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Abstract

Polaron Dynamics in the Alpha Helix

In this thesis, I present two mathematical models which are capable of explaining the

phenomenon of directed electron transport in α-helical regions of protein macromolecules.

The models are built upon the framework of polaron theory, which originated in condensed

matter physics, and which I argue is applicable to biophysical systems such as an extra

electron interacting electromagnetically with peptide units in an α-helix. The two models

concern the electron’s coupling to, respectively, picosecond-scale intrapeptide oscillators

and nanosecond-scale hydrogen bond phonons in the α-helix. I show that the models

permit the auto-localisation of the electron in stationary polaron states, and that certain

electromagnetic fields cause the polaron to propagate along the polypeptide, transporting

the electron in a solitonic manner. Taking effects of the cell environment into account,

I demonstrate that stochastic forces arising from thermal fluctuations can enhance the

electron transport, and that the stability of the polaron dynamics exhibit contrasting

degrees of tolerance to temperature in the two models. When interpreting my results, I

describe their biological implications, as well as the physical realisability of the models’

forcing parameters. In particular, I establish that some electromagnetic fields which can

facilitate directed electron transport are intrinsic physical features of the cell.
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Notations, Units and Constants

Notations shall be self-consistent within each individual Chapter, although some symbols

may take on one meaning in one Chapter and another in the next. Whenever a notation is

defined or redefined, I will explicate its meaning in detail, and in any case its interpretation

shall always be clear in the context. For the reader’s reference, there now follows a Chapter-

by-Chapter breakdown of the definitions of some key symbols.

Chapter 3

Ĥe, Ĥp, Ĥint, Ĥext :

Hamiltonians for, respectively, a tight-binding extra electron, intrapeptide oscillators on

the lattice nodes, interaction between the electron and intrapeptide oscillators, and inter-

action between the electron and an external electromagnetic field.

J0, J1,M,Ω, R, χ :

Respectively, the electron site energy, nearest-neighbour electron transfer integral, re-

duced mass of a C=O oscillator, natural angular frequency of a C=O oscillator in the

amide-I mode, equilibrium distance between centres of mass of neighbouring C=O oscil-

lators, and strength of the electron-oscillator coupling.

Q̂n, P̂n, un :

Respectively, the operator for displacement of the nth C=O oscillator, the operator for

momentum conjugate to that displacement, and dimensionless expected value of relative

displacement of the nth oscillator.

ρ, κ :

Dimensionless quantities representing, respectively, the characteristic time-scale separation

between electron dynamics and C=O oscillator dynamics (adiabaticity parameter), and

electron-oscillator coupling strength (coupling constant).
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Chapter 4

Ĥe, Ĥp, Ĥint, Ĥext :

Hamiltonians for, respectively, a tight-binding extra electron, hydrogen bond-stretching

oscillations, interaction between the electron and hydrogen bond oscillations, and interac-

tion between the electron and an external electromagnetic field.

J0, J1,M,K,Ω, R :

Respectively, the electron site energy, nearest-neighbour electron transfer integral, average

mass of a peptide unit in a transmembrane α-helix, force constant of a hydrogen bond

in the α-helix, characteristic time-scale defined by Ω =
√
K/M , and equilibrium distance

between centres of mass of neighbouring peptide units.

χl, χr, χ, β :

Respectively, strength of the electron-hydrogen bond coupling towards one end of the α-

channel, strength of the coupling towards the other end of the channel, total strength of

the coupling defined by χ = χr + χl, and a dimensionless symmetry parameter defined by

β = (χr − χl)/χ representing the spatial anisotropy of electron-hydrogen bond coupling.

Un, Pn, Sn :

Respectively, the displacement of the nth peptide unit, the momentum conjugate to

that displacement, and distortion of the hydrogen bond between the nth and (n + 1)th

peptide units.

ρ, κ :

Dimensionless quantities representing, respectively, the characteristic time-scale separation

between electron dynamics and lattice phonon dynamics (adiabaticity parameter), and

electron-hydrogen bond coupling strength (coupling constant).

Chapter 5

Ĥe, Ĥp, Ĥint, Ĥext, J0, J1, J2,M,K,Ω, R, χl, χr, χ, β, ζ :

Same as in Chapter 4 except that J1 is the nearest-neighbour electron transfer integral

between peptide units along an α-channel, J2 is the nearest-neighbour electron transfer
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integral between peptide units across adjacent channels, and ζ is a dimensionless geometry

parameter accounting for the twisting of the channels.

Un,j , Pn,j , Sn,j :

Respectively, the displacement of the (n, j)th peptide unit projected onto the helical axial

direction, momentum conjugate to that displacement, and distortion of the hydrogen bond

between the (n, j)th and (n+1, j)th peptide units projected onto the helical axial direction.

ρ1, ρ2, κ :

Dimensionless quantities representing, respectively, the characteristic time-scale separation

between intra-channel electron dynamics and lattice dynamics, characteristic time-scale

separation between inter-channel electron dynamics and lattice dynamics, and electron-

hydrogen bond coupling strength.

Chapters 3 to 5

In all instances,

Ĥ = Ĥe + Ĥp + Ĥint + Ĥext

is the total Hamiltonian, which encapsulates all aspects of the dynamics of the system

except for its thermalisation.

E, ε,Γ, γ,Θ, θ

are, respectively: amplitude of the electric field component, along the helical axis, of the

external electromagnetic field; dimensionless amplitude of that electric field component;

viscous damping coefficient describing the effect of friction on the lattice nodes due to

its thermal environment; dimensionless viscous damping coefficient; temperature of the

environment; and dimensionless thermal energy due to temperature of the environment.

Eb, E
0
b, E

(θ)
b

are, respectively, internal energy of the polaron, binding energy of the stationary polaron,

and quasi-stationary internal energy of the polaron at thermal equilibrium. Finally,

Â†, Â

are, respectively, electron creation and annihilation operators, and are singly- or doubly-

indexed depending on the model.
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Other notes on notations

If the limits of a sum or product are unspecified, then it is implied that the sum or product

is performed over all possible values of the index or indices. Similarly, if the limits are

unspecified for an integral, then it is implied that the integration is performed over the

entire domain.

Unit conversions

The ångström: 1 Å = 10−10 m.

The electronvolt: 1 eV = 1.602× 10−19 J.

The debye: 1 D = 3.336× 10−30 C ·m.

Unit prefixes shall have the following usual meanings.

f (femto-): 10−15, p (pico-): 10−12, n (nano-): 10−9, µ (micro-): 10−6,

m (milli-): 10−3, k (kilo-): 103, M (mega-): 106, G (giga-): 109,

T (tera-): 1012, P (peta-): 1015.

Universal constants

Speed of light in vacuum: c = 2.998× 108 m · s−1.

Reduced Planck constant: ~ = 1.054× 10−34 J · s.

The elementary charge: e = 1.602× 10−19 C.

Vacuum permittivity: ε0 = 8.854× 10−12 F ·m−1.

Boltzmann constant: kB = 1.381× 10−23 J ·K−1.
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Chapter 1

Introduction

The foundational principle of this thesis is that one may apply theoretical frameworks

from physics, particularly condensed matter physics, to studying biological processes on

the molecular scale.

There exists a rich catalogue of mathematical models that serve to explain or make

predictions about biological phenomena. The key to creating these models is always

to simplify the biological system to such an extent that the relationships between its

variables may be encapsulated by a set of equations, and any assumptions or insights

leading to the requisite simplifications are usually physical. For example, the Lotka-

Volterra model of population dynamics depended upon the physical assumption of a closed

system, whereby the species concerned occupied an unchanging space under no external

influence [Lot20, Vol26]. Turing’s theory of morphogenesis approximated any discrete

system of cells as a continuum, and the derivation of his famous equations relied on the

insight that certain physical laws of motion are invariant under orientation reversal [Tur52].

In neurobiology, Hodgkin and Huxley’s Nobel Prize-winning work on the initiation and

propagation of action potentials involved representing the cell membrane as an electrical

circuit, and therefore the theories of conductance and ion gradients were vital to their

model [HH52,Hil01]. Physics, therefore, tends to provide the bridge between an idealised

representation of a biological system and a mathematical model consisting of variables,

parameters and equations.

Assumptions in a model are not always realisable in nature; nevertheless, they are

essential to ensuring that the equations therein are sufficiently simple in the mathematical

sense, so that solutions may be found at least by numerical methods. In many cases, even

the simplest of models produce results which closely align with empirical data; but equally,
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one often finds the need to generalise a model, meaning to discard some of its simplifying

assumptions. Generalisations may manifest themselves in many forms: extra terms in

the equations, modifications to the parameters, or even the addition of new variables,

and so on. In any case, it is crucial that one should be able to recover old models from

their generalised versions by imposing appropriate constraints on the system. The Lotka-

Volterra model in its simplest form, for instance, could not produce results matching the

Hudson Bay Company’s records spanning 200 years of lynx-hare population dynamics

in the Canadian boreal forest, but a generalised model provided a good match with the

data [Gil73]. The new model relaxed two of the original’s simplifying assumptions: instead

of exponential growth, the lynx population in isolation would grow logistically, with a

carrying capacity proportional to the hare population; and instead of a closed system,

now there was an external influence in the form of an epidemic that killed lynx as soon as

the hare population reached some threshold. These generalisations manifested themselves

in extra terms in the equations involving the following new parameters: a coefficient of

proportionality between the carrying capacity of the lynx population and the density of

the hare population, an epidemic threshold and a lynx mortality rate due to the epidemic.

By setting the first and second parameters to infinity, and the third to zero, one recovers

the original Lotka-Volterra model. On the other hand, by fitting the parameters to the

existing data, meaning to fix parameters at values which lead to results that best fit the

data, one is able to use the model to make predictions about the lynx-hare dynamics in

future years. Moreover, given another two-species predator-prey system, if one assumes

that it behaves in the same characteristic manner as the lynx-hare system does, then one

is able to use the same generalised Lotka-Volterra model with refitted parameters to make

predictions about the new system. Thus, whether or not a generalisation is motivated by

an inadequacy of an existing model, it is always the pursuit of a model with yet stronger

explanatory or predictive powers, even if in exchange for the more accurate representation

of reality one has to sacrifice some of the model’s mathematical simplicity.

Now, let us turn to the problem at hand. When I embarked upon the research project

which has culminated in this thesis, I was interested in the following conundrum: how

do proteins conduct electricity? In terms which are specific enough to formulate a Ph.D.

research question, I wanted to answer: by what mechanism is an electron transported along

the hydrogen-bonded polypeptide of a protein macromolecule?
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The directed motion of electrons in proteins is known to be essential to a wide range

of biological processes. A prime example is oxygenic photosynthesis, where the trans-

fer of electrons through the protein photosystem II (PSII) drives the oxidation of water,

a reaction which is responsible for producing almost all atmospheric oxygen and which

generates proton gradients that help to create the energy storage molecule adenosine

triphosphate (ATP) [FAOR89, Jol03, JL08, UKSK11, SAH+15,KMB+16]. A related pro-

cess in which electron transport is heavily involved is aerobic respiration, the main means

by which fungi and animals convert chemical energy into ATP, where the donor-acceptor

transfer of electrons releases energy through redox reactions and enables ATP production

[Mit61, MM67, DKM00, Ric03]. Despite its importance, the exact mechanism of elec-

tron transport in proteins is not yet fully elucidated. A popular hypothesis is known

as superexchange theory, whereby the transfer of an electron from a donor to an acceptor

is modelled as a quantum tunnelling process through a series of potential barriers [McC61,

BJMBO89,BBO91,BBO92]. Although the theory has been successful in interpreting some

experimental data [MKW+92,FMD93, JBVR02], a recurring critique of it has related to

its inadequacy at accounting for the intervening polypeptide structure between donor and

acceptor [GK93,GW96]. In recent years, an alternative modelling approach utilising the

framework of polaron theory has gained traction, and that is the approach I shall be

exploring in this thesis.

In condensed matter physics, a polaron is a quasi-particle comprising two parts: an

electron and a phonon. The phonon itself is a quasi-particle, first introduced as a theoret-

ical concept in 1929 [Tam29]. It was assumed that in a crystalline material, the adiabatic

condition held for each of the atoms or molecules that constituted the crystal lattice,

meaning that the subatomic or submolecular components of each lattice node moved in

sync as a whole. A phonon is a collective excitation of the lattice where all nodes oscillate

with the same frequency. The cause of such a collective oscillation is the interatomic

or intermolecular forces along the chemical bonds joining one node to the next. Under

those forces, every node attracts or repels neighbouring ones, and a possible resulting

behaviour is a collective oscillation with one unified frequency. Mathematically, one may

model the system of nodes and forces either as a classical mechanics problem of masses

and springs [PY58,Joy74], or as a quantum mechanics problem of collective boson excita-

tions [Kit63,Mah13]; either way, the phonon is a normal mode solution to a many-body

problem. While the classical picture permits any vibrational frequency, hence any amount
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of phonon energy, on a continuous spectrum, the phonon’s energy spectrum in the quan-

tum picture is, by definition, quantised. Experimental evidence has long suggested that

the energy spectra of phonons in materials such as metal and metal matrix composites

are quasi-continuous with almost-indistinguishable levels [Wal56,RAT63], a phenomenon

which has been accurately explained by the quantum model of phonons [LP86,BIST89],

though a classical model could also produce comparable results [Bre79,SB80,Mis12].

When an extra electron is introduced to the lattice, it interacts electromagnetically

with all the charged or polar lattice nodes. In 1933, Landau theorised that the electron

could cause localised distortions in the lattice, affecting the phonon oscillations, and in

return the distorted lattice could provide a deep potential well for the electron, causing

it to localise [Lan33]. This process was called the auto-localisation or self-trapping of the

electron, and the auto-localised electron-phonon composite became known as a polaron.

Moreover, it was theorised that under suitable conditions, the electron and localised lattice

distortion could move in sync, stabilising each other through their interaction, resulting

in a kind of solitonic electron transport, known as polaron propagation, which displayed

little or no dispersion. In the years that followed Landau’s initial conceptualisation, the

mathematical model of the polaron was refined by, among others, Pekar [Pek46, LP48],

Fröhlich [Frö50, Frö52, Frö54] and Holstein [Hol59a, Hol59b, FH63, Hol64], who in their

numerous works found applications of polaron theory to explaining or predicting a variety

of physical phenomena, from superconductivity to the Hall effect. It became standard

practice to write polaron models in the Hamiltonian formalism of dynamics, whereby a

Fröhlich Hamiltonian encapsulated the dynamics of the system that it modelled. The

Fröhlich Hamiltonian always consisted of three components, respectively describing the

electron, phonon and electron-phonon interaction. It also became canonical knowledge

that every polaron model contained a parameter of paramount importance: the electron-

phonon coupling constant, a measure of the electron-phonon interaction strength, whose

value fundamentally determined the model’s outputs. Empirical observations of polarons

quickly followed, in a vast number of systems including indium antimonide (InSb) [JL66],

epitaxial thin film of indium arsenide (InAs) [LDS69], crystals of silver bromide (AgBr)

[BLCW69], and alkali and silver halides [Hod71]. Using their experimental data, the

authors fitted the dimensionless electron-phonon coupling constant in the polaron model,

and its value ranged from 0.02 in the InSb system to upwards of 3 in alkali halide systems.

It was natural that the value of the coupling constant should depend on the system’s

4



CHAPTER 1. INTRODUCTION

intrinsic properties. Nonetheless, the immensity of its variation was simultaneously a

testament to the strength of the polaron model - it was valid in hugely varied settings -

and a challenge for theorists modelling any specific system without empirical data, who

needed to tune a parameter’s value over two orders of magnitude and accordingly to

parametrise every aspect of their model’s outputs.

The application of polaron theory to studying biological systems began in the 1970s,

but it was not applied specifically to the problem of electron transport: in 1973, Davydov

proposed a polaron-type model to explain the localisation and transport of quanta of

amide-I energy along α-helical regions of protein macromolecules [Dav73]. Amide-I is the

name of an intrapeptide vibrational mode in proteins, corresponding to the linear stretch-

ing of C=O double bonds in amino acid residues [MB61,STS67]. In Davydov’s model of

a quantum of amide-I interacting vibrationally with a polypeptide, the peptide units were

lattice nodes, each of which moved as a whole under the assumption of adiabaticity, and

phonons resulted from the stretching and compressing of interpeptide hydrogen bonds.

Under suitable conditions, Davydov’s model permitted not only the auto-localisation of

the amide-I quantum, but crucially also the propagation along the polypeptide of the

amide-I in sync with a local lattice distortion. The motivation behind Davydov’s work

was twofold. Firstly, it was known that the hydrolysis of ATP into ADP is the main

means by which organisms generate biological energy; it releases approximately 0.42 eV

of free energy, which roughly equals two quanta of amide-I [Bur58, Dav63]. Davydov

therefore hypothesised that the propagation of amide-I carried the free energy that was

released by ATP hydrolysis from one location in the cell to another, so that it could be

used for biomechanical work such as muscle contraction. Secondly, the α-helix was known

to be the most common secondary protein structure, and its stable, periodic geometry

enabled mathematical simplifications of the system [PCB51, Ken61, OH68, HY70]. Fol-

lowing his initial study, Davydov refined and broadened the scope of his model in a

series of publications, and his propagating pseudo-polaron - the composite of an amide-

I quantum, or exciton, and a local distortion of the polypeptide - became known as a

Davydov soliton [Dav74, Dav77, Dav79a, Dav79b, Sco81]. Notwithstanding his theory’s

mathematical elegance, Davydov did not fit the exciton-phonon coupling constant, due

entirely to the lack of empirical data at his disposal. He did, however, parametrise his

model’s outputs by the coupling constant. He varied the parameter by more than the

aforementioned two orders of magnitude. In fact, he considered the theoretical extremes
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of strong and weak coupling, and his model predicted characteristically different behaviour

in the two cases.

Whilst Davydov’s work energised the field of bioenergetics, other researchers, both

theoretical and experimental, also pushed polaron theory in new directions, finding novel

applications such as semiconductivity [Bar74,TK75,SZGR78] and piezoelectricity [Oka74,

TW74,Nag77]. Vilfan authored the first study of polaronic electron transport in an or-

ganic compound, where he calculated the electron mobility in anthracene (C14H10) using

a polaron model and matched his results with experimental data [Vil73]. There was a

fundamental difference between Vilfan’s polaron and Davydov’s soliton: while the latter

always localised over many lattice sites, or was ‘large’, the former localised over a few

sites only, or was ‘small’. This discrepancy necessitated a departure from Davydov’s

continuum approximation approach to solving his model, where he approximated the

polypeptide lattice as a continuum; instead, solving a small-polaron model required a

dynamical systems approach, which in turn demanded numerical methods due to the large

number of equations involved. The pioneers of polaronic modelling of electron transport

in organic polymers were Su, Schrieffer and Heeger, who modelled polaron dynamics in

polyacetylene ((C2H2)n) by adapting the Fröhlich Hamiltonian to the polymer’s quasi-

one-dimensional geometry [SSH79, SSH80, SS80]. Although analytical solutions of the

model in the continuum limit still served as approximations, numerical investigations

took precedence and provided stronger results. A fundamental difference between the Su-

Schrieffer-Heeger (SSH) and Davydov models was that, while the latter assumed that the

phonon affected the exciton’s site energy via local coupling, the former assumed that the

phonon affected the electron transfer integrals via non-local coupling. Both were justifiable

assumptions within their respective contexts, but in comparison the non-local coupling was

much less dependent on intrapeptide and interpeptide geometries, which made it ideal

for modelling simple structures such as polyacetylene, while being less effective at mod-

elling complex structures with intricate intrapeptide geometries, such as proteins. Heeger

et al. went on to study electron transport in other organic polymers such as polythio-

phene ((C9H12O6S2)x(C9H11O3S)y), experimentally using spectroscopic techniques and

explaining their findings in relation to the SSH model [VEB+86, BWH87]. With the

publication of the influential 1988 review, ‘Solitons in Conducting Polymers’, it became

widely accepted that polaron effects were inherent features of quasi-one-dimensional or-

ganic polymers [HKSS88]; this paved the way for the adaptation of polaron models to
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electron transport problems in biomolecules such as proteins.

In 1993, Chuev and Lakhno devised the earliest polaron model of electron transport

in proteins [CL93]; but instead of using the Fröhlich Hamiltonian, the authors invoked

an older formalism of polaron theory credited to Pekar, representing the protein macro-

molecule as a linear medium. Then, in 1995, there appeared in Physics Letters the first

polaron model using the Fröhlich Hamiltonian to study electron transport with a view to

applications to proteins: Brizhik and her colleagues adapted the Fröhlich Hamiltonian to

molecular chains and, in two successive papers, investigated the interactions between an

extra electron and lattice phonons that were either optical (out-of-phase) [BELM95] or

acoustic (coherent) [BELMP95]. In both cases, the authors derived from the Hamiltonian

a set of coupled, nonlinear dynamical equations, which described the time-evolutions of

the electron and phonon, and used numerical variational methods to solve those equations.

They deduced phase diagrams for polaron states parametrised by the electron-phonon cou-

pling constant and a dimensionless adiabaticity parameter, which was the characteristic

time-scale separation between the electron and lattice dynamics. The authors suggested

that, due to the hydrogen bond phonons in polypeptides being acoustic, their results might

be applicable to electron transport in proteins - if one could fit the parameters in their

model. The Brizhik-Eremko-La Magna-Pucci (BELMP) model was in fact a generalisation

of Davydov’s soliton model [Dav82]: while the latter accounted for one phonon frequency

only, the former considered a superposition of all possible phonon frequencies. In a 1998

study, Brizhik et al. further generalised the BELMP model by introducing an extra term

to the Fröhlich Hamiltonian which represented the interaction between the electron and

an external electromagnetic field [BCHE98]. Throughout the 2000s, Brizhik remained the

pre-eminent researcher on the subject of polaron dynamics in proteins and, collaborating

with Eremko, Piette and Zakrzewski, published on topics such as degenerate polaron states

in the α-helix [BEPZ04], radiative lifetimes of α-helical polarons [BEPZ06], and ratchet be-

haviour of polarons in polypeptides [BEPZ08]. The authors developed a unique numerical

approach to solving the dynamical equations of the electron-hydrogen bond phonon system

under the influence of external EMFs. Hennig contributed another substantial theoretical

advance during this time, when he published a study on the self-sustaining propagation of

polarons in helical proteins in 2001 [Hen01]. His model was distinct from Brizhik-Eremko-

Piette-Zakrzewski (BEPZ) in two important ways. Firstly, whilst BEPZ launched and

sustained polaron motion using an external EMF, Hennig did so by imparting an impulse
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on a stationary polaron and then letting the system evolve on its own. Secondly, whilst

BEPZ was based on the Davydov-Scott model - Scott having made a significant modifica-

tion to Davydov’s original theory [Sco82a,Sco82b] - Hennig’s model, by his own account,

was more closely related to an older polaron model by Holstein [Hol59a,Hol59b]. This was

because he considered the coupling of the electron to intrapeptide oscillators that were

independent from each other. Thus, polarons within the Holstein-Hennig model could be

considered pseudo-polarons, because the lattice on its own could not produce phonons,

and one lattice node affected another only indirectly via coupling to the extra electron.

That being said, Hennig did introduce an immediate generalisation whereby the electron

was coupled to hydrogen bond phonons as well as intrapeptide oscillators, both in his

2001 study and in [Hen02]. In the meantime, researchers began looking into polarons in

other biomolecules, most notably Conwell [CR00,Con05], who reiterated the inadequacy

of superexchange theory to explain the long-distance transfer of electrons in DNA and

proposed a polaron model instead to account for experimental observations such as those

in [GAK+01, OB04]; and Lakhno, who studied bioelectronic properties of DNA-based

conductors [LF03, Lak08]. In the current decade, despite direct observations of polarons

in other biomolecules [SDSC10] and theoretical advances such as thermal enhancement of

the BEPZ model [BEPZ14], any experimental verification of polaron models of electron

transport in proteins has remained elusive.

To answer my research question, with its historical context in mind, I set out to devise

physically justifiable and mathematically robust generalisations to two polaron models,

in order to study electron transport in the α-helix: the Holstein-Hennig model of pseudo-

polarons resulting from electron-intrapeptide oscillator coupling, and the Davydov-Scott

model of polarons resulting from electron-hydrogen bond phonon coupling. My main

objectives in this thesis are to present these two generalised models, to demonstrate their

solutions, and to provide biophysical interpretations of my results. For the first model,

the generalisation shall comprise two parts: a quantum correction, discarding Hennig’s

classical approximation for the intrapeptide oscillators; and thermalisation, taking into

account the response of the lattice nodes to stochastic forces arising from the cell’s ther-

mal environment. I shall also use an external EMF, rather than the initial impulse as

per Hennig, to launch and maintain polaron propagation, because the EMF mechanism

is more relevant to transport systems such as transmembrane α-helices where a potential

difference exists between the helix termini. I will present my generalised Holstein-Hennig
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model in Chapter 3. As for the Davydov-Scott model, even though it did not in itself

describe electron transport, I will base my model upon it, similarly to Brizhik et al. who

generalised it in various ways to suit electron transport systems. My generalisation will

consist of two parts: the introduction of a symmetry parameter which represents the spa-

tial bias of electron-phonon coupling, and thermalisation of the lattice. In Chapter 4,

I will present the model in the context of electron transport along a single channel of

hydrogen-bonded polypeptide in the α-helix, and in Chapter 5 I will suit the model to

electron transport in the three-channel structure of the entire helix. In either case, I shall

use an EMF to drive the polaron propagation. Physical justifications for all the general-

isations will accompany mathematical descriptions of the models, and I will delineate all

parameters involved, paying due attention to any whose values remain undetermined by

empirical data and accordingly parametrising the models’ outputs. Each of Chapters 3 to

5 shall be structurally similar, commencing with motivations for the model, followed by

mathematical formalisms and stationary polaron solutions of the model, before numerical

experiments describing how a polaron propagates under external forces, which always form

the majority of every Chapter. To conclude the thesis, I will summarise my findings in

Chapter 6, and outline ideas for further developments of my theories.

It is assumed that the reader is familiar with the mathematical principles and practices

of analytical mechanics, differential equations, dynamical systems, numerical integration

and vector calculus. It is also assumed that the reader possesses a proficient grasp of both

the wavefunction and the Dirac formalisms of quantum mechanics, and a rudimentary

understanding of the biochemical concepts of amino acids and hydrogen bonding. There

are more advanced physical concepts, such as the polaron, to which the reader may not

be accustomed and which therefore warrant further introductions. I will give a technical

overview of these concepts in Chapter 2, alongside descriptions of biological systems such

as the α-helix.
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Preliminaries

The purpose of this Chapter is to provide a technical introduction to the physical and

biological concepts that are relevant to the electron transport models of Chapters 3 to 5.

We divide the Chapter into two Sections. Firstly, we explain some concepts from

condensed matter physics in Section 2.1, building towards a generic polaron model from

first principles with the help of some new results. Then, in Section 2.2 we review biological

concepts such as the α-helix, and give an overview of the application of polaron models

to biological systems.

2.1 Concepts from Condensed Matter Physics

Unless otherwise stated, we follow in this Section standard treatments which appear in

graduate-level textbooks [Zim72, FW03,AS06,YC10,Mis12, FV16], adapted for contexts

which are appropriate to our pursuits.

The two central objects in any quantum mechanical system are a normalised quantum

state |Ψ〉, which provides probability distributions for all the observables in the system,

and a Hamiltonian Ĥ, which determines how the quantum state evolves in time. Solving

the system means to solve the Schrödinger equation,

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 , (2.1.1)

for |Ψ〉 at time t > 0 given some initial state of the system at time t = 0. An eigenstate

of Ĥ, or energy eigenstate, is a state |Ψ0〉 obeying the stationary Schrödinger equation,

Ĥ |Ψ0〉 = E |Ψ0〉 , (2.1.2)
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with some constant energy eigenvalue E . If we evolve the system from an initial enegy

eigenstate, then |Ψ(t)〉 takes the simple form,

|Ψ(t)〉 = |Ψ0〉 exp
(
−iEt/~

)
. (2.1.3)

In the context of an extra electron interacting electromagnetically with lattice nodes, there

are approximations that one can make to simplify the equations involved. In Section 2.1.1,

we describe an approximation which allows us to write the quantum state of the electron-

lattice system as a direct product of an electron state |Ψe〉 and a lattice state |Ψp〉:

|Ψ〉 = |Ψe〉 |Ψp〉 , (2.1.4)

each of which is normalised. The same approximation also lets us write the system’s

Hamiltonian as a sum of two parts,

Ĥ = Ĥe + Ĥp, (2.1.5)

respectively governing the electron and lattice dynamics. We then describe in Section 2.1.2

an approximation which leads to a simple expression for Ĥe along with a simple expres-

sion for |Ψe〉, and in Section 2.1.3 an approximation of Ĥp as a classical Hamiltonian

with phonon solutions. In Section 2.1.4, we introduce the defining assumption of polaron

models, that the electron-lattice interaction manifests itself as a third part of Ĥ:

Ĥ = Ĥe + Ĥp + Ĥint, (2.1.6)

where Ĥint affects the dynamics of both electron and lattice. Finally, in Section 2.1.5, we

present results, some of which are new, relating to the localisation of an extra electron in

generic polaron models.

2.1.1 The Born-Oppenheimer Approximation

Since atomic nuclei are O(104) times heavier than an electron, and since the electromag-

netic forces on both nuclei and electrons are of the same order, the acceleration of a nucleus

must be negligible compared to that of an electron. Thus, whenever a nucleus moves away

from its equilibrium position, the shell electrons must be able instantly to adjust to the

energy eigenstates in the new nuclear configuration; this is the adiabaticity condition. In a

crystalline lattice with an extra electron, the adiabaticity condition allows us to model each

lattice node as a point particle, and the Born-Oppenheimer approximation, first devised

11
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by the eponymous physicists in 1927 [BO27], further posits that we may separate the elec-

tron motion from the node dynamics. In the Dirac formalism of quantum mechanics, we

say that the state of the electron-lattice system is a direct product of normalised electron

and lattice states, as per Equation (2.1.4). Equivalently, we say that the wavefunction Ψ

of the system is the product of normalised electron and lattice wavefunctions, respectively

denoted by Ψe and Ψp:

Ψ(r, {Xn}) = Ψe(r; {Xn})Ψp({Xn}), (2.1.7)

where r is the electron coordinate with respect to some Cartesian inertial frame, and

{Xn} is the lattice configuration in the same frame, with n labelling the lattice nodes.

Ψe is a function of r parametrised by {Xn} - the semicolon before {Xn} indicating

parametrisation. We are using the wavefunction formalism of quantum mechanics be-

cause it most clearly demonstrates eigenfunction relations under differential operators.

The normalisation of the wavefunctions means∫
dr Ψe(r; {Xn}) = 1, (2.1.8a)∫ ∏

j

dXj Ψp({Xn}) = 1. (2.1.8b)

To see the Born-Oppenheimer approximation in action, suppose we want to find the

electron-lattice system’s energy levels under the Hamiltonian,

Ĥ = Ĥ(r, {Xn})

= − ~2

2Me
∇2

r + V̂e(r, {Xn})−
∑
j

~2

2Mj
∇2
j + Û({Xn}), (2.1.9)

whereMe is the electron mass, ∇2
r is the Laplace operator in r space, V̂e is the operator for

potential energy of the electron due to the lattice configuration, Mj is the mass of the jth

lattice node, ∇2
j is the Laplace operator in Xj space, and Û is the operator for potential

energy due to node-node interactions in the lattice. We look firstly for Ψe(r; {Xn}) with

the lattice assumed static - this is reasonable under the adiabatic condition. The final two

terms in Ĥ then do not act on Ψe, so the electronic eigen-energies Ee are determined by(
− ~2

2Me
∇2

r + V̂e(r, {Xn})
)

Ψe(r; {Xn}) = Ee({Xn})Ψe(r; {Xn}), (2.1.10)

where we have made explicit the dependence of Ee on {Xn}. Once we have solved Equa-

tion (2.1.10) for Ee and Ψe, we use them to solve the stationary Schrödinger equation for

12
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the whole system, as follows. Denoting any eigen-energy of Ĥ by E , and assuming that

Û({Xn}) contains no differential operators, we have

E(r, {Xn})Ψ(r, {Xn}) =
(
Ee({Xn}) + Û({Xn})

) [
Ψe(r; {Xn})Ψp({Xn})

]
−
∑
j

~2

2Mj
∇2
j

[
Ψe(r; {Xn})Ψp({Xn})

]

= Ψe(r; {Xn})

Ee({Xn})−
∑
j

~2

2Mj
∇2
j + Û({Xn})

Ψp({Xn})

−
∑
j

~2

Mj
∇jΨe(r; {Xn}) · ∇jΨp({Xn})

−
∑
j

~2

2Mj
Ψp({Xn})∇2

jΨe(r; {Xn}), (2.1.11)

where ∇j is the gradient operator in the Xj space. To simplify this equation, we consider

the orders of magnitude of the terms on the right-hand side, and discover which ones make

negligible contributions to the overall energy. Left-multiplying Equation (2.1.11) by Ψ∗,

then integrating over r space and Xk space for all k, and invoking the normalisation of

Ψe and Ψp, we obtain

E = Ee +
∫ ∏

k

dXk Ψ∗p

Û −∑
j

~2

2Mj
∇2
j

Ψp

−
∑
j

~2

Mj

∫ ∏
k

dXk

(
Ψ∗p∇jΨp

∫
dr Ψ∗e∇jΨe

)

−
∑
j

~2

2Mj

∫ ∏
k

dXk

(
|Ψp|2

∫
dr Ψ∗e∇2

jΨe

)
, (2.1.12)

where we have suppressed the arguments r and {Xn} for ease of reading. Assuming there

are no spin or magnetic dynamics in the system, so that one can always choose the electron

wavefunction Ψe to be real, then the dr integral in second line of Equation (2.1.12) becomes∫
dr Ψ∗e∇jΨe = 1

2∇j
∫

dr |Ψe|2 = 0, (2.1.13)

so the entire second line contributes nothing to E . As for the third line in Equation (2.1.12),

we may assume that Ψe(r; {Xn}) = Ψe({Yn}) where Yn = r −Xn, thereby decoupling

the double integral:

~2

2Mj

∫ ∏
k

dXk

(
|Ψp|2

∫
dr Ψ∗e∇2

jΨe

)
= ~2

2Mj

∫ ∏
k

dXk|Ψp|2
∫ ∏

l

dYl Ψ∗e∇̃2
jΨe


= Me
Mj

∫ ∏
l

dYl Ψ∗e
~2

2Me
∇̃2
jΨe, (2.1.14)

13
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where ∇̃2
j is the Laplace operator in Yj space. The final expression in Equation (2.1.14) is

the electronic kinetic energy multiplied by the ratio of electron mass to lattice node mass,

which is vanishingly small, therefore the third line in Equation (2.1.12) makes negligible

contribution to E . This result implies that in Equation (2.1.11), the final two lines may

be neglected, so the Schrödinger equation for the whole system simplifies to the following

Schrödinger equation for the lattice wavefunction:

E(r, {Xn})Ψp({Xn}) =

Ee({Xn})−
∑
j

~2

2Mj
∇2
j + Û({Xn})

Ψp({Xn}), (2.1.15)

where Ee is already known from Equation (2.1.10). By solving Equation (2.1.15), one

obtains not only Ψp but also the eigen-energy E of the system. Moreover, we see from

Equation (2.1.15) that the lattice Hamiltonian,

Ĥp({Xn}) := −
∑
j

~2

2Mj
∇2
j + Û({Xn}), (2.1.16)

admits its own spectrum of eigenvalues, just as the electron Hamiltonian,

Ĥe(r, {Xn}) := − ~2

2Me
∇2

r + V̂e(r, {Xn}), (2.1.17)

did in Equation (2.1.10). Equation (2.1.15) dictates that the sum of the Ĥe and Ĥp

eigen-energies is E . We may therefore write the system Hamiltonian as a sum,

Ĥ = Ĥe + Ĥp, (2.1.18)

where Ĥe governs the electron dynamics as per Equation (2.1.10), Ĥp governs the lattice

dynamics as per Equation (2.1.15), and the sum of the two energy eigenvalues is the

eigen-energy of the whole system.

The substantial simplifications that the Born-Oppenheimer approximation affords,

as we have demonstrated in the example above, makes it an indispensible tool in various

pursuits in physics and quantum chemistry, and it is fundamental for our polaron models.

2.1.2 The Tight-Binding Electron

To compute the electron wavefunction under the Born-Oppenheimer approximation in

large systems, traditional methods such as Hartree-Fock and its derivatives are far too

computationally laborious [BER73, ZR77]. The more sophisticated methods of density

functional theory are, although more efficient [Bec92,SSF98], unable to account for signifi-

cant dispersion effects in large systems such as biomolecules [vMG02,VBKH05]. Since both
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computational efficiency and accounting for dispersion effects are vital to our investigations

of polaron dynamics in proteins, we must opt for an alternative approach. The obvious

candidate is the tight-binding method, which itself has a long history and has remained

widely in use since its conception [SK54,Sin01,Dov03].

The first step of the tight-binding method is to invoke Bloch’s theorem [Blo28]: the

electron wavefunction in a lattice must be invariant, up to a multiplicative constant phase

factor, upon translation by a lattice translation vector, R, which is a vector pointing from

a lattice site to any other lattice site (or a trivial translation vector, R = 0). Using the

same notation as in Section 2.1.1, Bloch’s theorem is expressed mathematically as

Ψe(r + R; {Xn}) = exp(ik ·R)Ψe(r; {Xn}), (2.1.19)

where k is some constant wave-vector. Now, rather than directly solving the stationary

Schrödinger equation for the energy spectrum of Ĥe, we decompose Ĥe into two parts:

Ĥe = Ĥ(0)
e + Ĥ(1)

e , (2.1.20)

where Ĥ(0)
e consists of the kinetic energy operator for the electron, − ~2

2Me
∇2

r, and the op-

erator for potential energy due to a single lattice node. Then, Ĥ(1)
e is a correction to the

potential energy operator due to other nodes in the lattice. The choice of ‘which node’ in

Ĥ
(0)
e is entirely arbitrary. The chief motivation for performing the decomposition of Equa-

tion (2.1.20) is that determining the energy spectrum of Ĥ(0)
e is usually straightforward;

indeed, it is well known that if Ĥ(0)
e relates to the potential energy due to a hydrogen

nucleus, then its spectrum as well as eigenfunctions have exact analytical expressions.

Suppose we have a complete spectrum of eigenvalues, with normalised eigenfunctions, of

a generic Ĥ(0)
e :

Ĥ(0)
e (r, {Xn})φj(r; {Xn}) = J0,j({Xn})φj(r; {Xn}), (2.1.21)

where j labels the energy levels. The φjs are known as orbitals. For the purpose of this

demonstration of the tight-binding method, we have assumed that the energy levels in

Equation (2.1.21) are non-degenerate; in other words, that for each j there is only one

orbital that contributes to J0,j . However the results below are readily generalisable to

degenerate energy levels, corresponding physically to common systems such as multi-shell

atoms and exotic systems such as graphene, which exhibits sp2 hybridisation [BKL05].
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The orbitals may not obey Bloch’s theorem in general, but for a fixed j, the following

superposition of linearly-translated copies of φj does obey Bloch’s theorem:

Ψj,k(r; {Xn}) := 1√
N
∑
R

exp(ik ·R)φj(r−R; {Xn}), (2.1.22)

where the summation is over all lattice translation vectors, and 1/
√
N is a normalisation

constant. The wavefunction Ψj,k is known as a Bloch wave; it obeys Bloch’s theorem given

any wave-vector k, and we can prove this as follows. Suppressing the {Xn} argument for

notational convenience, we consider

Ψj,k(r + R) = 1√
N
∑
R′

exp(ik ·R′)φj(r−R′′), (2.1.23)

where we have defined R′′ := R′ −R. Since the summation is over all R′ and since R is

some given, fixed vector, we may equivalently sum over all R′′, resulting in

Ψj,k(r + R) = 1√
N
∑
R′′

exp
(
ik · (R + R′′)

)
φj(r−R′′)

= exp(ik ·R) 1√
N
∑
R′′

exp(ik ·R′′)φj(r−R′′)

= exp(ik ·R)Ψj,k(r), (2.1.24)

as required, hence proving that Ψj,k satisfied Bloch’s theorem. What is also true simply

by the linearity of the Schrödinger equation is that Ψj,k has the same energy eigenvalue

as φj does, under the single-node Hamiltonian Ĥ
(0)
e . If the electron is indeed in a state

described by Ψj,k, in other words if Ψe = Ψj,k, then in order to determine the electron’s

energy E(j)
e , we calculate the integral,

E(j)
e (k) =

∫
dr Ψ∗j,k(r)ĤeΨj,k(r). (2.1.25)

Suppressing the index j for convenience, we deduce

Ee(k) = 1
N
∑
R′

∑
R′′

exp
(
ik · (R′′ −R′)

) ∫
dr φ∗(r−R′)Ĥeφ(r−R′′),

= 1
N
∑
R′

∑
R′′

exp
(
ik · (R′′ −R′)

) ∫
dx φ∗(x)Ĥeφ(x− (R′′ −R′)), (2.1.26)

where R′ and R′′ are lattice translation vectors as before, and in deducing the final line

we have performed the change of variables, x := r −R′, by which the Hamiltonian Ĥ is

unaffected, because of the spatial translation invariance Ĥ(r) = Ĥ(r−R′) afforded by the
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lattice periodicity. For each fixed R′ in Equation (2.1.26), R := R′′ −R′ is just another

fixed lattice translation vector; so instead of summing over all R′′, summing over all R

will give the same result. We therefore have

Ee(k) = 1
N
∑
R′

∑
R

exp (ik ·R)
∫

dx φ∗(x)Ĥeφ(x−R), (2.1.27)

To make progress from here, we need to make one simplifying assumption, that the electron

orbitals are orthonormal: ∫
dr φ∗(r−R′)φ(r−R′′) = δR′,R′′ , (2.1.28)

where δ·,· is the Kronecker delta. Equation (2.1.28) is the first of three tight-binding

approximations that we will make. What it says physically is that φ is highly localised,

so that the overlap between φ(r) and a copy of it which has been spatially translated by

any lattice translation vector is vanishingly small. With Equation (2.1.28) in place, we are

able to approximate the normalisation factor N simply by the total number of possible

lattice translation vectors. We show this by writing out the normalisation condition,

1 =
∫

dr Ψ∗j,k(r)Ψj,k(r)

= 1
N
∑
R′

∑
R′′

exp
(
ik · (R′′ −R′)

) ∫
dr φ∗(r−R′)φ(r−R′′)

= 1
N
∑
R′

∑
R′′

exp
(
ik · (R′′ −R′)

)
δR′,R′′

= 1
N
∑
R′

1, (2.1.29)

as required. We note that the number of possible lattice translation vectors is equal to

the number of lattice nodes: choosing arbitrarily one node as origin, R can point to any

of the nodes in the lattice including the origin itself. Now, putting Equation (2.1.29) into

Equation (2.1.27), we have

Ee(k) =
∑
R

exp (ik ·R)
∫

dx φ∗(x)Ĥeφ(x−R). (2.1.30)

The R = 0 contribution to Ee is∫
dx φ∗(x)Ĥeφ(x) =

∫
dx φ∗(x)J0φ(x) +

∫
dx φ∗(x)Ĥ(1)

e φ(x)

= J0 +
∫

dx φ∗(x)Ĥ(1)
e φ(x), (2.1.31)

17



CHAPTER 2. PRELIMINARIES

where we have made use of Ĥ(0)
e φ = J0φ [cf. Equation (2.1.21)] and the normalisation of φ.

This is when we invoke a second tight-binding approximation, that the lattice-correction

Hamiltonian Ĥ(1)
e has negligible expected value in the highly-localised, single-node orbital

φ. The R = 0 contribution to Ee therefore becomes approximately J0. The third and

final tight-binding approximation is that the only R 6= 0 terms in Equation (2.1.30) that

actually make significant contributions to Ee are nearest-neighbour terms. Thus,

Ee(k) = J0 +
∑

S
exp (ik · S)

∫
dx φ∗(x)Ĥeφ(x− S), (2.1.32)

where S is a vector that points from a lattice node to any of its neighbouring nodes. In

practice, the tight-binding method which we have described is semi-empirical, meaning

that instead of calculating the integral in Equation (2.1.32) explicity, we replace it with a

parameter, I1, whose value we adjust to match experimental data:

I1(|S|) :=
∫

dx φ∗(x)Ĥeφ(x− S), (2.1.33)

where it has been assumed that the integral depends only on the magnitude of the lattice

translation vector.

For the simplest example, we consider a one-dimensional lattice, where every lattice

translation vector is a scalar multiple of some constant unit vector e, and so is every

wave-vector k = ke. Suppose that the lattice constant, i.e. equilibrium spacing between

neighbouring nodes, is a, then only S = ±ae contribute to the sum in Equation (2.1.32).

We therefore have

Ee(k) = J0 + exp(ika)I1(a) + exp(−ika)I1(a)

= J0 + 2I1(a) cos(ka). (2.1.34)

This is a dispersion relation, relating the energy of a wavefunction to the wavenumber

k. As k varies in the domain of 0 ≤ k ≤ 2π/a - known as the Brillouin zone - Ee

describes the electron band: all the permissible energies of the electron. The minimum and

maximum energies in the electron band in this 1D example are, respectively, J0− 2|I1(a)|

and J0 + 2|I1(a)|, and therefore its bandwidth is 4|I1(a)|.

In a two-dimensional lattice with lattice constants a and b respectively in the ex and

ey directions, four lattice translation vectors contribute to the sum in Equation (2.1.32):
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S = ±aex,±bey. The wave-vector k takes the general form kxex + kyey. The dispersion

relation that determines the 2D electron band is therefore

Ee(kx, ky) = J0 + exp(ikxa)I1(a) + exp(−ikxa)I1(a)

+ exp(ikyb)I1(b) + exp(−ikyb)I1(b)

= J0 + 2I1(a) cos(kxa) + 2I1(b) cos(kyb). (2.1.35)

Ee in this case may be visualised as a surface over an kx-ky plane, where the Brillouin

zone is 0 ≤ kx ≤ 2π/a, 0 ≤ ky ≤ 2π/b. The minimum and maximum energies in the

electron band are, respectively, J0 − 2|I1(a)| − 2|I1(b)| and J0 + 2|I1(a)|+ 2|I1(b)|, hence

the bandwidth 4
(
|I1(a)|+ |I1(b)|

)
.

