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Abstract

The upcoming Dark Energy Spectroscopic Instrument (DESI) and Euclid

galaxy surveys aim to make the most precise galaxy clustering measurements

yet, in order to probe the nature of the mysterious dark energy that is thought

to make up the majority of the energy density of the Universe today. To reach

the required precision, it is essential that the systematics that affect these

measurements are understood, which requires realistic mock galaxy catalogues.

This thesis focuses on building a mock catalogue for the DESI Bright Galaxy

Survey (BGS), and applications of this mock. We outline the methods used to

create halo merger trees from N-body and Monte Carlo simulations, which is

the first step towards creating a mock catalogue. We show how these methods

can be extended beyond ΛCDM to warm dark matter, and show applications.

We have developed a halo occupation distribution (HOD) method for creat-

ing a BGS mock catalogue from the Millennium-XXL (MXXL) simulation,

with galaxies being assigned r-band magnitudes and g− r colours. The mock

catalogue is able to reproduce the luminosity function and clustering of the

Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA)

survey at different redshifts. The mock is used to quantify incompleteness in

the DESI BGS due to fibre assignment, which depends on the surface density

of galaxies, and to assess correlation function correction methods. An inverse

pair weighting method is able to provide an unbiased correction on all scales.

Finally, we show how the HOD methodology can be extended to construct

mock catalogues for Euclid, and other large galaxy surveys.
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Chapter 1

Introduction

1.1 The ΛCDM model of cosmology

Our understanding of cosmology has changed dramatically over the past century.

In the 1920s, Hubble observed that nearby galaxies are receding away from us,

with a velocity that is, on average, proportional to their distance from us (Hubble,

1929). This was the first observational evidence for an expanding Universe, and is

described by Hubble’s law,

v = H0d, (1.1)

where v is the recession velocity of a galaxy, d is its distance, and H0 is the Hubble

constant.

In the 1930s, Zwicky measured the velocity dispersion of galaxies within the

Coma cluster in order to estimate its mass. The cluster was found to be much

more massive than expected from the total luminosity. Zwicky suggested that this

discrepancy was due to a mass component within the cluster that does not emit

light, or ‘dark matter’ (Zwicky, 1933).

Another piece of evidence for dark matter came later in the 20th Century from

observations of the rotation curves of galaxies (the rotational velocity of stars in

the galaxy as a function of the radial distance from the centre). If all the mass

in galaxies is made up of visible stars, which are mostly concentrated towards the

1



1.1. The ΛCDM model of cosmology

centre of the galaxy, then the stars should follow Keplerian dynamics, and the

rotational velocity should fall with increasing distance (v ∝ r−1/2, e.g. as is seen in

the planets of the Solar System). However, galaxy rotation curves are observed to

be approximately flat in the outskirts of galaxies, and the rotational velocity does

not depend on distance (Rubin et al., 1980). If Newtonian dynamics is correct,

there must be extra mass inside the galaxy which cannot be accounted for by

visible stars and gas.

In the 1990s, observations were made of Type Ia supernovae in distant galaxies,

which can be used as standard candles. It was found that distant supernovae were

fainter and therefore farther away than expected (Riess et al., 1998; Perlmutter

et al., 1999). This was the first evidence that the expansion rate of the Universe

is accelerating, driven by a mysterious additional energy density component of the

Universe, or ‘dark energy’, which can be described as the cosmological constant,

Λ.1

The current standard model of cosmology is the ΛCDM model, where Λ is the

cosmological constant, and dark matter is in the form of cold dark matter (CDM).

Each galaxy is embedded within a halo of dark matter, which is believed to be

comprised of a massive particle (with mass of the order of a few GeV) that is ‘cold’

(i.e. at early times had a negligible thermal velocity), and only interacts with regu-

lar matter via gravity. While dark matter and dark energy are poorly understood,

current observations of the Universe are consistent with the ΛCDM model (e.g.

Planck Collaboration et al., 2018).
1There was motivation for introducing Λ before the supernova measurements (Efstathiou et al.,

1990b). A low value of Ωmh ≈ 0.2 is needed to account for the measured large-scale galaxy
clustering. A positive cosmological constant is therefore required for the Universe to be flat, as
predicted by inflation.
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1.2 The expansion history of the Universe

In the current cosmological model, the Universe is 13.8 billion years old, and was

initially extremely hot and dense, expanding rapidly after the ‘Big Bang’. Shortly

afterwards, the Universe went through ‘inflation’, a period of exponential expan-

sion. During this period, primordial fluctuations are generated, which are the seeds

of the large scale structure we see today. As the Universe expands and cools, it

reaches an epoch during which it is ionized, and photons are coupled with baryons.

During this period, acoustic oscillations are able to propagate through the plasma

until recombination, when the Universe becomes neutral and photons and bary-

ons decouple. This happens at redshift z ∼ 1100, or around 400,000 years after

the Big Bang, when the Universe has cooled to a temperature of ∼ 3, 000 K, and

the Universe becomes transparent to photons. The photons from the last scatter-

ing surface are redshifted as the Universe expands, and are observed today as the

cosmic microwave background (CMB), with a temperature ∼ 3 K (Mather et al.,

1990). The imprint of the baryon acoustic oscillations (BAO) can be measured

in the temperature anisotropies of the CMB (e.g. Hinshaw et al., 2009), and also

in measurements of galaxy clustering in the low redshift Universe (e.g. Eisenstein

et al., 2005b). After recombination, the Universe went through a period in which it

was dominated by matter. Overdensities of matter collapse to form a cosmic web

of filaments, haloes and voids. Galaxies form within dark matter haloes, and the

radiation they produce reionizes the Universe. Relatively recently, as the matter

density has been reduced as the Universe expands, the energy density has become

dominated by dark energy, which is driving the current accelerated expansion.

Starting with the Einstein field equations of General Relativity, and assuming

that the Universe is isotropic and homogeneous, the expansion of the Universe can

be described using the Friedmann equations (e.g. Mo et al., 2010),

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3 (1.2)
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(
ȧ

a

)2
= 8πG

3 ρ− kc2

R2
0a

2 + Λc2

3 , (1.3)

where a is the dimensionless ‘scale factor’, which parametrises the relative ex-

pansion of the Universe, and at the present day, t0, is chosen to have the value

a0 ≡ a(t0) = 1. The mass content of the Universe can be described as a fluid

with mean density ρ and pressure p. G is the gravitational constant and c is

the speed of light in a vacuum. The parameter k describes the curvature of the

Universe, where k = +1, 0,−1, depending on whether the Universe is closed,

flat, or open, and R0 is the radius of curvature. Finally, Λ is the cosmological

constant. A non-zero, positive value of Λ is required for an accelerating expan-

sion. The Hubble parameter can be defined in terms of a as H(a) ≡ ȧ/a, where

H0 ≡ H(a0) ≡ 100h km s−1Mpc−1 ≈ 70 km s−1Mpc−1 is the present day value.1

The critical density can be defined as

ρcrit = 3H2
0

8πG, (1.4)

which is the density required to slow the expansion of the Universe to zero as

t→∞ (in a Universe with no dark energy). Each component of the Universe can

be expressed relative to the critical density. For mass,

Ωm = ρm
ρcrit

. (1.5)

For radiation (i.e. photons and massless particles), Ωr can be defined in the same

way. Similar quantities can be defined for curvature,

Ωk = − kc2

R2
0H

2
0
, (1.6)

and for the cosmological constant,

ΩΛ = Λc2

3H2
0
, (1.7)

1The most recent measurement ofH0 from the Planck satellite isH0 = 67.4±0.5 km s−1Mpc−1

(Planck Collaboration et al., 2018). This is in tension with measurements of H0 based on the
cosmological distance ladder, e.g. Riess et al. (2018) measure H0 = 73.5± 1.6 km s−1Mpc−1.
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and by construction

Ωm + Ωr + Ωk + ΩΛ = 1. (1.8)

The expansion history can therefore be written as

H2(a) = H2
0 (Ωma

−3 + Ωra
−4 + Ωka

−2 + ΩΛ). (1.9)

Measurements of the anisotropies in the CMB can be used to measure the

present day contribution of each of these components to the total energy density of

the Universe. The most recent results from the Planck satellite are Ωm = 0.315±

0.007 and ΩΛ = 0.685 ± 0.007. The curvature of the Universe is measured to be

Ωk = 0.001± 0.002, which is consistent with a flat Universe (Planck Collaboration

et al., 2018).

For each component of the energy density of the Universe, density and pressure

are related through the equation of state w = p/ρc2. For ordinary matter which is

non-relativistic, w = 0 since the pressure is negligible, while for photons w = 1/3.

For the expansion of the Universe to accelerate, ρc2 + 3p < 0 (from Eq. 1.2), so the

total equation of state must be w < −1/3. In ΛCDM, the cosmological constant

is equivalent to dark energy with a constant equation of state w = −1. However,

dark energy does not have to be constant. The equation of state could change with

time, and this is commonly parametrised as

w(a) = w0 + (1− a)wa, (1.10)

which is independent of any particular model (Chevallier & Polarski, 2001; Linder,

2003). Alternatively, the accelerated expansion could be driven by a modification

to General Relativity (GR) on large scales (Amendola et al., 2018). Large galaxy

surveys aim to distinguish between these possibilities. To date, measurements

from surveys have been consistent with GR (e.g. Zarrouk et al., 2018; Zhao et al.,

2018), and have found w to be consistent with a constant value of −1 (e.g. Cuesta

et al., 2016; DES Collaboration et al., 2017). Future surveys are driven to be even

larger in order to obtain the precision measurements required to place even tighter
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Figure 1.1: A thin slice through the 2dF survey, illustrating the large scale struc-

ture that is probed by large galaxy surveys. Figure reproduced from Colless et al.

(2003).

constraints, which are needed to address the fundamental question of the nature

of dark energy.

1.3 Large-scale structure surveys

Large galaxy surveys can be used to test the ΛCDM paradigm. The aim of a galaxy

survey is to measure the positions, redshifts, and other properties of many hundreds

of thousands or millions of galaxies, in order to create a 3D map of the large-scale

structure. Predictions from ΛCDM can be compared with statistics measured from

the survey, and constraints can be placed on theories beyond ΛCDM.

One of the earliest surveys was the CfA Redshift Survey (Huchra et al., 1983),

which took 5 years to measure the spectra of 2,400 galaxies individually. Since

then, advances in instrumentation have enabled larger and deeper surveys, with

multiple objects observed simultaneously. The Two-degree-Field Galaxy Redshift

6
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Survey (2dF) (Colless et al., 2001) obtained ∼ 250, 000 spectra, covering a total

area on the sky of 1, 500 deg2, with a median redshift ∼ 0.1. A robotic multi-fibre

spectrograph was used to observe 400 objects simultaneously, within a pointing

of diameter 2 degrees. Fig. 1.1 shows a thin slice through the 2dF survey. The

galaxies in the survey clearly trace out the filamentary large-scale structure of

matter. The Sloan Digital Sky Survey (SDSS) (York et al., 2000; Abazajian et al.,

2009), measured 1 million galaxy redshifts with a similar median redshift, but

covering a much larger area of ∼ 10, 000 deg2, for objects brighter than an r-band

magnitude of r = 17.7. Each SDSS tile has a diameter of 3 degrees with 640

fibres. Before each observation, each fibre has to be, by hand, plugged into the

location of each galaxy on the plate. Other surveys cover a smaller area on the

sky, but are much deeper, such as the GAMA Survey (Driver et al., 2009, 2011;

Liske et al., 2015), which covers 286 deg2 with the magnitude limit r < 19.8, and

median redshift zmed = 0.2. Deeper surveys, such as GAMA, which cover a wide

range of redshifts are useful for studying galaxy formation and evolution.

To map the large-scale structure at high redshift over large areas of the sky,

surveys must target specific tracers, such as Luminous Red Galaxies (LRGs), Emis-

sion Line Galaxies (ELGs), and quasars, in order to reduce the total surface density

of targets. The BOSS survey (Eisenstein et al., 2011; Dawson et al., 2013), which

is an extension of SDSS, measured the spectra of over 1.5 million LRGs (z < 0.7),

and the Lyman-α forest of 160,000 quasars (2.2 < z < 3). The BOSS LRG sample

is split, using colour and magnitude cuts, into the LOWZ sample (z . 0.4), and

the CMASS sample of massive galaxies with constant stellar mass (0.4 < z < 0.7).

The ongoing eBOSS survey (Dawson et al., 2016) aims to fill in the intermediate

redshifts by targeting 300,000 LRGs (0.6 < z < 0.8), 189,000 ELGs (0.6 < z < 1.0),

and 573,000 quasars (0.9 < z < 3.5). The Dark Energy Survey (DES) (The Dark

Energy Survey Collaboration, 2005; Dark Energy Survey Collaboration et al., 2016)

is an ongoing photometric survey which aims to image 300 million objects in 5 pho-

tometric bands over 5, 000 deg2.
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1.3.1. Baryon acoustic oscillations as a standard ruler

Figure 1.2: Measurement of the BAO from the CMASS sample of galaxies in the

BOSS survey (0.4 < z < 0.7) in the two-point correlation function (left) and the

power spectrum (right), before and after reconstruction. Figure reproduced from

Anderson et al. (2014a).

Measurements of how galaxies are clustered in 3D space from these large galaxy

surveys at different redshifts can be used to measure the expansion history of the

Universe, and the growth of structure. These measurements include baryon acous-

tic oscillations, which can be used as a standard ruler to measure the expansion

history of the Universe, and redshift space distortions, which can be used to meas-

ure the growth of structure and test general relativity.
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1.3.1. Baryon acoustic oscillations as a standard ruler

1.3.1 Baryon acoustic oscillations as a standard ruler

During the period before recombination, photons are in thermal equilibrium with

electrons and protons, and the Universe is opaque to photons, due to Thomson

scattering. Overdense regions attract matter towards them, which compresses and

heats up the plasma, resulting in an outward radiation pressure. This produces

acoustic waves, which are able to propagate at a speed c/
√

3, until recombination.

During this time, the waves are able to propagate a comoving distance of the order

of 150 Mpc (∼ 100 h−1Mpc), leaving behind an excess of matter, and the imprint

of the BAO can be seen as oscillations in the power spectrum of CMB anisotropies.

The overdense regions collapse to form galaxies, and there is a small enhancement

(of a few percent) of galaxies at the BAO separation, which can be measured in

the two-point correlation function of galaxies.

The density field of matter at point x is given by δ(x) = (ρ(x) − ρ̄)/ρ̄, where

ρ̄ is the average density. The two-point correlation function is defined as the auto-

correlation function of the density field at two points separated by r,

ξ(r) ≡ 〈δ(x)δ(x + r)〉 . (1.11)

The two-point correlation function can also be thought of as the excess probability

of finding two objects with separation r, compared to a random distribution,

dP = n2
0[1 + ξ(r)]dV1dV2, (1.12)

where n0 is the average number density of objects and dV1 and dV2 are volume

elements. Fig. 1.2 shows measurements of the BAO in the two-point correlation

function from the BOSS survey. A peak can be seen, indicating that there is an

enhancement of galaxy pairs separated by the BAO length scale of ∼ 100 h−1Mpc.

The displacement of galaxies from their initial positions, due to bulk flows and

non-linear structure formation, dampens and broadens the BAO peak. A method

called reconstruction aims to correct for this by estimating the displacement field

using Lagrangian Perturbation Theory, and then moving galaxies back to their
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original position (Eisenstein et al., 2007). The BAO can also be seen as oscillations

in the power spectrum, which is the Fourier transform of the two-point correlation

function.

Since the waves travel a fixed distance before recombination, the BAO can be

used as a standard ruler to measure the expansion history of the Universe. The

comoving BAO length scale is related to an angle on the sky θ,

sBAO = (1 + z)dA(z)θ, (1.13)

where dA(z) is the angular diameter distance to redshift z. In a flat Universe, this

can be written as

sBAO = θ

∫ z

0

cdz′

H(z′) . (1.14)

For pairs of galaxies along the line of sight, there will be a redshift separation ∆z

which corresponds to the BAO scale,

sBAO = c∆z
H(z) . (1.15)

Therefore BAO measurements from large galaxy surveys can be used to measure

both the expansion rate of the Universe, H(z) at different redshifts, and also the

angular diameter distance dA(z), which is the integrated expansion history between

redshift z and the present.

1.3.2 Using redshift space distortions to measure the growth of

structure

The distance to each galaxy in a survey can be inferred from its measured redshift.

However, this gives a distorted view of the distribution of galaxies, as the observed

redshift, zobs, is altered by peculiar motion,

zobs = zcos + vr
c
, (1.16)

where zcos is the cosmological redshift from Hubble’s law, and vr is the peculiar

velocity along the line of sight.
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Figure 1.3: Redshift space two-point correlation function, ξ(σ, π) measured from

the 2dF survey, as a function of σ and π, the pair separation perpendicular to,

and along the line of sight respectively. The black contours are model predictions.

Figure reproduced from Peacock et al. (2001).

Consider a spherical galaxy cluster. On large scales, there is a coherent infall

of galaxies towards the centre of the cluster. Galaxies on the near-side of the

cluster are falling away from the observer, which increases their observed redshift.

Conversely, galaxies on the far-side are falling in the direction towards the observer,

and will therefore have slightly lower observed redshifts. This is the Kaiser effect

(Kaiser, 1987), and results in an apparent flattening of the cluster in redshift space.

On small scales, the large random velocities results in an elongation in redshift

space, also known as a Fingers-of-God distortion (Jackson, 1972).
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These effects can also be seen as anisotropies in the two-point correlation func-

tion ξ(σ, π), where σ is the distance perpendicular to the line of sight, and π is the

distance parallel to the line of sight. This is illustrated in Fig. 1.3, which shows

the redshift space correlation function measured in the 2dF survey (Peacock et al.,

2001). In real space, the clustering is isotropic, so contours of ξ(σ, π) are circular.

In redshift space, the contours are compressed on large scales, due to the Kaiser

effect, while the contours on small scales are elongated along the line of sight, due

to Fingers-of-God distortions.

Galaxies are biased tracers of the matter density field, δm(x), and the over-

density in galaxies can be written as δg(x) = bδm(x), where b is the bias factor. In

Fourier space, the redshift space perturbation is related to the real space perturb-

ation

δ(s)
g (k) = (1 + βµ2)δg(k), (1.17)

where µ is the cosine of the angle between k and the line of sight (Kaiser, 1987).

The quantity β = f/b, where the growth rate f is the logarithmic derivative of the

growth function D(a),

f = d lnD(a)
d ln a . (1.18)

Like Eq. 1.11, the redshift space correlation function can be defined as

ξ(s)
g (s1, s2) = 〈δ(s)

g (s1)δ(s)
g (s2)〉, (1.19)

so measurements of the redshift space correlation function provide a way to measure

f .

The power spectrum of the density field is defined as

P (k) ≡ 〈|δ(k)|2〉. (1.20)

It can be shown that P (k) is the Fourier transform of the correlation function, and

in an isotropic Universe, this can be written as

P (k) = 4π
∫ ∞

0
r2ξ(r)sin(kr)

kr
dr. (1.21)
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The power spectrum in redshift space is

P (s)
g (k) = (b+ fµ2)2Pm(k), (1.22)

and the normalisation of the power spectrum Pm(k) is proportional to σ2
8(z)1, so

in reality, RSD measurements place constraints on the combination f(z)σ8(z).

In general relativity, f ≈ Ωm(z)γ , where γ ≈ 0.55 (e.g. Polarski & Gannouji,

2008). In modified theories of gravity, γ could differ from this value, so constraints

in the Ωm-γ plane can rule out modified gravity theories (Guzzo et al., 2008).

1.3.3 The next generation of surveys

The results of BAO and RSD analysis in galaxy surveys have, to date, been con-

sistent with a flat ΛCDM Universe in which gravity can be described using General

Relativity (e.g. Howlett et al., 2015; Ross et al., 2015; Cuesta et al., 2016; Alam

et al., 2017; DES Collaboration et al., 2017; Ruggeri et al., 2018; Zarrouk et al.,

2018; Zhao et al., 2018). The differences between ΛCDM and models that have not

been ruled are becoming increasingly small. To distinguish between them, even

more accurate measurements are needed, which requires even larger surveys.

The Dark Energy Spectroscopic Instrument (DESI) survey (DESI Collaboration

et al., 2016a,b) is an upcoming survey, which aims to measure spectra of 4 million

LRGs (0.4 < z < 1.0), 17 million ELGs (0.6 < z < 1.6), 1.7 million quasars

(z < 2.1), 0.7 million higher redshift quasars (2.1 < z < 3.5), and ∼ 10 million

bright, low redshift galaxies (r < 19.5 at zmed = 0.2). The instrument is being

installed on the 4-m Mayall Telescope in Arizona, and the 5 year survey, which

is being scheduled to begin at the end of 2019, will cover ∼ 14, 000 deg2, where

5,000 objects will be able to have their spectra measured simultaneously. Unlike

SDSS, where fibres are plugged by hand into each plate, DESI utilises robotic fibre

positioners in the focal plane of the telescope, which can automatically place the

fibres onto the position of each target galaxy in each pointing.
1σ2

8 is the variance in the mass density field in spheres of radius 8 h−1Mpc.
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The Euclid satellite (Laureijs et al., 2011) will conduct another large survey,

and is scheduled for launch in 2021. The satellite will be placed at the L2 Lag-

rangian point, and the 6 year mission will cover 15, 000 deg2, measuring the spectra

of 30 million ELGs (0.7 < z < 2), with a near-infrared slitless spectrometer. The

instruments on the satellite are the visible (VIS) instrument, which will image the

shapes of galaxies for studying weak lensing, and the Near Infrared Spectrometer

and Photometer (NISP), which will measure near infrared photometric and spec-

troscopic redshifts.

1.4 Mock catalogues from cosmological simulations

In order to prepare for these upcoming large galaxy surveys, realistic synthetic

galaxy catalogues are needed, and can be utilised for a variety of reasons. Firstly,

mock catalogues are needed in order to develop and test the survey pipeline code.

They are useful to help design the survey, and to explore different survey strategies.

Mocks can also be used to test methods for measuring cosmological parameters,

and to understand the systematics that will affect these measurements. Many mock

catalogues are needed to estimate accurate covariance matrices of galaxy clustering

and power spectrum measurements. Accurate covariance matrices are needed to

obtain the uncertainty in measurements of cosmological parameters (Percival et al.,

2014).

On large scales, the growth of structure is linear, and is well understood. How-

ever, in the dense regions where galaxies form, structure growth is highly non-

linear, which makes it very difficult to describe analytically. The non-linear growth

of structure can be simulated using numerical techniques. In an N-body simulation,

such as the Millennium Simulation (Springel et al., 2005) and the Millennium-XXL

Simulation (Angulo et al., 2012b), the matter distribution is represented by a set

of dark matter particles. These particles are evolved from some initial conditions

at high redshift within a large cosmological volume to the present day. The dark
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matter particles collapse to form dark matter haloes, which merge, and through

hierarchical structure formation reproduce the large-scale structure seen in the real

Universe. These simulations can also be extended to include baryons, and to simu-

late galaxy formation physics (e.g. Genel et al., 2014; Schaye et al., 2015). However,

galaxy surveys cover such large volumes that it is typically only possible to run

a dark-matter only simulation. Techniques can be used to link galaxies to dark

matter haloes, such as the halo occupation distribution (HOD) (e.g. Peacock &

Smith, 2000; Zheng et al., 2005), subhalo abundance matching (SHAM) (e.g. Vale

& Ostriker, 2004; Conroy et al., 2006), or semi-analytic models (e.g. Baugh, 2006;

Benson, 2010). For estimating covariance matrices, 1000s of mocks are needed,

which can be created using fast, approximate techniques (e.g. Monaco et al., 2013;

White et al., 2014; Chuang et al., 2015).

Analysis methods can be tested on these idealised mock catalogues by compar-

ing the results against the input cosmology of the mock, which is known. However,

the final survey catalogue will not be ideal, and is affected by various sources of in-

completeness, and observational errors. By simulating these additional effects, the

analysis methods can be modified to reduce these systematic effects. To make pre-

cise BAO and RSD measurements in the era of precision cosmology, it is essential

that these systematics can be corrected.

1.5 Outline of thesis

This thesis will explore mock catalogues for upcoming large surveys, with a par-

ticular focus on the DESI Bright Galaxy Survey (BGS).

The outline of this thesis is as follows. Chapter 2 will outline methods for

creating halo merger trees from N-body simulations, and Monte Carlo methods.

This is the first step towards the creation of mock catalogues. These methods can

also be extended beyond ΛCDM to simulations with warm dark matter.
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Chapter 3 describes a method for creating a halo lightcone from the snapshots of

the Millennium-XXL simulation, and a HOD method to populate it with galaxies.

This mock is designed to be used for the DESI BGS, and reproduces the galaxy

luminosity function and galaxy clustering of the SDSS and GAMA surveys.

Chapter 4 uses this mock catalogue to explore how the DESI BGS will be

affected by incompleteness due to fibre assignment. Several correlation function

correction techniques are assessed by applying them to samples from the mock.

Chapter 5 extends the HOD technique to create mock catalogues of Euclid and

other galaxy surveys.

The conclusions are summarised in Chapter 6.
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Chapter 2

Halo merger trees in cosmological

simulations

2.1 Introduction

Structure in the Universe is believed to form hierarchically, where small overdens-

ities in the early Universe collapse through gravitational instability to form dark

matter haloes. Over time, haloes grow in mass as they slowly accrete matter, and

also through mergers with other haloes. At early times, structure formation can

be described analytically with linear perturbation theory. However, at later times,

when haloes form, structure formation is highly non-linear. Non-linear structure

growth is in general very difficult to describe analytically, but can be studied using

numerical techniques.

Galaxy surveys measure the positions and properties of galaxies, which form

in dense regions. To build realistic mock catalogues for these surveys, e.g. with

realistic galaxy clustering properties, it is therefore important that the non-linear

formation of structure can be modelled accurately. The starting point of a mock

catalogue is typically an N-body simulation, which represents the matter density

field as a set of particles, and calculates the gravitation force on each particle over

many time steps. N-body simulations are able to accurately reproduce the large-
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scale structure observed in the real Universe (Springel et al., 2005). Positions and

velocities of particles are output from the N-body simulation at fixed times, or

snapshots. This particle information is used to identify haloes in the simulation at

each snapshot, and by identifying the descendant of each halo at the next snapshot,

a halo merger tree can be built. For a halo at z = 0, the merger tree describes

the merger history of all its progenitor haloes. This information can be used to

interpolate between snapshots to determine the positions of the haloes on the past

lightcone of a chosen observer, as described in Chapter 3.

Merger trees can also be built using a Monte Carlo technique, the starting point

of which is extended Press-Schechter theory (Bond et al., 1991), which predicts the

mass function of haloes, and also the conditional mass function (the mass function

of the progenitor haloes at redshift z of a halo of mass M at a later redshift).

This can be used to calculate the probability that a halo will fragment into two

progenitors, working backwards in time. Starting with the final halo at z = 0,

the algorithm can be iterated over many timesteps to build up the merger tree.

While Monte Carlo merger trees have the disadvantage that they do not contain

spatial information for haloes, the algorithm is fast, and can be efficiently run many

times. Combined with a semi-analytic model, they can be used to measure accurate

statistics of a galaxy population (e.g. Cole et al., 2000).

These techniques can be extended beyond ΛCDM, for example with warm dark

matter (WDM). In a Universe with warm dark matter, with an elementary particle

mass of the order of a few keV, the non-negligible thermal velocities of the dark

matter particles at early times would allow the particles to free stream out of,

and erase, small density perturbations, while large density perturbations would be

unaffected (Bode et al., 2001). This results in the suppression of the formation of

small haloes on the scale of the Milky Way (MW) satellites (Lovell et al., 2012).

Constraints on the mass of the MW, and of the warm dark matter properties

can be made by comparing the results of WDM simulations with the number of

MW satellite galaxies. In order to make predictions with WDM, the Monte Carlo
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algorithm must be calibrated to reproduce the conditional mass functions of N-

body simulations (e.g. Benson et al., 2013).

In this chapter, we introduce the concept of halo merger trees, which is used in

Chapter 3 to build mock galaxy catalogues. As another application of merger trees,

we extend the methods to models of WDM, and show that constraints can be placed

on the WDM particle by comparing the number of satellite galaxies produced in the

merger tree to the observed number in the Milky Way. This chapter is organised

as follows: Section 2.2, gives an overview of N-body techniques in ΛCDM. We

describe the spherical collapse model, which motivates the halo mass definition

used in simulations, and describe methods for identifying haloes and building halo

merger trees, which is the first step towards making a mock catalogue. Section 2.3

describes a fast Monte Carlo method for generating merger trees from extended

Press-Schechter theory. Section 2.4 extends these methods beyond ΛCDM, for

sterile neutrino warm dark matter, calibrating the Monte Carlo merger trees to

N-body simulations. In Section 2.5, the sterile neutrino Monte Carlo merger trees

are applied to place constraints on the properties of the sterile neutrino and Milky

Way mass by comparing to the observed number of satellites around the Milky

Way. The conclusions are summarised in Section 2.6.

