probe laser on resonance,

and scanning the coupling laser. The background probe absorption signal was re-

moved completely by demodulating the probe transmission signal using the lock-in

amplifier. The resulting EIT spectrum is shown in figure 6.4(b). The largest peak

in the EIT signal is attributed to the 88Sr isotope and the smaller peak is attributed
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to the 86Sr isotope. A peak from the 87Sr isotope is observable at positive detunings

but is not shown in this plot. The full-width at half-maximum (FWHM) of the 88Sr

EIT feature is 11± 1 MHz, which is significantly smaller than the natural linewidth

of the probe transition Γe/2π = 30.2 MHz.

The splitting between the EIT features for each isotope provides a measurement

of the isotope shift of the 5s47d 1D2 state [137]. The splitting between the two lines

was measured to be ∆ωc = 2π × 227± 4 MHz by calibrating the frequency axis in

figure 6.4(b) using a high-precision wavemeter3. However, due to the wavelength

mismatch between the probe and coupling lasers, the measured splitting is not the

absolute isotope shift [137]. The probe laser frequency in the atomic rest frame is

given by

ωp = ωp0 + ∆ω2 + kpv , (6.2.1)

where ωp0 is the probe laser frequency and ∆ω2 is the isotope shift of the 5s5p 1P1

state between the 88Sr and 86Sr isotopes. The coupling laser frequency in the atomic

rest frame is given by

ωc = ωc0 + ∆ω3 −∆ω2 − kcv , (6.2.2)

where ωc0 is the probe laser frequency ∆ω3 is the isotope shift of the 5s47d 1D2 state.

As the probe beam is locked on resonance with the 88Sr atoms, the 86Sr atoms which

interact with the probe laser must have a velocity

v = − 1

kp

∆ω2 . (6.2.3)

Substituting this back into 6.2.2, we arrive at

ωc − ωc0 = ∆ω3 +

(
λp

λc

− 1

)
∆ω2 , (6.2.4)

where λp and λc are the wavelengths of the probe and coupling lasers respectively.

This yields a value of ∆ω3 = 2π×213± 4 MHz. This value is in agreement with the

trend observed by Lorenzen et al. [138].

We solve the OBE’s detailed in section 2.3 to produce a quantitative model of

the EIT lineshape. Here we use the time-dependent solution since the timescale

3HighFinesse WS7



for the evolution of the coherences and the populations is longer than the average

time taken for an atom to cross the laser beams (≈ 0.4 µs). In order to simulate

the measured lineshape, the Doppler shift is included in the probe and coupling

detunings, and a weighted average is performed over a 1D Boltzmann distribution.

The transverse temperature of T ≈ 60 K was obtained from the width of the Doppler

broadened absorption profile shown in figure 6.4(a). Each isotope was also weighted

by its natural abundance.

The results of the model are shown in figure 6.4. The probe laser Rabi frequency

(Ωp/2π = 13.1± 0.1 MHz) was calculated from measurements of the power and

beam size as the saturation intensity of the 5s2 1S0 → 5s5p 1P1 transition is well

known [98]. The linewidth (Γp/2π = 0.7± 0.1 MHz) was constrained by measure-

ments of the rms deviation of the in-loop error signal of the polarisation-spectroscopy

lock. The only fit parameters were the coupling Rabi frequency Ωc/2π = 3.1± 0.2 MHz

and the coupling laser linewidth Γc/2π = 0.6± 0.1 MHz. The model is in good

agreement with the data, although the residuals show that the theory slightly un-

derestimates the width of the feature. This is due to the small amount of asymmetric

broadening of the feature caused by the time response of the lock-in amplifier.

6.3 Observation of spontaneous ionisation

Figure 6.4(c) and (d) shows that the creation of the EIT feature also produces a

current. Either ions (c) or electrons (d) can be observed simultaneously with the

optical signals, using two separate lock-in amplifiers. The signal-to-noise ratio of

the current under the conditions of figure 6.4 is ≥ 4 (for the 88Sr isotope), allowing

us to clearly resolve features and see a direct correspondence between the EIT and

electrical signals. We note that the optical and electrical signals have similar widths.

In contrast, previous experiments with alkali atoms observed significant broadening

of the electrical signal under EIT conditions [129].

