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Abstract: Studies of the Drell-Yan process, pp→ V +X with V a vector boson,

have become an important tool to elucidate the fundamental structure of the Stand-

ard Model at particle colliders. The precise theoretical understanding of this process

is thus paramount to the further success of programs at modern particle colliders. In

this thesis, we present the implementation of a method to improve the electroweak

accuracy in the description of these processes within the SHERPA framework. This

is achieved by including the next-to-leading order electroweak corrections for the

leptonic decays of the massive electroweak bosons, Z, W and Higgs, and the next-

to-next-to-leading order QED corrections in the case of Z- and Higgs bosons within

the framework of the Yennie, Frautschi and Suura resummation formalism. We find

small but potentially observable effects on distributions.

Besides the improvement in the theoretical description, phenomenological studies

can improve the understanding of the physics at particle colliders. In the second

Part of this Thesis we consider b-tagged jets. We study a number of jet shape

observables that show good discrimination between a “legitimate”, single b-jet and

one originating from a gluon splitting, and further show that the combination of these

observables already provides good efficiency in rejecting b-jets from gluon splittings.
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Chapter 1

Introduction

Modern particle collider experiments provide a rich environment for the study of the

Standard Model (SM) of particle physics and for searches for new physics beyond the

SM (BSM). With an unprecedented rate of data taking, the Large Hadron Collider

(LHC) has provided and continues to provide avenues to test our understanding, to

very high precision, of the fundamental particles and interactions that hold matter

together. The outstanding achievement of the LHC’s physics program so far has

been the discovery of a particle of mass m = 125.09 GeV in 2012 [3–5]. The data

taken since this discovery shows evidence that this is a scalar particle consistent with

the Higgs-boson as predicted by the SM, thereby completing its particle content.

Besides the discovery of the Higgs-boson, the LHC has pushed the precision of many

measurements, as well as observing many processes for the first time. Within the

collection of SM measurements, the Drell-Yan production process [6], pp → V →

ff̄ ′ + X with V a vector boson and X further final state particles, plays a major

role. At hadron colliders, this process proceeds via the annihilation of a quark and

an anti-quark with a large production cross section. The leptonic decay modes of

the vector bosons may be used to measure this process with a small background. A

non-zero transverse momentum for the lepton system can only be created through

the recoil of the system against additional radiation, primarily initial state partonic

radiation, but also final state photon radiation. While the high-p⊥ region can be
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described in perturbation theory, the region around low p⊥ can be described using

resummation. This process thus tests very different aspects of the theory while

providing a clean experimental signature. For recent LHC measurements of this

process, both inclusively and differentially, see e.g. [7–10].

On the theoretical side, the past decades have seen significant progress in the pre-

dictions of SM and BSM processes as well. This progress has in large part been

necessitated by the experimental precision achieved and further expected at the LHC.

Within the realm of fixed order perturbation theory, next-to-leading order (NLO)

calculations in quantum chromodynamics (QCD) have become largely commonplace

through the automation of methods to calculate NLO cross sections subject to any

experimental cut. This development was sparked by the invention of methods to

calculate generic cross sections at NLO, such as phase space slicing [11,12] and the

subtraction method [13–16]. These methods have since been automated and form

the perturbative backbone of modern event generators for the LHC [17]. Since these

successes, also the calculation of next-to-next-to-leading order (NNLO) calculations

has gained traction, with a large number of phenomenologically interesting processes

becoming available. Automation of such calculations is still some way off, but there

is a large number of methods on the market, including antenna subtraction [18],

the CoLoRfulNNLO scheme [19], qT -subtraction [20], N -Jettiness slicing and sub-

traction [21], sector-improved residue subraction [22] and the Projection-to-Born

method [23].

In a parallel development, NLO calculations in the electroweak theory and their

interplay with calculations in QCD have been investigated as well. For leptonically

decaying Drell-Yan processes, the calculation of next-to-leading order EW correc-

tions has been implemented in a large number of codes, including WZGRAD [24–26],

HORACE [27,28], SANC [29], RADY [30,31], while a combination of NLO initial state

QCD and NLO EW corrections is available within the POWHEG framework [32–34]

and FEWZ [35]. Efforts to calculate the mixed QCD and EW corrections are un-

derway as well [36]. On a numerical level, one-loop electroweak corrections can be
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automatically generated and calculated using programs such as MADGRAPH5 [37,38],

OPENLOOPS [39, 40] and RECOLA [41, 42]. Beyond these efforts, the behaviour of

the leptonic final state has to be understood as well. In this case, soft and collinear

photon radiation provides the major contributions. The effects of this phenomenon

can be resummed to all orders, and if required, also improved order by order in per-

turbation theory. Implementations of such calculations have been performed via a

QED parton shower matching in HORACE [43,44] and in the POWHEG framework, in

the structure function approach in RADY, and through a resummation following the

approach pioneered by Yennie, Frautschi and Suura (YFS) [45] in particle decays in

PHOTOS [46], WINHAC [47], the HERWIG module SOPHTY [48] and the SHERPA mod-

ule PHOTONS [49]. A recent review of these different approaches in the description

of Drell-Yan processes can be found in [50].

1.1 The SHERPA framework

Complete theoretical predictions for collisions at particle accelerators are provided

by general purpose event generators [17]. Such generators rely crucially on the

factorization of the process into different regimes characterized by a relevant mo-

mentum scale. In the hard regime at very high momentum scales, partons interact

to produce a small number of energetic particles. This regime can be treated using

perturbation theory. In the soft regime, at very low scales, the physics is dominated

by non-perturbative effects that cause the confinement of the partons into observable

hadrons. This region can thus far only be described using phenomenological models.

The hard and the soft regime are connected by an evolution of the partons along the

scales which is generally described using a parton shower. Each of these different

regimes can be calculated using Monte Carlo techniques, and the combination of the

regimes allows one to simulate the full spectrum of a single event. The separation

into different regimes also allows, given a properly defined interface, the systematic

improvement of each event phase through implementation and use of dedicated cal-
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culations. The comparison of several such approaches may be used as an indicator

of residual uncertainties in the treatment of the relevant event phase.

SHERPA [51] is a highly modular event generator framework written entirely in C++,

providing the complete chain of event generation from the beams into fully hadronic

final states that can then be passed on to a detector simulation. Processes included

contain all processes of the SM, while BSM models can be implemented either

natively or through an interface to the UFO output [52,53].

SHERPA contains two inbuilt matrix element generators in AMEGIC [54, 55], based

on Feynman diagrams, and COMIX [56], based on Berends-Giele recursion relations.

These matrix element generators calculate tree-level amplitudes and integrate the

squared amplitudes over the relevant phase space, using the phase space gener-

ator PHASIC. Both generators can construct dipole subtraction terms following

the Catani-Seymour dipole subtraction method [13, 57, 58], and thus can be used

for the calculation of events at NLO accuracy. For the calculation of the virtual

one-loop amplitudes, native interfaces to OPENLOOPS [39, 40], BLACKHAT [59] and

RECOLA [41, 42] are provided as well as the possibility to use an external one-loop

generator via the Binoth Les Houches Accord [60,61].

SHERPA provides two parton showers in the CSS [62] and DIRE [63] implementations.

Both showers are based on dipole splitting functions inspired by the subtraction terms

of the Catani-Seymour method. Through the use of a symmetric ordering variable,

DIRE provides a closer resemblance to an analytic resummation, and can be improved

systematically in this regime. Efforts to improve the showers to NLO showers, using

NLO splitting kernels, are underway [64,65]. A key feature of the SHERPA framework

is the implementation of matching and merging techniques described in [66–71].

These techniques are used to consistently match higher-order calculations to the

parton shower, and to merge a number of exclusive calculations together.

Once evolved to low scales, partonic final states are by default hadronized via a

variant of the cluster hadronization model in SHERPA’s module AHADIC [72], but an

interface to the Lund string fragmentation model [73–75] is also provided. Hadron
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decays are handled by the module HADRONS which includes a large number of matrix

elements and form factor models. SHERPA further provides, through the PHOTONS

module [49], an implementation of the YFS resummation to simulate QED radiation

in hard decays. While photon radiation off coloured particles is handled within the

parton shower, YFS resummation can be applied to all hadron decays and to leptonic

decays of electroweak bosons and leptons. Within this framework, the resummation

can also be supplemented with fixed order calculations to increase the accuracy of

its predictions.

1.2 Motivation and Structure of this Thesis

The calculation and inclusion of higher-order corrections in the fixed order perturb-

ative expansion and their consistent matching within event generators is one of the

most important developments to be undertaken over the further runtime of the LHC.

Such developments will help shed light on the fundamental interactions underlying

the Standard Model and either provide stringent limits on New Physics contributions

or establish a definite deviation in the data.

In the environment of a hadron collider, the corrections due to the strong QCD

coupling are most significant. While NLO QCD corrections are by now commonplace

and widely automated, and NNLO corrections to all 2→ 2 and many 2→ 3 processes

are available, a general method for calculating processes to such precision is not

available yet. One promising method for general NNLO calculations is N -Jettiness

phase space slicing [21]. This method originates in soft-collinear effective field theory

(SCET) [76–81], and it has been shown that this method can be used to calculate NLO

and NNLO QCD corrections using the factorization of the cross section in the soft and

collinear limits. Indeed, this method has been used to calculate several processes

at NNLO, including colour singlet processes, implemented in a public version of

the parton-level event generator MCFM [82], Higgs associated production [83] as

well as the production of photons [84], Z- [85, 86], W - [87, 88] and Higgs-bosons
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[89,90] in association with jets, direct photon [91] and diphoton production [92]. We

implemented this method within the SHERPA framework, including all ingredients

necessary in principle to calculate cross sections at NNLO. We find that already at

the NLO in non-trivial processes, establishing the convergence of the cross section

integration of this method proves problematic due to the uncertainties present in the

numerical integration. These difficulties would require to perform calculations for

a large number of cuts and use a fit-based approach to the calculation of the cross

section. As the degree of divergence and the complexity of the amplitudes increases,

this behaviour is expected to worsen at NNLO, making large scale production of

results unfeasible. We thus decided not to pursue the implementation of this method

further. Nevertheless, we choose to present the current status and the checks that

have been performed at the NLO level in Appendix A for the benefit of the interested

reader.

Another avenue for improving the precision of theoretical predictions are electroweak

corrections. With the more widespread availability of NNLO QCD calculation, the

calculation of NLO electroweak processes has attracted a lot of interest in recent

years. The naïve reason for this interest is that the strong and weak coupling

constants αs and α numerically relate as α2
s ≈ α at typical collision energies, so

NLO electroweak effects are expected to have an impact on the same order as NNLO

QCD effects. Moreover, for large collision energies, electroweak effects are enhanced

by Sudakov logarithms of the form log (s/M2
V ) [93–98], thus enhancing their effect

on tails of distributions. The first Part of this Thesis focusses on such higher-order

corrections in the electroweak domain of the SM, presenting an implementation of

NLO EW corrections and NNLO QED corrections to particle decays within the YFS

formalism. This formalism is used within SHERPA’s module PHOTONS [49] to simulate

the leading logarithmic effects of photon radiation to all orders within the decays

of uncoloured particles, and is set up such that the all-orders calculation can be

improved by fixed-order results. In Part I, we will first review the YFS formalism as

appropriate for particle decays. We will then discuss an implementation of NLO EW
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corrections and NNLO QED corrections for the decays of electroweak bosons into

leptons, and compare results from this implementation to the leading logarithmic

all-orders results. This implementation extends the accuracy of the final state photon

treatment of Drell-Yan processes within SHERPA, and allows for an improved analysis

of the associated effects.

Besides the improvement of the perturbative expansion, phenomenological studies

can further provide interesting insights into implications of the theory and ultimately

lead to better descriptions of nature. Of particular interest are processes involving

third generation quarks, top and bottom. Through their Yukawa couplings to the

Higgs-boson, these quarks offer a handle on understanding the generation of masses

in the Standard Model. In addition, the third generation quarks often appear as

(by-)products of the production and decay of particles in BSM models. In this case,

a good understanding of both the signal process and the SM background processes

is paramount to the discriminatory power of the analysis.

The importance of third generation quarks in a SM context is exemplified by the

production of two top quarks in association with a Higgs boson, pp → tt̄H, with

the Higgs-boson decaying into a pair of bb̄. The analysis strategy for this kind of

process heavily relies on the definition of b-jets. Such a definition is achieved through

a b-tag, that is an identification of suitable conditions on the jet that make it likely

to originate from a b-quark. While the acceptance rates of b-jets and rejection

rates of c- or light quark jets in modern tagging algorithms are fairly high, these

approaches often lack the ability to reliably identify those jets that contain two

b-hadrons originating from a gluon splitting into two b-quarks. In Part II, we present

a number of observables that can be used to make a distinction between “genuine”

single b-jets and those jets originating from the splitting of a gluon into two b-quarks.

Based on the fundamental QCD radiation pattern, we show that the combination of

three observables already provides a strong discriminatory power.
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Chapter 2

Higher-order corrections

2.1 The QCD factorized cross section

All calculations of cross sections at the LHC rely on the principle of factorization.

This principle conjectures that the calculation of an observable can be separated into

a high-energy part (corresponding to short distances, at which quarks and gluons

are asymptotically free) and a low-energy part (corresponding to long-range interac-

tions). The long-distance part of the calculation is universal and describes how the

longitudinal momentum of the colliding hadrons is distributed among their constitu-

ent partons. This distribution is commonly described through parton distribution

functions (PDFs). The short-distance part of the calculation then contains the cross

section of the relevant partonic interaction process and is convoluted into the PDFs

via the kinematics, flavour and spins. A proof of an all-orders factorization theorem

has only been derived in Deeply Inelastic Scattering processes [99] and Drell-Yan

processes [100, 101] through an operator product expansion. It is now understood

that more complex processes may show a violation of this factorization in certain

configurations [102], but for reasonably inclusive observables and at low orders in

the perturbation expansion, factorization is still a valid approximation.
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The factorization of a hadronic cross-section for an observable X then reads:

dσ
(
X,Q2

)
=

∑
a,b∈{q,g}

∫ 1

0
dx1

∫ 1

0
dx2fa

(
x1, µ

2
F

)
fb
(
x2, µ

2
F

)
dσ̂ab

(
X;x1, x2,

µ2
F

Q2

)

+O
(

Λ2
QCD

Q2

)
,

(2.1.1)

where the xi are the longitudinal momentum fractions carried by parton a and b

respectively, fi are the corresponding PDFs and dσ̂ab denotes the partonic cross

section with the incoming partons a and b. The PDFs depend on the factorization

scale µF that separates the long- and short-distance parts of the calculation. The

terms O
(

Λ2
QCD

Q2

)
break the factorization of the cross section and in an operator

product expansion correspond to contributions from higher-twist operators. They

are suppressed by powers Λ2
QCD

Q2 , with Q a hard scale of the process in question and

ΛQCD ≈ 0.3 GeV the energy scale at which αs (ΛQCD) ≈ 1.

The partonic cross section dσ̂ab(X) is made up of the squared partonic matrix element

describing the interaction between partons a and b, and the phase space dΦNX (ΦN)

available for an N -parton final state as required by the matrix element, subject to

the cuts and measurements applied in the measurement function X (ΦN):

dσ̂ab =dΦN |M (pa, pb; p1, . . . , pN)|2X (ΦN)

= 1
φ (pa, pb)

|M (pa, pb; p1, . . . , pN)|2X (ΦN)

× (2π)4 δ(4)
(
pa + pb −

N∑
i=1

pi

)
N∏
i=1

d3pi

(2π)3 2Ei
. (2.1.2)

In the following, we will generally incorporate the initial state flux factor φ (pa, pb)

into the phase space measure dΦN , and suppress the functional dependence where

appropriate.
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2.2 Higher-order corrections in perturbation the-

ory

As noted in the introduction, the inclusion of higher order corrections in calculations

of experimental observables is fast becoming mandatory. This necessity is rooted

both in the need for theoretical predictions to match the high experimental precision

achievable at current and potential future colliders, as well as in the need for a sensibly

defined uncertainty estimation due to missing higher-order corrections. Furthermore,

the lack of clear signals for physics beyond the SM forces the precision determination

of observables in order to be able to detect small deviations from the SM expectation.

The cross section differential with respect to an experimental observable can be

calculated order by order in perturbation theory. The basic principle is to expand

the partonic cross section as a power series in the relevant coupling constant α:

dσ̂ab
(
X;x1, x2,

µ2
F

Q2

)
=

∞∑
m=0

(
α (µR)

4π

)m
dσ̂(m)

ab

(
X;x1, x2,

µ2
F

Q2 ,
µ2
R

Q2

)
. (2.2.1)

The behaviour at very high energies requires the renormalization of the parameters

in the Lagrangian as the original “bare” parameters are related to experimental

measurements by potentially divergent terms. The renormalization procedure is

performed at the renormalization scale µR, upon which each term in the series

depends. The all-orders cross section is independent of this unphysical scale; the

truncation of the series however will introduce a spurious dependence on this scale.

We discuss a particular way of performing renormalization, the so-called on-shell

renormalization scheme, further in Appendix B.

Consider now a generic cross section σ(X) containing N particles in the final state,

where X denotes the kinematic cuts and differential measurements applied at the

Born level. When considering cross sections involving coloured particles or photons

in the final state, this set of cuts has to be defined in an IR-safe manner, e.g. in the

form of an IR-safe jet algorithm or an exclusive photon cut.
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The cross section at leading order is schematically given by:

σLO(X) =
∫

dσB(X) =
∫

dΦNBN (ΦN)X (ΦN) . (2.2.2)

BN is the square of the lowest order amplitude for the process being calculated. The

lowest order is defined as the order in the coupling constants at which the process

first becomes possible. Here we include in the integration over the phase space all

sums over helicities, partonic channels, the flux, symmetry and averaging factors.

At the next order in the coupling constant, the next-to-leading order (NLO), there

are two contributions to the cross section: the virtual corrections contain the cor-

rections due to the emission and subsequent reabsorption of additional particles

in the process. These corrections interfere with the leading order amplitude and

require renormalization. The real corrections contain all the corrections due to the

emission of additional particles into the final state. The NLO cross section can then

be written as:

σNLO(X) =
∫

dσV(X) +
∫

dσR(X)

=
∫

dΦNVN (ΦN)X (ΦN) +
∫

dΦN+1RN+1 (ΦN+1)X (ΦN+1) , (2.2.3)

where VN = 2Re (M0∗
0 M1

0) is the interference between the leading order amplitude

M0
0 and the virtual amplitudeM1

0, while RN+1 =
∣∣∣∣M 1

2
1

∣∣∣∣2 is the square of the matrix

element containing an extra particle in the final state. Here, we have used the

notationM
1
2nR+nV
nR as the matrix element for the process containing nV virtual and

nR real particles compared to the LO amplitude. The bottom index then counts the

number of real emissions, while the top index denotes the order of this amplitude

with respect to the LO amplitude, α 1
2nR+nV .

Note that the two components of this calculation reside in two different phase spaces:

the virtual corrections are integrated over the N -particle phase space, the same as

the Born level contribution, whereas the real corrections are integrated over the

N + 1-particle phase space.
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In gauge theories with massless gauge bosons, of which QCD and QED are examples,

both components of the calculation can become separately divergent in the limits

in which the additional, virtual or real, particle becomes unresolved. This may be

the case if the energy of the additional particle E → 0, i.e. it goes soft, or when the

additional particle is emitted collinear to one of the particles in the Born phase space.

It is a general result, proven in the context of QED by Bloch and Nordsieck [103]

and more generally by Kinoshita, Lee and Nauenburg (KLN) [104,105], that for any

infrared-collinear safe measurement X these divergences cancel at all orders in the

sum of the virtual and real corrections. Such measurements require in particular

that in all soft and collinear limits X (ΦN+1) → X (ΦN), such that the observable

values in the unresolved limits end up in the same bin of the measurement to ensure

the cancellation of the divergences.

At the second order in the coupling constant, the next-to-next-to-leading order

(NNLO), three parts appear: the double virtual (VV) contribution dσVV(X), which

consists of two-loop amplitudes interfering with Born level amplitudes and the in-

terference of two one-loop amplitudes, the real-virtual (RV) contribution dσRV(X),

in which amplitudes with one emitted and one virtual particle interfere with single

real amplitudes, and the double real (RR) contribution dσRR(X) that contains the

emission of two real particles:

σNNLO(X) =
∫

dσVV(X) +
∫

dσRV(X) +
∫

dσRR(X)

=
∫

dΦN{V V }N (ΦN)X (ΦN)

+
∫

dΦN+1{RV }N+1 (ΦN+1)X (ΦN+1)

+
∫

dΦN+2{RR}N+2 (ΦN+2)X (ΦN+2) . (2.2.4)

Note that now the contributions reside in three different phase spaces: the N -particle

phase space for the double virtual contribution, the N + 1-particle phase space for

the real-virtual contribution and the N + 2-particle phase space for the double real

corrections. The possible degree of infrared divergence of these contributions is more



34 Chapter 2. Higher-order corrections

severe than in the NLO case, as now up to two particles can go unresolved at the same

time. While the cancellation of divergences in the NLO case meant a straightforward

cancellation between terms with the same magnitude but opposite sign in the real

and virtual contributions, at NNLO the cancellation is now spread over three terms

and the correspondence between the divergences in different contributions is more

involved. The KLN theorem however still guarantees that for IRC safe measurements

the cross section is free of infrared divergences.

While the overall cancellation of infrared divergences is guaranteed, the divergences

still have to be made explicit, using some form of regulator, in intermediate steps

of a calculation. Two prominent methods of regularization are to either introduce a

small mass m for the massless gauge boson or to analytically continue the number

of space time dimensions from D = 4 to D = 4 − 2ε . In the former approach,

the divergences appear as logarithms of the gauge boson mass, ln (m), while in the

latter approach, they appear as poles in the parameter ε. Such regularization makes

analytical calculations possible and allows for explicit checks of the correctness of

the calculation as the final result needs to be independent of the regulator. However,

calculating cross sections analytically quickly becomes very difficult as the number

of final state particles, and therefore degrees of freedom, increases. In addition, the

application of arbitrary phase space cuts may even make an analytical calculation

impossible. In these cases, we would like to numerically integrate the cross section.

Numerical methods however require finite integrands, as well as an integer number of

dimensions. We thus have to deal with the divergences in a different way such that

each term is rendered finite and numerically integrable. In the following sections,

we will be reviewing the two main procedures for allowing numerical calculations of

higher order corrections, namely subtraction and phase space slicing. For simplicity,

we will here be sticking with the NLO case, and will use dimensional regularization.
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2.3 Subtraction method

One prominent technique for calculating higher-order corrections to cross sections

is the subtraction method. The basic idea here is to use the known behaviour of

the integrand in the unresolved limits to subtract the divergences from the real

contribution at the integrand level, and add the subtracted piece, now integrated

over the phase space of the additional particle, to the virtual contribution. This

procedure amounts to adding an overall zero, i.e. it does not change the value of the

cross section, but it renders each of the integrands finite. This then allows numerical

integration of the cross section in four spacetime dimensions.

To elucidate, consider again the NLO correction to the cross section in Eq. (2.2.3).

We subtract from the real contribution a term dσS which approaches dσR in all

unresolved limits and thus subtracts off all the divergent parts of the real contribution.

To the virtual contribution, we add a term dσA containing explicit divergences in

the chosen regulator, which exactly cancel the ones contained in dσV. dσS and dσA

need to satisfy the identity

−
∫
N+1

dσS (ΦN+1) +
∫
N

dσA (ΦN) = 0. (2.3.1)

The NLO contribution to the cross section then reads

σNLO(X) =
∫
N

(
dσV(X) + dσA(X)

)
+
∫
N+1

(
dσR(X)− dσS(X)

)
=
∫
N

(
dσV(X) +

∫
1

dσS(X)
)∣∣∣∣
ε=0

+
∫
N+1

(
dσR(X)|ε=0 − dσS(X)|ε=0

)
,

(2.3.2)

where we can now safely take the limit ε→ 0 in dimensional regularization, as each

bracket is independently finite. While this construction leaves both integrands finite,

in the second contribution, the subtracted real contribution, we take the difference of

two divergent, hence very large terms. To circumvent numerical problems that may

occur as a result of this, the subtraction method will always include a small technical

cutoff in one of the integration variables, below which dσR and dσS are assumed to
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cancel identically. We can check that the total cross section is independent of this

cutoff within the numerical errors, but a residual dependence remains.

An important part of the subtraction method is now to find a way to partition the full

phase space ΦN+1 into the phase space corresponding to the radiated parton Φ1 and

the remainder ΦN such that the analytical integration of the subtraction term over

the additional parton phase space becomes possible. The limiting behaviour of IRC

safe observables is such that X(ΦN+1)→ X(ΦN) in the divergent limits. Therefore,

a decoupling of, and integration over, Φ1 is always possible for such observables. The

practicality of the method then hinges on whether one can factorize the phase space

and express the subtraction terms dσS such that:

• dσS is observable independent. This condition allows a general implementation

of the subtraction method.

• dσS matches the singular limits of dσR exactly. This renders the real integrand

finite.

• dσS can be integrated exactly over the phase space of the additional parton.

This ensures the cancellation of the virtual divergences.

• dσS is amenable to Monte Carlo integration. This allows to scale up to large

phase spaces and arbitrary phase space cuts.

Based on these requirements, a number of different variants of the subtraction

method have become established, which can be broadly categorized into two classes:

Subtractions based on reduced matrix elements, e.g. Catani-Seymour dipole sub-

traction [13, 57] or antenna subtraction [14, 106, 107], and residue subtraction, e.g.

the FKS method [15]. The subtraction method has also been extended to NNLO,

but the complexity in this case grows significantly.
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2.4 Phase Space Slicing

Another technique for calculating higher-order corrections to cross section is phase

space slicing, originally introduced in [11,12]. The idea behind this method is that the

infrared divergences in the real contributions reside in a (possibly disconnected) set

of regions of phase space corresponding to the regions in which one or several Lorentz

invariants vanish. If one places a lower cut on appropriate invariants (or associated

variables approaching that invariant in the relevant limit), the real correction is

rendered finite and calculable. For the small phase space region below the cut, it is

often possible to write an approximation for the cross section in the divergent limit1.

This approximation can then be integrated analytically, in a process independent

manner, and the divergent terms cancelled against the corresponding terms in the

virtual corrections, which reside in the same phase space region. In order for this

approximation to the cross section to be justified, the phase space cut has to be very

small. However, for very small cuts the cross section has to be evaluated close to the

singularity, leading to very large cancellations between separate terms. To minimize

any resulting numerical problem, the cut should thus be chosen as large as possible.

Finding a balance between these two competing requirements is then crucial for this

method.

It is illuminating to illustrate this with a simple toy model. Consider the virtual

and real contributions to be given as:

dσV =VN
ε
,

dσR =RN(x)
x

, (2.4.1)

where the virtual corrections are already dimensionally regularized and renormalized,

and the infrared behaviour has been made explicit. The real emission contribution

depends in this model on a single phase space parameter x ∈ [0, 1], and its divergence

1This may however not be trivial. The simplicity and, ultimately, practicality of such an
approximation strongly depends on the choice of variable(s) used for the phase space cut which is
one of the major obstacles of this method.
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in the limit x→ 0 has been made explicit. The essence of an infrared-collinear safe

observable is in this model that

lim
x→0

X (ΦN , x) = X (ΦN , 0) ≡ X (ΦN) , (2.4.2)

and the KLN theorem then states that

lim
x→0

RN (x) = RN (0) = VN . (2.4.3)

In dimensional regularization, the x−1-pole is replaced by x−1−ε. The NLO cross

section then reads:

σLO+NLO = lim
ε→0

[∫
dΦN

(
dσB + VN

ε

)
X (ΦN) +

∫
dΦN

∫ 1

0

dx
x1+εRN(x)X (ΦN , x)

]

= lim
ε→0

[∫
dΦN

(
dσB + VN

ε

)
X (ΦN)

+
∫

dΦN

∫ δ

0

dx
x1+εRN(x)X (ΦN , x)

]
+
∫

dΦN

∫ 1

δ

dx
x
RN(x)X (ΦN , x) ,

(2.4.4)

where in the second line, we have split the real region into two regions using the

arbitrary cutoff δ. In the contribution above the cut, we can already take the

limit ε → 0 as this contribution is not divergent. To first order in δ, this can be

approximated as:

σLO+NLO = lim
ε→0

[∫
dΦN

(
dσB + VN

ε

)
X (ΦN) +

∫
dΦNRN(0)X (ΦN , 0)

∫ δ

0

dx
x1+ε

]

+
∫

dΦN

∫ 1

δ

dx
x
RN(x)X (ΦN , x) +O(δ)

= lim
ε→0

[∫
dΦN

(
dσB +

[
1− δ−ε

] VN
ε

)
X (ΦN)

]
+
∫

dΦN

∫ 1

δ

dx
x
RN(x)X (ΦN , x) +O(δ)

=
∫

dΦN

(
dσB + VN log δ

)
X (ΦN) +

∫
dΦN

∫ 1

δ

dx
x
RN(x)X (ΦN , x) +O(δ).

(2.4.5)

Now each term of the calculation is finite and can be calculated numerically. We

show a simple example of the dependence of such a calculation on the cutoff δ for
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Figure 2.1: Toy example illustrating δ-dependence of the phase space slicing
method. In the notation of Eq. (2.4.5), BN = 2, VN = 2 and
RN(x) = 2 + x2 and we assume

∫
dΦN = 1. The analytical result

σanalytical = 2.5 is shown in black. The result from the phase space
slicing is the sum of the virtual and real contributions, shown in
blue and green, and approaches the analytical result for low enough
cutoffs δ.

BN = 2, VN = 2 and RN(x) = 2 + x2 in Figure 2.1.

The results of the phase space slicing method can be nicely cross checked, as the

calculation should be independent of the cutoff δ. This is evident in Figure 2.1,

where below cutoff values of δ ≈ 0.1, the result from the slicing method is essentially

identical to the analytical result within the integration uncertainties. For higher

values of the cutoff, corrections due to the nonsingular terms in the real contributions

become visible.

In this form, also the major drawback of this method becomes clear. While the

method is simple to implement, there are two requirements that are in major tension:

in order to justify the use of the singular approximation, a low cutoff needs to be
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chosen. The logarithmic dependence on δ however means low cutoffs are discouraged

as they require large cancellations between the separate contributions, and in fact

the cutoff should be taken as large as possible to guarantee numerical stability.

Therefore this method requires the careful monitoring of the numerical stability,

typically necessitating a number of runs at different cutoffs to assess the dependence

and stability.



Part I

Accurate simulation of W -, Z-, and

Higgs-boson decays in SHERPA





Chapter 3

Introduction

The experiments at the LHC are stress-testing the Standard Model (SM) of particle

physics at unprecedented levels of precision. In particular, leptonic standard-candle

signatures like charged- and neutral-current Drell-Yan production offer large cross

sections together with very small experimental uncertainties, often at or even below

the percent level. This allows to extract fundamental parameters in the electroweak

(EW) sector of the SM at levels of precision surpassing the LEP heritage. Measure-

ments of the W -boson mass, a key EW precision observable, are already reaching

the 20 MeV level [108] based on 7 TeV data alone, with theory uncertainties being

one of the leading systematics. Another example for the impressive achievements on

the experimental side, challenging currently available theoretical precision, is the re-

cent measurement of the triple differential cross section in neutral current Drell-Yan

production based on 8 TeV data [9], the first of its kind at a hadron collider. Further-

more, precision measurements of the Z transverse momentum spectrum [109, 110]

have been used to constrain parton distribution functions (PDFs) [111]. In order to

fully harness available and future experimental datasets excellent theoretical control

of various very subtle effects of higher-order QCD and EW origin is required. For

recent reviews and studies on these issues, see e.g. [50, 112, 113]. With this Part

we contribute to this effort by investigating higher-order QED/EW effects in the

modelling of soft-photon radiation off vector-boson decays.
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The demand for (sub-)percent precision in Drell-Yan production has led to formidable

achievements in the theoretical description of corresponding collider observables,

often pushing boundaries of technical limitations. The pioneering next-to-next-to-

leading (NNLO) QCD corrections for differential Drell-Yan production [114–116] are

available as public computer codes [117–119] and have recently been matched to

QCD parton showers, using the UN2LOPS framework within SHERPA [120], and via

a reweighting of a MiNLO improved calculation in DYNNLOPS [121]. Since recently

also NNLO corrections to Drell-Yan production at finite transverse momentum

are available [85–88, 122–125]. Higher-order EW corrections at the NLO level for

inclusive Drell-Yan production have been available for quite some time [126,127] and

are available in a large number of public codes, including WZGRAD [24–26], HORACE

[27,28], SANC [29], RADY [30,31] and FEWZ [35]. At finite transverse momentum they

have been calculated in [128–131]. The combination of higher-order QCD and EW

effects is available within the POWHEG framework [32–34,113,132,133] matched to

parton-showers. Efforts to calculate the mixed QCD and EW corrections explicitly

are underway [134–137]. Their effect has been studied in the pole approximation

[36,138].