Our remaining task in the tight-binding method is to write down the electron Hamil-

tonian, Ĥe, in the second quantisation formalism, meaning in terms of electron creation

and annihilation operators, Â† and Â. A second-quantisation Hamiltonian will enable

us to perform calculations in the Dirac formalism of quantum mechanics, which is more

notationally convenient than doing calculations in the wavefunction formalism.

Let us focus for now on the one-dimensional example. Suppose the total number of

lattice translation vectors, or equivalently the number of lattice nodes, is N + 1, labelled

by n = 0, 1, 2, . . . , N . Suppose also that the lattice constant is a. The electron creation

operator at lattice site n, written Â†n, creates from the vacuum state |0〉 an orbital with

lattice translation vector nae. We write the resulting state Â†n |0〉, and call it the local

excitation state at lattice site n. Meanwhile, the electron annihilation operator at any site

n nullifies the vacuum state:

Ân |0〉 = 0. (2.1.36)

A fundamental property of the creation and annihilation operators is that they satisfy the

fermionic anti-commutation relation,

ÂmÂ
†
n + Â†nÂm = δm,n, (2.1.37)

which in turn implies that the states Â†n |0〉 form an orthonormal set, a conclusion that we

earlier came to via wavefunctions. Instead of Equation (2.1.22), we now have the following

analogous expression for the electron state as a superposition of local excitation states:

|Ψe〉 =
N∑
n=0

αnÂ
†
n |0〉 , (2.1.38)
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where the normalisation constant, now 1/
√
N + 1, has been absorbed into the coefficients:

αn := 1√
N + 1

exp(ikna). (2.1.39)

Our goal is to write down a Ĥe, involving Â†n and Ân, which reproduces the same minimum

and maximum electron band energies, and electron bandwidth, as Equation (2.1.34) did.

To that end, we define for convenience

J1 := N + 1
N

∣∣I1(a)
∣∣ , (2.1.40)

and consider

Ĥe =
N∑
n=0

J0Â
†
nÂn −

N−1∑
n=0

J1
(
Â†n+1Ân + Â†nÂn+1

)
. (2.1.41)

Then, making use of Equation (2.1.37) and the fact that 〈0|0〉 = 1, we have

Ee ≡ 〈Ψe|Ĥe|Ψe〉 = J0

N∑
m=0

N∑
n=0

N∑
k=0

α∗mαk 〈0| ÂmÂ†nÂnÂ
†
k |0〉

− J1

N∑
m=0

N−1∑
n=0

N∑
k=0

α∗mαk 〈0| ÂmÂ
†
n+1ÂnÂ

†
k + ÂmÂ

†
nÂn+1Â

†
k |0〉

= J0

N∑
m=0

N∑
n=0

α∗mαn 〈0| ÂmÂ†n |0〉

− J1

N∑
m=0

N−1∑
n=0

(
α∗mαn 〈0| ÂmÂ

†
n+1 |0〉+ α∗mαn+1 〈0| ÂmÂ†n |0〉

)

= J0

N∑
n=0

α∗nαn − J1

N−1∑
n=0

(
α∗n+1αn + α∗nαn+1

)
. (2.1.42)

Invoking Equation (2.1.39), which implies

α∗nαn = 1
N + 1 , (2.1.43a)

α∗n+1αn + α∗nαn+1 = 1
N + 1

(
exp(−ika) + exp(ika)

)
= 2
N + 1 cos(ka), (2.1.43b)

we further deduce from Equation (2.1.42) that

Ee ≡ 〈Ψe|Ĥe|Ψe〉 = J0 − J1
2N
N + 1 cos(ka)

= J0 − 2|I1(a)| cos(ka). (2.1.44)

As required, this dispersion relation produces the same minimum and maximum electron

band energies, and electron bandwidth, as Equation (2.1.34) did; the only possible differece
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now being the values of k at which the minimum and maximum band energies are attained,

but this is physically inconsequential. Henceforth, we call the parameters J0 and J1,

respectively, the electron site energy and (nearest-neighbour) electron transfer integral. In

a large lattice, the factor (N + 1)/N becomes so close to unity that we may simply say

that the minimum and maximum electron band energies are, respectively, J0 − 2J1 and

J0 + 2J1, giving a bandwidth of 4J1. After all, the approximation of (N + 1)/N ≈ 1 will

not be the most influential simplification that we have made in the tight-binding method.

The second-quantisation Ĥe for a two-dimensional lattice, with lattice constants a, b

and node-counts N + 1, Ñ + 1 respectively in the two directions, may be readily obtained

after a straightforward generalisation of the results above, via a definition of

J2 := Ñ + 1
Ñ

∣∣I1(b)
∣∣ . (2.1.45)

The result is

Ĥe =
Ñ∑
ν=0

N∑
n=0

J0Â
†
n,νÂn,ν −

Ñ∑
ν=0

N−1∑
n=0

J1

(
Â†n+1,νÂn,ν + Â†n,νÂn+1,ν

)

−
Ñ−1∑
ν=0

N∑
n=0

J2

(
Â†n,ν+1Ân,ν + Â†n,νÂn,ν+1

)
, (2.1.46)

giving an electron bandwidth of 4(J1 + J2), with minimum energy J0 − 2J1 − 2J2 and

maximum energy J0 + 2J1 + 2J2.

2.1.3 The Classical Phonon

In our treatment of the electron-lattice system so far, we have already described the

adiabatic condition, that the rate of change of momentum of a lattice node is negligible

compared to that of an electron. Now, it is well known that the de Broglie wavelength

of a particle is inversely proportional to its momentum; it also has long been known that

when the de Broglie wavelength is slowly-varying, the quantum dynamics of the particle

may be approximated in its classical limit [BM72, Ser03]. Thus, when applying polaron

theory to organic or biological systems, where the mass ratio between a lattice node and

electron is typically O(105) or more, a standard approach is to model the lattice dynamics

classically [HKSS88,BEPZ08]. We show in this Section that a classical lattice Hamiltonian,

Hp, can give rise to a good mathematical description of acoustic phonons.

For the purpose of this demonstration, we consider a one-dimensional lattice, though

the results are readily generalisable to higher dimensions. In a masses-and-springs model of
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identical lattice nodes and forces between nearest neighbours, let the mass of each node be

M and the force constant of each ‘spring’, representing the electromagnetic force between

neighbouring nodes, be K. If we were modelling an organic polymer such polyacetylene,

all nodes would be truly identical and so would all force constants; but in polypeptides,

we will be neglecting the small variations in node masses, and in force constants, which

arise from the varying compositions of amino acid side chains. Let Un be the displacement

of the nth node, where n = 0, 1, 2, . . . , N , from its equilibrium position. The force on each

node comes from springs on either side, giving

M
d2U0
dt2 = K (U1 − U0) , (2.1.47a)

M
d2Un
dt2 = K (Un+1 − Un)−K (Un − Un−1)

= K (Un+1 + Un−1 − 2Un) , for n = 1, 2, . . . , N − 1, (2.1.47b)

M
d2UN
dt2 = −K (UN − UN−1) , (2.1.47c)

which form a set of N + 1 coupled equations. In a simple scenario, we impose a periodic

boundary condition on the lattice, that

U0 = UN , (2.1.48)

then the equations represent a circular chain of lattice nodes, where even a boundary node

has two springs attached. If we then identify U−1 with UN−1 and identify UN+1 with U1,

then one equation encapsulates the dynamics of the entire lattice:

M
d2Un
dt2 = K (Un+1 + Un−1 − 2Un) , for n = 0, 1, 2, . . . , N. (2.1.49)

For solutions representing collective oscillations, we utilise the normal mode ansatz,

Un = Q exp
[
i(kna− ωt)

]
, (2.1.50)

where Q is some constant amplitude, k is a constant wavenumber, a is the lattice constant,

and ω is a constant angular frequency. We require without loss of generality that k > 0

and ω > 0. The boundary condition, Equation (2.1.48), translates into

kNa = 2mπ, (2.1.51)

where m > 0 is an integer which labels the normal modes. Writing the normal mode

ansatz in terms of m, we have

Un = Q exp
[
i

(2πmn
N

− ωt
)]

, (2.1.52)
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from which we see that the wavelength of the mth normal mode is

λm = Na

m
. (2.1.53)

Putting Equation (2.1.50) into Equation (2.1.49), we deduce

−Mω2Un = KUn
[
exp(ika) + exp(−ika)− 2

]
, (2.1.54)

and therefore

ω =

√
2K
M

(
1− cos(ka)

)
=

√√√√2K
M

(
1− cos

(2mπ
N

))
, (2.1.55)

which relates the angular frequency ω of the lattice’s collective oscillation to the wavenum-

ber k, or to the normal mode number m. The total number of permitted normal modes is

determined by the fact that there exists a minimum permissible wavelength of 2a, which

comes about because any wavelength smaller than 2a can always be mapped onto a wave-

length larger than 2a, by the lattice periodicity. Putting λm ≥ 2a in Equation (2.1.53)

gives us m ≤ N/2, so there are in total N/2 (or (N − 1)/2 if N is odd) normal modes, of

which the lowest frequency, according to Equation (2.1.55), is ω1 =
√

2K
M

(
1− cos(2π/N)

)
.

The general solution to Equation (2.1.49) is a superposition of all the normal modes, but

that will not be a collective oscillation with a unified frequency. In other words, while

every normal mode is a phonon, the general solution is not.

To write down a Hamiltonian Hp that gives rise to the dynamical equations (2.1.47),

we consider

Hp =
N∑
n=0

P 2
n

2M +
N−1∑
n=0

K (Un+1 − Un)2 , (2.1.56)

where Pn is the momentum conjugate to Un. The first and second sums in Equation (2.1.56)

are, respectively, the kinetic and potential energies in the lattice. It is then straightforward

to derive Equation (2.1.47) from Equation (2.1.56) via the classical Hamilton’s equations,

dUn
dt = ∂Hp

∂Pn
,

dPn
dt = −∂Hp

∂Un
. (2.1.57)

We note two caveats concerning our results thus far. Firstly, when modelling a system

such as a membrane α-helix, it is unreasonable to assume the periodic boundary condition

U0 = UN . It is still possible to describe the lattice dynamics in one unifying equation

similar to Equation (2.1.49), via the use of fictitious points beyond the boundaries, and
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we will detail this approach in the models of Chapters 4 to 5 where appropriate. However

the normal mode analysis that we have carried out will not apply in the case of non-periodic

boundaries. That being said, in a polaron model we do not expect to find normal modes

for the lattice anyway, because of effects of the electron-lattice interaction on the lattice

dynamics. We will therefore use the Hamiltonian of Equation (2.1.56) and its variants in

our polaron models, as the SSH and BEPZ models did [HKSS88,BEPZ08]. The second

caveat is that in some situations, where we wish to assign a specific frequency rather

than a force constant to the model, we may find that a quantum mechanical treatment

of the lattice provides a much more precise fit of the relevant parameter to experimental

data than a classical treatment does. We encounter this situation in Chapter 3, where we

have independent oscillators on the lattice nodes rather than spring oscillations between

nodes, and we wish to assign a natural oscillation frequency. Our approach then will be

to quantise the lattice Hamiltonian and to utilise a quantised version of the normal mode

ansatz known as a Glauber state [Gla63], as we will detail when we present our model.

2.1.4 The Polaron

The principal feature of a polaron model is that the extra electron and the lattice affect

each other’s dynamics via an interaction Hamiltonian, Ĥint. Bardeen was the first to

formulate a polaron model explicitly involving some Ĥint [Bar50], and soon afterwards

Wentzel proposed a slightly different version of Ĥint [Wen51] which motivated further work

by Fröhlich. In 1952, Fröhlich devised the first model to contain a Ĥint that was bilinear

in the electron wavefunction and in the spatial derivative of the lattice displacement field

[Frö52], lending his name to all later polaron models that contained bilinear interactions.

The eponymous Fröhlich Hamiltonian is of the form

Ĥ = Ĥe + Ĥp + Ĥint, (2.1.58)

where Ĥe is a tight-binding electron Hamiltonian which we presented in Section 2.1.2, Ĥp is

a lattice Hamiltonian which is usually treated classically in the way that we demonstrated

in Section 2.1.3, and Ĥint is a bilinear function with a coupling constant. In Fröhlich’s

original formulation, the lattice was a continuum with spatial coordinate r, and

Ĥint = C ′
∫

dr ψ∗ψ ∇ ·P, (2.1.59)
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where ψ = ψ(r, t) was the electron wavefunction, P = P(r, t) was the lattice displacement,

∇· was the divergence operator, and C ′ was the coupling constant with the dimension of an

energy. In the context of the one-dimensional, discrete lattice example which we have been

describing, and in second-quantisation notation, the Fröhlich interaction Hamiltonian is

Ĥint = χ
∑
n

GnÂ
†
nÂn, (2.1.60)

where Gn is a linear function of the relative lattice displacement,

Sn := Un+1 − Un, (2.1.61)

Un being the classical, local lattice displacement [cf. Section 2.1.3]; Â†n and Ân are respec-

tively the electron creation and annihilation operators [cf. Section 2.1.2]; the summation

is over all values of n for which Gn is well-defined; and now χ is the coupling constant,

with the dimension of a force. Some specific examples of Gn include

GDav
n = Sn + Sn−1

2 , (2.1.62)

which Davydov used to model the coupling of an amide-I exciton to hydrogen bonds in

the α-helix [Dav82], and

GSco
n = Sn, (2.1.63)

which was Scott’s modification to Davydov’s model, citing the reason that an amide-

I should be coupled to the hydrogen bond on one side only, rather than the bonds on

both sides [Sco92]. Mathematically, both Equations (2.1.62) and (2.1.63) were legitimate

discretisations of the ∇ · P that appeared in Fröhlich’s orginal, continuum Hamiltonian.

Brizhik et al. proposed a generalisation to the Davydov-Scott model when studying elec-

tron transport in molecular chains: they considered a lattice whose nodes alternated

between two types, a large mass and a small mass [BEPZ08,BEPZ10,BEPZ14]. The equi-

librium lattice spacings, or equivalently the equilibrium bond lengths between nodes, also

alternated, and consequently the BEPZ model contained two different coupling constants,

respectively for the long and short bonds. In Chapters 4 and 5, we will introduce a new

type of generalisation, which uses a new parameter to extrapolate between the Davydov

and Scott models, giving rise to a family of models reducible to Davydov’s and Scott’s

when the new parameter takes its extreme values of, respectively, 0 and 1. We will justify

this generalisation where appropriate from a biophysical standpoint.
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Another type of polaron model, distinct from the Fröhlich kind, first appeared in

Holstein’s 1959 studies of polarons [Hol59a, Hol59b]. The model was still expressible in

a three-part Fröhlich Hamiltonian as per Equation (2.1.58) and the interaction part was

still bilinear, but - as we have already described in Chapter 1 and Section 2.1.3 - Hol-

stein’s lattice Hamiltonian modelled independent oscillators residing on the lattice nodes,

therefore could not produce any phonons on its own. Holstein’s interaction Hamiltonian,

which he did not actually write down, was not linear in the spatial derivative of the lattice

displacement field, but linear in the displacement field itself. In a discrete lattice and in

second-quantisation notation, Holstein’s interaction Hamiltonian would have read

ĤHol
int = χ

∑
n

UnÂ
†
nÂn. (2.1.64)

Hennig in 2001 generalised the Holstein model by applying it to the α-helix [Hen01]. In

Chapter 3, we will further generalise the Holstein-Hennig model by quantising the lattice,

so that the Un appearing in Equation (2.1.64) is replaced by a displacement operator Q̂n,

giving where appropriate a reason for the quantisation.

That which does unify models of the Fröhlich type and those of the Holstein type is

that the interaction Hamiltonian involves a sum of the electron number operator, Â†nÂn.

Recall from Section 2.1.2 that the tight-binding electron Hamiltonian, Ĥe, also contains a

sum of Â†nÂn, multiplied by the electron site energy J0. Therefore, both the Fröhlich and

Holstein interactions represent physically a modification of the electron site energy, from

the constant J0 to the site-dependent J0 + χGn (Fröhlich) or J0 + χUn (Holstein). The

Su-Schrieffer-Heeger (SSH) polaron model is different from both Fröhlich and Holstein

because its interaction modifies the electron transfer integrals instead [SSH80,HKSS88]:

ĤSSH
int = χ

∑
n

Sn
(
Â†n+1Ân + Â†nÂn+1

)
. (2.1.65)

Specifically, the electron transfer energy is modified from the constant −J1 to the site-

dependent −J1 + χSn. As we have argued in Chapter 1, the SSH model is insensitive to

the intricate geometries of complex molecules such as proteins, therefore we do not explore

it in this thesis.

2.1.5 Where Is the Electron?

We present here one crucial result which holds for a generic polaron model, of either the

Fröhlich kind or the Holstein kind. Though it is inspired by Holstein’s work [Hol59a], the

result below holds under greater generality, and therefore may be considered new.
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We continue to consider the system of one extra electron in a one-dimensional lattice.

When the electron’s dynamics is affected by the electron-lattice interaction, its wavefunc-

tion no longer has to obey Bloch’s theorem, meaning it no longer has to be invariant up

to a multiplicative phase factor under spatial translations by lattice translation vectors

[cf. Section 2.1.2]. What this implies in terms of the electron’s probability distribution is

that it no longer has to be spatially periodic. Indeed, as we have discussed in Chapter 1,

the central purpose of a polaron model is to allow the localisation, or more specifically the

auto-localisation, of an electron, whereby its probability distribution has a single, well-

defined global maximum, away from which the distribution sharply decays. Moreover,

while the electron-lattice system evolves according to a Fröhlich Hamiltonian, the polaron

model should permit solitonic propagation of the electron, whereby its probability dis-

tribution roughly retains its shape. As per the standard approach in polaron theory, we

still assume a Bloch-style ansatz for the electron state written in the Dirac formalism as

Equation (2.1.38), and only discard the translational invariance restriction. Equivalently,

we assume that the electron wavefunction Ψe is

Ψe(x, t) =
∑
n

αn(t)φn(x), (2.1.66)

where x is the spatial coordinate along the lattice, the αn are complex-valued coefficients,

and φn are electron orbitals, which we choose to be real by absorbing its phase factor into

αn. We have reverted back to the wavefunction formalism because it allows us to calculate

the quantity

Pn(t) :=
∫ n+(t)

n−(t)
dx |Ψe(x, t)|2, (2.1.67)

where n− ≤ x ≤ n+ describes a small interval around the nth lattice node. To be precise,

letting Un be the node displacement in the positive-x direction from equilibrium, we have

n± = na+ Un ± δ
[
a± (Un±1 − Un)

]
, (2.1.68)

where a is the lattice constant, so that a+(Un+1 − Un) is the distance between the nth and

(n+ 1)th nodes, and δ > 0 is some small number. n±(t) inherits its time-dependence from

Un(t). Despite the time-dependence, if the node displacements remain small compared to

the lattice constant at all times (which is indeed always the case in all our results relating

to the models of Chapters 3 to 5), then, even a small δ value can ensure that the interval
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n− ≤ x ≤ n+ always contains the equilibrium position of the nth node. For example, if

the node displacements remain O(10−3a) for all time, then δ = 10−2 ensures coverage of

the nth equilibrium position.

The Pn(t) in Equation (2.1.67) is the probability of finding the electron localised

around the nth lattice node at time t, henceforth referred to as the electron’s on-site

localisation probability. As an aside, we note that a localised electron is not captured by

the node atom(s) or molecules(s) as a shell electron. In fact, if that were the case then

one would need to model the interactions between the captured electron and existing shell

electrons on the node, which is beyond the scope of this thesis.

Now, we proceed to show that the quantity |αn|2 is a zeroth-order approximation for

Pn. To this end, firstly we note that the normalisation condition on Ψe reads

1 =
∫

dx |Ψe|2 =
∑
m,k

α∗mαk

∫
dx φmφk =

∑
m,k

α∗mαk

∫
dx δm,k =

∑
m

|αm|2, (2.1.69)

where we have invoked the tight-binding approximation that the orbitals are orthonormal.

It then follows that the on-site localisation probability of the electron is

Pn =
∑
m,k

α∗mαk

∫ n+

n−
dx φmφk. (2.1.70)

Oweing to the fact that the orbitals are highly localised around the equilibrium lattice node

positions, and that those positions are always contained in the interval n− ≤ x ≤ n+, it

follows that
∫ n+
n−
|φn|2 ≈

∫
dx |φn|2 = 1, and that any term in which either m 6= n or κ 6= n

makes a negligible contribution to the sum in Equation (2.1.70). Thus, as a zeroth-order

approximation, we have

Pn(t) = |αn(t)|2. (2.1.71)

This result is vital for two reasons. Firstly, the dynamical equations arising from a discrete

Fröhlich Hamiltonian will be coupled equations for αn and for the lattice displacements,

and Equation (2.1.71) says that the αn solutions will suffice to give us the electron’s

on-site localisation probabilities at all times, without our knowing the electron orbitals.

Secondly, combining Equation (2.1.71) with the fact that
∑
n |αn|2 = 1, we understand

that whenever the electron in the polaron model is localised, it will be localised around a

lattice node. It has zero probability of localising in the inter-node space, or, zero ‘off-site

localisation probability’. Exactly how tight the localisation space is around the lattice node
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depends upon the number δ in Equation (2.1.68), which in turn depends on the magnitude

of node displacements from equilibria. Nevertheless, as we have already argued, localising

‘around a lattice node’ remains a meaningful expression because the node displacements

will always be small compared to the lattice constant. In practice, when we have solved

the polaron model for αn at some time t, a plot of the discrete function |αn|2 against

n will reveal the electron’s on-site localisation probability at each node, regardless of

exactly where the node is at that time. We shall simply say that |αn(t)|2 is the electron’s

probability distribution at time t. If the system is in a polaron state, then we expect

the |αn|2 to exhibit a localised, bell curve-shaped profile, whereby a pronounced global

maximum exists at some n = n0, away from which |αn|2 sharply decays.

2.2 Polaron Models in Biology

After a review of the structure of the α-helix in Section 2.2.1, we give a brief and technical

synopsis of the polaron models that have inspired this thesis, including the Davydov-Scott

model in Section 2.2.2, and the Holstein-Hennig and BEPZ models in Section 2.2.3. We

conclude this Chapter with a discussion about parameter-fitting in Section 2.2.4.

2.2.1 The α-Helix and α-Channels

Pauling, Corey and Branson were the first to illucidate the secondary protein structure

that we now know as the α-helix [PCB51]. Remarkably, they predicted the structure by

theoretical modelling alone, based purely on physico-chemical properties of the components

of a protein macromolecule. Though it has undergone minor revisions [Dun01], the original

conception by Pauling et al. has largely stood the test of time and countless experiments,

accurately describing vital properties of the α-helical structure such as hydrogen bonding

arrangements and the step size of the helical coil. Today, it is widely accepted that the

α-helix is one of the most vital structures underpinning all manner of life [Eis03].

The α-helix is a right-handed helical configuration of amino acid residues, each com-

prising an N–H group, a C=O group, and a carbon atom known as the α-carbon with an

organic side chain attached. The α-carbon is located between the N–H and C=O groups,

and together with its side chain it is known as the R group. There exist 21 different

proteinogenic amino acids in eukaryotes [AG02], characterised by 21 unique R groups. Of

the 21 different residues, 6 are uncharged but polar, 3 are positively charged and 2 are
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Figure 2.1: The α-helix [Dai08]. Dotted lines represent hydrogen bonds. The blue box
indicates a peptide unit.

negatively charged [BTS12]. The residues are linked by peptide bonds, which are covalent,

along the helical coil, between the C=O group of one residue and the N–H group of the

next residue. The N–H end of the α-helix is known as the N-terminus, and the C=O end

the C-terminus. We shall label the amino acid residues starting from the N terminus. The

step rise of the α-helix, meaning the vertical (along helical axis) distance from the mth

α-carbon to the (m + 1)th α-carbon, is 1.5 Å. The step turn of the α-helix, meaning the

azimuthal angle between the mth and (m+ 1)th α-carbons, is 100◦. Finally, the mean ra-

dius of the helical coil, measured from the centre of the coil to the centre of the α-carbons,

is 2.3 Å [BT88].

Hydrogen bonds link every C=O group of the mth residue to the N–H group of the

(m+4)th residue, thereby stabilising the helical structure. Figure 2.1 provides a graphical

illustration of the α-helix with its hydrogen bonds. In the figure, the orientation of the

α-helix is such that its N-terminus is at the bottom, and its C-terminus at the top. A

peptide unit consists of the R and C=O groups in the mth residue, and the N–H group

in the (m + 1)th residue. Thus, the α-helix consists of three distinct channels of equally-

spaced peptide units, which we will call α-channels. If we use dotted lines to represent

hydrogen bonds and solid lines for peptide bonds, and label the C=O and N–H groups in

the mth residue by mC and mN respectively, starting from m = 0, then we may depict
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the three α-channels in a 10-residue α-helix as follows:

(1N− 0C) · · · (4N− 3C) · · · (7N− 6C) , (2.2.1a)

(2N− 1C) · · · (5N− 4C) · · · (8N− 7C) , (2.2.1b)

(3N− 2C) · · · (6N− 5C) · · · (9N− 8C) . (2.2.1c)

where parentheses indicate peptide units. We have omitted all the R groups and some

peptide bonds, for ease of reading. In Figure 2.1, if we say that the C=O group in the boxed

peptide unit is 0C, then the figure illustrates the bonding (1N− 0C) · · · (4N− 3C) · · · 7N.

It also illustrates 4C · · · 8N. Instead of labelling the amino acid residues, it is better to label

the peptide units instead, using µ = 0, 1, 2, . . . . Then, the (1N− 0C) in Equation (2.2.1)

is the 0th peptide unit, (2N− 1C) the 1st, and so on. A simpler schematic of the hydrogen

bonding structure of the α-helix therefore follows:

0 · · · 3 · · · 6, (2.2.2a)

1 · · · 4 · · · 7, (2.2.2b)

2 · · · 5 · · · 8, (2.2.2c)

where the numbers are labels of peptide units. Though not shown in Equation (2.2.2),

there are peptide bonds linking the µth unit to the (µ+ 1)th. Since the step rise of the α-

helix is 1.5 Å, the equilibrium spacing between neighbouring peptide units in an α-channel,

projected along the helical axis, is R = 4.5 Å.

The hydrogen bonds are much weaker, and consequently much less rigid, than the

peptide bonds and intrapeptide bonds, all of which are covalent [Ems80]. This fact affords

us two routes to simplification, from a modelling perspective. Firstly, it implies that

covalent bond oscillations and hydrogen bond oscillations occur on vastly different time-

scales, and indeed the latter is two orders of magnitude slower [BESP72,NC76]. Therefore

if we wish to model the dynamics of intrapeptide bond oscillations, and their interactions

with an extra electron, we may assume the hydrogen bonds to be static; that is the basis

of the Holstein-Hennig model and is what we do in Chapter 3. Secondly, if we wish to

model the dynamics of hydrogen bonds and their interactions with an extra electron, then

the rigidity of covalent bonds allows us to treat every peptide unit as a point particle,

or indeed point dipole, which is the basis of the Davydov-Scott model. We may even

decouple the three α-channels and simply consider the electron transport along a single
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channel, which is what we do in Chapter 4; and in Chapter 5 we take into account the

electron transfer between channels.

2.2.2 Davydov’s Soliton and Scott’s Model

In Davydov’s original formulation [Dav82], the Fröhlich Hamiltonian describing the system

of an amide-I interacting with hydrogen bond oscillations in a single α-channel, where the

peptide units were lattice nodes labelled by n = 0, 1, 2, . . . , N , was

ĤDav = Ĥe + Ĥp + ĤDav
int

=
N∑
n=0

J0Â
†
nÂn −

N−1∑
n=0

J1
(
Â†n+1Ân + Â†nÂn+1

)

+
N∑
n=0

P̂ 2
n

2M +
N−1∑
n=0

K
(
Ûn+1 − Ûn

)2

2

+
N−1∑
n=1

χ̃
(
Ûn+1 − Ûn−1

)
Â†nÂn. (2.2.3)

Â†n, Ân are the electron creation and annihilation operators respectively, J0 > 0 is the elec-

tron site energy, J1 > 0 the nearest-neighbour electron transfer integral, M the peptide

unit mass, K the hydrogen bond force constant, Ûn the operator for peptide unit displace-

ment, P̂n the operator for momentum conjugate to Ûn, and χ̃ the electron-hydrogen bond

coupling constant. Assuming the Bloch ansatz for the electron,

|Ψe(t)〉 =
N∑
n=0

αn(t)Â†n |0e〉 , (2.2.4)

where αn are complex coefficients and |0e〉 is the electron vacuum state, and assuming the

Glauber ansatz for the lattice which is a superposition of quantised normal modes,

|Ψp(t)〉 = exp

 i

~

N∑
n=0

(
Pn(t)Ûn − Un(t)P̂n

) |0p〉 , (2.2.5)

where Pn, Un are real coefficients and |0p〉 is the lattice vacuum state, Davydov derived

a set of coupled, nonlinear dynamical equations for αn, Pn and Qn. In particular, the

first-order Un equation was

M
dUn
dt = Pn, (2.2.6)
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which, when combined with the first-order Pn equation, provided a second-order Un equa-

tion. The αn and Un equations together entirely determined the system’s dynamics:

i~
dαn
dt =

[
J0 +W + χ̃ (Un+1 − Un−1)

]
αn − J1 (αn+1 + αn−1) , (2.2.7a)

M
d2Un
dt = K (Un+1 + Un−1 − 2Un) + χ̃

(
|αn+1|2 − |αn−1|2

)
, (2.2.7b)

where

W = W (t) =
N∑
m=0

P 2
n

2M +
N−1∑
n=0

K (Un+1 − Un) . (2.2.8)

Equation (2.2.7) was valid for all values of n at which all the terms were well-defined. This

excluded the boundary terms, but that did not matter, because Davydov then approxi-

mated the lattice as a continuum. The continuum ansatz for αn was

αn(t) = exp

i(kx− E0t

~

)φ(x, t), (2.2.9)

where x is the spatial coordinate in the continuum approximation of the lattice, k some

constant wavenumber, E0 some constant, and φ a real, smooth function. By putting

Equation (2.2.9), and the representation of Un±1 as a Taylor series of some smooth function

B(x, t), into Equation (2.2.7), Davydov deduced that φ and B satisfied the equations,(
Ẽ0(k) +R2J1 cos(kR) + 2χ̃B(x, t)

)
φ(x, t) = 0, (2.2.10a)(

∂2

∂t2
− V 2

0

)
B(x, t) + 2χ̃V 2

0
K

∂2

∂x2φ(x, t) = 0, (2.2.10b)

where R is the lattice constant, and

Ẽ0(k) = E0 −W − J0 + 2J1 cos(kR), (2.2.11a)

V0 = R

√
K

M
. (2.2.11b)

Davydov then found that a solution existed where both φ and B propagated as solitons.

Indeed, by requiring

B(x, t) = 2χ̃

K

(
1− V 2

V 2
0

)φ(x, t)2, (2.2.12)

for some constant V , Davydov showed that φ had a travelling wave solution, φ(x, t) = φ̃(z)

where z := x− V t, with φ̃ obeying the nonlinear Schrödinger equation,(
Ẽ0(k) + J̃1(k) ∂

2

∂z2 + λ̃φ̃(z)2
)
φ̃(z) = 0, (2.2.13)
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where

J̃1(k) = R2J1 cos(kR), λ̃ = 4χ̃2

K

(
1− V 2

V 2
0

) . (2.2.14)

The nonlinear Schrödinger equation was well known to admit soliton solutions, where

the travelling wave has a sech profile [ZS72, Hir73]. Davydov therefore concluded that

in the continuum limit, his polaron model of amide-I hydrogen bond coupling in the

α-helix permitted solitonic transport of the amide-I quantum.

Scott’s modification to Davydov’s model was motivated by the fact that in the α-helix,

the C=O bond in the nth peptide unit is located near the (n+ 1)th unit but far from the

(n−1)th unit [Sco92]. Scott therefore claimed that the electron-hydrogen bond interaction

should rely solely upon Ûn+1 − Ûn, and not Ûn − Ûn−1. Thus, in the Scott model, the

Fröhlich Hamiltonian was

ĤSco = Ĥe + Ĥp + ĤSco
int

=
N∑
n=0

J0Â
†
nÂn −

N−1∑
n=0

J1
(
Â†n+1Ân + Â†nÂn+1

)

+
N∑
n=0

P̂ 2
n

2M +
N−1∑
n=0

K
(
Ûn+1 − Ûn

)2

2

+
N−1∑
n=0

χ
(
Ûn+1 − Ûn

)
Â†nÂn, (2.2.15)

where the coupling constant was χ. The resulting dynamical equations,

i~
dαn
dt =

[
J0 +W + χ (Un+1 − Un)

]
αn − J1 (αn+1 + αn−1) , (2.2.16a)

M
d2Un
dt = K (Un+1 + Un−1 − 2Un) + χ

(
|αn|2 − |αn−1|2

)
, (2.2.16b)

were similar to Davydov’s, but the breaking of the symmetry between Un+1 and Un−1

meant that if one took the continuum limit as Davydov did, the equations would no longer

be approximated by the nonlinear Schrödinger equation. Nevertheless, Scott showed that

in a stationary system, where U̇n = Ün = 0, the Un equation had an exact solution:

Un+1 − Un = − χ
K
|αn|2. (2.2.17)

By putting Equation (2.2.17) into Equation (2.2.16a), and then approximating the lattice

as a continuum, Scott did deduce the nonlinear Schrödinger equation after all. However in

34



CHAPTER 2. PRELIMINARIES

this situation, any solitonically propagating solution would be invalid, because if αn(t) were

a (discretised) travelling wave, then the requirement that Equation (2.2.17) described a

stationary lattice would be violated. Thus, in this case only the stationary (phase-varying)

solutions to the nonlinear Schrödinger equation were valid.

We may therefore summarise the mathematical differences between the Davydov and

Scott models as follows. In the former case, one can take the entire system of equations

to its continuum limit, in which the nonlinear Schrödinger equation approximates the

electron equation, and derive soliton solutions for both electron and lattice. However

using the same method on Scott’s equations does not lead to the same outcome. Indeed,

if we tried, we would obtain (this is a new result):(
Ẽ0(k) + J̃1(k) ∂

2

∂z2 + λφ̃(z)2 − η ∂
2

∂z2φ(z)2
)
φ̃(z) = 0, (2.2.18)

where k, Ẽ0, J̃1, z and φ̃ are as they were before, and

λ = χ2

K

(
1− V 2

V 2
0

) , η = χ2R2

4K
(

1− V 2

V 2
0

) . (2.2.19)

If we identify χ̃ in the Davydov model with χ/2 in the Scott model, then the first three

terms of Equation (2.2.19) give exactly the nonlinear Schrödinger equation (2.2.13), but

there is still the term involving η in Equation (2.2.19) which makes it fundamentally

different from Equation (2.2.13). On the other hand, Scott’s equations are reducible to

the nonlinear Schrödinger equation by a different method: instead of taking the whole

system to the continuum limt, one first finds the exact, discretised lattice solution in the

stationary state, and then approximate the electron equation. In this case, only stationary

solutions to the nonlinear Schrödinger equation are relevant.

We give the name Davydov-Scott to any model whose interaction Hamiltonian is bilin-

ear in Â†nÂn and in some discretised spatial gradient of Un. When we study our generalised

Davydov-Scott model in Chapters 4 and 5, we choose (where required) the Scott method of

continuum approximation, for two reasons. Firstly, and as we have discussed in Chapter 1,

Davydov’s continuum method applied when the soliton was ‘large’, or localised over many

lattice sites. We would like to use a method which is applicable to both large and small po-

larons, which rules out Davydov’s method and necessitates a numerical approach, solving

our equations on the discrete lattice. Secondly, when approaching the system numerically

and looking for a stationary polaron state, we would like to use a discretised ansatz for
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the stationary solution to the system, so that we can apply an iterative scheme in order to

‘improve’ the ansatz towards the true stationary solution. In this regard, Scott’s approxi-

mation method is ideal, because it works by expressing the true stationary lattice solution

in terms of the true stationary electron solution. This halves the number of equations

that we need to take into account in our numerical iterative scheme: we use a stationary

nonlinear Schrödinger equation solution as electron ansatz, to find the true stationary

electron solution, then obtain for free the stationary lattice solution.

Also in Chapters 4 and 5, we will adopt the semi-classical approximation where the

lattice dynamics is treated classically, as per our demonstration in Section 2.1.3. Brizhik

et al. justified this approximation when they generalised the Davydov-Scott model for

their own systems [BEPZ08,BEPZ10,BEPZ14].

2.2.3 Electrosolitons in the α-Helix

In the Holstein-Hennig model of electron transport along an α-channel mediated by

electron-intrapeptide oscillator coupling, the Fröhlich Hamiltonian reads [Hol59a,Hen01]

ĤHH = Ĥe + ĤHH
p + ĤHH

int

=
N∑
n=0

J0Â
†
nÂn −

N−1∑
n=0

J1
(
Â†n+1Ân + Â†nÂn+1

)

+
N∑
n=0

(
P 2
n

2M + MΩ2Q2
n

2

)

+
N∑
n=0

χQnÂ
†
nÂn, (2.2.20)

where n labels the lattice nodes, each of which is a C=O oscillator. Â†n, Ân are the electron

creation and annihilation operators respectively, J0 > 0 is the electron site energy, J1 > 0

the nearest-neighbour electron transfer integral, M the reduced mass of a C=O oscillator,

Ω a constant angular frequency, Qn the classical relative C=O displacement measured from

equilibrium, Pn the momentum conjugate to Qn, and χ the electron-oscillator coupling

constant. Hennig showed that a self-trapped stationary electron could form under the

electron-oscillator interaction, and that a suitable initial impulse could dislodge the sta-

tionary electron, causing it and an accompanying local oscillator displacement to propagate

as a soliton along the polypeptide. In Chapter 3, we generalise the the Holstein-Hennig

model by quantising the lattice, replacing Pn and Qn respectively with operators P̂n and

Q̂n. We also consider, instead of an initial impulse, the system’s response to an external
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electromagnetic field. To that end, we adapt the work of Brizhik, Cruzeiro-Hansson and

Eremko, who derived a simple expression for an external Hamiltonian representing the in-

teraction between an extra electron in a lattice and electromagnetic radiation [BCHE98].

In the case of a one-dimensional lattice approximated as a dipole, the original result of

Brizhik et al. was that the external Hamiltonian was

Ĥ0
ext = −E|D|, (2.2.21)

where E = E(t) was the amplitude of the electric field vector in the direction of the lattice,

and D was the dipole moment of the lattice. Adapted for the case of a one-dimensional

lattice where every node is a point dipole, labelled by n, the external Hamiltonian becomes

the form that Brizhik et al. used in [BEPZ08] and later publications:

Ĥext = −
N∑
n=0

eER(n− n0)Â†nÂn, (2.2.22)

where Â†n and Ân are as before, e is the elementary charge, R is the lattice constant, and

n0 is some arbitrary lattice site at which the potential energy due to E is set to zero.

Modelling the interaction between an extra electron and a lattice of diatomic molecules,

with an electromagnetic field incorporated into Ĥext, Brizhik et al. found that a biharmonic

radiation induced a polaron motion known as a ratchet drift. This was a form of directed

electron transport along the lattice, and the authors argued for the applicability of their

model to polypeptides. More generally, the four-part Fröhlich-Brizhik Hamiltonian,

Ĥ = Ĥe + Ĥp + Ĥint + Ĥext, (2.2.23)

is applicable whenver an external electromagnetic field interacts with the extra electron

in a Fröhlich system. We use it in Chapter 3, and also to study electron transport in the

generalised Davydov-Scott model in Chapters 4 and 5.

Another vital part of our electron transport models is the response of the lattice

to its thermal environment. To account for that, we invoke Langevin dynamics, named

after Paul Langevin who in 1908 published a seminal study on the Newtonian motion of a

Brownian particle [Lan08], and whose theory has been widely adapted for various contexts

including cellular environments [LG97,Sch10]. The idea is relatively straightforward: once

we have dynamical equations for the lattice displacements, in the form of ‘rate of change

of momentum equals force’, we add to the force a viscous damping term and a noise term.
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The damping term opposes the momentum of the node, and is proportional to the node

velocity, with a proportionality known as the viscous damping coefficient; it represents

the momentum dissipation of the lattice due to friction against the cell environment. The

noise term is stochastic with zero mean, and we will describe its correlation function

where appropriate in Chapters 3 to 5. It represents the random forces on the lattice due

to thermal fluctuations in the cell environment. It is the addition of Langevin dynamics to

the Fröhlich-Brizhik system that enabled the study in 2014 by Brizhik et al. of the thermal

stability of polarons, and thermal enhancement of polaron propagation, in molecular chains

such as polypeptides [BEPZ14]. Building on the results of their ratchet drift studies, the

authors discovered that a low temperature in the cell environment promoted the directed

transport of the extra electron by effectively lowering its self-trapping potential, but that

a high temperature destroyed the self-trapping polaron state altogether. We will find

characteristically similar results in all our models, with the systems exhibiting varying

levels of stability against thermal fluctuations.

2.2.4 Physical Parameters in the Models

The main difficulty in our modelling is choosing values for our parameters. In the case of

fitting parameters, which we allow to take various values, and by which we parametrise our

models’ outputs, the difficulty is a computational one. We may need to vary a parameter

by several orders of magnitude, because all of them lead to reasonable results; this is

what we find ourselves doing with some parameters which contribute to the external

electromagnetic field. Alternatively, we may need to vary a parameter by small increments,

because the model depends sensitively upon them; this is true for the electron-intrapeptide

oscillator or electron-hydrogen bond coupling constant. In cases where the value of a

parameter can and should be fixed, we may still have the difficulty that different studies,

using different experimental setups or theoretical methods, claim different values for that

parameter. In Chapters 3 to 5, we will wherever applicable discuss our choices for the

model-specific parameters in detail. Here, we offer an overview of one parameter that will

be relevant to all our models.

Following the preceding Section, we consider the viscous damping coefficient, Γ, which

is the proportionality constant relating the drag force on a lattice node, such as a peptide

unit, to the node velocity. The value of Γ depends on the dynamic viscosity of the cell

environment at physiological temperature, as well as the size of the node. Whilst the
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latter is straightforward to determine, the former is a contentious topic. Many empirical

estimates of cytoplasmic viscosity exist, but understandably they vary depending not only

on the experiment, but also on the cells being tested. On one end of the spectrum, Fushimi

and Verkman estimated the cytoplasmic viscosity of Swiss 3T3 fibroblasts to be the same

order of magnitude as the viscosity of water [FV91]. On the other end of the scale, Bausch

et al. measured the mean cytoplasmic viscosity of J774 macrophages to be O(105) times

that of water [BMS99]. A variation of O(105) in the value of one parameter alone is

simply too great to handle computationally, and there are more important parameters in

our models, for instance the coupling constant, which we expect to have much greater

influence on our systems’ behaviour than the damping force does, which is in any case

a small perturbation. For those reasons, we choose to fix the cytoplasmic viscosity in

our models, at a constant value of 0.068 Pa · s, according to a 2011 study by Margraves

et al. who tested live human brain cancer cells in order to obtain their results [MKY+11].

Not only is this the most recent experimental study of its kind, the authors cited the

aforementioned extremal results and took into account the factors that could have led to

such a large discrepancy between them. Using this value of cytoplasmic viscosity, we are

able easily to calculate Γ using Stokes’ Law, the details of which we will demonstrate in

due course because they are model-specific.

39



Chapter 3

The Electron-Amide-I System in a
Linear α-Channel

This Chapter is adapted from [LP18].

We propose a model of electron transport along a single α-channel, where the electron

interacts only with a particular mode of intramolecular oscillations residing within peptide

units. We consider specifically the amide-I mode, i.e. linear stretching, of C=O double

oscillators, of which there is one per peptide unit, and which are aligned along the α-

channel. We assume, for simplicity, that the α-channel is linear. We treat the oscillators

quantum mechanically, and within our model the amide-I excitation can be induced by

electromagnetic interactions between an oscillator and a passing electron, whilst the same

interaction can also induce the electron’s auto-localisation, analogously to the way in

which electron-phonon interactions cause auto-localisation in polaron models. Thus, ours

is a pseudo-polaron model, where a ‘polaron’ refers for the remainder of this Chapter

to the electron-amide-I composite. Moreover, ours is a generalised Holstein-Hennig model

[Hol59a,Hol59b,Hen01], the generalisation manifesting itself as a quantum correction term

and a stochastic term in the dynamical equations.

Our aims are to characterise the stationary polarons that our model admits, and to find

suitable external electromagnetic fields (EMFs) which facilitate directed polaron motion

along the α-channel from a stationary state, taking thermal effects into account. We

discover that an electric pulse with appropriate amplitudes and time-spans of hundreds of

femtoseconds can displace a polaron by tens of lattice sites. Such electric pulses match in

both amplitude and time-span those induced by charge separation observed in biological

complexes [GBM+88,ZZ01]. When these pulses are repeated periodically in time, we find

that the polaron can remain intact for several periods, even at physiological temperature,

40



CHAPTER 3. THE ELECTRON-AMIDE-I SYSTEM IN A LINEAR α-CHANNEL

during which it can propagate by hundreds of sites.

In Section 3.1, we outline our mathematical model and describe relevant physical

parameters. Then in Sections 3.2 and 3.3, we present solutions which represent stationary

and quasi-stationary polaron states, computing the latter by including in our equations

a stochastic term that arises from the thermal environment. Section 3.4 concerns prop-

agating solutions, where we find suitable EMFs capable of displacing a polaron from its

stationary or quasi-stationary state and sustaining its motion. We investigate the effect

of a single electric pulse as well as periodically repeating pulses, and we characterise the

resulting polaron motion in terms of velocity and stability. In particular, we examine the

polaron’s stability with respect to stochastic thermal fluctuations at physiological tem-

perature. Finally, we summarise our results and explain their biophysical implications in

Section 3.5.

