
Durham E-Theses

Training Single Walled Carbon Nanotube based

Materials to perform computation

QAISER, FAWADA

How to cite:

QAISER, FAWADA (2018) Training Single Walled Carbon Nanotube based Materials to perform

computation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/12893/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12893/
 http://etheses.dur.ac.uk/12893/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Training Single Walled Carbon
Nanotube based Materials to

perform computation

Fawada Qaiser

A Thesis presented for the degree of

Doctor of Philosophy

School of Engineering

University of Durham

England

January 2018

Dedicated to
This thesis is dedicated to my children, Tahreem and Ibrahim.

You have made me stronger, better and more fulfilled person than I could have

ever imagined.

Training Single Walled Carbon Nanotube based

Materials to perform computation

Fawada Qaiser

Submitted for the degree of Doctor of Philosophy

January 2018

Abstract

This thesis illustrates the use of Single Walled Carbon Nanotube based materials

for the solution of various computational problems by using the process of computer

controlled evolution. The study aims to explore and identify three dimensions of a

form of unconventional computing called, ‘Evolution-in-materio’. First, it focuses

on identifying suitable materials for computation. Second, it explores suitable

methods, i.e. optimisation and evolutionary algorithms to train these materials

to perform computation. And third, it aims to identify suitable computational

problems to test with these materials.

Different carbon based materials, mainly single walled carbon nano-tubes with

their varying concentrations in polymers have been studied to be trained for

different computational problems using the principal of ‘evolution-in-materio’.

The conductive property of the materials is used to train these materials to

perform some meaningful computation. The training process is formulated as

an optimisation problem with hardware in loop. It involves the application of an

external stimuli (voltages) on the material which brings changes in its electrical

properties. In order to train the material for a specific computational problem,

a large number of configuration signals need to be tested to find the one that

transforms the incident signal in such a way that a meaningful computation can

iv

be extracted from the material. An evolutionary algorithm is used to identify this

configuration data and using a hardware platform, this data is transformed into

incident signals. Depending on the computational problem, the specific voltages

signals when applied at specific points on to the material, as identified by an

evolutionary algorithm, can make the material behave as a Logic gate, a tone

discriminator or a data classifier.

The problem is implemented on two types of hardware platforms, one a more

simple implementation using mbed (a micro- controller) and other is a purpose-built

platform for ‘Evolution-in-materio” called Mecobo.

The results of this study showed that the single walled carbon nanotube

composites can be trained to perform simple computational tasks (such as tone

discriminator, AND, OR logic gates and a Half adder circuit), as well as complex

computational problems such as Full Adder circuit and various binary and multiple

class machine learning problems.

The study has also identified the suitability of using evolutionary algorithms

such as Particle Swarm Optimisation algorithm (PSO) and Differential evolution

for finding solutions of complex computational problems such as complex logic

gates and various machine learning classification problems.

The implementation of classification problem with the carbon nanotube based

materials also identified the role of a classifier. It has been found that K-nearest

neighbour method and its variant kNN ball tree algorithm are more suitable to

train carbon nanotube based materials for different classification problems.

The study of varying concentrations of single walled carbon nanotubes in fixed

polymer ratio for the solution of different computational problems provided an

indication of the link between single walled carbon nanotubes concentration and

ability to solve computational problem.

The materials used in this study showed stability in the results for all the

v

considered computational problems. These material systems can compliment

the current electronic technology and can be used to create a new type of low

energy and low cost electronic devices. This offers a promising new direction for

evolutionary computation.

Declaration

I hereby declare that the work carried out in this thesis has not been previously

submitted for any degree and is not currently being submitted in candidature for

any other degree

Copyright© 2018 by Fawada Qaiser.

The copyright of this thesis rests with the author. No quotations from it should

be published without the author’s prior written consent and information derived

from it should be acknowledged.

vi

Publications

0.1 Publications from this work

� F. Qaiser, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pearson, M. C. Petty,

“Training disordered carbon nanotubes to solve machine learning problems

using kNN and PSO algorithms”, International Journal of Unconventional

Computing, January, 2018 under review

� M. K. Massey, A. Kotsialos, F. Qaiser, D. A. Zeze, C. Pearson, M. C.

Petty, “Computing with Carbon Nanotubes: Optimization of Threshold

Logic Gates using Disordered Nanotube/Polymer Composites”, Journal of

Applied Physics, March, 2015

� D. Volpati, M. K. Massey, D. W. Johnson, A. Kotsialos, F. Qaiser, C.

Pearson, K. S. Coleman, G. Tiburzi, D. A.Zeze, and M. C. Petty, “Exploring

the alignment of carbon nanotubes dispersed in a liquid crystal matrix using

coplanar electrodes”, Journal of Applied Physics,February 2015

� A. Kotsialos, M. K. Massey, F. Qaiser, D. A. Zeze, C. Pearson, M. C.

Petty, “Logic Gate and Circuit Training on Randomly Dispersed Carbon

Nanotubes”, International Journal of Unconventional Computing, 10(5):473

- 497, 2014

vii

0.2. Conferences and poster presentations viii

0.2 Conferences and poster presentations

� F. Qaiser, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pearson, M. C. Petty,

“Training disordered carbon nanotubes based materials as tone discriminators”,

School of Engineering & Computing Sciences Durham University, annual

research day, October, 2017 (Poster presentation)

� F. Qaiser, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pearson, M. C.

Petty, “Manipulating the conductance of single-walled carbon nanotubes

based thin films for evolving threshold logic circuits using particle swarm

optimisation”, IEEE Congress on Evolutionary Computation (CEC), July,

2016

� F. Qaiser, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pearson, M. C. Petty,

“Solving simple computional tasks using disordered carbon nanotubes”, The

Royal Society meeting, THEO MURPHY INTERNATIONAL SCIENTIFIC

MEETING, Heterotic computing: exploiting hybrid computational devices,

November, 2013 (Poster presentation)

Acknowledgements

I would like to express my deepest gratitude to my supervisors Dr. Apostolos

Kotsialos, Professor Dagou Zeze and Professor Michael Petty for their collegial

guidance and mentorship throughout this project. They have been a constant

source of inspiration, teaching and support from the first day I arrived at Durham.

I strongly believe they have provided me with the best start of my research career.

I am also grateful for their moral and emotional support along the way. My earnest

thanks to Dr.Kotsialos, for his valuable advice, constructive criticism, positive

appreciation and counsel throughout the course of the research which led to the

successful completion of my PhD. Under his guidance, I successfully overcame

many difficulties and learned a lot.

I would also like to thank Dr. Mark Kieran Massey, Dr. Chris Groves and Dr.

Chris Pearson, who have assisted me with my PhD work.

A special gratitude to the research fund. The research is supported by European’s

Community Seventh Framework Programme (FP7/2007-2013) under the grant

agreement No. 317662 (NAno Scale Engineeing for Novel COmputaion using

Evolution - NASCENCE (http://www.nascence.eu)).

Finally, I would like to express my extra special gratitude to my parents who

have provided me with moral and emotional support in my life. Without their

prayers, love and support, I would not have got nearly as far as possible. I am

also grateful to my husband, family members, my siblings and friends who have

ix

0.2. Conferences and poster presentations x

supported me along the way.

And last but by no means least, also to everyone in the office, it was great

sharing office with all of you during last four years.

Thank you for all your encouragement!

Contents

Abstract iii

Declaration vi

0.1 Publications from this work . vii

0.2 Conferences and poster presentations viii

Acknowledgements ix

1 Motivation 1

1.1 Research problem . 5

1.2 Hypothesis . 6

1.3 Outline . 6

1.4 Original contribution . 8

2 Literature review 11

2.1 Materials for computation . 12

2.2 Optimisation algorithms . 15

2.3 Evolutionary computation . 17

2.4 Evolutionary algorithms . 18

2.5 Evolvable Hardware . 22

2.5.1 Evolvable motherboard . 25

xi

Contents xii

2.6 Evolution in Materio . 28

2.7 Recent work using EIM . 31

2.8 Carbon based materials . 33

2.8.1 Carbon nanotubes . 33

2.8.2 Carbon nanotubes and polymers 35

2.8.3 Reduced graphene oxide 35

2.9 Conclusions . 37

3 Experimental methods 38

3.1 Single walled carbon nanotube composites 38

3.1.1 Single Walled Carbon Nanotubes (SWCNTs) / Poly MethylMethacrylate

(PMMA) [1] . 39

3.1.2 SWCNTs/PBMA [1] . 43

3.1.3 Reduced Graphene oxide composites 45

3.2 Micro electrode arrays . 45

3.3 Signal generation device (SGD) 46

3.4 Mecobo - a purpose built platform for EIM [2] 48

4 Optimisation algorithms and computational problems 54

4.1 Introduction . 54

4.2 Nelder-Mead algorithm . 55

4.2.1 The algorithm . 56

4.3 Particle Swarm Optimisation . 62

4.3.1 The algorithm . 63

4.3.2 Shortest position value rule (SPV) 65

4.4 Differential evolution (DE) . 66

4.4.1 The algorithm . 67

4.4.2 Parameter selection . 69

Contents xiii

4.5 Computational problems . 71

4.5.1 Threshold logic gates . 71

4.5.2 Classification . 71

4.5.3 Tone discrimination . 72

4.6 Summary . 72

5 Logic gates/circuit training in SWCNTs/PMMA composites using

mbed 74

5.1 Introduction . 75

5.2 Optimisation procedure . 77

5.2.1 Effect of changing connections 82

5.3 Results and discussion . 83

5.3.1 Logic gates/circuits using Nelder-Mead algorithm 83

5.3.2 OR gate . 89

5.3.3 Half adder . 93

5.3.4 Logic circuits using Differential Evolution algorithm 96

5.3.5 Effect of changing connections 103

5.3.6 Particle Swarm algorithm vs Nelder-Mead algorithm . . . 105

5.4 Resistors vs SWCNTs? . 105

5.5 Stability of results . 108

5.6 Conclusions . 108

6 Studying the correlation between SWCNTs concentration and

computing 112

6.1 Introduction . 112

6.2 Viscosity and electrical characteristics of

SWCNTs/PBMA composites . 114

6.2.1 Viscosity measurements 114

Contents xiv

6.2.2 Electrical measurements [3] 117

6.3 Results and discussion . 119

6.4 Conclusions . 123

7 Training SWCNTs/PMMA composites to solve complex logic

circuits using Particle Swarm algorithm on Mecobo 125

7.1 Introduction . 126

7.2 Material training . 127

7.3 Results and discussion . 131

7.3.1 Logic circuit (A1 + A2 + A3)⊕ (A1A2A3) 132

7.3.2 Half-adder . 135

7.3.3 Full-adder . 139

7.4 Conclusion . 144

8 Training SWCNTs/Polymer composites as a tone discriminator145

8.1 Introduction . 146

8.2 Material training . 146

8.3 Results and discussion . 150

8.3.1 Comparison of different concentrations of SWCNTs in fixed

polymer for tone discriminator problem 154

8.4 Conclusions . 160

9 Training SWCNTs/Polymer composites as a data classifier 162

9.1 Introduction . 162

9.2 Classification rule 1: Comparison of output with a threshold value 163

9.3 Classification rule 2: Comparison of two outputs 164

9.4 Classification rule 3: kNN algorithm 164

9.5 Classification rule 4: kNN ball tree algorithm 165

9.5.1 Ball tree . 166

Contents xv

9.5.2 Ball tree partitioning . 167

9.5.3 Search in ball tree . 168

9.5.4 Training problem formulation 170

9.5.5 Percentage classification error (PCE) 171

9.6 Testing Phase . 172

9.6.1 Test problems . 173

9.7 Results and discussion . 176

9.7.1 Comparison of four different classification rules for Binary

data classification . 176

9.7.2 Binary data classification using k-Nearest Neighbour (kNN)

ball tree algorithm . 179

9.7.3 Multiple class data classification 184

9.8 Conclusions . 188

10 Conclusions and future work 190

10.1 Conclusions . 190

10.1.1 Material systems . 191

10.1.2 Suitable hardware . 191

10.1.3 Optimisation algorithms 192

10.1.4 Computational problems 193

10.2 Thesis conclusion . 194

10.3 Suggestions for future work . 195

List of Figures

2.1 The general structure of an evolutionary algorithm 19

2.2 A general flow chart of an evolvable hardware system [4] 23

2.3 The simplified representation of an evolvable motherboard 26

2.4 Schematic of LCAP [5]. The part of genotype decides which external

connectors can act as input, output or configuration. The magnitude

of these voltages is also provided by the genotype received form

computer. 28

2.5 Conceptual overview of Evolution-in-materio (EIM) [5] 29

2.6 Conceptual model of SWCNTs and MWCNTs obtained form graphene

sheets (courtesy of K. Banerjee/California University, Santa Barbara).

[6] . 34

2.7 Graphene as a building block of Bucky balls, carbon nanotubes,

graphite (from left to right) [7] . 36

2.8 Reduced graphene oxide [8] . 36

3.1 The dispersion of carbon nanotubes over the electrodes 40

3.2 Optical micro-graphs of the various nanotube concentrations deposited

on gold electrode arrays . 41

3.3 Current versus voltage graph . 42

3.4 Current versus SWCNTs wt. % of PMMA graph 43

xvi

List of Figures xvii

3.5 Electrode array with SWCNTs/PMMA (0.1% CNT) material (left)

and an optical micrograph of the electrodes (right) 43

3.6 Scanning electron microscope image of a typical region of a spin

coated SWCNT/PBMA composite 44

3.7 Electrode array layout showing (a) the mask used for photo-lithography

and (b) the completed array in a PCB edge connector. 46

3.8 A 16 × 16 electrode array layout showing the mask used for spin

coated SWCNTs/PBMA samples. 47

3.9 The schematic of signal generation device connected with the material 48

3.10 The complete setup to conduct EIM experiments. 49

3.11 Mecobo hardware/software interface with material sample. 50

3.12 An example of implementation of track based model of scheduler. 52

3.13 Mecobo block diagram . 52

3.14 Mecobo overview- Hardware interface implementation. 53

4.1 Reflection of simplex with two dimensions (a triangle). The original

simplex is shown with dotted line. 57

4.2 Expansion of a simplex. The original simplex is shown with dotted

line . 58

4.3 Inside, outside contractions and shrink operations of a Nelder-

Mead simplex an The original simplex is shown with dotted line. . 60

4.4 . 69

4.5 The general construction of a classification procedure 72

5.1 The general idea to train the material to solve a computational

problem . 76

5.2 Randomly dispersed network of SWCNTs over electrodes 79

List of Figures xviii

5.3 The division of range of output M into staggered bands to be

assigned to input pairs, implementing the equation (5.2.2) 80

5.4 Diagrammatic representation of different configurations of micro-controller

pins . 84

5.5 Configuration of micro-controller pins as input 85

5.6 The AND gate . 86

5.7 Output voltage measured for random binary inputs for AND gate:

outputs spread across a threshold value (red line), that is kept high

to measure an output when both inputs are high (1,1) 88

5.8 The OR gate . 90

5.9 Output voltage measured for random binary inputs for OR gate:

outputs spread across a threshold value (red line), that is kept low

to measure a high output when any of input is high i.e. (0, 1)(1, 0)(1, 1) 91

5.10 The half adder circuit . 93

5.11 Output voltage measured for random binary inputs for half adder:

outputs spread across three thresholds. 96

5.12 The Logic circuit (AB,A+B) . 97

5.13 Output voltages measured for the random binary input pairs for

the circuit (AB,A+B) . 99

5.14 The Logic circuit (AB +BC) . 100

5.15 Output voltages measured for the random binary input triplets for

the circuit (AB +BC) . 101

5.16 The Full adder . 103

5.17 Output voltages measured for the random binary input triplets for

the full adder circuit . 104

5.18 . 107

List of Figures xix

6.1 Comparison of shear stress and shear rate in various SWCNTs/

Poly Butyl Methacrylate (PBMA) composites 115

6.2 Comparison of viscosity versus SWCNTs [3] 117

6.3 Comparison of current and voltage for various SWCNTs concentrations

[3] . 118

6.4 Poole-Frankel fit for low (0.11%) and high (3.20%) concentrations

of SWCNTs [3] . 120

7.1 An example of arrangement of input, output and configuration

electrodes . 129

7.2 Material response for the (A1+A2+A3)⊕(A1A2A3) circuit; output

measurements and thresholds. 134

7.3 Pin assignment in 5 different optimal solutions achieved for the

(A1 + A2 + A3)⊕ (A1A2A3) circuit 135

7.4 Material response for the half-adder circuit; output measurements

and thresholds. 137

7.5 Pin assignment, with inputs x1, x2 and outputsM1,M2 in 5 different

optimal solutions achieved for the Half adder circuit 139

7.6 Material response for the full-adder circuit; output measurements

and thresholds. 141

7.7 Pin assignment in 5 different optimal solutions achieved for the Full

adder circuit . 143

8.1 General overview of the system of training the material as a tone

discriminator . 147

8.2 An example of arrangement of input, output and configuration

electrodes . 149

8.3 Configuration voltages trajectories 152

List of Figures xx

8.4 Objective function’s convergence trajectory 152

8.5 Output measurements with their respective frequencies during verification

phase . 153

8.6 Comparison of two outputs at frequencies below and above 100 kHz

for material 1.49% SWCNTs/PBMA 156

8.7 Comparison of two outputs at frequencies below and above 100 kHz

for material 0.99% SWCNTs/PBMA 157

8.8 Comparison of two outputs at frequencies below and above 100 kHz

for material 2.37% SWCNTs/ PBMA 158

9.1 (a) Set of balls in a plane (b) a corresponding binary tree for these

ball (c) Subsets of balls in a ball tree 166

9.2 Partitioning in ball tree . 168

9.3 Spiral training and test data set. 173

9.4 Box training and test data set. 174

9.5 Iris training and test data set. 176

9.6 Data sets with varied shared areas and varied gaps 181

List of Tables

3.1 List of different concentrations of SWCNT/PMMA composites used

for initial experiments . 41

3.2 List of different concentrations of SWCNT/PBMA composites used

for initial experiments . 45

3.3 Mecobo’s adjustable parameters 51

5.1 Truth table for AND gate . 86

5.2 Optimal solution for AND gate, (SWCNTs 1.3wt% fraction of PMMA

(5.0%)) . 87

5.3 AND gate results with varying SWCNTs/PMMA concentrations . 89

5.4 Truth table for OR gate . 90

5.5 Optimal solution for OR gate, (SWCNTs 1.3 wt% fraction of PMMA(5.0%)) 90

5.6 OR gate results with varying SWCNTs/PMMA concentrations . . 92

5.7 Truth table for half adder circuit 93

5.8 Optimal solution for half adder circuit AB,A⊕B) 94

5.9 Half adder circuit results with varying SWCNTs/PMMA concentrations 95

5.10 Optimal solution for the circuit: (AB, A+B) 98

5.11 Optimal solution for (AB +BC) circuit in Volts except for β . . 100

5.12 Full adder’s truth table . 102

5.13 Optimal solution for full adder circuit in Volts except for β . . . 103

5.14 Fitness values at different micro-controller pins 105

xxi

List of Tables xxii

5.15 Performance of PSO vs Nelder-Mead algorithm for solving an AND 106

5.16 Performance of PSO vs Nelder-Mead algorithm for solving an OR

gate . 106

5.17 Results showing optimal solution for AND, OR and half adder

circuit with the 1.3 CNT wt% fraction of PMMA (5.0) 110

6.1 Viscosity and power law index values for curve fitting experimental

data in Figure 6.1 [3] . 116

6.2 Average number of function evaluations during 5 different runs to

train various concentrations of SWCNTs/PBMA composites for

AND, OR and Half Adder circuit 121

6.3 Fitness function values for various concentrations of SWCNTs/PBMA

composites for AND, OR and Half adder circuit 122

7.1 Truth table for (A1 + A2 + A3)⊕ (A1A2A3). 133

7.2 Optimal solution for logic circuit (A1 + A2 + A3)⊕ (A1A2A3) . . . 133

7.3 Pin assignment for various optimal solutions for logic circuit (A1 +

A2 + A3)⊕ (A1A2A3) . 134

7.4 Truth table for half adder . 135

7.5 Optimal solution for half-adder circuit. 138

7.6 Pin assignment for various optimal solutions for Half adder logic

circuit . 138

7.7 Truth table for the full-adder circuit. 140

7.8 Optimal solution for the full-adder circuit 142

7.9 Pin assignment for various optimal solutions for Full adder logic

circuit . 142

7.10 Training errors and verification accuracy from 5 different runs for

three logic circuits . 144

List of Tables xxiii

8.1 Optimal solution for discriminating frequencies below and above

100 kHz using material SWCNTss(0.75%)/ PMMA 151

8.2 Optimal solutions for different concentrations of SWCNTs in fixed

polymer (PBMA) for the solution of tone discrimination problem 159

8.3 Average Training and testing accuracies for tone discriminator problem

using different concentrations of SWCNTs from 6 different runs. . 160

9.1 Description of multiple class data sets and their attributes 175

9.2 Classification of Binary data using material: SWCNT(0.1%)/PMMA

and three different classification rules 178

9.3 PCE during training and testing phase for various binary data sets 179

9.4 Comparison of percentage overlap area of two classes in the given

data set and PPercentage classification error (PCE) 182

9.5 Comparison of percentage gap between two classes in the given

data set and PCE . 183

9.6 Binary data classification: (PCE) Training and (PCE) test of different

concentrations of SWCNTs in fixed polymer(PBMA) 184

9.7 Average PCE for some benchmark classification problems 186

9.8 Different tests to verify the effectiveness of methodology used to

train the SWCNTs materials as a data classifier 187

9.9 Multiple data classification: Training and test accuracies of different

concentrations of SWCNTs /PBMA 188

Abbreviations

ADC Analogue-to-Digital. 44

CNTs Carbon Nanotubes. 5, 7, 40, 184

DAC Digital-to-Analogue. 44, 45

DE Differential Evolution. 9, 62–65

EA Evolutionary Algorithms. 8, 18, 21, 22

EHW Evolvable Hardware. xi, 22, 24

EIM Evolution-in-materio. xvi, 5, 6, 8–11, 29–31,

36, 53, 69, 71, 103, 106, 119, 120, 151, 152,

164, 165, 174, 177, 179, 182–185

FPGA Field Programmable Gate arrays. 24, 25, 27,

52, 53

FPMA Field Programmable Array Matter. 30, 53

GA Genetic Algorithm. 8, 24, 25

GO Graphene oxide. 33, 34

xxiv

Abbreviations xxv

kNN k-Nearest Neighbour. xv, 152–154, 157, 158,

160, 162–166, 171–177

LCAP Liquid Crystal Analogue Processor. 28

NASCENCE NAnoSCale Engineering for Novel

Computation using Evolution. 32

NM Nelder-Mead algorithm. 16, 181

NN Nearest Neighbour. 153

PBMA Poly Butyl Methacrylate. xix, xx, xxii, xxiii,

37, 108, 109, 113, 116, 117, 136, 144–149, 171,

176

PC Personal Computer. 24

PCB Printed Circuit Board. 44

PCE Percentage classification error. xxiii, 164, 166,

168, 170, 171, 174, 175, 177

PMMA Poly MethylMethacrylate. xii, xiii, xvi, xxii,

37, 38, 40–42, 69, 70, 72, 78, 100–105, 107,

119, 136, 140, 141, 149, 162

PSO Particle Swarm Algorithm. 7–10, 17, 53,

58–61, 119, 120, 125, 126, 135, 137–140, 143,

161, 162, 167, 172, 174, 175, 181, 183

rGO reduced graphene oxide. 34, 37

Abbreviations xxvi

SPV Shortest Position Value. 7, 61, 62, 125, 135,

137, 181

SWCNTs Single Walled Carbon Nanotubes. xii, xiii,

xix, xx, xxii, xxiii, 7, 8, 10, 31–33, 37, 38, 42,

66, 67, 69–72, 77, 78, 100–105, 107–110, 112,

113, 116–119, 135, 136, 140, 141, 144–150,

162, 171, 172, 174, 180–184

Chapter 1

Motivation

Computation is defined as any type of calculation that is performed using arithmetic

or non-arithmetic steps and follows a well defined method. It is referred as a

physical phenomenon that occurs within an enclosed physical system, called a

computer [9]. For example, a physical system can be digital computer that can

perform billions of functions in a second; or it can be a biological cell, which

has information processing capabilities such as, self assembly, protein-protein

interaction networks, gene regulation and biological transport. Where as, computing

is the procedure of calculating and/or determining an outcome by mathematical

or logical methods [9].

Modern digital computers are built using the classical computational techniques,

which require an exact knowledge of what needs to be built and clear operational

control of the system. These systems are built on the paradigm of Turing machine

[10] and follow the Von Neumann architecture [11]. There is a clear distinction

between the permanent structure (the hardware) and the set of instructions (the

software) to run this kind of system. Their operation is sequential and the

information within these machines is stored at special memory addresses and

is retrieved using these memory addresses.

1

Chapter 1. Motivation 2

These systems face the challenges of being highly flexible and adaptable due

to ever-changing demands placed on them. The traditional approach to building

these systems brings in the inherent centralisation and inflexibility. The Von

Neumann architecture requires these machines to be controlled by a central processing

system and to this extent, these systems are essentially ‘top-down’ systems. This

centralised approach is strongly contrasted with the complex systems found in

nature.

The Natural systems such as, neural networks, eco-systems, immune systems,

ant colonies finding the shortest path to food, bird swarms coordinating to find

food are very few examples of naturally occurring biological systems that compute.

These systems, as compared to Turing machines are highly complex and self-organised

systems. The resilience of natural systems can be characterised by the following

main factors [12]:

� Natural systems are autonomous, every entity within the system works

independently of others and there is no central control for the direction

or coordination.

� Each entity in natural systems has their own decision making capability.

They can not only share their state but also have the ability to change the

state of other elements in the system. Conventional computing processes

(such as optimisation processes or scheduling processes), on the other hand,

continuously share their state information with other entities in the system

according to predefined rules.

� The collective behaviour of various entities can be very complex that was

not present in individual entities.

� Each entity in the system constantly uses its adaptive mechanisms fine tune

its behavioural attributes.

Chapter 1. Motivation 3

� The elements of natural systems can self organise. They can interact among

themselves in order to achieve a desired outcome or a certain goal.

These characteristics can be encompassed in modern computers to allow flexibility

and adaptability in their processes and scalability. The desire to achieve computational

capabilities of natural systems has urged the researchers to study natural systems

and take inspiration in the design of computer systems.

Unconventional computing or alternative computing is a field of computing

that studies non-classical models of computation [13]. Example of unconventional

computing paradigms include quantum computing, optical computing, molecular

computing, and chemical computing [14]. It addresses the paradigm of natural

computing and its various philosophical aspects [15]. These may encompass

theoretical and philosophical views of unconventional computing (such as understanding

of novel principles of computation in natural systems i.e. physical, chemical or

biological systems)) and the differences between conventional and unconventional

computing [16].

Natural computing also investigates the computing designed by humans that

is inspired by nature such as computing that takes place in nature and the

computation using natural materials [15]. It also focuses on building frameworks

to model and interpret natural computing. Generally, the field of unconventional

computing is divided into three main categories [16].

� Computation inspired by nature: It is concerned with the study of natural

phenomenons and take inspiration from them in order to develop methods

and algorithms to solve complex problems [17]. For example, computational

models such as neural computation [18], DNA computation [19], Quantum

computing [20], evolutionary computation [21], swarm intelligence [22], developmental

and cellular systems [23], molecular computing [24], behaviour inspired

computation [25] and amorphous computing [26] are all different forms of

Chapter 1. Motivation 4

computation that are inspired by the nature.

� Simulation and emulation of natural systems: It is basically a synthetic

process to mimic life forms, processes or natural phenomenon to create

patterns, forms or behaviours in order to have better understanding of

natural systems [27].

� Computation using materials: It make uses of natural materials to perform

computation that constitutes a novel paradigm that can supplement or

replace conventional silicon based computing.

Unconventional computing is thus a field of study that is inspired by the novel

principles of computation in natural systems, that are used to develop non-novel

methods and algorithms and artificial computing architectures and to implement

computation in nature inspired materials.

This field of study is predominantly occupied by theoretical research such as

quantum computing , membrane computing, amorphous computing etc. Various

philosophical, theoretical, logical and technical aspects have been described by

some of predominant scientists in the field of unconventional computing. For

example, Stepney states that unconventional computation is described in terms

of physical laws of Newton and Lagrangian mechanics [28], [12]. Some new

computational paradigms are presented by Copper [14], Martin emphasised on

computation by mimicking nature [29], MacLennan argued that the power of

analogue computation should be expressed in its own terms rather compared or

in context of Church Turing thesis [30] and Burgin presented the idea of super

recursive algorithms [31].

Despite the profound potential of unconventional computing, only handful of

prototypes are available such as reaction-diffusion processor [32], hot ice computer

[33], extended analogue computers [34], molecular computation [35], DNA based

1.1. Research problem 5

computers [36]etc.

Due to an underlying need to find alternatives to the classical model of computation,

unconventional computing has the potential to offer enormous capabilities. One

recent field of study in unconventional computing is called EIM [37]. It implements

computer controlled evolution to manipulate the properties of the materials in

such a way that some useful computation can be extracted from them. The idea

presented some powerful examples to prove that artificial evolution can be used

to configure materials for computation, such as liquid crystals to perform simple

computational tasks [38] as tone discrimination [39], logic gates [40] and robot

controller [41]. The study proposes that computation can be extracted from the

materials if highly specific signals are applied to it. EIM suggests that evolutionary

algorithms can manipulate the highly complex properties of the physical systems

that are either difficult to understand or can be manipulated by other means.

However, the study is in its very initial phase. It requires identification of

suitable materials for computation, identification of signals that can manipulate

material properties for purpose of computation and suitable methods to extract

computation.

1.1 Research problem

The study presented in this thesis is based on the idea of EIM. It studies different

Carbon Nanotubes (CNTs) based composites as well as Graphene-based materials

for the purpose of extraction of computation using the principle of EIM. In general,

it aims at answering the following questions:

� What are the suitable nano-material systems for extracting computation

� What kind of hardware and software setup is appropriate to achieve the

desired outcomes

1.2. Hypothesis 6

� What are the suitable tasks/methods for extracting computation from the

nano material systems

� What are the suitable investigative methods for evolving the material? i.e.

what kind of evolutionary/optimisation processes/algorithms can be used

for different computational tasks? The computational tasks themselves

are different and independent of the material used. Some materials and

algorithms combinations may be most suitable for a computational task

while some are suitable for others. This is a major part of this study that

is investigated.

1.2 Hypothesis

Physical properties of nano-material systems can be altered by means of computer-controlled

signals; these changes can then be used to perform some meaningful computation.

1.3 Outline

In this thesis, different carbon-based material are studied for their computational

capabilities using the principal of EIM. Chapter 2, discusses the literature review

in detail. In chapter 3, the detail description of experimental methods is presented.

It also describes the materials that are used in experiments, the initial hardware/software

platform, the purpose-built platform, called Meccobo (used in later stages of

experiments) and the algorithms that are used to train the materials for specific

computational problems. Chapter 4 outlines the optimisation and evolutionary

algorithms that are used in experiments. This chapter also describes different

computational problems that are implemented and presented in this thesis. Chapter

5, discusses the initial experiments with SWCNTs based materials to solve the

1.3. Outline 7

problem of logic gates with the initial hardware/software set-up. It also discusses

the investigations with different algorithms and the effect of different concentration

of SWCNTs on computational capabilities. It also reports on an investigation

of evolving graphene based materials to behave as logic gate/circuit. These

experiments shed light on what are the best concentrations of graphene that

produce an ideal non linear response for logic gates.

Chapter 6 emphasises the relationship of polymers and SWCNTs and their

effect on computational capabilities. The results showed that conductance is the

main property that plays an important role to make the material behave as a logic

gate.

Chapter 7 discusses the implementation of complex logic gate in CNTs base

materials, using Mecobo. Particle swarm algorithm Particle Swarm Algorithm

(PSO) with Shortest Position Value (SPV) rule is used to manipulate material’s

conductive property. This method allowed the flexibility to put the signal application

terminals under evolutionary control. The successful implementation of the problem

demonstrates that SWCNTs have the potential to solve other complex computational

problems. It also highlights the suitability of use of Mecobo hardware for other

computational problems and different kinds of materials.

Chapter 8 discusses the investigations of evolving the material as a tone

discriminator. The problem is implemented using purpose built platform Mecobo

and the Particle swarm algorithm using SPV rule. Square waves with varying

input frequencies are used as input signals along with the static voltages as

configuration signals to train the material as a tone discriminator. Different

concentrations of SWCNTs were used in these experiments. The results of these

experiments showed that all the considered concentrations of SWCNTs were

successfully trained for this problem.

Chapter 9 demonstrates that SWCNTs/polymer based materials can be trained

1.4. Original contribution 8

as data classifiers. Various binary data classification and multiple class data

classification problems are discussed and results are reported. Various data classification

rules are studied for this problem and it has been found that k-nearest neighbour

and its different variations are more suitable for data classification problems with

these materials using PSO and EIM. The results of these investigations were very

close to the results found in the literature for these data classification problems.

The initial findings suggested the different areas of improvement for successful

implementation of the classification problem. Based on the findings it can be

suggested that the materials with more non-linear response and materials that can

be reconfigurable can be considered for further investigations with classification

problem. Also, its worth trying methods which can implement more flexibility

and adaptability in order to exploit the physical properties of the material.

Finally, chapter 10 outlines the main conclusions drawn from this work, and

suggests the possible directions of future investigations.

1.4 Original contribution

Evolution in materio is a new field of unconventional computing that uses Evolutionary

Algorithms (EA) to train a bulk matter for special purpose computation. The

principal of EIM has been implemented with Liquid Crystals and Genetic Algorithm

(GA) to solve various problems of computing. However, the field of study is in its

very initial phase. There are four main key areas as outlined in research problem

that need to be explored in detail in order to successfully implement this study

in future computational and electronic devices.

In order to find suitable novel materials for this study, this thesis focused

on studying mainly different single walled carbon nanotube based materials and

graphene based materials for different computational problem. It is outlined in in

1.4. Original contribution 9

this thesis that certain combinations of SWCNTs/polymers and some Graphene

based materials can be used to solve simple computational problems such as Logic

gates and tone discrimination

It is the first time that SWCNTs based materials were used to solve simple

computational problems such as Logic gates (Chapter 5). Later, in this study,

these material systems were found suitable for complex computational problems

such as complex Logic circuits (Chapter 8) and machine learning problems (Chapter

9).

The Logic gate problem is further implemented to identify the effect of concentration

of SWCNTs on solving a computational problem. It has been highlighted in

Chapter 6, that there is a certain threshold of SWCNTs in a fixed polymer ratio

which is more suitable for solving a Logic gate/circuit problem. This has been

observed for other computational problems presented in this thesis, such as tone

discrimination (Chapter 7) and data classification problems (Chapter 9).

A more flexible and versatile hardware platform is necessary for EIM. This

fact is highlighted in Chapter 8, where Mecobo hardware platform has been found

more suitable for the solution of complex Logic circuits. This hardware platform

is used to further study other computational problems such as data classification

problems (Chapter 9).

The three optimisation algorithms, namely, Nelder-mead optimisation algorithm,

Differential evolution and Particle Swarm Optimisation algorithm are studied with

different computational problems for their suitability for EIM. Nelder-Mead solved

simple logic gates problem, but it was not successful with complex logic circuits

as compare to Differential Evolution (DE) and PSO (Chapter 5) which solved

some complex logic circuit problems. PSO has been successfully implemented for

complex Logic circuits (Chapter 8), tone discrimination problem (Chapter 7) and

data classification problems (Chapter 9).