In order to confirm that the detected charges were not simply created by other

mechanisms such as field ionisation close to the Faraday cup, we applied a static

deflection electric field across the interrogation region. A voltage was applied to
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Figure 6.5: (a) Measured DC Stark shift ∆S of the EIT feature (purple circles) along

the with theoretical prediction (blue solid line) as a function of applied electric field

E. (b-c) Ip as a function of applied electric field for Vbias = −1.5 V and Vbias = 1.5 V

respectively.

electrodes 1 and 2, and the magnitude of the resulting electric field E was cal-

ibrated by scanning the coupling laser and measuring the DC Stark shift of the

EIT resonance. For reference, the electric field required to field ionise the Rydberg

atoms is ≈ 66 V/cm [128]. The resulting Stark map is shown in 6.5(a). Due to the

laser polarisation, we couple most strongly to the mj = 0 state, since the electric

field is perpendicular to the propagation direction. The data are compared to a

calculated Stark map, which has two constituent parts. Firstly, the expected spatial

distribution of the electric field in the interrogation region is calculated using a fi-

nite element analysis method (Autodesk Inventor Simulation Mechanical package).

Subsequently, the electric field is converted into a predicted line shift by evaluating

the Stark shift in the single electron approximation [75], using the method of [139].

Stark maps are calculated by numerical integration of the Stark Hamiltonian, with

the necessary quantum defects obtained from [34]. The resulting prediction for the

Stark shift is in very good agreement with the data, as shown in figure 6.5(a), with



no adjustable parameters.

The corresponding peak values of the ion (electron) current Ip obtained at the

Stark-shifted resonance are shown in figure 6.5. As the applied electric field is

increased from 0 V/cm, we see a decrease in the both the electron and ion signal,

which is eventually suppressed to the noise floor of our detection system. The

electron signal diminishes at much lower fields than the ion signal, as one would

expect given the large mass difference of the two particles. These data clearly show

that the measured current originates in the interrogation region, and not at the

detector.

6.4 Origin of the spontaneous ionisation

There are a variety of mechanisms which can ionise Rydberg atoms [128]. We

classify these as either one-body or two-body. One-body ionisation may occur via

black-body photo-ionisation, or ionising collisions with background contaminants

in the beam apparatus. Two-body ionisation can occur due to Rydberg-Rydberg

collisions, or due to collisions between Rydberg atoms and another species present

in the atomic beam. In our experiments, the possible collision partners are atoms

in the ground or intermediate states, as well as ions or electrons. In this section,

we show that we can determine the dominant ionisation mechanism by combining

the simultaneous measurement of optical and electrical signals with quantitative

modelling of the optical response. Here we only consider the ion signal due to the

larger signal-to-noise ratio at lower probe absorptions.

Firstly, we varied the population of the Rydberg state at constant ground state

density by varying the power of the excitation lasers. The probe and coupling lasers

were investigated independently, as shown in figure 6.6. A comparison between

these experiments is sensitive to any processes that involve the intermediate state, as

changes in the the probe laser power also changes the population of the intermediate

state while varying the coupling laser does not.

The dashed lines in figure 6.6 are a theoretical prediction of the measured cur-

rent. This is derived from the OBE model, by assuming that the measured current is
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Figure 6.6: Current as a function of coupling beam power for Ωp/2π =

17.0± 0.3 MHz (a) and probe beam power for Ωc/2π = 2.7± 0.2 MHz (b). The

blue diamond and purple circle points correspond to 27 % and 32 % percentage ab-

sorption in the absence of the coupling beam respectively. The dashed lines are the

theoretical fit to the data.

dependent on the Rydberg state population, via a combination of one-body and two-

body terms: Ip ∝ a1NRyd+a2N
2
Ryd where NRyd is the number of Rydberg atoms. We

find excellent agreement between theory and experiment when the quadratic term

is neglected (i.e. a2 = 0), with χ2
ν ≤ 2.2 for all curves. This indicates that two-body

Rydberg-Rydberg processes do not play an observable role in the measured ionisa-

tion process. The current therefore provides a direct measurement of the Rydberg

state population. In addition, the agreement between theory and experiment shown

in figure 6.6(b) suggests that ionisation mechanisms involving the intermediate state

atoms do not play a significant role.

