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Abstract 

There are many challenges involved in creating a fully autonomous vehicle capable of 

safely navigating through off-road environments. In this work we focus on two of the 

most prominent such challenges, namely scene understanding and path planning. 

Scene understanding is a challenging computer vision task with recent advances in 

convolutional neural networks (CNN) achieving results that notably surpass prior 

traditional feature driven approaches. Here, we build on recent work in urban road-scene 

understanding, training a state of the art CNN architecture towards the task of classifying 

off-road scenes. We analyse the effects of transfer learning and training data set size on 

CNN performance, evaluating multiple configurations of the network at multiple points 

during the training cycle, investigating in depth how the training process is affected. We 

compare this CNN to a more traditional feature-driven approach with Support Vector 

Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly 

challenging problem of off-road scene understanding. We then expand on this with the 

addition of multi-channel RGBD data, which we encode in multiple configurations for 

CNN input. We evaluate each of these configuration over our own off-road RGBD data 

set and compare performance to that of the network model trained using RGB data. 

Next, we investigate end-to-end navigation, whereby a machine learning algorithm 

optimises to predict the vehicle control inputs of a human driver.  After evaluating such 

a technique in an off-road environment and identifying several limitations, we propose a 

new approach in which a CNN learns to predict vehicle path visually, combining a novel 

approach to automatic training data creation with state of the art CNN architecture to map 

a predicted route directly onto image pixels. We then evaluate this approach using our 

off-road data set, and demonstrate effectiveness surpassing existing end-to-end methods. 



2 

 

Contents 

Abstract ............................................................................................................................ 1 

Contents ........................................................................................................................... 2 

List of Figures .................................................................................................................. 6 

List of Tables ................................................................................................................. 13 

Abbreviations ................................................................................................................ 14 

Statement of Copyright................................................................................................. 15 

Acknowledgements ........................................................................................................ 16 

Chapter 1 Introduction ............................................................................................. 17 

1.1 Motivation ........................................................................................................ 18 

1.2 Thesis Contributions ......................................................................................... 20 

1.3 Publications ...................................................................................................... 20 

1.4 Scope ................................................................................................................ 21 

1.5 Thesis Structure ................................................................................................ 22 

Chapter 2 Literature Review.................................................................................... 24 

2.1 Autonomous Vehicles ...................................................................................... 24 

2.1.1 Levels of Autonomy .................................................................................. 25 

2.1.2 Autonomous Road Vehicles ...................................................................... 25 

2.1.3 Off road autonomous Driving ................................................................... 28 

2.2 Convolutional Neural Networks ....................................................................... 32 

2.3 Scene Understanding ........................................................................................ 36 



3 

 

2.4 RGB-D Features ............................................................................................... 39 

2.5 Path Planning .................................................................................................... 41 

2.6 Summary .......................................................................................................... 42 

Chapter 3 Off-Road Scene Understanding ............................................................. 44 

3.1 Introduction ...................................................................................................... 45 

3.2 Approach .......................................................................................................... 46 

3.2.1 CNN Architecture ..................................................................................... 46 

3.2.2 CNN Training ........................................................................................... 47 

3.2.3 Traditional Computer Vision-Based Approach ........................................ 52 

3.3 Results .............................................................................................................. 54 

3.3.1 CNN with Partially Labelled Test Data .................................................... 55 

3.3.1.1 Pre-Training Iterations ............................................................................ 55 

3.3.1.2 Data Set Size ........................................................................................... 57 

3.3.1.3 Per Class Results ..................................................................................... 58 

3.3.2 Fully Labelled Test Images ....................................................................... 60 

3.3.3 SVM .......................................................................................................... 61 

3.4 Summary .......................................................................................................... 63 

Chapter 4 Working Towards Improving Scene Understanding by Adding 

Depth Information ........................................................................................................ 65 

4.1 Introduction ...................................................................................................... 66 

4.2 Approach .......................................................................................................... 67 

4.2.1 Segnet ........................................................................................................ 67 



4 

 

4.2.2 Data ........................................................................................................... 68 

4.2.3 Depth Features .......................................................................................... 69 

4.2.3.1 Stereo Disparity ....................................................................................... 70 

4.2.3.2 Height Above the Ground Plane ............................................................. 72 

4.2.3.3 Normal Orientation ................................................................................. 73 

4.2.3.4 Angle with Gravity .................................................................................. 74 

4.3 Results .............................................................................................................. 74 

4.3.1 RGB .......................................................................................................... 76 

4.3.2 RGB-D ...................................................................................................... 77 

4.3.3 RGB-H ...................................................................................................... 78 

4.3.4 RGB-N ...................................................................................................... 79 

4.3.5 RGB-A ...................................................................................................... 80 

4.3.6 RGB-D-H-A .............................................................................................. 81 

4.4 Summary .......................................................................................................... 82 

Chapter 5 Off Road Path Prediction ....................................................................... 84 

5.1 End to End Learning ......................................................................................... 85 

5.1.1 Implementation ......................................................................................... 85 

5.1.2 Evaluation ................................................................................................. 86 

5.2 Visual Path Prediction ...................................................................................... 88 

5.2.1 Approach ................................................................................................... 89 

5.2.1.1 Automated Dataset Creation ................................................................... 89 

5.2.1.2 Network Architectures ............................................................................ 91 



5 

 

5.2.1.3 Post Processing ....................................................................................... 94 

5.2.1.4 Evaluation Methodology ......................................................................... 95 

5.2.2 Results ....................................................................................................... 97 

5.3 Summary .......................................................................................................... 99 

5.3.1 Future Work ............................................................................................ 100 

Chapter 6 Conclusions ............................................................................................ 102 

6.1 Contributions .................................................................................................. 103 

6.1.1 Industrial Impact ..................................................................................... 104 

6.1.2 Limitations .............................................................................................. 104 

6.2 Further Work .................................................................................................. 105 

6.2.1 Data ......................................................................................................... 105 

6.2.2 Temporal Consistency ............................................................................. 106 

Bibliography ................................................................................................................ 107 

  



6 

 

List of Figures 

Figure 1.1 A vehicle being driven off-road. .................................................................... 17 

Figure 1.2 The terrain response selector in a modern Land Rover vehicle, including 'Auto' 

mode which relies on mechanical sensors to identify terrain type. ................................. 19 

Figure 2.1 Stanley competing in the 2005 DARPA Grand Challenge [13]. ................... 28 

Figure 2.2 An illustration of the processing stages in the vision system of Stanley [13]. 

(a) a colour image received from the vehicle mounted camera; (b) the quadrilateral 

defined from LIDAR data with pixels classified as drivable (red) and not drivable (green); 

(c) unthresholded road probability values; (d) horizon detection step, used to remove 

irrelevant pixels. .............................................................................................................. 29 

Figure 2.3 The Terramax autonomous truck that entered the 2005 DARPA Grand 

Challenge [5]. .................................................................................................................. 31 

Figure 2.4 Results from the path detection approach of Terramax [38]. ........................ 32 

Figure 2.5 The CNN architecture proposed by Krizhevsky et al [11], illustrating how 

processing is divided between two GPUs. ...................................................................... 33 

Figure 2.6 Images from the ImageNet [45] dataset embedded by Karpathy [50] using t-

Distributed Stochastic Neighbour Embedding (t-SNE) [51] such that images with similar 

labels should be close to each other. ............................................................................... 34 

Figure 2.7 Fast R-CNN [58] outputs bounding box coordinates for detected objects. ... 35 

Figure 2.8 The approach of Szegedy et al [77] first detects regions of interest at low 

resolution then refines detections at higher resolution in cropped images. .................... 37 



7 

 

Figure 2.9 U-net [81] was motivated by biological image segmentation, however can 

easily be adapted to multi-class scene segmentation tasks. a. raw data b. ground truth 

segmentation c. u-net output d. pixelwise loss weighting to improve border detection. 38 

Figure 2.10 A comparison of off-road scene classification approaches from [73].  

blue=sky, dark green=foliage, light green=grass, yellow=sand, grey=gravel. ............... 39 

Figure 2.11 Example images from the NYU Depth dataset [82]. Left: RGB image Center: 

Depth image Right: Ground truth scene class labels. ..................................................... 40 

Figure 2.12 The approach of [28] detects lane markings using multiple models intended 

for different road types. ................................................................................................... 41 

Figure 2.13 Example images from the data used to test DAVE [39]. The black bars 

represent predicted steering direction and magnitude. .................................................... 42 

Figure 3.1 Example off-road images along with corresponding semantic segmentations, 

whereby every pixel is assigned one of eight labels: grass (light green), dirt/mud (grey), 

water (light blue), bushes (dark green), trees (brown), sky (dark blue), paved road (dark 

grey) or man-made obstacle (red). .................................................................................. 44 

Figure 3.2 Architecture of the Segnet Convolutional Neural Network [1]. The encoder 

network, consisting of convolution and pooling layers, is followed by a mirror-image 

decoder network, consisting of convolution and up-sampling layers. ............................ 47 

Figure 3.3 Example images from the Camvid data set along with corresponding Segnet 

output with each pixel assigned one of eleven class labels: road (dark pink), vehicles (dark 

purple), pavement (light blue), buildings (red), sky (grey), poles (yellow), trees (light 

gold), cyclist (turquoise), road signs (light pink), fence (dark blue), pedestrian (dark gold).

 ......................................................................................................................................... 48 



8 

 

Figure 3.4 Example images from our off-road data set along with corresponding partially 

labelled ground truth ....................................................................................................... 49 

Figure 3.5 Partial and fully labelled versions of the same image from our off-road data 

set. ................................................................................................................................... 51 

Figure 3.6 An example segment from our data set with a grid overlaid to illustrate feature 

point distribution. Points highlighted in red are determined to be within segment bounds 

and subsequently have their local features computed for classification. ........................ 52 

Figure 3.7 Results from the CNN after 30,000 iterations of pre-training and 10,000 

iterations of training with the full off-road dataset. The middle row shows the fully 

annotated test images for comparison ............................................................................. 54 

Figure 3.8 Comparison of training progress for networks that have undergone different 

amounts of pre-training. .................................................................................................. 56 

Figure 3.9 Comparing pre-trained and non-pre-trained networks using different sized 

subsets of our off-road data set. ...................................................................................... 57 

Figure 3.10 Per class statistics for the CNN classifier. As well as class precision and 

recall, we plot the number of pixels comprising each class within the training data as a 

proportion of the total number of labelled pixels in the set. ........................................... 59 

Figure 3.11 Classification results using the fully labelled test set, comparing networks 

that have undergone different amounts of pre-training on the Camvid urban data set. .. 60 

Figure 3.12 Results from SVM classifier using various feature configurations. K 

represents the number of clusters used for bag-of-words encoding, g is the density of 

feature grid, i.e. number of pixels in both the x and y direction between feature points, 

and r is the radius, in pixels, of the area that each feature point takes account of when 

building its SURF descriptor ........................................................................................... 61 

https://d.docs.live.net/4ab082075d95c68c/PhD/Thesis/corrections/Thesis.docx#_Toc524617012
https://d.docs.live.net/4ab082075d95c68c/PhD/Thesis/corrections/Thesis.docx#_Toc524617012
https://d.docs.live.net/4ab082075d95c68c/PhD/Thesis/corrections/Thesis.docx#_Toc524617012


9 

 

Figure 3.13 Training progress of the CNN after different amounts of pre-training, 

measured as accuracy on the segment classification task for comparison to the SVM 

classifier. ......................................................................................................................... 62 

Figure 3.14 Example input and output of our SURF/SVM based approach. Images are 

segmented before classifier input, and in this case only those segments comprising the 

traversable surface area are shown with colour-coded class labels. ............................... 63 

Figure 4.1 Example images from our off-road data set. a. RGB colour image from the left 

lens of our stereo camera. b. manually labelled ground truth. c. stereo disparity image. d. 

Height map encoding each pixel height above an assumed ground plane. e. Angle with 

gravity map, encoding the local surface orientation difference from an assumed gravity 

vector at each pixel. f. Normal map, encoding local surface orientation at each pixel as a 

3 dimensional vector, with the absolute X value represented by the blue channel, Y green 

and Z red. Depth feature encodings in the top row are computed by ASW while the bottom 

row are computed by SGBM. ......................................................................................... 65 

Figure 4.2 An overview of the object detection and segmentation approach of Gupta et al 

[63]. Colour and depth information are input to separate CNNs to extract relevant features 

which are then classified by SVM. ................................................................................. 66 

Figure 4.3 An example of a rectified image pair from our off-road data set. ................. 68 

Figure 4.4 An example of a labeled image from our off-road data set. .......................... 69 

Figure 4.5 Example stereo disparity images created using SGBM (left) and ASW (right) 

approaches. Brighter pixels represent scene regions that are closer to the camera. ........ 70 

Figure 4.6 An example of a height map, H. Darker pixels are further from the assumed 

ground plane. ................................................................................................................... 72 



10 

 

Figure 4.7 An example of a normal image, N. The blue channel represents the X value, 

green Y and red Z. ........................................................................................................... 73 

Figure 4.8 An example of an angle-with-gravity image, A. ........................................... 74 

Figure 4.9 Example output for the same image from each of our models after 20,000 

training iterations. The differences between model outputs appear very small, a 

hypothesis supported by our quantitative evaluation. ..................................................... 75 

Figure 4.10 Example output from the CNN model using RGB input. Left - input image, 

middle - output, right - ground truth. .............................................................................. 76 

Figure 4.11 Training progress of the CNN using RGB images. Peak performance was 

reached after about 5000 training iterations. ................................................................... 77 

Figure 4.12 Example output from the CNN model using RGB-D input. Left to right - 

input RGB image, depth image, output, ground truth. Top row uses SGBM disparity, 

bottom row uses ASW disparity. .................................................................................... 77 

Figure 4.13 Training progress of the network models using RGB-D images, with disparity 

computed by both SGBM and ASW methods. RGB results are also shown for 

comparison. ..................................................................................................................... 78 

Figure 4.14 Example output from the CNN model using RGB-H input. Left to right - 

input RGB image, height image, output, ground truth. Top row uses SGBM disparity, 

bottom row uses ASW disparity. .................................................................................... 78 

Figure 4.15 Training progress of the network models using RGB-H images, with height 

derived from both SGBM and ASW algorithms. RGB results are also shown for 

comparison. ..................................................................................................................... 79 



11 

 

Figure 4.16 Example output from the CNN model using RGB-N input. Left to right - 

input RGB image, normal image (blue = X, green = Y, red = Z), output, ground truth. 

Top row uses SGBM disparity, bottom row uses ASW disparity................................... 79 

Figure 4.17 Training progress of the network models using RGB-Nx-Ny-Nz images, with 

normal vectors derived from both SGBM and ASW algorithms. RGB results are also 

shown for comparison. .................................................................................................... 80 

Figure 4.18 Example output from the CNN model using RGB-A input. Left to right - 

input RGB image, angle with gravity image, output, ground truth. Top row uses SGBM 

disparity, bottom row uses ASW disparity. .................................................................... 80 

Figure 4.19 Training progress of the network models using RGB-A images, with angle 

with gravity derived from both SGBM and ASW algorithms. RGB results are also shown 

for comparison. ............................................................................................................... 81 

Figure 4.20 Example output from the CNN model using RGB-D-H-A input. Left to right 

- input RGB image, D-H-A image (blue = D, green = H, red = A), output, ground truth. 

Top row uses SGBM disparity, bottom row uses ASW disparity................................... 81 

Figure 4.21 Training progress of the network models using RGB-D-H-A images, derived 

from both SGBM and ASW disparity. RGB results are also shown for comparison. .... 82 

Figure 4.22 Example colour and depth images from the NYU Depth data set [82](left) 

and from our off-road data set (right). ............................................................................ 82 

Figure 5.1 A frame from a video demonstration of the Nvidia end to end autonomous 

driving approach [102]. ................................................................................................... 84 

Figure 5.2 The CNN architecture proposed by Bojarski et al [2] for end to end learning.