1.4. Original contribution 10

To summarise, SWCNTs based materials are successfully used for the solution

of different computational problems using optimisation and evolutionary algorithms

following EIM. The successful use of these materials and evolutionary algorithms

stands up as an important contribution to the field of unconventional computing,

specially EIM.

Chapter 2

Literature review

The study presented in this thesis used computers running search algorithms

(optimisation and evolutionary algorithms) to find the values of incident signals

and other variables that should be applied to the materials in order to change their

physical properties to carry out some meaningful computation. These signals

can be static voltages and variables may dictate the location of these signals.

This approach does not involve any top-down sequence to carry out a specific

computation. Instead, these materials are programmed by the computer controlled

evolution [42] that utilises the physical properties of the material to perform

computation which a human programmer is not aware of.

The literature review presented in this thesis discusses the use of materials in

unconventional computing, optimisation and evolutionary algorithms, evolvable

hardware, evolvable motherboard that lead to the concept of EIM. It also includes

a brief historical background of carbon nanotubes and graphene that are used in

the experiments described in this thesis.

11

2.1. Materials for computation 12

2.1 Materials for computation

Natural systems [43] such as living organisms, are parallel architectures that are

linked with the environment through interaction [44]. They can adapt to the

changes in environment by making full use of system and environment interaction.

The interaction is a result of exploitation of physical properties of the materials

they are composed of and by taking full advantage of physical and information

processes of the system [45]. Such systems, if programmed, can perform computations

with great speed and efficiency and with remarkably reduced computational time.

For example, an analogue physical system has demonstrated that partial differential

equations can be solved with much faster computational capability as compared

to traditional machines [46].

It is argued that one kilogram of matter can have a capacity of an ultimate

laptop which can perform 5.4258× 1058 computations per second and can have a

storage capacity of 1031 bits [47].

Despite the enormous potential the material systems can offer, it is still unclear

what physical material systems are most suitable for the extraction of computation

and how they can be used for computational purposes. There is lot of research

going on to find suitable materials for computing and few categories of materials

that are used in unconventional computing are listed below [48].

� Biological materials

There is an active research by the name of ‘wet’ unconventional computing

[49] which uses biological material substrates for the purpose of computation.

Few examples include the use of slime moulds [50], bacterial consortia [51],

[52] and biological cells such as neurons [53] [54].

The research using biological materials for computation is productive but

it does not provides a deep insight into computation performed by these

2.1. Materials for computation 13

material systems. This is due to the fact that biological systems have

achieved their complex properties by undergoing the process of evolution

over billions of years. Moreover, these substrates are not suitable for digital

and classical computational problems due to their analogue nature. For

these reasons, it is difficult to describe or model the computation performed

by them and in turn we are provided with no information on how their

properties can be exploited for computation. Therefore, it has been argued

that before considering natural material systems for computation, non-biological

materials should be considered [48].

Hence, more simpler, laboratory synthesised materials can be more suitable

candidates for computation. The chemical and physical properties of these

materials can be explored for computational purposes [48].

� Non-biological materials

Early research using physical materials for computation goes back to reaction-diffusion

systems [55]. Reaction-diffusion systems are introduced as a morphological

mechanism that may arise from homogeneous state of chemicals [56]. These

are now generally, considered as material computational systems [57]. Reaction-diffusion

systems are chemical systems in which chemicals react with each otherand

transform into each other and/or they get distributed at different rates

through the system. These processes result in the waves or wave like

phenomenon and other self organising patterns [57]. For example, these

systems are used to demonstrate the implementation of logic gates [58], the

solution of a 2D Voronoi diagram problem [59], a reaction-diffusion robot

controller [32].

In another example, an unconventional super-computer has been proposed

by using variety of materials substrates such as conductive plastic sheets

2.1. Materials for computation 14

and gelatin doped with table salt to implement Rubel’s extended analogue

computer [60].

� Novel materials

The notion of ‘edge of chaos’ [61] provides an indicative direction in the

search of novel substrates for unconventional computing. This idea suggests

that physical systems have most computational power at the edge of the

transitions, for example, transition of matter from solid state to liquid state.

A proposal that enhance this idea, suggested that physical materials which

are configurable, robust and are provided with properties that effect the

applied signals, could be suitable for computation [62]. By configurable

means it should configure over many iterations to give the desired response.

The material would be able to reset to its previous state other wise it

will retain its memory and may use the stored information in it for future

computations, which is undesirable.

The use of smart material for a robotic arm is another example of using

novel substrates for computational purposes [63]. An alloy called Nitinol

(made of Nickel and Titanium) is used as a muscle for robotic arm. The

alloy is super elastic and has shape memory. It has different morphologies at

different temperature. The implementation used an evolutionary algorithm

that controlled the activation of wires to produce a snake like movement.

If the wire breaks in the middle of experiment, evolutionary algorithm can

activate new sequences in the wire to compensate the damage.

Another example used switchable glass [64], which is also referred to as

‘smart windows’ to control the amount of light through the windows when an

electric field is applied. The study used three existing technologies namely:

electro-chromic devices, suspended particle devices and liquid crystal devices

2.2. Optimisation algorithms 15

to vary the amount of light with varying voltages with the help of evolvable

hardware.

A number of materials have been identified to have a potential to be exploited

and configured for computational capabilities, such as liquid crystals, Langmuir-Blodgett

films, and materials based on nano-particles [62]. It has already been

demonstrated that a chip made form liquid crystal can act as a tone discriminator

[39] and a robot controller [41]. Liquid crystal has a structure of both a solid

and liquid. It can flow like a liquid as well as has a structure in which its

molecules can be oriented in crystal form.

The study presented in thesis also used novel materials substrates such as

Carbon nanotubes dissolved in polymer and reduced graphene oxide composites

for the purpose of unconventional computing. Such material system have never

been explored earlier for their computational capabilities. These material systems

have been chosen after studying their electrical properties, because a material with

a non-linear response to the signal applied can be suitable for the extraction

of computation [48]. The properties of material systems are exploited using

optimisation algorithms and evolutionary techniques for the purpose of computation

extraction. The following section provides a detail description of these techniques.

2.2 Optimisation algorithms

An optimisation algorithm involves a process that is executed iteratively to compare

different solutions within a specific search space until an optimum or satisfactory

solution is obtained. Optimisation algorithms are divided into two categories:

gradient-based methods and population based methods. A gradient-based method

finds the solution of the problems of the form:

minimize
x∈R

f0(x) (2.2.1)

2.2. Optimisation algorithms 16

where the search directions are defined by the gradient of the function at the

current point. For example, gradient descent [65] and the conjugate gradient [66]

are examples of such methods.

Gradient-based methods include direct search methods [67] [68], which minimise

the function f(x)

minimize
x∈R

f(x)

R→ Rn

(2.2.2)

but there is no information present about the gradient of the function f(x).

The population based methods include genetic algorithms [69] and simulated

annealing [70] [71]. Gradient-based methods are helpful in finding optimal solution

of continuous problems (where small change in input results in small change in

output) and differentiable functions (a differentiable function for a variable is a

function whose derivative exits at every point in domain). Due to the analogue

nature of the materials and the fact that the applied signals are discrete in

nature, direct search methods are first chosen in initial experiments. These

are straightforward to implement and do not use derivative information of an

objective function but only its values for a guided search process. For the current

study, a well-known direct search algorithm known as Nelder-Mead algorithm

(NM) [72] has been used as an optimisation tool. The algorithm, also known as

the Downhill simplex optimisation method, minimises an objective function in a

multi-dimensional space [73]. The detailed overview of the algorithm can be found

in [73], [74], [72], [75]. The experiments with NM demonstrated that it was not

successful to solve complex problems, hence, after some initial experiments with

NM, evolutionary algorithms were implemented to extract the computation from

the materials. A brief background of these methods is described below.

2.3. Evolutionary computation 17

2.3 Evolutionary computation

Evolutionary computation is a family of algorithms that are inspired by nature

and are used for global optimisation. It is also a subset of the field of artificial

intelligence that studies these algorithms. These algorithms are population based

optimisation or meta-heuristic methods [76].

The history of evolutionary computing goes back to late 1940s, when Turing

proposed ‘genetic and evolutionary search’ [77]. In 1960’s different techniques

by the names of evolutionary programming [78], genetic algorithms [79] and

evolutionary strategy [80] were introduced. Whilst, structurally different these

techniques are inspired by the nature and particularly used the idea of evolution

to solve the problems. These fields are now categorised under a general category

of ‘evolutionary computing’.

The main paradigms of evolutionary computing are, evolutionary programming,

genetic algorithms, evolutionary strategies, classifier systems and related fields

such as swarm intelligence (Ant Colony Optimization and Particle Swarm Optimization).

Many other hybrid systems have been introduced that implement various features

of evolutionary computing with other methods [81]. For example use of harmony

search [82] with PSO [83].

These methods are widely used in the design and implementation of unconventional

computing systems. It is argued that evolution has optimised the processes

in nature, therefore the adoption of evolutionary paradigm can lead to finding

optimal solutions to many computational problems [76]. The nature of computational

problem requires search through many possibilities and sometimes even the search

space is quite large. This requires a parallel approach to solve these problems.

Also, these problems require algorithms that are adaptive in nature. Evolution on

the other hand is a parallel process that can produce solutions with the changing

environment and evolutionary algorithms can provide highly optimised solutions

2.4. Evolutionary algorithms 18

to these problems in different problem settings.

The evolutionary computing works by generating initial set of candidate solutions.

The process is iteratively repeated and each new generation of solution is the

outcome of removal of less desired solutions and some random changes. In biological

terms, it can be stated that population of solutions is a result of natural selection

and mutation. As a result of this process the population gradually increase in

fitness and in case of particular problem it improves according to the fitness

function of the algorithm.

2.4 Evolutionary algorithms

Evolutionary algorithms are the subset of evolutionary computing that model

biological mechanisms such as reproduction, mutation, recombination, natural

selection and survival of the fittest [84]. EA start with the population of candidate

solutions and using the principle of ‘survival of the fittest’ find better and better

solutions to the problem. Candidate solutions to the optimization problem play

the role of individuals in a population, and the fitness function determines the

environment within which the solutions will ‘thrive’.

EAs starts with the random individuals and the objective function is evaluated

for these individuals. This results in the first generation of individuals. If the

optimisation criteria is not met the next generation of individuals is produced.

Just like optimisation algorithms, an EA selects new sets of individuals at every

generation that have been evolved according to their level of fitness in the problem

domain. The evolution takes place after the repeated process of ‘selection’, ‘recombination’

and ‘mutation’. These new individuals also referred as offspring and are inserted

into population replacing the previous individuals (parents). This cycle continues

until the termination criteria is met.

2.4. Evolutionary algorithms 19

Figure 2.1 shows the structure of a simple evolutionary algorithm. During this

Figure 2.1: The general structure of an evolutionary algorithm

process, the two main forces form the basis of an evolutionary process:

� Recombination and mutation: These processes create the necessary diversity

among individuals and facilitate novelty; while

� Selection: serves the purpose for bringing in quality.

Many aspects of evolutionary computing are stochastic. The information

exchange during recombination and mutation is random. While the selection

operators can be either deterministic, or stochastic. During the selection process

2.4. Evolutionary algorithms 20

those individuals which have a higher fitness score have a higher chance to be

selected than individuals with lower fitness score, but sometimes the weak individuals

can have a chance to become a parent or to survive.

Following sections list some main parts of Evolutionary algorithms [85] [86] .

1. Population: Population is the set of solutions that are chosen to be evolved

during an EA run. Generally, the initial population is selected randomly,

but sometimes population is initialised manually in order to have a good

starting point at the start of an evolutionary run.

2. Fitness function: Fitness-based selection improves the quality of an EA.

Hence, the design of fitness function (or evaluation function)is crucial. Any

available and usable knowledge about the problem domain should be used

when designing a fitness function. This is due to the fact that it represents

99% of the total computational cost of evolution in most real-world problems

and mostly it is the only information about the problem in the algorithm.

3. Selection: Selection chooses the individuals that can be recombined to

produce new offspring. It also selects how many offspring each individual

will produce. During the process each individual in selection pool receives

the production probability with respect to its own objective function values

and the objective function value of other individuals in the pool. the next

step is to select the parents according their their fitness by means of different

algorithms, such as roulette-wheel selection, stochastic universal sampling

and local selection etc.

4. Recombination: Recombination produces new offspring by combining the

information present in the parents. The process is done by combining

variable values of the parents. Different methods of recombination are used

according to representation of variables. For example, discrete recombination

2.4. Evolutionary algorithms 21

can be use to recombine all types of variables. Real value recombinations

are applied to real valued variables, where as, binary values are recombined

using binary valued recombinations. Binary value recombination is also

called ’crossover’ and are typically used in genetic algorithms.

5. Mutation: Stochastic transformations of an individual is referred as mutation.

The trade off of exploration and exploitation should be maintained during

mutation. Some time large mutations are necessary as it introduces genetic

diversity but it can lead the algorithm to a random walk, hence an offspring

close to parent must be generated. For this reason the individual variables

are mutated by small perturbations (size of mutation step) and low probability

(e.g., for binary variables flip one bit of a bit string; and, in case of real

variables, add zero-mean Gaussian noise with carefully tuned standard deviation)

6. Reinsertion: After the reproduction of a new offspring they are inserted

in to population. This is especially important if less offspring reproduce

than necessary, not all offspring are to be use at each generation or if more

offspring are reproduced than necessary. Thus a reinsertion scheme is placed

to determine which offspring will be included in the new population. For

example the local insertion scheme for local insertion and global insertion

scheme for global insertion and all other methods.

From above discussion it can be concluded that EA are substantially different

from traditional search and optimisation methods and offer various advantages.

Some of them are listed below:

� EA perform parallel search, not the single point search

� No derivative information is required, and only objective function and the

fitness value is needed that will affect future searches.

2.5. Evolvable Hardware 22

� EA use probabilistic transition rules instead of deterministic rules.

� Several parameters of an objective function can be simultaneously optimised

� They are well suited for the problems that are difficult to describe mathematically.

� They are well suited when it is difficult to understand how to approach the

problem.

Evolutionary algorithms are now used to solve multi-dimensional problems more

efficiently than software produced by human designers, and also to optimise the

design of systems [85].

2.5 Evolvable Hardware

Evolutionary algorithms have found extensive acceptance for design and implementation

of wide range of unconventional computing systems. One such stream of implementation

is called evolvable hardware [87]. In its most fundamental form an Evolvable

Hardware (EHW) is a circuit that can improve its performance by changing its

architecture and behaviour according to the changes in environment [88].

The history of EHW can be traced back to 1990’s. The concept of ‘evolvable

hardware’ was pioneered in 1993 [89] and [88]. These workers envisioned that

the process of circuit design should rely on natural evolution. One of the first

experiments involving ‘evolvable hardware’ was conducted in 1996. This experiment

deployed computer controlled manipulation of a material’s properties using artificial

evolution [90].

The fundamental steps of working of an EHW are highlighted in Figure 2.2.

First, the randomly generated population of circuits is evaluated against a fitness

function. If the desired solution is not found a new generation is generated by

applying the genetic operators (e.g. mutation crossover). The cycle continues

2.5. Evolvable Hardware 23

until the desired fitness value is achieved. The two terminologies are commonly

used for classifying the operation of evolvable hardware [91].

� Extrinsic evolution [92] In this technique simulation is used to evolve the

circuit. The best solution found by simulation is implemented within the

hardware.

� Intrinsic evolution [93] The technique directly implements and evaluates

the candidate solution in the hardware. The evolutionary algorithm uses the

evaluations received from the hardware and generates new solution if fitness

criterion is not met. This process is iterated until the desired solution is

found or termination criteria is met.

Figure 2.2: A general flow chart of an evolvable hardware system [4]

Moreover, the operation of evolvable hardware can be classified in to categories

based at which level the evolution is performed. The complexity of basic building

2.5. Evolvable Hardware 24

blocks (also called granularity) of evolvable hardware can be divided into

� Gate level: The building blocks of evolvable hardware correspond to logic

gates such as, AND, OR, NOT etc. For gate level evolution evolvable

hardware utilises the pattern recognition system where the system can recognize

noisy binary input patterns [94]. Another example of gate level evolution is

an EHW comparator used in an industrial welding robot [94].

� Function level: This is a further level of abstraction of gate level evolution

where a more complex function is implemented using the basic building

blocks. The example of function level evolution is the adaptive equalization

in digital mobile communication and data compression [95].

The first experiments that demonstrated the possibilities offered by evolvable

hardware were conducted by Adrian Thompson in 1996 [96]. Thompson used a

special chip called Field Programmable Gate arrays (FPGA) to evolve electronic

circuits [96]. This chip itself had no specific built-in function but can be programmed

by the user [97], [98]. The chip is a grid of 64 x 64 simple logic cells, each of which

can perform basic boolean operations such as AND, OR and NOT. Different

configurations can be applied to FPGAs to form electronic circuits.

Thompson used 10 × 10 grid of the FPGA using GA to design an electronic

circuit. An initial population of 50 individuals called, ‘genotypes’ was created by

the GA. In terms of theFPGA, the genotype is the 1800 bit-string that encodes the

chip’s configuration. The inputs were 10 frequencies of 1kHz and 100KHz each

in 500 milliseconds. The fitness of each genotype was evaluated by constructing

a circuit that can produce an output of 1 volt for one frequency and 0 volt

for another. The next step was to produce new ‘offspring’ by using selection,

recombination and mutation. The GA running on a Personal Computer (PC)

generated the genotypes that were transferred to the chip as soon as they were

2.5. Evolvable Hardware 25

generated. After almost 5000 iteration the GA was able to find perfect genotype

that can construct a circuit that can discriminate between 1kHz and 10kHz tones.

The combination of FPGA and GA produced an electronic circuit that occupied

less circuitry and in far less time than could be achieved manually.

In other set of experiments, a robot controller was evolved using the same

system [99]. Some other works for evolving Robot controllers using FPGA are

[100], [101], [102].

Later, FPGAs were used for evolving oscillators [103]. These studies identified

that the configuration settings applied to one area of the chip have not produced

the same results when applied to the other area of the chip. Furthermore, the

results were temperature sensitive [103]. In later experiments, circuits were evolved

under different physical conditions [104], [105]and it was revealed that the evolved

circuits were robust to most but not all environmental conditions. To overcome

these limitations a new kind of evolvable hardware was proposed and it was

named as evolvable motherboard. The following section briefly describe Evolvable

motherboard.

2.5.1 Evolvable motherboard

The elements of FPGAs can be configured virtually to allow various different types

of circuits. However, evolving circuits with FPGAs did not give the flexibility to

test the elements of the final circuits as the test equipment only cover very small

areas [103].

Furthermore, the components of FPGAs allow no control over them as they are

predefined by the manufacturers and follow a conventional modular circuit design.

This restriction has not allowed the evolution to fully exploit the FPGA circuit as

it may have exploited different circuitry in an arbitrary way. It is also not clear

which type of building block of FPGA (the configurable logic blocks (CLBs) or

2.5. Evolvable Hardware 26

its analogue equivalent analogue) is most suitable for hardware evolution.

To overcome these drawbacks another platform was designed to perform intrinsic

evolution [106] and was named as an ‘evolvable motherboard’. The success of these

experiments was demonstrated by evolving a ‘NOT’ gate.

Figure 2.3: The simplified representation of an evolvable motherboard

Figure 2.3 represents a simplified evolvable motherboard. In its simplest

form an evolvable motherboard is a matrix of analogue switches that can be

connected to 6 daughter-boards that contain all the basic components necessary

for evolution. All the basic component of electronic circuitry (from transistors to

capacitors, logic functions etc) were present to allow maximum exploitation by

evolution. The switches can be controlled by programming and are connected to

computer via interface card plugged in to host PC’s ISA bus. This allowed the

genotypes to be instantiated in hardware in very short time (< 1ms).

Each daughter-board has eight lines on a switch matrix in addition to eight

connections for various input/output paths. The switch matrix is designed with

1500 switches, to allow a search space of 10420 possible circuits.

The motherboard allowed any point of the circuit to be accessible for the

measurement. This allowed an easy access to see which properties of FPGA are

2.5. Evolvable Hardware 27

used during the intrinsic evolution. In order to test the capabilities of the evolvable

motherboard and investigate its potential to use as a tool for Intrinsic hardware

evolution, a NOT gate was evolved using a bipolar transistor as an evolutionary

building block and a genetic algorithm. These were the first circuits that were

evolved intrinsically at transistor level.

Similarly, Thomson developed a new evolutionary circuit known as ‘evolvatron’

to overcome the limitations of FPGA and the external conditions [107]. These

studies have helped to figure out that during intrinsic evolution the physical

properties of the system are utilised which is why the circuit evolved in one part

of chip cannot be implemented in other parts.

In some other experiments, a much simpler version of evolvable mother board

was implemented by use of a low cost micro processor and a rectangular bus

approach [108]. The microprocessor bridged the gap between the computer and

configurable units and lowered the cost. The bus approach made the safety and

validation easier and simpler and an on-board signal generator was able to generate

square, sine and saw tooth signal waves. This system successfully implemented a

potential divider and full wave rectifiers.

In 2002, Miller and Dowing presented the idea of ‘evolution in materio’ [37]. It

was proposed that the liquid crystal can be a suitable material for the extraction

of computation from the materials. A similar platform used by Layzell [106]

was utilised to extract the computation in material. The setup was similar

to Thompson [104], [105] and used a layered technique for parallel evolution.

The platform included four cross-switch matrix devices. Each switch has 64

connections that can be connected to 8 external connections. The external connections

can be input signals, ground voltage and/or can be a connection to other external

devices. The external connections are connected to an input/output card of the

computer, where the connections are dedicated to incident signal, configuration

2.6. Evolution in Materio 28

signals and the measurement signals. The value of configuration signals are

provided by the genetic algorithm and remain constant during an evolutionary

run. The device was named as Liquid Crystal Analogue Processor (LCAP). The

schematic diagram of cross-switch matrix is presented in Figure 2.4.

A detail description of the concept and use of evolvable motherboard for

material computation is given in the following section 2.6.

Figure 2.4: Schematic of LCAP [5]. The part of genotype decides which external

connectors can act as input, output or configuration. The magnitude of these

voltages is also provided by the genotype received form computer.

2.6 Evolution in Materio

New possibilities were pointed out by Adrian Thomson in his work of using

intrinsic evolution in hardware [104], [105]. This approach was applied to a

broader set of materials using the concept of ‘evolution in materio’ [109], [54].

The idea states that the computer controlled evolution can be used to manipulate

the physical properties of different materials with an aim to extract computation

2.6. Evolution in Materio 29

from them without having a detail understanding of these properties. The idea

was demonstrated by using liquid crystals as substrates and genetic algorithm

as a mechanism of exploiting the material’s physical properties. The conceptual

Physical configuration

Map physical
output to
output data

Map genotype to
physical
configuration
instructions

Map physical
output to output
data

Appy test data and
measure fitness

Generate population of
genotypes subject to
search algorithm

Configuration
material

Physical domain

Computer domain

Physical input Physical output

Figure 2.5: Conceptual overview of EIM [5]

overview of EIM is shown in Figure 2.5. EIM is a hybrid system, which consist of

a digital computer and the analogue material system [37] [5]. The physical signals

are applied onto the material system and the response is gathered from it. An

2.6. Evolution in Materio 30

evolutionary algorithm running on the computer generates the candidate solution.

The digital data in the candidate solution is translated into analogue signals and

applied on the material as input or configuration signals. Similarly, the analogue

response gathered from the material is translated to digital information and passed

on to evolutionary algorithm for evaluation and a fitness score is assigned to it.

The cycle continues until the termination criteria is met.

In order to identify the suitable materials for computation, Miller [62] introduced

the idea of Field Programmable Array Matter (FPMA). It states that highly

specific signals (e.g. voltages) applied to the material bring physical changes in

it. These changes can exploit the material in number of ways. The suggested

characteristic of the materials which can act as substrate to FPMA is their

ability to configure when a voltage is applied. Also, they should return to their

original state when the signal is removed. Initially, conductive polymers and

conductive liquid crystals were pointed out as suitable candidates. The idea

was demonstrated by its application to liquid crystals [110], [109], [52]. Later

in 2004, it was demonstrated that if physical properties of liquid crystals are

exploited by means of unconstrained search of evolution, the liquid crystals can

act as tone discriminators [111]. In 2005, the results of further studies showed

that it is possible to evolve logic gates [52] and a robot controller [109] in liquid

crystals. However, while working with the liquid crystals, it was found out that

their solutions were highly unstable. The response of the system varied and the

results obtained could not be used for practical purposes [111]. This lead to

exploration of other materials.

The idea of EIM brings back the analogue computing and argues that by

using the idea of computer controlled evolution, new devices can be build that are

impossible to imagine otherwise. The work presented in this thesis is based on

the principal of EIM, and explores different SWCNTs composites. Some different

2.7. Recent work using EIM 31

concentrations of reduced graphene oxide (RGO) in polymer are also used in

initial experiments for their computational capabilities using computer controlled

evolution.

2.7 Recent work using EIM

This section highlights the work that has been carried out using EIM while this

thesis was being written. Various SWCNT material samples have been used to

solve different computational mainly using Genetic Algorithms on Mecobo 3.0

platform. For instance, it has been demonstrated that simple logic gates (AND,

OR, XOR) can be evolved in a SWCNTs/PMMA based material sample using

square wave and static voltage signals [2].

The Bin packing problems have been studied using EIM, Mecobo 3.0 platform

and Genetic Algorithms. The results of this experiment were implemented with

various benchmark problems and it showed that the EIM technique can produce

results which are closer to global optima and are competitive with state-of-the-art

bin packing problem [112]. The same approach has been used to successfully solve

the Function optimisation problem [113], Frequency classification problem [114],

Machine Learning classification problems [115], even parity problem [116] and to

evolve a robot controller [117].

In an another approach the travelling salesman problem has been solved for 9,

10 and 11 cities [118]. The experiment was implemented with 0.1% SWCNT/PMMA.

However, instead of Genetic Algorithms and Mecobo platform, a (1 + 4)-ES

algorithm was used to find suitable configurations to evolve the material to solve

the problem and a data acquisition card was used as a hardware platform for

the EIM. This allowed the 4 × 4 electrode array to be connected to a 16 × 16

analogue crosspoint switch to control connections from data acquisition card to the

2.7. Recent work using EIM 32

material. This allowed configuration inputs to be placed anywhere on the electrode

array. The same setup and methodology was used to solve Machine Learning

classification problems. Although this setup has not yielded any promising results

but it highlighted to further study and understand the complex relationship

between the material and the voltage signals applied on it [119].

The choice of input parameters can influence the search space in EIM and

can be critical for configuring the material samples to solve a computational task.

In order to understand which input parameters are well suited to exploit the

underlying properties of chosen material, a study was focused on using square

wave signals with SWCNTs based materials. The experiment provided common

measurements such as power spectrum and phase plots which were taken using

Mecobo platform. These experiments also linked the frequency of square waves

to the comparability of outputs from the material [120].

In an another experimental approach three different signal representations

have been used to solve the graph colouring problem. The results showed that

the static voltages, square wave signals ad mixed signals (involving static voltages

and square waves were capable of producing a working device. However it was

found that square wave signals always produced the best results as compare to

other signal representations [121].

In the very recent experiments, Carbon nanotubes and Liquid Crystal based

materials have been used to solve Binary classification problems. The experiment

used Particle Swarm Optimisation algorithm and Differential Evolution algorithm

to solve the problem. The experiment provided satisfactory results for the Binary

classification problem and highlighted that Differential Evolution algorithm produced

better results than the Particle Swarm Optimisation algorithm [122], [123], [124].

The study presented in this thesis uses the concept of EIM used different Carbon

nanotube based materials (e.g with different polymers and Graphene) to study

2.8. Carbon based materials 33

various computational problems of varying difficulties. As mentioned earlier this

thesis implement EIM in three dimensions i.e different SWCNTs based materials,

different optimisation and evolutionary algorithms and different computational

problems.

2.8 Carbon based materials

2.8.1 Carbon nanotubes

Carbon nanotubes [125] are allotrope of carbon, having a cylindrical nano-structure

formed by an atom thick sheet of graphene. Due to their unique electronic

properties [126], [127], researchers have high hopes with CNT-based materials

in a way that they could be an exciting alternative to the present semiconductor

industry [128]. CNT-based materials have been used as energy efficient transistors

[129], [130] and logic gates [131]. Recently a CNT-based computer has been

invented that has its own operating system and can perform integer sorting and

counting simultaneously [132].

CNTs are capable of carrying an electrical current density, which is 1000 times

higher than the copper. Depending on the process of their fabrication they are

divided in to two categories [133]:

� Single-Walled Carbon Nanotubes (SWCNTs)

� Multi-Walled Carbon Nanotubes (MWCNTs)

A SWCNT is viewed as a rolled up sheet of graphene (i.e. two dimensional

graphite plane) like a cylinder having a diameter of approximately 1nm and length

greater than 1µm. They can be metallic or semi conducting by changing their

diameter and helicity only [134], [135]. It has been experimentally verified that

their electronic properties change without changing in their internal bonding [136],

2.8. Carbon based materials 34

Figure 2.6: Conceptual model of SWCNTs and MWCNTs obtained form graphene

sheets (courtesy of K. Banerjee/California University, Santa Barbara). [6]

[127]. The roll-up direction (geometric configuration) of SWCNTs changes their

electronic properties [137].

The geometric structure of SWCNT can be identified by a circumferential

vector (chiral vector or also known as a “wrapping vector”) of two integer components

(a, b). A nanotube can change from metallic to semiconducting if a or b changes

only by 1. If a = b the tubes are metallic; for a− b = 3c tubes are semi-metallic,

where c is a non-zero integer; and for all others a − b = 3c ± 1 the tubes are

semiconducting.

In order to extract computation from any material, the material should possess

a complex and non-linear response to external stimuli [54]. SWCNTs form a

complex conductive network and, owing to their unique electrical and conductive

properties [138], they have been chosen as substrates for computation extraction.

The substrates were provided by the NAnoSCale Engineering for Novel Computation

using Evolution (NASCENCE) [42] project team and the experiments in this thesis

demonstrate the extraction of computation from SWCNTs based materials and

2.8. Carbon based materials 35

effect of concentrations of SWCNTs and polymers with regards to suitability for

extraction of computation using different optimisation and evolutionary algorithms.

2.8.2 Carbon nanotubes and polymers

Carbon nanotubes posses high electrically conductive properties. The exceptional

properties of these nano-structures can only be exploited if they are homogeneously

embedded into light-weight matrices such as polymers [139]. The presence of

SWCNTs in polymers not only improves their mechanical properties but also

their electrical properties [140]. The concentration of SWCNTs in the polymer

as well as the type of polymer effect SWCNTs electrical properties [141]. The

experiments in this thesis study the effect of different concentration of SWCNTs

in the polymer on their computational capabilities. It also reports the relation

between SWCNTs in different polymers and their computational capabilities.

2.8.3 Reduced graphene oxide

Graphene is a single layer of carbon atoms which are so2 bonded and form a

hexagonal 2-dimensional lattice [7]. It is the building block of 0−dimensional

buckyballs, 1−dimensional Carbon nanotubes, or 3−dimensional stack sheets

of graphite as shown in Figure 2.7 [7]. The single layer of graphene possess

exceptional chemical, thermal, optimal and electrical properties which makes it

idea material to study for various purposes [7].

Graphite oxide [142] is a compound made up of carbon, hydrogen and oxygen

molecules and is commonly used material to extract Graphene based materials.

Graphite oxide is oxidised to produce mass quantities of graphene. Graphene oxide

(GO) is a by-product of this oxidisation. The completely oxidised compound can

then be dispersed in a base solution such as water, and Graphene oxide (GO)

is then produced. GO is a graphene-like nano-sheet and is normally defective

2.8. Carbon based materials 36

Figure 2.7: Graphene as a building block of Bucky balls, carbon nanotubes,

graphite (from left to right) [7]

and requires some additional treatments to reduce it to reduced graphene oxide

(rGO) [143]. rGO can be obtained by reducing Graphene Oxide (GO) chemically,

thermally or via irradiation (UV or IR) to get a powder form. RGO is also known

as chemically modified graphene, chemically converted graphene, or reduced graphene

[144]. The process of conversion of graphite to graphene oxide to reduced graphene

oxide is shown in Figure 2.8. rGO has great electrical conductivity properties that

make it suitable for various research studies, hence used in experiments described

in this thesis.

Figure 2.8: Reduced graphene oxide [8]

2.9. Conclusions 37

2.9 Conclusions

The study in this thesis is inspired by the recent research in exploiting material

for computational purposes like liquid crystals, computer controlled manipulation

techniques and evolutionary computing (‘evolution in materio’) [110], [145]. Evolutionary

computing techniques can exploit the properties of the materials in order to train

them to perform a computation. This study focuses on nano-material systems

such as CNT/PBMA-based materials, as candidate materials for extraction of

computation and the use of different computer controlled optimisation techniques.

The detailed description of materials that are used in the study presented in this

thesis are describe in next chapter.

Chapter 3

Experimental methods

This chapter describes in detail the preparation of SWCNTs and Graphene composites

with two different polymers. It also outlines the experimental hardware platforms

that are used with different material composites to implement the concept of

EIM. The experiments described in following the chapters used these experimental

methods. The material composites and the hardware platforms are designed and

produced within the NASCENCE project [42].

3.1 Single walled carbon nanotube composites

In order to identify suitable materials systems for extraction of computation

using EIM methodology, several characteristics have been reported for a suitable

material [54]. These are:

� The material should have a complex, configurable structure.

� It should responds instantly and consistently to a wide range of signals (e.g.

voltages).

� It should have an ability to return into an un-configured or random state

38

3.1. Single walled carbon nanotube composites 39

when the signal (e.g voltage) is removed.

� The material should be robust to changes in the environment (light, heat,

electromagnetic signals etc).

� It should be consistent between the samples.

Considering these points various carbon nanotube based materials have been

prepared with a variety of formulations. Initially, electrical signals were intended

to be applied on the substrates, hence the composites were supplied after studying

their current- voltage (I − V) characteristics [135], in order to observe the non

linear response. The experiments presented in this thesis used varying concentrations

of SWCNTs with two different polymers : PMMA and PBMA. Later, three

different concentrations of reduced graphene oxide rGO in polymer PMMA were

used for the purpose of identification and extraction of computation. The following

sections describe these material systems in terms of their electrical properties and

methods of preparation.

3.1.1 SWCNTs / PMMA [1]

The first batch of materials provided by the project team consist of SWCNTs/PMMA

based composites. The initial experiments described in chapter 5 were performed

with the composites of SWCNTs and PMMA. The formulations were prepared

by following the same methods in [146] and [147]. The SWCNTs were dispersed

in Anisole (VWR, analytical reagent grade (methoxybenzene)) with an aid of an

ultrasonic probe at a power of 20% (Cole-Parmer 750W ultrasonic homogeniser).

The PMMA (Aldrich, Mw = 93; 000) was then added and additional sonification

was performed for a more uniform dispersion. The material was then deposited on

chromium/gold micro-electrode arrays (section 3.2, Figure 3.7) by drop casting.

In order to promote quick drying and a more uniform coverage, the substrate

3.1. Single walled carbon nanotube composites 40

was heated to 100◦C and left for 30 minutes in order to dry any remaining

solvent. These SWCNTs were distributed randomly over the electrodes to form a

conductive network, as shown in Figure 3.1. The SWCNTs used were unsorted,

which means they are mixture of semi-conducting and metallic varieties so that at

higher concentrations, they can yield more metallic percolating pathways, which

results in significantly higher current. Figure 3.2 shows the optical micrograph of

different concentration of SWCNTs random dispersion.