3.1 A Pseudo-Polaron Model

We model the α-channel as a linear lattice with identical C=O oscillators at the lattice

sites, and identical equilibrium spacing between sites. In the absence of extraneous elec-

trons, the oscillators move independently, all with the same natural angular frequency. We

model the oscillators by quantum mechanical operators as opposed to classical variables,

because we wish to assign a specific frequency corresponding to the amide-I mode, and it

has been shown that the absorption band of a classical amide-I oscillator is 40 times wider

than that of a quantum mechanical one [CHT97].

We present the Hamiltonian for our electron-amide-I system in Section 3.1.1, before

deriving dynamical equations governing the motion of the electron as well as displacements

of lattice sites, the latter of which correspond to the magnitudes of linear stretching of C=O

bonds. In Section 3.1.2, we give values of physical parameters in our system, justifying

our choices where appropriate.

3.1.1 The Hamiltonian and Dynamical Equations

We write the Hamiltonian for the electron-amide-I system in Fröhlich-Brizhik form,

Ĥ = Ĥe + Ĥp + Ĥint + Ĥext, (3.1.1)
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where

Ĥe =
N∑
n=0

J0Â
†
nÂn −

N−1∑
n=0

J1
(
Â†n+1Ân + Â†nÂn+1

)
, (3.1.2a)

Ĥp =
N∑
n=0

 P̂ 2
n

2M + MΩ2Q̂2
n

2

 , (3.1.2b)

Ĥint =
N∑
n=0

χQ̂nÂ
†
nÂn, (3.1.2c)

Ĥext = −
N∑
n=0

eER (n− n0) Â†nÂn. (3.1.2d)

In Equation (3.1.2), n = 0, 1, 2, . . . , N labels the lattice sites. Ĥe describes a tight-

binding electron, where Â†n and Ân are, respectively, the operators of electron creation

and annihilation at the nth lattice site. J0 is the electron site energy, and J1 the nearest-

neighbour electron transfer integral. Ĥp corresponds to the energy contribution from the

lattice, where M is the reduced mass of a C=O oscillator, and Ω the natural angular

frequency of each oscillator. Q̂n is the operator for relative displacement between C and

O in the nth oscillator, and P̂n is the momentum operator conjugate to Q̂n. The form of

the interaction Hamiltonian, Ĥint, is derived from the assumption that the electron site

energy is modified by the displacement field, Q̂n, and we have retained only the linear term,

involving coupling constant χ, in the Taylor expansion for this modified energy [Hen01].

Finally, Ĥext represents the modification of electron site energy due to the presence of an

external EMF [BCHE98, BEPZ08]. −e is the electron charge, E = E(t) the amplitude

of the electric field along the α-channel, R the equilibrium lattice spacing, and n0 an

arbitrary lattice site at which the potential energy due to E is set to zero. The operators

satisfy the commutation relations,[
Q̂m, P̂n

]
=
[
Q̂†m, P̂

†
n

]
= −

[
Q̂m, P̂

†
n

]
= −

[
Q̂†m, P̂n

]
= i~ δmn, (3.1.3a)[

Q̂m, Ân
]

=
[
Q̂m, Â

†
n

]
=
[
P̂m, Ân

]
=
[
P̂m, Â

†
n

]
= 0, (3.1.3b)

and the fermionic anti-commutation relation,

ÂmÂ
†
n + Â†nÂm = δmn. (3.1.4)

Denoting the vacuum states of Ĥe and Ĥp, respectively, by |0e〉 and |0p〉, we have

Ân |0e〉 = 0, (3.1.5a)

〈0p| Q̂n |0p〉 = 〈0p| P̂n |0p〉 = 0. (3.1.5b)
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At time t, the electronic state is a superposition of single excitations,

|Ψe(t)〉 =
N∑
n=0

αn(t)Â†n |0e〉 , (3.1.6)

for some complex coefficients αn. We then assume that the intramolecular oscillators are

in a Glauber state [Gla63,ELS84,KL87],

|Ψp(t)〉 = exp
(
σ̂(t)

)
|0p〉 , (3.1.7)

where

σ̂(t) = i

~

N∑
n=0

(
pn(t)Q̂n − qn(t)P̂n

)
, (3.1.8)

for some real coefficients qn, pn, so that

σ̂† = −σ̂. (3.1.9)

In the Born-Oppenheimer approximation, the state of the composite electron-amide-I

system is

|Ψ(t)〉 = |Ψe(t)〉 |Ψp(t)〉 =
N∑
n=0

αn(t) exp
(
σ̂(t)

)
Â†n |0e〉 |0p〉 , (3.1.10)

with the normalisation condition,

N∑
n=0
|an|2 = 1. (3.1.11)

Dynamical equations for the system are first-order differential equations for the variables

αn, qn and pn. We derive these equations by minimising the energy, 〈Ĥ〉 := 〈Ψ|Ĥ|Ψ〉, as

follows. From Equations (3.1.8) and (3.1.9), we deduce[
σ̂†, Q̂n

]
= i

~

[ N∑
m=0

qmP̂m, Q̂n

]
− i

~

[ N∑
m=0

pmQ̂m, Q̂n

]

= i

~

N∑
m=0

(−i~) qmδmn

= qn. (3.1.12)

It follows that [
σ̂†, Q̂2

n

]
=
[
σ̂†, Q̂n

]
Q̂n + Q̂n

[
σ̂†, Q̂n

]
= 2qnQ̂n. (3.1.13)
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Similarly, we have [
σ̂†, P̂n

]
= pn, (3.1.14a)[

σ̂†, P̂ 2
n

]
= 2pnP̂n. (3.1.14b)

Using the Baker-Hausdorff identity for generic operators B̂ and Ô,

exp(B̂)Ô exp(−B̂) = Ô +
∞∑
n=1

1
n!Ôn, (3.1.15)

where Ô1 = [B̂, Ô] and Ôn+1 = [B̂, Ôn] for n ≥ 1, we obtain the following:

exp(σ̂†)Q̂n exp(σ̂) = Q̂n + qn, exp(σ̂†)Q̂2
n exp(σ̂) = Q̂2

n + 2qnQ̂n + q2
n, (3.1.16a)

exp(σ̂†)P̂n exp(σ̂) = P̂n + pn, exp(σ̂†)P̂ 2
n exp(σ̂) = P̂ 2

n + 2pnP̂n + p2
n. (3.1.16b)

Since the electron operators commute with the lattice operators, we have

exp(σ̂†)Ĥ exp(σ̂) = Ĥe + Ĥext +
N∑
n=0

 P̂ 2
n + 2pnP̂n + p2

n

2M

+
MΩ2

(
Q̂2
n + 2qnQ̂n + q2

n

)
2 + χ

(
Q̂n + qn

)
Â†nÂn

. (3.1.17)

We therefore deduce the following expression for 〈Ĥ〉:

〈Ĥ〉 =
N∑
j=0

N∑
k=0

α∗jαk
〈

0
∣∣∣ Âj exp(σ̂†)Ĥ exp(σ̂)Â†k

∣∣∣ 0〉 (3.1.18a)

=
N∑
j=0

N∑
k=0

α∗jαk

〈
0

∣∣∣∣∣∣ Âj
Ĥe + Ĥext +

N∑
m=0

(
p2
m

2M + MΩ2q2
m

2 + χqmÂ
†
mÂm

) Â†k
∣∣∣∣∣∣ 0
〉
,

(3.1.18b)

where we have defined |0〉 = |0e〉 |0p〉, so that for all n,

Ân |0〉 = 〈0p| Q̂n |0〉 = 〈0p| P̂n |0〉 = 0. (3.1.19)

To obtain the dynamical equations for qn and pn, we use Hamilton’s equations,

dqn
dt = ∂ 〈Ĥ〉

∂pn
= pn
M
, (3.1.20a)

dpn
dt = −∂ 〈Ĥ〉

∂qn
= −

(
MΩ2qn + χ|αn|2

)
, (3.1.20b)

the combination of which gives us the second-order equation for qn:

M
d2qn
dt2 = −

(
MΩ2qn + χ|αn|2

)
. (3.1.21)
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For the αn equation, we return to eq. (3.1.18a), from which it follows that

∂ 〈Ĥ〉
∂α∗n

=
N∑
k=0

αk
〈

0
∣∣∣ Ân exp(σ̂†)Ĥ exp(σ̂)Â†k

∣∣∣ 0〉 =
〈

0
∣∣∣ Ân exp(σ̂†)Ĥ

∣∣∣Ψ〉 . (3.1.22)

Making use of the Schrödinger equation, Ĥ |Ψ〉 = i~ ∂ |Ψ〉 /∂t, we deduce

∂ 〈Ĥ〉
∂α∗n

= i~
N∑
k=0

〈
0

∣∣∣∣∣∣ Ân exp(σ̂†)
(
dαk
dt + αk

dσ̂
dt

)
exp(σ̂)Â†k

∣∣∣∣∣∣ 0
〉
. (3.1.23)

At this point, a standard treatment is to invoke the approximation that dσ̂/dt is negligible,

as was done in [Sco92]. We do not make such an assumption, and therefore

∂ 〈Ĥ〉
∂α∗n

= i~
N∑
k=0

dαk
dt

〈
0
∣∣∣ Ân exp(σ̂†) exp(σ̂)Â†k

∣∣∣ 0〉

+ i~
N∑
k=0

αk

〈
0

∣∣∣∣∣∣ Ân exp(σ̂†) i
~

N∑
m=0

(
dpm
dt Q̂m −

dqm
dt P̂m

)
exp(σ̂)Â†k

∣∣∣∣∣∣ 0
〉

= i~
N∑
k=0

dαk
dt δnk

−
N∑
k=0

αk

〈
0

∣∣∣∣∣∣ Ân
N∑
m=0

(
dpm
dt

(
Q̂m + qm

)
− dqm

dt
(
P̂m + pm

))
Â†k

∣∣∣∣∣∣ 0
〉

= i~
dαn
dt −

N∑
m=0

(
dpm
dt qm −

dqm
dt pm

)
N∑
k=0

αk
〈

0
∣∣∣ ÂnÂ†k ∣∣∣ 0〉

= i~
dαn
dt −

N∑
m=0

(
M

d2qm
dt2 qm −M

(dqm
dt

)2
)
αn

= i~
dαn
dt −

N∑
m=0

(
−
(
MΩ2qm + χ|αm|2

)
qm −M

(dqm
dt

)2
)
αn

= i~
dαn
dt + (2W + I)αn, (3.1.24)

where

W (t) = 〈Ĥp〉 = 1
2

N∑
m=0

(
M

(dqm
dt

)2
+MΩ2q2

m

)
, (3.1.25a)

I(t) = 〈Ĥint〉 =
N∑
m=0

χqm|αm|2 . (3.1.25b)
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In the meantime, instead of deriving Equation (3.1.24) from Equation (3.1.18a), we could

also derive, from eq. (3.1.18b),

∂ 〈Ĥ〉
∂α∗n

=
N∑
k=0

αk

〈
0

∣∣∣∣∣∣Ân
 N∑
m=0

J0Â
†
mÂm −

N−1∑
m=0

J1
(
Â†m+1Âm + Â†mÂm+1

)

−
N∑
m=0

eER (m− n0) Â†mÂm +
N∑
m=0

(
p2
m

2M + MΩ2q2
m

2 + χqmÂ
†
mÂm

)Â†k
∣∣∣∣∣∣ 0
〉

=
N∑
k=0

αk

〈
0

∣∣∣∣∣∣Ân
J0Â

†
k − J1

(
Â†k+1 + Â†k−1

)
− eER (k − n0) Â†k + χqkÂ

†
k

∣∣∣∣∣∣ 0
〉

+
N∑
m=0

(
p2
m

2M + MΩ2q2
m

2

)
N∑
k=0

αk
〈

0
∣∣∣ ÂnÂ†k ∣∣∣ 0〉

= αn
[
J0 + χqn − eER (n− n0) +W

]
− J1 (αn−1 + αn+1) . (3.1.26)

We have defined

α−1 = αN+1 = 0, (3.1.27)

so that Equation (3.1.26) holds at the boundaries where n = 0, N . Equating the right-hand

sides of Equations (3.1.24) and (3.1.26), we obtain the following:

i~
dαn
dt = αn

[
J0 + χqn − eER (n− n0)− (W + I)

]
− J1 (αn−1 + αn+1) . (3.1.28)

Equations (3.1.21) and (3.1.28) are the dynamical equations of our system. We note that,

since 〈Ψ|Q̂n|Ψ〉 = qn and 〈Ψ|P̂n|Ψ〉 /M = pn/M = dqn/dt, the physical interpretation of

qn is the expected value of relative displacement of the nth C=O oscillator, and the physical

interpretation of dqn/dt is the expected value of relative velocity of the nth oscillator.

Next, we define a variable ψn(t) by the gauge transformation,

αn(t) = ψn(t) exp
[
it

~
(−J0 + 2J1)

]
, (3.1.29)

which preserves the probability density |αn| = |ψn|. Equation (3.1.28) then becomes an

equation for ψn, in which every αn becomes a ψn, J0 no longer appears, and the J1 term

becomes a discrete Laplacian, −J1 (ψn−1 + ψn+1 − 2ψn). Moreover, to account for the

effect on the lattice of its thermal environment, we add the Langevin terms, −Γ dQn/dt+

Fn(t), to the right-hand side of Equation (3.1.21) [Lan08,LG97,Sch10,BEPZ14]. Here, Γ

is a viscous damping coefficient, which depends on the temperature of the environment,
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and Fn(t) is a Gaussian stochastic term describing thermal fluctuations, with zero mean

and satisfying the correlation relation,

〈Fm(t), Fn(t′)〉 = 2ΓkBΘδm,nδ(t− t′), (3.1.30)

where kB is the Boltzmann constant and Θ is the temperature in Kelvin. Scaling time by

Ω−1 and length by

L :=
√
~M−1Ω−1, (3.1.31)

we have the following non-dimensionalised dynamical equations, for n = 0, 1, 2, . . . N :

iψ̇n = (κun − w − η)ψn − ρ (ψn−1 + ψn+1 − 2ψn)− ε(n− n0)ψn, (3.1.32a)

ün = −un − κ|ψn|2 − γu̇n + fn, (3.1.32b)

where

τ = Ωt, un = qn
L
, w = W

~Ω , η = I

~Ω , (3.1.33)

and

κ = χ√
~MΩ3

, ρ = J1
~Ω , ε = eER

~Ω , γ = Γ
MΩ , fn = Fn√

~MΩ3
. (3.1.34)

ρ is an adiabaticity parameter representing the characteristic time-scale separation between

the lattice and electron dynamics, and κ is a coupling constant providing a measure of

interaction strength between the electron and lattice. At the boundaries, we have the

fictitious points

ψ−1 = ψN+1 = 0, (3.1.35)

and we also impose the following boundary condition for the lattice:

u0 = u̇0 = 0, (3.1.36)

which is always valid in the inertial frame with the 0th site at the origin. By setting

w = η = γ = fn = 0 in Equation (3.1.32), and by repurposing ε as an initial impulse

acting on the un equation, we reduce ours to the Holstein-Hennig model [Hen01].
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3.1.2 Parameters

We take the following parameter values appropriate for an α-channel [PCB51, NC76,

CLR77,Zav87,BT88,Dun01,Hen01]:

M = 1.147× 10−26 kg, R = 4.5 Å, Ω = 3.1× 1014 s−1, J1 / 1 eV. (3.1.37)

In particular, M is the reduced mass of a CO nuclear dyad. We obtain an estimate of Γ

by approximating the lattice unit as an equivalent sphere and using Stokes’ Law [PBM90],

Γ = 6πrµ, (3.1.38)

where r = 3.3 fm is the equivalent spherical radius of a CO nuclear dyad [JP88,AM13], and

µ = 0.068 Pa · s is the dynamic viscosity of cytoplasmic fluid at physiological temperature,

as we explained in Section 2.2.4. We therefore fix

γ = 0.001. (3.1.39)

For the other dimensionless parameters, we have

ρ / 5, (3.1.40)

and the physiological thermal energy at Θ = 310K is

θ = kBΘ/(~Ω) = 0.13. (3.1.41)

θ enters the system via the stochastic forces, fn(τ), which satisfy

〈fn(τ)〉 = 0, 〈fm(τ), fn(τ + ∆τ)〉 = 2γθδm,n/∆τ. (3.1.42)

We use a conservatively small time-step, ∆τ = 0.01, to ensure numerical stability. Finally,

since no empirically-determined values are available for χ, and since we wish to investigate

the electron’s response to a variety of EMFs, we vary κ and ε in order to obtain our results.

Our parameter values imply that the characteristic time-scale and length-scale in our

system, the latter having been defined in Equation (3.1.31), are respectively

Ω−1 = 3.2 fs, L = 0.054 Å = 0.012R. (3.1.43)

Moreover, the characteristic energy-scale in our system is

~Ω = 0.2 eV. (3.1.44)
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3.2 Analytical Results

Though it is not possible to use purely analytical methods to find complete solutions to

Equation (3.1.32), the analysis can help us make a lot of progress towards understanding

our model. Firstly, we write down in Section 3.2.1 the equations describing our system in

its stationary state. We then derive expressions for the internal energy of the polaron, as

well as its binding energy in a stationary state, in Section 3.2.2. Finally in Section 3.2.3,

we look at the system in the continuum limit, which reduces the stationary-state equations

to a single differential equation. We solve the continuum equation analytically.

3.2.1 The Stationary System

A stationary solution to Equation (3.1.32) comprises a stationary electron state, i.e. some

ψn = ψ0
n such that |ψ0

n|2 is time-independent, and a stationary lattice, un = u0
n. Neglecting

stochastic effects, so that fn(τ) = 0, the stationary solution to eq. (3.1.32b) is expressible

in terms of |ψ0
n|2 as

un = u0
n := −κ|ψ0

n|2. (3.2.1)

This reflects the fact that lattice excitations and electronic excitations in our model are

directly related, one arising from the presence of the other. To find ψ0
n, we note that in a

stationary state, we have constants w(τ) = w0 and η(τ) = η0, which enables us to define

the gauge transformation,

ψ0
n(τ) = φ0

n exp
[
iτ (−ρH0 + w0 + η0)

]
, (3.2.2)

where H0 is a dimensionless eigenvalue to be determined, and φ0
n is time-independent.

The transformation ensures that the time-evolution of ψ0
n manifests only as a variation in

its phase. Putting Equations (3.2.1) and (3.2.2) into Equation (3.1.32a), we obtain the

following algebraic equation for φ0
n:

H0φ
0
n +

(
φ0
n−1 + φ0

n+1 − 2φ0
n

)
+ λφ0

n
3 = 0, (3.2.3)

where we have defined the effective coupling parameter,

λ := κ2

ρ
= χ2

MΩ2J1
. (3.2.4)

A stationary electron state is characterised by a φ0
n solution together with an eigenvalue

H0, and it is clear from Equation (3.2.3) that such a state is parametrised by λ.
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3.2.2 Energetics

Apart from the |ψ0
n|2 and u0

n solutions, another crucial aspect of the stationary polaron is

its binding energy. In general, the polaron’s internal energy Eb is the expected value of

Ĥe + Ĥp + Ĥint in a polaron state, |Ψ〉, measured from the lowest energy in the electron

band, J0 − 2J1. In units of eV, we have

Eb = 0.2× 〈Ψ|Ĥe + Ĥp + Ĥint|Ψ〉 − J0 + 2J1
~Ω

= 0.2ρ

2−
N−1∑
n=0

(
ψ∗n+1ψn + ψ∗nψn+1

)+ 0.2
N∑
n=0

(
u2
n

2 + u̇2
n

2

)
+ 0.2

N∑
n=0

κun|ψn|2 .

(3.2.5)

In the stationary state |Ψ〉 = |Ψ0〉, we use Equation (3.2.1) and the fact that u̇n = 0 to

simplify the above expression, obtaining the stationary polaron binding energy in eV,

E0
b = 0.2ρ

2−
N−1∑
n=0

(
ψ0∗
n+1ψ

0
n + ψ0∗

n ψ
0
n+1

)− N∑
n=0

0.2κ2

2

∣∣∣ψ0
n

∣∣∣4 . (3.2.6)

3.2.3 Approximate Stationary Solutions in the Continuum Limit

We now proceed to show that in the continuum limit of N � 1, Equation (3.2.3) is

equivalent to the stationary nonlinear Schrödinger equation (NLSE). To do so, we begin

with the NLSE in an attractive cubic potential, in appropriate units,

i
∂ψ

∂t
+ ∂2ψ

∂x2 + λ|ψ|2ψ = 0, (3.2.7)

for some function ψ of real variables x and t in the domain t ≥ 0,−N/2 ≤ x ≤ N/2. A

stationary solution to the NLSE may be written in the form

ψ(x, t) = φ(x) exp(−iH0t), (3.2.8)

for some function φ(x) satisfying the ODE,

H0φ+ d2φ

dx2 + λφ3 = 0. (3.2.9)

This is the stationary NLSE. Now, in the limit N � 1, we can write x = x̃N for some x̃

and write φ(x) = φ̃(x̃) for some φ̃, so that

φ(x± 1) = φ̃(x̃±N−1) = φ̃(x̃)±N−1dφ̃
dx̃ (x̃) + N−2

2
d2φ̃

dx̃2 (x̃) +O(N−3), (3.2.10)
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for −1/2 +N−1 ≤ x̃ ≤ 1/2−N−1. It follows that, for −N/2 + 1 ≤ x ≤ N/2− 1,

φ(x− 1) + φ(x+ 1)− 2φ(x) = N−2d2φ̃

dx̃2 (x̃) +O(N−3). (3.2.11)

Using

d2φ̃

dx̃2 (x̃) = N2dφ
dx (x), (3.2.12)

we further deduce

φ(x− 1) + φ(x+ 1)− 2φ(x) =
(
1 +O(N−1)

) d2φ

dx2 (x). (3.2.13)

If we make the indentification

φ

(
n− N

2

)
≡ φ0

n for 0 ≤ n ≤ N, (3.2.14)

then we have, for 1 ≤ n ≤ N − 1,

d2φ

dx2

(
n− N

2

)
≈ φ

(
n− N

2 − 1
)

+ φ

(
n− N

2 + 1
)
− 2φ

(
n− N

2

)
≡ φ0

n−1 + φ0
n+1 − 2φ0

n. (3.2.15)

Putting Equations (3.2.14) and (3.2.15) into Equation (3.2.9), we see that the latter be-

comes equivalent to Equation (3.2.3) whenever x = n−N/2. We have therefore established

that in the N � 1 limit, if we find a global solution to Equation (3.2.9), then discretising

that solution gives us an approximation for φ0
n. The accuracy of this approximation will

decrease as we make N smaller, but it would still give us a good ansatz to feed into a

numerical scheme which computes an exact stationary solution. If we let N → ∞, then

there is indeed a well-known, normalised solution to Equation (3.2.9),

φ(x) =
√
λ/8 sech

[
λ (x− x0) /4

]
, (3.2.16)

with eigenvalue H0 = −λ2/16, and where x0 is arbitrary oweing to the translational

invariance of Equation (3.2.9) [ZS72,Hir73,LLH+07]. Therefore an approximate solution

to Equation (3.2.3) is as follows.

φ0
n ≈

√
λ/8 sech

[
λ(n− n0)/4

]
, (3.2.17a)

H0 ≈ −λ2/16, (3.2.17b)
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where n0 is arbitrary. Now we can invoke Equation (3.2.2) and say that the stationary

state for the electron,

ψ0
n(τ) = φ0

n exp

iρτ (−H0 + w0 + η0
ρ

) , (3.2.18)

may be approximated by Equation (3.2.17), and consequently the stationary lattice solu-

tion u0
n = −κ|ψ0

n|2 may also be approximated by

u0
n ≈ −

κλ

8 sech2 [λ(n− n0)/4
]
. (3.2.19)

The value of w0 + η0, which is the dimensionless and stationary version of W (τ) + I(τ) as

defined in Equation (3.1.25), is

w0 + η0 = 〈Ψ
0|Ĥp + Ĥint|Ψ0〉

~Ω

=
N∑
n=0

(
(u0
n)2

2 + κu0
n|ψ0

n|2
)

= −
N∑
n=0

κ2

2

∣∣∣φ0
n

∣∣∣4 , (3.2.20)

and using Equation (3.2.17a) yields the approximation,

w0 + η0
ρ

≈ −
N∑
n=0

λ3

128 sech4 [λ(n− n0)/4
]
. (3.2.21)

Moreover, the electron probability distribution in this approximate stationary state is

|ψ0
n|2 = |φ0

n|2 ≈ (λ/8) sech2 [λ(n− n0)/4], (3.2.22)

so the half-width of the distribution is proportional to λ−1, whilst the maximum height is

proportional to λ.

We make one final remark about the continuum limit. Due to the spatial translational

invariance of Equation (3.2.7), it admits travelling wave solutions. But those solutions

cannot be used to approximate solutions to Equation (3.1.32a), because Equation (3.2.7)

approximates Equation (3.1.32a) only when the lattice displacement, un, is stationary;

and when un is stationary, it is not physical to have an electron propagating without

dispersion along the lattice.
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3.3 Numerical Results on Electron Auto-Localisation

In this Section, we find stationary polaron states by solving Equation (3.1.32) numerically,

with u̇n = ε = fn = 0. With the value of γ being fixed, we look for solutions corresponding

to various points in the parameter space (ρ, κ). We wish to determine key quantities

associated with the stationary polaron state, such as the electron’s maximum localisation

probability, defined as the maximum value of |ψ0
n|2 and denoted by max |ψ0

n|2, as functions

of (ρ, κ). We expect to find that the numerical and approximate solutions match up closely

in cases where max |ψ0
n|2 is small and the polaron half-width is large, and that the two

kinds of solutions are less similar in cases where the polaron is highly localised. This

is because obtaining the approximate solutions relied upon the continuum limit which

captures broad polarons much better than it does highly localised ones.

We describe in Section 3.3.1 the numerical algorithm that we employ to compute

stationary polaron solutions, before presenting the solutions in Section 3.3.2. Then in

Section 3.3.3, we investigate the effect of stochastic forces on the stationary polaron state.

3.3.1 The Convergence Algorithm

As Section 3.2 detailed, the dynamical system whose stationary solutions we seek to com-

pute is Equation (3.2.3). A standard approach to computing the stationary solutions is

as follows [KAT98]. Observe that any solution φ0
n is an attractor of the following map:

φ0
n 7→

H(φ0
n)

‖H(φ0
n)‖ , (3.3.1)

where

H(φ0
n) =

(
φ0
n−1 + φ0

n+1 − 2φ0
n

)
+ λφ0

n
3
, (3.3.2a)

‖H(φ0
n)‖ =

√√√√ N∑
n=0
H(φ0

n)2. (3.3.2b)

For each set of (ρ, κ), one could take the approximate solution from Section 3.2.3 as initial

guess, and repeatedly apply Equation (3.3.1) until convergence. In practice, however,

this method is computationally labour-intensive, particularly when N is large; so we have

devised an alternative convergence algorithm which significantly speeds up proceedings.

We do not attempt to solve Equation (3.2.3) directly. Instead, we integrate an ap-

propriate variant of Equation (3.1.32a) forward in time. The equation is written in terms
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of some complex-valued ψ̃n(τ) and a parameter H0 which we redefine at regular time-

intervals according to some algorithm, and we integrate the equation until such time that

ψ̃n becomes stationary and H0 has converged to a fixed value. We then use the station-

ary ψ̃n and H0 to deduce the stationary solution φ0
n to Equation (3.2.3) together with

eigenvalue H0. The appropriate variant of Equation (3.1.32a) is

− d
dτ ψ̃n =

(
−κ2

∣∣∣ψ̃n∣∣∣2 +H0

)
ψ̃n − ρ

(
ψ̃n−1 + ψ̃n+1 − 2ψ̃n

)
. (3.3.3)

Equations (3.3.3) and (3.1.32a) are similar but notably different. In particular, whereas

on the left-hand side of Equation (3.1.32a) we had i · d/dτ , on the left-hand side of

Equation (3.3.3) we have −d/dτ . Thus, when we write out the real and imaginary parts

of Equation (3.3.3), for ψ̃n = yn+ izn, we end up with two equations which are symmetric

with respect to re-labelling:

ẏn =
(
κ2(y2

n + z2
n)−H0

)
yn + ρ (yn−1 + yn+1 − 2yn) , (3.3.4a)

żn =
(
κ2(y2

n + z2
n)−H0

)
zn + ρ (zn−1 + zn+1 − 2zn) . (3.3.4b)

This in turn enables us to set yn = zn, thereby decoupling the real and imaginary parts

of ψ̃n, and without loss of generality simply solve for yn:

ẏn =
(
2κ2y2

n −H0
)
yn + ρ (yn−1 + yn+1 − 2yn) , (3.3.5)

on a grid defined by n = 0, 1, . . . , N with fictitious boundary terms y−1 = yN+1 = 0. From

an initial configuration yn(0), and an initial value for H0, we integrate Equation (3.3.5)

forward in time using the standard RK4 method; except, after a certain number of inte-

gration time-steps, each of length ∆τ = 0.01, we redefine H0 according to some algorithm.

The algorithm is valid if the initial yn(0) is such that it drops off sharply away from some

global maximum, as in a sech function for example, and if the stationary yn also exhibits

the same qualitative characteristic.

The algorithm is as follows. We first observe that when yn has become some stationary

y0
n and H0 has converged, their values must be such that

H0y
0
n = 2κ2y0

n
3 + ρ

(
y0
n−1 + y0

n+1 − 2y0
n

)
, (3.3.6)

for all n. Equation (3.2.3) would have led to a similar result for the eigenvalue H0.

Now, we take some initial guess for H0 and some initial yn(0) with a global maximum at
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n = n0, which is such a configuration that the value of yn(0) drops off significantly beyond

n = n0 ± 2, and we integrate Equation (3.3.5) forward in time. If the initial guess for H0

is good enough, i.e. sufficiently close to the H0 that eventually satisfies Equation (3.3.6),

then yn(τ) will continue to exhibit the characteristic drop-off away from n = n0. When we

reach τ = 104∆τ (an arbitrarily chosen time-interval which is moderate in length) we make

use of yn(104∆τ) to redefine H0 before performing further integration steps. Specifically,

we use only three points in yn(104∆τ), namely yn0 and yn0±1, and let

H̃n0 := 2κ2y2
n0 + ρ

(
yn0−1 + yn0+1

yn0
− 2

)
, (3.3.7)

and similarly H̃n0±1. The numerical stability of this scheme relies upon the values of

yn0 and yn0±1 being sufficiently far from zero. Assuming that is always the case, which

is automatically verified if the scheme successfully produces stationary solutions, then

for each n, H̃n is the value that H0 should take if yn and yn±1 were all taken from the

stationary solution y0
n. We then take the average of H̃n0 and H̃n0±1, defining

H̃′0 := 1
3
(
H̃n0−1 + H̃n0 + H̃n0+1

)
, (3.3.8)

and redefine H0 according to

H0 7→
H0 + H̃′0

2 . (3.3.9)

This process ‘nudges’ H0 closer to the value it needs to be; and we only make use of the

values of yn at its maximum and immediate neighbours because, assuming the sharp drop-

off of yn away from its maximum, those three points have the most significant impact on

the dynamics of Equation (3.3.5). The new H0 obtained by Equation (3.3.9) is then fed

back into Equation (3.3.5) before we continue to integrate the equation from τ = 104∆τ to

τ = 2 · 104∆τ . When we reach τ = 2 · 104∆τ , we re-run the process from Equation (3.3.7)

to Equation (3.3.9), this time making use of yn(2 ·104∆τ), to obtain a new H0. We repeat

this process once every 104 integration time-steps, obtaining a new H0 each time which

is fed back into the system before the integration continues. If our initial guess for H0 is

good enough, and if both the initial yn(0) and the eventual stationary y0
n are sufficiently

localised, then in practice this algorithm converges concurrently in the yn configuration

and in the H0 value, within O(106) integration steps. Once convergence has occurred, one

could make use of the fact that ψ̃n = yn + izn and yn = zn to recover the stationary ψ̃n
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solution to Equation (3.3.3), namely ψ̃0
n =
√

2y0
n exp

(
iπ/4

)
. However, Equation (3.3.3) is

not our real aim; we wish instead to express the stationary φ0
n solution to Equation (3.2.3)

in terms of y0
n. This is when the similarities between Equations (3.2.3) and (3.3.6) come

to the fore. Indeed, by making the identification

H0 ≡ −ρH0, (3.3.10)

we are able to observe that, if y0
n solves Equation (3.3.6), then

φ0
n ≡
√

2y0
n (3.3.11)

solves Equation (3.2.3), and vice versa.

The question remains as to what we should take as our initial guess for H0 and

initial configuration yn(0). The answer, naturally, is to make use of the continuum ap-

proximation from Section 3.2.3, specifically from Equation (3.2.17), and to invoke Equa-

tions (3.3.10) and (3.3.11). Thus, given a pair of parameter values (ρ, κ) and hence a

value of λ, we take the initial value H0 = κ4/(16ρ) and initial configuration yn(0) =√
λ/16 sech

[
λ(n− n0)/4

]
; and on a grid defined by n = 0, 1, . . . , 200, we choose n0 = 100.

To summarise: given parameters (ρ, κ), we wish to find the stationary solution to the

eigenvalule problem of Equation (3.2.3). In order to do so, the conventional approach is

to use an iterative scheme as per Equations (3.3.1) and (3.3.2); but we use a relaxation

method, which we have described in detail in this Section, to find the stationary solution

ψ̃0
n to an alternative eigenvalue problem, as in Equation (3.3.3). ψ̃0

n is expressed in terms

of some y0
n, and the eigenvalue is H0. From y0

n and H0 we are able to deduce the stationary

solution φ0
n to Equation (3.2.3), together with eigenvalue H0, using the identities (3.3.11)

and (3.3.10). Crucially, if all we really wish to find is |ψ0
n|2, i.e. the electron probability

distribution in the stationary polaron state, then combining |ψ0
n|2 = |φ0

n|2, |ψ̃0
n|2 = 2|y0

n|2

and Equation (3.3.11) leads us to conclude

∣∣∣ψ0
n

∣∣∣2 =
∣∣∣ψ̃0
n

∣∣∣2 . (3.3.12)

That is to say, the original problem of Equation (3.2.3) and the alternative problem of

Equation (3.3.3) give us the same stationary electron distribution, even though the sta-

tionary wavefunctions differ by a constant phase and the eigenvalues differ by a constant

multiple. In practice, given all the (ρ, κ) that we have studied, we find that the relaxation
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method always converges, in CPU times that are 3 to 4 orders of magnitude less than

the CPU times of using the conventional method to find a stationary polaron state. This

significant improvement in speed is largely due to the fact that, whereas the conventional

method performs a summation over the entire lattice after every iteration, our relaxation

method performs a summation over 3 lattice points only, once every 104 iterations.

3.3.2 Stationary Electrons in the Deterministic System

For a range of (ρ, κ) values, we use the convergence algorithm described in Section 3.3.1 to

find stationary polaron states under zero electric field, i.e. ε = 0, and neglecting stochastic

forces, i.e. fn = 0, on a grid of size N = 200. From the |ψ0
n|2 and u0

n solutions we can infer

all the important information about the stationary polaron state.
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Figure 3.1: Stationary polaron solutions. (a) Some electron probability distributions
(left axis), and corresponding lattice displacements in units of equilibrium spacing (right
axis), computed using various combinations of parameters ρ and κ. (b) Dependence on ρ
and κ of two key characteristics of stationary polaron states: the maximum localisation
probability (left axis), and the binding energy (eV) (right axis). Both are expressed as
families of functions of κ, parametrised by ρ = 3.0, 3.5, 4.0, 4.5, 5.0.
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Figure 3.2: Dependence of electron’s maximum localisation probability and the polaron
binding energy on parameter space (ρ, κ). (a) Maximum localisation probability (positive
vertical axis) and binding energy (eV) (negative vertical axis) as surfaces over the (ρ, κ)
plane. (b) Some contour lines in the surface of maximum localisation probability, projected
onto the (ρ, κ) plane. Lines of κ2/ρ = constant are included for comparison.

In Figure 3.1(a) we see some |ψ0
n|2 solution profiles, the height of which increases with

κ and decreases with ρ. This is as we expected, since the stationary solutions are fully

characterised by λ = κ2/ρ. It also shows the lattice displacement at the nth site being

proportional to |ψ0
n|2, as it should be.

Figure 3.1(b) serves to illustrate how the stationary polaron state varies with κ if ρ

is fixed, or varies with ρ if κ is fixed. For fixed ρ, the electron’s maximum localisation

probability, max |ψ0
n|2, increases with κ, whilst the polaron binding energy E0

b decreases

with κ. The negative sign of E0
b indicates that energy needs to be put into the system in
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order to break up the polaron; thus, a decrease in E0
b is an indication that the electron is

more strongly bound to the lattice. Since a larger κ indicates a stronger electron-lattice

interaction, we do expect it to result in a more strongly bound polaron. Meanwhile,

for fixed κ, max |ψ0
n|2 and E0

b both decrease with ρ. An extension of Figure 3.1(b) is

Figure 3.2(a), where we see max |ψ0
n|2 and E0

b as surfaces over the parameter space (ρ, κ).

By drawing contour lines of the max |ψ0
n|2 surface, we obtain Figure 3.2(b). Indeed, these

contour lines are the parabolae κ2/ρ = constant, i.e. lines of constant λ. This means that

the shape of a |ψ0
n|2 profile depends solely on λ, as we predicted.

3.3.3 Quasi-Stationary Electrons in the Stochastic System

We thermalise the stationary polaron by time-evolving the system in the presence of

stochastic forces fn(τ), which take values according to Equation (3.1.42) with θ = 0.13

(physiological temperature of 310 K). Regardless of the values of (ρ, κ), the polaron always

settles in a quasi-stationary state, where its internal energy, after a very small initial

increase, oscillates about a steady value, and the electron probability distribution fluctu-

ates around a steady configuration. This is a state of thermal equilibrium. The quasi-

stationary mean value of internal energy at thermal equilibrium is always higher than the

stationary polaron binding energy, but the relative difference is typically only O(10−4),

as Figure 3.3 illustrates. The change in |ψn|2 caused by the thermalisation process is also

small, with max|ψn|2 never deviating by more than 0.01 times max |ψ0
n|2. These results

show that our polarons are stable against thermal fluctuations acting on the lattice at

physiological temperature.

0 20000 40000 60000 80000 100000
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−0.1439
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Figure 3.3: Under stochastic forces at thermal energy θ = 0.13, the polaron’s internal
energy (eV) fluctuates around a quasi-stationary mean, after a rapid initial increase. 10000
units of τ equals 32 ps. Parameter: λ = 2.80.
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3.4 Numerical Results on Electron Propagation

With either stationary or quasi-stationary polarons as initial condition, we impose external

EMFs represented by the ε(τ) term in Equation (3.1.32a), and integrate our system forward

in time using the standard RK4 method. The time-step remains ∆τ = 0.01. In the ε term

we set n0 to be the lattice site where the stationary |ψ0
n|2 or quasi-stationary |ψn|2 attains

its maximum. At any time τ , suppose |ψn(τ)|2 attains its maximum at lattice site n0,

then we define the polaron’s position to be the vertex location of the parabola extrapolated

from three points: (n0, |ψn0 |2), (n0 − 1, |ψn0−1|2), (n0 + 1, |ψn0+1|2).

We begin our investigation by neglecting fn(τ), and looking for suitable ε(τ) which

can facilitate polaron propagation. We present our results in Sections 3.4.1 to 3.4.3. In

particular, we outline in Section 3.4.1 negative results that we obtain using certain types

of EMFs. Then we describe in Sections 3.4.2 and 3.4.3 positive results from using pulse-

like EMFs, which can cause stable polaron propagation with large polaron displacements.

Finally in Section 3.4.4, we investigate the effects of stochastic forces by turning on fn(τ).

When we alter ρ and κ, we keep λ = κ2/ρ = 2.80 fixed. This is because as we saw

in Section 3.3, the electron probability distributions of (quasi-)stationary polarons are

parametrised only by λ. We would like to study the motion of polarons with a moderate

maximum localisation probability, and indeed for λ = 2.80 we have max |ψ0
n|2 = 0.5 in

the stationary state, as well as max |ψn|2 ≈ 0.5± 0.005 in the quasi-stationary state. We

discover that, in addition to λ, the parameter κ (or equivalently ρ) is also important to the

dynamics of a non-stationary polaron, in that (λ = 2.80, κ = 3.35) and (λ = 2.80, κ = 3.00)

produce very different results.

3.4.1 Effects of Constant or Temporally Sinusoidal EMFs

Several natural choices of ε(τ) produce negative results in terms of polaron propagation. A

temporally sinusoidal EMF, for instance, causes the polaron simply to oscillate, regardless

of the EMF’s amplitude and period. Alternatively, using constant ε, we find that for every

initial condition there exists a threshold amplitude εc such that no polaron displacement

occurs if ε < εc, and if ε ≥ εc then the electron delocalises within several hundred units of

τ , or roughly 1 ps in physical units. Delocalisation is the phenomenon where the electron

‘escapes’ the local potential well, thus destroying the polaron as its two constituent parts

become decoupled. This can occur when excessive energy is imparted to the electron.
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Although a theoretical delocalised state is represented by a probability density with |ψn|2 ∼

O(1/N), for practical purposes we consider delocalisation to have occurred whenever the

weaker condition of max |ψn|2 < 0.1 is satisfied, at which point secondary peaks in |ψn|2

have the same order of magnitude as max |ψn|2, and this is always accompanied by a

significant decay in the polaron’s internal energy. Our understanding is that the constant

EMF is prone to destroying the polaron because it raises the electron energy in a sudden

and continual manner. Attempting to counter these issues, we have used a period of linear

increase in ε(τ) which brings it slowly to a constant value over O(106) units of τ , and we

have also tried adding a sinusoidal component to a small constant ε to bring the amplitude

above its threshold periodically. However, the results remain that soon after ε reaches the

threshold value, the electron delocalises. This calls for a pulse-like EMF, which peaks

at a certain amplitude before resetting to zero, in theory allowing the polaron to regain

stability once the peak has passed.

3.4.2 Displacement Under a Pulse-Like EMF

We consider a pulse-like EMF of the form

ε(τ) =
{
A sin2(πτ/∆T ),
0, if 0 < τ < ∆T,

τ ≥ ∆T, (3.4.1)

where ∆T is the time-span of the pulse and A is the amplitude. For every ∆T we find

that there is some critical pulse amplitude Ac with the following property.

If A < Ac, the pulse causes the polaron to move away and then back to the vicinity

of its initial position, before settling in a quasi-stationary state of small oscillations about

the initial position. The energy of the polaron is raised slightly by the pulse. If A ≥ Ac,

the polaron moves away during the pulse but does not return, and instead settles in an

oscillatory quasi-stationary state some lattice sites away from its starting position. Some

examples of trajectories caused by A ≥ Ac are shown in Figure 3.4(a). We see that Ac is

negatively correlated with ∆T , which is to be expected as a longer pulse need not have

as high an amplitude as a shorter one in order to impart the same amount of energy to

the electron. When the polaron is displaced, its mean internal energy in the new quasi-

stationary state is significantly higher than its stationary binding energy in the initial

state, as Figure 3.4(b) illustrates. This means that the electron has gained a large amount

of energy from the pulse.
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Figure 3.4: Polaron motion under the pulse-like EMF with time-span ∆T and amplitude
A. 1000 units of τ equals 3.2 ps. Parameters: λ = 2.80, κ = 3.35. (a) Some polaron
trajectories. (b) Evolution of polaron internal energy (eV).

Figure 3.5 captures the way in which polaron displacement, D, varies as we increase

A beyond the critical value. We see that the relationship between D and A > Ac is fairly

erratic, with no clear indication of positive correlation. However we can discern that the

longer ∆T is, the larger D becomes. This is because the system is subject to the extra

energy from the pulse for longer. We note two more features of the polaron dynamics.

Firstly, some combinations of ∆T and A cause displacement of the polaron in the direction

of higher electric potential, i.e. smaller n. This occurs when, for instance, ∆T = 30 and

A = 0.080 or 0.087, even though for 0.080 < A < 0.087 (at our resolution of ∆A = 0.001)

the polaron displacement is non-negative. This anomaly could be a type of resonance

effect which warrants further investigation. Secondly, some values of A cause the electron

to delocalise before the end of the pulse, due to excessive energy input. For example, when
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Figure 3.5: Polaron displacement, D, as function of time-span ∆T and amplitude A,
under the single pulse. Squares (black) indicate zero displacement due to A being too
small. Triangles (red) indicate zero displacement due to delocalisation before end of
pulse. Parameters: λ = 2.80, κ = 3.35.

∆T = 3000, if A ≥ 0.105 then delocalisation always occurs before τ = 3000, and some

smaller values of A such as 0.085 produce the same effect.

3.4.3 Propagation Under Time-Periodic Pulse-Like EMFs

If we simply repeat the propagation-inducing single pulse over time, so that ε(τ) is periodic

and takes the form ε(τ) = A sin2(πτ/∆T ) for τ > 0, we obtain polaron motion which is

unsustainable, in the sense that delocalisation occurs within two or three periods. Whereas

for the single pulse the polaron is permanent, i.e. it remains quasi-stationary once the EMF

is reset to zero (as long as delocalisation has not occurred during the pulse), under the

repeated pulses the polaron is transient, as it has a finite lifetime τ0 at which the electron

delocalises. We understand the cause of the polaron’s short lifetime to be as follows. We

saw in Section 3.4.2 that as a pulse hits the polaron, it raises the polaron’s internal energy,

making the electron less bound to the lattice. Repeated applications of the same pulse

therefore eventually decouples the electron from the lattice. Crucially, the time it takes

the polaron’s internal energy to re-settle at a quasi-stationary value can be significantly

longer than the time-span of the pulse [cf. Figure 3.4(b)]. This means that right at the end

of the first pulse the internal energy is much higher than it would be in a quasi-stationary

state, and hitting the system with a second pulse straight away would raise the energy
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even higher. Thus, to prolong the polaron lifetime, we set ε(τ) to zero after each pulse for

an amount of time equal to some S∆T , which we call the relaxation period, allowing the

system the necessary time to settle in a new quasi-stationary state before another pulse

hits. We write this periodic forcing as

ε(τ) =
{
A sin2(πτ/∆T ),
0, if 0 < τ − c

[
(1 + S) ∆T

]
< ∆T,

τ − c
[
(1 + S) ∆T

]
≥ ∆T, (3.4.2)

where c is the largest integer such that τ − c
[
(1 + S) ∆T

]
≥ 0. For example, suppose

S = 10. Then, for 0 < τ < 11∆T , we have c = 0, and therefore ε(τ) is non-zero if and

only if 0 < τ < ∆T ; for 11∆T ≤ τ < 22∆T , we have c = 1, and therefore ε(τ) is non-zero

if and only if 11∆T < τ < 12∆T ; and so on. We find that, for ∆T = 3000, regardless

of S, delocalisation always occurs before the end of the second pulse. For this reason, we

restrict ourselves to ∆T = 3, 30 and 300, for which S = 10 gives a long enough relaxation

period for our purposes.