We also studied the density dependence of the current by varying the flux of the

atomic beam at constant laser power. The dependence of the optical response and

the current on probe beam absorption, Ap = 1− T0, is shown in figure 6.7. At low

density, the optical response is proportional to the probe absorption as expected,



before exhibiting a roll-off due to propagation effects. The roll-off is caused by

absorption of the probe beam as it propagates through the atomic beam, which

leads to a different optical response in different regions of the atomic beam. At high

density, this effect becomes significant. To take this into account in our model, we

divide the atomic beam into segments along the probe beam propagation direction,

following the procedure described in [102]. The OBE model is solved independently

in successive segments, with the absorption coefficient in the preceding segment used

to set the probe beam intensity in the next. The result is shown in figure 6.7(a)

and is in good agreement with the measured probe transmission. In contrast, the

current is non-linear in the probe absorption even at low density, strongly indicating

that the ionisation mechanism is dependent on the ground state density.
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Figure 6.7: (a) ∆T (green squares) and Ip (blue diamonds) as a function of Ap.

(b) ∆T as a function of Ip (purple circles). The dashed red curve shows the theo-

retical model for I ∝ NRyd. The solid blue curve shows the theoretical model for

Ip ∝ b1NRyd + b2NRydNGnd. The residuals between the data and the blue curve are

normalised to the error bar of each point and are shown below the main figure. The

dotted lines show Rν = ±2.
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Figure 6.7(b) shows the optical response ∆T , defined in figure 6.4 as the maxi-

mum change in transmission of the probe beam whilst the coupling laser is scanned

across the EIT resonance, as a function of the peak current Ip. By plotting the data

in this manner, we are able to directly connect both the optical and electrical sig-

nals. We assume that the Rydberg population calculated by the propagation model

is related to the current by a sum of one-body and two-body (Rydberg-ground state)

terms: Ip ∝ b1NRyd +b2NRydNGnd where b1 and b2 are fit parameters and NGnd is the

number of ground state atoms. Here we do not include any two-body terms associ-

ated with Rydberg-Rydberg interactions or the intermediate state as these process

have previously been excluded (see figure 6.6). The solid black curve shows a fit

with b1 and b2 as adjustable parameters. The best fit is obtained for b1 = 0, yielding

χ2
ν = 1.9. This result strongly indicates that the spontaneous ionisation process is

not dominated by any of the one-body processes described above. Further emphasis

is provided by the lack of agreement between theory and experiment for the dashed

red curve which represents Ip ∝ NRyd. Furthermore, we note that the absence of a

significant one-body ionisation rate in addition to a negligible two-body ionisation

rate in figure 6.6 also eliminates the possibility of collisions between ions and Ry-

dberg atoms. The ionisation that we observe is therefore dominated by collisions

between ground and Rydberg state atoms, in agreement with [29], and the proposals

of [129, 140]. The most likely cause is Penning ionisation, with the necessary extra

energy coming from the kinetic energy of the atoms [141]. Other processes such as

ion pair formation [142] cannot be excluded, but are expected to be less likely [29].

Using a rate equation approach and making a series of approximations, it is

possible to estimate the ionisation cross section σ of this process. We assume that

İIon = n̄σv̄rel. Here the dot denotes the time derivative, v̄rel is the relative velocity

between the ground and Rydberg state atoms and n̄ is an average density. The

relative velocity of the atoms in an effusive atomic beam differs from that of a

random 3D gas and is given by [143]

v̄rel = 2

√
2kBT

πM

(
7
√

2− 8

4

)
, (6.4.5)

where M is the mass and T ≈ 800 K is the temperature of the strontium atoms



respectively. The average density is defined as

n̄ =

∫
nGnR d3r = nGnRA

∫
e−Γrz/v̄ dz , (6.4.6)

where nG and nR are the ground and Rydberg state densities respectively and the

integral is performed over the interaction volume. The assumption of the interaction

volume is the dominant source of error. Here we assume that the interaction volume

is constrained by the the area of the intersection between the probe and atomic

beams A, and the distance from the probe beam to the Faraday cup. We integrate

over an exponentially decreasing Rydberg distribution due to spontaneous emission.

We also assume that the atoms travel with an average velocity v̄ = 390 m s−1 towards

the Faraday cup. Here, nG = 5× 1014 m−3 is determined from the absorption of the

probe beam. Using the OBE model, we estimate that the Rydberg population is

nR = 0.03 nG. A = 6.9× 10−6 m2 is calculated form the 1/e2 diameter of the probe

beam and the width of the atomic beam. The distance between the excitation beams

and the Faraday cup is ≈ 30 mm. Using the peak ion signal shown in figure 6.4 and

taking into account the gain of the Faraday cup, İIon = 1× 109 s−1. Using these

numbers, we measure the ionisation cross section to be σ = 0.6± 0.2 σgeo where

σgeo = π (n∗)4 a2
0 is the geometric area of the Rydberg atom and n∗ is the effective

quantum number [130]. To first approximation, one would expect that the cross

section is the order of σgeo [128], and therefore our value appears reasonable.