Figure 3.1: The dispersion of carbon nanotubes over the electrodes

Different concentrations of SWCNTs have been used due to the fact that

the concentration of SWCNTs affects the electrical properties of the composite

materials. Table 3.1 lists the different concentration of SWCNTs in PMMA used

for experiments described in this thesis.

3.1. Single walled carbon nanotube composites 41

Figure 3.2: Optical micro-graphs of the various nanotube concentrations deposited

on gold electrode arrays

Table 3.1: List of different concentrations of SWCNT/PMMA composites used

for initial experiments

CNT (wt.% fraction of PMMA) Solvent PMMA wt%

1.3 Anisole 5.0

4.7 Anisole 5.2

0.71 Anisole 4.9

0.012 Anisole 16.8

0.23 Anisole 16.5

0.10 Anisole 14.8

0.05 Anisole 24.5

It is one of the desirable characteristic for the material that it should return to

its previous state when signals are removed from it. Hence, the non-linearity

of the response was suggested as a key property for the suitable computational

material. The more conductive materials samples (> 1 wt% SWCNT) showed

3.1. Single walled carbon nanotube composites 42

linear response in terms of current versus voltage relationships. The I/V (current

vs voltage) plots for 3 different concentrations are given in Figure 3.3. The very

low concentrations (0.012 wt%) showed a non-linear response, whereas, higher

concentrations (0.1 and 0.23 wt%) showed significantly greater conductivity. Figure

3.4 shows the maximum current recorded at 2-volts as compare to SWCNT

concentration.

Figure 3.3: Current versus voltage graph

In order to increase the suspension stability of nanotubes, PMMA with increased

viscosity was used. Figure 3.5 shows better electrode coverage with a PMMA wt%

of ∼ 25 and CNTs wt% of 0.1, as compare to lower viscosity of PMMA, shown in

Figure 3.2. The main aim was to find which configurations of carbon nanotube

composites have better computational capabilities with respect to different computational

problems. The comparison of results for these material composites for the solution

of simple logic gates is given in chapter 5.

3.1. Single walled carbon nanotube composites 43

Figure 3.4: Current versus SWCNTs wt. % of PMMA graph

Figure 3.5: Electrode array with SWCNTs/PMMA (0.1% CNT) material (left)

and an optical micrograph of the electrodes (right)

3.1.2 SWCNTs/PBMA [1]

This thesis reports on computational capabilities of another set of materials,

where SWCNTs are embedded within another type of polymer called, poly butyl

methacrylate (PBMA). The materials are prepared in same way as SWCNTs/PMMA

composites using the techniques described in [146] and [147]. The composites were

designed by mixing powders of SWCNTs with PBMA (Sigma Aldrich, Mw337000)

and then dispersing these in Anisole (VWR, analytical reagent grade), using

an Ultrasonic probe (Cole-Palmer 750W ultrasonic homogenizer) at a power

of 20%. The SWCNTs/PBMA dispersions were visually uniform and remained

3.1. Single walled carbon nanotube composites 44

Figure 3.6: Scanning electron microscope image of a typical region of a spin coated

SWCNT/PBMA composite

stable over time. The varying concentrations of SWCNTs were used with fixed

polymer concentration to study the relationship between conductivity and its

effect on computation. The SWCNTs/PBMA composited were spin coated on

16 × 16 electrode arrays (section 3.2, Figure 3.8) using with a final spin speed

of 5000 rpm, these are then dried on a hotplate at 85◦C for 10 minutes. The

concentration of SWCNTs/PBMA determined the thickness of thin film and was

about 1 − 5µm. Figure 3.6 shows a typical region of SWCNTs/PBMA under

an electron microscope where well dispersed bundles of carbon nanotubes can

easily be seen. The different concentration of SWCNTs with PMMA used in

experiments described in this thesis are listed in Table 3.2. It was observed that

the concentration of SWCNTS in polymer affects viscosity of the composites. The

viscosity increases significantly with the addition of SWCNTS to the polymer.

This results in changing the electrical properties of the composite. However,

electrical conduction was strongly dependent on the concentration of SWCNTs.

3.2. Micro electrode arrays 45

Table 3.2: List of different concentrations of SWCNT/PBMA composites used for

initial experiments

SWCNT (wt.%

fraction of PMBA

Solvent PBMA

wt%

0.11 Anisole 10

0.25 Anisole 10

0.51 Anisole 10

0.74 Anisole 10

0.99 Anisole 10

1.49 Anisole 10

2.39 Anisole 10

3.1.3 Reduced Graphene oxide composites

The reduced Graphene oxide sample were prepared by mixing reduced graphene

oxide with 25 wt% of PBMA. The mixture was then dissolved in a solvent prepared

with a mixture of Dimethyformide (DMF) and chloroform (CF) in the ratio of 7 : 3

respectively. Three reduced Graphene oxide samples with Graphene concentration

of 0.475, 1.04, and 1.42 wt% of PBMA were used. The materials were placed on

glass electrode arrays with 12 contact points, (section 3.2 Figure 3.7) using drop

casting method.

3.2 Micro electrode arrays

The materials to be tested were placed on micro electrode arrays that were

designed using conventional etch-back photo-lithographic techniques using chromium/gold

on standard borosilicate glass slides. These electrodes were designed with either

3.3. Signal generation device (SGD) 46

Figure 3.7: Electrode array layout showing (a) the mask used for

photo-lithography and (b) the completed array in a PCB edge connector.

twelve contact points with an electrode spacing of 25µm and 16 × 16 contact

points. The contact pads for the 16× 16 electrodes had a diameter of 50µm and

a pitch of 100µm. These contacts can be assigned as an input, output, ground

and configuration voltages. The material to be investigated is drop casted at the

centre of 12 electrodes slides as shown in Figure 3.7 and spin coated on a 16× 16

electrodes as in Figure 3.8.

A quick connect system (as shown in Figure 3.7(b)) using a Printed Circuit

Board (PCB) edge connector (in green) was designed to easily replace the glass

electrode containing the material with other glass electrode.

3.3 Signal generation device (SGD)

Once the materials were available, the next step was to apply voltage signals to

the substrates and record the response. The experiments started with a very

simple setup. A signal generation device, Figure 3.9, driven by a micro-controller,

controls the serial communication to the PC and various Analogue-to-Digital

(ADC) and Digital-to-Analogue (DAC) converters are required to apply and

receive voltage signals.

3.3. Signal generation device (SGD) 47

Figure 3.8: A 16×16 electrode array layout showing the mask used for spin coated

SWCNTs/PBMA samples.

The mbed micro-controller (mbed.org) has the ability to apply different voltages

and measure output voltages. The development environment of the micro-controller

includes an on-line compiler, a version control system and 3rd party open source

libraries. Upon successful compilation the binary file is downloaded on to the

mbed’s memory and executed when the reset button is pressed on the micro-controller.

The device has following main features:

1. DAC (Digital to Analogue Converter) inputs (DC 0 − 4.095 V , 12 bit

resolution).

2. A 2× 16 cm LCD display.

3. A SD card interface: to store experimental results/data.

4. An ADC (Analogue to Digital converter) output (0−3.3 V , 12 bit resolution);

up to 6 available if required.

5. Serial communication with PC: This allows complex algorithms to be run on

a desktop PC, with measurements being handled by the mbed micro-controller.

The complete set-up of experimental hardware is shown in Figure 3.10: The

optimisation algorithm is run on PC and generated test inputs and configuration

3.4. Mecobo - a purpose built platform for EIM [2] 48

Figure 3.9: The schematic of signal generation device connected with the material

data, these test and configuration signals are sent to signal generation device

(SGD) which applied signals on to the material. The response from the material

is gathered by SGD and sent back to the optimisation/evolutionary algorithm,

the loop continued until the fitness function is achieved.

3.4 Mecobo - a purpose built platform for EIM

[2]

Evolutionary computation exploration requires the physical properties of the computational

material to be manipulated in various ways. The effect of various signal properties

such as, voltage/current levels, AC, DC, pulse or frequency, on material’s computational

capabilities are still unknown. Mecobo [148] was designed as an interface to handle

3.4. Mecobo - a purpose built platform for EIM [2] 49

Figure 3.10: The complete setup to conduct EIM experiments.

various physical and electrical signal properties in order to facilitate unconstrained

evolution of computation by the materials.

Figure 3.11 presents a systematic view of hardware interface (Mecobo) with

software and the material sample. Mecobo can be connected to host computer over

USB as a stand-alone interface. The host computer runs the system interface as

well as the optimisation algorithm which provides the configuration information.

Software interface configures the hardware interface by providing the configuration

information for each connection between the nano material and hardware interface.

Alternatively, it transforms the output response from the material into appropriate

data format for the optimisation algorithm.

Figure 3.13 shows the main components of Mecobo. Mecobo was designed as

PCB board with FPGA and micro-controller as main components. The micro-controller

accepts the commands from the host computer and implements them on FPGA via

shared memory. Whereas, FPGA establishes the physical and logical communication

3.4. Mecobo - a purpose built platform for EIM [2] 50

Figure 3.11: Mecobo hardware/software interface with material sample.

with the material substrates. Digital I/O can produce digital signals and sample

responses. Where as, analogue output signals are produced by the DAC module.

The DAC module can also produce static voltages or time dependent waveforms.

The ADC modules perform the sampling of analogue waveforms received from the

material.

There are different types of parameters that are associated with the digital

and analogue signals that enable the variety of configuration signals applied to

the material substrates. The list of these parameters with respect to different

electrical signals is given in Table 3.3. Furthermore, a scheduler was implemented

in the hardware that can schedule the time slots for different I/O or configuration

signals or to compensate delays when materials need time to settle before any

meaningful computation can be observed. A scheduler can be seen in Figure 3.14,

that illustrates interface hardware implementation. After the time slots have been

allocated for different input/output operations on different pins, these operations

will be played back just like music or video editing applications. Figure 3.12,

illustrates an example of this implementation, where PIN01,PIN02, PIN03 and

PIN04 act as input pins and different voltage operations with different durations

3.4. Mecobo - a purpose built platform for EIM [2] 51

Parameter Description

Amplitude

Amplitude for static voltage signals

Range:[0-255]

0=-5 V,255= +5 V

Frequency Frequency of square wave signals

Cycle Cycle of square wave signals

Phase Phase of square wave signals

Start time Start time of voltage application (in milli seconds)

End time End time of voltage application (in milli seconds)

Table 3.3: Mecobo’s adjustable parameters

are scheduled to be applied on to the material. PIN00 act as an output pin, which

will receive the output signals from the material during that specific duration. Due

to the fact that the SWCNTs/polymer samples are randomly distributed over the

micro-electrode arrays and there are no specific input/output locations, the choice

of input/output and configuration terminals should be left to optimisation control.

In order to achieve this, a pin routing module was placed between signal generating

modules and the sampling buffer. Hence, in contrast to previous hardware (mbed)

where pin configuration was predetermined, the Mecobo implemented pin configuration

under optimisation control.

3.4. Mecobo - a purpose built platform for EIM [2] 52

Figure 3.12: An example of implementation of track based model of scheduler.

Figure 3.13: Mecobo block diagram

3.4. Mecobo - a purpose built platform for EIM [2] 53

Figure 3.14: Mecobo overview- Hardware interface implementation.

Chapter 4

Optimisation algorithms and

computational problems

This chapter discusses the optimisation and evolutionary algorithms that are

used in the experiments described in following chapters. Section 2 discusses the

Nelder-Mead algorithm, where as section 2 describes the Particle swarm algorithm.

Section 3 discusses the threshold concept, that is used to implement threshold logic

gates in different SWCNTs composites.

4.1 Introduction

Unconventional computing systems widely employ evolutionary algorithms in their

design and implementation. An evolutionary algorithm is stochastic search technique

that is inspired by different biological mechanisms to solve optimisation problems.

An important field of research called evolvable hardware uses evolutionary

algorithms to design and create electronics. In [149] a genetic algorithm is used

to evolve FPGA to produce circuits to calculate Boolean function. A lot of

research on FPGAs and evolvable hardware and its implementation is reported in

54

4.2. Nelder-Mead algorithm 55

literature, for example [150], [151], [111], [152], [62], [64]. A device called FPMA

is described in [62] that uses genetic algorithms, to find solutions to the problems

by exploiting the physical properties of FPMA. This technique includes hardware

in the loop to calculate the objective function for every candidate solution. The

FPMAallows ‘evolution in materio’.

Different stochastic search algorithms have the potential to be used with

EIM. However, only genetic algorithms have been explored so far [153], [54], [38],

[40], [41], [39]. An important direction of research in this thesis is to explore

algorithms that can be appropriate to use with different types materials and

different computational problems. This chapter describes three main algorithms

that have been used for various experiments described in this thesis. In the

start, a very simple, simplex based, heuristic search algorithm called Nelder-Mead

algorithm is used for experiments described in chapter 5 and chapter 6. Later,

Particle Swarm algorithm (PSO) and Differential evolution are used for experiments

described in Chapter 5 and performance of Nelder-Mead algorithm and PSO is

compared. Differential evolution algorithm showed better performance in solution

of more complex logic circuits, such as Full adder, the results are discussed in detail

in Chapter 5. Chapter 6 used variant of PSO called Shortest Position Value (SPV)

rule for solving complex logic circuits on the purpose built platform, ‘Mecobo’.

The detailed description of these algorithms is given in following sections.

4.2 Nelder-Mead algorithm

Nelder-Mead algorithm is a popular direct search method that attempt to solve

a problem using only the function value information. The experiments described

in chapter 5, chapter 6 used Nelder-Mead algorithm for optimisation process.

Nelder-Mead is a simplex based, direct search method, derivative free method

4.2. Nelder-Mead algorithm 56

presented by Nelder and Mead [73] in 1965. If f(x) is a non-linear function to be

minimised, for x ∈ IRn, then a simplex method constructs a changing pattern of

(n + 1) vertices in IRn. A simplex with two dimensions is regarded as a triangle

and with four dimensions as a tetrahedron. The Nelder-Mead method is based

on sequence of changing simplexes that are modified in such a way so that the

simplex adapt itself towards the local landscape [73].

Various modifications and updates are available for this method, however, the

very basic Nelder-Mead method described in [73], is chosen for solving logic gate

problem discussed in chapter 4, and 5. The properties of Nelder-Mead method

that made it appropriate as a first choice for the optimisation problem are its

simplicity, robustness (tolerance to noise), ease of programming and low overhead

in computation and storage.

4.2.1 The algorithm

At each iteration of algorithm a trial step is computed by constructing a simplex

S of n + 1 vertices (n = 2 is a triangle), where the vertices are denoted by

x1, x2, · · · , xn+1. Each iteration begins with ordering and labelling these vertices

according to their function values. For example at iteration k, the current vertices

of simplex Sk are ordered as xk1, x
k
2, · · · , xkn+1 with f(x1)

k ≤, f(x2)
k ≤ · · · ≤

f(xn+1)
k. As the objective is to minimise the function f , xk1 is referred to as the

best point and xkn+1 as the worst point.

After calculating the value of f at trial points, the worst trial point is removed

and a new trial point is added. The new trial steps are generated by operations

called, reflection, expansion, contraction and shrinkage and their coefficients are

denoted by α,β,γ,δ respectively. According to [73] these coefficients should satisfy

the condition α > 0, β > 1, 0 < γ < 1 and 0 < δ < 1. The standard value of

these coefficients are used for the experiments described in this thesis, unless

4.2. Nelder-Mead algorithm 57

stated otherwise. The most accepted standard values of these coefficients are:

α = 1, β > 2, γ = 0.5 and δ = 0.5. The operations to produce new trial steps are

as follows:

Reflection

A new reflected point xr is created by reflecting the worst point, xn+1. The

reflected point xr is created as follows:

xr = x+ α(x− xn+1) (4.2.1)

Where x is the centroid of all n vertices of simplex except xn+1 and α = 1. The

centroid is computed as

x =
1

n

m∑
i=1

xi (4.2.2)

fr is computed for the new reflected point xr. The new point is only accepted

Figure 4.1: Reflection of simplex with two dimensions (a triangle). The original

simplex is shown with dotted line.

if f(x1) ≤ f(xr) < f(xn). The next iteration begins with the new simplex with

4.2. Nelder-Mead algorithm 58

vertices defined by x1, x2, · · · , xn, xr, although the new point xr is not ordered

with respect to other points in simplex. The reflection operation is shown in

Figure 4.1.

If the value of function at xr is less that the value of function at x1, this implies

that the trial step has produced a good vertex and the trial step will be expanded.

The expansion operation is as follows

Expansion

The expansion process will be computed as follows:

xe = x+ β(xr − x) (4.2.3)

Where x is computed using equation 4.2.2 and β = 2.

The next step begins with computing the value of f(xe) and is compared with

f(x1). If f(xe) < f(x1), the expansion vertex is accepted, otherwise reflection

vertex is accepted and next iteration will continue.

Figure 4.2: Expansion of a simplex. The original simplex is shown with dotted

line

Contraction

4.2. Nelder-Mead algorithm 59

Two types of contraction operations are performed if the reflected vertex is not

better than xn i.e. f(xr) ≥ f(xn).

� If the value of worst vertex x(n+1) is better than or equal to the reflected

vertex then an internal contraction is performed

xc = βx(n+1) + (1 + γ)x (4.2.4)

� otherwise an outside contraction is performed

x̂c = βxr + (1− γ)x (4.2.5)

Where the value of beta is 0.5. the value of contraction vertex is accepted when

its value lower than the value of xn. In case, if both reflected and contraction

vertices are not acceptable, then the shrink operation is performed.

Shrink

The shrink operation is performed by replacing all the vertices xi with the new

vertices, except x1. The new vertices are computes as follows:

vi = x1 + δ(xi − x1) (4.2.6)

Finally, the function values f(xi) are calculated and sorted along with f(x1) and

the new iteration commences with the simplex having vertices x1, v2, · · · , v(n+1).

Figures 4.1, 4.2, 4.3 represent the reflection expansion, contraction and shrink

operations performed by the simplex, using the coefficients α, β, γ, δ. It can

be easily seen that simplex undergoes noticeable changes during expansion and

contraction stages.

Various termination criteria has been proposed for Nelder-Mead algorithm

[154], [155]. For example termination criteria when the function values on two

vertices become very close, or when the simplex values become very small [155].

The stopping criteria is based on the relative size of the simplex with respect

4.2. Nelder-Mead algorithm 60

Figure 4.3: Inside, outside contractions and shrink operations of a Nelder- Mead

simplex an The original simplex is shown with dotted line.

to the size of the initial simplex i.e. (tol=10−8) and the maximum number of

iterations. The peudocode is given below.

Pseudo code

for i = 0, max− iterations

Compute an initial simplex S0

Sorts the vertices S0 with increasing function values S ← S0

while tol do

x← x(n+ 1)

xr ← x+ α(x− xn+1) {Reflect}

fr ← f(xr)

if fr < f1then

xe ← x+ β(xr − x){Expand}

fe ← f(xe)

if fe < frthen

4.2. Nelder-Mead algorithm 61

Accept xe

else

Accept xr

end if

else if f1 ≤ fr < fn then

Accept xr

else if fn ≤ fr < fn+1 then

xc ← βxr + (1− β)x {Outside contraction}

fc ← f(xc)

if fc < frthen

Accept xc

else

Compute the points xi = x1 + δ(xi − x1), i = 2, n+ 1 {Shrink}

Compute fi = f(vi) for i = 2, n+ 1

end if

else

xc ← βx(n+1) + (1 + β)x {Inside contraction}

fc ← f(xc)

if fc < fn+1 then

Accept xc

else

Compute the pointsxi = x1 + δ(xi − x1), i = 2, n+ 1 {Shrink}

Compute fi = f(vi) for i = 2, n+ 1

end if

end if

Sort the vertices of S with increasing function values

end while

4.3. Particle Swarm Optimisation 62

4.3 Particle Swarm Optimisation

The Particle Swarm Optimization (PSO) algorithm is a stochastic optimization

algorithm that is inspired by the social behaviour of animals. The interesting

information sharing social behaviour of fish schools or animal flocks has been

studied by several scientists [156] [157] and was believed that this evolutionary

behaviour can be primarily suited for numerical optimization problems. The

several examples from nature support this idea and it was the main inspiration for

Particle Swarm algorithm. PSO is a member of wide category of swarm intelligent

methods [158]. Although, initially proposed as a simulation of swarm behaviour

it was used as an optimisation method in 1995 [159], [158].

PSO is simple to implement, it has high convergence rates like Genetic Algorithms

(GAs) and requires few parameters to adjust. It has find its applications to a

variety of problems, such as evolving the structure and weights for artificial neural

networks, power system optimization, process control, dynamic optimization,

adaptive control and electromagnetic optimization [160].

PSO is an evolutionary computing technique that begin their search with

randomly generated population and utilize a fitness value to evaluate the population.

A random search allows the algorithm to escape from local minima and explore

flat regions but it comes with computational cost and slow convergence rate.

The experiments describe in chapter 5 used a simple PSO algorithm [161],

whereas, Chapter 7 of this thesis used PSO with a variant of PSO called Shortest

Position Value (SPV) rule [161].

PSO is selected for the experiments with materials for computation extraction

because it offer various advantages over other evolutionary techniques. PSO

is easy to implement, it does not require gradient information of the objective

function being considered, but its values [159].

The general operation of PSO is as follows.

4.3. Particle Swarm Optimisation 63

4.3.1 The algorithm

PSO is a population based optimisation algorithm that begins its search by

undertaking a group of randomly selected individuals called ‘Particles’ (metaphor

of birds in flocks). These particles scatter through the multidimensional problem

search space. During flight each particle updates its velocity and position by using

its own best experience ‘pbest’ and the entire population’s experience ‘gbest’. The

updating mechanism drives the particle towards the desired objective function

value and eventually whole population drives towards the region of desired objective

function value. Step by step description of the algorithm is as follows.

1. Initialisation: The velocity and position of initial population are randomly

set to pre-defined ranges.

2. Velocity Update: At each iteration a new velocity value Vi for each particle

is evaluated according to its current velocity, personal best objective function

value and the distance from the global best objective function value or local

best position. It can be written as:

Vi = wVi + c1R1(Pi,best − Pi) + c2R2(Gi,best − Pi) (4.3.7)

Where Pi and Vi are position and velocity vectors of particle i respectively.

Pi,best is the best objective function value achieved by the particle and Gi,best

is the best objective function value achieved by the entire population. w

is a scalar quantity that denotes inertia weight which controls the flying

dynamics. A small inertia weight will facilitate a local search, where as

large inertia weight will facilitate the global search, however a constant

inertia weight (0.5) is used for the experiments in this thesis; R1 and R2

4.3. Particle Swarm Optimisation 64

are used to maintain the diversity of the population and are normally in the

range of [0, 1]; c1 and c2 are acceleration constants are kept as c1 = c2 = 0.5

for better results.

The inclusion of random variables allows PSO with stochastic searching.

After each velocity update the constrains on velocity ensure that there is no

random walking. The velocity update will be used to update the position

of the particle in the search space.

3. Particle update

Pi+1 = Pi + Vi (4.3.8)

4. Memory update The algorithm keeps its memory keeping track of Pi and

Gi,best by following rule:

Pi,best = Pi if f(Pi) > f(Pi,best)

Gi,best = Gi if f(Gi) > f(Gi,best)
(4.3.9)

where f is the objective function.

5. Termination criteria The algorithm repeats steps 2 to 4 until the termination

criteria is met. For experiments described in this thesis the termination

criteria is pre-defined number of iterations or a failure to make progress

during the certain number of iterations. After termination the values of

Gbest and f(Gbest) are returned as a solution.

Let S be the number of particles in the swarm with each having a position xi ∈ <n
in the search-space and a velocity Vi ∈ <n Let Pi be the best known position of

4.3. Particle Swarm Optimisation 65

particle i and G be the best known position of the entire swarm. A Pseudo code

of a general PSO algorithm is then: [159]

Pseudo code

Begin

For each particle i = 1, · · · , S do

Initialize the particle’s position with a uniformly distributed random vector:

Xi ∼ U(blow, bup)

Initialize the particle’s best known position to its initial position: Pi ← Xi

If f(Pi) < f(G)then

Update the swarm’s best known position: G← Pi

Initialize the particle’s velocity: V i ∼ U(−|bup − blo|, |bup − blo|)

While a termination criterion is not met do:

For each particle i = 1, · · · , S do

For each dimension d = 1, ..., n do

Pick random numbers: rP , rG ∼ U(0, 1)

Update the particle’s velocity:

Vi,d ← ωVi,d + φP rP (Pi,d −Xi,d) + φGrG(gd − xi,d)

Update the particle’s position: Xi ← Xi + Vi

If f(Xi) < f(Pi) then

Update the particle’s best known position: Pi ← Xi

If f(Pi) < f(G) then

Update the swarm’s best known position: G← Pi

End

4.3.2 Shortest position value rule (SPV)

The experiments discussed in Chapter 7 required a mixed integer problem formulation,

with discrete integer values. The classic version of PSO generates continuous

4.4. Differential evolution (DE) 66

values during particle initialisation and velocity update. Similarly, the discrete or

binary versions of PSO generate discrete values only. Hence, in order to generate

discrete integer variables the PSO with SPV rule [161] is implemented.

The SPV rule converts the continuous values generated by PSO into discrete

values. If the particle in PSO is represented by the position vectorXi = [x1, x2, x3, · · · , xd],

where d is the dimension and i is the individual. SPV rule generates a new

sequence vector, where first element is based on the dimension index of smallest

value represented in the position vector. For example if the individual generated

by PSO with dimension 5 is:

Xid = {4.83,−0.55, 1.90, 4.46, 1.05}

A new vector Fid is generated according to SPV rule where dimension value of

the smallest element becomes the first element in the new sequence and same rule

applies for other elements. i.e.

Fid = {2, 5, 3, 4, 1}

The rule is applied at every iteration during particle generation and at velocity

update.

4.4 Differential evolution (DE)

Differential evolution is a direct search, population based stochastic search optimisation

algorithm introduced by Rainer Storn and Kenneth Price in 1996 [162]. It was

developed to solve optimisation problems in continuous domain and can easily

be applicable to practical applications. The algorithm found a wider acceptance

in science and engineering, where problems may have objective functions that

are non-differentiable, non-continuous, non-linear, constrained and have many

4.4. Differential evolution (DE) 67

local minima [162]. It can be used in such applications to find approximate

solutions to optimisation problems [163] [164]. DE is an evolutionary algorithm

that optimises a problem by maintaining a population of candidate solutions.

Like an evolutionary algorithm the optimisation process continues by creating

new solutions using the mutation, recombination and selection and keeping the

candidate solutions with the best fitness score. Hence, new candidate solutions

are only a measure of quality of underlying optimisation problem and therefore,

gradient information is not needed.

DE offers various advantages over many other optimisation algorithms. Being

a direct search method it can easily be used in optimisation processes that involve

experimental data rather than a computer simulation. It requires few variables

during the optimisation process, and stochastic perturbation of candidate solutions

requires less user input. The general operation of DE is given below:

4.4.1 The algorithm

DE is an evolutionary algorithm and follows the general process of initialisation,

mutation,recombination and selection.

Initialisation:

The DE works by having a population of candidate solutions called agents. The

agents are randomly selected with no information about the problem. In order to

optimise a function f : Rn → R with D real parameters, the size of population N

is selected. The function f : R takes a candidate solution (agent) as an argument

and produces a real number as an output which is the fitness value of the current

agent. The candidate solution is a parameter vector of following form:

xi,G = [x1,i,G, x1,i,G, · · · , xD,i,G], i = 1, 2, · · · , N (4.4.10)

4.4. Differential evolution (DE) 68

Where G, denotes the generation number. The upper and lower bounds of

parameters are:

xLj ≤ xj,i,1 ≤ xUj (4.4.11)

The initial values for parameters are randomly selected between the interval

[xLj , x
U
j]. Each agent in population N , then goes through the process of mutation,

recombination and selection.

Mutation

During mutation, for a given agent xi,G, three distant agents, xr1,G, xr2,G and xr3,G

are randomly selected from the population. The weighted difference of two agents

is added to the third agent as follows:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (4.4.12)

Where F is a mutation constant with value [0, 2] and vi,G+1 can be named as

donor agent.

Recombination

Where mutation expands the search space, recombination incorporates successful

solutions from previous generations. During recombination phase a new trail

agent ui,G+1 is created from the elements of target agent xi,G and elements of

donor agent vi,G+1. Elements of donor agent enter the trial agent with probability

CR (where CR is the cross over rate and CR ∈ [0, 1]).

ui,G+1 =

vj,i,G+1, if rj,i ≤ CR or j = Irand

xj,i,G+1, if rj,i ≤ CR or j 6= Irand

i = 1, 2, · · · , N

j = 1, 2, · · · , D

(4.4.13)

Where rj,i ∼ U[0, 1] is a uniformly distributed number and Irand is a random

integer between [1, 2, · · · , D] and it ensures that vj,i,G+1 6= xj,i,G+1.

4.4. Differential evolution (DE) 69

Selection

The next step is the selection between trial agent and target agent. The agent

with the lowest fitness function value is selected for the next generation.

xi,G+1 =

ui,G+1, if f(ui,G+1) ≤ f(xi,G)

xi,G, otherwise

i = 1, 2, · · · , N

(4.4.14)

The process of mutation, recombination and selection continues until the termination

criteria is met.

4.4.2 Parameter selection

Figure 4.4

The parameters named: population size(N), cross over rate (CR), and mutation

constantF , described in DE are generally selected by the User. These parameters

determine the efficiency and behaviour of the algorithm for optimising a given

problem. Therefore, selection of good parameters to yield good optimisation

performance is important. Different approaches have been suggested by [165],

[166], [167], [168], [169] to select these parameters. The algorithm used for experiments

4.4. Differential evolution (DE) 70

describe in this thesis used the approach describe in [170]. The process is simple

and is depicted in Figure 4.4. It uses an overlying optimiser called ‘meta-optimiser’

to select DE parameters for different scenarios, which in turn solves the optimisation

problem. The DE parameters can be selected from the list [170] according to

dimensionality of the problem and allowed number of fitness evaluations. The

Pseudocode of the differential Evolution algorithm is given below.

Pseudocode

Begin

Choose the population number N and the parameter number D to be optimised

Randomly initialise CR in an interval [0.8,1]

Create a random initial population xi,G−1, i = 1, 2, · · · , N

Do

Randomly initialise F in an interval [0, 2]

For i=1 to N

Select 3 different individuals randomly from the population Gi

Select a random integer number jrand between [1, D]

For j = 1 to D

Uniform crossover:

If ((rand(0, 1) ≤ CR)or(j = jrand))

Mutation

ui,G+1 = xr1,G + F (xr2,G − xr3,G)

Else

ui,G+1 = xj,i,G+1

End if

End For

While the termination condition is achieved

End

4.5. Computational problems 71

4.5 Computational problems

4.5.1 Threshold logic gates

Threshold logic gates are based on majority or threshold decision principle. This

means that the output value depends upon the arithmetic sum of inputs and

the threshold. The problem is studied in detail with different SWCNTs based

materials. A threshold logic gate is defined as a logic gate with n binary input

variables, xi, i = 1, · · · , n, for which there exists (n+ 1) weights and a threshold

θ, such that the output of a logic gate is:

y =

1 if
∑n

i=0wixi ≥ θ

0 if
∑n

i=0wixi < θ

(4.5.15)

The experiments described in chapter 5, chapter 6, and chapter 7 present

computations performed by different SWCNTs based materials using the threshold

concept to find the solutions for various Boolean functions. It includes solutions

of some simple logic gates gates using one threshold, such as, AND, OR and XOR

and multiple thresholds to find solutions of some complex circuits such as, Half

adder and Full adder.

4.5.2 Classification

Machine learning studies how to automatically learn to make accurate predictions

based on past observations. In machine learning, classification problems classify

new instances (observations) into given set of sub-categories. The identification

of categories is based on a data set called ‘training data set’, which contains

instances (observations) where the categories of instances are accurately known.

The algorithm that implements the classification is generally known as the classifier.

4.6. Summary 72

The general construction of a classification procedure is shown in Figure 4.5. The

Figure 4.5: The general construction of a classification procedure

work in this thesis studies the implementation of classification problem with the

SWCNTs based materials. The work is described in detail Chapter 9, where

the results of implementing binary classification as well as multiple class data

classification have been discussed.

4.5.3 Tone discrimination

Tone discriminator is defined as a device that can discriminate between two signals

and returns a different response for each signal [39]. The problem is studied in

detail with different SWCNTs based materials and different frequency signals and

results are presented in Chapter 8.

4.6 Summary

One of the major objective of this study is to find suitable methods of optimisation

for implementation of different computational problems with variety of SWCNTs

4.6. Summary 73

based materials. Three different optimisation algorithms and methods used to

implement experiments described in this thesis are presented in this chapter.

Three algorithms, i.e Nelder-Mead and Particle Swarm Optimisation and Differential

Evolution have different methods of implementation. These are chosen because

of their simplicity of implementation and use. These algorithms found wider

acceptance for the solution of variety of optimisation problems in different fields.

The performance of these algorithms will be compared in the experiments for their

suitability with different computational problems and materials.

The threshold method is used to implement various Boolean functions such

as AND, OR, Half adder and Full adder. The detailed discussion about the

implementation of this method for different logic gates and circuits is given in

following chapters.

Chapter 5

Logic gates/circuit training in

SWCNTs/PMMA composites

using mbed

This chapter presents the results of initial experiments of computations performed

by SWCNTs based composites using the very basic hardware set up (mbed) 3.3.

The hardware allows the application of static voltage signals to the material

composites and the analogue voltage signals to be collected from it. The computation

is based on threshold logic concept 4.5.1. Electrical conductivity is the property

of the material, that is manipulated to evolve Boolean logic gates.

These experiments reported the computational capabilities of SWCNTs/PMMA

based materials for the first time. Previously, Liquid Crystals were reported to

solve some basic computational problems [40], [41], [39], however the need for a

more robust material was identified which can implement EIM more efficiently.

After having initial satisfactory results with one mixture, various other mixtures of

SWCNTs/Polymer were used to study the effect of SWCNTs/polymer concentration

on computation. The results of these experiments provided an indication, that

74

5.1. Introduction 75

the SWCNTs based composites are suitable substrates that can solve a basic

computational task (Boolean logic gates) and makes them an ideal candidate for

further studying of other computational problems. Three different optimisation

algorithms have been used in different experiments and their performances are

compared.

It is also reported in this chapter, that the choice of contact points, for the

application of input signals and the collection of output signals have a significant

effect on the computation performed by the SWCNTs/PMMA composites.

Later, three different compositions of Graphene/PMMA composites are also

studied for their basic computational capabilities. The detail description of problem

formulation for threshold based logic gates/circuits and analysis of results are

reported in this chapter.

5.1 Introduction

The candidate materials are complex in nature with complex physical properties.

Various computational problems are reported in [54] that can be implemented with

the materials suitable for computation. One such problem named, Boolean logic

gates, is the simple and the most studied problems in the field of evolutionary

computing. For example, one/two bit adder problems serve as the standard

benchmark for testing genetic algorithms efficiency [171]. Hence, in order to

test the SWCNTs based material systems for their computational capabilities,

the initial experiments implemented very basic Boolean logic gates such as AND

and OR. Later, more complicated logic circuits named, half adder and full adder

are also implemented. The computational problem is implemented with varying

concentrations of SWCNTs and polymer (PMMA) and Graphene/PMMA. In

order to train the material as boolean logic gate/circuit, an optimisation problem

5.1. Introduction 76

Figure 5.1: The general idea to train the material to solve a computational

problem

is formulated with continuous and binary constraints.