Figure 3.6(a) contains examples of polaron trajectories under the periodic pulses with

relaxation, and Figure 3.6(b) shows the corresponding evolutions of the polaron’s internal

energy. We see that by adding a relaxation period after each pulse we allow time for

the polaron to settle into a quasi-stationary state, hence the periodic lowering of internal

energy. As the polaron stabilises, its movement stalls, hence the ladder-like trajectories

featuring jumps of tens of lattice sites followed by plateaus. Compared to the single pulse

of Section 3.4.2, periodic pulses with relaxation cause much larger polaron displacements.

Moreover, we saw in Section 3.4.2 that a pulse always raises the polaron energy (even if

it does not cause a displacement), making the polaron more susceptible to moving under

further pulses, which is why the critical pulse amplitude Ac for periodic pulses is lower

than the Ac we saw for the single pulse. It is also why, as we see in Figure 3.6(a), at

A = Ac the polaron does not begin to move until several pulses have hit.

Figure 3.7 is a visualisation of the way in which a polaron moves during a pulse

and settles afterwards. The polaron’s size, represented by the breadth of the electron

probability distribution, oscillates during the pulse, and after each pulse the probability

distribution always becomes broader than it was before.

Examining Figure 3.8, we recognise a clear negative correlation between the polaron’s

displacement D and the pulse amplitude A > Ac, as opposed to the erratic relationship

between D and A > Ac in the case of a single pulse [cf. Figure 3.5]. The negative

correlation can be explained as follows.
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Figure 3.6: Polaron motion under periodic pulses with time-span ∆T and amplitude A,
and relaxation period 10∆T . 10000 units of τ equals 32 ps. Parameters: λ = 2.80,
κ = 3.35. (a) Some polaron trajectories. (b) Evolution of polaron internal energy (eV).

The polaron’s lifetime is negatively correlated with A, as a stronger pulse raises the

polaron energy by a larger amount and its repeated application causes delocalisation more

quickly. Meanwhile, the polaron’s displacement per pulse, V , tends to increase with A,

as we see in the rightmost column of subfigures in Figure 3.8, but this increase is small

compared to the decay in polaron lifetime. As a result, total displacement over the po-

laron’s lifetime is a decreasing function of A, for A > Ac. This has the implication that

Ac is not only the critical amplitude, but also the optimal amplitude, and it induces the

largest amount of polaron displacement. We note in addition that under the periodic
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Figure 3.7: Evolution of the electron probability distribution, |ψn|2, under periodic pulses
with time-span ∆T = 300, amplitude A = Ac = 0.069. 1000 units of τ equals 3.2 ps.
Parameters: λ = 2.80, κ = 3.35. Each curve is a |ψn|2 profile at some time τ . The broader
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Figure 3.8: Polaron displacement, D, lifetime, τ0, and displacement per pulse, V , as
functions of time-span ∆T and amplitude A of time-periodic pulses. 1000 units of τ
equals 3.2 ps.

forcing the polaron propagation is directed, meaning all combinations of ∆T and A cause

displacements in the same direction, which was not the case under single-pulse forcing.

Our results show that using different combinations of ρ and κ, keeping λ = κ2/ρ

fixed, produces figures which are characteristically similar to Figure 3.8, showing polaron
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Figure 3.9: Critial amplitude Ac as a function of κ, parametrised by the time-span ∆T
of single or periodic pulses. Parameter: λ = 2.80. (a) Single-pulse forcing by eq. (3.4.1).
(b) Periodic forcing by eq. (3.4.2).

displacement and lifetime as decreasing functions of A for A > Ac. However the value of

Ac is dependent on more than just λ. Figure 3.9 exhibits the dependence of Ac on the

electron-lattice coupling constant κ, with λ = 2.80 fixed. It shows that the more strongly

coupled our system is, the more difficult it becomes to displace a polaron using pulse-

like EMFs, in the sense that a larger amplitude is required to cause the onset of polaron

propagation. Comparing Figure 3.9(a) and Figure 3.9(b), we see that periodic pulses (with

relaxation) require a much lower pulse amplitude to achieve polaron displacement than

single-pulse forcing, particularly when ∆T is small. Indeed, when ∆T = 3, Ac for the

periodic forcing is an order of magnitude smaller than that for the single pulse.

3.4.4 Effects of Stochastic Forces

We study the effect of stochastic forces by first evolving the system of eq. (3.1.32) under

a non-zero fn(τ) and ε(τ) = 0 until it reaches thermal equilibrium, and then turning

on ε(τ) as per Section 3.4. The stochastic term exists due to thermal energy θ = 0.13

which corresponds to physiological temperature (310K). For each set of parameter values

(λ, κ,∆T,A), we have run 100 numerical simulations and taken the mean values of key

scalar quantities associated with the polaron motion, namely its displacement and, in

the case of periodic pulse-like EMFs, lifetime and displacement per pulse. Figure 3.10

illustrates the way in which the polaron displacement D depends on the amplitude A

of the single-pulse EMF, under stochastic thermal fluctuations, and it may be compared

directly to Figure 3.5, for which fn = 0.
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Figure 3.10: Mean displacement D as function of time-span ∆T and amplitude A of a
single pulse, under stochastic forces. Squares (black) indicate zero displacement due to A
being too small. Triangles (red) indicate zero displacement due to delocalisation before
end of pulse. Parameters: λ = 2.80, κ = 3.35, θ = 0.13.
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Figure 3.11: Mean values of displacement, D, lifetime, τ0, and displacement per pulse, V ,
as functions of ∆T and A, under periodic pulses. 1000 units of τ equals 3.2 ps. Parameters:
λ = 2.80, κ = 3.35, S = 10, θ = 0.13.

One of the notable effects of the stochastic forces is making the polaron motion more di-

rected, as Figure 3.10 shows: few combinations of ∆T and A cause negative displacements.

Figure 3.11 shows results of adding stochastic forces to periodic pulse-like EMFs with re-

laxation, and we can compare it with Figure 3.8 for which fn = 0. The phenomenon that

polaron displacement per pulse is an increasing function of A is more clearly seen when
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Figure 3.12: Critical amplitude Ac as a function of κ, parametrised by the timespan ∆T
of single or periodic pulses. Parameters: λ = 2.80, θ = 0.13. (a) Single-pulse forcing by
eq. (3.4.1). (b) Periodic forcing by eq. (3.4.2).

stochastic forces are in play. The correlation between total displacement and A > Ac,

and between polaron lifetime and A > Ac, both of which are negative correlations, are

also clearer under stochastic forces. Due to these negative correlations, the critical pulse

amplitude Ac serves also as optimal amplitude, being the pulse strength that induces the

largest amount of polaron displacement. Polaron propagation is strongly directed, in that

the mean value over 100 numerical simulations of total displacement is several hundred

lattice sites in the positive direction. We also note the stabilising effect of the stochastic

forces, which is evidenced by the smoothness of the displacement function D of A, as

opposed to the jagged D-versus-A curves under fn = 0 [cf. Figure 3.8], which exhibited

significant dips at some values of A. Crucially, the polaron’s lifetime is not at all reduced

in the thermal environment compared to its lifetime under zero fn. Figure 3.12 also reveals

that the stochastic forces have little bearing on the way in which Ac increases with the

electron-lattice coupling constant, κ. Finally, we note that Ac increases with ∆T under

periodic pulse-like EMFs, whilst the correlation is negative under single-pulse EMFs.

3.5 Summary and Biophysical Interpretations

We have put forward a model for the interaction between an electron and intrapeptide

amide-I oscillators in an α-channel. We have shown that the interaction can result in

stationary polarons whose electronic probability distribution and binding energy depend

on an effective coupling parameter λ = κ2/ρ, where ρ and κ represent respectively the

adiabaticity and coupling strength in the system. In particular, the maximum value of the
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electron probability distribution in the stationary state is proportional to λ, and a more

localised distribution represents a state with lower energy. To induce the propagation of a

polaron with a moderate size from its stationary state, we have used an external excitation

in the form of a squared-sinusoidal electric pulse, after constant and permanently sinusoidal

electric fields produced negative results. The time-span of a pulse ranged between 3 and

3000 units, which correspond respectively to 0.01 ps and 10 ps, ensuring that the dynamical

evolution of our polaron under a single pulse takes place within the picosecond timescale

reported in [EH02] as the lifetime of amide-I excitations. We have discovered that for

every pulse time-span ∆T there exists a pulse amplitude A = Ac which is critical, in the

sense that an excitation displaces the polaron if and only if A ≥ Ac. When displacement

occurs, the polaron typically moves along the polypeptide by a distance which is positively

correlated with ∆T , before settling in a quasi-stationary state, with its energy raised

compared to its pre-excitation level. By repeating the electric pulse periodically in time,

with a sufficiently long relaxation period between pulses to allow the polaron to settle, we

have found that the polaron can remain intact for up to tens of pulses, as each pulse causes

a displacement in the same direction along the α-channel. For sufficiently small ∆T , there

can be many pulses within the characteristic amide-I lifetime, causing a total displacement

by hundreds of peptide units. For A > Ac, the total displacement and polaron lifetime are

both decreasing functions of A, even though the displacement per pulse increases with A.

Moreover, while fixing λ we have varied the coupling constant κ in order to investigate its

effect on the polaron dynamics, and we have found that Ac is positively correlated with

κ. Our results also show that polaron propagation induced by pulse-like EMFs can occur

at physiological temperatures. Indeed, thermally-induced stochastic forces on the peptide

units have a stabilising effect on the system, and it promotes directed transport towards

one end of the α-channel over the other.

We have thermalised the system classically using Langevin terms for the lattice field.

Förner [För93] showed that when using a quantum thermalisation of the Davydov system,

the thermal stability of a Davydov soliton is smaller than what is predicted by a classical

thermalisation. While it would be interesting to do a full quantum thermalisation for our

model, we believe it would make very little difference as in our case the transfer integral

J1 is three orders of magnitude larger than in the Davydov model, and approximately 30

times larger than the physiological thermal energy at 310 Kelvin.
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The electric field amplitudes involved in our model range from 0.5 to 20 mv · Å−1.

In the biological cell, if a pair of opposite charges spontaneously localised on opposite

sides of the plasma membrane, the resulting dipole would create an electric field in the

centre of the membrane with strength ∼ 1/(εrd2), where εr and d are respectively the

relative permittivity and width of the membrane [LLZA13]. Indeed, if εr = 5 [WS03]

and d = 80Å [MK80,HEWM83], then this electric field has strength 3.6 mv · Å−1, which

is within the range of values we have used in our model. Moreover, there have been

reported observations in biological complexes of hundred-femtosecond charge separation

[GBM+88,ZZ01], the timescale of which matches the characteristic time-span of the pulse-

like EMFs that we have considered. It is therefore conceivable that the pulse-like EMFs in

our model could naturally occur and induce directed electron transport along α-channels

across the cell membrane.

71



Chapter 4

The Electron-Phonon System in a
Linear α-Channel

This Chapter is adapted from [LP17].

We present a generalisation of the Davydov-Scott model [cf. Section 2.2.2] for polarons

in a linear α-channel, resulting from the interaction between an extraneous electron

and collective phonon oscillations of hydrogen bonds in the channel. The generalisa-

tion manifests itself as a symmetry parameter, which reduces the model to Davydov’s or

Scott’s when taking specific values. We explain in Section 4.1 that the introduction of the

symmetry parameter is necessary in order to account for a physical property of polarons

in polypeptides which has not previously been considered.

In Section 4.2, we write down the Hamiltonian for our model, and derive a set of

dynamical equations which govern the dynamics of the electron and phonon parts of the

polaron, justifying our choices of parameter values which are appropriate for an α-channel.

Then in Section 4.3, we look at stationary polaron solutions to our equations, neglecting

stochastic forces, and deduce properties of stationary polarons such as the binding energy.

We obtain the stationary solutions using both analytical and numerical methods. By the

former approach, a closed-form expression for the solution is found via the continuum limit.

Indeed, in the continuum limit we show that the equations become a generalised nonlinear

Schrödinger equation, and we describe the solution method in detail. Numerically, we

employ an iterative method to solve the equations on a discrete grid, using the continuum

solutions as ansatzes. We make comparisons between the numerical solutions and the

analytical continuum solutions.

Section 4.4 concerns propagating polarons. We discover that it is possible to use an

external electromagnetic field (EMF) to displace the stationary polaron, and to sustain
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its motion in such a way that its trajectory is directed and its energy remains highly sta-

ble. We find that a constant EMF is sufficient for displacing the polaron but is incapable

of sustaining energetically stable motion, whereas an EMF consisting of a constant com-

ponent and a temporally sinusoidal one can facilitate propagation which is more stable.

We investigate how the polaron motion depends upon our forcing parameters. We also

take thermal fluctuations of the system into account, examining the effect of stochastic

forces which arise from non-zero temperatures. We find that thermal fluctuations at low

temperatures enhance polaron propagation in the sense that we can lower the amplitude

of our EMF and still achieve stable, directed polaron trajectories. We use only numerical

methods to obtain our results in Section 4.4. We conclude this Chapter in Section 4.5 by

discussing the physical realisabililty of our external forcing and biological implications of

our results.

4.1 Motivation for Generalising the Davydov-Scott Model

As we have discussed in Section 2.2.2, the original Davydov soliton on a polypeptide lattice

comprised three components: an intrapeptide vibrational exciton, the lattice phonon, and

their interaction. In his model, Davydov assumed that the exciton site energy depended

upon lattice deformations in the immediate vicinity. For a one-dimensional, hydrogen-

bonded polypeptide, modelled as a lattice, let us denote the displacement of the nth site

by Un, and define

Sn := Un+1 − Un. (4.1.1)

This is the amount by which the length of the hydrogen bond between sites n and n + 1

deviates from equilibrium. By Davydov’s assumption, the exciton site energy is modified

by the coupling to the lattice:

J0 7→ J0 + χGn(Sn, Sn−1), (4.1.2)

where J0 and χ are constants, Gn is a bilinear function, and

∣∣χGn/J0
∣∣� 1. (4.1.3)

Specifically, Davydov assumed that

Gn = (Sn + Sn−1) /2. (4.1.4)
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That is to say that the exciton is equally coupled to lattice sites on either side. Scott’s

modification, which we have also detailed in Section 2.2.2, was instead to take

Gn = Sn, (4.1.5)

signifying a coupling exclusively to one side. Scott’s reasoning was that the intrapeptide

oscillator is always located adjacent to one hydrogen bond and far from the other. Thus,

Davydov’s and Scott’s models were, respectively, spatially symmetric and anti-symmetric.

We are interested in modelling the electron, whose position relative to the centre of

mass of a peptide unit is not fixed, and for this reason we cannot assume its coupling

to the lattice is either symmetric or anti-symmetric. Ideally, the partition of interaction

energy between Sn and Sn−1 should be determined dynamically, dependent upon the

electron wavefunction. For simplicity, we consider a parameter whose value is fixed, which

represents the extent to which the electron-phonon interaction is spatially symmetric. This

parameter allows us to extrapolate between the two extreme symmetries of Davydov and

Scott, casting their models as special cases of a more general picture.

4.2 A Generalised Davydov-Scott Model

In the context of electron-phonon coupling, it is justified to make the semi-classical approx-

imation in which the peptide units are modelled as classical particles [BEPZ08,Hen01].

This approach is reflected in the Hamiltonian that we present in Section 4.2.1. We derive

our dynamical equations in Section 4.2.2, and assign parameter values appropriate for a

linear α-channel in Section 4.2.3. In Section 4.2.4, we find an expression for the energy of

a polaron that forms within our system.

4.2.1 The Hamiltonian

To model the system of an extra electron interacting with hydrogen bond phonons in an

α-channel, we use a Hamiltonian in the following Fröhlich-Brizhik form:

Ĥ = Ĥe + Ĥp + Ĥint + Ĥext, (4.2.1)

where Ĥe describes a tight-binding electron, Ĥp describes phonon oscillations, Ĥint ac-

counts for the electron-phonon interaction, and Ĥext represents the effect of an external
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EMF [BCHE98]. We assume that the α-channel is linear, and consists of N + 1 identi-

cal units linked by N identical hydrogen bonds. In the tight-binding approximation [cf.

Section 2.1.2], we have

Ĥe =
N∑
n=0

J0Â
†
nÂn −

N−1∑
n=0

J1
(
Â†n+1Ân + Â†nÂn+1

)
. (4.2.2)

The subscript n in Equation (4.2.2) labels peptide units, which are our lattice sites. Â†n
and Ân are local electron creation and annihilation operators, respectively. J0 and J1 are,

respectively, the electron site energy and nearest-neighbour electron transfer integral. In

the classical harmonic approximation [cf. Section 2.1.3], the hydrogen bonds are modelled

as Hookean springs with force constant K, and therefore Ĥp takes the form

Ĥp =
N∑
n=0

P 2
n

2M +
N−1∑
n=0

MΩ2 (Un+1 − Un)2

2 , (4.2.3)

where M is the mass of a peptide unit and we have defined the angular frequency,

Ω :=
√
K/M. (4.2.4)

We note that, as we showed in Section 2.1.3, Ω is the angular frequency of one possible

phonon mode, and it provides a characteristic time-scale of our lattice dynamics. Un and

Pn in Equation (4.2.3) are, respectively, the displacement and conjugate momentum of

the nth peptide unit. Thus, the first and second terms in the expression for Ĥp represent,

respectively, the kinetic and potential energies of the lattice. As we argued in Section 4.1,

the interaction Hamiltonian, Ĥint, should take the form

Ĥint =
N∑
n=0

χGnÂ
†
nÂn, (4.2.5)

where χ is the electron-phonon coupling constant and Gn is a bilinear function of Sn and

Sn−1, where Sn = Un+1 − Un. Davydov’s symmetric Gn [cf. eq. (4.1.4)] led to

ĤDav
int = χ

2

S0Â
†
0Â0 + SN−1Â

†
N ÂN +

N−1∑
n=1

(Sn + Sn−1) Â†nÂn

. (4.2.6)

Meanwhile, Scott’s anti-symmetric Gn [cf. eq. (4.1.5)] gave

ĤSco
int =

N−1∑
n=0

χSnÂ
†
nÂn. (4.2.7)
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We propose

Gn = χrSn + χlSn−1, (4.2.8)

taking without loss of generality χr > 0 and 0 ≤ χl ≤ χr, representing a partition of

interaction energy between Sn and Sn−1. Then, our interaction Hamiltonian is

Ĥint = χrS0Â
†
0Â0 + χlSN−1Â

†
N ÂN +

N−1∑
n=1

[
χrSn + χlSn−1

]
Â†nÂn. (4.2.9)

By defining

χ := χr + χl, (4.2.10)

and introducing the symmetry parameter,

β := χr − χl
χ

, (4.2.11)

so that

0 ≤ β ≤ 1, (4.2.12)

we may write

Ĥint = χ

2

 (1 + β) (U1 − U0) Â†0Â0 + (1− β) (UN − UN−1) Â†N ÂN

+
N−1∑
n=1

[
(Un+1 − Un−1) + β (Un+1 + Un−1 − 2Un)

]
Â†nÂn

. (4.2.13)

Ĥint is entirely characterised by β and χ, and β = 0 reduces our Hamiltonian to the

symmetric model represented by Equation (4.2.6), whilst β = 1 reduces our Hamiltonian

to the anti-symmetric model represented by Equation (4.2.7). The larger β is, the less

spatial symmetry our model possesses. Indeed, for 0 ≤ β < 1, the ratio of n-to-(n + 1)

coupling strength to n-to-(n− 1) coupling strength is given by

χr/χl = (1 + β)/(1− β), (4.2.14)

and this ratio is strictly increasing with β. Finally, The external Hamiltonian,

Ĥext = −
N∑
n=0

eER (n− n0) Â†nÂn, (4.2.15)

models the effect of an EMF with longitudinal (along α-channel) electric field amplitude

E = E(t) on the potential energy of a electron with charge −e. The potential energy due

to E is set to zero at some arbitrary n0, and R is the equilibrium lattice spacing.
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4.2.2 Dynamical Equations

The state of the system is a linear superposition of localised excitations,

|Ψ(t)〉 =
N∑
n=0

αn(t)Â†n |0〉 , (4.2.16)

where |0〉 is the vacuum state, so that Ân |0〉 = 0, and αn are complex coefficients, subject

to the normalisation condition,

N∑
n=0
|αn|2 = 1. (4.2.17)

We proceed to derive dynamical equations for αn and Un. The equation for αn follows

from the time-evolution of |Ψ(t)〉 according to the Schrödinger equation,

i~
∂ |Ψ〉
∂t

= (Ĥe + Ĥint + Ĥext) |Ψ〉 . (4.2.18)

We expand |Ψ〉 using Equation (4.2.16), and invoke Equations (4.2.2), (4.2.13) and (4.2.15)

for the definitions of the various Hamiltonian components, to obtain

i~
N∑
m=0

dαm
dt Â

†
m |0〉 =

N∑
m=0

αm

 N∑
k=0

J0Â
†
kÂk −

N−1∑
k=0

J1
(
Â†k+1Âk + Â†kÂk+1

) Â†m |0〉
+ χ

2

N∑
m=0

αm

(1 + β)(U1 − U0)Â†0Â0 + (1− β)(UN − UN−1)Â†N ÂN

+
N−1∑
k=1

[
(Uk+1 − Uk−1) + β(Uk+1 + Uk−1 − 2Uk)

]
Â†kÂk

Â†m |0〉
−

N∑
m=0

αm

N∑
k=0

eER (k − n0) Â†kÂkÂ
†
m |0〉

= J0

N∑
m=0

αmÂ
†
m |0〉

− J1

α0Â
†
1 + αN Â

†
N−1 +

N−1∑
m=1

αm
(
Â†m+1 + Â†m−1

) |0〉
+ χ

2
[
α0(1 + β)(U1 − U0)Â†0 + αN (1− β)(UN − UN−1)Â†N

]
|0〉

+ χ

2

N−1∑
m=1

αm

[
(Um+1 − Um−1) + β(Um+1 + Um−1 − 2Um)

]
Â†m |0〉

− eER
N∑
m=0

αm (m− n0) Â†m |0〉 , (4.2.19)

77



CHAPTER 4. THE ELECTRON-PHONON SYSTEM IN A LINEAR α-CHANNEL

where we have used the anti-commutation relation for fermionic ladder operators,

ÂmÂ
†
k + Â†kÂm = δmk. (4.2.20)

Equating the coefficients of Â†n |0〉 on both sides of Equation (4.2.19) yields

i~
dα0
dt = J0α0 − J1α1 + χ

2α0 (1 + β) (U1 − U0)− eER (−n0)α0, (4.2.21a)

i~
dαn
dt = J0αn − J1 (αn−1 + αn+1) + χ

2αn
[

(Un+1 − Un−1) + β (Un+1 + Un−1 − 2Un)
]

− eER (n− n0)αn, for 1 ≤ n ≤ N − 1, (4.2.21b)

i~
dαN
dt = J0αN − J1αN−1 + χ

2αN (1− β) (UN − UN−1)

− eER (N − n0)αN . (4.2.21c)

Invoking Sn = Un+1 − Un, we define fictitious points at n = −1, N + 1 by

S−1 = SN = 0, α−1 = αN+1 = 0, (4.2.22)

so that the three parts of Equation (4.2.21) are condensed into a single equation for all

0 ≤ n ≤ N :

i~
dαn
dt =

[
J0 + χ

2 (Sn + Sn−1) + χ

2 β (Sn − Sn−1)
]
αn − J1 (αn+1 + αn−1)

− eER (n− n0)αn. (4.2.23)

Now we introduce the gauge transformation,

αn(t) = ψn(t) exp
[
− it
~

(J0 − 2J1)
]
, (4.2.24)

which preserves the probability density |ψn|2 = |αn|2, and which implies

i~
dαn
dt =

[
i~
dψn
dt + (J0 − 2J1)ψn

]
exp

[
− it
~

(J0 − 2J1)
]
. (4.2.25)

Putting Equation (4.2.25) into Equation (4.2.23), then cancelling the exponential factors

on both sides, we obtain the dynamical equation for ψn:

i~
dψn
dt =

[
χ

2 (Sn + Sn−1) + χ

2 β (Sn − Sn−1)
]
ψn − J1 (ψn+1 + ψn−1 − 2ψn)

− eER (n− n0)ψn. (4.2.26)

Next, we derive dynamical equations for Un from classical Hamilton equations,

dUn
dt = ∂Hcla

∂Pn
, (4.2.27a)

dPn
dt = −∂Hcla

∂Un
, (4.2.27b)
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where we have defined

Hcla := 〈Ψ|(Ĥp + Ĥint)|Ψ〉

= Hp + χ

2 〈0|
N∑
j=0

N∑
m=0

Âjα
∗
jαm

 (1 + β)S0Â
†
0Â0 + (1− β)SN−1Â

†
N ÂN

+
N−1∑
k=1

[
(Sk + Sk−1) + β (Sk − Sk−1)

]
Â†kÂk

Â†m |0〉
= Hp + χ

2 〈0|
N∑
j=0

Âjα
∗
j

α0 (1 + β)S0Â
†
0 + αN (1− β)SN−1Â

†
N

+
N−1∑
m=1

αm

[
(Sm + Sm−1) + β (Sm − Sm−1)

]
Â†m

 |0〉
= Hp + χ

2

|α0|2 (1 + β)S0 +|αN |2 (1− β)SN−1

+
N−1∑
j=1

∣∣αj∣∣2 [ (Sj + Sj−1
)

+ β
(
Sj − Sj−1

) ], (4.2.28)

with

Hp :=
N∑
j=0

P 2
j

2M +
N−1∑
j=0

MΩ2S2
j

2 . (4.2.29)

From Equation (4.2.27a) we have, for 0 ≤ n ≤ N ,

M
dUn
dt = Pn, (4.2.30)

which, when combined with Equation (4.2.27b), implies

M
d2Un
dt2 = −∂Hcla

∂Un
. (4.2.31)

Putting Equations (4.2.28) and (4.2.29) into Equation (4.2.31) gives

M
d2U0
dt2 = MΩ2S0 + χ

2

[
|α1|2 (1− β) +|α0|2 (1 + β)

]
, (4.2.32a)

M
d2Un
dt2 = MΩ2 (Sn − Sn−1) + χ

2

[
|αn+1|2 (1− β)

+ 2β|αn|2 −|αn−1|2 (1 + β)
]

for 1 ≤ n ≤ N − 1, (4.2.32b)

M
d2UN
dt2 = −MΩ2SN−1 −

χ

2

[
|αN |2 (1− β) +|αN−1|2 (1 + β)

]
. (4.2.32c)

Since we only consider large lattices with N � 1, we take the liberty of requiring that

α0 = αN = 0. (4.2.33)
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This condition is physically justified as we expect the probability distribution |αn|2 to

be highly localised. Indeed, our numerical results later will confirm that on a lattice

with N = 200, |αn|2 is O(10−1) at only several sites, and towards the boundaries we

have |αn|2 ∼ O(10−30). With Equation (4.2.33) as well as Equation (4.2.22) in place,

we can combine Equations (4.2.32a) to (4.2.32c) into the following single equation for all

0 ≤ n ≤ N :

M
d2Un
dt2 = MΩ2 (Sn − Sn−1) + χ

2
(
|αn+1|2 −|αn−1|2

)
− χ

2 β
(
|αn+1|2 +|αn−1|2 − 2|αn|2

)
. (4.2.34)

We impose the following boundary condition on Un:

U0 = dU0
dt = 0, (4.2.35)

which is also satisfied in an inertial frame with the 0th peptide unit at the origin. To

account for the interaction between the polypeptide and its environment, we add Langevin

terms to the right-hand side of Equation (4.2.34) [Lan08, LG97, Sch10, BEPZ14]. The

Langevin terms are a damping term representing dissipation due to friction, −ΓdUn/dt,

where Γ is the viscous damping coefficient, and a stochastic term Fn(t), representing forces

that arise from thermal fluctuations. Specifically, Fn(t) is normally-distributed with zero

mean and correlation function

〈Fm(t)Fn(t′)〉 = 2ΓkBΘδm,nδ(t− t′), (4.2.36)

where kB is the Boltzmann constant, Θ is the temperature of the environment, δ·,· is the

Kronecker delta and δ(·) is the delta function. Using the fact that |ψn|2 = |αn|2 for all n,

we write the complete dynamical equation for Un as

M
d2Un
dt2 = MΩ2 (Sn − Sn−1) + χ

2
(
|ψn+1|2 −|ψn−1|2

)
− χ

2 β
(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)
− ΓdUn

dt + Fn. (4.2.37)

If we re-scale time and length by

t = Ω−1τ, Un = Lun, (4.2.38)

where

L :=
√
~M−1Ω−1, (4.2.39)
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then we can rewrite Equations (4.2.26) and (4.2.37) to obtain the following dimensionless

dynamical equations for ψn and un, for n = 0, 1, . . . , N :

iψ̇n = κψn
[
(sn + sn−1) + β (sn − sn−1)

]
− ρ (ψn+1 + ψn−1 − 2ψn)

− ε(n− n0)ψn, (4.2.40a)

ün = (sn − sn−1) + κ

[(
|ψn+1|2 −|ψn−1|2

)
− β

(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)]
− γu̇n + fn, (4.2.40b)

where the overdot denotes differentiation with respect to τ , and

sn = un+1 − un. (4.2.41)

The dimensionless parameters that appear in Equation (4.2.40) are

κ = χ

2
√
~MΩ3

, ρ = J1
~Ω , ε = eER

~Ω , γ = Γ
MΩ , fn = Fn√

~MΩ3
, (4.2.42)

where the stochastic forces fn have zero mean and are correlated by

〈fm(τ)fn(τ ′)〉 = 2γθδm,nδ(τ − τ ′), (4.2.43)

with

θ = kBΘ
~Ω (4.2.44)

being thermal energy in units of ~Ω. In practice, we replace the delta function in Equa-

tion (4.2.43) by

δ(τ − τ ′) = 1
∆τ , (4.2.45)

where ∆τ is some small integration time-step. Equations (4.2.40a) and (4.2.40b) hold

subject to the fictitious-point and boundary conditions [cf. Equations (4.2.22), (4.2.33)

and (4.2.35)]:

s−1 = sN = 0, ψ−1 = ψN+1 = 0, ψ0 = ψN = 0, u0 = u̇0 = 0, (4.2.46)

as well as the normalisation condition,
N∑
n=0
|ψn|2 = 1. (4.2.47)

It is easily verifiable that by setting ε = γ = fn = 0 in Equation (4.2.40), and then setting

β = 0 or β = 1, one recovers respectively the Davydov or Scott dynamical equations [cf.

Section 2.2.2].
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4.2.3 Parameters

In the phonon Hamiltonian given by Equation (4.2.3), we take

M = 1.774× 10−25 kg, (4.2.48)

which is the average mass of a peptide unit in a membrane α-helix [Lid04,LWBR10]. For

the value of Ω, we take the hydrogen bond force constant [BESP72,Cho83]

K = 11.7 N ·m−1, (4.2.49)

which implies [cf. Equation (4.2.4)]

Ω = 8.1× 1012 s−1. (4.2.50)

We let the equilibrium lattice spacing be

R = 4.5 Å, (4.2.51)

which is the distance between centres of mass of neighbouring peptide units along an

α-channel [PCB51,BT88]. As for the viscous damping coefficient, Γ, we make an approx-

imation as follows. We use Stokes’ Law to calculate the coefficient for each atom in the

peptide unit [JP88,PBM90,AM13], with µ = 0.068 Pa ·s as the dynamic viscosity [cf. Sec-

tion 2.2.4], and then deduce an overall Γ value for the average peptide unit in a membrane

α-helix, under the assumption that the drag force on the peptide unit is the sum of drag

forces on individual atoms. For example, the viscous damping coefficients for atoms of

hydrogen, carbon, nitrogen and oxygen in the membrane environment are, by our method,

1.1, 3.2, 3.3 and 3.5 pg · s−1, respectively. A peptide unit with, say, an alanine side-chain,

has chemical formula C3H5NO, and we therefore estimate its viscous damping coefficient

to be 22 pg · s−1. Data in [LWBR10], concerning the relative occurrence frequencies of all

possible peptide units in a membrane α-helix, then allow us to estimate Γ for an average

peptide unit to be

Γ = 34 pg · s−1. (4.2.52)

We therefore fix the value of the dimensionless viscous damping coefficient at

γ = 0.024. (4.2.53)
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We also fix the value of ρ, which is an adiabaticity parameter in our system, as it repre-

sents the characteristic time-scale separation between the lattice and electron dynamics.

Following [BEPZ08,BEPZ10,BEPZ14], which fixed a parameter C ≡ 1/ρ2 = 0.22, for the

rest of this Chapter we set

ρ = 2.1. (4.2.54)

This implies J1 = 11 meV, which is nearly 2 orders of magnitude smaller than the transfer

integral applicable to the electron-amide-I model of Chapter 3. The discrepancy may be

due to the fact that we now consider the transfer of electrons between entire peptide units,

rather than just between neighbouring C=O groups which have a much stronger electric

dipole. That being said, both values of J1 are theoretical estimates, and the fact that a

2-order discrepancy exists is indicative of the difficulty of building these models without

empirical data on electron transfer integrals.

The dimensionless parameters whose influence on the system are to be studied, and

therefore whose values will be varied, are β, κ, ε and the thermal energy θ which affects

the stochastic forces fn via Equation (4.2.43). Finally, we note that the characteristic

time-scale and length-scale [cf. Equation (4.2.39)] in our system are, respectively,

Ω−1 = 0.12 ps, L = 0.086 Å = 0.019R, (4.2.55)

and the characteristic energy-scale in our system is

~Ω = 5.3 meV. (4.2.56)

4.2.4 Energetics

The polaron’s total internal energy, measured with respect to the lowest energy in the

electron band, J0 − 2J1, and in units of meV, is

Eb := 5.3× 〈Ψ|Ĥe + Ĥp + Ĥint|Ψ〉 − J0 + 2J1
~Ω . (4.2.57)

We can find an expression for 〈Ĥe〉 := 〈Ψ|Ĥe|Ψ〉 by invoking Equation (4.2.2) for the

definition of Ĥe, and utilising the electron state,

|Ψ〉 =
N∑
n=0

ψn exp
(
− it
~

(J0 − 2J1)
)
Â†n |0〉 . (4.2.58)
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The result is that

〈Ĥe〉
~Ω = J0

~Ω

N∑
m=0

N∑
n=0

N∑
k=0

ψ∗mψk 〈0| ÂmÂ†nÂnÂ
†
k |0〉

− J1
~Ω

N∑
m=0

N−1∑
n=0

N∑
k=0

ψ∗mψk 〈0| ÂmÂ
†
n+1ÂnÂ

†
k + ÂmÂ

†
nÂn+1Â

†
k |0〉

= J0
~Ω

N∑
n=0
|ψn|2 −

J1
~Ω

N−1∑
n=0

(
ψ∗n+1ψn + ψ∗nψn+1

)
,

= J0
~Ω − ρ

N−2∑
n=1

(
ψ∗n+1ψn + ψ∗nψn+1

)
, (4.2.59)

where we have used the normalisation condition for ψn, Equation (4.2.42) for the definition

of ρ, and the boundary condition (4.2.46). For 〈Ĥp〉 := 〈Ψ|Ĥp|Ψ〉, we use Equation (4.2.3)

for the definition of Ĥp and Equation (4.2.39) for the definition of the scaling factor L:

〈Ĥp〉
~Ω = 1

2M~Ω

N∑
n=1

M2L2Ω2 (u̇n)2 + MΩ2

2~Ω

N−1∑
n=0

L2 (un+1 − un)2

= 1
2

 N∑
n=1

(u̇n)2 +
N−1∑
n=0

(un+1 − un)2

, (4.2.60)

where u̇0 = 0 is excluded from the sum. For 〈Ĥint〉 := 〈Ψ|Ĥint|Ψ〉, we have

〈Ĥint〉
~Ω = χL

2~Ω

N−1∑
n=1
|ψn|2

[
(un+1 − un−1) + β (un+1 + un−1 − 2un)

]
, (4.2.61)

where terms involving |ψ0|2 and |ψN |2 have again been set to zero again due to condition

(4.2.46). Putting Equations (4.2.59) to (4.2.61) together, and noting that χL/(2~Ω) = κ,

we have, in units of meV,

Eb = 5.3ρ

2−
N−2∑
n=1

(
ψ∗n+1ψn + ψ∗nψn+1

)+ 5.3
2

 N∑
n=1

(u̇n)2 +
N−1∑
n=0

(un+1 − un)2


+ 5.3κ

N−1∑
n=1
|ψn|2

[
(un+1 − un−1) + β (un+1 + un−1 − 2un)

]
. (4.2.62)

4.3 Stationary Polarons in the Deterministic System

In this Section, we find stationary solutions to our system, neglecting the stochastic forces

fn(τ). We begin by looking for approximate solutions using analytical methods, and the

approximations are useful in our efforts to compute solutions numerically. We present key

characteristics of stationary polarons, such as the maximum localisation probability and

binding energy, as functions of parameters in the system.
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We begin by writing down in Section 4.3.1 a set of equations describing our system

in the stationary state, and in Section 4.3.2 we look at the stationary-state equations in

the continuum limit (N � 1). We show that the continuum limit leads to a generalised

nonlinear Schrödinger equation on the real line, and we proceed to solve the equation

analytically in Section 4.3.3. Finally, we compute stationary solutions on a finite lattice

in Section 4.3.4, using an iterative numerical scheme. Wherever the scheme requires an

initial ansatz, we use a spatially discretised version of one of our continuum solutions.

4.3.1 The Stationary-State Equations

We set fn = 0 and u̇n = ün = 0 in Equation (4.2.40b), obtaining

sn − sn−1 = κ
[
(β − 1)|ψn+1|2 + (β + 1)|ψn−1|2 − 2β|ψn|2

]
= κ

[
β (gn − gn−1)− (cn − cn−1)

]
, (4.3.1)

where we have defined

gn := |ψn+1|2 −|ψn|2 , cn := |ψn+1|2 +|ψn|2 . (4.3.2)

Equation (4.3.1) holds if

sn = κ (βgn − cn) = κ
[
(β − 1)|ψn+1|2 − (β + 1)|ψn|2

]
. (4.3.3)

Putting this sn solution into eq. (4.2.40a) and requiring ε = 0, we deduce

iψ̇n = κψn
[
(1 + β) sn + (1− β) sn−1

]
− ρ (ψn+1 + ψn−1 − 2ψn)

= −κ2ψn

[(
1− β2

)
|ψn+1|2 +

(
1− β2

)
|ψn−1|2 + 2

(
1 + β2

)
|ψn|2

]
− ρ (ψn+1 + ψn−1 − 2ψn) . (4.3.4)

Upon rearrangement, we have

iψ̇n + ρ (ψn+1 + ψn−1 − 2ψn) + 4κ2|ψn|2 ψn

+ κ2
(
1− β2

) [
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

]
= 0. (4.3.5)

Defining

∆ψn := ψn+1 + ψn−1 − 2ψn, (4.3.6a)

∆|ψn|2 := |ψn+1|2 +|ψn−1|2 − 2|ψn|2 , (4.3.6b)
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as well as the composite paramters

λ := 4κ2

ρ
≡ χ2

MΩ2J1
, (4.3.7a)

η := κ2

ρ

(
1− β2

)
≡ λ

4
(
1− β2

)
, (4.3.7b)

allows us to rewrite Equation (4.3.5) as

iρ−1ψ̇n + ∆ψn + λ|ψn|2 ψn + η∆|ψn|2 ψn = 0. (4.3.8)

Since ρ is fixed, investigating the dependence of our system on κ is equivalent to exploring

the effect of λ. Moreover, there is a physical interpretation of λ: it is the product of

two ratios of characteristic force or energy scales, both involving the electron-phonon

coupling constant χ. Firstly, the ratio χ/(MRΩ2) is the force-scale separation between

the electron-phonon interaction and hydrogen bond strength. Secondly, the ratio χR/J1 is

the energy-scale separation between the electron-phonon interaction and nearest-neighbour

electron transfer. Thus, in literature concerning electron-phonon models, either λ is or
√
λ is commonly known as the effective coupling parameter [KAT98].

In a stationary state, the time dependence of ψn can be at most a variation of its

phase factor. We may therefore consider the stationary-state ansatz,

ψn(τ) = exp (iρH0τ + ikx)φ(x)
∣∣
x=n−N/2, (4.3.9)

where x is a real, continuous variable taking values in −N/2 ≤ x ≤ N/2, φ is a real,

smooth function, k is a constant real wavenumber, and H0 is a constant real eigenvalue in

the sense that

iρ−1ψ̇n = −H0ψn. (4.3.10)

We will numerically look for such stationary-state solutions to our system in Section 4.3.4.

Before that, we present an analytical interlude in the form of the next two Sections.

4.3.2 The Continuum Limit

In the limit N � 1, we write x = ξN for some ξ and φ(x) = φ̃(ξ) for some φ̃, so that

ψn±1 = exp (iρH0τ + ikξN) φ̃(ξ)
∣∣∣
ξ=(n±1)/N−1/2

= exp
(
iρH0τ + ik

(
n± 1−N/2

))
×
(
φ̃(ξ)±N−1φ̃′(ξ) + N−2

2 φ̃′′(ξ) +O
(
N−3

))∣∣∣∣∣
ξ=n/N−1/2.

(4.3.11)
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Multiplying Equation (4.3.11) by its complex conjugate, we obtain

|ψn±1|2 = φ̃(ξ)2 ± 2N−1φ̃(ξ)φ̃′(ξ)

+ N−2φ̃(ξ)φ̃′′(ξ) +N−2
(
φ̃′(ξ)

)2
+O

(
N−3

)∣∣∣∣
ξ=n/N−1/2.

(4.3.12)

Equation (4.3.11) also implies

∆ψn = exp
(
iρH0τ + ik

(
n−N/2

))
×

 exp(ik)
(
φ̃(ξ) +N−1φ̃′(ξ) + N−2

2 φ̃′′(ξ)
)

+ exp(−ik)
(
φ̃(ξ)−N−1φ̃′(ξ) + N−2

2 φ̃′′(ξ)
)

− 2φ̃(ξ) +O
(
N−3

)∣∣∣∣∣∣
ξ=n/N−1/2,

(4.3.13)

and Equation (4.3.12) implies

∆|ψn|2 = 2N−2φ̃(ξ)φ̃′′(ξ) + 2N−2
(
φ̃′(ξ)

)2
+O

(
N−3

)∣∣∣∣
ξ=n/N−1/2.

(4.3.14)

Putting Equations (4.3.9), (4.3.10), (4.3.13) and (4.3.14) into Equation (4.3.8), we obtain

0 = exp
(
iρH0τ + ik

(
n−N/2

))
×

−H0φ̃(ξ) +
(

cos(k) + i sin(k)
)(

φ̃(ξ) +N−1φ̃′(ξ) + N−2

2 φ̃′′(ξ)
)

+
(

cos(k)− i sin(k)
)(

φ̃(ξ)−N−1φ̃′(ξ) + N−2

2 φ̃′′(ξ)
)
− 2φ̃(ξ) + λφ̃(ξ)3

+ η

[
2N−2φ̃(ξ)φ̃′′(ξ) + 2N−2

(
φ̃′(ξ)

)2
]
φ̃(ξ) +O(N−3)

∣∣∣∣∣∣
ξ=n/N−1/2.

(4.3.15)

Retaining terms up to O(N−2) and rearranging gives

0 = −H0φ̃(ξ) + cos(k)
[
2φ̃(ξ) +N−2φ̃′′(ξ)

]
+ 2i sin(k)N−1φ̃′(ξ)

− 2φ̃(ξ) + λφ̃(ξ)3 + ηN−2
[
2φ̃(ξ)φ̃′′(ξ) + 2

(
φ̃′(ξ)

)2
]
φ̃(ξ)

∣∣∣∣∣
ξ=n/N−1/2.

(4.3.16)

Equating imaginary parts of Equation (4.3.16) gives k = lπ where l is any integer, so

cos(k) = ±1. We focus on the case of cos(k) = 1, and at the end of Section 4.3.3 we will

argue that cos(k) = −1 cannot lead to a square-normalisable φ solution and therefore need

not be considered. Now, since φ̃′(ξ) = Nφ′(x)
∣∣∣
x=ξN

and φ̃′′(ξ) = N2φ′′(x)
∣∣∣
x=ξN

, where ′
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always denotes differentiation with respect to the argument in parentheses, the real part

of Equation (4.3.16) becomes

−H0φ(x) + φ′′(x) + λφ(x)3

+ η

[
2φ(x)φ′′(x) + 2

(
φ′(x)

)2
]
φ(x)

∣∣∣∣∣
x=n−N/2

= 0. (4.3.17)

We seek φ(x) which satisfies eq. (4.3.17) for all real x, not just when x = n − N/2, and

let N →∞. Noting the identity

2φ(x)φ′′(x) + 2
(
φ′(x)

)2
≡
(
φ(x)2

)′′
, (4.3.18)

we can write the globally-defined version of Equation (4.3.17), for all real x, as

−H0φ(x) + φ′′(x) + λφ(x)3 + η
(
φ(x)2

)′′
φ(x) = 0. (4.3.19)

We require that φ(x) has vanishing derivatives at infinity, and is normalised:∫ ∞
−∞

φ(x)2 dx = 1. (4.3.20)

If η = 0 (i.e. β = 1), then Equation (4.3.19) reduces to the stationary form of the non-

linear Schrödinger equation with a focusing cubic nonlinearity, which has a well-known

normalised solution [Hir73,Sco92],

H0 = λ2/16, φ(x) = ±

√
λ

8 sechλx4 for all x. (4.3.21)

For a general value of η ≥ 0, we call Equation (4.3.19) a stationary generalised nonlinear

Schrödinger equation (GNLSE).