We return to the evolution of the width of the optical and electrical features with

ground state number density. Previous studies have observed significant broadening

of the optical and/or electrical response due to pressure broadening [129] or inter-

actions [140, 144, 145]. Figure 6.8 shows the measured full-width at half-maximum

(FWHM) of the EIT and current lineshapes as a function of ground state number

density. It is clear that we do not observe any significant broadening over the range

of densities we have studied. The measured width of the optical and electrical fea-

tures are close to those predicted by the optical Bloch equation model, 8.9 MHz and

11.5 MHz respectively. In particular the model correctly reproduces the difference

in width between the two signals. The small amount of extra broadening ≈ 0.7 MHz

that we observe is caused by the time response of the lock-in amplifier.
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Figure 6.8: Full-width at half-maximum of the EIT feature (blue diamonds) and the

current feature (pruple cirlces) as a function of Ap. The dashed lines are fits to the

data where the gradient has been constrained to be zero.

6.5 Outlook

When the atomic density is sufficiently high, interactions can play a significant role

and lead to non-linear effects. A case where interactions do appear to play a decisive

role is the observation of Rydberg-mediated optical bistability [144,145], which has

lead to the observation of non-equilibrium phase transitions as well as detection

methods for terahertz radiation [146]. However, while theory has shown that an

effective mean-field description of the system leads to quantitative agreement with

the experiments [81,147], the microscopic nature of this effective interaction remains

unclear. In particular, the relative importance of dipole-dipole processes (including

e.g. superradiance) and charged particles is an open question [140,145]. The ability

to detect both optical and electrical signals in our experimental apparatus offers an

opportunity to shed more light on this process.

The detection of charged particles in the atomic beam is facilitated by the use

of lock-in detection. As this method requires amplitude modulation of the coupling
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Figure 6.9: Optical and ion signals as a function of coupling beam detuning. The

purple and blue lines correspond to scanning up and down in frequency respectively.

(a-b) and (c-d) correspond to T0 = 0.86 and 0.37 respectively.

beam, it is not possible to observe a bistable signal. We therefore replace the lock-in

detection with a low-noise current amplifier4, which allows us to measure the current

flowing through the Faraday cup and hence detect the charged particles without the

need for modulation. To enter a regime where the Rydberg density is large, both the

probe and coupling beam powers were increased to 70 µW and 54 mW respectively.

Figure 6.9 shows the optical and ion signals at low (a-b) and high atomic flux (c-d).

At low atomic flux, we observe a symmetric optical and ion signal, similar to that

detailed previously in the chapter. However as the atomic flux is increased, we are

able to observe simultaneous bistability in both the optical and ion signals, which

is the first observation of electrical bistability in an atomic vapour. This indicates

that charged particles play a role in the formation of optical bistability, and support

4Femto DPLCA-200
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the interpretation of [140]. The ability to observe and connect the bistability in

both the optical and electrical signals may shed further insight into this mechanism,

however this is beyond the scope of this work.

6.6 Summary

In this chapter, we have shown that the measurement of Rydberg EIT leads to

the production of charged particles which can be measured with a simple Faraday

cup. By quantitatively connecting the optical and electrical signals, we were able

to deduce the origin of the spontaneous ionisation process. This is dominated by

Rydberg-ground state collisions, with a measured cross section of σ = 0.6± 0.2 σgeo.

We have also shown that when the atomic density is sufficiently large, we are able to

observe simultaneous optical and electrical bistability. This is the first observation

of electrical bistability in an atomic vapour, and the ability to link both the optical

and electrical signals may shed further light on the mechanism behind bistability in

atomic vapours.



Part III

Conclusions and Outlook
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Chapter 7

Conclusions

In this thesis, we have developed the pre-requisite experimental tools to create a spin-

squeezed atomic clock [7] based upon an array of single strontium atoms. We have

demonstrated the admixture of a Rydberg state into the narrow intercombination

transitions of strontium, from both an experimental and theoretical basis. We have

also detailed the first known observation of a strontium microtrap, a crucial tool to

creating arrays of single strontium atoms.