2.2 Halo merger trees in N-body simulations

2.2.1 N-body simulations

In an N-body simulation, the density field is represented by a set of discrete

particles. These particles are arranged with some initial conditions at a high red-

shift, and are subsequently evolved to z = 0 over many small time steps, where the

motion of each particle depends on the gravitational field due to the other particles

in the simulation. The motion of particles traces out the evolution of structure.

Simulations are typically done in comoving coordinates, which factors out the ex-
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2.2.1. N-body simulations

pansion of the Universe, keeping the size of the simulation box fixed. Since the real

Universe is filled with matter on scales larger than the box, simulating an isolated

box would be unsuitable. Periodic boundary conditions are typically used, where

if a particle moves beyond the boundary, it will reappear at the opposite end of

the box, and it is straightforward to generate periodic initial conditions.

In a particle-particle (PP) code, the force on each particle due to the other

N − 1 particles in the simulation is calculated directly at each time step (Hockney

& Eastwood, 1988). However, this calculation scales as N2, which is highly inef-

ficient. More efficient methods have been developed to enable simulations with as

many particles as possible. The particle-mesh (PM) technique involves first calcu-

lating the density field on a grid, which is interpolated to determine the force on

each particle (Efstathiou et al., 1985). While this is more efficient, as fast Fourier

techniques can be used to calculate the potential and the force, it is affected by the

resolution of the grid on small scales. The particle-particle-particle-mesh (P3M)

scheme overcomes this by combining the PP and PM methods. The force is calcu-

lated directly for particles in neighbouring grid cells, but uses the grid for particles

in more distant cells. However, this can be slow if the PP component dominates

the calculation (Hockney & Eastwood, 1988). Adaptive grid techniques alleviate

this by increasing the resolution of the grid in the highest density regions. Forces

can also be calculated using tree codes, which involve organising the particles in a

tree structure (e.g. Barnes & Hut, 1986; Hernquist et al., 1991). gadget (Springel

et al., 2001b; Springel, 2005) is a commonly used and highly parallel code, which

implements a mesh on large scales, with a tree at intermediate scales, and PP on

small scales.

As the separation between two particles xi − xj → 0, the force between those

particles F → ∞. This leads to particles being spuriously scattered by large

angles, when in reality the particles should be collisionless, since each of the N-

body particles represents a huge number of dark matter particles. This can be

mitigated by force softening, which reduces the force at sufficiently small separa-
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2.2.1. N-body simulations

tions. For example, the net force acting on particle i with mass mi in a system of

N particles could be softened as

Fi = −
N∑
i 6=j

Gmimj(xi − xj)
(|xi − xj |2 + ε2)3/2 , (2.1)

where the parameter ε sets the separation at which the force is softened.

Simulation initial conditions are set by first generating a random density field.

This is a Gaussian random field, which is generated using the initial power spec-

trum. The real and imaginary component of each mode is drawn from a Gaussian

distribution with variance set by the power spectrum, and each mode has a random

phase (Efstathiou et al., 1985). Particles are arranged in the simulation volume

either on a grid, or with a glass configuration (White, 1994). First or second order

Lagrangian perturbation theory (e.g. Jenkins, 2010) uses the density field to calcu-

late a corresponding displacement for each particle from this initial position, and

to also assign particle velocities.

N-body simulations are limited by computational resources, which means that

there is a balance between the box size of the simulation, and the resolution. If

the total number of particles is kept constant, then the box size also specifies

the particle mass, in order to achieve the correct mean density of the simulated

Universe. Very high resolution simulations have limited box sizes, while very large

cosmological simulations have limited resolution.

The simplest N-body simulations are dark-matter-only, containing collisionless

matter. The Millennium simulation (Springel et al., 2005) simulated 21603 particles

(mp = 8.6 × 108h−1M�) in a cubic box of length 500 h−1Mpc. The subsequent

Millennium II simulation (Boylan-Kolchin et al., 2009) had the same number of

particles, but in a smaller box of size 100 h−1Mpc, with particles masses mp =

6.9×106h−1M�. The Millennium-XXL simulation (MXXL) (Angulo et al., 2012b)

simulated 67203 particles a box size of 3 h−1Gpc with mp = 6.2× 109h−1M�.

Simulations can be extended to include baryoninc physics, and star formation

(e.g. Genel et al., 2014; Schaye et al., 2015). These simulations are strongly affected
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2.2.2. The spherical collapse model

by the assumptions made in the subgrid physics models, which model physical pro-

cesses, such as star formation and feedback, which are not resolved in the simulation

(Schaye et al., 2015).

Zoom simulations, such as the Aquarius project (Springel et al., 2008), simulate

a single halo at high resolution, but at large distances from the halo, use increasing

lower resolution particles in order to capture the tidal field that affects the region

of interest.

Mock catalogues for large galaxy surveys require simulations with a very large

volume, so typically it is only feasible to do a dark matter only simulation, which

is populated with galaxies later. At each simulation snapshot, positions, velocities

and other information for each individual particle is output. From this particle

data, dark matter haloes must first be identified, and then matched between snap-

shots to build a halo merger tree. Methods for identifying haloes and defining their

mass are motivated by the spherical collapse model.

2.2.2 The spherical collapse model

In general, it is difficult to model the non-linear growth of structure analytically.

However, the formation of dark matter haloes can be simplified by considering the

process as the collapse of a spherical overdensity.

In a Universe with Λ = 0, the evolution of a spherical overdensity can be

described using Newtonian physics (e.g. Mo et al., 2010),

r̈ = −GM
r2 , (2.2)

where r is the radius of the sphere, and M is the enclosed mass. This equation can

be integrated to give
1
2 ṙ

2 − GM

r
= E. (2.3)
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2.2.2. The spherical collapse model

For E < 0, the system is bound, and the solution can be written parametrically as

r = A(1− cos θ)

t = B(θ − sin θ). (2.4)

These equations can be Taylor expanded, and r(t) for small t can be written as

r(t) = A

2

(6t
B

)2/3
[
1− 1

20

(6t
B

)2/3
+ · · ·

]
, (2.5)

and the overdensity within the sphere is

δ(t) ≈ 3
20

(6t
B

)2/3
. (2.6)

Initially, the sphere grows as the Universe expands, but the rate at which it

grows slows, due to the overdensity enclosed within the sphere. At turnaround,

the sphere reaches its maximum size, then begins to collapse. This happens when

θ = π. The radius of the sphere gets smaller as it collapses, until it has collapsed

down to a point when θ = 2π. At the collapse time, t = 2πB, and hence from

Eq. 2.6, the extrapolated linear overdensity is δc = (3/20)(12π)2/3 ≈ 1.69.

In the real Universe, the sphere would never collapse to a point, but would

reach virial equilibrium, where the kinetic energy, K, and potential energy, V , are

related through V = −2K. The collapsing sphere reaches virial equilibrium when

it has collapsed by a factor of 2 from its maximum size at turnaround, so the radius

is r = A. At the collapse time (t = 2πB), the true density enhancement of the

sphere with respect to the background density is therefore [(A/2)(6t/B)2/3]3r−3 =

18π2 ≈ 178.

In linear theory, when a region reaches an overdensity of δc = 1.69 at some

redshift z, it can be assumed that full non-linear collapse has occurred at this

redshift. In an N-body simulation, the true collapse overdensity of ∼ 200 can be

used to identify virialized dark matter haloes. It was shown in Cole & Lacey (1996)

that this overdensity is able to accurately separate the halo from the surrounding

infalling material. These values are derived assuming a flat Einstein-de Sitter
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2.2.3. Identifying haloes in N-body simulations

cosmological model, with no cosmological model. If a cosmological constant is

introduced, the value of the density threshold does change, but only by a small

amount (Eke et al., 1996).

2.2.3 Identifying haloes in N-body simulations

An N-body simulation typically outputs the particle data, which includes particle

positions and velocities, at several epochs, or snapshots. This particle data can

be used to build halo catalogues. There are several commonly used algorithms for

building halo catalogues from the particle information.

The friends-of-friends (FOF) algorithm (Davis et al., 1985) is a commonly used

halo finder that defines each dark matter halo as the set of particles separated by

a linking length b, which is units of the mean interparticle separation. Typically,

a value of b = 0.2 is chosen, since this corresponds to an average overdensity close

to the value of δ ∼ 200 predicted from spherical collapse. The FOF algorithm has

the advantages that it is simple, and makes no assumptions about the shape of

haloes. However, it is unable to detect substructures within large haloes. Unbound

particles that happen to be moving near a halo will be identified as being part of

the halo. Nearby large structures can be linked together by a tenuous bridge of

particles, even though they are clearly separate haloes.

The subfind algorithm (Springel et al., 2001a) identifies gravitationally bound

structures, and is able to find arbitrary levels of substructure within substructure.

The starting point is with a catalogue of haloes identified using the FOF algorithm.

Within each FOF group, the sets of particles that belong to each locally overdense

region are identified as subhalo candidates. Unbound particles are removed, and if

there are more than 20 bound particles remaining, this is identified as a subhalo.

Each particle can only be assigned to a single subhalo, so to ensure arbitrary levels

of substructure can be found, the process begins with the largest subhalo, working

towards smaller and smaller subhaloes. A typical FOF group will be decomposed
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2.2.3. Identifying haloes in N-body simulations

by subfind into the most massive ‘main’ subhalo, which is surrounded by much

smaller subhaloes. A few percent of the particles form a ‘fuzz’ of unbound particles

which are identified as being part of the FOF group, but are not part of any subhalo.

The decomposition of a FOF group into subfind subhaloes is illustrated in Fig. 2.1.

However, subfind has the issue that it can fail to detect small subhaloes if they

are close to the centre of large haloes, where the background density is high.

There are several ways in which the mass of a halo can be defined. One definition

is to just take the sum of the masses of all the particles that are identified as part of

the halo. Alternatively, the virial mass, motivated by the spherical collapse model,

can be defined as M200. This is the mass enclosed by a sphere, centred on the

halo, in which the average density is 200 times the critical or average density of

the Universe, i.e. M∆ = (4/3)πR3
∆∆ρ̄, with ∆ = 200. Here the density, ρ̄, can be

either the critical density, ρcrit, or the mean density ρmean = Ωmρcrit.

The FOF and subfind algorithms have been used to identify haloes in the

Millennium and MXXL simulations. However, many other halo finders have been

developed. For example, the rockstar algorithm (Robust Overdensity Calcula-

tion using K-Space Topologically Adaptive Refinement) (Behroozi et al., 2013a),

finds FOF groups in 6 dimensional phase space, adaptively reducing the linking

length to find FOF groups within FOF groups, in order to up a hierarchy of sub-

structure. Particles are then assigned to haloes, starting at the deepest levels of

the hierarchy, and assigning the particles of the parent group to the halo of the

nearest subgroup in phase space. Finally, unbound particles are removed. Amiga’s

Halo Finder (ahf) (Knollmann & Knebe, 2009) identifies haloes by calculating the

density on a grid. If the particle density is higher than some threshold, the grid

is refined recursively, creating a hierarchy of densities. If, when moving to a finer

grid, a region splits into multiple regions, the region with the most particles is

the host halo, while the other regions are substructures. Particles are assigned to

haloes starting at the densest grid levels. If two haloes merge at a coarser level,

particles within a sphere of radius half the distance to the host halo are assigned
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2.2.3. Identifying haloes in N-body simulations

Figure 2.1: Example of the subfind subhaloes identified within a FOF group. All

particles belonging to the FOF group are shown in the upper left panel. Particles

identified as being gravitationally bound to the main subhalo are shown in the

upper right panel. The smaller subhaloes identified by subfind are shown in the

lower left panel. The lower right panel shows the remaining ‘fuzz’ of particles that

are part of the FOF group, but not bound to any of the subhaloes. Coordinates

are in h−1kpc. Figure reproduced from Springel et al. (2001a).
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2.2.4. Halo merger trees

as belonging to this halo, and then unbound particles are removed. See e.g. Knebe

et al. (2013) for a comparison of halo finders.

2.2.4 Halo merger trees

A halo finder can be used to identify dark matter haloes at each simulation snap-

shot. However, haloes are also linked in time between snapshots. By finding the

descendant of each halo at the next simulation snapshot, a halo merger tree can be

built (e.g. Jiang et al., 2014).

A merger tree traces the evolution of each halo throughout the simulation. Each

halo will first appear at the snapshot at which it is first resolved. Each halo grows

in mass through the accretion of particles, and through mergers with other haloes.

The merger tree tracks the descendant of each halo, so if two haloes merge, they

will both have the same descendant halo at the next snapshot. In hierarchical

structure formation, a halo can only increase in mass. This is not strictly true in

an N-body simulation, as mass can be lost through stripping. Also, haloes should

not be able to fracture into smaller haloes, but this is possible, e.g. if two FOF

groups are tenuously linked together at one snapshot.

A merger tree is illustrated in Fig. 2.2, which shows the merger history of the

progenitors of a final halo at snapshot s. Each circle represents a halo identified

at each snapshot, where the size of the circle is proportional to its mass, and the

arrows indicate the descendant of that halo at the next snapshot. The blue circles

indicate the main (i.e. most massive) progenitor. If two haloes have the same

descendant, this indicates that the haloes have merged between the two snapshots.

Haloes can also grow in mass due to accretion. Low mass haloes will appear in the

merger tree when they are massive enough to be resolved by the halo finder, and

do not have progenitors.

To build a merger tree from an N-body simulation, the descendant of a halo at

snapshot s needs to be identified at snapshot s+ 1. This can be done by matching
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particles. The halo at snapshot s + 1 that contains the highest number of bound

particles that are identified as being in the halo at snapshot s is identified as the

descendant halo. In the Millennium simulation, particles are given a weight, so

that the more tightly bound a particles is, the higher the weight is. In the MXXL

simulation, the descendant is the halo that contains the majority of the 15 most

bound particles. However, it is not always straightforward to identify a descendant.

Sometimes, haloes can be ‘lost’ at one snapshot, only to reappear at a later

snapshot. If a small satellite subhalo passes close to the centre of the host halo, then

it can fail to be identified by the subfind algorithm, since the background density

is very high. Small isolated groups can also briefly drop below the resolution limit.

The missing haloes can be filled in using methods such as Dhaloes (Jiang et al.,

2014), which searches for descendants over several snapshots, and the Consistent

Trees algorithm (Behroozi et al., 2013b), which uses the predicted evolution to add

in the missing haloes.

2.3 Monte Carlo merger trees

Halo merger trees can also be generated using a Monte Carlo method. The starting

point in this method is Press-Schechter theory (Press & Schechter, 1974).

The Press-Schechter formalism can be used to predict the halo mass function.

This assumes that the density field evolves linearly, and when an overdensity ex-

ceeds δ(x, t) > δc ≈ 1.69,1 it collapses to form a virialized halo. By smoothing the

density field with a window function, W (x;R), of radius R that corresponds to a

mass M , the collapsed regions can be assigned mass. Since the initial density field

is a Gaussian random field, the smoothed density field is also Gaussian. By cal-

culating the probability the smoothed density field exceeds δc, the Press-Schechter

mass function can be derived.
1Since δ(x, t) = δ0(x)D(t), whereD(t) is the linear growth rate, this condition can alternatively

be written as δ0(x) > δc(t), where δc(t) ≡ δc/D(t).
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Figure 2.2: Schematic of a halo merger tree. Circles represent haloes at each

snapshot, where the size of the circle is proportional to the halo mass. The arrows

point to the descendant of that halo at the next snapshot. The main progenitor is

coloured in blue.

The number density of bound objects with mass in the range M →M + dM is

given by

n(M, t)dM =
√

2
π

ρ̄

M2
δc(t)
σ(M) exp

(
− δc(t)

2σ2(M)

) ∣∣∣∣d ln σ(M)
d lnM

∣∣∣∣ dM, (2.7)

where ρ̄ is the mean density of the Universe, and

σ2(M) = 1
2π2

∫ ∞
0

k2P (k)W 2(k;M)dk, (2.8)

is the mass variance of the smoothed density field with power spectrum P (k).

W (k;M) is the Fourier transform of the window function, which is a spherical top

hat function in real space.

In linear theory, only initially overdense regions can collapse into virialized

structures, so half of the mass of the Universe would never collapse into haloes.
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However, an underdense region can be nested within a larger overdensity, so there

is a non-zero probability for the matter to collapse. Press & Schechter accounted

for this by introducing an arbitrary factor of 2 into the normalisation of their mass

function. This also led to the development of extended Press-Schechter theory

(EPS) in which the factor of 2 arose naturally (Bond et al., 1991; Bower, 1991).

The conditional mass function in EPS theory is

f(M1|M2)d lnM1 =
√

2
π

σ2
1(δ1 − δ2)

(σ2
1 − σ2

2)3/2 exp
(
− (δ1 − δ2)2

2(σ2
1 − σ2

2)

) ∣∣∣∣ d ln σ1
d lnM1

∣∣∣∣ d lnM1. (2.9)

This is the fraction of mass in a halo of mass M2 at redshift z2 that was originally

in haloes of mass M1 at the earlier redshift z1. δ1 = δc(z = z1) and δ2 = δc(z = z2)

are the linear theory critical density thresholds evaluated at z1 and z2. σ1 and σ2

is the variance of the smoothed density field (Eq. 2.8) evaluated at z1 and z2.

Following Cole et al. (2000) and taking the limit of Eq. 2.9 as z1 → z2 gives1

df

dz1

∣∣∣∣
z1=z2

d lnM1dz1 =
√

2
π

σ2
1

(σ2
1 − σ2

2)3/2
dδ1
dz1

∣∣∣∣ d ln σ1
d lnM1

∣∣∣∣ d lnM1dz1, (2.10)

which is the average fraction of mass of a halo of mass M2 that is in haloes of

mass M1 a small redshift step, dz1, earlier. This can be used to estimate the mean

number of haloes of mass M1 that will merge to form a halo of mass M2 in the

interval dz1, which is given by2

dN

dM1
= 1
M1

df

dz1

M2
M1

dz1. (2.11)

This can be integrated to find the mean number of progenitors above some mass

resolution Mres (in the interval Mres < M1 < M2/2),

P =
∫ M2/2

Mres

dN

dM1
dM1, (2.12)

and also the fraction of mass that lies below the resolution limit,

F =
∫ Mres

0

dN

dM1

M1
M2

dM1. (2.13)
1In the limit z1 → z2, δ1 − δ2 → dδ1, and dδ2

1 is negligible.
2The fraction of mass in haloes of mass M2 that was previously in haloes of mass M1 can be

converted to the number of haloes of massM1 by multiplying byM2/M1. Multiplying the fraction
by M2 gives the total mass in haloes of mass M1, and dividing by M1 gives the number of haloes.
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The Monte Carlo algorithm (Cole et al., 2000) is outlined below, which starts

with the final halo, and works backwards in time over many small time steps to

randomly split the halo into progenitors, building up a merger tree.

• The mass of the final halo, M2, and the final redshift are both specified.

• The halo mass resolution limit, Mres is specified.

• A small redshift interval is chosen, so that P � 1. This makes it unlikely

that a halo will have more than 2 progenitors.

• A uniform random number R in the range 0 < R < 1 is chosen. If R > P , the

mass of the halo is reduced by toM2(1−F ), which accounts for mass accretion

of unresolved haloes. If R ≤ P , the halo is split into two progenitors. The

first progenitor is given a random mass M1 in the range Mres < M1 < M2/2,

while the other progenitor is given the mass M2(1− F )−M1.

• This process is repeated for each progenitor halo until a full merger tree has

been constructed.

However, when compared to merger trees produced by N-body simulations, this

method underestimates the mass of the most massive progenitors. To make the

method consistent with EPS theory, Parkinson et al. (2008) modify Eq. 2.11 by a

perturbing function,
dN

dM1
→ dN

dM1
G(σ1/σ2, δ2/σ2), (2.14)

which modifies the splitting rates, and modifies the mass distribution of the frag-

ments. G is chosen to be of the form

G(σ1/σ2, δ2/σ2) = G0

(
σ1
σ2

)γ1 ( δ1
σ2

)γ2

. (2.15)

The parameters G0, γ1 and γ2 are calibrated to reproduce the conditional mass

functions measured in N-body simulations.
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2.4 Merger trees with warm dark matter

2.4.1 Sterile neutrino WDM

The identity of the weakly interacting particle that makes up dark matter is cur-

rently unknown. In the ΛCDM model, particle candidates include the lightest

supersymmetric particle (Ellis et al., 1984), which would have a mass of the order

of GeV.

Another dark matter particle candidate well motivated by particle physics is

the sterile neutrino (e.g. Dodelson & Widrow, 1994; Shi & Fuller, 1999; Asaka &

Shaposhnikov, 2005). This would have a much smaller mass, of the order of keV,

bringing it into the regime of warm dark matter (WDM). In a WDM universe, the

DM particles would have non-negligible thermal velocities at early times, allow-

ing them to free stream out of small density perturbations, and suppressing the

formation of low mass haloes.

On large scales, CDM and WDM are indistinguishable. However, differences

will become apparent on the scale of dwarf galaxies. At these smaller scales, there

is some disagreement between the results of CDM simulations, and observations.

For example, simulations of Milky Way (MW) sized haloes produce far more subha-

loes than the number of observed satellites around the MW (Moore et al., 1999;

Diemand et al., 2005; Springel et al., 2005). WDM is often motivated as a solution

to this problem, due to the suppressed formation of low mass haloes (e.g. Lovell

et al., 2012). However, the disagreements between simulations and observations

can be resolved by introducing baryons, and the formation of galaxies in small

haloes is suppressed due to reionization and feedback (Sawala et al., 2016).

The addition of a triplet of right-handed sterile neutrinos to the standard model

of particle physics would explain neutrino masses and baryogenesis (Asaka & Sha-

poshnikov, 2005), the lightest of which would have a mass of the order of keV. The

properties of this sterile neutrino are determined by its mass, the mixing angle,
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and the lepton asymmetry, L6, which is given by

L6 = 106 (nνe − nν̄e)
s

, (2.16)

where nνe and nν̄e are the number densities of electron neutrinos and antineutrinos,

and s is the entropy density. For a given mass, there is a relationship between the

mixing angle and L6, and we will use L6 as the free parameter. In addition to

a thermal production mechanism (Dodelson & Widrow, 1994), the presence of a

lepton asymmetry will boost the production of sterile neutrinos resonantly, below

some momentum threshold (Shi & Fuller, 1999; Asaka & Shaposhnikov, 2005).

The momentum distribution is shown in Fig. 2.3 for a 7 keV sterile neutrino with

the value of L6 varied. When L6 = 0, there is no resonant production. As L6

increases, the resonant production causes the distribution to peak at low momenta.

The position of this peak moves to higher momenta with increasing L6, until at

very high values of L6, where the production at all momenta is enhanced, and the

distribution looks like that for non-resonant production.

In WDM, the power spectrum, P (k) has a cutoff at large k (which corresponds

to small physical scales, where the formation of structure is suppressed). The power

spectrum can be written as

PWDM(k) = T 2
WDM(k)PCDM(k), (2.17)

where PCDM(k) is the cold dark matter linear power spectrum, and TWDM(k) is a

transfer function, describing the damping introduced by the WDM particle. For

a thermal relic WDM particle, the transfer function has the form of Bode et al.

(2001),

T (k) = [1 + (αk)2ν ]−5/ν , (2.18)

where ν = 1.12 (Viel et al., 2005), and α is related to the WDM particle mass,

α = 0.049
(ΩDM

0.25

)0.11 ( h

0.7

)1.22 ( keV
Mth

)1.11
h−1Mpc, (2.19)

where ΩDM is the dark matter density parameter, and Mth is the mass of the

thermal relic WDM particle, in keV. The mass of the sterile neutrino (with no
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Figure 2.3: Momentum distribution for a 7 keV sterile neutrino with different

values of L6 (coloured lines). The solid black curve is for a thermal relic WDM

particle with mass 1.4 keV, while the dot-dashed curve is for a thermal relic with

the same temperature as the sterile neutrino, scaled by 102. Figure reproduced

from Lovell et al. (2016)

resonant production), with the power spectrum cutoff at the same position as the

thermal relic, is (from Viel et al., 2005)

Ms = 4.43
(
Mth
keV

)4/3
(

0.72 × 0.25
h2ΩDM

)1/3

keV. (2.20)

The power spectrum of a 7 keV sterile neutrino is shown in Fig. 2.4. The

WDM models all show a cutoff at large k, compared to the CDM power spectrum,

which continues to rise to small scales. The dependence of the cutoff on L6 shows

non-monotonic behaviour, as with the momentum distribution. When L6 = 0, the

shape of the cutoff looks like a thermal relic. With increasing L6, the resonant
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Figure 2.4: Power spectrum of a 7 keV sterile neutrino with different values of

L6 (coloured lines), which have a cutoff at large k. For comparison, the solid

black curve shows the CDM power spectrum, while the dashed black curve is for

a thermal relic of mass 1.4 keV, which has a cutoff at a position which is close to

the sterile neutrino. Figure reproduced from Lovell et al. (2016).

production causes the WDM to become colder, and then warmer again, shifting

the cutoff initially to higher k, then back to lower k.

Recently, observations have been made of an unidentified 3.5 keV feature in the

X-ray spectra of galaxy clusters (Bulbul et al., 2014; Boyarsky et al., 2014). The

feature has also been seen in the Milky Way (Boyarsky et al., 2015), the Andromeda

galaxy (Boyarsky et al., 2014), and also in the cosmic X-ray background (Cappelluti

et al., 2018). This could potentially be explained as an emission line produced by

the decay of a ∼ 7 keV sterile neutrino. The line has subsequently been detected

in other galaxies (e.g. Neronov et al., 2016; Perez et al., 2017), and galaxy clusters
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(e.g. Urban et al., 2015; Franse et al., 2016). However, other works have failed to

detect the line (e.g. Anderson et al., 2015; Figueroa-Feliciano et al., 2015; Riemer-

Sørensen et al., 2015).

Since the line has been observed in many objects, it is unlikely to be a statistical

fluctuation. It is also unlikely to be due to instrumental systematics, since the line

has been detected independently with several different instruments. The feature

could also be due to atomic transitions, such as the potassium K XVIII lines (e.g.

Jeltema & Profumo, 2015, 2016). Observations from Hitomi (Aharonian et al.,

2017) did not find any atomic lines at 3.5 keV, but these observations were brief.

More observations will be needed to understand the origin of the 3.5 keV line.

Recent results from the MiniBooNE experiment at Fermilab hint at the possible

detection of a sterile neutrino, but this sterile neutrino would be too light to make

up the bulk of the dark matter (MiniBooNE Collaboration et al., 2018).

2.4.2 N-body simulations with WDM

N-body simulations can be extended from CDM to WDM by changing the power

spectrum that is used to set up the initial conditions. In a WDM simulation, the

power spectrum of the relevant WDM model is used, which has a cutoff at high k.

The particles in a WDM simulation should also initially have thermal velocities,

which are negligible in the case of CDM. However, at a typical simulation resolution,

these velocities are still negligible, so do not need to be included (Lovell et al., 2012;

Shao et al., 2013; Leo et al., 2018).

An issue that affects WDM simulations is that filaments spuriously fragment

into many small haloes. The size, and number of these spurious haloes depends

on the resolution of the simulation; with increasing resolution, the mass of the

spurious haloes decreases, but the total number increases. Wang & White (2007)

found that the mass at which the spurious haloes appear in abundance scales as

m
1/3
p k2

peak, where mp is the simulation particle mass, and kpeak is the wavenumber
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at which k3P (k) reaches a maximum. Increasing the resolution to remove the

spurious haloes is infeasible, as the mass of the spurious haloes scales very slowly

with resolution; decreasing the particle mass by a factor of 8 only halves the mass of

the spurious haloes. When particles are traced back to their positions in the initial

conditions (or protohaloes), genuine haloes originate from spheroidal protohaloes,

whereas the protohaloes of the spurious haloes have very flattened geometries.

A method for removing these spurious haloes is outlined in Lovell et al. (2014).

This method uses the fact that the spurious haloes originate from protohaloes with

very low sphericities1, and do not have a match between low and high resolution

simulations. This can be used to define cuts in sphericity and mass to remove the

spurious haloes. Schneider et al. (2013) remove spurious haloes from measurements

of the mass function by fitting a power law at the low mass end, where the spurious

haloes dominate, and subtracting this. Hobbs et al. (2016) describe a method

which uses adaptive softening, in which cells are only refined if they are undergoing

collapse along all 3 axes to suppress the formation of these spurious haloes.