At the desired level of precision also QED effects impacting in particular the leptonic

final state have to be considered and understood. In this case, soft and collinear

photon radiation provides the major contributions. These can be resummed to all

orders, and also improved order by order in perturbation theory. Implementations

of such calculations have been performed via a QED parton shower matching in

HORACE [43,44] and in the POWHEG framework, in the structure function approach

in RADY, and through a YFS-type exponentiation for particle decays in PHOTOS [46],

WINHAC [47], the HERWIG module SOPHTY [48] and the SHERPA module PHOTONS

[49]. In this Part of the Thesis, we present an extension of the SHERPA module

PHOTONS, which provides a simulation of QED radiation in (uncoloured) particle

decays. PHOTONS implements the approach of Yennie, Frautschi and Suura (YFS)

[45] for the calculation of higher order QED corrections. In the YFS approach,
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leading soft logarithms, which are largely independent of the actual hard process

involved, are resummed to all orders. Beyond this, the method also allows for

the systematic improvement of the description through the inclusion of full fixed-

order matrix elements. The present implementation allows for the inclusion of a

collinear approximation to the real matrix element using dipole splitting kernels [139].

Furthermore, for several relevant processes, including the decays of electroweak

bosons, τ decays as well as generic decays of uncharged scalars, fermionic and vector

hadrons, the full real and virtual NLO QED matrix elements are included. This

module has also been used for the description of electroweak corrections in the

semileptonic decays of B mesons [140]. The aim of this publication is to further

enhance the level of precision in the case of the decay of electroweak gauge- and

Higgs-bosons bosons by implementing the full one-loop EW corrections, as well as

NNLO QED corrections in the case of Z- and Higgs-decays. The electroweak virtual

corrections to particle decays have been known for a long time [141, 142] and our

implementation will be based on these results. In the case of Z-boson decays, the

double virtual corrections in the limit of small lepton masses have been known for

about 30 years [143]. We will rely on these results for the virtual corrections.

This Part of the Thesis is organized as follows. In Chapter 4, we review the YFS

algorithm, motivating and investigating the procedure to include higher order correc-

tions at a given perturbative order within this framework in Chapter 5. In Chapter

6, we review the results for the decays Z → `+`−, W → `ν in Drell-Yan production.

There we also present results for H → `+`−-decays in hadronic Higgs production.

The measurement of the latter is highly challenging due to small leptonic Higgs

couplings but potentially achievable at the HL-LHC. We discuss and conclude in

Chapter 7.



46 Chapter 3. Introduction



Chapter 4

The YFS formalism

The results in this Part are obtained from the SHERPA module PHOTONS [49], which

simulates QED radiation in particle decays based on the approach pioneered by

Yennie, Frautschi and Suura (YFS) [45]. In the work presented here, we implemented

the full electroweak next-to-leading order corrections (NLO EW) for the decay of

electroweak gauge bosons (W±- and Z-bosons) into PHOTONS and also included

purely electromagnetic next-to–next-to leading order (NNLO QED) corrections for

the case of Z-boson and Higgs-boson decays.

4.1 YFS resummation in particle decays

In this section, we will briefly recapitulate the YFS formalism in a form appropriate

for the approximate description of photon radiation in particle decays, using the

exponentiation of the universal soft limit of matrix elements for real and/or virtual

photons and its systematic improvement through exact fixed-order calculations. The

decay rate of a decaying particle with mass m and momentum q into a set of decay

products with momenta pf , fully inclusive with respect to the number of real photons

nR, with momenta ki and phase space Φk, and virtual photons nV reads

Γ = 1
2m

∞∑
nR=0

1
nR!

∫
dΦpdΦk(2π)4δ

q −∑
f

pf −
nR∑
i=0

ki

 ∣∣∣∣∣∣
∞∑

nV =0
MnV + 1

2nR
nR

∣∣∣∣∣∣
2

. (4.1.1)
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Compared to the original, Born-level matrix element M0
0 describing the decay, the

matrix elementsMj
i include i real photons at the overall order j in the electromag-

netic coupling α. This equation for the decay rate describes an unrealistic situation,

where we are able to calculate all matrix elements, to all orders, and where we can

integrate them over their respective full phase space, while in reality at most the first

few orders in perturbation theory can be calculated. The YFS algorithm addresses

this by dressing the lowest order matrix elements with exponentiated eikonal factors

that capture the leading logarithmic behaviour of the amplitude, thus providing an

all-order description of QED radiation correct in this limit. The full result is restored,

order by order in perturbation theory, by including the subleading process-dependent

parts of the amplitude.

Encapsulating the leading soft behaviour of a single virtual photon in a process-

independent factor αB, the full one-loop matrix element can be written as

M1
0 = αBM0

0 +M1
0 , (4.1.2)

where M1
0 is an infrared subtracted matrix element including a virtual photon.

Note that throughout this paper we assume all charged particles to be massive;

consequently the matrix elements do not exhibit collinear singularities. YFS showed

that the simple structure at first order above extends also to all further virtual photon

corrections. Including the appropriate symmetrization prefactors this generalizes to

MnV
0 =

nV∑
r=0

MnV −r
0

(αB)r

r! . (4.1.3)

Upon summing over all numbers of virtual photons nV , we find that the soft behaviour

exponentiates:
∞∑

nV =0
MnV

0 = exp (αB)
∞∑

nV =0
MnV

0 . (4.1.4)

In QED, this argument generalises to matrix elements containing any number nR of

real photons. Therefore
∣∣∣∣∣
∞∑
nV

MnV + 1
2nR

nR

∣∣∣∣∣
2

= exp (2αB)
∣∣∣∣∣∣
∞∑

nV =0
M

nV + 1
2nR

nR

∣∣∣∣∣∣
2

, (4.1.5)
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where the MnV + 1
2nR

nR are free of virtual soft singularities, but will still contain diver-

gences due to real photons.

In contrast to the virtual amplitudes, the factorization for real photons occurs on

the level of the squared matrix elements. For a single photon emission it reads:

1
2 (2π)3

∣∣∣∣∣
∞∑
nV

M
nV + 1

2
1

∣∣∣∣∣
2

= S̃ (k)
∣∣∣∣∣
∞∑
nV

MnV
0

∣∣∣∣∣
2

+
∞∑

nV =0
β̃nV +1

1 (k) . (4.1.6)

The eikonal factor S̃ (k) contains the soft divergence due to the real photon emission

and will be presented later. We denote the complete infrared finite squared matrix

element as β̃nV +nR
nR

and employ the abbreviation

β̃nR =
∞∑

nV =0
β̃nV +nR
nR

(4.1.7)

to write the squared matrix element for the emission of nR real photons, summed

over all numbers of virtual photons nV , as(
1

2 (2π)3

)nR ∣∣∣∣∣
∞∑
nV

M
nV + 1

2nR
nR

∣∣∣∣∣
2

=β̃0

nR∏
i=1

[
S̃ (ki)

]
+

nR∑
i=1

[
β̃1 (ki)
S̃ (ki)

]
nR∏
j=1

[
S̃ (kj)

]

+
nR∑
i,j=1
i 6=j

[
β̃2 (ki, kj)
S̃ (ki) S̃ (kj)

]
nR∏
l=1

[
S̃ (kl)

]
+ · · ·+ β̃nR (k1, · · · , knR) . (4.1.8)

This expression contains all possible divergences due to real photon emission in

the eikonal factors. The first term describes the leading logarithmic behaviour,

and contains all virtual insertions to the matrix element without any real photon

emission through β̃0. The second term corrects the approximate expression in the S̃

for the real emission of one additional photon to the exact result, and so on. We can

now expand the β̃i in the electromagnetic coupling constant α to get a systematic,

perturbative expansion. If we demand agreement with the exact results up to O (α2),

this expression reads:(
1

2 (2π)3

)nR ∣∣∣∣∣
∞∑
nV

M
nV + 1

2nR
nR

∣∣∣∣∣
2
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=
(
β̃0

0 + β̃1
0 + β̃2

0

) nR∏
i=1

[
S̃ (ki)

]
+

nR∑
i=1

[
β̃1

1 + β̃2
1 (ki)

S̃ (ki)

]
nR∏
j=1

[
S̃ (kj)

]

+
nR∑
i,j=1
i 6=j

[
β̃2

2 (ki, kj)
S̃ (ki) S̃ (kj)

]
nR∏
l=1

[
S̃ (kl)

]
+O

(
α3
)
, (4.1.9)

effectively making explicit the terms related to virtual photon corrections2.

To complete the exponentiation of the leading logarithmic behaviour, we insert this

expression into the decay rate and reexpress the momentum conserving δ-functions

as exponentials:

2m · Γ =
∫

dy
∫

dΦpf

{
e2αB

∫
dyeiy(q−

∑
pf)+

∫
d3k
k0 S̃(k)e−iyk

×
(
β̃0

0 + β̃1
0 + β̃2

0 +
∫ d3K

K0 e
−iyK

(
β̃1

1(K) + β̃2
1(K)

)
+
∫ d3K1

K0
1

d3K2

K0
2
e−iy(K1+K2)

(
β̃2

2(K1, K2)
)

+O
(
α3
))}

.

(4.1.10)

In this expression, all virtual infrared singularities are contained in B while all real

infrared singularities are contained in the integral over S̃(k). There, terms diverging

in the limit k → 0 can easily be isolated by defining a small soft region Ω that

contains the limit k → 0 such that Θ(k,Ω) = 1 if k /∈ Ω:

∫ d3k

k0 S̃(k)e−iyk

=
∫ d3k

k0

{
S̃(k)

[
(1−Θ(k,Ω)) + e−iykΘ(k,Ω) +

(
e−iyk − 1

)
(1−Θ(k,Ω))

]}
= 2αB̃(Ω) +D(Ω). (4.1.11)

The two functions B̃(Ω) and D(Ω) are given by

2αB̃(Ω) =
∫ d3k

k0 S̃(k)e−iyk
(

1−Θ(k,Ω)
)
,

D(Ω) =
∫ d3k

k0 S̃(k)
[
e−iykΘ(k,Ω) +

(
e−iyk − 1

)(
1−Θ(k,Ω)

)]
,

(4.1.12)

where the former contains the infrared singularities and the latter is infrared regular.

2 For an agreement correct up to order O (α), we would need to remove β̃2
0 , β̃2

1 and β̃2
2 . By far

and large this has already been implemented in [49].
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This separation allows the re-expansion of the exponentiated integral and the re-

instating of explicit momentum conservation through δ-functions, arriving at the

master formula for the decay rate in the YFS approach:

2m · Γ =
∑
nR

1
nR!

∫
dΦpfdΦk (2π)4 δ4

q −∑
f

pf −
nR∑
i=0

ki


× eY (Ω, {q})

nR∏
i=1

S̃ (ki, {q}) Θ (ki,Ω) β̃0
0({q}) C({p}, {q}) J ({p}, {q}).

(4.1.13)

In the equation above we made the dependence on momenta explicit: the Born-level

momenta of the process before QED radiation are denoted by qi, while the momenta

of the full final state including radiation are labelled pi. The mapping between both

sets of momenta is detailed below. The individual terms are

• the YFS form factor

Y (Ω) =
∑
i<j

Yij(Ω) = 2α
(
Bij + B̃ij(Ω)

)
, (4.1.14)

with the sum running over all pairs of charged particles and the soft factors

given by

Bij = − i

8π3ZiZjθiθj

∫
d4k

1
k2

(
2qiθi − k

k2 − 2 (k · qi) θi
+ 2qjθj + k

k2 + 2 (k · qj) θj

)2

,

(4.1.15)

B̃ij (Ω) = 1
4π2ZiZjθiθj

∫
d4k δ

(
k2
)(

1−Θ (k,Ω)
)(

qi
qi · k

− qj
qj · k

)2

.

(4.1.16)

These two terms contain all infrared virtual and real divergences which cancel

due to the KLN theorem, guaranteeing the finiteness of Y (Ω) and of the decay

width. Zi and Zj are the charges of the particles i and j, and the factors θ = ±1

for particles in the final or initial state, respectively. We provide expressions

for Bij in final-final and initial-final dipoles in terms of scalar master integrals

in appendix D. The calculation of the full form factor can be found in [49];
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• the eikonal factor S̃ (k)

S̃ (k) =
∑
i<j

S̃ij (k) = α

4π2

∑
i<j

ZiZjθiθj

(
qi
qi · k

− qj
qj · k

)2

(4.1.17)

describing the soft emission of a photon off a collection of charged particles;

• the lowest order matrix element β̃0
0 ;

• a correction factor C to the full matrix element, which we will comment on in

more detail in Section 4.3.1;

• and the Jacobian J capturing the effect of the momenta mapping.

4.2 Momentum mappings

For the purposes of event generation, we need to define the momenta that are used

in the master formula Eq. (4.1.13). We will refer to the momenta used in the leading

order matrix element, β̃0
0 , as the “undressed” momenta, i.e. the momenta before the

event is dressed with photons. The undressed momenta are labelled through qµi , and

we define as

Qµ
N/C =

∑
i∈N/CFS

qµi (4.2.1)

the sums of the final state neutral and charged momenta. After the generation of the

additional photon momenta, the undressed momenta have to be mapped to a set of

“dressed” momenta to account for momentum conservation. The dressed momenta

are labelled through pµi and we define the sums of the neutral and charged final state

particles in the same way as for the undressed momenta:

P µ
N/C =

∑
i∈N/CFS

pµi . (4.2.2)

In a similar manner, we define the sum of the photon momenta as

Kµ =
nR∑
i=1

kµi . (4.2.3)



4.2. Momentum mappings 53

The mappings relevant for particle decays of both uncharged and charged initial

particles have been outlined in section 3.3 of [49], but we will repeat them here for

the benefit of the interested reader. The only condition the mapping has to meet

is that in the limit of K → 0, the underlying momenta of the undressed n-parton

phase space have to be recovered exactly. QED provides no guiding principle which

particle should be taken to balance the momenta of the generated photons. It is

therefore sensible to treat all the final state momenta fully democratically and let

them all take the recoil. Considering all particles in the rest frame of the multipole

responsible for the radiation, this can be achieved by scaling the three-momenta

of all final state particles by a common factor u, distributing the photon momenta

across and finally enforcing momentum conservation and on-shell conditions.

4.2.1 Neutral initial states

For a neutral particle of mass m decaying into charged particles, such as is the case

for the decay of a Z- or a Higgs-boson, the above fixes the mapping to a rescaling

of all final state momenta, balancing the photonic momentum by moving the frame

of the multipole.

We start with the undressed momenta in the multipole rest frame

qµ =
(√

m2 + ~Q2
N , ~QN

)
Qµ
C =

(
Q0
C , ~QC = ~0

)
Qµ
N =

(
Q0
N , ~QN

)
.

(4.2.4)

The outlined procedure maps these momenta onto the final state momenta PC and

PN :

q′
µ =

(√
m2 +

(
u~QN + ~K

)2
, u ~QN + ~K

)

P µ
C =

(
P 0
C , u

~QC = ~0
)

P µ
N =

(
P 0
N , u ~QN

)
Kµ =

(
K0, ~K

)
.

(4.2.5)
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We can rewrite the three momentum of the initial state as u~QN+ ~K = u~q+ ~K showing

that the two vectors q and q′ are the same vector in different frames. All momenta

now reside in the rest frame of the dressed multipole. We can then determine the

scaling parameter u from energy conservation:

0 =
√
m2 +

(
u~QN + ~K

)2
−
∑
C

√
m2
i + u~qi

2 −
∑
N

√
m2
i + u~qi

2 −K0 . (4.2.6)

4.2.2 Charged initial states

For a charged particle of mass m decaying into a charged particle and a number

of neutral particles, such as is the case for the decay of a W -boson, we require a

different approach. In order to remain in the rest frame of the dressed multipole, we

cannot accomodate the photon momenta purely in the initial state.

Again, we start with the undressed momenta in the multipole rest frame:

qµ =
(√

m2 + ~Q2
C ,− ~QC

)
Qµ
C =

(
Q0
C ,
~QC

)
Qµ
N =

(
Q0
N , ~QN = −2 ~QC

)
.

(4.2.7)

In the most democratic approach, the photon momenta are accomodated equally by

all particles in the final state and the undressed momenta will be mapped onto:

q′
µ =

(√
m2 +

(
−u~QC + nC~κ

)2
,−u~QC + nC~κ

)

P µ
C =

(
P 0
C , u ~QC − nC~κ

)
P µ
N =

(
P 0
N , u

~QN − nN~κ
)

Kµ =
(
K0, ~K

)
.

(4.2.8)

All momenta now reside in the rest frame of the dressed multipole. The nC and nN

denote the number of charged and neutral final state particles, and ~κ is defined as:

~κ = 1
2nC + nN

~K. (4.2.9)

One can however also choose to let only the charged particles or only the neutral
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particles in the process accomodate the photon momenta, in which case ~κ = ~K/(2nC)

or ~κ = ~K/(nN), respectively, and corresponding terms in the mapping vanish. The

default option in PHOTONS, and the one that we will choose for the results in this

work, is the choice of letting only the neutral particles take the recoil.

Again, the scaling parameter u can be determined from energy conservation:

0 =
√
m2 +

(
−u~QC + nC~κ

)2
−
∑
C

√
m2
i + (u~qi − ~κ)2 −

∑
N

√
m2
i + (u~qi − ~κ)2 −K0.

(4.2.10)

4.3 The algorithm

Having mapped the momenta, including a transformation into the multipole centre

of mass frame, the full decay rate can be written as:

2MΓ =
∑
nγ

1
nγ!

∫
dΦqdΦk(2π)4δ3

(
~QM

)
δ
(
Q0
M −Q0

C − p0
C

)
β̃0

0e
Y (Ω)C

×
nγ∏
i=1

[
S̃(ki)Θ(ki,Ω)

] m3
M,pu

3n−4

M2 (P 0
C + P 0

N +K0)

~p2

p0 −
∑
C,N

~q2
i

q0
i

~p′~p
p′0
−∑C,N

~pi~qi
p0
i

n∏
i=1

[
q0
i

p0
i

]
, (4.3.1)

where QM denotes the momentum of the multipole centre of mass, and we have

written out the Jacobian J . This formula can be simplified by factoring out the

leading order differential decay rate dΓ0:

Γ =
∑
nγ

1
nγ!

∫
dΓ0dΦke

Y (Ω)C
nγ∏
i=1

[
S̃(ki)Θ(ki,Ω)

]

×
m3
M,pu

3n−4

M2 (P 0
C + P 0

N +K0)

~p2

p0 −
∑
C,N

~q2
i

q0
i

~p′~p
p′0
−∑C,N

~pi~qi
p0
i

n∏
i=1

[
q0
i

p0
i

]
. (4.3.2)

In order to generate events using a hit-or-miss Monte Carlo method, we need to

overestimate this integral. The maximum of all Jacobians is obtained when the sum

of photon momenta vanishes, i.e. for the leading order phase space. Furthermore,

the dressed momenta are replaced by the undressed versions and C = 1 is chosen.
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Then the distribution reduces to:

Γcr =
∑
nγ

1
nγ!

∫
dΓ0dΦke

Y (Ω)
nγ∏
i=1

[
S̃(ki)Θ(ki,Ω)

]

≈Γ0

∞∑
nγ

[
1
nγ!

e−n̄n̄nγ
]
, (4.3.3)

where the YFS form factor has been estimated by Y (Ω) ≈ −n̄. Eq. (4.3.3) has the

form of a Poissonian distribution with mean photon number n̄. This expression

allows us to generate the photons once the underlying, zeroth order decay rate, has

been generated. For this purpose, we apply the following steps:

1. Generate the number of photons in the event following the above Poisson

distribution.

2. Generate energies and angles of the photons according to S̃(q, k):

• The energy is distributed according to ρ(E) ∼ 1
E
,

• the angles are distributed according to

ρ(θ, φ) ∼
∑
i<j

(
qi

qi · nk
− qj
qj · nk

)2

, (4.3.4)

with nk a light-like unit vector in the direction of the photon.

Veto the event if the sum of the photon energies exceeds the available energy

in the decay.

3. Map the momenta following the mappings given in Section 4.2.

4. Calculate and apply a reweighting using the total weight

W = Wdip ×WYFS ×WJ,L ×WJ,M ×WC = J ×WC, (4.3.5)

the separate weights being given by:

Wdip =
nγ∏
i=1

S̃ (pC , PC , ki)
S̃ (pC , QC , ki)

,

WYFS =eY (pC ,PC ,Ω)+n̄,



4.3. The algorithm 57

WJ,L =
m3
M,p

m3
M,q

Q0
C +Q0

N

P 0
C + P 0

N +K0 ,

WJ,M =u3n−4
~p2

p0 −
∑
C,N

~q2
i

q0
i

~p′~p
p′0
−∑C,N

~pi~qi
p0
i

nγ∏
i=1

(
q0
i

p0
i

)
,

WC =C.

The first of these, Wdip, corrects the dipole used in the generation from the

unmapped momenta qi to the mapped momenta pi, the second weight, WYFS,

corrects the YFS form factor, the third and fourth weight account for the

Jacobians associated with the Lorentz transformation into the dipole centre of

mass frame and the mapping of the momenta respectively, and WC contains

the corrections due to the exact matrix elements.

Applying this algorithm, including the reweighting in the fourth step, means that

the distribution of the photons is now correctly described following the distribution

of the full YFS method.

4.3.1 The correction factor WC

The correction WC factor due to the full matrix elements reads:

C = 1 + 1
β̃0

0

β̃1
0 +

nγ∑
i=1

β̃1
1 (ki)
S̃ (ki)



+ 1
β̃0

0

β̃2
0 +

nγ∑
i=1

β̃2
1 (ki)
S̃ (ki)

+
nγ∑
i,j=1
i 6=j

β̃2
2 (ki, kj)

S̃ (ki) S̃ (kj)

+ 1
β̃0

0
O
(
α3
)
. (4.3.6)

The terms in the first bracket describe the next-to-leading order (NLO), i.e. the

O (α) term of the expansion, and the terms in the second bracket describe the next-

to-next-to-leading order (NNLO), the O (α2) term of the expansion. Terms of O (α3)

or higher are beyond the scope of this work and will be neglected. Our primary

concern in this Part of the Thesis will lie with this correction factor, in particular

with the virtual corrections at NLO, i.e. β̃1
0 , which we extend to an expression

at NLO in the full electroweak theory for the decays of the weak bosons, as well
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as the complete NNLO bracket which we will be calculating for the decays of the

neutral electroweak bosons. Any further corrections are of at least third order in the

electromagnetic coupling constant in comparison to the other terms.

For completeness, we list here the full expressions of the β̃nR+nV
nR

that will be import-

ant in this publication:

β̃0
0 = M0

0M
0∗
0 ,

β̃1
0 = M0

0M
1∗
0 +M1

0M
0∗
0 ,

β̃1
1 = 1

2 (2π)3M
1
2

1 M
1
2∗

1 − S̃ (k)M0
0M

0∗
0 = 1

2 (2π)3M
1
2

1 M
1
2∗

1 − S̃ (k) β̃0
0 ,

β̃2
0 = M0

0M
2∗
0 +M1

0M
1∗
0 +M2

0M
0∗
0 ,

β̃2
1 = 1

2 (2π)3

(
M

3
2

1M
1
2∗
1 +M

1
2
1M

3
2∗

1

)
− S̃ (k)

(
M0

0M
1∗
0 +M1

0M
0∗
0

)
= 1

2 (2π)3

(
M

3
2

1M
1
2∗
1 +M

1
2
1M

3
2∗

1

)
− S̃ (k) β̃1

0 ,

β̃2
2 =

(
1

2 (2π)3

)2

M1
2M

1∗
2 −

∑
i,j=1
i 6=j

S̃ (ki) β̃1
1 (kj)− S̃ (ki) S̃ (kj) β̃0

0 . (4.3.7)

We note here that throughout this work, we use dimensional regularization to regulate

both the UV and IR divergences that occur at intermediate steps of the calculation.

4.3.2 Momenta in higher order corrections

Having discussed the momentum mappings necessary to map from undressed to

dressed momenta, it is worth briefly discussing which set of momenta is to be used

in each component of Eq. (4.1.13).

Every part of this formula apart from the correction factor, C, is calculated us-

ing the undressed momenta qi, with the Jacobian J accounting for the mapping

from undressed to dressed momenta. This in particular includes the factors S̃ that

implement the soft approximation to the real matrix elements.

The correction factor C amounts to a reweighting of this approximation to the

required order. This means that the correction factor improves upon the approxim-
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ation by taking its place. Practically, for the real matrix element corrections, the

eikonal factors S̃ have to be cancelled out. Thus, the eikonals in the denominators

in Eq. (4.3.6) have to be calculated using the undressed momenta.

All matrix elements containing no additional photon, β̃i0, are calculated in the n-

particle Born phase space, i.e. using the undressed momenta. The terms describing

real matrix element corrections are then calculated in the phase space appropriate

to the number of photons they contain: In the n + 1-particle phase space for the

single real matrix elements β̃i1, in an n+2-particle phase space for double real matrix

elements, β̃i2, and so on. In order to define the momenta in these phase spaces,

we repeat the mapping procedure described previously, but now only taking into

account the photons that are taken to be hard in the matrix element correction.

This procedure is repeated for every photon or set of photons that have been created.

For the single real matrix elements, this means there are in total nγ calls to the

mapping and the matrix elements, while for the double real matrix elements, there

are nγ(nγ − 1)/2 calls to the mapping and the matrix element. If no photon has

been generated, no real weights are calculated, if only one photon is generated, then

the double real matrix elements are not calculated.
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Chapter 5

NLO EW and NNLO QED

corrections within PHOTONS

5.1 Motivation for higher order corrections

The previous chapter dealt with the procedure for dressing the lowest order matrix

element with soft radiation to all orders. This basic procedure, in which C = 1,

yields photon distributions that are correct in the limit of soft radiation. For the

remainder of this Part, we will call this the soft approximation. Away from the soft

limit, exact matrix elements are necessary to describe observables at the required

accuracy, and we described the procedure for their systematic incorporation. Hard

photon radiation occurs predominantly collinear to the emitter and more frequently

in processes with large energy-to-mass ratios of the involved particles. With this in

mind, generic collinear corrections for the real matrix element, based on the splitting

functions developed in [139], were employed in [49] to account for hard QED radiation

in the soft-collinear approximation. While this approximation correctly describes

radiation in the limits of soft and collinear radiation, it does not account for either

interference effects or hard wide-angle radiation. In order to capture these effects

correctly, full matrix elements for real and virtual photon radiation must be added,

some of which have already been included in [49].
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Figure 5.1: The invariant mass m`` of the two leptons in Z-boson decays on

the left and the invariant mass m`ν of the charged lepton and the
neutrino in W -boson decays on the right are shown for the processes
pp→ Z → e+e− and pp→ W+ → e+νe respectively. Different levels
of fixed order accuracy are compared. The electrons in both cases
are dressed with collinear photons within dR = 0.1.

In Fig. 5.1 we compare the soft-collinear, the full NLO-correct results and the NNLO-

correct results for the invariant massm`` of the electrons produced in Z-boson decays,

as well as the soft-collinear and full NLO-correct results for the invariant mass m`ν

of the charged electron and the neutrino in W -boson decays. To guide the eye we

also show the leading-order result for both distributions. The NLO result represents

the maximal accuracy of the implementation in PHOTONS as described in [49].

These distributions clearly show the necessity to include photon radiation in the first

place. Photon radiation causes a significant shape difference, shifting events from

large to lowerm`` orm`ν . This effect is a lot more striking in the decay into the lighter

leptons, such as the electrons exhibited here, which are much more likely to radiate

photons. We can also appreciate that while the soft-collinear approximation does a

good job of describing the distribution near the peak, it predicts a harder spectrum

at lower values of m`` or m`ν . The peak region corresponds to the limit of soft

photon radiation, while the latter region corresponds to hard photon radiation. This

observation thus suggests that in order to capture the behaviour of the distribution

over its entirety, we need to employ full matrix elements. It is then natural to ask

whether higher order corrections beyond the NLO in QED are required as well. The
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description of these higher order corrections will be the focus of the next sections.

5.2 NLO Electroweak correction

The discussion in Chapter 4 was restricted to QED corrections only. Since the

exponentiation relies on the universal behaviour of the amplitudes in the soft limit

only, additional fixed-order corrections can easily be added, as long as they are not

divergent in the soft limit and thus do not spoil the soft-photon exponentiation. This

is, in fact, the case for the weak part of the corrections in the full electroweak theory,

where the masses of the weak bosons regulate the soft divergence that is plaguing

the massless photon. In this work, we will be concerned with the decays of weak

bosons; consequently, there is no phase space available for the emission of a real,

massive weak boson, and the additional electroweak corrections contribute only to

the virtual corrections β̃nV0 .

The known one-loop virtual corrections for the decays of the electroweak bosons [141,

144] have been implemented in a number of programs dedicated to electroweak

precision calculations already mentioned in the introduction. They can be calcu-

lated analytically with programs such as FEYNCALC [145, 146], FORMCALC [147]

or Package-X [148], and numerically with programs such as GOSAM [149, 150],

MADGRAPH5 [37, 38], OPENLOOPS [39, 40] or RECOLA [41, 42]. The two-loop vir-

tual electroweak corrections are not fully known yet, with only partial results for

particular observables available, see for example [151,152].

We implemented the electroweak corrections for the decays Z → `¯̀, H → `¯̀ and

W → `ν. In doing so, we also reimplemented, and revalidated, the QED corrections

in a more straightforward way. We retain the full dependence on the lepton masses

in the decay H → `¯̀, while we only retain the lepton masses in the QED part of the

corrections in the other two decays, where they are required to regularize the collinear

singularities, and neglect them in the other contributions. To this end we used the

vertex form factors found in [142] to describe the virtual corrections to the vertices.
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We renormalize the theory using the on-shell renormalization scheme, following the

treatment described in [141]. The choice of this renormalization scheme means

the corrections to the external legs are absorbed into renormalization constants so

that we do not need to consider self-energy corrections to the external legs in the

amplitude. The renormalization in the on-shell scheme is discussed in Appendix B.

We validated the amplitudes and the implementation of the higher order corrections

in a number of ways presented in Appendix G.

For the decays of Z- and Higgs-bosons, we further implement an option to consider

only QED corrections. In the decay of neutral bosons, this choice forms a gauge-

invariant subset of the full electroweak corrections and can thus be considered

independently. Practically, this amounts to turning off the purely weak vertex form

factors as well as turning off those parts of the renormalization constants that are

of weak origin. This option is not available in the case of a W -boson decay as the

W itself couples to the photon. We list the relevant form factors, renormalization

constants and the necessary modifications in the pure QED case in Appendix C.

As mentioned at the start of this section, there are no real corrections due to the

weak part of the theory, so the only contribution here remains the real radiation

of an additional photon. We approach these contributions by splitting the fermion

propagators into spin sums and writing the helicity amplitudes in terms of X-, Y -

and Z-functions [54,153–155]. We give a more detailed discussion of this approach

in Appendix F.

5.3 NNLO QED corrections

We will now turn to the discussion of the NNLO QED corrections to Z- and Higgs-

boson decays, which represent the next step up in accuracy. These corrections

are particularly interesting in the context of providing better predictions in those

distributions, or parts thereof, that are not accessible kinematically in the NLO

corrections. As discussed in Section 2, the NNLO QED corrections consist of double-
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virtual, real-virtual and real-real corrections. The NNLO QED corrections can be

combined with the full NLO EW corrections, and we will label that combination

“NNLO QED ⊕ NLO EW”.

5.3.1 Double virtual corrections

The two-loop QED corrections to the form factor for the Z-boson decay have been

known in the limit of small lepton masses since the LEP era [143,156]. To the best

of our knowledge, there are no such results for the decay of Higgs bosons in QED.

Including the full mass dependence, at the moment only the two-loop form factor

for the decay of a virtual photon is known analytically in QED [157].

Furthermore, in a series of papers, the two-loop QCD corrections including the full

mass dependence to the vector [158], the axial vector [159], the anomaly contributions

[160] and the scalar and pseudo-scalar form factors [161] have been obtained, which

have recently been extended to also include the O(ε) contributions [162]. From these,

the full two-loop form factors in QED can in principle be obtained by considering

only the abelian contributions to the QCD form factors and replacing the respective

group factors by the appropriate ones in QED. We have however not been able to

successfully reproduce the two-loop QED form factor as cited in [143] from these

results. Thus for the description of the decays of Higgs-bosons, we rely on the leading

logarithmic behaviour, β̃2
0 = 1

2 log2
(
s
m2

)
. We find that for the decays into muons,

this is a sufficient approximation and we only start to see appreciable effects that

may root in the missing two-loop terms when considering the decay into τ ’s.

For the decay of the Z-boson, we can use the results in Eqs. (2.15) and (2.22)

from [143], together with the subtraction term B expanded in the limit s � m2,

to find the infrared subtracted double virtual corrections in this limit. The results

for the form factors given in [143] are sufficient as we only require Re(M2
0M

0∗
0 ) in

the double virtual correction. The two-loop amplitude M2
0 reduces here to a simple

factor multiplying the leading order matrix element, so that only the real part of
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M2
0 is necessary for the calculation of β̃2

0 .