In chapter 3, we demonstrated the coherent admixture of a Rydberg state into

the narrow intercombination transitions in strontium. To fully understand this

process, we developed a quantitative model of a nMOT operating on the narrow

5s2 1S0 → 5s5p 3P1 transition, by combining a quantum treatment of the light scat-

tering process with a Monte-Carlo simulation of the atomic motion. We have shown

that the model does not only reproduce the steady-state dynamics of the nMOT,

such as position and temperature, but the model is also able to quantitatively repro-

duce transient dynamics. This quantitative understanding is a critical foundation

for understanding effects beyond the physics of a nMOT, such as Rydberg dressing.

The observation of Rydberg-dressed interactions in our experiment is limited

by the dressing laser power and shape, as well as radiation pressure forces [46]. A

clear direction for this work is to upgrade the 319 nm laser system to increase the

available power, as well as using beam shaping optics to create a dressing beam

with a uniform intensity profile. With these experimental improvements, it should

147



be possible to observe clear signatures of Rydberg-dressed interactions in a nMOT.

With the additon of high NA in-vacuo lenses, this may lead to observations of

exciting phases of matter such as the formation of Rydberg supersolids [48, 148].

Chapter 4 details the design and construction of the new experimental apparatus

used to create a microtrap of strontium. We considered the optimum wavelengths

and loading conditions of a strontium microtrap by calculating the dynamic polar-

isability for all states relevant to laser cooling of strontium. We have shown that

the most efficient loading mechanism is direct loading from a nMOT. The new ex-

perimental innards has seen a number of upgrades, the most significant of which

is the pair of in-vacuo aspheric lenses which facilitates the creation of a microtrap.

We have also performed major upgrades to the laser systems used in the exper-

iment, in particular the 689 nm laser system, observing marked improvements in

laser stability.

We showed in chapter 5 the first known observations of a microtrap of strontium,

directly loaded from a nMOT. We are currently not able to reach the regime of

single atom distinguishability as the atoms are rapidly lost form the microtrap.

The reason for this is due to the large differential AC Stark shift of the 5s2 1S0 →
5s5p 1P1 transition and the lack of sub-Doppler cooling. Sub-Doppler cooling in the

alkali-metal atoms facilitates off-resonance imaging of atoms in a microtrap without

appreciable heating. However, due to the lack of hyperfine structure in 88Sr, the

temperature of the atoms is limited by Doppler theory which results in a rapid

heating fo the atoms in the microtrap. It is therefore not possible to enter a regime

where the microtrap depth is significantly larger than the atomic temperature. This

in turn limits the amount of detected photons per atom before the atom is lost

from the microtrap. We have proposed a number of solutions to this problem, such

as imaging using a tunable imaging laser, imaging on the 5s5p 3P1 → 5s6s 3S1

transition, or using 87Sr where sub-Doppler cooling is achievable. These proposals

should increase the atomic lifetime in the microtrap during imaging, allowing us to

enter the regime of single atom distinguishability, which is critical for the creation

of an array of single strontium atoms. Following the detection of single strontium

atoms, the next is goal is to create an array of microtraps using an spatial-light-
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modulator.

We have characterised the microtrap by a series of measurements of the trap

frequency, temperature and lifetime. We have explored the pitfalls of these mea-

surements, and shown in particular that the microtrap depth must be much greater

than the atomic temperature when measuring microtrap frequencies to ensure that

the harmonic approximation to the trapping potential is valid. We have also shown

that it is not possible to load directly into a deep microtrap directly from a nMOT,

via thermal and spectroscopic measurements of the atoms in the microtrap. This is

because it is possible to load atoms into subsidiary maxima in the trapping potential,

which is only feasible due to the low initial temperature of the atoms in the nMOT

(∼ 1 µK). We have also performed shelving spectroscopy of the atoms in the mi-

crotrap, leading to the first measurements of the polarisability of the 5s5p 3P1 state

at 532 nm. This data indicates that the theoretical polarisabilities are inconsistent

with the experimental data, and that the predicted magic wavelength at 500 nm is

in fact at a higher wavelength. This discrepancy between theory and experiment is

most likely due to inaccuracies in the measurement of the relevant transition rates.