2.4.3 Monte Carlo merger trees with WDM

The Monte Carlo method, described in Section 2.3, can be extended to WDM by

adding a cutoff to the power spectrum P (k). The power spectrum is needed to

calculate σ(M), the rms density fluctuation, which is defined in Eq 2.8, where

W (k;M) is a window function which, in the standard EPS method, is chosen to

be a top hat in real space. In Fourier space, this window function has the form

W (k;M) = 3(sin(kR)− kR cos(kR))
(kR)3 , (2.21)

where the mass,M , and filtering scale, R, are unambiguously related throughM =
4
3πρ̄R

3. Decreasing the mass of the window function has the effect of reweighting

large k modes. This means that if the power spectrum has a sharp cutoff, σ(M)
1The sphericity, s, is defined as s = c/a, where a is the length of the largest axis, and c is the

smallest axis. For a sphere, c = a, so s = 1. For a very flattened pancake-like structure, c� a, so
s is close to 0.
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2.4.3. Monte Carlo merger trees with WDM

will continue to increase with decreasing M , even though no new modes enter the

filter. An alternative to the real space top hat is a sharp k-space filter. With this

choice, the flattening of σ(M) is set entirely by the sharpness of the power spectrum

cutoff. However, this raises the problem that it is no longer clear how to relate the

mass to the filtering scale. On dimensional grounds M ∝ k−3
cut, and to maintain

the usual relation between mass and radius we can write MSK = 4
3πρ̄R

3
SK, with

RSK = a/kcut, where a is a constant which needs to be determined. By integrating

the mean density under the window function and setting this equal to the required

mass, Lacey & Cole (1993) find a value of a = (9π/2)1/3 ≈ 2.42. Benson et al.

(2013) and Schneider et al. (2013) match their results to N-body simulations, and

find values of a = 2.5 and 2.7, respectively.

The use of a sharp k-space filter has been shown to be a suitable approach for

the Viel et al. (2005) transfer function (Benson et al., 2013), which has a cutoff that

is sharper than many of the sterile neutrino models. To check that the method is

still valid for shallower sterile neutrino dark matter cutoffs it is necessary to check

the calibration against N-body simulations.

To this end, we identified which of our set of sterile neutrino matter power

spectra has the shallowest cutoff – Ms = 3keV and L6 = 14, hereafter M3L14 –

and used this as the input transfer function for re-runs of four of the Aquarius

Project Milky Way dark matter haloes: Aq-A, Aq-B, Aq-C, and Aq-D (Sprin-

gel et al., 2008). These were run at Aquarius resolution level 3 (softening length

120.5 pc, particle mass 5.6×104, 2.5×104, 5.4×104, and 5.4×104M�, respectively)

with the p-gadget3 code; the cosmological parameters match the 7-year Wilkin-

son Microwave Anisotropy Probe constraints (WMAP-7; Komatsu et al., 2011).

Haloes and subhaloes were identified using the gravitational potential unbinding

code, subfind (Springel et al., 2001a). Spurious subhaloes – those subhaloes that

form by spurious fragmentation of filaments – were identified and removed from the

catalogues using the Lagrangian region shape and maximum mass criteria of Lovell

et al. (2014). We then compare the conditional mass functions of these simulations
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with those derived from the EPS method. For a halo of mass M2 at z2 = 0, the

conditional mass function gives the fraction of mass contained within progenitor

haloes of mass M1 at some earlier redshift z1. We plot the conditional mass func-

tions at z1 = 1 in Fig. 2.5, for haloes with a final mass ofM2 ∼ 1.5×1012h−1M�. In

the top panel we compare the rms density fluctuations of the M3L14 matter power

spectrum with those of CDM and also three Viel et al. (2005) thermal relic power

spectra with transfer function parameters α = 0.0199, 0.0236, and 0.0340 h−1Mpc,

which correspond to thermal relic masses Mth = 2.3, 2.0, and 1.5 keV, respectively

(Lovell et al., 2014). These were calculated using a sharp k-space filter with a = 2.7.

The M3L14 model has a different behaviour than the thermal relic models, in that

the curve peels away from CDM at the same mass scale as the α = 0.0236 model

but has a slightly shallower slope for large masses. Compared to the α = 0.0236

thermal relic, σ has a lower amplitude at intermediate mass scales but a higher

amplitude for M < 109h−1M�. This change is reflected in the z1 = 1 conditional

mass functions, which are shown in the lower panels. The middle panel compares

the conditional mass functions to the average of the four sterile neutrino Aquarius

haloes, while the lower panel shows, for each WDM model, the conditional mass

function of the Aq-A halo. ForM & 109h−1M�, M3L14 produces a similar number

of haloes as the α = 0.0236 thermal relic model, but below this mass the rate of

decrease is much shallower such that at M ∼ 108h−1M�, M3L14 has a greater

abundance of haloes than even the α = 0.0199 thermal relic model. In spite of

this change, there is still good agreement between the number of substructures

predicted by the EPS method and the number measured in the cleaned simulation

halo catalogues. We choose a value of a = 2.7 as this produces the best agreement,

but the effect of varying a is small.
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2.5 Milky Way satellite galaxies with sterile neutrino

WDM

The modified Monte Carlo method, described in Section 2.4.3, which is calibrated

to reproduce the conditional mass functions of WDM N-body simulations, is used

in Lovell et al. (2016) to generate many merger trees for Milky Way (MW) sized

haloes with sterile neutrino WDM. A semi-analytic model is used to predict the

number of satellite galaxies around MWmass haloes. By comparing with the actual

observed number of MW satellites, constraints can be placed on the properties of

the sterile neutrino, and also on the mass of the MW.

The Gonzalez-Perez et al. (2014) version of the galform semi-analytic model

(Cole et al., 2000) is applied to the halo merger trees with different values of the

MW halo mass, Mh, sterile neutrino mass, Ms, and lepton asymmetry, L6. The

method of Kennedy et al. (2014) is used to rule out combinations of these three

parameters that are unable to produce the observed number of MW satellites.

Fig. 2.6 shows the constraints in theMh-Ms plane for different values of L6. For

a given value of L6, the area to the lower-left of the curve is ruled out, as these values

of Mh and Ms are unable to produce enough satellite galaxies in the semi-analytic

model to be able to account for the observed number of satellites, while the area

to the upper-right is allowed. The curves show the same non-monotonic behaviour

with L6 as described previously. Additional constraints on the sterile neutrino

properties can be placed from measurements of the MW halo mass. There is still

some uncertainty in the MW halo mass (e.g. as is summarised in figure 1 of Wang

et al., 2015), but most measurements are in the range 5×1011 < Mh < 2×1012 M�.

For a 7 keV sterile neutrino, the minimum halo mass ofMh ∼ 1.5×1012 M�, which

is well within the range of mass estimates, occurs at L6 ∼ 8.

Note that these results are very much dependent on the semi-analytic model,

as was explored in Kennedy et al. (2014) for a thermal relic WDM particle. While
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2.5. Milky Way satellite galaxies with sterile neutrino WDM

Figure 2.6: Minimum Milky Way halo mass, Mh, needed to produce the number

of observed MW satellites as a function of sterile neutrino mass, Ms, for different

values of L6, as indicated by the legend. Empty triangles indicate combinations

of Ms and L6 that are ruled out by X-ray non-detections (Boyarsky et al., 2014),

while filled circles are not ruled out. The black dashed line indicates the constraints

from a thermal relic WDM particle, and the horizontal dotted line is the constraint

from CDM. Figure reproduced from Lovell et al. (2016).

the general trends will remain unchanged if the parameters of the model are varied,

the exact quantitative values will change.
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2.6 Conclusions

Dark matter halo merger trees are the first step towards creating mock galaxy

catalogues. These are typically constructed from an N-body simulation, which

trace the non-linear formation of structure by evolving a set of particles over many

small time steps from some initial conditions at high redshift, to z = 0. N-body

simulations are able to reproduce the cosmic web of structure that is seen in the real

Universe. In order to build up a halo merger tree, which traces the merger history

of progenitor haloes at each simulation snapshot, haloes must first be identified at

each snapshot, using an algorithm such as FOF or subfind, and then by matching

particles between snapshots, the descendant of each halo can be identified.

Halo merger trees can also be generated using a Monte Carlo algorithm. This

has the disadvantage that it does not contain spatial information for haloes, but

the algorithm is very fast, and can be run efficiently many times in order to build

up accurate galaxy statistics when combined with a semi-analytic model, such as

galform. The algorithm begins with the final halo at z = 0, and works backwards

in time, using extended Press-Schechter theory to calculate the probability that the

halo will be split into two progenitors.

These methods can be extended from CDM toWDM, where the power spectrum

has a cutoff at large k. The WDM power spectrum is used to set the initial

conditions of the N-body simulation, and spurious haloes need to be removed.

The Monte Carlo method must use a sharp k-space filter when calculating σ(M),

because of the cutoff in the power spectrum, and is calibrated to reproduce the

conditional mass functions of N-body simulations.

The sterile neutrino is a WDM particle candidate that is motivated by particle

physics as it would explain neutrino masses and baryogenesis. Recent observations

of a 3.5 keV line in galaxies and galaxy clusters could potentially be explained

as the decay of a 7 keV sterile neutrino. As an application of the WDM Monte
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Carlo method for creating merger trees, Lovell et al. (2016) use the number of

galaxies around the Milky Way to place constraints on the properties of the sterile

neutrino, and mass of the MW. For a 7 keV sterile neutrino with lepton asymmetry

L6 ∼ 10, the minimum halo mass required to reproduce the number of observed

MW satellites is ∼ 1.5× 1012 M�, which is consistent with other measurements of

the mass of the MW halo. However, these results are affected by the parameters

used in the semi-analytic model.

My contribution to Lovell et al. (2016) was to check the calibration of the WDM

Monte Carlo merger trees against N-body simulations by computing the conditional

mass functions shown in Fig. 2.5.
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Chapter 3

A lightcone catalogue from the

Millennium-XXL simulation

3.1 Introduction

Upcoming galaxy surveys, such as the Dark Energy Spectroscopic Instrument

(DESI) survey (DESI Collaboration et al., 2016a,b) and Euclid (Laureijs et al.,

2011), aim to measure the expansion history of the Universe and the growth of

cosmic structures. Measurements of galaxy clustering, redshift space distortions

and weak lensing will test general relativity, constrain theories of dark energy, and

give us precise cosmological constraints.

In order to reach the high precision required to meet these aims, it is necessary

to understand and quantify the systematic uncertainties in measurements from

surveys, which requires the use of accurate mock catalogues (Baugh, 2008). Since

a mock catalogue has a known cosmology and the ‘true’ value of a statistic can be

measured directly, they can be used to develop and test the analysis tools which

will be used on real observations.

Mocks are also required to test observational strategies and quantify the res-

ultant levels of sample incompleteness. It is often not possible to assign a fibre

to every galaxy due to mechanical constraints on fibre positioning (e.g. Hawkins
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et al., 2003; Guo et al., 2012; Hahn et al., 2017; Burden et al., 2017; Pinol et al.,

2017) and even if a fibre is assigned, a redshift measurement can fail if the galaxy

has weak emission lines or low surface brightness. This incompleteness may have a

significant effect on clustering measurements, and therefore in order to make pre-

cise baryon acoustic oscillation (BAO) and redshift space distortion measurements,

it is important that this incompleteness is well understood, and that methods are

developed and tested in order to mitigate these effects on the measured cluster-

ing. The differences in the clustering statistics expected in viable models is small,

making it essential that systematics like these are understood.

Mock catalogues which have realistic galaxy clustering can be created from cos-

mological simulations. In order to see the BAO peak in clustering measurements,

at a scale of the order of 100 h−1Mpc, these simulations need to have a very large

box size of the order of a few Gpc. Running a hydrodynamical simulation that has

both the large volume needed to model such scales, and the resolution to produce

faint galaxies down to the flux limit of the survey is infeasible, due to the large

computational expense. Dark matter only simulations are much less expensive.

There are several schemes which can be used to populate haloes in a dark mat-

ter only simulation with galaxies. These include the halo occupation distribution

(HOD) (e.g. Peacock & Smith, 2000; Seljak, 2000; Scoccimarro et al., 2001; Ber-

lind & Weinberg, 2002; Kravtsov et al., 2004; Zheng et al., 2005), which describes

the probability a halo with mass M contains N galaxies with some property; the

closely related conditional luminosity function (CLF) (e.g. Yang et al., 2003), which

specifies the luminosity function of galaxies at each halo mass; subhalo abundance

matching (SHAM) (e.g. Vale & Ostriker, 2004; Conroy et al., 2006), which assumes

a correlation between halo or subhalo properties (e.g. mass or circular velocity),

and galaxy properties (e.g. luminosity or stellar mass); and semi-analytic models

(SAMs) (e.g. Baugh, 2006; Benson, 2010; Somerville & Davé, 2015), which uses

analytic prescriptions to model the formation and evolution of galaxies.

In order to apply a SAM to a simulation, high resolution merger trees are

46



3.1. Introduction

needed, and these are difficult to construct for large volume simulations. However,

there are approaches which can augment the resolution of the simulation merger

trees (e.g. de la Torre & Peacock, 2013; Angulo et al., 2014; Benson et al., 2016).

The SHAM prescription assigns galaxies to subhaloes, requiring a complete subhalo

catalogue. Since subhaloes are disrupted when they undergo mergers, this cata-

logue will only be complete for large subhaloes with thousands of particles, and so

a very high resolution simulation is needed to resolve the low mass subhaloes that

will be populated by faint galaxies. The HOD, on the other hand, can be applied

to a lower resolution simulation, since satellite galaxies can be placed around the

central galaxy following an analytic distribution, without knowledge of the subha-

loes. The HOD method can also be applied to simulations in which the underlying

cosmology has been rescaled (e.g. Angulo & White, 2010).

Ideally, these methods would be used to populate a halo lightcone that is the

direct output from a simulation. However, most simulations do not output light-

cones, but output snapshots at discrete times. Typically when a HOD method is

used, it is applied to a single snapshot. However, this means that the halo bias is

constant, and so the clustering of haloes does not evolve with redshift in the mock.

Multiple snapshots can be joined together to create a lightcone, but this leads to

discontinuities at the boundaries; the same halo could appear twice at either side

of the boundary, or not at all (e.g. Fosalba et al., 2015).

The standard abundance matching and HOD schemes do not incorporate evol-

ution. Attempts have been made to extend the abundance matching scheme, such

as Moster et al. (2013), which reproduces the observed stellar mass function at

different redshifts. There is currently no complete model for HOD evolution, as

this evolution would depend on the galaxy sample under consideration. Contreras

et al. (2017) use the HODs produced in SAMs to build a simple parametrisation

of the evolution of the HOD parameters.

Here, we describe a HOD method which we use to populate haloes over a

range of redshifts from the Millennium-XXL (MXXL) simulation with galaxies.
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We first create a halo lightcone catalogue from the simulation by interpolating the

positions of haloes between snapshots, which is then populated with galaxies using

HODs, reproducing the observed clustering from the Sloan Digital Sky Survey

(SDSS) (Abazajian et al., 2009) and the Galaxy and Mass Assembly (GAMA)

survey (Driver et al., 2009, 2011; Liske et al., 2015).

This chapter is organised as follows: in Section 3.2 we describe the MXXL

simulation and outline the method for generating the halo lightcone catalogue. In

Section 3.3, we describe the halo occupation distribution model, and our method

of evolving the HODs with redshift. In Section 3.4 we outline the method used

to populate the halo lightcone with galaxies, and the method used to assign each

galaxy a 0.1(g−r) colour. In Section 3.5, we give examples of potential applications

of the mock catalogue.

3.2 Halo lightcone catalogue

3.2.1 The MXXL simulation

The Millennium-XXL (MXXL) simulation (Angulo et al., 2012b) is a large dark-

matter only N-body simulation in the same family as the Millennium simulation

(Springel et al., 2005). The volume of MXXL is 216 times larger than Millennium,

with a box size of 3 h−1Gpc, and the particle mass is 6.17 × 109 h−1M�, with a

force softening of 13.7 kpc. MXXL adopts a ΛCDM cosmology with the same 1-

year Wilkinson Microwave Anisotropy Probe (WMAP-1) cosmological parameters

as the Millennium simulation, Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, h = 0.73, and

n = 1 (Spergel et al., 2003). The initial conditions were set at a starting redshift

of z = 63, and the simulation was evolved to z = 0 with 63 outputs. The large

volume of the simulation means that it can be used to study features such as baryon

acoustic oscillations (BAOs) and redshift space distortions with good statistics.
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3.2.2 Merger trees

We use the halo merger trees computed by Angulo et al. (2012b). Haloes were found

using a Friends-of-Friends (FOF) algorithm (Davis et al., 1985), and bound subha-

loes were identified using subfind (Springel et al., 2001a). Halo merger trees were

built by identifying the unique descendant of each subhalo at the subsequent snap-

shot. For each subhalo, the 15 most bound particles were found, and the subhalo

at the next snapshot which contains the greatest number of these particles was

defined as the descendant. In the case that two subhaloes contain equal numbers

of these particles, the subhalo with the greatest total binding energy was chosen

(Angulo et al., 2012a).

At each simulation snapshot, the subhalo merger trees are split over 3072 files.

Each file contains information (e.g. position, velocity) for a subset of the haloes

at that snapshot. The files also contain descendant information, i.e. in which file

the descendant halo at the next snapshot is located. However, for a halo at one

snapshot, its progenitors at the previous snapshot can be spread over many files,

making it necessary to read in the entire merger tree at once to make the halo

lightcone. To reduce the amount of memory required, we reorganise the merger

tree files such that FOF groups at z = 0 are randomly assigned to one of 3072 files,

and progenitor subhaloes are all placed in the same file as their z = 0 descendant.

This allows us to run the lightcone code independently on each of these new files.

3.2.3 Constructing the halo lightcone catalogue

The full sky halo lightcone catalogue is created using the standard interpolation

method (e.g. Merson et al., 2013, but applied to haloes rather than galaxies).

An observer is firstly placed randomly inside the MXXL box. If the observer

happened to be placed at the centre, haloes at the edge of the box would have a

redshift z ∼ 0.5; multiple periodic replications of the box must therefore be used

in order to construct a catalogue that goes to redshifts higher than this. This
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replication is done without any artificial rotation or translation in order to prevent

the introduction of discontinuities. The positions and velocities of each halo at

each snapshot are used to interpolate their trajectories through the simulation.

From the position and redshift of a halo at two adjacent snapshots, it can be

determined whether the halo crossed the observer’s lightcone; if it has, a binary

search algorithm is used to find the interpolated position (and velocity) at the

redshift where it crosses.

The halo occupation distribution method of creating the galaxy catalogue (Sec-

tion 3.3) assigns galaxies to FOF groups. Since the merger tree is defined for

subfind subhaloes, we need to infer the merger tree for the FOF haloes. To do

this, we make the assumption that the position (and velocity) of the main subhalo

(i.e. the most massive subhalo) in each FOF group is the same as that of the

FOF group itself. The descendant FOF group is then found from the descendant

of the main subhalo. To interpolate the position (and velocity) of each subhalo,

we use cubic interpolation (i.e. use a cubic polynomial to describe the path of the

halo in each dimension, using the positions and velocities at the previous and next

snapshot as boundary conditions).

We use a halo mass definition ofM200m (the mass enclosed by a sphere, centred

on the halo, in which the average density is 200 times the mean density of the

Universe), as stored in the MXXL output for each FOF group. Since the number

of galaxies in each halo depends on its mass, M200m must be interpolated between

snapshots. Below z = 2, the simulation snapshots are approximately spaced lin-

early with expansion factor. We use the descendant of the most massive subhalo

to find the descendant of each halo, and then interpolate linearly in mass between

snapshots, finding the mass at the redshift at which it crosses the lightcone. In

the case that two or more haloes merge between snapshots, the total mass of the

haloes is interpolated linearly, and each halo is assigned a constant fraction of the

total mass. If the halo is not the most massive progenitor, a random time between

snapshots is chosen for the merger to take place. If the halo crosses the observer’s
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3.2.3. Constructing the halo lightcone catalogue

lightcone after this time, the merger has happened, and the interpolated mass of

the halo is transferred to the most massive progenitor.

The mass function of the halo lightcone at low redshifts (z < 0.1) is shown in

Fig. 3.1 and compared to the Sheth & Tormen (1999) and Jenkins et al. (2001)

analytic mass functions. At high masses, the mass function of the lightcone cata-

logue is in reasonable agreement with Sheth & Tormen (1999) and Jenkins et al.

(2001), but there is a lower abundance of less massive haloes. This difference is

because haloes in the simulation are identified using a FOF algorithm, and not

a spherical overdensity (SO) finder. However, a SO mass is calculated for each

FOF halo (M200m). Any small overdensities close to a large FOF group would be

identified as part of the large FOF group, and therefore these would be missing

from the halo catalogue.

In order to add haloes to the catalogue that are below the MXXL mass resol-

ution (Section 3.2.5), and to evolve the HODs with redshift (Section 3.3.2), it is

useful to have a smooth function which is in close agreement with the actual mass

function of the catalogue. For this, we take a mass function with the same form

as Sheth & Tormen (1999), but refit the parameters to the MXXL mass function.

This fit is shown as the green curve in Fig. 3.1, which is in better agreement with

the MXXL mass function at low masses, and is close to the fit given in equation 2 of

Angulo et al. (2012b). The MXXL mass function peels away from this fit slightly

at masses close to the resolution limit, but is complete for masses greater than

∼ 1012 h−1M�.

The number density of haloes as a function of redshift in the halo lightcone

catalogue is shown in Fig. 3.2 for several mass thresholds. If halo masses are kept

fixed between snapshots, step features can be seen, since the mass function is being

kept frozen and will only change at the next snapshot. These features are most

apparent for the highest mass threshold, for which the number density decreases

more rapidly at high redshifts. Mass interpolation greatly reduces these features.

At low redshifts, the curves become noisy, due to the small volume in each redshift
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Figure 3.1: Mass function of the halo lightcone catalogue for z < 0.1 (black),

compared to the analytic mass function of Sheth & Tormen (1999) (red), Jenkins

et al. (2001) (blue), and our fit to the MXXL mass function (green), at the median

redshift z = 0.08. Halo masses are defined as M200m, and have been interpolated

linearly between simulation snapshots.

shell.

The large-scale real space correlation function of the lightcone catalogue for

FOF groups with massesM200m > 3×1012 h−1M� and z < 0.5 is shown in Fig. 3.3.

This redshift limit avoids structures being repeated due to periodic replication of

the box1. The BAO peak can be seen clearly in the clustering of haloes.
1Lightcones with a wide opening angle, or directed along the principle axes of the simulation,

that extend beyond z = 0.5 will contain repeated structures. This will result in clustering errors
being underestimated.
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of redshift for haloes with massM200m greater than several thresholds, as indicated

by the colour. Solid lines are where the halo mass has been kept frozen between

snapshots, and dashed lines are where the mass has been interpolated.

3.2.4 Caveats

The interpolation scheme uses the position and velocity of a halo at two snapshots

as boundary conditions in order to find the path the halo moved through in the

simulation. If two haloes merge together, there is not enough information to de-

termine when this occurs, so we assume they merge at a random time. If a new

halo forms, or drops below the resolution limit, we assume this happens exactly on

a snapshot.

To construct the merger trees, the descendant of a subhalo is defined as the

subhalo which contains the majority of its 15 most bound particles (Angulo et al.,

2012a). However, it is likely that some of the particles of the descendant subhalo
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Figure 3.3: Real space correlation function, scaled by r2, of the halo lightcone

catalogue for haloes with M200m > 3× 1012 h−1M� and z < 0.5. The blue shaded

area shows the error on the mean in the clustering, calculated from four quadrants

of the sky.

were not in its progenitor, and vice versa. All of these particles are used to calculate

the position and velocity of the subhalo, which can occasionally lead to jumps in

the position of a subhalo that are inconsistent with its velocity.

Sometimes, a halo can be lost by the halo finder at one snapshot, but is then

found again at a later snapshot. This can happen if a small halo passes very close

to a more massive halo at one snapshot; the subfind algorithm can fail to identify

the small halo as the algorithm finds that its particles are bound to the massive

halo. The MXXL merger trees we use do not make any attempt to add in these

haloes lost by subfind. However, since we use the most massive subhalo in a

FOF group to trace the FOF merger trees, and use M200m as the mass definition,
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3.2.5. Haloes below the mass resolution

our results should not be affected much by small subhaloes being lost by the halo

finder.

3.2.5 Haloes below the mass resolution

Populating the resolved haloes in the MXXL halo lightcone with galaxies will result

in incompleteness in a magnitude limited galaxy catalogue at low redshifts. This

is because intrinsically faint galaxies which are sufficiently close to the observer to

be bright enough to be included in the catalogue occupy haloes which fall below

the MXXL mass resolution. We use our fit to the MXXL halo mass function in

order to add these haloes into the lightcone catalogue, and position them randomly

in the catalogue so that they are unclustered. Other methods for augmenting the

halo catalogue exist (e.g. de la Torre & Peacock, 2013; Angulo et al., 2014; Benson

et al., 2016), but we find that this simple method is able to bring the dN/dz of

galaxies in the catalogue into better agreement with the measured dN/dz from

GAMA, while only having a very small effect on the measured clustering.

The redshift distribution of the haloes which need to be added to the lightcone

catalogue can be calculated from the integral,

dN

dz
=
∫ Mmax

Mmin(z)
nunres(M, z)dV

dz
dM, (3.1)

where nunres(M, z) is the number density of unresolved haloes, dV/dz is the co-

moving volume per unit redshift, Mmin(z) is the minimum halo mass that could

host a galaxy brighter than the faintest observable galaxy in the survey at that

redshift1, and Mmax = 1012h−1M� is the mass at which the MXXL mass function

is judged to be complete. If the survey is flux limited, then the faintest observable

galaxy at each redshift is set by an apparent magnitude threshold; for our mock

catalogue we set this threshold to r = 20, as this is the magnitude threshold for the
1The minimum halo mass that can host a galaxy brighter than r = 20, Mmin(z), can be

determined from the HODs we use to populate the lightcone. Firstly, the apparent magnitude limit
can be converted to an absolute magnitude at redshift z using the k-corrections of Section 3.4.3.
It can then be determined, from the HODs as a function of mass and redshift (Section 3.3), the
minimum mass required to host a central galaxy brighter than this magnitude.
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3.2.5. Haloes below the mass resolution

DESI Bright Galaxy Survey (BGS) (DESI Collaboration et al., 2016a). The num-

ber density of unresolved haloes is given by nunres(M, z) = nfit(M, z)− nres(M, z),

where nfit(M, z) is our fit to the number density of haloes in the lightcone, extra-

polated to low masses, and nres(M, z) is the number density of haloes resolved in

MXXL. We model the mass function of resolved haloes by multiplying the fit to

the mass function by a cutoff at the mass resolution limit ofM200m ∼ 1011 h−1M�,

nunres(M, z) = [1− cut(M, z)]nfit(M, z), (3.2)

where a good approximation to the cutoff is given by

cut(M, z) = 10(−z−2)(log10(M/h−1M�)−11)0.6
. (3.3)

In order to add unresolved haloes to the catalogue, we first randomly draw a

redshift for each unresolved halo from the dN/dz distribution defined in Eq. 3.1.

The mass of each halo is then randomly assigned using the mass distribution at

the redshift of the halo defined by nunres(M, z). The haloes are then randomly

positioned uniformly on the sky. Since the unresolved haloes are randomly posi-

tioned so that they are unclustered, redshift space distortions do not affect their

clustering, and so we set the velocity of each of these haloes to zero. A random

concentration is also assigned from the mass-concentration relation of MXXL (with

scatter), extrapolated to lower masses.

While the introduction of unclustered haloes only has a small effect on the two-

point correlation function, other statistics might also change, for example, density

estimators and void statistics. We have not checked the size of this effect, but the

final galaxy catalogue includes a flag which indicates whether a galaxy lives inside

one of these haloes, enabling these galaxies to be removed when calculating other

statistics.
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3.3 Halo occupation distribution

Galaxies are biased tracers of the underlying dark matter density field. The halo oc-

cupation distribution (HOD) describes this bias between galaxies and haloes using

the probability that a halo of mass M contains N galaxies with a certain property,

P (N |M), providing a physical interpretation of galaxy clustering measurements.

The mean number of galaxies in a halo of massM which are brighter than some

luminosity threshold, L, can be written as a sum of central and satellite galaxies

(e.g. Zheng et al., 2005),

〈Ngal(> L|M)〉 = 〈Ncen(> L|M)〉+ 〈Nsat(> L|M)〉. (3.4)

We use central and satellite occupation functions of the same form as Zehavi et al.