We have therefore established that in the continuum limit, Equation (4.3.8) with the

stationary ansatz (4.3.9) may be approximated by Equation (4.3.19). If we have a global

solution to Equation (4.3.19), then putting it into Equation (4.3.9) gives us an approximate

stationary solution to Equation (4.3.8).

4.3.3 Solving the Generalised Nonlinear Schrödinger Equation

In this Section, we use analytical methods to find a global φ(x) solution to Equation (4.3.19),

together with eigenvalue H0, given parameters λ > 0 and η > 0 (i.e. β < 1). Not only

has this particular generalisation of the nonlinear Schrödinger equation never before been
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studied, our analytical solution will be useful when we look for stationary polaron states

numerically, as it can be an ansatz for our numerical scheme.

We look for a smooth solution φ(x) satisfying the constraint (4.3.20). Moreover,

we observe that Equation (4.3.19) is invariant under spatial translation and reflection,

meaning that if φ(x) is a solution then so is ϕ(x) = φ(c − x) for any constant c. This

fact enables us to look exclusively for solutions which are reflectively symmetric about an

arbitrary value of x, which we set without loss of generality to x = 0; that is to say, we

look for even solutions, and for now we restrict the domain for Equation (4.3.19) to x ≥ 0.

To make progress, firstly we rewrite Equation (4.3.19) as

−H0φ+
(
1 + 2ηφ2

)
φ′′ + λφ3 + 2η(φ′)2φ = 0, (4.3.22)

where we have suppressed the argument x of the function φ. Equation (4.3.22) is an

autonomous equation for φ, which allows us to look for solutions in the phase space, where

φ′ is a function of φ. In order for φ′ to be a well-defined function of φ for all x ≥ 0, it

must be the case that every value of φ(x ≥ 0) gives one and only one value of φ′. For now

we assume this to be the case, and we will verify it once we have found φ(x). We define

h(φ) := φ′, (4.3.23)

and write

φ′′ ≡ dφ′

dφ φ
′ = hhφ, (4.3.24)

where the subscript φ denotes differentiation with respect to φ. We then define

y(φ) := h(φ)2 = (φ′)2, (4.3.25)

so that

yφ = 2hhφ = 2φ′′, (4.3.26)

and we multiply Equation (4.3.22) by 2 to obtain(
1 + 2ηφ2

)
yφ + 4ηφy = 2H0φ− 2λφ3. (4.3.27)

The left-hand side of Equation (4.3.27) is the total derivative of (1 + 2ηφ2)y with respect

to φ. We therefore have

y =
∫ (

2H0φ− 2λφ3
)
dφ

1 + 2ηφ2

= H0φ
2 − λφ4/2 + C

1 + 2ηφ2 . (4.3.28)
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The integration constant C is determined by considering the limit x→∞, in which φ2 → 0

and y = (φ′)2 → 0. We therefore have C = 0. Now we note that if H0 ≤ 0, then the right-

hand side of Equation (4.3.28) is negative whenever φ 6= 0, so it cannot equal the left-hand

side which is (φ′)2. Thus, if H0 ≤ 0 then the only φ(x) satisfying Equation (4.3.28) is

identically zero. We therefore require

H0 > 0, (4.3.29)

so that non-trivial solutions are at least possible. Multiplying Equation (4.3.28) by 4φ2,

we obtain

(
2φφ′

)2
= 4H0φ

4 − 2λφ6

1 + 2ηφ2 . (4.3.30)

We then define

Φ := φ2, (4.3.31)

so that Equation (4.3.30) becomes

(
Φ′
)2

= 4H0Φ2 − 2λΦ3

1 + 2ηΦ . (4.3.32)

Now, if we had restricted the domain of Equation (4.3.19) to x < 0 instead of x ≥ 0,

we would have still derived exactly Equation (4.3.32). Thus, we may say Φ(x) = φ(x)2

for all real x, and that globally, whenever φ satisfies Equation (4.3.19), Equation (4.3.32)

holds. The converse, that globally whenever Φ solves Equation (4.3.32), φ = ±
√

Φ solves

Equation (4.3.19), holds under one condition: since the derivation from Equation (4.3.19)

to Equation (4.3.32) involved a multiplication by φ2 ≡ Φ, the backwards derivation is valid

if and only if Φ 6= 0. In other words: say we have a global Φ solution to Equation (4.3.32);

wherever Φ 6= 0, we can use Φ = φ2 to recover the φ solution to Equation (4.3.19), but at

any x where Φ = 0, we cannot. We therefore aim to find a solution to Equation (4.3.32)

which is globally positive, and satisfies∫ ∞
−∞

Φ(x) dx = 1. (4.3.33)

In fact, Φ is by definition non-negative; and if Φ globally satisfies Equations (4.3.32)

and (4.3.33), is at least twice-differentiable and has vanishing derivatives at infinities,

then we can prove that Φ never equals zero, as we do over the next 12 steps ((i) to (xii)).
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Firstly we claim that:

(i) Φ(x) must attain its global upper bound of 2H0/λ at some finite x, and every local

maximum of Φ(x) must also be a global maximum.

The proof of this claim is as follows. Since Φ(x) is not identically constant (otherwise

Equation (4.3.33) would be violated), and since

lim
x→±∞

Φ(x) = 0, (4.3.34)

Φ(x) must have at least one turning point at some finite x and positive Φ. But we observe

from Equation (4.3.32) that Φ′ vanishes if and only if Φ = 0 or 2H0/λ > 0. Therefore, Φ(x)

must attain its global upper bound of 2H0/λ at least once, and no other local maximum

value is possible. This concludes the proof.

We further propose that:

(ii) Wherever Φ(x) attains its maximum value, say at x = xmax, the second derivative

Φ′′ does not vanish there.

The proof is as follows. On the one hand, we have

Φ′′ ≡ 2φφ′′ + 2(φ′)2, (4.3.35)

as well as

φ′ ≡ Φ′/(2φ)

= 0 when x = xmax, (4.3.36)

which together imply

Φ′′ = 2φφ′′ when x = xmax. (4.3.37)

(Dividing by φ in Equation (4.3.36) is permissible because when x = xmax, we know that

φ 6= 0.) On the other hand, instead of rewriting Equation (4.3.19) as Equation (4.3.22),

we could have rewritten it as

ηφΦ′′ = H0φ− φ′′ − λφ3. (4.3.38)

Combining Equations (4.3.37) and (4.3.38), we have(
1

2φ + ηφ

)
Φ′′ = H0φ− λφ3 when x = xmax, (4.3.39)
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which we multiply by 2φ to obtain

Φ′′ = 2H0Φ− 2λΦ2

1 + 2ηΦ when x = xmax. (4.3.40)

Since

Φ(xmax) = 2H0
λ
, (4.3.41)

it follows from Equation (4.3.40) that

Φ′′(xmax) = −4H2
0

λ+ 4ηH0
< 0, (4.3.42)

as required.

A corollary of the above proposition is that:

(iii) There must exist some neighbourhood of x = xmax containing no maxima of Φ(x)

other than at xmax itself. We say that Φ(x) has an isolated maximum at x = xmax.

To prove this corollary, we suppose it is false, so that every neighbourhood of x = xmax

contains some x 6= xmax at which Φ(x) is maximal. Then, by choosing x-values from

smaller and smaller neighbourhoods of xmax, we would be able to construct a sequence xn
approaching xmax such that Φ(x) is maximal at every xn, with

Φ(xn) = Φ(xmax) for all n. (4.3.43)

But this leads to a contradiction. Indeed, for every xn we have the Taylor expansion

Φ(xn) = Φ(xmax) + Φ′′(xmax)
2 (xn − xmax)2 +O

(
(xn − xmax)3

)
, (4.3.44)

where the first derivative of Φ is absent because Φ(xmax) is maximal; so it follows that

Φ′′(xmax) = lim
n→∞

2 · Φ(xn)− Φ(xmax)
(xn − xmax)2 = lim

n→∞
2 · 0

(xn − xmax)2 = 0, (4.3.45)

which contradicts the previous proposition, in particular Equation (4.3.42). Therefore the

corollary is proven.

Due to the translational invariance of Equation (4.3.32), meaning if Φ(x) is a solution

then so is Φ(x+ c) for any constant c, we can require without loss of generality that:

(iv) Φ(x) has an isolated maximum at x = 0, and we define

Φ0 := Φ(0) = 2H0
λ
. (4.3.46)
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Now we claim that:

(v) There exists b > 0, which may be infinite, such that

lim
x→b−

Φ(x) = 0, Φ(x) 6= 0 for 0 < x < b. (4.3.47)

The proof of this claim is as follows. If Φ(x) 6= 0 for 0 < x <∞, then b is infinite, and

we are done. Therefore we suppose Φ(x) = 0 for some 0 < x <∞, and then the set

M1 = {x : 0 < x <∞ and Φ(x) = 0} (4.3.48)

must have a minimum. Indeed, if it does not, then there would be a sequence xn > 0 such

that, as n → ∞, xn → 0 and Φ(xn) → 0; but this would contradict the fact that Φ(x) is

continuous at x = 0 and takes value Φ0 > 0 there. Now, letting

b = minM1, (4.3.49)

then we are done.

Our next proposition, once Φ0 and b are established, is that:

(vi) The Φ(x) solution is unique for 0 ≤ x < b.

We prove this as follows. If Φ(x) is maximal at any 0 < x <∞, then the set

M2 = {x : 0 < x <∞ and Φ(x) is maximal at x} (4.3.50)

must have a minimum, because otherwise we would have a contradiction to the fact that

Φ(x) has an isolated maximum at x = 0. Let

x2 = minM2, (4.3.51)

and suppose x2 < b. Since Φ(0) and Φ(x2) are maximal, and since Φ(x) is not maximal

for 0 < x < x2, and since Φ(x) is continuous, Φ(x) must attain its minimum value at

some point x1 with 0 < x1 < x2. But that minimum value can only be 0 (recall that only

Φ = 0 and Φ = Φ(0) cause Φ′ to vanish), and so we have Φ(x1) = 0 where x1 < x2 < b,

contradicting the fact that Φ(x) 6= 0 for 0 < x < b. Therefore, we cannot have x2 < b;

and since by definition we cannot have x2 = b either, we must have x2 > b. Since Φ′

vanishes only at maxima (where Φ = Φ0) and minima (where Φ = 0), and since we have

just established that Φ has no maxima or minima for 0 < x < b, it follows that Φ′ is
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non-vanishing for 0 < x < b, and therefore Φ(x) is strictly decreasing for 0 ≤ x < b. Thus,

from Equation (4.3.32) we have

Φ′ = −
√

4H0Φ2 − 2λΦ3

1 + 2ηΦ for 0 ≤ x < b, (4.3.52)

and using Equation (4.3.46) we further deduce

Φ′ = −g(Φ) := −2
√
H0Φ

√
1− Φ/Φ0
1 + 2ηΦ for 0 ≤ x < b, Φ0 ≥ Φ > 0. (4.3.53)

Now consider some Φ1,Φ2 with 0 < Φ2 < Φ1 < Φ0. For Φ2 ≤ Φ ≤ Φ1, the function g(Φ) is

continuous and non-zero, so the reciprocal function 1/g(Φ) is continuous and bounded, and

therefore Riemann integrable from Φ = Φ2 to Φ = Φ1. But the integrability of 1/g(Φ) from

Φ = Φ2 to Φ = Φ0 is less straightforward, since limΦ→Φ0 g(Φ) = 0, which means 1/g(Φ)

becomes unbounded as Φ → Φ0. Fortunately, Φ = Φ0 is an integrable singularity of the

function 1/g(Φ), because the Puiseux series of 1/g(Φ) about Φ = Φ0 is O(|Φ − Φ0|−1/2).

Indeed the Puiseux series is (−2
√
H0)−1√(1 + 2ηΦ0)/Φ0 |Φ − Φ0|−1/2 + O(|Φ − Φ0|1/2).

Therefore 1/g(Φ) is Riemann integrable from Φ = Φ2 to Φ = Φ0. This means that for any

Φ̃ satisfying 0 < Φ̃ ≤ Φ0, we may make use of Equation (4.3.53) to write∫ Φ0

Φ̃

1
g(Φ) dΦ =

∫ Φ0

Φ̃
− dx
dΦ dΦ = x(Φ̃)− x(Φ0) = x(Φ̃), (4.3.54)

which is an equation that, given Φ̃, uniquely determines a corresponding x with 0 ≤ x < b.

The left-hand side of Equation (4.3.54) is a strictly decreasing function of Φ̃, meaning

x(Φ̃) has a unique inverse function which is also strictly decreasing, Φ̃(x), on the domain

0 ≤ x < b. Thus, Equation (4.3.54) provides a bijective correspondence between the set

of Φ̃ with 0 < Φ̃ ≤ Φ0 and the set of x with 0 ≤ x < b, and this correspondence provides

the unique solution to Equation (4.3.32) that we sought. Our proposition is therefore

constructively proven. We note also that Equation (4.3.53) implies the corollary:

(vii) Φ(x) is strictly decreasing for 0 ≤ x < b.

Now, using exactly the same arguments as above, we could have found that:

(viii) There exists some a < 0, which may be infinite, such that Φ(x) is strictly increas-

ing for a < x ≤ 0, and limx→a+ Φ(x) = 0, and Φ(x) is the unique solution for a < x ≤ 0.

We can therefore consider Equation (4.3.32) on its domain of uniqueness, a < x < b,

where Equation (4.3.32) is identical to

Φ′ = G(x,Φ) := −sgn(x)g(Φ), (4.3.55)
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where g is defined by Equation (4.3.53), and sgn is the sign function.

So far, we have established the following. If Equation (4.3.32) has a solution Φ(x)

which is globally non-negative and at least twice-differentiable, has vanishing derivatives

at infinities and unit integral over the real line, then Φ also has the following properties:

it satisfies the condition (4.3.46), is positive and strictly decreasing on 0 ≤ x < b for

some b > 0 which may be infinite, is positive and strictly increasing on a < x ≤ 0 for

some a < 0 which may be infinite, and limx→b− Φ(x) = limx→a+ Φ(x) = 0, and Φ(x) is

the unique solution to Equation (4.3.32) for a < x < b. We have also argued that we

can use this Φ solution and the relation Φ = φ2 to deduce a φ solution to the stationary

GNLSE, Equation (4.3.19), on the condition that Φ 6= 0. That is to say, the equivalence

between Equations (4.3.19) and (4.3.32) breaks down outside the interval (a, b). We would

therefore like to show that both a and b are infinite, because that would mean Φ(x) is

positive on −∞ < x <∞.

We proceed to describe a method which, given λ and η, determines the unique Φ(x)

for a < x < b, and also determines a, b and H0 in the process. Indeed we will show that:

(ix) For any λ and any η, both a and b are infinite.

Our method is as follows. For 0 ≤ x < b, consider the change of variable,

Z(Φ) := arsech
(
Y (Φ)

)
, where Y (Φ) :=

√
Φ
Φ0

=
√
λΦ
2H0

. (4.3.56)

Φ(x) is a bijection from the interval [0, b) to the interval (0,Φ0], Y (Φ) is a bijection from

(0,Φ0] to (0, 1], and the inverse sech function, arsech, is a bijection from (0, 1] to [0,∞).

Therefore, all the coordinate transformations are invertible. For a < x ≤ 0, we consider

exactly the same transformations as Equation (4.3.56), except that the map x 7→ Z now

is a bijection from the interval (a, 0] to the interval [0,∞). Differentiating Z with respect

to x we find, for a < x < b,

Z ′ = ZY · YΦ · Φ′

= −1
Y
√

1− Y 2
· 1

2
√

Φ0Φ
·
[
− sgn(x)g(Φ)

]
= sgn(x)

2Φ
√

1− Φ/Φ0
· g(Φ)

= sgn(x)
√
H0√

1 + 2ηΦ
, (4.3.57)
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where we have used definition (4.3.53) of g(Φ). Moreover, from Equation (4.3.56) it also

follows that

2ηΦ = 2ηΦ0Y
2 = 2η2H0

λ
sech2Z. (4.3.58)

Defining

ν := 4ηH0
λ

, (4.3.59)

and utilising Equation (4.3.58), we rewrite Equation (4.3.57) as

Z ′ = sgn(x)
√
H0√

1 + ν sech2Z
. (4.3.60)

Now, we have Z(x = 0) = 0. We can therefore integrate Equation (4.3.60), obtaining

sgn(x)
√
H0

∫ x

0
dx̃ =

∫ Z

0

√
1 + ν sech2Z̃ dZ̃, (4.3.61)

which yields

sgn(x)
√
H0 x = arsinh

(
sinhZ√

1 + ν

)
+
√
ν arctan

( √
ν sinhZ√
ν + cosh2 Z

)
. (4.3.62)

Now we can determine the values of a and b. In the limit Z → +∞, the definition of the

coordinate transformation (4.3.56) dictates that we must have either x → a or x → b; at

the same time, Equation (4.3.62) dictates that we must have x→ ±∞, because the arctan

function on the right-hand side of Equation (4.3.62) is bounded whilst the arsinh function

diverges to +∞. It therefore follows that the interval (a, b) is the real line. This implies,

as we have already argued, that:

(x) Equations (4.3.19) and (4.3.32) are globally equivalent.

The next step in completely solving Equation (4.3.32) is to rewrite Equation (4.3.62)

as an expression for x in terms of Φ, so that we can invert the expression to find Φ(x).

By definition (4.3.56), we have

cosh2 Z = 1
Y 2 = Φ0

Φ , (4.3.63)

and it follows that

sinh2 Z = cosh2 Z − 1 = Φ0
Φ − 1. (4.3.64)

Since Z is by definition non-negative, we must take the positive square root,

sinhZ =

√
Φ0
Φ − 1. (4.3.65)

96



CHAPTER 4. THE ELECTRON-PHONON SYSTEM IN A LINEAR α-CHANNEL

Then Equation (4.3.62) becomes

sgn(x)
√
H0 x = arsinh

√
1− (Φ/Φ0)

(1 + ν) (Φ/Φ0) +
√
ν arctan

√
ν
(
1− (Φ/Φ0)

)
1 + (νΦ/Φ0) , (4.3.66)

and we claim that:

(xi) Given Φ0 > 0 and −∞ < x < ∞, Equation (4.3.66) uniquely determines a value

of Φ > 0.

The proof is as follows. If x = 0, then immediately from Equation (4.3.66) we have

Φ = Φ0, and we are done. If x 6= 0, consider the function

G(Φ; {Φ0, x}) := arsinh
√

1− (Φ/Φ0)
(1 + ν) (Φ/Φ0) +

√
ν arctan

√
ν
(
1− (Φ/Φ0)

)
1 + (νΦ/Φ0) − sgn(x)

√
H0 x,

(4.3.67)

where Φ0 and x are parameters. Differentiating Equation (4.3.67) with respect to Φ gives

dG
dΦ = − 1

2Φ

√
1 + (νΦ/Φ0)
1− (Φ/Φ0) < 0 for Φ > 0. (4.3.68)

This means G is strictly decreasing for Φ > 0. Since G(Φ)→∞ in the limit Φ→ 0, and

G(Φ0; {Φ0, x}) = −sgn(x)
√
H0 x < 0, (4.3.69)

and G is continuous, we must have G(Φ) vanishing exactly once in 0 < Φ < Φ0. This

concludes the proof.

We observe that in Equation (4.3.66) the left-hand side is invariant under x 7→ −x.

Therefore, we have Φ(−x) = Φ(x) for all real x. In practice, given any Φ0 > 0 and

−∞ < x < ∞, we can compute Φ(x) by locating the zero of G(Φ; {Φ0, x}). However,

the value of Φ0 cannot be freely chosen. Instead, it is determined by the normalisation

condition (4.3.33) which, since Φ(x) is an even function, now reads

1 = 2
∫ ∞

0
Φ(x) dx = 2

∫ Z=∞

Z=0

Φ
Z ′+

dZ, (4.3.70)

where the Z ′+ is the positive-x branch of Z ′ [cf. Equation (4.3.60)]. It then follows that

1 = 2
∫ ∞

0

Φ
√

1 + ν sech2Z√
H0

dZ. (4.3.71)

Using Φ = Φ0 sech2Z, we deduce
√
H0

2Φ0
=
∫ ∞

0
sech2Z

√
1 + ν sech2Z dZ (4.3.72a)

= 1
2 + (1 + ν) arctan

√
ν

2
√
ν

. (4.3.72b)
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Multiplying Equation (4.3.72b) by 2
√
ν, replacing H0 by λΦ0/2, and replacing ν by

ν = 4ηH0
λ

= 2ηΦ0, (4.3.73)

we obtain the following transcendental equation for Φ0:

√
λη =

√
2ηΦ0 + (1 + 2ηΦ0) arctan

√
2ηΦ0. (4.3.74)

We claim that:

(xii) Given (λ, η), Equation (4.3.74) uniquely determines Φ0.

To prove this claim, we consider the function

F(Φ0) :=
√

2ηΦ0 + (1 + 2ηΦ0) arctan
√

2ηΦ0 −
√
λη. (4.3.75)

Differentiating F(Φ0) with respect to Φ0, we find

dF
dΦ0

= 2η
(

1√
2ηΦ0

+ arctan
√

2ηΦ0

)
> 0 for Φ0 > 0. (4.3.76)

This means F(Φ0) is strictly increasing for Φ0 > 0. Since

lim
Φ0→0

F(Φ0) = −
√
λη < 0, (4.3.77)

and F(Φ0)→∞ in the limit Φ0 →∞, and F is continuous, we must have F vanishing at

exactly one value of Φ0 > 0. Given parameters λ and η, we can compute Φ0 by locating

the zero of F(Φ0), and Φ0 uniquely determines the energy eigenvalue,

H0 = λΦ0
2 . (4.3.78)

We can then feed the values Φ0 and H0 into Equation (4.3.66), and then for every real x

we can find Φ(x) by means we have described.

In summary, given λ and η, Equations (4.3.46), (4.3.66) and (4.3.74) together con-

stitute an analytical solution to Equation (4.3.32), which is globally equivalent to Equa-

tion (4.3.19); we therefore have the unique global solution to Equation (4.3.19) satisfying

all the constraints we have imposed.

We note that if the parameter η → 0, we should recover the solution to the nonlinear

Schrödinger equation with focusing cubic nonlinearity, given by Equation (4.3.21); and

indeed we do. Firstly, in the limit η → 0, we have ν → 0, which means we cannot use

Equation (4.3.74) to determine Φ0, because the derivation of Equation (4.3.74) involved a
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multiplication by
√
ν. Instead, we must extract Φ0 from Equation (4.3.72a). In the limit

ν → 0, Equation (4.3.72a) is simply√
λ

8Φ0
=
∫ ∞

0
sech2Z dZ = 1. (4.3.79)

It follows that Φ0 = λ/8, agreeing with Equation (4.3.21). Then Equation (4.3.46) de-

termines the eigenvalue H0 = λΦ0/2 = λ2/16, again agreeing with Equation (4.3.21).

Finally, when ν → 0, Equation (4.3.66) is simply

sgn(x)
√
H0 x = arsinh

√
Φ0
Φ − 1, (4.3.80)

which is equivalent to

Φ0
Φ = 1 + sinh2

(√
H0 x

)
= cosh2

(
λx

4

)
, (4.3.81)

and therefore

Φ = Φ0 sech2
(
λx

4

)
, (4.3.82)

agreeing with Equation (4.3.21) once more.

In Section 4.3.2, we alluded to the fact that had we chosen the wavenumber k in the

stationary ansatz (4.3.9) to satisfy cos(k) = −1, instead of the cos(k) = 1 that we did

choose, then we would have obtained an equation for φ which had no square-normalisable

solution. Here, we verify that claim.

If cos(k) = −1 in Equation (4.3.16), then instead of Equation (4.3.22), we obtain

−H̃0φ+
(
−1 + 2ηφ2

)
φ′′ + λφ3 + 2η(φ′)2φ = 0, (4.3.83)

where we have suppressed the argument x of the function φ, and

H̃0 := H0 + 4 (4.3.84)

is an eigenvalue. Rewriting Equation (4.3.83) in phase space and defining y(φ) := (φ′)2,

as we did for the cos(k) = 1 case, we have the following relation between y and φ, which

is analogous to Equation (4.3.28):

y = H̃0φ
2 − λφ4/2

−1 + 2ηφ2 . (4.3.85)
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Since φ is required to be bounded and smooth, y must be well-defined for every φ. There-

fore we must have −1 + 2ηφ2 6= 0 for all values of x. But −1 + 2ηφ2 itself is a continous

function of φ, which means that we must have either −1 + 2ηφ2 > 0 or −1 + 2ηφ2 < 0 for

all x. For φ to be square-normalisable, φ must be vanishing at x → ±∞, which implies

that we must have −1+2ηφ2 < 0 for all x. Now that we have established that the denom-

inator of the right-hand side of Equation (4.3.85) is always negative, the numerator must

be non-positive, because the left-hand side is the square of a real function. We therefore

have that either φ is identically zero, which trivially satisfies Equation (4.3.83) but is not

square-normalisable, or that φ2 takes values in the following range:

2H̃0
λ
≤ φ2 <

1
2η . (4.3.86)

If the eigenvalue H̃0 is non-negative, then any φ which satisfies Equation (4.3.86) cannot

possibly be square-normalisable over the real line. Thus, we must require

H̃0 < 0. (4.3.87)

This is problematic, because examining Equation (4.3.85) we see that y ≡ (φ′)2 vanishes if

and only if φ2 = 2H̃0/λ, and requiring H̃0 < 0 implies that φ′ never vanishes, in other words

φ is either strictly increasing or strictly decreasing over the real line. Such a function cannot

possibly be square-normalisable. Thus, we have established that cos(k) = −1 cannot lead

to a physically meaningful φ solution, thereby justifying our choice of cos(k) = 1.

4.3.4 Numerical Solutions to the Stationary-State Equations

With the help of analytical results we have already obtained, we use an iterative numerical

scheme in this Section to compute stationary solutions to our system, in particular to

Equation (4.3.8) for the stationary electron probability density, |ψn|2. We will compare

our numerical solutions with the approximate solutions we obtained via the continuum

limit in Section 4.3.3.

We briefly outline the numerical scheme here, which is a variation on the conver-

gence algorithm that we described in detail in Section 3.3.1, where we also described the

motivation for adopting this non-standard approach.

We consider the following equation, written in terms of some complex-valued ψ̃n(τ)
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and a parameter H0, which is a variant of Equation (4.3.8):

ρ−1 d
dτ ψ̃n = −H0ψ̃n +

(
ψ̃n+1 + ψ̃n−1 − 2ψ̃n

)
+ λ

∣∣∣ψ̃n∣∣∣2 ψ̃n
+ η

(∣∣∣ψ̃n+1
∣∣∣2 +

∣∣∣ψ̃n−1
∣∣∣2 − 2

∣∣∣ψ̃n∣∣∣2) ψ̃n. (4.3.88)

If we write out the real and imaginary parts of Equation (4.3.88), for ψ̃n = yn + izn, we

obtain two equations which are symmetric with respect to re-labelling:

ρ−1ẏn = −H0yn + (yn+1 + yn−1 − 2yn) + λ
∣∣∣ψ̃n∣∣∣2 yn

+ η

(∣∣∣ψ̃n+1
∣∣∣2 +

∣∣∣ψ̃n−1
∣∣∣2 − 2

∣∣∣ψ̃n∣∣∣2) yn, (4.3.89a)

ρ−1żn = −H0zn + (zn+1 + zn−1 − 2zn) + λ
∣∣∣ψ̃n∣∣∣2 zn

+ η

(∣∣∣ψ̃n+1
∣∣∣2 +

∣∣∣ψ̃n−1
∣∣∣2 − 2

∣∣∣ψ̃n∣∣∣2) zn, (4.3.89b)

where ∣∣∣ψ̃n∣∣∣2 = y2
n + z2

n. (4.3.90)

This symmetry enables us to set yn = zn, thereby decoupling the real and imaginary parts

of ψ̃n, and without loss of generality simply consider the equation for yn:

ρ−1ẏn = −H0yn + (yn+1 + yn−1 − 2yn)

+ 2λyn3 + 2η
(
yn+1

2 + yn−1
2 − 2yn2

)
yn, (4.3.91)

on a grid defined by n = 0, 1, . . . , N with fictitious points and boundary terms y−1 = y0 =

yN = yN+1 = 0. If yn is some stationary y0
n, then we must have

H0y
0
n =

(
y0
n+1 + y0

n−1 − 2y0
n

)
+ 2λy0

n
3 + 2η

(
y0
n+1

2 + y0
n−1

2 − 2y0
n

2)
y0
n, (4.3.92)

for all n. We take some initial guess for H0 and some initial yn(0) with a global maximum

at n = n0, which is such a configuration that the value of yn(0) drops off significantly

beyond n = n0 ± 2, and integrate Equation (4.3.91) forward in time. If the initial guess

for H0 is sufficiently close to the H0 that eventually satisfies Equation (4.3.92), then

yn(τ > 0) will continue to exhibit the characteristic drop-off away from n = n0. When

we reach τ = 104∆τ - an arbitrarily chosen time-interval which is moderate in length

- we make use of yn(104∆τ) to redefine H0 before performing further integration steps.

Specifically, we use only three points in yn(104∆τ), namely yn0 and yn0±1, and let

H̃n0 :=
(
yn0+1 + yn0−1

yn0
− 2

)
+ 2λy0

n0
2 + 2η

(
y0
n0+1

2 + y0
n0−1

2 − 2y0
n0

2)
, (4.3.93)
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and similarly H̃n0±1. The numerical stability of this scheme relies upon the values of

yn0 and yn0±1 being sufficiently far from zero. Assuming that is always the case, which

is automatically verified if the scheme successfully produces stationary solutions, then

for each n, H̃n is the value that H0 should take if yn and yn±1 were all taken from the

stationary solution y0
n. We then take the average of H̃n0 and H̃n0±1, defining

H̃′0 := 1
3
(
H̃n0−1 + H̃n0 + H̃n0+1

)
, (4.3.94)

and redefine H0 according to

H0 7→
H0 + H̃′0

2 . (4.3.95)

This process ‘nudges’ H0 closer to the value it needs to be. The new H0 obtained by

Equation (4.3.95) is then fed back into Equation (4.3.91) before we continue to integrate

the equation from τ = 104∆τ to τ = 2 · 104∆τ , at which time we redefine H0 again, and

so on. In practice, this algorithm converges concurrently in the yn configuration and in

the H0 value, within O(106) integration steps. Once convergence has occurred, one could

make use of the fact that ψ̃n = yn + izn and yn = zn to recover the stationary ψ̃n solution

to Equation (4.3.88). However our real aim is to express the stationary ψn solution to

Equation (4.3.8) in terms of y0
n. Indeed, if we seek stationary solutions to Equation (4.3.8)

of the form

ψ0
n(τ) := exp (iρH0τ)φ0

n, (4.3.96)

for some time-independent φ0
n (we found an approximate φ0

n solution in the N � 1 limit

in Section 4.3.3), then Equation (4.3.8) transforms into

−H0φ
0
n +

(
φ0
n+1 + φ0

n−1 − 2φ0
n

)
+ λ

∣∣∣φ0
n

∣∣∣2 φ0
n

+ η

(∣∣∣φ0
n+1

∣∣∣2 +
∣∣∣φ0
n−1

∣∣∣2 − 2
∣∣∣φ0
n

∣∣∣2)φ0
n = 0. (4.3.97)

Now, by making the identification

H0 ≡ H0, (4.3.98)

we observe that, if y0
n solves Equation (4.3.92), then

φ0
n ≡
√

2y0
n (4.3.99)
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solves Equation (4.3.97), and vice versa. We therefore have a way of translating the H0

and y0
n results from our numerical scheme to the eigenvalue H0 and stationary solution ψ0

n

to our system.

To use our numerical scheme, the initial yn(0) and initial guess forH0 should both come

from the continuum approximation described in Section 4.3.3. In summary, then, given

parameters (β, λ) (and η which is a combination of β, λ), we wish to find the stationary

solution ψ0
n to the eigenvalule problem of Equation (4.3.8). In order to do so, we make

use of approximations to ψ0
n and to the eigenvalue H0 which we obtained in Section 4.3.3,

feeding them as initial ansatz into the iterative numerical scheme that we have described

in this Section. In practice, given all the (β, λ) that we have studied, we find that the our

scheme always converges, in CPU times that are 3 to 4 orders of magnitude less than the

CPU times of using a conventional method which involves summing over the entire lattice

after each iteration.

In the stationary state, we can use the solution for sn = un+1 − un given by Equa-

tion (4.3.3) to simplify the expression for the internal energy, Eb [cf. Equation (4.2.62)].

Using the superscript 0 to indicate the stationary state, we compute the binding energy of

the stationary polaron as follows. Firstly, the expression (4.2.59) for 〈Ĥe〉 /(~Ω) is unaf-

fected by the fact that the electron is in a stationary state, but for the lattice energy [cf.

Equation (4.2.60)], we now have

〈Ĥ0
p〉

~Ω = κ2

2

N−1∑
n=0

[
(β − 1)|ψn+1|2 − (β + 1)|ψn|2

]2
. (4.3.100)

Moreover, for interaction energy [cf. Equation (4.2.61)] we now have

〈Ĥ0
int〉

~Ω = κ2
N−1∑
n=1
|ψn|2

[ (
(β − 1)|ψn+1|2 − 2|ψn|2 − (β + 1)|ψn−1|2

)
+ β

(
(β − 1)|ψn+1|2 − 2β|ψn|2 + (β + 1)|ψn−1|2

) ]
.

= −κ2
N−1∑
n=1

[(
1− β2

)
|ψn|2

(
|ψn+1|2 +|ψn−1|2

)
+ 2

(
1 + β2

)
|ψn|4

]
(4.3.101)

Since 0 ≤ β ≤ 1, every term in Equation (4.3.101) is non-positive, and no value of β

can make 〈Ĥ0
int〉 /(~Ω) zero. Thus, the interaction part of the polaron binding energy is

always negative, meaning that the interaction between the electron and phonon makes the

polaron more strongly bound; this is as we would expect.
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Now, using Equation (4.3.7) for the definitions of λ and η, we deduce

〈Ĥ0
p〉

~Ω = ρλ

8

N−1∑
n=0

[
(β − 1)|ψn+1|2 − (β + 1)|ψn|2

]2
, (4.3.102)

〈Ĥ0
int〉

~Ω = −κ2
N−1∑
n=1

[(
1− β2

)
|ψn|2

(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)
+ 4|ψn|4

]

= −ρη
N−1∑
n=1
|ψn|2

(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)
− ρλ

N−1∑
n=1
|ψn|4 . (4.3.103)

We therefore have the following expression for the binding energy of the stationary polaron,

in units of meV:

E0
b = 5.3ρ

2−
N−2∑
n=1

(
ψ∗n+1ψn + ψ∗nψn+1

)
+ λ

8

N−1∑
n=0

[
(β − 1)|ψn+1|2 − (β + 1)|ψn|2

]2

− η
N−1∑
n=1
|ψn|2

(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)
− λ

N−1∑
n=1
|ψn|4

. (4.3.104)

In practice, some terms in Equation (4.3.104) are zero due to the boundary condition

(4.2.46); nevertheless we have retained those terms in the sums for notational convenience.

We can make further progress by invoking the ansatz given by Equation (4.3.9) (we

have argued that k = 0):

ψn = φ(n−N/2) exp
(
iH0J1t

~

)
, Φ(x) = φ(x)2. (4.3.105)

where φ is a real, smooth function of a continuous variable x. The stationary state,

|Ψ0〉 =
∑N
n=0 ψn exp

(
− it

~ (J0 − 2J1)
)
Â†n |0〉, not only solves the Schrödinger equation,

i~ ∂ |Ψ0〉 /∂t = (Ĥe + Ĥint) |Ψ0〉 , (4.3.106)

but also solves

i~ ∂ |Ψ0〉 /∂t = (J0 − 2J1 −H0J1) |Ψ0〉 . (4.3.107)

Comparing Equations (4.3.106) and (4.3.107) gives us

〈H0
e 〉+ 〈H0

int〉 − (J0 − 2J1)
~Ω = −H0ρ. (4.3.108)

It then follows that

E0
b = 5.3ρ

−H0 + λ

8

N−1∑
n=0

[
(β − 1) Φ(n+ 1−N/2)− (β + 1) Φ(n−N/2)

]2 . (4.3.109)
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Equation (4.3.109) holds if stationary solutions in the form of Equation (4.3.105) exist,

and we proceed now to find such solutions numerically. But in Section 4.3.3 we already

found approximations to such solutions in the continuum limit, and we could simply put

those results into Equation (4.3.109) in order to approximate E0
b.

Figure 4.1 shows how various aspects of the approximate stationary solutions depend

upon the symmetry parameter β, and the effective coupling parameter λ (recall that the

former is a measure of the spatial symmetry of the electron-phonon interaction, and the

latter measures the strength of this interaction, while the value of the parameter ρ is

fixed). These are the only two parameters that affect the stationary polaron’s physical

properties (as the parameter η is merely a convenient combination of β and λ).

Figure 4.1(a) shows how the maximum height and half-width of the approximate elec-

tron probability distribution Φ(x), in the stationary state, vary with β and λ. The max-

imum height of the distribution is also known as the electron’s maximum localisation

probability. As one would expect, the half-width is negatively correlated with Φ0. The fig-

ure shows Φ0 increasing with λ, and half-width decreasing with λ, and the rate of change

of each quantity is greater given larger values of β. That is to say, the more spatially

asymmetric the electron-phonon interaction is, the more influential λ is. The figure also

has the following implication on the accuracy of Φ(x) as an approximation to the discrete

stationary solution to our system. In a discrete solution, the physical interpretation of

|ψn|2 is the probability of the electron being localised around the nth lattice node [cf. Sec-

tion 2.1.5]. The normalisation condition is defined in terms of a sum,
∑N
n=0|ψn|

2 = 1, and

consequently we must have |ψn|2 ≤ 1 for all n. When a continuum solution Φ(x) is used

to approximate the discrete |ψn|2, Φ0 is supposed to approximate max |ψn|2. Therefore,

any continuum solution with Φ0 > 1 cannot be reliable as an approximant. When β = 1,

Φ0 exceeds 1 if λ is greater than 8, since Φ0 = λ/8.

In Figure 4.1(b), we see that H0 increases with λ whilst the polaron’s binding energy

gains magnitude, meaning the larger λ is, the more strongly bound the polaron is. Once

again, the larger β is, the more rapidly these quantities vary with λ. We note that the

thick black curve for H0, corresponding to β = 1, is exactly the graph of H0 = λ2/16,

as Equation (4.3.21) dictated. Comparing Figure 4.1(a) and (b), we see that a polaron

which is more strongly bound has a larger Φ0 and a smaller half-width; in other words, it

is more localised.
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Figure 4.1: (a) The height of the approximate electron probability distribution (left axis),
and the half-width of that distribution (right axis), as functions of λ parameterised by
β = 0, 0.1, 0.2, . . . , 1. (b) The approximate eigenvalue (left axis), and approximate binding
energy (meV) of the stationary polaron (right axis), as functions of λ parameterised by
β = 0, 0.1, 0.2, . . . , 1.

Figure 4.2(a) contains information about two key aspects of the stationary polaron

state, obtained numerically: the electron probability distribution, and the polaron binding

energy. Qualitatively speaking, it is in agreement with predictions of the continuum ap-

proximation, as per Figure 4.1(a): as λ increases, the polaron becomes more localised, and

more strongly bound. Moreover, the effect of increasing λ is more profound given larger

values of β. However further comparison between Figure 4.1(a) and Figure 4.2(a) reveals

a noteworthy difference. When β = 1, Φ0 is a linear function of λ, whereas Figure 4.2(a)
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Figure 4.2: (a) In the stationary state, the electron’s maximum localisation probability,
max |ψ0

n|2 (left axis), and polaron binding energy, E0
b (meV) (right axis), as functions of λ

parametrised by β = 0, 0.6, 1. (b) Thick lines: stationary solutions parametrised by β and
λ: the electron probability distribution |ψ0

n|2 (left axis) and associated lattice distortion
U0
n in units of the equilibrium lattice spacing R (right axis). Solutions are shifted along

the n-axis to avoid overlap. Thin lines: approximate stationary solutions obtained in the
continuum limit; from left to right: β = 0, 0.6, 1, all with λ = 3.0.

suggests that max |ψ0
n|2 (which is approximated by Φ0 in the continuum limit) is not lin-

early dependent on λ. In fact, given any β, max |ψ0
n|2 grows significantly faster with λ

than Figure 4.1(a) predicts. Despite this, the growth of max |ψ0
n|2 in Figure 4.2(a) even-

tually stalls when λ becomes sufficiently large. This is a manifestation of a fundamental

difference between the continuum and discrete equations: the continuum equations place

no limit on how large Φ0 can be, whereas the discrete system limits max |ψ0
n|2 to 1.
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Figure 4.2(b) shows a selection of |ψ0
n|2 solutions. Comparing all the dotted (red)

lines, which correspond to λ = 1.0 at various values of β, we see that they are essentially

identical. This confirms the belief that when λ is small (close to 1), systems with different

β-values unify, because λ ≈ 1 represents the weak-coupling limit in which varying the

intrinsic spatial asymmetry of the system makes little difference to the polaron binding

energy. The figure also shows some stationary solutions to the other half of our system,

namely the displacement U0
n of lattice units from their equilibrium positions, or lattice

distortions. In order for the point-dipole model of lattice units to be valid, the lattice

distortion must satisfy the condition |U0
n+1 − U0

n| � R where R is the equilibrium lattice

spacing [Bar07]. This condition is indeed fulfilled in the stationary polaron state, as we

can infer from Figure 4.2(b) that max
(
|U0
n+1 − U0

n|/R
)
∼ O(10−2).

Comparing all the dashed (blue) lines in Figure 4.2(b), which correspond to λ = 4.4

at various values of β, enables us to make the following observation. When β = 0, the U0
n

solution is centred at the location of max |ψ0
n|2, in the sense that its graph is rotationally

symmetric about n = 90. This agrees with our understanding that when β = 0, i.e.

when the electron-phonon interaction is spatially symmetric, the electron in the stationary

state causes equal lattice distortion to its left and right. As β increases, the maximum

magnitude of the lattice distortions remains the same, but the centre of U0
n shifts away

from the location of max |ψ0
n|2, in response to the decrease in spatial symmetry. When

β = 1, the molecule at the location of max |ψ0
n|2 (n = 110 in this case) is barely displaced,

whereas molecules to the right of this point are displaced considerably. Now, the potential

energy in the lattice is a sum over terms of the form (U0
n+1 −U0

n)2, which is the square of

the gradient of the U0
n/R graph at site n, in appropriate units. In the stationary state, this

gradient is zero except at a few sites around the location of max |ψ0
n|2, and it is clear that

solutions corresponding to larger values of β have steeper gradients there. We therefore

conclude that, in the stationary state, systems with greater spatial asymmetry store more

potential energy in the lattice.

In Figure 4.2(b) we also see a comparison between some |ψ0
n|2 solutions and their coun-

terpart continuum approximations, Φ(x). In particular, we look at the thick solid (black)

lines and, to their right, their accompanying thin solid (black) lines. The comparison

reveals that, fixing λ, in this case λ = 3.0, Φ(x) is a more accurate approximant for |ψ0
n|2

when β is smaller. As β increases towards 1, it becomes clear that Φ(x) under-estimates

the height of the |ψ0
n|2 profile. As β approaches 1, if we fixed λ / 7.5 then Φ(x) becomes
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an under-estimate, but if we fixed λ at a sufficiently large value then Φ(x) becomes an

over-estimate. This is oweing to the fact that the continuum equations do not limit the

height of the Φ(x) solution, allowing it to grow linearly with λ.

4.4 Propagating Polarons

We study polarons which propagate along the α-channel, under an external EMF ε(τ).

Using the stationary solutions which we computed in Section 4.3.4 as initial configurations

of the system, parametrised by β and λ, we solve Equation (4.2.40) as an initial value

problem. For each ε(τ) that we prescribe, we set n0 in the equations to be the location

where the stationary |ψ0
n|2 attains its maximum, then we integrate the system forward in

time using the standard RK4 method. To ensure numerical stability, we set the integration

time-step at ∆τ = 0.01. As we integrate the system, we keep track of several scalar

quantities associated with the polaron, such as the half-width of the electron probability

distribution, and the polaron internal energy Eb, as defined in Equation (4.2.62). Most

importantly, we keep track of the polaron’s position, defined as follows. If |ψn|2 attains

its maximum at lattice site n0, then the polaron’s position is the vertex location of the

parabola extrapolated from three points: (n0, |ψn0 |2), (n0− 1, |ψn0−1|2), (n0 + 1, |ψn0+1|2).

Each of Sections 4.4.1 to 4.4.3 is dedicated to investigating the effects of a specific

type of EMF, respectively a constant field, time-periodic field with zero mean, and time-

periodic field with non-zero mean. Then in Section 4.4.4, we look at the dependence of

the polaron’s dynamics on the system’s symmetry parameter, β. Finally in Section 4.4.5,

we examine the effects of non-zero stochastic forces fn(τ).

4.4.1 Constant EMFs

The most natural choice of EMF has a constant electric field amplitude,

ε(τ) = ε̄ > 0 for τ ≥ 0. (4.4.1)

Using moderately-localised stationary states (with max |ψ0
n|2 = 0.64) as initial conditions,

we compute polaron trajectories under various values of ε̄. Our results show that given

β = 1 and λ = 3.0, a constant forcing of any ε̄ ∼ O(10−2) induces nothing but small

oscillations of the polaron around its initial position.

As ε̄ is increased beyond 0.1, we find that the forcing can become strong enough to

dislodge the electron from its potential well, and propel the polaron along the polypeptide.