 ......................................................................................................................................... 85 



12 

 

Figure 5.3 Example images from our off-road data set along with a visualisation of 

corresponding ground truth steering angle. ..................................................................... 86 

Figure 5.4 Steering angle values output by the End to End CNN for our test data plotted 

against ground truth......................................................................................................... 87 

Figure 5.5 An off-road vehicle being driven as part of our data collection process. A 

stereoscopic camera rig attached to the roof of the vehicle was used to capture data in a 

wide variety of off-road environments. ........................................................................... 89 

Figure 5.6 An example image sequence from our data set: starting from frame f0, 

transformation matrices [T1] to [Tn]  are computed for camera position in n subsequent 

frames, from which vehicle footprint can be calculated and translated back into image 

space so that path pixels can be labelled. Top row contains original frames f0 to fn, while 

bottom row shows aggregate computed footprint at each frame overlaid onto f0. ......... 90 

Figure 5.7 An example of an FCN for performing a semantic segmentation task [80] .. 92 

Figure 5.8 U-net CNN architecture [81]. ........................................................................ 93 

Figure 5.9 Example CNN output - top row shows C1, bottom row shows corresponding 

C0 before post-processing. .............................................................................................. 94 

Figure 5.10 Example output path confidence maps, before (top row) and after (bottom 

row)post processing. In addition to smoothing the output with Gaussian kernel, 

unconnected path segments have been removed. ............................................................ 95 

Figure 5.11 Example images from our test data set. Left: input, centre: raw CNN output 

prior to post-processing, right: ground truth ................................................................... 97 

 



13 

 

List of Tables 

Table 3.1 Accuracy of the Segnet CNN on Camvid test data at the points when snapshots 

are taken to perform transfer learning ............................................................................. 55 

Table 3.2 Confusion matrix of CNN output over our test data set. Values shown are 

labelled pixels as a proportion of total pixels belonging to ground truth class. .............. 58 

Table 4.1 Best overall class accuracy observed from each trained network model over our 

off-road data set............................................................................................................... 76 

Table 5.1 For each network type used we display the results obtained from the raw output 

of a model initialised with random weights, along with our attempts to improve on these 

by pre-training on a semantic segmentation task and post-processing the output data in 

the manner detailed above. .............................................................................................. 99 

 



14 

 

Abbreviations 

 

Advanced Driver Assistance System ADAS 

Autonomous Land Vehicle in a Neural Network ALVINN 

Adaptive Support Weights ASW 

Convolutional Neural Network CNN 

Defence Advanced Research Projects Agency DARPA 

DARPA Autonomous Vehicle DAVE 

Fully Connected FC 

Fully Convolutional Network FCN 

Frames Per Second fps 

Global Positioning System GPS 

Graphics Processing Unit GPU 

Imagenet Large Scale Visual Recognition Challenge ILSVRC 

Inertial Measurement Unit IMU 

Intersection Over Union IoU 

Long Short-Term Memory LSTM 

Red Green Blue RGB 

Red Green Blue Depth RGB-D 

Recurrent Neural Network RNN 

Semi-Global Block Matching SGBM 

Speeded Up Robust Features SURF 

Support Vector Machine SVM 



15 

 

Statement of Copyright 

 

 

Copyright © 2018 by Christopher Holder 

 

The copyright of this thesis rests with the author. No quotation from it should be published 

without the author's prior written consent and information derived from it should be 

acknowledged. 



16 

 

Acknowledgements 

I would like to express my appreciation to my supervisor, Professor Toby Breckon, whose 

time and support for the past four and a half years have made this possible. Thanks must 

also be directed towards all past and present inhabitants of the Lovelace Lair, whose many 

ideas, distractions, and proof-reading skills have proven invaluable. 

During this work I was offered the opportunity to spend time at the A*STAR Institute for 

Infocomm Research, for which I am very grateful. I am particularly thankful to Dr Xiong 

Wei for making me feel welcome within the Knowledge Assisted Vision lab. 

I would like to acknowledge the industrial sponsor Jaguar Land Rover for providing the 

initial motivation for this work as well as their financial support. Particular thanks should 

go to Anna Gaszczak and Dereck Webster for their assistance in collecting much of the 

data used for this work. 

Finally, I would like to express my gratitude to my family for all their help and support, 

in particular Ruth for always being there and for always understanding, even when we 

are on opposite sides of the world. 



17 

 

Chapter 1  

 

Introduction 

This thesis addresses two major research challenges relating to autonomous driving in an 

off-road environment, specifically scene understanding and path planning.  

 

Figure 1.1 A vehicle being driven off-road. 

Our scene understanding work involves the training of a classifier to label the constituent 

parts of an image of an environment. We compare a traditional computer vision approach, 

utilising an assortment of manually selected features to train a support vector machine 

(SVM) based classifier, with a state-of-the-art deep convolutional neural network (CNN) 

based classifier [1] both trained on our own off-road dataset (Chapter 3). We then 

investigate whether classification performance can be improved with the addition of 

depth features, evaluating several approaches to encoding depth information computed 

from stereoscopic disparity (Chapter 4). 

Off-road path planning involves the identification of a safely traversable route through an 

unknown environment. We evaluate a state-of-the-art approach that uses a deep 

convolutional neural network to predict the vehicle control inputs made by a human driver 
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from a single image taken by a forward-facing vehicle-mounted camera [2] We then 

propose to improve on this approach through our own visual path prediction method, 

which takes the same forward-facing images and trains a deep convolutional neural 

network to map a path directly onto image pixels (Chapter 5). 

1.1 Motivation 

Autonomous driving is an area of research that has received significant recent attention 

from both academia and industry [3] [4], with clear benefits in terms of safety and 

convenience and decreases in congestion and environmental impact associated with 

vehicles capable of operating without a human driver. While this work is almost 

exclusively focused on the on-road environment, where inherent rules and structures 

remove much of the challenge associated with off-road driving, there are many 

applications, such as military transport [5], search and rescue, agriculture [6], and even 

planetary rovers [7] where there is a requirement for a vehicle to be capable of navigating 

unstructured environments autonomously. 

There are many challenges involved in creating a fully autonomous vehicle capable of 

safely navigating any off-road environment that a human driver could handle, however 

two of the most prominent such challenges are scene understanding and path planning. 

Scene understanding is necessary for providing context to the environment surrounding 

a vehicle, and in the off-road environment serves two purposes: Terrain classification and 

obstacle classification. Classification of terrain [8] [9] can aid in the identification of 

traversable routes and selection of mechanical parameters, such as those for suspension, 

gearbox and differential, appropriate for current levels of grip and roughness. Current off-

road terrain response driver assistance systems, such as that used in Land Rover vehicles 

as shown in Figure 1.2, either require the driver to manually select the current terrain 

type, or rely on mechanical feedback, such as wheel slip or suspension travel, to identify 
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terrain characteristics. Classification of obstacles [10] can help to differentiate between 

those that can be driven over, such as low, flat rocks, or through, such as foliage, and 

those that cannot, such as tree trunks.  

 

Figure 1.2 The terrain response selector in a modern Land Rover vehicle, including 'Auto' mode which relies on 

mechanical sensors to identify terrain type. 

 For the problems of both terrain and obstacle identification, we propose a deep 

convolutional neural network based approach, as similar methods have demonstrated 

state-of-the-art performance in other image classification tasks [11] [12]. 

Path planning involves identifying the optimal route through the immediate environment 

[13]. On-road solutions are generally only required to identify lane edges and place the 

vehicle between them [14], however off-road environments often do not contain clearly 

marked lanes and can include any number of potential hazards that must be considered. 

The variability and lack of structure inherent in such an environment mean that a skilled 

human driver will often rely on experience and intuition, potentially limiting the utility 

of any hard-coded rule-based approach. Whereas neural networks, as systems influenced 

by the architecture of the human brain, have the potential to excel at this kind of task by 

analysing large amounts of data demonstrating the decisions taken by human drivers and 

learning the patterns and features that lead to those decisions. 



20 

 

Any approach we propose, for either scene understanding or path planning, must feasibly 

be able to run in real-time on a vehicle, placing limitations on weight, cost, size, and 

power usage, on both computing devices and sensors used. The advent of powerful 

portable GPU solutions, such as Nvidia’s Tegra system-on-a-chip [15], has introduced 

the possibility to deploy complex deep learning models onto embedded devices that can 

be installed in vehicles to process sensor data in real-time. For input data, we use images 

taken by a single colour camera, keeping cost, weight, and power requirements low. 

1.2 Thesis Contributions 

The contributions in this work advance the state of the art in the following areas: 

• Adapting state-of-the-art deep learning techniques to the problem of off-road 

scene segmentation and classification (Chapter 3). 

• Evaluating two novel approaches aimed at improving off-road scene segmentation 

and classification performance: stereoscopic depth features and temporal consistency 

(Chapter 4). 

• Creating and evaluating a novel approach to off-road path planning, by training a 

convolutional neural network to visually predict future vehicle path using data created 

autonomously by visually tracking a human-driven vehicle (Chapter 5). 

1.3 Publications 

Results from this work were published as the following: 

• Christopher J. Holder, Toby P. Breckon, and Xiong Wei. "From on-road to off: 

transfer learning within a deep convolutional neural network for segmentation and 

classification of off-road scenes." 14th European Conference on Computer Vision 

Workshops, pp. 149-162, Springer International Publishing, 2016. 
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• Christopher J. Holder and Toby P. Breckon. “Encoding Stereoscopic Depth 

Features for Scene Understanding in Off-Road Environments.” 15th International 

Conference on Image Analysis and Recognition, pp. 1-8, Springer International 

Publishing, 2018 

• Christopher J. Holder and Toby P. Breckon. “Learning to Drive: Using Visual 

Odometry to Bootstrap Deep Learning for Off-Road Path Prediction.” Intelligent 

Vehicles Symposium, pp. 1-7, IEEE, 2018 

1.4 Scope 

The scope of this work is limited by several factors, mainly the availability of data and 

hardware as well as the priorities of the project’s industrial sponsor. 

No suitable datasets are publicly available, and so all data used to train and evaluate the 

approaches detailed in this work have been collected specifically for this work. This limits 

both the amount and variability of the available data, which was all captured within rural 

environments in the United Kingdom under a limited set of weather conditions. As such, 

work conducted using this data is intended only to demonstrate the efficacy of the 

described approaches in similar environments under similar conditions. Given additional 

datasets, this work could potentially be expanded on to function under other 

environmental conditions, however this is beyond the scope of this project. 

All the data used in this work was captured using RGB stereoscopic cameras. Data from 

additional sensing equipment, such as LIDAR, RADAR or inertial measurement unit 

(IMU) could be used to supplement the collected data, either as additional input 

information or as additional ground truth to better evaluate results. However, one of the 

goals of the industrial sponsor of this work was to identify how much could be achieved 

using visual data alone, due to availability and cost considerations of other sensors and 

the ease with which cameras can be integrated with other vehicle systems. 
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1.5 Thesis Structure 

Chapter 2 of this thesis will review the existing literature relating to autonomous driving, 

both on- and off-road, and deep learning, specifically convolutional neural networks as 

applied to scene segmentation and labelling problems. The current state of the art in terms 

of scene understanding and off-road path planning will be investigated extensively, and 

the limitations of current methods identified and discussed. 

Chapters 3 to 5 will each discuss one of the three problems this work sets out to address. 

In Chapter 3 we discuss scene labelling, comparing a traditional computer vision 

approach, based on SURF features, K-Means clustering and SVM classification, to a 

state-of-the-art CNN-based scene labelling technique developed for urban road scene 

segmentation and classification [1], and evaluate the performance of both using our own 

challenging off-road dataset. 

 In Chapter 4 we discuss the methods we evaluated in our attempts to further improve 

performance of our chosen CNN-based approach to off-road scene labelling. We utilised 

stereoscopic disparity to compute several sets of depth features, including height and 

normal orientation, which we concatenated to the existing RGB data for CNN input, 

yielding slightly improved classification results. 

In Chapter 5 we discuss path planning. We select a state-of-the-art approach, involving 

training a CNN to predict steering input from a single monocular image, that has 

demonstrated good performance in structured on-road environments, and re-train it using 

our own dataset to evaluate its performance in a more challenging off-road environment. 

After identifying several limitations of this technique, we propose our own novel visual 

path-prediction method, in which a CNN learns to segment an off-road vehicle's future 

path within image space, using a stereoscopic visual odometry technique to autonomously 

create training data. 
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Finally, in Chapter 6 we summarise the results of the previous three chapters and discuss 

the implications and potential future directions of the work. 
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Chapter 2  

 

Literature Review 

A huge body of research has been conducted in the field autonomous driving, from both 

academia and the automotive industry, with much notable work in the areas of scene 

understanding [4] and road detection [16]. However, the more challenging problem of 

off-road autonomous driving has received comparatively little attention. In the off-road 

environment, path planning can be much more difficult than on-road, due to uneven 

terrain, hidden obstacles and an overall lack of structure, however there are many real-

world applications for such technology, including in agriculture [17], military [10], and 

planetary exploration [18]. Many recent works in the field make use of Convolutional 

Neural Networks (CNN), which have demonstrated unprecedented performance at a 

multitude of image classification tasks [11], revolutionising computer vision research. 

Loosely based on the biological brain, a CNN applies a series of learned convolutions to 

an input signal to generate an output. In this work, CNN based approaches are applied to 

the problems of off-road scene understanding and path planning, and as such this chapter 

discusses the current state-of-the-art in these areas as well as in CNN research in general.  

2.1 Autonomous Vehicles 

Vehicles capable of driving themselves has long been a desirable goal for governments, 

vehicle manufacturers and transportation industries, responsible for a significant body of 

research over several decades [18] [19] [20]. The main benefits relate to safety – a 

majority of vehicle accidents are the result of human factors [21] – and economics – 

training and employing professional drivers is costly. Other benefits include the decreased 

environmental impact of autonomous cars potentially being shared by many users rather 
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than owned and used by one, and the gains in efficiency and convenience that comes with 

vehicles able to coordinate and communicate traffic information and plan optimal routes. 

2.1.1 Levels of Autonomy 

In 2014 the Society of Automotive Engineers published a taxonomy for classifying 

vehicle autonomy levels [22], comprising six levels broadly as follows: 

• Level 0 – the vehicle is under full control of a human driver, although may 

potentially have autonomous warning and intervention systems. 

• Level 1 – the vehicle is capable of either autonomous steering or autonomous 

acceleration and braking, while a human must control all other functions. 

• Level 2 – the vehicle can autonomously accelerate, brake and steer under certain 

conditions but a human driver must monitor the driving environment and be ready to 

intervene at any time. 

• Level 3 – the vehicle can autonomously accelerate, brake and steer under certain 

conditions and is capable of monitoring the driving environment, however it may at times 

require a human driver to intervene. 

• Level 4 – the vehicle is capable of performing all driving tasks autonomously but 

under certain circumstances may request human intervention, however unlike at level 3, 

if a human driver does not intervene when requested the vehicle is capable of safely 

leaving the road and coming to a stop. 

• Level 5 – the vehicle is capable of performing all driving tasks that a human driver 

could perform with no need for human intervention. 

2.1.2 Autonomous Road Vehicles 

Many manufacturers currently sell vehicles with level 2 capabilities [23] [24], in 2017 

Audi launched a level 3 system in their A8 model [25], and several prototype level 4 
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systems are being developed and tested [26] [27]. Commercially available level 2 systems 

generally rely on an array of vision, and radar sensors, whereby colour imagery is 

typically used to detect lane markings and road boundaries to inform steering decisions, 

and radar is used to detect the location and speed of other vehicles to inform acceleration 

and braking decisions. A front-facing stereo camera is often used to supplement radar 

sensors and detect obstacles such as pedestrians so that automated emergency braking 

system can be activated, while the level 3 system implemented by Audi also includes a 

laser scanner to provide more robust information about surrounding traffic. 

Detection of lane markings and road edges is vitally important for any autonomous 

vehicle that navigates urban or highway environments. The visually distinctive pattern of 

brightly coloured markings contrasting with a dark road surface typically makes the 

problem of their detection trivial, as demonstrated by the significant body of work in this 

area going back more than twenty years [20] [28] [29]. Generally, these approaches take 

a grayscale image from a camera mounted at the front of the vehicle as input, extract the 

region of interest, i.e. the road surface directly in front of the vehicle, carry out a 

perspective transform to give a top-down view of this road surface, perform a Canny edge 

detection to find regions of high contrast, such as the boundary of lane markings, and 

finally apply a Hough transform to identify edge pixels that form consistent lines, from 

which current lane boundary lines can be determined. This approach forms the basis of 

many modern driver assistance systems, including lane departure warning, which notifies 

a driver if their vehicle approaches a lane boundary, lane keeping systems, which will 

actively steer a vehicle back into its lane if it approaches a boundary, and level 1, 2 and 3 

autonomy systems, which constantly monitor lane boundaries and attempt to maintain a 

course as close as possible to the centre of the lane. Other approaches include that of [30] 
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which proposes a RANSAC based method combined with Kalman filtering to increase 

robustness against varying road conditions. 