(2011). The mean number of central galaxies brighter than L is described by a

smoothed step function,

〈Ncen(> L|M)〉 = 1
2

[
1 + erf

(
logM − logMmin(L)

σlogM (L)

)]
, (3.5)

where erf(x) = 2π−1/2 ∫ x
0 e
−x′2dx′ is the error function. The parameterMmin is the

halo mass for which half of haloes contain a galaxy brighter than L, and σlogM sets

the width of the step. For M �Mmin, 〈Ncen(> L|M)〉 = 1, while for M �Mmin,

〈Ncen(> L|M)〉 = 0. The mean number of satellites per halo brighter than L is

given by a power law,

〈Nsat(> L|M)〉 = 〈Ncen(> L|M)〉
(
M −M0(L)
M ′1(L)

)α(L)
, (3.6)

where M0 is the cutoff mass scale, M ′1 the normalisation, and α the power law

slope. M ′1 is different to M1, the mass of a halo which on average contains 1

satellite, although the two quantities are related1. The power law is also multiplied

by the central occupation function, which ensures that the brightest galaxy in the

halo is the central; there cannot be a satellite brighter than L without there first

being a central galaxy brighter than L.
1Since the satellite occupation function is modified by the centrals, the relationM1 = M ′1 +M0

is not exact.
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3.3.1 HODs at low redshift

We use HOD parameters calculated from the SDSS using the procedure of Zehavi

et al. (2011). These are calculated for different luminosity threshold galaxy samples,

using an MCMC code to find the best fitting HOD parameters which reproduce the

measured projected correlation functions to within the SDSS uncertainties. Since

the cosmology of the MXXL simulation is different to that used by Zehavi et al.

(2011), the parameter fitting was redone using the Millennium cosmology. The

SDSS HODs use the absolute r-band magnitude of each galaxy, k-corrected to a

reference redshift of zref = 0.1 (see Section 3.4.3), which is the median redshift of

the survey. We denote absolute magnitudes k-corrected to this redshift as 0.1Mr.

Absolute magnitudes written as 0.1Mr assume h = 1.

The best fitting HOD parameters, in Millennium cosmology, are shown by the

points in Fig 3.4. We do not show the errors as they are misleading, due to the

probability distributions being highly asymmetric. Projecting these asymmetric

probability distributions to 1 dimensional errors can lead to the best fitting values

of some of the parameters being outside the error bars, particularly for σlogM .

For each HOD parameter, a least squares routine is used to fit a function which

describes the variation with luminosity, which are shown by the dashed lines in

Fig. 3.4. The top panel shows Mmin(L) and M ′1(L), for which we fit curves of the

same functional form as Eq. 11 from Zehavi et al. (2011),

L/L∗ = A

(
M

Mt

)αM

exp
(
−Mt

M
+ 1

)
, (3.7)

where A, Mt and αM are free parameters. We fit a power law to M0(L) (second

panel). This is a poor fit for the points at 0.1Mr = −18, which is over 3 orders of

magnitude lower than the fit, and 0.1Mr = −19, which is 20 orders of magnitude

lower. However, increasing the value of this parameter by many orders of magnitude

has a very small effect on the shape of the HODs. This is because the occupation

function of central galaxies adds a second cutoff to Eq. 3.6; if M0 is below this

58



3.3.1. HODs at low redshift

10
11

10
12

10
13

10
14

10
15

10
16

M
(h

−
1
M

⊙
)

Mmin

M
′
1

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

M
0
(h

−
1
M

⊙
)

0.5

1.0

1.5

2.0

α

−22−21−20−19−18

0. 1
Mr − 5logh

−0.2

0.0

0.2

0.4

0.6

0.8

σ
lo
gM

Fi
gu

re
3.
4:

B
es
tfi

tt
in
g
H
O
D

pa
ra
m
et
er
s
to

th
e
SD

SS
vo

lu
m
e
lim

ite
d
sa
m
pl
es

in
M
ill
en

ni
um

co
sm

ol
og

y
(p
oi
nt
s)
,a

nd
sm

oo
th

fu
nc

tio
ns

fit
te
d
to

th
es
e
po

in
ts

(d
as
he

d
lin

es
),
as

a
fu
nc

tio
n
of

m
ag

ni
tu
de

.
To

p
pa

ne
l:
M

m
in
(b
lu
e)

an
d
M
′ 1
(r
ed

).
Se

co
nd

pa
ne

l:
M

0.
T
hi
rd

pa
ne

l:

α
.
B
ot
to
m

pa
ne

l:
σ

lo
g
M
.
T
he

0.
1 M

r
−

5l
og
h

=
−

19
sa
m
pl
e
ha

s
M

0
=

10
−

10
.2
h
−

1 M
�
,b

ut
M

0
is

po
or
ly

co
ns
tr
ai
ne

d.
Er

ro
rs

ar
e
no

t

sh
ow

n
as

th
ey

ar
e
m
isl
ea
di
ng

,d
ue

to
th
e
hi
gh

ly
as
ym

m
et
ric

pr
ob

ab
ili
ty

di
st
rib

ut
io
ns
.

59



3.3.1. HODs at low redshift

cutoff, it will not affect the shape of the HODs. The parameter α(L) ∼ 1 at low

luminosities, but increases for the highest luminosity samples (third panel). We fit

a linear relation, which smoothly transitions to α = 1 at low luminosities. σlogM (L)

(bottom panel) is small at low luminosities, with a step up to ∼ 0.7 for the brightest

two samples. We fit a sigmoid function to σlogM , where the width of the step is

set such that the HODs do not overlap.

The large step in σlogM (L) means that, as the luminosity threshold is increased,

there is a rapid jump in the amount of scatter in the luminosities of central galaxies.

This results in overlapping HODs, as can be seen for the 0.1Mr < −21 and 0.1Mr <

−21.5 samples in Fig. 3.5. For two luminosity thresholds L1 and L2, where L1 < L2,

it must be true that 〈Ngal(> L1|M)〉 ≥ 〈Ngal(> L2|M)〉 since all galaxies brighter

than L2 are also brighter than L1. However, if the two occupation functions cross,

then this condition is not satisfied for haloes below the mass at which they cross.

This is unphysical, as it would require a negative number of galaxies within these

luminosity thresholds. We therefore must model the HODs such that there is no

overlap. There exist HOD frameworks in which the occupation functions cannot

overlap (see e.g. Leauthaud et al., 2011), but since we are using HOD parameters

obtained using the standard HOD framework, we make a small modification to

these HODs to prevent any crossing, as set out below. The HOD model we use

assumes that the occupation function of galaxies depends on halo mass only, but

it could also depend on some other halo property, x (e.g. formation time or halo

concentration). However, this cannot solve the problem of unphysical crossing,

since for the total HOD to cross, the HOD as a function of x would also have to

cross for some values of x.

Eq. 3.5 assumes that the scatter set by the parameter σlogM (L) is Gaussian.

Since a Gaussian function has a long tail which extends to infinity, there will always

be an overlap between HODs if σlogM (L2) > σlogM (L1). We instead approximate
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3.3.2. Redshift evolution

the Gaussian by using a spline kernel (Schoenberg, 1946),

spline(x) =

1− 6|x|2 + 6|x|3 |x| ≤ 0.5

2(1− |x|)3 0.5 < |x| ≤ 1

0 |x| > 1,

(3.8)

which has spline(0) = 1, mean = 0, variance = 1/12, and spline(x) = 0 for |x| > 1.

This function can be rescaled and normalised to approximate any Gaussian of mean

µ and variance σ2 as,

S(x) = 4/3
σ
√

12
spline

(
x− µ
σ
√

12

)
. (3.9)

The HOD for central galaxies can therefore be written as

〈Ncen(> L|M)〉 = 1
2

[
1 + F

(
logM − logMmin(L)

σlogM (L)

)]
, (3.10)

where F (x) = 2
∫ x

0 S(x′)dx′. The best fitting values of σlogM (shown by the points

in the bottom panel of Fig. 3.4), suggest a sharp step between 0.1Mr = −21 and
0.1Mr = −21.5. Even using Eq. 3.10, the HODs will still overlap with this abrupt

step, but they will not overlap if the step is gradual, unlike Eq. 3.5. We make the

step in σlogM (L) as narrow as we can while preventing the HODs crossing (shown

by the dashed curve).

The HODs using the SDSS HOD parameters, and our fits, are shown in Fig. 3.5.

Our fits produce halo occupation functions which are in reasonable agreement with

the SDSS HODs, with the exception of the 0.1Mr < −21 and 0.1Mr < −21.5

samples, where the width of the step set by the parameter σlogM is too broad and

narrow respectively. This is necessary to prevent the HODs from overlapping. The

SDSS HOD for the 0.1Mr < −21 sample appears to have a sharp transition from

centrals to satellites, which is due to a large value of M0 compared to M ′1.

3.3.2 Redshift evolution

In order to evolve the occupation functions with redshift, we first choose a target

luminosity function, φtarget(L, z), that we would like the galaxies in the mock cata-

logue to reproduce as a function of redshift. This luminosity function defines a
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Figure 3.5: Mean halo occupation functions for luminosity threshold samples, as

described by Eqs. 3.4-3.6, using SDSS HOD parameters in the Millennium cosmo-

logy (dashed lines) and our fits to the HOD parameters, using Eq. 3.10 in place

of Eq. 3.5 to describe the contribution from central galaxies (solid lines). Colours

indicate the luminosity threshold, as shown by the legend.

mapping between a luminosity threshold L at redshift z, and the number density

of galaxies brighter than this, ntarget
gal (> L, z).

For a given HOD, the number density of galaxies brighter than L can be cal-

culated from the integral

ngal(> L, z) =
∫
nhalo(M, z)〈N(> L|M, z)〉dM, (3.11)

where nhalo(M, z) is the number density of haloes of mass M at redshift z, and

〈N(> L|M, z)〉 is the halo occupation function at redshift z. The HODs must evolve

with redshift such that the condition ngal(> L, z) = ntarget
gal (> L, z) is satisfied.

Since the target luminosity function defines a mapping between a luminosity
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3.3.2. Redshift evolution

threshold and the number density of galaxies, the occupation functions can be

rewritten as a function of number density, ngal: 〈N(> L|M, z)〉 ≡ 〈N(ngal|M, z)〉.

The shape of the HOD could evolve in a complex way, but for simplicity we keep

the shape of the occupation function fixed for constant galaxy number density, but

slide the HODs along the halo mass axis such that the target luminosity function

is achieved. That is, the HOD parameters σlogM (ngal, z) and α(ngal, z) are kept

constant, but the 3 mass parameters Mmin, M0 and M1 are all multiplied by some

factor f ,

MHOD(ngal, z) = f(ngal, z)MHOD(ngal), (3.12)

where MHOD is one of the HOD mass parameters. The value of f required to

achieve the target luminosity function is found by finding the root of the equation

ngal(> L, f(z))− ntarget
gal (> L, z) = 0. (3.13)

At high redshifts, the target luminosity function we use is the evolving Schechter

function fit to the luminosity function estimated from the Galaxy and Mass As-

sembly (GAMA) survey. The Schechter function can be written in terms of mag-

nitudes as

φ(M) = 0.4 ln 10φ∗(100.4(M∗−M))1+α exp(−100.4(M∗−M)), (3.14)

where φ∗ is the normalisation, M∗ is a characteristic magnitude and α is the faint

end slope. For GAMA, Loveday et al. (2012, 2015) model the evolution of the

Schechter parameters with redshift as

α(z) = α(z0)

M∗(z) = M∗(z0)−Q(z − z0)

φ∗(z) = φ∗(0)100.4Pz, (3.15)

where Q parametrises the evolution in luminosity, P parametrises the evolution

in number density, and z0 = 0.1 is the same reference redshift as used for the k-

corrections (Section 3.4.3). The faint end slope is kept constant with redshift since
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there is not enough data to constrain it at high redshifts. We use the evolving

Schechter function, φGAMA, from Loveday et al. (2012) with P = 1.8 and Q = 0.7.

However, the shape of the GAMA Schechter luminosity function is slightly

different than the SDSS luminosity function. Using it as the target at all redshifts

would result in the evolution parameter f 6= 1 at z = 0.1, meaning that the HODs

would change from the HODs measured from SDSS. In order to not change the

HODs at z = 0.1, we use the luminosity function from SDSS, φSDSS, as the target

at low redshifts. The SDSS target luminosity function we use is the result of the

integral

φSDSS(> L) =
∫
nhalo(M)〈N(> L|M)〉dM, (3.16)

where nhalo(M) is the number density of haloes at z = 0.1, and 〈N(> L|M)〉 is

the (unevolved) occupation function. The result of this integral is close to the

Blanton et al. (2003) luminosity function for absolute magnitudes brighter than
0.1Mr = −19, and by definition f = 1, so the HODs remain unchanged from SDSS

at this redshift. However, at magnitudes fainter than 0.1Mr = −19, the result of

this integral is very flat, while the Blanton et al. (2003) SDSS luminosity function

is steeper; at 0.1Mr = −17 they differ by a factor of ∼ 2. We therefore smoothly

transition to the Blanton et al. (2003) luminosity function at 0.1Mr = −19. This

is then extrapolated to fainter magnitudes with a power law.

We interpolate the target luminosity function from φSDSS at low redshifts to

φGAMA at high redshifts,

φtarget(M, z) = (1− w(z))φSDSS(M, z) + w(z)φGAMA(M, z), (3.17)

where the transition between 0.1 < z < 0.2 is set by the sigmoid function

w(z) = (1 + e−100(z−0.15))−1. (3.18)

The evolution parameter, f , for this target luminosity function, is shown in

Fig. 3.6 as a function of magnitude for different redshifts. At z = 0.1, f is close

to 1, by definition. However, it is not exactly 1 because the function w(z), which
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Figure 3.6: Evolution parameter, f , as a function of magnitude for different red-

shifts, as indicated by the colour. This is the factor by which the HOD mass

parameters are multiplied in order to achieve the galaxy number density set by

the target luminosity function. Dashed lines indicate absolute magnitudes which

correspond to apparent magnitudes that are fainter than the r = 20 limit at that

redshift.

sets the transition between the two target luminosity functions is close to, but not

exactly 0 at z = 0.1. At z = 0.1, f is equal to 1 to within 1%. Fainter than

magnitude −19, f(z = 0.1) < 1. At these faint magnitudes, the target luminosity

function is transitioning to the Blanton et al. (2003) luminosity function. Keeping

f(z = 0.1) = 1 at all magnitudes produces a luminosity function which, while being

close to SDSS at the bright end, is too flat at the faint end, so this transition is

required to bring the luminosity function of the mock into better agreement with

the data.
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Figure 3.7: Evolution of the HOD parameterM1 with redshift for galaxy samples of

a fixed number density, where number densities, n, are in units of h3Mpc−3. Solid

lines show the evolution in the mock, as determined from the target luminosity

function. Dashed lines start at the same M1(z = 0) as in the mock, but show the

evolution found in Contreras et al. (2017), as predicted from the Gonzalez-Perez

et al. (2014) version of the galform semi-analytic galaxy formation model.

The evolution of the parameter M1 implied by this evolution of f is shown

in Fig. 3.7 for galaxy samples of a fixed number density, up to z = 0.6. Since

the shape of the HODs are kept fixed for a fixed number density, but the HODs

are evolved along the mass axis, the other mass parameters Mmin and M0 show

the same evolution, while σlogM and α are held constant. For comparison, we also

show the evolution reported in Contreras et al. (2017) from their fit to the evolution

found in the Gonzalez-Perez et al. (2014) version of the GALFORM semi-analytic

galaxy formation model (Cole et al., 2000). We find that M1 decreases slightly

with redshift, in remarkably close agreement with what is found in Contreras et al.
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3.4. Mock galaxy catalogue

(2017), although the highest number density samples show slightly less evolution.

By construction, the ratio of the parametersM1/Mmin is kept constant in the mock.

This is in contrast to the behaviour found in Contreras et al. (2017), where they

reported that this ratio decreases over the same redshift range. The amount by

which this ratio decreases depends on the semi analytic model used, and on the

number density of galaxies; at most it decreases by ∼ 50%. The evolution of the

HOD model could be extended to include this change in M1/Mmin, but we find

that simply keeping the mass ratio fixed produces a good match to the measured

clustering (see Fig. 3.12).

3.4 Mock galaxy catalogue

Now we describe in detail the HOD method used to populate the halo catalogue

with galaxies, assign each galaxy a luminosity and 0.1(g − r) colour and compare

the resultant clustering in the mock with measurements from SDSS and GAMA.

These details can be skipped by the reader, but we give a brief summary below.

Section 3.4.1 describes the HOD method for populating the halo lightcone with

galaxies with luminosities. This Monte Carlo method is based on Skibba et al.

(2006), but extended to an evolving 5 parameter HOD. The number and luminosity

of galaxies in each halo are randomly generated such that the input HODs are

reproduced. Central galaxies are assigned the position and velocity of the halo, and

satellites are randomly positioned around the central, following an NFW density

profile, and assigned a random virial velocity.

The method for assigning a 0.1(g − r) colour to each galaxy is described in

Section 3.4.2. This is based on Skibba & Sheth (2009), and randomly assigns a

colour from a parametrisation of the SDSS colour magnitude diagram. Section 3.4.2

describes our modification to the parametrisation of the colour magnitude diagram,

which includes evolution, and is in agreement with measurements from GAMA.

The colour assigned to each galaxy depends only on its luminosity, its redshift,
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3.4.1. Constructing the galaxy catalogue

and whether it is a central or satellite galaxy; there is no explicit dependence on

halo mass. Colour-dependent k-corrections derived from GAMA are described in

Section 3.4.3. The colour-dependent clustering of galaxies in the mock is shown in

Section 3.4.4.

3.4.1 Constructing the galaxy catalogue

We use a modified version of the method of Skibba et al. (2006) to populate the

halo lightcone catalogue with galaxies, and to assign each galaxy an r-band absolute

magnitude, k-corrected to z = 0.1. Skibba et al. (2006) use a 3 parameter HOD

in which the occupation function of central galaxies is simply a step function; we

have extended this method in order to reproduce the 5 parameter HOD given by

Eq. 3.6 & 3.10, which adds scatter to the luminosity of central galaxies, as required

by the SDSS clustering data. We also use the fits to the HOD parameters as a

function of luminosity as described in Section 3.3.1 and shown in Fig. 3.4. To be

consistent with the mass definition used in Zehavi et al. (2011), we take the halo

mass to be M200m; i.e. the mass enclosed by a sphere in which the average density

is 200 times the mean density of the Universe.

For each halo, a number, x, is randomly drawn from the spline kernel probability

distribution, S(x) (Eq. 3.9), with µ = 0 and σ = 1. This introduces the scatter in

the luminosity of the central galaxy, relative to the average luminosity in a halo of

this mass. The luminosity L which is required to produce this scatter is found by

solving xσlogM (L)/
√

2 = logM − logMmin(L), where the factor of
√

2 comes from

how σlogM is defined. Finally the central galaxy is positioned at the centre of the

halo, with the same velocity.

To populate a halo with satellite galaxies, a minimum luminosity, Lmin, must

first be chosen. We vary Lmin with redshift, choosing it to be slightly fainter

than the luminosity corresponding to r = 20. This ensures that the final mock

catalogue is complete to r = 20 at all redshifts, while preventing galaxies that are
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3.4.1. Constructing the galaxy catalogue

too faint to be observed being unnecessarily added to the catalogue. The number

of satellite galaxies to be added to each halo is drawn from a Poisson distribution

with mean 〈Nsat(> Lmin|M)〉, which is given by Eq. 3.6. For each satellite, a

uniform random number 0 < u < 1 is drawn, and the luminosity is found such

that 〈Nsat(> L|M)〉/〈Nsat(> Lmin|M)〉 = u. The satellite galaxies are assigned a

random virial velocity, relative to the velocity of the central galaxy, which is drawn

from a Maxwell-Boltzmann distribution with a line of sight velocity dispersion

σ2(M) = GM200m
2R200m

, (3.19)

where R200m is the radius of the sphere, centred on the halo, in which the en-

closed density is 200 times the mean density of the Universe. Finally, the satel-

lite galaxies are positioned randomly around the centre of the halo such that

they follow an NFW (Navarro et al., 1997) density profile, which is truncated at

R200m. We find that using the same concentration, c, as the halo, calculated from

c = 2.16R200m/RVmax, where RVmax is the radius at which the maximum circular

velocity occurs, produces angular clustering which is too strong at small angular

scales compared to SDSS (Wang et al., 2013). This can be improved by reducing

the concentration of all haloes by a factor of 2 (see Fig. 3.8). We therefore use

these reduced concentrations when positioning satellite galaxies inside each halo.

The HODs from Zehavi et al. (2011) were fit to the projected correlation func-

tions, using the mass-concentration relation of Bullock et al. (2001), modified to

be consistent with their mass definition. This mass-concentration relation is close

to what is seen in MXXL. However, modifying the concentrations only has a small

effect on the 1-halo term of the projected correlation functions. Down to separa-

tions of 0.1 h−1Mpc, the clustering in the mock catalogue only changes by a small

amount. It is the change in the clustering at physical scales smaller than this which

causes the small scale angular clustering to improve, and this is below the scale

at which the projected correlation functions were measured in SDSS. The angular

correlation function, ω(θ), in the mock catalogue is shown in Fig. 3.8 for galaxies

in bins of apparent magnitude, compared to the angular clustering measured in

69



3.4.1. Constructing the galaxy catalogue

10
-3

10
-2

10
-1

10
0

10
1

θ (deg)

10
-3

10
-2

10
-1

10
0

10
1

ω
(θ
)

17<r< 18

18<r< 19

19<r< 20

Unmodified concentrations

Reduced concentrations

Figure 3.8: Angular clustering of galaxies in the mock catalogue in bins of apparent

magnitude, as labelled (coloured lines). Points with error bars show the angular

clustering of galaxies measured in the SDSS (Wang et al., 2013). Dashed curves

show the angular clustering where satellite galaxies are positioned such that they

follow an NFW density profile with the same, unmodified concentration as the

halo. Solid curves show the resulting angular clustering when halo concentrations

are reduced by a factor of 2.

70



3.4.1.1. The luminosity function of the mock

SDSS (Wang et al., 2013). Solid lines show the clustering in the mock with con-

centrations reduced by a factor of 2, which is in good agreement with SDSS down

to a small angular separation of 20 arcsec, although for the faintest sample the

clustering is a little low. Using unmodified concentrations results in ω(θ) having a

slope which is steeper than the SDSS measurements, shown by the dashed curves,

resulting in clustering which is too strong at small angular scales. The introduc-

tion of unclustered haloes below the mass resolution has the effect of reducing the

clustering in the mock, but as we show later in Section 3.4.1.3, this effect is small.

3.4.1.1 The luminosity function of the mock

The Petrosian r-band luminosity function of the galaxy catalogue is shown in

Fig. 3.9 for galaxies in three redshift bins. The dashed lines show the target

luminosity at the median redshift of each bin, showing that this evolving target

luminosity function is reproduced in the mock catalogue. The smaller panel in

Fig. 3.9 compares the luminosity function in the mock at low redshifts with the

Blanton et al. (2003) luminosity function from SDSS. Brighter than 0.1Mr = −19,

the luminosity function in the mock is in good agreement with SDSS, which indir-

ectly shows that the mass function of the MXXL lightcone is close to the Jenkins

et al. (2001) mass function assumed by Zehavi et al. (2011), and our fits to the

HOD parameters as a function of luminosity are a good approximation to the actual

values. Fainter than 0.1Mr = −19, the luminosity functions agree by construction.

3.4.1.2 The redshift distribution of the mock

The redshift distribution of galaxies brighter than an apparent magnitude limit

of r = 19.8 is shown in Fig. 3.10 (see Section 3.4.3 for the k-corrections used),

and compared to the GAMA survey. The dN/dz of the mock catalogue is in good

agreement with GAMA, within 15% of the fitted curve at most redshifts. Without

adding in the low mass, unresolved haloes at low redshifts (see Section 3.2.5),
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Figure 3.9: The r-band luminosity function of galaxies in the mock catalogue in

different redshift bins, as indicated by the legend. Dashed lines indicate the target

luminosity function at the median redshift in each bin, which transitions from the

SDSS luminosity function at z < 0.1 to the GAMA luminosity function at z > 0.2.

The smaller panel shows the luminosity function in the mock catalogue over the

redshift range 0 < z < 0.13, compared to the SDSS luminosity function of Blanton

et al. (2003).

72



3.4.1.3. Clustering of the mock

0.0 0.1 0.2 0.3 0.4 0.5 0.6

z

0

1000

2000

3000

4000

5000

d
N
/
d
z
(d
eg
−
2
)

Mock

Mock (resolved haloes)

GAMA

Fit (± 15%)

Figure 3.10: dN/dz of galaxies in the mock catalogue with r < 19.8 (red), com-

pared to GAMA (black). The solid red curve shows the redshift distribution of

all galaxies, including those residing in unresolved haloes below the MXXL mass

resolution, while the dashed red curve only includes galaxies residing in resolved

haloes. The blue curve shows a fit to the GAMA dN/dz, where the shaded region

indicates ±15%.

there is a deficit in the dN/dz for z . 0.1 (dashed red curve); adding in these

haloes increases the number of low redshift haloes, bringing the dN/dz into better

agreement with GAMA (solid red curve).

3.4.1.3 Clustering of the mock

Projected correlation functions of galaxies in the mock catalogue are shown by the

solid curves in Fig. 3.11 for different luminosity threshold samples at z ∼ 0.1, where

we have calculated the two point correlation functions using the publicly available
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code CUTE (Alonso, 2012)1. These are compared to the measured clustering from

SDSS (points with error bars), and the clustering predicted by the best fitting

HODs (dashed lines). We use the same redshift ranges as the SDSS volume limited

luminosity threshold samples (see table 2 in Zehavi et al., 2011). To be consistent

with the definition of magnitude used in Zehavi et al. (2011), magnitudes are

evolved to z = 0.1 using the evolution model E(z) = Q0(1 + Q1(z − z0))(z − z0),

where Q0 = 2, Q1 = −1 and z0 = 0.1. The clustering in our galaxy catalogue is

in reasonable agreement with the projected correlation functions measured from

SDSS.

The small differences in the large-scale clustering between the mock catalogue

and the clustering predicted by the best fitting HODs can be understood by com-

paring the HODs in Fig. 3.5. For example, the 0.1Mr < −19 sample is slightly less

clustered in the mock. The fit to the HOD has a smaller Mmin than the best fit-

ting SDSS HOD, meaning that this sample contains more low mass haloes. These

haloes are less biased, and therefore the clustering is reduced compared to SDSS.

The 0.1Mr < −22 sample contains more high mass haloes, and should therefore be

more clustered than SDSS, but the opposite is seen. This is because the brightest

samples cover a wider redshift range, and are affected more by the evolution of the

HODs. The clustering of the 0.1Mr < −22 sample at small scales is also affected

by the evolution of the HODs over this wide redshift range.

The clustering of galaxies in the mock catalogue is also affected by the intro-

duction of haloes below the MXXL mass resolution, which are unclustered. Adding

these haloes will therefore have the effect of reducing the measured galaxy cluster-

ing. The galaxies which reside in these haloes are faint, and have low redshifts, and

so the faintest galaxy samples in Fig. 3.5 are affected by this more than the bright

samples. For the 0.1Mr < −18.5 sample, we illustrate the size of this effect: the

magenta dashed curve shows the projected correlation function with galaxies resid-

ing in unresolved haloes omitted. Including these galaxies reduces the clustering,
1http://members.ift.uam-csic.es/dmonge/CUTE.html
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Figure 3.11: Projected correlation functions from the galaxy catalogue (solid lines),

compared to the projected correlation functions from SDSS (Zehavi et al., 2011)

(points with error bars) and the projected clustering predicted using the best fitting

HODs in Millennium cosmology (dashed lines), for different luminosity threshold

samples, as indicated by the legend. For the 0.1Mr < −18.5 sample, we also show

the projected clustering in the galaxy catalogue omitting all galaxies which reside

in unresolved, unclustered haloes (magenta dashed line). For clarity, the results

have been offset by successive intervals of 0.15 dex, starting at the 0.1Mr < −20.5

sample.
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Figure 3.12: Projected correlation functions in different redshift bins for galaxies

in the mock catalogue (lines). Points with error bars show the clustering of galaxies

from GAMA (Farrow et al., 2015). Different colours indicate bins in 0.0Mr absolute

magnitude. Lines are offset by 0.4 dex relative to the −21 <0.0 Mr < −20 samples,

for clarity.

but only by a very small amount.

We have checked that if we modify our fits to the HOD parameters to agree

exactly with the best fitting SDSS parameters at one magnitude, and do not evolve

the HODs, we reproduce the SDSS correlation functions very closely for that mag-

nitude limit.

In Fig. 3.12 we show the projected correlation functions in the mock catalogue

at high redshifts, compared to the clustering measured in GAMA by Farrow et al.