The double virtual corrections can be decomposed, following the procedure described

in Chapter 4, as

M2
0 = M2

0 + αBM1
0 + (αB)2

2! M0
0 , (5.3.1)

so that the infrared subtracted matrix element reads:

M2
0 =M2

0 − αBM1
0 −

(αB)2

2! M0
0 =M2

0 − αBM1
0 + (αB)2

2! M0
0 . (5.3.2)

In the second step we used the decomposition M1
0 =M1

0 − αBM0
0 .

Using the results in [143] and the form of the subtraction term given in Eq. (D.1.2),

we can then use this result to get ReM2
0 :

ReM2
0 = α2

π2

[
1
8 log2

(
s

m2
l

)
+ log

(
s

m2
l

)(
− 5

32 −
π2

8 + 3
2ζ(3)

)

− 9
4ζ(3)− π4

15 + 3
2 + π2

(
13
32 −

log 2
2

)]
M0

0 ,

(5.3.3)

where ml denotes the lepton mass and ζ(n) is the Riemann Zeta function, with

ζ(3) ≈ 1.202056903159594.

Then the correction term β̃2
0 becomes:

β̃2
0 = M2

0M
0∗
0 +M1

0M
1∗
0 +M0

0M
2∗
0

= α2

π2

[
1
2 log2

(
s

m2
l

)
+ log

(
s

m2
l

)(
−13

16 −
π2

4 + 3ζ(3)
)

− 9
2ζ(3)− 2π4

15 + 13
4 + π2

(17
16 − log 2

)]
β̃0

0 .

(5.3.4)

5.3.2 Real-virtual corrections

The real-virtual corrections contain the virtual corrections to the processX → ff̄ (′)γ,

with one real, hard photon. We can write the infrared subtracted, squared real-virtual

matrix elements as:

β̃2
1 (k1) = 1

2 (2π)3
∑
si,λj

(
M

3
2∗

1 M
1
2
1 +M

1
2∗
1 M

3
2

1

)
− S̃ (k1) β̃1

0 , (5.3.5)
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where k1 denotes the momentum of the hard photon, and the sum in the first term

runs over the spins si of the leptons and the polarizations λj of the vector bosons.

The factor S̃ (k1) is calculated using the momenta mapped to the single photon final

state taking k1 as the hard photon momentum. For consistency, β̃1
0 contains only

the one-loop QED corrections.

The expression above, Eq. (5.3.5), includes one-loop corrections to the vertices, the

internal propagators, and, new at this level, box diagrams as well, all of which can

be dealt with using the Passarino-Veltmann reduction scheme. This scheme reduces

the rank of the tensor integrals encountered in the calculation of the loop corrections,

returning an expression containing rational factors multiplying a number of lower

rank integrals. Through successive application of this reduction, the entire amplitude

can be written in terms of a set of standard matrix elements multiplied by expressions

involving scalar master integrals. To reduce the time spent in function calls, we

use FEYNCALC’s implementation of the Passarino-Veltmann reduction scheme to

perform this reduction to an expression containing only scalar integrals. We have

encoded the neccessary master integrals using [141, 142, 163]. These are listed in

Appendix E. To this end, we also implemented the algorithm proposed in [164] for

the evaluation of the complex dilogarithm occuring in the master integrals.

In the somewhat lengthy expressions, we have confirmed the analytical cancellation

of the UV divergences upon including the renormalization terms as well as the

cancellation of the virtual IR divergences upon inclusion of the infrared subtraction

term. However, the very nature of the expressions involved increases the likelihood

of numerical instabilities in the evaluation of particular phase space points: while

strictly finite, separate terms in the expression may grow beyond the limits of the

double precision employed in our implementation. Such cases cause incomplete

cancellations between different terms and thus may upset the accuracy of our result.

The reasons are twofold, and connected with the collinear regime of the emissions:

• The YFS formalism relies on fermion masses to regularize the collinear singular-

ities, which in the case of small fermion masses may amount to the evaluation
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of expressions very close to this shielded singularity, of the type log(sij/m2),

where sij = (pi + pj)2 is the invariant mass of two momenta. We find that

in our implementation the amplitudes for the decays into electrons and to

some extent also into muons are affected by numerical instabilities while the

amplitudes for the decays into τ ’s are well-behaved.

• In addition, the Passarino-Veltmann reduction may lead to the appearance

of small Gram determinants in denominators. The reduction amounts to

solving systems of equations relating higher rank tensor integrals to lower

order ones. This procedure is repeated until every tensor integral has been

expressed in terms of scalar master integrals, which can then be calculated using

Feynman parameterization. Common to each reduction step is the inversion

of a Gram matrix, the matrix containing all permutations of scalar products

between the external momenta pi flowing into the loop, Gij = pi · pj. In the

inversion, the expression is divided by the determinant of this matrix, the Gram

determinant, such that a small value of this determinant may lead to a very

large overall expression. As an example, take the case of bubble integrals with

just two momenta flowing into the loop. For on-shell external lines, the Gram

determinant is then detG = (p1 · p2)2 − p2
1p

2
2 = (p1 · p2)2 −m2

1m
2
2. In the case

of small masses mi, this expression can become very small when p1 · p2 → 0.

One way to circumvent this issue is by employing an expansion in the Gram

determinant for the problematic tensor integrals rather than the full reduction,

as is implemented in the COLLIER library [165]. Since this requires the im-

plementation of a significant number of expressions for different combinations

of arguments in the tensor integrals, such an implementation carries a large

overhead and is not pursued in this work.

To cure both problems, we instead use the following algorithm: We call a phase

space point “collinear” when sik < a ·m2
i , where sik is the invariant mass between the

photon and one of the fermions in the process and a is some predefined cutoff. Such
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a phase space point will not be evaluated using the full matrix element but rather

using the quasi-collinear limit of the amplitude. Using this limit, the calculational

complexity of the amplitude is significantly reduced and numerical instabilities are

avoided.

As an additional rescue system, in case a bad phase space point should still pass to

be evaluated using the full matrix element, we also check the scaling behaviour of

the amplitude under a rescaling of all dimensionful quantities. The expressions for

the coefficients of the master integrals can be rewritten using reduced quantities, i.e.

all dimensionful quantities are divided by the centre of mass energy of the decay. In

this way, dimensionful quantities only survive in the master integrals themselves as

well as in a single factor multiplying the master integral3. The mass dimension of a

four point function in four dimensions is 0, such that upon rescaling all scales in the

master integrals and the coefficients by a common factor ξ 6= 1, the full expression

should remain unchanged,M(ξ) = M(1). Different terms in the matrix elements

scale differently due to the different scaling behaviours of the master integrals, so

a deviation from the expected scaling behaviour indicates numerical instabilities in

the expression. If we find
∣∣∣M(1)
M(ξ) − 1

∣∣∣ > c, with c some predefined cutoff, we decide

to set the real-virtual matrix element to 0. It would be possible to try and cure

such problematic phase space points by reevaluating them using quad precision, as

is done e.g. in OPENLOOPS, but SHERPA does not have the facility to use this option

presently.

Only once a point passes through these two checks, it is evaluated using the full

matrix element. The introduction of two in principle arbitrary cutoffs mandates a

check of the behaviour of the results upon variation of this cutoff. We will comment

on this in Appendix G.

3In four dimensions, the tadpole diagrams A0 have mass dimension 2, the bubble integrals B0
are dimensionless, the triangle integrals C0 have mass dimension -2 and the box integrals D0 have
mass dimension -4. Thus the scale is raised at most squared in all expressions.
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5.3.3 Real-real corrections

The real-real corrections stem from the emission of two hard photons. In the case

of Z- or Higgs-boson decays, these corrections involve the repeated emission of two

photons from either the lepton or the antilepton and the emission of one photon off

the lepton and the other off the anti-lepton. For the implementation, we choose the

same strategy as in the case of single real corrections, using helicity amplitudes and

building blocks already present in SHERPA. We detail the amplitudes in Appendix

F and the strategy used to calculate them.

After setting up the amplitude like this, we can calculate the infrared subtracted

matrix element squared that enters into the correction factor C:

β̃2
2 (k1, k2) =

(
1

2 (2π)3

)2 ∑
si,λj

M1∗
2 M1

2−S̃ (k1) β̃1
1 (k2)−S̃ (k2) β̃1

1 (k1)−S̃ (k1) S̃ (k2) β̃0
0 .

(5.3.6)

In this formula, the k1 and k2 denote the momenta of the two hard photons, the

sum in the first term runs over the spins si of the leptons and the polarizations λj

of the vector bosons. The S̃ (ki) are calculated using the momenta in the mapped

(n+ 2)-dimensional phase space, using the pair k1, k2 as the hard photons.
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Results

6.1 Setup

In this section we present the numerical effects induced by the NLO EW and NNLO

QED corrections presented in the previous section, focussing on the decays Z → `¯̀,

W → `ν and H → `¯̀ with ` = {e, µ, τ} following hadronic neutral-current and

charged-current Drell-Yan and Higgs production respectively.

The results presented here are based on an implementation in the PHOTONS mod-

ule [49] of the SHERPA Monte Carlo framework (release version 2.2.4). We consider

hadronic collisions at the 13 TeV LHC for the production of Z-, W - and Higgs-

bosons and their subsequent decays. In the neutral-current Drell-Yan case we require

65 GeV < m`` < 115 GeV, while for the other modes no generation cuts are applied.

Since we aim to purely focus on the effects of photon radiation in the decays, we

turn off the QCD shower, fragmentation and underlying event simulation. We use

RIVET 2.5.4 [166] for the analysis. For the case of electrons in the final state, we

perform the analysis either using bare leptons or using dressed leptons with a radius

parameter dR = 0.1 or dR = 0.2. For the case of muon and τ final states only

bare results are shown. We focus our results on a few key distributions and always

normalize to the respective inclusive cross section. Overall, we choose to focus on
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Mass [GeV] Width [GeV]
Z 91.1876 2.4952
W 80.385 2.085
H 125 0.00407
e 0.511 MeV -
µ 0.105 GeV -
τ 1.777 GeV -
νi 0 GeV -

1/α (0) 137.03599976

Table 6.1: Electroweak input parameters: gauge- and Higgs-boson masses and
widths, lepton masses and the EW coupling in the α(0) scheme.

ratios between different predictions, in order to highlight small subtle differences

relevant for precision Drell-Yan and Higgs physics.

Input parameters for the numerical results are chosen as listed in Tab. 6.1. The

weak coupling α is defined in the on-shell α(0) scheme. This choice is sensible as

we are explicitly also investigating distributions in resolved final-state photons. At

the same time, the YFS formalism is strictly only defined in the limit of soft photon

emissions. In this input scheme, the sine of the weak mixing angle is a derived

quantity s2
W = 1− M2

W

M2
Z
. Gauge- and Higgs-boson widths are taken into account in a

fixed-width scheme.

In the decays of W - and Z-bosons, we apply an IR technical cutoff in the YFS

formalism of Eγ,cut = 0.1 GeV, while in the Higgs-decay we reduce this value to

Eγ,cut = 0.01 GeV in order to improve the resolution near the resonance4. In both

cases, we keep an analysis cut of Eγ > 0.1 GeV for observables involving photons.

4It should of course be noted that the SM Higgs has a resonance width of only ∼ 4 MeV, which
is smaller than this photon cut, suggesting that we still do not resolve the resonance well with this
cut. However, from the results of Appendix G we see that a cut of the order 10 MeV is necessary
in order to guarantee a good performance of the method in both decay channels. In any case, this
smaller choice of the cutoff still allows a closer investigation of the regions close to the resonance
in plots generated from the lepton momenta, as long as the binning is not chosen too fine. In
particular the regions that will be populated through the radiation of photons from leptons in the
resonance region will be included in this description.
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Figure 6.1: On the left the invariant mass of the two leptons, m``, and on the
right the invariant mass of the system of the two decay leptons and
the closest photon, m``γ, is shown for pp → Z → `+`− produc-
tion. Nominal predictions are shown for pp → Z → e+e− at LO,
in soft-collinear NLO approximation, at NLO QED and at NNLO
QED ⊕ NLO EW, where electrons are always dressed with collinear
photons within dR = 0.1. The ratio plots highlight the effect of the
considered higher-order corrections and the effect due to different
photon dressing or lepton identity. See text for details.
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6.2 Neutral Drell-Yan lepton pair production

In Figs. 6.1-6.3 we present several key observables in neutral-current Drell-Yan pro-

duction including higher-order QED corrections up to NNLO and EW corrections up

to NLO. All distributions are normalized and the effects of the higher-order correc-

tions typically manifest themselves as very subtle shape distortions in the considered

observables. All figures are identically structured and we show nominal predictions

for dressed di-electron production, i.e. collinear photon–electron pairs with dR < 0.1

are combined, at LO (black), considering soft-collinear QED corrections (blue), NLO

QED corrections (green), and our best predictions at NNLO QED ⊕ NLO EW (red).

In the first two ratio plots we compare the predictions at NLO QED against the

soft and soft-collinear approximations and against the NLO EW and NNLO QED

⊕ NLO EW predictions respectively. In the third ratio plot we investigate different

dressing prescriptions of the electrons, considering dR = 0.2 and undressed bare

electron. Finally, in the last ratio plot we compare predictions for dressed electron

with corresponding ones for bare muons and τ ’s. In the latter two ratios plots all

predictions correspond to the most accurate level, i.e. NNLO QED ⊕ NLO EW.

In Fig. 6.1, we present the distributions of the invariant mass of the two leptons,

m``, (left) and of the invariant mass of the system made up of the decay leptons and

the photon closest to either of them, m``γ (right).

Already from the plots in Section 5.1, it is clear that the inclusion of photon radiation

is crucial for a reliable description of the dilepton invariant mass. All higher-order

corrections significantly differ from the LO prediction, which fails to describe the

lineshape below the peak. At the NLO QED level corrections beyond the soft and

soft-collinear approximations induce distortions up to the 1% level. In fact, the

soft approximation does not generate enough hard radiation, while the soft-collinear

approximation produces about 1% too many events at low m``, i.e. it seems to

generate too much hard photon radiation. In this observable both the NLO EW and

NNLO QED corrections provide only a marginal effect on the order of permille, and
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Figure 6.2: Plots of the transverse momentum of the leptons, p⊥,`, on the left
and the transverse momentum of the system of the two decay leptons,
p⊥,``, on the right. Predictions and labels as in Fig. 6.1.

neither of these corrections provides a significant shift of the peak of the distribution.

Clearly, the dressing of the electrons has a significant effect on this distribution,

reflecting the sensitivity to QED radiation. Bare electrons show a significant shape

difference compared to dressed electrons. The results based on different dressing

parameters however differ by at most a few %, suggesting that much of the photon

radiation occurs close to the electron. Comparing different lepton species, we see that

muons, in comparison to the dressed electrons, radiate significantly more, yielding

up to 25% more events at low m``. In contrast, the heavier τ ’s radiate less in

comparison, resulting in differences with respect to dressed electrons of only a few

%.

A very similar behaviour can be found in the invariant mass of the dilepton system
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combined with the closest photon. As this observable requires the emission of at

least one photon, the NLO QED curve corresponds effectively to a LO prediction.

However, also the soft and soft-collinear approximations describe this observable

reasonably well and higher order NNLO QED or NLO EW corrections are negligible.

Comparing the dressing parameters, we find much smaller differences here: bare

electrons only differing by about 15% from the dressed versions. There is barely a

difference between the two dressings. In the same manner, the difference between

lepton species is subdued as well: muons differing up to 2% at most from dressed

electrons.

In Figure 6.2, we present the distribution of the transverse momentum of the lepton,

p⊥,`, alongside the transverse momentum of the system of the two leptons, p⊥,``.

The transverse momentum of the leptons, p⊥,`, receives small corrections from the

inclusion of higher order corrections beyond NLO QED into the YFS formalism.

Only the phenomenologically irrelevant region of very low p⊥,` receives corrections

at the permille level at NLO EW. Both the soft and soft-collinear approximations

agree at the permill level with NLO QED for p⊥,` > 20 GeV.

Correspondingly, also the dressing of the electrons has a small effect on this distribu-

tion, with bare electrons carrying significantly less transverse momentum than the

dressed versions. The difference between lepton species is marginal, up to about 5%

at very low p⊥,` and above the Jacobi peak.

In contrast, the transverse momentum of the system of leptons, p⊥,``, shows signific-

antly larger effects. Of course this distribution is not defined at LO and correspond-

ingly it is very sensitive to the modelling of photon radiation.

This can be appreciated when comparing the NLO QED prediction with the soft and

soft-collinear approximations. Only at small p⊥,`` the approximations agree. In this

observable also the inclusion of NLO EW effects shows a significant impact, with

differences reaching up to 5%. The NNLO QED effects provide a competing effect

to the NLO EW corrections, lifting the distributions by about 2% across the entire
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Figure 6.3: Plots of the sum of the photon energies in the decay rest frame,∑
nγ Eγ , on the left and the φ∗η variable on the right. Predictions and

labels as in Fig. 6.1.

distribution.

The effects of the dressing on the distribution is unsurprisingly very large as well.

Bare electrons show significantly more events at non-vanishing values of p⊥,``, while

a different dressing parameter leads to an almost flat decrease across the spectrum.

The comparison of the different lepton species shows that the muons again radiate

a lot more, with up to 75% more events at medium p⊥,``. τ ’s in comparison show a

reduction in the number of events at large p⊥,`` of up to 50%.

Finally, in Figure 6.3, we show the distribution of the sum of the photon energies in

the decay rest frame, ∑nγ Eγ, and the distribution of the so-called φ∗η-variable.

The sum of the photon energies is largely correlated with the p⊥,``, as discussed

before. This distribution shows a distinct edge at about half the Z-boson mass,
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which is being washed out by multiple radiation. The kinematics of the decay

restrict the energy of a single radiated photon to be smaller than E1
γ,max = ŝ−4m2

`

2
√
ŝ
,

which is roughly equal to half the boson mass near the resonance. For an event to

have a total photon energy beyond this edge, two hard photons need to recoil at

least partly against each other. The region above the kinematical edge is then only

described approximately, as long as no NNLO corrections are considered.

The NLO EW prediction mildly increases the number of events without photon

radiation, leading to a decrease at the kinematic edge of about 3%. The NNLO QED

corrections again provide a competing effect, leading to a difference of about 1% to

the NLO QED predictions near the edge. Beyond it, the NNLO QED corrections

show a significant departure from the shape of the previous predictions as this region

is for the first time described correctly at fixed order.

The behaviour of different dressings and lepton species is very similar to the case

of the p⊥,``. The bare electrons show a significantly larger number of hard photons,

while another dressing only leads to an approximately flat decrease. Muonic decays

contain a larger number of events with hard photons, while τ ’s radiate significantly

less.

The φ∗η-variable [167] can be seen as an alternative to p⊥,``, with the aim of being

easier measurable. It is defined purely in terms of lepton directions as:

φ∗η = tan
(
φacop

2

)
sin

(
θ∗η
)
, (6.2.1)

where the acoplanarity angle φacop is defined in terms of the difference in azimuthal

angles ∆φ between the two leptons as φacop = π − ∆φ, and θ∗η = tanh
(
η−−η+

2

)
in

terms of the lepton pseudorapidities ηi. In this observable, the soft region corresponds

to the region of low φ∗η.

In comparison to the NLO QED predictions, the soft approximation predicts too

many events with low φ∗η, the difference quickly reaches beyond 10%. The soft-

collinear approximation shows the opposite behaviour, predicting too many events
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Figure 6.4: Transverse mass of the lepton-neutrino system M⊥
`ν (left) and the

invariant mass of the system of the charged lepton and the nearest
photon, m`γ (right) in pp → W+ → `+ν`. Nominal predictions
are shown for pp → W+ → e+ve at LO, in soft-collinear NLO
approximation and at NLO EW, where electrons are always dressed
with collinear photons within dR = 0.1. The ratio plots highlight the
effect of the considered higher-order corrections and the effect due
to different photon dressing or lepton identity. See text for details.

with large φ∗η. The NLO EW prediction provide corrections of a few percent, while

the NNLO QED corrections compensate the NLO EW corrections almost completely.

The dressing shows effects of up to 25% at medium value of φ∗η.

6.3 Charged Drell-Yan lepton-neutrino pair pro-

duction

In Figs. 6.4-6.6, observables crucial for the study of charged-current Drell-Yan

dilepton production are investigated. We present results for the decay W+ → `+ν`,

as the charge conjugate case behaves practically identically. All figures are similar to
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Figure 6.5: Plots of the transverse momentum of the charged leptons, p⊥,`, on
the left and the missing transverse E, Emiss

⊥ , on the right. Predictions
and labels as in Fig. 6.4.

the neutral-current case presented in Section 6.2. However, here the best prediction

is of NLO EW, as pure QED corrections cannot be defined in a gauge-invariant way.

As before all nominal predictions correspond to dressed electrons.

In Figure 6.4, we start with the transverse mass of the lepton neutrino system, M⊥
`ν ,

and the invariant mass of the charged lepton and the nearest photon, m`γ.

The M⊥
`ν observable is barely affected by the NLO EW corrections. In fact the

soft-collinear approximation agrees with NLO EW at the permille level.

The dressing of the electrons has a rather large impact, with differences with respect

to a bare treatment reaching up to 10% at the edge. A slight shift of the edge is

observed when comparing different lepton species with one another, affecting the

distribution to up to a few %.

The invariant mass of the charged lepton and the closest photon, m`γ shows signi-

ficantly larger corrections. Compared to the NLO EW corrections, the soft approx-
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Figure 6.6: Plots of the sum of the photon energies in the decay rest frame,∑
nγ Eγ, on the left and the number of photons with Eγ > 0.1 GeV,

nγ, on the right. Predictions and labels as in Fig. 6.4.

imation predicts a spectrum that is too soft, while the soft-collinear approximation

produces up to 5% more events with large m`γ.

Bare electrons have a lot more events at low m`γ coming from those photons that

have not been clustered in comparison to the dressed cases. On the other hand,

those electrons dressed with dR = 0.2 have a reduced number of events at low m`γ.

The comparison between lepton species shows significant differences close to low m`γ ,

illustrating the differing size of the dead cone.

In Figure 6.5, we show the transverse momentum of the charged lepton, p⊥,`, along-

side the missing transverse energy, Emiss
⊥ . The latter corresponds in our simple setup

to the transverse energy that the neutrino carries away.

Both distributions are related and indeed they behave very similarly. As in the

neutral-current case, the transverse momentum of the charged lepton is barely af-

fected by NLO EW corrections, with corrections only becoming appreciable for very
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low values of p⊥,`.

The dressing affects the distributions by up to about 10% in the peak region, while

different lepton species differ by up to 4% in the peak region and at low p⊥,`.

In Figure 6.6, we present the sum of photon energies in the decay rest frame, ∑nγ Eγ ,

and the number of photons with energy Eγ > 0.1 GeV, nγ.

The sum of photon energies shows a kinematic edge just as in the neutral current case.

While the soft approximation predicts too soft a spectrum of photon energies, the

soft-collinear approximation does a much better job inW -decays as the effects coming

from NLO EW corrections reach at most 5% at the kinematic edge. The reason for

this behaviour can be read from the distribution of the nγ. The soft approximation

is shown to produce too few photons, while the soft-collinear approximation predicts

more events with 1-3 photons.

Analyses using bare electrons show a significantly larger number of photons, with

already 4 times more events with 1 photon. At the same time, for dR = 0.2 electrons,

the number of photons is suppressed significantly. A similar picture presents itself

when comparing lepton species. Muonic decays contain significantly more photons,

while decays into τ ’s end up with a lot less events with at least one photon.

As a noteworthy observation we want to point out a difference between neutral-

current and charged-current processes: the soft-collinear approximation is more

reliable in the charged-current case. This can be understood from the fact that here

collinear radiation predominantly originates from just one particle, the lepton, rather

than two competing particles as in the Z-boson case. Any error due to the missing

interference contributions in the soft-collinear approximation is thus significantly

diminished.
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Figure 6.7: Plots of the invariant mass of the two decay leptons, m``, on the left
and the transverse momentum of the system of the two leptons, p⊥,``,
on the right in the process pp → H → `+`−. Nominal predictions
are shown for pp→ H → µ+µ− at LO, in soft-collinear NLO approx-
imation, at NLO QED and at NNLO QED ⊕ NLO EW. The ratio
plots highlight the effect of the considered higher-order corrections
and lepton identity. See text for details.

6.4 Leptonic Higgs-boson decays

Finally we highlight the effect of higher-order corrections in photon radiation off

leptonic Higgs decays. Numerical results are shown in Fig. 6.7, where the nominal

distribution corresponds to H → µ+µ− with bare muons. Here we focus on the

dilepton invariant mass m`` and the recoil of the lepton system, p⊥,``. As for neutral-

current Drell-Yan we consider higher-order corrections at the level of soft and soft-

collinear approximations, full NLO QED, NLO EW and also combining NLO EW

with NNLO QED. The LO prediction clearly fails to describe the invariant mass

distribution. Yet, the soft and soft-collinear approximations provide a quite reliable

description with corrections smaller than 1-2% with respect to full NLO QED.

The weak corrections are slightly larger compared to the neutral-current Drell-Yan
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case, still they alter the invariant mass distribution only at the permille level and

are overcompensated by NNLO QED effects of the same order. As mentioned in

Section 6.1 we are unable to resolve the sharp mass peak of the Higgs-boson with

the lowest energy photons we generate. However, investigating the low energy tail of

the invariant mass distribution, we observe that the NLO QED corrections provide

a mostly flat contribution in the peak region.

Comparing decays into bare muons with decays into bare τ ’s, we can appreciate a

significantly smaller sensitivity of the τ distribution to QED radiation.

The distribution of the transverse momentum of the di-lepton system shows similar

effects as in the case of the Z-boson decay. The soft approximation predicts a

distribution that is far too soft, while the soft-collinear approximation predicts too

many events with large p⊥,``. The NLO EW corrections increase the number of events

by about a permille at low p⊥,``, and decrease them at high values up to about 5%.

The NNLO QED corrections in this case do not provide a large competing effect,

and the NNLO QED ⊕ NLO EW prediction agrees with the NLO EW one at the

permille level.

Decays into τ ’s show about 40% less events with non-vanishing p⊥,``, the effect being

close to constant across the entire distribution.
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Conclusions

In this Part, we have presented an implementation of NLO EW and NNLO QED

corrections to the decays of the weak bosons within the YFS formalism. For this

purpose, we extended SHERPA’s module PHOTONS to include the relevant matrix

elements, renormalized in the on-shell scheme, and subtractions needed within this

formalism. In our numerical results we find that observables relating to the leptons

in the process are only marginally affected by the corrections, up to the level of a few

per cent. In particular, the outstanding features of important distributions, such as

the peak of the invariant mass distribution are practically not affected. Distributions

that relate to the energies of the generated photons themselves, or can be related to

them, such as the transverse momentum of the pair of the leptons p⊥,``, naturally

receive larger corrections. The electroweak corrections increase the likelihood of hard

photon radiation by up to 2-3% for very hard radiation. The NNLO QED corrections

compete with these corrections by reducing the likelihood of hard radiation, albeit to

a smaller extent. At the same time, some regions of phase space are only described

at leading order in α upon the inclusion of the double real radiation, such that in

these regions the corrections can be significantly larger. Examples for such regions

are the region when the sum of the photon energies exceeds half the boson mass or

regions of large φ∗. Angular distributions of the photons are not affected by higher

order contributions confirming the general radiation pattern of QED radiation. The
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results give us confidence that the inclusion of the full EW corrections to particle

decays within the YFS formalism in SHERPA are sufficient to achieve precise results

for most leptonic observables. Beyond the corrections implemented in this work, it

is interesting to consider the YFS formalism also including initial state effects.

The implemented NNLO QED and NLO EW corrections provide high precision also

in extreme phase space regions and can be seamlessly added to standard precision

QCD simulations. This provides an important theoretical input to future precision

determinations of fundamental parameters of the EW theory at hadron colliders and

beyond.



Part II

Distinguishing b-quark and gluon

jets with a tagged b-hadron





Chapter 8

Introduction

Jets containing a bottom quark play a significant role in many analyses at the LHC,

both in searches for new physics and in further studies of the Standard Model (SM).

As an illustrative example, consider the measurements of the phenomenologically

relevant Yukawa couplings of the newly found Higgs boson to quarks of the third

generation, top and bottom quarks. One of the processes central to this measurement

is the production of a Higgs boson in association with top-quarks, pp→ tt̄H, where

the Higgs boson decays into a bb̄ pair. This has recently been observed by both

ATLAS and CMS collaborations, drawing partly on the decay of the Higgs boson

into two b-quarks [168, 169]. For this study, both the signal and the dominant

background processes are understood at next-to leading order in QCD [170–175].

More modern fixed-order calculations, performed with automated tools such as

OPENLOOPS + SHERPA [39,51,176] or MADGRAPH5 [37,177], have successfully been

embedded in hadron-level simulations based on MC@NLO [178], for the signal process

tt̄H [179], and the dominant irreducible background tt̄bb̄ [180]. Multijet merging

technologies at NLO [71,181–183] have successfully been applied to the production

of tt̄ pairs in conjunction with jets [184,185], thereby also providing a handle on this

background. Combined, this work represents an amazing technological development.

However, following the analysis strategy employed by both ATLAS and CMS, it

becomes clear that the experimental cuts shape the background and the signal to
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look relatively similar, rendering them hard to distinguish. The analysis is thus

ultimately reduced to the counting of events with a suitable number of b-jets – 3

or 4 – within certain acceptance regions [186–189]. In a very similar manner, the

recent observation of the Higgs decay H → bb̄ when produced in association with

a W or a Z also relies heavily on the identification of b-tags to define their event

samples [190,191].

One of the problems arising from this kind of analysis is related to the fact that they

rely on the identification of b-quarks through jets with a b-tag. This identification

is realised by b-tagging conditions [192–195]. Examples include criteria based on

displaced vertices with a certain impact parameter significance, the presence of soft

muons inside the jet, which may stem from such a displaced vertex, or criteria based

on the further decay chain and their possible impact on the intrinsic shape of the

tagged jet [196]. Recently, machine learning methods have received more attention

to combine and improve upon these different approaches [197–202]. Usually, the

acceptance rate of jets including a b-hadron based on such tags is relatively high,

between 60% and 70%, while the rejection rate of light jets containing no such hadron

reaches well beyond 90% at typical working points. However, this simple tagging

technology may fail to reliably identify jets containing two b-hadrons, which can

originate from a g → bb̄ splitting. This translates into limitations in distinguishing

“legitimate” b-jets, stemming from a b-quark coming out of a hard interaction, from

gluon (or other light) jets, thereby hampering analyses of processes with b’s produced

in the hard interaction. This is further exarcerbated by the absence of very precise

theory estimates of the gluon splitting: Its description by the parton shower is

possibly not quite as reliable as one would naïvely assume. Earlier analyses by

the LEP collaborations measured this splitting probability with large statistical and

systematic errors in the range of (0.21%-0.31%)±0.1%, while parton shower programs

usually arrived at rates of just below 0.2% [203–206]. This immediately translates

into the need to measure the g → bb̄ transition such that the modern parton shower

algorithms can be compared and, if necessary, improved through direct comparison.
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It also motivates the construction of robust and reliable observables discriminating

the “real” b-jets from those where a bb̄ pair emerges from gluon splitting.

Some early attempts at this identification were performed by CDF [207] by trying to

identify two secondary vertices in the jet consistent with two b-hadrons from a sample

of already tagged events. Both ATLAS [208] and CMS [209] are also working on this

identification, with varying levels of success. Due to the intrinsic difficulty of finding

two separate secondary vertices belonging to b-hadrons, these searches are typically

combining observables related to the jet and the vertex. Both collaborations use

sophisticated multivariate analysis tools to define their discriminators.

This Part of the Thesis aims to further explore the very same problem. Using

well-established features in the QCD radiation pattern and simple geometric con-

siderations motivates the use of a combination of jet shapes and secondary vertex

finding to distinguish b-jets from what will be called bb̄-jets in the rest of this Part.

This Part is organised as follows: in Section 9.1 the most sensitive jet shape ob-

servables are reviewed and possible improvements when combining them with a

reconstruction of fragmentation function observables are discussed. Since the last

observable is a new discriminant in the context of single vs. double b-tag jets, we

devote special emphasis to it. An analysis of samples of pure QCD jets produced by

the SHERPA event generator is performed in Section 9.2 and results for the efficiencies

of discriminating between b- and bb̄-jets presented in Chapter 10.
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Chapter 9

Shaping b-jets

9.1 Kinematic observables

It is well-known that the fragmentation function F (x) of b-quarks is relatively hard,

peaking close to x ≈ 1. Here, x denotes the b-hadron energy or momentum fractions

xE or xp with respect to the underlying b-quark jet. This behaviour is due to the

fact that the finite masses of the b-quarks shield the collinear divergence in gluon

emissions off the quark, thereby effectively suppressing the emission of energetic

secondary partons. This phenomenon is also known as the “dead cone effect”, and

we have already encountered it in the first Part of this work when considering the

emission angle of photon radiation off massive leptons, see Section G.1.2. As a result,

b-quarks tend to retain most of their energy – in contrast to light partons – and thus

the b-hadrons created during the hadronization of the partonic final state more or

less have energies and momenta very similar to the b-quark when it was produced

in the hard process. Conversely, b-quarks originating from a gluon splitting tend to

have a fairly symmetric share in the energy of the original gluon, which they retain

during fragmentation. As a result the emerging b-hadrons, and in particular also

the harder of the two, tend to have an energy fraction well below unity, closer to

x ≈ 0.5.