For the experiments reported in this chapter, an optimisation problem has been

formulated to evolve Boolean logic gates/ circuits in SWCNTs based materials

using EIM. The general idea to train the material to solve a computational

problem is shown in Figure 5.1. The optimisation algorithm provides the values

for the inputs and configuration signals that are applied as stimuli on to the

material. The response is then gathered from the material and the fitness function

is evaluated, if the desire fitness value is not achieved, new data for configuration

signals along with other decision variables are generated by the optimisation

algorithm. The input/configuration signals are applied on to the material and

response is gathered again. This loop continues until the desired fitness value is

achieved. In order to start the experiments and keep things simple, a very basic

optimisation algorithm called, Nelder-Mead algorithm (Section: 4.2) is used. The

methodology and problem formulation for evolving boolean logic gates is given in

following sections.

5.2. Optimisation procedure 77

5.2 Optimisation procedure

The experiments used SWCNTs/PMMA composites that are placed on a 12

electrode arrays. The detailed description about SWCNTs/PMMA and electrodes

is given in chapter 4. The material has randomly dispersed network of SWCNTs

that act as a network of resistors and their output voltage increases monotonically

with the current as shown in Figure 5.3. These output measurements can be put

into non overlapping, staggered bands. Hence, threshold voltages for the output

(based on a sum of the inputs) can be defined. This way it is easy to achieve an

AND and OR gate and other Boolean functions.

In order to train the material to behave as Boolean logic gates/circuits, the

optimisation problem is formulated with hardware in the loop, i.e. the objective

function J is evaluated directly from the material. Since, every optimisation

problem is represented in the form of parameters and decision variables, where

the parameter value remains constant and decision variable values are changed by

the optimisation algorithm. The objective function and constraints are expressed

in terms of these parameters and decision variables. The parameter for current

problem formulation are:

� The number of binary inputs p.

� The number of configuration voltages r.

� The number of binary outputs m.

� The number of thresholds L.

� The lower and upper bounds of the voltages applied at the electrodes, Gmin

and Gmax, respectively.

� G0 = 0; ground voltage.

5.2. Optimisation procedure 78

� The truth table of the desired logical circuit T (A) ∈ (0, 1)m, where A =

[A1...Ap]
T ∈ (0, 1)p is the binary input vector.

� The number of examples K used for training the material. A training

example with index k, k = 1, · · · , K is a pair in the form of (A(k), TA(k)).

For example for an AND gate an instant of a training example with index

k is: ((1, 1)(k), 1(k)). The inputs were sent in an arbitrary order.

� Bmax an upper bound of the scaling factor β.

The decision variables are as follows:

� Gb0 , Gb1 the input voltages that signify a binary 1 and 0 respectively;

� G1, · · · , Gr the configuration voltages which can be set between [Gmin, Gmax],

these affect the measurements at the materials output locations;

� The scaling factor β ∈ [0, Bmax], without units for calculating threshold

values.

Hence, a candidate solution is a vector of the following form:

x = [Gb0 , Gb1 , G1, · · ·Gr, β]T (5.2.1)

Depending upon the type of logic circuit the electrode pins on glass slide are

assigned as input pins, output pins and the remaining are dedicated as configuration

pins. For example, on a 12 electrode array, a 2-input and 1-output logic gate will

have 9 configuration pins. The arrangement of input, output and configuration

terminals is predefined, as the hardware set up does not allow to put the terminal

selection under optimisation control. Figure 5.2 shows an example of arrangement

of input, output and configuration electrodes. For the system in use, the voltages

5.2. Optimisation procedure 79

Figure 5.2: Randomly dispersed network of SWCNTs over electrodes

measurements are used. For example, in Figure 5.2, two locations G1 and G2

are charged with binary input voltages (e.g. Gb0 represents a binary 0 and Gb1

represents a binary 1) and an output voltage value (M) is collected at G7. The

rest of the electrodes are charged with the configuration voltages Gq (where q =

1 · · · r). The input and configuration voltages control the conductive properties

of the material and effect the output Mj, j = 1, · · · ,m measured at j different

electrodes. In other words, Mj is a measure of material’s particular physical

quantity (in this case conductance). The output gathered from the material can be

arranged in to staggered bands and threshold logic is implemented using equation

(5.2.2). This idea is shown in Figure 5.3.

The operation of a Threshold logic circuit with m binary outputs and Lj +

1, j = 1, · · · ,m thresholds can be generalised as:

yj = Yj,c if θj,c−1 ≤
n∑
i=1

Mj < θj,c (5.2.2)

Where Yj,c ∈ 0, 1 and θc, c = 0, · · · , L are the known thresholds for each output.

The outcome of this operation must be equivalent to particular gate’s truth

table Y (A) ∈ {0, 1}m. Where A ∈ {0, 1} is the circuit’s binary input and Yj(A)

5.2. Optimisation procedure 80

Figure 5.3: The division of range of output M into staggered bands to be assigned

to input pairs, implementing the equation (5.2.2)

is the respective binary output j. The computation performed by the material is

embedded in the mapping of inputs into particular bands of outputs, as defined

by the equation (5.2.2). The general form of this mapping is given by

Hj = Fj[Mj, Y (A), θj,0, · · · , θj,Lj
] where j = 1, ...,m (5.2.3)

The function Fj maps the measured output M at jth location to a band assigned

according to (5.2.2). The mapping may be different for the measurements collected

at different locations i.e Fj1 6= Fj2.

The threshold voltage values are set as a function of some decision variable

voltage value. Hence, it is the optimisation that decides threshold values, instead

of user-defined values which can be time-consuming and may be irrelevant to

5.2. Optimisation procedure 81

the material. In some experiments, the threshold value is then multiplied by a

scaling factor β which is also decided by the optimisation. A scaling factor can

help to keep the values within the acceptable range of the optimisation algorithm.

Otherwise it may be possible that these values can exceed maximal values.

In other words, the threshold values θj,c used for the measurement collected

at output location j are calculated from

θj,c = fj,c((Gb0 , Gb1 , G1, · · · , Gr)× β), j = 1, · · · ,m, c = 0, · · · , Lj (5.2.4)

For a given circuit the threshold values for each output j are organised in the

vector θj.

The objective function for the current optimisation problem is selected as a

quadratic expression of the error when a potential solution x (equation:(5.2.1)) is

applied to the material. M
(k)
j (x,A(k)) is the output measured at electrode j when

binary input(s) A(k) is applied. The corresponding binary outcome Hj(x,A
(k)) is

calculated according to the threshold rules described in equation (5.2.2) and is

given by

H(x,A(k)) =

1 if M(x,A(k)) ≥ θ

0 if M(x,A(k))<θ

(5.2.5)

The mean total error from translating the material response according to equation

(5.2.5)is

Je(x) =
K∑
k=1

m∑
j=1

[Hj(x,A
(k))− Tj(A(k))] (5.2.6)

Although a limit is set on maximum voltages applied on material but in some

experiments a penalty term is added to (5.2.6) in order to penalise large voltages

used for reference inputs and is given by

ρ(x) =
G2
b1

G2
max

(5.2.7)

5.2. Optimisation procedure 82

The rationale behind this is that high voltages can possibly destroy the material

structures that may be unfavourable to the problem and eventually to the process

of evolution. Hence, low level of voltages are preferable and limits on voltages and

penalisation are double precautionary measures to control the level of reference

input voltages. The optimisation aims at minimising the following objective

function J

min
x
J = Je(x) + ρ(x) (5.2.8)

subject to

bl ≤ x ≤ bu (5.2.9)

Gi ∈ [Gmin, Gmax], i = 1, · · · , n (5.2.10)

β ∈ [0, Bmax] (5.2.11)

Also, bl = [Gmin, · · ·Bmin]T and bu = [Gmax, · · ·Bmax]
T . Three different optimisation

and evolutionary algorithms are used for solving this problem. The Nelder-Mead

with random restart as describe in [73], the Particle Swarm Optimisation algorithm

[172] and the Differential Evolution algorithm [162] using the parameters discussed

in [170].

5.2.1 Effect of changing connections

The SWCNTs based composites are placed on glass electrode arrays, where the

electrodes are arranged in a circular fashion. Each electrode is connected to a

micro-controller pin (MCP) on the mbed. The arrangement of input, output and

configuration terminals can be changed manually by changing the connections to

the pins on mbed micro-controller. In other words, any of the electrodes can be

assigned as an input, output, ground or a configuration. A basic arrangement

of the electrodes is illustrated in Figure 5.2. In order to study the effect of

distance between the input and output electrodes on computation performed by

5.3. Results and discussion 83

the material, the experiments are carried out by using four different arrangements

of electrodes. The four different arrangements are illustrated diagrammatically in

Figure 5.4. Where as, Figure 5.5 illustrates how these configurations are achieved

by changing wires on micro-controller manually. For instance, in Figure 5.5(a)

Micro-controller pin (MCP1) is used as an input pin, and diagrammatically this

arrangement is equivalent to configuration 1 in 5.4. This is the arrangement

where the input terminal can be put closest to an output terminal. Similarly, the

distance between input and output terminal was increased by changing wires

connections manually on micro-controller board and material’s computational

capabilities are studied for the solution of logic gates problem. SWCNTs/PMMA

based composites with varying concentrations are used in this experiment. The

detailed description of the results of these experiments is given in section 5.3.

5.3 Results and discussion

This section discusses the results of implementation of threshold concept to evolve

Boolean logic gates in SWCNTs/PMMA material composites. It reports results of

boolean gates/circuit with varying concentrations of SWCNTs/polymer(PMMA).

The detail of these material composites is given in Table 3.1.1. The method is used

to implement 2-input, 1-output logic gates (AND, OR) and then more complicated

circuits such as half adder and full adder. The section report on results using

Nelder-Mead algorithm with periodic restart, Particle swarm algorithm and differential

evolution algorithm.

5.3.1 Logic gates/circuits using Nelder-Mead algorithm

During training phase the NM algorithm solved the optimisation problem describe

in section 5.2 usingK number of training data for different Boolean logic gates/circuits.

5.3. Results and discussion 84

Figure 5.4: Diagrammatic representation of different configurations of

micro-controller pins

5.3. Results and discussion 85

Figure 5.5: Configuration of micro-controller pins as input

The termination criteria is set to be number of maximum iterations or the desired

value of objective function value.

Once the training phase is over, the verification phase begins by applying

back the optimal configuration voltages and the inputs from K verification input

samples of data on to the material. The verification samples are different from

training samples and the verification is performed 10 times and each time a mean

total error is calculated. Since, the material’s internal structure is fixed, the

evolution finds the best conductive pathways to solve the particular problem.

The following sections discuss the results of different logic gates/circuits in detail.

AND gate

The AND gate is a 2-input, 1-output logic gate that implements the Boolean logic

according to the truth table shown in Table 5.1 and are represented symbolically

as in Figure 5.6. AND gate requires one threshold to calculate the output of the

circuit. If M(x,A(k)) is the measured output at the output terminal and θ is the

5.3. Results and discussion 86

Figure 5.6: The AND gate

G1 G2 MAND(G1, G2)

0 0 0

0 1 0

1 0 0

1 1 1

Table 5.1: Truth table for AND gate

threshold value, then the operation of AND gate is summarised as:

Output =

{
1 if M1(x,A

(k)) ≥ θ

0 otherwise.
(5.3.12)

This means that the measured output is equal to logical 1 if it is greater than

the threshold value θ, otherwise it will be equal to logical 0. Nelder-Mead and

Particle swarm algorithms are used to find the optimal solution.

The optimal solution achieved by the Nelder-Mead algorithm for the material

with SWCNTs 1.3 wt% fraction of PMMA (5.0%) is given in Table 5.2. The

solution incorporates the value of Gb0 which is used to calculate logical 1 at the

input, β the scaling factor, which is multiplied by the the Gb1 to calculate the

threshold value, i.e. θ = Gb1 × β = 0.51G and the 7 configuration voltages

The output measurements at the output terminal after the optimisation found

5.3. Results and discussion 87

β 1.655

Gb1 0.31

Configuration voltage values
G1 = 0.808, G2 = 1.17, G3 = 0.10, G4 = 0.84

G5 = 0.64, G6 = 0.31, G7 = 0.88

Table 5.2: Optimal solution for AND gate, (SWCNTs 1.3wt% fraction of PMMA

(5.0%))

a solution are shown in Figure 5.7. The x-axis represents the order over time two

binary inputs applied at input terminals. Where as, the y-axis depicts the voltage

level measured at the output location. The solid red line running through the

figure represents the threshold θ = 0.51. It can be seen in Figure 5.7 that the

threshold value to calculate logical 1 is kept at a higher level for binary input pair

(1, 1). The output measurements for binary input pair (0, 0) is 0.136 V , for (0, 1)

is 0.47V , for (1, 0) is 0.278V and for (1, 1) is 0.57V , which is above the threshold

value, found by the optimisation. The spread of outputs along with threshold

value is a result of optimisation process and the material’s internal properties

which are result of interconnected complex conductive network of SWCNTs.

The different material composites were tested for training as logical AND gate,

The results are presented in Table 5.3. Most of material composites with different

SWCNTs concentrations were successfully trained as an AND gate. However, very

low concentrations of SWCNTS i.e. 0.05 wt % of PMMA and 0.02 wt % were not

successfully trained, the minimum obtained for these composites was high and

the verification accuracy was equal to 50%. The material with 0.1% SWNCTs

was successfully trained in a much lower number of iterations as compare to other

concentrations of SWCNTs/PMMA.

The results of various materials with varying concentrations of SWCNTs and

PMMA are given in Table 5.3. The fitness values include the penalty term added

5.3. Results and discussion 88

Figure 5.7: Output voltage measured for random binary inputs for AND gate:

outputs spread across a threshold value (red line), that is kept high to measure

an output when both inputs are high (1,1)

5.3. Results and discussion 89

AND gate results with varying SWCNTs/PMMA concentrations

%SWCNTs % PMMA
∮
min

∮
max

∮
avg

FEavg

0.012 16.8 6.00 22.00 17.71 1305

0.05 24.5 12.00 23.00 16.00 1056

0.1 14.8 0.02 0.05 0.04 82

0.23 16.5 0.005 0.02 0.01 73

0.71 4.9 0.02 0.03 0.04 52

1.3 5.0 0.01 0.04 0.05 150

407 5.2 0.00 0.004 0.002 123

Table 5.3: AND gate results with varying SWCNTs/PMMA concentrations

to penalise large input voltage values i.e. xb1 . The minimum, maximum and

average fitness values from 5 experiments for each material sample is listed as∮
min

,
∮
max

,
∮
avg

, where FEavg represents the average of function evaluations from

these experiments.

5.3.2 OR gate

The OR gate is a 2-input, 1-output logic gate that implements the Boolean logic

according to the truth table shown in Table 5.4 and are represented symbolically

as in Figure 5.8. This logic gate also requires one threshold to calculate the

output of the circuit. However, the threshold require to calculate a boolean 1 is

kept very low. If M(x,A(k)) is the measured output at the output terminal and θ

is the threshold value, then the operation of OR gate is summarised as:

Output =

{
1 if M1(x,A

(k)) ≥ θ

0 otherwise.
(5.3.13)

The equation implies that the measured output is equal to logical 1 if it is

5.3. Results and discussion 90

Figure 5.8: The OR gate

G1 G2 MOR(G1, G2)

0 0 0

0 1 1

1 0 1

1 1 1

Table 5.4: Truth table for OR gate

greater than the threshold value θ, otherwise it will be equal to logical 0. The

PSO and Nelder-Mead algorithm are used for training the material. The optimal

β 1.66

Gb1 0.31

Configuration voltage values
G1 = 0.59, G2 = 2.47, G3 = 3.6

G4 = 1.42, G5 = 1.00, G6 = 0.42, G7 = 0.31

Table 5.5: Optimal solution for OR gate, (SWCNTs 1.3 wt% fraction of

PMMA(5.0%))

solution achieved by the optimisation algorithm for the material with SWCNTs

1.3wt% fraction of PMMA (5.0%) is given in Table 5.5. The solution provides the

value of voltage Gb1 which is used to calculate logical 1 at the input and the scaling

5.3. Results and discussion 91

factor β = 1.66, both of these values are used to calculate the threshold value for

classifying the output as logical 0 or 1. The output measurements collected at

the terminal after optimisation process finished are shown in Figure 5.9. The

threshold value is represented by the horizontal red line across the graph. It can

be seen that the threshold value is kept at lower level in compression to output

measurements to calculate a logical 1 for binary input pairs (0, 1), (1, 0) and (1, 1).

Figure 5.9: Output voltage measured for random binary inputs for OR gate:

outputs spread across a threshold value (red line), that is kept low to measure a

high output when any of input is high i.e. (0, 1)(1, 0)(1, 1)

Similar to AND gate training, the materials with varying SWCNTs/PMMA

concentrations are used to train as an OR gate. The results of these experiments

using Nelder-Mead algorithm are summarised in Table 5.6. The fitness values

incorporate the penalty term, used to penalise large input voltages. It can be

5.3. Results and discussion 92

Half Adder results with varying SWCNTs/PMMA concentrations

%SWCNTs % PMMA
∮
min

∮
max

∮
avg

FEavg

0.012 16.8 32.00 52.00 47 1314

0.05 24.5 72.00 82.4 51.6 1055

0.1 14.8 0.02 0.05 0.03 29

0.23 16.5 0.00 0.002 0.00 23

0.71 4.9 0.02 0.03 0.03 24

1.3 5.0 0.01 0.04 0.05 22

407 5.2 0.00 0.09 0.05 123

Table 5.6: OR gate results with varying SWCNTs/PMMA concentrations

seen in the table that the most of material composites successfully achieved the

local minimum. However, similar to AND gate results the materials with very

low SWCNTs concentrations i.e. 0.05% and 0.012% were not successfully trained,

which in the end resulted in 50% accuracy during verification phase.

In contrast to AND gate results, presented in Table 5.3, the algorithm achieved

the desired minimum for an OR gate in significantly less number of iterations. For

instance, it took 130 iterations for the material with SWCNTs 1.3wt% fraction of

PMMA (5.0%) to train as an AND gate, where as, the OR gate was achieved for

the same material in only 9 iterations. The reason is the due to the complexity

of the problem.

The results of various materials with varying concentrations of SWCNTs and

PMMA are given in Table 5.6. The fitness values include the penalty term added

to penalise large input voltage values i.e. xb1 . The minimum, maximum and

average fitness values from 5 experiments for each material sample is listed as∮
min

,
∮
max

,
∮
avg

respectively, whereas, FEavg represents the average of function

evaluations from these 5 experiments.

5.3. Results and discussion 93

G1 G2 M(XOR)(G1, G2) M(AND)(G1, G2)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 5.7: Truth table for half adder circuit

5.3.3 Half adder

The half adder is a 2-input, 2-output logic circuit that implements the Boolean

logic according to the truth table shown in Table 5.7 and is represented symbolically

as in Figure 5.10.

Figure 5.10: The half adder circuit

It is a more complicated circuit than simple logic gates as it implements two

boolean gates, i.e. an AND gate and a XOR gate to implement its Boolean

function. The XOR gate imposes a requirement to translate the output voltage

M(XOR) into a 0 for the binary input (1, 1), where as, the output M(AND) requires

one threshold which corresponds to an AND gate.

5.3. Results and discussion 94

Optimal solution for half adder circuit AB,A⊕B)

β = 0.58

Gb1 = 1.214

G1 = 0.25 G2 = 0.031 G3 = 0.637

G4 = 0.84 G5 = 1.76 G6 = 1.34 G7 = 0.92

Table 5.8: Optimal solution for half adder circuit AB,A⊕B)

The carry operation for an AND gate is summarised as:

Output Carry =
{ 1 if M(AND)(x,G) ≥ θ1

0 otherwise.
(5.3.14)

The equation 7.3.8 implies that M(AND) should be greater that θ1 to calculate a

logical 1, otherwise it will be 0. Where as, the sum operation is as follows:

Output Sum =
{ 1 if θ2 ≤M(XOR)(x,G) ≤ θ3

0 otherwise.
(5.3.15)

The equation 7.3.9 implies that the measured output M(XOR) will be interpreted

as logical 1 when its value lies between two thresholds, θ2 and θ3. If M(XOR)

lies below θ2 and above θ3 it will be interpreted as logical 0. The results of

training the material (SWCNTs 0.1 wt% fraction of PMMA(14.8%) as a half

adder circuit using equation 7.3.8 and equation 7.3.9 are shown in Table 5.8. The

solution includes the value of scaling factor β, the value of voltage used as logical

1, and 7 configuration voltage values. The three thresholds (θ1,θ2,θ3) used for

calculating carry and sum are function of three configuration voltages G1, G2 and

G3 respectively, which are then multiplied with the scaling factor β. Hence, the

threshold value θ1 to calculate carry output is 0.25 and the two thresholds θ2 and

θ3 for calculation of sum outputs are 0.018 and 0.37 respectively. The output

measurements on two electrodes are shown in Figure 5.11. The three thresholds

5.3. Results and discussion 95

OR gate results with varying SWCNTs/PMMA concentrations

%SWCNTs % PMMA
∮
min

∮
max

∮
avg

FEavg

0.012 16.8 22.00 23.00 22.0 1314

0.05 24.5 21.00 24.00 22.00 1055

0.1 14.8 0.00 0.02 0.03 182

0.23 16.5 22.00 25.00 23.00 1354

0.71 4.9 5.0 8.00 6.10 1296

1.3 5.0 11.0 15.55 12.5 1050

407 5.2 17.00 20.0 18.4 1120

Table 5.9: Half adder circuit results with varying SWCNTs/PMMA

concentrations

can be seen very clearly. The threshold to calculate logical 1 for AND gate inputs

(1, 1) is placed at a distinctive location as compare to calculate logical 0 for the

rest of possible inputs. On the contrary, for XOR outputs all possible inputs and

the two thresholds to calculate XOR outputs are also clearly distinguishable.

The experiments to solve half adder problem are repeated with varying concentrations

of SWCNTs and PMMA. The results of these experiments are generalised in Table

5.9. The results presented in this table are from 5 different experiments, where

minimum, maximum and average fitness values are represented by
∮
min

,
∮
max

,
∮
avg

,

respectively and average number of function evaluations are represented by FEavg.

In similarity to AND and OR gates experiments, the fitness value incorporates the

penalty term used to penalise large input values. In contrast to simple logic gates,

AND and OR, only one material with SWCNTs concentration 0.1 wt% fraction

of PMMA (14.8%), was trained as a half adder circuit.

5.3. Results and discussion 96

Figure 5.11: Output voltage measured for random binary inputs for half adder:

outputs spread across three thresholds.

5.3.4 Logic circuits using Differential Evolution algorithm

The method describe in above sections to train the SWCNTs based materials

to behave as Logic gates was successful. However, the Nelder-Mead algorithm

was able to solve basic logic gates and circuits but it failed to solve complex

logic circuits in some cases. In separate experiments, the DE algorithm was used

to train the material composites as Threshold logic gates and Threshold logic

circuits. In contrast to Nelder-Mead algorithm, DE algorithm solved all of the

considered cases of Threshold logic circuits. The results of these experiments with

0.53% SWCNTs concentrations with fixed PMMA are discussed in the following

sections. The values of Gmin = −4 and Gmax = +4 are used, unless stated

other wise. Also, no penalty term is added to the objective function J as used

in equation and instead it is calculated using (5.2.6). In other words least square

5.3. Results and discussion 97

optimisation problem is as follows

min
x
J =

K∑
k=1

m∑
j=1

[Hj(x,A
(k))− Tj(A(k))] (5.3.16)

Logic circuit (AB,A+B)

The first circuit considered is a 2-input, 2-output logic circuit that is represented

symbolically as in Figure 5.12. It can be seen that the circuit consist of an AND

and an OR gate. The principle on which material operates is shown in Figure 5.3.

The two connections are charged with input voltages G1 and G2, which also take

Figure 5.12: The Logic circuit (AB,A+B)

the values of logical 1 i.e. GB0 and logical 0 i.e. GB1 respectively. The two

outputs are measured at two distinct locations on the material i.e. M1 and M2.

The circuit considered requires a single threshold to measure the outcome. The

solution found by optimisation for the circuit is shown in Table 5.10. It includes

the value of GB0 which is used as logical 0 and GB1 which is used as logical 1.

The value of GB1 is also used as threshold θ i.e. θ = f(x) = GB1 = 3.279 V.

The output measurements at two different locations are shown in Figure 5.13.

The x-axis represents the order over time the binary inputs (G1, G2) were applied

and y-axis represents the voltage measured at two output locations. The left

side represents the binary inputs corresponding to the AND gate and right side

5.3. Results and discussion 98

Optimal solution for the circuit: (AB, A+B)

for the material (0.53% SWCNTs/PMMA

GB0 = 3.279 GB1 = 11.200

G2 = 2.447 G3 = 3.200

G4 = 11.200 G5 = 5.054

G6 = 7.588 G7 = 9.556

Table 5.10: Optimal solution for the circuit: (AB, A+B)

represents the binary input corresponding to the OR gate. The solid line running

through the diagram represents the threshold θ = 3.279 V. It can be seen in Figure

5.13 that the voltages measured at two different locations take specific band and

are different for each output i.e. M1 and M2. For example, for the first test binary

inputs (0, 0), the measurement for AND gate us 3.055 V and for OR gate us 3.248

V. Both output measurements are less than the threshold value θ = 3.279, the

corresponding output for both is a 0. The output measurements for binary input

pair (0, 1) are 3.138 V for AND and 3.338 V for the OR gate. The value of AND

gate is below the threshold value, where as, the value of OR gate is above the

threshold value, hence a (0, 1) output is registered. For (1, 1) binary inputs the

output for an AND gate is 3.318 V and the output for an OR gate is 3.442 V,

both the values are larger then the threshold value, hence an outcome of (1, 1)

is registered. Both the outputs of the circuit were consistent for different input

pairs and stayed within specific bands. For instance, it can be seen in Figure 5.13

that for an AND gate the output voltages for the input pairs (0, 1) and (1, 0) are

at a good distance, as compare to an OR gate, where these values are closer. This

kind of spreading and the threshold values are result of optimisation process and

material’s physical properties, which in this case are due to conductive network

of carbon nanotubes).

5.3. Results and discussion 99

Figure 5.13: Output voltages measured for the random binary input pairs for the

circuit (AB,A+B)

Logic circuit (AB +BC)

The logic circuit (AB + BC) is a three input and a single output logic circuit

that requires a single threshold to calculate the outcome of the circuit. In this

case, the threshold was set as a function of G1β and the values of Bmax = 4 and

Gmax = 11.2V were set. The optimal solution found by DE is given is Table

5.11. The corresponding output measurements for random binary input triplets

when the optimal solution is applied are shown in Figure 5.15. The circuit is

difficult in terms of optimisation as the outcome of input triplet (1, 0, 1) with two

1’s is a 0. Where as, the outcome of the inputs triplets (0, 1, 1) and (1, 1, 0), also

with two 1’s result to a 1. Therefore, the solution must be able to differentiate

between these input signals. Optimisation found the solution by differentiating

the (1, 0, 1) from the other two input triplets by a very small margin. The voltage

5.3. Results and discussion 100

Optimal solution for (AB +BC) circuit: Material

0.53% SWCNTs/PMMA

G1 = 8.859 G2 = 3.693 G3 = 0.000

G4 = 0.172 G5 = 7.462 G6 = 7.577

Gb1 = 8.672 β = 0.406 θ = 3.597

Table 5.11: Optimal solution for (AB +BC) circuit in Volts except for β

value recorded for the (1, 1, 0) is 3.650, for (0, 1, 1) is 3.598 and for (1, 0, 1) is 3.571.

Both the Nelder-Mead and DE were able to find the solution, however the results

are presented for DE algorithm.

Figure 5.14: The Logic circuit (AB +BC)

Logic circuit: Full adder

The full adder is a 3-input, 2-output logic circuit, that implements the Boolean

logic according to truth table given in Table 5.12. It can be seen in the table that

the circuit requires a single threshold to calculate carry. In this case the threshold

for carry is calculate as follows.

θc = G4 (5.3.17)

5.3. Results and discussion 101

Figure 5.15: Output voltages measured for the random binary input triplets for

the circuit (AB +BC)

The threshold function to map the measured voltages to binary outputs when

binary triplet A = (x1, x2, x3) is given as input is as follows:

H1(A) =

{
1 if M1 ≥ θc

0 otherwise.
(5.3.18)

The calculation of sum output of the circuit is different as compare to carry. The

outcome of sum is a 1, when there is single 1 in input triplet, the outcome is a 0

when there are two 1s in the input triplet and the outcome is again 1, when there

are three 1s in the input triplet. Hence, it requires three thresholds to calculate

the outcome of sum i.e. to classify the measured output voltage. In current case,

the three thresholds to calculate the outputs for sum are as follows:

θs,1 = G1β (5.3.19)

θs,2 = G2 (5.3.20)

5.3. Results and discussion 102

Inputs Outputs

A B C
AB + C(A⊕B)

(carry)

A⊕B ⊕ C

(sum)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 5.12: Full adder’s truth table

θs,2 = G3 (5.3.21)

The threshold mapping for measured output voltages to binary outputs when

binary input triplets are given is as follows:

H2(A) =



1 if M1 ≥ θc

0 if θs,2 ≤M2 < θs,1

1 if θs,3 ≤M2 < θs,2

0 if M1 ≤ θs,3

(5.3.22)

In case of full adder circuit the Nelder-Mead algorithm failed to find the solution,

however DE was successfully found the solution and is given in Table 5.13.

Figure 5.17, shows the spreading of measured output voltages when the respective

binary input triplets are applied. It can be seen that the thresholds are well

separated for the input triplets. There is significant variance for carry and sum

outputs. The carry output has less variance as it requires one threshold to

5.3. Results and discussion 103

Figure 5.16: The Full adder

Optimal solution for full adder circuit: Material

0.53% SWCNTs/PMMA

G1 = 2.447 G2 = 3.710 G3 = 3.161

G4 = 2.968 G5 = 10.718 G6 = 5.060

Gb1 = 7.717 β = 1.7 θc = 2.968

θs,1 = 4.160 θs,2 = 3.710 θs,3 = 3.161

Table 5.13: Optimal solution for full adder circuit in Volts except for β

differentiate the inputs that has at least two 1’s, where as the outputs for sum are

widely spread in order to differentiate the inputs with one 1’s from two and three

1’s.

5.3.5 Effect of changing connections

The micro-controller pins are arranged in a circular manner on glass slide as

shown in Figure 3.7. The detailed arrangement of these pins as inputs and

outputs, used for the current the experiments is illustrated in Figure 5.4. Figure

5.5, illustrates how this arrangement can be altered. For the first experiment,

5.3. Results and discussion 104

Figure 5.17: Output voltages measured for the random binary input triplets for

the full adder circuit

micro-controller pin 1 (Figure 5.4: MCP1) was used as an input terminal. In this

way, input pin is closest to the output pin on the glass slide, as shown in Figure 5.4,

(configuration 1). Then MCP2, MCP3 and MCP4 were used as input application

points respectively. This way the distance between the input pins and output pins

on glass slides was increased. The distance was maximum when MCP4 is used

as input pin. The results of these experiments are presented in Table 5.14, which

shows the success of convergence to a minimum when the pin distance is varied.

The best convergence was achieved when the input pins were closest to output

pins, all other pin configurations failed to achieved the desired minimum during

total number of iterations. The results of these experiments clearly highlighted

that distance between input and output pins has a direct effect on convergence.

This is due to the fact that the concentration of SWCNTs can be different on each

contact electrode. It can also be concluded that if the pin selection is added as

5.4. Resistors vs SWCNTs? 105

a parameter to the optimisation process, optimisation may be able to find better

interconnected conductive pathways which may lead to better solutions for the

chosen computational problem.

Wires Fitness value achieved Number of

Function

evaluations

Number of

Iterations

MCP1 0.062000 117 69

MCP2 No convergence 1160 901

MCP3 No convergence 996 901

MCP4 No convergence 1104 901

Table 5.14: Fitness values at different micro-controller pins

5.3.6 Particle Swarm algorithm vs Nelder-Mead algorithm

The initial experiments for solving logic gate problem are performed with Nelder-Mead

algorithm. Later, Particle swarm algorithm was used to compare its performance

with Nelder- Mead algorithm. Particle swarm algorithm with swarm size 16 is used

for experiments described in this chapter. Comparison of these two algorithms

with two different materials to solve AND and OR gate is given in Table 5.15 and

Table 5.16. As shown in both PSO required less number of function evaluations

to reach minimum, as compared to Nelder-Mead algorithm.

5.4 Resistors vs SWCNTs?

SWCNTs/ PMMA composites have a random arrangement of carbon nanotubes

that act as a network resistors. SWCNTs/ PMMA composites are in dry state and

any physical reorganisation of SWCNTs was unlikely after an optimal solution.

5.4. Resistors vs SWCNTs? 106

No. of function evaluations performed for an AND gate

Material Nelder-Mead

algorithm

Particle

Swarm

algorithm

1.3 CNT (wt% fraction

of PMMA(5.0))
190 27

0.10 CNT(wt% fraction of PMMA(14.8)) 116 68

Table 5.15: Performance of PSO vs Nelder-Mead algorithm for solving an AND

No. of function evaluations performed for an OR gate

Material Nelder-Mead

algorithm

Particle

Swarm

algorithm

1.3 CNT (wt% fraction

of PMMA(5.0))
9 5

0.10 CNT(wt% fraction of PMMA(14.8)) 116 68

Table 5.16: Performance of PSO vs Nelder-Mead algorithm for solving an OR

gate

5.4. Resistors vs SWCNTs? 107

Figure 5.18

However, there was a possibility that the conductivity of SWCNTs based composites

would have been altered by the application of voltage signals. After having

promising results of training SWCNTs/ PMMA composites as basic logic gates

and a half adder circuit, experiments have been performed to verify if the similar

effect can be achieved by using the network of resistors. An experiment aimed

to find if a non linear response can be obtained from the network of resistors by

applying the same optimisation procedure as performed with SWCNTs/ PMMA

composites to behave as logic gates (AND and OR). Figure 5.18 shows the experimental

set-up that is used to implement this idea. The optimisation was performed using

resistor network and it showed a linear dependence on input voltages and was not

successful to train as a logic gate (AND and OR). Where as, the same experiment

was implemented with SWCNTs/ PMMA composites and the output response

showed a non-linear dependence on the input voltages. Hence, it was concluded

that application of optimised input signals on to SWCNTs/ PMMA network

produced the logic gate behaviour and the non-linear response from the material

composites is key to successful implementation of the optimisation process.

These experiments are different from SPICE simulation modelling of the SWCNT

based material, where the material’s model is produced by observing the material’s

behaviour under different inputs [120]. The model produced is a circuit consisting

5.5. Stability of results 108

of common elements like capacitors, inductors and resistors. It was shown that the

model thus produced can solve a travelling salesman problem, however it cannot

be trained to solve a NOT gate problem. Its is the material’s non-linear behaviour

which is required to solve a computational problem.

5.5 Stability of results

In order to observe the stability of the results, different approaches were used to

observe the behaviour of the material. This is important, so that the same optimal

solution can be reapplied to the same material composites for the solution of a

computational problem. The following approaches were used to test the stability

of the results:

� The micro-controller was switched off for some time and then switched on

again and the optimal signals are applied on to material composites.