Obstacles, such as other vehicles and pedestrians, are usually detected through either 

laser, radar, or stereoscopic vision-based sensors. Both radar and laser rangefinders are 

active sensors, measuring some property of a reflected electromagnetic signal originally 

emitted from the vehicle. The distance to an object can be calculated based on the time 

taken for the emitted signal to be reflected. Stereoscopic sensors are passive sensors, 

relying only on light already present in the environment. The distance to an object can be 

computed based on the difference, or disparity, in its location within the images captured 

by two cameras positioned a known distance apart.  On current production vehicles, the 

information from these sensors can be used to inform adaptive cruise control systems, 

which adjust vehicle speed based on relative speed and proximity of other vehicles, and 

autonomous emergency braking, which is able to slow or stop a vehicle if an obstacle is 

detected in its path. 

Significant computational power is required if the data generated by these sensors is to 

be processed in real-time, a problem compounded by the size and power limitations of 

vehicular platforms. Traditionally integrated circuits would be built specifically for the 

task: Mobileye, a company that was bought by Intel in 2017 [31], has been producing its 

EyeQ system-on-chip since 2008, initially offering advanced driver assistance systems 

(ADAS) and working towards chips capable of level 5 autonomous driving by 2020 [32]. 

Portable computer systems, such as the Nvidia Drive PX-series [33] which integrate 

GPUs to greatly speed up computer vision and deep learning algorithms, offer greater 

flexibility. Drive-PX based systems are currently used by several vehicle manufacturers 

including Toyota [34] and Tesla [35] and will be a vital component of the autonomous 

vehicles used in the Roborace motor racing series [36].  
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In 2016 [37] Nvidia demonstrated a convolutional neural network running on their 

hardware performing real-time detection of multiple classes relevant to an on-road 

environment. Two versions of the network were shown, producing either bounding boxes 

or per-pixel labels as output. Also in 2016, Nvidia demonstrated their end-to-end 

autonomous driving approach [2], whereby a neural network learned to predict steering 

inputs after training with data demonstrating human driving. This end-to-end system was 

demonstrated in an autonomous road vehicle running on a Drive-PX 2 system. 

2.1.3 Off road autonomous Driving 

While much recent work has focused on autonomous road vehicles for civilian 

transportation, the off-road environment has been subject to relatively little research. This 

may be partly because off-road driving poses significant additional challenges: the lack 

of standardised structure and features such as lane markings make the detection of 

traversable paths more difficult; parameters of different terrain types such as grip and 

roughness require consideration; obstacles, both positive (for example rocks and trees) 

and negative (holes and dips in terrain) that could impede progress need to be detected 

[38]. However, a large amount of early autonomous vehicle research was motivated by 

military applications, for which off-road environments are a major factor. 

 

Figure 2.1 Stanley competing in the 2005 DARPA Grand Challenge [13]. 
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In 1989 Pomerleau et al [19] presented their Autonomous Land Vehicle in a Neural 

Network (ALVINN) system, supported by the United States military. They trained a 3-

layer artificial neural network to output the direction in which a vehicle should steer given 

an image from a camera mounted at the front of that vehicle along with laser rangefinder 

data, and demonstrated their proposed system on the Carnegie Mellon Navlab vehicles in 

both on- and off-road environments. The main contribution of this work was the 

introduction to the autonomous driving literature of what would become known as ‘end-

to-end learning’, whereby a neural network learns to control vehicle movement through 

training data capturing human control of that vehicle. In 2006, Muller et al [39] built on 

this idea with the DARPA Autonomous Vehicle (DAVE), which used a convolutional 

neural network to autonomously control an off-road radio-controlled vehicle. 

In 2004, the United States Defence Advanced Research Projects Agency (DARPA) ran 

the first of their Grand Challenges, a competition tasking autonomous vehicles with 

completing a 240Km route in California. None of the entrants completed the course 

during the inaugural contest, however five of the twenty-three teams who entered the 

2005 Grand Challenge reached the finish line.  

 

Figure 2.2 An illustration of the processing stages in the vision system of Stanley [13]. (a) a colour image received 

from the vehicle mounted camera; (b) the quadrilateral defined from LIDAR data with pixels classified as drivable 

(red) and not drivable (green); (c) unthresholded road probability values; (d) horizon detection step, used to remove 

irrelevant pixels. 

Of the vehicles that successfully completed the course, Stanley, built by Thrun et al at 

Stanford University [13] was fastest.  Based on a Volkswagen Touareg SUV modified to 

increase resilience to rough terrain and allow computer control of all driver functions, 
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Stanley, shown in Figure 2.1, senses its environment using five laser rangefinders, a 

colour camera, and two radar sensors, all mounted on the vehicle roof. Data is also 

collected from Global Positioning System (GPS), compass, and inertial measurement unit 

(IMU) sensors, and processing is carried performed by an array of six computers housed 

in the boot. 

While the overall route of the DARPA Grand Challenge is predetermined and followed 

using GPS data, the local path planning approach of Stanley is based on sensed data from 

the laser range finders and camera mounted on the vehicle. Laser rangefinder data is used 

to build a 3D map of the environment in front of the vehicle, from which any two nearby 

points whose vertical distance is greater than a threshold can be considered an obstacle. 

Ground containing obstacles is considered ‘occupied’, while flat ground is considered 

‘drivable’. To find a safe path through the remaining drivable ground, a relatively flat 

quadrilateral between 10 and 20 metres in front of the vehicle is selected from the laser 

rangefinder data, for which a gaussian mixture model of pixel colour can be built and 

updated frame by frame as the vehicle progresses. This model is then used to identify 

visually similar areas of terrain which can be considered traversable and a path is 

propagated forward from the safe area, as shown in Figure 2.2. 
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Figure 2.3 The Terramax autonomous truck that entered the 2005 DARPA Grand Challenge [5]. 

Another competitor that completed the course, albeit much more slowly, was TerraMax, 

shown in Figure 2.3, developed by a team led by Oshkosh Corporation, a builder of 

military vehicles [5]. Based on an Oshkosh Medium Tactical Vehicle Replacement, 

Terramax is a six-wheel-drive tactical truck that senses its environment using an array of 

LIDAR sensors and a trinocular vision system. Stereoscopic disparity is used to detect 

orientation of terrain in front of the vehicle so that a safe path can be detected along with 

any obstacles present. Path planning is achieved through a clustering method which 

groups homogenous pixels up to 50 metres in front of the vehicle. Each of these clusters 

is then assigned a probability that it is part of the road using a Bayesian network that 

considers the visual properties of the cluster as well as current vehicle state, as shown in 

Figure 2.4. Obstacles are marked at any point where computed disparity deviates 

significantly from detected ground orientation, and precise obstacle location is refined 

through fusing stereo triangulation and LIDAR data.  
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Figure 2.4 Results from the path detection approach of Terramax [38]. 

2.2 Convolutional Neural Networks 

The idea of an Artificial Neural Network was first proposed by McCulloch and Pitts [40], 

who described how connections in the human brain might function using a computational 

model. A significant body of further work built upon these ideas over the next few 

decades [41] [42], however by the turn of the century other approaches such as Support 

Vector Machine (SVM) [43] and Decision Tree based methods [44] came to prominence. 

In 2012, Krizhevsky et al. [11] brought about a resurrection of sorts for the neural 

network, with the Alexnet architecture illustrated in Figure 2.5. The era of Deep Learning, 

as it has become known was made possible by two recent advances: The availability of 

relatively cheap massively parallel processing, in the form of Graphics Processing Units 

(GPU) initially designed to perform the many simultaneous graphical computations 

required by 3D video games, has made it possible to train complex models that would 

previously have taken an infeasibly long amount of time; The availability of large datasets 

with which to train such models, with the advent of so-called ‘Big Data’. 
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Figure 2.5 The CNN architecture proposed by Krizhevsky et al [11], illustrating how processing is divided between 

two GPUs. 

The ImageNet dataset [45], comprising about 14 million images (some examples of which 

are shown in Figure 2.6) classified using a hierarchical structure with about 22,000 labels 

at the highest level of granularity, was created to train and evaluate object classification, 

detection and localisation approaches. The Imagenet Large Scale Visual Recognition 

Challenge (ILSVRC) [46] is an annual series of contests that has been used to assess such 

approaches since 2010, using a subset of the Imagenet dataset comprising about 1.5 

million images and 1000 classes. ILSVRC broadly consists of three challenges: 

classification, localisation and detection. In the classification contest, each method should 

output a list of up to 5 classes it believes are most likely to be present in an image. For 

each image there is a single ground truth label, and prediction error is counted as 0 if this 

label is included within the 5 predictions, or 1 if it is not. Before the advent of Deep 

Learning, the best classification result was achieved by [47] in 2011, with a top-5 

classification error of 25.8%. In 2012, Krizhevsky et al. [11] achieved a classification 

error of 16.4% on the same challenge using a deep learning based approach. As of 2017, 

the best performing approach, Squeeze-and-Excitation Networks by Hu et al. [48], 

achieved an error of less than 2.5%. In 2014 Karpathy [49] demonstrated that a human 
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can perform the same task with a classification error of 5.1%, suggesting CNN based 

approaches are now capable of greater-than-human performance at this particular task. 

 

Figure 2.6 Images from the ImageNet [45] dataset embedded by Karpathy Invalid source specified. using t-

Distributed Stochastic Neighbour Embedding (t-SNE) [51] such that images with similar labels should be close to 

each other. 

Generally, CNN architectures for addressing this task are designed along broadly similar 

principals [52] [11] [53]. Images are convolved with a series of kernels, each populated 

with values optimised during training. Interspersed between these convolutions are 

nonlinear activation functions, which determine whether a particular value should be 

passed onto the next layer of the network, and pooling operators, that downsample their 

input by a given scale, both to reduce the number of parameters required by the network 

and so that later convolutions are receptive to a larger area of the original input. These 

operators are often followed by several Fully Connected (FC) layers, in which every entry 

in the input data is connected to every entry in the output, essentially a convolution 

operation where the kernel size matches the dimensions of the input data. An FC layer 

discards spatial information that might otherwise be retained by standard convolutions, 

however it ensures output takes account of the entire feature map generated by previous 

layers. The output of the final network layer is a one-dimensional vector of floating point 
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values of length c, where c is the number of possible class labels that could be assigned 

to an image, with each entry describing the network confidence that the respective label 

is the correct one.  

During training, the network will be run for many thousands of iterations using data for 

which ground truth output is known. The generated class confidence vector that is output 

for each image is normalised by softmax function so that training loss can be calculated 

against this ground truth. The loss is then backpropagated through the network using 

gradient descent so that the parameters of each layer can be tweaked, and training 

continues until parameters are deemed to be optimised. 

A massive body of work has extended this basic formula by altering the number and order 

of network layers [54] [55], inserting additional operations, such as batch normalisation 

[56], which normalises the data between layers such that each batch has a mean of 0 and 

a standard deviation of 1, regularising the input to subsequent layers and increasing the 

speed with which the network optimises; or dropout [57], which sets randomly selected 

values within the data to zero to reduce the likelihood of overfitting.  

 

Figure 2.7 Fast R-CNN [58] outputs bounding box coordinates for detected objects. 

Approaches that have extended this one image to one label relationship include [59] 

which assigns multiple labels to a single image, for example when multiple different 

objects are present; [58], shown in Figure 2.7,  which generates coordinates for bounding 
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boxes to localise detected objects; [1] which assigns a label to every pixel in the input 

image, enabling object segmentation as well as classification; and [60] which retains 

information from prior input data so that multiple frames from a video sequence can be 

considered when making predictions. 

2.3 Scene Understanding 

Scene understanding is a widely researched topic, with many varied solutions to the 

problem of segmenting and labelling all parts of a sensed environment. Data may be 3D, 

in the form of point cloud [61] or voxel grid [62], obtained by active sensor, such as 

LIDAR [10] or structured light [63], or passive sensor, such as stereoscopic camera [4] 

or structure from motion [64]. 2D data may be obtained from visible light [65], infra-red 

[66] or other hyperspectral imagery [67]. Prior to deep learning based approaches, 2D 

scene understanding methods would typically employ a hand-crafted selection of features 

to build a descriptor that can be fed into a trained classifier to generate a label. The 

features used could be derived from local colour [68] or texture [69] information or a 

combination of the two [65], and classification could be performed by a Support Vector 

Machine [70], decision tree [71] or a nearest neighbour [72] based approach. The 

generated label may apply to a single pixel [73], an image region, either of fixed size and 

shape [74] or generated by a segmentation algorithm [75], or to the whole scene [76]. 
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Figure 2.8 The approach of Szegedy et al [77] first detects regions of interest at low resolution then refines 

detections at higher resolution in cropped images. 

More recently, deep-learning based methods have demonstrated state of the art results at 

a multitude of image recognition tasks [11] [78], and as such have come to dominate 

semantic scene understanding research. Several approaches have been proposed utilising 

deep CNNs to address the problems of object localisation and full scene labelling: The 

approach of Szegedy et al. [77], illustrated in Figure 2.8,  creates a downscaled output 

mask which is subsequently refined at larger scales. The network proposed by Farabet et 

al. [79] outputs a label for a single pixel each time it is run, such that the network must 

iterate once for each pixel in the input image requiring a label, with regional consistency 

then enforced by conditional random field. The approach of Girshick [58] uses a selective 

search algorithm to propose regions, each of which are then passed through the CNN and 

classified.  

The approach of Fully Convolutional Network (FCN) [80] creates a downsized class map 

that is upsampled by reverse pooling operations to create a final output comprising a 

vector of class label confidence values for every pixel in the original input image. Segnet 

[1] and u-net [81] propose  similar approaches, with the additional step of reusing output 

from prior pooling operations to better inform corresponding upsampling operations and 

retain higher resolution spatial information that would otherwise be lost. These 
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approaches demonstrate state of the art segmentation and classification results in a wide 

variety of scenarios, including medical imagery as shown in Figure 2.9. 

 

Figure 2.9 U-net [81] was motivated by biological image segmentation, however can easily be adapted to multi-class 

scene segmentation tasks. a. raw data b. ground truth segmentation c. u-net output d. pixelwise loss weighting to 

improve border detection. 

Several methods have been proposed that attempt to improve results in scene 

understanding and semantic segmentation tasks, including the combination of CNN and 

conditional random field (CRF) by Zhang et al [82], the introduction of a pyramid pooling 

module by Zhao et al [83], which extracts features at multiple scales which are then 

concatenated, and the addition of temporal information when working with video frames 

[84] [85] [86]. Temporal approaches include recurrent neural networks (RNN) and long-

short-term-memory (LSTM) modules, originally proposed in [87], which retain 

information over time to inform future predictions. 

Scene understanding is a vital step in an autonomous vehicle processing pipeline, but this 

can be especially challenging in an off-road, unstructured environment. Knowledge about 

upcoming terrain and obstacles is necessary for deciding on the optimum path through 

such an environment, and can also be used to inform vehicle driving parameters to 

improve traction, efficiency and maximise passenger comfort and safety.  

There is, however, relatively little scene understanding work focused on the off-road 

environment, where distinct but visually similar classes and a lack of structure can pose 

particular problems for computer vision. The approach of Jansen et al. [73], shown in 

Figure 2.10 in comparison with two earlier approaches, classifies pixels using colour-
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based features and Gaussian Mixture Models, while Manduchi et al. [10] uses a 

combination of features from colour imagery and 3D geometry from a laser range-finder. 

 

Figure 2.10 A comparison of off-road scene classification approaches from [73].  blue=sky, dark green=foliage, 

light green=grass, yellow=sand, grey=gravel. 

2.4 RGB-D Features 

Although the majority of scene understanding work only considers conventional 2D 

colour images (RGB), it has been demonstrated that the addition of 3D depth information 

(D) can improve classification performance in semantic scene understanding tasks, 

whether that information is obtained via laser scanner [10], stereoscopic camera [4] or 

structured light sensor [61]. 

In 2011, Silberman et al released their NYU Depth dataset [88] [89], some examples from 

which are shown in Figure 2.11. Captured using a Microsoft Kinect structured light depth 

camera, the NYU datasets contain approximately 4000 frames, each comprising a colour 



40 

 

image, aligned depth map and dense scene labels covering approximately 1000 classest, 

and have become a benchmark of sorts for RGB-D scene labelling approaches [80] [90]. 