(2015), which has a high completeness of galaxy pairs (Robotham et al., 2010).

Here, the magnitude ranges are defined for magnitudes k-corrected to a reference
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redshift of z = 0, denoted as 0.0Mr, which have also had evolutionary corrections

applied. To be consistent with Farrow et al. (2015), we use the same evolutionary

correction E(z) = −Q(z − zref) = −1.45z for this comparison. We find that

the clustering at high redshifts is in good agreement with the clustering seen in

GAMA. The agreement is least good in the lowest redshift bin, but at low redshifts

we find good agreement with SDSS, which covers a much larger area of the sky

than GAMA.

3.4.2 Assigning colours

We use the method of Skibba & Sheth (2009) to assign each galaxy a 0.1(g − r)

colour, where g and r are SDSS DR7 model magnitudes (Abazajian et al., 2009;

Baldry et al., 2010). This method parametrises the red and blue sequence of

the colour-magnitude diagram as two Gaussians with a mean and rms that are

linear functions of magnitude. A galaxy is randomly chosen to be red or blue,

then a colour is drawn from the appropriate Gaussian. We have modified the

parametrisation of the colour-magnitude diagram given in Skibba & Sheth (2009)

to bring the faint end into agreement with the colour-magnitude diagram from

GAMA, and to add evolution. For those interested, this is described in detail

below. For clarity, the 0.1 superscript has been omitted from the equations in the

following subsections.

3.4.2.1 Low redshift

For redshifts z < 0.1, the parametrisation of Skibba & Sheth (2009) produces a

good approximation to the SDSS colour-magnitude diagram, which we summarise

below. However, we make some slight modifications to the parametrisation to also

bring it into agreement with GAMA at faint magnitudes.
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3.4.2.1. Low redshift

The mean and rms of the red and blue sequences are given by

〈g − r|Mr〉Skibba
red = 0.932− 0.032(Mr + 20)

rms(g − r|Mr)Skibba
red = 0.07 + 0.01(Mr + 20), (3.20)

and

〈g − r|Mr〉Skibba
blue = 0.62− 0.11(Mr + 20)

rms(g − r|Mr)Skibba
blue = 0.12 + 0.02(Mr + 20). (3.21)

The total fraction of galaxies which are blue is also parametrised as a linear function

of magnitude, given by

fSkibba
blue (Mr) = 0.46 + 0.07(Mr + 20). (3.22)

These relations from Skibba & Sheth (2009) produce a colour-magnitude dia-

gram which is in good agreement with SDSS at the bright end. However, the faint

end does not agree with what is seen in GAMA (e.g. the first panel in figure 6 of

Loveday et al., 2012). Firstly, at 0.1Mr = −16, all the galaxies should lie on the

blue sequence, while the fraction of galaxies which are blue given by Eq. 3.22 is

0.74. At faint magnitudes, we instead use a blue fraction given by

f faint
blue (Mr) = 0.4 + 0.2(Mr + 20), (3.23)

so the total fraction of blue galaxies is

fblue(Mr) = max{f faint
blue (Mr), fSkibba

blue (Mr)}; (3.24)

fblue(Mr) is capped so it is always in the range 0 ≤ fblue(Mr) ≤ 1. Another issue

with the parametrisation of Skibba & Sheth (2009) is that faint galaxies which

lie on the blue sequence are too blue in comparison to the galaxies in GAMA. At
0.1Mr = −18.7, we transition to a flatter blue sequence, given by

〈g − r|Mr〉faint
blue = 0.4− 0.03(Mr + 16). (3.25)
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If the fraction of satellite galaxies that are blue, fblue
sat (Mr), is specified, then

the mean colour of satellite galaxies is given by

〈g − r|Mr〉sat = fblue
sat (Mr)〈g − r|Mr〉blue + (1− fblue

sat (Mr))〈g − r|Mr〉red. (3.26)

Conversely, Eq. 3.26 can be rearranged, and the mean satellite colour can be used

to specify the fraction of satellites that are blue,

fblue
sat (Mr) = 〈g − r|Mr〉sat − 〈g − r|Mr〉red

〈g − r|Mr〉blue − 〈g − r|Mr〉red
, (3.27)

(equation 8 from Skibba & Sheth, 2009, but for blue galaxies). The average colour

of a satellite galaxy is parametrised by Skibba & Sheth (2009) as

〈g − r|Mr〉Skibba
sat = 0.83− 0.08(Mr + 20). (3.28)

Modifying the mean satellite colour has the effect of changing the strength of the

colour dependent clustering. We find that we get a better agreement with the

clustering in SDSS by modifying the mean satellite colour to

〈g − r|Mr〉sat = 0.86− 0.065(Mr + 20). (3.29)

At, for example, 0.1Mr = −16, the fraction of blue satellites given by Eq. 3.27

and Eq. 3.29 is less than 1, meaning that some satellite galaxies are red. However,

all galaxies at this magnitude should lie on the blue sequence, as determined from

Eq 3.24. In order to achieve the correct fblue from Eq 3.24, the fraction of satellites

which are blue must be (fblue − fcen)/fsat if all central galaxies are on the blue

sequence. If the value of fblue
sat is greater than this, it is still possible to get the

correct fblue by making central galaxies red, but fblue
sat cannot be less than this. To

ensure that at faint magnitudes we get the total fraction of blue galaxies given by

Eq 3.24, we take the fraction of blue satellites to be

fblue
sat (Mr) = max

{
fblue

sat (Mr),
fblue(Mr)− fcen(Mr)

fsat(Mr)

}
. (3.30)

The fraction of central galaxies that are blue can then be determined from

fblue(Mr) and fblue
sat (Mr). However, Skibba & Sheth (2009) erroneously state that

79



3.4.2.2. Evolution of colours with redshift

the fraction of central galaxies which are blue is

fblue
cen (Mr) = fblue(Mr)

fcen(Mr)
, (3.31)

where fcen(Mr) is the fraction of galaxies which are centrals. Eq. 3.31 is only true

if all satellite galaxies are red; since a significant fraction of faint satellites are

blue, the fraction of blue central galaxies needs to be reduced to ensure we get

the correct total fraction of blue galaxies given by Eq. 3.22. This is achieved by

changing Eq. 3.31 to

fblue
cen (Mr) = fblue(Mr)− fblue

sat (Mr)(1− fcen(Mr))
fcen(Mr)

. (3.32)

For each galaxy, a uniform random number x is drawn in the interval 0 < x < 1.

For central galaxies, if x < fblue
cen (Mr) (given by Eq. 3.32), the galaxy is blue, and

a colour is drawn randomly from the Gaussian distribution defined by Eq. 3.21,

otherwise it is red, and the colour is drawn from Eq. 3.20. Similarly, satellite

galaxies are assigned to the blue sequence if x < fblue
sat (Mr), and the red sequence

otherwise.

3.4.2.2 Evolution of colours with redshift

The colour magnitude diagram evolves with redshift, as seen for example in figure 6

of Loveday et al. (2012) from GAMA. We therefore need to evolve the expressions

given in Section 3.4.2.1 in order to produce a mock which has a realistic distribution

of colours at these redshifts. In the GAMA data at high redshifts, only the brightest

tip of the red and blue sequences can be seen, making it difficult to constrain their

slopes. We therefore keep the slope of the red and blue sequence fixed with redshift.

We keep the red and blue sequences fixed at z < 0.1, and evolve them with

redshift as

〈g − r|Mr〉red(z) = 〈g − r|Mr〉red − 0.18(min{z, 0.4} − 0.1) (3.33)

rms(g − r|Mr)red(z) = rms(g − r|Mr)red + 0.5(z − 0.1) + 0.1(z − 0.1)2
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and

〈g − r|Mr〉blue(z) = 〈g − r|Mr〉blue − 0.25(min{z, 0.4} − 0.1)

rms(g − r|Mr)blue(z) = rms(g − r|Mr)blue + 0.2(z − 0.1), (3.34)

respectively, where we stop evolving the mean of the sequences above z = 0.4 in

order to prevent too many high redshift galaxies being assigned as blue.

The mean satellite colour is also evolved as,

〈g − r|Mr〉sat(z) = 〈g − r|Mr〉sat − 0.18(z − 0.1), (3.35)

and the fraction of blue galaxies is evolved as

fblue(Mr)(z) = 0.2Mr + 4.4 + 1.2(z − 0.1) + 0.5(z − 0.1)2. (3.36)

Fig. 3.13 shows the distribution of colours in the mock catalogue compared to

GAMA for galaxies in different redshift and magnitude bins. Our parametrisation

of the colour evolution is able to produce a good approximation to the GAMA

colour distributions at all redshifts.

To evolve the luminosity function, we have assumed a fixed Q parameter for all

galaxies. We note that Loveday et al. (2012, 2015) hint that red and blue galaxies

evolve differently, with a different Qred and Qblue. However, the assumption of fixed

Q with this parametrisation is able to reproduce the observed colour-magnitude

diagram.

3.4.3 Colour dependent k-corrections

In the mock catalogue, we use the HOD method to assign each galaxy an r-band

absolute magnitude 0.1Mr, and the method outlined above to randomly generate a
0.1(g−r) colour. However, the apparent magnitude, r, is the quantity which would

be measured directly by the survey, and this is related to the absolute magnitude,
0.1Mr, through the equation

0.1Mr − 5 log10 h = r − 5 log10 dL(z)− 25− 0.1k(z), (3.37)
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Figure 3.13: Distribution of 0.1(g − r) colours in the mock catalogue (solid lines)

compared to GAMA (dashed lines). Each panel shows the colour distributions of

galaxies in a certain redshift range. Different ranges in absolute magnitude are

indicated by the colour of the line, as shown in the legend, which is split over

several panels.

82



3.4.4. Colour dependent clustering in the mock

where dL(z) is the luminosity distance in units of h−1Mpc, and 0.1k(z) is the k-

correction. The superscript 0.1 denotes that the magnitude has been k-corrected to

a reference redshift of zref = 0.1. In order to calculate an apparent magnitude for

each galaxy in the mock catalogue, we use colour-dependent k-corrections derived

from the GAMA survey, similar to those given in table 1 of McNaught-Roberts

et al. (2014), except for k-correcting to zref = 0.1, rather than zref = 0.

The k-correction for each individual galaxy in GAMA is fit with a 4th order

polynomial of the form

0.1k(z) =
4∑
i=0

Ai(z − 0.1)4−i. (3.38)

The median k-correction is then found in 7 equally spaced bins of 0.1(g − r)

colour. Strictly speaking, the constant term in Eq. 3.38 should have the value

A4 = −2.5 log10(1 + zref) (Hogg et al., 2002); McNaught-Roberts et al. (2014) do

not require this, but they end up with values of A4 close to 0 at their zref = 0. We

force our k-corrections to have the value A4 = −2.5 log10(1.1) at our zref = 0.1, but

this only has a small effect on the k-corrections.

Using 7 distinct k-corrections based on colour leads to artificial features being

added to the mock catalogue; for example step features can be seen in the colour-

magnitude diagram at the boundaries between colour bins. In order to remove

these features, we interpolate the k-corrections between the median colour in each

bin.

Fig. 3.14 shows the polynomial fits to the k-corrections as a function of redshift.

By definition, all the curves cross at 0.1k(z = 0.1) = −2.5 log10(1.1) ≈ −0.103. The

polynomial coefficients are shown in Table 3.1.

3.4.4 Colour dependent clustering in the mock

The projected correlation function of galaxies in the mock at low redshifts, split by

red and blue galaxies, is shown in Fig. 3.15 for different bins in absolute magnitude
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Figure 3.14: Median 0.1(g−r) colour-dependent k-correction for galaxies in GAMA

as a function of redshift, in 7 equally spaced bins of colour. The colour of each line

indicates the colour bin; the median colour is indicated in the legend.

Table 3.1: Polynomial coefficients of the median k-corrections of galaxies in GAMA

in equally spaced bins of 0.1(g−r) colour, as defined in Eq. 3.38. 0.1(g−r)med is the

median colour in each bin, and Ai are the polynomial coefficients. The constant

term A4 = −2.5 log10(1.1) ≈ −0.103, as described in the text.

0.1(g − r)med A0 A1 A2 A3
0.131 -45.33 35.28 -6.604 -0.4805
0.298 -20.08 20.14 -4.620 -0.04824
0.443 -10.98 14.36 -3.676 0.3395
0.603 -3.428 9.478 -2.703 0.7646
0.785 6.717 3.250 -1.176 1.113
0.933 16.76 -2.514 0.3513 1.307
1.067 20.30 -4.189 0.5619 1.494
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and compared to the clustering in the corresponding volume limited samples from

SDSS (Zehavi et al., 2011), where the red and blue samples are defined using the

same colour cut as their equation 13. In the SDSS data, red galaxies are clustered

more strongly than blue galaxies, since red elliptical galaxies are more likely to

reside in more massive haloes, which are more strongly biased (Eisenstein et al.,

2005a). As the samples get fainter, the strength of the colour dependence becomes

stronger. These trends are reproduced in the mock catalogue, using the modified

satellite colour in Eq. 3.29.

Projected correlation functions for red and blue galaxies are also shown for

higher redshift galaxies in Fig. 3.16, compared with the clustering seen in GAMA

(Farrow et al., 2015). The galaxy samples are defined using the same 0.0Mr mag-

nitude ranges as figure 14 of Farrow et al. (2015), and using the same 0.0(g − r)

colour cut (their equation 4), where the superscript 0.0 denotes that these mag-

nitudes are k-corrected to a reference redshift of zref = 0. The clustering of the red

and blue galaxies in the mock is in reasonable agreement with the GAMA data.

3.5 Applications

As shown in Section 3.4, the galaxies in the mock catalogue have realistic clustering,

which is in agreement with measurements from SDSS and GAMA. The galaxies

also have a realistic distribution of 0.1(g − r) colours at different redshifts. Future

surveys, such as DESI and Euclid, aim to make measurements of the BAO and

redshift space distortions, which probe larger scales than have been considered so

far. Here, we show as an example some of the measurements that can be made

using this mock catalogue.

3.5.1 BAO

As described in Section 3.2.1 and shown in Fig. 3.3, the large box size of the MXXL

simulation enables the BAO feature to be seen clearly in the clustering of haloes.
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Figure 3.15: Projected correlation functions of red and blue galaxy samples in

the mock catalogue at low redshifts (lines) compared to the SDSS volume limited

samples (Zehavi et al., 2011) (points with error bars) for different magnitude bins.

The clustering of all galaxies in a sample is shown in black, while clustering for

red and blue galaxies, defined by the colour cut 0.1(g − r)cut = 0.21 − 0.03 0.1Mr,

is shown in red and blue, respectively. Line style indicates the magnitude bin, as

shown by the legend. For clarity, magnitude samples are successively offset by 1

dex from the −21 <0.1 Mr < −20 samples.
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Figure 3.16: Projected correlation functions of red and blue galaxy samples at high

redshift in the mock catalogue (lines), compared to GAMA (points with error bars)

(Farrow et al., 2015). Red and blue lines indicate red and blue galaxy samples,

where the colour cut is defined as 0.0(g − r)cut = −0.03(0.0Mr + 20.6) + 0.678. For

each sample of galaxies in the mock, the same 0.0Mr magnitude range is used as the

GAMA galaxy sample. The style of the line indicates the redshift range, as shown

in the legend. Redshift samples are successively offset from the 0.24 < z < 0.35

samples by 1 dex for clarity.
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Here, we show that the BAO can also be seen in measurements of the redshift-

space galaxy clustering. Fig. 3.17 shows the large-scale redshift-space correlation

function for several apparent magnitude threshold galaxy samples, using a redshift

weighting w(z) = 1/(1 + 4πJ3n̄(z)) (Efstathiou et al., 1990a), where n̄(z) is the

number density of galaxies in the sample at redshift z, and J3 =
∫
ξr2dr, where we

have assumed 4πJ3 = 3× 104h3Mpc−3. The BAO peak can be seen in all samples,

but the errors in the correlation function are largest for the r < 18.0 sample. The

r < 20.0 sample contains fainter galaxies, and covers a larger volume, which greatly

reduces the errors. For comparison, the crosses with error bars show measurements

of the BAO from the Baryon Oscillation Spectroscopic Survey (BOSS) (Reid et al.,

2016) for galaxies in the redshift range 0.2 < z < 0.5 (Ross et al., 2017). The

BAO scale in the mock catalogue is ∼ 7% larger than is measured in BOSS. This

is consistent with the difference in cosmology between that used in the MXXL

simulation and the best fit to observations, including the BOSS results, and is

mostly driven by the difference between Ωm = 0.25 in MXXL and Ωm = 0.31 in

the Planck cosmology. The amplitude of the BAO peak in the mock catalogue also

differs with the BOSS results, but we have not made any attempt to match the

BOSS colour selection.

3.5.2 Redshift space distortions

The two-point correlation function, ξ(s, µ), in bins of s and µ, can be decomposed

into multipoles (Hamilton, 1992),

ξ(s, µ) =
∑
l

ξl(s)Pl(µ), (3.39)

where s is the separation between a pair of galaxies in redshift space, µ = cos θ

is the cosine of the angle between the vector s and the line of sight, and Pl(µ) is

the lth order Legendre polynomial. The multipoles can be determined from the

measured ξ(s, µ) by evaluating the integral

ξl(s) = 2l + 1
2

∫ 1

−1
ξ(s, µ)Pl(µ)dµ. (3.40)
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Figure 3.17: Large-scale redshift-space correlation function in the galaxy catalogue,

scaled by s2, for different apparent magnitude threshold samples, as indicated by

the colour. For each sample, the solid curve is the clustering calculated over the
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0.2 < z < 0.5 (Ross et al., 2017), divided by a factor of 1.5, to make the comparison

easier.
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Due to the symmetry ξ(s, µ) = ξ(s,−µ), all odd-numbered terms are zero, and in

linear theory, it is only the monopole, ξ0(s), quadrupole, ξ2(s), and hexadecapole,

ξ4(s), that are non-zero. The amplitude of these multipoles depends on the strength

of the redshift space distortions, and can provide a way to measure f(z)σ8(z)

(Samushia et al., 2012).

The multipoles of the redshift-space correlation function of galaxies in the mock

catalogue are shown in Fig. 3.18 for different volume limited magnitude threshold

samples, and compared to measurements of clustering from SDSS (Guo et al.,

2015). The monopole and quadrupole show reasonable agreement with the SDSS

measurements, although the amplitude of the hexadecapole is a little high for some

of the samples. Overall, the redshift space distortions in the mock catalogue look

reasonably realistic, showing that the catalogue will be useful for future surveys that

will take redshift space distortion measurements. We have extended the predictions

beyond the range of the SDSS results, where they are easier to model and can be

probed by surveys like DESI and Euclid.

3.6 Conclusions

For upcoming galaxy surveys, such as DESI and Euclid, it is important to have

realistic mock catalogues in order to test and verify analysis tools, assess incom-

pleteness and determine error covariances. The mock catalogues can also be used to

make predictions and set expectations in advance of the first data from the survey.

We have outlined a method for creating a mock catalogue from the Millennium-

XXL (MXXL) simulation. We first created a halo lightcone catalogue from the

simulation, which we then populated with galaxies using a halo occupation distri-

bution (HOD) scheme.

The halo lightcone catalogue is created from the simulation by finding the

interpolated values of the position, velocity and mass of each halo at the redshift

at which it crosses the observer’s lightcone. The halo lightcone catalogue covers the
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Figure 3.18: Monopole, ξ0(s), (top panel), quadrupole, ξ2(s), (middle panel), and

hexadecapole, ξ4(s), (bottom panel), of the redshift space two-point correlation

function for different volume limited samples (solid lines), where the colour indic-

ates the magnitude threshold. Points with error bars show the measured clustering

from SDSS (Guo et al., 2015).
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full sky, and extends to redshift z = 2.2 with a mass resolution of ∼ 1011h−1M�.

Extending the catalogue to high redshifts requires multiple periodic replications of

the MXXL box; these replications are only necessary to extend to redshifts greater

than z ∼ 0.5.

The halo catalogue is populated with galaxies using a Monte Carlo method,

which randomly assigns galaxies with luminosities to dark matter haloes, following

a HOD. This is an extension of the method outlined in Skibba et al. (2006) to a

5 parameter HOD. Galaxies in the mock catalogue are also assigned a 0.1(g − r)

colour, based on the Monte Carlo method of Skibba & Sheth (2009). A galaxy is

assigned a colour based on its luminosity, redshift, and whether it is a central or

a satellite galaxy, which is randomly drawn from a parametrisation of the SDSS

colour-magnitude diagram.

The values of the HOD parameters we use are based on the best fitting HODs

which reproduce the measured clustering from SDSS (Zehavi et al., 2011), but in

Millennium cosmology. In the standard 5 parameter HOD model, the parameter

σlogM introduces Gaussian scatter in the luminosity of central galaxies for haloes

of a fixed mass, which can lead to the unphysical crossing of HODs in different

luminosity bins. We modify the HOD model so that this scatter follows a pseudo-

Gaussian spline kernel, which prevents this crossing. The HODs are evolved with

redshift such that they reproduce a target luminosity function, which is chosen to

be the SDSS luminosity function at low redshift, and the luminosity function from

GAMA at high redshifts. For a sample of galaxies with a fixed number density,

the shape of the HOD is kept fixed with redshift, and the mass HOD parameters

are all multiplied by the factor f which is required to produce the correct number

density. By construction, the mock catalogue reproduces the SDSS and GAMA

luminosity functions, and the ratio of the HOD parameters M1/Mmin is constant

with redshift.

We modify the parametrisation of the colour-magnitude diagram outlined in

Skibba & Sheth (2009), and add evolution, such that the distribution of 0.1(g − r)

92



3.6. Conclusions

colours in the mock catalogue agrees with measurements from GAMA at different

redshifts.

The galaxy catalogue is a flux limited mock galaxy catalogue, covering the full

sky with an r-band magnitude limit of r < 20.0 and median redshift z ∼ 0.2.

The angular and projected correlation functions of galaxies in the mock show good

agreement with measurements from SDSS and GAMA, and the colour dependence

of the clustering is reasonable. The BAO peak can be seen in the large-scale clus-

tering of galaxies in the mock, and galaxies show realistic redshift space distortions,

making this mock useful for upcoming surveys which will measure these.

Here we have presented one mock galaxy catalogue, but to enable model in-

ferences and place tight constraints on cosmological parameters, error covariances

need to be determined. This requires the use of many mock catalogues, of the

order of 100s to 10,000s. This could be achieved by coupling the HOD component

of the mock with an approximate but fast method of generating halo catalogues

(e.g. Manera et al., 2013; Monaco et al., 2013; Tassev et al., 2013; White et al.,

2014; Avila et al., 2015; Chuang et al., 2015; Kitaura et al., 2015).

My contribution to this work was produce the halo lightcone catalogue from

the MXXL halo merger trees, which were pre-computed by Raul Angulo. I then

developed the methodology and code to populate this lightcone with galaxies, using

the HOD fits to the clustering measurements from SDSS, which were produced by

Zheng Zheng. The methodology I developed extends the work of Skibba et al.

(2006) and Skibba & Sheth (2009) for a 5 parameter HOD, with redshift evolution.
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Chapter 4

Fibre Assignment Incompleteness

in the DESI Bright Galaxy Survey

4.1 Introduction

The Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al.,

2016a,b) will conduct a large spectroscopic survey with the primary science aims of

making precision measurements of the baryon acoustic oscillation (BAO) scale and

the large-scale redshift space distortion (RSD) of galaxy clustering. BAO will be

used to measure the expansion history of the Universe and constrain dark energy

(e.g. Seo & Eisenstein, 2003). RSD will be used to measure the growth rate of

structure in the Universe, and place constraints on theories of modified gravity (e.g.

Guzzo et al., 2008). These measurements are complementary, as they can be used

to break degeneracies between models of dark energy and RSD. The instrument,

which is nearing completion, will be installed on the 4-m Mayall Telescope at Kitt

Peak, Arizona. DESI will consist of dark-time and bright-time programs. The

dark-time survey will measure spectra of 4 million luminous red galaxies (LRGs)

(0.4 < z < 1.0), 17 million emission line galaxies (ELGs) (0.6 < z < 1.6), 1.7

million quasars (z < 2.1) and 0.7 million high redshift quasars (2.1 < z < 3.5)

to probe the Ly-α forest. The bright-time survey will consist of the bright galaxy

94



4.1. Introduction

survey (BGS), a low redshift, flux limited survey of ∼ 10 million galaxies with a

median redshift zmed ∼ 0.2 (BGS paper, in prep), and a survey of Milky Way stars

(DESI Collaboration et al., 2016a).

The light from each target galaxy is collected by fibres located at the focal

plane of the telescope, and taken to one of 10 spectrographs, where the spectrum

is measured and a redshift determined. However, it is not possible to place a fibre

on every single potential target, and even if it is, a redshift measurement can fail

due to low surface brightness or weak spectral features. Other complications, such

as observing conditions, also affect the redshift completeness in the final galaxy

catalogue.1 To make precise measurements of galaxy clustering in order to reach

the primary science aims of the survey, it is essential to correct for the effects of

incompleteness.

A major systematic in galaxy clustering measurements is from the effect of fibre

collisions, which occur because fibres cannot be placed arbitrarily close together.

Since it is not possible to place a fibre on both objects in a close pair, that pair

will be missing in the final catalogue, biasing the pair counts, particularly at small

scales, which can bias galaxy clustering measurements. If the same patch of sky is

observed enough times, the missing galaxies will eventually be observed, removing

the bias (e.g. in GAMA Robotham et al., 2010), but typically it is infeasible to do

this.

In the Sloan Digital Sky Survey (SDSS) (Abazajian et al., 2009), the fibre col-

lisions can be characterised relatively straightforwardly, since fibres can be placed

anywhere on a plate, so long as they are not closer than the fibre collision scale

of 55 arcsec (or 62 arcsec for BOSS). A common method to recover the redshift of

missing galaxies is to simply assign them the same redshift as the nearest targeted

object on the sky (e.g. Zehavi et al., 2005, 2011). However, this method pro-

duces unsatisfactory results for the redshift-space correlation function (as shown in
1Exposures are scaled dynamically with conditions, with the aim of achieving a consistent

signal-to-noise ratio in the spectra.
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Section 4.4.3.2). An alternative method that works well for SDSS involves recover-

ing the full correlation function from the regions covered by multiple overlapping

tiles (Guo et al., 2012). In dense regions, SDSS is able to target all galaxies, or an

unbiased subset, but this is not true for the BGS.

Fibre collisions in DESI are more complicated, since the fibres are controlled

by robotic fibre positioners, which can move each fibre anywhere in a small patrol

region around a fixed set of centres, arranged in a grid. The fibre positioners

can block neighbouring fibres from targeting certain objects, and objects will be

missed if the number density of targets in an extended region is greater than the

number density of fibres. These effects have a non-trivial impact on clustering

estimates. The statistics to be measured from the survey can be modified to remove

the affected scales (e.g. Burden et al., 2017; Pinol et al., 2017), but in doing so,

information is lost. Bianchi & Percival (2017) have proposed a method to correct

clustering measurements by estimating, from many runs of the fibre assignment

algorithm, the probability that a pair of galaxies will be targeted, and have shown

that this method can provide an unbiased correction to the dark-time ELG sample

(Bianchi et al., 2018). The method has also been shown to be successful when

applied to data from the VIPERS survey (Mohammad et al., 2018).

Galaxies in the BGS have a variety of properties, and cover a wide range of

galaxy bias. Many kinds of galaxy samples can be selected from the survey, such as

volume limited samples, stellar-mass selected samples and colour-selected samples.

Here, we quantify the incompleteness due to fibre assignment in the DESI BGS,

and assess correlation function correction techniques applied to samples from a

BGS mock catalogue. This chapter is organised as follows: in Section 4.2, we

describe the BGS survey strategy, DESI fibre assignment, and mock survey sim-

ulations. In Section 4.3, we quantify galaxy incompleteness in the BGS due to

fibre assignment. In Section 4.4, we assess correlation function correction methods

on volume limited samples from the BGS mock. Section 4.5 summarises our con-

clusions. Throughout, we assume the WMAP-1 cosmology of the mock catalogue
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presented in Section 4.2.4, with Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, h = 0.73, and

n = 1 (Spergel et al., 2003). While this cosmology has a higher σ8 and lower Ωm

than measurements from Planck (Planck Collaboration et al., 2018), we use simula-

tions tuned to produce the correct galaxy clustering, so we expect the dependence

of our results on cosmology to be small.