� Some random signals were applied on to the material composites and then

the optimal solution was applied.

� The optimal solution was applied after some days and then two and three

months duration.

The outcome of these tests showed that the optimal solutions obtained are reproducible

over time, and as such, no significant degradation was observed.

5.6 Conclusions

This chapter has presented the results that SWCNTs/ PMMA can be trained to

implement threshold logic gates using the principal of evolution in materio and

material’s conductive property. In order to train the material an optimisation

5.6. Conclusions 109

problem as been formulated with continuous and binary constraints. The procedure

was successful to evolve logic gates and circuits by selectively applying configuration

voltages on to different material locations. A one-to-one mapping has been

established between inputs and outputs. The experiments were conducted with

the different SWCNTs/ PMMA composites using the Nelder-Mead algorithm,

Particle Swarm Optimisation algorithm and Differential Evolution algorithm. It

was the first time that the EIM concept is used to train the SWCNTs/ PMMA

composites as threshold logic gates and threshold logic circuits. Previously, Liquid

crystal based material was used for logic gates using genetic algorithms [171].

Different SWCNTs/ PMMA based composites with varying concentration of

SWCNTs and polymer (PMMA) are explored for their computational capabilities.

A link between SWCNTs concentration and ability to optimise for the logic

gate/circuit was observed. The composites with very low concentrations of SWCNTs,

i.e. (SWCNTs 0.012%) and (SWCNTs 0.05%) failed to converge for OR, AND and

half adder circuit. Where as, the composite with SWCNTs 0.13% concentration

was successfully trained for AND, OR as well as the half adder circuit. Hence, a

conclusion can be drawn that a very specific SWCNTs concentration is required

for simple and complex logic circuit.

Table 5.17 describes the effort with which the logical gates have been evolved

in this SWCNTs/ PMMA composite. The results show that as the complexity of

the problem is increased, the number of function evaluations required to train the

materials as a half adder circuit also increased as compare to an AND and OR

gate.

It is can also be concluded that although the networks of SWCNTs in the

polymer are not mobile to allow any physical manipulation of electrical pathways,

the combination of SWCNTs and PMMA (polymer) produced a complex physical

architecture that can be used to train the material to a solve basic computational

5.6. Conclusions 110

Gate Fitness value achieved No. of Function evaluations No. of iterations

AND 0 116 56

OR 0 113 56

half adder 0 174 110

Table 5.17: Results showing optimal solution for AND, OR and half adder circuit

with the 1.3 CNT wt% fraction of PMMA (5.0)

problem.

There were no physical or structural changes within the composites after the

optimisation process was completed and as a result, the composites were very

stable in terms of their internal structure.

It is also important to make the distinction that the physical evolution is not

happening inside the material composites as the materials are fixed. Instead,

the optimisation algorithms find a set of optimal voltage levels to produce a

desired response. In other words, it is the electrical conductance that is changed

and manipulated in order to obtain responses whose interpretation using the

pre-selected threshold(s) can be used for simple logic gates and logic circuits.

In separate experiments, two different optimisation algorithms, i.e Nelder-Mead

algorithm and Particle Swarm algorithm, were compared for their performance to

solve basic logic gates. PSO was quick to converge to the solution as compare

to Nelder- Mead algorithm. Later, in separate experiments, differential evolution

algorithm and Nelder-Mead algorithm were used to train the two different concentrations

of SWCNTs/ PMMA i.e 0.53% and 0.23% as complex threshold-based logic circuits.

The Nelder-Mead algorithm failed to address more complex Boolean functions,

where as DE was consistently successful to solve considered complex logic circuits.

Similarly, out of two concentrations of material composites used, only the concentration

of 0.53% SWCNTs/ PMMA succeeded in behaving as a logic circuit for all the

5.6. Conclusions 111

considered cases. The results of this study have been published in [173].

As a result of these experiments, a three-dimensional research space has been

highlighted that consist of (a) computational material, (b) computational task,

(c) optimisation algorithm used to train the material. The exploration of these

research spaces can provide insights into new paradigms of computation.

It can be concluded from these experiment that SWCNTs/ PMMA composites

are suited for approximating simple digital logic. However, the clear link between

SWCNTs concentrations and ability to train them as logic gates cannot be established

from these experiments. This is due to the fact that every material composite used,

have different concentration of SWCNTs as well as the polymer (PMMA), both of

which effect material’s conductive properties. In order to explore this observation

further, the next chapter investigates the another set SWCNTs based composites

for the solution of logic gates problem. These experiments helped in identifying

the link between SWCNTs concentration and its effect on the solution of a simple

computational task.

Chapter 6

Studying the correlation between

SWCNTs concentration and

computing

This chapter discusses the results of studying the correlation between the concentration

of SWCNTs and solving a simple computational problem of threshold based logic

gates/circuits.

6.1 Introduction

The outline for an suitable materials for use with EIM is presented in [54] and

is described in Chapter 3, section 3.1. It was observed in experiments describe

in Chapter 5, that the suitable materials should have some non-linearity in their

current versus voltage response because otherwise, a network of standard resistors

and capacitors could be enough [174]. Also, one material system should be

benchmarked against another and it therefore, requires a simple method or experiment

where different material systems can be compared to each other for computational

112

6.1. Introduction 113

problems.

The previous chapter reported the results of computing with different SWCNTs

concentrations with different percentage of polymer (PMMA). However, a clear

indication of SWCNTs concentration and computational capability cannot be

outlined as the polymer concentration was different for every sample. The concentration

of polymer as well as SWCNTs affects the electrical behaviour of the composite

and the experiments were intended to use electrical signals to manipulate the

material composite properties. Hence, it was important to study the correlation

between SWCNTs concentrations and their computational capabilities.

In order to do so, the next batch of material composites was used produced

that used varied SWCNTs concentration in a fixed polymer called Poly Butyl

Methacrylate (PBMA). Different concentrations of SWCNTs are used with a fixed

polymer concentration, in order to compare the conductivities of different samples

and its effect on their computational capabilities. The material composites are

then tested for solving simple logic gates as well as a complex logic circuit Half

adder, using the threshold concept described in Chapter 4, Section 4.5.1. The

conclusions are drawn on a correlation between the concentrations of SWCNTs

and their effect on solving computational problems.

The concentration of SWCNTs affect the material’s morphological and electrical

behaviour therefore, material viscosity and electrical characteristics are discussed

in following section. The later sections present the detailed analysis of the results

of these experiments.

6.2. Viscosity and electrical characteristics of
SWCNTs/PBMA composites 114

6.2 Viscosity and electrical characteristics of

SWCNTs/PBMA composites

The detailed description of SWCNTs/PBMA preparation is outlined in chapter 3,

section 3.1.2. In order to produce stable substrates, the composites are deposited

using spin-coating technique, discussed in chapter 3, section 3.1.2. This provides

more even coverage over the electrodes and was more stable than drop-cast material

composites (used in experiments described in Chapter 4). An electron micrograph

in Figure 3.6 shows well dispersed bundles of SWCNTs over the electrodes. The

4 × 4 grid electrode slides is used for these composites, the detailed description

of these electrode slides is also given in chapter 3, section 3.2. The mask of these

electrodes is shown in Figure 3.8.

The concentration of SWCNTs in polymer affects the viscosity and electrical

properties of the composites. Before studying the material composites for their

computational capabilities the viscosity and electrical properties were studied in

detail as they may have an impact computational capabilities of the materials

system. The detail description of these two observations is given in following

sections.

6.2.1 Viscosity measurements

[3] In general, the relationship among viscosity, sheer stress and shear rate for

liquid material is express as

τ = ηγ (6.2.1)

However, SWCNTs/polymer composites follow a non-Newtonian liquid behaviour

of shear thinning, which means when the viscosity of the material is decreased

and rate of shear is increased. A common power law describes the shear thinning

6.2. Viscosity and electrical characteristics of
SWCNTs/PBMA composites 115

as;

τ = Acγ
n (6.2.2)

Where Ac is the consistency parameter and n is the power law index. At n = 1,

Newtonian behaviour is observed where the shear stress is proportional to shear

rate. The comparison of shear stress and the shear rate is expressed solid lines for

different SWCNTs/ PBMA composites using equation 6.2.2 in plotted in Figure

6.1. Along with the experimental data in Table 6.1 and the plotted lines in

Figure 6.1, it can be seen that the experimental data fit reasonably well with

these lines. The values of different parameters in equation 6.2.2 obtained from

Figure 6.1: Comparison of shear stress and shear rate in various SWCNTs/ PBMA

composites

the experimental data are given in Table 6.1.

The pure polymer viscosity, without addition of SWCNTs is 0.3 Pa.S and

power law index is approximately equal to 1. Gradually, different concentrations

6.2. Viscosity and electrical characteristics of
SWCNTs/PBMA composites 116

Concentration of SWCNTs (wt%) Ac(Pa.S) n

2.39 11.2 0.42

1.49 5.8 0.50

0.99 3.8 0.53

0.74 2.4 0.59

0.25 1.0 0.74

0.11 0.58 0.86

0.05 0.3 1.0

0.00 0.3 0.99

Table 6.1: Viscosity and power law index values for curve fitting experimental

data in Figure 6.1 [3]

of SWCNTs are added to the polymer matrix and their viscosity and power

law indexes are compared. At 0.05 SWCNTs concentration, the changes in

viscosity and power law index are almost negligible, however with the increased

concentration of SWCNTs to the polymer, the viscosity of the matrix is increased,

but the power law index of the matrix is decreased. This is an indication that the

material is going through shear thinning. The increase in the rate of shear thinning

may be attributed to the fact that the bonds between the long threads of SWCNTs

can easily being broken by the shear force. At higher viscosities small shear force

will be needed to break the bonds between the SWCNTs threads. Figure 6.2 shows

the comparison of different SWCNTs concentrations and their effect on viscosity.

It can be seen that increased concentration of SWCNTs increased the value of

viscosity. However, after the 1% concentration of SWCNTs the rate of increase

in viscosity becomes gradual and it increases logarithmically. This is attributed

to the fact that above 1%, large bundles of SWCNTs are already present within

the polymer matrix and increased addition of SWCNTs has a minimal effect on

6.2. Viscosity and electrical characteristics of
SWCNTs/PBMA composites 117

the viscosity of the matrix.

Figure 6.2: Comparison of viscosity versus SWCNTs [3]

6.2.2 Electrical measurements [3]

The different concentrations of SWCNTs in polymer matrix are studied for their

current versus voltage properties using electrode slides with an electrode gap of

50µm (chapter 3, section 3.2). All the material composites showed a non-linear

behaviour in terms of current versus voltage measurements. At lower concentrations,

such as 0.1%, the current was measured in nA, but as the concentration of

SWCNTs was increased in the polymer matrix, the current measurements were

recoded in mA. This behaviour can be attributed to the fact that, the increased

concentration of SWCNTs led to increased interconnections between SWCNTs

bundles. This behaviour is also noted in viscosity measurements of these composites,

as described in the previous section. The comparison of current versus SWCNTs

6.2. Viscosity and electrical characteristics of
SWCNTs/PBMA composites 118

concentration is shown in Figure 6.3. The log of current versus SWCNTs concentration

is linear up to 1.0% SWCNTs concentration, but this gradient reduces after 1.0%

concentration. This behaviour can be attributed to the electrical percolation

threshold of the SWCNTs network, where the voltage will become less affected

by the increased concentration of SWCNTs. The electrical percolation threshold

for SWCNTs network, as reported in literature [175], is between 0.17−0.70% and

several other factors such as a polymer, the source of SWCNTs and additional

purification also affect the percolation threshold of SWCNTs networks. This

percolation threshold for current experiments is in accordance to what is reported

in literature [175], however, the polymer used for current experiments is PBMA

(butyl group instead of methyl group), which has longer chains length and aids

in better suspension and formation of thin films. In order to understand the

Figure 6.3: Comparison of current and voltage for various SWCNTs

concentrations [3]

conduction mechanism of SWCNTs/polymer composites, the logarithm of current

versus voltage were plotted, which indicated that at higher concentrations the

6.3. Results and discussion 119

current was directly proportional to voltage with a slope 1. However, at lower

concentration of SWCNTs the slope was recoded as 1.5, which means that there

are other mechanisms at work with the SWCNTs network. It was suggested that

this could be the Poole-Frankel (PF) effect [176], which is widely reported in

literature as a conduction mechanism in Carbon nanotubes network. Hence, the

current versus voltage relationship can be written as:

I ∝ V exp

(
− Ed − βPFV

1
2

kT

)
(6.2.3)

where

βPF =

(
e3

πε0εrd

) 1
2

(6.2.4)

The Poole-Frankel fit for two concentrations of SWCNTs (i.e. very low: 0.11% and

very high: 3.20%) is plotted in Figure 6.4. A linear response with gradient 0.46

is observed in lower concentration of SWCNTs. However, higher concentration of

SWCNTs has not showed a linear response between current and voltage relationship

which suggested that Poole-Frankel is not the dominant conduction mechanism

in these networks of films.

6.3 Results and discussion

The SWCNTs/PBMA based material posses complex electrical characteristics,

with a field dependent conductivity when the concentration of SWCNTs is below

a certain threshold. Using this data various concentrations listed in Table 3.2 in

chapter 3, are studied for computer controlled optimisation of logic gates/circuits

using the hardware described in Chapter 3, Section 3.3. The problem formulation

is same as described in chapter 5, section 5.2 and AND, OR and half adder circuits

are solved.

6.3. Results and discussion 120

Figure 6.4: Poole-Frankel fit for low (0.11%) and high (3.20%) concentrations of

SWCNTs [3]

The two parameters, i.e. fitness function value (0 as best value) and the

number of function evaluations to achieve the fitness value are used to judge the

suitability of the material for the computational problem. The number of function

evaluations to reach the desired fitness value provides an indication that how

well the material’s properties are used for performing the target computation.

The less number of function evaluations to reach an optimal solution indicates

a more flexible material and an efficient hardware-in-loop optimisation. These

investigations have been performed by keeping all the parameter values of Nelder-Mead

algorithm the same for all the material composite. Table 6.2 provides the values of

the number of average number of function evaluations achieved during 5 different

optimisation runs by each material composite to reach the solution. It can be seen

that the material with SWCNTs concentration above 0.1% require less number of

function evaluations to converge to optimal solution, whereas, the concentration

less that 0.1% required a larger number of function evaluations and reached the

6.3. Results and discussion 121

Concentration

of SWCNTs

(wt%)/PBMA

Average no. of Function Evaluations (FEavg) using NM

OR AND Half Adder

FEavg FEavg FEavg

0.11 1881 1889 1788

0.25 1115 1881 1998

0.51 1228 1258 1547

0.74 1228 1717 1587

0.99 22 45 142

1.49 39 32 285

2.39 21 45 118

Table 6.2: Average number of function evaluations during 5 different runs to

train various concentrations of SWCNTs/PBMA composites for AND, OR and

Half Adder circuit

termination criteria (maximum number of iterations allowed) without achieving

the desired fitness function value. The number of function evaluations performed

by the Nelder-Mead algorithm depends upon the simplex’s expansion, contraction

or shrunk rate during each iteration.

The fitness function value indicates the success of reaching the optimal solution

for approximating the logic gate/circuits, with 0 being the desired value. The

minimum (
∮
min

), maximum (
∮
max

) and average (
∮
avg

) of fitness values achieved

during optimisation process and the test accuracy (Φavg) achieved by various

concentrations of SWCNTs/PBMA composites for three different logic gates/circuits

are provided in Table 6.3. These values are achieved during 5 different runs for

every material sample. In a similar manner to number of function evaluations,

6.3. Results and discussion 122

SWCNTs

(wt%)/

PBMA

Nelder Mead Optimisation results from 5 different runs

OR AND Half Adder∮
min

∮
max

∮
avg

Φavg

∮
min

∮
max

∮
avg

Φavg

∮
min

∮
max

∮
avg

Φavg

0.11 12 23 22 25% 4 6 6 22% 14 15 14 15%

0.25 9 11 9 28% 3 4 4 35% 17 14 17 15%

0.51 9 12 9 23% 6 7 8 48% 9 11 9 12%

0.74 4 5 4 48% 1 3 3 45% 1 3 3 55%

0.99 0 0 0 100% 0 0 0 100% 0 0 0 100%

1.49 0 0 0 100% 0 0 0 100% 0 0 0 100%

2.39 0 0 0 100% 0 0 0 100% 0 0 0 100%

Table 6.3: Fitness function values for various concentrations of SWCNTs/PBMA

composites for AND, OR and Half adder circuit

the material composites having concentration of 1.0% and above achieved a fitness

value of 0 for all three types of logic gates/circuits. Where as, at lower concentrations

the fitness values are greater than zero indicating that the algorithm failed to

converge to an optimal solution for all three types of logic gates/circuits.

It can be seen in Table 6.2 and Table 6.3 that AND and OR gate require

less number of function evaluations for the material composites having SWCNT

concentration above 1.0%. Whereas, the solution to half adder requires more

iterations as compare to AND and OR gate, for the material composites having

a concentration above 1.0%. This is attributed to the fact that in the half-adder

circuit the optimisation algorithm is training the material to behave as two logic

gates at the same time (an AND and XOR), for the same inputs. This increases

the complexity and hence require more function evaluation to reach an optimal

solution. It should be noted that threshold of 1.0% concentration of SWCNTs is

6.4. Conclusions 123

retained for the solution of OR, AND and a Half adder circuit. Hence, a denser

and randomly dispersed network of SWCNTs in the polymer matrix (PBMA) is

more favourable to training logic gates/ circuits, following the threshold scheme.

The concentration of SWCNTs is directly proportional to the point where the

conductivity starts increasing. Below this threshold concentrations, there are not

enough connections within the SWCNTs/polymer matrix from which a meaningful

computation can be extracted.

In some experiments performed by Mohid et al. [112] it was reported that

the material sample with (1.0% SWCNT/PBMA) was successfully trained to

solve even parity [116], tone discrimination [114], Robot controller [117] and

data classification problems [115]. These investigations have also reported that

the material samples with concentration lower than 0.02% in polymer (PMMA)

cannot be evolved to solve the computational problem, however the ratio of

PMMA varied. It was also observed that no evolution is possible when there

was no material was present on board. These experiments also supported that

the 1.0% SWCNT concentration in fixed polymer ratio (PBMA) are suitable

to studied further for EIM and also other materials with similar physical and

conductive properties can also be investigated for this study.

6.4 Conclusions

The work discussed in this chapter described the relationship between the concentration

of SWCNTs in PBMA matrix and its effect on training the composite for solution

of a computational problem. The SWCNTs/PBMA composites possess complex

electrical and mechanical properties that can be used for unconventional computing.

The study of electrical and mechanical properties of these composites showed a

percolation threshold of 1.0%, where the electrical and mechanical properties of

6.4. Conclusions 124

the composites changed, which resulted in sheer thinning behaviour and change

in electrical conductivity of the composites. Above the percolation threshold the

rate of increase of conductivity is reduced and at lower concentrations, there are

less number of interconnections between SWCNTs network and Poole-Frankel

provided a good fit to data.

The various concentrations of SWCNTs/PBMA composites have been used to

solve logic gate/circuit problem, using a specially designed hardware platform. A

certain threshold in terms of SWCNTs concentration is observed for the solution

of Logic gates/circuits. The threshold logic concept to interpret the outputs from

the material as logic gate was used in conjunction with Nelder-Mead algorithm,

which provided the values for optimal voltages. The results of these experiments

showed that a threshold of 1.0 wt% SWCNTs is most suitable for solving logic

gate/circuit problem. This is similar to what has been observed during the study

of electrical and mechanical properties of these material composites.

These experiments are different from data classification and frequency classification

problems [115], [177], where varying concentrations of SWCNTs as well as varying

concentrations of PMMA were used to solve these problems. No conclusion was

drawn from these experiments as to show if the concentration of SWCNTs matters

in the polymer ratio to solve these computational problems.

These results provided a clear indication of the link between the SWCNTs

concentration and the ability to solve a simple computational problem. The

further investigation of these material composites to solve other computational

problems will provide more insight into this relationship.

Chapter 7

Training SWCNTs/PMMA

composites to solve complex logic

circuits using Particle Swarm

algorithm on Mecobo

This chapter presents the results of using a particle swarm optimisation (PSO)

algorithm for evolving complex logic circuits in SWCNTs based composites on

a purpose-built platform, Mecobo (version 4.1) (Chapter 3, Section 3.4). The

material used is a composite of SWCNTs, dispersed randomly in a polymer(PMMA)

forming a complex conductive network. Following the EIM methodology, the

conductance of the material is manipulated for evolving complex threshold-based

logic circuits.

The results of experiments in chapter 5, section 5.3.5 showed that the choice

of contact points for the application of incident signals (input and configuration

signals) and the collection of output signals have a significant effect on the computation

performed by the SWCNTs/PMMA composites. The Mecobo platform is flexible

125

7.1. Introduction 126

enough to put the choice of input and output signals under optimisation control.

Hence, the experiments described in this chapter use a different approach from

previous experiments for solving logic gates problem describe in chapter 5 and

chapter 6. The material training problem is formulated as a constrained, mixed

integer optimisation problem. The problem is solved using PSO in conjunction

with the shortest position value rule. The results showed that the conductive

properties of SWCNTs can be used to configure these materials to evolve multiple

input/ output logic circuits using a more flexible hardware.

7.1 Introduction

The EIM methodology requires a platform that provides access to physical properties

of the material in use and can bridge the gap between the analogue nature of the

material and the digital nature of a computer supervising an evolutionary search.

The experiments described in chapter 5, section 5.3.5, [178], and chapter 6, an

mbed platform was used for evolving threshold logic circuits using population

based optimisation.

The hardware used for those studies was relatively inflexible and did not allow

the use of algorithms with extended vectors of decision variables regarding the

selection of an incident signal’s location of application on the material body. In

comparison, Mecobo is a more powerful and versatile platform which allows for a

more flexible problem formulation to be realised. The Mecobo board can interface

with a large variety of materials and also has the flexibility to control and map

the variety of input, output and configuration signals and their properties. In

addition to the different hardware used, this chapter extends the work reported

in [178], [3] and [179] by using a Particle Swarm Optimisation (PSO) instead of

the Nelder-Mead and Differential Evolution algorithms.

7.2. Material training 127

The material in use has SWCNTs that are randomly distributed forming an

inhomogeneous random network of nanotube bundles. This material is spread

over the micro-electrode arrays and the input/output locations can be arbitrary.

The choice of input/output and configuration electrode terminals are left to be

decided by the optimisation algorithm.

In order to achieve this, a pin routing module is placed between signal generating

modules and the sampling buffer. Hence, in contrast to previous experiments,

where pin configuration was predetermined, the experiments presented in this

chapter implement variable pin configuration that is under the control of the

optimisation algorithm.

Different computational problems have been suggested for such a system but

for initial experiments, the calculation of Boolean functions based on threshold

logic is considered here.

7.2 Material training

As stated earlier, the threshold logic gates operate on the principle of comparing

the output of a device to a pre-specified threshold for deciding if it is at a

logical 0 or 1 state. Instead of following this detailed approach where a complete

determination of weights and thresholds is required, a different operational principle

is adopted. The device in consideration is a piece of inhomogeneous conducting

material where a number of inputs are applied directly to its body and a number

of output measurements are collected from it.

The material training problem is slightly different for the experiments describe

in this chapter 5 and 6, although it also involves the training of the materials to

behave as threshold logic gate/circuit.

There are two types of inputs that are applied in this device, configuration

7.2. Material training 128

voltages Vz, z = 1, . . . , q, and the computation arguments xi, i = 1, . . . , n. The

configuration inputs are used for changing the properties of the material and bring

it to a computation inducing state. A material state is characterised as such when

the response of the material can be uniquely translated to the correct computation

when an arbitrary set of input arguments are applied to its body. The detailed

description is as follows.

Let q denote the number of configuration inputs Vz, z = 1, . . . , q, organised

into vector V and x ∈ X ⊂ Rn the space of possible inputs used for representing

a binary vector A ∈ {0, 1}n, i.e. there is a one-to-one mapping R : X → {0, 1}n.

R(x) = A means that x ∈ X uniquely represents binary input A ∈ {0, 1}n. The

measured response of the material when q configuration and n computational

argument inputs are applied, at output location j is Mj(x,V). A threshold logic

gate based on Mj can be obtained as follows.

yj =Yj,p if θj,p−1 ≤Mj(x,V) < θj,p, (7.2.1)

j = 1, · · · ,m, p = 1, . . . , Lj.

The detailed design effort required for obtaining the weights in threshold logic

is replaced by a search process that aims at identifying a suitable R and finding

the values of xi, Vz and θj,p. Making the material respond in a unique way to

a given combination of configuration and (arbitrary in the domain of definition)

computation argument inputs, is the task of EIM.

For the particular type of material used here, the output Mj is an increasing

function of the total input, x and V. The principle of operation is based on the

implementation of rule (7.2.1) by dividing the output from location j into bands

defined by the thresholds θj,p. The computation is then performed by mapping a

particular input to the corresponding output band, which indicates a logical 0 or 1

consistent with the Boolean function truth table. The truth table Y(A) ∈ {0, 1}m,

A ∈ {0, 1}n, dictates the value of Yj when a vector x representing A is applied to

7.2. Material training 129

Figure 7.1: An example of arrangement of input, output and configuration

electrodes

the material while it is in the computation inducing state.

Mecobo allows the parametrisation of the pins used for applying voltage inputs

and those used for output measurements. Hence, the problem formulation is an

extension of the one proposed in chapter 5 and 6, in the sense that the optimisation

algorithm is allowed to select the pin assignment. Figure 7.1 depicts an instant of a

particular assignment for a two-input single-output gate. There are eight locations

where electrodes are connected with the material; each one can be selected to be

an input or an output (location 0 is always the ground). In the instant shown in

Figure 7.1, locations 1 and 2, where voltages V1 and V2 are applied, correspond

to the gate’s input terminals. The configuration voltages are applied at electrode

terminals 3–6; these are used for manipulating the conductivity of the material so

that the measured output can be interpreted according to threshold rule (7.2.1).

The output is measured at location 7 where voltage V7 is collected, i.e. M1(x,V) =

V7.

Let P = [P1 . . . Pn+q+m]T denote the vector describing the pin assignment.

P` ∈ {1, . . . , q + n+m} is the pin number at position `. The first n positions in

P correspond to the argument inputs, the next q to the configuration voltages and

7.2. Material training 130

the last m to the outputs. For the example of Figure 7.1, P = [1, 2, 3, 4, 5, 6, 7]T ,

with the pins’ numbering starting where V1 is applied and increasing in the

counter-clockwise direction.

The material training problem at hand aims at identifying the optimal pin

assignment P∗, configuration voltages V∗ and vector of thresholds θ∗ for a given

mapping R such that when the V∗ are concurrently applied, the application of

any input voltage x results in measurements Mj that when rule (7.2.1) is applied

using using θ∗ the equation y (P∗,R(x),V∗, θ∗) = Y (R(x)) is true, (y is the

vector of yj).

A set of K training data is
(
A(k),Y(A(k))

)
, k = 1, . . . , K covering all possible

combinations of binary inputs–outputs is generated. The objective function Jof

the optimisation problem is

J =
K∑
k=1

[
y
(
R
(
x(k)
)
,V, θ

)
−Y

(
A(k)

)]2
(7.2.2)

where

x(k) = R−1
(
A(k)

)
. (7.2.3)

J is calculated by interacting with the material based on a given pin assignment.

In the most general case, the vector of decision variables B has the form

B =
[
PT xT VT θT

]T
. (7.2.4)

A simple mapping R is obtained by setting X = {0, 1} and Ai = 0 is represented

by xi = 0 V and Ai = 1 by xi = 1 V. In this case x is fixed and therefore not part

of B in (7.2.4). The case where x a function of V is discussed in [178].

The training optimisation problem is that of minimising (7.2.2) subject to

(7.2.3), (7.2.1) and the following simple bound constraints on the configuration

voltages V.

Vz,min ≤ Vz ≤ Vz,max, z = 1, . . . , q. (7.2.5)

7.3. Results and discussion 131

Notice that there are no explicit constraints for the thresholds θ. The optimisation

algorithm discards those solutions where the ordering necessary for (7.2.1) to work

is not held.

This optimisation problem is solved using a classical particle swarm optimisation

(PSO) algorithm, [180]. However, the P part of the vector of decision variables

poses a permutation problem as a pin can only be used for a single input or output.

This is dealt with by using the shortest position value (SPV) rule as proposed

in [172] and [161]. The SPV rule converts the continuous position generated by

PSO to a discrete value. The SPV rule is applied in two phases, one when the

particles are generated and the other when the particles are updated. The rest of

decision variables are considered as continuous.

Although V is continuous for the PSO algorithm, the implementation of a

particular value goes through the Mecobo board, which can apply discrete levels

of voltage. For all pins, the minimum voltage is Vmin = −5.0 V and the maximum

is Vmax = +5.0 V. This voltage range is divided into 255 discrete equidistant levels

with 0 corresponding to −5.0 V and 255 to +5.0 V.

7.3 Results and discussion

A number of Boolean functions have been used for making the material yield a

threshold logic circuit in the sense described in section 4.5.1. The material used

had a concentration of 0.1% SWCNT/14.8% PMMA, see section 3.1.1. Simple

AND and OR gates were easily obtained. Here, the results are discussed for a

3-input 1-output logic circuit, the half-adder and the full-adder.

An initial trial of applying random configuration voltages resulted in outputs

not being able to be translated into computational outcomes when each circuit’s

threshold rule was applied. It is the PSO algorithm that identifies suitable values

7.3. Results and discussion 132

for those configuration inputs and thresholds. In other words, the material in its

initial state cannot perform the required calculation.

7.3.1 Logic circuit (A1 + A2 + A3)⊕ (A1A2A3)

This is a three input, one output logic circuit based on AND, OR and XOR. Its

truth table is shown in Table 7.1. At least one and at most two inputs need to be

true in order for the output to be true. If all inputs are the same, either true or

false, the output is false.

There are 16 electrodes on the glass slide containing the material. Hence,

referring to the problem formulation of section 7.2, n = 3, m = 1 and q = 8. Two

thresholds, θ1 and θ2 are required to separate between the output true and false

states, one for distinguishing an all false inputs state and another for the all true

inputs. The rule implemented is

Output =
{ 1 if θ1 < M1(x,V) < θ2

0 otherwise.
(7.3.6)

The optimal solution the PSO algorithm converged to is given in Table 7.2. It

provides the optimal configuration voltages as well as the threshold values and pin

assignment. Figure 7.2 shows the output measurements and optimal thresholds

for all possible binary inputs. These were obtained from measuring the voltage at

pin 10, while the material was constantly charged with the optimal configuration

voltages at pins 2, 11, 8, 0, 7, 9, 1, 4, and a random sequence of binary triplets was

applied to pins 5, 6 and 3. The output measurements between the two thresholds

are interpreted as logic 1 and outside of it as 0.

7.3. Results and discussion 133

Inputs Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 7.1: Truth table for (A1 + A2 + A3)⊕ (A1A2A3).

Thresholds θ1 = −3.64, θ2 = −0.86

Configuration voltages V1 = −1.64,V2 = −2.68,V3 = −2.87

V4 = −3.54,V5 = −2.34, V6 = −1.81

V7 = −1.89, V8 = −2.19

Pin assignment x1 → 5, x2 → 6, x3 → 3

(signal) →) (pin no.) M1 → 10, V1 → 2, V2 → 11

V3 → 8, V4 → 0 ,V5 → 7

V6 → 9, V7 → 1, V8 → 4

Table 7.2: Optimal solution for logic circuit (A1 + A2 + A3)⊕ (A1A2A3)

7.3. Results and discussion 134

Figure 7.2: Material response for the (A1 + A2 + A3)⊕ (A1A2A3) circuit; output

measurements and thresholds.

It has also been observed from the optimal solutions of various runs that the

output pin lies almost very close to the input pins. The 5 optimal solutions from 5

runs for solving the same logic circuit are given in Table 7.3. The pin assignment

of these 5 solutions is also represented diagrammatically in Figure 7.3.

Optimal solution Input 1 (x1) Input 2 (x2) Input 3(x3) Output 1$(M 1) Configuration Pins

a 6 8 3 5 0,4,2,7,1,9,11,10

b 5 7 8 6 10,3,2,4,1,9,11

c 7 5 4 6 3,8,10,9,0,1,11,3

d 6 7 5 3 4,8,10,11,1,9,2,0

e 8 6 3 7 1,2,4,6,10,9,0,11

Table 7.3: Pin assignment for various optimal solutions for logic circuit (A1+A2+

A3)⊕ (A1A2A3)

7.3. Results and discussion 135

Figure 7.3: Pin assignment in 5 different optimal solutions achieved for the (A1 +

A2 + A3)⊕ (A1A2A3) circuit

7.3.2 Half-adder

The half-adder is a two-input two-output circuit using an XOR and an AND

output. Its truth table is shown in Table 7.4.

Inputs Output sum (XOR) Output carry (AND)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 7.4: Truth table for half adder

For the training optimisation problem, n = 2, m = 2 and q = 8. The

two output measurements M1 and M2 are collected for the XOR and AND,

7.3. Results and discussion 136

respectively, for any binary pair (A1, A2). In order to make the material behave

as a half-adder based on the use of thresholds, the output corresponding to AND,

M1, requires the use of a single threshold and the XOR measurement, M2, needs

two. For M1 and the AND carry output,

Output Carry =
{ 1 if M1(x,V) ≥ θ1

0 otherwise.
(7.3.7)

Hence, a measured M1 larger than θ1 is interpreted as a logical 1, otherwise as a

0.

For M2 and the XOR sum output,

Output Sum =
{ 1 if θ2 ≤M2(x,V) ≤ θ3

0 otherwise.
(7.3.8)

Hence, a measured M2 between the two thresholds θ2 and θ3 is interpreted as a

logical 1 at the sum output, otherwise if it is below θ2 or above θ3 as a logical 0.

Training the material based on equations. (7.3.7) and (7.3.8) for interpreting

the measured outputs as half-adder circuit computation results to the solution

shown in Table 7.5.

The output measurements at two electrodes are shown in Figure 7.4. The three

thresholds can be differentiated clearly. One is used for calculating the carry and

two for the sum. The electrode pins 7, and 6 are chosen as input terminals and

1 and 3 as output; the rest of the pins are configuration voltage terminals. It

should be noted that the measurements M1 and M2 are taken concurrently, while

the configuration voltages are constantly been applied.

The 5 different optimal solutions from multiple runs are observed for the pin

assignment and the distance of input pins from output pins. The data is presented

in table and drawn in Figure 7.5. As observed for previous logic circuit, the input

pins lie closely with the output pins.

7.3. Results and discussion 137

Figure 7.4: Material response for the half-adder circuit; output measurements and

thresholds.

7.3. Results and discussion 138

Threshold for carry θ1 = −1.4

Thresholds for sum θ2 = −2.9, θ3 = −1.9

Configuration voltages V1 = 0.03, V2 = 1.45, V3 = 3.19

V4 = −0.21, V5 = −0.75, V6 = −0.68

V7 = −0.53, V8 = −1.75

Pin assignment x1 → 7, x2 → 6, M1 → 1

(signal) →) (pin no.) M2 → 3, V1 → 9, V2 → 4

V3 → 2, V4 → 10, V5 → 5

V6 → 0, V7 → 11, V8 → 8

Table 7.5: Optimal solution for half-adder circuit.