Before deep-learning-based approaches became prominent, there were a wide assortment 

of approaches to the RGB-D labelling problem. Gupta et al. [90] propose a method which 

uses contour detection and hierarchical segmentation to generate superpixels which are 

then classified using an assortment of handcrafted depth and colour features and cascade 

SVM. 

 

Figure 2.11 Example images from the NYU Depth dataset [88]. Left: RGB image Center: Depth image Right: 

Ground truth scene class labels. 

Prior attempts to utilise depth information to improve CNN performance at classification 

tasks have shown that such features can bring about an improvement over results obtained 

from standard colour images: Gupta et al. [63] encode each pixel height, orientation and 

disparity into a 3 channel depth image to achieve state-of-the-art RGB-D object detection 

results, while Pavel et al. [91] utilise Histogram of Oriented Gradients and Histogram of 
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Oriented Depth, computed from the output of a consumer depth camera (Microsoft 

Kinect), to obtain competitive results in an object segmentation task. 

2.5 Path Planning 

A vitally important component of any autonomous vehicle processing pipeline is path 

planning. As opposed to route planning, which is concerned with navigation on a scale 

usually between metres and kilometres, often using GPS and pre-existing mapping 

information, path planning involves localising a vehicle at a much smaller scale, 

potentially centimetres, and identifying a path through its immediate environment, 

usually based on visual or 3D shape information obtained from cameras and LIDAR or 

other depth sensors.  

 

Figure 2.12 The approach of [28] detects lane markings using multiple models intended for different road types. 

In on road environments, such as illustrated in, Figure 2.12 this can be achieved by 

identifying the edges of the road along with any lane markings present [20] [28], usually 

with a line detection algorithm such as the Hough Transform Invalid source specified.. 

This information can be used to compare the current position and trajectory of a vehicle 

to the centre line of the lane along which it is travelling and adjust driving inputs 

accordingly.  
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The concept of end-to-end autonomous driving was first proposed by Pomerleau in 1989 

[19] with the Autonomous Land Vehicle in a Neural Network (ALVINN), which uses a 

neural network comprising a single fully-connected layer, taking a grayscale image and 

laser rangefinder data as input, trained to predict the steering wheel inputs made by a 

human driver. In 2004, the DARPA Autonomous Vehicle (DAVE) project [39], shown 

in Figure 2.13, trained a more complex, six layered network to drive a radio-control car 

in off-road environments, using data collected over several hours of human driving. More 

recent advances in deep-learning have led to the approach proposed in [2], which uses a 

network of 5 convolutional layers and 3 fully-connected layers, trained with 72 hours of 

human driving data, to successfully follow lanes on public roads. In all three approaches, 

a neural network is fed an image from a vehicle mounted camera and trained to predict 

the steering input a human driver would make at the time the image was captured. 

 

Figure 2.13 Example images from the data used to test DAVE [39]. The black bars represent predicted steering 

direction and magnitude. 

2.6 Summary 

Despite a large body of early work investigating autonomous off-road driving [19] [13] 

[10], most significant recent work has focused on road-based driving, addressing 

problems such as lane detection [30], autonomous navigation [2] and urban scene 

understanding [1]. Off-road environments pose several major additional challenges to 
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autonomous driving, including hidden obstacles, variability of terrain and overall lack of 

scene structure. The approaches detailed in subsequent chapters are intended to address 

some of these challenges. 
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Chapter 3  

 

Off-Road Scene Understanding 

  

  

Figure 3.1 Example off-road images along with corresponding semantic segmentations, whereby every pixel is 

assigned one of eight labels: grass (light green), dirt/mud (grey), water (light blue), bushes (dark green), trees 

(brown), sky (dark blue), paved road (dark grey) or man-made obstacle (red). 

Real-time road-scene understanding is a challenging computer vision task with recent 

advances in convolutional neural networks (CNN) achieving results that notably surpass 

prior traditional feature driven approaches [76]. Comparatively little work investigates 

the applicability of these techniques to the more challenging off-road environment, where 

the lack of structure and visual homogeneity of classes pose additional difficulties. 

In this chapter, we describe our work addressing this problem of off-road scene 

understanding. Firstly, we implement and evaluate an approach based on traditional 
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computer vision methods that have demonstrated state-of-the-art performance at other 

tasks, utilising a feature-driven Support Vector Machine (SVM) classifier based on the 

work of [93], and demonstrate results comparable to existing work. Furthermore, we take 

a state-of-the-art CNN architecture [1], designed to perform full pixelwise labelling and 

segmentation of images, that has been pre-trained on an urban road-scene understanding 

dataset, and retrain it towards the task of classifying off-road scenes. We evaluate several 

configurations of this CNN, and demonstrate state-of-the-art performance in this 

particularly challenging problem of off-road scene understanding. Figure 3.1 illustrates 

the goal of this work, with input images of off-road scenes shown on the left, and their 

corresponding CNN output on the right, showing colour coded semantic segmentation 

results. 

3.1 Introduction 

Scene understanding is a vital step in an autonomous vehicle processing pipeline, but this 

can be especially challenging in an off-road, unstructured environment. Knowledge about 

upcoming terrain and obstacles is necessary for deciding on the optimum path through 

such an environment and can also be used to inform vehicle driving parameters to 

improve traction, efficiency and maximise passenger comfort and safety. 

Work in the domain of scene understanding for autonomous vehicles has followed the 

wider trend in computer vision of transitioning to deep learning-based techniques, such 

as that of Alvarez et al [94], and Badrinarayanan et al [1], shown in Figure 3.2. However, 

there is very little work applying these methods to the more challenging off-road 

environment. This work aims to assess the applicability to such an environment of two 

approaches that have previously demonstrated good performance at other scene 

understanding tasks: a traditional computer vision method that makes use of hand crafted 

dense gradient features and an SVM classifier, based on the object category retrieval work 
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of [93],  and a state-of-the-art CNN architecture that was originally designed and trained 

to perform per-pixel classification on urban road scene images [1]. 

In training this CNN we perform transfer learning, taking a network model that has 

already been trained to classify a large, often more generic data set, and fine-tuning its 

parameters during the final phase of training using a specialised, and often much smaller, 

data set, such that it learns to perform a new task.  

 In this case, a CNN trained to perform urban street scene classification using the CamVid 

dataset [95] is subsequently re-trained with a smaller, more specialised data set of off-

road scenes. The idea is that the weights learned on the larger data set act to build a set of 

generic image filters that can be easily adapted for the task of classifying the more 

specialised imagery used later [96]. Transfer learning is generally thought to be beneficial 

when training with a small, specialised data set or when the time to train a new network 

from scratch is not available, so we investigate the effects of data set size and training 

time on classification performance of network models that have undergone different 

amounts of pre-training or no pre-training at all. 

3.2 Approach 

We implement and evaluate both a convolutional neural network-based approach and a 

support vector machine-based approach. In this section we describe these approaches. 

3.2.1 CNN Architecture 

The convolutional neural network architecture we use is nearly identical to the Segnet 

architecture described in [1], with only minor changes made to the final layer of the 

network. These changes consist of altering the size of  the final network output to 

accommodate the classes present in our off-road data set (8 classes, versus 11 in the 

CamVid data on which it was initially trained), and adjusting the weights that determine 
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per-class learning-rate bias in order to improve classification results for classes that are 

less prominent within the training data. Similar network architectures exist [80], however 

we down-selected Segnet due to the authors’ main motivation being autonomous vehicle 

applications and its ability to perform real-time classification.  

 

Figure 3.2 Architecture of the Segnet Convolutional Neural Network [1]. The encoder network, consisting of 

convolution and pooling layers, is followed by a mirror-image decoder network, consisting of convolution and up-

sampling layers. 

The Segnet architecture is visualised in Figure 3.2. It is comprised of a symmetrical 

network of thirteen encoder layers followed by thirteen decoder layers. The encoder 

layers correspond to the convolution and pooling layers of the VGG16 [53] object 

classification network, while the decoder layers up-sample their input so that the final 

output from the network has the same dimensions as the input image. During the encoding 

phase, each pooling layer down-samples its input by a factor of two and stores the location 

of the maximum value from each 2 × 2 pooling window. During the decoding phase, these 

locations are used by the corresponding up-sampling layer to populate a sparse feature 

map, with the convolution layers on the decoder side trained to fill in the gaps of a 

corresponding dense map. This technique facilitates full pixel-wise classification in real-

time, making Segnet an ideal architecture for use in further autonomous vehicle 

applications. 

3.2.2 CNN Training 

We begin by training the network on the Camvid dataset [95] that was used by the original 

authors to assess Segnet. By training on a large, well labelled dataset that has already 
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been shown to work well with this network architecture we can ensure that our model 

learns a set of weights that are relevant to a vehicular scene understanding task. We then 

perform transfer learning, fine-tuning the model on our own off-road data so that its 

parameters adapt to better suit an off-road environment and discriminate between the 

classes present in these scenes. 

  

  

Figure 3.3 Example images from the Camvid data set along with corresponding Segnet output with each pixel 

assigned one of eleven class labels: road (dark pink), vehicles (dark purple), pavement (light blue), buildings (red), 

sky (grey), poles (yellow), trees (light gold), cyclist (turquoise), road signs (light pink), fence (dark blue), pedestrian 

(dark gold). 

The benefits of transfer learning are in the ease with which an existing trained network 

can be adapted to a new specialised task. The time taken to train the network and learn 

optimum weights should be greatly reduced when compared to a network being trained 

from an initial set of randomly generated parameters. In cases where the specialised data 

set is small or only partially labelled, a network trained from a random starting point may 

never achieve satisfactory results, however by performing the bulk of training with a 
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larger set of data and only utilising the specialised data set for the last few iterations, a 

better outcome can be achieved [96]. 

In our case, the initial training data consists of 367 labelled images of urban street scenes 

from the Camvid data set, resized to a resolution of 480 × 360. An example image from 

the dataset, along with its annotations, can be seen in Figure 3.3. The original authors 

chose eleven pixel classes for the Segnet classification task, {sky, building, pole, road 

marking, road, pavement, tree, sign, fence, car, pedestrian, bicycle}. As the network 

architecture performs classification of every pixel, this gives us up to 172,800 samples 

per image, or 63,417,600 samples in total. In practice, the total is slightly less than this as 

some images have pixels that do not fit into any of the eleven original classes and are 

labelled 'void'. 

  

  

  

Figure 3.4 Example images from our off-road data set along with corresponding partially labelled ground truth 
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After the Camvid pre-training is completed, the network is fine-tuned using our own off-

road dataset, which consists of 369 annotated images, split into 295 training images, 37 

validation images and 37 test images. Images were captured by vehicle mounted camera 

driven at two different off-road driving facilities in the United Kingdom. Limited 

resources available for capturing and annotating data limited the size and variability 

within the data set, and so the scope of this work is constrained accordingly to wet, muddy 

agricultural environments in the United Kingdom. 

For input to our CNN model, these images have been resized to the same resolution of 

480 × 360 as the Camvid images. We identified 8 pixel class labels for our off-road data 

set, {sky, water, dirt, paved road, grass, foliage, tree, man-made obstacle}, 3 of which 

also existed in the Camvid data. 

Fully labelling every pixel in even a small set of images can be very time consuming, so 

we only partially label our training images, as shown in Figure 3.4, to assess whether 

good classification results can still be achieved without full labelling. Our labelling 

strategy consists of hand drawing a shape that is entirely contained by, but not touching 

the edges of, each image segment. Every pixel within that shape is then considered a 

member of the chosen class. Another reason this approach was chosen is the lack of clear 

boundaries to delineate classes in off-road scenes, for example where long grass becomes 

foliage or a muddy surface is interspersed with patches of grass, as can be seen in the top 

image of Figure 3.4. 
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Figure 3.5 Partial and fully labelled versions of the same image from our off-road data set. 

This gives us with a total of 35,016,288 labelled pixels for training, with the rest of the 

pixels (~31% of the total) labelled as void so that the network ignores them. For testing 

our classification results, we use one set of 37 images labelled in the same manner, as 

well as another set of 4 fully labelled images. Figure 3.5 shows the partial and fully 

labelled versions of one of our test images. 

To evaluate the effectiveness of transfer learning when task-specific fine-tuning is carried 

out with a small data set, we train several versions of the network using different sized 

subsets of this data, one each containing 140, 70, 35, 17, and 8 of the original images.  

Snapshots of the model are taken at several points during the Camvid training, so that we 

can observe the effects of different amounts of pre-training. Seven versions of the network 

will be trained and assessed on our off-road dataset: one which has been randomly 

initialised with no prior training, along with networks trained for 1000, 2000, 5000, 

10,000, 20,000 and 30,000 iterations on the Camvid data. 

Our training is performed on an NVidia Tesla K40 GPU, taking roughly one hour per 

thousand training iterations. We pass images through the network in batches of 6, with 

pixelwise softmax loss computed across each batch backpropagated by stochastic 

gradient descent. An initial learning rate of 1x10-3 is used, reduced by step function as 

training progresses, with momentum of 0.9 and weight decay of 5x10-4. 
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3.2.3 Traditional Computer Vision-Based Approach 

For comparison, we train an SVM to classify the same data using dense gradient features, 

based on the approach used in [93] for object classification. For our approach we classify 

image segments, as this allows us to cluster feature points to build up a bag-of-words 

vocabulary.  The segments in this case are those created manually while labelling the 

data, as in this case we are only interested in the performance of the classifier itself and 

so a perfect segmentation is assumed. 

A dense grid of feature points is computed for each segment, from which we obtain a 

dense feature descriptor. The grid density, g pixels between grid nodes in both x and y 

direction, is chosen empirically by testing values between 2 and 10 pixels. Generally, a 

denser grid should contain a greater amount of information at the expense of computation 

time, so a lower number should give better results in most cases. Figure 3.6 illustrates this 

dense grid overlaid onto an example segment from our data set. 

 

Figure 3.6 An example segment from our data set with a grid overlaid to illustrate feature point distribution. Points 

highlighted in red are determined to be within segment bounds and subsequently have their local features computed 

for classification. 

The Speeded Up Robust Features (SURF) algorithm [97] is used to create a descriptor for 

each grid node. A SURF descriptor computes Haar wavelet responses within a square 

region around the initial point, which are summed to produce a vector describing the 

intensity distribution of pixels within the region. This results in either a 128 or 64 
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dimension vector that describes the local texture. Empirically we found a 64 dimension 

vector to give better results at this task. Every SURF descriptor is computed at the same 

orientation of 0 radians with a radius of r pixels. r is chosen empirically after assessing 

classification results using a range of values from 2 to 20 pixels. Descriptors resulting 

from this grid-wise feature extraction over the segment are encoded into a fixed length 

vector for subsequent classification. 

We use the histogram encoding, or ‘bag-of-words’, approach detailed in [98]. We first 

use K-means clustering to create a visual vocabulary of K clusters within the 64-

dimensional space of our SURF descriptors. The optimum value for K is chosen 

empirically, after testing values from 200 to 1600. For each segment, a histogram is 

computed accumulating the number of its SURF descriptors assigned to each cluster 

within the vocabulary. 

This histogram is normalised to provide a K-dimensional descriptor for the segment, 

which we use as the input feature vector for an SVM classifier. We train this SVM 

classifier for a maximum of 20,000 iterations using a radial basis function to perform a 

grid search over the kernel parameter space. 

To ensure enough local gradient information is available at each feature point, we use 

images with a resolution of 1280 × 720, higher than those used to train the CNN. The 

memory and time that would be required to train the CNN using images at this resolution 

would be infeasibly high, however by clustering our features before passing them to the 

SVM, the size of data it uses to train and classify is constant per sample regardless of 

image resolution. 

Our labelled data set gives us 5664 labelled segments, which we split into 90% for 

training data and 10% for testing data. We ignore any samples too small to provide at 
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least 50 feature points, leaving us with between 3000 and 4000 viable segments, 

depending on the feature grid density used. 

3.3 Results 

We evaluate our classifiers using two sets of test data: a set of images partially labelled 

in the same manner as our training data, and a smaller set that are fully labelled (i.e. every 

single pixel in the image is labelled). The output layer of the CNN assigns a label to every 

pixel, while the SVM outputs a label for each segment. Figure 3.7 shows some example 

images with their respective CNN outputs and ground truth annotations. 