109



CHAPTER 4. THE ELECTRON-PHONON SYSTEM IN A LINEAR α-CHANNEL

0 100 200 300 400 500 600

0

100

200

300

400

τ

P
o
la
ro
n
p
o
si
ti
o
n

(a)

0 100 200 300 400 500 600

0

3

6

9

12

15

Eb

300 350 400 450 500

0.02

0.04

0.06

0.08

0.1

n

|ψn|
2

(b)

Figure 4.3: Polaron propagation under a constant EMF ε = 0.15. Parameters: β =
1, λ = 3.0. (a) The polaron’s position (left axis) and internal energy (meV) (right axis) as
functions of time. 100 units of τ equals 12 ps. (b) The electron probability distribution
|ψn|2 upon delocalisation.

However as the polaron propagates, its internal energy increases rapidly, and the electron

delocalises within several hundred time-units. A direct manifestation of the polaron’s

energy gain and electron delocalisation is that the |ψn|2 profile loses height and gains

local peaks at lattice sites far away from the global maximum. For the sake of consis-

tency, throughout the remainder of this Chapter we say that the electron has delocalised

if max |ψn|2 drops below 0.1, as it must then be the case that other local peaks have

magnitudes comparable to the global maximum. In Figure 4.3(a) we present an example

of a constant EMF large enough to cause polaron displacement, and it illustrates the re-

sulting rapid delocalisation of the electron. We see the trajectory of the polaron which,

within roughly 600 time-units (0.07 ns), is displaced by over 300 lattice sites. Its internal
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energy steadily increases until the electron delocalises. Meanwhile, Figure 4.3(b) shows

the electron probability distribution, |ψn|2, at the time of delocalisation. This |ψn|2 has

evolved from an initial configuration possessing a maximum height of 0.64 and no local

peaks apart from the global maximum.

Beyond the example shown in Figure 4.3, all our results are consistent with the

hypothesis that, regardless of β and λ, a constant ε causes the polaron to undergo either

small oscillations, or rapid energy gain leading to delocalisation. We would like to find

ways to induce polaron propagation which is energetically stable. Therefore we must look

for forms of ε other than constants.

4.4.2 Time-Periodic EMFs with Zero Mean

Now we consider EMFs whose electric field amplitudes are periodic in time,

ε(τ) = A sin 2πτ
T

for τ ≥ 0, (4.4.2)

where A is the amplitude and T > 0 is the period. Physically this may represent an

electromagnetic plane wave which is monochromatic, i.e. coherent. With A up to 0.2,

regardless of β and λ we find that the polaron simply oscillates about its initial position.

The polaron’s oscillatory motion has a period which coincides with T , and an amplitude

which is positively correlated with A. An example of such trajectories is shown in Fig-

ure 4.4. While the polaron remains highly stable over time, its mean position over a period
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Figure 4.4: Some polaron trajectories under either a constant or a temporally periodic
EMF, ε. 1000 units of τ equals 0.12 ns. Parameters: β = 1, λ = 3.0.
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remains constant for all time. Thus, if we want polarons which transport energy from one

lattice site to another, we must again modify ε.

4.4.3 Time-Periodic EMFs with Non-Zero Mean

In this Section, we consider EMFs whose electric field amplitudes are of the form

ε(τ) = ε̄−A sin 2πτ
T

for τ ≥ 0, (4.4.3)

where ε̄, A ≥ 0 and T > 0. Equation (4.4.3) represents the combination of the two types of

EMF considered previously, with a constant component and a temporally sinusoidal one.

Strictly speaking, the electric field’s phase ϕ should be another parameter, manifesting

itself in ε(τ) = ε̄ + A sin
(

2πτ
T − ϕ

)
. We have fixed ϕ = π, resulting in the minus sign

before A in Equation (4.4.3), for the following reason. With ε̄ non-negative, the addition

of a non-negative A raises the electric field amplitude immediately after τ > 0, and the

increased energy input is likely to cause electron delocalisation, the likes of which we have

seen in Section 4.4.1. To stabilise the electron over the initial period of the EMF, we

choose to decrease the electric field amplitude first, before raising it above the level of ε̄.

One may think of ε(τ) as a mean-shifted periodic field (MSPF). In particular, the mean

ε̄ is chosen to be lower than the constant field ε which is required to displace the polaron

in the manner of Figure 4.3. Therefore ε̄ on its own would not give the electron enough

energy to escape its potential well. But we hope that the component A can periodically

push the electron energy over the threshold, resulting in polaron motion. Another possible

advantage of this setup is that A may also periodically lower the electron energy, slowing

it down and giving the lattice time to ‘catch up’, thus making the polaron motion more

sustainable than it would be under a constant EMF.

Mathematically, ε(τ) depends on three independent parameters, ε̄, A and T . Before

investigating the effect of each of these parameters, we present Figure 4.5, which is a

direct comparison with Figure 4.3. We have replaced the constant forcing ε = 0.15,

which resulted in Figure 4.3, with an MSPF which has the same maximum amplitude

as before. The difference is that now this maximum amplitude is reached once every

period T . Figure 4.5(a) shows that, within roughly 10 periods, the polaron is displaced

by nearly 400 lattice sites. Contrary to the uniform manner in which the polaron moves

in Figure 4.3(a), now the polaron moves towards one end of the polypeptide and then the

other, within each period of ε(τ). The overall displacement of the polaron is due to the fact
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that each movement to one end of the polypeptide is larger than the subsequent swing back

the other way. We note that while the polaron moves slightly further under the MSPF

compared to the constant field, the polaron’s lifetime, i.e. the amount of time elapsed

before delocalisation, is much longer under the MSPF. In the example of Figure 4.5, the

polaron’s lifetime is τd ≈ 4900, or roughly 0.6 ns. Overall, the polaron in Figure 4.5

propagates with a lower velocity, V , defined by

V = average position over final complete period of motion− initial position
number of complete periods× T , (4.4.4)

where the numerator is the displacement of the polaron, which we denote by D. Our

results show that, of the parameters ε̄, A and T , the dominant factor which determines
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Figure 4.5: Polaron propagation under a MSPF, ε(τ) = 0.025 − 0.125 sin(2πτ/500). Pa-
rameters: β = 1, λ = 3.0. (a) The polaron’s position (left axis) and internal energy (meV)
(right axis) as functions of time. (b) The electron’s maximum localisation probability
(left axis) and half-width of the electron probablity distribution (right axis) as functions
of time. 1000 units of τ equals 0.12 ns.
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the polaron’s velocity is the constant component ε̄. We will discuss this in more depth in

relation to Figure 4.6.

Figure 4.5(a) also shows how the polaron’s internal energy, Eb, evolves in time. Fol-

lowing an initial sharp increase, Eb mostly oscillates between 4.5 meV and 9 meV, until

another sharp increase leading to delocalisation. Even though the constant EMF propels

the polaron with greater speed, we consider the MSPF a better mechanism for electron

transport, because the polaron internal energy is more stable. All our results suggest

that by splitting a constant EMF into constant and temporally sinusoidal components, we

lower the polaron’s velocity but increase its stability and lifetime.

In Figure 4.5(b) we see another aspect of the polaron’s motion, namely how the height

and half-width of the |ψn|2 profile evolve in time. Following an initial decrease, the elec-

tron’s maximum localisation probablity, max |ψn|2, mostly oscillates between 0.2 and 0.4,

until a sudden drop to 0.1, leading to delocalisation. Meanwhile, the half-width of the

electron probability distribution mostly oscillates between 1.5 and 4, following an initial

growth. The peaks in the half-width, as well as the troughs in max |ψn|2, occur precisely

when the polaron turns from moving in one direction to moving in the other. This sug-

gests that when the polaron accelerates, it ‘spreads out’, and so the half-width widens and

max |ψn|2 drops.

Based on our observations, we theorise that a polaron’s directed motion under the

MSPF may be explained physically as follows. Since the forcing ε(τ) is the effect of an

EMF, it provides the electron with extra energy. This effect is manifest in the dramatic

energy variation during the first period of ε(τ), as seen in Figure 4.5. Whenever |ε(τ)|

becomes sufficiently large, the electron is dislodged from its potential well and propelled

along the lattice. If the electron-phonon coupling is strong enough, then the localised

lattice distortion can keep up with the electron, and so the polaron can remain intact.

Whenever |ε(τ)| drops below the threshold, the electron-phonon interaction slows down

the electron and causes its probability distribution to spread out. This is why the half-

width of |ψn|2 always peaks at times when the polaron’s instantaneous velocity is zero. If

|ε(τ)| remains below the threshold for long enough, then the polaron’s position can plateau,

as we see in Figure 4.6. If ε(τ) has a large enough periodic component A, then it is possible

for |ε(τ)| to overcome the threshold twice per period: once with ε > 0, once with ε < 0. If

the electron moves towards large n in the ε > 0 case, then it will move towards small n in

the ε < 0 case. This explains the backwards swing exhibited by some polaron trajectories
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during each period of motion. The fact that ε̄ 6= 0 ensures that the electron always spends

more time moving one way than the other, hence the overall directedness of the polaron

trajectories. This point is most clearly demonstrated by the trajectories in Figure 4.6 for

which the period T = 2000. When T is small it may seem as though the trajectories are

simply linear, for example the solid (black) trajectory labelled ‘C1’ in Figure 4.6(a), but

zooming in, as we can see in the box on the top-right corner of Figure 4.6(a), reveals that

the curve does exhibit the characteristic sawtooth shape.

Within each subfigure of Figure 4.6, we can compare the trajectories in certain ways in

order to reveal the effect on the polaron dynamics of varying one of the three parameters

of the EMF, namely ε̄, A and T . As an example, we consider Figure 4.6(b), for which

β = 0.6 and λ = 5.0 are fixed. To identify the effect of varying the amplitude A of

the sinusoidal component of the electric field, we can pick any of the nine bundles of

trajectories labelled ‘A1’ to ‘C3’, because each bundle corresponds to a fixed combination

of (ε̄, T ), and compare the three trajectories within that bundle, each with a different A.

We infer from this comparison that the larger A is, the more the polaron oscillates back

and forth during each period of motion. It may be tempting to assume that the polaron’s

velocity is positively correlated with A, but examining Figure 4.6(a) reveals that not to be

the case. Indeed, in most cases we see that A = 0.15 results in faster polaron motion than

A = 0.20 does, when all other parameters are fixed. Moreover, examining Figure 4.6(c),

we see that in most cases increasing A causes the polaron to delocalise more quickly.

0 3500 7000 10500 14000

A1

A2

A3

B1

B2

B3

C1

C2

C3

P
ol
ar
on

tr
a
je
ct
or
ie
s

τ

C1

(a)

0 500 1000

100

150

200

115



CHAPTER 4. THE ELECTRON-PHONON SYSTEM IN A LINEAR α-CHANNEL

0 2500 5000 7500 10000

A1

A2

A3

B1

B2

B3

C1

C2

C3

P
ol
ar
on

tr
a
je
ct
or
ie
s

τ

(b)

0 1500 3000 4500 6000

A1

A2

A3

B1

B2

B3

C1

C2

C3

P
ol
ar
on

tr
a
je
ct
or
ie
s

τ

(c)

Figure 4.6: Some polaron trajectories under the MSPF, ε(τ) = ε̄−A sin(2πτ/T ). Param-
eters: (a) β = 0, λ = 7.6. (b) β = 0.6, λ = 5.0. (c) β = 1, λ = 3.0. λ has to be varied
with β, in order to keep the initial |ψ0

n|2 profiles unchanged, all with max |ψ0
n|2 = 0.64.

In each subfigure, the labelling of trajectories is in the form of Xn, where X is A, B or C,
each corresponding to a value of ε̄, and n is 1, 2 or 3, each corresponding to a value of T .
X = A: ε̄ = 0.02, X = B: ε̄ = 0.03, X = C: ε̄ = 0.04, n = 1 : T = 100, n = 2 : T = 500,
n = 3 : T = 2000. Every Xn corresponds to 3 distinct trajectories, each for a different
value of A. Dash-dotted (red) lines: A = 0.10; solid (black) lines: A = 0.15; dashed
(blue) lines: A = 0.20. Every grid spacing in the vertical direction represents 600 lattice
sites. 1000 units of τ equals 0.12 ns. Every trajectory is drawn up to the time of electron
delocalisation.
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To identify the effect of varying the constant component ε̄ of the MSPF, we can

look at any of the subfigures and compare any three trajectories with the same line type

and same number in their labels; for instance, the three solid (black) lines respectively

labelled ‘A2’ (ε̄ = 0.02), ‘B2’ (ε̄ = 0.03) and ‘C2’ (ε̄ = 0.04) in Figure 4.6(b), all with

β = 0.6, λ = 5.0, A = 0.15 and T = 500 fixed. All three trajectories show roughly the same

amount of polaron displacement, but achieve the displacement in vastly different amounts

of time. Indeed, the larger ε̄ is, the less time it takes the polaron to travel any certain

distance, meaning the polaron moves with greater speed. Examining any appropriate

group of three trajectories in any of the subfigures leads to the same conclusion, that the

overall velocity of the polaron is predominantly determined by ε̄.

If we pick any trajectory in any subfigure, and compare it with its two counterparts

in the other two subfigures, we can infer some information about the significance of the

symmetry parameter, β. Indeed, it is clear that the extent to which the polaron is sus-

ceptible to displacement depends heavily upon β, for we can see that in Figure 4.6(b),

where β = 0.6, significantly fewer trajectories display any polaron displacement compared

to how many do in Figures 4.6(a) and (c). This suggests that a moderate value of β such

as 0.6 makes the polaron significantly less susceptible to displacement under the MSPF,

compared to extreme values of β = 0 or 1. Of course, the fact that as we varied β to obtain

the three subfigures, we also varied λ so that the initial electron probability distribution

remained unchanged, means we should also consider the possibility that the variation in

λ has a bearing on the polaron’s dynamics. We take the approach of considering the pair

(β, λ) as a whole, rather than separately, so that whenever we theorise about the effect

of β, it is implied that the accompanying λ takes an appropriate value to ensure that the

stationary polaron has max |ψ0
n|2 = 0.64. It is paramount to ensure the consistency in

max |ψ0
n|2, for it is possible to make meaningful comparisons between polaron trajectories

only if all polaron stationary states have the same electronic probability distribution. From

Figure 4.6 only, we have insufficient data to deduce precisely how β affects the polaron’s

susceptibility to displacement; but in Section 4.4.4, we will investigate the effect of β in

more detail.

Finally, if we look at any of the subfigures of Figure 4.6 and compare any three tra-

jectories that have the same line type and share the letter part of their labels, for instance

the three solid (black) lines respectively labelled ‘C1’, ‘C2’ and ‘C3’ in Figure 4.6(a), we

may hope to see the effect of varying T . However, this comparison is not particularly
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Figure 4.7: Polaron lifetime τd, displacement D and velocity V , as functions of A
parametrised by (ε̄, T ). 1000 units of τ equals 0.12 ns. Parameters: β = 0.6, λ = 5.0.

enlightening. We therefore present Figure 4.7, which not only provides more insight into

the effect of T , but also helps to reinforce our theories about the effects of ε̄ and A .

For several combinations of ε̄ and T , we examine how the polaron’s lifetime, displace-

ment and velocity vary with A. The results are displayed together, in Figure 4.7. Firstly

we consider the lifetime, τd. We computed all our numerical solutions up to τ = 30000,

which is several times larger than the typical lifetime of a polaron that moves under the

MSPF. If the polaron is not displaced by the MSPF, then it is effectively permanent, in

the sense that its energy oscillates instead of dissipating over time, and it would have a

lifetime far exceeding 30000. For each combination of ε̄ and T , there exists some critical

amplitude, A = Ac, below which the polaron is undisplaced by the MSPF. At A = Ac,

the combined amplitude of the MSPF, Acomb := ε̄+A, becomes large enough to displace

the polaron, and τd drops sharply. This drop can sometimes result in a lifetime of only

several thousand time-units - see for instance the bottom-left subfigure in Figure 4.7, cor-

responding to ε̄ = 0.1. When ε̄ is smaller, say ε̄ = 0.005 (top-left subfigure), the drop in
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lifetime is less sharp. As A increases beyond Ac, the polaron’s lifetime drops further, if

only slightly.

Next, we look at the polaron’s displacement, D. When A is small, the polaron does

not move barring small oscillations, the types of which we saw in Figure 4.4. As A reaches

critical value Ac, the polaron turns from being quasi-stationary to moving by several

hundred lattice sites during its lifetime. Evidently, the value of Ac is independent of T .

We only consider the displacement of polarons whose lifetimes are at least 2T , and we set

the displacement of polarons with shorter lifetimes to zero - see for instance the dashed

(blue) lines in the centre and bottom-middle subfigures. Whilst the value of Ac does not

depend on T , the amount of displacement caused by Ac does. However, it is unclear from

our results what their correlation is. As A increases beyond Ac, the qualitative behaviour

of D is that it decreases. This is due to the fact that increasing A causes the electron to

delocalise more quickly, and therefore the polaron has less time to move.

To understand how A affects the amount of polaron displacement per unit time, we

examine the polaron’s velocity, V . When A is small, V is zero. As A reaches critical

value Ac, the velocity becomes typically O(10−2). Exactly what value this critical velocity

Vc takes depends on ε̄ - the larger ε̄ is, the larger Vc becomes. As A increases beyond

Ac, sometimes V simply decays away - see for instance the top-right subfigure, where

ε̄ = 0.005. Sometimes, however, V grows before its decay - see for instance the middle-

right and bottom-right subfigures, where ε̄ = 0.03 and 0.1 respectively. Such behaviour is

possible when the polaron lifetime decays with A more sharply than the displacement does

as A is increased beyond Ac. When this happens, there may exist some optimal amplitude,

A = Am, at which the polaron attains maximum velocity, Vm. Am may coincide with Ac

- see for instance the top-right subfigure.

Whilst the value of Ac does not depend on T , it does depend on ε̄, and we see this

by comparing any row of subfigures in Figure 4.7 to any other row. Our results show

that as ε̄ grows, Ac drops, but crucially the combined amplitude Acomb = ε̄+Ac remains

roughly constant. Specifically, in the top row we see ε̄ = 0.005 and Ac = 0.167, in the

middle row we have ε̄ = 0.03 and Ac = 0.142, and the bottom row shows ε̄ = 0.1 and

Ac = 0.072, each case giving Acomb = 0.172 when A reaches critical. Recall that, when

using a straightforward constant forcing ε = ε̄, there was also a threshold value for ε̄, below

which the polaron simply exhibits small oscillations, and above which the polaron moves

at high speed but the electron delocalises rapidly. It is noteworthy that this threshold
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was ε = 0.154 (given β = 0.6), which is significantly lower than the critical combined

amplitude of 0.172. In other words, ε = 0.154 causes polaron displacement, ε = 0.153 does

not; and if one wishes to add to ε = 0.153 a periodic component A sin(2πτ/T ) in order to

move the polaron, one needs A ≥ 0.019, making ε̄+A far exceed what ε̄ is required on its

own to move the polaron. This phenomenon is observed across all values of β.

In practice, then, what would make a good combination of forcing parameters, which

propel the polaron with decent speed but does not cause rapid delocalisation? First of all,

a large ε̄ results in a large velocity but an energetically unstable polaron, for which the

electron delocalises so rapidly that it may move less far in its lifetime than it does under

a small ε̄. The middle column of Figure 4.7 precisely illustrates this point. Meanwhile, a

small ε̄ results in long-living polarons which can move very far, because of how stable they

are, but they would take more time to reach the same destination, compared to polarons

under a large ε̄. On balance, a moderate value of ε̄ such as 0.03 is preferable. Once a ε̄ is

chosen, it remains to choose A and T , and the ideal choice of A is the optimal amplitude,

A = Am. If T is small, such as T = 100, then Am is large. On the other hand, if T is large,

such as T = 2000, then the maximum velocity resulting from Am is small. We observe

both of these extremes clearly in the middle-right subfigure of Figure 4.7. Once again,

these observations are not specific to β = 0.6, but universal for all values of β. Overall, we

believe that the best MSPF parameters are such combinations where ε̄ ≈ 0.03, T ≈ 500,

and A ≈ Am which, given β = 0.6, is Am = 0.158. We will further discuss the relationship

between Am and β in Section 4.4.4.

We note an anomaly which we observe in Figure 4.7. When ε̄ = 0.005 (top row), if

T = 2000 and A is sufficiently large, then the displacement (and therefore velocity) can

take large negative values, meaning the polaron moves in the small-n direction, opposite

to what we expected, and with large speeds. This is because A predominantly determines

the amount by which the polaron moves back and forth during a period of motion, and it

is entirely possible for delocalisation to occur just as the polaron position takes some small

n-value during some period of motion. If delocalisation occurs within the first few periods

of motion, then it is also possible that the polaron’s average position per period has not

moved sufficiently far in the large-n direction to cancel out the ‘swing’ in the small-n

direction. Calculations based on this type of trajectory would lead to the conclusion that

the polaron’s overall displacement, hence velocity, is in the small-n direction.
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4.4.4 Significance of the Symmetry Parameter

We have remarked that as we vary β, the ways in which the polaron velocity varies with our

forcing parameters remain qualitatively similar, as it is always characterised by a critical

amplitude Ac and optimal amplitude Am. Quantitatively, the values of Ac and Am would

change with β. In this Section, we investigate how Ac and Am vary with β. Firstly we

establish the following preliminary result.

Recall that the stationary polaron is characterised by two quantities: the electron

probability distribution |ψ0
n|2, specifically the maximum localisation probability max |ψ0

n|2,

and the binding energy E0
b. These are in turn determined by the symmetry parameter β

and effective coupling parameter λ. As β varies, so does the value of λ required to keep

max |ψ0
n|2 constant. The required λ as a function of β is shown in Figure 4.8. It is clear

that λ(β) is a decreasing function. We have made sure that whenever we altered β we

also took λ = λ(β), so that all of our moving polarons begin as stationary states which

share the same electronic probability distribution. An alternative would have been to take

whatever λ is required to keep the binding energy constant. Our results show that if we

had decided to keep the binding energy constant at, say, −3.5 meV, then max |ψ0
n|2 would

have been 0.53 at β = 0, or 0.81 at β = 1. It is a central feature of our model that two
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Figure 4.8: λ(β): the value of λ required, as β varies, in order to maintain max |ψ0
n|2 = 0.64

(left axis). E0
b(β, λ(β)): binding energy of stationary polaron resulting from β and λ(β)

(right axis). For example, when β = 0.6 and λ = λ(0.6) = 5.0, the binding energy is
E0
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stationary polarons with the same maximum localisation probability need not have the

same binding energy, and vice versa.

In Figure 4.9, we present Ac, Am, Vc and Vm as functions of β, parametrised by ε̄

and T . We have already seen in Figure 4.7 that if β = 0.6, ε̄ = 0.03 and T = 500, then

Ac = 0.142 and Am = 0.158. This is shown more clearly in Figure 4.9(e), for which ε̄ = 0.03

and T = 500 are fixed, and from which we can also read the corresponding Vc and Vm.

Reading all nine subfigures of Figure 4.9, we make the following observations. Regardless

of the values at which we fix (ε̄, T ), Ac increases as β increases from 0, and Ac is maximal

when β ≈ 0.6. Despite the fact that we expect a system with symmetric interaction

(β = 0) to be least conducive to directed polaron motion, it turns out that a moderately

asymmetric system admits polarons which are least susceptible to displacement. Moreover,

as β is increased beyond roughly 0.6, Ac decays, and we always have Ac attaining its global

minimum when β = 1, which suggests that a system with antisymmetric electron-phonon

interaction is most conducive to directed polaron motion. This is as we would expect,

because the system’s intrinsic antisymmetry favours electron displacement in one direction

over the other. The optimal amplitude, Am, tends to follow the same trend as Ac does

while β varies, although Am is usually significantly larger than Ac, with some exceptions,

for instance in Figure 4.9(b) where Ac and Am are identical for most values of β.

The critical and optimal velocities, Vc and Vm, are always of the same order of magni-

tude, and occasionally coincide, just as Ac and Am sometimes do. By comparing any group

of three subfigures where ε̄ is fixed, for instance Figures 4.9(a) to (c) where ε̄ = 0.005,

we can verify our earlier assertion that T has little effect on the value of Ac; indeed, the
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ǭ = 0.005, T = 100

 

 

(a)

0 0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

V

Ac or Vc
Am or Vm

122



CHAPTER 4. THE ELECTRON-PHONON SYSTEM IN A LINEAR α-CHANNEL

0 0.2 0.4 0.6 0.8 1

0.12

0.14

0.16

0.18

A

β
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ǭ = 0.1, T = 500

 

 

(h)

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

V

Ac or Vc
Am or Vm

0 0.2 0.4 0.6 0.8 1

0

0.04

0.08

0.12

A

β
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Figure 4.9: Critical amplitude Ac and optimal amplitude Am (left axis), critical velocity
Vc and optimal velocity Vm (right axis), as functions of β, parametrised by (ε̄, T ). For
each β, the value of λ is that which results in max |ψ0

n|2 = 0.64.

Ac(β) curves given the three different values of T are virtually identical. The dependence

of Am on T is more pronounced, but there appears to be no clear positive or negative cor-

relation between Am and T . We also conjectured earlier that Ac is negatively and linearly

correlated with ε̄, so that the combined amplitude Acomb = ε̄ + Ac remains constant as ε̄

varies. This is supported by our results. Indeed, looking at any group of three subfigures

where T is fixed, for instance Figures 4.9(b), (e) and (h), we see that the Ac curve simply

shifts along the vertical axis, by an amount that equals the difference between one ε̄ and

the next.

125



CHAPTER 4. THE ELECTRON-PHONON SYSTEM IN A LINEAR α-CHANNEL

4.4.5 Effects of Stochastic Forces

We study the effect of thermal fluctuations which result from non-zero temperatures in the

environment surrounding the lattice. The randomised forces on the lattice are represented

by the normally-distributed fn(τ), which by definition (4.2.43) must have, for τ ≥ 0, the

following first and second moments:

〈fn(τ)〉 = 0, 〈fm(τ)fn(τ + ∆τ)〉 = 2γθδmn
∆τ , (4.4.5)

where θ is the dimensionless thermal energy:

θ = kBΘ
~Ω , (4.4.6)

and Θ is the temperature. As we have done throughout this Chapter, we fix ∆τ = 0.01.

Beginning with a stationary polaron, which we computed numerically in Section 4.3.4,

we integrate the system of Equation (4.2.40) forward in time from τ = 0, first with ε(τ)

set to zero. Using a random number generation algorithm, we generate a new vector fn
before each integration step. If θ is large, we find that it can cause large distortions in the

lattice, which in turn causes rapid delocalisation of the electron via to the electron-phonon

coupling. For appropriate values of θ, we see that the polaron’s internal energy undergoes

a small initial increase before settling in a quasi-stationary state of small fluctuations

around some mean value. For example, given β = 0.6 and λ = 5.0, the stationary polaron

has binding energy E0
b = −3.5 meV. Integrating from τ = 0 with θ = 0.32, we find

that after τ ∼ O(104) the internal energy settles, on average, around −1.2 meV, which is

significantly higher than the stationary binding energy. The period of time required for

a polaron to reach such a state of thermal equilibrium is the thermalisation phase of the

polaron dynamics. During this phase, the electron undergoes small fluctuations around its

initial position, due to its coupling to the thermalised lattice, which itself exhibits small

distortions. Our results show that irrespective of β, we are unable to raise θ > 0.9, because

such a large θ induces excessive lattice distortions which cause delocalisation before the

system reaches thermal equilibrium.

In each numerical simulation of the polaron dynamics, we integrate the system with

ε(τ) = 0, until the polaron reaches thermal equilibrium. Then we reset τ = 0, and

‘turn on’ the EMF ε(τ) for τ ≥ 0. We examine how the polaron subsequently moves,

under combinations of ε(τ) and fn(τ). To obtain the results in this Section, we run every
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Figure 4.10: Polaron lifetime τd, displacement D, and velocity V , under the MSPF,
ε = ε̄ − A sin(2πτ/T ), and the stochastic forces, fn(τ) with thermal energy θ. Each
simulation of polaron dynamics is run 100 times, and the mean, maximum and minimum
for each of τd, D and V are all shown. Parameters: β = 0.6, λ = 5.0, ε̄ = 0.03, T = 500.

dynamical simulation, with a set of parameters (β, λ(β), ε̄, A, T, θ), 100 times, and take

mean values of quantities such as polaron lifetime, displacement and velocity, as well as

maximum and minimum values of those quantities over the 100 simulations. Since the

thermalisation phase raises the polaron energy, we expect that a thermalised polaron

would be easier to displace, in the sense that it would require a smaller ε(τ) to displace

it, compared to the fn = 0 system. Indeed our results confirm this.

Figure 4.10 is to be compared directly with Figure 4.7, which contained results for β =

0.6 and θ = 0. Specifically, we draw comparisons with the solid (black) lines in the middle

row of subfigures in Figure 4.7, for which two of the parameters in ε = ε̄ − A sin(2πτ/T )

were fixed, at ε̄ = 0.03 and T = 500. We saw that given said parameter values, the

critical amplitude of the sinusoidal component of MSPF was Ac = 0.142. When we have a

non-zero θ in the system, we define Ac to be the smallest A for which the average polaron

displacement (over 100 simulations) exceeds 10 lattice sites. According to this definition,

when β = 0.6, ε̄ = 0.03, T = 500 and θ = 0.16, we see in Figure 4.10 that Ac = 0.121,

which is significantly lower than when θ = 0.

Fixing ε̄ = 0.03, T = 500 and θ = 0.16, we find that the value of Ac depends on β

in a manner shown in Figure 4.11, which one may compare directly with Figure 4.9(e),

where we had ε̄ = 0.03, T = 500 and θ = 0. We see that, as before, we still have Ac

attaining its minimum value when β = 1, suggesting that an antisymmetric electron-

phonon interaction makes it easiest to displace the polaron. We also still observe the
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Figure 4.11: Critical amplitude Ac and optimal amplitude Am (left axis), critical velocity
Vc and optimal velocity Vm (right axis), as functions of β. Parameters: ε̄ = 0.03, T =
500, θ = 0.16.

phenomenon that displacing the polaron is most difficult not in a symmetric system, but

in a moderately asymmetric one where β ≈ 0.5. Indeed, the Ac(β) function in Figure 4.11

is characteristically similar to the one in Figure 4.9(e), except that the curve when θ = 0.16

is significantly lower than that when θ = 0. This means that regardless of β, a non-zero

θ makes it easier to displace the polaron using the MSPF, in the sense that a smaller

combined amplitude Acomb = ε̄ + A is required. It is also noteworthy that under a non-

zero θ, the onset of polaron motion is more gradual, in the sense that a critical amplitude

results in a small velocity, Vc. Indeed, comparing Vc in Figure 4.11 with Vc in Figure 4.9(e),

we see that the former is several times smaller.

When we raise the thermal energy to θ = 0.8, we see in Figure 4.10 that the polaron

is displaced (on average) by hundreds of sites even if A = 0. This suggests that given

β = 0.6 and ε̄ = 0.03, there exists some critical thermal energy θ = θc, with 0 < θc ≤ 0.8,

for which the combination of ε(τ) = ε̄ and fn(τ) is sufficient to displace the polaron, and

no sinusoidal component in ε(τ) is needed. θc is critical in the sense that if θ is any lower

than θc, then the combination of ε(τ) = ε̄ and fn(τ) does not energise the polaron enough

to move it, and a non-zero A is required. We have investigated how θc changes as we vary

β and ε̄, and the results are shown in Figure 4.12. We observe the qualitative trend that

the larger ε̄ is, the less thermal energy is required to make up for the extra energy that the

polaron needs in order to move. We also observe that in general, the larger β is, the less

thermal energy is required to displace the polaron. This agrees with our understanding
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Figure 4.13: A polaron trajectory (left axis), and the corresponding time-evolution of
the polaron’s internal energy (right axis), given β = 0.6, λ = 5.0, ε̄ = 0.03, A = 0, and
θ = θc = 0.60.

that when β is large, we have an electron-phonon interaction which is biased towards one

end of the lattice, making the polaron more susceptible to displacement.

In Figure 4.13 we present a typical polaron trajectory when θ = θc. Under this critical

thermal energy, some simulations would produce no polaron displacement at all, but most

trajectories would be similar to that in Figure 4.13, clearly showing a directed movement

of the polaron. We propose to explain the shape of such a trajectory as follows. First of

all, the combined amplitude of the MSPF, in this case ε̄ on its own, is much lower than
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what is required to move the polaron under zero fn. In Figure 4.13 for example, we have

Acomb = ε̄ = 0.03, whereas the critical value for Acomb under θ = 0, as we discovered in

Section 4.4.3, was 0.172. We see in Figure 4.13 that the polaron spends the majority of

its lifetime oscillating by small amounts around its localisation site, but occasionally the

random forces on the lattice sites in the vicinity of the electron causes a large distortion,

such that the effective potential barrier for the electron is significantly lowered, and the

electron can escape the well. Once it does that, the electron is propelled towards one

end of the lattice by the EMF ε = ε̄, but before the electron has time to move far, the

stochastic forces may have further distorted the local lattice sites in such a way that a

high potential barrier is restored. The electron therefore becomes trapped again, which

gives the polaron time to recover its integrity, before the next random time at which the

electron jumps out of its potential well. This explains why a trajectory under the critical

thermal energy appears jagged, showing the polaron ‘hopping’ one or two sites at a time,

in stark contrast with the smooth and regular polaron motion that we saw in Figure 4.6.

The way in which our polarons move under θ > θc remains characteristically similar to

that which Figure 4.13 shows, as long as θ is not so large that the excessive thermal energy

rapidly destroys the polaron binding and causes delocalisation. We find that regardless of

other parameters in the system, stable polaron propagation is possible only if the thermal

energy is less than roughly 0.9, which corresponds to a temperature of 55 K. Such a

temperature is by no means physiological, but its thermal energy is only several times too

small. We will propose in the following Section a means by which we believe our model

could be improved to allow higher temperatures.

4.5 Summary and Biophysical Interpretations

In this Chapter, we have presented a new mathematical model describing polaron dy-

namics in an α-channel, the type of which are found in a transmembrane α-helix. The

model is dependent on a symmetry parameter, β, which measures the extent to which the

interaction between the polaron’s electron and phonon components is spatially symmetric.

We have shown that when β takes its extreme values, 0 and 1, the model reduces to exist-

ing ones for which it was assumed that the electron-phonon interaction was, respectively,

symmetric and antisymmetric. We have justified the physical neccessity of including β

in the model, in that one should not simply assume the electron to be coupled equally

strongly to hydrogen bonds on either side, or to be coupled only to the bond on one side.
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Apart from β, we have also identified two composite parameters which are vital to the

intrinsic properties of the polaron. Firstly there is the adiabaticity parameter, ρ, measuring

the characteristic time-scale separation between the lattice and electron dynamics, which

we have justifiably fixed throughout the Chapter. Then there is the effective coupling pa-

rameter, λ, measuring the strength of the electron-phonon interaction. The combination

of β and λ determines two key aspects of the stationary state of our system: the electron’s

maximum localisation probability, and the polaron’s binding energy. We have computed

both of these quantities as functions of β and λ, using analytical and numerical meth-

ods. Specifically, in the continuum (large-lattice) limit, we have obtained approximate

stationary solutions, in the process of which we have solved a new generalised nonlinear

Schrödinger equation using analytical methods. We have used the analytical results in our

numerical scheme, which finds stationary solutions on a finite lattice via an unconventional

iterative method.

Our main results relate to using an external EMF to displace the polaron, in a manner

which is solitonic and, crucially, directed. Such polaron dynamics could be achieved only

if the electron is dislodged from its self-trapping potential well, and the local lattice dis-

tortions propagate coherently with the electron, and some mechanism exists which ensures

that the electron always moves towards one end of the lattice. If the second condition is

not met, then over time the electron probability distribution would become broader, lead-

ing to delocalisation. We have found that a constant EMF, with electric field amplitude ε̄,

is insufficient for displacing the polaron, unless ε̄ is larger than some threshold value, but

then the forcing causes rapid delocalisation. We have also found that a temporally sinu-

soidal electric field component, A sin(2πτ/T ), is never sufficient for displacing the polaron.

We then combined the constant and sinusoidal electric fields, resulting in the mean-shifted

periodic field (MSPF), ε = ε̄ − A sin(2πτ/T ). We have discovered that, for each ε̄ which

is insufficient on its own to displace the polaron, there is some critical value Ac, such that

the polaron is displaced if and only if A ≥ Ac. There is also an optimal value Am, such

that the polaron attains maximum velocity at A = Am. As ε̄ is decreased, Ac increases,

in such a way that the combined amplitude Acomb = ε̄ + Ac remains constant. This sug-

gests that there is a certain amount of extra energy that the electron needs in order to

overcome its potential barrier, and how much of it comes from the constant or sinusoidal

part of the MSPF is inconsequential, as long as the two parts combine to a large enough

overall amplitude. Nevertheless, the split between ε̄ and A does determine the manner
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in which the polaron propagates, specifically its velocity and stability. The velocity is

predominantly determined by ε̄, and positively correlated with it; but the stability of the

polaron is negatively correlated with ε̄. By comparing three sets of (ε̄, A) with the same

combined ε̄ + A, namely (0.005, 0.167), (0.03, 0.142), (0.1, 0.072), while keeping all other

parameters fixed, we found that the combination (0.03, 0.142) produces optimal balance

between polaron velocity and stability.

We have examined how the system depends upon β. To do so, we needed a way

of isolating the effect of varying β. This posed a difficulty, because if we were to fix λ

and vary β then both the maximum localisation probability and binding energy of the

stationary polaron would change. We would then be comparing dynamical behaviours of

entirely dissimilar polarons. We therefore decided to vary λ with β, in a way that allowed

us to generate a set of stationary polarons, one for each combination of (β, λ(β)), such

that they all had the same maximum localisation probability. Then we launched these

polarons using the same external forcing and compared the results. We have found that

β = 1, representing a system with spatially antisymmetric electron-phonon interaction,

produces a polaron which is easiest to move, in the sense that the least amount of electric

field is required. We have also found that the symmetric model, β = 0, does not make the

polaron most difficult to move, whereas β ≈ 0.6 does. This hints at the existence of some

intrinsic mechanism in the β = 0 model which pushes the electron towards one end of the

lattice, despite it being coupled to the other end equally strongly.

We have also studied the MSPF under non-zero stochastic forcing, characterised by a

thermal energy θ > 0, on the peptide units. We have found that a non-zero θ facilitates

polaron propagation, in the sense that it lowers the critical amplitude Ac, for any given ε̄.

Moreover, a non-zero θ results in a gradual onset of polaron motion, meaning the rate of

change of polaron velocity with respect to A near A = Ac is small, compared to the onset

under θ = 0. Our results have also shown that, whenever there is polaron propagation,

whether θ = 0 or θ > 0, the relative displacements between neighbouring peptide units

remain under O(10−2). This is a necessary condition which allows us to model the peptide

units as point dipoles.

Some of the choices of parameters in the MSPF may be justified physically as follows.

It is well known that across the plasma membrane of a living cell, a resting membrane po-

tential is maintained by intercellular chemical processes [Luc08]. It is also well known that

within the plasma membrane there exist highly stable transmembrane regions of proteins,
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for instance the human prolactin receptor 2N7I [BPH+16], and the rat monoamine oxidase

A 1O5W [MYY+04], both of which are α-helical structures spanning the entire membrane.

Given a constant potential difference of ∆V across a linear, homogeneous, isotropic dielec-

tric medium with constant width d, the effective electric field inside the medium is given

by E0 = ∆V/(εrd), where εr is the dielectric constant (a.k.a. relative permittivity) of the

medium [Jac99]. Assuming the plasma membrane is such a medium, we can then attribute

the physical origin of ε̄ to the resting membrane potential, and calculate ε̄ using Equa-

tion (4.2.42), namely ε̄ = eE0R/(~Ω). For many cells, the values of the E0 and d are well

established. As an example, one may look at human red blood cells (erythrocytes), one of

the most widely studied cells in nature, and point to [CHV+80] for the value E0 = −8.4

mV, as well as [MK80,HEWM83] for d = 78 Å. However the value of εr for a membrane

is highly contentious, due to the fact that it depends sensitively upon a large variety of

biophysical attributes of the membrane, such as hydration [MDC08], pH value [SY08],

and structural stability [VRW09]. In a recent review, it was reported that the value of εr
in literature ranges from 1 to 40 [LLZA13]. Feeding these values of E0, d and εr into the

equation for ε̄, we find that ε̄ ranges from 0.002 to 0.1. We have taken care to ensure that in

this Chapter the values of ε̄ fall strictly within this range. For a physical origin of the sinu-

soidal component A sin(2πτ/T ) of the MSPF, one could look to common electromagnetic

radiations which fill the environment around us in the modern age, such as the radiation

from telecommunication transmitters. In particular, the values of T which we have consid-

ered, 100, 500 and 2000, respectively match the frequencies of the IEEE 802.11ad protocal

Wi-Fi band, the Ku-band frequencies for satellite communications and broadcasting, and

the S-band frequencies for radio communications [IEE12,IEE03]. However the amplitudes

of the aforementioned radiations are much smaller than the values of A for which we have

observed noteworthy results. For instance, treating the mobile telephone transmitter as an

omni-directional dipole with peak power P , we can estimate the amplitude Ã of its output

waves at operational distance d0, by using the well-known formula P/(4πd2
0) = ε0cÃ

2/εr,

where ε0, c, εr are the vacuum permittivity, speed of light, and relative permittivity of the

medium, respectively. Feeding P = 1 W [LFV+04] and 1 ≤ εr ≤ 40 [LLZA13] into the

formula, we obtain 0.8 V ≤ Ãd0 ≤ 35 V. If we want this quantity to translate into our

dimensionless amplitude, via A = eÃR/(~Ω), as 0.002 ≤ A ≤ 0.1 (the range for which we

have positive results), then the operational distance needs to be d0 = 3×10−5 m, which is

unrealistic. If d0 is much larger, then A becomes too small to cause polaron displacement
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in our model. It is therefore clear that, in a real cell, the effect on a polaron due to a

combination of resting membrane potential and stochastic thermal forces are dominant

over any external electromagnetic radiation that may commonly be present. This high-

lights the importance of our observation that, given a constant electric field ε̄, there exists

some critical thermal energy θc, such that the polaron undergoes directed motion if and

only if θ ≥ θc. In other words, a combination of ε̄ and θ can be sufficient for displacing

the polaron, in a manner which is solitonic and directed, just as a combination of ε̄ and

A sin(2πτ/T ) can. In the former case, the thermal energy θ provides the required extra

energy beyond ε̄, which would otherwise be provided by the sinusoidal electric field.

We have thus far assumed that the α-channel is linear, in the sense that all hydrogen

bonds point in the same direction. We know this is not the case in the α-helix, where

every hydrogen bond is at an angle to the helical axis. By expanding the spatial geometry

of our system from one-dimensional space to three-dimensional space, we can take these

bond angles into account. In the resulting α-helical model, we believe it is possible that

we can raise the system’s temperature beyond the current limit of roughly 55 K and still

obtain stable polaron propagation. We study such a model in the following Chapter.
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Chapter 5

The Generalised Davydov-Scott
Model for the α-Helix

This Chapter is adapted from [Luo18].

Scott showed in his model of amide-I-hydrogen bond coupling that the α-helix system

with unit mass M and bond strength K was equivalent to an α-channel system with

unit mass 3M and bond strength 3K, if one assumed an appropriate form of latitudinal

symmetry called the A-mode symmetry. Essentially this was the assumption that twisting

and bending in the helix were negligible, and that the electron is equally spread amongst

the three channels of the α-helix at all times. For this Chapter, in the context of our

generalised Davydov-Scott (GDS) model for electron-hydrogen bond coupling in the α-

helix, we explore a variant of the A-mode symmetry in which the twisting of the helix is

not neglected.

In Section 5.1, we present a Hamiltonian for the system which takes into account

not only interactions along hydrogen bonds in an α-helix, but also latitudinal electron

transfer between adjacent α-channels. We then show in Section 5.2 that under a suitable

A-mode symmetry assumption, latitudinal transfer is nullified, and the dynamics of a

polaron in our multi-channel system are encapsulated by equations that are highly similar,

though not identical, to those in Chapter 4, which were applicable to a single-channel

system. The difference between the two sets of equations stems from the twisting of the

α-channels around the helical axis. We proceed in Section 5.3 to compute stationary

polaron solutions of our system, neglecting stochastic forces, and quasi-stationary polaron

solutions with stochastic forces in place. In Section 5.4, we investigate the dynamics of

polarons under electromagnetic fields the likes of which we first considered in Chapter 4,

with or without stochastic forces. Where appropriate, we draw comparisons between our
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results in this Chapter and in the previous, illustrating the differences between a polaron

moving along a single α-channel without being influenced by any other channels, and a

polaron propagating along all three α-channels under the A-mode symmetry.

In Section 5.5, we propose a GDS model for the α-helix without A-mode symmetry.

We write down the dynamical equations, and make predictions about polaron solutions

based on analytical results. However, our ability to conduct a numerical study is hampered

by the lack of existing data relating to the electron band structure of the α-helix, and we

will explain this point in detail. Finally, we summarise our results in Section 5.6, giving

biophysical interpretations.