Another direction which is of particular interest is optically trapping both ground

and Rydberg state atoms in the same microtrap. One of the challenges of this

experiment is the experimental evidence of Rydberg trapping, given the relatively

short lifetime of the Rydberg states. We propose to excite a single atom in a deep

microtrap to a high n Rydberg state, where the microtrap oscillation period is much

greater than the Rydberg state lifetime. A pulse at 408 nm would be overlapped with

the microtrap to ionise the Rydberg atom, after which the ion can be detected on the

MCP. By performing this measurement as a function of time, it should be possible

to determine whether the Rydberg atom is optically trapped in the microtrap. This

would result would have a large impact in the field of quantum simulation, as the

ability to trap both ground and Rydberg state atoms in a common optical trap

is a pre-requisite for many quantum state manipulations involving Rydberg states

[22,23].

Presented finally in chapter 6 is the demonstration of a novel method for probing

interaction effects in a thermal beam of strontium atoms using simultaneous mea-



surements of Rydberg EIT and spontaneously created ions or electrons. Due to the

creation of Rydberg atoms in the strontium microtrap, understanding these ionisa-

tion and interaction mechanisms may be of significant importance in future work.

By quantitatively connecting the optical and electrical signals, we were able to de-

duce the origin of the spontaneous ionisation mechanism. We have also shown that

by sufficiently increasing the Rydberg density, it is possible to observe non-linear

effects such as bistability. We have demonstrated the first known observation of

electrical bistability, and the simultaneity of the measurements of both the optical

and electrical signals may shed further light onto the debated mechanism behind

this process [140,144,145].
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for coherent phenomena involving Rydberg atoms in thermal vapor cells. Phys.

Rev. Lett., 110:123002, 2013.
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Appendix A

Experimental apparatus

A.1 MCP wiring

Figure A.1 shows the internal connections to the MCP (left), as well as the connec-

tions to the feedthrough on top of the chamber (right). Note that the images were

taken when the chamber was inverted.

D

C

B

A D

C

B

A

Figure A.1: Wiring of the MCP in the vacuum chamber. The labelling is as follows:

A - Mesh, B - Anode, C - MCP In, D - MCP Out.
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A.2. Electrode wiring 167

A.2 Electrode wiring

The electrodes are connected to a multi-pin feedthrough which is alphabetically

labelled. Figure A.2 shows the electrical connections to the electrodes on top (left)

and bottom (right) of the experimental chamber. Table A.1 shows the connections

of vertically opposed electrode pairs in the vacuum chamber.

FA

B

C D

E

JK

L

M G

H

MCP

Figure A.2: Wiring of electrodes in the vacuum chamber. The top and bottom

electrodes are shown in the left and right image respectively. The alphabetical

labelling refers to the labelling of the feedthrough connector.

Top Bottom

A G

B H

C J

D K

E L

F M

Table A.1: The table shows the vertically opposed electrode pairs in the vacuum

chamber.



A.3 Viewports

Here we detail the viewports of the main chamber and their respective anti-reflection

coatings. These are detailed in figure A.3. The viewports on the vertical axis are

not shown on this diagram. These are anti-reflection coated for 461 and 689 nm.

Sr beam
Zeeman beam

Kodial

Microtrap

AR 450− 1050 nm

Microtrap

AR 450− 1050 nm

MOT Beam

AR 461 + 689 nm

MOT Beam

AR 461 + 689 nm

MOT Beam

AR 461 + 689 nm

MOT Beam

AR 461 + 689 nm

Fused silica

uncoated

Fused silica

uncoated

Fused silica

uncoated

Fused silica

uncoated

Figure A.3: Diagram indicating the viewports on each flange of the main chamber.

The vertical axis has AR 461 + 689 nm coated.

.



Appendix B

MOT coil relay circuit

The circuit consists of two non-latching relays1 controlled via an external TTL gate

voltage. This is shown in figure B.1. A diode is placed across each relay in order

to protect the FET from back-EMFs produced by the switching of the relays. The

circuit is designed to be switched when there is no current flow in the coils, however

upon switching there is a large voltage spike from the current supply to the coils. In

order to protect the servo circuit, a 12 V Zener diode is connected across the drain

and source pins of the MOSFET.

V+

V−

12 V

TTL
1 kΩ

MOT Coil

MOT Coil

Figure B.1: Circuit diagram of the relay used to switch from anti-Helmholtz to

Helmholtz coil configuration. The grey shaded boxes define the relays.

1TE Connectivity SPDT Non-Latching Relay PCB Mount, 12 V DC Coil, 5 A, RS 718-1752
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