Optimal

solution

Input 1 (x1) Input 2 (x2) Output 1(M1) Output 2 (M2) Configuration Pins

a 8 6 5 7 0,4,2,7,1,9,11,10

b 6 5 8 3 10,3,2,4,1,9,11

c 5 7 8 4 3,8,10,9,0,1,11,3

d 5 6 8 7 4,8,10,11,1,9,2,0

e 5 6 4 7 1,2,4,6,10,9,0,11

Table 7.6: Pin assignment for various optimal solutions for Half adder logic circuit

7.3. Results and discussion 139

Figure 7.5: Pin assignment, with inputs x1, x2 and outputs M1,M2 in 5 different

optimal solutions achieved for the Half adder circuit

7.3.3 Full-adder

The full-adder circuit has three inputs and two outputs, the sum and carry, hence

n = 3 and m = 2 leaving q = 7 configuration voltages available for obtaining a

solution. Again, two measurement pins are used, M1 for the carry and M2 for the

sum. The circuit’s truth table is given in Table 7.7.

A single threshold is used for the carry leading to the following interpretation

of measurement M1.

Output carry =
{ 1 if M1(x,V) ≥ θ1

0 otherwise.
(7.3.9)

The sum operation is more complicated and requires three thresholds to calculate

it at the output terminal where M2 is measured. This leads to the following

7.3. Results and discussion 140

Inputs Output sum Output carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 7.7: Truth table for the full-adder circuit.

threshold rule.

Output sum =

{ 0 if M2(x,V) < θ2

1 if θ2 ≤M2(x,V) < θ3

0 if θ3 ≤M2(x,V) < θ4

1 if M2(x,V) ≥ θ4

(7.3.10)

The optimal solution is given in Table 7.8. Seven configuration voltages were

used with three inputs and two outputs. The three inputs are applied at pins 4,

1 and 2, whereas the outputs are collected from pins 7 and 5. The response of

the material to each of the specific 16 possible binary inputs is shown in Figure

7.6, along with the thresholds used. Compared to the half-adder response shown

in Figure 7.4, the full-adder measured output is more complicated because of the

three, rather than two, binary inputs. The optimisation is able to find a solution,

where the response of the material is organised so that the interpretation scheme

followed results to the full-adder outcome.

In order to observe the distance between input and output pins for Full Adder

circuit, the pin assignment form 5 different optimal solutions is presented in table

7.3. Results and discussion 141

Figure 7.6: Material response for the full-adder circuit; output measurements and

thresholds.

7.3. Results and discussion 142

Threshold for carry θ1 = −2.9

Thresholds for sum θ2 = −3.9, θ3 = −3.4, θ4 = −0.9

Configuration voltages V1 = 0.03, V2 = −0.62, V3 = −1.99

V4 = −2.17, V5 = −2.82, V6 = −1.97

V7 = −1.74

Pin assignment x1 → 4, x2 → 1, x3 → 2

(signal) →) (pin#) M1 → 7, M2 → 5, V1 → 10

V2 → 6, V3 → 3, V4 → 9

V5 → 0, V6 → 11, V7 → 8

Table 7.8: Optimal solution for the full-adder circuit

7.9 and drawn diagrammatically in Figure 7.7. It can be seen in the diagram the

optimisation has chosen the input and output pins where the distance between

these was minimal.

Optimal

solution

Input 1 (x1) Input 2 (x2) Input 3(x3) Output 1 (M1) Output 2 (M2) Configuration Pins

a 6 8 3 4 7 5,1,0,2,9,11,10

b 8 5 6 4 3 10,0,1,7,2,9,11

c 5 6 4 7 8 3,10,9,0,1,11,2

d 7 5 4 6 3 0,1,2,8,10,11,9

e 5 6 8 4 7 0,1,3,2,10,9,11

Table 7.9: Pin assignment for various optimal solutions for Full adder logic circuit

7.3. Results and discussion 143

Figure 7.7: Pin assignment in 5 different optimal solutions achieved for the Full

adder circuit

The generalised results for three different logic circuits from 5 different experiments

for each logic circuit are presented in Table 7.10. The first four columns represent

the minimum, maximum, average error, standard deviation of training errors. The

average number of iterations required to achieved the optimal solution during the

training phase are given in last column. Once the training is terminated the test

phase is performed on the trained material by applying back the optimal solution

along with new randomly generated test data. The verification (test) procedure

is repeated ten times and the average verification accuracy is given as (Φavg). It

can be seen that PSO algorithm solved all the logic gate cases during the training

and testing phases. However, as the complexity of the circuit is increased i.e.

increased number of inputs, outputs and the thresholds, the number of iterations

required to find the optimal solution are also increased.

7.4. Conclusion 144

Particle Swarm Optimisation results from 5 different runs for three different logic circuits

Logic circuit
∮
min

∮
max

∮
avg stedv Φavg Itavg

(A1 + A2 + A3)⊕ (A1A2A3) 0.00 0.02 0.0 0.0 100% 95

Half adder 0.00 0.03 0.0 0.01 100% 128

Full adder 0.00 0.03 0.00 0.01 100% 196

Table 7.10: Training errors and verification accuracy from 5 different runs for

three logic circuits

7.4 Conclusion

This chapter presents the results of applying PSO for EIM where the material

consists of a SWCNTs/PMMA mixture. By manipulating the conductance of

the material, it is possible to perform calculations of Boolean functions based

on a threshold logic interpretation scheme. The Mecobo platform allowed the

flexibility of selecting the input, output and configuration terminals and put

them under the control of optimisation algorithm. The experiments demonstrated

Mecobo’s functionality and suitability as an interface for evolvable material. For

the experiments reported here, material with 0.1% SWCNTs concentration was

used. The material used does not change its state and the results are reproducible

with same configuration voltages without requiring new evolutionary search.In

future work, the material with varied concentrations will be tested for similar

computation problems.

Chapter 8

Training SWCNTs/Polymer

composites as a tone

discriminator

This chapter presents the results of implementation of tone discrimination problem

with various SWCNTs/Polymer mixtures using the purpose-built platform, Mecobo.

The platform allows the application of square wave signals, hence, the materials

are trained to discriminate between a low and a high frequency signal using an

interpretation scheme. In order to train the given material to generate a different

response for a low and high frequency signal a typical training and verification

scheme is followed. The problem is formulated as a mixed integer optimisation

problem which is solved using PSO algorithm in conjunction with SPV. The results

showed that SWCNTs/polymer based materials can be successfully trained as tone

discrimination devices.

The detail description of the implementation of the problem and results are

given below.

145

8.1. Introduction 146

8.1 Introduction

A tone discrimination is a device which, when presented with two signals, generates

a different response for each type of signal. The problem was first solved using the

evolutionary algorithms by Thompson [181], which resulted in a device, where the

FPGA can generate a low output for low frequency signal and a high output for

a high frequency signal. Later, [39] used Liquid Crystals and FPGAs to solve the

same problem. Also, while this thesis was being written, [177] reported on using

SWCNT based materials and Genetic Algorithms to evolve a device that when

presented with one of the two frequency signals, generated a low voltage signal

(< 0.1V) for low frequency and a high voltage signal (> 0.1V) for high frequency.

The experiments describe in this chapter are loosely based on these experiments.

However, the problem formulation is different and it is implemented with the

Particle Swarm Optimisation algorithm for the selection of configuration data.

A variety of SWCNTs concentrations and polymers based materials are used for

this work. The problem is implemented using purpose-built platform, Mecobo,

which allows the application of square wave signals and is also flexible enough to

implement the extended vectors of decision variables with regards to the selection

of application of incident signals on the material. In general, the SWCNT materials

are trained to distinguish between high and low frequency signals. The detailed

methodology of these experiments is discussed in following section.

8.2 Material training

The experiments are performed with different SWCNTs concentrations and polymer

(PMMA and PBMA) combinations. Each materials is placed on an electrode slide,

(12 electrodes in case of SWCNTs/PMMA material samples and 16 electrodes in

case of SWCNTs/PBMA material samples).

8.2. Material training 147

Figure 8.1: General overview of the system of training the material as a tone

discriminator

A general illustration of the material training is given in Figure 8.1. There

are two types of incident signals that are applied on to the material. One is the

computer generated configuration signals, which are in the form of static voltages

and are denoted by Vz, z = 1, · · · , q, (where q is the number of configuration

signals) with range −5V to +5V . These signals are selected by the optimisation

algorithm (PSO). The others are the input signals, which are denoted by xi (where

i is the number of input signals).

Each input signal is in the form of a square waves (±3.5V, duty cycle 50%)

with a randomly generated frequency between the range of 10 kHz and 300 kHz.

These two different types of signals are applied at different locations on to the

material samples and the outputs, denoted by Om, (where m is the number of

outputs) are collected at different locations from the material. The choice of

input, output and configuration signals is dictated by the PSO algorithm which

is implemented with SPV rule.

The configuration signals change the material internal properties and bring

it to a computing inducing state. The outputs are a measure of configuration

voltages Vz and the square wave signals xi.

The overall material training problem is formulated as an optimisation problem

8.2. Material training 148

which is solved iteratively using the PSO algorithm with swarm size 7. The

optimisation algorithm search the space for possible configuration inputs values.

The desired fitness value is 0 which is when the computational task for the selected

arguments is performed correctly by the material. The fitness value and the

number of iterations (1000) are set as the termination criteria for this iterative

process.

The pins are assigned according to vector P = [P1, · · · , Pi+q+m]T . Pl is the

pin number at position l on the electrode, where Pl ∈ 1, · · · , i+ q +m. The first

i positions correspond to inputs, next q correspond to configuration signals and

last m correspond to outputs. The configuration signals values, denoted by V ,

are supplied as continuous amplitudes values by the optimisation algorithm. The

Mecobo board translates these amplitude values to discrete static voltage values.

The voltage range is divided between 255 equidistant levels from 0 − 255, where

0 corresponds to Vmin = −5.0V and 255 corresponds to Vmax = +5.0V .

Out of 8 input and 8 output locations on Mecobo board, one electrode is used as

an input electrode, where a square wave signal with randomly selected frequency

is applied, 6 electrodes are used for application of configuration voltages and 2

electrodes are used as output electrodes (i.e i = 1, q = 6, m = 2). An instance

of particular assignment of input, outputs and configuration electrodes with 12

electrode slide is shown in Figure 8.2, where I1 is the input square wave signal

with some random frequency, V2, · · · , V8 are the configuration signals O1 and O2

are the outputs.

The material training problem aims at identifying the optimal pin assignment

P and configuration voltages V , such that when square waves signals with different

frequencies are applied on to material, it can differentiate between high (≥ 100kHZ)

and low (< 100 kHZ) frequency signal. A decision variable vector B generated

8.2. Material training 149

Figure 8.2: An example of arrangement of input, output and configuration

electrodes

by PSO algorithm at each iteration, can be represented as follows:

B = [P TxTV T]T (8.2.1)

Let S be the vector containing 100 randomly selected frequencies between the

available range on the platform 10kHz − 300kHz. Each frequency is applied at

the input electrode x1 for 20 milli-seconds in the presence of configuration signals

(20 milli-seconds) and the outputs O1, O2 are recorded within this time frame.

The output are voltage values which were recorded from the material at 5kHz in

the output buffer, these values are then averaged and sent as a real number (a

voltage value). A vector H is decided by the following equation.

H(i) =


0 if O1 < O2 and S[i] = LOW

0 if O1 > O2 and S[i] = HIGH

1 otherwise

(8.2.2)

8.3. Results and discussion 150

The fitness is calculated as follows:

min J =
K∑
i=1

O∑
i=1

[(Hi)/K] (8.2.3)

Where K = 100 are the training samples.

The training problem aims to minimise the Equation 8.2.3 for a population

of S subject to simple bound constraints on configuration voltages, i.e. Vz,min ≤

Vz ≤ Vz,max, z = 1, · · · , q, electrode assignment P and the rule 8.2.2.

The general overview of training the material as a tone discriminator device

is summarised in Figure 8.1. The PSO sends the values of decision variable to

Mecobo. The Mecobo board interfaces with the material and applies the values

of input and configuration signals on the material. The response (outputs) is

gathered from the material and it is sent back to the Mecobo board, which then

sends it back to the computer. The fitness value is calculated using equations 8.2.2

and 8.2.3 and sent back to PSO. The process is repeated until the termination

criteria are met.

8.3 Results and discussion

After the termination of training phase, the verification phase starts. During

this the verification data (a new set of randomly generated frequencies between

10 kHz − 300 kHz) is used and the optimal solution (configuration voltages and

pin scheme) are applied to the material, the outputs O1, O2 are measured at the

two terminals and the accuracy is calculated according to Equation 8.2.2. For

example, if the first sample from verification data is a 100 kHz frequency signal

and is applied on the material along with the optimal configuration signals and

the resulting O1 < O2, then it is an accurate response. The same response is

calculated for all the samples in the verification data set according to rule 8.2.2

and the percentage accuracy for all of the verification data set is reported.

8.3. Results and discussion 151

Optimal solution for discriminating frequencies below and above 100 kHz

Configuration voltages V1 = −0.56,V2 = 2.09,V3 = −0.76

V4 = 5.0,V5 = −3.74, V6 = −5.0

Pin assignment x1 → 2, O1 → 5, O1 → 7 V1 → 0, V2 → 3

V3 → 4, V4 → 0 ,V5 → 8

V6 → 1

Table 8.1: Optimal solution for discriminating frequencies below and above 100

kHz using material SWCNTss(0.75%)/ PMMA

In the first set of experiments, the material used is SWCNTs(0.75%)/PMMA

on a 12 electrode slide and the verification data set consists of 100 rows of

data. The desired fitness value (0) is achieved after approximately 108 function

evaluations. The optimal solution to achieve this computation is given in the

Table 8.1.

Figure8.3 shows the configuration voltages trajectories during the training

phase. It can be seen that the search process started randomly and settles over

the number of iterations as the optimisation process tried to find the optimal

voltage values. The objective function trajectory during the training process is

shown in Figure,8.4.

The optimal solution states that the outputs are recorded by measuring the

voltages at pins, (5 and 7), when the optimal configuration voltages are applied

at pins, (0, 3, 4, 8, 6, 1), and the square waves with varying frequencies (from

verification data set) are applied at the input pin (2). The outputs are collected

concurrently, while the configuration pins are being charged with the optimal

configuration voltages. The first 20 rows of verification data are shown in Figure

8.5, which shows the output measurements collected for the respective input

frequencies (shown as a number right to the output 1) during the verification

8.3. Results and discussion 152

Figure 8.3: Configuration voltages trajectories

Figure 8.4: Objective function’s convergence trajectory

8.3. Results and discussion 153

Figure 8.5: Output measurements with their respective frequencies during

verification phase

phase. The implementation of the rule 8.2.2 can be seen in the Figure 8.5. The

only first 20 results are used in the Figure for the sake of clarity. The two outputs

are shown in different colours and shapes, i.e. output 1 is a purple square and

output 2 is a green circle. The number next to the two outputs is the frequency

value for which the outputs were recorded. For example, the first value of the

frequency is 216 in the Figure 8.5, the two recorded outputs are shown next to

it. According to the rule, for frequency value ≥ 100, output 1 should be > than

output 2, which is same as shown for the frequency value 216, i.e output 1 (in

purple square) is greater that output 2 (in green circle). The same can seen for

the rest of values in the Figure 8.5. For the frequency values: ≤ 100, output 1 is

< output 2 and for the frequency values: ≥ 100, output 1 is > output 2.

In order to observe if the computation is actually performed by the material a

separate experiment is performed. Some random configuration signals are applied

8.3. Results and discussion 154

on the material along with inputs and outputs are recorded. It is observed that

the recorded outputs are not translated into computational outcome when the

rule in equation 8.2.2 is applied. Same was observed when no configurations are

applied on the material. Hence, it is concluded, that it is the PSO algorithm

that identifies the suitable configuration signals, in order to make the material

perform the desired computation. The material on its own cannot act as a tone

discriminator.

8.3.1 Comparison of different concentrations of SWCNTs

in fixed polymer for tone discriminator problem

In the next sets of experiments, three different concentrations of SWCNTs in

a fixed polymer (PBMA) ratio are used for the solution of tone discrimination

problem. The detailed description of these material samples and thin film formation

is given in Chapter 3. As discussed earlier, these materials composites are deposited

on electrodes as thin films. These thin films possess complex electrical properties

with a field conductivity if the concentration of SWCNTs is below a certain

threshold. These Polymer/SWCNTs mixtures have dielectric properties of the

PBMA and mixed differing electronic properties of SWCNTs (both metallic and

semiconducting).

The material training problem formulation is same as discussed in the previous

section. However, the materials samples are placed on a 16 electrode slide but

Mecobo allows 8 inputs and 8 outputs only. Due to this limitation, 1 input, 7

configuration voltages (total 8 input signals) and 2 output scheme is used for these

experiments. An example of this scheme can be seen in Figure 8.2.

The optimal solutions for the tone discrimination problem using three different

concentrations of SWCNTs in fixed polymer (PBMA) are given in Table 8.2.

Where as, the verification accuracies are shown in Table 8.3. Figures, 8.6, 8.7,

8.3. Results and discussion 155

8.8 show the responses of the three materials (three different concentrations of

SWCNTs) when low and high frequency signal are applied under the effect of

configuration voltages. The first 100 rows of verification data are shown in each

of the Figures, 8.6, 8.7, 8.8. The implementation of the rule 8.2.2 can be seen in

these figures. For instance, Figure 8.6 shows the output measurements collected

for the respective input frequencies during the verification phase. The two outputs

are shown in different colours and shapes, i.e. output 1 is a green cross and output

2 is a purple plus sign. The number next to the two outputs is the frequency value

for which the outputs were recorded. For example, the first value of the frequency

is 154 kHz in the Figure 8.6, the two recorded outputs are shown next to it.

According to the rule, for frequency value ≥ 100, output 1 should be > than

output 2, which is same as shown for the frequency value 154, i.e output 1 (green

cross) is greater that output 2 (purple plus sign). The same can seen for the rest

of the values in the Figure 8.5. For the frequency values: ≤ 100, output 1 is <

output 2 and for the frequency values: ≥ 100, output 1 is > output 2. It can be

seen in all three figures that the response output 1 is < output 2 for the frequency

values: ≤ 100, and for the frequency values: ≥ 100, output 1 is > output 2.

8.3. Results and discussion 156

Figure 8.6: Comparison of two outputs at frequencies below and above 100 kHz

for material 1.49% SWCNTs/PBMA

8.3. Results and discussion 157

Figure 8.7: Comparison of two outputs at frequencies below and above 100 kHz

for material 0.99% SWCNTs/PBMA

8.3. Results and discussion 158

Figure 8.8: Comparison of two outputs at frequencies below and above 100 kHz

for material 2.37% SWCNTs/ PBMA

It can be seen that all the three concentrations of SWCNTs, are successfully

trained as a tone discriminator. These three materials listed in Table 8.3 with

varying concentrations of SWCNTs in PBMA were successfully trained for AND,

OR and Half Adder logic circuits and are discussed in detail in Chapter 6, Table

8.3. Hence, it can be concluded that a dense material with the random dispersion

of SWCNTs is more flexible where square wave signals can be correctly mapped

to the possible outputs, following the outlined interpretative scheme (equation

8.2.2).

These experiments also support the fact discussed in [3] that a certain concentration

level of conducting elements (SWCNTs) is required in order to make these materials

8.3. Results and discussion 159

wt%

SWCNTs/PBMA

Optimal solution:

Amplitude for configuration

voltages

Pin assignment

0.99% V1 = 127, V2 = 120, V3 =

195, V4 = 329, V5 = 89,

V6 = 105

x1 → 5, O1 → 6, O2 → 7 V1 → 8,

V2 → 2 ,V3 → 0 ,V4 → 1 ,V5 →

3,V6 → 4

1.49% V1 = 125, V2 = 97, V3 =

172, V4 = 250, V5 = 83,

V6 = 90

x1 → 8, O1 → 5, O2 → 6 V1 → 7,

V2 → 4 ,V3 → 0 ,V4 → 2 ,V5 →

1,V6 → 3

2.39% V1 = 44, V2 = 144, V3 = 79,

V4 = 5, V5 = 50, V6 = 16

x1 → 4, O1 → 3, O2 → 5 V1 → 0,

V2 → 1 ,V3 → 2 ,V4 → 6 ,V5 →

8,V6 → 7

Table 8.2: Optimal solutions for different concentrations of SWCNTs in fixed

polymer (PBMA) for the solution of tone discrimination problem

8.4. Conclusions 160

wt% SWCNTs/PBMA Average training accuracy Average testing accuracy

0.99% 100% 100%

1.49% 100% 100%

2.39% 100% 100%

Table 8.3: Average Training and testing accuracies for tone discriminator problem

using different concentrations of SWCNTs from 6 different runs.

behave as a simple computing device. The concentration of SWCNTs in the

polymer is directly related to the point where the conductivity starts increasing

rapidly, which is the percolation threshold of SWCNTs in the polymer [3]. Below

this percolation threshold there are not enough conductive pathways among the

SWCNTs network. It should also be stressed that the material is fixed, there is no

physical change in the structure of the material. The application of square wave

signal affect the conductivity of the material and this change in conductivity is

the mechanism for optimising the material to behave as atone discriminator.

8.4 Conclusions

The work presented in this chapter supported the fact that the complex electrical

and mechanical nature of SWCNTs/PMMA and SWCNTs/PBMA materials can

be used for the solution of a simple computational problem, in this case, a tone

discriminator. When trained using the Particle Swarm optimisation algorithm

and the purpose-built platform, these material samples can correctly mapped the

square wave signals to their possible outputs following the given interpretation

scheme.

A typical training and verification process is followed to train the material

and the results are reported. It is shown that the method successfully trained

8.4. Conclusions 161

all the considered material samples as the tone discriminator, without having the

internal knowledge of the material samples.

Three different concentrations of SWCNTs in a fixed polymer ratio are used to

study the effect of concentration of SWCNTs for the solution of tone discrimination

problem. All three concentrations were successfully trained for the given problem.

This supported the fact, that a dense network of SWCNTs is required for computation

like tone discrimination. This type of network provides sufficient conductive

pathways between the SWCNTs network, in order to train these networks for

simple computational tasks.

The work provided an insight that the SWCNTs/polymer composites can be

explored further for other computational problems. Similarly more conductive

networks, based on liquid host material may offer more flexibility.

Chapter 9

Training SWCNTs/Polymer

composites as a data classifier

9.1 Introduction

The experiments presented in the previous chapters showed that the EIM methodology

has a broad scope which can be explored in four dimensions: (a) different types

of materials (b) physical properties of materials (c) the computational problem

addressed and (d) the optimisation algorithm used for solving the corresponding

training problem. The experiments presented in this chapter explored the potential

of EIM technique for the solution of machine learning problems. SWCNTs with

two polymers are used for solution binary data classification and multiple-class

data classification. In separate experiments, different concentrations of SWCNTs

in fixed polymer ratio are used to study the complex nature of voltage/current

relationship of the material and its effect on the solution of the classification

problem. Previously, Genetic Algorithms have been used to successfully solve data

classification problems using EIM [115]. The approach was evaluated only on Iris

and Lenses datasets [182] using material 0.71% (weight % fraction of PMMA).

162

9.2. Classification rule 1: Comparison of output with a threshold value163

The data classification problem is solved using Particle swarm optimisation

algorithm using the purpose-built platform, Mecobo. The experiments started

with training the SWCNTs based materials as binary data classifiers using different

binary data sets with an error minimisation objective for PSO. Subsequently, the

solution, which is a combination of SWCNTs material and the optimal inputs is

verified and the results are reported.

The experiments also reported the results of different classifiers, which showed

the success of kNN method and kNN ball tree method as an effective method of

classification. Later, the SWCNT based materials were trained with multi-class

data sets using kNN ball tree algorithm. This chapter also reports the comparison

of SWCNTs concentration in fixed polymer and its effect on solution of different

classification problems.

The results of these experiments demonstrated that EIM methodology can be

successfully used to train the SWCNTs based materials to a state where data

classification can be performed and is verified by several tests.

The following sections discuss the different classification rules, training methodology

and the optimisation problem formulation and the results of these experiments in

detail.

9.2 Classification rule 1: Comparison of output

with a threshold value

The EIM methodology is used in order to train the SWCNTs based materials

as data classifiers. The methodology follows that various inputs signals Vin are

applied on to the material body and an output response is gathered from the

material. In order to classify the new instance (output from the material) a

classification rule is implemented. A classification rule assigns the new data

9.3. Classification rule 2: Comparison of two outputs 164

items to the set of predefined classes [183]. The experiments described in this

chapter implemented different classification rules for data classification which are

as follows.

The first rule used in experiments describe in this chapter compares the output

Vout recorded from the material with a fixed threshold value θ and the class of

input value Vin, i.e. C(Vin) is decided according to the following rule.

C(Vin) =

 C1 if Vin < θ

C2 otherwise
(9.2.1)

9.3 Classification rule 2: Comparison of two outputs

The second rule compares the values of two outputs Vout1, Vout2 recorded from the

material, when the inputs signal Vin is applied on it. The class of the input signal

(C(Vin)) is decided according to following rule.

C(Vin) =

 C1 if Vout1 < Vout2

C2 otherwise
(9.3.2)

9.4 Classification rule 3: kNN algorithm

The Nearest Neighbour (NN) technique is a simple and highly efficient in classification.

It is efficiently and effectively used in text categorisation, pattern recognition and

object recognition. The kNN classifier makes prediction by searching the training

data set for the k nearest neighbours (where k usually is a small positive integer).

The ties in nearest neighbours are usually resolved either randomly or choosing

only one nearest neighbour. The latter approach is adapted for the experiments

describe in this chapter.

The algorithm starts by storing the training instances and their respective class

labels. The next step is the classification, where an unlabelled instance (which

9.5. Classification rule 4: kNN ball tree algorithm 165

in this case are the outputs from the material) is classified by assigning a class

label which is the most frequent among the k training instances nearest to the

unlabelled instance. The nearest neighbours are determined by calculating the

distance between the query instance from all the instances in the data set. The

most commonly used distance metric, Euclidean distance is used here to determine

the distances. It calculates the distance between two points p = (p1, p2, · · · , pn)

and q = (q1, q2, · · · , qn), according to the following equation.

d(p, q) = d(q, p) =
√

(q1 − p1)2 + q2 − p2)2 + · · · qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2

(9.4.3)

9.5 Classification rule 4: kNN ball tree algorithm

Although the kNN is an effective and simple technique, however, with the simplicity

being the major advantage, this technique comes at the cost of computer complexity

and memory. In order to overcome these limitations many other techniques are

developed which are broadly classified in to structureless and structure based

techniques.

For example, given a query point q, a common task is to search for the k

closest points to q among all points in a dataset. Similarly, one might want to

get all points whose distances to q are less than the radius r (i.e. range queries).

Such queries can be answered using a space-partitioning data structure, such as

KD-tree and Ball tree [5]. The experiments describe in this chapter implement

kNN Ball tree algorithm. The detail description of this rule is as follows.

9.5. Classification rule 4: kNN ball tree algorithm 166

Figure 9.1: (a) Set of balls in a plane (b) a corresponding binary tree for these

ball (c) Subsets of balls in a ball tree

9.5.1 Ball tree

In general, a ball-tree [184] is a binary tree in which every node defines a D-dimensional

hypersphere or a ball, containing a subset of the points to be searched. Each node

of the tree represents a ball, that is a hyper-spherical partition (e.g. a circle in 2D

space). While the balls themselves may intersect, each point is assigned to one

or the other ball in the partition according to its distance from the centre of the

ball. Figure 9.1 illustrates the concept of a 2-dimensional ball tree.

Each node in ball tree represents a set of points named as Points (Node). The

root node in any given data set represents all the set of points in the dataset. A

node can be a leaf node or a non-leaf node. A leaf node contains a list of the point

represented by the node. A non-leaf node does not have explicit set of points and

have two child nodes: Node.lc and Node.rc, where

Points(Node.lc) ∩ Points(Node.rc) = φ (9.5.4)

Points(Node.lc) ∪ Points(Node.rc) = Points(Node) (9.5.5)

9.5. Classification rule 4: kNN ball tree algorithm 167

9.5.2 Ball tree partitioning

In order to build a hierarchical ball tree the key point is to partition each node.

A typical way is to choose a pivot among the data points of the node. A pivot

may be one of the data points of the node or it can be centroid of Points(Node)

Suppose x.lpvt and x.rpvt are two chosen to be pivot points in Points(Node).

Ideally, the distance between these two points is the largest of all pair distances

in Points(Node). i.e

||x.lpvt− x.rpvt|| = maxp1,p2εPoints(Node)||p1− p2|| (9.5.6)

After x.lpvt and x.rpvt are found, the Node will be partitioned. A common

strategy is to project all the points to a vector ~u = x.~lpvt − x.~rpvt and find a

median point N . In the next step all the points projected to the left of N are

assigned to left child node Node.lc and the points projected to the right of N will

be assigned to right child node Node.rc.

A d − 1 dimensional plane, denoted by L, is orthogonal to the vector ~u and

passes through median N act as a decision boundary. It separates all the points

to its left as Node.lc and all the points to its right as Node.rc, as seen in Figure

9.2. A median point ensures the depth of tree remains O(log n). The python

implementation of Ball tree [185] is used in experiments described in this chapter.

It implements 1/2(x.~lpvt − x.~rpvt), which practically ensures the depth of tree

as O(log n). Every node Node in ball tree has a hypersphere H with radius

Node.radius which encapsulates all the points in Points(Node). The points are

centred at the hypersphere’s centre Node.center, such that:

Points(Node) ⊆ H(Node.center,Node.radius)

The hypersphere of two child nodes may overlap.

9.5. Classification rule 4: kNN ball tree algorithm 168

Figure 9.2: Partitioning in ball tree

9.5.3 Search in ball tree

The objective of kNN search in ball tree is to find ‘k’ closest points to a query

point ‘q’ by using a distance metric. The distance metric used in kNN Ball tree

method for current experiments is ‘Minkowski distance d’, which is calculated

between the two points p = [p1, p2, · · · , pn] and q = [q1, q2, · · · , qn] as follows:

d(p, q) =
(n∑
i=1

|pi − qi|c
)1/c

. The kNN ball tree algorithm starts its search by examining the root node first.

The decision boundary ‘L’ is used to decide which child node to search first. If the

query point ‘q’ lies to the left of ‘L’ then left child node will be searched otherwise

right child node will be searched. The experiments in this chapter implemented

the simplest search algorithm known as KNS1 for searching. The KNS1 keeps

a queue ‘Q’ which keeps k nearest points visited so far. At each node ‘Node’

following three operations are performed and the ‘Q’ is updated accordingly.

� If the distance of the query point ‘q’ to currently visited node ‘Node’ is

greater than the maximum distance kept in ‘Q’, then the node will be ignored

9.5. Classification rule 4: kNN ball tree algorithm 169

and ‘Q’ will not be updated.

� if the node visited is the leaf node, then calculate the distance of query point

‘q’ to every point in leaf node. Update ‘Q’ and return an updated ‘Q’

� If the node visited is an internal node then the kNN search algorithm (see

pseudo code below) will be called recursively on two children, it first searches

the child who is closest to query point ‘q’ and return the updated ‘Q’.

The pseudo code for the KNN ball tree algorithm is as follows:

Pseudo code

Function Knn-Ball-tree

Input:

Query point: ‘q’

Number of nearest neighbours: ‘k’

Maximum first queue containing the ‘k’ closest points: Q

The node, a hypersphere in the ball tree: (Node)

Output:

Q, after visiting the Node (Node)

if distance(q, Node.pivot) ≥ distance(q, Q.first) then

return Q unmodified

else if Node is a leaf node then:

for each point p in Node do:

if distance(t, p) < distance(t, Q.first) then

add p to Q

if size(Q)>k then

remove the furthest neighbour from Q

end if

end if

9.5. Classification rule 4: kNN ball tree algorithm 170

repeat

else

let child1 be the child node closest to q

let child2 be the child node furthest from q

Knn-Ball-tree(q, k, Q, child1)

Knn-Ball-tree(q, k, Q, child2)

end if

end Function [186]

9.5.4 Training problem formulation

In order to train the material as a binary classifier an optimisation problem is

formulated with the hardware in the loop. The training determines the class

of the input data V in which is in the form of voltage signals. The number of

inputs, outputs and configuration signals depends on the data set considered

for training/testing. As each optimisation problem is expressed in terms of its

parameters and decision variables, therefore, for the current classification problem

these are listed as follows:

Parameters:

� Number of inputs n (number of attributes used from the data set)

� Number of outputs m, where n = m

� Number of configuration voltages j

� Upper and lower bounds for configuration voltages i.e Vqmin
, Vqmax . For

current experiments (Vqmin
= 0, Vqmax + 5V)

� Training data set Tr, where a training vector is of the form A = [A1, · · · , An]

9.5. Classification rule 4: kNN ball tree algorithm 171

� Number of training instances ‘K’ used for training the material.

Decision variables:

� Configuration voltage values Vq, q = 1, 2, · · · , j used for affecting the measurements

at the material’s output locations.

� Pin assignment, [P1, · · · , Pn+q+m]T

9.5.5 Percentage classification error (PCE)

The contact locations of inputs, outputs and configurations signals are decided by

the optimisation algorithm before their application and evaluation. The optimisation’s

decision vector is defined as follows.

X = [V1, V2, · · · , Vn+q+m, P1, · · · , Pn+q+m]Tr (9.5.7)

where P ∈ N represents the set of possible pin assignment. For the specific

configuration voltages Vq and the pin assignment, the material response is recorded

at m output locations. This response is then used in comparison scheme for

deciding the class of Vin.

The output response is a voltage value which is passed on to the classification

rule to predict the class of given instance V in. For example, the kNN ball tree

finds the k nearest neighbour of the outputs and returns the class that is the class

of majority k instances.

During the training and testing phase the Percentage Classification Error

(PCE) is calculated, which is the percentage of incorrectly classified patterns

of train or test data sets. Each predicted outcome is compared with the actual

class by using the classification rule and if they are not exactly the same, the

pattern is said to be incorrectly classified. It is calculated for all the train and

test data set separately and the total incorrectly classified pattern number is the

9.6. Testing Phase 172

percentage with respect to the size of train and (or) test data. For example, the

PCE calculated during the training phase is given by following equation.

PCE(tr) = 100× Number of misclassifies samples

size of training data
(9.5.8)

And the optimisation aims at finding an optimal value of 9.5.5 AND minimising

the following

min J =
K∑
i=1

Number of misclassifies samples

size of training data
(9.5.9)

subject to voltage constraints Vqmin
, Vqmax , pin assignment and the classification

rule. The experiments described in this chapter implemented the PSO algorithm

with swarm size 7 and maximum number of iterations as termination criteria are

used to solve the optimisation problem.

9.6 Testing Phase

The SWCNTs/polymer based materials are trained as data classifiers by solving

the optimisation problem describe in above section. After the successful optimisation

process which is when the desired fitness value is achieved, testing is performed.

During the test phase, the material is charged with the optimal configuration

voltages, using the optimal pin configurations (9.5.5), the attributes from the

test data set are applied as inputs. The output is collected from the material

while its being charged with the configuration and input voltages and the selected

classification rules classify this instance. In the case of KNN ball tree algorithm,

the algorithm calculates the nearest neighbour of given instance using training

data. It should be noted that test data set is not used to calculate nearest

neighbours during the testing phase. The results of this methodology with various

classification rules and datasets are discussed in the following sections.

9.6. Testing Phase 173

9.6.1 Test problems

Binary class test problems

Spiral dataset:

The Spiral data set is a binary dataset with 193 train and 193 test instances.