4.2 Fibre Assignment

4.2.1 Survey Strategy

The aim of the DESI BGS is to create a highly complete flux limited catalogue

of bright, low redshift galaxies, for the primary science goals of BAO and RSD

analysis. The survey is expected to cover ∼ 14, 000 square degrees (Fig. 4.3) in

3 passes of the sky, measuring spectroscopic redshifts of ∼ 10 million galaxies,

approximately 2 magnitudes deeper than the SDSS main survey (Strauss et al.,

2002), with double the median redshift (zmed ∼ 0.2). The BGS will take place

concurrently with the Milky Way Survey during bright time, when the sky is too

bright for the main dark time survey due to moon phase and twilight conditions.

Fibres are currently planned to be assigned to science targets based on the

following priority tiers:

1. Priority 1 galaxies (r < rbright, ∼ 800 deg−2)

2. Priority 2 galaxies (rbright < r < rfaint, ∼ 600 deg−2)

3. Milky Way stars

where rbright ∼ 19.5 and rfaint ∼ 20.0.1

1In Section 4.2.4 we use rbright = 19.452 and rfaint = 19.925, which in the BGS mock catalogue
gives number densities of 818 deg−2 and 618 deg−2 for the bright and faint samples respectively.
We also randomly promote 10% of the faint sample to have the same priority as the bright sample
(see Section 4.2).
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Figure 4.1: Slice through the BGS mock catalogue. Priority 1 galaxies are coloured

in blue and Priority 2 galaxies are coloured in green. Galaxies with r < 17.7 (the

magnitude limit of SDSS) are coloured in red.

The depth of the BGS, in comparison to SDSS, is illustrated in Fig. 4.3, which

shows the positions of galaxies in redshift space in a thin slice of the BGS mock

catalogue. The priority 1 and 2 galaxies are indicated by the blue and green points,

while the red points at low redshift are at the magnitude limit of SDSS (r < 17.7).

Most SDSS galaxies are at redshift below z = 0.2, while the faint BGS sample

extends beyond z = 0.5. Fig. 4.2 shows the position on the sky of objects in a thin

slice of the mock at z = 0.3. The left panel is cut to the number density of galaxies

in the BOSS survey (Eisenstein et al., 2011; Dawson et al., 2013), while the right

panel is cut to priority 1 objects, illustrates that the BGS will sample the cosmic

web of structure much more densely than BOSS.

The brightest galaxies with an r-band magnitude r < 19.5 are preferentially
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Figure 4.2: Slice through the BGS mock catalogue at z = 0.3. Left panel: galaxies

with a cut in absolute number density of 3×10−4 h−1Mpc−3, corresponding to the

number density of galaxies in the BOSS survey. Right panel: Priority 1 galaxies.

targeted, since the redshift success rate is expected to be high, making this sample

of galaxies highly complete. Fainter galaxies, with 19.5 < r < 20.0, which have a

lower redshift success rate, are given a lower priority, and will form a less complete

sample. If a fibre cannot be placed on a galaxy, it will be placed on a Milky Way

star.

If a galaxy fails to have its redshift measured, one possibility is for it to remain

at the same priority in the next pass. If a redshift is successfully measured, it

will remain a potential target in future passes to give the possibility of improving

the signal-to-noise of the spectra, but its priority demoted to a fourth priority tier

(below that of the Milky Way stars).

In addition to the galaxy targets, 100 fibres will be positioned on standard stars
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4.2.1. Survey Strategy

Table 4.1: Percentage of the survey area covered by N overlapping tiles after 1

pass with 10% of tiles missing, and after the full 1, 2 and 3 passes. The total area

covered by each pass is calculated by finding the fraction of objects in a random

catalogue that can be potentially assigned a fibre.

N Pass 1 (90%) Pass 1 Pass 2 Pass 3
(12.2k deg2) (13.5k deg2) (14.6k deg2) (14.8k deg2)

1 89.79 88.40 13.40 3.63
2 10.20 11.59 67.32 14.91
3 0.01 0.01 18.40 55.85
4 0.0 0.0 0.87 23.14
5 0.0 0.0 0.01 2.34
6 0.0 0.0 0.0 0.12
7 0.0 0.0 0.0 0.01

and 400 on blank sky locations (sky fibres) in each exposure, with an equal number

per petal, for flux calibration and sky subtraction.

The observation strategy that will be used in the BGS is still to be chosen.

We assume a strategy in which the 3 complete passes are observed sequentially.

Each pass consists of ∼ 2000 tiles positioned over the entire survey footprint, with

overlaps between neighbouring tiles. In the first pass, the tile centres are positioned

on the sky with an icosahedral tiling. The tiling for subsequent passes is identical,

except with a rotation on the sky, which fills in the missing area due to gaps in the

focal plane (docDB-7171). The percentage of the survey footprint that is covered

by N overlapping tiles after each full pass, and also after 90% of the first pass2,

is summarised in Table 4.1. After 1 pass, ∼ 90% of the footprint is covered by a

single tile. This is greatly reduced after subsequent passes, with ∼ 80% covered by

3 or more tiles at the end of the survey. These numbers take into account the gaps

in the focal plane.
1https://desi.lbl.gov/DocDB/cgi-bin/private/ShowDocument?docid=717
290% of 1 pass is chosen as a realistically incomplete dataset, representing what might be

available one third of the way through the survey, where certain fields are missed due to observing
conditions.
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Figure 4.3: Footprint of the DESI BGS, which covers 14,800 square degrees.

Colours indicate the 100 jackknife regions.

4.2.2 Robotic Fibre Positioners

Each pointing of DESI, or tile, consists of a total of 5,000 fibres, arranged on the

focal plane in 10 wedge-shaped ‘petals’ (Schubnell et al., 2016). Each individual

fibre is controlled by a robotic fibre positioner which can rotate on two arms,

allowing the fibre to be placed on any object within a unique circular patrol region

(see e.g. figure 3.11 of DESI Collaboration et al., 2016b), with a patrol radius

corresponding to an angle on the sky of Rpatrol = 1.48 arcmin (0.0247 deg) (at

z = 0.2, this is a comoving separation of 0.25 h−1Mpc). The arrangement of fibres

is illustrated in Fig. 4.4. There is a small overlap between the patrol regions of

neighbouring fibres, and there are gaps between petals which cannot be reached

by a fibre. The ‘missing’ squares around the edge of the tile are the location of

the guide focus arrays. Each petal also contains 10 fiducials which provide light

sources for the fibre view camera to calibrate fibre positioner placement (DESI

Collaboration et al., 2016b).
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Figure 4.4: A single DESI tile, showing the arrangement of fibres in the focal

plane, split into 10 petals. The blue circles indicate the patrol area of each fibre.

The holes within each petal are the locations of the fiducials, which provide a light

source for the fibre view camera to calibrate the placement of the fibre positioners.
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4.2.3 Fibre Assignment Algorithm

To assign fibres to targets, each potential target object is first assigned a primary

priority, which is an integer that is determined by the priority tier of the object,

e.g. all priority 1 galaxies have the same primary priority, which is greater than

the priority 2 galaxies. A uniform random sub-priority in the range (0, 1) is then

generated for each object, and the total priority is the sum of the primary and

sub-priorities. Fibres are ordered by the highest priority object in their patrol

region (from highest to lowest), and are looped through in this order. Each fibre

is assigned to the object in its patrol region with the highest priority it is possible

for it to target. With this scheme, the assignment of fibres to objects in the same

priority tier is randomized, but if a high priority object competes for a fibre with

a low priority object, the high priority object will always be assigned a fibre at the

expense of the low priority object. If fibres are instead looped through in a fixed

order, certain fibres would always have a high priority, and be assigned to a galaxy

before its six neighbouring fibres, potentially preventing them from ever targeting

certain objects due to fibre collisions.

In the current survey strategy, the entire survey is split into several epochs. In

each epoch, tiles are selected by a survey planning algorithm, which determines

the sequence of tiles based on date and survey conditions. The selected tiles then

go through the fibre assignment algorithm. The fibre assignment algorithm loops

through each tile, in a fixed order, assigning fibres to objects. At the end of this

loop, there is some redistribution of fibres so that

1. the total number of targets observed is maximized

2. there are the required number of standard stars and sky fibres

3. fibres that are unused are uniformly distributed over tiles.

After fibre assignment, at the end of the epoch, galaxy priorities are updated
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depending on whether the redshift measurement was successful or unsuccessful.

The updated galaxy priorities is then used in the next epoch. (docDB-27421).

In order to make unbiased 2-point galaxy clustering measurements using the

Bianchi & Percival (2017) scheme, each pair of objects in the parent sample must

have a non-zero probability of being targeted (see Section 4.4.1.3). To make sure

as many pairs as possible can be targeted, we do the following:

4.2.3.1 Dithering tile positions

In regions covered by a single tile, if there are two priority 1 galaxies in the unique

patrol region of a single fibre, that fibre will target the galaxy with the highest

random sub-priority, but it can never target both, so the pair will always be missed.

This can be mitigated by dithering the tiling of the entire survey in each real-

ization of the fibre assignment algorithm, i.e. randomly rotating the whole 3-pass

set of survey tiles by a small angle (of the order of Rpatrol). This is entirely equi-

valent to keeping the tiling in each realization fixed, and rotating the positions

of the galaxies on the sky. In some of these random dithers, the two objects in

an untargetable pair will be split between two neighbouring fibres, giving the pair

a non-zero probability of being targeted. Since tile centres are uncorrelated with

large-scale structure, galaxy pairs of any separation in any environment are equally

likely to be targeted in each realization, and therefore it is valid to average over

realizations to estimate the probability. To dither the tile positions, a random

rotation axis is chosen, which is uniformly distributed. The tile centres are then

rotated around this axis by a small angle, which we choose to be 3 times the fibre

patrol radius.

The dithering of the tile positions is only done when applying the pair weighting

correction described in Section 4.4.1.3. When assigning fibres to objects in the real

survey, the rotation angle is set to zero.
1https://desi.lbl.gov/DocDB/cgi-bin/private/ShowDocument?docid=2742
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4.2.3.2 Priority 2 galaxies

Priority 1 galaxies always have a higher priority than priority 2 galaxies, so if it is

possible for a fibre to be placed on an unobserved priority 1 galaxy, it will always

target that galaxy, regardless of how many priority 2 galaxies are in the same patrol

region. This means that a significant fraction of priority 2 galaxies in regions with

a high density of priority 1 galaxies will always be missed.

One way of sampling these missing priority 2 galaxies is, in each fibre assignment

realization, to randomly promote a certain fraction of priority 2 galaxies to the same

priority as the priority 1 galaxies. This gives pairs containing at least one priority

2 galaxy in over-dense regions a small, but non-zero probability of being targeted

(see Fig. 4.5).

The version of the fibre assignment algorithm we use is 0.6.0.1

4.2.4 Survey Simulations

To quantify incompleteness due to fibre assignment and assess correlation func-

tion correction methods, we run the fibre assignment algorithm on a BGS mock

catalogue from the Millennium-XXL (MXXL) simulation, described in Chapter 3.

This is a halo occupation distribution (HOD) mock, which contains galaxies to

r = 20 over the same redshift range as the BGS, and is constructed to reproduce

the luminosity function and clustering measurements from SDSS (Blanton et al.,

2003; Zehavi et al., 2011) and GAMA (Loveday et al., 2012; Farrow et al., 2015).2

The magnitudes in this catalogue are in the SDSS r-band. These are converted

to the DECam r-band (which is used in the DESI target selection) using

rDECam = rSDSS − 0.03587− 0.14144(r − i)SDSS (4.1)
1https://github.com/desihub/desitarget
2The MXXL mock is available at http://icc.dur.ac.uk/data/ and https://tao.asvo.org.

au/tao/

105

https://github.com/desihub/desitarget
http://icc.dur.ac.uk/data/
https://tao.asvo.org.au/tao/
https://tao.asvo.org.au/tao/


4.2.4. Survey Simulations

(docDB-17881). Since the mock catalogue does not contain r−i colours, we assume

a mean colour of (r − i) = 0.4. To make sure the priority 1 and 2 galaxies have

number densities of 818 deg−2 and 618 deg−2, we define priority 1 and 2 galaxies

using the magnitudes rDECam = 19.452 and rDECam = 19.925.2

The mock is first cut to the set of galaxies which are within the patrol radius

of a fibre (with no dither), and therefore could potentially be assigned a fibre.3 We

run 2048 random realizations of the fibre assignment algorithm (∼ 500 CPU hours),

with the full 3 passes of tiles to simulate the complete survey. From the survey

simulation output, it is also possible to determine which galaxies were assigned

fibres in the first or second pass, allowing us to simulate a more incomplete survey

without having to re-run the fibre assignment code. In addition to the full 3 passes,

we also determine which galaxies are targeted in 1 pass, with a random 10% of tiles

missing (which are the same tiles in each realization), to simulate a dataset that

might realistically be achieved after 1/3 of the duration of the survey with a survey

strategy that prioritizes area (i.e. a strategy where after 1/3 of the duration, pass

1 is completed, as opposed to a strategy where 3 passes are completed in only 1/3

of the survey area). Removing tiles reduces the overall area of the footprint and

increases the fraction of the remaining area that is covered by a single tile.

In each run of the fibre assignment code, the tile positions are randomly dithered

by an angle 3 times the patrol radius, and a random 10% of priority 2 galaxies are

promoted to the same priority as the bright sub-sample. Unless specified, we will

refer to the bright sub-sample as ‘priority 1’ and the faint sub-sample as ‘priority

2’.

We only consider targeting incompleteness caused by the fibre assignment al-

gorithm. Redshift incompleteness due to redshift measurement failures, and the
1https://desi.lbl.gov/DocDB/cgi-bin/private/ShowDocument?docid=1788
2These number densities are chosen to match assumptions made in earlier survey simulations

(J. Tinker, private communication).
3In our clustering analysis we account for the regions of sky this process discards by applying

the same criterion to the corresponding random catalogue. This differs from Bianchi et al. (2018),
in which the random sample covers the full survey volume.
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effects of weather, are left for future work.

4.3 Fibre Assignment Completeness

For a small region of sky, Fig. 4.5 shows the positions of targeted and untargeted

galaxies in the BGS mock with the fibre patrol regions superimposed. This region

is at the edge of the survey, and is mostly covered by a single tile, shown in blue,

with neighbouring tiles in different colours. On the scale of the fibre patrol regions,

the surface density of galaxies varies greatly. Some fibres have zero galaxies in their

patrol region, leaving them free to target Milky Way stars, while fibres in dense

regions can have 10 or more galaxies within their patrol region. It is clear to see

that in dense regions, the fibre assignment completeness will be low, since only one

galaxy can be assigned a fibre out of many potential targets. More galaxies can

be targeted if there are multiple tile overlaps, which will make the completeness

higher. In low density regions, the completeness will be very high, since if there is

only 1 galaxy within a fibre patrol region, the fibre will always be placed on that

galaxy.

Fig. 4.6 shows the position of targeted and untargeted galaxies in a larger

region of the survey, after 3 passes, where the galaxies are in the redshift range

0.08 < z < 0.12. Both panels show the same region of sky, where the overlapping

grey shaded circles indicate each DESI tile (ignoring the gaps in the focal plane).

Objects assigned fibres are shown as the blue points in the upper panel, while the

red points in the lower panel are the objects which fail to be assigned a fibre. The

untargeted galaxies in the lower panel are mostly situated within massive haloes

(indicated by the black circles), and are more concentrated towards the centre,

compared to the targeted galaxies in the upper panel. Again, this shows that the

completeness will be low in high density regions.

The completeness due to surface density is quantified in Fig. 4.7. The upper

panel shows the average completeness as a function of surface density, after 3
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Figure 4.5: A zoom in on a small section around the edge of the survey footprint of

one survey simulation, showing the positions of BGS galaxies relative to fibre patrol

regions. This survey simulation has zero dither, but 10% of priority 2 galaxies are

randomly promoted. Shaded circles indicate the patrol region of each fibre, with

each neighbouring tile in a different colour. White regions cannot be reached by a

fibre. Circles indicate galaxies which are successfully assigned a fibre, while crosses

show untargeted galaxies. The bright priority 1 sample is shown in black, and the

faint priority 2 sample is in purple. Promoted priority 2 galaxies are shown in red.
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Figure 4.6: Position of DESI tiles, with radius 1.605 degrees, after 3 passes in

a small area of the survey. Darker shades of grey indicate a greater number of

overlapping tiles. Top panel: blue points show the positions of galaxies from the

BGS mock catalogue in the redshift range 0.08 < z < 0.12 which have been assigned

a fibre. Black circles indicate the virial radii of halos with halo mass Mhalo >

1013 h−1M�. Bottom panel: as above, but showing the positions of galaxies which

have failed to be assigned a fibre.
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passes, in healpix pixels (Górski et al., 2005) with area 0.84 deg2 (Nside = 64),

separately for all galaxies, and for priority 1 and 2 galaxies. The completeness

decreases monotonically as the surface density of galaxies increases. Also, since

priority 1 galaxies are preferentially targeted, they have a higher completeness

than the priority 2 galaxies. The vertical dotted line indicates a surface density of

1436 deg−2, which is the average surface density of all (priority 1 and 2) galaxies,

and horizontal dotted lines show the median completeness in healpix pixels, which

is 88%, 94% and 80% for all, priority 1, and priority 2 galaxies respectively. The

lower panel shows a histogram of the total number of galaxies, which peaks close

to the average surface density. The black dotted curve shows the histogram of the

densities of individual healpix pixels, scaled up by a factor of 1000. The unscaled

black dotted curve, multiplied by the average number of galaxies per pixel, produces

the black solid curve. The variance in the surface density of pixels depends on the

resolution. For pixels with area 13.4 deg2 (Nside = 16), which is larger than the

area of each tile, the surface density varies from the mean by a few hundred objects

per square degree.

The fibre assignment completeness of galaxies in the BGS is driven by the

surface density of galaxies, since it is not possible to place a fibre on every galaxy if

the density of galaxies is greater than the density of fibres.1 With multiple passes,

the same area of sky will be re-observed several times, enabling some of these

previously missed galaxies to be targeted. After the full 3 passes of the BGS, most

of the footprint (∼ 80%) will have been covered by 3 or 4 tiles (see Table 4.1), but

the targeted catalogue will still be incomplete in high density regions.

The upper panel of Fig. 4.8 shows the redshift distribution of galaxies in the

BGS, before and after fibre assignment (solid and dashed curves). The lower panel

shows the targeting completeness as a function of redshift, where the horizontal

dotted lines indicate the average completeness. For the priority 1 and the priority
1Each tile of 5000 fibres has a radius of 1.605 deg, which corresponds to a fibre surface density

of ∼ 600 deg−2.
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Figure 4.7: Top panel: average fibre assignment completeness as a function of the

surface density of all BGS galaxies, in healpix pixels of area 0.84 deg2 (Nside = 64)

for all galaxies (black), priority 1 (red) and priority 2 (blue), after 3 passes with

10% of priority 2 galaxies promoted. The vertical dotted line indicates the average

surface density of the survey (1436 deg−2), and horizontal dotted lines indicate the

median completeness for the three samples (88%, 94% and 80% for all, priority 1

and priority 2 galaxies respectively). Bottom panel: histogram of the total number

of objects in bins of surface density. The dotted black curve shows the number of

healpix pixels, scaled up by a factor of 1000.
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2 galaxies, this curve is non-monotonic. This is because haloes at high redshifts

contain few galaxies brighter than the magnitude limit. These galaxies will not

greatly enhance the surface density, and the completeness is high. At intermediate

redshifts, many more galaxies per halo can be detected in haloes of the same

mass, which will result in a much greater enhancement of the surface density,

and therefore a lower completeness. At low redshifts, haloes of the same mass will

contain an even greater number of galaxies brighter than the magnitude limit, but

since they are nearby, they subtend a relatively large angle on the sky, and the

perturbation to the surface density is low again. For the complete galaxy sample,

the completeness is relatively flat at high redshifts, since the fraction of priority 2

galaxies increases with redshift.

The mean completeness (which differs slightly from the median completeness

shown in Fig. 4.7) is ∼ 86%, while for priority 1 and 2 galaxies it is ∼ 92% and

∼ 78% respectively. These figures are for the case where 10% of the priority 2

galaxies are given the same priority as the priority 1 galaxies. If there was no

promotion of priority 2 objects, the priority 1 galaxies would be more complete,

(∼ 93%) but at the expense of the low priority galaxies (see Table 4.3).

Fig. 4.9 shows the completeness of galaxies in haloes, as a function of the

distance from the centre of their host halo, for haloes in different mass bins around

the peak of the redshift distribution (0.15 < z < 0.25). The panels, from top to

bottom, show the completeness for haloes with masses M200mean ∼ 1015h−1Mpc,

M200mean ∼ 1014h−1Mpc, M200mean ∼ 1013h−1Mpc, and M200mean ∼ 1012h−1Mpc

respectively, plotted to the virial radius (R200mean). M200mean is defined as the

mass enclosed by a sphere of radius R200mean, in which the average density is 200

times the mean density of the Universe. Close to the centre of large haloes, the

surface density of galaxies is very high, and therefore the completeness is very low.

For 1012h−1Mpc haloes, the average completeness near the centre is ∼ 60%, but

for the most massive haloes, this completeness is much lower. The spike close to

the centre of M ∼ 1015h−1Mpc haloes is due to noise. When measuring two-point
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Figure 4.8: Top panel: Redshift distribution of galaxies before and after fibre

assignment (solid and dashed curves), with the full 3 passes of tiles. The complete

sample of BGS galaxies is shown in black, while priority 1 and priority 2 galaxies

are in red and blue respectively. Bottom panel: Completeness as a function of

redshift for all, priority 1 and priority 2 galaxies. Horizontal dotted lines indicate

the mean completeness (86%, 92% and 78% for all, priority 1, and priority 2 galaxies

respectively).
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clustering statistics, as we show in Section 4.4.3, the effect of this incompleteness

can be corrected, and this is unbiased so long as each galaxy pair has a non-

zero probability of being targeted. Since the completeness in clusters is low, care

must be taken, for example, identifying clusters and voids and estimating velocity

dispersions. The incompleteness must also be taken into account when estimating

higher-point statistics. Our realizations of the fibre assignment algorithm could be

used to develop correction procedures for these statistics.

The total number of objects targeted, and the completeness after each pass,

is shown in Table 4.2 for all galaxies, priority 1 and 2 galaxies, and the subset of

priority 2 galaxies that are promoted to the same priority as priority 1. Since faint

galaxies are less clustered than bright galaxies, the promoted priority 2 galaxies

have a higher completeness than the priority 1 galaxies. Most of the promoted

galaxies are targeted in the first pass.

Table 4.3 shows how the final completeness after 3 passes is affected by the

fraction of objects in the faint sub-sample promoted to high priority. The priority

1 sample is most complete with zero promotion (92.9%), but the priority 2 sample

is least complete (77%), and certain priority 2 objects will always be missed due to

conflicts with high priority objects. As the fraction of priority 2 objects is increased,

the percentages converge to the average completeness of ∼ 86%.

4.4 Correcting Two-Point Clustering Measurements

4.4.1 Mitigation Techniques

The two-point correlation function at separation ~s can be estimated using the

estimator of Landy & Szalay (1993),

ξ(~s) = DD(~s)− 2DR(~s) +RR(~s)
RR(~s) , (4.2)

where DD, DR and RR are the normalized data-data, data-random, and random-

random pair counts. If galaxies in the data catalogue are missing, the resulting
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Figure 4.9: Targeting completeness of galaxies in haloes as a function of the

transverse distance from the centre of their respective halo, for haloes in the redshift

range 0.15 < z < 0.25, after 3 passes. The completeness for all galaxies is shown

in black, and for priority 1 and 2 galaxies in red and blue respectively.
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Table 4.2: Table showing the cumulative number of objects targeted after each

pass, in millions, and the completeness, as a percentage. Priority 1 and priority

2 are the intrinsic priorities based on magnitude. Priority 2 (p) is the subset of

priority 2 galaxies that are promoted to have the same priority as the bright priority

1 galaxies. The final row shows the cumulative number of unused fibres which are

available to target Milky Way stars (in millions) after each pass, and the percentage

of fibres which are unused after each pass. A total of ∼ 9 million fibres are available

per pass, excluding standard stars and sky fibres (2,000 pointings, each with 4,500

available fibres).

Sample Pass 1 Pass 2 Pass 3
Ngal % Ngal % Ngal %

All 7.54 35.6 13.78 65.0 18.24 86.0
Priority 1 5.15 42.7 8.84 73.3 11.11 92.2
Priority 2 2.39 26.1 4.95 54.1 7.12 77.8

Priority 2 (p) 0.79 86.2 0.84 92.4 0.85 93.2
Free fibres 1.49 16.5 4.30 23.8 8.89 32.8

Table 4.3: Table showing the number of objects targeted after 3 passes, in millions,

and the completeness, in survey simulations where the percentage of promoted

priority 2 galaxies is varied from 0% to 40%. Priority 1 and 2 galaxies are the

bright and faint sub-samples, and priority 2 (p) are the promoted subset of priority

2 galaxies.

Promotion Priority 1 Priority 2 Priority 2 (p)
% Ngal % Ngal % Ngal %
0 11.12 92.9 7.04 77.0 - -
5 11.15 92.5 7.08 77.4 0.43 93.7
10 11.11 92.2 7.12 77.8 0.85 93.2
15 11.07 91.8 7.17 78.4 1.28 93.1
20 11.02 91.5 7.21 78.9 1.69 92.6
25 11.00 91.1 7.26 79.3 2.11 92.5
30 10.94 90.7 7.30 79.8 2.52 92.0
35 10.89 90.3 7.35 80.3 2.93 91.7
40 10.84 90.0 7.39 80.8 3.34 91.4
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4.4.1.1. Nearest object

correlation function will be biased. Mitigation techniques attempt to recover the

correlation function of the parent sample from the sample of galaxies that are

targeted.

4.4.1.1 Nearest object

We use two different nearest redshift corrections. In the first correction, missing

galaxies are assigned the redshift of the nearest targeted object on the sky (the ap-

proach taken in the SDSS survey analyses in e.g. Zehavi et al., 2005; Berlind et al.,

2006; Zehavi et al., 2011). The catalogue of galaxies is then cut to the volume lim-

ited sample using these redshifts. Some of the untargeted objects will be assigned a

redshift close to the true value, and will be correctly identified as part of the volume

limited sample, but the sample will be contaminated by other galaxies which are

assigned incorrect redshifts. We refer to this correction as ‘nearest redshift’.

In the second correction, each galaxy is first given a weight of 1, and the weight

of a missing galaxy is added to the nearest targeted object on the sky (e.g. in

BAO analysis in the BOSS survey, Anderson et al., 2012, 2014b,a). For example,

a targeted galaxy with no nearby untargeted galaxies would have weight 1. If

there was a close galaxy that was not targeted, the weight would be transferred to

the targeted galaxy, which would now have a weight of 2. We hereafter refer to

this correction as ‘nearest weight’. The nearest weight correction can be seen as

an approximation of the pair weighting method of Section 4.4.1.3 (see Bianchi &

Percival, 2017).

4.4.1.2 Angular upweighting

When estimating the correlation function, galaxy pairs are upweighted by the factor

W (θ) = 1 + w(p)(θ)
1 + w(θ) , (4.3)
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where w(p)(θ) is the angular correlation function of the complete, parent sample of

galaxies, and w(θ) is the incomplete, targeted sample (e.g. the 2dFGRS analysis

of Hawkins et al., 2003). This angular weighting by construction recovers the

angular correlation of the parent sample. This correction makes the assumption

that the targeted and untargeted galaxies are statistically equivalent in each angular

bin, which is not necessarily true, and therefore it may not provide an adequate

correction to the redshift space correlation function.

4.4.1.3 Pair Inverse Probability (PIP) Weights

The PIP weighting scheme (Bianchi & Percival, 2017) upweights each galaxy pair

by the pair weight wij = 1/pij , where pij is the probability that the pair will

be targeted. This probability can be estimated by running the fibre assignment

code Nreal times, where Nreal is of the order of 100s or 1000s. For galaxy i, a

vector ~wi of length Nreal is stored, which contains a 1 if the galaxy is assigned a

fibre, and a 0 otherwise. This vector can conveniently be stored as the bits of an

integer (or several integers). The pair weight for galaxies i and j can be written

as the dot-product of these vectors, but can be efficiently calculated using bitwise

operations,

wij = Nreal
~wi · ~wj

≡ Nreal
popcount(~wi&~wj)

, (4.4)

where & is the bitwise ‘and’ operator, and popcount is a bitwise operator which

sums together the bits of an integer.

The corrected DD counts are calculated from summing the pair weights of

galaxies in the separation bin ~s,

DDw(~s) =
∑

~si−~sj≈~s
wij

DD(p)(θij)
DDw(θij)

, (4.5)

where DD(p)(θij) are the angular DD counts of the parent sample, and DDw(θij)

are the angular DD counts of the targeted sample but weighted by the pair weights
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wij (from Eq. 4.4), i.e.