 

Figure 3.7 Results from the CNN after 30,000 iterations of pre-training and 10,000 iterations of training with the full 

off-road dataset. The middle row shows the fully annotated test images for comparison 

Due to the lack of clearly defined boundaries in some areas of off-road scenes, there exist 

some pixels could have more than one correct label in terms of true ground truth. This 

should not have much effect on the partially labelled data, as boundary regions remain 

largely unlabelled, however this is likely to have a negative effect on classification results 

when testing against fully labelled data. To limit this effect, when deciding whether a 

pixel is correctly labelled we search for a match within a 5 pixel radius in the ground truth 
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image. When testing with partially labelled data, a pixel is only labelled correctly if a 

match is found at its exact location in the ground truth image. 

When discussing the CNN, unless stated otherwise, accuracy is defined as the number of 

correctly labelled pixels divided by the total number of labelled pixels in the test data. 

When discussing the SVM, accuracy is defined as the number of correctly labelled 

segments divided by the total number of labelled segments in the test data. 

3.3.1 CNN with Partially Labelled Test Data 

First, we compare classification accuracy of the network model after training with 

different sized subsets of our off-road data set, and with the full data set after undergoing 

different amounts of pre-training with the Camvid data set. Results are obtained by testing 

the network model with our partially labelled test data set.  

3.3.1.1 Pre-Training Iterations 

Iterations Trained 1000 2000 5000 10000 20000 30000 

Classification Accuracy 0.31 0.36 0.48 0.68 0.75 0.79 

Table 3.1 Accuracy of the Segnet CNN on Camvid test data at the points when snapshots are taken to perform 

transfer learning 

Table 3.1 shows the performance of the network on Camvid test data before any training 

with off-road data, with accuracy recorded at the six points from which snapshots were 

taken for subsequent fine-tuning. As the Camvid data is mostly fully labelled, we use the 

same measure of accuracy as we use with our fully labelled off-road test data set, wherein 

a label is deemed to be correct if it is within a 5 pixel radius of a similarly labelled pixel 

in the ground truth image.  

These results demonstrate the network has rapid performance improvement over its first 

10,000 training iterations, followed by a slower but consistent improvement in 

performance during later training iterations. 
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Figure 3.8 Comparison of training progress for networks that have undergone different amounts of pre-training. 

Figure 3.8 shows the results achieved by each pre-trained version of the network on our 

full off-road data set. Each version of the network was trained for 10,000 iterations, with 

a snapshot taken and accuracy over our test data recorded first at every 100 iterations, 

then at every 1000 iterations. 

The results show that the first few thousand iterations clearly benefit from transfer 

learning, with the networks that have performed a greater amount of pre-training 

generally performing better. However, by 5000 iterations of training, even the network 

initialised with random weights has achieved an accuracy of close to 0.9, beyond which 

there is very little improvement from any of the networks.  

As the training continues, the networks pre-trained for longer give marginally better 

results. The highest accuracy achieved is 0.917, achieved by the network that pre-trained 

for 30,000 iterations with Camvid after it had undergone 8000 training iterations with the 

off-road data. The networks pre-trained for 20,000 and 30,000 iterations show very 

similar results throughout the training, suggesting a limit to the performance gains that 

can be achieved by pre-training. 

Training was continued up to 20,000 iterations with each network, however this gave no 

further increase in accuracy and so only the first 10,000 iterations are shown. 
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It is interesting to note that our results surpass those achieved by their respective networks 

on the Camvid test data within a few hundred iterations, and then go on to perform 

significantly better. This could partly result from our data-set containing fewer classes (8 

vs 11). Another factor could be our partially labelled test data, which features very few 

of the class boundary regions that form the most challenging parts in any semantic 

segmentation problem, however further testing with fully labelled data demonstrates a 

similar performance increase. It is possible that partially labelled training data could lead 

to a better performing classifier due to the lack of potentially confusing boundary pixels, 

although to fully test this we would need to compare these results to those obtained by 

training an identical network with a fully labelled version of the same data set, which is 

beyond the scope of this work.  

3.3.1.2 Data Set Size  

To consider the effect the amount of training data used has on classification, we train 

networks using five different sized subsets of our training data, containing 140, 70, 35, 

17 and 8 images, both with and without pre-training. Figure 3.9 compares results for three 

of these subsets, each trained for 10,000 iterations. 

 

Figure 3.9 Comparing pre-trained and non-pre-trained networks using different sized subsets of our off-road data set. 

The effects of transfer learning are similar to those observed when the complete data set 

is used: for the first 1000 iterations, the benefits of pre-training are clear. However, after 

just a few thousand more, both pre-trained and un-pre-trained networks have achieved 
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close to their optimum performance. As training progresses, the pre-trained networks 

consistently outperform their corresponding non-pre-trained network by a small margin, 

which generally increases as the dataset size decreases: After 10,000 iterations with a 

dataset of 140 images, the accuracy of the pre-trained network is just 0.01 better than the 

un-pre-trained network, while with the dataset of 8 images, this margin increases to 0.09. 

While pretraining has a large impact early in the training process, after 2000 iterations 

the effects of training data set size is significantly more pronounced. 

3.3.1.3 Per Class Results 

  Predicted 

  Sky Water Dirt Paved Grass Foliage Tree 
Man 

Made 

A
ct

u
al

 

Sky 0.990 0.000 0.000 0.000 0.000 0.001 0.007 0.001 

Water 0.001 0.902 0.093 0.000 0.004 0.000 0.000 0.000 

Dirt 0.000 0.010 0.959 0.004 0.022 0.002 0.003 0.000 

Paved 0.000 0.001 0.028 0.962 0.003 0.000 0.000 0.006 

Grass 0.000 0.000 0.013 0.002 0.937 0.039 0.009 0.000 

Foliage 0.000 0.001 0.012 0.000 0.156 0.679 0.152 0.000 

Tree 0.000 0.000 0.001 0.000 0.025 0.022 0.948 0.004 

Man Made 0.002 0.007 0.020 0.090 0.031 0.031 0.206 0.613 

Table 3.2 Confusion matrix of CNN output over our test data set. Values shown are labelled pixels as a proportion of 

total pixels belonging to ground truth class. 

We now discuss in more detail the results from the CNN trained for 10,000 iterations on 

the full data set after 30,000 iterations of pre-training. This is the network configuration 

that we would expect to typically perform best, with the highest amount of pre-training 

and largest data set, and it consistently achieves an accuracy of 0.91 against our partially 

labelled test data once it has passed 5000 iterations. 

Table 3.2 shows the confusion matrix of CNN output, with values represented as 

proportion of pixels with a given ground truth label. The most common misclassifications 

are between grass, foliage and trees, which is understandable given their visual 

similarities. Proportionally to class size, the largest is the 20.6% of pixels containing Man 
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Made Obstacles that are misclassified as Tree. This is likely because many of the man-

made obstacles in the off-road environment, such as fences, posts and gates, are made of 

wood and so have a similar appearance to trees. 

 Figure 3.10 plots the precision and recall of each class along with the proportion of the 

training data set that each class makes up. The foliage class performed worst, likely due 

to its visual similarity to both grass and trees, while sky gave the best results. Camera 

exposure was set to capture maximum detail at ground level, so in most instances the sky 

is much brighter than the rest of the scene, which combined with its lack of high frequency 

detail and consistent placement at the top of an image makes it easily distinguishable from 

other classes.  

 

For the most part, classes that achieve high precision also achieve high recall, however 

man-made obstacle is an exception, with a very high precision (0.92) but lowest overall 

recall (0.613), meaning very few pixels are misclassified as man-made obstacle, while 

many pixels which should be labelled man-made obstacle are not. The fact that it is the 

class with fewest training samples (1.7% of the data set) is likely to have played a part in 

this, as well as its visual similarity to trees, as discussed above.  
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Figure 3.10 Per class statistics for the CNN classifier. As well as class precision and recall, we plot the number of 

pixels comprising each class within the training data as a proportion of the total number of labelled pixels in the set. 
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There would appear to be a stronger correlation between class frequency and recall than 

between frequency and precision, suggesting that the network model learns any biases 

inherent in the training data, despite our decision to weight pixelwise loss as inverse to 

class frequency during training. 

3.3.2 Fully Labelled Test Images 

So far we have only discussed the results obtained through testing the CNN classifier 

against partially labelled data, thus we also test it against a set of fully annotated images 

to demonstrate that it can achieve similar results when challenging class boundary regions 

are present.  

 

Figure 3.11 Classification results using the fully labelled test set, comparing networks that have undergone different 

amounts of pre-training on the Camvid urban data set. 

Figure 3.11 shows the results obtained, demonstrating that testing with fully labelled 

images yields results very similar to those obtained using the partially labelled set. The 

highest accuracy was achieved by the network pre-trained for 5,000 iterations, with an 

accuracy of 0.924 after 8000 iterations of training with the full off-road data set. 

Interestingly, the network snapshots that perform poorly on the partially labelled set (i.e. 

those that have not yet been through enough training iterations or have only been trained 

on a small data set) tend to perform worse on the fully labelled images. By contrast, those 

that perform well on the partially labelled data exhibit less deterioration, and in some 

cases even demonstrate an improvement in accuracy, when the fully labelled set is used. 
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This would appear to suggest that a more comprehensively trained network performs 

much better in class boundary regions.  

Another point of note is that with the partially labelled data set, a network that had 

undergone greater pre-training would almost always perform better, however, when 

testing with the fully labelled data set, the networks that have undergone 5000 and 10,000 

pre-training iterations consistently outperform those with 20,000 and 30,000 iterations, 

although only by a very small margin, at the later stages of training. This could be because 

the networks that have undergone more pre-training begin to overfit to the data they were 

originally trained on. The fact that this only occurs when the fully labelled data is used 

might suggest that this overfitting only has a noticeable effect when classifying class 

boundary regions, which are not present in the partially labelled data. 

3.3.3 SVM  

 

Figure 3.12 Results from SVM classifier using various feature configurations. K represents the number of clusters 

used for bag-of-words encoding, g is the density of feature grid, i.e. number of pixels in both the x and y direction 

between feature points, and r is the radius, in pixels, of the area that each feature point takes account of when 

building its SURF descriptor 

For comparison, we test the SVM approach on its ability to classify segments from our 

off-road data set. The SVM parameters are automatically optimised through cross-
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validation, however we test several different configurations for the features that we pass 

into the classifier. The parameters that we alter are g, the number of pixels between feature 

points in our grid; r, the radius in pixels around each feature point that our descriptors 

take account of; and K, the number of clusters used to build our bag-of-words 

representation. Figure 3.12 shows several comparisons to demonstrate how performance 

is affected. 

We would expect a decrease in g to improve results, as a greater amount of detail is being 

considered. This partly holds true in our results, although not consistently so. As r 

changes, we initially see a consistent improvement in results, which begins to tail off after 

a while. This is likely because with r set too restrictively, each feature point only has 

access to a limited region of local gradient information. By contrast, with r set too large, 

high frequency detail is lost as the descriptor is built from a greater number of pixels. The 

optimum value appears to be around r = 10. The general trend for K is that larger is better, 

but memory and time constraints make too large a value impractical.  

The best result attained by the SVM was an accuracy of 0.813, using the parameters g = 

6, r = 12, K = 1400. 

 

Figure 3.13 Training progress of the CNN after different amounts of pre-training, measured as accuracy on the 

segment classification task for comparison to the SVM classifier. 

To properly compare SVM and CNN performance, we adapted our CNN classifier to 

label whole segments. This was done by winner-takes-all vote of pixel labels within the 
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segment. Figure 3.13 shows the segment classification results as the CNN is trained after 

different amounts of pre-training. The CNNs pre-trained for 10,000 or more iterations all 

achieve results better than those of the SVM before 1000 iterations have been completed, 

and by 2000 iterations all, including the CNN that has undergone no pre-training, have 

surpassed the SVM. After further training, segment classification results are very similar 

to those for pixel classification, peaking at around 0.91, confirming that the CNN is 

significantly more effective at this classification task than the SVM. Figure 3.14 shows 

examples of segments classified by the SURF/SVM approach. 

 

Figure 3.14 Example input and output of our SURF/SVM based approach. Images are segmented before classifier 

input, and in this case only those segments comprising the traversable surface area are shown with colour-coded 

class labels. 

3.4 Summary 

This work demonstrates how an existing deep convolutional neural network classification 

and segmentation architecture can be adapted to segment and classify off-road scenes. 

We have shown how quickly the network can learn to classify new kinds of images, and 

visualised CNN training performance by testing classification accuracy throughout the 



64 

 

cycle, allowing us to compare networks as training progresses to show the effects that 

transfer learning and data-set size can have on performance. 

Notably, we have demonstrated that pre-training is of limited utility when a large data set 

is used for a long training period. While pre-training was shown to improve performance 

when smaller data sets were used, results were still well below those observed with larger 

training data, even without pre-training, suggesting that pre-training is no substitute for 

an adequately sized data set. Pre-training was also shown to improve results early in the 

training cycle, although as training continues these effects diminish until a network with 

no pre-training will almost match the performance of a pre-trained one. In our testing, 

this happened as early as 5000 iterations, which represents just 5 hours of training. 

However, our results have shown that networks that have undergone more pre-training 

tend to perform marginally better, even after many iterations of training, however the 

results obtained from our fully labelled test set appear to show the opposite effect above 

5000 iterations of pre-training, suggesting that there is a limit. With that in mind, it would 

appear the optimum configuration of CNN for this task, using the Segnet architecture [1] 

and trained on our full off-road data set, is around 10,000 iterations of pre-training 

followed by 10,000 iterations of fine-tuning. 

These results show that such a CNN can outperform an SVM based classifier using dense 

gradient features by a significant margin. 
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Chapter 4  

 

Working Towards Improving Scene 

Understanding by Adding Depth 

Information 

      

      

a b c d e f 

Figure 4.1 Example images from our off-road data set. a. RGB colour image from the left lens of our stereo camera. 

b. manually labelled ground truth. c. stereo disparity image. d. Height map encoding each pixel height above an 

assumed ground plane. e. Angle with gravity map, encoding the local surface orientation difference from an assumed 

gravity vector at each pixel. f. Normal map, encoding local surface orientation at each pixel as a 3 dimensional 

vector, with the absolute X value represented by the blue channel, Y green and Z red. Depth feature encodings in the 

top row are computed by ASW while the bottom row are computed by SGBM. 

As discussed in Chapter 3, real-time scene understanding for autonomous vehicles is a 

challenging computer vision task, however recent advances in CNNs have facilitated 

performance that notably surpasses prior traditional feature driven approaches.  In this 

chapter we discuss our attempts to further build upon these results by supplementing CNN 

input with depth information obtained from stereoscopic camera. We adapt the same 

Segnet architecture [1] to perform pixel-wise classification of off-road scenes from multi-

channel images that combine RGB colour and depth information derived from stereo 

disparity. Using two state-of-the-art stereo matching algorithms, we train this CNN with 

raw disparity data as well as several transformations thereof, visualised in Figure 4.1, and 

compare results with those of a Segnet model trained on conventional RGB data to 

investigate the effect this depth information has on segmentation and classification 

performance. Over a limited set of challenging off-road scene imagery, we find the impact 
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of this additional depth information to be negligible, with performance roughly equal, or 

in some cases slightly diminished, to that demonstrated by the model relying on colour 

data alone. 

4.1 Introduction 

 

Figure 4.2 An overview of the object detection and segmentation approach of Gupta et al [63]. Colour and depth 

information are input to separate CNNs to extract relevant features which are then classified by SVM. 

Although the majority of scene understanding work only considers conventional 2D 

colour images (RGB), it has been demonstrated that the addition of 3D depth information 

(D) can improve classification performance in semantic scene understanding tasks, such 

as in the work of Gupta et al [63]. Gupta’s approach, visualised in Figure 4.2, takes a 

colour and depth image pair and extracts contours using a structured random forest 

approach to classify pixels (either as contour or not contour) based on local surface 

normal and pose information present in the depth data and edge information in the colour 

data. These contours are used to propose region where an object may be present, each of 

which is then used as input to separate colour and depth CNNs for extraction of features, 

which are subsequently classified by SVM. 

With the increasing prevalence of automotive stereo [99], in this work we examine the 

relevance of depth within the context of scene understanding for autonomous off-road 

vehicles. Following our prior scene understanding work, we adapt the Segnet CNN 

architecture [1] to take either a 4 (RGB-D) or 6 (RGB-Df1-Df2-Df3) channel image as input, 



67 

 

comprising an RGB colour image and stereoscopic disparity (normalized depth, D) or 

derivative features (Df1, Df2, Df3) thereof (namely height above ground, local normal 

orientation and angle with gravity, following the work of [63]). We train this adapted 

network architecture to segment and classify off-road scenes over our own off-road 

stereoscopic data set, comparing the results with those obtained using standard RGB 

images. 