A somewhat independent observable is related to the shape of the actual jet. Based
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Figure 9.1: Comparison of xE, g, nch from different event generators for jets
within 50 GeV < pJ⊥ < 100 GeV, based on the full hadronic final
state. The left panel shows results for xE. The little enhancement
at small values of xE stems from light jets, where a single b-quark
was captured, either through gluon splitting, with the other b-quark
radiated outside the jet, or from the underlying event. The central
panel shows results for g, where the b-hadron(s) were set stable - this
was only done for the purpose of this plot and none of the rest of
the thesis. The right panel shows the number of final state particles
inside the jet (including uncharged ones). A vertex is defined as
having at least 3 tracks.

on the reasoning above, b-jets tend to be relatively narrow, with only small amounts

of radiation roughly following the direction of the colour connection of the b-quark to

the rest of the event. In contrast, bb̄-jets tend to originate from hard gluons, which

may not only radiate more due to the larger colour charge of CA = 3 vs. CF = 4/3

before they split, but which also have an intrinsic size related to the relative distance

of the two b-quarks inside the jet. This effect could be captured by using the mean

of the energy distribution ρ(r) inside the jet, where r < R is the radial distance of

a hadron or similar to the centroid of the jet with radius R. It turns out, however,

that a good observable is provided by the first p⊥-moment of this distribution

g = 1
p

(J)
⊥

∑
i∈Jet

p
(i)
⊥ ∆RiJ , (9.1.1)

an observable also known as “girth” g, or jet width. Here p(J)
⊥ is the transverse

momentum of the jet, p(i)
⊥ the transverse momentum of the hadron, track, or energy

cell (i) inside the jet (i ∈ Jet), and ∆RiJ is its radial distance with respect to the

jet vector.

Many more observables can be used with different distinguishing powers and ro-

bustness. A prime example is the number of charged tracks nch. Despite possibly
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presenting a poor Monte Carlo modelling, highly depending on the details of had-

ronization modelling and underlying event implementation, this observable is still

extensively used by experimental analyses. Hence, we also inspect its impact in the

following section.

The typical behaviour of these observables is exemplified in Fig. 9.1; in this figure

all jets have a transverse momentum pJ⊥ between 50 and 100 GeV and their pseu-

dorapidity |ηJ | < 2.5. To provide an idea of modelling uncertainties, the results of

different event generators, HERWIG++ [210], PYTHIA 8 [211] and SHERPA [51] are

exhibited.

There are other observables that aim to scrutinize the colour connection and 2-

dimensional shape of the jet, e.g. planar flow, pull or differential jet shape, that

were also inspected. However, in this study only the most powerful observables will

be investigated, namely fragmentation fractions xE, girth g and number of charged

tracks nch. Additional observables could be used in the construction of more advanced

discriminators based on boosted decision trees or neural networks, which is beyond

the scope of this study. It is worth noting that there are interesting similarities

between the investigations here and studies aiming at distinguishing gluon and light

quark jets, see for instance Ref. [212, 213]. Due to the significantly different gluon

and light quark fragmentation fraction profiles, induced by the smaller mass of the

light quarks, they present sensibly weaker efficiencies in comparison to the single vs.

double b-tag case. An exception might be found for c-quarks, which through their

mass share some characteristics with b-quarks, but the effect is still expected to be

smaller in this case.
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Figure 9.2: xE (top row), girth (central row) and number of charged tracks
(bottom row) distributions for jets within different p⊥ slices:
30 GeV < pJ⊥ < 50 GeV (first column) 50 GeV < pJ⊥ < 100 GeV
(second column), 100 GeV < pJ⊥ < 200 GeV (third column) and
200 GeV < pJ⊥ < 300 GeV (fourth column). Red curves correspond
to jets with one b-hadron and blue with two b-hadrons. Solid lines are
based on the full hadronic final state, including uncharged particles,
dashed lines on charged tracks with a minimum ptr

⊥ of 1 GeV and
dotted with a minimum ptr

⊥ of 0.5 GeV. A vertex is defined as having
at least 3 tracks.

9.2 Analysis

As a test case, a pure QCD pp→ jets sample at the
√
s = 13 TeV LHC is considered.

The event sample was generated with SHERPA [51] in a very basic setup, using 2→ 2

matrix elements at leading order, supplemented with the default parton shower based

on Catani–Seymour subtraction [62], and accounting for hadronization and underly-

ing event effects. Since different event generators differ in their approximations and

implementation details of the parton shower evolution and non-perturbative models

it is important to quantify the resulting uncertainties and to access the robustness
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of the results. To this end, event samples with the same specifications have been

generated and analysed, using HERWIG++ [210] and PYTHIA 8 [211]. Where relevant,

the results from these different simulation tools are contrasted; overall, however,

they do not impact on the results and conclusions of this study.

The analysis is performed using RIVET [214]. Jets are defined by the anti-kT al-

gorithm, using FASTJET [215], with R = 0.4, requiring pJ⊥ > 30 GeV and |ηJ | < 2.5.

Charged tracks are defined with a minimum transverse momentum ptr
⊥ ≥ 0.5 or 1 GeV.

The different cutoffs are used to probe the stability of the observables. Lowering

the threshold would of course lead to more statistics, however, it also increases the

dependence on the MC modelling. In addition, a realistic experimental analysis uses

cutoffs in this range as well.

Jets are categorized as containing one or two b-hadrons, with other values rejected,

by counting their number inside the jet radius. For our purposes, the b-hadrons are

“reconstructed” from the event record, taking into account the choice of observable

final state particles. A b-hadron is reconstructed if at least three particles, subject to

the constraints of the observable final state, originate from it. In case of two different

b-hadrons in the jet, by default the harder one is selected for the calculation of xE.

In Fig. 9.2 (top row), the xE distributions are displayed. It is observed that in

the case of one b-hadron in the jet, the b-hadron carries most of the energy content

with the distribution peaking between 0.8 and 1, depending on the p⊥ slice. On the

other hand, in the case of two b-hadrons in the jet, the energy fraction for the most

energetic b-hadron tends to be near 0.5 – 0.6. This effect does not diminish when

considering only charged tracks, rather it improves slightly, e.g., the distribution for

one b-quark in the jet narrows near xE ≈ 1. Similar observables built out of the

3-momentum, the transverse momentum or weighted with the cosine of the angle to

the jet axis are qualitatively and quantitatively similar to xE. Therefore, only the

latter is considered for simplicity.

The girth distributions g are displayed in Fig. 9.2 (central row). This observable

presents a good separation between the single and double b-tagging case. The
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Figure 9.3: Normalised (xE,∆Rbb) distributions for jets containing one b-hadron.
The jets are considered in three momentum slices: pJ⊥ of 30 to 50
GeV (left panel), 200 to 300 GeV (centre panel) and 1500 to 2000
GeV (right panel). The results here are based on charged tracks with
a minimum ptr

⊥ of 1 GeV.

double b-tag sample leads to broader jets with respect to the single b-tag case. This

observable presents useful results at either low or high pJ⊥. Moreover, the charged

tracks present qualitatively similar results and only a subleading dependence on the

threshold energy, ptr
⊥ > 0.5 GeV or 1 GeV, is observed.

The dependence on the charged track multiplicity nch is inspected in Fig. 9.2 (bottom

row). The jets with two b-hadrons present a much higher multiplicity than the single

b-tagged jets. This is a result of the longer decay chain of the b-hadron and the

different emission pattern described by the parton shower. These differences are

enhanced at higher pJ⊥ where the n2b
ch/n

1b
ch slowly converges to CA/CF .

Despite nch not being an infrared safe observable and therefore highly dependent on

the parton shower, hadronization and underlying event modelling, the disagreement

with the MCs is usually suppressed via an appropriate tuning to the LHC data.

Hence, its applications have to account for these limitations and/or should be taken

with a grain of salt.

Notice that in the boosted kinematics, the xE distribution displays an enhancement

at low xE for the single b-hadron case, see Fig. 9.2 (top-right panel). Again, QCD

radiation in the form of g → bb̄ splittings accounts for the observed feature. It

appears in the boosted regime because the larger initial energy of the jets leads

to an enhanced emission phase space with more gluons being produced during the
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perturbative part of their fragmentation. These gluons may split into bb̄-pairs which

may spill into other, potentially harder, jets.

This behaviour is exemplified by three xE − ∆Rbb correlation plots, in Fig. 9.3.

These plots correlate the xE of the b-hadrons inside single-b tagged jets with their

spatial distance ∆Rbb with respect to the nearest b-hadron outside the jet. In the

left panel, for low transverse momentum jets with 30 GeV≤ pJ⊥ ≤ 50 GeV, we find

that most events reside in a region around xE ≈ 0.8, with the nearest b-hadron a

distance ∆Rbb ≈ π away. This corresponds to a configuration with the two b-hadrons

produced close to back-to-back as might be expected in a hard QCD production

process. In the centre panel, referring to the boosted regime, with 200 GeV≤ pJ⊥ ≤

300 GeV, a second hot spot in the correlation plot emerges, for low values of xE close

to 0. For these events, the nearest b-hadron resides within a distance ∆Rbb . 0.6,

such that they lie fairly close to the jet boundary. This further suggests that these

b-hadrons “leaked” into a hard, light jet, their appropriate partner falling just outside

that particular jet. In fact, such b-tags should therefore probably not be identified

with “legitimate” b-jets originating from a primary hard b-quark. This observation

can be driven to the extreme: in the right panel we show the same correlation for

jets with 1500 GeV≤ pJ⊥ ≤ 2000 GeV. In this case, most of the events are contained

within this low-xE region, with small ∆Rbb values to their nearest b-hadron, reflecting

the dense environment in such an event.
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Chapter 10

Double and Single b-tagging

Efficiencies

The observables xE, g and nch provide good sensitivity towards the single and

double b-tagging samples when considered independently. As most of the b-tagging

algorithms resort to Multivariate Analysis (MVA) with the combination of the most

significant distributions, it is important to ensure that these observables do not

present the same correlation pattern and could therefore generate improved con-

straints through their combination. In Fig. 10.1, the 2-dimensional correlations

between the fragmentation fraction, girth and charged track multiplicity are dis-

played, showing only the case for charged tracks of ptr
⊥ > 1 GeV for jets in the

pJ⊥-bin between 50 and 100 GeV. The behaviour seen in these plots is qualitatively

observed also for higher transverse momenta. While the observables considered so

far show some correlation, it seems clear that the combination may enhance the

discriminatory power.

Tagging efficiencies are defined based on the so-called ROC curve that uses a simple

cut argument. For the 1-dimensional distributions, as shown in Fig. 9.2, the efficiency

curve is obtained by sliding a cut along the value of the observable. Each point of

the cut leads to a corresponding efficiency for keeping b-jets (ε1b) and bb̄-jets (ε2b).

The ROC curve is the interpolation of all possible cuts - due to the discrete nature
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Figure 10.1: Correlations between the fragmentation fraction with the girth
(xE, g) (left column), fragmentation fraction with charged tracks
(xE, nch) (central column) and charged tracks with girth (g, nch)
(right column). The colours represent the normalized weight of the
particular bin. The top plots are for one b-hadron in the jet, the
bottom ones for two b-hadrons in the jet. The jets considered here
have a pJ⊥ of 50 to 100 GeV. The objects considered in the analysis
in this case are charged tracks of at least 1 GeV ptr

⊥. A vertex is
defined as having at least 3 tracks.

of the histogrammed distributions, this amounts to a finite number of cuts. For

instance, for the girth and multiplicity, a jet is tagged as containing two b-hadrons, if

the value of the observable is above the cut, whereas for the fragmentation fractions

it is tagged as such when the observable is below the cut. The efficiency to tag a

jet containing one b-hadron is defined analogously. The region xE < 0.3 is removed

to avoid the lower peak in the boosted regime to maximize the performance of this

method. This region could be efficiently included via an MVA, but this was not

done in this letter to retain the simplicity of our strategy. One way to generalize this

approach to combine two observables, based on the behaviour of the correlations

in Figure 10.1, is the following: carrying out a Principal Component Analysis on

the 2-dimensional correlation plots for two b-hadrons in the jet, we can define a cut

line perpendicular to the largest eigenvector along the correlation. Jets falling into

the region above this cut line are then defined as double b-jets, while those to the

bottom of the cut line are defined as single b-jets. Sliding this cut line along the

eigenvector, we can then determine efficiencies as for the 1-dimensional ROC curve.
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Figure 10.2: Efficiency for tagging a b-jet as containing two b-hadrons ε2b against
the rejection of jets containing one b-hadron 1/ε̄1b from combining
xE and girth. The plots are again shown in different pJ⊥ bins as in
Fig. 9.2. Top row: the red curves refer to an analysis using the full
final state, whereas the blue and green consider only charged tracks
with minimum ptr

⊥ of 1 GeV and 0.5 GeV, respectively. Bottom row:
efficiencies for different combinations of observables (red: (xE, g),
blue: (xE, nch), green: (g, nch)). The displayed results refer to
charged tracks with minimum ptr

⊥ of 1 GeV.

This approach works in this case as the correlations for single b-jets lie along the

large eigenvector of the correlation for double b-jets. This may not always be the

case, and depends on the exact definition of the observables used for the analysis. It

would thus be preferable to use multivariate algorithms to enable the determination

of efficiencies in this case. Again, we refrained from such an analysis here to retain

the simplicity of our approach.

These efficiencies are shown in Fig. 10.2 (top row) as the efficiency of tagging a b-jet

as a jet containing two b-hadrons, ε2b, against the rejection of single b-jets, 1/ε̄1b. The

combination of observables proves to be robust against the choice of charged tracks

or the fully hadronic final state. Lowering the threshold ptr
⊥ to 0.5 GeV produces

only mild improvements in respect to 1 GeV.

In Fig. 10.2 (bottom row), different combinations of observables are compared with

the discrimination from nch or xE only. A visible improvement in using the com-

bination of two observables is found. For low transverse momenta the combination
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Figure 10.3: Efficiency for tagging a b-jet as containing one b-hadron ε1b against
the rejection of jets containing two b-hadrons 1/ε̄2b as a function of
pJ⊥ for different combinations of observables. Left: (xE, g), centre:
(xE, nch), right: (nch, g).

(xE, g) outperforms the other combinations, while for larger transverse momenta

of the jet, the combination of (xE, nch) is most sensitive. In both cases, however,

the fragmentation fraction is involved, an observable that hitherto has not been

documented for this discrimination.

In Fig. 10.3, the different combinations are displayed for distinct transverse momenta

slices. Here, in contrast to the previous Figure, we show the efficiency of correctly

identifying a single b-hadron jet versus the rejection efficiency for bb̄-jets. This way

of looking at the efficiencies may be of interest in a search for b-quark initiated jets

coming from the hard interaction. The bb̄-jet rejection efficiency (1/ε̄2b) significantly

improves for the phenomenologically interesting boosted topologies in all cases. The

(xE, g) produces robust results through all the transverse momentum slices. This

suggests that the combination of these two observables contains complementary and

relevant information not found in the single observables or the other combinations. In

contrast, the combinations containing the number of charged tracks show a significant

dependence on the transverse momentum of the jets. This behaviour is driven by

the number of charged tracks, suggesting that the importance of this observable

grows with the available energy in the jet. We note in passing that in the boosted

regime a sizable fraction of b-tags correspond to b-hadrons with a low xE, stemming

predominantly from the splitting of secondary gluons into the jets. A simple cut on

xE will remove such unwanted b-tags.
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Conclusions

Studies that require multiple b-jets will become increasingly frequent at the LHC in

the years to come. These studies range from SM precision analyses to searches for

beyond the SM physics, such as resonance searches. One of the problems encountered

is related to discriminating the “legitimate” b-jets, containing only one, typically hard

b-hadron, from jets containing two b-hadrons, usually emerging from a gluon splitting.

In this Part of the Thesis a phenomenological attempt at a more coherent strategy

of discriminating b- and bb̄-jets has been presented, based on possible kinematic

handles, in particular combinations of jet shapes with the fragmentation fraction.

Several observables were considered and the most powerful encountered were the girth

g, the number of charged tracks nch, and b-hadron jet energy fraction xE. Especially

when combining either of the former two with the latter, a considerable improvement

was found. A significant improvement for the bb̄-jet rejection is observed at the

boosted regime for all variable combinations.

An interesting development in the analysis of events at the LHC is presented by the

use of machine learning methods, such as boosted decision trees and neural networks.

These methods are particularly interesting for the categorization of events, and thus

could find good application in the tagging of jets. Such methods can be set out

with little knowledge of the intrinsic behaviour of the physics, with the machine

“learning” the typical radiation patterns present in the training data. We refrained
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from using such an approach in this Part as it was beyond the scope of the study. In

addition, we could show that the knowledge of the underlying radiation pattern can

drive the choice of strong discriminatory observables. For a practical application, the

combination of these observables, with others already in place, into a multivariate

algorithm would of course be desirable.



Appendix A

N-Jettiness

In this appendix, we will be presenting the results of an implementation of N -

Jettiness phase space slicing, following the method outlined in [21]. We will first

review the definition of the N -Jettiness variable and the associated factorization of

the cross section before presenting our implementation and results.

A.1 Definition of N-Jettiness

N -Jettiness, denoted τN in the following, was introduced as an event shape observable

in [216]. As an event shape it can be interpreted as an inclusive measure of how

much the event “looks like” an event with N jets. As such, it may be used as a

criterion for requiring a fixed number of jets, interpolating smoothly between the

fully exclusive limit of exactly N infinitely narrow jets in the limit τN → 0 and the

fully inclusive limit τN → 1 5. Its usefulness in a phase space slicing method was

worked out in [21]. A similar and somewhat parallel development introduced a jet

shape N -Subjettiness [217] which can be interpreted as measuring how much a jet

looks like it is made up of N subjets.

5Note that the normalization, as shown in the following, may be chosen to limit τN ∈ [0, 1], but
this is not a necessary requirement.
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A.1.1 Notation

Before considering the definition of N -Jettiness, let us first define our notation6.

Consider a process that at LO contains N final state partons, labelled 1, . . . , N , and

a number of unspecified, non-QCD final state particles. The initial state partons

will be labeled a, b. The Born phase space is then the collection of the parton

momenta {qa, qb; q1, . . . , qN} together with their flavour, helicity and spin information

{κa, κb;κ1, . . . , κN} and the phase space for the non-QCD particles ΦL(q) with a

total momentum q7:

ΦN = {(qa, κa) , (qb, κb) ; (q1, κ1) , . . . , (qN , κN) ; ΦL(q)} . (A.1.1)

For the use of the N -Jettiness method in higher-order corrections, the non-partonic

particles are only relevant in that they are required to enforce momentum conserva-

tion:

qa + qb = q1 + · · ·+ qN + q. (A.1.2)

The complete phase space measure dΦN then reads:

∫
dΦN ≡

1
2E2

cm

∫ dxa
xa

dxb
xb

∫
dΦN (qa + qb; q1, . . . , qN ; q) dq2

2π dΦL(q)
∑
κ

sκ, (A.1.3)

where dΦN (. . . ) is the usual Lorentz invariant phase space appropriate for N final

state particles, Ecm is the center of mass energy of the collision, xi are the momentum

fractions of the initial states carried by the partons involved in the collision and sκ

is the symmetry factor appropriate to the respective partonic channel κ.

In the following, we will denote final state particles as pk. Light-like vectors denoting

jet directions, as defined in the following section, will be denoted with qi. Let us

further define the unit vector ni in the direction of qi as qi = Eini. We then use the

shorthand xij ≡ ni · nj to denote the scalar product of these directions.

6We emphasize this point here since several different conventions are found in the literature.
Naming conventions may be the exact opposite of other conventions. In addition, this choice may
also lead to differing explicit factors of 2.

7Momenta of non-partonic incoming particles, as in ep and ee collisions, will be considered part
of ΦL(q).



A.1. Definition of N-Jettiness 109

A.1.2 N-Jettiness definition

For any final state with M ≥ N partons, the N -Jettiness variable is then defined as

follows [216]:

τN =
∑
k∈FS

min
i∈{a,b,1,...,N}

(
2pk · qi
Qi

)
=

M∑
k=1

min
i∈{a,b,1,...,N}

(
2pk · qi
Qi

)
. (A.1.4)

The sum in this expression runs over all partons k in the final state. The light-like

vectors qi denote N jet directions and the beam directions a and b, if the beams are

hadronic. The minimization in this expression is performed over these jet directions.

The Qi are normalization factors specific to each jet direction, which may be chosen

arbitrarily as long as they do not upset the behaviour of the variable in the limit of soft

or collinear radiation. Different normalizations will lead to different characteristics

in the behaviour of τN 6= 0. Each term in the minimization can be interpreted as

the distance of pk to jet direction qi, the lowest value of which contributes to the

overall sum. The bracket thus determines a distance measure akin to the distance

measures in jet algorithms.

We observe that if M = N , corresponding to the fully exclusive case, we find τN = 0

while for any M > N , τN ≥ 0. The scalar product in the above expression reads

for massless partons pk · qi = EkEi (1− cos θi,j). In the limit of soft, Ek → 0, or

collinear radiation, θi,j → 0, the scalar product pk · qi → 0. Thus in the limit of

soft or collinear radiation, we have τN → 0. N -Jettiness therefore fulfills exactly the

requirements placed on an N -jet resolution variable, namely:

τN (ΦN) = 0, τN (Φ>N) ≥ 0, τN (Φ>N → ΦN)→ 0. (A.1.5)

A.1.3 The normalization factors Qi

The normalization factors Qi represent a choice which affects not only the structure

of the singular spectrum of the cross section, but also the dimensionality of the

N -Jettiness variable. The only requirement on the Qi is that they do not spoil the

behaviour in the singular limits. Two classes of normalizations are common:
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• A common hard scale Q related to the full event. This leads to a minimization

of the invariant masses in each of the regions defined by the jet directions.

• A scale related to the hardness of the jet, e.g. the jet energy Ei. This creates

a geometric measure.

A number of other distance measures, some of which can be represented in the way

we have chosen here, have been discussed in the context of using the minimization

of an N -jet resolution observable as a jet defining algorithm [218].

Relation to known measures

An interesting observation is the relation of N -Jettiness to other observables which

may be used for validation. For processes with only two partons at Born level, a

large number of similar observables have been studied and used for resummations.

In electron positron collisions, 2-Jettiness is related to the thrust observable T =

maxt̂
∑
i |t̂ · ~pi|/ECMS with thrust axis t̂ and ECMS the centre of mass energy of the

event. In the two-jet limit, the jet directions are back-to-back and align with the

thrust axis. In this case, we have for the 2-Jettiness value:

τ ee2 = 1
Q

∑
k

Ek min {1− cos θk, 1 + cos θk} . (A.1.6)

This is in fact equivalent to τ ee2 = 1−T . Due to the light-like nature of all momenta

involved, the minimization of the scalar product between four-momenta pk and qi

in Eq. (A.1.4) can be rewritten as a maximization over the scalar product of the

three-momenta ~pk and ~qi ≡ t̂. This observable has been known for a long time [219],

and resummations of 1− T have been performed as well in [220,221].

Similarly, 2-Jettiness with a dimension-two normalization factor Qi = E2
CMS is equal

to the original JADE algorithm measure yij = 2EiEj (1− cos θij) /E2
CMS [222] and

also the same as the variable y13;2 used in the Catani-Seymour dipole subtraction

method. This latter equivalence allows for a number of computational cross-checks
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between our N -Jettiness implementation and the Catani-Seymour implementation

within SHERPA.

A.1.4 The jet directions qi

The jet directions qi are defined through a minimization procedure. For the fixed

order (N)NLO corrections that we are interested in in this work, we will only be

concerned with final states that include up to two extra partons compared to the

number of jets N . In this case, we can use a simple brute-force algorithm for

determining the jet directions that give the minimum N -Jettiness values8.

In order to be as general as possible, we consider a process with two fixed hadronic

beam directions qa,b = Ea,b (1, 0, 0,±1). Any process with fewer than two partons in

the initial state can then be obtained by removing the respective number of beam

directions from the algorithm.

The minimization procedure employed in the definition of the N -Jettiness measure

defines N jet sectors and two beam sectors. Each parton is then clustered into one

of these sectors depending on the direction qi that it is “closest” to. Let us define as

τ iN the contribution due to the i-th sector:

τ iN =
M∑
k=1

2qi · pk
Qi

∏
j 6=i

θ

(
qj · pk
Qj

− qi · pk
Qi

) , (A.1.7)

with i ∈ {a, b, 1, . . . , N}. The product of θ-functions is non-vanishing only if the

particle k is closest to direction i, thereby ensuring the clustering into this region. The

total N -Jettiness value is then just the sum of all these contributions, τN = ∑
i τ

i
N .

For convenience of the presentation let us define a combined four-momentum of the

momenta denoted by 1, . . . , r,

q1̃...r =
r∑
i=1

Ei

 1∑r
j=1 ~nj

 , (A.1.8)

8The general problem of finding N -Jettiness axes through minimization for a large number of
final state particles poses a difficult computational problem. An algorithm based on a one-pass
minimization can be used to solve this problem and forms the basis of the XCONE jet algorithm [218].
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where ~ni is the three-vector in which momentum i is pointing. One could also

recombine the partons by adding their three-momenta and assigning the energy

component as |∑r
i=1 Ei~ni|. In the soft and collinear limits, the choice of recombination

procedure does not make a difference.

One additional parton

For N + 1 partons, N − 1 jet axes must be aligned with N − 1 partons in the final

state to find the global minimum of τN . There will thus only be one sector that

contributes to the total value of τN , determined by a single optimal axis. This axis

may now be one of a choice of two possibilities: either it is aligned with one of the

remaining final state partons, in which case the other parton is clustered into one

of the beam sectors, or the final direction lies along the sum of the two final state

partons, along q
ĩj
. We can formalize this algorithm as follows:

1. Choose a pair {i, j} from all the partons in the event. Skip the pair if both

partons are in the initial state, as the beam directions are fixed.

2. Choose the optimal jet axis q{i,j} related to these partons:

(a) if one of the {i, j} is in the initial state, q{i,j} = qIS.

(b) if both {i, j} are in the final state, q{i,j} = q
ĩj
.

3. Calculate the contribution of this sector to τ {i,j}N = 2(pi+pj)·q{i,j}
Q{i,j}

.

4. Repeat steps 1-3 for all possible pairs of partons {i, j}.

5. Keep the lowest value as the value of τN for this event.

Two additional partons

For a final state with N + 2 partons, we can proceed similarly, but are faced with a

larger number of possibilities. N − 2 jet directions will now be aligned with N − 2

partons, with four additional partons left to be clustered into two additional jet axes:
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1. Choose a pair of partons {i, j} in the final state. Let all other partons define

a sector.

2. Choose two, not necessarily distinct, sectors {a{i,j}1 , a
{i,j}
2 }:

(a) if a{i,j}1 = a
{i,j}
2 , both {i, j} fall into the same sector. Choose the optimal

axis as:

• if a{i,j}1 is a beam direction, qa1ij = qa1 .

• if a{i,j}1 is in the final state, qa1ij = q
ã1ij

.

(b) if a{i,j}1 6= a
{i,j}
2 , both partons fall into different sectors. Consider, without

loss of generality, i falling into sector a{i,j}1 , j into sector a{i,j}2 . Choose

optimal axes for each sector:

• if a{i,j}1 is a beam direction, qa1i = qa1 .

• if a{i,j}1 is in the final state, qa1i = q
ã1i

.

• if a{i,j}2 is a beam direction, qa2j = qa2 .

• if a{i,j}2 is in the final state, qa2j = q
ã2j

.

3. Calculate the contribution to N -Jettiness in this case as τN = ∑
τ kN .

4. Repeat step 2-3 for all possible sectors {a{i,j}1 , a
{i,j}
2 }, keeping the lowest value

of τN as the contribution if {i, j} are unclustered.

5. Repeat steps 1-4 for all possible pairs of partons {i, j}, keeping the lowest

contribution to τN as the overall value of τN .

A.2 Factorization in the singular limits

As already alluded to, the choice of an N -jet resolution variable is in principle arbit-

rary as long as it respects the conditions on resolving the number of jets. However,

for implementing a phase space slicing, it must also be possible to separate the cross
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section into its singular and finite parts whilst allowing for a simple calculation of

this contribution in the singular region.

We define the singular spectrum of an N -jet resolution variable as

dσsing(X)
dτN

= C−1(X)δ(τN) +
∑
n≥0
Cn(X)Ln(τN). (A.2.1)

Here, the Cn are singular coefficients defining the singular spectrum. The calculation

of these coefficients defines the contribution to the cross section below the cut. The

Ln(τN) are +-distributions, which are defined for a test function f(τN) as:

Ln(τN) =
[
θ(τN) lnn(τN)

τN

]
+
,

∫ τN,cut

−∞
dτNLn(τN)f(τN) =

∫ τN,cut

0
dτN

lnn(τN)
τN

[f(τN)− f(0)] + f(0)lnn+1(τN,cut)
n+ 1 .

(A.2.2)

This structure follows from the infrared structure of QCD amplitudes for infrared

safe observables. The singular cross section differential in τN can be written in terms

of pieces differential in the contributions τ iN due to the sectors i ∈ {a, b, 1, . . . , N}:

dσsing(X)
dτN

=
∫

dΦN
dσsing (ΦN)

dτN
X (ΦN) , (A.2.3)

dσsing (ΦN)
dτN

=
∫ (∏

i

dτ iN
)

dσsing (ΦN)
dτaNdτ bN . . . dτNN

δ

(
τN −

∑
i

τ iN

)
. (A.2.4)

Note that the singular limits of the cross section only depend on the underlying Born

phase space, hence the separation of dσsing(X)/dτN into dσsing (ΦN) /dτN is justified.

For the cross section differential in the individual contributions, a factorization

theorem has been proven in [216, 223, 224] using the formalism of Soft-Collinear

Effective Theory (SCET). The factorized cross section reads:

dσsing (ΦN)
dτaNdτ bN . . . dτNN

=
∫

dtaBa (ta, xa, µ)
∫

dtbBb (tb, xb, µ)
[
N∏
i=1

∫
dsiJi (si, µ)

]

× ~H† (ΦN , µ) Ŝκ
(
τaN −

ta
Qa

, . . . , τNN −
sN
QN

, {q̂i} , µ
)
~H (ΦN , µ) .

(A.2.5)

There are several components to this factorization theorem:
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• The beam functions Ba and Bb: these functions contain the contributions

from radiation collinear to the respective beam direction. The beam functions

depend on the flavour κ of the parton from the beam and the light-cone

momentum fraction x of the proton momentum it carries. These functions also

contain the PDFs.

• The jet functions Ji, i ∈ {1, . . . , N}: these functions contain the contributions

due to radiation collinear to the jet direction qi. The jet functions depend on

the flavour κ of the jet.

• The soft function Ŝκ: this function encodes the contributions due to soft

radiation. Ŝκ depends on all normalized jet directions q̂i ≡ qi
Qi

in the process,

and acts as a matrix in the colour space of the process.

• The hard Wilson coefficients ~H9: these coefficients contain the QCD amplitude

of the N -parton process, i.e. the Born and hard virtual amplitudes. In SCET,

these coefficients arise as the matching coefficients from QCD onto SCET.

They are vectors in the same colour space as the soft function.

The first set of arguments of Ba, Ji and Ŝκ are the contributions to the τ iN from

the respective sectors. All functions have an explicit dependence on the unspecified

scale µ, which cancels exactly between them at each order, with the remaining µ

dependence contained in the running αs(µ).

Whilst it is possible to keep the entire cross section differential in all contributions

to the different sectors, we are ultimately interested in slicing the phase space into

a singular and a non-singular region. We therefore consider the projection of the

factorized cross section onto the singly differential dσsing (ΦN) /dτN :

dσsing (ΦN)
dτN

=
∫

dtaBa (ta, xa, µ)
∫

dtbBb (tb, xb, µ)
[
N∏
i=1

∫
dsiJi (si, µ)

]

9Note that we choose to denote these coefficients through ~H. In other literature, the coefficients
are usually denoted ~C, and the symbol H reserved for the hard function ~C† ~C. We choose this
representation to prevent confusion with other C’s floating around in the expressions.
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× ~H† (ΦN , µ) Ŝκ
(
τN −

ta
Qa

− tb
Qb

−
N∑
i=1

si
Qi

, {q̂i} , µ
)
~H (ΦN , µ) .

(A.2.6)

The single differential soft function is obtained by integrating using the delta-

functions in Eq. (A.2.4):

Ŝκ (k, {q̂i} , µ) =
∫ [∏

i

ki

]
Ŝκ ({ki} , {q̂i} , µ) δ

(
k −

∑
i

ki

)
. (A.2.7)

We now expand this cross section as we did in Eq. (A.2.1) into singular coefficients:

dσsing

dτN
=C−1 (ΦN , ξ) δ (τN) +

∑
n≥0
Cn (ΦN , ξ)

1
ξ
Ln

(
τN
ξ

)

=
∑
m≥0

(
C

(m)
−1 (ΦN , ξ, µ)δ(τN) +

2m−1∑
n=0

C(m)
n (ΦN , ξ, µ)1

ξ
Ln

(
τN
ξ

))(
αs(µ)

4π

)m
.