DDw(θ) =
∑

∆θij≈θ
wij . (4.6)

A similar correction is also applied to the DR counts, but this can be done using

individual galaxy weights (see Section 4.4.1.4),

DRw(~s) =
∑

~si−~sj≈~s
wi
DR(p)(θij)
DRw(θij)

. (4.7)

In the case where there are no untargetable pairs the PIP estimator is unbiased1

without this additional angular weighting factor. In this case the ensemble mean

of the angular weighting factor is unity and its inclusion is to reduce the variance

in the estimator (see Percival & Bianchi, 2017). However, in the case where there

are untargetable pairs, the PIP estimator without this factor is biased.2 Including

the angular weighting corrects this bias if, at any separation, the untargeted pairs

are an unbiased sample of all the pairs of that separation. The accuracy of this

assumption depends on the details of the targeting algorithm. Our results provide

a direct test of this for the case of the DESI BGS.

Bianchi et al. (2018) apply the PIP weighting scheme to a DESI ELG mock

catalogue, and are able to recover unbiased clustering measurements. However,

they do not dither the tile positions, and rely entirely on the angular weighting

term to recover the small scale clustering. They also only include ELGs in their

catalogue, so do not consider objects with different priorities.

4.4.1.4 Individual Inverse Probability (IIP) Weights

Each galaxy is given an individual weight, which is the inverse of the probability

that the galaxy will be targeted, wi = 1/pi. This can be estimated from the same
1Pair weighting takes into account correlations between galaxies in a pair, and is unbiased

if each pair has a non-zero probability of being targeted. E.g. if a pair is targeted n times in
Nreal fibre assignment realizations, its weight is Nreal/n, and it is targeted in n/Nreal realizations,
therefore the average weight is 1.

2Note that since the pairs with zero probability never enter the pair counts, the expectation
value of the estimator is the clustering of the non-zero probability pairs.
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bitwise vectors used to estimate the pair probabilities,

wi = Nreal
popcount(~wi)

. (4.8)

If galaxies are given individual weights, the weight given to a pair of galaxies is

the product of these two weights, wij = wiwj . This pair weight does not take into

account any correlation between galaxy pairs, and will not produce an adequate

correction on small scales where pairs are highly correlated.

4.4.2 Clustering Estimates

Correlation functions are calculated using the publicly available parallelized cor-

relation function code twopcf1, which contains an efficient implementation of the

PIP weighting scheme. The code can also efficiently calculate jackknife errors in a

single loop over the galaxy pairs (Stothert, 2018). To create the random catalogue,

we uniformly generate random points on the sky, only keeping those that fall within

the patrol region of a fibre, with no dither, so that the random catalogue covers the

same footprint as the input catalogue. For illustrative purposes to compare correl-

ation function correction techniques, we assume the parent volume limited sample

is known, and assign each object in the random catalogue a redshift randomly

sampled from this distribution. This ensures that the number density of objects

in the random catalogue has the same evolution as the data catalogue. In the real

survey, the parent sample is not known beforehand, but the redshift distribution

can be determined by weighting the redshift distribution of the targeted sample

by the individual galaxy weights. We have checked, and the scatter between fibre

assignment realizations of the weighted n(z) is within 1%. Note that in the case of

a flux limited catalogue, the parent sample is known, and this is not an issue.

We also normalize the correlation function using the total number of objects in

the parent sample. Again, in the real survey, this is not known, and the normaliz-
1https://github.com/lstothert/two_pcf
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4.4.3. Results

Table 4.4: Definition of the main and extended volume limited samples. Both

samples use the magnitude range −22 < Mr − 5 log h < −21, where the absolute

magnitudes are in the DECam r-band, and k-corrected to z = 0.1. zmin and zmax

are the minimum and maximum redshifts, Ngal is the total number of galaxies is

the sample, fP1 is the fraction of priority 1 galaxies, and n̄ is the average number

density.

sample zmin zmax Ngal fP1 n̄ (h3Mpc−3)
main 0.09 0.30 1,532,903 1.00 1.74× 10−3

extended 0.09 0.35 2,655,707 0.94 1.94× 10−3

ation factor should be obtained from the pair weights. However, we find that the

difference between the normalization factor obtained from the parent sample and

from the pair weights is small (a factor . 10−3).

4.4.3 Results

We run the fibre assignment algorithm (Section 4.2) 2048 times on the BGS mock in

order to generate weight vectors for each galaxy. In each realization, a random set

of 10% of the priority 2 galaxies are promoted to priority 1, and the tile positions are

randomly dithered by an angle 3 times the patrol radius (3Rpatrol = 4.45 arcmin).

We apply corrections to the clustering measured from two volume limited samples,

defined in Table 4.4. The maximum redshift of the main sample is chosen such

that the sample only contains priority 1 galaxies, while the maximum redshift is

increased for the extended sample so that it also includes priority 2 galaxies. The

number densities of the two samples differ slightly, due to evolution of the number

density with redshift in the mock.

4.4.3.1 Galaxy Weights

The fraction of galaxies assigned a fibre at least once after Nreal realizations of the

fibre assignment algorithm is shown in Fig. 4.10 for priority 1 and 2 galaxies, with
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4.4.3.1. Galaxy Weights

1 and 3 passes. To achieve a completeness of 99.99% for priority 1 galaxies with

3 passes, only 20 realizations are needed, while the same completeness for priority

2 galaxies requires around 180 realizations. With only a single pass of tiles, the

number of realizations needed increases to 50 and 400 for priority 1 and 2 galaxies

respectively. There are ∼ 10 galaxies that are not assigned a fibre in any of the

2048 realizations. This number is so small that it will have a negligible effect when

applying the pair weighting correction to clustering measurements. This number of

realizations is sufficient to estimate accurate pair probabilities for the vast majority

of galaxy pairs. However, note that the number of galaxies with zero probability,

can only be used to infer a lower bound for the number of zero probability pairs.

The distribution of IIP and PIP weights for the main volume limited sample

is shown in Fig. 4.11. Most of the priority 1 galaxies are targeted in every fibre

assignment realization, and so the distribution of individual weights peaks at unity,

with a tail extending to higher weights, due to objects in regions around the edge of

the survey that are only covered by a single tile and have a low probability of being

targeted. The pair weight distribution has a similar shape, but extends to higher

weights. With only one pass, this distribution is very different, since ∼ 90% of the

survey is covered by a single tile. There are no objects targeted in every realization,

and the individual weight distribution peaks at weight ∼ 2, while the pair weight

distribution peaks at ∼ 5, with a tail extending out to very large weights.

Fig. 4.12 shows the ratio of the total DD counts in angular bins with PIP and

IIP weights, for the main volume limited sample, after 1 and 3 passes, illustrating

how the correlation between pairs varies as a function of angular separation. On

small scales, this ratio is greater than 1, indicating that the targeting probabilities

are correlated, and wij > wiwj . At intermediate scales, there is a small negative

correlation, which asymptotes towards 1 on large scales, where wij ∼ wiwj . How-

ever, even at 10 deg, there is a very weak correlation, and the ratio is offset from

1 by ∼ 10−5. The size of the small scale correlation depends on the galaxy sample

and number of passes. After 3 passes, the DD counts differ by ∼ 4%. After only
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Figure 4.10: Completeness of galaxies that are assigned a fibre at least once after

N random realizations of the fibre assignment algorithm. The full flux limited

priority 1 and priority 2 samples are shown in red and blue respectively, where

solid lines are with the full 3 passes of tiles, and dashed lines a single pass. In each

realization, 10% of priority 2 galaxies are randomly promoted to priority 1, and

the tile centres are randomly dithered by 3 times the patrol radius.

single pass, since most of the area has single tile coverage, correlations are much

larger, and the ratio of DD counts is ∼ 1.8.

4.4.3.2 Comparison of mitigation techniques

Fig. 4.13 compares the results of applying several commonly used correction meth-

ods to the monopole of the redshift space correlation function of the main volume

limited sample, after 3 passes. Each correction is applied to a single realization of

the fibre assignment algorithm, and errors are estimated from 100 jackknife samples
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Figure 4.11: Cumulative distribution of individual galaxy weights (solid curves)

and pair weights (dashed curves) of objects in the main volume limited sample with

1 (blue) and 3 (red) passes of tiles. For the individual weights, the median, 90th

and 99th percentiles are 1.03, 1.44 and 3.04 respectively with 3 passes, and 2.54,

4.33 and 7.70 with a single pass. The same percentiles for the pair weights are 1.12,

1.91 and 4.39 (3 passes) and 6.50, 14.12 and 29.68 (1 pass). After 3 passes. 16%

of objects are targeted in every realization, and have a weight exactly equal to 1,

while 2.7% of pairs are targeted in every realization.
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Figure 4.12: Ratio of angular DD counts calculated with pairwise, PIP, weights to

that with individual IIP weights, for galaxies in the main volume limited sample,

after the full 3 passes of tiles (blue), and after 90% of 1 pass (yellow). The solid

curves are the average of 50 fibre assignment realizations, where the shaded regions

indicate the 1σ scatter. The black horizontal dashed line indicates a ratio of unity.

The ratio on small scales after 1 pass is ∼ 1.8.

(see Fig. 4.3). The jackknife error is an estimate of the uncertainty in the clustering

measurements due to the finite survey volume. The data is split into 100 regions

of equal area, and the correlation function is calculated with each region omitted.

The jackknife errors are taken from the square root of the diagonal terms of the

covariance matrix. The ratio to the complete parent sample is shown in the lower

panel. The purple curve shows the result of applying angular weighting, which

by construction, reproduces the angular correlation function of the parent sample.

However, this does not provide a satisfactory correction to the monopole. At scales

of ∼ 10h−1Mpc, it differs from the parent sample by ∼ 2%, which is approxim-
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4.4.3.2. Comparison of mitigation techniques

ately twice the statistical error in the complete sample. At small scales, close to

0.1h−1Mpc, it differs by almost 10%, while the statistical error in the parent sample

is ∼ 5%.

Assigning missing objects the redshift of the closest targeted object on the

sky, shown by the green curve in Fig. 4.13, does better than angular weighting at

large scales, correcting the monopole to a level of ∼ 1%. However, this correction

produces a strong artificial boost to the clustering at small scales. Some of the

untargeted galaxies will be members of clusters, and if the nearest targeted object

is also a member of the same cluster, the redshift it is assigned will be close to the

true redshift. However, if two galaxies at different redshifts are close together on

the sky by chance, the error in the assigned redshift could be large. This chance

projection of galaxies boosts the redshift space monopole at 0.1h−1Mpc by an order

of magnitude.

Transferring the weight of missing galaxies to the nearest targeted galaxy on

the sky, which is shown by the red curve in Fig. 4.13, produces a correction at

large scales that is within 1%. The total weight of galaxy clusters is correct, and

so the large-scale clustering agrees with the parent sample. However, since small

separation pairs are missing, the clustering on small scales is low.

The PIP correction, shown by the brown curve in Fig. 4.13, produces a cor-

rection within ∼ 1% at all scales, even on small scales below a few h−1Mpc where

other correction methods fail. Here, the correction is only applied to a single fibre

assignment realization, but in the next section we apply the same correction to

many realizations to check that is unbiased.

Note that only the monopole is shown in Fig. 4.13. We show in Section 4.4.3.4

the the PIP scheme also works well for the quadrupole and hexadecapole. The

other correction methods explored in this section fare less well for the higher order

multipoles, only showing agreement with the parent sample on scales larger than

a few 10s of h−1Mpc.
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The projected correlation function,

wp(rp) = 2
∫ πmax

0
ξ(rp, π)dπ, (4.9)

is shown in Fig. 4.14, with the same corrections applied, and using πmax = 120h−1Mpc.

The two nearest redshift corrections are able to correct the projected correlation

function to within 1% down to a scale of ∼ 0.5h−1Mpc. Since the projected correl-

ation function integrates along the line of sight, it reduces the impact of galaxies

which are assigned the wrong redshift. Again, the PIP weighting produces a cor-

rection to within ∼ 1% on all scales.

4.4.3.3 Angular clustering with PIP weights

We now apply the PIP weighting to the angular correlation function. By construc-

tion, the angular correlation function of the parent sample is recovered exactly

when the pair weighting and angular correction of Eq. 4.5 are both applied. How-

ever, it is interesting to see how well the PIP weighting on its own can recover the

angular correlation function for a volume limited sample, where in the real survey,

the complete parent sample would not be known. To check that the correction is

unbiased, we average the result of applying the correction to 50 fibre assignment

realizations (which are a subset of the 2048 realizations used to estimate the pair

weights). The result, after 3 passes, is shown in Fig 4.15. The left panels show the

angular correlation function of the main volume limited sample, with the ratio to

the complete parent sample in the bottom panel. The parent sample is shown in

blue, where the shaded region is the statistical error, estimated from 100 jackknife

samples. The yellow curve shows the correlation function of galaxies assigned fibres

in a single realization of fibre assignment, illustrating the size of the correction that

needs to be made. The green curve illustrates the result of applying only the pair

weighting, without the angular upweighting term, and is the mean of 50 realizations

of fibre assignment. The shaded region indicates the 1σ scatter between these real-

izations. This is the additional error due to measuring the clustering from a subset
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Figure 4.13: Monopole of the redshift space galaxy correlation function of the

main volume limited sample, with different corrections applied. The complete

parent sample is shown in blue, targeted with no correction in yellow, assigning

missing galaxies the redshift of the nearest targeted galaxy on the sky in green,

transferring the weight of missing galaxies to the nearest targeted galaxy in red,

angular upweighting in purple, and PIP weighting in brown. The two lower panels

show the ratio to the complete parent sample, for different cases. Shaded regions

are errors estimated from 100 jackknife samples. Horizontal black dotted lines

indicate ±1%. For s & 20h−1Mpc, the scatter is almost the same for all methods.
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Figure 4.14: Projected correlation function of the main volume limited sample,

with the same corrections applied as Fig. 4.13. Shaded regions are errors estimated

from 100 jackknife samples.
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of the objects in the parent sample, and we aim for this to be small compared to the

statistical error in the parent sample. On large scales, the pair weighting does an

excellent job of correcting the angular clustering. The mean is unbiased, and the

scatter is within 1% for angular scales between ∼ 0.03 deg and 1 deg. This is much

smaller than the statistical error in the parent sample, which is of the order of a few

percent, increasing on larger scales. However, on small scales, less than 0.5Rpatrol,

there is a small bias of a few percent. This bias is due to pairs of galaxies around

the edge of the survey, in regions covered by only a single tile. Pairs of galaxies

with a very small angular separation in these regions can never be targeted due

to fibre collisions, even when the tiles are dithered. Since these pairs have a zero

probability of being targeted, this results in a bias, which is corrected for by the

angular upweighting term. It is not guaranteed that this angular correction will

be accurate since, for example, missing pairs could occur preferentially in triplets,

and therefore be statistically distinct from targeted pairs of the same separation.

However, we find that this is not the case, and the missed pairs fall in the regions

of single tile coverage. Alternatively, the edge of the survey could be trimmed,

removing the regions covered by a single tile, which is only a small percentage of

the footprint (∼ 3%, see Table 4.1). Another alternative strategy is discussed in

Section 4.4.4.

For comparison, the purple curve shows the result of applying individual galaxy

weights to the same set of realizations. At small scales, applying individual weights

results in a larger bias than pair weights, and this bias extends to larger angular

scales. This is because individual galaxy weights do not take into account any

correlation between galaxy pairs. For example, if it is difficult to target both

galaxies in a pair due to fibre collisions, but relatively easy to target one or the

other individually, calculating the pair probability from individual probabilities is

biased since pipj > pij . On large scales, if there are no correlations between pairs,

pipj = pij , and using individual weights should produce the same result as pair

weights. However, in Fig 4.15, there is still a small difference between the green
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4.4.3.3. Angular clustering with PIP weights

and purple curves on large scales. Even at scales of ∼ 10 deg, there is still some

correlation between galaxy pairs, although this is very small, with a fractional

difference in the DD counts of ∆DD/DD ∼ 10−5. The fractional error in ξ is

given by
∆ξ
ξ
≈ ∆DD

DD

(1 + ξ)
ξ

. (4.10)

On large scales, ξ ∼ 10−3, which results in a fractional difference of ∆ξ/ξ ∼ 1%,

which is a small, but noticeable difference in the correlation function.

The right hand panels of Fig. 4.15 shows the result of applying the same cor-

rections to the extended volume limited sample, which also contains priority 2

galaxies. By giving the priority 2 galaxies a small probability of being promoted

to priority 1, this gives every pair of priority 2 galaxies a non-zero probability of

being targeted, and therefore applying the pair weighting correction produces an

unbiased result on large scales. There is still a small bias on small scales for the

same reason as in the main sample.

Fig. 4.16 shows the angular correlation function after only a single pass of tiles,

with a random 10% of the tiles missing, for the same volume limited samples. With

only 1 pass of tiles the catalogue of fibre assigned galaxies is much less complete,

and a larger correction is required.

Since most of the footprint is covered by a single tile (∼ 90%, see Table 4.1),

the bias on scales less than 0.5Rpatrol is much larger than after 3 passes. Since

there are overlaps between neighbouring tiles, the pair counts on these scales are

low, but not zero. Pair weighting must be combined with angular upweighting in

order to correct the clustering on these scales.

On larger scales, pair weights on their own are able to produce an unbiased

correction, although the scatter between realizations is larger than with 3 passes,

but on scales above 1 degree this scatter is approximately half of the statistical

error of the parent sample.
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Figure 4.15: Angular correlation function for the main volume limited sample that

only contains priority 1 galaxies (left), and the extended volume limited sample that

also contains priority 2 galaxies (right), after the full 3 passes of tiles. The bottom

panels show the ratio to the complete parent sample. The parent sample is shown

in blue, where the shaded region indicates the error from 100 jackknife samples.

The yellow curve illustrates the angular correlation function from one realization

of fibre assignment, with no correction. Green and purple curves are the results

of applying pair weighting and individual galaxy weighting, respectively, averaged

over 50 realizations. The shaded regions indicate the scatter between these 50

realizations. Vertical dotted lines indicate the angular scale of Rpatrol and 0.5Rpatrol

and the horizontal lines indicate ±1%.

132



4.4.3.4. Correlation function multipoles with PIP weights

10 3

10 2

10 1

100

101

w
(

)
main Parent

Targeted
PIP
IIP

extended

10 2 10 1 100 101

(deg)
0.85

0.90

0.95

1.00

1.05

1.10

w
(

)/
w

pa
r(

)

10 2 10 1 100 101

(deg)

Figure 4.16: As Fig. 4.15 but after only 1 pass of tiles, and with 10% of the tiles

missing. This illustrates the data that might have been obtained after one third of

the complete survey, with a survey strategy that prioritized area over completeness.

4.4.3.4 Correlation function multipoles with PIP weights

The Legendre multipoles of the redshift space correlation function for the main

sample after 3 passes are shown in Fig. 4.17. At large scales, the PIP weighting

on its own is unbiased and does a good job of correcting the measured clustering.

Between 1 and 10 h−1Mpc, the scatter between realizations in the monopole is well

within 1%, and even for the hexadecapole the scatter is around 1%. Note that the

scatter in the quadrupole and hexadecapole appears to be large at ∼ 1h−1Mpc and

∼ 5h−1Mpc respectively, but this is just because the curves in the upper panels go

through zero.

On small scales, similarly to what was seen in the angular correlation function,

applying the PIP weighting on its own produces a biased result, due to pairs that

cannot be targeted in regions covered by a single tile. Most of this area covered
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by a single tile is located around the edge of the footprint. We again find that

including the angular weighting term corrects for this small bias.

Fig. 4.18 is the same, but for the extended sample. The results look similar

to that of the main sample, showing that including priority 2 galaxies does not

produce any biases.

Figs. 4.19 and 4.20 show the results of applying the same corrections to the same

volume limited samples, but with only 90% of 1 pass of tiles. Since the survey is

much more incomplete, the correction that must be applied is larger. On large

scales, applying the PIP weights on their own produces an unbiased correction,

but with larger scatter between fibre assignment realizations compared to the 3

pass case. On small scales, the bias is much larger for PIP alone, but combining

with angular weighting is able to correct this large small scale bias to within the

errors.

After the full 3 passes of tiles, the scatter between realizations is much smaller

than the statistical error in the parent sample on all scales. With only a single pass,

this scatter is much larger, and on small scales becomes larger than the statistical

error. The scatter is large after 1 pass because the sample is highly incomplete (e.g.

for the main volume limited sample, ∼ 38% of objects are assigned a fibre in each

realization), and most objects have a large weight (the median weight is 2.54, see

Fig. 4.11). After 3 passes, the scatter is much smaller, since the completeness of the

main sample is much higher (∼ 82%), and most objects have a weight close to unity.

90% of the 1 pass survey area is covered by a single tile, and the completeness of

close pairs is very low, due to fibre collisions. Each pair will also have a very large

weight, which results in the very large scatter on small scales. The completeness of

pairs on small scales is much higher with multiple passes, and therefore the scatter

is much smaller.

While the average of many fibre assignment realizations is unbiased, the real

survey is only a single realization, and after 1 pass it is likely that there will be
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a large scatter between the corrected clustering measurements and the true clus-

tering at small scales. Multiple passes are therefore necessary in order to obtain

precise clustering measurements on these scales. On large scales, the scatter is

smaller than the statistical error after 1 pass, so it will be possible to make precise

BAO and large-scale RSD measurements. However, the uncertainty in these meas-

urements will be greatly reduced after the subsequent passes. Multiple passes will

also reduce the incompleteness due to redshift measurement failures, as it will give

these galaxies another chance to be targeted. To make precise small scale RSD

measurements, a single pass is not sufficient.

The shot noise in these galaxy clustering measurements could potentially be

reduced by capping the pair weights at some maximum value. Strictly speaking,

the PIP weighting would no longer be unbiased, but this bias can be reduced by

the angular weighting term, using these capped weights. We find that for the

main sample after 1 pass, capping the weights at a maximum value of 100 (0.01%

of pairs) has a negligible affect on the monopole, but reduces the scatter in the

quadrupole and hexadecapole at scales of ∼ 1h−1Mpc by a few percent. Capping

the weight at 25 (∼ 2% of pairs) introduces systematics, which are not corrected for

completely by the angular weighting. On large scales, there is a negligible change

in the scatter, and the small bias that is introduced is within the errors. On small

scales, this bias is larger, but is still within the large errors.

4.4.4 Discussion

We have shown in the previous section that the PIP weighting scheme, in com-

bination with angular upweighting, is able to produce an unbiased correction to

clustering measurements in the BGS, even for a highly incomplete survey.

One simplifying assumption we have made is that the galaxies in the parent

sample are known. The angular weighting term from Eq. 4.5 includes DD(p), the

angular data-data pair counts of the complete parent sample (and similarly for the
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4.4.4. Discussion

DR counts, DR(p)). For a flux-limited sample, the parent sample is known, but

this is not true in the case of a volume limited sample, since every redshift would

need to be measured to determine an absolute magnitude, and hence which galaxies

belong in the sample. When applying the angular weighting, we have used the true

parent sample, which in the real survey would not be known.

In order to calculate pair weights, we dither the catalogue by a small angle in

each realization of fibre assignment. For galaxies close to the edge of the survey,

in half of the realizations they will fall outside the footprint, which results in these

galaxies having larger weights than galaxies in the centre. In the actual survey,

the dither is zero, which is a special case where no objects fall off the edge, and

is not strictly represented in the ensemble of realizations. However, we find no

measurable bias as only a very small fraction of objects are affected.

An issue that affects the real survey that we have not considered is stellar

contamination. A small fraction of objects in the catalogue of potential targets are

stars that have been misclassified as galaxies. If a fibre is placed on one of these

objects, and a spectrum measured, it can be determined that it is a star and not

a galaxy. Since the PIP weighting scheme can produce an unbiased correction to

clustering measurements of any sub-sample of galaxies, the misclassified stars can

simply be removed when estimating the correlation function. As long as the stars

are included when running the fibre assignment algorithm many times to estimate

the PIP weights, this will produce unbiased clustering measurements.

An alternative way to dither the catalogue would be to place the survey tiling

randomly on the full sky, with a random orientation. This has the advantage

that the undithered catalogue is not a special case, and could be drawn from these

random tile positions. Also, every part of the sky has a non-zero probability of being

in an area of the survey covered by multiple tile overlaps, giving every pair, even at

very small separations, a non-zero probability of being targeted. This means that

the wij pair weights without angular weighting can produce an unbiased correction,

so the correction can be applied without knowledge of the complete parent sample.
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4.4.4. Discussion

However, in many of these fibre assignment realizations, the tiling would cover large

areas of the sky which are outside the BGS footprint. Despite this, we expect that

the total number of realizations needed to accurately estimate pair weights will be

smaller, since the tail of pairs with extremely high weights are much more likely to

be targeted in the realizations where they are covered by multiple tile overlaps.

A similar method to this is used in Mohammad et al. (2018), where in order to

estimate pair weights for galaxies in the VIPERS survey, the parent catalogue is

rotated by angles of either 0, 90, 180 and 270 degrees, and the spectroscopic mask

is moved spatially. The PIP weighting scheme is shown to work well, and this is

the only published example of applying the PIP weights to a real dataset.

With large dithers across the full sky, it is also necessary to modify the definition

of pair weights to take into account that galaxies will fall outside the survey tiling

in many of these realizations of fibre assignment. Consider a perfect survey in

which if two galaxies fall within the survey tiling, it is always possible to target

the pair, so all pairs should have the same weight. If the pair have a very small

angular separation, then in 1/3 of realizations they will fall within the tiling and be

able to be targeted, so they would have a pair weight of 3, using Eq. 4.4. However,

if a pair has a very large separation, it can be unlikely that both fall within the

tiling at the same time in a random realization, so the pair probability is low and

therefore the weight will be much larger than 3. Eq. 4.4 incorrectly gives pairs of

different separations different weights. Instead, the pair weight can be redefined as

wij = ~ci · ~cj
~wi · ~wj

, (4.11)

where ~ci is a bitwise coverage vector that contains a 1 if it is possible to place a

fibre on galaxy i (i.e.the galaxy lies within the patrol region of a fibre though it

may happen not to be targeted) in that realization, and 0 otherwise.1 Applying

this definition in the above example results in all pairs having a weight of 1, as
1The ability to use bitwise coverage vectors is implemented in the correlation function code

twopcf (Stothert, 2018).
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expected.

We have only shown the results of applying the correction to volume limited

samples with a number density ∼ 2 × 10−3h3Mpc−3. We have also applied the

correction to volume limited samples of different number densities, and samples

defined by a colour cut, and we find that applying the PIP correction with angular

weighting will produce an unbiased correction.

The mock catalogue used was constructed using a set of HODs fit to clustering

measurements from SDSS (Zehavi et al., 2011). These measurements of galaxy

clustering are corrected for the effects of fibre collisions using the ‘nearest redshift’

correction, where each missing galaxy is assigned the redshift of its nearest targeted

neighbour on the sky. The PIP method is not specific to any galaxy survey, and

in principle could be applied to SDSS. However, in the SDSS survey, fibres can be

placed anywhere on the plate, as long as they are not closer together than 55 arcsec.

SDSS also covers a narrower redshift range than is expected for the BGS. In this

case, the nearest redshift correction does well at correcting the projected correlation

function, and it is not necessary to use the PIP weighting scheme.

4.5 Conclusions

The DESI BGS will be a highly complete, flux limited spectroscopic survey of low

redshift galaxies, an order of magnitude larger than existing galaxy catalogues,

with the primary science aims of BAO and RSD analysis. Fibres in the focal plane

of the telescope are controlled by robotic fibre positioners, each of which can place

a fibre on any galaxy within a small patrol region, leading to incompleteness in the

catalogue due to fibre collisions, and the fixed density of fibres over large regions

in each tile. This leaves a non-trivial impact on clustering measurements, and it is

essential that these biases can be corrected.

We have quantified the targeting completeness in the BGS by applying the

DESI fibre assignment algorithm to a BGS mock catalogue. To ensure each galaxy
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has a non-zero probability of being targeted, and to maximize the number of pairs

that can be targeted, we randomly promote 10% of faint priority galaxies to the

same priority as the bright priority 1 galaxies, and dither the tile positions by a

small angle of 3 times the fibre patrol radius.

The main determinant of completeness in the BGS is the surface density of

galaxies. Completeness is high in low surface density regions, (e.g. over 95% for

priority 1 galaxies after 3 passes), but drops significantly in the most overdense

regions. Close to the centre of the very most massive haloes (∼ 1015h−1M�), the

completeness can be as low as 10% or less.