4.2 Approach 

Our method comprises a CNN that takes multiple-channel input images and outputs a 

single class labels for every pixel. Input images consist of 3-channel RGB information 

with one or more additional channels containing some 3D information derived from 

stereo disparity. 

4.2.1 Segnet 

The convolutional neural network architecture we use is nearly identical to that of Segnet 

[1], as described Chapter 3. We carry out minor alterations so that it can take images with 

more than 3 channels as input, and adapt the final layer to output the six classes found in 

our stereoscopic dataset. 

For each of our input configurations, we initialise the network with randomised weights 

and train for 20,000 iterations, an amount empirically found to give the network ample 

time to achieve optimum performance. We do not perform pre-training in this case as a 

network with n input channels could only undergo pre-training with n-channel data, and 

we do not have a suitable larger dataset for this purpose. 

We train out network model using stochastic gradient descent (backpropogation) with an 

initial learning rate of 1 × 10-3 and a momentum of 0.9, as these are the values the original 

authors used to benchmark the Segnet architecture. 
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4.2.2 Data 

 

Figure 4.3 An example of a rectified image pair from our off-road data set. 

We create our training data from a set of 276 rectified stereo colour image pairs from our 

own off-road data set, at a resolution of 480 x 360 with a stereo baseline of 400mm, within 

which we identify 6 pixel class labels, {sky, water, dirt, grass, foliage, tree}. An example 

stereo image pair can be seen in Figure 4.3. We partially label our images in the same 

manner as detailed in Chapter 3: a polygon is drawn that is entirely contained by, but not 

touching the edges of, each image segment, so that every pixel within the polygon is 

considered a member of the chosen class. Again, this is partly because full labelling, even 

with a small data set, can be very time consuming, but also because of the lack of clear 

boundaries delineating classes in off-road scenes, for example, when a muddy surface 

gradually gives way to gravel, or where long grass becomes foliage. Through this 

technique, roughly 69% of pixels in our data are labelled, with the remaining 31% marked 

as void so that the CNN ignores them during training. An example labelled image is 

shown in Figure 4.4. 
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Figure 4.4 An example of a labeled image from our off-road data set. 

From this data we create one training set containing just the RGB images from the left 

lens of our stereo camera, which will be used to set a benchmark. We then create a further 

10 sets that each supplement the 3 colour channels with one or more channels containing 

depth information, the format of which is described in Section 4.2.3. 

4.2.3 Depth Features 

We compute two sets of stereo disparities, D, using Semi Global Block Matching 

(SGBM) [100] and Adaptive Support Weights (ASW) [101] methods, from which we 

create maps encoding height above the ground plane H, normal orientation N and angle 

with gravity A of each point. We then create training and test sets consisting of RGB-D 

(4-channel), RGB-H (4-channel), RGB-Nx-Ny-Nz (6-channel), RGB-A (4-channel) and 

RGB-D-H-A (6-channel) images using both stereo algorithms, giving us a total of 10 

different colour-depth configurations for evaluation. 
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4.2.3.1 Stereo Disparity 

 

Figure 4.5 Example stereo disparity images created using SGBM (left) and ASW (right) approaches. Brighter pixels 

represent scene regions that are closer to the camera. 

Stereo disparity measures the distance, in pixels, between the horizontal position of a 

feature in the left and right images of a (rectified) stereo image pair. In a typical stereo 

camera configuration, a point that is nearer to the camera will have a higher disparity. 

Our data set contains disparities between 1 and 64, which translates to a theoretical range 

from 3 metres up to 200 metres in front of the camera. There are a huge array of 

algorithms designed to compute stereo disparity [102] [103], however we only compare 

two in this work. 

SGBM is widely used in real-time applications due to its combination of accuracy and 

speed. The algorithm first calculates the cost for every potential disparity match, in our 

case using the method of Birchfield and Tomasi [104], and then attempts to minimise a 

global smoothness constraint while aggregating these costs along a one-dimensional path 

across the image. To aid disparity retrieval in areas of low textural information we match 

blocks of 5 × 5 pixels, and to reduce noise we filter out any speckles that comprise fewer 

than 50 pixels. Example disparity images obtained from SGBM and ASW are shown in 

Figure 4.5, illustrating the differences between the two approaches and the impact that 

selection of disparity algorithm can have on obtained depth information. 

There are many stereo disparity algorithms that have been shown to perform better than 

SGBM [105] [106], however these are mostly too slow for real-time automotive 
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applications. However, ASW is an approach that has been shown to be easily 

parallelisable [107], allowing for real-time performance when run on a GPU. 

Furthermore, ASW has been empirically shown to provide a greater level of depth texture 

granularity (i.e. depth detail) than SGBM due to the absence of a global smoothness prior 

which is central to the premise of SGBM techniques. 

To compute ASW disparity, an n × n local support weight window is computed for each 

pixel in both the left and right images, in which each pixel is assigned a weight that takes 

account of its proximity, in both image coordinates and RGB colour space, to the central 

pixel. Equation(4.1 shows how these weights are calculated, where wp,q is the weight 

describing the similarity between the pixels at locations q and p, c is the RGB colour 

value at each pixel, and C and D are empirically chosen constants (here we use C=5, 

D=10.5 and n=21). 

𝑤𝑝,𝑞 = exp (−
|𝑐𝑝 − 𝑐𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

𝐶
−

|𝑝 − 𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

𝐷
) (4.1) 

Each pixel p in the left image is then compared to each candidate pixel 𝑝̅ in the set of 

potential matches P from the right image. Each pixel q in the support window Wp is 

compared to the corresponding pixel 𝑞̅ in the support window 𝑊𝑝̅ , and the colour-space 

distance between their RGB values, cq and 𝑐𝑞̅ , is weighted by both the support weight of 

q in regard to p and the support weight of 𝑞̅ in regard to 𝑝̅ . These weighted distances are 

summed to compute the cost of matching p with 𝑝̅ and a winner takes all approach is used 

to pick the match with the lowest score, as shown in Equation (4.2. 

𝐷𝑝 = argmin
𝑝̅∈𝑃

(
∑ 𝑤𝑝,𝑞𝑤𝑝̅,𝑞̅|𝑐𝑞−𝑐𝑞̅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|𝑞∈𝑊𝑝

∑ 𝑤𝑝,𝑞𝑤𝑝̅,𝑞̅𝑞∈𝑊𝑝

)  (4.2) 

The thinking behind this approach is that when seeking a match for a given pixel, it is 

more important to compare nearby pixels that are similar in colour to the pixel for which 

a match is being sought, as they are more likely to be a part of the same object or surface. 
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An example ASW disparity image is shown in Figure 4.5, adjacent to an SGBM disparity 

image obtained from the same stereo pair for comparison. The ASW image can be seen 

to demonstrate greater edge definition than the SGBM image, which relies on a global 

smoothness prior, while the lack of a confidence threshold means that every pixel is 

assigned a disparity value whereas many holes can be seen in the SGBM image. 

In the case of both SGBM and ASW, we normalise disparity values normalised to the 

range 0 – 255 to create an 8-bit depth map which forms the D channel of our RGB-D 

images. The following depth representations are also derived from these disparity values.  

4.2.3.2 Height Above the Ground Plane 

 From each disparity map we create height map H, encoding height above an assumed 

ground plane for each pixel. Information about vehicle orientation is not available in our 

data set, and due to the rough nature of off-road environments, fitting a ground plane, as 

in [63] which focuses on indoor environments, is not likely to be reliable, so we assume 

a fixed ground plane relative to the camera based on the known dimensions of the vehicle. 

 

Figure 4.6 An example of a height map, H. Darker pixels are further from the assumed ground plane. 

Each pixel height above this assumed ground plane is measured in millimetres, clamped 

between 0 and 2h, where h is the height of the camera above the ground, then normalised 

to 0 to 255 so that an 8-bit image can be produced. We calculate the height at each pixel 

using Equation (4.3, where H is the height map, h is the height of the camera above the 

ground in millimetres, B is the baseline of the stereo camera in millimetres, D is the 
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disparity image and C contains the pixel coordinates of the optical centre of the left stereo 

image. An example height map is shown in Figure 4.6. 

𝐻𝑥,𝑦 = max(0,min (2ℎ, ℎ −
𝐵

𝐷𝑥,𝑦
(𝑦 − 𝐶𝑦))) (4.3) 

4.2.3.3 Normal Orientation 

 

Figure 4.7 An example of a normal image, N. The blue channel represents the X value, green Y and red Z. 

A normal map N encodes local orientation information at each point in an image. We 

compute one for each stereo disparity map, using 3 points from a 5 × 5 region around 

each pixel to give us a 3-dimensional vector describing the orientation of an imagined 

plane encompassing those three points. First, we compute the real-world coordinates of 

each point relative to the camera, P, as shown in Equation (4.4, where B is the stereoscopic 

baseline in millimetres, f is the left camera focal length in pixels, D is the disparity image 

and C contains the pixel coordinates of the optical centre of the left image. 

𝑃𝑥,𝑦 = (
𝐵

𝐷𝑥,𝑦

(𝑥 − 𝐶𝑥),
𝐵

𝐷𝑥,𝑦
(𝑦 − 𝐶𝑦), 𝑓

𝐵

𝐷𝑥,𝑦
) (4.4) 

The normal, N, can thus be derived at a given point by calculating the cross product of 

two vectors that connect three surrounding points, as shown in Equation (4.5. 

𝑁𝑥,𝑦 = (𝑃𝑥−2,𝑦+2 − 𝑃𝑥,𝑦−2) × (𝑃𝑥+2,𝑦+2 − 𝑃𝑥,𝑦−2) (4.5) 

We multiply the absolute value of each vector component by 255 to create an image 

comprising three 8-bit channels encoding the X, Y and Z values of the local normal. An 
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example normal map is shown in Figure 4.7, where the red channel corresponds to the Z 

value, green to Y, and blue to X (i.e. the ground mostly appears green, the surfaces of 

obstacles that face towards the camera appear red, and vertical surfaces that line the sides 

of the vehicle path appear blue). 

4.2.3.4 Angle with Gravity 

 

Figure 4.8 An example of an angle-with-gravity image, A. 

In [63], angle with gravity was found to be a useful CNN input feature when classifying 

objects in RGB-D images of indoor scenes. We derive such a map, A, from each of our 

normal orientation maps, N, by computing the dot product of each normal vector with a 

gravity vector to give us the cosine of the angle between the two, as shown in 

Equation(4.6. Due to a lack of either vehicle orientation information or a reliable ground 

plane in the off-road environment, we assume a gravity vector of (0, -1, 0) relative to the 

camera. Each value is then multiplied by 255 to create an 8-bit image. An example of 

such an image can be seen in Figure 4.8. 

𝐴𝑥,𝑦 = 𝑁𝑥,𝑦 ⋅ (0, −1,0) (4.6) 

4.3 Results 

We assess the trained network models on a test data set consisting of 29 images labelled 

in the same manner as our training data. As each model trains, we take a snapshot after 

every 1000 iterations which we assess using this test data so that we can analyse how 
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classification performance improves as training progresses. Our primary metric for 

assessing classification performance is accuracy, defined as the number of correctly 

labelled pixels divided by the total number of labelled pixels in the test data. 

    

RGB RGB-D (ASW) RGB-D (SGBM) RGB-H (ASW) 

  
 

 

RGB-H (SGBM) RGB-A (ASW) RGB-A (SGBM) RGB-D-H-A (ASW) 

    

RGB-D-H-A (SGBM) RGB-N (ASW) RGB-N (SGBM) Ground Truth 

Figure 4.9 Example output for the same image from each of our models after 20,000 training iterations. The 

differences between model outputs appear very small, a hypothesis supported by our quantitative evaluation. 

Table 4.1 shows the best test accuracy observed with each of our data sets, demonstrating 

very similar results in all cases. RGB-H data derived from SGBM disparity is the only 

configuration to outperform RGB colour data, albeit by a very small margin, suggesting 

that overall depth data is of limited utility in addressing this particular scene classification 

problem. With all data sets apart from RGB-A, classification performance was better with 

SGBM-derived depth features than with those derived from ASW, suggesting that 

disparity smoothness is more important than boundary definition. Figure 4.9 shows the 

output from each of our trained models for a single input image from our test data set, 

demonstrating how similarly all the models perform. 
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Data RGB RGB-D RGB-H RGB-A RGB-D-H-A RGB-N 

Disparity - ASW SGBM ASW SGBM ASW SGBM ASW SGBM ASW SGBM 

Accuracy 0.87 0.86 0.87 0.84 0.88 0.87 0.84 0.84 0.84 0.82 0.83 

Table 4.1 Best overall class accuracy observed from each trained network model over our off-road data set. 

4.3.1 RGB  

   

   

Figure 4.10 Example output from the CNN model using RGB input. Left - input image, middle - output, right - ground 

truth. 

Figure 4.10 shows example RGB data along with corresponding CNN output and ground 

truth. Figure 4.11 plots test accuracy of the network model trained and tested on RGB 

images containing no depth information, which we use as a baseline for comparison with 

our other configurations. The peak accuracy achieved in this case is 0.87, which comes 

after just 6000 iterations of training, however it then settles at around 0.86 for the 

remainder of the training, suggesting that this result is an anomaly. This result is slightly 

worse than that observed in our earlier work described in Chapter 3, in which an accuracy 

of 0.91 was achieved, however that network model had undergone pretraining with an 

urban road scene data set and a slightly larger off-road data set was used in that case.  
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Figure 4.11 Training progress of the CNN using RGB images. Peak performance was reached after about 5000 

training iterations. 

4.3.2 RGB-D 

    

    

Figure 4.12 Example output from the CNN model using RGB-D input. Left to right - input RGB image, depth image, 

output, ground truth. Top row uses SGBM disparity, bottom row uses ASW disparity. 

Figure 4.12 shows example RGB-D data along with corresponding CNN output and 

ground truth. Figure 4.13 shows the results obtained from the network model trained to 

classify RGB-D images, in which the three colour channels (R, G and B) are 

supplemented by an additional channel encoding stereo disparity computed with either 

the ASW or SGBM algorithm (D). The extra information contained in the RGB-D images 

does not appear to make much difference, with both networks achieving performance 

very similar to that of the model trained with RGB images. Neither model achieves a 

result better than the 0.87 reached by RGB after 6000 iterations, however for the 

remainder of training the ASW disparity does marginally outperform RGB, while SGBM 

is marginally worse.  
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Figure 4.13 Training progress of the network models using RGB-D images, with disparity computed by both SGBM 

and ASW methods. RGB results are also shown for comparison. 

4.3.3 RGB-H 

    

    

Figure 4.14 Example output from the CNN model using RGB-H input. Left to right - input RGB image, height image, 

output, ground truth. Top row uses SGBM disparity, bottom row uses ASW disparity. 

Figure 4.14 shows example RGB-H data along with corresponding CNN output and 

ground truth. Figure 4.15 shows the classification accuracy when using RGB-H images, 

where the fourth channel encodes each pixel height above an assumed ground plane, 

derived from either SGBM or ASW disparity. The effect of the addition of height data on 

performance is more pronounced than in the case of RGB-D, although still small. SGBM 

derived height appears to outperform ASW derived height, which would not perhaps be 

expected given the relative depth texture characteristics of the two algorithms. After 

14,000 iterations, the RGB-H imaged derived from SGBM disparity achieves a 

classification accuracy of 0.88, the highest reached by any configuration during these 
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experiments, and goes on to consistently outperform the RGB CNN by 0.02-0.03, while 

ASW performs 0.02-0.03 worse than RGB. 

 

Figure 4.15 Training progress of the network models using RGB-H images, with height derived from both SGBM and 

ASW algorithms. RGB results are also shown for comparison. 

4.3.4 RGB-N 

    

    

Figure 4.16 Example output from the CNN model using RGB-N input. Left to right - input RGB image, normal image 

(blue = X, green = Y, red = Z), output, ground truth. Top row uses SGBM disparity, bottom row uses ASW disparity. 