5.1 The Hamiltonian and Dynamical Equations

We consider an α-helix where the number of peptide units in α-channels labelled 1, 2

and 3 are, respectively, N1 + 1, N2 + 1 and N3 + 1. Assuming all peptide units to be

identical, all equilibrium spacings between units to be identical, and all covalent bonds to

be rigid, we treat the α-helix as a lattice, with peptide units as point-particle nodes. We

therefore propose the following Hamiltonian to describe electron-hydrogen bond coupling

in the α-helix, under the influence of an external electromagnetic field (EMF):

Ĥ = Ĥe + Ĥp + Ĥint + Ĥext, (5.1.1)

where

Ĥe =
3∑
j=1

 Nj∑
n=0

J0Â
†
n,jÂn,j −

Nj−1∑
n=0

J1

(
Â†n+1,jÂn,j + Â†n,jÂn+1,j

)

−
Nj∑
n=0

J2

(
Â†n,j+1Ân,j + Â†n,jÂn,j+1

), (5.1.2a)

Ĥp =
3∑
j=1

 Nj∑
n=0

ζ2P 2
n,j

2M +
Nj−1∑
n=0

Mζ−2Ω2 (Un+1,j − Un,j
)2

2

, (5.1.2b)

Ĥint =
3∑
j=1

χr
(
U1,j − U0,j

)
Â†0,jÂ0,j +

3∑
j=1

χl
(
UN,j − UN−1,j

)
Â†N,jÂN,j

+
3∑
j=1

Nj−1∑
n=1

[
χr
(
Un+1,j − Un,j

)
+ χl

(
Un,j − Un−1,j

) ]
Â†n,jÂn,j , (5.1.2c)

Ĥext = −
3∑
j=1

Nj∑
n=0

eER (n− n0) Â†n,jÂn,j . (5.1.2d)
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Ĥe, Ĥp, Ĥint and Ĥint are Hamiltonians associated with, respectively, the electron, lattice,

electron-hydrogen bond phonon interaction and electron-EMF interaction. The indices

j = 1, 2, 3 and n = 0, 1, . . . , Nj label, respectively, the three α-channels and the units

within each channel. Addition in j, for instance Ân,j+1, is modulo 3, so that j = 4 is

equivalent to j = 1. Â†n,j and Ân,j are, respectively, the electron creation and annihilation

operators at the (n, j) peptide unit; they satisfy the fermionic anti-commutation relation,

Âm,kÂ
†
n,j + Â†n,jÂm,k = δmnδjk. (5.1.3)

J0 is the electron site energy, J1 the nearest-neighbour electron transfer integral across a

hydrogen bond along an α-channel, and J2 the nearest-neighbour electron transfer integral

across a peptide bond between adjacent α-channels.

There is a major difference between Ĥe in the current model and Ĥe in Scott’s model

for amide-I-hydrogen bond coupling. We have a negative inter-channel transfer energy,

−J2, whereas Scott had a positive one. The reason for this discrepancy is that in the

context of vibrational energy propagation, whilst the amide-I tends to disperse along the

longitudinal direction, it tends to do the opposite in the lateral direction and localise on

a single α-channel. This is because transfers of vibrational energy along the essentially

rigid peptide bonds between channels are highly unlikely. In fact, amide-I oscillations are

by definition in the longitudinal direction. In the context of electron transport, however,

the electron tends to disperse in all directions, because all neighbouring peptide units are

the same point-dipoles, and are therefore equivalent [Hen01].

In Ĥp, the origin of the parameter ζ is as follows. In the single-channel model of

Chapter 4, the hydrogen bonds were linear in the sense that each peptide unit had one

degree of freedom, and the displacements of the units along their common axis were

represented as Un. In the α-helix, every peptide unit has three degrees of freedom, and

the distortion in the (n, j)-to-(n+ 1, j) hydrogen bond, hereafter referred to as the (n+, j)

hydrogen bond, depends upon displacements in all three spatial dimensions of the (n, j)

and (n+ 1, j) peptide units. Every hydrogen bond at equilibrium is at an angle to, rather

than collinear with, the next; we call this the twisting of the α-channel. If we want

only one degree of freedom, Un,j , and its conjugate momentum, Pn,j , to appear in the

Hamiltonian, then we must be careful about what they represent. In reality, a distorted

hydrogen bond may not point in the same direction as it does at equilibrium. However

we can assume that the bond distortions are mostly in the equilibrium bond directions, in
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the sense that the distortions projected along equilibrium bond directions are the dominant

factors in the lattice’s potential energy, compared to effects of any deviations from the

equilibrium directions. One might therefore let Un,j represent the displacement of the

(n, j) unit along the equilibrium direction of the (n+, j) hydrogen bond. That would,

however, make Un+1,j the displacement of the (n+1, j) unit along the equilibrium direction

of the ((n+ 1)+, j) hydrogen bond, which, due to the twisting of the α-channel, is not the

same as the equilibrium direction of the (n+, j) bond. As a result, Un+1,j −Un,j does not

represent the distortion of the (n+, j) hydrogen bond along its equilibrium direction. In

fact, it is impossible to define Un,j in such a way that Un+1,j−Un,j consistently represents

bond distortions in equilibrium bond directions for all n. The resolution that we propose

is to let Un,j be the longitudinal, i.e. along helical axis, displacement of the (n, j) peptide

unit. Un+1,j − Un,j is then the (n+, j) bond distortion projected along the helical axis.

Now, Ω in Ĥp is defined as the square root of the ratio between the bond’s force constant

K and the node mass M :

Ω :=
√
K/M. (5.1.4)

The summand in the second term of Equation (5.1.2b), which represents the lattice’s

potential energy due to bond distortions, should be (MΩ2/2)(Un+1,j − Un,j)2/|e0
n,j · e0

z|2,

where e0
n,j and e0

z are basis vectors in the directions of, respectively, the (n+, j) hydrogen

bond at equilibrium and the helical axis at equilibrium. Strictly speaking, we should be

dividing (Un+1,j − Un,j)2 by |en,j(t) · ez(t)|2, where en,j(t) is the basis vector along the

(n+, j) hydrogen bond at time t, and ez(t) is the basis vector along the helical axis at time

t. However we neglect bending in the α-helix, meaning that we assume ez(t) = e0
z for all t.

Moreover, assuming that all bond distortions are always small relative to the equilibrium

bond length (indeed we will see in subsequent Sections that this relative magnitude never

exceeds O(10−2)), and assuming that |e0
n,j · e0

z| is sufficiently large (we will verify this in

Section 5.2.1), then the difference between |en,j(t)·e0
z| and |e0

n,j ·e0
z| will always be negligible

compared to |e0
n,j ·e0

z|. In other words, any error resulting from using e0
n,j instead of en,j(t)

in our expression for the lattice potential energy will always be negligible. We define

ζ :=
∣∣∣e0
n,j · e0

z

∣∣∣ , (5.1.5)

and the expression in Equation (5.1.2b) for the potential part of Ĥp immediately follows.
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An equivalent way to interpret the ζ−2 factor is the following. If we incorporate all

three degrees of freedom of the (n, j) peptide unit, namely the longitudinal displacement

Un,j and, say, Vn,j andWn,j , then the square of the distortion of the (n+, j) hydrogen bond

is exactly (Un+1,j−Un,j)2 +(Vn+1,j−Vn,j)2 +(Wn+1,j−Wn,j)2. Our assumption is that out

of those three components, (Un+1,j −Un,j)2 is the dominant one, so that one can treat the

ratio between the sum of the other two components and (Un+1,j−Un,j)2 as a perturbation

about 1; and for simplicity we assume that ratio to be a constant, rather than carry out

a perturbation analysis rigorously. Consequently, we simply scale (Un+1,j − Un,j)2 by a

constant factor of ζ−2 = 1/|e0
n,j · e0

z|2.

The reason that the kinetic part of Ĥp in Equation (5.1.2b) contains a factor of ζ2,

rather than ζ−2, is as follows. The momentum conjugate to Un,j is defined by Pn,j :=

∂L/∂(dUn,j/dt), where L = ζ−2∑
n,j

[
(M/2)(dUn,j/dt)2 − (MΩ2/2)(Un+1,j − Un,j)2

]
is

the Lagrangian of the isolated lattice system. The ζ−2 factor multiplies the kinetic part in

L because dUn,j/dt needs to be scaled by the same factor by which Un,j is scaled. Thus,

Pn,j = Mζ−2dUn,j
dt . (5.1.6)

Then the Hamiltonian Ĥp is derived using the Legendre transform from L, by Ĥp =∑
n,j Pn,j ·dUn,j/dt−L =

∑
n,j Pn,j · ζ2Pn,j/M −L. Once we use Equation (5.1.6) to write

L in terms of Pn,j , the expression in Equation (5.1.2b) for Ĥp immediately follows, where

ζ2 appears in the kinetic term while ζ−2 appears in the potential.

For the interaction Hamiltonian Ĥint in Equation (5.1.2), we have taken the GDS

bilinear form with a coupling constant χ partitioned into χr and χl [cf. Chapter 4],

respectively representing the strength of interaction between a site electron and hydrogen

bonds to either side of it. Any scaling factor necessitated by the three-dimensional α-

helical geometry may simply be absorbed into χr and χl, since their values are in any case

variable. Without loss of generality, we let χr > 0 and 0 ≤ χl ≤ χr. We then define the

symmetry parameter,

β := χr − χl
χ

, (5.1.7)

where χ = χr + χl, so that

0 ≤ β ≤ 1. (5.1.8)
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We can therefore write

Ĥint =
3∑
j=1

χ

2 (1 + β)
(
U1,j − U0,j

)
Â†0,jÂ0,j +

3∑
j=1

χ

2 (1− β)
(
UN,j − UN−1,j

)
Â†N,jÂN,j

+
3∑
j=1

Nj−1∑
n=1

χ

2

[ (
Un+1,j − Un−1,j

)
+ β

(
Un+1,j + Un−1,j − 2Un,j

) ]
Â†n,jÂn,j . (5.1.9)

Finally, Ĥext in Equation (5.1.2) models the effect of an EMF with longitudinal electric

field strength E = E(t) on the potential energy of an electron with charge −e. The

potential energy due to E is set to zero at some arbitrary n0, which we assume to be the

same for all three α-channels in the α-helix, and R is the equilibrium distance between

peptide units along an α-channel. We have assumed that the EMF has equal influence on

electrons at the (n, j), (n, j+1) and (n, j+2) sites. This is of course a gross simplification,

and one that we will abandon in Section 5.5; for now, we make this simplification because

it is an essential ingredient of the A-mode symmetry which we describe in the next Section.

We write the state of the system as a linear superposition of local excitations,

|Ψ(t)〉 =
3∑
j=1

Nj∑
n=0

αn,j(t)Â†n,j |0〉 , (5.1.10)

where αn,j are complex coefficients and |0e〉 is the normalised vacuum state. To derive

dynamical equations for αn,j and Un,j in this setting, we adopt the same Hamiltonian

approach which we described in detail in Section 4.2.2. To avoid repetition, here we omit

the intermediate steps in the derivation and simply state that the equations for αn arise

from the Schrödinger equation,

i~
∂ |Ψ〉
∂t

= (Ĥe + Ĥint + Ĥext) |Ψ〉 , (5.1.11)

and they are as follows:

i~
dα0,j
dt = J0α0,j − J1α1,j − J2

(
α0,j+1 + α0,j−1

)
+ χ

2α0,j (1 + β)
(
U1,j − U0,j

)
− eER(−n0)α0,j , (5.1.12a)

i~
dαn,j
dt = J0αn,j − J1

(
αn+1,j + αn−1,j

)
− J2

(
αn,j+1 + αn,j−1

)
+ χ

2αn,j
[(
Un+1,j − Un−1,j

)
+ β

(
Un+1,j + Un−1,j − 2Un,j

)]
− eER(n− n0)αn,j , for 1 ≤ n ≤ Nj − 1, (5.1.12b)

i~
dαN,j
dt = J0αN,j − J1αN−1,j − J2

(
αN,j+1 + αN,j−1

)
+ χ

2αN,j (1− β)
(
UN,j − UN−1,j

)
− eER(N − n0)αN,j . (5.1.12c)
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Equations for Un,j are derived from classical Hamilton’s equations,

dUn,j
dt = ∂Hcla

∂Pn,j
, (5.1.13a)

dPn,j
dt = −∂Hcla

∂Un,j
, (5.1.13b)

where we have defined

Hcla := 〈Ψ|(Ĥp + Ĥint)|Ψ〉

=
3∑
j=1

Nj∑
n=0

ζ2P 2
n,j

2M +
3∑
j=0

Nj−1∑
n=0

Mζ−2Ω2 (Un+1,j − Un,j
)2

2

+
3∑
j=1

χ

2

 (1 + β)
∣∣α0,j

∣∣2 (U1,j − U0,j
)

+ (1− β)
∣∣αN,j∣∣2 (UN,j − UN−1,j

)

+
Nj−1∑
n=1

∣∣αn,j∣∣2 [ (Un+1,j − Un−1,j
)

+ β
(
Un+1,j + Un−1,j − 2Un,j

) ]. (5.1.14)

Combining the two Hamilton’s equations gives us, for j = 1, 2, 3 and n = 0, 1, . . . N ,

Mζ−2d2Un,j
dt2 = −∂Hcla

∂Un,j
. (5.1.15)

We therefore deduce the following dynamical equations for Un,j :

Mζ−2d2U0,j
dt2 = Mζ−2Ω2 (U1,j − U0,j

)
+ χ

2

[
(1− β)

∣∣α1,j
∣∣2 + (1 + β)

∣∣α0,j
∣∣2 ], (5.1.16a)

Mζ−2d2Un,j
dt2 = Mζ−2Ω2 (Un−1,j + Un+1,j − 2Un,j

)
+ χ

2

[
(1− β)

∣∣αn+1,j
∣∣2

+ 2β
∣∣αn,j∣∣2 − (1 + β)

∣∣αn−1,j
∣∣2 ] for 1 ≤ n ≤ Nj − 1, (5.1.16b)

Mζ−2d2UN,j
dt2 = −Mζ−2Ω2 (UN,j − UN−1,j

)
− χ

2

[
(1− β)

∣∣αN,j∣∣2 + (1 + β)
∣∣αN−1,j

∣∣2 ].
(5.1.16c)

To account for interactions between the peptide units and the environment, we add

Langevin terms to the right-hand side of Equation (5.1.16), which are: −ΓdUn,j/dt, a drag

force representing dissipation due to friction, where Γ is a viscous damping coefficient; and

Fn,j(t), stochastic forces arising from thermal fluctuations [Lan08,LG97,Sch10,BEPZ14].

Fn,j(t) is normally-distributed with zero mean and correlation function

〈Fm(t)Fn(t′)〉 = 2ΓkBΘδm,nδ(t− t′), (5.1.17)

where kB,Θ, δ·,· and δ(·) are, respectively, the Boltzmann constant, temperature of the

environment, the Kronecker delta and the delta function.
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By introducing the gauge transformation,

αn,j(t) = ψn,j(t) exp
[
− it
~

(J0 − 2J1 − 2J2)
]
, (5.1.18)

we can recast Equation (5.1.12) as equations for ψn,j whilst preserving the probability

distribution, |αn,j |2 = |ψn,j |2. By defining

Sn,j := Un+1,j − Un,j (5.1.19)

for n = −1, 0, 1, . . . , N , with quantities that involve fictitious points at n = −1 and

n = N + 1 given by

S−1 = SN = 0, (5.1.20)

and by requiring

ψ−1,j = ψ0,j = ψN,j = ψN+1,j = 0, (5.1.21)

we can write down one unifying equation for ψn,j and one unifying equation for Un,j valid

for all j = 1, 2, 3 and n = 0, 1, . . . Nj , as follows:

i~
dψn,j
dt = χ

2ψn,j
[(
Sn,j + Sn−1,j

)
+ β

(
Sn,j − Sn−1,j

)]
− J1

(
ψn+1,j + ψn−1,j − 2ψn,j

)
− J2

(
ψn,j+1 + ψn,j−1 − 2ψn,j

)
− eER(n− n0)ψn,j , (5.1.22a)

Mζ−2d2Un,j
dt2 = Mζ−2Ω2 (Sn,j − Sn−1,j

)
+ χ

2
(
|ψn+1,j |2 − |ψn−1,j |2

)
− χ

2 β
(
|ψn+1,j |2 + |ψn−1,j |2 − 2|ψn,j |2

)
− ΓdUn,j

dt + Fn,j . (5.1.22b)

Equations (5.1.22a) and (5.1.22b) are the dynamical equations for our system of electron-

hydrogen bond coupling in the α-helix. Comparing them to the dynamical equations for

the α-channel system in Chapter 4, we see strong similarities between Equation (5.1.22a)

and Equation (4.2.26), as well as between Equation (5.1.22b) and Equation (4.2.37).

5.2 The System Under A-Mode Symmetry

The A-mode symmetry refers in essence to the equipartition of the electron among the

α-channels. Several other assumptions are also pertinent to the symmetry, and in Sec-

tion 5.2.1 we describe them mathematically. We also present the dynamical equations

which result from simplifications afforded by the A-mode symmetry, and assign parameter

values where appropriate. We then derive energy properties of our system in Section 5.2.2.

142



CHAPTER 5. THE GENERALISED DAVYDOV-SCOTT MODEL FOR THE α-HELIX

5.2.1 The Equations and Parameters

The A-mode symmetry manifests itself mathematically as an equipartition of ψn,j among

the α-channels:

ψn,1 = ψn,2 = ψn,3, (5.2.1)

as well as the equivalence of lattice displacements between the α-channels:

Un,1 = Un,2 = Un,3. (5.2.2)

We further assume that

Fn,1 = Fn,2 = Fn,3, N1 = N2 = N3 = N, (5.2.3)

and define

ψn :=
√

3ψn,j , Un := Un,j , Sn := Un+1 − Un, Fn := Fn,j . (5.2.4)

Then, multiplying Equation (5.1.22a) by
√

3 and Equation (5.1.22b) by 3, we obtain

i~
dψn
dt = χ

2ψn
[
(Sn + Sn−1) + β (Sn − Sn−1)

]
− J1 (ψn+1 + ψn−1 − 2ψn)− eER(n− n0)ψn, (5.2.5a)

M̃ζ−2d2Un
dt2 = M̃ζ−2Ω2 (Sn − Sn−1) + χ

2
(
|ψn+1|2 −|ψn−1|2

)
− χ

2 β
(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)
− Γ̃dUn

dt + F̃n, (5.2.5b)

for n = 0, 1, . . . , N , where

M̃ = 3M, Γ̃ = 3Γ, F̃n = 3Fn. (5.2.6)

We see that the A-mode symmetry, together with the gauge transformation (5.1.18), has

eliminated the J2 term that appeared in Equation (5.1.22b). Scaling time and length by

t = Ω−1τ, Un = Lun, Sn = Lsn, (5.2.7)

where

L :=
√
~M̃−1Ω−1, (5.2.8)

143



CHAPTER 5. THE GENERALISED DAVYDOV-SCOTT MODEL FOR THE α-HELIX

we obtain the following dimensionless dynamical equations:

iψ̇n = κψn
[
(sn + sn−1) + β (sn − sn−1)

]
− ρ (ψn+1 + ψn−1 − 2ψn)

− ε(n− n0)ψn, (5.2.9a)

ün = (sn − sn−1) + κζ2
[(
|ψn+1|2 −|ψn−1|2

)
− β

(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)]
− γu̇n + fn, (5.2.9b)

for n = 0, 1, . . . , N , where the overdot denotes differentiation with respect to τ , and

ψ−1 = ψN+1 = 0, ψ0 = ψN = 0, s−1 = sN = 0, u0 = u̇0 = 0. (5.2.10)

The dimensionless parameters that appear in Equation (5.2.9) are

κ = χ

2
√
~M̃Ω3

, ρ = J1
~Ω , ε = eER

~Ω , γ = ζ2Γ̃
M̃Ω

, fn = ζ2F̃n√
~M̃Ω3

, (5.2.11)

where, according to Equation (5.1.17), Equation (5.2.6) and the re-scalings, the stochastic

forces fn have zero mean and are correlated by

〈fm(τ)fn(τ ′)〉 = 18ζ4ΓkBΘδm,nδ(τ − τ ′)Ω
~M̃Ω3

= 6ζ2γθδm,n
∆τ , (5.2.12)

with

θ = kBΘ
~Ω (5.2.13)

being thermal energy in units of ~Ω, and ∆τ being a small time-step which we employ in

our numerical experiments. Equation (5.2.9) holds subject the normalisation condition,

N∑
n=0
|ψn|2 = 1, (5.2.14)

which is a consequence of the fact that
∑3
j=1

∑N
n=0 |ψn,j |2 = 1 and ψn =

√
3ψn,j for

all j. We see that Equation (5.2.9) differs from Equation (4.2.40) for the single-channel

system only in the definitions of some dimensionless parameters and the appearance of

ζ in Equation (5.2.9). It is clear that the ζ parameter truly is non-trivial: it represents

an imbalance between the effect on the electron and on the lattice of the electron-phonon

coupling, and it is impossible to make ζ disappear from the equations by re-scaling.
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We take values of the parameters J1, R,M,Ω and Γ from Chapter 4, specifically Sec-

tion 4.2.3, where we justified the choices of these values. Here we present J1, R and Ω

again for completeness, as well as M̃, Γ̃ which are related to M,Γ by Equation (5.2.6).

J1 = 11 meV, R = 4.5 Å, Ω = 8.1× 1012 s−1,

M̃ = 5.322× 10−25 kg, Γ̃ = 102 pg · s−1. (5.2.15)

In order to calculate ζ from Equation (5.1.5), we need

ζ =
∣∣∣e0
n,j · e0

z

∣∣∣ =

∣∣∣v0
n,j · e0

z

∣∣∣∣∣∣v0
n,j

∣∣∣ , (5.2.16)

where v0
n,j is the vector from one peptide unit to the next in an α-channel at equilibrium.

In cylindrical coordinates, v0
n,j is the vector from (R0, σ

0
n,j , Z

0
n,j) to (R0, σ

0
n+1,j , Z

0
n+1,j):

v0
n,j =

(
R0
(
cosσ0

n+1,j − cosσ0
n,j

)
, R0

(
sin σ0

n+1,j − sin σ0
n,j

)
, Z0

n+1,j − Z0
n,j

)

=

− 2R0 sin
(
σ0
n+1,j − σ0

n,j

2

)
sin
(
σ0
n+1,j + σ0

n,j

2

)
,

2R0 sin
(
σ0
n+1,j − σ0

n,j

2

)
cos

(
σ0
n+1,j + σ0

n,j

2

)
, Z0

n+1,j − Z0
n,j

, (5.2.17)

where R0 is the mean radius of the α-helical coil, σ0
n+1,j − σ0

n,j is the angle of rotation

from one peptide unit to the next projected onto the plane perpendicular to the helical

axis, and Z0
n+1,j − Z0

n,j is the distance from one peptide unit to the next projected onto

the helical axis, all in the equilibrium state. Taking values from [BT88], we have

R0 = 2.3Å, σ0
n+1,j − σ0

n,j = 5π
3 , Z0

n+1,j − Z0
n,j = R = 4.5 Å. (5.2.18)

It therefore follows that

ζ = 4.5

∣∣∣∣∣∣
(
−4.6 sin 5π

6 sin
σ0
n+1,j + σ0

n,j

2 , 4.6 sin 5π
6 cos

σ0
n+1,j + σ0

n,j

2 , 4.5
)∣∣∣∣∣∣
−1

= 0.89. (5.2.19)

As a result of J1,Ω, M̃ , Γ̃ and ζ being fixed, the following are also fixed:

ρ = 2.1, γ = 0.019. (5.2.20)

β, κ and θ are left to vary, as is the electric field strength ε, and in the subsequent Sections

we investigate the effects of varying these parameters on the polarons in our system.
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Finally, we note that the characteristic time-scale, length-scale [cf. Equation (5.2.8)] and

energy-scale in our system are, respectively,

Ω−1 = 0.12 ps, L = 0.049 Å = 0.011R, ~Ω = 5.3 meV. (5.2.21)

5.2.2 Energetics

As we did in Chapter 4, we measure the polaron’s internal energy Eb with respect to the

lowest energy in the electron band, now J0 − 2J1 − 2J2, and in units of meV:

Eb := 5.3× 〈Ψ|Ĥe + Ĥp + Ĥint|Ψ〉 − J0 + 2J1 + 2J2
~Ω . (5.2.22)

Defining 〈Ĥe〉 := 〈Ψ|Ĥe|Ψ〉, similarly 〈Ĥp〉 and 〈Ĥint〉, we can compute the three compo-

nents of Eb separately. For each component, we first derive an expression which is valid

even without assuming A-mode symmetry, and then simplify the expression by invoking

the A-mode symmetry.

Firstly, using |Ψ〉 =
∑N
n=0 ψn exp

[
− it

~ (J0 − 2J1 − 2J2)
]
Â†n |0〉, we obtain

〈Ĥe〉
~Ω =

3∑
j=1

3∑
l=1

Nj∑
m=0

Nl∑
q=0

 J0
~Ωψ

∗
m,jψq,l

3∑
k=1

Nk∑
n=0
〈0| Âm,jÂ†n,kÂn,kÂ

†
q,l |0〉

− J1
~Ωψ

∗
m,jψq,l

3∑
k=1

Nk−1∑
n=0
〈0| Âm,jÂ†n+1,kÂn,kÂ

†
q,l + Âm,jÂ

†
n,kÂn+1,kÂ

†
q,l |0〉

− J2
~Ωψ

∗
m,jψq,l

3∑
k=1

Nk∑
n=0
〈0| Âm,jÂ†n,k+1Ân,kÂ

†
q,l + Âm,jÂ

†
n,kÂn,k+1Â

†
q,l |0〉

= J0
~Ω

3∑
k=1

Nk∑
n=0
|ψn,k|2 −

J1
~Ω

3∑
k=1

Nk−1∑
n=0

(
ψ∗n+1,kψn,k + ψ∗n,kψn+1,k

)
,

− J2
~Ω

3∑
k=1

Nk∑
n=0

(
ψ∗n,k+1ψn,k + ψ∗n,kψn,k+1

)
, (5.2.23)

where we have utilised the anti-commutation relation (5.1.3). Invoking the A-mode sym-

metry assumption that ψn :=
√

3ψn,k and Nk = N for all k, we deduce

〈Ĥe〉
~Ω = J0

~Ω

N∑
n=0
|ψn|2 −

J1
~Ω

N−1∑
n=0

(
ψ∗n+1ψn + ψ∗nψn+1

)
− J2

~Ω

N∑
n=0

2|ψn|2 . (5.2.24)

Due to the normalisation condition for ψn, and the definition of ρ according to Equa-

tion (5.2.11), it follows that

〈Ĥe〉 − J0 + 2J1 + 2J2
~Ω = ρ

2−
N−1∑
n=0

(
ψ∗n+1ψn + ψ∗nψn+1

) . (5.2.25)
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For 〈Ĥp〉, we make use of Pn,k = Mζ−2dUn,k/dt, and the length scale L defined by

Equation (5.2.8), to write

〈Ĥp〉
~Ω =

3∑
k=1

Nk∑
n=0

ζ2M2ζ−4

2M~Ω L2Ω2u̇2
n,k +

3∑
k=1

Nk−1∑
n=0

Mζ−2Ω2

2~Ω L2
(
un+1,k − un,k

)2

= 1
2ζ2

 3∑
k=1

Nk∑
n=0

M2

M~Ω
~

3MΩΩ2u̇2
n,k +

3∑
k=1

Nk−1∑
n=0

MΩ2

~Ω
~

3MΩ
(
un+1,k − un,k

)2


= 1
6ζ2

 3∑
k=1

Nk∑
n=0

u̇2
n,k +

3∑
k=1

Nk−1∑
n=0

(
un+1,k − un,k

)2
 . (5.2.26)

Now we invoke the A-mode symmetry assumption, that un,k = un and N = Nk for all k,

and due to Equation (5.2.10), it follows that

〈Ĥp〉
~Ω = 1

2ζ2

 N∑
n=0

u̇2
n +

N−1∑
n=0

(un+1 − un)2

 . (5.2.27)

Finally, using Equation (5.1.9) for the definition of Ĥint, and the condition that ψ0 =

ψN = 0, we calculate

〈Ĥint〉
~Ω = χL

2~Ω

3∑
k=1

Nk−1∑
n=1
|ψn,k|2

[ (
un+1,k − un−1,k

)
+ β

(
un+1,k + un−1,k − 2un,k

) ]
,

(5.2.28)

which, with the A-mode symmetry in place, becomes

〈Ĥint〉
~Ω = κ

N−1∑
n=1
|ψn|2

[
(un+1 − un−1) + β (un+1 + un−1 − 2un)

]
. (5.2.29)

Putting Equations (5.2.25), (5.2.27) and (5.2.29) into Equation (5.2.22), we have

Eb = 5.3ρ

2−
N−2∑
n=1

(
ψ∗n+1ψn + ψ∗nψn+1

)+ 5.3
2ζ2

 N∑
n=1

u̇2
n +

N−1∑
n=0

(un+1 − un)2


+ 5.3κ

N−1∑
n=1
|ψn|2

[
(un+1 − un−1) + β (un+1 + un−1 − 2un)

]
. (5.2.30)

ψ0, ψN and u̇0 do not feature in Equation (5.2.30) due to the boundary conditions.

5.3 Stationary Polarons

In Section 5.3.1, we present stationary solutions to Equation (5.2.9) under ε = fn = 0,

and in Section 5.3.2, we present quasi-stationary solutions under non-zero fn. Where any

methodologies were detailed in Chapter 4 in relation to the α-channel model, we do not

detail them again here, and focus instead on the results.
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5.3.1 Analytical and Numerical Solutions in the Deterministic System

The stationary solution to Equation (5.2.9b), assuming fn = 0, is given in terms of the

relative displacement of peptide units, sn = un+1 − un, as

sn = κζ2
[
(β − 1)|ψn+1|2 − (β + 1)|ψn|2

]
. (5.3.1)

Putting Equation (5.3.1) into Equation (5.2.9a) transforms the latter into

iρ−1ψ̇n + ∆ψn + λ|ψn|2 ψn + η∆|ψn|2 ψn = 0, (5.3.2)

where we have set ε = 0, and defined

λ := 4κ2ζ2

ρ
≡ χ2ζ2

M̃Ω2J1
, (5.3.3a)

η := κ2ζ2

ρ

(
1− β2

)
≡ λ

4
(
1− β2

)
. (5.3.3b)

Equation (5.3.2) is identical to Equation (4.3.8), but contrasting Equation (5.3.3) with

Equation (4.3.7) reveals that the effective coupling parameter λ now contains an extra

factor of ζ2/3 as a result of the non-linear structure (twisting) of α-channels within the

α-helix. With ρ being fixed, and η being a convenient combination of β and λ, we see that

our stationary system of Equations (5.3.1) and (5.3.2) is parametrised entirely by ζ, β and

λ. If we assume the stationary-state ansatz [cf. Equation (4.3.9)]

ψn(τ) = exp (iρH0τ + ikx)φ(x)
∣∣
x=n−N/2, (5.3.4)

then in the continuum limit (N � 1), we have that k = 2lπ (l any integer) are the only

wavenumbers that permit a square-normalisable φ(x), and that φ(x) satisfies the following

differential equation involving the eigenvalue H0:

−H0φ(x) + φ′′(x) + λφ(x)3

+ η

[
2φ(x)φ′′(x) + 2

(
φ′(x)

)2
]
φ(x)

∣∣∣∣∣
x=n−N/2

= 0, (5.3.5)

where ′ denotes differentiation with respect to x. When x is permitted to take all real val-

ues, rather than only n−N/2, Equation (5.3.5) becomes a stationary generalised nonlinear

Schrödinger equation (GNLSE) for φ(x) on the continuum domain, −N/2 ≤ x ≤ N/2:

−H0φ+ φ′′ + λφ3 + η
(
φ2
)′′
φ = 0. (5.3.6)
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As N → ∞, we showed analytically in Section 4.3.3 that a unique, normalisable global

solution to Equation (5.3.6) exists, given λ and η. The solution is written implicitly in

terms of Φ := φ2 as follows:

√
λη =

√
2ηΦ0 + (1 + 2ηΦ0) arctan

√
2ηΦ0, (5.3.7a)

Φ(0) = Φ0 = 2H0
λ
, (5.3.7b)

sgn(x)
√
H0 x = arsinh

√
1− (Φ/Φ0)

(1 + ν) (Φ/Φ0) +
√
ν arctan

√
ν
(
1− (Φ/Φ0)

)
1 + (νΦ/Φ0) . (5.3.7c)

In particular, Equation (5.3.7a) provides a unique solution for the number Φ0 given pa-

rameters (λ, η), then Equation (5.3.7b) gives both the eigenvalue H0 and the inital value

Φ(0), the latter ensuring the normalisation of Φ(x) over −∞ < x <∞, and finally Equa-

tion (5.3.7c) gives a unique global solution Φ(x).

Numerically, using a non-standard iterative method which we described in Section 4.3.4,

we are able to find stationary solutions to Equation (5.3.2) in the form of

ψ0
n(τ) = exp (iρH0τ)φ0

n, (5.3.8)

by computing H0 and φ0
n. The analytical solutions, namely Equation (5.3.7), serve not

only as approximations to H0 and (φ0
n)2, but also as initial guesses for those quantities,

which we utilise in our iterative scheme. In Figure 5.1, we present stationary solutions

to our system representing polaron states, obtained either analytically as approximate

solutions in the large-lattice limit, or numerically on a lattice of size N = 200. We make

the following observations. Firstly, solutions corresponding to λ = 1.0 at various values of

β are virtually identical. On the other hand, when λ = 3.6, we see that at β = 0, the U0
n

solution is centred at the location of max |ψ0
n|2, in the sense that its graph is rotationally

symmetric about n = 75, whereas at β = 1, the centre of rotational symmetry in Un has

shifted towards large n. This phenomenon is caused by the fact that when β = 0, the

electron-phonon interaction is spatially symmetric, so the electron in the stationary state

causes equal lattice distortion to its left and right; but as β increases, the electron-phonon

coupling becomes stronger to the right of the localisation site, and as a response the centre

of U0
n shifts to the right. In order for the point-dipole model of lattice units to be valid, the

magnitude of lattice distortions must be such that |U0
n+1 − U0

n| � R [Bar07], and indeed

we infer from Figure 5.1 that max
(
|U0
n+1 − U0

n|/R
)
∼ O(10−2). Moreover, |U0

n+1 − U0
n|

is negligible except at a few sites around the location of max |ψ0
n|2, and larger values of
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Figure 5.1: Stationary solutions parametrised by β and λ. Thick lines: electron prob-
ability distribution |ψ0

n|2 (left axis) and associated lattice distortions U0
n in units of the

equilibrium lattice spacing R (right axis), obtained numerically by iterative method. So-
lutions are shifted along the n-axis to avoid overlap. Thin lines: approximate stationary
solutions obtained analytically in the continuum limit, all with λ = 2.5.

β induce steeper gradients there. Thus, in the stationary state, systems with greater

spatial asymmetry store more potential energy in the lattice. Finally, given any fixed λ,

for example λ = 2.5 as Figure 5.1 illustrates, the accuracy of Φ(x) as an approximantion

for |ψ0
n|2 decays as β increases.

In a stationary state, Eb [cf. Equation (5.2.30)] becomes the polaron’s binding energy,

which we denote by E0
b. Using Equation (5.3.1), we deduce that in units of meV,

E0
b = 5.3ρ

2−
N−2∑
n=1

(
ψ∗n+1ψn + ψ∗nψn+1

)
+ λ

8

N−1∑
n=0

[
(β − 1)|ψn+1|2 − (β + 1)|ψn|2

]2

− η
N−1∑
n=1
|ψn|2

(
|ψn+1|2 +|ψn−1|2 − 2|ψn|2

)
− λ

N−1∑
n=1
|ψn|4

. (5.3.9)

This is identical to Equation (4.3.104) for the linear α-channel model, except now we have

different definitions of the parameters λ and η. The electron’s maximum localisation prob-

ability and polaron binding energy in the stationary state as functions of (β, λ) as shown

as surfaces over the parameter space, in Figure 5.2. For every β, max |ψ0
n|2 increases with

the effective coupling parameter λ, while E0
b decreases. Meanwhile, if λ is fixed and small

(close to 1) then both max |ψ0
n|2 and E0

b as functions of β are roughly constant, whereas

if λ is large then max |ψ0
n|2 becomes an increasing function of β and E0

b a decreasing one.

Thus, increasing either the model’s spatial asymmetry (β) or its coupling strength (λ)
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Figure 5.2: The electron’s maximum localisation probability, max |ψ0
n|2, and stationary

polaron binding energy E0
b (meV), as functions of (β, λ). Also shown are: the contour line

of height 0.64 in the max |ψ0
n|2 surface, and the projections of that line on the E0

b surface
and on the (β, λ) plane; the contour line of height −4 meV in the E0

b surface, and the
projections of that line on the max |ψ0

n|2 surface and on the (β, λ) plane.

makes the stationary polaron more strongly bound. In particular, even though a more

asymmetric system stores more energy in the lattice, the asymmetry causes so much de-

crease in the electronic and interaction components of the binding energy that they offset

the growth in lattice energy, making the overall binding energy decrease.

If we draw a contour line of fixed height in the max |ψ0
n|2 surface, and another of fixed

height in the E0
b surface, and project those contour lines onto the (β, λ) plane, then the

two lines of projection never have more than one point of intersection. One such set of

contour lines and projections are shown in Figure 5.2, and they intersect in the (β, λ) at

the point (0.5, 5.6). In Section 5.4, where we study propagating polarons, we will wish to

determine the effect of β on the polarons’ dynamical properties. To do so, we could study

a set of polarons with fixed λ and varying β, but both their max |ψ0
n|2 and their E0

b would

be varying with β. In order to make more meaningful observations about the effect of β,

we should vary λ with β along either a max |ψ0
n|2 contour line or a E0

b contour line, so that

all stationary polarons with parameters (β, λ(β)) share either the same max |ψ0
n|2 or the

same E0
b (unfortunately, as we see in Figure 5.2, it is not possible to find λ(β) such that

both properties remain constant). We will choose λ(β) in order to ensure that max |ψ0
n|2

remains constant while β varies.
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The complete set of stationary polarons in our model is almost identical to that in

the linear α-channel model. Indeed, given (β, λ), there is a percentage difference in E0
b

of O(10−3) compared to the α-channel model. This is not to say that the two models

are nearly equivalent physically: given an electron-phonon coupling constant χ in physical

units, the resulting β is identical in the two models, but λ in the current model is smaller

than the λ in the α-channel model by a factor of 3/ζ2 = 3.8 [cf. Equation (5.3.3a)].

We therefore conclude that given identical physical parameters, the resulting stationary

polaron in the current model is less strongly bound than that in the linear α-channel model.

This is due to the electron spreading itself amongst the three channels in the α-helix model.

An equivalent way to phrase this difference is that the α-helix model requires physically

stronger electron-phonon coupling, as χ needs to be
√

3.8 times as large as that in the

α-channel model in order to produce an identical polaron.

5.3.2 Quasi-Stationary Solutions under Stochastic Forces

Applying stochastic forces fn(τ), characterised by thermal energy θ, to Equation (5.2.9b),

and integrating the system forward in time with stationary polarons as initial conditions,

we obtain time-evolutions where the polaron’s internal energy increases before settling in

small oscillations around a mean value. The period of increasing internal energy is the

thermalisation of the system, and lasts O(104) units of time, or several nanoseconds. Fig-

ure 5.3(a) illustrates a typical thermalisation process, in which Eb rises from its initial

value of −4 meV to about −3 meV is O(102) time-units, and then continues to rise until

eventually settling around −2.1 meV. Even though the stochastic forces act directly only

on the lattice, it indirectly affects the electron probability distribution due to the electron-

phonon coupling. The electron probability distribution, |ψn|2, ‘spreads out’ during ther-

malisation, decreasing in maximum value and increasing in half-width, before settling in

a quasi-stationary state of small fluctuations around a Λ-shaped profile. The lattice itself

also settles in small oscillations around some mean configuration. The quasi-stationary

states of |ψn|2 and un constitute the system’s thermal equilibrium. We write ψ(θ)
n (τ) for

the fluctuating ψn at thermal equilibrium with thermal energy θ. Figure 5.3(b) exhibits a

typical |ψ(θ)
n |2, and it comes from the thermalisation process shown in Figure 5.3(a). We

see that at thermal equilibrium, the max|ψn|2 has settled in O(10−3) oscillations around

max |ψ(θ)
n |2 = 0.59. When we write max |ψ(θ)

n |2, we mean the mean value of the maximum

of |ψ(θ)
n |2, taken over a 1000-time-unit period long after thermalisation has completed; and
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Figure 5.3: (a) Increase in polaron internal energy (meV) during thermalisation; inset:
rapid initial rise in internal energy. 105 units of τ equals 12 ns. (b) Overview of quasi-
stationary polaron at thermal equilibrium, represented by |ψ(θ)

n |2, taken at some time
after the thermalisation of (a) has completed; and the stationary polaron represented
by |ψ0

n|2. (c) Zoomed-in view of (b), showing secondary peaks in |ψ(θ)
n |2 resulting from

thermalisation. Parameters in all subfigures: β = 0.5, λ = 5.6.
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Figure 5.4: The electron’s maximum localisation probability (left axis) and polaron in-
ternal energy (meV) (right axis), either stationary (when Θ = 0, interpreted as binding
energy) or quasi-stationary (when Θ > 0), as functions of temperature Θ, parametrised
by β. λ is varied with β in such a way that max |ψ0

n|2 remains constant at 0.64. Inset: the
maximum temperature at which a quasi-stationary polaron can exist, as a function of β.

similiarly for E(θ)
b . Figure 5.3(c) shows small, secondary peaks in |ψ(θ)

n |2 at every lattice

site away from the location of global maximum, and the relative magnitudes of these

secondary peaks compared to max |ψ(θ)
n |2 is O(10−3). At thermal equilibrium, the magni-

tudes and locations of the secondary peaks undergo small fluctuations without affecting

the overall shape or size of |ψ(θ)
n |2, and the magnitudes of the fluctuations are positively

correlated with the temperature.

Figure 5.4 shows the ways in which max |ψ(θ)
n |2 and E(θ)

b depend on the temperature

Θ (recall that the thermal energy is θ = kBΘ/(~Ω)). We see that max |ψ(θ)
n |2 is always a

decreasing function of Θ, and E(θ)
b always an increasing function, meaning that a higher

temperature leads to a less localised quasi-stationary polaron state. Larger values of β

leads to steeper rates of decrease of max |ψ(θ)
n |2, whereas the rate of increase of E(θ)

b is

unaffected by β. That is to say, as the system becomes more spatially asymmetric, the

electron becomes more sensitive to temperature, whereas the temperature-sensitivity of

overall polaron internal energy is roughly unchanged.

We observe in Figure 5.4 that some quasi-stationary polaron states have positive

internal energy. This is because the internal energy is measured from the theoretical lowest
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energy in the electron band of an unthermalised system [cf. Equation (5.2.22)]. The key to

whether a polaron state exists lies in max |ψ(θ)
n |2. For consistency with Chapter 4, we say

the system is in a quasi-stationary polaron state if max |ψ(θ)
n |2 ≥ 0.1, and that the electron

has delocalised (thereby destroying the polaron state) if max |ψ(θ)
n |2 < 0.1. When β = 1,

we have quasi-stationary polarons at temperatures up to 57 K. Since smaller values of β

make the electron less temperature-sensitive, they lead to a larger range of temperatures

for which a quasi-stationary polaron can exist. We denote by Θmax the maximum temper-

ature at which a quasi-stationary polaron can exist. The inset in Figure 5.4 shows that

for 0 ≤ β ≤ 1, Θmax is negatively correlated with β, and at β = 0 we have Θmax = 95 K.

Comparing these results to the α-channel model of Chapter 4, where we reported that

no quasi-stationary polarons existed for Θ > 55 K, we see evidence that polarons in the

α-helix model are more thermally stable, as they can exist in quasi-stationary states at

higher temperatures. An equivalent view of this comparison is that, in the same way

that the α-helix model requires stronger electron-phonon coupling to produce stationary

polarons, it also requires higher temperatures to destroy those polarons.

5.4 Propagating Polarons

In this Section, we investigate the effects on the polaron of the mean-shifted periodic

field (MSPF), which was the optimal type of electromagnetic field for inducing polaron

propagation in the linear α-channel model of Chapter 4. We describe in Section 5.4.1 the

exact form of the MSPF, expressed as the forcing term ε(τ) in Equation (5.2.9a), and solve

the dynamical equations for the polaron, neglecting stochastic forces. In Section 5.4.2, we

examine the interplay between the symmetry parameter β and parameters of the MSPF,

and finally in Section 5.4.3, we study the effect on the polaron dynamics of stochastic

forces, drawing comparisons with the α-channel model in terms of thermal stability and

thermal enhancement of the polaron propagation.

5.4.1 Polaron Motion Under the MSPF

We represent the MSPF by the following forcing term applied to Equation (5.2.9a), with

stationary polarons as initial conditions:

ε(τ) = ε̄−A sin 2πτ
T

for τ ≥ 0, (5.4.1)

155



CHAPTER 5. THE GENERALISED DAVYDOV-SCOTT MODEL FOR THE α-HELIX

where ε̄, A and T are independent parameters, and we set fn(τ) = 0 in Equation (5.2.9b).

ε̄ ≥ 0 is the constant mean amplitude of ε, A ≥ 0 and T > 0 respectively are the amplitude

and period of the sinusoidal component of ε. As we did in Chapter 4, we have chosen the

phase of the electric field, represented by the negative sign before A, to optimise the

polaron’s stability in the early stages of the MSPF. We define the combined amplitude of

the MSPF, which is the maximum value that ε can attain, as

Acomb := ε̄+A, (5.4.2)

Launching a stationary polaron whose parameters are (β, λ) = (0.5, 5.6), so that the sta-

tionary electron’s maximum localisation probability is max |ψ0
n|2 = 0.64 and the polaron’s

initial binding energy is E0
b = −4 meV, we use a variety of ε̄, A and T to achieve directed

polaron motion. We present in Figure 5.5 a view of a typical polaron trajectory over two

periods of the MSPF, where |ψn|2 and Un/R are plotted against τ . At τ ≈ 360, the com-

bined amplitude of the components of ε overcomes some critical value for the first time,

and the electron accelerates in response. While it accelerates, the electron ‘spreads out’

as max|ψn|2 decreases. Almost immediately, the electron-phonon interaction, which is a

stabilising force, acts to slow down the electron propagation, and a balance of forces causes

the electron to move with near-constant speed for about 150 units of τ , during which time

the electric field attains its maximum amplitude and begins decaying again. Also during

the constant-speed motion, the shape of |ψn|2 fluctuates. When ε has diminished so much

that the electron-phonon interaction regains its role as the dominant force in the system,

the electron decelerates once more until it settles in a quasi-stationary position about 30

lattice sites away from its initial position. The lattice distortion field, Un, always moves

and fluctuates in sync with |ψn|2, as we clearly see in Figure 5.5. Crucially, both |ψn|2

and Un propagate without substantial changes in shape, so we do indeed have polaron

propagation - two parts of the polaron moving solitonically as one. When the polaron

has settled after one period of motion, max |ψn|2 has decreased slightly compared to its

initial value, though this effect is imperceptible in Figure 5.5. Instead, we can see the

accompanying slight increase in polaron internal energy in Figure 5.6.