These instances belong to one of the spirals on a 2D surface. The data set is one

of the benchmark in machine learning problems. It was developed by Lang and

Witbrock [187]. The x-y plots of the train and test dataset are shown in Figure

9.3a, 9.3b. For current experiments, only 120 instances are used from the full

dataset, where 60 instances are used for training phase and 60 instances are used

for the testing phase.

(a) Spiral training data set (b) Spiral test dataset

Figure 9.3: Spiral training and test data set.

Box dataset:

It is a user-defined binary data set with 300 instances. The data set is divided

in to training set and testing set with equal distribution of both classes in the both

data sets. For current experiments, 200 instances are used for training, where as,

100 instances are used for testing purposes. The x-y plots of training and test

9.6. Testing Phase 174

(a) Box training data set (b) Box test dataset

Figure 9.4: Box training and test data set.

data set are shown in Figure 9.4a, 9.4b. It can be seen that the two classes are

shaped in the form of squares with an overlapping area of almost 1.5%.

Multiple class test problems

Different test problems were considered for multiple class data classification.

All the problems are from Machine Learning repository, UCI Irvine [182]. The

problems considered in this study are briefly describe as follows.

The Iris dataset has 150 instances from three Iris flower species which define

the three classes and each class has equal distribution of instances in the data

set. For current experiment, the data set was randomly divided into 80 training

and 70 test instances with approximately equal distribution of each class in each

dataset. The 4 attributes of Iris dataset were used as input voltage signals, hence

only 4 configuration signals can be applied on to the material. Similarly, 4 output

signals were collected.

The Balance data set was generated to model psychological experimental

results. Each example is classified as having the balance scale tip to the right,

tip to the left, or be balanced. The data set has 625 patterns and 4 real valued

9.6. Testing Phase 175

Properties of data sets and experimental parameters

Datasets Data Train Test Attributes Class

Iris 150 90 60 3 3

Balance 625 375 250 4 3

Thyroid 215 129 86 5 3

Appendicitis 106 64 42 7 2

Table 9.1: Description of multiple class data sets and their attributes

attributes and 3 classes. The real value attributes were converted to amplitude

values of analogue voltages and were applied on the material. The data set was

divided in to training and testing datasets in ratio of 60 : 40, i.e. 375 instances

were used as training data and 250 instances were used as test data.

The thyroid data set is about the thyroid disease. The task is to detect

if a given patient is normal or suffers from hyperthyroidism or hypothyroidism.

The data set has 5 attributes, 3 classes and is based on new-thyroid data which

contains 215 patterns. In order to train the material as a data classifier, 5 inputs

and 3 configuration signals were used and 5 output locations were used to gather

the material’s response.

The appendicitis data set has the data of 106 patients where 7 attributes

describe the measures taken to classify if the patient has appendicitis or not. It

should be noted that there are 7 input signals and 1 configuration signal, which is

used to effect the material’s conductive behaviour for producing a response that

can classify data. The description of these data sets is summarised in Table 9.1.

9.7. Results and discussion 176

9.7 Results and discussion

9.7.1 Comparison of four different classification rules for

Binary data classification

The binary classification classifies the data elements from a given set into two

groups using a classification rule. In the first sets of experiments the material

sample (0.1%) SWCNTs/(14.8)% PMMA is trained as a binary data classifier

using four different classification rules. The Iris data set with two different classes

is used. The original Iris data set has 150 instances which belong to three classes.

However, for current experiment, 100 instances which belong to two classes are

used from the full dataset. The data set is divided into training and testing data

set, where 60 instances are used for training and 40 instances are used for testing

purposes. The x-y plots of these training and test dataset are shown in Figure

9.5a, 9.5b:

(a) Iris training data set (b) Iris test dataset

Figure 9.5: Iris training and test data set.

PSO is used to find the optimal configuration voltage values. The swarm size

was set as 7, and the termination criteria was the fitness value <= 3 and 100

maximum iterations. These values were kept constant for all the experiments.

9.7. Results and discussion 177

The PSO algorithm starts randomly in each run. The value of k is set to 1 in

kNN and kNN ball tree algorithm.

In the first experiment, the two inputs (Vin = V1, V2) from the given data

set and 6 configuration voltages Vq, q = 1, · · · , 6 are applied on the material and

an output response Vout is measured at one location. This output response is

compared with a user-defined threshold value θ = 0.04 and Vin is classified using

the rule in equation 9.2.1.

In the second experiment, the classification rule 9.3 is used, where (Vin =

V1, V2) from the given data set and 6 configuration voltages are applied on to

the material and the response Vout = Vout(1), Vout(2) is measured at two different

locations. These two measurements form the basis of comparison scheme for

deciding the class of Vin using the equation 9.3.2.

In the third and fourth experiment, classification rules 9.4 and 9.4 are used.

(Vin = V1, V2) from the data set along with 6 configuration voltages are applied

on to the material and the response Vout = Vout(1), Vout(2) is collected at two

output locations while the inputs and configurations are still being applied. These

measurements are passed to kNN algorithm and k nearest neighbours for the given

instance are calculated. The class for the given instance is predicted using the

class that is represented by maximum numbers of neighbours. The two variations

of kNN algorithm i.e. kNN and kNN ball tree in Python’s Scipy r package [185]

are used.

The average PCE(s) for training and testing from 5 different runs for each

experiment using the four classification rules are listed in Table 9.2. It can be seen

that the PCE using kNN and its variant kNN ball tree is much lower as compare to

the other two classification rules. Where as, kNN ball tree efficiently classifies the

given instances of the Iris data set using the given material. The error is 20−23%

in case of using first two classification rules, where as it is 8%−0% using kNN and

9.7. Results and discussion 178

Classification rule PCE (Training) PCE (Testing)

Comparison of output with a threshold value 19% 20%

Comparison of two outputs 21% 24%

kNN algorithm 6% 6%

kNN ball tree algorithm 0% 0%

Table 9.2: Classification of Binary data using material: SWCNT(0.1%)/PMMA

and three different classification rules

its variant kNN ball tree algorithm. This can be attributed to materials complex

electrical properties and their relation to the current classification problem. It can

be seen in Figure 9.5a, that there are certain data points of two classes that are

not distinguishable by design i.e. the two classes sort of merge in to one another.

Although the design difference of two classes is distinguishable in testing data set

9.5b. However, the threshold rule and comparison scheme using two outputs have

not effectively work with the material to train it as a binary data classifier.

This can be attributed to the fact that the material is fixed in nature and

the optimisation process tries to find effective conductive pathways within the

material structure, so that a response can be produced which can be translated

into a binary data classifier. Also, the two classes of the data set have some sort

of confusion areas between them, therefore, a response that is interpreted into a

classifier using a threshold rule does not work. Hence, an effective classifier is

required to handle this complexity. The kNN algorithm, on the other hand, tries

to find the nearest data point using distance metrics, based on the output response

from the material when input and configuration voltages are applied at specific

points on the material. Hence, kNN and its variant kNN ball tree algorithm work

intelligently with the optimisation process to train the material as a binary data

classifier.

9.7. Results and discussion 179

Data set PCE

(Training)

PCE

(Testing)

Number of

iterations

Number of

function

evaluations

Spiral 0% 0% 61 427

Box 2.8% 4.3% 8 56

Table 9.3: PCE during training and testing phase for various binary data sets

The results of these experiments demonstrated that effective use of SWCNT/PMMA

based material for data classification problem using EIM. The materials evolved

towards a state where measurements of electrical current can be interpreted for

data classification following different classification rules. However, these experiments

identified a suitable classification method in the form of kNN in order to train these

materials as Binary data classifiers using EIM. The next section demonstrates the

successful use of the same methodology and kNN algorithm for two other binary

data classification problems.

9.7.2 Binary data classification using kNN ball tree algorithm

In the next set of experiments three different data sets have been used to train the

material as a binary data classifier using kNN ball tree algorithm. The description

of these data sets is given in section 9.6.1.

The results of training the SWCNT 0.1%/PMMA material using these data

sets and kNN ball tree algorithm are given in Table 9.3. In case of spiral data set,

the training completed after 68 iterations (428 function evaluations) and 100%

accuracy was observed in the test phase. Where as, for the box data set the

training completed after 8 iterations and PCE was 2.8% during training phase

and 4.3% during testing phase. This error can be attributed to the confusion

9.7. Results and discussion 180

present in the data set where two classes mere into one another. It can be seen

in figure 9.4a that the two classes shared an area of approximately 1.5%, which

makes it difficult for optimisation and classifier to train the material as a classifier

for the current problem.

In order to explore this observation further, following set of experiments are

performed to study the relationship between varying percentage of confusion

present in the data set and its effect on training the material as a binary data

classifier.

Comparison of PCE and overlap area of two classes while training the

material as a binary data classifier

In the first set, the data sets were generated with three different shared areas

between the two classes. In second set of experiments, four different data sets

were generated with varied gap between the two classes. The first data set from

this set as shown in Figure 9.6d, has neither a gap nor a shared area between the

two classes. The x-y plots of these all these datasets are shown in Figure 9.6.

Each data sets consist of 1000 instances and divided in to training and test

datasets in ratio of 60 : 40 respectively, with an equal distribution of both classes in

both datasets. The material used is 0.1% SWCNTs/PMMA. and PSO algorithm

with swarm size 7 is used where as, maximum 100 iterations and a fitness value

>= 3 are set as the termination criteria.

In the first set of experiments, the material was trained as a binary data

classifier using three different data sets with a shared area of 6.6%, 13% and 16.6%.

These overlapped areas can be seen in Figures 9.6a, 9.6b and 9.6c respectively.

In other words, the overlapped area was gradually increased and the PCE for

training and testing was calculated. For all three considered cases, the training

was terminated after maximum number of iterations were reached and PCE for

9.7. Results and discussion 181

(a) (b) (c)

(d)

(e) (f) (g)

Figure 9.6: Data sets with varied shared areas and varied gaps

training is reported. The results of these experiments are given in Table 9.4. It

can be seen that as the confusion was increased in the dataset the training error

was also increased and the same is observed during the testing phase.

In the second set of experiments, the first data set was generated where the

distance between the two classes is 0%, i.e. there is no shared area but there is

no gap as well, as seen in Figure 9.6d. Later, in three different data sets this

gap was increased to 16%, 25% and 33.3% respectively as seen in figures 9.6e,

9.6f and 9.6g. The material is trained for each data set and the PCE for training

9.7. Results and discussion 182

Percentage

overlap of two

classes

PCE

(Training)

PCE

(Testing)

No. of iterations

0.6% 4 % 6% 100

1.2 % 5% 7% 100

1.8 % 7 % 9% 100

Table 9.4: Comparison of percentage overlap area of two classes in the given data

set and PPCE

and testing was recorded. These results of four different cases are listed in Table

9.5. It can be seen that the PCE for training and testing remained 0% in all the

four cases. The training completed just after first iteration where the gap was

33% and 25%. However, the number of iterations were increased when the gap

between the two classes was decreased. This a clear indication that it took longer

for the optimisation algorithm to find suitable configurations in order to train the

material as a binary data classifier.

These simple experiments shed a light on the SWCNTs/PMMA capability

to be trained as a data classifier. However, these experiments also showed that

as the confusion in the data set is increased it becomes difficult to manipulate

the material’s conductive properties to generate an electrical response where data

classification can be performed.

Later, in order to explore SWCNT based materials capabilities to solve some

other classification problems, different multi-class data sets were also considered.

The details of these experiments are discuss later in this chapter.

9.7. Results and discussion 183

Percentage gap

between two classes

PCE

(Training)

PCE

(Testing)

No. of

iterations

0% 0% 4% 10

0.5 % 0 % 6% 9

0.75 % 0 % 1% 1

1 % 0 % 1% 1

Table 9.5: Comparison of percentage gap between two classes in the given data

set and PCE

Comparison of different concentrations of SWCNTs with fixed polymer

to train as Binary data classifiers

The results presented in Chapter 6, showed that the concentration of SWCNTs

in the polymer affects the materials capabilities to solve computational problems.

The results presented in this section describe the relationship between the concentration

of SWCNTs in polymer matrix and solution of classification problem. Five different

concentrations of SWCNTs in fixed polymer PBMA, were used to solve the

problem of binary data classification. The dataset considered was Iris data set

with two classes and 100 instances as shown in Figure 9.5a. Particle swarm

algorithm was used for finding optimal configurations with swarm size 7 and 100

iterations were set as the termination criteria. The problem was solved using

above describe problem formulation and kNN ball tree algorithm. The results of

these experiments are listed in Table 9.6 for these material samples.

It was observed that the materials with concentration of SWCNTs lower than

0.99% showed a very high PCE during the training and testing phase. Where

as, the PCE was 0% for all other concentrations. This is similar to what has

been observed for the solution of logic gates and circuits in Chapter 6, specifically

9.7. Results and discussion 184

Binary data classification: Training and test accuracies of different

concentrations of SWCNTs in fixed polymer(PBMA)

Concentration

of SWCNTs

(wt%)/PBMA

Train Test

0.51 40% 40%

0.74 40% 40%

0.99 0% 2%

1.49 0% 2%

2.37 0% 2%

Table 9.6: Binary data classification: (PCE) Training and (PCE) test of different

concentrations of SWCNTs in fixed polymer(PBMA)

discussed in Section 6.3, Table 6.3. The results of this study reinforced that there

is a certain threshold of SWCNTs concentration which is more suitable for the

solution of classification problem as well.

9.7.3 Multiple class data classification

In the next step, the experiments have been performed to train the different

material samples as multiple class data classifiers. These experiments aimed at

evaluating SWCNTs based materials capabilities as data classifiers using different

data sets of varying sizes and difficulties. The Mecobo board allows fixed 8 inputs

and 8 outputs, therefore the datasets with maximum 7 attributes can be used in

these experiments, hence the choice of data set was limited. The materials are

trained using the same methodology as used for training the materials as binary

data classification. The number of attributes determined the number of inputs

9.7. Results and discussion 185

(n) and the remaining locations were used for configuration signals. Where as,

the number of outputs (m) is same as number of inputs, i.e. (n = m). The PSO

algorithm with swarm size 7 was used to provided the values of configuration

signals as well as the input, output and configuration pin locations. The kNN ball

tree algorithm with k = 1 was used as a classification rule. Initially, the material

used was 0.1% SWCNT/PMMA. The following sections discuss these experiments

in detail.

The description of all the data sets used for multiple class data classification is

given in section 9.6.1. For each problem, the attributes of the dataset were applied

as input voltages and remaining contact locations were used for the application

of configuration signals. The number of output locations were same as number

of inputs. The configuration signals effect the material’s conductive properties

in order to achieve a response that leads to correct kNN ball tree algorithm to

predict the respective class for the given instance.

During training and testing phase the PCE was reported, which is the percentage

of incorrectly classified patterns of train or test data sets. Each predicted outcome

by kNN ball tree algorithm was compared with the actual class and if they were

not exactly same, the pattern was said to be incorrectly classified.

The average PCE from five different runs for training and testing for all

the considered data sets are listed in Table 9.7. The material sample 0.1%

SWCNT/PMMA successfully classify all the considered data sets. For instance,

the PCE reported for Iris data during training phase and testing phase is 4.3%

and 4.8% respectively, which is almost equivalent to the results classification of

Iris data in literature [188]. Similarly, the PCE reported during training for

Balance [189], Thyroid [190] and Appendicitis data [191] is 14.4%, 5.5% and 16.7%,

respectively. All of these results compare favourably with the classification results

of these data sets using kNN in literature [192], [193], [194], [195].

9.7. Results and discussion 186

Multiple class data classification: Average PCE for different datasets

Dataset Train Test

Iris 4.4% 4.75%

Balance 14.45% 14.24%

Thyroid 5.45% 6.74%

Appendicitis 15.97% 17.92%

Table 9.7: Average PCE for some benchmark classification problems

In order to observe the role of material as a classifier, and verify the effectiveness

of the EIM methodology several different test were performed. All the verification

test were conducted with PSO algorithm with swarm size 7, and nearest neighbour

k = 1 in kNN method.

In the first test, the Iris data set was used to test the efficiency of kNN ball tree

method for data classification, but without the involvement of hardware platform

and SWCNTs material. The kNN ball tree method effectively classified the Iris

data set with PCE 96.8% accuracy in training and 94% accuracy during testing

phase. The results of this test are listed in Table 9.8.

In the second test, the above described methodology for training the material

sample was used, but this time there was no material sample on the hardware

board (Mecobo). The attributes from the data sets were sent as input signals,

the configurations are provided by the PSO algorithm and outputs were gathered.

These outputs were then passed on to kNN ball tree algorithm to predict the class

of given the instance. The results of this test are summarised in Table 9.8. This

test resulted in PCE of 40% in both training and testing phase respectively. The

results of this test are compared with the result of classification of Iris data using

(0.1%)SWCNT/PMMA material sample in Table 9.7, it is clear that the above

methodology was unsuccessful without any material. It was the combination of

9.7. Results and discussion 187

Verification tests results using Iris data set

and kNN Ball tree algorithm

Training error Testing error

Test 1 (kNN ball tree alone) 96.8% 94%

Test 2 (No material on board) 40% 40%

Test 3 (using 6 volts as constant

configurations)

40% 40%

Test 4 (using 0 volts as constant

configurations)

40% 40%

Table 9.8: Different tests to verify the effectiveness of methodology used to train

the SWCNTs materials as a data classifier

the material itself with its complex electrical and physical properties and optimal

inputs signals that resulted in successful classification.

Similarly, in the two other tests, the constant voltages of 0 volts and 6 volts

were applied to the material instead of configuration voltages. The attributes

from training Iris data sets were applied as input signals and the response was

gathered and subsequently sent to kNN algorithm to predict the respective class.

In both cases, the experiments were run for several iterations (approximately 20)

and a constant error of 40% was observed during training phase. This clearly

showed that in the absence of configuration signals the SWCNT based material’s

complex properties were not explored in a way that can perform classification.

Hence, it can be concluded that the specific material with its unique conductive

properties as well as the configuration signals are core to train the material as a

data classifier. In the last set of experiments different concentrations of SWCNTs

in a fixed polymer (PBMA) were trained for above describe classification problems.

The results of these experiments are summarised in Table 9.9. It can be seen that

the materials with SWCNTs concentration lower than 0.9% failed to perform

9.8. Conclusions 188

as multi class data classifiers. Where as other concentration showed a varying

success rate. The results of these experiments are consistent with binary data

classification where material samples with SWCNTs concentration lower than

0.99% failed to trained as binary data classifiers. It can be concluded from

these experiments that there is a percolation threshold of SWCNTs, below which

there are not enough connections among carbon nanotubes that can produce a

meaningful voltage response to solve the classification problem.

wt% SWCNTs/PBMA PCE Iris Balance Appendicitis Thyroid

0.51% Train 40% 50% 60% 40%

Test 40% 50% 60% 40%

0.74% Train 40% 40% 40% 40%

Test 40% 40% 40% 40%

0.99% Train 4.2% 15.2% 18.4% 6.4%

Test 4.5% 16.7% 19.8% 5.5%

1.49% Train 4.3% 18.9% 21.3% 7.5%

Test 5.2% 20.3% 24.4% 8.1%

2.37% Train 5.5% 15.5% 17.1% 6.4%

Test 5.8% 15% 18.3% 7.2%

Table 9.9: Multiple data classification: Training and test accuracies of different

concentrations of SWCNTs /PBMA

9.8 Conclusions

This chapter presented the results of various investigations of training the SWCNTs/polymer

based materials as data classifiers following EIM. Different voltage levels were

applied at various location on the material’s body which produced a favourable

9.8. Conclusions 189

response to solve various data classification problems.

Different classification rules were considered and their results were compared

to be used effectively for training SWCNTs based materials as data classifier.

The results showed that kNN and kNN ball tree algorithm performed better as

compared to other methods and it was kNN ball tree that produced favourable

results that can be compared with data classification results presented in literature

for similar problems.

The material with 0.1 wt% SWCNT/PMMA was successfully trained as a

binary data classifier as well multi class data classifier. Later, different concentration

of SWCNTs in a fixed polymer ratio were used to compare the effect of SWCNTs

concentration on solution of classification problem. The material samples with

SWCNT concentration below 0.99% performed unfavourably for classification

problem, where as, the materials with 0.99%, 1.49% and 2.37% showed a successful

response while being trained as a data classifier for various considered data classification

problems.

Chapter 10

Conclusions and future work

This main aim of this thesis was to explore SWCNTs based materials for their

computational capabilities using the idea of ‘evolution in materio’. A set of four

research questions was generated in Chapter 1, showing the aim of achieving the

objective. Each question is answered in one or more chapters of this thesis.

This chapter provides the overall conclusion of the work done for this thesis

and some direction for future exploration areas.

10.1 Conclusions

This thesis demonstrated the successful use of SWCNTs based materials to implement

the idea of EIM. It explored this paradigm of unconventional computing in mainly

three directions, i.e finding suitable combinations of SWCNTs, finding suitable

optimisation methods to train these materials and explore suitable computational

problems that can be solved using these materials and following EIM. The work

done in this thesis showed that the SWCNTs can be successfully trained to

solve simple and complex computational problems. This has been achieved by

answering the research questions presented in section 1.1 as follows.

190

10.1. Conclusions 191

10.1.1 Material systems

Research question What are the suitable nano-material systems for extracting

computation?

The SWCNTs are seen as an attractive material in modern electronics due to

their electrical, optical and mechanical properties. The thin films of SWCNTs

based materials are used in the experiments described in this thesis. Various

SWCNTs and polymer based combinations have been studied for three different

computational problems. The early experiments with SWCNTs describe in chapter

4, demonstrated that these materials can be trained as simple logic gates/circuits.

However, later experiments shed light on the fact that with the more suitable

methods of optimisation these materials can be trained to solve some complex

logic circuits as well.

Chapter 6 discussed the experiments with different concentrations of SWCNTs

in a fixed polymer ratio. These results demonstrated that particular concentration

of SWCNTs in a fixed polymer is essential for the solution of a particular computational

problem. The detailed study of SWCNTs concentration and its effect on the

solution of computational problem suggested that electrical and mechanical properties

of SWCNTs are notably different below and above a percolation threshold. The

same was observed for training these materials as logic gates/circuits. Three

different SWCNTs concentrations were successfully trained as complex logic circuits.

However, it was observed that the concentrations below 0.1% were unsuccessful.

The three different concentrations were successful trained for the tone discrimination

and data classification problems as well.

10.1.2 Suitable hardware

Research question What kind of hardware and software setup is appropriate to

achieve the desired outcomes?

10.1. Conclusions 192

The initial experiments with different SWCNTs were performed to solve logic

gates problem with a very basic setup. The results of these experiments have been

discussed in Chapter 5. However, the experiments described in 5.3.5, demonstrated

that the point of application of voltage signals on a material has a significant

effect on the solution of logic gate problem. This highlighted the need of using a

more flexible hardware, where the application of signals and various other factors

affecting the properties of SWCNTs can be put under optimisation control. Later,

the experiments performed with the Mecobo board was used which allowed the

flexibility to put the application of signals under optimisation control. This

hardware has helped to solve various complex computational problems such as

complex logic circuits (chapter 8), various data classifications problems (chapter

9).These experiments demonstrated Mecobos functionality and suitability as an

interface for evolvable materials.

10.1.3 Optimisation algorithms

Research question What are the suitable investigative methods for evolving the

material? i.e. what kind of evolutionary/optimisation processes/algorithms can

be used for different computational tasks?

The other line of this study was directed towards the exploration of different

optimisation techniques. It aimed at developing and customising optimisation

techniques for training the material to perform selected computational tasks.

Initially, a very basic Nelder-Mead algorithm NM was used to solve basic logic

gate problem. Later, it was observed that the NM algorithm was not very

efficient when called to address more complex logic gate/circuits. In contrast,

the other two population based algorithms i.e. Differential evolution and Particle

Swarm Optimisation Algorithm proved to be successful in implementing complex

computational problem with different SWCNTs based materials. PSO with SPV

10.1. Conclusions 193

rule was successfully used for the solution of complex logic circuits, tone discrimination

problem and data classification problems.

10.1.4 Computational problems

Research question What are the suitable tasks/methods for extracting computation

from the nano material systems?

Another line of investigation was to identify suitable computational problems

and matching them with suitable SWCNTs based materials. The various computational

problems of varying difficulty are studied with SWCNTs based materials. It was

the first time that various complex logic circuits were implemented with SWCNTs

based material using the EIM technique. While the work of this thesis was being

carried out simple logic gates and an XOR gate using Genetic Algorithm and

EIM were solved using mixed signals (square wave and analogue voltages) on

Mecobo 3.0 [2]. Although tone discrimination problem was implemented with

Liquid crystals using EIM, the problem was re-implemented with more difficulty.

Instead of using two frequencies, 100 different frequency were randomly generated

and material was trained to show a different response to frequencies below and

above 100 KHz.

Similarly, data classification problem was studied with SWCNTs based materials.

Various benchmark problems with varied difficulty are studied with these materials.

It was the first time that k-nearest neighbour method and its different variations

were studied as data classification rule. The results of these experiments showed

that these techniques yielded in results which are more closer to the results of

these benchmark problems found in literature.

Most of the material combinations were successful for simple computational

problems, such as simple logic gates and tone discrimination problem. However, it

was observed that only specific concentrations of SWCNTs and polymer combinations

10.2. Thesis conclusion 194

were successful with more complex problems, such as complex logic circuits and

multiple class data classification problems.

These results of these experiments have robustly supported the hypothesis

presented in Chapter 1, as physical properties of SWCNTs based materials were

exploited using computer controlled evolution to solve different computational

problems. The work outlined in this thesis has been presented in some publications

through conferences and workshop proceedings and journal papers. Of these, six

papers have already been published.

10.2 Thesis conclusion

To summarise, this research work presented the successful use of SWCNTs based

materials to solve various computer problems using the idea of EIM. It also

presented the results of using Graphene based materials for the solution of Logic

gates problem.

The study showed that a different problem formulation may be required to

solve different computational problems. The threshold interpretation scheme was

successful for the solution of Logic gates/ circuits problem. However, the study of

data classification problem highlighted that due to complex nature of SWCNTs,

the k-NN method of classification data is more suitable for these kinds of problems.

The work presented in this thesis also reported the implementation of evolutionary

algorithms, specially PSO for EIM.

It has been found out that a certain percolation threshold of SWCNTs in

the polymer is necessary to solve computational problems of varying difficulty.

This concentration is directly related to the point where the conductivity of the

material substrate starts increasing rapidly, which is the percolation threshold of

the conductive network within the polymer. This indicated a clear link between

10.3. Suggestions for future work 195

the material’s physical properties and its ability to perform a computation.

The research also highlighted the importance of a flexible hardware platform

to use for the further study of EIM.

10.3 Suggestions for future work

The work presented in this thesis has just touched the surface of this field of

computing. The analysis of the results showed the potential of this study and

provided a direction for future work. It is the first time that SWCNTs/polymer

combinations and some graphene-based materials have been studied for various

computational problems. The results of these experiments showed that these

material systems can be studied for various other computational problems. Therefore,

it is worth trying other SWCNTs/polymer combinations for future work. Similarly,

there are materials which are conductive, exhibit non-linearity in response and

have the properties of being configurable. Such material systems can lead to

building useful systems.

The materials studied in this thesis have been mainly explored for their conductive

properties and their use in computation. The thesis also reported the results

of tone discrimination problem using the combination of square wave signals

and static voltages. Similarly, different signal representations are evaluated in a

different study for the solution of graph colouring problem [121]. A detail study of

square wave signals for evolving CNTs based materials for computational problem

num
den

m is presented in [120].

Future experiments may explore other physical properties of the materials to

solve various computational problems. This can be done by exploring only one

physical property such as temperature sensitivity or combination of various other

physical properties. It would be interesting to see if the selection and combination

10.3. Suggestions for future work 196

of these properties are put under optimisation control.

There are very few computational problems that have recently been studied

with SWCNTs based materials using EIM, apart from computational problems

presented in this thesis. These include machine learning classification problems

[115], bin packing problems [112], function optimisation [113], evolving robot

controllers [117], travelling sales man problem [118]. This list may have been

updated while this thesis is being written and submitted. However, there are

numerous other computational problems, of varying complexities and difficulties

that can be studied with these novel materials. These studies will help to identify

computational problems and their respective complexities, that are more suitable

for studied with EIM.

The computational problems reported in this thesis can be studied further.

For example, more complex logic circuits can be implemented, various other

benchmark classification problems can be studied.

There were various limitations while studying different computational problems.

The electrode slides consisted of either 12 or 16 electrodes. This limits the

selection of computational problems with more inputs and output combinations.

Similarly, Mecobo allowed only 8 input and 8 output locations, this also limited the

selection of the computational problem. For example, there are many benchmark

data classification problems with varying attributes, that require more input and

output terminals, but with Mecobo and a limited number of electrodes on an

electrode slide, this choice was limited to very few classification problems.

This thesis reported the results with one optimisation algorithm (Nelder-Mead

algorithm) and two evolutionary algorithms (DE and PSO) for the current experiments.

Previously, genetic algorithms were used for experiments with Liquid crystals

[153], [40], [38], [39]. The experiments presented in [115], [112], [113], [117] used

Cartesian genetic programming. Therefore, it is highly recommended to study

10.3. Suggestions for future work 197

various other population-based methods and optimisation techniques with these

materials and EIM. These investigations will help to identify suitable algorithms

for extraction of computation form the materials.

The investigations with materials do not report how fast the material has

performed a computation, i.e. the response time of the material. This is particularly

useful for building future devices using these materials and techniques. Future

investigations into this matter will give helpful insights. Similarly, the stability

of results has been observed over few months time for all the computational

problems. However, the stability should be tested for longer periods of time.

The variations should be observed and the factors affecting the stability should

also be investigated.

Bibliography

[1] NASCENCE project (ICT 317662), “Report on materials systems and

electrical behaviour,” 2013, deliverable D1.1.

[2] O. R. Lykkebø, S. Harding, G. Tufte, and J. Miller, “Mecobo: A hardware

and software platform for in materio evolution,” in Unconventional

Computation and Natural Computation, ser. Lecture Notes in Computer

Science, O. H. Ibarra, L. Kari, and S. Kopecki, Eds. Springer

International Publishing, 2014, vol. 8553, pp. 267–279. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-08123-6 22

[3] M. Massey, A. Kotsialos, F. Qaiser, D. Zeze, C. Pearson, D. Volpati,

L. Bowen, and M. Petty, “Computing with carbon nanotubes: Optimization

of threshold logic gates using disordered nanotube/polymer composites,”

Journal of Applied Physics, vol. 117, no. 13, p. 134903, 2015.

[4] F. Cancare, S. Bhandari, D. B. Bartolini, M. Carminati, and M. D.

Santambrogio, “A bird’s eye view of fpga-based evolvable hardware,” in

Adaptive Hardware and Systems (AHS), 2011 NASA/ESA Conference on.

IEEE, 2011, pp. 169–175.

[5] J. F. Miller, S. L. Harding, and G. Tufte, “Evolution-in-materio: evolving

computation in materials,” Evolutionary Intelligence, vol. 7, no. 1, pp.

49–67, 2014.

198

http://dx.doi.org/10.1007/978-3-319-08123-6_22

Bibliography 199

[6] S. Carrara, “Nano-bio-technology and sensing chips: new systems for

detection in personalized therapies and cell biology,” Sensors, vol. 10, no. 1,

pp. 526–543, 2010.

[7] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature materials,

vol. 6, no. 3, pp. 183–191, 2007.

[8] rgo synthesis illustration. [Online]. Available: https://www.utu.fi/en/units/

sci/units/chemistry/research/mcca/PublishingImages/GO%20rGO.jpg

[9] B. J. Copeland, “What is computation?” Synthese, vol. 108, no. 3,

pp. 335–359, Sep 1996. [Online]. Available: https://doi.org/10.1007/

BF00413693

[10] A. M. Turing, “On computable numbers, with an application to the

entscheidungsproblem,” J. of Math, vol. 58, no. 345-363.

[11] J. Von Neumann, “First draft of a report on the edvac,” IEEE Annals of

the History of Computing, no. 4, pp. 27–75, 1993.

[12] S. Stepney, S. L. Braunstein, J. A. Clark, A. Tyrrell, A. Adamatzky, R. E.

Smith, T. Addis, C. Johnson, J. Timmis, P. Welch et al., “Journeys in

non-classical computation i: A grand challenge for computing research,”

International Journal of Parallel, Emergent and Distributed Systems,

vol. 20, no. 1, pp. 5–19, 2005.

[13] S. Stepney, “Introduction to unconventional computing,” in Guide to

Unconventional Computing for Music. Springer, 2017, pp. 1–21.

[14] S. B. Cooper, B. Löwe, and A. Sorbi, New computational paradigms:

Changing conceptions of what is computable. Springer Science & Business

Media, 2007.

https://www.utu.fi/en/units/sci/units/chemistry/research/mcca/PublishingImages/GO%20rGO.jpg
https://www.utu.fi/en/units/sci/units/chemistry/research/mcca/PublishingImages/GO%20rGO.jpg
https://doi.org/10.1007/BF00413693
https://doi.org/10.1007/BF00413693

Bibliography 200

[15] G. Rozenberg, T. Bck, and J. N. Kok, Handbook of natural computing.

Springer Publishing Company, Incorporated, 2011.

[16] L. N. de Castro and F. J. Von Zuben, “From biologically inspired

computing to natural computing,” Recent developments in biologically

inspired computing, pp. 1–8, 2004.

[17] P. Marrow, “Nature-inspired computing technology and applications,” BT

Technology Journal, vol. 18, no. 4, pp. 13–23, 2000.

[18] N. Kurzawa, C. Summerfield, and R. Bogacz, “Neural circuits trained with

standard reinforcement learning can accumulate probabilistic information

during decision making,” Neural computation, 2017.

[19] H. T. Bui, “Localized dna computation,” Ph.D. dissertation, 2017.

[20] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.

Landsman, K. Wright, and C. Monroe, “Experimental comparison of two

quantum computing architectures,” Proceedings of the National Academy of

Sciences, p. 201618020, 2017.

[21] R. Mansour, “Evolutionary computing enriched computer aided diagnosis

system for diabetic retinopathy: A survey,” IEEE Reviews in Biomedical

Engineering, 2017.

[22] M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli,

and T. Stützle, Swarm Intelligence: 10th International Conference, ANTS

2016, Brussels, Belgium, September 7-9, 2016, Proceedings. Springer, 2016,

vol. 9882.

Bibliography 201

[23] P. Arena and L. Patane, “Cellular computation in the insect brain,” in

CNNA 2016; 15th International Workshop on Cellular Nanoscale Networks

and their Applications; Proceedings of. VDE, 2016, pp. 1–2.

[24] D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R. L. Rivest,

“Time-space trade-offs in molecular computation,” Technical Report, Tech.

Rep., 2016.

[25] M. Canayaz and A. Karci, “Cricket behaviour-based evolutionary

computation technique in solving engineering optimization problems,”

Applied Intelligence, vol. 44, no. 2, pp. 362–376, 2016.

[26] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight,

Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss, “Amorphous

computing,” Commun. ACM, vol. 43, no. 5, pp. 74–82, May 2000. [Online].

Available: http://doi.acm.org/10.1145/332833.332842

[27] J. W. Rozenblit and P. L. Jankowski, “An integrated framework for

knowledge-based modeling and simulation of natural systems,” Simulation,

vol. 57, no. 3, pp. 152–165, 1991.

[28] S. Stepney, “Local and global models of physics and computation,”

International Journal of General Systems, vol. 43, no. 7, pp. 673–681, 2014.