Figure 4.16 shows example RGB-N data along with corresponding CNN output and 

ground truth. Results from RGB-Nx-Ny-Nz, that is 3 colour channels and 3 channels 

encoding the local normal orientation at each point, are shown in Figure 4.17. In this 

experiment, the network trained using images containing normal data derived from 

SGBM disparity consistently demonstrates an accuracy in the range of 0.03-0.04 below 

that of RGB, while ASW performs 0.04-0.05 worse than RGB. 
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Figure 4.17 Training progress of the network models using RGB-Nx-Ny-Nz images, with normal vectors derived from 

both SGBM and ASW algorithms. RGB results are also shown for comparison. 

4.3.5 RGB-A 

    

    

Figure 4.18 Example output from the CNN model using RGB-A input. Left to right - input RGB image, angle with 

gravity image, output, ground truth. Top row uses SGBM disparity, bottom row uses ASW disparity. 

Figure 4.18 shows example RGB-A data along with corresponding CNN output and 

ground truth. Figure 4.19 plots results obtained using RGBA images, where A encodes 

the cosine of the angle between gravity and local normal at each point. The images 

derived from ASW perform best in this case, although with only marginal gains compared 

to the model trained with RGB images. SGBM consistently achieves an accuracy between 

0.02 and 0.03 below that of RGB in this experiment. 
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Figure 4.19 Training progress of the network models using RGB-A images, with angle with gravity derived from both 

SGBM and ASW algorithms. RGB results are also shown for comparison. 

4.3.6 RGB-D-H-A 

    

    

Figure 4.20 Example output from the CNN model using RGB-D-H-A input. Left to right - input RGB image, D-H-A 

image (blue = D, green = H, red = A), output, ground truth. Top row uses SGBM disparity, bottom row uses ASW 

disparity. 

Gupta et al. [63] showed promising results from combining disparity, height and angle 

with gravity into 3-channel images for object detection in indoor environments using a 

CNN, so we combine our 3 similar channels with our 3 RGB channels into a set of RGB-

D-H-A images, results from which are shown in Figure 4.21, and example input and 

output is shown in Figure 4.20. The D, H and A channels obtained from SGBM perform 

best here, seeing gains of around 0.01 over RGB, while ASW consistently performed 

between 0.02 and 0.03 below RGB.  
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Figure 4.21 Training progress of the network models using RGB-D-H-A images, derived from both SGBM and ASW 

disparity. RGB results are also shown for comparison. 

4.4 Summary    

  

Figure 4.22 Example colour and depth images from the NYU Depth data set [88](left) and from our off-road data set 

(right).  

Our results would appear to show that the additional information contained in stereo 

disparity can only provide marginal improvement to CNN classification accuracy over 

standard RGB images in this particularly challenging problem of off-road scene 

understanding. This is partly due to the efficacy of the Segnet architecture at classification 

from conventional colour images (RGB), with results so good to begin with that it 

becomes ever harder to gain additional performance. Another potential consideration is 

the quality of disparity information used, as we focus our attention on real-time 

applications and so more accurate, but slower, stereo disparity algorithms were not 

investigated. Our results would appear to contradict those of prior work, such as [63], 
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which demonstrated that depth information can improve classification performance in 

indoor environments. However, the scene structure inherent in such environments does 

not exist in our data set, and it may be the case that depth data does not contain meaningful 

information able to aid classification of the type of cluttered, natural environments where 

off-road driving takes place. Figure 4.22 illustrates this with example depth images from 

our data set as well as from the NYU Depth data set [88]: the difference in quality of the 

depth information obtained by structured light depth sensor in indoor environments 

compared to stereoscopic camera and realtime disparity algorithm in unstructured 

environments is clear, as is the difference in scene structure. The different classes present 

in the NYU data, such as table, bed, and sofa, can be clearly visually distinguished in the 

depth images, however the classes present in our data, such as grass, bushes, and dirt, are 

not visually obvious within our depth images. We believe this is a major reason why this 

work does not appear to support the conclusion of Gupta et al [63] that depth information 

improves classification performance. 

We also show that performance gains through transforming disparity information before 

inputting it into a CNN are either non-existent or very small. Further consideration of 

what features to extract from disparity could potentially lead to further improvements. 

However, such features are usually derived solely from the disparity data itself, and thus 

contain no new information. As such, they should not aid CNN classification as in theory 

a neural network should optimise during training to automatically find the most effective 

transformation of its input data. For example, if local orientation information were the 

most effective transformation of raw disparity, a CNN fed disparity images should adjust 

its parameters during training such that they approximate the calculation used to derive 

orientation from disparity. 
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Chapter 5  

 

Off Road Path Prediction 

In this chapter we discuss the problem of identifying a viable vehicle path through an off-

road environment. This is an especially challenging problem due to the unstructured 

nature of off-road environments, along with visually indistinct obstacles and the need to 

assess terrain parameters that might affect levels of grip or cause a vehicle to become 

immobile. 

While previous chapters have focused on semantic labelling of off-road scene features, 

this chapter investigates techniques for planning the route a vehicle should take through 

such a scene. First, we reimplement and evaluate an existing end-to-end learning 

approach [2] that has demonstrated state of the art on-road results. We evaluate the 

performance of this method over our own off-road dataset, identifying several limitations. 

We then attempt to address these limitations with our own proposed visual path prediction 

approach, in which a CNN is trained to segment an image from a forward-facing camera 

into path and non-path areas. 

 

Figure 5.1 A frame from a video demonstration of the Nvidia end to end autonomous driving approach [108]. 
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5.1 End to End Learning 

We reimplement and evaluate the End to End Learning approach of Bojarski et al [2] in 

an off-road environment. A CNN is trained to predict steering inputs using data 

comprising images from a forward-facing camera and corresponding ground truth vehicle 

control inputs made by a human driver. Figure 5.1 shows a frame from a video of the 

approach being demonstrated [108] on a road vehicle driving through a test course, in this 

case navigating a scenario set up to look like road works. 

 

Figure 5.2 The CNN architecture proposed by Bojarski et al [2] for end to end learning. 

5.1.1 Implementation 

Figure 5.2 shows the End to End Learning network architecture as implemented by the 

original authors, comprising five convolution layers, three of which use a 5 × 5 kernel, 

the final two of which use a 3 × 3 kernel, followed by three fully-connected layers and a 

regression output. We use as input a single colour image of dimensions 256 × 136 and 

output is a single floating-point value {-1→1} that represents normalized steering wheel 
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angle (i.e. the amount by which the vehicle steering wheel has been turned as a proportion 

of the maximum rotation that can be applied in either direction). Some examples from 

our data set are shown in Figure 5.3. The original authors used a significantly smaller 

input size of 200 × 66 to enable real-time performance on a mobile device, however we 

found that too much useful information was lost when performing such a drastic 

downsampling of our off-road dataset.  

We train this network for 100,000 iterations using ~20,000 images taken from our off-

road data, each with an associated ground-truth normalised steering wheel angle, using a 

batch size of 6 images. Loss is computed as the mean squared error between predicted 

and ground-truth steering wheel angle across each batch, and backpropagated by 

stochastic gradient descent with momentum = 0.9. The initial learning rate is set to 2 × 

10-4 and a step function is used to decrease this as training progresses. 

   

   

Figure 5.3 Example images from our off-road data set along with a visualisation of corresponding ground truth 

steering angle. 

5.1.2 Evaluation 

The original authors of the End to End Learning method we are implementing did not 

conduct a quantitative evaluation of their approach, instead relying on the subjective 

measurement of the number of times a human passenger felt it necessary to override the 

driving decisions of the system [2]. We address this by performing a quantitative analysis 

in which we evaluate performance through measurement of the mean error between 
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predicted and ground truth steering wheel angle. Over our test dataset, mean error 

between predicted and ground truth normalized steering wheel angle was 0.097. 

Unnormalised, this translates to an average error of 52.6° at the steering wheel, which, 

given the steering ratio of the vehicle, translates to approximately 3.5° of steering 

direction error at the road wheels. 

Figure 5.4 plots predicted steering angle against ground truth for our test data set, 

demonstrating a clear bias towards straight-ahead within the data which appears to be 

amplified in the predictions - despite samples existing right up to the full steering extents, 

no prediction demonstrated a magnitude of greater than 0.5. This suggests that the 

network optimised to a local minimum whereby it could minimize error by constraining 

its predictions close to the mean. This could potentially be addressed by modifying the 

training data so that a greater proportion of samples demonstrate sharp turns, or by 

modifying the training loss function so that loss is weighted proportionally to the distance 

a given sample lies from the mean. However, this does demonstrate an additional 

limitation of this approach that is especially significant in an off-road environment and 

that we aim to address with our own approach. 

 

Figure 5.4 Steering angle values output by the End to End CNN for our test data plotted against ground truth. 
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5.2 Visual Path Prediction 

In the End to End Learning approach discussed above [2], a neural network is fed an 

image from a vehicle mounted camera and trained to predict the steering input a human 

driver would make at the time the image was captured. We have identified four major 

limitations with this method: a) only immediate driving inputs are considered, with no 

thought as to how the vehicle path might change over time; b) driving inputs are learned 

for the characteristics of a specific vehicle, and so to apply the technique to a new vehicle 

with different steering characteristics, for example a tracked vehicle, would require the 

system be retrained on data from that vehicle; c) steering inputs do not necessarily relate 

consistently to the movement of the vehicle, especially in off-road environments where 

effective traction may be severely limited; d) the strong bias towards straight-ahead likely 

to be present in any real-world training data appears to become amplified in network 

output. 

In this work, we address these limitations by proposing a visual end-to-end autonomous 

driving approach, whereby a CNN is trained to map future vehicle path directly to pixels 

in an image from a forward-facing camera. Training data is created automatically by using 

stereoscopic visual odometry [109] to track the motion of a human-driven vehicle through 

a sequence of images and then mapping this motion into the image space of the initial 

frame such that pixels that the vehicle traverses are labelled as ‘path’. This addresses the 

identified limitations of existing end-to-end autonomous driving approaches [2] [19] [39], 

whereby only immediate driver input is predicted, by predicting a path that takes account 

of future changes in direction and does not rely on a direct link to driver inputs. 

Furthermore, the output of this process could be combined with semantic scene 

understanding, as discussed in Chapters 3 and 4, to semantically label path pixels and 

create awareness of upcoming terrain characteristics that can be used to setup vehicle 
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parameters, such as suspension stiffness and gear ratio, for optimum traction and 

passenger comfort. 

Subsequently, we use our automatically labelled data to train three state-of-the-art CNN 

architectures, each originally designed to perform a different segmentation or 

classification task. We also create a test dataset in the same manner, which we use to carry 

out a quantitative analysis of the performance of our approach using the three 

architectures. 

5.2.1 Approach 

The problem we are solving is the prediction of the path that a human driver would take 

through an off-road environment from a single image of that environment taken by a 

forward-facing vehicle-mounted camera. Our approach involves the automatic creation 

of training-data, whereby labelling of image pixels is automated using visual odometry 

to track vehicle motion, then using this data to train a CNN to map future vehicle path to 

image pixels, and by extension real-world location. 

5.2.1.1 Automated Dataset Creation 

 

Figure 5.5 An off-road vehicle being driven as part of our data collection process. A stereoscopic camera rig 

attached to the roof of the vehicle was used to capture data in a wide variety of off-road environments. 
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Our training data comprises individual colour images captured by a forward-facing 

vehicle-mounted camera and the corresponding automatically labelled binary ground 

truth images. Images were captured by stereoscopic camera mounted on the roof of an 

off-road vehicle, shown in Figure 5.5, at a rate of 10 frames per second. The 3D 

transformation matrix between each consecutive pair of stereo frames is computed using 

the visual odometry approach of Geiger et al [109] such that the transformation between 

any pair of frames within a sequence can be obtained. As the stereo depth data is only 

required for the creation of this ground-truth data, a deployed version of this system would 

require only a monocular camera. 

f0 f1 f2 … fn 

    
 [T1] [T2] … [T3] 

    

Figure 5.6 An example image sequence from our data set: starting from frame f0, transformation matrices [T1] to 

[Tn]  are computed for camera position in n subsequent frames, from which vehicle footprint can be calculated and 

translated back into image space so that path pixels can be labelled. Top row contains original frames f0 to fn, while 

bottom row shows aggregate computed footprint at each frame overlaid onto f0. 

To select the frames that will form our dataset, we begin at the start of a sequence and 

look for the first frame containing movement, f0, for which we create a label image L of 

matching dimensions with every pixel labelled as ‘not path’. Subsequent transformation 

matrices, T1, T2, … Tn are used to calculate the location and orientation of the camera, and 

by extension the vehicle footprint, in respective frames, f1, f2, … fn, relative to the camera 

position in f0. We then reproject this vehicle footprint back into camera space at f0, 

labelling any pixel Lx,y contained within as ‘path’. This process, illustrated in Figure 5.6, 

continues until the magnitude of the global transformation vector between the camera 

positions in f0 and fn is greater than distance threshold D, at which point the process is 
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started again using the frame midway between f0 and fn as the new starting point. 

Empirically we found D = 20m to be an appropriate value, as larger distances tended to 

cause noticeable propagation of transformation errors during the stereo visual odometry 

process. 

We collected two sets of data, each using a different stereo camera (firstly a pair of GoPro 

Hero 4 [110] cameras placed on a 3D printed mount with a stereo baseline of 400mm, 

then a Carnegie Robotics MultiSense S21 [111], with a baseline of 210mm), vehicle and 

location to ensure variability within the data, and mirrored versions of every image were 

added to ensure an equal frequency of left and right turns. In total, our dataset comprises 

~1000 RGB images of dimensions 512 × 288 along with corresponding binary ground 

truth images of the same dimensions. We use a 90/10 split to divide our data into training 

and test sets. The challenges associated with capturing off-road data, along with the lack 

of publicly available datasets, are significant areas for future consideration.  

5.2.1.2 Network Architectures 

We use our data to train three CNN architectures: Segnet [1], Fully Convolutional 

Network (FCN) [80], and u-net [81], each of which represents a slightly different 

approach to the concept of an encoder-decoder architecture for pixelwise labelling and 

segmentation.  

The design of Segnet, discussed further in Chapter 3, was motivated by segmentation and 

classification of road scenes for autonomous driving. It is a symmetrical architecture 

comprising an encoder based on the VGG16 [53] network, with fully connected layers 

removed, followed by a mirror-image decoder. The encoder consists of 13 convolution 

layers, each using a 3 × 3 kernel followed by batch normalization and rectified linear 

units, interspersed with 5 max pooling layers, each downsampling its input by a factor of 

2. The decoder replaces the max pooling layers with upsampling layers that use the 
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corresponding max-pooling indices from the encoding phase to restore some of the spatial 

information that would otherwise be lost to pooling. The final layer of the network is a 

softmax classifier of dimensions c × w × h where c is the total number of classes (in this 

case 2: {path, not path}), and w and h are the dimensions of the original input image. 

 

Figure 5.7 An example of an FCN for performing a semantic segmentation task [80] 

FCN, shown in Figure 5.7, was designed primarily for object segmentation and 

classification, and while versions have been implemented based on various network 

architectures, we use a version based on VGG16 for better comparison with Segnet. The 

fully connected layers originally used in VGG16 are replaced by convolution layers with 

large receptive fields, and dropout is used to reduce the risk of overfitting. A 1 × 1 

convolution is used to predict class likelihoods at each scale during the decoder phase, 

which are then concatenated with the corresponding max-pooling output before 

upscaling. Output is again a softmax classifier of dimensions c × w × h. 

U-net, shown in Figure 5.8, was initially motivated by segmentation of medical imagery, 

and is a more compact architecture than Segnet or FCN, comprising eighteen 3 × 3 

convolutions and 4 each of pooling and upsampling operations. The output of each 

upsampling operation is concatenated with the input of the corresponding pooling 

operation in order to retain spatial information that would otherwise be lost through 

downsampling. Again, Output is a softmax classifier of dimensions c × w × h. All three 
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networks are implemented in Caffe [112], and in the case of Segnet and FCN we use 

models made publicly available by the original authors [1] [80]. 

 

Figure 5.8 U-net CNN architecture [81]. 

The networks are pretrained on an off-road semantic segmentation task, as detailed in 

Chapter 3, with pixels initially being labelled as one of eight classes: sky, water, dirt, 

paved road, grass, foliage, tree, man-made obstacle. The final output layer of the network 

is then changed to only output two classes (path, not path) and the model is fine-tuned on 

our path prediction dataset. The motivation behind this is that a network trained to identify 

individual classes within a scene may be better equipped to differentiate between surfaces 

that are drivable, for example dirt or paved road, and those that are not, for example tree 

or sky. In order to test this hypothesis, we also evaluate the networks without this pre-

training step, instead initialising weights randomly. 