Corresponding to the polaron trajectory in Figure 5.5, we have the dashed (blue) curves

in Figure 5.6: they are the polaron’s position and internal energy as functions of time, over

the entire lifetime of the polaron. By polaron position, we mean the vertex location of the

parabola extrapolated from (n0, |ψn0 |2), (n0−1, |ψn0−1|2), (n0+1, |ψn0+1|2), where n0 is the
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Figure 5.5: An MSPF-induced polaron trajectory, including both the electron probability
distribution |ψn|2, and the lattice distortions Un in units of equilibrium lattice spacing R,
as functions of time. Each curve represents a |ψn|2 or Un/R at a particular time. The less
localised the electron is, the darker the curves are in colour. 100 units of τ equals 12 ps.
Parameters: β = 0.5, λ = 5.6, ε̄ = 0.120, A = 0.051, T = 500.

0 2000 4000 6000 8000

100

200

300

400

500

τ

P
o
la
ro
n
p
o
si
ti
o
n

 

 

0 2000 4000 6000 8000
−6

−2

2

6

10

14

Eb
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Figure 5.6: Some polaron trajectories (left axis) and corresponding time-evolutions of the
polaron’s internal energy (meV) (right axis) as functions of time, under the MSPF. 1000
units of τ equals 0.12 ns. Parameters: β = 0.5, λ = 5.6.

n that maximises |ψn|2. By polaron lifetime, we mean the amount of time from initialising

the electric field to the delocalisation of the electron, which is when max |ψn|2 drops below

0.1 for the first time. We see that the polaron under ε1(τ) = 0.120 − 0.051 sin(2πτ/500)
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survives for nearly 8 periods of the MSPF. In each period, the internal energy is raised, by

an amount which is small for the first period and increasingly larger for later periods. Once

the internal energy becomes positive, the polaron does not survive for much longer. Over

its lifetime of roughly 4000 time-units (0.48 ns), the polaron travels by nearly 400 sites. The

solid (black) lines in Figure 5.6 are the trajectory and internal energy evolution of exactly

the same initial polaron under a different MSPF: ε2(τ) = 0.050 − 0.121 sin(2πτ/500).

Indeed, the difference is that the dominant MSPF component was the constant one in ε1,

and is now the sinusoidal one in ε2, but the combined amplitude at Acomb = 0.171 has

remained the same. We see that by decreasing the constant component ε̄ and raising the

sinusoidal amplitude A, we decrease the amount by which the polaron moves per MSPF

period, but increase its lifetime. Overall, the polaron travels the same distance under ε2
as it does under ε1, but under ε2 it travels at roughly half the speed. This phenomenon

is evidence that the polaron’s velocity is positively correlated with ε̄, whilst its lifetime,

hence stability, is negatively correlated with ε̄. From an energetics point of view, we may

look at the polaron’s internal energy when it arrives at some site n and ask whether ε1 or

ε2 has caused it a larger increase from initial value. The answer is always ε1. For example,

we may consider the polaron’s internal energy when it arrives at n = 300. Under ε1, this

occurs at τ = 3200, at which time we have Eb = −3.6 meV; but under ε2, this occurs at

the later time of τ = 5700, when we have Eb = −3.9 meV. Thus, under ε2, which has the

smaller ε̄, the polaron arrives at n = 300 as a more strongly bound compound than it does

under ε1. This is true when we look at the polaron’s trajectory up to any site n. We say

that ε2 is a more energy-efficient MSPF than ε1, or more generally, fixing Acomb, an MSPF

with a small ε̄ is more energy-efficient than one with a large ε̄; but we do sacrifice polaron

velocity for the better stability. We find that a moderate ε̄ around 0.05 provides a good

balance between propelling the polaron with reasonable speed and keeping its internal

energy stable.

Also in Figure 5.6 we have a polaron trajectory from the same initial state as before

but under ε3(τ) = 0.050 − 0.121 sin(2πτ/2000). This is identical to ε2 except for the

longer period, T . The effect of altering T while keeping all other parameters fixed is not

clear from Figure 5.6, because compared to ε2, ε3 leads to the same polaron lifetime and

causes the same amount of polaron displacement. The only difference is that a larger T

causes more polaron displacement per period, due to the electron being exposed to the

super-critical electric field for longer. To better understand the significance of T , we look

158



CHAPTER 5. THE GENERALISED DAVYDOV-SCOTT MODEL FOR THE α-HELIX

at Figure 5.7, which also gives us more insight into the dependence of quantities such as

the polaron lifetime and velocity on ε̄ and A.

At fixed β, the dependencies of the polaron’s lifetime τd, displacement D and velocity

V on the MSPF parameters ε̄, A and T are qualitatively the same as those we encountered

in Chapter 4 for the α-channel model. We described those dependencies in detail in

relation to Figure 4.7. In essence, there exists a critical combined amplitude, Acomb
c , which

is the value such that if Acomb < Acomb
c then no polaron displacement occurs, but if

Acomb ≥ Acomb
c then the polaron propagates. The value of Acomb

c is independent of ε̄ and

T , except for one anomaly at ε̄ = 0.12 in Figure 5.7(d), where Acomb
c at T = 2000 is larger

than Acomb
c at other values of T . The reason for this is as follows.

When T is as large as 2000, the combined amplitude Acomb can be super-critical for

a long time during each period of MSPF. Consequently, it can cause a large increase in

polaron internal energy even if only one or two periods have passed, leading to short

polaron lifetimes. The D and V columns of Figure 5.7 account only for data where

the polaron survives for at least two full periods, because otherwise D would have to

be measured by the average polaron position over the 1st full period, and consequently

V , first defined by Equation (4.4.4) as an average velocity, would be a highly unreliable

indicator of how quickly the polaron really moves. In Figure 5.7(d), when ε̄ = 0.12 and

T = 2000, a combined amplitude of Acomb = 0.160 (which is the value of Acomb
c given any

other combination of (ε̄, T )) does cause polaron displacement; but it does not register on

the figure because the polaron lifetime is too short.

Another type of anomaly sometimes caused by a large T such as 2000 is the following.

If A is large enough, then it is possible to have ε < −Acomb
c for some time in each period

of MSPF. Due to the minus sign in front of A in the expression for ε(τ), we would have

ε < −Acomb
c in the 1st period before we have ε > Acomb

c . This means that the polaron would

be propelled in the small-n direction. Whenever we then have ε > Acomb
c , the polaron

would either stay put or swing back towards the large-n direction, but even in the latter

case, we could end up with an overall negative displacement. Indeed we see in Figure 5.7

that some combinations of (ε̄, A, T = 2000) result in overall negative displacements and

hence negative velocities.

Fixing T = 100 or 500, we make the following observations. The general trend of

τd as a function of A is that if Acomb < Acomb
c , then T ∼ ∞, since the polaron simply

remains in its initial state permanently; but as soon as Acomb reaches critical, τd drops
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to O(103) time-units, or hundreds of picoseconds, and the value of τd at critical Acomb
c is

negatively correlated with ε̄. If β / 0.5 and ε̄ is small such as 0.02, then as A increases

beyond critical, τd first decays and then grows before plateauing at some constant value;

otherwise, then τd as a function of A is simply a decreasing one. As for the polaron

displacement, we have D ∼ O(102) at Acomb = Acomb
c , and the general trend of D as

a function of super-critical A is always a decreasing one, even though some parameter

combinations such as (β = 1, ε̄ = 0.12, T = 500) lead to an increase in D(A) beyond

critical A. Finally, for the polaron velocity, which is roughly the number of lattice sites

traversed per unit time, we have 0.01 / V / 0.4 at Acomb = Acomb
c . For super-critical A,

V tends to grow before decaying again, resulting in some value of A at which the polaron

attains maximum velocity. This phenomenon occurs because V is roughly the ratio of D

to τd, and even though D is a decreasing function of super-critical A, so is τd in most cases;

if τd decreases more sharply than D, then we have an increasing V . We call the value of

Acomb at which the polaron achieves maximum velocity the optimal combined amplitude,

and denote it by Acomb
m ; it varies with ε̄ and T , unlike the critical Acomb

c which does not

depend on either ε̄ or T . We discuss these dependencies in more detail in Section 5.4.2.
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V ǭ = 0.02

 

 

0.110.150.190.23

0

4000

8000

12000

16000

20000

τd

0.110.150.190.23

0

100

200

300

400

D

0.110.150.190.23

0

0.04

0.08

0.12

0.16
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V ǭ = 0.05

0.040.080.120.16

0

4000

8000

12000

16000

20000

τd

0.040.080.120.16

0

100

200

300

400

D

A

0.040.080.120.16

0

0.04

0.08

0.12

0.16
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V ǭ = 0.05

0.040.080.120.16

0

4000

8000

12000

16000

20000

τd

0.040.080.120.16

0

100

200

300

400

D

A

0.040.080.120.16

0

0.04

0.08

0.12

0.16
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Figure 5.7: Polaron lifetime τd, displacement D and velocity V , as functions of the MSPF
parameters ε̄, A and T , parametrised by β. For each β, the value of λ is chosen so that
max |ψ0

n|2 = 0.64 in the stationary state. 1000 units of τ equals 0.12 ns.
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5.4.2 Significance of the Symmetry Parameter

Not only does Acomb
m vary with ε̄ and T , it varies with β, too. Moreover, Acomb

c also varies

with β. We illustrate all of these dependencies in Figure 5.8. Since T = 2000 causes

anomalies such as those described in Section 5.4.1, we have excluded it from our results.
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Figure 5.8: Critical combined amplitude Acomb
c and optimal combined amplitude Acomb

m
(left axis) as functions of β, the latter being parametrised by ε̄. Critical velocity Vc and
optimal velocity Vm (right axis) as functions of β, the latter being parametrised by ε̄.
Acomb

c and Vc are independent of ε̄. Parameters: (a) T = 100 (12 ps); (b) T = 500 (60 ps).

166



CHAPTER 5. THE GENERALISED DAVYDOV-SCOTT MODEL FOR THE α-HELIX

Our first observation is that Acomb
c as a function of β is increasing for 0 ≤ β / 0.45

and decreasing for 0.45 / β ≤ 1. This suggests that a moderately spatially asymmetric

system (β = 0.45, at which Acomb
c = 0.176) makes the polaron most difficult to displace,

compared to a symmetric (β = 0, at which Acomb
c = 0.151) or antisymmetric (β = 1, at

which Acomb
c = 0.141) system. These results are similar to those in the α-channel model,

where Acomb
c as a function of β was maximised at β ≈ 0.6. Denoting by Vc the polaron’s

velocity at Acomb = Acomb
c , or critical velocity, we see that whilst Acomb

c is indendendent

of T , Vc varies slightly with T . This is evidenced by the fact that the two Acomb
c (β) curves

representing results at T = 100 and T = 500, respectively in Figure 5.8(a) and (b), are

identical, whereas the two Vc(β) curves exhibit small differences.

We do not observe any discernible regular pattern of Acomb
m as a function of β, except

for the fact that if ε̄ is moderate such as 0.05, then Acomb
m exhibits a general decreasing

trend as β grows from 0 to 1. Indeed, when ε̄ = 0.05, we have Acomb
m ≈ 1.5Acomb

c at β = 0,

and at β = 1 we have Acomb
m and Acomb

c almost coinciding. At larger values of ε̄, such as

0.12, Acomb
m (β) seems to oscillate in size, between Acomb

c and roughly 1.5Acomb
c . It is clear

that Acomb
m varies with T , since the corresponding Acomb

m (β) curves in Figure 5.8(a) and

(b) are significantly different, but our results do not suggest any straightforward positive

or negative correlation between Acomb
m and T . Instead, they do suggest a clear relationship

between T and the polaron velocity resulting from Acomb = Acomb
m , or optimal velocity,

which we denote by Vm. Comparing the corresponding Vm(β) curves in Figure 5.8(a) and

(b), we see that, fixing all other parameters, the Vm at T = 500 is roughly half that at

T = 100. Furthermore, Vm is also positively correlated with ε̄: fixing all other parameters,

we see that Vm at ε̄ = 0.12 is several times as large as that at ε̄ = 0.02. Indeed, Vm(β)

at ε̄ = 0.02 almost coincides with Vc(β) for some values of β. Finally, Vm(β) is always

maximised by β = 1, regardless of other parameters. We have Vm(β = 1) = 0.42 if

T = 100, and Vm(β = 1) = 0.21 if T = 500. In the meantime, Acomb
m is always minimised

by β = 1, similarly to Acomb
c which is also always minimised by β = 1. These results

mean that compared to β < 1 systems, the spatially antisymmetric system (β = 1), due

to its internal bias of electron-phonon coupling towards one end of the lattice, makes both

the onset and the optimisation of directed polaron propagation achievable with the least

amount of EMF forcing.
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5.4.3 Effects of Stochastic Forces

The main result that we present in this Section is that stochastic forces arising from

temperature in the cell environment enhances directed polaron propagation, in the sense

that it lowers the critical amplitude of MSPF. The way that we investigate the effects of

the stochastic forces is as follows. From a stationary polaron state, we integrate the system

of Equation (5.2.9) forward in time under ε(τ) = 0 and a non-zero fn(τ) characterised by

some thermal energy θ, so that for some amount of τ the system undergoes thermalisation

[cf. Section 5.3.2] before reaching thermal equilibrium. By τ = 2 × 105, all our polarons

have reached thermal equilibrium. At τ = 106, long after the polaron has settled in some

quasi-stationary state, we set τ to zero and ‘switch on’ a non-zero MSPF, ε(τ). We then

continue to time-evolve the system and analyse the results. For every initially stationary

polaron, and for every set of forcing parameters ε̄, A, T, θ, we run the aforementioned

numerical simulation 100 times, and take average values of vital scalar quantities such as

the polaron’s lifetime τd , displacement D, and velocity V , from which we deduce system

properties such as the critical combined amplitude Acomb
c . In the context of thermalised

systems, we define Acomb
c to be the smallest combined MSPF amplitude which causes a

polaron displacement of at least 10 lattice sites in its lifetime. The reason for this definition

is the following. Surveying our results, we observe a large number of (ε̄, A, T ) combinations

leading to an average (over 100 simulations) polaron displacement of 1 or 2 lattice sites,

but they are simply statistical artifacts. Indeed, a polaron fluctuating around its initial

position and ‘ending up’ several sites away at the end of our simulation runtime (106

time-units from switching on MSPF) is interpreted as exhibiting an overall displacement;

therefore, even if the true mean of polaron displacement under some (ε̄, A, T ) combination

is zero, the sample mean (over 100 simulations) may easily be 1 or 2. As Acomb increases

from zero, there is always a jump in the sample mean of D from 1 or 2 to O(101). Thus,

saying that Acomb reaches critical when it causes a mean D of at least 10 is reasonable.

In Figure 5.9, we present Acomb
c as a function of β, parametrised by θ = 0, 0.16.

We have already seen Acomb
c (β) at θ = 0 in Figure 5.8. Now we see that compared

to θ = 0, a thermal energy of θ = 0.16, which corresponds to a temperature of 10 K,

shifts Acomb
c (β) by about −0.02 if β / 0.8, and by up to −0.04 if β → 1. The overall

shape of the Acomb
c (β) curve remains roughly unchanged. This is strong evidence for

thermal enhancement, meaning the promotion of polaron propagation by the stochastic
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Figure 5.9: The critical combined amplitude of MSPF as a function of β, parametrised
by thermal energy θ, in both the α-helix model and the linear α-channel model. Results
are unaffected by varying parameters ε̄ and T .

forces. Furthermore, the dashed curves in Figure 5.9 represent results from the linear

α-channel model of Chapter 4. At θ = 0, results from the α-helix and α-channel models

are hardly distinguishable from each other. However at θ = 0.16, corresponding to a

temperature of 10 K in both models, we see that the α-helix model produces stronger

thermal enhancement than the α-channel model does: Acomb
c (β) is significantly lower in

the α-helix model, across all values of β.

As we discovered in Chapter 4, in the linear α-channel model it was possible at suffi-

ciently high temperatures that the combination of stochastic forces and a constant electric

field could displace the polaron in a stable manner, without the need for a sinusoidal

component in the MSPF. The same is still true in the α-helix model. Figure 5.10 pro-

vides an example of θ being high enough effectively to replace the sinusoidal component

of the MSPF. We see that the polaron moves in a characteristically different manner than

we have seen in earlier Sections. It still remains a soliton throughout its motion, but

it no longer moves in a time-periodic fashion. Instead, it spends almost all of the time

oscillating in small amounts, and at random points in time it moves by one or several

lattice sites, always in the same direction, contributing to an overall directed motion. All

the while, the polaron’s internal energy remains highly stable, not deviating far from its

thermal equilibrium value of −0.75 meV. As a result of this high stability, the polaron is
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Figure 5.10: A polaron trajectory (left axis) and accompanying time-evolution of polaron
internal energy (meV) (right axis). 1000 units of τ equals 0.12 ns. Parameters: β =
0.5, λ = 5.6, ε̄ = 0.027, A = 0, θ = 0.64 (Θ = 40 K).

semi-permanent, with lifetime far exceeding the simulation runtime of 106 time-units (120

ns). Thus, the stochastic forces not only promote polaron propagation, they also stabilise

it: the issue in the fn = 0 system of rapid delocalisation under constant electric fields is

no longer present in the fn 6= 0 system. In the example of Figure 5.10, the polaron takes

50000 time-units (6 ns) to traverse 20 lattice sites, and carries on travelling by about 20

sites per 50000 time-units. This type of semi-permanent, ladder-like trajectory was also

characteristic of the α-channel model [cf. Figure 4.13].

We present in Figure 5.11 our final numerical results in this Chapter, and it is the

critical constant amplitude, ε̄c(β; θ), defined for every combination of (β, θ) as the smallest

ε̄ required in order to displace the polaron in a stable manner without the help of a

sinusoidal MSPF component. For instance, when β = 0 and θ = 0.64 (Θ = 40 K),

a constant component of ε̄ = 0.04 is sufficient to facilitate stable polaron propagation

(displacing at least 10 lattice sites on average over 100 simulations), without the need

for a sinusoidal A component in the MSPF; but if ε̄ were any smaller, then we would

need to add a non-zero A in order to achieve polaron propagation. Indeed, the polaron

trajectory of Figure 4.13 was produced by a critical constant amplitude: ε̄c = 0.27 at

(β, θ) = (0.5, 0.64). Our results also show that, if we re-draw Figure 4.13 with a higher

electric field amplitude or higher temperature (as long as they are not raised so much

that they cause rapid delocalisation), then we would still obtain that ladder-like polaron

trajectory, albeit with larger speeds or larger Eb oscillations.

170



CHAPTER 5. THE GENERALISED DAVYDOV-SCOTT MODEL FOR THE α-HELIX

0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ǭc
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Figure 5.11: The critical constant amplitude as function of β, parametrised by thermal
energy θ, in both the α-helix model and the linear α-channel model. Results are unaffected
by varying parameters ε̄ and T .

Even at temperatures as small as 10 K, the thermal enhancement produced by θ is

strong enough that we could use just a constant electric field to produce stable polaon

propagation. At larger temperatures, such as Θ = 40 K, and if β → 1, then ε̄c becomes

as small as 0.001. However, ε̄ = 0, in other words stochastic forces on their own without

any electric field, is never enough to displace the polaron; they simply cause the polaron

to oscillate, or, if θ is large enough, cause delocalisation.

We have included results from the linear α-channel model in Figure 5.11, to enable

comparisons with the current α-helix model. Specifically, we may compare the ε̄c(β) curve

at Θ = 20 K in the α-helix model to that in the linear α-channel model, and we see that

thermal enhancement is stronger in the α-helix model: its ε̄c curve is lower. We conclude

that the same amount of thermal energy is better at promoting polaron propagation in

the α-helix model than in the linear α-channel model. We may understand this difference

by examining the correlation function that defines fn(τ) in the α-helix model, Equa-

tion (5.2.12), and its counterpart in the α-channel model, Equation (4.2.43). Given the

same thermal energy, the correlation 〈fmfn〉 is larger in the α-helix model by a factor of

roughly 1.9 (taking into account the different values of γ in the two models). Consequently,

we expect whatever effect fn may have on the system - enhancement in this case - to be

magnified in the α-helix model.
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5.5 The Model Without A-Mode Symmetry

To make our model even more realistic, we may drop the A-mode symmetry assumption. In

this Section, we present analytical results relating to the GDS model for an α-helix without

A-mode symmetry.

Our Hamiltonian remains unchanged from Equation (5.1.2), so we still have Equa-

tion (5.1.22) as the full dynamical equations of our system. But we no longer assume

ψn,1 = ψn,2 = ψn,3 or make any of the assumptions of Equations (5.2.2) and (5.2.3). We

re-label our lattice using a single index µ for peptide units along the helical coil, so that

the mapping from the (n, j) double index to µ is as follows:

(1, 1) 7→ 1, (1, 2) 7→ 2, (1, 3) 7→ 3,

(2, 1) 7→ 4, (2, 2) 7→ 5, (2, 3) 7→ 6, · · · . (5.5.1)

Or, more generally,

(n, j) 7→ 3(n− 1) + j. (5.5.2)

Now, µ and µ+ 3 label neighbouring peptide units along an α-channel, while µ and µ+ 1

label peptide units in adjacent α-channels which are joined by a peptide bond. We let

the total number of peptide units in the α-helix be Nα + 1. Then, instead of arriving

at Equation (5.2.9) as the dimensionless dynamical equations of our system, we have, for

µ = 0, 1, . . . Nα,

iψ̇µ = κψµ
[(
sµ + sµ−3

)
+ β

(
sµ − sµ−3

)]
− ρ

(
ψµ+3 + ψµ−3 − 2ψµ

)
− ρα

(
ψµ+1 + ψµ−1 − 2ψµ

)
− ε(µ− µ0)ψµ, (5.5.3a)

üµ =
(
sµ − sµ−3

)
+ κζ2

[(
|ψµ+3|2 − |ψµ−3|2

)
− β

(
|ψµ+3|2 + |ψµ−3|2 − 2|ψn|2

)]
− γu̇µ + fµ, (5.5.3b)

where |ψµ|2 is the electron probability distribution and uµ the longitudinal lattice site

displacement from equilibrium, and

sµ = uµ+3 − uµ (5.5.4)

is the amount of distortion of the hydrogen bond between the µth and (µ + 3)th peptide

units, projected along the helical axis. At the boundaries, we have fictitious points at
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µ = −3,−2,−1, Nα + 1, Nα + 2, Nα + 3, such that

ψ−3 = ψ−2 = ψ−1 = 0 = ψNα+1 = ψNα+2 = ψNα+3, (5.5.5a)

s−3 = s−2 = s−1 = 0 = sNα−2 = sNα−1 = sNα . (5.5.5b)

In particular, Equation (5.5.5b) represents the physical fact that there is no hydrogen bond

linking the 0th peptide unit to anything to its left (small-µ direction), similarly for the 1st

and 2nd units, and there is no hydrogen bond linking the (Nα − 2)th unit to anything to

its right (large-µ direction), similarly for the (Nα− 1)th and Nα
th units. We also have the

boundary conditions

ψ0 = ψ1 = ψ2 = ψNα−2 = ψNα−1 = ψNα = 0, (5.5.6a)

u0 = u̇0 = u1 = u̇1 = u2 = u̇2 = 0. (5.5.6b)

Equation (5.5.6a) is justifiable on a large lattice where the probability distribution is

expected to be localised over several sites, and Equation (5.5.6b) is the assumption that

all three α-channels in the helix are fixed at one end. Moreover, Equation (5.5.3) holds

subject the normalisation condition,

Nα∑
µ=0
|ψµ|2 = 1. (5.5.7)

The parameters κ, ρ, ε, γ, fn are still defined by Equations (5.2.11) to (5.2.13), and β is

still the symmetry parameter, which takes values in 0 ≤ β ≤ 1 and extrapolates between

a spatially symmetric model at β = 0 and a spatially antisymmetric model at β = 1. We

have a new parameter, ρα, which is the electron transfer integral across a peptide bond

between adjacent α-channels, measured in units of ~Ω:

ρα := J2
~Ω . (5.5.8)

Whereas in earlier Sections, ρα became nullified under A-mode symmetry, now we cannot

make any assumptions except for ρα > 0. The fixed parameters in our system are still

ρ = 2.1, γ = 0.019, ζ = 0.89, (5.5.9)

µ0 in Equation (5.5.3a) is the lattice site at which we set the potential energy due to the

EMF, represented by ε(τ), to zero, and we have dropped the assumption (which we used

in earlier Sections) that the electric field has equal influence on the three α-channels. The
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internal energy Eb of the polaron state is still defined by Equation (5.2.22), but we can

no longer simplify the expression using the A-mode symmetry assumption. Instead of

Equation (5.2.30), we now have an extra term in the expression for Eb (in units of meV)

which involves ρα:

Eb = 5.3ρ

2−
Nα−6∑
µ=3

(
ψ∗µ+3ψµ + ψ∗µψµ+3

)+ 5.3ρα

2−
Nα−4∑
µ=3

(
ψ∗µ+1ψµ + ψ∗µψµ+1

)
+ 5.3

2ζ2

 Nα∑
µ=3

u̇2
n +

Nα−3∑
µ=0

(
uµ+3 − uµ

)2 
+ 5.3κ

Nα−3∑
µ=3
|ψµ|2

[ (
uµ+3 − uµ−3

)
+ β

(
uµ+3 + uµ−3 − 2uµ

) ]
. (5.5.10)

In the stationary state, we have u̇µ = üµ = 0, therefore Equation (5.5.3b) is solved by

sµ = κζ2
[
(β − 1) |ψµ+3|2 − (β + 1) |ψµ|2

]
, (5.5.11)

which gives us the following expression for the stationary polaron binding energy:

E0
b = 5.3ρ

2−
Nα−6∑
µ=3

(
ψ∗µ+3ψµ + ψ∗µψµ+3

)+ 5.3ρα

2−
Nα−4∑
µ=3

(
ψ∗µ+1ψµ + ψ∗µψµ+1

)
+ 5.3κ2ζ2

2

Nα−3∑
µ=0

[
(β − 1) |ψµ+3|2 − (β + 1) |ψµ|2

]2
+ 5.3κ2ζ2

Nα−3∑
µ=3
|ψµ|2

[ (
sµ + sµ−3

)
+ β

(
sµ − sµ−3

) ]
. (5.5.12)

By using Equation (5.5.11) to write

(sµ + sµ−3) + β(sµ − sµ−3) = κζ2
[
−(1− β2)|ψµ+3|2 − (1− β2)|ψµ−3|2 − 2(1 + β2)|ψµ|2

]
,

(5.5.13)

we further deduce

E0
b = 5.3ρ

2 (1 + r)−
Nα−6∑
µ=3

(
ψ∗µ+3ψµ + ψ∗µψµ+3

)
− r

Nα−4∑
µ=3

(
ψ∗µ+1ψµ + ψ∗µψµ+1

)

+ λ

8

Nα−3∑
µ=0

[
(β − 1) |ψµ+3|2 − (β + 1) |ψµ|2

]2

− η
Nα−3∑
µ=3
|ψµ|2

(
|ψµ+3|2 + |ψµ−3|2 − 2|ψµ|2

)
− λ

Nα−3∑
µ=3

∣∣ψµ∣∣4
, (5.5.14)

where

r := ρα
ρ
> 0, (5.5.15)
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and λ (the effective coupling parameter) and η are as they were defined in Equation (5.3.3),

which we present here once more for completeness:

λ = 4κ2ζ2

ρ
, (5.5.16a)

η = κ2ζ2

ρ

(
1− β2

)
≡ λ

4
(
1− β2

)
. (5.5.16b)

For the remainder of this Section, we focus on stationary solutions to Equation (5.5.3) in

the continuum limit. Putting Equation (5.5.13) into Equation (5.5.3a) and setting ε = 0,

we obtain

iψ̇n = −κ2ζ2ψµ
[
(1− β2)|ψµ+3|2 + (1− β2)|ψµ−3|2 + 2(1 + β2)|ψµ|2

]
− ρ

(
ψµ+3 + ψµ−3 − 2ψµ

)
− ρα

(
ψµ+1 + ψµ−1 − 2ψm

)
. (5.5.17)

Defining, for q = 1, 3,

∆qψµ := ψµ+q + ψµ−q − 2ψµ, ∆q|ψµ|2 := |ψµ+q|2 + |ψµ−q|2 − 2|ψµ|2. (5.5.18)

we rewrite Equation (5.5.17) as follows:

iρ−1ψ̇µ + ∆3ψµ + r∆1ψµ + λ|ψµ|2ψµ + η∆3|ψµ|2ψµ = 0, (5.5.19)

In a stationary state, the time-dependence of ψµ can be at most a variation of its phase

factor. As we did in Section 5.3, we consider the ansatz

ψµ(τ) = exp (iρH0τ + ikx)φ(x)
∣∣
x=µ−Nα/2, (5.5.20)

where x is a real, continuous variable in the domain −Nα/2 ≤ x ≤ Nα/2, φ is a real,

smooth function, k is a real, constant wavenumber, and H0 is a real energy eigenvalue in

the sense that

iρ−1ψ̇µ = −H0ψµ. (5.5.21)

In the limit Nα � 1, we write x = ξNα for some ξ and φ(x) = φ̃(ξ) for some φ̃, so that

ψµ±q = exp (iρH0τ + ikξNα) φ̃(ξ)
∣∣∣
ξ=(µ±q)/Nα−1/2

= exp
(
iρH0τ + ik

(
µ± q −Nα/2

))
×
(
φ̃(ξ)± qN−1

α φ̃′(ξ) + q2N−2
α

2 φ̃′′(ξ) +O
(
N−3
α

))∣∣∣∣∣
ξ=µ/Nα−1/2.

(5.5.22)
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Multiplying Equation (5.5.22) by its complex conjugate yields

|ψµ±q|2 = φ̃(ξ)2 ± 2qN−1
α φ̃(ξ)φ̃′(ξ)

+ q2N−2
α φ̃(ξ)φ̃′′(ξ) + q2N−2

α

(
φ̃′(ξ)

)2
+O

(
N−3
α

)∣∣∣∣
ξ=µ/Nα−1/2.

(5.5.23)

Putting Equations (5.5.20) to (5.5.23) into Equation (5.5.19), we obtain

0 = exp

iρH0τ + ik

(
µ− Nα

2

)
×

−H0φ̃(ξ) +
(

cos(3k) + i sin(3k)
)(

φ̃(ξ) + 3N−1
α φ̃′(ξ) + 9N−2

α

2 φ̃′′(ξ)
)

+
(

cos(3k)− i sin(3k)
)(

φ̃(ξ)− 3N−1
α φ̃′(ξ) + 9N−2

α

2 φ̃′′(ξ)
)
− 2φ̃(ξ)

+ r

(
cos(k) + i sin(k)

)(
φ̃(ξ) +N−1

α φ̃′(ξ) + N−2
α

2 φ̃′′(ξ)
)

+ r

(
cos(k)− i sin(k)

)(
φ̃(ξ)−N−1

α φ̃′(ξ) + N−2
α

2 φ̃′′(ξ)
)
− 2rφ̃(ξ) + λφ̃(ξ)3

+ η

[
18N−2

α φ̃(ξ)φ̃′′(ξ) + 18N−2
α

(
φ̃′(ξ)

)2
]
φ̃(ξ) +O(N−3

α )

∣∣∣∣∣∣
ξ=n/Nα−1/2.

(5.5.24)

Retaining terms up to O(N−2
α ), we have

0 = −H0φ̃(ξ) + cos(3k)
[
2φ̃(ξ) + 9N−2

α φ̃′′(ξ)
]

+ 6i sin(3k)N−1
α φ̃′(ξ)

+ r cos(k)
[
2φ̃(ξ) +N−2

α φ̃′′(ξ)
]

+ 2ri sin(k)N−1
α φ̃′(ξ)− 2 (1 + r) φ̃(ξ)

+ λφ̃(ξ)3 + 9ηN−2
α

[
2φ̃(ξ)φ̃′′(ξ) + 2

(
φ̃′(ξ)

)2
]
φ̃(ξ)

∣∣∣∣∣
ξ=n/Nα−1/2.

(5.5.25)

Equating imaginary parts of Equation (5.5.25) gives us

3 sin(3k) + r sin(k) = 0. (5.5.26)

We use the identity

sin(3k) ≡ sin(k)
(
2 cos(2k) + 1

)
(5.5.27)

to rewrite Equation (5.5.26) as

sin(k)
[
2 cos(2k) +

(
1 + r

3

)]
= 0. (5.5.28)

if r > 3, then sin(k) = 0 is the only spectrum of solutions to Equation (5.5.28), and

consequently we have k = lπ where l is any integer, and cos(k) = cos(3k) = ±1. Using
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φ̃′(ξ) = Nαφ
′(x)

∣∣∣
x=ξNα

and φ̃′′(ξ) = N2φ′′(x)
∣∣∣
x=ξNα

, where ′ always denotes differentiation

with respect to the argument in parentheses, we write the real part of Equation (5.5.25)

as either

−H0φ(x) + (9 + r)φ′′(x) + λφ(x)3

+ 9η
[
2φ(x)φ′′(x) + 2

(
φ′(x)

)2
]
φ(x)

∣∣∣∣∣
x=n−Nα/2

= 0, if cos(k) = 1, (5.5.29)

or

− H̃0φ(x)− (9 + r)φ′′(x) + λφ(x)3

+ 9η
[
2φ(x)φ′′(x) + 2

(
φ′(x)

)2
]
φ(x)

∣∣∣∣∣
x=n−Nα/2

= 0, if cos(k) = −1, (5.5.30)

where

H̃0 = H0 + 4(1 + r). (5.5.31)

By letting Nα → ∞ and letting x take all real values, we obtain the stationary form

of a generalised nonlinear Schrödinger equation (GNLSE), with either a focusing cubic

potential (+λφ3):

−H0φ(x) + (9 + r)φ′′(x) + λφ(x)3 + 9η
(
φ(x)2

)′′
φ(x) = 0, if cos(k) = 1, (5.5.32)

or a de-focusing cubic potential (−λφ3):

H̃0φ(x) + (9 + r)φ′′(x)− λφ(x)3 − 9η
(
φ(x)2

)′′
φ(x) = 0, if cos(k) = −1. (5.5.33)

In the latter case, the argument that we used at the end of Section 4.3.3 suffices to

show that no square-normalisable φ(x) solution exists. In the case of cos(k) = 1, Equa-

tion (5.5.32) differs from Equation (4.3.19) for the α-channel model by only the factors of

(9 + r) (instead of 1) and 9η (instead of η). Thus, the same phase-space method that we

used to solve the GNLSE in the α-channel model still applies now, and the essential steps

(which we rigorously validated in Section 4.3.3) are as follows.

We rearrange Equation (5.5.32) and suppress the argument x of φ, leading to the

autonomous equation,

−H0φ+ φ′′
(
9 + r + 18ηφ2

)
+ λφ3 + 18η(φ′)2φ = 0. (5.5.34)
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In the phase space, where φ′ is a function of φ, we define h(φ) := φ′, and write φ′′ ≡

(dφ′/dφ)φ′ = hhφ , where the subscript φ denotes differentiation with respect to φ. We

then define y(φ) := h(φ)2 = (φ′)2, so that yφ = 2hhφ = 2φ′′. Multiplying Equation (5.5.34)

by 2 gives (
9 + r + 18ηφ2

)
yφ + 36ηφy = 2H0φ− 2λφ3, (5.5.35)

where the left-hand side is the total derivative of (9 + r + 18ηφ2)y with respect to φ.

Integrating both sides, we have

y ≡ (φ′)2 = H0φ
2 − λφ4/2 + C

9 + r + 18ηφ2 , (5.5.36)

where C = 0 due to vanishing boundary conditions at infinity, and H0 > 0, for otherwise

the only solution is φ ≡ 0. Multiplying Equation (5.5.36) by 4φ2, we obtain(
Φ′
)2

= 4H0Φ2 − 2λΦ3

9 + r + 18ηΦ , (5.5.37)

where we have defined Φ := φ2. Being able to solve Equation (5.5.37) relies upon being

able to integrate

[
g(Φ)

]−1 =

2
√
H0Φ

√
1− Φ/Φ0

9 + r + 18ηΦ

−1

(5.5.38)

around the singularity Φ = Φ0, where

Φ0 = 2H0
λ

(5.5.39)

is the only non-zero value of Φ at which Φ′ vanishes. We showed in Section 4.3.3 that Φ0 is

the unique global maximum value of Φ, and that we can set Φ(x = 0) = Φ0 without loss of

generality. Using the method which we described between Equations (4.3.56) and (4.3.66),

we express our solution to Equation (5.5.37) as

sgn(x)
√
H0 x√
9 + r

= arsinh
√

1− (Φ/Φ0)
(1 + ν) (Φ/Φ0) +

√
ν arctan

√
ν
(
1− (Φ/Φ0)

)
1 + (νΦ/Φ0) , (5.5.40)

where

ν = 36ηH0
(9 + r)λ. (5.5.41)

If H0 is known, then, as we proved in Section 4.3.3, the combination of Equations (5.5.39)

and (5.5.40) uniquely provides a globally positive, normalised Φ(x) which solves Equa-

tion (5.5.37); and since Φ(x) is globally positive, we can use φ = ±
√

Φ to recover a
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solution to the GNLSE, Equation (5.5.32). However, H0 is not known; it is an energy

eigenvalue to be determined. By the same method that we employed in the steps lead-

ing up to Equation (4.3.74), we have the similar result that H0 is given uniquely by the

algebraic equation,

λ

4
√
H0(9 + r)

=
√
ν + (1 + ν) arctan

√
ν. (5.5.42)

The Φ(x) solution given by Equation (5.5.40) has a highly-localised, bell curve-shaped

profile over the real line, characteristic of the stationary polaron states that we have

encountered thus far. If we discretise Φ(x) to obtain an approximation for the electron

probability distribution |ψµ|2, then, due to the label µ being along the helical coil, |ψµ|2

represents a polaron which is localised across all three α-channels. If there exist stationary

polarons which are localised on a single α-channel, the continuum approximation that we

have so far described is unable to capture them. Moreover, without any knowledge of the

value of the parameter ρα, the use of any numerical experiments we may perform on our

system is highly limited, as we expect the system’s properties to be sensitively dependent

upon the ratio r between ρα and ρ.

Now, if we had r ≤ 3, then Equation (5.5.28) would have more than sin(k) = 0 as its

solution. Indeed, we would have an extra spectrum of wavenumbers given by

cos(2k) = −1
2 −

r

6 , (5.5.43)

and consequently

cos(k) = ±
√

1
4 −

r

12 , (5.5.44a)

cos(3k) = ∓
√

1
4 −

r

12

(
2 + r

3

)
, (5.5.44b)

which we can insert into the real part of Equation (5.5.25). This results in a new set of

generalised nonlinear Schrödinger equations, but more work is needed in order to make

analytical progress on them. Nevertheless, we have shown that r = 3 is a bifurcation point

in our model, as r > 3 and r ≤ 3 lead to characteristically different systems of equations.

5.6 Summary and Biophysical Interpretations

In all but Section 5.5 of this Chapter, we used a generalised Davydov-Scott model to study

polaronic electron transport in the α-helix, under the assumption of A-mode symmetry:
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that the electron is equipartitioned amongst the three α-channels. We discovered that

the dynamical equations governing the electron-phonon system are similar to those in

Chapter 4, which described electron transport along a single α-channel. The fundamental

difference between the two sets of equations is that in the α-helix model a parameter ζ

appears which encapsulates the twisting of the α-channels around the helical axis. We de-

rived stationary polaron solutions, parametrised by an effective coupling parameter λ, and

quasi-stationary solutions under thermal fluctuations, parametrised by λ and thermal en-

ergy θ. Given identical values for all physical parameters, we found that the α-helix model

admits stationary polarons which are less strongly bound than the α-channel model did.

Equivalently, in order to create a stationary polaron with some prescribed binding energy,

a larger electron-phonon coupling constant is required in the α-helix model than is re-

quired in the α-channel model. This is due to the fact that in the α-helix, the electron

tends to disperse amongst the three channels, as dictated by the negative inter-channel

electron transfer energy, −J2. We also presented evidence that stationary polarons in the

α-helix model are more thermally stable than those in the α-channel model, in the sense

that, given equally strong stationary polarons in the two models, in the α-helix model a

higher thermalisation temperature is required to destroy the binding.

Using an electromagnetic field (EMF) in the form of a mean-shifted periodic field

(MSPF) to displace the stationary polaron, we found results which are directly comparable

to those in Chapter 4. The same biophysical conclusions as we reached in Section 4.5 (aided

by references therein) still apply. Firstly, the constant component of the MSPF matches in

order of magnitude the resting membrane potential in living cells. Secondly, the temporally

sinusoidal component matches in frequency those we find in everyday life such as WiFi

and satellite communications, but the typical amplitude of the sinusoidal component is

several orders larger than the aforementioned artificial electromagnetic waves. Subjecting

the system to stochastic forces arising from a thermal environment, we discovered that

temperatures up to about 95 K can enhance polaron propagation, in that the stochastic

forces effectively remove the need for a sinusoidal component of the MSPF. Under the

combination of stochastic forces and a constant electric field, the strength of which matches

those resulting from resting membrane potentials, we found that the polaron can remain

highly stable while it traverses O(1) lattice sites per nanosecond, a biologically-relevant

time-scale [cf. Figure 5.10]. This is a significant result because it is well-known that

a typical transmembrane α-helix comprises 20 to 30 peptide units, or, up to around 10
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units per α-channel [Luc08, LWBR10]. Under the A-mode symmetry, 10 peptide units

translates precisely into labels n = 0, 1, . . . 9; therefore our model explains how a polaron

can propagate from one end of a transmembrane α-helix to the other in several nanoseconds

or less, under nothing but inherent forces in the cell environment.

One shortcoming of our model is that it is impossible to raise the thermalisation

temperature to beyond roughly Θmax = 95 K, as doing so destroys the polaron binding.

This is already a higher allowance than that under the α-channel model of Chapter 4

(which had Θmax = 55 K), but the thermal energy resulting from a temperature of 95 K is

still roughly 3 times smaller than physiological. We believe that one viable way to address

this issue could be to discard the A-mode symmetry assumption, allowing the electron

to transfer between the three α-channels rather than be equally distributed among them.

We derived the dynamical equations for this general model in Section 5.5 and presented

some analytical results, including that in the continuum approximation of the lattice,

there exists a stationary electron probability distribution localised on a single α-channel.

However we have currently no means to determine whether this system permits higher

thermalisation temperatures than it did under A-mode symmetry, due to the lack of

empirical data or theoretical estimates concerning the value of the inter-channel electron

transfer integral, J2. It is possible to treat J2 as a fitting parameter, and to study a family

of systems parametrised by its value, but the high computational cost of this endeavour

has prohibited us from completing such a task for this thesis. We will work towards

completing said task for a future publication.
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Chapter 6

Summary and Future Directions

The aim of this thesis was to develop mathematical models capable of explaining the

mechanisms by which electrons are transported along an α-helical protein. With the

historical context of the problem in mind, we chose to utilise the theoretical framework

of polarons, a concept whose roots are deep in the field of condensed matter physics. We

set out to generalise two existing polaron models which were best suited to the task: the

Holstein-Hennig model of electron-intrapeptide oscillator coupling, and the Davydov-Scott

model of exciton-hydrogen bond phonon coupling. In the former case, we represented a

single α-channel in the helix as a lattice and quantised its dynamics. We then used an

external, pulse-like electromagnetic field to launch stationary polarons that formed on the

lattice. We presented our results, adapted from [LP18], in Chapter 3. We found that pulses

whose amplitudes and time-spans matched those known naturally to occur in biological

complexes were able to facilitate directed polaron motion on the picosecond scale, in a

manner which was energetically stable even at physiological temperature. Generalising

the Davydov-Scott model, which was originally used to study the transport of vibrational

energy, we introduced a parameter to describe the extent to which the electron-phonon

interaction in the helix was spatially symmetric. We presented in Chapter 4 results adapted

from [LP17], on the application of the generalised Davydov-Scott (GDS) model to a single,

linear α-channel; then in Chapter 5, we applied the GDS model to the three-channel

structure of the α-helix. In both cases, we found that an electromagnetic field in the form of

a mean-shifted periodic field (MSPF), comprising a constant component and a temporally

sinusoidal one, could facilitate stable polaron propagation. We also found that stochastic

forces arising from the cell’s thermal environment promoted polaron propagation, in the

sense that they made polarons more susceptible to the influence of the MSPF. Applying
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the GDS model to the α-helix under the assumption of A-mode symmetry - that the

electron is equipartitioned amongst the three α-channels - we discovered that the twisting

of the channels makes polarons more stable against thermal fluctuations than they were in

a single, linear channel. In several nanoseconds or less, a polaron can traverse the length

of a typical transmembrane α-helix, under nothing but stochastic thermal forces and a

constant, resting membrane potential, both of which are intrinsically realisable in the cell

environment. However the model also predicts that temperatures higher than 95 K tend

to destroy the polaron binding. Overall, our modelling efforts have been fruitful in that

we are able to explain α-helical electron transport phenomena within the polaron theory

framework, and that both internal and external interactions in the models are realisable

in nature. If laboratory tests can help to fit certain internal parameters, such as the

electron-lattice coupling constants in the various models, then the models could become

useful tools in biotechnology, due to their predictive powers in terms of how a polaron

reacts to external forces.

Immediate future work following this thesis shall involve completing the α-helical GDS

model under no assumption of A-mode symmetry. We already have some analytical results

in that regard, which we presented in Chapter 5, and it remains for us to conduct numerical

experiments, parametrising our outputs by the as-yet undetermined inter-channel electron

transfer integral. If the numerical study proves successful, then we will look into combining

the generalised Holstein-Hennig and GDS models, creating a model which accounts for

the electron’s coupling to both intrapeptide and interpeptide oscillators. We may need to

treat such a model as a multi-scale problem, since there is a large characteristic time-scale

separation between typical intrapeptide and interpeptide oscillators in the α-helix.
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