(A.2.8)

where in the second line we expanded the singular coefficients as a series in the

coupling constant αs. At LO, only C(0)
−1 = BN (ΦN) contributes. Note that the Born

level amplitude may already include couplings αs, which are not included in the

counting m in above equation. At NLO C−1,0,1 are non-zero, at NNLO we need to

consider C−1,0,1,2,3. The parameter ξ is an arbitrary dimension-one parameter that

cancels among the different contributions. It can be taken equal to the normalization

of the jet directions, but its cancellation for other values is a non-trivial cross check

of the implementation.

To find the coefficients Cn, we expand all the functions in Eq. (A.2.6) in terms of

αs(µ) and then assemble the respective orders. The expanded functions read:

Ji(s, µ) = δ(s) +
∑
m≥1

J
(m)
i (s, µ)

(
αs
4π

)m
,

Ba(t, x, µ) = δ(t)fa (x, µF ) +
∑
m≥1

B(m)
a (t, x, µ, µF )

(
αs
4π

)m
, (A.2.9)

Ŝκ (k, {q̂i} , µ) = 1κδ(k) +
∑
m≥1

Ŝ(m)
κ (k, {q̂i} , µ)

(
αs
4π

)m
,

~H (ΦN , µ) = ~H(0) (ΦN , µ) +
∑
m≥1

~H(m)(ΦN , µ)
(
αs
4π

)m
.
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In Ŝκ, 1κ denotes the identity operator in colour space.

A.2.1 The leading order cross section

At leading order, the factorized cross section has to reduce to the QCD Born level

cross section of the underlying process. At this level, we then have

J
(0)
i (s, µ) = δ(s),

B(0)
a (t, x, µ) = δ(t)fa (x, µF ) , (A.2.10)

Ŝκ (ka, . . . , kN , {q̂i} , µ) = 1κ
∏
i

δ (ki) .

We then get for the differential cross section:

dσsing (ΦN)
dτN

=fafb ~H†(0) (ΦN) 1κ ~H(0) (ΦN)
∏
i

δ
(
τ iN
)

=BN (ΦN)
∏
i

δ
(
τ iN
)
, (A.2.11)

with BN ≡ fafb ~H
†(0) (ΦN) 1κ ~H(0) (ΦN). Upon integration, this reproduces the lead-

ing order cross section as required.

A.2.2 NLO coefficients

For the below-the-cut contributions at NLO, we need, for a pure slicing approach,

the coefficient C(1)
−1 :

C
(1)
−1(ΦN ,ξ, µ) = fa(xa, µF ) fb(xb, µF )

(
~H†(1) ~H(0) + ~H†(0) ~H(1)

)
(ΦN , µ)

+
∣∣∣ ~H(0)(ΦN , µ)

∣∣∣2[fa(xa, µF ) fb(xb, µF )
N∑
i=1

J
(1)
i,−1

(
Qiξ

µ2

)

+B
(1)
a,−1

(
xa, µ, µF ,

Qaξ

µ2

)
fb(xb, µF ) + fa(xa, µF )B(1)

b,−1

(
xb, µ, µF ,

Qbξ

µ2

)]

+ fa(xa, µF ) fb(xb, µF ) ~H†(0)(ΦN , µ) Ŝ(1)
κ,−1

(
{q̂i},

ξ

µ

)
~H(0)(ΦN , µ). (A.2.12)

In the first line,
(
~H†(1) ~H(0) + ~H†(0) ~H(1)

)
(ΦN , µ) is the virtual contribution to the

cross section, which corresponds to the term VN (ΦN) in Eq. (2.2.3). The further
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lines contain the contributions due to the below-the-cut contributions in SCET.

For the coefficients at NNLO, we also need the coefficients C(1)
n with n = 0, 1:

C(1)
n (ΦN , ξ, µ) =

∣∣∣ ~H(0)(ΦN , µ)
∣∣∣2[fa(xa, µF ) fb(xb, µF )

N∑
i=1

J
(1)
i,n

(
Qiξ

µ2

)

+B(1)
a,n

(
xa, µ, µF ,

Qaξ

µ2

)
fb(xb, µF ) + fa(xa, µF )B(1)

b,n

(
xb, µ, µF ,

Qbξ

µ2

)]

+ fa(xa, µF ) fb(xb, µF ) ~H†(0)(ΦN , µ) Ŝ(1)
κ,n

(
{q̂i},

ξ

µ

)
~H(0)(ΦN , µ).

(A.2.13)

There is no contribution from the hard Wilson coefficients here as these contributions

are all contained in the single point that corresponds to the Born configuration, i.e.

in the δ (τN) contribution.

NNLO coefficients

At NNLO, the different terms become more convoluted. To reduce clutter, we omit

the functional dependencies. They are the same as in Eq. (A.2.12).

All coefficients, apart from Ŝ(2)
−1, the two-loop soft constant, and the ~H(2), the hard

two-loop coefficients, are known exactly. Ŝ(2)
−1 is known analytically for processes

involving two external partons at Born level, and can be calculated numerically for

a larger number of partons in the process [225]. We will perform such a calculation

in the next chapter.

We can further write the m-loop, below-the-cut, SCET contributions as

X(m)
n =

∣∣∣∣∣ ~H(0)
∣∣∣∣∣
2 (
fafb

∑
i

J
(m)
i,n +B(m)

a,n fb + faB
(m)
b,n

)

+ fafb ~H
†(0)Ŝ(m)

n
~H(0). (A.2.14)

The cross-terms between the one-loop SCET contribution and the one-loop virtual

amplitudes can be collected as

X(1+1)
n =

∣∣∣∣∣ ~H†(1) ~H(0) + ~H(1) ~H†(0)
∣∣∣∣∣
(
fafb

∑
i

J
(1)
i,n +B(1)

a,nfb + faB
(1)
b,n

)
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+ fafb
(
~H†(0)Ŝ(1)

n
~H(1) + ~H†(1)Ŝ(1)

n
~H(0)

)
, (A.2.15)

and the cross terms between two different SCET contributions, stemming from

different Ln ⊗ Lm convolutions can be written as

X(1+1)
n,m =

∣∣∣∣∣~C(0)
∣∣∣∣∣
2(
fafb

∑
i≤j

J
(1)
i,n J

(1)
j,m +B(1)

a,nfb
∑
i

J
(1)
i,m + faB

(1)
b,n

∑
i

J
(1)
i,m +B(1)

a,nB
(1)
b,n

)

+ fafb
∑
i

J
(1)
i,n
~C†(0)Ŝ(1)

n
~C(0) +B(1)

a,nfb ~C
†(0)Ŝ(1)

n
~C(0) + faB

(1)
b,n
~C†(0)Ŝ(1)

n
~C(0).

(A.2.16)

Using all of these abbreviations, we can finally collect together the NNLO, below-

the-cut contributions into the coefficient C(2)
−1 :

C
(2)
−1 =fafb

(
~H†(2) ~H(0) + ~H†(0) ~H(2) + ~H†(1) ~H(1)

)
+X

(2)
−1 +X

(1+1)
−1 − π2

6 X
(1+1)
0,0 + ζ3

(
X

(1+1)
1,0 +X

(1+1)
0,1

)
− π4

360X
(1+1)
1,1 . (A.2.17)

The coefficients in front of theX(1+1)
n,m are coefficients V mn

k arising from the convolution

of two plus distributions:

(Lm ⊗ Ln) ≡
∫
dτ ′Lm (τ − τ ′)Ln(τ) = V mn

−1 δ(τ) +
m+n+1∑

k

V mn
k Lk(τ), (A.2.18)

which are listed in appendix B of [226].

A.2.3 Power corrections

The factorization theorem in Eq. (A.2.4) is strictly only valid in the limit of soft or

collinear radiation. This, in principle, necessitates the calculation of the contribution

above and below the cut in the limit τN → 0. Taking this limit exactly is not possible

due to the limited precision of numerical calculations, so we have to use small, but

finite, cutoffs τN,cut. The total cross section is then the sum of the result found

assuming strict factorization of the cross section and so-called power corrections

caused by deviations from the strict limit.
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The leading behaviour of these power corrections in the total cross section is

σnonsing ∝ τN,cutα
m
s log2m (τN,cut) (A.2.19)

for a process calculated up to order m in the slicing. Owing to the logarithmic

enhancement, we expect a larger deviation of the phase space slicing results from the

true cross section for larger values of the cut. The exponent of the logarithm also

means that the power corrections become more important relative to the singular

spectrum at higher orders in the coupling constant. In the absence of a calculation

of these power corrections, an extrapolation into the region τN → 0 of the cross

section evaluated at multiple values of the cut can be used to extract the true cross

section. At NLO a differential fit function

fNLO(τN,cut) = c1 + c2τN,cut log τN,cut + c3τN,cut, (A.2.20)

can be used to extract the NLO cross section. This procedure has been advocated

and used in the programs MCFM [82] and in MATRIX [119] in the context of qT slicing.

The potential size of the power corrections has led to increased efforts to understand

and calculate these corrections [227–231]. In SCET, power corrections originate in

universal sub-leading Lagrangian insertions, non-universal sub-leading corrections

in the hard scattering operators, and in sub-leading terms in the expansion of the

measurement function and the phase space. Power corrections are thus non-universal

and have to be calculated for each process separately.

The combination of power corrections with the below-the-cut contributions improves

the convergence of the phase space slicing by providing subleading corrections to

the cross section. Beyond this, the inclusion of power corrections also allows one to

use larger values of the cut parameter to achieve the same precision, substantially

reducing computation time and increasing the numerical stability. The implementa-

tion presented in this work does not include such power corrections, however their

inclusion would improve the computational efficiency and allow a larger cut to be

used.
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A.3 N-Jettiness slicing within the SHERPA frame-

work

Having introduced the ingredients necessary for the implementation of N -Jettiness

slicing, we will now present their incorporation into the SHERPA framework. The

framework has been reviewed in Section 1.1. As noted there, SHERPA, alongside the

input from an external loop generator, already allows for automated NLO calculations

both in QCD and the full electroweak theory. The method of choice for these

calculations is the Catani-Seymour subtraction method . The framework however

also provides the infrastructure necessary for a phase space slicing calculation.

The formulation of the below-the-cut contribution in Eq. (A.2.12), with the exception

of the virtual contribution, is written in exactly the form of a differential K-factor.

The Born amplitude squared is multiplied by a phase-space-dependent factor which

also carries information about the flavour, helicity and colour of the external partons.

The SHERPA framework provides a facility within its PHASIC module to calculate

such a differential K-factor and apply it to the process in question.

The above-the-cut contribution in an NLO calculation amounts to a LO calculation

of the process X + j above the N -Jettiness cut. Such a calculation can be achieved

straightforwardly within SHERPA using a custom-built selector to apply a τN phase

space cut.

A.3.1 NLO: the above-the-cut contribution

At NLO, the contribution above the τN cut is the simplest to implement. We

use the algorithm described in Section A.1.4 to determine the value of N -Jettiness

from a LO process with N + 1 partons, as generated by one of SHERPA’s matrix

element generators, COMIX and AMEGIC. If a generated phase space point has a

value τN < τN,cut, it is vetoed.
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There is an interesting point to consider when trying to simulate processes involving

more than 2 partons at leading order. While in those processes (e.g. Drell-Yan,

e+e− → qq̄), the kinematics are fixed, with three partons at the Born level we

need to use a jet algorithm. Such a definition can be done using any exclusive jet

algorithm, including a cut on τN−1. The number of jets that are generated can be

affected by hard radiation, which can also lead to a reduction in the number of jets.

In this sense, it would seem the most sensible choice to define the N jets using a cut

on τN−1 as the minimization in this variable includes the same minimization required

in the evaluation of τN . In the limit of collinear radiation however, where most of the

cross section sits, the choice of jet algorithm should not make a big difference. The

effect of using different types of jet algorithms to define the underlying Born event

in N -Jettiness slicing has, to the best of our knowledge, not been discussed before

and may be an issue to be kept in mind, in particular in cases in which N -Jettiness

cuts are chosen large. Here, we indiscriminately use a FASTJET implementation of

an exclusive kT -algorithm, as appropriate for either hadron collider processes and

e+e−-collisions.

The above-the-cut contribution affords a number of cross checks with other parts

of SHERPA as well as external codes. As noted in A.1.3, using the normalization

factor Qi = E2
CMS in a process involving two partons at Born level makes N -Jettiness

equivalent to y as used in Catani-Seymour subtraction. In this method, we have two

parameters that play a part in the real-subtracted contribution:

• The parameter αcut is a technical cutoff, below which the cancellation between

the real contribution dσR and the subtraction terms dσS is assumed to be

exact. This cutoff is normally set very low10 and applied in order to prevent

numerical miscancellations in the regions that are close to the singularities.

• The parameter αdip is used to restrict the available phase space for the sub-

traction terms S, providing an upper cutoff. Such a restriction is typically

10The default setting in SHERPA is αcut = 10−9.
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chosen in order to improve the performance of the integration of the RS part

of the calculation as a lowering of αdip requires less evaluations of the dipole

terms, and can be tuned to reduce large cancellations between real and virtual

contributions.

One possible, choice is to set αcut = αdip. In this case, the subtraction terms are not

evaluated at all as the phase space over which they are integrated vanishes. The

real contribution then takes exactly the form found in a slicing method, with the

real matrix element integrated down to a cutoff in a 2-jet resolution observable.

A.3.2 NLO: the below-the-cut contribution

The terms below the cut are applied as a K-factor to the Born amplitude. This

amplitude is provided by one of the inbuilt matrix element generators, COMIX or

AMEGIC, alongside flavour, spin and PDF information.

The Jet function Ji

The jet function Ji is conceptually the easiest of the integrated contributions as

each parton in the Born level final state contributes exactly one such function. All

coefficients are known analytically and only depend on whether the parton is a gluon

or a quark. The coefficients are given in Appendix A.4. The implementation of

the Ji runs over all final state partons in the Born amplitude and calculates the

relevant coefficients, see Eq. (A.4.12); their sum amounts to the total jet function

contribution.

The Beam function Ba

The coefficients for the beam function are also all known analytically, again de-

pending on the incoming flavour. In addition however, the beam function contains

a convolution over the PDFs relevant to the parton a. Since the Born amplitude
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already comes with a factor fa(xa), this requires us to divide out this factor in

the calculation. The implementation then sets up all the relevant beam function

coefficients, including the relevant convolutions. Since the beam function coefficients

contain plus-distributions, care has to be taken that the contributions from the

endpoints are taken into account properly.

The Soft function Ŝκ

The N -Jettiness soft function was calculated at NLO for the first time in [232]. For

two partons at Born level, Ŝκ can be calculated analytically but beyond this, the

angular integrals have to be solved numerically.

The calculation of the soft function amounts to an integral over the contraction of

two soft-gluon emission currents. In SCET, the soft virtual integrals are scaleless

and vanish in dimensional regularization. The contraction of two soft emission

currents originating from the same Wilson line ni again vanishes as this contribution

is proportional to n2
i = 0. The surviving expression is thus:

Ŝ
bare,(1)
N ({ki}) =−

∑
i 6=j

Ti ·Tj

(
eγEµ2

4π

)ε
g2
∫ ddp

(2π)d
ni · nj

(ni · p) (nj · p)

× 2πδ
(
p2
)
θ
(
p0
)
X ({ki} , {ni · p})

=
∑
i 6=j

Ti ·TjS
bare,(1)
ij ({ki}) , (A.3.1)

where for simplicity, we have assumed a normalization Qi = 2Ei. The full expression

can be restored by replacing ni → 2Eini.

The measurement function X takes the form:

X ({ki} , {ni · p}) = δ
(
pi − ki

)
δ (kj) θ

(
pj − pi

) ∏
m6=i,j

δ (km) θ
(
pm − pi

)

+ δ (ki) δ
(
pj − kj

)
θ
(
pi − pj

) ∏
m6=i,j

δ (km) θ
(
pm − pi

)

+
∑
m6=i,j

δ (pm − km) δ (ki) δ (kj) θ
(
pi − pm

)
θ
(
pj − pm

) ∏
n6=i,j,m

δ (kn) θ (pn − pm) ,

(A.3.2)
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where we used the abbreviation pi = ni · p. The first line corresponds to the case in

which the gluon is clustered with parton i, the value of N -Jettiness then becoming

pi in this region. The second line corrresponds to the gluon clustering into the

region around parton j, while the last line denotes all clusterings with partons

m 6= i, j. The calculation in [232] proceeds by expressing this measurement function

in terms of two so-called hemisphere contributions by extending the regions around

partons i, j such that their union covers the whole phase space. The subtraction

of the added piece from the regions around the other partons m means that all

divergences are contained within the hemisphere contributions. These contributions

can be calculated analytically, and the UV divergences cancelled explicitly through

the renormalization of SCET. The other contributions are fully finite, but have to

be calculated numerically as no closed analytical form can be found for the angular

integrals.

We propose here a calculation that circumvents the rearrangement of the measure-

ment function into hemispheres and rather calculates each coefficient of the Laurent

expansion Ŝκ in ε numerically. This approach can easily be extended to the calcula-

tion of the soft function at NNLO, and has since been published by other authors

in [225].

Phase space

In order to perform this calculation, let us first rewrite the phase space. Let us

define as Sbare,(1)
ij;k ({ki}) the contribution to the bare soft function from the soft gluon

connecting the Wilson lines i and j, clustered with the jet direction k. For each of

these contributions, we will use a lightcone decomposition of the additional gluon

momentum p in terms of two of the jet directions, here generically denoted m,n:

pµ = p+ nµm
xmn

+ p−
nµn
xmn

+ pµ⊥, (A.3.3)
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with nn · p⊥ = nm · p⊥ = 0 and the lightcone components:

p+ =nn · p = xij (E + pz)
2 ,

p− =nm · p = xij (E − pz)
2 . (A.3.4)

The decomposition of one of the other jet directions r 6= m,n is given by:

nµr = nµm
xrn
xmn

+ nµn
xrm
xmn

+ nµr⊥. (A.3.5)

The scalar product of the additional gluon momentum with this decomposition is:

nr · p = p−
xrn
xmn

+ p+ xrm
xmn
− 2 |nr⊥| |p⊥| cosφpr, (A.3.6)

with φpr the angle in the transverse plane between the momenta p and nr. From the

mass-shell requirement, it follows that

p2
⊥ =2p+p−

xnm
,

n2
r⊥ =xrnxrm2xnm

. (A.3.7)

For what follows, we also define the following ratio:

nr · p
nm · p

= xrn
xmn

+ nn · p
nm · p

xrm
xmn
− 2

√
nn · p xrmxrn
nm · px2

mn

cosφpr ≡ Anm;r

(
nn · p
nm · p

, φpr

)
.

(A.3.8)

The phase space in this parameterization reads:

∫
dΦ1 =

∫ dpd

(2π)d−1 δ
(
p2
)

Θ
(
p0
)

=
∫ dE dpz dpd−2

⊥

(2π)d−1 δ
(
p2
)

Θ (E)

= 1
(2π)d−1

∫
dp+dp−dd−2p⊥δ

(
2p+p−

xmn
− p2

⊥

)
1
xmn

Θ
(
xmn

(
p+ + p−

))
= 1

(2π)d−1

∫
dp+dp−dp2

⊥
2

(
p2
⊥

) d−4
2 dΩd−3δ

(
2p+p−

xmn
− p2

⊥

)
1
xmn

Θ
((
p+ + p−

))

= 1
(2π)d−1

∫
dp+dp−

(
xmn

2p+p−

)ε
dΩd−3

1
2xmn

Θ
(
p+p−

)
Θ
(
p+ + p−

)

= 1
(2π)d−1

∫
dp+dp−

(
xmn

2p+p−

)ε
dΩd−3

1
2xmn

Θ
(
p+
)

Θ
(
p−
)
, (A.3.9)
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where dΩd−3 is the infinitesimal solid angle describing the direction of transverse

momentum in the (d−2)-dimensional subspace which it spans. If the amplitude does

not depend on this solid angle, it can be integrated out. The solid angle subtended

by a d-dimensional sphere is given by11:

Ωd = 2π d+1
2

Γ
(
d+1

2

) . (A.3.10)

The soft function

There are two major cases to be distinguished in the calculation of the soft function.

If k = i, i.e. the gluon is clustered with the emitting Wilson line i, we choose m = i,

n = j. The case with k = j can be obtained by letting i↔ j. Combining this with

the amplitude, we get for Sbare,(1)
ij;i :

S
bare,(1)
ij;i ({ki}) =−

(
eγEµ2

4π

)ε
g2
∫

dp+dp−
(

xij
2p+p−

)ε
dΩd−3

1
2xij

xij
(ni · p) (nj · p)

×Θ
(
p+
)

Θ
(
p−
)

Θ
(
p+ − p−

)
δ
(
ki − p−

) ∏
m 6=i,j

Θ
(
pm − p−

)

=− αs(µ)
2π

(
eγEµ2xij

2

)ε 1
Γ(1− ε)

∫
dp+dp− 1

(p+p−)ε

×Θ
(
p+
)

Θ
(
p−
)

Θ
(
p+ − p−

)
δ
(
ki − p−

) ∏
m 6=i,j

Θ
(
pm − p−

)
.

(A.3.11)

We now do a further change of variables, inspired by sector decomposition. Let

p+ =τNξ
s
,

p− =τNξ. (A.3.12)

In terms of these variables, we find:

S
bare,(1)
ij;i ({ki}) = −αs(µ)

2π

(
eγEµ2xij

2

)ε
τ−1−2ε
N

Γ(1− ε)

∫ 1

0
dξds

11Note that another common convention denotes the solid angle subtended by the d-dimensional
sphere as Ωd+1 since the d-dimensional sphere is the full sphere that can be embedded in a d+ 1-
dimensional space. We choose to denote this solid angle Ωd. Both conventions are used in the
literature, and should be noted carefully.
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× ξ−1−2εs−1+εδ (1− ξ)
∏
m 6=i,j

Θ (Aij;m (s, φpm)− s)

=− αs(µ)
2π

(
eγEµ2xij

2

)ε
τ−1−2ε
N

Γ(1− ε)

∫ 1

0
dss−1+ε ∏

m 6=i,j
Θ (Aij;m (s, φpm)− s) .

(A.3.13)

The poles in ε now occur in the limits τN → 0 and s→ 0. An analytic integration

is made more difficult by the theta functions keeping the contribution in the region

around parton i. The poles can however be extracted through the use of plus

distributions. For this purpose, we use the general expansion:

x−1+aε = 1
aε
δ(x) +

∑
n=0

(aε)n

n!

[
Θ(x) logn x

x

]
+

= 1
aε
δ(x) +

∑
n=0

(aε)n

n! Ln(x). (A.3.14)

Having performed this expansion, the coefficients in the Laurent expansion can now

be integrated numerically.

For the contribution Sbare,(1)
ij;k , it is more convenient to choose m = k and n = i in

the parameterization of the phase space. Here we find, using the same change of

variables:

S
bare,(1)
ki;j ({ki}) = −αs(µ)

2π

(
eγEµ2xij

2

)ε (
xij
xki

)1−ε τ−1−2ε
N

Γ(1− ε)

∫ 1

0
dξdsdφ

× ξ−1−2εsε
sin−2ε φ

Aki;j (xki, φpj)
δ (1− ξ)

∏
m 6=i,k

Θ (Aki;m (xki, φpm)− s)

=− αs(µ)
2π

(
eγEµ2xij

2

)ε (
xij
xki

)1−ε τ−1−2ε
N

Γ(1− ε)

∫ 1

0
dsdφ

× sin−2ε φ

Aki;j (xki, φpj)
∏

m 6=i,k
Θ (Aki;m (xki, φpm)− s) . (A.3.15)

Again, the poles in ε can be extracted by expanding out the τ−1−2ε
N .

Upon renormalization, only the O (ε0) terms survive, and the sum of all possible

contributions represents the soft function contribution to the integrated virtual

subtraction terms. The calculations performed here agree with the results found

in [225,233].
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The hard virtual contribution

The hard virtual contribution contains all finite effects from the full virtual diagrams.

Such a calculation is, in general, performed by a one-loop provider specializing in

quick and reliable evaluations of loop amplitudes, such as OPENLOOPS, RECOLA

or BLACKHAT, all of which are natively supported in SHERPA. At NLO, the hard

virtual contribution is not affected by the SCET coefficients and can thus be added

on top of the soft-collinear pieces. There is however one caveat in doing this: most

one-loop programs provide the IR-finite one-loop amplitudes after the subtraction

of Catani’s IR-divergent operator I(ε). The SCET amplitudes used in this work are

calculated in the MS-scheme, and in order to have the correct matching between the

SCET amplitudes and the one-loop contribution, we have to include a conversion

term [234]:

C(0) =
∑
(i,j)

Ti ·Tj

16

[
γ0

cusp log2 µ2

−sij
− 4γi

Ci
log µ2

−sij

]
− π2

96Γ′0, (A.3.16)

where γ0
cusp = 4, γq = −3CF , γg = −β0, Γ′0 = −γ0

cusp
∑
iCi and µ is the renormaliza-

tion scale. As this term depends on the colours of the partons in the process, it is

in practice most simply included in the calculation of the soft function.

A.3.3 Results

In this section, we present results for the implementation of the N -Jettiness slicing

at NLO. In the results presented here, we will consider the full cross section at NLO

including the Born cross section.

A.3.4 e+e− → 2 jets

The production of two jets in e+e−-collisions provides a good testing ground for the

components of the calculation, in particular those of the quark jet functions. The

soft function is completely fixed, since the kinematics of the final state is completely
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Figure A.1: Plot of the contributions above, in blue, and below, in green, the
N -Jettiness slicing cut in the process e+e− → 2 jets. The red line
denotes their sum, while the cyan band corresponds to the NLO
cross section calculated using Catani-Seymour dipole subtraction.
The quadratic dependence on the cut parameter is visible in the
separate contribution and their cancellation in the sum is clear. The
two predictions for the total cross section are barely distinguishable.
A close-up of this region can be found in Figure A.2.

fixed. To the best of our knowledge, no public implementation of this process using

N -Jettiness phase space slicing is available, but a componentwise comparison with

SHERPA’s Catani-Seymour method is possible.

Throughout this section, we consider the process e+e− → 2 jets at a centre of

mass energy of 91.2 GeV. In Figure A.1, we show the contribution above the cut,

σ (τN > τN,cut), the integrated contributions below the cut, σsing (τN,cut), and their

sum. Overlaid is the total cross section at NLO found using Catani-Seymour dipole

subtraction, in its default setup, i.e. using αdip = 1 and αmin = 10−9. Clearly

visible is the strong cancellation between the large positive contribution from the
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Figure A.2: Close-up of Figure A.1 in the region of the total cross section. The
error bars and envelope denote the statistical uncertainty of the
integration. The cross sections from the two different methods are
found to agree within statistical uncertainties, as evidenced also by
the ratio plot in the lower panel.

contribution above the cut and the large negative contribution due to the integrated

terms below the cut. In Figure A.2, we zoom into the region of the total cross

section. We observe that the NLO cross section found from N -Jettiness phase space

slicing, σN−Jettiness, agrees with the result from Catani-Seymour subtraction, σCS,

within the statistical uncertainties of the integration. For large values of the cut we

can see a mild deviation starting to appear between the result from the slicing and

the subtraction, which may be the first indication that power corrections become

important in this region.

The integration time for a full N -Jettiness calculation is significantly larger than

the time taken with Catani-Seymour subraction. All parameters being equal, the

integration of the cross section for one particular value of τN,cut takes about as long as
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for Catani-Seymour subtraction. This calculation has to repeated a number of times,

however, in order to establish the independence of τN,cut and the convergence of the

cross section. An N -Jettiness calculation thus needs significantly more resources for

the same calculation.

The integration performance is worse overall in the slicing method, which is unsur-

prising as the slicing, being entirely non-local, suffers from significantly larger cancel-

lations than a local subtraction method such as Catani-Seymour dipole subtraction.

Moreover, the fluctuating behaviour of the cross section at low cuts suggests that

the quoted statistical uncertainty may be underestimating the true error. Further

fluctuation is observed upon changing parameters of the integration, e.g. the num-

ber of phase space points in each optimization step, also suggesting that the quoted

uncertainty may be underestimating the true error. We will comment on this point

in more detail for the process e+e− → 3 jets, where this effect is more pronounced.

It should be noted that custom scale variations applied to the Catani-Seymour cal-

culation give residual uncertainties of the order of the statistical uncertainty in the

N -Jettiness calculation. This does not however alleviate the difficulty of finding a

central value from the N -Jettiness method.

Comparison with Catani-Seymour ingredients

As mentioned before, if instead of normalizing N -Jettiness by Qi = 2Ei, we choose

to normalize by Qi = E2
CMS, 2-Jettiness in e+e−-collisions reproduces the Catani-

Seymour variable yij,k. We can then directly compare the two implementations if we

set both αmin, the technical cutoff below which the real and subtracted contributions

are assumed to cancel, and αdip, the parameter restricting the phase space over

which the subtraction terms are integrated, equal to the N -Jettiness cut τN,cut. The

implementation of the Catani-Seymour method in SHERPA is completely independent

from the N -Jettiness implementation presented here. The comparison of these two

methods is thus a highly non-trivial check of our implementation.
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Figure A.3: Plot of the contributions above, in blue, and below, in orange, the N -Jettiness slicing cut in the process e+e− → 2 jets,
using Qi = Q2. The red line denotes their sum. Also shown are the RS contributions, in cyan, and the BVI contribution,
in black, in the Catani-Seymour subtraction method with αdip = αmin = τN,cut. Their sum is given by the green line. The
differences normalized with respect to the respective result from the CS method, are shown in the panes below the main
plot. Both the separate contributions and their sum are found to agree within the statistical uncertainty for low enough
values of τN,cut.
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We run the same setup as before and show the results in Fig. A.3. For low values

of the cut parameter, we observe very good agreement between the two methods,

while for large values (with this normalization, τN ∈ [0, 1]) we start to see very mild

deviations in the behaviour between the two methods. These deviations are due to

the inclusion of different finite terms at different stages of the procedures.

A.3.5 e+e− → 3 jets

The calculation of the cross section for e+e− → 3 jets is the first calculation we

present that contains a non-trivial soft function. In addition, this process contains

for the first time a gluon jet at Born level, thus allowing us to test the gluon jet

function.

We again consider e+e−-collisions at a centre of mass energy of 91.2 GeV. In order

to define the 3 jets at the Born level, we use FASTJET’s implementation of the

kT -algorithm to require at least 3 jets with kT > 15 GeV and radius parameter

dR = 0.4. In Figure A.4, we show the separate contributions in the slicing together

with their sum and the result obtained using Catani-Seymour subtraction. In Figure

A.5, we zoom in on the sum of the contributions. We observe here that while the

dependence on the cut parameter mostly cancels, we still find a mild dependence

on the cut for high values of τN,cut. In addition, we find a discrepancy with the

result from Catani-Seymour subtraction. This example illustrates one of the main

difficulties of phase space slicing methods: finding a plateau in the dependence on

the cut parameter is paramount, as the region of high cut parameters is affected by

the onset of power corrections, while regions of low cut parameters are plagued by

numerical miscancellations and thus bad integration performance. There is, however,

no guidance from the theory to suggest where this plateau lies, and when it is

safe to say that the integration has converged to the true cross section. A reliable

implementation would thus require the calculation of the cross section for a large

number of cuts and a subsequent fit to establish the stability and accuracy of the
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Figure A.4: Plot of the contributions above, in blue, and below, in green, the
N -Jettiness slicing cut in the process e+e− → 3 jets. The red line
denotes their sum, while the cyan band corresponds to the NLO cross
section calculated using Catani-Seymour dipole subtraction.The two
predictions for the total cross section are barely distinguishable. A
close-up of this region can be found in Figure A.5.

result.

Echoing a statement from the process e+e− → 2 jets, we show in Figure A.6 the

variation of the integrated cross section found upon varying parameters of the integ-

ration. SHERPA uses adaptive integration based on the VEGAS algorithm [235]. Both

the target integration error as well as the number of evaluated phase space points

per optimization cycle can be adjusted. An appropriate increase in the latter may

be necessary to ensure that the entirety of the phase space is covered and optimized

for. This becomes more important the more complex the integrand structure is, i.e.

the more possibilities there are for particles to go unresolved. In Figure A.6, we

fix τN,cut = 10−5 GeV and, for definiteness, σsing (τN,cut) = −132029 ± 40.8939 pb.