[29] J. A. Mart́ın H., J. Lope, and D. Maravall, “”adaptation, anticipation

and rationality in natural and artificial systems: computational paradigms

mimicking nature”,” ”Natural Computing”, vol. 8, no. 4, pp. 757–775, 2008.

[30] B. J. MacLennan, “Artificial morphogenesis as an example of embodied

computation.” IJUC, vol. 7, no. 1-2, pp. 3–23, 2011.

http://doi.acm.org/10.1145/332833.332842

Bibliography 202

[31] M. Burgin, “Super-recursive algorithms as a tool for high performance

computing,” in Proceedings of High Performance Computing Symposium

(San Diego, 1999), 1999, pp. 224–228.

[32] A. Adamatzky, P. Arena, A. Basile, R. Carmona-Galán, B. D. L. Costello,

L. Fortuna, M. Frasca, and A. Rodŕıguez-Vázquez, “Reaction-diffusion

navigation robot control: from chemical to vlsi analogic processors,” Circuits

and Systems I: Regular Papers, IEEE Transactions on, vol. 51, no. 5, pp.

926–938, 2004.

[33] A. Adamatzky, “Hot ice computer,” Physics Letters A, vol. 374, no. 2, pp.

264–271, 2009.

[34] J. W. Mills, “The nature of the extended analog computer,” Physica D:

Nonlinear Phenomena, vol. 237, no. 9, pp. 1235–1256, 2008.

[35] L. M. Adleman, “Molecular computation of solutions to combinatorial

problems,” Science, vol. 266, no. 5187, pp. 1021–1024, 1994.

[36] N. C. Seeman, “Dna in a material world,” Nature, vol. 421, no. 6921, pp.

427–431, 2003.

[37] J. F. Miller and K. Downing, “Evolution in materio: Looking beyond

the silicon box,” in Evolvable Hardware, 2002. Proceedings. NASA/DoD

Conference on. IEEE, 2002, pp. 167–176.

[38] S. Harding and J. Miller, “Evolution in materio: Initial experiments with

liquid crystal,” in Evolvable Hardware, 2004. Proceedings. 2004 NASA/DoD

Conference on. IEEE, 2004, pp. 298–305.

Bibliography 203

[39] S. Harding and J. F. Miller, “Evolution in materio: A tone discriminator

in liquid crystal,” in Evolutionary Computation, 2004. CEC2004. Congress

on, vol. 2. IEEE, 2004, pp. 1800–1807.

[40] ——, “Evolution in materio: Evolving logic gates in liquid crystal,” in

Proc. Eur. Conf. Artif. Life (ECAL 2005), Workshop on Unconventional

Computing: From cellular automata to wetware. Beckington, UK, 2005,

pp. 133–149.

[41] ——, “Evolution in materio: A real-time robot controller in liquid crystal,”

in Evolvable Hardware, 2005. Proceedings. 2005 NASA/DoD Conference on.

IEEE, 2005, pp. 229–238.

[42] H. Broersma, F. Gomez, J. Miller, M. Petty, and G. Tufte, “Nascence

project: Nanoscale engineering for novel computation using evolution,”

International journal of unconventional computing, vol. 8, no. 4, pp.

313–317, 2012.

[43] J. Liu, T. Dietz, S. R. Carpenter, M. Alberti, C. Folke, E. Moran, A. N.

Pell, P. Deadman, T. Kratz, J. Lubchenco et al., “Complexity of coupled

human and natural systems,” science, vol. 317, no. 5844, pp. 1513–1516,

2007.

[44] R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment, and

biologically inspired robotics,” Science, vol. 318, no. 5853, pp. 1088–1093,

2007.

[45] R. Rosen, Life Itself - A Comprehensive Enquiry into the Nature, Origin

and Fabrication of Life. New York, NY, USA: Columbia University Press,

1991.

Bibliography 204

[46] J. W. Mills, M. Parker, B. Himebaugh, C. Shue, B. Kopecky, and

C. Weilemann, “Empty space computes: The evolution of an unconventional

supercomputer,” in ACM International Conference on Computing Frontiers,

2006.

[47] S. Lloyd, “Ultimate physical limits to computation,” Nature, vol. 406, no.

6799, pp. 1047–1054, 08 2000.

[48] S. Stepney, “The neglected pillar of material computation,” Physica D:

Nonlinear Phenomena, vol. 237, no. 9, pp. 1157–1164, 2008.

[49] P. Kahlem and E. Birney, “Dry work in a wet world: computation in systems

biology,” Molecular systems biology, vol. 2, no. 1, p. 40, 2006.

[50] S. Tsuda, K.-P. Zauner, and Y.-P. Gunji, “Robot control with biological

cells,” in Sixth International Workshop on Information Processing in Cells

and Tissues, 2005, pp. 202–216, event Dates: Aug. 30–Sept. 1, 2005.

[51] M. Amos, D. A. Hodgson, and A. Gibbons, “Bacterial self-organisation and

computation,” 2005.

[52] S. Harding, “Evolution in materio,” University of York, Tech. Rep., 2005.

[53] S. Prasad, M. Yang, X. Zhang, C. Ozkan, and M. Ozkan, “Electric field

assisted patterning of neuronal networks for the study of brain functions,”

Biomedical Microdevices, vol. 5, no. 2, pp. 125–137, 2003.

[54] S. Harding, J. Neil, K. peter Zauner, J. F. Miller, and K. Clegg, “A

framework for the automatic identification and extraction of computation

from materials.”

Bibliography 205

[55] H.-K. Janssen, “On the nonequilibrium phase transition in reaction-diffusion

systems with an absorbing stationary state,” Zeitschrift für Physik B

Condensed Matter, vol. 42, no. 2, pp. 151–154, 1981.

[56] A. M. Turing, “The chemical basis of morphogenesis,” Philosophical

Transactions of the Royal Society of London B: Biological Sciences, vol.

237, no. 641, pp. 37–72, 1952.

[57] A. Adamatzky, B. D. L. Costello, and T. Asai, Reaction-diffusion computers.

Elsevier, 2005.

[58] A. Adamatzky and B. D. L. Costello, “Experimental logical gates in a

reaction-diffusion medium: The xor gate and beyond,” Physical Review E,

vol. 66, no. 4, p. 046112, 2002.

[59] D. Tolmachiev and A. Adamatzky, “Chemical processor for computation of

voronoi diagram,” Advanced Functional Materials, vol. 6, no. 4, pp. 191–196,

1996.

[60] L. A. Rubel, “The extended analog computer,” Advances in Applied

Mathematics, vol. 14, no. 1, pp. 39–50, 1993.

[61] C. G. Langton, “Computation at the edge of chaos: phase transitions and

emergent computation,” Physica D: Nonlinear Phenomena, vol. 42, no. 1,

pp. 12–37, 1990.

[62] J. Miller and K. Downing, “Evolution in materio: looking beyond the silicon

box,” in Evolvable Hardware, 2002. Proceedings. NASA/DoD Conference

on, 2002, pp. 167–176.

[63] S. H. Mahdavi and P. J. Bentley, “Evolving motion of robots with muscles,”

in Applications of Evolutionary Computing. Springer, 2003, pp. 651–660.

Bibliography 206

[64] M. Oltean, “Switchable glass: a possible medium for evolvable hardware,”

in Adaptive Hardware and Systems, 2006. AHS 2006. First NASA/ESA

Conference on. IEEE, 2006, pp. 81–87.

[65] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”

in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[66] J. R. Shewchuk et al., “An introduction to the conjugate gradient method

without the agonizing pain,” 1994.

[67] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search:

New perspectives on some classical and modern methods,” SIAM review,

vol. 45, no. 3, pp. 385–482, 2003.

[68] M. R. Hestenes, “Multiplier and gradient methods,” Journal of optimization

theory and applications, vol. 4, no. 5, pp. 303–320, 1969.

[69] D. E. Goldberg et al., Genetic algorithms in search, optimization, and

machine learning. Addison-wesley Reading Menlo Park, 1989, vol. 412.

[70] E. Aarts and J. Korst, “Simulated annealing and boltzmann machines: a

stochastic approach to combinatorial optimization and neural computing,”

1988.

[71] S. S. Rao and V. Singh, “Optimization,” Systems, Man and Cybernetics,

IEEE Transactions on, vol. 9, no. 8, pp. 447–447, 1979.

[72] D. M. Olsson and L. S. Nelson, “The nelder-mead simplex procedure for

function minimization,” Technometrics, vol. 17, no. 1, pp. 45–51, 1975.

[73] J. A. Nelder and R. Mead, “A simplex method for function minimization,”

Computer journal, vol. 7, no. 4, pp. 308–313, 1965.

Bibliography 207

[74] M. Box, “A new method of constrained optimization and a comparison with

other methods,” The Computer Journal, vol. 8, no. 1, pp. 42–52, 1965.

[75] R. O’Neill, “Algorithm as 47: function minimization using a simplex

procedure,” Applied Statistics, pp. 338–345, 1971.

[76] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.

springer, 2003.

[77] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, “Genetic

programming: Turings third way to achieve machine intelligence,”

Evolutionary Algorithms in Engineering and Computer Science, pp.

185–197, 1999.

[78] D. Fogel, Artificial intelligence through simulated evolution. Wiley-IEEE

Press, 2009.

[79] J. H. Holland, Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence.

University of Michigan Press, 1975.

[80] H.-P. P. Schwefel, Evolution and optimum seeking: the sixth generation.

John Wiley & Sons, Inc., 1993.

[81] Z. Michalewicz and M. Michalewicz, “Evolutionary computation techniques

and their applications,” in Intelligent Processing Systems, 1997. ICIPS ’97.

1997 IEEE International Conference on, vol. 1, Oct 1997, pp. 14–25 vol.1.

[82] Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimization

algorithm: harmony search,” Simulation, vol. 76, no. 2, pp. 60–68, 2001.

[83] M. G. Omran and M. Mahdavi, “Global-best harmony search,”

Applied Mathematics and Computation, vol. 198, no. 2, pp. 643 – 656,

Bibliography 208

2008. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0096300307009320

[84] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary

algorithms for solving multi-objective problems. Springer, 2007, vol. 5.

[85] A. Eiben and M. Schoenauer, “Evolutionary computing,” Information

Processing Letters, vol. 82, no. 1, pp. 1 – 6, 2002, evolutionary

Computation. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0020019002002041

[86] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, ch. Representation,

Mutation, and Recombination, pp. 49–78. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-662-44874-8 4

[87] H. de Garis, “Evolvable hardware genetic programming of a darwin

machine,” in Artificial neural nets and genetic algorithms. Springer, 1993,

pp. 441–449.

[88] M. Takechi and T. Tokunaga, “Evolving hardware with genetic learning: A

first step towards building a darwin machine,” in From Animals to Animats

2: Proceedings of the Second International Conference on Simulation of

Adaptive Behavior. MIT Press, 1993, pp. 417–424.

[89] H. Garis, “Evolvable hardware genetic programming of a darwin machine,”

in Artificial Neural Nets and Genetic Algorithms, R. Albrecht, C. Reeves,

and N. Steele, Eds. Springer Vienna, 1993, pp. 441–449.

[90] A. Thompson, “Silicon evolution,” in Stanford University. MIT Press,

1996, pp. 444–452.

http://www.sciencedirect.com/science/article/pii/S0096300307009320
http://www.sciencedirect.com/science/article/pii/S0096300307009320
http://www.sciencedirect.com/science/article/pii/S0020019002002041
http://www.sciencedirect.com/science/article/pii/S0020019002002041
http://dx.doi.org/10.1007/978-3-662-44874-8_4
http://dx.doi.org/10.1007/978-3-662-44874-8_4

Bibliography 209

[91] R. Computing, “The theory and practice of fpga-based computation/ed. by

scott hauck and andre dehon,” 2008.

[92] X. Yao and T. Higuchi, “Promises and challenges of evolvable

hardware,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 29, no. 1, pp. 87–97, 1999.

[93] P. C. Haddow and G. Tufte, “An evolvable hardware fpga for adaptive

hardware,” in Evolutionary Computation, 2000. Proceedings of the 2000

Congress on, vol. 1. IEEE, 2000, pp. 553–560.

[94] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya,

and B. Manderick, “Evolvable hardware and its application to pattern

recognition and fault-tolerant systems,” in Towards evolvable hardware.

Springer, 1996, pp. 118–135.

[95] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami,

“Evolvable hardware at function level,” in Evolutionary Computation,

1997., IEEE International Conference on. IEEE, 1997, pp. 187–192.

[96] A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with

physics,” in Evolvable Systems: From Biology to Hardware. Springer, 1997,

pp. 390–405.

[97] W. Wolf, FPGA-based system design. Pearson education, 2004.

[98] D. E. Van den Bout, J. N. Morris, D. Thomae, S. Labrozzi, S. Wingo,

and P. Hallman, “Anyboard: An fpga-based, reconfigurable system,” IEEE

Design & Test, vol. 9, no. 3, pp. 21–30, 1992.

[99] A. Thompson, “Evolving electronic robot controllers that exploit hardware

resources,” in In. Springer-Verlag, 1995, pp. 640–656.

Bibliography 210

[100] D. Keymeulen, K. Konaka, M. Iwata, Y. Kuniyoshi, and T. Higuchi, “Robot

learning using gate-level evolvable hardware,” in Learning Robots. Springer,

1997, pp. 173–188.

[101] P. Haddow and G. Tufte, “Evolving a robot controller in hardware,” in In

Proc. of the Norwegian Computer Science Conference (NIK-99), 1999, pp.

141–150.

[102] K. Tan, C. Chew, K. Tan, L. Wang, and Y. Chen, “Autonomous robot

navigation via intrinsic evolution,” in Evolutionary Computation, 2002.

CEC’02. Proceedings of the 2002 Congress on, vol. 2. IEEE, 2002, pp.

1272–1277.

[103] L. Huelsbergen, E. Rietman, and R. Slous, “Evolution of astable

multivibrators in silico,” in Evolvable Systems: From Biology to Hardware.

Springer, 1998, pp. 66–77.

[104] A. Thompson, “On the automatic design of robust electronics through

artificial evolution,” in Evolvable Systems: From Biology to Hardware.

Springer, 1998, pp. 13–24.

[105] A. Thompson and P. Layzell, “Evolution of robustness in an electronics

design,” in Evolvable Systems: From Biology to Hardware. Springer, 2000,

pp. 218–228.

[106] P. Layzell, “A new research tool for intrinsic hardware evolution,” in

Evolvable Systems: From Biology to Hardware. Springer, 1998, pp. 47–56.

[107] A. Thompson, “On the automatic design of robust electronics through

artificial evolution,” in Proceedings of the Second International Conference

on Evolvable Systems: From Biology to Hardware, ser. ICES ’98. London,

Bibliography 211

UK, UK: Springer-Verlag, 1998, pp. 13–24. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=645508.656773

[108] J.Crooks, “Evolvable analogue hardware, meng project report,” The

University Of York, Tech. Rep., 2002.

[109] S. Harding and J. Miller, “Evolution in materio: a real-time robot

controller in liquid crystal,” in Evolvable Hardware, 2005. Proceedings. 2005

NASA/DoD Conference on, 2005, pp. 229–238.

[110] ——, “Evolution in materio,” in Computational Complexity, R. A. Meyers,

Ed. Springer New York, 2012, pp. 1030–1042.

[111] ——, “Evolution in materio: a tone discriminator in liquid crystal,” in

Evolutionary Computation, 2004. CEC2004. Congress on, vol. 2, 2004, pp.

1800–1807 Vol.2.

[112] M. Mohid, J. F. Miller, S. L. Harding, G. Tufte, O. R. Lykkebo, M. K.

Massey, and M. C. Petty, “Evolution-in-materio: Solving bin packing

problems using materials,” in Evolvable Systems (ICES), 2014 IEEE

International Conference on. IEEE, 2014, pp. 38–45.

[113] J. F. Miller and M. Mohid, “Function optimization using cartesian genetic

programming,” in Proceedings of the 15th annual conference companion on

Genetic and evolutionary computation. ACM, 2013, pp. 147–148.

[114] M. Mohid, J. F. Miller, S. L. Harding, G. Tufte, O. R. Lykkebo, M. K.

Massey, and M. C. Petty, “Evolution-in-materio: A frequency classifier

using materials,” in Evolvable Systems (ICES), 2014 IEEE International

Conference on. IEEE, 2014, pp. 38–45.

http://dl.acm.org/citation.cfm?id=645508.656773
http://dl.acm.org/citation.cfm?id=645508.656773

Bibliography 212

[115] M. Mohid, J. F. Miller, S. L. Harding, G. Tufte, O. R. Lykkebø, M. K.

Massey, and M. C. Petty, “Evolution-in-materio: Solving machine learning

classification problems using materials,” in Parallel Problem Solving from

Nature–PPSN XIII. Springer, 2014, pp. 721–730.

[116] M. Mohid and J. Miller, “Solving even parity problems using carbon

nanotubes,” in Computational Intelligence (UKCI), 15th UK Workshop on.

IEEE Press, 2015.

[117] ——, “Evolving robot controllers using carbon nanotubes,” in Proceedings

of the 13th European Conference on Artificial Life (ECAL2015), 2015, pp.

106–113.

[118] K. D. Clegg, J. F. Miller, K. Massey, and M. Petty, “Travelling

salesman problem solved in materioby evolved carbon nanotube device,”

in International Conference on Parallel Problem Solving from Nature.

Springer, 2014, pp. 692–701.

[119] K. D. Clegg, J. F. Miller, M. K. Massey, and M. C. Petty, “Practical issues

for configuring carbon nanotube composite materials for computation,” in

Evolvable Systems (ICES), 2014 IEEE International Conference on. IEEE,

2014, pp. 61–68.

[120] O. R. Lykkebø, S. Nichele, and G. Tufte, “An investigation of square waves

for evolution in carbon nanotubes material,” in Proceedings of the 13th

European Conference on Artificial Life (ECAL2015), 2015, pp. 503–510.

[121] O. R. Lykkebø and G. Tufte, “Comparison and evaluation of signal

representations for a carbon nanotube computational device,” in Evolvable

Systems (ICES), 2014 IEEE International Conference on. IEEE, 2014, pp.

54–60.

Bibliography 213

[122] E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, C. Groves, C. Pearson,

D. A. Zeze, and M. C. Petty, “Solving binary classification problems with

carbon nanotube/liquid crystal composites and evolutionary algorithms,” in

Evolutionary Computation (CEC), 2017 IEEE Congress on. IEEE, 2017,

pp. 1924–1931.

[123] E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pearson,

C. Groves, and M. C. Petty, “Training a carbon-nanotube/liquid crystal

data classifier using evolutionary algorithms,” in International Conference

on Unconventional Computation and Natural Computation. Springer, 2016,

pp. 130–141.

[124] E. Vissol-Gaudin, A. Kotsialos, C. Groves, C. Pearson, D. Zeze, and

M. Petty, “Computing based on material training: Application to binary

classification problems,” in Rebooting Computing (ICRC), 2017 IEEE

International Conference on. IEEE, 2017, pp. 1–8.

[125] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes

and carbon nanotubes: their properties and applications. Academic press,

1996.

[126] B. Yakobson, G. Samsonidze, and G. Samsonidze, “Atomistic theory of

mechanical relaxation in fullerene nanotubes,” Carbon, vol. 38, no. 11, pp.

1675–1680, 2000.

[127] J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker,

“Electronic structure of atomically resolved carbon nanotubes,” Nature, vol.

391, no. 6662, pp. 59–62, 1998.

Bibliography 214

[128] A. D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C. M. Breslin,

L. Gignac, M. S. Lundstrom, and W. Haensch, “Sub-10 nm carbon nanotube

transistor,” Nano letters, vol. 12, no. 2, pp. 758–762, 2012.

[129] A. D. Franklin, “Electronics: The road to carbon nanotube transistors,”

Nature, vol. 498, no. 7455, pp. 443–444, 2013.

[130] L. Wei, D. J. Frank, L. Chang, and H.-S. Wong, “A non-iterative compact

model for carbon nanotube fets incorporating source exhaustion effects,” in

Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009,

pp. 1–4.

[131] S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam,

S. V. Rotkin, and J. A. Rogers, “High-performance electronics using

dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nature

Nanotechnology, vol. 2, no. 4, pp. 230–236, 2007.

[132] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong,

and S. Mitra, “Carbon nanotube computer,” Nature, vol. 501, no. 7468, pp.

526–530, 2013.

[133] V. N. Popov, “Carbon nanotubes: properties and application,” Materials

Science and Engineering: R: Reports, vol. 43, no. 3, pp. 61 – 102, 2004.

[134] N. Hamada, S.-i. Sawada, and A. Oshiyama, “New one-dimensional

conductors: graphitic microtubules,” Physical Review Letters, vol. 68,

no. 10, p. 1579, 1992.

[135] R. Saito, G. Dresselhaus, M. S. Dresselhaus et al., Physical properties of

carbon nanotubes. World Scientific, 1998, vol. 4.

Bibliography 215

[136] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, “Atomic structure

and electronic properties of single-walled carbon nanotubes,” Nature, vol.

391, no. 6662, pp. 62–64, 1998.

[137] J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules

metallic?” Phys. Rev. Lett., vol. 68, pp. 631–634, Feb 1992.

[138] P. L. McEuen, M. S. Fuhrer, and H. Park, “Single-walled carbon nanotube

electronics,” IEEE transactions on nanotechnology, vol. 1, no. 1, pp. 78–85,

2002.

[139] P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio et al., “Single-walled

carbon nanotube–polymer composites: strength and weakness,” Advanced

materials, vol. 12, no. 10, pp. 750–753, 2000.

[140] Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, “Carbon

nanotubepolymer composites: Chemistry, processing, mechanical and

electrical properties,” Progress in Polymer Science, vol. 35, no. 3, pp. 357

– 401, 2010. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0079670009000859

[141] R. Andrews and M. Weisenberger, “Carbon nanotube polymer composites,”

Current Opinion in Solid State and Materials Science, vol. 8, no. 1, pp.

31 – 37, 2004. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1359028603000925

[142] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes,

Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based

nanosheets via chemical reduction of exfoliated graphite oxide,” carbon,

vol. 45, no. 7, pp. 1558–1565, 2007.

http://www.sciencedirect.com/science/article/pii/S0079670009000859
http://www.sciencedirect.com/science/article/pii/S0079670009000859
http://www.sciencedirect.com/science/article/pii/S1359028603000925
http://www.sciencedirect.com/science/article/pii/S1359028603000925

Bibliography 216

[143] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. ONeill,

C. Boland, M. Lotya, O. M. Istrate, P. King et al., “Scalable production

of large quantities of defect-free few-layer graphene by shear exfoliation in

liquids,” Nature materials, vol. 13, no. 6, pp. 624–630, 2014.

[144] G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards

large-area thin-film electronics and optoelectronics,” Advanced Materials,

vol. 22, no. 22, pp. 2392–2415, 2010.

[145] S. Harding and J. F. Miller, “Evolution in materio,” in Encyclopedia of

Complexity and Systems Science. Springer, 2009, pp. 3220–3233.

[146] V. Skakalova, U. Dettlaff-Weglikowska, and S. Roth, “Electrical and

mechanical properties of nanocomposites of single wall carbon nanotubes

with pmma,” Synthetic Metals, vol. 152, no. 1-3, pp. 349–352, 2005.

[147] N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, “Polymer

nanocomposites based on functionalized carbon nanotubes,” Progress in

polymer science, vol. 35, no. 7, pp. 837–867, 2010.

[148] O. R. Lykkebø, S. Harding, G. Tufte, and J. F. Miller, “Mecobo: A hardware

and software platform for in materio evolution,” in International Conference

on Unconventional Computation and Natural Computation. Springer, 2014,

pp. 267–279.

[149] A. Thompson, I. Harvey, and P. Husbands, “Unconstrained evolution and

hard consequences,” 1995.

[150] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa,

I. Kajitani, E. Takahashi, K. Toda, N. Salami, N. Kajihara et al.,

“Real-world applications of analog and digital evolvable hardware,” IEEE

transactions on evolutionary computation, vol. 3, no. 3, pp. 220–235, 1999.

Bibliography 217

[151] G. W. Greenwood and A. M. Tyrrell, Introduction to evolvable hardware:

a practical guide for designing self-adaptive systems. John Wiley & Sons,

2006, vol. 5.

[152] J. Bird and P. Layzell, “The evolved radio and its implications for modelling

the evolution of novel sensors,” in Evolutionary Computation, 2002. CEC

’02. Proceedings of the 2002 Congress on, vol. 2, 2002, pp. 1836–1841.

[153] S. L. Harding, J. F. Miller, and E. A. Rietman, “Evolution in materio:

Exploiting the physics of materials for computation,” arXiv preprint

cond-mat/0611462, 2006.

[154] J. M. Parkinson and D. Hutchinson, “An Investigation into the

Efficiency of Variants on the Simplex Method,” in Numerical Methods

for Non-linear Optimization, F. A. Lootsma, Ed. London and New

York: Academic Press, 1972, pp. 115–135. [Online]. Available:

http://www.ams.org/mathscinet-getitem?mr=48:10490

[155] M. H. Wright, “Direct search methods: Once scorned, now respectable,”

Pitman Research Notes in Mathematics Series, pp. 191–208, 1996.

[156] F. Heppner and U. Grenander, “A stochastic nonlinear model for

coordinated bird flocks,” The ubiquity of chaos, pp. 233–238, 1990.

[157] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral

model,” in ACM SIGGRAPH computer graphics, vol. 21, no. 4. ACM,

1987, pp. 25–34.

[158] J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence.

Morgan Kaufmann, 2001.

http://www.ams.org/mathscinet-getitem?mr=48:10490

Bibliography 218

[159] J. Kenndy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of IEEE International Conference on Neural Networks, vol. 4, 1995, pp.

1942–1948.

[160] Y. Shi et al., “Particle swarm optimization: developments, applications

and resources,” in evolutionary computation, 2001. Proceedings of the 2001

Congress on, vol. 1. IEEE, 2001, pp. 81–86.

[161] R. S. Verma, V. Singh, and S. Kumar, “Dna sequence assembly

using particle swarm optimization,” International Journal of Computer

Applications, vol. 28, no. 10, 2011.

[162] R. Storn and K. Price, “Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces,” Journal of global

optimization, vol. 11, no. 4, pp. 341–359, 1997.

[163] S. Das and P. N. Suganthan, “Differential evolution: a survey of the

state-of-the-art,” IEEE transactions on evolutionary computation, vol. 15,

no. 1, pp. 4–31, 2011.

[164] S. Das, S. S. Mullick, and P. Suganthan, “Recent advances in differential

evolution–an updated survey,” Swarm and Evolutionary Computation,

vol. 27, pp. 1–30, 2016.

[165] R. Storn, “On the usage of differential evolution for function optimization,”

in Fuzzy Information Processing Society, 1996. NAFIPS., 1996 Biennial

Conference of the North American. IEEE, 1996, pp. 519–523.

[166] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a

practical approach to global optimization. Springer Science & Business

Media, 2006.

Bibliography 219

[167] D. Zaharie, “Critical values for the control parameters of differential

evolution algorithms,” in Proceedings of MENDEL, vol. 2002, 2002.

[168] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,”

Soft Computing, vol. 9, no. 6, pp. 448–462, 2005.

[169] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution

algorithm for numerical optimization,” in 2005 IEEE congress on

evolutionary computation, vol. 2. IEEE, 2005, pp. 1785–1791.

[170] M. E. H. Pedersen, “Good parameters for differential evolution,” Magnus

Erik Hvass Pedersen, 2010.

[171] S. Harding and J. F. Miller, “Evolution in materio: Evolving logic gates

in liquid crystal,” in In Proceedings of the workshop on unconventional

computing at ECAL 2005 VIIIth European, 2005, p. 12.

[172] X. Hu, R. C. Eberhart, and Y. Shi, “Swarm intelligence for permutation

optimization: a case study of n-queens problem,” in Swarm Intelligence

Symposium, 2003. SIS’03. Proceedings of the 2003 IEEE. IEEE, 2003, pp.

243–246.

[173] A. Kotsialos, M. K. Massey, F. Qaiser, D. Zeze, C. Pearson, and M. C. Petty,

“Logic gate and circuit training on randomly dispersed carbon nanotubes.”

International journal of unconventional computing., vol. 10, no. 5-6, pp.

473–497, 2014.

[174] M. C. Petty, “Material devices for nascence.”

[175] H.-K. Jang, J. E. Jin, J. H. Choi, P.-S. Kang, D.-H. Kim, and G. T. Kim,

“Electrical percolation thresholds of semiconducting single-walled carbon

Bibliography 220

nanotube networks in field-effect transistors,” Physical Chemistry Chemical

Physics, vol. 17, no. 10, pp. 6874–6880, 2015.

[176] M. Ieda, G. Sawa, and S. Kato, “A consideration of poole-frenkel effect

on electric conduction in insulators,” Journal of Applied Physics, vol. 42,

no. 10, pp. 3737–3740, 1971.

[177] M. Mohid, J. F. Miller, S. L. Harding, G. Tufte, O. R. Lykkebø, M. K.

Massey, and M. C. Petty, “Evolution-in-materio: A frequency classifier

using materials,” in Evolvable Systems (ICES), 2014 IEEE International

Conference on. IEEE, 2014, pp. 46–53.

[178] A. Kotsialos, M. K. Massey, F. Qaiser, D. A. Zeze, C. Pearson, and

M. C. Petty, “Logic gate and circuit training on randomly dispersed carbon

nanotubes.” International Journal of Unconventional Computing., vol. 10,

no. 5-6, pp. 473–497, September 2014.

[179] D. Volpati, M. K. Massey, D. Johnson, A. Kotsialos, F. Qaiser, C. Pearson,

K. Coleman, G. Tiburzi, D. A. Zeze, and M. C. Petty, “Exploring the

alignment of carbon nanotubes dispersed in a liquid crystal matrix using

coplanar electrodes,” Journal of Applied Physics, vol. 117, no. 12, p. 125303,

2015.

[180] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Proceedings of the sixth international symposium on micro

machine and human science, vol. 1. New York, NY, 1995, pp. 39–43.

[181] A. Thompson, Hardware Evolution: Automatic design of electronic circuits

in reconfigurable hardware by artificial evolution. Springer Science &

Business Media, 2012.

Bibliography 221

[182] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[Online]. Available: http://archive.ics.uci.edu/ml

[183] J. Han and M. Kamber, “Data mining: concepts and techniques (the morgan

kaufmann series in data management systems),” 2000.

[184] J. K. Uhlmann, “Satisfying general proximity/similarity queries with metric

trees,” Information processing letters, vol. 40, no. 4, pp. 175–179, 1991.

[185] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,

“Scikit-learn: Machine learning in Python,” Journal of Machine Learning

Research, vol. 12, pp. 2825–2830, 2011.

[186] T. Liu, A. W. Moore, and A. Gray, “New algorithms for efficient

high-dimensional nonparametric classification,” Journal of Machine

Learning Research, vol. 7, no. Jun, pp. 1135–1158, 2006.

[187] K. J. Lang, “Learning to tell two spirals apart,” in Proc. of 1988

Connectionist Models Summer School, 1988.

[188] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor

algorithm,” IEEE transactions on systems, man, and cybernetics, no. 4, pp.

580–585, 1985.

[189] H. Parvin, H. Alizadeh, and B. Minati, “A modification on k-nearest

neighbor classifier,” Global Journal of Computer Science and Technology,

2010.

[190] D.-Y. Liu, H.-L. Chen, B. Yang, X.-E. Lv, L.-N. Li, and J. Liu, “Design

of an enhanced fuzzy k-nearest neighbor classifier based computer aided

http://archive.ics.uci.edu/ml

Bibliography 222

diagnostic system for thyroid disease,” Journal of medical systems, vol. 36,

no. 5, pp. 3243–3254, 2012.

[191] M. Grochowski and N. Jankowski, “Comparison of instance selection

algorithms ii. results and comments,” in International Conference on

Artificial Intelligence and Soft Computing. Springer, 2004, pp. 580–585.

[192] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning

for large margin nearest neighbor classification,” in Advances in neural

information processing systems, 2006, pp. 1473–1480.

[193] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov,

“Neighbourhood components analysis,” in Advances in neural information

processing systems, 2005, pp. 513–520.

[194] M. L. Raymer, T. E. Doom, L. A. Kuhn, and W. F. Punch, “Knowledge

discovery in medical and biological datasets using a hybrid bayes

classifier/evolutionary algorithm,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 33, no. 5, pp. 802–813, 2003.

[195] R. C. Holte, “Very simple classification rules perform well on most

commonly used datasets,” Machine learning, vol. 11, no. 1, pp. 63–90, 1993.

	Abstract
	Declaration
	Publications from this work
	Conferences and poster presentations

	Acknowledgements
	Motivation
	Research problem
	Hypothesis
	Outline
	Original contribution

	Literature review
	Materials for computation
	Optimisation algorithms
	Evolutionary computation
	Evolutionary algorithms
	Evolvable Hardware
	Evolvable motherboard

	Evolution in Materio
	Recent work using EIM
	Carbon based materials
	Carbon nanotubes
	Carbon nanotubes and polymers
	Reduced graphene oxide

	Conclusions

	Experimental methods
	Single walled carbon nanotube composites
	swcnt / pma nascenceD11
	SWCNTs/PBMA nascenceD11
	Reduced Graphene oxide composites

	Micro electrode arrays
	Signal generation device (SGD)
	Mecobo - a purpose built platform for EIM mecobo

	Optimisation algorithms and computational problems
	Introduction
	Nelder-Mead algorithm
	The algorithm

	Particle Swarm Optimisation
	The algorithm
	Shortest position value rule (SPV)

	Differential evolution (DE)
	The algorithm
	Parameter selection

	Computational problems
	Threshold logic gates
	Classification
	Tone discrimination

	Summary

	Logic gates/circuit training in swcnt/pma composites using mbed
	Introduction
	Optimisation procedure
	Effect of changing connections

	Results and discussion
	Logic gates/circuits using Nelder-Mead algorithm
	OR gate
	Half adder
	Logic circuits using Differential Evolution algorithm
	Effect of changing connections
	Particle Swarm algorithm vs Nelder-Mead algorithm

	Resistors vs SWCNTs?
	Stability of results
	Conclusions

	Studying the correlation between SWCNTs concentration and computing
	Introduction
	Viscosity and electrical characteristics of SWCNTs/PBMA composites
	Viscosity measurements
	Electrical measurementsmassey2015computing

	Results and discussion
	Conclusions

	Training SWCNTs/PMMA composites to solve complex logic circuits using Particle Swarm algorithm on Mecobo
	Introduction
	Material training
	Results and discussion
	Logic circuit (A1+A2+A3) (A1A2A3)
	Half-adder
	Full-adder

	Conclusion

	Training SWCNTs/Polymer composites as a tone discriminator
	Introduction
	Material training
	Results and discussion
	Comparison of different concentrations of SWCNTs in fixed polymer for tone discriminator problem

	Conclusions

	Training SWCNTs/Polymer composites as a data classifier
	Introduction
	Classification rule 1: Comparison of output with a threshold value
	Classification rule 2: Comparison of two outputs
	Classification rule 3: kNN algorithm
	Classification rule 4: kNN ball tree algorithm
	Ball tree
	Ball tree partitioning
	Search in ball tree
	Training problem formulation
	Percentage classification error (PCE)

	Testing Phase
	Test problems

	Results and discussion
	Comparison of four different classification rules for Binary data classification
	Binary data classification using knn ball tree algorithm
	Multiple class data classification

	Conclusions

	Conclusions and future work
	Conclusions
	Material systems
	Suitable hardware
	Optimisation algorithms
	Computational problems

	Thesis conclusion
	Suggestions for future work