Our training data is passed through each network in batches of six images, with the final 

softmax classification error computed at every pixel to give a training loss value for the 

entire batch, which is propagated backwards through the network using stochastic 

gradient descent with momentum (we set momentum = 0.9 for all three network 

architectures). For Segnet we use a step function to decrease learning rate over training 

epochs, while the learning rate is fixed for u-net and FCN, as we attempt to replicate the 
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work of the original authors as best as possible in each case. The initial learning rate is 

selected empirically to enable parameter fine-tuning without overfitting: for both Segnet 

and u-net the value selected for initial loss was 1 × 10-3, while for FCN it was 1 × 10-10. 

A weight decay of 5 × 10-4 is also used in all three cases. Training continues until training 

loss is minimized such that no further gains are observed: this happened after 60,000 

iterations for Segnet, 30,000 iterations for u-net, and 100,000 iterations for FCN, most 

likely due to the lower learning rate. 

5.2.1.3 Post Processing 

   

   

Figure 5.9 Example CNN output - top row shows C1, bottom row shows corresponding C0 before post-processing. 

CNN output, shown in Figure 5.9, is an array of dimensions 2 × w × h, where one channel 

contains a map of confidence values C0 {0→1} that express the likelihood that a given 

pixel belongs to the class ‘path’, and the other channel contains a map C1 {0→1} 

expressing the confidence that each pixel belongs to the class ‘not path’, such that C0 and 

C1 are the inverse of each other and C0,x,y +  C1,x,y = 1. As C1 only contains information 

that can easily be inferred from C0, it can be discarded. 

An additional post-processing step is applied to C0 to create the final path confidence map 

for evaluation against ground truth data. Firstly, we use the stereo disparity available with 

our source data to compute the distance from the camera to each pixel location in the 

image, and any pixel further than the distance threshold D = 20m is set to 0, as these 
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pixels will have been ignored during the ground truth creation process. We then convolve 

the image with a Gaussian kernel of σ = 6 to smooth out any high-frequency noise. 

Next, we set the confidence values of all pixels that are disconnected from the main path 

segment to 0. For the purpose of this step, we use a very low path confidence threshold δ 

and set all pixels where C0 < δ to 0. Empirically, we found a value of δ = 0.025 to give 

the best results. If the image contains multiple disconnected path segments, we determine 

which to consider the actual path by finding the pixel where C0,x,y > δ with the smallest 

Euclidean distance from C0,w/2,h (i.e. the central pixel of the bottom row of the image), 

and performing a flood fill operation starting at that point that treats pixels with a value 

of 0 as component boundaries. Any pixel that is outside of the component filled by this 

operation is set to 0. 

   

   

Figure 5.10 Example output path confidence maps, before (top row) and after (bottom row)post processing. In 

addition to smoothing the output with Gaussian kernel, unconnected path segments have been removed. 

 Some examples of output confidence maps before and after post-processing are shown 

in Figure 5.10 to demonstrate the effects of this step. 

5.2.1.4 Evaluation Methodology 

We evaluate the performance of the three trained networks, both with and without the 

post processing steps detailed above, using the 10% of our dataset that was set aside for 

testing. 
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In all cases we threshold the output path confidence map such that any pixel that satisfies 

the condition C0,x,y > 0.5 is labelled ‘path’, and any that does not is labelled ‘not path’. 

We compare this thresholded image to the ground truth data to compute the following 

four metrics across the entire test dataset: 

Accuracy expresses the proportion of total image pixels that are classified correctly as 

either ‘path’ or ‘not path’, as shown in equation (5.1 (tp = true positives (the number of 

pixels correctly labelled as ‘path’), tn = true negatives (the number of pixels correctly 

labelled as ‘not path’), fp = false positives (the number of pixels incorrectly labelled as 

‘path’, and fn = false negatives (the number of pixels incorrectly labelled as ‘not path’). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (5.1) 

Precision expresses the proportion of those pixels that are labelled ‘path’ in the output 

image that are also labelled as such in the ground truth data, as shown in equation (5.2. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (5.2) 

Recall expresses the proportion of the pixels that are labelled ‘path’ in the ground truth 

data that are correctly classified as such in the output image, as shown in equation (5.3. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (5.3) 

Intersection over union (IoU) expresses the number of pixels that are correctly classified 

as 'path' as a proportion of the total number of pixels that are either labelled as such in the 

output image or labelled as such in the ground truth data, as shown in equation (5.4. 

𝐼𝑜𝑈 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
 (5.4) 

In all four cases, values are expressed in the range {0→1} with a higher value 

demonstrating superior performance. 
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5.2.2 Results 

Our results are shown in Table 5.1 with illustrative examples shown in Figure 5.11 based 

on an evaluation over our test dataset. The top three rows show good results from FCN, 

Segnet and u-net respectively. The penultimate row shows an example of a poor result 

obtained from u-net, in this case likely caused by a combination of shadow and water on 

the ground. The bottom row shows an example where the track forks in front the vehicle 

creating two valid paths, although our ground truth only includes the path that the vehicle 

originally took. 

   

   

   

   

   

Figure 5.11 Example images from our test data set. Left: input, centre: raw CNN output prior to post-processing, 

right: ground truth 
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Detailed results are shown in Table 5.1. In terms of accuracy, the performance was similar 

across all three network types, with little impact from either pre-training or post-

processing - the randomly initialised Segnet and FCN models both demonstrated an 

accuracy of 0.94, while u-net performed marginally better at 0.95. Segnet performance 

appears to benefit slightly from pre-training while FCN and u-net were negatively 

affected. Post-processing also raised accuracy slightly for Segnet, however no change was 

observed for the other two networks. 

While these figures may appear highly impressive, accuracy alone is of limited utility in 

this case as it takes account of every pixel across the entire image when certain image 

regions will consistently contain only one label across the entire dataset, for example the 

top half of the image is almost exclusively ‘not path’ in most cases. To demonstrate this, 

we compared every output path confidence map to every non-corresponding ground truth 

image (i.e. those derived from different input images) and found the mean accuracy in 

this case to be 0.84. This implies that there could be a risk that a CNN optimize to a local 

minimum whereby it outputs a single average path that demonstrates high accuracy across 

the entire training dataset, however our results show that this did not happen. 

Recall again demonstrated very similar performance from Segnet and u-net, while FCN 

performs slightly worse. A small improvement is demonstrated by the Segnet model that 

has undergone pre-training, however in all other cases both pre-training and post-

processing have a negative impact on recall. In most cases the opposite is true of 

precision, which increases slightly with post processing – from 0.84 to 0.85 in the case of 

FCN, from 0.86 to 0.88 in the case of Segnet and from 0.86 to 0.89 in the case of u-net. 

This is because the post-processing step will have removed or decreased the confidence 

value of more path pixels than it added or increased. U-net is the only network for which 

precision appears to be negatively affected by pre-training, dropping to 0.82. 
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Regarding intersection over union, performance is again similar between Segnet and u-

net, however u-net output would appear to benefit the most from post-processing, with 

its IoU improving from 0.75 to 0.77 (Table 5.1). Again, FCN was the worst performer 

(0.72), and neither the results from it nor from Segnet showed any improvement with 

post-processing. Pre-training appears to have only slightly improved the performance of 

Segnet, while having a negative impact on FCN and u-net. We believe IoU to be the most 

useful metric for measuring performance at this task as it takes account of both false 

positives and false negatives while ignoring true negatives, which make up a significant 

proportion of the data and are part of the reason accuracy is so high: in the experiment 

described above where path confidence maps were compared against non-corresponding 

ground truth images, the mean IoU was only 0.41. 

Network Pretraining Post Processing Accuracy Recall Precision IoU 

SegNet No No 0.94 0.85 0.86 0.75 

SegNet Yes No 0.95 0.86 0.87 0.76 

SegNet No Yes 0.95 0.85 0.88 0.76 

FCN No No 0.94 0.84 0.84 0.72 

FCN Yes No 0.93 0.71 0.89 0.65 

FCN No Yes 0.94 0.82 0.85 0.72 

U-net No No 0.95 0.86 0.86 0.75 

U-net Yes No 0.93 0.81 0.82 0.69 

U-net No Yes 0.95 0.85 0.89 0.77 

Table 5.1 For each network type used we display the results obtained from the raw output of a model initialised with 

random weights, along with our attempts to improve on these by pre-training on a semantic segmentation task and 

post-processing the output data in the manner detailed above. 

5.3 Summary 

In this chapter we have proposed an approach to off-road path prediction that combines a 

novel method for automatically creating labelled training data with state of the art 

convolutional neural network architectures designed for pixelwise labelling and 

segmentation tasks. 
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We created our own off-road dataset which we used to train networks based on the Segnet 

[1], Fully Convolutional Network [80], and u-net [81] architectures. These networks were 

then evaluated using our testing dataset, and all three demonstrated good performance. 

Overall, the best result was obtained from u-net output, which considering its advantages 

in terms of speed and memory usage would make it ideally suited for deployment as part 

of an autonomous vehicle solution. 

Our approach addresses several limitations with existing end-to-end driving methods, 

extending the work of Bojarski et al [2], which itself built upon the work of Pomerleau 

[19] and Muller [39], in several ways. Firstly, our approach predicts the vehicle path up 

to a set distance, while existing approaches only consider immediate control inputs. 

Secondly, our approach is not tied to any specific vehicle or steering apparatus, whereas 

existing approaches are only applicable to the vehicle used to generate training data, as 

any change to steering ratio, turning circle, or steering method, for example on a tracked 

vehicle, would require different control inputs. By removing the direct link between CNN 

output and vehicle controls, we also believe that our approach is better suited to off-road 

environments where traction may be limited, and vehicle movement might not necessarily 

correlate with steering direction. Finally, by implementing one of these approaches 

ourselves, we demonstrated an additional limitation, in its proclivity for predicting low-

magnitude steering inputs. 

5.3.1 Future Work 

One aspect we did not explore with this work is temporal consistency – the data used is 

derived from video sequences, and so an additional constraint that filters predicted path 

across consecutive frames would likely improve performance. Another potential 

approach for achieving this could be the modification of CNN architecture such that some 
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information from previous frames is retained to inform future predictions. The size and 

variability of available data is another area for consideration. 

  



102 

 

Chapter 6  

 

Conclusions 

In this chapter we conclude our findings and discuss the contributions made to the state 

of the art. We outline the limitations of the work, the implications and impact to industry, 

and possible future directions building upon this research. 

Despite a rapidly growing body of research into autonomous road vehicles [3] [4], there 

is comparatively little work investigating the significantly more challenging problem of 

autonomous driving in off-road environments. The work described here has gone some 

way to addressing this, demonstrating two important capabilities in key areas of this 

problem domain: semantic segmentation of off-road scenes and path planning through 

unstructured environments. 

We have demonstrated that an existing deep convolutional neural network classification 

and segmentation architecture [1] can be adapted to segment and classify off-road scenes, 

concluding that such an architecture can learn to successfully classify new kinds of 

images even with minimal training time and data through the technique of transfer 

learning. We then investigated the effects of the addition of several encodings of 

stereoscopic depth information to CNN input data, concluding that only marginal 

improvement in scene understanding performance resulted. We can conclude, contrary to 

popular belief, that stereo depth sensing does not strongly contribute to semantic scene 

understanding in the less structured off-road environment. 

We have also investigated the application of end-to-end learning approaches to the 

problem of off-road path planning, evaluating an existing approach [2], which uses data 

generated by a human driver to train a CNN to predict steering inputs. After identifying 
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several limitations with this approach, we addressed these with our own proposed 

approach, in which a CNN is trained to predict vehicle path visually within an input image 

from data generated by a human driver: firstly, our approach predicts the vehicle path up 

to a set distance, while existing approaches only consider immediate control inputs. 

Secondly, our approach is not tied to any specific vehicle or steering apparatus, whereas 

existing approaches are only applicable to the vehicle used to generate training data, as 

any change to steering ratio, turning circle, or steering method, for example on a tracked 

vehicle, would require different control inputs. By removing the direct link between CNN 

output and vehicle controls, we also believe that our approach is better suited to off-road 

environments where traction may be limited, and vehicle movement might not necessarily 

correlate with steering direction. Finally, by implementing one of these approaches 

ourselves, we demonstrated an additional limitation, in its proclivity for predicting low-

magnitude steering inputs. 

6.1 Contributions 

In this work we have demonstrated several key contributions towards the development of 

off-road autonomous vehicles. 

In Chapter 3 we demonstrated a successful approach to off-road scene understanding, 

achieving state of the art performance by adapting and retraining a CNN architecture 

designed for semantic segmentation of urban road scenes [1] for the kind of unstructured 

environments encountered off-road. This builds on existing work in the area of 

autonomous on-road driving [1] by demonstrating that this approach is applicable to much 

more challenging off-road environments. 

In Chapter 4 we attempted to improve our semantic segmentation performance with the 

addition of depth information, however we found this to be of limited utility when 

performing scene understanding tasks in off-road environments. This would appear to 
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contradict existing work [63] that demonstrated positives results using a similar approach 

in structured indoor environments. 

In Chapter 5 we built on our semantic segmentation work to focus on binary path 

segmentation, using similar encoder-decoder networks and proposing a novel automated 

data annotation process to overcome the problem of time consuming image labelling. We  

implemented an existing end-to-end learning approach for autonomous driving [2], and 

demonstrated several limitations with such approaches when focusing on off-road 

environments, which we addressed with our approach. 

Overall, we demonstrated how state-of-the-art deep learning techniques can be used to 

segment and classify off-road scenes to inform the decision-making process of 

autonomous off-road vehicles. Despite the challenges inherent in off-road environments, 

we demonstrated that good multi-class semantic segmentation and binary path 

segmentation results can be achieved with only monocular imagery. 

6.1.1 Industrial Impact 

As on-road autonomous driving technology matures, it is inevitable that the automotive 

industry will look for ways to apply similar techniques in off-road environments. 

Agriculture [6], military [5] and planetary exploration [7] are all areas that such 

technology could potentially save lives and reduce costs. Scene understanding and path 

planning are two of the core problems that form part of the processing pipeline of such 

an autonomous vehicle, and in this work we have successfully demonstrated proposed 

solutions to both. 

6.1.2 Limitations 

The data used for training and evaluation of this work was severely limited in both 

quantity and variety, due to the lack of publicly available off-road data sets and limited 

resources that could be devoted to the acquisition and annotation of data. All data used 
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was captured in rural environments in England under similar weather conditions, and so 

it is unlikely that the CNN models trained using this data would be capable of generalising 

well to other environment types without further training. If similar methods were to be 

deployed on an autonomous off-road vehicle platform, training and evaluation would 

need to be undertaken with data from as wide a variety of environmental, weather and 

lighting conditions as possible to ensure good generalisation. 

Speed and computational complexity is another limitation that would affect the suitability 

of this work for deployment. Training and evaluation was undertaken on a Nvidia Geforce 

Titan XP [113], a high-end GPU with significantly greater capabilities than what could 

feasibly be deployed on a vehicle. Using this hardware scene understanding was able to 

run at ~10fps using the Segnet architecture, while path prediction using unet was 

marginally quicker, however on a device that meets the space and power requirements of 

a mobile platform, a significant drop in performance would likely be observed. Although 

off-road vehicles typically move at a lower speed than on-road vehicles and obstacles 

tend to be stationary so high-speed performance is not as important. 

6.2 Further Work 

We have demonstrated the capability to semantically segment off-road scenes, as well as 

to visually predict vehicle path through unstructured environments. Despite these 

successes, there remain areas in which this work could be built upon. 

6.2.1 Data 

As discussed in Section 6.1.2, limits to the quantity and variability of data used for this 

work limit the ability of CNN models to learn to generalise. A larger data set, comprising 

data acquired in a wide variety of locales, under varying weather and lighting conditions 

could be used to expand upon this work to demonstrate that a robust model capable of 

generalising to many types of off-road environment can be trained.  
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6.2.2 Temporal Consistency 

Both scene understanding and path prediction approaches use individual frames extracted 

from video sequences as input, and so the addition of a technique to increase consistency 

of predictions across subsequent frames could improve accuracy. This could be 

implemented as a post-processing step, whereby predictions that are consistent with those 

seen in previous frames are given priority over those that differ, or built into the CNN 

architecture as a recurrent step which retains data from previous frames to inform 

subsequent decisions, such as in [114]. 
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