We then vary the number of phase space points evaluated per optimization step
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Figure A.5: Close-up of Figure A.4 in the region of the total cross section. There
is a small difference between the cross section found from the slicing
and the subtraction methods. Also visible is a possible dependence
on the cut parameter for high values of τN,cut.

in σ (τN > τN,cut). We find that while the results of the integrations agree within

their uncertainties, the mean value fluctuates significantly. This can be traced to the

behaviour of the above-the-cut contributions, which tend to have a larger associated

error. When the below- and above-the-cut contributions are summed, the fluctuation

of the mean value of the total cross section can become problematic. Because of

the large cancellations between the two contributions, a simple combination of the

statistical uncertainties of the two contributions underestimates the uncertainty of

the sum. Conversely, this means that in order to achieve uncertainties equivalent

to those in Catani-Seymour subtraction, the components of the slicing calculation

have to be performed to higher accuracy, thus leading to a significant increase in the

amount of resources needed.
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Figure A.6: Variation of the total integrated cross section στN for the process
e+e− → 3 jets with the number of phase space points used per op-
timization step in the integration of the above-the-cut contribution.
τN,cut = 10−5 GeV and σsing (τN,cut) = −132029 ± 40.8939 pb have
been fixed.

A.3.6 Drell-Yan

Our next process is the Drell-Yan process, pp→ γ∗/Z → l+l−. For this case, all terms

in the integrated virtual contributions can be written analytically, making it an ideal

testbed for the ingredients of the quark beam function and the main contribution

to the soft function. In addition, there is a publicly available implementation of this

process as part of the parton-level Monte Carlo program MCFM [82].

In the setups used in this section, we consider the process pp→ e+e− at the 13 TeV

LHC, with the restriction that the dilepton invariant mass be in the range mll ∈

[50, 150] GeV. In Figure A.7, we show the contribution above the cut, σ (τN > τN,cut),

the integrated contributions below the cut, σsing (τN,cut), and their sum. Overlaid is

the total cross section at NLO found using Catani-Seymour dipole subtraction, in its
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Figure A.7: Plot of the contributions above, in blue, and below, in green, the
N -Jettiness slicing cut in the process pp → e+e−. The red line
denotes their sum, while the cyan band corresponds to the NLO
cross section calculated using Catani-Seymour dipole subtraction,
and the purple line is the result obtained from using MCFM. These
three lines are barely distinguishable, and we provide a close-up of
this region in Figure A.8.

default setup, as well as the result obtained using an implementation within MCFM.

For the plots in this section, we do not include the hard virtual contributions, which

do not affect the dependence on the cut parameter. In Figure A.8, we zoom into the

region of the total cross section. We observe a small constant difference of about 1%

between the result found from the slicing in comparison with the Catani-Seymour

result, while our slicing agrees with the result found using MCFM’s implementation.

Unlike the case of jet production at an electron positron collider, we do not find a

systematic deviation for large values of the cut parameter. Just as in that case, we

observe poor integration performance at low values of the cut parameter.
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Figure A.8: Close-up of Figure A.7 in the region of the total cross section. The
cross sections from the two different methods are found to differ by
about 1%. However, the two phase space slicing implementations
agree within statistical uncertainties.

A.3.7 Drell-Yan + 1 jet

The production of a weak neutral boson in association with one additional jet is the

first non-trivial LHC process we consider in which the soft function cannot be written

analytically. In addition, this is the first LHC process that includes contributions

from a jet function.

In this section, we consider the process pp→ e+e−j at the 13 TeV LHC, requiring

as before that the dilepton invariant mass be in the range mll ∈ [50, 150] GeV and

additionally at least one kT -jet with radius parameter dR = 0.4 and kT > 30 GeV.

In Figure A.9, we show the contributions to the sum giving the total cross section

shown in red, and Figure A.10 shows a close-up of this result. We find the result

to be independent of the cut parameter within the statistical uncertainties of the
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Figure A.9: Plot of the contributions above, in blue, and below, in green, the
N -Jettiness slicing cut in the process pp → e+e−j. The red line
denotes their sum, while the cyan band corresponds to the NLO cross
section calculated using Catani-Seymour dipole subtraction. The
two predictions for the total cross section are barely distinguishable.
A close-up of this region can be found in Figure A.10.

integration, without the observable deviation for high values of the cut as we observed

in e+e− → 3 jets. This may be due to the fact that in the case of Drell-Yan processes

with additional jets, at least two of theN -Jettiness jet directions, the beam directions,

are fixed while in e+e− collisions none of the jet directions are fixed. The agreement

with the value obtained from the Catani-Seymour method is good, although the

integration performance of the slicing is significantly worse.

A.3.8 NNLO

In the previous section, we presented an implementation of the N -Jettiness phase

space slicing method at NLO QCD accuracy. We found it difficult to establish
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Figure A.10: Close-up of Figure A.9 in the region of the total cross section. The
cross sections found from the subtraction and slicing methods agree
within the statistical uncertainties of the integration.

the convergence of the integration and thereby also the correctness of the results.

In particular, for a relatively simple process such as e+e− → 3 jets we cannot be

wholly confident that we arrive at a stable result with respect to variations in the

cut parameter τN,cut.

At NNLO, the components of the calculation become more complex. The above-

the-cut contribution is now a NLO calculation of the process with an additional jet,

subject to a cut τN > τN,cut. This calculation can be performed within the SHERPA

framework using Catani-Seymour subtraction and the algorithms described in Section

A.1.4 to calculate the value of N -Jettiness both for a single emitted parton and for

two additional partons. The cut on N -Jettiness provides the separation between the

0- and 1-jet contributions, and thus no extra jet algorithm is required to define this

process.
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Below the cut, the contribution takes on the form described in Section A.2.2. This

contribution contains hard two-loop contributions, two-loop SCET contributions and

the interference of one-loop SCET contributions with both hard one-loop corrections

and other one-loop SCET contributions. The latter also require the coefficients C(1)
n

with n 6= −1, which were not needed for the pure NLO phase space slicing. All

contributions, apart from the hard two-loop corrections, which would have to be taken

from an external provider, and the finite parts of the two-loop soft function, have been

implemented within SHERPA and are thus in principle ready for testing. The finite

parts of the two-loop soft function can be calculated in a similar manner to the NLO

soft function, now integrating all soft two-loop currents as described in [236, 237].

Details of this procedure can be found in [225], and a move towards calculating

any soft function numerically has recently been proposed in [238]. Since we expect

the numerical issues observed at NLO to worsen at NNLO, the implementation in

SHERPA was not completed.
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A.4 Ingredients for N-Jettiness calculations

In this appendix, we collect all ingredients necessary for the calculation of the

contributions below the cut in N -Jettiness phase space slicing.

A.4.1 QCD related functions

In the following, CA and CF denote the Casimir operators in the adjoint and fun-

damental representations, TR the normalization of the trace of two fundamental

operators and nf the number of light quark flavours. For the case of SU(3), they

are CA = 3, CF = 4/3, TR = 1/2, and in this work we work with nf = 5 active

flavours. Further, ζ3 = ζ(3) ≈ 1.2020569031595942854 is the value of the Riemann

zeta function ζ(z) evaluated at z = 3.

The running of the coupling constant αs is governed by the QCD beta function,

following

µ
d

dµαs(µ) = β [αs(µ)] , (A.4.1)

and the beta function can itself be expanded in terms of αs as:

β (αs) = −2αs
∞∑
n=0

βn

(
αs
4π

)n+1
. (A.4.2)

For the calculations in this work, we require the first two coefficients in this expansion,

which read in the MS scheme:

β0 = 11
3 CA −

4
3TRnf,

β1 = 34
3 CA

2 −
(20

3 CA + 4CF
)
TRnf . (A.4.3)

The cusp and noncusp anomalous dimensions are also expanded in αs:

Γcusp (αs) =
∞∑
n=0

Γn
(
αs
4π

)n+1
, (A.4.4)

γiF (αs) =
∞∑
n=0

γiFn

(
αs
4π

)n+1
. (A.4.5)
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The coefficients of the cusp anomalous dimension read as follows:

Γin = CiΓn,

Γ0 = 4, (A.4.6)

Γ1 = 4
[
CA

(
67
9 −

π2

3

)
− 20

9 TRnf

]
= 4

3
[
CA

(
4− π2

)
+ 5β0

]
.

The coefficients of the noncusp anomalous dimension in MS read for quark jet and

beam functions:

γqJ0 = γqB0 = 6CF ,

γqJ1 = γqB1 = CF

[
CA

(146
9 − 80ζ3

)
+ CF

(
3− 4π2 + 48ζ3

)
+ β0

(
121
9 + 2π2

3

)]
.

(A.4.7)

For the gluon jet and beam functions, we have:

γgJ0 = γgB0 = 6CA,

γgJ1 = γgB1 = CA

[
CA

(182
9 − 32ζ3

)
+ β0

(
94
9 −

2π2

3

)]
+ 2β1. (A.4.8)

A.4.2 Jet function

The expansion of the jet functions i ∈ {q, g} is written as:

Ji(s, µ) =
∞∑
n=0

(
αs
4π

)n
J

(n)
i (s, µ). (A.4.9)

The coefficients take the form:

J
(m)
i (s, µ) = J

(m)
i,−1δ(s) +

2m−1∑
n≥0

J
(m)
i,n

1
µ2Ln

(
s

µ2

)
, (A.4.10)

with the plus distributions Ln. If we rescale these coefficients, we get:

J
(m)
i (Qiki, µ) = 1

Qi

J
(m)
i,−1

(
Qiξ

µ2

)
δ (ki) + 1

Qi

2m−1∑
n=0

J
(m)
i,n

(
Qiξ

µ2

)
1
ξ
Ln

(
ki
ξ

)
,

J
(m)
i,−1(λ) = J

(m)
i,−1 +

2m−1∑
n=0

J
(m)
i,n

lnn+1 λ

n+ 1 , (A.4.11)

J
(m)
i,n (λ) = J

(m)
i,n +

2m−1−n∑
k=1

(n+ k)!
n!k! J

(m)
i,n+k lnk λ.



A.4. Ingredients for N-Jettiness calculations 145

The dimension-one parameter ξ is arbitrary and can be chosen at our convenience as

it cancels between the different coefficients. The coefficients J (m)
i,n (λ) are the terms

that appear in the below the cut contributions in Section A.2.2. For pure slicing,

only J (m)
i,−1(λ) is relevant.

The coefficients needed up to NNLO read:

J
(1)
i,1 = Γi0,

J
(1)
i,0 = −γ

i
J0
2 ,

J
(2)
i,3 = (Γi0)2

2 ,

J
(2)
i,2 = −Γi0

2

(
3γiJ0

2 + β0

)
,

J
(2)
i,1 = Γi1 −

(
Γi0
)2 π2

6 + γiJ0
2

(
γiJ0
2 + β0

)
+ Γi0J

(1)
i,−1,

J
(2)
i,0 =

(
Γi0
)2
ζ3 + Γi0γiJ0

π2

12 −
γiJ1
2 −

(
γiJ0
2 + β0

)
J

(1)
i,−1. (A.4.12)

The coefficients multiplying δ(s) differ for quark and gluon jet functions. For quarks,

we have:

J
(0)
q,−1 =1,

J
(1)
q,−1 =CF

(
7− π2

)
,

J
(2)
q,−1 =CF

[
CF

(
205
8 −

67π2

6 + 14π4

15 − 18ζ3

)
+ CA

(
1417
108 −

7π2

9 −
17π4

180 − 18ζ3

)

+ β0

(
4057
216 −

17π2

9 − 4ζ3

3

)]
. (A.4.13)

For gluon jets, the coefficients read:

J
(0)
g,−1 =1,

J
(1)
g,−1 =CA

(4
3 − π

2
)

+ 5
3β0,

J
(2)
g,−1 =CA2

(
4255
108 −

26π2

9 + 151π4

180 − 72ζ3

)
+ CAβ0

(
−115

108 −
65π2

18 + 56ζ3

3

)

+ β2
0

(
25
9 −

π2

3

)
+ β1

(55
12 − 4ζ3

)
. (A.4.14)
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A.4.3 Beam function

The beam function is defined as

Bi(t, x, µ) =
∑
j

∫ dz
z
Iij (t, z, µ, µF ) fj

(
x

z
, µF

)
, (A.4.15)

containing the usual PDFs fj (x, µF ) and the perturbative matching coefficients

Iij (t, z, µ, µF ). The dependence on the factorization scale µF is explicit here, but

cancels between the coefficients and the PDFs such that the beam function is inde-

pendent of this scale12.

The matching coefficients are expanded as:

Iij (t, z, µ, µF ) =
∞∑
n=0
I(n)
ij (t, z, µ, µF )

(
αs
4π

)n
. (A.4.16)

These coefficients have the structure

I(m)
ij (t, z, µ, µF ) = I(m)

ij,−1

(
z,
µ2

µ2
F

)
δ(t) +

2m−1∑
n=0
I(m)
ij,n

(
z,
µ2

µ2
F

)
1
µ2Ln

(
t

µ2

)
. (A.4.17)

Upon rescaling these coefficients, we obtain:

I(m)
ij (Qk, z, µ, µF ) = 1

Q
I(m)
ij,−1

(
z,
µ2

µ2
F

,
Qξ

µ2

)
δ(k)

+ 1
Q

2m−1∑
n=0
I(m)
ij,n

(
z,
µ2

µ2
F

,
Qξ

µ2

)
1
ξ
Ln

(
k

ξ

)
,

I(m)
ij,−1 (z, λF , λ) =I(m)

ij,−1 (z, λF ) +
2m−1∑
n=0
I(m)
ij,n (z, λF ) lnn+1 λ

n+ 1 , (A.4.18)

I(m)
ij,n (z, λF , λ) =I(m)

ij,n (z, λF ) +
2m−1−n∑
k=0

I(m)
ij,n+k (z, λF ) (n+ k)! lnk λ

n!k! .

Just as in the case of the jet function, the parameter ξ is arbitrary and cancels

between the coefficients. Using these coefficients, the beam function coefficients used

in Appendix A.2.2 are defined as the convolution with the PDFs:

B
(m)
i,n (x, µ, µF , λ) =

∑
j

∫ dz
z
I(m)
ij,n

(
z,
µ2

µ2
F

, λ

)
fj

(
x

z
, µF

)
. (A.4.19)

12Typically, µF = µ is chosen for lack of formal distinction between the two scales.
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The only coefficient present at LO is

I(0)
ij,−1 (z, λF ) = δijδ(1− z), (A.4.20)

a flavour diagonal contribution at the value of z taken by the parton in the LO cross

section. At NLO, we have:

I(1)
ij,1 (z, λF ) =Γi0δijδ(1− z),

I(1)
ij,0 (z, λF ) =− γiB0

2 δijδ(1− z) + 2P (0)
ij (z),

I(1)
ij,1 (z, λF ) =2I(1)

ij (z) + ln λF2P (0)
ij (z), (A.4.21)

showing the emergence of the splitting functions P (0)
ij (z) describing the initial state

collinear radiation. The I(1)
ij (z) are matching functions. At NNLO, the coefficients

read:

I(2)
ij,3 (z, λF ) =1

2
(
Γi0
)2
δijδ(1− z),

I(2)
ij,2 (z, λF ) =Γi0

[
−
(

3
4γ

i
B0 + β0

2

)
δijδ(1− z) + 3P (0)

ij (z)
]
,

I(2)
ij,1 (z, λF ) =

[
Γi1 −

(
Γi0
)2 π2

6 + γiB0
2

(
γiB0
2 + β0

)]
δijδ(1− z) + 2Γi0I

(1)
ij (z)

− 2
(
γiB0 + β0

)
P

(0)
ij (z) + 4

∑
k

P
(0)
ik (z)⊗z P (0)

kj (z) + ln λF2ΓioP
(0)
ij (z),

I(2)
ij,0 (z, λF ) =

[(
Γi0
)2
ζ3 + Γi0γiB0

π2

12 −
γiB1
2

]
δijδ(1− z)

− Γi0
π2

3 P
(0)
ij (z)−

(
γiB0 + 2β0

)
I

(1)
ij (z)

+ 4
∑
k

I
(1)
ik (z)⊗z P (0)

kj (z) + 4P (1)
ij (z)

+ ln λF
[
−γiB0P

(0)
ij (z) + 4

∑
k

P
(0)
ik (z)⊗z P (0)

kj (z)
]
,

I(2)
ij,−1 (z, λF ) =4I(2)

ij (z) + ln λF
[
4
∑
k

I
(1)
ik (z)⊗z P (0)

kj (z) + 4P (1)
ij (z)

]

+ ln2 λF

[
β0P

(0)
ij (z) + 2

∑
k

P
(0)
ik (z)⊗z P (0)

kj (z)
]
. (A.4.22)

The expressions for the matching coefficients I(m)
ij (z) and the splitting functions

P
(m)
ij (z) have been worked out in [239, 240] and can be found there. The notation
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⊗z denotes a Mellin convolution

f(z)⊗z g(z) =
∫ 1

z

dw
w
f(w)g

(
z

w

)
, (A.4.23)

the results of which can also be found in those two papers.

A.4.4 Soft function

We defined the single-differential soft function in Appendix A as

Ŝκ (k, {q̂i} , µ) =
∫ [∏

i

ki

]
Ŝκ ({ki} , {q̂i} , µ) δ

(
k −

∑
i

ki

)
. (A.4.24)

We expand this as a perturbative series in αs(µ)

Ŝκ (k, {q̂i} , µ) =
∑
n

Ŝ(n)
κ (k, {q̂i} , µ)

(
αs
4π

)n
, (A.4.25)

where the coefficients take the form

Ŝ(m)
κ (k, {q̂i} , µ) = Ŝ

(m)
κ,−1 ({q̂i}) δ(k) +

2m−1∑
n=0

Ŝ(m)
κ,n ({q̂i})

1
µ
Ln

(
k

µ

)
. (A.4.26)

Rescaling the arguments to match the expressions in Section A.2.2, we get:

Ŝ(m)
κ (k, {q̂i} , µ) = Ŝ

(m)
κ,−1

(
{q̂i} ,

ξ

µ

)
δ(k) +

2m−1∑
n=0

Ŝ(m)
κ,n

(
{q̂i} ,

ξ

µ

)
1
ξ
Ln

(
k

ξ

)
,

Ŝ
(m)
κ,−1 ({q̂i} , λ) = Ŝ

(m)
κ,−1 ({q̂i}) +

2m−1∑
n=0

Ŝ(m)
κ,n ({q̂i})

lnn+1 λ

n+ 1 , (A.4.27)

Ŝ(m)
κ,n ({q̂i} , λ) = Ŝ(m)

κ,n ({q̂i}) +
2m−1−n∑
k=0

Ŝ
(m)
κ,n+k ({q̂i})

(n+ k)! lnk λ
n!k! .

The only coefficient at leading order is the colour-diagonal operator

Ŝ
(0)
κ,−1 ({q̂i}) = 1κ. (A.4.28)

For the NLO and NNLO coefficients, we will use the following abbreviations:

C ≡
∑
i

T2
i = 1κ

∑
i

Ci,

L ({ŝij}) ≡
∑
i 6=j

Ti ·Tj ln ŝij, (A.4.29)
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I ≡ iπ
∑
i 6=j

Ti ·Tj∆ij = iπ
[
2 (Ta + Tb)2 −C

]
,

where ∆ij = 1 if both partons are outgoing or incoming and ∆ij = 0 if one parton

is incoming, and one outgoing. Using these operators, we can write the NLO soft

function coefficients as

Ŝ
(1)
κ,1 ({q̂i}) =− 2Γ0C,

Ŝ
(1)
κ,0 ({q̂i}) =Γ0L ({ŝij}) , (A.4.30)

Ŝ
(1)
κ,−1 ({q̂i}) =

∑
i 6=j

Ti ·Tj

ln2 ŝij −
π2

6 + 4
∑
m6=i,j

Iij,m ({q̂i})
 .

The functions Iij,m are functions made up of finite phase space integrals, necessary

in the case of three or more N -Jettiness axes, and were originally presented in [224].

In Section A.3 we provided a different way of calculating these contributions.

At NNLO, the soft function coefficients are found to be:

Ŝ
(2)
κ,3 ({q̂i}) =2Γ2

0C2,

Ŝ
(2)
κ,2 ({q̂i}) =Γ0C [3Γ0L + 2β0] ,

Ŝ
(2)
κ,1 ({q̂i}) =Γ2

0

(
L2 + 1

2 [I,L]− 2π2

3 C2
)

+ 2Γ0
(
β0L−CŜ(1)

κ,−1 ({q̂i})
)
− 2Γ1C,

Ŝ
(2)
κ,0 ({q̂i}) =Γ2

0C
(

4Cζ3 −
π2

3 L
)
− Γ1L−CγS1

− Γ0

2
({

L, Ŝ(1)
κ,−1 ({q̂i})

}
+
[
I, Ŝ(1)

κ,−1 ({q̂i})
])
− 2β0Ŝ

(1)
κ,−1 ({q̂i}) ,

(A.4.31)

with

γS1 = CA

(
−64

9 + 28ζ3

)
+ β0

(
−56

9 + π2

3

)
(A.4.32)

the first non-zero term in the noncusp soft anomalous dimension.

The two-loop constants are known analytically only for the channels κ = qq̄ and

κ = gg [241–244]. Other channels, in particular those involving more than two N -

Jettiness axes have to be calculated numerically. The approach presented in Section

A.3 for the calculation of finite contributions in the NLO soft function can also be
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used to calculate the contributions to the NNLO soft function.
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A.5 Conclusions

In this chapter, we have presented an implementation of a phase space slicing method

based on the factorization of the cross section differential in the N -Jettiness variable

τN . This variable provides a simple and general separation of the cross section

into contributions divergent in any possible soft or collinear limit and those free of

such divergences. SCET provides a factorization in the soft and collinear limits and

thus a framework to analytically cancel the divergent contributions against their

counterparts in the virtual corrections. The contributions away from the divergent

region can be calculated numerically using a Monte Carlo event generator. Both

contributions depend on an arbitrary cutoff that cancels in the limit τN,cut → 0.

The contribution above the phase space slicing cut corresponds to a calculation of the

desired cross section with an additional jet in the process, subject to a lower cut on τN .

Such a calculation can be easily performed using the SHERPA framework, with either

of its matrix element generators providing the matrix element. We have presented a

simple algorithm to calculate the N -Jettiness value given a particular phase space

configuration. In the case of two-jet production in electron-positron collisions, it is

possible to directly compare the results from this calculation with SHERPA’s native

Catani-Seymour method, and we have found good agreement between the two.

The contribution below the cut takes the form of a phase space dependent K-factor,

which can also be calculated using the SHERPA framework. While the beam and jet

functions correspond to a number of analytically-known expressions, the soft function

is calculated numerically. We recalculate it here for our purposes, confirming the

results found by other authors.

Implementing these contributions at NLO, we find general agreement of the total

cross sections calculated using the phase space slicing with the cross section calcu-

lated using a subtraction method. We find the cross sections to be independent

of the cut parameter over a wide range of values, although there are significant

fluctuations in the results, suggesting the integration to be performing worse than
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in the subtraction method. In particular, it is difficult to establish when the cross

section is stable with respect to a variation in τN,cut. For large values of the slicing

cut, power corrections play an important role, and we have observed their effect in

the calculations considered in this work. For low values of the cut, the integration

performance worsens as the separate contributions can become very large. We ob-

serve large fluctuations in the total cross section, as well as fluctuations depending

on external parameters of the integration, such as the number of phase space points

per iteration of the adaptive integration. We find such behaviour to be particularly

visible for the cases in which the kinematics are not fixed at leading order.

The difficulties that arise in the integration of the cross section at different values

of the cut parameter require a calculation for several different cut parameters. The

total cross section may then be determined through a fit to these values. This

requirement, coupled with the large fluctuations observed in our results, means a

significant computational overhead for the calculation of a total cross section, even

at NLO. While most of the ingredients for an integration at NNLO are implemented,

we therefore decided not to pursue the implementation of this method further.



Appendix B

On-shell renormalization

The parameters of the Standard Model Lagrangian are inputs to the model which

have to be determined experimentally. However, when taking into account loop

corrections, we find, in general, divergent corrections to these quantities. One

way to interpret this is that the “bare” parameters in the Lagrangian differ from

the physical, experimentally measured, parameters by calculable, but potentially

divergent, contributions at each order in perturbation theory. In a renormalizable

theory such as the Standard Model, these divergences cancel in physical predictions.

In order for calculations to be performed, physical quantities must then be calculated

in terms of bare parameters. For each bare parameter, one can construct a relation to

the physical quantity through a renormalization condition. This relation can then be

used to set up an associated renormalization constant, and the resulting expression

can be used in the calculation of interesty. There is clearly an ambiguity here, as the

relationships between bare and physical parameters, and indeed the set of physical

parameters to be used as inputs is not fixed. A given choice of independent physical

parameters constitutes an input parameter set, and the method of separation into

renormalized parameters and renormalization constants, together with the choice

of renormalization conditions specify a renormalization scheme. The differences in

predictions between different renormalization schemes are formally of higher order

than the calculation performed, and vanish to all orders, but order by order these
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differences are nonetheless relevant due to the truncation of the perturbative series.

The on-shell renormalization scheme chooses counterterms in such a way that the

finite, renormalized parameters equal physical parameters at all orders. In particular,

the masses are renormalized on-shell, such that the residue of the propagator pole

at the physical mass is exactly 1. As an independent set of parameters, the full

set of masses, the electron charge and the quark mixing matrix are conventionally

chosen. For the purpose of the calculations in this work, we set the quark mixing

matrix to be the identity matrix such that no mixing between generations occurs.

Making this choice has no consequence for leptonic decays, which we focus on here.

Renormalizing this set of parameters leaves S-matrix elements finite. In order to

also get finite vertex functions and propagators, the fields have to be renormalized,

too, which then leaves all Green’s functions, and thus all amplitudes, UV-finite.

B.1 The renormalization constants

The parameters in the Lagrangian are renormalized in the on-shell renormalization

scheme as follows:

e0 = Zee = (1 + δZe)e (B.1.1)

M2
W,0 = M2

W + δM2
W (B.1.2)

M2
Z,0 = M2

Z + δM2
Z (B.1.3)

M2
H,0 = M2

H + δM2
H (B.1.4)

mf,i,0 = mf,i + δmf,i (B.1.5)

A further correction to the Higgs potential appears due to tadpoles, with the ef-

fect that the minimum of the potential is shifted. This is offset by introducing a

counterterm to the vacuum expectation value of the Higgs field.

The field renormalizations are defined as follows:

W±
0 = Z

1/2
W W± =

(
1 + 1

2δZW
)
W± (B.1.6)
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 Z0

A0

 =

 Z
1/2
ZZ Z

1/2
ZA

Z
1/2
AZ Z

1/2
AA


 Z

A

 =

 1 + 1
2δZZZ

1
2δZZA

1
2δZAZ 1 + 1

2δZAA


 Z

A

 (B.1.7)

H0 = Z
1/2
H H =

(
1 + 1

2δZH
)
H (B.1.8)

fLi,0 = Z
1/2,f,L
ij fLj =

(
δij + 1

2δZ
f,L
ij

)
fL (B.1.9)

fRi,0 = Z
1/2,f,R
ij fRj =

(
δij + 1

2δZ
f,R
ij

)
fR (B.1.10)

In the second equality for each case, the multiplicative renormalization constants

are expanded, resulting in the leading expression written exclusively in terms of

the physical parameters, and a counterterm part. Only the linear term in the

counterterm expansion is required for one-loop corrections. The counterterm pieces

can be treated just as any other term in the Lagrangian and give rise to Feynman

rules with associated diagrams.

The renormalization conditions in the on-shell scheme are formulated for on-mass

shell external fields. All constants are fixed using one-particle irreducible two-point

functions; except for the charge renormalization where the eeγ-vertex is used.

The mass parameters are fixed by the requirement that they are equal to the physical

masses. In the case of mass matrices, the conditions are simplified when the external

particles are considered on-shell. In this case, the renormalized matrices are diagonal.

These elements are chosen such that the fields are properly normalized, such that

the mass renormalization involves only the corresponding diagonal self energies. The

renormalized electric charge is defined as the full eeγ-coupling in the limit of zero

momentum transfer.

The renormalization constant for the tadpoles is chosen such that it cancels all

tadpole contributions at all orders:

δt = −T. (B.1.11)

This ensures that the renormalized value of the vacuum expectation value v is the

actual minimum of the effective Higgs potential.
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The renormalization constants can then be written in terms of the self energies

Σi (k2). For the gauge fields, we have the following constants:

δM2
W = ReΣW

T

(
M2

W

)
, δZW = −Re∂ΣW

T (k2)
∂k2

∣∣∣∣∣∣
k2=M2

W

, (B.1.12)

δM2
Z = ReΣZZ

T

(
M2

Z

)
, δZZZ = −Re∂ΣZZ

T (k2)
∂k2

∣∣∣∣∣∣
k2=M2

Z

, (B.1.13)

δZAZ = −2ReΣAZ
T (M2

Z)
M2

Z

, δZZA = 2ΣAZ
T (0)
M2

Z

, (B.1.14)

δZAA = −∂ΣAA
T (k2)
∂k2

∣∣∣∣∣∣
k2=0

, (B.1.15)

δM2
H = ReΣH

(
M2

H

)
, δZH = −Re∂ΣH (k2)

∂k2

∣∣∣∣∣∣
k2=M2

H

. (B.1.16)

In the fermion sector, we have:

δmf,i = mf,i

2 Re
(
Σf,L
ii (m2

f,i) + Σf,R
ii (m2

f,i) + 2Σf,S
ii (m2

f,i)
)
, (B.1.17)

δZf,L
ii = −ReΣf,L

ii (m2
f,i)−m2

f,i

∂

∂k2 Re
[
Σf,L
ii (k2) + Σf,R

ii (k2) + 2Σf,S
ii (k2)

] ∣∣∣∣∣
k2=m2

f,i

,

(B.1.18)

δZf,R
ii = −ReΣf,R

ii (m2
f,i)−m2

f,i

∂

∂k2 Re
[
Σf,L
ii (k2) + Σf,R

ii (k2) + 2Σf,S
ii (k2)

] ∣∣∣∣∣
k2=m2

f,i

.

(B.1.19)

For the charge renormalization constant Ze, one finds after the application of Ward

identities to the general γ → e+e− amplitude:

δZe = −1
2δZAA −

sW
2cW

δZZA. (B.1.20)

For convenience, we also define a counterterm for the sine sW and cosine cW of the

weak mixing angle:

δcW
cW

= 1
2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
, (B.1.21)

δsW
sW

= −c
2
W

s2
W

δcW
cW

. (B.1.22)



Appendix C

NLO EW form factors and

counterterms

In this section we collect the electroweak vertex form factors and counterterms

required for setting up the NLO electroweak corrections to β̃1
0 . We use the vertex

form factors found in [142] and the counterterms in the on-shell renormalization

scheme, found in [141] and described in the previous appendix. The vertex form

factors retain the full dependence on the lepton masses only in the QED corrections,

where they are needed to regularize the collinear singularities, while the purely weak

contributions are calculated in the massless limit.

In order to find the pure NLO QED corrections, out of the form factors we need to

only include the QED form factors. In the counterterms, we only need to include

the photonic corrections to the wavefunction renormalization. Such a procedure is

not gauge-invariant for W -decays, so this option is only provided for Z- and Higgs

boson decays.

We note here, that SHERPA and [141] use (+,–,–,–) as metric signature, whereas [142]

use (–,+,+,+). This means that we have to perform the following adjustments:

• Each squared momentum (such as Q2) receives an additional minus sign in our

expression, while invariants such as s and m2
i are correct.
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• Each γ5 receives a minus sign.

• The scalar tadpole and triangle functions, A0 and C0, also come with an

additional minus sign.

• Unrelated to the metric signature, the convention for the left- and right-handed

projectors differs by a factor of 2, such that γ± = 2PL/R where γ± = 1± γ5 are

the projection operators in [142], and PL/R = 1∓γ5
2 are those used in SHERPA

and [141].

These corrections have already been taken into account in the expressions we write

down here.

All results are calculated in the Feynman gauge. We call the left- and right-handed

tree-level couplings cL and cR and introduce gL = cL
sW cW
ie

, gR = cR
sW cW
ie

for con-

venience. We further use the vector coupling vf = (gL + gR) and the axial coupling

af = (gL − gR). Any quantity denoted as xf ′ refers to the iso-spin partner of the

fermion f .

C.1 Z → ff̄

The QED corrections to this vertex are given by:

V QED
µ = α

4π
e

2sW cW
Q2
f

[
iγµ (vf − afγ5)FAa(s)− iγµafγ5F

(1)
A (s)

+ vf
(
pf − pf̄

)
µ
F

(2)
V (s)− afγ5

(
pf + pf̄

)
µ
F

(3)
A (s)

]

= α

4π
1

sW cW
Q2
f

[
γµ (cLPL + cRPR)FAa(s)− ie

If
2 γµ (PR − PL)F (1)

A (s)

+ e
If − 2s2

WQf

2
(
pf − pf̄

)
µ

(PR + PL)F (2)
V (s)

− eIf2 (PR − PL)
(
pf + pf̄

)
µ
F

(3)
A (s)

]
. (C.1.1)
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In the massless limit, only the structure proportional to γµ (cLPL + cRPR) contributes.