We applied several correlation function correction methods to volume limited

samples from the BGS mock catalogue, where the incompleteness is due to fibre as-

signment only. This is done for a highly complete survey with 3 passes of tiles, and

a highly incomplete survey, with 1 pass and 10% of the tiles missing. Using stand-

ard angular upweighting, or assigning missing galaxies the redshift of the nearest

targeted galaxy provide an unsatisfactory correction to the correlation function

monopole on small scales below a few Mpc (and a few 10s of Mpc for the higher

order multipoles).

After 3 passes of tiles, the method of Bianchi & Percival (2017), which combines

galaxy pair weights with an angular weighting, is able to produce an unbiased

correction to the angular and redshift space correlation functions, where the scatter

between fibre assignment realizations is much smaller than the statistical error in

the complete parent sample. The angular weighting term is required to correct

a small bias on small scales caused by untargetable pairs around the edge of the

survey footprint. After 1 pass, the correction is again unbiased, but the scatter

between realizations is much larger, and on small scales the method relies heavily

on angular weighting. More than 1 pass will be needed to make precise RSD

measurements on small scales.

We propose an alternative method to dither the tiles, where the entire survey
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tiling is positioned randomly on the full sky, and the pair weight definition takes into

account realizations in which objects cannot be targeted. This has the advantage

that pair weighting on its own can produce an unbiased correction without relying

on angular weighting.

My contribution to this work was to use the MXXL mock catalogue to explore

the impact of fibre assignment on the completeness of galaxies in the BGS, and to

assess different correlation function correction methods. Modifications to the DESI

fibre assignment code were made by Jianhua He, who also ran the code 2048 times.

The correlation function code which implements the PIP correction method was

developed by Lee Stothert.
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Chapter 5

HOD mocks for the Euclid galaxy

redshift survey

5.1 Introduction

In Chapter 3, we outlined a method for creating a halo lightcone catalogue from the

MXXL simulation by interpolating halo positions, velocities and masses between

simulation snapshots. This method has been used to construct a lightcone out

to redshift z = 2.2. This catalogue was subsequently populated with galaxies

using a halo occupation distribution (HOD) scheme to build a catalogue for the

DESI Bright Galaxy Survey (BGS) that has realistic galaxy clustering properties.

The halo lightcone can also be populated using different HOD schemes to make

catalogues for other galaxy surveys. The full redshift range is not needed for the

BGS, since only a small fraction of galaxies in the survey have redshifts beyond

z = 0.5. However, the outer redshift limit of z = 2.2, and halo mass resolution

of ∼ 1011 h−1M�, make this halo lightcone useful for making a mock catalogue

of Hα sources for the European Space Agency’s upcoming Euclid survey (Laureijs

et al., 2011). Euclid aims to constrain the expansion history of the Universe by

conducting an imaging survey, and a slitless spectroscopic survey. The imaging

survey will make measurements of gravitational weak lensing, while the slitless
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spectroscopic survey, which we focus on here, will be a survey of Emission Line

Galaxies (ELGs).

The HOD specifies the average number of central and satellites in each halo,

brighter than a luminosity threshold. As was shown in Chapter 3, a set of HODs

with different luminosity thresholds can be used to randomly assign galaxies, with

luminosities, to the haloes in the lightcone. In order to build the BGS mock, a 5

parameter HOD was used, where the central HOD is modelled as a smooth step

function, while the satellite HOD is a power law with a cut off at low masses.

This standard parametrisation is modified to use a pseudo-Gaussian spline kernel

to make sure there is no unphysical crossing of HODs between different magnitude

thresholds. However, any HOD parametrisation can be used, as long as there is no

unphysical HOD crossing. The method can also be extended to cases where it is

difficult to parametrise the HODs. If the HOD is measured in bins of mass at differ-

ent redshifts and luminosity thresholds, these measured HODs can be interpolated

in order to populate the haloes.

Euclid will predominantly be measuring the spectra of luminous star-forming

Hα ELGs, to a flux limit of 3× 10−16 erg s−1cm−2. In the DESI BGS, the r-band

luminosity of central galaxies increases monotonically with halo mass (with some

scatter). However, the Hα luminosity is driven by the star formation rate, which

is not, making the HOD parametrisation used for the BGS unsuitable for creating

a Euclid Hα mock catalogue, and motivating the need to extend the methods for

a tabulated HOD.

In this chapter, we outline ongoing work in extending the HOD methodology for

a tabulated HOD. The MXXL halo lightcone is populated using a set of HODs for

Hα emitters that have been extracted from the galacticus semi-analytic model

(Benson, 2012). This chapter is organised as follows. Section 5.2 describes the

HODs measured from galacticus. Section 5.3 extends the HOD method for

tabulated HODs. The luminosity function produced using the galacticus HODs

is compared to measured luminosity functions in Section 5.4. The conclusions are
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5.2. Hα HODs from the GALACTICUS semi-analytic model

summarised in Section 5.5.

5.2 Hα HODs from the GALACTICUS semi-analytic

model

galacticus (Benson, 2012) is a semi-analytic model of galaxy formation which

creates and evolves a population of galaxies within the dark matter halo merger

trees of an N-body simulation. galacticus models various astrophysical processes,

including gas cooling, star formation, chemical enrichment, and feedback from su-

pernovae and active galactic nuclei, and is calibrated to produce the present day

galaxy stellar mass function. galacticus has been applied to the Millennium sim-

ulation (Springel et al., 2005), in order to create a catalogue of Hα emitters. A halo

lightcone is first created from the Millennium simulation, which is then populated

using the galacticus model. By combining the semi-analytic model with a model

for dust attenuation, predictions can be made of the number counts and redshift

distribution of Hα sources in future surveys such as Euclid and WFIRST (Merson

et al., 2018).

The HOD for Hα sources can be measured from this lightcone by simply cal-

culating the average number of central and satellite galaxies, brighter than some

luminosity threshold, in haloes, binned by halo mass and redshift. The luminosity

is the blended Hα + [Nii] luminosity1, with no dust extinction, and halo masses are

defined asM200m, the mass within a sphere centred on the halo in which the average

density is 200 times the mean density of the Universe. The HOD is measured in

26 mass bins between log(M200m/h
−1M�) = 9.7 and log(M200m/h

−1M�) = 14.7,

31 redshift bins between z = 0.7 and z = 2.2, and for 30 luminosity thresholds,

from log(LHα+[NII]/h
−2erg s−1) = 38 to log(LHα+[NII]/h

−2erg s−1) = 43. Euclid

is expected to be able to target Hα sources over the approximate redshift range
1The low spectral resolution of Euclid (λ/∆λ ≈ 300) means that the Hα and [Nii] line cannot

be separated.
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0.9 . z . 1.8, to a flux limit of 3×10−16 erg s−1cm−2, over an area of 15,000 deg2.

The Wide Field Infrared Telescope (WFIRST) (Green et al., 2012; Spergel et al.,

2015) is expected to probe a similar redshift range of 1 . z . 2, to a fainter flux

limit of 1× 10−16 erg s−1cm−2, but over a smaller area of ∼ 2, 200 deg2.

The resolution of the MXXL simulation is too low to apply the semi-analytic

model directly, but the HODs measured using the Millennium simulation can be

applied to build a mock catalogue for the Euclid survey. However, the HODs are

only measured up to a maximum mass of log(M/h−1M�) = 14.7. Since the MXXL

simulation covers a much larger volume, it contains many haloes more massive than

this, so the HODs need to be extrapolated to higher masses. However, we expect

that the Hα emitters in such massive haloes will account for a small fraction of the

total number of objects. While the most massive haloes will on average contain

many Hα emitters, they are in the tail of the mass function, which is dropping

rapidly, so the overall contribution is small.

5.3 Extending the HOD method for tabulated HODs

The occupation number, 〈Ngal(> L|M, z)〉, measured for central and satellite galax-

ies, can be stored in a 3 dimensional array, and the values can be interpolated to

find the occupation number at any luminosity, redshift or mass. In order to popu-

late the MXXL halo lightcone, the HODs can be extrapolated to higher masses by

fitting smooth functions to the high mass end of the HODs.

Fig 5.1 shows the HODs of centrals, 〈Ncen(> L|M, z)〉. The points are the

HODs measured from galacticus, and each panel is at a different redshift. The

shape of the Hα HODs differ from those used to create the BGS mock. For the

faint samples, the occupation number is close to 1 at all masses above 1011 h−1M�.

For the brightest samples, the HOD peaks at ∼ 1012 h−1M�, but then increases

again at very high masses. To extrapolate these to high masses, care must be taken

to ensure that there is no unphysical crossing of the HOD, especially for the fainter
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luminosity bins where the curves are tightly packed together. We find that for all

luminosity thresholds, log(− logNcen) is approximately linear with logM at high

masses, and the luminosity thresholds are all approximately evenly spaced. For

each luminosity threshold, a straight line is fit to log(− logNcen) above 1014 h−1M�.

However, these fits could potentially cross, and also the brightest samples are poorly

measured, making it difficult to fit a line. Another linear fit is made to the slope

of the initial fits, as a function of logL. This can be extrapolated to set the slope

of log(− logNcen) for the poorly measured bright samples, and it also ensures that

the HODs never cross. The solid curves in Fig 5.1 show these extrapolations to

high masses. At high redshifts, the curves are in good agreement with the points

for all luminosity thresholds. The agreement is less good at low redshifts for the

brightest samples. However, only a small fraction of objects have such bright

luminosities, and as we show later, the luminosity function produced by these

HODs is in agreement with observations.

The occupation functions for satellites galaxies, 〈Nsat(> L|M, z)〉, are shown

in Fig. 5.2. Again, the points are the measured HODs from galacticus. In

the BGS HODs, the satellites are modelled as a power law, with a cutoff at low

masses. The galacticus HODs can be described well as a double power law.

For the faint samples, a power law is fit to masses above 1013 h−1M�, which is

used to extrapolate the HODs. However, this cannot be done for the brightest

samples, which are poorly measured. A double power law is fit to the sample with

log(L/h−2erg s−1) > 42.14, and this fit is offset vertically for the brighter samples.

The solid curves in Fig 5.2 show theses fits, which are able to reasonably reproduce

the measured HODs for the brightest samples.

The total HOD for centrals and satellites is shown in Fig. 5.3. At high masses,

the smooth curves that are used to extrapolate the HODs are in good agreement

with the measured points. At low masses, logN is interpolated linearly between

each point. There are some cases where the measured HOD for the brightest

luminosity threshold is, in one mass bin, the same as for the next brightest sample.
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Figure 5.1: Occupation function of central Hα emitters. Points with error bars

are the HODs measured from the galacticus semi-analytic model, and the solid

curves are the same HODs with smooth curves fit to the high mass end to enable

the HODs to be extrapolated. Each panel is a different redshift, and the colours

are different luminosity threshold, as indicated by the legend. Blended Hα+ [NII]

luminosities are in units h−2erg s−1.
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Figure 5.2: As Fig. 5.1, but for satellite galaxies.
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Figure 5.3: As Fig. 5.1, but for centrals and satellites.
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This can cause problems when extrapolating the HOD as a function of luminosity

since, if the HOD is extrapolated linearly, it would be constant with increasing

luminosity. This can be resolved by, for the brightest sample, shifting the HOD

down in these bins vertically, making sure the offset is at least 0.3 dex.

These HODs are then used to assign galaxies to haloes, using a method similar

to that which is outlined in Chapter 3. A minimum luminosity, Lmin, must first be

chosen. To assign central galaxies, it must first be decided which haloes contain a

central galaxy brighter than Lmin. For each halo, a uniform random number x1 in

the range 0 < x1 < 1 is chosen, and compared to the average occupation number

for that halo. If x1 < 〈Ncen(> Lmin|M, z)〉, a central galaxy will be placed in the

halo, and a random luminosity must be chosen. To assign a luminosity to the

central galaxy, another uniform random number, x2, is chosen, again in the range

0 < x2 < 1. The luminosity is found such that

〈Ncen(> L|M, z)〉
〈Ncen(> Lmin|M, z)〉 = x2 (5.1)

In order to speed up the process of finding the root of Eq. 5.1, a 3 dimensional

array of L as a function of M , z, and random number x2 is created, which can be

searched and interpolated efficiently.

The number of satellite galaxies in each halo is drawn from a Poisson distri-

bution with mean 〈Nsat(> Lmin|M, z)〉. The same procedure as for the centrals is

used to assign luminosities, drawing a random number for each satellite galaxy, and

using Eq. 5.1 but with the satellite HODs to find the corresponding luminosity.

Central galaxies are placed in the centre of the halo, with the same velocity.

Satellite galaxies are positioned randomly following a NFW profile, and assigned a

random velocity, using the same methodology outlined in Chapter 3.
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5.4 Luminosity function

We now use this method to populate several snapshots of the MXXL simulation,

and compare the Hα luminosity function of galaxies in the mock with observational

values.

The accuracy of the luminosity function depends on the number of luminosity

bins in which the HOD has been measured from the semi-analytic model, and the

method used to interpolate the HODs. The HOD as a function of mass, redshift,

and luminosity threshold can be stored as a 3 dimensional array. Linear interpol-

ation of a 3 dimensional array is straightforward, but other interpolation schemes

are non-trivial. If Ngal is interpolated linearly, this results in step features in the

luminosity function. This is because if the HOD is measured in the semi-analytic

model at the luminosity thresholds L1 and L2 (where L2 > L1) and Ngal is inter-

polated between the two luminosities linearly, then the HOD in narrow luminosity

bins is constant between L1 and L2. Alternatively, if logNgal is interpolated lin-

early, in the bin between L1 and L2, more galaxies will be assigned a luminosity

near L1, leading to a luminosity function with sawtooth-like features. The more

luminosity thresholds that the HODs are measured at in the semi-analytic model,

the smaller these features become, but they are never removed completely.

Other interpolation methods, such as cubic splines, are not trivial in 3 dimen-

sions, but can be done easily in a single dimension. The features in the luminosity

function can be smoothed, for a fixed mass and redshift, by interpolating the HOD

using a monotonic cubic spline interpolation (Fritsch & Carlson, 1980). A new 3 di-

mensional array of the HOD can be created with much finer bins of luminosity, and

the spline interpolation must be monotonic to prevent unphysical HOD crossing.

Values of logNgal in this new array are then interpolated linearly, as before. The

luminosity function is shown in Fig. 5.4 for three MXXL snapshots populated with

Hα emitters. The luminosity function has been dust attenuated using the empirical

law of Calzetti et al. (2000). Small bumps can be seen in the luminosity function of
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the mock, particularly at the faint end, but these bumps are small compared to the

errors in the measured luminosity function of Sobral et al. (2013). The luminosity

function in the mock is in good agreement with the measured luminosity function.

The downturn at low luminosities is below the flux limit of Euclid.

5.5 Conclusions

Chapter 3 outlined a method for creating a mock catalogue for the DESI Bright

Galaxy Survey, in which a halo lightcone from the MXXL simulation is populated

with galaxies using a standard 5 parameter HOD, which is modified to prevent

unphysical HOD crossing. The MXXL halo lightcone catalogue extends to z = 2.2,

making it useful for creating mock catalogues for other redshift surveys, such as

Euclid and WFIRST. The HOD methodology can be extended to tabulated HODs,

in which the HOD has been measured in bins of mass, luminosity, and redshift.

The galacticus semi-analytic model has been applied to the Millennium sim-

ulation to create a catalogue of Hα emitters. This has been used to measure the

HOD of central and satellite galaxies. These HODs can then be used to popu-

late the MXXL lightcone. Since the MXXL simulation contains haloes much more

massive than the Millennium simulation, the HODs need to be extrapolated to

high masses. We fit smooth curves to the high mass end of the HODs, taking

care to make sure there is no unphysical HOD crossing. Several snapshots of the

MXXL simulation have been populated using these HODs, and the HODs are able

to reproduce the luminosity function measured in HiZELS.

In ongoing work, the HODs will be used to populate the halo lightcone, which

can be used for clustering analysis. In particular, the motivation of this work is to

determine if there is any scale dependence in the form of the bias of Hα emitters

on large scales.

My contribution to this work was to develop the code to extend the HOD

method for a tabulated HOD. I populated the MXXL simulation using HODs that
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had been measured from the galacticus semi-analytic model by Alex Merson.
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Chapter 6

Conclusions

To date, measurements from large galaxy surveys are consistent with the ΛCDM

model, in which the dark matter is cold, with negligible thermal velocities at early

times, and dark energy is described by the cosmological constant, Λ. While dark

energy makes up approximately 70% of the energy density of the Universe today,

and is driving the present day accelerated expansion, it is currently poorly under-

stood (e.g. Copeland et al., 2006). Upcoming large galaxy surveys, such as the Dark

Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al., 2016a,b) and

Euclid surveys (Laureijs et al., 2011), aim to probe the nature of dark energy by

creating large 3D maps of the large-scale structure of the Universe. By analysing

the clustering of galaxies, baryon acoustic oscillation measurements can be made,

which can be used as a standard ruler to measure the expansion history of the Uni-

verse. Redshift space distortions can be used to measure the growth of structure,

and place constraints on modified theories of gravity (e.g. Guzzo et al., 2008). To

prepare for these surveys, it is necessary to utilise realistic mock galaxy catalogues,

which can be used, for example, to finalise the survey strategy, develop analysis

techniques, and understand systematics that will affect the statistics that are to be

measured. These mock catalogues can be built using numerical techniques.

The focus of this thesis is to create mock galaxy catalogues for upcoming large

galaxy surveys from large cosmological N-body simulations.
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6.1 Dark matter halo merger trees

In Chapter 2, we gave an overview of how halo merger trees can be created from

N-body simulations, which is the starting point for creating a mock catalogue. In

an N-body simulation, the density field is represented using a set of collisionless

particles, and the position and velocity of each particle is evolved depending on the

gravitational force of the other particles in the simulation. The particle positions

and velocities are output at several epochs, or snapshots, and dark matter haloes

are identified at each snapshot using an algorithm such as FOF (Davis et al., 1985)

and subfind (Springel et al., 2001a). A merger tree, which describes the merger

history of a halo, can then be built by identifying the descendant of each halo at

the next snapshot, which can be done by matching particles.

Halo merger trees can also be built using a Monte Carlo algorithm (Cole et al.,

2000), which predicts the probability that haloes will merge using extended Press-

Schechter theory (Bond et al., 1991). Monte Carlo merger trees do not contain

spatial information for each halo, but they can be run many times efficiently, and

can be combined with a semi-analytic model of galaxy formation.

These methods can be extended beyond ΛCDM to models of warm dark matter

(WDM), where the non-negligible thermal velocities of the dark matter particle at

early times results in a cutoff in the power spectrum, P (k), at high k, and a sup-

pression of the formation of low mass haloes. The sterile neutrino is a warm dark

matter particle candidate strongly motivated from particle physics that would act

as WDM (e.g. Dodelson & Widrow, 1994; Shi & Fuller, 1999; Asaka & Shaposh-

nikov, 2005). Recent observations of a 3.5 keV feature in the spectra of galaxies

and galaxy clusters could potentially be explained as being produced by the decay

of a 7 keV sterile neutrino (Bulbul et al., 2014; Boyarsky et al., 2014). In N-body

simulations with a cutoff in P (k), spurious low mass haloes are formed, which

need to be removed, and the Monte Carlo merger trees are calibrated to reproduce

the conditional mass functions of the N-body simulations (Wang & White, 2007;
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6.2. HOD mock catalogue for the DESI Bright Galaxy Survey

Benson et al., 2013).

As an application, Lovell et al. (2016) compare the number of satellite galaxies

around the Milky Way to the number predicted by the WDM Monte Carlo merger

trees, combined with the galform semi-analytic model, to place constraints on

the properties of the sterile neutrino and the Milky Way halo mass. For a 7 keV

sterile neutrino with lepton asymmetry L6 ∼ 10, a minimum Milky Way halo

mass of 1.5 × 1012 M� is needed to produce the number of observed Milky Way

satellites, which is consistent with measurements of the mass of the Milky Way

halo. However, these results depend on the semi-analytic model used.

6.2 HOD mock catalogue for the DESI Bright Galaxy

Survey

Chapter 3 outlined a method for creating a mock catalogue for the DESI Bright

Galaxy Survey (BGS) from the Millennium-XXL (MXXL) simulation. The BGS

will be a flux limited survey of low redshift galaxies with median redshift zmed ∼ 0.2,

and r-band magnitude limit r = 20. By interpolating the positions, velocities and

masses of haloes between simulation snapshots, we have constructed a full sky halo

lightcone that extends to z = 2.2, with a halo mass resolution of ∼ 1011 h−1M�.

The halo catalogue is then populated with galaxies using a halo occupation

distribution (HOD) scheme. The HOD describes the average number of central

and satellite galaxies in each halo as a function of mass, and we use a set of

HODs measured from the Sloan Digital Sky Survey (SDSS) (York et al., 2000).

The standard 5 parameter HOD is modified to prevent unphysical crossing of the

HODs, and the HODs are evolved to produce a target luminosity function. By

construction, the mock reproduces the luminosity function of SDSS at low redshift,

and the evolving luminosity function measured in the Galaxy and Mass Assembly

(GAMA) survey (Driver et al., 2009, 2011; Liske et al., 2015) at high redshifts.

Galaxies are also assigned a 0.1(g−r) colour, using a parametrisation of the GAMA
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6.3. Applying the BGS mock to understand fibre assignment incompleteness

colour-magnitude diagram. The projected correlation functions measured in the

mock for galaxies in different magnitude and redshift bins are in good agreement

with measurements from SDSS and GAMA, and the mock has colour-dependent

clustering. We illustrate that the BAO can be measured in the mock catalogue,

and the redshift space distortions are in agreement with measurements from SDSS,

making this mock catalogue useful in preparing for the DESI BGS.

6.3 Applying the BGS mock to understand fibre

assignment incompleteness

In Chapter 4, we ran the DESI fibre assignment algorithm on the BGS mock

catalogue to quantify incompleteness due to fibre assignment, and assess correlation

function correction methods. The BGS is currently planned to cover an area of

∼ 14, 000 deg2 in 3 passes, where each pass covers the survey area in a grid of

∼ 2000 pointings of the DESI field of view, or ‘tiles’, each of area ∼ 8 deg2.

Currently, the BGS is proposed to consist of a bright high priority sample to an

r-band magnitude limit r ∼ 19.5, with a fainter low priority sample to r ∼ 20.

In the focal plane of the telescope, there will be a total of 5,000 fibres, arranged

in 10 ‘petals’, each of which is controlled by a robotic fibre positioner that can

place the fibre anywhere within a small patrol region. Fibre positioners can block

neighbouring fibre positioners from targeting certain objects, and the fixed num-

ber density of fibres on the tile results in some of the galaxies in dense regions

being missed. This incompleteness has a non-trivial impact on clustering measure-

ments. We show that completeness due to fibre assignment primarily depends on

the surface density of galaxies. Completeness is high in low density regions, but

in the highest density regions, close to the centre of the most massive clusters, the

completeness can be 10%, or lower.

We apply the inverse pair weighting correction of Bianchi & Percival (2017)

to clustering measurements from the BGS mock which has been through the fibre
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assignment algorithm. By running the fibre assignment algorithm many times, we

can calculate the probability that each galaxy pair is targeted. To calculate the

correlation function, each pair is weighted by the inverse of this probability. This

method is only unbiased if it is possible to observe every galaxy pair. To accurately

estimate pair probabilities, and to ensure that as many pairs of galaxies as pos-

sible have a non-zero probability of being targeted, we randomly promote a small

fraction of the fainter low priority sample to be high priority, and dither the set

of tile positions by a small angle. We show that the inverse pair weighting, when

combined with angular upweighting, or with regions containing untargetable pairs

removed, is able to provide an unbiased correction to the galaxy clustering meas-

urements for a complete survey with 3 passes, and also for a highly incomplete

survey with a single pass. With only a single pass, the scatter between realiza-

tions on small scales is large, so multiple passes will be needed for accurate small

scale clustering measurements. Other commonly used correction methods, such

as a nearest neighbour correction, or angular weighting are unable to produce an

unbiased correction on all scales.

6.4 Extending the HOD method to create a Euclid

mock

In Chapter 5, we extended the HOD method of Chapter 3 to create a mock cata-

logue of Hα emission line galaxies for the Euclid redshift survey, using a set of

HODs measured from the galacticus semi-analytic model. Euclid will cover

15, 000 deg2 of the sky, and will measure spectra of Hα sources to a flux limit of

3 × 10−16 erg s−1cm−2, covering a redshift range 0.9 . z . 1.8. The HOD para-

metrisation used for the BGS mock is not applicable for star forming galaxies, and

therefore the methods need to be modified for a tabulated HOD measured in bins

of mass, Hα luminosity, and redshift.

The HODs are extrapolated to high masses by fitting smooth curves, taking care
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to ensure there is no unphysical HOD crossing. Storing the HOD as a 3 dimensional

array allows the HOD to be searched and interpolated efficiently. From populating

3 of the MXXL snapshots, we find that the luminosity functions are in agreement

with the measured luminosity functions from the HiZELS survey.

6.5 Future Work

The focus of this thesis has been producing mock catalogues for upcoming large

galaxy surveys. Here, we outline some of the ways this work can be extended.

• The HOD scheme of Chapter 3 has been used to populate the MXXL lightcone

in order to create a BGS mock catalogue. However, this is a single mock

catalogue, and, many mock catalogues are required for estimating accurate

covariance matrices, of the order of 1,000 (e.g. Blot et al., 2016). Many

mock catalogues can be created by combining the HOD scheme with a fast

approximate method for creating a halo catalogue, such as the GLAM code

(Klypin & Prada, 2018).

• The HODs used to create the BGS mock can also be used to create a mock

for the Cosmology Redshift Survey, which is part of 4MOST (de Jong et al.,

2016). This survey extends to z ∼ 1, so this would require extrapolating the

HODs to even higher redshifts than was done in Chapter 3.

• The Hα HODs outlined in Chapter 5 have been shown to reproduce the

luminosity functions measured in HiZELS. The MXXL halo lightcone can

then be populated, and this mock can be used for clustering analysis. This

mock can be used to determine if there is any scale dependence in the bias

of Hα emitters.

• We have shown in Chapter 4 that the inverse pair weighting is able to provide

an unbiased correction to clustering measurements in the BGS, on all scales.
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The method can be tested for the case of full sky dithers. More realizations

of the fibre assignment algorithm will be needed to estimate accurate pair

weights, but the angular weighting will not be needed.

DESI and Euclid will begin to collect data in the next few years, making this

an exciting time for cosmology. Utilising mock catalogues, such as those outlined

in this thesis, is essential for these surveys to reach their full potential in shedding

light on the nature of dark energy.
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Appendix A

Databases

The full sky MXXL halo lightcone and BGS mock catalogue outlined in Chapter 2

are made publicly available on the Theoretical Astrophysical Observatory data-

base2 (Bernyk et al., 2016). The catalogues are also available at http://icc.dur.

ac.uk/data/.

A.1 MXXL halo catalogue

The halo catalogue contains a total of 5.1 billion haloes out to a redshift of z = 2.2,

and contains the following halo properties:

• zobs, the observed redshift, which takes into account the peculiar velocity of

the halo.

• zcos, the cosmological redshift, which ignores the effect of the peculiar velocity.

• Right ascension, in degrees.

• Declination, in degrees.

• M200m, the mass enclosed by a sphere in which the average density is 200

times the mean density of the Universe, interpolated to the redshift at which

the halo crosses the lightcone, in units of 1010 h−1M�.
2https://tao.asvo.org.au/tao/
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• M200c, the mass enclosed by a sphere in which the average density is 200 times

the critical density of the Universe, interpolated to the redshift at which the

halo crosses the lightcone, in units of 1010 h−1M�.

• Vmax, the maximum circular velocity, in units of kms−1.

• RVmax , the radius at which Vmax occurs, in h−1Mpc.

• σR200m , velocity dispersion of particles within R200m, in units of kms−1.

• Snapshot number in the MXXL simulation.

• Halo id in the MXXL simulation.

A.2 BGS galaxy catalogue

The full sky galaxy catalogue contains 58.1 million galaxies with r < 20, out to

redshift z = 0.8, and contains the following properties:

• zobs, the observed redshift, which takes into account the peculiar velocity of

the galaxy.

• zcos, the cosmological redshift, which ignores the effect of the peculiar velocity.

• Right ascension, in degrees.

• Declination, in degrees.

• M200m of the host halo, interpolated to the redshift at which the halo crosses

the lightcone, in units of 1010 h−1M�.

• Apparent r-band magnitude.

• 0.1Mr − 5 log h, the rest frame absolute r-band magnitude, k-corrected to a

reference redshift of zref = 0.1, with no evolutionary correction.

• 0.1(g − r) colour, k-corrected to a reference redshift zref = 0.1.
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A.2. BGS galaxy catalogue

• A flag indicating whether the galaxy is a central or a satellite, and whether

it is in a resolved or unresolved halo.

• Snapshot number in the MXXL simulation.

• Halo id in the MXXL simulation.
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