The form factor FAa(s) is given by:

FAa(s) =− 2
(
s− 2m2

f

)
C0
(
m2
f ,m

2
f , s,m

2
f , 0,m2

f

)
− 3B0

(
s,m2

f ,m
2
f

)
+ 4B0

(
m2
f ,m

2
f , 0

)
− 2. (C.1.2)

The other form factors are all proportional to the fermion mass and are given in the

following:

F
(2)
V (s) = 2mf

4m2
f − s

[
B0
(
s,m2

f ,m
2
f

)
−B0

(
m2
f ,m

2
f , 0

)]
, (C.1.3)

F
(1)
A (s) =−

8m2
f

4m2
f − s

[
B0
(
s,m2

f , 0
)
−B0

(
m2
f ,m

2
f , 0

)]
, (C.1.4)

F
(3)
A (s) = mf

s
(
4m2

f − s
) [4m2

f − 3s
2

(
B0
(
s,m2

f , 0
)
−B0

(
m2
f ,m

2
f , 0

))
+ 4m2

f − s
]
.

(C.1.5)

The effect of abelian Z- and φ0-exchanges is given by:

V Za
µ = α

4π
ie

s3
W c

3
W

γµ (Vf − Afγ5)FZa(s)

= α

4π
ie

s3
W c

3
W

γµ
(
g3
LPL + g3

RPR
)
FZa(s), (C.1.6)

where Vf =
(
v2
f + a2

f

)
vf + 2vfa2

f , Af =
(
v2
f + a2

f

)
af + 2v2

faf and

FZa(s) =− 2M4
Z

s

(
1 + s

M2
Z

)2

C0
(
0, 0, s, 0,M2

Z , 0
)

+B0 (s, 0, 0)−
(

2M2
Z

s
+ 4

) [
B0 (s, 0, 0)−B0

(
0, 0,M2

Z

)]
− 2. (C.1.7)

For the diagrams involving W bosons (and the associated ghosts), we introduce:

wf =
m2
f

M2
W

, wf ′ =
m2
f ′

M2
W

, (C.1.8)

β2 = 1− wf ′ , κ = −β
2 (3− β2)

2
M2

W

s
. (C.1.9)
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The effect of abelian W - and φ-exchanges, i.e. all diagrams not involving a three-

boson vertex, is described by:

V Wa
µ = α

4π
ie

sW cW

1
2s2

W

γµPL

[
vf ′ + af ′

2 FWa(s) + af ′F̄Wa(s)
]

= α

4π
1

2s2
W

γµPL

[
gL′FWa(s) + If ′

2 F̄Wa(s)
]
. (C.1.10)

Note that this is purely a contribution to the left-handed part of the amplitude.

The necessary auxilliary functions are given by:

FWa(s) =−
(
−2β2κ+ 3 + β4 + 2 s

M2
W

)
M2

WC0
(
0, 0, s,m2

f ′ ,M
2
W ,m

2
f ′

)
+ 2 (κ− 2)

[
B0
(
s,m2

f ′ ,m
2
f ′

)
−B0

(
0,m2

f ′ ,M
2
W

)]
+ (3− β2)

2 B0
(
s,m2

f ′ ,m
2
f ′

)
−
(

2 + 1
2wf

′

)
, (C.1.11)

F̄Wa(s) =wf ′
[(

β4M2
W

s
+ 2

)
M2

WC0
(
0, 0, s,m2

f ′ ,M
2
W ,m

2
f ′

)
+ β2M2

W

s

[
B0
(
s,m2

f ′ ,m
2
f ′

)
−B0

(
0,m2

f ′ ,M
2
W

)]
− 1

2B0
(
s,m2

f ′ ,m
2
f ′

)
+ 1

2

]
. (C.1.12)

The effect of non-abelian W - and φ-exchanges, i.e. all the diagrams containing a

three-boson vertex, is described by:

V Wn
µ = α

4π
ie

sW cW

c2
W

s2
W

(−If ) γµPL
[
FWn(s) + F̄Wn(s)

]
. (C.1.13)

Note that this is again purely a contribution to the left-handed part of the amplitude.

The necessary auxilliary functions are given by:

FWn(s) =−
(
−2β2κ+ 3 + β4

)
M2

WC0
(
0, 0, s,M2

W ,m
2
f ′ ,M

2
W

)
− 2 (κ− 2)

[
B0
(
s,M2

W ,M
2
W

)
−B0

(
0,m2

f ′ ,M
2
W

)]
−
(

3 + 1
2wf

′

)
B0
(
s,M2

W ,M
2
W

)
− 1

2wf
′ , (C.1.14)

F̄Wn(s) = 1
2c2
W

wf ′

[(
β4M2

W

s
− 4 + wf ′

)
M2

WC0
(
0, 0, s,M2

W ,m
2
f ′ ,M

2
W

)
− β2M2

W

s

[
B0
(
s,M2

W ,M
2
W

)
−B0

(
0,m2

f ′ ,M
2
W

)]
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+ 1
2
(
B0
(
s,M2

W ,M
2
W

)
+ 1

) ]
. (C.1.15)

The counterterms for this vertex read:

δR = cR

(
1 + 1

2δZZZ + 1
2
(
δZf,R

ii + δZf,R,†
ii

))
+ δcR −

1
2QfδZAZ (C.1.16)

δL = cL

(
1 + 1

2δZZZ + 1
2
(
δZf,L

ii + δZf,L,†
ii

))
+ δcL −

1
2QfδZAZ , (C.1.17)

where the left- and right-handed, tree-level couplings cR, cL and their counterterms

δcR, δcL are given by:

cR = ie

sW cW

(
−s2

WQf

)
, (C.1.18)

δcR = cR

(
δZe + 1

c2
W

δsW
sW

)
, (C.1.19)

cL = ie

sW cW

(
If − s2

WQf

)
, (C.1.20)

δcL = ie

sW cW
If

(
δZe + s2

W − c2
W

c2
W

δsW
sW

)
+ δcR. (C.1.21)

C.2 W− → `−ν̄` and W+ → `+ν`

In the case of W → `ν decays, there is no diagram for photon exchange between the

final state particles.

All the corrections to this decay are purely corrections to the left-handed coupling

(since fermion masses are neglected in these subamplitudes).

The effect of non-abelian photon exchange is given by:

V An
µ (s) = α

4π
ie√
2sW

2PL sgn (Qf )FAn(s). (C.2.1)

The form factor is given by:

FAn(s) =Qf

[
M2

WC0
(
m2
f ,m

2
f ′ , s, 0,m2

f ,M
2
W

)
+B0

(
m2
f ,m

2
f , 0

)]
−Qf ′

[
M2

WC0
(
m2
f ,m

2
f ′ , s,M

2
W ,m

2
f ′ , 0

)
+B0

(
m2
f ′ ,m

2
f ′ , 0

)]
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+ Qf −Qf ′

2

[
−
(
M2

W

s
+ 1

)
B0
(
s,M2

W , 0
)

+
(
M2

W

s
+ 2

)
B0
(
0, 0,M2

W

)]
.

(C.2.2)

The effect of abelian Z-exchange is described by:

V Za
µ (s) = α

4π
ie√
2sW

1
4s2

W c
2
W

γµPL (vf + af ) (vf ′ + af ′)FZa(s)

= α

4π
ie√
2sW

1
s2
W c

2
W

γµPLgLgL′FZa(s). (C.2.3)

with the function FZa(s) as in the decay Z → ff̄ (Eq. (C.1.7)).

The effect of non-abelian Z-exchange is given by:

V Zn
µ (s) = α

4π
ie√
2sW

2
s2
W

γµPLsgn (Qf ) (vf + af − vf ′ − af ′)FZn(s)

= α

4π
ie√
2sW

4
s2
W

γµPLsgn (Qf ) (gL − gL′)FZn(s). (C.2.4)

The form factor reads:

FZn(s) =1
2

{[(
M2

W

s
+ 1

)
1
c2
W

+ 1
]
M2

WC0
(
0, 0, s,M2

W , 0,M2
Z

)
− 1

2

(
M2

Z

s
+ M2

W

s
+ 1

)
B0
(
s,M2

W ,M
2
Z

)
+
(
M2

Z

2s + 1
)
A0 (M2

Z)
M2

Z

+
(
M2

W

2s + 1
)
A0 (M2

W )
M2

W

}
. (C.2.5)

The counterterms for this process read:

δR = 0, (C.2.6)

δL = ie√
2sW

(
δZe −

δsW
sW

+ 1
2δZW + 1

2
(
δZ f̄ ,L,†

ii + δZf,L
ii

))
. (C.2.7)

Here, the conjugated fermion wavefunction counterterm is chosen for the antifermion

in the process. The tree level couplings are:

cR = 0, (C.2.8)

cL = ie√
2sW

. (C.2.9)
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C.3 H → ff̄

The vertex corrections to the Higgs decay into fermions are more complex as all

masses have to be retained. The amplitude has been fully validated for H → bb̄-

decays.

The QED corrections to this vertex read:

V QED = α

4π
iemf

2sWMW

2Q2
fs

2
WF

QED
S

= α

4π
iemf

2sWMW

2Q2
fs

2
WF

QED
S (PL + PR) . (C.3.1)

The form factor is given by:

FQED
S =

(
s− 2m2

f

)
C0
(
m2
f ,m

2
f , s,m

2
f , 0,m2

f

)
− 2B0

(
m2
f ,m

2
f , 0

)
+ 1

−
4m2

f

4m2
f − s

[
(B0

(
s,m2

f ,m
2
f

)
−B0

(
m2
f ,m

2
f , 0

)]
. (C.3.2)

For this amplitude, the weak results will be presented in one go:

V weak = α

4π
iemf

2sWMW

2Fweak
S

= α

4π
iemf

2sWMW

2Fweak
S (PL + PR) . (C.3.3)

The form factor reads:

Fweak
S = −M2

W

[
f1C0

(
m2
f ,m

2
f , s,M

2
W ,m

2
f ′ ,M

2
W

)
+ f2C0

(
m2
f ,m

2
f , s,M

2
Z ,m

2
f ,M

2
Z

)
+ f3C0

(
m2
f ,m

2
f , s,m

2
f ′ ,M

2
W ,m

2
f ′

)
+ f4C0

(
m2
f ,m

2
f , s,m

2
f ,M

2
Z ,m

2
f

)
+ h1C0

(
m2
f ,m

2
f , s,M

2
H ,m

2
f ,M

2
H

)
+ h2C0

(
m2
f ,m

2
f , s,m

2
f ,M

2
H ,m

2
f

) ]

+ f5B0
(
s,M2

W ,M
2
W

)
+ f6B0

(
s,M2

Z ,M
2
Z

)
+ f7B0

(
s,m2

f ′ ,m
2
f ′

)
+ f8B0

(
m2
f ,M

2
W ,m

2
f ′

)
+ f9B0

(
m2
f ,M

2
Z ,m

2
f

)
+ f10

+ h3B0
(
s,M2

H ,M
2
H

)
+ h4B0

(
s,m2

f ,m
2
f

)
+ h5B0

(
m2
f ,M

2
H ,m

2
f

)
.

(C.3.4)
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The coefficients are given by the following expressions:

f1 =1
4

([(
4 + wf ′ (2 + wh)

)
(1− wf ′)− wf (10− 4wf ′ − (1− 2wf ′)wh)

]
µ2
W

+ 2 + whwf ′ − 2wf
)

f2 =1
4

([
4
c4
W

σ(2) − wf
(

2
c2
W

− wh
)](

1
c2
W

− 2wf
)
µ2
W

+ 4
c4
W

v2
f −

1
2wf

(
2
c2
W

− wh
))

f3 =1
4wf

′

([
2 (2 + wf ′) (1− wf ′) + 2wf (1 + 2wf ′ − wf )

]
µ2
W − 1

)

f4 = 1
4c2
W

((
σ(2) − 1

2

)
w + wf

[
4σ(2)

(
1
c2
W

µ2
W + 1

2

)
− 3

2

])

f5 =1
4

([
4 + wf ′ (2 + wh)− wf (6− wh)

]
µ2
W + 1

)

f6 =1
4

([
4
c4
W

σ(2) − wf
(

2
c2
W

− wh
)]

µ2
W + 1

2c2
W

)

f7 =− 1
4wf

′

(
2
[
2 + wf ′ − wf

]
µ2
W + 1

)
(C.3.5)

f8 =− 1
4

([
2 (2 + wf ′) (1− wf ′) + wf ′wh − wf (6− 2wf ′ − wh)

]
µ2
W + 2

)

f9 =− 1
4

([
4
c2
W

σ(2)
(

1
c2
W

− wf
)
− wf

(
2
c2
W

− wh
)]

µ2
W + 2

c2
W

σ(2)
)

f10 = 1
4c2
W

(
σ(2) − 1

2

)
h1 =3

2wfwh
[(1

2wh − wf
)
µ2
W −

1
4

]
h2 =− wf

[1
8wh − wf

(
whµ

2
W −

1
2

)]
h3 =3

4wfwhµ
2
W

h4 =− wf
[

1
c2
W

σ(2) + wf

]
µ2
W

h5 =− wf
[3
4wh − wf

]
µ2
W ,

where we used the following shorthands:

w = − s

M2
W

, µ2
W = M2

W

4m2
f − s

,

wf ′ =
m2
f ′

M2
W

, wf =
m2
f

M2
W

,
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wh = M2
H

M2
W

. (C.3.6)

Note that the corrections as written do not completely agree with Eqs. (5.546)-

(5.548) of [142]. [142] provides expressions both with all masses included in Eqs.

(5.546)-(5.548), and with terms ∼ m2
f neglected in Eqs. (5.619), (5.621), (5.625).

This is an appropriate approximation for the decay H → bb̄ for which mf = mb,

mf ′ = mt and mb � mt. For our purposes, we require the exact opposite case, with

mf = m`, mf ′ = 0. Nonetheless, the two forms can be used to cross-check terms. In

comparison to the expressions including the full mass dependence, there is a factor

of 2 in the overall vertex in the approximated form. The latter form appears to be

correct as it reproduces the correct divergences. Secondly, the coefficients f2 and

f6 differ. In f6, the last term should read 1
2c2
W

instead of 2
c2
W

in agreement with the

limiting expression in Eq. (5.623). Similarly, f2 has been adapted to match the

limiting expression. In particular, the second to last term is multiplied by a factor of
4
c2
W
, and the last term by wf . The second to last term can then be cast into a form

∼ σ(2) as in Eq. (5.623) by adding and subtracting a2
f . Performing these changes

gives a result that agrees with the OPENLOOPS amplitude for H → bb̄.

The counterterms for this process read:

δR = −ie2sW
mf

MW

(
δZe −

δsW
sW

+ δmf

mf

− 1
2
δM2

W

M2
W

+ 1
2δZH + 1

2
(
δZf,L

ii + δZf,R,†
ii

))
,

(C.3.7)

δL = −ie2sW
mf

MW

(
δZe −

δsW
sW

+ δmf

mf

− 1
2
δM2

W

M2
W

+ 1
2δZH + 1

2
(
δZf,R

ii + δZf,L,†
ii

))
,

(C.3.8)

with the tree level couplings:

cR = −ie2sW
mf

MW

, (C.3.9)

cL = −ie2sW
mf

MW

. (C.3.10)
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Appendix D

Infrared form factors

To complete the calculation of the infrared subtracted matrix elements, we need the

expression of the infrared factor Bij. This factor, and its real counterpart B̃ij(Ω), are

defined in Eq. (4.1.15) and Eq. (4.1.16) respectively and have been calculated in [49],

where it has also been shown that their sum leads to a finite result as expected from

the KLN theorem.

For use with the virtual corrections, we will express the form factor B in terms of

the scalar master integrals that are defined in appendix E.

The virtual infrared form factor B can be rewritten in the following form, which will

be more useful in expressing it in terms of master integrals:

Bij = − i

8π3ZiZjθiθj

∫
d4k

1
k2

( 2piθi
k2 − 2 (k · pi) θi

+ 2pjθj
k2 + 2 (k · pj) θj

)2

− k2
(

1
k2 − 2 (k · pi) θi

− 1
k2 + 2 (k · pj) θj

)2
.

For the purpose of this publication, we have to consider final-final and initial-final

dipole combinations. In both cases, the factor ZiZjθiθj = −1. Note that the pi used

are the momenta of the external particles. To translate these into the momenta

qi running in the loop, we use p1 = q1, p2 = −q2 for the final state particles and

p3 = −p1 − p2 = (q2 − q1) for the initial state particle.
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D.1 Final Final

B12 = i

8π3

∫
d4k

1
k2

( 2p1

k2 − 2 (k · p1) + 2p2

k2 + 2 (k · p2)

)2

− k2
(

1
k2 − 2 (k · p1) −

1
k2 + 2 (k · p2)

)2


= i

8π3

∫
d4k

1
k2

( 2q1

(l − q1)2 − q2
1
− 2q2

(l − q2)2 − q2
2

)2

− k2
(

1
(l − q1)2 − q2

1
− 1

(l − q2)2 − q2
2

)2


= i

8π3 iπ
2
[
− 8 (q1 · q2)C0

(
(−q1)2 , (−q2)2 , (− (q1 − q2))2 , 0,m2

1,m
2
2

)
+ 4m2

1C0
(
(−q1)2 , (−q1)2 , 0, 0,m2

1,m
2
1

)
+ 4m2

2C0
(
(−q2)2 , (−q2)2 , 0, 0,m2

2,m
2
2

)
+ 2B0

(
(− (q1 − q2))2 ,m2

1,m
2
2

)
−B0

(
0,m2

1,m
2
1

)
−B0

(
0,m2

2,m
2
2

) ]

= − 1
4π

[
2
(
s−m2

1 −m2
2

)
C0
(
m2

1,m
2
2, s, 0,m2

1,m
2
2

)
+ 2m2

1C0
(
m2

1,m
2
1, 0, 0,m2

1,m
2
1

)
+ 2m2

2C0
(
m2

2,m
2
2, 0, 0,m2

2,m
2
2

)
+B0

(
s,m2

1,m
2
2

)
− 1

2B0
(
0,m2

1,m
2
1

)
− 1

2B0
(
0,m2

2,m
2
2

) ]
. (D.1.1)

For the double virtual corrections in the decay of the Z-boson in Section 5.3.1, we

need the infrared factor B in the limit of s � m2
i , regulated with a small photon

mass λ. In this case, we have m1 = m2 ≡ m and the factor reads:

B = − 1
π

[ (1
2s−m

2
)
C0
(
m2,m2, s, λ2,m2,m2

)
+m2C0

(
m2,m2, 0, λ2,m2,m2

)
+ 1

4
(
B0
(
s,m2,m2

)
−B0

(
0,m2,m2

))]

= −α
π

[
− 1

2 log
(
λ2

m2

)
log

(−s
m2

)
+ 1

4 log2
(−s
m2

)
− π2

12

+ 1
2 log

(
λ2

m2

)
+ 1

2 −
1
4 log

(−s
m2

)]
. (D.1.2)
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D.2 Initial Final

B31 = i

8π3

∫
d4k

1
k2

( −2p3

k2 + 2 (k · p3) + 2p1

k2 + 2 (k · p1)

)2

− k2
(

1
k2 + 2 (k · p3) −

1
k2 + 2 (k · p1)

)2


= i

8π3

∫
d4k

1
k2

( 2 (q1 − q2)
(l − (q1 − q2))2 − (q1 − q2)2 −

2q1

(l + q1)2 − q2
1

)2

− k2
(

1
(l − (q1 − q2))2 − (q1 − q2)2 −

1
(l + q1)2 − q2

1

)2


= i

8π3 iπ
2
[
− 8 ((q1 − q2) · q2)C0

(
(− (q1 − q2))2 , (−q1)2 , (−q2)2 , 0, (− (q1 − q2))2 ,m2

1

)
+ 4sC0 (s, s, 0, 0, s, s)

+ 4m2
1C0

(
(−q1)2 , (−q1)2 , 0, 0,m2

1,m
2
1

)
+ 2B0

(
(−q2)2 , (− (q1 − q2))2 , q2

1

)
−B0

(
0,m2

1,m
2
1

)
−B0

(
0, (− (q1 − q2))2 , (− (q1 − q2))2

) ]

= − 1
4π

[
2
(
s−m2

2 +m2
1

)
C0
(
s,m2

1,m
2
2, 0, s,m2

1

)
+ 2sC0 (s, s, 0, 0, s, s) + 2m2

1C0
(
m2

1,m
2
1, 0, 0,m2

1,m
2
1

)
+ 2B0

(
m2

2, s,m
2
1

)
−B0

(
0,m2

1,m
2
1

)
−B0 (0, s, s)

]
. (D.2.1)
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Appendix E

Loop integrals

E.1 Preliminaries

Here we list the necessary scalar master integrals for the calculation of the virtual

EW and the real-virtual QED corrections. Following the Binoth Les Houches Accord,

we factor out an overall constant C(ε) [60]:

C(ε) = (4π)ε
Γ(1− ε)

(
µ2

µ2
R

)ε
= (4π)εΓ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

(
µ2

µ2
R

)ε
. (E.1.1)

The analytic continuation that is necessary to properly define the integrals can be

restored by continuing the arguments as:

p2
i → p2

i + iε,

sij → sij + iε, (E.1.2)

m2
i → m2

i − iε.

The iε is followed through each calculation to define the correct continuations of the

logarithm and dilogarithm. We comment on this, and the implementation of the

complex dilogarithm in Section E.6.

As in the implementation, we will collect results depending on the number of massive

propagators, in each case starting with the least complicated expression and working
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our way up in complexity.

E.2 Tadpole integrals

There is only one scalar tadpole integral, depending on the mass of the internal

propagator m2:

A0
(
m2

0

)
= µ2ε

iπ2

∫
dDq 1

q2 −m2
0 + iε

. (E.2.1)

In D dimensions, this integral is of mass dimension D − 2, so if the mass vanishes,

the integral is scaleless and vanishes as well. The tadpole integral is UV divergent.

For non-vanishing scales, the result is [163]:

A0
(
m2

0

)
= m2

0

(
1
εUV

+ log
(
µ2

m2
0

)
+ 1

)
. (E.2.2)

E.3 Bubble integrals

The bubble integral depends on three potential mass scales in p2
1 = s, m2

0 and m2
1,

and is in itself of mass dimension D − 4:

B0
(
p2

1,m
2
0,m

2
1

)
= µ2ε

iπ2

∫
dDq 1

(q2 −m2
0 + iε) ((q + p1)2 −m2

1 + iε) . (E.3.1)

It is invariant under the exchange m0 ↔ m1, which can be achieved through a

shift of the integration momentum q′ = q + p1 to go back to the same form. Thus

B0 (s,m2
0,m

2
1) = B0 (s,m2

1,m
2
0). The bubble integrals are UV divergent.

For later use we define r as the solution of the equation:

x2 + m2
0 +m2

1 − s− iε
m0m1

x+ 1 = (x+ r)
(
x+ 1

r

)
, (E.3.2)

so that:

r+ =
m2

0 +m2
1 − s+

√
(m2

0 +m2
1 − s)

2 − 4m2
0m

2
1

2m0m1
,

r− =
m2

0 +m2
1 − s−

√
(m2

0 +m2
1 − s)

2 − 4m2
0m

2
1

2m0m1
. (E.3.3)
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In the results in which this quantity will be used, it does not matter which solution

is used (as long as one is used consistently) so we implemented the results using

r ≡ r+.

• Two massless internal lines:

– s 6= 0:

[163], Eq. (4.4)

B0 (s, 0, 0) = 1
εUV

+ log
(
µ2

−s

)
+ 2. (E.3.4)

• One massless internal line: define m2 = m2
0 +m2

1:

– s = 0:

B0(0, 0,m2) = 1
εUV

+ log
(
µ2

m2

)
+ 1 = A0(m2)

m2 , (E.3.5)

– s = m2:

B0(m2, 0,m2) = 1
εUV

+ log
(
µ2

m2

)
+ 2, (E.3.6)

– s 6= m2:

[163], Eq. (4.4)

B0(s, 0,m2) = 1
εUV

+ log
(
µ2

m2

)
+ s−m2

s
log

(
m2

s−m2

)
+ 2. (E.3.7)

• No massless internal line:

– s = 0, m2
0 = m2

1 = m2:

B0(0,m2,m2) = 1
εUV

+ log
(
µ2

m2

)
, (E.3.8)

– s 6= 0, m2
0 = m2

1 = m2:

[141], Eq. (4.23) in the limit m0 → m1

B0
(
s,m2,m2

)
= 1
εUV

+ log
(
µ2

m2

)
− m2

s

(1
r
− r

)
log (r) , (E.3.9)
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– s = 0, m2
0 6= m2

1:

[141], Eq. (4.23) in the limit s→ 0

B0
(
0,m2

0,m
2
1

)
= 1
εUV

+ 1

+ m2
0

m2
0 −m2

1
log

(
µ2

m2
0

)
− m2

1
m2

0 −m2
1

log
(
µ2

m2
1

)
,

(E.3.10)

– s 6= 0, m2
0 6= m2

1:

[141], Eq. (4.23)

B0
(
s,m2

0,m
2
1

)
= 1
εUV

+ log
(

µ2

m0m1

)

+ m2
0 −m2

1
s

log
(
m1

m0

)
− m0m1

s

(1
r
− r

)
log (r) .

(E.3.11)

E.4 Triangle integrals

The triangle integrals depend on two internal momenta squared p2
1, p2

2, with a further

momentum squared p2
3 = (p1−p2)2 often also given in the argument list. They further

depend on the three internal masses m2
0, m2

1, m2
2:

C0
(
p2

1, p
2
2, p

2
3,m

2
0,m

2
1,m

2
2

)
=

µ2ε

iπ2

∫
dDq 1

(q2 −m2
0 + iε) ((q + p1)2 −m2

1 + iε) ((q + p2)2 −m2
2 + iε) (E.4.1)

These integrals are UV finite, but potentially IR divergent for particular combinations

of arguments that include vanishing masses. Different sets of arguments can be

related via momentum shifts: The integral is invariant under a simultaneous cyclic

shift of both { p2
1, p

2
2, p

2
3 } and {m2

0,m
2
1,m

2
2 } (this corresponds to a momentum shift

q′ = q + p2) as well as under the simultaneous exchange p2
2 ↔ p2

3 and m2
0 ↔ m2

1

(this corresponds to a shift q′ = q + p1). Thus, we can write all analytic results

with the non-zero masses shifted to the right, all other results follow from repeated
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application of:

C0
(
p2

1, p
2
2, p

2
3,m

2
0,m

2
1,m

2
2

)
= C0

(
p2

3, p
2
1, p

2
2,m

2
2,m

2
0,m

2
1

)
, (E.4.2)

C0
(
p2

1, p
2
2, p

2
3,m

2
0,m

2
1,m

2
2

)
= C0

(
p2

1, p
2
3, p

2
2,m

2
1,m

2
0,m

2
2

)
. (E.4.3)

If there is no specific, simplified formula given for a particular case of arguments,

then this will be calculated either through the next general result for that set of

vanishing internal masses, if it exists, or through the full finite triangle result.

We will make use of the following definitions:

β =
√

1− 4m2

p2 , (E.4.4)

K (z,m,m′) =
1−

√
1− 4mm′

z−(m−m′)2

1 +
√

1− 4mm′
z−(m−m′)2

. (E.4.5)

• All internal lines massless:

– p2
1 = p2

2 = 0, p2
3 = s

[163], Eq. (4.5)

C0 (0, 0, s, 0, 0, 0) = 1
s

[
1
ε2IR

+ 1
εIR

log
(
µ2

−s

)
+ 1

2 log2
(
µ2

−s

)]
, (E.4.6)

– p2
1 = 0, p2

2 = p2
3 = p2

[163], Eq. (4.6)

C0
(
0, p2, p2, 0, 0, 0

)
= − 1

p2

[
1
εIR

+ log
(
µ2

−p2

)]
, (E.4.7)

– p2
1 = 0, p2

2 6= p2
3

[163], Eq. (4.7)

C0
(
0, p2

2, p
2
3, 0, 0, 0

)
=

1
p2

2 − p2
3

[
1
εIR

log
(
p2

3
p2

2

)
+ 1

2

(
log2

(
µ2

−p2
2

)
− log2

(
µ2

−p2
3

))]
. (E.4.8)

• One massive internal line:
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– p2
1 = p2

2 = 0, p2
3 = m2

[163], Eq. (4.8)

C0
(
0, 0,m2, 0, 0,m2

)
= − 1

2m2

[
1
ε2IR

+ 1
εIR

log
(
µ2

m2

)

+ π2

6 + 1
2 log2

(
µ2

m2

)]
, (E.4.9)

– p2
1 = p2

2 = 0, p2
3 = p2 6= m2

C0
(
0, 0, p2, 0, 0,m2

)
= − 1

p2

[
1
εIR

log
(
m2 − p2

m2

)

+ log
(
µ2

m2

)
log

(
m2 − p2

m2

)

− Li2
(
p2

m2

)
− log2

(
m2 − p2

m2

)]
, (E.4.10)

– p2
2 = p2

3 = 0, p2
1 = p2 6= 0

[142], Eq. (5.59)

C0
(
p2, 0, 0, 0, 0,m2

)
= 1
p2

[
Li2 (1)− Li2

(
1 + p2

m2

)]
, (E.4.11)

– p2
1 = 0, p2

2 = p2
3 = m2

[163], Eq. (4.12)

C0
(
0,m2,m2, 0, 0,m2

)
= 1
m2

[
− 1

2εIR
− 1

2 log
(
µ2

m2

)
+ 1

]
, (E.4.12)

– p2
1 = 0, p2

2 = p2
3 = p2 6= m2

[163], Eq. (4.9)

C0
(
0, p2, p2, 0, 0,m2

)
=

1
m2 − p2

[
1
εIR

+ log
(
µ2

m2

)
+ m2 + p2

p2 log
(

m2

m2 − p2

)]
, (E.4.13)

– p2
1 = 0, p2

2 = p2 6= m2, p2
3 = m2

[163], Eq. (4.11)

C0
(
0, p2,m2, 0, 0,m2

)
= 1

(p2 −m2)
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×
[

1
2ε2IR

+ 1
εIR

(
1
2 log

(
µ2

m2

)
+ log

(
m2

m2 − p2

))

+ 1
4 log2

(
µ2

m2

)
+ 1

2 log2
(

m2

m2 − p2

)

− Li2
(
−p2

m2 − p2

)
+ π2

12

]
, (E.4.14)

– p2
1 = 0, p2

2 6= p2
3 6= m2

[163], Eq. (4.8)

C0
(
0, p2

2, p
2
3, 0, 0,m2

)
= 1
p2

2 − p2
3

×
[

1
εIR

log
(
m2 − p2

3
m2 − p2

2

)
+ log

(
µ2

m2

)
log

(
m2 − p2

3
m2 − p2

2

)

+ Li2
(
p2

2
m2

)
+ log2

(
m2 − p2

2
m2

)

− Li2
(
p2

3
m2

)
− log2

(
m2 − p2

3
m2

)]
. (E.4.15)

• Two massive internal lines:

– p2
1 = m2

1, p2
3 = m2

2, p2
2 = (m1 −m2)2

[163], Eq. (4.16)

C0
(
m2

1, p
2
2,m

2
2, 0,m2

1,m
2
2

)
=

1
2m1m2

[
1
εIR

+ log
(

µ2

m1m2

)
− m1 +m2

m2 −m1
log

(
m1

m2

)
− 2

]
, (E.4.16)

– p2
1 = m2

1, p2
3 = m2

2, p2
2 6= (m2 −m3)2

[163], Eq. (4.16)

C0
(
m2

1, p
2
2,m

2
2, 0,m2

1,m
2
2

)
= xs
m1m2 (1− x2

s)

×
[
− 1
εIR

log (xs)

+ log (xs)
{
−1

2 log (xs) + 2 log
(
1− x2

s

)
+ log

(
m1m2

µ2

)}

+ Li2
(
x2
s

)
+ 1

2 log2
(
m1

m2

)
− π2

6

+ Li2
(

1− xs
m1

m2

)
+ Li2

(
1− xs

m2

m1

)]
, (E.4.17)
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where xs = −K (s,m2,m3).

– p2
1 = p2

3 = 0, p2
2 = p2, m2

1 = m2
2 = m2 6= p2

[142], Eq. (5.67)

C0
(
0, p2, 0, 0,m2,m2

)
= 1
p2 log2

(
β + 1
β − 1

)
, (E.4.18)

– p2
1 = p2

3 = 0, p2
2 = p2, m2

1 6= m2
2 6= p2

[142], Eq. (5.66)

C0
(
0, p2, 0, 0,m2

1,m
2
2

)
= 1
p2 log

(
x2

x2 − 1

)
log

(
x1

x1 − 1

)
, (E.4.19)

with

x1,2 =
p2 +m2

2 −m2
1 ±

√
λ (p2,m2

1,m
2
2)

2p2 . (E.4.20)

– p2
1 = p2

2 = 0, p2
3 = p2 6= 0

[142], Eq. (5.68)

C0
(
0, 0, p2, 0,m2

1,m
2
2

)
=

1
p2

[
Li2

(
1− m2

2
m3

1

)
− Li2

(
1− m2

2 − p2
2

m2
1

)]
, (E.4.21)

– p2
2 = 0, p2

3 = m2
1 = m2

2 = m2 6= p2
1, p2

1 = p2

C0
(
p2, 0,m2, 0,m2,m2

)
= − 1

m2 − p2

[
π2

6 − Li2
(
p2

m2

)]
, (E.4.22)

– p2
1 = p2

2 = m2
1 = m2

2 = m2, p2
3 = 0

[163], Eq. (4.16) in the limit m2 → m3

C0
(
m2,m2, 0, 0,m2,m2

)
= 1

2m2

[
1
εIR

+ log
(
µ2

m2

)
− 4

]
. (E.4.23)

• All massive internal lines:

– p2
1 = p2

2 = m2, p2
3 = s, m2

2 = m2
3 = m2, m2

1 = λ2

This is the infrared divergent triangle with two massive internal lines,

regulated through a small photon mass λ. It can be found from the
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version in dimensional regularization Eq. (E.4.17) by replacing

C(ε)
εIR

+ log µ2 → log λ2 +O(ε), (E.4.24)

a replacement which is valid in the case of a single soft singularity. The

integral then reads:

C0
(
m2,m2, s, λ2,m2,m2

)
=

1
s

[
− log

(
λ2

m2

)
log

(−s
m2

)
+ 1

2 log2
(−s
m2

)
− π2

6

]
. (E.4.25)

– p2
1 = p2

2 = m2, p2
3 = 0, m2

2 = m2
3 = m2, m2

1 = λ2

This is the infrared divergent triangle with two massive internal lines and

vanishing p2
3, regulated through a small photon mass λ. It reads:

C0
(
m2,m2, 0, λ2,m2,m2

)
= 1

2m2

[
log

(
λ2

m2

)
− 4

]
. (E.4.26)

– p2
1 = p2

2 = 0, p2
3 = p2, m2

1 = m2
2 = m2

3 = m2

[245], Finite Triangle 3

C0
(
0, 0, p2,m2,m2,m2

)
= 1

2p2 log2
(
β − 1
β + 1

)
, (E.4.27)

– p2
1 = 0, p2

2 6= p2
3, m2

1 = m2
2 = m2

3 = m2

[245], Finite Triangle 4

C0
(
0, p2

2, p
2
3,m

2,m2,m2
)

=
1

p2
2 − p2

3

[
p2

2C0
(
0, 0, p2

2,m
2,m2,m2

)
− p2

3C0
(
0, 0, p2

3,m
2,m2,m2

)]
.

(E.4.28)

– p2
1 6= p2

2 6= p2
3

The general result for the triangle result was derived in [246] for complex

masses. Some parts of the calculation only contribute for complex masses.

The expression as written here follows [141]. In the following, we introduce
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the η-function:

η (a, b) = 2πi
[
θ (−Im(a)) θ (−Im(b)) θ (Im(ab))

− θ (Im(a)) θ (Im(b)) θ (−Im(ab))
]
. (E.4.29)

This function compensates for cut crossings in the logarithms and dilog-

aritms. In particular, we have

log (ab) = log (a) + log (b) + η (a, b) . (E.4.30)

η vanishes if a and b have differing signs in their imaginary parts.

We define the following quantities where i, j, k = {1, 2, 3}/{0, 1, 2} for

momenta and masses respectively and the indices are taken to be cyclic:

α =
√
λ (p2

1, p
2
2, p

2
3), (E.4.31)

αi =
√
λ
(
p2
j ,m

2
j ,m

2
k

) (
1 + iεp2

j

)
, (E.4.32)

xi± = 1
2p2

j

(
p2
j −m2

j +m2
k ± αi

)
, (E.4.33)

y0i = 1
2αp2

j

[
p2
j

(
p2
j − p2

i − p2
k + 2m2

i −m2
j −m2

k

)
, (E.4.34)

−
(
p2
k − p2

i

) (
m2
j −m2

k

)
+ α

(
p2
j −m2

j +m2
k

)]
, (E.4.35)

yi± =y0i − xi±. (E.4.36)

The result for the triangle integral is then given by:

C0
(
p2

1, p
2
2, p

2
3,m

2
0,m

2
1,m

2
2

)
=

1
α

2∑
i=1

{∑
σ=±

[
Li2

(
y0i − 1
yiσ

)
− Li2

(
y0i

yiσ

)

+ η

(
1− xiσ,

1
yiσ

)
log

(
y0i − 1
yiσ

)
− η

(
−xiσ,

1
yiσ

)
log

(
y0i

yiσ

)]

−
[
η (−xi+,−xi−)− η (yi+, yi−)

− 2πiθ
(
−p2

j

)
θ (−Im (yi+yi−))

]
log

(
1− y0i

−y0i

)}
. (E.4.37)

Note that all the η-functions vanish if all masses are real and α is real as
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well. This is the case for all on-shell decay and scattering processes.

E.5 Box integrals

The box integrals depend on four internal momenta squared, p2
1, p

2
2, p

2
3, p

2
4, four in-

ternal masses, m2
0,m

2
1,m

2
2,m

2
3 as well as two independent momentum invariants

between two external particles, usually chosen as s12, s23. The latter are necessary to

completely determine the external kinematics of the process, which was not necessary

before. We then have:

D0
(
p2

1, p
2
2, p

2
3, p

2
4; s12, s23;m2

0,m
2
1,m

2
2,m

2
3

)
= µ2ε

iπ2∫
dDq 1

(q2 −m2
0 + iε) ((q + p1)2 −m2

1 + iε) ((q + p2)2 −m2
2 + iε) ((q + p3)2 −m2

3 + iε) .

(E.5.1)

As in the case of the triangle integrals, different orderings of the parameters are

related to each other through a redefinition of the loop momentum. The identities

for the boxes are:

D0
(
p2

1, p
2
2, p

2
3, p

2
4; s12, s23;m2

0,m
2
1,m

2
2,m

2
3

)
= D0

(
p2

2, p
2
3, p

2
4, p

2
1; s23, s12;m2

1,m
2
2,m

2
3,m

2
0

)
,

(E.5.2)

D0
(
p2

1, p
2
2, p

2
3, p

2
4; s12, s23;m2

0,m
2
1,m

2
2,m

2
3

)
= D0

(
p2

4, p
2
3, p

2
2, p

2
1; s12, s23;m2

0,m
2
3,m

2
2,m

2
1

)
.

(E.5.3)

There are in general 16 infrared divergent boxes, and the full finite box has been

worked out as well. Here, we will only list the one box integral that will be necessary

for the evaluation of the real virtual corrections to particle decays into two fermions,

namely the box integral with three non-vanishing internal masses. The result for

s23 6= (m1 −m3)2 is:

D0
(
p2

1, p
2
2, p

2
3, p

2
4; s12, s23; 0,m2

1,m
2
2,m

2
3

)
= x23

m1m3 (s12 −m2
2) (1− x2

23)

×
{
− log x23

εIR
− 2 log x23 log

(
m2µ

m2
2 − s12

)
+ log2 x2 + log2 x3 − Li2

(
1− x2

23

)
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Li2 (1− x23x2x3) + Li2
(

1− x23

x2x3

)
+ Li2

(
1− x23x2

x3

)
+ Li2

(
1− x23x3

x2

)}
,

(E.5.4)

where x23 = −K (s23,m1,m3), x2 = −K (p2
2,m1,m2) and x3 = −K (p2

3,m2,m3).

When x23 → 1 (equivalent to s23 = (m1 −m3)2), we have:

D0
(
p2

1, p
2
2, p

2
3, p

2
4; s12, s23; 0,m2

1,m
2
2,m

2
3

)
= 1

2m1m3 (s12 −m2
2)

×
{

1
εIR

+ 2 log
(

m2µ

m2
2 − s12

)
− 1 + x2x3

1− x2x3
[log x2 + log x3]

− x3 + x2

x3 − x2
[log x2 − log x3]− 2

}
. (E.5.5)

E.6 Note on logarithms, dilogarithms and the iε-

prescription

As seen in the original definition of the master integrals, the denominator functions

contain small imaginary parts iε. These are introduced in order to make sense of

the integral and define the correct time ordering.

The iε propagate through into the results to define the proper analytic continu-

ation of functions containing branch cuts. These are for example the complex

logarithm and the dilogarithm, both for negative real values of the argument. The

iε-description then determines on which side of the branch cut the argument sits,

and thus determines the sign of the imaginary part of the result.

Logarithm

For the logarithm the iε-description leads to the following identities (where Re(z) < 0

and Im(z) = 0):

log(z + iε) = log(|z|) + iπ, (E.6.1)

log(z − iε) = log(|z|)− iπ. (E.6.2)
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In the case in which z has a non-vanishing imaginary part, this prescription is incon-

sequential as the imaginary part dominates. However, for negative real arguments,

one has to keep track of this small imaginary part in order to get the results correct.

C++ natively implements a complex logarithm function log(std::complex<double>).

Let us denote a std::complex<double> as Complex. This native complex logarithm

function determines the imaginary part in the case of Re(z) < 0 and Im(z) = 0 by

keeping the sign of the imaginary part. Then, z = Complex(z,0.0) will be treated

using Eq. (E.6.1) whereas z = Complex(z,-0.0) will be treated using Eq. (E.6.2).

A logarithm of a negative double will instead return nan. With this functionality

alone, it quickly becomes tricky keeping track of each of the signs across additions

and multiplications, in particular if in use z can be either real or complex.

It is thus prudent to implement a separate, overloaded, function, which we call CLog.

It takes as its input either a double or Complex z and an int ieps, which is the

sign attached to iε, and returns a Complex. For a double z as input, this function

returns the normal logarithm for any z > 0 in the form Complex(log(z),0.). For

z < 0, it returns Complex(log(-z),0.)+Complex(0.,ieps*π). For a Complex z as

input, the function returns the normal logarithm unless Im(z) = 0 and Re(z) < 0 in

which case it returns Complex(log(-Re(z)),0.)+Complex(0.,ieps*π).

Dilogarithm

The dilogarithm is not natively implemented in C++. We require an implementation

for potentially complex arguments of the dilogarithm, which can occur even if all

masses are real.

Here, we follow the example of [164], who base their implementation on [247] and

[248]. The (Euler) dilogarithm is defined as

Li2(x) = −
∫ x

0
dy

log(1− y)
y

= −
∫ 1

0
dy

log(1− xy)
y

=
∫ − log(1−x)

0
du

u

eu − 1 . (E.6.3)

Integrating term by term in a series expansion of the logarithm, we find the following
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series expansion:

Li2(x) =
∞∑
j=1

xj

j2 , (E.6.4)

which is valid for |x| < 1. For |x| > 1, one can use an inversion relation to map

the argument back into the convergent region. For the dilogarithm, this inversion

relation reads:

Li2(x) = −Li2
(1
x

)
− 1

2 log2(−x)− π2

6 . (E.6.5)

The convergence of the series Eq. (E.6.4) is poor close to |x| = 1. This can however be

circumvented by an expansion instead in the logarithm of the argument, as proposed

by [247]:

Li2
(
e−α

)
= π2

6 − α−
1
4α

2 + α log(α) +
∞∑
n=1

B2n

2n(2n+ 1)!α
2n+1, (E.6.6)

where the Bi are the Bernoulli numbers. The factorial decay of the terms in the sum

means a fast convergence even for |x| ≈ 1. Based on similar considerations, one can

find an expression that involves a factorial decay within the region |x| < 1
2 :

Li2
(
1− e−α

)
= α− 1

4α
2 +

∞∑
n=1

B2n

(2n+ 1)!α
2n+1. (E.6.7)

We calculate the dilogarithm for any value x by Eq. (E.6.7) for Re(x) ≤ 1
2 and

|x| ≤ 1, by Eq. (E.6.6) for Re(x) > 1
2 and |x− 1| ≤ 1, and use the inversion relation

Eq. (E.6.5) to map any other value into one of the aforementioned regions.



Appendix F

Real corrections in the YFS

formalism

In this appendix we will describe our approach to implementing real corrections

for the decays considered in Part I, focussing on the procedure for the decays of

the vector bosons. We define the shorthand Γµ ≡ γµ (cLPL + cRPR), with the

couplings cL/R given in C. For the decays of a scalar boson, this reduces instead to

Γ = (cLPL + cRPR) and the polarization vector is removed from the amplitude.

In the following, we will make use of two functions X and Y that describe the helicity

amplitudes. The calculation of these functions has been outlined in [49,54], and is

based on the work in [153–155]. The functions are defined as:

X (p1, s1; p; p2, s2; cR, cL) = ū (p1, s1) /p [cRPR + cLPL]u (p2, s2) , (F.0.1)

where the u may be particle or anti-particle spinors. The latter case will be denoted

through a bar over the spin index si. Similarly, we can define another function Y :

Y (p1, s1; p; p2, s2; cR, cL) = ū (p1, s1) [cRPR + cLPL]u (p2, s2) , (F.0.2)

which would be used in the decay of a Higgs boson.
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F.1 Single Real

The real matrix element for the process Z → ff̄γ reads:

M
1
2
1 = ie2ū (p1, s1)

[
γν

/p1 + /k +m

(p1 + k)2 −m2
Γµ

− Γµ /p2 + /k −m
(p2 + k)2 −m2

γν
]
v (p2, s2) εZµ (p, λ)εγ∗ν (k, κ) . (F.1.1)

We can express a fermion propagator as a sum over spins of an intermediate particle:

/p±m = 1
2
∑
s

[(
1± m√

p2

)
u(p, s)ū(p, s) +

(
1∓ m√

p2

)
v(p, s)v̄(p, s)

]
, (F.1.2)

where u[v](p, s) are [anti-]spinors of a fictitious fermion with mass m =
√
p2.

We can then write the full amplitude in terms of helicity amplitudes:

M
1
2
1 = ie2

2

 1
(pa)2 −m2

∑
s


1 + m√

(pa)2

X (s1, ε
γ∗, pa, s)X

(
pa, s, ε

Z , s̄2
)

+
1− m√

(pa)2

X (s1, ε
γ∗, pa, s̄)X

(
pa, s̄, ε

Z , s̄2
)

− 1
(pb)2 −m2

∑
s


1− m√

(pb)2

X (
s1, ε

Z , pb, s
)
X (pb, s, εγ∗, s̄2)

+
1 + m√

(pb)2

X (
s1, ε

Z , pb, s̄
)
X (pb, s̄, εγ∗, s̄2)


, (F.1.3)

with

pa = p1 + k pb = p2 + k. (F.1.4)

To reduce the size of the expressions, we have only written the spin labels, the

intermediate momenta and the respective internal vector. It is understood that the

spin label s1,2 corresponds to the momentum p1,2. It is further understood that

the left- and right-handed couplings are (−ie,−ie) when contracted with a photon

polarization and (cL, cR) when contracted with the Z-polarization.

For the decay of a W -boson, we have the following real matrix element:

M
1
2
1 = ie2εWτ (p, λ)εγ∗ν (k, κ) ū (p1, s1)
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×
[
γν

/p1 + /k +m

(p1 + k)2 −m2
Γτ (F.1.5)

+ Γµ
gµρ − (p−k)µ(p−k)ρ

p2

(p− k)2 − p2 Vτρν (p,−p+ k,−k)
]
v (p2, s2) ,

where we introduced the triple boson vertex Vτρν = gτρ (p2 − p1)ν + gρν (p3 − p2)τ +

gντ (p1 − p3)ρ. The first term can be treated as in the case of the Z-decay, while the

second term, upon contraction of all indices, is already in the form of an X-function.

F.2 Double Real

For the process Z → ff̄γγ, the double real matrix element reads:

M1
2 =ie3εZµ (p, λ)εγ∗ν (k1, κ1) εγ∗ρ (k2, κ2) ū (p1, s1)[

γν
/p1 + /k1 +m

(p1 + k1)2 −m2
γρ

/p1 + /k1 + /k2 +m

(p1 + k1 + k2)2 −m2
Γµ

− γν /p1 + /k1 +m

(p1 + k1)2 −m2
Γµ /p2 + /k2 −m

(p2 + k2)2 −m2
γρ (F.2.1)

+ Γµ /p2 + /k1 + /k2 −m
(p2 + k1 + k2)2 −m2

γν
/p2 + /k2 −m

(p2 + k2)2 −m2
γρ

+ (k1 ↔ k2)
]
v (p2, s2) .

Replacing the propagators, we can rewrite the matrix element as follows:

M1
2 =

ie3

4

[
1(

pb,1
)2
−m2

1(
pa,1
)2
−m2

∑
sa,sb{1 +

m√(
pa,1
)2

1 +
m√(
pb,1
)2

X

(
s1, ε

γ∗
1 , pa,1, sa

)
X

(
pa,1, sa, ε

γ∗
2 , pb,1, sb

)
X

(
pb,1, sb, ε

Z
, s̄2
)

+

1 +
m√(
pa,1
)2

1 −
m√(
pb,1
)2

X

(
s1, ε

γ∗
1 , pa,1, sa

)
X

(
pa,1, sa, ε

γ∗
2 , pb,1, s̄b

)
X

(
pb,1, s̄b, ε

Z
, s̄2
)

+

1 −
m√(
pa,1
)2

1 +
m√(
pb,1
)2

X

(
s1, ε

γ∗
1 , pa,1, s̄a

)
X

(
pa,1, s̄a, ε

γ∗
2 , pb,1, sb

)
X

(
pb,1, sb, ε

Z
, s̄2
)

+

1 −
m√(
pa,1
)2

1 −
m√(
pb,1
)2

X

(
s1, ε

γ∗
1 , pa,1, s̄a

)
X

(
pa,1, s̄a, ε

γ∗
2 , pb,1, s̄b

)
X

(
pb,1, s̄b, ε

Z
, s̄2
)}

−
1(

pa,2
)2
−m2

1(
pb,2
)2
−m2

∑
sa,sb
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{1 +
m√(
pa,2
)2

1 −
m√(
pb,2
)2

X

(
s1, ε

γ∗
1 , pa,2, sa

)
X

(
pa,2, sa, ε

Z
, pb,2, sb

)
X

(
pb,2, sb, ε

γ∗
2 , s̄2

)

+

1 +
m√(
pa,2
)2

1 +
m√(
pb,2
)2

X

(
s1, ε

γ∗
1 , pa,2, sa

)
X

(
pa,2, sa, ε

Z
, pb,2, s̄b

)
X

(
pb,2, s̄b, ε

γ∗
2 , s̄2

)

+

1 −
m√(
pa,2
)2

1 −
m√(
pb,2
)2

X

(
s1, ε

γ∗
1 , pa,2, s̄a

)
X

(
pa,2, s̄a, ε

Z
, pb,2, sb

)
X

(
pb,2, sb, ε

γ∗
2 , s̄2

)

+

1 −
m√(
pa,2
)2

1 +
m√(
pb,2
)2

X

(
s1, ε

γ∗
1 , pa,2, s̄a

)
X

(
pa,2, s̄a, ε

Z
, pb,2, s̄b

)
X

(
pb,2, s̄b, ε

γ∗
2 , s̄2

)}

+
1(

pa,3
)2
−m2

1(
pb,3
)2
−m2

∑
sa,sb{1 −

m√(
pa,3
)2

1 −
m√(
pb,3
)2

X

(
s1, ε

Z
, pa,3, sa

)
X

(
pa,3, sa, ε

γ∗
1 , pb,3, sb

)
X

(
pb,3, sb, ε

γ∗
2 , s̄2

)

+

1 −
m√(
pa,3
)2

1 +
m√(
pb,3
)2

X

(
s1, ε

Z
, pa,3, sa

)
X

(
pa,3, sa, ε

γ∗
1 , pb,3, s̄b

)
X

(
pb,3, s̄b, ε

γ∗
2 , s̄2

)

+

1 +
m√(
pa,3
)2

1 −
m√(
pb,3
)2

X

(
s1, ε

Z
, pa,3, s̄a

)
X

(
pa,3, s̄a, ε

γ∗
1 , pb,3, sb

)
X

(
pb,3, sb, ε

γ∗
2 , s̄2

)

+

1 +
m√(
pa,3
)2

1 +
m√(
pb,3
)2

X

(
s1, ε

Z
, pa,3, s̄a

)
X

(
pa,3, s̄a, ε

γ∗
1 , pb,3, s̄b

)
X

(
pb,3, s̄b, ε

γ∗
2 , s̄2

)}

+ (k1 ↔ k2)

]
. (F.2.2)

In this equation, we abbreviated the intermediate momenta as:

pa,1 = p1 + k1, pb,1 = p1 + k1 + k2,

pa,2 = p1 + k1, pb,2 = p2 + k2, (F.2.3)

pa,3 = p2 + k1 + k2, pb,3 = p2 + k2.
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Validation of EW corrections

G.1 Internal consistency of the implementation

G.1.1 Matrix elements

Given the complexity and the modular setup of the expressions for the real matrix

elements, the fulfillment of the QED Ward identity is a good check on the validity

of the expressions. We verified that the matrix elements obey the Ward identity

within machine precision, with the double real expressions obeying the identity also

separately for εi → ki.

Similarly, in the virtual corrections, the cancellation of both UV and IR divergences

has been confirmed analytically, as well as numerically at machine precision.

The matrix elements have been point-checked against implementations in OPENLOOPS

[39,40] for the virtual corrections, and against both WZGRAD [24–26] and AMEGIC [54]

for the fully massive real matrix elements.

We also checked that the subtraction outlined in Chapters 4 and 5 becomes exact

in the limit of soft photon emission. In the Tables G.1 - G.3 we collect the largest

order of magnitude observed for the deviation ∆ = ME−S̃⊗B
ME

for photons with

E < 2Eγ,cut in 104 decays to electrons, muons and τ ’s respectively. For the double
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Eγ,cut Z → e+e− W → eν

100 MeV

R 10−3 10−3

RV 10−2 -
RR, 1 10−2 -
RR, 2 10−4 -

10 MeV

R 10−5 10−5

RV 10−4 -
RR, 1 10−3 -
RR, 2 10−4 -

1 MeV

R 10−6 10−5

RV 10−5 -
RR, 1 10−1 -
RR, 2 10−1 -

100 keV

R 10−2 10−2

RV 10−2 -
RR, 1 10−1 -
RR, 2 10−1 -

Table G.1: Magnitude of maximal difference ∆ = ME−S̃⊗B
ME

observed for 104

decays into electrons and varying infrared cutoffs. In the real (R)
and real-virtual (RV) cases, we require the photon to have an energy
E < 2Eγ,cut. For the real-real, we consider two cases: 1. One photon
has energy E < 2Eγ,cut, the other one E > 1 GeV; 2. both photons
have E < 2Eγ,cut.
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Eγ,cut Z → µ+µ− H → µ+µ− W → µν

100 MeV

R 10−6 10−5 10−4

RV 10−5 10−5 -
RR, 1 10−2 10−2 -
RR, 2 10−5 10−4 -

10 MeV

R 10−7 10−7 10−6

RV 10−6 10−6 -
RR, 1 10−3 10−3 -
RR, 2 10−5 10−6 -

1 MeV

R 10−7 10−7 10−7

RV 10−6 10−6 -
RR, 1 10−4 10−4 -
RR, 2 10−6 10−6 -

100 keV

R 10−6 10−7 10−6

RV 10−6 10−6 -
RR, 1 10−5 10−5 -
RR, 2 10−6 10−7 -

Table G.2: Magnitude of maximal difference ∆ = ME−S̃⊗B
ME

observed for 104

decays into muons and varying infrared cutoffs. The cases are defined
as in Table G.1.

Eγ,cut Z → τ+τ− H → τ+τ− W → τν

100 MeV

R 10−5 10−6 10−5

RV 10−3 10−4 -
RR, 1 10−2 10−3 -
RR, 2 10−4 10−5 -

10 MeV

R 10−7 10−7 10−7

RV 10−4 10−4 -
RR, 1 10−4 10−5 -
RR, 2 10−5 10−6 -

1 MeV

R 10−9 10−9 10−8

RV 10−4 10−4 -
RR, 1 10−4 10−5 -
RR, 2 10−6 10−6 -

100 keV

R 10−8 10−10 10−8

RV 10−4 10−4 -
RR, 1 10−5 10−5 -
RR, 2 10−6 10−7 -

Table G.3: Magnitude of maximal difference ∆ = ME−S̃⊗B
ME

observed for 104

decays into τ ’s and varying infrared cutoffs. The cases are defined
as in Table G.1.
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Figure G.1: The extent of the dead cone in Z-boson decays into bare electrons
on the left, muons in the middle and τ ’s on the right. The angle
θ`+γ between the positively charged lepton and the photon in the
center of mass frame of the lepton system is plotted in units of
2m`/mZ , which puts all the leptons on the same footing. Note the
peak position denoting the extent of the dead cone does not change
upon the inclusion of higher order corrections.

real matrix elements, we provide two cases in which either both photons have an

energy E < 2Eγ,cut or one photon fulfills this condition, while the other has an

energy E > 1 GeV.

Generally, the cancellation improves for decreasing values of the infrared cutoff as the

soft approximation becomes more justified. In the case of decays into electrons, we

start to see the performance worsen again for values of the cutoff of Eγ,cut < 1 MeV

in the single real matrix elements, and for cutoffs as high as 10 MeV in the double

real matrix elements. This marks the region in which the two terms reach the limits

of double precision. In the real-virtual, the performance plateaus when most of

the events are described by the soft-collinear approximation, and many of the other

points are not stable enough. In the double real matrix elements, the approximation

does not work as well if one of the photons is fairly hard. This can be traced

to configurations in which this photon is quasi-collinear to the emitting lepton, a

configuration which is not well described by the soft approximation.

G.1.2 Parameter dependence

At a distributional level, our implementation of higher order corrections allows for

a number of further cross checks. Due to the mass of the leptons, the collinear
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Figure G.2: The effect of varying the cut a in the RV terms. This cut was
introduced in 5.3.2 in order to prevent numerical instabilities in
highly collinear regions of phase space. Z-boson decays into bare
electrons on the left, muons on the right.

singularity is screened and very collinear radiation is suppressed. This results in

a “dead cone”, depleted in photon radiation, at angles close to the lepton. The

extent of this region is about θ ∼ 2m`/mZ for any species of massive lepton `, and

should not be affected by higher order corrections. We plot the angle of the closest

photon with respect to the positively charged lepton in units of 2m`/mZ in Fig. G.1.

We observe that the peak of this distribution, which determines the extent of the

dead cone, is indeed not affected by the inclusion of higher order corrections. We

also note that in the decay into τ ’s, we can begin to see a pronounced deviation

in the soft-collinear approximation, brought about by neglecting the interference

contributions and hard wide-angle radiation corrections.

The NNLO corrections require further checks owing to the choices made in our

implementation. The choice of the parameter below which we choose to use the

collinear approximation in the real virtual approximation is one such choice. We

show in Fig. G.2 the radiative energy loss for a = {2, 5, 10} m2
` . We find that this

variation does not make a significant systematic difference and are thus encouraged

to use a value in this range. We performed a similar test for the parameter c that

determines the allowed scaling violation in the real-virtual matrix elements, but

found that the quality of the calculation quickly deteriorates. Thus we keep this
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Program LO NLO EW µ NLO EW e

WZGRAD 431.03(3) 437.98(03) 419.7(1.1)
SHERPA 431.38(6) 438.8(1.8) 418.8(2.1)

Table G.4: Like Table 7 in [50]. Total cross section for pp → Z/γ∗ → `+`− in
pb, at the 8 TeV LHC using ATLAS/CMS like cuts as defined in
the text, and in Section 2 of [50]. Cross sections for bare leptons are
compared.

parameter fixed at c = 0.1.

G.2 External validation of NLO EW cross section

Corrections at the NLO EW level have been implemented in a number of programs,

as outlined in the introduction. Most of these programs implement corrections

to the neutral-current (NC) and charged-current (CC) Drell-Yan cross sections in

hadron collisions. The corrections to these 2→ 2 processes contain the corrections

implemented in this work as a subset.

For the validation of the total cross sections, we choose to compare against the

implementations in WZGRAD. WZGRAD is an amalgamation of the two programs

WGRAD2 and ZGRAD2 for the calculation of electroweak corrections to the NC and

CC Drell-Yan process, respectively. It allows for a simple separation of contributions

originating from the initial state, the final state or the interference between the

two. It further provides the separation of the virtual correction into purely QED

and purely weak pieces in the case of the NC process, which allows for dedicated

comparisons.

For the validation of the generated cross section, we choose to compare against

the setup outlined in section 2 of [50]. We use the version of WZGRAD as used

in that report13. We refer to that publication for the input parameters, and the

choice of EW schemes. We note here that the cross sections are calculated using the

13The installations are available from the website of the LPCC Electroweak Precision Measure-
ments at the LHC WG, at https://twiki.cern.ch/twiki/bin/view/Main/DrellYanComparison. The
installations used in this work were retrieved on the 04.06.2018.
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Figure G.3: Plots of the charged lepton transverse momentum, p⊥,e, on the left
and the neutrino transverse momentum, p⊥,νe , on the right in the
process pp → e+νe at LO. Results from SHERPA and WZGRAD are
compared, and found to disagree in the tail of the distribution.

MSTW2008 PDF set interfaced to SHERPA through LHAPDF 6.1.6 whereas in the

review, LHAPDF 5.9.1 was used. This may lead to mild differences.

We compare the results for one of the setups described in the review, corresponding

to cuts that approximate the acceptances of either the ATLAS or CMS detector.

We require p`⊥ > 25 GeV, pν⊥ > 25 GeV and |η(`)| < 2.5. In addition, for the NC

process we ask for the invariant mass of the lepton pair to be m`` > 50 GeV and for

the CC process, we ask for the invariant mass between lepton and neutrino to be

m`ν > 1 GeV. We only provide results for the bare setup which does not put further

restrictions on the fermions.

At LO, we find good agreement between our implementation and WZGRAD.

At NLO, we compare results only containing FSR corrections, hence the results from

WZGRAD shown here are not the same as the ones quoted in [50].

In both the NC and CC processes, we find good agreement between our implement-

ation and the calculation in WZGRAD for the contribution below the infrared cutoff,

which includes the virtual corrections and the YFS form factor contribution.

In the NC process, we also find good agreement in the real contribution. The total

cross section for this process is also in agreement, and we show the results in Table

G.4.

In the CC process, we find the real contributions disagree by a ratio depending on
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Figure G.4: Plots of the charged lepton energy, El, on the left and the invariant
mass of the charged lepton and the photon, m`γ, on the right for
the decays W+ → e+νeγ on the top and W+ → µ+νµγ on the
bottom. Results from the implementation presented in this work,
σPHOTONS, and from AMEGIC integrated with the RAMBO phase
space generator, σAmegic, are compared and found to agree within
statistical uncertainties.

phase space constraints. Further investigation showed that the transverse momentum

distributions of either lepton, p⊥,`, disagree already at the LO. This behaviour is

illustrated in Figure G.3, where a clear difference in the tail of the distribution is

observed. We excluded the possibility that this difference might be caused by the

PDFs by running SHERPA with the same PDF data set as used in WZGRAD, interfaced

directly instead of via LHAPDF. This latter run showed only marginal differences

that cannot explain the factor 2 difference found in the tail of these distributions.

Despite help from the authors, this difference could not be resolved to date.

The behaviour in the transverse momenta is found to be exacerbated in the real

contribution, thus making a direct comparison of our results and the ones calculated

with WZGRAD unfeasible. We therefore fall back on several consistency checks.

Having confirmed the value of the matrix element to machine precision before, we

confirm the correctness of the phase space generation by comparing to decay events
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Figure G.5: Plots of the charged lepton transverse momentum, p⊥,e, on the left
and the invariant mass of the charged lepton and the neutrino, meνe ,
on the right for the decay W+ → e+νe(γ). Results for different
values of the infrared cutoff in the YFS formalism are exhibited,
with the results converging to a common result.

generated using AMEGIC and integrated using an implementation of the phase space

generator RAMBO [249]. RAMBO generates the phase space isotropically, and is thus

entirely independent of the approach chosen in the YFS formalism presented in this

work. In Figure G.4, we show results for the invariant mass of the charged lepton

and the photon, m`γ , as well as the energy of the charged lepton, E`, for a run with a

phase space cut m`γ > 1 GeV, finding perfect agreement between the two approaches.

This gives us confidence that our phase space generation is indeed correct.

As a final check of our implementation, we check the independence of our results

from the infrared cutoff used to define the small infrared region Ω. To this end, we

run the setup outlined in Section 6, restricting the number of real emissions to at

most one, for cutoffs ωIR = 5, 0.5, 0.05, 0.005 GeV, and exhibit some of the results in

Figure G.5. We observe that the distributions converge to a common result.

We can further confirm the independence of our result from the infrared cutoff by

plotting the dependence of a single bin against the cutoff parameter. In Figure G.6,

we show the normalized cross section in the single bin from 75 to 76.5 GeV of the

invariant mass between charged lepton and neutrino. We observe a flattening of the

distribution for lower cutoffs, while at large cutoffs the values are significantly further
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Figure G.6: Plot of the normalized cross section in the invariant mass of the
charged lepton and the neutrino binned in the range from 75 to
76.5 GeV, meνe|76.5 GeV

75 GeV , for the decay W+ → e+νe(γ). Results are
plotted against the infrared cutoff parameter ωIR used to define the
small infrared region Ω in the YFS formalism.

away. It should be noted that these results were produced under the assumption

that at most one photon was radiated. For very low cutoffs, it is expected that a

significantly larger number of photons is emitted. The interplay between the YFS

form factor and the requirement that only one photon be radiated is the reason that

we do not observe a full flattening of the distribution.
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